

SYSTEMS ENGINEERING HANDBOOK

SYSTEMS ENGINEERING BANDBOOK

TABLE OF CONTENTS

A1 System BOOT Words A1-1
Reference
Dedicated Video Memory Locations A) -2A1-3
Device Addresses \& Interrupt Level.s A1-4
Recovering Blown Disc Packs A1-5
EIA RS232-C Inteface Pin Assigments. A i-6
Modem Strapping Options A1-7
Datascope D601B A 1-9
SYNTECH Modem Options A 1-10
Communication Code Conversion Table A $1-11$
SNA Network Generation Procedures A1-15
Introduction A 1-15
ACF/VTAM - ACF/NCP Operands A1-17
ACF/VTAM - SYS $1 . V T A M L S T$ MODETAB A 1-21
CICS/VS Gen Considerations. A $1-22$
Job Entry System Gen Considerations A1-23
Sample SNA Gen Configurations A1-24
A2 Code Tables ASCII IV/70 Display Characters A2-1
Powers of 2 And 8 A2-2
ASCII Code Set For Line Printers A2-3
ASCII Code Set For Character Printers A2-4
EBCDIC Code Set A2-5
Card Reader Code Conversion. A2-6
ASCII - EBCDIC Conversion Table A2-7
EBCDIC - ASCII Conversion Table A2-8
COBOL and RPG Signed Numeric Fields. A2-9
7201 Keyboard, 2260 Typewriter Style A2-10
7204 Keyboard, 2260 Data Entry Style A2-11
7202/7242 Keyboard, DATA IV Keypunch Style A2-12
7203/7243 Keyboard-DATA IV/70Typewriter style..............A2-13
7225 Keyboard-NTP/100,150,250
(3270) Keypunch Style A2-14
7226 Keyboard-NTP/100, 150, 250 (3270) EBCDIC Typewriter Style A2-15
7227 Keyboard-NTP/100, 150, 250 (3270) ASCII Typewriter Style A2-16
7228 Keyboard-NTP/100, 150, 250, (3270) Data Entry Style A2-17
Codes Generated by 7200/20/40/01/02/42/04/07 A2-18
Codes Generated by 7225/75/26/46/27/40/51 A2-19
A3 JCL
Parameters
DOS Programs. A3-1
IDOS Programs . A3-7
DKOS Programs A3-14
$A B \quad$ COBOL Four-Phase COBOL Differences $A B-1$
If The Compiler Halts or Loops $\mathrm{AB}-2$
If The Object Program Halts or Loops $A B-2$
COBOL Reserved Words $A B-4$
COBOL Low Memory Allocation-48 AB-5
COBOL LOW Memory Allocation-81 $A B-6$
COBOL Keyboard User Table-Diagram AB-7
COBOL Keyboard User Table-Detail $A B-8$
JCL To LOADOV And Execute. AB-9
COBOL Program Origination Points AB- 10
File Control Block (FCB) Format. $A B-11$
FCB Word Detajl (Card Reader) $A B-12$
(Printer) AB- 13
(Mag Tape) $A B-14$
(SD File) $A B-15$
(DC File) $A B-16$
(DISAM File) $A B-17$
GENERAL $A B-18$
ISAM File Layout $A B-21$
DISAM File Structure AB-22
DISAM File layout $\mathrm{AB}-23$
DISAM Table AB-24
DISAM Table Detail AB-27
SD File Structure AB-28
Disc File Organization AB-29
LIBGEN Questions AB-30
AC DOS \rightarrow Firapply Usẹdinter Mempy Unger Ditits In MONITR $A C-1$
Allocation Table AC-3
Disc Directory $A C-3$
Sector Format of A Chained File AC-4
Structure of A Chained File AC-5
\$DISC Request Table. $A C-6$
\$IDISC Request Table AC-7
\$ITAPE Request Table AC-8
\$JTAPE Request Table AC-9
\$TPE Request Table $A C-10$
AD IDOS IDOS Notes AD-1
IDOS Disk Structure AD-2
Communications Region Format AD-3
IDOS Directory, Allocation Table, Boot AD-4
IDOS Directory Format AD-5
Sector Format of A Chained File AD-6
Error Bits In System Subroutines AD-7
-) Clearing a Printer Halt. AD-8
\$IDISC Request Table AD-9
\$JDISC Request Table AD- 10
AE 2260 Summary Of Command Key Functions AE-1
2260 Simulator Video Gaps AE-2
2260 Simulator Options AE-3
Placing The 2260 Simulator On The 8250 Diskette AE-4
Placing The 2260 Simulator On Punched Cards AE-5
2260 REMOTE Simulator-Hardware Configurations AE-6
F5 Diagnostic Key Display-Remote Version AE-7
Steps To Generate A Remote 2260 Simulator AE-8
Initialization Constants AE- 10
Source Code Alteration Method AE- 10
Absolute Load Module Alteration Method AE- 10
Octal Card Deck "Patch" Cards Ateration Method AE- 11
AF 2260 Local 2260 Local Simulator-Hardware Conrigurations AF-1
Steps To Generate A Local 2260 Simulator AF-2
2260 Local Simulator-Channel Debugging AF-4
Channel Apaptor Diagnostic Status Words. AF-6
F5 Diagnostic Key Display-Local Version. AF-7
AG 3270
SECTION I System Configuration
Terminal Support AG-2
Simulator Configuration Words AG-2
176 Configurator AG-3
Execution Time Reconfiguration AG-5
MINIGEN AG-6
Store and Forward AG-8
TBLEDT AG-9
SECTION II NTP/150
SB3270 Interface AG-10
Entry Codes AG-10
Detail Codes AG-11
NTP/150 Subroutines AG-13
SBRSET AG-14
Software Action Codes AG-15
SECTION III DEBUGGING
Escape Key Functions AG-16
Display of Attribute Characters. AG-17
Display of Line Control Characters AG-18
TRC327 Execution AG-19
TRC327 Output AG-20
Taking Memory Dumps. AG-22
DMP327 Execution AG-22
DMP327 Output AG-23
SECTION IV BISYNC and 3270 PROTOCOL
3270 Control Characters AG-27
Bisync Data Link Control AG-28
3270 Message Formats AG-29
Local and Remote Comand Codes AG-30
Write and Copy Control Characters AG-30
Buffer Control Orders. AG-31
Attribute Bytes. AG-31
Attention ID Byte AG-32
Remote Status/Sense Bytes. AG-33
Local Status and Sense Bytes AG-35
SECTION V COMMUNICATION CONTROLLERS
8436-2 Status and Control AG-36
7073 Status, Control, and IOID's AG-37
7074 Status and Contril (WIDGET) AG-39
SECTION VI MISCELLANEOUS TOPICS
Bypassing Communication Controller Halt AG-40
Adjustment of Dual Intensity. AG-40
Marketing Considerations AG-40
AH DATA IV Mastering Directory Sector AH-1
Version 1 Standard 4-Word Sector Header $\mathrm{AH}-2$
CONFIG Sector Layout AH-3
(aHO4) CONFIG Sector Notes AH-4
JOB Directory Sector Layout AH-5
Batch Directory Sector Layout AH-6
Data Sector Layout AH-8
FORMAT/VALUE Set Directory AH-9
FORMAT Code Sector Layout AH-10
Value Set Sector Layout AH-11
Overlay Sector Layout AH- 12
Directory of In-Ram Format Pages AH-13
Disc Space Allocation Calculation AH- 14
RAM Layout AH-15
IN-RAM Job Directory AH-16
IN-RAM Format/Val ve Set Directory AH- 17
User Table Layout AH-18
User Table Footnotes AH-19
Dumping Ram to Disc or Tape AH-20
Frequent Questions About CONFIG AH-2 1
(AHO4)
AI DATA IV/70 Memory Layout. AI- 1
Version $2 / 3$ Active Job Directory In RAM (JOBRAM) AI-2
Active Format/Value Set Directory In RAM (FVSRAM) AI-3
Page Directory In RAM (PAGDIR) AI-4
Index Set Directory In RAM (IXRRAM) AI-5
User Table Skeleton Definitions AI-6
User Table Flag Words AI-8
Disc Sector Pool and Request Queus AI - 10
Zone Pointer Table AI-11
Overlay Directory. AI-11
Submonitor Control Blocks AI- 12
Zone Layout AI-13
Disc Layout. AI- 13
Sector Structure AI- 14
Allocation Sector AI- 16
Maintenance (IOD) Sector AI- 17
Master Sector AI-18
CONFIG Sector AI- 19
Keys Sector AI-22
Job Directory AI-23
Batch Directory AI-24
Batch Directory Flags AI-25
Batch Index AI-26
Data Sectors AI-27
Format/Value Set Directory AI-28
Format Object Code Sector AI-29
Value Set Sector AI-29
Index Set Organization AI-30
Index Sets AI-31
Overlay Object Code AI-32
overlays AI-33
Writing Overlays AI-34
Writing Transfer Programs AI-34
DEBUG Screen AI-35
DYNAMO Operation AI-36
Dump Procedure AI-37
Performance Monitor AI-40
SYSGEN Utility Programs AI-41
Memory Layout AI-43
User Table Skeleton Definitions AI-44
Overlay Directory AI-47
Overlay Request Queus AI-48
Master Sector AI-49
CONFIG Sector AI-50
Writing Overlays AI-54
Writing Transfer Programs AI-55
DEBUG. AI-56
DYNAMO AI-57
Dump Procedure AI-60
Single Words In Ram AI-61
AJ RPG Conventional Definition and Use if Indicators AJ-1
(AJ06) Matching Record Algorithm for Ascending Files. AJ-2
AM LAM
Status Block Information And Meaning AM-1
Format of LaM Common Area AM-2
Error Status. AM-2
(AM08)
Summary of Source Files AM-3
SYSGEN Configuration Word AM-6
Printer Carriage Controls AM-7
Line Trace Format AM-8
AN RBS Non-Spool RBS Operator Console Display AN-1
RBS Keyboard Operations AN-3
(ANO5) Function Keys. AN-3
Operator Commands. AN-5
AP DKOS Create An Operational Diskette AP-1
Bypassing The Auto-Boot Sequence AP-1
(BJO3) Taking A Checkpoint AP-2
Reloading After A Checkpoint AP-2
DKOS System Dump. AP-2
Diskette Track Format AP-3
\$DSKT Request Table. AP-4
AQ RBS-Spooling RBS Spooling Operator Console Display AQ-1
VCQ Display. AQ-2
RBS Spooling Keyboard Operations AQ-3
RaM Dumps $A Q-4$
Unattended Mode AQ-4
Transfer Statements. AQ-5
Parameter Definitions AQ-6
Syntax Errors. AQ-7
RBS Disc Files-Formats AQ-8
RBS Disc Files-Flag Byte AQ-8
AR RSU Remote Software Update AR-1
Screen Display AR-2
(BJO3) Keyboard Mode AR-2
Control Files. AR-2
AS NP/80 Support Generate An 8265 Disc Pack Using An 8231 Disc Pack for Releases Prior to 14 AS-1
Generate An 8265 Disc Pack Using An 8131 Disc Pack for Release A4 and up AS-2
Generate an 8265 Disc Pack Using An NPDTUX Tape for Releases prior to 14 AS-2
Generate An 8265 Disc Pack Uding AN NPDTUX Tape for Release A4 and up AS-3
Items To Be Aware AS-4
Upgrading A 8265 Disc Pack To A More Current Release (Using An 8231 Disc Pack) AS-4
Upgrading An 8265 Disc Pack To A More Current
Release (Using An NPDTUX Tape AS-4
Backing Up An 8265 Disc Pack Onto NPDTUX Tapes. AS-5
AT MLAM HASP Message Block Format AT-1
Record Control Byte AT-2
Sub Record Control Byte AT-2
String Control Byte AT-3
END-OF-JOB Sequence AT-3
MLAM Line Control Block AT-4
MLAM Status Word AT-4
MLAM Status Table AT-5
AV Starter STRSAM AV-1
Adding EDIT Rule Tables AV-4
Starter Utility Program-STRUTL AV-5
AY ForeWord System Memory Organization AY-
User Table Definitions AY-2
System Disc Organization AY-5
Text Area Organization AY-6
Allocation Sector AY-6
Text Area Directories. AY-6
Data Sectors AY-7
Creating Password Text Areas AY-8
System Text Area - WRDFIL AY-8
Plag Byte Description AY-9
System Naming Conventions AY-10
Conriguration File AY-11
Terminal Parameters AY-12
Communication Patameters $A Y-13$
TBLIDC Utility $A Y-14$
Processor JCL AY-18
Taking/Printing a Dump AY-20
AY06 System Memory Organization - AY06. AY-22
Physical Memory Requirements - AY06 AY-23
User Table Definitions - AY06 AY-24
Allocation Sector - AYO6 AY-31
Data Sectors - AYO6 AY-32
Flag Byte Description - AY06. AY-35
File Naming Conventions - AYO6 AY-36
CHKTXT - AYO6 AY-37
Taking a Dump - AY06 AY-39
ForeWord Formatted Dump - AY06 AY-40

Prem	BA VISION	Memory Layout. BA-1
*sal		Memory Layout for Extended Memory Systems............. BA-2
	(BA03/04)	Active Job Directory in Ram (JOBRAM)................ BA-3
		Active Format/Value Set Directory in RAM (FVSRAM).... BA-4
		Page Directory in RAM (PAGDIR)........................ BA-5
		Index Set Directory In RAM (IXRRAM) BA-6
		User Table Skeleton Definitions....................... BA-7
		User Table Data Structures............................. . BA-9
		Zone Pointer Table...................................... . BA-12 $^{\text {. }}$
		Zone Layout. BA-13
\cdots		Sector Structure. BA-14
		Allocation Sector.. ${ }^{\text {. }}$ BA-15
Sous		Master Sector. BA-16
		CONFIG Sector.. . $_{\text {BA-17 }}$
		Job Directory. BA-20
		Batch Directory.. . BA-21 $^{\text {a }}$
		Data Sectors... . BA-23
		Maintenance Sector (OID)............................... BA-2 ${ }^{\text {a }}$
		Format/Value Set Directory............................... BA-25
		Format Object Code Sector.............................. BA-27
		Value Set Sector.. BA-28
		Index Set Orginization. BA-29
		Index Sets.... BA-30
		Index Sector. ${ }^{\text {BA-30 }}$
		File Access Data Structures (on Disc)................. BA-31
		File Access Tabel............................. BA-34
		Sequential Disc................................... BA-35
		Index Sets.. ${ }^{\text {BA-35 }}$
		Printers.............. BA-35
		Forms Control Block. BA-36
	.	
		Magnetic Tape. BA-36
		Magnetic Tape Control Block....................... . BA-37
		Disc Sector Pool and Request Queue.................. BA-38
		Overlay Object Code....................................... BA-40
		Overlays.................... BA-4
		Level 8 Processing. BA-42
pertas		Dump Procedure.. . BA-43
		DYNAMO Operation.. BA-44
4ns		Performance Monitor...................................... . BA-47
		3270 Attributes as Displayed on Viden................. BA-49
		Single Words in RaM...................................... BA-50
RELEASE BAOL DETALLS		
		Memory Layout . M $^{\text {c............................... BA-53 }}$
		User Table Skeleton Definitions....................... BA-54
+as		
		Data Sectors. BA-61
coum		Overlays.... BA-62
		Dump Procedure . BA-63
		DEBUG... вA-64
		DYNAMO. BA-65
		Single Words in RAM. BA-67

BD PROGRAMMER Configuring Communications BD- 1
WORKSTATION Create or Modify Operator Ids File BD-4(PHS)
Defining PWS File Types BD-5
Directory List Utility BD-6
Log Report Utility BD-7
PWS Log Message Organization BD-9
Communications Line Trace BD- 10
Calculating Memory Requirements $B D-11$
Formatted Dump Printing Facility BD- 12
PWS Memory Load Layout BD- 13
Task Control Block BD-15
Word Expansions BD- 17
File Control Block BD-20
Directory Control Block BD-22
Comunications Control Block Table BD-23
MLAM Line Control Block BD-25
LAM Line Control Block BD-26
Printer Control Block BD-27
Card Reader Control Block BD-28
Virtual Printer Control Block BD-28
Directory Sector Format BD-29
Header Sector Format BD-30
Data Sector Format BD-31
PWS Chained File Format BD-32
PWS Data Sector Format BD-33
Component List BD-34
BE COBOL 74 Syntax Summary BE- 1
Reserved Words BE-1
Notes BE-3
COBOL Language Formats BE-4
Identification Division BE-4
Environment Division BE-4
Data Division BE-6
Procedure Division BE-7
Changes - AB to BE BE-13
Compiler TEMP Files BE-19
Error File Format BE-20
PASCAL Error Messages BE-20
Compiler Table Sizes BE-2 1
BF LAM/8437 LAM Internal Errors (\$LOGIC)
$\mathrm{BF}-1$
$\mathrm{BF}-1$
LAM Status Indicators $\mathrm{Bf}-1$
Request Table Format $\mathrm{BF}-3$
LAM SYSGN. BF-5
LAM 8437 Dump Analyzer BF-6
LAM Calling Sequences BF-6
Application of Fixes BF-7
BG MLAM/8437 HASP Workstation (Model 20) Protocol Notes. BG-1
External Interface Codes BG-1
Request Table Format BG-2
MLAM Translation Tables BG-4
BK $3270 /$ SDLC CFG 327. BK-1
Debug Facilities BK-3
Escape Key Functions BK-3
TRC 327 BK-4
SDLC an SNA Protocol BK-8
SNA Terminology BK-8
SDLC Line Transmissions BK-9
DTCOMM Utility BK-13
Cross Reference Table to AG 3270 Simulator BK-14
BN MFE Fixed Locations Within MFE $\mathrm{BN}-1$
Program Load Table $\mathrm{BN}-1$
Partition Control Block $\mathrm{BN}-2$
MFE Dump Considerations BN-5
Task Control Block. BN-6
System Maintenance Services. $\mathrm{BN}-7$
Interrupt Control Block $\mathrm{BN}-7$
BP CU3270/8437 A32ERR Error Codes BP-1
C32xxx Routine Error Codes BP-1
CU3270 8437 Dump Analyzer BP-1
Requests from IVxx/Completions from 8437 $\mathrm{BP}-2$
Requests from $8437 /$ Completions from IVxx BP-3
CU3270 Timers BP-4
3271 SDLC BP-5
BR COMM \$XFER BR-1
SERVICES ELOG. BR-1
BS COMM DTCOMM, DTCOMF, COMDMP BS-1
UTILITIES TRACE, COMTRA BS-2
BQ $N P / 80$ NP/80 Disk Drive Characteristics BQ-1
NP/80 Disk Sector Usage. BQ-1
Volume Header Sector BQ-2
NP/80 Console Switch Settings BQ-3
NP/80 Memory Layout BQ-4
IVxx Cutword, NP/80 Hang Register Contents BQ-5
NPOS Class Codes. $B Q-5$
ALMFMD Section names BQ-6
NP/80 Coded Halts BQ-7
BV 3270 Configurator BV-1
SIMULATOR MINGEN BV-2 BV-2
JCL for Simulator Utilities BV-2
Debug Routines BV-3

BOeT HORDS

Model
8230
$8001 / 8003$
8240
8250
$8260 / 8280 / 8290$
8270

$8511 / 8512$
$8513 / 8504$
8507
$7071 / 7072$
$8001-5 / 8003-5$

Description	Beot Hord
Disc cartridge	37705121
Card reader	37705101
50MB disc	37705201
Diskette	37707175
NP/80 dises	37705165
10MB disc	37705121 (drive 0)
	37705125 (drive 1)
	37705131 (drive 2)
	37705135 (drive 3)
	37705221
9-Track/800 BPI	37705241
9-Track/1600 BPI	37705261
7-Track	
2260 Channel adapter	37704641
Buffered Card Reader	37703115

Clearing Memory to a Constant

1. AUTO to MANUAL
2. SYSTEM RESET
3. STEP
4. LOAD constant into RA
5. LOAD 45700000 into TIR
6. NORMAL to REPEAT
7. STEP
8. REPEAT to NORMAL

Booting a 7001 System (with no BOOT)

1. AUTO to MANUAL, RESET then STEP
2. LOAD boot word into X1
3. LOAD boot word into TIR
4. MANUAL to aUTO

I/O Seleet (CUT) Word

Channel	C Address
0	0000
1	0400
2	1000
3	1400
4	2200
5	2400
6	3000
7	3400

Type	T Address
Data Out	0000
Data In	0001
Control	0002
Status	0003

Unit	U Address	Unit	U Address
00	0000	040	0200
01	0004	041	0204
02	0010	042	0210
03	0014	043	0214
04	0020	044	0220
05	0024	045	0224
06	0030	046	0230
07	0034	047	0234
010	0040	050	0240
011	0044	051	0244
012	0050	052	0250
013	0054	053	0254
014	0060	054	0260
015	0064	055	0264
016	0070	056	0270
017	0074	057	0274
020	0100	060	0300
021	0104	061	0304
022	0110	062	0310
023	0114	063	0314
024	0120	064	0320
025	0124	065	0324
026	0130	066	0330
027	0134	067	0334
030	0140	070	0340
031	0144	071	0344
032	0150	072	0350
033	0154	073	0354
034	0160	074	0360
035	0164	075	0364
036	0170	076	0370
037	0174	077	0374

Dedicated Memory Locations

Table 3-4. Dedicated Memory Locations

Channel Number	Unit Number (Octal)	Select Word ${ }^{\text { }}$ (Octal)	Device Description
0	-	-	Reserved for real-time clock: an INR instruction is placed in memory location 0 and a 60 Hz clock is tied to the INT 0 line on Interface Card 1.
${ }_{1}{ }^{+}$	33	0554	Synchronous Data Set (8435-8436).
1	35	0564	Asynchronous Data Set (8411) or other interactive device.
1	50^{\ddagger}	0640	360/370 Channel Adapter (7071,7072 Series); initial interrupt.
1	$51^{\text {米 }}$	0644	360/370 Channel Adapter (7071;7072 Series): continue interrupt.
1	$52^{\text {\# }}$	0650	360/370 Channel Adapter (7071/7072 Series): end interrupt.
1	53^{\ddagger}	0654	360:370 Channel Adapter (7071/7072 Series): data in/out.
1	54 *	0660	360/370 Channel Adapter (7073 Series): initial interrupt.
1	55^{\ddagger}	0664	360/370 Channel Adapter (7073 Series): continue interrupt.
1	56^{\ddagger}	0670	360/370 Channel Adapter (7073 Series): end interrupt.
1	57 \#	0674	360/370 Channel Adapter (7073 Series); data in/out.
2^{\dagger}	20^{\ddagger}	1100	Card Reader. Unbuffered (8001/8003): character ready.
2	$22^{\text {\# }}$	1100	Card Reader, Unbuffered (8001/8003); end of card.
2	24	1120	Disc 0 (8231).
2	25	1124	Disc 1 (8231).
2	26	1130	Disc 2 (8231).
2	27	1134	Disc 3 (8231).
2	34	1160	NP:80 (Sub Unit 0)
2	35	1164	NP '80 (Sub Unit 1)
2	36	1170	NP. 80 (Sub Unit 2)
2	37	1174	NP'80 (Sub Unit 3) .
2	40	1200	Disc 0 (8241).
2	41	1204	Disc 1 (8241).
2	42	1210	Disc 2 (8241).
2	43	1214	Disc 3 (8241).
2	44	1220	Mag Tape 0 select ($8511 / 8512$); data interrupt for selected drive.
2	45	1224	Mag Tape 1 select ($8511 ; 8512$); status interrupt for selected drive.
2	46	1230	Mag Tape 2 select ($8511 / 8512$).
2	47	1234	Mag Tape 3 select (8511 8512).
2	50	1240	Mag Tape 0 select (8513/8504); data interrupt for selected drive.
2	51	1244	Mag Tape 1 select (8513): status interrupt for selected drive.
2	52	1250	Mag Tape 2 select (8513).
2	53	1254	Mag Tape 3 select (8513).
2	54	1260	Mag Tape 0 select (8507): data interrupt for drive 0.
2	55	1264	Mag Tape 0 status interrupt (8507).
3^{\dagger}	0.37	1400-1574	Keyboard Units (7200 Series) 0 through 37_{n}, data ready, no error.
3	40.77	1600-1774	Keyboard Units 0 through $37{ }_{\text {N }}$, data ready. character lost.

Recovering Blom Dise Packs

Bad CRC

One of the most common malfunctions of the disc systems is writing data with bad CRC characters. Since most software does not do a read after write check, the error is not discovered until the sector is read, causing programs to halt or go into an error condition because of the CRC check bit in the status word. It is possible to correct this condition but care must be taken to ensure that the data is actually correct.

8230 disc- execute COPYO1 with the bad pack on drive 0 and a scratch pack on drive 1. When the message "INPUT PACK IS BAD" occurs (you will want to note the sector address), just clear the halt. If the cause of the error is a bad CRC, then the data in memory (which may be good) will be written to the output pack with a good CRC. Check sector against directory dump and replace any affected files.

8260 disc- execute COPY 60 with the printer on. If CRC errors on the input pack are encountered, the cylinder, track and sector number of each error will be printed. COPY60 will copy the entire pack as best it can, then display/print an unsuccessful completion message. The bad cylinder, track and sector numbers can then be converted to octal sector numbers and checked against a directory dump to determine which files were affected. The documentation for NPFMTX describes the calculations needed.

Rewriting Headers

The processors FMTX and NPFMTX can be used to write and verify headers for every sector on a disc that contains data. As it is possible (though not likely) to destroy data while restoring headers, this is considered a last resort.

CRTDMP

When the octal sector number of a bad sector is known, you can read the sector to the screen using CRTDMP, note the error status, and rewrite the sector to disk. CRTDMP will read the data as best it can, and write what it found back with a good CRC word. Since the rewritten sector may have changed from what it was before, you must check it against a directory dump, and if the sector was in a file, replace the file.

PIN	CCITT		DESCRIPTION
NUMBER	CKT	EQUIV	
1	AA	101	Protective ground
2	BA	103	Transmitted Data
3	BB	104	Received Data
4	CA	105	Request to Send (RTS)
5	CB	106	Clear to Send (CTS)
6	CC	107	Data Set Ready (DSR)
7	AB	102	Signal Ground
8	CF	109	Rev. Line Sig. Det.
9	-	-	Feserved for Data Set Testing
10	-	-	Reserved for Data Set Testing
11	Screr	-	Unassigned
12	SCF	122	Sec. Revd. Line Sig. Det.
13	SCB	121	Sec. Clear to Send
14	SBA	118	Sec. Trans. Data
15	DB	114	Trans. Clock (DCE source)
16	SBB	119	Sec. Rev. Data
17	DD	115	Sec. Clock (DCE source)
18	-	-	Unassigned
19	SCA	120	Sec. Request to Send
20	CD	108.2	Data Term. Ready (DTR)
21	SG	110	Signal Quality Det.
22	CE	125	Ring Indicator
23	$\mathrm{CH} / \mathrm{CI}$	111/112	Data Signal Sel.
24	DA	113	Trans. Clock
25	-	-	Unassigned

RS-232 LEADS

RTS (RS) - Request to send, issued from Data Terminal. Modem should respond with CTS after a fixed delay period.

CTS (CS) - Clear to send, issued from Modem in response to RTS after a fixed delay period (delay may be zero). CTS may be constantly high if strapped for constant carrier.

TD - Transmit Data, issued from Data Terminal. TD will contain one binary bit of transmit data for each clock pulse of TT.

RD - Receive Data, issued from Modem. RD will contain one binary bit of received Data for each clock pulse of RT.

TT - Transmit Timing, issued from Modem. TT provides clocking for the Data Terminal. For each pulse of TT the Data terminal must gate a transmit data bit on the TD lead. Four-Phase requires Modem be strapped for internal clock.

RT - Receive timing, issued from Modem. RT provides clocking for the Data terminal. For each puise of RT, the Modem will gate a transmit data bit on the RD lead. Requires Modem be strapped for 'internal clock'.

CO

- Carrier On, issued from Modem when carrier is detected from the Remote Modem. Also called 'Carrier Detect-CD'

DTR - Data Terminal Ready, issued from Data Terminal. Not used in leased lines. For switched lines indicates terminal is ready to establish connection and, for auto-answer in response to RI, indicates terminal requests incoming call be anskered. Modem should respond with DSR.

DSR - Data Set Ready, issued from Modem to indicate commications connection established. Should always be high for leased lines or manual-answer. For auto-answer, issued in response to DTR after the call has been answered and connection established.

- Ring Indicator, issued from Modem when phone is ringing.

DSS - Data Signal Select, also known as 'Rate Select,' issued from the Data Terminal to indicate which of two modem speeds to use on a dual speed modem. Note that most modems with both an internal rate select (RS232) and an external rate select switch (eg. 2400/4800), will consider the internal selection as overriding the manual switch.

MODEM STRAPPING QPTIONS

201 C or equivalent modem on 2 wire line.
Required Options for Four-Phase Operation

New Sync not used
Option
YA
Transmit Timing Internal
YC
Ring Indication EIA term 22
YG
Grounding option YK

```
Auto Answer
    either will work
    YE (could also
                                    be YF)
```

One of the following must be selected:
2 - wire switched network XD
or
2 - wire non-switched network XE
Also the following will depend on installation.
Transmit level (as determined by phone company)
Line impedance (as determined by phone company)
Compromise Equalizer - could be in 00 out
Carrier on sensitivity - depends on line
Use with 828 DAS - normally no (unless the 828 interface
is asked for by customer)
For 4 wire use the only change that need be made is instead of options XD or XE one of the following must be specified:

Switched carrier - with 7 ms Delay $X A$ option or Continuous carrier - with 7 ms Delay XB option. **: XC option.
Note that carrier or sensitivity will be affected by type of Iine.

```
** XC option - Do not select the XC option, which is Continuous
            carrier with no delay. This option requires a
                        cabling change to the controller. (RS and CS must
                        be jumper cabled.)
201A/B Modem or Equivalent on 2 wire line.
Required Four-Phase Options
Internal Timing
EIA interface
Half Duplex
Carrier controlled by request to send without new sync.
150 ms CTS delay
Additional Options which customer needs to specify.
With or without alternate voice
(Note: If unattended answer is specified, alternate voice is
    required.)
Permanent or selective unattended answer.
    (Permanent unattended answer always answers the
    telephone. Selective will answer only if "Auto" button
    on handset is in auto position.)
Without automatic calling
For operation on 4 wire line the only two changes are:
    Full duplex instead of half duplex and 7 ms CTS delay
```


MODEM STRAPPING OPTIONS = CONTINUED

For 208 Modem or equivalent on 2 wire line.
Required Options for Four-Phase operation.

| SIA Down | DSR off in AL mode |
| :--- | :--- | :--- |
| SIB Up | No comp equalizer test |
| SIC Down | Switched request-to-send |
| S3A Down | Xmit internally timed |
| S3B Down | Retrain not used |
| S4A Up | I-Sec Holdover disable |
| S4B Down | Switched carrier |
| S4C Down | New synch not used by customer |
| Following items are installation options | |

S3C Auxiliary data set used or not
S2 Equalizer adjustment (normally use factory settings; all up)

For 4 wire use simply change

S4B Up Continuous carrier

GETTING STARTED

Inspect for obvious shipping damage. If in doubt, remove the dust cover (two-screws, top rear) and reseat all plug-in boards and connectors. Replace cover.

NOTE-If shipping damage is suspected, notify the carrier that delivered the unit immediately. Do not destroy any shipping material. (This should be saved for future use in any case.)
Turn on power -- fan runs, power light on Connect EIA interfaces at rear. CPU to upper connector, Modem to lower.

Set switches as follows for 8-bit synchronous data:
SEND/RCV --- HDX-4 (four-wire line) or HDX-2 (two-wire line)

FRAMING \ldots SYNC-8
DISPLAY $\quad-\quad A=A S C I I \quad B=E B C D I C \quad H E X=$ HEXADECIMAL
MARKER --- SEE DISPLAY NOTES BELOW
LINE SPEED --- MODEM
*TWO-CHARACTER SYNC -- OFF
FRAMING PATTERN ---
Normal Setting for: ASCII - switches 2, $3, \& 5$ up switches $1,4,6,7,8$ down

EBCDIC- switches $2,5, \& 6$ up
switches $1,3,4,7,8$ down
SYNC RESET
Normal Setting for: ASCII - switch jup switches $1,2,4,5,6,7,8$ down
EBCDIC- switches 1, 2, 3, 5, 6 up switches 4, 7, 8 down
SEND (Invert) --- DOW
REC (Invert) -.. DOWN
BOTH (Invert) --. DOWN
1-8/8-1 ——— DOWN
*AUTO STOP --- OFF
*SUPPRESS --- OFF
REPLAY SPEED --- VARY
RUN STOP ——. RUN
*SAVE Cont. --- PRESS down - leave in center position

* OPTIONAL FEATURE - may not be installed on all units.

DISPLAY NOTES

The display operates in low intensity when the DATASCOPE is searching for character phase (SYNC) and in high intensity when the unit is in SYNC.
Receive data is identified by an underline; transmitted data is not underlined.
The MARKER switch causes an inverted (black-on-white) highlighted display when the selected signal line is high:
$C D$ - Carrier Detect (highlights received data)
RTS - Request to Send (highlights tranmitted data)
EVENT - Event Mark
PLEASE READ YOUR INSTRUCTION MANUAL FOR FURTHER INFORMATION

SYNTECH MQDEN OPIIONS

(EBCDIC			ASCII	
(DISPLAY	OCTAL	HEX	OCTAL	GRAPHIC
	-	000	00	000	NUL
	Δ	001	01	001	SOH
	b	002	02	002	STX
	¢	003	03	003	ETX
	4	004	04	234	
		005	05	011	PT, HT
	\#	006	06	206	
	\%	007	07	177	DEL
,		010	08	227	
	\leftarrow	011	09	215	
	1	012	OA	216	
	1	013	OB	013	
	\mathcal{L}	014	OC	014	FF
	-	015	OD	015	
	\neg	016	OE	016	
	1	017	OF	017	
	1	020	10	020	DLE
	1	021	11	021	SBA
		022	12	022	EUA
	\checkmark	023	13	023	IC
	\checkmark	024	14	235	
	즈스N	025	15	205	NL
		026	16	010	
	1	027	17	207	
	\square	030	18	030	
		031	19	031	EM
	-	032	1 A	222	
	-	033	1 B	217	
	4	034	1 C	034	DUP
	1	035	1 D	035	SF,IGS
	-	036	1 E	036	FM, IRS
	1	037	1 F	037	ITB,IUS
		040	20	200	
	$!$	041	21	201	
	"	042	22	202	
	*	043	25	203	
	\$	044	24	204	
	\%	045	25	012	
	\&	046	26	027	ETB
	,	047	27	033	ESC
	(050	28	210	
)	051	29	211	
	.	052	2A	212	
	+	053	2B	213	
	,	054	2 C	214	
	-	055	2 D	005	ENQ
,	.	056	2 E	006	
	1	057	2 F	007	BEL
	0	060	30	220	
	1	061	31	221	
	2	062	32	026	SYN
	3	063	33	223	
	4	064	34	224	
	5	065	35	225	
	6	066	36	226	
	7	067	37	004	EOT
	8	070	38	230	
	9	071	39	231	
	:	072	3A	232	
	;	073	3B	233	
	$<$	074	3 C	024	RA
	$=$	075	3D	025	NAK
	\rangle	076	3 E	236	
	?	077	3 F	032	SUB

COMMUNZCATICN CQDE CONVEFSION TABLE

EBCDIC			ASC 11	
DISPLAY	OCTAL	HEX	OCTAL	GRAPH1C
e	100	40	040	
A	101	41	240	
B	102	42	241	
C	103	43	242	
D	104	44	243	
E	105	45	244	
F	106	46	245	
G	107	47	246	
H	110	48	247	
I	111	49	250	
J	112	4 A .	135	\div
K	113	4 B	056	,
L	114	4 C	074	$<$
M	115	4 D	050	$($
N	116	4 E	053	+
0	117	4 F	130	\dagger
P	120	50	046	
Q	121	51	251	
R	122	52	252	
S	123	53	253	
T	124	54	254	
U	125	55	255	$L-P A D$
V	126	56	256	
W	127	57	257	
X	150	58	260	
Y	131	59	261	
2	132	5 A	041	$!$
\div	13\%	5B	044	\$
x	134	5 C	052	*
1	135	5 D	051)
\uparrow	156	5 E	073	;
-	137	5 F	135	1
-	140	60	055	-
a	141	61	057	/
b	142	62	262	
c	143	63	263	
d	144	64	264	
e	145	65	265	
f	146	66	266	
g	147	67	267	
h	150	68	270	
1	151	69	271	.
j	152	6 A	174	1
k	153	6 B	054	,
1	154	6 C	045	\%
m	155	6 D	137	-
n	156	6 E	076	>
-	157	6 F	077	?
p	160	70	272	
q	161	71	273	
r	162	72	274	
s	163	73	275	
t	164	74	276	
u	165	75	277	
v	166	76	300	
w	167	77	301.	
\mathbf{x}	170	78	302	
y	171	79	140	,
2	172	7 A	072	:
	173	7 B	043	v
	174	7 C	100	e
	175	7 D	047	.
	176	7 E	075	$=$
	177	7 F	042	"

	EBCDIC			ASCII	
	DISPLA	OCTAL	HEX	OCTAL	GRAPHIC
		200	80	303	
		201	४ 1	141	a
		202	82	142	b
		203	83	143	c
		204	84	144	d
		205	85	145	e
		206	86	146	f
		207	87	147	g
		210	88	150	h
		211	89	151	i
		212	8 A	304	
		213	8 B	305	
		214	8 C	306	
		215	8 D	307	
		216	8 E	310	- .
		217	$\bigcirc \mathrm{F}$	311	
		220	90	312	
		221	91	152	j
		22.2	92	153	k
		223	95	154	1
		224	94	155	m
		225	95	156	n
		226	96	157	0
		227	97	160	p
		230	98	161	q
		231	99	162	r
		232	9 A	313	
		233	9 B	314	
		254	9 C	315	
		235	9 D	316	
		236	9 E	317	
		237	9 F	320	
		240	AO	321	
		241	A 1	176	-
		242	A 2	163	s
		243	A 3	164	t
		244	14	165	u
		245	A 5	166	v
		246	A 6	167	w
		247	A 7	170	x
		250	A 8	171	y
		251	A9	172	z
		252	AA	322	
		253	AB	323	
		254	AC	324	
		255	AD	325	
		256	AE	326	
		257	AF	327	
		260	B0	330	
		261	B1	351	
		262	B2	352	
		263	B3	333	
		264	B4	334	
		265	B5	335	
		266	B6	336	
		267	B7	337	
)		270	B8	340	
		271	B9	341	
		272	BA	342	
		273	BB	34.3	
		274	BC	344	
		275	BD	345	
		276	BE	346	
		277	BF	347	

COMMUNICATION CQDE CGR:ERSION TAELE

SHA NETHORK GENERATION_PROCEDURES

INTRODUCTION

The following document has been prepared by the Network Support Center (NSC), in an attempt to provide a Systems Programer, already familiar with the IBM software components, with the tools necessary to upgrade or install an SNA network. It is not meant to be a re-write of existing IBM documentation, but rather a quick reference listing of those operands which may cause some confusion when attempting to implement Four-Phase Systems into an SNA environment. In addition, this document only attempts to cover the most current software program levels of the most widely used products. Questions may still arise regarding other software programs, and the Network Support Center has been implemented to assist with these problems. This version covers VTAM, NCF, CICS, and JES2. Future versions will add information on RES, JES3, IMS, TCAM, and other products.

SNA NETWORK GENERATION PROCEDURES

ACF/VTAM - ACF/NCP Generation Considerations

*A.) PCCU (VTAM only Macro Instruction)
Identifies the communications controller to VTAM.

B.) BUILD

Generates specific parameters for the communications controller and the network being defined.
C.) SYSCNTRL

Identifies the dynamic control facilities to be included in the Network Control Program.
D.) HOST

Identifies the parameters specific to the host operating environment.
E.) CSB

Defines the comunications scanner.
F.) LUPOOL

Specifies a pool of logical units used by the Network Control Program for dial-up terminals.

ACF/VTAM - ACF/NCP QPERANDS (3271-12/3277)

G1.) GROUP (3271-12/3277)
Defines the parameters common to all lines contained in this group.

	LNCTL $=$ SDLC	All SDLC lines in this group.
2.)	TYPE $=$ NCP	Lines controlled by NCP only.
	PE	Lines controlled by NCP and Mmulation.
3.)	SPEED $=9600$	Maximum speed allowed (Specific configuratio may further restrict this value.)
4.)	POLLED $=$ YES	Polled terminals on these lines. (Omit this parameter for ACF/NCP Release 3.)

G2.) LINE (3271-12/3277)
Defines specific operating characteristics of the individual line.
1.) $\operatorname{ADDRESS}=\mathrm{X}$ 'nnn' Line interface address. (Port on 3705)
2.) CLOCKING $=$ EXT Clocking supplied by the modem.
3.) DUPLEX $=$ HALF or FULL
4.) NRZI $=$ YES OR NO (Modem dependent)
5.) TRANSFR $=$ User dependent.
6.) RETRIES $=\quad$ User dependent.
*.) IStatus $=$ User dependent.
G3.) $\operatorname{SERVICE~ORDER~}=\left(P U^{1}, P V^{2}, \ldots, \quad P V^{N}\right)(3271-12 / 3277)$
Specifies the order in which the PU's on the line are to be serviced.
G4.) PV (3271-12/3277)
Specifies individual physical unit characteristics.

1.)	PUTYPE $=$	Type 1 physical unit
2.)	BNNSUP $=3270$	This PU is an SDLC 3271.
3.)	$A D D R=X^{\prime} n^{\prime}$	Link level address.(Polling address)
4.)	MAXOUT $=7$	7 PIU's can be sent at a time.
5.)	PASSLIM $=.7$	Max. \# of PIU's to this controller.
6.)	MAXDATA $=261$	Max. data bytes received in 1 Xfer.
-7.)	SSCPFM $=$ USS3270	Character coded mags. supported. (Required for 3271)

G5.) W (3271-12/3277)
Specifies individual logical unit characteristics.

1.) LOCADDR $=$	Terminal address. (First LU begins with 0)
2.) $\operatorname{VPACING~}=(2,1)$	(User dependent).
3.) $\operatorname{PACING}=(1,1)$	Pacing needed on every PIU. (This is required for 3271-12)
4.) MODETAB $=$	See MODETAB considerations - page 7.

ACE/VTAM - ACE/NCP QPERANDS (3770 LEASED LINE)

H1.) GROUP (3770 Leased Line)

1.) \quad LNCTL $=$ SDLC	All SDLC lines in this group.
2.) \quad TYPE $=$ NCP	Lines controlled by NCP only.
3.) \quad SPEED $=9600$	Lines controller by NCP and emulation. Maximum speed allowed (Specific configuration
4.) $\operatorname{POLLED~}=$ YES	may further restrict this value.) Polled terminals on these lines. parameter for ACF/NCP Release 3.)

H2.) LINE (3770 Leased Line)
1.) $\operatorname{ADDRESS}=$ 'nnn' Line interface address.
2.) CLOCKING = EXT. Clocking supplied by the modem.
3.) DUPLEX = HALF

Half-Duplex line protocol.
4.) NRZI = YES OR NO
(Modem dependent)
5.) TRANSFR $=$

User dependent.
6.) RETRIES =

User dependent.
*7.) ISTATUS =
User dependent.

H3.) SERVICE ORDER $=\left(P U^{1}, P V^{2}, \ldots, \ldots V^{N}\right)$ (3770 Leased Line)

H4.) PU (3770 Leased Line)

1.) $\operatorname{PUTYPE}=2$	PU type 2.
2.) $A D D R=X^{\prime} n n^{\prime}$	Link level address.
3.) $\operatorname{MAXDATA~}=265$	Max. 3770 buffer size.
4.) $\operatorname{MAXOUT}=1$	PIU to be sent at a time.
5.) PASSLIM $=1$	Max. of PIU's to this controller.

H5.) LU (3770 Leased Line)
1.) $\operatorname{LOCADDR}=1$
2.) VPACING $=(2,1)$

Only 1 logical unit on 3770.
3.) PACING $=(1,1)$
(User dependent).
Pacing required on every PIU.
*4.) $\operatorname{MODETAB}=\quad$ See MODETAB considerations - page 7.

ACE/VTAM - ACE/NCP OPERANDS (3770 SWITCHED LINE)

I1.) LUPOOL (3770 Switched Line)

```
1.) NUMBER = Number of LU's available.
```

I2.) GROUP (3770 Switched Line)

1.)	LNCTL = SDLC	All SDLC lines in this group.
2.)	TYPE $=$ NCP	Lines controlled by NCP only.
	PEP	Lines controlled by NCP and Emulation.
3.)	SPEED $=4800$	Normal dial-up maximum speed.
4.)	POLLED $=$ YES	Polled termianls on these lines. (Omit this parameter for ACF/NCP Release 3.)
5.)	DIAL $=$ YES	Lines in this group are switched.

I3.) LINE (3770 Switched Line)
1.) $A D D R E S S=X^{\prime} n n n^{\prime}$ Line interface address.
2.) CLOCKING = EXT Clocking supplied by the modem.
3.) DUPLEX = HALF Half-Duplex line protocol.
4.) NRZI = YES or NO (Modem dependent).
5.) TRANSFR $=$ User dependent.
6.) RETRIES $=\quad$ User dependent.
7.) ISTATUS $=$ User dependent.

I4.) PU (3770 Switched Line)
1.) PUTYPE $=2$
PU type 2.
2.) $\operatorname{MAXLU}=1$
Single logical unit only.

[^0]
K1.) YBUILD

Assigns a subarea value to the major mode for VTAM's use in assigning addresses to the minor modes.

K2.) PU
Defines a switched SNA major node.
(Code a PU statement for each physical unit in the switched major node)
1.) $\mathrm{ADDR}=$
2.) MAXDATA $=265$
3.) $\operatorname{MAXOUT}=1$
4.) PASSLIM $=1$
5.) $\operatorname{PUTYPE}=2$
6.) IDBLK $=$
7.) IDNUM $=$

Station address.
Max 3770 buffer size.
1 PIU to be sent at a time.
Max \% Of PIU's to this controller.
PU type 2.
12 Bit Binary Block Number.
20 Bit Binary Identification Number.
The block number (obtained from the Component Description Manual) together with the Identification number (randomly selected) combine to form a 48 bit station ID that is used in XID exchange during the dial procedure. The contents of IDBLK and IDNUM must agree with the XID jumper bits and XID 3770 type used by SNAFIG. See pg. 2-3 of the Data IV/Vision SNA 3770 User's manual (SIV/70 - 55-29B).
K3.) LU
Specifies each logical unit associated with a physical unit within a switched SNA major node.
1.) LOCADDR $=1 \quad$ Only one logical unit on 3770
2.) PACING $=(1,1)$
3.) VPACING $=(2,1)$

Pacing required on every PIU.
User dependent.
See MODETAB consideration - see page 7.

ACF/YTAM - SYS I.YTAMLST MODETAB CONSIDERATIONS

1.) MODETAB $=$ Specifies the logon mode table name used for the LU.

If the "Modetab" operand is omitted, the IBM-supplied logon mode table is used for the logical unit. The format for the IBM-supplied table is as follows:

ISTINALM	MODETAB	(OS/VS1 and OS/VS2 SVS only)
IBM3770	MODEENT	LOGMODE $=$ BATCH, \quad FMPROF $=X^{\prime}$ '03',
		TSPROF $=\mathrm{X}^{\prime} 03^{\prime}$, PRIPROT $=\mathrm{X}^{\prime}$ A3',
		SECPROT $=\mathrm{X}^{\prime}$ A3', COMPROT $=\mathrm{X}^{\prime} 7080^{\prime}$.
IBMS3270	MODEENT	LOGMODE $=$ S3270, FMPROF $=\mathrm{X}^{\prime} 02^{\prime}$,
		TSPROF $=X^{\prime}$ O2' PRIPROT $=X^{\prime} 71^{\prime}$,
		SECPROT $=X^{\prime} 40^{\prime}$, COMPROT $=X^{\prime} 2000^{\circ}$ 。

*For further information, reference pg. 4-2 of the ACF/VTAM System Programmer's Guide (SC38-0258).

CICS/VS Generation Considerations (Terminal Control Table only)

A.) DFHTCT TYPE $=$ Terminal $(3271-12 / 3277$ ONLY)

Defines each individual devices terminal control table characteristics.
1.) TRMTYPE $=3277$
2.) TRMMODL $=1$ or 2
3.) ACCMETH $=$ VTAM
4.) TIOAL $=$
5.) TRMSTAT $=$ TRANSCEIVE
6.) RELREQ $=$
7.) TCTUAL $=$
8.) FEATURE $=$ (DCKYBD, UCTRAN, aUDALARM)
9.) RUSIZE $=256$
10.) CHNASSY $=$ N O

Definition for 3271-12.
Model for this terminal. VTAM controls this terminal. Minimum message size. (User dependent)
Automatic transaction initation issued. Release to application or VTAM allowed. (User dependent)
Process control information field length. (User dependent)

Features supported.
RU size for this terminal. Chaining not permitted.

JOB ENTRY SYSTEM (JES2 4, 1) Generation Considerations

A.) Line nnn

Specifies one logical unit's characteristics as used during remote job entry.

$$
\begin{array}{ll}
\text { 1.) UNIT }=\text { SNA } \quad \begin{array}{l}
\text { All subparameters (except "Password") are } \\
\text { ignored. }
\end{array}
\end{array}
$$

B.) \&NUMLNES = nnn

Number of teleprocessing lines available.
C.) \&NUMRJE = nnn

Number of remote terminal definitions (Default $=$ value specified for "\&NUMLNES")
D.) \&NUMTPBF $=\mathrm{nnn}$

Number of JES2 teleprocessing buffers. (The minimum requirement for SNA is three buffers plus two buffers for every SNA RJE terminal).
E.) BMTnnn

Characteristics of each SNA remote terminal.
1.) LUTYPE1 This remote is an SNA terminal.
2.) $\operatorname{BUFSIZE}=256,512$ Max. size RU for this terminal.
3.) COMP

Terminal supports the compression/expansion features.
4.) NOCMPCT

Default value (terminal does not support compaction).
5.) LUNAME $=$ cceccece Logical unit name (must be the same as the name defined to VTAM).
6.) NUMPR $=1$ Max. of printers supported.
7.) NUMRD $=1$ Max. of readers supported.
8.) $N U M P U=1$ Max. of punches supported.
9.) CONSOLE Operator console is supported.

SAMPLE SNA GEN CONFIGURATIONS


```
3270 AND 3770 SDLC LINES
```



```
        SERVICE ORDER=(PU3270,PU3770)
    PU3270 PU PUTYPE=1,
        BNNSUP=3270,
        ADDR=C1,
        MAXOUT=7,
        PASSLIM=7,
        MAXDATÄ=261,
        SSCPFM=USS3270,
        VPACING=(2,1),
        PACING=(1,1)
    LU327700 LU LOCADDR=0,
        USSTAB=USS3271,
        BATCH=NO
    LU327701 LU LOCADDR=1,
        USSTAB=USS3271,
        BATCH=NO
    PJ3770 PU PUTYPE=2,
        ADDR=D6
        MAXDATA=265,
        MAXOUT=1
        PASSLIM=1,
        VPACING=(2,1),
        PACING=(1,1)
    LU377000 LU LOCADDR=1
```



```
                    CICS SDLC 3270
```



```
AO1h DFHTCT TYPE=TERMINAL,
            TRMIDNT=A01A,
            TRMTYPE=3277,TRMMODL=2,
            ACCMETH=VTAM,
            NETNAME=LU327000,
            TIOAL=1500,
            TRMSTAT=TRANSCEIVE,
            GMMSG=YES,
            RELREQ=(YES,YES),
            CONNECT=AUTO,
            TCTUAL=20,
            FEATURE=(DCKYBD, UCTRAN, AUDALARM)
A01B DFHTCT TYPE=TERMINAL,
    TRMIDNT=A01B,
    TRMTYPE=3277,TRMMODL=2,
    ACCMETH=VTAM,
    NETNAME=LU327001,
    TIOAL= 1500,
    TRMSTAT=TRANSCEIVE,
    GMMSG=YES,
    RELREQ= (YES,YES),
    CONNECT=AUTO,
    TCTUAL=20,
    FEATURE=(DCKYBD, UCTRAN, AUDALARM)
```

IV/70 Display Characters

	First \& Second Octal Digits															
Digit	00	01	02	03	04	05	06	07	10	11	12	13	14	15	16	17
0	\bigcirc	\# \ddagger	1	\square	SP	1	0	8	@	H	P	X	-	h	p	x
1	$\Delta \dagger$	\leftarrow	[r^{\ddagger}	$!$)	1	9	A	I	Q	Y	a	i	q	y
2	b†	1	1	圈	"	*	2	:	B	J	R	Z	b	j	r	2
3	¢	1	-	-	\#	+	3	;	C	K	S	\div	c	k	s	\{
4	4	£	$\sqrt{\dagger}$	4	\$,	4	$<$	D	L	T	X	d	1	t	1
5	${ }^{\ddagger} \ddagger$	\pm	-	1	\%	-	5	$=$	E	M	U	1	e	m	u	\}
6	$\ddagger \dagger$	ᄀ	\wedge	-	\&	.	6	$>$	F	N	V	\uparrow	f	n	v	\sim
7	听	I]	\backslash	,	1	7	?	G	0	W	-	g	0	W	III
\dagger These symbols are currently displayed but not supported. Other symbols may be substituted on later \ddagger Used as dual intensity characters and not displayed on $4300,4500,5001,6001,6501,7002$, and 7009																

POWERS OF 2 AND \&̀

Third	First \& Second Octal Digits															
Digit	00	01	02	03	04	05	06	07	10	11	12	13	14	15	16	17
0					SP	1	0	8	(a)	H	P	X	,	h	p	x
1					!)	1	9	A	I	Q	Y	a	i	q	y
2					"	*	2	:	B	J	R	Z	b	j	r	2
3					\#	$+$	3	;	C	K	S	1	c	k	S	\{
4					\$,	4	$<$	D	L	T	1	d	I	t	1
5					7	-	5	$=$	E	M	U	1	e	m	u	\}
6					\&	.	6	$>$	F	N	V	\uparrow	f	n	V	\square
7					,	/	7	?	G	0	W	\leftarrow	g	0	W	\square
C a a 0 0 0 A T	trol rs. ers b line form car ove 2 813		fee lega e: (no rtic pri	har ece orm r is	64-C) code ually	acte le	200 er	set 32 a	ogn oth am	by are gt	line al. poin	nter	32 ogn 81		cod 814	

	First \& Second Octal Digits															
Digit	00 .	01	02	03	04	05	06	07	10	11	12	13	14	15	16	17
0	NUL				SP	$($	0	8	@	H	P	X	-	h	p	x
1		-			!)	1	9	A	I	Q	Y	a	i	q	y
2		LF			"	*	2	:	B	J	R	Z	b	j	r	z
3				ESC	\#	+	3	;	C	K	S	1	c	k	s	\{
4		FF			\$,	4	$<$	D	L	T	1	d	1	t	$!$
5		CR			$\%$	-	5	=	E	M .	U	1	e	m	u	\}
6					\&	.	6	$>$	F	N	V	\wedge	f	n	v	\sim
7	BEL				,	/	7	?	G	0	W	-	g	0	W	
	NUL, B nized by Control are reco DEL charact SYSOU 040 int feed, ex as a fo return.	L, L Te r). nize 377) with con ca cept f	and pe FF, the use is pri ts an r 4 (F afte	R are nters R an 131 as th er. code urn a is ac the	cog. 100 DEL nter. null elow line pted riage					ers. 13 ed the		$\begin{aligned} & 31 \mathrm{a} \\ & \text { be re } \\ & \text { The } \\ & \text { and } \\ & 64 \mathrm{cl} \end{aligned}$				

Second Hex Digit	First Hex Digit															
	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	－	1			SP	\＆	－						$\{$	\}	X	0
1	Δ	［					／		a	j	\sim		A	J		1
2	t	\}		\wedge					b	k	S		B	K	S	2
3	¢	－							c	1	t		C	L	T	3
4									d	m	\mathbf{u}		D	M	U	4
5	\leftarrow	－	1						e	n	V		E	N	V	5
6		\＃	］						f	0	W		F	0	W	6
7	$\mathscr{1 1}$		－	Δ					g	p	X		G	P	X	7
8		\square							h	q	y		H	Q	Y	8
9		\boldsymbol{r}			\checkmark			－	i	r	2		I	R	Z	9
A					－	1	－	：								
B	1				－	\＄	，	\＃								
C	£	4		\checkmark	$<$	＊	\％	＠								
D	－	I	丰	－	$($	）	－	，								
E	\square	－	\ddagger		$+$	；	$>$	＝								
F	1	1	口	B	1	－ 7	？	風								

ASCII Code	ASCII Graphic	Hollerith Code	029 Graphic	026 Graphic Business Science	ASCII Code	ASCII Graphic	Hollerith Code	$\begin{gathered} 029 \\ \text { Graphic } \end{gathered}$	026 Graphic Business Science
240	SP		SP	SP	055	-	11	-	-
261	1	1	1	1	312	J	11.1	J	J
262	2	2	2	2	113	K	11-2	K	K
063	3	3	3	3	314	L	$11-3$	L	L
264	4	4	4	4	115	M	11.4	M	M
065	5	5	5	5	116	N	11.5	N	N
066	6	6	6	6	317	0	11-6	0	0
267	7	7	7	7	120	P	11.7	P	P
270	8	8	8	8	321	Q	11.8	Q	Q
071	9	9	9	9	322	R	11.9	R	R
072	:	8-2	:		041	!	11-2.8	!	
243	\#	8-3	\#	\# or =	044	\$	11.3 .8	\$	\$
300	@	8.4	@	@ or ,	252	*	11.4.8	*	*
047	,	8.5	,		251)	11.5-8)	
275	$=$	8.6	"		273	;	11.6 .8	,	
042	"	8.7	"		335	1^{\dagger}	11-7.8	\checkmark	
060	0	0	0		246	\&	12	\&	\& or +
257	1	0.1	1	1	101	A	12-1	A	A
123	S	0.2	S	S	102	B	12.2	B	B
324	T	0.3	T	T	303	C	12-3	C	C
125	U	0.4	U	U	104	D	12-4	D	D
126	V	0-5	V	V	305	E	12-5	E	E
327	W	0.6	W	W	306	F	12.6	F	F
330	X	0.7	X	X	107	G	12.7	G	G
131	Y	0.8	Y	Y	110	H	$12-8$	H	H
132	Z	0.9	Z	Z	311	It	$12-9$	1	1
134	$1 \dagger$	0.2 .8	(0-2-8)		333	$1 \dagger$	12.2-8	¢	
254	,	0.3 .8			056	-	12.3 .8	-	
245	\%	0-4.8	\%	\% or (074	<	12-4-8	<	ㅁor)
137	-	0.5 .8	三		050	1	12.5.8	1	
276	$>$	0.6.8	$>$		053	$\stackrel{+}{+}$	12.6.8	+	
077	?	0.7-8	?		336	$\wedge \dagger$	12.7.8	1	
\dagger ASCII Codes $333,134,335$, and 336 display as $\div, X, 1$, and \dagger on the System IV $/ 70$ video display.									

O)	
¢)	
¢ ¢ ¢	
O)	
¢\%\%	

	00	10	20	30	40	50	60	70	80	90	A0	B0	Co	D0	E0	F0
00	000	020	200	220	040	046	055	272	303	312	321	330	173	175	134	060
01	001	021	201	221	240	251	057	273	141	152	176	331	101	112	237	061
02	002	022	202	026	241	252	262	274	142	153	163	332	102	113	123	062
03	003	023	203	223	242	253	263	275	143	154	164	3.33	103	114	124	063
04	234	235	204	224	243	254	264	276	144	155	165	334	104	115	125	064
05	011	205	012	225	244	255	265	277	145	156	166	335	105	116	126	065
06	206	010	027	226	245	256	266	300	146	157	167	336	106	117	127	066
07	177	207	833	004	246	257	267	301	147	160	170	337	107	120	130	067
08	227	030	210	230	247	260	270	302	150	161	171	310	110	121	131	070
09	215	931	211	231	250	261	271	140	151	162	172	341	111	122	132	071
0A	216	222	212	232	133	135	174	072	304	313	322	342	350	356	364	372
OB	813	217	213	233	856	044	854	043	305	314	323	343	351	357	365	373
OC	014	034	214	024	074	052	045	100	306	315	324	344	352	360	366	374
00	015	035	005	025	050	651	137	047	307	316	325	345	35.3	361	367	375
OE	016	036	006	236	053	073	076	075	310	317	326	346	354	362	370	376
0F	017	037	507	032	041	136	077	042	311	320	327	347	355	363	371	377

COBOL and RPG Signed Numeric Fields

(Yalue	ASCII	$\begin{gathered} \text { ASCII } \\ \text { (Character) } \end{gathered}$	$\begin{array}{r} \text { EB } \\ \text { Octal } \end{array}$	$\begin{aligned} & \text { IC } \\ & \text { Hex } \end{aligned}$	$\begin{gathered} \text { EBCDIC } \\ \text { (Character) } \end{gathered}$
	-0	0120	P	0175	7 E	$=$
	-1	0121	Q	0112		,
	-2	0122	R	0113		
	-3	0123	S	0114		
	-4	0124	T	0115		
	-5	0125	U	0116		
	-6	0126	V	0117		
	-7	0127	W	0120		
	-8	0130	X	0121		,
	-9	0151	\mathbf{Y}	0122		
	+0	0100	e	0173		
	+1	0101	A	0101		
	+2	0102	B	0102		
	$+3$	0103	C	0103		.
	+4	0104	D	0104		
	+5	0105	E	0105		
	+6	0106	F	0106		
	$+7$	0107	G	0107		
	+8	0110	H	0110		
\checkmark	+9	0111	I	0111		

The signs for numeric data are attached to the rightmost byte of the data item. The format of this byte as as follows:
$010 X \quad Y Y Y Y$

X: $\quad 0=$ Positive
1 = Negative
Y: Ranges from 0-9

(8)T			
	-	-	3
	((1)	

A2-19

A2-21

// DIRSRT	Sort disc directory entries	DIRSRT.
/DRIVE=n.	optional, default = o	
/REVERSE	optional, default is ascending order	
/ENTRY=n	optional, entry number to swap with /F	(BJO4)
/FILE=filename	optional, swap positions with/E file	(BJO4)
//		

		L RIRVID i
// DIRvid	Display directory information on Screen	0
/DRIVE= ${ }^{\text {a }}$	optional, default is 0	
/I=filenameen	optional, displays details	(BJ04)
//		
CONTROLS :		
F 1	scroll forward one line	
F2	scroll forward page minus 1 line	
F6	scroll back 1 line	
F7	scroll back page minus 1 line	
F11	print the /I file information	(BJO4)
UP ARROW-S	return to start of directory	
ATTN	exit	

// DTUX	Dump all or part of a disc to tape
/INPUT=DISCEdrive.	required
/OUTPUT=TAPE8/TAPE16/TAPETEdeck.	required
/LOW=NUMBER.	optional, default is o
/HIGH=NUMBER.	optional, default depends on device

Blank record will allow additional sets of parameters
//

$1 /$ JOB	
$/ D=\operatorname{logical~drive~}$	Deallocate sectors held by blank or TEMP filenames
optional, default is all assigned drives	

logical drive optional, default is all assigned drives

// KCHEK	Verify consistency of an MKAM file
/ AREA = number	required
/DRIVE 5 physical drive	required
/ ZONESET=name	required; 3 char name
/FILE = filename	required; 3 char name
/CHECKALL	required if KEY not given; verify all keys
/KEY=key name (subsequent	required if /C not given /KEY's are preceded by a blank line)
//	
// KCHK2	Verify MKAM zonesets after NP/80 crash ikCHK2 ;
/ ZONESET=name	required, 3 bytes
/ AREA = number	required
/DRIVE=physical drive	required
/S	optional, messages to screen instead of printer
//	

// KTOSD	Copy records betw	MKAM and SD fi
/ A=area number	required	
/D=drive number	required	
$/ \mathrm{Z}=$ zoneset name	required	
/F=file name	required	
/K=key name	required to copy	MKAM to SD
10 nameelogical drive	required to copy	MKAM to SD
/S=direction	A or D, optional	for MKAM to SD
/I= nameelogical drive	required to copy	SD to MKAM
/UNFORMATTED	optional	
/ BYTESAVE	optional	
//		

NPTFX1 AND NPTFX2 - Format an NP/80 supported pack from tape

1. Boot from an NPDTUX tape
2. Enter //NPTFX1. Follow screen prompts to load NP/80 memory.
3. Reboot from tape without resetting NP/80 memory.
4. Enter // NPTFX2 and use options from NPFMTX above.

Note: NPTFX1 disappears, and NPTFX2 assumes the task or loading the NP/80, beginning with release NUO2.

```
// NPVOL Initialize pack id and volume sequence number NPVOL_
/PDRIVE=physical drive number
/NAME=pack name
/VOL=disk sequence number
/SCREEN may be used instead of /P,/N, and /V for keyboard entry
//
```

```
// RDTAPE or TRDTAP
/TAPE=TAPE7, TAPE8, or TAPE16
/DISC=8230,8240,8260,or82700phys dr
/INCLUSIVE
/EXCLUSIVE
/ALL SELECTED FILES TO DISC
/OLD SELECTED FILES TO DISC
/NEW SELEDTED FILES TO DISC
/FILE=name
/CATEGORY = x
/MESSAGE
(message record less than 80 characters or blank if no /M)
\bullet
//
```


// SINDSK or SNEDIT	Source file maintenance
/OUTPUT=nameedrive. required	
/INPUT=nameedrive. optional	
/END=xxx.	optional
//ALTER=x.	optional
/FLAG=x.	optional
/MERGE CHARACTER=x.	optional
/PROTECT.	optional
/RENUMDER=x.	optional
/DELTA=n.	optional
/LIST.	optional
SYSIN stream	

// CAU-CA Assembles CPU diagnostic for non-decimal CPU $\frac{1}{3} C A U-C A$
// CAU-CB Assembles CPU diagnostic for decimal chip CPU's $\frac{1}{C A U-C B \quad 1}$
$/ /$ CAU-R Asembles RAM diagnostic $\quad \frac{1}{2}$

// COPYF Copies/deletes/renames files on diskette	
/INPUT = NAMEI .	Required
/ OUTPUT = NAMEO.	If 10 , the file will be deleted
/MONITR.	Optional - causes write to track 0
/PROTECT.	Optional - make nameo protected
/QUASA protection,	Optional - unprotect nameo
/B. or /U=FILENAME.	Optional - Auto Boot program name
/U. or /U=DIAGNOSTIC.	Optional - U $=0$ means no mini-CPU diagnostic.
$\mathrm{U}=\mathrm{D}$	means CPU diagnostic $w / d e c i m a l$
U.	means CPU diagnostic w/o decimal
/R=0.	Optional - means no mini-RAM diagnostic.
/R.	Optional - meane mini-RAM diagnostic during boot
Blank record	for additional sets of parameters
//	Required. Terminates parameter selection.

// DCDKT	Copy all or part of a DIABLO disc onto diskettes
/LOW sectar=number	Default $=0$
/HIGH sector=number	Default $=06177$
/DRIVE=number.	Default=0
/COMPLETE backup.	Default $=A 1 l o c a t e d$ sectors only
//	

$/ /$ DIRDSP	Display on tube o or print the diskette $\frac{\text { directory }}{\text { dind }}$
$/ /$ RIZE 80,	Required if NOPRNT \& 80 character tubes

	FLCOPY :
// FLCOPY	Transfer files to/from disc and diskette
/INPUT = NAMEIEDRIVE.	Required
/OUTPUT = NAMEOCDRIVE.	Required, if 10 and to diskette NAMI will be
1.	written to track 0
/DESTINATION.	Default - diskette. DIA $=$ DOS pack, IDOS=IDOS pack
/MONITR.	Optional, causes write to track 0 ,
1.	/D=diskette only.
/CLEAR.	Optional, use with care, to diskette only
/SIZE= (0/24/48/72/96).	Only used with /C, default 96 , /D=diskette only.
/ADD checkpoint $=$ address	Optional, default $n 0, /$. Puts checkpoint at
1.	max. loc, /D=diskette only
/PROTECT.	Default - nameo no protected
/QUASH protection.	Optional
/B00T programenameb.	Optional - /B = make not auto-book pack
iJCL.	Optional - make output a JCL file.
/U. or /U=Diagnostic.	
/R, or /R=Diagnostic.	Optional - SEE COPYFBlank record for additional
parameters 11	Required. Terminates parameter selection.

//FPYDEL Delete DOS source files to provide space for $\frac{1}{D K O S}$.

// LFCTL Produce a list of all DKOS control files LLFCTL
//MKDSKT Assemble DKOS monitor and utilities

//PACK | Return all tracks of deleted files and consolidated |
| :---: |
| unused tracks |

	1 PATCH 1
// PATCH	Modify files stored on diskette
/WIDTH $=(48 / 81)$.	Required
/HEIGHT= $(6 / 12 / 24)$.	Required
/SCREEN SIZE.	Optional, flush any changes \& restart
/INPUT= (program name/track)	Required
/LOCATION=number .	Default $=0$, if /A. number=RAM address
1.	Else=word on track
/VALUE = number .	Value that word at location will assume
1.	only valid with /M.
/ DISPLAY.	Display mode, no values allowed
/MODIFY.	Modify mode - be careful
/ ABSOLUTE.	Used with /I P PROG name to indicate
1.	RAM address on left
/FLUSH.	Flush all modifications to diskette
1.	done automatically at exit or new /L
//	Required. Teminates parameter selection.
// XDSKT Transfer all	DKOS files from Diablo to Diablo

Four-Phase COBOL includes the following modules from ANSI COBOL '68: Level 1 Nucleus, Sequential Access, Random Access, and Library; Level 2 Table Handling. The most notable features lacking in these modules but found in higher level modules are:

1. The COMPUTE verb.
2. Nested if statements (including AT END, SIZE ERROR, etc.).
3. Data name qualification.
4. Multiple filenames on OPEN and CLOSE.
5. Compound relational expressions with AND or OR.
6. READ...INTO and WRITE...FROM.
7. OCCURS...DEPENDING ON.
8. MOVE...CORRESPONDING.
9. PERFORM...VARYING or ...WHILE

Several extensions common to IBM COBOL but not found in Four-Phase COBOL are:

1. COMPUTATIONAL-3 (packed decimal) data.
2. RECORDING MODE.

Common maximums in Four-Phase COBOL:

1. OCCURS, 511.
2. Literal length, 120 bytes.
3. DISPLAY pic 9 size, 18.
4. Subscripts, 3 .

Common industry extensions found in Four-Phase COBOL:

1. LINKAGE SECTION.
2. CALL...USING.
3. ISAM.

IF THE COMPILER HALTS OR LOOPS..

1. Check the environment for things that might cause any IDOS program to misbehave.

Printer off-iine
Card reader error halt while reading options
Memory parity
IDOS has miscomputed memory size (BOOT system, check location
0712. The symptom is that the value here is one greater than
the true size of memory.)
Cut word hang because of missing or wrong printer in LPOUT.
2. Take a memory dump to printer:

MANUAL
72000002 into IIR
AUTO
OR return to IDOS
MANUAL
72000001 into TIR
AUTO
DO NOT simply halt the computer and remove the disc or reboot. You will lose sectors from the allocation table.
3. Print compiler temporary files by executing // CRLDMP.
4. If submitting compiler problems on an SER, please include PRJCEDURE and DATA DIVISION Load maps.

IF THE OBJECT PROGRAM HALTS OR LOOPS...
It may be the user's problem. A sprinkling of DISPLAY or STOP statements car be used to locate the problem. If necessary a dump may be taken by 1 of 3 methods:

1. A memory dump can be taken with the standalone 3-card dump program if you have a line printer and a card reader.
2. The object program will initialize Location 1 to be a branch to a routine which will dump RAM on SYSOUT, close all files, and return to IDOS. The \$DUMP routine wil be eligible for exclusion with LIBGEN. If \$DUMP is not excluded, this mechanism will allow the user to obtain a memory dump manually in situations where the /! checkpoint mechanism is inappropriate.
```
AUTO TO MANUAL
720000001 INTO TIR
MANUAL TO AUTO
```

For releases E1 and below.
A copy of \$DUMP can be linked to the object program in the LOADOV step. One way to do this is to put a CALL "\$DUMP" in the source code. This statement should never actually be executed, since the COBOL-generated calling sequence is incompatible with \$DUMP. Instead, do a manual 710 nnnnn when the problem occurs. (where nnnnr is the load map adaress of \$DUMP).

IF THE OBJECT PROGRAM HALTS OR LOOPS = CONTINUED

3. Memory can be dumped to disc and later printed. Execute the COBOL program with the option card /!=filename. When reading to take the dump:

AUTO TO MANUAL (DO NOT hit SYSTEM RESET)
$720 n n n n$ (where nnnnn is the load map address of $=$ STOP)
List the dump using:
// FILDMP
$/ I=$ filename, A. (Use the A option so the listing will be numbered by memory address.)

Use the "Relocatable Module Map" section of the compiler output listing to interpret the dump. Remember that addresses in the procedure division map must be relocated by the value of the BOTTOM parameter in the LOADOV step. The Data Division map shows the relative locations of items defined in the Data Division. The Procedure Division map can be used to locate the code generated for a statement.

ACCEPT	ENTER	MODE	RH
ACCESS	ENVIRONMENT	MODULES	RIUHI
ACTUAL	EQUAL	MOVE	ROUNDED
ADD	ERROR	MULTIPLE	RUN:
ADDRESS	EVERY	MULTIPLY	SAME
ADVANCING	EXAMINE	NEGATIVE	SCREEN
AFTER	EXIT	NEXT	SD
ALL	FD	NO	SEARCH:
ALPHABETIC	FILE	NOMINAL	SECONDARY
ALTER	FILE-CONTROL	NOT	SECTION
ALTERNATE	FILE-LIMIT	NOTE	SECUFITY
AND	FILE-LIMITS	NUMBER	SEEK
APPLY *	FILLER	NUMERIC	SEGMENT
ARE	FINAL	OBJECT-COMPUTER	SEGMENIT-LIMIT
AREA	FIRST	OCCURS	SELECT
AREAS	FOOTING	OF	SENTENCE
ASCENDING	FOR	OFF	SEQUENTIAL
ASSIGN	FOUR-70	OMITTED	SET
AT	FROM	ON	SIGN
AUTHOR	GENERATE	OPEN	SIZE
BEFORE	GIVING	OPTIONAL	SORT
BEGINNING	GO	OR	SOURCE
BLANK	GREATER	OUTPUT	SOURCE-COMPUTE
BLOCK	GROUP	PAGE	SPACE
BY	HEADING	PAGE-COUNTER	SPACES
CALL	HIGH-VALUE	PERFORM	SPECIAL-NAMES
CF	HIGH-VALUES	PF	STANDARD
CH	I-0	PH	START
CHARACTERS	I-O-CONTROL	PIC	STATUS
CLOCK-UNITS	IDENTIFICATION	PICTURE	STOP
CLOSE	IF	PLUS	SUBTRACT
COBOL	IN	POS **	SUM
CODE	INDEX	POSITION **	SYNC
COLUMN	INDEXED	POSITIVE	SYNCHRONIZED
COMMA	INDICATE	PROCEDURE	TALLY
COMP	INITIATE	PROCEED	TALLYING
COMPUTATIONAL	INPUT	PROCESSING	TAPE
COMPUTE	INPUT-OUTPUT	PROGRAM-ID	TERMINATE
CONFIGURATION	INSTALLATION	QUOTE	THAN
CONTAINS	INTO	QUOTES	THROUGH
CONTROL	INVALID	RANDOM	THRU
CONTROLS	IS	RD	TIMES
COPY	JUST	READ	TO
CORR	JUSTIFIED	RECORD	TYPE
CORRESPONDING	KEY	RECORDS	UNIT
CURRENCY	KEYBOARD **	REDEFINES	UNTIL
DATA	KEY-IN	REFL	UP
DATE-COMPILED	KEYS	RELEASE	UPON
DATE-WRITTEN	LABEL	REMAINDER	USAGE
DE	LAST	REMARKS	USE
DECIMAL-POINT.	LEADING	RENAMES	USING **
DECLARATIVES	LEFT	REPLACING	VALUE
DELETE	LESS	REPORT	VALUES
DEPENDING	LIMIT	REPORTING	VARYING
DESCENDING	LIMITS	REPORTS	WHEN
DETAIL	LINE	RERUN	WITH
DISPLAY	LINE-COUNTER	RESERVE	WORDS
DIVIDE	LINES	RESET	WORKING-STORAC
DIVISION	LINKAGE *	RETURN	WRITE
DOWN	LOCK	REVERSED	ZERO
ELSE	LOW-VALUE	REWIND	zeroes
END	LOW-VALUES	REWRITE	ZEROS
ENDING	MEMORY	RF	

* Four-Phase extensions to ANSI standard usage.
** As used in this compiler, this word is an extention to COBOL '68 standard.

COBOL LOW MEMORY ALLOCATION

\square

Screen \#	(81×24) 1	User Table Address Screen Location
2	$01540-01567$	$0140-01537$
3	$01570-01617$	$02140-03537$
4	$01620-01647$	$04140-05537$
5	$01650-01677$	$06140-07537$
6	$01700-01727$	$010140-011537$
7	$01730-01757$	$012140-013537$
8	$01760-02007$	$014140-015537$
9	$02010-02037$	$016140-017537$
10	$02040-02067$	$020140-021537$
11	$02070-02117$	$022140-023537$
12	$03540-03567$	$024140-025537$
13	$03620-03617$	$036140-027537$
14	$03650-03677$	$030140-031537$
15	$03730-03757$	$034140-035140-037537$

COBOL computes the location of User Tables and the IOID at object time. See Routine : KEYI in P710F. Each User Table is 24 (030) words. The IOID table is 64 (0100) words and must begin on an 0100 word boundary.
(48 x 24)
Screen \# User Table Address Screen Location

0660-0707
0710-0737
0740-0767
0770-01017
01020-01047
01050-01707
01710-01737
01740-01767
01770-02017
02020-02047
02050-02707
02710-02737
02740-02767
02770-03017
03020-03047
03050-03707

060-0657
01060-01657
02060-02657
03060-03657
04060-04657
05060-05657
06060-06657
07060-07657
010060-010657
011060-011657
012060-012657
013060-013657
014060-014657
015060-015657
016060-016657
017060-017657

COBOL KEYBOARD USER TABLE

Location Relative
to X_{1}
-2
-

Symbolic Name IENTRY

IENTRY+1

EENTRY

EENTRY + 1

DEST

CH

FLDST

FLDST+1
CUR

KITYP

CURC

CONT

FLDCNT

FLDLIM
SPARE
NOK
BUFF 1
BUFF2
BUFF3
BUFF4
VALSW

KYSUB

KIPIC
econv

Description

Operand address of BRM in IOID table (RP save worc). Normal keystrokes.

BRM KEYINT - the normal keystroke processor.

Operand address of BRM in IOID table (RP save word). Hard lest keystrokes.

BRM KEYERR - the lost keystroke processor.

Word address of present cursor location.

Byte offset of cursor in the word specified by $\operatorname{DEST}(0,1$, or 2$)$.

Word address of start of field being keyed into.

Byte offset of start of field.
Contents of the cursor address word without a cursor in it (used to blink cursor off).

Bits 0-7 indicate type of field being keyed.
$0=$ keyboard locked, 70 counts tenths of a second until this cursor is to be flashed on for . 1 second.

If a "terminate" code has been generated by this keyboard, it is stored here until the declaratives section is executed (level ?).

Binary column count of current cursor position in field (range: 1-FLDLIM).

Total byte count of the field.
Spare word.
Number of buffered keystrokes.
Keystroke Buffer 1
Keystroke Buffer 2
Keystroke Buffer 3
Keystroke Buffer 4
Validation has been requested for this field.

COBOL subscript for this keyboard (binary screen number:1-32).

Address of the KEYIN picture (or zero if none).

The address of the conversion table to be used with this keyboard.

job CONTROL STATEMENTS TO COMPILE, LINK-EDIT, AND EXECUTE

CR FCB

PRFCB

SD FCB


```
DC FCB
```


DISAM FCB

Word	$\begin{gathered} \text { Bit } \\ \text { Position } \end{gathered}$	Value	File Types	Meaning
0			NA	Current record address (absolute address in bytes)
1	-		NA	Maximum record size (bytes)
2			NA	Buffer size (bytes)
3	0.7		NA	Deblocking technique
		0	NA	SD file
		1	NA	Fixed, unblocked
		2	NA	Fixed, blocked
		3	NA	Variable, unblocked
		4	NA	Variable, blocked
		5	NA	Random DC, unblocked
-		6	NA	Random DC, blocked
		7.	NA	ISAM sequential, fixed
		8	NA	ISAM random, fixed
		9	NA	DISAM sequential, fixed
		10	NA	DISAM random, fixed
		11	NA	DATA IV/70
3	8.23		NA	Blocking factor
$4 \dagger$	0.7		NA	Device index from the @ drive parameter JCL statement
	8	0	NA	Constant
	9-23		NA	I/O record block routine for specific type of file
				:DISAM DISAM file :TAPE tape file
	-			:ISAM ISAM file :CARD card file :SDSC SD file :PRNT print file
				:DISC DC file
$5 \dagger$	0-8	BRM	NA	
	9-23		NA	Open and close routine for speciffic type of file :DSAMO DISAM file :TAPEO tape file :ISAMO ISAM file :CARDO card file :SDSCO SD file :PRNTO print file :DISCO DC file
6	$\begin{aligned} & 0.8 \\ & 9.23 \end{aligned}$	BAL :FATAL BRM	NA	Emor men
			NA	Error routine address Standard error procedure address, if USE AFTER STANDARD ERROR is used
6	0.8	BRM	NA	
7		:ERRx	NA	
	0.8		NA	Device type (compile time only) Card reader
		1	NA	
		2	NA	Printer
		3	NA	Magnetic Tape
		4	NA	DC
		5	NA	D4
		6	NA	SD

FCB Word Detail -3

[^1]

MASTER INDEX CYL NO. a

$A B-22$
logical cyl \#0
logical cyl \#1.
logical cyl \#2

DISAM TABLE

OFFSET	NAME	DESCRIPTION
	\$IDXCY	Index Sectors/Logical Cylinder
05	\$CYLSI	Sectors/Logical Cylinder
07	\$PMISI	\#Primary Master Index Sectors
015	\$RNBIT	\#bits in maximum cylinder rec

* The value of $\$$ RNBIT (n) is determined by the maximum number of bits needed to store the highest record number in a cylinder

DEVICE	MAXIMUM CYL $\#$	OF BITS REC\#	SECTORS/ PHYSICAL CYL
8230	12	10	16
8240	9	14	160
8260	10	14	110

1. Primary Master Index contains one entry for each cylinder where the entry contains the highest value key on the cylinder; a key of all 1's represents te highest possible key.

Each entry has the following format:

(N is dependant on the type of disc)
2. Primary Record (or Cylinder) Index occupies the first tracks of each logical cyiinder; it contains one entry for each data record in the cylinder The highest key will appear as is all 1's followed by a one-word pointer with bit 4 set.

Each entry has the following format:

Key

3. Secondary Master Index There is one secondary master index for each secondary key field. Each such index contains one entry for each sector in that secondary record index. Each entry contains the highest valued key in the sector (highest key is all 1's) and has the following format.

```
highest key on sector
```

```
rel. sector
```

4. Secondary Record Index The sectors in each of the secondary record indexes (one index for each secondary key) are chained. \$KEYS+6 in the DISAM Table has the absolute sector address of the first sector in the secondary record index for the first secondary key." That sector then has a pointer to the next sector in the chain. The pointers are followed by entries, one for each data record.

The first two words in the sector have the following format:
word 0 :

word 1:
next sector

The remainder of the sector consists of entries of the following format:

The highest key has all 1's followed by a pointer of 3777777 .

* The absolute sector addresses of the first sector for the other secondary indexes are in the DISAM Table, too. add the fillowing after DISAM FILE STRUCTURE page

DISAM Indexes

All indexes except Secondary Record Indexes are multiples of tracks because their sectors are read/written every other sector.

physical sector	logical sector
1	is
2	1
3	5
4	2
5	6
6	3
7	7
8	4

From sector to sector, keys are in ascending order; that is, all keys in logical sector \#6 are greater than those in logical sector \#3.

Within a sector, all keys are in descending sequence.
All pointers in indexes are relative to either start of file, start of cylinder, or start of sector.

RECORD 200 BYTES
 3 RECORDS/BLOCK

BLOCK $=1400$ BYTES
7 RECORDS/BLOCK

DC (3 RECORDS/BLOCK)

sLOCK 1

ILOCK

ISAM

DISAM

Primary		SECONDARY	
$\begin{aligned} & \text { MOM } \\ & \text { KEY } \end{aligned}$	helative ADDRESS	$\begin{gathered} \text { HOLA } \\ \text { KEY } \end{gathered}$	helative ADDRESS
AAA	1	810	1.3
8C8	2	810	175,1
		100	2.3
	.	100	2.1
		352	1.1
	:	.	.
		80	1.5
	.	-	.
212	1775		

CYIANDER NO.

ALTER THE NEW LIBRARY NAME IF YOU WISH. TEMPO3eO IS THE DEFAULT.
USE THE TAB KEY TO END A FIELD.
ALTER THE LISTING TITLE IF YOU WISH.
TITLE. COBOL LIBRARY CUSTOMIZER MODULE.
Answer these messages with a Y or N .
WILL YOU USE MAGNETIC TAPE?
WILL YOU USE 1600 BPI?
WILL YOU USE 800 BPI?
WILL YOU USE A CARD READER?
IS IT A BUFFERED CARD READER?
WILL YOU USE PRINTER FILES?
DO YOU WISH JCL AND ACCEPT DATA ITEMS
AND TAPE MOUNT MESSAGES TO BE LISTED?
WILL YOU USE A 8121 PRINTER?
WILL YOU USE A 8131 PRINTER?
WILL YOU USE A 8145/8146 LINE PRINTER?
CAUTION: YOU MUST USE AT LEAST ONE TYPE OF DISK.
WILL YOU USE 8230 DISC?
WILL YOU USE 8240 DISC?
WILL YOU USE 8260 DISC?
(If no disc is specified, the following message will appear and
LIBGEN will return to the beginning and ask the above questions over
again when the next key is pressed.)
****ERROR NO DISK IS USED. ****
PRESS ANY KEY TO CONTINUE.
WILL YOU USE SD TYPE (CHAINED) FILES?
WILL YOU SPOOL PRINTER OUTPUT?
WILL YOU USE DISAM FILES?
WILL YOU USE SECONDARY KEYS IN A DISAM FILE?
WILL A DISAM FILE BE OPEN FOR OUTPUT OR I-O?
WILL A DISAM FILE BE OPEN FOR SEQUENTIAL OUTPUT ONLY
(INITIAL LOAD)?
WILL THE VERB READ BE USED FOR A SEQUENTIAL DISAM FILE?
WILL THE VERB READ BE USED FOR A RANDOM DISAM FILE?
WILL THE VERB WRITE BE USED FOR A DISAM FILE?
WILL THE VERB REWRITE BE USED FOR A DISAM FILE?
WILL THE VERB DELETE BE USED FOR A DISAM FILE?
WILL THE VERB START BE USED FOR A DISAM FILE?
WILL YOU HAVE DISAM FILES THAT ALLOW CYLINDER OVERFLOW?
WILL READ BACKWARD BE USED FOR A SEQUENTIAL DISAM FILE?
WILL READ BACKWARD BE USED WITH A SECONDARY KEY FOR A SEQUENTIAL
DISAM FILE?
WILL YOU DO COMMUNICATION LOGGING TO DISC?
WILL YOU TAKE CHECKPOINTS OR ERROR DUMPS?
ARE YOU A NTP 150, 230, or 250 USER?
IS YOUR BAUD RATE (LINE SPEED) 4800 OR BELOW?
IS YOUR BAUD RATE BETWEEN 2401 AND 4800?
(BELOW 1200 IS IMPLIED IF YOU ANSWER N).
IS YOUR BAUD RATE BETWEEN 4801 AND 7200?
IS YOUR BAUD RATE BETWEEN 7201 AND 9600?
(ABOVE 9600 IS IMPLIED IF YOU ANSWER N).
IS YOUR NETWORK MULTI-POINT?
(POINT-TO-POINT IS IMPLIED IF YOU ANSWER N).
PRESS ANY KEY TO CONTINUE OR BOOT TO BYPASS ASSEMBLY.

COMMONLY USED LOW MEMORY LOCATIONS IN MONITR

The first 0100 locations of the bootstrap section of MONITR are considered to be frozen and may be accessed by the programer as absolute locations. These locations are carried over fram earlier releases. In addition, SBUF, the system card image buffer, is considered to be frozen at location 0140 because of the strategic location for both 48 and 81 character-per-line video display systems. Locations 0173-0177 were added to the absolute locations at release B06.

Note that user programs that employ SYSIN and/or SYSOUT in enviroments where more than one SYSIN or SYSOUT device is in use must have reference to certain of these locations. Specifically, CINPUT, LUCONV, and LPOUT furnish information required in multiple input and output situations. If SYSIN or SYSOUT are being used without MONITR, it will be necessary to read sector 0 of the disc if the status of these locations is required.

Cormonly Used Low Memory Locations:

Symbolic Location	Absolute Location	Contents/Significance
BT 10-1	0001	Bootstrap entry point and restart location.
		- Resets SYSTCK (system input stack) to empty. - Resets CINPUT (SYSIN input flag) to take input fram keyboard. - Zeros out rest of memory. - Reads rest of MONITR fran disc. - Enables memory parity checking. - Transfers control to MONITR.
BT10	0002	Same as 0001 except that SYSTCK and CINPUT are not changed.
MEMORY	0033	Highest menory address +1 .
CINPUT	0034	SYSIN input flag : $0=$ keyboard, nonzero $=$ cards.
LUCONV	0035	. Lower case conversion for SYSIN.
	,	$=0$ Convert lower case to upper case on input. NOT $=0$ No conversion of lower case to upper case.
LPOUT	0036	SYSOUT Printer index:
		$\begin{aligned} & 0=8145 \\ & 1=8143 \\ & 2=8121 \\ & 3=8131 \\ & 4=\text { No print } \\ & 5=8146,8148 \end{aligned}$
SYSTCK	0041	SYSIN input stack pointer for disc procedure files.
STWRD	0071	Status word location for \$DISC.

SBUF	0140	System input buffer used by SYSIN. Eighty characters long with a line feed in the 81st position. When the system is bootstrapped this buffer will contain "// SYSTEM IV/70 DISC OPERATING SYSTEM 88-0017. XX",
SBUF+1	0141	Used with SBUF +2 to obtain name on current control statement.
SBUF +2	0142	Used with SBUF+1 to obtain name on current control statement.
$\begin{aligned} & \text { SBUF }+033 \\ & \text { to } 037 \end{aligned}$	0173-0177	System communication area. This area is used by COBOL to cammicate between modules. These locations can also be used by user programs that reside with MONITR in memory, but a call to EXIT or rebootstrapping the program will destroy the information.
\$HEAD	0200	Routine used for disc I/O to read or write headers only. Calling sequence same as \$DISC
\$DISC	0204	Routine used for disc 1/O except for reading headers. Calling sequence" \|
-		BAL SDISC Linkage PZE REQTAB Address of disc I/O request table
		HLT \$ Disc error

Clearing a Printer Halt Under DOS

1. AUTO to Manual, RESET then STEP
2. LOAD 036 into RP
3. LOAD 04 into MEM
4. LOAD 72000001 into TIR
5. MANUAL to AUTO

Allocation Table

The allocation table is 200 words long, one word representing each usable cylinder. Within each word, bits $0-15$ represent the 16 relative sectors on the corresponding cylinder. If the bit is on, the represented sector is available. If off: the sector is non-existent, in cylinder 0 , in use, or in a file whose name is blank. Once allocated to a file, sectors are not available for reuse after the file is deleted until JOB is run. BOJ will make available any sectors missed by JOB.

Disc Directory

The disc directory has room to record 576 files/disc. Each entry is four words long and formatted as follows.

The area from the last entry to the end of the directory contains binary zeros. When an entry is deleted, its name is changed to all blanks. That entry area cannot be used until JOB is run which compacts entries, removing all those with blank names and names that start with TEMP.

IDOS NOTES:

- To bypass Autoboot (AD32 and AD33-A)

1. Set auto/manual switch to manual
2. Depress BOOT switch
3. Set console switch O up
4. Set auto/manual switch to auto
5. When cursor appears, return switch 0 to its down position

- To bypass MOD II set (AD32 and AD33-A) at boot time:

1. Set auto/manual switch to manual
2. Depress BOOT switch
3. Set all console switches down
4. Set auto/manjal switch to auto
5. When cursor appears, return switches to normal boot position

IDOS DISK STRUCTURE

All values shown for sector Address are in octal.
TYPE/USE BEGIN SECTOR END SECTOR
CONTROL DATA CORP. $-8270 \quad 2.5 \mathrm{meg}$
DIABLO $-(8230) \quad 2.5 \mathrm{meg}$

\$DIR SPAN	0	037
BOOT \& POST BOOT	0	04
IDOS DIRECTORY	05	034
SECTOR ALLOCATION TABLE	037	037

CONTROL DATA CORP. - (8270) 10 meg

\$DIR SPAN	0	077
BOOT \& POST BOOT	0	04
IDOS DIRECTORY	05	073
SECTOR ALLOC TABLE	074	077

INFORMATION STORAGE SYSTEMS (8240)40 meg

| \$DIR SPAN | 0 | 0237 |
| :--- | ---: | ---: | ---: |
| BOOT \& POST BOOT | 0 | 004 |
| IDOS DIRECTORY | 05 | 0212 |
| SECTOR ALLOC TAB 6 | 0220 | 0237 |

CONTROL DATA CORP. (8260) 80 Meg
SECTOR ADDRESS IS IDOS SECTOR NUMBER RELATIVE TO THE BEGINNING OF THE IDOS AREA ON THE PACK.

\$DIR SPAN	0	0337
BOOT \& POST BOOT	0	04
IDOS DIRECTORY	05	0271
SECTOR ALLOC TAB	0306	0337

THE DIRECTORY, BOOT \& POST BOOT, AND SECTOR ALLOC. TABLES ARE INITIALIZED WITH THE IDOS PROCESSOR PACKIN - SEE IDOS UTILITIES MANUAL.

- BE AHARE:

IDOS REL AD31 and the previous IDOS releases AD30 and $A D 29$ (E4 and FO IDOS had a very similar Disc Structure. The primary difference is that the Boot Sector was at Sector 0 thru 03 leaving one additional Directory Sector. Disc Packs that used sector 04 for directory entries (Directories are buil: top down i.e. Full Directories) are not usable by IDOS AD32.or AD33.

IDOS Disc Directory. Allocation Table, Boot

- The Number of Disc Directory Entries

Disc Type		Directory Sectors		No. of Directory\qquad				
		$\begin{aligned} & \text { E3 } \\ & \text { (\& After) } \end{aligned}$	$\begin{aligned} & \text { E2 } \\ & \text { (\& Prior) } \end{aligned}$		Afte			Prior)
8320		05-034	020-34	767			351	
8240		05-0212	020-0212		4287			3871
8260		.05-0271	020-0271		5791			5375
NOTE:	SUBTRACT	T 32 DECIMAL	ENTRIES IF	USING	AD32	FOR	ALL	DISC

- The Execution of BOOT

IDOS Directory Format

Nole: $X+6$ and $X+7$ are umpd by ISAM and RES: $X+6$ un ued by DISAM.

Sector Format of a chained file

Table 2 gives the meaning carried by each bit used by the system subroutines listed above.
Table 2. Error Bit interpretations.

Clearing a_Printer Halt Under IDQS - Rel " R " Level or Before

1. AUTO to MANUAL, RESET then STEP.
2. LOAD 0231 into RP
3. LOAD O4 into MEM
4. LOAD 0344 into RP
5. LOAD 0344 into MEM
6. LOAD 0336 into RP
7. LOAD 0336 into MEM
8. LOAD 72000446 into TIR
9. MANUAL to auto

Clearing a Printer Halt Under IDQS - Rel "E" Level and After

1. Auto to manual, reset then step
2. LOAD 72000116 into TIR
3. manual to auto
** NOTE: LPOUT should never be manually set to seven (7=SPOOL)

Word	Bit	Symbol	Meaning
$\begin{aligned} & \text { REQTAB }+0 \\ & \text { (status) } \end{aligned}$	0	A	Request has been resolved and status is current
	$1-5$	B	Reserved
	6	C	Interrupt timer expired
	7-11	D	Reserved
	12	E	Incorrect number of words transferred
	13	F	Invalid request table
	14-16	G	Reserved
	17	H	Seek incomplete
	18	1	Head range error (nonexistent sector address requested)
	19 20	J	Header error Too late to transfer data
	21	\underline{L}	- CRC error
	22	M	Disc controller busy
	23	N	Drive not ready
REQTAB+1	0	0	1 - seek only
			0 = seek, then read/write
	1	P	$1=$ read/write headers only 0 = normal read/write
	2.21	Q	Reserved (user should set to 0's)
	22.23	R	Physical drive number (must be between 0-3)
REQTAB+2	0	s	v = return after resolution $0=$ return after initiation
	1	T	Reserved (user should set to 0)
	$2-8$	U	Sector count minus 1
	9-23	v	Starting address of buffer
REQTAB+3	0	W	10 write to disc
			$0 \rightarrow$ read from dise
	1	X	$1=$ trigger interrupt on level 7 on resolution
	2	Y	$1=$ do not attempt retries
			$0=$ retry as per [SDERC]
	3-5	z	Reserved (user should set to 0's)
	6-23	.	Sector address (range $=0.06157$)
REQTAB+4	0-23	b	Reserved for time-critical queuing

Word	Bit	Symbol	Meaning
$\begin{aligned} & \text { REQTAB+0 } \\ & \text { (status) } \end{aligned}$	$\begin{gathered} 0 \\ 1-4 \\ 5 \\ 8 \\ 7 \\ 8 \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \\ & \text { E } \\ & \text { F } \end{aligned}$	Request has been resolved and status is posted Reserved SJDISC is busy at another interrupt level Lost interrupt tnot applicable to R92AMI) Logical device number specified is not assigred in LDTAB Illegal device type (logical number specified is not a disc number: physical device type specified is not OK) NP/80 too busy (8261 only)
	10	H	Spurious ready interrupt since last request for drive (potential pack change). with REQTAB +3 bit $3=18271$ only)
	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	I	Losing rotations (R92AMI, 8241 only) Incorrect number of words transferred (8231, 8241, 8271 only,
	13	K	Invalid request table (sector address too high)
	14	L	Drive is set for read on!y (8241. 8271 only.
	15	M	Software error (8241) or system has 8230 controller and user attempts to use 8271 driver (8271 only;
	16	N	File unsafe (8241)
	17	0	Seek intomplete (8231. 8241, 8271 only)
			(8261) Bits 14.17 contain the sequence number of the failing 10B in the NP/80
	18	P	Head range error (8231, 8241, 8271) or Series IVinterface problem (8261)
	19	Q	Header error
	20	R	Too late to transfer (8231, 8241. 8271 only) or attempt to write to read-only virtual dise (8261),
	21	S	CRC error
	22	T	Disc controller busy (8231, 8241, 8271) or conflict detected in signon process when usingNPMAM (8261)
	23	U	Drive not ready or nonexistent (with bit 7 , unassigned device, set)
REQTAB+1	0	v	1 = seek only
			$0=$ seek then read/write
	1	W	1 - read/write headers only $0=$ normal read/write 8231 . 8241.8271 only)
	2	\mathbf{x}	1 = short read (R92AMI, 8241 only)
	3	\mathbf{Y}	1 = stop short reads (R92AMI, 8241 only)
	4	z	$1=$ allow access to any cylinder (18241 diagnostic purposes only)
	5	:	$1=$ bits $6-8$ and $20-23$ are physical drive description
	6-8	b	Physical device type if bit $5=1$:
			$000=8231$ 001
			010 $=8261$
			$011=8271$
	9.16	c	Short read count minus 1 (R92AMI, 8241 only)
	17.18 19.23	d	Reserved (user should set to 0 's)
	19.23	e	Device number: logical if bit $5=0$; physical if bit $5=1$
REQTAB+2	0	1	$1=$ return after resolution 0
	1	g	= return after initiation Window number status:
			0 - set by SJDISC at REQTAB+4
			$1=$ preset by user at REQTAB+4 lextended memory processor only)
	28	h	Sector count minus 1
	9.23	i	Starting address of buffer
REQTAB+3	0	j	1 = write to disc $0=$ read from dise
	1	k	$1=$ trigger a level 7 interrupt upon resolution (not applicable to R92AMI)
	2	1	1 - do not attempt retries
			0 - retry errors as per §DERC (not applicable to R92AMI or 8261)
	3	m	Reject request and set status bit 10 (REQTAB+0) (8271 only)
	$\begin{aligned} & 4.5 \\ & 6-23 \end{aligned}$	n	Reserved (user should set to 0) Sector address
REQTAB+4			
	0 1.8	$\underset{a}{p}$	Reserved Window address (extended memory processor only)
	$9-23$	9	(ersed for time-critical queuing and NP/80 use
REQTAB+5	0.23	8	Required only for R92AMI 8241 when short reads or header reads are to be performed. Not needed in other applications

Key	Unshifted	Shifted	Controlled
TAB	Move cursor ahead to first colon; if none go home.	Move cursor backward to first colon; If none, to home.	Ignored
$\begin{aligned} & \text { NEW } \\ & \text { LNE } \end{aligned}$	Display new line symbol and advance cursor to first position of next line.	Move cursor to first position of current line.	Ignored
ENTER	Ienored	Display EOM symbol and then transfer data between start M1 symbol and EOM symbol to 360/370.	Start digital clock display.
ERASE HOME	Move cursor to home position.	Erase acreen and move cursor to home position.	Ignored
$\overline{\mathrm{DEL}}$	Backspace cursor one position.	Erase current character and move all characters between cursor and end of line (or new line symbol) backspace one position.	Blank current line; the cursor does not move.
$\underset{\rightarrow}{\mathrm{INSRT}}$	Move cursor ahead one position.	Move all characters between cursor and end of line for new line symbol) ahead one position.	Ignered
$\begin{array}{\|c} \text { ROLL } \\ \uparrow \end{array}$	Move cursor up one line.	Move screen up one line with wraparound (top line moves to last line).	Delete current line, roll up all lines below, and blank bottom tine.
ROLL	Move cursor down one line.	Move screen down one line with wraparound (bottom line moves to first line).	Insert a blank line at current line by moving all lines down one line. Bottom line is lost.
TOTAL	Lgnored	Same as unshifted. \dagger	Same as unshifted. ${ }^{\text {T }}$
PRINT	Displays EOM symbol and then print data between home position and EOM symbol.	Same as unshifted. \dagger	Same as unshifted. \dagger
$\begin{aligned} & \text { ERASE } \\ & \text { EOL } \\ & \hline \end{aligned}$	Erase all characters from cursor to end of current line.	Sarne as unshifted. \dagger	Same as unshifted. \dagger
ERASE EOS	Erase all characters from cursor to end of screen.	Same as unshitted. \dagger	Same as unshifted.t
LOWER CASE	First time, switch keyboard to lower case. Second time, switch keyboard to upper case.	Same as unshifted. \dagger	Same as unshifted. \dagger
REST	Unlock keyboard.	Same as unshifted.t	Same as unshifted. \dagger
START	Display start MI symbol at cursor location and advance cursor one position.	Same as unshilted. \dagger	Same as unshifted. \dagger
ATTN	Ignored	Same as unshifted.t	Same as unshifted. \dagger
PASSW	Enter password to initiate supervisory mode.	Same as unshifted.t	Same as unshifted. \dagger
SEE	Copy specified screen to first screen.	Same as unshifted.t	Same as unshifted. \dagger
SHOW	Copy first screen to specified screen.	Same as unshifted. \dagger	Same as unshifted. \dagger
MONIT	All keystrokes at either keyboard appear on both screens.	Same as unshifted. \dagger	Same as unshifted. \dagger
REPT	When this key is used with any other key (except SHIFT or CTRL), the corresponding character or command is repeated nine times per second. Thus, repeat space moves the cursor across the screen at a rate of nine characters positions per second.		
\dagger Tbe SHIFT and CTRL keythave no effect on there kers. A209a			

Note: If START MI is already on the screen, erase between the start symbol and the cursor. Place the cursor to the right of the old START MI symbol.

2260 Simulator Video Gaps

Configuration word \#2 in both the REMOTE and LOCAL Simulators reflects the video gaps on primary cables. Gapping is subject to the following rules:

1. There can be no vacant primary cable positions (i.e., if there are three primary cables, use cable positions 1-2-3 and NOT 1-2-4).
2. On systems with more than 12 primary cables, gaps cannot be specified for cables 13-16.
3. Gaps must be for the highest video areas on a primary cable and must be contiguous.

V ideo Size	48-Character	80-Character
Full (960)	Gaps not allowed	01-gap 2nd area
(40 $\times 24$)		
(80 $\times 12$)		
Half (480)	01-gap 2nd area	01-gap 4th area
(40 $\times 12$)		10-gap 3rd and 4th areas
(80 $\times 6$)		11-gap 2nd, 3rd and 4 th areas
Quarter (240)	01-gap 4th area	Not applicable
(40 $\times 6$)	10-gap 3rd and 4th areas	
	11-gap 2nd, 3rd, and 4th	areas

NOTE: Only the gapping bit patterns for the hardware configurations show above are legal. Other combinations will give undefined results.

Supervisory Option

This option refers to the terminals on the system as being labeled from A to Z; therefore, only 26 videos can be supported. Note also that only video zero (labeled A) can enter supervisory mode. With this option, the following keys have the indicated functions:

PASSW	Depress this key and then enter the password (12345678) to enter supervisory mode. Pressing the key a second time end supervisory mode.
SEE	After pressing this key, the supervisor presses CTRL with the letter assigned to a video to see its contents.
SHOW	This key displays the contents of the supervisor's video on any other video. The video is indicated by pressing the CTRL and the letter key assigned to that video.
MONIT	This key operates the same as the SHOW and SEE keys, except that any key pressed on either keyboard will be displayed o both videos.

Clock Option

To activate the clock display, position the cursor at the screen location where the clock value is to be displayed. Depress the CTRL and EOM keys. The time is set by entering the value from the keyboard. The clock is deactivated by pressing the CTRL and EOM keys again.

Adding Machine Option

The adding machine option is activated by the TOTAL key and deactivated b the ATTN key. This option is only available on the 48-character Remote Simulator.

Card/Tape Media Package Option

The Media Package allows the user to do card-to-tape, card-to-print, and tape-to-print operations. Note: This cannot be done concurrently with the 2260 Remote Simulator because of timing conflicts between the $1 / 0$ devices.

The Media Package Option is activated by the CTRL and INSERT keys. The option display will appear on the screen and the user may either utilize the default options or supply replacements. Use the TAB key to position the cursor on the next option and shifted TAB to go back to the previous option. Any options specified incorrectly are replaced by "???". When the options are correctly entered, depress the CTRL and INSERT keys to begin processing.

The options are:

Input	tape $=T P$
	card $=$ CD
Output	tape $=$ TP
	card $=C D$
Record Size	1 to maximum buffer size
Rewind	yes or no (tape only)
Blocked	1 to maximum buffer size
Number of Files	1 to 99 (tape only)
Carriage Control	yes or no for print tapes
Skip Files	number to be skipped (tape-to-print)
Card Deck End	the two characters used to specify the last card
Julian Date	used for tape and label writes
Lower Case	if data is to be printed in upper and lower case

Placing the 2260 Simulator on the 8250 Diskette

The normal 2260 Local or Remote system generation procedures are followed except that the Card/Tape Media Package Option cannot be supported and should not be generated. After system generation, the following procedur. creates a distribution diskette:

1. Boot from the latest DKOS Master Pack, load a new diskette and exfcut. the following:
// FLCOPY
$/ I=$ FMONTR, $0=$ FMONTR, MONITOR, CLEEAR, $\operatorname{SIZE}=(24,48,72$ or 96). //

This step will place the DKOS monitor on the diskette, create an empt directory and reserve space for "DUMP" (the checkpoint file).
2. Execute the control file DKTGEN to place the DKOS utilities on the diskette.
3. Put the 2260 Master Pack containing the newly generated simulator on drive 1 and execute FLCOPY to transfer the simulator to the diskette. First, examine the load map to determine if 0300 words are available at the top of RAM. If so, the /ADD CHECKPOINT option is recommended to allow memory checkpoints to be taken. Also, the /BOOT parameter i recommended to auto-load the simulator after running two diagnostic routines when the diskette is bootstrapped.
// FLCOPY
IINPUT =A2260 (LOCAL) or B2260 (REMOTE) 21.
/OUTPUT $=$ A 2260 or B2260.
/ADD CHECKPOINT. (If RAM is available)
/BOOT =A2260 or B2260. (Optional)
//
A minimum of three distribution diskettes should be prepared to be used as follows:

Copy 1 Daily use.
Copy 2 Immediate backup (used in case copy 1 is damaged).
Copy 3 Secondary backup (used only to create another copy in case copy 1 is damaged)

Placing the 2260 Simulator on Punched Cards

The following procedures will provide a deck of cards containing the 2260 Simulator object program.

1. Convert the absolute program to octal card format:
/f. DCCD
/INPUT=A2260 (LOCAL) or B2260 (REMOTE)
/ OUT PUT = TEMP .
//
2. Create a card image tape. This program must be executed from a card deck or control file. The output is $80-b y t e$ unblocked records.
// COPYMD
/SOURCE =TEMP.
(blank card)
At this point, key STEO1 on keyboard 0 , put switch 0 in the up position, and the disc/tape transfer will begin.
//
The output tape must be punched to 80 -column cards on a mainframe using any tape/card utility. Place a 5-card loader in front of the deck and the simulator can be booted through a card reader.

Note: The first card punched must be discarded.
3. Patches can be applied to the simulator by inserting patch cards as explained under CDDC in the utilities section. For example, the config words can be changed with the following card format:
, TEM XXXXX + AAAAAAA WWWWWWWW XXXXXXXX YYYYYYY ZZZZZZZZ - AAAAAAA, ID SEQ ADDR CW1 CW2 CW3 CW4 LOAD

The first configuration word is 13 words past the load address. The load address is dependent on the configuration:

Example: If the load address is 07540, then the first configuration word is 07553 and ADDR would be 0007553 . This card would normally replace the last card.

Minimum requirements:

```
O CPU with 12K bytes of RAM on 7001; 24K on 4300, 4500
Disc or card reader or diskette
O Async controller (8411)
O Keyboard
```

Maximum configurations:

RAM	CLK \& SUP	MEDIA	FULL	HALF	QUARTER
12	No	No	4	8	16
18	Yes	No	8	16	32
24	Yes	No	8	16	32
24	No	Yes	8	16	32
48	Yes	No	32	32	32
48	No	Yes	32	32	32
72	Yes	Yes	32	32	32
96	Yes	Yes	32	32	32

Notes:

1. If a printer is added, the maximum number of screens possible drops b: one.
2. If special gapping is used, subtract one from the maximum number of screens possible for each gap.
NOTE: The second line is garbage until communications have been established.
F5* DIAGNOSTIC KEY DISPLAY - REMOTE VERSION

Steps to Generate a REMOTE 2260 Simulator

1. Determine:
a. 2848 Address. Use the following procedure to convert the customer's EBCDIC control unit address to an ASCII address used by Four-Phase. Note that bits are counted left to right from 0 through 7. Note also that the only valid EBCDIC addresses are those where bits 0 and 2 are the same.
(1) Form the bit pattern of the 2848 EBCDIC address. For an address of $x " A 0 "$, the word is 10100000.
(2) Eliminate bit 2. Hex $x " A O$ " would become 1000000.
(3) Add a parity bit in front of bit 0 to obtain even parity. The example of hex $x " A 0 "$ would become 11000000.
(4) Convert this value to octal. Thus x "AO" would become 0300. This is the value which should be entered into the configur. ation word(s) below.

Note: The 2260 REMOTE Simulator only supports one 2848 address. Since an IBM 2848 supports only 16 screens and Four Phase can support 32 , if multiple 2848 s are being replaced, the customer must alter the polling and/or selecting lists in the communications software to incorporate the screens on the second 2848 as though they were on the first 2848.
b. Number and type of videos and cable gapping information.
c. Options desired by the customer. These include 029 keyboards, clock and supervisor functions, the card/tape media package, and the adding machine option (only available on 48-character systems.)
2. Use SIMED to patch the configuration words in the P161xx (P169xx for the card/tape media package) module where $x x$ is the current version.

Word 1 bits:

0	Reserved, must be 0
1	ONLY USED IF THERE IS A PRINTER IN THE SYSTEM $0=$ even number of videos 1 o odd number of videos
2	```0= no printer 1 = printer in system```
3,4,5	Reserved, must be 0
6-8	$\begin{aligned} & 001=960 \text { char video (full) } \\ & 010=480 \text { char video (half) } \\ & 100=240 \text { char video (quarter) } \end{aligned}$
9-14	Number of videos on system excluding printer or gaps
15	$\begin{aligned} & 0=\text { no special gapping } \\ & 1=\text { special gapping } \end{aligned}$
16-23	Remote 2848 address (get value from above table)

Word 2 Bits: ONLY USED IF CONFIG WORD 1 BIT 15 IS 1 (Special Gapping)
$0-1$
$2-3$
$4-5$
$6-7$
$8-9$
$10-11$

Primary cable 0	gaps	$12-13$
Primary cable 1 gaps	$14-15$	
Primary cable 2 gaps	$16-17$	
Primary cable 3 gaps	$18-19$	
Primary cable 4 gaps	$20-21$	
Primary cable 5 gaps	$22-23$	

Primary cable 6 gaps Primary cable 7 gaps Primary cable 8 gaps Primary cable 9 gaps Primary cable 10 gaps Primary cable 11 gaps

Word 3 Bits:
0

1-14 Reserved, must be 0
15-23 Print buffer size in words. May not exceed 320 (0500).
Word 4 Bits:
0-7 ONLY USED IF CONFIG WORD 1 BIT 15 IS 1 (Special Gapping) Total \# tables to initialize, = to \#tubes in config word 1. plus gaps in config word 2.

8-23 Reserved, must be 0
3. Run the following control files in the order specified:

4. The output of the CFREMx step is the remote simulator (B2260). See the separate descriptions in this section for instructions on putting B2260 on cards or diskette.
5. The simulator may be tested as follows:

If switch 0 is up, the simulator will halt after loading to allow for changes. The configuration words are located eight words past the halt address. Note: If the test CPU does not have an async board, the 2848 address can be changed to a 0 to avoid a cut-word hang. If the test CPU does not have a printer, change bit 2 of configuration word 1 to a zero to avoid a cut-word hang.

Initialization Constants (Config Words)

There are four (4) CONFIG words for each version of the Simulator (LOCAL and REMOTE) which reside in the Initialization source modules:

Media Package Included
Local: P47-9X
Remote: P169XY

Media Package Excluded
Local: P47-1Y
Remote: P161Yz

The CONFIG words also reside in the absolute load modules B2260 (REMOTE) and A2260 (LOCAL).

There are several methods by which the CONFIG can be altered to suit a user's requirements:

1. Source code alteration.
2. Absolute load module alteration.
3. Octal card deck "patch" cards.

Source Code Alteration Method

Use either SIMED or SNEDIT to perform the alteration process. Select the appropriate source module for LOCAL or REMOTE and with or without the Carc Tape Media Package. Enter Edit Mode and locate the four (4) DCN values immediately following

NON-MEDIA
LOCAL OR REMOTE
the BAL B2848 instruction located eleven (11) words past the START label in both the P47-1Y and P161YZ modules.

MEDIA
LOCAL OR REMOTE
the BAL CB2848 instruction located three (3) word past the :BEGIN label in P47-9Y and one (1) word past the : BEGIN label in Pi69YZ.

Enter the appropriate bit patterns for the CONFIG words and exit SIMED in the normal manner. Reassemble the altered source module using the DOS program // ASM and re-execute a complete SYSGEN.

Absolute Load Module Alteration Method
Place console switch 0 up before entering // B2260 (Remote) or // A2260 (Local) and pressing the EOM key and the system will halt at RP+2 past tht HLT $\$$ instruction. Note the contents of the RP register. Select MEM and STEP through the program until the BAL B2848 (Non-media LOCAL/REMOTE) or the BAL CB2848 (Media LOCAL/REMOTE) is encountered. It can be recognized by the octal 66 in the first six bits. The next four locations contain the CONFIG words. Enter the appropriate constant in each location with the console switch keys, pressing LOAD and STEP after each entry. After entering the CONFIG word constants, select TIR and enter a BRA RP-1 where $R P$ equals the value of the "initial halt". Select AUTO and the program will begin execution by clearing all screens and displaying a blinking cursor in the HOME position.

Octal card decks are created with the DOS utility DCCD. This utility creates a card image file on disc. The file is then copied to tape using the DOS utility COPYMD. The tape must then be punched into 80-column cards on an IBM $360 / 370$.

```
// DCCD
II =A2260 (LOCAL) or B2260 (REMOTE)
/0=TEMP.
//
// COPYMD (creates a card image tape)
/ SOURCE = TEMP.
/ TAPE = TAPE.
                    (blank card)
At this point, key STEO1 on keyboard 0, put switch 0 in the up
position, and the disc/tape transfer will begin.
//
```

b

Note: The output tape must be punched to $80-c o l u m n$ cards on a main-frame using any tape/card utility. Place a 5 card loader in front of the deck and it can be booted through a card reader.

The following points should be noted about the format of the octal card deck:

1. Each card begins with the three letters which are the first three letters of the input file name. If input is for LOCAL Simulator, the first three letters would be 'A22'. For the REMOTE Simulator, they would be 'B22'.
2. Columns 4-8 are the card deck sequence numbers starting with zero and incremented by one for each successive card. The sequence numbers ar in OCTAL.
3. Columns 9-72 contain contiguous eight digit octal representations of instructions, data, and/or conrol statements. These eight digit representations may be one of four types:
a. True data and/or instructions (72001577).
b. Origin statements, first digit is a "+" or "\&".
c. Check-sum values, first digit 'P' through 'W'.
d. Transfer values, first digit '-' followed by an address.
4. Columns 73-78 of the next to last card contains the check-sum value with zeroes padded through the card.

Minimum requirements:
CPU with 12 K bytes of RAM Disc or card reader or diskette Channel adapter (7071 or 7072)

Maximum configurations:

RAM	CLK \& SUP	MEDIA	FULL	HALF	QUARTER
12	No	No	4	8	16
18	Yes	No	8	16	32
24	Yes	No	8	16	32
24.	No	Yes	8	16	32
48	Yes	No	32	32	32
48	No	Yes	32	32	32
72	Yes	Yes	32	32	32
96	Yes	Yes	32	32	32

Notes:

1. If a printer is added, the maximum number of screens possible drops by one.
2. If special gapping is used, subtract one from the maximum number of screens possible for each gap.
3. Determine:
a. 2848 address (Note: The local simulator allows 1 or 2 addresses)
b. Number and type of videos and any cable gapping information.
c. Options desired by the customer. These include 029 keyboards, clock and supervisor functions, and the card/tape media package,
4. Use SIMED to patch the four configuration words in the P47-1x (P47-9x for the card/tape media package) module where x is the current versio

Word 1 Bits:

0	$\begin{aligned} & 0=\text { one } 2848 \text { address } \\ & 1=\text { two } 2848 \text { addresses } \end{aligned}$
1	Reserved, must be 0
2	```O= no printer 1 = printer in system```
3,4,5	Reserved, must be 0
6-8	$\begin{aligned} & 001=960 \text { character video (full) } \\ & 010=480 \text { character video (half) } \\ & 100=240 \text { character video (quarter) } \end{aligned}$
9-14	Number of videos on system
15	$\begin{aligned} & 0=\text { no special gapping } \\ & 1=\text { special gapping } \end{aligned}$
16-23	Low 2848 hex address (IBM EBCDIC without conversion)

Word 2 Bits: ONLY USED IF CONFIG WORD 1 BIT 15 IS 1 (Special Gapping) Note: Each gap reduces by one the number of videos supported. (Si "2260 Simulator Gaps" in Section AE - 2260 Remote)

| $0-1$ | Primary cable 0 gaps | $12-13$ | Primary cable 6 gaps |
| :--- | :--- | :--- | :--- | :--- |
| $2-3$ | Primary cable 1 gaps | $14-15$ | Primary cable 7 gaps |
| $4-5$ | Primary cable 2 gaps | $16-17$ | Primary cable 8 gaps |
| $6-7$ | Primary cable 3 gaps | $18-19$ | Primary cable 9gaps |
| $8-9$ | Primary cable 4 gaps | $20-21$ | Primary cable 10 gaps |
| $10-11$ | Primary cable 5 gaps | $22-23$ | Primary cable 11 gaps |

Word 3 Bits: ONLY USED IF CONFIG WORD 1 BIT 16 is 1 (Printer in System)
$0 \quad 0=$ use bits $15-23$ for buffer size
1 = use config word 1 screen size for print buffer size
1-14 Reserved, must be 0
15-23 Print buffer size in words. May not exceed 320 (0500).

Word 4 Bits:

3. Run the following control files in the order specified:

// UNIVAC	Must be run to define printer (even if not in system)
// STDKBD	Standard keyboard (7201)
$/ / \text { or } 0 \mathrm{~K}$	029 data entry keyboard (7204)
// RSPRCL or	No clock and supervisor functions
// ASPRCL	Include clock and supervisor functions (requires 18 K)
$/ / \text { RLCDTP }$	No card/tape media package
// ALCDTP	Include card/tape media package (requires 24 K)
// CFLOCX	Where x is from this table of supported versions

x	CHAR	RAM	LOAD
CFLOCA	40	12	03660
CFLOCB	80	12	03660
CFLOCC	40	18/24	07540
CFLOCD	80	18/24	07420
CFLOCE	40	48	06660
CFLOCF	80	48	07540
CFLOCG	40	72/96	06660
CFLOCH	80	72/96	07540

4. The output of the CFLOCx step is the local simulator (A2260). See the instructions under 2260 Remote (Section AE) to put A2260 on cards or diskette.
5. The simulator may be tested as follows:
a. If switch 0 is up, the simulator will halt after loading to allow for changes. The configuration words are located 8 words past the halt address. If no printer is on the test CPU, set config word 1, bit 2 to 0 to avoid a cut-word hang.
b. If no local channel is on the test CPU, when a cut-word hang occurs, press RESET and STEP, decrement RP by 1 , and NOP the I/O instruction there. Then LOAD a branch to that location into TIR. This cut-word hang will occur twice.

When channel failures occur, there are several locations to note to aid in problem isolation. The steps to be taken when a failure occurs are:

 * DO NOT HIT SYSTEM RESET AT ANY TIME

Step 1. Stop all keyboard activity on the system. This will preserve the state of the system when the failure occurred.

Step 2. See if the F5 Diagnostic Dump works. If the F5 dump does not work on one keyboard, try another.

Step 3. Place the system in MANUAL.
Step 4. Write down the contents of all the registers.
Step 5. Read out the contents of the following locations:

LOCATION	VERSION	
01017*		MEANING
01022^{*}	40 Char.	
01023^{*}		New command status
		40 Char.

* For an 80 character system, add 0600

Step 6. Obtain the current status of the channel by placing 67701004* in TIR and depress STEP. Read out location 1024* which contains the status word.

Step 7. Obtain the diagnostic status (4 words) of the Channel Adapter.
a. LOAD 40000000 into location 1023*.
b. LOAD TIR with 67701004* and press STEP.
c. Load TIR with 67701006* and press STEP.
d. Read out and note the contents of the following locations:

LOCATION	VERSION	
01024*		MEANING
01025^{*}		40 Char.

* For an 80 character system, add 0600.

Step 8. Obtain the contents of the following locations:

LOCATION	VERSION	MEANING
01015*	40 Char.	Location of the user table.
01020*	40 Char.	Write Flag. If $=0$, means write operation.
01021*	40 Char.	Read Flag. If $=0$, means read operation.
01046*	40 Char.	Word location of buffer where next transmission will start.
01037*	40 Char.	Last data word read from 7071.
01014*	40 Char.	2848 Address
01035*	40 Char.	If a Halt, contents indicates where from.
053	BOTH	General I/O instruction pointing a 2-word pair.

Step 9. If a KEYBOARD is LOCKED, obtain the listed User Table information for that keyboard.

Step 10. If possible, obtain the $360 / 370$ System Status information by execution of SEREP (System Environment Recording, Editing, and Printing). SEREP is part of the $360 / 370$ Diagnostics Package which provides for printing $360 / 370$ system status information.

Step 11. If execution of SEREP is not possible, obtain the contents of the following hexidecimal locations if the $360 / 370$ is hung in a hard wait.

Hex location 3B and 40-47.

Btt	Signal			
	Word 0	Word 1	Word 2	Word 3
0	BOOT Address Equal	Interrupt	Interrupt Request 1 \& 2	Data Interrupt
1	Upper \neq and Lower \neq	Upper Less or Equal	Printer Address Equal	Upper Less
2	--	---	Control Unit Request	Clocked Read Buffer Full
3	---	BOOT Address Ok	Channel Request	Write Buffer Full
4	IV:70 Buffer Full	Read Buffer Full	Device Busy	Allow Write
5	Convert	Status Request	Control Unit Busy	Request Next Word
6	Bus Out Parity Ok	Service Request	Adspter Busy	Continue
7	Not Enable Bus In	Printer Intervention Required	Interface Busy	End Op
8	DB1.0	Address Ok	Proceed	Hold/Select Out Gated
9	DB1.1	Test 1/O	Map	Allow Bus
10	DB1-2	No Op	360 System Reset	Stop
11	DB1-3	Sense	Load Line Address Register	Allow Request In
12	DB1-4	Gate Address to Address Register	Attention	Attention Accepted
13	DB1-5	Printer Busy	Done	Under Flow
14	DB1-6	Intervention Required	Byte Counter Lo-A	First Byte
15	DB1.7	Gate Bus In-A	Byte Counter Lo-B	Read
16	Internal Bus Out-0	Gate Bus In-B	Byte Counter Lo-C	Write
17	Internal Bus Out-1	Bus Out Check	Byte Counter Lo-D	Stack
18	Internal Bus Out-2	Command Reject	Byte Position 0	Bus and Status
19	Internal Bus Out-3	Control Unit End	Byte Position 1	Read Special
20	Internal Bus Out-4	Command Chain	Byte Position 2	Printer Request Device End
21	Internal Bus Out-5	Channel End	Load Byte 0	EOM Character IV/70
22	Internal Bus Out-6	Device End	Load Byte 1	NL Character From IVi70
23	Internal Bus Out-7	Unit Check	Load Byte 2	NL Character From Channel

F5* Diagnostic Key Display - Local Version
1st Line: Octal Memory Dump
0000000000000000000000000000000000000
$L=$ Location in memory where 1 st word 2 nd word 3 rd word 4 th word dump starts, obtained from console switches 11-23.

Each depression of the F5 key regenerates this display. Use the REPT key to regenerate the display about $9-10$ times per second.

SECTION	I SYSTEM CONFIGURATION	PAGE
1	Terminal Support	AG 15-2
2	Simulator Configuration Words	AG15-2
3	A76 Configurator	AG 15-3
4	Execution Time Reconfiguration	AG15-5
5	minigen	AG15-6
6	Store and Forward	AG 15-8
7	tBLED	AG 15-9
SECTION	II NTP/150	
1	SB3270 Interface	AG15-10
2	Entry Codes	AG 15-10
3	Detail Codes	AG15-11
4	NTP/150 Subroutines	AG 15-13
5	SBRSET	AG 15-14
6	Software Action Codes	AG15-15
SECTION	III DEBUGGING	
- 1	Escape Key Functions	AG 15-16
2	Display of Attribute Characters	AG15-17
3	Display of Line Control Characters	AG 15-18
4	TRC327 Execution	AG15-19
5	TRC327 Output	AG 15-20
6	Taking Memory Dumps	AG15-22
7	DMP327 Execution	AG15-22
8	DMP327 Output	AG 15-23
SECTION	IV BISYNC and 3270 PROTOCOL	
1	3270 Control Characters	AG 15-27
2	Bisync Data Link Control	AG15-28
3	3270 Message Formats	AG15-29
4	Local and Remote Command Codes	AG 15-30
5	Write and Copy Control Characters	AG15-30
6	Buffer Control Orders	AG15-31
7	Attribute Bytes	AG15-31
8	Attention ID Byte	AG 15-32
	Remote Status/Sense Bytes	AG15-33
10	Local Status and Sense Bytes	AG 15-35
SECTION	v COMMUNICATION CONTROLLERS	
1	8436-2 Status and Control	AG15-36
2	7073 Status, Control, and IOID's	AG 15-37
3	7074 Status and Control (WIDGET)	AG 15-39
SECTION	VI MISCELLANEOUS TOPICS	
1	Bypassing Communication Controller Halt	AG15-40
2	Adjustment of Dual Intensity	AG15-40
3	Marketing Considerations	AG15-40

I. 1 TERMINAL SUPPORT

memory size		24K			48K			72K			6K	
screen size	480	960	1920	480	960	1920	480	960	1920	480	960	1920
REMOTE:												
no printers	5	3	1	32	19	10	32	32	18	32	32	24*
8121's	3	1	1	30	18	9	32	32	17	32	32	25*
line printers	3	2	1	31	18	10	32	32	18	32	32	26*
both printers	2	1	1	29	17	9	32	32	17	32	32	25*
EMOTE Store and	For	ward:										
no printers	0	-	0	18	-	6	32	-	14	32	-	22
$8121^{\prime} \mathrm{s}$	0	-	0	15	-	5	32	-	13	32	-	21
line printers	0	-	0	16	-	5	32	-	13	32	-	21
both printers	0	-	0	15	-	4	32	-	13	32	-	21
LOCAL:												
no printers	6	3	2	32	19	10	32	32	18	32	32	$26 *$
$8121^{\prime \prime}$	3	2	1	30	18	9	32	32	17	32	32	$26 *$
line printers	4	2	1	31	19	10	32	32	18	32	32	$26 *$
both printers	2	1	1	30	18	9	32	32	17	32	32	26*
LOCAL Store and Forward:												
no printers	0	-	0	18	-	6	32	-	14	32	-	22
$8121 \mathrm{~s}$	0	-	0	15	-	5	32	-	13	32	-	21
line printers	0	-	0	17	-	6	32	-	14	32	-	21
both printers	0	-	0	15	-	5	32	-	13	32	-	21

1.2 SIMULATOR CONFIGURATION HORDS

Terminal Polling Byte from Host System:

Configuration Word:

.1. NTP/150.
$\ldots 1 \ldots, \ldots$.
... 1.................. ... Line printers configured.
... .1. 8121 printers configured.
... ..x x.. Communication code used
00 EBCDIC.
01
10
Invalid.
ASCII-A.
ASCII-B.

$x x x \quad x x x$ Number of terminals configured.
// A76
/INPUT $=$ xxxxxxey Input file (optional, default is DEFAULTGO)
/OUTPUT $=x \times x \times x x$ Output file (optional, default is CFGFiL)
/AUTOMATIC $=\mathbf{x x}$. //

If /A is specified, then the program operates as though SHIFTED DOWN ARROW were pressed repeatedly.

A76 creates and executes control files "C77G-C", which assembles the conversion table source file "P77-TA", and "C77G-E", which loads the 3270 simulator.

Keyboard Input to A76:

A76 page 1:

LINE LENGTH OF SYSTEM INPUT FILE
output file

Enter 40 or 80.
Enter input configuration file and drive.
Enter output configuration file.
(CFG327 keyboard entries cont.)

A76 page 2:

```
    +---------------------------------------------------------
```

 + APPLICATION NTP100; REMOTE; COBOL E FIELD? N/A;
 + MEMORY SIZE IS 72K BYTES; SCREEN SIZE IS \(80 \times 24\);
 + TRANSMISSION CODE(EBCDIC/ASCIIA/ASCIIB)? EBCDIC; +
 + LINE SPEED IS 4800 BPS; CONTROL UNIT ADDRESS 40;
 + MAXIMUM MESSAGE LENGTH (WITH ORDER BYTES) 2000;
 + DEBUG? N ; STRING EDITOR DEBUG? \(\mathrm{N} / \mathrm{A}\)
 + LOG LENGTH N/A; ; CHECKPOINT? N; CKPT DEV N/A; +
 + TAB TO COLON? N ; STORE AND FORWARD? N;
 \(+\)
 +
 + PRESS SHIFTED RIGHT ARROW TO ACCEPT A FIELD +
 APPLICATION
REMOTE
COBOL e FIELD
MEMORY SIZE
SCREEN SIZE
TRANSMISSION CODE
LINE SPEED
CONTROL UNIT ADDRESS

MAXIMUM MESSAGE LENGTH debug
STRING EDITOR DEBUG LOG LENGTH

CHECKPOINT
CKPT DEV
TAB TO COLON
STORE AND FORWARD
LINE DISCIPLINE
NRZI (Non Return to Zero

Enter 100 or 150.
Enter REMOTE or LOCAL.
Enter Y or N.
Enter 24, 48, 72, or 96.
Enter $80 \times 24,80 \times 12$, or 40×12.
Enter EBCDIC, ASCIIA, or ASCIIB.
Enter 24, 48, 72, or 96.
Enter local control unit address or
bisync control unit polling address or SNA physical unit address.
Enter length of longest message expected.
Enter Y or N.
Enter Y or N.
Enter 0 to use all available memory. Compute
log area size to allow for NTP/ 150 overlays.
Enter Y or N .
Enter 8230, 8240, 8250, or 8260.
Enter Y or N.
Enter Y or N.
Enter BSC or SDLC. (N/A for LOCAL)
Inverted)
Enter Y or N to match the specification in the NCP 3704 or 3705 sysgen.

A76 page $4:$

```
+ IS LOWER CASE USED BY PRINTERS? N/A;
    + WHAT IS THE 8121 DEFAULT FOR LINES/PAGE? N/A;
    + WILL SB3270 OPEN FILES? N/A;
    + NUMBER OF DISC RETRIES? N/A;
    +
    + LOAD MODULE NAME? SIM327;
    +
    + PRESS SHIFTED UP ARROW TO REVIEH CONFIGURATION
    + OR PRESS SHIFT DOWN ARROW TO FINISH
```



```
LOWER CASE BY PRINTERS
Enter Y or N.
DEFAULT LINES/PAGE
SB3270 OPEN FILES
DISC RETRIES
LOAD MODULE NAME
Enter 01-99.
Enter Y or N.
Enter 0-9.
Enter any valid IDOS file name.
```

With console key 0 up :

1. Select RAM, the control unit address will be displayed in the console lights right adjusted in following formats.

Local - the most significant 4 bits of the hex address ($50=5$). Remote - the least significant 5 bits of hex address ($5 \mathrm{~F}=1 \mathrm{~F}$).
2. Keeping RAM selected depress the step switch and release. A word representing the description of the first terminal will be displayed.

Terminal Descriptor Word

After the terminal description is entered, keeping MEM selected toggle STEP. This will cause the next terminal description to be displayed. All console lights on idicates the end of the terminal description list.
3. To change the poll delay select RA with the console switches. The poll delay is displayed as a positive octal value representing tenths of a second. This delay must not exceed 3 seconds. Set the console switches to the new value and press LOAD. Be sure switch 0 is down for this step.
4. Set register select switches to TIR and return to AUIO. If switch 0 is up, another halt will occur.
5. The second halt allows the initialization of communications to be bypassed. Move AUTO/MAUAL to MANUAL, select MEM, set a NOP (eg. 06700000) in the console keys, and press LOAD. Reset the register select switchs to TIR and return to AUTO mode.

The MINIGEN program permits modification to an existing NTP/100 or 150 configuration without performing a new configuration procedure.

```
MINIGEN allows the user to modify:
    - Control Unit Address
    - 8121 Character Printer default page size
    O Terminal Characteristics
```

MINIGEN can create any number of MINIGEN parameter load modules (MPLM) with different configurations. Each MPLM is stored as a different program file. Execution of an MPLM file updates the configuration table in a 3270 absolute load module.

Restrictions:

- MINIGEN must not be used on releases prior to GO.
- MINIGEN must not add more terminals to the original configuration.
- Before altering a configuration, store the original system configuration as an MPLM.
- Alter default page size for 8121 character printers only if the original configuration included at least one 8121.
- Do not configure a system with all terminals deleted.
- Video gapping may be altered unless it increases the absolute load address of the Simulator.
- If a local 3270 control unit address is changed, all terminal addresses must be changed.
// MINGNX $\quad x=3$ for IDOS or 5 for DKOS
Keyboard Controls
CTRL E
Exit from MINIGEN
SHIFTED \uparrow Restart MINIGEN at first display, All previous changes are saved

SHIFTED \longleftarrow Skip back one field
SHIFTED \longrightarrow Skip forward one field
SHIFTED \downarrow Store the current page and skip to the next page
RESET Unlock the keyboard after an erroneous entry and position cursor within a field

```
Page 1 Entries - File Specifications
```

$/ I=$ filename $-a, \quad 0=$ filename -6
/U=filename-c
//
/INPUT file can only be on MPLM file. It cannot be modified directly. Using the same name for both /I and /O file has the effect of modifying the /I file. To examine, but not modify an existing MPLM, just specify

- The update file must be the NTP/100 or NTP/150 load module file - ex. A77C. It is used as both the source file and destination file to receive the modified configuration table. When both $/ I$ and $/ 0$ files are specified, MINIGEN uses $/ I$ as the base configuration and alter the NTP load module.

Page 2 Display - File Verification

File Name
XXXXXX EXISTING MPLM
XXXXXX MPLM TO BE CREATED
XXXXXX NTP 100 or NTP 150 LOAD MODULE TO UPDATE
GO TO NEXT PAGE (Y/N)
X's appear where file names were not provided.
Page 3 Display - CU_Address and Page Length
Page three allows the user to alter the control unit address and/or the default lines per page for 8121 printers.

Page 4 Display - Terminal Descriptors
Page four displays the terminal descriptor list. This display is repeated one time for each terminal in the configuration.

Format:
TERMINAL $X X$ USES KEYBOARD TYPE $X(0,1,2)$ IN SCREEN
POSITION XX WITH POLL ADDRESS XX AUDIBLE ALARM (Y,N)
X INITIAL COBOL INTR X PRINTER TYPE 81XX (NO, 21=8121)
$L P=81 L P)$ AT HARDWARE ADDRESS OXX.
Page 5 Display - Program Termination
Format:
END OF LIST
HIT U TO UPDATE DISC AND EXIT
HIT CTRL E TO EXIT AND NOT UPDATE
HIT SHFT UP ARROW TO RESTART

```
To construct a Store and Forward DF3270 disc file, enter:
```

```
    // AF3270
    /OUTPUT FILE = DF3270 e drive 0.
    /VIDEO TYPE = 480 BYTES/SCREEN
                    or
                    1920 BYTES/SCREEN
    /TERMINALS CONFIGURED = of terminals.
    /FORMAT STORAGE = of formats.
    /SCREEN IMAGE STORAGE = Of screens
//
The Store and Forward routines access the simulator by means of the NTP/
150 Subroutines and therefore execute in the background. Even though it
uses NTP/150 subroutines, it is configured as an NTP/100 system.
The Store and Forward function keys:
- CTRL G - Store the format on the screen into the DF 3270 file and
        catalog the name in the DF3270 directory.
- CTRL H - Delete the format name from the DF3270 directory and delete
        the image from the DF3270 file.
- CTRL R - Display the first completed form image in the terminal's
        queue.
- CTRL N - Delete the first completed form image in the terminals queue
        and display the next image.
- CTRL F - Find the format name in DF3270 directory and display the
        format on the video screen.
- CTRL S - Store the completed form image on the video screen into the
        terminai's queue.
When executing A76 to configure NTP/100 Store and Forward System, enter
the keyboard type = U5.
The simulator must be in debug mode (ESC key-P - PASSWORD) to create or
delete format images.
```

The internal 3270 keyboard code tables must be modified so that these keystrokes invoke Store and Forward functions. This is done by the utility program TBLEDT.

```
Listing of T77AC2
```

Col
1
016253 CTRL-N to Entry Code
022254 CTRL-R to Entry Code 2
023255 CTRL-S to Entry Code 3
$006256 \quad$ CTRL-F to Entry Code 4
007257 CTRL-G to Entry Code 5
$010260 \quad$ CTRL-H to Entry Code 6
// TBLEDT
/INPUT TABLE $=$ T77ATP
/OUTPUT TABLE - T77LU5
/CHANGE $=$ T77AC2
// TBLEDT
/INPUT TABLE $=$ T77ATQ
/OUTPUT TABLE $=$ T77LU5
/CHANGE $=$ T77AC2
// TBLEDT
/INPUT TABLE $=$ T77ATR
/OUTPUT TABLE $=\mathrm{T} 77 \mathrm{XU} 5$
/CHANGE $=$ T77AC2.
//

```
When executing A76 to configure NTP/100 Store and Forward System, enter
the keyboard type = U5 .
The simulator must be in debug mode (ESC key-P - PASSWORD) to create or
delete format images.
```

```
LINKAGE SECTION.
01 USER-SCREEN.
    02 USER-LINE OCCURS 24 TIMES.
            03 SCREEN-LINE PICTURE X(80).
            03 FILLER PICTURE X(16).
01 USER-CURSOR.
    02 USER-RONID PICTURE S9(6) COMPUTATIONAL.
    02 USER-COLID PICTURE S9(6) COMPUTATIONAL.
01 USER-SUBSCRIPT PICTURE Sg(6) COMPUTATIONAL.
O1 ENTRY-CODE PICTURE Sg(6) COMPUTATIONAL.
01 DETAIL-CODE PICTURE S9(6) COMPUTATIONAL.
```

```
PROCEDURE DIVISION USING
    USER-SCREEN,
    USER-CURSOR,
    USER-SUBSCRIPT,
    ENTRY-CODE,
    DETAIL-CODE.
```

II. 2

Entry Code

1

2

3

4

5
6.

ERTRY CODES
Condition
A transmission from the host computer contained an extra escape character (ESC, X'27') as part of a wite or Erase/Write data stream.

A transmission from the host computer is intended for a terminal that is conditioned to interrupt all transmission in this terminal, and execute $S B j 270$ as a result of the intercept.

An operator entered a key that is defined (During system configuration) as a request for $S B 3270$ execution.

An operator entered a key that would normally cause a transmission to the host, at a terminal that is conditioned to intercept all transmissions and to cause execution of SB3270.

A terminal that $S B 3270$ previously requested control of is now available.

An idle condition exists where SB3270 could be executed, but none of the other conditions are pending.

A print operation initiated by SB3270 has terminated; the simulator returns the termination status of the operation to the user program in Detail-Code.

Entry Codes 1 and 2, and SBCOPY:

Bit Explanation

Notes: \quad. The subroutine "SBBITS" may be used to determine the value of specified bit combinations.
2. When $S B 3270$ is entered, the operations indicated by the DETAIL-CODE will already have been performed except:
a. A print operation is not started, even if bit 20 is set.
b. The keyboard remains locked, even if Dit 22 is set.

Entry Code 4:

| Detail Code
 Value
 Equated Key Sequence | Aid Iransmitted When |
| :---: | :---: | :---: |
| Passed to SBXMIT | |

NOTES:

1. The above are the Attention Identification Codes (AID) associated yith the specified keys; however, the same eighteen detail codes may be specified for any other eighteen key combinations during Simulator Generation.
2. If the DETAIL-CODE is changed by the subroutine, the transmitted AID character will correspond to the modified DETAIL-CODE.
3. If a 3270 access key is redefined as a subroutine access key, entry code 3 is used when the key is pressed. The detail code will be whatever was assigned (see the NTP $100 / 150$ System Generation and Debugging Guide.

Entry Code 7:

Code

1

2

3
4

Meaning
Intervention Required
Normal device end
Device end and intervention required
Other (device busy, unit specify, transmission check, command reject, data check, control check, or operation check).

In 3270 local systems, the IBM channel can issue a command to the 3271 Control Unit to perform a system reset. The local NTP/150 interface has been designed to intercept the command and notify SB3270 that a "system reset" command was issued, but the simulator has not performed it. ENTRYCODE 1 has been modified to include the "system reset" command in its DETAIL-CODE as follows:

	000	020	040	060	100	120	140	160	200	220	240	260	300	320	340
000			SP	0	e	P	-	P	NOP	DUP	PFC	C 12			
001		[1	1	A	W	a	q	UP	FM	ESC	C 13			
002			"	2	B	R	b	r	LFT	PA 1	HOM	C14			
003	$\not ¢$		*	3	C	S	c	s	RGT	PA2	LCK	C15			
004			\$	4	D	T	d	t	DWN	PA 3	tb :	C16			
005			8	5	E	U	e	u	ENT	PF 1	col	C17			
006				6	F	V	0	v	RST	PF 2	$\mathrm{CO2}$	C18			
007]	'	7	G	W	g	w	CLR	PF3	CO 3	2NL			
010			(8	H	X	h	x	TAB	PF4	CO 4				
011)	9	I	Y	1	v	BTB	PF5	C05				
012			*	:	J	Z	J	z	NL	PF6	C06				
013			+	;	K		k		INS	PE 7	C07				
014			,	$<$	L		1	!	DEL	PF 8	C 08				
015			-	$=$	M	I	m		EIN	PF9	CO9				
016	\checkmark		-	>	N		n		EEF	PFA	C 10				
017			1	?	0		0		TRO	PFB	C11				

To find a SOFTWARE ACTION CODE, find the keyboard graphic or acronym. Add the associated value in the verticle column to the left, to the value in the horizontal row at the top. For example, to find the code for COBOL access key 007 , add the vertical colimn value, 013 , to the horizontal row value, 240. The sum, 253, is the SOFTWARE ACTION CODE for COBOL ACCESS CODE 07.

LEGEND OF ACRONYMS

NOP	-	NO OPERATION
UP	-	CURSOR UP
LFT		CURSOR LEFT
RGT	-	CURSOR RIGHT
DWN	-	CURSOR DOWN
ENT	-	ENTER. E01
RST	-	RESET, ATTENTION
CLR	-	CLEAR
TAB	-	TAB OR SKIP
BTB	-	BACK TAB
NL	-	NEW LINE, CURSOR
INS	-	INSERT
DEL	-	DELETE
2NL	-	2260 NEW LiINE RPQ

ESCAPE KEY FUNCTIONS

Key	Function	Password	Basic	Debug	S\&F	Printer
1	Toggle CG	FOURFAZE	x			
B	Exit to DOS	FOURFAZE		x		
C	Take checkpoint	FOURFAZE		x		
D	Dynamic Dump	FOURFAZE		x		
I*	Pass string to 3270	FOURFAZE		x		
J*	Turn on input line trace	FOURFAZE		x		
K*	Turn on output line trace	FOURFAZE		x		
L.	Set number of lines/page	none				x
M	Set address of Dynamic Dump Dump	FOURFAZE		x		
0 *	Output string to 360/370	FOURFAZE		X		
P	Store password	none	x			
Q*	Disable $360 / 370$ output $\text { if }=0$	FOURFAZE		x		
T	Execute keystrokes \& time level 7	FOURFAZE		x		
U	Stop timer and display it	none		x		
v	Store value string in address	FOURFAZE		x		
W	Set printer spacing	none				X
X*	Togglé time out	FOURFAZE		X		
2**	Print screen	FOURFAZE				X
ESC	Store attribute character	FOURFAZE		χ		

* - Remote only.
+ For details about S\&F, see the 3270 Operator's Manual
* - Must be an unbuffered character printer

(Screen display of attribute characters cont.)

Octal	1 Display	Key	Field	Attr	te		
360	p	p	PROT	NUM	DISPLAY	NO-eF:D	NO-MDT
361	q	q	PROT	NUM	DISPLAY	NO-BFLD	MDT
362	r	r	PROT	NUM	DISPLAY	EFIELD	NO-MDT
363	s	s	PROT	NUM	DISPLAY	QFIELD	MDT
364	t	t	PROT	NUM	DISPLAY	NO-EFLD	NO-MDT
365	μ	u	PROT	NUM	DISPLAY	NO-EFLD	MDT
366	v	V	PROT	NUM	DISPLAY	QFIELD	NO-MDT
367	w	w	PROT	NUM	DISPLAY	QFIELD	MDT
370	x	\mathbf{x}	PROT	NUM	BRIGHT	NO-efld	NO-MDT
371	y	y	PROT	NUM	BRIGHT	NO-EFLD	MDT
372	z	z	PROT	NUM	BRIGHT	efiELD	NO-MDT
3731	left-brace	"divide"	PROT	NUM	BRIGHT	EFIELD	MDT
374	bar	"cross"	PROT	NUM	DARK	NO-EFLD	NO-MDT
375 r	right-brace	- \quad " 1	PROT	NUM	DARK	NO-EFLD	MDT
376	tilde "	"up-arrow"	PROT	NUM	DARK	PFIELD	NO-MDT
377	\% "ba	ack-arrow"	PROT	NUM	DARK	EFIELD	MDT
	$\begin{aligned} & ()=\text { Chara } \\ & \text { " " } \end{aligned}$	acter is en	tered	witn with	ift dep rl depr	$\begin{aligned} & \text { cessed } \\ & \text { essed } \end{aligned}$	

'III. 3 DISPLAY OF LINE CONTROL CHARACTERS

	1	ITB	
	1	DLE	
	$1 / 1$	ACKO	
	1/	ACK 1	
	1 @	RVI	
	1,	WACK	
$\wedge \wedge$	$\cdots *$	General	poll
$\wedge \wedge$	\neq	Select	dve 0
$\wedge \wedge$	$A A \neq$	Select	dve 1

\leftarrow PT
ENQ
DLE
ACKO
1 SBA
EOT
STX
SOH
ETX
RVI

- IC
\checkmark RA
- SUB

General poll
$=$ ESC
] ETB
^ ^ AA \neq Select dvc 1
1 SF

```
TRC327 is used to display and/or print formatted output of the debug log
from a checkpoint file.
// TRC327
/INPUT = filename e drive
/OUTPUT = filename e drive
//
If no input file name is given, the default file name of CKPTGO is used if
running on 8230 or DUMPEO is used if running on an 8250,
TRC327 uses terminal 0 for all displays and keyboard commands.
KEY
    FUNCTION
```

H The display is moved up four lines
F The display is moved up 24 ines
E The program will exit to IDOS or DKOS.
R Restart the display
C The 3270 line trace counters are displayed
$S \quad$ Start or stop a full system trace display
P Print the trace on the SYSOUT printer, wille printing,
depressing the P key will terminate printing and cause the
program to wait for another control key.

Error Counters:

COUNTER	value	COUNTER	value	COUNTER	value	counter	value
1?!	aaaaaaa	PTO	bbbbbbbb	DBL	ccececoc	LST	dddddddd
N16	eefeeee	T-0	ffffffff	BCC	8ggegege	RTY	hhhhhhhh
UE	iijiiiii	US	jjjjjjjj	OC	kkikkkkk	CR	1111111
DMY	(10						

aaaaaa	Invalid interrup
bbbbbbbb	Pad timeout.
ccceccec	8121 printer error or IR condition.
dddddddd	Lost data due to too few buffers.
eefeeee	Error detected in 8436 controller.
ffffffff	Time-outs waiting for host response.
geggegeg	BCC errors.
hhhhhhhh	Retries by host. Opposite of BCC.
iiiiiiii	Unit exception status generated by local simulator.
jjjjjJjj	Unit specify sense generated.
kkkkkkkk	Operation check sense generated.
11111111	Command reject sense generated.
mmmmmmmm nnnnnnnn	Version identification of simulator.

Trace Log Entries:

8436-2 STATUS
STT sssssss ddddddddddddddddddddd
sssssss $=8436-2$ status word in octal. dd $. . . d=$ Description of status bits that are on.

8436-2 CONTROL
CNT cccccece ddddddddddddddddddddd
coceccec $=8436-2$ control word in octal.
dd $. . . d=$ Description of control bits that are on.
8436-2 DATA IN OPERATION
 $x x=1$ byte of data received from the host system in hex.
dd .. d = Description of BSC termination character if any.
8436-2 DATA OUT OPERATION
TERM xx ddddddddddddddddd Format the same as HOST above.

7073 status
STT ssssssss dddddddddddddddddddd ssssssss $=$ The 7073 status word in octal. ddddddd $=$ Description of any status bits that are on.

7073 CONTROL
CNT ceccecce ddddddddddddddddddddd
coccecec $=$ The 7073 control word in octal. dddddddd $=$ description of any control bits that are on.

7074 STatus (WIDGET)
WST ssssssss dddddddddddddddddddd sssssss $=$ The 7074 status word in octal. dddddddd $=$ Description of any status bits that are on.

7074 CONTROL
WCT coccecce ddddddddddddddddddddd
cocccece $=7074$ control word in octal. ddddddd $=$ Description of any control bits that are on.

ADR aaaaaaa
aaaaaaa $=$ The address associated with the next trace entry. For 7073 status and control entries it is the return address of the status or control subroutine that will create the next trace log entry.

8121 PRINTER CONTROL
CUT cocecoce
coccccec $=8121$ control command in octal.
8121 DATA OUT
DAT dddddddd
dddddddd $=$ Data word sent to the 8121 in octal.
NTP150 CALLS
CBL eeeeeeee ddddddd ssssssss mm:ss.tt
eeeeeee $=$ Entry-code in octal.
dddddddd $=$ Detail-code in octal.
ssssssss $=$ User-subscript in octal. mm:ss.tt $=$ Time in minutes, seconds, and tenths.

TIME
TIM mm:ss.tt "TIMEOUT*
mm:ss.tt $=$ Time as above since the simulator was started. "TIMEOUT" = Remote only, the previous TIM entry was more than 3 minutes previous.

TASK CONTROL
TSK aaaaaaa mm:ss.tt
aaaaaaa $=$ Address of the calling routine. mm:ss.tt $=$ Time as above of call.
general purpose mark
MRK xxxxixxx
xxxxxxxx = Various value used for debugging purposes. Varies from release to release.

```
Generate the 3270 Simulator with the debug feature in order to take memory
and checkpoint dumps.
Memory Dump to Line Printer:
```

 Place aUtormanual to manual
 Hit SYSTEM RESET and STEP
 Load TIR with 46700000
 Place AUTO/MANUAL to AUTO
 Checkpoint Dump to 8230 or 8250 :
In in debug mode, ESC C will take a checkpoint dump; $O R$
Place aUto/manual to manual
Hit SYSTEM RESET and STEP
Load TIR with 7110000 :
Place aUTO/MANUAL to AUTO
III. 7

DMP327 EXECUTION
// DMP 327

/INPUT = nameei	Name of checkpoint file
/TOP = LINETRACE	Memory dump will terminate at the beginning of the line trace area, if there is one. Otherwise, it will terminate at the top of memory.
/TOP = MEMORY	The memory dump will include the line trace area.
/TOP $=\mathrm{xxxxxx}$	The memory dump will terminate at address $x x x x x x$ minus one.
/LOWER CASE	Lower case letters may be printed because the printer has upper and lower case.
/UPPER CASE	Convert lower case to upper before printing (Initial default).
/NO LOWER CASE	Do not print lower case, substitute blanks for all lower case letters.
$\begin{aligned} \text { /FORMAT } & =\text { OCTAL } \\ & =\text { HEX } \\ & =\text { BOTH } \end{aligned}$	Memory dump in OCTAL and ASCII. Memory dump in hexadecimal and ASCII. Memory dump in octal, hexadecimal, and ASCII.

The registers at the time the checkpoint was taken.
TASK CONTROL BLOCKS

COMMUNICATIONS BUFFERS

The queue of pending communications buffers is often empty. The first buffer in the free queue is the last buffer processed. The free queue operates as a stack, hence the second buffer in the queue is probably not the next-to-last buffer processed. There may be buffers at the end of the free queue which have never been used. The free queue and the pending queue should not both be empty.

The first word of each comm buffer points to the next comm buffer. Zero indicates the end of the queue. For local, the remaining 255 words each contain 3 bytes of data. For remote, the remaining 16 words of the buffer each contain only 1 byte of data, so only the data byte of each word is printed. The data in the buffer includes commands, orders, attributes, true data, and for remote the bisync data link control characters.

The communications screen area is used to construct video screens. When data is written from the host the destination screen is copied into the communications screen area. The commands, orders, and data from the host are interpreted onto the comm screen resulting in a combination of original screen data and the new data written by the host. The comm screen is then copied to the destination screen.

USER TABLES

The terminal address has different formats for remote and local. For local there is a unique two-digit hex device number assigned to each terminal. The numbers for the terminals are sequential, and the first one must end in zero. (This is also the control unit address.) No gaps are allowed. For remote, two two-digit hex numbers are associated with each terminal. The first is the control unit address, and should be the same for the first 16 terminals. (If there are more than 16 terminals, the control unit address for the second 16 should be one more than the first one.) The second number is the device address.
Note that FWA is the first word of the user table, while K3RET1 and K3RET2 precede the user table.

K3RED1	Object address from keyboard IOID table K3RET2
Contains a BRM X	

(DMP327 output cont.)
LNSPPG Lines per page for 8121 s and 8131 s (DMP327 user table cont.)
FCUR Attribute governing current field (address in FSROT \& FDEST)
COLID Current column number of cursor
KDATA BRM to keyboard data routine, dependent on current keyboard operation mode
FDSAVE Second to last character sent to 8121
KPW
AID

KVIDI
KLAST
KINDEX
QUECNT
COBOL4
vatte
INDSCSL
INDCSA
INDCIM
INDCII
PRBA14 Line length for current print operation. A function of CMDCC in the user table
PGGBF Non-zero if current field of screen is printable; zero if it's invisible
PRCONV An indexed load instruction from the internal-to-printer code conversion table (LDA TOINPR,X3); to allow upper and lower case
PRBA12
PRFL19
rinter byte counter (ine length)
Count of the number of non-null characters in current print line (0 indicates all nulls). The sign bit is set to indicate printing in progress
PQCNT Printer queue blocks available for this printer ?? CMDCC Command control character (e.g. CCC or WCC from 370)

ERRBSS Status/Sense bytes for the terminal
KTYPE Contains an indexed load from the keystroke to internal code conversion table specified at configuration (LDA TiNAIN, X3)
LDBG20 Counter of ESC keys hit before the first non-ESC.
PDDAT Printer driver scratch (New line indicator for 8121 s)
PDRET Printer driver scratch (feturn address saved here)
PDLF Printer driyer scratch (Event counter for line printer task. Active line counter for 8121s; initialized with LNSPFG of the user table)
IV. 1

3270 CONTROL CHARACTER SUMMARY.

Hex	Name	Type	Description
01	SOH	LINE CTL	Start of header.
02	STX	LINE CTL	Start of text.
03	ETX	LINE CTL	End of text.
05	PT	BUFFER ORDER	Program tab.
0 C	FF	PRINT CTL	Form feed.
10	DLE	LINE CTL	Data link escape. See below.
11	SBA	BUFFER ORDER	Set buffer address.
12	EUA	BUFFER ORDER	Erase unprotected to address.
13	IC	INSERT CURSOR	Insert cursor.
15	NL	PRINT CTL	New line.
19	EM	PRINT CTL	End of media.
1 D	SF	BUFFER ORDER	Start field.
26	ETB	LINE CTL	End of transmission block.
27	ESC	BUFFER ORDER	Escape.
2D	ENQ	LINE CTL	Enquiry, bid for line.
32	SYN	LINE CTL	Synchronization character.
37	EOT	LINE CTL	End of transmission.
3 C	RA	BUFFER ORDER	Repeat to address.
55	LPAD	LINE CTL	Leading pad.
6 F	EAU	CMD	Erase all unprotected.
F1	WRITE	CMD	Write.
F2	RDBUF	CMD	Read buffer.
F5	E/WRT	CMD	Erase write.
F6	RDMOD	CMD	Read modified.
F7	COPY	CMD	Copy.
FF	TPAD	LINE CTL	Trailing pad.
Two character sequences			
$10 \quad 37$	DISC	LINE CTL	Disconnect. (switched line)
1061	ACK1	LINE CTL	Acknowledgement of odd blocks.
10 6B	WACK	LINE CTL	Acknowledgement with wait.
1070	ACKO	LINE CTL	Acknowledgement of even blocks.
107 C	RVI	LINE CTL	Acknowledgement with reverse interrupt.
02 2D	TTD	LINE CTL	Temporary text delay.

PAD brackets the beginning and end of each transmission.

ACKO ACKO and ACK1 are positive acknowledgements to even and odd text blocks respectively.

NAK $\quad N A K$ is transmitted by the simulator in response to a text transmission that contains an ENQ or lacks a terminating ETX or ETB or has an incorrect BCC.

The simulator responds to a NAK by retransmitting the last text block.

ENQ The simulator transmits an ENQ to request a retransmission of the last non-text message usually after \bar{j} second timeout.

ENQ is transmitted to the simulator as the last character of a polifing or selection sequence. When ENQ is imbedded in a text message the simulator responds with NAK.

WACK WACK is transmitted by the simulator in place of ACKO or ACKi in response to an seiection sequence or command if the selected device (printer) is busy.

RVI RVI is transmitted by the simulator in response to selection when a status/sense message is pending.

When the simulator receives RVI it responds with EOT and resets all pending status/sense information.

STX marks the beginning of text messages both transmitted and received and starts the accumulation of the BCC. STX is imbedded within both status/sense and test request messages.

SOH marks the beginning of both status/sense and test request messages sent by the simulator.

The simulator terminates intermediate transmission blocks with ETB rather than ETX.

ETB's received are treated as ETX's.
ETX mark the end of a sequence or one or more text transmission blocks for both send and receive. It terminates BCC accumulation and indicates that the next 2 characters are the BCC.

EOT is transmitted in response to an $A C K$ when the simulator has sent its last message. It is transmitted in response to all RVI's.

When EOT is received it terminates selection and resets the simulator to control mode.

TTD is sent by the host to delay transmission from the simulator. The simulator always responds with NAK.

```
Polling and Selection;
```


Input Message:

$$
\underset{\mathrm{n}}{\mathrm{SYN}-\mathrm{STX}} \mathrm{1} \text {-CUADDR-DEVADDR-AID-(cursor }
$$

Output Message:

Status/Sense Message:
SYN-SOH-"§R"-STX-CUADDR-DEVADDR-(status)-(sense)-ETX

Command	Remote EBCDIC	Remote ASCII	Local EBCDIC
Write	F1	31	01
Erase/Write	F5	35	05
Read Buffer	F2	32	02
Read Modified	F 6	36	06
Copy	F7	37	$\mathrm{~N} / \mathrm{A}$
Select	N / A	N / A	0 B
Erase All Unprotected	6 F	3 F	0 F
Nooperation	N / A	N / A	03
Sense	N / A	N / A	04

(HEX)
Erase/Write
Read Burfer
F2

F7
$6 F$

N/A
N/A
04

IV. 5

WRITE CONTROL CHARACTER (WCC)

$\mathrm{x} 1 .$.	Determined by contents of bits 2-7.
x	Define the printout format:
00	The NL order in data stream determines line length.
01	40 oharacter print line
10	64 character print line
11	80 character print line
1.	initiates a printout operation at completion
. 1.	Sounds the audible alarm at the end of the operation.
. . 1 .	restores operation of the keyboard, resets the INPUT INHIBITED indicator and the AID byte.
. ... 1	All MDT bits in the device's buffer are reset before any data is written or orders are executed.

COPY CONTROL CHARACTER (CCC)

Byte 1
EBCDIC-ASCI1
$\underset{(S F)}{\text { Start Field }}$ (SF)
Set Buffer
Address Address (SEA)

Insert Cursor 13 (IC)

Program Tab 05 09 (PT)		
Repeat To Address (RA)	$3 C$	14
Erase		
Unprotected To Address (EUA)	12	12

Byte 2
Byte 3
Byte 4
Attribute $\quad n / a \quad n / a$
character

Address	Address	n / a
byte 1	byte 2	

n/a n/a n/a
n/a n/a n/a

Address byte 1	Address byte 2	Character to be repeated
Address byte 1	Address byte 2	n/a

ATTRIBUTE BYTE

EBCDIC		ASCII		MEANING	
HEX	OCTAL	HEX	OCTAL		
60	030	2D	055	Keyboard null.	
E8	350	59	161	Printer null.	
7 D	175	27	047	Enter key.	
F1	361	31	061	PF1 key.	
F2	362	32	062	PF2 key.	
F3	363	33	063	PF 3 key.	
F4	364	34	064	PF4 key.	
F5	365	35	065	PF5 key.	
F6	366	36	066	PF6 key.	
F7	367	37	067	PF7 key.	
F8	370	38	070	PF8 key	
F9	371	39	071	PF9 key.	
7 A	172	3A	072	PF 10 key	
7 B	173	23	043	PF11 key.	
7 C	174	40	100	PK12 key.	
	The fol	$110 w$	ng AID	result in short reads after	general polls
E6	346	57	127	ID card reader (not insed by	Four Phase).
7 E	176	3D	075	Light pen (not used by Four	Phase).
6 C	154	25	045	PA1 key.	
6 E	156	3 E	076	PA2 key.	
6 B	153	2C	054	PA3 key.	
6 D	155	5 F	137	Clear key.	
F0	360	30	060	Test request key.	

```
Bits Byte 0:
x1..... Dettermined by contents of bits 2 - 7.
..xx .... Reserved.
... 1... Device Busy (DB. The addressed device is
executing an operation or a previous command or Specific
poll detected a busy condition. The device is busy when
executing an EAU command, a print operation,
or certain keyboard operations (Erase Input, Backtab,
and Clear).
Set with Operation Check when a Copy command is
received that specifies a busy. "from" device.
Set with Unit Specify when a command is addressed to
a busy device.
Unit Specify (US). Set with DB
if a command is addressed to a busy device.
Device End (DE). The addressed device has become available
ready, or not busy. This bit is not considered pending
status by a Selection Addressing sequence.
    If a Selection Addressing sequence detects that the addressed
    device has pending status and also detects one of the above
    status changes that warrants a Device End, then the Device End
    bit is set and preserved along with the other pending status, and
    an RVI response is made.
.... ... 
Not used.
```

(Remote status/sense bytes cont.)

Bits
Byte 1:

. 1.	Command Reject (CR). Receipt of an invalid 3270 command (or Copy command if this feature is not installed).
... 1	Intervention Required (IR). Set if: -
	A Copy command contains a "from" address that specifies an unavailable device.
	A command attempted to start a printer but found it not ready. The printout is suppressed.
	A Selection Addressing sequence or a Specific poll sequence is received for a device that is unavailable or that became not ready during a printout. A General poll sequence does not respond to the unavailable/not ready indication and proceeds to determine the state of the next device.
	A command is received for a device that has been logged as unavailable or not ready.
.... 1.	Equipment Check (EC). Indicates that a printer character generator error occurred or the printer became mechanically disabled.
.... . $1 .$.	Data Check (DC). Indicates the detection of a partiy or Cursor check.
.... . 1.	Control Check (CC). a device failed to respond to communications or failed to complete an operation within a specified time period.
.... ... 1	Operation Check (OC).
	Receipt of an illegal buffer address or of an incomplete order sequence on Write or Erase/Write command.
	The device did not receive a CCC or a "from" address on a Copy command.
	Receipt of an invalid command sequence. (ESC is not received in the second data character position of the sequence.)

Equipment Check (EC). Indicates that a printer character
generator error occurred or the printer became mechanically
disabled.
Data Check (DC). Indicates the detection of a partiy or
Cursor check.
a device failed to respond to
communications or failed to complete an operation within a
specified time period.
Operation Check (OC).
Receipt of an illegal buffer address or of incomplete
order sequence on Write or Erase/Write command.
The device did not receive a CCC or a "from" address on a
Receipt of an invalid command sequence. (ESC is not
sequence.)

Bit

1... ...
.1..
..1.
... 1 ...
.... 1...
.... . 1.
.... .. 1 .
.... ... 1

.1.
... 1
.... $x .$.
.... . 1.
Bit
1...
.1.. ...
... .. 1
.... ... 1

Status byte:

An AID generating key has been entered.
STATUS MODIFIER (SM).
Set with BUSY if the 7073 can not accept a
command from the channel.
CONTROL UNIT END (CUE).
The control unit is no longer busy.
BUSY (see SM above).
CHANNEL END (CE).
The control unit has terminated the data transfer portion of an I/o command.
DEVICE END (DE).
The control unit and device have completed a cmd. UNIT CHECK (UC).

An error has occurred that is further defined in the sense byte.
Unit Exception (UE).
Non-standard but valid completion of a command. Not used by Four Phase.

Sense Byte:

```
Command Reject (CR).
The channel has received an invalid command.
Intervention Required (IR).
The addressed printer is not ready (out of paper,
off line, etc.).
Bus Out Check (BOC)
Parity error on the channel's bus-out lines.
Equiptment Check (EC)
A parity error has been detected on data trans-
ferred to the channel. Set by the System IV/70
load-address-register control word (bit 8).
Not Used
Unit Specify (US)
The sense bits are the result of a Systets IV/70
processing unit-detected error.
Not Used
Operation Check (OC)
The Channel Adapter has received a valid command that cannot be executed. Same as in the remote simulator.
```

V. 1
8436 CONTROL AND STATUS

8436-2 Status Word

8436-2 Control Word

010	0	Identifies initialization control
 x...	Screen size: $0=480, \quad 1=1920$
		Upper control unit address range.
	xxx	Lower control unit address range ($x \times x \times 0000$)
	Load Byte Control Word One:	
000	0.. 0	Identifies load byte control word one.
	xx.	Wrapped modified field control:
	00	$\mathbf{x x}=00$ - no change
	01	$=01$ - no change
	10	$=10$ - reset wrapped modified field
	11	$=11$ - set wrapped modified field
	. . x x ..	Modified data tag control:
	00	$\mathbf{x x}=00-$ no change
	01	= 01 - no change
	10	$=10$ - reset modified data tag
	11	$=11$ - set modified data tag
	$\begin{array}{r} . x x \\ 00 \end{array}$	Starting byte position: $x x=00-\text { left byte }$
	01	$x \times 01$ - middle byte
	10	$=10-r i g h t ~ b y t e ~$
	11	$=11$ - invalid
		Byte count for data transfer. When exhausted causes a continue interrupt.
	Load Byte Control Word Two:	
000	0.. 1..	Identifies load byte control word two.
		Relative screen address of data. Used to compute SBA's on read modified.
	Load Bit Control Word:	
000	1..	Identifies load bit control word.
	. 1.	Reset chained command latch.
	. 1	Disable EBCDIC to ASCII conversion.
	1	Enables next 3 bits for printer control.
	. 1.	Generates an asynchonous DEVICE END interrupt from the addressed printer.
		Sets busy device status for the addressed
		printer.
	. 1.	Sets intervention required status for the addressed printer.
	. . $\mathrm{xx} \times \mathrm{xx} \mathrm{xxx}^{\text {- }}$	Device address.
pp ppp	Printer address.

New Command Status:

Continue/End Status:

7074-2 Control Word:

7074-2 Status Word:

.. 1 Protected flag.
... MDT flag.
.. xx. Ending alignment:
00
01
10
11
Left byte.
Middle byte.
Right byte.
Invalid.
Byte count residue.

```
    Switch 0 up.
    Key in simulator name.
    Clear first halt.
    When second halt occurs, BRA to RP+1 into TIR (720xxxxx).
    Hit any PA/PF ENTER key to hang on a cut word. Re-enter the BRA to
    RP+1 as above in order to continue.
```

VI. 2

ADJUSTMENT of DUAL INTENSITY

The following procedure can be used to adjust the internal video pots that control 3270 dual intensity.

1. Execute a DEBUG version of the 3270 simulator.
2. Depress CLEAR and RESET until the screen is blank.
3. Type ESC P FOURFAZE. Capital letters must be entered, if needed use the SHIFT key depending upon the type of keyboard and SYSGEN options. Only a cursor should appear on the screen. If the P appears, the 101 jumper for unique numeric island codes is not installed. If FOURFAZE appears, a capital P was not entered after the ESC key.
4. Type ESC A. Four P's should appear on the right of the video in place of the 3270 the indicator lights. If not, step 3 was not correct. During the following steps, the p's will change to other characters.
5. Using the capital W and REPT key, place W 's across the first three rows of the video.
6. Press the HOME key. Type ESC ESC H. "H" will appear and move the cursor one column to the right.
7. Press CURSOR RETURN. Type ESC ESC E. "E" will appear and move the cursor to the right.
8. Press CURSOR RETURN. Type ESC ESC L. "L" will appear and move the cursor to the right.
9. Type ESC A. The four indicators will disappear. The top row of W's should be at high intensity, the second row should be at normal intensity and the third row should be invisible.
"W" facilitates adjustment of all three video pots. The attributes "H" "E" "L" are easy to remember.
VI. 3
1) The 3270 local or remote should not be sold as an operator's console.
2) Installation of our 3270 local on the same block multiplexor channel as IBM 3330 disc drive is likely to cause serious degradation problems.
3) When the Tab-to-Colon option is desired, specify it on the SOF. The C7 and C9 chips in the Channel Adaptor must be modified.

Footnote 11： 03441 oṇ many packs
Footnote \＃2： 03442 on many packs
Footnote \＃3： 02440 on many packs
Footnote \＃4：bit 0－8 reserved
9－11 number of sectors－1
11－23 first sector address of the overlay
Footnote $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 5：bit $0(C)$ is the CRASH flag which indicates whether or not DATA was exited properly： $0=y e s$ ，normal exit and allocation table is correct； $1=$ no，abnormal exit and allocation table is zeroed．

	bit	description
	0	video: $0=48,1=81$
	1	r am size: $0=24 \mathrm{~K}, 1=48 \mathrm{~K}$
	2	7008 system: $0=$ no, $1=y$ ys
	3	ram-to-disc dump capability: $0=$ no, $1=$ yes
	4	keyboard: $0=$ source, $1=$ keypunch (029)
	5	printer: $0=$ no, $1=y \mathrm{~s}$
	6	magnetic tape: $0=$ no, $1=y$ es
	7	$\text { tape density: } \begin{aligned} 0 & =9-\operatorname{track}(800 \mathrm{bpi}), 7-\operatorname{track}(556 \mathrm{bpi}) \\ 1 & =9-\operatorname{track}(1600 \mathrm{bpi}), 7-\operatorname{tr} \mathrm{ack}(800 \mathrm{bpi}) \end{aligned}$
	8	tape parity: $0=$ even, $1=0$ dd
	9	disc read-back: $0=$ no, $1=y \mathrm{~s}$
	10	audible alarm: $0=$ no, $1=y$ yes
	11	separate paging buffer: $0=$ no, $1=$ yes
	12	bisync: $0=$ no, $1=y \mathrm{~s}$
	13	12-channel printer carriage tape: $0=$ no, $1=y e s$
	14	bisync extended retry: $0=$ no, $1=y \mathrm{~s}$
	15	bisync memory 10 g : $0=$ no, $1=y \mathrm{~s}$
	16	omit left zero key in key verify mode: $0=n \mathrm{n}$, $1=y \mathrm{~s}$
	17	not used
	1820	number of tape decks
	2123	number of disc drives
Footnote	*2:	Configuration Word (SYSFG1)
	bit	description
	0	find mode operator statistics: $0=$ no, $1=y$ es
	1	detail operator statistics by batch: $0=$ no, $1=y \mathrm{~s}$
	2	save format source with object code: $0=$ no, $1=y \mathrm{~s}$
	3	bisync printer: $0=S Y S O U T, ~ 1=b i s y n c ~ d i r e c t ~ p r i n t e r ~$
-	4-23	not used
Footnote	* 3 :	Configuration Word (COPT) - $0=$ yes, $1=$ no
	bit	description
	0	multiply
	1	check digit
	2	modulo 7 check digit
	3	modulo 10 check digit
	4	modulo 11 check digit
	5	hexadecimal
	6	generate check digit
	7	DYNAMO
	8	overpunch
	9	keypunch (029) style keyboard
	10	right justify
	11	printer
	12	r am dump
	13	reserved for internal use
	14	right justify in verify mode
	15-23	not used

 description
 video: \(0=48, \quad 1=81\)
 \(r\) am size: \(0=24 \mathrm{~K}, 1=48 \mathrm{~K}\)
 7008 system: \(0=\) no, \(1=\) yes
 ram-to-disc dump capability: \(0=\) no, \(1=y e s\)
 keyboard: \(0=\) source, \(1=\) keypunch (029)
 printer: \(0=\) no, \(1=y e s\)
 magnetic tape: \(0=\) no, \(\quad 1=y e s\)
 tape density: \(0=9-\mathrm{track}(800 \mathrm{bpi}), 7\)-track(556 bpi)
 \(1=9\)-track (1600 bpi), 7-track (800 bpi)
 disc read-back: \(0=\) no, \(1=\) yes
 audible alarm: \(0=\) no, \(1=y\) es
 separate paging buffer: \(0=\) no, \(1=y e s\)
 bisync: \(0=\) no, \(1=\) yes
 12-channel printer carriage tape: \(0=\) no, \(1=y e s\)
 bisync extended retry: \(0=n o, 1=y e s\)
 bisync memory log: \(0=\) no, \(1=y e s\)
 omit left zero key in key verify mode: \(0=n o\), \(1=y e s\)
 not used
 number of tape decks
 number of disc drives
 Footnote 2:
bit
find mode operator statistics: $0=$ no, $1=y e s$
detail operator statistics by batch: $0=$ no, $1=y e s$
save format source with object code: $0=$ no, $1=y e s$
bisync printer: $0=S Y S O U T, \quad 1=b i s y n c$ direct printer
not used
Configuration Word (COPT) - $0=y e s, 1=$ no
multiply
check digit
modulo 7 check digit
modulo 10 check digit
modulo 11 check digit
hexadecimal
generate check digit
DYNAMO
overpunch
keypunch (029) style keyboard
right justify
printer
ram dump
reserved for internal use
not used


```
Note: A job directory entry is a fixed length of 14 words and a sector contains a maximum of 18 entries.
Footnote \#1: If the first word of the jobname entry is zero, then this is an empty slot which is available for describing the next job created.
Footnote \#2: bit 0 SELECT
1 reserved
2 BUSY
3-9 reserved
10-23 batch directory disc address
Footnote \#3: bit 0-13 reserved
14-23 record size in characters (bytes)
Footnote \#4: These are packed decimal entries ( 3 digits of 4 bits each) to indicate the format/value set number in 12 bits. Unused entries are zeroes. A maximum of 6 formats and 9 value sets may be assigned to a particular job.
```


A batch directory entry is a fixed length of 28 words and a sector contains a maximum of 9 entries. When a batch is purged, the contents of relative word 1 is saved in relative word 010 before word 1 is cleared.

Footnote $\# 1:$ The six digits of the batch number are in packed decimal format with 4 bits used for each digit. The batch number is right justified within the word (000000-999999).

Footnote \#2: bit 0-1 reserved
2 COMP complete: $0=$ no, $1=$ yes
3-4 $00=F$ IND
$01=E N T R Y$
$10=$ VERIFY
$11=$ VERIFY COMPLETE
5 WWR was written: $0=$ no, $1=$ yes
6 WRD Was read: $0=$ no, $1=$ yes
$\begin{array}{lll}7 & \text { WRF } & \text { was reformatted: } 0=\text { no, } 1=\text { yes } \\ 8 & \text { CBRF } & \text { created by reformat: } 0=\text { no }\end{array}$
8 CBRF created by reformat: $0=$ no, $1=y e s$
9 DIS display request: $0=$ no, $1=$ yes
10-11
drive=0
first sector address of data chain
last operation: $0=$ no, $1=$ yes
operator identification
Footnote \#4: bit 0
RPUR
request to purge: $0=y e s, 1=$ no
request to write: $0=y e s, 1=$ no
request to read: $0=$ yes, $1=$ no
request to rerformat: $0=y e s, 1=$ no
batch locked from access: $0=y e s, 1=$ no
batch active (in-process): $0=y e s, 1=$ no
time since midnight ($t-86400$ seconds)
Any of the above flags being set to zero (yes) will "lockout" the batch.

Note: All records in all batches of any one job are the same length which is determined by job size. The last sector of the chain must always have room for one additional record. The last word of the last sector in the batch contains the binary value of BINREC (record count).

A data sector has a 5 -word header for the sector instead of the standard 4-word header.

The combination of the record header and the record data is a minimum of two words and a maximum of 251 words.

Footnote \|1: bit 0-7 $0=$ full; $5=$ empty; otherwise, number of words in use 8-9 always 0
10-11 drive number of the next data sector
12-23 sector address of the next sector of data
Footnote \#2: bit 0 always 1
1-9 displacement of the batch directory en
10-11 drive number of the batch directory sector
12-23 sector address of the batch directory entry
Footnote \#3: A copy of the record header is kept in RECHDR, X1 of the user table while the record is displayed.

```
    bit 0 always 1
            1 reserved
            2 field type override (PROG CTRL off)
            2 field type override (PROG CTRL off)
            4 unintelligible (? key hit)
            5-6 reserved
            7 has been key verified.
            8 correction (record altered since entry)
            9-20 reserved
            21-23 program level -1 (0-5)
```


Note: Each entry is a two-word entry consisting of the format or value set name and the drive/sector address where the format or value set object code is located. ABC indicates the 3-digit ASCII identifier for the format or value set. (A, B, and C must be greater than or equal to 060 and less than or equal to 071.) All zeroes in word 1 of the entry indicates that the slot is empty and available for the next format or value set that is created. A maximum of 126 entries are contained within one sector.

Footnote 11: Format directory entry
Footnote \#2: Value set directory entry

Note: The sector address in the format/value set directory points to the first sector of this chain. This chain will exist on multiple drives with the first sector always on drive 0 .

Footnote \#1: Format object code always begins in the first sector of the format code sectors. Object code is stored on the disc in blocks of 31 words so that calling sequences do not span system blocks when the format is paged into memory. Object code blocks are indicated by bit of of the first word of each object code block being set to 1. If a calling sequence will span two blocks, the block is filled with NOP instructions (006700000) to pad the block to 31 words and the calling sequence is put into the next block. A total of 8 blocks are contained on a sector.

Footnote \#2: Format source code follows all the blocks of format object eode. Source code is indicated by bit 0 of all words of source code being set to 0 .

Footnote \#3: These values are kept in each sector.

Footnote \#1: Bit 16 of the value set name is set to 1 .
Footnote \#2: Each item in the value set begins on a word boundary. NW is the number of words/item (1 less than or equal to N less than or equal to 250).

First Sector of Overlay

Second thru Fourth Overlay Sectors

Note: Overiays are 1-4 sectors in length ($0400-02000$ words) and load at absolute location 07400. All of the sectors for an overlay are within the same cylinder on the disc.

When entered, register $X 1$ points to the User Table. Subroutines GETSYS and PUTSYS must be used to read and write (respectively) sectors on the disc. ALLOCS is called to allocate a new sector. Q8RET is called when SYSBUF is not being used to allow the preallocator to catch up. SYSBUF immediately follows the overlay area at absolute location 011400.

PGGDIR points to the first system block of the page directory.

Note: FORPTR,X1 points to the last word in the entry. When a keystroke is processed or LINK to a new block, the current system time is store in the last word. When no job is assigned to a terminal, FORPTR, X1 $=0$.

Footnote $\# 1: A B C$ represents the 3 digit ASCII name of the format. If thisword contains zeroes, then there is no entry.

Footnote \#2: Block \# contains the page number of the format (for example, 0, 1, $2 \ldots$ (512).

Calculation of sectors available for data on a one drive system:

Tota: sectors available $=06200$ or 3200 (decimal) Required sectors for DOS	$\begin{array}{r} 3200 \\ -\quad 512 \end{array}$	
DATA47 total sectors availabie on drive 0	2588	
Sectors required for overlays	124	
Sectors required for the master directory and config sector	2	
Sectors available for other directories, formats, value sets, and data	2562	
Job directory sectors (minimum. ${ }^{\text {1) }}$		\cdots
Batch directory sectors (minimum 1/jcb)		$\cdots 2$
Format/value set directory sectors (minimum 1)		*3
Total sectors for directories		
Total sectors available for object code and data		
Format object code sectors (minimum 1/format)		\cdots
Value set object code sectors (minimum 1/value set)		
Total sectors for object code		
Total sectors available for data records		* 5

Notes:

1. Job directory entries are a fixed length of 14 words and each sector has a maximum of 18 entries.
2. Batch directory entries are a fixed length of 24 words and each sector has a maximum of 9 entries.
3. Format/value seet directory entries are a fixed length of 2 words and each sector has a maximum of 126 entries.
4. The number of sectors for format code varies according to the complexity of the individual format. Each sector will contain a maximum of 8 system blocks of format object code.
5. The number of data records that may be contained in a sector varies based on the number of characters per record. The following table may be used to determine the number of characters/number of records per sector ratio:

| $373-750=1$ | $91-102=7$ | $49-55=13$ | $31-33=20$ | $13-15=4$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $247-372=2$ | $79-90=8$ | $45-48=14$ | $28-30=22$ | $10-12=5$ |
| $184-246=3$ | $73-78=9$ | $43-45=15$ | $25-27=25$ | $7-9=62$ |
| $147-183=4$ | $64-72=10$ | $40-42=16$ | $22-24=27$ | $4-6=83$ |
| $121-146=5$ | $58-63=11$ | $37-39=17$ | $19-21=31$ | $1-3=125$ |
| $103-120=6$ | $56-57=12$ | $34-36=18$ | $16-18=32$ | |

*This location may change depending upon the system configuration.

JOBRAM PZE address of the first system block of the directory

Note: The total entry for $a \operatorname{job}$ is 15 words in length and 1 or 2 entries are contained in one system block. If the first word of the entry is zero, then no entry exists. Any other words set to zero indicates that the format or value set does not exist. Each job must have at least one program level assigned.

VSRAM PZE address of the first system block of the directory

Note: One or more of these entries are needed to represent an entire format or value set. If a format spans $n(n<65)$ sectors, then n entries are needed. Each entry represents up to 8 blocks (i.e., one sector).

The MODE key deletes unneeded entries before creating new entries.
The maximum number of blocks per sector is 8 (a systems constant) and is used to build these entries and set the value in the second word of the entry (1st block number) for this sector for additional entries after the first.

All formats being actively used by terminals will have entries in thisdirectory. Entries that are part of multiple sector formats will appear in ascending order by "1st block number" ($0,8,16$, etc.).

Footnote \#1: ABC indicates the 3-digit ASCII name of the format/value set. T indicates the type of entry: $0=$ format, $1=v a l u e$ set. The words in the JOBRAM entry point to these entries.

Footnote \#2: bit 0-8 1st block number for sector
9 always 0
10-11 drive number
12-23 sector address

Note:
Each user table is 96 (0140) words in length and resides below location 07100 in memory. Each word in PUSER (the level 3 keyboard IOID table) contains a BRM to a user table.

Skeleton Definitions

	+0	P2E		keystroke handling routine
	+1	10	IOPAIR	take in a keystroke
	+2	SKN*	IOPAIR+1	skips if buffer is full
	+3	BRD		else, debreak level 3
	+4	BRM	KSWRAP	branch to handle wrap-around
0003	KSEXIT	EQU	3	postion of BRD in table
0004	KSBRM	EQU	4	position of BRM KSWRAP in table
0005	CURC	EQU	5	counts level 4 until cursor change needed
0006	CUR	EQU	6	off-screen copy of blinking word
0007	SCR	EQU	7	execute to place character on screen
0010	PSROT	EQU	8	PZE SROT(1st word of word pair PSROT-DEST)
0011	DEST	EQU	9	location on screen(2nd word of PSROT word pair)
0012	MODE	EQU	10	operation type (see *1)
0013	OPPTR	EQU	11	pointer to operator director
0014	JOBDES	EQU	12	pointer to job descriptor table
0015	FORPTR	EQU	13	pointer to current format
0016	FSROT	EQU	14	pointer to start of current field
0017	FDEST	EQU	15	first word of current field
0020	REQ8	EQU	16	request for level 8
0021	RECLOC	EQU	17	location of current record in sector
0022	WIDTH	EQU	18	negative width of field
0023	MODPTR	EQU	19	pointer to in-front modifier
0014	QUE8RA	EQU	20	return address from BRM QUE8
0025	ACCUM	EQU	21	accumulator 0 (4 words)
0031	ACCUM 1	EQU	ACCUM +4	accumulator 1 (4 words)
0035		EQU	ACCUM +8	accumulator 2 (4 words)
0041		EQU	ACCUM +12	accumulator 3 (4 words)
0045		EQU	ACCUM +16	accumulator 4 (4 words)
0051		EQU	ACCUM +20	accumulator 5 (4 words)
0055	STATS	EQU	45	operator statistics table
0056	STATS 1	EQU	46	second word of operator statistics table
0057	STATS2	EQU	47	third word of operator statistics table
0060	BINCOL	EQU	48	binary column counter
0061	LASSEC	EQU	49	address of last sector in batch
0062	SAVPTR	EQU	50	save pointer for backspacing
0063	MODEXT	EQU	51	mode extension flag word (see *2)
0064	BATCH	EQU	52	batch number
0065	VRECB	EQU	53	pointer to verify record buffer (see *3)
0066	RECHDR	EQU	54	current record header
0067	RECSIZ	EQU	55	record size
0070	SECTOR	EQU	56	current sector number
0071	NEXTCR	EQU	57	return word from BRM NEXTC
0072	COLUMN	EQU	58	FWA status line; LWA +1 message line
0073	FLASH	EQU	59	MVE length level 4 flasher; bit $0=$ toss ks
0074	Fx2	EQU	60	
0075	FX3	EQU	61	$\mathrm{X}_{3}=$ negative number of columns left in field
0076	BINREC	EQU	62	current binary record number
0077	MaXREC	EQU FORCE	63	maximum record number for this batch
0100	IOPAIR	EQU	64	DCN 01401 (cut word of level 3 data-in)
0101	KSIN	EQU	55	level 3 current buffer pointer for next ks
		FORCE	0	
$\begin{aligned} & 0102 \\ & 0103 \end{aligned}$	$\begin{aligned} & \text { KSCUR } \\ & \text { KSFWA } \end{aligned}$	$\begin{aligned} & \text { EQU } \\ & \text { EQU } \end{aligned}$	$\begin{aligned} & 66 \\ & 67 \end{aligned}$	level 7 current buffer pointer for next ks pointer to first word of keystroke buffer
0104	ksbuf	EQU	68	beginning of keystroke buffer
0024	KSLEN	EQU	20	length of keystroke queue in words
0126	KSLOST	EQU FORCE	KSBUF+KSL	LEN-2 place in ks queue to put lost ks message
0130	ALARM	EQU	KSBUF+KSL	LEN flags end of ks buffer; audible alarm word
0131	MODE2	EQU	ALARM +1	cut word for I/0 control for beep (see *4)
0132	STATS 3	EQU	90	fourth word of operator statistics table
0133	0V36BL	EQU	91	address of system block for MODE T
		FORCE	0	
$\begin{aligned} & 0134 \\ & 0135 \end{aligned}$	$\begin{aligned} & \text { WPA } \\ & \text { WPA } 1 \end{aligned}$	$\begin{aligned} & \text { EQU } \\ & \text { EQU } \end{aligned}$	92 93	scratch for overlay and display use onl second word of double word pair
8136	FWA	EQU		address of first word of screen area
813	LWA	EQU	95	addr of last word +1 of screen area (msg line)

Footnote \#1: MODE
bit 0 $1=$ normal mode from keyboard, $0=$ feed-thru mode from level 8
program control: $1=0$ ff, $0=0$ n
release key in process: $1=y e s, 0=n o$
verify active: $1=y e s, 0=n o$
waiting for minus key in left zero field: $1=y e s, 0=n o$
waiting at end of field (must release/left zero): $1=y e s, 0=n o$ pass 1 (disc-to-screen): $1=y e s, 0=n o$
Automatic Skip/Duplicate (ASD): $1=0$, $0=$ off
special mode: $1=y e s, 0=$ no
verify mode: $1=y e s, 0=$ no
find mode: $1=y e s, 0=n o$
skip/release inhibit (must fill): $1=y e s, 0=n o$
character input inhibited: $1=y e s, 0=n o$
record: $1=$ new, $0=$ existing
Auxiliary Duplicate (AUX DUP): $1=$ inhibited, $0=$ allowed
index: $1=$ inhibited, $0=a l l o w e d$
pseudo new record: $1=y e s, 0=$ no
job assigned: $1=$ no, $0=$ yes
must enter: $1=$ yes, $0=$ no
perform validation checks: $1=y e s, 0=n o$
right justify before modifier encountered: $1=y e s, 0=n o$
waiting for zero after MULT key followed by minus: $1=y e s, 0=n o$
MULT key active: $1=y e s, 0=$ no
left zero field: $1=y e s, 0=n o$

Footnote \#2: MODEXT
bit 0 record down in key verify (bits $1-23=0$)
mode key (bit $0=1$)
record up (bit $0=1$)
record delete
record insert (bit $0=1$); verify reconstruct (bit $7=1$)
HOME key and PROG keys
pass 2 for record insert
verify reconstruct
waiting for key-in after MODE key in key verify mode
waiting for SKIP after end-of-tape encountered
10-17 reserved
18 screen print in process
19-23 current line number from top-of-screen ($00-23$)

Footnote \#3: Verify record buffer (VRECB)
bit 0 record insert: $1=y e s, 0=$ no
1 field correction: $1=y e s, 0=$ no
2 character correction: $1=y e s, 0=n o$
3-8 reserved
9-23 first word address of the verify record buffer
Bit 0 is turned off in overlay 1 entry 9.
If VRECB is all zeroes, then this is not key verify mode.

Footnote \#4: MODE2
bit 0 cursor state flip-flop (used by level 4)
112 reserved
$13-15=03$ (channel 3) bits 13-23 are the cut
$\left.\begin{array}{l}1621 \text { terminal number in binary } \\ 22-23=02 \text { (control } I / O \text {) }\end{array}\right\}$ word for al arm beeping

DUMPING RAM TO DISC OR TAPE

1. AUTO to MANUAL
2. RESET
3. STEP
4. LOAD 71100001 into TIR
5. MANUAL to AUTO

The contents of memory are copied to sectors 06200-06257.
6. a. Use DTUX to copy the sectors to tape
// DTUX
$I I=D C O, O=$ tape option, $L=06200, H=06257$.
enter message
//
or
b. Print the memory dump

1) Ensure that the line printer is ready and on-line
2) $/ / \mathrm{P} 8146$
3) // DUMPER The contents of memory as dumped to the disc are printed. CLEAR HALT TO RETURN TO DOS is displayed when the printing is completed.

Note: The disc must have sectors 06200-06257 formatted by the DOS Diagnostic pack. The DOS FORMAT program formats only sectors 0 thru 06177. If this is not done, the dump will NOT be successful.

The offscreen buffer is an area of memory which is dedicated for storing oversized reformat command strings or for building large data blocks which are being prepared for output to tape. The size of the offscreen buffer is a maximum of 2013 characters, depending on the number and size of the screens configured for the system and the other features required. Entering 0000 instructs the system to default to the screen size. The offscreen buffer is no longer automatically generated for 7008 systems, but must be designated each time CONFIG is run. This buffer is located in RAM immediately below 07000 and just after the user tables. This area of RAM is permanently assigned to this buffer. The buffer takes space normally used for extra user tables.

LPOUT is checked when DATA is initialized to see if it matches the type of printer specified in CONFIG. If not, DATA will not come up. However, DATA Wiil initialize with NOPRNT (LPOUT equal to 4), regardless of the printer type specified in CONFIG and printing will take place if the attached printer is the printer selected under CONFIG. If the attached printer is different from that selected under CONFIG, the system will hang on a cutword.

CONFIG creates a singie sector file (S56+C), if it does not already exist, which contains the source image of the latest CONFIG plus the date and time when CONFIG was last changed.
4. The user can change the master, supervisor, and debug password in CONFIG. Changing any password to CTRL eeeeeeee (binary zeroes) will signify that no password is requested.
5. The data read-back option provides a read-after-write check when data is being written from a buffer to the disc. This option can greatly impact system performance because it uses more system blocks and takes more time. The option is designed only for isolated installations with i-4 terminals which do not have a backup media OR for installations that suspect they are having hardware problems with memory, disc, or controllers.
6. The second disc buffer is dedicated to paging in formats and should be specified when the system wil be handling a lot of verify or find mode activity. Use of the buffer should improve system performance when these activities are occurring. Use of this option may reduce maximum terminal support.
7. The code for all of the options of CONFIG (like check digits, keyboard types, etc.) are selected from a library file called R56+6. The load step for DATA includes $/ L=R 56+L$ which is empty and EOPs to R56 +6 . If a check digit or keytop modification needs to be made, put the altered code in the relocatable file $\mathrm{R} 56+\mathrm{L}$ so that LOADOV can incorporate the changes when DATA is created.

*All memory not allocated to screens, user tables or executable code is organized into the following:

> Sector Buffers $-\begin{array}{lll} & 0400(256) \text { words } \\ & \text { number set at CONFIG time }\end{array}$ System Blocks $-0100(64)$ words
> Mini Blocks -020
> Micro Blocks -04
> (16) words

* If there are no 8121 printers, this area will be used for system blocks.

JOBRAM
JOBDES,
Pointer to first system block of directory
In user table - points to specific JOBRAM entry

Length is $6+$ NFOR + NVAL : minimum $=7$; maximum $=36$.
Therefore, 1-9 entries in block.
If active terminal count is not zero, job cannot be deleted.
When count is $=0$, entry can be deleted. However, deletion will wait until system block would overflow with the addition of another job.

Unused words are all binary zero. When length $=0$, the next word >0 is a valid length.

Format Entry (several entries possible for same format.)

Value Set Entry
(one for each active value set)

Value Set entry (when it is in a dedicated miniblock)

63 rd Word
(64 th word not
used)
001 < DEF < 999 three ASCII digits of value set nane

Entries are created when the job directory entry in RAM is built. Several jobs may share entries. A format entry is needed for each sector of format code. Four pages can reside in each sector. The "1st page number" will count as $0,4,8,12$, etc., for each format and may appear in any random order in the directory.

Entries are on an even boundary.
An empty or deleted entry has binary zeroes in the first word.

PAGDIR
FORPTR,X1

Pointer to first micro block of directory
In User Table; points to time word of appropriate page directory micro block

An entry for each page of format code. Binary zeros for the name $=$ no entry.

NOTE: The page directory consists of a linked list of micro blocks, one micro block for each page in memory. The list is kept in sequence by format and page number.

PSB: non-zero $=$ address of system block containing page of code zero $\quad=$ entry is a page-in request (no block assignment)

Time: non-zero $=$ time this page was last referenced $=t-86400$ where t is seconds since midnight
zero $=$ page-in request (same as $\mathrm{PSB}=0$)
$A B C$ is the format name in ASCII: 001 to 999.

Note: IXRRAM is contained in a chain of system blocks; each system block may contain a maximum of seven entries. The pointer to the next system block is in word +070 which has bit $0=1$; the last block in the chain has 040000000 in that word. (Words 071-077 always contain binary zeroes.)

*	DCN	01401	IO instruction in PUSER Table points here.
KSCUR	EQU	1	Current position in KS queue.
KSRES	EQU	2	FWA of keystroke queue (UT ADDR + 0140).
FWA	EQU	3	First word of screen
LWA	EQU	4	Last word address + 1 of data portion of screen
MFWA	EQU	LWA	First word address of message line
SLWA	EQU	LWA	Last word + 1 of screen
CURC	EQU	5	Counts Level 4 until cursor change needed
CUR	EQU	6	Off screen copy of blinking word
SCR	EQU	7	Execute to place character on screen
PSROT	EQU	010	Character location of cursor (PZE SROT)
DEST	EQU	011	Location on screen of cursor
MODE	EQU	012	24 flags (see below)
OPPTR	EQU	013	Sector address of OPERATORS entry
JOBDES	EQU	014	Pointer to JOBRAM entry
FORPIR	EQU	015	Pointer to PAGDIR entry
FSROT	EQU	016	Character location of start of current field (PZE SROT)
FDEST	EQU	017	1 st word of current field
REQ8	EQU	020	Overlay request for Level 8
RECLOC	EQU	021	Relative loc of current record in sector
WIDTH	EQU	022	-(Width of field)
MODPTR	EQU	023	Scratch word
LCR	EQU	024	Execute to get character from existing record
ACCP 1	EQU	025	Pointer to first 4 accumulators. 0-3.
ACCP2	EQU	026	4-7
ACCP 3	EQU	027	8-11
ACCP4	EQU	030	12-15
ACCP5	EQU	031	16-19
ACCP6	EQU	032	20-23
NFOR	EQU	033	Number of formats
NVAL	EQU	034	Number of value sets
SIZE	EQU	035	Number of words in data area of screen
MSIZE	EQU	036	- Size of screen in words
MSIZEB	EQU	037	- Size of screen in bytes
KBTYPE	EQU	040	Keyboard descriptor word from config
LASTKS	EQU	041	Last three keystrokes processed
TVUSER	EQU	042	Trail verify user pointer
TERMN	EQU	043	Terminal index 0-31, terminal printer number
BATCHN	EQU	044	ASCII batch ID - 6 characters - even boundary
*	EQU	045	continued.
BINDOC	EQU	046	Binary document No.
TERMAS	EQU	047	Terminal number in ASCII right adjusted, blank filled
BATCH	EQU	050	Sector address of batch dir entry or batch index entry
LINKBS	EQU	051	Return address from LINKVS.
BINREC	EQU	052	Binary record number
MAXREC	EQU	053	Largest binary record number in the batch
NEXTUR	EQU	054	Unconditional keystroke return address
STATS	EQU	055	Operator statistics table
STATS 1	EQU	056	2nd word of op. stats. table.
STATS2	EQU	057	3 rd word of op. stats. table.
BINCOL	EQU	060	Binary column counter.
ALARM	EQU	061	Audible alarm instruction (IO KBTYPE or NOP)
SAVPTR	EQU	062	Save pointer for backspacing.
MODEXT	EQU	063	Mode extension flag word.
DISCRA	EQU	064	Return address when disc I/O complete (level 7)
VRECB	EQU	065	Non-zero when in verify mode.
RECHDR	EQU	066	Current record header word
RECSIZ	EQU	067	Binary record size
SECTOR	EQU	070	Current relative sector address
NEXTCR	EQU	071	Return address from BRM NEXTC
COLUMN	EQU	072	Pointer to column count on screen (FWA of status line)
ECODE	EQU	073	Error code. Sign = Flasher
FX2	EQU	074	X2 Location in format (via BAL)
FX3	EQU	075	X3 $=$ Negative field width remaining to be keyed
VLROT	EQU	076	LCR pointer for verify
VDEST	EQU	077	
	PZE	0	0100, lost keystroke routine from IOID+040
	BRM	KEYL	0101
	BRD	\$-2	0102
QUE 8RA	EQU	0103	Return address from QUE8 call.

TABLE SKELETON DEFINITIONS $=$ CONTINUED

MODE

0	$1=$ Normal mode from keyboard, $0=$ feed thru or $V \mathbb{*}$	
1	$1=$ Prog ctrl off, $0=0$ n	
2	$1=$ Release key in process, $0=$ not	
3	$1=$ Verify active, $0=$ inactive	
4	$1=\mathrm{Ver}$ corr (1 char) in process, $0=$ not	
5	1 Waiting at end of field (must RLS/Left Zero), $0=$ not	
6	$1=1$ st pass (disc to screen), $0=$ not	
7	$1=A S D$ on, $0=n o t$	
8	1 Special mode Note: Bits $8,9,10=0$ is entry mode	
9	$1=$ Verify mode	
10	$1=$ Find mode	
11	$1=$ Skip/Release inhibit (must fill), $0=$ not	
12	1 = Character input inhibited, $0=$ allowed	
13	1 New record, $0=$ existing record	
14	1 Aux dup inhibited, $0=$ not	
15	$1=$ Index inhibited, $0=$ not	
16	$1=$ Psuedo new record, $0=$ not	
17	1 No job assigned, $0=a s s i g n e d$	
18	1 Must enter inhibit, $0=$ not must enter	
19	$1=$ Perform validation checks, $0=$ not	
20	$1=1$ st column of record, $0=$ not 1 st col of rec	
21	$1=$ Waiting for minus key (LZ FLD), $0=$ not	
22	$1=$ Not 1 st col of field, $0=1 \mathrm{st}$ col of field	
23	$1=$ Left zero field, $0=$ not left zero field	
MODE2		
0	Cursor state flip-flop	
1	Verify reconstruct	
2	Search-state on	
3	Extended precision accumulators	
4	Correction made in K.V. to current field If reverification option specified in CONFIG	
5	Mode X, T (Decentralized batch transmission) in process.	
6	Reserved	
7	Reserved	
8	SYSIN is active	
9	NEWFMT 1 new style format	
10	TRMBIT current logical term value ($1=$ true)	
11	EXPBIT current logical expression value ($1=$ true)	
12	IFTHEN $1=$ currently between "IF" \& "THEN" in format	
13	Right justify is active on key verify	
14	Reserved for special user	
15	Reserved for special user	
16	Reserved for special user	
17	Reserved for special user	
18	Reserved	
19	Reserved	
20	No disc record (NDR)	
21	INDSET-FIND mode in progress	
22	$1=$ In a record, 0 not in a record	
23	Waiting for new mode char	
MODE3		
0-18	Reserved	
19	$1=$ DOC KV $\\|^{2}$ (set in DOC key-verify initiation (in overlay 38 entry 6)). This bit remains on during the DOC Keyverifying. It is turned off when new record is hit and	
20	$1=\operatorname{DOC} \mathrm{KV}, 1$ (set by KVDOC command in format). This bit remembers that a KVDOC was executed. At NXTREC, if this bit is on then the document key-verify operations are initiated by calling overlay 38 entry 6. The overlay	
	clears this bit.	
21	Reserved	
22	1 Out-of-balance (set at SREC in key ver)	
23	$1=$ Batch has marked DOC (set by mark command in format)	

MODEXT

DISC SECTOR POOL AND REQUEST QUEUES

There are three disc sector pools pointed to by the following fixed residents words:

```
BUFLST - Free burfer list (always starts with a dummy
                                    entry that has no buffer attached)
DISCQ1 - Pending I/O (all requests except PUTREL)
DISCQ2 - Pending I/O (PUTREL requests, only)
```


Word 0 :

```
        Q I=disc I/O request pending, Ozrequest complete
    N 1=non-standard request (see below)
    A 1=repeat the write request (a 2nd PUTREL/PUTHLD
        initiated before first PUTREL complete)
        R l=multiple read requests exist for this sector
        U Unused
    E 1=Unrecoverable I/O error. This bit may be set because of
        a reject (invalid sector address, etc.) or because of 8
            unsuccessful retries on a disc I/O error. With this bit
            set, PRODSC will cause the error return to be taken on the
            initiating GETSEC, PUTHLD, etc.
        RC: After 8 retries are counted, this 3 bit counter will over-
        flow setting the error bit (bit 5).
Word 1: W 1=write request, 0=read request
The remeinder of Word 1 may have 3 different forms, depending on the type of
```

request.
For standard read and write requests:
IWI 0 I 20 bit relative sector address

For non-standard requests, there are two formats. The first is for an overlay load:

0	7 bits reserved	3 bit length_1	relative starting sector address of overlay in zone 000

The second is for single sector absolute sector I/O (TRAN50)

| W^{4} | 4
 bit IDOS
 logical drive | 18 bit absolute sector address |
| :--- | :--- | :--- | :--- |

Word 2: $H \quad 1=$ word is User Table address of level 7 caller
$0=$ word is address of Submonitor Control Block of lever 8 caller

EZONPT	pointer to first word of table
LASTZN	highest numbered zone defined to the system

$n=2 *($ LASTZN +1$)$

F: $\quad 0=$ sectors available in this zone
$1=$ this zone is 100% full
I: $\quad 0=$ allocation permitted
$1=$ allocation inhibited
D: $\quad 4$-bit IDOS logical drive number of zone $(0-11)$
A: Number of sectors available for allocation in this zone (12 bits)
T: Total number of sectors in this zone (12 bits)

OVERLAY DIRECTORY

OOVDIR Points to the word preceding the overlay directory in RAM (since the RAM overiay directory is preceded by a pair of words containing the release and fix level, eOVDIR points to the second of these words) The largest overlay number defined
M\#OVLY

$\mathrm{L}=1$, Overlay is loaded (in DAT000)
$E=1$, Overlay exists

Level 8 processing is controlled by a multi-tasking monitor that supervises the execution of several tasks. These tasks, called submonitors, are each controlled by an 8 word Submonitor Control Block (SCB):

*2 Displ. 4 word used:
4 - address of submonitor being called
5 - sector address
6 - disc queue entry address of non-standard disc request

DATA IV currently has the following level 8 submonitors:

Submonitor Name
OVL Overlay Submonitor
TRA
PRT
ALO
DYN
COM
SPL

Transfer Program Submonitor Print Submonitor Allocation/Deallocation Submonitor DYNAMO Submonitor Communications Submonitor Spool Submonitor

0000	Scratch area
0001	Allocation Sector - Zone 000
0002	Master Sector
0003	CONFIG Sector
$0004-$	Reserved
0016	Reserved for NP/80
0017	Master Sector (Copy)
$\begin{gathered} 0020 \\ 7677 \end{gathered}$	Directories, Overlays, Data, etc.

Zone 001-377	0000
	0001
-	$\begin{gathered} 0002 \\ 0017 \end{gathered}{ }^{-}$
	$0020-$

*Directories, format object code, and value sets may be in zones 0-3, only. Therefore, they require a $14-b i t$ directory address: 2 bits for the zone and 12 bits for the relative sector address.

Data sectors and index sectors require a 20 -bit address: 8 bits for the zone and 12 for the relative sector address.

DATA IV DISC LAYOUT

AI - 13

The following standard 4-word header is at the beginning of all but the allocation and overlay object code sectors:

Word 0: Forward PointerzzzzzzzzSSSSSSSSSSSS
Forward pointer indicating the relative sector address of the next sector in this chain. Zeros indicate the last sector of the chain.

Word 1: Backward Pointer.... $2 z z z z z z z S S S S S S S S S S S S$
Backward pointer indicating the relative sector address of the previous sector in this chain. zeros indicate the first sector of the chain.

Word 2: Here PointerzzzzzzzzSSSSSSSSSSSS
Here pointer indicating the sector's own relative sector address.

Word 3: Code word. If this sector contains format object code, a value set, or an index set information sector or index key sector, this word contains the ASCII number of the format, value set, or index set. (Bit 8 or 16 is set according to the rules used in the FVS directory; ie, bit 8 is on for index set numbers and bit 16 is on for value set numbers.)

For all other types of sectors, the following format is followed:
CCCCDDDDDDZZSSSSSSSSSSSS

CCCC 4-bit code for sector type:
0000 - Master Directory (remainder of code word also zerc)
0100 - Job Directory (remainder is zero) 0010 - Batch Directory (remainder is zero) 0101 - Maintenance or OID Sector (remainder is zero) 0011 - Format/Value-Set Directory (remainder is zero) 1000 - data sector which is not full) (remainder of code 0000 - data sector which is full \} word non-zero)

```
    SECTOR STRUCTURE = CONTINUED
NOTE: The following applies only to Batch Directory and Data
        Sectors.
\begin{tabular}{ll} 
DDDDDD & \begin{tabular}{l} 
For Batch Directory Sectors, this contains \\
the leftmost 6-bits of the 8-bit \\
displacement of this entry in the Job
\end{tabular} \\
& Directory Sector.
\end{tabular}\(\quad\)\begin{tabular}{l} 
For Data Sectors, this contains the \\
leftmost 6-bits of the 8-bit displacement \\
of the entry in the Batch Directory Sector.
\end{tabular}
```


ALLOCATION SECTOR

This sector is always relative sector 0001 in every zone. Note that the first 16 sectors (0000-0017) of a zone are not allocated by DATA IV. The relative sector 000 of zone 000 cannot be used, since the here pointer would be zero.

*1: bit $0=1$, zone has been accessed.
*2: Each time OPENDB is called (eg, when DATA is brought up or MAINT is executed), this sequence number is checked to be identical in all DATzzz files. If they don't match, an incomplete restore may have occurred and MAINT must be run to set them all equal. If they all match, then they are all bupped by one. They will recycle to 0 .
*3: 251 word allocation table for this zone. Bits 8 to 23 of each word represent 020 sectors of a zone. Zero bits indicate sectors in use or not assigned to the zone. One bit indicates sectors available for allocation.

MAINTENANCE (OID) SECTOR

* 1 Variable number of entries, 3 to 14 words per entry. A word of all ones, indicates the end of the entries.

Word $1=$ Day
2 = \# Drives for this Entry
3 = Error Count for Drive \#o

12 = Error Count for Drive $\# 11$
Four-word entries.

```
Word 1 = Day
    2 = Bits 0-8, reserved; bits 9-23, time (0-86400)
    3 = Bits 0-23, status returned from $JDISC
    4 = Bits 0, read or write
                            1, reserved
                2-5, logical drive number
                    6-23, sector address
```

Three-word entries.

```
Word 1 = Day
    2 = Start Time
    3 = Stop Time
```

NOTE: The "MAINT" flag is in word 0212. To bypass running MAINT after abnormal DATA IV shutdown, set word 0212 to a non-zero time. (0212 corresponds to the shutdown time for the last execution of DATA IV and is set to zero when DATA is initialized.)

* $1 \quad \mathrm{~L}=1$, overlay is loaded
$E=1$, overlay exists
The rightmost 12 bits of each of the we words contains the relative sector address (within zone 0) of the first sector of that overlay.
*2 A 16 word table maintained by ZONEMA. Bits 8 to 23 of each word represent 020 possible zones. One bits indicate defined zones. zero bits indicate undefined zones.

* Footnotes on next page
*1 Forward pointer points to KEYS sector
*2 One word for each terminal
KB: $0=$ Source Keyboard, $1=029$
AUD: $0=$ no audible alarm
*3 Minimum is 4
Recommended value is number of terminals +2 ; additional buffers needed for communications, \$EDIT, etc.
* 4 Defaults for Passwords:

8 blanks - Reconfiguration or Master Password (020430614)
12345678-Print/Log (052675507)
PASSWORD - Supervisor (070702334)

* 5 System Configuration Words:

Word 1 (SYSFIG)
bit(s)
$0=48$ char screen, $1=81$
$1=$ MOD II with extended memory; $0=$ no extended memory
$0=$ no channel adaptor.
$0=$ no memory log
$0=n o \quad c a r d$ reader
$0=$ no printer, $1=$ use IDOS printer
$0=9-t r a c k$ tape, $1=7$-track tape
$0=$ low density tape, $1=$ high density tape
$0=n o$ shift override of field type, $1=$ allow shift override
$0=$ no concurrent bisync, $1=$ concurrent bisync
$0=$ count records, $1=$ count documents
$0=$ one beep/error; $1=$ one beep/keystroke after error
$0=$ EBCDIC, $1=A S C I I$ output to tape
$0=$ LAM $/ 8436 \quad 1=$ LAM/8437,
$0=M L A M / 84361=M L A M / 8437^{\circ}$,
$0=$ production system, non-zero $=$ screen number +1 of DEBUG terminal.
18-19 number of tape decks (2 bits)
20-23 number of disc drives ($0-11$) (4 bits)

KEYS SECTOR

The KEYS sector contains codes for translating hardware keyboard input to the proper software code desired. The following table lists the software codes for the DATA IV Control Functions.

OCTAL CODE
200
201
202
203
204
205
206
207
210
211
212
213
214
215.

216
217
220
221
222
223
224
225
225
227
230
231
232
233
234
235
236
237
240
241
242
243
244
245
246
247
250
251

CONTROL FUNCTION
Record Up
Backspace Character Skip Right Character
Record Down
Release
Mode
Record Insert
Erase
Home
Reset
Record Delete
Correct
Skip (same as 243)
Left Zero
Left Zero
Skip Right Field
Backspace Field
Auto Skip/Dup
Program Control
Illegible
Valid
Index
Program
Program 2
Program 3
Program 4
Program 5
Program 6
Print Screen
Display Accumulator
Document Down
Restore
Multipunch
Duplicate
Auxiliary Duplicate
Skip (same as 214)
Document Up
Search Switch/FIND Mode
Inhibited Key
Reserved for custom systems, normally inhibited
Character Insert*
Character Delete*

KEY(S)

REC FIELD <-FIELD -->
REC ;
REL
MODE
SHIFT REC :
SHIFT ERASE/HOME
ERASE/HOME
CORR RESET
SHIFT REC :
CORR RESET
SHIFT REL
LEFT ZERO
LEFT ZERO
SHIFT FIELD -->
SHIFT FIELD <--
ASD
PROG CTRL
?
VALID
INDEX
FROG 1
PROG 2
PROG 3
PROG 4
PROG 5
PROG 6
CTRL DUP
TOTAL
CTRL REC :
CTRL REL
SHIFT MULT/SKIP
DUP
AUX DUP
SKIP
CTRL REC ;
CTRL ERASE/HOME

CTRL FIELD -->
CTRL FIELD <--
*Must be optioned for in OPTION.
NOTE: On keypunch-style keyboards, NUMERIC replaces SHIFT.

An entry in the job directory cannot be moved once defined. All entries are even length.
*1 S = Job has been "selected" by \$SELECT command
$0 \quad$ = Batches have been ordered for transfer by \$ORDER command
B $\quad=$ BUSY - Job is temporarily unavailable due to \$PURGE or \$ORDER processing
D. \quad Double Accumulators are defined for this job

X . = Mode $\mathrm{X}-\mathrm{T}$ enabled for this job (\$XTSET)
NFOR = Number of formats defined for this job (4 bits). Range: 1-15. Same value as NFOR in User Table.
NVAL = Number of Value Sets defined for this job (4 bits). Range: $0-15$. Same value as NVAL in User Table.
NACCP $=$ Highest accumulator number defined for this job. (5 bits). Range: 0-23.
$\mathrm{U}=$ Speciai user use (1 bit).
SIZE = Record size for fixed length records (10 bits). $0=$ variable length records.
MAXSIZ $=$ maximum record size permitted under yariable length records (10 bits). ($0=$ fixed length records)

Program MAINT will clear the BUSY flag and delete the Bateh Index.

Packed decimal example:

Therefore, the two format id's 943 and 392 would be packed into the octal word 45031622.

Note: The Batch Index is deleted when MAINT or CLEAN is run and is then rebuilt by DATA at job bringup time.

Sector trailer (1 word) when code word is negative:

Algorithm for \# of records in a sector:
Total sector length $=256 \times 3=768$
Sector Header $=-4 \times 3=\frac{12}{75}$
Available for data $=252 \times 3=756$

$N R S=\left[\frac{252}{N W R}\right]$
Where, $R S=$ Record Size in characters
NWR $=$ Number of Words per Record NRS $=$ Number of $\overline{\text { Records }}$ pe $\overline{\bar{r}}$ Sector []$=$ integer divide (ie, truncate to integer)

NOTE: On jobs with variable length records, the record mix will have to be considered. The system will try to fit each record into the current sector.

$A B C$ is the 3-digit $A S C I I$ name of the format, Index Set, or Value Set: $000<A B C<999$ bit $16=1$ (Value Set) bit $8=1$ (Index Set)
Formats, Value Sets, Index Sets, and empty entries can be intermixed in any order.

* 1 - 3 word entry for format. ABC

SD: $0=$ single accumulator width, $1=$ double precision accumulators
Screen Code: 0: Quarter screen, 1: Half, 2: Full, 3: Double
Screen code includes the message line. These are the minimum screen sizes for format.

G: $\quad 0=0$ d style formats, pre-release BO. $1=n e w$ sytle formats, release BO and later.
*2-3 word entry for Value Set ABC
*3-3 word entry for Index Set ABC
*4-3 word empty entry
84. entries per sector. The first word of each entry must contain a valid value.

$+4$	Standard 4 word header -- fourth word is format name in ASCII
	Four 63 word pages of compiled calling sequences. page 0
+0103 page 1	
$\begin{aligned} & +0202 \\ & +0301 \end{aligned}$. page 2
	page 3

Notes:
The code word is actually the ASCII format name. By the nature of ASCII code, this yields a code word with bits 0-3 $=0011$.

Compiled calling sequences may not be split across pages. Therefore, several NOP instructions (06700000) may appear at the end of a page.

The last sector of the format may not be full, i.e., it may contain less than four pages. The remainder of the sector is garbage.

VALUE SET SECTOR

+4+5	Standard 4 word header -- fourth word is Value Set name in ASCII
	Time Value Set was complied
	Day Value set was complied
$+6$ thru $+0377$	String of Value Set entries

Notes:

The code word is actually the ASCII Value Set name. By the nature of ASCII code, this yields a code word with bits $0-3=0011$.

Each Value Set entry is 1 to 250 words long, the length being defined in the Format-Value Set Directory entry.

Each entry is a string of ASCII characters, starting on a word boundary, left justified with garbage fill. Entries may not span across sector boundaries.

Unused words at the end of a sector are filled with binary zeros. Unused words at the end of the last sector of the Value Set are filled with 037777777 .

Standard 4 word header
Reserved
ASCII INDSET number with bit 8 on
INDSET number in binary
Sector address of highest index level
First column number of key
Number of columns in key
Job name of the data batch
Batch ID of the data batch
Sector address of first data batch sector
Sector address containing batch directory entry for data batch
Displacement of batch directory entry for data batch

* 1 Index level sectors are built by having an index entry for each sector in the data batch. The highest index level must be 3 sectors or less. Index levels will continue to be built from the data batch until a level with 3 or fewer sectors is reached. Each index level differs from the first only in that the sector address points to a sector in the preceeding index level.

+4	Standard 4 word header	* 1
	L 1 Sector address of data batch sector or next lower level index sector	
+5	Key value of highest key in data sector or previous level index sector (left justified with blank padding to word boundary)	Index entry
	* $1 \quad L=1$ if this is the last entry. The index entry length in words is $\frac{\text { (KEYLENGTH }-1 \text {) }}{3}+2$	
	The key value is that of the last (highest) record in the sector.	
	Note that records cannot be inserted into an index beyond the highest key.	

OVERLAY OBJECT CODE


```
where \(N\) is binary value of the overlay number
eg, overíay 17 would begin with 00000021
```

The 1 to 5 sectors are contiguous

Word

Sectors 2 to 5 (if needed)

0	
1	
$:$	
$:$	

iority Overlay Requests

request for a priority overlay is indicated by setting a single-word switch non-zero. There are three priority overlay request words:

FMOREQ when non-zero, indicates a request for overlay 21 entry 1 to set up a system flashing message. FMOREQ is set by Level 4 when a system message number is found in ECODE of a terminal's User Table.

PDOREQ when non-zero, indicates a request for overlay 17 entry 1 to perform PAGDIR reorganization and Master and Maintenance Sector re-writes. PDOREQ is set by Level 4 once every minute.
:REQ8L when non-zero, it is a pointer to a list of overlay requests which are not associated with any terminal. This is used by the Communications Submonitor to request its overlays and by the Allocation Submonitor to request the overlay to do deallocation.

prminal Overlay Requests

A request for a terminal overlay is indicated by storing an overlay request word in REQ8 in the terminal's User Table and incrementing the resident word OVRREQ (count of terminal overlay reqests). The format of an overlay request word is:

Q: $\quad 0=$ queue keystrokes during overlay execution
X: $1=$ toss keystrokes during overlay execution
M: $\quad 0=$ inecial request

$1=$ pass "MODE" key as data key

Upon completion, the overlay returns to the overlay Submonitor by branching to one of two exits:

EXOVL Exit with no further overlay activity required for this terminal. The submonitor then decrements OVRREQ and zeroes bits 4-23 in REQ8 in the terminal's User Table.

NXOVL Exit to another overlay. Caller places new overlay request word is REQ8 in the terminal's User Table. OVRREQ is not decremented by the submonitor. The new overlay request will be honored after all other User Tables are scanned.

DCN	39
BRA	ENTRY1
BRA	ENTRY2
O	
BRA	ENTRYn
EQU	$\$$
0	
LD1	USER8C

* THE FOLLOWING CODE WILL SET UP A REQUEST
* for the second entry point of this overlay
LDA OV39E2
STA REQ8, X1
BRA NXOVL
ENTRY2 EQU \$
\circ
$\stackrel{\circ}{\circ}$
OV39E2 DCN $39 * 256+2$
LOADOV Procedure
// LOADOV
$/ I=R 80-38$
I $\mathrm{I}=\mathrm{R} 80-\mathrm{OB}$
/I=relocatable program
$10=$ name
/T=0100000
//
// MAKESY
$I=$ name, $0=$ overlay number
//

0

WRITING TRANSFER PROGRAMS

	BSS	02400
START	DCN	0
	\vdots	
	BRM	WAIT8
	SKZ	TRSTOP
	BRA	ABORT
	\vdots	
NORMAL	INR	START
	BRR	START
	\vdots	
ABORT	BSS	0
\# DISPLAY	ERROR	MESSAGE
BUFFER	BRR	START
	BSS	DCN
		0

Note: To use the IDOS routines SYSIN and SYSOUT from a transfer program, you must include the following equates in your program.

| SYSIN EQU | 01737 |
| :--- | :--- | :--- |
| SYSOUT EQU | 01740 |

LOADOV Procedure
// LOADOV
/I =R80-38
/I =R80-OB
/I=relocatable program
$10=$ name
$/ T=0100000$
//
Debug is a dynamic display of system activity. Normally, the Debug display is
kept in a System Block in memory; however, it may be configured to display on
a screen. To do so, answer no to the CONFIG question "IS THIS A PRODUCTION
SYSTEM?" and then enter the terminal number plus one of the screen to contain
the Debug display (i.e., for terminal 0 enter 1, for terminal 3 enter 4, etc.)
Only terminals o through 6 may be configured for the Debug display. (NOTE: to
configure a screen as a DEBUG screen, DEBUG must have been OPTIONed for.)
NOTES: Show Mode G will give a snapshot display of the debug information.
Show Mode Z will give a dynamic display of the DEBUG information.

	1	2	3	4	5	6	7	1	9	10	11	12	13	14	15	15
1	:5s secomo COUMT	EOR WHEN EOR active	10x 108 fallure COUMT	$+$ whem LEvEL 4 active	$+$ WHEN moset tockup active	HAME OF CURREMT LEVEL 1 suzmon. ***	$-7-$ WHEM LEVEL 7 active	ovi WHEM overlay active	mame OF overlay IW RAM (OCTAL)	tRA WHEn TRAMSFER PAOGRAM ACTIVE	mx MA TRA PRO PR IN		x MUMBER 0 F SYSTEM BLOCKS IM PAGDIR	mumber OF ENTRIES im FVSBAM	nUMBER 0 F JOBS j0BRAM	number OF EmTRIES ixhram
2	aUE Queve LENGTHS \rightarrow	${ }^{x}$ number 0 F tenms IN EOR	NUMBER OF SOFT tOST KEYSTROKE	Mx OF TERMS IN VALUE SET L00KUP	${ }_{x}$ nUMBER OF TERMS in Imoset 100KUP	NUMBER OF TERMS IMPAGE FETCH	number OF KEYSTROKES QUEUED	${ }^{x}$ number 0 F OVERLAY heouests queved	$\mathbf{x x}$ 0 F pISC hequests auEued	LxO WHEM DISC 1/0 LOCKED	XXX CURRENT OR LAST DISC USER .	Ex count OF DISC ERRORS **	x DISC OPERATICM at last ERROR $+$		wixix xi DISC status at Last t/O ERROR	
3	T00 terminal mumbens \rightarrow		$\mathrm{T}=$ LAST LOST KEYSTROKE	$\mathrm{T}=$ LAST value SET tookup	nn $T=$ LAST IMDEX SET L00KUP	n月 $T=$ LAST PAGE FETCH	nn $\mathrm{T}=$ LAST KEYSTROKE PROCESSED	$\begin{aligned} & \text { nn } \\ & \text { Tz } \\ & \text { LAST } \\ & \text { OVERLAY } \\ & \text { LOAD } \end{aligned}$	57 CURRENT OR LAST DISC OPERATIOM 4	0 S5s logical drive anO SECTOR OF LAST DISC $1 / 0$				TXX HEX HY RESERVED FOR TAPE ERROR STATUS		
4	xy x IX RP At last LEVEL 4 INTERRUPT		xx number OF HARO LOST XEYSTROKES X	EIT MAME ${ }_{\mathrm{OF}}^{\mathrm{OF}}$ LAST value SET USED	18x NAME OF LAST IMDEX SET USED	XTX MAME OF LAST FORMAT PAGED	T LAST KEYSTROKE PROCESSED	RESERVED					RESERVED FOR communications SUBSYSTEMS			
* blamk whem imactive.* blamk when zero.			ovt - overlay submomitor tra - tramsfer program submomitor prt - print submomitor alo - allocatiom/de allocation submonitor DYM - DYMAMO SUBMOMITOR cOM - COMmUNICATIONS SUBMOMITOR													

DYNAMO

DYNAMO is a dynamic memory display, patch, and trace routine that must be OPTIONed for. The DYNAMO display occupies two lines and appears at the DEBUC screen in the portion of the screen normally used for the message and status lines.

DYNAMO Operations (Runs @ Level 3)

Bottom two tines of DEBUG screen:

Key Functions

To Start DYNAMO

Press the unshifted HOME key to start DYNAMO at the Debug screen. The message line should have a solid block cursor at the left end of the five position location field. The left most 3 places on the line should have "CHG" indicating change mode.

MESSAGE LINE:

XXXccclllll aaaaaaa bbbbbbbb ccceccec dddddddd
where:
XXX is CHG - change mode, enter a location into the 11111 field.
DIS - octal display mode, the contents of lllll are displayed at aaaaaaa, the contents of lllll+1 are displayed at bbbbbbbb, etc.
ASC - ASCII display mode, aaaaaaa etc is ASCII representation of location illil. 36 bytes are displayed.
PAT - patch has been made beginning at location lllli.
TRC - a trace or stop has been planted at location 11111.
ccc is count of the number of times the instruction at location 11111 has been executed in trace or stop mode.

11111 is the current location in RAM being displayed, patched or traced.
STATUS LINE: contents depends on function being performed.

To Display RAM:
Press the HOME key.
Key the 5 octal digit RAM location.
Press the INDEX (F5) key.
To display in ASCII.
PRESS ASD (F1) key.
36 bytes (12 words) beginning at location 11111 are displayed.

To Display MOD II Information
Press the HOME key.
Key the address WWWPP; where WWW $=$ window (8 bits)
$P P=$ page $(0-31)$
Press the MODE key.
Display appears as:

1. Mapper RAM
2. Window Register
3. Memory Parity Register
4. Mapper Parity Register

The TRC mode is used to stop execution at a specified location.
The stop occurs before the instruction is executed. So you can check the condition codes before a branch, etc.

Press hOME key.
Key the 5 octal digit location.
Press PROG6 (F11) key.
When the stop occurs, the status line will show the contents of registers RA, RB, X1, X2 and X3 in octal from left to right. At the far left end o the status line the 3 byte display Scc will display. cc is the octal condition code at the time of the stop. The count ccc on the message li should show 001 the first time.

To cancel the stop and allow the system to continue press RESET (TAB).
To release the stop and catch it again the next time press PROG6.
NOTE: This may be used to stop trace at all levels above level 3.

To PATCH RAM (4 or fewer consecutive words)

Press HOME key.
Key the 5 octal digit lowest location to be patched. Press the. INDEX (F5) key.

The four locations beginning at 11111 will display. Verify that you are at the correct spot in RAM.

Press HOME key.
Press the RIGHT arrow to position the solid cursor to the octal digits to be changed and key the correct octal digits. The actual changes are not made to RAM until the next step is performed.

Press PROG1(F6), PROG2(F7), etc. to patch 1, 2, etc. words.
PAT will display at the left most end of the message line.

DUMP PROCEDURE

1. AUTO to MANUAL.
2. RESET then STEP.
3. LOAD into TIR: 71100001
4. MANUAL to AUTO then to MANUAL
a. Tape Dump - (9 Track only)
5. Mount a scratch tape
6. MANUAL to AUTO

The system will dump records 1024 words long (06000 bytes)
b. Disc Dump

1. MANUAL to AUTO
2. When the dump is complete, the system will halt with $\mathrm{X} 3=00000000$. To get a formatted dump:
// DUMPV2
/INPUT=(T8 or T16 or D)
//
DUMPV2 requires a 0200 sector contiguous file called DUMP47. This can be created by running the program MAKD47.
```
// MAKD47
10=drivetype (where drivetype = 8230, 8240, 8260 or 8270)
/Banks=n.) (where n = for 96k systems or smaller
//
```

6. DUMPV2 exits to $A 80-D B$ to print the dump. If an unformatted dump is wanted, or only part of a dump, or if the directories are clobbered causing A80-DB to loop:
a. . Set switch zero up.
b. LOAD memory address where dump should start into TIR. c. // A80-DB.
7. If low memory is clobbered and the 71100001 will not execute a dump, the address of the dump routine is also in the Format Vector Table. Try: (in step 3 above)
```
LOAD into TIR
            71101767
```


Performance Monitor

DATA IV must be OPTIONed for the performance monitor in order to use it to monitor system activity. In addition, the transfer program A80PMR must be copied onto the customer pack in order print the performance report.

To start the Performance Monitor

```
$SETPP STARTPM
$SETPP STARTPM (OVLOG)
$SETPP STARTPM (KEYSTROKE=05)*
$SETPP STARTPM (RPLOG, OVLOG, KEYSTROKE=05)*
```

* Note: The keystroke to be monitored must be a control key and is entered modulo 0200. For example, the MODE key is 0205; to monitor it, the code to enter in the \$SETPP command is 05.

To stop the Performance Monitor
\$SETPP STOPPM
\$SETPP STOPPM (NOREPORT)
\$SETPP STOPPM (REPORT=MASTER133,1)
\$SETPP STOPPM (TITLE="ABC", REPORT $=\mathrm{X}, 1$)

Performance Parameters

LEV785 - Number of terminals that PROKS will attempt to process before returning CPU to submonitors. (LEV78B $=\mathrm{N}, 0<\mathrm{N} \leq 32$)

NKSMIN - Maximum number of keystrokes to process out of a terminal's queue at one time. (NKSMIN $=N, 0<N<5$)

DYNBAL - Causes system to perform dynamic adjustment to the system's level78 bal ancing. (DYNBAL $=N, 0<N<8$, or DYNBAL $=N O$)

PAGLIF - Sets the age at which an unused page will be discarded by the garbage collector. (PAGLIF $=N, 0<N<8$ where the "life expectency" is 2 to the Nth, or PAGLIF $=$ NO)

PAGSEC - Causes the system to read into memory more than just the first page in a sector of format object code. (PAGSEC $=N, 0 \leq N \leq 3$ where N is the number of seconds to advance the "time" word in the page directory entry.)

BUFBLK - Enables the system to break down N sector buffers into system blocks. (BUFBLK $=N$, where N can't be greater than $1 / 4$ the number of sector buffers.)

COMWT8 - Gives priority to the Batch Communications. (COMWT8 $=\mathrm{N}$, $1 \leq N \leq 99$)

Note: Show mode K will display the current parameter settings. VISION during the sysgen procedures.
NAME: AAQ

PURPOSE:	Insure that desired output file was created. Usually used immediately after an assembly or load step.
JCL:	```// AAQ /I=filenameedrive # //```
STEPS:	$A A Q$ searches the IDOS directory on the specified drive and checks to see that the last entry in the directory is the specified file; this indicates that the file was the last one created on that pack.
MESSAGES:	If the filename is not the last name in the IDOS directory, AAQ assumes the reason the file was not created was due to lack of contiguous space and therefore displays the following message on screen 0:
	filename NOT CREATED! MAX \# OF CONTIGUOUS SECTORS=OXXXXX "AAC"
	This message can be misleading since lack of contiguous space is not the only reason why a file wouldn't be created (eg, an input to a load step was misspelled, there are unresolved virtuals in a LOADOV step, etc.)
EXAMPLE:	The following JCL will check to see that the file DATA was created in the previous step.
	$\begin{aligned} & / / \mathrm{AAQ} \\ & / I=\mathrm{DATA} \end{aligned}$ 11

RELEASE AI 15

$\begin{array}{r} 72-K \\ 0 \end{array}$	MEMORY LAYOUT	$\begin{aligned} & 96-K \\ & 0 \end{aligned}$
	Interrupt locations	
060	Screens, User Tables, Disc Request Queues, Sector Buffers, System Blocks, etc.*	060
	Zone Pointer Table	\$DATA
\$DATA	Overlay Directory	
	Optional Resident	
	Fixed Resident	
$\begin{array}{r} \text { eFV } \\ 047200 \\ 047300 \\ 047400 \end{array}$	Format Vector Table	eFV 067200 067300 067400
	IOID5 (8121 Print Output)**	
	PUSER (Keyboard Input)	
	Overlay Area	
052000	Transfer Program Area or 12 Sector buffers for level 7	072000
057777		077777

* All memory not allocated to screens, user tables or executable code is organized into the following:

* If there are no 8121 printers, this area will be used for system blocks.

For non-MFE systems, the first seven words of the user table is a short routin that is executed by level 3. The routine calls IKEY to input a keystroke and then places it in the user table's keystroke queue. For MFE systems, MFE passes the keystroke to the DATA IV level 3 routine which places that keystroke in the keystroke queue for the appropriate terminal.

The keystroke queue consists of single word entries; the first byte of each entry is the (unconverted) keystroke that was enterea and the remaining two bytes are the address of the next word in the queve for that user table.

USERN	BSS	1	Entry to KEYS routine
USERN 1	BRM	IKEY	Get key input. (Non-MFE systems, only.)
USERN2	STB*	KQBOT	Add keystroke to
USERN3	STB	KQBCT	bottom of the keystroke queue.
USERN4	LDB	LV3SVB	Restore RB.
USERN5	INR	KQLEN	Increment keystrokes in queue.
USERN6	BRD	USERN	Return and debreak.
KQLEN	EQU	7	Number of keystrokes in the queue.
KQTOP	EQU	010	Top of keystroke queue; always contains one dummy entry
KQBOT	EQU	011	Bottom of keystroke queue.
KQUP	EQJ	012	An "UP KQTOP" instruction to get a keystroke.
SCR	EQU	013	Execute to place character on screen
FWA	EQU	014	First word of screen
LWA	EQU	015	Last word address + 1 of data portion of screen
MFWA	EQU	LWA	First word address of message line
SLWA	EQU	LWA	Last word + 1 of screen
PSROT	EQU	016	Character location of cursor (PZE SROT)
DEST	EQU	017	Location on screen of cursor
MODE	EQU	020	24 flags (see below)
OPPTR	EQU	021	Sector address of OPERATORS entry
JOBDES	EQU	022	Pointer to JOBRAM entry
FORPTR	EQU	023	Pointer to PAGDIR entry
FSROT	EQU	024	Character location of start of current field (PZE SROT)
FDEST	EQU	025	1 st word of current field
REQ8	EQU	026	Overlay request word.
RECLOC	EQU	027	Relative loc of current record in sector
WIDTH	EQU	030	-(Width of field)
MODPTR	EQU	031	Pointer to in-front modifier.
LCR	EQU	032	Execute to get character from existing record
ACCP1	EQU	033	Pointer to first 4 accumulators. 0-3.
ACCP 2	EQU	034	4-7
ACCP3	EQU	035	8-11
ACCP4	EQU	036	12-15
ACCP5	EQU	037	16-19
ACCP6	EQU	040	20-23
NFOR	EQU	041	Number of formats
NVAL	EQU	042	Number of value sets
SIZE	EQU	043	Number of words in data area of screen
MSIZE	EQU	044	- Size of screen in words
MSI2EB	EQU	045	- Size of screen in bytes
KBTYPE	EQU	046	Keyboard descriptor word from config
LASTKS	EQU	047	Last three keystrokes processed
TVUSER	EQU	050	Trail verify user pointer
TERMN	EQU	051	Terminal index 0-31, terminal printer number
BATCHN	EQU	052	ASCII batch ID - 6 characters - even boundary
BACHN 1	EQU	053	continued
BINDOC	EQU	054	Binary document No.
TERMAS	EQU	055	Terminal number in ASCII right adjusted, blank filled
BATCH	EQU	056	Sector address of batch dir entry or batch index entry
LINKBS	EQU	057	Return address from LINKVS.
BINREC	EQU	060	Binary record number
MAXREC	EQU	061	Largest binary record number in the batch
NEXTUR	EQU	062	Unconditional keystroke return address
STATS	EQU	063	Operator statistics table
STATS 1	EQU	064	2 nd word of op. stats. table.
STATS 2	EQU	065	3 rd word of op. stats. table.
BINCOL	EQU	066	Binary column counter.
AL.ARM	EQU	067	Audible alarm instruction (IO KBTYPE or NOP)

 MODEXT EQU DISCRA EQU VRECB EQU RECHDR EQU RECSIZ EQU SECTOR EQU
NEXTCR EQU SOLUMN EQU CODE EQU FX3 EQU EQU VLROT EQU VDEST EQU PZE BRM BRD
QUE 8RA EQU
WPA 1 EQ P WPB1 EQ WPC WPC 1 EQU WPD

$\begin{aligned} & 070 \\ & 071 \end{aligned}$	Save pointer for backspacing. Mode extension flag word.
072	Return address when disc I/O complete (level 7)
073	Non-zero when in verify mode; points to verify rec buffe:
074	Current record header word
075	Binary record size
076	Current relative sector address
077	Return address from BRM NEXTC
0100	Pointer to column count on screen (FWA of status line)
0101	Error code. Sign = Flasher
0102	X2=Location in format (via BAL)
0103	X 3 = Negative field width remaining to be keyed
0104	LCR pointer for verify
0105	
0	0106, lost keystroke routine from IOID +040
KEYL	0107
\$-2	0110
0111	Return address from QUE8 call.
0112	Scratch word pair
WPA +1	
0114	Scratch word pair
WPB +1	
0116	Scratch word pair
WPC+1	
0120	Scratch word pair
WPD+1	
0122	Current position in disc queue.
0123	Multi mode block address.
0124	1 st 24 bits of format backspacing stack.
0125	2nd 24 bits of format backspacing stack.
0126	Largest binary document number
0127	24 Flags
0130	Last sector address of current batch
0131	Saved column number for return to keying position
0132	Column number for return to last position
0133	Saved 'NEXTCR'
0134	Digits to right of decimal point, LZERO field
0135	Used by screenprint.
0136	Used by key verify. byte 0 is scrambled char
0137	More single bit flags, like 'MODE'
0140	Next mode selection, byte 0
0141	4 th word of op. stats. table
0142	2770 - used for send inquiry
0143	2770 - used to receive inquiry response
0144	2770 - used for mini block address - spool info
0145	Address of Control Block for Remote Terminal
0146	Extra word seratch pair
0147	Used by P1CVR for re-entrancy
0150	Extra word for S80-5C
0151	Extra word for S80-5C
0152	Window Number (See Diagram Below)
0153	Level 7 Block Word (See Description Below)
0154	Level 7 Save of X2
0155	Level 7 Save of X3
0156	Pointer to Flashing Message Block.
0157	Counts Level4 Until Cursor Change Needed.
0160	Off Screen Copy of Blinking Word.

BLOCK7 $\neq 0$, PROKS blocked at terminal; $=0$, PROKS not blocked bit contents
$0 \quad 1=t e r m i n a l$ ready to be restarted
1 used by \$DRIVE
9-23 restart address

WINDOW: terminal's window number.

bit contents

0 not used
1-8 window number
9-13 logical page number
14 odd parity
15 1=read only
16-18 Bank number
19-23 physical page

TERMN: terminal printer information.
bit contents
$0 \quad 1=$ terminal currently printing; $0=n o t$ printing
1-2 not used
3-4 reserved
5-11 not used
12 =screen print not allowed at this terminal
$13 \quad 1=$ terminal printer is assigned
14-18 Diablo printer unit $\#$ assigned to terminal
19-23 binary terminal number

OVERLAY DIRECTORY

```
QOVDIR Points to the word preceding the overlay directory in RAM
    (since the RAM overlay directory is preceded by a pair of
    words containing the release and fix level, eכVDIR points to
        the second of these words)
M#OVLY The largest overlay number defined
```

$\begin{array}{r} -1 \\ 0 \\ 1 \\ 2 \end{array}$	ASCII RELEASEand FIX level				
				number	Rel addr of ovly 1
				of	Rel addr of ovly 2
	L	E		sector -1	
99					Rel addr of ovly $\dot{9} 9$
	1	1	7	3	12

[^2]
OVERLAY REQUESTS QUEUES

There are two types of overlay requests. The first consists of those that are required by terminals (eg, Overlay 2 is used for Show Mode processing) and the second consists of those not associated with terminals (eg, Overlay 17, Entry Point 1 which is requested by Level 4 to free page directory blocks.) These two general categories of overlay requests are handled in different ways.

Terminal Overlay Requests

OVRREQ Number of outstanding terminal overlay requests. REQ8, X1 Terminal overlay request word.

The format of a terminal overlay request word is:

Q: $\quad 0=$ queue keystrokes during overlay execution	
$X:$	$1=$ toss keystrokes during overlay execution
M:	$=$ special request
	$0=$ intercept "MODE" key
	$1=$ pass "MODE" key as data key

Special Overlay Request Queue
:GETOV Address of top of special overlay request queue. (Next special overlay to be processed.)
: PUTOV Address of bottom of queue.
:FREOV Address of free stack for special overlay requests.

Pointer to next queue entry
Ovly * $256+$ Entry Point $\#$

Note: The special overlay request queue always has a dummy entry.

SCB's are pointed to by Control Block (CB) pointers which have the following format:

Pointer to next entry
Address of SCB

Only the CB's for those SCB's that are active or frequently active are part a queue of $C B$'s. As other $S C B$'s become active, an associated $C B$ pointer is added to the queue and as one becomes inactive, its CB is removed. The Submonitor Scan program (S80-8) scans the CB chain when it "looks" for submonitors to be serviced. (Initially the overlay, printer, and spool SCB's are the only ones active. Others, such as the transfer program submanitor, become active as required.)

The following are the resident words associated with the $C B$ queue:

SCQT	$C B$ that points to current $S C B$ or last $S C B$ processed.
$S C Q T O P$	Top of $C B$ queue.
:INCBL	Bottom of $C B$ queue.

T.

$$
\text { AI - } 48 \text { (RELEASE AI 15) }
$$

$\mathrm{L}=1$, overlay is loaded
$E=1$, overlay exists
The rightmost 12 bits of each of these words contains the relative sector address (within zone 0) of the first sector of that overlay.

A 16 word table maintained by ZONEMA. Bits 8 to 23 of each word represent 020 possible zones. One bits indicate defined zones. Zero bits indicate undefined zones.

CONFIG SECTOR

* Footnotes on next page

Footnotes for CONFIG Sector
Forward pointer points to KEYS sector
*2 One word for each terminal
KB: $0=$ Source Keyboard, $1=029$
AUD: $0=$ no audible al arm
*3 MAXMFE $=0$, for non-MFE systems; MAXMFE $=$ maximum number of DATA $t \in r m i n a l s$ signed on under MFE
Minimum is 7
Recommended value is number of terminals +2 ; additional buffers needed for communications, \$EDIT, etc.

* 4 Defaults for Passwords:

8 blanks - Reconfiguration or Master Password (020430614)
12345678 - Print/Log (052675507)
PASSWORD - Supervisor (070702334)
*5 System Configuration Words:
Word 1 (SYSFIG)
bit(s)
$0=48$ char screen, $1=81$
$1=$ MOD II with extended memory; $0=$ no extended memory
$0=$ no channel adaptor
$0=$ no memory log
$0=$ no card reader
$0=$ no printer, $1=$ use IDOS printer
$0=9-\operatorname{track}$ tape, $1=7-$ track tape
0 low density tape, $1=$ high density tape
$0=$ no shift override of field type, $1=$ allow shift override
$0=$ no concurrent bisync, $1=$ concurrent bisync
$\begin{array}{rl}9 & 0=\text { no concurrent } \\ 10 & 0=c o u n t \\ r e c o r d s, & 1=c o u n t ~ d o c u m e n t s\end{array}$
$110=$ one beep/error; $1=$ one beep/keystroke after error
$120=$ EBCDIC, $1=$ ASCII output to tape
$130=$ LAM/8436 1=LAM/8437,
$14 \quad 0=$ MLAM/8436 $1=$ MLAM/8437,
15-17 Type of dump: $0=$ no RAM dump.
$1=$ tape dump.
$2=8230$ disc dump.
$3=8240$ disc dump.
$4=8260$ disc dump.
$5=8270$ disc dump.
18-19 number of tape decks (2 bits)
20-23 number of disc drives ($0-11$) (4 bits)
Word 2 (SYSFG1)
$0 \quad 0=n o \quad 12$ channel printer for received data (BISYNC)
$0=$ extended error recovery (BISYNC), $1=$ no extended error recovery
$0=$ do not count FIND mode statistics, $1=$ count FIND mode
$0=$ DATA IV print spooling, $1=$ bisync direct print
$0=$ field reverification, $1=n o$ reverify option
$0=$ do not keep detail operator statistics by batch, $1=$ do keep by bate.
$0=$ do not keep detail operator statistics by
$0=$ no decentralized batch transmission, $1=y e s$
$7 \quad 0=u n c o n d i t i o n a l$ decentralized batch transmission, $1=$ conditional
8-10 tape buffer size (number of sectors; maximum is 6)
11-13 3 bit Baud flag: $0=600$
$1=1200$
$2=2000$
$3=2400$
$4=4800$
14-18 number of 8121 printers
19-23 number of terminals

*7 PRSTAT

bits	contents
0	reserved
1	$0=$ no log file, $1=10 \mathrm{file}$
2	$0=$ no printer, $1=\mathrm{pr}$ inter
3	$1=$ system printer suspended by MODE LC,STOP
4	reserved
5	clear request
6-18	reserved
19	$0=$ don't log C-type messages, $1=10 \mathrm{l}$ C-type messages
20	
21	$0=$ no screen print, $1=$ screen print turned on
22	$0=$ don't print C-type messages, $1=$ print C-type messages
23	$0=$ don't print B-type messages, $1=p r i n t$ B-type messages

*8 8121 Printer Specification Words: 1 word for each possible terminal terminal.
bit 0: $0=$ Elite, $1=$ Pica
byte 0: number of printer lines per page -1
byte 1: number of increments to advance each line
(1 increment $=1 / 48$ inch)
byte 2: total number of lines per page
*9 Controller Assignment Table (CAT): Each word corresponds to one controller with the first word corresponding to the 8436 controller, the second word to the 8437 controller, the third to the $8437 \# 1$ controller, and so on. Each word has the following format:

bits	contents
0	$0=$ controller doesn't exist, $1=$ controller exists
1-7	valid application bits; $0=$ not valid, $1=$ valid
	bit $1=$ remote terminal
	$2=3270$
	$3=$ HASP
	$4=$ Bisync
	$5=3770$
	$6=$ not used
	, $7=$ not used
8-15	current user
	$0=$ none
	1 = remote terminal
	$2=3270$
	$3=\mathrm{HASP}$
	- 4 = Bisync
	$5=3770$
16-23	reserved

Upon completion, the overlay returns to the Overlay Submonitor by branching to one of two exits:

EXOVL

NXOVL
Exit with no further overlay activity required for this terminal. The submonitor then decrements OVRREQ and zeroes bits 4-23 in REQ3 in the terminal's User Table.

Exit to another overlay. Caller places new overlay request word is REQ8 in the terminal's User Table. OVRREQ is not decremented by the submonitor. The new overlay request will be honored after all other User Tables are scanned.

LOADER Procedure

// LOADER
/M NAME, VALUE;
/B U=OVERNT; /LOC B=OVERNB;
/O A80:NN; /C N; /I R80-OB,R80:NN;
/L OVLIB;
/L R80-38; if optional resident not referenced
/L R80-RS; if optional resident referenced
/L RDS-SY; if optioned for MFE
//

NOTE: Routines loaded with R80-RS must be reloaded if the system is reoptioned.

RELEASE AI15
WRITING TRANSFER PROGRAMS

START	BSS	02400	
	DCN	0	
	-		
	BRM	WAIT8	
	SKZ	TRSTOP	
	BRA	ABORT	
	-	.	
NORMAL	EQU	\$	
	BRA	TREND	Normal Return
	-		,
ABORT	BSS	0	
* DISPLAY	ERROR	MEsSAGE	
	BRA	TRABT	Abnormal Return
BUFFER	BSS	256	
	DCN	0	

LOADER Procedure

// LOADER
/M NAME,VALUE;
/B U=TOPMEM; /LOC B=OVERNB;
/O absolute-file; /C N; /I R80-0B, relocatable-file;
/L TRLIB;
/L R80-38; if optional resident not referenced
/L R80-RS; if optional resident referenced
/L RDS-SY; if optioned for MFE
//

NOTE: Routines loaded with R80-RS must be reloaded if the system is reoptioned.
DEBUG

Debug is a dynamic display of system activity. Normally, the Debug display is
kept in a System Block in memory; however, it may be displayed on a screen by
entering Mode D.
NOTE: \quad Show Mode G will give a snapshot display of the debug information.

$$
\begin{aligned}
& \text { bug is a dynamic display of system activity. Normally, the Debug display is } \\
& \text { pt in a System Block in memory; however, it may be displayed on a screen by } \\
& \text { tering Mode D. }
\end{aligned}
$$

$\sum_{H} 1$	desug display format															
	1	2	3	4	5	1	1	1	5	$10 \quad 11$		12	13	14	15	18
	:ss secomb COUNT		10x	$+$ WHEN LEVEL 4 ACtive	-1WHEN IMDSET LODKUP active \qquad	xXI hame OF CURREMT LEVEL SUBMON. ***	-7- WHEN LEVEL 7 ACTIVE	OVL WHEN OVERLAY ACTIVE	$\mathbf{x x}$ MAME OF OVERLAY IN RAL (OCTAL)	tRA שHEM tRAMSFER PROGRAM active			number OF SYSTEM Blocks in FAGDIR	number OF ENTRIES IN FVSRAM	hUMBER OF JOBS IM JOBRAM	MUMBER OF ENTRIES 19 IXRRAB
	QuE QUEUE LENGTHS	x NUMBER OF TERMS IN EDR	IX NUMBER OF SOFT LOST KEYSTROKE	x MUMBER OF TERMS In VALUE SET t00KUP	K NUMBER OF TERMS IN INDSET L00KUP	15 NUMBER OF TERMS IMPAGE FETCH	NUMBER OF KEYSTROKES QUEUED	xi numger 0 F OVERLAY REQUESTS Queued	1 number OF DISC REQUESTS QUEUED	LKD WHEN DISC 1/0 LOCKED	5x CURRENT OR LAST DISC USER	Ex CEUNT of bisc ERRORS	x DISC OPERATION AT LAST ERROR +		 DISC Status at LAST I/O ERROR	
$\begin{aligned} & D \\ & \infty \\ & \dot{v} \\ & s^{3} \\ & \vec{v} \\ & \dot{v} \end{aligned}$	T00 tepminal mUMBERS \rightarrow	nn $T x$ LAST EOR	nn $\mathrm{T}=$ LAST LOST KEYSTROKE	Tm $\mathrm{T}=$ LAST VALUE SET L00KUP	${ }^{\mathrm{nn}} \mathrm{T}=$ $T=$ LAST INDEX SET L00KUP	nn $\mathrm{T}=$ LAST PAGE FETCH	nn $\mathrm{T}=$ LAST KEYSTROKE PROCESSED	```nn T= LAST OVERLAY LOAD```	x CURREMT OR LAST DISC OPERATION +		sss sss OGICAL DR AND SECTOR AST DISC I/O		-T- heserved FOR TAPE		 SERVED FO TAPE ERROR ATus	
4	$4 x$ R ${ }^{1}$ AT LEV INTE		IX WUMAER OF HARD LOST KEYSTROXES	xix HAME DF LAST VALUE SET USED	$\begin{aligned} & \text { MYK } \\ & \text { NAME OF } \\ & \text { LAST } \\ & \text { INDEX SET } \\ & \text { USE O } \end{aligned}$	Exx HAME OF LAST FORMAT PAGED	I LAST KEYSTROKE PROCESSED			RESERVED				RESER COM Sussy	FOR ATIOMS S	
	MOTES * BLAMK m * Blank m	ImACtive. LeRO.		- overtay - tramsfe - PRint SU - All OCAT - DYMAMO - COMmumic - MO Sulm	UEMOMITOR PROGRAM SU MOMITOR M/DEALLOCA UBMOMITOR ATIONS SUEM IITOR ACTIVE	MOMITOR IOM SUBMON IITOR	T0R	ERMINAL MUI UBMOMITOR	AER IF LEVEL		- Stampard - STAMDARD - MONSTAMD - momstand - OVERLAY	AD RITE dit read D WRITE 0				

3Нצ ouvonyismon - MN
OV- OVERLAY LOAD
(

OYK - DYNAMO SUBMONITOR
COH - COMMUMICATIONS SUBMOMITOR
BLAHK - NO SUBMOMITOR ACTIVE
$\overline{\text { AI }}-56{ }^{\sim}$ (RELEASE AI 15) NOTE:

SPLAY FORMA

m
notes
HOTL. n

* BLAMK \#HEM IMACTIVE.
* * BLAMK WHEM ZERO.

DYNAMO

DYNAMO is a dynamic memory display, patch, and trace program that may be used at the DEBUG screen.

DYNAMO Operations (Runs @ Level 3)

Bottom two lines of DEBUG screen:

Key Functions

All Other Keys In CHG mode, ignored; otherwise, refresh display.

To Start DYNAMO

After entering Mode D, enter the password FOURFAZE. The DYNAMO display will appear on the bottom of the screen above the message line. The remainder of the screen will depend on the screen size:

6 lines: The DYNAMO display will appear by itself.
12.lines: An abbreviated form of the instructions for using DYNAMO will appear above the DYNAMO line.
24 lines: The abbreviated form of the instructions will appear above the DYNAMO line and the DEBUG display will remain on the screen.

The DYNAMO line has the following format:
XXXccclllll aaaaaaaa bbbbbbbb ccccecce dddddddd
where:
$X X X$ is CHG - change mode, enter a location into the 11111 field.
DIS - octal display mode, the contents of lllll are displayed at aaaaaaa, the contents of $11111+1$ are displayed at bbbbbbbb, ete.
ASC - ASCII display mode, aaaaaaa etc is ASCII representation of location lllll. 36 bytes are displayed.
PAT - patch has been made beginning at location illll.
TRC - a trace or stop has been planted at location 11111.
ccc is count of the number of times the instruction at location 11111 has been executed in trace or stop mode.

11111 is the current location in RAM being displayed, patched or traced.
The contents of the line immediately below the DYNAMO line depends on function being performed.

To Display RAM:

Press the HOME key.
Key the 5 octal digit RAM location.
Press the INDEX (F5) key.
To display in ASCII.
PRESS ASD (F1) key.
36 bytes (12 words) beginning at location 11111 are displayed.

To Display MOD II Information

Press the HOME key.
Key the address WWWPP; where WWW = window (8 bits) $P P=$ page ($0-31$)
Press the PROG CTL (F2) key.
Display appears as:

1. Mapper RAM
2. Window Register
3. Memory Parity Register
4. Mapper Parity Register

RELEASE AI 15
To STOP Execution At A Specified Location:
The stop occurs before the instruction is executed; therefore, you can check the condition codes before a branch, etc.

Press HOME key.
Key the 5 octal digit location.
Press PROG6 (F11) key.
When the stop occurs, the status line will show the contents of registers RA, RB, X1, X2 and X3 in octal from left to right. At the far left end of the status line the 3 byte display Scc will display. cc is the octal condition code at the time of the stop. The count ccc on the message line should show 001 the first time.

To cancel the stop and allow the system to continue press RESET (TAB).
To release the stop and catch it again the next time press PROG6.
NOTE: This may be used to stop trace at all levels above level 3.

To TRACE Execution At A Specified Location:

The trace is a dynamic one which may be stopped at any time by pressing the PROG6 or HOME key.

Press HOME key.
Key the 5 octal digit location.
Press PROG5 (F10) key.
The display for the trace is the same as that for the stop.
To stop the trace press PROG6 or HOME.
To release the stop and catch it again the next time press PROG5.
NOTE: This may be used to stop trace at all levels above level 3.

To PATCH RAM (4 or fewer consecutive words)

Press HOME key.
Key the 5 octal digit lowest location to be patched.
Press the INDEX (F5) key.
The four locations beginning at 11111 will display. Verify that you are at the correct spot in RAM.

Press home key.
Press the RIGHT arrow to position the solid cursor to the octal digits to be changed and key the correct octal digits. The actual changes are not made to RAM until the next step is performed.

Press PROG1(F6), PROG2(F7), etc. to patch 1, 2, etc. words.
PAT will display at the left most end of the message line.

DUMP PROCEDURE

1. AUTO to MANUAL.
2. RESET then STEP.
3. LOAD into TIR: 71100001
4. MANUAL to AUTO then to MANUAL
a. Tape Dump - (9 Track only)
5. Mount a scratch tape
6. MANUAL to AUTO

The system will dump records 1024 words long (06000 bytes)
b. Disc Dump

1. MANUAL to AUTO
2. When the dump is complete, the system will halt with $\mathrm{X} 3=00000000$.

To get a formatted and a RAM dump key the following:
// DUMPD
optional parameters
//
Where the default options are:

```
dump from disc file DUMP47e0
print analysis and RAM (0-077777)
96-K system
```

DUMPD requires a contiguous file called DUMP47. This can be created by running the program MAKD47.
// MAKD47
$10=8230$ or 8240 or 8260 or 8270
$/ B=1$ for 96 K or smaller systems 2 for 192 K systems
//
The size of the DUMP47 file is dependent on the B parameter:
$B=1$, DUMP47 is 0200 contiguous sectors 2, DUMP47 is 0440 contiguous sectors

These are counters, pointers, addresses, etc., used by DATA to keep track of itself and printed by DUMPD. A description of each word follows:

SYMBOL

DESCRIPTION

ACTOE Address of the pointer to the Debug Display Area. This is present in a system block on production systems or on a screen on Debug systems.
ASCHR
Current system hour in ASCII, in the form bHH.
ASCMIN
ASCSEC
ASS 16
ASS 64
BATACT
BUFLST
Current system minutes in ASCII, in the form :MM.
Current system seconds in ASCII, in the form :SS.
Address of the last 16 -word block assigned.
Address of the last 64 -word block assigned.
Mask to inhibit the use of any active batch (see state request bits in the batch directory disc format).

BLKCNT
Pointer to the start of the available sector/buffer list.
CHAR
CHARV
CLOCK
CLOCKS
CNFIG
COMMWD
COMWT8
D
DAY
\$DBASE
Magnetic tape block count.
Last PROKS character.
The most recently typed in character in verify mode.
Fires level 4 every $1 / 5$ of a second. Set to -12 at level 4 and incremented by level 0 every $1 / 60$ second.
One second clock.
Disc address of CONFIG sector.
Pointer to Communications Command word (HASP).
Value of COMWT8 performance parameter.
Zero = Debug display in system block; non-zero $=$ screen number +1
of Mode-D screen

DNTADR
Day number, ASCII
Starting sector address for DATA.
DISCQ1
Pointer to device entry table for 8121's.
Pointer to FWA of primary disc request queue.
DISCQ2 Pointer to FWA of secondary disc request queue.
DSETIM
ECATB
EORREQ
Time of last disc error (T - 86,400).
Counter for all disc errors
Number of end-of-record requests outstanding.
EOVDAT First data sector of \$EOV tape label data.
F90M2? $\quad 0=$ Not a MOD II, $1=$ MOD II.
FETREQ Number of page fetch requests outstanding.
efv
FVLEN
FVSDIR
FVSRAM
HDRDAT
HOUR
IO6CNT
IS VER 3
IXRRAM
JOBDIR
JOBRAM
KBCINP
KBLOG
KFREE
KFSIZE
KFXTND
LASTZN
LL
LL2
LOCKPR
New location of Format Vector Table.
Current length of the Format Vector Table.
Disc address of FVS directory.
Pointer to the Format/Value set directory in RAM.
First data sector of \$HDR tape label data.
Binary system hour.
IO6 chip failure count.
$0=$ no index sets, $-1=$ index sets
Pointer to the Index Set directory in RAM.
Disc address of job directory.
Pointer to the job directory in RAM.
The last processed keystroke, before translation.
The total backlog count of keystrokes.
Start of keystroke free cell list.
Total number of keystoke cells in the system.

- (Number of words to extend KFREE); initially set to -16*NTERMS

Highest zone in the system.
Screen 1 ine length in words - 020 or 040.
LL + LL.
Printer lockout from magnetic tape.
The sector address of the log file batch.
Jobname/batch number of the log file.
Jobname/batch number of the log file.
Jobname/batch number of the log file.
Jobname/batch number of the \log file.
Jobname/batch number of the log file.
Current log sector.
Count of magnetic tape errors.
Current time in minutes.
Highest numbered overlay
Count of the number of screens.
Number of disc drives.
Address of the next 4-word block available.
Address of the next 8 -word block available.
Address of the next 16-word block available.

SINGLE WORDS IN RAM $=$ CONTINUED

NEX 64
NLGSEC
NPRSEC
OHTOP
OIDDIR
OSOPBD
OSOPB1
OVRREQ
PAGDIR
PAGLIF
PASSWJ
PASSW P
PASSWS
PRTACT
PTHING
PUSERE
QRTVEC
SEC 95P
SECAVL
SECNBR
SECPTR
SECEND
SEMOH
SYSF 84
SYSFG 3
SYSFG2
SYSFG:
SYSFIG
SYSNER
SYSPTR
SYSEND
TENSEC
THING
....+1
$\ldots+2$
.... +3
TIME
TIMELW
USER
USER $8 C$
VOLCNT
WHAT!
ZONTOT

6 © MAXL
QOVDIR
EZONPT
\$LDINV
:GETOV
: PUTOV
:FREOV
DIABCF
DIABND
DIABP2
DIABSU
LPOUT
PRSTAT
PFCB
PL,CB
PCB
CHAN2
CHAN2R
DISCIO
DISCLK
DISCRQ
REQTAB
$\ldots+1$
$\ldots+2$
.... +3
.... +4
.... +5

Address of the next 64 -word block available.
Count of the sectors in the log file.
Count of the sectors in the print queue.
Pointer to BAM OCB header chain.
Disc address of OID directory.
Operator statistics batch directory sector.
Operator statistios first data sector.
Number of outstanding terminal overlay requests.
Pointer to the page directory in RAM.
Page directory life in seconds.
job define password.
Print/log password.
Supervisor password.
Print active/idle flag.
Pointer to the system constant (entered during system bring-up).
Address of PUSER.
Pointer to optional remote terminal variables.
95% full point in sectors available.
Total sectors available on all drives.
Number of current PROKS sector.
Pointer to the current PROKS sector buffer.
Pointer to the end +1 of the current PROKS sector buffer.
BAM flag.
Pointer to CAT.
2770 Configuration word.
HASP Configuration word.
Additional configuration information (CONFIG sector word 0117).
Configuration word for the system (CONFIG sector word 0116).
Current (SCB) system sector in RAM.
Pointer to the system sector buffer in RAM.
Pointer to the end +1 of the system sector buffer.
Ten second clock.
The system constant area.
The system constant area.
The system constant area.
The system constant area.
Time $=$ seconds since midnight -86400.
The master dir. sec. last written to disc.
Last PROKS user table address.
Current level 8 user table address
Tape volume reel count.
Interrupts unexpected.
Kept in word 0200 of the master directory sector.
Byte 0 , not used; Byte $1=$ Total zones -1 ;
Byte 2 = Largest zone number.
Pointer to the size of the LDTAB device.
Address of overlay directory.
Address of zone pointer table.
Required by IDOS, E3, and above.
Pointer to front of overlay queue.
Pointer to end of overlay queue.
Pointer to free list of 2-word blocks.
Address of start of 8121 complete-flags.
Number of 8121 printers .
Address of basic 8121 driver, PRIN22.
Unit number of the 8121 sysprint. If the system printer is not an 812i, then DIABSU is -1 .
Value of IDOS LPOUT.
Printer status word.
Pointer to first SCB.
Pointer to END +1 of last SCB
Address of current SCB.
Zero means channel 2 is idle.
Non-zero means Level 8 is requesting channel 2.
Non-zero means a disc operation is going.
Non-zero means channel 2 locked-out for disc, in use by tape.
Count of disc requests pending.
\$JDISC request table.

Indicator				Symbol									
Defined/Used	Specification Form	Name	Location	01.99	H0	H1-H9	1P	MR	$\begin{gathered} \text { OA-OG, } \\ \text { OV } \end{gathered}$	L0	L1-L9	LR	U1-U8
Where Defined	File	Overflow	33-34						On at 1,4 Off at 1				
	Input	Record Identifying	19.20	On at 3A Oft at 2	.	On at 3A Off at 4, 7		-	.		$\text { On at } 3 A, 3 B$ $\text { Off at } 2$		
		Control Level	59-60		-	.		-			$\text { On at } 3 A, 38$ $\text { Off at } 2$		
		Field	65.70	On at 6 Off at 4, 6, 7		On at 6 Off at 4, 7					On at 3B, 6 Off at 2, 4, 6, 7		
	Calculation	Resulting	54-59	$\begin{array}{\|l} \text { On at 4, } 7 \\ \text { Off at 4, } 7 \\ \hline \end{array}$	$\begin{aligned} & \text { On at 4, } 7 \\ & \text { Off at 4, } 7 \end{aligned}$	$\text { On at } 4,7$ $\text { Off at } 4,7$					On at 4, 7 Off at 2, 4, 7	On at 4, 7 Off at 4	
Defined by RPG Program		External	--										On at JCL
		Internal	--		On at 2		On at 1 Off at 2	On at 6 Off at 6		Always On		On at 3B	
Where Used	File	File Condition	71-72										(1)
	Input	Field-Record Relation (Field Conditioning)	63.64	(2)		(2)		(1)			(2)	(2)	(1)
	Calculation	Control Level (Calculation Conditioning)	7.8		-					(1)	(1)	(1)	
		Indicators (Calculation Conditioning)	9.17	(1)	(1)	(1)	-	(1)	(1)		(1)	(1)	(1)
	Output	Output Indicators (Output Conditioning)	23-31	(1)	(1)	(1)	(1)	(1)	(1)		(1)	(1)	(1)
(1) Any of the above defined indicators may be used. (2) Only a record identifying indicator is conventionaliy used.													

MATCHING RECORD ALGORITHM FOR ASCENDING FILES

FORMAT OF LAM COMMON AREA

```
+0. LOGSW O = do not log
    (+) = log continuously (wr ap around)
        (value is the address of the area)
(-) = log until log area is full, then set LOGSW = 0 (value
        is the address of the log area with negative
        prefix)
    Log area length (if = 0, LOGSW is set to 0); if bit 0 is on,
    logger initialized but LOGSW set equal to 0
    Address of buffer 1
    Address of buffer 2
    Address of 16 word custom message
    Buffer size in bytes
    Value to use in the IOID for level 1 if low memory address 033
    is not available
    Transparency conversion switch (0 = no, else = yes)
+ 8 Address of TIMER1
+ 9 Address of TIMER2
+:0 Address of TIMER3
+11 Address of TIMER4
+12 Address of area containing STATUS information
+13 Address of error statistics table
+14 Address of conversion table if floating (or 0 means was loaded
    with LAM)
    Optional pointer user's real time clock (binary)
    Not used
    Not Used
    Configuration information
    Terminal ID received
    .
+23
+24 Terminal ID to send
thru
+28
```


ERROR STATUS

eCSQIG Tally of control sequences recognized but ignored.
eSSS Count of unrecognized sequences preceded by two sync's. Includes "Wrong ACK" responses.
eETBI Number of blocks received.
QETBO Number of blocks sent.
ENAKI Count of NAK's received.
ENAKO COunt of NAK's sent.
ebFSI Number of IO ins executed.
eBFSO Number of IO outs executed.
LAM's program letters (ID) are AS.

- Source files are labeled SAS-n, where n (01..51)
- Relocatable are labeled RAS-n, where n (01..51)
- Control files are labeled SAS:n, where n is assorted alpha numerics
- LAM SYSGN source files are labeled SAS+n, when n (40..46)
- LAM SYSGN relocatable files are labeled RAS+n, where n (40..46)
- NOTE: File SAS:CO contains all file documentation.

Control file used to LOAD SYSGN is SAS:CS

SUMMARY OF LAM SOURCE FILES:

$\left.\begin{array}{ll}\text { INTLNE } & 0174 \\ \text { OPNLNE } & 0272 \\ \text { CLSLNE } & 0124 \\ \text { ABTLNE } & 0136 \\ \text { RNGLNE } & 0031 \\ \text { TRMLNE } & 0017 \\ \text { HNGLNE } & 0033 \\ \text { TOTAL } & =01050\end{array}\right\}$

SAS-30 Point-to-point level 1. Handles line bids and generally those level 1 comm requirements associated with hand shaking (control mode). The auto-answer code resides in this module also.

This file EOP's to RAS-E 1 Word length $=0357$

SAS-31 Multipoint level 1. Handles polls and selects plus textmode WACKING. This file and SAS-30 are mutually exclusive. (Cannot be loaded together.)

This file EOP's to RAS-E 1 as does SAS-30
Word length $=0345$
SAS-E1 Contains only an END statement
EOP's to RAS-02
This file allows dechaining modules from the LAM library.
SAS-02 Resident background support for GETLNE and PUTLNE. Contains those portions of GETLNE and PUTLNE that must stay resident while LAM is processing a data stream to or from the user. Both GETLNE and PUTLNE can be overlaid on a file basis.

EOP's to RAS-E2
Word length $=0300$
SAS-E2 Contains only an END statement.
EOP's to RAS-50
Function same as SAS-E1
SAS-50 PUTLNE code. This routine accepts logical records from the user and builds transmission ready message blocks and passes them ontc LVL 1 .

EOP's to RAS-E43
Word length $=0341$
SAS-E3 Contains only an END statement.
EOP's to RAS-51
Function same as SAS-Ei

SAS-13

GETLNE code. This routine deblocks message blocks passed from LVL1 code into LOGICAL records and moves them to the user.

```
EOP's to RAS-E4
```

Word length $=0464$

Contains only an END statement.
EOP's to RAS-25
Function same as SAS-E1
ASCII/EBCDIC conversion table.
EOP's to RAS-03
Word length $=0400$
(DATA IV removes this module from the EOP chain and uses it in overlay 40).

Background save register routine. This module also contains the virtual glamvR DCA . 048 B2M008.
048 day of year into system test.
B2 release level.
M008 apar level.
EOP's to RAS-10
Word length $=022$
(Start of level 1 routines)
Level 1 - read and write message block routines.
EOP's to RAS-11
Word length $=0701$
Contains routines:
ESNDSQ used to send short control sequences
EWRSEQ used to send buffer of trail pads
QPAD16 used to build 16 word buffer flled with lead or trail pads
EOP's to RAS-12
Word length $=0125$
Contains routines:
CHKSW - deciphers sequence input
EOP's SAS-13
Word length $=0162$
Contains routines:
QCHKST - Ensures certain level 1 controller statuses to caller for Send or Receive (Statuses 8436 controller).
ESET1 - Clear to send timeout setter.
eSET2 - Response timeout setter.
ESET3 - Not used.
ESET4 - Read text block.
ESET5 - WACK/TTD timeout.
ESET6 - IDLE timeout.
Generally, these routine are associated with timer setting and timeout routines.Also contains controller I/O routines used to CNTL and I/O the 8436-2 LNE-routines.

EOP's to RAS-15 (there is no SAS-14)
Word length $=0453$
Contains routines:
Level 1 communications RAM logger
EOP's to RAS-16
Word length $=0140$

```
SAS-16 Contains routines:
    QBCCRT - BCC and LRC block check accumulator routines.
    eERCTR - Error retry counter routine.
    Plus, all BSC control characters are defined in this file.
    EOP's to RAS-18
Word length = 0172 (EBCIDC) 0161 (ASCII)
SAS-18 Optional controller status display routine. Not used by
production software users. Used as debug routine.
EOP's to RAS-20 (there is no SAS-19)
Word length = N/A
Contains no executable code. Contains most constants and vari-
ables, switches, flags, etc. for LAM background and level 1,
End of EOP chain
Word length = 0234
SAS-28 NOP version of SAS-18
EOP's to RAS-20word length = 02 WORD LENGTH = 02
Should be assembled to RAS-18 (used by all Production Users).
SAS-38 Expanded Version of SAS-18. Used for debugging only. Should be
assembled to RAS-18.
EOP's to RAS-20
Word length = N/AWORD LENGTH = N/A
Main file of SYSGN program.
SAS+41 Terminal ID routine.
SAS+42 Branch table for ? routines.
SAS+43 Contains all ? routines.
SAS+44 Assorted subroutines used by mainline and ? routines.
SAS+45 Decision table and display DCA's.
SAS+46 Replacement records used by ? routines.
SAS+47 Future source for display of LAM configuration.
SAS+C7 Control file modified by SYSGN assemblies and loads RAS-LM to
AAS-LM
```


SYSGN Configuration Word

$\text { Bit } \begin{aligned} 23 & =0 \\ & =1 \end{aligned}$	if 2780 terminal if 3780 terminal
Bit $\begin{aligned} 22 & =0 \\ & =1\end{aligned}$	if compression off if compression on
Bit $\begin{aligned} 21 & =0 \\ & =1\end{aligned}$	if auto-EM insertion off if auto-EM insertion off
Bit $\begin{aligned} 20 & =0 \\ & =1\end{aligned}$	if point-to-point if multipoint
Bit $\begin{aligned} 19 & =0 \\ & =1\end{aligned}$	if inquiry mode off if inquiry mode on
Bit $\begin{aligned} 18 & =0 \\ & =1\end{aligned}$	if extended line bid retry on if extended line bid retry off
$\text { Bit } \begin{aligned} 17 & =0 \\ & =1 \end{aligned}$	```if terminal-to-CPU if terminal-to-terminal```
Bit $\begin{aligned} 16 & =0 \\ & =1\end{aligned}$	if primary station if secondary station
Bit $\begin{aligned} 15 & =0 \\ & =1\end{aligned}$	if switched line if private/leased line
Bit $\begin{aligned} 14 & =0 \\ & =1\end{aligned}$	```if terminal ID exists if none```
Bit $\begin{aligned} 13 & =0 \\ & =1\end{aligned}$	if manual answer Moden if auto-answer Modem
Bit $\begin{aligned} 12 & =0 \\ & =1\end{aligned}$	buffer size is 512 bytes buffer size is 400 bytes
Bit $\begin{aligned} 11 & =0 \\ & =1\end{aligned}$	$\begin{aligned} & \text { if EBCDIC } \\ & \text { if ASCII } \end{aligned}$
Bit $\begin{aligned} 10 & =0 \\ & =1\end{aligned}$	if blank compression if full character compression
Bit $\begin{aligned} 9 & =0 \\ & =1\end{aligned}$	if transparent text is to be translated if transparent text is not be to be translated
Bits 0-8	not used

PRINTER CARRIAGE CONTROLS

LINE TRACE FORMAT

LAM will optionally log all communications activity in a user designated area of contiguous RAM. Switches to control logging as well as the log area address and length, are located in the Common Area. The first word of the log area always ponts to the next available word of the log. The format of entries is as follows:

I/O INPUT BUFFER ENTRY - 16 words
Each word has a blank in the left byte and data in the right byte..
I/O OUTPUT BUFFER ENTRY - 16 words
Each word has a period in the left byte and data in the right byte.
I/O STATUS ENTRY - 2 words
Word $1=$ "STn" Where $n=$ value of $\%$ INDEX when status taken
Word $2=0200000=$ Ring indicator \quad Bit Number $=7$
$0100000=$ Data lost $=8$
$040000=$ Output needed $=9$
$020000=$ Data set ready $\quad=10$
010000 = Clear to send $=11$
$04000=$ SYN received $\quad=12$
$02000=$ Not used $=13$
$01000=$ Receiving carrier\# $=14$
0400 = Input ready $\#$
I/O CONTROL ENTRY - 2 words
Word $1=$ "CTL"
Word $2=01$ = Reset receiver
02 = Request to send
$04=$ Reset transmitter
010 = Set data terminal ready
020 = Reset data terminal ready
TIMER ENTRY - 2 words
Word $1=$ "TMn" where $n=A S C I I O$ through 6
Word $2=$ Amount of time the clock was set for in tenths of seconds. When $T M n(n=0)$, second word is indirect contents of common +15 (real time clock).

	0	0	0	0	0	0	0	0
Bit	000	000	000	000	000	000	000	000
	02	35	68	911	1214	1517	1820	2123

* Required to initiate output
\# Required to initiate input
indicators appearing in the display grid are of several general types:
(a) Those that reflect the operating status of the system and flash on and off as the normal course of events proceeds, e.8., "CARRIER OFF".
(b) Those that come on when certain options or operating modes are selected by the operator, e.g., "KYBRD".
(c) Those that come on, accompanied by an audible alarm, when an error in the communication of the data is detected, e.g, "LINE CHECK".
(d) Those that flash when a local device requires attention, e.g., "PRINTER".

All of the indicators are listed below in alphabetical order and an explanation or cross-reference given.

AUTO-EM Valid only on a system configured as 2780 , this comes on when the operator uses the EM command to enable automatic truncation of trailing blanks and insertion of the EM character.

BID This comes on when the system bids for (requests) control of the line,

CARRIER The carrier signal is the tone that is used to carry the data over the OFF

This comes on to indicate that Automatic Restart mode has been selected with the AUTO RSTRT key. (Restart)

This comes on when the system receives a signal from the other station indicating that voice communication is desired. It turns off when CHECK RESET is pressed.

$$
\begin{aligned}
& \text { and goes off when it obtains a positive response, i,e., control is } \\
& \text { granted or denied. Pressing TERM RESET stops the bidding and turns } \\
& \text { off the indicator. } \\
& \text { BID } \\
& \text { RETRY comes on when the system has abandoned an attempt to send after } \\
& \text { it failed to obtain any response to its request for control of the } \\
& \text { line (bids). It is turned off (and the bidding restarted) by pressing } \\
& \text { CHECK RESET. }
\end{aligned}
$$ telephone lines. Thus, in order to receive data, the data set must first receive the carrier signal. In a leased-line system which has exlusive use of the telephone line and normally receives a constant carrier signal, the indicator will come on only when a malfunction occurs. In a switched-line system, the periodic loss of carrier is normal, and thus the indicator may flash on and off.

COMPRESS This is on while the data compression option is selected (when the COMPRESS key was used). Note that this pertains to transmitted data only; decompression of received data is performed as required without operator intervention. Note: Compression type is shown in the SYSGN information.
-ATA IN
This comes on when there is data in the Four-Phase processing unit BUFFER awaiting transfer to either the host system or to the printer (or the spool file). It normally goes off when the data is transferrred to its destination, but will also go off when TERM RESET is pressed or the transfer is aborted via keyboard command.

DATA SET This indicator reflects the status of the local data set. On a leased
READY line system, it remains on while the data set has power and is not in test mode. On a switched-line (dial-up) system, its implicaton depends somewhat on the type of data set, but generally, it is on wher the data set has power, is not in a "test" mode, and a telephone connection has been established. Note that it does not necessarily mean that the data set is communicating with the other station.

EOF This comes on when the operator presses the EOF (END of FILE) key to signify that the last card is in the input hopper of the card reader.

HOME This is on when pressing the LINE/HOME key switches the system into HOME mode. Receiving to disc (spooling version) is allowed.

CPLT (Incomplete) This error indicator comes on when the other station aborts the transmission.

INQ This comes on when the operator selects the "inquiry" mode (via INQ command) on a system in a multi-point 3780 configuration.
KYBRD This comes on to indicate that the operator has selected keyboard mod (via the KB key), or flashes to indicate that a record has been processed and either another record, EOT or KB must be entered.

LINE This will be on when pressing the LINE/HOME key switches to LINE mode.

LINE

LOG

MANUAL Applicable only for systems having auto-answer data sets, this comes on when the operator selects manual operation via the MAN command (this applies to dial-up systems only).

OVERRUN This comes on if the input buffer overflows, i.e., the incoming message is too long.

PRCSCR (Processor Interrupt) This indicates that a reverse interrupt (RVI)
IRPT has been received from the host system. This prevents completing the sending of data to the host system and may have been accompanied by a printer message from the host system. The indicator will remain on until START or CHECK RESET is pressed, unless AUTO RSTRT is on.

PRINTER This is on while the printer is available, and flashes if it requires operator intervention.

PUNCH This comes on when the PUN command is entered to allow data to be transmitted as "punch" records to another Four-Phase site.

READER This is on while the card reader is operating, and flashes if it requires operator intervention.

RECORD At a terminal that is transmitting, this indicates that the receiving CHECK

SEND/
RECV
SPOOL Applicable only to Spooling RBS systems (AQ), this will be on when th operator selects the spool mode using the SPOOL key, whereby incoming printer data is stored on the disc.

SYNC This comes on when only SYNC (synchronizaton) characters have been TIMEOUT

TERM This comes on to indicate that the terminal system has rejected a linc ADDR bid because it is or the system may be in HOME mode. The indicator will turn off if. CHECK RESET is pressed or the system accepts a subsequent bid.

TRANSMIT This comes on to indicate a hardware malfunction when the Processing TIMEOUT

Unit raises "Request To Send" and the data set fails to respond promptly with "Clear To Send". Note, a clear-to-send interrupt is required.

TRNSPCY This comes on when the operator selects "transparency" mode by pressing the TRNSP key, or if qnnnnnn, TS controls a transmission.
TRNSPCY This comes on when RBS detects a data-link control character in data CHECK received for three seconds. It turns off when a data character is received or when CHECK RESET is pressed or the system accepts a subsequent bid. station responded to a block of data, but did so with the wrong odd/ even acknowledgement. The transmission will be repeated and, if the proper acknowledgement is obtained, the indicator will go off. If the acknowledgement is still unsatisfactory after 15 retries, the
indicator will stay on until the operator presses CHECK RESET. Compare with LINE CHECK above.

One or the other of these will be on while the system is sending or receiving data. Both will be off when the line is idle. that is not being transmitted in transparency mode. It is turned off when either START or TERM RESET is pressed.

The principal mode of the RBS keyboard is that of a system control device where the operator selects and initiates system functions (command mode) by pressing the function keys or by entering command words followed by the EOM key. The function keys and command words for a non-spooling system are discussed below. The command words which apply only to a spooling system are described in Section AQ, RBS Spooling.

The system can be switched to keyboard mode with the KB function key so that the keyboard replaces the card reader as the system input device. This permits he operator to construct card images on the video display unit and "read" them into the system for transmission or printing. These card images must be terminated by the CURSOR RETURN key rather than the EOM key or the keyboard entry is interpreted as a command even though the system is in keyboard mode.

Function Keys

SPOOL (Spooling RBS only) This is a "pushbutton" key which enables/disables
(F1) the spooling of received data to the disc. Spooling may be enabled at any time, but can only be disabled while RBS is not receiving. When spooling is enabled, the SPOOL indicator is on. (If configured for NOPRNT, spooling is always enabled.)

LINE This is a "pushbutton" key which switches RBS between LINE mode and HOME HOME mode. ("Cards" may come from either the card reader or keyboard.)
(F2)
Non-spooling RBS (diskette)
LINE allows card-to-line and line-to-print
HOME allows card-to-print
Spooling RBS
LINE allows card-to-line and card-to-disc line-to-disc and line-to-print disc-to-line and disc-to-print
HOME allows card-to-print and card-to-disc disc-to-print and line-to-disc

AUTO
RSTRT
This is a "pushbutton" key that enables/disables the automatic
restart of a transmission interrupted by a processor interrupt (RVI) from the host system. The may be enabled/disabled at any time.

COMPRESS This is a "pushbutton" key which enables/disables the compression (F4) feature in which repetitious data (e.g., multiple blanks in a line) are suppressed during transmission. The degree of compression is determined when the compression feature is enabled. Applies oniy to the transmission of data.

Press this key to signal "end of file" for keyboard input when in "keyboard" mode. Turns off the KYBRD indicator.

This is a "pushbutton" key that switches RBS between command mode and keyboard mode. Note that switching from keyboard mode with the KB key is "soft" end-of-file and permits concatenation of keyboard and card reader data to the command line. Keyboard mode may also be exited with the EOT key: see EOT above.

EOF	Press this key when the last stack of cards is in the reader. When the
input hopper empties, RBS will terminate the transmission (or close	
the disc file if cards are being read to disc on RBS spooling). If the	
hopper empties wihout EOF on, either put more cards into the input	
hopper or press EOF followed by START to cause end-of-file.	

ERASE HOME

Shifted
ERASE
hOME

This is used as a signal that voice communication is desired after two RBS sites have established a dial-up phone connection. It cannot be used between RBS and a host system. Because it requires the transmission of a control code, it cannot be used while data transmissior is taking place. When the key is pressed, the audible alarm sounds a the remote system and the BELL indicator appears on its display unit. The operator of the remote system can respond by pressing the BELL key, which will produce the same effect at the originating system. Both operators can then press CHECK RESET to turn the BELL indicators off and switch their telephones from "data" to "talk".

Pressing this key starts or restarts (after an error condition or processor interrupt) the transmission of data. It also restarts the card reader after DATA CHECK. START resets the indicators of, and provides recovery from, the following conditions:

```
TRNSPCY CHECK (transparency check)
LINE CHECK
INCPLT (incomplete)
PRCSR IRPT (processor interrupt)
```

Note: For transparency check, the record must be corrected and reentered. Thus, if the error is encountered while transmitting a disc file, immediate recovery is not feasible as the file must be rewritten. In the case of an incomplete transmission, it is up to the station that transmitted the message to initiate recovery.

Pressing this key clears the following indicators:

```
BELL
    TERM ADDR
    OVERRUN
    RECORD CHECK
    BID RETRY
        SYNC TIMEOUT
        PRCSR IRPT (see START above)
        PRINTER (stops indicator from flashing)
```

Pressing this key initializes the system and makes it ready to receive data. The card reader or printer will be stopped, a transmission or reception in progress or pending will be aborted (on the spooling system the queue is cleared) and the following indicators will be turned off:

TRANSMIT TIMEOUT
 DATA IN BUFFER
 BID
 TRNSPCY CHECK

Note: In Spooling RBS, card-to-disc, key-to-disc, and disc-to-print are not halted with this key, but require the use of the CRR, KBR, or PRR command. See Section AQ.

When the keyboard is enabled, press this key to 1) initiate transmission or processing of a record, 2) clear the entry field and return the cursor, and 3) keep the device enabled for more data input.

Press this to restore the cursor to the first byte-postion of the entry field without initiating any other action.

This clears message lines 5 and 6 of the operating display. If the communications line is idle, the SELECT OPTIONS message will appear On a spooling system this also does a DSD: see Section AQ, Operator Commands.

Control
ERASE
hOME

This will erase the line statistics displayed as a result of an STT command. See Operator Commands below.

The command words listed below can be entered with the keyboard's typewriter keys while the system is in "command" mode or in "keyboard" mode. The EOM key must be pressed after entering a command. Those commands that are described as "enable/disable" commands operate as on/off "pushbuttons": entering the command enables the function if it is disabled, and vice versa. Note that each keystroke is displayed on line 23 of the operating display and that the cursor control keys described under "Editing Keys" can be used as necessary to correct miskeyings. Additional commands, valid only in the RBS/SPL are described in Section AQ.

ABT Abort the current reception if possible. This should be used to abort when spooling to disc. During non-spooling operations, its use is preferable to pressing TERM RESET.

ALT This command can be used to switch devices ($2780<>3780$). The buffer size for a 2780 is always 400 bytes; the 3780 uses the size as given in the LAM SYSGN. This command is not permitted on multipoint or onpoint-to-point with Terminal ID.

DIS Enable/disable display of interrupt level 1 activity. As soon as an interrupt occurs on level 1, the right of the top grid line is used for the display

The display consists of nine three-character fields, each corresponding to a bit position in the controller status word. From left to right within each of the fields (except the one corresponding to bit 13 , which is not used), an alphabetic character identifies the status bit, the presence or absence of a block cursor indicates the last reported state of the bit (on = true), and a one decimal-digit counter advances every time the bit is reported differently. Note that interrupts are requested by changes in only six of the status bits (Data Set Ready, Receiving Carrier, Clear To Send, Ring, Input easily and Output Request Indicator), and thus, changes in other status bits may not be trapped by the display routine. The status bit fields are as follows(left-to-right):
$\mathbf{x}=$ block cursor $\quad z=$ counter ($0-9$)
$x G z \quad$ Ring Indicator
xLz Transmitted Data Lost
xOz Output Needed
xDz Data Set Ready (Modem Ready)
xCz Clear to Send
$x \mathrm{Sz}$ Sync received
Unassigned (data bit 13 of status word is not used)
xRz Receiving Carrier
xIz Input Ready (Data Ready)
EJE Causes the printer to be advanced to top-of-form if the printer is available.

EM Enable/disable AUTO-EM. This command is used only for 2780 configurations. When enabled, AUTO-EM allows the transmission of variable length without requiring EM codes to be punched on short cards (it automatically truncates trailing blanks). It is not permitted with 3780 configurations, in which variable length records are standard.

HNG Enter this on dial-up systems to "hang-up" the telephone. It causes an ending sequence (DLE-EOT) and disconnects an auto-answer modem.

INQ Enable/disable inquiry mode. Inquiry mode on the 3780 permits the interleaving of inputs to the host system from remote sites sharing a dedicated communications line (multi-point). The command is invalid if the system is not SYSGNed as a multipoint 3780 . Not valid for 2780.

LOG Enable/disable the logging of communications activity.
LOK To lock the keyboard to prevent an unathorized use, key in LOCK, press EOM, then enter any three letters and press EOM. The system remains locked until the three letters and EOM are re-entered. Unsuccessful attempts to enter the password cause a message to be displayed on line 24.

MAN Enableidisable manual-answer. This can be used on dial-up systems with auto-answering modems to force the manual-answer mode. This command is invalid if the system is not SYSGNed for auto-answer. Note that the modem must also be switched to manual.

Non-Spooling RBS Operator Commands (CONT).
PUN Transmit to another Four-Phase RBS site as "punch" data.
QUIT Execute a TERM RESET (or TTR on spooling) and exit from RBS. Active communications will be aborted.

STT Display line statistics (effective BAUD and error rate.) The system calculates the statistics based on the data so if the line has been idle, another STT should be done to get accurate values. The BAUD value includes the clear-to-send delay and any delays in transfer due to the CPU or RBS. The error rate is the ratio of bad blocks to total blocks expressed as a percentage. A non-zero value implies hardware or communications line trouble.

1. Assemble and load the application program.
2. Copy the excutable application program to the DKOS Source Disc.
3. Copy FMONTR to the diskette:
// FLCOPY
/INPUT = FMONTR.
/OUTPUT=FMONTR .
/MONITR.
/CLEAR
/P.
/SIZE $=\mathrm{xx}$ Where xx is $24,28,72,96$ (default 96)
//
4. Copy the DKOS processors and routines to the diskette:
// DKTGEN
5. Copy the application program to the diskette:
// FLCOPY
/INPUT = NAME1.
/OUTPUT = NAME2.
/A.
(Optional-adds checkpoint routine to end of file)
/B=NAMEX. (Optional-causes NAMEX to load at diskette IPL)
//

Bypassing the Auto-Boot Sequence

To bypass the auto-boot sequence for 4100 and 4300 processing units, press the DOS button on the unit while executing the IPL procedure. DKOS proces sors can then be accessed through FMONTR. The DOS button must be pressed at the end of each processor, otherwise the auto-boot sequence takes over.

If the processing unit has a BOOT switch, the auto-boot sequence is bypassed using the following procedure:
a) Enter the diskette IPL word in the console keys.
b) Set the AUTO/MANUAL switch to MANUAL.
c) Press the SYSTEM RESET switch.
d) Press the BOOT switch.
e) Set console key 0 up.
f) Set the AUTO/MANUAL switch to AUTO.

The auto-boot sequence is bypassed as long as key 0 remains up; to return to auto-boot mode, return key 0 to the down position.

Taking a Checkpoint

In order to take a memory dump, the user must know the memory address of the checkpoint routine. A listing of the diskette directory by DIRDSP will give it. The procedure for a checkpoint is as follows (EXCEPTION: See note for a 3270 application program):
a) Set the AUTO/MANUAL switch to MANUAL.
b) Press SYSTEM RESET and then STEP to clear all I/O activity.
c) Enter $710 X X X X X$ into the console keys, where $X X X X X$ is the checkpoint routine's memory address.
d) Set DISPLAY SELECT switches to TIR (000).
e. Press LOAD and then set the AUTO/MANUAL switch to AUTO.

NOTE: For a 3270 application, in Step C - enter 71100001 into TIR.
The checkpoint routine copies the contents of memory into the diskette file DUMP, then halts. Copy the DUMP file to an IDOS or DOS disc and use FILDMP to print it.

Reloading After a Checkpoint

The 2260 local and remote simulators do not automatically rearm interrupts, so these programs cannot be restarted from the checkpoint. To restart the program from the checkpoint:
a) IPL the system.
b) Enter // DUMP on keyboard 0 .
c) After the DUMP file has executed, it will halt. This is a double halt, that is cleared by moving the AUTO/MANUAL switch to MANUAl, then to AUTO, twice.

DKOS System Dump

If an unexplained halt or looping occurs while any of the DKOS procedures are executing, the user can print (need a line printer) a memory dump with the following procedure:
a) Set the AUTO/MANUAL switch to AUTO.
b) Press SYSTEM RESET and then STEP.
c) Enter 71000001 into the console keys.
d) Set the DISPLAY SELECT switches to TIR (000).
e) Return the AUTO/MANUAL switch to the AUTO position.

The RBS Spooling Display consists of the Device Status Display (Queue Display) on the upper half of the screen and the condition indicator grid on the lower half. The condition indicators are described in Section AN, Non-Spooling RBS.

DEVICE STATUS DISPLAY

The Device Status Display (DSD) provides three categories of information:

- The state of the current process in terms of the file and the device that has the file engaged.
- The number of available sectors on the disc drives assigned to the system.
- If unattended mode, the actions the system has taken to recover when communications were interrupted due to error detection.

The DSD is automatically updated every five seconds (every 5 minutes in unattended mode), but it can be updated on demand by entering the DSD command. The display occupies lines 2-6 of the operating display, but between updates, lines 5 and 6 may be overlaid by other information, e.g., bad card image.

The format for the display is as follows:

	$\|s\|$	Innnnnned	\#recds	mode/\#events	d/\#sectrs
(2)	RDR			UNATTENDED	0 ssss
(3)	KB			CHCKS	1 ssss
(4)	CTQ			STRTS	
(5)	ccc			TERMS	
(6)	PRT			ABRTS	

The left half of the display is concerned with current processes. The devices are listed with appropriate status symbols on the left and file names with record counts appearing on the right. The devices are:

RDR Card reader
KB Keyboard
QUE Transmission queue
ccc Communications line (SND when transmitting, RCV when receiving data, PUN when receiving punch data)
PRT Printer
The status symbols for RDR, KB, and QUE are:
A Active (card-to-line or key-to-line)
$\mathrm{S} \quad$ Sending (disc-to-line)
Pending (...the availability of the communications line)
Full (applicable to QUE only; the queue is full, other devices may be waiting for space)

In placing a status symbol, a symbol for the device that is the source of the data being sent or received is posted to the left of the communications line entry ("ccc"). The source symbols are:

K Keyboard
R Reader
Q Control queue \$NEWFILE

The status symbol W will appear to the left of PTR when the printing of a file has been halted by an STP command.

A file name appearing to the right of $R D R$ or $K B$ means that the device is creating or augmenting a file on the disc, and that is the only time that a file name will be posted with either of those devices. A file named at the right of QUE means that it is a control file and that it has reached the top of the queue and its execution is either in-process or pending. A file name at the right of "cec" means that it is being sent (ccc = SND) or received (ccc = RCV or PUN). A file named at the right of PTR means that it is being printed.

The record count posted for files being created or augmented by RDR or KB represents the number of records entered since the file was last opened (not necessarily the total number of records in the file). The count posted for a file being executed from the queue (QUE) represents the number of records transferred since the last EOT. No count is posted for files being printed.

The identification number of the active drive, and the octal number of sectors available on that drive will appear at the extreme right side of the display. If the drive is an 8240, it will be asterisked, e.g., ${ }^{n} 0 \% 05500^{n}$.

The expression "ATTENDED" will normally appear near the center of the display. If the system is switched to unattended mode by the UNT Command, however, the expression "UNATTENDED" will appear together with the following categories of line restart efforts:

CHCKS Check resets
STRTS Starts
TERMS Terminal resets
ABRTS Aborts
A six-digit field to the right of each category will register the number of occurrances during receptions, and another six-digit field to the right of the first will register the number during transmissions. The counts will be in decimal and will start from zero when the system is switched to unattended mode.

VCQ DISPLAY

The contents of the transmission queue can be displayed by entering the VCQ command. The name of the control file at the top of the queue appears at the left of display line 2, and the queue extends first to the right, and then down the screen. The format for each entry is nnnnnned f where nnnnnn is the name of the control file, d is the drive number, and f is the directory flag. The flag character and their meanings are listed under "Disc Management". If there are no entries in the queue, lines 2-6 will be blank.

The operation of the keyboard function keys and commands common to spooling and non-spooling RBS systems are described in Section AN. The commands listed are valid only for RBS Spooling (AQ).

Commands may be entered at any time and must be terminated by the EOM key.
BSP This initiates backing up and reprinting when the contents of a disc file are being printed in response to a PRT command. The STP command can be entered to halt the print operation prior to entering BSP. When the command is entered, a prompt will request the number of sectors to be reprinted. Enter the number of sectors (in decimal) and then press EOM. A sector of dise storage holds about five full (132 column) lines of data; when compression can be used, and/or, when lines are shorter, a greater number will be stored per sector. Pressing EOM without entering a number will cause printing to restart at the beginning of the file. If the STP command was used to stop the printer, the RES command must be entered to restart it, but otherwise, reprinting will begin immdiately.

This initiates changing the name of the print spool file (from PRINT), thereby making it available for printing or other processing. When the command is entered, a prompt will appear at the bottom of the operating display indicating that the new name can be entered. Up to six characters can be used for the name; the first character cannot be a number (numbers will not be accepted). Pressing the space bar deletes the character under the cursor; this and the INSRT key being disabled prevent the occurrance of blanks in the file name. Press EOM after the name has been entered to execute the change or press TAB to withdraw the request. If input to the file from the communications line is taking place when the command is entered, the change will be effected when EOT is received. Spooling will not be disabled by the use of this command; a new spool file will be created to accommodate input from the line.

CHU

CRR

JOB

KBR

ST

PRR

This initiates changing the name of the "punch" spool file (from PUNCH). The rules applicable to the CHP command also apply to CHU.

This terminates input from the card reader without affecting other devices (as the TTR command would and the TERM RESET key might). Any unprocessed records are lost; if cards are being transmitted, the transmission will be aborted. If a disc file is being created from cards it will be closed by CRR, but no processed records will be lost.

This forces an update of the disc status display that is included in the operating display. This is explained in detail under "Operating Display" above. Note that the status information is automatically updated by the program at regular intervals.

This command causes an exit from RBS to the IDOS processor JOB to reclaim recently deallocated disc sectors. Since JOB is an off-line function, it must be executed when the system is idle, and the RBS program reloaded.

This terminates the keyboard in the same manner as CRR terminates the card reader. Key-to-line (or key-to-disc) is disabled and the keyboard functions solely as a control device. Compare: TTR.

This command can be used in HOME mode to list a deck of cards on the printer. Transfer cards will be printed as normal records and will not be acted upon.

This terminates the printer (i.e., stops the printing of a disc file) and allows a different file to be specified for printing with a PRT command. It does not affect other devices. Compare: STP, TTR.

This initiates the printing of a disc file. When the command is entered, a prompt appears at the bottom of the operating display indicating that the file name can be entered. Enter the name and then press EOM to start the printing or press TAB to withdraw the request. If the file is located on a disc drive other than drive 0, the drive number must be specified with the $\frac{e}{}$ symbol, e.g., FILNAMQ1. Note that entering the e symbol automatically places it in the seventh character position, regardless of the number of characters in the file name, that the space bar deletes the character under the cursor, and that the INSRT (right arrow) key is disabled.

RES This causes the printing of a file started with a PRT command and stopped with an STP command, to be resumed.

STP This stops the printing of a file started with a PRT command. Compare: PRR. Also see RES.

TTR
This is a total terminal reset equivalent to TERM RESET and the execution of the ABT, CRR, KBR, and PRR commands.

UNT Enable/Disable unattended mode, wherein certain error recovery procedures will take place automatically. See "Unattended Operation" under "Disc Operations".

RAM DUMPS

1. Taking dumps on the RBS spooling system with a line printer:

AUTO to MANUAL
Write down the register contents
LOAD into TIR 71100001 (71100003 for only the LAM log)
SYSTEM RESET
STEP
LOAD
MANUAL to AUTO and the dump will begin printing
2. Interpreting the dump:

If you failed to write down the register contents before printing the dump, $R P$ at the time of the dump may be found indirectiy through word 1. The LAM log, if LOG was active, begins at START, near 037500, and is as long as memory permits. Refer to the LAM section in this manual for a description of how to interpret the log.

UNATTENDED MODE

RBS with spooling and the appropriate data linkage permits the host system to place calls to obtain jobs as well as to return the results without an operato in attendance. It can be set to "unattended mode" (with the UNT Command), wherein the recovery from certain error conditions is automatic. If a line-toprinter operation is attempted and the printer is found to be unavailable ("not ready") spooling is enabled. If \$NEWFILE transfer statements attempt to load the queue beyond its capacity (20 "Q" statements), RBS will continue to transmit to the initiator of the queued \$NEWFILE statements, but will refuse communications from the line until space developes in the queue. The system will attempt to recover from communications errors by simulating CHECK RESET, TERMINAL RESET, or START, as necessary. The transactions that take place while the system is in unattended mode are logged in the Disc Status Display.

A transfer statement is a special 80-byte record that is used to create and manipulate disc files other than the PRINT and PUNCH files. The two kinds of transfer statements are: 1) ETX statements, denoted by the ETX character (003) in the first column and 2) \$NEWFILE statements, denoted by that expression in the first eight columns.

The \$NEWFILE transfer statements, which enter the system through the communications line, can create files with following data, or can augment existing RBS files. \$NEWFILE statements can also cause file names to be loaded into the control queue for transmission and/or can delete files. The general characteristics are otherwise the same as those of the ETX statement, except that PRINT and PUNCH are legal names. If a \$NEWFILE statement is unrecognizable as such by the RBS, perhaps because of a syntax error, the \$NEWFILE is converted to ******** and its following data will be treated as normal print or punch data.

FORMAT

The transfer statement must be in column (byte) 1 of the record, and it may be punctuated by a period. The format is as follows:

```
& nnnnnned, cocecocec ...or... $NEWFILE nnnnnned, coccocc
```

where:
I is the displayed equivalent of the ETX character. This is produced by a 12-3-9 (\&-3-9) multipunch on a card input or a CTRL-C keystroke on the system keyboard. If the statement is printed (in HOME mode), \# is substituted because ETX cannot be printed on an RBS line printer.
\$NEWFILE is the code word that identifies a record received from the line as a transfer statement. The word must be followed by a space.
nnnnnn, or nnnnnned, is the name of the file to be created or operated upon. It may be separated from the ETX character by spaces. Up to six characters, other than spaces or punctuation, can be used for a file name, and a disc drive location can be specified by adding ed (if no drive parameter is entered, drive 0 will be used). The name, including the drive number if applicable, must be terminated by a comma. Any blanks embedded in the file name will be deleted. Thus, NAME A, will be recorded as NAMEA. ccccecccc denotes the parameter field that specifies what is to be done with the named file. Parameters can be entered in any order, and may be separated by spaces. The absence of parameters is considered a syntax error.

D Create the named file (delete any existing file by that name). The file i closed by a subsequent transfer statement, an EOT if the statement was entered from the keyboard, or by an EOF if it was entered from the card reader.

A Add the subsequent records to the named file (create the named file if it does not already exist. The file will be closed by any subsequent tranfer statement or, depending on the entry device, by an EOT or EOF. Only files created by RBS can be augmented.
X Delete the named file. If the named file does not exist, no error indication occurs. If X alone is specified, the named file will be immediately deleted, but if it occurs with other parameters that call for either the creation or the transmission of the file, it is not deleted until the file is sent successfully (the assumption is that all files are created for the purpose of eventual transmission). Note that the deletion of a file does not release the disc space it occupied; the reclamation of disc space requires the exeuction of the IDOS processor JOB. See the JOB command under RBS SPOOLING OPERATOR COMMANDS above.
S Send the named file. If accompanied by D, the file is created and then sent. If accompanied by A, the file is \bar{c} reated or augmented and then sent. The transmission is aborted and an error message posted if the named file does not exist and \underline{D} or A is not included, or if the named file is not an IDOS chained file. The record length should be 80 bytes; records of other lengths are blank-filled or truncated as necessary. This parameter causes the named file to be merged with data being transmitted or initiates a transmission for the purpose of sending the named file, but it does not terminate a transmission. The E parameter (perferable), the entry of a $\frac{\phi}{\mathrm{E}} \mathrm{E}$ transfer statement, or the pressing of the EOT (for keyboard) or the $\overline{E O F}$ (for card reader) function key will terminate the transmission after the file is sent.

E Send and EOT automatically at the end of this file." E accomplishes the same effect as pressing the EOT or EOF function key. It can be used with \mathbb{S} in transfer statements within a control file to cause the files invoked by the control file to be sent in a series of separate transmissions. This use allows intermediate receptions and makes it easiler to determine the recovery point if a transmission error occurs during the execution of the control file. It is not necessary to include E in a transfer statement that queues a control file because EOT will always be generated after a control file is executed from the queue. Note: Φ, E can be used (without the file name) to send EOT if the E parameter was left off the statement that initiated the transmission.

F Freeze the processing of transfer statements until an EOT or EOF is encountered. This permits files containing transfer statements to be created when used with D or A. It also permits control files to be transferred per se (rather than executed) when used with the combination of \underline{S} and I. F is ignored if used in combination with \underline{Q}.

Q Queue the named file for transmission. This causes the specified file name to be place in the queue and releases the device from which the statement originated. When a queued file reaches the top of the queue, it is scanned for internal transfer statements, and they are processed in sequence. EOT is automatically generated after the execution of each control file, but not between files merged by a control file unless the internal transfer statements include E. A queued file does not have to contain transfer statement, thus Φ FILE, Q where "FILE" contains only data records, is legal.

T Treat the named file, or all files subject to the named control file, as transparent data. This does not affect the scanning for transfer statements. To transmit a file as transparent data thru the action of transfer statements, both the creating and the sending statements must have the I parameter. An alternative is to use the TRSNSP function key.
N Do not perform the usual translation of transparent text from ASCII to EBCDIC for transmission. N is ignored if it does not occur with .

SYNTAX ERRORS

If ETX or \$NEWFILE is missing, the statement will not be recognized as a transfer statement--it will be treated as data. If the comma that separates the name field from the parameter field is missing or some other punctuation is substituted, the effect will be that the file name will be too lons and there will be no parameter field; an error will be indicated. If the comma is misplaced, the delineation between the file name and the parameter field will be confused; the results will vary. Finally, if the parameter field is blank or holds an illegal combination of parameters, an error will be indicated. The parameters that are legal for various kinds of operations are given below. As a general rule, parameter or a combination of parameters that does not result in an action, e.g., TN without \underline{S} or \underline{D} is illegal.

Statement
Origin
Card/Key
Card/Key
Card/Key
Control File
Line (\$NEWFILE)
Line ($\$$ NEWFILE)

Immediate Destination
of
Named File
Dise
Queue
Line
Disc
Queue

* S changes the destination of the file from the disc to the line ** \underline{X} and \underline{Q} must be okayed when RBS is configured

If an error is detected in a transfer statement entered from the keyboard or card reader, the incorrect statement is displayed and the system pauses for reentry. If a transfer statement entered from a control file or from the host system using \$NEWFILE is not recognizable or has no parameter field, it is ignored (incoming $\$$ NEWFILE data is then treated as normal data). But if it is recognizable, but has an illegal combination of parameters, the system tries to correct it as follows: If A and D occur together, D is deleted. If Q and S occur together, Q is deleted. If the combination is still illegal, parameters are deleted until a legal combination is found. The deletion order is $X Q A$ N. If no legal combination can be found, the statement is ignored. Generaily, control file syntax errors are detected when the files are created, provided that the files are created under RBS and that the I parameter is not used with F in the statements that create the files.

RBS processes standard IDOS SINDSK-type chained files. Files to be transmitted should have record lengths of 80 bytes. Otherwise, the records are truncated or padded to 80 bytes for punch data or to 133 bytes for print data. The last byte of each print record contains the carriage control character. If an EM (end-of-media) character is received on 2780 punch data, it is made part of the data record.

Files created by RBS have a reserved word at the end of each sector which contains a sequence number used by the reconstruct routines of RBS to verify the file contents when RBS is brought up. The starting sequence number for each file is pseudo-random and is stored in a user word of the directory. Each sector in the file is assigned a number one greater than that of the previous sector. The last pseudo-random starting number is kept in the communications region so that it can be used to generate the next one as needed by new files.

Because of the reserved word, only files with RBS format can be added to with the 'A' option of transfer cards; however, any SINDSK-type file can be sent.

RBS DISC FILES - FLAG BYTE

RBS uses the flag byte in the IDOS directory to indicate the various transfer card options which were used when the file was created.

A The file was opened for augmentation (by a tranfer statement with an A parameter and RBS went down before closing it. Note: RBS must be reinitiated in order to reconstruct the file before JOB, BOJ, COPY, etc. are run, or the file will be lost. See "nnnnnned RECONSTRUCT?" message under "Operating Display".
P The file was created by a transfer statement with either a D or an A par ameter.

Q The file holds transparent data.
$R \quad$ The file was created by a transfer statement with either $\underline{D X}$ or $\underline{A X}$, i.e., the file is to be deleted after it is sent.
S The combination of Q and R flags.
T The file name has been loaded into the queue (because of a transfer statement with a Q parameter).
U The combination of $f l a g s Q$ and T (queued file of transparent data).
V The combination of flags T and R (queued file; delete when processed).
W The combination of $\mathrm{flags} U$ and V.

RSU is a communications program which allows the sending of all types of disc files from one Four-Phase site to another. RSU can be a valuable tool for the Systems Engineer by providing quick access to the latest product updates and fixes.

RSU must be executing at both the local and remote sites, before the dialup line is established. RSU can be executed thru the keyboard or thru a control file.

1

4-6 System message(s) area. This area can contain either error messages or console messages.

7-8 Contains the output record (80 characters).
Line Information Displayed
9 Nine 3-character fields that indicate the communications
controller card status. The status is displayed only if the
\$STATUS command is included within the configuration para-
meters.
The first character of each field identifies the status
indicator. The status indicators are:
FIELD
CHARACTER MEANING
2

KEYBOARD MODE

The F1 key (top row to the right of CTRL) allows the operator to enter a message, CURSOR RETURN will send the message. If CURSOR RETURN is depressed when there is no message on the screen, keyboard mode will be exited, and RSU will continue to process the jobstream. If a file is in the process of transmission, the message will be queued until the current file is fully transmitted. Any of the above commands may be entered thru the keyboard, but only if RSU is executed thru the keyboard. Blank lines must be entered between commands, and only one command may be entered at a time.

RSU Keyboard Functions

Key	Purpose
F 1	Requests console keyboard mode. When "ENTER" is displayed, a 75-character message can be entered. If "QUED" is displayed, RSU waits until it finds a conyenient point to transmit the queued message.
	Once in keyboard mode, the job stream is interrupted as soon as the file currently being transferred is complete. Keyboard mode is active until it is exited. This permits the operator to send multiple messages.
CURSOR RETURN or EOM	If the cursor is in the position immediately following "ENTER", the keyboard mode is exited. If the cursor is anywhere else, the data up to the cursor is transmitted.
	"QUED" is displayed until the message is transmitted.
ERASE HOME	Clears the console message area. The cursor is returned to the first position of the message area.
DEL \longleftarrow	Moves the cursor backward one position and erases the character in the current cursor position.
F6	Used to enter the "*" character on keyboards that have other keytops in the "*" position.
ATTN (MODE)	Used to abort RSU and exit to DOS, IDOS, or the line trace printer program.
F11	Used to cancel a/WAIT condition at the local site. F11 can also be used to cancel waiting for a response to a request for a file.

CONSOLE MESSAGES

RSU can receive console messages of up to 120 characters in terminal-toCPU configurations. Messages up to a maximum of 75-byte messages can be transmitted.

CONTROL FILES

There are several control files available which will aid the Systems Engineer in transmitting needed files between the branch office and Software Distribution.

RSU can simulate the 2780,3780 , and MOD20 line disciplines.

FILE: CF240M

BE AWARE!!!
THE CONFIG FILE CF240M AS RELEASED ON THE CPL AZO1 SPECIFIES \$PRIMARY AND MUST BE CHANGED TO \$SECONDARY.
\$MOD20
\$SPEED=2400
\$MANUAL
$\$$ MXBSZ $=512$
\$TR2TR
\$SECONDARY
\$EBCDIC
\$COMPRESSION
\$CONSOLE $=120$ \$SCREEN = 81

FILE: CUPRSU

THIS FILE (CUPRSU) CAN BE USED TO RECEIVE ANY UPDATES WHICH ARE : UVAILABLE THROUGH SOF TWARE DISTRIBUTION.. THE RESTRICTION TO ITS . WHAT UPDATES ARE NEEDED, AND ARRANGEMENTS MUST BE MADE FOR A CONVENIENT TIME.

CONFIGURATION FILE CF2COM EXISTS FOR BRANCHES WHICH RUN AT 2000 BAUD ONLY

$$
\begin{aligned}
& \text { // RSU } \\
& \mathrm{C}=\mathrm{CF} 240 \mathrm{M} .
\end{aligned}
$$

/WAIT.
//

CONTROL FILES (CONT).

FILE: XECRSU

THIS FILE (XECRSU) SHOULD BE USED BY THE BRANCH SE FOR ALL RSU COMMUNICATIONS WHEN CUPERTINO IS RUNNING IN UNATTENDED AUTOANSWER STATE. BRID IS A SIGNON FILE WHICH IS SENT TO CUPERTINO AND LISTED INTO A SPOOL FILE WHICH IS A RECORD OF COMMUNICATIONS ACTIVITY. CUPDOC IS A SOURCE FILE WITH A LIST OF ALL EXECUTABLE CONTROL FILES CURRENTLY AVAILABLE.

TO USE XECRSU, USE SIMED TO CHANGE THE STATEMENT /XEC=BZMSTR WHICH IS CURRENTLY THERE TO THE NAME OF THE FILE WHICH BEGINS THE UPDATE YOU WANT. A LIST OF SUCH FILES MAY BE FOUND IN THE FILE CUPDOC.

> BEFORE EXECUTING XECRSU, CREATE A SIMED FILE (NAMED BRID) WITH THE BRANCH NAME -- YOUR NAME

WHEN THE CUPERTINO SITE IS IN AN AUTOANSWER WAIT STATE, YOU WILL NEED TO EXECUTE:

// XECRSU

i/ RSU
/C=CF240M.
/I=BRIDEO,T=8O.
$/ R=C U P D O C, O=C U P D O C$.
/XEC $=$ BZMSTR,D. (BZMSTR DOES A DEMONSTRATION)
/WAIT.
//

FILE: BRID

BRANCH NAME:
SE NAME:

THIS FILE IS USED TO IDENTIFY TO SOFTWARE DISTRIBUTION WHO IS OPERATING RSU AT THE BRANCH SITE. THIS FILE WILL MAKE IT POSSIBLE FOR US TO KEEP OUR ACTIVITY LOG CURRENT. IT IS FROM THIS LOG THAT WE KNOW WHO TO INFORM IN CASE OF CHANGES WHICH MUS: BE MADE TO FIXES AND UPDATES WHICH HAVE BEEN RELEASED. IT ALSO MAKES IT POSSIBLE FOR US TO CONTACT AN SE WHO IS HAVING TROUBLE USING RSU AND TRY TO CLEAR UP ANY MISUNDERSTANDINGS.

IF DUMPS OR LINE TRACES ARE TO BE SENT TO CUPERTINO FOR ANALYSIS BY FIELD SUPPORT STAFF, THIS FILE (BRID) SHOULD BE USED TO INFORM US OF THE FILENAME, WHAT TYPE OF FILE IT IS (I.E. DATA IV/70 DUMP, 3270 LINE TRACE), WHERE IT IS FROM, TO WHOM IT IS GOING. TRY TO USE FILENAMES THAT ARE UNIQUE TO AVOID HAVING YOUF DUMP OVERWRITTEN BY ANOTHER BRANCH.

TO SEND A DUMP OR TRACE, USE SIMED WITH XECRSU AS INPUT AND DMPRSU AS OUTPUT, REMOVE THE XEC COMMAND AND TYPE OVER THE WAIT COMMAND WITH /I=DUMP FILENAME, $\mathrm{T}=$ e 0 . EXECUTE // DMPRSU AND ESTABLISH THE PHONE LINE BY CALLING THE CUPERTINO DATAPHONE.

FILE: CUPDOC

THIS DOCUMENTATION IS A LIST OF CONTROL FILES WHICH CAN BE STARTED EXECUTING IN CUPERTINO TO SEND UPDATES TO PRODUCTS IN THE FORM OF RELOCATABLE AND ABSOLUTE FILES (THE FIRST LIST), OR SNEDIT FILES TO BE APPLIED AGAINST THE PRODUCTS SOURCE (THE SECOND LIST). TO RECEIVE THESE FILES READ AND USE THE CONTROL FILE XECRSU WHICH MAY BE FOUND ON THE CPL AZO1. BE SURE AND HAVE THE BRANCH-SE IDENTIFICATION FILE BRID ON YOUR RSU PACK.

FOLLOWING IS A LIST OF ALL CONTROI. FILES WHICH WILL BEGIN A PRODUCT UPDATE.

NAME PRODUCT
BZMSTR -DEMO UPDATE CONTROL FILES
BID1AA -DATA IV/70 V2/V3 REL D1A BI12-C -DATA IV/70 V2/V3 RELEASE D2

APPROX. TRANS. TIME.
-2 MINUTES
-20 MINUTES
-34 MIN 29 SEC

INDICATES THE UPDATE IS MORE THAN SIX WEEKS OLD AND HAS BEEN WRITTEN TO TAPE. ARRANGEMENTS MUST BE MADE TO RECEIVE THIS UPDATE.

THIS LIST IS OF CONTROL FILES WHICH IF EXECUTED AT CUPERTINO THROUGH THE CONTROL FILE XECRSU WILL CAUSE THE CURRENT FIX FILE FOR THE PRODUCT WHOSE IDENTIFIER APPEARS IN THE FILENAME TO BE SENT TO DRIVE 0 at THE REMOTE SITE.

BAD30	-IDOS E3 AND E4	-4 MINUTES
BAB11	-COBOL E0 AND E1	-2 MINUTES
BAB12	-COBOL FO	-2 MINUTES
BAB13	-COBOL AB13	-2 MINUTES
BAG14	-3270 G2	-4 MINUTES
BAS06	-NPSPA2.1 THRU A4	-2 MINUTES
BHOA	-VERSION 1 HOA	-20 SECONDS

The current CUPDOC may be obtained by using XECRSU or contacting Sofitware Distribution.

HASP MESSAGE BLOCK FORMAT

$S Y N$	$S Y N$	$S Y N$	DLE/SOH	STX	BCB	FCS	FCS	RCB	SRCB	SCB	data	SCB	data	\ldots

HASP PROTOCOL NOTES:
1.) If the DLE precedes the STX (instead of the SOH) then the block contains transparent data and the ETB plus any extra SYN characters will be preceeded by a DiE. Any DLE characters in the data stream will be preceeded by another DLE. This extra DLE is NOT included in the SCB count. For example, the sequence $\underline{X} \underline{Y} \underline{\text { DLE }}$ would appear as follows:

\ldots	SCB $=\mathrm{C} 4$	E7	E8	E9	10	10	\ldots

2.) BCB (Block Control Byte) can be:

$8 n$	Normal transmission, where n is the sequence count.
90	Bypass sequence count validation for this block.
$9 n$	In LOST TEXT message, n is the sequence count the receiver saw.
An	Resets the sequence count to n.

3.) FCS (Function Control Sequence) is two bytes long. Sample interpretations:

RCB	Meaning of RCB	Meaning of SRCB
00	End of transmission block	None present
90	Request to initiate transmission	Prototype RCB
91	Console message (receive)	SRCB is ignored
92	Console message (send)	SRCB is ignored
93	Card reader	Always hex 80
94	Printer ${ }^{\text {Punch }} 1$	Carriage Control
AO	Perimission to initiate transmission	Always hex 80 Prototype RCB
${ }^{\text {A }}$	Printer 2	Carriage Control
A5	Punch 2	Alwas hex 80
E0	Lost text message	Expected BCB *
F0	Signon/Signoff message **	Signon has hex C1 Signoff has hex C2

Punch 1
Perimission to initiate transmission Prototype RCB Printer

Always hex 80
Expected BCB *
Signon has hex C1
Signoff has hex C2

* In a lost text message, the receiver returns the sequence count actually received in the BCB.
** Signon and signoff messages are transmitted as 80 byte card images with compression and transparency off. There is no SCB!
5.) SRCB (Sub Record Control Byte) as used for printer carriage controls.

Carriage Control Operation	Hex SRCB for Print BEFORE Advancing CC	Hex SRCB for Print AFTER** Advancing CC	Octal carriage Control Character Returned by RCVLNE
Space Suppress Single Space Double Space Triple Space Skip to Channel 1 2 3 4 4 5 6 7 8 9 10 11	$\begin{aligned} & 80 \\ & 81 \\ & 82 \\ & 83 \\ & \\ & 91 \\ & 92 \\ & 93 \\ & 94 \\ & 95 \\ & 96 \\ & 97 \\ & 98 \\ & 99 \\ & 9 A \\ & 9 B \\ & 9 C \end{aligned}$	AO A 1 A2 A3 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB $\mathrm{BC} \rightarrow \mathrm{BF}$	0220 012 0222 0223 014 0201 0202 0203 0204 0205 0206 0207 0210 0211 0213

** For Print AFTER Advancing carrriage controls, two records are returned to the calling application. The first record contains the "real" carriage control and a blank line, and the second record contains a space suppress carriage control and the "real" data lin.
6.) SCB (String Control Byte). The SCB "defines" a record by specifying how many bytes of what kind of data follow in a record. There may be many SCBs in a record as records normally contain a varied mix of duplicate blanks, duplicate characters, and non-duplicate characters.

DUPLICATE BLANKS		DUPLICATE CHARS		NON-DUPLICATE CHARS			
Hex SCB	COUNT						
00	**						
80	**					E0	32
81	1	A 1	1	C1	1	E1	33
82	2	A2	2	C2	2	E2	34
83	3	A3	3	C3	3	E3	35
84	4	A 4	4	C4	4	E4	36
85	5	A5	5	C5	5	E5	37
86	6	A6	6	C6	6	E6	38
87	7	A 7	7	C7	7	E7	39
88	8	A8	8	C8	8	E8	40
89	9	A9	9	C9	9	E9	41
8A	10	AA	10	CA	10	EA	42
8B	11	$A B$	11	CB	11	EB	43
8 C	12	AC	12	CC	12	EC	44
8 D	13	AD	13	CD	13	ED	45
8E	14	AE	14	CE	14	EE	46
8 F	15	AF	15	CF	15	EF	47
90	16	B0	16	D0	16	F0	48
91	17	B1	17	D1	17	F1	49
92	18	B2	18	D2	18	F2	50
93	19	B3	19	D3	19	F3	51
94	20	B4	20	D4	20	F4	52
95	21	B5	21	D5	21	F5	53
96	22	B6	22	D6	22	F6	54
97	23	B7	23	D7	23	F7	55
98	24	B8	24	D8	24	F8	56
99	25	B9	25	D9	25	F9	57
9A	26	BA	26	DA	26	FA	58
9 B	27	BB	27	DB	27	FB	59
9 C	28	BC	28	DC	28	FC	60
9 D	29	BD	29	DD	29	FD	61
9E	30	${ }^{\text {BE }}$	30	DE	30	FE	62
9 F	31	BF	31	DF	31	FF	63

* An SCB of 00 means End of Record. However, if the first and only SCB in a record is 00 then the record is an End-Of-Job (EOJ) sequence (See Note 6).
** An SCB of 80 means Spanned Record to next transmission block.
6.) End-Of-Job (EOJ) Sequence.

This sequence is a special record used to terminate the data stream that was begun with a Request to Initiate Transmission message. The RCB of the record indicates which stream is being ended. For example, the last record of a file going to Printer 1 would be followed by the EOJ sequence:

\cdots	$\mathrm{RCB}=94$	$\mathrm{SRCB}=80$	$\mathrm{SCB}=00$	Next RCB	\ldots

```
+0 log switch
    0 = do not log
    non-0 = log in memory area starting at address specified as value
        log switch. Once initialized with address of log area,
        switch can be dynamically set on and off. If address
        initialized with negative prefix (MZE). logging is
        initialized but log switch is then set to zero.
    log area length (in words)
    address of user logic error exit routine
    reserved
    address of LVL4 TIMER routine
    transparency conversion switch for sending
        (0= convert to EBCDIC; non-zero = do not convert to EBCDIC)
    transparency switch
        0= transmit records in transparent mode
    non-zero= transmit records in non-transparent mode
    address of master IOID table if low memory address 033 is not avail-
            able
    address of conversion table if floating
    +9 address of MLAM status table (line indicators)
+10 max character length of transmitted console messages
+11 number of transmit line buffers
+12 number of receive line buffers
+13 transparency conversion switch for receiving
    (0 = convert to ASCII; non-zero = do not convert to ASCII)
+14->20 reserved
+21 word length of line burfers (not including 4 word CCB)
+22 address of CCB preceding buffer 1
+23 address of CCB preceding buffer 2
    .
+n address of CCB preceding buffer n
```


MLAM STATUS WORD

\%STATS DCN $0=$ No abnormal condition has occurred. non $0=$ Something weird has happened.
non 0 values of sSTATS
$1=$ Found DLE.SYN.ENQ.ITB.ETX.ETB character while sending non-transparen text. Transparency check.
$2=$ Data set dropped ready while sending or receiving text. Radial may be required.
3 = LOST DATA on Send (restart job) (MLAM received lost data msg).
4 = LOST DATA ON RECEIVE (restart job) (MLAM sent lost data msg).
5 = Overflow message block received (probably have wrong buffer size).
6 = RCVLNE processing record that overflows user's area.
7 = Reserved
8 = Cannot get clear to send (hardware problem).
$9=$ Unknown SCB encountered in RCVLNE buffer.
$10=$ RCVLNE encountered an unknown RCB (Record Control Byte) in the message block it is presently deblocking.
$11=$ MLAM has received a startup ENQ/EOT from the remote station, indicating that it is restarting.

The initial format displayed by STRSAM is named "Z1". The prompt displayed by this format is "PLEASE ENTER FORMAT NAME".

The following keys are STRSAM function keys:

Key	Function
CTRL A	Full screen edit of all fields
CTRL B	Return to initial format
CTRL C	Return to IDOS
ENTER	Full screen edit of all fields
PF1	Chain forward to next format
PF2	Chain backward to previous format

To build a custom STARTER (NTP/150) program based on STRSAM:

1. Make keyboard modifications for program functions keys:

PE7226	Control file to perform table edits
CE7226	STRSAM keyboard changes

2. Run GNSTM to configure the NTP/150 system: It will halt so you can check keyboard changes before performing table edits. The generation questions are identical to those in A76. See the NTP/100/150 System Generation and Debugging Guide.
3. Modify the SCIAUB copy file OCCURS clauses to reflect the number of videos configured in Step 2 in

EDIT-WORKING-AREAS
DIRECTORY-AREAS
START CONSTANTS
01 EDIT-RECORD-AREA COPY SCIACB (SCIACB).
02 EDIT-WORKING-AREAS OCCURS 4 TIMES
Modify this OCCURS INDEXED BY X-EDIT-HDR. clause to correspond
03 EDIT-RECORD-HEADER. to the number of
04 FORMAT-NAME, PIC X(6). terminals on your
04 FILLER, PIC X (6). system.

03 EDIT-RECORD-DETAIL OCCURS 12 TIMES
INDEXED BY X-EDIT-DET.
04 CURRENT-ROW-COLUMN.
05 CURRENT-ROW, PIC S999 COMP. 05 CURRENT-COLUMN, PIC S999 COMP.
04 FORWARD-TAB, PIC S999 COMP.
04 FIELD-MAXIMUM-LTH, PIC S999 COMP.
04 FIELD-MINIMUM-LTH, PIC S999 COMP.
04 NUMERIC-LOCK-FLAG, PIC S999 COMP.
04 FIELD-EDIT-RULE-NR, PIC S 999 COMP.
04 FILLER, PIC S999 COMP.
04 DISPLACEMENT, PIC S999 COMP.
04 OPTIONAL-REQUIRED-FLAG, PIC S999 COMP.
04 DATA-ELEMENT-NR, PIC S999 COMP.
04 FILLER, PIC X(18).
04 TASK-NUMBER, PIC S999 COMP.
04 FILLER, PIC $\mathrm{X}(6)$.
04 SCREEN-FORMAT, PIC S999 COMP.
04 NUMBER-OF-SECTORS, PIC S999 COMP.
04 FREE-POINTER, PIC S999 COMP.
04 HIGH-FORMAT-NAME, PIC X(6).
04 D-FREE-POINTER, FIC S999 COMP.
04 FILLER, PIC X(3).
03 DIRECTORY-DETAIL OCCURS 83 TIMES.
04 ENTRY-NAME, PIC X(6).
04 ADDRESS-POINTER, PIC S999 COMP.
START-CONSTANTS OCCURS 4 TIMES
INDEXED BY X-EDIT-CONS.
INDEXED BY X-EDIT-CONS.
03 HOLD-EDIT-SUB, PIC S 999 COMP.
Modify this OCCURS
clause to correspond
03 DIR-POINTER, PIC S999 COMP.
03 TABLE-ADDRESS, PIC S999 COMP.
to the number of
terminals on your
RETURN-CODE, PIC S999 COMP.
LAST-FIELD-FLAG, PIC S999 COMP.
SIG-LENGTH, PIC S999 COMP.
BO, PIC S999 COMP, VALUE 0.
B1, PIC S999 COMP, VALUE 1.
B2, PIC S999 COMP', VALUE 2.
B3, PIC S999 COMP, VALUE 3.
B4, PIC S999 COMP, VALUE 4.
B24, PIC S999 COMP, VALUE 24.
B80, PIC S999 COMF, VALUE 80.
SAVE-FORMAT-NAME, PIC X(6), VALUE SPACES.
AT-FIELD-PROCESS-FLAG, PIC S999 COMP, VALUE 0.
ERROR-BYTE-POSITION, PIC S999 COMP, VALUE 1.
WS-FORMAT-NAME, PIC $X(6)$.
FAILED-ERROR, PIC $\mathrm{X}(80)$, VALUE "FAILED EDIT".
DATA-REQ, PIC $X(80)$, VALUE "FIELD REQUIRES DATA".
MIN-ERROR, PIC $X(80)$, VALUE "MINIMUM LENGTH ERROR".
NO-FORMAT-MSG.
03 FILLER, PIC X(7), VALUE "FORMAT".
03 ERROR-FORMAT-NAME, PIC X (6).
03 FILLER, PIC X(15), VALUE "DOES NOT EXIST".
03 FILLER, PIC $X(52)$, VALUE SPACES.
PASSED-EDIT-MSG, PIC X(80),
VALUE "ALL FIELDS HAVE PASSED THE EDITS."
INVALID-SUPER-TAB-MSG, PIC $X(80)$,
VALUE "INVALID SUPER-TAB POINTER ENCOUNTERED".
ERROR-MSG, PIC X(80), VALUE SPACES.

INDEXES

The three indexes defined in the edit file which must be set prior to accessing the edit information are as follows:

X-EDIT-HDR Indexes the header information for each format. Before using it, the program must set this index to the logical terminal number.

X-EDIT-DET Indexes the detail information for each field. Before using it, the program must set this index to the proper field number.

X-EDIT-CONS Indexes the items in START-CONSTANTS. Before using it, the program must set this index to the logical terminal number.

Also modify:
01 WS-CONSTANT
02 B-NAME PIC X(6) VALUE SPACES. Modify this to
02 INITIAL-FORMAT-NAME PIC $X(6)$ VALUE " 21 ". correspond to the number of terminals on your system.
4. Compile STRSAM (COBOL Source Program).
5. Modify the appropriate control file for the load step: STMDBG Load step for debug system STMNON Load step for non-debug system
(a) Communications: Modify all /I. = parameter to $/ I=$ parameter to inclelude the relocatables for communications.
(b) Modify the bottom parameter in the user file:
(1) Communications: Bottom parameter equal to bottom in File C77G-E (see NTP/100/150 System Generation Guide-Section 4).
(2) No communications: Bottom parameter equal to octal address at top of last screen (see NTP/200 Programmer's Guide, Table 4-1).
(c) Insert relocatable of user code following the comment card in LOADOV.
(d) $/ I=$ STRLIB must be a user input.
6. Run STMNON or STMDBG.
7. Allocate Format and Edit files - ECIAUA

```
// ACIAU
    / FORMATS =NUMBER OF FORMATS TO BE STORED
    / VIDEO SIZE=24 X 80
    / OUTPUT=NAME OF FORMAT FILE (DEFAULT:FMTFIL)
    //
    // ACIAUA
    / FORMATS=SAME NUMBER AS ABOVE
    / VIDEO SIZE=24 x 80
    / OUTPUT=NAME OF EDIT FILE (DEFAULT:EDTFIL)
    / NUMBER OF ENTRY FIELDS PER FORMAT=AVERAGE NUMBER
    //
```

STARTER - NTP/200

Under NTP/200 COBOL without STM, terminal control is handled entirely by the application program. Unlike NTP/150 the KEY-IN statement will be used. Refer to the NTP/200 COBOL Language Definition Manual and NTP/200 COBOL Programmer's Guide.

To build a CUSTOM NTP/200 STARTER PROGRAM:

1. Allocate Format and Edit File - ECIAUA
2. Normal COBOL development: It must include the format and edit parameters in the format and edit files (working storage-copy member SCIACB). All STARTER subroutines are usable except the STARTER "MOVE" subroutine. "I =STRLIB" must be included in LOADOV JCL.

ADDING EDIT RULE TABLES

The source program to change when adding additional rule tables is SCIALZ which is assembled using the control file CCIALZ. Each rule table is sixteen words long. The right-most sixteen bits of each word are used as the validity mask. For example, if one character field is to be only the characters Y or N, the additions to SCIALZ are

EDIT05	BSS	0			
	DCN	0	WORD	1	
	DCN	0	WORD	2	
	DCN	0	WORD	3	
	DCN	0	WORD	4	
	DCN	040000	WORD	5 - "N"	Bit on
	DCN	01000	WORD	6 - "Y"	Bit on
	DCN	0	WORD	7	
	DCN	0	WORD	8	
	DCN	0	WORD	9	
	DCN	0	WORD	10	
	DCN	0	WORD	11	
	DCN	0	WORD	12	
	DCN	0	WORD	13	
	DCN	0	WORD	14	
	DCN	0	WORD	15	
	DCN	0	WORD	16	

EDIT RULE BIT DESCRIPTOR CHART

9
10
11
12
13
14

15

STARTER UTILITY PROGRAM - STRUTL

STRUTL is used to list the FMTGEN format directory, list all (or a selection) of formats from the format file, modify the format chain information, or display file statistics.

STARTER UTILITY PROGRAM OPTIONS
PF1 = VIDEC DISPLAY DIRECTORY
PF2 $=$ LIST FORMAT DIRECTORY
PF3 $=$ LIST FORMATS
PF4 $=$ MODIFY FORMAT CHAIN DATA
PF5 = FILE STATISTICS
PF6 $=$ RETURN TO IDOS

FORMAT NAME:
PREVIOUS FORMAT:
NEXT FORMAT:
STARTER $=$ NTP $/ 200$
Under NTP/200 COBOL without STM, terminal control is handled entirely by the application program. Unlike NTP/150 the KEY-IN statement will be used. Refer to the NTP/200 COBOL Language Definition Manual and NTP/200 COBOL Programmers Guide.

To build a CUSTOM NTP/200 STARTER PROGRAM:

1. Allocate Format and Edit File - ECIAUA
2. Normal COBOL developement. It must include the format and edit parameters in the format and edit files (working-storage COPY member SCIACB). All STARTER subroutines are usable except the STARTER "MOVE" subroutine. "I =STRLIB" must be included in the LOADOV JCL.

LOW MEMORY
SCREEN \#1
OFF SCREEN BUFFER \#1
SCREEN $\# 2$
OFF SCREEN BUFFER \#2
BACKGROUND
TASK \#1

To locate the user tables in a dump or in RAM examine the IOID instruction in location 6 to find the keyboard IOID table. Each entry in the keyboard IOID table points the the first word in each user table.

WORD	(REDABEL	DESCRIPTION
000		Word 0 used by IOID BRM for keyboard
001	BKEY	BRM to accept key stroke
002	BBRD	Exit interrupt
003	ECHAR (KPTOP)	Key board pointer - queue top
	(BCKACT)	Background task is active
004	KEYPNT	Key board pointer - queue bottom
	(QUE)	Address of queue address
005	FWA	First word address of screen
006	KTYPE	Keyboard type (RCPY Instruction)
007	CASE	Upper case flag
010	STX2	Save index register. 2 for status test
011	IOX2	Save index register 2 for disc routines
012	LOCK	Lock keyboard flag
013	Unused	
014	LKEYS	Legal keys bit flag (1 of 2)
015	LKEYS 1	Legal keys bit flag (2 of 2)
016	NAMEO	First three characters of document name
017	NAME 1	Last three characters of document name
020	LSECTR	Ending sector of document
021	DI RFLG	Directory flags
022	NSECTR	Number of sectors in document
023	SSECTR	Starting sector of document
024	PSSWRD	Password (hashed)
025	HSECTR	Header sector address
026	CURS	Character under cursor
027	CURCHR	Cursor character
030	CURC	Cursor blink rate
031	CLSW	Character/cursor switch
032	CHAIN 1	Address of requested operation
033	TASK 1	TASK 1 Of
034	CHAIN2	Address of next requested operation
035	TASK2	TASK2
036	WAIT	Wait for routine instruction
037	ABRTA	Abort address
040	MD2WN	IV90-2 window register
041	WRTFLG	Write screen flag
042	URA	Save RA
043	UURB	Save RB
044	U23	Save X2, X3
045	TSKADR	Task address
046	DSTAT	Request table disc
047	DEVS	Request table disc
050	RAM	Request table disc
051	SECT	Request table disc
052		Request table disc
053	IMODE	System mode switch
054	CRSCNT	Cursor column Number
055	Unused	
056	CURSCH	Cursor position
057	CURSWD	Character in cursor position
060	LMARG	Left margin column counter
061	BMARG	Right margin column counter
062	TXNAME	Name of the text area
063	TXNAM 1	Name of the text area
064	TXFWA	FWA of the text area
065	TXLWA	LWA of the text area
066	NAMEA	Second document name
	(SVDNA)	Temporary storage for document name
067	NAMEA 1 (SVDNAM)	Second document name

(REDEFINED)

Word 0 used by IOID BRM for keyboard
BKEY
BBAD
(KPTOP)
(BCKACT)
KEYPNT
(QUE)
KTYPE
CASE
SIX2
IOX2
Unused
LKEYS
LKEYS 1
NAME 1
LSECTR
DI RFLG
SSECTR
HSECTR
CURS
CURC
CLSW
TASK 1
CHAIN2
TAST
ABRTA
MD2WN
WRTFLG
URA
U23
DSTAT
DEVS
RAM

IMODE
CRSCNI
CURSCH
CURSWD
RMARG
TXNAME
TXNAM1
TXLWA
(SVDEA)
NAMEA 1
(SVDNAM)

BRM to accept key stroke
Key board pointer - queue top
Background task is active
e bottom
Address of queue address
Keyboard type (RCPY Instruction)
Upper case flag
Save index register 2 for status test
Save index register 2 for disc routines

Legal keys bit flag (1 of 2)
Legal keys bit flag (2 of 2)
First three characters of document name
Ending sector of document
Directory flags
Number of sectors in document
Password (hashed)
Header sector address
Cursor character
Cursor blink rate
Character/cursor switch
TASK 1
Address of next requested operation ASK2
Wait for routine instruction
address
Write window register
Save RA
Save X2,X3
Task address
Request table disc
Rable disc
Request table disc
Request table disc
System mode switch

Cursor position
Character in cursor position
margin column counter
Right margin column counter
or the text area
Name of the text area
LWA of the text area
Second document name
emporary storage for document name
Second document name

070	$\begin{aligned} & \text { TXNMA } \\ & \text { (SVTNAM) } \end{aligned}$	Second text area name Temporary storage for text area name
071	TXNMA 1 (SVTNM1)	Second text area name
072	DRVA	Second drive number
073	GLSFWA	First sector address of glossary
074	GLRDSC	Glossary disc number \& glossary active flag (1BO)
075	GLTXFW	FWA of glossary text area
076	TABMK	Tab marker
077	AUTAB	Auto tab to column number
100	dectab	Decimal tab active
101	CENTR	Center line
102	FLG	Cursor return flag
103	Unused	
104	STRTCH	STRTCH
105	STRTWD	
106	OLDSCH	OLDSCH
107	OLDWRD	
110	NEWSCH	NEWSCH
111	NEWRD 1	
112	RHTLWC	RHTLWC
113	RHTLWD	
114	LFTLWC	LF TLWC
115	LFTLWD	
116	UPSCH	UPSCH
117	UPWRD 1	
120	PLCH	PLCH
121	PLCH2	
122	BBPO	BPO
123	PPN	PPN
124	FPO	
125	LFTSEC	LFTSEC
126	NEWCNT	NEWCNT
127	THISEC	THISEC
130	RHTSEC	RHTSEC
131	STRSEC	STRSEC
132	OLDCNT	OLDCNT
133	FLX2	FLX2
134	FLCH	FLCH
135	CHPRG	CHPRG
136	RMRGN	Right margin new
137	OLDDSC	Old disk number
140	NEWDSC	New disk number (INSERT)
141	NEWFWA	NEW TXAREA ADDRESS (INSERT)
142	CMODE	Command mode
143	CMDCD	Command code
144	CMDSCH	Command cursor save
145	CMDSWD	
146	PPCMD	Current sector save
147	CDSRET	Return address
150	PRBRA	Address of print routine
151	TOPSKP	Number of lines in the top margin
152	BODY	Number of lines in the body of text
153	LNSPG	Number of lines per page
154	PRS'W	PRSW
155	PRCNT	PRCNT
156	PRFLG	PRFLG
157	PRSTP	PRSTP
160	PRSPC	PRSPC
161		
162	PREQT	Printer request table
163	PRTYPE	
164	PRSTAT	.
165	PRFWA	
166	PRLMRG	
167	PRUNDR	

170	PRVERT	
171	LFLCH	LFLCH
172	NPLSW	NPLSW
173	WPLSW	WPLSW
174	TBUF 1	Wrap around buffer
175	TBUF2	
176	TBUF3	
177	TBUF 4	
200	TBUF5	
201	TBUF6	
202	TBUF7	
203	TBUF 8	
204	TBUF9	
205	TBUF 10	
206	PLCNT	PLCNT
207	RPCH	
210	RPCNTR	RPCNTR
211	RPCNT	RPCNT
212	LBUF 1	Address of 1st phrase
213	LBUF2	Address of 2nd phrase
214	RPLSCH	RPLSCH
215	RPLCNT	RPLCAT
216	DOCTIM	Start time document was opened
217	DOCLIN	Number of lines printed from the document
220	KCOUNT	Key stroke counter

The general organization of the disc is as follows:

IDOS/ARCHIV	See Note 1.
CKPT FILE	
QUEUES (I VQUEX)	See Note 2
WRDF IL	See Note 3
IDOS/ARCHIV	
TEXT AREA \#2	See Note 3
TEXT AREA \#1	See Note 3
IDOS Processors ForeWord Programs: I VWORD OVERLAYS UTILITIES	

Note 1: The CKPT file is a 200 sector contiguous file which is automatically created when ForeWord is brought up if there is sufficient disc space on drive zero. This file is used when a automatic or manual dump of the system is taken.

Note 2: The queues are normally 3 sector contiguous files in which are stored the commands to be executed. The queue size can be changed during WRDGEN if the destination system requires expanded queues. Each sector in the queue contains eight queued tasks. Foreword will automatically create these queues on the system if they do not exist when IVWORD is first brought up. The IDOS file IVQUED will contain all tasks which have been put into queue one, etc.

Note 3:
Text areas (including the system display file - WRDFIL) must have a "t" as the flag byte. Care must be taken to insure there are no more than 32 entries in the system display, file (WRDFIL). Any of the displays which fall in the greater than 32 category will not be located by system initialization.

The organization of the text areas are as follows:

Relative Sector 0	ALLOCATION SECTOR
Relative Sectors $1-7$	TEXT AREA DIRECTORY SECTORS
Relative Sectors $8-$ end	TEXT AREA DATA SECTORS

ALLOCATION SECTOR

A single sector which is the first sector in the text area. The first sixteen bits of each word are set to zero if the associated sector is in use and set to one if the sector is available for allocation. The allocation table is build by PRETXT up to the size of the text area specified.

Words	$0000-0371$	Allocation Bit Map.
Word	0372	Total number of sectors in text area
Word	0373	Number of unused sectors
Word	0374	
Words	$0375-0377$	Number of unused directory entries
Reserved		

TEXI AREA DIRECTORIES

Six sectors (relative 1 thru 7). Each entry is eight words long. Maximum number of entries is 192. The eight word entries appear as follows:

WORD

CONTENTS
0 First three ASCII characters of the document name.

1

2 Last sector address relative to the start of the text area.

3 Reserved

4 Left byte is the flag byte for the document. Right two bytes contain the sector count of the document.

5

6

7 Starting sector of the header. Zero if no header.

$$
A Y-6
$$

** - Column 81 indicator column
ords 0-32 are the data positions which are visable on the screen.
rds 33 - 35 and part of 36 are tab bits where the bit is set to one if the tab has been set in the corresponding position and set to zero if no tab bit has been set.
Word 36 center and right byte are the left and right margin column numbers for the paragraph of text.
Word 37 left byte is the control flag byte where:
Bit $0=$ line in use meaning something was keyed in the line
Bit $1=$ start of chapter key was pressed
Bit 2 = start of paragraph or beginning of paragraph
Bit $3=$ tabs were used in the line to position the cursor.
Bit 4 = top of form or new page flag
Bit $5^{\prime}=$ auto tabs were used in the line to position the cursor.
Bit $6=$ line is to be centered
Bit $7=$ change made in the line since the last time the change flags were cleared by the LINES command.

Word 37 center and right byte in the first three lines of the sector represent the foreword, present and back pointers for the sector.

CREATING PASSWORD TEXT AREAS

The ' P ' parameter in PRETXT will set the password on the text area. See the section on JCL for all the options on running PRETXT. If no parameter is given zeros will be put in the +6 word in the IDOS directory. If a parameter is given the following algorithum is used to 'hash' the two words (representing six ASCII characters) into a single word in the directory:

A word of all blanks (010020040) is subtracted from the first word (i.e. the first three characters) of the desired password. The result of the subtraction is exclusive or'ed with the second word of the password. The result is then stored in the +6 word of the IDOS directory for that text area.
Example:

$/ \mathrm{P}=4 \mathrm{PHASE}$

$4 \mathrm{PH}=015050110 \quad \mathrm{ASE}=020251505$
015050110 First three ASCII characters
010020040 -
005030050
020251505 XOR Exclusive Or
025261555 Result - hashed password for directory

System Text Area $=$ WRDFIL

(1) Modifying system display

The system display (ForeWord and the release/date) can be modified by accessing the system text area and rekeying the display. To access WRDFIL first press PASSW and key in '4PHASE'. Now type in 'WRDFIL' and press INDEX, all of the system display formats are now available. Make a copy of the IMODE document in case you screw up.
(2) Modifying system defaults

Archive Area
Queues

FLAG BYTE DESCRIPTION

A capital ' T ' in the IDOS directory designates that the file is a ForeWord text file. It may or may not contain a header in the IDOS area depending on whether or not it had a header in the text area. The records are compressed and are 96 characters long (in order to contain the tabs, flags, and pointers for each line). Because the information is bit oriented in a ForeWord text file it must be considered as binary information in all use of the file while in the IDOS area, i.e. it is not ASCII data.

A small unshifted 't' in the IDOS directory designates that the file is a ForeWord Text Area. The flag byte is checked whenever a text area is opened from a terminal to allow only contigueous text area files to be opened. Several of the statistics programs use this flag byte also to locate all the text areas.
$R \quad$ - A capital 'R' in the IDOS directory designates that the file is a read only Foreword text file. It must have a password entered in the password field and therefore cannot be altered or deleted without knowing the password. The document can be opened or copied by any terminal but cannot be altered. This allows for 'standard' paragraphs, glossaries, or fill in formats to be created for all to use but only the originator $\mathrm{c} a \mathrm{a}$ change the document.

The flag byte in the header of a document is used to control the type of transfer which will take place when the document is being archived. A capital ' T ' or ' R ' indicates it is to be transfered as a text document and to retain all information on each line to insure proper editing when brought back into a text area. Any other character will cause the document to be transfered to archive as 80 character records and all nulls in the line are converted to spaces. Lower to upper case conversion does not take piace. Lower to upper case conversion can be accomplished by using the offline IDOS processor XTXFIL.

The following file nameing conventions are generally observed in the ForeWord System:

1. Source Files

2. Relocatable Files

RT L xxx	where, $L=1 i b r a r y$ module
R	$\mathrm{R}=$ resident module
0	$0=$ overlay module
U	$\mathrm{U}=$ utility module
X	$\mathrm{X}=\mathrm{transfer}$ program module

3. Absolute Files
```
IVWORD - ForeWord System
IVOxxx - ForeWord Overlays
PRETXT - Builds Text Areas
CHKTXT - System Maintenance on Text Areas
XTXFIL - Offline utility to transfer to/from ARCHIVE
TBLEDT - Builds individual keyboard tables during WRDGEN and the level }
    branch table
TBLIDC - Builds CTLBS (keyboard and 8121 conversion table source)
```

4. Other files and their descriptions

IVBASE - Output of virtual table from LOADER
IVQUEX - Queues for use in background processing
STATS - Control file used to execute statistics programs
IVSTAT - File used to record statistics
SVSTAT - Renamed IVSTAT to turn off logging of statistics
Txxxx - Standard keyboard table where $x \times x x$ is the keyboard number
Cxxxx - Change file for keyboard table used in TBLEDT
WRDGEN - Control file to execute ForeWord Generation Program (ATUGEN)
TXGDF - GENCF file used during WRDGEN
TXTLIB - ForeWord Library
WRDFIL - System Display File
CKPT - Dump file

SECTOR 0 - SYSTEM PARAMETERS.

SECTOR 1 - TERMINAL PARAMETERS.

WORD
00-06

07-15
16-24
25-32
34-61
43-73
52-60
61-67
70-76
77-105
106-114
115-123
124-132
133-141
142-150
151-157
160-166
167-175
176-204
205-213
214-222
223-231
232-240
241-247

CONTENTS
Terminal parameters for terminal 0 where:
0-1 Default text area name for terminal 0
2 Default drive number for text area
3 Logical printer number
4 Printer type number
$5 \quad 8121$ physical printer number Terminal characteristics
Byte $0=$ Read only terminal
Byte $1=$ Keyboard number Byte 2 = Keyboard type

Terminal parameters for terminal 1
Terminal parameters for terminal 2
Terminal parameters for terminal 3
Terminal parameters for terminal 4
Terminal parameters for terminal 5
Terminal parameters for terminal 6
Terminal parameters for terminal 7
Terminal parameters for terminal 8
Terminal parameters for terminal 9
Terminal parameters for terminal 10
Terminal parameters for terminal 11
Terminal parameters for terminal 12
Terminal parameters for terminal 13
Terminal parameters for terminal 14
Terminal parameters for terminal 15
Terminal parameters for terminal 16
Terminal parameters for terminal 17
Terminal parameters for terminal 18
Terminal parameters for terminal 19
Terminal parameters for terminal 20
Terminal parameters for terminal 21
Terminal parameters for terminal 22
Terminal parameters for terminal 23

SECTOR 3-COMMUNICATION PARAMETERS.

WORD
CONTENTS

0-13 Communication parameters for location 0 where:

$0-1$	System location name 0
$2-3$	SYSGN file name for location 0
$4-11$	Location 0 phone number
12	Location 0 is a remote location
13	Datatype
$14-17$	Unused

20-37 Communication parameters for location 1
40-57 Communication parameters for location 2
60-77 Communication parameters for location 3
100-117 Communication parameters for location 4
120-137 Communication parameters for location 5
140-157 Communication parameters for location 6
160-177 Communication parameters for location 7
200-217 Communication parameters for location 8
220-237 Communication parameters for location 9
240-257 Communication parameters for location 10
260-277 Communication parameters for location 11
300-317 Communication parameters for location 12
320-337 Communication parameters for location 13
340-357 Communication parameters for location 14
360-377 Communication parameters for location 15

Overview:
The TBLIDC program uses the following JCL:

```
// TBLIDC
/0=CTBLS
/3=TEMP1
/4=T8121
/5=TEMP2
//
OUTPUT DCN KEYBOARD/8121 TABLE
INPUT KEYBOARD TABLE FOR LEFT BYTE FROM TBLEDT
INPUT STANDARD 8121 CONVERSION TABLE
INPUT KEYBOARD TABLE FOR RIGHT BYTE FROM TBLEDT
```

This program takes the two keyboard tables produced from TBLEDT during WRDGEN and the 8121 printer table and builds a DCN table used within ForeWord for conversion of input keystrokes and output bytes to the 8121 printer. The left byte is considered primary keyboard, the center byte is the 8121 printer and the right byte is the secondary keyboard. The output from the program is assembly code and is SNEDITed and assembled into the relocatable CTBLR for inclusion in the load step.

Alphanumeric Style

000001002003004005006007010011012013014015016017	7200 KEYBOARD
020021022023024025026027030031032033074035076037	020
040041042043044045046047050051052053054055056057	040
060061062063064065066067070071072073054075056077	060
100101102103104105106107110111112113114115116117	100
120121122123124125126127130131132133134137136137	120
140141142143144145146147150151152153154155156157	140
160161162163164165166167170171172173174175300301	160
302303304305134307310311312313314315137317317304	200
303323324325326327330331332333334335336337340174	220
040241	
260135262263264265266267173175	
040	
040	260
040	
060061062063064065066067070342343344	360

DATA IV Keypunch Style

230101002103104105106107110111012013114115016117			
120121122123124135126023130131132210074226076056	020		
040224043054044056221220055060231210054226056056	040		
225224100045052074221220055057231210070230071056	060		
230	041042072051073016047062064065066067050063	100	
046053003076174061075137077135	211227226211227	120	
225101102103104105106107110111112113114115116117	140		
120121122123124125126127130131132211227231201202	160		
201202203204205206204242242210201210205212212203	200		
20220721521621722122022223224213214203241204205	220		
040200		240	
225224100045052074221220055037		260	
203		300	
040	200	240237	320
236233234235230231232225226227	242212210	360	

029 STYLE KYBRD UPPER CASE ONLY (7202)

$* *$
STA IV Typewriter Style

000101002003104105106107110111012013114115016117 120121122123124125126127130131132053074237076037 040041042043044045046047050051052053054055056057 060061062063064065066067070071072073054075056077 100101102103104105106107110111112113114115116117 120121122123124125126127130131132211053137211137 140141142143144145146147150151152153154155156157 160161162163164165166167170171172211240052201202 201202203204205206204242242210201210205212212203 202207215216217221220222223224213214203241204205 040200
236135226227230231232233173175 040

040
060061062063064065066067070071

053055056
242212210

7203 KEYBOARD
020 DATA IV
040 TYPEWRITER
060
100
120
140
160
200
220
240
260
300
320
340 NOT PF X
360 ISLAND

2260 Data Entry Style

230101002103104105106107110111012013114115016117	2260	DATA ENTRY		
120121122123124125126127130131132210074226076056	020	UFPER CASE		
040224043054044056053220137060231210054226056072	040	ONLY. (7204)		
225224100045052075053220055057231210070230071073	060			
230050102103077135106107110062064065066115116063	100			
046074122051124061126076130131132211227226211227	120			
225101102103104105106107110111112113114115116117	140			
120121122123124125126127130131132211227231201202	160			
201202203204205206204242242210201210205212212203	200			
202207215216217221220222223224213214203241204205	220			
040200		240		
225224100045052000221220023037	000	260		
203		300		
040	200	240237	340	
236233234235230231232225226227	242212210	360		

NTP/100, 150200 (3270) Keypunch Style

230101002103104105106107110111012013114115016117 120121122123124135126023130131132210074226076056020 040224043054044056221220055060231210054226056056040 225224100045052074221220055057231210070230071056060 230041042072051073016047062064065066067050063100 $046053003076174061075137077135 \quad 211227226211227120$ 225101102103104105106107110111112113114115116117140 120121122123124125126127130131132211227231201202160 201202203204205206204242242210201210205212212203200 202207215216217221220222223224213214203241204205220 040200 220 225224100045052074221220055037260 203

040
236233234235230231232225226227

029 STYLE KYBRD UPPER CASE ONLY (7225)

NTP/100, 150, 250 (3270) Data Entry Style

174001002003004005006007010011012013014015016017	7227 KEYBOARD
020021022035024025026027030031032072074023076037	020
040041100043044045026046052050047073054055056057	040
060061062063064065066067070071042072054021056077	060
027101102103104105106107110111112113114115116117	100
120121122123124125126127130131132211040137211053	120
051141142143144145146147150151152153154155156157	140
160161162163164165166167170171172211053042	160
075053	200
	220
240	240
175135100043003045016046052173	260
040 (300
	320
040	340 360

oreWord DEVORAK Keyboard

033001030011010076025011004003010024016015002022 014037020020031007013074021006042023027174026032 040041100043044045003046052050055163167027166172 060061062063064065066067070071137123127073126132 072101130112105056125111104103110124116115102122 114077120117131107113054121106042211075021111053 051141170152145056165151144143150164156155142162 154057160157171147153054161146047211053042 075053

240
175135174043003045016046176173 040

DEVORAK KEYBOARD
020
040
060
100
120
140
160
200
220
240
260
300
320
340
360
 8121 Character Printer Table

8121 PRINTER
020
040
060
100
120
140
160
200
220
240
260
300
320
340
360

PASSW
The following is the JCL used to change the password on the customers pack. The JCL is contained in the control file PASSW:
// DIRMOD
/ I =WRDCFG,Q. Unprotect the configuration file for update

STATS (STATISTICS)

The following is a copy of the STATS control file and an explainatic of the JCL.

```
// GENCTR Use the processor GENCTR to look for all IDOS
\primeO=TEMP,E=/*,H=*,G=t. directory entries with a 't' as the flag byte
// ATUST1 identifing the file as a text area. Create the
/ A=\. JCL to run COBOL program against each text area
// and print out the headers.
/*
// TEMP Execute the control file created above.
// ATUST2 This program will list and optionally update the
/ A=IVSTAT. terminal and printer stats which are accumulated
// in the file IVSTAT.
// GENCTR Use the processor GENCTR to look for all IDOS
/O=TEMP,E=/*,H=*,G=T. entries with a 'T' as the flag byte identifing
\. the file as an archived text file. Build a temp
/* file to be read by the next COBOL program.
// ATUST3 This program will read in the list generated
/ A=NAME, B=TEMP. in the above step and open each one to access
// the header and print the report.
// ATUST5 Print ASSEMBLY statistics
/ A=PASTAT
//
// ATUST6 Generates files for the next COBOL program for
/ A=PASTAT, B=TEMP. special ASSEMBLY statistics.
//
// SORT SORT the temporary file
/ I=TEMP, 0=TEMP01, M=2000, F=29, L=45
//
// ATUST7 Print summary of the ASSEMBLE statistics
/ A =TEMPO1
/*
// ATUST8 Deletes documents based on user criteria
/ A =TXAREA
/*
//
```

The JCL for running PRETXT is as follows:
// PRETXT
/T=NAME OF THE TEXT AREA TO BE CREATED
$/ P=$ NAME OF THE PASSWORD TO BE GIVEN TO THE TEXT AREA
$/ S=N U M B E R$ OF SECTORS TO BE CREATED e DRIVE NUMBER FOR TEXT AREA. //

The default text area name is TXAREA and the default number of sectors is 03000(1536).

CHKTXT (TEXT AREA MAINTENANCE PROGRAM)

The JCL for running CHKTXT and the options allowed when an error is detected are as follows:
// CHKTXT
$/ T=N A M E$ OF THE TEXT AREA TO BE CHECKED.
/A TO CAUSE ALL SECTORS TO BE SCANNED IN THE EVENT OF AN ERROR INSTEAD OF JUST THE ALLOCATED SECTORS.
IS TO CAUSE CHKTXT TO SUPPRESS SCAN IN THE EVENT OF AN ERROR. NO ATTEMPT WILL BE MADE TO CORRECT THE ERROR.
/L TO CAUSE CHKTXT TO PRINT A LISTING OF ALL RECLAIMED SECTOR ADDRESSES ON THE PRINTER.
//
When an error is detected the following options are allowed:
L or Y Link. The sector shown on the bottom third of the screen is to be linked with the sector show in the center of the screen.

N
Do not link the sectors as shown on the screen. Continue to scan the text area for other possible matches if the option 'S' was not given above.

B Follow the back pointer in the sector on the bottom third of the screen. Used in an attempt to identify and relink the document.

F Follow the foreword pointer in the sector on the bottom third of the screen.

C Continue with the next document in the text area. No changes will be made in the current document and chain linkage errors will still be in the text area. CHKTXT must be rerun to insure all errors are corrected.
$R \quad$ Reset the screen to the original sector in error.
E Follow the pointer in the directory for the document to the ending sector and display it on the bottom third of the screen.

T Indicates that the chain is to be trunctated. The sector in the middle of the screen will be the last sector of the document.

XTXFIL (TEXT AREA TRANSFER UTILITY)
The following JCL is used with XTXFIL to transfer documents to/from text areas:
// XTXFIL
II =NAME OF file in idos to be transfered into the text area e drive \#.
$/ N=$ NAME OF THE TEXT AREA TO BE TRANSFERED INTO E DRIVE \#.
$/ P=S E T$ a PARAGRAPH FLAG ON EVERY LINE (USED ON NON-TEXT DOCUMENTS)
$/ T=$ COLUMN NUMBER IN WHICH TO SET A TAB (MULTIPLE 'T' INPUTS OK)
$10=$ NAME OF THE FILE IN THE TEXT AREA TO BE TRANSFERED TO IDOS \& DRIVE If the name is left blank (i.e. $0=01$.) then the entire text area WILL BE TRANSFERRED.
$/$ N=NAME OF THE text area to be transfered from e drive $\%$. //

Be aware the I paramater and the O parameter are mutually exclusive in each option entry.

TAKING A DUMP

A. Insure the words 'CKPT TAKEN' are not already on screen 0 of the system. This indicates that ForeWord detected an error and automatically took a CKPT. In this case all that is required is to print or copy the CKPT file.
B. If the words do not appear proceed with the dump of memory.
C. Ensure the disc pack in drive zero is mounted and ready.
D. Set the AUTO/MANUAL switch to NAMUAL.
E. Set the console keys to 70000003 .
F. Set all the DISPLAY SELECT switches down (select TIR).
G. Press the SYSTEM RESET switch.
H. Press the STEP switch.
I. Press the LOAD switch.
J. Set the AUTO/MANUAL switch to AUTO.
A. Type // CKPT to load the image of the checkpoint into RAM for printing or if the file has been renamed use the new name.
B. Set AUTO/MANUAL switch to MANUAL.
C. Set the CONSOLE KEYS to 71100001 .
D. Set all the DISPLAY SELECT switches down (select TIR)
E. Press RESET.
F. Press STEP.
G. Press LOAD.
H. Set the AUTO/MANUAL switch to AUTO.
I. When the processor halts, set AUTO/MANUAL switch to MANUAL.
J. If you have an 8135 printer set all console keys down, for all other printer set console keys 21 and 23 up and all others down.
K. Set the DISPLAY SELECT switches to 001 (select RA).
L. Press LOAD.
M. Set all the DISPLAY SELECT switches down (select TIR).
N. Set AUTO/MANUAL switch to AUTO.

SAMPLE MEMORY LAYOUT

$\begin{gathered} \text { MFE/IV } \\ \text { ROUTINES AND TABLES } \end{gathered}$	2	Pages
LOGICAL SCREEN AREA	2	PAGES
LOGICAL USER TABLE PAGE	1	PAGE
logical overlay area	1	PAGE
LOGICAL TRANSFER PROGRAM AREA (PAGE 1 OF 3) ALSO MATH PACK LOGICAL ACCUM PAGE	1	PAGE
LOGICAL TRANSFER PROGRAM AREA (PAGE 2 OF 3) ALSO LOGICAL DOCUMENT BUFFER PAGE	1	PAGE
LOGICAL TRANSFER PROGRAM AREA (PAGE 3 OF 3)	1	PAGE
FOREWORD SYSTEM TABLES		
FOREWORD RESIDENT ROUTINES		
FOREWORD LIBRARY ROUTINES		
MFE/IV LIBRARY ROUTINES		

PHYSICAL MEMORY REOUIBEMENTS

The minimum amount of memory required is 192K. To estimate the physical requirements of an AYO6 ForeWord System proceed as follows:

```
No.of physical pages = 28 pages for resident code
    + no. of tubes and background tasks x 1/4 page
    for user tables
    + 1 page for each background terminal
    + 1 page for each wide document buffer requested
    +1 page for Math package
```

The above equation will determine the number of physical pages Foreword will require. After that total is obained 8 pages must be added for MFE and 1 page for each terminal hooked up the system must be added.

FOREWORD RELEASE AYO6

HORD	$\frac{\text { LABEL }}{(\text { REDEFINED })}$	DESCRIPTION
000	kEyptn	Addr of non-standard keystroke routine
001	ECHAR (KPTOP)	Pointer to top of keystroke queue
	(BCKACT)	Background task is active
002	REYPNT (QUE)	Pointer to bottom of keystroke queue Address of address of queue
003	FWA	First word address of screen
004	KTYPE	Keyboard type (RCPY intruction)
005	CASE	Upper case flag
006	STX2	Save index register 2 for status test
007	IOX2	Save index register 2 for disc routines
010	LOCK	Lock keyboard
011	Unused	
012	LKEYS	Legal key bit flags
013	LKEYS 1	
014	NAMEO	First three characters of document name
015	NAME 1	Last three characters of document name
016	LSECTR	Ending sector of document
017	DIRFLG	Not used (Reserved)
020	NSECTR	Number of sectors in document
021	SSECTR	Starting sectory of document
022	PSSWRD	Password
023	HSECTR	Header sector address
024	CURS	Character under cursor
025	CURCHR	Cursor character
026	CURC	Cursor blink rate
027	CLSW	Character/cursor switch
030	CHAIN 1	Holds address of requested task
031	TASK1	Contains parameter passed via task or task8
032	CHAIN2	Address of next requested operation
033	TASK2	TASK2
034	CHAIN	Chain "address" of func. that called "TASK9"
035	TASK	Return address for chained functions
036	WAIT	Wait for routine instruction
037	ABRTA	Abort address
040	MD2WN	IV90-2 window register
041	WRTFLG	Write screen flag
042	URA	Save RA
043	URB	Save RB
044	023	Save X2, X3
046	TSKADR	Task address to branch to after time sharing
047	DRQPRI	Disc request queue priority
050	DSTAT	Request table disc
051	DEVS	Request table disc
052	RAM	Request table disc
053	SECT	Request table disc
054		Request table disc
055	IMODE	IMODE mode switch
056	CRSCNT	Cursor column number
057	Unused	

USER TABLE DEFINITIONS $=$ CONTINUED

130	BPO	Back sector pointer
131	PPN	Present sector pointer
132	FPO	Front sector pointer
133	LFTSEC	Address of sector containing left pointer
	(FNSSEC)	Starting sector of the footnote file (Format)
134	NEWCNT	NEWCNT
	(ERRCOD)	Error message code number (Column Manipulation)
135	THISEC	THISEC
136	RHTSEC	Address or sector containing right pointer
137	STRSEC	STRSEC
	(TPELBA)	Str ba of line with beg ptr in top
140	OLDCNT	Col count of line in botm sectr in edit code
	(DEC)	Used for TABTYP (Column manipulation)
14	FLX2	FLX2
142	FLCH	Contains char returned by GETOLD or GETNEW
143	CHPRG	CHPRG
144	RMRGN	Column count of last char in line
145	OLDDSC	Old disc
146	NEWDSC	New disc (insert)
147	NEWFWA	New txarea address (insert)
150	CMODE	Command mode
151	CMDCD	Points to the code to be executed in command mode
152	CMDSCH	Used during a command to save the cursor loc
	(PAGNUM)	Page number (Format)
153	CMDSWD	When used by Format code 2nd wrd of CMDSCH
	(FNNOM1)	First word of footnote number (Format)
154	CMDSW1	Double word footnote (must follow CMDSVD)
	(FNNUM2)	Second of footnote number (Format)
155	PPCMD	Current sector save
156	CDSRET	Return address
157	DIRFWA	FWA save cell for TDRFND
160	PRBRA	Address of print routine
161	TOPSKP	TOPSKP
162	BODY	BODY
163	LNSPG	Lines/page
164	PRSW	Printer switch-status for print overlay
165	PRCNT	Printer line count-lines per page
166	PRFLG	Line printed flag
167	PRSTP	If NZ ,then stop printing after a page
170	PRSPC	Printer line spacing count
171	LNSPAC	Default line spacing
173	PREQ	Printer request table
	(PRTYPE)	
174	PRSTAT	
175	PRFWA	
176	PRLMRG	
177	PRUNDR	
200	PRVERT	
201	PRCU	Print continuous underscore flag
	(MDELBA)	Str ba of line with end ptr in middle (Column man
	(HDOCNT)	* of lines for odd header (Format)

SER TABLE DEFINITIONS = CONTINUED

202	$\begin{aligned} & \text { BCU } \\ & \text { (BTELBA) } \\ & \text { (HDECNT) } \end{aligned}$	Begin continuous underscore Str ba of line with end ptr in bottom (Column manip) - of lifnes for even header (Format)
203	ECU	End continuous underscore
	(TEDPBA)	Top sec ba of end ptr (Column manipulation)
	(FTOCNT)	Starting sector address of odd footer (Format)
204	SPRUND	Underscore override cont. underscore
	(MEDPEA)	Mid sec ba of end ptr (Column manipulation)
	(FTECNT)	* of lines for even footer (Format)
205	SAVBCU	Save area for BCU
	(BEDPBA)	Bot sec ba of end ptr (Column manipulation)
	(LINCNT)	* of lines of text for mult page footnote (Format)
206	SAVECU	Save area for ECU
	(TTBBTA)	Top sec tab bic addr beg ptr line (Column manip)
	(FNP1ST)	First footnote of page flag (Format)
207	SSPRND	Save area for SPRUND
	(PRSCNT)	Processing new page flag (Format)
210	LFLCH	LFLCH
211	NPLSW	NPLSW
212	WPLSW	WPLSW
213	FPRUDR	Save area for PRUNDR (Form letter merge)
	(BTBBTA)	Bot sec tab bit addr beg ptr line (Column manip)
	(FNMULT)	Multiple page footnote flag (Format)
214	FBCU	Save area for Bcu (Form letter merge)
	(TCNBTA)	Top sec control flag bit addr beg line (Column manip)
	(HDOSEC)	Starting sector address of the odd header (Format)
215	FECU	Save area for ECU (Form letter merge)
	(MCNBTA)	Mid sec control flag bit addr beg line (Column manip)
	(HDESEC)	Starting sector address of even header (Format)
216	FPRCU	Save area for PRCU (Form letter merge)
	(FTOSEC)	Starting sector address of odd footer (Format)
217	CXFLAG	Set separator option flag (Form Letter)
	(TLMBA)	Top sec lm ba on beg ptr line (Column manipulation)
	(FTESEC)	Starting sector address of even footer (Format)
220	TBUF 1	Wrap around buffer
	(TOPSBA)	Start top sec byte addr (Column manipulation)
	(REQWID)	Number of requested wide pages (Allocate Command)
221	TBUF2	TBUF+1
	(MIDSBA)	Start mid sec ba (Column manipulation)
	(REQOVL)	Number of requested overlay pages (Allocate Command)
222	TBUF3	TBUF+2
	(BOTSBA)	Start bottom sec ba (Column manipulation)
	(REQTOT)	Number of requested total pages (Allocate Command)
223	TBUF4	TBUF1+3
	(OFFSBA)	Start offscreen sec ba (Column manipulation)
	(UPDCFG)	Response to update the WRDCFG file (Allocate Command)
224	TBUF5	TBUF+4
	(TOPLBA)	Str ba of line with beg ptr in top (Column manip)
	(USEXFR)	Response to use the XFER area pages (Allocate command)
225	TBUF6	TBUF+5
	(MIDLBA)	Str ba of line with beg ptr in middle (Column manip)
226	TBUF7	TBUF+6
	(BOTLBA)	Str ba of line with beg ptr in bottom (Column manip)

TBUF 8 (TBGPBA) TBUF9 (MBGPBA) TBUF 10 (EBGPBA)
PLCNT RPCH RPCNTR (MLMBA) RPCNT (TRMBA) LBUF1 FNORPH RPLSCH (MRMBA) (BCNBTA) RPLCNT

RPLSAV (AltFlg) RPLSPL (ALTODD) DOCTIM
DOCLIN KCOUNT KMEM KMEM2 KEYLOG KMEMCH KMEMWD
SLNSPG SSPLMR GRPTOT NXTGRP (FNCNTR) NONDOC
(FNBFSS) OVPAGE

DOCNM 1
DTFWA 1 DTDFV 1 DOCNM2
DTFWA2
DTDRV2
TXFWA 1
txLWA 1
HDFWA 1
TXFWA 2

TBUF+7
Top sec ba of beg ptr (Column manipulation) TBUF+ 8
Mid sec ba of bg ptr (Column manipulation) TBUF +9
Bot sec ba of beg ptr (Column manipulation) pLCNT
Contains first char of search string
Used as loop counter in Search \& Replace
Mid sec im ba on beg ptr line (column manipulation)
Contains of chars in search string
Top sec lm ba on beg ptr line (Column manipulation) Address of first phrase
Footnote counter to stop single line fns (Format)
Contains wrd pair pointing to char of search string
Mid sec rm ba on beg ptr ine (Column manipulation
Bottom sec control flag on beg ptr line (Column manip)
Contains of characters in replace string
Save cursor sec for screen restore (Column manip)
Used to save RMRGN during Search \& Replace
Alternating heading/footing page flag (Format)
Special character treatment
Reset to odd header/footer page flag (Format)
Start time document was opened
Lines printed in the document
Keystroke counter
Keystroke memory flag and sector address
Keystroke log - last 3 keys hit
Keystroke memory LCR pointer to key list KMEMCH +1
Lines per page for single sheet feeder
Left margin offset for single sheet feeder
Total of groups in group document
1st grp to display on next page in showall groups mod * of footnotes (Format)

Contains name of non-immediate document being used currently by message feature
Starting sector of /BF footnote file (Format)
Pointer to ????? indicating overlay is running in a paged overlay area
Document name
Document's text area first sector address
Document's text area drive
Document name
Document's text area first sector address
Document's text area drive
Text area's first sector address
Text area's last sector address
Doc header's area first sector address
Text area's first sector address

USER TABLE DEEINITIONS = CONTINUED

342	FSPRNT	
343	WDADRS	Adrs of memory document buffer (Format)
345	FTIME (FNCSEC)	Sector address of continued fn (Format)
346	SCrflg	
350	LOGID	
352	EDTSEC	
353	EDITX2	
354	HOMSEC	Updated on every C/HOME or S/HOME, cleared when a new document is opened
355	XECLV4	
356	MTIMER	Terminal idle time timer
357	FMTFLG	Format flags
360	FNBFCC	Column count of footnote (list)
361	FNCONT	Footnote continued on next page flag
362	FNPSEC	Next available (present) sector address fn
363	RESCNT	Restores a saved column number
364	RESSCH	Restores a saved cursor location
365	RESWRD	RESSCH+1
366	FNPSCH	Next available (present) char address fn
367	FNPWRD	Next available (present) word address fn
370	FTCRET	Saves return address for BAL's
371	ODDEVN	Odd/even header/footer flag
	(SVPKRD)	Saves password of input document (FM1 only)
372	RSM?	Does middle sector need to be restored?
373	MTHFLG	Math flag and options in effect

The length of the user table is defined in the module STRTUB

The first sector (sector 0) of the text area is an allocation table that indicates the sectors in use. Each bit in the table corresponds to one sector in the text area. If a bit is set to one, the sector is available. If a sector is in use, the bit is set to zero. With eight words on a line, each line represents 192 sectors (0300 sectors octal). The entire text area is thus represented by an allocation table one sector long.

Words	$0000-0371$	Allocation Bit Map.
Word	0372	Total number of sectors in text area
Word	0373	Number of unused sectors
Word	0374	Number of unused directory entries
Word	0375	Maximum number of directory entries
Word	0376	Text area type

TEXT AREA DIRECTORIES = FORHORD RELEASE AYO6

DATA SECTORS FOREWORD RELEASE AYO6

Sector structure for ForeWord type T documents


```
* - Column 81 indicator column
```

LEGEND:

```
T = one byte of tab indicator bits
    C = one byte of control bits for the logical line
        Bit 0 = line in use
        Bit 1 = start of chapter key was pressed
        Bit 2 = start of paragraph or beginning of paragraph
        Bit 3 = tabs were used in the ilne to position the cursor.
        Bit 4 = line is start of new page
        Bit 5 = auto tabs were used in the line to position the cursor.
        Bit 6 = line is centered
        Bit 7 = line has been changed
    D = one byte of display character (the character for col 81 display)
    S = one byte of "sector type indicator" (S=binary 0 for type T docs)
    X = one byte of "don't care"
    L = left margin value (one byte)
    R = right margin value (one byte)
BP = back pointer of sector (two bytes)
PP = present pointer of sector (two bytes)
FP}=\mathrm{ front pointer of sector (two bytes)
```

Sector structure for ForeWord type W documents

LEGEND:

```
T = one byte of tab indicator bits
C = one byte of control bits for the logical line
                Bit 0 = line in use
                Bit 1 = start of chapter key was pressed
                Bit 2 = start of paragraph or beginning of paragraph
                Bit 3 = tabs were used in the line to position the cursor.
                Bit 4 = line is start of new page
                Bit 5 = auto tabs were used in the line to position the cursor.
                Bit 6 = line is centered
                Bit 7 = line has been changed
D = one byte of display character (the character for col 81 display)
S = one byte of "sector type indicator" (S=binary 1 for type W docs)
X = one byte of "don't care"
L = left margin value (one byte)
    R = right margin value (one byte)
BP = back pointer of sector (two bytes)
PP = present pointer of sector (two bytes)
FP}=\mathrm{ front pointer of sector (two bytes)
```

Sector structure for ForeWord type X documents

LEGEND:

```
T = one byte of tab indicator bits
C = one byte of control bits for the logical line
        Bit 0 = line in use
            Bit 1 = start of chapter key was pressed
            Bit 2 = start of paragraph or beginning of paragraph
            Bit 3 = tabs were used in the line to position the cursor.
            Bit 4 = line is start of new page
            Bit 5 = auto tabs were used in the line to position the cursor.
            Bit 6 = line is centered
            Bit 7 = line has been changed
D = one byte of display character (the character for col 81 display)
S = one byte of "sector type indicator" (Sabinary 2 for type X docs)
X = one byte of "don't care"
L = left margin value (one byte)
R = right margin value (one byte)
BP = back pointer of sector (two bytes)
PP = present pointer of sector (two bytes)
FP = front pointer of sector (two bytes)
```


ELAG BYAE DESCRIPTION = ERREHORD RELEASE AYO6

T - A capital 'T' in the IDOS directory designates that the file is a standard ForeWord text file (narrow). It may or may not contain a document DESCRIPTION in the IDOS area depending on whether or not it had a document DESCRIPTION in the text area. The records are compressed and are 96 characters long (in order to contain the tabs, flags, and pointers for each line). Because the information is bit oriented in a ForeWord text file it wust be considered as binary information in all use of the file while in the IDOS area, i.e. it is not ASCII data.
W - A capital ' W ' in the IDOS directory designates that the file is a wide Foreword text file. It contains a document DESCRIPTION in the IDOS area which specifies a W in the TYPE field. The records are 192 characters long (the last 32 characters contain the tabs, rlags, and pointers for each line).
x - A capital ' x ' in the IDOS directory designates that the file is an extra-wide Foreword text file. It contains a document DESCRIPTION in the IDOS area which specifies a X in the TYPE field. The records are 320 characters in length.
t - A small unshifted ' t ' in the IDOS directory designates that the file is a ForeWord Text Area. The flag byte is checked whenever a text area is ofened from a terminal to allow only contiguous text area files to be opened. Several of the statistics programs use this flag byte also to locate all the text areas.

R - A capital ' R^{\prime} in the IDOS directory designates that the file is a read only ForeWord text file. It must have a password entered in the password field and therefore cannot be altered or deleted without knowing the password. The document can be opened or copied by any terminal but cannot be altered. This allows for 'standard' paragraphs, glossaries, or fill in formats to be created for all to use but only the originator can change the document.

The following file naming conventions are generally observed in the ForeVord System - Foreword Release AY06:

1. Source Files

ST L xxx where, | L | $=$ library module |
| ---: | :--- |
| R | R |
| 0 | 0 |
| O | $=$ resident module |
| U | U |

2. Relocatable Files

where:
x indicates variable information.
3. Absolute Eldes

```
IVWORD - ForeWord System
IVOxxx - ForeWord Overlays
PRETXT - Builds Text Areas
CHKTXT - System Maintenance on Text Areas
XTXFIL - Offline utility to transfer to/from ARCHIVE
CNVRTR - Hide document CTRL/K conversion utility
ATUGEN - The ForeWord system generation program
ATUCON - Program used to configure a ForeWord system
ATUSTx - Offline statistics program
```

4. Qther files and their descriptions
```
IVBASE - Output of virtual table from LOADER
IVQUEX - Queues for use in background processing
STATS - Control file used to execute statistics programs
IVSTAT - File used to record statistics
SVSTAT - Renamed IVSTAT to turn off logging of statistics
PASTAT - File used to record document assembly statistics
WRDCON - Control file used to configure a ForeWord system
WRDGEN - The ForeHord system generation control file
TXGDF - Utility control files
TXTLIB - ForeWord Library
URDFIL - System Display File
DUMP47 - Dump file
$$IVBR - Used by BROADCAST command, created during initialization
$$IVMW - Used by BROADCAST
```


ChKtxt (text area maintenance program)

```
CHKTXT must be run on any pre-AYO6 text area to convert it to AYO6
format. CHKTXT also includes an option (X) to convert documents to an
MFE/IV environment where another application is using dual intensity
attributes. This option removes all discretionary hyphens from all
documents in the text area. This function can be performed by running
CHKTXT from a control file of the form:
    // CHKTXT
    /T=text area name,x.
    //
Do not specify other ChKTXT options when using this conversion feature.
The L option of CHKTXT provides a printed listing of all sectors
reclaimed. This information may be useful in recovering deleted
documents. CHKTXT can correct the following two types of chain-linkage
errors when the loption is specified:
    A nonzero back pointer in the first text sector or DESCRIPTION
    sector of a document.
    zero values in the first-sector and last-sector pointers in the
    directory entry for a document.
The MFE/IV control file required to correct these types of errors is:
    // CHKTXT
    /T=(name),L.
    //
```

The SE mode of CHXTXT is active whenever any options other than the /T
(text area) options are specified. The $S E$ mode allows additional
commands that may be useful in recovering damaged documents. CHKTXT
must be run from a control file. To run CHKTXT while MFE/IV is
running, proceed as follows:
a. Exit from Foreword to MFE/IV (press CTRL CURSOR RETURN).
b. Key in // (filename) and press CURSOR RETURN. (filename) must be
the name of a control file containing the parameters desired. The
options for CHKTXT are as follows:
$/ /$ CHKTXT
/T=NAME OF THE TEXT AREA TO BE CHECRED.
/X DELETE DISCRETIONARY HYPHENS FROM ALL DOCUMENTS CHECKED TO MARE
THEM COMPATIBLE WITH DUAL INTENSITY MFE/IV SYSTEMS.
/A TO CAUSE ALL SECTORS TO BE SCANNED IN THE EVENT OF AN ERROR INSTEAI
OF JUST THE ALLOCATED SECTORS.
/S TO CAUSE CHRTXT TO SUPPRESS SCAN IN THE EVENT OF AN ERROR. NO
ATTEMPT WILL BE MADE TO CORRECT THE ERROR.
/L TO CAUSE CHKTXT TO PRINT A LISTING OF ALL RECLAIMED SECTOR
ADDRESSES ON THE PRINTER.
$1 /$

CHKTXT $=$ CONTINUED

IAKINC A DUMP = EOREHORD RELEASE AYOG
A. Insure the words 'CKPT TAKEN' are not already on screen of the system. This indicates that ForeWord detected an error and automatically took a CKPT. In this case all that is required is to print or copy the CKPT file.
B. If the words do not appear proceed with the dump of memory.
C. Ensure the disc pack in drive zero is mounted and ready.
D. Set the AUTO/MANUAL switeh to MANUAL.
E. Press SYSTEM RESET switch.
F. Press STEP switch.
G. Set console keys to 71100001 .
H. Press LOAD switch.
I. Set AUTO/MANUAL switch to AUTO (this will cause a HALT).
J. Move AUTO/MANUAL switch to MANUAL, then back to AUTO (this will clear the HALT).
K. Register $X 3$ will be zero after successful dump.

EORYORD PORMATIED DUMP = POREHORD RELEASE AY06

```
This program prints the IVWORD checkpoint file in a format convenient
for debugging. You can choose to dump the load map only, the user
tables only, memory only, or any combination of these. Use the
follawing JCL to:
    Dump. the load map only: // WDMP
        /P
        //
    Dump the user table only: // WDMP
        /U
        //
    Dump memory only: // WDMP
        /M
        //
    Dump all: // WDMP
        //
```

The above JCL uses file names CKPT, IVBASE, and RTRUSR for the
checkpoint, loader save, and user symbol table files. To use some
other file names, include the following in the JCL:
$/ I=$ (checkpoint. file name)e(drive)
$/ B=(l o a d e r$ file name) e(drive)
/R=(user tabie symbols file name)e(drive)
$/ J=(j \circ b n a m e)$
The /J option is used when ForeWord is started with the ASSIGN
command.

MEMORY LAYOUT
(Logical layout for extended memory systems) (Physical layout for non-extended memory systems)

[^3]MEMORY LAYOUT
(Physical layout for extended memory systems)

(EXTENDED MEMORY)

ACTIVE JOB DIRECTORY IN RAM

```
JOBRAM
JOBDES,X1 In user table - points to specific JOBRAM entry
```

$+0$$+1$	Length of entry (words)	
	Jobname	(9 ASCII characters)
+2	left adju	d - blank fill
+3	8	2 14
+4	Length of batch directory entry	0 DIsc sector address of job directory entry
+5	Count of acti	terminals $0=$ none
+6	0	Points to Format entry in active Format/Value set Directory in RAM, one entry for each format
$+6+\mathrm{NFOR}$	0	Points to Value Set entry in active Format/Value set Directory in RAM, one for each value set
+63	1	Pointer to next system block ($0=$ last block)

Always in Zones 0 to 3

NFOR is number of Formats in job anc located in User Table

NVAL, (in the
User Table), is
the number of Value Sets in job

Last word
in block

Length is $6+$ NFOR + NVAL : minimum $=7$; maximum $=36$. Therefore, 1-9 entries in block.

If active terminal count is not zero, job cannot be deleted.

When count is $=0$, entry can be deleted. However, deletion will wait until system block would overflow with the addition of another job.

Unused words are all binary zero. When length $=0$, the next word >0 is a valid length.

ACTIVE FORMAT/VALUE SET DIRECTORY IN RAM

Value Set Entry (one for each active value

Value Set entry (when it is in a dedicated miniblock)

63rd Word (64 th word not used)
$001 \leq$ ABC ≤ 999 three ASCII digits of format name
$001 \leq$ DEF ≤ 999 three ASCII digits of value set name

Entries are created when the job directory entry in RAM is built. Several may share entries. A format entry is needed for each sector of format code Four pages can reside in each sector. The "1st page number" will count as $0,4,8,12$, etc., for each format and may appear in any random order in the directory.

Unused entries are deleted when the system block would overflow. Entries are on an even boundary. An empty entry is represented by binary zeroes.

PAGDIR Pointer to first four word entry of directory. FORPTR,X1 In User Table; points to time word

$\longrightarrow 0$		Link pointer to next 4 word entry
$\longrightarrow 1$	A	B C
+2	$0 \leq$ page $\quad \leq 511$	address of system block (PSB)
+3		Time last referenced

An entry for each page of format code. Binary zeros for the name $=$ no entry.

NOTE: The page directory consists of a linked list of micro blocks; one micro block for each page in memory. The list is kept in sequence by format and page number.
+0 Pointer is zero if there are no more entries in PAGDIR.
$+1 A B C$ is the format name in ASCII: 001 to 999.
+2 PSB: non-zero $=$ address of system block containing page of code zero $=$ entry is a page-in request (no block assignment)
+3 Time: non-zero $=$ time this page was last referenced $=t-86400$ where t is seconds since midnight
zero = page-in request (same as $\mathrm{PSB}=0$)
$A B C$ is the format name in ASCII: 001 to 999.

Up to 21 entries per system block.

IXRRAM

Displ.	Use
0	ASCII INDSET number (with bit 8 set) or zero
1	Sector address of the highest index level.
2	Bits $0-11$ Starting column number of the key field in the data batch records. Bits 12-23 Key length in bytes.
3-4	"Who-is-using" bits. Bits 0-23 of word 3 followed by bits $0-7$ of word 4 correspond, in that order, to the 32 possible terminals. For example, bit 1 of word 4 corresponds to terminal 25. If a "using" bit is on, the terminal it corresponds to has a record selected in the INDSET given by word 0 . Words 5 and 6 specify which record. More than one "using" bit can be on, meaning more than one terminal has the record selected. A terminal may have the record selected, but it might be in a waiting state (with the "WAITING FOR TERM.XXX TO RELEASE INDSET iii" message on his screen) if another terminal currently has exclusive access to the record (see word 7).
5	If any bit in words $3-4$ is on, this word has the sector address of the sector containing the selected record.
6	If any bit in words $3-4$ is on, this word has the displacement in the sector of the first (header) word of the selected record.
7	User table address of exclusive accessing terminal, or zero if no terminal has exclusive access. When non-zero, the corresponding "using" bit will also be on.

USER TABLE SKELETON DEFINITION

USERTB	EQU	01401
KSCUR	EQU	1
KSRES	EQU	2
SCR	EQU	3
FWA	EQU	4
SLWA	EQU	5
PSR.OT	EQU	6
DEST	EQU	7
SCOL	EQU	010
WPO	EQU	011
MODE	EQU	012
OPPTR	EQU	013
JOBDES	EQU	014
FORPTR	EQU	015
FSROT	EQU	016
FDEST	EQU	017
REQ8	EQU	020
RECLOCC	EQU	021
WIDTH	EQU	022
MODPTR	EQU	023
LCR	EQU	024
ACCP1	EQU	025
ACCP2	EQU	026
ACCP3	EQU	027
ACCP4	EQU	030
ACCPS	EQU	031
ACCP6	EQU	032
NFOR	EQU	033
NVAL	EQU	034
MFWA	EQU	035
MSIZE	EQU	036
MSIZEB	EQU	037
KBTYPE	EQU	040
LASTKS	EQU	041
TVUSER	EQU	042
TERMN	EQU	043
BATCHN	EQU	044
BACHN1	EQU	045
BINDOC	EQU	046
TERMAS	EQU	047
BATCH	EQU	050
LINKBS	EQU	051
BINAVPTR	EQU	062
BINREC	EQU	052
MAXREC	EQU	053
NEXTUR	EQU	054
STATS	EQU	055
STATS1	EQU	056
STATS2	EQU	057
ALARM	EQU	060

IO in PUSER table points here.

Current position in KS queue.
FWA of keystroke queue (UT ADDR + 0140).
Execute to place characters on screen.
First word of screen.
Last word + 1 of screen.
Cursor SCR first operand.
Cursor SCR second operand.
Cursor col id $=$ - number of columns from right end.
Current fields governing ATTR during WGT call.
24 flags. (Defined later).
Pointer to operator directory.
Pointer to job descriptor table.
Pointer to current format.
(Pair) pointer to start of current. field.
First word of current field.
Request for LEVEL 8.
Location of current REC in sector.

- (Width of field).

Pointer to in-front modifier.
Execute to get character from old record in key verify, LCR $=$ SEC ADR for previous REC
Pointer to first four accumulators. 0-3.
4-7.
8-11.
12-15.
16-19.
20-23.
Number of formats.
Number of value sets.
Printer to message line, BITO=1: lines are off screen.

- Size of screen including dead areas.
- Size in bytes.

Keyboard descriptor word from CONFIG.
Last three keystrokes.
Trail verify user pointer
Terminal Index 0-31.
ASCII batch ID - 6 characters - even boundry.
Continued.
Binary document no.
Terminal index in ASCII, blank fill.
Address in batch directory.
Return address from LINKVS.
Binary record number.
Largest binary record number.
Unconditional keystroke return address.
Operator statistics table.
Second word of operator statistics table.
Third word of operator statistics table.
Binary column counter.
Audible alarm flag.
Save pointer for backspacing.
Mode extension $f 1$ ag word. (Defined later).

USER TABLE SKELETON DEFINITION $=$ CONTINUED			
BLOCK 7	EQU	064	Terminal block word. (Defined later)
VRECB	EQU	065	Pointer to verify record buffer. (Defined later).
RECHDR	EQU	066	Current record header.
RECSIZ	EQU	067	Record size.
SECTOR	EQU	070	Current sector number
NEXTCR	EQU	071	Return word from BRM NEXTC.
COLUMN	EQU	072	Pointer to column count on screen.
ECODE	EQU	073	Error code. (Defined later).
FX2	EQU	074	$\mathrm{X}_{2}=$ Location in format (via BAL)
FX3	EQU	075	$\mathrm{X}_{3}=$ - (columns remaining in field).
VLROT	EQU	076	LCR pointer for verify.
VDEST	EQU	077	
*	PZE	0	0100, lost keystroke routine from IOID + 040.
*	BRM	KEYL	0101
*	BRD	\$-2	0102
QUE8RA	EQU	0103	Terminal restart address when overlay completed.
WPA	EQU	0104	Extra LCR/SCR word pair.
WPA 1	EQU	WPA + 1	
WPB	EQU	0106	Extra LCR/SCR word pair.
WPB 1	EQU	WPB+1	
WPC	EQU	0110	Extra word pair for scratch.
WPC 1	EQU	WPC+1	
WPD	EQU	0112	Scratch word pair.
WPD 1	EQU	WPD+1	
DQSLOT	EQU	0114	Current position in disc queue.
OV36BL	EQU	0115	Multi-mode block address.
FMTST1	EQU	0116	First 24 bits of format backspacing stack.
FMTST2	EQU	0117	Second 24 bits of format backspacing stack.
MAXDOC	EQU	0120	Largest binary document no.
MODE 3	EQU	0121	24 single bit flags. (Defined later).
LASSEC	EQU	0122	Last sector in chain.
ebuF	EQU	0123	Pointer to format workspace.
eave	EQU	0124	Pointer to user's file access table pointers.
CURC	EQU	0125	Counts Level 4 until cursor change needed.
RS	EQU	0126	Digits to right of DEC point LZERO FIELD.
SCPBAD	EQU	0127	Used by screen print.
KV	EQU	0130	Byte $0=$ SCRAM CHAR, 9-23 = RECLOC for prev. REC.
MODE 2	EQU	0131	More single bit flags, like 'MODE'. (Defined later).
CURSES	EQU	0132	Three cursor characters (depends on field intensity).
STATS 3	EQU	0133	Fourth word of operator statistics table.
e AT	EQU	0134	PTR to word containing current field ATTR. (Defined later).
ATMASK	EQU	0135	Mask for MDT in current ATTR (see description above).
MAXCOL	EQU	0136	Highest BINCOL so far in format.
SX3	EQU	0137	Save word used by -5C.
	Keys	ke Queue	From 0140 through 0167
CUR	EQU	0170	Off screen copy of blinking word.
F1GAE	EQU	0171	PTR to field one physical governing ATTR.
MBLOCK	EQU	0172	PTR to message line system block. BITO $=1$: Lines are in home position.
COMM	EQU	0173	Communications word. (Defined later).
L7SVX2	EQU	0174	Save X2 during level 7 interrupts.
L7SVX3	EQU	0175	Save X3 during level 7 interrupts.
e SCB	EQU	0176	MSFP pointer to this terminal's submonitor.
MAPWRD	EQU	0177	Extended memory map word.

***	MODE3	
*	0-5	Reserved.
*	6	Noup Record up and document up not allowed.
*	7-18	Reserved.
*		
*	19	$1=$ Doc KV \#2 (set in doc key-verify initiation,
		in overlay 38 entry 6). This bit remains on
*		during the doc key-verifying. It is turned off when new record is hit and the system reverts back to entry mode.
*		
*	20	$1=$ Doc KV \#1 (set by KVDOC command in format). This bit remember $=$
*		that a KVDOC was executed. At NXTREC, if this bit is on then
*		the document key-verify operations are initiated by calling over-
*		lay 38 entry 6. The overlay clears this bit.
*	21	Reserved.
,	22	$1=0 u t-o f$-balance (set at SREC in key ver)
		This is what the OUTBAL Test tests in the format.
*	23	1 = Batch has marked DOC (set by mark command in format)
***	MODEXT	
*	0	Unconditional release in process.
*	1	Mode key.
,	2	Record up.
*	3	Record delete.
*	4	Record insert.
*	5	Home key.
*	6	Entry mode bringup.
*	7	Doc up (always ignore search-active).
,	8	Doc down (always ignore search-active).
*	9	Immediate-next-record (ignores any search-arg)
*	10	This-record (i.e., No alteration of sector, RECLOC)
*	11	Record down.
*	12	PROG key.
+	13	Do-not-update BINREC/BINDOC (Used in conjuction with bits 6,10
*	14	and maybe others.) clear key.
*		
	15-23 Re	served.
***	ECODE	***
*	0	$1=$ Flashing a message, $0=$ not flashing a message.
*	1	Flash state: $1=$ message is up, $0=$ blank line is up.
,	2	
	3	
*	4	
*	5	
*	6	
*	7	
*	8	=1: message is in keystroke queue, $=0$: message not yet in queue
	9-23	$=$ message number if message is not yet in queue.
*		$=$ message length if message is already in the queue
*	ECODE	$=0$ means no message action whatsoever.
*		< 0 means flashing a message.
*		> 0 means steady state message.
***	VRECB	
*	0	Record correction (PROG or REC INS).
*	1	Field correction (shift field forward).
*	2	Column correction (shift CORR/RESET).
	3-23	Reserved.

ZONE POINTER TABLE

The Zone Pointer Table contains all of the information necessary to control allocation, deallocation, reading, and writing of zone sectors. It is built at initialization by the subroutine OPENDB. There is one entry in the table for each possible zone beginning with zone 000. The table is variable length and is only as large as is necessary to accommmodate the highest numbered zone defined. Undefined zones within the range of the table are represented by entries of all zeros.

The resident word eZONPT contains the address of the first word of the Zone Pointer Table. The resident word LASTZN contains the largest zone number defined.

EZONPT pointer to first word of table


```
F: 0 = sectors are available in this zone
    1= this zone is 100% full
I: }\quad0=\mathrm{ allocation permitted
    1 = allocation inhibited, zone is protected.
D: 4-bit IDOS logical drive number of zone (0 - 11)
A: Number of sectors available for allocation in this zone (12 bits)
T: Total number of sectors in this zone (12 bits)
```


ZONE LAYOUT

[^4]
*1 Directories, format object code, and value sets may be in zones 0-3 only.

SECTOR STRUCTURE

The VISION database has its own internal structure separating it into many smaller "files" such as Job Directory, Batch Directories, batches of data, etc. It has its own allocation table, and allocation and deallocation routines in VISION keep track of the database in a chained structure. This is handled through a standard 4-word header in each sector. This header also identifies the type of information stored in that sector. The only exceptions to this standard header are the Overlay object code sectors, which have no header words, and the Allocation sectors which have only a Here pointer. The standard 4 word header is as follows:

Word 0:zZzzzZZZSSSSSSSSSSSSS

> 2....SS Forward pointer indicating the relative sector address of the next sector in this chain. Zeros indicate the last sector of the chain.

Word 1:zzzzzzzzssSSSSSSSSSS

$$
\begin{array}{ll}
\text { 2....S } \quad \text { Backward pointer indicating the relative sector address } \\
& \text { of the previous sector in this chain. Zeros indicate } \\
\text { the first sector of the chain. }
\end{array}
$$

Word 2:zZZZZZZZSSSSSSSSSSSS

$$
\begin{aligned}
& \text { z....S } \begin{array}{l}
\text { Here pointer indicating the sector's own relative sector } \\
\text { address. }
\end{array}
\end{aligned}
$$

Word 3: CCCC*DISP*ZZSSSSSSSSSSSS

	Code word. If this sector is a format/value/index set sector this word contains the name of the format or value set or index set.
CCCC	4-bit code for sector type: 0000 - Master Directory (remainder of code word also zero)
	0100 - Job Directory 0010 - Batch Directory
	0101 - Maintenance Sector (or OID)
	0110 - Format/Value-Set Directory
	0011 - format/value-set/index set object code (by nature of the name)
	1000 - data sector which is not full)(remainder of code 0000 - data sector which is full $\}$ word non-zero)
DISP	The six most significant bits of the displacement into the Job Directory sector (for Batch Directory sectors) or Batch Directory sector (for data sectors) of the entry to which this chain belongs. These bits are zero for all but Batch Directory and data sectors.
2....s	The zone and sector address of the entry described under *DISP*. These bits are zero for all but Batch Directory and data sectors.

ALLOCATION SECTOR

his sector is always relative sector 0001 in every zone. Note that the first 16 sectors (0000-0017) of a zone are not allocated by VISION. The relative sector 000 of zone 000 cannot be used, since the here pointer would be zero.

*1: Each time VISION is brought up this sequence numebr is checked to be identical in all DATzzz files. If they don't match, an incomplete restore may have occurred and MAINT must be run to set them all equal. If they all match, then they are all bumped by one. They will recycle to 0 .
*2: 251 word allocation table for this zone. Bits 8 to 23 of each word represent 020 sectors of a zone. Zero bits indicate sectors in use or not assigned to the zone. One bits indicate sectors available for allocation.

* A 16 word table maintained by ZONEMA. Bits 8 to 23 of each word repregprt. 020 possible zones. One bits indicate defined zones. Zero bits indic| $\|$. undefined zones.

* 1 KB: $0=$ Source, $i=029$

AUD: $0=$ No Audible Alarm
32 Words - One for each possible keyboard device
*2 VISION P2L2P Table
Byte 0: Reserved
Byte 1: Maps devices to screens (index into with device no.)
Byte 2: Maps screens to devices (index into with screen no.)
*3 If screens ≤ 10; buffers recommended $=$ of screens. Min. is 6 .
If \#screens >10; buffers recommended $=$ \# of screens $/ 2+2$. Min. is

ADDITONAL FOOTNOTES FOR THE CONFIG SECTOR FOLLON ON NEXT PAGE

* 4 CONFIG (SYSFIG)

Video: EXTMEM:	$0=48,1=81$ $0=$ None, $1=$ Extended memory (IV/90 Model 2)
CH :	$0=$ No channel
LAMLOG:	$0=$ No memory log
CR :	$0=$ No card reader
PR :	$0=\mathrm{No}$ printer
MAG:	$0=9-t r a c k, 1=7-t r a c k$
DEN:	$0=$ Low, 1=high
SOR:	$0=$ No shift override of field type, $1=a l l o w ~ s h i f t ~ o v e r r i d e ~$
CCB:	0 Not concurrent Bisync, 1=concurrent.
DOCS:	$0=$ Count records, $1=$ count documents.
BEEPER:	$0=$ One beep per error, $1=0$ ene beep per keystroke after error
CCODE:	$0=$ EBCDIC, $1=A S C I I$
LAM2:	$1=\mathrm{Yes}, 0=$ no.
DUMP TYPE	$0=8230,1=8240,2=8260,3=T$ ape

*5 CNFIG1 (SYSFG1)
RECPRT: $\quad 0=$ No 12 channel printer for received data (Bisync)
ERP: $\quad 0=$ Extended error recovery
FIND: $\quad 0=D 0$ not count find mode statistics
$1=$ Count find mode statistics
REVFRY: $\quad 0=$ Field reverification, $1=$ not.
CFPROP: $\quad 0=V I S I O N$ print spooling, $1=B i s y n c$ direct print.
BATCH: $\quad 0=$ Do not keep detail operators statistics by batch, $1=d o$.
Tape Buffer Size: Number of sectors for tape buffer (maximum is 6).
*6 LEV78B, PAGSEC, etc. - Set by \$SETPP Supervisory Command.
*7 CNFIG4 - Used by VISION.

* 8 CNFIG5 - Used by VISION.

LC: $\quad 1=$ Lower case in default 3270 mode.
*9 PRSTAT
Bit 0: Reserved
Bit 1: $\quad 0=N o l o g$ file, $1=10 g$ file exists.
Bit 2: $\quad 0=$ No printer, $1=$ printer.
Bit 4: Reserved.
Bit 5: Clear request.
Bits 6-18: Reserved.
Bit 19: $\quad 1=$ Log $C-$ Type messages.
Bit 20: $\quad 1=$ Log B-Type messages.
Bit 21: $\quad 1=$ Screen print turned on in log.
Bit 22: $\quad 1=\operatorname{Print} C$-Type messages.
Bit 23: $\quad 1=$ Print B-Type messages.
*10 8121 Printer Specification Word:
Bit 0: $\quad 1=$ Pica; $0=$ Elite.
Byte 0: \quad Number of printed lines per page - 1.
Byte 1: Number of increments to advance each line.
Byte 2: Total number of lines per page.

An entry in the job directory cannot be moved once defined. All entries are even length.
*1
S $\quad=$ Job has been "selected" by \$SELECT command $0 \quad=$ Batches have been ordered for transfer by \$ORDER comm and
B $\quad=$ BUSY - Job is temporarily unavailable due to
D $\quad=$ Double Accumulators are defined for this job
$X \quad=$ Mode $X-T$ enabled for this job (\$XTSET)
*2 NFOR = Number of formats defined for this job (4 bits). Range: 1-15. Same value as NFOR in User Table.
NVAL = Number of Value Sets defined for this job
(4 bits). Range: $0-15$. Same value as NVAL in User Table.
NACCP $=$ Highest accumulator number defined for this job. (5 bits). Range: 0-23.
$\mathrm{v}=\mathrm{Special}$ user use (1 bit).
SIZE = Record size for fixed length records (10 bits). $0=$ variable length records.
*3 MAXSIZ = maximum record size permitted under variable length records (10 bits).

Program MAINT will clear the BUSY flag and delete the Batch Index.

Minimum entry $=14$ words if no accumulators
Maximum size $=106$ words if 23 accumulators
All entries are fixed size for each job
A maximum of 18 entries per sector (no
accumulators)

* 1 - $0=$ no entry (Purged or never existed)
*2 $-0=$ empty batch (no records)
*3-0 $=$ no documents (no \$DOCHDR records)
\#4 - Always negative
*5 - If the whole word is 0 , the address is assumed to be unknown.
* $6-L=1$ for last operation on batch, else $\mathrm{L}=0$
*7 - For ordered job, points to next batch in order chain. $H=1$ for head, $C=1$, part of order chain, $W=$ used during \$ORDER. (Offset is always even, so low order zero is dropped.) Set $=0$ when batch created.
* 8 - Accumulators are set to ASCII zeros when the batch is created.

DATA SECTORS

Sector trailer (1 word) when code word is negative:

* Special flag in bit 0 of Code word:
$0=$ sector is full; $N=0400$ is implied
$1=$ sector is not full; word 0377 has N of 004-377
*2 Record header word:
NW: \# of words in entry (2-251)
F: \# of trailer bytes (1-3). Record size in bytes $=(N W-1) * 3-F$.
P: Program level changed in record
v : Validation override used
Q: Unintelligible key used
KV: Has been key verified
DKV: Has been document-key verified
CR: Has been altered since entry
DOC: This record starts a new document
MRK: This document has been "marked"
PL: Program level 0 to 14
*3 Sector trailer word (only present if bit 0 of code word is 1):
N: Number of words being used in this sector (004-377).
Also is relative address in sector where unused area begins.
_ Algorithm for \# of records in a sector:
Total sector length $=256 \times 3=768$
$\begin{aligned} & \text { Sector Header } \\ & \text { Available for data }\end{aligned}=\frac{4}{252} \times 3=\frac{12}{756}$
\# of characters in record +1 (for trailing $N W$) rounded up to next multiple of 3 then add 3 (record header) and divide into 756.

NOTE: On jobs with variable length records, the record mix will have to be considered. The system will try to fit each record into the current sector.

MAINTENANCE SECTOR

If day number $=$ binary zero, no entry
*1 One 3 word entry for each loading of VISION. The most recent is first. If end time=0, (S must $=0$); end time is set from time in Master sector. The stack is pushed down and a new entry is built.

To clear "MAINT flag" to bring up VISION after a crash without running MAINT:

Set word +0212 to a non-zero value

BATCH INDEX

FORMAT/VALUE SET DIRECTORY (on Disc)

FOOTNOTES FOLLOW ON NEXT PAGE

```
ABC is the 3-digit ASCII name of the format, Index Set, Ftype, or Forms.
    Value Set: 000 < ABC < 999
        bit 16 = 1 (Value Set)
        bit 8 = 1 (Index Set)
        bit 8& 16 = 1 (Ftype)
        bit 0=1 (Forms)
```

Formats, Value Sets, Index Sets, Ftypes, Forms, and empty entries can be intermixed in any order,

* 1 - 3 word entry for format ABC

SD: $0=$ single accumulator width, $1=$ double precision accumulators
G: $0=0$ id style formats, $1=n e w$ sytle formats
Screen Code: 0: Quarter screen, 1: Half, 2: Full, 3: Double
Screen code includes the message line. These are the minimum screen sizes for format.
*2 - 3 word entry for Value Set ABC
*3-3 word entry for Index Set ABC
*4-3 word entry for Ftype $A B C$
*5-3 word entry for Forms ABC
$\mathrm{L}=$ Lock bit. Forms cannot be deleted when this is on.
*6-3 word empty entry

84 entries per sector. The first word of each entry must contain a valid value.

	Standard 4 word header -- fourth word is format name in ASCII
+4	Four 63 word pages of compiled calling sequences. page 0
+0103	\therefore page 1
+0202	page 2
+0302	page 3

Notes:
The code word is actually the ASCII format name. By the nature of ASCII code, this yields a code word with bits $0-3=0011$.

Compiled calling sequences may not be split across pages. Therefore, several NOP instructions (06700000) may appear at the end of a page.

The last sector of the format may not be full, i.e., it may contain less than four pages. The remainder of the sector is garbage.

	Standard 4 word header $\overline{\text { V }}$ fourth word is Value Set name in ASCII
+4	Time Value Set was complied
+5	Day Value Set was complied
$\begin{aligned} & +6 \\ & \text { thru } \\ & +0377 \end{aligned}$	String of Value Set entries

Notes:
The code word is actually the ASCII Value Set name. By the nature of ASCII code, this yields a code word with bits $0-3=0011$.

Each Value Set entry is 1 to 250 words long, the length being defined in the Format-Value Set Directory entry.

Each entry is a string of ASCII characters, starting on a word boundary, left justified with garbage fill. Entries may not span across sector boundaries.

Unused words at the end of a sector are filled with binary zeros. Unused words at the end of the last sector of the Value Set are filled with 03777777 .

INDEX SECTOR

* 1 Index level sectors are built by having an index entry for each sector in the data batch. The highest index level must be 3 sectors or less. Index levels will continue to be built from the data batch until a level with 3 or less sectors is reached. Each index level differs from the first only in that the sector address points to a sector in the preceeding index level.
* $2 L=1$ if this is the last entry. The index entry length in words is (KEYLENGTH - 1) +2

The key value is that of the last (highest) record in the sector.

Note that records cannot be inserted into an index beyond the highest key in the last sector.

The entries have different formats depending on the type of file described, mag tape, sequential disc, etc. Each disc entry has some common information.

Common information:

+0	File type $-0=M T, 1=S D, 2=I X, 3=P R, 4=C R$
+1	Creator's Operator I.D. in ASCII
+2	Creation time
+3	Creation date
+4	Creator's terminal number
+5	Use depends on FTYPE \quad (see below)

* 1

Magnetic tape files:

+5	Record in bytes, Binary
+6	Number of records per block
+7	$0=9$ track, $1=7$ track, $<0=$ Use CONFIG value
+10	$0=$ Low density, $1=$ High density, $<0=$ Use CONFIG value
+12	$0=$ EBCDIC, $1=$ ASCII, $<0=$ Use CONFIG value

Sequential disc files:

+5	1st word of job name in ASCII
+6	2nd word of job name in ASCII
+4	3rd word of job name in ASCII
+10	1st word of batch name in ASCII
+12	2nd word of batch name in ASCII

* $\mathrm{A}=0$: Will be specified at open time <0: Will follow order chains

Index sets:

Printer files:

Card reader files:

+5	Card width in columns in Binary
+6	EOF mark, 3 ASCII characters
+7	Not used
+12	

* 1 Bit 0 on means use PICA spacing

File access information is kept in the File Access Table, (FAT). Every file which is open has a File Access Table which contains information about that opening e.g., current record number, record buffer location, etc.

USER TABLE
ACCESS TABLE FATS

FILE ACCESS TABLE

+0	File number, ASCII, with parity bit code
+1	File type code binary
+2	Status flags
+3	Current record length, bytes, Binary
$+4$	Maximum record length, bytes, Binary
+5	Record number, Binary
+6	Record program level, Binary
+7	Pointer to record buffer and length code
$\begin{array}{r} +10 \\ \operatorname{thr} u \\ +17 \end{array}$	Use depends on file type

*1 - See FVS Directory parity bits.
*2 - See File Access Data Structures on Disc.
*3 - Status Flags:
Bit $0=1$: Opened for output. Bit 1=1: Opened for input.
Bit 2=1: EOF.
Bit 3=1: EOB.
Bit 4=1: BOF.
Bit 5=1: BOB.
Bit 6=1: Variable length records.
(RECSEL) Bit 7=0: Record not selected.
$\begin{aligned} & =1 \text { : Record selected. }\end{aligned}$
Bit 8-23 Not assigned.
*4 See following pages.

* 4 INDEX SETS

* 4 printer

PFBFNO	```Forms number: =0: No forms >0: Forms with channel definitions <0: Forms with no channel definitions```
PFBHED	Pointer to the forms sector address where the heading may be found. (Will be zero if no heading)
	Reserved
	Reserved
PFBL 1 R	Return address for level 1 routines
PFBL 2 R	Return address for level 2 routines
PFBL 3R	Return address for level 3 routines
PFBCNO	Channel number or channel bit or scratch word
PFBLNE	Current line number for this page
PFBCLN	Current line number for entire document, incremented for every write command except when $C R$ is specified.
PFBMLN	Maximum number of printed Iines per page
PFBPNO	Current page number
PFBPSW	The original 8121 printer specification word
PFBCMT	Channel number mask table Bit 12 is on if channel 12 is defined, Bit 13 is on if channel 13 is defined, Bit' 23 is on if channel 23 is defined. (zero if no channel definitions)
PFBEND	$\begin{array}{cccc}\text { The LWA }+1 \\ & \begin{array}{c}\text { of the } \\ 8\end{array} & 15 & 16\end{array}$
PFBFED	FF Channel LF Channel number (Zero when not defined
PFBCIN	Pointer into the channel definition table
PFBCDT	Channel definition table (Max imum of 48 words)

* 4

CARD READER

MAGNETIC TAPE

${ }^{*} \mathrm{C}$		TAPE RESOURCE USAGE FLAGS
*	BIT	FUNCTION
*	0-3	Tape deck number relative to controller Bit $0=$ Deck 0, Bit $1=$ Deck 1, etc.
*		
*	4-5	Controller type
*	00	7 Track
*	01	800 BPI
*	10	1600 BPI
*		
*	6	User is a tape translate table user.
*	7-13	Reserved
*	14-17	Block buffer size (TBUF points to it)
*	1000	01000 word block buffer
*	0100	00400 word block buffer
*	0001	00100 word block buffer
*	0000	No block buffer
*		
*	18-19	Record buffer size (TRECE points to it)
*	10 01	0400 word record buffer 0100 word record buffer
*	00	No record buffer or is in block buffer

Pending disc requests are kept in two queues: DISCQ1 and DISCQ2. Completed requests are kept in the buffer pool, BFRLST. All queues are linked lists of 4 word blocks:

DISCQ1 is the list of priority one requests; reads and non-standards requests.
DISCQ2 is the list of priority two requests; writes.
BFRLST is the list of sector buffers currently in the pool.


```
Word 1:
    Q = 1 disc I/O request pending, O=request complete
    N = 1 non-standard request (see below)
    A = 1 repeat the write request (a 2nd PUTREL/PUTHLD
        initiated before first PUTREL complete)
    R = 1 multiple read requests exist for this sector
S = Submonitor restart flag. 0 = Restart submonitor, 1 = Don't restart.
E = Unrecoverable I/0 error. This bit may be set because of
        a reject (invalid sector address, etc.) or because of 8
        unsuccessful retries on a disc I/O error. With this bit
        set, PRODSC will cause the error return to be taken on the
        initiating GETSEC, PUTHLD, etc.
    RC = After 8 retries are counted, this 3 bit counter will over-
        flow setting the error bit (bit 5).
```

Word 2:
$\mathrm{W}=1$ write request, $0=$ read request
Word 3: $H=1$ word is User Table address of PROKS caller
$=0$ word is address of Submonitor Control Block of level 8 caller

* 1 Word 2 and the buffer pointer may have 3 different forms, depending on the type of request.

For standard read and write requests:

For non-standard requests, there are two formats. The first is for an overlay load:

| 0 | 1 | 2 | 8 | | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | rits
 reserved | number of
 sectors -1 | relative starting sector address
 of overlay in zone 000 | |

FOOTNOTES FOR DISC SECTOR POOL

The second is for single sector absolute sector I/O (TRAN50)

BFRLST NODES

Word 0	Pointer to next 4 word entry. 0
Word 1	Not used Pointer to "here" in disc buffer
Word 2	Time of last operation (T-86400)
Word 3	Pointer to user

*1 "Here pointer":
0: No sector buffer.
<>0: pointer to "here" word in sector.
Here* : If 0 then sector buffer is empty.
*2 Pointer to user:
0: No current user - sector is free.
>0: Pointer to submonitor control block.
<0: Pointer to user table + high order bits. (This case is legitimate only when a request has been processed and the terminal has not yet been restarted).

The 1 to 5 sectors are contiguous

Word

OVERLAYS

Overlays are programs cataloged in the DATOOO file of disc drive 0 that load and execute in the overlay area of RAM. They perform infrequently requested functions (TOTAL key, REC-UP, screen print, new mode, etc.) and, because there is only one overlay area for all terminals to share, they are designed to execute rather quickiy. An overlay can be called in several ways:

1. From the resident (TOTAL key, etc.).
2. From another overlay.
3. From a transfer program.

Overlays, regardless of how they are called, are initiated and terminated by the main Overlay Submonitor logic in S96-80. The Overlay Submonitor spends most of it's time waiting for overlay requests, which can be classified as priority overlay requests or terminal overlay requests.

Priority Overlay Requests

A request for a priority overlay is indicated by setting a single-word switch non-zero. There are three priority overlay request words:

FMOREQ When non-zero, indicates a request for overlay 21 entry 1 to set up a system flashing message. FMOREQ is set by level 4 when a system message number is found in ECODE of a terminal's User Table.

PDOREQ When non-zero, indicates a request for overlay 17 entry 1 to perform PAGDIR reorganization and Master and Maintainance Sector re-writes. PDOREQ is set by level 4 once every minute.
: REQ8L When non-zero, it is a pointer to a list of overlay requests which are not associated with any terminal. This is used by the Communications Submonitor to request its overlays and by the Allocation Submonitor to request the overlay to do deallocation.

Terminal Overlay Requests

A request for a terminal overlay is indicated by storing an overlay request word in REQ8 in the terminal's User Table and incrementing the resident word OVRREQ (count of terminal overlay reqests). The format of an overlay request word is:

Q:	$0=$ queue keystrokes during overlay execution
X:	$1=$ toss keystrokes during overlay execution

Level 8 processing is controlled by a multi-tasking monitor that supervises execution of several tasks. These tasks, called submonitors, are each controlled by an 8 word Submonitor Control Block (SCB). The OVERLAY, PRINT, and ALLOCATION submonitor control blocks are always present. The DYNAMO, TRANSFER, and Terminal MSFP program submonitor control blocks, however, are dynamically built and linked to the other three SCBs when a call is made for that function controlled by the submonitor (i.e., when DEBUG or a transfer program is running). The SCB is removed from the linked list when the function is complete.

* 1 States: 0 - waiting for CPU

1 - running
2 - idle
3 - waiting for external restart
4 - waiting to call (not currently used)
5 - waiting to start disc I/O
6 - disc I/O complete
7 - waiting for PRINT submonitor

* 2 Displ. 4 word used:

4 - address of submonitor being called
5 - sector address
6 - disc queue entry address of non-standard disc request

* 3

Submonitor Name
0
p
P
P
A
D
T
(?)

Title
Overlay Submonitor
Print Submonitor Alloc/Dealloc Submonitor Dynamo Submonitor Transfer Submonitor MSFP User - one character ASCII representation of the binary terminal \#

DUMP PROCEDURE

AUTO to MANUAL.
2. RESET then STEP.
3. LOAD into TIR - 71100001
. MANUAL to AUTO then to MANUAL.
a. Tape Dump

1. Mount a scratch tape.
2. MANUAL to AUTO

The system will dump records 1024 words long (06000 bytes).
b. Disc Dump

1. Mount a disc which contains a DUMP47 file.
2. MANUAL to AUTO The system will write all of memory out to the DUMP47 file.
3. When the dump is complete, the system will halt with $X 3=00000000$. If low memory is clobbered and the 71100001 will not execute a dump, the address of the dump routine is also in eRAMDM. Find the address of eramDM in your load map and load the contents of that location into location 1.

To get a formatted dump:
// DUMPV
/INPUT = filenameedrivenumber (use indicated input instead of DUMP47e0)
/TAPE $=$ TAPE7 or TAPE8 or TAPE16 or T7 or T8 or T16 (dump is on tape
/ANALYSIS (analysis only, omit RAM)
/RAM (RAM dump only -- no analysis)
/LOW=1. (start RAM part of dump at location 1)
/HIGH=h (stop RAM part of dump at location h)
The following parameters only apply to IV/g0 MOD II dumps:
/PHYSICAL (Print memory; memory with no mapping)
/WINDOW=w (Use window for mapping. Default is window in effect at the time of the dump.)
//

DUMPV requires a 0200 or 0440 (MODII) sector contiguous file called DUMP47. This can be created by running the program MAKD47:
// MAKD47
8230
$10=8240$ en
/BANKS $=2$ optional (oreates 0440 sector file for MODII dumps)
//

DYNAMO

DYNAMO is a dynamic memory display, patch, and trace routine that is invoked Mode D. The DYNAMO display occupies the bottom two lines of the Debug displa screen.

DYNAMO has the following features:
Display the contents of any RAM location in octal or ASCII. Patch RAM, 1, 2, 3 or 4 words at a time.
Place a STOP command at any instruction in RAM.
Place a TRACE command at any instruction in RAM.
Getting started:
When VISION is up and running, first hit the unshifted HOME key to start DYNAMO at the Debug screen. The Debug screen has four lines of dynamic system status information at the top of the screen and DYNAMO uses the bottom two lines. The message line should have a solid block cursor at the left end of the five position location field. The left most 3 places on the line should have "CHG" indicating change mode.

MESSAGE LINE:
XXXccclllll aaaaaaaa bbbbbbbb ccececec dddddddd
where:
XXX is CHG - change mode, enter a location into the lllll field.
DIS - octal display mode, the contents of lllll are displayed at aaaaaaa, the contents of $11111+1$ are displayed at bbbbbbbb, etc.
ASC - ASCII display mode, aaaaaaa etc is ASCII representation of location illil. 36 bytes are displayed.
PAT - pateh has been made beginning at location lllll.
TRC - a trace or stop has been planted at location 11111.
cec is count of the number of times the instruction at location 12111 has been executed in trace or stop mode.

11111 is the current location in RAM being displayed, patched or traced.

Status Line:

YYY RARARARARA RBRBRBRBRB X1X1X1X1X1 X2X2X2X2X2 $\times 3 \times 3 \times 3 \times 3 \times 3$
See below.

To Display RAM:

Press the HOME key.
Key the 5 octal digit RAM location.
Press the INDEX (F5) key.
The contents of the location will display at aaaaaaaa (just to the right
the location). Four words are displayed.
To see the contents of the word before location 11111 (lower RAM),
Press LEFT arrow.
The four words will display automatically.
To see the contents of higher RAM locations,
Press RIGHT arrow.
The four words will display automatically.
To see the contents of the contents of location lllll (indirect), Press VALID (F4) key.
The address portion of aaaaaaa is used as the new lllll.
The four words will display automatically.
To restore 11111 after an indirect, PRESS ? (F3) key.
The location before the last indirect is restored and the 4 words display automatically.

To display in ASCII.
PRESS ASD (F1) key.
36 bytes (12 words) beginning at location 11111 are displayed.

To STOP Execution At A Specified Location:

The TRC mode is used to stop execution at a specified location.
The stop occurs before the instruction is executed. So you can check the condition codes before a branch, etc.

NOTE: This cannot be used for instructions that are executing at interrupt level $0,1,2$ or 3 if you want to be able to cancel the STOP. To be able to cancel a STOP the system must be able to process a level 3 interrupt.

Press HOME key.
Key the 5 octal digit location. Press PROG6 (F11) key.

TRC will appear at the left end of the message line. STP will appear at the left end of the status line.

When the stop occurs, the status line will show the contents of registers RA, RB, X1, X2 and X3 in octal from left to right. At the far left end of the status line the 3 byte display Scc will display. cc is the octal condition code at the time of the stop. The count ccc on the message line should show 001 the first time.

To cancel the stop and allow the system to continue press RESET (TAB).
To release the stop and catch it again the next time press PROG6.

To Look Around RAM While STOPPED:

When the system is stopped, you can display RAM using the instructions in Section 3. Remember that if you look at the location where the STOP is, you will see the BRM instruction that intercepts execution. In addition the PATCHing of memory or disc can be done while STOPPED. At any time pressing the RESET key will cancel the STOP.

To TRACE Execution At A Specified Location:

The TRC mode is used for tracing. Only one trace can be active.
Press hOME key.
Key the 5 octal digit location.
Press PROG5 (F10) key.
TRC will appear at the left end of the message line. GO will appear at the left end of the status line.

When the instruction execution occurs, the status line will show the contents of registers RA, RB, X1, X2 and X3 in octal from left to right. At the far left end of the status line the 3 byte display Scc will display. Scc is the octal condition code at the time of the trace. The count ccc on the message line should show 001 the first time and the count up in octal each time the instruction is executed.

To cancel the trace press RESET (TAB).
NOTE: Do not trace instructions that are modified by the system. The debug system removes the original instruction and puts in its place a BRM instruction into the DYNAMO package. The original instruction is executed inside DYNAMO. When RESET is pressed the original instruction is restored.

DYNAMO CONTINUED

To PATCH RAM (4 or fewer consecutive words)
Press hOME key.
Key the 5 octal digit lowest location to be patched. Press the INDEX (F5) key.

The four locations beginning at 11111 will display. Verify that you are at the correct spot in RAM.

Press HOME key.
Press the RIGHT arrow to position the solid cursor to the octal digits to be changed and key the correct octal digits. The actual changes are not made to RAM until the next step is performed.

Press PROG1 (F6), PROG2 (F7), etc. to patch 1, 2, etc. words.
PAT will display at the left-most end of the message line.

Performance Monitor

-ISION may be OPTIONed to included a software Performance Monitor which can be sed to monitor system activity. The report of system activity that is output from the Performance Monitor includes a detailed analysis of such things as keystroke activity, record activity, format page activity, value set/index set activity, disc I/O activity, overlay activity, and Level $7 /$ Level 8 activity.

The two \$SETPP subcommands, STARTPM and STOPPM, control the Performance Monitor activity.

TTARTPM

\#TARTPM initiates the Performance Monitor. Any previous Monitor activity is terminated and new statistics begin to accumulate. After the Performance Monitor has been allowed to run for a period of time, the STOPPM subcommand is used to report the results (see below). There are three optional operands that may be specified in parenthesis following STARTPM: OVLOG, RPLOG, and KEYSTROKE.

OVLOG

VLOG specifies that a detailed log of overlay calls, by overlay, is to be aintained in RAM. When STOPPM is executed, a report is printed showing the umber of calls and the mean number of calls per minute for each overlay, A aximum of 64 overlays may be logged.

RPLOG

RPLOG specifies that a detailed log of resident activity is to be maintained in RAM. VISION will be divided into 0100 word blocks of resident code. Then, at each Level 4 interrupt, RP will be sampled to determine which block of resident was executing at the time of the interrupt. When STOPPM is executed, a report is printed showing, for each block of resident logic, the number of times the block was found active and its percentage of CPU utilization. A LOADOV map from OPTION is necessary in order to interpret the results.

KEYSTROKE $=$ software code for control key (modulo 0200)
KEYSTROKE specifies that the keystroke corresponding to the specified software code is to be monitored. When STOPPM is executed, the report will show the number of times the monitored keystroke was processed and its percentage of total keystrokes. The software code for the control key must be specified modulo 0200 (0203 should be specified as 003). If not specified, the default is 000 - record up.

Examples:

```
$SETPP STARTPM
$SETPP STARTPM (OVLOG)
$SETPP STARTPM (KEYSTROKE=205)
$SETPP STARTPM (RPLOG, OVLOG, KEYSTROKE=0205)
```


STOPPM

The STOPPM command terminates the Performance Monitor and initiates the report writer transfer program to report the results. There are three optional operands that may be specified in parentheses following STOPPM: TITLE, REPORT, and NOREPORT.

TITLE $=$ "... 48 Character Identifying Title..."
The specified title will be printed on the first page of the Performance Monitor report. The title should identify the installation and/or conditions of the test; e.g., TITLE="ALL OPERATORS IN VERIFY".
$\underline{\text { REPORT }}=$ Jobname, Batch ID
This operand directs the output of the Report Writer to the specified job an \square batch. The job must be defined with 133 byte records and the specified batchmust already exist. If not specified, the output of the Report Writer is directed to the System Printer.

NOREPORT

NOREPORT specifies that no report is to be produced; i.e., just terminate the Performance Monitor, but do not initiate the Report Writer.

EXAMPLES:
\$SETPP
STOPPM
\$SETPP
\$SETPP
\$SETPP

STOPPM (NOREPORT)
STOPPM (REPORT=MASTER133,1)
STOPPM (TITLE="ABC", REPORT $=\mathrm{X}, 1$)

NOTES:
STARTPM and STOPPM may be used in \$SETPP with LEV78B:
\$SETPP LEV78B=12, STARTPM
\$SETPP STOPPM (TITLE="XYZ"), LEV78B=3
The Performance Monitor should be initiated only after the system has reached its normal activity load; i.e., after all operators have signed on and begun work in a batch. The Performance. Monitor should be allowed to run long enough to gather meaningful statistics, probably from a minimum of three minutes to a maximum of about ten minutes. Statistics are accumulated in whole-minute intervals, i.e., if the Performance Monitor is started at 55 seconds, the statistics will reflect system activity for the entire minute.

PERFORMANCE PERAMETERS

Note: Show mode K will display the current parameter settings.

These are counters, pointers, addresses, etc., used by VISION to keep track o itself. A description of each word follous:

SYMBOL
ACTOE

ASCHR
ASCMIN
ASCSEC
ASS 4
ASS 16
ASS 32
ASS64
BATACT
BFRLST
BLKCNT
CHAR
CHARV
CLOCK
CLOCKS
CNFIG
COMMWD

DAY
\$DBASE
DISCQ1
DISCQ2
DSETIM
ECTAB
EORREQ
EOVDAT
F90M2?
FETREQ
EFV
FVLEN
FVSDIR
FVSRAM
HDRDAT
HOUR
IO6CNT
ISVER3
IXRRAM
JOBDIR
JOBRAM
KBCINP
KBLOG
LASTZN
eLDTAB
LL
LL 2
LOGBAT
LOG JOB
....+1
.... +2
$\ldots+3$
$\ldots+4$
LOGSEC
MAGTAPE
MAXRAM
MINUTE
MP3270
M\#OVLY
N
NDS

DESCRIPTION

Address of the pointer to the Debug Display Area. This is present in a system block on production systems or on a screen on Debug systems.
Current system hour in ASCII, in the form bHH.
Current system minutes in ASCII, in the form :MM.
Current system seconds in ASCII, in the form :SS.
Address of the last 4-word block assigned.
Address of the last 16 -word block assigned.
Address of the last 32 -word block assigned.
Address of the last 64-word block assigned.
Mask to inhibit the use of any active batch (see state request bits in the batch directory disc format).
Pointer to the start of the sector/buffer list.
Magnetic tape block count.
Last level 7 character.
The most recently typed in character in verify mode.
Fires level 4 every $1 / 5$ of a second. Set to -12 at level 4 and incremented by level 0 every $1 / 60$ second.
One second clock.
Disc address of CONFIG sector.
3270 CONFIG word.
Debug level where zero $=$ production/system, non-zero $=$ screen number of Debug display.
Day number, ASCII
Starting sector address for VISION.
Pointer to FWA of primary disc request queue.
Pointer to FWA of secondary dise request queue.
Time of last disc error ($T-86,400$).
Counter for all disc errors
Number of end-of-record requests outstanding.
First data sector of $\$ E O V$ tape label data.
$0=$ Not a MOD II, $1=$ MOD II.
Number of page fetch requests outstanding.
New location of Format Vector Table.
Current length of the Format Vector Table.
Disc address of FVS directory.
Pointer to the Format/Value set directory in RAM.
First data sector of \$HDR tape label data.
Binary system hour.
106 chip failure count.
$0=$ no index sets, $-1=$ index sets
Pointer to the Index Set directory in RAM.
Disc address of job directory.
Pointer to the job directory in RAM.
The input character, at level 7, before translation.
The backlog count of keystrokes.
Highest zone in the system.
Pointer to logical device table.
Screen line length in words - 020 or 040.
$\mathrm{LL}+\mathrm{LL}$.
The sector address of the log file batch. Jobname/batch number of the log file.
Current log sector.
Count of magnetic tape errors.
Maximum RAM available; determined by initialization.
Current time in minutes.
Mapword for selected 3270 screen, $0=$ none.
Highest numbered overlay
Count of the number of screens.
Number of disc drives.

DESCRIPTION

NEX4
NEX8
NEX 16
NEX32
NEX64
NEX256
NLGSEC
NPRSEC
NSB
OHTOP
OIDDIR
OSOPBD
OSOPB1
OVRREQ
P2L2PE
PAGDIR
PASSWJ
PASSWP
PASSWS
PFCBE
PRTACT
PTHING
RESREQ
SEC95P
SECAVL
SECNBR
SECPTR
SECEND
SEMOH
SRA 13
....+1
SYSFIG
SYSFG 1
SYSFG2
SYSFG 3
SYSNBR
SYSPTR
SYSEND
TENSEC
THING
.....+1
.....+2
TIME +3
TIMELW
TP256
USER
USER8C
VOLCNT
WHAT!
ZONTOT
e\$MAXL
eOVDIR
EZONPT
: REQ8L
\$LDINV
SCQG
SCQP
SCQT
PRSTAT
LPOUT
DIABCF
DIABND
DIABP2
DIABSU

Address of the next 4 -word block available.
Address of the next 8 -word block available.
Address of the next 16 -word block available.
Address of the next 32 -word block available.
Address of the next 64-word block available.
Address of the next 256 -word block available.
Count of the sectors in the log file.
Count of the sectors in the print queue.
Number of screens and number of buffered printers.
Pointer to BAM OCB header chain.
Disc address of OID directory.
Operator statistics batch directory sector.
Operator statistics first data sector.
Number of overlay requests outstanding.
Pointer to P2L2P Table.
Pointer to the page directory in RAM.
Job define password.
Print/log password.
Supervisor password.
location of the pointer to the submonitor control block.
Print active/idle flag.
Pointer to the system constant (entered during system bring-up).
2770 message count.
95\% full point in sectors available.
Total sectors available on all drives.
Number of current level 7 sector.
Pointer to the current level 7 sector buffer.
Pointer to the end +1 of the current level 7 sector buffer.
BAM flag.
Save RA and X1 for level 3.
Save RA and X1 for level 3.
Configuration word for the system (CONFIG sector word 0116).
Additional configuration information (CONFIG sector word 0117).
Not used.
Not used.
Current system sector in RAM.
Pointer to the system sector buffer in RAM.
Pointer to the end +1 of the system sector buffer.
Ten second clock.
The system constant area.
The system constant area.
The system constant area.

The system constant area.
Time $=$ seconds since midnight - 86400.
The master dir. sec. last written to disc.
Address of next TP area 256 -word block available.
Last level 7 user table address.
Current level 8 user table address
Tape volume reel count.
Interrupts unexpected.
Kept in word 0200 of the master directory sector.
Byte 0 ; Not used, Byte 1: Total zones -1 ; Byte 2: Largest Zone
number.
Pointer to the size of the LDTAB device.
Address of overlay directory.
Address of zone pointer table.
Pointer to top of system REQ8 list.
Required by IDOS, E3, and above.
First entry in submonitor control block.
Pointer to last entry in control block.
Address of current submonitor control block.
Printer status word.
Printer selection value.
Address of start of 8121 complete-flags.
Number of 8121 printers.
Address of basic 8121 driver, PRIN22.
Unit number of the 8121 sysprint. If the system printer is not an 8121, THEN DIASSU IS -1 .

SINGLE WORDS IN RAM $=$ CONTINUED

DESCRIPTION

DISCRQ Count of disc requests pending.
DISCLK Non-zero means channel 2 locked-out for disc, in use by tape.
CHAN2
CHAN2R
DISCIO
REQTAB
$\ldots .+1$
.....+2
$\ldots+3$
.....+4
.... +5
?IGPOO
Zero means channel 2 is idle.
Non-zero means Level 8 is requesting channel 2.
Non-zero means a disc operation is going.
\$JDISC request table.
Used to count devices serviced during general poll loop. Initially
set to -32.
?IGP01 Last device to use status or TX subroutines starting device number
for general poll.
?IGP05 Indicates a device has requested transmission or has changed status.
?IPGO6 Second/10 to delay the transmission or EOT during general poll if no
devices have changed status or requested transmission.
?NAKS
? BFCNT
?DSRER
?OLCNT
?REPLY
? 4 EROR
? ACKOT
?ACKIN
?ICPSL
?7SYNC
?7TASK

Count of NAKs sent.
Buffers pending between level 1 and 7 .
Number of Data Set Ready errors.
? BFCNT served for retransmission.
Text mode response from Host.
Error flag set by level 4.
Next ACK to be output.
Expected ACK in.
Control mode flag from level 1 to level 7.
SYNC received in level 7.
Current CU3270 task.

```
RELEASE BAO4
MEMORY LAYOUI
(Physical layout for extended memory systems)
```


(EXTENDED MEMORY)

Note: The first two pages of fast RAM (Bank 1) are not utilized on standalone Mod II systems.

For non-MFE systems, the first seven words of the user table is a short routir_ that is executed by level 3. The routine calls IKEY to input a keystroke and then places it in the user table's keystroke queue. For MFE systems, MFE passes the keystroke to the VISION level 3 routine which places that keystroke in the keystroke queue for the appropriate terminal.

The keystroke queue consists of single word entries; the first byte of each entry is the (unconverted) keystroke that was entered and the remaining two bytes are the address of the next word in the queue for that user table.

USERN	BSS	1	Entry to KEYS routin
USERN 1	BRM	IKEY	Get key input. (Non-MFE systems, only.)
USERN2	STB*	KQBOT	Add keystroke to
USERN3	STB	KQBOT	bottom of the keystroke queue.
USERN4	LDB	LV 3SVB	B Restore RB.
USERN5	INR	KQLEN	Increment keystrokes in queue.
USERN6	BRD	USERN	Return and debreak.
KQLEN	EQU	7 N	Number of keystrokes in the queue
KQTOP	EQU	010	Top of keystroke queue; always contains one dummy.
KQBOT	EQU	011 B	Bottom of keystroke queue.
KQUP	EQU	012	An "UP KQTOP" instruction to get a keystroke.
	PZE		Lost keystroke routine.
	BRM	KEYL	
	BRD	\$-2	
FMADR	EQU	016	Pointer to flashing error message block.
SCR	EQU	017	Execute to place characters on screen.
FWA	EQU	020	First word of screen.
SLWA	EQU	021	Last word + 1 of screen.
PSROT	EQU	022	Cursor SCR first operand.
DEST	EQU	023	Cursor SCR second operand.
SCOL	EQU	024	Cursor col id $=$ - number of columns from right end.
WPO	EQU	025	Current fields governing aTTR during WGT call.
FSROT	EQU	026	(Pair) pointer to start of current field.
FDEST	EQU	027	First word of current field.
WPA	EQU	030	Extra LCR/SCR word pair.
WPA 1	EQU	WPA + 1	
WPB	EQU	032	Extra LCR/SCR word pair.
WPB1	EQU	WPB+1	
WPC	EQU	034	Extra word pair for scratch.
WPC 1	EQU	WPC+1	
WPD	EQU	036	Scratch word pair.
WPD 1	EQU	WPD +1	
VLROT	EQU	040	LCR pointer for verify.
VDEST	EQU	041	
FX2	EQU	042	X2 2 Location in format (via BAL).
FX3	EQU	043	$X_{3}=-$ (columns remaining in field).
L7SVx2	EQU	044	Save X2 during level 7 interrupts.
LTSVX3	EQU	045	Save X3 during Level 7 interrupts.
MODE	EQU	046	$24 \mathrm{flags}$. (Definedlater).
OPPTR	EQU	047	Pointer to operator directory.
JOBDES	EQU	050	Pointer to job descriptor table.
FORPTR	EQU	051	Pointer to current format.
REQ8	EQU	052	Request for LEVEL 8.
RECLOC	EQU	053	Location of current REC in sector.
WIDTH	EQU	054	- (Width of field).
MODPTR	EQU	055	Pointer to in-front modifier. ${ }^{\text {che }}$ (
LCR	EQU	056	Execute to get character from old record in key verify, LCR = SEC ADR for previous REC
ACCP 1	EQU	057	Pointer to first four accumulators. 0-3.
ACCP2	EQU	060	4-7.
ACCP3	EQU	061	8-11.
ACCP4	EQU	062	12-15.
ACCP5	EQU	063	16-19.
ACCP6	EQU	064	20-23.
NFOR	EQU	065	Number of formats.
NVAL	EQU	066	Number of value sets.

MFWA	EQU	067	Printer to message line, BITO $=1$: lines are off screen.
MSIZE	EQU	070	- Size of screen including dead areas.
MSIZEB	EQU	071	- Size in bytes
KBTYPE	EQU	072	Keyboard descriptor word from CONFIG.
LASTKS	EQU	073	Last three keystrokes.
TVUSER	EQU	074	Trail verify user pointer
TERMN	EQU	075	Terminal Index 0-31.
BATCHN	EQU	076	ASCII batch ID - 6 characters - even boundry.
BACHN 1	EQU	077	Continued.
BINDOC	EQU	0100	Binary document
TERMAS	EQU	0101	Terminal index in ASCII, blank fill.
BATCH	EQU	0102	Address in batch directory.
LINKBS	EQU	0103	Return address from LINXVS.
BINREC	EQU	0104	Binary record number.
MAXREC	EQU	0105	Largest binary record number.
NEXTUR	EQU	0106	Unconditional keystroke return address.
STATS	EQU	0107	Operator statistics table.
STATS 1	EQU	0110	Second word of operator statistics table.
STATS 2	EQU	0111	Third word of operator statistics table.
BINCOL	EQU	0112	Binary column counter.
ALARM	EQU	0113	Audible alarm flag.
SAVPTR	EQU	0114	Save pointer for backspacing
MODEXT	EQU	0115	Mode extension flag word. (Defined later).
BLOCK7	EQU	0116	Terminal block word. (Defined later).
VRECB	EQU	0117	Pointer to verify record buffer. (Defined later).
RECHDR	EQU	0120	Current record header.
RECSIZ	EQU	0121	Record size.
SECTOR	EQU	0122	Current sector number.
NEXTCR	EQU	0123	Return word from BRM NEXTC.
COLUM	EQU	0124	Pointer to column count on screen.
ECODE	EQU	0125	Error code. (Defined later).
QUE8RA	EQU	0126	Terminal restart address when overlay completed.
DQSLOT	EQU	0127	Current position in disc queue.
OV36BL	EQU	0130	Multi-mode block address.
FMTST 1	EQU	0131	First 24 bits of format backspacing stack.
FMTST2	EQU	0132	Second 24 bits of format backspacing stack.
MAXDOC	EQU	0133	Largest binary document no.
MODE 3	EQU	0134	24 single bit flags. (Defined later).
LASSEC	EQU	0135	Last sector in chain.
ebuF	EQU	0136	Pointer to format workspace.
eave	EQU	0137	Pointer to user's file access table pointers.
CURC	EQU	0140	Counts Level 4 until cursor change needed.
RS	EQU	0141	Digits to right of DEC point LZERO FIELD.
SCPBAD	EQU	0142	Used by screen print.
KV	EQU	0143	Byte $0=S C R A M$ CHAR, 9-23 $=$ RECLOC for prev. REC.
MODE 2	EQU	0144	More single bit flags, like 'MODE'.(Defined later).
CURSES	EQU	0145	Three cursor characters (depends on field intensity).
STATS 3	EQU	0146	Fourth word of operator statistics table.
Qat	EQU	0147	PTR to word containing current field ATTR.
ATMASK	EQU	0150	Mask for MDT in current ATTR.
MAXCOL	EQU	0151	Highest BINCOL so far in format.
SX 3	EQU	0152	Save word used by -5C.
CUR	EQU	0153	Off screen copy of blinking word.
Figae	EQU	0154	PTR to field one physical governing ATTR.
MBLOCK	EQU	0155	PTR to message line system block. BIT $0=1$: Lines are in home position.
COMM	EQU	0156	Communications word. (Defined later).
escb	EQU	0157	MSFP pointer to this terminal's submonitor.

RELEASE BAOL
USER TABLE SKELETON DEFINITION $=$ CONTINUED
WINDOW EQU 0160 See below.
SUBSTK EQU 0161 Subroutine stack for format compiler.
EDTPTR EQU 0162 Pointer to edit command parameter list.
SPARE2 EQU 0163 Spare user table cell available.

WINDOW: terminal's window number.
bit contents
0 not used
1-8 window number
9-13 logical page number
14 odd parity
$15 \quad 1=r e a d$ only
16-18 Bank number
19-23 physical page

TERMN: terminal printer information.
bit contents
0 . $\quad 1=t e r m i n a l$ currently printing; $0=n o t$ printing
1-2 not used
$3 \quad 0=$ terminal unbuffered $1=$ terminal is buffered printer
$4 \quad 0=$ control dup print request $1=370$ print request
5-11 not used
12. $\quad 1=$ screen print not allowed at this terminal
$13 \quad 1=$ terminal printer is assigned
14-18 Diablo printer unit \# assigned to terminal
19-23 binary terminal number

*1 KB: $0=$ Source, $1=029$
AUD: $0=$ No Audible Alarm
32 Words - One for each possible keyboard device
*2 VISION P2L2P Table
Byte 0: Reserved
Byte 1: Maps devices to screens (index into with device no.) Byte 2: Maps screens to devices (index into with screen no.)
*3 MAXMFE $=0$, non-MFE systems; MAXMFE $=$ Maximum number of terminals signed on to VISION (MFE systems) If \#screens ≤ 10; \# buffers recommended $=$ \# of screens. Min. is 6 . If $\#$ screens $>10 ; \#$ buffers recommended $=\|$ of screens $/ 2+2$. Min. is 10 .

ADDITIONAL FOOTNOTES FOR THE CONFIG SECTOR FOLLOW ON NEXI PAGE

```
*4 CONFIG (SYSFIG)
    Video: }0=48,1=8
    EXTMEM: 0=None, 1=Extended memory (IV/90 Model 2)
    CH: O}=\mathrm{ No channel
    LAMLOG: 0=No memory log
    CR: }\quad0=\mathrm{ No card reader
    PR: 0=No printer
    NAG: 0}=9\mathrm{ -track, 1=7-track
    DEN: }\quad0=L.0W,1=hig
    SOR: }\quad0=NO\mathrm{ shift override of field type, 1=allow shift override
    CCB: 0=Not concurrent Bisync, 1=concurrent.
    DOCS: 0=Count records, 1=count documents.
    BEEPER: 0=One beep per error, 1=one beep per keystroke after error.
    CCODE: }\quad0=EBCDIC, 1=ASCII
    LAM2: 1=Yes, 0=no.
    DUMP TYPE 0 = NO RAM dump.
        1 = tape dump.
        2 = 8230 disc dump.
        3=8240 disc dump.
        4=8260 disc dump.
        5=8270 disc dump.
*5 CNFIG1 (SYSFG1)
    RECPRT: 0=No 12 channel printer for received data (Bisync)
    ERP: 0=Extended error recovery
    FIND: 0=Do not count find mode statistics
    1=Count find mode statistics
    REVFRY: 0=Field reverification, 1=not.
    CFPROP: 0=VISION print spooling, 1=Bisync direct print.
    BATCH: 0=Do not keep detail operators statistics by batch, 1=do.
    Tape Buffer Size: Number of sectors for tape buffer (maximum is 6).
*6 LEV78B, PAGSEC, etc. - Set by $SETPP Supervisory Command.
*7 CNFIG4 - Used by VISION.
*8 CNFIG5 - Used by VISION.
LC: }\quad{=Lower case in default 3270 mode
*g PRSTAT
Bit 0: Reserved
Bit 1: }\quad0=Nolog file, 1=log file exists
Bit 2: 0=No printer, 1=printer.
Bit 4: Reserved.
Bit 5: Clear request.
Bits 6-18: Reserved.
Bit 19: 1=Log C-Type messages.
Bit 20: 1=Log B-Type messages.
Bit 21: 1=Screen print turned on in log.
Bit 22: 1=Print C-Type messages.
Bit 23: 1=Print B-Type messages.
```

ADDITIONAL FOOTNOTES FOLLOW ON NEXT PAGE

RELEASE BAO4 FOOTNOTES FOR CONFIG SECTOR $=$ CONTINUED

```
*10 8121 Printer Specification Word:
    Bit 0: 1=Pica; 0=Elite.
    Byte 0: Number of printed lines per page - 1.
    Byte 1: Number of increments to advance each line.
    Byte 2: Total number of lines per page.
*11 Controller Assignment Table (CAT): Each word corresponds to one
controller with the first word corresponding to the 8436 controller, the second
word to the 8437 #0 controller, the third to the 8437.|1 controller, and so on.
Each word has the following format:
\begin{tabular}{|c|c|}
\hline bits & contents \\
\hline 0 & \(0=\) controller doesn't exist, \(1=\) controller exists \\
\hline 1-7 & valid application bits; \(0=\) not valid, \(1=\) valid \\
\hline & bit \(1=\) reserved \\
\hline & \(2=3270\) \\
\hline & 3 = reserved \\
\hline & \(4=\) Bisync \\
\hline & 5 = reserved \\
\hline & \(6=\) not used \\
\hline & 7 = not used \\
\hline 8-15 & current user \\
\hline & \(0=\) none \\
\hline & 1 = reserved \\
\hline & \(2=3270\) \\
\hline & 3 = reserved \\
\hline & \(4=\) Bisync \\
\hline & 5 = reserved \\
\hline 16-23 & reserved \\
\hline
\end{tabular}
```

RELEASE BAO4
DATA SECTORS

Sector trailer (1 word) when code word is negative:
Total sector length $=256 \times 3=768$
Sector Header $=\frac{-4}{252} \times 3=\frac{12}{750}$
Available for data $=\overline{252} \times 3=\overline{756}$
(words) (chars)
$N W R=\left[\frac{R S+3}{3}\right]+1$
NRS $=\left[\frac{252}{N W R}\right]$
Where, RS $=$ Record Size in characters
NWR $=$ Number of Words per Record
NRS = Number of R्Records pē Sector
[]$=$ integer divide (ie, truncate to integer)

NOTE: On jobs with variable length records, the record mix will have to be considered. The system will try to fit each record into the current sector.

Overlays are programs cataloged in the DATOOO file of disc drive 0 that load and execute in the overlay area of RAM. They perform infrequently requested functions (TOTAL key, REC-UP, screen print, new mode, etc.) and, because there is only one overlay area for all terminals to share, they are designed to execute rather quickly. An overlay can be called in several ways:

1. From the resident (TOTAL key, etc.).
2. From another overlay.
3. From a transfer program.

OVERLAY REQUESTS QUEUES

There are two types of overlay requests. The first consists of those that are required by terminals (eg, the overlay to process the TOTAL key) and the second consists of those not associated with terminals (eg, Overlay 17, Entry Point 1 which is requested by Level 4 to free page directory blocks.) These two general categories of overlay requests are queued in different ways.

Terminal Overlay Requests

$$
\begin{array}{ll}
\text { OVRREQ } & \text { Number of outstanding terminal overlay requests. } \\
\text { REQ8,X } 1 & \text { Terminal overlay request word. }
\end{array}
$$

The format of a terminal overlay request word is:

Q: $\quad 0=$ queue keystrokes during overlay execution
$1=$ toss keystrokes during overlay execution
X: $1=$ special request
M: $0=$ intercept "MODE" key
$1=$ pass "MODE" key as data key

Special Overlay Request Queue
: GETOV Address of top of special overlay request queue. (Next special overlay to be processed.)
: PUTOV Address of bottom of queue.
:FREOV Address of free stack for special overlay requests.

Note: The special overlay request queue always has a dummy entry.

1. AUTO to MANUAL.
2. RESET then STEP.
3. LOAD into TIR - 71100001
4. MANUAL to AUTO then to MANUAL.
a. Tape Dump
5. Mount a scratch tape.
6. MANUAL to AUTO

The system will dump records 1024 words long (06000 bytes).
b. Disc Dump

1. Mount a disc which contains a DUMP47 file.
2. MANUAL to AUTO

The system will write all of memory out to the DUMP47 file.
5. When the dump is complete, the system will halt with $X 3=00000000$. If low memory is clobbered and the 71100001 will not execute a dump, the address of the dump routine is also in erambM. Find the address of erAMDM in your load map and load the contents of that location into location 1.

To get a formatted dump:
// DUMPV
/INPUT = filenameedrivenumber (use indicated input instead of DUMP47e0) $/$ TAPE $=$ TAPE7 or TAPE8 or TAPE16 or T7 or T8 or T16 (dump is on tape as indicated)
/ANALYSIS (analysis only, omit RAM)
/RAM (RAM dump only .- no analysis)
/LOW=1. (start RAM part of dump at location 1)
/HIGH $=$ h (stop RAM part of dump at location h)
The following parameters only apply to IV/90 MOD II dumps:
/PHYSICAL (Print memory; memory with no mapping)
/WINDOW=W (Use window w for mapping. Default is window in effect at the time of the dump.)
//
6. DUMPV requires a 0200 or 0440 (MODII) sector contiguous file called DUMP47. This can be created by running the program MAKD47:
// MAKD 47
$10=8230,8240,8260,8270$
/BANKS $=2$ optional (creates 0440 sector file for MODII dumps) //
Debug is a dynamic display of system activity. Normally, the Debug display is kept in a System Block in memory; however, it may be displayed on a screen by
entering Mode D.
NOTE: Show Mode G will give a snapshot display of the debug information.

	1	2	3	4	5	8	1	$:$,	10	11	12	13	14	15	18
$\begin{aligned} & \text { W } \\ & 1 \\ & 1 \\ & \text { o } \\ & \text { 2 } \end{aligned}$. 55 secomo COUMT	EOR WMET EDR active	10x 108 failure COUNT **		-1WHEM IMOSET t00Kup active	xEX MAME OF CURRENT LEVEL SUBMON. 青朝	-7 WHEM LEVEL 7 active *	ovi WHEM oVERLAY active	8 NAME OF overlay in rama (OCTAL)	TRA WHEN TRAMSFER PROGRAM ACTIVE	MAR TRA PR IM		MUMBER OF SYSTEM BLOCKS in PAGDIR	пUشBER of ENTRIES In FVSRAM	${ }^{\mathbf{x}}$ mumber of j03s jobram	NUMBER OF EMTRIES in IXRRAM
-	aue Queve LEMGTMS \qquad	HI MUMBER 0 O TERMS IW EOR	II numatr OF SOFT LDST kEYSTROXE	Mumatr OF TERMS in Value SET t00KUP	KI MUMBER OF TERMS IM IMDSET L00KUP	${ }^{x}$ number OF TERMS IA PAGE FETCH	NUMBER OF KEYSTROKES QUEUED	x mumber 0 F overlay requests Queved	M NUMBER OF Disc REQUESTS QuEUED	LK0 WHEM DISC 1/0 LOCKED	x x current OR LAST DISC USER $+$	Ex CDUNT OF OISC ERRORS **	DISC operation at Last ERROR		 Dise status at last t/O ERRO	
	100 termimal numbers \rightarrow		nn $T=$ LAST LOST KEYSTROKE	$\mathrm{T}=$ LAST VALUE SET L00KUP	${ }^{\text {mn }}$ $\mathrm{T}=$ LAST INDEX SET t00KUP	$\mathrm{T}_{\mathrm{T}}^{\mathrm{T}} \mathrm{m}$ LaST PAGE FETCH	nn T= LAST KEYSTROKE PROCESSED	nn $T=$ LAST overtay LOAD	ET CUARENT OR LAST DISC OPERATIOY +		0 sss sss LOGICAL DRIV AND SECTOR LAST DISC I/0		$-T$ - RESERVED FOR TAPE		$\begin{aligned} & \text { XX } \mathbf{x X I X X X} \\ & \text { ESERYED Fi } \\ & \text { APE ERROR } \end{aligned}$ tatus	
4	xixu R at last LEVEL4 interaumt		II aumber OF HARD LOST xEystrokes	12 NAME OF LAST VALUE SET USED		18: HAME OF LAST FORMAT PAGED	x LAST KEYSTROKE PROCESSED	RESERVED GESERVED FOR comaumications								
	notes * Blamx me * Blamk wh	Imactive. zero.	```OVL - OVERLAY SUBMOMITOR \\ TRA - TRAMSEER PROGRAM SUEMOMITSR \\ PRT - PRIMT SUIMOMITOR \\ alo - allocation/deallocation submonitor \\ DYM - OYMAMO SUEMONITOR \\ com- communications submomitor \\ slamk - mo Summomitor active```													

RELEASE BAO4

DYNAMO
DYNAMO is a dynamic memory display, patch, and trace program that may be used at the DEBUG screen.

To Start DYNAMO

After entering Mode D, enter the password FOURFAZE. The DYNAMO display will appear on the bottom of the screen above the message line. The remainder of the screen will depend on the screen size:

6 lines: The DYNAMO display will appear by itself.
12 lines: An abbreviated form of the instructions for using DYNAMO will appear above the DYNAMO line.
24 lines: The abbreviated form of the instructions will appear above the DYNAMO line and the DEBUG display will remain on the screen.

The DYNAMO line has the following format:
XXXccclllll aaaaaaa bbbbbbbb ccceccec dddddddd
where:
XXX is CHG - change mode, enter a location into the 11111 field.
DIS - octal display mode, the contents of lllll are displayed at aaaaaaa, the contents of $11111+1$ are displayed at bbbbbbbb, etc.
ASC - ASCII display mode, aaaaaaa etc is ASCII representation of location 11111. 36 bytes are displayed.
PAT - patch has been made beginning at location lllll.
TRC - a trace or stop has been planted at location 11111.
cce is count of the number of times the instruction at location lllll has been executed in trace or stop mode.

11111 is the current location in RAM being displayed, patched or traced.
The contents of the line immediately below the DYNAMO line depends on function being performed.

To Display RAM:
Press the HOME key.
Key the 5 octal digit RAM location.
Press the INDEX (F5) key.
To display in ASCII.
PRESS ASD (F1) key.
36 bytes (12 words) beginning at location 11111 are displayed.

To Display MOD II Information
Press the HOME key.
Key the address WWWPP; where WWW $=$ window (8 bits) $P P=\operatorname{page}(0-31)$
Press the PROG CTL (F2) key.
Display appears as:

1. Mapper RAM
2. Window Register
3. Memory Parity Register
4. Mapper Parity Register

To STOP Execution At A Specified Location:

The stop occurs before the instruction is executed; therefore, you can check the condition codes before a branch, etc.

Press hOME key.
Key the 5 octal digit location.
Press PROG6 (F11) key.
When the stop occurs, the status line will show the contents of registers $R A, R B, X 1, X_{2}$ and $X 3$ in octal from left to right. At the far left end of the status line the 3 byte display Scc will display. ec is the octal condition code at the time of the stop. The count cec on the message line should show 001 the first time.

To cancel the stop and allow the system to continue press RESET (TAB).
To release the stop and catch it again the next time press PROG6.
NOTE: This may be used to stop trace at all levels above level 3.
To TRACE Execution At A Specified Location;
The trace is a dynamic one which may be stopped at any time by pressing the PROG6 or HOME key.

Press HOME key.
Key the 5 octal digit location.
Press PROG5 (F10) key.
The display for the trace is the same as that for the stop.
To stop the trace press PROG6 or HOME.
To release the stop and catch it again the next time press PROG5.
NOTE: This may be used to stop trace at all levels above level 3.

To PATCH RAM (4 or fewer consecutive words)

Press HOME key.
Key the 5 octal digit lowest location to be patched.
Press the INDEX (F5) key.
The four locations beginning at $11 l l l$ will display. Verify that you are at the correct spot in RAM.

Press home key.
Press the RIGHT arrow to position the solid cursor to the octal digits to be changed and key the correct octal digits. The actual changes are not made to RAM until the next step is performed.

Press PROG1(F6), PROG2(F7), etc. to patch 1, 2, etc. words.
PAT will display at the left most end of the message line.

RELEASE BAO4
 SINGLE WORDS IN RAM

These are counters, pointers, addresses, etc., used by VISION to keep track of itself. A description of each word follows:

SYMBOL

DESCRIPTION

ACTOE

ASCHR
ASCMIN
ASCSEC
ASS 4
ASS 8
ASS 16
ASS 32
ASS64
ASS 128
BATACT
BFRLST
BLKCNT
CHAR
CHARV
CLOCK
CLOCKS
CNF IG
COMMWD
COMWT8
D
DAY
\$DBASE
DISCQ 1
DISCQ2
DSETIM
ECTAB
EORREQ
EOVDAT
F90M2?
FETREQ
QFV
FVLEN
FVSDIR
FVSRAM
HDRDAT
HOUR
IO6CNT
IS VER 3
IXRRAM
JOBDIR
JOBRAM
KBCINP
KBLOG
KFREE
KFSIZE
KFXTND
LASTZN
LDTABE
LL
LL2
LOCKPR
LOGBAT
LOGJOB
....+1
. . . . +2
$\ldots+3$
.... +4
LOGSEC
MAGT PE
MAXRAM

Address of the pointer to the Debug Display Area. This is present in a system block on production systems or on a screen on Debug systems.
Current system hour in ASCII, in the form bHH.
Current system minutes in ASCII, in the form :MM.
Current system seconds in ASCII, in the form :SS.
Address of the last 4-word block assigned.
Address of the last 8 -word block assigned.
Address of the last 16 -word block assigned.
Address of the last 32 -word block assigned.
Address of the last 64 -word block assigned.
Address of the last 128 -word block assigned.
Mask to inhibit the use of any active batch (see state request bits in the batch directory disc format).
Pointer to the start of the free sector/buffer list.
Magnetic tape block count.
Last PROKS character.
The most recently typed in character in verify mode.
Fires level 4 every $1 / 5$ of a second. Set to -12 at level 4 and incremented by level 0 every $1 / 60$ second.
One second clock.
Disc address of CONFIG sector.
3270 CONFIG word.
Value of COMWT8 performance parameter.
Zero $=$ Debug display in system block; non-zero $=$ screen +1
of Mode-D screen
Day number, ASCII
Starting sector address for VISION.
Pointer to FWA of primary disc request queue.
Pointer to FWA of secondary disc request queue.
Time of last disc error ($T-86,400$).
Counter for all disc errors
Number of end-of-record requests outstanding.
First data sector of $\$$ EOV tape label data.
$0=$ Not a MOD II, $1=$ MOD II.
Number of page fetch requests outstanding.
New location of Format Vector Table.
Current length of the Format Vector Table.
Disc address of FVS directory.
Pointer to the Format/Value set directory in RAM.
First data sector of $\$$ HDR tape label data.
Binary system hour.
IO6 chip failure count.
$0=$ no index sets, $-1=$ index sets
Pointer to the Index Set directory in RAM.
Disc address of job directory.
Pointer to the job directory in RAM.
The last processed keystroke before translation.
The backlos count of keystrokes.
Start of keystroke free cell list.
Total number of keystroke cells in the system.

- (Number of words to extend KFREE); initially set to -16*NTERMS

Highest zone in the system.
Pointer to logical device table.
Screen line length in words - 020 or 040.
LL + LL.
Printer lockout from magnetic tape.
The sector address of the log file batch.
Jobname/batch number of the log file.
Jobname/batch number of the log file.
Jobname/batch number of the log file.
Jobname/batch number of the $10 g$ file.
Jobname/batch number of the log file.
Current log sector.
Count of magnetic tape errors.
Maximum RAM available; determined by initialization.

MFE?
MINUTE
MP 3270
M\#OVLY
N
NDS
NEX4
NEX8
NEX 16
NEX32
NEX 64
NEX128
NEX256
NLGSEC
NPRSEC
NSB
OHTOP
OIDDIR
OSOPBD
OSOPB 1
OVRREQ
P2L2PE
PAGDIR
PASSWJ
PASSWP
PASSWS
PFCBE
PRTACT
PTHING
PUSERE
SEC95P
SECAVL
SECNBR
SECPTR
SECEND
SEMOH
SRA 13
.... +1
SYSF 84
SYSFG3
SYSFG2
SYSFG 1
SYSFIG
SYSNBR
SYSPTR
SYSEND
TENSEC
THING
....+1
$\ldots .+2$
.....+3
TIME
TIMELW
TP256
USER
USER8C
VOLCNT.
WHAT?!
ZONTOT
e $\$$ MAXL
eovDIR
EZONPT
\$LDINV

Zero=non-MFE system; non-zero=MFE system Current time in minutes.
Mapword for selected 3270 screen. $0=$ none.
Highest numbered overlay
Count of the number of screens.
Number of disc drives.
Address of the next 4 -word block available.
Address of the next 8 -word block available.
Address of the next 16 -word block available.
Address of the next 32 -word block available.
Address of the next 64 -word block available.
Address of the next 128 -word block available.
Address of the next 256-word block available.
Count of the sectors in the log file.
Count of the sectors in the print queue.
Number of screens plus number of buffered printers.
Pointer to BAM OCB header chain.
Disc address of OID directory.
Operator statistics batch directory sector.
Operator statistics first data sector.
Number of terminal overlay requests outstanding.
Pointer to P2L2P Table.
Pointer to the page directory in RAM.
Job define password.
Print/los password.
Supervisor password.
Location of the pointer to the submonitor control block.
Print active/idle flag.
Pointer to the system constant (entered during system bring-up).
Address of PUSER.
95\% full point in sectors available.
Total sectors available on all drives.
Number of current PROKS sector.
Pointer to the current PROKS sector buffer.
Pointer to the end +1 of the current PROKS sector buffer.
BAM flag.
Save RA and X1 for level 3.
Save RA and X1 for level 3.
Pointer to CAT.
not used.
not used.
Additional configuration information (CONFIG sector word 0117).
Configuration word for the system (CONFIG sector word 0116).
Current system sector in RAM.
Pointer to the system sector buffer in RAM.
Pointer to the end +1 of the system sector buffer.
Ten second clock.
The system constant area.
The system constant area.
The system constant area.
The system constant area.
Time $=$ seconds since midnight -86400.
The master dir. sec. last written to disc.
Address of next TP area 256 -word block available.
Last PROKS user table address.
Current level 8 user table address
Tape volume reel count.
Interrupts unexpected.
Kept in word 0200 of the master directory sector.
Byte 0: not used; Byte $1=$ Total zones -1 ;
Byte $2=$ Largest zone number.
Pointer to the size of the LDTAB device.
Address of overlay directory.
Address of zone pointer table.
Required by IDOS, E3, and above.

RELEASE BA04
 SINGLE WORDS IN RAM $二$ CONTINUED

DIABCF	Address of start of 8121 complete-flags.
DIABND	Number of 8121 printers.
DIABP2	Address of basic 8121 driver, PRIN22.
DIABSU	Unit number of the 8121 sysprint. If the system printer is not an 8121 , then DIABSU is -1 .
PRSTAT	Printer status word.
LPOUT	Printer selection value.
SCQG	Pointer to first entry in submonitor control block,
\equiv \#CQP	Pointer to last entry in control block.
$\Longrightarrow \mathrm{CQT}$	Address of current submonitor control block.
CHAN2	Zero means channel 2 is idle.
CHAN2R	Non-zero means Level 8 is requesting channel 2.
DISCIO	Non-zero means a disc operation is going.
DISCLK	Non-zero means channel 2 locked-out for disc, in use by tape.
DISCRQ	Count of disc requests pending.
PEQTAB	\$JDISC request table.
$\ldots+1$	\$JDISC request table.
. . . + 2	\$JDISC request table.
$\ldots+3$	\$JDISC request table.
$\ldots+4$	\$JDISC request table.
$\ldots+5$	\$JDISC request table.
?IGPOO	Used to count devices serviced during general poll loop. Initially set to -32.
?IGPO1	Last device to use status or $T X$ subroutines starting device number for general poll.
?IGP05	Indicates a device has requested transmission or has changed status.
? I PG06	Second/10 to delay the transmission or EOT during general poll if no devices have changed status or requested transmission.
? NAKS	Count of NAKs sent.
? BFCNT	Buffers pending between level 1 and 7.
?DSRER	Number of Data Set Ready errors.
? 2 LCNT	? BFCNT served for retransmission.
? REPLY	Text mode response from Host.
? 4 EROR	Error flag set by level 4.
? ACKOT	Next ACK to be output.
? ACKIN	Expected ACK in.
? ICPSL	Control mode flag from level 1 to level 7.
?7SYNC	SYNC received in level 7.
?7TASK	Current CU3270 tas

```
PROGRAMMER WORKSTATION - BDO3
Installation of PWS is described in the SRN, Section 13-pages 43-55.
CONFIGURING COMMUNICATIONS
    Communications configuration files contain both protocol and information
    associated with a host. There should be one communications configuration
    file for each host. If PWS will communicate with only one host, and the
    host queue id was chosen to be blanks, then use file SYS.PWSFIG.DATA80e0
    for the communications configuration file. Otherwise, create one file for
    each host/transmission queue. Name the files, SYS.PWSxxx. DATA80&0, where
    xxx is the host/transmission queue id. Use SYS.PWSFIG.DATA8080 as a model
Signon and Signoff Cards.
    Put a $SIGNON ($SIGNOFF) record in the configuration file followed
    imnediately by a record containing the signon (signoff) card. BD03 has the
    ability to specify an automatic signon in the configuration file. To send
    the signon card immediately after the line has been started, include an
    $IMMEDIATE SIGNON record in the configuration file. The command "SIGNON
    Ln" will also cause the signon record to be transmitted.
Line Configuration Parameters.
    The following parameters indicate what characteristics the line should
    have. The parameters and values are listed with a brief explanation of
    what impact each parameter has. All parameters can be truncated to 2
    characters after the dollar sign, except $SIGNON and $SIGNOFF.
Model 2l Line configuration Parameters.
$MODEL 20
    First non-comment card in the conflguration file when specifying
    a Model 20 line.
$*
    Indicates a comment record. The record is logged but has no
    effect on the configuration.
$AUTO ANSWER (default = $MANUAL)
    Specifies the modem as auto-answer.
$BLOCK SIZE = value (default = 400)
    Specifies the maximum block size between 150 and 512, inclusive.
$COMPRESSION = value (default = 3)
    Specifies compression type. Values and meanings are:
    O - No compression.
    1 - Trailing blank compression.
    2 - Full blank compression.
    3- Full character compression.
$CPU (default = $CPU)
    Specifies that the other station is a mainframe.
$EBCDIC (default = $EBCDIC)
    Documention only as ASCII lines are not supported.
$IMMEDIATE SIGNON (default = no immediate signon)
    Specifies to send a signon when the line is started.
```

```
    $LOG = value (Line trace must be optioned to use this command.)
        Specifies the type of data to log in the line trace.
    1- Log line data.
    2 - Log controller request/response tables.
    3-Log line data and controller tables.
$MANUAL ANSWER (default = $MANUAL)
    Specifies that the modem is manual answer.
&MESSAGE SIZE = value (default = 120)
    Size of received console messages. Must be less than 133.
$POINT TO POINT (Default = $POINT TO POINT)
    Documentation only. Model }20\mathrm{ does not support multipoint.
$PRIMARY (default = $SECONDARY)
    Indicates that this is the primary station.
$SECONDARY (default = $SECONDARY)
        Indicates that this is the secondary station.
$SIGNON
        The signon card is in the following record.
$SIGNOFF
        The signoff card is in the following record.
$SPANNED (default = no spanned records)
        Records can be spanned between transmit buffers.
$TERMINAL TO TERMINAL (default = $CPU)
        The other station is a terminal.
$TIMEOUT = value (default = 20)
        The time in seconds before the line is considered idle.
        Acceptable values are between 5 and 25 seconds, inclusive.
```


$2780<3780$ Line Configuration Parameters

```
\$2780
First non-coment card in the configuration file when specifying a 2780 line.
\$3780
First non-comment card in the configuration file when specifying a 3780 line.
\$*
Indicates a comment record. The record is logged but has no effect on the configuration.
\$ADDRESS \(=\mathrm{hh}\) hh hh hh hh
Specify the terminal address. This provides switched network protocol capability on dial-up lines. This is also used to provide the terminal address on a multipoint line. The \(\boldsymbol{m h h}^{n}\) is any 2 hexidecimal digits ( \(0-F\) ).
\$ASCII (default \(=\$\) EBCDIC)
Specifies an ASCII line (not supported on multipoint lines).
\$AUTO ANSWER (default = \$MANUAL)
Specifies the modem as auto-answer.
```

\$BLOCK SIZE = value (defaults = 400 for 2780, 512 for 3780)
Specifies max block size, value must be between }128\mathrm{ and 512.
\$COMPRESSION = value (defaults = 1 for 2780, 2 for 3780)
Specifies compression type. Values and meanings are:
1- Trailing blank compression (3780), no compression (2780).
2 - IBM 3780 compatible blank compression.
3- Four-Phase compatible full character compression.
\$CPU (default = \$CPU)
Specifies that the other station is a mainframe.
\$EBCDIC (default = \$EBCDIC)
Specifies an EBCDIC line.
\$EM INSERTION (\$2780 only, default = no EM insertion).
Specifies Automatic EM insertion.
\$EXTENDED LINE BID RETRY (default = retry line bid 40 times)
Specifies to bid for the line indefinately.
\$IMMEDIATE SIGNON (default = no immediate signon)
Specifies to send a signon when the line is started.
\$LEASED (default = switched line)
Specifies that PWS is on a private line.
\$LOG = value (Line trace must be optioned to use this command).
Specifies the type of data to log in the line trace. The system
must be optioned for line trace capability and there must be
pages of RAM available for a log area. The values are as follows:
1 - Log line data.
2- Log controller request/response tables.
3- Log line data and controller tables.
(It is suggested that 3 be used. default = 0)
\$MANUAL ANSWER (default = \$MANUAL)
Specifies that the modem is manual answer.
\$MULTIPOINT (default = \$POINT TO POINT)
Specifies that PWS is on a multipoint line.
\$POINT TO POINT (default = \$MULTIPOINT)
Specifies that PWS is on a point-to-point line.
\$PRIMARY (default = \$PRIMARY)
Indicates that this is the primary station.
\$SECONDARY (default = \$PRIMARY)
Indicates that this is the secondary station.
\$SIGNON
The signon card is in the following record.
\$SIGNOFF
The signoff card is in the following record.
\$SWITCHED NETWORK PROTOCOL (default = not switched network)
Specifies that the mainframe expects switched network protocol.
The mainframe always bids to establish the line, regardless of
which station is to send first. If this parameter is used with
\$ADDRESS, the terminal will put the specified address out with
the first ACK.

```
```

\$TERMINAL TO TERMINAL (default $=\$$ CPU)

```

The other station is a terminal.
\$TIMEOUT \(=\) value \(\quad\)\begin{tabular}{l} 
(default \(=20)\) \\
Time in seconds before the line is considered idle. Acceptable \\
values are between 0 and 25 seconds, inclusive. Zero indicates \\
the inne
\end{tabular}

Time in seconds before the line is considered idle. Acceptable the line is never idle.
\$TRANSPARENT (default = no transparency)
Indicates that PWS is to transmit data in transparency.
CREATE OK MODIFY OPERATOR IDS FILE
Use PWS to create or modify file SYS.PWSIDS. DATAB0e0, the list of valid operator ID's. User Logon ID OPR is hard coded in the system as a bootstrap. All items except for the User Logon ID itself are optional. The items are positional. Indicate omitted items with two consecutive commas. The format of a user record and meaning of each item are shown:
\(X X X X X \quad, A A A, B B B, C C C, D D D, E E E, F F F, G G G, H H H, I I I, J J J, K K K, L L L, M A M A\)

XXXXXX User Logon ID - Upper case, 3 to 5 characters, leading alpha. Starts in column 1, followed by blanks.

AAA User Logon Password - Upper case, 1 to 8 characters in length. If ofitted, no password will be required for logon of this user.

BBB System Operator Privileges - Specify 'OPR' if the user is allowed to issue reserved system commands such as START or HOLD, or 'NOOPR' if not. The default is 'NOOPR'.

CCC Default Filetype - All upper case, 1 to 8 characters in length. Must be one of the valid filetypes defined by the system. If none is specified, the system default is used.

DDD Default Drive - \(\lambda\) single digit, corresponding to a logical drive number. If none is specified, the system default is used.

EEE Default LINENUM Setting - Specify 'NUM' to set LINENUM on for this user, or 'NONUM' to set LINENMM off. The default is 'NONUM'.

FFF Default PAGESIZE Setting - Specify the scrolling PAGESIZE to be used whenever a scroll page request is issued. Values may be 'FULL', meaning a full screen, 'haLF', meaning a half screen, or any number between 1 and 99 . If none is specified, the system wide default is used.

Default Comunications Destination - Reserved.
HHH Communications Console Authority - Reserved.
III Transmit/Print Queueing Priority - Reserved for future expansion.
JJJ Alarm Beeper Setting - Specify 'BEEP' to enable terminal alarm, or 'NOBEEP' to disable it. The default is 'BEEP'. If system does not have the terminal alarm hardware, this item is ignored.

KKK Input Erasure Setting - Specify 'ERASE' if the command input area is to be cleared after command execution. Specify 'NOERASE' if the command input area is not to be erased. The default is 'ERASE'.

\section*{DEFINING PWS FILE TYPES}

PWS files types are defined in module SBDFTP. To add or change a definition SNEDIT the change to the table or valid file types (FILTYP.TABLE). Each entry is four words long. The first three words contain an ASCII string left justified and blank-filled with maximum length of 8 . The last word contains a pointer to the set of values which is associated with the type.

The last entry in the table has binary zeroes in place of the string to indicate that it is the last entry. The pointer in the last entry points to the default values returned if the specified file type cannot be found.
\begin{tabular}{|c|c|c|}
\hline FILTYP.TABLE DCA & EQU \$ .MODEL & * MODEL ENTRY ** \\
\hline PZE & MODEL.VALUES \({ }^{\text {a }}\) & \\
\hline DCN & 0 & * LAST ERTRY ** \\
\hline DCN & 0 & \\
\hline DCN & 0 & \\
\hline P2E & DEFAULT.VALUES & \\
\hline
\end{tabular}

A model file type is shown below.
 *
- FILE TYPE HODEL FILE CHARACTERISTICS



\section*{DIRECTORY LIST UTILITY}

A COBOL utility program is provided for listing of the directory data maintained on PWS format files.

GENERAL:
This program searchs the directories of all assigned logical drives looking for PUS format files. When a files are found, the directory data is extracted, this data is then formatted and a list is output. The source for this program is in file SBDDLS.

EXECUTION:
This program requires NFE for execution.
1) To start execution, issue the command START PWSDIR from the MFE Operator's Console. PWSDIR is a control file which specifies execution of the directory extract program, ABDDXT; a sort; and the directory list utility program, ABDDLS.

To run the list program alone, issue the command START DIRLIST from the MFE Operator's Console.

If the directory list program is to accept its parameters from a terminal, the control file should include the following JCL:
// ABDDLS /EXTRACT=filename. //

If the directory list program is to accept its parameters from the control file and execute without operator intervention, the control file should include the following JCL:
// ABDDLS
/RUN =AUTO .
*. AUTO RUN JCL FOLLOWS
CTL: C=aaaaaaa, \(\mathrm{U}=\mathrm{bbbbbb}, \mathrm{N}=\operatorname{cecccc}, \mathrm{T}=\mathrm{dddddddd}, \mathrm{D}=e \mathrm{e}, \mathrm{M}=\mathrm{fffffff}\) /EXTRACT=filename
//
Field locations and lengths are fixed. The CTL: is a required identifier. The C, U, N, T, D, and A parameters specify criteria, file user, file member name, file type, drive, and date of last access. These are described in more detail below.
2) If the auto run option was not selected, the program will initialize the requestors screen to show:
PROGRAMMER WORKSTATION
DIRECTORY LIST UTILITY
EXTRACT PHASE
TAB OR ENTER REPORT CRITERIA: STANDARD
(STANDARD OR SPECIAL)
USER ID:
FILE NAME:
FILE TYPE:
LOGICAL DRIVE:
DATE LAST ACCESS:
3) To specify a selection of files based upon the criteria elements listed, input 'SPECIAL' into the first field, then input the values desired for the rest. All fields must be entered. To indicate that a field is not to be treated as part of the matching criteria, enter a TAB.

All fields input must match in the directory data or a failure to match will be assumed.
4) The defined files within this program are as follows:
\(/ A=\) Configuration file (used to extract customer name)
\(/ E=\) Extract file (pre-digested input to select and list)
\(/ R=\) Report file

\section*{LOG REPORT UTILITY}

A COBOL utility program is provided for listing of the PWS log data maintained on disc.

GENERAL:
Using the \(l o g\) files created by a PWS session or a series of files listed in control file. The data from these files is output in a formatted list. A summary of major event types is provided at the completion of processing. The source for this program is in file SBDRPT.

EXECUTION:
This program requires MFE for execution.
1) To start execution, issue the command START PWSREP from the MFE Operator's Console. PWSREP is a control file which specifies execution of the \(10 g\) report utility program, ABDRPT.

If the log report utility program is to accept its parameters from a terminal, the control file should include the following JCL:
// ABDRPT
//
If the \(10 g\) report utility program is to accept its parameters
from the control file and execute without requiring operator intervention, the control file should include the following JCL:
// ABDRPT
\(/ R U N=A U T O\).
- AUTO RUN JCL FOLLOWS

CTL: \(I=x x x x x x z x, F=\) yyyyyy,\(P=z z z z z z\)
//
Field locations and lengths are fixed. The CTL: is a required identifier. The I, F, and P parameters specify input type, file list, and print option. These are described in more detail below.
2) If the auto run option was not selected, the program will intialize the requestors screen to show:
\begin{tabular}{cc|}
\hline PROGRAMMER WORKSTATION \\
LOG ANALYSIS UTILITY \\
EXTRACT PHASE \\
FILE INPUTS VIA DISC/KEYBOARD: DISCFILE \\
ENTER NAME OF CONTROL FILE: & LOGLST \\
ENTER PRINT/NOPRNT OPTION: & PRINT \\
\end{tabular}
3) If a single file is to be processed, then the entry of any value other than DISCFILE will indicate this to the system, and the second display line will change to request the name of the file to be processed.

The PRINT/NOPRNT option allows for suppression of the output listing.

\section*{4) The defined files within this program are as follows:}
```

/A = Configuration file - (used to extract customer name)
/B = Log file
/C = Output work file
/D = Input file list file
/R= Report file

```

PWS LOG MESSAGE ORGANIZATION
Each message in the system console event log has a unique three digit code number. The code numbers are assigned in categories, as follows:
PREFIX RANGE DESCRIPTION

1
120- Terminal Logon/Logoff
140-
160- Comunications Subsystem
2
200- Hardware Errors, Except Communications
220- Communications Hardware Errors
240- System Software Errors
260- Communications Software Errors
Operational Messages
Operator Error

PWS/Host Commands and Responses
\(\begin{array}{ll}400- & \text { PWS Commands } \\ 450- & \text { Host Commands }\end{array}\)
\(\begin{array}{ll}450- & \text { Host Commands } \\ 460- & \text { Host Responses }\end{array}\)
Security
Terminal Access Security
File Access Security
520-

600- System Limitation Exceeded
640- Performance Monitoring

\section*{COMMUNICATIONS LINE TRACE}

The line trace capability must be optioned into the system before it can be used. The line trace is initiated by including a \$LOG record in the configuration file. When the line is started the trace area is allocated. The trace area is made up of free pages from MFE; it cannot be started if MFE has no pages available. The trace area is returned to MFE, when the user enters a STOP COMMLOG command. The commands that effect the trace while it is running are as follows:

STOP COMMLOG causes the line trace to stop and all memory allocated for the trace area is returned to MFE.

SUSPEND COMMLOG causes the line trace to stop. The memory is still allocated to the line trace area.

RESUNE COMMLOG causes the line trace to start running again after a SUSPEND command.

The line trace is useful for diagnosing communications problems but it should not be run when no problems exist as it impacts system performance. The proceedure for getting a line trace is as follows:
1) Put a \(\$\) LOG record in the communications configuration file.
2) When the event occurs that you wish to trace, execute a SUSPEND COMMLOG command from the PF6 screen. To write the trace area to disc, enter a DUMP command on the MFE Operator's Console.
3) Once the dump to disc has completed, a STOP COMMLOG command may be executed to return the trace area to MFE.
4) When MFE has been shut down, execute the TRACE utility. See the Communications Services and Utilities manual for details on how to run trace.

CALCULATING PWS MDMORY REQUIREMENTS
BD03 requests memory from MFE as necessary. The memory used by PWS can be calculated by adding up the items listed below. Fractional page results should be rounded up to the next whole page.
- Resident base is 33 pages. Add 1 page per line printer and 1 page for a card reader.
- 45 words are used for each printer buffer.
- Commications requires 4 pages when active. When comm is down, the memory returns to MFE. If both comm protocols are optioned, 2 additional pages are required for a total of 6 pages when comm is active.
- Line trace logging requires 2 pages when it is active.
- One fifth of a page is required for each potential terminal. As an example, if the PWS terminal logon limit is 20 terminals, 4 pages of memory are added to the size of the resident base.
- A pool of pages is preallocated by PWS during initialization. The number of preallocated pages is \(T / 4+2\), where \(T\) is the terminal logon limit.
- Memory is dynamically allocated and deallocated by each terminal as functions are performed. Requests are satisfied from the preallocated pool of pages until it is exhausted, then additional pages are requested from MFE. The amount of memory actually used by each terminal (not including waste) will fall somewhere in the following range:
- completely idle: 0 pages
- not in edit or view state, optimistic average: \(1 / 8\) page
- not in edit or view state, pessimistic average: \(1 / 4\) page
- view state: \(5 / 8\) page
- edit state, optimistic average: \(3 / 4\) page
- edit state, pessimistic average: 7/8 page
- max (copy involving an IDOS format file): 1-1/4 pages

\section*{FORMATTED DUMP PRINTING UTILITY}


Recommended JCL to print the most useful information is as follows:
```

// ABDFDM
/S,T=ALL .
/W=xx. Where }x=\mathrm{ . the current window during the crash.
//

```

To take a manual dimp:
A. Place the CPU in MANUAL mode.
B. Enter 071100001 (BRM 01) into the console keys.
C. Press the RESET, STEP, and LOAD switces in this order.
D. Clear HALT ( MANUAL mode to AUTO mode).
E. Clear HALT again when machine halts.

The dump has been written to disc (NOTE: If X3 is not \(=\) zero the dump may have failed.)

PRINTING AN MFE DUMP:
The processor MFEDMP prints a formatted dump of the MFE and/or the application pregrams.

MFEDMP is executed as follows.
1. Sign on to MFE as the SYSTEM CONSOLE OPERATOR.
2. Enter START MFEDMP or // MFEDMP into MFE SYSTEM CONSOLE SYSIN.
( you may wish to create a control file that has the MFEDMP option JCL that can be called at run time)
3. The MFEDMP options are:
// MFEDMP
/RAM OR /ANALYSIS. If specified this will cause either the formatted section or the octal ram dump to print. If omitted both sections will print.
/INPUT = FILENAME e DRIVE. If omitted defaults to "DUMP47 e \(0^{\prime \prime}\)
/WINDOW = WWW. Optional. Defaults to run time window.
/PHYSICAL. Optional. Print ram in physical page order not logical by window order.

ILOW = LL. (PAGE NO.) Optional. Low boundry,
\(/ H I G H=B H\). (PAGE NO.) Optional. High boundry.
/NAME \(=\) JOBNAME. Optional. Sets window to "JOBNAME" primary window.
// END OF JCL

PWS MEMORY LOAD LAYOUT


Note: Starting addresses after SYS vary according to configuration.

TASK CONTROL BLOCK FORMAT DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline WORD \({ }_{0}\) & \begin{tabular}{l}
SYMBOL \\
| TK.LINK
\end{tabular} & MEANING
Next free task block \\
\hline 01 & TK.PREVIOUS & Previous task block \\
\hline 02 & TK.RA & Saved (or returned) RA \\
\hline 03 & TK. X1 & Saved X1 \\
\hline 04 & TK. \({ }^{\text {2 }}\) & Saved X2 \\
\hline 05 & TK. X 3 & Saved X3 \\
\hline 06 & TK.RB & Saved RB \\
\hline 07 & TK.RP & Saved RP (restart address) \\
\hline 010 & TK.EVENT 1 & Wait/post event \\
\hline 011 & TR.EVENT2 & Wait/post event \\
\hline 012 & TK. TIMER 1 & Decremented every \(1 / 10\) sec \\
\hline 013 & TK. TIMER2 & Decremented every \(1 / 10\) sec \\
\hline 014 & & RESERVED \\
\hline 015 & TK.PAGES & Memory mngr assigned pages \\
\hline 020 & & RESERVED \\
\hline 021 & TR.WINDOW & Window number \\
\hline 022 & TK.HYPRWIN & Hyperspace windows \\
\hline 026 & TK.MOTHERCB & Addr of attaching Task CB - 0 if not a background task \\
\hline 027 & TR. COMM & Addr of Communications CB - 0 if no communications \\
\hline 030 & TK. TERMINAL & Physical terminal number (see WORD EXPANSION) \\
\hline 031 & TK. OPTION & Current option selected (see EXPANSION) \\
\hline 032 & TK.FLAGS & Flag bits (see EXPANSION) \\
\hline 033 & TK. LOCATION & Location (queue) descriptor \\
\hline 034 & TK. PAGESIZE & Scroll page size (see EXPANSION) \\
\hline 035 & TK. HORIZOFF & Horizontal scroll offset from left \\
\hline 036 & TK.ADJUST & Add to record col to get screen col \\
\hline 037 & TK. USERID & ID of user who is logged on - ASCII \\
\hline 042 & TK. DEFLTTYPE & Default file type - ASCII \\
\hline 045 & TK. DEFLTDRIVE & Default file drive \\
\hline 046 & TK.CONSAUTH & Console command authorization level \\
\hline 047 & TK, TABS & Tab stop bits relative to text \\
\hline 056 & TK.FIELDS & Fields table relative to text \\
\hline 066 & TK.LASTFIELD & Index to last entry in fields table \\
\hline 067 & TK. INCREMENT & Default sequence increment for file - decimal ASCII \\
\hline 072 & TK.CASE & Default case switch for file - NEG=UPPER ONLY, POS=BOTH \\
\hline 073 & TK. TEXTBUFF & Working store text buffer \\
\hline 0150 & TK. SEQBUFF & Working store sequence number buffer \\
\hline 0153 & TK.FLAGBUFF & Working store flags buffer \\
\hline 0156 & TK.ACCOUNT & Account ID - ASCII \\
\hline 0161 & TK.USER & User ID - ASCII \\
\hline 0164 & TK. NAME & File name - ASCII \\
\hline 0167 & TK.TYPE & File type - ASCII \\
\hline 0172 & TK. DRIVE & Logical drive \\
\hline 0173 & & RESERVED \\
\hline 0174 & TK.WORKDIRECB & Address of directory entry CB for work file \\
\hline 0175 & TK.WORKFILECB & Address of file CB for work file if open \\
\hline 0176 & TK. ORIGDIRECB TK.IDSDIRECB & Address of directory entry CB for orig file Address of ID'S file directory entry CB \\
\hline 0177 & TK.ORIGFILECB TK.IDSFILECB & Address of file CB for orig file if open Address of ID'S file file CB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline WORD & SYMBOL & MEANING \\
\hline 0200 & TK. INPTDIRECB TK.MERGDIRECB & Address of directory entry CB for input file if open Address of directory entry CB for merge source \\
\hline 0201 & TK.INPTFILECB TK.MERGFILECB & Address of file \(C B\) for input file if open Address of file CB for merge source file if open \\
\hline 0202 & TK.OUPTDIRECB TK.MERGEXTSEG & Address of directory entry CB for output file Address of file \(C B\) for merge extract if allocated \\
\hline 0203 & TK. OUP TFILECB & Address of file CB for output file if open \\
\hline 0204 & TK.CF.DIRECB & Address of directory entry CB for common file rtn \\
\hline 0205 & TR.CF.FILECB & Address of file CB for common file routines \\
\hline 0206 & TK.CF.BUFFER & Address of buffer address for common file routines \\
\hline 0207 & TK.CF.LENGTH & Sindsk record length for common file routines \\
\hline 0210 & TK.FLDNEXT & BP address of start of search \\
\hline 0211 & TK,LINEND & BP address of end of search plus 1 \\
\hline 0212 & TK.FLDSTART & BP address of start of current field \\
\hline 0213 & TK.FLDWIDTH & Length of current field in bytes \\
\hline 0214 & TK. OPRSAV & Save for err msg and commands (PF6) \\
\hline 0215 & TK. OPRFLG & \\
\hline 0216 & TK.OPRSV2 & \\
\hline 0217 & TK.OPRPRI & \\
\hline 0220 & \begin{tabular}{l}
TK.CMDISP \\
TK.RETADDR TK,ROW
\end{tabular} & \begin{tabular}{l}
ASCII inserted \(10 g\) data (SBDM2R/SBDLMR) Return, address (SBDCHR) \\
Row on screen (EDGET/EDPUT-SBDLRC)
\end{tabular} \\
\hline 0221 & \begin{tabular}{l}
TK.SEQINCR \\
TK.MOVEIT \\
TK.RECORDLOC \\
TK.DIRECBPTR \\
*TKD. NEWDIREC
\end{tabular} & ```
3 wds for key incr (SEQUENCE-SBDECM)
MOVE instruction (SBDCHR)
3 wd block for location (SBDECM+, SEE BELOW)
Addr saves for GETDIRECB
CB - DIRECB is new and not yet valid if bit 1 set
``` \\
\hline 0222 & TK.FILEIDPTR & (RESERV/ACCESS-SBDFAC) \\
\hline & TK.PASSCOUNT & Password retry count (PASCHK-SBDSEC) \\
\hline 0223 & TR. REQTABLE & DISC request table (SEE BELOW) \\
\hline 0224 & TK.SEQSTART TK.SAVNEXT & 3 wds for key strt (SEQUENCE-SBDECM) Parser working table (GETUSR-SEDSIN) \\
\hline 0225 & TK. SAVWIDTH & \\
\hline 0226 & TK, SAVEND & \\
\hline 0227 & TK.SAVSTART & \\
\hline 0230 & TK.CBEND TK.CBLENGTH & \[
\begin{aligned}
& \text { RSS } 0 \\
& \text { EQU TK.CBEND }+7 / 8 * 8
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{} \\
\hline 0221 & \begin{tabular}{l}
TK.RECORDLOC \\
TK. XEY \\
TK.MARK \\
TK. OFFSET
\end{tabular} & 3 wd block for location (SBDECM +) for both ext and int locates \\
\hline 0223 & \begin{tabular}{l}
TK. REQTABLE \\
TK. REQSTATUS \\
TK.REQDEVICE \\
TK.REQBUFFER \\
TK. REQSECTOR \\
TK.REQQUEUE
\end{tabular} & ```
DISC request table
for directory routines
(RESERV/ACCESS/INFORM/RELEAS-SEDFAC)
``` \\
\hline
\end{tabular}

\section*{WORD EXFANSION(S)}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & \\
\hline 0 & & Always ZERO (to prevent post) \\
\hline 1-7 & TKT.TASKMASK & Task number (ZERO BASED INDEX) \\
\hline 8 & TKT. ENTERED & Edit work file is currently entered \\
\hline 9 & TKT.LOGOFF & Forced logoff of this terminal \\
\hline 10 & TKT.MESSAGE & Message pending for this terminal \\
\hline 11 & TKT. TABSET & TABSET in process \\
\hline 12 & TKT.NOREFRESH & Console/monitor refresh temp disable \\
\hline 13 & TKT.MAPPED & This TASKCB is mapped (around screen) \\
\hline 14 & TKT. BACKGND & This a background task (not terminal) \\
\hline 15 & TKT. NOPASS & Bit set bypasses file password checks \\
\hline 16-23 & TKT, TERMASK & Physical terminal number \\
\hline \multicolumn{3}{|l|}{} \\
\hline SYMBOL & VALUE & MEANING \\
\hline TKO. NULL & EQU 0 Un & ndefined - terminal belongs to MFE \\
\hline TKO.LOGON & EQU 1 Lo & go screen is ready to accept a logon \\
\hline TKO.IDLE & EQU 2 Lo & ooking at option selection menu \\
\hline TKO.VIEW & EQU 3 VI & IEW a file - any type, no changes \\
\hline TKO. EDIT & EQU 4 ED & DIT a file - LE 80 columns, changes \\
\hline TKO.MON & EQU 5 Lo & ooking at PWS system monitor screen \\
\hline TKO, DIR & EQU 6 PV & WS file directory display \\
\hline TKO.CON & EQU 7 CO & Onsole for messages and commands \\
\hline \multicolumn{3}{|l|}{} \\
\hline BITS & SIMBOL & MEANING \\
\hline 0 & TKF.RESET & RESET requested \\
\hline 1 & TKF.CURSORON & Cursor is on screen \\
\hline 2 & TKF.LEAVE & Leave input after processing \\
\hline 3 & TKF. NODISPLAY & Password checking in process \\
\hline 4 & TKF.INHIBIT & Data keys inhibited \\
\hline 5 & TKF.ALARM & Alarm on this terminal \\
\hline 6 & TKF. OPERATOR & This terminal is sys OPR \\
\hline 7 & TKF.LOCKED & Keyboard locked \\
\hline 8 & TKF.LOCKSW & Leave locked on final exit \\
\hline 9 & TKF. INHIBSW & Leave inhibited on final exit \\
\hline 10 & TKF.FIELDS & Fields enabled \\
\hline 11 & TKF. TRUNCATE & Truncation allowed \\
\hline 12 & TKF.UPPERCASE & Translate input to upper case \\
\hline 13 & TKF.LINENUM & Line number at left for EDIT \\
\hline 14 & TKF.TOFSEEN & Top of file already seen on screen \\
\hline 15 & TKF. BOFSEEN & Bottom of file already seen on screen \\
\hline 16 & TKF. NOCURSOR & No cursor on this screen split \\
\hline 17 & TKF. DATACURS & Real cursor in data area (vs. emd area) \\
\hline 18 & TKF.FILECHANG & File changed since last save \\
\hline 19 & TKF.LINEINS & Line insert mode is active \\
\hline 20 & TKF.CHARINS & Char insert mode is active \\
\hline 21 & TKF. READCURS & Screen is read only \\
\hline 22 & TKF. NORMLEAVE & Normal enter leaves command in place \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & VALUE & MEANING \\
\hline TKP.FULL & EQU -1 C & Calculate data lines - 1 \\
\hline TKP. HALF & EQU -2 C & Calculate data lines / 2 \\
\hline \multicolumn{3}{|l|}{} \\
\hline SYMBOL & VALUE & MEANING \\
\hline TKC. NONE & EQU 0 & No access allowed \\
\hline TKC.PRESETS & EQU 1 & Only preset commands allowed \\
\hline TKC.ALL & EQU 2 & All commands allowed \\
\hline \multicolumn{3}{|l|}{} \\
\hline BITS & SYMBOL & MEANING \\
\hline 0 TKT & T. SAMELINE & Both temp marks are set on same line \\
\hline 1-21 RES & SERVED & \\
\hline 22-23 TK & T. DEFINED & \(0=\) None, \(1=\) One defined, \(2=\) Both defined \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline BITS & SYMBOL & VALUE & MEANING \\
\hline \multirow[t]{2}{*}{0-7} & TKD. UP & EQU 1 & Process upward \\
\hline & TKD. DOWN & EQU 2 & Process downward \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& 8-15 \\
& 6-23
\end{aligned}
\]} & RESERVED & & \\
\hline & TKD. ALL & EQU 1 & Process automatically \\
\hline & TKD.LINE & EQU 2 & Process only on current line \\
\hline & TKD.VERIFY & EQU 3 & Process only if verified \\
\hline
\end{tabular}
(The following words are valid for terminals only)
\begin{tabular}{|c|c|c|}
\hline LOC & SYMBOL & MEANING \\
\hline -01540 & TK.CURSORINX & Cursor location line/column \\
\hline -01537 & TK. DATACURINX & Data cursor line/column \\
\hline -01536 & TK. CMDCURINX & Command cursor line/column \\
\hline -01535 & TK.CURSORPTR & Cursor location byte pointer \\
\hline -01534 & TK. UNDERWORD & Contents word under cursor \\
\hline -01533 & TK.CURSORPTR2 & 2nd curs loc bytptr (FIND) (0 if none) \\
\hline -01532 & TK.UNDERWORD2 & Contents word under 2nd cursor (FIND) \\
\hline -01531 & TK.CURSORPTR3 & 3rd curs loc bytptr (FIND) (0 if none) \\
\hline -01530 & TR. UNDERWORD3 & Contents word under 3nd cursor (FIND) \\
\hline -01527 & TK.CURSORCNT & Cursor blink count \\
\hline -01526 & TK.CURFIELD & Index to current entry in fields table \\
\hline -01525 & TK. XLATEKEY & Addr of key translate table \\
\hline -01524 & TK. KEYSTROKE & Current keystroke \\
\hline -01523 & TK. PREVKEY & PREVIOUS KEYSTROKE \\
\hline -01522 & TK.FUNKEY & \\
\hline -01521 & TK.KEYMODPTR TKK.NOTFIRST & \begin{tabular}{l}
Pointer to keystroke modifier if any \\
Not first keystroke after modifier if bit 0 set
\end{tabular} \\
\hline -01520 & TK. VIDEOBEG & Addr of video area begin \\
\hline -01517 & TK.VIDEOEND & Addr of video area end( +1 ) \\
\hline -01516 & TK. LEFTMARG & Current left cursorinx limit \\
\hline -01515 & TK. RIGFTMARG & Current right cursorinx limit \\
\hline -01514 & TK.FIRSTDATA TK.FIRSTLINE & First logical screen data line ( 0 base) First logical sereen line \\
\hline -01513 & TK.LASTDATA & Last logical screen data line \\
\hline -01512 & TK. LINESDATA & Total logical screen data lines \\
\hline -01511 & TK.STATUSLINE TK.MSGLINE TK.LASTLINE & Logical screen status display line Logical screen message line Last logical screen line \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline LOC & SYMBOL & MEANING \\
\hline -01510 & TK. TNPUTLINE & Logical screen command input line \\
\hline & TK. PROMPTLINE & Logical screen prompt line \\
\hline -01507 & TK.LINES & Total logical screen lines \\
\hline -01506 & TK. TEMPMARKS & Temporary mark status \\
\hline -01505 & TK.ACCEPTOR & Saved context of input acceptor \\
\hline -01504 & TK. OLDSTRPTR & Byte ptr address of old string \\
\hline -01503 & TK. OLDSTRLEN & Length in bytes of old string \\
\hline -01502 & TK.NEWSTRPTR & Byte ptr address of new string \\
\hline -01501 & TK.NEWSTRLEN & length in bytes of new string \\
\hline -01500 & TK. SEARCHPTR & Current search location, byte ptr \\
\hline -01477 & TK. SEARCHINX & Current search location, line/col \\
\hline & TRS.FIRSTTIME & Starting line being searched if bit 0 set \\
\hline -01476 & TK.LEFTLIMIT & Leftmost column to start search \\
\hline -01475 & TK.RIGHTLIMIT & Rightmost column to start search \\
\hline -01474 & TK. DIRECTION & Direction of search/type of change \\
\hline -01473 & & RESERVED 4 WORDS \\
\hline -01467 & TK.SCREENINX & Screen position line/column \\
\hline -01466 & TK. CONSOLE & \\
\hline -01465 & TK. PF5CB & Address of PF5 control block \\
\hline -01464 & TK.ACCOUNT2 & Account ID, ASCII \\
\hline -01461 & TK.USER2 & User ID, ASCII \\
\hline -01456 & TK. NAME2 & File name, ASCII \\
\hline -01453 & TK. TYPE2 & File type, ASCII \\
\hline -01450 & TK. DRIVE2 & Logical drive \\
\hline -01447 & & RESERVED \\
\hline -01446 & TK.MESSAGE TK.MSGLENGTH & \begin{tabular}{l}
Buffer for messages/passwords \\
EQU \(\$\)-TK.MESSAGE* 3 Message buffer length in bytes
\end{tabular} \\
\hline & TK. SAVEFLAGS & Flag save area for password entry \\
\hline -01445 & TK.SAVERICHT & Right margin save area for password \\
\hline -01444 & TK.SAVELEFT & Left margin save area for password \\
\hline -01443 & TK.SAVECURINX & Cursor position save for password \\
\hline -01442 & TK.SAVEPROMPT & Prompt line save for password entry \\
\hline -01410 & & ** END OF MESSAGE BUFFER ** \\
\hline
\end{tabular}

FILE CONTROL BLOCK FORMAT DESCRIPTION



FILE TYPE CONTROL BLOCK FORMAT DESCRIPTION
\begin{tabular}{r|ll} 
WORD & \multicolumn{1}{l}{ SYMBOL } & MEANING \\
0 & FT. TABS & Tab stop bits \\
07 & FT.FIELDS & Field/margin columns \\
017 & FT.LASTFIELD & Index to last entry in above \\
020 & FT. INCREMENT & Default sequence Increment ASCII DEC \\
023 & FT.CASE & Upper case translate flag \\
024 & FT.SEQLEFT & Length of left sequence if any \\
025 & FT.SEQRIGHT & Length of right sequence if any \\
026 & FT.TEXTLEN & Length of text \\
027 & FT.RECLEN & Total record length
\end{tabular}

\section*{DIRECTORY CONTROL BLOCK FORMAT DESCRIPTION}
\begin{tabular}{rll} 
WORD & SYMBOL & MEANING \\
0 & DE. NEXT & Pointer to next DIRECB in chain \\
01 & DE.ACCOUNT & Account ID, ASCII \\
04 & DE.USER & User ID, ASCII \\
07 & DE. NAME & File name, ASCII \\
012 & DE.TYPE & File type, ASCII \\
015 & DE. DRIVE & Logical drive \\
016 & RESERVED & \\
017 & DE.READPASS & READ password, ASCII \\
022 & DE. WRITEPASS & WRITE password, ASCII \\
025 & DE.NEWUSER & Creation user, ASCII \\
030 & DE. NEWDATE & Creation date, ASCII \\
033 & DE.NEWTIME & Creation time, ASCII \\
036 & DE.MODUSER & Last mod user, ASCII \\
041 & DE.MODDATE & Last mod date, ASCII \\
044 & DE.MODTIME & Last mod time, ASCII \\
047 & DE.LASTUSER & Last access user, ASCII \\
052 & DE.LASTDATE & Last access date, ASCII \\
055 & DE.LASTTIME & Last access time, ASCII \\
060 & DE.RECORDS & Total records \\
061 & DE.SECTORS & Total sectors ( -1 for DIR) \\
062 & DE.CRASHFLAG & Crash flag (077777777 if set) \\
063 & DE.LASTSEC & Last sector address \\
064 & DE.FILEFLAG & File flag bits and char \\
065 & DE.SECCOUNT & Sector count - 1 \\
066 & DE.FIRSTSEC & First sector address \\
067 & DE.EXTRA & PWS user ID of owner, ASCII \\
071 & DE.MODTASK & Pointer to task with modify access (RESERVE) \\
072 & DE.MODTASK2 & Other task with access due to split screen \\
073 & DE.ACCESSES & Count of number of read/only accesses \\
074 & DE.READTASKS & Max of five tasks with read access \\
0101 & DE.FLAGS & Flags (see EXPANSION) \\
0102 & DE.CATSECTOR & Catalogue sector for this entry \\
0103 & DE.DIRSECTOR & Directory sector for this entry
\end{tabular}

DE.flags
\begin{tabular}{clll} 
BITS & SYMBOL & MEANING \\
0 & DEF.EXISTS & DEArectory entry (and file) exists on disc \\
1 & DEF.MODIFIED & Contents of file were modified \\
2 & DEF.EMPTY & No data sectors - only directory sector \\
\(3-15\) & & RESERVED \\
\(6-23\) & DEF.NOTSET & EQU 0 & Undetermined format \\
& DEF.PWSEDIT & EQU 1 & PWS EDIT format \\
& DEF.SINDSK & EQU 2 & IDOS SINDSK format \\
& DEF.CONTIG & EQU 3 & IDOS CONTIGUOUS format
\end{tabular}
CCBTAB -- COMmunications Control Block Table
One CCBTAB entry per configured Communications PORT.
Inactive PORTS have zero COMMCB addresses.
Active PORTS contain the COMMCB address for the line.
COMMCB -- Communications Control Block

\begin{tabular}{|c|c|c|}
\hline Word & Symbol & Usage \\
\hline 0 & ML. SNDRQT & \$XFER Request table for Sending and Control functions. \\
\hline 010 & ML. RCVRQT & \$XFER Request table for Receiving. \\
\hline 020 & ML. INITTED & Initialized flag. ( \(0=\) INTM20 not completed.) \\
\hline & MLC.AUTOANS & Bit 0 - Auto answer configuration \\
\hline & MLC. TERM & Bit 1 - Terminal to terminal configuration \\
\hline & MLC.INITTED & Bit 23 - MLAM initialized \\
\hline 021 & ML. LOGGING & Logging value. \\
\hline & & 0 - No logging. \\
\hline & & 1 - Log only line data. \\
\hline & & 2 - LOg only \$XFER request/response tables. \\
\hline 022 & ML. MAPBUFFER & Mapped buffer flag. \\
\hline & & Bit \(0=\) True, Mapped buffers in use. \\
\hline 023 & ML. XPARENT & Transparency Indicator. \\
\hline & MLX. OUTXPARENT & NT Bit 0 - Transmit transparent \\
\hline & MLX OUTXLATE & . Bit 1 - Translate transparent transmitted data \\
\hline & mLX. INXLATE & Bit 2 - Translate transparent received data \\
\hline 024 & ML. MONIND & Monitor screen offset - line indicator display. \\
\hline 025 & ML. CONFIGID & Configuration File Identifier (USER.FILE.TYPEQDRIVE). \\
\hline 043 & ML.STATS & MLAM - \$STATS Status indicator \\
\hline 044 & ML. INDEX & MLAM - SINDEX Current state indicator \\
\hline 045 & ML. INSTREAMS & MLAM - \$LNSTR Acceptable stream mask \\
\hline & & Bit 16 - Accept printer stream 0 \\
\hline & & Bit 17 - Accept printer stream 1 \\
\hline & & Bit 22 - Accept punch stream 1 \\
\hline & & Bit 23 - Accept punch stream 0 \\
\hline 046 & ML. OUTSTREAMS & MLAM - \$LNSTD Transmit stream number \\
\hline 047 & ML.AVAILREC & MLAM - eavirc available records mask \\
\hline & & Bit 15 - Record for console \\
\hline & & Bit 16 - Record for printer stream 0 \\
\hline & & Bit 17 - Record for printer stream 1 \\
\hline & & Bit 22 - Record for punch stream 1 \\
\hline & & Bit 23 - Record for punch stream 0 \\
\hline 050 & ML. Streamin & MLAM - ESTRIN Received stream number \\
\hline 051 & ML. RECTYPE & MLAM - RECTYP Record type \\
\hline 052 & ML. CARRIAGE & MLAM - RECCC Carriage control character \\
\hline 053 & ML. RECLENGTH & MLAM - RECLEN Received record length \\
\hline 054 & ML. FLUSHFLAG & MLAM - POSTFL Transmit flush flag \\
\hline 055 & ML. INBUFFERMLAM & 4 receive record buffer. \\
\hline 0135 & ML. OUTBUFFER & MLAM transmit record buffer. \\
\hline
\end{tabular}



PRNTCB -- Printer Control Block
\begin{tabular}{|c|c|c|}
\hline Word & Symbol & Usage \\
\hline 0 & PR.RETURN & Return from interrupt address (not used under MFE) \\
\hline 01 & PR.BRM1 & BRM to MFE STUB ( not used under MFE) \\
\hline 02 & PR.CUTWORD & Printer CUT word \\
\hline 03 & PR.BRM2 & BRM to MPKICK ( not used under MFE) \\
\hline 04 & PR.FILEID & Printer File ID (ACCOUNT. USER.FILE.TYPEEDRIVE) \\
\hline 022 & PR.MONITNAME & Monitor screen displacement for file display \\
\hline 023 & PR.FLAGS & Action flags: \\
\hline & PR.ATTEN & Bit 0 - Attention \\
\hline & PR.ERROR & Bit 1-Bad line printer status \\
\hline & PR.FLASH & Bit 2 - Message is being flashed \\
\hline & PR.MAX & Bit 3 - Printing at maximum speed \\
\hline & PR.CANCEL & Bit 4 - Printer canceled (unused) \\
\hline & PR.SUSPEND & Bit 5 - Printer suspended (unused) \\
\hline & PR.STOP & Bit 6 - Stop command (unused) \\
\hline & PR.CLOSE & Bit 7 - Close has been issued \\
\hline 024 & PR.SWITCH & Current Allocation Word \\
\hline 025 & PR.ID & Printer number ( \(1-4\) ) \\
\hline 026 & PR. NEXTBUFF & Address of next buffer \\
\hline 027 & PR.THISBUFF & Address of record being printed \\
\hline 030 & PR.WAITTASK & Address of waiting TASK CB \\
\hline 031 & PR.CHARSET & Character set \\
\hline 032 & PR. TRANSLATE & Translation table index \\
\hline 033 & PR. BUFFTOTAL & Total print record buffers \\
\hline 034 & PR.BUFFEMPTY & Number of empth print record buffers \\
\hline 035 & PR.CBEND & Unused \\
\hline
\end{tabular}

CARDCB -- Card Reader Control Block
\begin{tabular}{cll} 
Word & Symbol & Usage \\
& & \\
0 & CD.RETURN & Return from interrupt address (not used under MFE) \\
01 & CD.BRM1 & First level interrupt (MFE stub - not used under MFE) \\
02 & CD.CUTWORD & Card Reader CUT word \\
03 & CD.BRM2 & BRM to CDKICK (not used under MFE) \\
04 & CD.NEWFILEDB & NEWFILE Data Block, for use by NEWFIL \\
04 & CDN.FILEID & File ID Data Block (ACCOUNT.USER.FILE.TYPEEDRIVE) \\
012 & CDN.NAME & File name \\
024 & CDN.TERMIN & File terminator characters \\
025 & CDN.ACTFLAGS Action flags \\
027 & CDN.QUEUEHD & Queue Head address \\
030 & CD.MONITNAME & Monitor screen offset to file name display \\
031 & CD.FLAGS & Flag word \\
& CDF.ATTEN & Bit 0 - Attention \\
& CDF.STOP & Bit 1 - Stop requested (at shutdown) \\
& CDF.ABORT & Bit 2 - Abort requested \\
032 & CDF.ACTIVE & Bit 3 - Reader has a file opened \\
033 & CD.STATUS & Hardware status word \\
034 & CD.BUFFER & Address of the record buffer \\
035 & CD.WAITTASK & Address of the TASKCB \\
036 & CD.TASKECB & Task Event Control Block \\
\(037-071\) & CD.STATE & Card reader driver routine state index
\end{tabular}

SPOLCB -- Virtual Printer Control Block
\begin{tabular}{|c|c|c|}
\hline Word & Symbol & Usage \\
\hline 0 & SP.STATE & State of the Virtual Printer \\
\hline & SPS.AVAILABLE & O - Not allocated \\
\hline & SPS,SKIPPING & 1 - Skipping (Start of print to start line number) \\
\hline & SPS. SEARCHING & 2 - Searching for \$\$SPOOL record \\
\hline & SPS.WRITING & 3 - Writing to a disc file (\$\$SPOOL found) \\
\hline & SPS.PRINTING & 4 - Printing (\$\$SPOOL not found) \\
\hline 01 & SP.FLAGS & Unused \\
\hline 02 & SP.COMMFILECB & Common File Control Block \\
\hline 06 & SP.INDEX & Virtual printer index \\
\hline 07 & SP.ID & ASCII virtual printer number \\
\hline 010 & SP.PHYSICAL & Physical printer number - 0 if none allocated \\
\hline 011 & SP. TRANSLATE & Translation table index \\
\hline 012 & SP.EJECTCOUNT & Count of page ejects \\
\hline 013 & SP. RECCOUNT & Count of records \\
\hline 014 & SP. RECORDKEY & Key appended to each record (record number) \\
\hline 017 & SP.CBEND & Unused \\
\hline
\end{tabular}

DIRECTORY SECTOR FORMAT DESCRIPTION
\begin{tabular}{|c|c|c|}
\hline WORD & SYMBOL & MEANING \\
\hline 0 & DS. HEADER & Sector header (see EXPANSION) \\
\hline 02 & & RESERVED \\
\hline 010 & DS. DBID & Lit flags this as PWS DIRSEC 'PWS' protected HO bits \\
\hline 011 & DS.ACCOUNT & Account ID, ASCII \\
\hline 014 & DS.USER & User ID, ASCII \\
\hline 017 & DS. NAME & File name, ASCII \\
\hline 022 & DS. TYPE & File type, ASCII \\
\hline 025 & DS. DRIVE & Logical drive \\
\hline 026 & & RESERVED \\
\hline 027 & DS. READPASS & READ password, ASCII \\
\hline 032 & DS.WRITEPASS & WRITE password, ASCII \\
\hline 035 & DS. NEWUSER & Creation user, ASCII \\
\hline 040 & DS. NEWDATE & Creation date, ASCII \\
\hline 043 & DS. NEWTIME & Creation time, ASCII \\
\hline 046 & DS.MODUSER & Last mod user, ASCII \\
\hline 051 & DS.MODDATE & Last mod date, ASCII \\
\hline 054 & DS.MODTIME & Last mod time, ASCII \\
\hline 057 & DS. LASTUSER & Last access user, ASCII \\
\hline 062 & DS.LASTDATE & Last access date, ASCII \\
\hline 065 & DS.LASTTIME & Last access time, ASCII \\
\hline 070 & DS. RECORDS & Total records count \\
\hline 071 & DS.CRASHFLAG & Crash flag (077777777 if set) \\
\hline 072 & DS.SECTORS & Total sectors ( -1 for DIR) \\
\hline 073 & DS.LASTSEC & Last sector address \\
\hline 074 & DS.FILEFLAG & File flag bits and char \\
\hline 075 & DS.SECCOUNT & Sector count - 1 \\
\hline 076 & DS.FIRSTSEC & First sector address \\
\hline 077 & DS. EXTRA & PWS user ID of owner, ASCII \\
\hline 0101 & DS.ACCOUNT2 & Account ID, ASCII \\
\hline 0104 & DS.USER2 & User ID, ASCII \\
\hline 0107 & DS. NAME2 & File name, ASCII \\
\hline 0112 & DS. TYPE2 & File type, ASCII \\
\hline 0115 & DS.DRIVE2 & Logical drive \\
\hline 0116 & & RESERVED \\
\hline \multicolumn{3}{|l|}{DS. HEADER} \\
\hline WORD & BITS & MEANING \\
\hline 0 & 0-11 & IDOS constant ( \(=01372\) ) to specify whole sector \\
\hline & 12-23 & First 12 bits previous sector address \\
\hline 1 & \[
0-5
\] & Last 6 bits of previous sector address \\
\hline
\end{tabular}

HEADER SECTOR FORMAT DESCRIPTION


SECTOR HEADER
WORD BITS MEANING
\begin{tabular}{|c|c|c|}
\hline 0-1 1 & \multicolumn{2}{|l|}{Standard IDOS sector header (see DIRECTORY SECTOR DESC.)} \\
\hline 2 & 0-23 & File header sector address \\
\hline 3 & \[
\begin{gathered}
0 \\
1 \\
2-3 \\
4
\end{gathered}
\] & \begin{tabular}{l}
If set indicates '" START OF FILE "' sector \\
'* END OF FILE "' sector \\
RESERVED \\
Header sector
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline WORD & BITS & MEANING & \\
\hline \multicolumn{4}{|l|}{0-1 | Standard IDOS sector header (see DIRECTORY SECTOR DESC.)} \\
\hline \multicolumn{4}{|l|}{2 1 0-23 Header sector address} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{4-6 1 RESERVED} \\
\hline 7 & \[
\begin{gathered}
0-7 \\
8-15 \\
16-23
\end{gathered}
\] & \begin{tabular}{l}
FL.ROOM - ro \\
FL.LAST. REC \\
FL.FIRST. REC
\end{tabular} & \begin{tabular}{l}
om left in sector \\
- index to last record pointer \\
- index to first record pointer
\end{tabular} \\
\hline \multicolumn{4}{|l|}{10-377 Chained data records as described below} \\
\hline 0 & \(0-7\)
\(8-15\)
\(16-23\) & \[
\begin{aligned}
& \text { FL.SIZE.REC - } \\
& \text { FL.BACK.REC - } \\
& \text { FL.FORE.REC - }
\end{aligned}
\] & \begin{tabular}{l}
record size \\
index to record back pointer \\
index to record forward pointer
\end{tabular} \\
\hline \multicolumn{4}{|l|}{1-3 | 9 digit ASCII sequence number, right justified/zero filled} \\
\hline 4 & \[
\begin{aligned}
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& 8 \\
& 9 \\
& 10 \\
& 11 \\
& 12 \\
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& 19 \\
& 20 \\
& 21 \\
& 22 \\
& 23
\end{aligned}
\] & \begin{tabular}{l}
LRF.MODIFIED \\
LRF. TOP \\
LRF. BCTTOM \\
LRF. HIGHLIGHT \\
RESERVED \\
LRF. NOTCOMP \\
MKB. USER 1 \\
MKB.USER2 \\
MKB. USER3 \\
MKB. USER 4 \\
MKB. USER5 \\
MKB.USER6 \\
MKB. USER7 \\
MKB.USER8 \\
MKB, USER9 \\
MKB. USERO \\
MKB.APLSAVE \\
MKB.FIOSAVE \\
MKB. TOP \\
MKB. BOTTOM \\
MKB. TEMP 1 \\
MKB. TEMP2 \\
MKB.CURLINE 1 \\
MKB.CURLINEO
\end{tabular} & ```
record has been modified
record is the start of file dummy record
record is the end of file dummy record
record between pointers should be highlighted
record is not compressed
** User definable marks
** For all marks, if bit is set then mark
    points at this record *".
Internal temporary mark for application save
Internal temporary mark for file IO save
Top of file mark
Bottom of file mark
First temporary mark
Second temporary mark
Split 1 current line mark
Split O current line mark
``` \\
\hline \multicolumn{4}{|l|}{5-XX i \# DATA RECORD - SEE DATA COMPRESSION DESCRIPTION **} \\
\hline
\end{tabular}

\section*{FORMAT OF PWS CHAINED FILE}

\section*{LAST SEC \| FIRST SEC \\ IDOS DIRECTORY ENTRY}

PWS CHAINED FILE
"DIRECTORY SECTOR"
"HEADER SECTOR"
"* START OF FILE *"
"DATA SECTOR"
n** END OF FILE **"

PWS files are chained with the standard IDOS chained file structure with internal enhancements defined in the file itself. See the descriptions of the Directory, Header, and Data sector formats.

PWS DATA SECTOR FORMAT

Where: \(\begin{aligned} \text { A } & =\text { Standard IDOS chained sector header } \\ B & =\text { PWS file header sector address } \\ & C=\text { Sector flags } \\ D & =\text { Reserved words in header } \\ \text { E } & =\text { Room left in sector } \\ \text { F } & =\text { Last } \text { sector offset } \\ \text { G } & =\text { First sector offset } \\ & =\text { Record size } \\ I & =\text { Back record pointer } \\ \mathrm{J} & =\text { Forward record pointer } \\ \text { K } & =9 \text { digit ASCII sequence number } \\ \text { L } & =\text { Record flags } \\ \text { X } & =\text { Word compressed data }\end{aligned}\)
For more detailed descriptions see the DATA SECTOR DESCRIPTION.
Each data sector is comprised of chained data records linked with forward and backward pointers, defining word offsets from the beginning of the sector. valid word offsets range from 010-0372, allowing for the 8 data sector header words and a 5 word record header for each record.

\section*{COMPONENT LIST}
```

Most PWS file names are of the form tBDxxx where t = type of file:
S for MACROL source
P for Pascal source
M for MACROL macro library source
R for Relocatable
L for compiled MACROL macro library
A for Absolute
C for Control files
G for directory files
xxx = unique three characters identifying the file
BD03 is released on a WRTAPE, containing the following categories:
C Control Files
A Absolute Utility files
R Relocatables
S Source
G Development Control Files and Utilities
D Canned Demo Files

```
The categories below represent internal component categorization:
 INT -- INITIALIZATION
 SYS - MAIN SYSTEM RESIDENT
 TRM -- TERMINAL HANDLING
 COM -- COMMAND PROCESSORS
 BGD -- BACKGROUND PROCESSING
 CHM -- COMMUNICATIONS INTERFACE
 SPC -- SPECIAL ASSEMBLY OR COMPLILE REQUIREMENTS
 CTL - CONTROL FILES
 MAC - PWS MACRO LIBRARY FILES
 PRD - FILES NEEDED ON NEW CUSTOMER PACK
 UPG -- FILES NEEDED TO UPGRADE EXISTING CUSTOMER PACK
TAP - FILES NEEDED ON TAPE FOR TRANSFER TO CUSTOMER PACK
WRK -- ALL ELSE NEEDED FOR WORKING SYSTEM DURING DEVELOPNENT
UTL -- UTILITIES
PMP - FILES TO BE PLACED ON THE PRODUCT MASTER PACK
DMO -- FILES USED FOR THE CANNED PWS DEMO

SEVERAL CATEGORIES ASSUME STRUCTURED NAMES E.G.. S FOR SOURCE, R FOR RELOCATABLE, ETC. BOTH THE SOURCE AND THE RELOCATABLE NAME ARE INCLUDED IN THE DIRECTORY

GBDDIR,GBDDIR,C; CTL, PMP. PWS COMPONENT FILE
GBDINS,GBDINS,C; CTL.
SYSTEM CONTROL FILES
CBDCPS,CBDCPS,C;. CTL,PMP. COPY FROM PMP TO CUS - >DO THIS FIRST<
CBDCPN , CBDCPN, C; . CTL, PMP.
CBDCPU,CBDCPU,C; CTL, PMP
CBDCPT,CBDCPT, C; CTL, PMP
CBDCTN,CBDCTN,C; . CTL,TAP
CBDCTU,CBDCTU,C; CTL,TAP.
CBDQFF, CBDQFF, C; CTL, PRD, UPG, PMP
CBDINS,CBDINS,C; CTL.
PWSGEN, PWSGEN, C; CTL, PMP
PRODUCTION PACK FILES
PAINT ,PAINT ,A; PRD,UPG,PMP.
ABDPWS, ABDPWS,A; . PRD,UPG.
RBDBAS, RBDBAS,C; . PRD,UPG.

PMP INSTALLATION DIRECTORY FILE -

COPY FROM PMP TO NEW SYSTEM
COPY FROM PMP TO UPGRADE
COPY FROM PMP TO TRANSFER TAPE
COPY FAOM TRANSFER TAPE TO NEW SYSTEM
COPY FROM TRANSFER TAPE TO UPGRADE
FORMAT QUEUE FILE
DO PMP INSTALLATION
INVOKE PWSGEN

PAINT ABSOLUTE
PWS ABSOLUTE
LOADER SYMBOL SAVE FILE

PWS CANNED DEMO FILES
JOBCRD, JOBCRD, D; . DMO. BKDEMO, BKDEMO, D; . DMO. SEND ,SEND ,D; DMO. RETDSK,RETDSK,D; . DMO. SMPDAT, SMPDAT,D; . DMO. PWSIDS, PWSIDS, D; . DMO. PWSOFF, PWSOFF, D; . DMO. PWSTXT, PWSTXT,D; . DMO.

LOG REPORT PROGRAM ABSOLUTE DIRECTOFY LIST EXTRACT ABSOLUTE DIRECTORY LIST SELECT/PRINT ABSOLUTE FORMATTED DUMP PROGRAM ABSOLUTE
CONFIGURATION LIST FILE
CONFIGURATION EQUATE FILE
IDLE SCREEN LOGO
COMMUNICATION CONFIGURATION
PWS START PROCEDURE
PWS DIRECTORY UTILITY INIT PROCEDURE
PWS DIRECTORY UTILITY SELECT PROCEDURE
PHS LOG REPORT UTILITY PROCEDURE
QUEUE FILE FORMATTER
LARGE 8260 DIRECTORY SORT EXAMPLE
LARGE 8260 DIRECTORY GET UTILITY
LARGE 8260 DIRECTORY PUT UTILITY
MLAM 8437 ABSOLUTE
LAM 8437 EBCDIC POINT-TO-POINT ABSOULTE
LAM 8437 ASCII POINT-TO-POINT ABSOLUTE
LAM 8437 EBCDIC MULTIPOINT ABSOLUTE
LINE TRACE INTERPRETER
8437 DEBUGGING TOOL

BCS JOB CARD FOR CANNED DEMO
SAMPLE COBOL SOURCE - ORIGINAL COPY
JCL TO COMPILE SAMPLE COBOL SOURCE
JCL TO RETRIEVE A FILE FROM BCS
TEST DATA FOR SAMPLE COBOL PROGRAM
CANNED DEMO ID'S FILE
BCS SIGNOFF CARD
IVWORD TEXT AREA WITH PWS DEMO DOCS

SBDLRC, \(\mathrm{FBDLRC,S;} \mathrm{}. \mathrm{SYS}\). SBDM2I, RBDM2I,R; . REL, PMP. SBDM2R, RBDM2R,S; . CMM. SBDM2T, RBDM2T, S; . CMM. SBDHEM, RBDMEM, S; . SYS. SBDMIZ,RBDMIZ,S; . INT. SBDMLP,RBDMLP,S; . BGD. SBDMRG, RBDMRG, \(\mathrm{S} ;\). TRM. SBDMSG, RBDMSG,S; . SPC. SBDOIZ, RBDOIZ,S; . INT. SBDOLO, RBDOLO,S; . COM. SBDOL 1, RBDOL 1,S; . COM. SBDOL2,RBDOL2,S; . COM. SBDOL 3, RBDOL \(3, \mathrm{~S} ;\). COM. SBDOPR, RBDOPR,S; . TRM. SBDOPT,RBDOPT,S; . TRM. SBDPER, RBDPER,S; . SYS. SBDPF5,RBDPF5,S; . TRM. SBDPF6,RBDPF6,S; . TRM. SBDPRT,RBDPRT,S; . BGD. SBDPS2,RBDPS2,S; . SYS. SBDPSR, RBDPSR,S; . SYS. SBDQUE, RBDQUE, S; . SPC. SBDQWR, RBDQWR, S; . COM. SBDRDC, RBDRDC, \(\mathbf{S}_{\text {; }}\). SYS. SBDRFS, RBDRES,S; . TRM. SBDSOD, RBDSOD, S ; SYS. SBDSCL,RBDSCL,S;. TRM. SBDSEC, RBDSEC,S; . SYS. SBDSET,RBDSET,S; . SYS. SBDSIN, RBDSIN, S; . TRM. SBDSPL, RBDSPL, S ; . BGD. SBDSPT,RBDSPT,S; . TRM. SBDSUB, RBDSUB, \(\mathrm{S} ;\). TRM. SBDSUP, RBDSUP,S; . SYS. SBDSYS, RBDSYS, \(\mathrm{S} ;.\) SPC, PMP. SBDTAB, RBDTAB,S; . TRM. SBDTIM, RBDTIM,S;. SYS. SBDTMP, RBDTMP, S; . SYS. SBDTOP, RBDTOP,S; SYS. SBDTPL,RBDTPL, \(\mathrm{S}_{;}\). BGD. SBDTYP, RBDTYP, \(\mathrm{S}_{\mathrm{F}}\) : BGD. SBDUIO, RBDUIO, S; . SYS. SBDVAR, RBDVAR,R;. SYS. SBDVEC, RBDVEC,R; SYS.

SYSTEM GENERATION CONTROL FILES CBDPGN,CBDPGN,C; . CTL, PMP. CBDLMF, CBDLMF, C; . CTL, PMP.

DEVELOPMENT CONTROL FILES CBDASM,CBDASM,G;. CTL. CBDBLD, CBDBLD,G; CTL. CBDFS 1, CBDFS \(1, G ;\). CTL.

LOGICAL RECORD ACCESS GET/PUT PWS
mLAM RECEIVE TASK
mLam transmit task
MEMORY MANAGEMENT
mbyory management initialization
MULTIPLE PRINTER DRIVER
EDITOR MERGE COMMAND
ERROR MESSAGES
OPERATOR SCREEN INIT
QUEUE OPERATOR COMMANDS
OPERATOR SYSTEM COMMANDS
OPERATOR DEVICE COMMANDS
OPERATOR PRINT ALLOC COMMANDS
OPERATOR COMMANDS
FUNCTION XEYS - OPTION SWITCHING
INTERNAL PERFORMANCE MONITOR
DIRECTORY LIST
CONSOLE VIEWING
PRINTER
STRING PARSING AND LOOKUP CONTINUED
STRING PARSING AND LOOKUP
QUEUE/DEQUEUE
QUEUE WRITE TO DISC
FILE RENAME/DELETE/COPY
CONSOLE/MONITOR SCREEN REFRESH
SCREEN ZERO DISPLAY
FUNCTION KEYS - DATA SCROLLING
FILE SECURITY CHECKS
EDITOR SET STUFF
SIGN ON/OFF
VIRTUAL PRINTER SPOOLING
FUNCTION KEYS - SCREEN SPLITTING
TERMINAL SUBROUTINES
SUPERVISOR
OPTIONAL SYSTEM
TAB KEY
TIMER ROUTINES
TIMELY ROUTINES
END OF LOAD MODULE
8121 IDOS/MFE SUBSTITUTES
8121 DRIVER
USER INTERFACE SUBROUTINES
OVERLAY STUFF
hYPERSPACE VECTOR TABLE

PWSGEN PROGRAM
LOAD MFE VERSION

ASSEMBLE ALL OF PWS
build all pws absolutes and relocs MICROFICHE BUILD - GENERATE SPOOL FILES

\section*{SYNTAX SUMMARY}

\section*{RESERVED HORDS}

The following is a list of reserved words:
ACCEPT COMMA EGI

ACCESS
ACTUAL +
ADD
ADVANCING
AFTER
ALARM +
ALL
ALPHABETIC
ALSO
ALTER
alternate
AND
APOSTROPHE
\(+\)
APPLY +
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT
AUDIBLE +
AUTHOR
BATCH +
BEFORE
BEGINNING +
BLANK
BLOCK
воттом
BY
CALL
CANCEL
CD
C
CH
CHARACTER
CHARACTERS
CLOCK-UNITS
Close
COBOL
CODE
CODE-SET
collating
COLUMN
\begin{tabular}{|c|c|c|}
\hline COMMA & EGI & INDEX \\
\hline COMMUNICATION & ELSE & INDEX-SET + \\
\hline COMP & EMI & INDEXED \\
\hline COMPUTATIONAL & ENABLE & INDICATE \\
\hline COMPUTE & END & INITIAL \\
\hline CONFIGURATION & END-OF-PAGE & INITIATE \\
\hline CONTAINS & ENTER & INPUT \\
\hline CONTROL & ENVIRONMENT & InPUT-OUTPUT \\
\hline CONTROLS & EOP & INSPECT \\
\hline COPY & EQUAL & InStallation \\
\hline CORR & ERROR & INTO \\
\hline CORRESPONDING & ERROR-ITEM + & INVALID \\
\hline COUNT & ERROR-ITEM-1 + & IS \\
\hline CURRENCY & ERROR-ITEM-2 + & \\
\hline & ERROR-ITEM-3 + & JUST \\
\hline data & ESI & JUSTIFIED \\
\hline DATE & EVERY & \\
\hline DATE-COMPILED & EXCEPTION & KEY \\
\hline DATE-WRITTEN & EXIT & KEY-IN + \\
\hline DAY & EXTEND & KEYBOARD + \\
\hline DE & & \\
\hline DEBUG-CONTENTS & FD & LABEL \\
\hline DEBUG-ITEM & FILE & LAST \\
\hline DEBUG-LINE & FILE-CONTROL & LEADING \\
\hline DEBUG-NAME & FILLER & LEFT \\
\hline DEBUG-SUB-1 & FINAL & LENGTH \\
\hline DEBUG-SUB-2 & FIRST & LESS \\
\hline DEBUG-SUB-3 & FOOTING & LIMIT \\
\hline DEBUGGING & FOR & LIMITS \\
\hline DECIMAL-POINT & FROM & LINAGE \\
\hline declaratives & & LINAGE-COUNTER \\
\hline DELETE & generate & LINE \\
\hline DELIMITED & GIVING & LINE-COUNTER \\
\hline DELIMITER & GO & LINES \\
\hline DEPENDING & GREATER & LINKAGE \\
\hline DESCENDING & GROUP & LOCK \\
\hline DESTINATION & & LOW-VALUE \\
\hline DETAIL & HEADING & LOW-VALUES \\
\hline DISABLE & HIGH-VALUE & \\
\hline DISPLAY & HIGH-VALUES & MEMORY \\
\hline DIVIDE & & MERGE \\
\hline DIVISION & I-0 & MESSAGE \\
\hline DOWN & I-O-CONTROL & MODE \\
\hline DUPLICATES & IDENTIFICATION & MODULES \\
\hline DYNAMIC & IF & MOVE \\
\hline & IN & MULTIPLE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline MULTIPLY & RANDOM & SEQUENTIAL & UNSTRING \\
\hline & RD & SET & UNTIL \\
\hline Native & READ & SIGN & UP \\
\hline NEGATIVE & RECEIVE & SI2E & UPON \\
\hline NEXT & RECORD & SORT & USAGE \\
\hline NO & RECORDS & SORT-MERGE & USE \\
\hline NOT & REDEFINES & SOURCE & USING \\
\hline NUMBER & REEL & SOURCE-COMPUTER & \\
\hline NUMERIC & REFERENCES & SPACE & VALIDATE + \\
\hline & RELATIVE & SPACES & Value. \\
\hline OBJECT-COMPUTER & RELEASE & SPECIAL-NAMES & values \\
\hline OCCURS & REMAINDER & STANDARD & VARYING \\
\hline OF & REMOVAL & STANDARD-1 & \\
\hline OFF & RENAMES & START & WHEN \\
\hline OMITTED & REPLACING & Status & WITH \\
\hline ON & REPORT & STOP & WORDS \\
\hline OPEN & REPORTING & STRING & WORKING-STORAGE \\
\hline OPTIONAL & REPORTS & SUB-QUEUE-1 & WRITE \\
\hline OR & RERUN & SUB-QUEUE-2 & \\
\hline ORGANI ZATION & RESERVE & SUB-QUEUE-3 & ZERO \\
\hline OUTPUT & RESET & SUBTRACT & ZEROES \\
\hline OVERFLOW & RETURN & SUM & ZEROS \\
\hline & REVERSED & SUPPRESS & + \\
\hline PAGE & REWIND & SYMBOLIC & - \\
\hline PAGE-COUNTER & REWRITE & SYNC & * \\
\hline PERFORM & RF & SYNCHRONIZED & / \\
\hline PF & RH & & ** \\
\hline PH & RIGHT & TABLE & > \\
\hline PIC & ROUNDED & tallying & < \\
\hline PICTURE & RUN & TAPE & \(=\) \\
\hline PLUS & & TERMINAL & \\
\hline POINTER & & TERMINATE & \\
\hline POS + & SAME & TEXT & \\
\hline POSITION & SCREEN + & THAN & \\
\hline POSITIVE & SD & THEN + & \\
\hline PRINTING & SEARCH & THROUGH & \\
\hline PROCEDURE & SECTION & THRU & \\
\hline PROCEDURES & SECURITY & TIME & \\
\hline PROCEED & SEGMENT & TIMES & \\
\hline PROGRAM & SEGMENT-LIMIT & TO & \\
\hline PROGRAM-ID & SELECT & TOP & \\
\hline PROGRAM-LEVEL + & SEND & TRAILING & \\
\hline QUEUE & SENTENCE & TYPE & \\
\hline Quote & SEPARATE & & \\
\hline QUOTES & SEQUENCE & UNIT & \\
\hline
\end{tabular}
+ Four-Phase Extension

\section*{PICTURE CHARACTERS}
\begin{tabular}{ll}
\(X\) & Any character \\
A & Alphabetic character or space \\
9 & Numeric character \\
\((n)\) & The preceding character is repeated \(n\) times \\
S & Operational sign \\
P & Scale factor \\
\(V\) & Assumed decimal point
\end{tabular}

EDITINC CHARACTERS

\section*{EXTERNAL NAMES}
\begin{tabular}{ll}
SD-a & Chained Disc Files (Organization is SEQUENTIAL) \\
MT-a & Magnetic Tape \\
CR-a & Card Reader \\
PR-a & Line or Character Printer \\
DC-a & Contiguous Disc Files (Organization is RELATIVE) \\
RF-a & Contiguous Disc Files (Organization Is RELATIVE) \\
DI-a & DISAM Disc File (Organization is INDEXED) \\
MK-a & MKAM Disc File (Organization is INDEXED) \\
D4-a & DATA IV/70 Non-indexed Disc File (Organization is BATCH) \\
BI-a & DATA IV/70 Indexed Disc File (Organization is INDEX-SET)
\end{tabular}

\section*{NOTES:}

Syntactically valid program may be either semantically invalid or incorrect. The various FD clauses may be in any order.

Record description clauses for a single entry may be in any order except for REDEFINES which must be first if present.

\section*{NOTATION:}

GQ TO data-name
\{ choose-1 \}
\{ choose-2 \}
[optional part]
[repeated]...

Reserved words are capitalized.
Required reserved words (keywords) are underlined. Optional reserved words are not underlined. Generic names for user-supplied words are lower-case.

Vertical stacking within brackets or braces indecates a choice of two or more options one of which is selected.

Brackets indicate that the enclosed words and phrases may be used or omitted.
An ellipsis (3 periods) indicates that the preceding group may be repeated as many times as necessary.
```

COBOL LANGUAGE FORMATS
IDENTIFICATION RIVISION EORmAt:
IDENTIFICATION DIYISION.
PROGRAM-ID. program-name.
[AUTHOR. [comment-entry ... .]]
[INSTALLATION. [comment-entry ... .]]
[DATE-HRITTEN. [comment-entry ... .]]
[DATE-COMPILER, [comment-entry ... .]]
[SECURITX. [comment-entry ... .]]

```

\section*{ENYIRONMENT DIVISION EORmat:}

\section*{ENZIRONMENT DIVISION.}

CONEIGUBATION SECTION.

\section*{SPECIAL-NAMES.}

[CURRENCX SIGN IS literal]
[DECIMAL-POINT IS COMMA]
[QVOTE IS APOSTROPHE].
[INPUT-QUTPUT SECTION.
EILE-CONTROL. entry.
[I-Q-CONTROL. entry.]]

\section*{FILE CONTROL FORMAT:}
```

Format For SD, MT, PR, And CR Files:
[EILE-CONTROL.
| SELECT file-name
ASSIGN TO external-file-name ...
[ ORGANIZATION IS SEOUENTIAL ]
[ ACCESS MODE IS SEQUENTIAL ]
[FILE STATUS IS file-status].]...]
Format For DC And RF Files:
[EILE-CONTROL.
f SELECT file-name
ASSICN TO { DC-a }
QRGANIZATION IS RELATIVE
[ ACCESS MODE IS { SEQUENTIAL [RELATIVE KEY IS relative-key]}
[FILE STATUS IS file-status].}...]
Format For DISAM (DI) and MKAM (MK) Files:
[EILE-CONTROL.

```

```

            RECORD KEY IS record-key [ WITH DUPLICATES ]
            [{ KEYFIELD IS } data-name-1 [data-name-2] ...]
            { KEYFIELDS ARE }
            [[ ALTERNATE RECORD KEY IS alternate-key [WITH DUPLICATES ]]...
            [{ KEXEIELD IS } data-name-3 [data-name-4] ...]
            { KEYFIELDS ARE }
            [ INDEX-SET KEY IS index-key] [ SAME KEY AREA ]]
            [ FILE STATUS IS file-status]
            [ PROGRAM-LEYEL IS program-level].}...]
    ```
```

Format For DATA IV BATCH (D4) Files:
[EILE-CONTROL.
f SELECT file-name
ASSIGN TO D4-a ...
ORGANIZATION IS BATCH
[ ACCESS MODE IS SEQUENTIAL ]
BATCH KEY IS batch-key
[ BATCH STATUS IS batch-status]
[ FILE STATUS IS
file-status ].}...]
Format For DATA IV INDEX-SET (BI) Files:
[EILE-CONTROL.
{ SELECT file-name
ASSIGN TO
QRGANIZATION IS INDEX-SET
[ ACCESS MODE IS { RANDOM { SEOUENTIAL }
INDEX-SET KEY IS index-set-key
RECORD KEY IS record-key
[ INDEX-SET STATUS IS index-set-status]
[ FILE STATUS IS file-status ].]...]

```
I-O-CONTROL Format:
[I-O-CONTROL.
[RERUN ON BF-r EVERY \{ END OF REEL \(\quad\) integer RECORDS \} OF file-name-1]...
 [SAME AREA FOR file-name-2 [,file-name-3]...]...
 [APPLY keyboard-variables TO KEYBOARD
 [WITH LENGTH] [INYALID KEY]].]

DATA DIVISION format:
DATA DIYISION.
[EILE SECTION.
ffile-description-entry.
record-description-entry.\}...]
[HORKING-STORAGE SECTION.
\{record-description-entry.\}....]
[SCREEN SECTION.
\{record-description-entry.\}...]
[LINKAGE SECTION.
\{record-description-entry.\}...]
```

    ED file-name
    [ BLOCK CONTAINS integer-1 { { RECORDS ( CHARACTERS }]
    [ RECORD CONTAINS [integer-2 TO ] integer-3 CHARACTERS]
        LABEL { RECORD IS { }{息TANDARD }
    ```

```

    [ CODE-SEI IS alphabet-name].
    01 record-name record-description-entry.
RECORD DESCRIPTION FORMAT:
General Format 1:
01{ data-name [descriptive-clause...] }.
[sub-level-no { data-name [descriptive-clause...] }.]...
General Format 2:
77 data-name descriptive-clause... .
Descriptive-Clause Format (File Section):
[ REDEEINES data-name]
[ BLANK WHEN ZERO ]
{{ {星吕TIEIED }}}\mathrm{ RIGHT ]
[ OCCURS integer TIMES [ INDEXED BY index-variable...] ]
[ { PICTURE } IS data-picture ]
[ [ USAGE IS ] DISPLAX ]
[[ SIGN IS] { LEADING SEPARATE CHARACTER
{{ SYNCHRONIZED } { RIGHT }
Descriptive-Clause Format (Working-Storage):
[ REDEFINES data-name]
[ BLANK WHEN ZERQ ]

```

```

        [ OCCURS integer TIMES [ INDEXED BY index-variable...] ]
    ```

```

                                { COMPUTATIONAL }
        [ [ USAGE IS ] { COMP
                        {INDEX }
            [[ SIGN IS] { LEADING SEPARATE CHARACTER 
    ```

```

            [ value IS literal ]
    ```
```

Descriptive-Clause Format (Screen Section):
[ REDEFINES data-name]
[ BLANK WHEN ZERQ ]
[
{ JUSTIFIED } RIGHT ]
{ JUST } OCCURS integer TIM
[ OCCURS integer TIMES [ LNDEXED BY index-variable...] ]
{ PICTURE } IS data-picture ]
[ [ USAGE IS ] { {ISPLAY } } } ]
[[ SIGN IS] { LEADING SEPARATE CHARACTER [RAINING [ SEPARATE CHARACTER ]} ]
[{ {OSITION }

```

Descriptive-Clause Format (Linkage Section):
 [REDEEINES data-name]
 [BLANK WHEN ZERQ]
 [\{ JUSTIEIED \(\left.\frac{\text { JUST }}{\text { JCI }}\right\}\) RIGHT]
 [\(\frac{\operatorname{CCCURS}}{0 C E}\) integer TIMES [INDEXED BY index-variable...]]
 [\(\left\{\begin{array}{l}\text { PICTURE } \\ \text { PIC }\end{array}\right\}\) IS data-picture]
 \{ COMPUTATIONAL \}
 [[USAGE IS] \(\left\{\frac{\text { COMP }}{\text { DISPLAY }}\right\}\)
 \(\{\) INDEX \}
 [[SIGN IS] \{是 TRADING SEPARATE CHARACTER \(\quad\) SEPARATE CHARACTER]\}]
 \(\left\{\begin{array}{l}\text { SYNCHRONIZED } \\ \{\text { SYNC }\end{array}\right\}\left[\frac{\text { RIGHT }}{\text { LEFT }}\right]\)]
```

PROCEDURE RIVISION format:
PROCEDURE DIVISION [USING data-name-1 [data-name-2] ...].
DECLARATIVES.
[ section-name-1 SECTION.
USE AFTER SEYBOARD INPUT.
[paragraph-name.
use-after-keyboard-procedure.]...]
[ section-name-2 SECTIEN.

```

```

    [paragraph-name.
            debugging-procedure.]...]
            { file-name-1...}
    ```

```

                                    I-Q
        [paragraph-name.
            error-recovery-procedure.]...]
    END DECLARATIVES.]
    paragraph-name.
    main program
    PROCEDURE DIVISION STATEMENT FORMATS:
ACCEPT record-name
Format 1:

```

```

Format 2:
ADD {numeric-data-name-1 } { numeric-data-name-2 }...
GIVING {年价eric-data-name-m {-edited { [ROUNDED ]
[ ON SIZE ERROR imperative-statement ]
ALTER procedure-name-1 TQ [PROCEED TQ ] procedure-name-2
CALL "external-name" [ USING { parameter-name { entry-point-literal }...]

```

```

                DELETE file-name RECORD [ INYALID KEY imperative-statement].
                    DISPLAX {lata-name { {igurative-constant }
    ```

Format 1:
```

DIVIDE { { numeric-data-name-1 } {NTO numeric-data-name-2
[ ROUNDED ] [ON SIZE ERROR imperative-statement]

```

Format 2:
```

DIYIDE {numeric-data-name-1} INTQ {numeric-data-name-2}
GIVING {numeric-data-name-3) [numeric-edited
[ON SIZE ERROR imperative-statement]

```

Format 3:
```

DIVIDE {numeric-data-name-2} BY {numeric-data-name-1}

```

```

    [ON SIZE ERROR imperative-statement]
    ```

\section*{EXIT [PROGRAM].}

Format 1:
Ge TO.
Format 2:
```

GO TO procedure-name-1 [, procedure-name-2 ...
DEPENDING ON integer-data-name .

```
```

IF {relational-condition,} {imperative-statement-1}
{class-condition } { NEXT SENTENCE },
[ ELSE {imperative-statement-2.}

```

Format 1:
INSPECI data-item TALLYIHE count FOR \(\left\{\begin{array}{l}\left\{\begin{array}{l}\text { ALL character-1 } \\ \text { LEADING character-1 } \\ \text { CHARACTERS }\end{array}\right\} \\ \left\{\begin{array}{l}\text { BEFQRE }\end{array}\right\} \text { INITIAL character-2 }\end{array}\right\}\)

Format 2:

Format 3:

```

KEX-IN screen-data-name

```
[AND YALIDATE
[length, type, [picture]]]
[BEGINNING AT character-pos]
```

MOYE { identifier-1 } Titeral { identifier-2 [, identifier-3]...

```

Format 1:
\{ numeric-data-name-1 \}
MULTIPLI \{ numeric-1iteral-1 \} BY numeric-data-name-2
[ROUNDED] [ON SIZE ERRDR imperative-statement]

Format 2:
\begin{tabular}{|c|c|c|}
\hline MULITPLY & \(\left.\begin{array}{l}\text { numeric-data-name-1 } \\ \text { numeric-literai-1 }\end{array}\right\} B X\) & numeric-data-name-numeric-literal-2 \\
\hline GIVING & \[
\left\{\begin{array}{l}
\text { numeric-data-name-3 } \\
\{\text { numeric-edited }
\end{array}\right\}
\] & ROUNDED] \\
\hline & & \\
\hline
\end{tabular}

OPEN \(\left\{\begin{array}{l}\left\{\frac{I N P U T}{Q U T P U T}\right\} \\ \{-Q\end{array}\right\}\) file-name[file-name-2]...\}...

PERFORM procedure-name-1 [\(\left\{\begin{array}{l}\text { \{ THRU } \\ \text { THROUGH }\end{array}\right\}\) procedure-name-2]
[\(\left.\begin{array}{l}\text { \{ integer-data-item } \\ \text { \{ numeric-ifteral }\end{array}\right\}\) IIMES]

Format 1 (sequential access):
READ [REVERSED] file-name [NEXT] RECORD [INTO identifier]
[AT END imperative-statement]
Format 2 (random access):
READ file-nawe RECORD [INTQ identifier][KEY IS alternate-key]
[INYALID KEY imperative-statement]

REWRITE record-name [ERQM identifier]
[INYALID KEY imperative-statement]

Format 1:

Format 2:
SET \{positive-integer-name\}... TQ index-variable
Format 3:

Format 4:

START file-name [KEY IS data-name]
\(\operatorname{STOP}\left[\begin{array}{l}\{\text { Iiteral }\} \\ \text { RUN }\end{array}\right]\)

Format 1:

Format 2:

> SUBTRACT \(\begin{array}{l}\text { \{numeric-data-name-1] [} \\ \text { \{numeric-ifteral-1 }\end{array}\) [, \(\left.\begin{array}{l}\text { numeric-data-name-2] } \\ \text { numeric-ifiteral-2 }\end{array}\right] \ldots\)
> FROM \(\left.\begin{array}{l}\text { \{numeric-data-name-m\} } \\ \text { \{numeric-literal-m }\end{array}\right\}\) GIVING \(\begin{aligned} & \text { \{numeric-data-name-n\} } \\ & \text { \{numeric-edited }\end{aligned}\)
[BOUNDED] [ON SIZE ERROR imperative-statement]
Format for Printer Files:
HRITE record-name [FROM identifier]

Format for Tape and Disc Files:
HRITE record-name [FROM identifier]
[INVALID KEY imperative-statement]

Format of Relational Condition:

Format of Class Condition:
\(\left.\begin{array}{l}\{\text { display-data-item } \\ \{\text { key-in-data-item }\end{array}\right\}\) IS [NOT] \(\begin{aligned} & \{\text { NUMERIC } \\ & \{\text { ALPHABETIC \} }\end{aligned}\)
Format of Combined Condition:

\section*{PROGRAM CHANGES REQUIRED TQ USE COBOL'74}

The changes required to an existing COBOL program originally written with NTP/200 (ANSI COBOL) to compile on COBOL'74 are primarily changes involving files. A list of the Keywords that have been deleted or changed and a list of the required new ones follows this brief summary of the changes. Following the lists of keywords, required and optional changes to each division are described in detail. This is followed by a description of the job control changes involved.

The Keywords deleted include NOMINAL KEY, ACTUAL KEY, FILE LIMIT, PROCESSING MODE. The file type ISAM has been eliminated. The file type, Relative filled, (RF) has been added. The verb EXAMINE has been replaced by the verb INSPECT.

Keywords now required include ORGANIZATION for all dise files except for nonindexed sequential files. ALTERNATE RECORD KEY is required for DISAM files with secondary keys and DUPLICATES is required if a secondary key has duplicates.

A COMMENT statement must have an in column 7. No other character will suffice. Statements using REMARKS or NOTE are no longer allowed.

\section*{KEYHORDS THAT HAVE BEEN ELIMINATED BY COBOL'74}

ACTUAL KEY
AT
BACKWARD
EXAMINE
FILE LIMIT
FOR MULTIPLE REEL
FOR MULTIPLE UNIT
FOUR-90 M1
FOUR-90 M2
IS-a (ISAM files)
NOMINAL KEY
NOTE
NUMBER OF SECONDARY
PROCESSING MODE
REMARKS
SEEK
SUPPRESS
tally
THEN
UNIT (in I-O-CONTROL)
UNTIL FIRST

\section*{KEYHORDS ADDED BX COBOL'74}

\section*{alternate record key (was nominal key)}

BATCH (organdzation)
BATCH KEY
BATCH STATUS
CHARACTERS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3
DEBUG-CONTENTS
DYNAMIC
ERROR-ITEM
EXCEPTION
EXIT PROGRAM
FOUR-90-MOD2 (was FOUR-90 M2)
FOUR-90-MFE
i
INDEX (organization)
INDEX SET (organization)
INDEX-SET KEY
INDEX-SET STATUS
INSPECT
native
ORGANIZATION
RELATIVE (organization)
RELATIVE RECORD KEY (was ACTUAL key)
REVERSED
SIGN IS LEADING SEPARATE CHARACTER
SIGN IS TRAILING SEPARATE CHARACTER STANDARD-1
through
USE FOR DEBUGGING ON ALL PROCEDURES
WITH DEBUGGING MODE
WITH DUPLICATES

\section*{name changes}
\begin{tabular}{lll}
\begin{tabular}{l}
Was for \\
COBOL'68
\end{tabular} & \begin{tabular}{l}
IDOS \\
COBOL'74
\end{tabular} & \begin{tabular}{l}
MFE \\
COBOL'74
\end{tabular} \\
\hline CBLERA & CBLERR & CBLMER \\
CBLGEN & C74GEN & C74GEN \\
COBLIB & C74LIB & C74LB2 \\
COBOL & COBL74 & COBL74 \\
DATAIV/70 & DATA IV & DATA IV \\
FLDCOB & CBEFLD & C74FL2 \\
LOADOV & LOADER & LOADER \\
P:OGTA & PBEOGT & PBEOGT \\
P:OG7T & PBEOG7 & PBEOG7 \\
P:OKAA & PBEOKA & PBEOKA \\
R:OGTA & RBEOGT & RBEOGT \\
R92ALI & STLLIB & MFELIB
\end{tabular}

IDENTIFICATION DIVISION CHANGES
Bequired shanges
REMARKS has been eliminated. The asterisk in column 7 must be used for comment:

\section*{Reguired Chanzes}

FOUR-90M1 has been eliminated from both the SOURCE-COMPUTER and OBJECT-COMPUTER paragraphs. FOUR-90M2 has been changed to FOUR-90-MOD2.

If an INPUT-OUTPUT section is included in the program, a FILE-CONTROL paragraph must be included even if the program uses no files.
Each file type has been assigned a specific file organization type which must be specified in the File-Control paragraph. Sequentially organized files (SD, \(M T\), \(P R\), and \(C R\)) files may be specified implicitly. All other types must be explicitly specified.

FILE STATUS is now only two characters long. In addition, it is no longer used for setting and resetting Batch Directory flags for DATA IV files.

RF Files: A new file type has been added that is compatible with the COBOL'68 DC files. COBOL'68 DC files are not compatible with COBOL'74 DC files. To use a COBOL'68 DC file with a COBOL'74 program, the file must be converted into an RF (Relative filled) file by changing the IDOS directory entry. FOREWORD TXAREA files may be used as fF files without conversion or change. RF files are defined as ORGANIZATION IS RELATIVE.

COBOL'74 DC FIles: ORGANIZATION IS RELATIVE is a new requirement for DC files. RELATIVE KEY must be specifled instead of ACTUAL KEY for DC files in random access mode. COBOL'74 DC files contain area assigned by the system to flag the presence of records in record slots. This space amounts to one word of storage for each 24 records in the file. Because COBOL'68 DC files do not have this space, they are incompatible with COBOL'74 DC files.

DISAM Files: ORGANIZATION IS INDEXED is a new requirement for DISAM files. RECORD KEY rather than NOMINAL KEY is used to access DISAM files by primary key. ALTERNATE RECORD KEY is used to access DISAM files by alternate keys that are unique. ALTERNATE RECORD KEY WITH DUPLICATES is required for access by alternate keys that are not unique. KEY IS record-key is used in place of NOMINAL KEY with the START verb in sequential access to change the sequence. INDEX-SET KEY is used with alternate key with duplicates to specify a record other than the first record with the same key.

ISAM Files: ISAM (IS-a) has been eliminated as a file type.
DATA IV Batch (D4) Files: ORGANIZATION IS BATCH is a new requirement. BATCH KEY is required in place of NOMINAL KEY to specify the job, batch and program level when opening a \(D 4\) batch. It is required to specify the program level when closing a batch. BATCH STATUS takes the place of FILE STATUS for the purpose of setting and resetting batch directory flags in the BAM interface.

DATA IV Index-Set (BI) Files: ORGANIZATION IS INDEX-SET is a new requirement. INDEX-SET KEY is required in place of NOMINAL KEY to specify the index set and program level when opening a \(B I\) batch. It is required to specify the program level when closing a batch. INDEX-SET STATUS takes the place of FILE STATUS for the purpose of setting and resetting batch directory flags in the BAM interface.

I-O-CONTROL: The option "UNIT" has been deleted.

\section*{Ontional Changes}

In the OBJECT-COMPUTER paragraph, a program collating sequence clause has been added. This has no effect on FOUR-Phase COBOL programs since only the NATIVE collating sequence (ASCII) is used.

FOUR-90-MFE has been added as an OBJECT-COMPUTER selection.
The pound sterling has been added as choice of literal under SPECIAL-NAMES. WITH DEBUGGING MODE has been added. It is a compile time switch that tells the compiler whether or not to compile source code identified by a 'D" in column 7 or source code in the USE FOR DEBUGGING Section of the Declaratives. If this lause is omitted, these statements are treated as comments by the compiler. Debugging is explained in the discussion of Declaratives in Section 4.

DYNAMIC mode for DISAM and MKAM files alloks both random and sequential access

\section*{DATA DIYISION CHANGES}

\section*{Required Changes}

Except for Division headers, section names, paragraph names, Declaratives header and End Declaratives, FD level indicator, and 01 and 77 level numbers, no other items are allowed in the \(A\) margin. Previously, other level numbers and statements following an FD keyword or level number on the same line were allowed.

The target of a REDEFINES must be the originally defined field. (Prior releasm allowed the target field to be a field with a REDEFINES attribute.

FILE STATUS must be defined as a two-character item rather than a two-word item in Working-Storage.

DC Files: The data name given in the RELATIVE KEY clause in the Environment Division must be defined in Working-Storage as an unsigned unscaled integer. ACTUAL KEY was previously used.

The DC file structure is changed from prior releases of COBOL. One word of de= is added to a block for each 24 records or fraction of 24 records in the block. If disc sectors are tightly packed, these overhead bytes may cause th size of the file to expand dramatically. Two solutions are: change the record length or blocking factor. Unload the old DC file using a previous release of COBOL and reload using release BEO1 or subsequent.

DISAM Files: The data name given in the INDEX-SET KEY clause in the Environment Division must be defined in Working-Storage as a group item consisting of two Computational items. NOMINAL KEY was previously used for this function.

DATA IV D4 Files: The data name given in the BATCH KEY clause in the Environment Division must be defined in Working-Storage as a group item 18 bytes long to specify the job name, batch name, and program level. NOMINAL KEY was previously used fpr this function.

DATA IV BI Files: The data name given in the INDEX-SET KEY clause in the Environment Division must be defined in Working-Storage as a group item 6 bytes long to specify the index set number and program level. NOMINAL KEY was previously used for this function.

\section*{Optional Changes}

CODE-SET has been added. It specifies the character set to be used to represent data on a non-mass-storage media such as a printer. The six options are: NATIVE, STANDARD-1, EBCDIC, PRINT-96, PRINT-64, UKWTRD, HONEYWELL.

File Section: The record description has a SIGN clause to allow further specification of numbers specified as signed numeric in the PICTURE clause. SIGN clause allows specifying the operational sign as a leading or trailing separate character. By default, it is imbedded. This clause, when used at the group level, specifies the sign location of each signed numeric item within th: group. If SEPARATE is specified, a storage location is allocated for the sign. Code conversion as needed is handled automatically when a number with a separate character position for the sign is used in computations.

The stroke character (/) has been added as an editing character.
The "B" character is now allowed in the picture character-string of an alphabetic item.

The pound-sterling character is now allowed as either a fixed or floating data. picture character.

\section*{Changes in procedure division}

\section*{Beguired Cbanges}

The Declaratives part must begin with a paragraph name. Likewise, the main program must also start with a paragraph name. These paragraph names are required even though they are never referenced.

The word NOT is no longer permitted to precede the first identifier in a relation condition or class condition.

The EXAMINE statement has beer changed to an INSPECT statement.
The storage area TALLY no longer exists.
The START statement has been changed replacing the keywords USING KEY with the keywords KEY IS.

READ BACKWARD has been changed to READ REVERSED (DISAM).
COPY statement rules have been liberalized. COPY restrictions have been removed. SUPPRESS and AT drive-n have been deleted from the COPY statement. Member has also been deleted. COPY library (member) has been changed to COPY library.

Opening a DC file for OUTPUT clears the file. DC files are now sensitive to the presence or absence of a record in a slot.

The NOTE statement has been deleted.
The word THEN is no longer supported in IF statements.
IF statements may now be nested.

\section*{Optional Changes}

USE FOR DEBUGGING has been added to the Declaratives part providing a convenient tool for debugging. User-written procedures in this section are executed whenever a specified procedure is about to be executed. Thus, the number of times a given procedure is executed can be tabulated. DEBUG-ITEM and ERROR-ITEM are new special registers that can be examined for further analysis during debugging. ERROR-ITEM contains the 3-byte code formerly in the second word of the file status buffer.

The USE AFTER STANDARD ERROR has been changed to allow the use of EXCEPTION in place of ERROR. It also allows the use of INPUT, OUTPUT, and I-O in place to filename.

The EXIT PROGRAM option has been added to the EXIT statement.
The word THROUGH has been added as an alternative to the word THRU
The OPEN statement has been changed to allow more than one file to be opened with the same OPEN statement.

An optional MOVE INTO statement has been incorporated into the READ statement.
An optional MOVE FROM statement has been incorporated into the WRITE and REWRITE statements.

The keyword NEXT has been added to the READ statement and is required when retrieving DISAM records sequentially from a file that has been declared DYNAMIC access.

PAGE has been added as an option to the WRITE statement to advance the printen to the next page.
```

LOADOV cannot be used. LOADER must be used instead.
The IDOS release AD-32 must be used with COBOL'74. The IDOS release AD - 32
utilities (UGEN) requires about 5000 sectors. If a 8230 disc is to be used,
don't use UGEN. Instead, use COPY to copy only the utilities needed.
All COBOL programs must be recompiled to run under BEO2.
COBOL now runs under MFE if desired. To run under MFE, a COBOL program must be
changed and recompiled to specify FOUR-90-MFE as the object computer and to
interact with MFE to sign on and sign off terminals. The load step must be
changed to specify C74LB2 and MFELIB rather than C74LIB and STLLIB. Also, RDS-
SY, MFETOP, and SETUP must be specified.
Until MIDOS is updated to the IDOS AD32 level, it cannot be used with COBOL'74.

```

\section*{REFERENCES}

COBOL'74 Larguage Definition Manual, Document SIV/70-45-10.
COBOL'74 Programmer's Guide, Document SIV/70-45-9.

\section*{COBOL COMPILER TEMP EILES}
```

Compiler passes: 1. Listing/Syntax Analysis
2. Symbol Table Build
3. Storage Generation
4. Attribute Merge
5. Binary Tree
6. Data Division Map
7. Code Generation
8. Final Assembly
9. Cross Reference
10. Error Report

```

The following TEMP:x files are used by the compiler, where \(x\) is the file letter in the first column. The second column describes the file usage and lists what pass creates it (e.g. out 2) and what passes read it (e.g. in 3).

G Production Numbers, Procedure Division out 1; in 2, 4, 5, 9 .
P Production Numbers, Other Divisions
out 1; in 2, 3.
C Internal Source
out 1; in 2 .
\(S\) Constant String
out 2; in 3 .
T Attribute File out 2; in 3.
A Symbol Table Indices out 2; in 3.
B Attribute Pointers out 2; in 4, 6, 9.
E Edited Pictures out 2; in 3.
F Data Item Attributes out 3; in 4, 6, 9 .
W Procedure Division Literals out 2; in 7.
D, 201 Text - (Changes to 2) out 3; in 8.
\(M\) Data Items for Procedure Division out 2; in 4, 9.
H Merged Attributes out 4; in 5.
J Binary Tree File out 5; in 7.
\(L\) Ltext
out 7; in 8.
D 02 Text - (Second Value for \(D\)) out 7; in 8.
Error file
out 1, 2, 3, 4, 5, 7; in 10 .

ERROR FILE FORMAT
```

TEMP:N is the file which all passes log errors to, and from which the error
printout is formatted. The format of each error record is:

```

\section*{Field}

Error Number

Line number
Severity
Pass 1
Other info 30
Zero

Length
4
6
1

1
30
3
```

ABEDMP is a debug utility which may be used to format some of the compiler TEMP files to the printer. The format is:
// ABEDMP
/x where $x$ is the file letter
//

```

\section*{PASCAL ERROR MESSAGES}

The compiler, executing as a PASCAL program, may take a PASCAL error under unexpected circumstances. The format of the error message is:
```

            PASCAL OBJ LIB ERROR xxx
            where xxx equals:
    DSC File or disc error from IDOS routines $FOPEN or RSCR
        (May indicate no more room on disc)
    EOF Attempted to read past end of file
        (Compiler may be looking for required syntax in source file)
    OVD Disc error during overlay manipulation from PASCAL $OVRLY
    OVR Dynamic storage area of memory overwritten by a PASCAL overlay read
    RAM No memory left in heap storage for sector buffer, record buffer,
        or a new procedure
    REC No memory left in stack for recursive procedure call
    TAP TAPE7, 8, or }16\mathrm{ was used for a file name. PASCAL does not provide
        tape support.
    ```

\section*{COMPILER TABLE SIZES}

The following describes the current table sizes used by the COBOL compilers. With BEO3-A and later the table sizes under the MFE compiler were expanded. The table type is listed on the left followed by the size for each type of the three compilers and the name of the PASCAL source modules which specify table sizes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TABLE & MEE & \multicolumn{5}{|l|}{COMPILER SOURCE MODULE AND SIZE EQR} \\
\hline SYMBOL TABLE & \begin{tabular}{l}
SBE2TC \\
SBE4TC \\
SBE6BA \\
SBE9TC
\end{tabular} & 1500 & \begin{tabular}{l}
SBE2TA \\
SBE 4 TA \\
SBE6AA \\
SBE9TA
\end{tabular} & 1400 & \begin{tabular}{l}
SBE \(2 T B\) \\
SBE4TB \\
SBE6AA \\
SBE9TB
\end{tabular} & 850 \\
\hline ATTRIBUTE TABLE & SBE4TC SBE9TC & 915 & SBE 4 TA SBE9TA & 850 & \begin{tabular}{l}
SBE 4 TB \\
SBE9TB
\end{tabular} & 500 \\
\hline NODE TABLE & SBE5BA SBE7TC & 125 & SBE5AA SBE7TA & 1.00 & \begin{tabular}{l}
SBE5AA \\
SBE7TB
\end{tabular} & 100 \\
\hline LITERAL POOL WORD LIMIT & SBE7TC & 7500 & SBE7TA. & 4000 & SBE7TB & 1200 \\
\hline LITERAL POOL CHARACTER LIMI & SBE7TC & 22500 & SBE7TA & 12000 & SBE 7 TB & 3600 \\
\hline
\end{tabular}

\section*{\(L A M / 8437\)}

\section*{Release BFO3}

\section*{LAM Internal Errors (slogic)}

The following error codes are returned to the application in \$LOGIC if an internal error occured during the execution of the last LAM routine.
\begin{tabular}{lll}
SLOGIC & ROULINE Ercor \\
1 & INTLNE & \begin{tabular}{l}
An attempt to initialize LAM was made before LAM was \\
terminated (via a TRMLNE call).
\end{tabular} \\
2 & INTLNE & \begin{tabular}{l}
SYSGN parameters passed to LAM do not agree with the
\end{tabular} \\
3 & OPNLNE & Load module in the 8437.
\end{tabular}

\section*{LAM Status Indicators}

The status indicators are updated at level 1 by the 8437 -resident software every time a request or response table is sent to the IV/xx and when the software performs a status update. The indicators oontain 1 when true, 0 when false. These are by no means real-time indicators. For example, \$LNCRR will indicate that carrier is up the entire time while receiving because it was up when the last block was received and the transmit logic does not sense the carrier state, as it has no relevance to transmitting.

\section*{Meaning}
\begin{tabular}{ll}
LNELAM & LNELAM error indicator (see below). \\
\$LNBEL & A BEL sequence was received. \\
\$LNCHK & A HAK was transmitted or received in response to a block. \\
\$LNDSR & Data Set Ready is true. \\
\$LNADR & A line bid or select was received. \\
\$LNDIB & There is data in the 8437 buffers. \\
\$LNRVI & An RVI was received. \\
\$LNBID & LAM is sending ine bids (never true on multipoint systems). \\
\$LNWAK & LAM is WACKing text blocks. \\
\$LNHNG & LAM received a DLE-EOT. \\
\$LNRTY & A prior LAM call has not completed. \\
\$LNNLA & Line idle for 20 seconds. \\
\$INDEX & Indicates the current operation of the 8437 (see below). \\
\$LOGIC & Indicates details of logic errors (see above).
\end{tabular}

\section*{SINDEX Meaning}

Read line bid.
Write an ENQ.
Receive ENQ error.
Waiting for Data Set Ready.
Write \(A C K\) to line bid or text.
Read text.
Write text.
Read response to a text block.
Write NAK.
Read response to a line bid.
Write an EOT then read line bid.
Write an EOT the write a line bid.
Write a WACK.
Write a TTD.
Send a DLE-EOT then retry the connection.
Line bid received.
Write a line bid.
Send a BEL then read line bid.
Send an RVI.
Dial a number.

\section*{LNELAM Indicator yalues}

Yalue Meaning

LAM sent NAKs to a text block and then received an EOT. Data Set Ready dropped.
LAM received an EOT in response to a text block.
No response to line bids.
No response to text blocks sent so LAM sent an EOT.
LAM received the wrons ACK 15 times, then sent an EOT.
The application passed LAM a record with transparent data when
not in transparent mode.
LAM received an EOT following an ETB block.
LAM received a block larger than 513 characters.
LAM received NAKs to line bids 15 times.
LAM received NAKs to text then received an EOT.
No Sync characters were received in three seconds.
LAM received NAKs to text 15 times, then sent an EOT.
Not used.
No line activity for 20 seconds.
Contention for the line on a secondary terminal.
\begin{tabular}{|c|c|}
\hline Yalue & Description \\
\hline 17 & Record overflow during expansion. Record exceeded \\
\hline 18 & More than 513 characters received without an ETB/ETX and without any Sync characters in 3 seconds. \\
\hline 19 & More than 513 characters received with an ETB/ETX. \\
\hline 20 & Data received for an unavailable device and LAM sent an EOT. \\
\hline 21 & LAM received data while opened to transmit under Switched Network Protocol. \\
\hline 22 & LAM received an unrecognizable device code. \\
\hline 23 & Unused. \\
\hline 24 & LAM received an ENO-EOT sequence. \\
\hline 25 & Dynamic terminal reconfiguration requested and the other station wants the line. LAM remaines secondary until the next INTLNE call. \\
\hline 26 & Dynamic terminal reconfiguration requested and the other station wants the line. LAM switched from primary to secondary until the next INTLNE call. \\
\hline 27 & Dynamic terminal reconfiguration requested and the other station acknowledged LAM's line bid. LAM switched from secondary to primary until the next INTLNE call. \\
\hline 28 & Dynamic terminal reconfiguration requested and the other station acknowledged LAM's line bid. LAM remains primary until the next INTLNE call. \\
\hline
\end{tabular}

\section*{Request Table Eormat}

The following is the layout of the request and response tables transfered between the IV/xx and the 8437.
\[
0123456789001234567898123
\]
\begin{tabular}{|c|c|c|c|}
\hline +0 & & \multicolumn{2}{|l|}{LAM Status Indicators} \\
\hline +1 & SINDEX & Unused & Logical 8437 \\
\hline +2 & Command & Modifier & Data Desc. \\
\hline +3 & Device Dest. & Transparency & Terminator \\
\hline \(+4\) & \multicolumn{3}{|l|}{Request Table Address (used by \$XFER)} \\
\hline +3 & Error Type & <- Post Proce & ing Routine -> Error Code \\
\hline +6 & \multicolumn{3}{|l|}{Associated Buffer Address} \\
\hline
\end{tabular}

Hord Bits Definition.

1 0-7 SINDEX (in tables from the 8437 only).
16-23 Logical 8437 number.

\section*{LAM SXSGM}

The following is a summary of the LAM SYSGN questions and there effect on the operation of LAM.

2780 Terminal ?
\(Y=2780\).
\(\mathrm{N}=3780\).
Compression Type ?
\(1=\) No compression. Truncation for 3780 or 2780 with Auto EM (below).
2 = Blank compression. Uses IBM 3780 GS sequences to compress 2 or more duplicate blanks.
3 = Full compression. Uses Four-Phase SUB sequences to compress 3 or more duplicate characters.
Auto-EM Insertion (2780 only) ?
\(Y=E M\) characters are inserted into records with trailing blanks.
\(\mathrm{N}=\mathrm{No}\) EM characters are inserted. (Must be N if compression - 1). Point-to-point ?
\(\mathbf{Y}=\) Point-to-point between only 2 terminals or 1 CPU and 1 terminal.
\(\mathrm{N}=\) Multipoint. The host has several terminals on the same line.
Inquiry Mode (3780 Multipoint only) ?
\(Y=3780\) inquiry will be used in transmit operations.
\(\mathrm{N}=\mathrm{No}\) inquiry will be used.
Extended Line Bid Retry ?
\(Y=\) LAM will resend a line bid forever when starting a transmission.
\(\mathrm{N}=\mathrm{LAM}\) will resend line bids 40 times when starting a transmission.
Terminal to CPU ?
\(Y=\) LAM will put no device selection on transmitted data and is the primary station.
\(\mathrm{N}=\) LAM will put device selection on all transmitted data.
Primary Station (terminal-to-terminal only) ?
\(Y=\) LAM will bid every 1 second for the line until it is acknowledged.
\(N=\) LAM will bid every 3 seconds for the line and will relinquish the
line if the other station bids.
Switched Line (point-to-point only) ?
\(Y=\) LAM will transmit a DLE-EOT when the application calls HNGLNE.
\(\mathrm{N}=\mathrm{LAM}\) will never transmit a DLE-EOT.
Terminal ID ?
\(Y=\) LAM will transmit the terminal ID on point-to-point lines. LAM will recognize its terminal ID on a multipoint line
\(\mathrm{N}=\mathrm{LAM}\) has no terminal ID.
Manual Answer Modem (switched line only) ?
\(Y=\) LAM will bring up DTR immediatly after initialization.
\(\mathrm{N}=\) LAM will bring up DTR in response to DSR or Ring Indicator.

Standard Blocksize ?
\(Y=\) LAM will transmit 512-byte blocks for 3780, 400-byte blocks for 2780. LAM will receive up to 513-byte blocks.
\(N=\) LAM will transmit blocks the specified size. LAM will receive up to 513-byte blocks.
EBCDIC ?
\(\mathrm{Y}=\mathrm{LAM}\) will use EBCDIC line-control characters.
\(\mathrm{N}=\mathrm{LAM}\) will use ASCII line-control characters.
Translate Transparent Text ?
\(Y=\) LAM will translate received transparent text to ASCII. LAM will translate transmitted transparent text to EBCDIC.
\(N=\) LAM will not translate transmitted or received transparent text.
Standard Records/Block (Normal Data) ?
\(Y=\) Transmit up to 7 records/block (2780) or 256 records/block (3780).
\(\mathrm{N}=\mathrm{LAM}\) will transmit the specified number of records per block.
Standart Records/Block (Transparent Data) ?
\(Y=\) Transmit 1 record per block.
\(\mathrm{N}=\mathrm{LAM}\) will transmit the specified number of records per block.
Immediate Wack Option (3780 Multipoint only) ?
\(Y=\) LAM will respond to selects with WACK if not opened to receive.
\(N=\) LAM will delay before sending a WACK if not opened to receive.
Switched Network Protocol (Auto answer only)?
\(Y=\) LAM gives the host control of the line when it answers the phone.
\(\mathrm{N}=\) LAM does not wait for the host to establish the line.
Expand Horizontal Tabs to Spaces ?
\(Y=H T\) characters received are expanded to the number of spaces specified by the previously received Horizontal Tab buffer.
\(N=H T\) characters are passed to the application in the data record.

\section*{LAM 8437 Dump Analyzer}

The following is a sumary of the JCL which is entered into LAMDMP. LAMDMP can interpret either the contents of the 8437 RAM or an IDOS file created by DTCOMM. The default values are logical controller 0 and the EBCDIC character set.
// LAMDMP To start execution of the dump analyzer.
/ INPUT = file e drive. Analyze 8437 dump file on the disc (overrides /L). or
/ LOGICAL \(=\) controller. Analyze 8437 RAM in the Logical 8437 specified.
/ CODE \(=\) ASCII/EBCDIC. The dump is to be interpreted as ASCII or EBCDIC. //

LAM Calling Sequences
\begin{tabular}{cll}
\multicolumn{2}{c}{ Initialization } \\
BRM & INTLNE & \\
MZE & Common Area & Pointer to the LAM Common Area. \\
BRA & Retry & \\
BRA & Error Return & Error code in \$LOGIC \\
Open & Normal Return & \\
BRM & OPNLNE & \\
PZE & Flag Address & Flag contents: \(0=\) receive, \(1=\) transmit \\
BRA & Retry Return & \\
BRA & Error Return & Error code in \$LOGIC \\
- & Normal Return &
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Close} \\
\hline BRM & CLSLNE & \\
\hline P2E & Value Address & Value contents: \(0=\) close, \(\rightarrow 0=\) open to receive. \\
\hline BRA & Retry Return & \\
\hline BRA & Error Return & Error code in \$LOGIC \\
\hline --- & Normal Return & \\
\hline \multicolumn{3}{|l|}{Read} \\
\hline BRM & GETLNE & \\
\hline P2E & Record Buffer & The record buffer is a 45 -word area. \\
\hline BRA & Error Return & Error code in \$LOGIC \\
\hline BRA & Overflow & An Overflow record was received by LAM \\
\hline BRA & End-of-File & LAM received an End of File and closed. \\
\hline \multicolumn{3}{|l|}{Write} \\
\hline BPM & PUTLNE & \\
\hline PZE & Record Buffer & The record buffer is a 45 -word area. \\
\hline \multicolumn{3}{|l|}{or} \\
\hline MRE & Record Buffer & Transmit the record then flush all buffers. \\
\hline \multicolumn{3}{|l|}{or} \\
\hline DCN & 0 & Flush all buffers immediately. \\
\hline BRA & Retry Return & \\
\hline BRA & Error Return & Error code in \$LOGIC \\
\hline --- & Normal Return & \\
\hline \multicolumn{3}{|l|}{Abort} \\
\hline BRM & ABTLNE & \\
\hline BRA & Reject Return & SLNDIB is true and a GETLNE call is outstanding. \\
\hline BRA & Retry Return & \\
\hline BRA & Error Return & Error code in \$LOGIC \\
\hline --- & Normal Return & \\
\hline \multicolumn{3}{|l|}{Hang up the line} \\
\hline BRM & HNGLNE & - . \\
\hline BRA & Retry Return & \\
\hline BRA & Error Return & Error code in \$LOGIC \\
\hline --- & Normal Return & \\
\hline \multicolumn{3}{|l|}{Terminate the line} \\
\hline BRM & TRMLNE & \\
\hline DCN & Soft terminate & If the location is non 0 , soft terminate the line. \\
\hline BRA & Error Return & Error code in \$LOGIC \\
\hline -- & Normal Fieturn & \\
\hline \multicolumn{3}{|l|}{Update the Device Status} \\
\hline BRM & DEVLNE & \\
\hline P2E & Status words & Pointer to 2 status words. The first is for the punch, the second for the printer. \(1=\) device is ready, \(0=\) device is not ready. \\
\hline --- & Normal Return & \\
\hline \multicolumn{3}{|l|}{Transmit a BELL Sequence} \\
\hline BRM & RNGLNE & Only works on terminal-to-terminal configurations. \\
\hline BRA & Retry Return & \\
\hline BRA & Error Return & Error code in \$LOGIC \\
\hline --- & Normal Return & \\
\hline
\end{tabular}

Error code in \$LOGIC If the location is non 0 , soft terminate the line. Error code in \$LOGIC

Pointer to 2 status words. The first is for the punch, the second for the printer. \(1=\) device is ready, \(0=\) device is not ready.

Only works on terminal-to-terminal configurations. Error code in \$LOGIC

\section*{MLAM / 8437}

Release BG03

\section*{HASR Horkstation (MODEL 20) Protocel Hotes}

See section 'AT' of the SE Handbook for further protocol notes. Section AT also has information on the 8436 version of MLAM; this section (BG) contains information on the 8437 version of MLAM. Protocol conventions for Model 20 are established by each individual vendor of HASP Workstation software rather than by a "Component Description" such as is done for 3270, 3770 or 3780 . Thus it is sometimes possible for one vendor or another to slip something thru that eventually become a challenge to other vendors to cope with. In particular, many host systems will ignore device Wait-A-BiTS (such as for PTR 1: 87-CF) but not Full System Wait-A-BiTS (for all devices: CF-CF), and therefore it becomes necessary for the SE to inform the offending vendor that they are in error. The best documentation Four-Phase has on this subjeot is the MLAM PROGRAMMERS GUIDE (SIV/70-53-2A). A Host User may refer to the HOUSTON AUTOMATIC SPOOLING AND PRIORITY SYSTEM - VERSION 3 manual that IBM publishes (S/360D-05.1.014) or the appropriate Internal Logic manual for the Comm spooler in use (JES, RSCS, RES, etc.).

\section*{External Interface Codes}

MLMERR error codes (Note: values are decimall)
```

Invalid record type given with SNDLNE
Invalid record type given with SNDEOJ
$XCLOS reject exit ($XCLOS error code in RA)
$XLOG reject exit ($XLOG error code in RA)
SNDEOJ called before initializing with INTM2O
SNDLNE called before initializing with INTM2O
RCVLNE called before initializing with INTM2O
Compression Count or Type invalid (Count/type in RA)
INTM2O called twice
TRMM2O called before initfalizing with INTM2O
HNGM2O called before initializing with INTM2O
Called SNDEOJ while still doing SNDLNE retries
Called SNDLNE while still doing SNDEOJ retries
?CONSZ is greater than LCB console message size
$XOPEN reject exit ($XOPEN error code in RA)
$XFER reject exit ($XFER error code in KA)
?MXBSZ buffer size is outside range of 150 to 512
No response from }8437\mathrm{ for 5 seconds to INTM2O call
No response from 8437 for 5 seconds to HNGM2O call
No response from }8437\mathrm{ for 5 seconds to SFTM2O call

```
\$INDEX Codes indicating type of line activity (Note: values are decimall)
```

Awaiting ENQ on idle line
Awaiting ENQ or ACX on idle line
Reading ACK/NAK/Text Data
Write Text Data
Write ACK
Write NAK
Write ENQ
Write "Request Permission to Send to Device" message
Write "Permission Granted to Send to Device" message
Write "Lost Text" message
Write "WABT" message
Write "Cancel WABT" message

```
\$STATS Codes indicating error conditions, if any (Note: values are decimall)
0 No abnormal condition
1 Transparency Check: transparent data detected on receive in nontransparent data block.
2 Data Set Ready dropped (\$LNDSR went zero)
3 Lost Data on Send (Lost Text Message received)
4 Lost Data on Receive (Lost Text Message received)
5 Oversized message block received (greater than configured buffer size)
6 Not currently used
7 Not currently used
8 Modem CTS signal not responding to RTS
9 Unknown SCB in Text (garbaged data block)
10 Unknown RCB in Text (garbaged data block)
11 ENQ received -- line possibly restarted
\$ Indicators Used by MLAM/8437 (Zero means indicator off)
\begin{tabular}{ll}
\$LNDSR & Data Set Ready - modem is ready for 8437 to speak to it \\
\$LNCRR & Carrier received (CD high) \\
\$LNPMP & Waiting for Permission to send from Device) \\
\$LNWBT & WABT received, we cannot send \\
\$LNNLA & No line activity \\
\$LNDIB & Data in input buffer (a record is available to receive) \\
\$LNCHK & NAK sent or received \\
\$LNIDL & Idle ACKing on line \\
\$LNDTR & Data Terminal Ready - 8437 ready to speak to modem
\end{tabular}

\section*{Request Table Format}

The following is the layout of the request and response tables transfered between the \(I V / x x\) and the 8437.

012345678901234567890123
\begin{tabular}{|c|c|c|c|c|}
\hline +0 & C
\(M\)
P & [\(\begin{aligned} & \text { I } \\ & 0 \\ & \text { c }\end{aligned}\) & \$INDEX & \$STATS \\
\hline +1 & \multicolumn{3}{|l|}{Available Record Bits} & Logical 8437 \\
\hline +2 & \multicolumn{2}{|r|}{Command} & Modifier & Stream ID. \\
\hline +3 & \multicolumn{3}{|r|}{\$LNxxx Indicator Mask} & Record Length \\
\hline \(+4\) & \multicolumn{4}{|r|}{Request Table Address (used by \(\$ \mathrm{XFER}\))} \\
\hline +3 & \multicolumn{4}{|r|}{Post Processing Routine Address} \\
\hline +6 & \multicolumn{4}{|c|}{Associated Buffer Address} \\
\hline
\end{tabular}

\section*{Nord Bits Description}
\begin{tabular}{ll}
0 & 0 \\
2 & Completion bit. \(1=\) completion table, \\
\(8-15\) & SINDEX. Set on completions from the 8437. \\
\(16-23\) & sSTATS. Set on completions from the 8437.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(\frac{\text { Hord }}{1}\) & \(\frac{\text { Bits }}{0-15}\) & \(\frac{\text { Description }}{\text { Available Record Bits (requests and completions from } 8437 \text { only). }}\) \\
\hline & 0 & Console message bit. \(\quad 1=\) console message available. \\
\hline & 1-7 & Reserved. \\
\hline & 8 & Printer 1 record bit. \(1=\) record available for printer 1. \\
\hline & 9 & Printer 2 record bit. \(1=\) record available for printer 2. \\
\hline & 10-13 & Reserved \\
\hline & 14 & Punch 2 record bit. \(1=\) record available for punch 2. \\
\hline & 15 & Punch 1 record bit. \(1=\) record available for punch 1. \\
\hline & 16-23 & Logical 8437 n \\
\hline \multirow[t]{35}{*}{2} & & \\
\hline & 0-7 & Command. \\
\hline & & \(0=\) Control \\
\hline & & \(1=\) Read (from the 8437 to the IV/xx) \\
\hline & & \(2=\) Write (from the IV/xx to the 8437) \\
\hline & & \(3=\) Status \\
\hline & 8 & Convert. \(1=\) Convert transparent transmissions to EBCDIC. \\
\hline & 9 & Transparent. \(1=\) Transparent in transparency. \\
\hline & 10-11 & Reserved. \\
\hline & 12-15 & Command Modifier. \\
\hline & & \(0=\) Initialization. \\
\hline & & 1 = Status request. \\
\hline & & \(2=\) SNDLNE. Transmit a record. \\
\hline & & \(3=\) SFTM20. Soft terminate. \\
\hline & & \(4=\) SNDLNE. Flush transmit buffers. \\
\hline & & \(5=\) HNGM20. Hang up the phone. \\
\hline & & \(6=\) TRMM20. Terminate communications. \\
\hline & & \(7=\) SNDLNE. Send end of job. \\
\hline & & \(8=\) RCVLNE. Receive a record. \\
\hline & & \(9=\) DIAL.NE. Dial the phone. \\
\hline & 8-15 & Carriage control character (on receive completion). \\
\hline & 16-23 & Acceptable record mask (on receive request). \\
\hline & 16 & Printer 1 bit. \(1=\) can receive to printer 1. \\
\hline & 17 & Printer 2 bit. \(1=\) can receive to printer 2. \\
\hline & 18-21 & Reserved. \\
\hline & 22 & Punch 2 bit. 1 = can receive to punch 2. \\
\hline & 23 & Punch 1 bit. \(1=\) can receive to punch 1. \\
\hline & 16-19 & Stream identifier (\(0-7\), on transmit request, receive completion). \\
\hline & 20-23 & Record type (on transmit request, receive completion). \\
\hline & & \(0=80\) byte record from the card reader. \\
\hline & & \(1=80\) byte record to the punch. \\
\hline & & \(2=133\) byte record to the printer. \\
\hline & & 3 = console message. \\
\hline & & \(4=\) Signon, uncompressed. \\
\hline & & 5 = Signoff \\
\hline \multirow[t]{6}{*}{3} & 0-8 & SLNxxx Indicators (on completions from the 8437 only). \\
\hline & & \[
0=\$ \text { LNDSR } \quad 3=\$ \text { LNWBT } \quad 6=\$ \text { LNCHK }
\] \\
\hline & & \(1=\$\) LNCRR \(\quad 4=\$\) LNNLA \(\quad 7=\$\) LNIDL \\
\hline & & \(2=\$ \operatorname{LNPMP} \quad 5=\$ \mathrm{LNDIB} \quad 8=\$ \mathrm{LNDTR}\) \\
\hline & 9-15 & Reserved. \\
\hline & 16-23 & Record length (on read completions). \\
\hline
\end{tabular}
\begin{tabular}{lll}
Hord & Bits & Description \\
4 & \(0-23\) & Address of the request table (filled in by \$XFER). \\
5 & \(0-23\) & Address of the post processing routine. \\
6 & \(0-23\) & Address of associated data buffer. \\
Initialization Table Layout
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Byte 0 & INITED & \$FF = Initialization complete \\
\hline 1 & LOGSWITCH & \(\$ 00=\) No line trace logging \\
\hline 2 & IDLE.TIME & Idle Line Time \(\times 10\) (\(5-25\) sees) \\
\hline 3 & WABT.ACK.TIME & WABT delay time \(\times 10\) (5 - 2.5 secs) \\
\hline 4 & COMP. TYPE & Compression Type \\
\hline & & \(0=\) No compression \\
\hline & & \(1=\) Compress trailing blanks only \\
\hline & & \(2=\) Compress all blanks \\
\hline & & \(3=\) Compress all characters \\
\hline 5 & BLK.COMP.CNT & Min of blanks to compress (\(2-31\)) \\
\hline 6 & DUP.COMP.CNT & Min of chars to compress (\(2-31\)) \\
\hline 7 & CON.MSG. SIZE & Console message size (up to 120) \\
\hline 8 & MAX.BLK.SIZE & Line block size (\(150-512\)) \\
\hline 9 & SPANNED. REC & Allowing spanning on Xmit if nonzero \\
\hline 10 & TERM. TO. TERM & \(0=T-2-C P U\), nonzero \(=T-2-T\) \\
\hline 11 & MODEM. TYPE & \(0=\) Manual Answer, nonzero \(=\) Auto Answer \\
\hline 12 & PRIM.SEC & \(0=\) Primary, nonzero \(=\) Secondary \\
\hline 13 & CVT. RCV & Convert Receive Data to ASCII if nonzero \\
\hline 14 & MODEM. RATE & \(0=\) Select Low Modem Rate \\
\hline 15 & DELAYED.ENQ & \[
\begin{aligned}
& 0=\text { no delay, nonzero }=\text { delay line } \\
& \text { startup ENO until SEND request received }
\end{aligned}
\] \\
\hline 16 & CONTROL. TRANS & \(0=\) send WABTs, Permission messages in nontransparent mode, nonzero \(=\) send in transparent mode. \\
\hline
\end{tabular}

\section*{MaM Translation Tables}

It is most common for S.E.'s to patch the translation tables in the 8437 in order to conform to special system requirements. With MLAM, the translation tables are located in the following locations:
\begin{tabular}{ll}
\(\$ 200-\$ 2 F F\) & ASCII to EBCDIC \\
\(\$ 300-\$ 3 F F\) & EBCDIC to ASCII punch / console \\
\(\$ 400-\$ 4 F F\) & EBCDIC to ASCII printer
\end{tabular}

One takes the character to translate from and adds the value of that character to the beginning address of the appropriate translate table. The byte located at that location is the translated chracter. For example:

A Vision user wishes to have a logeial OR bar sent from the Host (EBCDIC \(\$ 4 F=0117\)) print on a standard line printer as an exclaimation mark (ASCII
\(\$ 21=041\)). The S.E. would make the following change on the user's pack:
// DTCOMM
/ INPUT = MLAMD4.
/ UPDATE \(=041\) e \(\$ 44 \mathrm{~F}\). Translate \(\$ 4 \mathrm{~F}\) to 041 .
/ OUTPUT = MLAMD 4 .
//
// CFG327
/INPUT = \(x \times x \times x x e y\) Input file (optional, default is DEFAULTEO)
/OUTPUT \(=x \times x \times x x\) Output file (optional, default is CFGFIL)
/AUTOMATIC \(=\mathbf{x x} . \quad 40\) or 80 Screen size of configuring system.
//
If /A is specified, the program operates as though SHIFTED DOWN ARROW were pressed repeatedly.

\section*{CEG327 Keyboard Entries:}

CFG327 page 1:

```

LINE LENGTH OF SYSTEM
INPUT FILE
OUTPUT FILE
Enter 40 or 80.
INPUT FILE
OUTPUT FILE
Enter input configuration file and drive. Enter output configuration file.

```

CFG321 page 2:

+ APPLICATION NTPIOO; REMOTE; COBOL E FIELD? N/A;
+ MEMORY SIZE IS T2K BYTES; SCREEN SIZE IS 80×24;
+ TRANSMISSION CODE(EBCDIC/ASCIIA/ASCIIB)? EBCDIC; +
+ LINE SPEED IS 4800 BPS; CONTKOL UNIT ADDRESS 40; +
+ MAXIMUM MESSAGE LENGTH (WITH ORDER BYTES) 2000; +
+ DEBUG? \(N\); STRING EDITOR DEBUG? N/A
+ LOG LENGTH N/A; ; CHECKPOINT? N; CKPT DEV N/A;
+ TAB TO COLON? \(N\); STORE AND FORWARD? \(N\); +
+ LINE DISCIPLINE BSC ; IS NCP GENNED FOR NRZI N; +
+ + PRESS SHIFTED DOWN ARROW TO ADVANCE TO NEXT PAGE + +
+-~-NESS

APPLICATION
REMOTE
COBOL \(e\) FIELD
MEMORY SIZE
SCREEN SIZE
TRANSMISSION CODE
LINE SPEED
CONTROL UNIT ADDRESS

MAXIMum message length DEBUG
STRING EDITOR DEBUG
LOG LENGTH
SHECKPOINT
SKPT DEV
TAB TO COLON
STORE AND FORWARD
LINE DISCIPLINE
NRZI (Non Return to Zero

Enter 100 or 150.
Enter REMOTE or LOCAL.
Enter \(Y\) or \(N\).
Enter 24, 48, 72, or 96.
Enter \(80 \times 24,80 \times 12\), or \(40 \times 12\).
Enter EBCDIC, ASCIIA; or ASCIIB.
Enter 24, 48, 72, or 96.
Enter local control unit address or bisync control unit polling address or SNA physical unit address.
Enter length of longest message expected.
Enter Y or N .
Enter \(Y\) or \(N\).
Enter 0 to use all available memory. Compute
log area size to allow for NTP/ 150 overlays.
Enter \(Y\) or \(N\).
Enter 8230, 8240, 8250, or 8260.
Enter \(Y\) or \(N\).
Enter \(Y\) or \(N\).
Enter BSC or SDLC. (N/A for LOCAL)
Inverted)
Enter \(Y\) or \(N\) to match the specification in the NCP 3704 or 3705 sysgen.

CFG321 page 3:
```

    +-NEYBOARD TYYE 0 IS PRINTER ONLY; TYPE - = DONE +
    + KEYBOARD TYPE 1 IS 7226;
    + LOWER CASE? N; NUMERIC LOCK? Y;
    + KEYBOARD TYPE 2 IS 7200;
        +
        +
    + LOWER CASE? Y; NUMERIC LOCK? N;
    + TERMINAL 1 USES REYBOARD TYPE 1 (0,1,2,-); +
    + IN SCREEN POSITION 01; UITH POLL ADDRESS 40; +
    + AUDIBLE ALARM? Y; INITIAL INTERCEPT FLAG? N/A; +
    + PRINTER TYPE 81XX (XX=NONE, 21=8121, LP=0THER); +
    + AT HARDWARE ADDRESS N/A;
    +
    + PRESS SHIFTED DOWN ARROW TO ADVANCE TO NEXT PAGE +
    ```

CFG327 page 4:

 + IS LOWER CASE USED BY PRINTERS? N/A;
 + WHAT IS THE 8121 DEFAULT FOR LINES/PAGE? N/A;
 + WILL SB3270 OPEN FILES? N/A;
 + NUMBER OF DISC RETRIES? N/A;
 + LOAD MODULE NAME? SIM327;
 \(+\)
 + PRESS SHIFTED UP ARROW TO REVIEW CONFIGURATION
 \(+\quad\) OF PRESS SHIFT DOWN ARROW TO FINISH

 LOWER CASE BY PRINTERS
 Enter \(Y\) or \(N\).
 DEFAULT LINES/PAGE
 SB3270 OPEN FILES
 DISC RETRIES
 LOAD MODULE NAME
 Enter 01-99.
 Enter \(Y\) or \(N\).
 Enter 0-9.
 Enter any valid IDOS file name.

DEBUGGING FACILITIES
II. 1 ESCAPE KEY FUNCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Key. & Function & Password & Basic & Debug & S\&F & Printer \\
\hline 1 & Toggle CG & FOURFAZE & X & & & \\
\hline B & Exit to DOS & FOURFAZE & & X & & \\
\hline C & Take checkpoint & FOURFAZE & & x & & \\
\hline D & Dynamic Dump & FOURFAZE & & x & & \\
\hline L & Set number of lines per page & none & & & & x \\
\hline M & Set address of Dynamic Dump Dump & FOURFAZE & & x & & \\
\hline P & Store password & none & x & & & \\
\hline v & Store value string in address & FOURFAZE & & X & & \\
\hline W & Set printer spacing & none & & & & X \\
\hline \[
\begin{aligned}
& \mathrm{Z} \\
& \mathrm{ESC}
\end{aligned}
\] & \begin{tabular}{l}
Print screen. \\
Store attribute character
\end{tabular} & \begin{tabular}{l}
none \\
FOURFAZE
\end{tabular} & x & X & & x \\
\hline
\end{tabular}
* - Remote only.
+ - For details about S\&F, see the 3270 Operator's Manual
* - Must be an unbuffered character printer

TRC327 is used to display and/or print a formatted output of the debug log of a checkpoint file.
// TRC 327
/I =xxxxxxen. Checkpoint file name and drive.
\(/ \mathrm{H}=\mathrm{hh}\).
\(/ W=w w\).
\(/ T=t\)
//

Screen height.
Screen width.
Trace type. (S for 3270 simulator)

\section*{Parameters not entered by JCL can be entered from keyboard 0 :}
```

+ ENTER OPTIONS: INPUT (FILE NAME/SECTOR ADDR)
+ HEIGHT (6/12/24),WIDTH (48/81)./II.WILL EXIT.
+ TYPE (S/V/T/M/L/R) S=3270/8437,V=VISION/8436
+T=VISION/8457,M=MLAM/8437,L=LAM/8437,R=3770/8437
+W=REMOTE TERMINAL, C=NTP/250
+ 

+--------------------------------------------------------------

```

After parameters are entered and a valid log information table (Lit) has been found in the checkpoint the trace display can be initiated from the following screen:
```

TO ADVANCE 1=1 LINE, H=1/2 SCREEN, F=FULL SCREEN

* TO ADVANCE 1=1 LINE, H=1/2 SCREEN, F=FULL SCREEN +
+ P = START OR STOP PRINTING +
+ R = RESTART PROGRAM, E = EXIT PROGRAM +
+ S = TURN FULL SYSTEM TRACEON OR OFF +
* ATTN = ENTER OPTION PARAMETERS +
* L = GO TO END OF FILE (LAST 6 SECTORS) *
B = BACKUP 1 SECTOR
+ L AND B NOT IMPLEMENTED FOR CHAINED BLOCKS +

```


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{REQUEST TABLE FORMAT} \\
\hline Word: & Byte: & & ts: & Descpiption: \\
\hline 0 & 0 & 1... & & Block complete \\
\hline 0 & 0 & . 1. & & Io for block is complete. \\
\hline 0 & 1 & & & Control data: Link addr high. Status data: Error type. \\
\hline 0 & 2 & & & Control data: Link addr low. Status data: Error value. \\
\hline 1 & 0 & & & Line identifier. \\
\hline 1 & 1 & & & Device Identifier. \\
\hline 1 & 2 & & & Control unit identifier. \\
\hline 2 & 0 & & & Command type: \\
\hline & & 0000 & 0000 & controd. \\
\hline & & 0000 & 0001 & Read. \\
\hline & & 0000 & 0010 & Write. \\
\hline & & 0000 & 0011 & Status. \\
\hline 2 & 1 & & & Command modifier: \\
\hline & & 0000 & 0000 & Open. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline CTL CMD & 0000 & 0100 & Set busy. \\
\hline & 0000 & 0101 & Set not busy. \\
\hline & 0000 & 0110 & Set ready. \\
\hline & 0000 & 0111 & Set not ready. \\
\hline & 0000 & 1000 & Cause transmit. \\
\hline & 0000 & 1001 & Cancel transmit. \\
\hline & 0000 & 1010 & Select. \\
\hline & 0000 & 1011 & Deselect. \\
\hline & 0000 & 1100 & Copy. \\
\hline & 0000 & 1101 & WCC. \\
\hline & 0000 & 1110 & Time. \\
\hline & 0001 & 0001 & Copy select. \\
\hline & 0001 & 0010 & Copy deselect. \\
\hline & 0001 & 0011 & LOC. \\
\hline READ CMD & 0000 & 0000 & Read buffer. \\
\hline & 0000 & 1010 & Read select. \\
\hline WRT CMD & 0000 & 0000 & Write buffer. \\
\hline & 0000 & 0001 & Write select. \\
\hline 2 & & & Control byte or WCC. \\
\hline 0 & & & AID or SLCO. \\
\hline 1 & & & Buffer address page. \\
\hline 2 & & & Page offset. \\
\hline 0 & & & Not used. \\
\hline 1 & & & Page link number. \\
\hline 2 & & & Page link offset. \\
\hline 50 & & & "from" device for copy. \\
\hline 51 & & & Post processor page number. \\
\hline 52 & & & Post processor page offset. \\
\hline 60 & & & Not used. \\
\hline 61 & & & Buffer page number. \\
\hline 6 2 & & & Buffer page offset. \\
\hline S8437 & x . & & (Same as C8437) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{CLOCR mm:ss:tt} \\
\hline & mm & Minutes. \\
\hline & ss & Seconds. \\
\hline & tt & Tenths of seconds. \\
\hline \multicolumn{3}{|l|}{ADDR aaaaaaa} \\
\hline & aaaaaaat & Octal address of NTP/150 call. \\
\hline \multicolumn{3}{|l|}{WSTAT ssssssss} \\
\hline & ssssssss & 7074 (WIDGET) status word. \\
\hline \multicolumn{3}{|l|}{WCNTL coccecoc} \\
\hline & ccocecce & 7074 control word \\
\hline
\end{tabular}
```

TASK aaaaaama hh:mm:ss.tt
aaaaaaaa Octal address of calling routine.
hh:mm:ss.tt. Time of call in hours, min, sec, tenths.
COBOL eeeeeeee dddddddd sssassss hh:mm:ss.tt
eeeeeeee Entry code.
dddddddd Detail code.
ssssssss User subscript.
hh:mm:sa.tt Time in hours,min, sec, tenths.
C7073 cecceccc dd .... d
coccecce Octal }7073\mathrm{ control word.
dd ... d Interpretation of control bits.
S7073 ssasssss dd ... d
ssssssss Octal 7075 status word.
dd ... d Interpretation of status bits.
A7073 aaaaaaaa AID CURSOR
aaaaaaaa Octal word containing AID and cursor addr
sent to channel by }7073
X7073 aaaaaaaa BEGXFER mmmmmmmm ENDXFER
aaaaaaa Octal starting addr of 7073 data transfer.
mmmmmmmm Octal ending addr of 7073 data transfer.

```
III. 1

 A line control program in a 3705 controller that com-
 municates with terminal using SDLC.
- Physical Unit.
 A terminal control unit such as a 3271-12.
- Logical Unit.

A terminal such as a 3277 , \(O R\) an application program in the host which uses VTAM such as CICS.

PIU

TH
Path Information Unit.
The TH, RH, and RU that make up an \(I\)-frame.
- Transmission Header.

The first few bytes of text in an I-frame.
RH
Request header.
A neader on the first block of multi-frame message.
RU
Request or Response Unit.
A command, response, or text in an I-frame.

Each SDLC transmission consists of one or more frames seperated by a special flag byte \(X^{" 7} F^{\prime \prime}\). Each frame is individually addressed so that a transmission can contain frames destined for different stations (PU's or LU's in SNA terminology).

An SDLC Transmission:

Each frame is bounded by two flag bytes. The first two bytes of a frame contain the destination address of the frame and the frame control byte. The last two bytes form the frame check sequence (FCS) that is similar to the BCC in Bisync.

An SDLC Frame:

Frame Control Byte:

For I-FRAMEs:

For a Supervisory Frame:
rrr. . 01
...x .. 01
.... \(\times \times 01\)
rrr \(=\) Number of frames received modulo 7.
rr
\(\boldsymbol{x}=\) poll/final bit as in an l-FRAME.
\(x x=\) Receive status:
 00

Receive Ready
Receive Not Ready Needs ack for rrames sent.

For a Non-sequenced Frame:
\(\operatorname{cccc} \operatorname{cc} 11\)
100100
010100
011100
000111
100111
111100
\(c=\) Response or Command:
Set Normal Response Mode Command
Disconnect Command
Non-sequenced Acknowledgement Response
Request Online Response
Command Reject Response
Link test

I-FRAMES are formatted in different ways as they pass through an SNA network depending on the type of data link and type of station. Between the NCP and a 3271 PV they use Format ID 3 (FID3).

\section*{FID3}

\begin{tabular}{lll}
Byte & \multicolumn{2}{c}{ Bits } \\
0 & 0011 & \(\ldots\). \\
0 & \(\ldots\) & \(c c\) \\
& & 00 \\
& & 01 \\
& & 10 \\
& & 11 \\
0 & \(\ldots\). & \(\ldots x\). \\
0 & \(\ldots\) & \(\cdots x\)
\end{tabular}
x...
. \(\mathrm{xxx} \times \mathrm{xxx}\)
LU/SSCP flag. Routes response to APPL or VTAM. LU device address.
```

Request/Response Flag:
Request
Response
Request or Response Type:
NCP
Data
Subsystem Control Indicator.
Always zero.
Format indicator.
Sense data included.
Always set to one.

```
Definite response required or sent.
Always zero.
Exception response required or sent.
Always zero.
Pacing response required or sent.
 1... Begin Bracket.
 .1..... End Bracket.
 . 00 Always zero.
 c... Code selection.
 EBCDIC
 ASCII
 Always zero.
Command. (optional)
 clear.
 Pseudo Bid.


```

// DTCOMM
/INPUT = filename e drive
/DISPLAY = byte address
/UPDATE = value
/OUTPUT = "PRINT" € starting address
(or) = filename e drive
/PATTERN = pattern value e starting address

```
```

Note: Specify addresses, values and patterns in octal as
"Onnn" or in hex as "gxx".

```

Parameter
Explanation
\begin{tabular}{|c|c|}
\hline /INPUT & The input file at the selected drive will be loaded into the 8437 starting at location zero. \\
\hline /DISPLAY & Displays on the video 256 bytes of 8437 memory starting at the selected byte address. The 8437 registers are also displayed. \\
\hline /UPDATE & Replaces the selected byte with the specified value. DTCOMM enters display mode using the address of the modified byte as its starting point. Subsequent changes automatically increment this address. \\
\hline /OUTPUT & The contents of the 8437 are dumped to the printer or a disk file starting at the selected address. The file dump is formatted as one 8437 byte per IV/70 word so that the file can be reloaded into the 8437. \\
\hline /PATTERN & The 8437 is filled from the starting address to the end of memory with the selected 16 bit value. \\
\hline
\end{tabular}
commands to be entered.

```

        The following information related to the BK01 simulator can be found
    in section AG of this handbook:

```
SECTION
TOPIC
SYSTEM CONFIGURATION
 MINIGEN
 Store and Forward
 TBLEDT
 NTP / 150
 SB3270 Interface
 Entry Codes
 Detail Codes
 NTP/150 Subroutines
 SBRSET
 Software Action Codes
DEBUGGING
 Display of Attribute Characters
 Taking Memory Dumps
 DMP327 Execution
 DMP327 Output
BISYNC and 3270 PROTOCOL
 3270 Control Characters
 Bisync Data Link Control
 3270 Message Formats
 Local and Remote Command Codes
 Write and Copy Control Characters
 Buffer Control Orders
 Attribute Bytes
 Attention ID Byte
 Remote Status/Sense Bytes (BSC)
 Local Status and Sense Bytes
 COMMUNICATION CONTROLLERS
 7073 Status, Control, and IOID's
 7074 Status and Control (WIDGET)

\section*{EIXED LOCATIONS WITHIN M.F.E.}

\section*{MEM LOC \\ DESCRIPTION}

IOID 0
0100-0177 COMM IOID TABLE
0200 - 0277 812x PRINTER IOID TABLE
0700
0701
0702-0704
01000 - APROX APROX - 03000 03000 - MFETOP

0300 - 0677 RETURNED AS "FREE GOLDEN RAM"

POINTER TO ACTIVE PARTITION CONTROL BLOCXS QUEUE (PQ).
POINTER TO TRANSITIONAL MONITOR QUEUE (TMQ).
OTHER FIXED ENTRY POINTS IN APPEARING IN IDS-CB.
FIXED ENTRY POINTS IN RDS-SY
CODE EXECUTING IN GOLDEN RAM
DYNAMIC GOLDEN RAM
MFETOP - \#OVART
\#OVART - RESTOP
RESTOP - MAXMFE
MAXMFE - 077777

MFE SYSTEM EXECUTIVE OVERLAY AREA
MFESYS CODE
MFESYS DYNAMIC RAM, ALLOCATED AS NEEDED FOR MSG BLOCKS, CONTEXT BLOCKS, TCBS, ERROR LOG BLOCKS
JOB SCHEDULERS AND TRANSITIONAL MONITORS EXECUTE HERE

WHERE:
MPETOP EQU 04000
\#OVART EQU 07000
RESTOP EQU 031000
MAXMFE EQU 074000

All windows allocated by MFESYS map the same physical pages in RAM between 0 and MFETOP.

\section*{THE PROGRAM LOAD TABLE (PLT)}

The PLT describes to MFE the memory, interrrupt levels, etc. that a new job requires to be executed. It is a preamble to any job that wishes to execute under MFE.
\begin{tabular}{|c|c|c|c|}
\hline PLTAO & Bra & APLO & pointer to application open routine. \\
\hline PLTLEV & PZE & MFELEV & resolved as the current levei of MFE. \\
\hline & BSS & 6 & reserved for MFE. \\
\hline PLTUSA & DCN & 0 & pointer to 16 word inter-program comm region. \\
\hline PLTLPO & BSS & 1 & LPOUT assignment for this partiton. \\
\hline PLTWIN & BSS & 1 & primary window assignment. \\
\hline PLTSCN & BSS & 1 & screen type. \\
\hline PLT:TO & PZE & :TOPTL & timer stack. \\
\hline PLTLV. 7 & DCN & 0 & pointer to level 4 interrupt routine. \\
\hline PLTAC & PZE & APLC & pointer to application close routine. \\
\hline PLTTO & P2E & APLTO & pointer to terminal open routine. \\
\hline PLTMIN & PZE & mFETOP & load above MFE. \\
\hline Pltmax & PZE & \$TOP & top of application. \\
\hline PLTTIM & BSS & 2 & time siice address vectors. \\
\hline & BSS & 2 & reserved for MFE. \\
\hline PLTtRP & DCN & 0 & hardware trap flag. \\
\hline PLTCSA & DCN & 0 & address of console attention routine. \\
\hline
\end{tabular}

\section*{PARTITION CONTROL BLOCK - PCB}

The Partition Control Block is the primary control block for any tas executing, or awaiting execution, under the Multi-function Executive.
\begin{tabular}{|c|c|c|}
\hline +0 & & \\
\hline \(+1\) & POINTER TO PRIMARY TASK CONTROL BLOCK (bits \(0-8\) must \(=01\)) & \\
\hline +2 & PRIMARY WINDOW NUMBER PWNDOW & \\
\hline +3 & POINTER TO TIMER STACK \({ }^{\text {P:TOPT }}\) (IDOS EQUIVALENT OF : TOPTL) & \\
\hline +4 & POINTER TO INTERRUPT PAPVE7 7 R ROUTINE (FROM PLT) & \\
\hline +5 & POINTER TO TERMINAL LOGON ROUTINE & \\
\hline +6 & POINTER TO APPLICATION PROGRAM CLOSE (STOP COMMAND) & *1" \\
\hline +7 & bits \(0-15=\) IOB SEQ \%, PKYVAL \({ }^{\text {bits }} 16-23=\) KEYVALUE assigned to job & \\
\hline +010 & SECTOR ADDRESS OF LOAD MODELE (LM) ON DISC & \\
\hline +011 & SECTOR COUNT + LOAD POINT (\({ }^{\text {PAPLO }}\) (used by Dispateher, zeroed by MFERDY & *2* \\
\hline +012 & POINTER TO CONSOLE INTERAUPT ROUTINE (APLCSA) & \\
\hline +013 & PCB DISPATCH STATE CODE PSTATE (If \(=0, P C B\) in \(P Q\), else in TMQ) & = \\
\hline \[
\begin{array}{r}
+014- \\
015
\end{array}
\] & TWO WORD NAME OF CURRENT OBJECT PROGRAM & \\
\hline \[
\begin{array}{r}
+016- \\
020
\end{array}
\] & PSNAME
STARTED PROGRAM NAME (2 WORDS) OR NAME
ASSIGNED BY EXECUTING // ASSIGN WITH
/NAME \(=\) XXXXXXXXX(UP TO 9 CHARACTERS) & \\
\hline +021 & \begin{tabular}{l}
PPZONE \\
POINTER TO 3-WORD PREEMPTION ZONE TABLE (TIME SLICE OPTION)
\end{tabular} & \\
\hline +022 & POINTER TO PUSARA 16 WORD INTER-PROGRAM COMMUNICATIONS BLOCK & \\
\hline +023 & NO. PAGES ALLOCATED - BIT \(0=1\) THIS VALUE SET BY/RAM \(\leqslant \quad\) ! & \\
\hline \[
\begin{array}{r}
+024- \\
025
\end{array}
\] & LAST // NAME CONTROL CNEXT CARDPASSED OPTION & \\
\hline
\end{tabular}

PCB (Continued)

BNO4 - 3

\section*{MEE DUMP CONSIDERATIONS}

IF you have configured for a dump you must create a dump file.
MFE UTILITY MARD47
\(/ /\) MAKD47
\(/ 0=\) DISCEO
"DISC" AT DRIVE. REQUIRED.
/BLNKS = 2. FOR 192K SYSTEMS. ONE OF THESE IS REQUIRED.
3. FOR 288X SYSTEMS.
4. FOR 384K SYSTEMS.

If you have optioned for a dump MFE will dump when:
1. A MANUAL DUMP IS FORCED:
A. PLACE THE CPU IN MANUAL MODE.
B. ENTER 071100001 (BRME 01) INTO THE CONSOLE KEYS.
C. PRESS RESET, STEP, AND LOAD KEYS IN THIS ORDER.
D. CLEAR HALT (MANUAL MODE TO AUTO MODE).
E. CLEAR HALT AGAIN HHEN MACHINE HALTS.

The dump will be written to disc (NOTE: If X3 is not = ZERO the dump may have failed.)
2. A system console operator ABORTS a job or task. (enters ABORT JOBXXX on the system console)
3. The software (either MFE or the application) causes a TIME LIMIT EXCEPTION upon an error condition.

\section*{PRINTING AN MFE DUMP:}

The processor MFEDUMP prints a formatted dump of an MFE dump file.

MFEDMP is executed as follows.
1. Enter SYSTEM CONSOLE mode.
2. Type START, MFEDMP or // MFEDMP. (YOU MAY WISH TO CREATE A CONTROL FILE THAT HAS THE MFEDUMP OPTION JCL THAT CAN BE CALLED AT RUN TIME)
3. Specify MFEDMP options:

\section*{// MFEDMP}
/RAM OR /ANALYSIS. IF SPECIFICED THIS WILL CAUSE EITHER THE FORMATTED SECTION OR THE OCTAL RAM DUMP TO PRINT IF OMITTED BOTH SECTIONS WILL PRINT. /INPUT \(=\) FILENAME \(e\) DRIVE. IF OMITTED DEFAULTS TO "DUMP47 e O"
/WINDOW = WWW. OPTIONAL. DEFAULTS TO RUN TIME WINDOW.
/PHYSICAL. OPTIONAL INDICATES RAM IS TO BE PRINTED IN PHYSICAL PAGE ORDER NOT LOGICAL ADDRESSING BY WINDOW ORDER.

OPTIONAL. LOW BOUNDRY.
OPTIONAL. HIGH BOUNDRY.
OPTIONAL. SETS WINDOW TO "JOBNAME" PRIMARY WINDOW.

TASK CONTROL BLOCK
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{array}{llllllllllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3
\end{array}
\] & \\
\hline TLINK & ? ? 711 LINK WORD & \(+0\) \\
\hline TRBRG & ? ? ? 1 REGISTER SAVE BLOCK PTR & \(+1\) \\
\hline TWNDOW & \(0:\) WINDOW NBR 10 & \(+2\) \\
\hline TRP & CONDITION CODES 1 RESTART ADDRESS & + 3 \\
\hline TCLOCK & TEMPORARY PRIORITY & \(+4\) \\
\hline TPRI & \(|\)\begin{tabular}{l|l}
S \\
T \\
P & PERMANENT PRIORITY
\end{tabular} & \(+5\) \\
\hline TPCB & ? ? ? 1 PCB POINTER & + 6 \\
\hline ttrap & ? ? ? 1 TRAP ROUTINE POINTER & \(+7\) \\
\hline TCBCHZ & OCTAL 23456701 & \(+8\) \\
\hline TDAD & \(0 \quad 1\) ANCESTOR'S TCB POINTER & + 9 \\
\hline TKID & ? ? ? 1 POINTER TO DESCENDANTS LIST & \(+10\) \\
\hline TSIB & ? ? ? 1 LIST OF PARALLEL TASKS & \(+11\) \\
\hline TCTXP & LONG POINTER TO ADDITIONAL CONTEXT MORD & \(+12\) \\
\hline TCTX & ADDITIONAL CONTEXT & +13 \\
\hline TMNE & TASK'S MNEMONIC & +14 \\
\hline TWKTIM & WAKEUP TIME & +15 \\
\hline TWAITL & WAITER'S QUEUE LINK KORD & +16 \\
\hline TWAITT & WAIT TYPE & +17 \\
\hline TCBTP & LONG POINTER TO TASK termination procedure & +18 \\
\hline ttasoc & Ai ZERO I TERM & +19 \\
\hline TPWNDO & PERMANENT WINDOW & +20 \\
\hline TFLAGS & & +21 \\
\hline TITCM & ICTM WAIT STATE INDICATOR & +22 \\
\hline TCIWT & MFEMEM OR MFEOIO WAIT INDICATOR & +23 \\
\hline
\end{tabular}

\section*{SYSTEM MAINTENANCE SERYICES - FUNCTIONS}
\begin{tabular}{|c|c|}
\hline SMS FUNCTION ID & SMS PROCESS \\
\hline 0 & Enter system terminal mode (LOGOFF) \\
\hline 1 & System initialization (part 1) \\
\hline 2 & \$PEXIT (start transitional monitor) \\
\hline 3 & Time limit exception message formatter \\
\hline 4 & Terminal logon \\
\hline 5 & Console ATTN processor \\
\hline 6 & Time and date initialization \\
\hline 7 & Error message processor \\
\hline 8 & STOP command processor \\
\hline 9 & Exit to IDOS \\
\hline 10 & Program dispatcher \\
\hline 11 & Request job scheduler \\
\hline 12 & ABORT command \\
\hline 13 & VARY STNOTE command processor \\
\hline 14 & Reset time/date, execute APLTIME \\
\hline 15 & System initialization (part 2) \\
\hline 16 & MFEMEM, RAMWTQ processor \\
\hline
\end{tabular}

\section*{INTERRUPT CONTROL BLOCK}

\section*{Release BPO3}

\section*{A32ERR Error Codes}

The following error codes are passed to the application error routine, A32ERR. The positive errors are information messages. The negative errors are catastrophic internal errors which cause CU3270 to call \$XCLOSE to save the application. (The negative errors appear in VISION as "CU3270 INTERNAL ERROR fif" with the value filled in.)

\section*{Error Meaning}

0 Previous error conditions are cleared.
1 Data set not ready.
3 Host computer has not addressed CU3270 in more than 3 minutes.
-1 Illegal command received from the 8437.
-2 Illegal command modifier received from the 8437.
-3 8437 attempted to select a previously selected device.
\(-4 \quad 8437\) issued a print request for a device that is not selected.
-5 \$XFER error. \$XFER's error code is passed in register RB.
-6 8437 received an invalid request from the IV/xx.
-7 8437 attempted to pass a completion when there are no outstanding requests.

\section*{C32xxx Routine Error Codes}

The following error codes are passed in register \(R A\) when the application gets the error return from the C32xxx routines (C32SB, C32SNB, C32SR, C32SNR, C320TX, C32CTX, C32DBG). Note that C32STA is usually included in this group but it has no error return and no error codes.
\begin{tabular}{cll}
Error & Routines & Meaning \\
0 & All & The device is currently selected. \\
0 & All but \(S R\) & \begin{tabular}{l}
The device has an AID transmission pending. \\
1
\end{tabular} \\
3 & SB, QTX & The device is currently BUSY. \\
3 & All & CU3270 is not open. \\
4 & All & Invalid device ID number. \\
5 & SNB, SNR, QTX & The device is currently Not READY. \\
6 & SNB & The device is already Not BUSY. \\
7 & SR & The device is already READY. \\
8 & CTX & There is no transmission pending for this device. \\
9 & DBG & A prior C32DBG call has not yet completed.
\end{tabular}

\section*{Cu3270 8437 Dump Analyzer}

\footnotetext{
There are two versions of the dump analyzer. DMP32 is the IDOS version and MDMP32 is the MFE version. The JCL is the same for both versions. DMP32/MDMP32 can interpret either the contents of the 8437 RAM or an IDOS file created by DTCOMM. The default values are logical controller 0 and the load module type (as identified by location \$100).
// DMP32 or MDMP32 To start execution of the dump analyzer.
\(/\) INPUT \(=\) file \(e\) drive. Analyze 8437 dump file on the disc (overrides \(/ \mathrm{L}\)). or
/ LOGICAL \(=\) controller. Analyze 8437 RAM in the Logical 8437 specified.
/ TYPE = BA, BE, SA, SE. Force the interpretation type.
//
}

\section*{Requests from the IV/xx and the Comoletions from the 8437}

\begin{tabular}{|c|c|c|c|}
\hline Hord & Byte & \multicolumn{2}{|l|}{Definition} \\
\hline \multirow[t]{9}{*}{2} & \multirow[t]{8}{*}{1} & \multirow[t]{8}{*}{MOD.} & For Control commands (\(C M D=0\)) : \\
\hline & & & 1 = Select device (causes A32SL call). \\
\hline & & & Note that a Write Select Table request (\(C M D=2\), MOD=1) \\
\hline & & & from the \(I V / x x\) is a positive response to this request. \(2=\) Deselect device (causes A32DSL call).* \\
\hline & & & \(3=W C C\) (print) request (causes A32PR call). \\
\hline & & & 4 = Select Copy "from" device (causes A32CCS call). \\
\hline & & & 5 = Deselect Copy "from" device (causes A32CCD call). \\
\hline & & & Note: Requests with modifiers marked with an asterisk (*) do not cause the IV/xx to send a completion. \\
\hline & 2 & WCC. & Used for Deselect and WCC requests (CMD=O, MOD \(=2\) or 3). Contains bits 16-23 of the Communications Operation Word. \\
\hline \multirow[t]{4}{*}{3} & 0 & CCM . & Used for Deselect and WCC requests (CMD=O, MOD \(=2\) or 3). Contains bits 8-15 of the Communications Operation Vord \\
\hline & 1 & CPL. & Application's response to Select or WCC (print) request \\
\hline & & & \((C M D=0, M O D=1,3\) or 4): \(1=\) Accepted, \(2=\) Rejected. \\
\hline & 2 & & \\
\hline
\end{tabular}
cu3270 Timers
\begin{tabular}{|c|c|}
\hline Number & Meaning \\
\hline 0 & Host Down timer. (3 minutes) \\
\hline & Set every time the host sends something to CU3270. This is the oniy timer used by the SDLC versions of CU3270. \\
\hline 1 & \begin{tabular}{l}
Control Mode timer (1 second) \\
Set every time we receive an EOT from the Host. Cleared when the background monitor is returned to the 8437. If the timer expires, it implies an unknown problem has occured.
\end{tabular} \\
\hline 2 & WACK Response timer (0.1 second) \\
\hline & Set when CU3270 receives a WACK in response to text. When it expires, we send an ENQ. \\
\hline 3 & ENQ timer (3.5 seconds) \\
\hline & Set when CU3270 finishes sending text. Cleared when a response is received. If it expires, we send an ENQ. \\
\hline 4 & Receive Text timer (3.0 seconds) \\
\hline & Set when CU3270 starts receiving a block and every time it encounters an imbedded Sync. Cleared on receive of ETX or ETB. If it expires, ve assume loss of ETX or ETB and send a NAK. \\
\hline 20 & Received a request table from the IV/xx. \\
\hline \(21 *\) & Processed a request table from the IV/xx. \\
\hline 22 & Queued a request/response table to be sent to the IV/xx. \\
\hline \(23 *\) & Sent a previously queued request/response table to the IV/xx. \\
\hline \(24 *\) & Sent a block of Log data to the IV/xx. \\
\hline 25* & \begin{tabular}{l}
Received up to 256 bytes of data from the IV/xx. \\
The IV/xx performed a Data-Out I/O instruction and the 8437 has
\end{tabular} \\
\hline & started to DMA the data into 8437 RAM. \\
\hline \(26^{*}\) & Sent up to 256 bytes of data to the IV/xx. The IV/xx performed a Data-In I/O instruction and the 8327 has started to DMA the data out of 8437 RAM. \\
\hline \(27 *\) & Received an unknown interrupt from the IV/xx. \\
\hline \(30 *\) & IV/xx is trying to send a request table to the 8437 and the 8437 has no room for it. \\
\hline 31* & \begin{tabular}{l}
8437 received data from the line while transmitting. \\
The received data is disregarded while the transmission is inprocess.
\end{tabular} \\
\hline & Note: Those timers that are marked with an astersik (*) are used by CU3270 to mark internal events and are not really timers. \\
\hline
\end{tabular}

Communications Operation Hord
\begin{tabular}{|c|c|c|}
\hline Bits & Meaning & \\
\hline 0-8 & Not used & \\
\hline 9 & Erase Write Command & \\
\hline 10 & Erase All Unprotected Command & \\
\hline 11 & Copy Command & \\
\hline 12 & Write Command & \\
\hline 13 & Read Modiried Command & \\
\hline 14 & Read Buffer Command & \\
\hline 15 & Escape-in-Data Indicator & \\
\hline 16-17 & Reserved & \\
\hline 18-19 & \begin{tabular}{l}
Print Format Bits: 00 - Unformated \\
01 - 40 Char/line
\end{tabular} & \begin{tabular}{l}
10-64 Char/line \\
11-80 Char/line
\end{tabular} \\
\hline 20 & Start Print Command & \\
\hline 21 & Not used & \\
\hline 22 & Restore Keyboard & \\
\hline 23 & Not used & \\
\hline
\end{tabular}

3271 SDLC
SDLC Frame

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Flag } \\
01111110
\end{gathered}
\] & Address & Control & \[
\begin{gathered}
\text { P.I.U. } \\
\text { I-frame only }
\end{gathered}
\] & \[
16 \text { FCS }
\] & \[
\begin{gathered}
\text { Flag } \\
01111110
\end{gathered}
\] \\
\hline
\end{tabular}

Nonsequenced Commands and Responses
\begin{tabular}{|c|c|c|c|c|}
\hline Control & C/R & Usaze & P/E & S(P/E) \\
\hline SNRM & C & Set Norwal Response Mode & '93' & '83' \\
\hline DISC & C & Disconnect & '53' & '43' \\
\hline SIM* & C & Set Initialization Mode & '17' & '07' \\
\hline RIM* & R & Request Initialization Mode & '17' & '07' \\
\hline UI (NSI)* & C/R & Unnumbered Information & '13' & '03' \\
\hline UP (NSP)" & C & Unnumbered Poll & '33' & '23' \\
\hline XID* & C/R & Exchange IDs & 'BF' & -- \\
\hline TEST & C/R & Link Test & 'F3' & 'E3' \\
\hline UA (NSA) & R & Unsequenced Acknowledgement & '73' & '63' \\
\hline DM (ROL) & R & Disconnect Mode & '1F' & '0F' \\
\hline FPMR(CMDR) & R & Frame Reject (command reject) & '97' & '87' \\
\hline RD* & R & Request Disconnect & '53' & '43' \\
\hline
\end{tabular}

Comands marked with and asterisk (*) are not supported by a 3271 and will result in a frame rejected (FRMR).

Supervisory Comands and Responses
\begin{tabular}{lll}
Control & Usage & (See Below) \\
RR & Receive Ready & 'a1' \\
RNR & Receive Not Ready & 'a5' \\
REJ' & Reject & 'a9' \\
& \\
Commands marked with and asterisk (") are not supported by a 3271 and will \\
result in a frame rejected (FRMR).
\end{tabular}

Information Coumands and Responses

Path Information Unit (PIU -- I-frames only)
\begin{tabular}{|c|c|c|}
\hline TH & RH & RU (request unit) \\
\hline 2 Bytes & 3 bytes & Up to 256 Bytes \\
\hline
\end{tabular}

TH - Transmission Header (on all I-frames)

\section*{Byte Bits Description}

00011 FID. Format Identifier. Always 0011.
.... cc.. MPF. Mapping Field. Placement of segment in the PIU. \(00 \quad\) Middle segment of PIU. (Frame contains no RH).
01
10
11
.... ..x. Primary to secondary indicator
\(\ldots x\) EFI. Expedited Flow Indicator. \(1=\) Expedited flow.
1 x... LU/SSCP bit. Determines where response is routed.
0 To/From the SSCP.
1 To/From the LU (the host application).
.1.. LU/PU bid. Always to/from the LU.
..xx xxxx LU Device Address (0-31 for 3271).

RH - Request/Kesponse Header (Only in first I-frame of the segment)

The following table shows what response is appropriate, if any, in the Definate Response (DR), Exception Response (EX) and Pacing (P) bits or the RH .
\begin{tabular}{llll}
\begin{tabular}{l}
Request \\
DR EX
\end{tabular} & \begin{tabular}{l}
Response \\
DR EX
\end{tabular} & \begin{tabular}{l}
Explanation
\end{tabular} \\
10 & 1 & 0 & 1
\end{tabular} \begin{tabular}{l}
Compietion of a Read, Write, Copy or \\
print operation by the device. Printers \\
operate in a Definite response with \\
pacing mode only. \\
Unsuccessful operation.
\end{tabular}

Comand (The first byte of the RU, only in the first I-frame of a segment)
\begin{tabular}{|c|c|c|c|}
\hline Command E & EBCDIC & ASCII & Notes \\
\hline Clear & 'A1' & 'A1' & Cancel Definite and Pacing responses. \\
\hline Copy & 'F7' & '37' & Followed by 1 byte CCC. \\
\hline EAU & '6F' & '3F' & Erase All Unprotected. \\
\hline Erase/Write & e 'F5' & '35' & Followed by 1 byte WCC. \\
\hline Psuedo Bid & 'F8' & 'F8' & Reserve device for host access. \\
\hline Read Buffer & 'F2' & '32' & Read entire buffer. \\
\hline Read Mod. & \({ }^{\prime}\) F6' & '36' & Read modified fields from buffer. \\
\hline Write & 'F1' & '31' & Followed by 1 byte WCC. \\
\hline
\end{tabular}

\section*{Sense Information}

This information is sent from Cu3270 to the host in four bytes imediately following the RH if byte 0 , bit 5 is true. The information is as follows:
\begin{tabular}{|c|c|c|}
\hline Byte & Blis & Description \\
\hline \multirow[t]{4}{*}{0} & 1... & \begin{tabular}{l}
Path Error, \\
The device address (TH byte 2, bits \(2-7\)) was invalid.
\end{tabular} \\
\hline & .xx, .xxx & Reserved. \\
\hline & ... 1 & \begin{tabular}{l}
Request Error. \\
The first byte of the RU was not a valid command.
\end{tabular} \\
\hline & 1... & \begin{tabular}{l}
Request Reject. \\
A Psuedo Bid command or Begin Bracket bit (RH byte 2 , bit \(D\)) was sent to a device that has attention pending.
\end{tabular} \\
\hline \multirow[t]{2}{*}{1} & x \(\mathbf{x x}\), \(\mathbf{x x}\). & Reserved. \\
\hline & \(1 . .11\) & Set whenever Request reject is set. \\
\hline \multirow[t]{5}{*}{2} & xx>x \(\ldots\)... \(x\) & Reserved. \\
\hline & 1. & Device Busy. \\
\hline & & Device is executing an operation (either it is printing or the application has called C32SB). \\
\hline & .1.. & Unit Specify. Not used by cuj270. \\
\hline & \({ }^{1}\), & \begin{tabular}{l}
Device Fnd. \\
A device previousiy reported unavailable (IR or Busy) is now available. Printers do not report completions with device end.
\end{tabular} \\
\hline
\end{tabular}
\(3 \quad x x .\). Reserved.
..1. Command Reject. Invalid command received.
...1 Intervention Required.
The application called C32SNR or a previous print operation completed unsuccessfully and the printer is not yet ready.
.... 1... Equipment Check. Not used by CU3270.
.... .1.. Data Check, Not used by CU3270.
..... ., Control Check. Not used by CU3270.
.... ... 1 Operation Check.
Received an invalid buffer address or an
incomplete or invalid order sequence. Also occurs if the Copy "from" device is unavailable to CU3270.

\section*{HP/80 DISK. DRIVE CHBRACTERISTICS}
\begin{tabular}{crrr}
67 MB & 13.5 MB & 26.5 MB & 138 MB \\
\(8260 / 8280 \mathrm{~F}\) & 8280 R & 8280 F & 8290 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline (heads & 5 & 1 & 2 & 10 \\
\hline * cylinders & 823 & 823 & 823 & 823 \\
\hline sectors/track & 22 & 22 & 22 & 22 \\
\hline redirect cyls & 4 & 4 & 4 & 4 \\
\hline diagnostic cyls & 2 & 2 & 2 & 2 \\
\hline redirect secs & 440 & 88 & 176 & 880 \\
\hline diagnostic secs & 220 & 4.4 & 88 & 440 \\
\hline MPE sectors & \[
\begin{aligned}
& 1210 \\
& (\$ 4 \mathrm{BA})
\end{aligned}
\] & \[
\begin{aligned}
& 1210 \\
& (\$ 4 B A)
\end{aligned}
\] & \[
\begin{aligned}
& 1210 \\
& (\$ 4 \mathrm{BA})
\end{aligned}
\] & \[
\begin{aligned}
& 1210 \\
& (\$ 4 \mathrm{BA})
\end{aligned}
\] \\
\hline User sectors & \[
\begin{aligned}
& 88,660 \\
& 0255124 \\
& 8015 A 54
\end{aligned}
\] & \[
\begin{aligned}
& 16,764 \\
& 040574 \\
& 80417 C
\end{aligned}
\] & \[
\begin{aligned}
& 34,738 \\
& 0103662
\end{aligned}
\] & \[
\begin{aligned}
& 178,530 \\
& 0534542 \\
& \$ 028962
\end{aligned}
\] \\
\hline \begin{tabular}{l}
User bytes \\
(768 bytes/sec)
\end{tabular} & 68,090,088 & 12,874,752 & 26,678,784 & 137,111,040 \\
\hline
\end{tabular}

\section*{NP/8Q Disk Sector Usage}
\begin{tabular}{|c|c|c|}
\hline Region & Phys.Sec. & Use \\
\hline NPOS & 0 & NP/80 BOOTSTRAP SECTOR. The ROM code reads this sector; NP(L)GI installs ABOOT here. \\
\hline NPOS & 1-20 & NP/80 POSTBOOT PROGRAM. The boot Pgm reads it in; NP(L)GI installs APOSTB here. After "glance" diagnostics, boots DE or MPE based on switch 3. \\
\hline NPOS & 21 & VOLUME HEADER SECTOR. Built by NPFMTX, fixed by NPVFDRR. \\
\hline NPOS & 23 & AREA DEFINITION TABLE. Built by ALMCLM. Referenced by MPE upon drive becoming ready. \\
\hline NPOS & 220-439 & MULTI-PROGRAMMING EXECUTIVE ("MPE") \\
\hline NPOS & 550-1209 & DIAGNOSTIC EXECUTIVE (\({ }^{\text {den }}\)) \\
\hline USER & 1210.... & USER SECTORS. Size dependa on drive type (see chart); virtual areas carved here. \\
\hline REDIR & after USER & REDIRECT SECTORS. Bad sectors in NPOS \& USER regions are redirected here. Because headers are different here, these sectors cannot be read by "ordinary" means. \\
\hline DIAG & after REDIR & DIAGNOSTIC CYLINDERS. These sectors have regular headers. Used by Diagnostics. First sector also used by BACK80 on backup packs only. \\
\hline
\end{tabular}

Yolume Header Sector \(=\) Physical Sector 21

\section*{\(\mathrm{NP} / 80\) Console Suitch Settings}
switch

B-F
\(0 \quad\) "up" \(\Rightarrow\) halt \(\$ 14 / 100\). Execution may resume after clear halt. Rarely used, intended for patch entry.
"up" \(\rightarrow\) ignore "booted bit" and stay in ROM on IV/xx reset. (NP/80 reset or power on resets the booted bit so this switch is irrelevant then).
"up" -) load program beginning at 550 ie DE Post Boot "down" \(\rightarrow\) load program beginning at 220 ie MPE
significance
interpreted by MPE ROM (APOSTB)

ROM
BOOT DEVICE SELECTION:

The position of switch b determines how switches C-F are interpreted. "B" may be considered an operation flag, "C-F" the device unit specification.
sWitch B "DONN" -> BOOT CONTROLLED BY IV/Xx AFTER NP/80 RESET
\([C-F]=C P U\) (pre-Phoenix Rom code \(=2 \times\) CPUf)
Rom code will loop awaiting cut word rrom designated IV/xx. Boot and Utility IO cutwords only will be recognized. Upon receipt of boot cut, NP/80 AND IDOS boots will be performed.
switch B "UP" \(\rightarrow\) UNCONDITIONAL IMMEDIATE NP/80 BOOT UPON RESET \([C-F]=\) drive (eg. \([C-F]=\$ 1 \rightarrow 8260,8280 \mathrm{R}\) or 8290 e1; \([C-F]=\$ 8\)-> fixed portion 8280e0)
Rom code will immediately load NP/80 boot program from physical sector 0 of specified drive which in turn loads post-boot and finally MPE (or DE). MPE will then interpret IV/xx cutwords, including boot which now invokes IDOS-only boot sequence.
switches B-F ALL "UP" \(\rightarrow\) BRANCH TO LOCATION \$2070.
Executes at level 0 ; rarely used.

\section*{NP \(\angle 80\) MEMORY LAYOUT}

\begin{tabular}{|c|c|}
\hline \[
\left.\begin{array}{l}
\$ O B E O \\
\$ O B E 2
\end{array}\right]
\] & ERROR LATCH ADDRESS 1 (failing address)
ERROR LATCH ADDRESS \(\ddagger 2\) (status bits) \\
\hline 80000 & \begin{tabular}{rl}
I/O INTERFACE DEVICE ADDRESS (HANG REGISTER, DISC CCNTROL \\
& WORDS, IV/70 INTERRUPT REG, \\
& DMA COUNT REGISTERS)
\end{tabular} DMA COUNT REGISTERS) \\
\hline \$0E00 & RESERVED FOR FUTURE USE (non-existant) \\
\hline \$2000 & RAM BEGINS
(workspace for ROM code) \\
\hline \$2070 & Level 0 Interrupt Branch \\
\hline \(\$ 2072\) & Level 1 Interrupt Branch \\
\hline \$2074 & Level 2 Interrupt Branch \\
\hline \$2076 & Level 3 Interrupt Branch \\
\hline \$2078 & Level 4 Interrupt Branch \\
\hline \$207A & Level 5 Interrupt Branch \\
\hline \$207C & Level 6 Interrupt Branch \\
\hline \$207E & register set 1 saved here by a level 0 interrupt \\
\hline \$208A & register set 0 saved here by a level 0 interrupt \\
\hline \$2096 & STK saved here by a level 0 interrupt \\
\hline \$2098 & MPE BEGINS HERE \\
\hline
\end{tabular}

\section*{IV/XX CUTHORD and NP/80 HANE REGISTER CONTENTS}

\begin{tabular}{ll}
SECTION N.IS & MULTI-KEY ACCESS METHOD TASK WORK AREAS (ONE PER TASK) \\
SECTION O & DV ICB'S (ONE FOR EACH DRIVE) \\
SECTION P & NY ICB'S (ONE POR EACH IV/70) \\
SECTION Q & 8260 ICB'S (ONE FOR EACH DRIVE) \\
SECTION R & IV7O-IV7O TRANSFER TASK WORK AREAS (ONE FOR EACH TASK) \\
SECTIONS & OPEN OVERLAY FAMILY/OVERLAY DESCRIPTORS \\
SECTION Y & NP/80 REGISTER DUMP \\
SECTION 2 & NP/80 MEMORY DUMP
\end{tabular}

\section*{NP 180 CODED HALTS}

If the \(N P / 80\) halt light is on, the following steps will retrieve the major and minor coded halts.
1. Record the hex number represented by lights \(A-F\) (6 rightmost lights). This is the major code. (Lights \(0-9\) will be on when NP/80 halts).
2. Place the NP/80 in MANUAL (destroys major code display).
3. Select RPO (1000 in the display select switches). The minor code is now displayed in lights A-F.
4. While you're here you should record CUR STS: set display switches to 1010 In some cases, noted below, you'll want to record values for RPO, RAO, X 10 , and X 20 . Display suitch settings are listed on the console.
5. To take a formatted NP/80 dump after a halt, see ALMFMD in section A3.

\section*{DESCRIPTION OF MAJOR AND MINOR HALT CODES}

MAJOR
HALT
CODE

\section*{DESCRIPTION}

\section*{GENERATED BY}

1

GLANCE DIAGNOSTICS ERRORS
(ROM CODE)
Major code 1 halts, except the DBRK instruction error (minor \$F), can occur when the Glance Diagnostics in the ROM code are run, ie upon NP/80 master reset or upon IV/xx reset with booted bit in NP/80 CUR STS off. The DBRK instruction error can occur when the machine check (level 1) and program check (level 2) interrupt levels are cleared by debreaking. The minor codes associated with major code 1 are detailed in Table 10-1 of NP/80 Instalation and Maintenance Manual (NP/80-221B).

Note: for minor codes \(\$ 20-22\), note contents of RAO \& X 20 ; for \$23, note X1 in addition.

I/O ERRORS in the ROM Code
(ROM CODE)
Major code 2 halts indicate a \(I / O\) errors which may be the result of a hardware error of a user error involving incorrect console key settings. Minor code meanings depend on vintage of Rom code; see Table 10-2 in NP/80 Instaliation and Maintenance Manual for details.

ERROR DURING BOOT PROGRAM
(ABOOT)
Major code \(\$ 5\) halts are detected by the boot program in sector of the disignated NP/80 boot device disk.
Minor code 1: disk ercor. X10 will contain the address of a seven word error information area. Enter contents of \(X 10\) into RPi and manually display/record contents of 14 successive bytes. Analyse using Table 10-3 in NP/8Q Installation and Maintenance Manual (NP/80-22-1B). Minor code 2: the post-boot program is not entirely within the first 22 sectors, ie first track, on disk.

ERROR DURING POST-BOOT PROGRAM
minor meaning
1 Diskerror. Xi has address of info area identical to that for major code \$5. See above.
<not used>
Operating system being loaded (MPE) is too large for the existing memory.

UNDEFINED MEMORY
The post-boot program initializes unused memory to \&FFF7 which will cause a mafor code 7 halt upon execution. The implication of a \$ 7 halt is therefore a branch to undefined memory. Note register contents.

PROGRAM CHECK (MPE)
A program check is generated if background attempts to access protected memory, to use an odd adress with a word instruction or to execute a privileged instruction. Note that the HLT instruction is privileged and that MPE tasks code, which executes in background, will HLT upon error conditions, causing an immediate level 2 program check. Under these circumstances, it is imperative to dump the NP/80 using ALMFMD or to use the STX register to manually find the original halt codes as stacked in memory.
A program check is also generated if an interrupt is received at interrupt level 3. This is a hardware error as there are currently no devices assigned to level 3.

DISK SUBSYSTEM ERRORS
(MPE)
10 op code in internal table is not 1 or 2
11 TRPEND is already on
13 supervisor interrupted lev for new IOB when ICB not idle
14 supv interrupted interface to start \(I O B\) but \(I O B\) addr not zero
16 supv signalled interface to start \(I O B\) but \(I O B\) addr was zero
17 timeout timer started when it was already on
18 invalid op code in internal request tab
19 excessive xmission length
20 invalid opcode in internal request tab
21 bad keep-trying flag in \(S S\) sequence
22 bad command byte in SS sequence
23 bad CDCRN subsystem parameter
24 header-only operations not supported
25 ran out of carriers
26 bad checkword in carrier free-stack
27 problem getting carrier from free-queue
```

problem putting carrier into free-stack
bad chkwd adding carrier to free-stack
problem starting driver execution of carrier
problem moving carrier to comp-queue
problem strting driver execution of carrier
problem noving carrier to comp-queue
problem completing carrier
problem queuing a carrier
aatempt to issue Release, Change, Verify operation with a
stolen buffer
bad buffer pal checkword
buffer does not currently have a sector
bad checkword in "WAITING FOR BUFFERS" list
bad workarea checkword in waiting work area
bad workarea checkword or state code
bad 8260 ICB checkword
attempt to issue Release, No Change operation with a stolen
buffer
attempt to issue Release, Change operation with a stolen
buffer
bad IOB or carrier checkword
bad checkword "OLDEST/NEWEST" buffer pal linked list
invalid buffer pool pal checkword
unexpected "KNOW-ITS-THERE" flag set
bad buffer pal oldest/newest linked list checkword
bad carrier checkword on 8260 IOB being returned
buffer pal with buffer being returned is already linked into
sone list
bad sequencer workarea checkword
bad buffer pool pal checkword
buffer contains a sector it should not have
bad checkword in "WhITING-FOR-BUFFER" queue
bad workarea checkword in "WAITING-FOR-BUFFER" queue
workarea is waiting for this sector and the KIT flag is already
set
bad carrier or sequencer workarea checkword
bad buffer pool pal checkword
tried to assign a buffer that is already in use
bad colt IOB checkword
bad sequencer workarea checkword
bad carrier or sequencer workarea checkword
bad buffer pool pal checkword
tried to deassign a buffer that is not in use
bad colt IOB checkword
tried to deassign a buffer that is assigned to another request=
tried to set "CLFREB", freed buffer indicator, \& it was alread\#
set
bad buffer pool pal checkword, free buffer
bad checkword in "WAITING FOR BUFFER" LL
bad sequencer workarea checkword
error in "WAITING FOR BUFFER" LL scan or in PREF-KIT flag logic
bad checkword in sequencer workarea
bad X2 input returned from CLWAIT
bad sequencer workarea checkword
impossible sector counter
unexpected sector type was detected
bad sequencer workarea checkword
bad Colt IOB checkword

```
```

bad buffer checkword(s)
bad buffer pal checkword
bank-to-bank sector move was requested
"Release, No Change" failed
bad sector counter
"Release, No Change" in error portion failed
impossible IOB.STT in Colt IOB
impossible IOB.STT in NV IOB
Being-Read flag is already set
Being-Read and Being-Written flags both set
Being-Read and Being-Written flags both off
unexpected seotor type detected
unexpected sector type detected
bad Colt IOB checkword
bad checkword buffer pal "CLDEST/NEWEST" linked list descriptor
bad buffer pal checkword
unsuccessful "RELEASE, NO CHANGE"
after-complete-subr called w/invalid carrier address
invalid drive input to CDPKPY
slot area checkword bad
3lot area checkword bad
slot area checkword bad
loop counter (TWA.TDWSCT) > limit
bad checkword on pal from free-queue
bad pal checkword after A-completion
bad pal cheokword after B-completion
bad pal checkword after C-completion
bad checkword on incoming IOB
COLT IOB and it had a buffer
impossible IOB.CLIOOP on C-OPERATION
bad checkword in "IN-PROCESS" LL element descriptor
bad checkword in sequencer workarea
bad buf-pal ckwd. KIT flag is garbage in sequencer workarea
asynchronous read done but counter said no reads outstanding
bad VN IOB checkword (NV IOB.SIIOAV points to VN)
n
bad subroutine or type 1 trace checkword
logger code is zero
bad opcode
bad IOB checkword in L8LIOB option
IOB successful. only unsuccessful should be logged
rightmost 3 bits of error cd not zero
bad ECB count in record descriptor contention block
bad ECB count in index set descriptor
invalid byte count in index sector
invalid byte count in selection descr or index s read by SECIO
invalid SECIO subroutine checkword
two consecutive read requests
two consecutive write requests
invalid \$COLT op code
invalid zone descriptor checkword
invalid zoneset descriptor checkword
bad checkbyte in zone descriptor
bad checkword in zone descriptor
a re-entrant call was attempted
the TWA stack addr wasn't zero on entry to D4KSEA
encountered non-root or last root sector w/no dummy entry

```


MAJOR
halt
CODE
13

\footnotetext{
return from \(1-s e c o n d\) WAIT was not due to timeout
invalid checkbyte in zoneset or indset descriptor
bad record descr linked list checkuord
a record descriptor exists with no selection descr's attached
sel descriptors still exist during indset deallocation
active selections exist in indset being deleted (not in use)
invalid byte count during try to browse forward
invalid checkword in selection descr
reserved for MKAM
}

0 unsupported SVC code
a high level interrupt signalled the supervisor but no ICB
requires servicing
2 bad ICB service subrtn checkword
3 bad timer cell service subrtn checkword
4 bad SVC service subrtn checkword
21 bad IOB checkword
22 bad IOB checkword
23 bad IOB checkword
24 bad ICB checkword
25 bad ICB/ICB cheok
26 IOB not \(\$ F 3\) (completed by driver and waiting to be dequeued)
27 bad IOB after-complete subroutine checkword
28 bad ICB checkword
29 bad TCELL checkword (timed-VN)
2A timer already running
INTERFACE SUBSYSTEM ERRORS
```

UNDEFINED - This major code is used for hait conditions to which (MPE) minor codes are not assigned. It is IMPERATIVE to note ALL register contents upon a $\$ 17$ halt, especially RPO, and to correctly identify the MPE (configuration and thruno). The MPE should be dumped using ALMFMD.
GENERAL
(MPE) timer already running squirt length given in squirt is greater than 48 bytes supervisor firing error; bad NVSCI zero or odd DMA length given bad ICB address no IOB to process when there should be timed-VN, no IOB when there should be timed-VN, bad TCELL checkword NV IOB cannot be processed because the interface subsytem is not configured for that particular IOB.NVIORT (request type)
bad checkbyte in IOB.NVIO7A
$F$ bad checkbyte in IOB.LTIO7A

```
```

    integrity check failed
    ```
 integrity check failed
 integrity check failed
 integrity check failed
 type-1 linked list insertions: bad chechword or other integrity
 type-1 linked list insertions: bad chechword or other integrity
 failure
 failure
4 type-1 linked list deletions: bad chechword or other integrity
4 type-1 linked list deletions: bad chechword or other integrity
 failure
 failure
 bad checkword in free list
 bad checkword in free list
 bad checkword in returned memory block
 bad checkword in returned memory block
 bad checkword in free memory area
```

    bad checkword in free memory area
    ```

20

```

\$XFER - Release BRO2
Initialization - \$XINIT
\$XINIT is called once, before \$XOPEN is called for the rirst time.
BRM \$XINIT Initialize \$XFER
DCN 3 ..Number of parameters
PZE IOID ..Address of the IOID table
PZE CLUAT ..Address of the CLUAT table
BRA Error ..Error return
..Normal return
Error Codes: 1 - \$XFER is already initialized
Opening a controiler - \$ XOPEN

BRM	\$XOPEN	Open a logical controller
DCN	5	. .Number of parameters
PZE	LUN	..Address of the logical unit number
PZE	ACW	..Address of the ACW
PZE	EXIT. 1	..Address of the Level 1 exit routine
PZE	MAPPING	..Address of the mapping word
BRA	Error	..Error return
--		..Normal return

    Error Codes: 1-$XINIT not called
    2 - Invalid logical unit number was called
    3- The logical unit is already opened
    Mapping word: Bit 0-0= Buffers are not mapped, 1 = Buffers mapped.
    Bit 1-0 = Use primary window, 1 = Use current window (MFE
    only).
    ```

Closing a controller - \(\$\) XCLOSE
\begin{tabular}{cll}
BRM & \$XCLOSE & Close a logical controller \\
DCN & 2 & ..Number of parameters \\
P2E & LUN & ..Address of the logical unit number \\
BRA & Error & ..Error return \\
\hline- & & ..Normal return
\end{tabular}

Error Codes: 1 - \$xinIT not called
2 - Invalid logical unit number was called

\section*{Changing logging on a controller - \$XLOG}
\begin{tabular}{cll}
BRM & \$XLOG & Change logging on a controller \\
DCN & 3 & ..Number of parameters \\
PZE & LUN & ..Address of the logical unit number \\
BRA & LOGVAL & ..Address of the log value \\
BRA & Error & ..Error return \\
-- & & ..Normal return
\end{tabular}

Error Codes: 2 - An invalid logical unit number was specified 3 - The logical unit referenced is not opened

Log Value: \(\quad 0=\) Turn logging off for this logical unit.
\(1=\) Turn logging on for this logical unit.

Transfer a table to the controller - \$XFER
\begin{tabular}{cll}
BRM & \$XFER & Transfer table to the controller \\
DCN & 2 & . Number of parameters \\
PZE & TABLE & ..Address of the request table \\
BRA & Error & OError return \\
\hline
\end{tabular}

Error Codes: 2 - An invalid logical unit number was specified
3 - The logical unit referenced is not opened
5 - IRQ timeout
6 - One word transfered, request table queued
7 - Previous buffer pending, request table queued
Request Table: Word 0 , Bit \(0,0=\) Request, \(1=\) Response
Bit 2, \(1=I / 0\) of table to controller completed
Word 1, Bits \(16-23\), Logical unit number
Word 2, Bits 0-7, 0=Write, 1=Read, 2=Contol, 3=Status
Word 4, Address of the request table.
Word 5, Post-processing routine address
Word 6, Address of the Associated Buffer, if any.

ELOG

Start logging - LOGON

BRM LOGOFF Terminate ELOG Meturn

Chained Log Block Format
The first word of each block of the chain is in the following format:
Bits 0-7, Blocksize of this block (in words) divided by 16
Bits \(9-23\), Pointer to the next block. (0 - last block in the chain).

Log Information Table Pointer, Location 7
Bit \(0,0=\) Log has not wrapped, \(1=\) Log has wrapped. Bits 1-8, Window number of LIT and log.
Bits 9-23, Address of the LIT.

Log Information Table Format
\begin{tabular}{cll}
Hord & Bits & Description \\
0 & \(9-23\) & Pointer to the first log block \\
1 & \(9-23\) & Pointer to the current log block \\
2 & \(9-23\) & Pointer to current position in the log block \\
3 & \(9-23\) & Length of contiguous area (in words) Zero means chained. \\
4 & \(9-23\) & Negative number of words left in the current block.
\end{tabular}

\section*{Communications Utilities}

\section*{DTCOMM. DTCOMF and COMDMP \(=\) Softrare Release BSO4}

These utilities are used to access the commications comtroller raM. There are two versions, DTCOMM is the IDOS version, DTCOMF is the DKOS version and COMDMP is the MFE version.
A. An \(8437 / 8460\) load file may be changed by loading the file into the 8437/8460, changing the apropriate memory values and dumping the contents of the memory to the same file from which it was loaded. When using this method you must not exit DTCOMM before writing the updated memory contents back to a disc file.
B. DTCOMM aids the user in debugging programs which run on the 8437/8460 communications controller. With the processor, one may load, display to the screen, update and dump \(8437 / 8460\) memory. The product has been designed with the occasional user in mind and is very straightforward in its use.
C. Note: DTCOMM has a single threaded logic which handles only one parameter per input line. It uses OPTION to read parameters but it will only execute one operation at a time.

The following JCL has been implemented:
```

// DTCOMM
/ INPUT = Filename e Drive.
/ DISPLAY = Byte Address.
/ UPDATE = Value e Byte Address.
/ OUTPUT = PRINT \& Starting Byte Address.
-OR-
Filename e Drive.
/ LOGICAL UNIT = Logical Unit Number.
/ PATTERN = Pattern Value e Starting Byte Address.

```
// DTCOMM will load the processor and display a menu of commands on the screen. The release identifier (BSO2) displays with the menu.
/ LOGICAL will cause DTCOMM to access up to four comminications
UNIT controllers. The default is controller zero. All operations are performed on the controller specified by this command until a subsequent LOGICAL UNIT command is entered. The logical unit to physical channel/unit address is as follows:

Logical Unit
\begin{tabular}{llll}
0 & \(=\) & 1 & 30 \\
1 & \(=\) & 1 & 34 \\
2 & \(=\) & 1 & 20 \\
3 & \(=\) & 1 & 24
\end{tabular}
\(/\) INPUT will load the file named from the drive specified and write the file into the controller RAM. The file is written into memory starting at location zero. DTCOMM will read compressed files (3 bytes/word as output by LOAD65) or uncompressed files (1 byte/word, right justified, as output by UASM65) and load them correctly into the controller ram.
\(/\) DISPLAY will display on the screen 256 bytes of the communication controller memory starting with the address specified. The controller registers will also be displayed (RP, A, X, Y, STACK and STATUS).
/ UPDATE will change the byte specified to the value specified. Then DTCOMM will display on the screen 256 bytes of controller memory starting with the location changed. After modifying a byte, updates to sequentially following bytes need not specify a byte address.
/ OUTPUT will output the contents of the communication controller memory to the printer (if PRINT is specified) or to the named file on the specified drive. If PRINT is specified, the output will start with the controller address specified and will be in hexadecimal format. Large portions of memory containing the same value will be compressed on the printout. If the speciried output is a file name, the output will be a contiguous file with three bytes per word. The output file may be reloaded using DTCOMM.

PATTERN will fill the communication controller memory with the specified 16-bit pattern starting with the specified address through the end of memory.

DTCOMM obtains the screen size from the COMM region. The IDOS processor SCREEN can be used to set the screen size parameters. All parameters are optional. Entering a "// " will cause a return to IDOS. While DTCOMM is accessing the controller memory, the controller is executing in the ROM code, thus creating a basically stable state. The controller will be released to resume its interrupted activity when the user returns to DTCOMM. All values and addresses can be in octal, decimal or hexadecimal. Drive numbers may be in octal or decimal. Preceed octal numbers with a zero (0) and hexadecimal numbers with a percent sign (\%).

TRACE and COMTBA \(=\) Communications Line Trace Analyzer \(=\) Release BSO4-A
TRACE is the IDOS version and COMTRA is the MFE version of the trace analysis program. This utility reads the log area (created by ELOG) from a dump file. See the ELOG section in Commications Services (BRO2) for the format of the log.
// TRACE Start execution of TRACE. A menu of functions displays.
/ INPUT = Filename e Drive.
The input file is a IV/xx dump file. If no input file is specif1ed, TRACE Will attempt to open "DUMP47" or "CKPT" on drive 0 . If neither or both of these files are found, an error message appears on the screen.
/ WINDOW = Window number.
If location 7 in the dump is invalid but the window that the trace is in is known, this parameter may be entered to force TRACE to find the correct window. The default is the window stored in location 7 of the dump file.
```

/ XLIT = Log Information Table Address,
If location 7 in the dump is invalid but the Log Information
Table address is known, this parameter may be entered to force
TRACE to find the LIT table. The default is the window stored in
location 7 of the dump file.
/ LOGICAL UNIT = Logical controller number.
This specifies which logical controller TRACE is supposed to
display/print data from. If this is specified, the type is not
necessary.
/ TYPE = Access method type.
This specifies which access method TRACE is supposed to
display/print data from. If this is specified, the Logical
controller number is not necessary. Access method types follow;
/ C SIMUL{TOR TRACE FILE = Filename e Drive.
The C file is a simulator trace file. If no name is entered, the
default is TRCFIL e O.
Type Access Method

| C | NTP150 |
| :--- | :--- |
| CBE | CU3270/8437 BSC EBCDIC |
| CBA | CU3270/8437 BSC ASCII |
| CSE | CU3270/8437 SDLC EBCDIC |
| CSA | CU3270/8437 SDLC ASCII |
| L | Local channel adaptor (7073) |
| LA | LAM/8437 ASCII |
| LE | LAM/8437 EBCDIC |
| M | MLAM/8437 EBCDIC |
| MLA | MLATMS/8460 (Multi-1ine Async) |
| RE | 3770 EBCDIC |
| V | Vision/8436 (3270) |
| W | Remote Terminal |

/ INPUT. To exit TRACE.
//
After enterint the above options, hit cursor return and a menu of function keys will appear. These are listed below.

| Key | Function |
| :--- | :--- |
| I | Advance the Trace display 1 line. |
| H | Advance the Trace display a half screen. |
| F | Advance the Trace display a full screen, |
| P | Start or Stop printing the trace (toggle). |
| R | Restart the display, |
| S | Turn on or off the full trace (toggle, on at startup). |
| ATTN | Enter option parameters. |
| L | Go to the end of the file (contiguous log area only). |
| B | Back up one sector (contiguous log area only). |
| E | Exit to IDOS. |

```

CONFIGURATOR
The configurator is executed by entering the following into SYSIN:
// C320PT
The SIMED file (S32CFG) which is used by the configurator contains selectedmacros from the following list: CONFIG

DEVICES=n (screens plus printers) SCREENS:n
PRINTERS = (number of buffered printers)
SIZE=80×24, 80×12, 40×24, 40×12
ENVIRONMENT =IDOS, MFE, DROS
CONTROLLER \(=8436,8437\), NOCOMM
LPBASE \(=030\), 0
CPBASE \(=0,1,2, \ldots\)
WIDGET=YES, NO
DEVICE (Should be listed once for each device)
DEV. ADDR \(=\mathrm{n}\) (n - number of devices)
TYPE=TUBE, BUFPRT, CPYPRT, DUMMY
TUBE.ADDR \(=\) n (address with respect to series IV cabling)
TRANSLATE \(=\) TBXXXX
PRINT.TYPE \(=\) CHARACTER, LINE
PRINT.ADDR \(=n\) (\(n=\) increment to be added to printer base)
INTERCEPT \(=\) NO, YES
COMM
CONTROLLER.UNIT \(=033\) \& up for \(8436,0-7\) for 8437
CU.ADDR=40, 20, 01 \& UP
DISCIPLINE=BISYNC, SDLC
MODE=NRZ, NRZI
MODEM.SPEED \(=\) LOW, HIGH
LOG. TYPE \(=0-4\)
CHARSET天EBCDIC, ASCIIA, ASCIIB
BUFFERS \(=n\) (\(n\) defaults to 17 for 8436,5 plus terminals for 8437)
LOAD. \(8437=\) NO, YES
TB2COL \(=\mathrm{NO}, \mathrm{YES}\)
SB3270
ATFIELD \(=\) NO, YES
nobeep
CRPT
DISK \(=8250\), \(8230,8240,8260,8280\)
C=YES, NO
LPRINT
PRINT.ADDR=n (logical device number)
STFWD
FILE \(=X X X X X X\)
anAme
FILE \(=\) S 32 DBX
DBGMEM
DBGTRD
DBGTRM
DBGMFE
ENDCFG
PRINTER, LINES=nn (number of lines per page)
```

MINGEN
A32MND or (A32MNF for 8250's) can be used to change the rollowing items
in the simulator load module:
Control unit address
Lines per page
Device logical unit number
Initial intercept flag
physical unit address of any printer
Number or devices
For 8437's only:
Line discipline
Character set
Modem speed (dual speed modems only)
JCL FOR SIMULATOR UTILITIES
CXPTXX
// CXPTXX - allocate checkpoint or trace file and load simulator
/B=banks
/C=checkpoint file name
/T=size for trace file (TPCFIL)
/L=name of load module
//
A32FMD - print formatted dump
// A32FMD
/C=checkpoint file name l drive
//
AF3270 - create local disk data rile
// AF3270
10=filename e drive
/V=screensize
/T=number of terminals
/F=number of formats
/S=total images
//
ACPAFC - validate Store and Forward file
// ACPAFC
I=filename e drive

```

\section*{DEBUG ROUTINES}

The rollowing debug options are avallable under BV03:
```

A - Toggie attributes
B - Return to operating system
C - Take a checkpoint dump
D - Disable any dynamic display
E - Toggle the logging state
F - Move trace display by lines
G - Move trace display by disc sectors
H - Move to start or end of trace
I - Select memory logging
J - Select disc logeing
K - Toggie the full system trace on or off
L - Set lines per page
M - Dynamic display of given memory locations
N - not implemented
O - Obtain printer under MFE
P - Password
Q - not implemented
R - Release printer under MFE
S - See others screens
T - not implemented
U - not impiemented
v - Store a value into memory
W - not implemented
X - not implemented
Y - Change local screen print device
z - Local screen print

```

10700 N. DeAnza Blvd., Cupertino, CA. 95014 (408) 255-0900```

[^0]: * For 3770 Switched, a second member must be defined under SYS 1. VTAMLST.

[^1]: \ddagger Value +0 through +5 refers to words 2 througb 7 in the Directory Entry of the iSAM file.

[^2]: $\mathrm{L}=1$, Overlay is loaded (in DATOOO)
 $E=1$, Overlay exists

[^3]: *All memory not allocated to screens, user tables or executable code is organized into the following:

 Sector Buffers - 0400 (256) words number set at CONFIG time

 System Blocks - 0100 (64) words
 Mini Blocks - 020 (16) words
 Micro Blocks - 04 (04) words
 **If there are no 8121 printers, this area will be used for system blocks.

[^4]: Zone 001-377
 0000
 0001
 0002 0015
 0016
 0017
 0020 -
 7677

