

)

Mark Century

GECENT
Postprocessor

Computer Programmer Manual

. - ----------~ -~

MANUAL NO. 247 , MARTIN, ;EARNEST
President

ISSUED TO Martin Tool Works, Inc.
3320 Toll view Drive
Rolling Meadows, llli~ois 60008

GENERAL fl.ELECTRIC
NUMERICAL EQUIPMENT CONTROL DEPARTMENT,.WAYNESBORO, VIRGINIA

DISCLAIMER

Although the GECENT* Postprocessor has been extensively
tested by the General Electric Company, no warranty,
expressed or implied, is made by the Company as to the
accuracy and functioning of the GECENT Postprocessor or
related program material or services, and no responsi
bility is assumed by the General Electric Company in
connection therewith.

© COPYRIGHT 1962, 1963, 1964, 1970

by

GENERAL ELECTRIC COMPANY, USA

Regulations of the U.S. Department of Commerce prohibit
the reexportation of this technical data to Albania,
Bulgaria, Communist China,the Communist controlled area
of Vietnam, Cuba, Czechoslovakia, East Germany,Estonia,
Hungary, Latvia, Lithuania, North Korea,Outer Mongolia,
Poland, Rumania and the U.S.S.R.

(

•

GENERAL. ELECTRIC COMMUNICATION AND

COMPANY CONTROL DEVICES

WAYNESBORO, VIRGINIA ..••.•.•....• TELEPHONE 703-942-8161 DEPARTMENT

We are pleased to present you with your personal copy of the GECENT Postprocessor
Computer Programmer's Manual. It has been registered in your name at the address
given on the title page.

The documentation for the GECENT III program is in two volumes, one for the computer
programmer and a separate volume for the part programmer. Some of you will receive
both volumes; but in some cases, the Part Programmer's Manual will be mailed to
another designated individual in your company.

Additional copies of either manual may be purchased at ~42 each should others in your
organization require them. Contact your local General Electric Industrial Salesman.

Please check your address. It is almost impossible to keep our mailing list up-to-date.
If your address changes or if you transfer this manual to another person, please let me
know immediately. I will be updating this manual periodically; therefore, it is to your
advantage to keep me posted if your address changes.

This is your manual. We want it to serve you well. Should you find errors or omis
sions in this documentation, please send them to me. Your comments and criticisms
will be appreciated.

~~JA~Wt.-o
Richard A. Thomas, SOFTWARE COORDINATOR

RAT:mh

Enclosure

GENERAL. ELECTRIC
NUMERICAL EQUIPMENT

COMPANY
CONTROL DEPARTMENT

WAYNl:SBORO, VIRGINIA 22980 TELEPHONE 703-942-8161

December 15, 1970

SUBJECT: GECENT Postprocessor Computer Programmer Manual

Attached is the first revision to your GECENT Postprocessor Computer
Programmer's Manual. Not only is new copy enclosed, but you will notice a
new format is being used. When you attempt to open your book, you will discern
why.

It will be necessary for you to drive the closing stick open using a screw driver
and mallet, as the contents are too tightly packed. Remove pages 6-1 through
6-60 in your manual and replace with the attached pages.

The new material, and more to follow, will reduce the number of pages and
permit normal entry to the manual. This mailing is a part of our continuing
effort to keep your manual as current as possible.

~~JA~~~
R. A. Thomas, SOFTWARE COORDINATOR

RAT/pm

Attachment

FORWARD

This manual completely describes the GECENT III Postprocessor
System as to its computer design, theory of organization, and
details of operation.

It has been assumed that the reader is familiar with APT, FORTRAN
IV, and with general computer practices and furthermore, has a
knowledge and understanding of the postprocessor part programming
vocabulary. The GECENT III Part Programmers Manual is a
supplement to this manual and is referred to many times.

The various subsections of this document are complete in
themselves. A relevant section may be identified so that further
investigation into the subject may be made. Mandatory readings
are Sections 1 and 2, since these sections delineate the
fundamentals which must first be known before proceeding with
further detail. Section 3 gives a detailed description of the
elements of the entire postprocessor, and Section 4 itemizes
some of the special functions of the postprocessor. Section 5
should be read by anyone who plans to work with the
postprocessor, modifying it or simply maintaining it.

For further information or assistance on a part of this manual or
the postprocessor, the reader is directed to:

The GECENT Postprocessor Program
General Electric Company

Building 305, Mail Drop H-8
Evendale, Ohio 45215

February 1970

ClCINT Ill

1.0

2.0

2.1
2.2
2.2.1

2.2.2
2.2.3
2.3
2.3.l
2.3.2
2.3.3
2.4
2.4.1
2.4.1.1
2.4.1.2
2.4.2
2.4.2.1
2.4.2.2
2.4.2.2.l
2.4.2.2.2
2.4.3
2.4.3.1
2.4.3.2
2.4.4
2.4.4.1
2.4.4.2
2.4.5
2.4.5.1
2.4.5.2

3.0

3.1
3.1.1
3.1.1.1

3.1.1.1.l
3.2
3.2.l
3.2.1.l
3.2.1.2
3.2.2

3.2.3

POSTPROCESSOR ... for the computer programmer

TABLE OF CONTENTS

INTRODUCTION

GENERAL DESCRIPTION

Theory of Operation
Overlay Structure
Naming Conventions for the GECENT III
Postprocessor
Overlay Loading Technique
Sample Postprocessor Structures
Description of Program Flow
Fixed Order and Assignments of DBFSEG
Command Block Identification Codes
Schematic of Program Flow
Program Flow by Machine Type
Positioning Machines
Positioning Machine Characteristics
Positioning Machine Program Flow
Lathes
Lathe Characteristics
Lathe Program Flow
Linear Interpolation Flow
Circular Interpolation Flow
Three-Axis Milling Machines
Milling Machine Characteristics
Milling Machine Program Flow
Multiaxis Milling Machines
Multiaxis Milling Machine Characteristics
Multiaxis Milling Machine Program Flow
Multihead Machines
Multihead Machine Characteristics
Multihead Machine Program Flow

DETAILED DESCRIPTION

Control Element
Postprocessor Initialization (GEINIT)
Selecting the Postprocessor and Machine
Subroutine
PTONLY/2 Run
Input Element
General Input Flow
Hexadecimal Tape Records
Non-hexadecimal Tape Records
Input Sequences for IBM ~ystem 360 and
RCA Spectra 70 Computers
Input Sequence for UNIVAC Computers

Page

1-1

2-1

2-1
2-3

2-4
2-5
2-8
2-9
2-10
2-12
2-16
2-17
2-18
2-19
2-20
2-22
2-22
2-23
2-23
2-25
2-29
2-29
2-30
2-30
2-31
2-33
2-37
2-38
2-44

3.0-1

3.1-1
3.1-2

3.1-3
3.1-5
3.2-1
3.2-1
3.2-4
3.2-4

3.2-5
3.2-6

ClCINT Ill POSTPROCESSOR ... for the computer programmer

TABLE OF CONTENTS (con't)

3.2.4
3.2.5
3.3
3.3.1

3.3.2

3.3.2.l
3.3.2.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.4
3.4.1
3.4.2
3.4.2.1
3.4.2.2
3.4.2.3
3.4.2.4
3.4.3
3.4.3.l
3.4.3.2
3.4.3.2.1
3.4.4
3.4.4.1
3.4.5
3.4.5.1
3.4.5.2
3.4.5.3
3.4.6
3.4.6.1
3.4.6.2
3.4.6.3
3.4.7
3.4.7.1
3.4.7.2
3.4.7.3
3.4.7.3.l
3.4.7.3.2
3.4.7.3.3
3.4.8
3.4.8.l
3.4.8.2
3.4.8.2.1
3.4.8.2.1.1
3.4.8.2.1.1.1
3.4.8.2.1.1.2

Input Sequence for GE600 Series Computer
Input Sequence for CDC Computers
Auxiliary Element
Record Type 1000 - BCD Part Program
Statement
Record Type 2000 - Postprocessor
Statement
Major Word List
Minor Word List
Record Type 3000 - Surf ace Data
Record Type 5000 - Motion Records
Record Type 6000 - ARELEM Flags
Record Type 9000 - ARELEM Parameters
Record Type 14000 - FINI
Motion Element
Obtaining Motion Data from the CL Tape
Motion Record Subtype
Subtype 3 FROM Point
Subtype 4 GODLTA Point
Subtype 5 GOTO Point
Subtype 6 Continuation Record
Processing A Motion Record
Processing A Linear Interpolation Motion
Segmentation of A Linear Move
Segmentation Proof
Processing a Circular Interpolation Motion
Special Case Conditions
Processing a Rotary Motion
Rotary Absolute System Processing
Rotary Incremental System Processing
Segmentation of a Rotary Move
Selecting the Preparatory Function G Code
Selecting the G Code for a Linear Move
Selecting the G Code for a Circular Move
Selecting the G Code for a Rotary Move
Processing a Multiaxis Motion
Multiaxis Circular Interpolation
Rotary Motion with ROTREF
Linearity Error and Correction
Description of Problem
Method of Solution
Processing Method of Subroutine LINRTY
Processing in a Multihead Environment
First-Pass Considerations
Second-Pass Considerations
Merging of Blocks
Single Feedrate Register Merging
Theory of Operation
Programmed Procedure

Page

3.2-6
3.2-7
3.3-1

3.3-2

3.3-2
3.3-7

3.3-10
3.3-15
3.3-16
3.3-16
3.3-18
3.3-18
3.4-l
3.4-1
3.4-9
3.4-9

3.4-10
3.4-10
3.4-10
3.4-11
3.4-12
3.4-14
3.4-19
3.4-21
3.4-33
3.4-37
3.4-41
3.4-43
3.4-44
3.4-47
3.4-50
3.4-52
3.4-55
3.4-57
3.4-60
3.4-62
3.4-68
3.4-68
3.4-70
3.4-77
3.4-79
3.4-79
3.4-83
3.4-85
3.4-85
3.4-86
3.4-91

ClCHT Ill POSTPROCESSOR ... for the computer programmer

TABLE OF CONTENTS (con' t)

3.4.8.2.1.2
3.4.8.2.1.2.1
3.4.8.2.1.2.2
3.4.8.2.1.3
3.4.8.2.1.3.1
3.4. 8.2.1.3.2
3.4.8.2.2
3.4.8.2.2.1
3.4.8.2.2.2
3.4.8.2.2.3
3.5
3.5.1
3.5.2
3.5.3
3.5.3.1
3.5.3.2
3.5.4
3.5.4.1
3.5.5
3.5.6
3.5.7

4.0

4.1
4.1.1
4.1.1.1
4.1.1.2
4.1.1.3
4.1.2
4.1.2.1
4.1.2.2
4.1.2.3
4.1.2.4
4.1.2.5
4.1.2.6
4.1.2.7
4.1.2.8
4.1.2.9
4.1.2.10
4.1.3
4.1.3.1
4.1.4
4.1.5
4.1.5.l
4.1.5.2
4.1.5.2.1

Double Feedrate Register Merging
Theory of Operation
Programmed Procedure
Common Axis Segmentation
Theory of Operation
Programmed Procedure
Multihead Output
Linear-Linear
Linear-Circular or Circular-Linear
Circular-Circular
Output Element
Conversion to Tape Image
Printout Variable Format
General Output Flow
Initialization
Output Processing
GEOUTl (Summary Printout)
Detailed Description of CALCPl
GEOUT2 (Combined Printout)
GEOUT3 (Multiple Printout - Multihead)
GEOUT4 (Multiple Printout - Non-multihead)

SPECIAL SEQUENCES

Feedrate
Contouring Feedrate Commands
Feedrate Number Command
Inverse Time Feedrate Command
EIA "Magic 3" Feedrate Command
Positioning Feedrate Commands
Feed Type 0
Feed Type 1
Feed Type 2
Peed Type 3
Feed Type 4
Feed Type 5
Feed Type 6
Feed Type 7
Feed Type 8
Feed Type 9

*
*
*

3.4-107
3.4-107
3.4-114
3.4-119
3.4-123
3.4-124
3.4-125

3.5-1
3.5-1
3.5-2
3.5-5
3.5-6
3.5-8

3.5-15
3.5-21
3.5-23
3.5-31
3.5-47

4-1

4-1
4-2
4-3
4-8

Positioning Machine Rotary Feedrate Command
Rotary Feed Type 1

4-10
4-11
4-12
4-13
4-13
4-15
4-15
4-17
4-19
4-20
4-20
4-21
4-22
4-22
4-24
4-26
4-26
4-27

Rapid Traverse
Feedrate Optimization
G Code Segmentation
Variable Maximum Feedrate on Each Axis
Variable Maximum Feedrate on Multiaxis
Machines 4-32

* Information not available for this distribution

ClClNT Ill POSTPROCESSOR ... for the computer programmer

TABLE OF CONTENTS (con't)

4.1.5.3
4.1.5.4
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.3
4.3.l
4.3.1.1

4.3.1.2
4.3.1.3
4.3.1.4
4.3.1.5
4.3.2
4.3.2.1
4.3.2.2

4.3.3
4.3.4
4.4
4.5
4.5.1
4.5.2

4.5.3
4.5.3.1
4.5.4

4.5.5

4.5.6
4.5.7

4.5.8
4.5.9

4.5.10

Feedrate Multiplier Constant
Rapid Traverse Optimization
Multiaxis Transform Classes
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Acceleration-Deceleration Testing (A/D)
Servo Analysis of A/D Problem
Path Errors on Corners Formed by Two
Connecting Straight Lines
Location of Slowdown Point
Location of Speedup Point
Feedrate Limitation on Arcs
Non-Tangent Arcs
Derivation of Formulae
Undershoot Error on Corner When F 2 ~ F
Feedrate on Circle Due To Steady State
Servo Errors
A/D Dynamics Considered by the Postprocessor
A/D Programmed Procedure
Surf ace Feet Per Minute (SFM)
Spindle Types
Type 0: Combination Range and Row
Type 1: EIA 3-Digit Code Number

(Variable Spindle)
Type 2: Associated Speed Code
Type 2: Protective Multiple Shifting
Type 3: Associated Speed Code with Range

and/or Direction M Code
Type 4: Quasi-EIA 3-Digit Code Number With

Range and Direction M Code
Type 5: Discrete EIA 3-Digit Code Number
Type 6: Discrete EIA 3-Digit Code Number

Selective Search
Type 7: (presently undefined)
Type 8: Associated Speed Code Independent

Of Range
Type 9: Associated Speed Code Related to

Tool Number

* Information not available for this distribution

Page

4-37
4-39
4-43
4-46
4-50
4-52
4-55
4-56
4-57
4-60
4-63
4-65
4-67
4-68

4-72
4-75
4-75
4-76
4-76
4-77
4-77

4-80

*
*

4-85
4-91
4-92
4-93

4-94
4-95

4-96

4-98
4-99

4-99
4-100

4-100

4-101

ClClNT Ill POSTPROCESSOR ... for the computer programmer

TABLE OF CONTENTS (con't)

4.5.11

4.5.11.1
4.5.12
4.5.13

4.5.14
4.5.15
4.5.16
4.5.17
4.5.18
4.5.19
4.5.20
4.6
4.7

4.8
4.9
4.10
4.11
4.12

5.0

5.1
5.1.1
5.1.2
5.2
5.2.1
5.3
5.4
5.4.1
5.4.2
5.4.3
5.5
5.6
5.6.l
5.6.2
5.6.3
5.6.4
5.6.5
5.6.5.1
5.6.5.2
5.6.5.3

Type 10: Variable Speed With Range and
Direction M Code

Type 10: Protective Multiple Shifting
Type 11: Table Lookup
Type 12: Spindle Command Equal to

Selected Speed
Type 13: Expanded Quasi EIA 3-Digit Code
Type 14: Speed Changes by Mode
Type 15: Ratio Between Ranges
Type 16: Spindle
Type 17: Spindle
Type 18: Spindle
Type 19: Spindle
Threading Procedures
Automatic Reinstatement of Program
Conditions
Variable Format by G Code
Leading Zero Suppression
Dwell Blocks
OPSKIP Processing
Cut and Dwell Times

POSTPROCESSOR PROGRAM DETAILS

Labelled COMMONS
Parameter Definitions
Customer COMMON
Description of Subroutines
Subroutines in Each Overlay
Flow Charts
Cross Tracing of Subroutines
Subroutines Calling Subroutines
Subroutines Called By Subroutines
Computer Dependant Subroutines
Information Blocks
The Machine Subroutine
Table of Preparatory Functions (TABLEG)
Table of Miscellaneous Functions (TABLEM)
Table of Registers (REGSTR)
Table of Register Formats (REGFOR)
Table of Options (OPTAB)
Customer Options
Categorized Options
Options Numerically Ordered (KWIK-OP)

* Inf orrnation not available for this distribution

4-102
4-103
4-104

4-105
4-105
4-107
4-108
4-111
4-112
4-113
4-114
4-115

4-122
4-125
4-128
4-128
4-130
4-130

5-1

5-1
5-3

5-59
5-59
5-60
5-69
5-87
5-87

5-103
5-117
5-123
5-127
5-130
5-139
5-151
5-153
5-159
5-217

*
*

ClClNT Ill POSTPROCESSOR ... for the computer programmer

TABLE OF CONTENTS (con't)

5.6.6
5.6.6.1
5.6.6.2
5.6.6.3
5.6.6.4
5.6.7
5.6.8
5.6.8.1
5.6.8.2
5.6.8.3
5.6.8.4
5.6.8.5
5.7
5.7.1

6.0

7.0

7.1
7.2
7.3
7.4

7.5

7.6
7.7
7.8
7.9

Writing a Machine Subroutine
TAG Array
IORDER Vector
FRTAB Table
Machine Subroutine Checklist
Machine Subroutine Functions (MACFUN)
Sample Machine Subroutines
Positioning Machine
Lathe
Three-Axis Mill
Multiaxis Mill
Multihead Machine (Lathe)
Error Diagnostics and Warning Comments
Fatal Errors

SUBROUTINE DESCRIPTIONS

APPENDIX

EIA "Magic 3" Conversion Method
Error Accumulation Analysis
Definitions and Abbreviations
Determination of Optimum Length for a
Rapid Traverse Move
GECENT III Postprocessor Supplementary
Conditions of Sale
EIA Punched Paper Tape Code (RS-244A)
ASCII Punched Paper Tape Code (RS-358)
Arc Tangent Definitions
GECENT III Common Parameter Cross
Reference

Page

5-218
5-220
5-220
5-221
5-223
5-226
5-230
5-230
5-232
5-235
5-237
5-242
5-244
5-245

6-1

7-1

7-1
7-3
7-5

7-7

7-9
7-15
7-17
7-17

7-19

C(C(Nl 111 POSTPROCESSOR ... for the computer programmer

1.0 INTRODUCTION

The GECENT* III Postprocessor System is a highly generalized,
modularized computer program for processing an APT CL tape for a
General Electric Mark Century numerical control system. Except
for a few output subroutines, the program is written in FORTRAN
IV and uses many of the FORTRAN IV capabilities such as: DATA
statements, logical IF statements, labelled COMMONs, and
overlays.

The GECENT III postprocessor is designed for all third generation
computers which have an APT system; it requires no more than the
equivalent complement of core that AP!' may use; for, depending
upon the NC machine type, the postprocessor may require as little
as 20K words of storage or as much as APT uses in one core load.
For multihead processing, the postprocessor requires two scratch
devices (TAPES2 and TAPE.53).

Approximately five output subroutines are written in machine
language.** This was done to minimize computational time.

In order to overcome possible computer incompatibilities and also
to reduce subroutine compilation sizes, the floating point
numbers 0 through 5, 10, 100, and 360 are defined as FLZ, FL1 and
so on. The integers 0 through 7 are defined as INTZ, INT1, INT2,
and so on.

The structure and design of the postprocessor adheres to the
recommended ALRP postprocessor guidelines, and consistancy with
EIA, ASA, and NAS standards has been kept.

lfLl
Processing through the IX>Stprocessor is in one pass for a:i1 NC
machines except multihead machines which inherently require two
passes. Processing speeds are extremely fast since optimum
programming methods have been utilized where possible.

* Trade mark of General Electric co. ** Only two machine
language subroutines are used with the IBM 360 System.

1-l

ClClNT Ill POSTPROCESSOR ... for the computer programmer

1.0 INTRODUCTION (cont'd)

The postprocessor can produce four types of printout and three
types of punched output. There are a number of other special
features which permit a greater ease in part programming and
increase the scope of applications. These are all itemized and
documented in detail.

Before proceeding, some important definitions must be
established. Wi,th respect to the word "command" as used in this
manual, a "conunand" refers to the programmed coded symbol fed to
the NC machine control; the command initiates the NC machine
action. Thus, ·a feedrate and a feedrate command, although
related, are two entirely different things. The feedrate is the
actual value rated in IPM, while the feedrate command is the
coded F number fed to the NC machine control. The same
interpretation applies to the spindle and spindle speed command.

In the same sense, a "command block" is a set of coded data in
command form which is fed to the NC machine control for the
execution of one or more functions.

The abbreviations NC for "Numerical Control", IPM for Inches Per
Minute, and RPM for Revolutions Per Minute are used throughout
this manual.

The convention of using lower case letters for the part
coordinates and capital letters for machine coordinates is
consistent throughout. Thus, xyzijk refer to the three linear
axes xyz of the part coordinate system, and ijk refer to the
direction cosines of the backward directed vector of the tool
axis. The corresponding machine coordinates are then XYZABC,
where XYZ are the linear axes and ABC are the rotary axes of the
NC machine.

The notation (terms> is used to indicate that an integer result
is obtained from the terms in the brackets. For example,

but

1-2

x = 10 = 3.3333,
3

x = <~o) = 3.

ClCHT 111 POSTPROCESSOR ... for the computer programmer

1.0 INTRODUCTION (cont'd)

One final but very important restriction must be mentioned; in
the use of the parameters TEMP and ITEMP which are located in
COMMON, TEMP is dimensioned at 10. These parameters serve the
general pirpose of providing a temporary storage space for a
subroutine. In order to avoid any potential error, the rule is
never to use TEMP or ITEMP in any subroutine which calls another
subroutine (except library subroutines) • For if subroutine A
uses TEMP and calls subroutine B which also uses TEMP, then
subroutine B will have destroyed TEMP for subroutine A. These
types of errors are extremely difficult to find, so for safety's
sake, the above restriction must be observed.

The parameter names in the body of the manual are IBM 360 names.

AP'l~D<X J4Crldlfl 7,'t lfl1v&r rHI

cte-rf Rl1Pl/tllVC4. ?1!4 f)''1'tJ'

n lf/~~16- "- ., ''-k1V'<J.

/>AltAlft14TIR ,, ,,
32 f'St:,F14J

1-3

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2 • 0 GENERAL DESCRIPrION

In the sections which follow there is given a brief but detailed
survey of the postprocessor, its theory of operation,
characteristics of programming flow, and general structure. A
discussion of each major NC machine type is made with particular
emphasis concerning the affect upon the logical structure and
flow of the postprocessor.

Sections 2.1, 2.2, and 2.3 should
overview of the postprocessor while the
Section 4 should be consulted for
particular type of NC machine.

2.1 THEORY OF OPERATION

be read for the general
various subsections of

information regarding a

The GECENT III postprocessor is a generalized, modularized system
of subroutines which optimizes processing operation by loading
and utilizing only those postprocessor segments required for a
given machine tool. The structure of the postprocessor is based
upon overlays which are selected at load time to fonn the
requisite body of subroutines for postprocessing a part program.

The GECENT program is written completely in FORTRAN IV except for
basic output subroutines such as CONBCD. (See Section 2.4.2.)
These subroutines have been deliberately kept in machine language
so as to obtain maximum processing computer speed.

The GECENT III structure and theory of operation is based upon
the commonality of features which exist in postprocessors for the
various types of machine tools. In every postprocessor there are
common functions which must be performed; ,whereas, certain other
functions are required only for a specific type of NC machine.
By grouping these functions and using them as needed, it is
possible to put the postprocessor together at load time as a
function of the specific NC machine being processed.

Some items which are common to all postprocessors are: CL tape
reading, producing punched and printed output, processing of
standard postprocessor statements, such as, PARTNO, PPRINT,
MACHIN, and so on. These common functions are therefore grouped
together into the basic overlay.

In a similar manner, other postprocessor functions can be grouped
according to their common usage by positioning machines, lathes,
mills, or whatever the machine class may be.

2-1

CICINT Ill POSTPROCESSOR ... for the computer programmer

2.1 THEORY OF OPERATION (cont'd)

In brief, the technique of operation is as follows. Upon entry
into APT Section- IV, the postprocessor control element loads in
a basic overlay which represents the mJ..nimum structure of the
postprocessor. To this basic structure are added those overlay
modules which are required by the selected machine. These may
include the machine subroutine and possibly a spindle type
subroutine, interpolation module, and one of the multiple printed
output modules, as well as the main module for a lathe, mill, or
whatever type NC machine is being processed. In any event, after
primary initialization, there resides in core only those overlays
pertinent to the machine tool for which the given part program is
being processed.

An important point to note is that once the proper overlays are
established in core there is no further processing of the
overlays; that i~, an overlay is not repeatedly pulled into core,
overlayed later by another overlay, then the original overlay
pulled is again, and so on. With the exception of the
initialization overlay, no other segment overlay is replaced
during the processing of any non-multihead machine tool part
program.

Multihead processing inherently requires a two-pass system to
merge the output data of each head. (See Section 2.4.5) In this
case, an additional overlay replaces the basic structure overlays
when head merging is performed. But once again there is no flip
flopping of overlays.

It bears repeating: when an overlay is pulled into core, it
resides there until its function is completed at which time it
may be overlayed by a new function overlay; but once used, it is
never pulled back into core.

2-2

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2.2 OVERLAY STRUCTURE

The general overlay structure is given in Diagram 2.2A

SECTION 0

GEM ON

GEBASE

GE MF UN

GE SPIN

GETERP

G G G G G G G G G G G G
E E E E E E E E E E E E
I p p L M F D v w s M D
N L 0 A I L R T I p u u
I A s T L A A L N E L M
T D H L M F D c T p

G
E
M
A
x
s

'GEO UT

Diagram 2. 2A

2-3

CICINT Ill POSTPROCESSOR ... for the computer programmer

2.2.1 NAMING CONVENTIONS FOR THE GECENT III POSTPROCESSOR

Each major overlay is identified by the prefix 11 GE11 • ~
g. @i'1'.ij ' li& 5 c LliC Pi I I g '"1t..".

overlays

GE MON

GE IN IT

GEPLAD

GEBASE

GEPOS

GELATH

GEM ILL

GEMAXS

GEMULT

GEO UT

GE TERP

GE FLAM

GEWIND

GEDRAF

GE SPEC

GEVTL

GEWELD

GEDUMP

2-4

Function

The monitor overlay which directs the selection
and processing of all other overlays.

The initializing overlay which establishes the
starting conditions for postprocessing.

The planning overlay which produces
and machinability features for
machines

tool setups
positioning

The basic overlay which contains the postprocessor
subroutines common to all machine tools

The position machine overlay

The lathe overlay

The 3-axis mill overlay

The multiaxis overlay

The multihead sequence overlay

The output overlay

The interpolation overlay containing linear and
circular processing.

Flame cutter overlay

Filament winder overlay

Drafting machine overlay

Special purpose overlay

Vertical turret lathe (special cases).

Welding machine overlay

The error dump overlay

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2.2.2 OVERLAY LOADING TECHNIQUE

The method used in the GECENT III postprocessor to load the
proper overlay modules is to interrogate the table data provided
in the machine subroutine which has been selected by the input
part program. (See Section 5.6 for a description and usage of
the machine subroutine.)

When control is transferred to the postprocessor from APT Section
IV, the control monitor overlay GEMON pulls in the initialization
overlay GEINIT and transfers control to it. Within the GEINIT
overlay are contained the machine subroutines and other basic
initialization subroutines. The CL tape is read until the MACHIN
statement is found. When found, the machine number is used to
select and call the corresponding machine subroutine. For
example, the statement MACHIN/GECENT, 4 causes machine subroutine
MACH04 to be selected and called.

When the machine subroutine is called, the machine tool
characteristic tables TABLEG, TABLEM, OPTAB, and SRTAB are set
up. The postprocessor can now determine the required overlays by
interrogating the pertinent option set in OPTAB. This is done
after control is returned to overlay GEMON.

Upon return
overlays are
settings:

to GEMON,
pulled in

overlay GEBASE is loaded in. The other
dependant upon the following option

If option 1 = O, contouring is designated and overlay GETERP is
called.

If option 1 = 1, positioning is designated and overlay GEPOS is
called. (See Section 5.6.2 for the special negative setting of
this option.)

The technique of pulling in an overlay is dependant upon the
computer used. Most computers <1> pull in an overlay when a
subroutine in that overlay is called from a higher level overlay.
Program control is then transferred to the called subroutine.
Other computers <2> can pull in an overlay by name, as the
overlay GELATH, without necessarily transferring control to that
overlay. ·

(1) For example: IBM360 Models 40, 50, 65, 75; UNIVAC 1107, 1108;
CDC 3600, 3800, 6400, 6600; RCA Spectra 70.

(2) For example: GE625, 635.

2-5

CICINT Ill POSTPROCESSOR ... for the computer programmer

2.2.2 OVERLAY LOADING TECHNIQUE (cont'd)

In the descriptions which follow, when reference is made to an
overlay being selected by an option, the actual loading of the
overlay occurs by either of the above mentioned two techniques.
For example, the reference to option 132 for a lathe implies that
the actual loading of the overlay takes ·place by either of the
following two methods:

(A) Pull in the overlay GELATH when a lathe subroutine is
required, e."g., subroutine SFMO.

(B) Pull in the overlay GELATH by name when option 132
is zero.

(See Section 5.4.1.2 for the complete description of the overlay
loading methods used by the different computers.)

continuing with the selective loading of overlays:

When option 132 is O, pull in GELATH.

When option 132 is 1, pull in GEMILL.

When option 132 is 2, positioning is designated, but GEPOS would
already be pulled in under control of option 1.

When option 132 is 3, pull in GEDRAF. (drafting machine)*

When option 132 is 4, pull in GEFLAM. (flame cutter)*

When option 132 is 5, pull in GEWELD. (welder)*

When option 132 is 6, pull in GEWIND. (£ilament winder)*

When option 132 is 7, pull in GEVTL. (vertical turret lathe)*

Other main overlays can be defined and used as needed.

If option 116 ¢ O, multiaxis processing is indicated and overlay
GEMAXS is called.

The GEOUT overlay can be one of
GEOUT1, GEOUT2, GEOUT3, or GEOUT4.

five print sequences;
See Section 3.5.

* These settings for option 132 are not currently used.

2-6

viz.,

'-"'

ClCHT 111 POSTPROCESSOR ... for the computer programmer

2.2. OVERLAY LOADING TECHNIQUE (cont• d)

If option 164 = 1, use GEOUT1.

If option 164 = 2, use GEOUT2.

If option 164 = 3, use GEOUT3 for multihead machines.

If option 164 = 4, use GEOUT4 for non-multihead machines.

Other pertinent items for postprocessing, though not necessarily
for loading overlays, are:

A. Option 19 for spindle type. Any one of several types may be
used. (See Section 4.9.)

B. If option 133 is non-zero, a special function is to be
performed for the given machine tool. The particular MACFUN
will have to be used. (See Section 5.6.1.)

c. If the modifier PLAN is given in the MACHIN statement and
option 1 is + 1, the GEPLAD overlay is called in to process
and redevelop a new CL tape before continuing with the regular
GECENT III sequence. (See Section 4.10 on GEPLAD.)

D. If multihead postprocessing is in operation (flag MULTHD is
non-zero), the overlay GEMULT is called in when the first pass
through the postprocessor is completed. (See Section 2.4.5 on
multihead processing.)

E. Whenever a fatal error occurs, the overlay GEDUMP is
automatically pulled in to produce a comprehensive print of
all the pertinent postprocessor parameters. (See Section
5.7.)

Once all of the overlays are loaded into core, control is given
to GEBASE which processes the entire CL tape, and upon
completion, returns control back to GEMON which then calls DISPAT
to return control back to APT section IV.

2-7

CICINT Ill POSTPROCESSOR ... for the computer programmer

2.2.3 SAMPLE POSTPROCESSOR STRUCTURES

GE MON

G GE BASE

E
I GE TERP

N GE LATH
I
T

GEOUTl

GE MON

G G GEBASE

E E
I p GE MF UN

N L
GEPOS I A

T D
GEOUTl

GEM ON

GE BASE

G
E GE TERP

I
GEMILL N

I
GEMAXS T

GEOUT4

2-8

Lathe

OPTAB (1)
OPTAB (132)
OPTAB (164)

Drill

OPTAB(1)
OPTAB(l32)
OPTAB (133)
OPTAB (164)

MACHIN/GECENT,

Multiaxis

OPTAB(1)
OPTAB (116)
OPTAB (132)
OPTAB (164)

= o.
= 0.
= 1.0

= 1. 0
= 2.0
= 1. 0
= 1. 0
n, PLAN

Mill

= 0.
= 1.0
= 1.0
= 4. Q.

"""'

G(C(~l 111 POSTPROCESSOR ... for the computer programmer

2.2 3 SAMPLE POSTPROCESSOR STRUCTURES (cont'd)

GE MON

G
G GE BASE E
E M
I GETERP u
N L
I

GEMILL T
T

GEOUT3

2.3 DESCRIPTION OF PROGRAM FLOW

Multihead Mill

OPTAB (1)
OPTAB (132)
OPTAB (164)

=
=
=

0.
1.0
3.0

COMBIN is given
designating multihead
operation.

The following is a brief description of the method and technique
used for processing a postprocessor statement. The method
described pertains to all machine types since there is no special
flow except for the special function MACFUN. (See Section
5.6.1).

Postprocessing begins in overlay GEBASE with a call to the input
subroutine INPUT which reads a CL -'i'- record. The record is
stored in the input buffers 8~ and ICLDAT. Program flow
proceeds as a function of the contents of the input arrays; i.e.,
the flow may be either for a motion record or for a non-motion
record. In either event, the postprocessor, in processing the
data of the input arrays, sets up the command block array DBFSEG
which ultimately is converted to BCD and made output.

The DBFSEG array is dimensioned at 30 to provide storage for all
possible letters of the alphabet and to allow room for other
output parameters. The first fifteen cells of the array have
specific assignments and are the cells most commonly used by
nearly all machine tex>ls. The other cells (up to cell 26) are
used as required for machine tools which have multiple heads,
slides, or additional registers for various and unconunon
functions.

2-9

ClCHT Ill POSTPROCESSOR ... for the computer programmer

2.3.1 FIXED ORDER AND ASSIGNMENTS OF DBFSEG

The fixed assignments of DBFSEG are given below:

DBFSEG Function

1 sequence number (N)

2 Preparatory code (G)

3 Primary coordinate axis, abscissa (X)

4 Primary coordinate axis, ordinate (Y)

5 Third primary coordinate axis (Z)

6 Rotary axis (for a head) (A)

7 Rotary axis (for a table) (B)

8 Direction cosine or arc center off set for abscissa (I)

9 Direction cosine or arc center off set for ordinate (J)

10 Direction cosine or arc center offset for third (K)
primary axis

11 Feedrate command (F)

12 Spindle command (S)

13 Tool or turret code (T)

14 Miscellaneous code (M)

15 Command block identification code (CODE)

16 Rapid traverse (R)

18 Third rotary axis (C)

19 Feedrate in IPM

20 Spindle speed in RPM

2-10

CICINT 111 POSTPROCESSOR ... for the computer programmer

2.3.1 FIXED ORDER AND ASSIGNMENT OF DBFSEG (cont'd)

The letters in the right column represent the BCD letter address
for these registers as set up in the standard REGSTR table.
Actually, any letter or Hollerith character may be used, e.g.,
DBFSEG(2) can be assigned the letter H. The only requirement is
that the DBFSEG cell be used for its assigned function; in this
case H must be the preparatory code.

The DBFSEG array in being set Uf is assigned a CODE number
(stored at DBFSEG(15)) which identifies the command block type,
since at output time each command block type is processed
differently. The command block CODE is used elswhere within the
postprocessor, but its primary fWlction is for output branching
and subsequent processing.

The reason a command block is set up and identified with a CODE
(CBFSEG(15)) instead of being made direct outfut, is because
under certain circumstances the block must be saved for later
possible modification as a function of other blocks which will
either precede or follow its output. For example, a command
block's feedrate may be altered because of A/D
(acceleration/deceleration) restrictions; or the block may be

merged with other blocks for multihead sequencing. Thus, each
block must be uniquely identified so that the fOstprocessor knows
which course of operation to follow in processing that block.

2-11

CICINT Ill POSTPROCESSOR ... for the computer programmer

2.3.2 COMMAND BLOCK IDENI'IFICATION CODES

CODE

0

+1

-1

+2

-2

+3

-3

+4

-4

+5

-5

+6

Identification

Contouring linear move having increments ~X, ~Y, ~z

Non-motion block

Non-motion block having auxiliary code by itself

Rotary absolute move, absolute system

Rotary incremental move, incremental system

A FROM point

Turret corrective move (generated by NOW modifier)

A dwell block

A preparatory code by itself, not a dwell

An END block

A RESET block

An INSERT block

-6 A BREAK block

+7 A PPRINT block

-7 A PARTNO block

+8 A TMARK block

-8 A LEADER block

+9 A postprocessor warning or error comment block

-9 A postprocessor information block; not made output

+10 Circular move CLW in XY plane

-10 Circular move CCill in XY plane

2-12

ClCHT Ill POSTPROCESSOR ... for the computer programmer

2.3.2 COMMAND BLOCK IDENTIFICATION CODES {cont'd)

+11 Circular move CLW in ZX plane

-11 Circular move CCLW in ZX plane

+12 Circular move CLW in YZ

-12 Circular move CCLW in YZ plane

+13 A thread block with a five digit lead

-13 A thread block with a six digit lead

+14 A turret correction on head 1 and a motion on head
2(multihead processing).

-14 A turret correction on head 1 and a motion on head
1(multihead processing).

+15 An auxiliary head motion having feed command in IPM.

+16 Position move in X and Y; generated by a GOTO
statement.

-16 A positioning move in Z; generated by a CYCLE
statement.

+17 An Op/n or PRFSEQ information block.
A combined multihead move using the head 1 feedrate.

-17 A combined multihead move using the head 2 feedrate.

+18 A FINI block.

Every command block must have an identifying CODE otherwise an
error is assumed.

When the conunand block's basic elements have been set up and the
CODE determined, subroutine OUTPUT is called. For the
appropriate CODE, this sUbroutine adds the feedrate, spindle
command, sequence number, preparatory code, and ·auxiliary code,
and essentially completes the setup of the command block.

2-13

CICINT Ill POSTPROCESSOR ... for the computer programmer

2.3.2 COMMAND BLOCK IDENTIFICATION CODES (cont'd)

After the command block DBFSEG has been completely set up, it is
then sent to GEOUT for output processing. At this time the cells
of DBFSEG contain the numeric value for each particular related
register that is to be na.de output, except when the command block
is in BCD, as for a PARTNO. These numeric values are in floating
point format but must be converted to BCD for output. This is
accomplished by subroutine CONBCD.

Values from DBFSEG are taken cell by cell, sent through
subroutine CQftBCD, and the converted BCD equivalent is stored in
the output array BCDIMG. BCDIMG (dimensioned at 38) is
originally all blanks.

Each converted BCD equivalent from DBFSEG is stored in BCDIMG at
the location indicated by that particular register's order number
and value in the REGFOR table. This is explained in greater
detail in section 2.4. At the top of each page is printed the
register symbols (as given by the REGSTR table}, and each item
stored in BCDIMG is located at the cell which lines it up with
its related letter address in the title. When the setup of
BCDIMG is complete, it is printed.

The same line image is then prepared for punched output.* All
that is needed for punched output is to precede each cell value
with the appropriate letter address for that register. For
example, the sequence number 240 and preparatory code 01 may be
in BCDIMG (in BCD form) as:

* The print line image ref erred to here is for the Incremental
Printout only since this printout is a reflection of the
punched tape for the NC machine. The Absolute and Operator
Printouts do not necessarily represent the punched tape data.

2-14

C(C(~l 111 POSTPROCESSOR ... for the computer programmer

2.3.2 COMMAND BLOCK IDENI'IFICATION CODES (cont'd)

BCDIMG

1 2 3 4 5

240 01

This line image, when printed places the values
appropriate register heading, as:

N G x y z

240 01 etc. etc. etc.

6

I {
under their

etc.

Hence, by adding in the BCD register letter address, BCDIMG is
then ready for punching.

1 2 3 4 5 6

N 240 G 01 If
Thus the Incremental Printout of each register value gives the
true representation of the punched output since the print image
is also the punch image. The punch subroutines do not punch
periods or blanks; however, for convenience the print image
carries these symbols.

When output is complete, program flow returns to GEBASE which
repeats the entire process.

2-15

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2.3.3 SCHEMATIC OF PROGRAM FLOW*

'
Read
CL tape

Store in
CDATAC~nd
ICLDAT

P:r;og~ss inout
arrays and set
up DBFSEG

Convert
DBFSEG to BCD
and set up
BCDIMG

Print
BCD I MG

Set up BCDIMG
for punching
and then punch

I

2-16

CL TAPE

240
5000

5
0
0

wtDATA ~I..

240 1
5000 2

5 3
0 4
0 5

6

DBFSEG

BCD I.MG

N G X Y

1
2
3
4
5

(Assume a
motion record)

ICLDAT

240
5000

5
0
0

-- ..,-......... - -

I ~

240 01 etc. etc. etc.

N240G01 etc.

* Note: Processing here assumes no A/D or
multihead sequencing.

Cl&lNT Ill POSTPROCESSOR ... for the computer programmer

2.4 PROGRAM FLOW BY MACHINE TYPE

postprocessor handles a variety of machine tool
are positioning machines, lathes, 3-axis mills,
multihead lathes and mills, welders, flame

The GECENT III
types among which
multiaxis mills,
cutters, and
requirement for
equipped with a

other special purpose machines. The prime
these and any other machine tools is that they be
Mark Century numerical control system.

The design of the GECENT III postprocessor is such that at load
time the postprocessor is structured for the particular machine
tool type being processed. The program flow through each type
structure is basically the same, but there are certain variants
which are unique to each type. The main type structures are for
positioning machines (drills, grinders, boring machines, etc), 2
and 3-axis contouring, multiaxis milling, and multihead
processing.

Generally with Mark Century numerical controls, contouring
machine tools such as lathes and profile mills have an
incremental system, whereas positioning machine tools, such as
drills and boring mills, have an absolute system. (See Section
3.4 for definitions of these systems.) However, there are
exceptions, such as a lathe having a positioning, absolute
control, and a drill having a contouring, incremental control.
These exceptions are special cases and are treated in a manner
slightly different from the main types.

There are still other special cases, such as a filament winder or
an electronic beam welder, which are treated separately by a
special MACFUN sequence. (See Section 5.6.1.)

In the following description, contouring machines utilize an
incremental departure system and positioning machines utilize an
absolute coordinate system. Contouring machines which have a
rotary table are assumed to have an incremental system on the
rotary table also. Positioning machine tools which have a rotary
table are assumed to have an absolute system rotary table.

Program flow through GEMON, GEINIT, GEBASE, and GEOUT is always
the same for any machine tool type. It is generally only in the
specific machine tool type overlays that program flow takes a
different course or utilizes special functions. The description
in Section 2.3 clearly defines this standard flow.

2-17

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2.4 FROGRAM FLOW BY MACHINE TYPE (CX>nt 1 d)

Section 2.2.2 described the manner in which the machine tool type
is structured in the postprocessor by selective overlay modules.
It is at this point in the program flow that the following
descriptions continue.

Section

GEM ON

GE BASE

GEO UT

2.4.1 POSITIONING MACHINES

The positioning overlay structure has the configuration shown in
the diagram below. Although GEOUT1 is indicated, any of the
GEOUT 1 s could be used. GEOUT1, however, is normally sufficient
for positioning machine printout verification.

Section 0

GE MON

GE BASE

GEPOS

GEOUTl

2-18

CltHT Ill POSTPROCESSOR ... for the computer programmer

2.4.1.1 POSITIONING MACHINE CHARACTERISTICS

The chief characteristic of the positioning sequence is that all
output motion data is in absolute coordinates, and, unless a
TRANS statement is given, the CL print coordinate points are
identical with the postprocessor output points. The same is true
for rotary table motions.

Positioning machines may have a rotary device other than a
positioning table, e.g., a rotary indexer or a table with a few
fixed positions. In all such cases, their operation either
relies upon an auxiliary function M code or an absolute rotary
register (A,B, or C). The important point to note here is that
these and any other devices on a positioning machine utilize an
absolute reference system which makes it possible to group the
subroutine representing these features into a conunon overlay.
This overlay is the GEPOS overlay.

Thus, the salient feature of GEPOS is that it is the main
processing element in the GECENT III postprocessor which uses an
absolute coordinate system.

Besides the absolute coordinate system, positioning machines also
normally have discrete feedrate values; that is, only certain
values are obtainable within a given minimum and maximum range.
For example, a machine tool may accept only an integer value of
feedrate in IPM in the range of 1 IPM to 20 IPM. A value of 3.7
would be unacceptable and would be converted to 4 IPM.

The feedrate command can be formulated from any
positioning feedrate types. (See option 78.)
Type O feed command, Fe may be such that:

Fc=2*FrPM •

one of several
For example, in a

Other types are defined and illustrated in Section 4.1.2.

Positioning machines which have a rotary table may also have a
separate feedrate register for the table, and the rotary table
feedrate command rray also be formulated from any one of several
types. (See Section 4. 1. 3) •

2-19

CICINT Ill POSTPROCESSOR ... for the computer programmer

2.4.1.2 POSITIONING MACHINE PROGRAM FLOW

After the CL tape is read and the input arrays CLDATA'~nd ICLDAT
are set up, subroutine GEBASE branches to subroutine MOTION for
any motion record (FROM, GODLTA, GOTO). Subroutine MOTION tests
option 1 which for a positive value branches to subroutine POSMOV
to process the move as a positioning move in an absolute system.

Subroutine POSMOV sets up DBFSEG with the motion and feedrate
values. Various positioning machines may have differing
requirements for their motion registers. Some machines will
accept the X, Y, and z values all in the same block, while others
require that Z be in a separate block following the XY block.
Subroutine POSMOV tests option 130 for this requirement and
produces the desiredform of output.

This subroutine also suppresses redundant X, Y, and Z values
since these values are modal in the control.

In setting up DBFSEG with the motion values, the subroutine
assigns the command block value CODE to identify its condition
types. CODE is set to +16 if X, Y, and Z are stored in one
block. CODE also is +16 for X and Y in one block, and -16 for Z
in a.block by itself.

The current feedrate is next added t~~FSEG. If the condition
is non-rapid, DBFSEG(11) is set to FEDlii"'which is the closest
progranunable feedrate in IPM available on the machine. If the
condition is for a rapid traverse, DBFSEG(11) is set to the rapid
value FRAPID; the value stored in DBFSEG(11) is made negative to
indicate a rapid traverse condition. (See Section 4.1.4.)

Finally, before outputting the command block, the absolute values
of X, Y, and Z are tested by subroutine TSTLIM for possible
transgression of the permissible slide limits. warning comments
are printed which identify the axes limit transgressed. When
this is fulfilled, subroutine OUTPUT is called to complete the
setup of DBFSEG and to prepare it for eventual output.

Subroutine OUTPUT does this by adding in the CL tape record
number as the sequence number in DBFSEG(1), by adding in the CODE
to DBFSEG(15), by adding in the pending spindle command SPNCOM
(if any) to DBFSEG(12), and by adding in the pending auxiliary
function M code VALUEM (if any) to DBFSEG(14). GEOUT is then
called to produce the printed and punched output.

2-20

ClClNT 111 POSTPROCESSOR ... for the computer programmer

2.4.1.2 POSITIONING MACHINE PROGRAM FLOW (cont'd)

Regardless of which printed output sequence is used, the basic
output for a positioning machine always derives from the flow
described below.

Subroutine POSIT is called to suppress redundant X and Y values
as a function of option 40, and then subroutine POSFED is called
to convert the feedrate in IPM to the feedrate command code.

Subroutine POSFED tests option 78 for the required positioning
feedrate type and branches accordingly. (See Section 4.1.2 for
a description of each type positioning feedrate). It might occur
that the programmed feedrate in IPM may be changed because of its
wiavailability in command form. For example, the programmed
feedrate is 2.4 IPM. However, in this range, the table of
discrete feeds permits only 2.0 or 3.0 IPM. Therefore, the
postprocessor uses the feed canunand corresponding to 2.0 IPM and
changes the feedrate in IPM (FEDIPM) to 2.0 IPM. Hence, the
printed value of feedrate is the true value used and is not
necessarily the programmed feedrate.

The final function that is performed in GEOUT for a positioning
machine is to put the current spindle command in the conunand
block of DBFSEG(12) if the block contains a T code. This is to
ensure continuance of the proper speed after a tool change
occurs.

At this point in the program the command block is fully prepared
for output and is subsequently printed and punched. (See Section
3. 5) •

2-21

GICINT Ill POSTPROCESSOR ... for the computer programmer

2.4.2 LATHES

Section 0

GEMON

GE BASE

GE TERP

GE LATH

GE OUT

A spindle type is also implied in the above structure.

2.4.2.1 LATHE CHARACTERISTICS

In nearly all cases, lathes employ an incremental contouring
system. The programmed cutter path as presented on the CL tape
is converted from its absolute coordinate form into one or more
incremental segments whose summation (disregarding a TRANS)
regenerates the original set of absolute data points within the
step size tolerance of the machine tool. For example, the path
from absolute X, Y coordinates (2, 6) to (6, 4) produces
increments ~X=4, ~Y=-2. (See Section 3.4 for a complete
description of the methods used for producing incremental moves.)

Any incremental motion can be segmented into yet smaller
incremental motions. The path length may be segmented because
the original increment may be greater than the maximum allowable
departure (option 4). Any one of these segments could be further
segmented by the SFM sequence (See Section 4.5), and these
smaller segments still more segmented because of G code
optimization (See Section 4.1.5.1). In any event, the summation
of all these segments result in the original segment length.

The standard axes configuration for a lathe per EIA and NAS
standards is +Z for the abscissa and -X for the ordinate. Part
programming is normally done in the first quadrant of the
standard rectangular Cartesian coordinate system, hence, the
fOStprocessor must rearrange and modify the XY data into its
required +Z-X output format. This rearranging is done per the
setting of option 59 and option 60. It is, of course, possible
to request any axes configuration desired; e.g., +X-Y, +X+Y, and
so on.

2-22

Cl&HT Ill POSTPROCESSOR ... for the computer programmer

2.4.2.1 LATHE CHARACTERISTICS (cont'd)

The feedrate
types. (See
description.)

command
option

can be
10 and

any one of the three contouring
Section 4.1.1 for a complete

When a feedrate is prcgrammed in an IPR mode, the postprocessor
converts it to IPM by multiplying the IPR value with the spindle
speed. The resultant feedrate in IPM is tested and made to be
within the minimum (option 48) and maximum (option 25) feedrate
value

Special functions normal for a lathe are threading, SFM, and
turret operations, hence, the related subroutines are located in
the GELATH overlay. Non-lathe type machine tools which have
these £unctions are treated by special subroutines or most
generally by a MACFUN. (See Section 5.6.1.)

2.4.2.2 LATHE PROGRAM FLOW

Cl.. After the CL tape is read and the input arrays ~ATA and ICLDAT
are set up, subroutine GEBASE branches to subroutine MOTION which
for a GOTO/ motion record calls subroutine TSTFLG. This
subroutine tests a series of flags for special conditions such as
a rapid traverse, reinstate, safety retract, and threading. (See
Section 4.0 for a description of these special conditions.)

Upon return from subroutine TSTFLG, subroutine MOTION tests
option 1 which for a zero value branches to subroutine GOLINE for
a linear interpolation move or to subroutine GOCIRC for a
circular interpolation move. (See Section 3.4.3 for a detailed
description of the linear interpolation mode processing and
Section 3. 4. 4 of the circular interpolation mode.)

Since program flow can proceed with either of these two modes,
each path is separately described.

2.4.2.2.1 LINEAR INTERPOLATION FLOW

In subroutine MOTION, the CL data points had been. stored in the
part coordinate present point vector DPRESP. For a linear
interpolation move, program flow continues in subroutine GOLINE
where these data points are truncated and rounded to the machine
tool step size and then stored into the machine coordinate
present point vector DPRESM. This action occurs in subroutine
GEOM. For example, say the CL data point for Xis 24.678891.

2-23

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2.4.2.2.1 LINEAR INTERPOLATION FLOW (cont'd}

This value is stored in DPRESP(l). When subroutine GEOM is
called, this value is trwicated and rounded by subroutine SRAREC
to become 24.6789, assuming the step size (option 14) to be
0.0001 inches. The rounded value is then stored in DPRESM(1).

Before leaving subroutine GEOM the postprocessor calls subroutine
TSTLIM to test the present machine point for possible violation
of slide limits. Warning comments are printed for all slide
violation.

The postprocessor always works within the machine coordinate
system in generating additional segments, making AID corrections,
computing departures, or in any sequence which deals with the
coordinate data.

Subroutine DEPART is called to produce the incremental departures
which are computed as the difference between the present and
previous machine points e.g.,

~X=DPRESM(1) - DPREVM(1).

The departures are now checked to see if any one of them exceeds
the maximum allowable departure (option 4). If any departure is
too great, subroutine SEGMNT is called to segment the progranuned
path into sufficiently small segments, such that each axis
departure of each segment is less than or equal to the maximum
departure.

When the departures are acceptable and computed through
subroutine DEPART, the incremental values of each axis departure
are stored in DBFSEG, i.e., ~Xis stored in DBFSEG(3), ~Yin
DBFSEG(4), and for non-lathes, ~z in DBFSEG(S).

Two key flags are now tested to see if the program flow should be
rerouted for special items. The flag SFMFLG is checked; and if
non-zero, program flow is diverted to subroutine SFMO which
produces and outputs a series of segments based upon the required
spindle speed variations to produce the desired SFM effect. (See
Section 4. 5.)

The other key flag is the threading flag THFLAG
zero, calls in the threading sequence THREIX>.
generates its own special output command block.
4. 6.)

2-24

which, if non
Thi s subroutine

(See Section

Cl&lNT 111 POSTPROCESSOR ... for the computer programmer

2.4.2.2.1 LINEAR INTERPOLATION FLOW (cont'd)

For linear moves the command block identifier CODE is set to
zero.

At this point in the program flow for linear moves DBFSEG(3),
(4), and (5) are set to their respective ~X, ~Y, ~z values, and

CODE=O. Subroutine OUTPUT is then called to complete the setup
and eventual output of DBFSEG. This description continues in
Section 2.4.2.2.3.

2.4.2.2.2 CIRCULAR INTERPOLATION FLOW

In subroutine MOTION, the CL data points had been stored in the
part coordinate present point vector DPRESP. For a circular
interpolation move (CIRFLG¢0), program flow continues in
subroutine GOCIRC. The procedures for circular interpolation are
discussed in detail in Section 3.4.4 and should be referred to
for complete understanding. But, in brief, what takes place is
that the circle data are reduced to their axes interception
points which are stored in an array called DBUFER. Each point is
in turn taken from DBUFER and individually processed to produce
the incremental departures.

For example, assume the circle when plotted with its center at
the origin looks like:

y

x

D

The circular interpolation sequence uses the CL data to determine
the circle direction (CCLW), the plane of the circle (XY), the
quadrants covered by the circle (quadrants I, II, III), and the
axes interception points (B,C). The coordinate values ·of the
points B, c, and D are stored into DBUFER.

2-25

ClCHT Ill POSTPROCESSOR ... for the computer programmer

2.4.2.2.2 CIRCULAR INTERPOLATION FLOW (cont 1 d)

Subroutine PROCQD selects each point from DBUFER and stores it
into the part coordinate present point vector DPRESP. Processing
continues exactly as described in Section 2.4.2.2.1 for a linear
move except that in addition to computing the departures, the
postprocessor also computes the arc center off sets through
subroutine OFFARC.

The arc center off set for each axis is the absolute value of the
incremental distance between the coordinate value of the circle's
center and the coordinate value at the beginning point of the
arc, i.e., (Arc Center Offset) = lex - DPREVP (1)1.

The arc center offsets are stored in DBFSEG(8), (9), and (10) and
correspond respectively to the X, Y, and Z registers for
DBFSEG (3), (4), and (5).

For circular moves the conunand block identifier code is:

+10 for CLW in the XY plane

-10 for CCLW in the XY plane

+11 for CLW in the ZX plane

-11 for CCLW in the ZX plane

+12 for CLW in the YZ plane

-12 for CCLW in the YZ plane

At this point in the program flow for circular interpolation
moves, DBFSEG(3), (4), and (5) are set to their respective ISX.,
~Y, ~z values; DBFSEG(8}, (9), (10) are set to their arc center
offset values, and CODE =+10, +11, or +12. subroutine OUTPUT is
then called to complete the setup and-eventual output of DBFSEG.

2.4.2.2.3 OUTPUT OF AN INCREMENTAL MOVE

Subroutine OUTPUT completes the setup of the command block DBFSEG
and prepares it for eventual output. The CL tape record number
is added to DBFSEG(1) and CODE is stored in DBFSEG(15).

The feedrate in IPM is next added to DBFSEG(11).
traverse is in mode (FRAPID # 0), the rapid feedrate
otherwise the current feedrate FEDIPM is used.

2-26

If a rapid
is used,

CICINT 111 POSTPROCESSOR ... for the computer programmer

2.4.2.2.3 OUTPUT OF AN INCREMENTAL MOVE (cont'd)

All incremental moves require a dimension preparatory function G
code which is selected according to the increment size (See
Section 3.4.5.) Subroutine OUTPUT calls SELG to perform this
function. For linear moves, this subroutine obtains a G code
which is compatible with the path length of each of the linear
slide motions. If the nove is a circular interpolation move,
then the subroutine obtains a G code which is canpatible with the
circle's radius and direction of arc (CLW or CCLW). After
subroutine SELG obtains the proper G code, it stores it in
DBFSEG(2).

A check is made to see if axis feedrate limitations vary on each
axis; if so, subroutine FEDLIM is called to check and modify the
feedrate accordingly. (See Section 4.1.5.2 for the complete
description of this technique.) The feedrate, if modified, is
again left in DBFSEG(11).

The command block DBFSEG is completed
spindle command, SPNCOM to DBFSEG(12) I and
function M code, VALUEM to DBFSEG(14).
DMBITS if there is no pending value. GEOUT
produce the printed and punched output.

by adding the current
the pending auxiliary

SPNCOM and VALUEM are
is then called to

Regardless of which printed output sequence is used, the basic
output for any incremental move always follows the flow sequence
described below.

The first act performed for DBFSEG
requested settings of options 59 and
switches cell locations and makes the
For example, for a standard lathe option
the X value become the z value, and the
X value. Hence, if DBFSEG is set as

N G x y

is to reorder it per the
60. Subroutine SHUFFL
necessary modifications.
59 is set so as to have
Y value to be a negative

z

100 1 8.2 4. 8 I DMBITS IJ
after subroutine SHUFFL it appears as

N G x y z

I 100 1 -4.8 IDMBITS 8.2
I l

2-27

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2.4.2.·2.3 OUTPUT OF AN INCREMENTAL MOVE (cont'd)

The shuffling
established in

effect is dependant upon the ISHVEC vector
subroutine DECODE in GEINIT. (See Section 3.5).

A test is next made of option 143 to determine whether the
sequence number should remain as the CL tape record number or to
make it a unit _increasing number. If the latter choice is
indicated (option 143 ~ 0), the unit nwnber SEQNEW is stored in
DBFSEG(l).

Subroutine CONTUR is now called to convert the feedrate in IPM to
its feedrate command form. This conversion is done for either a
linear or a circular interpolation move for any one of the three
available contouring feedrate command formats (option 10).
Furthermore, optimization of the feedrate by use of a multiplying
constant in registers I, J, and K is done; or if the feedrate is
for a rapid traverse, slide feedrates are used to maximize the
rapid feedrate vector. (See section 4.0 for a detailed
description of each of these items.)

Subroutine FVARGO is called if the machine tool has a F command
format which varies as a function of the preparatory G code.
(See Section 4.1.1.2)

Further tests are made to ensure that the f eedrate is not tape
reader limited, and that the feed command is within the minimum
and maximum allowable feed command range.

At the completion of all these tests, the f eedrate in IPM is
redetermined from the derived feedrate command number in the
event that the feed command was not directly converted from the
original value of feedrate in IPM. The derived feed command is
stored into DBFSEG(11), and the corresponding feedrate in IPM is
saved for eventual printing in the Absolute Printout.

Before exiting from subroutine CONTUR, the cut time for the move
is ccmputed and saved.

Continuing in GEOUT, redundancies of G, F, and s are suppressed
as requested by option settings.

At this point in the program the command block is fully. prepared
to output, and is subsequently printed and punched per Section
3.5.

2-28

ClCHT Ill POSTPROCESSOR ... for the computer programmer

2.4.3 THREE-AXIS MILLING MACHINES

The following structure illustrates a typical milling overlay
configuration. Note that any of the GEOUT's may be used for
output purposes.

A spindle type is also implied though not specified in the
configuration.

Section 0

GEM ON

GE BASE

GE TERP

GEMILL

GEO UT

2.4.3.1 MILLING MACHINE CHARACTERISTICS

To date, all milling machines employ incremental contouring
systems.

The programmed cutter path as presented on the CL tape is
converted from its absolute coordinate form into one or more
incremental segments whose sununation (disregarding a TRANS)
regenerates the original set of absolute data points within the
step size tolerance of the machine tool. For example, the path
from absolute X, Y coordinates (2,6) to (6,4) produces increments
~X=4, ~Y=-2. (See Section 3.4.3 for a complete description of
the methods used for producing incremental moves.)

Any incremental motion may be segmented into yet smaller
incremental motions. The path length may be segmented because
the original increment may be greater than the maximum allowable
departure (option 4). These segments may be further segmented
because of A/D consideration, and because of G code optimization
(See Section 4.1.5.1). In any event, the summation of all these
segments results in the original segment length.

The f eedrate
types. (See
description.)

corrunand
option

can be
10 and

any one of the three contouring
Section 4.1.1 for a complete

2-29

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2.4.3.1 MILLING MACHINE CHARACTERISTICS (cont'd)

A tool changer (if any) is considered to be a normal function of
a mill, therefore, the related subroutines for effecting a tool
change are all locat~ in the GEMILL overlay. Special purpose
tool changers, which require a return to a home position or any
other special operation, are handled by special subroutines or
most generally by a MACFUN. (See Section 5.6.1.)

2.4.3.2 MILLING MACHINE PROGRAM FLOW

The program flow for a non-multiaxis milling machine is identical
with the sequence described in Section 2.4.2.2 for a lathe. The
only exceptions are the references made to SFM and threading. In
the case of a milling machine, a special SFM and thread sequence
are used since their operations are different from a lathe.

2.4.4 MULTIAXIS MILLING MACHINES

The overlay structure of the multiaxis configuration is like that
of a three-axis mill except that the additional overlay GEMAXS is
added. In the diagram, the overlay GECLAS is indicated to
emphasize the point that multiaxis processing requires the set of
transformation relations for converting from part coordinates to
machine coordinates.

The GEOUT referred to in the diagram must be GEOUT2, GEOUT3, or
GEOUT4; GEOUT1 cannot be used because of the insufficient number
of columns normally available on standard print sheets.

Section 0

GEM ON

GEBASE

GE TERP

GEMILL

GE CLAS

GEMAXS

GEO UT

2-30

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2.4.4.1 MULTIAXIS MILLING MACHINE CHARACTERISTICS

All multiaxis mills with Mark Century numerical controls utilize
an incremental contouring system. The definitive characteristic
of any multiaxis machine tool is the fact that the machine tool
must have at least one rotary axis in addition to its translatory
axes which can all move simultaneously. However, each rotary
motion can be separately and independently moved, as can each
translatory axis.

The rotary motions (table or head) when made output can be one of
several forms of output units. (See option 118 for the available
forms.) The translatory slides are always in inches or in
millimeters in the metric system.

z

z

y

Diagram 2.4.4.lA

(Other classes are defined and further explained in Section 4.2)

2-31

CICINT Ill POSTPROCESSOR ... for the computer programmer

2.4.4.1 MULTIAXIS MILLING MACHINE CHARACTERISTICS (cont'd)

The CL data for any motion are presented on the CL tape in
absolute part coordinate form. Each point of the path is
represented by the algebraic absolute (x,y,z) values accompanied
by the direction cosines of the backward-directed vector of the
tool. However, in order to function properly within the machine,
the part coordinate data must be converted to the machine
coordinate system.

The conversion of part coordinate data to machine coordinate data
relies upon a set of transformation equations which are unique
and dependant upon the axes configuration of each particular
machine tool. In the GECENT III postprocessor these transforms
are defined by the class in which they appear. For example,
machine tools which have the axes configuration which conform to
diagram 2.4.4.1A are said to have a Class 1 set of
transformations.

A point taken from the CL tape is converted through the class
transformation equations to become the corresponding value in
machine coordinates. This conversion implicitly interprets the
tool axis orientation in terms of rotory motions. Thus the part
coordinates and direction cosines (x, y, z, i, j, k) are
converted to the machine coordinates (X, Y, z, A, B, C).

In addition to the segmentation sequences mentioned for 3-axis
mills in Section 2.4.3.1, multiaxis processing can also include
a segmentation due to the so-called "linearity" effect.
Actually, the effect is produced because of the non-linear motion
of the tool tip during a combined simultaneous motion of the
linear and rotary axes. (See Section 3.4.7.3 for a detailed
description of the linearity problem.)

The feedrate
types. (See
description.)

ccmmand
option

can be any one of the three contouring
10 and Section 4.1.1 for a complete

The rotary motions of a multiaxis machine are always of an
incremental type and do not position to any given absolute value.
The postprocessor gives the part programmer the capability of
programming the table as if it were an absolute reference system,
but the actual rotary output is always an incremental move.

Rotary motions can be of several possible types, among which are
rotary tables, rotary heads, swiveling heads, tilting tables,
rotating columns, and so on.

2-32

C(C(Nl 111 POSTPROCESSOR ... for the computer programmer

2. 4. 4 .1 MULTIAXIS MI.LLING MACHINE CHARACTERISTICS (cont'd)

There are some other special purpose sequences for a multiaxis
mill, e.g., overcenter cutting, pallet changing, and these are
all located in the GEMAXS overlay.

Special purpose tool changers which require a return to a home
position or other special operation, are handled by special
subroutines or most generally by a MACFUN. (See Section 5.6.1.)

2.4.4.2 MULTIAXIS MILLING MACHINE PROGRAM FLOW

The program flow for a multiaxis mill is essentially the same as
for a NON-MULTIAXIS mill; the chief exceptions are that the
multiaxis flow must convert the part coordinates to machine
coordinates, and the rotary motions must be considered in the
determination of incremental departures and feedrate command.

The description of program flow both for linear and circular
interpolation is given in Section 2.4.2.2 for a lathe. The flow
for a multiaxis machine follows that description except for some
additional steps which are given here.

When subroutine GEOM is called, it in turn calls GEOMS which
calls subroutine CLASS, which em~loys the desired set of
transf onns for the machine tool class. This is specified in
option 116. The part coordinates are transformed to machine
coordinates and truncated and rounded to the machine tool step
size. Rotary axes truncation and rounding is done by subroutine
SROREC.

For example, the CL data are stored in the present point part
coordinate vector as,

DPRESP (1) = 2.43682107 (x)

DPRESP(2)= -13.24680110 (y)

DPRESP(3)= 0.01234567 (z)

DPRESP (4) = 0.00000000 (i}

DPRESP(S)= 0.00000000 (j)

DPRESP(6)= 1.00000000 (k)

2-33

ClCHT Ill POSTPROCESSOR ... for the computer programmer

2.4.4.2 MULTIAXIS MILL PROGRAM FLOW (cont'd}

Transformed, truncated, and rounded they are stored in the
present machine point vector as,

DPRESM(1) =

DPRESM (2) =

DPRESM(3)=

DPRESM (4) =

DPRESM(5)=

22.6688

1.2468

-5.0471

15.6740

0.1234

(X)

(Y)

(Z)

(A)

{B)

Subroutine DEPART calls subroutine ROTMOV in order to compute the
rotary departures. An important point to note is that the rotary
moves are always kept in terms of their output units rather than
in radians. This minimizes the processing time in that no
conversion to and from output units is ever required.

Another function performed by subroutine ROTMOV, is that it
always makes the absolute position of rotary moves positive and
less than 360 degrees. For example absolute location of -400
degrees is made to be 320 degrees. Subroutine ROTMOV puts the
rotary departures into DBFSEG(6) and (7). A convention of the
postprocessor is that the head register is related to DBFSEG(6),
while the table to DBFSEG(7). This is merely a convention and
not a set rule.

After checking the linear departures versus the allowable maximum
linear departure, similar tests are made with the rotary
departures versus the rotary maximum departure. Subroutine
SEGMNT is called if any maximum departure is exceeded.

When a segment is acceptable, several flags are tested to
determine whether or not linearity testing should be performed.
If so, subroutine LINRTY is called upon to produce the requisite
number of segments to remove any "linearity" error~ (See Section
3.4.7.3 for a detailed discussion of this subject.)

An important feature to be noted here is that when a departure
exceeds the maximum departure and linearity testing is desired,
subroutine SEGMNT is not immediately called upon to segment the
path length to the necessary segments, but, rather, subroutine
LINRTY is used since the expectation is that the path length will
be sufficiently segmented in order to correct the "linearity"
error.

2-34

' 4

C(C(~l 111 POSTPROCESSOR ... for the computer programmer

2.4.4.2 MULTIAXIS MILL PROGRAM FLOW (cont'd)

A multiaxis move has motions both in the rotary and linear axes,
but the posprocessor treats the move as if it were simply a
linear motion; therefore a multiaxis motion command block is
still identified by a CODE of zero.

An apparent contradiction can occur in command block identity.
Rotary moves by themselves, when generated by a ROTATE statement,
have their command blocks identified by CODE = -2. However, it
is possible that in a multiaxis motion that ~x. ~Y and ~z are
zero, and only ~A or ~B are non-zero. Yet the command block CODE
is still zero. This actually leads to no problem, and it is
important that the cormnand block generation source be known. The
CODE uniquely identifies the source.

At this point in the program flow for linear multiaxis moves,
DBFSEG(3), (4), (5), (6), and (7) are set to their respective
~X,~Y,~Z,~A, ~B values, and CODE =O. Subroutine OtrrPUT is then
called to complete the setup and eventual output of DBFSEG is as
described in Section 2.4.2.2.

Circular interpolation for multiaxis machines require an
analogous determination of the equivalent of rotary axes "arc
center offsets". These are normally the registers
D(corresponding to the rotary A register) and E(corresponding to
the rotary B register) • These are not actually arc center
off sets and are ref erred to as supplementary constants.

After subroutine GOCIRC has determined the axes interception
points and stored them in the array BUFFER, subroutine PROCQD
proceeds to process and output the points. For two- or three
axis machines, each interception point is merely the (x,y,z)
coordinate value; but for multiaxis processing the tool axis
vector direction cosines must be known. Therefore, subroutine
PROCQD must determine the (i,j,k) values at each interception
point before processing and outputting the point. (See Section
3. 4. 7 •. 1 for the complete description of this technique.)

In addition to generating the tool axis direction cosines,
subroutine PROCQD also outputs an information block. (See
Section 5.5). This information block carries the angle of arc
and circle radius which are information necessary in the
determination of the feedrate command for a circular
interpolation move.

2-35

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2. 4. 4. 2 MULTIAXIS MILL PROO RAM FLOW (cont' d)

Multiaxis circular interpolation moves are processed and ma.de
output with the- same CODE value as for non-multiaxis moves.
Hence, at this point in the program flow, DBFSEG(3), (4), (5),
(6), and (7) are set to their respective ~X, ~Y, ~z, ~A, ~B
values; DBFSEG(8), (9), (10) to their arc center offset values,
and DBFSEG(16) and (17) for the rotary supplementary constants D
and E. The value of CODE is +10, +11, or +12. Subroutine OUTPUT
is then called to complete the setup and eventual output of
DBFSEG.

When subroutine OUTPUT calls SELG to obtain the dimensional
preparatory function G code, subroutine SELG first obtains the
proper G code compatible with the linear (or circular} moves as
described earlier. Then subroutine SELG calls subroutine SELGRO
which accepts the already determined G code if it is compatible
with the rotary moves; but if not, subroutine SELGRO obtains a G
code compatible with both the linear (or circular) and rotary
moves.

Output of a linear interpolation multiaxis move is essentially
the same as for a non-multiaxis move, the main exception being
that the effect of the rotary motions must be considered in the
calculation of the feedrate command. In subroutine CONTUR, where
this calculation is done, the postprocessor uses the part
coordinate path length rather than attempting to find the machine
coordinate space curve.

A circular interpolation multiaxis move computes a feedrate
command from a different formula than does a non-multiaxis move,
but otherwise all program flow is identical. (See Section
4.1.1.)

Processing of a multiaxis move requires no other special
sequences in any of the permissible GEOUT 1 s. In rather routine
steps, the rotary motions are converted to an absolute location
in degrees for printing in the Absolute Printout. The influence
of the rotary motions is considered in other determinations such
as the cut time, block read time, feedrate optimization, and so
on, but these sequences, in effect, deal with all departures in
a standard routine manner. There is no special branching for
multiaxis processing.

At this point in the program, the command block is fully prepared
for output and is subsequently printed and punched per Section
3.5.

2-36

Cl&lNT 111 POSTPROCESSOR ... for the computer programmer

2.4.5 MULTIHEAD MACHINES

The general overlay structure for a multihead configuration is
illustrated below for a mill, but such a structure also applies
to a positioning machine, lathe, multiaxis mill, or any other
available machine type.

Section 0

GE MON

GE BASE

GE TERP GEMULT

GEMILL

GEOUT3

A spindle type is also implied in the above structure.

The key overlay for all multihead machines is GEMULT which is the
main sequence for all multihead processing. Inherently, all
multihead processing is a two-pass system; the first pass
processes the CL tape for both heads individually, and the second
pass merges the data for combined motion and output. In the
overlay diagram, the second-pass GEMULT overlay replaces the
first-pass overlays GEBASE, GETERP, and GEMILL.

Because of the large nunber of registers normally found on
multiaxis machines, it is mandatory to use GEOUT3. as the output
element. However, any one or combination of the three printouts
can be obtained through option 17.

2-37

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2.4.5.1 MULTIHEAD MACHINE CHARACTERISTICS

Generally speaking, most multihead machines are incremental
contouring systems, but it is quite possible to have multihead
absolute positioning systems as well. The chief characteristic
of all multihead machines is that the NC machine must have more
than one cutting head which can act simultaneously and
independently of the other head(s). Machines with multiple heads
which act in tandem, or are slave heads, or are mirror image
operators, are not considered to be multihead machines. To be
considered multihead, each head on the machine must be separately
programmable so that single head operation or combined multihead
simultaneous operation is obtainable.

There are other distinguishing features that a multihead machine
may have, and these most commonly pertain to the heads. For
example, depending upon the type of control system furnished,
each head may or may not have its own feedrate register. This is
a very important feature because a different type of merging
process is used for each condition when simultaneous head
operation is in effect.

An example will clarify the two methods. In diagram 2.4.5.1A is
illustrated a simultaneous cut path for two heads.

Head 1 c

A B

H

D E

F

G

Head 2

Diagram 2.4.5.1A

2-38

Cl&lNT 111 POSTPROCESSOR ... for the computer programmer

2.4.5.1 MULTIHEAD MACHINE CHARACTERISTICS (cont'd)

If the NC machine has only one feedrate register, the paths are
segmented for equal times and may appear as shown in Diagram
2.4.5.1B, for when both heads share a common feedrate register,
the merging process segments each head's cutter path so that
identical times are produced for each head. (See Section 3.4.8
for a detailed description of the multihead merging technique.)

Head 1 (Feedrate = 20 IPM)

c
S4

I
I

sl s2 I
I
I

I I
I B I I
I I I

I I
E I I I H

I I I
I I
I I

Head 2 (Feedrate = 10 IPM)

Diagram 2.4.5.1B

Path AB is segmented at s 1 so that the segments AS -DE are output
as a merged block, as are also the segments S182-Et, s 2B-FS 3 , BS 4 -S3 G, and S4C-GS5. Head 1 will park at point C and wait until
Head 2 completes the segment s 5H.

The location of the generated segment points s1 , .s 2 , and so on,
are a function of the f eedrates programmed for Head 1 and Head 2.
If the feedrates are the same for both heads, then the points of
segmentation are always laterally coincident with the other
head's path end. This is illustrated in Diagram 2.4.5.1C.

2-39

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2.4.5.1 MULTIHEAD MACHINE CHARACTERISTICS (cont'd)

c

F s
3

G

Diagram 2.4.5.1C

(See Section 3.4.8.2.1.1 for a complete description of the
single-register technique.)

When each head has its own feedrate register, a different
technique is used; now there is no need to segment the paths in
order to obtain equal times. Instead, the cutter path for one
head is made output separately as long as the other head has a
path remnant to complete; thus, whichever head has the longest
cut time, the other head will output the shorter (in time) paths
until it becomes the head with the longer cut time. This
technique will become comprehensible by considering the example
as illustrated in Diagram 2.4.5.1D.

Head 1 (Feedrate = 10 IPM)

Head 2 (Feedrate = 10 IPM)

6-40

c
\

\

H

H

C(CHT Ill POSTPROCESSOR ... for the computer programmer

2.4.5.1 MULTIHEAD MACHINE CHARACTERISTICS (cont'd)

Initially, both heads must have their first paths combined: but
thereafter, except for a rare circumstance, each head command
block is output separately in an uncombined form.

Thus, initially the combined paths AB--DE are made output and the
times T1 and T2 are computed. Since T1 >T 2 , when path DE is
completed, Heaa 2 reads in path EF and computes T3•

Since T1 >(T2+T3), when path EF is completed, Head 2 reads in path
FG and computes T4 •

Since (T4 +T2+T3}>T1 , when path AB is completed, Head 1 reads in
path BC and computes T

5
•

~ince (T1 +T5)>(T2+T 3+T 4}, when path FG is completed, Head 2 reads
in path GH and computes T6 , and so on.

Note that except for the initial start-up, there has been no
merging of command blocks; the only time when blocks must be
merged is when the summated times for each head are equal, i.e.,

=

Head 1
lf_ T.J

. 1 J]=
Head 2

for when this .condition occurs, both heads are at the same
relative point as when initially starting.

Some NC machines may have circular interpolation in addition to
the regular linear interpolation. Thus, it is possible to have
mixed or the same interpolation modes on each head, e.g., linear
on Head 1 and circular on Head 2, and so on. It must be
understood, however, that these mixing capabilities are not
always possible on every NC machine control combination:
therefore, the fact that a multihead NC machine has both
interpolation modes available does not necessarily mean that any
combination can be applied to the heads.

Multihead machines often require a sharing of some item which is
common to all heads. For example, the spindle speed on a
multihead lathe or the feedrate register on single register
controller. During the course of a part program, conditions may
occur which, in effect, produce different values of the same item
for each head. On a two headed lathe during a SFM mode, one head
can easily generate a spindle speed which is completely

2-41

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2.4.5.1 MULTIHEAD MACHINE CHARACTERISTICS (cont'd)

different from the other head. The question arises: which is
the valid spindle speed? The answer is that both speeds are
valid, but one speed is more important than the other; and only
the part programmer knows which head has the highest priority.
The postprocessor language available permits the part programmer
to designate which head is the priority head, and the
postprocessor accordingly selects from multiple-choice items.

Many conditions ·can arise during a multihead cutting sequence
wherein one head stops cutting because it had completed its
operation before the other head or for some other reason must
stop cutting. When such a circumstance occurs, the non-operating
head is usually parked, i.e., withdrawn from the workpiece and
left to dwell until simultaneous or single-head operation can be
continued. Parking frequently occurs when the NC machine has
axis common to both heads.

After a head is parked and is to be brought back into operation,
the postfrocessor requires that the other head be first parked,
and then both heads be brought into operation simultaneously.
Synchronous motion is thereby achieved.

When a multihead machine has an axis common to all heads, it is
necessary to ensure that motions along the common axis are
identical for all heads. This requires a segmentation sequence
which generates segments based upon equal value lengths of the
conunon axis. (See Section 3.4.8.2.1.3 for a detailed description
of this method.)

Diagram 2.4.5.1E illustrates the problem that exists when both
heads share a common axis, the X axis in this example. For Head
1 and Head 2 to cut simultaneously along the X axis, the
incremental motion in X must be identical for each head;
f uthermore, the x-axis component feedrate for each head must also
either be equal or within some allowable tolerance.

The conditions for merging paths under these requirements can
normally be met when the head paths are bilaterally symmetrical
in the common axis, or axially symmetrical in all axes, or when
both paths are identical. Thus, in Diagram 2.4.5.1E, paths ABC
and EFG could most likely be merged with ease, but greater
difficulty would be realized witn merging paths CD and GH.

Multihead processing through the first pass is completely
standard except that special multihead considerations are
sometimes used as for multiturrets or rapid traverse M-code
output. Otherwise all first pass processing is normal •. Motion

2-42

ClClNT 111 POSTPROCESSOR ... for the computer programmer

2.4.5.1 MULTIHEAD MACHINE CHARACTERISTICS (cont'd)

data, for example, are processed exactly as for single-head
operation except that at output time, instead of printing and
punching the data, the data is dumped on a scratch device for
later processing by the second pass.

Since there are no radically special sequences for first pass
processing, all information regarding positioning machines,
lathes, mills, and multiaxis machines, can be obtained from the
earlier sections, Section 2.4.1 through 2.4.4.2.

D H

X Axis

Head 1 Head 2

A E

2-43

CICINT Ill POSTPROCESSOR ... for the computer programmer

2.4.5.2 MULTIHEAD MACHINE PROGRAM FLOW

Postprocessor processing for a multihead machine is essentially
no different than- for a single-head machine except that a merging
of the operations of both heads is done before outputting the
command blocks. Regardless of the machine type being processed,
CL data is dispatched through the first pass in the normal manner
using all of the regular subroutine sequences. However, when
subroutine OUTPUT is called to punch and print the command block,
the postprocessor instead dumps the block onto an interim scratch
tape. (The term "scratch tape" is used although in practice the
scratch device may be a disc or a drum.) For head 1 the block is
dumped onto TAPES2, and for head 2 it is dumped onto TAPES3.

The entire CL tape is thus processed until the FINI record is
encountered, at which time TAPES2 and TAPES3 are rewound, and the
second pass overlay GEMULT is pulled into core. Program control
is then transferred to GEMULT.

After basic reinitialization is completed, subroutine GEMULT
begins through subroutine CREAD to read data from scratch tape
TAPES2, and with subroutine GMOUT, outputs each command block
until a command block with a CODE = +17 is found. This block
contains the OP/n information, where n is the operation number.
(See the Part Programmer's Manual for information on the OP/n
statement.)

Once the CODE = ~17 block is found, the postprocessor then begins
to read data from scratch tape TAPES3, and outputs each command
block until once again a command block with a CODE = +17 is
found. The n value of the OP block from TAPES2 and TAPES3 are
com~ared for equality, and if found equal, flags are set so that
subsequent blocks read from TAPES2 and TAPES3 are merged.
Merging of blocks continue until another command block with a
CODE = ~17 is encountered, at which time merging halts until two
identical OP values are again found.

2-44

~

Cl&lNT Ill POSTPROCESSOR ... for the computer programmer

2.4.5.2 MULTIAXIS MACHINE PROGRAM FLOW (cont'd)

An example will clarify the operational technique of output.

TAPES2 TAPES3

PARTNO PARTNO

FROM FROM

Motion A OP/2

OP/1 Motion D

Motion B OP/3

Motion c Motion E2

OP/3 Motion F2

Motion E1 Motion G

Motion F1 OP/5

OP/4 Motion I

Motion H OP/6

OP/6 Motion J2

Motion J1 OP/8

OP/7 END

END

In the above example a simplified case is illustrated wherein
TAPES2 and TAPES3 carry the first-pass dump command blocks in
symbolic form. In actual fact each record is a DBFSEG command
block of the form:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30

11...--.L.-N I G__.__I x~I Y ...L..--.-.1.1 z 1---'--A I ___.__B I 1__.__I J -'--I K --L--1 F --'--1 s __,__T__.__M-..1..-c---JooDE J D

2-45

ClClNT Ill POSTPROCESSOR ... for the computer programmer

2.4.5.2 MULTIHEAD MACHINE PROGRAM FLOW (cont'd)

For the above example, GEMULT would process the tapes as
fallows:

A. Beginning with TAPES2, output the PARTNO, FROM point,
and Motion A; when OP/1 is detected, transfer processing
to TAPES3.

B. From TAPES3, output the PARTNO and the FROM point; when
OP/2 is detected, compare the opcodes of TAPES2 and
TAPES3, i.e., 1 versus 2.

c. Since the opcodes are unequal, and since the TAPES2
opcode is less than the TAPES3 opcode, transfer
processing to TAPES2.

D. output Motion B and Motion c; when OP/3 is detected,
compare the opcodes of TAPES2 and TAPES3, i.e., 3
versus 2.

F. Since the opcodes are unequal, and since TAPES3 opcode
is less than the TAPES2 opcode, transfer processing
to TAPES3.

G. Output Motion D; compare OP/3 versus TAPES2 opcode.

H. The opcodes are equal, therefore, combine all following
blocks on each tape. Combine Motion E1 and Motion E2,
and output. Combine Motion F1 and Motion F2, and output.

I. When OP/4 of TAPES2 is detected, compare versus opcode
of TAPES3, i.e., 4 versus 3.

J. Since the opcodes are unequal, and since the TAPES3
opcode is less than TAPES2 opcode, processing is
transferred to TAPES3.

K. Output Motion G; compare OP/5.

L. Output Motion H; compare OP/6.

M. output Motion I; compare OP/6.

N. Combine Motion J1 and Motion J2.

O. Process TAPES2 END

P. Process TAPES3 END.

2-46

ClClNT 111 POSTPROCESSOR ... for the computer programmer

2.4.5.2 MULTIHEAD MACHINE PROGRAM FLOW (cont'd)

When outputting a DBFSEG block, whether or not it is a mergeable
block, the data of DBFSF.G is stored into the array GMHBUF, which
is dimensioned at 60 and is completely analogous to the order of
DBFSEG.

Since DBFSEG is dimensioned at 20, GMHBUF is doubled to allow for
a merger of two DBFSEG blocks. A DBFSEG row for Head 1 is stored
into GMHBUF(1) through (20), while Head 2 stores in GMHBUF(21)
through (40).

When a command block from TAPES2 or TAPES3 is not merged, it is
made output through GEOUT3 as if it were a single-head operation.
But when two blocks are merged, a variety of special sequences
are first gone through which may generate additional command
blocks or otherwise cause modifications to the original command
blocks.

For example, the combined blocks could be a merger of two linear
interpolation moves, or a combination of linear-circular, or even
of two circular interpolation moves. Segmentation of the blocks
can result as a function of the equal time merger needs of linear
moves (subroutine GMLINE) and circular moves (subroutine GMCIRL).

Then, also, segmentation may result if the NC machine has only
one feedrate register; or may result if the multiheads share a
common axis (subroutine FXMULT) • Additional blocks can also be
generated by automatic parking sequences (subroutine FXPARK) or
safety retracts. (The details of these sequences are discussed
in Section 3.4.8.)

When a command block is sent to subroutine GMOUT for output, the
command block first has the finishing touches made to it, e.g.,
the proper G code is selected, and the feed command determined,
and other minor functions are performed. But at this point in
the program, the command block is fully.prepared for output, and
is subsequently printed and punched through GEOUT3 as described
in Section 3.5.6.

2-47

ClCHT Ill POSTPROCESSOR ... for the computer programmer

3.0 DETAILED DESCRIPTIONS

This section covers in detail the five major elements of the
postprocessor. Each section is complete in itself and
constitutes a full reference for that particular element.

The elements are discussed in the order in which they are used by
the postprocessor, from input to output. Although most details
are given, special sequences are deferred to section 4.0 for
their particular analysis.

section 2.0 should be read prior to this section if an overall
understanding of the postprocessor is sought.

3.0-1

ClCHT Ill POSTPROCESSOR ... for the computer programmer

3.1 CONTROL ELEMENT

When the APT System completes its processing of the input part
program, it transfers program control to the control element of
the postprocessor through APT Section IV DISPAT. The control
element of the GEX::ENT III postprocessor is the monitor overlay
GEMON. The control element monitors the overall program flow of
the postprocessor, directing the flow through the proper overlays
and subroutines necessary for the given NC machine. The first
function performed by GEMON is to initialize the COMMON areas and
key parameters of the postprocessor. Initialization is done in
a separate overlay GEINIT which is overlayed after it has
completed its purpose; it is never called again.

After initialization, GEMON directs the construction of the
overlay structure, putting together the requisite modules of the
postprocessor as needed for the given NC machine. This
structuring is accomplished by one of two methods which are
dependant upon the computer used.

The details of initialization and structuring are given below in
the following subsections.

GEMON remains in core along with APT Section 0 and Section IV and
is never overlayed. When GEMON completes its primary fwictions
of initialization and structuring, it transfers control until a
FINI statement is encountered and processed. If multihead
processing is in use, GEMON next gives control to GEMULT which
retains control until a FINI statement. In either event GEMON
terminates postprocessor operation by returning program control
to APT Section IV DISPAT.

3.1-1

CICHT Ill POSTPROCESSOR ... for the computer programmer

3.1.1 POSTPROCESSOR INITIALIZATION (GEINIT)

The COMMON parameters and arrays are all set to zero since this
value is considered to be the initial condition for all flags,
counters, and other parameters in COMMON.

Next, the postprocessor defines key parameters which are
extensively used throughout the program. The integer values of
0 through 7 are defined as INTZ, INT1, INT2, etc. Similarly,
floating point numbers are defined as FLZ, FL1, FL2, and so on up
to FLS, and including FL10, FL100, FL360, and FLM1 for -1. These
numbers are defined and located in COMMON in order to minimize
the core size of a compiled subroutine which would otherwise
define these numbers as a local variable and also to eliminate
computer dependencies as much as possible. For example, on some
computers an integer zero has a different bit configuration than
does a floating point zero and so a separate representation for
both is essential.

Very frequently it becomes necessary for the postprocessor to
test for a null condition. The parameter DMBITS and DPBITS are
used to designate a null condition since zero is very commonly a
non-null value. The parameter DMBITS is defined as -40404040.0
and DPBITS = -DMBITS for the positive counterpart. Thus, when a
flag or some parameter is tested and found to be DMBITS, the
postprocessor knows that no condition has been established, and
that a null condition exists. Basic reference tables, like
TABLEG and TABLEM, are initially set to a null condition, i.e.,
set to DMBITS.

The subroutine STDMAC is called to establish the standard
settings of all the option values in the OPTAB table, as well as
for the REGSTR, REGFOR, and SRTAB tables.

GEINIT reads the CL tape in order to find the MACHIN statement so
that the designated Machine Subroutine can have its NC machine
data loaded into the proper tables. Once the MACHIN statement is
found (Record Type 2000, Subtype 1015), it checks to see if the
GECENT III postprocessor is called, and if so, to next check for
the called Machine Subroutine. See section 3.1.1.1 for the
technique of obtaining the proper postprocessor and Machine
Subroutine.

3.1-2

C(CHT Ill POSTPROCESSOR
'~,

... fdt,the computer programmer/

"~~~

~ 3.1.1 POSTPROCESSOR INITIALIZATION (GEINIT) (cont'd)

The called for machine number is saved in the current machine
flag CURMAC which is then used to call the related Machine
Subroutine. For example, the statement

MACHIN/GECENT, 40

sets up a call to subroutine MACH40. Once the Machine Subroutine
sets up the NC machine characteristrics in the various tables,
it's function is complete and it is overlayed as are all the
subroutines in GEINIT. However, the MACFUN portion, if one
exists, is not overlayed. (See Section 5. 6. 1.)

The final initializing function of GEINIT is done by subroutine
ASSIGN which inspects the established values of the
characteristics tables, and sets key flags accordingly. For
example, the departure limit table RNGDEP is set up for either a
metric or an inch system as designated by option 138.

3.1.1.1 SELECTING THE POSTPROCESSOR AND MACHINE SUBROUTINE

The postprocessor verifies it's own selection and obtains the
proper Machine Subroutine by referring the APOSTP* table which
exists in APT System COMMON and is set up in A.Pl' Section o. If
two MACHIN statements are given in a part program as:

MACHIN/BRACK, 10

MACHIN/GECENT, 10

then the processing sequence indicated is that the BRACK
postprocessor is the first to be used to process the CL tape.
Upon completion, the CL tape is rewound and the GECENT III
postprocessor is next used with Machine Subroutine MACH10. The
means by which the !X)Stprocessor is able to select the proper
~ostprocessor is by use of the IPOSTP table.

* On the IBM System 360, this table is called APOSTP but is
equivalent to IPOSTP in the GECENT III postprocessor.

3.1-3

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.1.1.1 SELECTING THE POSTPROCESSOR AND MACHINE SUBROUTINE (cont'd)

Basically, the IPOSTP table contains the BCD names of the
postprocessor coupled with the given machine number. Thus in the
above example the IPOSTP table would have in sequence:

BRACK (BCD)

10 (Floating Point)

GECENT (BCD)

10 (Floating Point)

An index counter, which is maintained by APT Section O, points to
the IPOSTP table location of the postprocessor to be selected.
In the above example, the pointer at the beginning of the part
program run, points to the location of the BRACK BCD reference;
when processing is complete and the CL tape rewound, the pointer
points to the location of the GECENT III BCD reference.

The method by which the pointer information is passed to the
postprocessor varies by computer as does the stored data in the
IPOSTP table. The most common method used by most computers* is
to have the pointer stored as the first item in IPOSTP; the
second item in the table gives the number of postprocessors yet
to be processed, including the current one. Following these
first two items are the pairs of postprocessor and machine number
for each MACHIN statement. For the above example, the IPOSTP
table initially appears as:

IPOSTP (1) = 3

IPOSTP (2) = 2

IPOSTP (3) = BRACK

IPOSTP (4) = 10

IPOSTP (5) = GECENT

IPOSTP (6) = 10

The IPOSTP table is dimensioned at 20, hence, under this method
it is possible to multiple postprocess a given part program for
as many as nine different postprocessors or Machine Subroutines.

* IBM 7090/94, GE635, UNIVAC 1107/8, CDC 3600/3800, 6400

3.1-4

Cl&lNT Ill POSTPROCESSOR ... for the computer programmer

3.1.1.1 SELECTING THE POSTPROCESSOR AND MACHINE SUBROUTINE (cont'd)

Another method used by some computers** has the pointer stored in
the parameter NUMPTR which is in APT System COMMON. Otherwise,
the IPOSTP table is set up similarly.

When the postprocessor encounters a MACHIN statement on the CL
tape, it first compares the CL tape BCD name versus IPOSTP (IP)
where IP is the pointer. If the comparison is not equal, the
MACHIN statement is disregarded; if it is equal, the MACHIN
machine number is compared versus IPOSTP (IP + 1) , and so on. In
this way the postprocessor can always recognize and accept a
current MACHIN statement and process it accordingly.

3.1.1.1.1 PTONLY/2 RUN

A PTONLY/2 rllll is used when a CL tape is already available, and
it is therefore necessary only to postprocess the tape. Thus, if
a CL tape had been saved from a part program computer run which
used the statement MACHIN/GECENT, 4, the saved CL tape can later
be processed by the special APT input:

PTONLY/2

MACHIN/GECENT, 4

FINI

However, frequently the occasion arises when one desires to run
the saved CL tape but with a different NC machine, and
consequently, different MACHIN statement than that which exists
on the CL tape. The postprocessor permits this because it
obtains the current machine reference not from the CL tape but
from the IPOSTP table. On a PTONLY/2 run the postprocessor does
no checking of the postprocessor name or machine number versus
the CL tape since it is meaningless to do so.

Therefore, if a CL tape were developed for multiple
postprocessing or multiple machine processing, the postprocessor
on a PTONLY/2 run will recognize ~ of the multiple MACHIN
statements for reprocessing the CL tape. But, it will recognize
all of the MACHIN statements for changes to the option table.

** IBM System 360, RCA Spectra 70

3.1-5

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.2 INPUT ELEMENT

The input to the GECENT III postprocessor is always the CL tape.
The sole intent of the input sequence is to obtain the record
data from the CL tape, and store all of it into the floating
point array, CLDATA, and part of it into the integer or BCD
array, ICLDAT. To expedite processing, certain key parameters
which serve as counters and flags must also be determined from
the input record. Basic among these is the flag NWPR which gives
the number of words per record, i.e., the total number of items
(either floating, integer, or BCD) in each logical record. The
other flags and counters are discussed below.

The means by which a record is read from the CL tape varies by
computer and the APT system used. Therefore, in the description
which follows, the overall general scheme of input which is
common to all computers is discussed first; then in the following
sections, the information for each major computer system is
given.

3.2.1 GENERAL INPUT FLOW

The CL tape is always read by calling subroutine INPUT, and this
subroutine is called from only two overlays: GEINIT and GEBASE.
Therefore, the subroutine INPUT resides in GEMON in order to be
available to both of these overlays. Subroutine INPUT is a
computer-oriented subroutine and, hence, differs for each
computer. These differences are detailed below in the sections
which follow.

The two input arrays are CI.DATA (dimensioned at 246) and ICLDAT.
The dimension of ICLDAT varies by computer, but it is always
either dimensioned as a separate array of 20 or is equivalenced
to CLDATA. The CLDATA array is used for obtaining floating point
data while the ICLDAT array is used for accessing integer or BCD
data.

Before subroutine INPUT is called, the CLDATA and ICLDAT arrays
are always cleared to zero and the indicator flag INDPTS is set
to 5. This indicator is used only when the CL record is a motion
record, but it is always preset prior to reading a record.

The format of the CL tape may also vary by computer and APT
System, and so each factor must be considered separately.
Fundamental to them all are certain standard items, such as the
identification and basic structure of each record type. (See
Section 3.3.) Futhermore, the CL tape is always a buffered tape.

3.2-1

GICINT Ill POSTPROCESSOR ... for the computer programmer

3.2.1 GENERAL INPUT FLOW (cont'd)

The data on the CL tape is in the form of physical records which
are comprised of logical records whose maximum size is 245 words.
Each logical record derives from an APT part program statement,
hence, it can be a motion or non-motion type record. Non-motion
records never contain more than twenty items, but motion records
can easily reach the maximum size.

The calling sequence of the subroutine which actually reads a
tape is usually slightly different for each computer, but they
all carry at least the following items in their calling sequence:

CLTAPE - Identifies the CL tape in the computer's APT System.

IRETN - The return variable flag, which in the GECENT III
postprocessor has the meanings:

IRETN<O, normal end-of-record read;

IRETN=O, end-of-file is read;

IRETN>O, an error made in reading.

NWPR - the number of words in the record.

CLDATA - the array into which the CL tape record is read.

The calling sequence may also require additional information on
blocking factors and directions on how to proceed with reading of
a record.

The output from the tape reading subroutine consists of the array
CLDATA being filled and the word count NWPR and the condition
flag IRETN being set.

Upon return from subroutine INPUT to the calling subroutine, the
condition flag IRETN is tested to see if a "good read" occurred.
A test for only a negative value of IRETN is made since an EOF is
considered an error because an EOF should neve~ occur in a normal
sequence. A FINI record always concludes tape read operation.

There are only fourteen types of records carried on the CL tape,
each identified as a Type 1000, Type 2000, and so on to Type
14000. Although the postprocessor reads each record, it only
processes certain types and disregards the others. The
recognized types are discussed in detail in Section 3.3 and
Section 3.4. The types may be broadly classified as those for a
motion record and those for a non-motion record. The motion
record is processed in the Motion Element while the others are
processed in the Auxiliary Element.

3. .. 2-2

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.2.1 GENERAL INPUT FLOW (cont'd)

The general format of a CL tape record is as indicated below.

Location ITEM TYPE

1 Record Number Integer

2 Record Type Integer

3 Record Subtype Integer

4 Data Integer,Floating Point, BCD

245 Data Floating Point

Regardless of the computer used, the first item of a record read
from the CL tape is always the CL tape record number. In
subroutine GEBASE after IRETN indicates that the record was read
correctly, the parameter SEQCTR is set equal to ICLDAT(1) to pick
up and save the record number for possible use as a sequence
number.

The format is not the same for all record types and is given here
in this form only for purposes of clarification. The point to be
noted is that a CL tape record can be · a mixture of integer
numbers, floating point numbers and BCD values. For proper
processing the postprocessor must refer to each element of the
record with the proper FORTRAN statement; this is why there are
two input arrays, CLDATA and ICLDAT. When a floating point
number is to be accessed, the CLDATA array is used, as in

DPRESP(1)=CLDATA(6).

or, for integer accessing,

ITYPE=ICLDAT(2).

When conversion from an integer to floating point (or vice versa)
is desired, reference is made as in the example below.

SEQCTR=ICLDAT(1).

3.2-3

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.2.1 GENERAL INPUT FLOW (cont'd)

The important feature to note is that the arrays CLDATA and
ICLDAT both contain the same information. Thus, it is possible
but completely erroneous to program:

DPRESP(1)=CLDATA(2)

for now an integer number is stored in a floating
parameter. Hence, it is vital to know the record format so
the proper input array is referenced.

point
that

The two input arrays exist in the postprocessor in two different
methods, each a function of the computer in use. One method is
used for hexadecimal type computers and another method for non
hexadecimal computers.

3.2.1.1 HEXADECIMAL TAPE RECORDS

The COMMON storage has the double-precision array CLDATA
dimensioned at 246, and the single-precision array ICLDAT
dimensioned at 20. The CL tape record is all in double-precision
and, therefore, is stored into CLDATA. From there the first
twenty items are obtained and stored in single-precision form
into ICLDAT. (See Section 3.2.2).

3.2.1.2 NON-HEXADECIMAL TAPE RECORDS

The COMMON storage has only the array CLDATA which is dimensioned
at 246, and ICLDAT is simply equivalenced to it. No form of
conversion or restorage is necessary.

3.2-4

CltlNT 111 POSTPROCESSOR ... for the computer programmer

3.2.2 INPUT SEQUENCES FOR IBM SYSTEM 360 AND RCA SPECTRA 70
COMPUTERS

The call to read a tape is through subroutine TAPERD which is in
APT Section O. The calling sequence as used by the GECENT III
postprocessor is:

CALL TAPERD (CLTAPE, IRETN, NWPR, 4, ICLDAT(1),

1, ICLDAT(2), 1, ICLDAT(3),1, CLDATA(4), 0)

The first three items in the calling sequence have already been
described; the fourth item states the number of arrays into which
the CL tape record is to be read, i.e., into four arrays.
Actually, what is desired is to read the first word into
ICLDAT(1), the second word into ICLDAT(2}, the third word into
ICLDAT(3) I and the remainder into CLDATA beginning at CLDATA(4).
The couplet (ARRAY,n) si:ecifies that n words are to be read into
ARRAY; that is, the given sequence (ICLDAT(1) ,1), and so on.
When n=O, as for (CLDATA(4), 0), the TAPERD subroutine reads into
the given array until an end-of-record condition is reached.

Since the first three words are single-precision integers, they
are stored in ICLDAT(1), (2), and (3), and the remaining double
words are stored starting in CLDATA(4). These double words are
then passed to subroutine STORGE where the integers in the array
CLDATA are transferred to the single-precision integer array
ICLDAT. This conversion and transference is done by taking
advantage of the structure of the double and single-precision
words.

Floating point double words look like:

1 32 33 64
I xxxxxxxx I xxxxxxxx \

where the X's represent hexadecimal digits. A single-precision
integer 4 looks like:

1 32 33 64
I xxxxxxxx I XXXXXXX4

Subroutine STORGE checks the left half of the word, and if zero,
knows it is an integer, and therefore, stores only the right half
into ICLDAT.

The flags IRETN and NWPR are set according to the conventions
described earlier.

3.2-5

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.2.3 INPUT SEQUENCE FOR UNIVAC COMPUTERS

The call to read a tape is through subroutine TAPERD which is in
APT Section O. The calling sequence as used by the GECENT III
postprocessor is:

CALL TAPERD (CLTAPE, IRETN, NWPR, 1, CLDATA,0)

The first three items have already been described; the fourth
item states the number of arrays into which the CL tape record is
to be read, i.e., into one array, and that being the next item,
CLDATA. The final item, zero, directs the TAPERD subroutine to
read the record into CLDATA until an end-of-record condition is
reached.

The flags IRETN and NWPR are set according to the conventions
described earlier.

3.2.4 INPUT SEQUENCE FOR GE 600 SERIES COMPUTERS

The call to read a tape is through subroutine GETNXR which is in
APT Section 0. The calling sequence as used by the GECENT III
postprocessor is:

CALL GETNXR (CLTAPE, IRETN, NREC, NWPR, 1, CLDATA, 0)

The parameters CLTAPE, IRETN, and NWPR have already been
described. The parameter NREC is the tape record number, and is
unused by the GECENT III postprocessor. The next two items
designate that one array, CLDATA, is to receive the input record.
The final item, O, directs the GETNXR subroutine to read the
record into CLDATA until an end-of-record condition is reached.

The IRETN flag is set differently from regular usage, and so it
is reconverted to conform to standard GECENT III postprocessing.
Upon return from subroutine GETNXR, IRETN is O for a "good read"
and is 5 for an end-of-file. IRETN is positive for an error in
reading. Therefore, the flag is reset as follows:

IRETN is made -1, if it originally is zero;

IRETN is made O, if it originally is +5;

IRETN is untouched if it is any positive value since this is
already detectable as an error in subroutine GEBASE.

3.2-6

ClClNT 111 POSTPROCESSOR ... for the computer programmer

3.2.5 INPUT SEQUENCE FOR CDC COMPUTERS

The call to read a tape is through subroutine TAPERD which is in
APT Section O. The calling sequence as used by the GECENT III
postprocessor.

CALL TAPERD (CLTAPE, IRETN, NWPR, 1, CLDATA,O,O,O,O,O)

The first three items have already been described; the fourth
item states the number of arrays into which the CL tape record is
to be read, i.e., into one array, and that being the next item,
CLDATA. The zeroes following, in effect, directs the TAPERD
subroutine to read the record into CLDATA until an end-of-record
condition is reached.

The flags IRETN and NWPR are set according to the conventions
described earlier.

3.2-7

ClCHT Ill POSTPROCESSOR ... for the computer programmer

3.3 AUXILIARY ELEMENT

As was discussed in Section 3.2 the Auxiliary Element of the
postprocessor is concerned with the disposition of all acceptable
record types. By acceptable record types it is meant those CL
tape records which are passed on from APT Sections I, II, or III,
by the CL tape to APT Section IV and are, therefore, data of
possible use to the postprocessor. The acceptable records are
Types 1000, 2000, 3000, 5000, 6000, 9000, and 14000. All of
these record types are processed in the Auxiliary Element except
Type 5000 which is for motion records and is processed in the
Motion Element. The other remaining record types are all handled
in only two subroutines: Type 2000 records are processed in
subroutine AUXLRY and the other types in subroutine GEBASE. Each
of these record ·types is discussed in the following sections
which give their purpose, format structure, and use by the GECENT
III postprocessor.

3.3-1

CICINT Ill POSTPROCESSOR ... for the computer programmer

3.3.1 RECORD TYPE 1000 - BCD PART PROGRAM STATEMENT

The original part program statement in BCD form is given in this
record. It serves no useful function except that it can provide
a means for identifying the statement currently being processed
if such information is desirable. The format structure is:

(1) Record Number

(2) Record Type = 1000

(3) BCD identifier used only in APT Section II.

(4) First BCD word of statement.

(5) Second BCD word of statement.

and so on for (NWPR-3) words.

This record type is disregarded in the GECENT III postprocessor
unless an error occurs. In this case the error dump sequence
backspaces the CL tape one record to obtain the Type 1000 record
and prints it to identify the source statement which induced the
error.

3.3.2 RECORD TYPE 2000 - POSTPROCESSOR STATEMENTS

Part program statements, such as SPINDL, FEDRAT, COOLNT, are
passed on the CL tape as Type 2000 records. With the exception
of motion records this record type is the most common record
processed.

The format structure is fixed only in the first three items of
the record, but beyond this point the format structure can be of
varying record length and word kind, i.e., either integer,
floating point, or BCD words. Since it is virtually impossible
to give all the possible format structures, a generalized
description is given which illustrates the manner in which APT
Section I passes on this type of record.

Each postprocessor statement consists of a major word and either
several, one, or no minor words (or modifiers). Modifiers to the
right of the slash are called minor words. Statements which have
no minor words, do not require a slash (/) and are called basic
statements. Those statanents which have minor words must have a
slash (/) immediately following the major word; such statements
are called "common". In the proposed APT_IV language structure
certain of these statements are categorized as generic or
replacement, but for this discussion, all statements without a
slash (/) are defined as common.

3.3-2

'-"

ClCHT 111 POSTPROCESSOR ... for the computer programmer

3.3.2 RECORD TYPE 2000 - POSTPROCESSOR STATEMENTS (cont'd)

There are two kinds of basic words: (1) those which stand alone
as one major word, as END, RAPID; and (2) those which have BCD
information strung out after the major word, as PARTNO, PPRINT.
Basic words of the first kind have nwneric subtype codes always
less than 1000. The record subtype identifies the particular
basic word being processed. The basic words (and their
respective subtype numeric code) which are recognized by the
GECENT III postprocessor are the following:

Basic Word Numeric Code

END 1

STOP 2

OPSTOP 3

RAPID 5

SWITCH 6

RETRCT 7

DRESS 8

PICKUP 9

UNLOAD 10

GO HOME 14

RESET 15

BREAK 17

PP RI NT 1044

PART NO 1045

INSERT 1046

3.3-3

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.3.2 RECORD TYPE 2000 - POSTPROCESSOR STATEMENTS (cont'd)

The CL tape format structure of basic words of the first kind
always the same.

(1) Record Number

(2) Record Type = 2000

(3) Record Subtype (N<1000)

and, NWPR =3.

is

Basic words of the second kind also have identical CL tape format
structures.

(1) Record Number

(2) Record Type = 2000

(3) Record Subtype (N>1000)

(4) First BCD Word

(5) Second BCD Word

(6) Third BCD Word

and so on for (NWPR-3) words.

The common words usually have a variable format structure which
can be described only generally. In the APT III System, minor
word modifiers are given numeric code equivalents which are fixed
point integers. Any numbers which appear to the right of the (/}
are passed on to the CL tape as floating point numbers. Hence,
in general, a common word postprocessor statement will have a
mixture of integer and floating point numbers in its CL tape
record. Thus, a statement such as

SPINDL/10,RPM,RANGE,2,CLW

appears on the CL tape as:

3.3-4

ClCHT Ill POSTPROCESSOR ... for the computer programmer

3.3.2 RECORD TYPE 2000 - POSTPROCESSOR STATEMENTS (Cont'd)

(1) Record Number

(2) Record Type = 2000

(3) Record Subtype = 1031

(4) 10 (floating point)

(5) 78 (integer code for RPM)

(6) 145 (integer code for RANGE)

(7) 2 (floating point)

(8) 60 (integer code for CLW)

and NWPR = 8.

Because of vocabulary variable formats and couplet usage the same
statement can be written as

SPINDL/10,CLW,RANGE,2

in which case the CL tape record appears as:

(1) Record Number

(2) Record Type = 2000

(3) Record Subtype = 1031

(4) 10

(5) 60

(6) 145

(7) 2

and NWPR = 7.

Hence, it is readily apparent that common word CL tape records
follow no set fonnat structure.

3.3-5

ClCINT Ill POSTPROCESSOR ... for the computer programmer

3.3.2 RECORD TYPE 2000 - POSTPROCESSOR STATEMENTS (cont'd)

There is only one postprocessor common word statement which has
a BCD word in its CL tape record and that is the MACHIN
statement. The modifier following the slash (/) calls for the
postprocessor; this modifier is always in BCD form.

MACHIN/GECENT,1,0PTAB,4,40

This is a special case statement since it is the only
postprocessor statement recognized and dealt with in APT Section
I where the postprocessor table is set up. The CL tape record
for the above statement appears as:

and NWPR = 8.

3.3-6

(1) Record Number ·

(2) Record Type = 2000

(3) Record Subtype = 1015

(4) GEC ENT (BCD Word)

(5) 1 (floating point)

(6) 170 (integer code for OPTAB)

(7) 4 (floating point)

(8) 40 (floating point)

ClCHT Ill POSTPROCESSOR ... for the computer programmer

3.3.2.1 MAJOR WORD LIST

common words have numeric subtype codes always greater than 1000.
The common words (and their respective subtype numeric code)
which are recognized by the GECENT III postprocessor are the
fallowing:

co nun on Word Numeric Code

AIR 1011

AUXFUN 1022

CLAMP 1060

CLRSRF 1057

COMBIN 1071

COOLNT 1030

COUPLE 1049

CUT COM 1007

CYCLE* 1054

DELAY 1010

DRAFT 1059

FE DRAT 1009

FLAME 1067

LEADER 1013

LINTOL 1068

LOAD* 1075

MACHIN 1015

MCHTOL 1016

* In the parlance of the proposed APT-IV vocabulary these words
are generic.

3.3-7

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.3.2.1 MAJOR WORD LIST (cont'd)

Common Word Numeric Code

MODE 1003

OP 1073

OP SKIP 1012

ORIGIN 1027

OVRCNT 1085

PITCH 1050

PIVOTZ 1017

POSITN 1072

PP UNCH 1082

PREFUN 1048

PRFSEQ 1069

REWIND 1006

ROTATE* 1066

SAFEl'Y 1028

SELECT* 1074

SEQNO 1019

SET* 1087

SPINDL 1031

THREAD 1036

TMARK 1005

3.3-8

ClCHT Ill POSTPROCESSOR ... for the computer programmer

3.3.2.1 MAJOR WORD LIST (cont'd)

Conunon Word Numeric Code

TOOLNO 1025

TRANS 1037

TURREI' 1033

WELD 1076

XOFSRI' 1084

Other common words which are not in the above list are not
recognized in the GECENT III post processor therefore,
disregarded; no warning comment or error is issued.

The minor word list that the GECENT III postprocessor recognizes
in corrunon word statements is given in Section 3.3.2.2.

For a CL tape Record Type 2000, subroutine GEBASE calls
subroutine AUXLRY, where a test is then made on the Record
Subtype, which causes t~ postprocessor to branch to the proper
subroutine. In all cases subroutine AUXLRY calls the subroutine
which has the same name as the major word, e.g., the statement
SPINDL/10, CLW is processed subroutine SPINDL; the statement
SELECT/READER is processed in subroutine SELECT.

The reader is directed to the GECENT III Part Programmer's Manual
for a complete description and usage of the above postprocessor
statements.

3.3-9

CICINT Ill POSTPROCESSOR ... for the computer programmer

3.3.2.2 MINOR WORD LIST

The following minor words (and their respective APT-III numeric
code) are recognized in postprocessor conunon word statements by
the GECENT III postprocessor.

Minor Word Numeric Code
A8JPo.r ,22..
ANGLE 252
ALL.. r1
BAR 207
IJ£Al'1 197
BORE 82

BOTH 83

CCLW 59

CLW 60

COARSE 195

DECR 62
PFLCTN 2.,,
DEEP 153

DOWN 113

DRAG 299

DRILL 163

DWELL 197
&~••£ 32.3
FACE 81
f Z£D Z. "7C
FINE 193

FLOOD 89

FRONT 148
/+ll'fO 2.38
HED 238

HIGH 62

IN 48

3 .• 3-10

Cl&lNT 111 POSTPROCESSOR

'-"" 3.3.2.2 MINOR WORD LIST (cont'd)

Minor Word

INCR

INDEXR

INHIBT

IN SPEC

IPM

IPR

LARGE

LEFT

LINC IR

LINEAR

LOCK

LOW

MAG ZIN

MANUAL

MASTER

MAXI PM

MAXRPM

MEDIUM

MILL

MINUS

MIST
: Ii I 5>4 1111 Plf
NEUTRL

11Xl111Pl1

... for the computer programmer

Numeric Code

66

242

279

173

73

74

7

8

95

76

114

63

178

158

181

96

79

61

151

10

3.3-11

CICINT Ill POSTPROCESSOR ... for the computer programmer

.3.2.2 MINOR WORD LIST (cont'd) """'
Minor Word Numeric Code

NEXT 162

NO BACK 194

NOW 161

OFF 72

OFSETL 275

ON 71

OPER 231

OPT AB 170

ORIENT 246

OUT 49

OVRIDE 192

OXYGEN 169 """' PA~ Z60
PALLET 239

PLUS 19

PR EH ET 171

RADIUS 23

RAIL 93

RANGE 145

REV 97

READER 241

REAR 149

RIGHT 24

ROCK 248

ROT REF 68

"""'
3.3-12

C(CHT Ill POSTPROCESSOR ... for the computer programmer

3.3.2.2 MINOR WORD LIST (cont• d)

Minor Word Numeric Code

RPM 78

SADDLE 150

SCHEDL 250

SFM 115

SHIFT 249

SHORT 174

SIDE 94

SLAVE 180

SMALL 26

STEP 92

TABLE 177

TAP 168

TAPKUL 91

THRU 152

TILT 247

TL POT 167

TOOL 87
TOdL Ztl/o
TORCH 172

TRAV 154

TUL 240

TUREI' 179

TURN 80

3.3-13

ClCINT Ill POSTPROCESSOR ... for the computer programmer

3.3.2.2 MINOR WORD LIST (cont• d)

Minor Word Nwneric Code

UP 112
~AXIS 84-
XCOORD 116

XYPLAN 33
Y~'tlI 8.r
YCOORD 117

YZPLAN 37
~llf~IS e1:>
ZCOORD 118

ZXPLAN 41

3.3-14

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.3.3 RECORD TYPE 3000 - SURFACE DATA

This record type contains data descriptive of the circular drive
surface which the cutter pa th is to follow. This data is
essential in the GECENT III postprocessor when circular
interpolation is available on the controll!!f (option 9 =1). When
only linear interpolation is available, this record type is
disregarded.

The format structure of this record type is given only for a
circular drive surface since no other drive surface plays a
special role in the GECENT III postprocessor. In most cases the
APT system does not pass on drive surface data except for circles
and cylinders.

(1) Record Nunber

(2) Record Type = 3000

(3) Surface Use Indicator (2 for a DS)

(4) Tool Position (1=TO, 2=PAST, 4=Tangent)

(5) Drive Surface Type=4 for a circle

(6) Number of words in canonical form

(7) Name of surf ace in BCD

(8) Surf ace name subscript

(9) x value for circle center

(1 0) y value for circle center

(11) z value for circle center

(12) x component of axis vector

(13) y component of axis vector

(14) z component of axis vector

(15) Radius of circle

The APT Section 10 Manual should be consulted for more details on
this record type.

3.3-15

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.3.3 RECORD TYPE 3000 - SURFACE DATA (cont'd)

Only items 5, 9, 10, 11, 12, and 13 are used by the GECENT III
postprocessor. If ICLDAT(5)#4, the drive surface record is
disregarded and the flag CIRFLG is set to zero indicating the
path is not for circular interpolation. Otherwise, CIRFLG is set
to +1 and the circle center is saved in the array CIRDAT. The
motion record immediately following this Type 3000 record is
processed using circular interpolation (See section 3.4.4.).

3.3.4 RECORD TYPE 5000 - MOTION RECORDS

see section 3.4 for the processing of this record type.

3.3.5 RECORD TYPE 6000 - ARELEM FLAGS

The data in this type record provides information regarding the
cutter and cutting tolerances. Actually, the record provides
other information which could be of use to a postprocessor, but
currently the GECENT III postprocessor only makes use of the
items mentioned below.

The complete format structure of this type record is as follows:

(1) Record Number

(2) Record Type = 6000

(3) Record Subtype

(4) ---NWPR) Other related data

The items contained in the fourth location and beyond are
dependent upon the record subtype. The subtypes marked with an
asterisk are the only items recognized by the GECENT III
postprocessor.

3.3-16

Subtype = 1

Record item 4 is 0 for CUT and 1 for DNTCUT.

Subtype = 2

Record item 4 is 0 for 2DCALC; 1 for
3DCALC; and 2 for NDTEST.

subtype = 4*

Record item 4 is the INTOL.

"""'

Cl&lNT 111 POSTPROCESSOR ... for the computer programmer

3.3.5 RECORD TYPE 6000 - ARELEM FLAGS (cont'd)

Subtype = 5*

Record item 4 is the OUTTOL.

s ubt'ype = 6 *

Record items 4 through 10 contain data defining the cutter, as
fallows:

(4) Diameter of cutter, D*

(5) Radius of cutter, r*

(6) Offset of corner radius center, E

(7) Height of corner radius center, F

(8) cutter point angle, a

(9) cutter side angle, s
(10) Length of cutter, h

This record type is processed in subroutine GEBASE where the
inner tolerance INTOL is saved in TOLIN, the outer tolerance
OUTTOL in TOLOUT, and the cutter radius CUTRAD is determined by
D/2. The resultant CUTRAD is compared with r to determine
whether or not a ball tool is in use, since D/2=r for a ball
tool. Accordingly, parameter CUTTER=O for a non-ball cutter, and
=1 for a ball cutter. This information is pertinent to the
postprocessor since circular interpolation in all planes is
possible only with a ball cutter.

3.3-17

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.3.6 RECORD TYPE 9000 - ARELEM PARAMETERS

The only function served by this record type is to designate the
existence of roultiaxis processing. Although the fonnat structure
can vary, the only format recognized by the GECENT III
postprocessor is:

(1) Record Number

(2) Record Type = 9000

(3) Record Subtype = 2

and NWPR =3.

All records for which the subtype is not 2 are disregarded.

The multiaxis flag AXMULT is set to 1 to indicate the existence
of a multiaxis condition, and the parameters NCOM and NAXES are
set as:

NAXES = 5

NCOM = 6

(See Section 3.4.1 on how these parameters are used.)

3.3.7 RECORD TYPE 14000 - FINI

This record identifies the FINI statement and initiates the
termination sequence in the postprocessor. The format structure
is:

(1) Record Number

(2) Record Type = 14000

and NWPR = 2.

The postprocessor outputs a command block of CODE = 18 for a FINI
statement.

3.3-18

CICINT Ill POSTPROCESSOR ... for the computer programmer

3.4 MOTION ELEMENT

In the GECENT III postprocessor, a motion may be an absolute
positioning move, a linear interpolation incremental move, a
circular interpolation incremental move, a multiaxis move, or a
rotary move. Each of these moves follows a separate processing
path through the postprocessor, during which it becomes engaged
in a variety of tests, path modifications, and optimizing
sequences before it is finally made output. Processing of these
motions is generally quite complex, but the major effects they
undergo are detailed in the sections following. Special
sequences which normally require greater coverage are briefly
touched upon but explained in detail in a later section.

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE

A typical overlay structure is diagrammed below for a lathe which
has an incremental contouring system.

Section 0

GEMON

GE BASE

GE TERP

GE LATH

GEOUTl

The key motion overlay in the structure is GETERP which contains
all of the incremental linear and circular interpolation
sequences. GETERP is not needed for a positioning machine since
any special positioning move adjustments are done in the GEPOS
overlay. A multiaxis milling machine has the added overlay
GEMAXS in core to supplement GETERP.

Processing within the Motion Element follows after the Input
Element (Section 3.2) completes its reading of the CL tape.
Subroutine GEBASE branches to subroutine MOTION when the CL tape
record is a type 5000, and it is here that the program routing of
the motion occurs.

3.4-1

CltlNT Ill POSTPROCESSOR ... for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE (cont'd)

A CL tape motion record has the following format structure for a
non-multiaxis move:

(1)

(2)

(3)

(4)

(INDPTS) (5)

(6)

(7)

(8)

(9)

(NWPR)

3.4-2

Record Number

Record Type = 5000

Record Subtype (=3,4,5 or 6)

Subscript of point,

BCD

xl

yl

;a.l

x2

z
n

name or surface

NCOM = 3

NCOM = 3

vector, or surface

CfClNT 111 POSTPROCESSOR ... for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE (cont'd)

A multiaxis record appears as:

(1)

(2)

(3)

(4)

(INDPTS) (5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(NWPR)

Record Number

Record Type = 5000

Record Subtype

Subscript

BCD

xl

Y1

zl

il

jl

kl

x2

Y2

z2

i2

j2

~

k
n

name

NCOM

NCOM

(=3,4,5

= 6

= 6

or 6)

The record subtypes are discussed in section 3.4.2.

The data x, y, z are the algebraic part coordinates derived from
the part program and the data i, j, k are the backward directed
direction cosines of the tool. All three values x, y, z are
always given, even for two dimensional programs, in which case
one of the values (usually z) is zero or some constant.

3.4-3

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE (cont'd)

The postprocessor uses two key indices for obtaining and saving
motion data, namely, NCOM and INDPTS.

NCOM designates the "normal" number of values to be found in a CL
tape record for a non-multiaxis and multiaxis move; NCOM is 3 for
non-multiaxis, and is 6 for a multiaxis record; see the CL tape
record formats above. NCOM is initialized to 3, but is reset to
6 when the MULTAX record (Record Type 9000 - See Section 3.3.6)
is encountered.

INDPTS is an indicator pointing to the CL tape record location
which is one less than the value to be selected next. Before

subroutine INPUT is called, it is always preset to 5. The manner
in which it is used will become clear in the following
descriptions.

The postprocessor saves the CL
present point vector DPRESP, which
ordered as:

DPRESP (1) = x

part coordinate
is dimensioned

DPRESP (2) = y linear locations

DPRESP (3) = z

DPRESP (4) = i

data in the
at six and

DPRESP (5) = j tool direction cosines

DPRESP (6) = k

If a TRANS statement had been given, the TRANS values of x, y,
and z (stored in the vector TRANSL) are added to the
corresponding value of DPRESP. TRANSL is zero if no TRANS is
given. Thus, at every instant of processing time, the
postprocessor knows exactly where the tool control point is.

3.4-4

"'-"

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE (cont'd)

For example, assume we have a two point record stored in
c:tDATACL.

CL DATA

(1} Record Number

(2) Record Type = 5000

(3) Record subtype = 5

(4) Subscript

(5) BCD Name (INDPTS=5)

(6) xl

(7) Y1 First point

(8) zl

(9) x2

(10) Y2 Second point

(11} z2

NCOM = 3 NWPR = 1 1

The postprocessor selects the first point by
~L

DPRESP(I) = e::LDATA(INDPTS+I) + TRANSL(!)

for I = 1 to NCOM. After the point is processed and made output,
INDPTS is increased by NCOM, and the new point is similarly
selected and processed until INDPTS becomes greater than NWPR.
It can be seen that regardless of the size of the record, or
whether or not it is a multiaxis record, the sequence is a
generalized process for all motion records.

Motion data as stored in DPRESP represents the cutter path in
terms of the part coordinate system; but to actually machine the
part, the data must be converted to the machine coordinate
system.

3.4-5

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE (cont'd)

For non-multiaxis machines (with either absolute or incremental

systems) conversion from part to machine coordinates is nothing

more than a rounding of part coordinate data at the decimal

location corresponding to the step size of the machine tool*.
The step size or minimum programmable incremental is given in
option 14 and stored in parameter STEP in subroutine ASSIGN.

For example, assume that STEP = 0.0001. This means that data

beyond the fourth decimal location cannot be recognized by the

numerical control system, therefore all data must be truncated at

this point, and in order to avoid an accumulative error or a loss

of path accuracy, the data is also rounded. As mathematically

demonstrated in Section 7.2, this method of rounding guarantees
that the maximum accumulated error on any axis can never become

larger than one half the minimum step size of the NC machine. In

fact, if the tool is prograrruned to the beginning point of the
part program, the accumulated error is zero.

Some examples will illustrate the rounding method; assume
STEP = 0.0001.

CL Tape Value Rounded Value

22.24686231 22.2469

22 .. 24685231 22.2469

22.24684231 22.2468

0.00005 0.0001

0.000005 0.0000

*The step size of a machine tool is the minimum distance that an
axis moves for one servo pulse. Translation and rotation axes
may have the same or different minimum step sizes.

3.4-6

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE (cont'd)

Subroutine SRAREC performs the rounding for linear data,
and subroutine SROREC rounds for rotary data. The relation
used is:

x =~Jtl + 0.50010*
\

1

STEP /
(J x I * STEP) ,. ,,.

The part coordinate values are retained in DPRESP, and the
rounded values are stored in the vector DPRESM which
represents the present point in machine coordinates. DPRESM
is dimensioned at 6 and ordered as:

DPRESM (1) = x

DPRESM (2) = y linear locations

DPRESM (3) = z

DPRESM (4) = A

DPRESM (5) = B rotary locations

DPRESM (6) = c

A convention of this manual uses the lower case letters x, y, z,
i, j, k to represent the part coordinate data, and the capital
letters X, Y, Z, A, B, c to represent the corresponding machine
coordinate data. The rotary values A, B, and c derive from a
multiaxis move and represent the rotary motions necessary to
maintain the vector orientation of the tool as given by the
direction cosines.

Converting from part to machine coordinates for multiaxis moves
is considerably more involved than simply rounding the part data,
for now it becomes necessary to consider the orientation of the
tool relative to the part surface. This may involve a swivel of
the tool, or a tilt of the table, or any number of possible
rotary motions. Therefore, it is evident that a unique
relationship exists between the part and machine coordinate
systems, and this relationship usually varies for different
multiaxis machine tool configurations. This relationship is
mathematically expressible in terms of a set of transform
equations which permit conversion between part and machine
coordinate systems. The set of transforms is identified by the
class associated with a particular multiaxis machine tool
configuration, as class 1, class 2, and so on. (See Section 4.2.)

3.4-7

Cl&lNT Ill POSTPROCESSOR ... for the computer programmer

3.4.1 OBTAINING MOTION DATA FROM THE CL TAPE (cont'd)

When the postprocessor converts the data in DPRESP to DPRESM it
utilizes the related set of transfonns for the machine tool
class, and then rounds the converted data to the step size of the
NC machine. Subroutine GEOM is the subroutine responsible for
converting DPRESP into DPRESM.

3.4-8

C(ClNT 111 POSTPROCESSOR ... for the computer programmer

3.4.2 MOTION RECORD SUBTYPES

The technique described above for selecting motion data and
saving them in DPRESP and DPRESM is used by the processing
sequences for each of the motion subtypes. Any additional
activities are detailed for that subtype.

Motion record subtypes range from subtype 1 to 6*, but only
subtypes 3 through 6 are considered in the GECENT III
postprocessor. Subtype 1 (for an INDIRP) and subtype 2 (for an
INDIRV) are disregarded by the postprocessor.

3.4.2.1 SUBTYPE 3 FROM POINT

Subroutine MOTION branches to subroutine FROM to process this
subtype. The FROM point is stored into DPRESP, sent through
subroutine GEOM where it is transformed, rounded, and saved in
DPRESM, then set up in the command block DBFSEG and sent to
subroutine OUTPUT for printing. The block CODE is made + 3 for
the FROM point.

There is never more than one point (x,y,z) or (x,y,z,i,j,k) in
each FROM point record.

In the GECENT III postprocessor, multiaxis FROM points must be
given in part coordinate form. This convention is in keeping
with APT practices and maintains a consistency in that all data
from the CL tape is always in the part coordinate system.

Some NC machines may utilize a fixed FROM point or home position
from which all machining operations begin. In such cases, it is
desirable to ensure that the given FROM point is in keeping with
the fixed FROM point. The postprocessor provides a branch to the
MACFUN (see Section 5.6.1) wherein a comparison test is made of
the given versus the required FROM point, and when different,
prints a warning comment, "THE FROM POINT IS NO'f THE HOME
POSITION". This is not a fatal error, for indeed, many a case
arises where it is desirable to begin machining from a point
which is not the home position.

*Special subtypes 7 and 8 for linearity testing are not currently
recognized in the GECENT III postprocessor.

3.4-9

Cl&lNT Ill POSTPROCESSOR ... for the computer programmer

3.4.2.2 SUBTYPE 4 GODLTA POINT

In APT III for some computers, GODLTA points are not always
passed on to the CL tape as an incremental record because the APT
system algebraically adds the increments to the current path
points, and the resultant record is passed on as a Subtype 5 for
a GOTO record.

For example: GODLTA/2,-4,6

Present path point is: 22,10,8.
appear as:

APT converts the record to

GOT0/24,6,14

However, for a PTONLY/1 run, the GODLTA record is not converted
to the GOTO type record.

In the GECENT III postprocessor a GODLTA record is processed by
adding the t&DATAC~to the postprocessor previous point data
(DPREVP) and by changing the record subtype index to 5 to make
it appear as a GOTO record and be processed accordingly.

There is never more than one point (xyz) in each GODLTA record.

3.4.2.3 SUBTYPE 5 GOTO POINT

This motion record is by far the most common record passed on to
the CL tape. It represents the algebraic location (xyz) or
(xyzijk) of each cut vector that approximates the progranuned
cutter path; hence, for non-linear curves a CL tape motion record
can consist of hundreds of points.

t:J..
Each point is read one at a time from the buff er c:LDATA,
processed, and made output. This is the sequence used when
linear interpolation is the processing mode, but a different
course is followed for circular interpolation. (See section
3.4.4.)

3.4.2.4 SUBTYPE 6 CONTINUATION RECORD

A part progranuned non-linear path can very easily produce several
hundred cut vectors, but each CL tape record is limited to a
maximum of 80 (xyz) points or 40 (xyzijk) multiaxis points.
Therefore, APT issues several records to represent the path;
these records are the Subtype 6 continuation records. They are
processed exactly as a Subtype 5 GOTO record for linear
interpolation but are used slightly differently for circular
interpolation. This process is described in Section 3.4.4.

3.4-10

CfCfNT Ill POSTPROCESSOR ... for the computer programmer

3.4.3 PROCESSING A MOTION RECORD

After the postprocessor obtains a point from the CL tape and
stores it into DPRESP and DPRESM, it then processes the motion to
make it acceptable to the NC control system. A number of tests
and modifications are detailed in the description below.

After the motion has been made output, the postprocessor retains
the present point but redefines it as the previous point, because
the next point read from the CL tape will become the new present
point. Accordingly, after a motion is processed and made output,
the elements of DPRESP and DPRESM are stored in the previous
point vectors DPREVP and DPREVM, respectively.

Diagram 3.4.3A illustrates how these vectors are used for
processing motions.

FROM ~ ~· -------"!10....,./B
A

Diagram 3.4.3A

.... D

Initially, beginning with the FROM point, DPRESP contains point
A and DPREVP is null. After the FROM point is made output,
DPREVP becomes point A. After point B is output, DPREVP is B and
DPRESP is c; and so on. Note that the same method is used for
both the linear and circular interpolation sequences. The
vectors DPREVM and DPRESM are reset at the same time that DPREVP
and DPRESP are set.

3.4-11

Cl&lNT Ill POSTPROCESSOR ... for the computer programmer

3.4.3.1 PROCESSING A LINEAR INTERPOLATION MOTION

To produce a motion which utilizes the linear interpolation
capability of the NC control system, the postprocessor need deal
only with the data contained in the DPREVM and DPRESM vectors.

Positioning machines, and all
absolute system, output the
example, in Diagram 3.4.3.1A,

machine
values

B(S.6)

tools which utilize
contained in DPRESM.

Diagram 3.4.3.1A

an
For

the X axis values of the path ABC are output as X2.4, XS.6, and
X8.6. (The decimal point is not punched in the output tape but
is used here for illustration.)

Contouring machines generally utilize an incremental system which
requires that all motions be in the form of increments. In the
above example, the X axis values for the path ABC are then X3.2
and X3.0. These incremental moves are referred to as departures.
Thus, the departure from point A to point B is +3.2; the
departure from point c to Bis -3.0. A departure is defined to
be the algebraic difference between the coordinate values of two
adjacent points in a rectangular Cartesian coordinate reference
frame.

3.4-12

CICHT Ill POSTPROCESSOR ... for the computer programmer

3.4.3.1 PROCESSING A LINEAR INTERPOLATION MOTION (cont'd)

The postprocessor computes the departures in the
coordinate system only, i.e., with DPREVM and DPRESM.
a multiaxis machine, the typical departures may
follows:

Departure = Present Point Previous Point

b.X = 11.5730 22.68411 11.1111

b,y = 3.3699 3.2466 -0.1233

b.z = 0.0000 -1.0000 -1.0000

b.A = 25.0000 50.0000 25.0000

b.B =-25.0000 -25. 0 0

b.C = 0.0000 0 0

machine
Thus, for

result as

When a CL tape motion record is processed for a line, subroutine
MOTION branches to subroutine GOLINE which is the main subroutine
for linear moves. After calling subroutine GEOM to convert from
part to machine coordinates, it calls subroutine DEPART to
compute the departures of the linear move.

Each computed departure is compared with the parameter HSTEP
(which contains half the STEP size) ; and if the departure is less
than HSTEP, it is set to zero. The reason for this is to make
the axis move appear as a zero move, i.e., as no move at all,
since the amount of motion specified by the departure is not
physically possible on the NC machine. Because of the non-exact
representation of floating point numbers, it is quite possible
that the result of a subtraction can appear to be smaller than
the STEP size but yet be a legitimate value. For example, the
difference between the points 0.0005 and 0.0004 may appear as
0.00009999 rather than 0.00010000. The value is less than the
STEP size of 0.0001 but is certainly a valid value. This is the
reason why the above test uses HSTEP rather than STEP. This
phenomena also illustrates the necessity for rounding up the
departures; this rounding occurs later in the program.

When all departures are zero, there is, in effect, no move, and
the postprocessor must disregard further processing and return to
obtain a new point. This is accomplished by setting the return
flag RETURN to -1 which then causes the postprocessor to reroute
the program flO'W' back to subroutine MOTION where the next point
is selected.

3.4-13

ClCINT Ill POSTPROCESSOR ... for the computer programmer

3.4.3.1 PROCESSING A LINEAR INTERPOLATION MOTION (cont'd)

Before exiting from subroutine DEPART the departures are stored

in their proper
DBFSEG (3) = ~x

DBFSEG (4) = ~y

DBFSEG(5) = ~z

The return flag RETURN is set to +1 to indicate that a motion has

been accepted.

Unless segmentation (see Section 3.4.3.1) is required, the motion

block is essentially ready for output. The command block CODE is

set to zero to indicate a linear move, and unless SFM or

threading are in mode, subroutine OUTPUT is called to produce

ultimately the printed and punched output as described in section

3.5.

3.4.3.2 SEGMENTATION OF A LINEAR MOVE

Because of the decimal format of each machine axis register,

there is a limitation to the number size that a register can

accept. If the format for a register is 24.0, that is, two

digits to the left and four digits to the right of the decimal,

then obviously the largest number that the register can accept is

99.9999. This limitation in the case of the motion registers is

called the maximum departure; hence, each component value of a

motion must be less than or equal to the maximum departure.

When departures result which exceed the maximum departure, the

path must be segmented into sufficiently small segments. For

example, if the maximum departure is 9.999 inches, a move in X of

40 inches must be segmented into five segments of 8 inches each.

The postprocessor always obtains the largest segment possible.

Subroutine MOTION tests each of the computed departures versus

the maximum departure, DEPMAX, which is specified in option 4.

If any of the departures exceed DEPMAX, then subroutine SEGMNT is

called to produce and output the proper size segments. One

restriction should be noted here, namely, the multiaxis

processing which calls for linearity testing must bypass the

segmentation sequence in deference to the requirements of the

linearity sequence. As explained in Section 3.4.7.3, linearity

error to be measured accurately must consider the unsegmented

total path.

3.4-14

CICINT Ill POSTPROCESSOR ... for the computer programmer

3.4.3.2 SEGMENTATION OF A LINEAR MOVE (cont'd)

When the maximum departure is exceeded, subroutine SEGMNT
segments the given path into sufficiently small motions and then
outputs them. Path segmentation is fairly straightforward:
linear ratioing is used to obtain the points of segmentation, and
there is no limit to the number of segments produced. Basically,
the postprocessor determines the number of required segments from
the relation:

Largest Departure
Number of Segments = < Maximum Departure + 1 >

Next, the segment size is determined from:

Departure
Segment Size = Number of Segments

Actually, the segment size for each axis is determined so as to
make linear interpolation to the segmented point unnecessary.
Thus, the point of segmentation is found simply by adding the
axis segment size to the current point value. Example: Assume
a maximum departure of 9.9999 and move of 50 inches as shown in
the diagram 3.4.3.2A

y The number of segments is:

NSEG = < 40
9.9999 > + 1 = 5

The segment sizes are:

s = iQ_ = •8 x 5
30

x
s =lQ.=6 y 5 •

0 40

DIAGRAM 3.4.3.2A

3.4-15

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.3.2 SEGMENTATION OF A LINEAR MOVE (cont'd)

Assuming the path starts from (O,O) I the segments then are:

Segment 1: (8, 6)

Segment 2: (16, 12)

Segment 3: (24 I 18)

Segment 4: (32 I 24)

Segment 5: (4 0 I 30)

Each segment is individually produced and made output by calling

subroutine OUTPUT.

The above example vividly illustrates the basic techniques used

in segmentation, but unfortunately, actual cases are rarely that

simple. Whenever the original path is segmented unevenly, there

is the danger of losing accuracy in the last decimal digit. For

example, by the above scheme a path of 10 inches, if segmented

for a maximum departure of 3.9999 inches, produces three segments

of 3.3333 inches such that their summation is 9.9999 inches, a

loss of 0.0001 inches. The postprocessor must therefore provide

a means of adding a pulse to the segment at the appropriate time,

for it will not do to simply add in the necessary pulses on the

last segment to make the result end up at the proper point. If

this were done, the postprocessor would be deviating the tool

from its directed path.

This is illustrated in exaggerated form in diagram 3.4.3.2B the

heavy line represents the actual path; the small paths are the

segments.

y

~ x

Diagram 3.4.3.2.B

3.4-16

C(CHT Ill POSTPROCESSOR ... for the computer programmer

3.4.3.2 SEGMENTATION OF A LINEAR MOVE (cont'd)

Hence, it is essential for the postprocessor to maintain optimum
accuracy for each generated segment so that the produced
segmented path adheres as closely as possible to the designated
path. The method used by the GECENT III postprocessor is to
recompute the segment length each time it is to be generated.
The new segment is determined by taking the difference between
the true present point and the machine previous point. In the
description which follows, only the X axis is used, but the same
technique applies to all axes.

First of all, the true, unrounded, untruncated segment length Sx
is computed as:

s = x
/:;X

NSEG

where l;;x is the x-axis departure, and NSEG is the number of
segments required. The output segment length is now determined
by the following steps:

1. Add sx to the previous machine point x0 to obtain the
present machine point x1 .

xl = XO + Sx

2. Subtract the previous machine point Xo from the
present machine point x1 to get the increment ox

(~ > Sx) ux

3. Round ox to the step size to obtain o~

0 I = < 0
x + 0. ~ * STEP

x _STEP /

4. The increment o' is the required output value.
o • is now ad~d to the previous point Xe to become
tte new x

0
•

X = X + 0 I
0 0 x

5. The four steps are repeated for NSEG times.

3.4-17

Cl&lNT Ill POSTPROCESSOR ... for the computer programmer

3.4.3.2 SEGMENTATION OF A LINEAR MOVE (cont'd)

An example will make the above description completely clear.
Assume a DEPMAX of 3.9999, STEP = 0.0001, and a ~X move of
10 inches. The previous point was 8. s x= 3.3333333. The
columns below when read across show theresults of steps 1
through 4.

(1)

8.0000 11.3333333

11.3333 14.6666666

14.6667 17.9999999

(2)

0
x

3.3333333

3.3333666

3.3332999

(3)

0 ,#

x

3.3333

3.3334

3.3333

(4)

New~

11.3333

14.6667

18.0000

From the above example it can be seen at value 14.6667 how the
needed pulse is automatically added at the appropriate time to
maintain the optimum path accuracy. Also note that the final
result (18.0000) is the exact final point, but xi is not. In the
postprocessor the vector DPREVM is used analogously as ~ , and
the vector DPRESM as x1. When the path is completed, DPRESM is
reset to DPREVM so that both points are identical, for upon
return to subroutine GOLINE, the normal exiting sequence is
always to reset the vectors as:

DPREVM = DPRESM

Section 3.4.3.2.1 gives a mathematical demonstration illustrating
that the segmentation technique used by the GECENT III
postprocessor does not cause any significant error in the
segmented path.

3.4-18

CICINT Ill POSTPROCESSOR ... for the computer programmer

3.4.3.2.1 SEGMENTATION PROOF

Let ~ be the exact segment length and (x] be the rounded value of x such that

X = (X] + E,

where E is the error difference.

Then, by the above described method where DPRESM contains the exact location of the path, and DPREVM contains the actual location, we have for a few segments along the x-axis:

DPRESM

x

x+ ~

x + 2~

x + 3~

DPREVM

x

x + ((x+ ~) - x] = x + (~]

x + (~] + [2~ - (~]]

x + [~] + [2~ - (~]] +
(3 ~ - (2~ - (~]] - [~]]

Defining '5= DPRESM - DPREVM, after three segments we have

a= 3~ - [~ J - [2ti-[~ JJ - L3~-[2fi-(~ JJ - (~ JJ
If [~] = ~ , then

o = 3~ -~ -~ -~ = O, illustrating no error would occur.

However , ~ = (~] + t: •

In general,

6 = n~ -

where ~ = (~],

n
c

i=l

j

a. ,
l

and aj+l = [(j+i)~ -\=l ai] •

3.4-19

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.3.2.1 SEGMENTATION PROOF (cont• d)

Hence, we may define £, where Is· I <half step size, by:
1 1

al = [~] = (~) + £1

a2 = [2~ - (~ + £1)] = (~ -£ 1) + £2

a3 = [3~ - (~-£1 +£2) - (~+£1)] = (~-£ 2) + £3

a = [n~ -)] = (~-sn-1) + £
n n

and

n
L a. = n~ + £
i=l 1 n

as the telescoping series collapses.

Therefore,
n

I a I = n/), - C a. = s
. 1 1 n
1=

indicating that any error produced
is less than the step size.

by the segmentation process

3.4-20

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION

To produce a motion for circular interpolation the postprocessor
must at first obtain the first and last points of the circle.
There is no difficulty in obtaining the first point, but the last
:roint is more difficult to obtain because circle data can easily
consist of several continuation (subtype 6) records; and hence,
the last point can be several CL records beyond the first point
record. The postprocessor obtains the first and last points in
the following manner.

Preceding every circle data (Type 5000, subtype 5) record is a
Surface Data record (Type 3000-see Section 3.3.3) which indicates
that the current cutter path is that of a circle. When
processing this record type, the postprocessor sets the flag
CIRFLG = 1 to indicate circular interpolation is called for.
Therefore, after the motion record (Type 5000, subtype 5) is read
and stored in efiDATA~'°subroutine MOTION on the subtype 5 branch
tests CIRFLG, and if non-zero, calls subroutine GOCIRC to begin
the circular interpolation sequence.

The first thing that subroutine GOCIRC must decide is whether or
not circular interpolation is possible with the current record.
The subroutine makes a series of tests, and if any test indicates
the impossibility of circular interpolation, the postprocessor
immediately redirects the program flow to the linear
interpolation sequence.

The postprocessor makes the following tests:

1. Is circular interpolation the specified mode? It is, if the
LINCIR modifier was given, or if option 28 = 1.

2. Has more than one point of the circle been given? If so, the
postprocessor has sufficient data to proceed.

3. Does the circle lie in a plane? Subroutine CHKAX is called to
make this test. The non-planar axis values must be constant
for every point in the record.

4. Is the circle radius greater than the maximum departure? If
so, circular interpolation cannot be used.

3.4-21

CltlNl Ill POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

The circle radius used for this test is not the part circle
radius r, but actually the distance from the part circle
center to the cutter control point, R.

y

cutter

r

Diagram 3.4.4A

For large circles, R is not significantly larger than r, but
when the circle is very small, the effect on the feed.rate
becomes a significant factor since the feedrate command is a
function of R. See the Part Programmer Manual for a means of
optimizing the feedrate by controlling the value of R.

5. The circle path must not be for a thread. Since the I, J, and
K registers are necessary for both threading and circular
interpolation, each event is mutually exclusive.

If each of the above tests is passed, the first point of the
circle is saved in DCRPT1, which is dimensioned at three and
ordered as x, y, z. The first point of the circle does not come
from the CL data, since it is actually the previous point DPREVP;
for as with all paths, the APT System does not repeat the
starting point of a new path because that point is the same as
the last point of the previous path.

3.4-22

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

The last point of the CL record is saved in DCRPT2 as the
potential last point of the circle. At this point in the program
it is not known for a certainty that the last point of the CL re
cord is truly the last point of the circle, for it is possible
that the circle data may be continued on one or more subsequent
subtype 6 continuation records. Thus, the postprocessor must
read in the next record and check to see if it is a continuation
record. If it is, the last point of the CL record is saved in
DCRPT2, and the next record is read in, and so on, until the
read-in record is not a continuation record.

The postprocessor searches for the last point by using the flag
CIRSEQ. In subroutine GEBASE after a record is read, the flag
CIRSEQ is checked; and if non-zero, program flow is routed
immediately to subroutine GOCIRC. Hence, all the preliminary
processing is disregarded so that the last point of the circle
can be quickly found.

Subroutine GOCIRC checks to see if the CL record is a
continuation record. If it is, a test is made to ensure that the
circle still lies in a plane; however, at this point in the
program it is too late to use linear interpolation should the
circle not lie in a plane, therefore, only a warning comment is
issued, and the circular interpolation sequence continues.

When a non-continuation record is found, the postprocessor knows
that the last point saved in DCRPT2 is truly the last point of
the circle. After the circle has been processed and made output,
program flow is directed back to subroutine GEBASE (by setting
the RETURN flag to +1) to the point where the ~ATA~~array is
initially interrogated. There is no need to read the CL tape for
a new record since the non-continuation record already exists in
the Ci..DATA~~rray.

Once the first and last points of the circle have been found, the
postprocessor can proceed to output the circle path in the
circular interpolation mode. To do this, the circle must first
be segmented (if necessary) into its respective quadrant
segments. The Mark century numerical control does not process a
circle path for more than ninety degrees, hence, a circle angle
greater than ninety degrees must be reduced to two or more
smaller angles, each of which must be no greater than ninety
degrees. When a circle is greater than ninety degrees, it
obviously lies in more than one quadrant if the circle center is
at the reference frame origin. The postprocessor in segmenting
the circle, segments it at the axis where the circle changes
quadrants. Thus, in the diagram the circle AE is segmented at
points B, c and D to produce the four segments AB, BC, CD, and
DE.

3.4-23

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOI'ION (cont'd)

y

B A

x
0

E

D

Diagram 3.4.4B

The segmentation sequence as described above is effected through
the three subroutines CIRINT, QUADET, and QUADNT. Subroutine
GOCIRC calls subroutine CIRINT which sets up a call to subroutine
QUADET as a function of the circle plane. The parameter flag
!PLANE is 0 for the XY plane, 1 for the ZX plane, and 2 for the
YZ plane; this flag directs the postprocessor to the proper
calling sequence of subroutine QUADET. The indices given in the
calling sequence relate to the vectors CIRPT1 and CIRPT2, and
specify the elements of the array which pertain to the circle
plane. For example, if the circle lies in the XY plane, the
indices 1,2,3 are given; these specify the values of the array
as:

DCRPT1 (1) for the X value,

DCRPT1 (2) for the Y value, and

DCRPT1(3) for the non-planar value.

3.4-24

C(C(Nl Ill POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

For the ZX plane, the indices are 1, 3, 2, and specify:

DCRPT1(1) for the X value,

DCRPT1 (3) for the Z value, and

DCRPT1 (2) for the non-planar value.

With this information subroutine QUADET can determine the
quadrant change points. The circle is translated to the origin
by subtracting the circle center from the circle first and last
points, i.e. ,

oyl = Y1 - Ye

0x2 = x2 - xc

oy2 = Y2 - xc

In the diagrams below, it is clear that the circle passes through
the second, first, and fourth quadrants after the translation to
the origin occurs.

y

(x
x

0

y

Diagram 3.4.4C

II

III

3.4-25

CI&INT Ill POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

The post~rocessor determines the passed-through quadrants by
subroutine QUADNT. This subroutine is called twice; first, with
the beginning point of the circle, and then with the last point
of the circle. For the first point of the circle, subroutine
QUADNT sets the input parameter QA to the quadrant number in
which the point falls, and, similarly, it sets the input
parameter QB for the last point. In the example above, these
values are found as:

QA = 2, QB = 4

Subroutine QUADNT finds these values in a most direct manner.
The calling sequence to QUADNT gives, for example:

CALL QUADNT (1, PX1, PY1, QA),

where 1 identifies the point (PX1,PY1) as the first point of the
circle (with its center at the origin), and QA is the return
output. The subroutine tests PX1 and PY1 for their sign
condition. In the example above, PX1 is negative and PY1 is
positive; from these conditions it is obvious that the point must
lie in the second quadrant, therefore, QA = 2.

For the last point the call is:

CALL QUADNT (2,PX2,PY2,QB)

where 2 identifies the point (PX2, PY2) as the last point of the
circle. Since PX2 is positive and PY2 is negative, the point can
lie only in the fourth quadrant, and, accordingly, QB = 4.

An indeterminate condition arises when one or both of the points
lie exactly on an axis as in the examples below.

y

First Point on Axis
(Diagram A)

3.4-26

y

Last Point on Axis
(Diagram B}

Diagram 3. 4. 4D

y

t
PY
..J. x

0 +-PX.;..

Both Points on Axes
(Diagram C)

CltlNT 111 POSTPROCESSOR ... for the computer programmer

3.4 .. 4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

In diagram A, for example, does the first point lie in Quadrant
I or II? Analytically, it could be either quadrant, but the
postprocessor requires a unique decision. Hence, the following
conventions are used:

1. When the first point lies exactly on an axis, the point is
defined to lie in the quadrant through which the circle
initially passes. In Diagram A, the first point then lies in
Quadrant II.

2. When the last point lies exactly on an axis, the point is
defined to lie in the quadrant through which the circle last
passes. In Diagram B, the last point then lies in Quadrant
III.

As indicated earlier, the postprocessor uses the signed values of
PX and PY to find the proper quadrant value, but since under
these conditions PX or PY is zero, the subroutine must now use
the circle direction to determine the proper quadrant. In
Diagram A, for the first point, PX is zero, and PY is positive,
and the circle direction is CCLW. Hence, QA = 2. If the circle
direction was CLW, QA= 1.

In Diagram c we have the condition where both the first and last
points lie on the axes. Subroutine QUADNT processes the input
conditions and yields the following results:

First Point: PX > 0, PY = 0, CCLW; QA = 1.

Last Point: PX =O, PY> O, CCLW; QB = 1.

Hence, the path is defined to lie in one quadrant only.

The circle direction was determined earlier in the program when
subroutine GOCIRC called subroutine DETDIR. This subroutine
finds the circle direction by taking the first two points of a
circle record and translating the circle center to the origin;
the two vectors (from the origin to the circumference) are then
crossed.

3.4-27

Cl&lNT Ill POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

y

0

Diagram 3. 4. 4. E

For the two vectors v
1

(x 1,y1,z 1) and v2 (x 2,y2 ,z 2), the
cross product gives

i J k

= (xly2-x2yl)k + (ylz2-z1Y2) i +

(xl z2-x2z 1) J
Since one axis must always be constant, it is necessary to
consider only two axes, viz., essentially, (w1v2-w2v1) = D. For
a constant z, w = x, v = y; for y constant, w = z, v = x; for x
constant, w = y, v = z. If D< O, direction is CLW; D > O,
direction is CCLW. If D = O, the vectors are parallel and an
error is assumed.

The subroutine sets the circle direction flag CIRDIR as:

CLW; CIRDIR = 0

CCLW: CIRDIR = 1

At this point in the program the postprocessor has
requisite information to produce the circle segments,
circle direction and the beginning and ending
Subroutine QUADET now sets up the array DBUFER with the
intersection points and the last point of the circle.
dimensioned at (6,5) and ordered as x, y, z, i, j, k.

3.4-28

all the
viz., the
quadrants
quadrant

DBUFER is

C(C(Nl Ill POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

y

A

Diagram 3.4.4F

Thus, in our original example, the points A, B, and (~ ,y
2

) are
stored in that order into DBUFER.

When the circle path lies in only one quadrant,
(x

2
,y

2
) is stored into DBUFER.

the last point

There is no need to store the first point of the circle since it
already exists in the DPRESP and DPRESM vectors. It will become
clear shortly why only the last point of the circle is stored.

Subroutine QUADE!' determines the values of the points A and B by
setting up the table XP (dimensioned at (2,4)) as follows:

1 2 3 4

XP:
: I _: I -: I : I : I

CLW

(x)

(y)

CCLW

The XP table is initially set to zero and dependent upon the
circle direction, the table is set at certain locations with the
circle radius CIRRAD or its negative. The subroutine sequence
automatically determines the values of (~, YA) and (~ , ~) by
selecting the values from the table and adding the corresponding
circle center value to retranslate the point from the origin.

3.4-29

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

Row 1 of the table gives the x value of the quadrant intersection
point, while row 2 gives the corresponding y value. Thus, the
table for CLW is stored as (reading columnwise):

(0,-y) (-x' 0) (0 'y) (x, 0)

y y y y

Diagram 3.4.4G

The subroutine automatically selects the proper column by
computing the index JJM4 as:

JJM4 = (IA + II) modules 4 + 1,

where IA is the starting quadrant number and II is the counter
per quadrant, II= 1, 2, 3, or 4. Note that IA is the quadrant
starting from the intersection point and not from the first
point. Thus in the example above, the starting quadrant is
measured from point A and not (x, y) ; therefore, IA is 1.

Another parameter used in the sequence is IDQ which gives the
number of quadrant intersection points; in this example IDQ = 2
counting points A and B.

Referring to Diagram 3.4.4F of our example above, it will be seen
how the points A and B are found in the following sequence.

For this example, IA = 1 and II initially is 1. Therefore,

JJM4 = (1 + 1) modulus (4) + 1 = 3.

Hence, the third column of the CLW XP table is the quadrant
intersection point A, i.e., x A = 0, y A = r 0 .Jiowever, to obtain
the true absolute values, we must s\th~r~ the corresponding
circle center value, since the circle data was originally
translated to the origin; thus: xA = 0 + x , y = r +- y •

c A c

3.4-30

~

POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MarION (cont'd)

This point is
the next point.

stored into DBUFER, and the subroutine looks for
II now is 2, hence,

JJM4 = (1 + 2) modulus (4) + 1 = 4,

and from the fourth column, we get x B = r +- x , y B = 0 +- y •
This point is also stored into DBUFER, andcsince II = IDQ, €.he
sequence ends by finally storing the circle last point (x 2 , y 2)
into DBUFER. The counter KTR is set to give the number of points
stored into DBUFER; in the example above, KTR = 3.

The function of subroutine QUADET is now completed, and program
flow returns to subroutine GOCIRC. At this point in the program
the circle segments have been determined, and now all that has to
be done is to output the segments. This is normally a simple
process, but there are conditions which can arise to make the
process more complex. In general, and for nearly all cases, the
points can be made direct output from the array DBUFER. The
complicating conditions which rarely arise are described in the
special Section 3.4.4.1.

Before outputting the points in DBUFER, subroutine GOCIRC first
computes the command block code CRCODE as:

CRCODE = 10, if the circle is in the XY plane.

CRCODE = 1 1 , if the circle is in the zx plane.

CR CODE = 12, if the circle is in the YZ plane.

CRCODE is a positive value if the circle direction is CLW and
negative if CCLW.

from the previous plane, the If the circle plane had changed
postprocessor outputs the new
example, if the present circle
previously all circles were in
selection G code {TABLEG(20)) would
PLNSEL performs this function.

plane selection G code. For
were in the YZ plane when

the XY plane, then the plane
be made output. Subroutine

When these preliminary preparations are completed, program flow
goes to subroutine PROCQD to process and output the quadrant
segments. In our example the array DBUFER contains the three
points:

(x , y)
A A

(x , y)
B B

(x , y) ; KTR = 3
2 2

3.4-31

Gl&INT Ill POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

The sequence in subroutine PROCQD selects the point (xA, YA) and
stores it into DPRESP; next, subroutine GEOM is called which
rounds and truncates the values, and stores it into DPRESM.
Subroutine DEPART is called to compute the departures. It is
evident that the processing thus far is simply that for a linear
move as described in detail in Section 3.4.3.1. A special test
is made on the departures (see Section 3.4.4.1), and if the test
is passed, the command block is readied for output.

If an SFM mode exists, the postprocessor reroutes program flow to
the SFM sequence (see Section 4.5) which ultimately outputs the
segment. The flag SFMCIR is set to 1 to specify to the SFM
sequence that a circle segment is being processed.

Before the command block DBFSEG can be made output, additional
items must be added when the block is for a circular
interpolation move. These items are the arc center offsets and
are stored in DBFSEG(8), (9), (10).

The arc center offsets are the axial distances
center to the beginning point of the circle.
arc center offsets are the distances I and J.

- xll' J = IYc - Y1I' K = lzc - z1I·

y

0

Diagram 3.4.4H

from the circle
In the diagram the
In general, I= Ix

c

x

Subroutine OFFARC is the subroutine which computes the arc center
of £sets and stores them into DBFSEG. The offset values are
rounded and truncated by subroutine SRAREC before being stored
into DBFSEG.

3.4-32

CfCHT 111 POSTPROCESSOR ... for the computer programmer

3.4.4 PROCESSING A CIRCULAR INTERPOLATION MOTION (cont'd)

The command block is now ready for output. CODE is set to
CRCODE, and subroutine OUTPUT is called to print and punch the
blocks. DPREVP is set to DPRESP, DPREVM is set to DPRESM, and
the process is repeated with DPRESP selecting the next point from
DBUFER. The sequence repeats for KTR times.

When subroutine PROCQD completes its function, it returns to
subroutine GOCIRC which sets the return flag RETURN to+ 1, and
returns to subroutine MOTION which returns to subroutine GEBASE.
In GEBASE the return flag is tested, and since it is +1, program
flow is directed to the internal sequence which begins
interrogation of the CR,DATAc~rray. There is no need to read in
a new record at this time because the next record already exists
in the ebDATAc~rray; this is the record which was the non
continuation (subtype 6) record which signaled an end to the
circle data in subroutine GOCIRC.

3.4.4.1 SPECIAL CASE CONDITIONS

There are two special conditions which can result during a
circular interpolation sequence that require$ special testing
and, if necessary, special treatment to alleviate the potential
error. Both type errors can occur only on the beginning or end
points of the circle. A description of each condition and the
solution produced is detailed below.

The first kind of error that can occur is when a circle begins or
ends just short of an axis, as illustrated in the diagrams below:

y y

x x
0 0

Diagram 3.4.4.1A

3.4-33

Cl&lNT Ill POSTPROCESSOR ... for the computer programmer

3.4.4.1 SPECIAL CASE CONDITIONS (cont'd)

These short distances can result as a function of the programmed
tolerance, i.e., the tool, instead of landing exactly on the
axis, goes beyond or falls short of the axis by a distance which
is acceptable since it is within the programmed tolerance. If
the distance should be very sma.11, it can, in effect, produce a
departure of zero as demonstrated by the example below where a
blown-up view of the circle segment is illustrated.

pl

(-0.002,2.99999)

y

0

Diagram 3.4.4.1B

x

The beginnirq point P1 of the circle is x = -0.002, y = 2.99999,
and the quadrant intersection point P 2 is x = O, y = 3. After
subroutine SRAREC rounds and truncates to the step size, the
values become:

P1 = (-0.002, 3); P2 = (0, 3).

The departures then are:

6x = 0.002, ~Y = o.

A zero departure is unacceptable to the NC control system when
the move is in the circular interpolation mode. If such an input
is made to the control, an apparent machine stop occurs;
actually, the halt is a dwell which can be of short duration or
as long as several hours!

A zero departure never occurs while in circular interpolation,
for at each quadrant intersection point there is always a non
zero X and Y departure. A zero departure can occur only as
described above, i.e., at the beginnirg or end point of the
circle, hence, that is the reason the test for a zero departure
is made only on these points.

3.4-34

CfCfNT Ill POSTPROCESSOR ... for the computer programmer

3.4.4.1 SPECIAL CASE CONDITIONS (Cont'd)

The solution to this problem is simple. After subroutine DEPART
computes the departures, a test is made to see if either
departure is zero. When either departure is zero, the
postprocessor is directed to use linear interpolation for that
segment only. The internal flag QDMODE is set to zero, thereby,
specifying linear interpolation. CODE is set to zero, and
subroutine OFFARC is bypassed; this, in effect, causes the
segment to be output as a linear rather than as a circular
interpolation move.

The other error condition which can occur in a circular
interpolation mode is one resulting from APT Section II linear
data for a circle. Diagram 3.4.4.1C illustrates how linear cut
vectors can approximate a circle path. The only requirement is
that each cut vector be within the tolerance band. Depending on
the part geanetry and.the tolerances specified, several possible
cut vector sequences can occur as illustrated in the diagram by
cut sequence A and B. The fact that the end point of the
approximating linear cut vectors can be anywhere within the
tolerance band can cause an erroneous effect with the last point
of the circle.

I

/
I

I

/

/
/

y

0 ------------ ---------

Diagram 3.4.4.1C

A

\A

\
\
\
\

B

x

3.4-35

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.4.1 SPECIAL CASE CONDITIONS (cont'd)

y

\

'
\

'
\

~
\
\

\ \ \ \ \ \
\ \
\ \
\ \
\ \
\

x
0

' - --

Diagram 3.4.4.1D

It is evident that the circle is of CLW direction. But when the
circle is broken into its quadrant segments, it becomes clear
that a problem can occur with the fourth quadrant segment. For
example, if point B should be the circle end point, there is an
apparent change of circle direction when moving from point Q to
B, (see Diagram 3.4.4.lD •. The departures and arc center offsets
for the fourth quadrant move will be · inconsistent with the
established circle direction and will, therefore, cause the
control system to lose synchronization.

As with the first problem, the solution to this problem is simply
to make the move in the linear interpolation mode. This is done
in the same manner as described above.

This error condition is detected by comparing the non-zero axis
component value at the quadrant intersection point versus the
same axis component value at the end point. In the example of
Diagram 3.4.4.1D at point Q, xis the non-zero value while y is
zero. Therefore, Qx is compared with Bx; and if Bx is not less
than Q , the error is known to exist, for it is easily seen that
B infe~s that the circle direction is CCLW and not CLW.

x

3.4-36

C(CHT Ill POSTPROCESSOR ... for the computer programmer

~ 3.4.4.1 SPECIAL CASE CONDITIONS (cont'd)

The above mentioned test is done only after the circle has been
translated to the origin; consequently, for all circles,
regardless of direction, quadrant, or plane, the absolute non
zero axis component value must be larger than the corresponding
axis absolute value at the circle end point; otherwise the error
exists.

3.4.5 PROCESSING A ROTARY MOTION

As with a linear move, it is possible to have an absolute rotary
move or an incremental rotary move. Positioning machines with a
rotary table* will generally utilize an absolute system for the
table which means that the value loaded into the table register
is the actual location for the table to be moved. Contouring
machines with a rotary device (table, head, column, and so on)
utilize an incremental system which means that the value loaded
into the rotary device register is the amount of motion to be
made. An example of each move is illustrated below.

* The reference here is to a table which is dimensionally
programmed, executable through an A, B, or c register.
Indexers and devices which obtain their motion through
miscellaneous function of other codes do not pertain.

Table Register Load: 30 (assume CLW)

Initial Setting at 90° Absolute System Incremental System

90

180 0
180

0

270 270 270

Diagram 3.4.SA

3.4-37

ClCINT Ill POSTPROCESSOR ... for the computer programmer

3.4.5 PROCESSING A ROTARY MOTION (cont'd)

Subroutine ROTABL handles the rotary sequences for all such
rotary systems regardless of the type of rotary device (table,
head, and so on). From subroutine ROTABL the two major rotary
processing subroutines are called, viz., subroutine ROTABA for an
absolute system, or subroutine ROTABI for an incremental system.
Each of these sequences is discussed in the next two following
sections.

Fundamental to both of these subroutines, however, is the
technique of obtaining both the incremental amount of move and
the resultant absolute location after the move. The basic
postprocessor statements (assumed a table)

ROTATE/TABLE, INCR, Cl or ROTATE/TABLE, ATANGL, 8

can be used for either an absolute or an incremental system. For
either statement, the incremental amount ROTRAD and the absolute
location ROTPOS are found. The absolute location must always be
known in order to permit the use of the ATANGL or ROTREF
modifiers. (See section 3.4.7.2 for the use of option 29 which
precludes the determination of ROTPOS.) The previous absolute
location PRVPOS is also set before exiting from the subroutine.

The first item done in subroutines ROTABA and ROTABI is to
establish the absolute location. The flag INCABS, which was set
in subroutine ROTABL, specifies the nature of the given ROTATE
statement, i.e., as to whether it gave an incremental move (Cl) or
an absolute location (ATANGL, ~. If INC~ is O, an incremental
move was given therefore, ROTRAD = C:.DATA15) and ROTPOS = PRVPOS
+ ROTRAD. If INCABS is +1, an absolute move was given,
therefore, ROTPOS = et.DAT.fr6) and ROTRAD = ROTPOS - PRVPOS.

These determinations are, in effect, that which occur in the
subroutines, but the precise manner is slightly different. For
example, the table rotation direction can cause ROTRAD to be
subtracted instead of added to PRVPOS in order to get ROTPOS.
Also, consideration must be given as to how the table is
absolutely scaled, that is, CLW or CCLW and also as to what
direction of rotary move will cause an increase in the reading on
the rotary scale. See the following diagrams.

3.4-38

ClClNT 111 POSTPROCESSOR ... for the computer programmer

3.4.5 PROCESSING A ROTARY MOTION {cont'd)

90 270

180 0 180 0

270 90

Scaled CCLW and off of Scaled CLW and on
the table Diagram 3 • 4 • 5B the table

The postfrocessor keeps the absolute location ROTPOS (or PRVPOS)
always less than 360 degrees, i.e.,

ROTPOS = ROTPOS modulus 360.

And when ROTPOS becomes 360, the postprocessor resets it to zero.
For consistency the postprocessor also keeps ROTPOS a positive
value, and always treats negative angles as their positive
complement, e.g., -40° is made 320°.

Although the rotation value (a or B) given in the ROTATE
statement is in degrees, the output value may be in another form.
Option 118 specifies the form of output.

For example, the output rotation value may be in terms of 100
parts per revolution; therefore, 90 degrees would be output as
25; 180 degrees as 50, and so on. Subroutine CONRar takes care
of the conversion and anticonversion. The calling sequence for
CONROT is:

CAIL CONROT (VALUE, N) ,

where VALUE is the item of conversion, and N is plus or minus
one. If N = + 1, VALUE is in degrees and is to be converted to
output units; if N = - 1, VALUE is in output units and is to be
converted to degrees.

The output value of rotation R is always rounded and truncated as
a function of the rotation step size which is given by option
119.

3.4-39

Cl&lNT Ill POSTPROCESSOR ... for the computer programmer

3.4.5 PROCESSING A ROTARY MOTION (cont'd)

The rounding and truncation is determined in subroutine SROREC by

the relation:

IRI)' R = R + 0.5001.i* OPTION(119)
PTION (119)

For example: OPTION (119) = 0. 001, R = 10. 246890. Then after
subroutine SROREC, R = 10.247.

As with linear motions, there is a maximum allowable rotary move
which requires that rotations greater than the rotary naximum
must be segmented into sufficiently small rotations. The
parameter ROTMAX carries the maximum and is obtained from option
111. Option 111 is given in degrees, but in subroutine ASSIGN
the parameter ROTMAX is converted to output units.

The segmentation sequence for rotary moves must ensure that there
is no loss of accuracy due to truncation or rounding. For
example, a rotation of 90 degrees can be segmented in three 30
degree moves; in output units assume 360° = (revolution). These
30 degree values are equal to 0.08333 when rounded and truncated
to a step size of 0.0001. Thus, we have

30 = 0.08333

30 = 0.08333

30 = 0.08333

90° 0.24999 ¢ 90°.

Therefore, it is apparent that segmentation must be done with the
values in output units, and that a recovery sequence is required
which adds in the potentially lost pulse at the proper time.

The postprocessor utilizes such a technique; and for the above
example would produce values such that:

30 = 0.08333

30 = 0.08334

30 = 0.08333

90 ° = 0.25000 = goo

The technique is described in detail in Section 3.4.5.3.

3.4-40

CICINT Ill POSTPROCESSOR ... for the computer programmer

'-" 3.4.5.1 ROTARY ABSOLUTE SYSTEM PROCESSING

The main processing subroutine for all rotary absolute systems is
subroutine ROTABA which is in GEPOS. This subroutine processes
rotary moves which are increIIEntal or absolute, i.e., which
evolve from the statements:

ROTATF/TABLE, !NCR, a.or ROTATF/TABLE, ATANGL, S.

The output of the motion for an absolute system is always the
value of the table location itself. For example, the statement:

ROTATE/TABLE, ATANGL, 23, CLW

causes the output of the value 23 for the rotary table register.
If another statement follows the above, such as

ROTATE/TABLE, INCR, 10, CLW ,

the output value is 33, the new absolute location.

Absolute system NC machines often have a rotary table which moves
to its programmed point in the shortest direction. For example,
if the table is sittinJ at 90 and is directed to go to 180, the
table moves CCLW to 180 since this is the shortest route.

90

0

270
Diagram 3.4.5.1A

The postprocessor permits the part programmer to specify the
direction of rotation, and should he choose the direction which
is the longest route, the postprocessor effects this by producing
two moves in the direction specified. In the example above,
suppose the statement given was:

ROTATF/TABLE, ATANGL, 180, CLW

The postprocessor produces the two moves: (1) rotate to absolute
angle 271 °; (2) rotate to 180°. This in effect causes a CLW
rotation to the 180° position.

3.4-41

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.5.1 ROTARY ABSOLUTE SYSTEM PROCESSING (cont'd)

Note that option 117 plays an important part in this sequence
since it is essential to know the direction of the scale.

A rotary table on a positioning machine can have its own feedrate
register which is separate and distinct from the linear feedrate
register. Opt.ion 139 indicates the existence and location of
such a rotary feedrate register. For example, option 139 = 16
specifies that the sixteenth cell of DBFSEG is the rotary
feedrate register location, and this is where the rotary feedrate
is stored.

If there is a rotary feedrate, option 141 tells what type of
feedrate it is; and the appropriate subroutine is called to
convert the current feedrate to the proper form required for the
rotary feedrate output.

The rotary position value is stored in DBFSEG(6) if the rotary
device is a head, or in DBFSEG(7) if the rotary device is a
table. Subroutine SET12 is called to obtain the current
positioning mode G code, if any.

The command block CODE for an absolute system rotary move is +2,
and this CODE is set prior to calling subroutine OUTPUT which
ultimately prints and punches the block.

The table may also have its own rapid requirements such as an M
code which establishes the rapid and feed condition. If so, and
a RAPID is given, the postprocessor outputs the M code which puts
the table in the rapid mode (TABLEM(42)). Then, before exiting
from subroutine ROTABA, it outputs the M code which puts the
table back into its feed mode (TABLEM(43)). The RAPFLG is set to
zero since rapid for a table is considered to be one-shot only.

3.4-42

CfC(NJ Ill POSTPROCESSOR ... for the computer programmer

3.4.S.2 ROTARY INCREMENTAL SYSTEM PROCESSING

The main processing subroutine for all rotary incremental systems
is subroutine ROTABI which is in GEMILL. This subroutine
processes rotary moves which are incremental or absolute, i.e.,
which evolve from the statements:

ROTATE/TABLE, !NCR, a or ROTATE/TABLE, ATANGL, S.

The output of the motion for an incremental system is always the
departure from the previous to the new table location. For
example, if the table is positioned at location 10, the
statement:

ROTATE/TABLE, ATANGL, 23, CLW

causes the output of the value 13 for the rotary table register.
If another statement follows the above, such as:

ROTATE/TABLE, INCR, 10, CLW

the output value is 10, the incremental distance from the
previous to the new table location which is now 33.

The incremental amount of move ROTRAD is determined in subroutine
ROTABI. If the modifier was !NCR, then ROTRAD = a; if the
modifier was ATANGL, then ROTRAD = s PRVPOS. The sense of
rotary direction ROTDIR is important to the value of ROTRAD and
ROTPOS. The direction flag ROTDIR has the following meanings:

ROTDIR = - 1, CLW

ROTDIR = + 1, CCLW

If the rotation is an incremental move (!NCR) and no rotary
direction is specified, the postprocessor assumes CLW. If the
rotation is an absolute move (ATANGL) and no rotary direction is
specified, the postprocessor uses the minimum direction.

After the amount of move ROTRAD has been determined, it is tested
versus the maximum rotary departure ROTMAX, and if greater, the
rotary amount is segmented into sufficiently small rotations; see
Section 3.4.5.3.

Subroutine ROTOUT is called to output the command block. It is
in this subroutine that the incremental move is corrected per
Section 3.4.5.3 and stored into DBFSEG(N), where N = 6 if the
rotation is for a head, or N = 7 if the rotation is for a table.

3.4-43

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.5.2 ROTARY INCREMENTAL SYSTEM PROCESSING (cont'd.)

The command block CODE is set to - 2 for an incremental rotary

move. Subroutine OUTPUT, before printing and punching, obtains

the required preparatory function G code (stored in DBFSEG(2)),

and the current feedrate (stored in DBFSEG(11)). See Section

3.4.6 for the description of G code selection.

The postprocessor retains the rotary absolute position if option

29 so specifies, hence:

DPRE~M(N) = DPRESM(N)

in order to keep the previous machine point vector accurate.

3.4.5.3 SEGMENTATION OF A ROTARY MOVE

Rotary moves utilize an accurate rounding technique similar to

that used by linear moves. In addition to rounding each rotary

departure to the step size, the difference between the true move

and the rounded move is saved and accumulated on each move. When

the absolute value of the difference is equal to or greater than

one half the step size, the difference is rounded up to the step

size (maintaining the sign of the difference) and added to the

rotary move. Then the rotary difference is reset to the

difference between the true and the rounded differences.

The following example will clarify the problem.

Six rotary moves of 30° or .08333333 decimal parts of a

revolution are to be output.

Let

3.4-44

R be the true rotary departure;

R~ be the rounded rotary departure;

D be the true difference between the
true rotary departure and the rounded
rotary departure;

D~ be the rounded value of D.

Step size = .0001 inches.

CI&INT Ill POSTPROCESSOR ... for the computer programmer

~· 3.4.5.3 SEGMENTATION OF A ROTARY MOVE (cont'd.)

(1)

(2)

R = .08333333 1

Rounding R1 gives

Rl = .0833

The difference between R1 and Ri is

D = .00003333 1

Rounding o1 gives

Dl = O. 0

The departure of .0833 is output.

R
2

= • 08333333

R"' = • 0833 2

The difference between R
2

and R2 plus th~ previous o1 gives

02 = .00006666

Rounding n
2

gives

02 = .0001

D2 is added to R2 making the rotary move • 083·4.

Now n
2

becomes - .00003334 which is the difference
between the old D2 and D2.

(3) R
3

= .08333333

R) = .0833

o3 =-. 00000001

n3 = o.o
A rotary departure of .0833 is output.

3.4-45

CICINT Ill POSTPROCESSOR ... for the computer programmer

3.4.5.3 SEGMENTATION OF A ROTARY MOVE (cont'd.)

(4) R4 = • 083333 33
,,.

.0833 R4 =

D4 = .00003332
,,.

D4 = o.o

.0833 is output •

(5) Rs = • 08333333

R"" 5 = .0833

D5 = .00006665

o"" 5 = .0001

The rotary move becomes

o"" 5 + Rs = • 0834

D5 is reset to - .00003335

{ 6) R6 = .OS333333

R"" 6 = .0833

06 =-. 00000002

D"" 6 = o.o

.0833 is output.

The example shows that the absolute rotary position will always
be within half the step size. Greater accuracy than this is not
possible.

3.4-46

-

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.6 SELECTING THE PREPARATORY FUNCTION G CODE

An NC contouring machine which has an incremental system moves
the tool according to the axis departures given in each command
block. Thus, the move given by

flX = -2, 8:.Y = 3

moves the tool to a point reached by moving the X axis 2 inches
in the negative direction and the Y axis 3 inches in the positive
direction. Each motion block must have a preparatory function G
code which not only tells the control system what type of mode
exists (linear or circular) , but also the dimensional magnitude
of the move. In most cases, the numerical control system does
not require that the G code be given in each block after the mode
is once established. The postprocessor, however, sets up each
command block with the current G code, and depending upon Option
38, may suppress redundancies.

Subroutine SELG selects the necessary G code for linear
interpolation moves, whereas subroutine SELGCR selects the G code
for circular interpolation and subroutine SELGRO selects the G
code for rotary moves; subroutines SELGCR and SELGRO are each
called from subroutine SELG.

In addition to selecting the necessary G code, each subroutine
also determines the proper dimension multiplier GDIMUL which is
used to determine the feed conunand for that block value; see
Section 4.1.1. The range of magnitudes covered by the G codes
available on the Mark Century numerical control can extend from
0.00001 to 9999.9999 inches. Most control systems do not have
such a wide range.

Since a particular value G code can mean a different magnitude
from one numerical control system to another, the postprocessor
assigns a table location to a specific range of magnitude. For
example, depending on the NC machine, a G12 can_ be either the
range from 0.0001 to 0.0999 or the range from 100 to 999.999.
There is no confusion, however, if we refer to a TABLEG location
to identify a particular range since any value can be stored
there.

3.4-47

GltlNT Ill POSTPROCESSOR ... for the computer programmer

3.4.6 SELECTING THE PREPARATORY FUNCTION G CODE (cont'd)

Subroutines SELG and SELGCR make use of the departure limit array
f(tJ,t>El'e.fw•.m which is set up in subroutine ASSIGN or GEINIT. The array

is set up for either an English or metric system as designated by
option 138.

DE PL IM

Inch Metric*

0.1 (1) 1

1 (2) 10

10 (3) 100

100 (4) 1000

1000 (5) Option (4)

The above table is used by both the linear and circular
interpolation sequences in selecting the proper G code since the
table defines the range magnitude assignable to each of the
available G codes. In all cases the smallest magnitude G code
that encompasses all the compa.rison values is used, i.e., the
magnitude must be less than or equal to the largest dimension of
the compared values.

For example, assume a G01 and G10 exist as defined below. Then
a linear move of ~ = 8 inches causes the selection G01 for the
range of moves 0.1 to 9.9999 inches, whereas a ~ = 80 inches
causes the selection of G10 for the range 10.0 to 99.9999 inches;
however, the G10 is compatible with both the ~ = 8 and ~ = 80.
Thus, if

~x = 8 and ~Y = 80,

then, the G10 must be used since the magnitude covers both ~X and
~Y. But this is not true for the G01 since ~Y = 80 is beyond the
range of the G01.

* The array for the metric system can be different than shown
since the values are a function of the available G codes and
the type of control selected by option 165. The listing of
subroutine ASSIGN should be referenced for this information.

3.4-48

C(C(~l 111 POSTPROCESSOR ... for the computer programmer

3 •• 6. SELECTING THE PREPARATORY FUNCTION G CODE (cont'd.)

An important feature to note here is that if a G01 as defined was
the only G code dimension available, all moves greater than
9.9999 inches would have to be segmented. Thus, the maximum
departure (option 4) and the maximum magnitude must be identical.

Since a larger magnitude G code can be compatible with smaller
dimensions, the question may be raised; why not always use the
largest dimension G code and do away with the other dimensions?
The reason is because higher feedrates are possible using the
lower dimension G codes. This is made evident in Section 4.1.1.1
wherein a discussion of the feed command illustrates the affect
of the G code.

The converse attempt to obtain higher feedrates by using small
dimension G codes is precluded because of the loss of significant
digits in the motion value by the numerical control system, e.g.,
a move of 23.2468 with a G01 results in the loss of the leading
digit. Hence, instead of obtaining th~ given move, the actual
move is 3. 2468.

Related to each G code is a so-called "dimens·ional multiplier"
which is a dimensional constant used in determining the feed
command; see Section 4.1.1.1. This constant, as used in the feed
command formula, is multiplied by 10. But the postprocessor, in
order to economize on time and space, interprets the resultant
product as if it were the actual value of the dimension
multiplier.

For example, for a magnitude range of 0.1 to 9.9999 inches, the
dimension multiplier is 1; dimension multiplier value is always
multiplied by 10, the postprocessor interprets the term as the
value 10 instead of 1. The parameter GDIMUL carries this value.

Although the postprocessor scans the tables in search of an
available G code, it uses only those G codes which are actually
available. An unavailable G code is indicated by DMBITS being
stored at the related TABLEG location.

In the examples given in the following sections, the inch
system is used exclusively, but the metric system is similac.
The only difference between the two systems is the table of
RNGDEP values, otherwise, all processing methods are identical
except that a modification to the dimension multiplier is
sometimes necessary.

3.4-49

GlClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.6.1 SELECTING THE G CODE FOR A LINEAR MOVE

The selection of the linear G code resides completely in
subroutine SELG where the departures stored in DBFSEG(3), (4) and
(5) are compared versus the RNGDEP values, and a decision is made
as to the proper G code to select; after selection, the G code is
stored in DBFSEG(2) •

The linear interpolation range of magnitudes and their table
locations are as follows:

Linear Interpolation

Range TABLEG

0.01 - 0. 099 99 inches (13)

0.1 - 0.9999 (12)

1 - 9.9999 (2)

10 - 99.9999 (11)

100 - 999.9999 (14)

1000 - 9999.9999 (15)

Related to the above table is the departure limit table (see
above) which indicates the selection of the G code for a given
move.

If the oe2arture is, use TABLEG DIMULT

< RNGDEP (1) (13) 0.1

< RNGDEP (2) (12) 1

< RNGDEP (3) (2) 10

< RNGDEP (4) (11) 100

< RNGDEP (5) (14) 1000

> RNGDEP (5) (15) 10000

3.4-50

Cl&HT Ill POSTPROCESSOR ... for the computer programmer

3.4.6.1 SELECTING THE G CODE FOR A LINEAR MOVE (cont'd.)

The examples below illustrate the use of the tables. Refer to
the RNGDEP table given in section 3.4.6. The examples also
assume that all the dimensional G codes are available, but this
is not normally true in actual practice.

Example 1: ~X = 0.2, ~Y = 2, ~z = 20. ~z is the largest
departure, and since

RNGDEP(3)< ~ Z < RNGDEP(4),

the postprocessor uses the G code stored at TABLEG(11) and a
GDIMUL = 100.

Example 2: ~x = -0.001, ~Y = o, ~z = o.

l~xl is the largest departure, and since

l~Xj < RNGDEP(1),

the postprocessor uses the G code stored at TABLEG(13) and a
G DIMUL = 0 • 1 •

Once the postprocessor G code has been determined, it is stored
into DBFSEG(2), and the command block is essentially ready for
output. If the metric system is in use, some final modifications
may have to be made to GDIMUL; these modifications can also be a
function of the control type (option 165) as well as of the
metric system. The modification is simply to increase the size
of GDIMUL to the value required for the metric control system.

The linear interpolation sequence for selecting the preparatory
function G code also calls a special feedrate optimizing sequence
(option 170) which can produce additional command blocks: see
Section 4.1.5.1 for the description of this sequence.

And, finally, if the linear move is a multiaxis move (involving
both linear and rotary notion~, subroutine SELG calls subroutine
SELGRO to select the proper G code for the rotary motion. The
selected code for the rotary motion can override the selected
code for the linear motion if the linear G code magnitude is not
sufficiently large for the largest rotary motion. For example,
assume that the following conditions exist:

~x = 0.2, ~Y = 0.1, ~z = o.o9, ~A= 40°

3.4-51

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.6.1 SELECTING THE G CODE FOR A LINEAR MOVE (cont'd)

Subroutine SELG, in considering the linear departures, selects a
G code whose dimensional magnitude is from 0.1 to 0.9999, say, a

G01. However, this magnitude is not large enough for ~A, since
the corresponding rotary magnitude of G01 extends only to
35.9999°. Therefore, subroutine SELGRO selects the next larger
dimensional code, say G10, which, in fact, extends to 359.9999~
This G code also embraces the linear moves, and though the
execution time is now longer, both the linear and rotary moves
can be simultaneously processed. See Section 3.4.6.3 for the
table of magnitude ranges for rotary moves.

3.4.6.2 SELEX::TING THE G CODE FOR A CIRCULAR MOVE

Subroutine SELGCR, which is called from subroutine SELG, selects
the circular interpolation G code. The criterion for selection
is the radius of the circle; i.e., the magnitude of the radius
CIRRAD is compared with the RNGDEP values, and a selection is
made by selecting that G code whose dimensional magnitude is less
than or equal to the circle radius. Actually, there is a double
comparison, for once the correct magnitude is found, the
subroutine next finds the related G code as a function of the
circle direction.

The circular interpolation range of magnitudes by
directions and their table locations are as follows:

Circular Interpolation

Range TABLEG (CLW) T ABLEG (CCLW)

0.001-0.09999 inches (23) (33)

0.1 -0.9999 (22) (32)

1 -9.9999 (3) (4)

10 -99.9999 (21) (31)

100 -999.9999 (44) (45)

1000 -9999.9999 (49) (50)

3.4-52

circle

C(CHT Ill POSTPROCESSOR ... for the computer programmer

3.4.6.2 SELECTING THE G CODE FOR A CIRCULAR MOVE (cont'd.)'

Related to the above table is the RNGDEP table (see Section
3.4.6) which dictates the selection of the G code for a given
radius. The tables given. below are for the CLW circles only·, but
a set for CCLW circles is analogous.

If The Radius is, use T ABLEG,(CLW) GDIMUL

< RNGDEP (1) (23) o. l

< RNGDEP (2) (22) 1

< RNGDEP (3) (3) 10

< RMGDEP (4) (21) 100

< RNGDEP (5) (44) 1000

~ RNGDEP (5) (4 9) 10,,000

The examples below il;lustrate the use of the· tables.;. Re:Der to·
the RNGDEP table given in Section 3.4.6'. The examples; also·
assume that all the dimensional G cod.es are av.a±lable,, but this.
is not normally the case.

Example 1 : CIRRAD = 0. 08 and CIRDIR is 0.

Since the circle direction is CLW, and

CIRRAD < RNGDEP (1),

the postprocessor uses the G code stored at TABLEG(123l and a
GD IMUL o f 0 • 1 •

Example 2: CIRRAD = 40 and CIRDIR is 1.

Since the circle direction is CCLW, and

RNGDEP (3) < CIRRAD < DEPLIM{4)',

the postprocessor uses the G code stored at TABLEG(31l and a
GDIMUL of 100.

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.6.2 SELECTING THE G CODE FOR A CIRCULAR MOVE (cont'd)

Once the proper G code has been determined, it is stored into
DBFSEG(2), and the command block is essentially ready for output.
The program flow returns to subroutine SELG where a final check
is made to see if the circular interpolation move is also a
multiaxis move (involving both linear and rotary motions) • If
so, subroutine SELG calls subroutine SELGRO to select the proper
G code for the rotary motion. The selected code for the rotary
motion can override the selected code for the circular motion if
the circular G code magnitude is not sufficiently large for the
largest rotary motion. For example, assume that the following
conditions exist:

CIRRAD = 8.67 and A = 40 •

subroutine SELGCR selects a G code whose dimensional magnitude is
from 1 to 9.9999, say, a G01. However, this magnitude is not
large enough for !::A, since the corresponding rotary magnitude of
G01 extends only to 35.9999° • This G code also embraces the
circular radius, and though the execution time is now longer,
both the circular and rotary moves can be simultaneously
processed. See Section 3.4.6.3 for the table of magnitude ranges
for rotary moves.

3.4-54

Cl&HT Ill POSTPROCESSOR ... for the computer programmer

3.4.6.3 SELECTING THE G CODE FOR A RGrARY MOVE

The selection of the rotary G code resides completely in
subroutine SELGRO which is called from subroutine SELG and from
subroutine OUTPUT. A canparison of the rotary departures stored
in DBFSEG(6, 7, 18) is made relative to the maximum rotary
departure (option 111).

The rotation G code dimensions are somewhat analogous to those
for a linear move, and, in fact, use the same TABLEG values and
concomitant GDIMUL as do the linear moves. The major difference
is that the values are in rotary measure rather than linear
measure.

The rotary move range of magnitudes and their table locations can
be as follows:

Rotary Motion Example

Range

0-0.3599 degrees

0.36-3.5999

3.6-35.9999

36-359.9999

TABLEG

(13)

(12)

(2)

(11)

In actual testing during postprocessing, the above values are
converted to output units since all rotary values are processed
in their output form. Note that there is no dimension related to
TABLEG{14) as for linear moves. Nor are rotary G codes selected
on the basis of the RNGDEP table but rather on the basis of the
rotary maximum departure (option 111). This is why the above
table is not a fixed set of magnitudes and also why TABLEG(14) is
not used. The above table is correct only if the rotary maximum
departure is 359.9999.

The general case for the selection of G codes for rotary motions
is given here in degrees, but it should be remembered that, in
practice, the values are in output units, either degrees, or
decimal parts of a revolution.

3.4-55

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.6.3 SELECTING THE G CODE FOR A ROTARY MOVE (cont'd.)

If the Rotary Departure is, use TABLEG GDIMUL

Maximum Rotation/1000 (13) 0.1

Maximum Rotation/100 (12) 1

Maximum Rotation/10 (2) 10

Maximum Rotation/ 1 (11) 100

The examples below illustrate the use of the tables, and assume
that all the dimensional G codes are available though this is not
normally the case. Degrees are assumed to be the output units.

Example 1: ti A = 4 0 °, tiB = 1 °, ti C = 0 • 1 °.

Rotary maximum departure: option 111 is 360 •

ti A is the largest departure and since

option 111 < ti A < option 111
10 1

the postprocessor uses the G code stored at TABLEG(11) and a
GDIMUL = 100.

Example 2: tiA = 0.0001,tiB = 0.1, and option 111 = 36°.

J ffil is the largest departure, and since

option 111 < ~ B I < option 111 ,
1000 100

the postprocessor uses the G code stored at TABLEG(12) and a
GDIMUL = 1.

Once the proper G code has been determined, it is stored into
DBFSEG(2), and the canmand block is essentially ready for output.
However, if the machine motion is a multiaxis move (involving
both linear and rotary notions) , the selected code for the rotary
move may override the previously selected linear G code if the
magnitude of the linear G code is not sufficiently large for the
rotary motion. For exanple, assume that the following conditions
exist:

&. = 0. 2, tiY = 0. 1, ~ = 0. 09, M = 40 °.

3.4-56

~

ClCHT Ill POSTPROCESSOR ... for the computer programmer

3.4.6.3 SELEX::TING THE G CODE FOR A ROTARY MOVE (cont'd.)

Subroutine SELG, in considering the linear departures, selects a
G code whose dimensional magnitude is from 0.1 to 0.9999, say, a
G11. However, this magnitude is not large enough for AA, since
the corresponding rotary magnitude of G11 extends only to 3.5999~
Therefore, subroutine SELGRO selects the second larger
dimensional code, G10, which extends to 359.9999°. This G code
also embraces the linear moves, and though the execution time is
now longer, both the linear and rotary moves can be
simultaneously processed.

3.4.7 PROCESSING A MULTIAXIS MOTION

sections 3.4.1 through 3.4.3 detail how a motion record is
obtained from the CL tape and stored into the part coordinate
present point vector DPRESP; The following description proceeds
from that point.

Because of the rotary motions of a multiaxis machine, there is no
one-to-one linear correspondence between the part and machine
coordinate points as there exists with a linear three-axis
machine. But there is a mathematical relationship between the
part and machine points, such that the location of a point on the
part plus the tool axis orientation at that point can be
expressed in terms of the machine's linear and rotary motions.
This relationship is the so-called Geometry Package, and the
conversion is accomplished through transformation (or class)
equations.

Hence, when a part coordinate point (x, y, z, i, j, k) is
ottained from the CL tape, it must be converted to its machine
coordinate form (X, Y, z, A, B,C); the converted and rounded
valued are stored in the present machine point vector, PRESMP.

The program sequence is as follows:

1. Store new part coordinate point in DPRESP.

2. Subroutine GEOM is called which for multiaxis processing in
turn calls subroutine GEOM5.

3. Subroutine GEOM5 calls subroutine CLASS which then branches to
the multiaxis geometry package, i.e., to subroutine CLASSn,
where n ranges from 1 to 9.

3.4-57

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.7 PROCESSING A MULTIAXIS MOTION (cont'd.)

4. Subroutine CLASSn takes the values of DPRESP, and using the
equations of transformation, computes the corresponding
machine coordinate point.

5. The rounded and truncated point is stored in DPRESM.

From this point on, the postprocessor program flow is basically
the same as for three-axis processing except for some special
sequences, such as feedrate number determination and linearity
testing; these special sequences are discussed in the later
sections of this manual.

The flag MAFORK must always be preset before calling the class
subroutines. When MAFORK = 1, the inverse transforms are
computed, that is, the machine coordinate point is converted to
the corresponding part coordinate point. In this case the data
in the DPRESM vector is used as input, and the resulting point is
stored in the DPRESP vector.

When MAFORK = 2, the direct transforms are computed, that is, the
part coordinate point is converted to the corresponding machine
coordinate point. In this case the data in the DPRESP vector is
used as input, and the resulting point is stored in the DPRESM
vector.

DPRESP (1) = x MAFORK = 2 DPRESM (1) = x

DPRESP (2) = y DPRESM (2) = y

DPRESP (3) = z MAFORK = 1 DPRESM(3) = z
DPRESP(4) = i DPRESM(4) = A

DPRESP (5) = j DPRESM (5) = B

DPRESP(6) = k DPRESM(6) = c

The MAFORK in some class subroutines is used also for other
meanings, as, for example, in subroutine CLASS1 when MAFORK = O,
the subroutine selects the loaded tool gripper constants for use
in the transform relations.

A special test is made in subroutine FROM5 to ensure that the CL
point's direction cosines are valid; that is,

\Ji2 + j2 + k2= 1.:!:. £,

or else a warning comment to this effect is issued.

3.4-58

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.7 PROCESSING A MULTIAXIS MOTION (cont'd.)

After the part coordinate data are transformed into the machine
coordinate data, subroutine DEPART is called to compute the
linear departures AX, ~Y, and ~z.

Subroutine DEPART calls subroutine ROTMOV in order to compute the
rotary departures. An important point to note is that the rotary
moves are always kept in terms of their output units. This
minimizes the processing time in that no conversion to and from
output units is ever required.

Another function performed by subroutine ROTMOV, is to make the
rotary moves positive and less than 360 degrees. For example, a
value of -400 degrees is made to be 320 degrees. Subroutine
ROTMOV puts the rotary departures into DBFSEG(6), (7), and (18).
A convention of the postprocessor is that the head register is
related to DBFSEG(6), while the table to DBFSEG(7). This is
merely a convention and not a set rule.

After checking the linear departures versus the allowable maximum
linear departure, similar tests are made with the rotary
departures versus the rotary maximum departure. Subroutine
SEGMNT is called if any maximum departure is exceeded.

When a segment is acceptable, several flags are tested to
determine whether or not linearity testing should be performed.
If so, subroutine LINTRY is called upon to produce the requisite
number of segments to remove any "linearity" error. See Section
3.4.7.3 for a detailed discussion of this subject.

An important feature to be noted here is that when a departure
exceeds the maximum departure and linearity testing is desired,
subroutine SEGMNT is not immediately called upon to segment the
path length to the necessary segments, but, rather, subroutine
LINRTY is used since the expectation is that the path length will
be sufficiently segmented in order to correct the "linearity"
error.

A multiaxis move has motions both in the rotary and linear axes,
but the postprocessor treats the move as if it were simply a
linear motion. Therefore, a multiaxis motion command block is
still identified by a CODE of zero.

3.4-59

ClClNT Ill POSTPROCESSOR ... for the computer programmer

3.4.7 PROCESSING A MULTIAXIS MOTION (cont'd.)

An apparent contradiction can occur in command block identity.
Rotary moves by themselves, when generated by a ROTATE statement,
have their command blocks identified by CODE = -2. However, it
is possible that in a multiaxis motion that ti X, ti Y, and ti Z are
zero, and only ti A or ti B are nonzero. Yet the conunand block CODE
is still zero. This actually leads to no problem, and it is
important that the command block generation source be known; the
CODE uniquely identifies the source.

At this point in the program flow for linear multiaxis moves,
DBFSEG (3), (4), (5), (6), and (7) are set to their respective
tiX, tiY, tiZ, tiA, tiB values, and CODE = O. Subroutine OUTPUT is
then called to complete the setup and eventual output of DBFSEG
as described in Section 2.4.2.2.

If a third rotary axis exists on the NC machine, the departure
tic is stored into DRFSEG(l8). The third rotary axis is treated
exactly the same as the other rotary axes.

Processing of a multiaxis move requires no other special
sequences in any of the permissible GEOUT 1 s. In rather routine
steps, the rotary motions are converted to an absolute location
in degrees for printing in the Absolute Printout. The influence
of the rotary motions is considered in other determinations such
as t~ cut time, block read time, feedrate optimization, and so
on; but these sequences, in effect, deal with all departures in
a standard manner. There is no special branching for multiaxis
processing.

3.4.7.1 MULTIAXIS CIRCULAR INTERPOLATION

Circular interpolation for multiaxis moves will involve at least
one of the rotary motions as well as at least two linear motions.
This requires a determination of the rotary equivalent of "arc
center offsets". These are not actually arc center offsets and
are ref erred to as supplementary constants.

After subroutine GOCIRC has determined the axes interception
points and stored them in the array DBFSEG, subroutine PROCQD
processes and outputs the points. For two or three axes machines
eadl interception point is merely the (x,y,z) coordonate value;
but for multiaxis processing, the tool axis vector direction
cosines must also be known. Therefore, subroutine PROCQD must
determine the (i, j, k) values at each interception point before
processing and outputting the point.

3.4-60

CI&INT Ill POSTPROCESSOR ... for the computer programmer

3.4.7.1 MULTIAXIS CIRCULAR INTERPOLATION (cont'd.)

In order to find the tool axis vector direction cosines, the
postprocessor first translates the circle center to the origin.
The two radii V1 and V2 (see Diagram 3.4.7.1A) include the angle
swept through in the first quadrant from point 1 to point 2.

V1 • V2 = I Vil I v2 I cos e ,

or e = cos-1 < vl v2) .
R2

y

i j_k)l

~~~-4~~~~~~-=--....:t--------"5!1:-~ .... ~ x 
y z)2 

(x y z) 
3 

Diagram 3.4.7.1A 

Each quadrant sector is treated separately to find the tool axis 
direction cosines since no circle move can be greater than ninety 
degrees; see Section 3 4.4. Angle a is the total angle swept 
through and is found by sununating the individual angles from 
each quadrant. The following terms are computed: 

a= sin (8-y) , 
sine 

4 
y = 'L e . / ¢, f3 = s~n ~ • 

i=l 1 sin 

3.4-61 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.1 MULTIAXIS CIRCULAR INTERPOLATION (cont 1 d.) 

The direction cosines I, J, K are found from: 

I = a. + s. 
11 15 

J = a. + s. 
J1 J5 

K = ak + sk 
1 5 

The computed direction cosines are then normalized. 

In addition to generating the tool axis direction cosines, 
subroutine PROCQD also outputs an information block. (See Section 
5.5.) This information is necessary for the determination of the 
feedrate command for a circular interpolation move. 

Multiaxis circular interpolation moves are processed and made 
output with the same CODE value as for non-multiaxis moves. 
Hence, at this point in the program flow, DBFSEG{8), (9), (10) to 
their arc center offset values, and DBFSEG(16) and (17) for the 
rotary supplementary constants D and E. The value of CODE is 
±10, ±11, ±12. Subroutine OUTPUT is then called to complete the 
setup and eventual output of DBFSEG. 

When subroutine OUTPUT calls SELG to obtain the dimensional 
preparatory function G code, subroutine SELG first obtains the 
proper G code compatiable with the linear (or circular) moves as 
described earlier. Then, subroutine SELG calls subroutine SELGRO 
which accepts the already determined G code if it is compatible 
with the rotary moves, but if not, subroutine SELGRO obtains a G 
code compatible with both the linear (or circular) and rotary 
moves. 

3.4.7.2 ROTARY MOTION WITH ROTREF 

The ROTREF modifier to a ROTATE statement calls for a rotation of 
the reference frame, but which frame and how the frame is to be 
rotated has not been clearly defined. The result has been that 
several interpretations, some even contradictory, have evolved. 

The GECENT III post processor considers 
interpretations, each of which is opposite to 
interpretation used is selected by option 198. 

3.4-62 

only two 
the other. 

major 
The 



C(C(Nl Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.2 ROTARY MOTION WITH ROTREF (cont'd.) 

In the GECENT III postprocessor ROTREF is one-shot only, and, in 
meaning, always calls for a rotation of the part reference frame 
such that after the rotation, the part programmer is permitted to 
continue operating in his original part reference system. This 
is the effect, but the problem arises in the interpretation 
placed upon the modifier ROTREF at the time of application. 

The two interpretations used in the GECENT III postprocessor are 
illustrated below. A cube is to be machined such that each face 
has an identical cut sequence. 

Diagram 3.4.7.2A 

After programming face A, the programmer would like to turn the 
part and program face B with the same geometry, i.e., use 
identical part program statements as before. However, if the 
programmer says 

ROTATE/TABLE, INCR, 90, CLW 

the resulting rotation of the part and table appear as: 

Diagram 3.4.7.2B 3.4-63 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.2 ROTARY MOTION WITH ROTREF (cont'd.) 

This results because the part coordinate system (arrows) are 
fixed in the part, and, therefore, must move with the rotation. 

At this point the tool tip has different direction cosines than 
did the sequence for face A. 

In order to rotate the part coordinate system and the part 
geometry back to its prior position, the programmer can use the 
modifier ROTREF which here means: 

Rotate the part coordinate reference frame back 
to the prior position. 

Hence, if instead of the above ROTATE/statement, the programmer 
had given 

ROTATE/TABLE, INCR, 90, CLW, ROTREF 

the result would look like: 

Diagram 3.4.7.2C 

In effect no· rotation of the part geometry occurred, and the same 
set of statements used on face A can now be used on face B. 

The above explanation is one of two interpretations used by the 
GECENT III postprocessor which results when option 198 is zero. 
The direct opposite meaning results when option 198 is non-zero. 

3.4-64 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

~ 3.4.7.2 ROTARY MOTION WITH ROTREF (cont'd.) 

This opposite meaning is useful for the case when the part 
programmer desires to think of the part system as fixed in space 
immediately above the table, so that it does not move with the 
part under a rotation. 

In such a case, it is convenient for him to interpret ROTREF as 
meaning 11rotate the part system with the part". In such 
instances, it might be necessary to program ROTREF on almost 
every rotation statement. Thus, beginning with Diagram 3.4.7.7A 
and option 198 = 1, Diagram 3.4.7.2B results when the ROTATE 
statement is given as: 

ROTATE/TABLE, INCR, 90, CLW, ROTREF. 

Diagram 3.4.7.2C results from 

ROTATE/TABLE, !NCR, 90, CLW, ROTREF 

Subroutine ROTABI contains the programming sequence which 
produces the rotation of the part reference frame for both 
settings of option 198. In the following example we assume 
option 198 = O, but the same method and ideas apply when option 
198 = 1 and after allowing for the branching difference. 

Let the tool be at the following position: · 

DPRESP ( 1) = Xl, DPRESM(1) = Xi 
DPRESP (2) = Y1 I DPRESM (2) = yl 

DPRESP (3) = z1, DPRESM(3) = Z:i_ 

DPRESP (4) = i1, DPRESM(4) = 1\ 
DPRESP (5) = jl , DPRESM (5) = B_i_ 

DPRESP (6) = k1, DPRESM(6) = 

Also at this point in the program the vector DPREVP = 
DPRESP and DPREVM = DPRESM. 

The following statement is given 

ROTATE/TABLE, INCR, 40, CLW, ROTREF. 

3.4-65 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.2 ROTARY MOTION WITH ROT REF (cont'd.) 

The initial effect upon the position vectors is 

DPRESP ( 1) = Xl' DPRESM(1) = X1 

DPRESP (2) = Y1, DPRESM (2) = yl 

DPRESP (3) = zl, DPRESM (3) = Zi 
DPRESP (4) = i1, DPRESM (4) = Al + 40 = Ai 
DPRESP (5) = jl, DPRESM (5) = B:i_ 

DPRESP (6) = k1, 

Since the AXMULT and ROTREF flags= 1, subroutine ROTABI branches 
to the geometry transforms for the proper class. The flag MAFORK 
is set to 1 which calls for the inverse transforms, i.e., to 
convert the machine point to the corresponding part point. 
Hence, 

DPRESP ( 1) = X2' DPRESM(1) = Xl 

DPRESP (2) = Y2, DPRESM(2) = yl 

DPRESP (3) = 22, DPRESM(3) = ~ 

DPRESP(4) = i2, DPRESM(4) = Ai 
DPRESP(5) = :Ji , DPRESM (5) = B_i_ 

DPRESP (6) = ~, 

However, we do not want the part coordinate system to rotate as 
a function of the rotary move. It was essential to obtain the 
influence of the rotation upon the tool axis setting (direction 
cosines), but the xyz location was not to change. This is 
accomplished by resetting the part point to the previous xyz 
point taken from DPREVP 

3.4-66 

..,., 

..,, 



""" 

ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.2 ROTARY MOTION WITH ROTREF (cont'd.) 

Therefore, 

DPRESP (1) = xl, DPRESM ( 1) = Xl 

DPRESP (2) = Y1, DPRESM(2) = Y1 

DPRESP (3) = zl, DPRESM(3) = ~ 
DPRESP (4) = i2 , DPRESM(4) = Ai 
DPRESP (5) = ~, DPRESM(S) = Bi 
DPRESP (6) = k2, 

Since there is a change in the part coordinate data, the 
postprocessor calls subroutine GOLINE so that the new point is 
updated in both the DPRF.sP and DPRESM vectors. The requisite 
move is thereby produced. 

The flag ROTREF is set in subroutine ROTABL. The flag AXMULT is 
set when a MULTAX part program statement is given. 

Another option which affects the use of a ROTREF modifier is 
option 29 which tells the postprocessor whether or not to 
remember the absolute location of the table. For example, 
assuming that we start from O, the statements 

ROTATE/TABLE, INCR, 10, CLW 

ROTATE/TABLE, INCR, 20, CLW 

ROTATE/TABLE, INCR, 10, CLW 

places the table at the 40 degree position. If option 29 is set 
to 1, the postprocessor remembers the position such that if 
another statement is given as 

ROTATE/TABLE, ATANGL, 0, CLW 

the postprocessor outputs a move of 320 degrees to position the 
table at O. It is evident, therefore, that to be able to use the 
ATANGL or ROTREF modifiers, the postprocessor must remember the 
table location since the correct increment of rotation derives 
from the difference between the previous and present points. 

3.4-67 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.2 ROTARY MOTION WITH ROTREF (cont'd) 

A part program which wishes to use the ROTATE/TABLE statement 
merely to index the table to a new position so that a repeated 
cut sequence can be made, would have option 29 set to zero so 
that the table location is not remembered and, therefore, would 
not affect a later multiaxis move. For example, in Diagram 
3.4.7.2A suppose we wished to drill a hole at the same spot in 
each of the four faces of the cube. In this case, the ROTATE 
statement merely indexes the table ninety degrees. When the 
drilling operation is completed, the part program can make a 
multiaxis move which is unaffected (and properly so) by the 
previous rotations. 

It must be remembered that if option 29 is zero, use of the 
ATANGL and ROTREF modifiers is precluded. If option 29 is 0 and 
a ROTREF or ATANGL modifier is nevertheless given, the 
postprocessor prints a warning comment to this effect, and 
continues as if option 29 were equal to 1. 

3.4.7.3 LINEARITY ERROR AND CORRECTION 

The so-called linearity error is a direct result of the non
linear motion of the tool tip when there is a simultaneous motion 
of the linear and rotary axes. There is no linearity error when 
there are only three linear axes since an error is produced only 
by a change in the tool axis orientation relative to the part 
surf ace. Another type error called the transition error also can 
result; but this type error is completely resolvable only in APT 
Section II. See the !ITRI report, The Transition Problem, 
December 27, 1965. 

3.4.7.3.1 DESCRIPTION OF PROBLEM 

The APT system generates linear cut vectors fitted within given 
tolerances along the given cutter path, Diagram 3.4.7.3A. 

Part Surface Tolerance Band 

Cutter Path 

3.4-68 Diagram 3.4.7.3A 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.3.1 DESCRIPTION OF PROBLEM (cont'd) 

In order to follow faithfully the required cutter path, the 
machine tool must follow the generated linear cut vectors within 
the allowable tolerance. But motions produced by a multiaxis 
machine with rotary axes result in non-linear motions of the 
cutter which can place the cutter outside the tolerance limits. 

In the Diagram 3.4.7.3B, the tool is to move from point A to 
point B, and the tool axis is reoriented to a new angle e. The 
actual cutting path does not follow the designated linear move 
from A to B because the tool orientation motions cause the tool 
end to deviate. However, the deviation may be acceptable if 
tolerance has not been exceeded. 

A 

Deviation 

Diagram 3.4.7.3B 

1. To determine when nonlinear motions cause the tool to 
exceed tolerance limits; and 

2. To correct the tool's motion so that it stays within 
tolerance. 

The approach taken by the GECENT III postprocessor to resolve the 
linearity problem is based upon a solution which keeps the actual 
machine tool path within some given tolerance of a linear 
interpolation of the tool path. This linearity tolerance is 
specified in the part program and may be changed as warranted by 
the cutter path. 

3.4-69 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.3.2 Method of Solution 

The specification of a "good" tolerance will dictate the accuracy 
of the cutter to adhere to the required path. The tolerance in 

discussion refers to the tolerance limits for determining when 

the cutter has deviated from the required path. 

The given cutter tolerance (INTOL, OUTOL, TOLER) , Diagram 

3.4.7.3C, cannot be used as a linearity tolerance because it is 
not sufficient to restrict the tool to the required path; in most 

cases a finer tolerance is needed. This finer tolerance is 
called the linearity tolerance and derives from the following 
conditions. 

I 
I 

/ 
/ 

/ 

/ 
/ 

/ 

...,,,,.-...
__ ~ OUTTOL 

- ---t#& -- -- -- -- -- -- --------l- ---- ---
I NTOL -- -- --

Diagram 3.4.7.3C 

A cylinder of radius r (Diagram 3.4.7.3C) is constructed about 

each cut vector; and any time the cutter path goes outside of the 
cylinder, a linearity error is assumed. Steps are then taken to 
correct for the error. 

LINTOL/r 

'
1Cut Vector 

Diagram 3.4.7.3D 

3.4-70 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.3.2 METHOD OF SOLUTION (cont'd.) 

This consists of inserting a new point on the cut vector, ie., 
breaking the cut vector into two smaller segments. The most 
logical place to make the break is at the point where the 
linearity test was made, but this may not be the best place. If 
the error occurs very close to a cut vector end and the break 
made there, then more problems may arise. A/D limitations on the 
very short segments or linearity errors may occur on the large 
segment if the angle change in the tool axis is large. A better 
place to make the break is at the middle of the cut vector 
although the same problems may still arise. There is an 
advantage, however, in making the cut at the middle; viz., the 
cut segments are of optimum length thereby minimizing the above 
mentioned problems. 

A study by IITRI* indicated two areas where linearity problem 
errors may occur. One error is due to the failure of the tool 
axis to orient itself correctly at its final (or inserted) 
position. For example, in Diagram 3.4.7.3E, when the tool moves 
from A to B the solid lines indicate the actual tool setting 
whereas the correct tool setting is the dotted figure. This tool 
axis variation results from a geometric error derived from the 
transform relations of the machine tool. The method to prevent 
this error relies upon a tolerance cone in which the tool axis is 
allowed to vary. If the tool axis falls outside the cone, a 
midpoint on the cutter path is inserted. 

A B 

Diagram 3.4.7.3E 

* Five-Axis Linearization Study, February 1964. 

3.4-71 



GlClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.3.2 METHOD OF SOLUTION (cont'd.) 

The second linearity error is path deviation as illustrated in 
Diagram 3.4.7.3F. Two types are shown: a symmetrical path 
(curve A) and a nonsymmetrical path (curve B). The symmetrical 
case can be corrected by inserting a point on the middle of the 
segment, but the non-symmetrical linearity deviation makes it 
difficult to apply the midpoint correction with any great degree 
of accuracy. In such cases the part programmer must tighten the 
tolerance to ensure linearity correction. 

A 

----------------------

B 

--------------

Diagram 3.4.7.3F 

3.4-72 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

3 4.7.3.2 METHOD OF SOliJTION (cont'd) 

In curve A, Diagram 3.4.7.3G, the non-synunetry results from the 
variation of the tool axis at points 1 and 2. In B the tool axis 
is at a mirror angle at points 1 and 2, and gives a symmetrical 
linearity deviation. These effects may not be the same (or have 
the same magnitude) on all types of machine tools. 

A 

- ---- --- --- ------
1 2 

1 2 

Diagram 3.4.7.3G 

The part programmer can call for and control linearity testing by 
use of the following postprocessor statements. 

LINTOL/r, y and/or 
ON 

LINTOL/OFF 
0 

3.4-73 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.3.2 METHOD OF SOliJTION (cont'd) 

r is the radius of the linearity tolerance sphere (or cylinder) ; 
y is the half-angle of the tool orientation cone. The part 
programmer must give the LINTOL statement prior to any motions 
which are to be linearity tested. Once given, the linearity 
testing sequence is modal, however, the part programmer may 
change the values of r and y at any point in the program. The 
postprocessor will not perform linearity testing unless and until 
a LINTOL statement established a value for r and y ~ The part 
programmer need not specify y if he does not wish tool axis 
orientation testing (cone testing) , but r must always be given. 
Tool axis orientation testing is important only for flat end 
mills whereby a gouge can result if the tool axis is not oriented 
properly. The part programmer can cancel both cone and sphere 
linearity testing at any point in the part program by giving 
LINTOL/O. Similarly, cone testing alone can be cancelled by 
LINTOL/r,o. 

There are certain paths over which the postprocessor will 
automatically disregard linearity testing. Since linearity 
testing is important only when cutting, the postprocessor 
therefore excludes all non-cutting paths such as rapid traverse 
paths, retracts and advances of the tool during a tool changing 
sequence, and table rotations without a ROTREF. 

In addition to these non-cutting paths there is also one type of 
cutting path over which the part programmer may not wish to have 
linearity testing, namely, cut paths which are produced as one
point CL tape. Single point records are most likely to give a 
straight line path with no rotary motions involved. 

3.4-74 
Diagram 3.4.7.3H 



CfCfNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.3.2 METHOD OF SOLUTION (cont'd) 

The following example is a case wherein a rotary motion is 
produced from a one-point CL record. If linearity testing were 
to be performed for this motion, an improper cut would result. 

In Diagram 3.4.7.3H, the tool is to cut from point A to point B; 
the part programmer can produce this by giving a GOTO/x,y,z,i,j,k 
statement which causes the table to rotate 180 degrees. If the 

postprocessor were to do linearity testing on this one-point CL 
record, it would produce a large series of small corrective moves 
which causes the tool to cut straight through the part from point 
A to point B. This is because each midpoint along the path AB 
would appear to be far out of the tolerance sphere, hence, the 
postprocessor would insert a "correction" path bringing the tool 
back into tolerance but producing an improper cut. 

The postprocessor can be made to disregard a one-point CL record 
for linearity testing by the statement LINTOL/OFF. Once given, 
this statement is modal until LINTOL/ON or LINTOL/r is given. 
Unless the LINTOL/OFF statement is given, the postprocessor 
continues to accept all one-point CL records for linearity 
testing. 

Linearity testing is not done over circular paths when circular 
interpolation is used over the path. 

A ROTATE/BED or ROTATE/TABLE statement with a ROTREF modifier is 
also tested for linearity when specified. 

In order to detect linearity errors it is essential that the part 
coordinate data points correspond exactly with the machine 
coordinate points. For example, in Diagram 3.4.7.3! 

I 
I 

I 

I 
I 

Diagram 3.4.7.3I 

\ 
\ 
\ 
\ 

_.} 

3.4-75 



CltlNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.3.2 METHOD OF SOLUTION (cont'd) 

Ml corresponds to P1 , but M2 corresponds to P3 , an invalid 
situation. Such an event could occur, for example, on a 
ROTATE/TABLE statement without a ROTREF modifier: that is, the 
part coordinate points have not changed but the machine 
coordinate points have. Since the postprocessor can detect 
linearity errors only when there is a one-to-one correspondence 
between the part and machine coordinates, it is essential that 
the part programmer keep the two coordinate systems compatible as 
long as linearity testing is to be used. Thus, caution must be 
used when programming ROTATE/TABLE, et and ROTATE/BED, et with no 
ROTREF modifier. 

The value of r in the PPTOL/r, y statement will normally be a 
function of the part and the particular machine tool axes 
configuration, and therefore, will vary considerably from part 
program to part program. Experience will undoubtedly provide the 
best value. However, a rule-of-thumb working value may be (INTOL 
+ OUTTOL) /2. 

The postprocessor does not perform linearity testing under the 
following conditions: 

( 1) No LINTOL given part program or a LINTOL/O was given. 
Parameter RADLIN is zero; branch to RETURN when RADLIN = 
o. 

(2) The path is a rapid traverse. 

Parameter FRAPID is non-zero; branch to RETURN when FRAPID 
# o. 

FRAPID is always zero for non-rapid paths. 

(3) The path occurs during a tool change. 

Parameter TOLCON is non-zero; branch to RE'TURN when TOLCON 
# o. 

(4) The path is a one-point CL record. 

Parameter RADLIN is set to zero which indicates LINTOL/OFF 
had been given; branch to RETURN if parameter NWPR < 11. 

(5) The statement ROTATE/BED or ROTATE/TABLE is given without 
a ROTREF modifier. 

3.4-76 



CfCHT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.3.2 METHOD OF SOLUTION (cont'd) 

(6) Circular interpolation is used over a circular path. 

The processing subroutine for circular interpolation paths 
(subroutine PRODQD) does not call subroutine LINRTY. 

(7) Overcenter cutting occurs. 

This refers to those NC machines which exceed a slide 
limit when cutting over center and the postprocessor makes 
an adjustment to allow for possible continuation. 

3.4.7.3.3 PROCESSING MEI'HOD OF SUBROUTINE LINRTY 

In Diagram 3. 4. 7. 3J let the path Pj_ Pi be the cutter path in part 
coordinates. Then Mj_ 112 is the corresponding resultant path in 
machine coordinates; MJ.. and Mi result when 11_ and Pi are 
processed through the transform equations. The midpoint MA of 
path M 1 M 2 is found by linear interpolation; similarly midpoint 
PA is found on path P1P2 . P Arepresents the true, ideal midpoint 
of the cutter path if ~here was no linearity error due to the 
rotary motion of the slides. 

-----

Diagram 3.4.7.3J 

3.4-77 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.3.3 PROCESSING METHOD OF SUBROUTINE LINRTY (cont'd) 

Midpoint MA is converted to part coordinate midpoint PMA by 

processing it through the inverse transfo:on equations. As 
illustrated, PMA falls outside the tolerance sphere of radius r, 

and is therefore detected as being a linearity error. Point MA 

and PA are saved as potential output points which represent a 

segment to correct the detected linearity error.Midpoints MB 

and PB are next determined, and the transformed PMB i~ now found 

to fall within the tolerance sphere, therefore, no linearity 
error occurs here. Hence, it is sufficient to output the new. 

r point PA. The corrected path now appears as in Diagram 3.4.7.3K. 

Diagram 3.4.7.3K 

PA is made P:J.. and ~ is made M1 ; testing then continues with the 
new paths P]_ P2 and M_i_ Mi • 

In subroutine LINRTY points P1 and P2 are represented by the part 
coordinate system vectors DPREVP and DPRESP, respectively, while 
M1 and M2 are the machine coordinate system vectors DPREVM and 
DPRESM. The part coordinate vectors have the order: 

x, y, z, i, j, k 

where x,y,z are the CL data values plus any given TRANS values; 
i,j,k are the backward directed tool axis direction cosines. The 
machine coordinate vectors have the order: 

X, Y, Z, A, B, C 

3.4-78 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

3.4.7.3.3 PROCESSING METHOD OF SUBROUTINE LINTRY {cont'd) 
where X,Y,Z are the transformed part coordinates for the slides, 
while A and B and C are the machine tool rotary motions in 
degrees. A or B or c may be zero for four-axis machines. When 
going from part to machine coordinates, the vector DPRESM is 
always the converted point related to DPRESP. conversely, when 
going from machine to part coordinates, the vector DPRESP is 
always the converted point related to DPRESM. Hence, when point !\_ is to be converted to point IMA, the original vectors DPRESP 
and DPRESM are first saved, and then DPRESM is made equal to the 
midpoint vector ~ (::-HALFMP) to produce the part midpoint vector 
PMA <= DPRESP) • 

Whenever a linearity error is detected, the flag LINFLG is set 
non zero to indicate this condition. Whenever a linearity error 
is found on the given path, the postprocessor will output 
segments {as needed) until the whole path P1 P2 is processed. 
Under such conditions the flag LINSIG is set non zero to indicate 
that linearity correction segments have been made output. 
Therefore, the subroutine return flag RETURN is set to non zero 
so that when regular processing continues after subroutine 
LINRTY, there will be no redundant output of the path P1P2 (converted to M1 M2 ). When subroutine LINRTY detects no error, 
RETURN is set to zero, and the cutter path is processed in the 
nonnal manner. 

Note that option 29 must be set non zero if linearity testing is 
to be used. The table position must be known for the correct 
determination of the points of segmentation. 

3.4.8 PROCESSING IN A MULTIHFAD ENVIRONMENT 

All multihead processing inherently requires a two-pass system: 
the first pass processes the CL tape for both heads, and the 
second pass merges the data for combined motion and output. 

3.4.8.1 FIRST-PASS CONSIDERATIONS 

Multihead processing must be considered at the very beginning of 
the program ~hen GEINIT is in core, for it is at this time that 
the multihead environment is established. 

One of the first complexities to be resolved is how to establish 
the register (REGSTR) and format (REGFOR) conditions for each 
head when there is only one table available for each condition. 
This is resolved in the Machine Subroutine where the tables 
REGSTR and REGFOR ·are first set up for head 2, and then written 
onto TAPES1 where they are saved until GEMULT is in core. 

3.4-79 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.1 FIRST-PASS CONSIDERATIONS (cont'd) 

After TAPES1 is written, the REGSTR and REGFOR tables are then 
set up for head 1. Since these tables are in GECOM COMMON, they 
are available during all phases of the program. 

In GEMULT during the first call to subroutine GMOUT, the 
subroutine GMSTOR is eventually called; and upon initial entry 
into this subroutine, the saved data on TAPES1 are reselected and 
stored into the tables GMWORD and GMFORM which are analogous to 
the tables REGSTR and REGFOR, respectively. GMWORD and GMFORM 
are in GECOT3 COMMON which makes them available for GEOUT3 
processing. 

Also, in the initial entry sequence of subroutine GMSTOR, TAPES1 
and TAPES4 are rewound and opened for writing. TAPES1 and TAPES4 
are used by GEPR03 for saving · the data for the Absolute and 
Operation Printouts, respectively. Later entries to subroutine 
GMSTOR are simply rerouted to GEOUT. 

The postprocessor statement COMBIN/n designates multihead 
operation; and when the CL tape record (subtype 1071) for this 
statement is encountered, subroutine COMBIN is called wherein the 
flag MULTHD is set to n. This flag establishes the multihead 
environment for the postprocessor. 

The currently operating head is selected by the statement 
SELECT/HEAD, n, and the CL tape record is processed in subroutine 
SELHED where the head flag !HEAD is set to n. 

The postprocessor statement OP/n specifies the combining or 
processing sequence of operation for both heads. Subroutine 
OPCODE processes the CL data information for this statement 
(subtype 1073) and sets up the special CODE = 17 command block. 
The operation number n is saved in flag NOP, but the other data 
of the CL record are stored in a fixed manner into DBFSEG. 

3.4-80 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.1 FIRST-PASS CONSIDERATIONS (cont'd) 

DBFSEG(2) = n (from OP/n) 

DBFSEG(7) = 0 if SFM; = 1 if RPM 

DBFSEG(8) = head number (IHEAD) 

DBFSEG(9) = t (See Part Progranuner•s Manual) 

DBFSEG(10) = t (See Part Programmer's Manual) 

DBFSEG(11) = 0 if there are restrictions to 
consider while merging, otherwise 
= 2 (NONE modifier) 

DBFSEG(15) = 17 (CODE) to designate an OP 
block 

This special DBFSEG block is in many respects similar to the 
Information Block (CODE= -9) (See Section 5.5), and in fact, 
serves the same purpose but in a more unique manner and 
exclusively for multihead operation. 

The setup DBFSEG block is made output where it is stored on 
TAPES2 or TAPES3 depending on IHEAD. 

A DBFSEG record of CODE 
PRFSEQ/ON and PRFSEQ/OFF. 

= 17 also results from the sta~ement 
In this case DBFSEG is set up as: 

DBFSEG(2) = NOP (opcode) 

DBFSEG(8) = IHFAD if the PRFSEQ modifier 
is ON; otherwise, = 2 if OFF 
and IHEAD = 1, or= 1 if OFF 
and IHEAD = 2. 

DBFSEG( 11) = 3 

DBFSEG(15) = 17 (CODE) 

The setup DBFSEG block is made output where it is stored on 
TAPES2 or TAPES3 depending on IHEAD. 

3.4-81 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.1 FIRST-CLASS CONSIDERATIONS (cont'd) 

There are special multihead sequences in the subroutines for 
processing RAPID moves and TURRET statements, but these are of a 
nature whereby a particular head M code or T code is involved. 
In other words the output from these subroutines are no different 
than for single-head operation, but merely reflect the 
requirements of the particular head then in mode. sections 5.2 
and 6.0 (Subroutines Descriptions) and program listings should be 
consulted for further information on these items. 

When a command block DBFSEG is ready for output, subroutine 
OUTPUT is called to ultimately print and punch the block. But 
for a CODE = 17, subroutine OUTPUT only adds the plus-minus value 
of SEQCTR to DBFSEG(1), and bypasses the other sequences since 
they are not yet needed. Instead, the command block is dumped 
onto TAPES2 for head 1 (IHEAD=1), or onto TAPES3 for head 2 
(IHEAD=2). 

When the FINI record (type 14000) is encountered on the CL tape, 
subroutine GEBASE outputs two FINI command blocks (CODE= 18), 
one for each head, i.e, for TAPES2 and TAPES3. An end-of-file is 
then written on TAPES2, TAPES3, and TAPES4 which are then all 
rewound. 

When program control is returned to the monitor GEMON, it pulls 
in the overlay GEMULT which processes the dumped data for the 
second pass. 

3.4-82 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2 SECOND-PASS CONSIDERATIONS 

Before processing can begin in GEMULT, the postprocessor must initialize key parameters and flags, clear arrays, and open TAPES2 and TAPES3 for reading; this is done in subroutine GMINIT. 

Subroutine CREAD is then called to read a record from TAPES2 if IHFAD = 1, or from TAPES3 if IHFAD = ==.z. The result of the read is that the array AS2 (for TAPES2) or AS3 (for TAPES3) are stored with the dumped row of DBFSEG. The arrays AS2* and AS3* are 
dimensioned and ordered the same as DBFSEG, hence, when AS2 or AS3 are filled fran tape with the dumped DBFSEG, the postprocessor thereafter treats them in the same manner as if it 
were considering a DBFSEG row. 

Beginning with head 1, the postprocessor reads TAPES2 and checks the command block code, i.e., the fifteenth element of the row, to see if an OP/n block was read; a code of 17 indicates such a block. If no such block is detected, the postprocessor knows there is no merging necessary, and it outputs the conunand block 
as it is. Subroutine GMOUT is called to output the block. See Section 3.4.8.2.1 for details on outputting a single or combined 
multihead command blocks. 

When a CODE of 17 is found, the postprocessor stops reading 
TAPES2 and begins reading TAPES3. Each read-in command block code is tested to see if it is an OP/n block (CODE= 17); and if 
not, the postprocessor again knows no merging is necessary and it outputs the block as it is. 

When a CODE of 17 is detected, the postprocessor immediately makes a comparison of the TAPES2 opcode with the opcode from 
TAPES3. 

The opcodes are first saved as: 

IS23 = AS2(2) head 1 opcode, 

IS33 = AS3(2) head 2 opcode. 

(See Section 3.4.8.1 for method of storing DBFSEG for a OP/n 
statement.) 

3.4-83 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.1 SECOND-CLASS CONSIDERATIONS (cont'd) 

If the opcodes are equal, then a merge of the blocks is indicated 
(See section 3.4.8.2.2). If the opcodes are unequal, no merging 
is to take place, and the postprocessor reads the scratch tape of 
the head which has the lowest value opcode. 

The above sequence is repeated wherein blocks are made output as 
long as the opcodes are equal, and the sequence continues until 
two opcodes are found which are equal. 

When the opcodes are unequal (no merging) and a CODE = 17 block 
is found, the postprocessor makes an additional check to see if 
the block is a multihead information block for a SAFETY 
(DBFSEG ( 11) = 1) or for an SFM (DBFSEG ( 11) = 4) • See Section 
3.4.8.1 for a discussion of these items. 

When the block is for a SAFETY, the retract values of X,Y, and z 
are saved in SAFHD1 or SAFHD2 as the case may be. 

Similarly, for an SFM block, the SFM value is saved in SFMHD1 or 
SFMHD2 as the case may be. 

These retained values are used at some later point in the 
program. 

*The arrays AS2 and AS3 are actually doubly dimensioned arrays of 
(30, 2), but for convenience and simplicity all references to AS2 
and AS3 are made as if they were singly dimensioned arrays. 

3.4-84 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1 MERGING OF BLOCKS 

When the opcodes are equal, merging of blocks from TAPES2 and 
TAPES3 commences and continues until the opcodes once again 
become unequal, at which time the processing sequence described 
at the beginning of Section 3.4.8.2 begins again. 

The merging of command blocks is a highly complex affair which is 
dependent upon a variety of factors, all of which directly affect 
the methods of merging. Among the key factors that must be 
considered are: 

(1) One feedrate register or two feedrate registers; 

(2) Same interpolation modes or mixed interpolation 
modes on each head; 

(3) Shared or common axes for both heads; 

(4) The influences of the PRFHED, SAFETY, SFM, TURRET, 
and other postprocessor statements; 

(5) Automatic parking and returning. 

Since this subject is so complex, the best that can be 
accomplished here is to describe the theory involved and make a 
brief survey of some of the programming methods used. For more 
details the reader must refer to the multihead listings and 
individual subroutine write-ups in Section 5.2. 

3.4.8.2.1.1 SINGLE FEEDRATE REGISTER MERGING 

The theory of operation is first discussed with some examples to 
illustrate the methods used. Following the theory of operation 
is a brief description of how the method is programmed in 
subroutine GEMULT. 

3.4-85 



GlCHT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.1.1 THEORY OF OPERATION 

The fundamental operating requirement of single feedrate register 
merging is that the two heads must have identical cut times, but 
they do not necessarily have to have the same feedrates. This 
means that the part prograrruner has complete freedom to specify 
different feedrates for each head. Equal records are produced as 
output by segmenting the head with the longer cut time into two 
records; the cut time of the first record is equal to that of the 
other head. Details of the segmentation procedure are discussed 
below. 

Though this method of combining cut sequences gives more freedom 
to the part programmer, the number of records of paper tape 
output increases. An option is provided in the program which 
reduces the number of records of output by giving the computer 
program more freedom to vary the feedrates, and thus to reduce 
the required number of segmentations. 

Note that the procedures described usually produce unequal block 
times·between the two heads. This can be remedied by changing 
the feedrate of one head so that the block times become equal. 
This approach is not wholly acceptable, because the part 
programmer usually wants block records to have equal cut or dwell 
times and, at the same time, keep the desired feedrates. 

The postprocessor attempts to meet the above two requirements 
within well-defined limits. The concept used in merging two 
heads for simultaneous cutting is illustrated by the following 
examples. 

Example 1: (See Diagram 3.4.8.2.1A) 

Assume that there are two heads, A and B, each having two cutter 
motions, ·and we wish to combine the motion statements of these 
two heads. The intent is to produce simultaneous cutting without 
allowing dwells to occur on either head and to retain the 
specified feedrates, if possible. 

3.4-86 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.1.1 THEORY OF OPERATION (cont'd) 

The following symbols are used in the description: 

Lal and La2 cutter motions for head A (where 
the vector length of a move) 

Fal and Fa2 feedrates for head A motions 

Tal and Ta2 cutting times for head A motions 

1b1 
and L b2 cutter motions for head B 

Fbl and F b2 feedrates for head B motions 

~l and T b2 cutting times for head B motions 

The first step is to calculate Ta1 and 'lhl· 

Now assume Tal > 'lbl. 

L 

The ratio Tbl /Tal < 1 is computed. 

is 

The vector length Ial is then segmented into two records, 
which are computed as follows: 

la.11 = (Tbl / Tal ) *1a1 

la.12 = L al - L all 

The ratio <'Ibl /Tal) is the basic factor in seqmenting a circle. 
The example implies linear motion. However, with ratio (Tb1/T 1 ) 
known, a circle can be segmented and, thus, the requiremeCffts 
spelled out in the example can be met. 

11RE. 
The corresponding times for Lall and La12 a:a:r:t Tall and Ta12 • 

But note: 
Tbl 

T ) * L 
Lall 

al Tbl * T T = = al .,. = 
all al 

Fal Fal Tal 

Tall = Tbl 

The two requirements, namely, production of equal cut times and 
maintenance of desired feedrates, have been met.Lall and Lbl 
are now set up, and a block of output is generated. 

3.4-87 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.1.1 THEX>RY OF OPERATION (cont'd) 

HEAD A 

l .. .. I 

r 
HEAD B 

Diagram 3.4.8.2.1A 

The next record for head B is read, and the following 
motions are compared: 

La12 with 1b2 

Assume Ta12 < Tb2 

The new ratio is 

and ro2 is segmented 

3.4-88 

1b21 = c Tal2 /Tb2 > * 1n2 

1n22 = 1n2 -ro21 



Cl&HT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.2.2.2 THEORY OF OPERATION (cont'd) 

Again, the requirements have been met, and the second record of 
output (La12 and 1b21 ) is generated. 

Next a record is read in from head A, and the following 
comparison is made: 

La2 with Io22 

The above procedure continues, until all moves in the specified 
combined cut have generated output blocks. 

Obviously, in this example, one head will finish its cutter 
motions before the other head finishes. Thus, the following rule 
has been established: 

RULE 1: When two heads are designated for combined cutting, 
the last motion. statement of each head should move the cutter 
away from the cutting surface. 

The head that finishes first sits in a dwell condition until the 
computer program finishes the generation of the output blocks to 
complete the combined motion cuts of the second head. 

Within the segmentation, the part which is to be used as the 
output block does not have tape reader limitation. This is true 
because the other head has not been segmented, and consequently, 
has a cut time greater than or equal to the tape reader 
limitation. This is illustrated in Example 2. 

Example 2: 

(Refer to Example 1 and Diagram 3. 4 .• 8.2 .1A) 

Tal has been segmented so that Tal = Tall+ Ta12 ; however, Tall = 
Tbl • Since ibl already meets the tape reader limitation, 
Tall also meets this requirement. 

Now, note that Ta12 = Tal - ~l = ~ T. 

Ta;2 is the difference in time between Tal and 'lb! • 
arfects the solution of the problem as follows: 

Its value 

In GECENT III the constant TMAX is the maximum time which 
restricts feedrate. It is the maximum value of tape reading time 
in seconds (option 13) and servo setting time in seconds (option 
6 9) • 

3.4-89 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.1.1 THEORY OF OPERATION (cont'd) 

If ~al2 > TMAX, processing may continue, with no further testing 
requirea. 

If T al 2 < TMAX, rule 2 is enforced: 

Rule 2: When a record for either head is considered for 
segmentation into two parts but the time of the second segment 
(Ta12 ) is less than TMAX, segmentation will not occur. The 
program then reduces the feedrate of the other head such that 

Tal = 'Jb1 • 

For example, assume ~l > 'lbl. 

Tbl is then adjusted so that ~l = 'lbl. 

Tbl is adjusted by reducing the feedrate Fbl· 
value is calculated as follows: 

Fbl (new) = 

Lbl Thus, Tbl = 
Tbl 
--* T al 

Tbl * Fbl (actual) 

Tal 

Lbl T 
= * al = 

Tbl * Fbl 
Fbl 

The new f eedrate 

Tbl * T al = T al 
Tbl 

In example 1, two objectives were set: (1) The cut or dwell 
times for both heads in a given output record should always be 
equal. (2) Feedrates should be kept at the rates specified by 
the part programmer, whenever possible. 

The canputer program will never alter the first provision, and it 
changes the feedrate only under rule 2. However, the part 
programmer has the additional option of allowing the computer 
program ·to reduce the feedrate value within a given tolerance 
band, in addition to providing for feedrate reduction under rule 
2. . 

Suppose the part programmer designates different feedrates for 
each head but is willing to allow a reduction in either feedrate 
of up to 10 percent tolerance band; see option 151. (Note: 10 
percent is used here for sample purposes only; the tolerance band 
could be any value from 0 to 100 percent). 

3 ... 4-90 

.,,,, 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.1.1 THEORY OF OPERATION (cont'd) 

When the segmented record is tested against TMAX under rule 2, a 
second test is also provided. The second test compares the delta 
time against the time of the head that will not be segmented. If 
the ratio ~~ is less than 10 percent (or any specified tolerance 
band), segmentation is not performed; the feedrate value of one 
head is reduced so that the cutter times are equal for the given 
output record. This test reduces the number of output records in 
the combined mode without violating the feedrates by more than 
the tolerance band. 

One final feature of this system should be noted. 
dwells are allowed in a combined cut and basically 
same procedures already discussed. 

Programm~d 
follow the 

Three restrictions governing the merging of two heads into 
combined cuts have been placed into the program, namely, RPM, SFM 
and IPM limitations. The part programmer may specify a desired 
RPM or SFM; however, if either value exceeds the designated 
tolerance band specified in the combined cut statement, the 
simultaneous cutting will not be allowed. A similar application 
results for an IPM limitation between heads. If these 
restrictions are not met at any given time while in a combined 
cut, one head will be withdrawn while the other head continues 
cutting. When the first head has finished its cutting sequence, 
the second head will return to the part and finish its cutting 
sequence. 

3.4.8.2.1.1.2 PROGRAMMED PROCEDURE 

In subroutine GEMULT after the opcodes have been ascertained as 
equal, the postprocessor seeks records from TAPES2 and TAPES3 
which it can successfully merge together. Mergeable records are 
linear (CODE= 0), dwells (CODE= 4), and circular interpolation 
(CODE = ± 10, 11, 12) records. All other valid type records 
except CODE = 17 are made output without merging. The CODE = 17 
records are recognized for SAFETY, SFM, and PRFSEQ statements, 
and the condition flags are set accordingly. .,14,,.vl.J oF 

~tJP£cr1v£'-'f ~ The indices !CODE and JCODE represent, the head 1 and head 2 I CODE 
+ VJ V?Cl • s 2 rospQcs iu c.-.y. These indices are used to determine 
the condition of the two blocks to be merged and the condition 
flag ICIRLN is set accordingly as: 

3.4-91 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.1.2 PROGRAMMED PROCEDURE (cont'd) 

ICRLIN Condition: Head1 - Head2 

-1 Linear - Circular 

0 Linear - Linear 

+1 Circular - Linear 

+2 Circular - Circular 

Dwells and turret corrective moves are treated as lines; a dwell 
is treated as a linear move with zero feedrate. 

For a Line Line condition, subroutine GMLINE is called to 
combine the two command blocks; and for a Line - Circle, Circle 
- Line, or Circle - Circle condition, subroutine GMCIRL is called 
to combine the two corrmand blocks. The subroutine does this in 
three possible ways in accordance with Section 3.4.8.2.1.1.1: 

( 1) Combine head 1 and head 2 with no changes; 

( 2) Use head 1 as it is, but segment head 2 into two parts 
such that the cut times of both heads are equal; 

(3) Use head 2 as it is, but segment head 1 into two parts 
such that the cut times of both heads are equal. 

The segmentation based upon equal cut times was discussed in the 
theory of operation in Section 3.4.8.2.1.1.1 above. The 
subroutine SPLIT is called to perform the actual dividing of the 
path using a ratioed linear proportion for straight line 
segmentation, and a vector ratioed sequence for circles; see the 
write-up on subroutine CIRSEG for the mathematical description of 
circle segmentation. 

The technique for merging can best be explained by considering 
the example in Diagram 3.4.8.2.1B. The following assumptions are 
made: 

(1) a preparatory function exists for each head; 

(2) the feedrates on Lal and cal are, respectively, 20 ipm and 
10 ipm: 

(3) the feedrate for head 2 is set to 10 ipm. 

3.4-92 

..,J' 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.1.2 PROGRAMMED PROCEDURE (cont'd) 

HEAD 1 

I 
I 

l----j 
i=4.2095 

HEAD 2 
ILbll .,. Lbl2 .. , ~ 

( 0-,-0-) ___ L._b_l ___ (_l_2_,_) ~~ Lb2 l 

Diagram 3.4.8.2.1B 

Since the first 
GMLINE is called. 
calculated as: 

two paths to be merged are linear, subroutine 
The cutting times for Lal and 1bl are 

T = 10 = 0.5 min.; 
al 20 

Tb 1 = _g = 1 • 2 min. 
10 

Since 'lb1 is greater than Tal' subroutine SPLIT is called to 
segment 1bi into segments 1b11and1b12: 

L bll(X) = 0.5 * 12 = 5 in. 
1.2 

L bl ~X) = 12 - 5 = 7 in • 

3.4-93 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.1.2 PROGRAMMED PROCEDURE (cont'd) 

Lal and Lb11 are merged together for a block of output. The 
circle record Cal is read in, and Cal is compared with Li,12 • 
Subroutine GMCIRL is called with ICRLIN = 1. The arc length for 
Cal is: 

S0 = 2 * 5 = 1 0 in • 

The times for the two segments are: 

'Ib12 = 7 = 0.7 min. 
10 

T<Jllll.= 10 = 1 min. 
~AL 10 

~T = 1.0 - 0.7 = 0.3 min 

The ratio for segmenting is: 

RADIO= 0.7 

Since ~T is positive, subroutine CIRSEG is called to segment the 
circle Cai· See Diagram 3.4.8.2.1C for the definition of terms. 

0 
Diagram 3.4.8.2.lC 

3.4-94 



Gl&lNT Ill · POSTPROCESSOR ... for the computer programmer 

'-" 3.4.8.2.1 1.2 PROGRAMMED PROCEDURE (cont'd) 

'-" 

We need to find the vectors XI", PB, and PO. The chord 
length for our example is: 

= 

= 

~ (18 - 1 0) 2 = 8. 

4. 

= e 
AO* cos 2 = 5* cos 1 rad= 2.7015 

= IOTI tan (8 ;...RADIO e) = 2. 7015 tan (0.4) 

IWTI = 1. 1 422 

IAWI = 5 .1422 

AW{X) = IAWI AB{X) = 5.1422 
IABI 

AW{Y) = o.o 

OW {X) = AW(X) - AO{X) = 5.1422 - 4.2095 = 0.9327 

OW {Y) = o.o + 2.698 = 2.698 

The length of ow is: 

0111 = ~ o. 9 3272 + 2. 6982 = 2.85 

OP = RADIUS * ow 
ow 

OP (X) = 5 * 0.9327 = 1.636 
2. 85 

OP (Y) = 5 * 2.698 = 4.732 
2.85 

AP = AO+ OP 

3.4-95 



ClClNT Ill POSTPROCESSOR 

3.4.8.2.1.1.2 PROGRAMMED PROCEDURE (cont'd) 

The departures for s
1 

a re: 

AP (X) = 4.2095 + 1. 636 = 5.8455; 

AP (Y) = 2.698 + 4.732 = 7.430; 

PB = AB - AP 

The departures for s2 are: 

PO (X) = 8 - 5.8455 = 2.1545; 

PB(Y) = 0 - 7. 430 

The offsets for s
2 

are: 

PO (X) 

PO (Y) 

= -1.636; 

= -4.732. 

= -7.430. 

... for the computer programmer 

The departures and the offsets for s are now merged into a 
block with ro12 • 

The remaining segment s2 is merged with 1b2 • The cutting 
times for ro2 and s2 are computed to be: 

= 8.544 = 0.854 
10 

T8 2 = 3 = 0. 3 
10 

The time for the segment Si is less than the time for 1b2 so 
the line 1b2 must be segmented. 

1b21 (X) = 0.3 * 8 = 2.81; 
0.854 

1iJ 21 ( Y) = 0 • 3 * 3 = 1 • 0 5 
0.854 

These departures are merged in a block with departures PB and 
offsets PO which have been computed for the circle segment ~ • 

Since head 1 has finished, the remaining line segment, ro
22

, is 
output in a block by itself. 

3.4-96 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.3 COMMON AXIS SEGMENTATION 

In addition to the segmentation required for obtaining equal 
times or equal path lengths, a multihead combined path may also 
require a segmentation if each head shares a common axis, thereby 
requiring that the incremental motion along the common axis be 
identical for both heads. Gantry type machines with multiheads 
very commonly have this feature. 

The segmentation resulting as a function of a common axis is 
possible with a single or with double feedrate registers. The 
main requirement in segmenting so as to obtain an equal increment 
along the common axis is that the component feedrate along the 
common axis be either equal or be within an acceptable limit of 
each other. 

3.4.8.2.1.3.1 THEORY OF OPERATION 

Diagram 3.4.8.2.1.3A illustrates a typical gantry-type multihead 
machine which is to cut simultaneously path aAB with Head 1 and 
path dD with Head 2. 

B 

I 

D 

I 
I _____ _J 

A 

I I 
_J_ _____ J__ 

b c 

Head 1 Head 2 

TOP VIEW 

Diagram 3.4.8.2.1.3A 

+X 

f 
t 

Gantry 

3.4-107 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.3.1 THEORY OF OPERATION (cont'd) 

The requirement that 6 X for both Head 1 and Head 2 be identical 
is a necessary but not sufficient condition, because the 
component feedrate of both heads along 6 X must be approximately 
equal within some specified tolerance (option 157). In this 
example, the component feedrates along 6 X are equal since bA = 
cf; therefore, the path do is segmented at point f, and 
consequently, Head 1 moves distance aA simultaneously with the 
Head 2 move from point d to f. 

The simultaneous move along p:iths AB and fD may not be possible, 
however, if 

I Fx (AB) - Fx (f D) I > E: 

where 

Fx (AB) is the X axis feedrate along path AB, 

Fx(fD) is the X axis feedrate along path fD, 

and, £is option 157. 

When circumstances arise which prohibit simultaneous cutting, the 
postprocessor completes the paths by separate sequences for each 
head. In the above example, Head 2 would be parked when path aA
df is completed, Head 1 would complete path AB, park, the gantry 
would return to point f, and Head 2 then would complete path fD. 

It should be noted that when a head is parked, the other head is 
temporarily withdrawn also. This is done to prevent marring or 
scoring the workpiece. 

Similarly, when both heads are to begin a simultaneous cut 
sequence (as when starting paths aA-df), both heads are first 
withdrawn and then simultaneously re~urned to the workpiece. 
This is done to ensure perfect synchronization of both heads. 

A head is parked by moving it to the 6 X, 6 Y, 6 z distance given 
in the SAFETY statement. The X, Y, and z values at that point 
are saved to allow a return to that point when cutting is to be 
resumed. Once parked, only the common axis value changes for the 
heads. 

Only linear interpolation can be used in combined head moves, 
although circular interpolation can be used on single, unmerged 
head operations. 

The common axis is designated by option 155. 
permits only one common axis and assumes 
specifies which axis it is. 

3.4-108 

The postprocessor 
that option 155 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.3.1 THEORY OF OPERATION (cont'd) 

The general scheme of operation for combining command blocks for 
a common axis are as follows: 

(1) Obtain a path for both Head 1 and Head 2. 

(2) Combine that portion of the paths which share the same 
common axis range and whose component feedrates are within 
the allowable limit. 

(3) Upon completion of the two paths, obtain two new paths. 

(4) When the end of either path is encountered or when merging 
cannot otherwise be continued, complete the path using 
single head operation. 

Some examples of common axis cut sequences are given below. With 
each example is given a brief description of the method of 
processing that particular example. The examples assume that the 
X axis is the common axis for both heads. 

Head 

1 2 

A B 

Diagram 3.4.8.2.1.3B 

Paths are same length. Compare the X component feedrate on each 
head to see if they are within the option value tolerance. If 
they are, output the paths. If not, park Head 2 and cut A, then 
park 1 and cut B. Continue to next paths. Print a comment each 
time a head is parked. 

3.4-109 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

3.4.a.2.1.3.1 THEORY OF OPERATION (cont'd) 

Head 

1 2 

A B 

Diagram 3.4.8.2.1.3C 

Compute the X component f eedrates. If they are within the option 
tolerance, output the paths. If not, park 2, cut A. Then park 
1, cut B. Print a comment each time a head is parked. 

Head 

1 2 

A2 -------1 
Al Bl 

A B 

Diagram 3.4.8.2.1.3D 

Path A will be segmented as follows: 

3.4-110 

\and B
1 

will be merged, if possible; 

A will be cut separately (Head 2 parked). 
2 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.3.1 THEORY OF OPERATION (cont'd) 

Head 
1 2 

A 

Diagram 3.4.8.2.1.3E 

Park Head 1, cut B1 , cut A1 and B2 , cut A2 and B3 , cut A3 and B4 , 

park Head 1, cut B5 , cut B6 , park Head 2, cut A4 , cut A5 , cut A6 

and B
7

, cut ~ and B8 , park head 1, cut B9 • 

Head 

1 2 

A B 

Diagram 3.4.8.2.1.3F 

cutting each circle can be a separate operation. If so, circular 
interpolation may be used. 

3.4-111 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.3.1 THEORY OF OPERATION (cont'd) 

The sequences could also be cut simultaneously; if so, linear 
interpolation is required. Care should be taken to insure that 
the X values on each circle are identical; otherwise, many small 
cut sequences may result which may be tape reader-limited. 

Head 

1 2 

A B 

Diagram 3.4.8.2.1.3G 

This sequence would be cut as follows: 

cut B0 , cut A1 and B1 , A2 and B2 , A
3 and B

3 , A
4 

and B
4 

, etc. 

Care must be taken to insure that the X value of each segment is 
cut simultaneously. 

3.4-112 



C(CHT Ill POSTPROCESSOR ... for the computer programmer 

3.4 8.2.1.3.1 THEORY OF OPERATION (cont'd) 

Head 

1 2 

Diagram 3.4.8.2.1.3H 

cut A1 and B1 , cut A2, cut B2, cut A3 and B3, cut A4 , cut A5 , cut 
A6 and B4, cut B5, cut A1 1 cut As and B6' cut Ag and B7, cut Alo 

cut Bs, cut A11and Bg, cut A121CUt A131CUt Ai4and B101CUt B111CUt 

A151CUt A16and B12· 

(Park alternate head when a single move of a head is being ) 
made. 

3.4-113 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.3.2 PROGRAMMED PROCEDURE 

In subroutine GEMULT before the call to the subroutine which 
carries out the merging of linear blocks (subroutine GMLINE), the 
postprocessor tests for the existence of a common axis option 155 
and calls subroutine FXMULT if one exists. No such call precedes 
subroutine GMCIRL since the common axis segmentation sequence 
requires linear interpolation. 

The generalized sequence of subroutine FXMULT is highly involved 
because of the many combinations of cut paths and affecting 
conditions; hence, the best means of explaining the methods of 
common axis segmentation is to illustrate the techniques by using 
simple examples. Once these special examples are followed, the 
overall general scheme will become clear. 

We will use the simultaneous cut paths as illustrated in Diagram 
3.4.8.2.1.3.2A. 

20 

10 

(6Xl =10) 

HEP.~D 1 

25 

Stop --------

10 

t 
HEP. .. D 2 

x 
0 0 

Diagram 3.4.8.2.1.3.2A 

Second 
Record 

First 
Record 

In this example we will consider only the X axis which is the 
common axis to both heads. We further assume that only one 
f eedrate register exists. 

3.4-114 



C(C(~l Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.3.2 PROGRAMMED PROCEDURE (cont'd) 

Upon entry into subroutine FXMULT, the postprocessor computes the. 
~ final absolute coordinate points of both heads. It must be 
recalled that during the second pass the information concerning 
the location of the tool (DPRESM and DPRESP vectors) is not 
available; all that is available are the incremental moves as 
dumped on the scratch tapes in the first pass. 

However, in subrouting GMOUT the incremental moves are 
accumulated to obtain the current absolute XYZ values for each 
head; these values are stored in the vectors AB52 and ABS3 for 
Head 1 and Head 2, respectively. 

Therefore, upon entry into subroutine FXMULT, the vectors have 
the values (using X axis only): 

ABS2 

0 

ABS3 

0 

This represents the beginning point of both heads; see Diagram 
3.4.8.2.1.3.2A. 

The subroutine requires the final point of the path; therefore, 
it computes the head vectors: 

HIVEC ( 1) = ABS2 ( 1) + AS2 (3 1 1) • 

and 

H2VEC ( 1) = ABS3 ( 1) + AS3(3,1). 

It will be remembered that AS2 is the command block (similar to 
DBFSEG) for the currently read Head 1 record read from TAPES2, 
while AS3 is for Head 2 from TAPES3. The XYZ values in AS2 and 
AS3 are increments. 

(Note: For convenience and simplicity all vectors and other 
arrays will henceforth be treated as a single parameter. It must 
be remembered though that while the reference is to the X axis 
only, any axis could as well apply.) 

In our example then, 

H1VEC = 0 + 10 = 10, 

H2VEC = 0 + 10 = 10. 

3.4-115 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.3.2 PROGRAMMED PROCEDURE (cont'd) 

The subroutine requires the knowledge of the beginning and end 
path values; these are the values H1X1 and H1X2 for Head 1, and 
H2X1 and H2X2 for Head 2. 

H 1X1 = 0 , H 1 X2 = 1 0, 

H2X1 = O, H2X2 = 10. 

The direction of both heads must now be determined; these are the 
flags H1DIR and H2DIR. 

H1DIR = H1X1-H1X2 = 0 10 = -10, 

H2DIR = H2X1-H2X2 = 0 10 = -10. 

The subroutine has detected that there is truly a motion in X for 
both heads, so now it must determine whether or not both heads 
are moving in the same direction. This is done by the following 
ratio test: 

[
H1DIR = _=-lQ = +.] 
H2DIR -10 

The postprocessor now knows that both heads are moving in the 
same direction, and a further test indicates the motion is in the 
positive direction, therefore, flag DIR = 1 for this condition. 

The next question to be resolved is: do both paths have the same 
origin, i.e., both begin at the same point? This is resolved by 
the test: 

DIR(H1X1 - H2X1) = 1 (0-0) = 0 

The test indicates that the origins are the same. Now, which 
path is longer? 

DIR (H1X2-H2X2} = 1(10-10) = 0. 

The test indicates that the path lengths are equal; hence, 
no segmentation is necessary and the two head paths can be output 
together if the x-axis component f eedrates of each head are 
within the acceptable tolerance difference. 

3.4-116 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.3.2 PROGRAMMED PROCEDURE (cont'd) 

This test is done in subroutine FXTOL where the component 
feedrate is determined by: 

+ 
F = ~X. F x s 

~here Fx is the component feedrate, ~X is the X-axis 
F is the head feedrate, and s = ~~x2 + ~y2 + ~z2 • 

increment, 

If the two component feedrates are not within the acceptable 
tolerance difference, the return flag IND is set non-zero, and 
the postprocessor outputs each head move separately. 

In this example it is clear that the component feedrates would be 
the same since ~X is the same for both heads. However, this is 
true only if one feedrate register exists; with two feedrate 
registers the component f eedrates can very easily be 
significantly different even though the ~X's are equal. 

The two paths are made output as a combined move; but before 
actually outputting the block, subroutine FXPARK is called to 
make sure that the tools are in the workpiece. It will be 
recalled that the heads are both retracted and then brought 
together into the workpiece when a new combined sequence begins. 

Subroutine GMOUT outputs the combined command block as described 
in Section 3.4.8.2.2. 

Referring to Diagram 3.4.8.2.1.3.2A, it is seen that we have 
combined and output the motion from X = 0 to 10. The flags 
RFLAG2 and RFLAG3 are set to zero and subroutine FXMULT returns 
to subroutine GEMULT where a new command block from TAPES2 and 
TAPES3 is read. The zero settings of RFLAG2 and RFLAG3 indicate 
that both tapes should be read. 

3.4-117 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.3.2 PROGRAMMED PROCEDURE (cont'd) 

After obtaining the next conunand blocks, subroutine FXMULT again 
determines the parameters as described above. Continuing with 
our example, the same sequence and results are summarized. 

ABS2 
10 

H1VEC 
20 

H2VEC 
25 

H1DIR 
-10 

[H1DIRci 
H2DIR 

ABS3 
10 

H1X1 
10 

H2X1 
10 

H2DIR 
-15 

= -10 
-15 

H1X2 
20 

H2X2 
25 

= + • DIR = + 1. 

Origin test: 1(10-10) = 0 - same origin. 

Test to see which path is longer: 

DIR(H1X2-H2X2) = 1 (20 - 25) = -5. 

It is found that Head 2 has the longer path, hence, the Head 2 
path will be segmented at H1X2, i.e., at X = 20. Subroutine SEG 
is called to perform this function; the calling sequence to 
subroutine SEG specifies the point of segmentation. (See Section 
6.0 for complete description of subroutine.) 

After segmentation the two paths are combined and made output if 
subroutine FXTOL so designates. Flag H2FLAG is temporarily set 
to 1 indicating that the Head 1 path is completed but Head 2 is 
not. Under these conditions, H2X1 is reset as 

H2X1 = ABS3 = 20 

since at output, ABS3 has had 
current absolute point. 

l:.i X added to it to obtain the 

The flag RFLAG2 is set to 0 and RFLAG3 to 1 indicating that since 
the Head 1 path is completed, TAPES2 must be read for a new 
conunand block whereas TAPES] must be bypassed since the Head 2 
path still has a portion to be made output. 

3.4-118 



CfCf~T Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.1.3.2 PROGRAMMED PROCEDURE (cont'd) 

Thus, upon return to subroutine GEMULT, only TAPES2 is read. 
Since Head 1 calls for a STOP, it is parked, and the remainder of 
the Head 2 path is made output, then parked. The two heads are 
resynchronized with new data from TAPES2 and TAPES3 which begins 
a new sequence. 

The individual subroutine write-ups for the common axis 
segmentation sequence must be consulted for greater details; see 
Section 5. 2. 

3.4.8.2.2 MULTIHEAD OUTPUT 

The calling sequence to subroutine GMOUT has an integer flag 
which is set according to the condition that exists in DBFSEG. 
For example, if an unmerged block for head 1 is to be output, 
then the integer flag is 1. 

The possible settings are: 

(IH) 1 = 
2 = 
3 = 

4 = 

head 1 only 

head 2 only 

both heads are merged, but 
head 1 is the primary head 

both heads are merged, but 
head 2 is the primary head 

The first function performed by subroutine GMOUT is to determine 
the absolute motion values of the point; these values are used by 
subroutine FXMULT and GEOUT3 in printing the Absolute and 
Operator Printouts. This function is done by subroutine GMABS 
which takes the incremental values of AS2 or AS3 and 
algebraically summates and stores them in the array ABS2 or ABS3 
as the case may be. ABS2 and ABS3 are ordered as x, Y, z, A, B 
for the absolute coordinate machine point. 

The command block is now readied for output; this requires 
computing a f eedrate command and obtaining the requisite G, M, s, 
and T codes. 

3 • .1.-119 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.2 MULTIHEAD OUTPUT (cont'd) 

A motion· cormnand block at this time has the feedrate in IPM, 
hence, a conversion to the feed cormnand is required. This 
conversion is done by subroutine GMOTIN, and the value is stored 
into the eleventh cell of AS2(or AS3). This subroutine is almost 
identical with subroutine CONTUR except that multihead 
preparatory function G codes are involved in the determination of 
the f eedrate command. 

If the resultant feedrate command is greater than the feedrate 
cormnand maximum (FCOMAX), the postprocessor calls subroutine 
GFDLIM to optimize the feedrate command by using a ratio 
multiplier on the feedrate command and computing an I, J, K (as 
appropriate) value; see Section 4.1.5 for a complete description 
of this method. 

The arrays AS2 or AS3 are now essentially complete, but they must 
be restored into GMHBUF which is the prime array used for all 
multihead output. Subroutine GEMISC obtains from AS2 or AS3 the 
spindle command and speed, any pending M code or T code, and 
stores them into GMHBUF. The storing sequence is a function of 
the head as follows: 

GMHBUF AS2 

Head 1 ( 12) = spindle command ( 12) 

(13) = tool code (T) ( 13) 

( 14) = miscellaneous code (M) ( 14) 

(20) = spindle speed in RPM (20) 

Head 2 (32) = spindle command ( 12) 

(33) = tool code (T) ( 13) 

(34) = miscellaneous code (M) ( 14) 

(40) = spindle speed in RPM (20) 

When both heads share a cormnon register, the convention used in 
the postprocessor is that the head 2 value for that register is 
stored into the corresponding head 1 location of GMHBUF. 

3.4-120 

""' 



Cl&l~T 111 POSTPROCESSOR ... for the computer programmer 

~ 3.4. 8.2.2 MULTIHEAD OUTPUT (cont'd). 

Subroutine GMOUT completes the restoring of GMHBUF by adding in 
the remaining cells of AS2 or AS3. The order of storage is as 
illustrated below. 

GMHBUF 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

( 10) 

( 11) 

( 12) 

(13) 

( 14) 

( 15) 

( 16) 

(17) 

( 18) 

( 19) * 
(20) 

( 1) N 

(2) G 

(3) x 

(4) y 

(5) z 

(6) A 

(7) B 

( 8) I 

(9) J 

(10) K 

(11) F 

(12) s 

( 13) T 

(14) M 

(15) CODE 

( 16) 

(17) 

( 18) c 

(19) * F-IPM 

(20) S-RPM 

GMHBUF 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) * 
(40) 

AS3 

( 1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

( 8) 

(9) 

( 10) 

( 11) 

(12) 

( 13) 

( 14) 

( 15) 

( 16) 

( 17) 

(1 8) 

(19) * 
(20) 

*This value of feedrate is stored in GMHBUF before 
subroutine GMOTIN is called to convert the feedrate 
into its command form. 

~ When GMHBUF is all set up, it is made output through subroutine 
GMSTOR which directs the program flow to GEOUT3 for printing and 
punching. 

3.4-121 



GICINT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.2 MULTIHEAD OUTPUT (cont'd) 

If the command block being processed is a circular interpolation 
move (CODE = ± 10, 11, 12,), subroutine GMOUT calls subroutine 
PREPHD which selects the proper preparatory function G code that 
permits circular interpolation on that particular head. The G 
code is made output in a block by itself. 

The above described output sequence pertains to single-head 
output, i.e., head 1 or head 2 only, and also to combined 
multihead output. When only head 1 is to be output, GMHBUF(1) 
through <&O) are used; when only head 2 is to be output, 
GMHBUF(&1) through <40) are used. When multihead combined moves 
are output, GMHBUF (1) through (41f0) are used. 

When a combined multihead block is processed for output, 
subroutine GMOUT, in addition to the above described chores, must 
also do some special testing and modifying. 

The input head flag (IH) is 3 or 4 for a combined block. Thus, 
an early branch in subroutine GMOUT directs the program flow to 
the test which detennines the nature of the combined move, that 
is, the flag ICRLIN is tested for the following interpolation 
conditions: 

ICRLIN Condition 

-1 head 1 is linear, head 2 is circular 

0 both heads are linear 

+1 head 1 is circular, head 2 is linear 

+2 both heads are circular 

Common to all these conditional combined moves is the 
determination of the feedrate command. For the combined 
condition which contains a linear and a circular interpolation 
move, a set of "arc center offsets" may also have to be 
determined for the linear head. 

3.4-122 

"""" 



ClCINT 111 POSTPROCESSOR ... for the computer programmer 

3.4.8.2.2.1 LINEAR-LINEAR 

The first item considered for the combined linear-linear 
multihead move is the proper determination of feedrate. 
Subroutine GMOTIN is called to determine the feedrate command of 
head 1 and head 2; the parameters FRN1 and FRN2 contain the 
feedrate commands. If one of the head moves is a delay, i.e., a 
xero move, the feedrate command for that head is set to zero. 

Next, the selection of the proper preparatory function G code is 
made. If a preparatory function register for each head is 
available (option 152 ¢ 0), each head G code is used, and 
GMHBUF(2) and (a2) select from AS2(2) and AS3(2) to obtain the 
proper head G code accordingly. 

If only one G register is available, a dimensional G code which 
is canpatible with the size of motions for both heads is selected 
and stored in GMHBUF(2). 

A similar determination is made for the F register, that is, the 
use of one F register common to both heads or the availability of 
an F register for each head; option 139 is non-zero for multiple 
F registers. GMHBUF (11) and (31) are set to AS2(11) and AS3(11) 
when multiple F registers are available. Otherwise, GMHBUF(11) 
above is stored with the feedrate command after it has been 
decided which head feedrate to use. The input head flag IH 
specifies this, for when IH = 3, then head 1 is the primary head, 
and so GMHBUF(11) = AS2(11), and CODE = +17 and is so stored into 
GMHBUF(15). But when IH = 4, then head 2 is the primary head, 
and GMHBUF(11) = AS3(11), and CODE= -17 and is so stored into 
GMHBUF ( 15) • 

The remainder of the GMHBUF block is next set up with the other 
cells of AS2 and AS3 and is made output through subroutine 
GMSTOR. 

3.4-123 



GICINT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.2.2 LINEAR-CIRCULAR OR CIRCULAR-LINEAR 

As with the linear-linear condition described above, a similar 
determination must be made concerning the use of single or double 
preparatory function and feedrate command registers. 

If a preparatory function register exists for each head, the 
value is set up in GMHBUF(2) and (32) from AS2(2) and AS3(2), and 
no further consideration is needed since each head can function 
separately according to its interpolation mode. 

However, if only one preparatory function register is used for 
both heads, the linear head "arc center offset" must be 
determined in the following fashion. 

The length s of the circular move and th~ radius R of the circle 
are determined so that the circle angle e can be found. The "arc 
center offsets" for the linear head are next computed using 8 and 
the deltas of the linear head. 

1) s = ~L'iX2 + L'iY2 + l'iZ 2 (delta motions) 
c c c 

2) R = ~I~ + J2+ K2 
c c 

3) B1 = S/2R 

4) B2 = ~1- B12 

-1 
Bl 

5) 8 = a tan ~1-Bl 2 

6) IL = l'iXL/ 8 

7) JL = l'iYL/ 8 Linear head "arc center offsets" 

8) KL = l'i ZL/8 

Note the following setting of CODE for these mixed interpolation 
modes: 

GMHBUF(15) = CODE = +17 for circular-linear; 

GMHBUF(15) = CODE = -17 for linear-circular. 

The block is made output after the remainder of GMHBUF is setup. 

3.4-124 

.., 



GlClNT Ill POSTPROCESSOR ... for the computer programmer 

3.4.8.2.2.3 CIRCULAR-CIRCULAR 

There must be two preparatory function registers for this condition to exist. The setup of GMHBUF is direct and with no further modifications needed. GMHBUF(2) is set from AS2(2) and GMHBUF(32) from AS3(2). 

The feedrate commands are likewise setup, and CODE = +17 if IH = 3, otherwise, CODE = -17 for IH = 4. 

The block is made output after the remainder of GMHBUF is setup. 

3.4-125 





ClClNT 111 POSTPROCESSOR ... for the computer programmer 

3.5 OUTPUT ELEMENT 

The GECENT III postprocessor can produce punched output in either 
tape image (PUNCHA) or Hollerith BCD (PUNCHB). Either type is 
selected by the designation of option 20:* 

OPTION 20 = O, use PUNCHB 

OPTION 20 = 1, use PUNCHA 

*See Section 5.6.2 for option 20 = -1 for magnetic tape 
output. 

Four forms of printed output are available by option 
See the GECENT III Part Programmers Manual for 
description of the printed output. 

selection. 
a complete 

The four major overlay$ of GEOUT are: GEOUT 1, which produces 
the Summary Print; GEDUT 2, which produces the Combined Print; 
GEOUT 3, the Multiple Print, which produces any one or 
combination of the Incremental, Absolute, or Operator Manuscript 
Printouts for multihead machines; and GEOUT 4, which is similar 
to GEOUT 3, except used for non multihead machines. However, the 
GEOUT overlays are mutually exclusive and only one overlay can be 
used for any given run. 

The incremental data produced on any of the printouts are an 
exact copy of the data which are punched into the control tape. 
The tape, of course, does not include such things as 
postprocessor comments, blanks, FROM point, and so on. The same 
printed incremental line image is also punched into the tape. 
This control tape is accomplished in the following manner. 

3.5.1 CONVERSION TO TAPE IMAGE 

The print sequences convert the elements of DBFSEG to BCD, 
(unless, of course, they are already in BCD form), and sets these 
elements in the array BCDIMG. 

The elements of DBFSEG are converted to BCD through subroutine 
CONBCD; the conversion format of each cell is specified in the 
related REGFOR table. For example, DBFSEG (2) contains the 
floating point value -3.2468. REGFOR (2) = -24.0 specifying a 
signed number with two places to the left and four places to the 
right of the decimal. The converted value produced in BCD 
becomes -03.2468. This value is printed under the X column on 
the Incremental Printout. 

3.5-1 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3. 5 .1 CONVERSION TO TAPE IMAGE (cont'd) 

To punch this data the BCD letter address of the related register 
is first obtained from the REGSTR table and is inserted in BCDIMG 
ahead of the BCD value. In this example the letter address is 
selected from REGSTR (2) to produce the punched value X-032468. 
The punch routines do not punch blanks or periois. Trailing 
zeroes are not punched unless required, as for a positioning 
machine. (See option 1 and 51). Leading zeroes can be 
suppressed under certain conditions for certain numerical control 
systems, the Mark Century 100M control and others. See Section 
4.9 for leading zero suppression information. 

3.5.2 PRINTOUT VARIABLE FORMAT 

A variable format is used with all four forms of printout; that 
is, each print format is structured according to the needs of 
each machine tool. The Machine Subroutine has the tables REGSTR 
and REGFOR which describe the input requirements for that 
particular machine. These tables are also used to set up the 
print format for the particular machine. The REGSTR table tells 
the postprocessor which registers are available, and the REGFOR 
table specifies the decimal structure of each register. Hence 
the postprocessor has all the necessary information to lay out 
the print format. 

To print any given BCD value the postprocessor must know which 
print columns it is to use; for example, the X values may have to 
be printed in columns 11 through 19, Y columns 20 through 28, and 
so on. These print column values are determined in overlay 
GEINIT in subroutine CALCPn where n = 1 for GEOUT 1, 2 for GEOUT 
2, 3 for GEOUT 3, and 4 for GEOUT 4. The print column values are 
determined for each available register (as given by REGSTR and 
REGFOR tables) and stored in a print vector. 

There are four vectors determined in CALCPn, namely, the vectors 
NIP (initial print position), NFP (final print position), NPR 
(number of places to right of decimal) , and NPT (total number of 
digits in each register). Each element of the vector has a one
to-one correspondence with the register tables. For example: 

3.5-2 



'w 

\~ 

CICINT Ill POSTPROCESSOR ... for the computer programmer 

3. 5. 2 PRINTOUT VARIABLE FORMAT (cont'd) 

(SUBSCRIPT) NIP NFP NPR NPT REGS TR REGFOR 

( 1) 3 5 0 3 N 30. 

(2) 8 9 0 2 G 20. 

( 3) 12 1 9 -104 -6 x -24. 

(4) 22 29 -104 -6 y -24. 

Zero is stored if the standard register assignment does not 
exist. For example, if the machine tool has no T code, REGSTR 
(13) = DBLNKS, REGFOR = O, and thus NIP (13) = NFP (13) = NPR 
( 13) = NPT ( 13) = 0. 

The postprocessor determines the optimum spacing between columns 
before calculating the initial and final print positions. Hence, 
when GEOUT 1 is used to produce the summary Print, the 
postprocessor first determines the number of columns it must set 
aside for the incremental data, and then checks to see how much 
room is left for the absolute data. The print vectors NIP and 
NFP are altered to produce the optimum spacing format. For 
example NIP (I) and NFP (I) for I=2,3,4,---14 may be increased by 
3 to provide three columns of space between each printed value. 

The print vectors also give additional information which is used 
to make format decisions in printing and punching. A negative 
value of the vector NPT tells the postprocessor that the 
algebraic sign of the register value must be made output. This 
is important since the XYZ registers may carry signs, whereas the 
G register does not. Also, if a value n of the NPR vector is 
over 100, i.e., (n + 100), this signals the postprocessor that 
the trailing zeroes are to be dropped for this particular 
element's output value. Positioning machines, which utilize an 
absolute coordinate system, must output the trailing zeroes, 
therefore, the elements of the print vectors for the registers 
XYZ would each be a value less than 100. A negative value of an 
element in the print vector NPR specifies that the related 
register value must also have a decimal point in its printed 
value. 

The print vectors are stored in COMMON and are therefore 
available to all output subroutines. The output initialization 
subroutine GEPRE calls the proper subroutine CALCPn. Subroutine 
GEPRE and associated subroutines are overlayed when all the basic 
initialization is completed. 

3.5-3 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3. 5. 2 PRINTOUT VARIABLE FORMAT (cont• d) 

The CALCPn subroutine in addition to calculating the print vector 
elements for the Incrercental Printout (and subsequent punching), 
also analogously determine the print positions and other 
information for the Absolute and Operator Printouts. In general, 
the subroutines will expand the print width of the motion 
register values or incremental systems so as to encompass the 
probable programmed algebraic dimensions. For example, REGFOR(3) 
= -24.0 specifies a six digit incremental move for x. The 
Absolute format for X is made to have an eight digit spread to 
ensure that any programmed point will be properly printed. 
The following sample illustrates the method. 

REGFOR(3) = -24.0 

INCREMENTAL ABSOLUTE 

x x 

FROM 892.3456 0892.3456 

95.6789 0988.0245 

10.0010 0998.0255 

90.1111 1088.1366 

(6 digit spread) (8 digit spread) 

~ similar expansion is also made if the units system of the 
machine tool is metric. Note also that the FROM point format is 
also expanded. 

The register title printed at the top of each page is set up in 
accordance with the values of the print vectors. The title 
structure is determined in CALCPn and then saved in the vector 
BCDREG which is in COMMON. When the title for each new page is 
required, subroutine TITLEn is called. This subroutine prints 
the postprocessor identification title, the machine tool 
identification and page number, the PARTNO, and then the register 
title as stored in BCDREG. A possible title printout for the 
Surrunary Printout GEOUT1 is given below. 

3.5-4 

.., 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.5.2 PRINTOUT VARIABLE FORMAT (cont'd) 

***GENERAL ELECI'RIC GECENT III POSTPROCESSOR*** 

MACHINE 14 BRACK LATHE NC40 

TEST CASE 2468A1001 

N G X Z I K F S T M ABSX ABSZ FIPM SRPM 

The sequence through subroutine CALCP1 is described in detail in 
Section 3.5.4.1, and should be read as a continuation of the 
above description. 

3.5.3 GENERAL OUTPUT FLOW 

The logical flow in the output section is basically the same for 
all the GEOUT 1 s. GEOUT1 is the simplest output sequence whereas 
GEOUT3 is the most complex. It must also be remembered that 
GEOUT3 and GEOUT4 require multiple passes to produce the several 
printouts, hence, will cbviously have a more complex and longer 
flow path. Each of the separate GEOUT's are discussed below in 
detail. 

The structure of each GEOUT is functionally the same, i.e., the 
key subroutines of each GEOUT perform analagous functions. 
Therefore, the description which follows pertains to GEOUTn where 
n = 1,2,3, or 4. 

For a complete description of the variable printout method, see 
Section 3.5.4.1 wherein subroutine CALCP1 is analyzed in detail. 
This description defines the basic techniques used by all the 
GEOUT 1 s in the setting up and use of the column vectors. 

3.5-5 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.5.3.1 INITIALIZATION 

Initialization occurs in subroutine GEPRE in overlay GEINIT which 
performs all the "one-shot" chores required for output functions: 

(1) Subroutine DF.cODE interprets options 59 and 60 and sets 
up the shuffle vector ISHVEC which directs the post
processor in its reassignment of registers for output. 
This reassignment is done by subroutine SHUFFL which is 
called in subroutine GEPROn. The shuffle vector ISHVEC 
(dimensioned at six) has a fixed order, viz., 

3.5-6 

Standard value 

ISHVEC(1) = x 3 

ISHVEC (2) = y 4 

ISHVEC (3) = z 5 

ISHVEC (4) = I 8 

ISHVEC (5) = J 9 

ISHVEC (6) = K 10 

If the machine tool is a standard milling machine, the 
above order of ISHVEC is unchanged and is not used by 
subroutine SHUFFL. In this case, flag ISHUFL = 0. 

However, a standard lathe operates in Quadrant IV and uses 
the axes +Z-X and related registers +K+I. Therefore, 
ISHVEC is set as fo1lows (determined by options 59 and 60: 

ISHVEC (1) = 5 

ISHVEC (2) = -3 

ISHVEC (3) = 0 

ISHVEC (4) = 10 

ISHVEC (5) = 8 

ISHVEC (6) = 0 

..., 



CICI~T 111 POSTPROCESSOR ... for the computer programmer 

3.5.3.1 INITIALIZATION (cont'd) 

Subroutine SHUFFL uses this vector to "shuffle" the normal 
command block data into the output format required for the 
particular machine tool. . The command block DBFSEG for a 
lathe originally is set up as: 

1 2 3 4 5 6 7 8 9 10 11 

N G x y I J F 

After shuffling, DBFSEG is reordered as: 

1 2 3 4 5 6 7 8 9 10 11 

N G -Y x J I F 

For example, the value of ISHVEC(1) being a 5 indicates 
that the normal value stored for X (at DBFSEG(3)) should 
be relocated at DBFSEG(S). This value is made output with 
the letter address z thereby fulfilling the requirement of 
the abscissa lathe output. 

A zero value in ISHVEC means to disregard the referenced 
register. The flag ISHUFL is set to 1 when shuffling is 
required. 

(2) Output parameters and flags are set to their zero or null 
starting values. Storage arrays are cleared; BCD arrays 
are set to DBLNKS; conditional storage arrays are set to 
DMBITS. 

(3) Subroutine CALCPn is called to set up the print column 
vectors and to determine the register title BCDREG. 

(4) The first PARTNO is converted to its readable form and 
punched out. The readable PARTNO is produced either for 
Tape Image (PUNCHA) or BCD Hollerith (PUNCHB). 

For Tape Image (option 20 = 1) subroutine PARNEM is used 
for even parity check readers, and subroutine PARNOM is 
used for odd parity check readers. 

For BCD Hollerith (option 20 = 0) subroutine IDPART is 
used. 

(5) The first PARTNO is saved in vector DPRTNO (dimensioned at 
11) for later printing as a title on each page. 

3.5-7 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.5.3.2 OUTPUT PROCESSING 

Normal output processing for a command block relies principally 
on subroutine GEPROn which is the main processing unit of GEOUT. 
In addition to processing each command block, subroutine GEPROn 
also performs several other functions. 

(1) The unit increasing sequence number (option 143=1) is 
generated in subroutine GEPROn. When called for, the 
generated number is stored in DBFSEG(1) and the CL tape 
record number is then printed at the far right side of the 
page under the title heading, CLREC. 

(2) 

The unit increasing sequence number is limited to the 
maximum size number permitted by the N register format. 
For example, if REGFOR(1) = 30.0, the largest number that 
N can become is 999. The maximum number is determined in 
subroutine ASSIGN in GEINIT and stored in the parameter 
SEQLIM. A number N greater than SEQLIM is made. 

N = N modulus SEQLIM 

Incremental motions are accumulated to produce the 
absolute coordinate values. The absolute values are 
remodified by subtracting the respective ORIGIN 
value(stored in the array ORGIN) to produce the Operator's 
Print when requested. This, in effect, is simply done by 
subtracting the ORGIN(I) value from the relative FROM(I) 
value, where I = 1,2,3,4,5. 

The accumulated incremental moves for the absolute or 
operator values are stored in the array DABVAL(I) for I = 
3 to 7. DABVAL(11) is for the feedrate in IPM, and 
DABVAL(12) is for the spindle speed in RPM. 

(3) After printing the BCDIMG for the command block, 
subroutine PPUNCH is called to count the command block 
characters, and then punch the command block. The block 
is punched according to the setting of option 20, that is, 
either for PUNCHA or PUNCHB. 

3.5-8 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

3.5.3. 2 OUTPUT PROCESSING (cont'd)· 

(4) A final chore of subroutine GEPROn is to print the total 
cut and dwell times, and the total tape footage generated 
by the part program. 

There are several other special sequences performed in 
GEPROn which are described in detail in the sections 
pertaining. Some of these items are: processing of a 
dwell block (Section 4.10); turret corrective moves (Part 
Programmer Manual Section 4.8.13) processing of 
information blocks (Section 5.5); OPSKIP processing 
(Section 4.11); and determination of cut and dwell times 
(Section 4.12). 

The prime purpose of subroutine GEPROn is to set up the command 
block for printing and punching. As described in Section 2.3.2, 
each non-BCD block has its floating point values converted to BCD 
through subroutine CONBCD. Subroutine SETLIM is then used to 
prepare the array BCDIMG which is printed by subroutine GEPRNn. 
Next, again using subroutine SETLIN, each letter address from the 
REGSTR table is inserted before each register value existing in 
BCDIMG. The BCDIMG is then punched by subroutine PPUNCH. 

Each command block is processed differently according to its CODE 
value. However, there are common processing routes for some 
different CODE settings. For example, when the command block is 
a motion of dwell block, subroutine SHUFFL is called to rearrange 
and modify the XYZ IJK registers per option 59 and 60. Dwell 
blocks are remodified, as needed, to produce the proper dwell 
code. (See Section 4.10). If the command block is for an 
incremental motion, subroutine CONTUR is called to compute the 
f eedrate command. If the command block is for an absolute motion 
(as for a positioning machine), the subroutine POSIT is called to 
suppress redundant coordinate points; this subroutine in turn 
calls subroutine POSFED to produce the positioning feedrate 
command. 

According to the related option setting, (options 38 and 107 ) a 
command block which has a redundant G or F command has its 
redundancy suppressed. Redundant s commands are always 
suppressed except for a spindle neutral or when immediately 
following a STOP, OPSTOP or SPINDL/OFF. 

3.5-9 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

3.5.3.2 OUTPUT PROCESSING (cont'd) 

Other than the above items, special processing of each command 
block is done according to its CODE value. The description below 
briefly details the output processing for each type of command 
block. At this point in the program, DBFSEG is completely set 
up, and the CODE value is also set in ICODE as 

ICODE = ICODEI + 1. 

CODE=O 

The command block is for a linear, incremental move. Processing 
is described above. The converted block is printed and punched. 

CODE=+1 

The command block is a non-motion block. The block may require 
an F command to produce a momentary dwell; see option 98. Or 
possibly, the block may require a dwell produced by a G04; see 
option 148. The converted block is printed and punched. 

CODE=+2 

The command block is for a rotary motion. The rotary value is 
converted to output units; but other than this, processing is as 
described above for a motion block. The converted block is 
printed and punched. 

CODE=+3 

The command block is for a FROM part. The block is shuffled per 
subroutine SHUFFL, and the accumulation of the Absolute and/or 
Operator Data is begun. The title FROM is printed as are the 
values of the FROM point. The .FROM point is not punched. 

CODE=-3 

The command block is for a turret corrective move as generated by 
the NOW modifier. This block is processed exactly as if it were 
for a CODE=O except that the corrective incremental moves are not 
sununated nor printed on the Absolute Printout, though they are 
for the Operator Printout. (See Part Programmer Manual section 
4.8.13 for the explanation regarding corrective moves.) 
Otherwise, the converted block is printed and punched. 

3.5-10 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

3.5.3.2 OUTPUT PROCESSING (cont'd)· 

CODE=+4 

The command block is for a dwell block and is processed as 
described above. The block is printed and punched. 

CODE=-4 

The command block is for a preparatory G code by itself, not a 
dwell. The block is tested at DBFSEG(11) for the existence of an 
F command in the event that the block may be for a CUTCOM. The 
F command is left untouched if one exists, otherwise, the 
processing considers the possibility of adding in an F command 
per option 98. G codes in CODE = -4 blocks are never suppressed 
regardless of redundancy. The block is printed and punched. 

CODE=+5 

The command block is for an END. This code signals the 
postprocessor to perform special actions before output, but at 
output the block is treated as if it were for a CODE=#1 except 
that no testing is made for redundant G,F, or s commands. The 
block is printed and punched. 

CODE=-5 

The block is for a RESET statement. This statement calls for a 
resetting and reinitialization of the postprocessor program, and 
as such, is not an item for output. The block is neither printed 
nor punched. 

CODE=+6 

The command block is for an INSERT statement and is already set 
up in BCD form. The block is immediately printed and punched. 

CODE=-6 

The block is for a BREAK statement. This CODE signals the 
postprocessor to produce the "breaking" of the output tape; and, 
if the machine tool recognizes an OPSTOP command {TABLEG(2) ¢ 
DMBITS) , the BREAK statement also issues an OPSTOP block. Hence, 
processing can follow two possible routes: (1) if TABLEG(2) ¢ 
DMBITS, the block is processed as for a CODE = -1 and is printed 
and punched; (2) if TABLEG(2) = DMBITS, the block is disregarded 
and is neither printed nor punched. see Part Programmer's Manual 
for further information on the BREAK statement. 

3.5-11 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

3.5.3.2 OUTPUT PROCESSING (cont'd) 

CODE=+? 

The corrunand block is for a PPRINT statement and is already in BCD 
form. The block is irrunediately printed but is not punched. 

CODE=-7 

The corrunand block is for a PARTNO statement and is already in BCD 
form. The first prograrmned PARTNO is converted and made output 
in readable format; it is also saved in coded (non-readable) form 
in the vector PART (dimensioned at 11 and in COMMON) from where 
it is printed as a title on each page. The corrunand block is 
printed and punched. 

CODE=+8 

The block is for a TMARK statement. No sequence number N is 
issued in a TMARK block, since the TMARK is stored in DBFSEG(1) 
for output. The title TMARK is printed at the left side of the 
page for each TMARK; the BCD value of TMARK (option 65) is 
punched. 

CODE=-8 

The block is for a LEADER statement. The requested amount of 
leader length is given in DBFSEG(3) so the postprocessor produces 
a length of at least this amount. The generated length will 
usually be slightly larger than requested since the postprocessor 
issues leader codes on a full card of 72 columns. For example, 
the statement LEADER/48 was given. The number N of full cards 
produced is 

N= < 48*0.14 + 1 > = 7 cards. 

The actual leader length L produced is 

L = 7.2 * 7 - 1 = 49.4 inches. 

The actual leader length is printed in the statement, 11 49.4 
INCHES OF LEADER HERE"; the same amount is punched using the BCD 
value at option 64 for- the leader code. 

3.5-12 



Cl&HT Ill POSTPROCESSOR 

3.5.3.2 OUTPUT PROCF.SSING (cont'd)• 

CODE=+9 

... for the computer programmer 

The block is for a postprocessor warning or error comment block, 
and as such, is already in BCD form. The comment is printed but 
is not punched. . If the Multiple Printouts (GEOUT3} is used, the 
comment is printed only on the Incremental Print •. 

CODE=-9 

The block is for a postprocessor information block; see Section 
5.5. The information in the block is used for output purposes, 
but the block is neither printed nor punched. 

CODE=±10,±11±12 

The command block is for a circular interpolation move and is 
processed as a mot.ion block as described above. The block is 
printed and punched. 

CODE=±13 

The cormnand block is for a thread. The block is processed 
exactly as for a motion block except that subroutine CONTUR is 
not called since a feed command need not be generated. The block 
is printed and punched. 

CODE=±14 

The command block is for a multihead turret corrective move. +14 
indicates a turret correction is made on head 1 while there is a 
combined, normal motion on head 2; -14 is the inverse effect for 
the heads. The head with the turret corrective move is processed 
as if for a.CODE= -3, while the other head is processed as for 
a regular motion. The turret corrective moves are printed and 
punched but are not summated nor printed on the Absolute Print. 
The regular motion is both printed and punched. 

CODE=+15 

The command block is for a motion which retains its feed in IPM 
as the feedrate command. It is processed as a regular motion 
block except that subroutine CONTUR is bypassed since there is no 
need for generating a f eedrate command. The block is both 
printed and punched. 

3.5-13 



CICINT Ill POSTPROCESSOR 

3. 5. 3. 2 OUTPUT PROCESSING (cont• d) 

CODE=±16 

... for the computer programmer 

The command block is for a positioning move. It is processed 
essentially the same as for an incremental move except that 
subroutine POSIT is called instead of subroutine CONTUR, and 
there is no accumulation of increments to produce an Absolute 
Print. The block is printed and punched. 

CODE=±17 

The command block is for a multihead combined motion. This type 
block is processed only in GEOUT3; an error is assumed in the 
other GEOUT's. The block is processed as a normal motion block 
except that frequent tests are made on the head flag HEADGB to 
decide the proper disposition of DBFSEG data relative to each 
head. For example, when the test is made for possible 
suppression of redundant G codes, the postprocessor must know 
from which head the G code it is processing has come before it 
can legitimately effect a suppression. Since DBFSEG (1 to 20) is 
set up the same for each head, the test on the HEADGB flag is the 
only means of knowing which head is being processed. 

Subroutine CONTUR is also bypassed for a CODE of ±17 since the 
multihead feedrate has already been predetermined. The command 
block is both printed and punched. 

CODE=18 

The block is for a FINI statement, and signals the postprocessor 
to conclude its processing. The punch buffers are emptied, the 
total cut and dwell times and tape footage is printed, and a 
general wrap-up of the program occurs. The block is neither 
printed nor punched. 

3.5-14 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

3.5.4 GEOUT1 (SUMMARY PRINTOUT) 

The GEOUT1 printout is the fastest and simplest output segment in 
the GECENT III postprocessor. It is designed to handle the vast 
majority of non-multiaxis, non-multihead machine tools, and is 
especially adaptable to positioning machines, lathes, and two-or 
three-axis milling machines. 

Its print format provides the reader with an easy-to-read sununary 
of the control data in its tape coded form and an interpretation 
of the data in absolute terms. On the left side of a printed 
page appear the punched tape image data of each command block. 
The sequence number (if any) identifies each command block. The 
column headings identify each of the registers utilized by the 
particular machine. The feedrate column gives the command value 
of the feedrate. Similarly, the spindle speed column gives the 
conunand value. 

On the right side of the page are given the absolute values of 
the same point. (Actually, the data can be either Absolute Data 
or Operator Data; but for convenience, reference is made only to 
the Absolute Data.) Feedrates are given in IPM and spindle 
speeds in RPM. If the machine has a rotary table, the absolute 
data reflects the absolute table location in degrees. 

Actually, two types of print are developed in GEOUT1: one for an 
incremental system and one for an absolute system. 

When the machine tool is of an incremental system, the data 
printed on the left side of the page are the incremental values 
x, y, or z as the case may be. On the right side of the page 
are the sunnnated absolute values of these increments. 

When the machine tool is of an absolute system, the x, y, z data 
are already given in their absolute form; hence, there is no need 
for a double representation of these values. 

The accumulated cut and dwell times are given at the bottom of 
each page, and on the final page the total tape footage is also 
given. 

See Diagram 3.5.4.1 for a sample printout of GEOUT1. 

3.5-15 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

3.5.4 GEOUT1 (SUMMARY PRINTOUT) (cont'd) 

GEOUT1 is selected when option 164 is 1, the standard value. 
Since GEOUT1 summarizes all the register data on one page, it is 
impossible to apply GEOUT1 for all machine tools, i.e., to 
completely represent all the register data for machine tools 
which have a large number of registers with large formats. For 
example, a three-axis mill with circular interpolation, 
programmable spindle, and tool changer would have the registers 
N G X Y z I J K F s T M. Representing all of these 
registers plus the Absolute Values X, Y, z, F, and S all on one 
line across a page would be either impossible or an extremely 
tight squeeze. The postprocessor, therefore, makes some 
decisions when developing the print layout. First of all, the 
postprocessor will attempt to produce all of the reg·isters on one 
line. If this is not possible, the postprocessor drops the 
absolute value column of spindle speed in RPM. If there still is 
not enough room, it drops the feedrate column in IPM. If this 
also fails, the postprocessor rejects the option of using GEOUT1, 
and uses GEOUT2 after first printing a warning comment to the 
user. 

These decisions are normally made in subroutine CALCP1 where the 
column indices are determined from the REGFOR table. 

3.5-16 



( ( ( 

l'JU2 "• ;,.;. {0108/69 C ll TT 111 L O e A Tl, 0 N L. 'f S T I MG t S ~ c T I O N J t I ) : tJME or 0•'· 2lM~~ 33MfN: 

••• eoMMANDs •••••••••••••••••••••••••••••*••-•••••••••••••••••••••••••• CAen No nn ci;E"lN~ CL~Ee Nn 

E>iAMPLI or o,~uf 1 PRINTo 1JT t ~ 
MAeH hUSECfNT ~ 2•:00~0; Ql'TA lih 1~2:00Qll, 2:!'lot10; u4:ono,,,i ' 4 

1:00,,0 
LE•D!R/ 2•:neee 2 4 ~ ,.01'1 I 4 5 8 

)( v z 
0 ~ n; o~ 

reD~•TI 1'5eoe; l"'M 5 I) 1e 
IPfNDL/ 21•!oonn 6 7 1, 
'OrJLNOI u:ooee; 5·;aeac 1 ~ 1• 

D!I; IS/ 8 c, u 
)( y z 

2;oooeonc 4:o"one'1o o: 
CYCL!I f'ACE1 2~00t!O; J:oooe, ~:·nooa 1!'1 1' 1" 
D! tS/ H 11. 2tt 

x y z 
e;oeooano •'wononobo o; 

C'!C~I/ OFF' 1~ 1~ u 
09 Isl 1~ 1l 24 

)( y z 
4;orrnaono .c:onooe~o 0; 

c•cUi/ Dl!ecr; 2:oot10; Jj9not1. o:noeo. J f.'M 14 1• 26 
CYCLIJ OIU LL·; 1:oono; 1.CJOOtJ • 1": "D"O 1•:t 15 28 
c'cui / 'f AP i. 2:ooeo, 4;anon. -.:en~o 15 16 3b 
C'CLI/ B"RF; 4~oeoo; 5~'1non. n :·rn~a, IPR 1" 1' 3~ 

D! !I/ 11 1" 34 
)( y z 

CYCLll M!LL~ 
e:onoeono a~o"oeo~o 

':oe~o; 6:Qno~. n..n1e~ 
o~ 

1~ 19 3, 
c•cl11 nrr 1• 2~ u 
UANIJ 2:ootln; 2;0000~ o: 21'1 21. 40 
D~ iSI u 2' ,, 

)( y z 
c•cL11 T'R(f; 

9;ooo~aoa . t:o"on980 o~ 
&:ooeo~ 1:a"oe, ~~teea. IPM 2! 2~ u 

CYC~I/ en· 2~ 2• 0 
D! tS/ 24 25 0 

)( y z 
e;onoeooo a~ooonuo o~ 

'OOLNO/ 2:oe"o; 6~oeon 2'J 2~ is e 
cYcL&I orr 2Y 27 5~ 
D~ ts1 2~ 29' 54 

)( v z 6;onooo"O 10~0,,onseo o· 
-

w C!CL&/ Dl!EI' • 5:ooeo 2• 29 58 . J'tEW!ND/ 1:11000 Jn 3~ 58 
U1 LEAO!R/ 2•:nono 31. 31 6e 
I rtN! ........, J~ 3~ 61 

-....J 

**•*•*ENO nr sr-ctI~N ltl •••••• 



w . 
Ul 
I 

I-' 
00 

P3882 

2 

• 
" ~ 

' 8 
to 
{1 
12 
13 
14 
1'.•:1 
15 
16 
17 
18 
19 
'-0 
'-1 
22 
:?J 
?.4 
~5 ,._, 
~8 

'9 
30 
l1 
]2 

(, 

th'f~- 10106169 ~.~; APT Itl 1n1n1161 TYM~ ~~ BlV~ ?3~~: 

1 
2 
3 
4 
5 
~ .,, 
8 
Q 

10 
11. 
12 
1~ 
14 
15 
1~ 

17 
1A 
19 a,, 
2t 
22 
2~ 
24 
25 
2,; 
27 
2A 
29 
:io 
!1 
!2 

PARTNO eX4MF'LC: nr Ge91JT 1 PRINTOU' 
MAC~IN1ne~EMT,24.~~TAA,13'-·'716A,{ 
CLP~~T 

LiAgER/24 
J." R I".' M I 0 ; 0 ·; 0 

ffJDrqA,/2;tpM 
SR p,tgL l'l 0 
rnot.~"11 :l;s 
G~ To12;4;·0 
C'lCLllFACE,·~.~.~ 
~o rn,~;!,·n 
evrLE/n~r 

~o r.n,4~4 • n 
C 'l C !.,. ; I D F Ei P ·; ~ , 3 ,· ~ 1 ! P M 
C~CLE/DRtLL1Y;1;10 
C~CL~/TAR.,"2, 4, t. 
C'CLE18~RE,4,5,~:n2;1PR 
~0 TM1•;~,M 
CV~LE/~tLL,5;6,0:o! 
evr:LF.1n~r 
TROIS/? ~?,Pl 
~0 T.M/()_.~.-t'I 
evCLEITM~u.6;1.a;1PM 
evru: 1n~r 
~o T"1A.A,n 
TO~LNOl2;6 
ev".".LE1r1r.r 
~o ,.~,~~10,0 
evrLE/T"iEP,5 
~EWtND/1 
LE HH:R 124 
r ! ~.,I 

'" 

33MIN: 

( 



f ( 

uo*G~~~RAL L-~cr~r~ ~o~T~~~c~s~oP 
·~A"" I.I IN r 24~ 

E\(Al-1J.>LE or !"!E~U,. 1 PRTti.JTQl'T 
N G ~ '( ., r· 

~XAMPU: or GF:OUT 1 pqINTC'lUT 
21: 8 tNCHr.S nr LFAOF.R Hr~r 

r~o~ •or~n:oonn •oo~o~ono0 +01ori.nooo 
L~l-l~ST RANGE= THAT s 0 1\Jnu: SPEFO PLUi I"l fS A<.;SUMFU 

014 80 
016 .a~: 00011 +r4~ono1 04 

Q;tTTQr.J ,:-EEDPATc Ml"IDE ASc:;lJ'"1E'.l 
Ot8 8? •o?~noi'lo 1~ 
O:.lO +08:0000 +ncs:onCJ" 
f)~4 an .o4:noon +"'4:oron 
0,6 8~ •O:'~l'lO~O 1 f\ 
n's 81 + 0., :· b 0 r, 0 21'l 
010 84 +o,:nof'lo 1' 
012 AC:: •o4:t'lano ()~ 

OH +oA:nooo •"'8:ol'lcin 
916 ·~ •os;:oo~o Q4 
042 an .11:0000 .~1;onQri 
044 IP •ot~no~o 1~ 
048 80 .1n:oooo + 1. 0: 0,., C),, 

e'o 
054 .c~:oooo ~ t 2; 01'1 Q ri 
011;6 8~ •01..M0"0 
O'S8 

*~R~M• MUST BE Gf V'~ A~TER AN *r~n* QR ~R~S~To 
21:~ TNC~~s or LFADER HrRF 

N~ ~ND ~TATEMF~T MA~ ~EEN GIVrN A~V~RC TME r1~I ST ATE '-1 E '' T 

w . 
U1 
I 
~ 
\..0 

TAPF r"Qf"IT~GE ~ 

s ,. 

n3 1:::> 

n3 0;; 

( 

'H·CE'1T.3 ~''* 

M l:i ~c!P~ S.RPM 

;o'-On 
+ono~~ • 0 20 I'! 

+r'13:o,, +Ol'O~~ *o2on 
+onoA~ tO~Oh 
+one~: f o :>on 

+ n J ·. o" +Ol'IO~~ •o~Qn 
+r11:nn +on10: •o~an 
+n4:or1 +onoA~ ;o;an 
+ns:ol'I +ono•: fO'Oii 

• 0,., 0 .. ~ ;on1n 
+~6:0,, +one~: ;o 2on 

+ono': fO~Qn 
+02·. on +ono~~ •o::?ci,, 

•GJ~o~: •o~oo 
+onoR~ IO,Qil 
+one~: •o'-'11i 

;n6:on + (.) n e": •o'-on 
~o .gne,_: , 0 !'" rl 





C(CHT Ill POSTPROCESSOR ... for the computer programmer 

3.5.4.1 DETAILED DESCRIPTION OF CALCP1 

As described in Section 3.5.3.1, subroutine CALCP1 is called from 
subroutine GEPRE when GEOUT is in core. The column vectors NIP, 
NFP, NPR, and NPT are set up for both the Incremental and 
Absolute printouts. 

One of the first items that subroutine CALCP1 determines is 
whether to produce absolute coordinate data or operator data; 
option 172 dictates which to use. If option 172 is zero, the 
title heading 

ABS-X ABS-Y ABS-Z ABS-A 

is printed; if the option is +1, the title heading 

OPR-X OPR-Y OPR-Z OPR-A 

is printed. If any of the register addresses is unavailable, 
i.e., REGSTR(Y) = DBLNKS, that register is deleted from the 
title. For example, if the NC machine has only the X and Z 
registers, references to Y and A do not appear. 

REGFOR(4) = REGFOR(6) = 0 

REGSTR(4) = REGSTR(6) = DBLNKS 

The title appears as: 

N G x z ----M ABS-X ABS-Z F-IPM S-RPM 

Optimum and equal spacing is provided between the register 
columns. 

A final change to the title is made if the NC machine utilized 
the metric system. If option 138 is +1 (indicating the metric 
system), the absolute title reference, F-MPM, for feedrate in 
millimeters per minute is used instead of F-IPM. 

The derived absolute title is temporarily stored in BCD form in 
the vector ABWORD. Later on in the subroutine it is used to form 
the permanent complete title that appears on each page. 

Section 3.5.2 describes the manner in which the column vectors 
NIP, NFP, NPR, and NPT are each determined and set up in 
accordance with the given values in the REGFOR table. These 
vectors are next extended to include the column format data for 
the Absolute Printout. 

3.5-21 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.5.4.1 DETAILED DESCRIPTION OF CALCP1 (cont'd) 

The feedrate in IPM column index is at vector location 25; thus 
NPR(25) is set to -103 indicating that the printed value of 
f eedrate in IPM must show three places to the right of the 
decimal point, must drop trailing zeroes, and the decimal point 
must be printed. The feedrate in IPM is printed with this large 
decimal format so as to embrace very small programmed values. 
The other column vectors NPT, NIP, and NFP are also set up for the 
feedrate in IPM. NPT and NFP are expanded by one i:f the metric 
system is indicated. 

A similar setup for the spindle speed in RPM is also performed on 
the column vectors· at vector location (26). 

Knowing the number of print columns which are to be used and 
knowing the number of registers to be printed, the postprocessor 
determines and adds the space increment to each element of NIP 
and NFP to obtain optimum spacing between each printed column. 

At this point subroutine CALCP1 has determined all the 
information necessary to print and punch the output. The final 
task is to set up the print title as a permanent BCD image. This 
is done by using subroutine SETLIN and the vectors NIP and NFP. 
The subroutine SETLIN places a right justified BCD word into a 
given array; it stores the right-most BCD characters of the given 
work into the given array beginning at the given initial position 
through the given final position. For example, the 

CALL SETLIN (REGSTR(2), 4,4, BCDREG) 

stores the BCD character at REGSTR(2) , which is 

1 1 1 1 1 G, 

into location (4) of the array BCDREG. Actually, the location 
value 4 derives from the calculation of 

NIP (2) + NFP ( 2) = 3 + 5 = 4 
2 2 

The average is taken in order to place the register title 
centrally over the print column. 

By this technique the print title for both the Incremental and 
Absolute Printouts is set up and permanently stored into the 
array BCDREG. A call to subroutine TITLE1 prints the contents of 
BCDREG to produce the tit le. 

3.5-22 



CfCf~T 111 POSTPROCESSOR ... for the computer programmer 

3.5.4.1 DETAILED DESCRIPTION OF CALCP1 (cont'd) 

section 3.5.3 details the overall general flow that occurs in 
GEOUT; therefore, little more need be added to that description 
since the program f lCM of GFDUT1 is substantially the same. The 
only minor difference is in printing the title (using subroutine 
TITLE1) and printing each BCD converted command block BCDIMG 
(using subroutine GEPRN1). 

3.5.5 GEOUT2 {COMBINED PRINTOUT) 

GEOUT2 is selected when option 164 is set equal to 2, or when 
GEOUT1, though called, cannot be used (see Section 3.5.4). The 
chief advantage of GEOUT2 is that it presents the Incremental, 
Absolute, and Operator data on consecutive lines all in one 
combined printout on each page. This makes it especially 
attractive for checkout and debugging purposes since the output 
data can be easily checked in its various output forms. Next to 
GEOUT, it is the fastest processing output sequence and is 
especially . adaptable to multiaxis processing though it may be 
used for any machine tool type except multihead machines. It is 
not recorrunended for positioning machines because the Absolute and 
Operator Data Printouts are redundant with the regular printout 
and are a waste of computer time. 

The print format of GEOUT2 provides in sequential order a 
representation of printed output as it exists for the 
Incremental, Absolute, and Operator Printouts in that order. The 
printed Incremental data is an exact copy (without letter 
addresses) of the punched output; decimal points and blanks are 
not punched. 

Across the top of the page is printed the machine registers title 
which is derived from the NC machine's related REGFOR and REGSTR 
tables. Each line.printed is preceded at its left most side by 
a title identifying the printout type for that line, as INC for 
the Incremental Print, ABS for Absolute, and OPR for Operator's 
Printout. These three type lines are printed only for motion 
records; for non-moticn records only the I~C line is printed 
except when the non-motion block contains a spindle speed, in 
which case the ABS line is also printed. 

The INC line is the true reflection of what appears on the 
control system tape. 

The ABS line represents the sununated motion values and gives the 
feedrate in IPM and spindle speed in RPM. Rotary values are 
given in degrees. 

3.5-23 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

3.5.5 GEOUT2 (COMBINED PRINTOUT) (cont'd) 

The OPR line represents the motion data in terms of machine 
orientation, i.e., the surrunated motion values are modified by the 
given ORIGIN values. 

If a sequence number (usually N) exists, GEOUT2 automatically 
makes it a unit increasing number irrespective of the setting of 
option 143. This value appears in the INC and OPR lines. 
However, the ABS line carries the CL tape record number as its 
sequence number, thereby making it easy to correlate each output 
line with its source CL tape record. 

A sample printout could be as follows. 

N G x y z F s T M 

INC 040 01 2.4 -0.1 1.12 075 28 02 08 

ABS 234 13.6 0 -22.6 20 80 

OPR 040 01 3.6 -10 -32.6 075 28 02 08 

INC 041 04 0.4 

INC 042 01 

INC 043 04 0.8 26 

ABS 246 60 

The accumulated cut and dwell times are given at the bottom of 
each page, and on the final page the total tape footage is also 
given. 

See Diagram 3.5.5 for a sample printout of GEOUT2. 

Processing of GEOUT2 begins in subroutine CALCP2 in GEINIT where 
the column vectors NIP, NFP, NPR, and NPT are determined and set 
up per the description of Section 3.5.2. In addition to these 
column vectors, the vectors NIPA and NPTA for the Absolute data 
are also determined and set up. These vectors are used for the 
Operator data also. 

3.5-24 

.,,,, 



C(t(NJ Ill POSTPROCESSOR ... for the computer programmer 

3.5.5 GEOUT2 (COMBINED PRINTOUT) (cont'd) 

The methods and techniques used in subroutine CALCP2 are the same 
as delineated in Section 3.5.4.1 for subroutine CALCP1 except 
that the additional vectors NIPA (initial print position for 
Absolute Printout) and NPTA (total number of digits per register) 
are developed by modifying the NIP and NPT vector elements for 
registers XYZABIJKF and s so as to expand the printout of these 
registers. As explained earlier, it is essential to make these 
formats broader because the absolute algebraic references will 
normally be numerically larger than permitted by the incremental 
data for.mat. 

Section 3.5.3 details the overall general flow that occurs in 
GEOUT; therefore, little more need be added to that description 
since the program flow of GEOUT2 is substantially the same. The 
only minor differences are the following: 

(1) The title is printed by subroutine TITLE2. 

(2) Each BCD converted command block BCDIMG is printed 
subroutine GEPRN2. 

by 

(3) The array ABSVAL carries the Absolute data. while the 
array OPRVAL carries the operator data. 

(4) The BCDIMG for the Absolute and Operator Printout is 
set up using the column vectors NIPA and NPT~. 

(5) To print the title INC, ABS, or OPR, the related BCD 
equivalent is stored into the parameter IDLINE which then 
is printed by subroutine GEPRN2. 

(6) The setting up and printing of each command block 
for the INC, ABS, and OPR lines is done in 
independant looping areas of GEPR02. 

BCDIMG 
three 

3.5-25 



l ) 

PJA8?. fhTE• fft/Ot,/69 r..~. APT Iii 1n1nti61 

1 PARTNO l!X01Pli:= OF' G~aur a PllPJTOUT 
2 MAC~IN/~E~'NT~2~,npT4R,1J~,1,164,~ 

~ ~L"R"-lT 
4 euTT~RIO 
5 0R!~fNl1,1,1 
6 FR~M11;1,1 
7 rE"AATl6n.1p~ 
8 ~0 T~l4.5,~ 
9 ~T"IR 

10 ~o rn1A~1.1 
11 ~0 T~l~.7,!2 
1? ~o rn1~.1.1 
13 ~o ,~,A~~.n 
14 ~o rn1n;n~n 
15 llAPtti 
1~ ~O T~l,D,2A,2Q 
11 ~o TOl~.n.A 
1A ~T~R 
1~ ets,fRrLE/~ 1 3,1 
20 Lt•LTNFJfPOINTID~2t1Alr,MT,TAMT~,e1 
21 L2sLTN~Jf Pnr~T11~1t.L!,T;TANTo;c1 
22 fN~JP.P/fPQ!N'l"•?•I) 
23 ~OIL1 
24 fLqST~~Q~G'IL1 
25 ~orwn1r1 
26 ~orwn1L210H1L1 
21 so r.n10,n,n 
2~ LElD~A/24 
2~ ~NM 
30 rJMJ-

-1 

TJMF ~r 9AV• '3~~: ~5Mf N: 

'° N 
I 

I..{) 

(""') 



( ( ( 

P31'U l'JA1i• fO/Of,/6t CLJTTE~ Lor.HicN Lf5Tl~Gr5J:CTinN tTI , .. Tl~E O~ OAV• 2~M~. J"MfN: 

••• r,QMMANns ·····················~····································· CARn ~JO UH t;E~Nl'l cu~r:e Nn 

EWAMPLE or ~•cuf 2 RRUil'fOl'T 1. 2 
MAeMt~/SPC:flNT~ 23~00flD, OP TAB,· 1;,2~0!'.IQll, t,l'IOf'IO; u4:ono!'l,s ~ • '-:nooo 
t!UTT~RI ": .. A 
~Rtl'iJ~/ 1:0000; 1~oeon. t: A fl n 0 5 8 

ritoM / ,. 1~ 
)( y z 

1 ~ ooeeona 1;onoouoo 1;ononono 
re Dru T / 6e:oooo: 111 t1 ' tf 
D~ U/ ~ H 

)( y z 4;ooeeona 5:oriorio~o 6;of'onono 
~TOP Q 11 

D~ JS/ 1" 18 
)( v l 

6~oooeooo 1:onof'IDIO 8~ononoeo 
D' ISi 11. 2ft 

)( v z 
6~oeoeooo 1:oneneeo 12~onooono 

D~ fl/ 1~ 2~ 

6~oti:doria • y l 
1.0"0l'O~O s:ononono 

O! U/ 13 2• 
)( y l 

,,:o~oeontJ o: o; 
OS fl/ 1• 21 

)( v l 
o~ "; o; 

RAP!D 1" 2A 
D~ ts;/ u 3e 

)( v l 
2o:o~oeenb ~o: onouBo 'o:onoriono 

OS IS/ 11 u 
)( v z o; o: o~ 

~TOP 1~ 3• 
D~ I SI d 2~ 3' 

)( y z 
Cl: 2:onoogeo o; 

D~ IS/ l. t 24 3t 
x y z 

5;otloeono 2:onono~o o: w 
~1( tH • clReu-:1 5, ~non ;,~nano 0 ~ 1~r1000 2'J 4t . 

Ul D' I SI Ci 21§ u 
I 

tv 
-.....J 



l ') l 

J( v z 
s;o:H1•~a 2:0'9000J9 0; 
5~09392"'7 2:a~lt186 o; 
r;:155131l4 2: CIU1'19S5 o~ 
r;; 2u•41s 2:02Jl0~5 o: 
s;2n,1•• 2~0~810l'5 o; 
.,:~n66D'3 2: 0''7A239 o: 
r;;J94'59A5 2:0,.0AO(Y5 a~ 
r;;o1u11 2~11'16~420 a; 
5j50576no 2j136'7453 0. 
5r558'50?J 2 .1~91't917 n! 
'5,60908?0 2:2n6,678 o: 
5; 6 1'7~0"' 2:4i4571S5 o; 
s;, 702t81"3 2:2--81'181! o: 
5i145'2&;9 2;JH?206 0. 
r; ~ 7~5'1Q3 2,JR09J87 o! 
~;s22•sc;1 2:4~1{1512 a; 
5; 8't~!908 2;4~33818 o: 
r;; aen9'~ 2;5~110~• o; 
5~914~445 2:503•2~6 o: 
r;; 937e514 2~61;1'520 a: 
5, 9'112U 2: H0 157rt~ 0: 
5;973A7'-7 2:11073~4 o; 
5i9A625~6 2;a~17958 0. 

'S,994~1A2 2,8031'054 o! 
c;'999!'§1'6 2:911151289 o: 
6!000~3'.)4 s:o1102n a; 
'5~99128•5 3: OAOUU 0. 
5~990~6'1 3:1•2n•U o; 
'S: '1U01 e 3~2n3•2U o: 
s;9~504os 3;a~•n0io o: 
r;;946'J"8 3,323,521 o; 
5,92 .. '16'it 3; 381106 o; 
5;8992073 :s: 4~81160 o; 
s;;a7et6'l 3: 03'1'6 o~ 
5;&Hl4't 3~5•6Ull0 o: 
s;ao20~• 3~5osn506 o; 
5~76~~9-a 3; 6•682112 o~ 
'5j721560t 3:6~JOU9 a· 
5,6ne2Aa 3: 7~65382 o; 
5;Utl6H 3j nn4'3 0. 

' s~5eu6~• 3 1 u5e4~3 0 t 

5;5284117 3. 149'>710 o· 
i;; '47451("7 3;1~0~116 o! 
5 ~ 4U'6~8 3•9tiU4C?9 o' 
5~36140~2 .J;9~294f0 a! 
lj:Jo2s3Q2 3j91'Ji.2~1 a; 
'5. 242~9"9 3,9JOU0 0. 00 

.,;1eie1'• 3~9~:J•4U o~ N 

5;1'-e~34CI 3~9q3'4~1 o: I 

s:o,8t8'4 s:9QUD0 o; L{) . 
CV) 



w 
U1 
I 

r-..J 

"° 

( 

O~ ! i/ 

os t 511 

LE: ADER/ 
F.ND 

rTNt 

4;9~5•0'52 
4~93384~• 
4;a11~3~a 
4; 8Ut~P5 
.. ; 74'~6~4 
4~6~956'50 
4~6~0'1!'.14 
4;51380~6 
4~!!Hl29"3 
4; 464651' 
4;03es.c, 
4;J6H1n1 

L' 
x 

2:21J1ori3 

x 
0 ~ 

2~:0000 

( ( 

4 i 0"0•916 o; 
3.9~82910 o: 
s:9'>2,J11 0. 
3;9~2~191 o! 
3:9111859'7 o~ 
3~95U2b' o~ 
3j 9!'9Ul5 o' 
3,9,,5UO o! 
3:87690•'1 o~ 
3: 845'-2l3 a; 
3;1102653 0. 
3 I 7'17108 o! 

2~ 4' 
y z 

2:0"0'-'ono o: 
21 u 

v z 
0: 0: 

2~ u 
2Q 5e 
3n 5~ 

•••••• ENn ~, S~CTt~N Itr •••••• 



'l l ) 

MAt".'litfN~ 
·~tGFNERAL !LEr-r~te DO~TPR~cFs~oR ~ECENT.3 ••• 
2 ' 

PAGJ! t 

E~A~PLE or ~&nur ? ~Rl~TQUT 
~ G ~ v 1 A f· J I( F' ~ 

EXAMPLE or ~FOOT 2 P~lNT~UT 
f Nr: ne1 17 

F" FiOM •0001~ •ot101: ,noo1; 
lBI •001!)1~ •O,,fH: ,o~H'l; 

RPQ oe~ •OOPJO; •otien: , OQ ,,0 • 

N~ S~tWDL~ ~TATfMENT H~~ QiEN ~TV!N PRJnR TO TM~ r1~ST ~Oft~N RPQUE~T 

f NS: na~ 01 .o ; •fl4~ +b5, 0~5: 

•Bl 014 •oenit; •oee': ,oon&; •non: uo: I l'M 

ttpff 083 n1 +oonJ; .•Ol't'J4: ,ogn5, .oo: 0~5: 

r NC: 084 04 "0 
lBI 016 •0004~ •OrlelJ: ,0Qt16; • "0 l'I: uo: IPM 

8Plt oe~ 04 +0Qtl3: +Ol'.l04: ,rion,; .on: "D 

H.JC oe5 ra +02: •Cl 2: •tn; 113: 
ABI n1e •OOfH~j •0,,0'1: ,o;na; •t'!On; 160: l·l'M 

8RQ ne' ra •rton5, •Ot!Oft: +norn; .an. 1n: 

ru OU ta ~ l'l 4 ·~ uo .. 
181 020 •tJ006! •Ol'.ICl1: '""12~ •no{'): 

t I 

'""· IP1"1 
~l'A 0(116 0 t. •0005, • oe ""': ,ingu; •on: 1'0 ~ 

f NC: 011 01 ;; "• i 
ABI r.122 •0906; •oeo1: ,n;rYe, .. eon: uci: UtM 

ftp~ l'l9? Ot. .0005; • 0 t'I 0 t\: .oon1; • 0 ('): 

f NC oe~ "1 --e1: ;;" 8; 0 '16: 

A81 024 •0006~ • 0""": ,o; rio; • tJ 0 0: l6a: (PM .,. nee 01 +0005; •Ot1fl1: gnQr>1 1 .on: 0~6: 

HH: OB~ ~1 ·06. ioo: 
•n 02& •OO~o! •oflon: .ooria; • fill 0": 16D: lPM 
~u no !H .0001: ;ot'lo1: ~00tl1~' • 0": 1t10: 

f NI: !"10 10 •?O~ • 21') ~ .20; 1 n; 
ABI OJO •OO~o; •Ot'12l'I: ""02a; • rrnl'I: 16D: IPM 

8Pt 010 10 +0019; •Or.JU: ,oou; .on: 1n: 

f NC 011 10 -20; ~2n: •2D; 
A81 03! •OO"DI • 0 P)f)": ,og"s; •,;on: I 6CI: IPM 

8 F' IR C\11 10 .. o 0El1, .. 0fll"1 : .non1~ .oo: 

f !QI 01! 04 ftO 

ABI 03'4 •OO!lO; •orieo: ,oooo~ +r;on: 1611: !PM 0 

ePa nt~ 04 ... OOH: ;. 0fl01: ~l'I QI'! 1; •on: eo 
CV) 

I 
Lt) . 
CV) 



( ( 

•••GPNERAL ELE~T~I~ oo~TPRnc~s~oR ~ECENT.3 *** 
~3: -MAl"'fil f NI= 

EVA'1PL.E or r;1nuT ? llRl~l'OLIT 
~ G " v 1 A 

f NC IH~ 01 .02: 
ABC C1J1 •Oo,,o: •oeo~: tlHJ~o; •non: 
~PR ni~ 01 cOOtll: •Orl61: :s 0g01 ~ .on: 
f N= 014 n1 •05~ 
ABI n!~ •OOCl5; •OrJD2: ,I') g 0Q I +r'°o: 
8PI {'It 44 01 •t>OlH~ •OtlfH: :l"HI 1 1 .on: 
f NI ra' ~3 .01; •et: 
ABI 04~ •0006, •Oflo~: ,oano; •"oo: 8PI n15 ~3 •OOCl5; •OftO?: •";ta; • 0,.,: 
f N= 016 tt3 ;; 01; •st: 
ABC 04~ •ODe5: •oeo•: ,ogno~ • fl! 0 0: 
IJP• t'l16 OJ • 0 0 fl if; •oeel: .oon1~ .oo: 
f NI 0t1 03 -~0~6~5~ -on:22R2 
ABI n•~ +OQ04;3A41 •Orttr~: '718 '""""; +noo: 
8Pt 011 eJ +nooJ;H41 +oee': nu i;IHH'1; • 0,,: 
H~C 018 et .02;1c;a• ;e1:11u 
ABC 044 •Oon2~2LP •Ofl!fJ2: ,ogna; •00,,: 
8P• 01e tH +0001:2131 • 0,," t: .;,0001; • 0": 
H'C 01• 01 -02;2137 =02: 
•U 048 •Dorio. • 0 fl I) t'I: '"'1"" ~ •f'°": 8P• 019 01 .. 0001: ;o.ie1: ;,,on1; •en: 

'-4:00 !Nc~ES or LEADER ME~F 
RECU&STED Mf SCELLANEOU5 ,~~erfg~ CODE I~ ~O' AVllLANL~ ~N T~I~ MACM!~F 

fNC 020 04 
A81 n5D 
I~• 020 n4 

w 

Ul 
I 

w 
0 

....... 

CUT TIME 2:04 
TAPE F'OOTAGI 

•OOflO; 
.. 0001; 

MJN~ 
J 

·o~el'I: ,aol'o; ~Hit OD: 
~orie1: ;ogn1; •" n: 

P'lt-JFLL TIME n: ~t~: 

f 

0,.,: 
OL 

oi: 

oe: 

( 

J I( r 
"" 3 rJ 0: 

e ~D: IPM 
Jno: 

1~0: 
l6CJ: !PM 

1 tto: 

01~ s~o; 
19'1:1: IPM 

01: r; e o: 

• "Q: IPM 
Q" ~ 

CJ!. : 
l'JC): !PM 

QL 

2u: 
ue: !PM 

2!5: 

2!H: 
160: lltM 

2t'1: 

u1: lftM 



CfClNT Ill POSTPROCESSOR ... for the computer programmer 

3.5.6 GEOUT3 (MULTIPLE PRINTOUI1-MULTIHEAD)· 

GEOUT3 is called when option 164 is set to 3. It is used only 
for multihead machines since it is the only print sequence 
capable of handling the many registers conunon to this type of NC 
machine. GEOUT3 produces in accordance with the setting of 
option 17 all or any one of the Incremental, Absolute, or 
Operator Printouts._ Each output is complete, i.e., all of the 
Incremental is printed, then all of the Absolute, and then the 
Operator. Processing time is greatest when all three outputs are 
request~d. 

Across the top of the page is printed the machine register's 
title which is derived from the NC machine's related REGFOR and 
REGSTR tables. Each page is identified with the identifying 
title of INCREMENT AL, ABSOLUTE, or OPERATOR. 

The Incremental data is the true reflection of what appears on 
the output tape (without letter addresses but with decimal point 
for clarity). 

The Absolute data represents 
gives the feedrate in IPM 
values are given in degrees. 

the 
and 

summated motion values, and 
spindle speed in RPM. Rotary 

The Operator data represents the motion data in terms of machine 
orientation, i.e., the summated motion values are modified by the 
given ORIGIN values. 

With multihead machines the register title printed at the top of 
each page consists of at least two lines of title, each line 
giving the registers for each head. The Head 1 title is always 
given first followed by the Head 2 title, and so on. 

Preceding each line of output on all three printout types is the 
title HEAD1 or HEAD2 to identify the processing head. A sample 
case might be: 

N G x z F s T. M 
H u w E 

HEAD 1 023 01 2.4 3.6 280 21 01 08 

HEAD 2 10 12.6 0.2 500 21 

The accumulated cut and dwell times are given at the bottom of 
each page, and on the final page the total tape footage is also 
given. 

3.5-31 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

3.5.6 GEOUT3 (MULTIPLE PRINTOUT - MULTIHEAD) (cont'd} 

See Diagram 3.5.6 for a sample printout of GEOUT3 with and 
without multihead processing. 

Option 17 is used to select any one or combination of the three 
print types. The standard setting of 111 produces all three 
printouts. See Part Programmer's Manual option 17 for a full 
description of its use. 

The processing sequence of GEOUT3 is considerably more complex 
than the other GEOUT 1 s, however, the program flow is analagous. 
Basic initialization begins in GEOUT when subroutine GEPRE calls 
subroutine CALCP3 where the column vectors are set up per the 
description of Section 3.5.2. In addition to these column 
vectors, the vectors NIPA and NPTA for the Absolute data are also 
determined and set up. These vectors are used for the Operator 
data also. 

The methods and techniques used in subroutine CALCP3 are the same 
as delineated in Section 3.5.4.1 for subroutine CALCP1 except 
that the additional vectors NIPA (initial print position for 
Absolute Printout) and NPTA (total number of digits per register) 
are developed by modifying the NIP and NPT vector elements for 
registers XYZABIJKF and s so as to expand the printout format of 
these registers. As explained earlier, it is essential to make 
these formats broader because the absolute algebraic references 
will normally be numeric ally larger than permitted by the 
incremental data format. 

With multihead processing designated, the column vectors 
mentioned above are used for head 1, and an analogous set of 
vectors are used for head 2. These are the column vectors NIP2, 
NFP2, NPR2, NPT2, NIPA2, and NPTA2. 

All of these vectors are determined by subroutine CALCP3 through 
a double call from subroutine GEPRE. The calling sequence of 
subroutine CALCP3 includes the input tables REGSTR and REGFOR for 
head 1, and GMWORD and GMFORM for head 2. See Section 2.4.5 on 
multihead processing for information on how these tables are 
derived. The output items in the calling sequence of subroutine 
CALCP3 are the column vectors which are set up in accordance with 
the input tables. 

Note also 
page title. 

3.5-32 

that the array BCDRG2 is constructed for the head 2 
See Section 2.4.5. 



CICINT 111 POSTPROCESSOR ... for the computer programmer 

3.5.6 GEOUT3 (MULTIPLE PRINTOUT - MULTIHFAD) (cont'd) 

Section 3.5.3 details the overall general flow that occurs in 
GEOUT as related to the processing and treatment of each command 
block, and this description holds well for GEOUT3. 

The major problem when processing a multihead sequence is knowing 
for which head the command block should be made output, and this 
is especially true for a merged block, i.e., a combined motion of 
the heads. 

As explained in Section 2.4.5 for multihead processing, head 1 
data are stored on TAPES2 and head 2 data are stored on TAPES3. 
Link GEMULT then overlays all of the postprocessor except for 
overlay GEMON. GEMULT now becomes the main processing element in 
core where the command data of each head is read from its 
respective tape and either merged or made separate output. In 
either event, the command data is stored not in DBFSEG, but in 
GMHBUF, which is dimensioned at 40, the first 20 cells for head 
1 and the next 20 for head 2. GEMULT passes on to GEOUT3 the 
setup command block buffer GMHBUF for output. The buffer can be 
for three possible conditions: 

(1) For head 1 only - GMHBUF(21) to (40) is DMBITS; 

(2) For head 2 only - GMHBUF(1) to (20) is DMBITS; 

(3) Merged for heads 1 and 2 - GMHBUF (1) to (40) is not DMBITS. 

Since GEOUT3 is written in terms of DBFSEG, the data in GMHBUF is 
first restored into DBFSEG before calling subroutine GEPR03. 
Thus, subroutine GEOUT first scans GMHBUF to determine which of 
the above three conditions exists, then it sets the flags HEAD, 
HEAD1, HFAD2, and NOW accordingly, stores that portion of GMHBUF 
into DBFSEG, and calls subroutine GEPR03 to output the block. A 
non-zero setting of flags HFAD1 and HEAD2 indicates current 
selection of that head; a non-zero setting of flag NOW directs 
GEOUT to conclude the command block with an EOB. Whichever head 
has been selected for output, the COMMON flag HEAD is set to the 
value 1 or 2 to designate which head is currently operative. The 
flags are set according to these conditions: 

3.5-33 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

3.5.6 GEOUT3 (MULTIPLE PRINTOUT - MULTIHEAD (cont'd)_ 

(1) Head 1 data only - HEAD1 = 1, HEAD2 = 0, NOW= 1; DBFSEG 
is set up with GMHBUF(1) through (20). 

(2) Head 2 data only - HEAD1 = 0, HEAD2 = 1, NOW= 1; DBFSEG 
is set up with GMHBUF(21) through (40). 

(3) If GMHBUF is for a merged block, then HEAD1 = 1 and HEAD 
2 = 1. DBFSEG is first set up with GMHBUF(1) through 
(30), NOW= O, and DBFSEG is made output. Afterwards, 
DBFSEG is again set up with GMHBUF(21) through (40), and 
NOW = 1, and DBFSEG is made output. 

When each head's data is made output, subroutine GF.,OUT sets up 
the proper REGFOR and REGSTR tables for that head. The buffer 
GMWORD for head 2 corresponds to REGSTR for head 1, and, 
likewise, GMFORM corresponds to REGFOR. 

Multihead output processing of the command block DBFSEG follows 
the normal flow through GEOUT3 as described abovE~ in section 
3.5.6 for non-multihead machines except that at certain key 
junctions a test is made on the HEADGB flag to branch accordingly 
for the sequence for that head. This usually is done, for 
example, in setting up the Absolute data vectors DABVAL for head 
1, or ABSVL2 for head 2; and similarly, for the Operator data 
vectors OPRVAL and OPRVL2 • 

The HEADGB flag is also tested when suppressing redundancies, 
i.e., redundant G, F, and s codes are suppressed by head only. 

3.5-34 



( 

w . 
U1 
I 

w 
U1 

A3e6.5 

?.1 

11 
'5 
6 
7 
R 

9 
10 
12 
13 
14 
17 
23 
24 
25 
26 

30 
,31 
32 
33 
34 
3~ 

38 
41 
43 
52 
60 
66 
~8 

69 
77 

,q J 
84 

( ( 

DATc- 10/l~/69 ~.-, APT Ill t1/n1t'7 T I ~1- (") ._ U Av- 1 7'4f~ • 9M 1 ~I' 

1 PA~ T l'\i 0 f: )(At-: PL t:. OF : · f'." ll UT ;~ .q I "Jn UT 
~ ~ACHIN/GEC~~r,~1.o~TA~,1c4, ~ 
3 t i r. HA !~GE r_k T l n t·. ~ 
~ C'L.PFi~'-'T 
4 l,;Q~~!-ql'J/? 

5 SELECT /HED, 1 
6 OP/t 
1 rROH/O,o,o 
8 T 01.. t !-<I 0 , 0 0 0 '' 
9 ~f AD~R/24 

1 o H· IHH Tl 1 n , t • ·1 

11 TMA~K/1 
12 TU~RE:T/2 1 3,2,:!,F"Rn T 3il N1 M•1;Ji.JE 1-:JLL BE AVAJLt.RL.f f"(JR TUf-fREf 
13 INSERT ~oaOG06H1M2~T 
14 r,on~~T/ON 
15 SPtNDL/100,~P~ 
16 GO T0/3,4,0 
17 r.o T0/2014,1· 
1~ SPP~DL/170,•·PM,t.CLW,"A\l ,E'.,2 
lQ r.Q T0/171611• 
20 TUR~ET/4,5,0,h,f R0NT ~$ TURHET C~A~G~ 
21 rEJ~AT/40 
22 GO ro110.10,1 
23 SP P'DL /OF"F 
24 SELECT/1-!E:O,? • 25 OP/2 
26 FRQM/Q,(I,~ 

27 SPlNDL./'-0,RPM,t~ANGt,l 
2B TUQRET/2 1 4,~,j 
29 GO rn110.e, ! fit liEARS SHIP UP 
3 0 r) 0 TO 112 , 1 n , ,., 1' t GE A~ s s H l F' T I"() ~ 1 \I 

31 RAP IO 
32 t.O T~/12112,~ 
33 h'AP!D 
34 ~0 TQ/18114,, ~; GtAHS STAY lN PAPlD 
35 r.O T0/20120,, 
3~ GO T0/22 1 24,n 
37 r.o T0/?4,24,~ 
38 GO T0/9,9,n 
JQ GO ro110,11,1 
4o FE-IJRAT/0 1 21 l!'k tli IPR NOT '·Hl'fOHri~y 
41 r,o Tn110,2n,i 
4? SPI~ULIOFF 
43 GO Tn/5,~.n 
44 l"IPn, 
45 RE~I~U/1 
46 rpn 



l ) ') 

A3n63 LJATI:.- 10/1-'/f19 C ll lT 1 P L li!"'. AT T " i :_IS TI Hi ( S t.-C T I'' N ITT ) ' TlMt: Of."" r1 AV• 11 P, 9MtN. 

* * * c 0 M ·'1 A N f) s 0 * * * * * •• 0 * * u * * * * * * * 0 * ~ ;; * Cl • * ·~ w * l) .:1 ct lt !; :I * * * * * ct • * * • 0 It * * * & $ * * It • • • c A. ~ I f'J Li T r-J T t;t::; 1 r L- f.<FC t-40 

EXAMPLE or GEOUT 3 PRlf'HOUT 1 2 

MACM t N11;ECE~n, 51,JOOO, CPTAt~• J 1-,4, r; n LI r;, ~.onno 
12 4 

COMB!N/ ? • (; 0 0 0 
4 fl 

SE:l..ECT I HEL1 1,COOO 5 8 

OP/ 1,0000 
,., 1 0 

FROM I 11 7 p 

x v l 

0 t ! • ('I • 

ounov Q • (J 0 0 5. o,ucr,L.:>, () 'l'l · (j? ~ 8 14 

I NTIJL.I 0' f 0; , (] . ~ 8 15 

LE:-ADE11/ 2'+,nono b 9 17 

FEDRAT/ 10,0000, IPM l 10 19 

TMA.RK/ 1,0000 b 11 21 

TURRi::'. TI ?,nOOO• ~s.ooc1. 2. 0; 11.i. ) t Q !"! 1) '"'I F H 0 ~1 T 9 12 23 

NOOOG06~1M28i 10 13 25 
COOL\ITI a~. 

12 14 27 

SPINDL/ 100,nooo. RPM 13 1 !:» 29 

os 1S1 14 16 31 
x y l 

31000001') ~.ooorion·i 0 I 

os JS/ 17 17 33 
x y z 

2~P0000C11J tJ. on u no o ·1 0 I 

SPINDL/ 17n,oooo, 11PM, CCl,..W, , A 1\IGt, 2' f) "') (J 0 2:S 18 35 

OS IS/ 24 19 37 

x "( l 
171000COOC1 f,. (J ('1[)nfl0 cl r' 

TURRET/ 4,nooo. 5,000:1, 8,Q.ino, 'i f 0 I') !l ! , r r.rn~n 2~ 2n 39 
F"EORAT/ 40,oOOO 26 21 41 

os !SI 22 43 

x y l 
10,0000000 tr. ooonoo1 0 I 

SPINDL/ riF'r 2.5 45 

SEL.ECTI HED• 2,0000 24 47 

OP/ 7,nooo 25 49 

FROM I 26 51 
x y z 

0 I 'I 0. 

SPJNOL/ 60,0000, RPM, lo( M~Gt:, 1f0,,0 0 27 53 
TURRF:TI 2,0000. 4,0000, 3,0rino, ~.oo H 28 55 

OS IS/ Jo 29 57 
x y l 

1~1,000JOOO ·, U00'10f'.H ('1, \.0 
l) s IS/ J1 30 59 ('V') 

x y l I 

121000COJ~ 1., • no e ri or ·1 0. 
L.{') . 
('V') 



w . 
U1 
I 

w 
....:I 

( 

RAP to 
OS ISi 

HAP IO 
j) 5 IS/ 

l)S IS I 

us IS I 

os I S1 

os tS/ 

os IS I 

renRAT1 
OS tSI 

SPJNDLI 
OS ISi 

OP/ 
PEW IND/ 

F"INI 

)( 

12. 00001)00 

x 
lrl,QOO'JOJiJ 

x 
201 'J00'.'08n 

x 
n1 OOOOOJf: 

x 
24,000(;Q!)[I 

x 
9,QOO:iO'.JO 

)( 

10 I OQ0f1Q:JO 
o,~ooo, IPR 

x 
10.onoooJo 

OH 

x 
,,0000000 

3,0000 
1,0000 

( ( 

J? 311 61 
3.i 32 63 v l 

t ~·,on ri I"! on ·1 n • 
..S4 J3 65 
J? J 4 67 

y l 
1 4 , ri o orion 11 0. 

JM J!> 69 v l 
21 , 1101} n(Hi ·1 n • 

41 Jl> 71 
v l 

:> .. , r: o Cl n ti o '.' 0 I 

4~~ J7 n 
v l 

24 I (11)[) 'llJ 11 "! n • 
5? J8 75 

y l 
r; t U C 0 ') 0 0 ') n' 

611 39 77 
y l 

i.~ '000(')601 O• 
66 40 79 
6b 41 81 

v z 
2t·. l1nuooo1 n. 

69 42 8:5 
71 4J 85 

v l 
,.,oooo(lon 0· 

44 81 
83 4' 89 
~u 46 91 

•••••• F.,p OF SECTIOf\i Ill •••••• 



l l '} 
*._~1it11.!_=HAL i:L,.1":":TRJr: Pr1STPR0CF-S~:"ioi i~t;;r:1:;- f .. J *** 

Jtlt* I :" C ~ E- M E '-1 T h L * i> .. 

MA!''.-l!-<E 5 t' S.\ ··•PU MULTI~~AU MACMl~t 
[ XA MP 1.. E 0 r G !:: C U T -~ P 1· ! r T O : 11 

~J G x l I I< ~ s T M 
fll G u itl ~ J E: s T M 

EXAMPLE or GFOUT 3 pr.INTOUT 

HEAD 1 
fROM •00000. +coooo. 

24,00 I NCl.iE:S or 1..EAIJE~ HERf:: 
TMARI< 

HEAD 1 
023 04 23 

NOOOG061-i1M2~t 

HEAD 
029 04 08 

L 0'"' E s T RA '1 G ~ T 1-1 AT s p Pm L, E: s p E F n F ALL s I N 1 !:> A 5 s u , F iJ 

MFAD 1 
029 04 09 OJ 

HE=AD 
031 04 +000.05 41 

MEAD t 
n31 01 + 0 Q.3. +Cr4 1 f_' 020 I 

HEAD 1 
n33 10 •017, (; 0~9' 

RANGE REQUESTED I~ ~OT AVAl~A8L~, U SF. H I · .. '-H; S T 

~ARNING -- SPINnL~ nIRE:cT?ON ~AS CHANG~~ 

l-IEAD 1 
035 ~4 14 04 

~EAD t 
037 01 -003, •C02, :• 02i~. 

HF::AD t 
1139 J4 4~ 

H~AD 1 
C39 :1 -OU6, ,.Q (l 6 I ,, 01?. co 

CV) 

I 
H~AD 1 l.{) . 

('4 3 01 .. (1u7. ·~ ')4 I i 0, i~. CV) 



( ( ( 
~H1•l2Fi..r:kA1. b.(.i'~T11JC' f'05TPR"CEs~:;1H 'H::Cf.:"'T-3 *** 

~ :t• JiJCl-IE"'1E\JTAL *** 
MAC,, T r~F r; 1.' S" ·'PLE: MlJl_TIHtAU ~c\CHl"it: 

E:)(AMPl.r. or ra-1 u T ,3 p ;, T 1-. T (Ji I l 

N G x l ' I( F s T M 
N r, u itl ~ J J I: s T M 

HEAO 
045 Q4 o~ 

HEAD ? 
F'ROM +oocoo, +aocoo, 

HEAD ?. 
053 :J4 0'"' 04 

HEAD ::> 
055 04 24 

MEAO ~ 
057 04 •000.1)5 45 

HEAD :;:> 

057 1C •010, +008, ·1.312 t 

HEAD 2 
059 J1 •002, +002, t) 141.. 

-HEAD ::> 
063 01 •002, 004, :

1 381'1 t 

MEAD ?. 
067 01 +00'>. +002, n 24 it' 

HEAD 2 
06Q 01 +002, +006, ,06~,, 

HEAD ? 
071 01 +002, +00~, n081, 

MEAO 2 
073 01 +002, :J2un, 

HEAO ? 
075 1C -015, ... 01 !::) • :

1 td9' 

~EAO ;,· 
f177 Jl +no1, •OG2, ,; 1 / Q' 

HFAD ::> 
w 081 01 •009, "013' . 
U1 
I HEAD t: w re:s 04 05 \0 



l 

E:XAMPLl: 
N G x 
i~ 'I LI 

HF.:AD ? 

085 to -005, 

H~An 2 
OBQ :J4 

) 

* ;.; ~ l_J ~ r,, ~ h A 1,_ f: l.. ~: - T R T C P n 5 T P ~ 1.; CF S ~ 1 .1 R 'i I: G t: ' T - 3 * • * 

f-1AC· T ;.j:: ".'.'LI 

0 F" G ~ 0 U T :~ P ·• T. i\ T (: 11 T 

z 
w ·~ 

•Cl4, 

~~• !NCRbME~T~L •~~ 

<; ~ ~PU: f'.1 UL T I Ht .~ U ,._,: r· H l : t: 

K 

J 
f. 

I:: 

0 d1 • 

s 
s 

N 0 E N D S T AT f: :-1 E N T ~i A S ~H: E N G I V r N 8 E: HlFH: T .. r F I "J I .1 T A T ~ "'F: N l 

CUT TIM~ 6.10 MIN, il'.•.f.:L!.,. TIM· 0,!12"'1I!, 

TAPE roOTAGE 5 

T 
T 

H 
M 

.s 0 

., 

0 
~ 

I 
L{) 

('I") 



( ( ( 

* v i> t, p, r::: f'< A L. i: l. t: ·~ T H I C F' 0 S T P ~ n r; F S S Ll R G c C t ' : T - 3 • • • 

••• A8SOl.UTf *** 
MAC · Y iJf: ? 1 • SA'~PL.f: :·1ULTl~'E:AU Ml\CHf'Jt: 

EX01PU: Of ., E:. 0 u T 3 pt• T hi Tli I ' T 
i'J G )( z J K ~ s T M 
N c J u w l J c s T M 

EXAMPLE r)f" uFOUT 3 PPP.HOUT \ 

HEAD 
P~OM •00000. •onooo, 

24 l~CH~S OF LtAOEH HFRE 
TMARI< 

HEAD 1 
023 04 +00000, +OOCiJ0 1 2.S 

NOOOGOMHM2Al 

HEAD t 
029 04 •00000, •00000, 08 

MEAD 1 
029 04 •00000, +() 0 000 t 100.0 03 

HEAD 
031 04 +00000,05 41 

HEAD 1 
031 01 +00003. •00004, OCtt<Ol~, 

HEAD 1 
033 10 +00020, +OOOC.4 1 

c ri n r)10, 

HEAD 1 
035 04 +OCOlO, +COC04, 1">0,0 04 

HEAD 
037 01 •00017, +(10006, 0jlr.01 t. 

HEAD 1 
039 04 •00017, +('10006, 4~ 

HEAO 1 
039 01 •00017. +00006, ocno1n, 

MFAD 
043 n +00010, +(l001Q I Q ri :ici 4r, 

w MEAD . 1 
U1 1)45 04 •00010, +00010, 05 
I 

.c;:i. 
I-' 



l l ") 

«H1Ji1Er,El1A1. t:l..•-::"'.TRIC P1STPW"'c;ES:.;'lR ';l:Ct;'.T.-3 *** 
••• A850LUTr.: 

··~ ''1Ar, •. t NE '"> t ' S:.. "Pl..t:- t•Ut TI ;4f: .~ U ~1 t. CH l :JI: 

E )( H1 Pl. E 0 f •.1 t 0 U T 3 P " t 1·.; Hit Jl 
N G x 7. I K ~ s T M 

N G u ~ H J t s T M 

HEAD ? 
f"R0~1 •00000, + () 0 coo. 

HEAD 2 
053 '.)4 +ooaoo, + [l 0000. OtO,O 04 

HEAD :? 
055 :)4 +ocooo, +COCOO, 24 

HEAD 2 
0~7 04 •00000,05 45 

HEAD ? 
057 10 •00010, +00008, . [Ir;, C'l4'1 • 

Ht:AD 2 
059 01 +00012. +00010, 0 r, ., 04 '"r, 

HEAD ? 
063 01 +00012, +10012, IJ!'Hlll 'l , nooo4, 0 (; ··15;;. 

HEAD 2 
0.6 7 01 •00018, +00014, QrlP1~<. 

HEAD 2 
069 01 +00020, +., 0 0<.'0' ci.., , n4 ".J, 

HEAD ~ 

071 01 +OOJ22, •00024, 0 f' ~. 041'1. 

HEAD ? 
073 01 +00024, •000?'4, orro4ri, 

MEAO 2 
075 10 •00009, +C\0009, n n ri 040, 

HE:AO 2 
077 01 •00010, •00011, (! r1 rio40, 

1-f~AD ~ 

081 01 +noJlO, +00020, ll" '101?. 

HEAD ? 
N 
~ 

na3 04 +00010, •00020, 05 I 
L() . 
M 



w . 
U1 
I 
~ 
w 

( 

HEAD 

HEAD 

N r; 
N G 

2 
085 10 

2 
089 04 

CUT TIME 
TAPE F'Or'.'TAGE 

EXAM?l,E or 
)( 

u 

•00005, 

•00005, 

6~10 MIN, 
5 

( 

•••GEN~~•L EL~f:TRtc PQSTP~ncfS5nR G~C~~T~J ••• 
••• ARSr')Ll!Tf *** 

MAC ,, t r-: E 5 1. , S ti 1P I,. f: ~UL T I ~t E A LJ MA CH I ~~ t:: 
r, t:: 0 U T 3 P ~· ! '"' T 0 \J l 

Z I K F' S T M 
w H J t s T M 

•00006, on0012, 

•00006, 30 

DWEL~ TlHr o.o2MtN, 

( 



l ') ) 

* ~ tt t, E '"Fi< A L t: I..~ :.; TR I C P 0 ST P ~ 0 Ct SS ri ~ G c C: I: '.; T - J • • • 
*** CPEiH TOR *** 

"1ACr· t 1~E S 1.' S-'1 q.:il~ Ml1LT1"1~AU HAr::HlNc 
EX AMf.lL. t or Gt OUT 3 pf. tr'· T D!Jl 

N G x z I K ~ s T M 
N G u ~ ~-i J l: s T M 

EXAMPLE or GEOtJT J PR PH OUT $ 

HEAD 1 
P~OM +00000, •00000, 

24 INCH~S OF LEAOE~ ~F-RF 
TMARI< 

HEAD 1 
023 04 23 

\JOOor,o6H1M2t3$ 

HEAD 
029 04 08 

HEAD 1 
n29 04 09 03 

Hl.;AO t 
031 04 •OOOOO,fl5 41 

HEAD 1 
.031 01 +00003, •00004, 0 n :10 2 G, 

MEAO 1 
033 10 +00020, +00004, o:iro59, 

HEAD t 
035 04 14 04 

HEAO 1 
037 01 •00017, •OOOOtl, u n 11 02e, 

HEAD 1. 
039 04 4 :> 

HEAD 1 
039 C1 •OC011, -00000, orro12 1 

HEAD 1 
043 01 •OC004, •00004, orqo~n. 

~ 
~ HEAD 1 I 

n45 04 05 I.{') . 
("t") 



( ( ( 

•~•bEN~RA~ E~l~TRJC PnSTP~OG~SSJR ~~C~P.T~J ••• 
*** OPERATOR *** 

MAC1°triE 5 I I Sr.'4fJl,.f;: MULTIHEAIJ Mt.C:HIL·t: 
EXAM?l,.E or GEOUT :'S P•·!f,;Tl)lJT 

N ('j x l t i( F s T M 

N G IJ \ti l..j J E:: s T M 

,_.EAD ? 
F'~OM +00000. •00000, 

MEAO 2 
053 04 0 I) 04 

MEAD 2 
055 04 24 

HEAO 2 
057 04 •00000,05 45 

HEAD 2 
057 10 +00010. •onooa, Qf';'IJ1?, 

HEAD '2 
059 01 •00012, •00010, 0fH'1 <4 l, 

HEAD ~ 
063 01 +00012, •00012, o neo". nnoo•, on n3eo, 

HEAD ?. 
067 01 +00018, •00014, 000240, 

HEAD '-
069 01 +00020, +OOOi>O, onno6.3, 

Hs;;Ao 2 
071 01 •00022, •00024, onoos9, 

HEAD 2 
073 01 +00024, •00024, O'l'12on, 

HEAO '2 
075 10 •00009, •00009, 01'JU1~9, 

HEAC '2 
077 01 •00010, •00011, OOP171, 

HEAD ::? 

w 081 01 +00010. •00020. 0('10013 1 . 
U1 HEAD ? 
I 083 !)4 05 
~ 
U1 



., 

EXAMPLE or 
N G x 
N G l_I 

HEAD 2 
085 10 +00005, 

HEAD '2 
089 04 

CUT TIME 6.10 MI ~l, 
TAPE f"OOTAGE 5 

l 

•~•~E~E~AL E~~:TRJC POSTPROCESS~R GtCE~T-3 *** 
••• OP~RATa~ ••o 

MAC1·J1,E ~l,, S4·~Pl.E >-1llLTlHEAU MlCHl~!l: 
GE OUT 3 P~ t l\JTGUT 

z r K f s 
w ,..., J I: s 

•00006, oonoi:;1, 

D~ELL TIM~ o.o~MtN, 

., 

T M 
T M 

JO 

\.0 
-=::fl 
I 

Lf) . 
M 



C(CHT Ill POSTPROCESSOR ... for the computer programmer 

3.5.7 GEOUT4 (MULTIPLE PRINTOUT - NON-MULTIHEAD) 

GEOUT4 is called when option 164 is set to 4. The multiple 
printout of GEOUT4 was formerly the standard printout of the 
GECENT II postprocessor. Like GEOUT3, it yields the separate 
production of all or any one of the Incremental, Absolute, or 
Operator's Printout - as selected by the setting of option 17. 
GEOUT4 may be used with all types of NC machines except multihead 
machines which must use GEOUT3. 

Processing for GEOUT4 (non-multihead machines) deviates only 
slightly from the general description found in section 3.5.3. 
These differences are as follows: 

(1) The register title is printed by subroutine TITLE3. 

(2) Each BCD converted command block BCDIMG is printed by 
subroutine GEPRN3. 

(3) The array DABVAL carries the Absolute data while the array 
ORPVAL carries the Operator data. 

(4) The BCDIMG for the Absolute and Operator Printout is set 
up using the column vectors NIPA and NPTA. 

(5) The setting up and printing of each command block BCDIMG 
for each of three printout types is done in three 
independent looping areas. 

(6) After each command block of Incremental Printout is 
processed and made output, the Absolute and Operator data, 
if called by option 17, are processed for output and 
written on a tape by using subroutine GMWRIT. The 
Absolute output is written on TAPES1, while the Operator 
output is written on TAPES4. 

(7) Subroutine PAGE prints the page number. 

(8) Subroutine TIMES prints the total cut and dwell times and 
tape footage at the end of each printout. 

3.5-47 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

3.5. GEOUT4 (MULTIPLE PRINTOUT - NON-MULTIHEAD) (cont'd) 

(9) On a FINI subroutine ABSOPR is called to output the 
Absolute and Operator Printout. This is accomplished by 
rewinding TAPES1 and TAPES4, and then opening them for 
reading. TAPES1 is first processed for the Absolute 
Printout by reading a block of data using subroutine 
GMREAD, and printing it out by calling subroutine GEPRN3. 
Subroutine TITLE3 is called for each new page. TAPES4 is 
similarly processed for the Operator Printout. 

see Diagram 3.5.7 for sample printout of GEOUT4. 

3.5-48 



w . 
Ul 
I 

.i::i. 
l..O 

( 

P,~1:qp 

~ ~ 1 

5 
It 
1 
@\ 

~ 

1 0 
t1 
t2 
tJ 
14 
15 
16 
17 
t8 
0 
,0 
n 
'-J 
?4 
2§ 
26 
n 
'@ 
29 
lO 
H 
l2 
~J 
H 
]5 
n 
~8 

H 
4J 
46 
47 
IJ2 
53 
r; r; 
'56 
~7 
lj 8 
1§9 
fl 0 

"1 
"2 

( 

f'ATE .. tO/Ofi/i'-9 ~.~. APT IT I l:'lln1'61 fTM~ ~V ~~1• 't~~; 

P ~ Q T ~ ~, ? )( ~ H ~ L r i r r, c: G 11 T 4 P q I 1JT ri u r 
:? M~r:~I'J/~F.r-Ei,r,2?,rpr4n 1 164,4 
3 -i: i c µA'! c; i::- n Pr l n "Jc; 
~ r:LrR~1r 

4 TOI EP/n~non5 
5 LE~DrR/24 
~ F"E"'RAT/1'°', tPM 
1 TMAR~/1 

R TUHR~T/2,l,,,?.rQnNT I' ~a M-Cnoc WILL A~ AVA!LA~L~ fQQ TURRFT 
9 I~SERT Noreno~M1M~RC 

1n rM~MIO,DiO 
11 r, Q l'I L ~I T I 0 ~I 
1~ SPl~~L/1~0,RP~ 
13 r,o rni~,4,6 
14 pPRtNT EVAM?L~ Of A ~E~M~NTATteN DUE Tn A 
t5 P?RtNT PATl-4 WM!Clll IS GREATF::R 'fJ.IA~' TMr: ~A)(fMU~ nEPA'HllRF 
t6 ~o rn1'Qi4,o 
17 PRF~UNIS~ 
1R Af P/~N 
1 9 e 0 ,., L ll T I 0 r, 
20 ~pernp 
21 !PTWnL1110,RaM,cr.LW,eANGF.' 
2' ~o rn111i&,e 
2~ TuoRrT'4i5.8;a.,~oWT ,, TU~R~T CHANGF 
~4 [EMRAT/4n 
2'5 ~T"'I~ 
a6 PPRfNT EYA~Pl.E OF ~A~In TR•VF~SE SMtrTtNn 
27 RA!'tn 
2~ ~o T~11a;a,o i' GFAQS S~JrT uo 
2~ ~a r~112,1~.n 5~ ~E•R~ cHrrT no~N 
Jn thPff'I 
31 ~o rn112i1?,n 
~2 1'A"t" 
J~ ~o T~/18~1•.o 5i ~EA~~ ~TAY I~ ~All~ 
34 SPTM"L/1"0"$' ~?f ~DLF ~PFE~ Ton lA~GE 
35 ~o rn1?0,2"·" 
3~ ~o rn1?2,2•,n 
37 ~o '"''4~24," 
J~ AUY~IJN/tQ 
3~ AUW,UN/3 
40 ~O TO/Q,Q,~ 
41 pPRfNT ~X~MPL~ ~r T~RFAnING •2 P.ITCW/10 
4:5 CtiU 0 LFl"'M ii r'QlJ?LE tNCC'O~R 
44 ~P'M~L/8~.QA~GF,1 
A~ nElAVl~n 
46 T~R~Af'l/TLJqN 

41 r,o rri1~g.11.~ 

4A nElAVl'.QEV 
4Q C~UPL~/~~~ 

( 

4/H1f \< 



l 

1'5 
1'16 
A7 
~8 

~9 

17 
"3 
~4 

l 

5n pP~ INT EVA"'1Pt e or HI sn1 SEQlJENCF 
5t FEM~•T10:2.1~R is IPR Nr>T ~•NnATOQY 
5' SP'N"L1lnO,S~M 1 RADfUS,~C~QPD,~AXQP~,90;MAXf PM 1 15 
5~ ~o T~1~oi2~.n 
54 SPlW~LIQFF 
55 r.o r~1~.~.n 
15 ~ ~ E •' T ~' l1 11 
5 7 F 1 ~·I 

~, 

0 
I.[) 

I 
I.[) . 
M 



( ( 

P3 RA' flATE• tO/f1~1,_9 r 1 1nr.·? ._C)r"ATI~~J LTS"I>.it~'Sq_;ql'lt--. YT!, .. TIYE or nAVw l~M~~ 

••• ro~MA~ns **••••tt~•·~~•O•~·~•Do•••••oODOOD*OOooo~o*~DGOo•••o~~·o•u••~ CAQn ~o r-.T ~E11\11'l 

EXAM~LE or riEiilJT 4 P~I1\ITO 1 T 4 

MA('HJ~/GFCFNT, 2':00('10, oeor h 9, 1~4~onoo, ". l'I n,, o "? 
tiUTTrL/ l'I: non~, 0 ~ 0 fl 0 c::. (1~'1f1"15 'J 4 

tt'.!TnLI ('): 0 ·; . !i' 5 • . 4 

LEADER/ 2•:not'!o b 5 
fEtHUTI 1n:oono; !PM 7 ~ 

TMARK/ 1:oono 8 7 
TURRF:T I ~:oooo; 3~ono1'. '.:':,, 0 0 0. 2:onon, ~R~NT 9 ~ 

Nroorin6H1M2"i 10 Q 

rJ'QM I 11 1"' 
x y l 

0 ~ 0 ~ 0; 
t-MLNT I o~ p 11. 
~PTNOLI 1oo:on~o; Ri:'M 13 1' 
o~ 15/ 1• u 

)( y z 
3:onol'lono 4:o,,onono a: 

t= X A MP L F- ~ F' A S ~ G A.1 E N TA Tf 0 ' 1 r, lJ I=' T 0 A 15 14 
PAHi WHl~H 1c; ~RFATE~ HlU4 T~~ ti1AXYMllM O~PAfHURE 1~ 1:; 

OS T~I 1 '1 1~ 

x y z 
2o~ooooonc 4~o,,ono~o 0 ~ 

PRE FUN/ a~:nol'o u 17 
A fliU o~ u 1" 

r.o~LNTI ~F'F" 2t'I 1Q 
11P"TOP 2' 2" 
~PTNMLI 11n:no~o; Rl>M, rcu~. R.OJt;E; 2 I Ql'l Qf'I 2~ 21. 
D~ ts/ 24' 2' 

)( y z 
11:0000000 6:onooooo o; 

TURRET/ 4:oo~o: s.o"o~. A:rio"O• s:oogn. ;:'R"'NT 25 2~ 
llEnRH I 4e:oooo 2~ 24 

!;TDP 2'1 25 
~XAMPLE ~~ ~APfD TRAVERsr ~Hl~TING 2e 2~ 

RAPID 2~ 21 
DS !SI 3tl 2~ 

x y z 
1o~oaono"o s:onoocioo o: 

OS Iii 3t 2Q 
x y z 

1?~0,,oooro n1:ononono 0: 
RAP tD 3' 3f'! 
D~ IS/ H 31. 

)( y z 
w P:oflOOO'iO 12:orionooo 0: . 

RAP ID 34 U1 
I OS tsi 35 

3' 
3~ 

U1 )( v z 
1--' 1R:of1ooorio 14~0"01'10~0 0 ~ 

( 

• ., •. q \j ~ 

CL ~FC t-.Jr"I 

' 4 
/.. 
1 
~ 

u 
n 
15 
11 
1~ 

21 
2~ 
2t; 

21 
2• 
31, 

3l 3, 
31 
3• 
0 
4' ~ 

4" 
41 
0 
51 
5~ 5, 
,, 
59 
61 

6J 
65 



) ) ) 

~PINnL1aoo,.,:oeoo 31 34 61 

D~ 1s1 38 3'5 6~ 

x y l 
?O~Q(tt)()O~O ::>o~onol'IO"O 0: 

Dg YS/ 41 H H 

'< y l 
"?~0'10rlO'"O ?.4;onooeno 0: 

D~ tS/ 4~ 37 nJ 
x y z 

"4~onono:'o ?4~ononono 0 ~ 
AUXF"UN/ 9~:nono 4~ .~ " 7r;; 

ALJHllN/ ~:,, o ri n 47 .P 77 

D" T £I 
~, 41" 7~ 

)( y 

Q: OGOfiQ".O 9.nnooooo ("). 

EXAMPLE or TMQEADfNG :, ~ 41 81 

Pf Hi.I/ 1~:0000 
~i; 4~ 8~ 

COllPLEI 0~' 
5~ 4~ 8 '5 

SPTNDLI s':nono,· Ro1riE, 1: orion ?? 44 81 

DF'.LAYI u:n~no 
,~ 415 8~ 

THREAD/ T lJRt..1 
5~ 4~ '1 

D~ 1s1 6!'! 4., tJ 
l( y l 

1n~oooool'\o u:o,,onooo o~ 
DFLA VI ~:oorio; REv 61 41.l 9'5 

r:OUPLE/ nrr 6? 4~ 
,, 

~XAMPL~ OV A~ ~~M ~E~U~~~E 65 51'1 n 
rEnRAT/ o:~ooo; P'R 6~ 5t 1t'1. 

5PTNhL/ 10~:0000; srM. p A !'I I 11~. VC~QRO, MAXRPM 1 ~o:onori, MAXTP1-1 1 i 67 5? 10~ 

1":001'10 
os tS/ 61' 5~ 105 

x y z 
to~ooooo~o 'o:onol'lvno 0: 

~PfNf')L/ ~n· 6- 54 t01 

OS JSI 77 5i; 10' 
x '( z 

5~oeooono 6: Ol'lonol'lo 0: 
REWIND/ 1:oono B~ 5~ 111 

F"!N! 84 5? 111 

******END ~v sccr1i~ ITI •••••• 
N 
Lt) 

I 
Lt) . 
CV') 



( ( ( 

* ~ u ~i r. ~~~RA L EL Er T 0 Ir "o '='. T , P.,. cc c: ::: r' R I'; E: r E • 1 r ... ~ ~ ;j I> 

<l>fH> "'C:OE~·~"TAL *'·" 
~1 Ar. io! T t.J F ?:2: 

t~A"'PU: or ":El'ILJT 4 JI R Y i\/ T (') lJ T 
N \, x 7 I ~ f I! T H '..J 

Ex" MP Lr:: or G F: o ll T 4 p q r ~ 1 r ri u T 
'4 ·• n n ! NC!r4ES or LEAD!=R loffRr 

TM.H~K 
n 1 i; 04 •0.3 2' 

l'ilBOQtlQflH1M'8t 
FRO~ +oco: •'Jn c. 

n2 .~ 04 ns 
L"ilili;sr RAl'·.JGr T t-1 A T S P l I\! D L E S P H U ~- A L l. S I~ !S Ac:;SUMFD 

n2~ rl4 10 nJ 
1'125 M4 +0,05 
n 2ir; 04 43 
Cl 2" 04 +0,1 H 
n 2rs 01 ~4: .~. o;;o, 

E~AMPLE or A '!:EOME=N1ATt0N L)llE rr A 
PATM WHIC:~ TS G~~AT~R T~A~ TMr ~.v1~u~ "EPARTUR~ 
nH 01 +8.5 Dl1 1 7~ 
tlJt 01 +EL 5 
n~n Ri 
03• n4 r19 
03' 04 h1 

WARNING ~~ ~PINML~ ~J~ECTfQN MAC CHA~~E~ 
1"41 04 +0~3 f7 I" 4 
n4:5 n1 • :>: ... 3 ~ 027,·H 
,, .. '5 (H • fl~ 3 4c; 

n •' 01 .~: ;;;f'i. 0 '.l c; 
no 04 f'!O 

E~AMPLE or RAPI~ TR4V~RSE s~1rrtN~ 

055 0'4 •0~05 
n5' 04 42 
1')5'5 04 •0~2 40 
(')55 n1 ;2: .. 7 ~ ,,,Qt 
057 04 + 0 ~ (') 5 
05'1 t't4 43 
(157 04 •0~1 41 
M51 01 ; :>: +2, 070,71 
l'J6• n4 +C,OS 
nH IH •2 
t'.161 04 •O~? •o 
fl61 01 ;,: sno. 
ti6'5 tH ;. ~: +6. 2u;J:J 
noY 04 u t'!4 

w n 6 f> 04 • o ~ r5 . n6• 04 •3 
U1 n6'> M4 + ri ~ 1 41 
I n6o 01 ;6: ... ;:> : OH,t>;) U1 

w n7t C1 ;,.: +?. Q44~n. 



l l 

a.~;~~rHAL EL~rr 0 I~ ~ocrp~~c~c~oq ~~rf,''•3 GqG 

~~~ I~C~EUE~TAl 090 

~Ar·n~F '2~
E:YA~PLE or l".E:.-11" 4 PRT'JfQ,'T

N G ~ l
M7~ 01 •'·
1Hc; n4
r.77 04
n10 01 .1:r, -7.5
n1~ 01 .1:~ ~1~5

E~AMPLF nr TMMf4n!NG
ns' ~4 •O.?
na~ 04 •1s
n9~ 33 ~~: •1.
~~~ 04 +C,1412 
n,7 04 +O.?. 

E~AMPLE or AN SrM S~QUFNCE 
S~M MnoF JS ESTABLIS~,D 
Ll'hlFST SPF.En !N QOJriE I 5 nurpur 

I( 

2: t: 

F 
1 no, 

018~8~ 

105 01 .9: Dn6; 
101 04 
tQO 01 +1: -2~= Q07,2~ 
{09 01 .1: ;,.~ 

iH 04 

CUT TIME s:t~ 
TAPF F'QC'fAGP. 

MIN~ 

B 
"'WFLL TJ~E f',c;yMI"J; 

~ T M ~ 

¢Q 
1"13 

'iO 
A~ 

'i1 

'7 
h5 

lO 

') 

~ 
L{) 

I 
L{) 

I 

(Y') 



( f ( 

•••GFNFRAL tL~rTQI~ ~O~T~ReC~SSOA ~ECENT.3 ••• 
•*• A"SnLtJTE ••• 

~AClolTr.lF :n; 
E)tAMPLE or ~El"IUT 4 "R'N'OUT 

N G " 1 I I( r c; T ~ \.I 
EXAMaLF nr G~OUT - pqI~TOUT I 

24 fNCMES O' LEADER ~FRE 
HURi< 

015 04 •OOt1:3 • 0 0 0 - :3 2~ 
,.anoSG6MtM'.U 

~IOR ·~on; •ODO, us 04 •00! 1 .ooo: f'l8 
nu 1u .ooe. '0 0" ~ 1 0 rl:,, f'IJ 
UIJ 04 .ooe:n5 .. ooo ~ 05 
"Z' ~· .ooo: .. 0 0 0 ~ -43 
b2' 04 !ooe;i •000~1 41 
ft2' n1 =~04. .. ~ 0 ~: 00;10; 

e•AMPLE or A ~E"MEN,ATIO~ cue rn A 
PlT• WHtC~ IS G~~AT~~ TMAN TMF ~A~t~UM Di~ARTU~! 
Ut 01 ;do•: •011~' IH"l1G; 
031 ~1 ~ee•: •02CI ~ 
U:J l'I ;eo•~ •l'20 ~ 
03' e4 ;oo•~ • 0 20 ~ b9 
nu 04 ;~o•! •020 ~ h "41 ri• .eoe~~ 4000~:5 171'1 ~" tu 
tH3 ~1 ;ao6; •011 ~ 0"010; 
b4' 04 .ooe.:. .. ooo: ~ 45 ,,,., ~1 ~~cs; •01': no 04 ;;0Q8. •01': tlo 

eWAMPLE or RA~JO TRAVERS~ S~trTJNr. 
055 04 •ooe.~5 •000-~5 
ns' 1'4 ;oc6: •017 ~ 42 
H' 04 !Ooo;~ •000~? 40 
n' ~1 ;:008:. .to 1 o ~ 00145,6 

"'' 04 •OO'l,05 •0 00: 05 

"'' e. ~eos; '01 '1 ~ u 
U' 04 •009.t •000~1 41 
U1 61 ;01e: •01~~ 0 0020; 
nH 04 !ooe;n5 •000~05 
b6t 04 ;;OU. .. 012 ~ 42 
l16l ri4 .ooo:, .ooo:? 40 
b6l 01 ;01~; •IH~~ 001rta; 
b61J 01 =01•, '018 ~ on1 .. 1;51 
b61 64 ;;~1•. .ou: 111'1:" 1'!4 
n6~ 04 .000:05 •rl00,05 
n69 04 ;01•: •018~ 43 w t'6• 04 0"": 1: .000:1 -h . 
"" 01 021!t: .~20: ooo,s; U1 

I 011 nt e2•: .~?.~: ooo~o. 
U1 

"''~ tJ1 02•: .e2.- ~ ono'o~· U1 



) ) 

•••GENF.QlL ~LECT~1e 9Q~l?R~CEs~o• ~ECENT;3 ••• 
••• A~S,,LllTF' ••• 

~ACi.t!NF :n: 
EOfllPLE or '":rl"U" 4 "'RTNTQllT 

N (\ ~ z I I( r ~ T l4 ltl 

075 04 02•: .. 024: •• nn 04 e2•: .024: e3 ,,,, ta ou:iJ •OU~5 DOCJ2g; 
b7' 01 oo•: .;Oo9. 

~Xu4•L~ or Hflfhnl"tG 
08, 04 ea":~ •000~' IJO 
as• ft4 •00!: •001~ neis:" 
Cltl n ;ht• •010· orn: l'lO 1: 
trn d4 .ooe!i•12 'ooo!t•f2 

"'' ti• .oon:~ •OOO~' h 
e•AMPLE or A~ SrH s•cUEMCE 

IB' 01 ;020: •01D~ ooens;• 1"27: ri 
fDJ 04 ~~2e; •01'3; ft5 
u• 01 =-nt:.. ,007,5 Dt'tDf'l5;4 
ro u ~~u; •nos: 
ht 64 ;;008. •eos: :t 0 

CUT ThtE a:•~ Mt N~ nwELL TIME n:57RI6f; 
TAf'I F'OOTAGf • 

} 

l..O 
L.() 

I 
L.() 

("'f) 



( (' ( 

·•·G~NFRAL ELECTQI~ ~g·r~RnC~S~OR ~ECENT~3 ••• •*• QO_QA,QP *•* 
~Ar,Mf tai!F :n: 

E•AMPLE or ~&"UT 4 ~RT~TQUf 
N t'l )( z I I( r ~ T M IJ 

EXAHRLE or GEOUT 4 pqf~T~UT s 
2• tNCMFs or L~AO~R ~E~E 

TtiUR.C 
h'5 IU •Ooo:, .. 000:3 n 

~aft0~06MtM2U 
r•oM •000: -.tJOO I 

DU 04 tie 
nu a4 io filJ 
U" e4 •Ooo:ns •OOO~n5 
bU 04 4 .J 
nu ft• •ooe:i •OOD~t ~1 
"2' h ;;oo4: •OOJ~ onuu; 

e•A9"PLE or A !E~HENTATttHJ DUE ,~ A 
PATW WM!CM rs G~-·T~R TRAN YM~ ~AYf~UM DEPARfU~~ 
•Ji 61 ;do•: .011~' one11;11 
oJt 61 ;oa•! .020~ 
ftJ~ u ;oo•: •02ft~ 
ftU 04 b9 
ftU 04 fa 
b4t 04 .oao:' •000~3 u ft4 
ft4~ 01 ;nos; •01' ~ 0"027;H 
bO 04 •ODO.:l •OOO~J 4r; 
bO ft1 .ooo: •011: ongu; 
ftO n4 f!o 

El4MPLE or AA~t~ TRAVFRSE SM1rTJNr. 
ft5' e4 •000:0'5 •OOO~Cl' 
b51J 04 ~2 

"'' ri4 •Ooo:, •00b~2 .co 
b§~ h ;do~: • llO.C: ooar>o; 

"'' 04 .oon:n5 •OOO~n5 
ft51 ft4 13 
ft!J 04 •OOD:i ,000~1 H 
ft51 01 ~oo•: •oo&~ or.1;10;11 
OU u .oon:os .000:05 
Ut n• •2 
Ut ru .ooe:' •ooo:~ 40 
nu 01 ~oo&; •OOA~ 00$bQ~ 
ft6' 01 -oos. •012 I 00233;3~ 

'"' 04 h fl4 
n6• o• .ooo:n5 •000~05 
ft6• 04 4J 

w 00 O• ooo:i +000:1 i1 . 
"'' 01 h•' •014 ~ ong,1;62 

1.11 n11 1'1 ou! •01': ooe••;n I 
1.11 tyy:J 01 dt8: •01A: 001no; 
~ 



l l 

***G~NFRAL ~LE~T~te ~QSTPR"CES59Q ~ECENT•3 ••• 
••• Cll'E~ATO~ ••• 

MACl-lrti.JI:~ ~2: 
EU'1PL.E OF' r,£~U'f 4 "RTNTQlJT 

N G " 7 I ~ F 
n15 n4 
,,,, 04 

"'' ni ;ouJ:'5 et1• 01 ;oo3: 
~XAM•L~ or TH~~+or~G 

ns' 04 •eoe.? 
u• e ... ec1: 
bU n ~tJo': n•' 64 •ooe:r~12 
ou 04 .ooe:, 

•010~5 
-'003 ~ 

tOOO.~ 

tOOL 
.oo•: 
•"OO~Uf2 
•000~' 

e•AMPlE or A~ SrM 
u' ta ;01•: 
{01 04 

SfQUE~CF. 

1a• rt1 ;~01; 
tet 01 •ODO. 
fH 04 

•004~ 

,001:5 
;001: 

CUT TTME a:t~ MIN~ 
TAP! roOTAGf 8 

oogu;a5 

Cl tl2: OQL 

Ol'01'16; 

OOQtl7;25 

r"IWEl.L TIME ":'57Mt~; 

~ T 

"5 

n 

.. .. 
hJ 

,0 

h 

~5 

io 

\J 

;) 

co 
lf) 

I 
lf) 

I 

M 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.0 SPECIAL SEQUENCES 

In the sections which follow are given some further details on 
special items which are treated as separate entities within the 
postprocessor. Norma.lly, at least one of these items will be 
used on any NC machine. 

4 • 1 FEEDRATE 

The Mark 
one for 
machines. 

Century control considers feedrates from two aspects, 
contouring machines and the other for positioning 

For contouring machines the feedrate command is a computed code 
derived by one of three methods, each of which are fully 
explained below. The relations of multiaxis or circular 
interpolation to the feedrate conunand are also detailed. 

For positioning machines the feedrate command is obtained from 
one of several feed types. These types vary considerably from 
one another, but each type is detailed according to its structure 
and use. 

The feedrate of a machine tool is the travel velocity of the tool 
along the path of mo"tement and is usually measured at the tool 
tip. Feedrate is normally measured in IPM, but occasionally it 
is measured in IPR. Whenever IPR is the mode, the feedrate is 
directly related to the spindle speed, and the relation between 
IPM and IPR is: 

F IPM = F IPR * S' 

where FIPR is the feedrate in IPR, s is the spindle speed in RPM, 
and F IPM is the feedrate in IPM. 

The postprocessor works internally with feedrate in IPM only, 
i.e., all feedrates in IPR are converted to IPM. The 
postprocessor keeps feedrates in IPM primarily for SFM operation 
and for acceleration-deceleration (A/D) testing. Prior to 
output, the feedrates are converted to their feedrate conunand 
form, but only after the feedrates have been tested for a variety 
of conditions. For example, all feedrates are tested versus the 
minimum and maximum allowable feedrates in IPM (options 48 and 
25), and feedrate conunand maximum and minimums (options 24 and 
49). If the feedrate is a rapid traverse feedrate, other actions 
are taken as explained in Section 4.1.5.4. 

4-1 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4 . 1 FEEDRATE (cont' d) 

The postprocessor can also leave the feedrate in !PM, i.e., not 
convert it to the conunand form, whenever it is needed, as for an 
auxiliary saddle. When the feedrate is kept in !PM form, all the 
below described tests do not apply. The only testing performed 
is to insure that the given feedrate lies within the minimum and 
maximum f eedrate range. 

4.1.1 CONTOURING FEEDRATE COMMANDS 

The postprocessor can output the feedrate in one of three 
different command forms, viz., as a function of a calculated 
feedrate number, as an EIA 3 digit number, or as 1/T (inverse 
time) • The specification of the desired form is given in option 
10. Contouring feedrate commands are all determined in 
subroutine CONTUR. 

The resultant feedrate command is always compared with the 
minimum and maximum feedrate command values; and when it 
transgresses a bound, it is set to that bound. The new feedrate 
in !PM is then redetermined. For example, assume the feedrate 
command (Fe) as a function of FIPM becomes greater than the 
f eedrate command maximum (FCOMAX) : 

Then, 

4-2 

Fe= f (FIPM) >FCOMAX. 

F = FCOMAX, and c 
-1 

FIPM = f (F c> 



CltlNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.1.1 FEEDRATE NUMBER COMMAND 

This type of conforming f eedrate command is selected by setting 
option 10 equal to zero. For machines having up to three linear 
axes, the feedrate along straight line paths is converted to a 
f eedrate command by the relation: 

F = D * F IPM 
c s 

where D is a constant called the dimension multiplier and is a 
function of the preparatory function G code, F IPM is the feedrate 
in IPM, and S is the path length as determined oy 

S = ~f:.X2 +A Y2 +A z2 

where AX, ~Y, AZ are the linear machine coordinate departures 
along their respective axes. 

The dimension multiplier, D, obtains its constant value in 
subroutine SELG where the preparatory function G code is selected 
for the linear departures; see Section 3.4.6.1. The value of D 
for a given departures is dependant also upon the units system, 
i.e., inch or metric. 

Consider the example of a linear move as shown in Diagram 
4.1.1.1A. The tool has a feedrate of 40 IPM. 

z 

y 

3 

I I 2 
I; ___________ __v 

4 

Diagram 4.1.1.1A 

6.X = 4 

6.Y = 3 

6.Z = 2 

s = 'Ji 6 + 9 + 4 = 5 • 3 9 inches 

4-3 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.1.1 FEEDRATE NUMBER COMMAND (cont'd) 

The G code would be G01 and the dimension multiplier (GDIMUL) is 
1 0. Therefore, 

F = 10*40 c ------ = 74.8 
5.39 

Since this is well within the feed command range (1SFc S500), the 
computed value of Fe is accepted and made output. 

It should be noted that in general the feedrate command range for 
this type is usually 

15 Fe S500; 

however, this is not always true, so the specifications of each 
machine must be carefully checked for this item. 

Dimensionally, it can be seen that this type feedrate co~nd is 
a frequency since its units are the reciprocal of time, T- • 

F 
c 

= 
1 • 
T 

For circular interpolation moves, the formula is 

F = D * F IPM 
, 

R 
where R is the circle radius and is always 
departure. The dimension multiplier, D 
radius length and is assigned its constant 
SELGCR; see Section 3.4.6.2. 

less than the maximum 
, is a function of the 
value in subroutine 

A point to be noted here is that the length R is not usually the 
circle radius of the part, but rather is the distance from the 
part circle center to the tool control point. In Diagram 
4.1.1.1B the true radius of the part is P; but since the 
postprocessor . computes the radius from the given CL data, and 
since the CL tape passes on the cut data from the tool control 
point, the postprocessor actually uses 

R = P + r, 

where r is the radius of the tool. 

4-4 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

4.1.1.1 FEEDRATE NUMBER COMMAND (cont'd) 

y 

x 
0 

Diagram 4 .1. 1 .1 B 

This causes a lower f eedrate to be used than need be, but for 
large circles (P>>r)this feedrate variation is negligible. See 
the Part Programmers Manual for the use of the SELECT/RADIUS 
statement for cases when r~P. 

The radius R used in the feedrate command formula is computed 
from the arc center off sets, as: 

R= ~I2 + J2 + K2 

A rotary table feedrate for an incremental system requires a 
preparatory function G code which specifies the dimension of the 
increment; see Section 3.4.6.3. As with a linear move, the 
rotary move feedrate is determined from the relation 

Fe = D * FIPM 
s 

4-5 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.1.1 FEEDRATE NUMBER COMMAND (cont'd) 

where D is the dimension multiplier selected in subroutine 
SELGRO, and S is the effective tool path 
length in inches. The length s is a function 
of the table radius R since S= a R, where a is 
the incremental rotary move in radians. The 
part radius R will usually vary with the part 
program; hence, R must be given with the part 
program. Option 112 specifies the probable 
part radius which is used in the feedrate 
command formula. During the course of the 
part program, the radius becomes larger or 
smaller; the radius can be changed by the 
MACHIN statement as: 

MACHIN/GECENT, n, OPTAB, 112, r. 

unless the option is changed, the radius is assumed to be the 
standard value of 6 inches. 

Because of the variable nature of the part radius R, the table 
feedrate minimum, maximum, and rapid traverse must also be 
determined by the postprocessor for each part proqram. These 
rotarv soeeds are qiven in RPM and are converted to IPM as FIPM 
= 27TR * RPM, where R is the radius. Options 133, 114 and 115 
specify the minimum, maximwn and rapid traverse speeds 
respectively. 

A multiaxis linear motion obtains its feedrate command from the 
same relation as for non-multiaxis motions, namely, 

F c 
= D * FIPM 

s 

However, S in this case is not the length of the space curve 
which results from the combined linear and rotary motions in 
machine coordinates, but rather is the part path length. For 
example, assume the part coordinates: 

x = 1 
o, y = 1 

1, z = 1 
2, i = 1 

o, j = 1 
o, k = 1 

1. 
' 

~= 3, y = 2 
5, z = 2 2, i = 2 

O, j -
2 

1 , k = 
2 

o. 

The resultant machine coordinates are· then, say: 

x = 1 
o, y = 

1 
o, z = 1 

9, A = 1 
O, B = 1 

90; 

~= 6, y = 
2 

8, ~= 12, ~= 1 O, B = 2 
180. 

4-6 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.1.1 FEEDRATE NUMBER COMMAND (cont'd) 

The determination of the space curve for a multiaxis move is a 
highly complex relation, so a close approximation is used 
instead. The path length is determined from the part 
coordinates, which, in the example, gives: 

s = ~32 + 42 + Q2 = 5. 

The machine coordinate departures ~X, ~Y, ~z, ~A, or ~B are not 
used at all in the determination of the feedrate command. 

A multiaxis circular interpolation move uses a relation similar 
to but slightly different from the non-multiaxis relationship, 
for in the multiaxis case, FrpM in the feed command formula is 
not actually the path velocity, hence, it must be corrected as: 

where Fp is 
the axial 
arc. Thus, 

FIPM =~F~ - F~, 
the desired path velocity, and FN is the velocity in 
direction perpendicular to the plane of the circular 

= D * ~(F~ - F~) 
Fe R 

this can be reduced to known terms in the following expression: 

D*F p 
F = _______ , 

~
~2 + 

82 
xy 

R2 
xy 

where ~z is the departure along the z axis, Rxy is the radius of 
arc in the XY plane, and 8xy is the angle of are in radians. The 
relationship shown is for the case when the circle lies in the XY 
plane, but similar relationships exist for the YZ and ZX planes. 

Subroutine PROCQD determines e and stores it . into the parameter 
ARCANG. The radius is determined from the arc center offsets as 

R = \l I 2 + J2 + K2 • 

4-7 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.1.2 INVERSE TIME FEEDRATE COMMAND 

This type of contouring f eedrate command is selected by setting 
option 10 to a negative value. 

The format for inverse time is essentially the same as for the 
dimension multiplier type except that in all cases, regardless of 
the departure lengths, the dimension multiplier, D, is always 1. 

Thus, from the linear relation given in Section 4.1.1.1, 

F = D * FIPM c 
s 

it can be seen that when D = 1, 

Fe = FIPM = FIPM = 1 
-s-

T*FIPM 
T 

where T is time in minutes. 

The command maximum and minimum range for this type of feedrate 
command varies as a function of the preparatory function G code; 
the feedrate register format also changes with the G code, 
thereby necessitating a change in the column print vectors. The 
feedrate format can also be one of four possible kinds; the kind 
is specified by option 10. All of these variables are summarized 
in the following chart. 

4-8 



~ 

ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.1.2 INVERSE TIME FEEDRATE COMMAND (cont• d) 

G Code REGFOR (11) FCOMIN FCOMAX 

option G11 31 1.0 999.9 

10 = -1 G01 32 0.1 99.99 

G10 33 0.01 9.999 

G11 30 1.0 999.0 

option G01 31 0. 1 99.9 

10 = -2 G10 32 0.01 9.99 

G12 40 1.0 9999.0 

G11 41 • 1 999.9 

option G01 42 • 01 99.99 

10 = -3 G10 43 .001 9.999 

G12 42 1.0 9999.99 

G11 43 • 1 999.999 

10 = -4 G01 44 .01 99.9999 

G10 45 .001 9.99999 

G23 46 .0001 .999999 

G26 47 .00001 .0999999 

Since the f eedrate command maximum for this feed command type is 
larger than with the dimension multiplier feedrate command type, 
it is possible to obtain higher feedrates and shorter execution 
times with the 1/T type. 

The postprocessor must check the G code of each canmand block in 
order to redetermine and reset the conunand maximum and minimum 
values, FcoMAX and FcoMIN , respectively; this is all done in 
subroutine FVARGO which is called from subroutine CONTUR. 

4-9 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.1.2 INVERSE TIME FEEDRATE COMMAND (cont'd) 

Subroutine FVARGO also redetermines and resets the column print 
vectors NPR, NPT, NPTA, and NFP as a function of the changed 
feedrate register format; see section 3.5.4.1. These column 
print vectors are used also for producing the punched output. 
The vectors must change when the decimal format of the register 
changes because the number of places to the right of the decimal 
point must be exactly specified or else an error results. 

For example, suppose the format is left to be 30 as for a G11 
when option 10 = -2. Suppose now we get a feedrate command of 
8.76 for a G10. The postprocessor outputs the feedrate command 
according to the decimal format, so the postprocessor would 
output the erroneous value F876 instead of F00876, a considerably 
different value. 

Subroutine FVARGO sets the dimension multiplier parameter GDIMUL 
to 1 so that upon returning to subroutine CONTUR, the same 
program flow is followed as for the dimension multiplier type. 

4.1.1.3 EIA MAGIC 3 FEEDRATE COMMAND 

This type of contouring f eedrate command is selected by setting 
option 10 to + 1. 

This rarely used format simply converts the feedrate in !PM to 
the EIA "Magic 3" format. For example, the feedrate 40 IPM when 
converted to the feedrate command becomes 540; see Section 7.1 of 
the Appendix for an explanation of the "Magic 3" conversion 
method. 

Note that because of the resultant integer value of the "Magic 3 11 

number that the feedrate register format must be 30, i.e., 
REGFOR(11) = 30. --

Also with this type of feedrate format, the postprocessor cannot 
use the sequence which ratioes the axes feedrate through the IJK 
registers whenever the feedrate command exceeds the feedrate 
command maximum; therefore, option 26 must be set to 1. 

4-10 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.2 POSITIONING FEEDRATE COMMANDS 

The feedrate command for a positioning machine can evolve from 
one of a variety of different methods. A different method is 
used by nearly every NC machine mode. Since the number of 
probable methods is unlimited, the positioning feedrate commands 
are defined as types; the type is designated by option 78. 

Subroutine POSIT calls subroutine POSFED which branches to the 
subroutine for the designated feedrate type; the type subroutine 
is usually named according to its type, thus, a type 2 feedrate 
command is handled in subroutine FTYPE 2. If there is no 
separate subroutine for the type, the type is generated 
exclusively in subroutine POSFED. 

The only test made on positioning feedrates is to ensure that the 
feedrate in IPM (or IPR) and the f eedrate commands are within the 
range extremums. 

Nearly all positioning 
values in one or more 
available, are stored 
Section 5.6. 

feedrate types have a set of discrete 
ranges. These discrete values, when 
in the FRTAB section of table SRTAB; see 

Option 174, 62, 63, 144, and 78 must be set in accordance with 
the requirements of the specified feedrate type. 

In all the examples given below, the feedrate conunand is always 
given as the value which would appear on the printed output; the 
punched value would not have a decimal point but might have 
1 eadi~g zeroes. 

Row numbering always begins at zero and increases monotonically 
by one. Thus, if FRTAB has forty speeds, they are said to be 
stored at rows 0 through 39. 

4-11 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.2.1 FEED TYPE 0 

This type is selected by a zero or negative setting for option 
78. 

The conunand is generated by multiplying the feedrate in IPM times 
some constant which is given in option 78. The command is 
rounded to the closest integer. 

FcoM = FIPM * K, 

where K = I Option 101. 

If option 78 is zero, K = 2. 

For example: option 78 = -3. 

Therefore, K = 3. 

Feedrate FCOM 

7.123 21 

18.2694 55 

1.74 5.0 

94.926 285. 0 

This feedrate command type is programmed within subroutine 
POSFED. 

4-12 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.2.2 FEED TYPE 1 

This type is selected by setting option 78 to +1 •. The feedrate 
in IPM is also the feedrate command; there is no conversion 
necessary. 

For example: Option 78 = 1, FORMAT(11) = 21. 

Feedrate 

0.1 00 .1 

2.63 02. 6 

35.17 35.2 

40.0 40.0 

This feedrate conmand type is programmed with subroutine 
POSFED. 

4.1.2.3 FEED TYPE 2 

This type is selected by setting option 78 to + 2. 

The feedrate command is obtained with the feedrate value in IPR; 
the current spindle range value specifies which feedrate range to 
use in the table of discrete IPR values. The feedrate command is 
the resultant row number of the table position containing the 
required feedrate in IPR. 

The table of discrete IPR values is scanned whenever a feedrate 
is given to ensure that the programmed feedrate is actually 
available on the NC machine. Thus, whenever a feedrate is 
programmed in !PM, it is first converted to IPR by 

F 
FIPR = IPM 

s 

where s is the current spindle speed. The resulting feedrate in 
IPR is sought in FRTAB, and the closest value to the given IPR 
value is used; the feedrate in IPM is then recomputed. This is 
illustrated in the example below. 

4-13 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

4.1.2.3 FEED TYPE 2 (cont'd) 

This f eedrate command type is programmed in subroutine FTYPE2 
which is called from subroutines POSFED and FEDRAT. In the 
calling sequence of subroutine FTYPE2, the K flag indicates which 
operation is to be performed. When called from subroutine FEDRAT 
(K = O), subroutine FTYPE2 is called upon to obtain the exact IPR 
value, as explained above; when called from subroutine POSFED (K 
= 1), subroutine FTYPE2 obtains the feedrate canmand. These 
operations are exemplified by the following case. 

Assume there are 15 IPR f eedrates in three ranges; there are also 
three spindle ranges. 

FR TAB 

Row FCOM Range 1 Row FCOM Range 2 Row FCOM Range 3 

0 11 0.01 5 16 0.04 10 21 0.10 

1 12 0.02 6 17 0.06 11 22 0.14 

2 13 0.03 7 18 0.08 12 23 0.18 

3 14 0.04 8 19 0.10 13 24 0.22 

4 15 0.05 9 20 0. 12 14 25 0.26 

For these conditions the pertinent options are: option 78 = 2; 
option 62 = 3; option 63 = 5; option 144 = 11. Example: Spindle 
speed = 100 RPM, spindle range = 2, programmed feedrate is 7 IPM •. 

Subroutine FTYPE2 is called from subroutine FEDRAT to ensure that 
7 IPM is available. 

F = 7/100 = 0.07 IPR 
IPR 

Scanning the FRTAB table we can see that in range 2 the closest 
and next lowest value is 0.06 IPR, therefore, 

FIPR = 0.06, and 

FIPM = 0.06 * 100 = 6IPM, 

which becomes the programmed feedrate. 

4-14 



,....,. 

GlClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.2.3 FEED TYPE 2 (cont'd) 

To convert to the feed.rate command, subroutine FTYPE2 is called 
from subroutine POSFED. Scanning range 2 of FRTAB (since spindle 
range is 2), the feedrate IPR value is found at row 6. 
Therefore, 

FcoM = Row Number + Option 144 

= 6 + 11 = 17. 

It is important to note that the row numbering begins at zero. 

4.1.2.4 FEED TYPE 3 

This type is selected by setting option 78 = +3. 

The f eedrate command is obtained by converting the feedrate in 
!PM directly to the EIA "Magic 3 11 code equivalent; see Section 
7.1 for an explanation of this technique. 

For example: FIPM = 40; FCOM = 540. 

FIPM = 2; FcoM = 420. 

FIPM = 0. 1 ; FcoM = 210. 

This feedrate corrnnand type is programmed within subroutine POSFED 
wherein subroutine EIACOM is called to convert the feed.rate to 
the command form. 

4. 1. 2 .·5 FEED TYPE 4 

This type is selected by setting option 78 to +4. 

This type feedrate utilizes two or less feedrate ranges. Only 
the range one feedrate values in IPR are stored in FRTAB. If 
there are two feedrate ranges, the range two f eedrates are 
assumed to be five times the range one values. 

4-15 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

4.1.2.5 FEED TYPE 4 (cont'd) 

Assume the following conditions: 

Range 1 Range 2 

Row FCOM Feed IPR FCOM Feed IPR 

0 FO • 001 FO .005 
1 F1 .002 F1 .010 
2 F2 .003 F2 .015 
3 F3 • 004 F3 .020 
4 F4 .006 F4 • 0 30 
5 F5 .009 F5 .045 

Note that in practice only Range 1 would be stored in FRTAB. 
Before scanning the table for comparison selection, the feedrate 
in IPM is first converted to IPR, i.e., 

FIPR = FIPM/Spindle Speed. 

For these conditions option 78 = 4, option 62 = 1, option 
63 = 6, option 144 = O. 

Example 1: FIPM = 0.2, Spindle Speed= 100, Feed Range = 1. 

Therefore, 

FIPR = 0.2/100 = 0.002. 

FcoM = Row Number + Option 144 

= 1 +O = 1. 

Example 2; FIPM = 4, Spindle Speed = 200, Feed Range= 2. 

FIPR = 4/200 = 0.02 

The values of Range 1 times 5 are scanned comparing 
FIPR • Therefore, 

F = Row Number + Option 144 
COM 

= 3 + 0 = 3. 

This feedrate command type is programmed in subroutine FTYPE4. 

4-16 



~ 

CICINT Ill POSTPROCESSOR ... for the computer programmer 

4.1.2.6 FEEDRATE TYPE 5 

This type is selected by setting option 78 to 5. 

The characteristic feature of this type feedrate command is that 
the XY axes have their own separate set of f eedrate values and so 
does the z axis. The feed command for XY is programmed in the XY 
motion block, and the feed command for Z is programmed in the z 
motion block. 

There is one feedrate table with N ranges for Z motions and 
another feedrate table with M ranges for X-Y motion. 

The total number of feedrate ranges "N + M" is stored in option 
62, and the number z feedrate ranges "N" is stored option 201. 
The number of feedrates per range is stored in option 63. The Z 
feedrate command minimum is stored in option 49, and the X-Y 
feedrate command minimum is stored in option 202. The increment 
between ranges is stored in option 144. The z feedrate ranges 
are stored first in FRTAB, then followed by the X-Y ranges. 
Assume the following conditions: 

z Feedrates X-Y Feedrates 

Range 1 Range 2 Range 3 Range 1 Range 2 

FcoM IPM FcoM IPM FCOM IPM FCOM IPM FCOM IPM ----
F11 4.2 F21 10.2 F31 21.3 F21 6.3 F31 28. 6 

F12 6.8 F22 11.4 F32 25.6 F22 10.9 F32 35.9 

F13 7.9 F23 12.6 F33 28.9 F23 15.6 F33 50.1 

F14 8.5 F24 13.8 F34 31.7 F24 18. 9 F34 57.8 

F15 9. 1 F25 15.1 F35 38.9 F25 22. 5 F35 65.2 

The pertinent options are set as follows: 

option 78 = 5, option 49 = 11, 

option 62 = 5, option 63 = 5, 

option 201 = 3, option 202 = 21, 

option· 144 = 6. 

4-17 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.2.6 FEEDRATE TYPE 5 (cont'd} 

Note that in this case option 144 refers not to the incremental 
adder to the row number, but rather to the difference in FcoM 
between ranges, i.e., between 15 and 21, 25 and 31. The 
subroutine counts rows beginning at 11 for Z and 21 for XY. 

FRTAB would be set up as follows: 

FRTAB(276) = 4.2 FRTAB(289) 
FRTAB (277) = 6.8 FRTAB (290) 
FRTAB (278) = 7.9 FRTAB (291) 
FRTAB(279) = 8.5 FRTAB (292) 
FRTAB (280) = 9.1 FRTAB (293) 
FRTAB(281) = 10.2 FRTAB (294) 
FRTAB(282) = 11.4 FRTAB (295) 
FRTAB (283) = 12.6 FRTAB (296) 
FRTAB(284) = 13.8 FRTAB (297) 
FRTAB (285) = 15.1 FRTAB (298) 
FRTAB (286) = 21.3 FRTAB (299) 
FRTAB (287) = 25.6 FRTAB(300) 
FRTAB (288) = 28.9 

Example: FIPM = 40, Feed Range = 2. 

For the XY move, 

FcoM = Row Number + Option 144-1 
= 27 + 6 -1 = 32. 

= 31.7 
= 38.9 
= 6.3 
= 10.9 
= 15.5 
= 18.9 
= 22.5 
= 28.6 
= 35.9 
= 50.1 
= 57.8 
= 65.2 

When the exact value cannot be found, the next lowest is taken, 
hence, FIPM = 35.9. 

For the Z move, 

FCOM 

FIPM 

= Row Number + Option 144 - 1 
= 20 + 6 - 1 = ~ and 
= 15.1 

When Range 3 is programmed for Z, Range 2 is used for XY. This 
feedrate command type is programmed in subroutine FTYPES. 

4-18 



ClClNT Ill POSTPROCESSOR ... for the computer programme,r 

4.1.2.7 FEED TYPE 6 

This type is selected by setting option 78 to + 6. 

The available feedrates are a set of discrete values in IPM and 
are assembled in two ranges, a low and a high feedrate range. 
The low feedrate range is used only for milling and is normally 
selected by programming a CYCLE/MILL statement followed by a 
FEDRAT/RANGE, 1 statement. Otherwise, regardless of the range 
selected range 2 (or the high range) is always modal and is 
cancelled only by the CYCLE/OFF or another CYCLE statement used 
for both milling and drilling operations. The feed command is 
formed from the relation 

FcoM = K * FIPM' 

where K = 12 for Range 1, and K = 2 for Range 2. 

Since there are only discrete IPM feeds available, the 
postprocessor first ensures that a programmed feedrate is truly 
available, and, if not, it selects the next lowest available 
feedrate. Subroutine FEDRAT calls subroutine FTYPE6 with K = 0 
in the calling sequence which directs subroutine FTYPE6 to obtain 
the proper f eedrate. Subroutine POSFED calls subroutine FTYPE6 
with K = 1 to obtain the f eedrate command. These operations are 
illustrated in the example below. 

Assume the following conditions: 

Low Feedrate-Ranqe 1 High Feedrate-Range 2 

FCOM IPM FCOM IPM 

F6 .5 F4 2.0 
F12 1. 0 F6 3.0 
F18 1.5 F8 4.0 
F24 2.0 F10 5.0 
F30 2.5 F12 6.0 
F36 3.0 F14 7.0 
F42 3.5 F16 8.0 
F48 4.0 F18 9.0 
F54 4.5 F20 10.0 
F60 5.0 F24 12.0 

The pertinent options are set as follows: 

option 78 = 6, option 62 = 2, option 63 = 1 o. 

4-19 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.2.7 FEED TYPE 6 (cont'd) 

Example 1: FIPM = 3.6, Feed Range 1, 

CYCLE/MILL progranuned (ICTYP = 6) • 

The FRTAB is scanned for an exact comparison, and not being 
found, the next lowest value 3.5 is selected; therefore, FIPM = 
3.5 and FCOM = 12 * 3.5 = 42. 

Example 2: FIPM = 7.9, Feed Range 2. 

After scanning, F IPM = 7, and 

F = 2 * 7 = 14. COM ~-

4. 1. 2. 8 FEED TYPE 7 

This type is selected by setting option 78 to +7. 

The feedrate command for this type is a one for one output of the 
value given in the feedrate statement. The machine tool has a 
number of manually set f eedrate combinations which are selected 
by a code number; neither IPM or IPR. The code number is given 
in the feedrate statement and the postprocessor outputs this code 
as the feedrate command. 

Example: Feedrate potentiometer No. 1 set manually to 
feedrate. Part program statement is FEDRAT/l. 
processor will output f COM = 1 

desired 
Post-

This feedrate command type is programmed within subroutine POSFED. 

4.1.2.9 FEED TYPE 8 

This type is selected by setting option 78 to + 8. 

The feedrate canmand for this type is generated in a manner 
similar to Feed Type 2; see Section 4.1.2.3 for full details. 
The feedrates consist of a discrete set of IPR values in three 
ranges; the feedrate range is selected as a function of the 
current spindle range. The selected IPR value is converted to an 
EIA "Magic 3" code to become the feedrate command; see Section 
6.1 for a description of this conversion method. 

4-20 



CI&INT Ill POSTPROCESSOR ... for the computer programmer 

4.1.2.9 FEED TYPE 8 (cont'd) 

Using the feed tables in the example of Feed Type 2, the 
following example illustrates Feed Type 8. 

Example: FIPM = 1, Spindle Speed = 100 RPM, spindle range =2. 

F IPR = 7/100 = 0. 01. 

Scanning FRTAB in range 2 we obtain 0.06 IPR; therefore, 
FIPR= 0.06, FrpM= 6, and FcoM= 260. 

This feedrate command type is programmed within subroutine 
FTYPE2. 

4.1.2.10 FEED TYPE 9 

This type is selected by setting option 78 to +9. 

The generation and use of the feedrate command for this type is 
identical to Feed Type 2 in every respect except that the values 
stored in FRTAB are in IPM rather than IPR; see Section 4.1.2.3 
for full details on Feed Type 2. 

The feedrates consist of a discrete set of IPM values in three 
ranges; the feedrate range is selected as a function of the 
current spindle range. The feed command is derived from the row 
number of the table position containing the required feedrate. 

Asswne the f oll<Ming conditions: 

FR TAB 

Row FCOM Range 1 Row FCOM Range 2 Row FCOM Range 3 

0 11 1 5 16 14 10 21 50 

1 12 3 6 17 18 11 22 60 

2 13 6 1 18 26 12 23 70 

3 14 9 8 19 30 13 24 80 

4 15 11 9 20 40 14 25 90 

The pertinent options are option 78 = 9; option 62 = 3, option 63 
= 5, option 144 = 11. 

4-21 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

4.1 2.10 FEED TYPE 9 (cont'd) 

Example: FIPM = 45, spindle range = 2. 

Closest value in range 2 to programmed value is 40, therefore, 
FIPM = 40, and 
FCOM = Row Number + option 144 

= 9 + 11 = 20. 

It is important to note that the row numbering begins at zero. 
This feedrate command type is programmed within subroutine 
FTYPE2. 

4.1.3 POSITIONING MACHINE ROTARY FEEDRATE COMMANDS 

Positioning machines which have a rotary axis may have a separate 
feedrate register exclusively for the rotary axis. In such cases 
the rotary feedrate command can be of a format entirely different 
from the feedrate canmand format for the linear axes. Therefore, 
the rotary feedrate commands are defined as a set of types as 
were the feedrate commands for the positioning linear axes. 

The rotary feedrate command may or may not have its own feedrate 
register, or it may use the linear axes feedrate register. If 
there is a separate rotary feedrate register, then option 139 
must be set accordingly. 

Option 141 specifies the rotary feedrate command type. Each of 
the rotary feedrate command types are defined below. 

4.1.3.1 ROTARY FEED TYPE 1 

This rotary feed type is selected by setting option 141 to +1. 
It requires the use of a separte register for the rotary feedrate 
command, e.g., an E register. Since this is an extra register 
(not one of the permanent assignments), the register is assigned 
to DBFSEG(16); therefore, REGFOR(16) and REGSTR(16) must be set 
accordingly, and option 139 is set to 16. For example: 

REGSTR (16) = E 
REG FOR ( 16) = 1 0 • 0 

option 139 = 16, option 141 = 1. 

Subroutine ROTYP1 processes the rotary feedrate type 1 operation. 

4-22 



'-" 

ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4.1.3.1 ROTARY FEED TYPE 1 (cont'd) 

This type has a table of discrete rotary feeds which must be used 
as the feedrate for the rotary table. In other words if a 
feedrate is programmed which is a value not exactly found in the 
table, the postprocessor selects the next lowest exact feedrate. 
Corresponding to the row of the table is the rotary feedrate 
conunand value. 

Subroutine ROTYP1 has t~ paraneter K in it's calling sequence; 
when K = O, the subroutine selects the closest IPM value from the 
table of values to the given feedrate value; when K = 1, the 
subroutine obtains the feed command corresponding to the given 
feedrate value. These functions are illustrated in the example 
below. 

The table of IPM feedrates are generated from the relations: 

1) 1RPM = 
RFMAX I n = 1,2,3,-----9, 
RK(9-n) 

where RF MAxis the rotary maximum feedrate in RPM, RK is a 
constant equal to 1. 43, and F RPM is the feedrate in RPM. 

2) F IPM = 2 7T F * RT , where R is the table (or part) 
radius, and FIPM is thlPPotary feedrate in IPM. 

Option 112 is the table (or part) radius RT' and option 114 is 
the rotary maximum feedrate RF MAX-

With the specified conditions of options 112 and 114, subroutine 
ROTYP1 generates the IPM table upon initial entry into the 
subroutine. 

Assume the following conditions: 

Row FCOM Feedrate in IPM Feedrate in RPM 

0 EO 0.754 • 020 
1 E1 1.0801 .0287 
2 E2 1.5419 .0409 
3 E3 2.2009 .059 
4 E4 3.1479 .084 
5 ES 4.5051 .115 
6 E6 6.4476 .171 
1 E1 9.1986 • 244 
8 E8 13.1570 .349 
9 E9 18.8496 1.0 

4-23 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.3.1 ROTARY FEED TYPE 1 (cont'd) 

Example: The programmed rotary feedrate is 1 IPM. 

When it is time for the feedrate to be stored for use, subroutine 
ROTABA calls subroutine ROTYPE which, because of option 141, 
calls for subroutine ROTYP1 with K = O. The subroutine scans the 
IPM table, and finding no feed.rate exactly equal to 7, selects 
the next lowest value of 6.4476. 

At output time, subroutine ROTYP1 is called fonn subroutine POSIT 
with K = 1 to obtain the rotary feedrate command, which for the 
IPM value of 6.4476, is in row 6 (row numbering begins at zero); 
therefore, the rotary feedrate command is 6. 

4.1.4 RAPID TRAVERSE 

Although a rapid traverse is nothing more than a high feedrate, 
the postprocessor gives special treatment to such moves. A rapid 
traverse is normally used for repositioning a tool for a tool 
change or when moving to a new cut point; and since it is a non
cutting motion, the path is traversed usually at the maximum 
feedrate so as to minimize the machining time. But in all cases 
except for some positioning machines which have a separate rapid 
traverse register, a rapid traverse motion is only a regular 
motion. In order to differentiate between a rapid traverse and 
a regular feed motion, the postprocessor identifies a rapid 
traverse command block with a negative feedrate. Thus, at output 
time the rapid traverse blocks can be easily singled-out for 
special optimizing treatment (See Section 4.1.5.4.) 

When a RAPID is called for, the postprocessor uses the maximum 
feedrate value (option 42) on the next motion block if RAPID is 
one-shot, which it normally is. However, if option 109 is set 
for a modal condition, then the rapid feedrate value is used on 
all motion blocks witil the rapid traverse mode is cancelled. 

some NC machines, usually lathes, require an M code to enter into 
and out of a rapid traverse gear setting. The postprocessor 
automatically outputs these M codes and any requisite dwells that 
are required; see options 16, 37, 39, 42, 43, 44, 45, 46, 81, and 
109. 
A brief description of a typical part program example will 
clarify the postprocessor•s method of handling rapid traverses. 

(1) RAPID 
(2) GOTO/x, y, z 
(3) GOTO/x, y, z 

4-24 



Cl&HT Ill POSTPROCESSOR ... for the computer programmer 

4.1.4 RAPID TRAVERSE (cont'd) 

On statement 1 subroutine RAPID* is called; this subroutine 
simply sets the rapid flag RAPFLG to 1 indicating that a rapid 
condition has been called for. 

On statement 2 subroutine MOTION calls subroutine TSTFLG to 
interrogate RAPFLG; since RAPFLG is non-zero, subroutine RAPIDO* 
is called wherein RAPFLG is set to zero, and the rapid-on flag 
FLRPON is set non-zero. Subroutine RAPIDO proceeds to output any 
required gear shifting M codes; sets the rapid feed flag FRAPID 
to the negative maximum feedrate value (option 42) ; and returns 
to subroutine TSTFLG. The motion block can now be output. 

When outputting the motion block, subroutine OUTPUT tests the 
FRAPID flag, and finding it negative, stores the value of FRAPID 
into DBFSEG(11) to ba::ome the feedrate for that block. The 
negative sign is retained in order to identify the move as being 
a rapid traverse. 

On statement 3, subroutine TSTFLG checks RAPFLG, and finding it 
zero, then checks flag FLRPON, and finding it non-zero, calls 
subroutine RAPIDX* to remove the rapid traverse condition. This 
subroutine sets flag FRAPID and FLRPON to zero; outputs any 
required gear shifting M codes, and returns to subroutine TSTFLG. 
The motion block is now made output, but subroutine OUTPUT, now 
that FRAPID is zero, uses the current feedrate FEDIPM to store in 
DBFSEG(11), thereby achieving a return to the feedrate mode. 

On statement 3, had there been another RAPID statement, RAPFLG 
would be 1, therefore causing a call to subroutine RAPIDO. But 
subroutine RAPIDO, upon testing FLRPON, finds it already non
zero; therefore, the postprocessor knows that a rapid mode 
already exists; hence, there is no need to reestablish it. This 
avoids the redundant output of gear shifting M codes. 

Subroutine RAPIDO makes some preliminary checks before it decides 
to enter into a rapid mode. The minimum path length (option 37) 
is checked to see if it is larger than the given motion. If it 
is, there is no point in shifting gears or otherwise entering 
into the high f eedrate range since the move is too short to 
warrant the time required. In this case, the postprocessor uses 
the highest feedrate of the current feed range (option 39). 

* This subroutine is actually a multiple entry subroutine with 
one of the entries so titled. 

4-25 



CICHT Ill POSTPROCESSOR 

4.1.4 RAPID TRAVERSE (cont'd) 

Subroutine RAPIDO then checks 
the resulting rapid feedrate. 
limited, flag FRAPID is set 
f eedrate which does not cause a 
in subroutine OUTPUT, since 
used for the feedrate, but the 
the command block as being one 

4.1.5 FEEDRATE OPTIMIZATION 

... for the computer programmer 

for a tape reader limitation using 
If the block is tape reader 
to the positive highest value of 

tape reader limitation. Hence, 
FRAPID is positive, it's value is 

value is made negative to identify 
of a rapid traverse. 

There are many conditions which during the course of a part 
program can cause a lowering or limiting value to the programmed 
feedrate. But there are also several special techniques which it 
may be possible to apply in order to obtain the programmed 
feedrate, or barring this possibility, at least to obtain the 
highest possible feedrate. Each of these several techniques are 
discussed in detail in the following sections. 

' 4.1.5.1 G CODE SEGMENTATION 

Consider the following case where a motion has the increments 
~X=30 and ~Y = 40 inches, and the programmed feedrate is 300 
IPM. The feedrate command (assume option 10 = 0) for this motion 
is: (See Section 4.1.1.1) 

FCOM = D * FIPM 
s 

= 100 * 300 = 
~ 900 + 1600 

30000 
50 

= 600. 

This value is greater than the feedrate command maximum of ·500; 
therefore, FcoM would be made equal to 500. But this is highly 
restricting, for now the feedrate has been reduced to 250 IPM; 

FIPM = FCOM * S = 500 * 50 = 250 IPM. 
D 100 

This reduction is undesirable and can be eliminated. 

If we take the original path of 50 inches and segment it to path 
sizes such that the increments are less than 10 inches, then it 
becomes possible to use a smaller dimension G code with the 
possibility of obtaining an acceptable feedrate conunand. 

4-26 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4.1.5.1 G CODE SEGMENTATION (cont'd) 

Accordingly then, we get five segments such that 

D. X = 3 0 = 6 , and D. Y = 4 0 . = 8 
. -5- -5-

Each of the segment paths now has an 

FCOM = 10 * 300 

~ 36 + 64 

= 3000 
10 

= 300, 

which is considerably below the feedrate command maximum of 500; 
therefore, the programmed feedrate of 300 IPM can now be used. 

This G code segmentation procedure exists in subroutine TSTFCM 
which is called from subroutine SELG when the linear preparatory 
function G code is being selected. (See section 3.4. 6.1) 

Option 170 must be set to 1 to call for this sequence. Note that 
this G code segmentation cannot be used for multiaxis moves, nor 
for circular interpolation or rotary moves; and obviously, it 
cannot be used if only one G code is available. Also, the 
feedrate command must be of the dimension multiplier type, i.e., 
option 10 = O. 

In attempting to segment the path, the subroutine begins with the 
initially selected dimension G code, and works its way down to 
each successively small and available dimension G code. 
Subroutine COMPFC computes the feedrate-command. 

4.1.5.2 VARIABLE MAXIMUM FEEDRATE ON EACH AXIS 

The most common condition for NC machines is to have the same 
feedrate maximum on all axis. Such a condition requires no 
special concern since all axes respond identically when under the 
same limitations. However, some NC machines, usually those of 
the very large variety, have different feedrate limitations on 
one or more of their axes. This restriction can affect the 
programmed feedrate, that is, cause a reduction of the programmed 
value if the resulting component axis feedrate is greater than 
the allowable axis feedrate maximum. 

4-27 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

4.1.5.2 VARIABLE MAXIMUM FEEDRATE ON EACH AXIS (cont'd) 

The postprocessor must interrogate each motion block and its 
feedrate, and compute each component axis feedrate to compare 
versus the allowable limits. These limits are specified in FRTAB 
and ordered according to axes and f eedrate ranges. The example 
below best illustrates the usage and operation of this sequence. 

y 

x 
I I 
I I t::.z __________ _y 

!::.x 

z 

Diagram 4.1.5.2A 

For a part programmed feedrate F,the postprocessor determines the 
axis component feedrate; 

F = x 
t::.xF" 

~ !::.x 2 + 6 y 2 + 6 z 2 

similary for F and F • 
y z 

Each axis component feedrate is then compared versus its 
allowable maximum and minimum feedrate, and where a bound is 
exceeded, the feedrate is set to that bound. The axis feedrate 
which has the most limiting condition is used to then redetermine 
the allowable programmed feedrate. 

4-28 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4.1.5.2 VARIABLE MAXIMUM FEEDRATE ON EACH AXIS (cont'd) 

The axes maximum and minimum feedrates are stored in the feedrate 
table FRTAB as: 

FRTAB(289) = x axis min 

FRTAB (290) = x axis max 

FRTAB (291) = y axis min 
Range 1 

FRTAB (292) = y axis max 

FRTAB (293) = z axis min 

FRTAB (294) = z axis max 
-

FRTAB (295) = x axis min 

FRTAB (296) = x axis max 

FRTAB (297) = y axis min 
Range 2 

FRTAB (298) = y axis max 

FRTAB (299) = z axis min 

FRTAB (300) = z axis max 

In the example above, only two ranges are used, but as many 
ranges can be used as room in FRTAB permits. 

The tabled values must also be ordered according to the axes 
setting of option 59. In the example above, option 59 was 
assumed to be ordered as XYZ, but if the machine were for a 
lathe, the order could be ZX, (Y is implied but disregarded). In 
this case then, the storage wou1d be: 

FRTAB (295) = z axis min (Assume 1 Range) 

FRTAB (296) = z axis max 

FRTAB (297) = x axis min 

FRTAB (298) = x axis max 

FRTAB (299) = (Y axis min) 

FRTAB (300) = (Y axis max) (can be set to zero) 

4-29 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4.1.5.2 VARIABLE MAXIMUM FEEDRATE ON EACH AXIS (cont'd) 

The postprocessor utilizes the above feedrate table in the 
following example. 

Assume the machine is a lathe (ordered as +Z-X) and has the 
following feedrate table: 

Range 1 

FRTAB (289) 

FRTAB (290) 

FRTAB (291) 

= 
= 

= 

0.03} z 
3.4 

0.01 

x 

FRTAB (292) = 1. 0 

FRTAB (293) 

FRTAB (294) 

= 0 

= 0 

FRTAB (295) 

FRTAB(296) 

FRTAB(297) 

= 

= 
0.131 z 
13.5 

= 0.36 

Range 2 x 

FRTAB(298) = 36.0 

FRTAB(299) = 0 

FRTAB(300) = 0. 

The prograrruned feedrate is 100 IPM and feedrate range 2 is 
used. The departures are ~X = 2, ~z = 3. 

Then, 

x· 

b.Z 
3 

~x 

z. 
0 2 

Diagram 4.l.5.2B 

4-30 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.5.2 VARIABLE MAXIMUM FEEDRATE ON EACH AXIS (cont'd) 

F = 2*100 = 200 = 55.5 IPM, 
x 3.61 ~4+9 

F = 3*100 = 300 = 83.3 IPM. z 
~4+9 3.61 

F >36, therefore, F is made 36 IPM. 
~ is made 13.5 IPM. x 
-+ 

Similarly, since F >13.5, 
z 

F must be recomputed to determine which condition is the more 
limiting. 

-+ 
Using Fx, F = 36 * 3.61 = 65 IPM, indicating that the 

2 

programmed feedrate could be as much as 65 IPM without exceeding 
the X axis maximum feedrate. Computing for the Z axis; 

using F , ~ = 13.5 * 3 • 61 = 16.2 IPM, indicating that the z ~3~ 

programmed feedrate on the z axis is 
Therefore, ~ must be reduced to 16.2 
feedrates are now within acceptable limits. 

F = z 

2 * 16.2 = 9.0 IPM 
3.61 

3 * 16.2 = 13.5 !PM. 
3.61 

the 
IPM. 

more 
The 

limiting. 
component 

A final test is made on ~ to make sure F is less than or equal to 
the absolute value of option 25. If F>I OPTAB(25) 1, F is set 
equal to OPTAB(25). 

This sequence resides in subroutine FEDLIM which is called from 
subroutine SELG. Although machines which have different feedrate 
maximums on each axis must utilize the feedrate optimizing 
sequence of subroutine FEDLIM, this does not pertain to varying 
rapid traverse maximums. See Section 4.1.5.4 for this function. 

To call for the use of subroutine FEDLIM, option 25 must be set 
negative. If multiple feedrate ranges exist, option 18 must be 
set accordingly. 

4-31 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

4.1.5.2.1 VARIABLE MAXIMUM FEEDRATE ON MULTIAXIS MACHINES 

Subroutine FEDLIM is also used for multiaxis machines which have 
different feedrate maxinums on each axis. For multiaxis machines 
the maximum and minimum feedrates for the rotary motions are 
stored (in RPM) in SRTAB. The linear feedrates are ordered as 
specified by option 59, followed by the rotary feedrates as 
ordered in DBFSEG; head first, table second, followed by the 
third rotary axis if there is one. 

In the following example only two feedrate ranges are used, but 
as many ranges can be used as room in SRTAB permits. 

Range 1 Range 2 

SRTAB (281) = x axis minimum SRTAB (291) = x axis minimum 
SRTAB (282) = x axis maximum SRTAB (292) = x axis maximum 
SRTAB (283) = y axis minimum SRTAB (293) = y axis minimum 
SRTAB (284) = y axis maximum SRTAB (294) = y axis maximum 
SRTAB(285) = z axis minimum SRTAB (295) = z axis minimum 
SRTAB (286) = z axis maximum SRTAB (296) = z axis maximum 
SRTAB(287) = head axis minimum SRTAB (297) = head axis min. 
SRTAB(288) = head axis maximum SRTAB (298) = head axis max. 
SRTAB (289) = table axis minimum SRTAB (299) = table axis min. 
SRTAB (290) = table axis maximum SRTAB(300) = table axis max. 

Option 25, the maximum feedrate in IPM, must be set negative to 
indicate that each axis has its own maximum and minimum feedrate 
per range. Option 112, the radius in inches of the part, and 
option 128, the head tool swing radius in inches, must also be 
set. 

The APT program computes the XYZ coordinates and the direction 
cosines of the tool vector offset from the part surface by the 
radius of the cutter. For multiaxis machines the postprocessor 
uses transformation (class) equations to relate part geometry to 
machine geometry and slide motion. The motions of the rotary 
axes are derived from the direction cosine data. 

Since the APT program calculates only linear cut vector, the part 
program tool tip path length is determined from the relationship 

L (part program path) =~~X2 + ~Y2 + ~z 2 

where ~X, ~Y, and ~Z are the increments between CL data points. 

The f eedrate number is determined using this path length L and 
any of the conventional methods given by option 10. 

4-32 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.5.2.1 VARIABLE MAXIMUM FEEDRATE ON MULTIAXIS MACHINES (cont'd) 

When a given cut vector has been resolved by the transformation 
equations into machine slide motions, it is necessary to 
determine that no axis feedrate constraints have been violated. 
The following example will illustrate the method: 

Problem statement: . To cut a spiral groove 1/4 inch wide 
and 1/8 11 deep in the face of a cone. 
(See Figure 4.1.5.2.1A) 

Given: (1) cone with 4 inch base diameter, 8 inches in 
height. 

(2) Option 112 = 2.0 inches, option 128 = 3 
inches. 

(3) Groove to have one inch lead along major axis 
of cone (Y axis of machine) • 

(4) Tool axis to be nornal to cone surf ace at all 
times. 

(5) Desired feedrate is 40 IPM in range 1. 
(6) SRTAB is set thus: 

Range 1 Range 2 

SRTAB (281) = • 05] SRTAB (291) = .1 J 
SRTAB (282) = 4.0 x SRTAB (292) = 0.0 
SRTAB (283) = .1 J SRTAB (293) = • 2 J 
SRTAB (284) = 6.0 

y 
SRTAB{294) = 12.0 

SRTAB (285) = .1 l SRTAB (295) = • 2 J 
SRTAB (2 86) = 6 .o - z SRTAB (296) = 12.0 
SRTAB (287) = .5 l SRTAB (297) = 1. 0 J 
SRTAB (288) = 2. 0 - A SRTAB (298) = 4.0 
SRTAB (289) = • 5 J SRTAB (299) = 1. 0 J 
SRTAB (290) = 3.0 B SRTAB (300) = 6.0 

-1 
Cone 1/2 angle = tan 2 

8 

= 14.03° 

x 
y 

z 

A 

B 

Lead (Y axis) = 1 in. or 1 inch per degree of rotation 
360 

Tool advance (Z axis) = (1" X sin 14.03°) cos 14.03° in/ 
revolution 

= .234 inches/revolution 
= .234/360 inches/degrees 

4-33 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

4.1.5.2.1 VARIABLE MAXIMUM FEEDRATE ON MULTIAXIS MACHINES (cont'd) 

It can be shown that for a given tolerance t, the maximum linear 
cut vector (L) at radius R is given by 

L = 4 \J RT. 

Assuming equal inside and outside tolerances, T = .005 at 

radius R, L = 4~2*.005 
= • 4" 

The table will rotate 2 sin-l L degrees. 
2 (R+t) 

Table rotation B = 2 sin-1 

= 2 sin-l 
= 11.46° 

.4 
2(2.005) 
.0998 

The machine data is 

~X = 0 (no motion of X axis) 

~Y = 1" * 11.46° = .0318" (one inch spiral lead) 
360 

~z = .234 * 11.46° = .00745 (in feed of z axis) 
360 

~A = 0 (assuming previously set at 14.03°) 

~B = 11.46° (rotation of table for each cut vector) 

For a given feedrate F the axis component feedrate is computed 
for each axis by the formula: 

Fn =_~_n_F __ 
L 

-+ 
where the factor F/L is the inverse of the cut time. 

4-34 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.5.2.1 VARIABLE MAXIMUM FEEDRATE ON MULTIAXIS MACHINES (cont'd) 

Each axis component feed.rate is compared with its allowable 
maximum and minimum values in SRTAB, and where a bound is 
exceeded, the feedrate is set to that bound. The axis feedrate 
which has the most limiting condition is used to redetermine the 
allowable programmed feed.rate. 

The table 

= .0318*40 = 3.18 IPM 
.• 4 

F = .00745*40 = .745 IPM z 
.4 

move is converted to inches 

ilB = 2 * 3.14159 * 11.46°• 
360 ° 

FB = .4 * 40= 40 IPM 
.4 

2 in = .4 inches 

The maximum allowable feed.rate in IPM for the table is 

Fa (allow) = 2 * 3.14159 * 2 * 3 = 37.7 IPM 
Since Fa> Fa (allow}, therefore, Fa is set to 37.7 •. 

Recomputing 
+ 
F gives 

+ 
F = 37.7 * .4 = 37.7 

• q 

All component axis feedrates will be correspondingly reduced 
since the 40 IPM requested feed.rate cannot be achieved due to 
the limitation of the rotary table (B axis) 

= .318 * 31.1 = 3.0 IPM 
.4 

Fz = .00745 * 37.7 = .702 IPM 
.4 

4-35 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.5.2.1 VARIABLE MAXIMUM FEEDRATE ON MULTIAXIS MACHINES (cont'd) 

1/4" 

Diagram 4.1.5.2.1A 

4-36 

14.03° 

-----.,,,,.-- ---- - - - -- ----/ _,,,-
/ -----.,,,,,,,- -------t/-

1/8" 

8" 

4 II 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

4.1.5.3 FEEDRATE MULTIPLIER CONSTANT 

Whenev·er a feedrate command (dimension multiplier or inverse time 
type) for a linear move exceeds the command maximum, and unless 
the postprocessor can use some optimizing method which retains 
the progranuned feedrate, the feedrate command is set to the 
command maximum which necessarily causes a reduction in the 
feedrate; see the example in Section 4.1.5.1. 

one of the optimiz1ng methods that the postprocessor can use 
requires the availability of the IJK registers which are normally 
used for circular interpolation and threading. This method, in 
effect, proportionately reduces the feedrate conunand by ratioing 
the incremental moves by some arbitrary constant. 

Whenever the calculated f eedrate conunand exceeds the maximum, an 
arbitrary constant can be chosen which, when divided into the 
feedrate command, reduces it to its maximum value or below. The 
XYZ axis departures are then multiplied by this same constant, 
and the resultant products are programmed in their respective IJK 
registers. 

This method can be applied to both the dimension multiplier and 
inverse time types; see sections 4.1.1.1 and 4.1.1.2. The 
relations are: 

F = 
COM 

D * FIPM 

s * c 

where c is the arbitrary multiplier constant. 

ti I = X * C, 

tiJ = y * c, 

ti K = Z * C, 

Example: Assume the inverse time 
therefore, D = 1. tix = 0.01 and 
progranuned feedrate is 30 IPM. 

f eedrate command type, 
tiY = 0.01 inches, and the 

FcoM = 30 
0.01414 

= 2120, 

which is greater than the feedrate command maximum of 999.9 This 
value can be brought down to an acceptable quantity by adopting 
an arbitrary constant which scales down FCOM • 

4-37 



GICINT Ill POSTPROCESSOR ... for the computer programmer 

.1.5.3 FEEDRATE MULTIPLIER CONSTANT (cont'd) 

Adopt a value of 5 for c. Therefore, 

FCOM = 2120 = 424, 
5 

which is now well below the maximum. 

Then, I = 0.01 * 5 = 0.05, 
J = 0.01 * 5 + 0.05. 

The programmed block would then contain the values 
!::.Y = 0.01, I = 0.05, J = 0.05, and FCOM = 424. 

!::.X = 0.01, 

This scaling method cannot be used with circular interpolation 
because it would alter the length of the circle radius, but it 
may be applied to rotary motions by an analagous method, i.e., 
the values D and E are determined by multiplying the rotary 
motions by the multiplier constant; see section 3.4.7.1. 

D = !::.A * C, 

E = !::.B * C. 

The major restriction on this scaling method is that the 
resultant product of multiplying the departures by the multiplier 
constant must not exceed the storage capacity of the I,J,K,D, or 
E registers. 

Note that the feedrate command will no longer be equal to· 1/T 
when this method is used. 

4-38 



C(t(~l 111 POSTPROCESSOR ... for the computer programmer 

4.1.5.4 RAPID TRAVERSE OPTIMIZATION 

Since · a rapid traverse is a non-cutting type move, it should 
normally be made at the highest f eedrate possible. The maximum 
feedrate for an NC machine may be 100 IPM, but it is possible to 
legitimately exceed this value by obtaining an optimim vector 
feedrate. 

Options 42, 43, and 44 provide the maximum rapid traverse 
feedrate for each axis, and these values are used to optimize the 
rapid traverse. In the following example we assume a two-axis 
machine and want to rapid traverse over the path s 

s 

y 3 

0 x 

Diagram 4.1.5.4A 

(Diagram 4.1.5.4A) whose length is 5 and whose component lengths 
are 3 and 4. Assume also that the maximum rapid traverse 
feedrate for each axis is 100 IPM. If we compute the feedrate 
command for the rapid traverse path s, we get: 

(See Section 4. 1. 1 • 1) • 

FcoM = D * FIPM 

s 
= 10 * 

5 
100 = 200; 

This is an acceptable feedrate command which maintains the 
programmed feedrate of 100 IPM; but, as will be seen, we can get 
a yet higher value. 

4-39 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.1.5.4 RAPID TRAVERSE OPTIMIZATION (cont'd) 

Using the resultant speeds on each axis we can compute: 

x rapid traverse = 3 * 100 = 60 !PM; 
5 

Y rapid traverse = 4 * 100 = 80 IPM. 
5 

We can get greater speeds if we select the optimum ratio value of 
the component path length to maximum rapid traverse feedrate for 
the component's axis, that is, we select the maximum of the three 
values: 

~x 

option 42 1 option 43' option 44' 

In our example these ratios are __ 3_, 
100 

4 • the maximum is --· 100 
4 • 

100 

The feedrate command relation for rapid traverse is now 

where ~ is the maximum of the ratios. In our example, 

F COM= 1 0 * 1 0 0 
4 

= 250. 

This value is higher than the previously calculated F 
Using this value, the resultant feedrate over s is then: 

= F COM * 5· = 250*5 = 125 IPM. 
D 10 

The resultant speeds on each axis are now: 

X rapid traverse = 3 * 125 = 75. 
5 

Y rapid traverse = 4 * 125 = 100. 
5 

Neither axis traverse exceeds the maximum, but each traverse 
attains its optimum value. 

4-40 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

4.1.5.4 RAPID TRAVERSE OPTIMIZATION (cont'd) 

If the rapid traverse occurs in a low range, option 39 is used 
for all axes, thereby replacing options 42, 43, and 44. 

This rapid traverse ~ptimization is done in subroutine CONTUR. 

Option 36 must be set to 0 to call for this optimizing sequence. 
NC machines which have an inadequate hydraulic power supply to 
move each axis at it's maximum feedrate cannot use this 
optimizing feature. 

4-41 





CltlNT 111 POSTPROCESSOR ... for the computer programmer 

4.2 MULTIAXIS TRANSFORM CLASSES 

The APT system passes multiaxis information on to the 
postprocessor through the CL tape. Cutter location data for the 
programmed part are in the form of algebraic points (x, y, z) 
along the cutter path, and direction cosines (i, j, k) of the 
tool axis. Before the postprocessor can properly process data 
for control output, it must first transform the linear motions 
into the nonlinear motions of the multiaxis machine. In general, 
the nonlinearity is· due to one or more rotary axes which alter 
the position value of at least one of the linear axes. Hence, 
the postprocessor•s geometric function is two-fold: one, to 
relocate the affected linear·axis point as a function of the 
nonlinear motion; and, two, to transform the direction cosine 
data into the angular results required for rotary motion. 

According to the NAS 938 description of standard machines there 
are approximately twenty existing types of machines which could 
be classed as multiaxis machines. This includes machines which 
have at least one translatory axis, one rotary axis, or both 
translatory and rotary axes. A translatory ·axis is defined as a 
secondary or tertiary axis operating parallel to one of the 
primary axes. Machines which have ancillary translatory axes are 
not normally considered part of the multiaxis problem. 
Specifically, only those machines which have one or more rotary 
motions about the primary axes are considered. 

The following notation is used for descriptive purposes in order 
to differentiate between the various types of multiaxis machines: 
I(P,T,R), where I is the total number of tape controlled axes, P 
is the number of primary axes, T the number of translatory axes, 
and R the number of rotary axes about primary axes. Thus, a five 
axis machine 5(3,2,0) is easily discernible from 5(3,0,2) as 
being a type machine not considered to be a multiaxis machine. 
An extension of the notation gives other axis information; 
thus,9(3,2-1,2-1) refers to a 9 axis machine with 3 primary axes, 
2 secondary and 1 tertiary translatory axes, and 2 rotary and 1 
secondary rotary axes. Multiple spindles are indicated by a 
final number outside the parentheses, as 9(3,2-1,2-1)2 to 
indicate two heads. 

4-43 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.2 MULTIAXIS TRANSFORM CLASSES (cont'd) 

In general the GECENT III postprocessor can easily handle 
multiaxis machines of type 4(3,0,1) and 5(3,0,2} which, happily, 
are the most conunon configurations. However, the postprocessor 
can also handle machines which have translatory axes but not as 
a multiaxis move. If, for a 6-axis machine 6(3,1,2), the 
translatory axis is independant of the other five axes, i.e., is 
essentially a positioning motion, then the postprocessor is 
applicable. This implies that after the five axis slides have 
been set for some given point X, Y, Z, A, B, that the translatory 
axis is then moved. With this definition the multiaxis GECENT 
postprocessor is capable of handling 13 of the 20 multiaxis 
types. This includes types 5(3,0,2), 5(2,0,3) 4(3,0, 1), 5(2,1,2) 
5(3,1,1), 6(3,1,2), and 4(3,1,0). Each of the types discussed 
here are one of these. 

The most basic feature of a multiaxis postprocessor is its 
transformation equations for converting the data from the part 
program coordinate system to the machine coordinate system. 
Since there are so many possible configurations, it is not 
economically possible to generalize a sequence for all possible 
combinations. The postprocessor uses one of several defined 
configurations during any particular run. This method, in a 
generalized sense, processes a multiaxis motion which is yet 
particularized to a given machine geometry. 

Briefly stated, the method involves a classification of. the 
geometric transform equations of existiDJ multiaxis machines, to 
program these equations and identify them by their class, and to 
allow an option value to select the class for the given machine 
tool. For example, if· a multiaxis machine has a rotating and 
tilting table and an orthogonal system, it would have a Class 3 
geometric configuration. The Machine Subroutine merely assigns 
the appropriate option values for the class, and the CL data is 
transformed according to the relations given for Class 3. Option 
116 specifies the geanetry class. 

Each class of equations is programmed in its own subroutine, and 
usually involves no more than ten equations. . The number of 
classes, however, will vary. As new machine configurations 
occur, their classes are added to the postprocessor. Thus,.there 
is no limitation to the adaptability of the postprocessor, and as 
new classes are added, the overall generality of the 
postprocessor is enhanced. 

4-44 



CltlNT 111 POSTPROCESSOR ... for the computer programmer 

4.'2 MULTIAXIS TRANSFORM CLASSES (cont'd) 

Present multiaxis machine structures do not vary too much, and 
the same can probably be said for future machines. It is 
probable, therefore, that the number of classes will be no more 
than twelve, which is the approximate number of logical 
combinations of table and tool rotating and/or tilting machines. 
There will be special cases which can increase the number. In 
any event, a large nurrber of classes can be handled quite 
adequately in the postprocessor. 

Each of the various classes of multiaxis machines defined in this 
section are illustrated by a diagramatic sketch which gives the 
basic relationships of the linear and rotary axes. The sketch is 
not meant to typify any particular NC machine. 

The direct and inverse transforms are given for each class. The 
notation X Y z ABC refer to the machine coordinates, whereas x y 
z ijk refer to the part coordinates. ABC are the machine rotary 
motions, and ijk are the backward directed direction cosines of 
the tool. 

Options 100 through 105 are used as the input source for equation 
constants which may be needed by the transforms. These constants 
are identified and given in the Machine Subroutine. 

4-45 



. 

ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.2.1 CLASS 1 5(3,0,2) 

This class is for five axis machine with a rotary table about the 
Z axis and a rotary head about the X axis • 

•• 

x 
y 

Class 1 

Diagram 4.2.lA 

4-46 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4. 2.1 CLASS 1 5 (3, 0,2) (cont• d) 

Direct Transforms: Part to Machine Coordinates 

x = x j y i 

~l - k2 \j 1 - k2 
y = x i + y ~ j 

~l - k2 ~l - k2 

z = z + (R+T f k 
L 

A = tan-1 k (Head) 

~l - k 2 ' 

c = tan-1 j (Table} 
i 

+ (R+T )~ 1 +k2 
L 

Inverse Transforms: . Machine to Part coordinates 

x = X sin C + (Y - (R+TL) cos A) cos C 

y = (Y - (R+TL) cos A) sin C - X cos C 

z = z - (R+TL) sin A 

i = cos A cos C 

j = cos A sin C 

k = sin A 

Definition of Terms 

x y z The part coordinate plus its respective TRANS values 

x y z The machine coordinates 

A Head rotation angle in the machine coordinate system 

c Table rotation angle in the machine coordinate system 

ijk The direction cosines of the tool axis 

4-47 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.2.1 CLASS 1 5(3,0,2) (cont'dl 

Def ini ti on of Terms (cont 1 d) 

T 
L 

R 

4-48 

Tool length in inches 

Distance in inches between the rotary head axis and 
spindle face 

The value of R is a function of the head and gripper; 
for example: 

Small Gripper Large Gripper 

Head 1 R = 4 R = 9.5 

Head 2 R = 3 R = 8.5 

~ 
-30 

~ 

0 

120 

90 

Diagram 4.2.lB 

..,,, 



Cl&INT 111 POSTPROCESSOR ... for the computer programmer 

4. 2. 1 CLASS 1 5 (3, 0, 2) (cont'd) 

An indeterminate value for the table rotation occurs when the 
tool is perpendicular to the table since it cannot be clearly 
defined as to which way the rotation should go. 

Thus, when k = 1, A is indeterminate. For this case, A is made 
90 degrees and c is given the same value as at the previous 
point. Then, 

x = x sin c - y cos c 

y = x cos c + y sin c 

z = z + R + TL 

A = 1T/2 

c = Previous c 

Linearity testing is disregarded over this move. 

4-49 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

4.2.2 CLASS 2 4(3,0,l) 

This class is for a four axis machine with a rotary table about 
the Y axis. 

X' 

Class 2 

Diagram 4.2.2A 

4-50 



C(C(Nl 111 POSTPROCESSOR ... for the computer programmer 

4.2.2 CLASS 2 4(3,0,1) (cont'd) 

Direct Transforms: . Part to Machine Coordinates 

X=xk-zi 

y = y 

z = x i + z k + (R + TL) 

B = tan-1 i 
k 

Inverse Transforms: Machine to Part Coordinates 

x = [Z -
y = y 

z = (Z -
i = sin 

j = 0 

k = cos 

Definition 

xyz 

XYZ 

B 

i,j,k 

(R + TL) ] sin B + x cos B 

(R + TL)] cos B - x sin B 

B 

B 

of Terms 

The part coordinates plus its TRANS value 

The machine coordinates 

Table rotation angle in the machine 
coordinate system 

The direction cosines of the tool axis 

Tool length in inches 

Distance in inches between the rotary head axis and 
spindle face. The value of R has the standard value 
of 3 (option 102). 

4-51 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.2.3 CLASS 3 5(2,0,3) 

This class is for a five-axis machine which has two linear and 
three rotary motions. 

y 

Class 3 

Diagram 4.2.3A 

4-52 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4. 2. 3 CLASS 3 5 (2, 0, 3) (cont'd} 

Direct Transforms - Part to Machine Coordinates 

Xe = x + iTL 

Ye = y + j'J1 

Ze = z + kTL 

H=~~+~ 
i' = ( i~ + j Ye ) /H 

j• = ( ·x - iY )/H J c e 

k' = k 

G = ~ ( j' ) 2 + (k I) 2 

x = H 

y = 0 (by def ini ti on) 

z = z 
e 

A = tan-1 (-j' sign k) 
I k I 

B = tan-1 i' 
G sign k 

c = tan-1 {-XC} 
YC 

Inverse Transforms - Machine to Part coordinates 

i = - sine sinB + cosc cosB sinA 

j = cosc sinB + sine cosB sinA 

k = cosB cosA 

x = -x sine - ~ i 

y = x cosc - ~ j 

z = z-'lL k 

4-53 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

4.2.3 CLASS 3 5(2,0,3) (cont'd) 

Definition of Terms 

xyz The part coordinates 

XYZ The machine coordinates 

A Head rotation angle in the machine 
Coordinate system 

B Head rotation angle in the machine 
Coordinate system 

c Table rotation angle in the machine 
coordinate system 

ijk The direction cosines of the tool axis 

TL Tool length in inches 

4-54 



ClCINT 111 POSTPROCESSOR ... for the computer programmer 

4.2.4 CLASS 4 4(3,0,1) 

This is for a four-axis machine with a rotary table about the X 
axis. 

y 

~x· 

.Y 

z 

Class 4 
x 

Diagram 4. 2. 4A 

4-55 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

4.2.4 CLASS 4 4(3,0,1) (cont'd) 

Direct Transforms Part to Machine Coordinates 

x = x 

y = yk - zj 

z = yj + zk 

A = tan-1 k 0 ~ A ~ 27T 
j 

Inverse Transforms Machine to Part Coordinates 

x = x 

y = y sin A + z cos A 

z = -Y cos A + z sin A 

j = cos A 

k = sin A 

i = 0 

4.2.5 CLASS 5 4 (2,0,2) 

This class is essentially a dununy class subroutine for a filament 
winder. It satisfies the postprocessor necessity of providing a 
class subroutine within the multiaxis sequence. In effect, all 
that it does in to set DPRESM equal to DPRESP. 

4-56 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

4.2.6 CLASS 6 5(3,0,2) 

This class is for a five-axis machine with a rotating head about 
the X axis and a pivoting column about the Y axis. 

Diagram 4.2.6A illustrates a single-head NC machin~ while Diagram 
4.2.6B illustrates a multi-head machine. 

y 

x 

0 
0 

y 

z 

Class 6 

Diagram 4. 2. 6A 

4-57 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

4 • 2 • 6 CLASS 6 5 ( 3 , 0, 2) (cont Id) 

+x 

Gantry 

X MOTION IS GANTRY MOVEMENT 

Axis Nomenclature 

Head 1 
Head 2 
Head 3 

Class 6 

+x, +Y, +z, +A 
+x, +v, +w, +o 
+X, +V, +W, +io 

Diagram 4.2.6B 

4-58 

Head 1 
Head 2 

TOP VIEW 

Head 3 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

4.2.6 CLASS 6 5 ( 3, 0, 2) (cont'd) . 

Direct Transforms Part to Machine Coordinates 

x = x + i (-Q-Z) 
k 

y = y + j (-Q-Z) 
k 

z = -Q - 1 (-Q-Z) 
K 

A = tan-1 -j 

~ l-j2 

B = tan-1 i -

K 

Inverse Transforms Machine to Part Coordinates 

x = x + (Z+Q)i 

y = y + (Z+Q) j 

z = Q + (Z+Q) k 

i = cos A sin B 

j = -sin A 

k = cos 

Definition 

x,y,z 

X,Y,Z 

A 

B 

Q 

A cos B 

of Terms 

The Part coordinates plus the TRANS value 

The Machine coordinates 

Head Rotation Angle (Tilt) 

Column Rotation (Swivel) 

Directed distance from pivot plane to part 
origin on z axis. 

The pivot plane is the plane parallel to the XY plane and 
contains the column rotary axis and the head rotary axis. 

4-59 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.2.7 CLASS 7 5(3,0,2) 

This class is for a five axis machine with a rotating column 
about the Y axis and rotating "venetian blinds" about the X axis. 

y 

Class 7 

Diagram 4.2.7A 

4-60 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4. 2. 7 CLASS 7 5 (3, 0,2) (cont• d) 

In actuality the angle plate shown in Diagram 4.2.7A has three 
"venetian blinds", and the machine has a triple spindle. The A 
axes venetian blinds are work holding fixtures mounted on the 
angle plate. 

\ --,-
VENETION 
BLIND 

Diagram 4.2.7B 

Direct Transforms Part to Machine coordinates 

PART 

X = x + i[ (81-Q) (~j 2+ k 2
)] - [ j(y+82) + k(z+81)] 

~ j2 + k2 

Y = -S2 + k (y+S2)_ - j (z+S1) 

~j2 + k2 

Z = - Q - [ (S1-Q) (~j2+k2)] - ( j (y+S2) + k(z+81)] 

A = tan-1 [~ -0 
~j2 + k2 

B = tan-1 Ej2i + k~ 

Inverse Transforms: Machine to Part coordinates 

x = X + {Z + Q) sin B 

I 

AAn~ 
I 

y = - 82 + [ ( Y + S 2) cos A) ] ( (S1-Q) + (Z + Q cos B) sin A] 

z = -81 + ( {Y + S2) sin A] + ( (81 - Q) + (Z + Q cos B) cos A] 

i = sin B 

j = -sin B cos B 

k = cos A cos B 
4-61 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.2. 7 CLASS 7 (5,0,2) (cont'd) 

Def ination of Terms 

x,y,z, Part Coordinates 

X,Y,Z, Machine Coordinates 

A Venetian Blinds Rotation Angle 

B Column Rotation 

Q Directed distance from pivot plane to part origin on 
Z axis 

S1 Directed distance from axis of venetian blind to part 
origin on z axis 

S2 Directed distance from axis of venetian blind to part 
origin on Y axis 

I 

4-62 

Angle Plate 

Venetian 
Blind 

Part 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pivot Plane ~ 

Part Origin 

I 
I 
I 
I 
I 
I 

•f-.im-s-1~~~1·~--~-------Q ~~------------4~~: 
Diagram 2.4.7C 



Cl&lNl Ill POSTPROCESSOR ... for the computer programmer 

4.2.8 CLASS 8 5(3,0,2) 

This class is for a five-axis machine with a rotating table about 
the Z axis and a rotating head about the Y axis •. 

Class 8 

Diagram 4.2.8A 

4-63 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

4. 2. 8 CLASS 8 5 (3, 0,2) {cont• d) 

Direct Transforms 

A= tan-1 k 

~ i2 + ·2 
J 

c = tan-1 [1] 
x = x * cos c + y * sin c 

Y = (z - ZMO) * Sin (Ram Angle) + ~ * Cos A 
-x * Sin c + y * Cos c 

z = [z - T * (1-sin A) ]/Cos (Ram Angle) 

Inverse Transforms 

i = - (Cos A * Sin A) 

j = Cos A * Cos c 

k = Sin A 

x = -TIVAL * Sin C + X * Cos C 

y = TIVAL * Cos C + X * Sin C 

z = z * Cos (Ram Angle) + T * (1-Sin A) 
L 

Notes: TIVAL = Y-( (Z-ZMO) * Sin (Ram Angle) + 
~ * cos A] 

4-64 

ZMO = ((Option 125 + 50.3389) - 'IL> 
/Cos (Ram angle) 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

4.2.9 CLASS 9 5(3,0,2) 

This class is for a five axis machine with a rotating table about 
the Z axis and a rotating head about the X axis. Ref er to 
Diagram 4.2.8A. 

The NC machine illustrated for Class 8 is the same as for Class 
9 except that the head is positioned so that it pivots about the 
Y axis. 

Direct Transforms 

A= tan-1 k 

~ i2 + . 2 
J 

c = tan-1 (i/j) 

x = x + Cos c + y * Sin C 

Y = (z - ZMO) * Sin (Ram Angle) + l * Cos A - x * Sin C 
+ y * Cos c 

z = [ . z - ~ * ( 1-Sin A) ]/Cos (Ram Angle) 

Inverse Transforms 

i = - (Cos A * Sin C) 

j = Cos A * cos c 

k = Sin A 

x = -TIVAL * Sin C + X * Cos C 

y = TIVAL * Cos C + X * Sin C 

z = Z * Cos (Ram Angle) + ~ * (1-Sin A) 

Notes: TIVAL = Y-[ (Z-ZMO}*Sin(Ram Angle) + ~ * Cos A)] 

ZMO = ((Option 125 +50.3389) - 'JL)] 
/Cos (Ram Angle) 

4-65 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

4. 2. 8 CLASS 8 5 (302) (cont• d) 

Definition of Terms for Class 8 and Class 9 

x,y,z The part coordinates plus the respective TRANS values 

X,Y,Z, The machine coordinates 

A Head rotation angle in the machine coordinate system. 

c Table rotation angle ·in the machine coordinate system. 

i, j, k The direction cosines of the tool ax.is. 

~ Tool length in inches 

4-66 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.3 ACCELERATION-DECELERATION TESTING (A/D) 

The acceleration-deceleration sequence of the GECENT III 
postprocessor reduces feedrates below the values specified by the 
part programmer in circumstances where maintaining the prograrmned 
rate would cause an excessive deviation of the tool center path 
from the commanded path. The need for such feedrate reduction is 
found in the vicinity of corners and small arcs, where the 
programmed feedrate would demand large accelerations from the 
machine servo drives and cause the path error to exceed the 
required tolerance. 

In the interest of fast machining, it is desirable to interfere 
with the programmed feedrate as little as will suffice to hold 
the tolerance. The function of the postprocessor is similar to 
that of a racing driver in the Monaco Grand Prix. Although he 
might like to go at full throttle continuously, he necessarily 
must slow down at the corners to stay within the tolerances of 
the roadway. To save time, he brakes hard just ahead of a corner 
to get down to a safe cornering speed and then uses all the 
resources of his machine to get his speed back up to the value 
best suited for the next part of the path, whether it be wide 
open for a straightway, or some lower value for a curved path. 
His mental computer weighs knowledge of terrain and tire adhesion 
to tell him what speed he should maintain under each condition. 
The postprocessor does not do anything quite as spectacular as 
the racing driver. But similar principles are employed to the 
extent that the limiting speed for each condition is computed, 
and locations for required slowdowns are established just far 
enough ahead of critical points to permit the slowdown to be made 
in the space available. 

The basis for the calculation of feedrates is an analysis of the 
performance of servo drives which expresses tool center maximum 
path error as a function of servo characteristics, path geometry, 
and feedrate. The relationship is then solved for feedrate in 
terms of the given tolerance, path geometry, and appropriate 
servo constants. Different kinds of paths have to be analyzed 
separately, and the use of more than one feedrate along the path 
must also be considered. Some of these details are described 
later. 

In the discussion which follows, consideration is first given to 
the physical and theoretical implications of servo control 
reaction and effect. A complete description of the servo system 
of the Mark Century numerical control is given, and each dynamic 
effect is highlighted as to its cause and the theoretical method 
applied for resolution of the problem. 

4-67 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

4.3 ACCELERATION - DECLERATION TESTING (A/D) (cont'd) 

Later sections discuss the postprocessor prograrmned sequence .for 
the theoretically derived relations and principles which 
constitute the GECENT III solution to A/D dynamic problems. 

4.3.l SERVO ANALYSIS OF A/D PROBLEM 

By assuming that the servos on all axes of a three-dimensional 
contouring system have identical characteristics and are linear, 
some surprisingly simple relationships are found. The assumption 
of linearity can be justified by noting that when the 
postprocessor reduces feed.rates to maintain tolerable path 
errors, a tendency of the servos toward saturation at large 
errors is reduced. Furthermore, all Mark Century servos are 
designed for a good steady-state linearity between position error 
and velocity over the full range of contouring velocities in 
order to obtain low path errors on slopes. The effects of 
friction and backlash, neglected in the analysis, are expected to 
be small for most machines. Note, however, that the servo 
constants used in the postprocessor are entered in a table of 
values for each machine (OPTAB) and can be changed as necessary 
if experience indicates. The philosophy regarding these 
constants is to fix them initially on a theroetical linear basis, 
yet retaining for the user the capability of modifying or 
adjusting them as his own experience warrants, simply by 
exchanging values of constants in the table. 

The assumption that the servos on all the machine axes have 
identical characteristics is attractive to the analyst because it 
greatly simplifies his results. For machines with drives all of 
a given type having similar horsepower rating, it is justifiable. 
For greatly different power ratings on different axes, transient 
responses may not be entirely similar, in which case, 
conservative constants corresponding to the drive with highest 
transient errors can be used. Even when horsepowers are 
different, Mark Century servos are designed with identical 
steady-state gains in order to obtain low path errors on slopes, 
and this characteristic, combined with the "naked system" type of 
servo used in most Mark Century controls, tends to insure that 
the different servos will have very similar response 
characteristics. 

As background for discussion of tool center path errors, the 
essential characteristics of Mark Century servos will be 
described. These remarks apply equally to drives with DC motors 
controlled by thyratrons, silicon controlled rectifiers, or 
amplidynes, and to hydraulic drives employing either cylinder or 
hydraulic motors. 

4-68 



CltlNT 111 POSTPROCESSOR ... for the computer programmer 

ij.3.1 SERVO ANALYSIS OF A/D PROBLEM (cont'd) 

In common with all servomechanisms, the Mark Century servo drives 
utilize a position-feedback signal which algebraically combined 
with the input position corrunand signal to obtain a position error 
signal which actuates the motor to move in the direction tending 
to reduce the error signal toward zero. In addition,to this so
called position feedback loop, the Mark century servos are 
provided with an inner velocity loop employing a velocity 
feedback signal from a DC tachometer generator or other 
equivalent means. This signal is subtracted from an amplified 
version of the position error signal, and the resultant signal 
serves as a velocity command, or a velocity error signal which is 
amplified to actuate the motor. The use of the inner loop 
insures that the motor velocity is, to a high degree of accuracy, 
proportional to the position error signal, and · in effect it 
improves the performance of the physical motor so that it behaves 
more nearly like an ideal motor whose velocity would be totally 
unaffected by machine inertia and friction, and by variations in 
characteristics, with temperature and aging. The Mark Century 
servo with its inner velocity loop is shown in block diagram form 
in Diagram q.3.1A. 

To the extent that stability considerations permit the gain 
around the velocity loop to be made high and the velocity error 
signal to be kept small, the velocity feedback signal is 
maintained equal to the velocity command signal; and hence, it is 
proportional to the position error signal. For linear motions, 
the proportionality constant is designed typically in the range 
of 0.5 to 3 inches per minute for .001 inch of position error. 
At a velocity of 60 IPM, a Mark Century servo might have 
.120" to .020" of position error or velocity lag. It should 
be noted that this lag does not cause an equal error in 
the workpiece. On the contrary, at constant velocity 

Position 
Command 
Signal 

Position 
Error 
Signal 

Amplifier 

Velocity 
Command 
Signal 

Velocity 

Amplifier 
& Motor 

Output 
Position 

~-----t Tachometer.__ _ __. 
Velocity Generator 

Feedback Signal 
Position Feedback Si nal 

Mark Century Servo Drive 

Diagram 4.3.lA 
4-69 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.3.1 SERVO ANALYSIS OF A/D PROBLEM (cont'd) 

on sloping paths, the error is theoretically zero. The ~ool 
center trails along behind the commanded point, on a path which 
is exactly on the corrunanded path, so long as the servo gains are 
exactly equal. If, contrary to the design objective, the gain of 
one servo only should change by 1%, for example, it is true that 
a small error is introduced. The rraximum path error in such a 
case, on a 45° slope, theoretically becomes 1/2 of 13 of the 
normal velocity lag of one servo operating at the feedrate 
commanded along the slope. For a 1 IPM/ .001'' system running at 
60 IPM on a 45 ° slope, the error associated with a 1% gain change 
in one servo thus is 1/23 of .060", or .0003", and is 
proportionally smaller at lower feedrates. Satisfactory 
constancy of gain dependent only on stable quantities such as the 
tachometer volts/rpm characteristic and resistor values, and 
essentially independent of unstable quantities such as friction 
or transistor gain. 

Although servos of this kind are sometimes characterized by the 
term "low gain" to distinguish them from servos which operate at 
full speed with much smaller position errors, it should be clear 
that the low velocity gain characteristic is achieved 
deliberately by the use of velocity feedback around the velocity 
error amplifier for the sake of the benefits which such feedback 
bestows and not because of any skimping on amplifiers. For 
moving against static friction in response to a small command, 
the entire gain of both amplifiers in Diagram 4.3.1A is 
effective, and a quantitative analysis of a typical hydraulic 
system shows that only .000010 inch position error is required to 
develop full system torque. 

From the standpoint of A/D routines, the most significant 
characteristic of the velocity loop system is its ability to 
follow large changes in commanded velocity without excessive 
overshoot. In general terms, because the tool center lags behind 
the moving commanded point, the tool has adequate space in which 
to stop without significant overshoot. 

Diagrams 4.3.1B and 4.3.1C will clarify this. In Diagram 
4.3.1B(a), the solid line plotted against time shows an assumed 
command to a Y axis servo drive. The corrunand is initially 
stationary, and then suddenly starts to move upward at 60 IPM, or 
1 inch per second. The dotted line shows the tool center 
position, obtained by assuming that the servo has a gain of 1.2 
IPM/.001 11 (20 in/sec per inch of error) and a transient response 
as indicated in Diagram 4.3.1B(b), where the servo error (the 
difference between input command and servo position) is plotted 
against time with an expanded vertical scale. 

4-70 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

4.3.1 SERVO ANALYSIS OF A/D PROBLEM (cont'd) 

U1 
Q) 

.150 

"fl .100 
i:: 

·r-1 

Command 

Tool 
Center 

{/) 

Q) • 060 
..c: 
u 
c 

·r-1 

H 
0 
H 

.040 

~ . 020 
0 
:> 

/ 

.15 .20 .25 .30 .35 seconds 

H 
Q) 
{/) 

0-1.~~..l-~--l.~~-'--~--'L.-~.-..~~._~~~--

Command 

Ul 
Q) 

..c: 
u 
c 

·r-1 

0 • os .10 .15 .20 .25 .30 .35 seconds 

Diagram 4.3.lB 0 to 60 IPM 

I 
I 

• 9c/O 
I 

I 

-

11 soo-'-~~..L-~.....L~~..J.-~---11..-~,_j...~~"--~~~~ 

(a) Command & Tool 
Center Position 
vs. Time 

(b)' Servo Error 
vs. Time 

(a) Command & Tool 
Center Position 
vs. Time 

J
aso 

Tool 1. 00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 second~ 
Center 

Ul 
Q) 

..c: 
u 
c 

·r-1 

.. 
H 
0 
1-1 
1-1 
Q) 

0 
:> 
1-1 
Q) 
{/) 

.060 
ini ial lope 

.040 

.020 

1.30 1.35 seconds 

Diagram 4.3.lC 60 to 0 !PM 

(b) Servo Error 
vs. Time 

4-71 



CltlNT Ill POSTPROCESSOR ... for the computer programmer 

4.3.1 SERVO ANALYSIS OF A/D PROBLEM (cont'd) 

After steady conditions are reached, the tool center moves at the 
same velocity as the command but trails by .050 11 in distance, or 
.05 second in time. In Diagram 4.3.1C(a), the command is assumed 
to stop suddenly after 1 inch of motion, and the tool center 
stops with a small overshoot as shown. The corresponding plot of 
error is shown in Diagram 4.3.1C(b). With coulomb friction 
neglected, this curve of error is theoretically identical to that 
shown in Diagram 4.3.1B(b) except that it is inverted and 
displaced upward. It is inverted because the step change in 
commanded velocity is negative in Diagram 4.3.1C(a) compared with 
the positive change of Diagram 4.3.1B(a) and the plot is 
displaced because of the initial .050" steady error. Step 
changes in velocity of different magnitudes would produce similar 
plots of error versus time, larger or smaller in magnitude in 
proportion to the magnitude of the command velocity change, and 
displaying an initial value proportional to the velocity existing 
before the command change. Plotted as it is for the particular 
case of 1 inch per second feedrate, Diagram 4.3.1B(b) can serve 
as a generally useful response curve which, after appropriate 
scaling and shifting, describes the servo error following any 
step change of command velocity, when steady-state conditions are 
assumed to exist before the change. The shape of Diagram 
4.3.1B(b) depends on servo adjustments and normally shows an 
overshoot in the range of 0 to 20% beyond the final value 

4.3.1.1 PATH ERRORS ON CORNERS FORMED BY TWO CONNECI'ING 
STRAIGHT LINES 

While contouring along a straight line 3-dimensional path at 
constant velocity, the command to each axis servo moves at a 
constant velocity which is the appropriate component of the space 
vector velocity. A step change to a new feedrate, or a sudden 
change in direction of the path, or both, will in general cause 
a step change in the velocity of the command to each axis. Each 
servo position could be plotted by first plotting the error from 
Diagram 4.3.1B(b) using an appropriate scale factor and initial 
value in each case, and subtracting this error curve from the 
known command. Geometrically combining the servo position curves 
would yield a plot of tool center path, and its deviation from 
the commanded path could be measured. A simple 2-dimensional 
example will make this more clear. Suppose the commanded path 
consists of a 900 turn with the two lines forming the angle being 
parallel with the machine axes as shown by the solid lines in 
Diagram 4.3~1D. Suppose futher that the tangential feedrate is 
a constant 60 IPM. The Y-axis servo is initially at rest, and 
its command calls for a step change to 60 IPM, as already 
sketched in _Diagram 4.~.lB (a). The X - axis servo is 

4-72 



"'-" 

ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4.3.1.1 PATH ERRORS ON CORNERS FORMED BY TWO CONNECTING STRAIGHT 
LINES (cont'd) 

simultaneously commanded to stop from 60 IPM, the condition that 
was plotted in Diagram 4.3.1C(a). If the servo positions are 
transferred point by point to an X-Y plot, the dotted tool center 
path of Diagram 4.3.1D is obtained. The small numbers show the 
time in seconds after the command leaves the corner. At .050 
seconds, the tool center path crosses the 45° bisector of the 
angle at point B, and is distant from each line of the command 
path at this moment by the amount KB indicated on Diagrams 
4.3.1B(b) and 4.3.1C(b). The undershoot path error~, measured 
along the bisector is the distance BO = 1.414~ • At anout .125 
seconds the path exhibits its maximum overshoot. The overshoot 
error E0 in Diagram 4.3.1D is clearly the overshoot of the X 
servo indicated as K in Diagram 4.3.1C(b) or 4.3.1B(b). K_s and 
~ are servo constan~ stored in the postprocessor. 

.160 

.200 \ 
\ .140 

' .175 ~ 
\ .120 
\ 
\ 

; .100 
.150 

\ 

'~ .080 
. 125 • I Eo 

' .060 
Tool Center .100 ' I 

I .040 
I 

.020 

Command I 0 

. 860 . 880 • 900 . 920 . 940 . 960 . 980 1. 000 

Diagram 4 • 3 • 1 D 

4-73 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

4.3.1.1 PATH ERRORS ON CORNERS FORMED BY TWO CONNECTING STRAIGHT 
LINES (cont'd) 

E would be affected by changing the feedrate at the corner. An u 
increase ~n the feedrate,for i~stance,would cause the tool center. 
path to be stretched in the vertical direction, the angle 
bisector would be crossed sooner, and point B would be further 
from 0. on the other hand, the overshoot of the X servo, E

0
, is 

independent of commands to the Y servo and would be unchanged, 
even if a dwell were progranuned at point 0. 

A general analysis of the corner error for any angle of turn 0 
and a general f eedrate Fl inches per minute yields the following 
results: 

60 
~ 

(1) F = 
1 2JB sin 0 

2 

Fl e 
~ = 2K sin -

B 60 2 
or 

or F 60 
Eo 

( 2) = 
1 ~ sin e 

Fl 
~ = Kp-- sine 

60 

It can be shown that these results are applicable regardless of 
the orientation of the path on the machine. That is, the servos 
will cooperate to produce the tool center path of Diagram 4.3.1D 
even if the commanded paths are not parallel to the machine axes. 
Although the individual servos will receive quite different 
commands for different orientations of the 90° corner, the path 
errors turn out to be identical, and the feedrate calculation is, 
therefore, made without regard to individual component veloctiy 
changes. 

Equations (1) and (2) apply to the special case of a fixed 
f eedrate F for both approaching and leaving the corner. The 
postprocess~r actually is not restricted to this special case, 
but uses a more elaborate equation for the departing feedrate F2 . 
It calculates the approaching feedrate F1 from the allowable E , 
(which is unaffected by Fu) and then calculates F2 from F1 a'iid 
the allowable Eu. In the case of well-damped servos with ""little 
or no overshoot, this procedure gives a fast approach to the 
corner, a short slow segment after the corner which holds the 
undershoot to the tolerance, and a prompt speed-up after the 
corner, if space permits. 

4-74 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.3.1.2 LOCATION OF SLOWDOWN POINT 

In Diagram 4.3.1E a slowdown point D where the feedrate is 
changed from its initial value F. to a required lower approach 
value Fl is located far enough ahead of the corner 0 to give the 
servos time to settle de.Mn between the disturbance at D and the 
corner o . For this purpose, DO=TsFi, in which Ts is the servo 
settling time. If F1 were very smal , however, DO might be 
calculated so small that the tool center could overshoot o in the 
process of slowing down at D from the higher feedrate F.. A 
second tentative value of DO is therefore calculated from1 the 
expression 

D02 =k KPF., ao 1 

and the larger of the two values selected for use as DO. The 
product KpFi gives the overshoot beyond D for a commanded stop at 
D, and the factor ka,0 , in the range of 1.2 to 1.4 increases the 
result to allow for extra overshoot for values of F1 greater than 
zero. For all but very small values of F1 , DO=TsF1 • Ts is 
selected rather arbitrarily as the time for the error curve of 
Diagram 4.3.1B(b) to settle to within a few per cent of the final 
value, and depending on the damping, is normally in the range of 
4 to 8 times 1/~, where I\, is the velocity error coefficient, or 
gain in inches per second per inch of error. 

0 

Slowdown and Speedup Points 

Diagram 4.3.lE 

4.3.1.3 LOCATION OF SPEEDUP POINT 

In Diagram 4.3.1E if F2 is less than the progranuned rate, the 
speedup point U is separated from Oby the distance TsF2, to 
permit the servos to settle down.after the disturbance at the 
corner. If the next corner is close, there may not be space for 
speeding up. 

4-75 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

4.3.1.4 FEEDRATE LIMITATION ON ARCS 

Because the Mark Century control provides circular interpolation, 
servo errors during operation on circular arcs must be 
considered. Contouring around · a circle in a coordinate plane 
causes the two axis servos to be given sinusoidal input commands. 
The tool center path will be a circle which can be slightly 
oversize if the closed loop response of the servos exceeds unity 
at the frequency of operation ("Frequency" is measured in 
revolutions or radians per second of servo sinusoidal operation), 
or can be slightly undersize if the closed-loop response is less 
than unity. By equating the difference between the tool center 
circular path radius and the commanded radius to the tolerance, 
a limiting feedrate in IPM is determined from the expression, 

F = 60 Kc ~ E * r (3) 

In equation (3) , Ft: is a constant ranging from 25 to a very large 
value for well-damped servos adjusted for flat response; E is the 
error tolerance in inches; and r is the radius of the circle in 
inches. This expression is derived in Section 4.3.2 and will 
normally set a practical limit on feedrate only for very small 
circles. To allow for transient peaks in error experienced when 
changing feedrate on an arc, or proceeding between tangent arcs 
or between a straight line and a tangent arc, appropriate 
slowdown factors based on computer tests of various situations 
are applied to equation (3). 

4.3.1.5 NON-TANGENT ARCS 

Non-tangent intersections between arcs and between straight lines 
and arcs are handled like corners formed by straight lines. On 
the basis that for all but the very shortest radius arcs, the 
region of · cornering error will be so small in relation to the 
curvature of the arcs that they will be the practical equivalent· 
of straight lines. 

4-76 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

4.3.2 DERIVATIONS OF FORMULAE 

4.3.2.1 UNDERSHOOT ERROR ON CORNER WHEN F 2 .~ Fl 

Referring to the illustration in Diagram 4.3.2A it can be shown 
that the tool center path as a function of time is given by 

X = (F2 cos 8 2 )t-(F1 /}\r) cos 81 -(F2 cos e2 -F1 cos 61 )f(t) (4) 

Y = (F2 sin e2 ) t- (F1 /Rv) sin e1 -(F2 sin e2-F1 sin 81 ) f (t) (5) 

in which f(t) is the response curve of Diagram 4.3.1B(b) for a 
step change from 0 to 1 inch per second. In equations (4) 
through (9) , feed rates are in inches per second. 

y 
Q 

X' 

x 

M 

Corner With F 2 t F 1 

Diagram 4.3.2A 

Let PO bisect < MOQ. 

To locate point B where the tool center path crosses PO, the axes 
will be rotated to the position X', Y', with the Y' axis lying 
along OP. After this rotation, the tool center coordinates X' and 
Y' will be given as functions of time. The value of time which 
makes X'=O will be found and substituted into the expression for 
Y' to obtain the distance OB. 

angle POY = e 1 + (1 /2) e where e = e 2 - e 1 • 

4-77 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.3.2.1 UNDERSHOOT ERROR ON CORNER WHEN F2 ~ Fl (cont'd) 

After rotating the axes through the angle POY, 

x I = Fl cos (8 /2)( (F2 /Fl) t-1 /kV - (.E12 /Fl'-1) f (t) ] 

Y' = F1 sin (8/2)[ (F2 /F1 )t+1/kv-(F2 /Fl +1)f(t)] 

For 

or f (t) = 

X' = 0 , ( F 2 /Fl ) t-1 /~ - (F 2 /Fl - 1 ) f (t) = 0 , 

(F 2/F1 )t- l/K .v ------
F2/F1...:1 

(6) 

(7) 

(8) 

The right side of equation (8) is a linear function of t, and 
becomes equal to 1/Kv if t is set equal to 1/Rv. Geometrically, 
equation (8) states that the value of t for which x• is zero can 
be found by the construction of Diagram 4.3.2B where a plot of 
f(t) has superimposed on it a line drawn through the point P1 (1/kv 
, 1/1\,) with a slope 

This line intersects the f (t) curve at a point PB. 
The line shown as an example in Diagram 4.3.2B is drawn with a 
slope of -1, corresponding to F2/F1=0.5. The circular scale 
indicates the location of the line for other values of F2/F1. If 
the time corresponding to 113 is called "tf3 and this value is 
combined with equation (8) and substituted fort in equation (7), 

Y' = OB.= EB = 2F1 sin 6/2 [1/1\, - f (~)] = 2KiBFl sin 8/2 (9) 

4-78 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4. 3. 2. 1 UNDERSHOOT ERROR ON CORNER WHEN F 2 i Fl (con' d) 

SLOPE = 

l/K v 

l/K v 

seconds 

Graphical Interpretation of Equation 8 

"-"' Diagram 4.3.2B 

F(t) 

The quantity K
2

B = l/Kv-f (tb) is indicated on Diagram 4.3.2B. 

To obtain an approximate value of K2B analytically, we can 

replace f(t) with a parabola of the form f (t) = t-Ct 2
• This will p 

pass through the origin with unity slope and by letting C=KBKv 2
' 

it will pass t~rough the point P 2 (1/Kv,l/Kv-KB), which is a 

known point on the f (t) curve. 

Solving the straight line and this parabola for the location of 

PB leads to the following result for K2B: 

When this is substituted into (9), the resulting equation may be 
solved for F2 in terms of F1 , Eb, and 8, and the servo constants 

KB and KV: 

4-79: 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

4.3.2.1 UNDERSHOOT ERROR ON CORNER WHEN F
2 t Fl (cont'd) 

where 

B
2 

= 2 Fl E 
6Q B 

c2 =[:~ J 2 

. 8 sin-

K K 2 E 2 
B v B 

2 
+ 

4.3.2.2 FEEDRATE ON CIRCLE DUE TO STEADY STATE SERVO ERRORS 

The open loop response of the naked system servo whose Bode 
diagram is given in Diaqram 4.3.2C is 

w c c 
E = p( 1 +p/~) (1+p/w4) (1 +p/w5 ) = p (p+W:3) (p+w4 ) (p+w5 ) 

R 

. 

c 
E 

Diagram 4.3.2C Servo Bode Diagram 

The closed loop response, 

c 

log w 

C = C/ E = w cw 3 w 4 w 5 "1IJll 
R 1+C/E p4 + (W3 +w4 +w5) p3 + (W3 W4 +w3 W5 +w4 W5) p2 +~ W4 Ws p+wc W3 W4 W5 

~-80 



-~ 

ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.3.2.2 FEEDRATE ON CIRCLE DUE TO STEADY STATE SERVO ERRORS (cont'd) 

Letting p=jw, and collecting real and imaginary parts of the 
denominator, 

wcw3w4w5 
c = ~~~~~~-----,---.,,--~~~~ 
R (w3w4+w3w5+w4w5)w 2 + wcw3w4w5 + j -[(w3+w 4+wt)w 3 + w3w4w5w[ 

1 

Taking the square root of the sum of the squares of the real and 
imaginary parts of the denominator to obtain the magnitude.of 
C/R, 

c 1 
= [l + c 2 (w/wc) 2 C4(w/wc)4 + C 8 ( w /w c) a ] 

1/2 R + 

where 

c2 1 2w 1 
+ 

1 + ! ) = - c w3 W4 ws 

C4 w2 1 1 
+ 

1 
+ 2w 3 1 = + - ) c w2 w2 w2 c 

3 4 5 W3W4W5 

c6 = w4 1 + 1 + 1 c 
w2w2 

3 4 
w2w2 

3 5 
w2w2 

4 5 

ca = ws 1 ) c 
w2w2w2 

3 4 5 

If the same analysis is made of a servo with another down break 
at w6 , the result corresponding to equation (11) is of 10th order 
in w;w , and the coefficients are very similar in form: c 

4-81 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.3.2.2 FEEDRATE ON CIRCLE DUE TO STEADY STATE SERVO ERRORS (cont'd) 

c2 = 1 - 2wc 
1 

wa 
c 

! + ! + 
w2 

3 
w2 

4 

1 

w2w2 
3 4 

1 

w2w2w2 
3 4 5 

1 

+ 

+ 1 + ! + ! 

1 1 
) + 2w 3 ( 

1 1 1 1 
+ + + + 

w2 w2 c 
w3w5w6 W4W5W6 5 6 W3W4W5 W3W4W6 

1 
-1-

1 
+ 

1 + 1 + 1 

w2w2 
3 5 

w2w2 
3 6 

w2w2 
4 5 

w2w2 
4 6 

w2w2 
5 6 

+ 1 + 1 + 1 

w2w2w2 
3 4 6 

w2w2w2 
3 5 6 

w2w2w2 
4 5 6 

Note that all coefficients except C2 are inherently positive and 
that their terms will contribute to a decrease in le/RI as the 
frequency variable w/wc increases. In (12), c 2 will be positive 
if w3 , w4, and w5 are sufficiently large. With a positive·c 2, 
lc/Rlwill never exceed unity. If w3 , w4 , and w5 are sufficiently 
small, c 2 can become negative and its tenn can cause le/RI to 
exceed unity for some values of w/w2. This is the algebraic 
meclianism which gives rise to a peak in the closed loop response. 
For the critical condition c 2 = O, the closed loop response stays 
at essentially unity as w/wc increases, until the higher order 
terms cause it to drop off. The condition for c2=o is 

or approximately, ecH= 1/2 radian or 28.6° 

4-82 



CltlNT Ill POSTPROCESSOR ... for the computer programmer 

4.3.2.2 FEEDRATE ON CIRCLE DUE TO STEADY STATE SERVO ERRORS 
(cont 1 d) 

Let us calculate a typical set of constants from (12) for a 
system with a resonant peak. 

Let 
w c 
W3 

Then 

!§., 
w 

= c = 
40 W4 

C2 =-.550 

c4 = .263 

c6 = • 0135 

Ca = • 000156 

!§., and w 16 c = 
64 W5 128 

For w/wc=1/2, the terms in (11) have the values, 

c2 ( 1 / 2) 2 = - • 1 3 8 

c4 (1/2J 4 = .0164 

c6 (1/2) 6 = • 0002 

Ca (1/2) 8 = • 000006 

Clearly, for w/w = 1/2 or less, the 6th and 8th order terms are 
neglibible. The ith order term is 12% of the 2nd order term, and 
becomes rapidly of lesser importance as w/wc decreases. 
Therefore, we neglect it also and write approximateLy, 

I£ I = 1 
R 

[ 1 + c 
2 

1/2 
] 

4-a3 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

4.3.2.2 FEEDRATE ON CIRCLE DUE TO STEADY SERVO ERRORS (cont'd) 

Since c2 ( ~ ) 2 << 1, 
w c 

I f t = 1 
2 

= 1 - ( 1 /2) c2 ( ~c1 
R 1 + ( 1/2) c2 ( ~ ) 

z 

WC 
The term- ( 1/2) ~ ( ~ ) 2 represents the excess of the closed loop 

We 
response over unity. If the radial oversize error of the 
contoured circle in inches is called E, 

E = - (1/2) c2 C1! > 2, 

r We (13) 

where r is the radius of the circle. If F is the feedrate in 

in in./sec., the angular velocity on the circle is 

F/r = w (14) 

Substituting (14) into (13) and solving for F in terms of E and 
r, 

F = K ~E r in/sec., where c 

K = w ~ 2 = w ~ 1 c c -c2 c + w + w w c c c -
W3 W4 W5 

Equations (15) and (16) are valid as long as 

c ( !! ) 2 
2 WC 

(15) 

1 
2 ( 16) 

in (11) is the dominant term, as it will be for servos with at least 
a moderate overshoot. 

4-84 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

4.4 SURFACE FEE'T PER MINUTE (SFM) 

R 

B 

A 

Diagram 4. 4A 

Suppose the part shown in Diagram 4.4A is machined on a lathe 
with the cutter starting at A and working to B. Suppose further 
that there is a constant feedrate and that the spindle rotates at 
a constant speed. Since the part radius decreases from A to B, 
the tool cutting speed varies along the path AB, and the cutting 
speed is high for the larger radii and low for the smaller radii. 
This varying cutter speed does not create a smooth finish, and 
the chip removal is not the optimum amount possible for the life 
of the tool. These undesirable effects can be reduced if the 
spindle speed is increased proportionately to the decreasing 
radii, that is, maintain a constant cutting value of surface feet 
per minute. The part programmer can plan his program so that the 
spindle changes speed at certain points, and essentially, keeps 
a constant cutting speed. However, this is an enormous task and 
subject to many errors. But, the APT postprocessor statement, 
SPINDL/f, SFM provides the part programmer with an easy method 
for accomplishing this work. He merely calls for the SFM he 
desires and the postprocessor does all the work necessary to 
maintain the requested SFM. 

The following example illustrates the postprocessor•s method of 
generating the SFM condition. The example illustrates the method 
for spindle types which depend upon a table of discrete spindle 
speeds. See the paragraphs at the end of this section for the 
SFM method used for variable type spindles. 

4-85 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

4. 4 SURFACE FEET PER MINUTE (SFM} (cont Id) 

Diagram 4.4B is the table of spindle speeds in RPM for the 
machine tool. 

0 

4-86 

+x 

R =l 1 

Spindle 
Speeds 

15 
20 
30 
40 
50 
60 
70 
80 

Diagram 4.4B 

Diagram 4.4C 

+z 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

4.4 SURFACE FEET PER MINUTE (SFM) (cont'd) 

Diagram 4.4C represents the part which the tool is to cut from A 
to D with an SFM of 20. 

The starting spindle speed is computed from the equation 

12 SFM , 
2'IT R1 

where SFM is the desired SFM, R1 is the radius at the beginning 
point, and Sp is the resultant spindle speed. For this example, 
we have: 

s = 1.9 * 20 
p 1 

= 38 RPM. 

This value is bracketed in the spindle speed table by the speeds 
30 and 40. Using these values we next compute the optimum shift 
point, i.e., the point at which the spindle speed changes so that 
the SFM variation is a nu.nimwn. The value determined is the 
radius at the optimum shift point and is given by the equation: 

P-gp = 12 
4'IT 

SFM ( 1 + 1 ) , 

SI s;-
where S1 and S2 are the speeds which are selected from the 
spindle speed table, and ~P is the radius at the optimum shift 
point. The present example gives 

FsP = 0. 95 * 2 0 * (_1_ + 1 ) ~ 1. 1 
40 31) 

Hence, at the radius of 1.1 (point B), the spindle must change 
from speed 40 to speed 30. Since the radius of the workpiece is 
increasing, we must select decreasing values of spindle speeds 
from the spindle table. Therefore, for the next determination of 
the optimum shift point, 51 = 30 and 52 = 20, and 

........ 
RsP = 0. 95 * 20 * (_1_ + 1 } 2. 2. 

20 rs-

4-87 



GlCHT Ill POSTPROCESSOR ... for the computer programmer 

4.4 SURFACE FEET PER MINUTE (SFM) (cont'd) 

But the radius 2.2 is beyond the end of the workpiece; therefore, 
the determination of shift points ends, and the speed 20 is used 
for the remaining path. A similar case occurs when there are no 
new values to select from the table; the last selected value is 
used for the remainder of the path. Note that if the feed.rate 
mode is IPR, the feedrate in IPM is computed by 

FIPM = FIPR * 8 P, 

where FIPR is the feedrate in IPR. 

The postprocessor segments the path AD into the subsegments AB, 
BC, and CD. Each segment will have the proper value of spindle 
speed and feedrate necessary to produce the requested SFM for the 
given path. 

The SFM technique is essentially the same for variable spindle 
types except that each succeeding shift point is determined by 
the spindle speed which is a certain percentage of the preceding 
spindle speed. The percentage used is specified in option 15. 
The following steps in the example illustrate the method. 

(1) Determine the initial spindle 
speed at A from the relation 

= 12 * SFM 
2TI R 

(2) Determine the limiting spindle 
speed at B by 

Sp = 12 * 8
FM 

L 21T R2 • 

B 

A 

(3) Determine the shift point spindle speed from S=OPTAB(lS)*Sp· 

OPTAB(lS) is standardly 0.1%. 

(4) Determine the radius at the optimum shift point from the 
relation 

4-88 

12 
= 4n SFM ( l 

sl 

where s
1 

and s 2 are the two determined speeds; 

s 1 is the previous speed, and s 2 is the newly 

determined speed. 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

4.4 SURFACE FEET PER MINUTE (SFM) (cont'd) 

(5) 
by 

The previous speed is used over the segment determined 
the optimum shift point. Thus, initially SP is the speed 

I 
from A to RSP , 

1 
whereas the speed S is used from RSP 

1 
to 

RSP 
2 

and so on. Each succeeding spindle speed is determined as 

at step 3. 

( 6) 
bound 

The SFM sequence discontinues whenever S falls outside 
of SP , or whenever the radius RSP exceeds the bound 

L M 
The postprocessor segments the path AB into the computed 

subsegments as described above. 

the 
of 

SFM 

When a SPINDL/n, SFM statement is given, subroutine SPINDL sets 
the flag SFMFLG to 1 to indicate that an SFM mode has been 
established. All subsequent motions except rapid traverses, 
threads, or tool corrective moves are subjected to the SFM 
influence. Subroutines GOLINE, PROCQD, and SEGMNT interrogate 
the SFMFLG, and when finding it non-zero, branch to subroutine 
SFMO which generates the spindle speeds and path segments to 
obtain the requested SFM. 

When the SFM mode is cancelled, the SFMFLG is set to zero and the 
SFM sequence discontinues. A number of parameters is set for a 
given SFM statement. Consider a full statement such as 

SPINDL/40,SFM,CLW,RANGE,2,RADIUS,YCOORD,MAXIPM,10,MAXRPM,100. 

The following flags are accordingly set: 

SFMFLG = 1, SF MD ES = 40, SPNDIR = 1, 

ISRNGE = 2, ISFMOD = 1 (for x axis) , 
2(for y axis), 
3(for z axis) , 

SFMAXI = 10, SFMAXR = 100, SFMLOK = 1, 

SFMRPM = 1, FLONSP = 1, 

All of these parameters are used and ref erred to in subroutine 
SFMO, the subroutine which produces the requested SFM effect. 

Since subroutine SFMO generates its own segments, it must first 
save the current beginning and end points DPREVM and DPRESM; 
these points are saved in the local arrays PREVM and PRESM, 
respectively. Now the arrays DPREVM and DPRESM can be used in 
their normal manner when the subroutine produces new segments. 

4-89 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

4.4 SURFACE FEE!' PER MINUTE (SFM) (cont'd) 

One of the first duties performed by subroutine SFMO is to 
determine the sense of inclination of the cutter path. This is 
easily done by comparing the beginning and ending radii of the 
path, which for the statement given above, means comparing the Y 
coordinate values from DPREVM and DPRESM. 

The flag !SENSE is then set as: 

-1 = increasing radius 

0 = constant radius 

+1 = decreasing radius 

The SFM sequence over a particular path ends whenever: 

(1) the path end point is reached; 

(2) a spindle speed is generated which produces a radius 
beyond that of the end point; 

(3) a spindle speed is generated which exceeds the SFMAXR 
limitation; 

(4) the selection of spindle speeds ceases because the 
range bound has been reached; 

(5) the radius is essentially constant. 

For all of these conditions, the flag SFMLIM is set to 1 which 
directs the subroutine to conclude the SFM sequence over this 
path. 

It is sometimes very difficult to start an SFM sequence for a 
given path if the coordinate points and available spindle speeds 
are incompatible. In Diagram 4.4E is illustrated a case where 
the starting speed cannot produce a radius which falls on the 
path. The table of discrete speeds is also shown. 

4-90 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4.4 SURFACE FEET PER MINUTE (SFM) (cont• d) 

0 

+X 

R =70 1 

SPINDL/100,SFM 

Diagram 4. 4 E 

Speeds 

10 
20 
30 
40 
50 
60 

z 

The sense of inclination !SENSE is +1 which means we must select 
from the table those values which become increasingly larger. 
But when the starting speed is attempted to be found, as 

S = 12 * SFMDES ~ 2 * 100 = 2.86, 
2 7f R1 7 0 

it can be seen that such a speed is not available in the table. 
Hence, the SFM sequence cannot even be started for this path with 
these given conditions. The postprocessor outputs the path P

1
P

2 with the current spindle speed. 

4.5 SPINDLE TYPES 

Spindles are typed, i.e., classified, according to the manner in 
which their spindle speed conunands are formed. This formation 
usually results in a coded value which, according to the manner 
of the NC machine, leads to the obtaining of the desired spindle 
speed. 

It is important to note that the spindles are not typed according 
to whether or not the spindle is AC or DC motor driven, or 
whether the spindle requires gear shifting for range changes, or 
whether the gears are shifted electrically or hydraulically. The 
only consideration is the make-up of the spindle speed command. 

4-91 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.5 SPINDLE TYPES (cont'd) 

Spindle types can be classified into two groups: one group 
consists of those types whose speeds are selected from a preset 
list of discrete values; the other group consists of those types 
which have a range of variable speeds. For proper spindle 
operation of types of the first group, the postprocessor must 
have available the list of preset discrete spindle speeds. These 
speeds are given in ordered form in the spindle speed table, 
SR TAB. 

A maximum of 300 spindle speeds can be given in the SRTAB table; 
the actual number is specified in options 7 and 8. If the speeds 
are grouped into ranges, the speeds as given in SRTAB must be in 
increasing range order, i.e., range 1 values must precede range 
2 values, and so on. The spindle speeds are ordered this way 
because the programmed intent is to select a speed from a range 
which gives the highest motor speed; thus, if a requested speed 
can be selected from one of two ranges, the lowest range is 
chosen since its spindle speed will have a higher motor speed. 
The terms "low, medium, and high range" refer to the motor speed. 

If a speed is called for that is within the range of, but not 
listed in the spindle table, SRTAB, the postprocessor selects the 
next lowest, closest, or next highest speed, depending upon the 
value of option 90. If the specified speed is outside the table, 
the postprocessor outputs the appropriate maximum or minimum 
listed speed. 

SRTAB may have any number of ranges, but each range must have the 
same number of speeds. Therefore, it is possible ~ have 30 
ranges of 10 speeds in each range, or, 15 ranges of 20 speeds, 
and so on. The total number of speeds cannot exceed 300*. 
Unless otherwise specified, all the spindle types described below 
assume that SRTAB is given with preset discrete speeds, and that 
the speeds are grouped in several ranges. 

* These statements assume that there is no f eedrate table FRTAB. 
If there is, the total number of speeds permissible is 
consequently reduced. See Section 5.6.6 for a description of 
FRTAB. 

4-92 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4.5.1 TYPE 0: COMBINATION RANGE AND ROW 

The speed command is f onned by using the range nwnber as its 
first digit, and the row number of that range as its second digit 
plus some increment which is given by option 47. Note that the 
row number in this example begins at 0 and ends at 9. Each range 
is numbered separately. 

Range 1 Range 2 Range 3 

0 2 0 12 0 26 
1 4 1 14 1 28 
2 6 2 16 2 30 
3 8 3 18 3 32 
4 10 4 20 4 34 
5 12 5 22 5 36 
6 14 6 24 6 38 
7 16 7 26 7 40 
8 18 8 28 8 42 
9 20 9 30 9 44 

Example: speed = 12; speed conunand =815 or S20. Option 47 in 
this case is o. 

If there are more than ten rows per range, the speed command has 
three digits. 

8622 means range 6, 22nd row. If there are more than ten ranges, 
the speed conunand has four digits. 81204 means range 12, 4th 
row; 81011 means range 10, 11th row. 

4.5.2 TYPE 1: EIA 3-DIGIT CODE NUMBER (VARIABLE SPINDLE) 

The spindle may have any speed which falls within a maximum and 
minimum value. No table of speeds is required, and no ranges are 
used in the coding. The spindle speed is converted to the 
standard 3-digit EIA command number. 

Example: Speed = 137.2; speed command = S614. Speed = 0.0123; 
speed command= S212. See Section 7.1 of the Appendix for the 
EIA conversion method. 

The only information necessary to the postprocessor for this type 
spindle is the minimum and maximum values that the spindle can 
assume. To be consistent with the other type spindles, the 
minimum and maximum values are given in the SRTAB. The SRTAB, 
then has only the two values, and SRTAB is considered as repre
senting one range with two values in the range. Option ?,there
fore, is set to 1, add option 8 to 2. The Standard Machine 
assumes this type - spindle, hence, these options are set 
accordingly. 

4-93 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

4.5.2 TYPE1: EIA 3-DIGIT CODE NUMBER (VARIABLE SPINDLE) (cont'd) 

As a condition of this type spindle, the machine tool control 
must either produce every possible coded speed within the 
specified range, or search for the appropriate speed if not all 
speeds are possible. 

4.5.3 TYPE 2: ASSOCIATED SPEED CODE 

For a given spindle speed there is an associated code number. 
These code numbers may come in ranges or be all in one range, but 
there must be the same number of codes in each range. The code 
number is assumed to be related to the row number plus an 
incremental value, e.g., if the speed falls in row 12, the code 
number is assumed to be 12 plus some increment. Hence, the 
incremental variation from a code number to an adjoining code 
number must be constant within each range. The increment is 
given in option 47. A variation in the speed codes is 
pennissible between ranges provided the same variation exists 
between all ranges. In the example below, the variation between 
ranges is 3 since the last code in range 1 is 17 while the first 
code in range 2 is 20. This incremental variation between ranges 
is given in option 31. 

0 
1 
2 
3 
4 
5 
6 
7 

Range 1 

Code Speed 

10 5 
11 6 
12 8 
13 10 
14 12 
15 14 
16 16 
17 18 

0 
1 
2 
3 
4 
5 
6 
7 

Range 2 

Code Speed 

20 14 
21 16 
22 18 
23 20 
24 22 
25 24 
26 26 
27 28 

0 
1 
2 
3 
4 
5 
6 
7 

Range 3 

Code Speed 

30 30 
31 32 
32 34 
33 36 
34 38 
35 40 
36 42 
37 44 

Example: speed = 14; speed command = S15 or S20. The code 
increment (option 47) for this example is 10; the range increment 
(option 31) is 3. The speed command S20 is derived from the 
relation of the row number modified by the range number, option 
47, and option 31. 119 

4-94 



ClCINT 111 POSTPROCESSOR ... for the computer programmer 

4.5.3.1 TYPE 2: PROTECTIVE MULTIPLE SHIFTING 

Some machine tools require a multiple shifting sequence when 
going from one spindle range to another. For example, it may be 
damaging to some machine tools to change spindle ranges if the 
two speeds are high values in each range. In fact, there is a 
shift point common to each range above which direct shifting from 
one range to another is damaging. In the example below, the 
shift point is at row 5. 

Range 1 Range 2 

1 2 1 40 
2 4 2 60 
3 6 3 80 
4 8 4 100 
5 10 5 120 

6 20 6 140 Shift Point 

7 30 7 160 
r-1 

If the spindle speed is 30 RPM in Range 1 and we wish to shift to 
160 RPM in Range 2, the proper way to obtain this speed is to 
output the sequence 10 RPM, 120 RPM, and lastly, 160 RPM. That 
is, the speed is first brought down to the shift point in Range 
1, the range is changed to Range 2 with the spindle speed corning 
from the shift point of Range 2, and then the spindle is brought 
up to the new speed. A similar path is followed in going from 
1 6 0 to 3 0 RPM. 

No multiple shifting is required as long as the ranges do not 
change. Thus in Range 1 we can go directly from 2 RPM to 30 RPM. 

Only two spindle speeds are made output when changing ranges from 
above the shift point to a speed below the shift point. To go 
from 160 RPM in Range 2 to 4 RPM in Range 1 requires only the 
output of two values, namely, 60 RPM and 4 RPM. In this sequence 
the shift from one range to the other is made at the same row; 
this is always permissible as long as the old and new spindle 
speeds fall below the shift point. 

Direct shifting is also permissible between ranges when both the 
old and new spindle speeds occur below the shift point. For 
example, we can go directly from 8 RPM in Range 1 to 100 RPM in 
Range 2 since both values lie belo.w the shift point. 

For a Type 2 spindle, option 137 specifies the shift point row 
number beginning with the lowest speed row and counting toward 
the highest speed row. 

4-95 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

4.5.4 TYPE 3: ASSOCIATED SPEED CODE WITH RANGE AND/OR 
DIRECTION M CODES 

The spindle command is given by both an S code and an auxilliary 
function M code. The s code is· related to the row number plus an 
incremental value which is given in option 47. The incremental 
variation between adjacent code numbers must be constant. The s 
word selection is independent of range; i.e., the same for all 
ranges. 

The range is selected by auxiliary function M code in one of two 
ways. In the first, a single M code is assigned to each range, 
Mi for range 1, M2 for range 2, etc. M1 is assigned to TABLEM 
locations 71 and 72 for range 1, M2 to locations 73 and 74, etc. 
Spindle direction is obtained by M03 and M04 which are stored at 
TABLEM locations 4 and 5. 

In the second case, auxiliary function 
range number and spindle direction. Two M 
each range, one for CLW rotation and the 
codes are stored in TABLEM beginning 
continuing up to location 82 for a maximum 

M codes determine both 
codes are assigned to 
other for CCLW. These 
at location 71 and 
of 6 ranges. 

A spindle speed command including RPM, range and direction will 
interrogate TABLFM in the 70 series for proper range number. It 
will interrogate direction M code stored at TABLEM location 4 or 
5 unless these latter locations are set to DMBITS. Machines 
using both range and direction combination M codes will not use 
M03 and M04, and locations 4 and 5 should be set to DMBITS. A 
range only M code should be stored in both ccw and CCLW locations 
for the appropriate range. 

Range 1 Range 2 Range 3 

Ml M2 M3 

Code Speed Code Speed Code Speed 

0 2 100 0 2 300 0 2 600 

1 3 200 1 3 400 1 3 700 

2 4 300 2 4 500 2 4 800 

3 5 400 3 5 600 3 5 1000 

4 6 500 4 6 700 4 6 

4-96 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.5.4 TYPE 3: ASSOCIATED SPEED CODE WITH RANGE AND/OR DIRECTTON 
M CODES ·cco·n 1 d) 

Example: Speed=400; speed com.mand=SS with M1 or S3 with 
The incremental option 47 for this examole is 2. Note that 
rows are numbered separately for each range, and that the 
begin numbering with O. In this case spindle direction will 
from TABLEM location 4 or 5. 

Alternatively -

Range 1 Range 2 Range 3 

CCW CCLW CCW CCLW CCW CCLW 

Ml M2 M3 M4 MS M6 

Code Speed Code Speed Code Speed 

0 2 100 0 2 300 0 2 600 

1 3 200 1 3 400 1 3 700 

2 4 300 2 4 500 2 4 800 

3 5 400 3 5 600 3 5 900 

4 6 500 4 6 700 4 6 1000 

M" • 
Lo 

the 
rows 
come 

Example: speed = 400, clockwise; speed code SS with M1 from 
range 1, or S3 with M) from range 2. The postprocessor will 
always select the speed from the lowest numbered range in which 
it can be found, unless a specific range has been called. 

4-97 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

4.5.5 TYPE 4: QUASI EIA 3-DIGIT CODE NUMBER WITH RANGE 
AND DIRECTION M CODE 

The spindle speed command is given by both a miscellaneous 
function M code which is chosen according to the range and 
spindle direction, and by the EIA 3-digit coded number for the 
spindle speed in the lowest range which occupies the same row as 
the desired spindle speed. See Section 7.1 of the Appendix for 
the EIA conversion method. 

Range 1 Range 2 Range 3 

M_i_ ~ M.3 
Low Medium High 

100 400 600 

200 500 700 

300 600 800 

400 700 900 

500 800 1000 

600 900 1100 

Example: speed = 600; speed command could be: 

8660 with Ml, or 
S630 with M2, or 
8610 with M3· 

It is apparent that the EIA code number is correct for those 
speeds found only in the lowest range (range 1). They are 
meaningless, and therefore arbitrary numbers, for the speeds in 
all other ranges. 

4-98 

,..,,, 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

4.5.6 TYPE 5: DISCRETE EIA 3-DIGIT CODE NUMBER 

The speed command is derived by selecting the spindle speed from 
SRTAB, and converting it into the EIA 3-digit nwnber. See 
Section 7.1 of the Appendix for the EIA conversion method. With 
this type spindle there are no multiple ranges but only discrete 
speeds. Furthermore, the table may not include all possible EIA 
coded speeds. If a speed given by the part programmer does not 
appear exactly in the spindle table SRTAB, the postprocessor 
selects the next lower value. This is extremely important for 
those machines which have an AC motor drive and use the discrete 
EIA values, since this type machine may produce an incorrect 
spindle speed if the speed called for is not exactly available in 
the machine's spindle table. 

Speeds 

2 
3 
5 
7 

10 
12 
15 
17 

193 
197 
200 

Example: speed = 13; speed command = S512. The closest value, 
12, is selected. 

4.5.7 TYPE 6: DISCRETE EIA 3-DIGIT CODE NUMBER SELECTIVE 
SEARCH 

This type spindle is similar to Type 5, except that the machine 
tool control system automatically searches its spindle table 
until it finds the next lowest available EIA-coded speed. The 
postprocessor considers this type spindle to be identical with 
Type 5. 

Although it is possible to have the postprocessor simply convert 
the speed to the EIA 3-digit number, and then let the machine 
tool control system find the proper value, it is actually simpler 
to let the postprocessor find the exact value. In fact, if SFM 
is used, it is essential that the exact variations of spindle 
speeds be used. 

4-99 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

4.5.8 TYPE 7: (PRESENTLY UNDEFINED) 

4.5.9 TYPE 8: ASSOCIATED SPEED CODE INDEPENDENI' OF RANGE 

For a given spindle speed ·there is an associated speed code 
related to the row number of the range in which the speed falls. 
The speed code number related to each row is the same regardless 
of the range number. Thus, the code number for row 2 of range 1 
is the same as for row 2 of range 2. The code number is assumed 
to be derivable from the row number plus an incremental value, 
e.g., if the speed falls in row 12, the code number is assumed to 
be 12, plus some increment; the increment must be given in option 
47. 

Range 1 Range 2 Range 3 

Code Speed Code Speed Code Speed 

0 1 10 0 1 40 0 1 70 
1 2 20 1 2 50 1 2 80 
2 3 30 2 3 60 2 3 90 
3 4 40 3 4 70 3 4 100 
4 5 50 4 5 80 4 5 110 

Example: speed = 40; speed command= S04 if in range 1; speed 
command = S01 if in range 2. If the speed is 70 and range 3 is 
in use, then S01 is the command code. The increment option 47 
for this example is 1. Note that the rows are numbered 
separately for each range, and that the numbering begins with O. 
Shifting between ranges is not tape controlled. 

4-100 

..,, 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

4.5.10 TYPE 9: ASSOCIATED SPEED CODE RELATED TO TOOL NUMBER 

This is similar to Type 8 in that the speed code is independent 
of the range, but this type spindle specifies the range by the 
tool number in use. 

Range 1 Range 2 Range 3 

Tools 1 & 4 Tools 2 & 5 Tools 3 & 6 

Code Speed Code Speed Code Speed 

0 0 10 0 0 40 0 0 70 
1 1 20 1 1 50 1 1 80 
2 2 30 2 2 60 2 2 90 
3 3 40 3 3 70 3 3 100 
4 4 50 4 4 80 4 4 110 

Example: speed= 50; speed command = 804 if tool 1 is in use, 
or 801 if tool 5 is in use. 

The number of tools on the machine is given in option 88. 
Regardless of the number of tools, the range relation is assumed 
to be: 

Range 3 for tools 1 , 4, 7, 10, 13 

Range 2 for tools 2, 5, 8, 11, 14 

Range 1 for tools 3, 6, 9, 12, 15 

4-101 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

4.5.11 TYPE 10: VARIABLE SPEED WITH RANGE AND DIRECTION 
M CODE 

The spindle speed command is given by both a miscellaneous 
function M code which is chosen according to the range and the 
spindle direction, and the spindle speed which is converted to a 
3-digit EIA code. See Section 7.1 of the Appendix for the EIA 
conversion method. The speeds in each range are variable and are 
only limited by a maximum and minimum value for each range. 

Range 1 Range 2 Range 3 

CLW CCLW CLW CCLW CLW CCLW 

M60 M61 M62 M63 M64 M65 

1 1. 2 1 3.1 1 6.6 

2 13 2 31 2 69 

Example: speed = 10; speed command could be S510 with M60 for 
range 1 and a CLW spindle direction, or S510 with M63 for range 
2 and a CCLW spindle direction. The M codes are specified in 
TABLEM. Each range must be specified as having two rows which 
are the range minimum and maximum values, hence option 8 must be 
set to 2, and SRTAB must carry the range values. 

4-102 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4.5.11.1 TYPE 10 PROTECI'IVE MULTIPLE SHIFTING 

This technique is very similar to the method of the Type 2 
spindle (See Section 4.5.3.1); but since the speed command is 
determined differently for the Type 10 spindle, a slightly 
different approach is used. 

In the example below, the shift point is at 25% of maximum RPM in 
the current range. 

Range 1 Range 2 

1 6.5 28 

2 270 1200 

Assuming option 137 = -0.25, the shift speed in Range 1 is 67 RPM 
and the shift speed in Range 2 is 300 RPM. 

No multiple shifting is required as long as the ranges do not 
change. Thus, in Range 1 we go directly from 10 to 200 RPM, and 
conversely. When changing ranges from a speed below the shift 
point to a speed above the shift point, no multiple shifting is 
required. Thus, in Range 1 at 10 RPM, a direct shift is made to 
1000 RPM in Range 2. 

When 
speed 
speed 
dwell, 
2 at 
output 
second 

changing ranges from a speed above the shift point to any 
in another range, multiple shifting must take place. The 
at the shift point current range is output with a 6 second 
then the new spindle speed is output. Thus, if in Range 
700 RPM, it is desired to change to 20 RPM in Range 1, the 
will be as follows: output 300 RPM in Range 2 with a 6 
dwell, then output the new speed of 20 RPM in Range 1. 

A negative value for option 137 specifies the percentage of the 
maximum RPM in a range to use as a shift point. Note that a 
negative value for option 137 must be used for a Type 10 spindle 
when specifying the need for the multiple shifting sequence. 

4-103 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

4.5.12 TYPE 11: TABLE LOOKUP 

The spindle speed command is produced by issuing the code value 
at a table position which corresponds to a similar position for 
the spindle speed. Thus, the commands are produced irrespective 
of any specified range or any other condition. The speed command 
table is set up to correspond one-to-one with the spindle speed 
values. The setup is made in table SRTAB, hence, the maximum 
number of spindle is 150 and not 300. The table is regarded as 
one range consisting of twice the number of available spindle 
speeds, therefore, it is essential to not ever call for Range 2 
in any SPINDLE statement. 

Range 1 

1 
2 
3 
4 
5 
6 
7 
1 
2 
3 
4 
5 
6 
7 

5 
10 
15 
20 
25 
30 
35 

Spindle Speeds 

- -·- ·- 9·- -·-
20 
13 
14 Spindle Commands 

1 
10 
15 

Example: speed = 20; speed command is 
command is S15. This example has one 
though in fact there are fourteen 
Therefore, option 7 is made one and 
setting up SRTAB the spindle speeds 
commands. 

4-104 

S14. Speed is 35; speed 
range of seven values even 
values stored in SRTAB. 

option 8 is made seven. In 
must precede the spindle 



Cl&HT Ill POSTPROCESSOR ... for the computer programmer 

4.5.13 TYPE 12 SPINDLE: COMMAND EQUAL TO SELECTED SPEED 

This type spindle issues a spindle command equivalent to the 
spindle speed. The postprocessor sets the spindle speed to the 
next lowest integer whenever the spindle speed is not an exact 
value in the range from 25 RPM to 199 RPM. For example: S = 
28.4; the postprocessor issues S28. For s = 28.7, the 
postprocessor issues S28. 

Similarly, in the range from 200 RPM to 600 RPM, the 
postprocessor sets the spindle speed to the next lowest increment 
of 10. For example: S = 418; the postprocessor issues S410; for 
s = 422, the postprocessor issues 8420. 

Whenever there is a change in spindle speed which crosses over 
the 199 RPM speed, the postprocessor issues a dwell block of time 
as given in option 54. For example, a dwell (if option 54 is 
nonzero) is issued when going from a speed of 70 RPM to 200 RPM, 
and also when going from 300 RPM to 180 RPM. 

If option 54 is zero, the s code is output in a block by itself. 

4.5M14 TYPE 13: EXPANDED QUASI-EIA 3-DIGIT CODE 

This type is very similar to Type 4 except that it has been 
expanded to include more speeds and to be operative for two 
heads. In brief, the Type 13 spindle has the same s code for the 
row for all ranges. The code is the 3-digit EIA code for the 
actual RPM value in Range 1. 

Code Range 1 Range 2 

510 10 88 

512 12 100 

520 20 200 

552 52 300 

577 77 450 

Example: speed = 100 RPM in range 2. The S code is 512 which is 
the EIA code for the second row of range 1. See Section 7.1 for 
a description of the EIA conversion method. 

4-105 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

4.5.14 TYPE 13: EXPANDED QUASI-EIA 3-DIGIT CODE (cont'd) 

The Type 13 spindle requires special attention when setting up 
the Machine Subroutine, namely: 

(1) Make option 7 be the number of ranges per head; for 
example, two ranges; therefore, option 7 = 2. 

(2) Make option 8 be 2.0; put the Range 1 minimum in SRTAB(1), 
the maximum in SRTAB(2); put the Range 2 minimum in 
SRTAB(3), and the maximum in SRTAB(4), and so on. This 
keeps all postprocessor testing consistent. 

(3) Set up SRTAB as follows: 

SRTAB ( 1) 
(2) 
(3) 
(4) 
( 5) 
(6) 
(7) 
(8) 

STRTPT (9) 
( 10) 
( 11) 
( 12) 
( 13) 
( 14) 
( 15) 

( 179) 
( 18 0) 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 

Range 1 Min. 

} Range 1 Max. 
Range 2 Min. Head 1 
Range 2 Max. 
Range 1 Min. 

} Range 1 Max. 
Range 2 Min. Head 2 
Range 2 Max. 
Number of actua 1 speeds in Range 1, Head 1 
Multiplying Factor Range 1, Head 1 
Multiplying Factor Range 2, Head 1 
Multiplying Factor Range 1, Head 1 
Multiplying Factor Range 2, Head 2 
First Speed Range 1 
Second Speed Range 1 

SRTAB row number where starting point STRTPT 
is stored. 

If an NC machine has more speeds than can be stored in SRTAB, 
Type 13 (instead of Type 4) can be used since each range is some 
multiple of the corresponding speed of Range 1, therefore, we 
simply store the values of the first range in SRTAB. The 
multiple factors are also stored as are other pertinent data. 
Thus, if a value of Range 2 is to· be used, the postprocessor 
refers to the related value of Range 1 multiplied by the 
appropriate multiple factor. For example: 

4-106 

..,,,,, 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.5.14 TYPE 13: EXPANDED QUASI-EIA 3-DIGIT CODE (cont'd) 

where Si is the Range 1 speed and R2 is 
The spinale cormnand for all ranges is the 
Three" code for the range 1 value. Example: 
2. The corresponding speed in Range 1 
multiple here is 2.2 since 94 * 2.2 = 198.) 
output for the Range 2 spindle speed of 198 

4.5.15 TYPE 14: SPEED CHANGES BY MODE 

the Range 2 multiple. 
3-digit EIA "Magic 
say 198 is in Range 

is 94. (The Range 2 
The s command made 
is, therefore, 8594. 

The Type 14 spindle is a spindle type that is coded as a Type 2 
spindle except that M codes provide a mode of speeds consisting 
of several ranges. Each of the individual modes is programmed as 
a separate Type 2 spindle. All modes have the same identical s 
codes. The ranges are consecutively numbered beginning with the 
low mode ranges. This subroutine tests the current mode and 
determines if the new range falls within the same mode. If so, 
no M code is output. If the mode has changed, the appropriate M 
code for the new mode is output. The table below shows how the 
modes, ranges, and coding are tied together. 

Mode #1 Ranqe 1 Ranqe 2 Ranqe 3 
Code Speed Code Speed Code Speed 

10 5 20 14 30 30 
11 6 21 16 31 32 
12 8 22 18 32 34 

M26 13 10 23 20 33 36 
14 12 24 22 34 38 
15 14 25 24 35 40 
16 16 26 26 36 42 
17 18 27 28 37 44 

Mode #2 Ranqe 1 Ranqe 2 Ranqe 3 
Code Speed code Speed Code Speed 

10 20 20 56 30 120 
1 1 24 21 64 31 128 
12 32 22 68 32 136 

M27 13 40 23 80 33 144 
14 48 24 88 34 152 
15 56 25 96 35 160 
16 64 26 104 36 168 
17 68 27 112 37 176 

4-107 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

4.5.15 TYPE 14: SPEED CHANGES BY MODE (cont'd) 

For the above example, option 47 = 10 and option 31 = 3. When 
Mode 1 is in effect, a _spindle speed of 40 RPM in Range 3 uses a 
command of 835. The same spindle speed and r~nge value with 
Mode 2 produces 830 since 40 RPM is below the minimum value of 
Range 3. 

4.5.16 TYPE 15: RATIO BETWEEN RANGES 

The Type 15 spindle is designed to accomodate spindle speed 
tables where there is a direct ratio between spindle speeds and 
spindle commands. The minimum and maximum speeds for each range 
are stored in SRTAB(1) through (6), while the ratio between 
spindle commands and spindle speeds of Range 1, 2 and 3 are 
stored in SRTAB(7, 8 and 9). No other speeds need be placed in 
memory. When a speed is requested, it is first checked against 
minimum and maximum Sfeeds for that particular range. If it is 
outside these limits, it is set at the appropriate limit. The 
speed requested is then altered in accordance with option 90. 
The speed command is then multiplied by the ratio factor to 
obtain the speed. TABLEM 71 through 76 may also be used for 
range and direction changes. 

Code Ranqe 1 Ranqe 2 Ranae 3 

S01 5 

802 10 

S03 15 
# 

804 20 30. 

sos 25 37. 5 100 

S06 30 45 120 

S07 35 52.5 140 

SOB 40 6 0 •. 160 

4-108 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

4.5.16 TYPE 15: RATIO BETWEEN RANGES (cont'd) 

Example: 

The ratio between spindle command and spindle speeds is for 
each range as follows: 

Range Ratio 

1 5 

2 7.5 

3 20 

Speed requested = 35 RPM. 

Range 1 Spindle Corrunand = 35/5 = 1 
Spindle Speed = 1 x 5 = 35 

Range 2 

Range 3 

Spindle command = 35/7.5 = 4.67 

(a) If the closest or next higher speed is 
desired as expressed by option 90 being 
set at zero or one, then 

Spindle Command = 5. 
Spindle Speed = 5 x 7.5 = 37.5 

(b) If the next lower speed is desired as 
expressed by option 90 being set to a 
-1, then 

Spindle Command = 4 
Spindle Speed= 4 x 7.5 = 30. 

In subroutine SPINDL the speed requested is 
raised to the minimum of that range, i.e., 
100 RPM. Therefore, 

Spindle Conunand = 100/20 = 5 
Spindle·speed = 5 x 20 = 100. 

The Type 15 spindle require special attention in setting up the 
Machine Subroutine as follows: 

(1) set option 1 = the number of ranges. 

(2) Set option 8 = 2.0 the number of testing limits for 
each range, i.e., minimum and maximum. 

4-109 



CltlNT Ill POSTPROCESSOR ... for the computer programmer 

4.5.16 TYPE 15: RATIO BETWEEN RANGES (cont'd) 

(3) Set SRTAB as follows: 

SRTAB (1) = Ra.nge 1 Min. Speed 
SRTAB (2) = Range 1 Max. Speed 
SRTAB (3) = Range 2 Min. Speed 
SRTAB (4) = Range 2 Max. Speed 
SRTAB (5) = Range 3 Min. Speed 
SRTAB (6) = Range 3 Max. Speed 
SRTAB (7) = Ratio between Spindle command and Speed 

Range 1 
SRTAB (8) = Ratio between Spindle Command and Speed 

Range 2 
SRTAB (9) = Ratio between Spindle Command and Speed 

Range 3 

4-110 



Cl&HT Ill POSTPROCESSOR ... for the computer programmer 

4.5.17 TYPE 16: SPINDLE 

This spindle type is like Type 3 except that the speed codes are 
not unit increasing. For example: 

SPEEDS 
S-CODE RANGE 1 RANGE 2 

00 50 250 
02 100 500 
05 150 750 
15 200 1000 
20 250 1250 
30 300 1500 

The spindle speed is determined by the s code and an associated 
M code based on spindle range. The following options must be set: 

OP TAB (7) 
OPTAB (8) 
OPTAB (19) 

= Number of Ranges 
= Number of Speeds in each Range 
= 16. 0 

The spindle table (SRTAB) would be set up as follows where N = 
Number of speeds/range 

SRTAB (1) } 

SRTAB (N) 

SRTAB (N+ 1) } 

SRTAB (2N) 

SR~AB(2N+11 

SRTAB (3N) 

Speeds for Range 1 

Speeds for Range 2 

Speed Codes 

4-111 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

4.5.18 TYPE 17: SPINDLE 

Speeds are selected within each range by a three (3) digit S code 
(sOOO thru s999) . The S code for any required spindle speed in 
any range is obtained from the formula: 

x 1000 

where: 

SN = s Code Number 

SD = Desired Spindle Speed 

SMIN = Minimum Speed in Range 

SMAX = Maximum Speed in Range 

Some things to consider when setting up the machine subroutine: 

( 1) Set the maximum and minimum values for each range in SRTAB 
as follows: 

SRTAB ( 1) = Mimirnum value for range 1 

SRTAB ( 2) = Maximum value for range 1 

SRTAB ( 3) = Minimum value for range 2 

SRTAB ( 4) = Maximum value for range 2 

. etc . 

(2) Set Option 7 = number of ranges (No need to set Option 8) . 

(3) Speed changes within a range are made without stopping the 
spindle. If it is required that the spindle be stopped be
fore changing ranges, set Option 216 = 1. 

4-112 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

~· 4.5.19 TYPE 18: SPINDLE 

-~ 

Type 18 spindle is designed to accommodate spindle tables where 
the speeds have an associated code number and is a variable 
spindle type when in SFM, i.e., a percentage of change in speed 
is c<nsidered rather then the next speed in the table. This 
percent of change should be placed in option 15. If, for 
example, option 15 is set to 10.0. the speed will be changed by 
10%, regardless if that is the next speed in the table or not. 

To store the various speeds of the table in memory, the highest 
speed of range 1 should be stored in SRTAB(1), with the percent 
of change for range 1 in SRTAB(2). The highest speed for range 
2 in SRTAB(3) and percent change for range 2 in SRTAB(4), etc. 
Options 7, 8, 19, 31, and 47 should also be set. The 
postprocessor will then store the number of speeds per range as 
given in option 8, starting with SRTAB(1) and changing by the 
SRTAB(2) factor and continue for the number of ranges as given in 
option 7. 

Example: 

RANGE 1 
--

CODE SPEED 

S300 340 
S299 337 
S298 333 

! ! 
5203 10 

Set: 

SRTAB(1) = 340.0 
SRTAB{2) = .01 
SRTAB (3) = 1500.0 
SRTAB (4) = • 01 
OPTAB (7) = 2.0 
OPTAB ( 8) = 98.0 
OPTAB (19) = 18.0 
OPTAB (31) = 103.0 
OPTAB (4 7) = 203.0 

RANGE 2 
CODE SPEED 

S500 1500 
S499 1485 
S498 1470 

i 
S403 45 

Highest speed Range 1 
% of change between speeds in Range 1 
Highest speed Range 2 
I of change between speeds in Range 2 
Number of ranges 
Speeds per range 
Spindle type 
Increment between code between ranges 
First code in Range 1 

4-113 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.5.20 TYPE 19: SPINDLE 

Each time the spindle changes ranges, the postprocessor issues 
three command blocks. The first block is for a stop M code, the 
second block is a postprocessor comment which states, 

"A SPINDLE SPEED CHANGE OCCURS AT THIS POINT," 

and the third block is a non-motion block which carries the new 
spindle speed. For example. 

( 1) N123G 04MOO 

(2) A SPINDLE SPEED CHANGE OCCURS AT THIS POINT 

(3) N125G04545 

This type spindle is the old type 7 spindle in GECENT II. 

4-114 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

4.6 THREADING PROCEDURE'S 

The processing of a thread in the GECENT III postprocessor is not 
too dissimilar from a normal linear move. In fact, one of the 
restrictions upon threading is that it be a linear path; 
furthermore, the thread path cannot exist concurrently with a SFM 
nor a RAPID mode. 

A threading path is segmented when it exceeds the maximum 
departure--see the comments below regarding the changing maximum 
departure for extended lead threads. 

Although the threading function is basically the same, it is 
handled in a different manner by the different control systems. 
The progranuning instructions for the Mark Centruy 1005 is unique 
from other series 10 0 controls, and there are programming 
differences in the 7500 series which are different from each 
other also. Consult the programming manuals for the particular 
installation to determine what these restrictions may be. The 
postprocessor attempts to treat threading in a general way with 
as few restrictions as possible to the programming method used. 

There are three postprocessor statements which control the use 
and operation of a thread, viz., PITCH, COUPLE, and THREAD. The 
Part Programming Manual should be consulted for the description 
of their general applications. In the paragraphs which follow, 
a brief description of the above postprocessor statements is 
given as related to postprocessor operation. The use of the word 
COUPLE is confined to very early versions of the Mark Century 
line and is not used with controls whose encoder is permanently 
coupled to the spindle. 

The PITCH statement calls for the desired number of threads per 
inch. The postprocessor converts this value to a lead which is 
the reciprocal of threads per inch. Lead, measured in inches per 
thread, is the number of inches a screw will advance when turned 
through 360 degrees. If the given number of threads per inch is 
less than 10, the postprocessor uses a five-digit lead for IJK 
registers which accept 5 digits. For fine threads, more than 10 
per inch, the lead consists of six digits, thus reducing the 
round-off error (if any) by a factor of 10 or more in most cases. 
This is possible in the control because the leading zero is 
passed over and only the last five digits are used. 

Machines which have a 6-digit IJK register can similarly accept 
a 7 digit lead for a pitch greater than 10. 

4-115 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.6 THREADING PROCEDURES (cont'd) 

Lead is defined as the distance from any point on the thread of 
a screw to the corresporrling part on an adjacent thread measured 
parallel to the screw's axis of rotation. Hence, when the number 
of threads changes from 12 threads per inch to 6 threads per 
inch, the lead is increasing, since the distance between adjacent 
threads increases. The words INCR or DECR, as used in the PITCH 
statement, refer to the increasing or decreasing pitch for 
linearly variable leads only. It should be remembered that 
thread lead is the inverse of pitch, therefore an increading 
pitch will result in a decreasing lead, and vice versa. 

The threading rate or rate of change of lead in inches per thread 
is computed from the equation:· 

F = T 

where Lf is the final lead, L1 is the initial lead, s is the 
screw ength, and FT is the threading rate in inches per thread. 

Before threading can begin, the encoder must be coupled. Unless 
this coupling occurs automatically with the threading G code or 
unless the encoder is perrcanently coupled to the spindle, the 
part programmer must couple the encoder device by use of the 
statement, COUPLE/ON. While the encoder is coupled, the spindle 
cannot go above the RPM value of option 175, therefore, it is 
important to uncouple the encoder (for those systems which 
require it) after a threading sequence is completed. The 
postprocessor will always print a comment if the spindle speed is 
ever greater than the option 175 value while the encoder is 
coupled. If the part programmer should forget to couple the 
encoder before calling for a thread, the postprocessor will print 
a warning, but will also continue with the program. However, no 
warning is given if the part programmer should forget to uncouple 
the encoder, because the postprocessor is unable to determine 
whether or not the part programmer wishes to keep the encoder 
coupled. Since the THREAD statement is one-shot, the encoder 
should be kept in its coupled position if there are other THREAD 
statements to be given. 

If a dwell time is required while cou.pling or uncoupling, option 
92 must be set to the required dwell time. Note that if the 
spindle speed must be reduced to the lowest speed before 
coupling, option 92 must be set negative. The postprocessor then 
automatically reduces the speed of the spindle but brings it back 
up to speed after coupling. 

4-116 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

4.6 THREADING PROCEDURES (cont'd) 

Facing threads are cuts in the workpiece face; in this case the 
part progranuner uses the abscissa axis as the threading axis of 
rotation, otherwise, part programming is the same for facing 
threads as it is for tuniing threads. 

The progranuner should refer to his particular NC machine 
threading manual for the exact threading requirements. 

For cnnstant lead, no f eedrate is 
since the threading feedrate is 
spindle speed. Sequences such as 

issued in the 
a function 

thread block 
of the lead and 

RAPID 
THREAD 

are not permitted since one condition overrides the other. 

Some additional considerations might be required for extended 
lead threading or other special threading capabilities. These 
functions are largely dependant upon the control model and NC 
machine. 

There are four major considerations that the postprocessor must 
recognize: 

(1) Lead Type: Is the pitch constant, increasing, 
or decreasing? 

( 2) Lead Range: 
thread? 

(3) Path Type: 
thread? 

(4) Path Range: 
thread? 

Each of these 
postprocessor, 
items apply. 

What is the maximum number of inches per 

Is the path for a constant or tapered 

What is the maximum departure for the 

items are considered separately in the 
and the resulting output is contingent upon which 

There are a variety of restrictions which exist for any given 
threading condition. Among these restrictions are spindle speed 
maximums which are a function of the number of spindle speed 
ranges, type of lead, and size of lead. Path departure maximums 
can also vary as a function of the lead type and size. 

4-117 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.6 THREADING PROCEDURES (cont'd) 

These variations and con:omitant restrictions are so numerous 
that only by descriptive tables can they best be summarized. 

In the tables which follow, a summary of threading capability is 
presented by control ta~. Data is given for resolver feedback 
gearing of 0.1 inch per revolution and 1 mm per revolution only. 

TABLE 1 Mark Century custom 100 Series control 

Resolver Preparatory Maximum Maximum System Maximum 
K;earing Function Head Departure Format Spindle RPM 

0. 1 inch g36,g37, 9.9999 in 9.9999 in 14 60 
rev. g38 99.9999 in 23 

J 

g33,g34 .99999 in 370 (2 range) 
g35 600 (3 range) 

g33,g34 .099999 in 370(2 range) 
g35 600(3 range) 

1 ill!!! g36,g37 99.999 mm 99.999 mm 23 60 
rev. g38 999.999 mm 33 

g33,g34, 9.9999 mm 370(2 range) 
g35 600(3 range) 

g33,g34, .99999 mm 370(2 range) 
g35 600(3 range) 

4-118 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

4.6 THREADING PROCEDURES (cont'd) 

TABLE 2 Mark Century 1005 Control 

Resolver Preparatory Maximum 
Gearing Function Lead 

0.1 inch g38 1.99998 in 
rev. g33 0.99999 in 

g39 .099999 in 

g28 1.99998 in 
g23 .99999 in 
g29 .099999 in 

1 mm g38 59. 998 mm 
rev. g33 29.999 mm 

g39 2. 999 9 mm 

TABLE 3 Mark Century 7582 Control 

Resolver Preparatory Maximum 
Gearing Function Lead 

0. 1 inch g36,g37, 9.9999 in 
rev. g38 

g33,g34, .99999 in 
g35 

1 mm g36,g37 99.999 mm 
rev. g38 

g36,g37 9.9999 mm 
g38 

Maximum System Maximum 
Departure Format Spindle 

9.9999 in 14 200 
400 
2500 

19.9999 in 14 200 
400 
2500 

999.99 mm 32 200 
400 
2500 

Maximum system Maximum 
Departure Format Spindle 

9.9999 in 44 100 
variable 

1000* 

99999.999mrn 53 100 

1000* 

* When spindle speed is in the range of 450 to 1000 rpm, the 
maximum programmable lead must be less than .50000 in or 
5.0000 mm. 

RPM 

RPM 

4-119 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

4. 6 THREADING PROCEDURES (cont'd) 

TABLE 4 Mark Century 7542, 7543-4, and 7544 Controls 

Resolver Preparatory Maximum Maximum System Maximum 
Gearing Function Lead Departure Format Spindle RPM 

0.1 inch g33 9.99999 in 99.9999 in 24 100 
rev. 

.99999 in 1000 

.09999 in 5000 

1 nun g33 99.9999 mm 999.999 nun 33 
rev. 

g33 9.9999 mm 1000 

g33 .9999 mm 5000 

Referring to Table 2 for departures on the axis which is parallel 
to the axis of symmetry and which are greater than 9.9999 inches, 
the postprocessor outputs the amount by which the departure is in 
excess of 10 inches. The G code (usually 28, 23, 29 instead of 
38, 33, 39) communicates the distinction between the two 
departure types. 

For the extended lead cases (G38 or G28) , the postprocessor 
divides the programmed lead by 2 and outputs the result. The G 
code communicates the distinction. 

When a THREAD statement is given, the postprocessor sets the flag 
THFLAG to ~, and sets flag ITHTYP to 1 for TURN and to 2 for 
FACE. The parameter THI.FAD is set in subroutine PITCH, and 
carries the lead value, i.e., PITCH. The flag THMODE is set in 
subroutine PITCH, and has the values; 

= +1, increasing lead 

THMODE = O, constant lead 

= -1, decreasing lead 

4-120 



··""1iir· 

ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4 .6 THREADING PROCEDURES (cont• d) 

When the thread motion record is encountered, subroutine GOLINE 
(or subroutine SEGMNT) tests THFLAG and branches to subroutine 
THREDO (double entry with THREAD) to generate and output the 
required threading conmand block. 

Subroutine THREDO is the basic processing subroutine for all 
lathe threads; (the special subroutine THREDM processes threads 
for milling machine.) 

In order to set up the thread command 
first computes the departures ~ X 
register values are determined as: 

TURN FACE 

block, 
and~ Y. 

I = ITHLEAD I *M 

J = I ~Y*I I 
~ 

J = ITHLEAD I *M 

I = I ~*J I 
f1Y 

the postprocessor 
The threading lead 

where M is some multiple of 10 which scales the value of I and J 
so that leading zeros are shifted 
proportionate increase in accuracy. ~X 
DBFSEG(3) and (4), respectively, and 
DBFSEG(8) and (9), respectively. 

out, 
and 

I 

thereby, allowing a 
~Y are stored in 

and J are stored in 

The tool tip velocity in IPM is determined as: 

FT= S ~I 2 + J2 I 

where s is the threading spindle speed. It is important to note 
that this feedrate in IPM is used only for printout purposes. As 
such, it is stored in DABVAL(11) for printing out as an Absolute 
value; see Section 3. 5. 3. 2. 

An F command is required only for a non-constant lead, i.e., for 
an increasing or decreasing lead. For these cases the parameter 
THRATE (which is set in subroutine PITCH), carries the required 
threading rate, and this value is stored in DBFSEG(11) when the 
THMODE is non-zero. 

Depending on the conditions of extended or non-extended leads, 
variable departures, and THMODE, the G code is selected from 
TABLEG and is stored in DBFSEG(2) to complete the setup of the 
threading conmand block. 

A.gain, the programmer is referred to the programming instructions 
furnished with his control system for a more complete definition 
of threading procedures, restrictions, and limitations. 

4-121 



ClClNT Ill POSTPR09ESSOR ... for the computer programmer 

4.7 AUTOMATIC REINSTATEMENT OF PROGRAM CONDITIONS 

Subject to the control of option 145 the postprocessor will 
automatically reinstate the part program status of previously 
cancelled functions which may occur on the statements STOP, 
OPSTOP, and BREAK. Depending upon the setting of option 145, the 
postprocessor can reinstate the functions in various manners. 

When an OPSTOP is encountered, the machine control unit may 
automatically turn off the spindle and coolant and enter into the 
lowest feedrate range. The part programmer would therefore have 
to reprogram all of these conditions after each OPSTOP. However, 
by use of option 145, the postprocessor can be directed to 
perform these reinstating chores. 

The functions which are automatically reinstated are the tool or 
turret T code, the spindle speed command, the spindle condition 
(CLW, CCLW, OFF), the spindle range, the SFM mode and value, the 
feed or rapid range, and the coolants condition. 

Since each of the above items are reinstated, they must obviously 
be saved for reinstatement whenever a condition is changed. 
Thus, in subroutines SPINDL, COOLNT, RAPIDO, RAPIDX, TURRET, 
TOOLNO, and FEDRAT, each time a related part program statement is 
processed, the postprocessor stores away the condition in the 
STATE vector which is dimensioned at 12 and is in basic COMMON. 
The STATE vector has the present assignments: 

STATE ( 1) = T code 

STATE (2) = Spindle Conunand 

STATE (3) = Spindle Condition (CLW, CCLW, OFF} 

STATE (4) = Spindle Range 

STATE(5) = SFM Value or Mode 

STATE (6) = M code for Feed or Rapid Range 

STATE (7) = Second M code for Feed or Rapid Range 

STATE (8) = Coolant Number 1 

STATE (9) = Coolant Number 2 

4-122 



Cl&INT Ill POSTPROCESSOR ... for the computer programmer 

4.7 AUTOMATIC REINSTATEMENT OF PROGMAN CONDITIONS (cont'd) 

For example, on the statement 

SPINDL/20, SFM, RANGE, 2, CLW 

subroutine SPINDL stores in STATE as follows: 

STATE(3) = 3 (for M03) 

STATE( 4) = 2 

STATE( 5) = 20 

The fact that a non-DMBITS value is in STATE(5) indicates the 
existence of an SFM mode. Thus, on the statement 

SPINDL/40, RPM 

subroutine SPINDL stores in STATE as follows: 

STATE{2) = 540 (assume 40 RPM = 540 spindle 
command) 

STATE(5) = DMBITS. 

Hence, the STATE vector at any point in time can give the 
condition status of the part program. 

When an OPSTOP, STOP, or BRFAK statement is given , the flag 
STOPON is set to 1 indicating that a "stop condition" exists. 
Thus, when a motion statement is encountered, subroutine MOTION 
calls subroutine TSTFLG which tests flag STOPON, and finding it 
non-zero, calls subroutine RESTAT which outputs the pending 
conditions of the STATE vector per the specification of option 
145. 

The postprocessor must consider one special case; it must allow 
for a new respecification of a condition after a STOP (or OPSTOP 
or BREAK) and before the motion statement. For example: 

STOP 

SPI NDL/4 0 I RPM 

COOLNT/MIST 

FEDRAT/RANGE,2 

GOTO/X,Y,Z 

4-123 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.7 AUTOMATIC REINSTATEMENT OF PROGMAN CONDITIONS (cont'd) 

Prior to the GOTO/X,Y,Z statement ,the postprocessor must output 
these conditions as given, and yet must not reinstate them again 
when subroutine RESTAT is called. The argument may be raised: 
instead of outputting the conditions when given, why not simply 
store the conditions in STATE and output them automatically when 
subroutine RESTAT is called? The reasons are: first, the 
subroutines (SPINDL, COOLNT, FEDRAT, etc) would have to be 
altered to not output data when a "stop condition" exists; and, 
second, flushing the conditions out of the STATE vector will most 
probably output them in a different order than programmed. 

To circumvent this problem the postprocessor, therefore, always 
processes and outputs the data for every statement; but when 
storing away the condition into the STATE vector, the subroutines 
test the STOPON flag, and if non-zero, make the stored value in 
the STATE vector negative. Hence, subroutine RESTAT, when 
outputting the conditions of the STATE vector, first checks for 
a negative value of the condition, and, if found to be negative, 
the subroutine restores the positive value back into STATE, and 
disregards outputting it. 

Subroutine RESTAT also outputs any necessary 
reinstating the feed or rapid mode. 

4-124 

dwells when 



'-' 

ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4 • 8 VARIABLE FORMAT BY G CODE· 

The Mark Century 100M control (and those similar to it) have 
motion registers whose decimal format changes as a function of 
the linear G code. For example, the format for the XYZ registers 
may be 14.0, i.e., REGFOR(3) = 14 for X, REGFOR(4) = 14 for Y, 
and REGFOR(S) = 14 for z. However, when a G10 is used, the 
format changes to 23; the total number of digits is the same as 
before, but now there are only three digits to the right of the 
decinal point. Thus, there is a loss of data in the fourth 
decimal place which, as will be shown, is recoverable but only at 
the cost of changing the progranuned cut path. This may be an 
intolerable situation making it physically impossible on NC 
machines with this feature to cut accurately with a G10 code. 

The presence of this variable format feature is designated by 
option 41 being set to zero. 

Because of the resultant altered path the postprocessor uses the 
G10 and maximum departure of 99.999 only for rapid traverse 
moves. A move greater than 9.9999 inches is automatically 
segmented so as to be able to use the G01, G11, or G12 codes and 
maximum departure of 9.9999 inches. 

Example: (1) FROM/O,O,O 

(2) GOT0/40,40,40 

(3) RAPID 

(4) GOT0/100,100,100 

Statement 2 is segmented into five 8 inch departures using G01. 
Statement 4 is output with departures of 60 inches using G10. 

The technique of recovering the 
illustrated by the following example. 
follows two basic steps: 

"lost" decimal data can be 
In effect, the technique 

( 1) Process the incremental data in the normal manner except 
for a G10 block. For these blocks truncate, but not 
round, on the 0.001 factor. The XYZ data are issued 
with this truncation. 

(2) The truncation remnant lost in the 0.0001 position is 
then subtracted from the present point. Hence, when 
the next point increments are computed, the previously 
"lost" amount is now included in the new increments. 

4-125 



True ~BA= 21.1079, but we output a ~BA= 21.107, and subtract 

0.0009 from the present point 23.7868, making it 23.7859 instead 
of 23.7868. Hence, instead of ~CB= 6.4499, it is ~CB= 6.4508. 

This avoids the accumulative error and places the tool back on 
the correct path. In this example, if we redetermine the lost 
CL point from the produced increments we get: 2.6789 + 21.1070 
+ 6.4508 = 30.2367, the exact point. 

Although this technique arrives at the correct point, it's path 
to get there has been changed from the programmed path. This is 
demonstrated in Diagram 4.8A where a grossly exaggerated two 
axes correction is made by the method explained above 

y c 

x 
A 

Diagram 4. 8A 

Paths ABC are the true paths, but path ADC is the result of the 
use of G10 and subsequent loss and regain of the fourth decimal 
place data. 

4-126 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

4.8 VARIABLE FORMAT BY G CODE (cont'd) 

The postprocessor achieves this corrective procedure by changing 
the departure maximum BIGDEP and STEP size as a function of the 
current G code. Thus, for a RAPID move greater than 9.9999 
inches, BIGDEP remains as 99.999, but step is changed to 10 times 
its previous value. Assume STEP is 0.0001; it is then changed to 
0.001 to conform to the changed decimal requirements of the XYZ 
format. 

In subroutine SELG when option 41 = O, STEP is changed to 0.001 
and the present machine point vector DPRESM is modified to 
reflect the loss of the fourth decimal place data. Before the 
next CL tape record is read, DPREVM is set to DPRESM; therefore, 
the new DPRESM(from the CL record) will create departures that 
recover the lost data. 

When a non-RAPID move greater than 9.9999 inches is given, 
subroutine GOLINE makes BIGDEP = 9.9999, thereby automatically 
forcing a segmentation of the path. 

In all cases when BIGDEP or STEP are changed, their original 
values are first saved and then restored before exiting from the 
subroutine. 

The postprocessor assumes an XYZ format of -14.0 for G11 and G01, 
and a format of -23.0 for G10. Machines which have six-digit 
registers or greater should ignore this option. 

To use this feature the Machine subroutine must have TABLEG(11) 
= 10.0, REGFOR(XYZ) =-14.0, OPTAB(41) = O, and OPTAB(4) = 99.999. 
IF the G10 is not to be used, then option 4 should be set to 
9.9999. 

The postprocessor is not structured to accept circular 
interpolation departures with this type of shifting or floating 
format. Control systems using circular interpolation must have 
fixed formats. 

When option 41 is set to -1, the postprocessor has the variable 
format and no corrective action as described above takes place. 
Departures processed normally for both normal departures (format 
= 14) and long departures (format = 23) for both RAPID and FEED 
moves. 

When option 41 is set to -2 the variable format takes on a 
slightly different aspect. No corrective action is required; 
both RAPID and FEED moves are processed normally, but the nonnal 
departure has a format of 14 where as the long departure has a 
format of 24. 

4-127 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

4.9 LEADING ZERO SUPPRESSION 

A normal function of the Mark century numerical control is to 
drop trailing zeroes, but leading zero suppression is a 
capability of the 100M control system and certain of the 7500 
series control systems. 

For the lOOM control, leading zero suppression is available only 
in the motion registers X Y Z, and only when in a Gll or Gl2 
(supersmall) mode. Suppression is obtained by setting option 
51 = -2.0. 

In a G11 mode, leading zeros to the left of the decimal point are 
suppressed, while in a G12 mode leading zeros to the left and one 
zero to the right of the decimal point are suppressed. There is 
no suppression in the G01 or G10 mode. 

Leading zeroes are deleted in the GEPRON routines. Trailing 
zeroes (for all incremental systems) are always deleted through 
subroutine CONBCD. 

For the 7582 contouring control the pattern of leading zero 
suppression is extended for all departure G codes greater than 
G12 up to and including G26, G27, and G28 (format 0744). Option 
52 is set equal to -2. 

4.10 DWELL BLOCKS 

An NC machine dwell can be produced in a variety of ways, but the 
most common method is through the use of the preparatory function 
G code G04. This method outputs a command block with a G04 and 
the required delay time which is normally stored in one of the 
motion registers, i.e., XYZ registers. For example, the 
stat anent 

DELAY/4 

may output a command block 

NxxxG04X4 

which should produce a 4 second dwell. 

In general, milling 
time whereas lathes 
possibly be used 
refers to option 57 
register. 

4-128 

machines use the X register for the dwell 
use the Z register. Since any register might 
for storing the dwell time, the postprocessor 
since it specifies the location of the dwell 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

4.10 DWELL BLOCKS (cont'd) 

A control which uses this G04 method usually considers the value 
in the motion register to be ten times smaller than it really is. 
In the example above, although we call for a 4 second dwell, the 
control interprets the command block (as given) to be a 40 second 
dwell. Therefore, the postprocessor scales down the dwell time 
before outputting the dwell block. This scaling value is given 
in option 56 whose standard value is 10. Thus, the command block 
would appear as (assuming REGFOR(3) = 14): 

NxxxG04X04 

It is important to note, therefore, that a printed dwell time is 
actually ten times larger than shown. 

Dwell times can also be effected by miscellaneous function M 
codes or other preparatory function G codes. These alternate 
methods usually produce a fixed or preset dwell time value. An 
M31 for example, may select preset timer number 1 to produce a 1 
second dwell, while an M32 may select preset timer number 2 to 
produce a 3 second dwell, and so on. 

Another fairly common method with linear control systems is to 
use the F register for producing the dwell time. This method 
does not normally use G04 or any other code, but simply outputs 
a command block with an F value which is obtained by dividing the 
requested dwell time into 60. For example: 

DELAY/40 

F = 60/40 = 1.5 

Assuming REGFOR(11) = 31, the command block is: 

NxxxF0015 

A precaution must be observed with this method however. Machine 
tools which produce dwell times through the F-register (no G04), 
and which also have several dimensional G codes (G01, G10, G11, 
G12,) require special treatment in the postprocessor. Since the 
G codes are nodal, their respective dimension multiplier can 
affect the actual dwell time. For example: say the dwell time 
is to be 3 seconds. If a G10 is in mode, the actual time will be 
300 seconds. G01 would give 30 seconds, G11, 3 seconds, etc. 
Hence, to avoid the undesired long dwell times, the postprocessor 
selects the smallest range G code available (down to a G11) and 
outputs it in the dwell block. 

4-129 



CECINT Ill POSTPROCESSOR ... for the computer programmer 

4.9 LEADING ZERO SUPPRESSION (cont'd) 

Another simple solution if one G code is preferred, e.g., G11, is 
to set the preparatory function dwell code location accordingly, 
viz., TABLEG(S) = 11. 

All dwell blocks have the connnand block identification code of 
+4. 

4.11 OPSKIP PROCESSING 

NC machines which have the optional skip feature (block delete) 
must have option 30 set to 1. 

When an OPSKIP statement 
flag SKPFLG to 1 for ON and 
command block is to be 
subroutine OUTPUT makes the 
negative. 

is given, subroutine OPSKIP sets the 
o for OFF. To indicate that a 

an OPSKIP block, the postprocessor in 
sequence number value (BUFSEG(1)) 

At output time the postprocessor tests either for a negative 
sequence number (in GEOUT3 and GEOUT4) or tests the SKPFLG. When 
the OPSKIP condition is on, the postprocessor in subroutine SETUP 
adds the skip code SKPCOD to the second location of BCDIMG which 
is subsequently printed and punched. The parameter SKPCOD is in 
basic COMMON and is set in subroutine GEPRE. The normal code is 
a / which is stored in BCD form into SKPCOD. 

4.12 CUT AND DWELL TIMES 

The cut and dwell times in minutes for incremental systems are 
printed at the bottom of each page. The parameters CUTIME and 
DWTIME which are in output COMMON contain the accumulative cut 
and dwell times, respectively. 

The dwell times are accumulated in subroutine GEPRON, but the cut 
times are computed and accumulated in subroutine CONTUR. 

The cut times are computed from the basic relationship 

s 
T = ___ , 

60*F 

where T is the path cut time in minutes, F is the feedrate in 
IPM, and s is the path length in inches. 

4-130 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

4.12 CUT AND DWELL TIMES (cont'd) 

s is computed according to its type of move and interpolation 
mode: 

Non-multiaxis Linear: s = LiX 2 + 6.Y 2 + LiZ 2 , where the 
inate departures. deltas are the machine 

Circular: s = 0.972D + 0.1737D 2 , 

R 

where R is the circle radius, and D is the departure path 
length; see Diagram 4.1.12A. 

y 

Diagram 4.1.12A 

Multiaxis: s = 6,x2 + D.y2 + D.z 2 , where D.x, 6.y, 6,z are 
the part coordinate departures. 

Rotary: S = yR, where yis the angular rotation in 
radians, and R is the part radius in inches. 

Threading: In order to compute the threading time, the 
following relations are used: 

-Feedrate-= Lead* Spindle Speed, 

in = 
min 

in 
rev * rev 

min 

where Lead is the inverse of the given pitch. 

4-131 



.. 

ClClNT Ill POSTPROCESSOR 

4.12 CUT AND DWELL TIMES (cont'd) 

Therefore, thread time T in seconds is 

T = Path Length 
60*Feedrate 

= ~ ~x2 + ~y2 
60(Lead *Spindle Speed) 

... for the computer programmer 

For tapered threads, Lead is the maximum of the given lead 
and the determined ratioed lead for the other axis. 

4-132 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.0 POSTPROCESSOR PROGRAM DETAILS 

This section covers the programming conventions, techniques, and 
anatomy of the postprocessor. The internal structure of the 
GECENT III postprocessor is defined by function and usage, and 
details are given regarding the lcica·tion of subroutines, 
parameters, errors, and so on. 

Especial reference is made to the heart of the postprocessor 
the Machine Subroutine. Details are given concerning it's make
up, theory of use, and method of application. 

This section is essential reading to anyone who plans to work 
with the GECENT III postprocessor. 

5.1 LABELED COMMONS 

Each major overlay of the postprocessor has its own labeled 
COMMON. This has the advantage in that only those COMMON areas 
which are necessary to a given overlay structure are loaded into 
memory. Blank (or block) COMMON is not as convenient to use as 
is a labeled COMMON. However, the APT System COMMON is a blank 
COMMON. 

The labeled COMMON for each major overlay is given below; see a 
GECENT III postprocessor listing for the parameters included in 
the labeled COMMON, or see Section 5.1.1, Parameter Definitions. 

GECOM *-- this COMMON is the general one used for and by all 
overlays. It contains the parameters which are used for 
communication between overlays, and it contains all of the 
parameters used for general application. 

GECBAS* -- this is the basic COMMON required for all types of NC 
machines, and, in particular, applies mainly to the GEBASE 
overlay. It is used also in the following overlays: GEINIT, 
GETERP, GEPOS, GELATH, GEMILL, GEMAXS, and all of the GEOUT 
overlays. The special overlays GESPIN, GECLAS, GEMFUN, GEFI.AM, 
GEWIND, GEWELD, and so on, also use GECBAS COMMON. 

The GECBAS COMMON provides communication between the GEBASE 
overlay and the NC machine type and output overlays. 

GEOUT* -- this labeled COMMON is the communicating region for 
subroutines in the GEOUT overlays. It contains the basic 
parameters which any GEOUTn overlay requires. It is also used in 
some subroutines in GEBASE in order to provide contact between 
GEBASE and GEOUT. 

* These common regions are called D1,D2,I1,I2,S1 and S2 in the 
360 version of GECENT. D1,D2,S1 and S2 contain double 
precision parameters and I1 and I2 contain integer parameters. 

5-1 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.1 LABELED COMMONS (cont'd) 

GECOT3 -- this COMMON is used exclusively for communication 
between the subroutines of GEOUT3, and to a lesser extent, for 
conununication between certain GEMULT subroutines with GEOUT3. 

COMBIN -- this is the basic COMMON required for the GEMULT link. 
It is used as a communicating area between multihead subroutines 
throughout GEMULT. 

FXAXCM -- this labeled COMMON is used only 
sequence in the multihead segment of 
Section 3.4.8.2.1.3. It is used for an 
between subroutines of the common-axis 
sequences. 

for the common-axis 
the postprocessor; see 

area of communication 
and other multihead 

The labeled COMMON assignments by overlay are illustrated in 
Diagram 5.1A. 

GE MON ( 1) 

GE BASE 
1. - GECOM 

G (1,2,3) 2. - GECBAS 
E 
I 3. - GECOUT 
N GE TERP 
I G ( 1 I 2) 
T E GE MU LT 

( 1, 2) p (1,4,5,6) 

4. - GECOT3 

5. - COMBIN 

0 G G G 
s E E E 

6. - FXAXCM 

( 1 I 2) L M s 
A I p 

T L E 
H L c 

(1,2) (1,2) (1,2) 

G 
E 

Diagram 5.lA M 
A 
x 
s 

(1,2) 

GE OUT (1,2,3) 

GEOUTl GEOUT2 GEOUT3 
(1,2,3) (1,2,3) (1,2,3,4) 

5-2 



C(Cl~T 111 POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS 

In this section the postprocessor•s program parameters in COMMON 
are defined according to their purpose, usage, or function. 
Those parameters not in COMMON are local variables and are 
defined in the subroutine listing. Dimensioned parameters are 
given with their dinensions in parentheses; dimensioned 
parameters, which are ordered, have their symbols and order 
given. Each COMMON parameter is identified as to which labeled 
COMMON it belongs. The first labeled common refers to all 
versions of GECENT except the 360 version; the second name is the 
labeled common for the 360 version of GECENT. 

The subroutine which sets the parameter value is given when 
possible, but some parameters are set and reset in several 
subroutines and, hence, all the subroutines cannot be given. 

For convenience and easy reference the parameters are listed in 
alphabetical order. 

ABCF1 (FXAXCM) 

The flag used in subroutine FXMULT which indicates whether or not 
the incremental moves for Head 1 have been added to the Head 1 
absolute coordinate values: 

0 = increments not added, 

1 = increments have been added. 

ABCF2 (FXAXCM) 

The flag used in subroutine FXMULT which indicates whether or not 
the incremental moves for Head 2 have been added to the Head 2 
absolute coordinate values: 

0 = increments not added, 

1 = increments have been added. 

ABS2 (3) (COMBIN) 

The absolute coordinate system for Head 1. Ordered as X,Y,Z. 

5-3 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

ABS3 (3) (COMBIN) 

The absolute coordinate system for Head 2. Ordered as X,Y,Z. 

AMINTL (COMBIN, S2) 

The minus tolerance restriction for the secondary head. 

ANGLIN (GECBAS, S2) 

The tolerance half-angle of the cone used in linearity testing; 
set up in subroutine-LINTOL. 

ANGSEL (GECBAS, S2) 

The angle selected by the SELF£T/ANGLE statement. 
subroutine SELANG. 

ARCANG (GECBAS, S2) 

Set in 

The angle of arc of the circle that a multiaxis circular 
interpolation motion makes; computed in subroutine PROCQD. 

AS2 (20 I 2) (COMBIN) 

The first row of AS2 is used for storing the current DBFSEG 
command block of Head 1; the second row of AS2 is used as storage 
for segmentation in a combined cut. 

AS3 ( 20 I 2) (COMBIN) 

The first row of AS3 is used for storing the current DBFSEG 
command block of Head 2; the second row of AS3 is used as storage 
for segmentation in a combined cut. 

5-4 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

AXMULT (GECOM) 

The flag indicating that a multiaxis mode exists; set in 
subroutine GEBASE for a Type 9000 record. 

BCDIM3(34) (GECOUT) 

The array into which a row 
converted to BCD. This 
punching. 

BCDRG2 (20) (GECOT 3) 

of DBFSEG is stored after being 
array is then set up for printing and 

The array containing the BCD title of the NC machine registers 
for Head 2; the title is printed at the top of each page. Set in 
subroutine CALCP3. 

BCDREG ( 20) (GECOUT, S2) 

The array containing the BCD title of the NC machine registers; 
the title is printed at the top of each page. Set in subroutine 
CALCPn. For multihead machines BCDREG is used for Head 1. 

BIGDEP (GECBAS, S2) 

The linear departure maximum value. It is given in option 4 and 
set in subroutine ASSIGN. 

BUFPRE(20) (COMBIN) 

Preliminary buffer which is set up for one head prior to dumping 
onto the scratch device; ordered the same as DBFSEG. 

CDEP (GECBAS, D2) 

Departure of the C axis; computed from DPRESM(18) - DPREVM(18). 

5-5 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

CIRDIR (GECBAS, S2) 

The direction of the circle motion: 

0 = CLW 

1 = CCLW. 

CIRFLG (GECBAS, S2) 

Path condition flag: 

0 = linear path, 

1 = circular path. 

Set in subroutine SRFCHK. 

CIRRAD (GECBAS, S2) 

The radius of the circle. Normally, it is the distance from the 
part circle center to the tool control point. 

CIRSEQ (GECBAS, S2) 

Flag indicating that a circle motion is being processed in the 
circular interpolation mode; set in subroutine GOCIRC. 

CLERF (GECBAS, S2) 

The clearance plane value as given by a CLRSRF statement: set in 
art CLRSRF. 

CLMPEX (GECBAS, S2) 

The flag set in subroutine CLAMP which indicates that an axis has 
been clamped. If motion is attempted with the clamped axis, 
IWAVEN is set to 1 and a warning comment is issued. 

5-6 



C(ClNT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

CLMPFL (GECBAS, S2) 

Clamp flag indicating the condition of the clamp: 

0 = off, 

1 = on. 

Set in subroutine CLAMP. 

CODE (GECBAS, S2) 

The command block identifying code stored in DBF8EG(15); see 
Section 2.3.2 for details. 

CONDFL (GECBAS, 82) 

The condition flag. 

CRCODE (GECBAS, S2) 

The CODE for the current circle motion being processed; it is 
always ~ 10, 11, or 12 if on; otherwise, it is O. 

CTRLIN (GECOUT, S2) 

The line counter parameter. The number of lines printed are 
counted so as to know when to complete a page and begin a new 
one. 

CURCYG (GECBA8, 82) 

The current canned cycle G code; set in subroutine CYCLE. 

CURMAC (GECOM, 81) 

The current machine number n as given in the MACHIN/GECENT, n 
statement. Set in subroutine MACHIN. 

5-7 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

CURMOD (GECBAS, S2) 

The current positioning mode. 

CURNGE (GECBAS, S2) 

The current spindle speed range; normally set in subroutine 
SPINDL. 

CURNTZ (GECBAS, S2) 

The current Z value; used during the positioning mode when RETRCT 
with a CLERP is used. The retained z value is the given, 
unaltered value. 

CUST (5) (GECOM, S1) 

The customer parameters in COMMON: see Section 5.1.2. 

CUTTER (GECBAS, S2) 

cutter flag designating current cutter in use: 

1 = ball tool, 

0 = non-ball tool. 

CUTRAD (GECBAS, S2) 

The radius of the current cutter; set in subroutine GEBASE for a 
Type 6 0 00 record. 

CYCFLG (GECBAS, S2) 

Cycle flag as used for positioning machines: 

O = off, 

1 = on, which means a programmed cycle is in mode. 

5-8 



CltINT 111 POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

DABVAL(20) (GECOUT) 

The print vector set up with the Absolute Values of the 
registers; ordered the same as DBFSEG. 

DATACL(246) (GECBAS, D2) 

Input storage array for one record read from the CL tape; 
primarily used for floating point references. 

DAT CIR ( 3) ( GECBAS, D2) 

The x,y,z coordinates of the part circle center; set in 
subroutine SRFCHK. 

DBFSEG (30) (GECBAS, D2) 

The buff er set up for each command block which is to become 
output. The fixed order of DBFSEG is: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30 
N G X Y Z A B I J K F S T M CODES E E C IPM RPM 

DBLNKS (GECOM, D1) 

Parameter containing a full word of BCD blank characters; set up 
in subroutine INIT. 

DBUFER (6, 6) (GECBAS, D2) 

A buffer for general usage. It is also used for containing the 
quadrant intersection points for a circular interpolation move; 
setup in subroutine QUADET, it then has the order x,y,z,i,j,k. 

DCRPT1 (3) (GECBAS, D2) 

The beginning point of the circle to be processed with circular 
interpolation; ordered as x,y,z. Nonnally set in subroutine 
GOCIRC. 

5-9 



G(C(Nl Ill POSTPROCESSOR 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

DCRPT2 (3) (GECBAS, D2) 

The final point of the circle to 
interpolation; ordered as x,y,z. 
GOCIRC. 

DEPA (GECBAS) 

... for the computer programmer 

be processed with circular 
Normally set in subroutine 

The_departure of the A axis; computed form PRESMP(4) - PREVMP(4) in subroutine ROTMOV. 

DEPB (GECBAS, D2) 

Departure of the B axis; computed from DPRESM(S) - DPREVM(S} in subroutine ROTMOV. 

DEPX (GECBAS, 02) 

The departure of the X axis; computed from DPRESM(1) - DPREVM(1) in subroutine DEPART. 

DEPY (GECBAS, D2) 

The departure of the Y axis; computed from DPRESM(2) - DPREVM(2) in subroutine DEPART. 

DEPZ (GECBAS, 02) 

The departure of the z axis; computed from DPRESM(3) - DPREVM(3) in subroutine DEPART. 

DIR (FXAXCM) 

The direction flag which indicates the direction of motion of multiheads which share a common axis: 

+1 = positive direction, 

-1 = negative direction. 

5-10 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

DMBITS (GECOM, Dl) 

Parameter which indicate that an empty or null setting exists; 
equal to -40404040.0; set in subroutine INIT. 

DMS (GECBAS, S2} 

Parameter used as a linear departure calculation tolerance; it is 
determined by (BIGDEP-STEP) in subroutine ASSIGN. 

DPBITS (GECOM, D1) 

The parameter containing the plus value of DMBITS. Set in 
subroutine INIT. 

OPATH (GECBAS, 02) 

The computed length of the path. 

DPRESM(6) (GECBAS, 02) 

The present point in machine coordinates, ordered as XYZABC. 

OPRESP(6) (GECBAS) 

The present point in part coordinates, ordered as xyzijk. 

DPREVM(6) (GECBAS, 02) 

The previous point in machine coordinates, ordered as XYZABC. 

DPRESP (6) (GECBAS, 02) 

The previous point in part coordinates, ordered as xyzijk. 

5-11 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

DPARTNQ(6) (GECOUT, D2) 

The array which contains the first six words of the first PARTNO 
for printing as a title on each page. 

DTEMP(10) (GECOM, D1) 

Temporary storage area for floating point numbers; must be used 
exelusively within a subroutine. 

DTRANS(3) (GECBAS, S2) 

The array of incremental values used for translating the part as 
given by a TRANS statement. Set in subroutine TRANS. Ordered as 
xyz. 

,ENCODE (GECBAS, S2) 

The flag which gives the condition of the threading encoder: 

O = encoder uncoupled, 

1 = encoder coupled. 

ENDFLG (GECBAS, S2) 

The flag which indicates that an END has been given: 

0 = no END given, 

1 = END given, 

-1 = no FROM point was given after the END. 

EPSLON (GECOM, S1) 

The epsilon value used as a tolerance for equality in various 
tests. Given in option 5 and set in subroutine ASSIGN. 

5-12 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

ERROR (GECOM, S1) 

The error number which identifies the type and condition of a 
fatal error; see Section 5.7. 

FACDEP (GECOM, S1) 

The unit system departure constant: it is 10 for the inch and 
100 for the metric system; set in subroutine ASSIGN. 

FCOMAX (GECOM, S1) 

The feedrate command maximum value. Given in option 24 and set 
in subroutine ASSIGN. 

FDHOLD (GECBAS, S2) 

The fiven feedrate value either in IPM or IPR. The programmed 
f eedrate value is retained free of any other effects. Set in 
subroutine FEDRAT. 

FDMHD(2) (FXAXCM) 

The saved M code for Head 1 or 2. The M code is saved only if it 
is for a gear shift to the feedrate or rapid ranges. 

FEDIPM (GECBAS, S2) 

The current feedrate in IPM: normally set in subroutine FEDRAT. 

FEDIPR (GECBAS, S2) 

The current feedrate in IPR: normally set in subroutine FEDRAT. 

5-13 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

FEED (2) (COMBIN) 

FIRST (GECBAS, S2) 

The "first time" flag indicating that the first command block has 
been processed for output. 

FL1 (GECOM, S 1) 

Floating point one; set in subroutine INIT. 

FL2 (GECOM, S1) 

Floating point two; set in subroutine INIT. 

FL3 (GECOM, S1) 

Floating point three; set in subroutine INIT. 

FL4 (GECOM, S 1) 

Floating point four; set in subroutine INIT. 

FL5 (GECOM, S1) 

Floating point five; set in subroutine INIT. 

FL10 (GECOM, S1) 

Floating point ten; set in subroutine !NIT. 

FL100 (GECOM, S1) 

Floating point one hundred; set in subroutine INIT. 

5-14 



ClCINT 111 POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

· FL36 0 (GECOM, S 1) 

Floating point 360; set in subroutine INIT. 

FLGCOM (GECBAS) 

FLGDIR (GECBAS, 82) 

The flag specifying the direction of rotation to use. 

FLM1 (GECOM, 81) 

Floating point minus one; set in subroutine INIT. 

FLZ (GECOM, 81) 

Floating point zero; set in subroutine INIT. 

FLONKL (GECBAS, 82) 

The flag indicating the coolant condition: 

0 = off 

1 = on. 

Set in subroutine COOLNT. 

5-15 





ClCHT 111 POSTPROCESSOR 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

FLONSP (GECBAS, S2) 

The flag indicating the spindle condition:. 

o = off, 

1 = on. 

Normally set in subroutine SPINDL. 

FLRPON (GECBAS, S2) 

The RAPID Mode-on flag: 

0 = off; 

+1 = on, when RAPID is one-shot; 

-1 = on, when RAPID is modal. 

Set in subroutines RAPIDO and RAPIDX •. 

FLSFON (GECBAS, S2) 

... for the computer programmer 

The flag indicating the existence of a SAFETY mode condition: 

0 = off, 

1 = on. 

Set in subroutine SAFETY. 

FRAPID (GECBAS, S2) 

The rapid traverse feedrate in IPM. It normally is negative to 
indicate the existence of a rapid mode, but it is positive when 
a rapid mode does exist but no gear shifting is required. Given 
in option 46. 

5-17 



CICINT Ill POSTPROCESSOR 

5 .1 .1 PARAMETER DEFINITIONS (cont• d) 

FRMAX (GECOM, S1) 

... for the computer programmer 

The feedrate maximum in IPM. Given in option 25 and set in 
subroutine ASSIGN. 

FRMIN (GECOM, S1) 

The f eedrate minimum in IPM. 
subroutine ASSIGN. 

FRMOD (GECBAS, S2) 

The feedrate mode: 

0 = IPM, 

1 = IPR. 

Set in subroutine FEDRAT. 

GDIMUL (GECBAS, S2) 

Given in option 48 and set in 

The dimension multiplier associated with the currently selected 
G code. Given in option 178 and set in subroutines SELG. SELGCR, 
or SELGRO. 

GMFORM(30) (GECOT3) 

The table of register format values for Head 2, given in the 
Machine Subroutine , are analogous to and ordered in a manner 
similar to the REGFOR table. 

GMHBUF ( 4 0) ( GECOT3) 

The storage array of the merged heads (or single head only) when 
being set up as a command block for output by GEOUT3. The order 
is the same as DBFSEG. Head 1 uses GMHBUF (1-20) and Head 2 uses 
GMHBUF (21-40). 

5-18 



C(CHT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

GMVK>RD(20) (GECOT3) 

The BCD table of register codes for Head 2, given in the Machine 
Subroutine, are analogous to and ordered in a manner similar to 
the REGSTR table. 

GRPLOD (GECBAS, S2) 

The gripper which is to be used when loading a tool. 

GRPSLC (GECBAS, S2) 

The gripper which is selected for the next loading of the tool. 

H 1 FLAG ( FXAXCM) 

Head 1 flag which indicates that part of the original Head 1 tape 
record remains to be processed. 

H2FLAG (FXAXCM) 

Head 2 flag which indicates that part of the original Head 2 tape 
record remains to be processed. 

H1X1 (FXAXCM) 

The X value of the beginning point of the Head 1 path. 

H1X2 (FXAXCM) 

The X value of the end point of the Head 1 path. 

H1Y1 (FXAXCM) 

The Y value of the beginning point of the Head 1 path. 

5-19 



ClClNT Ill POSTPROCESSOR 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

H 1Y2 (FXAXCM) 

... for the computer programmer 

The Y value of the end point of the Head 1 path. 

H 1Z1 (FXAXCM) 

The z value of the beginning point of the Head 1 path. 

H 1 Z2 ( FXAXCM) 

The Z value of the end point of the Head 1 path. 

H2X1 (FXAXCM) 

The X value of the beginning point of the Head 2 path. 

H2X2 (FXAXCM) 

The X value of the end point of the Head 2 path. 

H2Y1 (FXAXCM) 

The Y value of the beginning point of the Head 2 path. 

H2Y2 (FXAXCM) 

The Y value of the end point of the Head 2 path. 

H2Z 1 (FXAXCM) 

The z value of the beginning point of the Head 2 path. 

HiZ2 (FXAXCM) 

The z value of the end po~t of the Head 2 path •. 

5-20 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

HEADGB {GECOT3) 

The head flag which indicates the current operative head. 

HEDALL {GECBAS, S2) 

Flag set in subroutine SELALL to designate feed and rapid on all 
axes; 

0 = not set, 

1 = set. 

HSTEP { GECOM) 

The parameter containing the half-step size. Determined by (STEP 
* 0.499999) and set in subroutine ASSIGN. 

IADRET (GECBAS, I2) 

The return flag which indicates the condition of A/D sequence. 

!BLANK {GECOUT) 

The parameter containing blanks. 

ICLDAT (20) (GECBAS, I2) 

The integer array containing the first twenty items of data of a 
CL record. Used primarily for non-floating point references. 

5-21 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

ICIRLN (COMBIN) 

The Circle-Line flag: 

-1 = Head 1 is linear and Head 2 is circular, 

0 = both heads are linear, 

+1 = Head 1 is circular and Head 2 is linear, 

+2 = both heads are circular. 

!CODE (GECBAS) - also (COMBIN) 

The integer equivalent of CODE plus one for Head 1. 

ICYTYP (GECBAS, I2) 

The current cycle environment or type as called for by a CYCLE 
statement: 

0 = cycle OFF 8 = IN, 

1 = FACE, 9 = DRILL, 

2 = BORE, 10 = BORE,MANUAL 

3 = TAP, 11 = BORE, DWELL 

4 = THRU, 12 = BORE, DRAG 

5 = DEEP, 13 = OORE, JJilELL, DRAG 

6 = MILL, 14 = BORE, DWELL, MANUAL 

1 = OUT, 

Set in subroutine CYCLE. 

5-22 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

IDAB(10) (COMBIN) 

The general vector used for flags: 

IDAB(1) Flag used by the SAFETY command when the secondary 
head is removed from the combined cut. 

IDAB(2) Flag used in subroutine GMOUT for Head 1. 

IDAB(3) Flag used in subroutine GMOUT for Head 2. 

IDAB(4 thru 10) (Not presently used). 

IDLINE (GECOUT, I2) 

The parameter used in GEOUT2 which is set up with the ABS or OPR 
line BCD identification title; set up in subroutine GEPR02. 

IDWLFL (GECBAS, I2) 

Dwell flag which is set to 1 when a SPINDL/DWELL is given; set in 
subroutine SPINDL. The flag, when= 1, indicates that DBFSEG(2) 
contains the spindle-dwell G code. 

IFDRNG (GECBAS, 12) 

The number of the current feedrate range. 
subroutine FEDRAT. 

I FIX (FXAXCM) 

Normally set in 

The index which identifies the common axis shared by both heads; 
set in subroutine GMINIT. 

IFIX = 1 for X, 2 for Y, 3 for z. 

5-23 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5. 1 • 1 PARAMETER DEFINITIONS (cont I dt 

.IGEFLG (GECOM, 11) 

A general flag for one-time communication between overlays. In 
communicating between GEMON and GEINIT, the IGEFLG indicates 
whether or not to call in GEPLAD: 

0 = no, 

1 = yes. 

I HD1 (6) (COMBIN) 

The shuffle vector for relocating XYZIJK for Head 1 according to 
options 59 and 60. 

IHD2 (6) (COMBIN) 

The shuffle vector for relocating XYZIJK for Head 2 according to 
options 59 and 60. 

I.HEAD ( GECBAS, I 2) 

The integer equivalent of the HEADGB flag. 

IKLMOD (GECBAS, I2) 

The coolant mode flag set in subroutine COOLNT: 

1 = TAP, 5 = SADDLE, 

2 = MIST, 6 = FRONT, 

3 = FLOOD, 1 = REAR. 

4 = Normal On, 

Set in subroutine ASSIGN. 

5-24 



C(CHT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

INDFR (GECOM, I1) 

The index location of SRTAB where the first feedrate 
stored; see Section 5.6. Set in subroutine ASSIGn. 
174. 

INDIC (GECBAS, I2) 

value is 
see option 

The integer 
Number. 

flag equivalent of CURMAC, the 
• I 

current Machine 

INDPTI (GECBAS, I2) 

Loop index for selecting the XYZIJK values from DATACL. 
subroutine MOTION. 

INDPTS (GECBAS, I2) 

Set in 

Index for selecting points of motion records (Type 5000) from 
CLOATA. Set in subroutine GEBASE. 

INTZ (GECOM, I1) 

Integer zero; set in subroutine INIT. 

INT1 (GECOM, I1) 

Integer one; set in subroutine INIT. 

INT2 (GECOM, I1) 

Integer two; set in subroutine. INIT. 

INT3 (GECOM, I1) 

Integer three; set in subroutine INIT. 

5-25 



ClClNT Ill POSTPROGESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

INT4 (GECOM, 11) 

Integer four; set in subroutine !NIT. 

INT5 ( GECOM, I 1) 

Integer five; set in subroutine INIT. 

INT6 (GECOM, I 1) 

Integer six; set in subroutine INIT. 

INT7 (GECOM, I 1) 

Integer seven; set in subroutine INIT. 

!ORDER (30) (GECOM, I1) 

The vector which directs the postprocessor to reorder the 
elements of a DBFSEG command block in a sequence specified by the 
!ORDER array; see Section 5.6. Set in the Machine Subroutine. 

IPARK1 (FXAXCM) 

The flag to determine if Head 1 has been parked: 

0 = not parked, 

1 = parked. 

IPARK2 (FXAXCM) 

The flag to determine if Head 2 has been parked: 

0 = not parked, 

1 = parked. 

5-26 



G(ClNT 111 POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

!PAGE (GECOUT, 12) 

The flag which designates that the titles have been printed to 
begin a new page: 

0 = print titles, 

1 = do not print titles. 

IPGCTR (GEOUT, 12) 

The page counter and value which is printed for the page number. 

!PITCH (GECBAS, 12) 

The value at which the decimal point changes from 4 to 5. 

!PLANE (GECBAS, I2) 

Flag which indicates the plane of the given circle: 

0 = XY plane; 

1 = zx plane; 

2 = YZ plane. 

Set in subroutine SRFCHK. 

!PRINT (GECOT3) 

The flag which tells GEOUT3 which title to print: 

1 = Incremental, 

2 = Absolute, 

3 = Operator's. 

5-27 



CICINT Ill POSTPRO.CESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

lRETN (GECBAS, 12) 

The integer return flag which gives the condition of the program 
after a record has been read from tape. 

lSAFLG (COMBlN) 

The flag indicating whether or not the secondary head has been 
removed from the combined cut: 

0 = no, 

1 = yes. 

lSAFMD (GECBAS, 12) 

The flag designating the current SAFETY mode: 

0 = OFF, 

1 = FACE, 

2 = TURN, 

3 = BORE, 

Set in subroutine SAFETY. 

ISFMOD (GECBAS, I2) 

The given SFM radius mode set in subroutine SPINDL: 

0 = constant radius 

1 = X axis radius, 

2 = Y axis radius, 

3 = Z axis radius. 

5-28 



CltINT Ill POSTPROCESSOR ... for the computer programmer 

5. 1. 1 PARAMETER DEFINITIONS (cont. d) 

ISHUFL (GECOUT, I2) 

The shuffle flag which indicates whether or not shuffling of 
registers is necessary: 

0 = no shuffling, 

1 = shuffle. 

see option 59. 

ISHVEC ( 6) (GECOUT, I2) 

The shuffle vector which reorders the motion register alphabetic 
assignment according to options 59 and 60. Set in subroutine 
DECODE. Standard order is XYZIJK. 

ISPDRO (GECBAS, I2) 

The row of the spindle speed table SRTAB at which the given 
spindle speed was selected. 

ISPTYP (GECBAS, 12) 

The type of spindle used on the NC machine; it is equal to option 
19 plus 1; set in subroutine ASSIGN. 

ISRNGE- (GECBAS) 

The number of the range in which the current spindle speed lies; 
normally set in subroutine SPINDL. 

IS21 (COMBIN) 

The counter specifying the number of rows for Head 1 to be 
processed in GEMULT. 

IS22 (COMBIN) 

(Not presently used). 
5-29 



CICINT Ill POSTPRO~ESSOR ... for the computer programmer 

5 .1.1 PARAMETER DEFINITIONS (cont Id) 

I S23 (COMBIN} 

The present n value for Head 1 from OP/n. 

IS24 (COMBIN) 

(Not presently used). 

IS31 (COMBIN) 

The counter specifying the number of rows for Head 2 to be 
processed in GEMULT. 

IS32 (COMBIN) 

(Not presently used). 

IS33 (COMBIN} 

The present n value for Head 2 from OP/n. 

IS34 (COMBIN) 

(Not presently used) • 

!TEMP (5) (GECOM, 11) 

Temporary storage for integer values; must be used exclusively 
within a subroutine. 

5-30 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

ITHTYP (GECBAS, I2) 

The thread type flag: 

1 = TURN, 

2 = FACE. 

Set in subroutine THREAD. 

IXSTOR (GECOUT, I2) 

The index location of where to 
register shuffling has been done. 

JAX (FXAXCM) 

store the dwell time after 
Set in subroutine DF,CODE. 

The index which identifies one of the two non-common axes not 
shared by both heads; set in subroutine GMINIT. 

JCODE (COMBIN) 

The integer value of CODE for Head 2. 

KAX ( FXAXCM) 

The index which identifies one of the two non-common axes not 
shared by both heads; set in subroutine GMINIT. 

KEOF ( COMBIN) 

The end-of-file indicator for Heads 1 and 2. 

KTR (GECBAS, I2) 

A general counter in core. Used to give the number of rows 
stored in DBUFER during a circular interpolation sequence; set in 
subroutine QUADEr. 

5-31 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

LSTCOL (GECOUT, I2) 

The· last print column in which data can be printed. 
CALCPn. 

LSTPLN (GECBAS, I2) 

Set in 

The flag indicating the plane in which the last circle lay; see 
parameter !PLANE. 

MAFORK (GECBAS, I2) 

The multiaxis fork which calls for the particular set of 
transforms: 

0 = no transforms called for, 

1 = calls for the inverse transforms, 

2 = calls for the direct transforms. 

MAXES (GECBAS, I2) 

Flag which specified the machine axes according to option 22: 

1 = YZ, 

2 = zx, 

3 = XY, 

4 = XYZ. 

Set in subroutine ASSIGN. 

MCHCON (GECBAS, I2) 

The flag which indicates the particular type of special function 
which must be performed in the Machine Subroutine MACFUN; see 
Section 5.6.1 for the method and list of condition values. 

5-32 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

5.1.1. PARAMETER DEFINITIONS (cont'd) 

MODFLG (GECBAS, 12) 

Flag in subroutine MODE which established the range of the head. 

MODPOS (GECBAS, 12) 

The positioning mode flag: 

0 = OFF, 

1 = FINE, 

2 = NO BACK, 

3 = COARSE, 

4 = CORMIL, 

Set in subroutine POSITN. 

MULTHD (GECOM, 11) 

The flag indicating the existence of a multihead processing mode: 

0 = single head operation, 

1 = multihead operation. 

NAXES ( GECBAS) 

The number of axes considered by the postprocessor: 

= 3 for non-multiaxis, 

= 5 if MULTAX is given. 

Set in subroutine GEBASE. 

5-33 



CICINT Ill POSTPROCESSOR 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

NCOM (GECBAS I I2) 

... for the computer programmer 

The number of component items to select from a motion CL record. 

NCOM = 3 for non-multiaxis to select xyz values, 

= 6 for multiaxis to select xyzijk values. 

Set in subroutine GEBASE. 

NFP (26) (GECOUT, I2) 

The column vector containing the final ~rint positions for each 
register on the nachine. The order is the same as for DABVAL. 
Set in subroutine CACLPn. 

NFP2 (20) (GEC'OT3) 

The column vector containing the final print positions for each 
register on the machine for Head 2. Set in subroutine CALCP3. 

NIP ( 26) (GECOUT) 

The column vector containing the initial print positions for each 
register on the machine. The order is the same as for DABVAL. 
Set in subroutine CALCPn. 

NIP2 (20) (GECOT3) 

The column vector containing the initial print positions for each 
register on the machine for head 2. Set in subroutine CALCP3. 

NIPA (20) (GECOUT) 

The column vector containing the initial print position for each 
register printed in the Absolute format. Set in subroutine 
CALCPn. 

5-34 



ClCl~T 111 POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

NIPA2 (30) (GECOT3) 

The column vector containing the initial print position for each 
register printed in the Absolute format for Head 2. Set in 
subroutine CALCP3. 

NOCHAR ( GECOUT, I2) 

The number of BCD characters in a given command block. 

NOP (GECBAS, I2) 

The n operation value as given by OP/n statement. 
subroutine OPCODE. 

NOPTS (GECBAS, I2) 

Set in 

The number of points (x,y,z) in a CL tape motion record. Set in 
subroutine GOCIRC. 

NOSEG (GECBAS, !2) 

The number of segments required to complete a saddle move. 

NOW (GECOT3) 

The flag which indicates whether or not GEOUT3 should conclude 
the command block with an EOF code: 

0 = conclude with an EOF code, 

1 = do not conclude with an EDF code. 

NPR (26) (GECOUT) 

The column vector containing the number of right decimal places 
for each register on the machine. The order is the same as for 
DABVAL. Set in subroutine CALCPn. 

5-35 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

NPR2 (20) (GECOT3) 

The column vector containing the number of right decimal places 
for each register on the machine for Head 2. Set in subroutine 
CALCP3. 

NPT(26) (GECOUT, I2) 

The column vector containing the total number of digits for each 
register on the machine. The order is the same as for DABVAL. 
Set in subroutine CALCPn. 

NPT2 (20) (GECOT3) 

The column vector containing the total number of digits for each 
register on the machine for Head 2. Set in subroutine CALCP3. 

NPTA (20) (GECOUT, I2) 

The column vector containing the total number of digits for each 
register printed in the Absolute format. Set in subroutine 
CALCPn. 

NPTA2 (20) (GECOT3) 

The column vector containing the total number of digits for each 
register of Head 2 printed in the Absolute format. Set in 
subroutine CALCP3. 

NRNGES (GECBAS, I2) 

The number of spindle speed ranges. Given by option 7 and set in 
subroutine ASSIGN. 

NRORNG (GECBAS, I2) 

The number of rows per each spindle speed range. Given by option 
8 and set in subroutine ASSIGN. 

5-36 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

NWPR (GECBAS, I2) 

The number of words per CL tape record. Set by the tape reading 
subroutine. 

OPRVAL (20) (GECOUT) 

The print vector setup with the Operator Values of the registers; 
ordered the same as DBFSEG. 

OPTAB (250) (GECOM) 

The option table which 
machine. Initialized in 
Machine Subroutine. 

specifies the conditions for the given 
subroutine STDMAC and reset in the 

ORGIN(6) (GECOUT, S2) 

The array containing the current values of X,Y,Z,A,B,C given in 
the ORIGIN statement. Set in subroutines ORIGIN and GEPR03. 

OUTFLG (GECBAS, S2) 

The flag which indicates that the first output has already 
occurred: 

0 = no output yet, 

1 = output occurred. 

0UTX1 ( FXAXCM) 

The absolute value of X for the Head 1 parking position. 

OUTX2 (FXAXCM) 

The absolute value of X for the Head 2 parking position. 

5-37 



ClCHT Ill POSTPROCESSOR 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

OUTY1 (FXAXCM) 

... for the computer programmer 

The absolute value of Y for the Head 1 parking position. 

OUTY2 (FXAXCMO 

The absolute value of Y for the Head 2 parking position. 

OUTZ 1 (FXAXCM) 

The absolute value of z for the Head 1 parking position. 

0 UTZ 2 ( FXAXCM) 

The absolute value of z for the Head 2 parking position. 

OVCVAL (GECBAS, S2) ·~ 

The over center value (n) given in the statement OVRCNT/n. Set 
in subroutine OVRCNT. 

PARTID (GECOM, S1) 

The parameter which contains the first 6 BCD characters of the 
first PARTNO statement. 

PLUSTL (COMBIN) 

The plus tolerance restriction for the secondary head. 

POSMAG (GECBAS, S2) 

The next position of the tool magazine. 

PREVF (GECOUT, S2) 

The previous feedrate canmand. 

5-38 



ClCHT Ill POSTPROCESSOR 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

PREVF1 (GECOT3) 

The previous feedrate command of Head 1. 

PREVF2 ( G ECOT3) 

The previous feedrate command of Head 2. 

PREVG (GECOUT, 52) 

The previous G code. 

PREVG1 (GECOT3) 

The previous G code of Head 1. 

PREVG2 (GECOT3) 

The previous G code of Head 2. 

PREVN (GECBAS, 52) 

The previous sequence number value. 

PREVS (GECBAS, S2) 

The previous spindle speed command. 

PREVTL (GECBAS, 52) 

The previously used tool nwnber. 

PREVS1 (GECOT3) 

... for the computer programmer 

The previous spindle speed conunand of Head 1. 

5-39 



CICINT Ill POSTPROCESSOR 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

PREVS2 (GECOT3) 

... for the computer programmer 

The previous spindle speed conunand of Head 2. 

PREVX (GECOUT, S2) 

The previous value of absolute x. 

PREVY (GECOUT, S2) 

The previous value of absolute Y. 

PREVZ (GECOUT, S2) 

The previous value of absolute z. 

PRIMHD (COMBIN) 

The primary head flag. 

PROGK (GECBAS, S2) 

The progression constant derived from the spindle speed table and 
used in the SFM sequence. 

PT ( GECBAS, S2) 

The current point under consideration during a segmentation 
sequence. 

RADGIV (GECBAS, S2) 

The parameter which contains the given radius r of the circle as 
given in a SELECT/RADIUS, r statement. 

5-40 



Cl&HT Ill POSTPROCESSOR 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

RADLIN (GECBAS, S2) 

... for the computer programmer 

The radius r of the tolerance sphere (or cylinder) given in the 
LINrOL/r statement. Set in subroutine LINTOL. 

RAPFED (GECBAS, S2) 

The flag which indicates whether or not to issue the feedrate 
range gear shifting M codes: 

0 = yes, 

1 = no. 

Set in subroutine TSTFLG. 

RAPFLG (GECBAS, S2) 

The flag which specifies that a RAPID statement has been given: 

0 = not given, 

1 = given. 

Set in subroutines RAPID, RAPIDO, and RAPIDX. 

RAPLOW (GECBAS, S2) 

The flag which indicates that the low range rapid traverse is in 
mode: 

0 = off, 

1 = on. 

set in subroutine RAPIDO. 

5-41 



CltlNT Ill POSTPROCESSOR 

5 .1.1 PARAMETER DEFINITIONS (cont• d) 

RAPRNG (GECBAS, 82) 

The rapid traverse range: 

1 = lowest range, 

2 = highest range. 

Set in subroutine RAPIDO. 

RDPART(75) (GECOUT, S2) 

... for the computer programmer 

The array which contains the readable PARTNO which is punched 
into each new tape reel. 

REELNO (GECOUT, S2) 

The reel number as used during a BREAK sequence. The reel number 
is printed and punched in readable format. 

REFATL (GECBAS, 82) 

The turret distance (parallel to the s~indle) from the turret 
center to the centerline of the tool. Given in a TURRET 
statement and set in subroutine TURRET. These parameters apply 
only to Head 1 during multihead processing. 

REFBTL (GECBAS, S2) 

The turret distance (perpendicular to the spindle) from the 
turret center to the tool tip. Given in a TURRET statement and 
set in subroutine TURRET. These parameters apply only to Head 1 
during multihead processing. 

5-42 



CfCHT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

REFSYS (GECBAS, 82) 

Flag used in subroutine ROTABI in conjunction with a ROTREF 
modifier: 

0 = the rotations are based upon the true 
coordinate system; 

1 = the rotations are based upon the rotated 
reference system. 

REGFOR (20) (GECOM, 81) 

The table of values which specify the decimal format of each 
register on the machine. Ordered the same as DBFSEG. 
Initialized in STDMAC and reset in the Machine Subroutine. 

REGSTR (20) ( GECOM, S1) 

The table of BCD register assignments. Initialized in 
subroutines STDMAC and reset in the Machine Subroutine. Ordered 
the same as DBFSEG. 

RE8ETF (GECBAS, 82) 

The RESET flag which indicates whether or not a RESET mode 
exists: 

0 = no RESET mode, 

1 = RESET mode. 

Set in subroutine RESET. 

RESTCT (COMBIN) 

The type of restriction on the secondary head: 

0 = none, 

1 = RPM, 

2 = SFM. 

5-43 



GIClNT Ill POSTPROCESSOR 

5.1.1 PARAMETER EFINITIONS (cont'd) 

RETURN (GECBAS, S2) 

... for the computer programmer 

The general return flag set by a subroutine which established a 
program condition. 

RFLAG2 (COMBIN) 

The read flag for Head 1 (reads from TAPES2) : 

0 = read next record, 

1 = do not read next record. 

RFLAG3 (COMBIN) 

The read flag for Head 2 (reads from TAPES3): 

0 = read next record, 

1 = do not read next record. 

R HS TEP ( GECOM) 

The rotary half-step size determined by the value of option 119 
* 0.499999; set up in subroutine ASSIGN. 

RMS (GECBAS, 52) 

The parameter used as a rotary departure calculation tolerance; 
it is determined by (ROTMAX - OPTAB(119)). Set in subroutine 
ASSIGN. 

RNGDEP (4) (GECOM, S1) 

The departure limits which are related to the selcetion of the 
proper G codes; see Section 3.4.6. 

. 5-44 



Cltl~T 111 POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

ROTFMN (GECOM, S1) 

The rotary feedrate nu.ru.mum in IPM. Given in RPM in option 113, 
and set up in subroutine ASSIGN. 

ROTFMX (GECOM, S1) 

The rotary feedrate naximum in IPM. Given in RPM in option 114, 
and set up in subroutine ASSIGN. 

RO'IMAX (GECOM, S1) 

The rotary maximum departure in output wiits. Given in degrees 
in option 111, and set up in subroutine ASSIGN. 

ROTRAP (GECOM, S1) 

The rotary rapid traverse maximum feedrate in IPM. Given in RPM 
in option 115, and set up in subroutine ASSIGN. 

ROTUNT (GECOM, S1) 

The unit of rotation for the rotary device as indicated by option 
118. Set in subroutine ASSIGN. 

ROTYPE (GECBAS, S2) 

The type of rotary feedrate. Given in option 141. 

RPOINT (GECBAS, S2) 

The preset rapid point (R). Set in subroutine CYCLE. 

SADSFM (GECBAS, S2) 

The flag indicating that an SFM mode exists on the saddle: 

0 = RPM, 

1 = SFM. 5-45 



ClClNT Ill POSTPROCESSOR 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

SAFHD1 (3) (COMBIN) 

... for the computer programmer 

The direction vector for SAFETY command for Head 1. 

SAFHD1 (3) (COMBIN) 

The direction vector for SAFETY command for Head 2. 

SAFLAG (GECBAS, S2) 

The flag which specifies the existence of a SAFETY mode: 

0 = no, 

1 = yes. 

Set in subroutine SAFETY. 

SAFVEC(80) (FXAXCM) 

The saved vectors of both heads retained in several subroutines. 

SAVEN (GECBA5, 52) 

Parameter which saves the value and condition of the sequence 
number parameter 5EQCTR, as during a 5EQNO/OFF mode. 

5EFATL (GECBAS, 52) 

The turret distance (parallel to the spindle) from the turret 
center to the centerline of the tool. Given in a TURRET 
statement and set in subroutine TURRET. These parameters apply 
only to Head 2 during multihead processing. 

SDIV (GF.cBA5, S2) 

The divider value as used in path segmenting sequences. 

5-46 



C(C(Nl Ill POSTPROCESSOR ... for the computer programmer 

5 .1.1 PARAMETER DEFINITIONS (cont• d) 

SEFBTL (GECBAS, S2) 

The turret distance (perpendicular to the spindle) from the 
turret center to the tool tip. Given in a TURRET statement and 
set in subroutine TURRET. These parameters apply only to Head 2 
during multihead processing. 

SEGFLG (GECBAS, S2) 

The flag which directs GEOUT to print or not to print a line: 

0 = print the line, 

1 = do not print the line. 

Set in subroutine SEGMNT. 

SEQ (GECBAS, S2) 

SEQCTR (GECBAS, S2) 

The current CL tape record number which may be used as a sequence 
number. (see Option 143.) Set in subroutine GEBASE. 

SEQINC (GECBAS, S2) 

The increment by which to increase the value of the sequence 
number. 

SEQLIM (GECBAS, S2) 

The format size limit of the sequence number DBFSEG(1). 
in subroutine ASSIGN. 

SEQNEW (GECOUT, 82) 

Set up 

The new unit increasing sequence number; set in subroutine 
GEPR02. 

5-47 



ClClNT Ill POSTPROCESSOR 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

SEQNH1 (FXAXCM) 

The current sequence number for Head 1. 

S EQNH2 ( FXAXCM) 

The current sequence number for Head 2. 

SEQQLD (GECOUT, S2) 

The old 
SEQNEW. 

unit increasing sequence number 
Set up in subroutine GEPR02. 

SFHD1W(3) (FXAXCM) 

... for the computer programmer 

which was formerly 

The X,Y,Z departures for withdrawing Head 1 from the work while 
Head 2 is being parked. 

SFHD2W(3) (FXAXCM) 

The XYZ departures for withdrawing Head 2 from the work while 
Head 1 is being parked. 

SFHOLD ( 20) (COMBIN) 

The temporary storage of secondary head retraction record when 
the head is removed from the combined cut. 

SFMAXR (GECBAS, S2) 

The allowable value of naximum spindle speed in RPM as given by 
the couplet (MAXRPM,s) in a SPINDL statement. 

5-48 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

SFMCIR (GECBAS, 52) 

The flag which designates the SFM path condition: 

0 = line, 

1 = circle. 

SFMDES (GECBAS, S2) 

The desired value n of SFM·as given in a SPINDL/n, SFM statement. 

SFMFLG (GECBAS, S2) 

The flag which specifies the existence of an SFM mode: 

O = RPM mode, 

1 = SFM mode. 

Set in subroutine SPINDL. 

SFMHD1 (COMBIN) 

The SFM value for Head 1. 

SFMHD2 (COMBIN) 

The SFM value for Head 2. 

SFMLOK (GECBAS, 82) 

The flag which locks the postprocessor into the current spindle 
range. It is established during an SFM mode: 

0 = unlocked, 

1 = locked. 

Set in subroutine SFMO. 

5-49 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

SFMRAD (GECBAS, S2) 

The specified radius to use during an SFM sequence: 

-1 = X axis, 

-2 = Y axis, 

-3 = z axis. 

If value is not negative, it is the given radius value. 
subroutine SPINDL. 

SFMRPM (GECBAS, S2) 

Set in 

The flag which indicates whether an RPM or an SFM mode is called 
for: 

0 = RPM, 

1 = SFM. 

Set in subroutine SPINDL. 

SKPCOD (GECOUT, S2) 

The BCD OPSKIP code used when the OPSKIP is on. 

SKPFLG (GECBAS, S2) 

The flag which indicates whether or not an OPSKIP mode exists: 

0 = no, 

1 = yes. 

Set in subroutine OPSKIP. 

5-50 



CICINT 111 POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

SKPLIN (GECBAS, 82) 

Flag which specifies whether or not to skip linearity testing: . 
O = don't skip, 

1 = skip. 

SLTOLN (GECBAS, 82) 

The length of the selected tool as given in a SELECT/TOOL 
statement; set in subroutine SELTUL. 

SPINON (GECBAS, 82) 

The flag which specifies that a spindle-on M code has been 
selected: 

0 = not selected, 

1 = selected. 

SPNCOM (GECBAS, 82) 

The spindle conunand which is stored into DBFSEG(12). 

SPNDIR (GECBAS, 82) 

The spindle direction flag: 

+1 = CLW, 

-1 = CCLW. 

SPNMAX (GECBAS, 82) 

The maximum spindle speed of the current spindle range. 

5-51 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMET R DEFINITIONS (cont'd) 

SPNMIN (GECBAS, S2) 

The minimum spindle speed of the current spindle range. 

SPNSPD (GECBAS, 52) 

The current spindle speed in RPM. 

S PNREQ (GECBAS, S2) 

Flag which is set in subroutine SPINDL to indicate that a spindle 
speed had been given. 

SRTAB (300) (GECBAS, S1) 

The spindle speed table in RPM. 
Subroutine. 

STATE ( 12) (GECBAS, S2) 

set up in the Machine 

The vector which contains the status of machine conditions at any 
given point in time during a part program run. 

STEP (GECOM, S 1) 

The minimum move of the NC machine linear slides. Given in 
option 14 and set in subroutine ASSIGN. 

STOPON (GECBAS, S2) 

The flag which designates that a stop condition exists: 

0 = no stop, 

1 = stop conditions exists. 

used for the automatic reinstatement sequence. 

5-52 



ClClNT 111 POSTPROCESSOR 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

SYSCON (GECBAS, S2) 

... for the computer programmer 

System of units constant: 12 for English and 1000 for metric 
system. Set up in subroutine ASSIGN. 

TABLEG(120) (GECOM, S1) 

The table of preparatory function G codes. Initialized in 
subroutine STDMAC and reset in the Machine Subroutine. 

TABLEM (200) (GECOM, S1) 

The table of miscellaneous function M codes. Initialized in 
subroutine STDMAC and reset in the Machine Subroutine. 

TAG(9) (GECBAS, S1) 

The array for storing the BCD name of t~e NC machine which is 
printed at the top of each page. Set in Machine Subroutine. See 
Section 5.6. 

TEFATL (GECBAS, S2) 

The turret distance (parallel to the spindle) from the turret 
center to the centerline of the tool. Given in a TURRET 
statement and set in subroutine TURRET. These parameters apply 
only to Head 3 during multihead processing. 

TEFBTL (GECBAS, S2) 

The distance (perpendicular to the spindle) from the turret 
center to the tool tip. Given in a TURRET statement and set in 
subroutine TURRET. These parameters apply only to Head 3 during 
multihead processing. 

TEMPS2 ( 12) (COMBIN) 

Temporary working storage for Head 1. 

5-53 



CICINT Ill POSTPROCESSOR 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

TEMPS3(12) (COMBIN) 

Temporary working storage for Head 2. 

THFLAG (GECBAS, S2) 

... for the computer programmer 

The flag which indicates that a thread had been called for: 

0 = no threading, 

1 = threading. 

THMODE (GECBAS) 

The threading mode which specifies the nature of the given pitch: 

0 = Constant 

+1 = Increasing 

-1 = Decreasing 

Set in subroutine PITCH. 

THLEAD (GECBAS, S2) 

The threading lead. It is the reciprocal of the pitch as given 
by a PITCH statement. Set in subroutine PITCH. 

THRATE (GECBAS, S2) 

The threading feedrate as given in a PITCH statement. Set in 
subroutine PITCH. 

THRDON (GECBAS, S2) 

The thread-on flag which indicates a thread is in mode: 

0 = no thread mode, 

1 = thread mode. 

5-54 



CI&INT 111 POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS {cont'd) 

TIMCUT (GECOM, S2) 

The total cutting time in seconds of the machining operations. 
Set up in subroutine CONTUR. 

TIMDWL (GEOUT, S2) 

The accumulated dwell time in seconds of the machining operation. 

TIME1 (COMBIN) 

The time in minutes to cut the Head 1 segment. 

TIME2 (COMBIN) 

The time in minutes to cut the Head 2 segme~t. 

TLHEAD (GECBAS, S2) 

The head flag designating the condition of the selected head(s): 

0 =Head 1, 

1 = Head 2, 

2 = Head 3, 

-1 = Head 1 and 2, 

-2 = Heads 1 , 2, and 3. 

Set in subroutine SELHED. 

TLEN2 (GECBAS, S2) 

The length of the tool (TLNOFF) which is ready for unloading. 

5-55 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

TLNOFF (GECBAS, S2) 

The combined tool number and tool offset number for the tool 
which is ready for unloading. 

TMAX ( GECOM, S 2) 

The tape reader maximum reading time based upon the largest block 
of possible command data. Given in option 13 and set in 
subroutine ASSIGN. 

TOLCON (GECBAS, S2) 

The tool constant flag which directs the CLASSn subroutine to 
either select or to load the tool constants which are used in the 
transform relations: 

0 = select the constants, 

1 = load the constants for use. 

TOLDLN (GECBAS, S2) 

The length of the tool which is to be loaded into the spindle. 

TOLIN (GECOM, S1) 

The part programmed cutter inner tolerance INTOL. 
subroutine GEBASE for a Type 6000 record. 

TOLLOD (GECBAS, S2) 

Set in 

The number of the tool which is next to be loaded into the 
spindle. 

TOLOUT (GECOM, S1) 

The part programmed cutter outer tolerance OUTTOL. 
subroutine GEBASE for a Type 6000 record. 

5-56 

Set in 



ClCl~T 111 POSTPROCESSOR 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

TOLSLC (GECBAS, S2) 

... for the computer programmer 

The tool number of the selected tool as given by a SELECT/TOOL 
statement. 

TOOL (GECBAS, 82) 

The tool number given in a TOOLNO or SELECT/TOOL statement. Set 
in subroutine TOOLNO or SELTUL •. 

TOOLDN {GECBAS, S2) 

The number of the tool which is in the down position. 

TOOLEN (GECBAS, S2) 

The tool length given in a TOOLNO statement. Set in subroutine 
TOOLNO or SELECT/TOOL. 

TRURAD (GECBAS, S2) 

The true radius of the part circle. 

TSTLIN (GECBAS, S2) 

The flag which indicates whether or not to do linearity testing 
on one-point CL tape records: 

0 = yes, 

1 = no. 

TURNON (GECBAS, 82) 

Flag in subroutine 8PINDL which indicates that a spindle-on M 
code must be made output: . 

0 = no output, 

1 = output. 

5-57 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

5.1.1 PARAMETER DEFINITIONS (cont'd) 

TUROFF (GECBAS, S2) 

The turret offset given in a TURRET statement with the OFSETL 
modifier. Set in subroutine TURRET. 

TURPOS (GECBAS, S2) 

The turret position given in a TURRET statement. 
subroutine TURRET. 

UPFLAG (GECBAS, S2) 

Set in 

The flag which indicates the up or down position of the pen or 
torch: 

0 = up, 

1 = down. 

VALUEM (GECBAS, S2) 

The interim storage parameter for carrying the M code for the 
function just given. 

WELDFL (GECBAS I S2) 

The flag which indicates the condition of the weld mode: 

0 = on, 

1 = off. 

Set in subroutine WELD. 

5-58 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

5.1.2 CUSTOMER COMMON 

The array CUST(5), which is in labelled COMMON GECOMIS1, has been 
set aside for the exclusive use of a customer user of the GECENT 
III postprocessor. The array will never be used by the 
postprocessor maintainers. 

Many installations may wish to make their own in-house 
modifications to the postprocessor, and, hence, may require a 
variable parameter in COMMON for communicating between overlays 
or subroutines. In order to avoid potential conflict with later 
GECENT III developments, the user should use the CUST array for 
all such purposes. subroutine modifications which use the CUST 
array become the responsibility of the user, and he may have to 
update any affected subroutines which are later released by the 
General Electric Company. 

The COST array is set to zero in GEINIT in subroutine INIT. From 
this point on, the postprocessor in no way refers to the CUST 
array a gain. 

5.2 DESCRIPTION OF SUBROUTINES 

In the pages which follow, detailed descriptions of each 
subroutine in the GECENT III postprocessor is given. Each 
subroutine is identified with its calling name and sequence; the 
purpose, method, and restrictions are given in brief but complete 
details. The input and output of each subroutine are identified 
and explained. 

Each subroutine is also identified with the overlay in which it 
occurs; 

for example, FEDRAT 
(GF£BAS) 

This specifies that subroutine FEDRAT is in the GEBASE overlay. 

Since a description of one subroutine does not fully explain a 
programming sequence, e.g., circular interpolation, it is best to 
first read the relevant chapters of Sections 2, 3, and 4 for a 
general understanding, and then to refer to the individual 
subroutine write-up as it occurs in the program flow of the 
particular sequence. After this, a full understanding of the 
postprocessor sequence would be obtained if the subroutine 
listing is consulted for all details. 

5-59 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5.2 DESCRIPTIONS OF SUBROUTINES (cont'd) 

Note that some write-ups have restrictions such as DATA 
statements, APT System COMMON, multiple entries, or machine 
language coding. These are restrictions only in that they may be 
computer dependent but not because of any postprocessor 
requirement; see Section 5.4.1. 

5. 2.1 SUBROUTINES IN EACH OVERLAY 

The subroutines of each major overlay are given under the overlay 
title. Special subroutines unique to a given installation are 
not included. 

Those subroutines marked with an asterisk (*) may be in APT 
Section IV on some computers. Multiple ent:ry subroutines are 
considered to be a separate subroutine. Standard library 
subroutines are not listed. The Machine Function overlay is not 
indicated. The complete subroutine descriptions are given in 
Section 6.0 as they are too voluminous to be included here. 

GEMON 

COMENT 

CONROT SRAREC 

ERDMP1 SRO REC 

INPUT WE FREW 

LENGTH 

GEINIT 

ASSIGN 

DECODE 

GEPRE 

I DP ART 

INIT 

Machine Subroutines 

REDTAP 

STDMAC 

5-60 

.,,,,, 

-



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

"• '-' 5.2.1 SUBROUTINES IN EACH OVERLAY (cont'd) 

GEBASE 

AIR END MACHIN RAPID SELTUL 

AUXFUN ENTRAP MCHFIN RAP I DO SEQNO 

AUXLRY FEDOVR MINMOV RAP I DX SPINDL 

BREAK FE DRAT MOTION RESET SP!'YPE 

CLAMP FLOAT OPCODE RES TAT SRFCHK 

CLRSRF FROM OPSKIP REWIND STOP 

COMB IN FROM3 OPS TOP ROTA BL ST OREM 

COMTAT GEBASE ORIGIN ROTATE TEST1 

COOLNI' GEOM OUTPUT SELA NG TMARK 

CUTCOM GEOM3 PARTNO SELECT TOOLNO 

DELAY GO HOME PICKUP SELHED TRANS 

DSRROW INSERT PLENI'H SELOFS TS TEXT 

DWELL LEADER POSITN SELRAD TSTFLG 

EI ACOM LOAD PPR INT SELRDR TSTLIM 

LOCRNG PRE EUN SELTAB UNLOAD 

PRFSEQ XOFSET 

GETERP 

CHKAX FEDLIM PLNSEL SELG 

CIR INT FVARGO PROCQD SELGCR 

COMPFC GO CI RC QUADET TSTFCM 

COMPR GOLINE QUADNT 

DEPART OFFARC SEGMNT 

DETDIR 

~ DOT 

5-61 



CICHT Ill POSTPROCESSOR 

5.2.1 SUBROUTINES IN EACH OVERLAY (cont'd) 

GEPOS 

CYCLGP 

FTYPE2 

FTYPE4 

FTYPES 

FTYPE6 

POSFED 

POSMOV 

RAP I DP 

RETRCT 

RFTYPE 

ROTA BA 

RO TI ND 

ROTMAG 

GELATH 

COUPLE 

CYCLEL 

PITCH 

SADDLE 

SAFEGL 

SAFEI'O 

SAFETX 

SEGSAD 

5-62 

ROT UR 

ROTYP1 

SET12 

TOOLGP 

SFMO 

THREAD 

THREDO 

TOO LL 

TSTSAF 

TURRET 

TU RS AD 

... for the computer programmer 



'~ 

ClClNT Ill POSTPROCESSOR 

5.2.1 SUBROUTINES IN EACH OVERLAY (cont'd) 

GEMILL 

PITCHM 

ROTABI 

ROTMIN 

ROTMOV 

RO'IOUT 

SAFEGM 

SELGRO 

SELPAL 

TABSPD 

TH EDOM 

GEMAXS 

ARCTAN 

CLASS 

CYCLGX 

FROM5 

GEOM5 

LINRTY 

LINTOL 

NORM 

OVRCNT 

PIVPLN 

THREDM 

TOOLGM 

SAFEGX 

SEGDRC 

TRUNC 

MODE 

... for the computer programmer 

5-63 



ClClNT Ill POSTPROCESSOR 

5.2.1 SUBROUTINES IN EACH OVERLAY (cont'd) 

GEO UT 

CHAR ID 

CONBCD* 

CONTUR 

DOLLAR 

GEOUT1 

CALCP1 

GEPRN1 

GEPR01 

SETUP1 

TITLE1 

GEOUT2 

CALCP2 

GEPRN2 

GEPR02 

TITLE2 

5-64 

GEO UT 

PARNEM* 

PARNOM* 

POSIT 

PP UNCH 

PUN CHA* 

PUNCHB* 

PUNIDN* 

SE TL IN 

SHOLZR 

SHUFFL 

... for the computer programmer 



Cl&HT Ill POSTPROCESSOR 

5.2.1 SUBROUTINES IN EACH OVERLAY (cont'd) 

GEOUT3 

ABSOPR 

CALCP3 

GEPRN3 

GEPR03 

PAGE 

TIMES 

GEOUT4 

TITLE3 

GEOUT4 uses the same subroutines as GEOUT3. 

... for the computer programmer 

5-65 



ClClNT Ill POSTPROCESSOR 

5.2.1 SUBROUTINES IN EACH OVERLAY (cont'd) 

GEMULT 

CIRSEG GMLINE ST OPTS 

COMPGC GMOTIN TEST2 

CONVRT GMO UT TESTM2 

CREAD GMREAD 

CTCHUP FMSTOR 

DRETHD GMWRIT 

FEDM OUTB 

FXMULT PARK 

FXPARK PERR OR 

FXTOL PREP HD 

GOWELL RAPLIM 

GEMISC RAPM 

GEMONT RE'THD 

GEMULT RETRET 

GFDLIM RETSFY 

GMABS SAVMCD 

GMCIRL SEG 

GMFENC SELGCD 

GMINIT SHFTBK 

SPLIT 

5-66 

... for the computer programmer 



ClClNT Ill POSTPROCESSOR 

5.2.1 SUBROUTINES IN EACH OVERLAY (cont'd) 

GEDRAF 

DRAFT 

ROTDRF 

GE WELD 

DRESS 

WELD 

GE SPIN 

GESCOM 

TYPEO TYPE10 

TYPE01 TYPE11 

TYPE02 TYPE12 

TYPE03 TYPE13 

TYPE04 TYPE14 

TYPEOS TYPE15 

TYPE06 TYPE16 

TYPE07 TYPE17 

TYPE08 TYPE18 

TYPE09 TYPE19 

... for the computer progrC'l.mmer 

5-67 



ClCINT Ill POSTPROCESSOR 

5.2.1 SUBROUTINES IN EACH OVERLAY (cont'd) 

GECLAS 

CLASS1 

CLASS2 

CLASS3 

CLASS4 

CLAS SS 

CLASS6 

CLASS? 

CLASS8 

CLASS9 

CLAS10 

CLAS11 

CLAS12 

5-68 

... for the computer programmer 



A<O 

ClClNT 111 POSTPROCESSOR ... for the computer programmer 

5.3 FLOW CHARTS 

The diagrammed flow 
mainly the general 
subroutines. There 
subroutine listing 
conunents. 

charts given in this section illustrate 
flow of the postprocessor and some of its key 
is little need for flow charts since each 
is profusely documented with explanatory 

The flow charts illustrate only the idea of the subject 
subroutine and do not give program details. Details can be 
obtained from the subroutine listing. Flow charts are given only 
for the major functions of the postprocessor, e.g., linear motion 
processing or multihead processing. 

The flow charts use the following defined symbols for operation. 

~ 
\__:0 

A>O 

Subroutine entry point. 

A connector point; a. means to continue the 
flow chart at the point indicated by a.. a. 
is the pickup point. Greek letters are used 
to differentiate from the 'normal test. 

Subroutine exit 

A test condition; in this 
greater than B? Y = yes; N 
routine this symbol normally 
logical IF statement. 

example: is A 
= no. In a sub

refers to a 

Rectangles give program relations and other 
information. 

Fatal error; the number is the value assigned 
to the error; see section 5.7. The subroutine 
ERDMP1 is always called for an error condition. 

A branch condition; the branch 1, 2, or 3 is 
A=C taken, depending on the value of A. In a 

subroutine this symbol refers to an IF state
ment or to a computed GOTO statement. 

5-69 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5.3 FLOW CHARTS (cont'd) 

A subroutine call; the subroutine name and 
flow chart (if any) number is given. In this 
example, the subroutine called is OUTPUT whose 
flow chart number is 8. 

All closed subroutines use the return symbol; open subroutines do 
not. 

Note that vectors are often set equal to one another, and no 
indication is given regarding their dimensions. For example, 
when the flow chart states DPREVP = DPRESP, this means that the 
vectors are made equal, and that DPREVP(1) = DPRESP(1), DPREVP(2) 
= DPRESP(2), and so on. Also, when the flow chart states DBUFER 
= DMBITS, this means the whole DBUFER array is set to DMBITS. 

Number 

1 

Flow Charts 

Description 

APT Section IV Selection of GECENT III 
Post processor 

2 Selection of Postprocesser overlays 

3 Initialization of the Postprocesser 

4 Processing Through the Basic Element 

5 Processing a Motion Record 

6 Processing a Circular Interpolation Move 

7 Processing a Linear Interpolation Move 

8 Outputting a Command Block 

9 Processing a Positioning Move 

10 Test and Correction of Linearity Errors 

11 Selection of Proper GEOUT Conditions 

12 Printing and Punching an output Block 

13 Multihead Processing 

14 Special Machine Functions 

5-70 

Page 

5-71 

5-72 

5-73 

5-74 

5-75 

5-76 

5-77 

5-78 

5-79 

5-80 

5-81 

5-82 

5-84 

5-86 

""""' 

,.., 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

FLOW CHART 1: APT Section IV Selection of GECENT III Post
processor 

Dummv Subroutine 

Monitor Subroutine 

For all computers, DISPAT calls the dummy subroutine GECENT 
which then calls subroutine GEMON, the monitor subroutine 
for the postprocessor. {See Flow Chart 2.) 

5-71 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

FLOW CHART 2: Subroutine GEMON (Overlay GEMON) 

Selection of Postprocessor Overlays 

Process through the 
positioning and 
planning postprocessor 

0 

Initialize the program 

Process through the basic 
element of the postprocessor 

N 

Process through the 
rnultihead sequences 

* NOTE: This chart illustrates the selection sequence for 
all computers except the GE635; the GE635 sub
routine GEMON selects the NC machine type overlay, 
output overlay, and other overlays through the use 
of LLINK. 

5-72 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

FLOW CHART 3: Subroutine INIT (Overlay GEINIT) Initialization 

Initialization of the Postprocessor 

Determine output 
print and punch 
conditions 

*There are many 
more branches 
than shown 

Check MACHIN 
statement for 
the OPTAB 
modifier 

Zero out 
all COMMONS 

Set parameters 
to standard 
values 

Set ICRMAC to 
the MACHIN 
number 

s there an 
OPTAB modi
ier? 

Set up the 
standard machine 

Read in a CL 
tape record 

Is this record a 

Change 
given 
options 

statement? 

Select the machine 
subroutine 

Rewind CL tape 

Set up program 
parameters 

5-73 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

FLO\<J CHART 4: Subroutine GEBASE (Overlay GEBASE) 

Processing Through the Basic Element 

Obtain the 
record type 
index 

Process the 
postprocessor 
statement 

5-74 

Save the 
circle 
data 

Process the 
motion statement 
FROM, GODLTA, or 
GOTO 

Check for 
the end of 
a subtype 6 
continuation 
record 

IND= 
ICLDAT(2) 
/1000 

Set DATACL and 
ICLDAT to zero 

Read a record from 
the CL tape 

Check for a 
multiaxis call 

FINI 
Conclusion 

Save the 
tolerance 
values INTOL 
and OUTTOL 

MULTHD 

Set flag for 
multiaxis: 
MULTAX = l 

0? 
y 

Output a 
FINI block 
(Code=-18) 
for each 
head 

Rewind TAPES2, 
TAPES3, TAPES4 

Output a FINI 
block 
(CODE = 18) 



ClClNT Ill POSTPROCESSOR 

FLOW CHART 5: Subroutine MOTION (Overlay GEBASE) 

Continue in 
the circular 
sequence 

Processing a Motion Record 

CIRSEQ=O? 

y 

IND= 
ICLDAT(3} 

Process the 
FROM point 

Set flag 
for normal 
return 

Process 
the linear 
motion 

RETURN =0 

to the current 
XYZ values 

Process the 
positioning 
move 

Obtain the new 
>oii1--~~~point from the 

CL tape; 
DPRESP=DATACL 
+ DTRANS 

N 

Get next point 

... for the computer programmer 

Obtain the 
record subtype 
index 

Continuation record 

Check the postprocessor 
flags for rapid, SFM, 
SAFETY, and threading 

Test for a contouring 
or positioning machine 

Process the 
circle move 

Normal return; circular 
processing okay if 
RETURN=O. 

5-75 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

FLOW CHART 6: Subroutine GOCIRC (Overlay GETERP) 

Processing a Circular Interpolation Move 

Test for a 
continuation 
record 

N 

Translate the 
circle to the 
origin 

Find the quadrant 
intersection 
points 

Process and 
output the 
quadrant segments 

CIRSEQ=O? 

RETURN<O? 

N 

y CIRSEQ=l 

Make sure the 
circle lies in 
a plane 

y 

GO linear 

CIRSEQ=O 
RETURN=-1 

Determine 
the circle 
direction 

Compute the 
circle 
radius 

y 

Save the point RETURN=O ...... _,. .. as the circle ..._ __ .. 
last point 

.!)-76 



GlClNT Ill POSTPROCESSOR ... for the computer programmer 

FLO'i'V CHART 7: Subroutine GOLINE (Overlay GETERP) Processing 

Processing a LinAar Interpolation Move 

Compute 
the axes 

Check 
for TOLCON>l? 
linearity 
testing 

Let the 
linearity 
sequence 
segment __ t_h_e~__,.._~~ ...... 
path 

RETURN=O? 

segment 

N 

CODE=O 

Test for SFM 

SFMFLG=O? 

y 

from part to 
coordinates 

Establish the 
linear mode 

Set for linear 

SFMCIR=O 

the path into 
departures 

Test for 
threading 

Process the 
move as a 
thread 

DPREVP=DPRESP ........ ~....J 
DPREVM=DPRESM 

RETURN=O 

Same as the 
previous point 

Set the normal return 

Do the SFM 

5-77 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

FLOW CHART 8: Subroutine OUTPUT (Overlay GEBASE) 

outputting a Command Block 

Set up the 
block 
identifying 
code 

DBFSEG ( 15)=: DBFSEG(l)= 
SEQCTR 

Set up the sequence 
number 

Test for 
Ol?SKIP 
code 

Code 

SKPFLG=l? 

Make 
DBFSEG(l) 
ne ative 

Select the posi- DBFSEG( 2 )= 
tioning G-code CURCYG 

N 

CURCYG=O? 

y 

DBFSEG(2)= 
TABLEG ( 1) 

Test for RAPID 

Use rapid 
feedrate 

FRAPID=O? 

y 

DBFSEG ( 11) = 
-FRAP ID 

DBFSEG ( 11) = y 

Get linear 
G-code-
stored in 
DBFSEG(2) 

Determine 
feed limits 
on each axis 

Set up the 
spindle 
command 

5-78 

FED I PM 

DBFSEG ( 12) = 
SPNCOM 

Minor functions 
are performed-
see the sub
routine listing 
for details 

If multihead, 
write off on 
TAPES2, if 
IHEAD=l,other
wise-on TAPES3 

DBFSEG ( 11) = 
FED I PM 

Test for-.--. ..... -----
GEOUT3 -------. 

DPFSEG ( 14) = 
VALUEM 

Set up the M-code 

Set SPNCOM, 
VALUEM, CODE 
and DBFSEG to 
DMBITS 

Use rapid 
feedrate 

DBFSEG ( 11) 
-ROTRAP 

RAPFLG=O 

Get rotary G-code 
--stored in 
DBFSEG(2) 

Output the 
block 



Cl&INT 111 POSTPROCESSOR ... for the computer programmer 

FLOW CHART 9: Subroutine POSMOV (Overlay GEPOS) 

Select the 
CYCLE/OFF 
G-code 

Set code 
for a z 
positioning 
move 

Output the 
z block 

Processins a Positioning Move 

Test for z axis 
inversion 

OPTAB(l40)=0? 

Invert the 
z axis by 
modifying the 
DATACL as 
DATACL=DATACL 
-OPTAB 140 

DBFSEG(2)= 
BITS? 

y 

a G-code 

Test for a cycle mode 

CYCFLG=O? 

y 

DBFSEG (2) 
=TABLEG ( 1) 

Obtain the 
point from 
the CL tape. 
DPRESP=DATAC 

1-----11-.i + DTRAN S 

Get positioning 
G-code 

Set code for a 
positioning xy move 

CODE=l6 

Do not output 
xy or z if 
their value 
did not change 

Output 
in one 
block 

Test for type 
of block output 

Output z in 
a block by 
itself 

CODE=-16 

Output xyz in 
one block 

previous point 

DPREVP=DPRESP 
~---All~DPREVM=DPRESMt----11..-~ 

Test the 
slide limits 

5-79 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

FLOW CHART 10: Subroutine LINRTY (Overlay GEMAXS) 

Test and Correction of Linearity Errors 

Set flag to indicate a 
new segment is being 
processed 

SAVEMP= 
DP RE SM 

SAVEPT= 
DP RESP 

LINFLG==O 

Find the mid
point of the 

1----.. machine path 
HALFMP 

Save the present 
point vectors 

Find the mid
point of the 
part path 
HALFPT 

Output the 
last segment 

Call for Inverse 
Transforms 

Determine 
deviation 
between HALFPT 
and converted MAFORK=l 
part coordi
nate DPRESP 

Save the 
as a potential 
point of seg
mentation 
POTPT=HALFPT 
DPRESP=HALFPT 
LINFLG==l 

MAFORK=2 

Save DPRESM 
as a poten
tial point 
POTMP=DPRESM 

5-80 

y 

Process through the 
Class n subroutine 

Test for a 
linearity error 

N 

Obtain ath last oint 

Call for the 
Direct 
Transforms 

DPRESM=SAVEMP 
DPRESP=SAVEPT 

set signals to 
indicate that 
a segment output 
occurred 

Using DPRESM= 
HALFMP, find 
the corres
ponding part 
coordinates 
DP RESP 

Determine 
tool axis 
deviation 

LINSEG=l 
RtTURN=l 

RETURN=l 

Test to see if 
a linearity segment 
is to be output 

Obtain the point 
of segmentation 

Compute departures 
and output the block 



ClClNT Ill POSTPROCESSOR 

FLOW CHART 11 : 

Save and 
setup the 
first PARTNO 

Punch out readable PARTNO 

OPTAB(l61)=1? 

y 

... for the computer programmer 

Subroutine GEPRE (Overlay GEINIT) 

Selection of Proper GEOUT Conditions 

Initialize 
output 
parameters 

PART=DBFSEG 
BCDIMG=DBFSEG 

HOLLERITH 

Use conditions 
for Head 1 

Use conditions 
for Head 2 

5-81 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

FLOW CHART 12: Subroutine GEPROl (Overlay GEOUT) 

Printing and Punching an Output Block 

Shuff le the motion 
registers to their 
output order 

ICODE=S? 

Set up t~e 
well block 

for output 

Test to see if 
the non-motion 
block requires 
a dwell 

5-82 

non-motion 
block 

BCD I MG= 
BLANKS 

Clear the 

Print the cut 
and dwell 
tiilcs and tape 
footage 
IWAVEN=O 

buffers 

Test for a G-code 
by itself 

N 

Summate the 
dwell times 

Use the option 
dwell time 

DBFSEG ( 11) = 
OPTAB (98) 

FROM point 
begin increment 
accumulation 

Surrmate 
increments for 
Absolute Print 

Suppress 
redundancies 

Compute the 
positioning 
feedrate command 



C(C(~l 111 POSTPROCESSOR ... for the computer programmer 

FLOW CHART 12: Subroutine GEPROl (Overlay (GEOUT) (continued) 

Printing and Punchinq an ·output Block 

Print the title 
headings 

IPAGE=l 

e 
command block 

IPAGE=O? 

N 

for printing ... -----~~~ 

Print the 
command block 

=+3,+7,or±:_9? 

Using the column 
vectors and the 

__ _._..REGFOR table, add 
the letter address 
to BCDIMG 

N 

Insert the BCD 
letter address 
from REGSTR table 

Increase the line 
counter 

CTRLIN= 
CTRLIN+l 

Reinitialize counters 

IPl\GE=O 
CTRLIN=O 

Print cut 
time at 
page 
bottom 

N 

CTRLIN < 
OPTAB(79)? 

5-83 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

FLOW CHART 13: MULTIHEAD PROCESSING 

5-84 

Normal 

Rewind TAPES2, 
TAPES3, and 
TAPES4 

FIRST PASS 

Set up REGSTR Write REGSTR 
and REGFOR for'----• and REGFOR 
Head 2 onto TAPESl 

2 

Dump the 
command block 
onto TAPES2 

Set up REGSTR 
and REG FOR f o 
Head 1 

Dump the 
command block 
onto TAPES3 

In 
Machine 
Subroutine 

In 
Subroutine 
Output 



Cl&lNT 111 POSTPROCESSOR 

FLOW CHART 13 (continued) 

Read a record 
from TAPES2 
for Head 1 

Output the 
command block 

CODE=l7? 

Second Pass 

... for the computer programmer 

Initialize flags 
and parameters 

Read a record 
from TAPES3 
for Head 2 

Are the op 
codes equal? 

N 

Output 
merged 
command 
block 

Merge the 
two command 
blocks 

5-85 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

FLOW CHART 14: Special Machine Functions (MACFUN) 

Test for Set MCHCON 
MAC FUN to "n" 
existence 

5-86 

N 

Normal 
Processing 

y 

Special pro
cessing was 

------~------~----------. completed by 
MAC FUN 

ru:TURN=O 

Set up Machine 
Subroutine 

1 

Call in the 
machine 
subroutine 

Perform the 
Special 
Function 

RETURN=! 

GE CENT 
Subroutine 



~ 

C(CINT 111 POSTPROCESSOR ... for the computer programmer 

5.4 CROSS TRACING OF SUBROUTINES 

In order to give an overall view of the GECENT III postprocessor, 
the following lists of subroutines indicate which subroutines 
call other subroutines, and conversely, which subroutines are 
called by other subroutines. Note that even APT section o 
subroutines are indicated as are the special output subroutines. 

No references are made to Machine Subroutines nor to their 
MACFUNs; all Machine Subroutines are called by subroutine INIT. 

The APT Section o subroutines referred to are BUFFTP, TAPERD, and 
TAPEWT; subroutines of similar purpose but different name on some 
computers apply as well. (For example, the GE635 uses subroutine 
GETNXR, PUTNXR, RENZ, and so on.) 

5. 4. 1 SUBROUTINES CALLING SUBROUTINES 

SUBROUTINE CALLED 

AUXLRY RETRCT 

AUXLRY REWIND 

AUXLRY ROTATE 

AUXLRY SAFEGL 

AUXLRY SAFE GM 

AUXLRY SAFEGX 

AUXLRY SELECT 

AUXLRY SELHED 

AUXLRY SEQNO 

SUXLRY SPINDL 

AUXLRY STOP 

AUXLRY THREAD 

AUXLRY THREDM 

AUXLRY TMARK 

AUXLRY TOOLNO 

AU XL RY TRANS 

5-87 





ClCHT 111 POSTPROCESSOR ... for the computer programmer 

"'-' 5.4.1 SUBROUTINES CALLING SUBROUTINES (cont'd) 

SUBROUTINE CALLED SUBROUTINE CALLED 

AUXLRY TURRET CLASS2 cos 

AU XL RY UNLOAD CIASS2 SIN 

AUXLRY WELD COM ENT GMSTOR 

AUXLRY XOFSET COME NT OUTPUT 

CALCP1 CALCP2 COMENT STOREM 

·cALCP1 SETLIN COMPGC SELGCD 

CALCP2 SETLIN COMPR SQRT 

CA:CP3 SETLIN COM TAT MACSRI' 

CI RI NT QUADE!' CON BCD DUMP 

CIRSEG CONVRT CONTUR EIACOM 

CIRSEG cos CONTUR EVARGO 

~· 
CIRSEG LENGTH CON TUR LENGTH 

CIRSEG SELGCD CONTUR SQRT 

CIRSEG SIN ABSOPR GEPRN3 

CIRSEG SRARE: ABSOPR GMREAD 

CIRSEG ST OPTS ABSOPR PAGE 

CLAMP COM ENT ABSOPR TIMES 

CLAMP DWELL AB SO PR TITLE3 

CLAMP ST OREM ABSOPR WEFRE.W 

CLASS1 ARCTAN AIR ST OREM 

CLASS1 cos ARC TAN ATAN 

CLASS1 NORM ASSIGN CONROT 

CIASS1 SIN AUXFUN OUTPUT 

CLASS1 SQRT AUXFUN STOREM 

"'-" CIASS2 AR CT AN AUXLRY AIR 

5-89 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

5.4.1 SUBROUTINES CALLING SUBROUTINES (cont'd) ..., 
SUBROUTINE CALLED SUBROUTINE CALLED 

AUXLRY AUXFUN AUXLRY OPCODE 

AUXLRY BREAK AUXLRY OPSKIP 

AUXLRY CLAMP AUXLRY OPS TOP 

AUXLRY CLRSRF AUXLRY ORIGIN 

AUXLRY COMBIN AUXLR OVRCNT 

AUXLRY COME NT AUXLRY PART NO 

AUXLRY COOL NT AUXLRY PICKUP 

AUXLRY COUPLE AUXLRY PITCH 

AUXLRY CUTCOM AUXLRY PI TC HM 

AUXLRY CY CL EL AUXLRY PIVPLN 

AUXLRY CYCLGP AUXLRY POSITN 

AUXLRY CYCLGX AUXLRY PPRINT 
.,,,, 

AUXLRY DELAY AUXLRY PPTOL 

AUXLRY DRAFT AUXLRY PREF UN 

AUXLRY DRESS AUXLRY PRFSEQ 

AUXLRY END AUXLRY RAPID 

AU XL RY FEDRAT AUXLRY RESET 

AUXLRY FLAME CONI'UR TS TEXT 

AUXLRY GO HOME COOL NT ST OREM 

AUXLRY INSERT COUPLE COM ENT 

AUXLRY LEADER COUPLE IM ELL 

AUXLRY LOAD COUPLE SPTYPE 

AUXLRY MACHIN COUPLE ST OREM 

AUXLRY MACH TL CREAD GETNXR 

AUXLRY MCHFIN CREAD 

..., 
IOERR 

5-90 



ClCHT 111 POSTPROCESSOR ... for the computer programmer 

"-" .5.4.1 SUBROUTINES CALLING SUBROUTINES {cont'd) 

SUBROUTINE CALLED SUBROUTINE CALLED 

CREAD SAVMCD DRESS STOREM 

CTCHUP GMOUT DR ET HD COMPGC 

CUTCOM OUTPUT DRE'THD FXTOL 

CYCLEL COMENT DRETHD GMO UT 

CYCLEL OUTPUT DRETHD PERR OR 

CYCLEL RAPIDX DRETHD RAPLIM 

CYCLEL STOREM DRETHD SRAREC 

CYCLGP COM ENT DSRROW COM ENT 

CYCLGP FLOAT DUMA CH DIS PAT 

CY CL GP FTYPE2 DWELL OUTPUT 

CYCLGP FTYPE6 EIACOM COM ENT 

""' CYCLGP MACS RT END COMENI' 

CYCLGP OUTPUT END DWELL 

CYCLGP RAP I DP END OUTPUT 

CYCLGP RAP I DX END STOREM 

CYCLGP ST OREM ERDMP1 DISPAT 

CYCLGP TS TEXT ERDMP1 GEDUMP 

CYCLGX COME NT ERDMP1 LLINK 

CYCLGX MACS RT ERDMP1 PDUMP 

CYCLGX RAPIDX FEDLIM CO NV RT 

DECODE ERDMP1 FEDLIM LENGTH 

DELAY COM ENT FEOOVR ST OREM 

DELAY MACS RT ·FEDRAT COME NT 

DELAY OUTPUT FEDRAT DWELL 

~ DELAY STOREM FED RAT FLOAT 

DEPART ROTMOV FEDRAT FTYPE2 

5-91 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.4.1 SUBROUTINES CALLING SUBROUTINES (cont'd) 
..,,,, 

SUBROUTINE CALLED SUBROUTINE CALLED 

FEDRAT FTYPE4 FXPARK DR ET HD 

FE DRAT FTYPE6 FXPARK PARK 

FE DRAT MACS RT FXPARK PERR OR 

FEDRAT RAPID FXPARK RETHD 

FED RAT RAP I DX FXTOL SQRT 

FED RAT STOREM GEBASE AUXLRY 

FEDRAT TSTEXT GEBASE COM ENT 

FROM FROM3 GEBASE ERDMP1 

FROM FROM5 GEBASE INPUT 

FROM OUTPUT GEBASE IO ERR 

FROM PLNSEL GEBASE MOTION 

FROM SRARF.C GEBASE OUTPUT 
..,,,, 

FROM STOREM GEBASE REWZ 

FROM3 GEOM GEBASE SRFCHK 

FROM5 ERDMP1 GEBASE STORFM 

FROM5 GEOM GEBASE TAPE OP 

FROM5 LENGTH GECPFC SQRT 

FROM5 MACS RT GED UMP FLOAT 

FTYPE2 COMENr GEMON DIS PAT 

FUNLNK ERDMP1 GEMON FUNLNK 

FXMULT FXPARK GEMON GFAD 

FXMULT FXTOL GEMON GEBASE 

FXMULT GMOUT GEMON GEM ULT 

FXMULT PERR OR GEM ON GEPLAD 

FXMULT SEG GEMON !NIT 'wl 

FXMULT SRAREI: 
5-92 



CiCiNT Ill POSTPROCESSOR ... for the computer programmer 

"-" 5.4.1 SUBROUTINES CALLING SUBROUTINES (cont'd) 

SUBROUTINE CALLED SUBROUTINE CALLED 

GEMON LLINK 'GEPRE CALCP2 

GEMONT GEOUT GEPRE CALCP3 

GEMULT COMENI' GEPRE DECODE 

GEMULT CREAD GEPRE ID PART 

GEM ULT FXMULT GE PRE PARNEM 

GEMULT FXPARK GEPRE PARNOM 

GEMULT GMCIRL GEPRE PPUNCH 

GF.MULT GMFEte GEPRE PUNIIN 

GEMULT GMINIT GEPR01 CONT UR 

GEMULT GMLINE GEPR01 ERDMP1 

GEMULT GMOUT GEPR01 GEPRN1 

GEMULT PERR OR GEPR01 OCMNT1 

GEMULT RETREI' GEPR01 POSIT 

GEOM GEOM3 GEPR01 PPUNCH 

GEOM GEOM5 GEPR01 SE TL IN 

GEOM TSTLIM GEPR01 SETUP1 

GEOM3 SRAREC GEPR01 SHUFFL 

GEOM5 CLASS GEPR01 SRAR:OC 

GEOM5 TRUNC GEPR01 SRORF.c 

GEO UT GEPRE GEPR01 TITLE1 

GEO UT GEPR01 GEPR02 CO NB CD 

GEO UT GEPR02 GEPR02 CONROT 

GEO UT GEPR03 GEPR02 CONT UR 

GEO UT LL INK GEPR02 GEPRN2 
._,. 

GEPRE CALCP1 GEPR02 OCMNT1 

5-93 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

5.4.1 SUBROUTINES CALLING SUBROUTINES (cont 1 d) .,., 
SUBROUTINE CALLED SUBROUTINE CALLED 

GEPR02 ORIGIN GETSFC OUTPUl' 

GEPR02 POSIT GETSFC SRAREC 

GEPR02 PPUNCH SEI'SFO GECPFC 

GEPR02 SETLIN GMABS PD UMP 

GEPR02 SHUFFL GMCIRL ATAN2 

GEPR02 SRARF.c GMCIRL GD WELL 

GEPR02 SRO REC GMCIRL GMO UT 

GEPR02 TITLE2 GMCIRL RETSFY 

GEPR03 ABSOPR GMCIRL SPLIT 

GEPR03 CONBCD GMCIRL SQRT 

GEPR03 CONT UR GMCIRL TESTM2 

GEPR03 GEPRN1 GMFENC EXIT 
,..,,, 

GEPR03 GEPRN3 GMFENC GMSTOR 

GEPR03 GMWRIT GMFENC IO ERR 

GEPR03 OCMNT1 GMFENC TAPEOP 

GEPR03 PAGE GMFENO DI SPAT 

GEPR03 POSIT GMINIT BUFFTP 

GEPR03 PPUNCH GMINIT IO ERR 

GEPR03 SETLIN GMINIT PERR OR 

GEPR03 SHUFFL GMINIT REWZ 

GEPR03 SQRT GMLINE GOWELL 

GEPR03 SRARF.c GMLINE GMO UT 

GEPR03 SRO REC GMLINE RETSFY 

GEPR03 TIMES GMLINE SPLIT 

GETSFC CONVRI' GMLINE SQRT 
..,,,, 

GMLINE TESTM2 
5-94 



GlClNT Ill POSTPROCESSOR ... for the computer programmer 

~ 5.4.1 SUBROUTINES CALLIN; SUBROUTINES (cont'd) 

SUBROUTINE CALLED SUBROUTINE CAL.LED 

GMOTIN EIACOM GOHOME DEPART 

GMO TIN SQRT GO HOME OUTPUT 

GMO UT ATAN2 GO HOME SEGMNT 

GMO UT GFDLIM GOLINE DEPART 

GMO UT GMABS GOLINE GEOM 

GMO UT GMOTIN GOLINE LINRTY 

GMO UT GMSTOR GOLINE OUTPUT 

GMOUT PERR OR GOLINE SEGMNI' 

GMO UT PREPHD GOLINE SFMO 

GMO UT SQRT GO LINE THEDOM 

GMOUTO GEM I SC I DP ART CHAR ID 

'-' GMREAD GETNXR IDPART DOLLAR 

GMSTOR ERDMP1 I DP ART ERDMP1 

GMSTOR GEMONT IDPART PUNCHB 

GMSTOR GMREAD INIT ASSIGN 

GMSTOR LLINK INIT ERDMP1 

GMSTOR WE FREW INIT INPUT 

GMWRIT ERDMP1 INIT REDTAP 

GMWRIT TAPEWI' INIT STDMAC 

GO CI RC CHKAX INPUT TAPERD 

GOCIRC CI RI NT LEADER OUTPUT 

GOCIRC COME NT LEADER STORFM 

GOCIRC COMPR LENGTH SQRT 

GOCIRC DETDIR LINRTY ATAN 

'-"' GOCIRC PLNSEL LINRTY CLASS 

GOCIRC PROCQD 
5-95 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.4.1 SUBROUTINES CALLING SUBROUTINES (cont 1 d) 
.,,,,, 

SUBROUTINE CALLED SUBROUTINE CALLED 

LINRTY COMENr OPSKIP STOREM 

LINRTY DEPART ORIGIN OUTPUT 

LINRTY DOT OUTB GMO UT 

LINRTY ERDMP1 OUTPUT ERDMP1 

LINRTY OFF ARC OUTPUT FEDLIM 

LINRTY OUTPUT OUTPUT GEO UT 

LINRTY SEGDRC OUTPUT IO ERR 

LINRTY SQRT OUTPUT PUTNXR 

LINRTY TRUNC OUTPUT SELGRO 

LOAD CLASS OUTPUT SELG1 

LOAD GO HOME OUTPUT TSTEXT 

LOAD MACS RT .PARK COME NT 
..,., 

LOAD OUTPUT PARK OOMPGC 

MOTION COMENI' PARK FXTOL 

MOTION ERDMP1 PARK GMO UT 

MOTION FROM PARK PERR OR 

MOTION GOCIRC PARK RAPLIM 

MOTION GOLINE PARK SHFTBK 

MOTION POSMOV PARNOM WTREC 

MOTION TSTFLG PERR OR GMFENC 

NORM LENGTH .PERROR PDUMP 

OFFARC COME NT PICKUP OUTPUT 

OFF ARC SRAROC . PICKUP STOREM 

OPCODE COM ENT PLENTH SQRT 

OPCODE OUTPUT PLNSEL OUI1PUT -
POSFED EIACOM 

5-96 



GICINT 111 POSTPROCESSOR ... for the computer programmer 

5.4.1 SUBROUTINES CALLING SUBROUTINES (cont'd) 

SUBROUTINE CALLED SUBROUTINE CALLED 

PO SF ED FTYPE2 PROCQD OFFARC 

POSFED FTYPE4 PROCQD OUTPUT 

POSFED FrYPES PROCQD SEGDRC 

PO SF ED FTYPE6 PROCQD SFMO 

POSFED TSTEXT PROCQD SQRT 

POSIT CONROT PUN CHA KARKNr 

POSIT POSFED PU NC HA TSTCNT 

POSIT RFTYPE PUN CHA WT REC 

POSITN OUTPUT PUNCHB CARDPN 

POSMOV COM ENT QUAD ET QUAD NT 

POSMOV MACSRI' RAPID DWELL 

'--' POSMOV OUTPUI' RAPID MACS RT 

POSMOV SET12 RAPID PLEN'Il:I 

POSMOV STOREM RAPID ST OREM 

POSMOV TS TL IM RAPID TEST1 

PPUNCH PUN CHA RAPIDP OUTPUT 

PP UNCH PUNCHB RAPIDP RAPIOO 

PREP HD GMSTOR RAPIDP RAP I DX 

PRFSEQ COM ENT RAPIDP SEr12 

PRFSEQ OUTPUT RAPLIM FEDM 

PROCQD ATAN RAPLIM RAPM 

PROCQD DEPART RAPLIM SRAREC 

PROCQD DOT RAPLIM TEST2 

PROCQD ERDMP1 . RAPM CTCHUP 

PROCQD GEOM RAPM OUTB 

RAPM PERR OR 
5-97 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

5.4.1 SUBROUTINES CALLING SUBROUTINES (cont'd) 
..., 

SUBROUTINE CALLED SUBROUTINE CALLED 

REDTAP BUFFTP ROTA BI GOLINE 

REDTAP TAPEOP ROTABI ROT OUT 

REDTAP WEFREW ROTA BL FLOAT 

REMAIN OUTPUT ROTABL ROTABA 

RES TAT DWELL ROTA BL ROTABI 

REST AT STOREM ROTABL ST OR FM 

RETHD COMPGC ROTABL TABS PD 

RETHD GMO UT ROTATE COME NT 
~ 

RETHD RA PL IM ROTATE ROTABI.. 

RETRCT OUTPUT ROTATE ROTDRF 

RETRCT RAPIOO ROTATE ROTIND 

RETRET GMOUT ~OTATE ROTMAG 
..,, 

REWIND COMENI' ROTATE ROTORC 

REWIND DWELL ROTATE ROT UR 

.REWIND OUTPUT ROTDRF COMENI' 

REWIND ST OREM ROTDRF OUTPUT 

RFTYPE ROTYP1 ROTH ED CLASS 

ROTA BA CONROT ROTH ED COM ENT 

ROTABA OUTPur ROTHED CONRor 

ROTABA RFTYPE ROTH ED FLOAT 

ROTABA SET12 ROTH ED GOLINE 

ROTA BA SRO REC ROTH ED REMAIN· 

ROTABA ST OREM ROTH ED ROT MIN 

ROTABI CLASS ROTHED ROTMOV 

ROTABI COM ENT ROTHED ROT OUT """ ROTA BI CONROI' ROTIND STOREM 
5-98 



Cl&HT Ill POSTPROCESSOR ... for the computer programmer 

5.4.1 SUBROUTINES CALLIN:; SUBROUTINES (cont'd) 

SUBROUTINE CALLED SUBROUTINE CALLED 

ROTMAG MINMOV SEGMNT SEGDRC 

ROT MAG OUTPt11' SEGMNT SFMO 

ROT MAG STOREM SEGMNT SRAREI: 

ROTMOV ST OREM SEGMNT SROROC 

ROTOUT OUTPUT SEGMENT TH EDOM 

ROI'OUT SRO REC SEGSAD SRAROC 

RO TUR STORFM SELECT FEDOVR 

SADDLE COMENI' SELECT SELANG 

SADDLE DWELL SELECT SELHED 

SADDLE OUTPUT SELECT SELOFS 

SADDLE SEGSAD SELECT SELPAL 

~ SADDLE SFMO SELECT SELRDR 

SADDLE SRAREC SELECT SELTAB 

SADDLE ST OREM SELGCD CONVRI' 

SAFEGL OUTPUI' SELGCD PERR OR 

SAFEGL ST OREM SELGCD SQRT 

SAFEGM OUTPUT SELGCR ERDMP1 

SEG COMPGC SELGCO ERDMP1 

SEG SRAREC SELGRO SRO REC 

SEGDRC AR CT AN SELG ERDMP1 

SEGDRC DOT SELG SELGCR 

SEGDRC NORM SELG SELGRO 

SEGDRC SIN SELG SRAREC 

SEGO RC SQRT SELHED OUTPUT 

SEGMNT MAXSRI' SELHED SADDLE 

SEGMNI' OUTPt1r 
5-99 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.4.1 SUBROUTINES CALLING SUBROUTINES (cont 1 d) ·Vttlfl 

SUBROUTINE CALLED SUBROUTINES CALLED 

SELHED STOREM SPINDL DWELL 

SELOFS OUTPUT SPINDL ERDMP1 

SELPAL STOREM SPINDL FLOAT 

SELRDR ST OREM SPINDL FTYPE2 

SELTAB OUTPUT SPINDL FTYPE4 

SELTUL CLASS SPINDL FTYPE6 

SELTUL COMENr SPINDL LOCRNG 

SELTUL OUTPur SPINDL MACSRI' 

SELTUL TOO LOO SPINDL OUTPUT 

SETUP1 CO NB CD SPINDL SPTYPE 

SETUP1 SETLIN SPINDL STOREM 

SFMO COMENI' SPINDL TS TEXT 
,..,,, 

SFMO DEPART SPLIT CIRS:EX; 

SFMO DSRROW SPLIT SELGCD 

SFMO OFFARC SPLIT SRAREC 

SFMO OUTPUT SP TYPE DSRRGl 

SFMO SPTYPE SPTYPE LOCRID 

SFMO SQRT SPTYPE MACS RT 

SFMO TRUNC SPTYPE SPNTYP 

SFMO TSTEXT SRFCHK SRAREC 

SFMO TSTSAF STOP COME NT 

SHFTBK CTCHUP STOP ENTRAP 

SHFTBK FEDM STOP OUTPUT 

SHFTBK RAPM STOP STOREM 

SPINDL COME NT STOP TS PERR OR -
STOREM OUTPtJr 

5-100 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

5.4.1 SUBROUTINES CALLING SUBROUTINES (cont'd) 

SUBROUTINE CALLED SUBROUTINE CALLED 

TESTM2 COM ENT TRUNC SRAREC 

TESTM2 SQRT TRUNC SRO REC 

THREAD COME NT TSTFLG RAPIOO 

THREAD MACS RT TSTFLG RAPIDX 

THREAD SQRT TSTFLG REST AT 

THREDM COMENT TSTFLG SAFETO 

THREDM MACS RT TSTFLG SAFETX 

THREDM STOREM TSTLIM COMENr 

TITLE2 GEPRN2 TSTLIM MACS RT 

TITLE3 GEPRN1 TS TS AF COMENr 

TMARK1 PPUNCH TSTSAF TSTEXT 

TOOLGM DWELL TURRET COMENI' 

TOOLGM OUTPUT TURRET COMTAT 

TOOLGM STOREM TURRET DWELL 

TOOLGP OUTPUT TURRET ERDMP1 

TOO LL OOELL TURRET MINMOV 

TOO LL OUTPUT TURRET OUTPUT 

TOO LL STOREM TURRET SRAREx::: 

TOOLNO COME NT TURRET ST OREM 

TOOL NO MACS RT TURRET TUR SAD 

TOOL NO MINMOV TURSAD DWELL 

TOOL NO STOREM TYPE01 EIACOM 

TOOL NO TOOLGM TYPE02 DWELL 

TOOLNO TOOL GP TYPE02 GE SC CM 

""" TOOLNO TOO LL TYPE03 COM ENT 

TYPE03 DSRRGl 
5-101 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.4.1 SUBROUTINES CALLING SUBROUTINES 
.,,,, 

SUBROUTINE CALLED SUBROUTINE CALLED 

TYPE03 DWELL TYPE13 STOREM 

TYPE03 ST OREM TYPE14 GESCOM 

TYPE04 COME NT TYPE14 ST OREM 

TYPE04 DWELL UNLOAD COMENT 

TYPE04 EIACavl UNLOAD MACS RT 

TYPE04 STOREM UNLOAD OUTPUT 

TYPEOS EIACCM UNLOAD ST OREM 

TYPE10 COME NT WEFREW BUFFTP 

TYPE10 DWELL WEFREW ERDMP1 

TYPE10 EI AC CM WE FREW TAPEOP 

TYPE10 STORa.1 WE FREW TAPEOP 

TYPE12 DWELL WELD COME NT 
.,,, 

TYPE13 COME NT WELD STOREM 

TYPE13 DWELL XOFSET OUTPur 

TYPE13 EI AC CM 

5-102 



Cl&HT Ill POSTPROCESSOR ... for the computer programmer 

'-' 5.4.2 SUBROUTINES CALLED BY SUBROUTINES 

SUBROUTINE CALLED BY SUBROUTINE CALLED BY 

ABSOPR GEPR03 BUFFTP GEBASE 

AIR AU XL RY BUFFTP GEFENC 

ARC TAN CLASS1 BUFFTP GMINIT 

ARCTAN CLASS2 BUFFTP REDTAP 

ARCTAN CLASS3 CALCP1 GEPRE 

AR CT AN CLASS4 CALCP2 CALCP1 

ARC TAN CLASS6 CALCP3 GEPRE 

ARC TAN CLASS? CARDPN PUNCHB 

ARCTAN CLAS SS CHAR ID ID PART 

ARCTAN CLASS9 CHKAX GOCIRC 

AR CT AN CLAS10 CIR INT GOCIRC 
......, 

ARCTAN CLAS11 CIRSEG SPLIT 

ARCTAN CLAS12 CLAMP AUXLRY 

ARCTAN · SEGO RC CLASS GEOM5 

ASSIGN INIT CLASS LINRTY 

ATAN2 GMCIRL CLASS LOAD 

ATAN2 GMO UT CLASS RorABI 

ATAN AR CT AN CLASS ROTH ED 

ATAN LINRTY CLASS SELTUL 

ATAN PROCQD CL RS RF AUXLRY 

AUXFUN AUXLRY COMB IN AUXLRY 

AUXLRY GEBASE COMPFC TSTFCM 

BREAK AUXLRY COME NT AUXLRY 

BUFFTP WEFREH COMENT CLAMP 

'-" COMENT COUPLE 

5-103 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

5.4.2 SUBROUTINE CALLED BY SUBROUTINES (cont'd) ..-
SUBROUTINE CALLED BY SUBROUTINE CALLED BY 

COME NT CYCLEL COME NT SELTUL 

COM ENT CYCLGP COM ENT SFMO 

COME NT CYCLGX COME NT SPINDL 

COME NT DELAY COME NT STOP 

COME NT DSRRCW COMENT TESTM2 

COME NT EIACOM COME NT THREAD 

COME NT EIACOM COME NT THREDM 

COME NT END COMENT TOOLNO 

COME NT FEDRAT COMENT TSTLIM 

COME NT FTYPE2 COME NT TSTSAF 

COM ENT GEBASE COME NT TURREI' 

COM ENT GEMULT COM ENT TYPE03 ..-
COME NT GOCIRC COMENT TYPE04 

COME NT LINRTY COME NT TYPE10 

COME NT MOTION COMENT TYPE13 

COME NT OFF ARC COMENT UNLOAD 

COM ENT OPCODE COM ENT WELD 

COM ENT PARK COMPGC DR ET HD 

COME NT POSMOV COMPGC PARK 

COM ENT PRFSEQ COMPGC RETHD 

COME NT REWIND COMPGC SEG 

COME NT ROTA BI COM PR GOCIRC 

COME NT ROTATE COMTAT TURRET 

COME NT ROTDRF CONBCD GEPR02 

COME NT ROTH ED CONBCD GEPR03 -.rl 

COMENT SADDLE 
5-104 



CftfNT Ill POSTPROCESSOR ... for the computer programmer 

'-' 5.4.2 SUBROUTINE CALLED BY SUBROUTINES (cont'd} 

SUBROUTINE CALLED BY SUBROUTINE CALLED BY 

CON BCD . SETUP1 cos CLAS11 

CON ROT ASSIGN cos CLAS12 

CONROT GEPR02 COUPLE AU XL RY 

CONROT POSIT CR FAD GE MU LT 

CONROT ROTA BA CTCHUP SHFTBK 

CONROT ROTA BI CTCHUP RAPM 

CONT UR ROTH ED CUTCOM AUXLRY 

CON TUR GEPR01 CYCLEL AUXLRY 

CONT UR GEPR02 CYCLGP AUXLRY 

CONT UR GEPR03 CYCLGX AUXLRY 

CONTUR GEPR05 DECODE GEPRE 

C'ONVRT CIRSEXi DELAY AUXLRY 

CONVRT FED LIM DEPART GO HOME 

CONVRT GETSFC DEPART GOLINE 

CONVRT SELGCD DEPART LINRTY 

COOLNT AUXLRY DEPART PROCQD 

cos CIRS:&i DEPART SFMO 

cos CLASS1 DEI'DIR GOCIRC 

cos CLASS2 DISPAT GMFENC 

cos CLASS3 DI SPAT ERDMP1 

cos CLASS4 DISPAT GE MON 

cos CLASS6 DOLLAR ID PART 

cos CLASS7 DOT LINRTY 

cos CLAS SB DOT PROCQD 

cos CLASS9 DOT SEGDRC 

cos CLAS10 
5-105 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

5.4.2 SUBROUTINE CALLED BY SUBROUTINES {cont'd} 
,.,.,, 

SUBROUTINE CALLED BY SUBROUTINE CALLED BY 

DRAFT AUXLRY EIACOM CONTUR 

DRESS AUXLRY EIACOM GMOTIN 

DRETHD FXPARK EI ACOM POSFED 

DSRROW SFMO EIACOM TYPE01 

DSRROW SP TYPE EI ACOM TYPE04 

DSRROW TYPE03 EI ACOM TYPE05 

DWELL CLAMP EIACOM TYPE10 

DWELL COUPLE EIACOM TYPE13 

DWELL END ERDMP1 SPINDL 

DWELL FEDRAT ERDMP1 TURRET 

DWELL RAPID EXIT GMFENC 

DWELL REST AT FEDLIM OUTPUT 
,.,.,, 

DWELL REWIND FEDM RAPLIM 

DWELL SADDLE FEDM SHFTBK 

DWELL SPINDL FEOOVR SELECT 

DWELL TOOLGM FEDRAT AUXLRY 

DWELL TOO LL FLAME AU XL RY 

DWELL TURRET FLOAT CYCLGP 

DWELL TURSAD FLOAT FEDRAT 

DWELL TYPE02 FLOAT GE DUMP 

DWELL TYPE03 FLOAT ROTABL 

DWELL TYPE04 FLOAT ROTHED 

DWELL TYPE10 FLOAT SPINDL 

DWELL TYPE12 FROM3 FROM 

DWELL TYPE13 FROM5 FROM 
..,., 

5-106 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

5.4. SUBROUTINE CALLED BY SUBROUTINES (cont'd) 

SUBROUTINE CALLED BY SUBROUTINE CALLEO BY 

FROM MOTION GEMISC GMOU'IO 

FTYPE2 CYCLGP GEM ONT GMSTOR 

FTYPE2 FED RAT GEMULT GEMON 

FTYPE2 POSFED GEOM3 GEOM 

FTYPE2 SPINDL GEO MS GEOM 

FTYPE4 FE DRAT GEOM FROM3 

FTYPE4 POSFED GEOM FROM5 

FTYPE4 SPINDL GEOM GOLINE 

FTYPE5 PO SF ED GEOM PROCQD 

FTYPE6 CY CL GP GEO UT GEMONI' 

FTYPE6 FEDRAT GEO UT OUTPUT 

FTYPE6 POSFED GEPLAD GEMON 

FTYPE6 SPINDL GEPRE GEO UT 

FVARGO CONT UR GEPRN1 GEPR01 

FXMULT GEMULT GEPRN1 GEPR03 

FXPARK FXMULT GEPRN1 TITLE3 

FXPARK GEM ULT GEPRN2 GEPR02 

FXTOL DR ET HD GEPRN2 TITLE2 

FXTOL FXMULT GEPRN3 ABSOPR 

FXTOL PARK GEPRN3 GEPR03 

GOWELL GMCIRL 

GD WELL GMLINE GEPRO 1 GEO UT 

GEAD GEMON GEPR02 GEO UT 

GEBASE GEMON GEPR03 GIDUT 

'-" GED UMP ERDMP1 

5-107 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.4.2 SUBROUTINE CALLED BY SUBROUTINES (cont'd) 
..,, 

SUBROUTINE CALLED BY SUBROUTINE CALLED BY 

GESCOM TYPE02 GMWRIT GEPR03 

GESCOM TYPE14 GOCIRC MOTION 

GFDLIM GMO UT GO HOME AUXLRY 

GMABS GMO UT GO HOME LOAD 

GMCIRL GEMULT GOLINE MOTION 

GMFENC GEMULT GOLINE ROTA BI 

GMFENC PERR OR GOLINE ROTHED 

GMINIT GEMULT ID PART GEPRE 

GMLINE GEMULT !NIT GEMON 

GMOTION GMOUT INPUT GEBASE 

GMO UT CTCHUP INPUT INIT 

GMO UT DR ET HD INSERT AU XL RY 
...,, 

GMO UT FXMULT IO ERR CREAD 

GMO UT GEMULT IO ERR GEBASE 

GMO UT GMCIRL IO ERR GMFEN:: 

GMO UT GMLINE IO ERR GMINIT 

GMO UT OUTB IO ERR OUTPUT 

GMO UT PARK LEADER AU XL RY 

GMO UT RETHD LENGTH CIRSFG 

GMO UT RETREr LENGTH CONT UR 

GMREAD ABSOPR LENGTH FED LIM 

GMREAD GMSTOR LENGTH FRO MS 

GMSTOR GMFENC LENGTH NORM 

GMSTOR GM OUT LINRTY GOLINE 

GMSTOR PREP HD LINTOL AUXLRY 
·'ffll 

5-108 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

""' 5.4.2 SUBROUTINE CALLED BY SUBROUTINES (cont 1 d) 

SUBROUTINE CALLED BY SUBROUTINE CALLED BY 

LOAD AUXLRY OUTPUT DWELL 

LOCRNG SPINDL OUTPUT END 

LOCRNG SPTYPE OUTPUT FROM 

MCHFIN AU XL RY OUTPUT GEBASE 

MINMOV ROT MAG OUTPUT GO HOME 

MINMOV TOOL NO OUTPUT GOLINE 

MINMOV TURRET OUTPUT LEADER 

MODE AUXLRY OUTPUT LINRTY 

MOTION GEBASE OUTPUT LOAD 

NORM CLASS1 OUTPUT OPCODE 

NORM SEGDRC OUTPUT ORIGIN 

OFF ARC LINRTY OUTPUT PICKUP 

OFF ARC PROCQD OUTPUT PLNSEL 

OFFARC· SFMO OUTPUT POSITN 

OPCODE AUXLRY OUTPUT POSMOV 

OPS KIP AU XL RY OUTPUT PRFSEQ 

OPS TOP AUXLRY OUTPUT PROCQD 

ORIGIN AUXLRY OUTPUT RAP I DP 

ORIGIN GEPR02 OUTPUT REMAIN 

OUTB RAPM OUTPUT RETRCT 

OUTPUT AUXFUN OUTPUT REWIND 

OUTPUT CUTCOM OUTPUT ROTA~ 

OUTPUT CYCLEL OUTPUT ROTDRF 

OUTPUT CYCLGP OUTPUT ROT MAG 

OUTPUT DELAY 

5-109 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.4.2 SUBROUTINE CALLED BY SUBROUTINES (cont'd) 
..,,, 

SUBROUTINE CALLED BY SUBROUTINE CALLED BY 

OUTPUT ROTOUT PART NO AU XL RY 

OUTPUT SADDLE PDUMP ERDMP1 

OUTPUT SAFEGL PD UMP GMABS 

OUTPUT SAFE GM PD UMP PERR OR 

OUTPUT SEGMNT PERR OR DREI'HD 

OUTPUT SELHED PERR OR FXMULT 

OUTPUT SELOFS PERR OR FXPARK 

OUTPUT SELTAB PERR OR GE MU LT 

OUTPUT SELTUL PERROR GMINIT 

OUTPUT SFMQ PERR OR GMO UT 

OUTPUT SPINDL PERR OR PARK 

OUTPUT STOP PERR OR RAPM ..,/ 

OUTPUT STORFM PERR OR SELGCD 

OUTPUT TOOLGM PERR OR STOP TS 

OUTPUT TOOLGP PICKUP AU XL RY 

OUTPUT TOO LL PITCH AUXLRY 

OUTPUT TURREr PITCHM AUXLRY 

OUTPUT UNLOAD PIVPLN AU XL RY 

OUTPUT XOFSET PLENTH RAPID 

OVRCNT AU XL RY PLNSEL FROM. 

PAGE ABSOPR PLNSEL GOCIRC 

PAGE GEPR03 POSFED POSIT 

PARK FXPARK POSIT GEPR01 

PARNEM GEPRE POSIT GEPR02 

PARNOM GEPRE POSIT GEPR03 
.,., 

POSITN AUXLRY 
5-110 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

5.4.2 SUBROUTINE CALLED BY SUBROUTINES (cont'd) 

SUBROUTINE CALLED BY SUBROUTINE CALLED BY 

POSMOV MOTION RAP I DX CYCLGP 

PPRINT AUXLRY RAP I DX CYCLGX 

PPUNCH GEPRE RAPIDX FED RAT 

PPUNCH GEPR01 RAPIDX RAP I DP 

PPUNCH GEPR02 RAP I DX TSTFffi 

PPUNCH GEPR03 RAP LIM DRETHD 

PP UNCH GE PROS RAPLIM PARK 

PPUNCH TMARK1 RAP LIM RE'THD 

PREFUN AUXLRY RAPM RA PL IM 

PREP HD GMOUT RAPM SHFTBK 

PRFSEQ AUXLRY REDTAP INIT 

~ PROCQD GOCIRC RESET AU XL RY 

PUN CHA PPUNCH REST AT TSTFffi 

PUNCHB ID PART RETHD FXPARK 

PUNCHB PPUNCH RETRCT AUXLRY 

PUNIDN GEPRE RETRET GEMULT 

QUAD ET CIRINI' RETSFY GMLINE 

QUADNT QUAD ET REWIND AUXLRY 

RAPID AUXLRY RFTYPE POSIT 

RAPID FEDRAT RFTYPE RGI'ABA 

RAP I DO RAPIDP ROTA BA ROTA BL 

RAPIDO RE'TRCT ROTABI ROTABL 

RAP I DO TSTFLG ROTA BL ROI'ATE 

RAP I DP CYCLGP ROTATE AUXLRY 

"' RAPIDX CYCLEL ROI'DRF ROTATE 

5-111 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

5.4.2 SUBROUTINE CALLED BY SUBROUTINES (cont• d) -
SUBROUTINE CALLED BY SUBROUTINE CALLED BY 

ROTIND ROTATE SELECT AUXLRY 

ROT MAG ROTATE SELG OUTPUT 

ROTMIN ROTHED SELGCD CIRSEG 

ROTMOV DEPARr SELGCD COMPGC 

ROTMOV ROTHED SELGCD SPLIT 

ROTORC ROTATE SELGCR SELG 

ROTOUT ROTABI SELGRO OUTPUT 

RO TOUT ROTH ED SELGRO SELG 

ROTUR ROTATE SELHED AU XL RY 

ROTYPE1 RFTYPE SELHED SELECT 

SADDLE SELHED SELOFS SELECT 

SAFEGL AUXLRY SELPAL SELECT 
.,,,., 

SAFEGM AUXLRY SELRAD SELECT 

SAFEGX AUXLRY SELRDR SELECT 

SAFETO TSTFLG SELTAB SELECT 

SAFETX TSTFLG SELTUL SELECT 

SAVMCD CREAD SEQ NO AUXLRY 

SEG FXMULT SET12 POSMOV 

SEGDRC LINRTY SET12 RAP I DP 

SEGDRC PROCQD SET12 ROTABA. 

SEGDRC SEGMNr SETLIN CALCP1 

SEGMNT GOHOME SETLIN CALCP2 

SEGMNT GO LINE SETLIN CALCP3 

SEGSAD SADDLE SETLIN CALCP5 

SELANG SELECT SETLIN GEPR01 
..., 

5-112 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

5.4.2 SUBROUTINE CALLED BY SUBROUTINES (cont'd) 

SUBROUTINE CALLED BY SUBROUTINE CALLED BY 

SETLIN GEPR02 SIN CLAS11 

SETLIN GEPR03 SIN CLAS 12 

SIN SEGDRC 

SETLIN SE'TUP1 SPINDL AUXLRY 

SETUP1 GEPR01 SPLIT GMCIRL 

SFMO GOLINE SPLIT GMLINE 

SFMO PROCQD SPNTYP SPTYPE 

SFMO SADDLE SPTYPE COUPLE 

SFMO SEGMNI' SPTYPE SFMO 

SHFTBK PARK SP TYPE SPINDL 

SHOLZR PPUNCH SQRT CLASS1 

SHUFFL GEPR01 SQRT COMPR 

SHUFFL GEPR02 SQRT CONTUR 

SHUFFL GEPR03 SQRT FXTOL 

SQRT COMPFC 

SIN CIRSEG SQRT GEPR03 

SIN CLASS1 SQRT GMCIRL 

SIN CLASS2 SQRT GMLINE 

SIN CLASS3 SQRT GMOTIN 

SIN CLASS4 SQRT GMO UT 

SIN CLASS6 SQRT LENGTH 

SIN CLASS7 SQRT LENGTH 

SIN CLASS8 SQRT LINRTY 

SIN CLASS9 SQRT PLENTH 

'-' SIN CLAS10 SQRT PROCQD 

5-113 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.4.2 SUBROUTINE CALLED BY SUBROUTINES (cont 1 d) 

"""' SUBROUTINE CALLED BY SUBROUTINE CALLED BY 

SQRT SEGDRC SRAREC TRUNC 

SQRT SELGCD SRAREC TURRET 

SQRT SFMC SRFCHK GEBASE 

_SQRT TF.STM2 SRO REC GEPR01 

SQRT THREAD SROREC GEPR02 

SRAREC CIRSEG SRO REC GEPR03 

SRAREC DRE'THD 

SRAREC FROM SRO REC ROTABA. 

SRAREC FXMULT SROREC ROTOUT 

SRAREC GEOM3 SROREC SEGMNI' 

SRAREC GEPR01 SRO REC SELGRD 

SPAR EC GEPR02 SRO REC TRUNC """' SPAR EC GEPR03 STDMAC INIT 

STOP AUXLRY 

SRAREC TSTFQ.1 STOPTS CIRS:ffi 

SRAREC OFFARC STOREM AIR 

SRAREC RAPLIM STOREM AUXFUN 

SRAREC SADDLE STOREM CLAMP 

SRAREC SEG STOREM COME NT 

SRAREC SEGMNr STOREM COOLNI' 

SRAREC SEGSAD STOREM COUPLE 

SRAREC SELG1 STOREM CYCLEL 

SRAREC SPLIT STOREM CYCLGP 

SRAREC SRFCHK STOREM DELAY 

STOREM DRESS .-
5-114 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

5.4.2 SUBROUTINE CALLED BY SUBROUTINES (cont 1 d) 

SUBROUTINE CALLED BY SUBROUTINE CALLED BY 

STOREM END STOREM THREI:M 

STOREM FEOOVR STOREM TOOLGM 

STOREM FE DRAT STOREM TOO LL 

STOREM FROM STOREM TOOL NO 

STOREM GEBASE STOREM TURRET 

STOREM LEADER STOREM TYPE03 

STOREM OPSKIP STOREM TYPE04 

STOREM PICKUP STOREM TYPE10 

STOREM POSMO\T ST OREM TYPE13 

STOREM RAPID STOREM TYPE14 

ST OREM REST AT STOREM UNLOAD ,..,. 
STOREM REWIND STOREM WELD 

STOREM ROTA BA TABSPD ROTABL 

STOREM ROTA BL TAPERD CREAD 

STOREM ROT IND TAPERD GMREAD 

STOREM ROTMAG TAPERD INPUT 

STOREM ROTMOV' TAPEWT GMWRIT 

ST OREM RO TUR TAPEWT GMWRIT 

STOREM SADDLE TAPEWT OUTPUT 

STOREM SAFEGL TEST1 RAPID 

STOREM SELHED TEST2 RAPLIM 

STOREM SELPAL TESTM2 GMCIRL 

STOREM SELRDR TESTM2 GMLINE 

ST OREM SPINDL THEDOM GOLINE 

'-"' STOREM STOP TH EDOM SEGMNT 

THREAD AUXLRY 

5-115 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5.4.2 SUBROUTINE CALLED BY SUBROUTINES (cont'd) 

SUBROUTINE CALLED BY SUBROUTINE CALLED BY 

THREDM AUXLRY TSTEXT TSTSAF 

TIMES ABSOPR TSTFCM SELG 

TIMES GEPR03 TSTFLG MOTION 

TITLE1 GEPR01 TSTLIM GEOM 

TITLE2 GEPR02 TSTLIM POSMOV 

TITLE3 ABSOPR TSTSAF SFfte 

TURRET AUXLRY 

TMARK AUXLRY TUR SAD TURREI' 

TOOL GM TOOL NO UNLOAD AUXLRY 

TOOLGP TOOL NO WEFREW ABSOPR 

TOO LL TOOL NO WEFREW GMSTOR 

TOOLNO AUXLRY WE FREW REDTAP 
,.,, 

TOOL NO SELTUL WELD AUXLRY 

TRANS AUXLRY XOFSET AUXLRY 

TRUNC GEOM5 

TRUNC LINRTY 

TRUNC SFMO 

TSTEXT CONT UR 

TSTEXT CYCLGP 

TSTEXT FEDRAT 

TSTEXT OUTPUT 

TS TEXT POSFED 

TSTEXT SFMO 

TSTEXT SPINDL 

5-116 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.4.3 COMPUTER DEPENDENI' SUBROUTINES 

The following list of subroutines have one or more restrictions 
which can make them computer dependent. These restrictions are 
defined as: 

(1) Requires APT System COMMON (ASC) 

(2) Uses DATA statements (DS) 

(3) Has multiple entries (ME) 

(4) Programmed in Machine Language (ML) 

(5) Uses APT Section 0 subroutines (SOS) 

(6) The Subroutine is based upon the computer word 
structure (WS) 

(7) The subroutine is very large at the source level (VL) 

(8) The subroutine may require an overlay call (OC) 

Any one or more of these restrictions may exist on a given 
computer, thereby requiring a modification to the subroutine to 
make it compatible to the computer. 

The subroutines are listed by overlay grouping. The conunon 
multiple entry subroutines are given together. 

GEMON 

CONROT (DS) 

ERDMP1 (ASC, OC) 

INPUT (ABC,DS,SOS) 

GEMON (DS ,OC) 

GEINIT 

DECODE (DS) 

GEPRE (DS,OC) 

IDPART (DS) 

SRAREC (ME-SROREC) 

SROREC (ME-SROREC) 

WEFREW (ASC, SOS) 

!NIT (DS,ASC,OC) 

REDTAP (ASC,SOS) 

STDMAC (DS) 

5-117 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

5.4.3 COMPUTER DEPENDENT SUBROUTINES (cont'd) 

GEBASE 

BREAK (ME-OPSTOP,STOP) 

END (ME-RESET) 

ENTRAP (ME-RAPID,RAPIDO,RAPIDX) 

FEDRAT (VL) 

FLOAT (WS) 

GEBASE (ASC) 

INSERT (ME-PARTNO,PPRINT) 

LEADER (ME-PREFUN,TMARK) 

MACHIN {ASC) 

OPSTOP (ME-BREAK, STOP) 

OUTPUT (ASC) 

PARTNO (ME-INSERT,PPRINT) 

POSITN (OS) 

PPRINT (ME-INSERT,PARTNO) 

PREFUN (ME-LEADER,TMARK) 

RAPID (ME-ENTRAP,RAPIDO,RAPIDX) 

RAPIDO (ME-ENTRAP, RAPID, RAPIDX) 

RAPIDX (ME-ENTRAP, RAPID, RAPIOO) 

RESET (ME- END) 

SELHED (DS) 

SPINDL (DS, VL) 

STOP (ME-BREAK,OPSTOP) 

TMARK (ME-LEADER, PREFUN) 

TOOLNO (OS) 

TSTLIM (DS,ASC) 

5-118 



C(Cl~T 111 POSTPROCESSOR ... for the computer programmer 

5.4.3 COMPUTER DEPENDENT SUBROUTINES (cont'd) 

GE TERP 

COMPR (DS) 

DETDIR (OS) 

QUADE!' (OS) 

GEPOS 

SE'I'12 (DS) 

TOOLGP (OS) 

SAFEGL (ME-SAFETO,SAGETX) 

SAFETO (ME-SAFEGL,SAFETX) 

SAFETX (ME-SAFEGL, SAFETO) 

SFMO (DS, VL) 

THREAD (ME-THREDO) 

THREDO (ME-THREAD) 

TOOL {DS) 

TURRET (OS) 

GE MILL 

ROTABI (OS, VL) 

ROTMOV (OS) 

ROTOUT (DS) 

GEMAXS 

ARCTAN (OS) 

OVRCNT (DS) 

SELGRO (OS) 

TABSPD (OS) 

TOOLGM (OS) 

SAFEGX (DS) 

5-119 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

5.4.3 COMPUTER DEPENDENT SUBROUTINES (cont'd) 

GE OUT 

CHARID {ML) 

*CONBCD {ML) 

DOLLAR {ML) 

GEOUT (DS,OC) 

*PARNEM (ML) 

*PARNOM {ML) 

* PUNCHA (ML) 

*PUNCHB {ML) 

*PUNIPN (ML) 

SETLIN (ML) 

SHOLZR {ML) 

*These subroutines may be in APT Section IV on some computers. 

GEOUT1 

CALCP1 (DS) SETUP1 (OS) 

GEPRN1 {ASC) TITLE1 {ASC) 

GEPR01 (DS,ASC, VL) 

GEOUT2 

CALCP2 (DS) GEPR02 (DS ,ASC, VL) 

GEPRN2 (ASC) TITLE2 (ASC) 

GEOUT3 

ABSOPR (ASC) GEPR03 (DS,ASC, VL) 

CALCP3 (DS) PAGE (ASC) 

GEPRN3 (ASC) TIMES (ASC) 

GEPRN3 (DS,ASC, VL) TITLE3 {ASC) 

GEOUT4 

GEOUT4 uses the sane subroutines as GEOUT3. 

5-120 



CltlNT 111 POSTPROCESSOR ... for the computer programmer 

'-"" 5.4.3 COMPUTER DEPENDENT SUBROUTINES (cont'd) 

GEMULT 

CREAD (ASC,SOS) 

DRETHD (ASC) 

FEDM (ME-RAPM) 

FXPARK (ASC) 

GEMULT (ASC, VL) 

GMFENC (ASC, SOS) 

GMINIT (ASC,SOS) 

GMOUT {VL) 

GESPIN 

TYPE03 {DS) 

TYPE04 (DS) 
~ 

TYPE09 (DS) 

OTHER 

GED UMP (DS,ASC,SOS) 

FUNLNK (DS,OC) 

GMREAD (ASC,SOS) 

GMSTOR (ASC,SOS,OC,DS) 

GMWRIT (ASC,SOS) 

PARK (ASC) 

PERROR (ASC,SOS) 

PREPHD (DS) 

RAPM (ME-FEDM) 

TYPE10 (OS) 

TYPE13 (DS) 

TYPE14 (OS) 

5-121 





Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

5.5 INFORMATION BLOCKS 

For non-multihead NC machines, the GECENT III postprocessor reads 
a record from the CL ta{e, processes it, and then outputs it, all 
in one pass. However, multihead NC machines which operate in a 
combined mode at execution require a two-pass system: the first 
pass to process the CL tape, and the second pass to merge the 
generated command blocks; see Section 3.4.8. 

Since many postprocessor functions must be performed in the 
second pass, it is essential to pass along to the second pass 
those items of information which, though not to be output, are 
essential to the execution of the postprocessor function. For 
example, when a multihead circular interpolation conunand block is 
set up, the postprocessor must know the radius of the circle and 
angle of subtended arc. These are immediately available in the 
one-pass system since all these data concurrently reside in core. 
But this is not true for the second-pass system. 

Therefore, the postprocessor must pass this necessary information 
to the second pass in a block preceding the functional data, so 
that the needed information is stored into core to become 
available when the postprocessor function is executed. Hence, in 
the above example, when in the second pass the postprocessor 
prepares to set up a new segment of the circle path (as may occur 
during a merge sequence), or to compute the feedrate command, the 
postprocessor will have the circle radius and angle of arc 
available since these data would have been obtained from the 
command block immediately preceding the circle move. 

several types of Information Blocks may be required by the second 
pass, and these are defined below. An Information Command Block 
is identified by a CODE = -9, and the type of Information Block 
is identified by the numeric value of DBFSEG(2). 

The Information Blocks are generated in the first-pass 
subroutines; the second-pass subroutine GEMULT interrogates each 
block CODE, and on a CODE = -9, sets up the appropriate COMMON 
parameters with the data from the Information Block. These data 
remain in memory until changed by data from another Information 
Block. 

5-123 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.5 INFORMATION BLOCKS (cont'd) 

Information Blocks (CODE = -9) 

DBFSEG ( 2) = 1 

This gives the tool correction 6T which makes the summation of 
the Z-axis motion increments correct for the Absolute Print. 6T 
is stored at DBFSEG(3). 

DBFSEG(2) = 2 

The programmed values of the ORIGIN statement ORIGIN/X,Y,Z,A,B,C 
are stored in DBFSEG (3 thru 8), respectively. These ORIGIN 
values are used in producing the Operator Printout. 

DBFSEG (3) = 3 

The data given in a SEQNO statement are stored beginning in 
DBFSEG(3) and continuing as needed. 

DBFSEG(2) = 4 

This block carries either the first or the last cut vector of a 
circle; it is used in GEAD for determining ¢ , the angle of 
deflection. DBFSEG(3,4,5) carry X,Y,Z respectively. 

DBFSEG(2) = 5 

This block gives the increment of X to add to the summation of 
increments for producing the Absolute Printout when the tool 
relocates because of a multiaxis head change. The 6X value is 
stored in DBFSEG(3). 

DBFSEG(2) = 6 

(Presently unassigned.) 

DBFSEG(2) = 7 

This block gives the corrective increments 6X and 6Y which result 
when a turret indexes to a new tool and the TURRET statement uses 
the NEXT modifier. These corrective increments must be added to 
the incremental summation for the Absolute Print. DBFSEG(3) = 
6X and DBFSEG(4) = 6Y. Note: The corrective increments 6X and 
6Y are shuffled according to the specifications of option 59. 

5-124 



Cl&l~T 111 POSTPROCESSOR ... for the computer programmer 

5.5 INFORMATION BLOCKS (cont'd) 

DBFSEG(2) = 8 

This block is used for a CUTCOM condition which changes the 
f eedrate command maximum when cutter compensation is in mode. 
DBFSEG(3) contains the feedrate command maximum, and DBFSEG(4) 
contains the rapid traverse command maximum. 

DBFSEG(2) = 9 

(Presently unassigned.) 

DBFSEG (2) = 10 

The data required for multiaxis circular interpolation are stored 
in this information block. 

DBFSEG(3) = part radius of circle 

DBFSEG(4) = angle of subtended arc. 

5-125 





Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

5.6 THE MACHINE SUBROUTINE 

The generality of the GECENT postprocessor is based on the 
concept that most NC machines have features common to one 
another, but when there are differences, these differences can be 
collected into a table which represents the machine's 
characteristics. If this collection of differences were compiled 
for all machines, it would be possible to completely specify any 
given NC machine simply by selecting those items from the table 
which were characteristic for that particular machine. 

The GECENT postprocessor capitalizes on the collective table 
concept, but in a restrictive sense, in that only those NC 
machine differences which occur in the greatest number are 
included in the table. Incorporating a complete table would not 
be practical because some differences are unique for one machine, 
while some differences apply in varying degrees to other 
machines. In this way the majority of NC machines are 
represented. 

The table of NC machine differences can be further grouped into 
other smaller groups whose members all share some common feature. 
Examples of the differerx::e groupings are: (1) items related as 
preparatory functions; (2) miscellaneous functions; and (3) the 
formats for output of machine codes. Other groupings are 
possible but these three are essential for every NC machine. 

For the user's convenience, the GECENT postprocessor considers 
item 3, the output format, as two tables, viz., the word format 
table and the word address table. 

Almost every NC machine has its own set of spindle speeds, and 
these must be made available to the postprocessor. The 
postprocessor optimizes storage by using the same table for both 
speeds and feeds for those NC machines which require a discrete 
set of feedrates. 

The remainder of the najor machine differences are collected in 
a table called OPTAB. All the different groups in the GECENT 
postprocessor are compiled in the following tables: 

(1) Preparatory functions (TABLEG) 

(2) Miscellaneous functions (TABLEM) 

(3) Register addresses (REGSTR) 

(4) Register format descriptions (REGFOR) 

(5) Spindle speed table (SRTAB) 

(6) The remainder of major machine differences (OPTAB) 

5-127 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.6 THE MACHINE SUBROUTINE (cont'd) 

Actually, OPTAB is a table of options, representing the collected 
machine differences, each of which can be made a value according 
to some optional choice. These choices may be requirements 
stipulated by the part programmer or computer progranuner. An 
example of an option is: Should the postprocessor automatically 
insert dwells for spindle range changes? Further details 
concerning table usage are discussed in the paragraphs below. 

The GECENT postprocessor extends the generalized concept a bit 
further by combining all the above-mentioned tables into a 
representation of a theoretical NC machine, called the Standard 
Machine. This machine has characteristics that frequently occur 
in most machines; it is an "average" machine. The post processor 
is developed around the framework of the Standard Machine; all 
functions, operations, and procedures conform to the Standard 
Machine requirements. 

To use the postprocessor for any given NC machine requires only 
the specification of the nachine•s characteristics, i.e., 
establish tables TABLF.G, TABLEM, REGSTR, REGFOR, SRTAB, and 
OPTAB. Most characteristics are already present as a result of 
the Standard Machine setup, and the only alterations necessary 
are those which convert the tables to the needs of the given NC 
machine. The altering may entail merely deleting a function, 
adding a function, or changing a function. If the given machine 
is non-standard, sequences may be .added to the Machine Subroutine 
to handle any specialized functions. These procedures are 
described in Section 5.6.1. 

If a NC machine has the same characteristics as the Standard 
Machine, the postprocessor can be used without alteration, but 
whenever changes are required, the changes themselves represent 
a new machine, viz., the given NC machine. The required 
alterations to the Standard Machine normally occur in one 
computer subroutine; every different NC machine will have its own 
subroutine for postprocessor representation. These subroutines 
may vary in size depending upon the amount of deviation from EIA
AIA and NAS standards or from the Standard Machine, but in 
general, most subroutines are very small. 

5-128 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

5.6 THE MACHINE SUBROUTINE (cont'd) 

The subroutine which represents the particular NC machine is 
called the Machine Subroutine, and it is named according to the 
predetermined numeric value assigned to the NC machine. 
Generally speaking, if the NC machine is given the identification 
number nm, then the Machine Subroutine MACHnm is selected for 
GECENT III usage when the postprocessor encounters the statement 

MACHIN/GECENT,nm. 

The value of run can be from 01 to 99 depending upon the user's 
choice and capability of the postprocessor. Subroutine INIT in 
GEINIT selects the Machine Subroutine through a computed GOTO 
branch; therefore, the value of nm must be compatible with the 
number of branches. Before assigning run, the computer programmer 
must first check to see if an nm branch is available; if not, he 
will have to add the branch. 

In writing a Machine Subroutine, each of the above-mentioned six 
tables must be consulted and altered as needed to represent the 
NC machine. These alterations can be additions, deletions, or 
changes to the tables. Each of the tables is described according 
to their use and function; each location of the table has a 
prescribed assignment and purpose which is unique and invariable. 
The indicated value assigned to a location constitutes a 
representation of the Standard Machine. An unassigned value is 
indicated by the use of the parameter DMBITS. In all cases for 
TABLEG and TABLEM, the presence of DMBITS at a table location 
means that that function is not available for the NC machine 
under consideration. 

The next five sections define and describe in detail the five 
major tables that must be considered in every Machine Subroutine. 
The technique for programming such a subroutine is described in 
Section 5.6.6. 

5-129 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5. 6 .1 TABLE OF PREPARATORY FUNCTIONS (TABLEG) 

The table TABLEG is an ordered listing of preparatory functions 
and their corresponding G codes. Each location of the table is 
reserved for a particular function, e.g., location 2 in the table 
is res~ved for the G code which represents the preparatory 
function for straight-line interpolation; location 4 is for the 
preparatory function for counterclockwise circular interpolation, 
and so on. Actually, the location assignments are · quite 
arbitrary; the only important factor is that once a table 
location is assigned, it must never be reassigned or its location 
redefined. Thus, as long as it is understood that location 4 of 
TABLEG is the place where the counterclockwise circular 
interpolation G code is assigned, it will not matter what code 
number is stored there. Hence, if machine A uses a G03 for 
counterclockwise circular interpolation, then machine A's TABLEG 
will have a 3 stored at location 4; if machine Buses a G58 for 
the same function, its TABLEG will have a 58 stored at location 
4. The postprocessor uses whatever code number is stored at 
location 4 whenever a counterclockwise circular interpolation is 
processed. This same technique is used for all the other 
locations of TABLEG, viz., the table location defines the 
preparatory function, but the number assigned to that location is 
the operational G code for that function. 

Most NC machines do not have all the preparatory functions· 
possible. Hence, in order to indicate to the postprocessor that 
certain functions are not available, a code number is assigned to 
the location of those functions. This code number, called 
DMBITS, is the octal number, -40404040.0. 

TABLEG consists of 120 locations. It is important to note that 
not all preparatory functions are considered by the 
postprocessor. Only those functions which are indicated in the 
TABLEG chart are the ones presently considered by the GECENT 
program. The preparatory functions which are used by the 
Standard Machine are indicated by their G code number assignment. 
Thus, for clockwise circular interpolation, the Standard Machine 
assigns the number 2 to location 3 of TABLEG. The Standard 
Machine does not use the threading feature, so DMBITS is assigned 
to the threading preparatory functions. Note, however, that 
threading is considered by the postprocessor and is available for 
those machines which can use it. 

When setting up TABLEG for a given NC machine, assign that 
machine's G code nwnbers to the appropriate preparatory· function 
in TABLEG. If certain preparatory functions are not available on 
the given NC machine but are given for the Standard Machine, 
assign those functions as DMBITS. 

5-130 



C(tl~T 111 POSTPROCESSOR ... for the computer programmer 

5.6.1 TABLE OF PREPARATORY FUNCTIONS (TABLEG) (cont'd) 

TAB LEG ( 12 0) 

Preparatory Functions 

Standard· 
Location Value Function 

1 DMBITS Positioning Cycle Off 

2 01 Linear Interpolation (Range 0-9.9999 in.) 

3 02 Circular Interpolation - Arc CLW 
(Radius 0-9.9999 inches) 

4 03 Circular Interpolation - Arc CCLW 
(Radius 0-9.9999 inches) 

(NOTE: · Location 3, 4, 21,22, 23, 31, 32 and 34 assumes the direction 
by looking at the machine from above.) 

5 04 

6 DMBITS 

7 DMBITS 

8 DMBITS 

9 DMBITS 

10 DMBITS 

11 DMBITS 

12 DMBITS 

13 DMBITS 

Dwell 

Linear Interpolation (Range 0-.00999) 

Circular Interpolation - Arc CLW 
(Radius 0-. 0 0999) 

Circular Interpolation - Arc CCLW 
(Radius o-.00999) 

Circular or linear interpolation for one 
head (UW) ; linear interpolation on the other 
(XZ) 

Circular or linear interpolation for one 
head (XZ) linea~ interpolation on the other 
(UW) 

Linear Interpolation 
(Range 0-99.9999 inches) 

Linear Interpolation 
(Range 0-0.9999 inches) 

Linear Interpolation 
(Range 0-0. 0999 inches) 

5-131 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

5.6.1 TABLE OF PREPARATORY FUNCTIONS (TABLEG) (cont'd) 

Location 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

NOTE 24-25 

26 

27 

5-132 

Standard 
Value 

DMBITS. 

DMBITS 

DMBITS 

DMBITS 

17 

18 

19 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

Preparatory Functions 

Function 

Linear Interpolation 
(Range 0-999.9999 inches) 

Linear Interpolation 
(Range 0-9999.9999 inches) 

Circular Interpolation for One Head (XY) 

Linear Interpolation on the Other (UV) 

Linear Interpolation for One Head (XY) 

Circular Interpolation on the Other (UV) 

XY Plane Selection 

XZ Plane Selection 

YZ Plane Selection 

Circular Interpolation - Arc CLW 
(Radius 0-99. 9999 inches) 

Circular Interpolation - Arc CLW 
(Radius 0-0.9999 inches) 

Circular Interpolation - Arc CLW 
(Radius 0-0.0999 inches) 

Select Tool (With Small Gripper) 

Select Tool (With Large Gripper) 

Use (24) If Only One Gripper is Available 

Load Tool (Small Gripper on Head 1) 

Load Tool (Large Gripper on Head 1) 



'-"w 

ClCHT Ill POSTPROCESSOR ... for the computer programmer 

5.6.l TABLE OF PREPARATORY FUNCTIONS (TABLEG) (cont'd) 

Standard 
Location Value 

28 DMBITS 

29 DMBITS 

NOTE 26-29 

30 DMBITS 

31 DMBITS 

32 DMBITS 

33 DMBITS 

34 DMBITS 

35 DMBITS 

36 DMBITS 

37 DMBITS 

38 DMBITS 

39 DMBITS 

40 DMBITS 

41 DMBITS 

42 DMBITS 

43 DMBITS 

44 DMBITS 

Preparatory Functions 

Fwiction 

Load Tool (Small Gripper on Head 2) 

Load Tool (Large Gripper on Head 2) 

Use (26) If Only One Head or Gripper 
Available 

Circular Interpolation Arc - CCLW 
(Radius 0-99. 9999 inches) 

Circular Interpolation Arc - CCLW 
(Radius 0-0. 99999 inches) 

Circular Interpolation Arc - CCLW 
(Radius 0-0.0999 inches) 

is 

constant Lead Thread-Cutting-Normal Lead 

Increasing Lead Thread-Cutting-Normal 

Decreasing Lead Thread-Cutting-Normal 

constant Lead Thread-Cutting-Extended 

Increasing Lead Thread-Cutting-Extended 

Decreasing Lead Thread-Cutting-Extended 

Cutter Compensation Off 

Cutter Compensation Left 

Cutter compensation Right 

Circular Interpolation Arc-CLW 
(Range 100.0-999.9999) 

5-133 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5.6.1 TABLE OF PREPARATORY FUNCTIONS (TABLEG) (cont'd) 

Location 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

5-134 

Standard 
Value 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

Preparatory Functions 

Function 

Circular Interpolation Arc-CCLW 
(Range 100.0-999.9999) 

cutter compensation Plus 

cutter compensation Minus 

Dwell Off 

Circular interpolation - arc CLW (Radius 
1000.0 - 9999.9999 inches) 

Circular interpolation - arc CCLW (Radius 
1000.0 - 9999.9999 inches) 

Dwell (Spindle Not Rotating) 

Fine Positioning Mode With Backlash 
Takeup 

Fine Positioning Mode With No Backlash 
Take up 

coarse Positioning Mode 

Fine Positioning Mode With or Without 
Backlash, Medium Feed 

coarse No. 1 Positioning Mode at Medium 
Feed 

Positioning Mode at Low Feed or coarse 
No. 2 at Feed 

Traverse to Feed Without a Stop (IPM Mode 
Assumed) 

Rotary Feed to Feed Without Stop 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.6.1 TABLE OF PREPARATORY FUNCTIONS (TABLEG) (cont'd) 

Standard 
Location Value 

60 DMBITS 

61 DMBITS 

62 DMBITS 

63 DMBITS 

64 DMBITS 

65 DMBITS 

66 DMBITS 

67 DMBITS 

68 DMBITS 

69 DMBITS 

70 DMBITS 

71 DMBITS 

73 DMBITS 

74 DMBITS 

75 DMBITS 

76 DMBITS 

77 DMBITS 

78 DMBITS 

Preparatory Functions 

Function 

Cancel Corner Milling 

Corner Milling With The Feedrate In 
Range 1 

Corner Milling With The Feedrate In 
Range 2 

Traverse To Feed Without A Stop (IPR Mode 
Assumed) 

coarse Position Milling-High Feedrate 

Coarse Position Milling To Dead Band 
With overshoot 

Fine Position Milling-Low Feedrate 

Read while positioning X and W plane 

Tool Holder Index CLW 

5-135 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5. 6 .1 TABLE OF PREPARATORY FUNCTIONS (TABLEG) (cont'd) 

Standard 
Location Value 

79 DMBITS 

80 DMBITS 

81 DMBITS 

82 DMBITS 

83 DMBITS 

84 DMBITS 

85 DMBITS 

86 DMBITS 

87 DMBITS 

88 DMBITS 

89 DMBITS 

90 DMBITS 

91 DMBITS 

92 DMBITS 

93 DMBITS 

94 DMBITS 

5-136 

Preparatory Functions 

Function 

Special Cancel Cycle, Used Only For 
RorIND 

Drilling Sequence (Drill to Depth Z) 
(DRILL) 

Facing Sequence (Drill to Z and Dwell) 
(FACE) 

Deep Hole Drilling (Peck Drilling) (DEEP) 

Tapping Sequence (TAP) 

Boring Sequence (BORE) 

Milling Sequence (MILL) 

Boring and Stopping Sequence (THRU) 
Case Drilling 

Spindle Forward (OUT) 

Spindle Withdraw (IN) 

Feed Spindle to z, Stop Spindle, Rapid 
to R (BORE,DRAG) 

Feed Spindle to Z, Stop Spindle (BORE, 
MANUAL) 

Feed to Z, Dwell, Stop Spindle, Rapid to R 
(BORE, DWELL,DRAG) 

Feed Spindle to z, Dwell, Feed to R 
(BORE, DWELL) 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

5.6.1 TABLE OF PREPARATORY FUNCTIONS (TABLEG) (cont'd) 

standard 
Location Value 

95 DMBITS 

96 DMBITS 

97 DMBITS 

98 DMBITS 

99 DMBITS 

100 DMBITS 

101 DMBITS 

102 DMBITS 

103 DMBITS 

104 DMBITS 

105 DMBITS 

106 DMBITS 

107 DMBITS 

Preparatory Functions 

Fnnction 

Feed Spindle to Z, Dwell, Stop Spindle 
(OORE, DWELL, MANUAL) 

Absolute data input for contouring machine 

Incremental data input for contouring machine 

Extended Departure Threading For 1008 
Control, Lead Max= 1.99998 inches 
Departure Max = 19.9999 inches 

Extended Departure Threading For 100S 
Control, Lead Max= 0.99999 inches 
Departure Max = 19.9999 inches 

Extended Departure Threading For 100S 
Control, Lead Max = 0.099999 inches 
Departure Max = 19.9999 inches 

Threading For 100S Control 
Lead Max= 1.99998 inches (59.998 MM) 
Departure Max = 9.9999 inches (999.99 MM) 

Threading For 100S Control 
Lead Max = 0.99999 inches (29.999 MM) 
Departure Max = 9.9999 inches (999.99 MM) 

Threading for 100S Control 
Lead Max= 0.099999 inches (2.9999 MM) 
Departure Max = 9.9999 inches (999.99 MM) 

Threading with no lead. Departure 
max = 99.9999 inches 

Threading with no lead. Departure 
max = 99.9999 inches 

5-137 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

5. 6 .1 TABLE OF PREPARATORY FUNCTIONS (TABLEG) (cont'd) 

108 DMBITS 

109 DMBITS 

110 DMBITS 

111 DMBITS 

112 DMBITS 

113 DMBITS 

114 DMBITS 

115 DMBITS 

116 DMBITS 

117 DMBITS 

118 DMBITS 

119 DMBITS 

120 DMBITS 

5-138 



CI&INT Ill POSTPROCESSOR ... for the computer programmer 

5.6.2 TABLE OF MISCELLANEOUS FUNCTIONS (TABLEM) 

The utilization of TABLEM is exactly analogous to that of TABLEG. 
TABLEM is a table consisting of 200 locations, and it is an 
ordered listing of miscellaneous functions and their 
corresponding M codes. The miscellaneous functions considered by 
the GECENT postprocessor are those which are listed in the TABLEM 
chart; the miscellaneous functions used by the Standard Machine 
are those which are indicated by their M code number assignments. 
DMBITS indicate that the Standard Machine does not consider the 
miscellaneous function. 

The TABLEM location number has no relationship to the M code 
assigned to the function described at that location. For 
example, program stop which has the industry-accepted code mOO is 
always assigned to TABLEM location 1. Even though program stop 
were to be called by m24, it would have to be assigned to TABLEM 
location 1 in order to be output whenever the function is called. 

NC machines which have multiple feed ranges (not counting rapid 
traverse) must use TABLEM(113) through (119) for the 
miscellaneous code assignments which specify the operational feed 
range. But TABLEM(42) must be assigned the rapid traverse M 
code, and' TABLEM(43) must be assigned the feed range M code to be 
assumed when no feed range is initially specified by the part 
programmer. This M code will be one of the M codes assigned in 
TABLEM (113) through ( 119) • 

In some instances a location of TABLEM is assigned to more than 
one function, e.g., location 85. This is done for economy and 
only when the function cannot possibly conflict with one of the 
other assigned functions. 

Unless otherwise specified, all assignments are for Head 1. 

5-139 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5.6.2 TABLE OF MISCELLANEOUS FUNCTIONS (TABLEM) (cont'd) 
TABLEM ( 200) 

Standard Miscellaneous 
Location Value Function 

1 00 Program Stop 

2 01 Optional Stop 

3 02 End of Program 

4 03 Spindle CLW 

5 04 Spindle CCLW 

6 05 Spindle Off 

7 DMBITS Tool Change 

8 DMBITS Turret Index 

9 08 Coolant On 

10 09 Coolant Off 

11 DMBITS Saddle Collet Closed, CAXIS 

12 DMBITS Saddle Collet Open, CAXIS 

13 DMBITS Pallet Select Change 

14 DMBITS Switch Reader 

15 DMBITS Thread Forward 

16 DMBITS Thread Reverse 

17 DMBITS Thread Off 

18 DMBITS Dwell (Preset Time) 

19 DMBITS Saddle Turret coolant On 

20 DMBITS Saddle Turret Coolant Off 

21 DMBITS Punch Off 

5-140 



'-"' 

ClCHT Ill POSTPROCESSOR ... for the computer programmer 

5.6.2 TABLE OF MISCELLANEOUS FUNCTIONS {TABLEM) {cont'd) 

Standard 
Location Value 

22 DMBITS 

23 DMBITS 

24 DMBITS 

25 DMBITS 

26 DMBITS 

27 DMBITS 

28 DMBITS 

29 DMBITS 

30 DMBITS 

31 DM30 

32 DMBITS 

33 DMBITS 

34 DMBITS 

35 DMBITS 

36 DMBITS 

37 DMBITS 

38 DMBITS 

39 DMBITS 

40 DMBITS 

41 DMBITS 

42 DMBITS 

TABLEM(200) 

Miscellaneous 
Function 

Clamp ON, XAXIS, Table, or Part 

Unclamp XAXIS, Table, or Part 

Rapid Traverse on Carriage 

Rapid Traverse on Saddle 

All Motions Rapid Traverse 

All Motions Feed Rate 

Dress (Welder or Grinder) 

Front Turret Active 

Rear Turret Active 

End of Tape (Tape Rewind or Transfer) 

Tool Pickup (Load) 

Tool Pickup (Unload) 

Cycle Tap 

Lead Tap (LEDTAP) 

Safety Turn 

Safety Face 

Safety Bore 

Safety Off 

X-Axis Gear Engage Rapid 

5-141 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5.6.2 TABLE OF MISCELLANEOUS FUNCTIONS (TABLEM) (cont'd) 

(TABLEM ( 200) 

Standard Miscellaneous 
Location Value Function 

43 DMBITS X-Axis Gear Engage Feed 

44 DMBITS Y-Axis Gear Engage Rapid 

45 DMBITS Y-Axis Gear Engage Feed 

46 DMBITS Z-Axis Gear Engage Rapid 

47 DMBITS Z-Axis Gear Engage Feed 

(Note: Use the X-axis locations TABLEM 42 and 43 when only one 
M code shifts all axes.) 

48 DMBITS Rotate No. 1 Indexer or Tilt No. 1 Weld 

49 DMBITS Rotate No. 2 Indexer or Tilt No. 2 Weld 

50 DMBITS Rotate Table or Indexer - Off 

51 DMBITS Encoder Engage 

52 DMBITS Encoder Disengage 

53 DMBITS Clamp on YAXIS or Head 

54 DMBITS Unclamp YAXIS or Head 

55 DMBITS Clamp Rail or TUL 

56 DMBITS Unclamp Rail or TUL 

57 DMBITS Engage Bar 

58 DMBITS Disengage Bar 

59 DMBITS 

60 DMBITS Pen Up 

61 DMBITS Pen Down 

5-142 



ClCINT 111 POSTPROCESSOR ... for the computer programmer 

5.6.2 TABLE OF MISCELLANEOUS FUNCTIONS (TABLEM) (cont'd) 

Location 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

Standard 
Value 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

DMBITS 

(TABLEM(200) 

Miscellaneous 
Fnnction 

Dash On 

Dash Off 

No. 2 Head (Vertical) Selected for Move
ment 

No. 3 Head (Horizontal) Selected for 
Movement 

Spindle Speed Change (Including Spindle 
Start) to Head 1 

Spindle Speed Change (Including Spindle 
start) to Head 2 

Spindle Orient 

Spindle Lock 

Spindle Neutral - See Option 99 

Spindle Speed Range Shift Range 1 CCLW 

Spindle Speed Range Shift Range 1 CLW 

Spindle Speed Range Shift Range 2 CCLW 

Spindle Speed Range Shift Range 2 CLW 

Spindle Speed Range Shift Range 3 CCLW 

Spindle Speed Range Shift Range 4 CCLW 

Spindle Speed Range Shift Range 4 CCLW 

Spindle Speed Range Shift Range 4 CLW 

Spindle Speed Range Shift Range 5 CCLW 

Spindle Speed Range Shift Range 5 CLW 

5-143 



ClClNT Ill POSTPROCESSOR ... tor the computer programmer 

5.6.2 TABLE OF MISCELLANEOUS FUNCTIONS (TABLEM) (cont'd) 

TABLEM (2 0 0) 

Standard Miscellaneous 
Loaction Value Function 

81 DMBITS Spindle Speed Range Shift Range 6 CCLW 

82 DMBITS Spindle Speed Range Shift Range 6 CLW 

83 DMBITS Rotate Table, Turret, Magazine, CLW or 
Weld Rock No. 1 

84 DMBITS Rotate Table, Turret, Magazine, CCI.JiV or 
Weld Rock No. 2 

(Note: Locations 83-84 assumes CLW numbering, looking at 
magazine from top down.) 

85 DMBITS 

86 DMBITS 

87 DMBITS 

88 DMBITS 

89 DMBITS 

90 DMBITS 

91 DMBITS 

92 .DMBITS 

93 DMBITS 

94 DMBITS 

95 DMBITS 

5-144 

Preheat No. 1 on Master Head No. 1, or 
Weld Schedule No. 1, BEAM ON 

Preheat No. 2 on Slave Head No. 2, or 
Weld Schedule No. 2 

Preheat No. 1 Off, or Weld Off, BEAM ON 

Preheat No. 2 Off, or Weld Shift No. 1 
BFAM 1 

Oxygen No. 1 On, or weld Shift No. 2 
BFAM 2 

Oxygen No. 2 On, or Weld Shift No. 3 
BEAM 3 

oxygen No. 1 Off, or Weld Shift No. 4 
BEAM 4 

Oxygen No. 2 Off, BEAM 0 

Height Control No. 1 Down, or Weld Head 
No. 1 Down 

Height Control No. 2 Down 

Height Control No. 1 Up, or Weld Head 
No. 1 Up 



CltlNT 111 POSTPROCESSOR ... for the computer programmer 

5.6.2 TABLE OF MISCELLANEOUS FUNCTIONS (TABLEM) (cont'd) 

TABLEM ( 20 0) 

Location 

96 

97 

Standard 
Value 

DMBITS 

DMBITS 

98 DMBITS 

99 DMBITS 

100 DMBITS 

101 DMBITS 

102 DMBITS 

103 DMBITS 

104 DMBITS 

105 DMBITS 

106 DMBITS 

107 DMBITS 

108 DMBITS 

109 DMBITS 

110 DMBITS 

111 DMBITS 

112 DMBITS 

113 DMBITS 

114 DMBITS 

115 DMBITS 

116 DMBITS 

Miscellaneous 
Function 

Height control No. 2 Up 

Off set tool on 

Coolant, Tap - On 

Coolant, Mist - On 

Coolant, Flood - On 

coolant, Tap - Off 

Coolant, Mist - Off 

Coolant, Flood - Off 

Coolant, Front Turret - On 

Coolant, Front Turret - Off 

Coolant, Rear Turret - On 

Coolant, Rear Turret - Off 

Feedrate override - On 

Feedrate override - Off 

Feed Range 1 

Feed Range 2 

Feed Range 3 

Feed Range 4 

5-145 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

5.6.2 TABLE OF MISCELLANEOUS FUNCTIONS (TABLEM) (cont'd) 

TABLEM (200) 

Location 

117 

118 

119 

Standard 
Value 

DMBITS 

DMBITS 

DMBITS 

Miscellaneous 
Function 

Feed Range 5 

Feed Range 6 

Feed Range 7 

(Note: Locations 113-119 assign according to ascending order 
of ranges. Do not include RAPID TRAVERSE. 

120 DMBITS Inhibit Creep - On 

121 DMBITS Inhibit creep - Off 

122 DMBITS Ang le Turn No. 1 

123 DMBITS Air - On, circular deflection on 

124 DMBITS Air - Off, circular deflection off 

125 DMBITS Head 1 - On 

126 DMBITS Head 2 - On 

127 DMBITS Head 3 - On 

128 DMBITS Head 1 and 2 - On 

129 DMBITS Angle Turn No. 2 

130 DMBITS Do Not Use This Position; must be DMBITS 

131 DMBITS Collet No. 4 (W-Axis) - Close 

132 DMBITS Collet No. 4 (W-Axis} - Open 

133 DMBITS All Clamps - Close 

134 DMBITS All Clamps - Open 

135 DMBITS 

136 DMBITS 

5-146 



C(CHT Ill POSTPROCESSOR ... for the computer programmer 

5.6.2 TABLE OF MISCELLANEOUS FUNCTIONS (TABLEM) (cont'd) 

TABLF.M (200) 

Location 
Standard 
Value 

137 DMBITS 

138 DMBITS 

139 DMBITS 

140 DMBITS 

141 DMBITS 

142 DMBITS 

143 DMBITS 

144 DMBITS 

145 DMBITS 

146 DMBITS 

147 DMBITS 

148 DMBITS 

149 DMBITS 

150 DMBITS 

151 DMBITS 

152 DMBITS 

153 DMBITS 

154 DMBITS 

155 DMBITS 

156 DMBITS 

157 DMBITS 

Miscellaneous 
Function 

X Axis Gear Engage, Rapid, Head 2 

X Axis Gear Engage, Feed, Head 2 

Y Axis Gear·Engage, Rapid, Head 2 

Y Axis Gear Engage, Feed, Head 2 

z Axis Gear Engage, Rapid, Head 2 

Z Axis Gear Engage, Feed, Head 2 

X Axis Gear Engage, Rapid, Head 3 

X Axis Gear Engage, Feed, Head 3 

Y Axis Gear Engage, Rapid, Head 3 

Y Axis Gear Engage, Feed, Head 3 

Z Axis Gear Engage, Rapid, Head 3 

z Axis Gear Engage, Feed, Head 3 

Automatic SFM, On, Head 1 

Automatic SFM, Off, Head 1 

Automatic SFM, on, Head 2 

Automatic SFM, Off, Head 2 

5-147 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

5.6.2 TABLE OF MISCELLANEOUS FUNCTIONS (TABLEM) (cont'd) 

TABLEM (200) 

Standard 
Location Value 

158 DMBITS 

159 DMBITS 

160 DMBITS 

161 DMBITS 

162 DMBITS 

163 DMBITS 

164 DMBITS 

165 DMBITS 

166 DMBITS 

167 DMBITS 

168 DMBITS 

169 DMBITS 

170 DMBITS 

171 DMBITS 

172 DMBITS 

173 DMBITS 

Miscellaneous 
Function 

Automatic SFM, On, Head 3 

Automatic SFM, Off, Head 3 

X Axis Feed Range 1 

X Axis Feed Range 2 

Y Axis Feed Range 1 

Y Axis Feed Range 2 

Z Axis Feed Range 1 

z Axis Feed Range 2 

Head 2 Turret CLW 

Head 2 Turret CCLW 

Rapid X axis 

Feed X axis 

Rapid z axis 

Feed Z axis 

(Note: Locations 168,169, 172 and 173 are used on machines 
which can move repidly on one axis and feed on the other 
simultaneously) 

174 DMBITS 

175 DMBITS 

176 DMBITS 

177 DMBITS 

5-148 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

'-" 5.6.2 TABLE OF MISCELLANEOUS FUNCTIONS (TABLEM) (cont'd) 

TABLFM (200) 

Standard Miscellaneous 
Location Value Function 

178 DMBITS 

179 DMBITS 

180 DMBITS 

181 DMBITS 

182 DMBITS 

183 DMBITS 

184 DMBITS 

185 DMBITS 

186 DMBITS 

187 DMBITS 

188 DMBITS 

189 DMBITS 

190 DMBITS 

191 DMBITS 

192 DMBITS 

193 DMBITS 

194 DMBITS 

195 DMBITS 

196 DMBITS 

197 DMBITS 

198 DMBITS 

199 DMBITS 

200 DMBITS 

5-149 





"-" 

CI&INT Ill POSTPROCESSOR ... for the computer programmer 

5. 6. 3 TABLE OF REGISTERS ( REGSTR) 

The REGSTR table is a table of 30 locations, the first 18 of 
which are an ordered listing of the identifiers of each standard 
output register. If output of the postprocessor is word Address, 
then each value of REGSTR is the related BCD character which 
identifies the register; the registers of each block are normally 
in the order given by REGSTR (see the reference below to the 
!ORDER vector). The normal order and standard register 
assignments of REGSTR are: 

Standard 
Location Value 

'1 N 

2 G 

3 x 

4 y 

5 z 

6 A 

7 B 

8 I 

9 J 

10 K 

11 F 

12 s 

13 T 

14 M 

REGS TR 

Dimension (30) 

Function 

Sequence counter 

Preparatory function 

Linear primary axis, abscissa 

Linear primary axis, ordinate 

Linear primary axis, axis of tool 

Rotary axis, head 

Rotary axis, table 

Direction cosine or arc center 
off set related to abscissa 

Direction cosine or arc center 
off set related to ordinate 

Direction cosine or arc center 
offset related to the third 
primary axis 

Feedrate command 

Spindle speed command 

Tool number 

Miscellaneous function 

5-151 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5.6.3 TABLE OF REGISTERS {REGSTR) (cont'd) 

REGS TR 

Location 

15 

16 

17 

18 

Standard 
Value 

DO NOT USE 

R 

DBLNKS 

c 

Dimension (30) 

Function 

CODE 

Rapid traverse transition point 

(Open) 

Third rotary axis 

Locations 21 through 30 are available for extra registers. 
Locations 19 and 20 cannot be used since the postprocessor uses 
DBFSEG(19) and (20) to store the feedrate in !PM and the spindle 
speed in RPM. 

Registers which are not used can be set to DBLNKS. For example, 
if the A and B registers are not used, REGSTR(6) = DBLNKS and 
REGSTR(7) = DBLNKS; however, the related values of the REGFOR 
table must be set to zero, e.g., REGFOR(6) = 0 and REGFOR(7) = 0. 

Any of the assigned registers can be given another letter 
address, e.g., REGSTR(3) could be called w. The only requirement 
is that the table location function be observed. Thus, REGSTR(3) 
could legitimately be called w if the w axis is the linear 
primary axis. 

The locations of REGSTR (and REGFOR) from 21 through 30 can be 
used for extra registers, if needed. 

5-152 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

5.6.4 TABLE OF REGISTER FORMATS (REGFOR) 

Different NC machines require different output format 
specifications. Some NC machines will have an s register, others 
will not; some machines may require 5 digits for its register, 
while others may need 6 or more digits. It is the function of 
the REGFOR table to specify these variations. 

The REGFOR table is an ordered table of 30 locations, the first 
18 of which are standard settings. Each location represents a 
machine register, and, the number assigned to each location 
specifies the required punch format for values of that register. 
The assigned numbers are two-digit floating point integers; the 
floating point integer value indicates the number of digits that 
are required for the register. The first digit of the floating 
point integer represents the number of digits that are to the 
left of the decimal point, and the second digit, the number of 
digits that are to the right of the decimal point. If the 
floating point integer has a minus value, then the sign of the 
value also will be punched. Thus, the value 11-14. 11 , as found at 
location 3 in the REGFOR table, means that the third register 
(normally REGSTR(3) = X) must have 5 digits, one digit to the 
left of the decimal point, and 4 digits to the right; and, also 
that the signs must be punched. Similarly, the integer 20 as 
found at location 2, means two digits to the left and none to the 
right of the decimal point, and that there whould be no sign. 

Certain control systems which have only linear interpolation may 
have what is called a "floating" or variable format, i.e., a 
five-digit register with a 14 format in G01 mode, but a 23 format 
when G10 is used. (See Section 4.8 for a more complete 
description). For controls of this type, REGFOR is set equal to 
14, not 23, but option 4 (maximum departure) is set equal to 
99.999. The variable format is taken care of by setting option 
41 equal to zero. 

The values assigned to the REGFOR table are those used by the 
Standard Machine. NC machines which require different punch 
formats need only to substitute their required values into the 
REGFOR table. 

If a machine does not have a particular register, it is essential 
that a zero be assigned to the REGFOR table location of that 
register. For example, if the NC machine does not have a spindle 
speed register, location 12 of the REGFOR table must be specified 
as a zero. 

5-153 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

""' 5.6.4 TABLE OF REGISTER FORMATS (REGFOR) (cont• d) 

REG FOR 

Dimension(30) 

Table 
Location Register Standard Value 

1 N 30. (NDP) 

2 G 20. (NDP) 

3 x -14. 

4 y -14. 

5 z -14. 

6 A o. 
7 B o. 
8 I 14. 

9 J 14. 

"""' 10 K 14. 

11 F 30. 

12 s 30. (NDP) 

13 T 20. (NDP) 

14 M 20. (NDP) 

15 DO NOT USE 

16 R o. 
17 (Open) 0. (NDP) 

18 c o. 
Each REGFOR value is determined by 10L + R, 

where L = number of digits to left of decimal point; 

R = number of digits to right. 

5-154 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

5.6.4 TABLE OF REGISTER FORMATS (REGFOR) (cont'd} 

The REGFOR value must be minus if the sign is to be punched. 

The required number of digits for the register is L + R.. (NDP) 
indicates that no decinal point is used in the printout for that 
table location. Thus, REGFOR(1) has integer output only, whereas 
REGFOR(3) or (16) has decimal output. 

Locations 21 through 30 are available for extra registers. 
Locations 19 and 20 cannot be used since the postprocessor uses 
DBFSEG(19) and (20) to store the feedrate in IPM and the spindle 
speed in RPM, respectively. 

It should be pointed out that it is not absolutely essential to 
set the related location of REGSTR to DBLNKS for an unavailable 
register as long as the related REGFOR location is set to zero. 
In other words to nullify a register, it is mandatory that the 
location of REGFOR be set to zero, but not necessarily that 
REGSTR be set to DBLNKS. 

The following two examples illustrate typical possible setups 
for the REGSTR and REGFOR tables. 

5-155 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

,.., 
5.6.4 TABLE OF REGISTER FORMATS {REG FOR) (cont'd) 

Example 1: Registers NGXYZFSTMR are available. 

REGS TR REGFOR 

1 N 30.0 

2 G 20.0 

3 x -24.0 

4 y -24.0 

5 z -24.0 

6 DBLNKS o. 

7 DBLNKS o. 

8 DBLNKS o. 

9 DBLNKS o. 

10 DBLNKS o. -11 F 21.0 

12 s 20.0 

13 T 10.0 

14 M 20.0 

15 (IGNORE) (IGNORE) 

16 R -22. 0 

17 DBLNKS o. 

18 DBLNKS o. 

5-156 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

'-' 5.6.4 TABLE OF REGISTER FORMATS (REG FOR} (cont• d} 

Example 2: Registers NGXZIKFSTMWH are available. 

REGSTR REGFOR 

1 N 30.0 

2 G 20.0 

3 x -24.0 

4 DBLNKS o. 
5 z -24.0 

6 DBLNKS o. 

7 DBLNKS o. 

8 I 24.0 

9 DBLNKS o. 

10 K 24.0 

'-"' 11 F 31.0 

12 s 20.0 

13 T 10.0 

14 M 26.0 

15 (IGNORE) (IGNORE) 

16 w -14. 0 

17 H 10.0 

18 DBLNKS o. 

5-157 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.6.4 TABLE OF REGISTER FORMATS (REGFOR) (cont'd) 

Another (and better) way of setting up the tables in Example 2 is 
to take advantage of the standard Machine settings. The 
programmed tables appear then as: 

REGFOR (3) = -24. 0 

REGFOR(4) = o. 

REGFOR (5) = 24.0 

REGFOR (8) = 24.0 

REGFOR(9) 

REGFOR(10) = 24.0 

= o. 

REGFOR(11) = 31.0 

REGFOR(12) = 20.0 

REGFOR(16) = -14.0 

REGFOR(17) = 10.0 

REGS TR ( 16) = 11 W" 

REGSTR ( 17) = 11 H11 

5-158 



Cl&HT Ill POSTPROCESSOR ... for the computer programmer 

5.6.5 TABLE OF OPTIONS (OPTAB) 

Machine characteristics which are not handled by the TABLEG, 
TABLEM, REGSTR, and REGFOR tables, are handled by the OPTAB 
Table. This table is essentially a further definition of machine 
characteristics and limitations dictated by a specific hardware 
configuration. Some of the items in the table can be chosen at 
the discretion of .the part programmer or computer programmer to 
suit in-house programming practices. 

OPTAB considers such items as axis assignments, feedrate and 
spindle speed determination, positioning vs contouring, departure 
segmentation, interpolation modes acceleration-deceleration (A/D) 
machine servo constants, output codes, range specifications, 
machine limitations, tolerances, assumptions, and so on. A 
detailed listing of the options and an explanation of each is 
given below. 

Each item in the OPTAB table has a standard value, i.e., the 
value assumed by the Standard Machine. The method of modifying 
OPTAB to represent a given NC machine is essentially the same as 
the method used for the other tables; i.e., simply assign the 
value to each option that pertains to the characteristics of the 
given machine. Of course, if the value is already assumed for 
the Standard Machine, there is no need to reassign it. With 
OPTAB, never assign any option as DMBITS. Each option in the 
table must have a value to indicate the choice of the option, and 
the value is always a floating point number or somtimes a BCD 
word. 

It is possible to change the value of most options in the part 
program through the MACHIN statement; see the Part Programmer 
Manual. For example, the statement 

MACHIN/GECENT, 40, OPTAB, 4,20 

tells the postprocessor to set option 4 to the value of 20. such 
option changes normally can be given legitima.tely at any point in 
the part program, but some care must be taken as to which options 
are changed. Several options cannot be changed because their 
values are are given in BCD form, and the MACHIN statement values 
following the OPTAB modifier are floating point numbers. 

5-159 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.6.5 TABLE OF OPTIONS {OPTAB) {cont'd) 

There also are other option valpes which should not be changed 
because the postprocessor assumes certain conditions which are 
related to the option, hence, if the option value changes and the 
required other modifications are not made, the postprocessor 
works with insufficient and incorrect data. For example, if 
option 10 is changed to +1, calling for the "Magic 3 11 EIA F code, 
the postprocessor will produce erroneous output unless REFGOR(11) 
= 30. 

For these and similar reasons, the following options cannot be 
changed through a part program MACHIN statement. 

Non Re-assignable Options 

1, 7, 8, 10, 13, 14, 19, 22, 33, 34, 35, 69, 111, 112, 113, 114, 
1 1 5, 1 1 8 , 1 1 9 , 1 3 8 , 16 5 , 1 7 4 ., 1 91 • 

Restricte Options 

Options 149 and 150, if changed through a MACHIN statement, must 
be given in Output Units. 

When setting up a Machine Subroutine, it is helpful to know from 
what source to expect information concerning a given option. The 
following list groups the options according to one of three 
sources: NC Machine Manufacturer, User Customer, and the General 
Electric Numerical Equipment control Department (NECD). 
Information concerning an option should be obtained from the 
referenced source since that source is considered the normal one. 

NC Machine Manufacturer 

1 , 
26, 
45, 
69, 
89, 
104, 
119, 

3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 22, 23, 24, 25, 
27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42,43,44, 
46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 59, 60, 61, 62, 63, 

70, 71, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 
9 0 , 8 1 , 9 2 , 9 3 , 9 4, 9 5 , 96 , 9 7 , 9 8 , 9 9 , 1 0 0 , 1 0 1 , 1 0 2 , 1 0 3 , 
105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 118, 
120, 121, 122, 123, 124, 125, 126, 127-150, 15~-157, 170. 

1 7 4, 1 7 5, 1 7 6, 1 7 7 , 1 7 8, 17 9 , 1 8 0 , 1 8 2 , 1 8 3 , 1 8 4, 1 8 5, 1 86 , 18 7 , 
188, 189, 190, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202 

customer User 

2, 5, 11, 15, 17, 20, 21, 23, 29, 32, 33, 35, 55, 64, 65, 66, 67, 
68, 79, 90, 109, 110, 151, 152, 153, 160, 164, 170, 172, 181, 
191, 198, 

GE/NECD 

69, 70, 71, 72, 73, 73. 

5-160 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

Notes on the use of the option table. 

1. When setting up a subroutine for a metric system,wherever the 
word "inch" is used, substitute millimeter. If a value is 
given in inches, substitute the metric value in millimeters 
that is to be used in its place. 

2. Reference to sections which appear in this table are 
Computer Programmer's Manual unless specifically 
otherwise. 

to the 
stated 

3. A letter may follow the option number indicating that it is 
applicable only to that type of control system and may be 
ignored in supplying information for other types of controls. 
Where no letter follows the option number, that option may 
have universal application independent of control type. The 
symbols and there meaning are as follows: 

P - Positioning controls only 
c - Positioning/contouring and contouring controls 

MA - Multiaxis contouring control system 
MH - Multihead control systems 

OPTION 1 

Type of machine tool: 

0 
1 

-1 
2 

= 
= 
= 
= 

contouring 
positioning 
positioning machine, s codes not merged with T codes 
positioning, s code and T code are merged in the 
following motion block. The part programmer must give 
the SPINDL and TOOLNO immediately prior to the motion 
block. 

3 = machine has both positioning (absolute) and contouring 
(incremental) capability (Mark Century 7500 Series) 

Standard = 0.0 

5-161 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 2 C 

The postprocessor should be removed from an SFM mode by: 

0 = spindle only 
1 = FEDRAT/n, !PM, or SPINDL 

Standard = 0.0 

Zero means the postprocessor will discontinue operating in an SFM 
mode when a SPINDL statement is given. 1 means the SFM mode 
operation will discontinue for a SPINDL, or FEDRAT/IPM mode 
statement. (See section 4. 4) 

OPTION 3 C 

Maximum percent change of velocity allowed in the acceleration/
deceleration sequence. 

Standard = 100.0 percent 

This causes the acceleration/deceleration sequence to restrict 
velocity changes to less than or equal to option value. Used 
only when option 55 set = 1.0. Not currently tested because 
option 55 must be set to zero. (See Section 4.3) 

OPTION 4 C 

Maximum departure in inches for linear moves. see also option 41 
for variable format considerations. - (See section 3.4.3.2) 

Standard = 9.9999 inches 

5-162 



C(C(~l 111 POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 5 

Tolerance value in inches to use for a conditional test. 

Standard = 0.00005 inches 

There are numerous tests in the postprocessor which test one 
value against another for equality. This option gives an 
allowable tolerance which specifies how close to absolute 
equality is required. 

Example: A-B=O, + or - tolerance 

This tolerance is normally set to one half the minimum step size. 

OPTION 6 · 

(Not currently tested.) 

OPTION 7 

Number of spindle speed ranges. 

Standard = 1.0 

Spindle considerations are dicussed in detail in section 4.5. 

OPTION 8 

Number of spindle speeds in each spindle range. 

Standard = 2.0 

Each range must have the.same number of spindle speeds. 

OPTION 9 C 

Is circular interpolation available? (See section 2.4.2.2.2) 

1 = YES 
0 = NO 

Standard = 1. 0 

5-163 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 10 C 

Feedrate in IPM is converted to one of the following command 
formats. -

O = (feedrate in IPM * DIMULT)/L (contouring machine only) 
+1 =a 3 digit EIA number. REGFOR(11) = 30.0. 
-1 = 1/T, a floating format for F is used. 

For example: 

FCOMAX = 999.9 for a G11 REGFOR(11) = 31.0 
FCOMAX = 099.99 for a G01 REGFOR(11) = 32.0 
FCOMAX = 009.999 for a G10 REGFOR(11) = 33.0 

Set REGFOR(11) = 33.0 

-2 = 1/T. A floating format for F is used. For example: 

FCOMAX = 999. 
FCOMAX = 099.9 
FCOMAX = 009.99 

for a G11 REGFOR(11) = 30.0 
for a GO 1 REG FOR ( 11) = 31. 0 
for a G10 REGFOR(11) = 32.0 

Set REGFOR(11) = 32.0 

-3 = 1/T. A floating format for F is used. -

FCOMAX = 999 for a G12 REGFOR (11) = 40.0 
FCOMAX = 0999.9 for a G11 REGFOR (11) = 41.0 
FCOMAX = 0099.99 for a G01 REGFOR (11) = 42.0 
FCOMAX = 0009.999 for a GlO REGFOR ( 11) = 43.0 

Set REGFOR (11) = 43. 0 

For example: 

-4 = 1/T (7500 series) Variable F format. For example: 

FCOMAX = 9999.99 for G12 format ( 11) = 42.0 
FCOMAX = 0999.999 for G11 format(11) = 4 3. 0 
FCOMAX = 0099.9999 for G01 format ( 11) = 4 4. 0 
FCOMAX = 0009.99999 for G10 format (11) = 45. 0 
FCOMAX = 0000.999999 for G23 format(11) = 46.0 
FCOMAX = 0000.0999999 for G26 format ( 11) = 4 7. 0 

Set REGFOR ( 11) = 47.0. 

Standard = 0.0 

See Section 4.1 for further information. 

5-164 



ClClNT 111 POSTPROCESSOR .... for the computer programmer 

OPTION TABLE FOR·GECENT III POSTPROCESSOR 

OPTION 11 

For filler or separator cards, punch out: 

+1 = parity punched cards 
0 = blank cards 

-1 = no filler cards 

Standard = +1.0 

The filler card, if requested, is produced after an END 
statement. Parity punched cards produce a punch in channel 5 of 
the paper tape. The space codes are specified in option 64. 

OPTION 12 

This option is not currently tested. 

OPTION 13 

Minimum read time in minutes for the machine tool tape reader to 
read a maximum length command block, based on 62.5 
characters/second. 

Standard = 0.012 minutes 

The read time relation is: C(MAX)/(60*TRS). C-MAX standard is 
45.0. C(MAX) = maximum number of characters possible in a 
programmed block. TRS = tape reader speed in characters per 
second. Use the following table as a guide for TRS vs. time in 
minutes. 

TRS MIN 
100 = 0.0075 
300 = 0.0025 
400 = 0.001875 
500 = 0.0015 

1200 = 0.000625 

Not applicable to non-buffered units, as the Mark Century 1008, 
NPC controls, and all Mark Century 7540 series controls. For 
these use o.co1. 

5-165 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 14 

Step size in inches. 

standard = 0.0001 inches 

Step size is the increment produced by one pulse of the servo 
control. 

OPTION 15 

If continously variable spindle speeds are available, (types 1, 
10 and 18 spindles), what percent variation of the spindle speed 
should be used when in an SFM mode? (See section 4.4 for SFM 
details.)~ 

Standard= 0.10 (10 percent) 

OPTION 16 

system catch-up time before a gear shift into or out of rapid 
traverse. The catch-up time is issued in a dwell block by itself 
prior to the block containing the shift code to the new 
condition. If this option is set to zero, no dwell block is 
issued. Non-buffered controls and positioning controls should 
have this option set to zero. 

Standard = 0.5 seconds 

OPTION 17 

For GEOUT3 (option 
printouts are wanted? 

100 = incremental 
10 = absolute 

1 = operators 
O = no printout 

Standard = 111.0 

164=3) and GEOUT4 
(See Section 3.5.) 

(option 164=4) what 

200, 20, or 2 gives the first and last points of the cut vector, 
and the intermediate blocks are deleted when the postprocessor 
segments a departure. 

5-166 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 18 

Number of feedrate ranges, if more than 1 range is required. 

0 = one range 
n = number of ranges if greater than one. 

Standard = 0.0 (means 1 range) 

Check option 91. Also, do not count rapid traverse range as a 
feedrate range for this option. Maximum· and minimum feedrate 
values per range are stored in table FRTAB. A maximum of seven 
ranges can be used. see Section 4.1. 2. -

OPTION 19 

Spindle type for this machine. 

Standard = 1.0 

Spindle types are discussed in Section 4.5. If option(19) = 7.0, 
then set option(133) = 1.0 

OPTION 20 

The following output types are available. 

O = Hollerith BCD characters (Punch B) 
1 = Paper tape image (Punch A) 

-1 = Gapped magnetic tape 
-2 = Gapless magnetic tape 

Standard = 0.0 

Zero will punch out the characters as Fortran hollerith codes. 
The paper tape image, +1, will punch cards in the image of the 
programmed paper tape. Each card is 72 columns. See options 52 
and 64 thru 6 8. Also see section 3. 5. 1. -

5-167 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 21 C 

Safety should be: 

0 = one-shot 
1 = modal 

Standard = 0.0 

Zero applys 
statement. 

OPTION 22 

only to first motion 
Used for lathes only. 

The machine axes are, 

100 = x 
10 = y 

1 = z 

statement after a safety 

Add the above values to represent the machine coordinate system. 

Standard = 111.0 

11 = YZ 
101 = zx 
111 = XYZ 

The axis nomenclature of the machine is defined by its register 
needs. · Example: lathes normally use the ZX reference frame, and 
the ZX registers. Therefore, option 22 = 101. This option 
applies only to the three primary linear axes; multihead and 
multiaxis machines and those with secondary and tertiary axes are 
handled in a different manner. 

OPTION 23 

Assumed feedrate in inches per minute, if not specified. Do not 
set this option equal to zero as postprocessing will cease. 

Standard = 5.0 IPM 

5-168 



·'-'. 

ClClNT 111 POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 24 

Feedrate command maximum. · (excluding rapid traverse) 

Standard = 500.0 

OPTION 25 

Maximum feedrate in inches per 
separate maximum and minimum 
of the highest feedrate as the 
maximum and minimum values 
order as given by option 59. 
number of linear axes. 

Standard = 200.0 IPM 

OPTION 26 C 

minute. If each axis has its own 
feedrate, store the negative value 
value of this option. - Store the 
for each axis in FRTAB in the same 

Set option 174 equal to twice the 

Should a feedrate number multiplier constant be used when the 
calculated feedrate number exceeds the maximum permissible value 
(option 24.)? To use this option, the machine must have the I, 
J, and K, registers. 

0 = YES 
1 = NO 

Standard = 0.0 

When the feedrate command maximum is exceeded, the use of a 
multiplier constant permits a wider range of feedrates for short 
moves. This option can not be used if feedrate uses a 3 digit 
EIA command form. (Option 10 = 1) See Section 4.1.53., and 
4.1.5.1, and option 170 for alternative considerations. 

OPTION 27 

Assumed spindle speed, if not specified by a spindle statement. 
Do not set equal to zero as postprocessing will cease. 

standard = 80.0 RPM 

5-169 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 28 C 

Assumed interpolation mode, if not given or previously specified. 

0 = LINEAR - linear interpolation will be used for all paths. 
1 = LINCIR - will use circular interpolation, if available, 
for paths that are circular in any of the standard reference 
planes, and constant in the other axis. All other paths will 
use linear. Mode of interpolation may be changed through the 
MACHIN/GECENT statement. 

standard = 1.0 

OPTION 29 

Should the postprocessor keep track of the rotary table position 
on a - ROTATE/TABLE,ALPHA - statement? 

0 = NO 
1 = YES 

Standard = 1.0 

Absolute systems should set this option to 1. - Incremental 
systems may or may not. If the option = O, the postprocessor 
completely ingores the position of the table. This precludes use 
of the ATANGL and the ROTREF modifiers. It is the 
responsibility of the part programmer to keep track of the table. 
If a ROTREF or an ATANGL modifier is called when the option = O, 
the postprocessor prints a warning comment, and proceeds as if 
the option = 1. Option 29 must = 1 if linearity is to be used. 
1 in effect gives an automatic ROTREF on all rotary moves. If 
option 29 = O, the part programmer has the flexibility to program 
either with or without a ROTREF, but with no linearity testing. 

OPTION 30 

Is the optional feature OPSKIP (block delete) available? see 
Section 4. 11. -

0 = NO 
1 = YES 

Standard = 0.0 

5-170 



CltlNT 111 POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPI'ION 31 

For type 2 spindles, what is the speed code increment between 
ranges? 

Standard = o.o 

All ranges must have the same incremental variation between the 
speed code at the end of a range, and the code at the beginning 
of the next higher range. - see Section 4.5.3. 

OPTION 32 

(Not currently tested) 

Assumed tolerance in inches, if not given by the 
statement. 

Standard = 0.0005 inches 

MCHTOL 

Value given by MCHTOL is used as a dynamic tolerance in A/D 
testing. Used only when option 55 = 1.0. 

OPTION 33 

Assumed coolant mode, if none is given or specified. 

1 = TAPKUL 
2 = MIST 
3 = FLOOD 
4 = outputs M code stored at TABLEM(9) 
5 = SADDLE 
6 = FRONT 
7 = REAR 

Standard = 4. 0 

If only one coolant mode is available, option 33 = standard value. 

5-171 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 34 

Initially assumed spindle direction, if none is given or specified. 

+1 = CLW 
-1 = CCLW 

0 = error, and computer processing stops. 

Standard = +1.0 

OPTION 35 

Assumed feedrate mode, if none is specified or given. 

0 = !PM 
1 = IPR 

Standard = 0.0 

OPTION 36 C 

Should the rapid traverse vector be optimized? 

0 = YES 
N = NO 

where N is the maximum vectorial feedrate in !PM on RAPID move. 
see section 4.1.5.4. 

Standard = 0.0 

5-172 



~ 

ClClNT 111 POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 37 C 

Minimum cutter path length for a rapid traverse motion. 

standard = 0.0 inches 

For machines that require gear shifting to obtain rapid traverse, 
it may be advantageous to remain in the feed range and travel at 
the highest rate in that range. Machines that shift gears for a 
rapid traverse often require dwells before and after a rapid 
move. For such moves, the GECENT postprocessor allows an 
assigned value for the dwell, option 81, for shifting into the 
rapid traverse range. Similarly an assigned value of dwell, 
option 82, is used for shifting from rapid traverse back into 
feed range. To compute the minimum length of path for which it 
is faster to use the option values of dwell and the rapid 
traverse range, use the following relationships. · Minimum path 
length equals the greater value of 81, 52, and 83. 

sl 
[om * 

039] [081 :O 082J = 
om - 039 

82 = 0 39°13 

83 = 0 ~13 - [081 :o 082] m 

where: 

OM = minimum value of option 42, 43, and 44, but not equal to 
zero. 

Option 13 = minimum tape reading time 
Option 39 = maximum feedrate 
Option 81 = dwell time - shifting to rapid traverse 
Option 82 = dwell time - shifting back to feed range 
81 = minimum length of path for which it is better to shift into 

rapid traverse rather than use the maximum feedrate 
s2 = minimum length of path in maximum feedrate before the path 

is limited by the tape reader 
s3 = minimum length of path in rapid traverse before the path is 

limited by the tape reader 

5-173 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPI'ION 38 

Must there be a G code in every programmed block? 

0 = Redundant G codes are suppressed in punched and printed 
output. 

+1 = No supression of redundant G codes. G code for dwell, 
TABLEG (5) 1 is used for blocks which do not have a G code 
already assigned. 

-1 = Current cycle G code is used instead of TABLEG(5). No 
suppression of redundant G codes. 

+2 = Suppression of G codes in motion blocks only. 

Standard = 0.0 

OPTION 39 C 

Maximum feedrate in inches per minute obtainable in the feed 
range, when rapid traverse is prohibited by option 37 limiations. 

Standard = 50.0 IPM 

This option can be ignored if options 37, 81, and 82 are zero, or 
if option 25 equals options 42, 43, and 44. Note: There is no 
range changing on multi-feed range machines. 

OPTION 40 P 

For positioning machines only should redundant X and Y values be 
suppressed? 

0 = NO 
1 = YES except those which appear with a T code 

Standard = 1.0 

5-174 



·~ 

Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 41 C 

Is there a variable format for X, Y, and Z which changes for a 
long departure TABLEG(11)? 

1 = NO 
0 = YES, but use of the long departure is restricted to rapid 

moves only. 
-1 = 

-2 = 

YES, and applies to both RAPID and FEED, with format 
changing from 14(normal) to 23(long). 
YES, and applies to both RAPID and FEED, with format 
changing from 14(normal) to 24(long). 

Standard = 1.0 

If o, the postprocessor assumes that G10 blocks have a format of 
-23.0 and that normal and short blocks have a format of -14.0. 
Option 4 and TABLEG(11) must be set properly if this option = 
YES. Ignore this option if the machine has a 6 digit register, 
or is 7500 series control. See section 4.8. 

OPTION 42 

x-axis maximum rapid traverse in inches per minute. 

Standard = 200.0 IPM 

OPTION 43 

y axis maximum rapid traverse in inches per minute. 

Standard = 200. 0 !PM 

OPTION 44 

z axis maximum rapid traverse in inches per minute. 

Standard = 200.0 IPM 

5-175 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 45 

Maximum rapid traverse command number. 

Standard = 500.0 

If this option is negative, do not output the rapid value of F. 

OPTION 46 

Are gear shifting M codes required for a rapid traverse? 

0 = NO 
+1 = YES, indicating that an M code is required for each axis 

when shifting into or out of rapid traverse. · 
-1 = YES, indicating that only one M code is required for all 

axes. 

Standard = 0.0 

+1 or -1 implies a programmed dwell is required for the shift
ing of gears. The times are specified in options 
81 and 82. 

OPTION 47 

Numerical increment added to the spindle table row number in 
order to produce the correct spindle speed command for the 
minimum speed, first range for type O, type 2, type 3, type 8 
spindles. 

Standard = 0.0 

See Sections 4.5.1, 4.5.3, 4.5.4, and 4.5.9. · 

OPTION 48 

Feedrate minimum in inches per minute. 

Standard = 1.0 IPM 

5-176 



'-" 

CICINT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPI'ION 49 

Feedrate command minimum. (Used also as command minimum for Z 
axis on positioning feedtype 5 only.)-

Standard = 1.0 

OPTION 50 

(Not currently tested.) 

OPTION 51 

Should word addresses and values of the REGSTR table, (3 through 
10 and 16) which for the standard cases are X,Y,Z,A,B,I,J,K be 
deleted from the punched output if their values are zero? This 
applies to punched output only. 

0 
+1 
-1 
-2 

= 
= 
= 
= 

delete both the zero value and the word addresses 
delete the zero but keep the word addresses 
output both the word address and the zero value 
delete leading zeros trailing zeros on all departure 
commands. This can be used only for 100M controls so 
connected, and for 7500 series controls with variable 
register length format. 

Standard = 0.0 

OPTION 52 

Should the output cards be packed, (fill each card in columns 1-
72) with as many programmed blocks as possible? This pertains 
only to tapes using Hollerith characters. Tape image always use 
packed cards. 

0 = YES 
1 = NO 

standard = 0.0 

If option 52 = O, option 11 must = O, or +1. see option 20 also. 
Currently not available on the IBM 360 system. 

5-177 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 53 

(Not currently tested.) 

OPTION 54 

If the postprocessor is to insert a dwell for spindle speed range 
changes, what dwell time is used? Also used for a spindle 
locking awell time. 

Standard = 0.0 seconds 

This option should not be used if the spindle must be stopped for 
changing gears. The part programmer must call for the stop. The 
spindle must then be restarted by the part programmer. Also, 
ignore this option if the spindle subroutine automatically 
inserts dwells for range changes. For example, a type 10 
spindle. · see related option 89 when a dwell is required for 
spindle reversal. 

OPTION 55 C 

Does the postprocessor test the cutter path segments for 
acceleration and deceleration conditions? 

0 = NO 
1 = YES 

Standard = 0.0 

If 1, the postprocessor tests all paths and makes any necessary 
corrections which allow the cutter to follow the programmed paths 
within tolerance. Feedrate is reduced when approaching a corner. 
See section 4.3.3 for a detailed discussion of A/D. (Not 
currently tested, therefore the standard value must be used.) 

5-178 

.. .,,, 



Cl&HT Ill POSTPROCESSOR ... for the computer programmer 

"-" OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 56 C 

Scale factor for modifying a dwell register so that dwell times 
are properly punched in the output tape. 

Standard = 10.0 

Dwell time is given in an axis register, usually the X or Z 
register. On most machines a dwell times causes a different 
interpetation of the magnitude of the number given in the axis 
register. For example, in a motion code block, X42 may equal an 
X axis motion of 4.2 inches, but in a dwell code block, X42 may 
mean a dwell of 42 seconds, and not 4.2 seconds. In this 
example, the correction necessary would be to set option 56 = 10, 
since dwell time is divided by the option value before it becomes 
output. For 7500 controls the dwell function has a fixed format 
of 24 whereas motion may have a format changeable from 14 to 44 
by variable connection. Thus a control with a format of 44 must 
have option 56 set to 0.01 so that a 15 second dwell will be 
output as X1500 and not as X0015. see section 4.10. Not 
appliciable if the feedrate is used for a dwell. 

OPrION 57 C 

Where should the dwell register be placed? The standard order as 
assigned by REGSTR is-
N= 1 G=2 X=3 Y=4 Z=5 A=6 B=7 
!=8 J=9 K=10 F=11 5=12 T=13 M=14 
Locations 16-30 are also availalbe. 

standard = 3.0 

OPTION 58 

(Open for assignment) 

5-179 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 59 

APT operates internally with the axes order +X, +Y, +z. Output is 
presented this way, too. How is the output presented for this 
machine? 

Standard = 131415.0 Means(+X+Y+Z) 

This option is best explained by an example. If the given 
machine were a lathe, we normally need output in terms of the X 
and z axes. For 2 axes, APT works most efficiently with the axes 
ordered +X+Y, as indicated in figure 1, but lathe axes are 
ordered +z-x, figure 2. 

+Y -x 

-x +X -z +Z 

-Y +X 

FIGURE 1 FIGURE 2 
Since the output will be in terms of +X, +Y, it is necessary to 
refer the values to the +z, -x, reference frame, because the 
lathe can only operate with these axes. Therefore, option 59 
would be given as +z-x, which means that in the normal output, 
the word address for +X values should be changed to +Z, the word 
address for +Y values should be -x. This option requires the use 
of signs. An unspecified axis is ignored • If the option is 
given as +Y+Z, no X values will appear in the output. This 
option must be given in the numerical form 

MEANING BLANK + - x y z I J K 

CODED 0 1 2 3 4 5 6 7 8 

see also options 42, 43, and 44. 

5-180 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

'-'1 OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 60 C 

How should the I J K registers be presented? 

Standard = 161718.0 Means(+I+J+K) 

This option is completely analogous to option 59. If the op~ion 
were given as +J+K, then the output word addresses would be 
changed to J and K, and no I values would appear in the output. 
Ignore, if the I J K registers are not available on this machine. 

OPTION 61 

(Open for assignment) 

OPTION 62 P 

Number of ranges of discrete feedrates. This option applies only 
to positioning machines which use specific values of feedrate 
which are selected from a table of values. see Section 4.1.2. 

Standard - 1.0 

OPTION 63 P 

Number of feedrates per range. 

Standard = 1.0 

All ranges must have the same number of speeds. Use for 
multiple, discrete values only, as for a table of IPR values. 

OPTION 64 

Space code. This code is used to produce the leader tape length. 

standard= (((((( Paper tape punch in channel 5. 

Also see section 3.5.3.2. 

5-181 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 65 

End-of-record or stop code. Given by the TMARK statement. 

Standard = = (equal sign) Paper tape punches in channels 1,2,4 

OPTION 66 

Tab code. 

standard = * Paper tape punches in channels 2,3,4,5,6. Not 
currently used. 

OPTION 67 

End-of-block code. 

Standard = $ Paper tape punch in channel 8; magnetic tape uses 
channels 3,4,5. 

OPTION 68 

(Open for assignment) 

OPTION 69 C 

servo settling time. 

Standard = 0.12 seconds 

NOTE ••• options 70-74 should be ignored if option 55 = O.O 

OPTION 70 C 

Additional overshoot constant. 

Standard = 1.3 (dimensionless) 

5-182 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

~ OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 71 C 

overshoot constant. 

Standard = 0.0129 seconds 

OPTION 72 C 

Undershoot constant. 

Standard = C.00905 seconds 

OPTION 73 C 

Velocity error coefficient (servo gain constant). 

Standard = 14.5 cycles per second 

OPTION 74 C 

Circle error constant. 

standard = 28.0 cycles per second 

OPTION 75 

Should an M code produced by the AUXFUN statement be made output 
in a block by itself, or be merged with the next output block? 

0 = output a block by itself 
1 = merge into the next block 

Standard = 0.0 

OPTION 76 C 

Dwell time in seconds for closing or opening a clamp. Used in 
conjunction.with TABLEM locations 22,23,53,54,55, and 56. 

standard = 0.0 seconds 

5-183 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 77 

In which block should the spindle-on M code be placed with 
respect to the block in which the spindle speed command appears? 

0 = output the M code and s code in the same block 
+1 = output the M code in a command block preceding the s code 

block 
-1 = output the M code in a command block following the s code 

block 

Standard = o.o 

OPTION 78 P 

Type of f eedrate command to be 
machines. Zero implies no feedrate 
specifies a type zero command also. 

generated 
type. A 

with positioning 
negative number 

0 = feedrate command= ABS (OPTAB(78)) times feedrate in IPM 
1 = f eedrate command = feedrate in IPM 
2 = function of current spindle speed and range, and a table 

of discrete IPR feedrate values (see option 144) 
3 = feedrate is a 3 digit EIA number 
4 = use 2 range table lookup 
5 = feedrate t 1able for z coordinate and table for X and Y also 

see options 4 9, 2 0 1 , 2 0 2 • -
6 = XY (milling feedrate command) = 12 * feedrate in IPM. 

Z feedrate command = 2 * feedrate in IPM. 
7 = the F command is a code number (neither IPM nor IPR) 

representing manually set feedrate selections. 
8 = use FTYPE2, only the feedrate command is an EIA number 
9 = similar to FTYPE2, except the feedrate table is given in 

IPM 

Standard = 0.0 

Also see section 4.1.2. 

5-184 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 79 

Number of lines of output to be printed per page. 

Standard = 45.0 lines 

Do not count the 7 lines used for titles. Do not exceed 51 
lines. 

OPTION 80 MA 

If a pallet is used, this height is used for clearance checking 
which varies as a function of the presence or absence of a 
pallet. 

0 = no pallet 
N = the height of the pallet or fixture in inches 

Standard value = 0.0 inches 

OPTION 81 C 

Dwell time for shifting gears into a rapid traverse. 

Standard 2.0 seconds 

If no gear shifting is required for rapid traverse, ignore 
options 81 and 82. 

OPTION 82 C 

Dwell time for shifting gears into the feed range from rapid. 

Standard = 1.0 second 

OPTION 83 C 

Dwell time for turret index or tool change. 

standard = 5.0 seconds 

5-185 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 84 C 

Assumed f eedrate for the saddle, if none is specified. 

Standard = 5.0 IPM 

If the value is negative or zero, an error is assumed. 

OPTION 85 C 

Assumed feed mode on a saddle, if none is specified. 

+1 = IPM 
-1 = IPR 

0 = error, and computer processing stops. -

Standard = +1.0 

OPTION 86 P 

Automatic tool corrections for positioning machine tool changes. 
Used to compensate for tool length. 

0 = none 
+1 = make the tool correction with a LOAD/TOOL orTOOLNO state

ment 
-1 = tool length is compensated in z and R when the z axis is 

inverted (See option 140). 
+2 = tool length is subtracted from the Z and R values. This 

permits programming with the tool base instead of the tool 
tip 

-2 = make the tool correction and insert tool offset (if any) 
on a ROTATE/TURET statement 

Standard = 0.0 

This option pertains only to absolute positioning machines. 
Incremental contouring machines always receive a corrective 
compensating mo~ion, when needed, whereas positioning machines 
receive a correction only in the tool length which compensates 
for the length variation due to a tool change. see description 
of LOAD/TOOL and TOOLNO and inversion in the Part Programmer's 
Manual. 

5-186 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

"-" OPTION TABLE FOR GECENT III POSTPROCESSOR-

OPTION 87 C 

Dwell time for a saddle rapid traverse. 

Standard = 0.0 seconds 

The same dwell time is used in going back to feed. 

OPTION 88 

Number of tools for a multi-spindle turret, lathe turret, or a 
tool magazine. 

Standard = 0.0 

This option intended for tool magazines or changers which rotate 
(automatically) least distance for next tool. set equal to zero 
if direction of rotation is fixed, or if no multispindle or 
magazine exists. Set value negative if M codes are used for CLW 
and CCLW rotation. See also option 106. 

~ OPTION 89 

Automatic time delay and issuance of the spindle stop M code, 
when the spindle changes direction. Cannot be used for range 
change. see option 53 for range change. 

0 = NO 
Any value = YES 

Standard = 0.0 seconds 

OPTION 90 

If the exact spindle speed is not available from the table, use: 

-1 = next lower speed 
O = closest speed 

+ 1 = next_ ,higher speed 

Standard = -1 • 0 

5-187 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 91 

Assumed feedrate range, if none is given by initial FEDRAT 
statement. Used only for multiple feed range machines, excluding 
rapid traverse. 

Standard = 2.0 

See option 18 

OPTION 92 C 

Dwell time to use when coupling or uncoupling the encoder. 

Standard = 2.0 seconds 

0 = no dwell and no speed reduction. If the spindle speed must 
be reduced to the lowest speed in its range before coupling, set 
the value negative. If no dwell is wanted but the speed must be 
reduced, use a small value; i.e., 0.000001. This action does not 
occur when uncoupling. 

OPTION 93 C 

Dwell time used for shifting from one feedrate range to another, 
not including the rapid traverse range. 

Standard = 0.0 seconds 
fl 

If the option = zero, no dwell block is issued, and the feedrate 
range M code is merged into a program block. · A negative value 
means a dwell time is given when shifting into and out of only 
one range. Dwell is output by a special machine function 
subroutine. 

OPTION 94 

(Open for assignment) 

OPTION 95 

(Open for assignment) 

5-188 



C(tHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 96 

This option is used to determine the relationship between tool 
(or turret face) , tool off set, and turret position when these 
parameters are part of the format of the T word on contouring 
systems (usually lathes) as called by the TURRET statement. 

It is also used for a particular type of positioning control 
where the couplet OFSETL, n is used with LOAD/TOOL, SELECT/TOOL, 
of TOOLNO statement and the output is an M code selecting the 
tool offset independent of the tool number. 

When used with the TURRET statement (contouring) , option 96 is 
the type number of the T word format as given in the table below: 

Type No. of Digits Format of T word 

No. in T word 1st Digit 2nd Digit 3rd Digit 4th Digit 5th Digit 

0 1 Tool no. 

0 1 Tool no. 
incl off set 

3 2 Tool no. I TUrret 
incl off set Position 

4 2 Tool no. Offset 

5 2 Offset Tool no. 

6 3 Offset Tool no. Turret 
Position 

7 3 Off set Tool 
Position 

0 5 Five digit Tool number 

2 5 Tool Off set Tool no. Turret Position 

Turret 
1 5 Tool Off set Tool number Position 

For ·positioning controls, a ne~ative value (-K) for option 96 
will cause the postprocessor to output an M code whose magnitude 
is equal to the value of n taken from the couplet OFSETL, n plus 
the absolute value of K. 

see section 4.2.54 of the part programmer's manual. 

5-189 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 97 C 

If available, should the APT statements REWIND and END issue a 
dwell, in seconds, and a zero T code to count out the tool 
off set? 

0 = NO 
any value = YES 

Standard = 0.0 seconds 

If a value is assigned, the postprocessor issues a dwell block of 
the given time. - The dwell block also carries a zero T code. 
This dwell precedes the rewind command block. 

OPTION 98 C 

Do non-motion command blocks require feedrate commands, or an F 
code? 

0 = no f eedrate command 
+N = use the value N in all non-motion blocks except dwell 

blocks. 
-N = use the ABS(N) value in all non-motion blocks. 

Standard = O.O 

When a feedrate command (N) is given, the postprocessor outputs 
the G code stored in TABLEG(S) and the block execution time will 
be determined for this mode. The given feedrate command is also 
stored in a TMARK block, but the value is not printed. - Do not 
use this option where G04 is used for dwell; see option 148. 

OPTION 99 

On a SPINDL/NEUTRL, what s code should be used? 

standard = o.o 

If soo is the command for a SPINDL/NEUTRL, set this option equal 
to 0.1. If the option equals zero, no spindle speed command is 
output. The spindle speed command issued for a NEUTRL does not 
replace the current spindle speed or the spindle range. The 
value given must be in command form and not in RPM form. Then 
the value in the absolute printout will also be in command form. 
This is also used for the s code put into a TMARK block as 
controlled by option 146. 

5-190 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

NOTE ••• Options 100-105 are reserved for constants which appear in 
the multi-axis transform equations. They are used for 
multi-axis machines only. - They are not used for 3-axis, 
and should be set to standard value. -

OPTION 100 MA 

Distance from head 1 spindle axis to head 2 spindle axis, for 
head 2. 

Standard = 0.0 inches 

OPTION 101 MA 

Distance from head 1 spindle axis to head 2 spindle axis, for 
head 1. 

Standard = O.O inches 

OPTION 102 MA 

Distance between the rotary head axis and the spindle face, for 
head 2, snall gripper. 

standard = 0.0 inches 

OPTION 103 MA 

Distance between the rotary head axis and the spindle face, for 
head 2, large gripper. 

standard = 0.0 inches 

OPTION 104 MA 

Distance between the rotary head axis and the spindle face, for 
head 1, srrall gripper. 

Standard = 0.0 inches 

5-191 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 10 5 MA 

Distance between the rotary head axis and the spindle face. for 
head 1, large gripper. 

Standard = 0.0 inches 

OPTION 106 

Number of turret positions available. 

+N = number of turret positions when numbered CLW facing the 
turret 

-N = number of turret positions when numbered CCLW facing the 
turret 

.Standard = 0.0 

This is used to determine tool corrective moves for lathe 
turrets. see also option 88. 

OPTION 107 

Should redundant F codes be suppressed? 

1 = YES 
0 = NO 
2 = suppress redundant F codes, except those in a T code block. · 

Standard = 1.0 

OPTION 108 

This option is open for assignment 

Standard = 0.0 

5-192 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 109 

Mode of all rapid commands. 

0 = Rapid is one shot and the initial FEDRAT assumes IPM unless 
specified otherwise. 

+1 
-1 
+2 

= 
= 
= 

If FEDRAT is greater than the maximum, motion is made rapid 
Rapid is modal and is cancelled only by a FEDRAT statement. 
if FEDRAT is greater than the maximum, the motion is made 
rapid, and the rapid is modal 

Standard = 0.0 

OPTION 110 

What procedure should be followed regarding axis limit testing? 

0 - No testing. If non-zero value given, see options 121-126. 
+1 = Print a warning comment when a limit is exceeded, and 

continue. 
-1 = Assume an error and quit. 
+2 = Print a warning and continue, but do not produce punched 

output. This setting is recommended. 

standard = 0.0 

OPTION 111 C 

Maximum departure in degrees for the rotary axis. 

Standard = 35.99964 degrees 

OPTION 112 C 

Radius, in inches, of the part on the rotary table. · 

standard = 6.0 inches 

used to determine the rotary feedrate. 
positioning.machines. 

Not applicable to 

5-193 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 113 

Minimum feedrate in RPM for the rotary table. 

Standard = 0.0012 RPM 

OPTION 114 

Maximum feedrate in RPM for the rotary table. 

Standard = 1.2 RPM 

OPTION 115 

Rapid traverse speed in RPM for the rotary table. 

Standard = 2.0 RPM 

OPTION 116 MA 

What class geometry transform equations are used? (required only 
for multiaxis machines) 

Standard = 0.0 (no class equation used) 

OPTION 117 

What direction of rotary move will cause an increase in reading 
on the rotary axis scale? 

+1 = CLW 
-1 = CCLW 

Standard = +1 

NOTE ••• CLW is defined as advancing a righthand screw along the 
negative direction of the axis of rotation. (This is 
opposite to the standard EIA definition.) 

Also see option 120. 

5-194 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 118 

Rotary axes are scaled as follows-

0 = parts of a revolution (1 part = 1 revolution = 360 degrees) 
+1 = degrees 
-1 = 100 parts per revolution (100 parts = 1 revolution = 360 

degrees) 

Standard = 0.0 

Also see option 117 

OPTION 119 

Rotary axes minimum step size in output units. 

standard = 0.0001 

OPTION 120 

For incremental machines, the direction of the table rotation for 
a positive command is: 

+l 
-1 
-2 

= 
= 
= 

CLW 
CCLW 
Outputs a plus sign for CLW and a minus 
CCLW rotation of absolute positioning 
to. show direction of rotation only, even 
moving to a less positive position. 

Standard = 1.0 

sign for 
machines 

though 

See option 117 for definition of CLW and CCLW as used here. 

5-195 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

NOTE ••• Options 121-126 test for departures which exceed axis 
limits. Slide limit testing is done on the axis 
designations used by the partprogrammer and before they 
are "shuffled" by option 59; however the signs given by 
option 59 are used. Therefore, store the values of 
options 121-126 in CLTAPE order. For example, an engine 
lathe with 20 inch longitudinal axis.Z, and 10 inch cross
slide x, programmed in the first quadrant (XY) but 
shuffled by options 59 (output) as +z~x would have options 
121-126 set as follows: 
121 = 20 123 = 0 125 = 0 
122 = 0 124 = -8 126 = 0 

Multiaxes machines do all slide limit testing in the machine 
function subroutine, but these options may be used for the input. 
If other limits must be tested, use the machine subroutine. 

OPTION 121 

Upper or more positive slide limit on the X value taken from the 
CLTAPE 

Standard = 0.0 inches 

OPTION 122 

Lower or least slide limit on the X value taken from the CLTAPE 

Standard = 0.0 inches 

OPTION 123 

Upper or more positive slide limit on the Y value taken from the 
CLTAPE 

Standard = 0.0 inches 

OPTION 124 

Lower or least slide limit on the Y value taken from the CLTAPE 

standard = 0.0 inches 

5-196 



Cl&l~T Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 125 

Upper or more positive slide limit on the z value taken from the 
CLTAPE 

standard = 0.0 inches 

Option 126 

Lower or least slide limit on the Z value taken from the CLTAPE 

Standard = 0.0 inches 

OPTION 127 

Spindle is turned off by-

1 = soc 
0 = TABLEM(6) whose standard value is M05 

standard = 0.0 

OPTION 128 MA 

Average head tool swing radius in inches. 

Standard = 0.0 inches 

Used for feedrate and cut time calculations. 

OPTION 129 

On a STOP, OPSTOP, BREAK, or SPINDL/OFF, should the postprocessor 
set the spindle range to 1, or retain the current range. 

0 = range 1 
1 = current range 

standard = 0.0 

~ new spindle statement will take precedence. 

5-197 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 130 P 

How should a Z motion be made output on a positioning machine? 

0 = ignore z 
+1 = make it a separate output block 
-1 = output X, Y, and z in one block 

Standard = 0.0 

OPTION 131 

(Open for assignment) 

OPTION 132 

Type of machine. 

0 = lathe 
1 = mill 
2 = positioning 
3 = drafting 
4 = flame cutter 
5 = welder 
6 = filament winder 
7 = positioning used as a contouring 
8 = positioning machine with contouring option (7500 series) 

Standard = 1. 0 

OPTION 133 

Does the machine subroutine have special functions to perform? 

0 = NO 
1 = YES (GECENT customer Service will determine this.) 

Standard = 0.0 

MCHCON is tested 
performed. For 
option (133) = 1. 0 

5-198 

to see 
example, 

which particular 
if option (19) = 

function is to be 
7.0, then set 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 134 

Maximum length of punched tape for the control: 

0 =ignore the break sequence. See Section q.7 

Standard = 1100.0 feet 

OPTION 135 

Minimum length or punched tape for the control: 

0 = ignore the break sequence 

standard = 900.0 feet 

The postprocessor looks for the break statement once the tape 
footage exceeds the amount given by this option. 

OPTION 136 

Does the control automatically reset the spindle and coolant to 
their former conditions when there is a restart after a 
programmed stop? (MOO) 

0 = NO 
1 = YES 

Standard = 0. 0 

A new spindle or coolant statement will take precedence. 

OPTION 137 

When changing spindle ranges, is special shifting required? 
(Not applicable if manual shift is required.) 

0 = No special shift required 
+N = Reduce speed to nth row of current range. Shift to the 

nth row of the new range, then the desired speed. Type 
2 spindles only. 

-N = Reduce speed to /N/ percent of maximum in current range 
with a 6 second dwell, then shift to the new speed. (Type 
10 only) 

standard = 0.0 

5-199 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 138 

Unit system to be used. 

0 = inch 
1 = metric 

standard = 0.0 

OPTION 139 

Is an additional feedrate register required? 

0 = NO 
N = YES, and N gives the location of the register cell 

(TABLE REGFOR) 

Standard = 0.0 

If this option is used for a rotary table feedrate, set option 
141 also. 

OPTION 140 P 

For positioning machines, should the z values of the cutter 
location data be adjusted for inversion and tool length? 

0 = NO 
N = YES, where N is the distance from the spindle nose (in the 

head up position) and the part coordinate zero reference. 

Standard = 0.0 

If option 86 is set to -1, tool length compensation occurs. 

OPTION 141 P 

What type of feedrate command does the rotary table have, if any? 

O = No separate f eedrate command 
1 = FCOM (N) = option ( 114) / ( 1. 43** (9-N)) , where N = 1, 2, 3, • .- • 9 

standard = 0.0 

This assumes the table has its own register. See section 4.1.3.1 

5-200 



C(CHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 142 

(Open for assignment) 

OPTION 143 

For SEQNO/ON, should the sequence number be the cutter location 
record number, or should it be a unit increasing number? 

0 = CL tape record number 
+1 = Unit increasing number. (In using this, option 17 must 

not equal 2) 
-1 = CL tape record number, with the redundant N codes 

suppressed. 

Standard = 0.0 

If no SEQNO statement is used, the standard value, is assumed. 

OPTION 144 P 

For positioning machines only, the increment to add to feed code 
to produce the co·rrect feedrate command for a type 2 and type 5 
feedrate. (see option 78) 

Standard = 0.0 

OPTION 145 

Should the postprocessor reinstate previous machine conditions 
after a STOP, OPSTOP, or BREAK? 

0 = NO 
+1 =YES, reinstated conditions are: spindle on, rapid or feed, 

tool or turret code, and coolant .• 
-1 = YES, and the postprocessor will always ·out the rapid M 

codes before reinstating the conditions. 
-2 = Reinstate rapid M codes only. 

5-201 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 146 

Should TMARK blocks have the following? (TMARK is End of Record) 

0 = nothing, but a TMARK and any reguired F code. 
+1 = a G code, value from TABLEG(S) 
-1 = G code, value from TABLEG(S), + an s code, value from 

option 99. 

Standard = 0.0 

OPTION 147 C 

Should the G01 and G11 be suppressed in the punched output? 

0 = NO 
1 = YES 

Standard = 0.0 

OPTION 148 C 

Should a dwell be produced for a non-motion block? 

0 = NO 
N = value in seconds 

-N = N second dwell in a STOP or OPSTOP block only 

Standard = 0.0 seconds 

Do not use this option if option 98 is non-zero. Used for the 
G04 type dwells only. 

OPTION 149 

Lower limit for head rotation in degrees. 

Standard = 0.0 degrees 

5-202 



"'-"·· 

C(CHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 150 

Upper limit for head rotation in degrees. 

standard = o.o degrees 

OPTION 151 MH 

Percent of tolerence band for which segmentation will not take 
place. (Used only with equal time method of segmentation.) See 
section 3.4.8. 

standard = 0.0 percent 

OPTION 152 MH 

Is a second set of preparatory codes available? 
letter other than G.) 

0 = NO 
1 = YES 

Standard = 0.0 

OPT ION 153 MH 

Is a second or third s code available? 

0 = NO 
2 = 2 spindle tables 
3 = 3 spindle tables 

standard = 0.0 

OPTION 154 MH 

Is a second set of miscellaneous codes available? 

0 =NO 
1 = YES 

standard = o.o 

(Assigned a 

5-203 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 155 MH 

In multi-head, do the heads share a common axis? 

0 = NO 
1 = YES, X-axis 
2 = YES, Y-axis 
3 = YES, Z-axis 

Standard = 0.0 

OPTION 156 MH 

Interpolation modes available. 

0 = line-line 
1 = circle-line 
2 = circle-circle 
3 = circle-circle and line-circle 

standard = o.o 

OPTION 157 MH 

Should common axis component feedrates on each head be within a 
given tolerance? 

0 = NO 
N = YES, and gives the tolerance in percent. 

Standard = 0.0 percent 

OPTION 158 MH 

Clearance between heads on the second axis by CLTAPE order. 

0 = NONE 
N = YES, and gives the value in inches. 

standard = o.o inches 

5-204 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR· 

OPTION 159 MH 

Clearance between heads on the first axis by CLTAPE order. 

0 = NONE 
N = YES, and gives the value in inches. 

Standard = o.o inches 

OPTION 160 

Number of print positions to be used in the calculation and 
spacing of the printed output. 

Standard = 120. 0 columns 

OPTION 161 

What routine should produce the readable PARTNO when using tape 
image type of output, PUNCHA? (option 20 ·= 1.0) 

0 = odd parity (PARNOM) 
1 = even parity (PARNEM} 

Standard = 0.0 

OPTION 162 

(Open for assignment) 

OPTION 163 

Is the readable PARTNO to be made output when using BCD type 
output, PUNCHB? (option 20 = 0.0) 

0 = YES 
1 = NO 

standard = 0.0 

5-205 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 164 

Select the printed output form desired. 

1 = GEOUT1 Summary printout. 
2 = GEOUT2 Combined printout. Used also for multi-axes. 
3 = GEOUT3 Multi-head printout. (see option 17) 
4 = GEOUT4 Printout for non-multi-head machines 

standard = 1.0 see section 3.5. 

OPTION 165 

1 = 100S 
0 = not a 100 s control 

Standard = 0.0 

OPTION 166 

(Open for assignm~nt) 

Standard = o.o 

OPTION 167 

This option is open for assignment 

Standard = 0.0 

OPTION 168 

should leader be produced after an END statement? 

0 = NO 
N =YES, and gives the' length in inches 

Standard = 0.0 

5-206 



C(tHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 169 

Should the non-readable PARTNO image be punched in the tape? 

0 = YES 
1 = NO 

Standard = 0.0 

This does not pertain to the readable PARTNO. 

OPTION 170 C 

Should the postprocessor segment linear paths as a function of 
the available G codes? 

0 = Do not segment 
1 = Attempt to segment feedrate command limited blocks 

Standard= O.O see Section 4.1.5.1 

This segmentation sequence will attempt to segment linear cut 
paths when the desired feedrate produces a f eedrate command 
exceeding the feedrate command maximum. (option 24) 
Do not use if-

OPTION 171 

1. positioning machine or multi-axes machine 
2. circular interpolation is available 
3. only one linear G code is available 
4. absolute input used with contouring controls 

(7500 series) 

Should redundant s words be output? 

0 = YES 
1 = NO 

Standard = 0.0 

5-207 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 172 C 

Should GEOUT1 produce the ABSOLUTE data or OPERATOR data. 

0 = ABSOLUTE 
1 = OPERATOR 

Standard = 0.0 

Positioning control systems use ABSOLUTE data. 

OPTION 173 

Punched output control. 

1 = print listing and punch tape 
0 = printed output only, no punched tape output. 

Standard = 0.0 

OPTION 174 

If the feedrate table (FRTAB) is required, what size must it 
(See option 18.) 

Standard = 0.0 

The size of FRTAB + SRTAB = 300.0 

OPTION 175 C 

be? 

Maximum spindle speed permitted when threading encoder is 
coupled. 

Standard = 600.0 RPM 

OPTION 176 

(Open for assignment) 

standard = 0.0 

5-208 



CltINT 111 POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 177 

Computer manufacturer 

0 = IBM 360 
1 = RCA 
2 = GE 635 
3 = CDC 
4 = UNIVAC 

Standard = 0.0 

OPTION 178 

(Open for assignment) 

OPTION 179 C 

Number of rotary table speed ranges. 

Standard = 1.0 

OPTION 180 C 

Number of table speeds per range. 

Standard = 2. C 

OPTION 181 C 

Assumed table speed in RPM, if none is given. 

standard = 1.0 RPM 

OPTION 182 C 

Dwell time when the rotary table changes direction. · 

standard = O.O seconds 

OPTION 183 C 

Dwell time for table startup. 

standard = 0.0 seconds 

5-209 



GICINT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

NOTE ••• options 184-189 are by CLTAPE order, not by option 59 
order. 

OPTION 184 C 

Home position in X (Machine coordinate) 

Standard = 0.0 

OPTION 185 C 

Home position in Y (Machine coordinate) 

Standard = 0.0 

OPTION 186 C 

Horne position is z (Machine coordinate) 

Standard = O.C 

OPTION 187 

Home position for the rotary head 

Standard = 0.0 

OPTION 188 

Home position for the rotary table 

Standard = 0.0 

OPTION 189 

Horne position for the third rotary axis 

Standard = 0.0 

5-210 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 190 

Home position for the secondary axis 

Standard = 0.0 

OPTION 191 MH 

Should the multi-head flag (MULTHD) be set in the postprocessor 
without giving a COMBIN/ statement in the part program? 

0 = NO 
1 = YES 

Standard = 0.0 

OPTION.192 

Maximum feedrate in RPM for the rotary head. 

Standard = 0.0 RPM 

OPTION 193 

Dwell time in seconds for changing spindle speeds. 

Standard = 0.0 seconds 

OPTION 194 

should a spindle stop code be output before a range change? 

0 = NO 
1 = YES 

standard = 0.0 

5-211 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 195 MH 

In multi-head, do the heads share a common dwell register? 

0 = NO 
Letter= desired dwell register name (Alphabetic charact~r) 

Standard = 0.0 

OPTION 196 

For a type 12 spindle (option 19 = 12.0) what is the cross-over 
spindle speed at which a dwell should be issued? 

standard = 0.0 

OPTION 197 MH 

In multi-head, are there more than 2 heads, and does more than 
one head share the same set of registers and format? 

0 = NO 
1 = YES, heads 1 and 2 share the same registers and format 

+2 = YES, heads 2 and 3 share the same registers and format 

Standard = 0.0 

OPTION 198 MA 

Does the part reference system move with the table and part when 
ROTREF is not given? 

0 = YES 
1 = NO 

Standard = 0.0 

OPTION 199 

Lower slide limit for the second rotary head. 

Standard = o.o 

5-212 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 200 

Upper slide limit for the second rotary head. 

Standard = 0.0 

OPTION 201 P 

Number of feedrate ranges for z. (Positioning feedtype 5 only) 

standard = 0.0 

OPTION 202 P 

Minimum feedrate command for X and Y (Positioning feedtype 5 only) 

Standard = 0.0 

OPTION 203 

Are there special functions to be performed in the output 
section? 

0 = NO 
1 = YES The machine function subroutine is called MSRTGO not 

MACSRT. 

Standard = O (GECENT customer service will determine this.) 

OPTION 204 

(Open for assignment) 

OPTION 205 C 

Type of system used for threading 

O = Three range system 
1 = Two range system 

standard = o 

5-213 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 206 

A ROTATE/TABLE, a, CLW statement causes the table to move-

+1 = CLW 
-1 = CCLW 

Standard = +1 

(See options 117 and 120) 

OPTIONS 207-212 

These options are not tested by the 
postprocessor. Functions performed are 
machine function subroutines and are 
machine/control hardware. 

Standard = 0 

OPTION 213 

standard GECENT III 
used only in special 

independent of the 

Is this a contouring machine with a postioning control? 

0 = NO 
1 = YES 

Standard = 0.0 

OPTION 214 

What parity is used with PUNCHB output? 

0 = no parity 
1 = odd 
2 = even 

Standard = 0.0 

This option is used only with PUNCHB on the GE635 

5-214 



CltlNT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 215 P 

For a Type 5 feed.rate what is the feed code increment between 
ranges? 

Standard = 0 

Any value is the·. increment 

OPTION 216 

(Open for assignment) 

OPTION 217 

(Open for assignment) 

OPTION 218 

Should MACHIN/OFF print out total cut and dwell times and slew a 
page? 

0 = NO 
1 = YES 

Standard = 0 

OPTION 129 C 

Is the feedrate range M code required to be output in a block 
before the dwell time for changing ranges? 

0 = NO 
1 = YES 

Standard = 0 

OPTION 220 C 

Lower limit for table rotation in degrees. 

standard = 0.0 

5-215 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

OPTION TABLE FOR GECENT III POSTPROCESSOR 

OPTION 221 C 

Upper limit for table rotation in degrees. 

Standard = 0.0 

OPTION 222 C 

on a threading record should I, J, K be modified to give a more 
accurate feedrate command? 

0 = NO 
1 = YES 

Standard = 0.0 

OPTION 223 C 

Is the maximum departure for circular interpolation different 
from the maximum departure for linear interpolation? 

0 = NO 
N = value of max. departure for circular interpolation 

Standard = 0.0 

OPTION 224 C 

Is it necessary to use I, J, K in calculating a feedrate command 
for linear moves with a departure greater than a specified 
m1n1mum. (Applicable only to 1005 control in the metric system. 
Option 26 must equal 1) • 

0 = NO 
N = YES where N equals the minimum value 

Standard = 0.0 

Options are dimensioned thru 250. 
presently = 0.0 

All standard values are 

The options 246 - 250 are reserved for customer use only. 

5-216 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

5. 6 .• 5. 1 CUSTOMER OPTIONS 

Options 246 through 250 are reserved for customer usage only and 

will never be touched by the GECENT III postprocessor as part of 
its standard operation. 

Installations which have need of optional assignments for such 

items as computer operation, method of off-line processing, NC 
machine special sequences, and so on, may make use of these 

options. The references and postprocessor modifications made for 

the customer options are the responsibility of the user customer; 
subsequent developments of the GECENT III postprocessor which 
affect these modified areas of the postprocessor require the user 

customer to make the necessary changes which retains the 

programmed integrity of the customer option functions. -

An example of how the customer options can be used effectively is 

the following case wherein one Machine Subroutine is made to 

apply to several NC machines whose only difference is the number 
and value of spindle speeds. The Machine Subroutine is written 

such that, dependent upon the settings of, say, options 246 and 
247, SRTAB is set up with the correct spindle speeds for the 

particular NC machine. 

The customer options permit the user to choose one of the several 

spindle tables by defining the options as follows: 

OPTION 246 

The number of speeds in the spindle table; there may be either 20 

or 100. As a standard, set the option to 20 in the Machine 

Subroutine. 

OPTION 247 

A parameter for choosing the machine size. As a standard, set 
the option equal to 4 in the Machine Subroutine. 

A possible list of values for option 247 might be as follows: 

Option 247 

1 
2 
3 
4 
5 
6 
7 
8 

Machine Size 

16" 
18" 
32 11 

40" 
64" 
10" 
90" 

100" 

For example, if the 100 speed table for the 40" machine is 

desired, OPTAB(246) = 100 and OPTAB(247) = 4 would be set in the 

MACHIN statement. The Machine subroutine then sets up SRTAB 

accordingly. 5-217 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.6.6 WRITING A MACHINE SUBROUTINE 

As was mentioned above in section 5.6, when setting up a Machine 
Subroutine the only items of the tables which must be specified 
are those which deviate from the Standard Machine. The tables 
show the standard values they assume and so each table must be 
separately consulted when writing the Machine Subroutine. 

For convenience, the Standrad 
reperesents a three-axis milling 
Type 1 spindle and a tool 
incremental system which uses 
interpolation. 

Machine is summarized here. It 
machine with a tape controlled 
changer; it has a contouring, 

both linear and circular 

Standard Machine 

TAB LEG TAB LEM 

( 2) = 1 ( 1) = 0 

(3) = 2 (2) = 1 

( 4) = 3 (3) = 2 

(5) = 4 (4) = 3 

( 18) = 17 ( 5) = 4 

{ 19) = 18 (6) = 5 

(20) = 19 (9) = 8 

(10) = 9 

( 31) = 30 

5-218 



Cltl~T 111 POSTPROCESSOR ... for the computer programmer 

'-" 5.6.6 WRITING A MACHINE SUBROUTINE (cont•d) 

Standard Machine 

REGSTR REG FOR 

(1) = N ( 1) = 30 

(2) = G (2) = 20 

(3) = x ( 3) =-14 

(4) = y (4) =-14 

(5) = z (5) =-14 

(6) = A (6) = 0 

(7) = B (7) = 0 

(8) = I (8) = 14 

(9) = J (9) = 14 

(10) = K ( 10) = 14 

(, 1) = F ( 11) = 30 

( 12) = s ( 12) = 30 

( 13) = T ( 13) = 20 

( 14) = M ( 14) = 20 

( 15) (IGNORE) (, 5) (IGNORE) 

( 16) = R ( 16) = 0 

( 17) = (OPEN) ( 17) = 0 

( 18) = c ( 18) = 0 

SRTAB ( 1) = 1 

SRTAB (2) = 300 

The Standard Machine assumes the standard settings of the Option 
Table. 

In general, setting up a Machine Subroutine is very simple since 
all that is normally necessary is to set certain known values in 
their proper table location. In addition to setting up TABLEG, 
TABLEM, REGSTR, REGFOR, and SRTAB, there are some other special 
items which may have to be considered. 

5-219 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

5.6.6.1 TAG ARRAY 

The array TAG (dimensioned at 6) is a BCD storage array for the 
NC machine identification title which is printed at the top of 
each page. For example, the title 

"MACHINE 40 BRACK LATHE" 

is set up in BCD form (as through a DATA statement) and stored 
into TAG. 

TAG(1) = MACHIN 

TAG ( 2) = E 1 20 1 1 

TAG(3) = BRACK 1 

TAG(4) = LATHE 1 

The TAG array is initialized to BLANKS. 

It is essential to set up the TAG array; if it is not set up, a 
blank line is printed. But it is a very convenient device for 
identifying printouts and its usage is strongly advised. The 
words stored in TAG in this example assume six characters to a 
word. 

5.6.6.2 !ORDER VECTOR* 

some NC machines require a certain order of input of the word 
address registers, thereby requiring the postprocessor to output 
the registers in that order. Normally, the postprocessor outputs 
the registers and their associated data in the order given in 
REGSTR, i.e., 

N G X Y Z A B I J K F S T M 

But if a different order is required, say, 

N G X I Y J Z K F S A B T M 

then the postprocessor must be instructed as to the proper 
sequence. This is the function of the !ORDER (dimensioned at 30) 
vector. 

The !ODER vector is ordered according to the REGSTR standard 
order. Thus, if no reordering of the registers is required, the 
!ORDER vector is not even used. - However, if a reordering of 
registers is needed, the elements of the !ORDER vector indicate 
the relocation spot relative to the fixed order of REGSTR. 

* Not yet available. 

5-220 



'-'. 

......, 

Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

5.6.6.2 !ORDER VECTOR (cont'd) 

In the above example, the !ORDER vector would be set up as: 

!ORDER (1) = 1 (N remains unchanged) 

(2) = 2 (G remains unchanged) 

(3) = 3 (X remains unchanged) 

( 4) = 5 (Y goes to cell 5) 

(5) = 7 (Z goes to cell 7) 

(6) = 11 (A goes to cell 11) 

(7) = 12 (B goes to cell 12) 

(8) = 4 (I goes to cell 4) 

(9) = 6 (J goes to call 6) 

(10) = 8 (K goes:to cell 8) 

( 11) = 9 (S goes to cell 9) 

(12) = 10 (S goes to cell 10) 

( 13) = 13 (T remains unchanged) 

( 14) = 14 (M remains unchanged) 

5.6.6.3 FRTAB TABLE 

When an NC machine has more than one f eedrate range (not counting 
rapid traverse as a feedrate range) , the postprocessor requires 
an additional table to specify the maximum and minimum values of 
each range. Normally for one range, only options 48 (feedrate 
minimum) and 25 (feedrate maximum) need be set; but for multiple 
feedrate ranges, another device must be used, and this is the 
feedrate table FRTAB. 

Actually, the FRTAB does not in itself exist since it derives 
from being made equivalent to SRTAB. This technique is used in 
order to minimize core loads. Therefore, the maximum size of 
FRTAB must be such that 

FRTAB + SRTAB ~ 300. 

5-221 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

5.6.6.3 FRTAB TABLE (cont'dl 

The spindle speeds are stored in SRTAB beginning at SRTAB(1) and 
stored consecutively therefrom. The feedrate range values are 
stored at the opposite end of SRTAB such that the last feedrate 
value is stored in SRTAB(300). 

For example, assume an NC machine has 4 feedrate ranges. It is 
necessary to set up the minimum and maximum values of each range. 

FRTAB ( 293) = Range 1 Minimum 

FRTAB ( 294) = Range 1 Maximum 

FRTAB ( 295) = Range 2 Minimum 

FRTAB (296) = Range 2 Maximum 

FRTAB (297) = Range 3 Minimum 

FRTAB (298) = Range 3 Maximum 

FRTAB (299) = Range 4 Minimum 

FRTAB (300) = Range 4 Maximum 

Note that the minimum value must be first given, then followed by 
the maximum value of that range; the ranges must be given in 
increasing numeric order as illustrated. 

Two important options related to the use of FRTAB are: 

Option 18 - the number of feedrate ranges; 

Option 174- the size of the FRTAB. 

For the above example, option 18 = 4, and option 174 = 8, 
eight rows are used. Subroutine ASSIGN computes the FRTAB 
INDFR by 

INDFR = 300 - option 174. -

i.e., 
index 

For our example then, INDFR = 292. The index INDFR is used in DO 
loops beginning from I = 1; thus, INDFR + I gives the correct 
FRTAB table location as needed. 

If M codes are required in order to shift from one feedrate range 
to another, the codes must be assigned in TABLEM(113) through 
( 119) • 

Other pertinent options pertaining to multiple feedrate ranges 
are options 91 and 93. 

5-222 



'-" 

C(CHT Ill POSTPROCESSOR ... for the computer programmer 

5.6.6.4 MACHINE SUBROUTINE CHECKLIST 

The summary checklist given 
precedure which should be 
Subroutine. 

here provides the 
followed in setting 

step-by-step 
up a Machine 

(1) Assign a number (not more than two digits) to the NC 
machine; this number also identifies the related 
subroutine. 

(2) Check the NC machine's preparatory and miscellaneous fun
ctions versus the £unctions listed in TABLEG and TABLEM to 
ascertain that the machine functions are available in the 
postprocessor. 

(3) Delete Standard Machine G and M functions wfiich are not 
desired; deletion is accomplished by setting the G code or 
M code to DMBITS~ 

(4) Assign the NC madline•s G codes or M codes, where needed, 
to t~eir respective table locations. 

(5) Change the REGSTR table values, where needed, to 
correspond with the output requirements of the NC machine. 

(6) Change the REGFOR table values, where needed, to 
correspond with the output requirements of the NC machine. 
Delete with a zero any registers not desired. 

( 7) 

( 8) 

( 9) 

( 10) 

( 11) 

( 12) 

Setup the Tag array with the identifying BCD title. 

List the spindle speeds (if any) sequentially, and group 
them into ranges for storage into SRTAB. 

Store the feedrate minimwn and maximum values (if any) 
into FRTAB. 
Set up the IORDER vector, if needed. 

Setup the OPTAB table as required. Be sure to reverify 
the following key options: 

a. Options 7 and 8; their multiple must equal the number 
of spindle speeds stored into SRTAB. 

b. Option 19 specifies the spindle type. 
c. Options 18 and 174 must correlate with the number of 

feedrate ranges stored into FRTAB. 
d. Option 20 specifies the type of punched output and 

option 164 the type of printed output. 
e. Options 59 and 60 specify the register shuffling. 
f. If the NC machine is a multiaxis machine, option 116 

specifies the geometry class. 
g. Option 132 specifies the type of NC machine. 
h. Option 133 must be set properly if the Machine Subroutine 

performs functions; see Section 5.6.7. 

The compiled subroutine goes into overlay GEINIT. Be sure 
to remove the dumny subroutine of the same name if one 
exists. 

5-223 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

5.6.6.4 MACHINE SUBROUTINE CHECKLIST (cont'd) 

The following example illustrates a possible Machine Subroutine 
and the related key procedures which are followed when developing 
the subroutine. In Section 5.6.8 are given examples which illus
trate Machine Subroutines for a positioning machine, a lathe, a 
3-axis mill, a multiaxis mill, and a multihead machine. 

Sample Machine Subroutine 

SUBROUTINE MACH40 

(GECOM and GECBAS COMMON) 

DIMENSION TNAME(4) 1 TABA(6), REG(1) 

DATA TNAME/8HMACHINE Q), 8H40 (t) BRACK, 8HLATHE @ /* 

DATA TABA/10.,20.,30.,20.,40.,60./ 

DATA REG/SHH (/) / 

DO 1 I=1,4 

1 TAG(I)=TNAME(I) (Save the identification title) 

10 

DO 10 I=1,6 

SRTAB (I) = TABA (I) 

TABLEG (3) = DMBITS 

TABLEG (4) = DMBITS 

TABLEG ( 18) = DMBITS 

TABLEG ( 19) = DMBITS 

TABLEG (20) = DMBITS 

(Store the spindle speeds) 

(No circular interpolation available.) 

(Delete all related functions.) 

TABLEM (2) = DMBITS (No optional S'top is available) 

TABLEM(31) = DMBITS (No Rewind is available) 

* The DATA statement given here assumes an eight character BCD 
word. Note also that the method of writing a DATA statement 
may differ considerably from one computer to another. 

5-224 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

SAMPLE MACHINE SUBROUTINE (cont'd) 

TABLF.M (37) = 70.0 

TABLEM(38) = 71.0 

TABLEM (39) = 72.0 

TABLEM (40) = 80.0 

TABLEM ( 113) = 10.0 

TABLEM ( 114) = 20.0 

REGSTR(8) = DBLNKS 

REGSTR(9) = DBLNKS 

REGSTR(10) = DBLNKS 

(SAFEI'Y features are available) 

REGSTR(12) = REG(1) (The spindle uses an H register 
instead of an s register.) 

REGFOR (3) = 

REGFOR(8) = 
RF.GFOR(9) = 
REGFOR (10) = 
REGFOR(11) = 
OPTAB (7) = 2 

OPTAB (8) = 3 

OPTAB (9) = 0 

OPTAB(18) = 
OPTAB (19) = 

OPTAB(26) = 

OPrAB (28) = 

-23 

0 

0 

0 

40 

2 

0 

1 

0 

(X must have 2 digits to the left and 3 
digits to the right of the decimal point.) 

(No IJK registers are available.) 

(F is to have 4 digits.) 

(Number of spindle ranges) 

(Number of speeds per range.) 

(No circular interpolation) 

(Two feedrate ranges available) 

(Spindle Type 0) 

(Cannot use multiplification factor since 
IJK registers are not avail.able.) 

(Assume Linear) 

5-225 

l 
'\ 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

SAMPLE MACHINE SUBROUTINE l cont• d} 

OPTAB (37) = 1.17 (Minimum cut length) 

OPTAB (59) = 132415 (Inverted Y axis) 

OPTAB (132) = 1 (NC machine is a mill)* 

OPTAB ( 138) = 0 (ENGLISH system of units)* 

OPTAB(164) = 2 (GEOUT2 is requested) 

OPTAB {174) = 4 (Size of FR TAB) 

OPTAB (177) = 2 (Type of computer) 

FRTAB ('297) = 0.1 Feedrate Range 1 Minimum 

FRTAB (298) = 10 Feedrate Range 1 Maximum 

FRTAB (299) = 7 Feedrate Range 2 Minimum 

FRTAB{300) = 60 Feedrate Range 2 Maximum 

RETURN 

END 

* These option values are already standard values and would not 
have to be reset, but they are listed for completeness. 

5.6.7 MACHINE SUBROUTINE FUNCTIONS lMACFUN) 

Despite the generality of the GECENT III postprocessor there are 
functions which an NC machine may possess that are not handled by 
the postprocessor. In many instances the machine function is so 
unique as not to warrant it's inclusion as a general feature of 
the GECENT III postprocessor. Rather than modify the 
postprocessor, and create a non-standard postprocessor, a better 
and simpler technique is used which isolates the special NC 
machine function to the Machine Subroutine, so that the function 
is executed in the postprocessor only when the particular Machine 
Subroutine is in core; this is the so-called MACFUN portion of 
the Machine Subroutine. 

5-226 



ClCINT 111 POSTPROCESSOR ... for the computer programmer 

5.6.7 MACHINE SUBROUTINE FUNCTIONS (MACFON) (cont'd) 

This technique requires that the special machine functions be 
programmed completely within the Machine Subroutine. A flag 
MCHCON is set by the postprocessor which, when interrogated by 
the Machine Subroutine, branches to the proper sey:uence 111ithin 
the subroutine to execute the required function; return is to the 
source subroutine for continued processing. 

An example will best illustrate the method. Suppose an NC 
machine requires a special tool loading sequence which is not a 
standard operation of the postprocessor, and suppose further that 
this function is to be initiated by a LOAD/TOOL statement. To 
obtain the desired machine function, the normal program flow of 
the postprocessor in subroutine LOAD must be temporarily 
interrupted so that the Machine Subroutine can perform the 
function. This is accomplished by option 133 which, if non-zero, 
indicates that the postprocessor must branch to the Machine 
Subroutine for some special operations. If option 133 is zero 
(the standard value), then program flow is normal. 

Thus, in the example, since option 
subroutine LOAD calls subroutine MACSRT 
Machine Subroutine. 

133 has been set to 1, 
which branches to the 

Before branching to the Machine Subroutine, subroutine LOAD sets 
the flag MCHCON (Machine Constant) to 6 which indicates that the 
source subroutine is subroutine LOAD. The first statement in the 
Machine Subroutine tests MCHCON and branches according to it's 
value; for example: 

MCHCON = O; no special function is called for, therefore, set 
up the standard tables (TABLEG,TABLEM,etc), and 
return. 

MCHCON = 6; a LOAD/TOOL statement was given; branch to the 
special loading sequence programmed within the Machine 
Subroutine, execute the special function, set the 
return flag RETURN to 1, and return. 

MCHCON ~ 0 or 6; the source subroutine is not one recognized 
by this Machine Subroutine, therefore, set the 
return flag RETURN to O, and return. 

5-227 



GlClNT Ill POSTPROCESSOR ... for the computer programmer 

5.6.7 MACHINE SUBROUTINE FUNCTIONS (MACFON) (cont'd) 

Upon returning to the source subroutine (subroutine LOAD in the 
example), the flag REI'URN is immediately tested. If RETURN is 
zero, then the normal program flow is followed, but if RE'TURN is 
non-zero, then the subroutine bypasses the ·remainder of its 
subroutine and branches to the subroutine exit since the 
LOAD/TOOL function was alreadv oerf ormed in the Machine 
Subroutine. (see Flow Chart 14, Section 5. 3 for a diagram of the 
sequence flow. ) 

This technique can be used for all such special functions. The 
only requisite is that the affected source subroutine must test 
option 133 and branch accordingly as described above. At present 
there are ma.ny source subroutines which permit a great variety of 
special functions through this technique. The following list 
gives the presently defined MCHCONs. 

0 
1 

2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 
16 

17 
18 

19 
20 
21 

5-228 

= 
= 

= 

= 
= 
= 
= 
= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 

= 
= 
= 

MCHCON 

Set up the tables in the Machine Subroutine 
Tool change sequence in subroutine TOOLNO -
(Positioning Machines only) 
Also special dwell for a range chc:u1ge; 
subroutine FEDRAT (lathes) 
Slide limit testing subroutine TSTLIM 
Used for a geometry class subroutine 
Tab sequential special printout 
Spindle neutral effect - subroutine SPINDL 
Tool change sequence specified in subroutine LOAD 
Special cycle sequences - CYCLGP, CYCLGX - from 
subroutine CYCLE. 
Test the FROM point - subroutine FROMS 
subroutine DELAY 
T code re-arrangement - subroutine COMTAT 

Special threading sequences - subroutine THREDO 
Subroutine CYCLE - after setup of R + z terms 

F·eedrate and rapid subroutines: subroutines FEDRAT, 
RAPIOO, RAPIDX 

Special sequence for unloading the tool - subroutine 
UNLOAD 
Special motion record - subroutine POSMOV 
Subroutine CUTCOM 
Subroutine SELECT 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

5.6.7 MACHINE SUBROUTINE FUNCTIONS (MACFON) (cont'd) 

22 
23 

24 
25 
26 
27 

28 

29 
30 
31 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

= 
= 

= 
= 
= 
= 

= 
= 
= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

Subroutine TURRET 
Special sequence for rapid and feed M codes: 
subroutines RAPIDO, RAPIDX 
Modify spindle table - subroutine MACHIN 
Extended lead threading - subroutine SEGMNT 

Special M codes for feedrate range change - subroutine 
FEDRAT 
Bypass standard ROTATE/TABLE sequence - subroutine 
ROTABL 
Subroutines GOLINE, ROTOUT 
Subroutine SPINDL 
Positioning feedrate type - Subroutines POSFED, FEDRAT, 
CYCLE, SPINDL 

Subroutine SE1'12 
Subroutine CONTUR 
Subroutine MOTION 
Spindle off - Subroutine SPINDL 
Switch tape readers - Subroutine SELRDR 
Subroutine MODE 
Subroutine POSITN 

There is no effective limit to MCHCON since it is easy to adopt 
to any need. If a new MCHCON assignment is required by a 
customer user, he should request the MCHCON number and related 
additions to the source subroutine from the GECENT III 
maintenance group of the General Electric Company. see the 
foreward of this manual for the appropriate address. 

On some computers the MACFUN portion of the Machine Subroutine 
may have to be split off from the rest of the subroutine. Once 
the standard tables (TABLEG, TABLEM,etc.) are loaded into COMMON, 
there are no further need for them and this part of the Machine 
Subroutine can be overlayed; but the MACFUN part must always be 
in core. Whichever nethod is used (viz., keeping the entire 
Machine Subroutine in core or keeping only the MACFUN part in 
core) is strictly up to the user and computer. If core becomes 
a premium factor, then only MACFUN should be kept in core. 

See the sample Machine Subroutine for a multiaxis mill in Section 
5.6.8 for a typical use of multiple MCHCON settings. 

5-229 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

5.6.8 SAMPLE MACHINE SUBROUTINE.S 

The examples which f ollav are actual Machine subroutines for 
different types of NC machines. For simplicity, the DATA 
statements infer a six character BCD word size and are programmed 
in a manner which illustrate the intent of usage. In actual 
application the DATA statements must be writtem according to the 
fonnat required by the computer in use. 

Also, the labelled COMMONs GECOM and GF.cBAS are only ref erred to, 
but not included. 

5.6.8.1 POSITIONING MACHINE 

(SAMPLE 
*GECOM* 
*GECBAS* 

5-230 

SUBROUTINE MACH24 
MACHINE SUBROUTINE FOR A POSITIONING MACHINE) 

LABELED COMMON FOR OVERLAY *GECOM* 
IABELED COMMON FOR OVERLAY *GEBASE*. 

DIMENSION SPNTAB(24), TNAME(S) 
DATA TNAME/6HSAMPLE, 6H (D POSIT, 6HIONING, 6H (j) MACHI, 6HNE @ / 
DATA WRDS16)6HR ~ / 
DATA(SPNTAB(I) ,I=1,24) I 

170.,100.,140.,200.,355.,530.,710.,1060., 
2 .1 0 0 • , 15 0 • , 2 0 0. , 3 0 0 • , 5 3 0 • , 8 0 0 • , 1 0 6 0 • , 16 0 0 • , 
3150.,225.,300.,450.,800.,1200.,1600.,2400./ 

DO 1 I=1,5 
TAG(I) = TNAME(I} 
T ABLEG ( 1) = 80 • 0 
TABLEG(82) = 81.0 
TABLEG(83) = 82.0 
TABLEG(84) = 83.0 
TABLEG(85) = 84.0 
TA.8LEG(86) = 85.0 
TABLEG(87) = 86.0 
TABLEG(88) = 87.0 
TABLEM(2) = DMBITS 
TABLEM(3) = DMBITS 
TABLFM(4) = Il"1BITS 
TABLEM(5) = 2.0 
TABLEM(6) = DMBITS 
TABLEM(31) = 30.0 
TABLEM(102) = 6.0 
TABLEM(105) = 7.0 
OPTAB ( 48) = 0. 5 
OPTAB(50) = 1.0 
(Option 59 is: +X-Y+Z) 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

""" 5.6.8.1 POSITIONING MACHINE (cont• d) 

OPTAB(59) = 132415.0 
OPTAB (60) = o. 
OPTAB (83) = 3. 0 
OPTAB (86) = 1.0 
OPTAB(132) = 2. 0 
DO 100 !=1,24 

100 SRTAB (I) = SPNTAB (I) 
RE'TURN 
END 
TABLEM (123) = 4. 0 
TABLEM ( 124) = 5.0 
REGFOR (3) = -24. 0 
REGFOR(4) = -24.0 
REGFOR (5) = -24. 0 
REGFOR(8) = o. 
REGFOR (9) = o. 
REGFOR (10) = o. 
REGFOR (11) = 20.0 
REGFOR (12) = 2 o. 0 
REGFOR (13) = 2 o. 0 
REGFOR ( 16) = -22.0 
REGFOR (16) = WRDS16 
OPTAB (1) = 1.0 
OPTAB (4) = 98. 0 

~ OPTAB (7) = 3.0 
OPTAB (8) = 8.0 
OPTAB (9) = o. 
OPTAB ( 12) = 24. 0 
OPTAB (17) = 101.0 
OPTAB( 19) = 8.0 
OPTAB (23) = o. 
OPTAB (24) = 99.0 
OPTAB (25} = 49.5 
OPTAB(26) = 1.0 
OPTAB (27) = -1. 0 
OPTAB (45) = 99.0 

5-231 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5.6.8.2 LATHE 

SUBROUTINE MACH04 
(Sample Machine Subroutine For A Lathe) 
*GECOM* LABELED COMMON FOR OVERLAY *GECOM* 
*GECBAS* LABELED COMMON FOR OVERLAY *GEBASE* 

5-232 

DIMENSION TNAME(2) 
DATA TNAME/6HSAMPLE, 6H Q) LATHE/ 
DO 1 I=1,2 

1 TAG(I}=TNAME(I) 
TABLEG(3) = 3.0 
TABLEG(4) = 2.0 
TABLEG(12) = 11.0 
TABLEG(18) = DMBITS 
TABLEG(19) = DMBITS 
TABLEG(20) = DMBITS 
TABLEG(22) = 31.0 
TABLEG(32) = 21.0 
TllliLEG(34) = 33.0 
TABLEG(35) = 34.0 
TABLEG(36) = 35.0 
TABLEM(4) = DMBITS 
TABLEM(5) = IMBITS 
TABLEM (7) = 6. 0 
TA.BLEM (9) = 8. 0 
TABLEM(10) = 9.0 
TABLEM(37) = 36.0 
TABLEM(38) = 38.0 
TABLEM(39) = 37.0 
TABLEM(40) = 39.0 
TABLEM(42) = 40.0 
TABLEM(43) = 41.0 
TABLEM(51) = 50.0 
TABLEM(52) = 51.0 
TABLEM(71) = 61. 0 
TABLEM(72) = 60.0 
TABLEM(73) = 63.0 
TABLEM(74) = 62.0 
T ABLEM ( 11 3) = 4 2 • 0 
TABLEM(114) = 41.0 
REGFOR ( 4) = 0. 
REGFOR (9) = O. 
REGFOR(11) = 32.0 
REGFOR(13) = 50.0 
FRTAB(297) = 0.01 
FRTAB(298) = 2.0 
FRTAB(299) = 0.1 
FRTAB(300) = 20.0 



Cl&HT Ill POSTPROCESSOR 

'-' 5.6.8.2 LATHE, (cont'd) 

OPI'AB(4) = 9.9999 
OPTAB(5) = 0.00005 
OPTAB(7) = 2.0 
OPTAB(8) = 2.0 
OPI'AB ( 10) = O. 
OPTAB(12) = 48.0 
OPTAB(13) = 0.00133 
OPTAB(15) = 0.1 
0 PT AB ( 1 6) = 0 • 
OPTAB(18) = 2.0 
OPTAB(19) = 10.0 
OPTAB(21) = 1.0 
OPTAB(22) = 101.0 
OPTAB (24) = 750. 0 
OPTAB(25) = 20.0 
OPTAB(27) = 40.0 
OPTAB(37) = 0.18 
OPTAB(38) = 1.0 
OPTAB(39) = 20.0 
OPTAB(42) = 100.0 
OPTAB ( 43) = O. 
OPTAB(44) = 100.0 
OPTAB(45) = 750.0 
OPTAB(46) = -1.0 
OPTAB(48) = 0.01 
OPTAB (49) = O. 01 
OPTAB (53) = 0. 
OPTAB(54) = 2.0 
OPTAB(55) = 0. 
OPTAB(56) = 10.0 
OPTAB(57) = 5.0 
OPTAB(59) = 152300.0 
OPTAB{60) = 181600.0 
OPTAB (69) = 0. 01 
OPTAB(73) = 16.7 
OPTAB (81) = O. 
OPTAB ( 82) = 0. 
OPTAB(83) = 2.0 
OPTAB (89) = 6. 0 
OPTAB (90) = O. 
OPTAB(92) = 1.0 
OPTAB(95) = 400.0 
OPTAB(96) = 2.0 
OPTAB(97) = 2.0 
OPTAB(110) = 1.0 
OPTAB(121) = 62.0 

... for the computer programmer 

5-233 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.6.8.2 LATHE (cont'd) 

OPl'AB(122) = o. 
OPTAB (123) = 26.0 
OPI'AB ( 124) = -9.0 
OPTAB (125) = o. 
OPTAB(126) = o. 
OPTAB (129) = 1. 0 
OPTAB(132) = o. 
OPTAB (137) = -0.25 
OPl'AB(145) = -2.0 
OPTAB (164) = 1. 0 
OPTAB (172) = 1.0 
OPTAB (174) = 4.0 
SRTAB (1) = 4.0 
SRTAB (2) = 130.0 
SRTAB (3) = 18. 0 
SRTAB (4) = 600 .o 
RETURN 
END 

5-234 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

5.6.8.3 THREE-AXIS MILL 

SUBROUTINE MACH23 
(SAMPLE MACHINE SUBROUTINE FOR A MILL) 

*GECOM* LABELED COMMON FOR OVERLAY *GEMON* 
*GECBAS* LABELED COMMON FOR OVERLAY *GEBASE* 

DIMENSION TNAME(2) . · 
DATA TNAME/6;H.~AMPLE, 6H <D MILL©/ 
DO 1 I= 1, 2 -· 

1 TAG(I)=TNAME(I) 
OPTAB (4) = 99. 9999 
OPTAB(11) = 0.0 
OPTAB(13) = 0.0025 
OPTAB ( 17) = 112. 0 
OPI'AB(25) = 60.0 
OPTAB(26) = 1.0 
OPTAB (36) = O. 
OPTAB (38) = 1. 0 
OPTAB(39) = 60.0 
OPTAB(42) = 60.0 
OPT AB (43) = 60. 0 
OPTAB(44) = 60.0 
OPTAB(48) = 0.0 
OPTAB(69) = 0.15 
OPTAB(70) = 1.20 
OPTAB(71) = 0.00286 
OPTAB(72) = 0.00615 
OPTAB(73) = 28.0 
OPTAB(74) = 145.0 
OPTAB(132) = 1.0 
OPTAB(164) = 1.0 
TABLEG (9) = 8. 0 
T ABLEG ( 1 0) = 9 • 0 
TABLEG(11) = 10.0 
TABLEG ( 12) = 11. 0 
TABLEG(21) = 20.0 
TABLEG(22) = 21.0 
TABLEG(31) = 30.0 
TABLEG(32) = 31.0 
TABLEM(3) = DMBITS 
REGFOR (1) = 30. 0 
REGFOR(2) = 20.0 
REGFOR(3) = -24.0 
REGFOR(4) = -24.0 
REGFOR(5) = -24.0 
REGFOR(6) = -6.0 
REGFOR(8) = 24.0 
REGFOR(9) = 24.0 

5-235 



ClClNT Ill POSTPROCESSOR 

5.6.8.3 THREE-AXIS MILL (cont'd) 

REGFOR(10} = 24.0 
REGFOR(12} = 0.0 
REGFOR(13} = 0.0 
RETURN 
END 

5-236 

... for the computer programmer 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

....... 5 • 6 • 8. 4 MULTIAXIS MILL 

SUBROUTINE MACH40 
(Sample Machine Subroutine For A Multiaxis Mill) 

*GECOM* IABELED COMMON FOR OVERLAY *GEMON* 
*GECBAS* LABELED COMMON FOR OVERLAY *GEBASE* 

DIMENSION TNAME(4), TABA(131) 

DATA TNAME/6HSAMPLE, 6H (J) MULTI, 6HAXIS (j) M, 6HILL Q) / 
DATA WA/6HA i / 
DATA WC/6HC / 
DATA WH/6HH / 

1 /10.0,350.0,28.3,991.0,40.0,1400.0,113.0, 
23968. ,101. ,1. ,12.8333333,4. ,11.333333,10. ,12. ,14., 
316. ,18. ,20. ,22. ,24. ,26. ,28. ,30. ,32. ,34. ,36. ,38.' 
440. ,42. ,44. ,46. ,48. ,so. ,52. ,54. ,56. ,58. ,60., 
562. ,64. ,66. ,68. ,70. ,72. ,74. ,76.,78. ,80.' 
682. ,84. ,86. ,88. ,90. ,92. ,94. ,96. ,98. ,100.' 
7104. ,108. ,112. ,116. ,120. ,124. ,128. ,132. ,136. ,140.' 
8144. ,148. ,152. ,156. ,160. ,164. ,168. ,172. ,176. ,180.' 
9184. ,188. ,192. ,196. ,200. ,204. ,208. ,212. ,216. ,220.' 
1224. ,228. ,232. ,236. ,240. ,244. ,248. ,252. ,256. ,260., 

. 2264. ,268. ,272. ,276. ,280. ,284. ,288. ,292. ,296. ,300.' 
3310.,320.,330.,340.,350./ 

TABLEG (5) = DMBITS 
TABLEG (12) = 11 • 0 
TABLEG(24) = 23.0 
TABLEG(25) = 24.0 
TABLEG(26) = 25.0 
TABLEG(27) = 26.0 
TABLEG(28) = 27.0 
TABLEG(29) = 28.0 
TABLEG(89) = 50.0 
TABLEG(90) = 59.0 
TABLEM(4) = DMBITS 
TABLEM(S) = DMBITS 
TABLEM(72) = 3.0 
TABLEM(71) = 4. 0 
TABLEM(102) = 7.0 
TABLEM(103) = 8.0 
TABLEM(22) = 10.0 
TABLEM(23) = 11.0 
TABLEM(74) = 17.0 
TABLEM(73) = 18.0 
TABLEM{69) = 19.0 

5-237 



ClCHT Ill POSTPROCESSOR 

5.6.8.4 MULTIAXIS MILL (cont'd) 

TABLEM(13) = 36.0 
TABLEM(14) = 37.0 
REGFOR(6) = -14.0 
REGFOR(7) = -14.0 
REGFOR(8) = 0. 
REGFOR (9) = 0. 
REGFOR(10) = O. 
REGFOR(11) = 31.0 
REGFOR(13) = 50.0 
REGFOR(17) = 10.0 
REGSTR(6) = WA 
REGSTR (7) = WC 
OPTAB(7) = 2.0 
OPTAB(9) = O. 
OPr AB ( 1 0) = -1 • 0 
OPTAB(13) = .001875 
OPTAB(17) = 12.0 
OFTAB(19) = 13.0 
OPTAB(24) = 999.9 
OPTAB(26) = 1.0 
OPTAB(27) = 10.0 
OPTAB(28) = 0. 
OPT AB (30) = 1. 0 
OPTAB (33) = 3. 0 
OPTAB(45) = 999.9 
OPTAB(48) = .0001 
OPT AB ( 4 9) = 0 • 1 
OPTAB(57) = 11.0 
OPTA.8(69) = 0.1 
OPTAB(80) = 20.25 
OPr AB ( 9 0) = 0 • 
OPTAB(95) = 400.0 
OPTAB(98) = 200.0 
OPTAB(100) = 10.0 
OPTAB(101) = 0. 
OPTAB(102) = 3.0 
OPTAB(103} = 8.5 
OPTAB(104) = 4.0 
OPTAB(105) = 9.5 
OPTAB(llO) = 2.0 
OPTAB(112) = 16.0 
OPTAB(113) = 0.0001 
OPTAB(114) = 2.0 
OPTAB(116) = 1.0 
OPTAB(118) = -1.0 
OPTAB(120) = 1.0 

5-238 

... for the computer programmer 



Cl&HT Ill POSTPROCESSOR ... for the computer programmer 

5.6.8.4 MULTIAXIS MILL (cont'd) 

OPTAB(128) = 12.0 
OPTAB{129) = 1.0 
OP!' AB ( 132) = 1 • 0 
OPTAB ( 133) = 1. 0 
OPTAB(145) = O. 
OPTAB(164) = 2.0 

DO 6 I=1,114 
6 SR TAB (I) =TABA (I) 

SRTAB (180) = 9. 0 
RETURN 
END 

The MACFUN portion of the Machine Subroutine is shown here as 
a separate split-off subroutine. 

SUBROUTINE MACF40 
(Sample MACFUN For A Multiaxis Mill) 
*GECOM*LABELED COMMON FOR OVERLAY *GEMON* 
*GECAS* LABELED COMMON FOR OVERLAY *GEBASE* 

DATA FORK/0.0/ 
DATA (ASFTAB (I) ,I=1 , 1 0) 

1/1.0,1.40,1.95,2.75,3.85,5.40,7.50,10.6,14.8,20.7/ 
IF(MCHCON.GT.0 and.MCHCON.LT.9) GO TO 30 

8 RETURN = O. 
9 MCHCON = O. 

10 RETURN 
(TEST FOR SPECIAL MACHINE FUNCTIONS) 

30 GO T0(100,200,8,8,8,600,700,800) ,MCHCON 
(TOOLNO SEQUENCE) 

100 IF ICLDAT(6) .EQ.7)GO TO 140 
130 GRIP = O. 

GO TO 150 
140 GRIP = 1.0 
150 IF(FORK.EQ.O.) GO TO 170 
160 TOLSLC = TOOL 

GRPSLC = GRIP 
SLTOLN = TOOLEN 
GO 'IO 171 

170 TOLLOD = TOOL 
GRPLOD = GRIP 
TOLDLN = TOOLEN 
FORK = 1.0 

171 DBFSEG(13) = DMBITS 
172 RETURN= 1.0 

GO TO 9 
(LIMIT TESTING) 

200 RETURN = 0. 
IF(OPTA.8(110).EQ.0.)GO TO 8 

5-239 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5.6.8.4 MULTIAXIS MILL (cont'd) 

201 
205 
210 

220 

230 
231 
235 

240 

260 

261 

263 
264 
265 

266 

270 
280 

290 
300 

310 
320 
330 
336 

331 
332 
334 

337 
338 

5-240 

IF(DBFSEG(15).EQ.2.0) GO TO 331 
IF(TLHEAD.NE.O.) GO TO 220 
XLOW = -19.0 
XHIGH = 29.0 
GO TO 230 
XLOW = -29. 0 
XHIGH = 19.0 
IF(DPRESM(1).LT.XLOW) GO TO 235 
IF(DPRESM(1) .LE.XHIGH) GO TO 260 
RETURN = 1.0 
IF(OPTAB(110).GT.O.) GO TO 260 
ERROR = 101.0 
CALL ERDMP1 
IF(DPRESM(2).GE.O.) GO TO 270 
(OVERCENTER CUTT ING) 

DPRESM(2) = -DPRESM(2) 
DPRESM ( 1) = -DPRESM ( 1) 
DPRESM(4) = -DPRESM(4) 
DPRESM(5) = DPRESM(5) - 50.0 
IF(DPRESM(5) .LT.O.) DPRESM(5) = DPRESM(5) + 100.0 
IF(DPRESM(1) .LT.XLOW) GO TO 265 
IF(DPRESM(1).LE.XHIGH) GO TO 266 
RETURN = 1. 0 
IF(OPTAB(110).GT.O.) GO TO 320 
GO TO 240 
RADLIN = -1.0 
ANGLIN = O. 
IF(DPRESM(2) .GE.6.0) GO TO 290 
IF(DPRESM(3) .LT.19.0) GO TO 335 
GO TO 330 
IF(DPRESM(2).GE.30.0) GO TO 310 
IF(DPRESM(3) .LT.11.75) GO TO 335 
GO TO 330 
IF(DPRESM(2).GT.48.0) GO TO 265 
IF DPRESM(3).LT.5.625) GO TO 336 
IF(DPRESM(3) .LE.53.625) GO TO 331 
RETURN = 1.0 
IF(OPTAB{110).GT.O.) GO TO 9 
GO TO 240 
IF(DPRESM(4))332,9,337 
IF (DPRESM (4) • GT. (-91. 666666)) GO TO 9 
IF (DPRESM(4).LT.(-33.333333))GO TO 336 
GO TO 9 
IF(DPRESM(4) .LE.8.3333333)GO TO 9 
IF(DPRF.8M(4).GE.66.666666)GO TO 9 
(LOAD SEQUENCE-RETURN TOOL TO CHANGE POINr) 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

5. 6. 8. 4 MULTIAXIS MILL (cont'd) 

600 DPRESM(2) = 48.0 
DPRESM(3) = 48.75 
DPRFSM(4) = -25.0 
IF{TLHEAD.EQ.O.) GO TO 620 

610 DPRESM(1) = -29.0 
GO TO 8 

620 DPRESM(1) = -19.0 
GO TO 8 
(CYCLE SEQUENCE) 

700 IF(DATACL(7) .NE.0.}CYFED = DATACL(7) 
720 IF{ICYTYP)8,730,740 
730 TEMP1 = 51.0 

GO TO 760 
740 IF(ICYTYP-8)741,765,8 __ 
7 4 1 GO TO ( 8 , 8 , 7 5 0 1 8 , 8 1 8, 7 6 5) , . I CYTYP 
750 TEMP1 = 55.0 
760 DBFSEG(2) = TEMP1 + DATACL(6)/2.0 
765 IF(CYFED.GT.ASFTAB(1)) GO TO 780 
770 ROW= 1.0 

GO TO 790 
780 DO 785 I=2,10 

ROW = I - 1 
IF(CYFED-ASFTAB(I))790,791,785 

785 CONTINUE 
ROW = 10.0 

790 DBFSEG(17) = ROW-1.0 
CODE = -4. 0 
CALL OUTPUT 
RETURN= 1.0 
GO TO 9 

791 ROW = I 
GO TO 790 
(FROM POINT TESTING} 

800 IF (TLHFAD.NE.0.) GO TO 820 
810 IF (ABS( + 19.0) .GT.EPSLON)GO TO 870 

GO TO 830 
820 IF(ABS(DPRESM(1) + 29.0) .GT.EPSLON) GO TO 8 
830 IF(ABS(DPRFSM(2) - 48.0) .GT.EPSLON) GO TO 8 
840 IF(ABS(DPRESM(3) - 31.75) .GT.EPSLON) GO TO 8 
850 IF(ABS(DPRESM(4) + 25.0).GT.EPSLON) GO TO 8 
860 IF (ABS(DPRESM(4) - 25.0) .LE.EPSLON) GO TO 8 

(Print comment that *FROM* point is not the home position) 
GO TO 8 
END 

5-241 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.6.8.5 MULTIHEAD MACHINE (LATHE) 

SUBROUTINE MACH51 
(Sample Machine Subroutine For A Multihead Machine) 
(APT SYSTEM COMMON) 
*GECOM LABELED COMMON FOR OVERLAY *GEMON* 
*GECbAS IABELED COMMON FOR OVERLAY *GEBASE* 
DIMENSION TNAME ( 4) 
DIMENSION TABA(100) ,HED1(20),HED2(20) 
DATA TNAME/6HSAMPLE, 6H ('D MULTI, 6HHEAD Q) M, 6HACHINE/ 

1 DATA HED1/6HN , 6HG ,6HX ,6H ,6HZ , 6H 
26H ,6HI ,6H ,6HK ,6HF ,6HS ,6HT 
36HM ,6H ,6H ,6H ,6H ,6H ,6H 

DATA HED2/6H ,6HG ,6HU ,6H ,6HW ,6H 
16H ,6HH ,6H ,6HJ ,6HE ,6HS ,6HT 

, 
I 
I 

26HM ,6H ,6H ,6H ,6H ,6H ,6H , 
30.0,20.0,-33.0,0.,-33.0,0.,0.,33.,0.,33.,40.,20.0,40.,20.,6*0.0/ 
DATA TABA/1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0, 

112.0,14.0,16.0,18.0,20.0622.0,24.0,26.0,28.0,30.0, 
234.0,38.0,42.0,46.0,50.0,54.0,58.0,62.0,66.0,70.0, 
376.0,82.0,88.0,96.0,102.0,108.0,114.0,120.0,126.0,132.0, 
4140.0,148.0,156.0,164.0,172.0,180.0,188.0,196.0,204.0,212.0, 
5220.0,228.0,236.0,244.0,252.0,260.0,268.0,276.0,284.0,292.0, 
6300.0,310.0,320.0,330.0,340.0,350.0,360.0,370.0,380.0,390.0, 
7400.0,410.0,420.0,430.0,440.0,450.0,460.0,470.0,480.0,490.0, 
8500.0,515.0,530.0,545.0,560.0,575.0,590.0,605.0,620.0,635.0, 
9650.0,665.0,680.0,695.0,720.0,735.0,750.0,765.0,780.0,795.0, 

DO 4 I=1,4 
4 TAG(I) = TNAME(I) 

TABLEG ( 11) = 1 0. 0 
TABLEG(12} = 11.0 
TABLEG(16) = 18.0 
TABLEG(17) = 15.0 
TABLEG(21) = 20.0 
TABLEG(22) = 21.0 
TABLEG(31) = 30.0 
TABLEG(11) = 10.0 
TABLEG(12) = 11.0 
TABLEG(16) = 18.0 
TABLEG(17) = 15.0 
TABLEG(21) = 20.0 
TABLEG(22) = 21.0 
TABLEG(31) = 30.0 
TABLEG(32) = 31.0 
TABLEM(42} = 40.0 
TABLEM(43) = 41.0 
TABLEM(142) = 44.0 
TABLEM(143) = 45.0 

5-242 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.6.8.5 MULTIHEAD MACHINE (LATHE) (cont'd) 

TABLEM{111) = 32.0 
TABLEM{112) = 33.0 
REGFOR{3) = -33.0 
REGFOR (4) = O. 
REGFOR{5) = -33.0 
REGFOR{8) = 33.0 
REFO R ( 9) = 0 • 
REGFOR{10) = 33.0 
REGFOR{11) = 40.0 
REGFOR{12) = 20.0 
REGFOR ( 13) = 40. 0 
DO 470 KM=1,17 

l 

470 REGSTR(KM) = HED1(KM) 
OPTAB(4) = 999.9999 
OPTAB(7) = 1.0 
OPTAB(8) = 100.0 
OPTAB ( 16) = 0. 0 
OPTAB(19) = 2.0 
OPTAB(22) = 101.0 
0 PTAB (3 1 ) = 1 • 0 
OPTAB (37) = 35. 0 
OPTAB(38) = 1.0 
OPTAB(39) = 152.0 
OPTAB{42) = 1520.0 
OPTAB(46) = -1.0 

(Option 59 is +X +Z) 
OPTAB(59) - 131500.0 

(Option 60 is +I +K) 
OPTAB(60) = 161800.0 
OPTAB(81) = 3.0 
OPTAB(82) = 0.5 
OPTAB(83) = 0.0 
OPTAB(95) = 400.0 
OPTAB(132) = 0. 
OPTAB(139) = 1.0 
OPTAB(142) =100.0 
OPTAB ( 151) = 0. 1 
OPTAB(152) = 0.0 
OPTAB(156) = 1.0 
OPTAB(164) = 3.0 
DO 475 KM= 1,100 

475 SRTAB(KM) = TABA(KM} 
(Write the Head 2 REGSTR and REGFOR tables onto TAPES1) 

CALL WEFREW (TAP ES 1 1 IND, 1) 
CALL GMWRIT (TAPES1,IND,INT1,INT1,HED2(1),20} 
CALL GMWRIT (TAPES1,IND,INT2,INT1,HED2(21} ,20) 
RETURN 
END 

5-243 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5. 7 ERROR DIAGNOSTICS AND WARNING COMMENTS 

In order to facilitate computer usage, the GECENT postprocessor 
has very few error diagnostics which result in program cessation, 
otherwise known as a "fatal error or abort". More commonly the 
postprocessor prints an error comment which flags the error 
condition and proceeds with the rest of the program. In this way 
a part programmer can usually detect all of the existing errors 
in a program in one computer run. 

Generally speaking, a fatal error results when a condition arises 
which prevents further processing, e.g., a failure to read the CL 
tape. Other fatal errors are when the postprocessor detects 
conditions to be so incompatible that further processing is 
pointless, e.g., looping or convergence failure in linearity 
testing. 

When a non-fatal error is encountered, the postprocessor prints 
a warning comment to this effect and continues processing. For 
example, if the initial SPINDL statement does not give a spindle 
speed the postprocessor assumes one (option 27) and then prints 
the comment, OPTION VALUE IS ASSUMED FOR THE SPINDLE SPEED. 

The warning comments are set up and issued from the source 
subroutine; in the above example, sunroutine SPINDL issues the 
comment. The technique involves setting up a warning conment in 
BCD form through a labeled data statement in the source 
subroutine. The label or address of the DATA statement is given 
in the calling sequence to subroutine COMENT which outputs the 
BCD statement in a row of DBFSEG with a CODE = 9. Because of the 
DBFSEG limitation, a comment must not have more than 14 words.See 
subroutines SPINDLE and COMENT for examples of this technique. 

When a fatal error is encountered, the postprocessor stores the 
related error number into the parameter ERROR (in GECOM) and 
calls subroutine ERDMP1. This subroutine prints the error number 
(see Section 5.7.1), and then calls the Section 0 subroutine 
PDUMP to obtain a core dump for debugging. The overlay GEDUMP is 
then called into memory to print a comment which better defines 
the fatal error, and to print the input arrays ICLDAT and DATACL 
in interger and floating point forms, respectively. The 
parameters of labelled common are then printed by a NAMELIST 
dump. 

A suggested procedure for error debugging is: 

5-244 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.7 ERROR DIAGNOSTICS AND WARNING COMMENTS (cont'd) 

(A) Determine the error and its subroutine location; this is 
done by finding the given error number in the error list. 

(B) Check the parameter SEQCTR to determine which CL tape 
record is being processed. 

(C) Check the COMMON storages DPREVP, DPRESP, ICLDAT and 
DATACL to determine the program condition when the error 
occurred; compare values with CL tape listing. 

(D) Depending upon which subroutine is involved, check all 
relevant parameters used in the subroutine. 

(E) The part program listing should be checked for erroneous 
programming. 

(F) If the trouble is yet not evident, the computer progranuner 
should follow the postprocessor flow from the point where 
the CL tape is read, all the way to the point where the 
error occurred. The various parameters can be checked for 
accuracy by comparing their values according to the 
parameter definition (Section 5.1.1). Section 5.3 and 5.4 
may prove to be of benefit as well. 

5.7.1 FATAL ERRORS 

The following list represents the fatal errors that might occur 
in the GECENT III postprocessor. 

Error Number 

1 

7 

14 

19 

24 

25 

39 

41 

Subroutine Reason 

GEBASE Cannot read the CL tape 

DECODE Option 59 or 60 is set up incorrectly. 

MOTION 

FROM5 

SPINDL 

LINRTY 

SELGRO 

TURRET 

RETURN flag from subroutine GOLINE is 
incorrect 

1~I2+J2+K2-1/ >e 

Option 27 says to assume an error when 
no initial spindle speed is given. 

RETURN flag from subroutine DEPART is 
incorrect. 

Rotary departure is too large; it 
should have been segmented. 

The turret corrective move is much too 
large; the turret tool offsets are 
probably wrong. 

5-245 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

5.7.1 FATAL ERRORS (cont'd) 

54 

138 

139 

142 

144 

151 

999 

1020 

5-246 

I DP ART 

SELG 

SELG 

SELGCR 

SELGCR 

PROCQD 

INIT 

GEMULT 

L indicates an illegal BCD character 
was found. 

No G code is available for the segment 
length. 

Segment length is too long; it should 
have been broken up. A reason can be 
that because of some error, DPRESM 
will equal DPREVM, thus giving a zero 
movement in subroutine DEPART; sub
routine DEPART will then give the 
signal for a zero motion, i.e., RETURN 
= -1, and hence, DBFSEG(3-5) will 
remain as DM.bITS. Another possibility 
is that the cutter may be going across 
the part center line when in an SFM 
mode. 

Circle radius is too large; it must be 
< DEPMAX. 

No G code is available for the circle 
radius size. 

DBUFER is DMBITS which indicates that 
subroutine QUADE'T did not set it up 
properly. 

The requested MACHIN number is larger 
than the computed GOTO list permits. 

New n value for code 17 is less than 
previous n value. 



ClClNT 111 POSTPROCESSOR 

5.7.1 FATAL ERRORS (cont'd) 

1021 GEM ULT 

1022 GEM ULT 

1023 GEMULT 

1024 GEM ULT 

1025 GEM ULT 

1026 GEM ULT 

1027 GE MU LT 

1028 GEM ULT 

3000 GEPR01 

7000 GMSTOR 

7001 WEFREW 

7002 WEFREW 

7003 GEMULT 

8000 FUNLNK 

8500 OUTPUT 

9000 INIT 

9001 OUTPUT 

... for the computer programmer 

Feedrate for 
acceptable. 

Feedrate for 
acceptable. 

code 

code 

17 is 

17 is 

!CODE is not acceptable for Head 1. 

not 

not 

n value or feedrate of code 17 is not 
acceptable on Head 1. 

!CODE is not acceptable for Head 2. 

n value or feedrate of code 17 is not 
acceptable on Head 2. 

ICODE or JCODE not acceptable. 

Illegal output. 

CODE= 17; GEOUT1 cannot be used for 
a multihead printout. 

Tape read error. 

Error opening tape for reading. 

Error opening tape for writing. 

Only one head was selected. 

Option 132 calls for an overlay which 
is not available. 

CODE)18. 

CL tape read error or EOF; if EOF is 
encountered, no MACHIN statement was 
given. 

IHEAD flag was not set up properly. 

5-247 





ClCHT Ill POSTPROCESSOR 

6.0 SUBROUTINE DESCRIPTIONS 

This section contains the complete prose description 
of each subroutine used within the postprocessor. In 
the previous edition of the postprocessor copious 
flow charts were drawn for the purpose. Experience 
has shown that it was not practical to keep abreast 
of the many changes with revised charts. Conse
quently, in their stead the prose description replaces 
the flow chart as the best means of describing the 
characteristics of each subroutine. These are more 
readily replaced with updated material. 

You will find each subroutine description listed al
phabetically in this section. Under each name is the 
name of the overlay in which the subroutine is used. 
The following elements are discussed for each sub
routine: purpose, input, output, method, diagnostics, 
requirements, and restrictions. 

Section 5. 3 contains those few flow charts which are 
a part of the documentation. They cover the broader 
aspects of the program, rather than the fine details as 
was attempted previously. In addition, Section 5.4 
contains two very useful indices. The first gives a 
alphabetical list of subroutines against which are 
given the names of the subroutines which are called 
by the listed subroutine. The second is a list of sub
routine names paired with the name of the subroutine 
which calls it. These two indices can be very helpful 
in following the flow of information through the 
postprocessor. 

In The Subroutine Descriptions, the following no
menclature is utilized: 

1. The title is the GE635, UNIVAC 1108, and CDC 
6600name. 

2. The title in parenthesis is the IBM 360 name. 

3. The subroutine names in the body of the manual 

PURPOSE 

... for the computer programmer 

ABSOPR (ABSOPR) 
(GEOUT) 

To print the absolute and the operator manuscripts 
for the GEOUT3 printout. 

INPUT 

CALL ABSOPR (PRINTH) 

where: 
PRINTH contains the BCD representation of the 
word HEAD. 

OUTPUT 

The absolute printout is on TAPES 1 and the opera
tor printout is on T APES4. 

The absolute and operator manuscripts are printed. 

METHOD 

The absolute printout is printed first, if it is desired. 
The title and page number are printed at the top of 
each page. When the number of lines on a page is 
exceeded, the page number is printed at the bottom 
of the page and the page is restored. The cutting time 
and tape footage are printed at the bottom of the last 
page. If the operator printout is desired, it is printed 
in the same manner. 

DIAGNOSTICS 

are the GE635, UNIV AC 1108, and CDC 6600 None 
names. 

4. The parmeter names in the body of the manual 
are IBM 360 names. REQUIREMENTS 

Called by subroutine GEPR03 

Calls subroutines WEFREW, TITLE3, GEPRN3, 
GMREAD, TIMES and PAGE 

RESTRICTIONS 

The APT COMMON is used 

6-1 



CICINT Ill POSTPROCESSOR 

PURPOSE 

AIR (AIRGB) 
(GEBASE) 

To establish the M code for an AIR/ON or OFF 
statement 

INPUT 

CALL AIR 

The input arrays ICLDAT and DA TACL are used. 

OUTPUT 

The proper M code is output in a block by itself. 

METHOD 

For ON, TABLEM(123) is used. 

For OFF, TABLEM(124) is used. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine STOREM 

Called by subroutine AUXLRY 

RESTRICTIONS 

None 

6-2 

PURPOSE 

... for the computer programmer 

ARCTAN (ATANGX) 
(GEMILL) 

To compute the angle (radians) whose tangent has 
the X and Y coordinates as specified in the calling 
sequence 

INPUT 

CALL ARCTAN (IR,X,Y,ANGLE) 

where: 

IR = Range number: 

= 1 when range is (-
3
; to~) 

= 2 when range is (-'Tr to 7r) 

= 3 when range is (-ito 
3
;) 

= 4 when range is (0 to 27r) 

X = X coordinate of given point 

Y = Y coordinate of given point 

ANGLE = computed angle 

OUTPUT 

The output is the computed angle (ANGLE) in 
radians. 

METHOD 

The system subroutine AT AN is used to compute the 
angle. A special check is made to ensure that the 
angle is in the desired range. 

REQUIREMENTS 

Called by subroutines CLASS l, CLASS2 and 
SEGDRC 

Calls subroutine ATAN 

RESTRICTIONS 

Subroutine uses a DATA Statement 



ClClNT Ill 

PURPOSE 

POSTPROCESSOR 

ASSIGN (ASGNGE) 
(GEM ON) 

To assign values to COMMON variables based upon 
option values 

INPUT 

CALL ASSIGN 

The following parameters and arrays in COMMON 
are used: OPTAB, TABLEG. 

OUTPUT 

Flags used: REGFOR, BIGDEP, ROTMAX, 
OPTAB, STEP, NRINGES, MAXES, LSTPLN, 
FCOMAX, FRMAX, FRMIN, HSTEP, RHSTEP, 
BMS, RMS, XYZDEC, EPSLON, ISPTYP, 
RNGDEP, SYSCON, TLEAD, FACDEP, CMULT, 
ICLMOD, TMAX, ROTRAP, ROTFMN, 
ROTFMX, INDFR, ROTUNT, SPNDIR, 
FRMOD, SEQLIM, MULTHD, IADRET 

METHOD 

Option values are tested and interpreted to deter
mine machine limits, defaults, initial values, and 
standards. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine CONROT 

Called by subroutine INIT 

RESTRICTIONS 

None 

... for the computer programmer 

PURPOSE 

AUXFUN (AUXFGB) 
(GEBASE) 

To process the M code for the auxilary function 

statement AUXFUN 

INPUT 

CALL AUXFUN 

The input array ICLDAT and DATACL are used. 

OUTPUT 

The M code is output either in a block by itself or is 
merged with the next block. 

See METHOD below. 

MEmOD 

Any pending M code is forced out from V ALUEM. 

DATACL(4) is used as the next M code. 

If option 7 5 is zero, the M code is forced out in a 
block by itself. Otherwise, it is merged into the next 
command block. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines STOREM, OUTPUT 

Called by subroutine A UXLRY 

RESTRICTIONS 

None 

6-3 



CICINT Ill 

PURPOSE 

POSTPROCESSOR 

AUXLRY (AUXLGB) 
(GEBASE) 

To select the appropriate subroutine for processing 
the given APT 2000 type statement 

INPUT 

CALL AUXLRY 

OUTPUT 

The flags used: ENDFLG, AXMULT 

The result is a call to a subroutine such as subroutine 
FEDRAT, COOLNT or SPINDL as determined by 
a computed GOTO statement. 

METHOD 

A branch is made to determine which subroutine to 
call for processing the Cutter Location File (CLFILE) 
record subtype depending on the contents of 
ICLDAT(3). 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine GEBASE 

Calls subroutines AIR, END, SET, LOAD, STOP, 
WELD, BREAK, CLAMP, DELAY, DRAFT, 
DRESS, FLAME, PITCH, PPTOL, RAPID, 
RESET, SEQNO, TMARK, TRANS, AUXFUN, 
CLRSEF, COMBIN, COMENT, COOLNT, 
COUPLE, CUTCOM, CYCLEL, CYCLGP, 
CYCLGX, FEDRAT, GOHOME, INSERT, 
LEADER, MACHIN, MACHTL, MCHFIN, 
OPCODE, OPSKIP, OPSTOP, ORIGIN, OVRCNT, 
PARTNO, PICKUP, PITCHM, PIVPLN, POSITN, 
PPRINT, PREFVN, PREFSEQ, RETRCT, 
REWIND, ROTATE, SAFEGL, SAFEGM, 
SAFEGX, SELECT, SELHED, SPINDL, 
THREAD, THREDM, TOOLNO, TURRET, 
UNLOAD, and XOFSET 

RESTRICTIONS 

None 

6-4 

PURPOSE 

... for the computer programmer 

BREAK (BRAKGB) 
(GEBASE) 

To break the punched tape at a specified length. 

INPUT 

CALL BREAK 
This subroutine is a multiple entry in STOP. 

OUTPUT 

Flags used: STOPON, CURNGE, ISRNGE, 
FLONKL, FLONSP, and IENTRY. 

The STOP M code is output in a block by itself. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine AUXLRY. 
Calls subroutines COMENT, ENTRAP, OUTPUT 
andSTOREM. 

RESTRICTIONS 

None 



ClClNT Ill 

PURPOSE 

POSTPROCESSOR 

CALCPl (CALCGO) 
(GEOUTl) 

To format the spacing for printed output of the 
various registers for GEOUTl 

INPUT 

CALL CALCPl 

The following parameters and arrays in common 
are used: OPTAB, REGFOR and REGSTR. 

OUTPUT 

The following print arrays are set for the NC ma
chine printout: LASTFP, NIP, NFP, NPR, NPT, 
BC DREG 

MEIBOD 

Based on the formats of each register and the total 
number of columns available, the initial and final 
print positions, the number of decimal places as 
well as the total number of positions required, are 
calculated for each register. 

DIAGNOSTICS 

Comment: GEOUTl CANNOT BE USED. 
(GEOUT2 is used in this case) 

REQUIREMENTS 

Calls subroutines CALCP2, SETLIN 

Called by subroutine GEPRE. 

RESTRICTIONS 

The subroutine contains a Data Statement. 

... for the computer programmer 

PURPOSE 

CALCP2 (CALCP2) 
(GEOUT) 

To set up the printing and spacing format for 
GEOUT2. 

INPUT 

CALL CALCP2 

The following parameters and arrays in COMMON 
are used: REGFOR, OBTAB, REGSTR. 

OUTPUT 

Flags used: REGFOR, NIP A, NPTA, NIP, NFP, 
NPR, NPT, BCDREG 

The print vectors are set up with the column data 
needed for printing a line. 

METHOD 

By examining the formats (REGFOR) for the vari
ous registers, this subroutine calculates spacing and 
the initial and final print positions for each register, 
the number of digits in the register, and the number 
of places to the right of the decimal point. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine SETLIN 

Called by subroutines CALCP 1, GEPRE 

RESTRICTIONS 

Uses a Data Statement 

6-5 



ClClNT Ill 

PURPOSE 

POSTPROCESSOR 

CALCP3 (CALCP3) 
(GEOUT3) 

To set up the spacing for GEOUT3 and to compute 
the initial and final print positions 

INPUT 

CALL CALCP3 (NIPAT, NPTAT, NIPT, NFPT, 
NPRT, NPTT, FORMT, WORDST, BCDRG) 

where: 

NIP AT-initial print position for Absolute Print
out 

NPTA T-final print position for Absolute Print
out 

NIPT-initial print position for Incremental Print
out 

NFPT-final print position for Incremental Print
out 

NPR T-number of places to right of decimal 

NPTT-total number of digits in register 

FORMT-the REGFOR values 

WORDST-the REGSTR values 

BCDRG-the array for setting up the BCD out
put image 

OUTPUT 

The print vectors are set up for printing the output 
in columnar form in accordance with the REGFOR 
table. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine GEPRE 

Calls subroutine SETLIN 

RESTRICTIONS 

None 

6-6 

PURPOSE 

... for the computer programmer 

CHARID (CHARGO) 
(GEO UT) 

To return with the BCD value of the leftmost char
acter of WORD stored in L 

INPUT 

CALL CHARID (WORD,L) 

where: 

WORD is the BCD representation. 

Lis a code. 

OUTPUT 

L contains the BCD, code number of the left most 
character of WORD. Prior to returning from 
CHARID, WORD is shifted one character to the 
left. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine IDPART 

Calls no subroutines 

RESTRICTION 

This is a machine language coded subroutine. 



CICINT Ill 

PURPOSE 

POSTPROCESSOR 

CHKAX (CHKXGT) 
(GE TERP) 

To determine if a .circle segment lies in a given plane 
by checking the non-planar axis for consistency 

INPUT 

CALL CHKAX 

The following parameters and array in COMMON 
are used: IPLANE, NCOM, NOPTS, DATACL, 
EPSLON. 

OUTPUT 

Flags used: 

RETURN = 1: Circle lies in given plane 

METHOD 

-1: Circle does not lie in given 
plane 

If points corresponding to the constant axis differ 
by more than EPSLON, the circle does not lie in 
the plane. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines 

Called by subroutine GOCIRC 

RESTRICTIONS 

None 

... for the computer programmer 

PURPOSE 

CIRINT (CRINGT) 
(GETERP) 

To communicate to subroutine QUADET the plane 
of circular interpolation by decoding parameter 
IP LANE 

INPUT 

CALL CIRINT 

The following parameters and arrays in COMMON 
are used: IPLANE 

OUTPUT 

Calls subroutine QUADET indicating in which plane 
the circular interpolation is. 

METHOD 

IPLANE: PLANE: 

DIAGNOSTICS 

None 

> 1-->XZ 
= 1-->ZX 
< 1--> XY 

REQUIREMENTS 

Calls subroutine QUADET 

Called by subroutine GOCIRC 

RESTRICTIONS 

None 

6-7 



ClCINT Ill 

PURPOSE 

POSTPROCESSOR 

CIRSEG (CIRSEG) 
(GEMULT) 

To segment a circle into two parts and to compute 
the two G codes for the two new segments. 

INPUT 

CALL CIRSEG (RA TIO, AA, KCODE, RADIUS, 
ARCLEN, ABL) 

where RA TIO = the percent value defining how 
circle will be segmented. 

AA = buffer where input data is 
stored, and where the seg
mented circle will be stored. 

KCODE the code to identify the block. 

ARCLEN 

ABL 

OUTPUT 

The values 10, 11, or 12 indi
cates a circle. 

arc length of the circle before 
segmentation. 

= chord length of circle before 
segmentation. 

The output, buffer AA, consists of a circle seg
mented into two parts with the calculated g code 
for each segment. 

METHOD 

The following illustration and explanation shows 
the method for segmenting the circle. 

6-8 

... for the computer programmer 

Given: Vectors AB(ABL), AO(RADIUS), length S0 
(ARCLEN), and the percent value (RA TIO 
= Si/S0). 

Find: Vectors AP, PB and PO. 

Solution: IAOI = R =circle radius 
= SO/R 

IATI 

IOTI 

cc = Rsin-
2 

cc = Reos 2 
cc 

IWTI = IOTI tan c2- - RATIO• cc) 

AW = AW!•Al] 
IAWI IATI ~JWTI 

~ 
ow= AW-AO' 

R -
OP= 1ow1 ·OW 

AP=AO+OP 
PB= AB~AP° 
PO = -"OP'" 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls CONVRT, LENGTH, SELGCD, SRAREC, 
andSTOPTS. 

Called by SPLIT. 

RESTRICTIONS 

None 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

CLAMP (CLMPGB) CLASS (IBM 360 only) 
(GEBASE) (CLASS) 

PURPOSE PURPOSE 

To process the sequence for the statement CLAMP To call in the desired class equations. 

INPUT INPUT 

CALL CLAMP CALL CLASS 

The common array OPTAB is used. 
OUTPUT 

The flags used are: CLMPEX and CLMPFL. Out- OUTPUT 
put is an M code for the specified clamp condition. 

DIAGNOSTICS 

Comment: REQUESTED MISCELLANEOUS 
FUNCTION CODE IS NOT AV AIL
ABLE ON THIS MACHINE. 

REQUIREMENTS 

Called by AUXLRY 

Calls subroutines COMENT, STOREM 

RESTRICTIONS 

None 

Calls in the desired class equations. 

DIAGNOSTICS 

Comment: ILLEGAL CLASS EQUATION 
CALLED FROM SUBROUTINE 
GECLASS-SUBROUTINE CLASON 
WAS CALLED IN ERROR. 

REQUIREMENTS 

Calls subroutines CLASOl, CLAS02, CLAS03, 
CLAS04, CLAS05, CLAS06, CLAS07, CLAS08, 
CLAS09. 

Called by subroutines GEOM5, LINRTY, LOAD, 
ROTABI, andSELTUL. 

RESTRICTIONS 

Used on the IBM 360 only. 

6-9 



ClCINT Ill 

PURPOSE 

POSTPROCESSOR 

CLASOn (CLASOn) 
(CLASS) 

To compute the direct and inverse transform equa
tions for the Classes of NC machine axis configura
tions, where n currently ranges from 1 to 9. 

INPUT 

CALL CLASOn 

OUTPUT 

The only flag used is MAFORK. 

The output is the current position of the tool tip in 
machine coordinates and part coordinates. 

METHOD 

See Sections 4.2.1 through 4.2.9 for the Class equa
tions for each multiaxis machine configuration. 

The inverse transforms (x,y ,z,i,j ,k) are computed 
from the present machine point coordinates. 

The direct transforms (x,y,z,a,b,c) are computed from 
the present part coordinates. 

DIAGNOSTICS 

None 

REQUffiEMENTS 

Called by subroutine CLASS 

Calls subroutine ARCTAN 

RESTRICTIONS 

These equations are restricted to a machine of Class 
n configuration. 

6-10 

PURPOSE 

... for the computer programmer 

CLRSRF (CLRSGP) 
(GEBASE) 

To establish a clearance surface retract plane as 
given by the APT statement CLRSRF 

INPUT 

Call CLRSRF 

The input arrays ICLDAT and DATACL are used. 

OUTPUT 

The flag CLERP contains the plane value. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines 

Called by subroutine AUXLRY 

RESTRICTIONS 

None 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

COMBIN (COMBIN) COMENT (CMNTGB) 
(GEBASE) (GEBASE) 

PURPOSE PURPOSE 

To process the APT statement COMBIN To output the specified warning comment 

INPUT INPUT 

CALL COMBIN CALL COMENT (FN) 

The key flag MULTHD is also used. where: 

FN = number which designates the comment to 
OUTPUT be printed. 

The flag MUL THD is set equal to the value given 
in the COMBIN statement. OUTPUT 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines 

Called by subroutine AUXLRY 

RESTRICTIONS 

None 

Postprocessor comment or warning is printed. 

REQUIREMENTS 

Called by subroutines AUXLRY, CLAMP, 
COUPLE, CYCLEL, CYCLGP, CYCLGX, 
DELAY, DSRROW, EIACOM, END, FEDRAT, 
FTYPE2, GEBASE, GEMULT, GOCIRC, 
LINRTY, MOTION, OFFARC, OPCODE, 
PARK, POSMOV, PRFSEQ, REWIND, 
ROTABI, ROTATE, ROTDRF, ROTHED, 
SADDLE, SELTOL, SFMO, SPINDL, STOP, 
TESTM2, THREAD, THREDM, TOOLNO, 
TSTLIM, TSTSAF, TURRET, TYPE3, TYPE4, 
TYPElO, TYPE13, UNLOAD, and WELD. 
Calls subroutines OUTPUT and STOREM. 
Also calls subroutine GMSTOR on the IBM 360 

RESTRICTIONS 

This subroutine has multiple entry points for sub
routines PPRINT, INSERT, and PARTNO. 

6-11 



CICINT Ill 

PURPOSE 

POSTPROCESSOR 

COMENT (CMNTGB) 
(GEMON) 

To output the postprocessor comments. 

INPUT 

CALL COMENT (DN) 
where DN is the BCD comment. 

OUTPUT 

The postprocessor comment is output with CODE 
=9.0. 

METHOD 

CODE, V ALUEM, SPNCOM and DBFSEG are 
saved; the comment is stored in DBFSEG and is 
output; CODE, V ALUEM, SPNCOM and DBFSEG 
are reinstated. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines GMSTOR and OUTPUT 
Called by subroutines AUXLRY, CLAMP, 
COUPLE, CYCLEL, CYCLGP, CYCLGX, 
DELAY, DSRROW, EIACOM, END, FEDRAT, 
FTYPE2, GEBASE, GEMULT, GOCIRC, 
LINRTY, MOTION, OFFARC, OPCODE, 
PARK, POSMOV, PRFSEQ, REWIND, 
ROTABI, ROTATE, ROTDRF, SADDLE, 
SELTUL, SFMO, SPINDL, STOP, TESTM2, 
THREAD, THREDM, TOOLNO, TSTLIM, 
TSTSAF, TURRET, TYPE03, TYPE04, 
TYPElO, TYPE13, UNLOAD, WELD. 

RESTRICTIONS 

Computer dependent for the IBM 360 only. 

6-12 

PURPOSE 

... for the computer programmer 

COMPFC (CMPFGB) 
(GETERP) 

To calculate the feedrate command code for a con
turing machine 

INPUT 

CALL COMPFC (A, DIST, FCOM) 

where: A = array ordered as X,Y,Z 
DIST = linear distance 

FCOM = feed command 

OUTPUT 

The computed feed command is stored in FCOM; 
also, the linear distance is stored in DIST. 

METHOD 

The feed command FCOM is determined by: 

F 
_GDIMUL•FEDIPM, 

COM DIST 

where: 

DIST = y A(1)2 + A(2)2 + A(3)2 
GDIMUL = dimension multiplier 
FEDIPM == current feedrate in IPM 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine TSTFCM 

Calls no subroutines 

RESTRICTIONS 

OPTAB(l 70) = 1 



GICINT Ill 

PURPOSE 

POSTPROCESSOR 

COMPGC (COMPGC) 
(GEMULT) 

To set up the required parameters for subroutine 
SELGCD 

INPUT 

CALL COMPGC (BUF, AAA, II) 

where: 

BUF = the input array, BUFPRE, for subrou
tines SELGCD 

AAA = the array containing incremental data 
for a particular move 

II = the row of AAA to be used 

OUTPUT 

The computed G code is stored in AAA (2, II). 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines DRETHD, PARK, RETHD, 
andSEG 

Calls subroutine SELGCD 

RESTRICTIONS 

None 

... for the computer programmer 

PURPOSE 

COMPR (CMPRGT) 
(GE TERP) 

To compute the radius of a circle 

INPUT 

Call COMPR (CIRPTS) 

where: 

CIRPTS contains the X,Y,Z values of the circle. 

OUTPUT 

The parameter CIRRAD contains the circle radius. 

METHOD 

(Cartesian Metric): 

R= Ja2 + A.2 
1 2 

where A1 and A2 are axial components of the 
radius vector R measured in the plane of the circle. 
The radius is measured from the tool control point 
to the circle center. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines 

Called by subroutine GOCIRC 

RESTRICTIONS 

Uses a Data Statement 

6-13 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

COMTAT (TCODGB) CONROT (CROTGE) 
(GEBASE) (GEMON) 

PURPOSE PURPOSE 

To combine the tool number and turret position into To convert from (to) degrees to (from) output units 
a command code 

INPUT 

CALL COMTAT 

The following parameters and arrays in COMMON 
are used: OPTAB, RETURN, REGFOR, TOOL, 
TURPOS, STOPON, TUROFF 

OUTPUT 

The combined T code is stored in DBFSEG(13). 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine MACSR T 

Called by subroutine TURRET 

RESTRICTIONS 

None 

6-14 

INPUT 

Call CONROT (VALUE, IV) 

where: 

VALUE = the rotary value to be converted 

IV = + 1, convert from degrees to output 
units 

IV = -1, convert from output units to 
degrees 

OUTPUT 

The parameter VALUE contains the converted 
value. 

METHOD 

Nothing is done if the output units are degrees. 

DIAGNOSTICS 

None 

REQUIREMENT 

Calls no subroutines 

Called by ASSIGN, GEPR02, POSIT, ROTABA, 
ROTABI, ROTHED 

RESTRICTIONS 

Uses a data statement 



ClClNT Ill 

PURPOSE 

POSTPROCESSOR 

CONTUR (CONTGO) 
(GETERP) 

To determine the feedrate command for an incre
mental motion 

INPUT 

CALL CONTUR 

The following parameters and arrays in COMMON 
are used: DPATH, DBFSEG, AXMULT, OPTAB, 
SRTAB, GDIMUL 

OUTPUT 

Flags set: 

DPATH, FCOMIN, DABVAL, FCOM. 

METHOD 

The feedrate command is computed and stored into 

PURPOSE 

... for the computer programmer 

CONVRT (CVRTGB) 
(GEBASE) 

To set to zero the elements of a given vector which 
contain DMBITS. 

INPUT 

CALL CONVRT (A,B) 

where: 

A and B are dimensioned at 3. A is the vector 
that contains the elements to be tested. 

OUTPUT 

B contains the vector A but has its elements equal to 
zero when the corresponding elements in A are 
DMBITS. 

DIAGNOSTICS 

DBFSEG(ll). None 

DIAGNOSTICS REQUIREMENTS 

None Calls no subroutines 

Called by subroutines CIRSEG, FEDLIM, GETSFC, 
REQUIREMENTS and SELGCD 

Calls subroutines LENGTH, EIACOM, FV ARGO 
RESTRICTIONS 

Called by subroutines GEPRO 1, GEPR02, GEPR03 
None 

RESTRICTIONS 

None 

6·15 



ClClNT Ill 

PURPOSE 

POSTPROCESSOR 

COOLNT (COOLGB) 
(GEBASE) 

To process the APT statement COOLNT / and set up 
the appropriate M code for the given coolant 
ON/OFF condition. 

INPUT 

CALL COOLNT 

The input arrays ICLDAT and DATACL are used. 

OUTPUT 

The following flags are used: FLONKL, ICIMOD, 
andSTOPON 

The proper M code is stored in parameter V ALUEM. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutine STOREM(M), where M is the M 
code value set-up in accordance with the modifiers 
of the COOLNT I statement 

6-16 

PURPOSE 

... for the computer programmer 

COUPLE (CUPLGL) 
(GELATH) 

To engage or disengage the encoder 

INPUT 

CALL COUPLE 

The following parameters and arrays in COMMON 
are used: SPNSPD, OPTAB, ICLDAT, SRTAB, 
DATACL 

OUTPUT 

The coupling M code is output in a block by itself. 

METHOD 

If the spindle speed is greater than the maximum 
allowed and the encoder is coupled, the spindle 
speed is reduced to the range minimum. In such a 
case, a dwell block is output with the encoder M 
code. 

DIAGNOSTICS 

Comment: SPINDLE SPEED COULD NOT BE 
FOUND. 

REQUIREMENTS 

Calls subroutines STOREM, SPTYPE, DWELL 

Called by subroutine AUXLRY 

RESTRICTIONS 

None 



ClCHT Ill 

PURPOSE 

POSTPROCESSOR 

CREAD. (CREAD) 
(GEMULT) 

To read a record from either T APES2 or T APES3 

INPUT 

CALL CREAD (IHEAD, IEOF) 

where: 

IHEAD = 1 means read a record from T APES2 

IHEAD = 2 means read a record from T APES3 

IEOF = 0 signifies a good data record 

IEOF = 1 signifies an end of file on given tape 

OUTPUT 

A record from TAPES2 is stored in AS2 and a 
record from T APES3 is stored in AS3. The storage 
arrays AS2 and AS3 are analogous to DBFSEG. 
The parameter FDMHD contains the M code (if 
any) for either the feed or rapid range. 

DIAGNOSTICS 

Tape read errors are output. See the APT tape 
read routine for the meaning of the errors. 

REQUIREMENTS 

Called by subroutine GEMULT 

Calls subroutines GMREAD and SA VMCS 

RESTRICTIONS 

Needs APT COMMON 

... for the computer programmer 

PURPOSE 

CTCHUP (CTCHUP) 
(GEMULT) 

To output the system catch-up time when changing 
rapid-feed ranges 

INPUT 

The calling sequence is: 

CALL CTCHUP (AAA,IH) 

where: 

AAA = an array containing the incremental 
move 

IH = 1 if head 1 is being processed 

IH = 2 if head 2 is being processed 

OUTPUT 

A system catch-up dwell block is output by calling 
subroutine GMOUT. 

REQUIREMENTS 

Called by subroutines RAPM and SHFTBK 

Calls subroutine GMOUT 

RESTRICTIONS 

None 

6-17 



ClCINT Ill 

PURPOSE 

POSTPROCESSOR 

CUTCOM (CTCMGB) 
(GEBASE) 

To process the APT statement CUTCOM. 

INPUT 

CALL CUTCOM 

PURPOSE 

... for the computer programmer 

CYCLEL (CYCLEL) 
(GELATH) 

To output a command block according to the specifi
cations given in the CYCLE statement for a lathe. 

INPUT 

CALL CYCLEL 

OUTPUT The input arrays ICLDAT and DATACL are used. 

The related preparatory function G code is output 
in a block by itself. OUTPUT 

Flags used: CYCFLG, ICYTYP, CURCYG, 
DIAGNOSTICS DBFSEG, DATACL, CODE. 

None A command block for the specified CYCLE modifier 
is output. 

REQUIREMENTS 

Called by subroutine A UXLR Y 

Calls subroutine OUTPUT 

RESTRICTIONS 

None 

6-18 

METHOD 

A G code is selected for the type of canned cycle 
requested, (e.g. BORE, TAP, DRILL, etc.); CODE 
is set to -16. 

DIAGNOSTICS 

Comment: IMPROPER FORMAT, STATEMENT 
SKIPPED. 

REQUIREMENTS 

Calls subroutines STOREM, RAPIDX, OUTPUT 

Called by subroutine AUXLRY 

RESTRICTIONS 

None 



GlCHT Ill POSTPROCESSOR 

PURPOSE 

CYCLGP (CYCLGP) 
(GEPOS) 

To set up the command block as specified by the 
given CYCLE statement 

INPUT 

CALL CYCLGP 

The following COMMON parameters are used: 
ICLDAT, DATACL, TABLEG 

The CYCLE statement is a 2000 type record. The 
code numbers for the minor words used in the 
CYCLE statement are: 

Minor Word 

DRILL 
FACE 
BORE 
TAP 
THRO 
DEEP 
MILL 
OUT 

OUTPUT 

IN 
INHIBT 
IPM 
IPR 

Code Number 

163 
81 
82 

168 
152 
153 
151 
49 
48 

279 
73 
74 

The command block is set up in DBFSEG, and the 
flag ICYTYP is set where: 

ICYTYP = 1 for FACE 
ICYTYP = 2 for BORE 
ICYTYP = 3 for TAP 
ICYTYP = 4 for THRO 
ICYTYP = 5 for DEEP 
ICYTYP = 6 for MILL 
ICYTYP = 7 for OUT 
ICYTYP 8 for IN 
ICYTYP = 9 for DRILL 

... for the computer programmer 

METHOD 

The CYCLE block is set up thus: 

DBFSEG(2) 

DBFSEG(5) 

DBFSEG(16) 

Geode 

Z (the amount of plunge) 

R (distance the tool moves at 
rapid traverse) 

If the R register is not available, the routine simu
lates the canned CYCLE by outputting the distance 
R at RAPID in a block by itself. 

DIAGNOSTICS 

The recoverable error comment 6 is printed when the 
CYCLE statement is written incorrectly. 

Comment: IMPROPER FORMAT, STATEMENT 
SKIPPED. 

REQUIREMENTS 

Called by subroutine A OXLR Y 

Calls Subroutines FLOAT, COMENT, FTYPE2, 
FTYPE6, MACSRT, OUTPUT, RAPIDP, 
RAPIDX, STOREM, and TSTEXT 

RESTRICTIONS 

None 

6-19 



CICINT Ill 

PURPOSE 

POSTPROCESSOR 

CYCLGX (CYCLGX) 
(GMAXES) 

To output a command block according to the 
specifications given in the CYCLE statement 

INPUT 

CALL CYCLGX 

COMMON parameters used: ICYTYP, TAPSTO 
and TAPSAV. 

OUTPUT 

Flags used: FLRPON, CYCFLG, and CURCYG 
andMCHCON. 

METHOD 

A command block is issued for the programmed 
canned cycle. 

DIAGNOSTICS 

Comment: IMPROPER FORMAT STATEMENT 
SKIPPED. 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutines COMENT, MACSRT, and 
RAPIDX 

RESTRICTIONS 

None 

6-20 

PURPOSE 

... for the computer programmer 

DECODE (DCODGO) 
(GEO UT) 

To set up the shuffle vector for rearranging registers 
for output according to options 59 and 60 

INPUT 

CALL DECODE 

OUTPUT 

Flags used: ISHVEC, ERROR, ISHUFL, IXSTOR. 

The words of DBFSEG (3,4,5,8,9,10) have their 
contents shuffled to the register arrangement speci
fied by options 59 and 60. 

MEmOD 

Common standard axes configurations are first 
tested; and if not present, X Y Z and I J K are un
packed from options 59 and 60. 

The values from the ORIGIN statement are also 
shuffled similarly. 

DIAGNOSTICS 

Error 7: Improper setting of option 59 

REQUIREMENTS 

Calls subroutine ERDMPl 

Called by subroutine GEPRE 

RESTRICTIONS 

The subroutine has a DA TA Statement. 



GlCHT Ill POSTPROCESSOR ... for the computer programmer 

DELAY (DLA YGB) 
(GEBASE) 

PURPOSE DIAGNOSTICS 

To process the delay statement and output a dwell Comment: DELAY TIME FOR REV NOT COR-
block. RECT SINCE NO SPEED IS GIVEN. 

INPUT REQUIREMENTS 

CALL DELAY Calls subroutines: COMENT, MA CSR T, OUTPUT, 
andSTOREM. 

Common parameters used are DATACL, SPNSPD, 
TABLEG and OPTAB. Called by subroutine AUXLRY. 

OUTPUT RESTRICTIONS 

A dwell block (CODE = 4) is output if TABLEG(5) None 
has a value. If TABLEG(5) = DMBITS, the preset 
dwell M code (TABLEM(18)) is output. 

METHOD 

If the modifier REV is given in the DELAY state
ment, the dwell time is computed from: 

TIME = DATACL(4)•60.0 
SPNSPD 

If REV is not given and option 57 = 11, 

E 
60.0 

TIM = DATACL(4) 

If REV is not given and option 57 =F 11, 

TIME = DATACL(4) 

If TIME = 0, CODE is set to -1.0 and subroutine 
OUTPUT is called. 

If TABLEG(5) = DMBITS, the preset dwell M code 
(TABLEM(18)) is output in a block by itself. 

If TABLEG(5) =F DMBITS, DBFSEG(2) is set to 
TABLEG(5), DBFSEG(3) is set to the dwell time, 
CODE = 4.0 and subroutine OUTPUT is called. 

The DELAY statement may be interrogated in the 
machine function routine; then the above sequence 
is bypassed. 

6-21 



GICINT Ill 

PURPOSE 

POSTPROCESSOR 

DEPART (DPRTGT) 
(GETERP) 

To calculate and output the incremental departures 
for linear motions and the rotary departures for 
rotary motions 

INPUT 

CALL DEPART 

OUTPUT 

The incremental departures are stored in the 
COMMON parameters DEPX, DEPY, DEPZ, 
DEPA, DEPB and into the output buffer 
(DBFSEG(3-7)) depending on the number of axes 
available on the machine tool. 

METHOD 

The departures are determined from the machine 
points DPRESM(l-3) and DPREVM(l-3) to mini
mize the rounding error. The number of axes 
(MAXES) and the multiaxis flag (AXMULT) are 
tested to determine the number of motions available 
on the machine tool. If a departure is less than half 
the step size of the machine (HSTEP), the departure 
is set to zero for that axis of motion. The flag 
RETURN is set to + 1 for a motion or to -1 if there 
is no motion. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines GOHOME, GOLINE, 
LINRTY, PROCQD, SFMO 

Calls subroutine ROTMOV 

RESTRICTIONS 

Used for all contouring machines: i.e., OPTAB(l) 
= 0.0 

6-22 

PURPOSE 

... for the computer programmer 

DETDIR (DDIRGT) 
(GETERP) 

To determine the direction of motion (CLW or 
CCLW) along a circular path 

INPUT 

Call DETDIR 

The following parameters and arrays in COMMON 
are used: !PLANE, DATACL, CIRDAT. 

OUTPUT 

The flag CIRDIR is set to: 

CIRDIR 0 for CLW 

1 for CCLW 

METHOD 

The circle is translated to the origin. The cross 
product of the position vector to the first point with 
the position vector of the second point is calculated. 
If the cross product is positive, CLW is recognized. 
If it is negative, CCL W is recognized. If it is zero 
(first and second point are same), the cross product 
with the position vector to the next CL point on the 
circle is examined. 

REQUIREMENTS 

Calls no subroutines 

Called by subroutine GOCIRC 

RESTRICTIONS 

Uses a Data Statement 



ClClNT Ill 

PURPOSE 

POSTPROCESSOR 

DOLLAR (DOLRGO) 
(GEO UT) 

To insert end-of-block characters at the beginning 
and end of the readable identification 

INPUT 

CALL DOLLAR (S,E,EOB) 

S = Starting Record 

E = Ending Record 

EOB = End of block character 

OUTPUT 

The character in EOB (OPTAB(67)) is placed as 
the first character of S, and Eis set to 77777$. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine IDP ART 

Calls no subroutines 

RESTRICTIONS 

This is a machine language coded subroutine. 

... for the computer programmer 

PURPOSE 

DOTPRO (DOTGM) 
(GMAXES) 

To calculate the scalar product of two vectors 

INPUT 

Call DOTPRO (A,B,C) 

where A and B are the two vectors and C is the 
returned scaler product. 

OUTPUT 

C=A·B 

C contains the scalar product 

METHOD 

DIAGNOSTICS 

None 

REQUmEMENTS 

Calls no subroutines 

Called by subroutines LINRTY, PROCQD, 
SEGDRC 

RESTRICTIONS 

None 

6-23 



ClClNT Ill 

PURPOSE 

POSTPROCESSOR 

DRAFT (DRFTGD) 
(GEDFRT) 

To process and output a command block for the 
operations as designated in the APT statement, 
DRAFT 

INPUT 

CALL DRAFT 

The input arrays ICLDAT and DATACL are used. 

OUTPUT 

The proper operation is obtained by setting the re
lated D code in DBFSEG(l 6) and outputting the 
command block. 

METHOD 

Test ICLDAT(4): If equal to (ON), set the draft 
flag UPFLAG equal to 1. Output a 1 in the D 
register. If OFF is programmed, turn off the draft 
flag by setting UPFLAG = 0, and output a 2 in 
the D register, DBFSEG(16). If DASH is pro
grammed with OFF, output a 5 in DBFSEG(16). 
If SOLID is programmed with an ON, branch to 
output a 1 in DBFSEG(l 6). If DASH is pro
grammed with an ON, test the UPFLAG, and if 
zero, output a 1 in DBFSEG(l 6) to lower the turret, 
then output a 4 in DBFSEG(l 6) to establish the 
code. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutine OUTPUT 

RESTRICTIONS 

OPTAB(132) must equal 3. 

6-24 

PURPOSE 

... for the computer programmer 

DRESS (DRESGP) 
(GEPOS) 

To set up a block to output an M code for the 
APT statement DRESS 

INPUT 

CALL DRESS 

OUTPUT 

TABLEM(28) is stored into DBFSEG(14) which is 
then output in a block by itself. 

METHOD 

Store the M code in TABLEM(28) and output it in 
a block by itself by calling STOREM(l 30) to clear 
the buffer. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutine STOREM 

RESTRICTIONS 

None 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

DRETHD (DRETHD) 
(GEMULT) 

PURPOSE 

To return a parked head to the work when the 
alternate head is already in the work 

INPUT 

CALL DRETHD (AAA, BBB, SEQNA, SAFV A, 
SAFWB, ABSA, OUTX, OUTY, OUTZ, IHA, 
IHB,SAFWA) 

where: 

AAA delta move for head which is parked 

BBB delta move for head in the work 

SEQNA 

SAFVA 

SAFWB 

ABSA 

OUTX 

OUTY 

OUTZ 

sequence number for parked head 
blocks 

deltas used to park the head and re
turn it 

deltas used to withdraw alternate head 

absolute coordinate system for parked 
head 

absolute X value at which head was 
parked 

absolute Y value at which head was 
parked 

absolute Z value at which head was 
parked 

IHA = number of the parked head 

IHB 

SAFWA 

number of the alternate head 

deltas used to withdraw the parked 
head 

OUTPUT 

Both heads are positioned in the work ready to 
move. 

METHOD 

( 1) The incremental moves in AAA and BBB are 
saved. 

( 2) The alternate head is withdrawn from the work. 

( 3) The absolute coordinate system for the parked 
head is reset to the point at which it was 
parked. 

( 4) The parked head is returned to the withdrawal 
position. 

( 5) The coolant is turned back on. 

( 6) A combined motion returns both heads back to 
the work. 

(7) The incremental motions are restored in AAA 
and BBB. 

( 8) The array BUFPRE is reset to DMBITS. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine FXP ARK 

Calls subroutines FXTOL, GMOT, COMPGC, 
PERROR, RAPLIM, and SRAREC 

RESTRICTIONS 

None 

6-25 



ClClNT Ill 

PURPOSE 

POSTPROCESSOR 

DSRROW (SROWGB) 
(GEBASE) 

To determine the row of the requested spindle speed 
by scanning the SR TAB 

INPUT 

CALL DSRROW 

OUTPUT 

The spindle speed is stored in the parameter 
SPNSPD. 

METHOD 

... for the computer programmer 

DUMACH (DUMACH) 

PURPOSE 

To provide entries for dummy machines and call 
DISP AT when a machine not in the overlay is 
referenced 

INPUT 

CALL DUMACH 

The input arrays ICLDAT and DATACL are used. 

OUTPUT 

The APT system COMMON variable IOUTAP is 
used to print comment 24. 

Calculate the starting index for the lowest speed DIAGNOSTICS 
in the requested range INDXl. Compare the re-
quested spindle speed SPNSPD against those speeds Comment: THE REQUESTED MACHINE IS 
SR TAB(K) available on the machine. If a speed NOT AVAILABLE. 
cannot be found, output comment (63). If the re-
quested spindle speed is not exactly available, test (Followed by call to DISP AT) 
OPTAB(90) to determine if the lower, higher, or 
closest speed is desired. Based upon this OPT AB, 
set a value for the row index for the range ISPDRO. 
Test the spindle type flag ISPTYP (type spindle + 1) REQUIREMENTS 
to determine if the type routine stores the SR T AB(K) 
value into SPNSPD. If not, store this value in Calls DISPAT 
SPNSPD before returning. If the lowest speed in a 
range is used, output a comment (80). Called by no subroutines (only entries are referenced) 

DIAGNOSTICS 

Comment: SPINDLE SPEED COULD NOT BE 
FOUND. 

Comment: LOWEST SPEED IN RANGE IS OUT
PUT. 

REQUIREMENTS 

Calls COMENT 

Called by subroutines SFMO, SPTYPE, TYPE03 

RESTRICTIONS 

Machine tool must have an S code register. 

6-26 

RESTRICTIONS 

Multiple Entry 

Uses APT System COMMON 

Computer Dependent 



ClClNT Ill 

PURPOSE 

POSTPROCESSOR 

DWELL (DWELGB) 
(GEBASE) 

To output a dwell block 

INPUT 

Call DWELL(N) 

where N is the OPT AB location of the dwell time. 

OUTPUT 

A dwell command block (code= 4) is output. 

METHOD 

If N =/= 0, a block is output with the G code from 
TABLEG(S) and dwell time given by OPTAB(N). 
CODE is set to 4.0 and subroutine OUTPUT is 
called. 

If N = 0, CODE is set to 1.0 and subroutine 
OUTPUT is called. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine OUTPUT. 

Called by subroutines CLAMP, COUPLE, END, 
FEDRAT, RAPID, RESTAT, REWIND, 
SADDLE, SPINDL, TOOLGM, TOOLL, 
TURRET, TURSAD, TYPE02, TYPE03, 
TYPE04, TYPElO, TYPE12, TYPE13. 

RESTRICTIONS 

None 

... for the computer programmer 

PURPOSE 

EIACOM (EIACGB) 
(GEBASE) 

To convert any number within the range from 
0.0001 to 9999 to the corresponding EIA three 
digit command form 

INPUT 

CALL EIACOM (GIV ALU) 

where: 

GIVALU is the number to be converted. 

OUTPUT 

The converted 3 digit EIA number is restored in 
GIVALU. 

METHOD 

The sign of the value is saved in DTEMP(l). If 
the GIVALU equals 1,10,100, pick up the con
verted value and return. Based on the value of 
GIVALU, add a factor to the value to take care of 
a rounding problem. Determine the value of the 
exponent 10 • (KY) for values greater than 1. The 
value DTEMP(2) becomes the exponent on the first 
digit of the code. The value DTEMP(3) becomes 
the factor used to convert the programmed value to 
a number of 2 digits accuracy for the last 2 digits 
of the code. 

DIAGNOSTICS 

Comment: THE NUMBER TO BE CONVER TED 
TO THE MAGIC THREE FORM IS 
TOO LARGE OR TOO SMALL. 

REQUIREMENTS 

Called by subroutines CONTUR, GMOTIN, 
POSFED, TYPEOl, TYPE04, TYPEOS, 
TYPElO, TYPE13 

Calls subroutine COMENT 

RESTRICTIONS 

None 

6-27 



CICINT Ill 

PURPOSE 

POSTPROCESSOR 

END (ENDGB) 
(GEBASE) 

To process an END block and reset flags. 

INPUT 

CALL END 

Subroutine RESET is a multiple entry in subroutine 
END. 

OUTPUT 

If option 97 has a positive value, this value is output 
as a dwell time in a block with a zero T code. The 
End of Program M code is output in a block by 
itself. 

Flags and parameters used: JENTRY, ENDFLG, 
RESETF, CURNG, REFATL, REFBTL, 
SEFBTL, FLRPON, FIRST, FLONSP, PREVS, 
FLSFON, STOPON, SFMFLG, DTRANS, and 
STATE. 

DIAGNOSTICS 

Comment 22: MISCELLANEOUS FUNCTION 
CODE NOT AVAILABLE ON 
THIS MACHINE. 

REQUIREMENTS 

Called by subroutine AUXLRY 
Calls subroutines DWELL, COMENT, OUTPUT, 
and STOREM. 

RESTRICTIONS 

None 

6-28 

PURPOSE 

... for the computer programmer 

ENTRAP (RAPEGB) 
(GEBASE) 

To output a rapid block in all cases after a STOP, 
OPS TOP, or BREAK statement 

INPUT 

Call ENTRAP 

OUTPUT 

Flags used: STA TE, FRAPID, RAPRNG, FLRPON 

A command block is output which places the ma
chine in the rapid mode. 

METHOD 

This occurs only when automatic reinstatement is 
used. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines DWELL, STOREM 

Called by subroutine STOP 

RESTRICTIONS 

This is an entry to subroutine RESTAT. 



ClClNT Ill 

PURPOSE 

POSTPROCESSOR 

ERDMPI (DUMPGE) 
(GEMON) 

To output the error number and give a dump of 
core when an unrecoverable error is detected. 

INPUT 

CALL ERDMPI 

OUTPUT 

The error number (ERROR) is printed and a dump 
of core is given. 

REQUIREMENTS 

Calls GED UMP and DISP AT. 
Called by GEBASE, DECODE, MOTION, 
FROM5, SPINDL, LINRTY, SELGRO, 
TURRET, IDPART, SELG, SELGCR, 
PROCQD, INIT, GEPROl, WEFREW, 
FUNLNK, OUTPUT, and INIT. 

RESTRICTIONS 

Uses CALL LLINK statement on the GE 635. 

REQUIREMENTS 

Calls MACSRT 

Called by POSMOV and POSFED. 

RESTRICTIONS 

OPTAB(78) = 5.0 
OPTAB(l) = 1or2 

... for the computer programmer 

PURPOSE 

FEDLIM (FDLMGB) 
(GE TERP) 

To determine the axes component feedrate values, 
check for the number of feedrate ranges, test for 
rapid traverse, check for tape reader limitation, and 
to make sure the component feedrate is within 
specified limits 

INPUT 

CALL FEDLIM 

OUTPUT 

Flags used: FORKl and IFDRNG 

The tested feedrate is stored in DBFSEG(l 1). 

METHOD 

See Section 4.1.5 of the manual 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine OUTPUT 

Calls subroutines CO NVR T and LENGTH 

RESTRICTION 

None 

6-29 



ClCINT Ill POSTPROCESSOR 

FEDOVR (FEDOVR) 
(GEBASE) 

PURPOSE 

To process M codes for the SELECT/FEDOVR, 
ON 
OFF Statement. 

(Feedrate override) 

INPUT 

CallFEDOVR 

The input arrays ICLDAT and DATACL are used. 

OUTPUT 

The M code is output in a block by itself. 

METHOD 

If ON is given, TABLEM(l 12) is output. 

If OFF is given, TABLEM(l 11) is output. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine STOREM 

Called by subroutine SELECT 

RESTRICTIONS 

None 

6-30 

... for the computer programmer 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

FEDRAT (FEDRGB) 
(GEBASE) 

PURPOSE 

To produce the proper feedrate and condition flags 
as specified by the APT source statement FED RAT. 

INPUT 

CALL FEDRAT 

The input arrays ICLDAT and DATACL are used. 

OUTPUT 

The given feedrate (not feedrate command number) 
is held in the parameter FEDIPM ready to be in
serted in the programmed block. The feedrate mode 
and traverse flags will be set according to the condi
tions indicated. 

METHOD 

Initialize the MAXIPM flag IMAXFL, the RANGE 
flag IRANFL, and the feed-given flag IFEDFL to 
zero. First check to see if DATACL(4) is a floating 
value number. Call subroutine FLOAT and if ANS 
= 0, the value is a floating point number. Store the 
value in FDHOLD and set the feed-given flag 
IFEDFL equal to 1. If not, test to see if ICLDAT(4) 
is an IPM or IPR. If so, DATACL(5) is assumed 
to be a floating point number and is stored in 
FDHOLD. Set the feed mode flag FRMOD to 0 
for IPM or 1 for IPR. If the mode flag is set to 0, 
test OPT AB(2) to see if SFM is to be cancelled by 
an IPM statement. If so, set the SFM flag SFMFLG 
and the range lock flag SFMLOK to zero. Continue 
the scan of the feedrate statement. If RANGE is 
found, look for modifiers MEDIUM, HIGH, LOW, 
and if none is found, the value following is assumed 
to be a floating point range number. 

In any case set the range flag IRANGE to the 
proper range number. If MAXIPM is found, store 
the value in SFMAXI and set the MAXIPM flag 
IMAXFL to 1. At this point the feedrate statement 
has been completely scanned. Test the feedrate mode 
flag FRMOD: if set for IPM, store FDHOLD into 
the feedrate IPM parameter FEDIPM. If not, store 
FDHOLD into the feedrate parameter FEDIPR and 
calculate the IPM using the known spindle speed. 
If the mode is IPR, the feedrate in IPM is computed 
from the relation: 

Feedrate in IPM = Feedrate in IPR· Spindle speed 
in RPM. 

Test the rapid mode option (OPTAB(l 09); depend
ing on the setting, go into RAPID or get out 
of RAPID. Assuming the standard setting, test 
OPT AB(l 8) to determine the number of feed ranges. 
If greater than 1, set the no-down shift flag RAPFED 
= 1. If a range was given and is different from the 
previous range, calculate the index N for selecting 
the proper TABLEM value. Store the M code for 
output by calling STOREM(N). Store the plus value 
in STA TE( 6), for possible reinstatement or a minus 
value in ST A TE( 6) if currently in a Stop Condition 
(STOPON = 1). If a range change dwell is required 
(OPTAB(93)), a dwell is made output. Depending 
on the range and how OPTAB(25) is set, determine 
the minimum and maximum feedrates allowed, and 
store in FRMIN and FRMAX. If a MAXIPM is 
programmed, (IMAXFL = 1 ), test to see if SFMAXI 
is greater than FRMAX. If so, set SFMAXI equal 
to FRMAX. Call subroutine TSTEXT to set 
FEDIPM to the limit exceeded, if one is exceeded. 
Test to see if the machine is a positioning machine 
(OPTAB(l) = 0), and if so call the appropriate 
feedrate type; otherwise return. 

DIAGNOSTICS 

Comment: NO SPINDLE SPEED GIVEN FOR 
IPR MODE. 

OPTION FEED RA TE RANGE AS
SUMED. 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutines FLOAT, RAPID, RAPIDX, 
STOREM, DWELL, MACSRT, TSTEXT, 
FTYPE4, FTYPE8, FTYPE6 

RESTRICTIONS 

None 

6-31 



ClClNT Ill 

PURPOSE 

POSTPROCESSOR 

FLAME (FLAMGF) 
(GEFLAM) 

To output the auxiliary function M codes to estab
lish the operating condition for a flame cutter. 

INPUT 

CALL FLAME 

The input arrays ICLDAT and DATACL are used. 

OUTPUT 

The M Code for the designated operation is output 
in a block by itself. 

METHOD 

... for the computer programmer 

FLOAT (GE/635) (FLFXGE) 
(GEM ON) 

PURPOSE 

To determine if a value is a floating point number 

INPUT 

CALL FLOAT (Tl, T2) 

Tl is the number given for testing 

OUTPUT 

Flag T2 = 0 if Tl is a floating point number 

T2 = 1 if Tl is not a floating point number 

METHOD 

If the rapid flag (FLRPON = 0) is on, call sub- Boolean Mask: 
routine RAPIDX to get out of rapid. If not, begin 
the scan of the statement. The head parameter Tl is ANDed with actal constant 0777777000000. 
IHEAD is set to ·-1 if BOTH is the modifier; if 
SLAVE, set to 1; if MASTER, set to 0. If UP or If the result is zero, then Tl was not a floating point 
DOWN is programmed, select and output an M number. 
code based upon the value of IHEAD. If OXYGEN 
is programmed, select and output an M code based 
upon ON or OFF and IHEAD. If PREHET is 
programmed, select and output an M code based DIAGNOSTICS 
upon ON, OFF, and !HEAD. If the state·ment is 
incorrect, output comment 42. None 

DIAGNOSTIC 

Comment: THE VOCABULARY IS NOT AC
CEPTABLE IN THE FLAME STATE
MENT. 

REQUIREMENTS 

Called by subroutine A UXLRY 

Calls subroutines STOREM, COMENT, RAPIDX 

RESTRICTION 

OPTAB(132) = 4 

6-32 

REQUIREMENTS 

Called by subroutines CYCLGP, FEDRAT, 
GEDUMP, ROTABL, ROTHED, SPINDL 

Calls no subroutines 

RESTRICTIONS 

Computer dependent-(GE63 5) 

The subroutine uses a data statement. 



C(CHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

FLOAT (IBM/360) 
(GEMON) 

To determine if a value is a floating point number 

INPUT 

CALL FLOAT(IVAL, T2) 

IVAL is the number given for testing 

OUTPUT 

T2 = 0 if the number (IVAL) is a floating point 

T2 = 1 if the number (!VAL) is not a floating point 
number 

METHOD 

The address communicated through the first argument is double 
precision. Within this subroutine the first argument is a 
single precision array having two elements. The first element 
IVAL (1) is the left half of the DP word, i.e., it is the first 
4 bytes. If IVAL(1) is all zero, then the DP word is an 
integer. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines CYCLGP, FEDRAT, GEDUMP, ROTABL, ROTHED, 
SPINDL 

Calls no subroutines 

RESTRICTIONS 

Computer dependent - (IBM360) 

First argument must be double precision 

6-61 



ClCINT Ill 

PURPOSE 

POSTPROCESSOR 

FROM (FROMGE) 
(GEBASE) 

To setup and output a FROM point 

INPUT 

CALL FROM 

... for the computer programmer 

The following parameters and arrays in COMMON are used: 
CLDATA, ICLDAT, TRANSL, AXMULT, DPRESM, DBFSEG 

OUTPUT 

CURNTZ, ENDFLG, DPRESP, DPREVP, DPREVM, CODE 

The FROM point is output 

METHOD 

Any pending M code is forced out. If present, a plane G code 
is also output. The FROM point is selected from the CLTAPE, 
CODE set to 3, and subroutine OUTPUT called after the previous 
part and machine point vectors are set equal to present 
values. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines STOREM, PLNSEL, FROM3, FROM5, SRAREC, OUTPUT 

Called by subroutine MOTION 

RESTRICTIONS 

None 

6-62 



ClCHT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

FROM3 (FRM3GB) 
(GEBASE) 

To set up DBFSEG for a non-multiaxis machine 

INPUT 

CALL FROM3 

The following parameters and arrays in COMMON are used: 
DPRESM, ICLDAT, and CLDATA 

OUTPUT 

The FROM point is set up in DBFSEG(3,4,5). 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine GEOM 

Called by subroutine FROM 

RESTRICTIONS 

None 

6-63 



CICINT Ill POSTPROCESSOR 

PURPOSE 

FROMS ( FRMSGX) 
(GEMAXS) 

... for the computer programmer 

To check values, set up DBFSEG, and call one of the class 
subroutines to. determine the transforms for the FROM point for 
a multiaxis machine 

INPUT 

Call FROM5 

The following parameters and arrays in COMMON are used: 
DPRESP, EPSLON, DPRESM, OPTAB, ROTUNT, ICLDAT, and CLDATA. 

OUTPUT 

The multiaxis FROM point is set up in DBFSEG(3,4,5,6,7). 

METHOD 

The direction cosine accuracy of the FROM point is tested and 
the part data is converted to machine coordinates. 

Rotary moves are modified to be within 360 degrees. 

DIAGNOSTICS 

(Direction cosine inaccuracy) 

Error 19: Direction cosines error since 

~ I2 + J2 + K2 #- 1 

REQUIREMENTS 

Calls subroutines LENGTH, ERDMP1, GEOM, MACSRT 

Called by subroutine FROM 

RESTRICTIONS 

None 

6-64 



CI&INT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

FTYPE2 (FTY26P) 
(GEPOS) 

To determine the feedrate command and select the feedrate in 
IPM from the feedrate table stored in SRTAB 

INPUT 

CALL FTYPE2(F,K,IFEDFL) 

where: F = returned feedrate 
K = 1 for f eedrate command 

= -1 for feedrate in IPM 
IFEDFL = 1 feedrate value given 

= 0 no feedrate value given 

COMMON parameters used: FDHOLD, ISRNGE, SPNSPD, and 
SR TAB 

Flags used: FRMOD and IFDRNG 

OUTPUT 

The appropriate or desired feedrate in IPM or feedrate com
mand is output. 

DIAGNOSTICS 

Comment: OPTION VALUE IS ASSUMED FOR THE SPINDLE 
SPEED. 

REQUIREMENTS 

Called by subroutines CYCLGP, FEDRAT, POSFED and SPINDL 

Calls subroutines COMENT and EIACOM 

RESTRICTIONS 

None 

6-65 



GICINT Ill POSTPROCESSOR 

PURPOSE 

FTYPE4 (FTYPE4) 
(GEPOS) 

... for the computer programmer 

To determine a f eedrate comnand for a type 4 positioning 
machine. 

Range 1: Feed command is based on the feedrate in IPR. 

Range 2: Feed command is based on the feedrate in IPR*S. 

Input 

CALL FTYP E4 (F, K) 

where F is the returned feedrate command or the returned 
feedrate in IPM; 

and, K = 1 for the feedrate command, 

or, K = 0 for the feedrate in IPM. 

OUTPUT 

The appropriate or desired feedrate in IPM or feedrate 
conunand is output. 

Flags set i (1) FEDRTR 
(2) FCOMM 

DIAGNOSTICS 

None called. 

REQUIREMENTS 

Calling routines; 

RESTRICTIONS 

Option (78) = 4.0 

6-66 

(1) FEDRAT 
(2) CYCLGP 
(3) SPINDL 
(4) POSFED 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

FTYPE6 (FTYPE6) 
(GEPOS) 

To determine a feedrate for a Type 6 positioning feed command 

Range, 1: F = 12*F 
COM IPM 

Range 2: F = 2*F 
COM IPM 

INPUT 

CALL FTYPE6(F,K): 

where K = O, F = Programmed feedrate in IPM 

where K = 1, F = Actual feedrate in IPM 

OUTPUT 

Parameter FEDIPM contains: 

METHOD 

when K = O, actual feedrate in IPM available on the 
machine tool 

when K = 1, feedrate command 

The f eedrates available on the machine tool are stored in the 
feedrate table (the upper portion of SRTAB} by the Machine 
Subroutine. Based upon the number of f eedrates per range 
(OPTAB(63)) and the size of the feedrate table (OPTAB (174)), 
the beginning and ending indices J2 and J3 are calculated. 
The programmed f eedrate is compared against the feedrates 
available to determine the selected feedrate in IPM when K = 
0. At output time this routine is again called when K = 1 to 
calculate the feedrate command. During the CYCLE/MILL mode 
all feedrates are assumed to be in range 2. 

6-67 



ClClNT Ill POSTPROCESSOR 

FTYPE6 (cont'd) 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines: 

Calls no subroutines. 

RESTRICTIONS 

OPTAB (78) = 6 

OPTAB(1) = 1 or 2 

6-68 

CYCLGP for K = 0 
FEDRAT for K = 0 
POSFED for K = 1 
SPINDL for K = 0 

... for the computer programmer 



ClClNT 111 POSTPROCESSOR 

PURPOSE 

FUNLNK (GEFNLK) 
(FUNLNK) 

... for the computer programmer 

To interrogate the tables of the Machine subroutine and set up 
a BCD list of function overlays for GF.MON to pull in 

INPUT 

CALL FUNLNK(LINKOV) 

OUTPUT 

Flag used: ISPTYP, LINKOV, ERROR 

The 5 elements of the array LINKOV are set to the BCD names of 
the links to be loaded. 

DIAGNOSTICS 

Error 8000: Option 132 is set incorrectly. 

REQUIREMENTS 

Calls subroutine ERDMP1 

Called by subroutine GFMON 

RESTRICTIONS 

Data statement is used 

Computer Dependent for the GE635 only 

6-69 



CIClNT Ill POSTPROCESSOR 

PURPOSE 

FVARGO ( FVARGO) 
GETERP) 

... for the computer programmer 

To modify the F register in accordance with the G CODE 
(Variable F Format) 

INPUT 

CALL FVARGO(FCOMIN) 

where FCOMIN is the feed command minimum 

COMMON parameters used: NPR, NPT, NPTA, NFP, and NIP 

OUTPUT 

A series of command bloc.ks derived from path segmentation 
is output. 

METHOD 

See Section 4.1.5.1 of the manual 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine CONTUR 

Calls subroutine COMPFC 

RESTRICTIONS 

None 

6-70 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

FXMULT ( FXMULT) 
(GEMULT) 

To combine the motion blocks for both heads when the heads 
share a coIIUnon axis 

INPUT 

CALL FXMULT 

The following COMMON parameters are used: 

AS2 the current record being processed for head 1 

ABS2 the absolute. coordinate system for head 1 

AS3 the current record being processed for head 1 

ABS3 the absolute coordinate system for head 2 

ABCF1 = 0 incremental moves have not been added to the 
absolute coordinate system for head 1 

= 1 incremental moves have been added to the 
absolute coordinate system for head 1 

ABCF2 = 0 incremental moves have not been added to the 
absolute coordinate system for head 2 

= 1 incremental moves have been added to the 
absolute coordinate system for head 2 

6-71 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

FXMULT (cont'd) 

OUTPUT 

The portion of the cuts which can be combined are output 
and any cuts which cannot be output are cut separately. 
The following flags are used in this subroutine. 

6-72 

RFLAG2 is the read flag for head 1: 

0 = read next record 

1 = do not read next record 

RFLAG3 is the read flag for head 2: 

0 = read next record 

1 = do not read next record 

H1DIR indicates the direction of head 1, either plus 
or minus. 

H2DIR indicates the direction of head 2, either plus 
or minus. 

DJR gives the major direction of motion, either plus 
or minus. 

H1FLG is the flag which shows if any motion is left 
for head 1: 

0 = no motion on head 1 

1 = motion remains on head 1 

H2FLG is the flag which shows if any motion remains 
for head 2: 

0 = no motion on head 2 

1 = motion remains on head 2 



Cl&Hl Ill POSTPROCESSOR ... for the computer programmer 

FXMULT (cont'd) 

METHOD 

(1) Add new delta moves to absolute coordinate system (unless 
it is the remainder from a previous combine attempt). 

(2) If either of the blocks is not a motion block, output it 
and return to get another. 

(3) Determine if the two cuts share a common axis. 

(4) If not, output the segment which best allows the system 
to "catch up" so combining can be done. Go to 6. 

(5) If cuts share the common axis, determine if the component 
feedrates on the common axis are within the tolerance 
specified in OPTAB(157). If they satisy the tolerance 
conditions, output as a combined block. If not, output 
separately. 

(6) If a portion of either vector remains, set it up as a 
new incremental move, and go read a record for the 
alternate head. 

DIAGNOSTICS 

Certain impossible branches from IF tests produce the 
following comment: AN ERROR IN FXMULT - TYPE UNRECOVERABLE. 
Subroutine PERROR is then called. 

REQUIREMENTS 

Called by subroutine GEMULT. 

Calls subroutine SEG, FXTOL, GMOUT, FXPARK, PERROR, and SRAREC. 

RESTRICTIONS 

None 

6-73 





Cl&INT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

FXPARK (FXPARK) 
(GEMULT) 

To determine if the specified head is parked and to park it 
if it is not parked. If the alternate head is parked, it is 
returned to the work piece. 

CALL FXPARK ( 1HEAD) 

where: 

1HEAD = 1 HEAD 1 is to be parked; 

1HEAD = 2 HEAD 2 is to be parked; 

1HEAD = 3 neither head is to be parked. 

The following COMMON parameters are used: 

AS2 the current record being processed for head 1; 

ABS2 the absolute coordinate system for head 1; 

AS3 the current record being processed for head 2; 

ABS3 the absolute coordinate system for head 2; 

IPARK1 flag to determine if head 1 has been parked; 

0 = not parked; 
1 = parked. 

IPARK2 flag to determine ii head 2 has been parked. 

0 - not parked; 
1 = parked. 

SAFHD1 the X,Y,Z departures from the SAFETY COIWnand for 
head 1; 

6-75 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

FXPARK (cont'd) 

INPUT (cont• d) 

SAFHD2 the X,Y,Z departures from the SAFETY command for 
head 2; 

SEQNH1 the current sequence number for head 1; 

SEQNH2 the current sequence number for head 2; 

SFHD1W the X,Y,Z departures for withdrawing head 1 
from the work while had 2 is being parked; 

SFHD2W the X,Y,Z departures for withdrawing head 2 
from the work while head 1 is be parked. 

OUTPUT 

The specified head will be parked 
postioned in the work, or if 1HEAD = 3, 
positioned in the work. 

METHOD 

and the alternate head 
both hands will be 

Subroutine PARK is called to park a head. Surbroutine RETHD 
is called to return a head to the work when the alternate head 
is parked. Subroutine DRETHD is called to return a head to 
the work when the alternate head is in the work. 

DIAGNOSTICS 

If 1HEAD is not 1, 2, or 3, the following comment is printed: 
ERROR IN FXPARK ROUTINE IN GEMULT LINK xxx. xxx is the value 
of 1HEAD: subroutine ERROR is then called. 

REQUIREMENTS 

Called by subroutine GEMULT. 

Calls subroutine PARK, RETHD, DRETHD, PERROR. 

RESTRICTIONS 

One head must always be in the work when this subroutine is 
called. 

6-76 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

FXTOL (FXTOL} 
(GEMULT) 

To determine if the 
component feedrate 
OPTAB {157) 

two cut 
within 

vectors have a 
the tolerance 

common axis 
specified in 

INPUT 

CALL FXTOL (IND) 

where: 

IND is a flag to be set {see subroutine OUTPUT) 

IND = 0 if tolerance condition is met 

IND = 1 if tolerance condition is not met 

The following COMMON parameters are also used: 

AS2 the current DBFSEG record for head 1 

AS3 the current DBFSEG record for head 2 

METHOD 

{1) If there is no common axis motion, return to calling 
subroutine. 

(2) Compute the conuoon axis component feedrates and the 
tolerance. 

(3) If the tolerance is met, return to calling subroutine. 

(4) If the tolerance is not met, determine if either move is 
in rapid. 

(5) If the move is not in rapid, set IND = 1 and return. 

(6) If the move is in rapid, use the smaller feedrate to 
-compute a new feedrate for the other motion block. The 
new feedrate is within the tolerance. 

6-77 



ClCHT Ill POSTPROCESSOR 

FXTOL (cont'd) 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines. 

... for the computer programmer 

Called by subroutines DRETHD, EXMULT, and PARK. 

RESTRICTIONS 

None 

6-78 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GDWELL ( GDWELL) 
(GEMULT) 

To set up a data record when either or both of the heads have 
a G04 

INPUT 

CALL GDWELL 

The COMMON parameters used are: 

AS2 the current DBFSEG record for head 1 

AS3 the current DBFSEG record for head 2 

ICODE the CODE for head 1 

JCODE the CODE for head 2 

OUTPUT 

AS2 and AS3 are set as described under METHOD. 

METHOD 

If only one head bas a G04, the dwell time and feedrate for 
that head is set to IMBITS since the cut motion of the other 
head automatically takes care of the dwell on the first head. 
If both heads have a G04 6 then the dwell time is identical. 
Since only one value is necessary, the dwell time and feedrate 
for one head are set to DMBITS. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines GMCIRL and GMLINE 

RESTRICTIONS 

None 

6-79' 



CICHT Ill POSTPROCESSOR 

PURPOSE 

GEBASE (GEBASE) 
(GEBASE) 

... for the computer programmer 

To function as the control subroutine for overlay GEBASE 

INPUT 

CALL GEBASE 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The following flags are used: 

ENDFLG, CIRSEQ, REI'URN, AXMULT, and MULTHD. 

DIAGNOSTICS 

TAPE READ ERROR (ERROR = 1. 0) 

Comment: NO END STATEMENT HAS BEEN GIVEN BEFORE THE 
FINI STATEMENT. 

REQUIREMENTS 

Calls subroutine AUXLRY, COMMENT, ERDMP1, MOTION, OUTPUT, 

SRFCHK, STOREM, REWZ, WEFW, INPUT, IOERR 

Called by subroutine GEMON 

RESTRICTIONS 

APT COMMON must be used. 

6-80 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GEMISC ( GEMISC) 
(GEMULT) 

To set up the output buffer GMHBUF with spindle speeds, M 
codes, and T codes 

INPUT 

CALL GEMISC ( IH) 

where: 

IH = 1 means only head 1 has data to output 

= 2 only head 2 has data to output 

= 3 both heads 1 and 2 have data to output with head 1 
being the primary head 

= 4 both heads 1 and 2 have data to output with head 2 
beign the primary head 

The COMMON arrays AS2 (the current DBFSEG record for head 1) 
and AS3 (the current DBFSEG record for head 2) are also 
used. 

OUTPUT 

GMBUF is output as described below under METHOD. 

6-81 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

GEMISC (cont'd) 

METHOD 

When both heads have their own s, T and M registers, 
GMHBUF will be set up as: 

HEAD 1 Buffer 

GMHBUF(12) = spindle code 

GMHBUF(13) = T code 

GMHBUF(14) = M code 

GMHBUF(20) = spindle speed 

HEAD 2 Buffer 

GMHBUF(32) = spindle code 

GMHBUF(33) = T code 

GMHBUF(34) = M code 

GMHBUF(40) = spindle speed 

If the two heads share a register, the head 2 value for that 
register is stored in the head 1 region of GMHBUF. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine GMOUT 

RESTRICTIONS 

None 

6-82 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GEMON (635) (GEMON) 
(GEMON) 

To establish the memory overlay structure necessary for the 
given NC machine type 

INPUT 

CALL GEMON 

The following paramerters and arrays in COMMON are used: 
LINKOV, OPrAB, IGEFLG, MULTHD, ICLDAT and CLDATA 

OUTPUT 

The array LINKOV contains the needed overlays. The overlay 
structure is then loaded into core. 

METHOD 

CALL LINK statements are used to load various modules into 
memory without transferring control to them. A DATA statement 
establishes the Hollerith names of various links. Array 
LINKOV is setup with BCD names of overlays. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine LLINKs with arguments LKINIT, MACSAV, IPLAD, 
KBASE, IFNLNK, !GOUT, IGEAD, and 
IGMULT 

Calls subroutines INIT, GEPLAD, FUNLNK, GEBASE, GFAD, 
GEMULT, DISPAT 

Called by subroutine AUXLRY 

6-83 



ClClNT Ill POSTPROCESSOR 

GEMON (cont'd) 

RESTRICTIONS 

Uses a Data statement 

Uses CALL LLINK statement 

Computer dependent subroutine 

6-84 

... for the computer programmer 



CltlNT Ill POSTPROCESSOR 

PURPOSE 

GEMONT (GEMONT) 
(GEMON) 

... for the computer programmer 

To call subroutine GEOUT from the GEMULT link 

INPUT 

CALL GEMONT 

OUTPUT 

Subroutine GEOUT is called 

METHOD 

On some computers when an overlay is overlayed, the transfer 
vectors to routines in overlays further down in the structure 
are destroyed. In order to call a routine further down in the 
structure from an overlayed overlay, a routine in the initial 
overlay of the structure must be called, and then this routine 
calls in the desired overlay. A call could not be made 
directly to GEOUT from the overlay GEMULT,,.....,,.. so GEMONT is 
called from GEMULT; and GEMONT then calls GEOUT. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine GMSTOR 

Calls subroutine GEOUT 

RESTRICTIONS 

None 

6-85. 





Cl&HT Ill POSTPROCESSOR ... for the computer programmer 

GEMULT (GEMULT) 
(GEMULT) 

PURPOSE 

To direct the processing of the multihead overlay for 
the rrerging and output of command blocks 

INPUT 

CALL GEMULT 

Data for head 1 are on TAPES2 and data for head 2 are on 
TAPES3. 

OUTPUT 

The processed data are stored in GMHBUF and passed 
on to GEOUT3 for final processing. 

The following flags are used: 

ICIRLN CIRCLE - line flag: 

-1 = head 1 is linear and head 2 is circular 

+1 = head 1 is circular and head 2 is linear 

0 = both heads are linear 

2 = both heads are circular 

IEOF Read flag: 

0 = a good data record 

1 = end of file 

IHOP flag: 

1 = head 1 OP number less than head 2 OP 
number 

2 = head 2 OP number less than head 1 OP 
number 

6-87 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

GEMULT (cont'd) 

OUTPUT (cont'd) 

METHOD 

IS2 OP flag for head 1: 

0 = no words are given in the OP statement 
except for the OP number 

2 = additional words are given in the OP 
statement 

IS3 OP flag same as IS2 except for head 2. 

IS23 Present n value of head 1 for OP/n 

IS33 Same as IS23 except for head 2 

ISAFLG Flag indicating whether secondary head 
has been removed from combined cut: 

0 = no 
1 = yes 

!CODE CODE for head 1 

JCODE CODE for head 2 

RFLAG2 read flag for head 1: 

0 = read next record 

1 = do not read next record 

RFLAG3 same as RFLAG2 except for head 2 

Subroutine GEMULT reads records from TAPES2 (head 1) and 
TAPES3 (head 2) and determines whether the data from each head 
should be made output as separate data records or should be 
merged into a combined data record. If the data is to be 
merged into a combined cut, it also determines whether the 
data is Line-Line, Line-Circle, Circle-Line, or Circle-Circle 
type data. All the major subroutines are called from this 
routine, and the logical program flow is initiated and con
trolled by subroutine GEMULT. 

6-88 



CICINT 111 POSTPROCESSOR ... for the computer programmer 

GEMULT (cont'd) 

DIAGNOSTICS 

The following recoverable warning comments are printed: 

Comment: DATA CANNOT BE MERGED BECAUSE SECONDARY 
HEAD HAS BEEN REMOVED FROM COMBINED CUT. 

Comment: SECONDARY HEAD REMOVED FROM PART. 

The following unrecoverable errors are printed: 

ERROR 1020: New n value for CODE 17 is less than 
previous n value. 

ERROR 1021: Word 11 of CODE 17 is not acceptable. 

EEROR 1022: Word 11 of CODE 17 is not acceptable. 

ERROR 1023: !CODE is not acceptable for head 1. 

ERROR 1024: n value or word 11 of CODE 17 is not 
acceptable on head 1. 

ERROR 1025: ICODE is not acceptable for head 2. 

ERROR 1026: n value or word 11 of CODE 17 is not 
acceptable on head 2. 

ERROR 1027: !CODE or JCODE not acceptable. 

ERROR 7003: Tape read error 

REQUIREMENTS 

Called by subroutine GEMON 

Calls Subroutines CRFAD, GMOUT, COMENT, FXMULT, FXPARK, 

GMCIRL, GMFENC, GMINIT, GMLINE, PERROR, RETRET, and 
RETSFY 

RESTRICTIONS 

At present only two heads can be merged. 

6-89 



CICINT Ill POSTPROCESSOR 

PURPOSE 

GEOM (GEOMGB) 
(GEBASE) 

... for the computer programmer 

To convert the part coordinate vector DPRESP to the machine 
coordinate vector DPRESM 

INPUT 

CALL GEOM 

The following parameters and arrays in COMMON are used: AXMULT 

OUTPUT 

DPRESM contains the machine coordinate data. 

METHOD 

Subroutine GEOM3 is called if non-multiaxis. 

Subroutine GEOMS is called if multiaxis. 

Subroutine TSTLIM is called in either case. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine GEOM3, TSTLIM, GEOMS 

Called by subroutine MOTION 

RESTRICTIONS 

None 

6-90 



C(C(Nl Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GEOM3 (GE03GB) 
(GEBASE) 

To convert the part coordinate point to the machine coordinate 
point for non-multiaxis machines 

INPUT 

CALL GEOM3 

The vector DPRESP contains the CL data point with the TRANS 
value added. DPRESP is dimensioned at six and ordered as (x, 
y, z, i, j, k). 

OUTPUT 

The vector DPRESM contains the rounded and truncated values of 
DPRESP. 

DPRESM is dimensioned at six and ordered as (x, y, z, 
a, b, c}. 

METHOD 

DPRESP is stored in DPRESM after the values of DPRESP are 
rounded to the STEP size by subroutine SRAREC. 
The STEP size is given in option 14. 

DIAGNOSTICS 

None 

REQUIREMENTS 

calls subroutine SRAREC 

Called by subroutine GEOM 

RESTRICTIONS 

None 

6-91 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

GE OMS ( GEOSGX) 
(GEMAXS) 

... for the computer programmer 

To convert the part coordinate point to the machine coordinate 
point for a multiaxis machine 

INPUT 

CALL GEOMS 

The vector DPRESP contains the CL data point with the TRANS 
value added. DPRESP is dimensioned at six and ordered ·as (x, 
Y' Z I i' j I k) • 

OUTPUT 

The vector DPRESM contains the converted, rounded, and 
truncated values of the machine point corresponding to the 
part point DPRESP. DPRESM is dimensioned at six and ordered 
as (x, y, z, a, b, c). 

METHOD 

The particular class equations are called to transform the 
part coordinates to the machine coordinates. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines CLASS, TRUNC 

Called by subroutine GEOM 

RESTRICTIONS 

None 

6-92 



ClClNT 111 

PURPOSE 

POSTPROCESSOR 

GEOUT (GE OUT) 
(GEOUT) 

To pull in the proper punch package 

... for the computer programmer 

This subroutine also selects the correct type of output 
sequence to be used. 

INPUT 

CALL GEOUT 

OUTPUT 

Flags used: FORK and NOW 

METHOD 

Option 164 is tested to see which output sequence is to be 
used, then the appropriate link and subroutines are called. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine GEMON and OUTPUT 

Calls subroutine GEPRE, LLINK, GEPR01, GEPR02, and GEPR03 

RESTRICTIONS 

This subroutine is computer dependant. 

Uses Data Statement 

6-93 



CICHT Ill POSTPROCESSOR 

PURPOSE 

GEPRE ( GEPRE) 
(GEO UT) 

... for the computer programmer 

To initialize control flags and forks used in GEOUT1 to test 
for a PARTNO record, and to set up a punch card 
identification. 

INPUT 

CALL GEPRE 

COMMON parameters used: DABVAL, OPRVAL, DPRTNO, PREVS, PREVX 
and PREVY 

OUTPUT 

Flags and Forks used: IBLNK, IPGCTR, NEWSEQ, REELNO, IDLINE, 
TIMCUT, TIMDWL, CTRLIN, IPAGE, SKPCOD, and NOCHAR 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine GEOUT 

Calls subroutine CALCP1, CALCP3, DECODE, IDPART, - PARNEM, 
PARNOM, PPUNCH and PUNIDN 

RESTRICTIONS 

This subroutine uses Data Statements. 

6-94 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GEPRNl (GEPRNl) 
(GEOUT) 

To print out a line in GEOUTl 

INPUT 

CALL GEPRNl 

The following parameters and arrays in COMMON are used: 
SEQCTR, BCDIMG, OPTAB 

OUTPUT 

The array BCDIMG is printed on IOUTAP. 

120 positions are printed* 

METHOD 

*If option 143 ¢ 0.0, then the CL record number is output 
after print position 120. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines 

Called by subroutines GEPR01, GEPR03, TITLE3 

RESTRICTIONS 

None 

6-95 



CICINT Ill POSTPROCESSOR 

PURPOSE 

GEPRN2 (GEPRN2) 
(GEOUT) 

... for the computer programmer 

To write a 126 character print line on the output tape for 
GEDUT2 

INPUT 

CALL GEPRN2 

The BCDIMG array is set up in BCD form for printing. 

OUTPUT 

The line is printed. 

METHOD 

BCDIMG is written according to a FORTRAN FORMAT statement. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines. 

Called by subroutine GEPR02, TITLE2. 

RESTRICTIONS 

Uses APT System COMMON. 

6-96 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GEPRN3 (GEPRN3) 
(GEOUT) 

To print the BCDIMG array as used in GEDUT3 

INPUT 

CALL GEPRN3(INTX) 

where: INTX is the number of BCD words to print 

OUTPUT 

The line of data is printed. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines ABSOPR, and GEPR03 

Calls no subroutines 

RESTRICTIONS 

APT System COMMON is used. 

6-97 



CICHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GEPR01 (GEPR01) 
(GEO UT) 

To complete processing and output a block for GEOUT1 

INPUT 

CALL GEPR01 

The following parameters and arrays in COMMON are used: FORK, 
REGFOR, ICODE, ISHUFL, OPTAB, DBFSEG, IXSTOR, TIMDWL, SEQNEW, 
ORGIN, FIRST, SPNSPD, DABVAL, TABLEM, PREVS, PREVF, IPAGE, 
NOCHAR, CTRLIN, TIMCUT, IPGCTR 

OUTPUT 

Flags used: FORK, BCDIMG, ERROR, 
FIRST, DPRTNO, PREVS, PREVG, PREVF, 
CTRLIN, TIMCUT, IPGCTR, ITEMP, IWAVEN 

TIMDWL, 
I PAGE, 

A command block is printed and punched. 

METHOD 

SEQNEW, DABVAL, 
ORGIN, NOCHAR, 

ICODE indicates the type of block for output. output 
registers are shuffled, dwell times are accumulated, as are 
cut times (total and per page) • Sequence number and page 
counter as well as the line counter are calculated. 

DIAGNOSTICS 

Error 3000: Improper CODE number 

REQUIREMENTS 

Calls subroutines ERDMP1, SHUFFL, POSIT, CONTUR, SRAREC, 
SROREC, TITLE1, OCMNT1, SETUP1, SETLIN, PPUNCH 

Called by subroutine GEOUT 

RESTRICTIONS 

Uses a Data Statement and APT System COMMON 

6-98 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GEPR02 (GEPR02) 
(GEO UT) 

To complete the processing and output a block for GEOUT2 

INPUT 

CALL GEPR02 

The following ~arameters and array in conunon are used: 

ICODE, NIPA(12), NPTA(12), OPTAB, DBFSEG, 

TIMDWL, NPR, ISHUFFL, ORGIN(16), DPRESM, 

TABLEM, TABLEG, IPAGE, ITHTYP, NFP, CTRLIN, 

NIP, NP!'. 

OUTPUT 

Flags used: FLAG, BCDIMG, TIMDWL, DBFSEG, DABVAL, OPRVAL, 

PREVF, PREVF, PREVS, PREVG, IOUTAP, IPAGE, 

ORGIN, SAVE, CTRLIN, ITEMP. 

A command block is printed and punched. 

METHOD 

Parameter ICODE carries a value characterizing the block to be 
output. When all the needed register values are set, they are 
converted to BCD image and printed. Absolute and Operator 
lines are printed after the incremental line for each motion 
block. According to option specification, redundant codes are 
suppressed. 

DIAGNOSTICS 

None 

6-99 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

GEPR02 (cont'd) 

REQUIREMENTS 

Called by subroutine GEOUT 

Calls subroutines SHUFFL, POSIT, CONTUR, SRAREC, SROREC, 
CONBCD, SETLIN, GEPRN2, CONROT, PPUNCH, TITLE2 

RESTRICTIONS 

Uses Data Statement 

APT System common 

Computer dependent 

6-100 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

GESCOM (GESCOM) 
(GEBASE) 

PURPOSE 

To determine the spindle command SPNCOM for the general Type 
2 form of the spindle 

INPUT 

CALL GESCOM(IRNG, IROW) 

where: 

OUTPUT 

IRNG = new range number 

IROW = is the row of the range where the speed is 
stored in SRTAB. 

Store the spindle command in SPNCOM 

METHOD 

Calculate the spindle command SPNCOM by adding to the row of 
the range IROW, the incremental adder OPTAB(47) minus 1 plus 
(range requested IRNG 1) * (number of rows in the range 
NRORNG + the increment between ranges OPTAB(31) - 1) 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines TYPE02, TYPE14 spindle types 

calls no subroutines 

RESTRICTIONS 

OPTAB(19) = 2 or 14 only 

6-101 





Cl&HT Ill POSTPROCESSOR 

PURPOSE 

GFDLIM (CFDLIM) 
(GEMULT) 

... for the computer programmer 

To recalculate the feedrate command using the I,J,K registers, 
when the feedrate command exceeds the feedrate command maximwn 

INPUT 

CALL GFDLIM {ITY 1 ABC, FRN) 

where: 

OUTPUT 

ITY = head nwnber 

ABC = current BUFSEG record being processed 

FRN = true f eedrate command which exceeds the 
command maximum 

The I,J,K values are calculated and the feedrate number is 
recalculated and stored in A,B,C. 

METHOD 

FRN is divided by integer multiples until it is less than 
FCOMAX. FRN and the I,J,K values are then calculated. The 
I,J,K values are the X,Y,Z values multiplied by the integer 
used to find the revised FRN. 

6-103 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

GFDLIM (cont'd) 

For example: 

f = 50 0 , FCOMAX = 5 0 0, /iX. = 3 , /J, Y = 4 • 

FRN = 10 * 500 = 1000. 
~32 + 42 

Largest integer division which makes the FRN less than the 
FCOMAX is 3. Therefore, 

FRN(new) = FRN = 1000 = 333.3 
3 3 

I = .6X*3 = 3*3 = 9 

See Section 4.1.5 for details on this technique. 

REQUIREMENTS 

Called by subroutine GMOUT 

Calls no subroutines 

RESTRICTIONS 

The NC control system must have I, J, K registers 

6-104 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GMABS (GMABS) 
(GEMULT) 

To calculate the absolute coordinate values for each head 

INPUT 

CALL GMABS (IHH) 

where: 

IHH = 1 Head 1 data only; 

IHH = 2 Head 2 data only; 

IHH = 3 Data for both heads. 

OUTPUT 

The following common parameters are also used: 

AS2 The current DBFSEG record for head 1. 

AS3 The current DBFSEG record for head 2. 

The absolute coordinate values for heads 1 and 2 are 
stored in ABS2 and ABS3, respectively. 

METHOD 

CODE is tested to see if the record is a motion record or a 
FROM point. Motion data is in incremental form. The 
incremental data is added to the absolute data to establish 
the new coordinate points. The FROM data is stored without 
alteration as an absolute coordinate. 

DIAGNOSTICS 

Subroutine PDUMP is called if ICODEI + 1 is greater than 18 or 
less than 1. ICODEI cannot be any valve>17. 

6-105 



ClClNT Ill POSTPROCESSOR 

GMABS (cont 1 d) 

REQUIREMENTS 

Called by subroutine GMOUT 

Calls subroutine PDUMP 

RESTRICTIONS 

None 

6-106 

... for the computer programmer 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

GMCIRL (GMCIRL) 
(GEMULT) 

PURPOSE 

To set up a record of multihead merged data when the condition 
Circular-Linear; Linear-Circular, or Circular-Circular exists 
for the two mergeable command blocks. 

INPUT 

CALL GMCIRL 

The following COMMON parameters are used: 

AS2 the current DBFSEG record for head 1 

AS3 the current DBFSEG record for head 2 

IMAX maximum time which restricts feedrate 

!CODE CODE for head 1 

JCODE CODE for head 2 

OUTPUT 

If no restrictions are found, the combined motion record is 
output by calling subroutine GMOUT. 

METHOD 

The routine attempts to set up a record of data in the 
Circle-Line, Line-Circle, or Circle-Circle mode. There 
are three ways this can be done: 

(1) Set up head 1 and head 2 data as is, with no changes. 

(2) Set up head 1 as is and segment head 2 into two 
parts, such that the cut times of both heads 
are equal 

(3) Set up head 2 as is, and segment head 1 into two 
parts, such that the cut times of both heads 
are equal 

6-107 



CICINT Ill POSTPROCESSOR 

GMCIRL (cont 'd) 

METHOD (cont'd) 

... for the computer programmer 

The cut times of both heads are compared to determine which of 
the three methods are to be used. Segmentation will not occur 
if any of the following conditions are found to be true: 

(1) Delta time is less than TMAX. 

(2) Delta time divided by cut time of either head 
is less than OPTAB(15). 

After setting up a record of data, subroutine TESTM2 is called 
to see if any special restrictions will inhibt the data record 
from being sent to subroutine GMOUT. If no restrictions are 
found, the data record is sent to subroutine GMOUT. If 
restrictions are found, subroutine RETSFY is called to set 
flags so the data is output in a non-combined mode. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine GEMULT 

Calls subroutines GMOUT, SPLIT, GOWELL, RETSFY, and 
TESTM2 

RESTRICTIONS 

None 

6-108 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GMFENC (GMFENC) 
(GEMULT) 

To rewind TAPES2 and TAPES3 and terminate the GEMULT link. 

INPUT 

CALL GMFENC 

TAPES2 the scratch file used for head 1 data. 

TAPES3 the scratch file used for head 2 data. 

OUTPUT 

Not applicable 

DIAGNOSTICS 

See APT writeup of rewind subroutine for error comments. 

REQUIREMENTS 

Called by subroutines GEMULT and PERROR. 

Calls subroutines GMSTOR and DISPAT. 

RESTRICTIONS 

Needs APT COMMON. 

6-109 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GMINIT (GMINIT) 
(GEM ULT) 

To set all parameters in the block COMMON, COMBIN and FXAXCM 
to their initial values, and to open TAPES2 and TAPES3 for the 
read mode. 

INPUT 

CALL GMINIT 

OUTPUT 

Parameters 
initialized. 
reading. 

in the block COMMON, COMBIN and FXAXCM are 
Scratch devices TAPES2 and TAPES3 are opened for 

DIAGNOSTICS 

See the APT I/0 routines 
ERROR in GMINIT-GEMULT 
greater than 3. 

REQUIREMENTS 

for 
LINK 

Called by subroutine GEMULT. 

error comments. 
is printed if 

Calls subroutine WEFREW and PERROR. 

RESTRICTIONS 

Requires APT COMMON. 

6-110 

The comment 
OPTAB(155) is 



C(CHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GMLINE (GMLINE) 
(GEMULT) 

To set up a record of multihead merged data when the condition 
Linear-Linear exists for the two mergable command blocks. 

INPUT 

CALL GMLINE. 

The following COMMON parameters are used: 

AS2 the current DBFSEG record for head 1 ; 

AS3 the current DBFSEG record for head 2; 

IMAX the maximum time which restricts feedrate; 

I CODE CODE for head 1 • 
' 

JCODE CODE for head 2. 

If no restrictions are found, the combined motion record 
is output by calling subroutine GMOUT. 

METHOD 

The routine attempts to set up a record of data in the 
Line-Line mode. There are three ways this can be done: 

(1) set up head 1 and head 2 data as is, with no 
changes. 

(2) Set up head 1 as is, and segment hea.d 2 into two 
parts, such that the cut times of both heads are 
equal. 

6-111 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

METHOD (cont 1 d) 

GMLINE (cont'd) 

(3) Set up head 2 as is, and segment head 1 into two 
parts, such that the cut times of both heads are 
equal. The cut times of both heads are composed 
to determine which of the three methods are to be 
used. Segmentation will not occur if any of the 
following conditions are found to be true. 

a. Delta time is less than TMAX; 

b. Delta time divided by cut time of either 
head is less than OPTAB(151). 

After setting up a record of data, subroutine TESTM2 
to see if any special restrictions will inhibit 
record from being sent to subroutine GMOUT. 
restrictions are found, subroutine RETSFY is called 
flags so the data is output in a non-combined mode. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine GEMULT. 

is called 
the data 

If any 
to set 

Calls subroutine GMOUT, SPLIT, GOWELL, RETSFY, and TESTM2. 

RESTRICTIONS 

None 

6-112 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GMOTIN (GMOTIN) 
(GEMULT) 

To compute the feed.rate command for the current motion record. 

INPUT 

CALL GMOTIN(BUFCOM, FRN) 

where: 

BUFCOM = the current motion record. The feedrate 
value is stored in BUFCOM(11). 

FRN = true feed command. This value may exceed 
feed command maximum. 

The following COMMON parameters are used: 

TABLEG, TMAX(the maximum time which restricts feedrate). 

OUTPUT 

The feed command is stored in BUFCOM(11). 

METHOD 

The dimension multiplier GDIMUL is selected by checking the G
eode number against TABLEG. The path length D is computed 
from ~ X 2 + Y2 + z 2 , and the feedrate command is computed 
from the formula: 

FRN = f * GDIMUL 
D 

The command value is checked against the command maximum. If the 
command is greater than the maximum, the maximum replaces the 
original number in BUFCOM(11). A check is also made to see if 
the command is tape reader limited. see Section 4.1.1.1. 

DIAGNOSTICS 

None 

6-113 



CICINT Ill POSTPROCESSOR 

GMO TIN (cont Id) 

REQUIREMENTS 

Called by subroutine GMOUT 

Calls subroutine EIACOM 

RES'IRICTIONS 

None 

6-114 

... for the computer programmer 



ClCINT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GMOUT (GMOUT) 
(GEMULT) 

To set up a record of data for transmittal to GEOUT3. 

INPUT 

CALL GMOUT (IH) 

where: 

IH = 1 only head 1 has data for transmittal 

= 2 only head 2 has data for transmittal 

= 3 both heads 1 and 2 have data for trans-
mittal with head 1 being the primary head 

= 4 both heads 1 and 2 have data for trans-
mittal with head 2 being the primary head 

The COMMON parameters used are: 

AS2 the current DBFSEG record for head 1. 

AS3 the current DBFSEG record for head 2. 

OUTPUT 

The sixty work buffer GMHBUF is 
GEOUT3. Subroutine GMSTOR is 
transmission. 

set up for transmittal to 
called to perform the actual 

6-115 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

GMOUT (cont'd) 

METHOD 

GMOUT recognizes the 6 following types of data output: 

(1) Head 1 data only 

(2) Head 2 data only 

(3) Data from both heads in the Line-Line mode 

(4) Data from both heads in the Circle-Line mode 

(5) Data from both heads in the Line-Circle mode 

(6) Data from both heads in the Circle-Circle mode 

Feedrate command (FRN) and G codes are calculated based on one 
of the above six types of data. When it is necessary, the 
I,J,K registers are modified for the FRN calculation. GMOUT 
keeps track of the absolute coordinates for internal use. 

DIAGNOSTICS 

The unrecoverable ERROR 1028 is printed when the CODE does not 
exist for this output. 

REQUIREMENTS 

Called by subroutines CTCHUP, DRETHD, FXMULT, GEMULT, GMCIRL, 
GMLINE, OUTB, PARK, RETHD, and RETRET. 

Calls subroutines GMABS, GEMISC, GFDLIM, GMOTIN, GMSTOR, 
PERROR, and PREPHD. 

RESTRICTIONS 

None 

6-116 



C(C(~l 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GMREAD (GMREAD) 
(GEMON) 

To read a record from the designated file. 

INPUT 

CALL GMREAD(NF,IND,NREC,INTI,DBFSEG,NWPR) 

where: NF is the file code; 

IND is the error indicator; 

NREC is the record number; 

INTI is the number of blocks of data; 

DBFSEG is the data block region; 

NWPR is the number of words of data. 

The record is stored in the buffer BUFSEG. 

METHOD 

This subroutine calls the APT subroutine which reads a record. 
The APT subroutine will vary with the computer.· 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines ABSOPR and CREAD. 

Calls the APT subroutine to read a record. 

RESTRICTIONS 

The APT subroutine for reading a record will be different on 
different computers. 

6-117 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GMSTOR (GMSTOR) 
(GEMULT) 

To initially read GMWORD (the register table for head 2) and 
GMFORM (the format table for head 2) , and to rewind and open 
TAPES1 and TAPES4 for writing; to transmit the output buffer 
GMHBUF to GEOUT3. 

INPUT 

CALL GMSTOR 

The arrays GMHBUF, GMWORD, and GMFORM are used. 

OUTPUT 

TAPES1 and TAPFS4 are rewound and opened for writing. 
is reset to DMBITS after each call t,o GEOUT3. 

METHOD 

Not applicable. 

DIAGNOSTICS 

GMHBUF 

The unrecoverable error 7000 is printed 
encountered while reading TAPES1. The APT 
also give errors. 

when an error is 
I/0 routine may 

REQUIREMENTS 

Called by subroutines COMENT, GMFENC, GMOUT, and PREPHD. 

Calls subroutines ERDMP1, GEMONT, GMREAD, and WEFREW. 

RESTRICTIONS 

Needs APT-COMMON. The subroutine has a DATA statement. 

6-118 



C(CHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GMWRIT (GMWRIT) 
(GEMON} 

To write a record on a file. 

INPUT 

CALL GMWRIT(NF,IND,NREC,INTI,DBFSEG,NWPR) 

where: NF is the file number; 

IND is the error indicator; 

NREC is the record number; 

INTI is the number of blocks of data; 

DBFSEG is the data block region; 

NWPR is the number of words of data. 

D.BFSEG is written on the file NF. 

METHOD 

This subroutine calls the APT subroutine which writes a 
record. 

The APT subroutine will vary with the computer. 

DIAGNOSTICS 

The unrecoverable error 7003 is printed when a write error is 
encountered. 

REQUIREMENTS 

Called by subroutines GEPR03 and OUTPUT. 

calls the APT routine to write a record. 

RESTRICTIONS 

The APT subroutine for writing a record will be different on 
different computers. 

6-119 





ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GOCIRC (CIRCGT) 
(GETERP) 

To test the CL data circle record to see if circular 
interpolation is permissible; if so, the first and last points 
of the circle are found and retained 

INPUT 

CALL GOCIRC 

The following parameters and arrays are used: ITHFLG, CIRSEQ, 
RETURN, DPREVP, TRANSL, SEQCTR, CIRRAD, CLDATA, TOLIN, TOLOUT, 
EPSLON, !PLANE 

OUTPUT 

The following flags are set for the conditions of the circle: 
CIRSEQ, RETURN, CIRFLG, CIRRAD, CIRDIR, and CRCODE 

The arrays DCRPT1 and DCRPT2 contain the first and last points 
of the circle; the array CIRDAT contains the circle center. 

METHOD 

A check is made to ensure that the circle is in a plane. The 
circle direction and radius are determined. If the radius is 
greater than the maximum departure, or if the move is for a 
thread, flags are set so as to process ·using linear 
interpolation. 

For a type 5000 record, subtype 6, the non-planar axis is 
checked for continuity. Then the circle center is translated, 
and the circle quadrants are determined in the event the 
circle passes through more than one quadrant. 

DIAGNOSTICS 

Comment: WARNING - CIRCLE DOES NOT LIE IN A PLANE 

6-121 



ClCHT Ill POSTPROCESSOR 

GOCIRC (cont Id) 

REQUIREMENTS 

... for the computer programmer 

Calls subroutines CHKAX, DETDIR, COMPR, COMENI', CIRINI', 
PLN.S EL, PROCQD 

Called by subroutine MOTION 

RESTRICTIONS 

None 

6-122 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

GOLINE ~LINEGT) 
(GET RP) 

To process a linear motion for output 

INPUT 

CALL GOLINE 

The following parameters and arrays in COMMON are used: 

RETURN, BIGDEP, ROTMAX, BMS, RMS, FLRPON, FRAPID, 

DBFSEG, SFMFLG, THFLAG, AXMULT, RADLIN, TOLCON, 

DPRESP, DPRESM 

OUTPUT 

The linear motion is set up in the DBFSEG command block 
and is made output. 

METHOD 

A path may be segmented for an SFM condition or because 
it exceeds the maximum departure. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines STOREM, GEOM, DEPART, LINRTY, OUTPUT, 

SEGMNT, THREDO, THEDOM, SFMO 

Called by subroutines MOTION, ROTHED 

RES'I'RI CTIONS 

None 

6-123 



ClCINT Ill POSTPROCESSOR 

PURPOSE 

IDPART (IDPTGO) 
(GEO UT) 

... for the computer programmer 

To process and punch a readable identification of a PARTNO for 
BCD Hollerith (PUNCHB) tapes 

INPUT 

CALL IDPART 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The readable PARTNO is punched out. 

METHOD 

Character codes are selected from a Hollerith table so 
that the holes punched in the tape form the characters 
of the PARTNO statement. 

DIAGNOSTICS 

Error 54: Improper branch on an IF test 

REQUIREMENTS 

Calls subroutines CHAR.ID, DOLLAR, PUNCHB, ERDMP1 

called by subroutine GEPRE 

RESTRICTIONS 

(GEOUT1 only) 

Uses a Data Statement 

Computer dependent 

6-124 



Cl&INT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

INIT JGEINIT) 
(GEI IT) 

To clear COMMON areas, define constants, initialize standard 
values, search the CL tape for a MACHIN statement, and load 
special machine function subroutines if any 

INPUT 

CALL INIT 

SYSTEM COMMONS: GECOM, GECBAS, GECOUT, GEMULT, GECOT3 

OUTPUT 

The postprocessor is set for standard processing. 

METHOD 

After initializing the COMMON areas and obtaining the MACHIN 
Statement, the machine subroutine is called. The MACHIN 
Statement is further searched for OPTAB, LINEAR, and LINCIR 
modifiers and the options are appropriately adjusted. 

DIAGNOSTICS 

ERROR 999: Given Machine Number is < 1 or > 99. 

REQUIREMENTS 

Calls subroutines STIMAC, REDTAP, INPUT, MACHxx, ASSIGN 

Called by subroutine GEMON 

RESTRICTIONS 

APT System COMMON 

Computer Dependent 

Data Statement 

6-125 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

INPUT (INPTGE) 
(GEMON) 

... for the computer programmer 

To read a record from the CL tape and store it into 
CLDATA 

INPUT 

CALL INPUT 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

Flags used: IRETN 

The arrays rcLDAT and CLDATA contain the data record read 
from the cutter location tape. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines GEMON, GEBASE, INIT 

Calls the Computer system tape-read subroutine 

RESTRICTIONS 

Computer dependent 

APT System COMMON 

6-126 



CltlNT 111 POSTPROCESSOR 

PURPOSE 

LEADER (LEDRGB) 
(GEBASE) 

... for the computer programmer 

To output the leader length specified by the APT statements 
LFADER 

INPUT 

CALL LEADER 

OUTPUT 

The requested leader length is stored in DBFSEG (3) which is 
output with a CODE = -8. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutine STOREM and OUTPUT 

RESTRICTIONS 

This subroutine uses multiple entry points. 

6-127 



ClCHT Ill POSTPROCESSOR 

PURPOSE 

LENGTH !LNTHGB) 
(GEB SE) 

... for the computer programmer 

To compute a vector length from given component departures 

INPUT 

CALL LENGTH (DELTA, XL) 

where DELTA contains the departure values as: 

DELTA(1) = 6X, DELTA(2) = 6Y, DELTA{3) = 6Z 

OUTPUT 

The parameter XL contains the determined length. 

METHOD 

Cartesian metric: 

XL = [ t (DELTA) : J ~ 
DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines CIRSEG, CONTUR, FEDLIM, FROMS, 
NORM 

Calls no subroutines 

RESTRICTIONS 

None 

6-128 



ClClNT 111 POSTPROCESSOR 

PURPOSE 

LINRTY (LNRTGX) 
(GEMAXS) 

... for the computer programmer 

To check and compensate for the nonlinearity in the motion of 
the tool tip during a multiaxis motion 

INPUT 

CALL LINRTY 

The following parameters and arrays in COMMON are used: 

CODE, STEP, OPTAB, FRAPID, DPRESM, ROTUNT, DPREVM, RADLIN, 
CRCODE 

OUTPUT 

Flags used: RETURN, SKPLIN, TSTLIN, NWPR, DPREVM, DPRESM, 
LINFLG, HALFPT, PT, MAFORK, CODE, ERROR 

A series of motion command blocks are output which correct the 
linearity errors. 

METHOD 

The deviation of the tool tip from a linear path is tested 
against tolerance. If tolerances are not satisfied, the 
midpoint of the line between the part points is calculated and 
the transform equations applied to yield a potential 
intermediate machine point. Then linearity is tested along 
this segment, and if no linearity error is found, the path is 
segmented at that point and made output;otherwise, testing 
continues along the path until no error is found. 

6-129 



ClClNT Ill POSTPROCESSOR 

LINRTY (cont'd) 

DIAGNOSTICS 

... for the computer programmer 

comment: WARNING - LINEARITY SEGMENTATION CANNOT BE 
CONTINUED ON THIS PATH. 

comment: WARNING - LINEARITY TOOL AXIS CORRECTIONS 
CANNOT BE CONTINUED ON THIS PATH. 

comment: NO LINEARITY TESTING THIS PATH ** SPECIAL 
GEOMETRY CONDITION. 

Error 25: No motion from subroutine LINRTY 

REQUIREMENTS 

Calls subroutines SEGDRC, CLASS, OFFARC, DEPART, OUTPUT, 
TRUNC, COMMENT, ERDMP1 

Called by subroutine MOTION 

RESTRICTIONS 

Linearity testing is done only on linear motions. 

6-130 



ClClNT 111 POSTPROCESSOR 

PURPOSE 

LINTOLM!LINTOL) 
(GE XS) 

... for the computer programmer 

To reinstate or cancel linearity testing, or to establish the 
linearity tolerance value 

INPUT 

CALL LINTOL 

The following parameters and arrays in COMMON are used: 
RADLIN, ICLDAT, CLDATA 

OUTPUT 

The following parameters are set: TSTLIN, RADLIN, ANGLIN 

METHOD 

If RADLIN < O, Nothing is done. If ON is given, the TSTLIN 
flag is set to 1.0. If OFF is given, the flag is set to 0.0. 
If values N and y are given, RADLIN is set to N, and ANGLIN is 
set to y • 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines 

Called by subroutine AUXLRY 

RESTRICTIONS 

None 

6-131 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

LOAD (LOADGM) 
(GEMAXS) 

... for the computer programmer 

To load a tool while at the home position 

INPUT 

CALL LOAD 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

Command blocks are output which returns the tool to the home 
position and loads the selected tool. 

METHOD 

Cancel linearity testing for the load sequence by setting flag 
TOLCON to 1. Call subroutine GOHOME to move the slides of the 
machine to the specified home position. Based on the gripper 
selected (GRPLOD) and the selected head (TLHFAD), determine 
the TABLEG (26-29) to output. Store the tool number TOLLOD in 
DBFSEG(13} and (26-29) to output. Store the tool number 
TOLLOD in DBFSEG(13} and output as a CODE = -4 block. Store 
the selected tool number TOLSLC into the loaded tool TOLLOD; 
selected gripper GRPSLC into the gripper loaded GRPLOD; 
selected tool length SLTOLN into the tool loaded length 
TOLDLN. Store the present machine point DPRESM into loaded 
length TOLDLN. Store the present machine point DPRESM into 
the previous machine point DPREVM. Set the multiaxis fork 
MAFORK to zero and obtain the tool and gripper constants from 
the CLASS equations. 

REQUIREMENTS 

Called from subroutine AUXLRY. 

Calls subroutines MACRST, GOHOME, OUTPUT, CLASS 

RESTRICTIONS 

OPTAB(116) must be set to a value. 

A FROM must be given before the LOAD statement. 

6-132' 



ClCHT Ill POSTPROCESSOR 

PURPOSE 

LOCRNG (SRNGGB) 
(GEBASE) 

... for the computer programmer 

To find the lowest range a spindle speed is in when no range 
was specified 

INPUT 

CALL LOCRNG(GIVALU) 

where: 

GIVALU = requested spindle speed 

OUTPUT 

The lowest range containing the speed requested is stored in 
ISRNGE. 

METHOD 

If the SFM range lock flag SFMLOK is not equal to zero, 
return; a range change cannot take place while the SFM mode is 
in effect. Initialize the range ISRNGE to 1. Depending on 
the spindle type OPTAB(19), calculate the storage index K of 
the highest speed in each range for all ranges available and 
store the value in parameter NRNGES. When the lowest range 
speed available is found, return. ISRNGE will contain that 
range number. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine SPINDL 

Calls no subroutine 

RESTRICTIONS 

None 

6-133 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

MACHIN (MACHGB) 
(GEBASE) 

To establish the program conditions and interpolation mode for 
a particular numerical machine tool as specified according to 
the APT source statement MACHIN 

INPUT 

CALL MACHIN 

The input arrays ICLDAT and CLDATA are used 

OUTPUT 

The program conditions are set for the specified machine tool 
by resetting the parameters affected by the options changed in 
the MACHIN statement. The interpolation modifiers LINCIR and 
LINEAR are checked, as is the OFF modifier. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutines OUTPUT and DISPAT (if 
present) 

RESTRICTIONS 

OFF modifier 

This routine requires the APT system COMMON, and is computer 
Dependant. 

6-134 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

MINMOV (MNMVGP) 
(GEBASE) 

To determine the minumum direction for turret indexing when 
rotation can take place in either direction 

INPUT 

CALL MINMOV(TURDIR) 

OUTPUT 

Flag TURDIR is set for direction of minimum rotation. 

METHOD 

In the initial entry the number of positions available in 180 
is determined and stored in BIGMOV. The distance in position 
increments to be moved is calculated using the old position 
FFRSTL and the requested new position POSMAG. The distance to 
be moved DISMOV is compared with the 180° maximum motion. The 
direction of minimum rotation TURDIR is set: 

TURDIR = 1 for CLW rotation 

TURDIR = -1 for CCLW rotation 

DIAGNOSTICS 

None 

REQUIREMENTS 

Ca11ed by subroutines ROTMAG, TOOLNO, TURRET 

Calls no subroutines 

RESTRICTIONS 

OPTAB(88) must be set ~ O. 

6-135 



CICINT _II I 

PURPOSE 

POSTPROCESSOR 

MOTION (MOTNGB) 
(GEBASE) 

To Process a Type 5000 (Motion) record. 

INPUT 

CALL MOTION 

... for the computer programmer 

The following parameters and arrays in COMMON ar e used: 
CLDATA, TRANSL, ICLDAT 

OUTPUT 

Flags used: MCHCON, ENDFLG, CIRSEQ, RETURN, AND CIRFLG 

Subroutine calls are made to various subroutines depending on 
whether a FROM point, GODLTA, or GOTO move is processed. 

DIAGNOSTICS 

Comment 47: END OR RESET HAS NOT BEEN FOLLOWED BY A FROM 
POINT. 

Comment: OPTION FEEIRATE ASSUMED. 

Error in subroutine GOLINE (error = 14.0) 

REQUIREMENTS 

Called by subroutines GEBASE. 

Calls subroutines FROM, COMENT, ERDMP1, GOCIRC, GOLINE, 
MACSRI', POSMOV, and TSTFLG 

6-136 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

NORM (NORMGX) 
(GEMAXS) 

To no.rmalize direction cosines 

INPUT 

CALL NORM(DIRCOS) 

where: 

DIRCOS contains the direction cosines as (i, j, k). 

OUTPUT 

The direction cosines are normalized and stored in OIRCOS. 

METHOD 

The components of the vector are divided by the vector 
magnitude. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines LENGTH 

Called by subroutine CLASS, SEGDRC 

RESTRICTIONS 

None 

6-137 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

OFFARC (OFARGT) 
(GETERP) 

... for the computer programmer 

To compute the arc center offsets for a circle segment 

INPUT 

CALL OFFARC 

The following parameters and arrays in COMMON are used: 
CIRDAT, DPREVM, REGFOR, !PLANE, AXMULT, DEPA, DEPB, ARCANG 

OUTPUT 

DBFSEG-(8), (9), and (10) , contain the arc center offsets 

For multiaxis machines the rotary center offsets are stored in 
DBFSEG(16, 17). 

METHOD 

The arc center offset is computed by taking the axial 
difference between the circle center to the beginning point of 
the circle; that is, 

I=l Xe -xl I , J=I Yc-Yll 

DIAGNOSTICS 

None 

REQUIREMENTS 

, K= I z -z I 
c 1 

Calls subroutines SRAREC, COMENT 

Called by subroutines LINRTY, PROCQD, SFMO 

RESTRICTIONS 

None 

6-138 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

OPCODE (OPCODE) 
(GEBASE) 

To process the part progranuning statement 

NONE 
OP/n,RPM , t , t 

SFM 1 2 

INPUT 

CALL OPCODE 

OUTPUT 

A command block (CODE = 17) is 

DBFSEG(2) = n (from OP/n) 

DBFSEG (7) = 0 if SFM, = 1 

DBFSEG (8) = head number 

DBFSEG (9) = t 
1 

DBFSEG( 10) = t 
2 

set up as: 

if RPM 

DBFSEG (11) = 0 for restrictions 
= 2 for none 

DBFSEG( 15) = 17 (CODE) 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutines COMENT and OUTPUT 

RESTRICTIONS 

None 

6-139 



CICINT Ill POSTPROCESSOR 

PURPOSE 

OPSKIP (OSKPGB) 
(GEBASE) 

... for the computer programmer 

To set a signal so that each programmed block will be given 
the skip code when processed for output 

INPUT 

CALL OPSKIP 

SKPFLG, the flag for OPSKIP which appears in COMMON 

OUTPUT 

The sk1p flag is set to 0 (OFF) or 1 (ON) according to the 
specifications as given by the APT source statement OPSKIP 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines 

Called by subroutine AUXLRY 

RESTRICTIONS 

None 

6-140 



CltlNT 111 POSTPROCESSOR 

PURPOSE 

ORIGIN (ORGNGB) 
(GEBASE) 

... for the computer programmer 

To save the given ORIGIN values, and to communicate through an 
information block to the output routine, the origin values 
needed to produce the machine system printout. 

INPUT 

CALL ORIGIN 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The X,Y,Z,A,B,C values are stored in DBFSEG(3 through 7), 
DBFSEG(2) is set to 2, and CODE is set to -9 to output the 
block as an information block. 

METHOD 

If option 164 is 2 or option 172 is O, the values from the CL 
tape are stored in DBFSEG. The rotary values are converted to 
output units. The information block is set up with CODE = -9 
and DBFSEG(2) =2. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine OUTPUT 

Called by subroutines AUXLRY, GEPR02 

RESTRICTIONS 

None 

6-141 





ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

OUTB (OUTB) 
(GEMULT) 

To set up a block for shifting in to or out of rapid traverse 

INPUT 

CALL OUTB(XMCOD, AAA, IH, IF) 

where: 

XMCOD is the M code for shifting 

AAA is the array used for outputting the block 

IH is the head number 

IF is shift flag: 

= 1 for shifting from feed into rapid 

= 2 for shifting from rapid into feed 

OUTPUT 

The block is output in the array AAA. 

METHOD 

The present value of AAA is saved. Then AAA is set up thus: 

AAA ( 1, 1) = sequence number 

AAA ( 1 4, 1) = M co de 

AAA(15, 1) = -1.0 

Subroutine GMOUT is called to output the block and then the 
original value of AAA is restored. 

DIAGNOSTICS 

None 

6-143 



ClCHT Ill POSTPROCESSOR 

OUTB (cont'd) 

REQUIREMENTS 

Called by subroutine RAPM 

Calls subroutine GMOUT 

RESTRICTIONS 

None 

6-144 

... for the computer programmer 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

OVRCNfuJ:OVRCNT) 
(G XS) 

PURPOSE 

To process the OVRCNT/n statement for overcenter cutting 

INPUT 

CALL OVRCNT 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The given overcenter value n is saved in OVCVAL, or OVCVAL is 
set as a flag according to the given minor modifier. 

METHOD 

When the overcenter value is given, the value is saved in 
OVCVAL. If OFF is given, OVCVAL is set to zero. If ON is 
given, the most recently specified value is reinstated. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines 

Called by subroutine AUXLRY 

RESTRICTIONS 

None 

6-145 



CICINT Ill 

PURPOSE 

POSTPROCESSOR 

PAGE (PAGE) 
(GEOUT) 

To print the page number on each page 

INPUT 

CALL PAGE 

... for the computer programmer 

COMMON parameters used: CTRLIN, IPAGE and IPGCTR 

OUTPUT 

The current page number is printed at the top of each page. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines ABSOPR and GEPR03 

Calls no subroutines 

RESTRICTIONS 

APT System COMMON is used 

6-146 



ClCHT 111 POSTPROCESSOR ... for the computer programmer 

(GEM LT) 

PURPOSE 

To park the specified head 

INPUT 

CALL PARK (IHEAD, LALT, AAA, BBB, SEQMA, SEQNB., SAFWB, 
SFPRKA, OUTX, OUTY, OUTZ, ABSA LALTPK) 

where: 

IHEAD = head to be parked 

LALT = alternate head number 

AAA = incremental move for head to be parked 

BBB = incremental move for alternate head 

SEQNA = sequence number for head to be parked 

SEQ NB = sequence number for alternate head 

SAFWB = withdrawal distance for secondary 

SFPRKA = delta move used for parking head 

OUTX = absolute x for head being parked 

OUTY = absolute y for head being parked 

OUTZ = absolute Z for head being parked 

ABSA = absolute coordinate system for head 
to be parked 

LALTPK = park flag for alternate head 

The following COMMON arrays are also used: 

OPTAB, TABLEG, TABLEM 

head 

6-147 



CIClNT Ill POSTPROCESSOR 

PARK (cont'd) 

OUTPUT 

... for the computer programmer 

The specificed head will be parked and the alternate 
head, if in the work, will be properly positioned. 

METHOD 

(1) Save incremental moves in AAA and BBB. 

(2) Withdraw the alternate head if it is in the work. 

(3) Turn off coolant for the head being parked. 

(4) Park the specified head. This will be combined with 
the alternate head withdrawal, if possible. 

(5) Return the alternate head from the withdrawal 
position (if necessary). 

(6) RESTORE the incremental moves in AAA and BBB. 

(7) Save the absolute coordinate point at which the 
head was parked. 

DIAGNOSTICS 

Comment: HEAD 1 HAS BEEN PARKED 

Comment: HEAD 2 HAS BEEN PARKED 

If the tolerance test on the common axis feedrate 
fails while in a combined move, a comment to this effect is 
printed and subroutine PERROR is called. 

REQUIREMENTS 

Called by subroutine FXPARK 

Calls subroutines FX'IOL, GMOUT, COMENT, COMPGC, PERROR, 
RAPLIM, and SHFTBK 

RESTRICTIONS 

None 

6-148 



C[C[~l Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

PERRORJJPERROR) 
(GE LT) 

To print the error number and produce a memory dump 

INPUT 

CALL PERROR 

COMMON parameter used: ERROR. 

OUTPUT 

The ERROR number followed by a dump is printed. 

DIAGNOSTICS 

The error comment ERROR IN GEMULT, ERROR NO. IS _____ 

REQUIREMENTS 

called by subroutines DRETHD, FXMULT, FXPARK, GEMULT, GMINIT, 
GMOUT, PARK, RAPM, SELGCD, and STOPTS 

Calls subroutine PDUMP 

RESTRICTIONS 

Uses APT COMMON 

6-149 



Cl&INT Ill POSTPROCESSOR 

PURPOSE 

PICKUP iPKUPGP) 
(GE OS) 

... for the computer programmer 

To set up a block to output an M code or a G code to load the 
tool when this £unction is not performed as a part of the T
code output. 

INPUT 

CALL PICKUP 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The M code from TABLEM(32) or a G code from TABLEG(24) is 
stored into DBFSEG and output. 

METHOD 

If TABLEG(24) is equal to bits, an M code is assumed. The 
current angle is turned off by (TABLEG(1)), M code TABLEM(32) 
is stored for output, the tool number of the tool removed is 
saved in TLNOFF and its length is saved in TLEN2. If 
TABLEM(32) equals DMBITS, a TABLEG(24) is output as a code =-4 
block (a G code in a block by itself). 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutines STOREM and OUTPUT 

RESTRICTIONS 

TABLEM(32) or TABLEG(24) must have a value. 

6-150 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

PITCH (PTCHGL) 
(GELATH) 

TO process the PITCH statement, calculate the lead, and set 
the threading flags 

INPUT 

CALL PITCH 

The input arrays ICLDAT and CLDATA are used 

OUTPUT 

Flags used: THLEAD, THRATE, THMODE 

The flags are set in accordance with the PITCH statement. 

METHOD 

LEAD = 1 ---PITCH 

For increasing or decreasing pitch, the threading 
feedrate is given by: 

DIAGNOSTICS 

None 

REQUIREMENTS 

THRATE = (final leadf - (initial leadf 
2 * thread length 

Calls no subroutines 

Called by subroutine AUXLRY 

RES'IRICTIONS 

None 

6-151 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

PITCHM (PITCHM) 
(GEMILL) 

... for the computer programmer 

To process the APT statement PITCH for multihead machines 

INPUT 

CALL PITCHM 

COMMON parameters used: NWPR, CLDATA, and THLEAD 

OUTPUT 

The parameters THMODE and possibly THRATE are setup with the 
programmed values. 

DIAGNOSTICS 

None 

REQUIREMENTS 

called by subroutine AUXLRY 

calls no subroutines 

RESTRICTIONS 

None 

6-152 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

PLENTH (PATHGB) 
(GEBASE) 

To compute the path length for a move 

INPUT 

CALL PLENTH 

The following parameters and arrays in COMMON are used: NWPR, 
CLDATA, NCOM, TRANSL, DPREVP 

The input arrays ICLDAT and CLDATA are used 

OUTPUT 

The COMMON parameter PL contains the path length. 

METHOD 

The coordinate data from the CLDATA array are reduced to 
increments in X, Y, Z and the length found by 

t:,y2 + f:,z2 

i i 

where n is the number of cut vectors making up the move. 

DIAGNOSTICS 

None 

REQUIREMENTS 

called by subroutine RAPID 

calls no routines 

RESTRICTIONS 

None 

6-153 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

PLNSEL (PLNSGB) 
(GEBASE) 

... for the computer programmer 

To select the G code for the circular interpolation 
plane 

INPUT 

CALL PLNSEL 

The flag MAXES specifies the plane to select. 

OUTPUT 

A DBFSEG block with the G code by itself is made output. 

CODE = -4 

METHOD 

If circular interpolation is available and there are at least 
three axes, a G code is entered in DBFSEG according to the 
following scheme: 

DIAGNOSTICS 

None 

TABLEG LOCATION 

( 18) 

( 19) 

(20) 

REQUIREMENTS 

Calls subroutine OUTPUT 

PLANE SELECTED 

XY 

zx 
yz 

Called by subroutines FROM, GOCIRC 

RESTRICTIONS 

None 

6-154 



ClClNT 111 POSTPROCESSOR 

PURPOSE 

POSFED (PFEDGO) 
(GEPOS) 

... for the computer programmer 

To convert the feedrate in IPM to its command value depending 
on the positioning Feed Type 

INPUT 

CALL POSFED 

OUTPUT 

Current feedrate in IPM is stored in DABVAL(11) and the 
feedrate in command fonn is stored in DBFSEG(11). 

METHOD 

If the current feedrate in IPM is not equal to DMBlTS 
(DBFSEG(11)=bits) store this feedrate in DABVAL(11). 

Test OPTAB(28) and call the appropiate FTYPE subroutine to 
calculate the feed command. 

Test this command in subroutine TSTEXT for a valid value. 

If the value calculated is beyond the limits, subroutine 
TSTEXT will set DBFSEG ( 11) to limit exceeded. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine POSIT 

Calls subroutines FTYPE2, FTYPE4, FTYPES, FTYPE6, depending on 
OPTAB(78) = type number and TSTEXT 

RESTRICTIONS 

OPTAB(1) must equal 1 or 2. 

6-155 



CIClNT Ill POSTPROCESSOR 

PURPOSE 

POSIT (POSIGO) 
(GEPOS) 

... for the computer programmer 

To suppress redundant X and Y values under optional control 
{OPTAB(40)) and to call subroutine RFTYPE or POSFED to 
calculate the feedrate 

INPUT 

CALL POSIT 

OUTPUT 

The redundant X and Y values are suppressed in DBFSEG and the 
calls to the feedrate command calculation contains are made. 

METHOD 

If redundant X and Y are to be suppressed {OPTAP{40} =1), test 
DBFSEG (3-4) against PREVX and PREVY. If identical, set 
DBFSEG (3-4) to BITS. If code equals 2 (an absolute rotary 
table move block), call subroutine RFTYPE to compute the 
rotary feed command. Otherwise call subroutine POSFED to 
calculate the linear feed command. In all cases the absolute 
table location is saved in DABVAL(7) and converted to degrees 
through a call to subroutine CONROT (DABVAL{7), - 1). 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines GEPR01, GEPR02, GEPR03 

Calls subroutines RFTYPE, POSFED, CONROT 

RESTRICTIONS 

OPTAB(1) must equal 1 or 2 

6:-156 



ClClNT 111 

PURPOSE 

POSTPROCESSOR 

POSITN (PSTNGP) 
(GEPOS) 

... for the computer programmer 

To set the positioning mode flag MODPOS according to the 
positioning mode specified in the POSITN statement 

INPUT 

CALL POSITN 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

For mode OFF,MODPOS =O 

For mode FINE,MODPOS = 1 

For mode NOBACK,MODPOS = 2 

For mode COARSE,MODPOS = 3 

For mode CORMIL,MODPOS = 4 

For mode TR.AV,MODPOS = - I MODPOSI 

METHOD 

ICLDAT(4) is scanned to determine the mode specified. MODPOS 
is set to a value shown above. In the OFF mode, a block is 
output with a TABLEG(60) and CODE = -4 to turn off the 
positioning mode. The MODPOS flag is used by subroutine SET12 
to determine the proper G code. 

DIAGNOSTICS 

None 

6-157 



ClClNT Ill POSTPROCESSOR 

POSITN (cont Id) 

REQUIREMENTS 

called by subroutine AUXLRY 

Calls subroutine OUTPUT 

RESTRICTIONS 

OPTAB(1) must equal 1 or 2 

TABLEG(52-62) ¢ DMBITS 

6-158 

... for the computer programmer 



CfCfNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

POSMOV (PSMVGP) 
(GEPOS) 

To process the motion records for a positioning type machine 

INPUT 

CALL POSMOV 

The input arrary ICLDAT and CLDATA are used. 

OUTPUT 

The X, Y, z motions are output in a DBFSEG command block. 

METHOD 

If the weld-off flag is on (IGEFLG = 1), output a weldcycle
off M code (TABLEM(87)). If DBSFEG(2), the G Code, does not 
have a value and the spindle dwell flag is not set, (IDWLFL = 
O), call subroutine SET12 to select the positioning mode. Set 
the IDWLFL flag to O, and if initial entry (POSFRK # 360), set 
the current height CURNTZ to DMBITS. If the Z axis is 
inverted (OPTAB(140) # 0), modify CLDATA(8) by the inversion 
modifier OPTAB(140). If tool length modification is to take 
place (OPTAB(86) is negative), adjust CLDATA(8) by the tool 
length TOOLEN. If CLDATA(8) is less than O, output corrunent 
66. If not under the influence of a position move, DBFSEG(2) 
= BITS and no cycle was specified, (CYCFLG = 0), turn off all 
cycles by setting DBFSEG(2) = TABLEG(1). Store the 
coordinates in the PRESPT vector from CLDATA plus the 
translation value TRANSL. Save the untranslated Z height in 
ZHOLD. Assume a CODE = 16 block for X,Y motions only. Test 
to determine how the Z motion is to be output according to 
OPTAB(130). If zero, ignore Z; if +1, output Zin a separate 
block, or if -1, output X,Y,Z, in one block. Store the feed 
and either the rapid f eedrate, FRAPID, rate or the feedrate in 
IPM, FEDIPM, into DBFSEG(11). Store the present point into 
previous point. Call subroutine TSTLIM to test for slide 
limits, and if record is complete, save the current z height 
in CURNTZ and return. 

6-159 



CI&lNT Ill POSTPROCESSOR 

POSMDV (cont Id) 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine MOTION 

... for the computer programmer 

Calls subroutines STOREM, SET12, MACSRT, OUTPUT, TSTLIM 

RESTRICTIONS 

OPTAB (1) ?: 0 

6-160 



Cf&fNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

PREPHD {PREPHD) 
(GEMULT) 

To output the preparatory 
simultaneous Linear-Circular 
i.e., one head uses linear, 
interpolation. 

function G code for mixed 
interpolation on the two heads, 
and the other uses circular 

INPUT 

CALL PREPHD(ICAB) 

where: 

ICAB = 1 Head 1 is in circular mode 

= 2 Head 2 is in circular mode 

TABLEG, the preparatory code table is also input 

OUTPUT 

A special G code is output in a record by itself. 

METHOD 

This special G code is either: 

TABLEG(16) Circular interpolation for head 1 and linear 
interpolation for head 2 

or TABLEG(17) Linear interpolation for head 1 and circular 
interpolation for head 2 

The G code is modal and is output as a record only when the 
other G code is in effect. 

DIAGNOSTICS 

None 

6-161 



ClClNT Ill POSTPROCESSOR 

PREHD (cont Id) 

REQUIREMENTS 

Called by subroutine GMOUT 

Calls subroutine GMSTOR 

RESTRICTIONS 

Contains a DATA statement 

6-162 

... for the computer programmer 



CltlNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

PROCQD (PCQDGT) 
(GETERP) 

To output the quadrant segments for a circular interpolation 
move. 

INPUT 

CALL PROCQD 

The following parameters and arrays in COMMON are used: 

AXMULT, DPREVP, DATCIR, DBUFER, PROD, CIRRAD, REI'URN, !PLANE, 
DEPX, DEPY, EPSLON, FRAPID, SFMFLG 

OUTPUT 

Flags used: V1 V2, DIV, PT, ERROR, DPRESP, DBFSEG, CODE, 
SFMCIR, .QBUFER 

Each quadrant segment is output as a command block. 

METHOD 

Each quadrant segment is computed from the data stored in 
DBUFER. 

The departures and arc center off sets are computed and stored 
in DBFSEG. 

See Section 3. 4. 4 for a complete description 

REQUIREMENTS 

Calls subroutines DOT, SEGDRC, ERDMP1, OUTPUT, GEOM, DEPART 

Called by subroutine GOCIRC 

RESTRICTIONS 

None 

6-163 



ClClNT Ill 

PURPOSE 

POSTPROCESSOR 

QUADET (QDETGT) 
(GETERP} 

... for the computer programmer 

To compute the quadrants in which the first and last points of 
a given circle lie, and depending on the circle direction, 
compute the coordinates of the points on this circle as it 
passes through quadrants. 

INPUT 

CALL QUAD ET (IC, JC, KC} 

If circle lies in XY plane, then: IC =1, JC =2, KC =3. 

If circle lies in YZ plane, then: IC =2, JC =3, KC =1. 

If circle lies in zx plane, then: IC =1, JC =3, KC =2. 

OUTPUT 

DBUFER 
point. 

contains the circle quadrant change points and the end 
KTR contains the nwnber of points in DBUFER. 

METHOD 

The given circle is translated to the origin. Subroutine 
QUADNT is called for the first and last points to determine 
which quadrant these points fall in. Depending on the 
direction of motion, the number of quadrants are calculated 
and the coordinates of the quadrant change points are also 
calculated. The points are then translated back to the 
original position of the circle and stored into·DBUFER. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine QUADNT 

Called by subroutine CIRINT 

RESTRICTIONS 

The subroutine contains a DATA Statement. 

6-164 



CltlNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

QUADNT (QDNTGT) 
(GETERP) 

To determine the quadrant in which a given point lies 

INPUT 

CALL QUADNT(ICD, PX, PY, Q) 

where: 

ICD indicates either the first (1) or last (2) point of 
the circle; and PX and PY are the plane coordinates of the 
circle. The COMMON flag CIRDIR gives the circle 
direction. 

y 
OUTPUT 

Q = quadrant number 2 1 
x 

3 4 

METHOD 

The signs of PX and PY are tested to determine the quadrant. 

Note: this routine is called twice in succession with two 
points on an arc. 

If either of these points is on an axis, the point is analyzed 
as if it were displaced along the arc between the two points. 
For example; A is taken to be in quadrant 3. 

DIAGNOSTICS 

None 

6-165 



CICINT Ill POSTPROCESSOR 

QUADNT (cont • d) 

REQUIREMENTS 

Calls no subroutines 

Called by subroutine QUADET 

RESTRICTIONS 

The subroutine contains a DATA Statement. 

6-166 

... for the computer programmer 



CICINT Ill 

PURPOSE 

POSTPROCESSOR 

RAPID (RAPGB) 
(GEBASE) 

To set the flag to indicate a rapid move 

INPUT 

CALL RAPID 

OUTPUT 

... for the computer programmer 

The flag RAPFLG is set for a rapid traverse condition. 

DIAGNOSTICS 

None 

REQUIREMENTS 

calls no subroutines 

called by subroutines AUX.LRY, FEDRAT 

RESTRICTIONS 

Multiple entries RAPIDX, RAPIDO, ENTRAP 

6-167 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

RAPIOO (RAPOGB) 
{GEBASE) 

... for the computer programmer 

To set the flags so that the r-ath motion will be at rapid 
traverse 

INPUT 

CALL RAPIOO 

Flags used: OPTAB, FLRPON, DPATH, MULTHD, IHEAD, TABLEM, 

IFDRNG, MCHCON. 

OUTPUT 

Flags used: RAPLOW, RAPFLG, FLRPON, FRAPID, RAPRNG 

A command block is output with the M code which puts the 
machine into the rapid traverse range. 

METHOD 

Shift and dwell blocks are set up if necessary. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines PLENTH, TEST1, DWELL, MACSRT 

Called subroutines by RAPIDP, RETRCT, TSTFLG 

RESTRICTIONS 

This subroutine is a multiple entry to RAPID. 

6-168 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

RAPIDP (RAPPGP) 
(GEPOS) 

To process the sinulation of an R register on a positioning 
machine 

INPUT 

CALL RAPIDP (Z,R) 

where: 

z is the programmed depth 

R is the requested rapid traverse distance 

OUTPUT 

Flags used: FRKRAP, DBFSEG(2,5,11), CYCFLG, CODE, FLRPON. 

The requested value of R is output as a z move. 

METHOD 

The R distance is output as Z using 
remaining part of the motion is 
programmed feedrate. 

a rapid traverse. The 
then output in z at the 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines OUTPUT, RAPIDX, RAPIDO, SET12 

Called by subroutine CYCLGP 

RESTRICTIONS 

None 

6-169 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

RAPIDX (RAPXGB) 
(GEBASE) 

... for the computer programmer 

To turn off the rapid flag and output M codes for gear 
shifting, if necessary. 

INPUT 

CALL RAPIDX. 

Flags used: OPTAB, FLRPON, MULTD, IHEAD, TABLEM, 

IFDRNG 

OUTPUT 

Flags used: FLRPON, RAPRNG, FRAPID, MCHCON 

A command block is output with an M code which causes the 
machine to shift into the feedrate range. An M code calling 
for a gear shift would not be output if the machine's shifting 
mechanism were not under tape control. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines DWELL, STOREM, MACSRT 

Called by subroutines CYCLEL, CYCLGP, CYCLGX, FEDRAT, 
RAPIDP, TSTFLG 

RESTRICTIONS 

This subroutine is a multiple entry in subroutine RAPID. 

6-170 



Cl&l~T 111 POSTPROCESSOR 

PURPOSE 

RAPLIM (RAPLIM) 
(GEMULT) 

... for the computer programmer 

To test the motion over the path to see if it can be made at 
rapid traverse 

INPUT 

CALL RAPLIM(AAA,IHD) 

where: 

AAA is the array containing the incremental move 

IHD is the head nwnber 

OUTPUT 

If the motion cannot be at rapid, the dwells and M codes for 
shifting to the feedrate gear are output (if needed). If the 
motion can be at rapid, the dwells and M codes for shifting 
into rapid are output (if needed) • 

METHOD 

The dwells and M codes for shifting to the feedrate gear are 
output if: 

(1) The path is shorter than that specified by option 37 

(2) The path is so short as to be tape reader limited 

If either of these two conditions exist, the motion will be at 
feed.rate. 

DIAGNOSTICS 

None 

6-171 



ClClNT Ill POSTPROCESSOR 

RAPLIM (cont• d) 

REQUIREMENTS 

... for the computer programmer 

Called by subroutines DRETHD, PARK, and RETHD 

Calls subroutines FEDM, RAPM, TEST2 and SRAREC 

RESTRICTIONS 

None 

6-172 



C(C(~l Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

RAPM (RAPM) 
(GEMULT) 

To output the necessary M codes for a rapid traverse move 

INPUT 

CALL RAPM (AAA, IH, INTA, INTO) 

where: 

AAA is the array containing incremental moves 

IH is the head number 

INTA is the index to use for values in TABLEM 

INTO is a shifting flag: 1 = shift into feed 
2 = shift into rapid 

The miscellaneous code table, TABLEM is also used. 

OUTPUT 

The necessary M codes for shifting into rapid or shifting into 
feed are output. 

METHOD 

The number of records of M codes are optimized by determining 
which axes have motion and which axes have a conunon M code. 

DIAGNOSTICS 

If there is no motion, subroutine PERROR is called. 

REQUIREMENTS 

Called by subroutines RAPLIM and SHFTBK 

Calls subroutines OUTB, CTCHUP, and PERROR 

RESTRICTIONS 

Subroutine FEDM is an entry point in RAPM. 

6-173 



GICINT Ill POSTPROCESSOR 

PURPOSE 

REDTAP (REDYGI} 
(GEINIT) 

... for the computer programmer 

To ready the tape by rewinding and buffering 

INPUT 

CALL REDTAP 

COMMON parameters used: CLTAPE, TAPES1, TAPES2, 
TAPES3, TAPES4 

OUTPUT 

The tapes are rewound and buffered. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine INIT 

Calls subroutines REWZ, BUFFTP and WEFREW 

RESTRICTIONS 

This subroutine is computer oriented. 

Requires APT system COMMON 

6-174 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

RESTAT (REINGB) 
(GEBASE) 

To reinstate upon a start-up the part program conditions which 
are automatically turned off at a STOP, OPSTOP, BREAK, or END 
statement 

INPUT 

CALL RESTAT 

The following parameters and arrays in COMMON are used: OPTAB, 
STATE, TABLEM. 

The STATE table contains the condition state of the program at 
the time prior to the STOP, OPSTOP, BREAK, or END statement. 

OUTPUT 

A DBFSEG command block is output for each "turned back on" 
condition. This can include a reinstatement of the coolant, 
spindle direction and speed, SFM value, feedrate or rapid 
range, and the turret or tool code. 

METHOD 

The STATE vector has an ordered structure as follows: 

STATE (1) = T code 

STATE{2) = SPNCOM 

STATE (3) = Spindle Conditions ( CLW, CCLW, OFF) 

STATE (4) = Spindle Range 

STATE (5) = SFM value 

STATE (6) = M code for feed or rapid range 

STATE (7) = M code for feed or rapid range if two codes 
are required 

STATE (8) = coolant i1 

STATE (9) = coolant i2 

6-175 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

RESTAT (cont'd) 

METHOD (cont'd) 

In the related subroutine as each condition is established, 
e.g., the spindle speed and direction in subroutine SPINDL, 
the established condition is saved in the appropriate location 
of the STATE vector. If a "stop" condition exists (i.e., a 
STOP, OPSTOP, BREAK, or END had been given), the newly 
established condition is made negative before storing it into 
the STATE vector. 

In subroutine RESTAT, the STATE vector is scanned; and for 
every non-negative condition, a reinstatement output block is 
issued. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines STOREM and DWELL 

Called by subroutine TSTFLG 

RESTRICTIONS 

None 

6-176 



C(CHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

RETHD (RETHD) 
(GEMULT) 

To return the specified head to the work when the alternate 
head is parked 

INPUT 

CALL RETHD(AAA, ABS, BBS, SEQN, OUTX, OUTY, OUTZ, SAFEV, 
IHD, SAFEW) 

where: 

AAA = array containing incremental move for head being 
returned 

ABS = absolute coordinate system for head being 
returned 

BBS= absolute coordinate system for alternate head 

SEQN = sequence number for head being returned 

OUTX = absolute x coordinate where head was parked 

OUTY = absolute y coordinate where head was parked 

OUTZ = absolute z coordinate where head was parked 

SAFEV = deltas used to park the head and return it 

IHD = head number 

SAFEW = deltas used to withdraw the head concerned 

The miscellaneous code table, TABLEM, is also used. 

OUTPUT 

The specified head is returned to the work and the coolant 
turned back on. 

6-177 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

RETHD (cont'd) 

METHOD 

(1) Save the incremental move in AAA. 

(2) Position the head at the same X value as when it was 
parked, if it is not already there. 

(3) Restore the absolute coordinate system for the head being 
returned. 

(4) Return the parked head to the withdrawal position, turn on 
the coolant, and then move the head from the withdrawal 
position back to the workpiece. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine FXPARK 

Calls subroutines GMOUT, COMPGC, RAPLIM and SRAREC 

RESTRICTIONS 

None 

6--178 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

RETRCT (RTRCGP) 
(GEPOS) 

To retract the tool at rapid traverse to the height specified 
in the CLRSRF statement 

INPUT 

CALL RETRCT 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

A block to raise the spindle to the CLRSRF height is output. 

METHOD 

Determine the Z height (DBFSEG(S}} by adding the programmed 
CLRSRF height to the TRANS value TRANSL(3). Determine if the 
motion can take place at RAPID; if so, set feedrate 
(DBFSEG(11)) equal to -OPTAB(44) (the rapid rate); set the 
rapid flag RAPFLG = 1 and call subroutine RAPIDO. If the 
motion cannot take place at the rapid rate, set the feedrate 
DBFSEG(11) to the high feedrate OPTAB(39). Store the now 
current z height in DPREVP(3) and save the programmed CLRSRF 
in CURNTZ. Output the above block as a CODE = -16 (a Z motion 
only block). 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutine RAPIDO 

RESTRICTIONS 

A CLRSRF statement must be programmed prior to a RETRCT 
statement. 

Machine must have a programmable z register. 

6-179 





ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

RETRET (RETRET) 
(GEMULT) 

To return the secondary head to the cutter location from which 
it was withdrawn when a restriction had been found which 
prevented operation in the combined mode. 

INPUT 

CALL RETRET 

The following COMMON parameters are input: 

AS2 the present record being processed for head 1 

AS3 the present record being processed for head 2 

PRIMHD = 1 for head 1 the primary head 

= 2 for head 2 the primary head 

SF HOLD secondary head retraction record when head 
is removed from combined cutting 

OUTPUT 

A record is output to return the secondary head to the cutter 
location. 

METHOD 

When the secondary head was withdrawn from the combined mode, 
the incremental motion for withdrawal was left stored in 
either AS2 or AS3. After withdrawal, subroutine GMOUT 
reverses the sign of the coordinate axes. Subroutine RETRET 
now calls subroutine GMOUT to return the secondary head to its 
cutter position. The next cutter motion statement had 
previously been stored in the buff er SFHOLD. This motion 
statement is now restored into either AS2 or AS3. 

DIAGNOSTICS 

None 

6-181 



ClClNT Ill POSTPROCESSOR 

RETRET (cont'd) 

REQUIREMENTS 

Called by subroutine GEMULT 

RESTRICTIONS 

None 

6-182 

... for the computer programmer 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

RETSFY (RETSFY} 
(GEMULT) 

To set up a data record to withdraw the secondary head from 
its cutting sequence in the combined mode 

INPUT 

CALL RETSFY 

The following parameters are used: 

AS2 The current DBFSEG record for head 1 

AS3 The current DBFSEG record for head 2 

OUTPUT 

A data record is set up to withdraw the secondary head from 
the combined cutting sequence. The secondary head retraction 
record is stored in SFHOLD. 

'-"" METHOD 

The flags IDAB(1) and ISAFLG are set to indicate that combined 
cutting has been restricted. If the movements of either head 
have been segmented into two records of data, the movements 
are stored back to their original values. Then a data record 
is set up to withdraw the secondary head from the cutting 
sequence. The withdrawal position is found by multiplying the 
values in the SAFEI'Y statement by 0.05. 

DIAGNOSTICS 

None 

REQUIREMENTS 

A SAFETY statement must be given in order to withdraw the 
secondary head. 

Called by subroutines GMCIRL and GMLINE 

RESTRICTIONS 

None 

6-183 



CIClNT Ill POSTPROCESSOR 

PURPOSE 

REWIND (REWDGB) 
(GEBASE) 

... for the computer programmer 

To output a rewind code and to set the machine flags to the 
"off" condition 

INPUT 

CALL REWIND 

The input arrays ICLDA.T and CLDATA are used. 

OUTPUT 

The rewind code from TABLEM(31) is output in a block by 
itself. 

METHOD 

Call subroutine STOREM(130) to output any pending M codes. 
Test OPTAB(97) = 1 to determine if a TOO block is to be 
output. If so, set T code (DBFSEG(13)) to 0 and call 
subroutine DWELL(92), then STOREM(31) for rewind code. If 
STOREM(31) is not available, output conunent. If code 
STOREM(31) is available, set the current spindle range CURNG 
= 1, turn off the spindle FLONSP = O, and turn off the coolant 
FLONKL = 0. Output the M code = -1 block (a stop function in 
a block by itself). 

DIAGNOSTICS 

Comment: REQUESTED MISCELLANEOUS FUNCTION CODE IS Nar 
AVAILABLE ON THIS MACHINE. 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutines STORFM, DWELL, OUTPUT and COMENT 

RESTRICTIONS 

TABLEM(31) ~ DMBITS 

6-184 



CltlNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

RFTYPE (RFTYPE) 
{GEPOS) 

To determine the feedrate for the rotary table or to calculate 
its command form 

INPUT 

CALL RFTYPE (ROTFED,K) 

where: 
ROTFED = given feedrate 

K = 0 when called from subroutine POSIT 

= 1 when called from subroutine ROTABA 

OUTPUT 

ROTFED contains the feedrate or feed command depending on the 
value of K. 

METHOD 

If the machine has a separate feedrate register 
(OPTAB(141) = N), call the related feedtype subroutine. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines POSIT, ROTABA 

calls subroutine ROTYP1 

RESTRICTIONS 

OPTAB(1) must equal 1 or 2. 

6-185 



ClCINT Ill POSTPROCESSOR 

PURPOSE 

ROTABA (RTBAGP) 
(GEPOS) 

... for the computer programmer 

To process a rotary motion (table or head) and set up values 
for output for an Absolute System machine. 

INPUT 

CALL ROTABA(ROTDIR, INCABS, K, ROTFED) 

where: 
ROTDIR = direction of rotation 

INCABS = 1 for absolute system 

K = storing index 

ROTFED = rotary feedrate 

Flags used: FORKT, ROTRAD, DBFSEG, CODE, RAPFLG, ROTDIR 

METHOD 

In subroutine ROTABA, the shorter rotation distance is chosen 
and used since this is the distance which will be selected by 
the NC control system. Therefore, if the programmed direction 
is the long way, the proper move must be forced by 
segmentation. Subroutine ROTABA does its own segmentation. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines STOREM, CONROT, SROREC, RFDTYP, OUTPUT, 
SET12 

called by subroutine ROTABL 

RESTRICTIONS 

None 

6-186 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

ROTABI (RTBIGM) 
(GEMILL} 

To process a rotary move (head or table} and set up values for 
output for an Incremental System Machine 

INPUT 

CALL ROTABI (ROTREF, ROTDIR, INCABS, K, NEXTFL) 

whez.e: 
ROTREF = 0 Do not rotate the reference system 

= 1 Rotate the reference system 

ROTDIR = +1 Clockwise direction 

= -1 Counterclockwise direction 

INCABS = 0 incremental motion 

= 1 absolute motion 

K = the location in machine coordinate 
vector containing the rotary value. 

NEXTFL = 0 output rotary move now 

= 1 output rotary move in the next block 

The following parameters in COMMON are used: 

AXMULT, OPTAB, PREVMP, CLDATA, MAFORK, DPREVP, PRVPOS, 
OPT AB 

OUTPUT 

Flags used: AXMULT, PRVPOS, ROTRAD, ROTDIR, DPRESP, 
PRVPOS, DPRESM, XTEMP, ROTPOS, DPREVP 

The incremental rotary motion is output as a command block. 

6-187 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

ROTABI (cont'd) 

METHOD 

The control for an incremental machine moves CLW 
according to the sign of the output increment. 
specified in option 120). This routine does 
segmentation. 

DIAGNOSTICS 

Comment: ROTREF AND ATANGL CANNOT BE USED 

REQUIREMENTS 

or CCLW 
(This is 

its own 

Calls subroutines CONROT, COMENT, CLASS, GOLINE, ROTOUT 

Called by subroutine ROTABL 

RESTRICTIONS 

Uses a DATA statement. 

If the absolute position is not retained, ROTREF and ATANGL 
cannot be used. 

6-188 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

ROTABL (RTBLGB) 
(GEBASE) 

To process the ROTATE/TABLE or HED statement 

INPUT 

CALL ROTAEL 

The following parameters and arrays in COMMON are used: 
AXMULT, CLDATA, OPTAB, ROTFED, DPRESM, DPRESP 

OUTPUT 

Flags used: ROTDIR, ROTREF, INCABS, TABSPD, ITABSD, K, 
ROTFED, FEDIPM, DPREVM, PREVPT, AXMULT 

The rotary motion is translated into a command block which is 
output. 

METHOD 

The ROTATE/ statement is first scanned for modifiers. Then 
the parameters K (head or table), INCABS (ATANGL or INCR), 
ROTDIR (CLW or CCLW) 1 ROTREF, and ITABSD are set accordingly. 
In a positioning - absolute system the present point is stored 
as the previous point after subroutine ROTABA is called. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines TABSPD, FLOAT, ROTABI, ROTABA 

Called by subroutine ROTATE 

RESTRICTIONS 

None 

6-189 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

ROTATE (RTATGB) 
(GEBASE) 

... for the computer programmer 

To determine the module (head, table, torch, magazine, turret, 
or indexer) given in the ROTATE statement, and to call the 
respective subroutine 

INPUT 

CALL ROTATE 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The appropriate subroutine as designated by the minor word 
modifier is called. 

METHOD 

CLDATA(4) is checked to determine the module referenced. If 
the turret is referenced, there is a check to see if it is on 
a drafting machine. 

DIAGNOSTICS 

Comment: OPTION FEEDRATE IS ASSUMED. 

REQUIREMENTS 

Calls subroutines ROTORC, ROTABL, ROTMAG, ROTUR, RorDRF, 
COMENI', ROTIND 

Called by subroutine AUXLRY 

RESTRICTIONS 

None 

6-190 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

ROTDRF (RDRFGO) 
(GEPOS) 

To rotate a turret on a drafting machine 

INPUT 

CALL ROTDRF 

OUTPUT 

A command block which rotates the turret is output. 

DIAGNOSTICS 

Comment: WARNING -- TURRET INDEXED WHILE PEN IS 
DOWN -- WARNING. 

REQUIREMENTS 

Calls subroutines COMENT, OUTPUT 

Called by subroutine ROTATE 

RESTRICTIONS 

None 

6-191 



GICINT Ill POSTPROCESSOR 

PURPOSE 

ROTIND (RINDGP) 
(GEPOS) 

... for the computer programmer 

To output a sequence of blocks which rotate an indexer right 
or left to some requested point 

INPUT 

CALL ROTIND 

OUTPUT 

One or more M code blocks are output. 

METHOD 

If the direction of rotation is not specified, right is 
assumed. 

Output n number of M code blocks as specified by CLDATA(S), by 
calling STOREM(48) for right, or by calling STOREM(49) for 
left. Then call STOREM(130) to output the past requested M 
code. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine ROTATE 

Calls subroutine STOREM 

RESTRICTIONS 

TABLEM(48,49) ~ DMBITS 

OPTAB(1) must be equal to 1 or 2 

6-192 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

ROTMAG (RMAGGP) 
(GEPOS} 

... for the computer programmer 

To select the M code for rotation direction of the tool 
changer magazine 

INPUT 

CALL ROTMAG 

OUTPUT 

A block with the direction M code and T code for magazine 
selection is output. 

METHOD 

If no tool (magazine position number) is given assume the tool 
in the up position. Store tool selected in HOLD and determine 
if a direction of rotation was specified. If not, call sub
routine MINMOV to determine the closest direction. Store 
TABLEM(83) for CLW or TABLEM(84) for CCLW. The tool number is 
stored in DBFSEG(l3) and the block is output as a code = -1. 

DIAGNOSTICS 

None 

REQUIREMENTS 

called by subroutine ROTATE 

Calls subroutines STOREM, MINMOV, OUTPUT 

RESTRICTIONS 

TABLEM(83,84} ~ BITS 

OPTAB(1) must equal 1 or 2 

6-193 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

ROTMOV (RMOVGM) 
(GEMILL) 

... for the computer programmer 

To determine and process the rotary departure for milling 
multiaxis machines 

INPUT 

CALL ROTMOV 

COMMON parameters used: DPREVM(4), DPREVM(S), DPRESM(4), 
DPRESM(S), ROTUNT, DEPA and DEPB 

OUTPUT 

Flags used: CLMPFL, RETURN and LOCK 

The parameters DEPA and DEPB contain the rotary departures 
which are also stored into DBFSEG(6) and (7). 

DIAGNOSTICS 

None 

REQUIREMENTS 

DEPA = DPRESM ( 4) - DPREVM ( 4) 

DEPB = DPRESM(S) - DPREVM(S) 

Called by subroutines DEPART and ROTHED 

Calls subroutine STOREM 

RESTRICTIONS 

This subroutine uses DATA statements. 

6-194 



CI&INT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

ROTORC (RTORGF) 
(GEFLAM) 

To process the ROTATE/TORCH statement 

INPUT 

CALL RO'IORC 

The following parameters and arrays in COMMON are used: 

UPFLAG, CLDATA, CODE, ICLDAT 

OUTPUT 

A conunand block which rotates the torch is output. 

METHOD 

If necessary, this routine segments the rotation. The output 
value is rounded and truncated. CODE is set to +2. 

DIAGNOSTICS 

Comment: WARNING 
DEGREES 

TORCH ROTATION HAS EXCEEDED 360 
WARNING. 

Comment: TORCH ROTATION IS TOO LARGE TO BE PUT IN A BLOCK 
WITHOUT SEGMENTATION. 

REQUIREMENTS 

Calls subroutines COMENI', SRAREC, OUTPUT 

Called by subroutine ROTATE 

RES 'IRI CTI ONS 

None 

6-195 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

ROTOUT (ROUTGM) 
(GEMILL) 

To output a rotary move command block. 

INPUT 

CALL ROTOUT (XTEMP, N) 

where: 
XTEMP = rotary incremental move 

N = DBFSEG storage index 

OUTPUT 

Flags used: FLAG, DBFSEG, CODE, XTEMP 

The rotary move command block is output. 

METHOD 

The A and B registers are set to zero; then DBFSEG(N) 
to the output value XTEMP. Losses caused by 
procedures are accumulated and checked here. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines SROREC, OUTPUT 

Called by subroutine ROTABI, ROTHED 

RESTRICTIONS 

Uses a DATA statement 

6-196 

is set 
rounding 



CICINT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

ROTUR (RTURGP) 
(GEPOS) 

To rotate the spindle turret into position for tool pickup or 
tool unload, and to move the spindle into machining position 

INPUT 

CALL ROTUR 

Flags used: TABLEG, TOOLDN, TLNOFF, DNLEN, TLEN2, OPTAB 

OUTPUT 

DBFSEG, TOOLDN, DNLEN, TLEN, TRANSL, VALUEM 

A command block which rotates the turret into position is 
output. 

METHOD 

If called for, the tool length compensation is computed, and 
a tool offset M code is calculated. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine STOREM 

Called by subroutine ROTATE 

RESTRICTIONS 

None 

6-197 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

ROTYP1 (ROTYP1) 
(GEPOS) 

... for the computer programmer 

To locate the closest feedrate available on the machine or to 

find that feedrate command value for a type 1 rotary feedrate 

INPUT 

CALL ROTYP1 (ROTFED, K) 

where: ROTFED = programmed feedrate in IPM 

K = 0 obtain f eedrate command 

K = 1 find closest f eedrate to ROTFED 

METHOD 

Initially, KI is set equal to the rotary feedrate register 

position in DBFSEG, (OPTAB(139)). Compute the linear feedrate 

maximum CIRCUM in inches per minute for sorr.e specified radius 

using the maximum feedrate in RPM (OPTAB(114)) and the part 

radius OPTAB(112). Compute a ten speed table where FROI1(I) = 
CIRCUM/(1.43 ** (10-I)). When K = 1, the subroutine is 
entered to find the closest feedrate available. This value 

from FROT is returned as ROI1FED. Conversely, when K = O, the 

subroutine is entered to calculate the feed command for the 

input ROTFED value. The converted command value is returned 
as ROTFED. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine RFTYPE 

calls no subroutines 

RESTRICTIONS 

OPTAB(1) must equal 1 or 2. 

OPTAB(14) must equal 1. 

6-198 



CltlNT 111 POSTPROCESSOR 

PURPOSE 

SADDLE(SADLGL) 
(GELATH) 

... for the computer programmer 

To set up the command blocks for a saddle motion according to 
the specifications given by the statement 

INPUT 

CALL SADDLE 

The following COMMON variables are used: ICLDAT, CLDATA, 
VALUEM, TABLEM, TAB~G, OPTAB, SFMFLG and SFMRAD. The modifier 
code for SELECT is 1074. The minor words in the statement 
have these code numbers: HED(238), SADDLE(lSO), TRAV(l54), 
IPM(73) and IPR(74). 

OUTPUT 

The saddle motion output blocks are stored in.DB.FSEG. 

The following flags are set: 

SADMOD = -1 for feedrate in IPR 

SADMOD = 1 for feed.rate in IPM 

SADSFM = 1 for saddle SFM 

SADSFM = 0 after SFM is called 

METHOD 

The saddle move is stored in DBFSEG(16). If .the saddle move 
exceeds the departure maximum the move is segmented by calling 
subroutine SEGSAD. The nodif ier TRAV specifies that the 
saddle moves at rapid traverse. If a value is given for 
feedrate, then IPM or IPR specifies the mode. 

DIAGNOSTICS 

The comment OPTION FEEDRATE MODE ASSUMED is printed when the 
feedrate mode is not given. This is a recoverable warning and 
does not terminate processing. 

6-199 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

SADDLE (cont'd) 

REQUIREMENTS 

Called by subroutine SELHED. 

Calls subroutines SFMO, DWELL, COMENT, OUTPUT, SEGSAD, 
SRAREC, and STOREM 

RESTRICTIONS 

None 

6-200 



ClCHT Ill POSTPROCESSOR 

PURPOSE 

SAFEGM (SAFEGM) 
(GEMILL) 

... for the computer programmer 

To process 
machines. 

the SAFETY statement for multihead milling 

INPUT 

CALL SAFEGM 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The DBFSEG array is output with: 
DBFSEG(2) = NOP 

DBFS EG ( 11) = 7 • 0 

CODE = 17. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine SAFEGM 

calls subroutine OUTPUT 

RES'IRICTION 

None 

6-201 





Cl&HT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

SAFEGX (SAFEGX) 
(GEMAXS) 

To establish the R register value for a SAFETY statement for 
NC machines possessing this feature 

INPUT 

CALL SAFEGX 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

A DUFSEG command block containing the R register value is 
output. 

ME'IHOD 

If OFF is given, DBFSEG(l6) is set to zero and nothing else is 
done. The R value is determined by a three digit combination 
derived from the following table: 

x y _z_ 

R111 +.01 inches +.01 inches +. 01 inches 
R222 -.01 inches - • 01 inches -.01 inches 
R333 +.10 inches +.10 inches +.10 inches 
R444 - • 10 inches -.10 inches -.10 inches 
R555 +1.0 inches +1.0 inches +1.0 inches 
R666 -1. 0 inches -1.0 inches -1. 0 inches 

Any one or any combination of axes may be programmed by proper 
arrangement of the R address. For example, address R304 would 
indicate that the X axis is to move .1 inch in the plus 
direction and the z is to move .1 inch in the minus direction. 
The programmer is restricted to calling for only one of the 
three values given (.01, .1, 1.0). 

DIAGNOSTICS 

None 

6-203 



CICINT Ill POSTPROCESSOR 

SAFEGX ( cont'd) 

REQUIREMENTS 

Calls subroutine OUTPUT 

Called by subroutine AUXLRY 

RESTRICTIONS 

... for the computer programmer 

The subroutine contains a DATA statement. 

6-204 



ClCHT Ill 

PURPOSE 

POSTPROCESSOR 

SAVMCD (SAVMCD) 
(GEMULT) 

To save the M code for feed or rapid 

INPUT 

CALL SAVMCD(AAA,INDX) 

where: 

... for the computer programmer 

A.AA = current DBFSEG record being processed 

INDX = head number 

The miscellaneous function table TABLEM is also used. 

OUTPUT 

The M code for the feed or rapid range is stored in FDMHD. 

METHOD 

The M code in 'AAA is compared against the feed and rapid M 
codes. If AAA is found to have a feed or rapid M code, it is 
stored in FDMHD. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine CRFAD 

RES'IRICTIONS 

None 

6-205 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

SEG (SEG) 
(GEMULT) 

PURPOSE 

To segment a cut vector 

INPUT 

CALL SEG(AAA,XB,XA) 

where: 

AAA = array containing the cut vector to be segmented 

OUTPUT 

XB = absolute x coordinate at termination of 
alternate cut vector 

XA = absolute x coordinate of the cut vector to 
be segmented 

The segmented vector is stored into AAA, the first portion in 
AAA (I, 1) and the remainder in AAA (I,2). 

METHOD 

The cut vector in AAA is segmented at XB. The remainder of 
the cut vector is set up as a separate motion statement in the 
second column of AAA. All new delta moves are rounded to the 
step size. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine FXMULT 

Calls subroutines COMPGC and SRAREC 

RESTRICTIONS 

None 

6-206 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

SEGDRC (SDRCGX) 
(GEMAXS) 

To "segment" the direction cosines in accordance with the 
segmentation of the X,Y,Z coordinate values. 

INPUT 

CALL SEGDRC(PREV, PRES, ANS) 

where: 

PREV = first point of the path 

PRES = last point of the path 

ANS = the resultant direction cosine values 

Let A and Ebe the previous and present tool axis 
vectors respectively. 

k 

1 

i 

-> 
A 

j 

6-207 



CICINT Ill POSTPROCESSOR 

SEGDRC (cont• d) 

INPUT (cont 1 d) 

Consider the plane of A,B below: 

Angle 8 is obtained by 

8 = 

where : D = A • ~ -+ 

Note: l~I = IBI = 1 

... for the computer programmer 

The arc of the tool tip is divided into equal segments 

thus: 

6-208 

y = PT * 8 
NDIV 

PT = 1 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

SEGDRC (cont Id) 

INPUT (cont• d) 

The segmented direction cosines ar~given by a linear 
proportion between the cosines of B and A: 

is = 

js = 

ks = 

where: 

a = sin (8 y) 
sin e 

DIAGNOSTICS 

None 

REQUIREMENTS 

aiA + 

ajA + 

akA + 

and 

SiB 

SjB 

SkB 

S = sin y 
sin e 

Calls subroutines DOT, ARCTAN, NORM 

Called by subroutines LINRTY, PROCGD, SEGMNT 

RESTRICTIONS 

None 

6-209 





ClCHT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

SEGMNT (SGMTGT) 
(GETERP) 

To segment a move which has a component departure larger than 
the maximum allowed 

INPUT 

CALL SEGMNT 

Flags used: AXMULT, PRESP, PREVP, DPRESM, DPREVM, FRAPID, 
SFMFLG, THFLAG, OPTAB 

OUTPUT 

Flags used: DPRESM, DPRESP, SFMCIR, DPREVM, DPREVP, 
TOLCON, DEPX, DEPY, DEPZ, DEPA, DEPB 

The original ~th is segmented and output. 

METHOD 

The largest linear and (if present) the largest rotary 
departure are determined. The number of linear segments and 
the number of rotary segments required are calculated. The 
larger of these two is used. Rounding is done in the buffer 
while exact values are kept for the deltas and the machine and 
part vectors. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines MACSRT, SROREC, SEGDRC, SRAREC, OUTPUT, 
THREDO, THREDM 

Called by subroutines GOLINE, LOAD 

RESTRICTIONS 

None 

6-211 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

SELHED ( SLHDGB) 
(GEBASE) 

... for the computer programmer 

To select the designated head by outputting the appropriate M 
code 

INPUT 

CALL SELHED 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

Flags used: RAPLOW, FRAPID, RAPFLG, RAPRNG, FLRPON, 
TLHEAD, MULTHD. 

The appropriate M code is output in a block by itself. 

METHOD 

The subroutine also processes the following statements: 

DIAGNOSTICS 

None 

REQUIREMENTS 

1 
SELECT/BED ,2 

3 

SELECT/HED,BAR 

SELECT/HED,SADDLE 

Called by subroutine AUXLRY and SELECT 

Calls subroutines OUTPUT, SADDLE and STOREM 

RESTRICTIONS 

This subroutine uses DATA statements. 

6-212 



ClCHT Ill POSTPROCESSOR 

'PURPOSE 

SELECT (SLCTGB) 
(GEBASE) 

... for the computer programmer 

To process the generic APT statement SELECT 

INPUT 

CALL SELECT 

OUTPUT 

The subroutine specified by the minor modifier of the SELECT 
statement is called. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutines SELOFS, SELTAB, SELPAL, SELRDR, SELHED, 
SELTUL, SEIANG, FEDOVR 

RESTRICTIONS 

None 

6-213 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

SELG (SELG) 
(GETERP) 

PURPOSE 

To select the motion preparatory G code 

INPUT 

CALL SELG 

The following parameters and arrays in COMMON are used: CODE, 
DBFSEG, RNGDEP, TABLEG, STEP, AXMULT, OPTAB, STEP 

OUTPUT 

The proper dimensional G code is stored in DBFSEG(2). The 
parameter GDIMUL contains the related dimensional constant. 

METHOD 

The departure is tested against the departure limits to 
determine the dimension multiplier and the G code to be used. 
A check is made for a variable X,Y,Z,A,B format. 

DIAGNOSTICS 

Error #138: 

Error #139: 

REQUIREMENTS 

No G code is available for the segment 
length. 

Segment length is too long - it should have 
been segmented. 

Calls subroutines SELGCR, ERDMP1, SELGRO, SRAREC 

Called by subroutine OUTPUT 

RESTRICTIONS 

None 

6-214 



CltlNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

SELGCD (SELGCD) 
(GEMULT) 

To select the appropriate preparatory G code as a function of 
the path length, path condition (linear or circular), and G 
code availability 

INPUT 

CALL SELGCD (JMN) 

where: 

JMN = 1 linear motion; 

= 2 circular motion. 

The following COMMON variables are also used: 

BUFPRE the current buff er being processed 

RNGDEP the departure limits for G codes 

TABLEG table of preparatory functions 

OPTAB the option table 

OUTPUT 

The appropriate G code is stored in BUFPRE(2). 

6-215 



ClCINT Ill POSTPROCESSOR ... for the computer programmer 

SELGCD (cont'd) 

METHOD 

The G codes are selected according to the following 
lengths: 

English System 

0 Path Length .0999 

• 1 Path Length .9999 

1.0 Path Length 9.9999 

10. 0 Path Length 99.9999 

100. 0 Path Length 999.9999 

Metric System 

0 Path Length .999 

1.0 Path Length 9.999 

10.0 Path Length 99.999 

100.0 Path Length 999.999 

DIAGNOSTICS 

The following unrecoverable errors are printed: 

ERROR 138: no G code is available for the segment length; 
turret corrective motion may be too large. 

ERROR 139: segment length is too long - it should have 
been broken up. 

ERROR 141: !CODE has a forbidden value. 

ERROR 142: circle radius is too large. 

ERROR 143: linear code number for circle 

ERROR 144: no G code is available for this radius size. 

6-216 

..,,, 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

S ELOCD (cont • d) 

REQUIREMENTS 

Called by subroutines CIRSEG, COMPGC, and SPLIT 

Calls subroutine CONVRT and PERROR 

RESTRICTIONS 

None 

6-217 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

SELGCR (SLGRGT) 
(GETERP) 

... for the computer programmer 

To select the preparatory function G code for a rotary motion. 

INPUT 

CALL SELGCR 

The following parameters and arrays in COMMON are used: 
CIRRAD, RNGDER, OPTAB, TABLEG, DBFSEG 

OUTPUT 

The selected G code is stored in DBFSEG(2) ; the related 
dimension multiplier value is stored in the parameter DIMULT. 

METHOD 

The G code selected depends upon the size of the radius and 
the circle direction given by CODE which is stored in 
DBFSEG(15)). The dimension multiplier is set when the G code 
is selected. 

DIAGNOSTICS 

ERROR 142: Circle radius is greater than maximum 
departure. 

ERROR 144: No G code is available for the radius size. 

REQUIREMENTS 

Calls subroutine ERDMP1 

Called by subroutine SELG 

RESTRICTIONS 

None 

6."."'218 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

SELGRO (SLGRGM) 
(GETERP) 

To select the rotation G code 

INPUT 

CALL SELGRO 

The following parameters and arrays in COMMON are used: 
DBFSEG, TABLEG, DPREVM 

OUTPUT 

The proper dimensional G code is stored in DBFSEG(2). The 
parameter GDIMUL contains the related dimensional constant. 

METHOD 

The rotary departure is tested to determine whether to use 
long, normal, short, or very short dimension G codes. 

DIAGNOSTICS 

ERROR 39: 

REQUIREMENTS 

Rotary move is greater than naximwn 
departure - it should have been segmented. 

Calls subroutines CONROT, ERDMP1, SROREC 

Called by subroutines OUTPUT, SELG 

RESTRICTIONS 

Uses a DATA statement 

6-219 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

SELOFS (SELOFS) 
{GEPOS) 

... for the computer programmer 

To output the selected tool off set as specified by the APT 
statement SELECT/OFSErL 

INPUT 

CALL SELOFS 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The offset code is stored in DBFSEG(17) and output. 

METHOD 

The values stored in CLDATA(S-8) are tested and DBFSEG(17) is 
set accordingly. Output CODE= 1.0 is also set. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine OUTPUT 

Called by subroutine SELECT 

RESTRICTIONS 

None 

6-220 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

SELPAL (SLPAGM) 
(GEMA.XS) 

To process the SELECT/PALLET statement 

INPUT 

CALL SELPAL 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The pallet select M code is output in a block by itself. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine STOREM 

Called by subroutine SELECT 

RESTRICTIONS 

None 

6-221 



GICINT Ill 

PURPOSE 

POSTPROCESSOR 

SELRDR ( SLRDGM) 
(GMAXES) 

To process the SELECT/READER statement 

INPUT 

CALL SELRDR 

... for the computer programmer 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The reader selected M code is output. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine SELECT 

Calls subroutine STOREM 

RESTRICTIONS 

None 

6-222 



ClCHT Ill 

PURPOSE 

POSTPROCESSOR 

SELTAB (SELTAB} 
(GEPOS) 

To select the table specified 
SELECT/TABLE 

by 

INPUT 

CALL SELTAB 

... for the computer programmer 

the APT statement 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The selected table code is stored in DBFSEG(16) and is output. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines SELTAB, SELTAB, OUTPUT 

Called by subroutine SELECT 

RESTRICTIONS 

None 

6-223 



CIClNT Ill POSTPROCESSOR 

PURPOSE 

SELTUL ( SLTLGM) 
(GEMA.XS) 

... for the computer programmer 

To output a block which effects the selection of a tool 

INPUT 

CALL SELTUL 

The following parameters and arrays in COMMON are used: 
TOLCON, CLDATA, TABLEG, GPRSLC, TOLSLC 

OUTPUT 

The selected tool code is set up in the parameter TOOL. Other 
parameters may also te set depending upon the NC machine in 
use. 

METHOD 

If CLDATA(5) is not O, items 5, 6, 7 
back to positions 4, 5, 6, respectively. 
are entered in DBFSEG and subroutine 
COIE = -4.0. Flag TOLCON is set 
transformation equations are called. 

DIAGNOSTICS 

of CLDATA are shifted 
A G code and T code 

OUTPUT is called with 
to -1.0 and the 

Comment: PREVIOUSLY SELECTED TOOL WAS NOT 
LOADED - PRESENT TOOL IS SELECTED 

REQUIREMENTS 

Calls subroutines COMENT, TOOLNO, OUTPUT, CLASS 

Called by subroutine SELECT 

RESTRICTIONS 

None 

6-224 



ClClNT 111 POSTPROCESSOR 

PURPOSE 

SEQNO (SEQNGB) 
(GEBASE) 

... for the computer programmer 

To output a sequence number in accordance with the data given 
by the SEQNO statement 

INPUT 

CALL SEQNO 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

Flags used: SAVEN and SF.QINC 

The flags are set so that the parameter SEQCTR will output the 
desired sequence number. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls no subroutines 

RESTRICTIONS 

None 

6-225 



ClClNT Ill 

PURPOSE 

POSTPROCESSOR 

SETUP1 (SETUGO) 
(GEOUT) 

To set up a line for output in GEOUT1 

INPUT 

CALL SETUP1 

... for the computer programmer 

The following parameters and vectors in COMMON are used: FORK, 
NPR, SKPFLG, BCDIMG, REGFOR, DBFSEG, OPTAB, TABLEG, NP!' 

OUTPUT 

Flags used: NPRT, SKPCOD 

The array BCDIMG is set up for printing. 

METHOD 

Floating point values are converted to BCD and then entered 
into BCDIMG for printing. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines SETLIN, PPUNCH, CONBCD 

Called by subroutine GEPR01 

RESTRICTIONS 

The subroutine contains a DATA statement. 

6-226 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

SFMO (SFMOGL) 
(GELATH) 

To produce the appropriate programmed blocks which will give 
the desired value of cutting speed as specified by the given 
SFM conditions 

INPUT 

CALL SFMO 

The following parameters and arrays in COMMON are used: 

SFMAXR, SPNMAX, DPREVM, DPRESM, ISFMOD, SADSFM, FRMOD, FRAPID, 

SYSCON, SFMDES, OPTAB, ISRNGE, NRORNG, SRTAB 

OUTPUT 

Flags and parameters used: 

SFMAXR, SPNMIN, SPNMAX, !FIRST, !EXIT, ISCAN, NOTOCK, !SENSE, 

SFMLIM, SFMCON, SPNLIM, SPNSPD, CODE, DPREVM, DPRESM 

The current path will be broken up into segments, the size of 
which will be determined by the SFM desired, and also by the 
resultant spindle speed which is selected on the basis of the 
radius and spindle range. As each block is generated, it is 
stored into the segment buffer. 

METHOD 

The program inserts points between the computed tool centers 
in order to modify the spindle speed, increasing it or 
decreasing it as the case may be, by selecting the next 
highest (or next lo~st) spindle speed in the given range, 
thereby, in effect, keeping the resultant SFM within the 
minimum possible variation of the given SFM. This variation 
limit will be maintained except when the specified limits are 
exceeded. 

6-227 



ClClNT Ill POSTPROCESSOR 

SFMO (cont• d) 

METHOD (cont'd) 

... for the computer programmer 

The SFM sequence begins with the selection of that spindle 
speed which is commensurate with the specified SFM conditions. 
As each spindle speed is selected, the spindle speed change 
point is located. This change point is the point at which the 
spindle must change to another speed in order to maintain the 
specified SFM. However, it is desirable to change the speed 
before arriving at the change point; therefore, an optimum 
shift point is chosen midway between. The segmentation of the 
current cutter path occurs because of the breaking of the path 
at these optimum shift points. These segments and their 
concomitant spindle speeds, feedrates, etc., are the resultant 
programmed blocks which are stored into the segment buffer. 

REQUIREMENTS 

Called by subroutine GOLINE, PROCQD, SADDLE, SEGMNT 

Calls subroutine DPART, DSRROW, OFFARC, OUTPUT, 
TSTSAF, TRUNC 

RESTRICTIONS 

The subroutine contains a DATA statement. 

6-228 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

SHFTBK (S HFI'BX) 
(GEMULT) 

To shift the gears to their original setting after parking 

INPUT 

CALL SHFTBK(AAA,IH) 

where: 

AAA is the present buffer being processed 

IH is the head number 

The following COMMON parameters are also used: 

!SHIFT = 1 Shift from feed to rapid 

= 2 Shift from rapid to feed 

OUTPUT 

The system catch-up time for shifting gears is output along 
with the M code for shifting gears. 

METHOD 

Not applicable 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine PARK 

Calls subroutines CTCHUP, RAPM, and FEDM 

RESTRICTIONS 

None 

6-229 



CIClNT Ill POSTPROCESSOR 

PURPOSE 

SHUFFL ( SHUFGO) 
(GEOUT) 

... for the computer programmer 

To shuffle X,Y,Z,I,J,K,A,B data to the order given by Options 
59 and 60 

INPUT 

CALL SHUFFL 

COMMON parameters used: TEMP and ISHVEC 

OUTPUT 

DBFSEG(3,4,5,6,7,8,9,10) are shuffled in accordance with 
option 59 and 60 settings. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines GEPR01, GEPR02, and GEPR03 

Calls no subroutines 

RESTRICTIONS 

None 

6-230 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

SPINDL (SPINGB) 
(GEBASE) 

To process the SPINDL statement for either an RPM or SFM 
condition. 

INPUT 

CALL SPINDL 

The following parameters and arrays in COMMON are used: 

FORK, OPTAB, CLDATA, FLONSP, SFMRPM, MULTHD, VALUEM, ISRNGE, 

SPNDIR, STOPON, RETURN, ICLDAT, TABLEG, SRTAB, SFMAXR, ENCODE, 

FRMOD, FEDIPM, SFMAXI 

OUTPUT 

The flags are set in accordance with the conditions given in 
the SPINDL statement. 

Flags and parameters used: 

TURNON, SFMRPM, SPNSPD, SFMFLG, SFMDES, DBFSEG, 

CODE, FLONSP, FLONKL, SFMLOK, SFMFLG, STATE, 

ISRNGE, SFNCOM, CURNGE, MCHCON, ISFMOD, IDWLFL, 

KHFAD, SPNMAX, SPNMIN, SFMAXR, FEDIPM, IFEDFL, 

SFMAXI, VALUEM, FORK, CURDIR 

6-231 



CIClNT Ill POSTPROCESSOR 

SPINDL {cont 1 d) 

DIAGNOSTICS 

... for the computer programmer 

Comment: IMPROPER FORMAT, STATEMENT SKIPPED 

Comment: OPTION VALUE IS ASSUMED FOR THE SPINDLE SPEED 

Comment: RPM MODE ESTABLISHED 

Comment: SFM MODE ESTABLISHED 

Comment: REQUESTED MISCELLANEOUS FUNCTION CODE IS NOT 
AVAILABLE ON THIS MACHINE 

Comment: RANGE REQUESTED IS NOT AVAILABLE, USE HIGHEST 

Comment: LOWEST RANGE THAT SPINDLE SPEED FALLS IN IS 
ASSUMED 

Comment: WARNING--SPINDLE DIRECTION HAS CHANGED 

Comment: SPINDLE SPEED IS TOO HIGH FOR THREADING 

REQUIREMENTS 

Calls subroutines STOREM, DWELL, FL-OAT, OUTPUT, ERDMP1, 
COMENT, MACSRT, LOCRNG, TSTEXT, SPTYPE, FTYPE2, FI'YPE4, 
FTYPE6 

Called by subroutine AUXLRY 

RESTRICTIONS 

Uses a DATA statement 

6-232 



CI&INT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

SPLIT (SPLIT) 
(GEMULT) 

To segment a data record from one head into two segments 

INPUT 

CALL SPLIT(RATIO, AAA, KCODE, RAD, ARCLEN, SN) 

where: 

OUTPUT 

RATIO = percent value indicating how the segment will 
be subdivided into two segments 

AAA = 30 by 2 word buffer containing data to be 

KCODE = 

RAD = 

AR CL EN = 

segmented, and which are stored in (x,1) and (x,2) 
after segmentation 

type of data record to be segmented 

1 = line cut 

5 = dwell 

10,11,12 = circular cut 

radius value of circle before segmentation 

arc length before segrrenta tion 

SN = chord length before segmentation 

A segmented record for either head is placed in AS2(x,1) and 
AS2(x,2) or in AS3(x,1) and AS3(x,2). 

6-233 



CICINT Ill POSTPROCESSOR 

SPLIT (cont• d) 

METHOD 

... for the computer programmer 

The record to be segmented may be a circle, dwell, or line 
record. Circle segmentation is done by calling subroutine 
CIRSEG. A dwell record is segmented by the following 
calculations: 

SEG1 = AAA(3,1) * RATIO 

SEG2 = AAA(3,1) - SEG1 

TABLEG(S) is stored in both segments, as are also a CODE of 5 
and the sequence number. 

The line segmentation for 2 or 3 axes is calculated thus: 

3 
SEG1 (X, Y, or Z) = AAA(4, 1) * RATIO 

5 

3 
SEG2(X, Y, or Z) = AAA(4, 1) - SEG1 (X, Y, or Z) 

5 

A G code is then selected for both segments by calling the 
subroutine SELGCD. Segmentation is then completed by storing 
the sequence number, feedrate value, and CODE for both 
segments. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines GMCIRL and GMLINE 

Calls subroutines CIRSEG, SELGCD, and SRAREC 

RESTRICTIONS 

None 

6-234 



C(CHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

SPTYPE (STYPGB2 
(GEBASE) 

To calculate the spindle conunand to be stored in SPNCOM 

INPUT 

CALL SPTYPE 

OUTPUT 

SPNCOM contains the spindle speed in command form. 

METHOD 

If the spindle range ISRNGE is not greater than 1, call 

subroutine LOCRNG to determine the lowest range the requested 

speed falls in. Then call subroutine DSRROW to find the row 

number in the range where the speed is stored. If a type 7 
spindle is used, (OPI'AB(19) = 7), branch to MACSRT for s-code 

calculation. If not, call subroutine SPNTYP to calculate the 
S code. If (SPNCOM ~ DMBITS) ~tore in STATE(2) for possible 

reinstatement. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines COUPLE, SFMO, SPINDL. 

Calls subroutines LOCRNG, DSRROW, MACSRT, SFNTYP. 

RESTRICTIONS 

Machine must have an s register 

6-235 



CICHT Ill POSTPROCESSOR 

PURPOSE 

SRAREC ( RNDLGB) 
(GEMON) 

... for the computer programmer 

To scale, round, and recover the given linear value 

INPUT 

CALL SRAREC (ARG) 

where ARG is the number to be rounded 

The following parameters and arrays in COMMON are used: OPTAB, 
STEP 

OUTPUT 

The rounded value is stored into ARG. 

METHOD 

ARG = AINT 

[ 

J arg I 
TEMP ( 1) 

+ * 

where: 

TEMP ( 1) = STEP 

DIAGNOSTICS 

None 

REQUIREMENTS 

IARGI 
ARG 

* TEMP (1) I 

Called by subroutines CIRSEG, DRETHD, FROM, FMULT, GEOM3, 
GEPR01, GEPR02, GEPR03, GETSFC, OFFARC, RADLIM, SADDLE, SEC, 
SEGMNT, SEGSAD, SELG1, SPLIT, SRFCHK, TRUNC, TURRET. 

Calls no subroutines 

RESTRICTIONS 

Has multiple entry SROREC 

6-236 



Cl&lNT 111 POSTPROCESSOR 

PURPOSE 

SROREC (RNDRGB) 
(GEMON) 

... for the computer programmer 

To scale, round and recover the given rotary value 

INPUT 

CALL SROREC (ARG) 

where ARG is the number to be rounded 

The following parameters and arrays in COMMON are used: OPTAB 

OUTPUT 

The rounded value is stored in ARG. 

METHOD 

ARG = 

where: 

AINT I_ I ARGj 
LTEMP (1) 

TEMP(1) = OPI'ION 119 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines 

+ * TEMP(1)1 
ARG -j 

Called by subroutines GEPR01, GEPR02, GEPR03, ROTABA, ROTOUT, 
SEGMNT, SELGRO, TRUNC 

RES'IRICTIONS 

SROREC is a multiple entry to SRAREC. 

6-237 



ClCHT Ill POSTPROCESSOR 

PURPOSE 

STDMAC ( STDMGI) 
(GEINIT) 

... for the computer programmer 

To set up the Standard Machine conditions 

INPUT 

CALL STDMAC 

OUTPUT 

Tables TABLEM, TABLEG, OPTAB, REGSTR, REGFOR, and SRTAB for 
the Standard Machine are constructed. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines 

Called by subroutine INIT 

RES'IRICTIONS 

DATA statements are used to set up the tables. 

6-238 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

SRFCHK (SRCHGT) 
(GEBASE) 

... for the computer programmer 

To determine the plane of the circle for circular 
interpolation and save the circle center coordinates for later 
use 

INPUT 

CALL SRFCHK 

OUTPUT 

FLAGS SET: CIRFLG, !PLANE, and CIRDAT 

METHOD 

A record type 3000 is read and SRFCHK is called. If ICLDAT(S) 
= 4, a circle record has been read and the circle flag CIRFLG 
is set equal to 1. If not, CIRFLG is set equal to O, and 
returned. The plane of the circle !PLANE is set; i.e., !PLANE 
= 0 for XY, 1 for zx, and 2 for YZ. The coordinates of the 
center of the circle are stored in CIRDAT(1-3). These 
coordinates are rounded to the step size by subroutine SRAREC, 
and a return is made. CIRDAT is used in the circular 
interpolation sequence. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine GEBASE 

Calls subroutine SRAREC 

RESTRICTIONS 

Circular interpolation is possible in all three planes by 
using special programming techniques. 

6-239 



CICHT Ill POSTPROCESSOR 

PURPOSE 

STOP ( STOPGB) 
(GEBASE) 

... for the computer programmer 

To output a block for the statement STOP which turns off the 
coolant, spindle, tape reader, and then stops the numerically 
controlled machine tool 

INPUT 

CALL STOP 

OUTPUT 

Flags used: STOPON, CURNGE, ISRNGE, FLONKL, and FLONSP 

The STOP M code is output in a block by itself 

DIAGNOSTICS 

Comment 22: MISCELLANEOUS FUNCTION CODE NOT AVAILABLE 
ON THIS MACHINE 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutines COMENT, ENTRAP, OUTPUT and STOREM 

RESTRICTIONS 

This subroutine uses the Multiple Entries BREAK and OPSTOP. 

6-240 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

STOPTS ( STOPTS) 
(GEMULT) 

... for the computer programmer 

To store three elements of a given vector into another given 
vector, but only when the corresponding element of a given row 
of AMASK is not DMBITS 

INPUT 

CALL STOPTS(VEC,STOVFC,AMASK) 

where: 

VEC = vector to be stored 

STOVEC = vector to be stored from VEC 

AMASK = vector with or without DMBITS in its elements 

OUTPUT 

The vector is stored in STOVEC. 

DIAGNOSTICS 

Error 85 is indicated if VF:C. is found to have a non-zero value 
when its corresponding element in AMASK is DMBITS • 

REQUIREMENTS 

Called by subroutine CIRSEG 

Calls subroutines ERROR 

RESTRICTIONS 

None 

6-241 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

STOREM (STRMGB) 
(GEBASE) 

To store the given auxiliary M function into the parameter 
VALUEM 

INPUT 

CALL STOREM (INDXX) 

where: INDXX is the index location used to select the 
specified M code from TABLEM 

OUTPUT 

VALUEM which is in COMMON, contains the specified M code. 

METHOD 

If the parameter VALUEM is already occupied when the 
subroutine is entered, a block containing VALUEM is inserted 
into the segment buff er before the newly specified M code is 
stored into VALUEM. In many cases the program calls for 
TABLEM(130) to be stored into VALUEM. This is simply a device 
to insure that VALUEM is cleared before further program action 
can proceed. The result is that VALUEM is set to DMBITS since 
TABLEM(130) equals DMBITS. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutine OUTPUT 

Called by subroutines AIR, AUXFUN, CLAMP, COMENT, 
COUPLE, CYCLE, CYCLGP, DELAY, DRESS, END, FEDOVR, 
FROM, GEBASE, LEADER, MACHIN, OPSKIP, PICKUP, POSMOV, 
RESTAT, REWIND, ROTABA, ROTABL, ROI'IND, ROTMOV, 
SAFEGL, SELHED, SELPAL, SELRDR, SPINDL, STOP, THREDM, 
TOOLL, TOOLNO, TURRET, TYPEn, UNLOAD, and WELD 

RESTRICTIONS 

None 

6-242 

COOLNT, 
FEDRAT, 

RAPID, 
SADDLE, 
TOOLGM, 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TABSPD (TABSPO) 
(GEBASE) 

To process the rotary table speed 

INPUT 

CALL TABSPD 

The 2000 type statement processed is: 

OFF CLW 
ROTATE/TABLE, C 1 RPM, CCINl, RANGE, n 

These words have the following code numbers: 

ROTATE 1066 

TABLE 177 

OFF 72 

RPM 78 

CLW 60 

CCLW 59 

RANGE 145 

The following COMMON variables are used: CLDATA, ICLDAT, 
OPTAB, NWPR, SRTAB and TABLEM 

OUTPUT 

The proper M code is stored by calling subroutine STOREM. 
The table speed and code are merged and stored in 
DBFSEG(l7). A dwell is output when the table changes 
direction and is a table start command block. 

6-243 



ClCHT Ill POSTPROCESSOR ... for the computer programmer 

TABSPD {cont 1 d) 

The following flags are set: 

TAB DIR the table direction: 

= -1 for counterclockwise 

= 1 for clockwise 

IRANGF the table ran,ge flag: 

= 0 if range not given 

= 1 if range is given 

METHOD 

The table speeds are stored beginning at SRTAB(141). The 
speed in the table closest to the programmed speed is located. 

The ROTATE/TABLE statement is searched for the modifiers OFF, 
CLW, CCLW, and RANGE. OFF causes the M code for turning off 
the table to be output. When the table changes direction, a 
comment to this effect is output followed by a direction M 
code, table speed command and dwell time all in block. A 
change in table range causes tbe following blocks to be 
output: a stop M code, a message telling the operator which 
range to shift into, and a direction M code and table command. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine ROTABL 

Calls subroutines STOREM, COMENT, and DWELL 

RESTRICTIONS 

Contains DATA statements 

6-244 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TEST1 (TTMXGB) 
(GEBASE) 

To test the given segment length and its given feedrate to 
insure that the segment is sufficiently long for TMAX 

INPUT 

CALL TEST 1 (F ,S) 

where: 

F = given feedrate on the segment 

s = given segment length 

OUTPUT 

F is the proper value required. The original value of F is 
either acceptable or is made to be the correct value. 

METHOD 

F = S/TMAX , where TMAX is the maximum tape reader time. 
TMAX 

If the given feedrate, F, exceeds F , F is set equal to 

F 
TMAX 

DIAGNOSTICS 

None 

REQUIREMENTS 

TMAX TMAX 

Calls no subroutines 

Called by subroutine RAPID 

RESTRICTIONS 

If F is zero or BITS, no testing is done. 

6-245 



GlCHT Ill POSTPROCESSOR ... for the computer programmer 

TEST2 (TEST2) 
(GEMULT) 

PURPOSE 

To test the given segment length and its given feedrate to 
insure that the segment is sufficiently long for TMAX 

INPUT 

CALL TEST2 (F ,S) 

where: 

F = given feedrate on the segment 

s = given segment length 

OUTPUT 

F is the proper value required. The original value of F may be 
acceptable, but if not, it is made to be the correct value. 

METHOD 

F = S/TMAX , where TMAX is maximum tape reader time 
TMAX 

If the given feedrate, F, exceeds F , F is set equal to 
TMAX 

F 
TMAX 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine RAPLIM 

RESTRICTIONS 

No testing is done if F is 0 or DMBITS. 

6-246 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TESTM2 (TESTM2) 
(GEMULT) 

To test any restrictions placed upon the combined mode of the 
two heads, and to determine whether the restrictions have been 
met 

INPUT 

CALL TESTM2 (IJK) 

where: 

IJK is a flag set by subroutine TESTM2 to indicate 
whether the restrictions have been met (0 = Yes, 1 = NO) 

OUTPUT 

Flags used: ISAFLG, PRIMHD, and IJK 

METHOD 

This subroutine determines if either a spindle speed 
restriction or SFM restriction has been requested. If not, 
the subroutine returns after setting IJK = O. If either 
restriction is asked for, the appropriate test is made, and 
IJK is set to either 0 or 1 depending upon the success or 
failure of the test. The spindle speed test determines the 
present spindle speed of both heads (DAB(3) and DAB(4)). The 
parameters PLUSTL and AMINTL have been set previously, and 
indicate the maximum spindle speed deviation allowed between 
the two heads. If maximum deviation is exceeded, the combined 
mode is not allowed. A test for SFM is likewise made. 

DIAGNOSTICS 

Comment: RPM ON SECONDARY HFAD NOT WITHIN DELTA RPM 

Comment: SFM ON SECONDARY HFAD NOT WITHIN DELTA RPM 

Comment: RESTRICTIONS FOR MERGING DATA ON HEADS 
NOT MET 

6-247 



ClClNT Ill POSTPROCESSOR 

TEST2 (cont'd) 

REQUIREMENTS 

Called by subroutines GMCIRL and GMLINE 

Calls subroutine COMENT 

RESTRICTIONS 

... for the computer programmer 

The APT System COMMON is used by the subroutine. 

6-248 



CltlNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

THREAD (THRDGL} 
(GELATH) 

To set the thread-on flag and the thread-type flag 

INPUT 

Call THREAD 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The flags are set in accordance with the THREAD statement: 
THRDON, THFLAG, SFMRPM, SFMFLG, ITHTYD 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines 

Called by subroutine AUXLRY 

RESTRICTIONS 

Uses a Data Statement 

Computer Dependent 

Uses multiple entry THREDO 

6-249 



CICINT Ill POSTPROCESSOR 

PURPOSE 

THREDM (THREDM) 
{GEMILL) 

... for the computer programmer 

To process a threading block for milling machines. 

INPUT 

CALL THREDM 

Flags used: THRIX>N, THFLAG, SFMRPM, RETURN and SFMFLG 

OUTPUT 

DBFSEG(2), DBFSEG(S), DBFSEG(lO) and the proper M codes 

DIAGNOSTICS 

Comment: DABVAL(11) IS GREATER THAN OR EQUAL 
TO SFMAXI 

REQUIREMENTS 

Called by subroutine THREDM 

Calls subroutines MACSRT, STOREM, and COMENT 

RESTRICTIONS 

This subroutine uses multiple entry features. 

6-250 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

THREDO (THDOGL) 
(GELATH) 

To calculate the lead components and feedrate, and select the 
G code for threading 

INPUT 

CALL THREOO 

The following parameters and arrays in COMMON are used: 

THLEAD, ITHTYP, RAPFIG, ENCODE, THRDON, DPRESM, DPREVM 

SFMACI, OPTAB(133,165), SPNSPD, FRMAC, REGFOR(8), THRATE 

OUTPUT 

Lead components are output in direction cosine registers. 
Departures, F code, and G code are entered in BUFSEG. 

CODE, MCHCON, DBFSEG(2,3,4,8,9,11), DABVAL(11) 

METHOD 

Lead components are in proportion to departures. If desired, 
lead and departure limits can be set up in subroutine MACSRT. 
G code selection is determined by: 

(a) departure length 

(b) lead length 

(c) pitch type: decreasing, constant, or 
increasing 

(d) 100S control or not 

DIAGNOSTICS 

Comment: MAXIPM EXCEEDED. 

6-251 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

THREDO (cont'd) 

REQUIREMENTS 

Called by subroutine GOLINE 

Calls subroutines MACSRT (with MCHCON = 12) I COMENT 

RESTRICTIONS 

Uses a DATA Statement, Multiple Entry, Computer Dependent. 
Multiple entry is to THREAD. 

6-252 



CIClNT Ill 

PURPOSE 

POSTPROCESSOR 

TIMES (TIMES) 
(GEOUT) 

To print the total cut and dwell times 

INPUT 

CALL TIMES 

... for the computer programmer 

COMMON parameters used: !TEMP, TIMCUT, TIMDWL and NOCHAR 

OUTPUT 

The total cut time and dwell time is written in minutes at the 
bottom of the last page of printed output. The tape footage 
is also printed out. 

METHOD 

cut Time 

where: 

L = the path length 

F = the f eedrate in IPM 

n = the nwnber of cut vectors 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutines ABSOPR and GEPR03 

Calls no subroutines 

RESTRICTION 

APT System COMMON is used. 

6-253 



CIClNT Ill POSTPROCESSOR 

PURPOSE 

TITLE1 (TITLE1) 
(GEOUT 1) 

... for the computer programmer 

To printout a heading title and the register titles and page 
number for a new page for GEOUT1 

INPUT 

CALL TITLE1 

The following ~ararneters and arrays in COMMON are used: 

CURMAC, TAG, IPGCTR, OPTAB, BCDREG 

OUTPUT 

The generated title is written on IOUTAP. 

METHOD 

Uses FORTRAN FORMAT 

If option 143=0, a print column headed CLREC is included. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines 

Called by subroutine GEPR01 

RESTRICTIONS 

None 

6-254 



CltHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TITLE2 (TITLE2) 
(GEOUT) 

To set up and write the page heading print line for GEOUT2 

INPUT 

CALL TITLE2 

The following parameters and arrays in COMMON are used: 

CURMAC, TAG, IPGC'TR, DPRTNO, BCDREG 

OUTPUT 

Flags used: IOUTAP, CURMAC, TAG, 

IPGCTR, DPRTNO, BCDING 

The title is printed at the top of each new page. 

DIAGNOSTICS 

None. 

REQUIREMENTS 

Calls subroutine GEPRN2 

Called by subroutines GEPR02 

RESTRICTIONS 

Uses APT System COMMON 

6-255 



CICINT Ill POSTPROCESSOR 

PURPOSE 

TITLE3 (TITLE3) 
(GEOUT3) 

... for the computer programmer 

To print and process the generated title for GEOUT3 

INPUT 

CALL TITLE3 

COMMON parameters used: CURMAC, TAG, IPGCTR, BCDREG, 
BCDIMG 

OUTPUT 

The desired title and headings are printed at the top of 
each page. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine GEPRN1 

Calls subrouting ABSOPR 

RESTRICTIONS 

APT System COMMON is used. 

6-256 



Cl&lNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TOOLGM ( TOOLGM) 
(GEMILL) 

To output a T code block for a milling machine 

INPUT 

CALL TOOLGM 

OUTPUT 

A T code block for a milling machine is setup and output. 

METHOD 

This routine is called from subroutine TOOLNO to process the 
T code function for a milling machine. If a T code is 
available on the machine, a dwell block TABLEM(83) is output. 
Upon first entry FORK is set and the first tool length is 
saved in PREVTL. On subsequent entries the change in tool 
lengths is stored in TEMP(1), DPREVP(3) and DPREVM(3) are set 
to the current value and the block is output. Then an 
information block is output with the change in the tool length 
stored in DBFSEG(3), CODE = -9, and subroutine OUTPUT is 
called. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine TOOLNO 

Calls subroutine DWEIL, STORM, OUTPUT 

RESTRICTIONS 

OPTAB(1) must equal o. 

OPTAB ( 132) = 1 

6-257 



GlClNT Ill POSTPROCESSOR 

PURPOSE 

TOOLGP (TOOLGP) 
(GEPOS) 

... for the computer programmer 

To output a T code block for a positioning machine 

INPUT 

CALL TOOLGP 

OUTPUT 

A T code block for a positioning machine is output. 

METHOD 

This routine is called from TOOLNO to process the T code 
function for a positioning machine. If a T code is available 
on the machine and the merge of the T code is not required 
(OPTAB(1) = 1), set up a TABLEG(1) block, CODE= -1 and call 
subroutine OUTPUT. Upon first entry FORK is set and the first 
tool length is saved in PREVTL. on subsequent entries 
OPTAB(86) is tested to determine when and how to make the tool 
length compensation. If OPI'AB(86) = 1, make the compensation 
now by storing the delta tool length in TEMP(1) and adding the 
TEMP(1} value to the z trans vector TRANSL(3). Save the 
current tool length in PREVTL before returning. 

DIAGNOSTICS 

None 

REQUIREMENTS 

called by subroutine TOOLNO 

Calls subroutine OUTPUT 

RESTRICTIONS 

OPTAB(1} must equal 1 or 2 

OPTAB(132} must equal 2 

6-258 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TOOLL ( TOOLL) 
(GELATH) 

To output the T block for a lathe 

INPUT 

CALL TOOLL 

The following parameters and arrays in COMMON are used: 

REGFOR, FORK, DPREVP, DPREVM, PREVTL, TOOLEN 

OUTPUT 

Flags set: FORK, DPREVP, DPREVM, CODE, PREVTL 

The command block for the turret is output with the T code 
stored at BUFSEG(13). 

METHOD 

Z is corrected when there is a tool length variation. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines DWELL, STOREM, OUTPUT 

Called by subroutine TOOLNO 

RESTRICTIONS 

Uses a Data Statement 

6-259 





CI&INT 111 POSTPROCESSOR 

PURPOSE 

TOOLNO (TOLMGM) 
(GEBASE) 

... for the computer programmer 

To process the APT statement TOOLNO, and output a T code or 
other M codes accordingly 

INPUT 

CALL TOOLNO 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The determined T code is stored in DBFSEG(13). The parameters 
TOOL, TOOLEN, POSMAG, FFRSTL, and PREVI'L may also be set. 

METHOD 

Initialize the magaine direction FRKDIR to zero. Store the 
tool number from CLDATA(4) into TOOL. If the tool change M 
code is available (TABLEM(7)), set it up for output by calling 
STOREM(7). If initial entry, save the present tool length in 
the previous tool length parameter PREVTL. In all cases save 
the current tool length in TOOLEN. Store the tool number in 
DBFSEG(l3) for later output. If the tool length is zero, 
output Comment 19. If a special function is required call the 
subroutine MACSRT. Continue the scan of the statement. 

If CCLW is programmed, call subroutine STOREM(84) to output 
the M code, or for CLW, call STOREM(83) to output the M code 
and set the direction flag FRKDIR = 1 to indicate that the 
direction was specified and the proper M code has been output. 
If OFSETL is programned, combine the tool number TOOL and the 
offset number in CLDATA(N + 1) into the parameter TOOL. 

After the statement is completely scanned, determine if the 
direction flag FRKDIR is equal to 1. If not equal to 1, 
direction of rotation has not been set up. Test to see if the 
M codes are available for direction of rotation (OPTAB(88) = 
negative value). If M codes are available, store the present 
tool number TOOL into the magazine position POSMAG. Call 
subroutine MINMOV to determine the shortest direction of 
rotation. Test the direction parameter TURDIR and set up the 
proper M code (TABLEM(83)) for CLW, or TABLEM(84) for CCLW. 

6-261 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

TOOLNO (cont 1 d) 

If the machine is a lathe (OPTAB(132) = 0), call subroutine 
TOOLL for final processing. If the ma.chine is a position 
machine (OPrAB(1) greater than zero), call subroutine TOOLGP. 
If neither, the tool function is assumed to be a mill, and the 
subroutine TOOLGM is called. In all cases, set the initial 
entry flag FORK equal to 1 and save the tool number in FFRSTL 
and return. 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutines TOOLGM, TOOLGP, TOOLL, STOREM, MINMOV 

RESTRICTIONS 

None 

6-262 



ClCINT 111 POSTPROCESSOR 

PURPOSE 

TRANS (TRANGB) 
(GEBASE) 

... for the computer programmer 

To store the values of x, y, z, as given by the APT source 
statement TRANS, into the translation vector that is used to 
translate the cutter data 

INPUT 

CALL TRANS 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The translation vector TRANSL contains the given values of x, 
y, z. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls no subroutines 

Called by subroutine AUXLRY 

RESTRICTIONS 

The tool length ('IOOLEN) may be figured into z depending on 
the value of option 86. 

6-263 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

TRUNC (TRNCGB) 
(GEBASE) 

... for the computer programmer 

To round and truncate the present machine point 

INPUT 

CALL TRUNC 

DPRESM(I) for I = 1 to 6 is the parameter in which the present 
machine point values reside. 

OUTPUT 

The values are modified and remain in DPRESM(I). 

DIAGNOSTICS 

None 

REQUIREMENTS 

Calls subroutines SRAREC (for linear departures), and SROREC 
(for rotary departures) 

called by subroutines GEOMS, LINRTY, and SFMO 

RESTRICTIONS 

None 

6-264 



ClCl~T 111 POSTPROCESSOR 

PURPOSE 

TSTFCM (TSTFCM) 
(GETERP) 

... for the computer programmer 

To output smaller linear segments by using smaller dimension 
G codes if the original segment length caused the feed command 
to exceed the feed canmand maximum. 

INPUT 

CALL TSTFCM 

OUTPUT 

A series of segments are output. 

METHOD 

Initially set the FORK equal to zero. If the path is a rapid, 
the feedrate is set negative; therefore return since rapid 
paths are not to be segmented. Save the CODE and the feedrate 
in CODE and FED. Call subroutine CONVRT to store the 
departures DBFSEG(3-~ into A by setting BIT values equal to 
zero. Call subroutine COMPFC to compute the feedrate command 
FCOM. Test this value against the feedrate carunand maximum 
and return if acceptable. Test the current value of GDIMUL to 
determine the present G code. Branch to set up values for 
GDIMUL and departure maximum DMIN for the next smaller G code. 
Segment the given path into DIV segments using the test G 
code. call subroutine COMPFC to determine the feedrate 
command using the test G code. If this resulting FCOM is less 
than FCOMAX, proceed to segment the path on this basis. If 
the feed command is still greater than the FCOMAX, recompute 
the feedrate consistant with the FCOMAX, and discontinue the 
segmenting sequence. 

DIAGNOTSICS 

None 

6-265 



ClClNT Ill POSTPROCESSOR 

TSTFCM (cont 1 d) 

REQUIREMENTS 

Called by subroutine SELG 

... for the computer programmer 

Calls subroutines CONVRT, COMPFC, SRAREC, and FEDLIM 

RESTRICTIONS 

None 

6-266 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

TSTFLG (TFLGGB) 
(GEBASE) 

... for the computer programmer 

To test flags which may have been set to produce special 
testing on motion records 

INPUT 

CALL TSTFLG 

OUTPUT 

Flags used: STOPON, RAPLOW, RAPFLG, RAPFED, FLRPON. FRAPID, 
SAFLAG, FLSFON, THMODE, THRDON and THFLAG. 

As a result of testing the above, flags may be modified, or 
one or more of the subroutines listed below may be called. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine MOTION 

Calls subroutines RAPIDO, RAPIDX, RESTAT, SAFETO, SAFETY 

RESTRICTIONS 

None 

6-267 



ClCHT Ill POSTPROCESSOR 

PURPOSE 

TSTLIM (TLIMGB) 
(GEMON) 

... for the computer programmer 

To test the slide limits for non-multiaxis machines 

INPUT 

CALL TSTLIM 

The following COMMON variables are used: 

ISHVEC, OPTAB, DPRESM, REFATL, REFBTL, SEFATL, and SEFBTL 

OUTPUT 

If the slide limits are exceeded on an axis, a comment to that 
effect is printed. 

METHOD 

If OPTAB(110) is not zero, slide limit testing is done. The 
points from the CLTAPE with their signs set for the GECENT 
output are tested against OPTABS (121-126). The turret 
offsets are added to the points before slide limit testing is 
done for lathes. 

DIAGNOSTICS 

If the slide limits are exceeded on an axis, this comment is 
printed: 

AXIS SLIDE LIMIT HAS BEEN EXCEEDED *** WARNING 

REQUIREMENTS 

Called by subroutines GEOM and POSMOV 

Calls subroutines COMMENT and MACSRT 

RESTRICTIONS 

Subroutine TSTLIM uses APT COMMON and contains a DATA 
statement. 

6-268 



C(t(~l 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TSTSAF (TSTSAF) 
(GELATH) 

To test the SFM generated spindle speed and resultant feedrate 
to ensure that they are within the allowable SFM limits 

INPUT 

CALL TSTSAF(SFMLIM, IS EN SE) 

where: 

SFMLIM = 0 limit not reached 

= 1 limit reached 

I SENSE = 0 decreasing radius 

= 1 increasing radius 

COMMON parameters used: SPNSPD, SPNMIN, SFMAXR, SFMAXI, 
FRMAX, FEDIPM, and FEDIPR 

OUTPUT 

Flags used: !SENSE and FRMOD 

FEDIPM and SPNSPD are within the allowable range limits. 

DIAGNOSTICS 

Comment: MAXIPM WAS EXCEEDED 

REQUIREMENTS 

Called by subroutine SFMO 

Calls subroutines COMENT and TSTEXT 

RESTRICTIONS 

None 

6-269 



CICINT Ill 

PURPOSE 

POSTPROCESSOR 

TURRET (TURTGL) 
(GELATH) 

To process the APT statement TURRET 

INPUT 

CALL TURRET 

... for the computer programmer 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

Flags used: RESETF, NOWNXT, FLGROT, FLGTLP, TURDIR, IHEAD. 

A turret corrective move (CODE = -3) is output if the NOW 
modifier is given in the TURRET statement. 

DIAGNOSTICS 

ERROR 41.0: Turret corrective move cannot be segmented. 

Comment: TURRET CORRECTIVE MOVE EXCEEDED MAXIMUM DEPARTURE 
AND HAS BEEN SEGMENTED. 

REQUIREMENTS 

Called by subroutines AUXLRY. 

Calls subroutine STOREM, TURSAD, COMTAT, DWELL, MINMOV, 
SRAREC, OUTPUT, ERDMP1, COMENT 

RESTRICTIONS 

None 

6-270 



ClClNT 111 POSTPROCESSOR 

PURPOSE 

TYPEOO (TYOOGL) 
(SPNTYP) 

... for the computer programmer 

To convert the spindle speed to command form for a Type 0 
spindle 

INPUT 

CALL TYPEOO 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

The constant K is set to 10. If the number of rows in a range 
(number of speeds) exceeds 10, the constant K is set to 100. 

Calculate the spindle command SPNCOM by taking the range row 
ISPDRO, calculated in subroutine DSRROW, plus (specified 
range*K) minus 1, plus the incremental adder OPTAB(47). 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine SPTYPE 

Calls no subroutines 

RESTRICTIONS 

OPT AB ( 1 9) = 0 

6-271 



CIClNT Ill POSTPROCESSOR 

PURPOSE 

TYPE01 (TY01GL) 
(SPNTYP) 

... for the computer programmer 

To convert the spindle speed to command form for a Type 1 
spindle 

INPUT 

CALL TYPE01 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

Store the spindle speed command into SPNCOM. Call subroutine 
EIACOM to convert the speed to the command form. The command 
value is returned in SPNCOM. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine SPTYPE 

Calls subroutine EIACOM 

RESTRICTIONS 

0 PT AB ( 1 9) = 1 

6-272 



Cl&INT 111 POSTPROCESSOR 

PURPOSE 

TYPE02 (TY02GB) 
(SPNTYP) 

... for the computer programmer 

To convert the spindle speed to command form for a Type 2 
spindle 

INPUT 

CALL TYPE02 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

Initialize present range parameter IRNG and shift fork 
parameter FRKSHF to 1 and 0, respectively. If special 
shifting is required OPTAB(137) = +IREDUC where IREDUC becomes 
the shift row. If the requested speed row parameter ISPDRO is 
less than or equal to IREDUC or range parameter ISRNGE equal 
to 1, determine speed directly. If not, lower the speed to 
the shift row speed in the present range parameter IRNG upon 
initial entry. On subsequent entries if the range remains the 
same, IRNG = ISRNGE or if ISPDRO is less than or equal to 
IREDUC, shift directly. In all other cases a special shifting 
sequence is required such that a range shift is never made 
from a speed row higher than IREDUC, unless the speed is first 
lowered to the IREDUC speed and the new range speed is lower 
than the IREDUC speed in the new range. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine SPTYPE 

Calls subroutines GESCOM, DWELL 

RESTRICTIONS 

OPTAB(19) = 2 

6-273 





C(CHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TYPE03 (TY03GB) 
(SPNTYP) 

To convert the spindle speed to the command form for a Type 3 
spindle. 

INPUT 

CALL TYPE03 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

Initialize the old speed OLDSPD, old direction OLDIR, the 
range direction flag RANDIR to zero. Test to see if range and 
direction M codes are available (TABLEM(4,5,71)~ DMBITS), then 
set flag RANDIR = 1. If the spindle direction has not been 
specified (SPNDIR = 0), set to the optional direction given by 
option 34, and output a warning comment to this effect. If a 
stop is required for a range change (OPTAB(89) = 0), output an 
M code (TABLEM(6)), and a dwell and output a comment to this 
effect. If a range change or direction change has taken 
place, determine the proper M code and output. call 
subroutine DSRROW to find the row number and calculate the 
spindle command SPNCOM. Save the values for the M code and 
spindle command in the STATE vector for possible 
reinstatement. If the STOPON flag is set to 1, store the 
negative values for later output by subroutine RESTAT. If the 
machine has multiple feedrate ranges (OPTAB(18) = 0), output 
a dwell block. Save the spindle speed in OLDSPD. If RANDIR 
equals O, return. If not, set up to output TABLEM(4-5) for 
turning on the spindle in the specified direction. 

DIAGNOSTICS 

Comment: NO DIRECTION GIVEN IN FIRST SPINDLE STATEMENT 

Comment: WARNING-SPINDLE DIRECTION HAS CHANGED 

6-275 



ClClNT Ill POSTPROCESSOR 

TYPE03 (cont'd) 

REQUIREMENTS 

Called by subroutine SPTYPE 

... for the computer programmer 

Calls subroutines COMENT, STOREM, DWELL, DSRROW 

RESTRICTIONS 

OPrAB{19) = 3 

6-276 



ClCHT 111 POSTPROCESSOR 

PURPOSE 

TYPEO 4 (TY04GL) 
(SPNTYP) 

... for the computer programmer 

To convert the spindle speed to command form for a Type 4 
spindle 

INPUT 

CALL TYPE04 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

U~n entry, initialize the old speed OLDSPD and old direction 
OLDDIR to zero. Store the spindle speed in SPNCOM and call 
subroutine EIACOM to convert to the 3 digit magic code. If no 
direction was specified initially, select the direction from 
OPTAB(34) and output comment 11. If the direction has changed 
and a dwell is required for direction reversal (OPI'AB(89) = O, 
output a spindle stop M code TABLEM(6) and a dwell and output 
comment 12. Save the direction and range. Test to determine 
if special down shifting is required. If the range was not 
specified (CURNG = 0), assume range 1. 

Determine the speed to shift to SHFSPD. If the old speed 
OLDSPD is greater than the SHFSPD, call subroutine EIACOM to 
lower the spindle speed to the SHFSPD and output a dwell, if 
required. Determine the location of the range change M code 
and call subroutine STOREM to set it up. Call subroutine 
EIACOM with the programmed spindle speed SPNSPD to convert it 
to the command form SPNCOM. Save the M code' in STATE(3) and 
the spindle command in STATE(2) for possible reinstatement. 
If in the stop mode (STOPON = 1), store the minus value in the 
STATE vector. If the machine has multiple feedrate ranges 
(OPTAB(18} > 1), set up a dwell block by calling subroutine 
DWELL (54). Save the current spindle speed in OLDSPD and turn 
on the spindle (FLONSP = 1) after calling subroutine OUTPUT to 
store the block. 

6-277 



CltlNT Ill POSTPROCESSOR 

TYPE04 (cont• dl 

DIAGNOSTICS 

... for the computer programmer 

Comment: NO DIRECTION GIVEN IN FIRST SPINDLE STATEMENI' 

Comment: WARNING-SPINDLE DIRECTION HAS CHANGED. 

REQUIREMENTS 

Called by subroutine SPTYPE 

Calls subroutines EIACOM, DWELL, OUTPUT 

RESTRICTIONS 

OPTAB ( 19) = 4 

6-278 



POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TYPEOS (TYOSGM) 
(SPNTYP) 

To convert the spindle speed to command form for a Type 5 
spindle 

INPUT 

CALL TYPEOS 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

The requested spindle speed SPNSPD is 
Subroutine EIACOM is called to convert 
command value is returned in SPNCOM. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine SPTYPE 

Calls subroutine EIACOM 

RES'IRICTION 

OPTAB ( 1 9) = 5 

stored 
the 

in SPNCOM. 
speed to the 

6-279 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

TYPE08 (TY08GB) 
(SPNTYP) 

... for the computer programmer 

To convert the spindle speed to command form for a Type 8 
spindle 

INPU'I 

CALL TYPE08 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

The spindle command SPNCOM is calculated by adding the range 
row ISPDRO to the incremental adder OPTAB(47) minus 1. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine SPTYPE 

Calls no subroutines 

RESTRICTIONS 

0 PT AB ( 1 9) = 8 

6-280 



CltlNT 111 POSTPROCESSOR 

PURPOSE 

TYPE09 (TY09GB) 
(SPNTYP) 

... for the computer programmer 

To convert the spindle speed to command form for a Type 9 
spindle 

INPUT 

CALL TYPE09 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

The range of the spindle is determined by the tool number 
TOOL. If TOOL is less than 1 or greater than 12, return. If 
not, determine the range: 

range 1 =tools 3,6,9,12 

range 2 =tools 2,5,8,11 

range 3 = tools 1,4,7,10 

Calculate the spindle command SPNCOM by taking the spindle 
speed range row ISPDRO minus the number of speeds in the range 
NRORNG,* (range ISRNGE 1) plus the incremental adder 
OPTAB(47) minus 1. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine SPTYPE 

Calls no subroutines 

RESTRICTIONS 

OPTAB(19) = 9 

6-281 





CltlNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TYPE 10 {TY1 OGL) 
(SPNTYP) 

To convert the spindle speed to the command form for a Type 10 
spindle 

INPUT 

CALL SPNTYP 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

Initialize the old speed OLDSPD and the old direction OLDDIR 
to zero. If the spindle direction has not been specified 
(SPNDIR=O), set up the assumed direction from option 34 and 
issue a comment to this effect. Now test to see if the 
direction has changed (SPNDIR = OLDDIR) ; if changed, test 
OPTAB(89) to output a dwell and spindle stop {if required), 
and output a comment to this effect. Save the spindle 
direction and range in parameters ISPDIR and ICUR. Based upon 
the settings of ISRNGE, ICUR, OLDDIR, SPNDIR, and FLONSP, 
branch to the proper sequence. Test OPTAB{137) for a negative 
value which indicates a special shift requirement. If the 
range is not defined, force it into range 1. Determine the 
maximum shift speed SHFSPD. If the old speed OLDSPD is less 
than SHFSPD, no special shifting is required. If a special 
shift is required, set up parameters, and call subroutines 
EIACOM and DWELL to output this SHFSPD command value in the 
present range. Based upon the range and the direction 
requested, determine the M code and output it by calling 
subroutine STOREM. Now call subroutine EIACOM to output the 
command for the speed requested. Save the M code and the 
spindles command in the STATE vector for late reinstatement. 
If presently stopped (STOPON = 1), store the negative values. 
If the rrachine has multiple feedrate ranges (OPTAB(18) = 0), 
output a dwell block. save the spindle speed in OLDSPD and 
set the flag for a spindle off condition (FLONSP = 0), and 
return. 

6-283 



ClCHT Ill POSTPROCESSOR 

TYPE 10 (cont 1 d) 

DIAGNOSTICS 

... for the computer programmer 

comment: NO DIRECTION GIVEN IN FIRST SPINDLE STATEMEN.r 

comment: WARNING---SPINDLE DIRECTION HAS CHANGED. 

REQUIREMENTS 

called by subroutine SPI'YPE 

Calls subroutines COMENT, DWELL, STOREM, EIACOM 

RESTRICTIONS 

OP TAB ( 1 9) = 1 0 

6-284 



C(tHT Ill POSTPROCESSOR 

PURPOSE 

TYPE11 (TY11 GB) 
(SPNTYP) 

... for the computer programmer 

To convert the spindle speed to command form for a Type 11 
spindle 

INPUT 

CALL TYPE11 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

This spindle type is a single range, double table lookup form. 
The spindle speed table SRTAB. Calculate !TEMP by adding the 
number of speeds in a range NRORNG to the row containing the 
requested speed ISPDRO. Set SPNCOM equal to SRTAB(ITEMP). 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine SPTYPE 

Calls no subroutines 

RESTRICTIONS 

OPTAB ( 19) = 11 

6-285 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

TYPE 12 (TY12GM) 
(SPNTYP) 

... for the computer programmer 

To convert the spindle speed to command form for a Type 12 
spindle. 

INPUT 

CALL TYPE12 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

If the spindle speed SPNSPD is greater than 199, the SPNSPD is 
modulus 10. Initially, the previous spindle speed PRVSPN is 
set to SPNSPD. This SPNSPD is output as the spindle command 
SPNCOM. On Subsequent entries a dwell block is output if the 
change of speed crosses the 199 limit. If no dwell block is 
output, RETURN is set to o, but if a dwell block is output, 
RETURN is set to 1. 

DIAGNOSTICS 

None 

REQUIREMENTS 

called by subroutine SPTYPE 

calls subroutine DWELL 

RESTRICTIONS 

OPTAB(19) = 12 

6-286 



C(CHT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TYPE13 (TY13GM) 
(SPNTYP) 

To convert the spindle speed to the command form for a 
Type 13 spindle 

INPUT 

CALL TYPE13 

The input arrays ICLDAT and CLDATA and OPTAB are used. 

OUTPUT 

The spindle connnand is stored in the parameter SPNCOM. 

METHOD 

Initialize the old speed OLDSPD and the old direction OLDDIR 
to zero. Calculate the various index values: 

M = Index stored in SRTAB(180) where the number of 
speeds in range 1, head 1 is stored in SRTAB. 

N = Number of speeds in range 1, head 1, SRTAB(M) 

IK = Index where the multiplication FACTOR is stored 
in SRTAB. 

FACTOR = The multiplication factor for range and head, 
SRTAB (IK) 

M (later) = Index where the first speed in range 1, 
head 1 is located in SRTAB. 

N(later) = Index where the last speed in range 1, 
head 1 is located in SRTAB. 

6-287 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

TYPE 13 (cont'd) 

METHOD (cont'd) 

Compare the requested spindle speed SPNSPD with those 
available as a product of SRTAB(I)*FACTOR. If not exactly 
available, test option(90) to determine if the higher, lower, 
or closest value is to be used. Set SPNSPD to that value and 
call subroutine EIACOM to calculate the command value SPNCOM. 
If the spindle direction has not been specified; i.e., SPNDIR 
= o, set SPNDIR to the direction given by option(34), and 
output a warning command to this effect. If the direction has 
been specified, test to see if the direction has been changed. 
If a stop is required for a range change (OPTAB(89) = O), 
output an M code (TABLEM(6)) and a dwell, and output a warning 
comment to this effect. If a range change or direction change 
has taken place, determine the proper M code and output. Save 
the values for the M code and spindle command in the STATE 
vector for possible reinstatement. If the STOPON flag is set 
to 1, save the negative values for later output by subroutine 
RESTATE. If the machine has multiple feedrate ranges 
(OPTAB(18) ~ O), output a dwell block. Save the spindle speed 
in OLDSPD and return. 

DIAGNOSTICS 

Comment: NO DIRECTION .GIVEN IN FIRST SPINDLE STATEMENT 

Comment: WARNING-SPINDLE DIRECTION HAS CHANGED 

REQUIREMENTS 

Called by subroutine SPTYPE 

Calls subroutines EIACOM, COMENT, STOREM, DWELL, OUTPUT 

RESTRICTIONS 

OPTAB(19) = 13 

6-288 



C(CHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TYPE 14 (TY14GV) 
(SPNTYP) 

To convert the spindle speed to command fonn for a Type 14 
spindle 

INPUT 

CALL TYPE14 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The spindle command is stored in the parameter SPNCOM 

METHOD 

Initialize the previous range JRNG, previous mode IMODE, and 
the pseudo range IRNG to zero. Test to see if the range has 
changed, and if so, determine if that range falls in the same 
mode. Ranges 1 - 10 are mode 1, and ranges 11-20 are mode 2. 
If the mode has changed, output a TABLEM(72 or 74) for mode 1 
or 2, respectively. Determine the pseudo range IRNG, save the 
current actual range JRNG, and call subroutine GESCOM to 
determine the spindle command. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine SPTYPE 

Calls subroutines STOREM, GESCOM 

RESTRICTIONS 

OPTAB( 19) = 14 

6-289 



ClClNT Ill POSTPROCESSOR 

PURPOSE 

TYPE15 (TYPE15) 
(SPNTYP) 

... for the computer programmer 

To convert the spindle speed to the command form for a Type 15 
spindle 

INPUT 

CALL TYPE15 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

save the spindle direction in ISPDIR. Determine the M code 
based upon the range ISRNGE and ISPDIR. If the previous M 
code SAVEM is equal to the current M code VALUEM, set VAliJEM 
to bits to suppress the redundant M code. Based upon the 
range ISRNGE, determine the RATIO stored in SRTAB. Calculate 
the spindle command, truncate and test to see if the command 
is exactly available. If not, select the higher, lower or 
closest value based upon the OPTAB(90) setting. Determine the 
actual command spncdm, and recalculate the actual spindle 
speed based upon the command value. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine SPTYPE 

calls subroutine STOREM. 

RESTRICTIONS 

OPTAB ( 1 9) = 15 

6-290 



Cl&lNT 111 POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TYPE16 (TYPE16} 
(SPNTYP) 

To convert the spindle to the command form for a type 16 
spindle. 

INPUT 

CALL TYPE16 

The following COMMON parameters and arrays are used: 

DATACL, DMBITS, ISPDRO, ISRNGE, NRORNG, OPTAB, SPNDIR, SPNSPD, 
SRTAB, TABLEM, and VALUEM. 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

This spindle type is identical to type 3 except that the speed 
codes are not unit increasing. 

DIAGNOSTICS 

Comment: NO DIRECTION GIVEN IN FIRST SPINDLE STATEMENT 

Comment: WARNING-SPINDLE DIRECTION HAS CHANGED. 

REQUIREMENTS 

Called by subroutine SPTYPE 

Calls subroutines COMENT, STOREM, DWELL, DSRROW 

RESTRICTIONS 

OPTAB(19) = 16.0 

6-291 





ClCHT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TYPE17 (TYPE17) 
(SPNTYP) 

To convert the spindles speed to commend form for a type 17 
spindle. 

INPUT 

CALL TYPE17 

The COMMON arrays ICLDAT, DATACL, OPTAB, and SRTAB are used. 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

The spindle speed command, SPNCOM, is computed from the 
Formula: 

SPNCOM = 
x 1000 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine SPTYPE. 

RESTRICTIONS 

OPTAB(19) = 17.0 

6-293 





Ci&lNT 111 POSTPROCESSOR 

PURPOSE 

TYPE18 (TYPE1 8) 
SPNTYP 

... for the computer programmer 

To convert the spindle speed to command from for a Type 18 
spindle. 

INPUT 

CALL TYPE18 

The COMMON arrays ISPORQ, NRORNG, OPTAB, and SRTAB are used. 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

The postprocessor stores the number of speeds per range as 
given in option 8, starting with SRTAB(1) and changing by the 
percentage of change, SRTAB(2), and continuing for the number 
of ranges as given in option 7. If option 137 is set, special 
shifting will be done as for the Type 2 spindle. The spindle 
command is computed by subroutine GESCOM. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine SPTYPE 

Calls subroutines DWELL and GESCOM 

RESTRICTIONS 

OPTAB(19) = 18.0 

6-295 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

TYPE19 (TYPE19) 
SPNTYP 

To convert the spindle speed to the command form for a Type 19 
spindle. 

INPUT 

CALL TYPE19 

The following common parameters and arrays are used: ISRNGE, 
ISPDRO, OPTAB, SRTAB, TABLEG and TABLEM. 

OUTPUT 

The spindle command is stored in the parameter SPNCOM. 

METHOD 

Each time the spindle changes ranges, the postprocessor issues 
three command blocks. The first block is for a stop M code, 
the second block is a postprocessor comment which states: 

A SPINDLE SPEED CHANGE OCCURS AT THIS POINT 

and the third block is a non-motion block which carries the 
new spindle speed. 

DIAGNOSTICS 

Comment: A SPINDLE SPEED CHANGE OCCURS AT THIS POINT 

REQUIREMENTS 

Called by SPTYPE 

Calls STOREM and OUTPUT 

RESTRICTIONS 

OPTAB(19) = 19.0 

·6-296 



CfClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

UNLOAD (UNLDGP) 
(GEPOS) 

To output an unload M or G code 

INPUT 

CALL UNLOAD 

OUTPUT 

The proper M or G Code is output in a block by itself. 

METHOD 

Test OPTAB(133) to check for a special function and call 
subroutine MACSRT. If TLNOFF is not equal to FFRSTL, output 
Comment(40). If ~TABLEG(26) equals DMBITS, assume a TABLEM(33) 
is used to unload the tool. Set up a TABLEM(33), cycle off 
(DBFSEG(2) = TABLEG(1)0 block and call subroutine OUTPUT. Set 
the tool off (TLNOFF) and tool length on tool 2 (TLEN2) equal 
too, and return. If a G code is used set up a TABLEG(26), T 
code = (DBFSEG(13) = TOLLOD) block, code= -4 (separate G code 
block) and call subroutine OUTPUT. 

DIAGNOSTICS 

comment: ATTEMPTING TO UNLOAD TOOL IN WRONG MAGAZINE 
POCKET. 

REQUIREMENTS 

called by subroutine AUXLRY 

calls subroutines MACSRT, STOREM, OUTPUT 

RESTRICTIONS 

OPTAB(1) must equal 1 or 2 

TABLEM(33) or TABLEG(26) ¢ DMBITS 

6-297 



GlClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

WEFREW (WEFREW) 
(GEMON) 

To rewind and write an end-of-file on a file 

INPUT 

CALL WEFREW(TAPE,IND,IE) 

where; TAPE = file number. 

IND = error flag. 

IE = O to rewind and open for reading 

IE = 1 to rewind and open for writing 

OUTPUT 

The file is rewound and opened for reading or writing. 

METHOD 

This subroutine call the APT subroutines which writes end-of
files, rewinds files, and open files. The calling sequences 
and subroutine names will vary with the computer. 

DIAGNOSTICS 

The following unrecoverable errors are printed: 

6-298 

ERROR 7001: Error occurred when opening the file for 
reading. 

ERROR 7002: Error occurred when opening the file for 
writing. 



Cl&lNT 111 POSTPROCESSOR 

WEFREW (cont'd) 

REQUIREMENTS 

... for the computer programmer 

Called by subroutines ABSOPR, GMSTOR, REDTAP, GEBASE • 

Calls the APT subroutines which write end-of-files, rewind 
files, and open files 

RESTRICTIONS 

APT COMMON is used. 
dependent. 

The subroutines called are computer 

6-299 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

PURPOSE 

WELD (WELDG P) 
(GEPOS) 

To output the miscellaneous function codes for the designated 
welding operations 

INPUT 

CALL WELD 

The input arrays ICLDAT and CLDATA are used. 

OUTPUT 

The proper M code is made output in a command block. 

METHOD 

If weld is turned off (ICLDAT(4) = 72), turn off the weld flag 
(IGEFLG = 1), and return. If weld is turned on (ICLDAT(4) = 
71), turn on the weld flag (IGEFLG = O) and return. If TILT 
is specified (ICLDAT(4) = 24), either TABLEM(83) or (84) is 
output. If SHIFT is specified (ICLDAT(4) = 249), either 
TABLEM(88-92), (94) is output. If SCHEDL is specified 
(ICLDAT(4) = 250), either TABLEM(85), (86) is output. If 
FIXTUR is specified (ICLDAT (4) = 300), either TABLEM (66) (67) 
is output. If the code is outside this range of values, 
comment 22 is output. 

DIAGNOSTICS 

Comment: REQUESTED MISCELIANEOUS FUNCTION CODE IS 
THIS MACHINE. 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls no subroutines 

RESTRICTIONS 

OPTAB(1) must be positive 

6-300 

NOT ON 



Cl&lNT 111 POSTPROCESSOR 

PURPOSE 

XOFSET (XOFSET) 
(GEPOS) 

... for the computer programmer 

To output an X offset number in DBFSEG (17) in a cycle off 
block (G80). 

INPUT 

CALL XOFSET 

OUTPUT 

The X offset number is stored in DBFSEG~l7). 

METHOD 

Set up a cycle off block (DBFSEG(2) = TABLEG(1)) with the 
specified nwnber in DBFSEG(17). output the block as a Code = 
1 (Stop block) by calling subroutine OUTPUT. 

DIAGNOSTICS 

None 

REQUIREMENTS 

Called by subroutine AUXLRY 

Calls subroutine OUTPUT 

RESTRICTIONS 

OPI'AB(1) must equal 1 or 2. 

The use of this routine usually requires an H register for the 
offset value. 

6-301 



"-" 

ClClNT Ill POSTPROCESSOR ... for the computer programmer 

7.0 APPENDIX 

7.1 EIA "MAGIC 311 CONVERSION METHOD 

Some NC machine controls require the feedrate or spindle speed 
conunands to be in EIA a three digit code. The method of 
converting a number to this three digit code is given below.* 

The feed or speed is expressed as a three(3) digit number. The 
second and third digits of this coded number are the feed or 
speed rounded to two digit accuracy. The first digit of the 
coded number is a decimal multiplier and has a value three (3) 
greater than the number of digits to the left of the decimal 
point of the feed or speed. Where there are no digits of the 
feed or speed to the left of the decimal point, then the number 
of zeros immediately to the right of the decimal point is 
subtracted from three (3) to provide the value of the first 
digit. 
Example: 

Feed or Speed Coding 

1728 717 

150 615 

15.2 515 

7.82 478 

.153 315 

.0126 213 

.00875 188 

.000462 046 

(Note: The second digit can never be zero unless all digits 
are zero.) 

* Extracted in part from Electronic Industries Association 
Standards RS-274B Interchangeable Perforated Tape Variable 
Block Format for Contouring and Contouring/Positioning 
Numerically controlled Machines, May 1967. 

7-1 





'-"' 

ClClNT Ill POSTPROCESSOR ... for the computer programmer 

7.2 ERROR ACCUMULATION ANALYSIS 

The "true" value of a point on the cutter path, i.e., the 
computer value, is normally an eight digit number; these are the 
numbers used with the vectors DPREVP and DPRESP. Departures are 
computed from the truncated numbers, i.e., the "true" value 
truncated to the number of significant digits given by the 
minimum step size of the NC machine; these truncated points are 
the numbers used with the vectors DPREVM and DPRESM. The 
truncated value has its last digit rounded up if the digit 
adjacent to the last digit is greater than 4. 

Example; "True" value 
size = 0.0001. 
5.1236. 

= 5.1235678; NC machine minimum step 
Therefore, the truncated value is 

Let x be the x component value of the "true" machine point, and 
x"" the corresponding truncated value. Then, at point 1, x 1 = xl 
+ e 1 where e 1 is the amount lost in truncation. 

Similarly, x2 = x2 +e2, 

x3 = ... 
+e3, X3 

x = x ... +e . n n n 

Let 6 represent the computed departures; then 

61 = xl x2 6 ... = xl x2 1 

62 6 ... ... ... = x2 x3 = x2 - X3 
I I I t2 I I 
I I I 

I 
I I I I 
6 6 ... ... x = x - x = x n-1 -n-1 n-1 n n-1 n 

n n 

s L: 6k S ... = '$. 6"" ... ... = = x -x = x -x k=l 1 n k=l k 1 n 

7-3 



GlClNT Ill POSTPROCESSOR ... for the computer programmer 

7.2 ERROR ACCUMLATION ANALYSIS (cont'd) 

S and S,.. are each the resultant total cutter path. The difference 
between the two paths gives the total error of that axis, viz., 

E = s-s,,.. = (x -x ) - (x ,,.. -x ,,.. ) 
1 n 1 n 

= (x 1-xi ) - (xn-x~ ) 

From the above relation, it can be seen that if the cutter 
returns to the path beginning point, that the total accumulated 
error is zero since e and e will then have the same value. 

1 n 

The maximum accumulated error is when e = -e , or E = 2e But 
E is always less than or equal to the minimum step size of the NC 
machine. 

The error e per step is 

e = x - x, = x - [ ST~P + 0 . 5] * STEP = s~ EP • 

Therefore, E = 2e1 = STEP, at maximum for each axis. Hence, the 
maximum possible vector error is fT'* STEP = 0.00017 inches when 
STEP = 0.0001 inches. 

7-4 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

1.3 DEFINITIONS AND ABBREVIATIONS 

Definitions 

CL TAPE 

command 

modal 

one-shot 

speed code 

Abbreviations 

A/D 

AIA 

BCD 

DMBITS 

CL 

CCLW 

CLW 

EIA 

EOB 

EOF 

IPM 

The computer tape that the postprocessor reads in 
order to obtain the part program processed data 
produced by the APT system. 

The programmed coded symbols fed to the NC machine 
control which initiates the NC machine action 
indicated by the command. 

Retention of mode. When a function is modal, the 
mode established is retained by the postprocessor 
until the mode is changed or stopped. 

no retention of mode. Once the function is used, 
its influence ends. 

This is not a speed command; a speed code is code 
assigned one-to-one with the speeds of a spindle 
speed table. The speed code may or may not become 
part of the speed command. 

acceleration-deceleration sequence 

Aircraft Industry Association 

binary coded decimal 

Coded number = -40404040.0 

cutter location; CL data refers to the generated 
points produced by APT 

counterclockwise 

clock.wise 

Electronic Industry Association 

end- of-block 

end-of-file 

inches per minute 

7-5 



ClCINT Ill POSTPROCESSOR 

7.3 DEFINITIONS AND ABBREVIATIONS (cont'd) 

IPR 

RPM 

SFM 

7-6 

inches per revolution 

revolutions per minute 

surf ace feet per minute 

... for the computer programmer 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

7.4 DETERMINATION OF OPTIMUM LENGTH FOR A RAPID TRAVERSE MOVE 

For machines that require gear shifting to obtain rapid traverse, 
it may be more advantageous to remain in the feedrate range and 
travel at the highest feedrate in that range than to incur the 
delay inherent with a gear change. To evaluate the situation,the 
postprocessor computes from the following derivation. 

To traverse a path S, the time required is the time 
shift gears plus the time to traverse the distance 
rate. 

required to 
to traverse 

The dwell time to shift into and out of rapid traverse is 
by options 81 and 82 as, 

T = 081 + 082 
60 

minutes. 

given 

The time required to complete the path S at traverse rate is 
given by 

T = s 

om 
where om is the minimum value of the rapid traverse rates stored 
at option 42, 43, and 44. 

Therefore, the minimum time to traverse a path S is given by 

minutes. 

To cover the same distance without shifting into rapid traverse 
will require 

T = S 2 
0 39 

minutes, 

where 0
39 

is the maximum f eedrate which can be obtained and is 
taken from option 39. 

7-7 



CltlNT Ill POSTPROCESSOR ... for the computer programmer 

7.4 DETERMINATION OF OPTIMUM LENGTH FOR A RAPID TRAVERSE MOVE 
(cont'd) . 

By equating T
1 

and T
2 

and solving for s, we can find that minimum 

distance for which a shorter distance would take longer at rapid 
traverse than at maximum feedrate. Performingthe manipulation,we 
find 

0 81 + 0 82 
60 ) 

The above result is not affected by tape reader speed, but this 
must be considered also. There are two other conditions which 
may be more limiting. If the active block execution time is 
shorter than the tape reader time for the control to load the 
next block into buffer storage, the tool will dwell in the work. 
By equating the time it takes to read a maximum length block of 
tape (as given by option 13) with the time to traverse the path 
s, and the time to move S distance at maximum feedrate, we can 
determine two other potentially limiting path lengths. 

At maximum feedrate, the minimum distance for which the tape 
reader would not be limiting is 

At traverse rate, the minimum distance for which the tape reader 
would not be limiting is 

5
3 = [

0 13 -
0

s1 + 0 a2 J 0m 
( 60 ) 

Therefore, the minimum optimum length for a rapid traverse move 
(which is stored at option 37) is the largest value of s cs 1 , s 2 , 

or s 3). Since the values of s
1

, s 2 , and s
3 

will almost always be 

different, and since each is a minimum value for the case tested, 
the largest value of the three must be selected as the minimum 
value. 

7-8 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

7.5 GECENT III POSTPROCESSOR SUPPLEMENTARY CONDITIONS OF SALES 

The following terms and conditions supplement and amend the 
Standard Conditions of Sale of the Industrial Sales Division 
printed on the back of Quotation Form 13004 and published in 
Handbook Section 98; sale of GECENT Postprocessor and related 
programming services is expressly conditioned on acceptance of 
these supplementary terms and conditions. 

1. GECENT Postprocessor System 

The General Electric Company, hereinafter referred to as the 
Company, will supply the GECENT III Postprocessor System, 
which contains the following elements: 

a. source program, hereinafter called the program, consisting 
of a library of modular subroutines implementing the 
functions and features of an unlimited number of 
numerically controlled machines. It is supplied recorded 
on magnetic tape. 

b. Documentation in the form of both part and computer 
programmer's manuals. 

c. Machine subroutine, a computer subroutine which 
establishes the characteristics and selects from the 
postprocessor library those modules which are required to 
implement the tape controlled functions and features of 
the machine and control system as delineated in the terms 
of the contract. 

d. Supplementary notes and instructions, including subroutine 
listing, covering the particular machine referenced in the 
contract. 

Note: Items a. and b. are normally supplied only once to a 
user installation, since they can be used with many types 
to Mark Century equipped machines, and once installed, 
need not be a contract item on subsequent contracts. 

Items c. and d. are supplied for each new contract and 
become the property of the purchaser. · 

The GECENT III Postprocessor Program is coded almost entirely 
in FORTRAN IV. To improve computer operating efficiency, 
certain output features of the program are writtem in machine 
language. 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

1. GECENT POSTPROCESSOR SYSTEM (cont'd) 

The postprocessor program is designed to operate with the 
current version of APT III as released and maintained by the 
IIT Research Institute and in effect at date of contract 
unless specifically stated otherwise. 

Standard APT postprocessor vocabulary words will be used in 
all cases. Whenever new functions and/or methods require the 
creation of new words, such new words will follow the accepted 
rules for format and syntax of the APT system. These 
additions will be submitted to the APT Vocabulary Review 
committee for approval. Should further changes be required 
resulting from Committee action, these changes will be 
incorporated into the postprocessor. 

Purchaser may reserve the right to approve the choice of new 
words, but only if sucn right is specifically stated in the 
contract. 

GECENT postprocessor programs can be supplied for most large 
scale computers on which the APT computer system has been 
implemented. The exact computer configuration must be 
specified in the contract. 

Users of IBM 7090/94 computers 
postprocessor program through a 
provided for the purpose. 

2. Correction of Defects 

will use 
FORTRAN 

the 
II/IV 

GECENT III 
interface 

Every reasonable effort is made to provide an error free 
program. Should programming errors in the postprocessor be 
detected, the purchaser will forward to the postprocessor 
author a complete machine memory dump, subroutine memory map, 
a listing of the related machine subroutine, a card copy of 
the part program, and any other supporting information as may 
be pertinent to the solution of the problem. Corrections to 
the program will be made only at the author's base location. 
Inquiries and supporting documents should be directed to 
GECENT Postprocessor System, Mail Drop H-8, Building 305, 
General Electric Company, Cincinnati, Ohio , 45215, unless 
advised specifically to do otherwise. 

7-10 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

3. Postprocessor Acceptance Test 

The purchaser shall forward to the postprocessor author part 
programs which are to be used as the basis for accepting the 
postprocessor. These will be used in checking out the 
postprocessor prior to delivery to the purchaser. These part 
programs must be validated programs satisfactorily processed 
through Section III of APT and be free of part programming 
errors. They may contain up to a maximum of 500 CL data 
points. The conversion of the part programmer's instructions 
(the part program) by the postprocessor into a tape containing 
machine language instructions in correct form and format shall 
constitute acceptance of the postprocessor by the purchaser. 
Failure of the purchaser to furnish such programs in time for 
postprocessor checkout to be performed and still meet the 
scheduled delivery of the program shall void this requirement 
of acceptance of the postprocessor. 

4. Implementation of Postprocessor 

The General Electric company, in providing the GECENT III 
Postprocessor System, assumes that the user has implemented 
and is operating the current version of APT III as referenced 
in paragraph 3 above. The Company, in making available the 
standard GECENT program, cannot be held responsible for its 
satisfactory operation if it is modified by the user or 
implemented on other than the current version of APT, nor on 
special modifications of that program made by the user to suit 
his own particular needs and over which the Company has no 
control. 

The user has full responsipility 
post processor into his computer 
modifications which may be required. 

5. Warranty 

for assimilating 
system, including 

the 
any 

subject to the provisions of paragraph 6 below, General 
Electric Company warrants to the purchaser that the GECENT III 
Postprocessor System to be delivered hereunder will be of the 
kind and quality designated or described in the proposal. The 
foregoing warranty is exclusive of all other warranties, 
whether written, oral , or implied, including any warrany of 
fitness for purpose. If upon the basis of evidence submitted 
to the Company within 12 months from date of delivery by the 
company, or from completion of the machine installation with 
which the program is to be used, whichever occurs later, it is 
shown that the material, data, analyses, programs or services 

7-11 



CIClNT Ill POSTPROCESSOR ... for the computer programmer 

5. WARRANTY (cont'd) 

delivered or rendered hereunder do not meet this warranty and 
the purchaser so notifies· the Company, the Company shall 
thereupon correct any such defect or error in the 
postprocessor or, at its option, make available substitute 
material, data or programs. The foregoing shall constitute 
the sole remedy of the purchaser and the sole liability of the 
Company 

If services rendered by the Company are based on a program, 
data, or other material supplied by the purchaser, the 
Company's liability hereunder shall in no case exceed 30 
minutes of rerun time. In addition, it shall be the 
responsibility of the purchaser to include all necessary self
checking procedures in the program, data, or other material 
supplied to the Company. 

During the above stated 12 month warranty period, the Company 
reserves the right to retain copies of any information, data, 
or reports which the purchaser has furnished under. this 
agreement. Upon the expiration of said 12 month period, all 
such material, data, and reports will be disposed of as the 
purchaser may direct. 

6. Limitation of Liability 

Neither the General Electric Company nor any person acting on 
its behalf (a) makes any warranty or representation, express 
or implied, with respect to the accuracy, completeness, or 
usefulness of the information contained in the GECENT III 
Postprocessor System, or that the use of any information 
disclosed in the said system may not infringe privately owned 
rights; or (b) assumes any liabilities with respect to the use 
of, or for damages resulting from the use of any information 
disclosed in the GECENT III Postprocessor System. The 
Company's liability on any claim of any kind, whether in 
warranty, contract, negligence or otherwise, arising out of or 
connected with this contract, shall not exceed the price 
allocated to the material, data, programs or sources giving 
rise to the claim. In no event shall the Company be liable 
for special or consequential damages. 

7. Computer Techniques and Skills 

The Company shall not be restrained in its use of the 
techniques and skills of computer operation and programming 
acquired in the performance of any services rendered under 
this agreement. 

7-12 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

8. Disclosure of Information 

This order is accepted and delivery of the information and 
material sold hereunder is made with the express understanding 
and stipulation that no information transmitted by either 
party in connection with performance hereunder is to be 
regarded as secret or confidential, except as may be otherwise 
provided by agreement in writing signed by the authorized 
representatives of the parties. This provision is not 
intended to affect the rights of the parties under copyrights 
or patents now or hereafter issued under the laws of the 
United States or foreign countries. 

9. Material and Data Furnished by Purchaser 

Purchaser agrees that any punched cards, magnetic tapes, or 
other forms of input furnished by it to the Company in 
connection with the performance of this contract will be in 
good and usable condition. In addition, purchaser shall be 
responsible for the accuracy, correctness, and completeness of 
any material or data or programs furnished to the company for 
use in the development of a computer program or in the 
processing of data for the purchaser. 

The company shall not be responsible for the loss of or damage 
to any material and data furnished to it by the purchaser. In 
the event such occurs, the Company's obligations under this 
contract shall cease unless within 10 days after notice of 
such loss or damage, the purchaser furnishes the Company with 
duplicate sets of all material and data. Such material and 
data will remain the property of the purchaser and, except as 
otherwise provided herein, will be returned to the purchaser 
upon completion of the services to be performed hereunder. 

10.Title 

Title to and right to possession of, without legal process, 
the material, data, or programs delivered hereunder shall 
remain with the Company until all payments hereunder, 
including deferred payments, whether evidenced by notes or 
otherwise, shall have been made in cash, and the purchaser 
agrees to do all acts necessary to perfect and maintain such 
right and title in the company. It is the intention of the 
parties that the material , data or programs delivered 
hereunder shall remain personal property until all payments 
have been made in full. 

7-13 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

10. TITLE (cont'd)] 

When payment has been made in full, title to the machine 
subroutine protion of the postprocessor shall pass to the 
purchaser. Title to the GECENT III Postprocessor System, 
separate from the machine subroutine, remains with the Company 
and the Company grants to the user a nonexclusive, 
nontransferable license to make copies of the furnished GECENT 
III Postprocessor System for his own use, and not for 
distribution to others, in the numerical control of machines, 
provided such copies retain the General Electric copyright 
notice. 

7-14 



'-" 

ClClNT Ill POSTPROCESSOR ... for the computer programmer 

7.6 Electronic Industries Association Punched Paper Tape Code per 
RS-244A dated Jan 1967. 

FEED 
HOLES 

87654i321 

• • 
• • •••• •• 

TRA.CK MUMllll 

1 
2 
3 
4 

•••• 5 .... 6 .... 7 

I SUBSCRIPTS REHR TO TRACK HUMIERS 

•• 8 ... • 9 

• • 0 

•• • • a 

•• • • b ... . •• c .. •• d 

••• •• • • ...... f 

•• • ••• g 

•••• h ..... • ••• • i 
• • • • k 

• • •• I 

•••• m 

• ••• n 

• ... 0 ...... p .... q 

• •• • •• • • s 

• • • • t 

•• •• u 

• •• • v 

• ... w ...... x -· y 

• •• • % ...... . .... .. I 

••• • I 
•••• + 
• • .... & 

"' b1 
b6 

IRICTIOM D 
0 

<T 
FTA.PI 

OPVllW) 

'1· ''Jli~fJ' 
64 

l>J 
h.i 

' . + 
0 0 0 

0 0 0 

0 0 I 

0 0 I 

0 I 0 

0 I 0 
0 I I 

0 I I 

I 0 0 

I 0 0 

I 0 I 

I 0 I 

I I () 

I I 0 
I I I 

I I I 

0 0 0 
- 0 0 I 
- 0 I 0 

SEE fl .z. 3.1. 

t 
0 SPACE 0 -
I I / J 
0 2, s k 
I 3 'f I 
0 4 IJ, m 
I s V" YI 

0 6· IV 0 

I 7 x p 

0 8 y 'I 
I 9 % r 
0 BS 
I EOR , % 
0 

I 

0 & Tah 
I 

0 

I 

I 

+ 
Q, 

b 
c 

" e 
f 
g 

II 
i 

J..C 

• 
UC 

O•I . ... .. ,. "1" SIGMIPIU A HOU, "0" llGNlflU NO HOU 
_ ... Tab 

• • Car. ret. or End of Block 

-·-• Delete 
•• •• End of Record 

• • Space 
• •• • Back Space 
-·• Upper Ca1e 
-••• • LowerCase 

• Blank Tape 

Virgin Tape 

Code for Numerically 
Controlled Machines 
Perforated Tape 

I I I I 

0 0 I I 

0 I 0 I 

CR 
608 

7-15 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

7.7 ASCII Punched Paper Tape code per Electronic Industries 
Association RS-358 • 

FEED 
HOLES 

..--- Subscripts Refer To Track Numbers. 

bg -------------_-_ -------~==P=ar=it=y-_B __ it, See- Pa~gra~h-2-.2-.-l ------- ---- --- -~J 
b7 ------------ o ol o o I 1 I 1 I 1 I 1 ----+-----+---+---+--~!---+--~ I 

-----------... 0 0 I 110 1 0~1 I\ 
0 II 1 . 0 : l ·r--o-·1-1 -~ 

b5 0 I l - ~- !I I +~--~ l b4 [ I 

8 7 6 5 4 3 2 l TRACK NUMBER l b13 [:~'I b-!2-r-------+=tl --1-------+-11' --ti---+-, --+-i ---+---! 

r 

0 ~ --i----+---+---:- --1 
•• I ii ' : I ' . 1 ·: •• •• • l ~-.------+--+----t----t----+-,----11:---- I • 2 bl Column I 

2 I · i I 1 

• • • • 3 J Row J--.. 0 l 3 4 i 5 
1 

6 1 7 ~ 
1 : : : : • ~ 1--0..:.--+--o---+-o-+--o-+---;-n~:ank --- space I . J

1 

1 , 
1 

II • • • • • 6 --+-- pe 0 I p j___l_ _ _J 
• •• ·••• 7 O 0 0 l l I l 1 A ! Q' • I 

. ::: : . ~ 0 0 l 0 2 : 2 I B I G-=.~-~ 
• •I A 0 0 l l 3 I 3 c I s I • •• • : • ~ :=0====•=:1 ==0===0======4=====~-----+_-_-__ -_+-_-__ -_--1_.___-4---+-o-f rJ. ___ -___ -_}____ • 

~ ~:: ! (::~~:~) ~ ' : I : I ~ ; ; _ -~-- % ; ~:-r-:J=~~: • •• •• • • •• •• • 

: : • ~ 

1 

1--1--+--o-+---o-+--o-+-----B·-------+-- ss-- -- ( s H=+;:~---:-~ 
: : e : e ~ : ~ ~ ~ I~ :; __)__+ _2__~Kn 1 z --~=1 j 

• • . • • M l--l-+--0---+-l·-+-! -I --t--11 -- 4 I 

•• 

• : • : : : : • ~ : : ~ ~ t-:~ -~-·CR- - - _ ·- ~ i . i --·1 -
: : : : : ~ 1--:-1--:-+-:--I--~-- • - : ; e . =e - _ ::;. .. .~:f . .. --~ DE~ 
e • • • • T • • . • • u 
• • ••• v 

• • • • ••• w 
• • • • • x 
• • • • • y 

• ••• • z 
• • • • • • • • • DEL 
• • • BS 

• • • 
• 

• • • • • 

7-16 

• • • HT 
e • • I LF 

• • • • CR 

•• • • • • • • 

SPACE 
• % 

( 

• :I ~ 

"I" Signifies a Hole,' O" Signifies No Hole. 

Delete 
Back Space 
Horizontal Tab 
Line Feed 
Carriage Return 

Percent 
Opening Parenthesis 
Closing Parenthesis 
Plus 
Minus 
Slash 
Colon 

Ignored by Control 
Ignored by Control 

Used for End of Block 
Ignored by Control 
Ignored by Control 
Used for Rewind Stop 
Used for Control Out 
Used for Control In 

Used for Block Delete (Optional) 
Used for Reference Rewind Stop 

SUBSET OF USA STANDARD CODE FOR INFORMATION INTERCHANGE 
FOR NUMERICAL MACHINE CONTROL PERFORATED TAPE 



ClClNT 111 POSTPROCESSOR ... for the computer programmer 

7.8 ARC TANGENT DEFINITIONS 

The arc tangent function is used to evaluate the inverse 
trigonometric terms. 
Limiting conditions are defined as follows: 

When x=O, 

e = tan-1 Y. 
x 

8 = TI/2 if y is positive 
n/2 if y is negative; 

when both x and y =O, e = O. 

7-17 





CltlNT Ill POSTPROCESSOR ... for the computer programmer 

"' 7.9 GECENT III COMMON PARAMETER CROSS REFERENCE 

Conunon Name GE635, Univac1108 common Name IBM/360 
GE635, CDC6600 CDC6600 Parameters IBM/360 Parameters 
Univac1108 

GECOUT ABSVAL(20) 02 DABVAL 
GECBAS ADEP 02 DEPA 
GECBAS ANGLIN S2 ANGLIN 
GECOM AXMULT 81 AXMULT (34) 
GECOUT BCDIMG(20) S2 BCDIM3 
GECOUT BCDREG(20) S2 BCDREG(20) 
GECBAS BDEP 02 DEPB 
GECOM BITS 01 DMBITS 
GECOM BLANKS D1 DBLNKS 
GECBA8 BUFFER ( 6,2 0) 02 DBUFER (6, 6) 
GECBAS BUFSEG(20) 02 DBFSEG(34) 
GECBAS CIRDAT(3) D2 DATCIR(3) 
GECBAS CIRDIR 82 CIRDIR 
GECBAS CI RF LG S2 CIRFLG 
GECBAS CIRPT1 (3) 02 DCRPT1 (3) 
GECBAS CIRPT2 (3) 02 DCRPT2 (3) 
GECBAS CIRRAD S2 CIRRAD 
GECBAS CIRSEQ S2 CIRSEQ 
GECBAS CL ERP S2 CLERP 
GECBAS CODE S2 CODE 
GECBAS CRCODE S2 CRCODE 
GE CO UT CTRLIN S2 CTRLIN 
GECBAS CURCYG S2 CURCYG 
GECOM CURMAC S1 CURMAC 
GECBAS CURMOD S2 CURMOD 
GECBAS CUR NG S2 CURNGE 
GECBAS CURNTZ 82 CURNTZ 
GECOM CUST (5) S1 CUST(S) 
GECOUT CUTIME S2 TIMCUT 
GECBAS CUT RAD S2 CUT RAD 
GECBAS CUTTER S2 CUTTER 
GECBAS CYCFLG 52 CYCFLG 
GECBAS DECPLA S2 XYZDEC 
GECOM DEPLIM( 4) 81 RNGDEP(4) 
GECBAS DEPMAX S2 BIGDEP 
GECOM DEPN S1 FACDEP 
GECBAS DIMULT S2 GDIMUL 
GECBAS DIRFLG S2 FLGDIR 
GECBAS DIV 82 SDIV 
GECBAS OMS S2 BMS 
GECBAS DRAW S2 FLDRAW 
GECBAS DUMA( 10) 
GECOUT DUMO (10) 01 D10PEN( 10) 
GECOM DUM(30) 02 D20PEN(20) 
GECOUT OWTIME 82 TIMDWL 

GECBAS ENCODE 52 ENCODE 
~ GACBAS ENDFLG 82 ENDFLG 

7-19 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

7.9 GECENT III COMMON PARAMETER CROSS REFERENCE (cont Id) 

Conunon Name GE635, Univac1108 Common Name IBW360 
GE635, CDC6600 CDC6600 Par~eters IBM/360 Parameters 
Univac1108 

GECOM EPSLON 81 EPSLON 
GECOM ERROR S1 ERROR 
GECOM FCOMAX 81 FCOMAX 
GECBAS FD HOLD S2 FD HOLD 
GECOM FUI1RAV S1 FDTRAV 
GECBAS FEDIPM S2 FEDIPM 
GECBAS FEDRTR S2 FEDIPR 
GECBAS FFRSTL S2 PRSMAG 
GECBAS FIRST S2 FIRST 
GECOM FLM1 S1 FLM1 
GECOM FLZ S1 FLZ 
GECOM FL1 81 FL1 
GECOM FL2 81 FL2 
GECOM FL3 81 FL3 
GECOM FL4 S1 FL4 
GECOM FLS S1 FL5 
GECOM FL10 81 FL10 
GECOM FL100 81 FL100 
GECOM FL360 81 FL360 
GECBAS FLONKL 82 FLONKL 
GECBAS FLONSP S2 FLONSP 

"""' GECBAS FLRPON 82 FLRPON 
GECBAS FLSFON 
GECBAS FORK14 
GECBAS FORK18 
GECBAS FORK32 
GECBAS FORK33 
GECBAS FORK39 
GECOM FORMAT(20) S1 REGFOR(30) 
GECBAS FRAP ID 82 FRAP ID 
GECBAS FRK34B 
GECOM FRMAX S1 FRMAX 
GECOM FRMIN 81 FRMIN 
GECBAS FRMOD S2 FRMOD 
GECOM FRTAB (3 00) S1 FRTAB (3 00) 
GECBAS CRPLOD S2 CR PLOD 
GECBAS CRPSLC S2 CRPSLC 
GECOM HFAD3 (22, 3) 
GECOUT IBLANK 
GECBAS ICLMOD I2 IKLMOD 
GECBAS I CODE I2 I CODE 
GECBAS ICYTYP I2 ICYTYP 
GECOUT IDLINE I2 IDLINE 
GECBAS I DRAW I2 I DRAW 
GECBAS IDWLFL I2 IDWLFL 
GECBAS I FDR NG I2 IFDRNG ,.,,,, 

7-20 
• 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

~ 7.9 GECENT III COMMON PARAMETER CROSS REFERENCE {cont Id) 

Conunon Name GE635, Univac1108 common Name IBM/360 
GE635, CDC6600 CDC6600 Parameters IBM/360 Parameters 
Univac1108 

GECOM IGEFLG I1 IGEFLG 
GECBAS I HEAD 12 I HEAD 
GECOM IND FR 11 IND FR 
GECBAS IND IC 12 IND IC 
GECBAS INDPT1 12 INDPT1 
GECBAS INDPTS I2 INDPTS 
GECOM INI'1 11 INT1 
GECOM INT2 11 INT2 
GECOM INT3 11 INI'3 
GECOM INT4 I1 INT4 
GECOM INT5 11 INT5 
GECOM INT6· 11 INT6 
GECOM INT7 11 INT7 
GECBAS INTAP (20) 12 ICLDAT (20) 
GECOM INTZ I1 INTZ 
GECOUT I PAGE 12 I PAGE 
GECOUT IPGCTR 12 IPGCTR 
GECBAS I PITCH 12 IP ITCH 
GECBAS IPIANE 12 I PLANE 
GECBAS IRETN I2 IRE'TN 

~ GECBAS ISAFMD 12 ISAFMD 
GECBAS I SF MOD 12 ISFMOD 
GECOUT ISHUFL I2 ISHUFL 
GECOUT ISHVEC (6) 12 ISHVEC (6) 
GECOM ISORT (20) 
GECBAS ISPDRO 12 ISPDRO 
GECBAS ISPTYP 12 ISPTYP 
GECBAS ISRNGE 12 ISRNGE 
GE COM !TEMP (5) 11 ITEMP (5) 
GECBAS ITHTYP 12 ITHl'YP 
GECOUT IXSTOR I2 IXSTOR 
GECBAS KTR 12 KTR 
GECOUT LSTCOL I2 LSTCOL 
GECBAS LSTPLN 12 LSTPLN 
GECBAS MAFORK I2 MAFORK 
GECBAS MAXES 12 MAXES 
GECBAS MCHCON I2 MCHCON 
GECBAS MODPOS I2 MODPOS 
GECOM MULTHD 11 MULTHD 
GECOM NAME(6) S1 TAG(9) 
GECBAS NAXES 
GECBAS NCOM 12 NCOM 
GECOUT NFP (26) 12 NFP(26) 
GECOUT NIPA(20) 12 NIPA(20) 
GECOur NIP (26) 12 NIP (26) 
GE CO UT NP CHAR 12 NOC HAR 

'--' 

7-21 



ClClNT Ill POSTPROCESSOR ... for the computer programmer 

7.9 GECENT III COMMON PARAMETER CROSS REFERENCE {cont Id} 
_.,,,, 

Common Name GE635, Univac1108 Common Name IBM/360 
GE635, COC6600 CDC6600 Parameters IBM/360 Parameters 
Univac1108 

GECBAS NOP I2 NOP 
GECBAS NOPTS I2 NOPTS 
GECBAS NOSEG I2 NOSEG 
GECOUT NPR (26) I2 NPR(26) 
GECOUT NPTA(30) I2 NPTA(20) 
GECBAS NRNGES I2 NRNGES 
GECBAS NRORNG I2 NRORNG 
GECOM NSTEP 
GECBAS NWPR I2 NWPR 
GECBAS OFMACH 
GECBAS ONMACH 
GECOUT OPRVAL(20) S2 OPRVAL(20) 
GECOM OPTAB (250) S1 OPTAB (250) 
GECOUT ORGIN (5) S2 ORGIN (5) 
GECOM PART ID S1 PART ID 
GECOUT PART ( 11) 02 DPRTNO (6) 
GECBAS PL 02 DPATH 
GECOM PLBITS 02 DP BITS 
GF.CBAS POSMAG S2 POSMAG 
GECBAS PRESMP(6) 02 DPRESM (6) 
GECBAS PRESM (6) 
GECBAS PRESPT (6) 02 DPRESP(6) 
GECBAS PRESP (6) 
GE CO UT PREVF S2 PREVF 
GE CO UT PREVG S2 PREVG 
GECBAS PREm-1P(6) 02 DPREVM(6) 
GECBAS PREVM (6-) 
GE CB AS PREVPT (6) 02 DPREVP (6) 
GECBAS PREVP (6) 
GECOUT PREVS S2 PREVS 
GECBAS PREVTL S2 PREVTL 
GECOUT PREVX S2 PREVX 
GECOUT PR EVY S2 PR EVY 
GECBAS PRO GK 
GEC,BAS PT S2 PT 
GECBAS RADLIN S2 RADLIN 
GECBAS RAPFEO S2 RAPFEO 
GECBAS RAPFLG S2 RAPFLG 
GECBAS RAP LOW S2 RA PLOW 
GECBAS RAPRNG S2 RAPRNG 
GECOUT ROBLI0(75) S2 RDPART (75) 
GECOUT REELNO 
GECBAS RESErF 52 RE5ETF 
GECBA5 RETURN 52 RETURN 
GECOM RH5TEP S1 RHSTEP 

'\, ..., 
7-22 



CICINT Ill POSTPROCESSOR ... for the computer programmer 

7.9 GECENT III COMMON PARAMETER CROSS REFERENCE (cont'd) 

conunon Name GE635, Univac1108 common Name IBM/360 
GE635, CDC6600 CDC6600 Parameters IBM/360 Parameters 
Univac1108 

GECBAS RMS S2 RMS 
GE COM ROTFMN S1 ROTFMN 
GECOM ROTFMX 51 ROTFMX 
GECOM ROTMAX S1 ROTMAX 
GECOM ROT RAP 51 ROT RAP 
GECBA8 ROTYPE 52 ROTYPE 
GECBAS RPOINT S2 RPO INT 
GECBAS SADSFM 52 SADSFM 
GECBAS SAFLAG 52 SAFLAG 
GECBAS SAVEN S2 SAVEN 
GECBAS SEQ CTR 52 SEQCTR 
GECOUT SEQNEW 
GECBAS SFMAXI 52 SFMAXI 
GECBAS SFMAXR 52 SFMAXR 
GECBAS SFMCIR S2 SFMCIR 
GECBAS SFMDES 52 SFMDES 
GECBAS SFMFLG S2 SFMFLG 
GECBAS SFMLIM 
GECBAS SFMLOK 52 SFMLOK 

-.... GECBAS SFMRAD 52 SFMRAD 
GECBAS SFMRPM 52 SFMRPM 
GECBAS SFMSEN 
GECOUT SKPCOD 52 SKPCOD 
GECBAS SKPFLG 52 SKPFLG 
GECBA$ SKPLIN 52 SKPLIN 
GECBAS SLTOLN 52 SLTOLN 
GECBAS SPINON 52 SPINON 
GECBAS SPNCOM . 52 SPNCOM 
GECBAS SPNMAX 52 SPNMAX 
GECBAS 8PINMIN 52 SPNMIN 
GECBAS SPINSPD 52 SPNSPD 
GECOM 8RTAB (300) S1 SRTAB (300) 
GECBAS STATE(12) 52 STATE(12) 
GECOM STEP 51 STEP 
GECBAS 8TOPON 52 STOPON 
GACBAS SYSCON 52 SYSCON 

51 510PEN(20) 
52 S20PEN(30) 

GECOM TABLEG ( 12 0) 51 TABLEG(120) 

7-23: 



GlCHl Ill POSTPROCESSOR ... for the computer programmer 

7.9 GECENT III COMMON PARAMETER CROSS REFEREN c E 'cont I dl 

""" Conunon Name GE635, Univac1108 Common Name IBM/360 
GE635, CDC6600 COC6600 Parameters IBM/360 Parameters 
Univac1108 

GECOM TABLEM(200) S1 TABLEM(200) 
GECBAS TAPST0(246) 02 OATACL (246) 
GEC9M TEMP (10) 01 DTEMP (10) 
GECBAS THFLG S2 THFLAG 
GECBAS THLEAD S2 THLEAD 
GECBAS THMOOE S2 THMOOE 
GECBAS THRAT'E S2 THRATE 
GECBAS THROON S2 THROON 
GECBAS TLEAO . S2 TLEAD 
GECBAS TLEN2 S2 TLEN2 
GECBAS TLHFAD S2 TL HEAD 
GECBAS TLNOFF S2 TLNOFF 
GECOM TMAX S1 TMAX 
GECBAS TOLCON S2 TO LC ON 
GECBAS TOLOLN S2 TOLD IN 
GECOM TOLIN S1 TOLIN 
GECBAS TOLLOD S2 TOLLOO 
GECOM TOLOUT S1 TO LOUT 
GECBAS TO LS LC S2 TOLSLC 
GECBAS TOOL S2 TOOL 

"""' 
GECBAS TOO LON S2 TOOLON 
GECBAS TOOL EN S2 TOOL EN 
GECBAS TRANSL(3) 02 OTRANS (3) 
GECBAS TSTLIN S2 TSTLIN 
GECBAS TUROFF S2 TU ROFF 
GECBAS TURPOS S2 TURPOS 
GECBAS UP FLAG S2 UPFLAG 
GECBAS VALUEM S2 VALUEM 
GECOM WOROOS (20) S1 REGSTR(30) 
GECBAS XOEP 02 OEPX 
GECBAS YOEP D2 DEPY 
GECBAS ZDEP 02 DEPZ 

7-24 


	Cover
	Disclaimer
	Cover Letter
	Forward
	Table of Contents
	Introduction
	General Description
	Detailed Descriptions
	Control Element
	Input Element
	Auxiliary Element
	Motion Element
	Output Element
	Special Sequences
	Postprocessor Program Details
	Subroutine Description
	Appendix

