

Notice

Data General Corporation (DGC) has prepared this document for use by DGC personnel, customers, and
prospective customers. The information contained herein shall not be reproduced in whole or in part without
DGC's prior written approval.

DGC reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DGC to determine whether any such changes
have been made.

The terms and conditions governing the sale of DGC hardware products and the licensing of DGC software
consist solely of those set forth in the written contracts between DGC and its customers. No representation
or other affirmation of fact contained in this document including but not limited to statements regarding
capacity, response-time performance, suitability for use or performance of products described herein shall
be deemed to be a warranty by DGC for any purpose, or give rise to any liability of DGC whatsoever.

In no event shall DGC be liable for any incidental, indirect, special or consequential damages whatsoever
(including but not limited to lost profits) arising out of or related to this document or the information
contained in it, even if DGC has been advised, knew or should have known of the possibility of such

damages.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microNOVA, NOVA, PROXI, SUPERNOVA,
ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV /8000, TRENDVIEW, MANAP, SWAT, GENAP, and
PRESENT are U.S. registered trademarks of Data General Corporation,and AZ-TEXT,DG/L,DG/XAP, GW/4000,
ECLIPSE MV/10000, GDC/1000, REV-UP, UNX/VS, XODIAC, DEFINE, SLATE, DESKTOP GENERATION,
microECLIPSE, BusiPEN, BusiGEN, and BusiTEXT are U.S. trademarks of Data General Corporation.

Ordering No. 014-000774

© Data General Corporation, 1983

All Rights Reserved

Printed in the United States of America
Rev. 00, October 1983

Preface

The technical reference manuals for Desktop Generation ™ computers and their
peripherals are written for assembly language programmers, systems analysts,
and engineers. This set of manuals, together with two companion programmer’s
references, contains the information you need to: 1} write assembly language
software, including I/0 subroutines; 2) knowledgeahly expand your system; 3)
learn how your system operates at the card level; and 4) design custom interfaces.

This manual introduces the microl/O bus and describes the I/0 interface required
to communicate with this bus and its host Desktop Generation computer. Other
technical and programmer’s references for Desktop Generation computers are
listed and summarily described under “Related Manuals” in this preface.

Preface

Organization

This book includes four chapters, three appendixes, and an index. It is organized
so that portions of it can be read selectively.

¢ Chapter 1 defines important concepts and terms.

e Chapter 2 introduces the I/0 instructions that allow the program to communi-
cate with peripheral controllers and discusses the program interrupt and data
channel facilities.

* Chapter 3 describes the I/0 bus to I/0 controller interface that is standard to
all peripherals connected to the microI/O bus of Desktop Generation computers.

¢ Chapter 4 describes a general-purpose interface card suitable for building a
custom interface to a Desktop Generation computer.

» Appendix A describes a general-purpose wiring card included in Data General's
assemblies.

* Appendix B presents the 7-bit International Standards Organization (ISO)
character code and its ASCII equivalent.

» Appendix C lists the I/0 device codes for Desktop Generation computers.

A documentation comment form follows the index. It invites you to help Data
General improve its publications by commenting on this book.

Related Manuals

A comprehensive documentation set supports all the hardware and software
products available for Desktop Generation computers. The hardware-related
books listed below fall into three categories: the technical reference series; the
user guides for operating, installing, and testing; and the introductory guide for
Desktop Generation computers.

The following technical and programmer’s references address the needs of
assembly language programmers and engineers.

16-bit Real Time ECLIPSE Assembly Language Programming

Global in nature, this book explains the processor-independent concepts, func-
tions, and instruction sets of 16-bit ECLIPSE computers. DGC ordering no.
014-000688.

Model 10 and 10/SP Computer Systems
Technical Reference

In addition to the functional and physical organization of Model 10 and 10/SP

computers and their technical specifications, this book explains their processor-
unique concepts, functions, and instruction set features. The theory of operation
for the basic components of Models 10 and 10/SP. DGC ordering no. 014-000766.

Model 10 and 10/SP System Console
Programmer'’s Reference

Preface

iii

Describes the organization and alphanumeric and graphic features of the system
console. Defines the command sets and includes guidelines for programming the
monochrome and optional color monitors at assembly and high-level language
levels. DGC ordering no. 014-000770.

Model 20 and 30 Computer Systems
Technical Reference

In addition to the functional and physical organization of Model 20 and 30
computers and their technical specifications, this manual explains their processor-
unique concepts, functions, and instruction set features. Provides detailed
information for programming the systems’ I/0 devices, including the diskette
subsystem, and explains the theory of operation for the basic components of
Models 20 and 30. DGC odering no. 014-000767.

Communications Interfaces
Technical Reference

Discusses the functional and physical organization of the asynchronous/ synchro-
nous communications interfaces available for Desktop Generation computers.
Defines their I/0 instruction sets, offers guidelines for writing assembly language
1/0 subroutines, and contains theory of operation for each communications card.
DGC ordering no. 014-000769.

Sensor I/0
Technical Reference

Defines instruction sets, offers guidelines for writing assembly language 1/0
subroutines, describes theory of operation at an overview level, and explains
how to connect field wiring for the 4222 digital I/0 interface, 4223 analog-to-
digital interface, 4224 digital-to-analog interface, and 4335 analog subsystem.
DGC ordering no. 014-000775.

Disk Subsystem Technical Reference

Describes the functional and physical organization of the Model 6271 disk
subsystem. Defines the I/0 instruction set and provides guidelines for program-
ming the subsystem. DGC ordering no. 014-000768.

IEEE-488 Bus Interface
Technical Reference

Provides the information needed to interface, program in assembly language,
and troubleshoot this card in a Desktop Generation system. Reviews the contents
of the IEEE-488 bus standard, summarizing its commands, messages, and states,
and includes a theory of operation. DGC ordering no. 014-000773.

The following books are how-to manuals written for anyone who needs to know
how to install, operate, and test a Desktop Generation system.

Installing Model 10 and 10/SP Systems

The first book that a Model 10 or 10/SP owner should read, explains how to
unpack and install either system and its optional peripherals. Simple instructions
and ample illustrations make the book accessible to any reader. DGC ordering no.
014-000901.

iv

Preface

Operating Model 10 and 10/SP Systems

A logical follow-on to Model 10 and 10/SP installation, this guide takes you from
powering up the system and its optional peripherals through performing such
routine operations as loading paper in a printer and inserting or removing
diskettes. Brings you to the point of loading the system software. Amply illustrated
and written for users at any level of experience. DGC ordering no. 014-000900.

Testing Model 10 and 10/SP Systems

Follows the installation and operating manuals with instructions for verifying
the operation of Model 10 or 10/SP systems and their optional peripherals. Steps
you through the power-up test and Customer Diagnostics and explains how to
troubleshoot customer-replaceable components. Simple instructions and diagrams
make the book accessible to any user. Includes phone numbers for Data General
assistance. DGC ordering no. 014-000902.

Installing Model 20 and 30 Systems

The first book a Model 20 or 30 owner should read, explains how to unpack and
install either system and its optional peripherals. Accessibly written and
illustrated, for users at any level of experience. DGC ordering no. 014-000904.

Operating Model 20 and 30 Systems

Follows Model 20 and 30 installation, leading you from powering up the system
and its optional peripherals through performing such routine operations as loading
paper in a printer and inserting or removing diskettes. Brings you to the point of
loading the system software. The simple instructions and generous illustrations

are suitable for any reader. DGC ordering no. 014-000903.

Testing Model 20 and 30 Systems

A follow-on to the installation and operating mauals, explains how to verify the
operation of Model 20 or 30 systems and their optional peripherals. Simple
instructions and diagrams lead you through the power-up test, Customer
Diagnostics, and trouble-shooting of customer-replaceable components. Includes
phone numbers for Data General assistance. DGC ordering no. 014-000905.

This last book is a product overview, addressed to all Desktop Generation users.

The Desktop Generation

Introduces the Desktop Generation, summarizing each model of the family, and
describes its many hardware and software products, features, and capabilities.
Includes a brief history of Data General, a sampling of applications, and an
overview of the customer service and support programs available to you as a
Desktop Generation user. DGC ordering no. 014-000751.

Preface

Conventions

The following conventions are used throughout this manual.

MNEMONIC

argument

[optional]

Uppercase sans serif letters indicate a signal name or instruction
mnemonic. When a signal is active low, it is barred—for example,

FDCHE.

Italicized lowercase letters mean that a particular instruction
takes an argument. In your program, you must replace this symbol
with the exact code for the argument you need.

Brackets signify an optional argument. If you decide to use this
argument, do not include the brackets in your code; they only set

off the choice.

In dialogs between system and user, we use this typeface to show your input:

USER INPUT
and this typeface to show the system'’s response:

SYSTEM RESPONSE.

In addition, we use the following diagram to show the arrangement of the 16 bits
in an instruction. The diagram is always divided into 16 boxes, numbered 0

through 15.

A

BIT

FORMAT

0

1

Contents

Preface

Organization ii

Related Manuals ii

Conventions v

Overview

Interfacing 1-2

Definition of Terms 1-2
Types of Information 1-2
Types of Information Transfer 1-3
Program Interrupt Facility 1-4

Input/Output Programming

The Typical Controller 2-2
Data Registers 2-3
Control Registers 2-3
Status Registers 2-3
Busy and Done Flags 24
Error Flags 2-4

Instruction Format 2-5
Device Code Field 2-5
Flag Control Field 2-5
Operation Code Field 2-6

Accumulator Field 2-7

Instructions 2-7

Datain A 2-7
DataInB 2-8
DataIn C 2-8
Data Out A 2-8
DataOut B 2-8
Data Out C 2-8
NoI/O Transfer 29
I/OSKip . . 29
Program Interrupt Facility 2-9
Program Interrupt Operations 2-9
Program Interrupt Instructions 2-13
Interrupt Enable (INTEN)| 2-13
Interrupt Disable (INTDS) 2-13
CPUSKIp 2-14
Mask Out (MSKO) 2-14
Interrupt Acknowledge (INTA) 2-14
I/0 Reset (IORST) 2-15
Priority Interrupts 2-15
Data Channel Facility 2-17
Controller Structure 2-18
Transfer Sequence, 2-19
Programming a Peripheral 2-20
Timing 2-20
Direct Program Control 2-20
Data Channel Control 2-22

Bus-to-Controller Interface

The I/O Bus 3-2
The Transceiver 3-3
I/0 Controller and Decoder 3-4
I/0 Controller 3-4
I0C Decoder to Device 3-7
Timing 3-9
Data Channel Transfers 3-11
Peripheral Control Lines 3-12

General-Purpose Interface Card

Principal Components, 4-2
Programming 4-6
Summary of GPIO Bus Signals 4-6
Interface Timing 4-8

Programmed Transfers 49

Data Channel Transfers 4-10

oo}

Jumpers . 4-12
Device Select 4-12
Polarity Select 4-12
External Register Select = 4-14
Priority Mask Bit Select 4-14

Data Lines and Drive Capability 4-14

Busy/Done 4-15

Interface Wire-wrap Pins 4-15

Additional Printed Circuit Card
ASCII Character Set
Peripheral Device Codes

Overview

While you do not need to know much about the input/output architecture of a
Desktop Generation computer to use a peripheral sold by Data General Corpora-
tion, you do need to understand that architecture in order to design and use
custom-built I/0 equipment.

This book is intended to supply the background you need to build interfaces. This
chapter defines important concepts and terms. Our presentation assumes that
you have a working knowledge of digital circuits and some experience with
digital computers.

1-2

Overview

Interfacing

A great advantage of the present generation of microcomputers is that they can
be connected, or interfaced, to a variety of custom peripherals. In Data General’s
microcomputers, interfaces stand between the devices they control and the CPU,
communicating with the peripherals individually and with the processor over an
I/0 bus, a set of wires carrying signals to all interfaces.

It is easy to interface to Data General's microcomputers for a number of reasons:

* You can build a reliable interface — even a large one — on a single printed
circuit card measuring 7.5 x 10.4 inches, using a minimum of off-card
connections.

* Data General provides an LSI circuit, called an I/0 controller (microNOVA
10C), which encapsulates the protocol logic required on each peripheral device
interface.

* Data General also makes available general-purpose interface cards that simplify
the job of designing and building an interface.

Definition of Terms

A peripheral generally consists of two units, a device and a controller. The
device (typically called a drive, a transport, or a terminal) reads, writes, stores,
or processes information. For example, a terminal’s keyboard reads information;
a plotter writes information; a disc drive stores information; and an A/D
converter processes information.

The controller portion of the peripheral is the interface between the CPU and the
device. It interprets commands from the computer to the device and passes
information between them.

As shown in Figure 1-1, the communications channel through which all
CPU/controller information passes is called the input/output (I/0) bus. Since
this bus is shared by all of the controllers as well as by the CPU, it is, by
necessity, a half-duplex bus; i.e., only one operation can occur at any time. The
direction of all information transfers on the I/0 bus is defined relative to the
computer.

Output always refers to moving information from the processor to a controller;
input always refers to moving information from a controller to the processor.

Types of Information

The information transferred between the CPU and a controller can be classified
into three types: status, control, and data. Status information tells the CPU about
the state of the peripheral. Is it busy? Is it ready? Is it operating properly?
Control information is transferred by the processor to a controller to tell the
peripheral what to do. Data are the information that come from or go to the
device during reading, writing, storing, or processing.

Overview 1-3

MEM bus
crU ﬁ——- Peripheral Peripheral
controller device

Memory 1/0
bus

Peripheral Peripheral
controller Device

DG-05861

Figure 1-1 System diagram

Types of Information Transfer

Information can be transferred between the CPU and a peripheral in one of two
ways: under direct program control or under data channel control. An information
transfer occurring under direct program control moves a word or part of a word
between an accumulator in the CPU and a register in the controller. This type of
transfer occurs when an appropriate I/0 instruction is executed in the program.
An information transfer under data channel control generally moves a block of
data, one word at a time, between memory and the device, through a register in
the peripheral’s controller.

The block of data is transferred automatically via the data channel once the
transfer for a particular peripheral is set up via direct program control.

Direct Program Control Direct program control of information transfers,
also called programmed I/0, is a way of transferring single words or parts of
words to or from peripherals. Among the peripherals which transfer data in this
way are line printers, terminals, paper tape readers and punches. The data
moving through an accumulator are readily available to the program for
manipulation or decision making. In the case of input, for example, the program
can decide whether to read another word or character based on the value of the
word or character that was just read.

However, programmed I/0 is slow, because at least one instruction, and most
likely several, must be executed for each character or word transferred. It is
generally used only for peripherals that do not have to transfer large quantities
of information quickly.

1-4 Overview

Data Channel Control Some peripherals, such as disk subsystems, are
used to access large blocks of data. In order to reduce the amount of program
overhead required, these blocks are transferred under data channel control. The
commands used to set up the data channel transfer are transferred to the controller
under direct program control. The block of data is then automatically transferred
between memory and the controller via the data channel. Thus, the program
defines the block of memory to be transferred, but it does not have to transfer
each word of the block.

Once the data channel transfer for a block of data has been set up and initiated
by the program, no further action by the program is required to complete the
transfer. The program can proceed with other tasks while the block transfer is
taking place. Each time the controller is ready to transfer a word from the block,
it requests data channel service. When the CPU responds to the request, the word
is transferred. Because several instructions do not have to be executed for each
word transferred, block transfers can occur at a higher rate.

Since the actual transfer of a word via the data channel could conflict with the
program instructions being executed, the program pauses during the transfer of
each word. This pause is transparent to the programmer, except that it lengthens
the time required for program execution.

Program Interrupt Facility

When transferring information under either direct program control or data
channel control, the program must be able to determine when the transfer is
complete, so that it can start a new transfer or proceed with a task that was
dependent on the transfer just completed. Peripherals have status flags which
can provide the program with this needed information. The I/0 instruction set
allows the program to check the status of these flags and make decisions based on
the results of the checks. However, these status checks are time consuming. Thus,
all Data General computers incorporate a program interrupt facility, which
eliminates the need to continually perform status tests.

The program interrupt facility provides a peripheral with a convenient means of
notifying the processor that it requires service by the program. This is
accomplished by allowing the peripherals to interrupt normal program flow on a
priority basis. When a peripheral completes an operation or encounters a situation
requiring processor intervention, it can request a program interrupt of the
processor. The processor honors such a request by interrupting the program in
process, saving the address where the interruption occurred, and transferring
control to the interrupt handling routine. This routine identifies the peripheral
requiring service, transfers control to the service routine for that peripheral, and
after the peripheral has been serviced, restores the system to the state it was in
when the interrupt occurred.

For systems requiring large amounts of I/0 to many devices, a multilevel priority
structure up to 16 levels deep can be established by software. This structure can
be set up to provide rapid service to those devices which are crucial to the
efficient operation of the computer system; the less critical devices can be
interrupted by the more critical devices.

Input/Output
Programming

Information transfers between the processor and the various peripherals are
governed by eight instructions that constitute the I/0 instruction set. This chapter
covers only those I/0 instructions that allow the program to communicate with
the peripheral’s controllers and to control the program interrupt facility. The
chapter introduces these instructions to those who have no experience with Data
General's I/0 system.

2-2

Input/Output Programming

The Typical Controller

The specific effects of 1/0 instructions necessarily depend on the peripherals to
which they are addressed. However, their general functions (loading and reading
registers, issuing control signals, and testing flags) are the same for all peripherals;
different peripherals merely use the available functions in different ways. In
order to understand the general functions performed by the I/0 instructions and
how these functions are typically used by peripheral controllers, you should
know something about the architecture of a peripheral controller.

From the point of view of the program, a peripheral controller operates as a
collection of data registers, control registers, and status flags, with which
communications are established (see Figure 2-1). With these registers and flags,
the program can route data between the CPU and the device, as well as monitor
the operation of the device.

ﬁ To CPU 1/O bus

High priority
(L N LL Busy/Done N
Al Interrupt +DCH) M interrupt 4
Peripheral < ’) .
controller +DCH REQ 4 Device
/t 16-bit bidirectional y
Data bus
A) >
Data and control lines 4 Control lines
L~ Low priority

Figure 2-1 Peripheral controller

The distinction made here between registers and flags is generally one of
information content. A flag contains a single bit of information, while a register
is made up of a number of bits. Groups of contiguous bits in a register which
convey a single piece of information are referred to as fields.

The paragraphs below describe only the basic components of a typical controller.
The additional structure required for a peripheral using the program interrupt
facility or the data channel is discussed in the chapters describing those facilities.
What follows merely typifies the workings of a controller; in any concrete
situation, the controller is tailored to the specific devices it controls. Specifications
of the 1/0 interface for Desktop Generation computers are given in Chapter 3.

The registers in a controller are of three types, depending on the kind of
information that is stored in them: data registers, control registers, and status
registers.

DG-05862

Input/Output Programming 2-3

Data Registers

Data registers (or data buffers) store data in the controller as they pass between
the device and the computer. These buffers are needed because the computer and
the device usually operate at different speeds. Since the operation of nearly all

peripherals involves the transfer of a word or part of a word of data between the
computer and the device, nearly all peripheral controllers contain a data buffer.

In the case of a peripheral that transfers data under direct program control, the
data buffer is directly accessible to the program. An I/0 instruction transfers
data between the register in the controller and an accumulator in the central
processor.

In the case of a peripheral that operates under data channel control, the data are
transferred between the register in the controller and memory. Data buffers in
the controllers which use the data channel need not be, and usually are not,
accessible to the CPU through programmed I/0.

Control Registers

Control registers allow the program to supply the controller with information
necessary for the operation of the device, such as drive or communication line
numbers, data block sizes, and command specification. A unit of control
information is called a control parameter.

Control parameters typically allow the program to select one of a number of
peripheral units in a subsystem, the operation to be performed, and the initial
values for flags and counters in the controller. The program specifies control
parameters to the controller with an I/0 instruction, wherein the desired
parameters are coded into the appropriate fields of the accumulator used in the
transfer.

Status Registers

Status registers are used to indicate to the program the state of the peripheral.
They consist primarily of status flags, but can also contain control parameters.
The control parameters contained in status registers are commonly those that
change during the operation of the peripheral; these are therefore important to
the program, which must check on the progress of the peripheral’s operation. For
example, a program transferring consecutive sectors of information on a disk in
a single operation can read the current sector address and sector count during the
operation in order to determine how far the operation is from completion. Status
flags are set by the controller to indicate error conditions or to notify the
computer of the basic state of the peripheral.

The classification of controller registers into the three types described above is
only a general one. A register may contain more than one type of information.
Often a register serves as a control register when loaded by the program and as a
status register when read by the program. The disk address/sector counter
register mentioned in the preceding paragraph is an example of a combined
control and status register.

2-4

Input/Output Programming

Busy and Done Flags

Busy and Done flags—the two fundamental flags in a controller—serve a dual
purpose. Together they denote the basic state of the peripheral and can be tested
by the program to determine that state. In addition, the program can manipulate
these flags in order to control the operation of the peripheral.

The function of the Busy and Done flags is device dependent. However, most
devices use the flags in the following manner. To place the peripheral in operation,
the program sets the Busy flag to 1. The Busy flag remains in this state for the
duration of the operation, indicating that the peripheral is in use and should not
be disturbed by the program. When the peripheral completes its operation, the
controller sets the Busy flag to 0 and the Done flag to 1.

The setting of the Done flag to 1 can be used to trigger a program interrupt.
Whether or not a program interrupt occurs depends on the state of the interrupt
facility.

For a relatively simple peripheral, the Busy and Done flags alone may furnish
enough status information to allow the program to service the peripheral
adequately. However, a more complex peripheral will generally require addition-
al status flags to specify its internal operating conditions more completely to the
program.

The difference between these additional status flags and the Busy and Done flags
is that the Busy and Done flags may be tested directly with a single I/0 instruction
while any other status flag requires that its value first be read into an accumulator
from the status register. The program may then perform any test it requires on

the status word after it is read.

Error Flags

Status flags that indicate errors or malfunctions in the operation of a peripheral
are termed error flags. Two types of error flags can be characterized according to
their effect on the operation of the peripheral when they are set.

The first, or passive, type is merely set by the controller in the course of the
operation when the associated error occurs. No immediate indication of this type
of error is given to the program, and the operation is allowed to continue to
completion.

The second or active type of error flag is set by the controller when the program
attempts to start an operation which is not allowed. In this case, the operation
never begins and the Done flag is immedately set to 1 to notify the program. This
type of error flag is used to prevent a severe and probably irrecoverable error
from occurring.

In either case, the program should respond, error or not, when it notices that a
peripheral is “done.” It need only check the appropriate error flag or flags before
assuming that the operation it initiated was satisfactorily completed.

Input/Output Programming

2-5

For example, the controller of a diskette subsystem contains error flags to
indicate address and data errors. During a read operation, when a checkword
error occurs, the Checkword Error flag is set to 1. No immediate notification of
the data error is given to the program and the read operation is allowed to finish.
The error can be detected at the completion of the operation, when the program
should check for errors. At this time, appropriate action can be taken, such as
trying to read the misread sector of the diskette again or printing an error
message on the console terminal.

The Address Error flag, on the other hand, immediately sets the Done flag to 1 to
notify the program.

Instruction Format

The general format of the I/0 instructions is shown below.

o 1 1 AC OP Code Control Device Code

0 1 2 3 4 5 7 8 9 10 15

Bits O to 2 are 011, identifying this as an I/0 instruction; bits 3 and 4 specify an
accumulator; bits 5 to 7 contain the operation code; bits 8 and 9 specify a flag
control function or test condition; and bits 10 to 15 specify the code of the device.

Device Code Field

Bits 10 to 15 in an I/0 instruction select the peripheral that is to respond to the
instruction. The instruction format thus allows 64 device codes, numbered O to
77g. In all Desktop Generation computers, device codes O, 1, 2, and 3 are reserved,
and device code 774 is used to implement a number of specific processor functions,
such as controlling the program interrupt facility. The remaining device codes
are available for referencing peripherals. Many of these codes have been assigned
by Data General Corporation to standard peripherals and the assembler recognizes
convenient mnemonics for these codes. The list of the standard device code
assignments and their associated mnemonics is given in Appendix C.

Flag Control Field

Device flag commands are issued and Busy and Done flags are either manipulated
or tested according to the setting of bits 8 and 9 of the I/0 instructions. In those
instructions that allow flag manipulation, bits 8 and 9 are referred to as the f
field. Table 2-1 shows the available flag control commands. The control function
of each command is device dependent.

Table 2-1 Flag control commands

F Field Command Mnemonic
00 (none) (omitted)
01 Start S
10 Clear C

11 Pulse P

2-6 Input/Output Programming

The I/0 Skip instruction allows testing of the Busy and Done flags; in this case,
bits 8 and 9 are referred to as the ¢ field. Table 2-2 shows the test conditions that
these bits can select.

Table 2-2 Test conditions selected by 1/0 Skip instruction

T Field Mnemonic Next Instruction
Is Skipped If:
00 BN Busy flag is 1 (nonzero).
01 BZ Busy flag is O (zero).
10 DN Done flag is 1 {nonzero).

11 Dz Done flag is O {zero).

Two important features of the I/0 instruction set result from the nature of the
flag control field. First, because the flag control field is separate from the
operation code field, a single I/0 instruction can both transfer information
between the controller and the computer and simultaneously control the operation
of the peripheral. Secondly, the use of the flag control field as a ¢t field allows the
direct testing of a controller’'s Busy or Done flag in a single instruction. Thus,
quick decisions based on the basic state of the peripheral can be made by the
program.

Operation Code Field

The 3-bit operation code field selects one of the eight I/0 instructions. In two of
these instructions, no information transfer is specified; instead, bits 8 and 9 may
specify either a control function or a flag test condition as described above. The
remaining six instructions involve an information transfer between the computer
and the designated peripheral controller; they may also specify a control function
to be performed after the information transfer has been completed.

The program can, therefore, access up to six registers in any one controller. Up to
three of these six registers are output registers which can be loaded by the
program with either data or control information. The other three are input
registers from which the program can read either data or status information.
Frequently, two different I/0 instructions, one input and one output, reference
the same register in a controller. However, this is not in any way required by the
nature of the I/0 instruction set.

In order to give names and mnemonics to the I/0 instructions in their general
form, the registers in a peripheral controller that are accessible to the program
are referred to with letter designations. The three input registers are called the
“A input buffer,” the “B input buffer,” and the “C input buffer.” Similarly, the
three output registers are called the “A output buffer,” the “B output buffer,” and
the “C output buffer”. Thus, for example, to read data from a peripheral
controller’s A input buffer, A Data In A instruction (DIA) is issued to that
peripheral.

Table 2-3 lists the eight operation codes, their associated mnemonics, and the
instructions specified.

Input/Output Programming 2-7

Table 2-3 Operation codes

Operation Mnemonic Instruction
Code Field
000 NIO No input or output, but performs the flag control function
specified.
001 DIA Reads data into the specified accumulator from the A
input buffer.
010 DOA Writes data out from the specified accumulator to the A
output buffer.
011 DiB Reads data into the specified accumulator from the B
input buffer.
100 DOB Writes data out from the specified accumulator to the B
output buffer.
101 DIC Reads data into the specified accumulator from the C
input buffer.
110 DOC Writes data out from the specified accumulator to the C

output buffer.

111 SKP Skips the next instruction if the test selected for the
Busy or Done flag is true.

Accumulator Field

Bits 3 and 4 in an I/0 instruction select one of the central processor’s four
accumulators: ACO, AC1, AC2, AC3. In those instructions which involve an
information transfer between the processor and a peripheral controller, the
specified accumulator either furnishes the information for an output transfer or
receives the information in an output transfer. In the two I/0 instructions
which do not involve an information transfer, the accumulator field is ignored.
The assembler sets bits 3 and 4 in these instructions to O.

Instructions

The eight I/0 instructions are listed and described below. For an explanation of
the coding conventions used, see the preface to this manual.

Data in A
DIA[f] ac,device

0 1 1 AC 0 0 1 F Device Code

o] 1 2 3 4 5 6 7 8 9 10 15

Places the contents of the A input buffer of the specified controller in the
specified accumulator. The previous contents of the accumulator are lost. After
the data transfer, performs the function specified by f.

2-8 Input/Output Programming

Data In B

DIB/f] ac,device

0 1 1 AC 0 1 1 F Device Code

0 1 2 3 4 5 6 7 8 9 10 15

Places the contents of the B input buffer of the specified controller in the
specified accumulator. The previous contents of the accumulator are lost. After
the data transfer, performs the function specified by f.

Data In C

DIC[f] ac,device

o 1 1 AC 1 0 1 F Device Code

0 1 2 3 4 5 6 7 8 9 10 15

Places the contents of the C input buffer of the specified controller in the
specified accumulator. The previous contents of the accumulator are lost. After
the data transfer, performs the function specified by f.

Data Out A

DOA[f] ac,device

0 1 1 AC o 1 0 F Device Code

0 1 2 3 4 5 6 7 8 9 10 15

Places the contents of the specified accumulator into the A output buffer of the
specified controller. After the data transfer, performs the function specified by f.
The number of bits loaded into the buffer depends on the controller. The contents
of the specified accumulator remain unchanged.

Data Out B

DOB[f] ac,device

o 1 1 AC 1 (o} 0o F Device Code

(o} 1 2 3 4 5 6 7 8 9 10 15

Places the contents of the specified accumulator into the B output buffer of the
specified controller. After the data transfer, performs the function specified by f.
The number of bits loaded into the buffer depends on the controller. The contents
of the specified accumulator remain unchanged.

Data Out C

DOC[f] ac,device

0 1 1 AC 1 1 (o] F Device Code

0 1 2 3 4 5 6 7 8 9 10 15

Places the contents of the specified accumulator into the C output buffer of the
specified controller. After the data transfer, performs the function specified by f.
The number of bits loaded into the buffer depends on the controller. The contents
of the specified accumulator remain unchanged.

Input/Output Programming 2-9

No I/0 Transfer

NIOff] ac,device

o 1 1 AC (o] (o] 0 F Device Code

(o] 1 2 3 4 5 6 7 8 9 10 15
Performs the function specified by £. When the assembler encounters the

mnemonic NIO, it sets the AC field bits to 00. However, these bits are ignored and
may have any value. The contents of all the accumulators are unchanged.

I/0 Skip

SKP[f] ac,device

0 1 1 AC 1 1 1 T Device Code

0 1 2 3 4 5 6 7 8 9 10 15

Skips the next sequential instruction if the test condition specified by ¢ is true for
the specified controller. When the assembler encounters the mnemonic SKP/t], it
sets the AC field bits to 00. However, these bits are ignored and may have any
value. The contents of all of the accumulators and the Busy and Done flags for the
specified device remain unchanged.

Program Interrupt Facility

When a peripheral completes an operation, the controller sets its Done flag to 1
to indicate that program service is required. The program can test the state of the
Done flag repeatedly with I/0 Skip instructions to determine when this occurs.
However, continual interrogation of the Done flag by the program is generally
wasteful of computing time; this is especially important when flag checks have to
be done frequently in order to ensure that service is not delayed for so long that
the peripheral loses data. A peripheral uses the program interrupt facility to
conveniently notify the processor that service is required.

All peripherals that use the program interrupt facility have access to a single
direct line to the processor, the interrupt request line, along which their requests
for service are communicated. An interrupt request can be generated by a
peripheral when the peripheral’s Done flag is set to 1. The processor can respond
to, or honor, an interrupt request by interrupting the normal flow of program
execution and transferring control to an interrupt handling routine. By manipulat-
ing a number of flags distributed among the processor and the peripherals, the
programmer can control which peripherals may request interrupts and when the
processor may start an interrupt.

Program Interrupt Operations

This subsection details the operation of the program interrupt facility instructions
that control the program interrupt scheme.

Control Flags

The operation of the program interrupt facility is governed by the Interrupt On
flag (ION) in the central processor and by the Done and Interrupt Disable flags in
each peripheral using the facility. By manipulating these flags, the program can
choose to disregard interrupt requests altogether, or it can selectively ignore
certain peripherals.

2-10

input/Output Programming

The major control flag for the program interrupt facility is the Interrupt On flag.
To enable the interrupt facility, the program sets ION to 1, allowing the processor
to respond to interrupt requests transmitted to it along the interrupt request line.
Setting ION to O disables the entire interrupt facility, causing the processor to
ignore all interrupt requests.

ION is manipulated by the program exactly like a Busy flag for the central
processor. A Start command in any I/0 instruction directed to the CPU (device
code 77g) sets ION to 1 following the next instruction. A Clear command in such
an instruction sets ION to O. ION is also set to 0 when the CPU honors an interrupt
request.

The controller for each peripheral using the program interrupt facility contains
an Interrupt Disable flag, which allows the program to disable interrupts from
that peripheral. When a peripheral’s Interrupt Disable flag is set to 1, the
peripheral is prevented from making an interrupt request.

The Interrupt Disable flags of all peripherals are manipulated at once with a
single CPU I/0 instruction, called Mask Out (MSKO). This instruction sets up the
Interrupt Disable flags of all peripherals connected to the program interrupt
facility according to a mask contained in the accumulator specified by the
instruction. Each peripheral is assigned by its hardware to a bit position in the
mask; since there are 16 bit positions, there are also 16 interrupt levels. (See
Appendix C for mask bit assignments for standard peripherals.) When a Mask
Out instruction is issued, each peripheral’s Interrupt Disable flag is set to the
value of the assigned bit of the mask. When an I/0 Reset instruction (IORST) is
issued, all Interrupt Disable flags are set to O.

Interrupt Requests

A peripheral’s interrupt requests are governed by its Done and Interrupt Disable
flags. When a peripheral completes an operation, it sets its Done flag to 1, which
initiates a program interrupt request. If its Interrupt Disable flag is O, the request
is communicated to the CPU. If the ION flag is 1, the processor will honor the
interrupt request as soon as it can. If the Interrupt Disable flag is 1, the request is
not communicated to the CPU; it is blocked until the Interrupt Disable flag is set
back to 0.

The processor interrupts the sequential flow of program instructions if all of the
following conditions hold.

1. The processor has just completed an instruction or a data channel transfer
occurring between two instructions.

2. At least one peripheral is requesting an interrupt.
Interrupts are enabled; i.e., ION is 1.

4. No peripheral is waiting for a data channel transfer; i.e., there are no
outstanding data channel requests. (The data channel has priority over
program interrupts.)

When the processor finishes an instruction, it takes care of all data channel
requests (including those initiated during data channel transfers) before it services
any pending interrupt. When no more peripherals are waiting for data channel
transfers, the processor begins an interrupt if ION is 1 and at least one peripheral
is requesting an interrupt.

Input/Output Programming

2-11

The processor starts an interrupt by automatically executing the following
sequence:

1. It sets ION to O so that no further interrupts may be started.

2. It stores the contents of the program counter (which point to the next
instruction in the interrupted program) in location 0, so that a return to the
interrupted program can be made after the interrupt service routine has
finished.

3. It simulates a JMP@1 instruction to transfer control to the interrupt service
routine. Location 1 should contain the address of the routine or the first part
of an indirect address chain that points to the routine.

Servicing An Interrupt

The interrupt service routine (or handler) should save the state of the processor,
identify which peripheral requires service, and service the peripheral.

Saving the state of the processor involves saving both the contents of any
accumulators that will be used in the interrupt service routine and the carry bit
if it will be used. The state of the processor must be saved so that it may be
restored before the interrupted program is allowed to resume.

There are two ways in which the interrupt handler can identify which peripheral
requires service.

1. The interrupt handler can execute a polling routine. This routine is merely a
sequence of /0 SKIP instructions, which test the states of the Done flags of all
peripherals in use. With this method, peripheral priorities are determined by
the order in which the tests are performed. Note that the polling technique
disregards the state of the Interrupt Disable flags. Masked out peripherals
will be recognized if their Done flags are 1, even though these devices could
not have caused the interrupt.

2. The interrupt handler can issue an Interrupt Acknowledge instruction (INTA).
This instruction reads into a specified accumulator the device code of the
first peripheral on the I/0 bus that is requesting an interrupt. Note that with
this method the Interrupt Disable flags are significant. Masked out peripherals
cannot request an interrupt and, therefore, cannot respond to the Interrupt
Acknowledge instruction.

After determining which peripheral requires service, the interrupt handler
generally transfers control to a peripheral service routine. This routine performs
the information transfer to or from that peripheral (if required) and either starts
the peripheral on a new operation or idles the peripheral if no more operations
are to be performed at this time.

When all service for the peripheral has been completed, either the peripheral
service routine or the main interrupt handler should perform the following
sequence to dismiss the interrupt.

1. Set the peripheral’s Done flag to O (by starting a new operation or clearing
the device) to dismiss the interrupt request which was just honored. If this is
not done, the undismissed interrupt request will cause another interrupt —
this time incorrectly — as soon as the interrupt handler finishes and attempts
to return control to the interrupted program.

2. Restore the pre-interrupt states of the accumulators and the carry bit.

2-12

Input/Output Programming

3. Set ION to 1 to enable interrupts again.

4. Jump back to the interrupted program (usually in a JMP@O instruction).

The instruction that enables interrupts (usually INTEN) sets the Interrupt On flag
to 1, but the processor does not allow the state of the ION flag to change to 1 until
the next instruction begins. Thus, after the instruction that turns interrupts back
on, the processor always executes one more instruction (assumed to be the return
to the interrupted program) before another interrupt can start. The program
must give this final return instruction immediately after enabling interrupts;
this ensures that no waiting interrupt can overwrite the contents of location 0
before they are used to return control to the interrupted program.

Figure 2-2 shows how normal program flow is altered during a program interrupt.
The interrupt handler is shaded to indicate that this block of instructions is not
interruptible since the processor sets the ION flag to O to disable further interrupts
when the interrupt occurs. Interrupts are not enabled again until the interrupt

handler executes its Interrupt Enable instruction just prior to returning control
to the interrupted program.

Main
program
Interrupt Interrupt
occurs handler
P
r
o b 20 [R L
g peripheral
' - —
a
m
| Service
o peripheral
X
e
c
u REGRESRREE
1 Restore
i tat
o
n
Return
_/ from

interrupt

DG-00647

Figure 2-2 Program flow with interrupt

Input/Output Programming 2-13

Program Interrupt Instructions

The instructions controlling the program interrupt facility use special device
code 77g (mnemonic CPU). When this device code is used on a Desktop Generation
computer, bits 8 and 9 of the skip instruction test the state of ION and PWR FF
(Power fail); in the other instructions these bits turn interrupts on or off by
setting ION to 1 (Start command) or O (Clear command).

The assembler recognizes a number of “shorthand” mnemonics for instructions
that control program interrupts. In the instructions listed below, these mnemonics
follow the instruction name. A standard mnemonic, recognized by the assembler
as equivalent to the shorthand version, is listed below that.

There is one important difference between the standard mnemonic and the
shorthand version. In the latter case, mnemonics for enabling and disabling
interrupts (setting the Interrupt On flag) cannot be appended. For example,
either MSKO 2 or DOB 2,CPU will set the Interrupt Disable flags according to the
mask contained in AC2. To set the Interrupt On flag to O at the same time
requires using the mnemonic DOBC 2,CPU.

Interrupt Enable (INTEN)

NIOS O0,CPU
o} 1 1 0 0 o 0 0 0 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Sets the Interrupt On flag to 1 to allow the processor to respond to interrupt
requests. When the Interrupt On flag changes state (from O to 1), the processor
executes one more instruction before it can start an interrupt. The assembler
recognizes the mnemonic INTEN as equivalent to NIOS CPU.

Interrupt Disable (INTDS)

NIOC O,CPU
o 1 1 o o 0 0 0 1 0 1 1 1 1 1 1
0 1 2 3 a4 5 6 7 8 9 10 1 12 13 14 15

Sets the Interrupt On flag to O to prevent the processor from responding to
interrupt requests. The assembler recognizes the mnemonic INTDS as equivalent

to NIOC CPU.

2-14 Input/Output Programming

CPU Skip

SKP[t] CPU
0 1 1 o o) 1 1 1 T 1 1 1 1 1 1
o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Skips the next sequential word if the test condition specified by t is true. The test
performed is based upon the value of bits 8 and 9, which can be set by appending
an optional mnemonic to the CPU Skip mnemonic. Table 2-4 shows the mnemonics
and the tests.

Table 2-4 Test results

Mnemonic T Field Operation
BN 00 Tests for Interrupt On = 1.
BZ 01 Tests for Interrupt On = O.
DN 10 Tests for Power Fail = 1.
Dz 11 Tests for Power Fail = 0.

Mask Out (MSKO)

DOB[f] ac,CPU

o 1 1 AC 1 [(o] F 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sets the Interrupt Disable flags in all the peripherals according to the mask
contained in the specified accumulator. (A 1 in the mask bit sets the flags in all
the peripherals assigned to that bit to 1; a O sets them to 0.) Then sets the
Interrupt On flag according to the function specified by f. The contents of the
specified accumulator remain unchanged. (Appendix C contains the mask bit
assignments for standard peripherals.) The assembler recognizes the instruction
MSKQO ac as equivalent to DOB ac,CPU.

Interrupt Acknowledge (INTA)

DIBff] ac,CPU

[o] 1 1 AC 0 1 1 F 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15

Places in bits 10 to 15 of the specified accumulator the device code of that
peripheral requesting an interrupt which is closest to the processor along the I/0
bus. Sets bits 0-9 to 0. After the data transfer, sets the Interrupt On flag according
to the function specified by f£. If no peripheral is requesting an interrupt, sets the
specified accumulator to 0. The assembler recognizes the instruction INTA ac as
equivalent to DIB ac,CPU.

Input/Qutput Programming 2-15

I/0 Reset (IORST)

DOA[f] 0,CPU

[1 1 [¢] 0 o] 1 (o} F 1 1 1 1 1 1

0o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Resets all the peripherals connected to the I/0 bus; sets their Busy, Done, and
Interrupt Disable flags to 0; and, depending on the peripheral, performs any
other required initialization. Then sets the Interrupt On flag according to the
function specified by f.

The assembler recognizes the mnemonic IORST as equivalent to DOAC 0,CPU —
that is, as the instruction defined here with fset to 10.

At power up the processor performs the equivalent of an IORST instruction.

Priority Interrupts

If the Interrupt On flag remains O throughout the interrupt service routine, the
routine cannot be interrupted and there is only one level of peripheral priority.
All peripherals that have not been disabled by the program are, for the most part,
equally able to request interrupts and receive interrupt service.

Only when two or more peripherals are requesting an interrupt at exactly the
same time is a priority distinction made. When this happens, priority is
determined either by the order in which I/0 Skip instructions are given or, if
the Interrupt Acknowledge instruction is used, by the order of peripherals along
the I/0 bus. In a system with peripherals of widely differing speeds and/or
service requirements, a more extensive priority structure may be required. The
program interrupt facility hardware and instructions allow the program to
implement up to 16 interrupt priority levels.

For example, suppose that a paper tape reader and a data terminal are being
operated at the same time. While the tape is being read, an interrupt is requested
as each new frame of data is available; the program must read this data within
430 microseconds, typically, before it is overwritten in the data buffer by the
data from the next frames.

If the terminal service routine takes 300 microseconds, tape reader service will
never be delayed longer than this and a single-level program interrupt scheme
will suffice. However, this interrupt scheme will not work if the terminal service
routine takes 600 microseconds, since a paper tape reader interrupt request that
is initiated soon after terminal service begins will not be honored in time and a
frame of data will be lost. In order to avoid losing data, the program interrupt
scheme used must allow the tape reader to interrupt the lengthy terminal service
routine. This involves creating a 2-level priority structure and assigning the
paper tape reader to the higher priority level.

In general, a multiple-level priority interrupt scheme is used to allow higher-
priority peripherals to interrupt the service routines of lower-priority peripherals.
A hierarchy of priority levels can be established through program manipulation
of the Interrupt Disable flags of all peripherals in the system.

2-16

Input/Output Programming

When the interrupt request from a peripheral of a certain priority is honored,
the interrupt handler sets up the new priority level. The interrupt handler
establishes new Interrupt Disable flag values for all peripherals according to an
appropriate interrupt priority mask used with the Mask Out instruction.
Peripherals whose Interrupt Disable flags are set to 1 by the corresponding bit of
this priority mask are masked out, or disabled. They are thereby regarded as
being serviced. Before proceeding with the peripheral service routine, the
Interrupt On flag is set to 1 so that the higher-priority peripherals may interrupt
the current service routine.

Interrupt Priority Mask

The bit of the priority mask that governs the Interrupt Disable flag for a given
peripheral is assigned to that peripheral by the hardware. The program cannot
change that bit. Although lower-speed devices are generally assigned to higher-
numbered mask bits, no implicit priority ordering is intended. The manner in
which these priority levels are ordered is completely up to the programmer.

By means of the priority mask, the program can establish any desired priority
structure, with one limitation: in the cases in which two or more peripherals are
assigned to the same bit of the priority mask, these peripherals are constrained to
be at the same priority level. When a peripheral causes an interrupt, a decision
must be made whether to place at a higher or lower priority level all other
peripherals that share the same mask bit with the interrupting peripheral. If a
decision is made to mask out all peripherals which share that priority mask bit,
the interrupting peripheral is also masked out.

Priority Interrupt Handler

A priority interrupt handler differs from a single-level interrupt handler in
several ways. The handler must be re-entrant. This means that if a peripheral
service routine is interrupted by another, higher-priority peripheral, no informa-
tion required by the handler to restore the state of the machine is lost. The two
items of information which should be saved, in addition to those saved by a
single-level interrupt handler, are the return address (the contents of location 0)
and the current priority mask. This information must be stored in different
locations each time the interrupt handler is entered at a higher level. Doing this
ensures that the necessary return information belonging to an earlier interrupt is
not overwritten by a higher-level interrupt. A common method of storing return
information for a re-entrant interrupt handler is through the use of a push-down
stack.

The interrupt handler (including the peripheral service routines) for a multilevel
priority scheme should perform the following tasks:

1. Save the state of the processor, i.e., the contents of the accumulators, the
carry bit, location 0, and the current priority mask on the stack.

2. Identify the peripheral that requested the interrupt.
3. Transfer control to the service routine for that peripheral.

4. Establish the new priority mask with a Mask Out instruction for that
peripheral’s service routine and store it in memory at the location reserved
for the current priority mask for that level of interrupt.

5. Enable interrupts. Now, any peripheral not masked out can interrupt this
service routine.

6. Service the peripheral that requested the interrupt.

Input/Output Programming 2-17

7. Disable interrupts in preparation for dismissal of this interrupt level, so that
no interrupts will occur during the transition to the next lower level.

8. Restore the state of the processor, including the former contents of the
accumulators and the carry bit, and reinstitute the pre-interrupt priority
mask with a Mask Out instruction.

9. Enable interrupts.

10. Transfer control to the return address which was saved from location O.

Figure 2-3 shows a simplified representation of program flow in a priority
interrupt environment. Shaded areas indicate noninterruptible sections of
instructions. Additional higher-priority interrupts could increase the depth of
interrupts still further.

Main
program

First Interrupt handler

interrupt

occurs
P Higher
r priority
o interrupt

I
9 occurs
r
8 - Establish
m L new Save
priority]
e E level state g
x " Establish
e [Service] " new ;
c | first] [priority f
u peripheral 1 - _level /f
.‘ J’ | Service é
! 28 I second 1 X(
° 2 - peripheral 77
n
l ‘r
R . Restore

DG-00648

Figure 2-3 Program flow with priority interrupts

Data Channel Facility

Peripherals that need to transfer large blocks of data quickly generally accomplish
their data transfers via the data channel facility. The actual data channel transfers
do not disturb the state of the processor, since the data are transferred between
registers in the controller and memory.

The term direct memory access (DMA) is often used to describe the way the data
channel addresses memory. The amount of program overhead in the form of
executing I1/0 instructions and loading or storing data is greatly reduced. The
time required for program execution is lengthened, however, since the processor
pauses, as soon as it is able, each time a word is to be transferred. The transfer
then occurs and the processor continues. The program need only set up the
peripheral for the transfer and can then perform other, unrelated tasks.

The data channel allows many peripherals to be active at the same time, providing
individual controllers with access to memory on demand. Peripherals using the
data channel operate under a priority structure imposed on them by the channel.
In cases where more than one controller requests access to the data channel at
the same time, priority is given to the controller that is closest to the processor on
the I/0 bus.

2-18 Input/Output Programming

Controller Structure

Understanding the operation of the data channel requires a knowledge of the
structure of the controllers that use it. The controllers usually contain the normal
Busy and Done flags; status, control, and data registers; and the program interrupt
components. Additional components are added to handle the functions necessary
to operate the data channel. Some of these components, generally available to the
program, are in the form of additional control and status registers.

Two registers usually added are a word counter and a memory address counter.
The word counter is used by the program to specify the size of the data block to
be transferred (number of words). The memory address counter is used to specify
the address in memory which is used in the data transfer.

Word Counter

The word counter is loaded by the program with the two’s complement of the
number of words in the block. Each time a word is transferred, the controller
automatically increments the counter by 1. When the counter overflows, the
controller terminates data channel transfers.

The size of the word counter is usually 16 bits. The block size specified is both
program and device dependent. Although the word counter specifies the negative
of the desired block size, the most significant bit of the register need not be a 1;
it is not a sign bit for the number. No sign bit is necessary, because the word
count is treated as negative by the controller, by virtue of being incremented
instead of decremented. Thus, a word count of O is valid; in fact, it specifies the
largest possible block size. Table 2-5 further illustrates the correspondence
between the desired word count and the value which must be loaded into a 16-bit
or 12-bit word counter.

Table 2-5 Values for word counter

Negative Word 16-Bit Value 12-Bit Value
Count (Decimal) (Octal) (Octal)
-1 177777 7777
—2 177776 7776
—8 177770 7770
—100 177634 7634
—2047 174001 4001
—2048 174000 4000
—2049 173777 3777
—4095 170001 0001
—4096 170000 0000
—4097 167777
—8192 160000
—32768 100000
—65535 000001

—65536 000000

Input/Output Programming 2-19

Address Register

The address register always contains the memory address to be used by the
controller for the next data transfer. It is loaded by the program with the address
of the first word in the block to be transferred. During each transfer, the
controller increments the memory address counter by 1. Therefore, successive
transfers will be from consecutive memory locations.

This represents the most common use of data channel transfers, but the addressing
of memory does not have to be sequential. The address can be stepped in either
direction by some fixed number. For example, one word of every page of
memory could be addressed without touching any other part of that page.

Transfer Sequence

The actual data channel transfer sequence is a two-way communication between
processor and controller. It proceeds as follows. When a peripheral has a word of
data ready to be transferred to memory or wants to receive a word from
memory, it issues a data channel request to the processor. The processor pauses
as soon as it can and begins the data channel cycle by acknowledging the
peripheral’s data channel request. The acknowledgment signal dismisses the
peripheral’s data channel request. In addition, it causes the peripheral to send
back to the processor the address of the memory location involved in the transfer,
together with the direction of the transfer, i.e., to or from memory. Following
the receipt of the address, the data are transferred in the appropriate direction.

Upon completion of each data transfer, the processor/controller interaction is
over. The controller carries out any tasks necessary to complete the data transfer,
such as transferring the data to the device itself for an output operation. The
processor starts another data channel transfer if any data channel requests are
pending, starts a program interrupt if one is being requested and there are no
data channel requests, or resumes program execution.

The controller increments both the memory address counter and the word
counter during the transfer. If the word count becomes O, the controller terminates
further transfers, sets the Busy flag to 0 and the Done flag to 1, and initiates a
program interrupt request. If the word counter has not yet overflowed, the
peripheral continues its operation, issuing another data channel request when it
is ready for the next transfer.

Processor Pauses

The processor can pause for a data channel transfer only at certain, well-defined
times. For Desktop Generation computers, data channel transfers can occur
between noninterruptible instructions and during interruptible instructions.

Priorities

Program execution has priority over the data channel, except at certain points in
the processor’s operation when the data channel has priority (not only over
normal program execution but also over any pending program interrupt requests).
At these points, the processor handles all existing data channel requests (including
those generated while data channel transfers are in progress), before starting a
program interrupt or resuming normal instruction execution.

2-20

Input/Output Programming

Thus, if data channel requests are being generated by a number of peripherals as
fast as or faster than the processor can handle them, all processing time will be
spent handling data channel transfers. However, when the data channel is being
used at less than its maximum rate, processing time is shared between the data
channel, which receives as much as it needs, and the program, which uses the
rest.

Programming a Peripheral

Programming a peripheral for a data channel block transfer typically involves
the following steps.

1. Check the peripheral’s status, usually by testing the Busy flag and/or reading
a status word and checking one or more error or ready bits. If an error has
occurred, the program should take appropriate action. If no error has occurred
but the peripheral is not yet ready, the program should wait for the peripheral
to complete its operation. When the peripheral is ready, the program may
proceed.

2. Locate the data block in the device. This usually involves giving a peripheral
“address” by specifying a unit number, channel number, sector number, or
the like.

3. Locate the data block in memory by loading the memory address counter
with the address of the first word of the block.

4. Specify the size of the data block by loading the proper value into the word
counter.

5. Specify the type of transfer and initiate the operation. If the peripheral is
capable of several different operations, specifying the type of transfer usually
involves loading a control register in the controller. The operation itself is
usually initiated by one of the I/0 control commands (Start or Pulse).

Setting up and initiating the data channel operation is the major part of
programming a data channel block transfer. However, the program should check
for errors when the operation is complete and take appropriate action if any
errors occurred.

Timing

On systems which depend heavily on input/output, both the direct program
control and data channel facilities can be overloaded. This means that certain
peripherals may lose data or perform poorly, since the system cannot respond to
them in time.

This section explains how a system can be overloaded and what steps can be
taken to minimize the detrimental effects.

Direct Program Control

Nearly all peripherals operating under direct program control request program
service by setting their Done flags to 1. Whether the CPU determines that the
Done flag is set to 1 by repeatedly checking it or by responding to interrupt
requests, there may be a significant delay between the time when the peripheral
requests program service and the time when the CPU carries out that service.
This delay is called programmed I/0 latency.

Input/Output Programming

2-21

When the program interrupt facility is not used, programmed I/0 latency consists
of two intervals:

1. The time interval between the peripheral’s setting the Done flag to 1 and the
CPU’s checking the flag.

2. The time required by the peripheral service routine to transfer data to/from
the peripheral and set the Done flag to O (by idling the peripheral or instructing
it to begin a new operation).

The first interval can be diminished by performing frequent checks on the Done
flag; the second can be diminished by writing an efficient peripheral service
routine.

When the program interrupt facility is used, the programmed I/0 latency consists
of at least four intervals and possibly as many as seven:

1. The time between the setting of the Done flag to 1 and the end of the
instruction being executed by the CPU.

2. The time the interrupt facility needs to store the program counter in location
0 and simulate a JMP @1 instruction.

3. The time required by the interrupt handler to identify the peripheral and
transfer control to the service routine.

4. The time required by the service routine to transfer data to/from the
peripheral and set the Done flag to 0.

5. The time during which CPU operation is suspended because data channel
transfers are in progress (see the following section).

6. The time during which the CPU does not respond to the peripheral’s interrupt
request because the interrupt system is disabled (for example, during the
servicing of an interrupt from another peripheral).

7. The time during which the peripheral’s Interrupt Disable flag is set to 1
during the servicing of an interrupt of a higher priority peripheral.

The first interval is determined by the longest noninterruptible instruction that
the CPU can execute.

The second interval also depends on the machine; in general, it is approximately
two to three times as long as a memory reference. The third, fourth, sixth, and
seventh intervals are determined by software and account for the bulk of the
programmed I/0 latency. The fifth interval is determined by the nature and
number of the data channel devices operating in the system.

Maximum programmed 1/0 latency of the peripheral is the longest allowable
delay between the time when a peripheral sets its Done flag to 1 and the time
when the CPU transfers data to/from that peripheral and sets the Done flag to 0.
When the actual programmed I/0 latency for a peripheral exceeds the maximum
programmed I/0 latency, the specific effects depend on the device in question.
In the worst case, data may be incorrectly read or written.

A peripheral service routine must usually perform certain computations (updating
pointers to buffers, byte counters, etc.), but rarely are these computations so

complex that they cannot be accomplished within the constraints of the maximum
allowable programmed I/0 latency. However, if several peripherals are compet-

2-22

Input/Output Programming

ing for service at the same time, it may be necessary to jeopardize the performance
of some of them by deferring their requests for program service until the CPU
has serviced the higher-priority requests. For this reason, all Data General
computers incorporate the priority interrupt facility described earlier.

The object of the priority interrupt facility is to minimize the loss of important
data. In order for the programmer to achieve this end, the assignment of the
software priority levels should be made in view of the following considerations:

1. The maximum allowable programmed 1/0 latency for each peripheral,

2. The result of exceeding the maximum allowable programmed 1/0 latency for
each peripheral (slow down or data loss),

3. The cost of losing data.

Data Channel Control

Problems with time constraints may also be encountered when transferring data
via the data channel. When a peripheral needs data channel service, it makes a
data channel request. However, the CPU can allow data channel peripherals to
access memory only at certain times. (At such times, it is said that data channel
breaks are enabled.) In addition, there may be more than one peripheral waiting
to access memory at any one time. Consequently, there may be a significant
delay between the time when a peripheral requests access to memory and the
time when the transfer actually occurs. This delay is called data channel latency
and consists of the following intervals:

1. The time between the peripheral’s request for memory access and the next
data channel break,

2. The time required to complete data channel transfers to/from higher priority
peripherals also requesting memory access.

The length of the first interval depends on the design of the CPU. The length of
the second interval depends on the number of data channel peripherals operating
in the system at a higher priority and the frequency of their use.

Most peripherals using the data channel control operate under fixed time
constraints. Disk drives and magnetic tape transports are typical data channel
peripherals. In each of these devices, a magnetic medium moves past a read or
write head at constant velocity. If data are not read or written at the correct
instant, the data will be transferred to or from the wrong place on the magnetic
media. Consequently on input, such devices must be allowed to write a word into
memory before the next word is assembled by the controller, and on output, the
controller must be able to read a word from memory before the surface is
positioned under the write head. In either case, if the data channel latency is too
long, data cannot be properly transferred. Most peripherals operating under data
channel control set an error flag when this happens, so the service routine can
take appropriate action to recover from the error, if possible.

The maximum allowable data channel latency of a peripheral is the maximum
time the peripheral can wait for a data channel transfer. The range of times is
from tens of microseconds to several hundred microseconds. At the time the
system is configured, data channel priorities should be assigned to peripherals on
the basis of the following considerations:

Input/Output Programming

2-23

1. The maximum allowable data channel latency of the peripheral. A peripheral
with a short allowable latency usually should receive a higher priority than
one with a long allowable latency.

2. The recovery time of a peripehral (i.e., how long before it can repeat a
transfer that failed because of excessive data channel latency), if the
peripheral can recover.

3. The cost of losing data from the peripheral if the peripheral cannot recover.

If data channel latency seems to be a problem in a system, latency might be
improved by changing programs to make less frequent use of long instructions
and lengthy indirect chains. In addition, there is an upper limit on the number
of data channel transfers/second that a computer can support. In cases where
this limit is exceeded, the only solution is to reduce the number of peripherals
using the data channel at the same time.

A final consideration is that high data channel use reduces the speed of program
execution since the processor pauses for each transfer. This may adversely affect
the CPU’s capacity to respond to interrupts and service those peripherals operating
under direct program control.

Bus-to-Controller
Interface

1/0 controllers require unique interfaces to communicate with the device, or
devices, under their control. However, they require a standard interface to
communicate with their host CPU and its I/0 bus.

This chapter describes the I/0 bus to I/0 controller interface that is standard to
all peripherals connected to the microl/O bus of Desktop Generation computers.

3-2 Bus-to-Controller Interface

The I/0 Bus

The I/0 Bus of Desktop Generation computers transfers information and
commands between the CPU and the individual devices. As shown in Figure 3-1,
the I/0 bus is basically bidirectional with a few unidirectional control lines. The
data path on the bus consists of two bidirectional lines. This high-speed, serial
data path carries all data and commands for the I/0 controllers.

The 1/0 bus contains 13 lines for data transfers, control, timing, and priority
enforcement. These lines are:

* Two differential pairs of lines for data,
» Two differential pairs of lines for transfer synchronization.
* One general control line.

e Four protocol control lines.

The two differential data line pairs, BI/O DATA1 and BI/O DATA2, carry
commands, addresses, and data for all I/0 controllers. The BI/O DATA1 line
moves the most significant byte (8 bits) of the word, plus a control bit; the BI/O
DATAZ2 line moves the least significant byte and another control bit. The control
bits define the type of information transferred.

The two differential pairs for transfer synchronization are BMCLOCK and BI/O
CLOCK. The undirectional BMCLOCK line is the master system clock for all
peripheral interfaces. The bidirectional BI/O CLOCK line is generated by the
source of the transfer on the I/0 bus, either the active I0C or the CPU. The 81/0
CLOCK operates at the same frequency as the two data lines (one half the
frequency of the BMCLOCK).

The control line CLEAR is used to reset all peripheral controllers on the I/0 bus.

The four protocol control lines are INTR and INTP (for program interrupts), DCHR
and DCHP (for data channel breaks). INTR and DCHR are the request lines; INTP
and DCHP are the priority lines for the two types of service requests the controller
can make to the CPU.

/\ : Busy + Done >
Interrupt + Interrupt + data channel request
C:__—$ data channel 1/0 < 1
priority logic cor:troller D
10c) e
/0 e
b 10¢ P i
u Differential ; ol 1 16-bit bidirectional c
F-codes
> 1 Clock
Clock > Clock OC| ﬁ .
driver Function 16 control
decoder lines

DG-05388

Figure 3-1 Input/output controller

Bus-to-Controller Interface 3-3

The Transceiver

The I/0 controller (IOC) transceiver is the first element of the peripheral
controller as seen from the I/0 bus. This device takes the data and timing lines
of the I/0 bus, sends to the controller the bidirectional I/0 CLOCK and the data
lines, and receives from the controller the I/0 INPUT line.

The transceiver illustrates a major feature of peripheral interfacing for Desktop
Generation computers; that is, the main conceptual blocks are well-defined
large-scale integration (LSI) or medium-scale integration (MSI) chips readily
available from Data General Corporation. The expertise required to build a
peripheral interface does not have to go beyond understanding the interactions
of the modules.

The data lines I/O DATA1 and I/0O DATA2 are the principal lines between the
transceiver and the I/0 controller. These lines are latched versions of the BI/O
data lines. Each data line carries one control bit plus one byte of information.

On transmission from the CPU, the IOC is first told which of four types of
information it is going to receive: request enable, data channel address request,
data, or I/0 instruction. If the first bit of I/O DATA1 is 1, then the transfer has
the short format and the value of the first bit of I/O DATA2 determines which of
the first two types of transfers are being made. If the first bit of /O DATA 1 equals
0, then a full word is being transferred and the first bit of /O DATA2 tells the I0C
that either data or an instruction is being passed (see Table 3-1).

Table 3-1 Instruction/data codes

First Bit First Bit Information Type
1/0 DATA1 1/0 DATA2
1 1 Request enable
1 0 Data channel address request
1 Data
0 1/0 instruction

Under programmed I/0, the first bit of the nine bits transferred on each data
line is the I/0 instruction code for the instruction being passed. The 2-bit code
generated tells the controller the type of transfer being made, as well as the
length of the word transferred. The remaining byte on each line makes up the
instruction to be carried out by the I0C. The second word passed is the data; the
first bit of each line gives the data code, followed by the actual byte of data for
that line.

For data channel transfers, the data word remains the same, but the first word is
the memory address. In the address transfer, the first bit of each line has the
data code. The second bit of I/0 DATA1 gives the direction of the transfer. Since
only 15 bits are used for an address, this is still an 18 bit transfer.

3-4 Bus-to-Controller Interface

I/0 Controller and Decoder

The I/0 controller (I0C), an LSI component, is a finite state machine, which
handles the requirements of peripheral devices connected to the I1/0 bus of
Desktop Generation computers. The IOC shown in Figure 3-2 represents the heart
of any device controller for a peripheral in a Desktop Generation system.

Peripheral port

Interrupt and
data channel

(. DaD<0-16>

10C [
FSTROBE

]

—
Enable

- P—-—DIA
F<<0-3> Code 566
) input b DB

p-—— DocC
P—oic
b—- STRT
4 to 16 o— CLR Control
decoder lo—— 10PLS lines
Jo—— IORST
o—— msko
b—— DCHA
[o—— DCHI
[O—— DCHO
p— wcEz
P——nop

p—— DOA

SN74154

0G-04140
Figure 3-2 1/0 controller and decoder

1/0 Controller

The controller has three basic parts: a register file and bus structure, state
control logic, and Busy/Done and request logic. The prinicpal register is the I/0
shift register (IOSR). This register, connected to the two serial data lines and the
I/O CLOCK line, provides the conversion for transfers via the I/0 bus. The IOSR
loads the instruction register (IR) for the state change logic.

Four of the other registers have specific functions during data channel transfers
(see Table 3-2). The inverter/drivers buffer transfers between the I0C internal
bus and the device registers. A clear distinction should be made here between
I0C registers and device registers; the former are not accessible to the program-
mer. The data in or out commands refer only to device registers, if any, and not
to I0C registers.

Bus-to-Controller Interface

3-5

Table 3-2 10C registers

Registers

Function

IOSR (I/O shift register)

Instruction register

Initialization register

Address register

Word count register

T register

Performs the serial/parallel conversion of information
transferred on 1/0 DATA<<1,2>.

Holds all 1/0 instructions received by the 10C.

Holds the device code, external register enable bit, external
Busy/Done enable bit, and the polarity bit.

Holds the 15-bit memory address used during data channel
transactions when internal registers are used.

Holds the two’'s complement of the number of words
remaining in a data channel block transfer when internal
registers are used.

Buffers the 15-bit memory address and the direction bit used
during data channel transfers.

Two internal registers used during data channel transfers could be made external
to the chip as two device registers. The address register and the word count
register can be device registers B and C, respectively. To convert the internal
registers into external registers, data lines D7 to D15 must be loaded into the
initialization register of the IOC during power up. For details, see Table 3-3 and
Figure 3-3; also see microNOVA Integrated Circuits Data Manual.

Table 3-3 Settings for internal/external registers

Data Pin(s) Loads Signal Level Effect
D7 External Low External Busy/Done flags are
Busy/Done enable enabled.
bit
High Internal Busy/Done flags are
enabled.
D8 External register Low External address and word
enable bit count registers are enabled.
High Internal address and word
count registers are enabled.
D9 Polarity bit Low Data on D<<0-15> inter-
preted using positive logic
(high=1).
High Data on D<<0-15> inter-
preted using negative logic
(high=0).
D<10-16> Device code Low and high When loaded, the 6-bit device

code on these lines is inter-
preted using negative logic
(high=0).

3-6

Bus-to-Controller interface

1/O bus connections

(33)INTP

Peripheral connections

21.92
(2
(31)DCHP)
State
1 counter
State change logic ., » Programmable
. logic array
— (23-26)
I]S U [i F<0-3>
Instruction s‘,tawls Control]
register signals signals Data-out FSTROBE
from to inverter (22)
/\ comp: components driver
of 10C of 10C
(27) t/O input
Address (B} Word count Initialization Mask-out Data-i
P A [l . 8 a-in
(K=< OSR register register T register register driver inverter
(30) 1/0 CLOCK driver
(28) 1/0 DATA 1 § .) -
(29) 1/0 DATA 2) J -1 - -
[&’ ! ! _ 37
" BUSY
"f"’"””' Busy/Done [:D
disable logic
logic O
DONE
(38)
{35) INTR Interrupt — (36)
il request INT SYNC
logic
o {32)
(34) DCHR ata DCH SYNC
channel G
request D
logic
DG-04160

Figure 3-3 10C internal structure

The I0C control logic contains three subunits: the state change logic, the state
counter, and the programmable logic array (PLA). The state change logic takes
input from the IOSR, the IR, the programmable logic array (PLA), and the
interrupt enable lines; it takes status information from all parts of the I0C. The
output of the state change logic is an address placed in the state counter. The
counter is the address buffer for the PLA. The PLA feeds back to the state change
logic, sends control information to the rest of the IOC (using part of the internal
bus), and strobes the four control lines to the decoder for the device.

Bus-to-Controller Interface 3-7

The last major piece of the I0C is the busy/done and request logic. The busy/done
logic (Table 3-4) is connected to the device by two bidirectional lines that provide
the active low forms of the signals. These signals are controlled by lines from the
internal bus. The interrupt disable logic is also directly controllable from the
bus. These two sets of logic combine with the interrupt synchronization line
from the device to form the interrupt request logic for signal INTR(0). The data
channel request logic does not use the bus and thus is not under direct user
control.

Table 3-4 Busy/Done logic

Bits Program Effect
8 9 Mnemonic
0 (o} — No effect.
1 S Sets Busy to 1 and Done to O.
1 0 C Sets both Busy and Done to O.
1 1 P Sets Done to O; has no effect on Busy.

The decoder module refers to any standard 4 to 16 decoder for the F(0-3) control
lines. These lines are generated by the PLA along with a strobe signal to
synchronize the decoder. With these lines, the peripheral device now sees the
1/0 bus as the standard parallel bus.

I0C Decoder to Device

The main advantage of the IOC becomes clear when you understand how to use it
to reduce design time. The device has available 16-bit parallel bidirectional data
lines and 16 control lines from the decoder. With these lines, the Busy/Done
flags, and the interrupt lines, both types of data transfers can be made. The
peripheral designer does not have to be concerned with any further details of the
controller, it is used like any other standard module.

The advanced peripheral designer may work with devices requiring more than
the normal three registers. At this point the decode logic would be part of the
device rather than the interface.

The control lines to the device (see Table 3-5) are all active low. They represent
the complete command set; what is available to the programmer is a subset.

3-8

Bus-to-Controller Interface

Table 3-5 10C to device commands

Function Code Label Function
F<0-3>

0000 DOA Loads the A register with data from IOC data lines
D<0-15>.

0001 DIA Gates data into the I0C from the A register via data
lines D<<0-15>.

0010 DOB Loads the B register with data from IOC data lines
D<0-15>.

0011 DIB Gates data into the I0C from the B register via data
lines D<<O-15>. If internal data channel registers
are being used, D<<0-15>> are ignored.

0100 DOC Loads the C register with data from I0C data lines
D<0-15>.

0101 DIC Gates data into the I0C from the C register via data
lines D<<0-15>.

0110 STRT Start 1/0 device.

0111 CLR Clear 1/0O device.

1000 IOPLS 1/0 pulse.

1001 IORST Gates the device code, polarity, external register
enable, and external Busy/Done enable bits into the
10C via the following data lines:

D <<0-15> =Device code

D9 =Polarity

D8 =External register enable

D7 =External Busy/Done enable

These data are always interpreted using negative
logic (high=0).

1010 MSKO Gates the device maskout priority bit into the 10C
via data lines D<<0-15>.

1011 DCHA Gates the data channel direction bit into the 10C via
data line DO. If external registers are being used,
gates the external address register into the 10C via
data lines D<<0-15>.

1100 DCHI Gates the data from the peripheral data register
onto the IOC’s data lines (D<<0-15>) during a
Data Channel in transaction.

1101 DCHO Loads the peripheral’s data register with data from
the |0C's data lines (D <<0-15>>) during a Data
Channel Out transaction.

1110 WCEZ Indicates that the internal data channel Word Count
register has overflowed (equals zero). Denotes the
end of a block data channel transfer.

1111 NOP No function.

Bus-to-Controller Interface 3-9
L3 []
Timing
There are two types of programmed I/0 transactions, depending on the level of
I/0 INPUT during the data transfer portion of the transaction. For data-out the 1/0
INPUT line remains high, while for data-in this line goes low before the data are
transferred (see Figure 3-4).
1/0 clock \ 7mé
| AC e Op code ———{
1/0 data 1 B‘Q o] M—
F field Device code
e Y
1/0 data 2
[+ Code 1/0 instruction
VOimput _ _ _ _ _ __________ _Recee
DG-05623
Figure 3-4 1/0 instruction format
The format of the instruction word (Figure 3-5) transferred on each of the data
lines simplifies decoding for the IOC. Device codes of 00g to 03g and 77g are
illegal device codes for any Desktop Generation computer.
NOTE:
See 1/0 data port DT, Ty
timing Table 3.6.
o e S aWaAWAWAR: AT UAWAT
1/O data’ :TH0H8000¢E ' 00600080 a; "
1/0 data? L £8Ys Yiofi112fisfalis Le Yo rofi1Yi2)13fia)isf f
1/0 input T Ty ”
- ! Instruction Data
1/0 instruction code Data
code
NOTES:
¢ Unless otherwise noted, time intervals are measured
between points at 1.5 V.
DG-04156

Figure 3-5

1/0 instruction format (CPU to 10C)

3-10 Bus-to-Controller Interface

Data-Out Transfers (CPU to I0C)

Data-out transfers move a 16-bit word of data from the CPU to one or all I0Cs.
This is a full-word transfer of 18 bits, with the first bit on each data line setting
the code needed by the IOC. The transaction begins with an I/0 instruction
transfer, followed by a data transfer, both of which start from the CPU. The
instruction transmitted is the I/0 instruction executed by the CPU.

An IOC executing a data-out instruction must start receiving the data in the
window defined by DT,. T, defines the minimum setting time between
commands. The data and instruction codes are defined above (see Figure 3-5).

Data-In Transfers (I0C to CPU)

Data-in transfers move a 16-bit word from an IOC to the CPU. The interval
between instruction transfers and the format of the instruction transferred are
the same for the data-in transfers, but the data transfer interval is different.

The window that the CPU has to start receiving data, DT, is a longer interval.
The I/0 INPUT line must go low one-half clock cycle before the I/0 CLOCK does in
transferring the data. Additionally, it must stay low the same half cycle after the
data are transferred (see Figure 3-6).

NOTE:
See 1/0 data
port timing DT, N
Table 3.6.
e S AYAVATAY SAE R VAUAT S Ve
1/0 data 1 v foYaY Y3 e s e)74 Y foXiY2)sYa) s 67 o
e
1/0 data 2 L L8 Yo Y011 12fas)raf1sf YaYo Yol i2)1sfra)isf 7
— Ty P
1/0 input Ty Jf][)
- l«—— Instruction ——]
_.hz Data T2
1/0 instruction code Data
code
NOTES:

Unless otherwise noted, time intervals
are measured between points at 1.5 V.

DG-04157

Figure 3-6 Programmed 1/0 transfers (IOC to CPU)

Bus-to-Controller Interface 3-11

Data Channel Transfers

Normal data channel transfers first send the address of the memory location. Bit
0 of this address determines if the transfer is a memory read or write; O means
memory read, 1 means memory write. In either case, the IOC generates the
address to be accessed and the direction of transfer.

Data Channel Out Transfers (CPU to IOC)

A data channel out transfer moves a word of data from memory out to an I0C.
The I0C must wait at least until the C interval has passed after the request has
been made before the address and direction bit can be transferred. DC defines
the minimum time between the address and data transfers, as shown in Figure

3-7.
NOTE:
See 1/0 port
timing Table 3.6. [DCo TN
-] T.I [— — T1 f—
Pr=as YaWaWales SaVaUAWAT "
Direction
bit=0
{L
1/0 data 1 ANa08000%Y of1f2)3f4)s]e)7 7
L
/0 data2 Y 3 sY o Jio1112fisf14f5 8] o Jio]1112]13f14fi5 4
— T2 la— — Tz —
-
1/0 input r + R
Data channel Data
te—— address and ——
Data channel Data / direction bit Data
address request code code
NOTES:

Unless other noted, time intervals are
measured between points at 1.5 V.

DG-04158

Figure 3-7 Data channel out

3-12 Bus-to-Controller Interface

Data Channel In Transfers (I0C to CPU)

NOTE:
See 1/0 data port
timing Table 3.6.

A data channel in transfer writes a word of data into memory from an IOC (see
Figure 3-8). The DC, interval needed to wait before data are transmitted to
memory is longer than the DC time. Also the I/0 INPUT line must go low one-half
clock pulse before data are transferred.

J ¢ bC, e
Ty I~ =Ty
R (SaWRWAWES. SaUANRWAT e e Uy
Direction
bit=1
{L
1/0 data 1 88068001 INOPBCB0E {f
{(
1/0 data 2 §_7 s ofiof11f12fiaf14ds s Tiofi fi2[rafiafisf if
T2 T2 T2 — Tyt
1/0 input _ A T—”—
Data
/ *— Data channel — /
Data channel Data / address and 5:;2
address request code direction bit
NOTES:

® Unless otherwise noted, time intervals
are measured between points at 1.5 V.

DG-04159
Figure 3-8 Data channel in

For specific information, see microNOVA Integrated Circuits Data Manual.

Peripheral Control Lines

Three pulses from the FSTROBE(O) line of the IOC set three critical time frames
for the passing of control and data signals to the device. At time A, the four
control lines to the decoder are active along with the data lines, if data are going
to the device. At time B, the appropriate control line goes low and the device is
active until time D. If data are going from the device into the CPU, the data lines
become active at time C when the appropriate control line has become a stable
low signal. The data in window closes, at time E, before the function codes
become inactive at point F (see Figure 3-9).

Bus-to-Controller Interface

3-13

FSTROBE _L_/—ﬁK__J[_—_/_

e

FO

Function F1
code

F2

L F3

Typical
control line
Data out
D<C0-15>
Data in

DG-05620
Figure 3-9 Device control signal timing
Table 3-6 1/0 data port timing table
Class Mnemonic Min.* Max.* Units
All T, 110 130 ns
T, 110 130 ns
TSKEW —5 + 15 ns
Ty(next command) 840 — ns
1/0 Instructions DTg 470 850 ns
(Data Out Transfer)
DT, 1190 1330 ns
(Data In Transfer)
Request Enable and Data A 360 540 ns
Channel Address Request
Data Channel Transactions C (Data Channel Address 710 850 ns
Request to first transfer)
DCg (Data Channel Out) 590 1930 ns
DC, (Data Channel In) 1190 1210 ns

‘AI/ of the above times assume a MASTER CLOCK frequency of 8.333 MHz.

General-Purpose
Interface Card

In many applications, it is necessary to interface nonstandard equipment to the
computer. If no I/0 device controller is available for a particular piece of
equipment, the customer must design his own. Much of the logic contained in an
1/0 device controller is the same for every I/0 device. This common logic can be
designed once, laid out on a printed circuit card, and then used by customers in
the construction of their own I/0 device controllers.

This chapter describes a general-purpose interface card included in Data General's
assemblies. The card contains those logic elements common to most I/0 device
controllers, including an I/0 controller (I0C) and I/0 bus transceiver. Drilled
holes or sockets and wire-wrap pins are provided for you to add those elements
and interconnections needed to control particular equipment.

4-2 General-Purpose Interface Card

Principal Components

Data General’s model 4210 general-purpose interface card is an I0C-based
interfacing aid. The card contains an I0C module capable of providing a
generalized front end to the Desktop Generation computer’s I/0 bus. The I0OC
module handles all Busy/Done/interrupt processing and data channel interfacing.
Model 4210 has predrilled holes and etched conductors to assist in the building of
an interface. Model 4210 with the model 4211 option has DIP sockets and
wire-wrap pins installed in the predrilled holes.

Table 4-1 summarizes the characteristics of a general-purpose interface card.

Table 4-1 Summary of characteristics

Operations 1/0 command decoding, interrupt and data channel requests, and
data channel transfers

Registers 15-bit data channel address
16-bit data channel word count
Data channel request flag
Interrupt request flag
External register enable flag
Polarity flag
Device code register
Busy flag
Done flag

Busses 1/O bus same as CPU
Board dimensions 7.5 x 10.4in {19 x 26 cm)

Maximum operating 131°F (65°C)
temperature

Figure 4-1 shows the principal components plus data and control paths for the
general-purpose interface (GPI). The GPI contains an I0C and its support circuits,
a function decoder, and data buffer, sockets for device select, and IOC initializa-
tion jumpers. All data lines and control signals available for device use are
brought to wire-wrap pins. The I/0 transceiver, I0C, clock driver, and I/0
control buffer connect the GPI to the I/0 bus.

Sixteen bidirectional data lines (bit parallel) extend from the IOC in two groups.
One group passes via a 16-bit buffer to wire-wrap pins and normally is used for
output signals from the CPU to customer-designed circuits. The buffer provides
TTL fanout capacity without overloading the IOC. The other group of data lines
passes directly to wire-wrap pins and normally is used for input signals from the
customer circuit to the CPU. The input lines are designed to be driven by
low-leakage, open-collector, TTL drivers.

General-Purpose Interface Card 4-3

/\ < Request and status > T
Interrupt + 1/0
data channel <}:Z>
controller

priority logic
170 floc) 16-bit bidirectional

data bus

F-codes

Clock 1 Clock 1 Clock |
v driver Function | 16 control
decoder | jines

Jumpers for
device code and
control

b _ » ~>
: sDéria ?i?.,g' Transceiver /\ p

To wire-wrap
area of board

DG-05866

Figure 4-1 General-purpose interface card

Figure 4-2 illustrates dimensions of the GPI card. A logic diagram for the GPI
appears in Figure 4-3.

0.255

Connector A

258
0.92
Connector B />\

DG-02420

Figure 4-2 General-purpose interface card dimensions

4-4

General-Purpose Interface Card

-y) +15w+12u05—55ﬁr——£5—?o+15w+12u (08)
(06) +15U/+12v0B=26 o *“5“
geT guevoETl 1L ————
| ce CEB
RE RS aa7e ~pa7e
0913 0913 . BauF . BBUF
499 S
- _ l 499 SET DONgoE—2 -3 e
ut 8 S
PHSA '
2636
pHSB— TL$ us AN ——————3—PHASE A BuUSY
BM CK _ ces aaas PHASE B DONE
BM CK MCK E=3omasTER CLOCK 2384 27 De
BIO! a7eF R1@ o1
8101 De
BToe0l" B102 10 cK @25 ur D3
_ BloecE” B102 10 1 a7 @615 D4
BTOELOCKOE™ BID CK 10 2 DS
B10CLOCKOE™ 810 CK o6
INPUT 10 IN 1ac o7
10C XCUR De
CUEE CLR D9
11 4 30 bre
| 1/0 K D11
- 1,0 D1 nie ——
29
1,0 D2 p13ptl—— e
L — - ——J;-{»I/U IN Diapl8 —
- INTP pispl®—
BLEAROB™ B - — g . ui3 R12 ——— 324 1NTR FarB8
-— 2091 e AN 33 ncHp FE—ES—-—T
2056 34 gdncHR F1 g;
c1 s18 TNTOE=83 . 38g INT sYNC Fe
——eesi sy OCH &Y ocH SYNC FsTBPEE—
. @4TUF BB
1 Re !
N/ 2855
470
c17
8278
INTP INOBTE2 .BBUF
iNTP ouTOBT
|
;
+5U \
| i J
‘ |
2 nn
2055 i -
47@ ; 4ﬂg‘ 2 oA
BEXTINTOR B i e |) 1 -—-E-4B0575
l . 2 = o8
ocHP INOBTBE ——nem —- I Ule 3 8
aras ¢ 54000
pcHe ouToBE! _ —— sp-& —E-S35a7E
A sp—f —E-4To57RT
s PSRN s ——gg—s 7 41o6R
— 2L 8 =52018PLE
—— Ll ————B@ p 9 --E=485ToRsT (a3 Yt
! P Sp— 2291 = SKO
Lf, [- a__ 5‘_420‘30Hg
—=2300CH1
singoBsS L — _ﬂoUCHO
4X16 WCE 2
15— -4
-~ —4*4:1‘3 . ‘ DECOR -E=430Ek
(BB) +SUo=- 0 2 Jeees
e <
88y +5U0B™329
(B8) +500B788 88) +suo£i& (841 ~5U08=38.
- e ’ — ’ — — s
ce ca Lcs Lmz J cie I l J l l
_ . _ v et ci14 +_cis + ci8 +_cis + cee +| cer + cee
s - @3:_7 - "‘3313; B:‘l’i; B?ﬁ:. 217 es3e @532 @532 . 8532 ~ es3e @532 2532 Bs3z e - 3327
. . l 6. BUF T 6. 8UF T 6. BUF 6.8UF 6. BUF T 6.8UF T 6. BUF 6. BUF T.zwup e
e —® — - ‘ - -4 — e — . ’ . ‘
gy GNooB - -
tag) gpoP L -
(AB) GNpo =14 - -
(AB) GNDOB=38. -
EVICE CODE BITS | @ (1, 2|3 |4 5 NOTES:
(AB) sNDoE‘53 DEVIC \. E-NUMBERS ARE WIRE WRAP PINS ON GP INTERFACE
WITH PINS AND SOCKETS OR SOLDER PQINTS ON
(ag) GNooB =34 - 3 JUMPER FOR A1 W3 | W2 | W1 | HE | W7 ”BJ GP INTERFACE WITHOUT PINS.
— e ——— e. INSTALL W4 TO DISABLE INTERNAL ADDRESS COUNTER.
INSERT W4 TO DISABLE INTERNAL ADORESS COUNTER | 3 5 (p_15)4 ARE ACTIVE HIGH, D(@-15)L ARE ACTIVE LOW.
INSERT WS FOR POSITIVE LOGIC AT @615 PING 4. WS SETS LOGIC LEVELS OF D(2-15)H AND D (@-15)L.
DG-25859

Figure 4-3 General-purpose interface card logic diagram

General-Purpose Interface Card 4-5
us ug
——— --—dBegi >0 - deess — —E=52opusY
ua U9
FEER 4 Llggaas >18 —— E-3@onpne
. E-Ragna
-E=805n1 1
4 _E-R6onpy
- E=120p3n
] - ue
q b —E=llopaL
- 2 _degas >—8 E=18onan
o E-1800c, us
L dopas > 2 E=170nen
¢——E-180ng e
3 _deeos >4 ~E=150pgH
¢ ——E140p7L v
- dengs >—&—-—E=13og7H
s ~29%peL 1) 3
L domas 2 E=B8opgy
! =38opgL (B1) Lie
S oo ey P - _ E=310gn
¢—————E-2opni1oL 81 us
-
— . donge >R E-8op1 01
us R u4 R Wa
-— ——E"Ton11L B N _ 2291 —0 o D8L (C4)
— — 3 _deess >4 E=Bopi1n 8165
" ult e
———F=30p12L B N e 2091 0-——--——-09L (C4)
—_—— a@ag > B .. Evfopian 2165
U4 w3
¢ E=35n3 81 vie ¢+—> gaaa:) O0———————D18L (B4)
— 3 dogos 24— - -E7330p13m 8165
we
e o E=3650140 (A1) Jia o D11L (B4)
2098 - -E=3R0p14m 2165
£ ule i
~3%00150 (A1) O ———D12L (B4)
13{@}3—%1% 2165
+5U He
: . E-S1o oy (go) O e ————013L (84)
2165
- U1t wr
cg i ces 2263 8091 8 o o ——-D14L (B4
3 @s3e 1K 2165
-@3e7
&.BUF
T L 1UF _utt utl)
‘ (85) TORST 2291 4 3-—dees: >o—&—o0 O———--——~D1SL (B4)
2165
WS ouT IN
He1l | H=@
pe-1:H | o 0)
H=B | H=1
oe-1mL | 27| T

4-6

General-Purpose Interface Card

Programming

The GPI card consists of an I0C module and space in which the rest of an I/0
interface can be implemented. The IOC module contains a B register which can
be both loaded and retrieved and a C register which can be loaded. When the
card is used to implement a data channel controller, the B register can be used as
the memory address register and the C register can be used as the word count
register. Alternatively, the IOC module can directly control the loading and
retrieving of up to three input and three output registers.

The IOC's registers respond to standard I/0 instructions with the user-defined
device code.

Summary of GPIO Bus Signals

The 55 signals which comprise the GPIO bus can be divided into five groups,
each summarized here in table form.

Data Signals

D(0-15)}H Data Out. All data for both data channel and programmed /O are transferred
from lines. Each line is buffered to drive 10 standard TTL loads. The contents
of the polarity bit (controlled by jumper W5) determines whether a low level
should be interpreted as a O or a 1.

D(0-15)L Data Input. All data and addresses for both data channel and programmed 1/0
are transferred from the device interface to the IOC via these 16 input lines.
The interrupt disable mask bit is determined by one of these lines when the
MSKO signal is asserted. The device code, external register select bit, and the
polarity bit are carried on these lines when the signal IORST is asserted (see
IORST, MSKO, and Jumpers). The device interface should drive these lines
with open collector gates. The contents of the polarity bit determines whether
a low level should be interpreted as a O or a 1.

The following control signals are asserted low (1 = 0 V). They can drive up to 10
TTL loads.

General-Purpose Interface Card 4-7

Programmed I/ O Signals

DIA Data In A. Asserted by the I0C upon receipt of its DIA instruction. To be used
by the device interface to place the contents of its A input buffer on D(0-15)L.

DIB Data In B. Asserted by the IOC upon receipt of its DIB instruction. To be used
by the device interface to place the contents of its B input buffer on D(0-15)L
if external registers are enabled (see Jumpers).

DIC Data In C. Equivalent to DIA, except that it applies to the C input buffer.

DOA Data Out A. Asserted by the I0C upon receipt of its DOA instruction. To be
used by the device interface to load the contents of D(0O-15)H into its A output
buffer.

DOB Data Out B. Asserted by the I0C upon receipt of its DOB instruction. To be
used by the device interface to load the contents of D(0-15)H into its B output
buffer.

DOC Data Out C. Equivalent to DOB, except that it applies to the C output buffer.

STRT Start. Asserted by the IOC upon the receipt of any of its nonskip 1/0 instructions

in which bits 8 and 9 = 01 (i.e., instructions in which the S control function
is specified). Asserted during DIA, DIB, DIC, DOA, DOB, and DOC instructions
after the data transfer has occurred. Usually used to initiate the device
interface by setting the Busy flag to 1 and the Done flag to O.

CLR Clear. Asserted by the IOC upon the receipt of any of its nonskip 1/0 instructions
in which bits 8 and 9 = 10 (i.e., instructions in which the C control function
is specified). Asserted during DIA, DIB, DIC, DOA, DOB, and DOC instructions
after the data transfer has occurred. Usually used to terminate device operation
by setting the Busy and Done flags to O.

IOPLS I/0 Pulse. Asserted by the IOC upon receipt of any of its nonskip 1/0 instructions
in which bits 8 and 9 = 11 (i.e., instructions in which the P control function
is specified). Asserted during DIA, DIB, DIC, DOA, DOB, and DOC instructions
after the data transfer has occurred. Usually used to initiate special device
operations.

SET BUSY Asserted by the interface when it is busy and should not be disturbed by the
I0C. In the IOC, sets the Busy flag to 1 and the Done flag to O.

SET DONE Asserted by the interface to notify the I0C that it has completed its operation.
in the I0C it sets the Done flag to 1 and the Busy flag to O.

4-8

General-Purpose Interface Card

Program Interrupt Signals

INT SYNC

MSKO

Interrupt Synchronize. Asserted by the interface to notify the program that it
has completed its operation. In the 10C it directly initiates a program interrupt
request without disturbing either the Busy or Done flags.

Mask Out. Asserted by the IOC during the execution of a MSKO instruction.
Loads the selected data line into the priority mask bit register.

Data Channel Signals

DCH SYNC

DCHA

DCHI

DCHO

WCEZ

CLK

Data Channel Synchronize. Asserted by the device interface to request data
channel service.

Data Channel Acknowledge. Asserted by the IOC at the beginning of each data
channel cycle in response to a data channel request from the device interface.
The interface should respond by placing the memory address on D(1-15)L and
the direction of transfer on D(O)L. A logical 1 on D(O)L indicates an input
transfer and a logical O indicates an output transfer.

Data Channel Input. Asserted by the I0C during a data channel input cycle. To
be used by the interface to place the contents of its data register onto the
D(0-15]L lines.

Data Channel Output. Asserted by the IOC during a data channel output cycle
after the I0C has placed the contents of its data register onto the D(0-15)H
lines. To be used by the interface to load the contents of this bus into its data
register.

Word Count Equals Zero. Asserted by the |OC during the data channel cycle
that overflows the word count register. Can be used to clock the Done flip-flop
in the interface.

Clock. Follows FSTROBE when the I0C is not performing an operation.

System Control Signals

IORST

1/0 Reset. Asserted by the 10C during the IORST instruction. This signal
initializes the IOC by loading the device code, the polarity bit, and the
external register bit. It should also initialize the interface.

Interface Timing

This section shows timing diagrams and tables for programmed I/0 and data
channel operations.

General-Purpose Interface Card 4-9

Programmed Transfers

A transfer occurring under direct program control moves a word or part of a
word between the IOC and a register in the device interface. Refer to Figure 4-4.

10C to device data timing

Fs| Fr (Fu
T

FSTROBE f —_/—__

NOP >< DOA, DOB, DOC ><STRT. CLR, IOPLSX NOP

F<0-3>

D<0-15>

NOTES
Unless otherwise noted, time intervals are measured

between points at 1.5V.

See timing Tables 4-2 and 4-3.

Device to I0C data timing

FSTROBE _/—___ _—_/—_

F<0-3>

NOP X DIA, DIB, DIC /< STRT, CLR, IOPLSX NOP

D<O0-156>

Dg | Dy
DG-04142,0G-04143

Figure 4-4 Timing, programmed transfers

Data In

The I/0 controller asserts DIA, DIB, or DIC. It also asserts STRT, CLR, or IOPLS if
they are specified by the I/0 instruction. When a DIA, DIB, or DIC signal asserts,
any data on the GPIO data bus (DO-D15)L lines will be gated from the interface,
through the IOC, and onto the I/0 data bus.

4-10

General-Purpose Interface Card

Data Out

The 1/0 controller places the data received from the CPU onto the GPIO data bus
D(0-15)H lines and asserts DOA, DOB, or DOC. It also asserts STRT, CLR, or IOPLS if
they are specified by the 1/0 instruction.

Data Channel Transfers

An information transfer occurring under data channel control moves a block of
data, one word at a time, between the IOC and the device. Refer to Figure 4-5.

Data In

The I0C generates DCHA and the interface responds by placing the memory
address on D(1-15)L if the external register is enabled and by placing the direction
of transfer on D(O)L. If the word count register in the I0C overflows, WCEZ is
generated to indicate that this is the last word in the data block. The IOC then
generates DCHI and the interface responds by placing its data on D(0-15)L.

Data Out

The 1I0C generates DCHA and the interface responds by placing the memory
address on D(1-15)L if the external register is enabled and by placing the direction
of transfer on D(O)L. If the word count register in the I0C overflows, WCEZ is
generated to indicate that this is the last word in the data block. The IOC then
generates DCHO; the interface responds by loading the contents of D{0O-15)H into
its data register.

For more detailed information refer to the microNOVA Integrated Circuits Data
Manual.

Table 4-2 1/0 data port timing table

Class Mnemonic Min.* Max.* Units

All T4 110 130 ns
T, 110 130 ns
Tn(next command) 840 — ns

1/0 Instructions DTo 470 850 ns

(Data Out Transfer)

DT, 1190 1330 ns
(Data In Transfer)

Request Enable and Data A 360 540 ns
Channel Address Request

Data Channel Transactions C (Data Channel Address 710 850 ns
Request to first transfer)

DCq (Data Channel Out) 590 1930 ns

DC, (Data Channel In) 1190 1210 ns

® All of the above times assume a MASTER CLOCK frequency of 8.333 MHz.

General-Purpose Interface Card 4-11

Data channel address transfer

FSTROBE ‘/—_‘__ ’_—_

N DCHA
ross NP X oW | wor

D<0-15>

Dg | DH
Data channel in transfer Data channel out transfer
1]
o/ A N\
FSTROBE N/
Fs Fr FH
NOP X DCHI >< NOP
F<0-3> NOP DCHO >< NOP
F<0-3>
D<O0-15>
D<0-15>

Ds ' Dy

Data channel end of transfer

FSTROBE HJW
X ° K X X
F<0-3> NOP C NOP WCEZ NOP

D<O0-156>

I
>
L]

Ds ' DH
NOTES
Unless otherwise noted, time intervals are measured

between points at 1.5V.

See timing Tables 4-2 and 4-3.

DG-04145-48

Figure 4-5 Timing, data channel transfers

General-Purpose Interface Card

Table 4-3 Peripheral port timing table

Operation Mnemonic Description Min. Max. Unit
Common to all operations Fg Function code setup time 60 ns
prior to FSTROBE
Fr FSTROBE duration 180 300 ns
Fy Function pin hold time 60 ns
1/O data out instruction and Data output timing same as
Data Channel Out Transfer function code timing above
1/0 data in instruction and Dg to Data setup time prior to 120 240 ns
Data Channel in transfer FSTROBE
Dy Data hold time after 0 120 ns
FSTROBE
Ta DCHA to DCHI 336 us
Tao DCHA to DCHO 656 us

Jumpers

The device code, polarity bit, and external register select bit are selected by
jumpers in the IOC section of the card (see Figure 4-6).

Device Select

The device code is selected with jumper connections W1-W3 and W6-W8. The
device codes for specific devices are given in Appendix C.

Table 4-4 Device select jumpers
Bits of device code field 10 11 12 13 14 15
Jumper insertion to specify 1 w3 w2 W1 wé w7 w8

Polarity Select

Jumper W5 selects the polarity bit. The polarity bit is a 1-bit register that
determines the sense of the data bits transmitted and received via the IOC. If W5
is in, the polarity bit is set to a 1 and a low level (0 V) on the data pins of the IOC
is interpreted as a 0. A high level (5 V) is interpreted as a 1. If W5 is out, the
polarity bit is set to a 0 and a low level on the data pins of the IOC is interpreted
as a 1. The high level is interpreted as a 0. Note that the buffered outputs,
D(0-15)H, are inverted.

General-Purpose Interface Card 4-13

AUt A At

glalcl slagiiug
e
w2 E T T
i T BB -

G.P. INTFC |,__
Mﬂllﬂﬂﬂﬂﬂﬂﬂl]ﬂllﬂﬂﬂﬂﬂﬂﬂllﬂﬂll L00AM0nNRANARNRAAARRANNRARAD

DG-25860

Figure 4-6 General-purpose interface physical layout

4-14 General-Purpose Interface Card

Table 4-5 Polarity select jumper

ws Data Polarity (GPIO Bus)

In D(0-15)H Zero = +5V;0One =0V
Out Zero = 0V;One = +5V
In D(0-15)L Zero = 0V;0One = +5V
Out Zero = +5V;0One =0V

External Register Select

Jumper W4 controls the selection of the external (device interface) or internal
(IOC) memory address and word count registers.

Table 4-6 External register select jumper

w4 Location of Registers
In External to 10C
Out Internal to 10C

Priority Mask Bit Select

The interrupt priority mask bit is selected by jumpering the mask signal (MSKO,
pin 44} to one of the D(0-15)L lines.

Data Lines and Drive Capability

The outputs of the I/0 controller (I0C) chip are capable of driving only one TTL
load. Therefore, all the data out lines, D(0O-15)H, have been TTL buffered and are
capable of sinking 16 mA. The outputs of the 4 to 16 decoder are also capable of
sinking 16 mA. The data input lines, D(0-15)L, should be driven with open
collector drivers. Each control signal to the IOC (INTSYNC), pin 23; DCHSYNC, pin
22; SET BUSY, pin 1; and SET DONE, pin 2, constitute one TTL input load.

The supply voltages required (+5 Vdc, pin 58; +12 Vdc, pin 57; and —5 Vdc, pin
51) must be supplied to the board by the system into which it is installed. The
maximum current drain on the +5 Vdc should be one ampere.

General-Purpose Interface Card 4-15

Busy/Done

A suggested circuit for generating the SET DONE signal is given in Figure 4-7. SET
BUSY can be generated in the same way.

BUSY ——— 0 Q
DEVICE DONE CLK Q SET DONE

LY

DG-05872

Figure 4-7 Set signal done

Interface Wire-wrap Pins

Wire-wrap pins are provided in the IOC section of the model 4211 card to
facilitate the connection of the GPIO bus to the custom device controller. Table
4-7 lists the wire-wrap pins associated with each bus signal. The location of the
pins may be found by referring to the physical layout of the card. The model
4210 GPIO card does not include wire-wrap pins, but features etched circuit
holes in the same locations.

4-16 General-Purpose Interface Card

Table 4-7 Wire-wrap pins (GPIO card)

Pin Signal Pin Signal
1 SET BUSY 30 DONE
2 SET DONE 31 D9H
3 MASTER CLOCK 32 DIL
4 D12H 33 D13H
5 D12L 34 D13L
6 D11H 35 D14H
7 D11L 36 D14L
8 D10H 37 D15L
9 D10L 38 D15H
10 D4H 39 DiB
11 D4L 40 DOA
12 D3H 41 CLR
13 D7H 42 DCHA
14 D7L 43 CLK
15 D6H 44 MSKO
16 D6L 45 DOC
17 D5H 46 DIA
18 D5L 47 STRT
19 D3L 48 IORST

20 D1H 49 WCEZ

21 D1L 50 DCHO

22 DCH SYN 51 -bV

23 INT SYN 52 BUSY

24 Do:" 53 DOB

25 DOL 54 DIC

26 D2H 55 OPLS

27 D2L 56 DCHI

28 D8H 57 + 15V

29 D8L 58 +5V

Additional
Printed Circuit
Card

The model 1114 predrilled circuit card is a general-purpose wiring card suitable
for building a special-purpose, custom interface to a Desktop Generation computer.
The card has two male edge connectors on the backpanel edge, one of which
plugs into the printed circuit backpanel socket; the other plugs into a device
cable connector, in the event the card is used as an I/0 device controller. Figure
A-1 presents the dimensions of the card.

The backpanel connector has 60 contacts, while the device connector has 50
contacts. Two additional 50-contact edge connectors are included on the forward
edge of the card to provide flexibility to the interface designer. A series of holes
in the card is designed to accept standard integrated circuit packages. Up to fifty
14-pin packages may be installed on one card, and an even larger number of
smaller packages may be used. Each hole and connector finger is connected by
etch to an adjacent wire-wrap pin.

ASCIT
Character Set

B

Figure B-1

KEY
DECIMAL OCTAL HEX SYMBOL MNEMONIC

KEY
DECIMAL OCTAL HEX SYMBOL

KEY
DECIMAL OCTAL HEX

KEY
DECIMAL OCTAL HEX SYMEBOI

[o]ooo] oo [t@] nuL]

[32 [040] 20 [srcc]

(85 [101] 41 ~[w:m]

[o7 [e]]

[1]oo1] o1 Tta] son]

[33]oar][21]]

| 66 [102] 42T 8]

[[a[e2] 5]

[2]o02] 02TtB [stx]

[34 Joa2] 22 .50

[67]103]43]]

(99 [143] €3] ¢]

{ 3fo03] o3]tcTerx |

{35 0a3] 23] #]

[68[104] 4] D]

[0l a¢ [54] 4]

[2]oo4] 044D EOT |

{36 Joaa] 24T s |

[69]105] a5 T € |

[101]145] 65 e]

[o[os [1e []

[37]oas] 25T % |

[70]106] 26 [F |

{102]146] 66] f]

[6Joos] 06 [4F ['ack]

[38]od6] 26 [&]

o] @] c]

[103[147] 677 &]

[7]o07] 07 [4GTmer |

(39]oa7] 277,

[72]110[48] H |

{104]150[68 [h |

[8lo10] 08 [tH],5,]

[40 Joso[28T (]

[73][1m]ae] 1]

[o] 1]

[9fo11] o9 [t1 [1a8]

[41]os1] 29T) |

[7a]n2] 3])]

[108]152] 6A] i]

[hoTor2[oat) [8]

(42 Jos2] 2aT]

[75]3] 48] «]

[107]153] 68 [k |

[1To13] 08 [1x [VF..]

[43]os3] 28] +]

[76 [11a]ac] 1]

[108]154] 6C] 1 |

[[onl e [T 2]

{44 Josa] 2¢] 1]

[77]115] 0] M]

109]155] 60| m]

[[13]01s] op |t M]cems

[Elos[] -]

[78{116] 4 [N]

[110]156] 66 [n]

[14]016] oe [{N] S0 |

(46 [056] 2€ [oic)

[79[n7] 4] 0]

[111]157] 6F [o |

[15]017] oF [1O] s]

7oz] 7]

[8o]120] s0] P]

[112]160] 70] p]

[16 Jo2o[10 T4P T oLE]

[48 Jos0[30 0 |

[s1 1] s1] Q]

[113[161] 71] q]

{17]o1] 11 [4Q] bc1]

{49 oer] a1] 1]

[82]122] 52 r]

[11a]162] 727 r |

[18]022] 12 [¥r [pc2]

50 Jos2] 32] 2]

(83]123] 53] s]

[115]163] 73] s]

[19]023] 13]ts[oca]

Gilo[]3]

[84]124] 541 T]

[116]164] 72T]

[20Jo24] 1a 471] DCa |

[52 [o6a] 34] 4 |

(][] v]

[Tl 7] o]

[21]o25] 15 [tu] nak]

[53]o65]35] 5 |

[86]126] 56 | v |

[118]166] 76 | v]

[22]026] 16 [fv [svn |

[54 [066] 36 [6 |

[87[127] 57] w]

[11e]167] 77] w]

[[23]o27] 17 [4w] €T |

[s5 [oe7] 377 7 |

[8a]130] 58] x]

[120]170] 78 [x|

[24 Joso[18 [tx [can]]

[56 [070] 38] 8 |

[89]131] 50 [v |

p21]171] 79] v]

[25Joz1] 194y [em]

[57 Jo71] 39| 9 |

[90]132]8a] 2]

[122]172] 78] 2]

[26 o32] 1Ttz] sus]

[s8 Jo72] 3a : |

[27 [033] 1B | ESC]Escar]

[s9 Jor3[38 |

{o1]133]s8] [|

[123]173] 78] | |

[28]o3a] 1ic[t\[Fs |

[0 [ora]3c[<

[[92]13a] sc] \ |

[124[174] 7c] 1]

[20T03s] 1041 [es |

[61]o7s]30] - |

{9a]13s]sp]) |

D2s[i7s[| 1]

[30T036] 1 [t} rs |

[62Toze] 3e | >]

[(9a [136] 5E A]

{126]176] 7€ [v,]

[31Jo37] 1r [T us]

[63]o77] 3F] 2 |

[Los [137] s¢ []

[z1a77] 7 O]

|64 |100| 40 | @ l

ASCII Character Codes

DG-05495

B-2 Additional Printed Circuit Card

N
DG-02420
Figure A-1 Model 17114 card dimensijons

Peripheral
Device Codes

Table C-1 1/0 device codes for Desktop Generation Computers

Octal Device Code Mnemonic Priority Mask Bit Device Name
00 — — Returned by power monitor in response
to INTA
01 APL —_ Auto program load register
02 PAR — Parity checking
03 MAP — Memory allocation and protection
04
05
06 ATP — Attached processor
07
10 T 14 TTY input
1 TTO 15 TTY output
12
13
14 RTC 13 Real-time clock
15
16
17 LPT 12 Line printer
20 DEO 7 368.64-Kbyte diskette; up to 2 diskettes
in subsystem
21 ADCV 8 A-D converter
22 MTA 10 Magnetic tape
23 DACV 8 D-A converter

C-2

Peripheral Device Codes

Table C-1 Table C-1 1/0 device codes for Desktop Generation Computers

Octal Device Code

Mnemonic

Priority Mask Bit

Device Name

24
25
26

27
30
31
32
33
34

35
36
37
40

41
42
43

44
45
46
47
50

51
52
53
54
55

56
57
60
61
62

63
64
65
66
67

70
71
72
73

74
75
76
77

DEP

ASLM

TLC
DIO
PIT

LPT1

ADCV1

DACV1

ASLM1

CPU

11

4 0or 11

11

12

11

15.98-Mbyte disk; up to 2 disk drives in
subsystem

Sync/async controller

IEEE-488 Bus interface
Digital 1/0 interface
Programmable interval timer

Second line printer

Second A-D interface

Second D-A interface

Second sync/async controller

Central processor and console functions

Index

Within the index, the letter “f” following a page entry BI/O DATA2 3-2
indicates “and the following page”; the letters “ff” Bit

following a page entry indicate “and the following direction 3-3
pages”. mask 2-10

priority mask, select jumper, GPI card 4-13
BMCLOCK 3-2

A Buffers, A, B, C
A register input 2-6
Data In 2-7 output 2-6
Data Out 2-8 Bus signals, GPI card 4-6f
A, B, C Bus, I/0 1-1, 1-3, 3-2f

input buffers 2-6

output buffers 2-6
Access, direct memory 2-17
Accumulator field 2-7

Bus-to-controller interface 3-1
Busy flag 3-7, 2-4, 2-18
Busy flag, GPI card 4-13

Acknowledge instruction, interrupt 2-11, 2-14f C

Address counter, memory 2-18 C register

Address error 2-5

Add . 2.19 Data In 2-8
ress register 2- Data Out 2-8

Architecture, input/output 1-2
Array, I0C programmable logic 3-7
ASCII character set B-1

device register 3-6

input buffers 2-6

output buffers 2-6
Character set, ASCII B-1
Checkword error 2-5

B Circuit card, Model 1114 predrilled A-1
B register CLEAR 3-2
Data In 2-8 Clear command 2-13
Data Out 2-8 CLOCK
device register 3-6 BI/O 3-2
input buffers 2-6 1/0 3-3f
output buffers 2-6 Codes

BI/O CLOCK 3-2
BI/O DATAL 3-2

I/0 device 3-9

10C function 3-8

I0C instruction/data 3-3
operation 2-7

peripheral, device C-1

Index-2

Command(s)
Clear 2-13
Start 2-13
10C device 3-8
Control field, flag 2-5
Control flags 2-9
Control lines, peripheral 3-11
Control logic, state 3-4
Control parameter 2-3
Control signal timing, device 3-13
Control signals, GPI system 4-8
Control
data channel 1-4, 2-22
direct program 2-20
program 1-4
Control, data
information, status 1-4
registers, status 2-2f
Controller structure 2-18
Controller, 1/0 1-1, 1-3, 3-3f
Controller, I/0, peripheral 2-2
Counter
I0C state 3-7
memory address 2-18
word 2-18
Counters 2-3
CPU skip instruction 2-14

D

Data
information, status, control 1-4
registers, status, control 2-2f
Data channel
control 1-4, 2-22
facility 2-17
1/0 latency 2-22f
in transfers 3-11f
out transfers 3-10
programming 2-20
signals, GPI 4-8
transfer sequence 2-19
transfer timing, GPI 4-10
transfers 3-10
transfers data in, GPI 4-10
transfers data out, GPI 4-10
Data In A 2-7
Data In B 2-8
Data In C 2-8
Data in
GPI data channel transfers 4-10
GPI programmed transfers 4-9
Data lines drive capability, GPI 4-14
Data lines, GPI 4-14
Data out
GPI data channel transfers 4-11
GPI programmed transfers 4-9
Data Out A 2-8

Data Out B 2-8
Data Out C 2-8
Data port timing
GPII/0 4-11
1/0 3-12
Data signals, GPI 4-6f
Data-in transfers (I0C to CPU) 3-9
Data-out transfers (CPU to I0C) 3-9
DATAIl
BI/O 3-2
1/03-3
DATA2
BI/O 3-2
1/0 3-3
DCHP 3-2
DCHR 3-2
Decoder
1/0 3-4
10C 3-7
Device code field 2-5
Device codes,
I/0 3-9
peripheral, C-1
Device commands, I0C 3-8
Device control signal timing 3-13
Device register B 3-6
Device register C 3-6
Device select jumpers, GPI 4-12
DIA 2-7
DIB 2-8, 2-14
DIC 2-8
Direct memory access 2-17
Direct program control 2-20
Direction bit 3-3
Disable flag, interrupt 2-9f 2-13
Disable instruction, interrupt 2-13
DMA 2-17
DOA 2-8
DOAB 2-15
DOB 2-8, 2-14
DOB 2,CPU 2-13
DOBC 2,CPU 2-13
DOC 2-8
Done flag 2-4, 2-18, 2-9ff, 3-7,
Done flag, GPI 4-13
Done signal, set, GPI card 4-16
Drive capability, data lines, GPI card 4-14

E

Error flags 2-4
Error
address 2-5
checkword 2-5
External register select jumper, GPI 4-14

F

Field
accumulator 2-7
device code 2-5
flag control 2-5
operation code 2-6
Fields 2-2
Flag(s) 2-2f
Busy 2-4, 2-18, 3-7
control 2-9
control field 2-5
done 2-4, 2-9ff, 2-18, 3-7
GPI busy 4-13
GPI done 4-13
interrupt disable 2-9f, 2-13
interrupt on 2-9f, 2-12f, 2-15
Format
1/0 instruction 3-9f
instruction 2-5
FSTROBE 3-11
Function codes, I0C 3-8

G

General purpose interface
card 1-1, 4-1f
Model 4210 4-1
wiring card A-1

GPI 4-2f
bus signals 4-6f
busy flag 4-13
card dimensions 4-3
data channel signals 4-8
transfer timing 4-10
transfers data in 4-10
transfers data out 4-10
data lines 4-13
data lines drive capability 4-14
data signals 4-6f
device select jumpers 4-12
done flag 4-13
external register select jumper 4-14
1/0 data port timing 4-11
interface timing 4-8
interface wire-wrap pins 4-16
jumpers 4-12
logic diagram 4-4
peripheral port timing 4-12
physical layout 4-14
polarity select jumper 4-12f
priority mask bit select jumper 4-14
program interrupt signals 4-7
programmed transfers,
data in 4-9
data out 4-9
timing 4-9
programming 4-6
set done signal 4-16

summary of characteristics 4-2
system control signals 4-8
wire wrap pins 4-17

H

Handler
interrupt 2-11
priority interrupt 2-16

1/0
bus 1-1, 1-3, 3-2f
controller 1-1, 1-3, 3-3f
data port timing 3-12
data port timing, GPI 4-11
decoder 3-4
device codes 3-9
instruction, 2-3
instruction format 3-9f
instructions, 2-2, 2-7
latency, 2-20
data channel 2-22f
maximum programmed 2-21
programmed 2-21
No I/0 Transfer 2-9
peripheral controller, 2-2
reset instruction 2-10, 2-15
shift register 3-4
timing 3-9
transfers, programmed 3-10
I/0 CLOCK 3-3f
1/0 DATA1 3-3
I/0 DATA2 3-3
I/0 INPUT line 3-9
Skip instruction 2-9, 2-11, 2-15
In A, Data 2-7
In B, Data 2-8
In C, Data 2-8
Information, status, control, data 1-4
Initialization, IOC 3-6
Input buffers, a, b, ¢ 2-6
INPUT line, I/0 3-9
Input/output
architecture 1-2
programming 2-1
Instruction
CPU skip 2-14
I/0 reset 2-10, 2-15
I/0 Skip 2-11, 2-15
interrupt acknowledge 2-11, 2-14f
interrupt disable 2-13
interrupt enable 2-12f
JMP 2-12
mask out 2-10, 2-14
Instruction format 2-5
Instruction format, I/0 3-9f

Index-3

Index-4

Instruction register 3-4
INTA 2-11, 2-14
INTDS 2-13
INTEN 2-12f
Interface
bus-to-controller 3-1
general purpose 1-1, 4-1f
Model 4210 general purpose 4-1
timing, GPI card 4-8
wire-wrap pins, GPI card 4-16
Internal/external register settings, I0C 3-5
Internal structure, I0C 3-6
Interrupt,
acknowledge instruction 2-11, 2-14f
device code 2-13
disable flag 2-9f, 2-13
disable instruction 2-13
enable 3-7
enable instruction 2-12f
execution 2-11
handler 2-11
priority, mask 2-15f
program instructions 2-13
on flag 2-9f, 2-12f, 2-15
requests 2-9f
service routine 2-11
signals, GPI program 4-7
program 2-9
program flow, 2-12
program, priority 1-5, 2-17
INTP 3-2
INTR 3-2
10C 1-1
data-out transfers (CPU to I0OC) 3-9
decoder 3-7
device commands 3-8
function codes 3-8
initialization 3-6
instruction/data codes 3-3
internal structure 3-6
internal/external register settings 3-5
programmable logic array 3-7
registers 3-5f
state change logic 3-7
state counter 3-7
transceiver 3-3
ION 2-9f, 2-12f
IORST 2-10, 2-15
IOSR 3-4, 3-7
IR 3-7

J

JMP instruction 2-12
Jumper(s)
GPI 4-12
GPI device select 4-12
GPI external register select 4-14

GPI polarity select 4-12f
GPI priority mask bit select 4-14

L

Latency,
data channel 1/0 2-22f
1/0 2-20
maximum programmed I/0 2-21
programmed 1/0 2-21

Linel(s),
drive capability, GPI data 4-14
GPI data 4-13
I/0 INPUT 3-9
interrupt request 2-9
peripheral control 3-11

M

Mask, interrupt priority 2-16

Mask bit 2-10

Mask bit select jumper, GPI priority 4-14
Mask out instruction 2-10, 2-14
Maximum programmed I/0 latency 2-21
Memory access, direct 2-17

Memory address counter 2-18

Model 1114 predrilled circuit card A-1
Model 4210 general purpose interface 4-1
MSKO 2-10, 2-13

N

NIO 2-9

NIOC 2-13

NIOS 2-13

No I/0 Transfer 2-9

o

Operation code field 2-6
Operation codes 2-7
Out
data channel transfers 3-10
GPI data channel transfers data 4-11
GPI programmed transfers data 4-9
Output buffers, A, B, C 2-6

P

Peripheral 1-3
control lines 3-11
controller, I/0, 2-2
device codes C-1
port timing, GPI 4-12
programming 2-20
Physical layout, GPI 4-13

Pins
GPI interface wire-wrap 4-15
GPI wire wrap 4-16
PLA 3-7
Polarity select jumper, GPI 4-12f
Port timing
GPI I/0 data 4-10
GPI peripheral 4-12
1/0 data 3-12
Power fail 2-13
Predrilled circuit card, Model 1114 A-1
Prioritylies) 2-19
interrupt handler 2-16
interrupts 1-5, 2-15
interrupts, program flow 2-17
mask, interrupt 2-16
mask bit select jumper, GPI card 4-13
Processor pauses 2-19
Program
control 1-4, 2-20
flow, interrupts 2-12, 2-17
interrupt instructions 2-13
interrupt priority 1-5
interrupt signals, GPI 4-7
interrupts 2-9
Programmable logic array, I0C 3-7
Programmed
1/0 latency 2-21
1/0 latency, maximum 2-21
1/0 transfers 3-10
transfer timing, GPI 4-9
transfers data in, GPI 4-9
transfers data out, GPI 4-10
Programming
data channel 2-20
GPI 4-6
input/output 2-1
peripherals 2-20

R

Register
address 2-19
1/0 shift 3-4
instruction 3-4
Register A, device 2-6f
Register B, device 3-6
Register C, device 3-6
Register select jumper, GPI external 4-13
Register settings, IOC internal/external 3-5
Registers, I0C 3-5f
Registers, status, control, data 2-2f
Request line, interrupt 2-9
Requests, interrupt 2-10
Reset instruction, I/0 2-10, 2-15

S

Select jumper(s)

GPI device 4-12

GPI external register 4-14

GPI polarity 4-12f

GPI priority mask bit 4-14
Sequence, data channel transfer 2-19
Service routine, interrupt 2-11
Set done signal, GPI 4-16
Settings, IOC internal/external register 3-5
Shift register, I/0 3-4
Signal timing, device control 3-13
Signals

GPI bus 4-6f

GPI data 4-6f

GPI data channel 4-8

GPI program interrupt 4-7

GPI system control 4-8
Skip, I/0 2-9
Skip instruction

CPU 2-14

I1/0 2-11, 2-15
SKP 2-9, 2-14
Start command 2-13
State change logic, I0C 3-7
State control logic 3-4
State counter, I0C 3-7
Status, control, data

information 1-4

registers 2-2f
Summary of characteristics, GPI 4-2
System control signals, GPI 4-8

T

Timing 2-20ff
device control signal 3-13
GPI data channel transfer 4-10
GPI I/0 data port 4-11
GPI interface 4-8
GPI peripheral port 4-12
GPI programmed transfers 4-9
1/03-9
I/0 data port 3-12
Transceiver, I0C 3-3
Transfer, No I/0 2-9
Transfer sequence, data channel 2-19
Transfer timing, GPI data channel 4-10
Transfers
CPU to IOC, data-out 3-9
10C to CPU, data-in 3-9
Transfers data in
GPI data channel 4-10
GPI programmed 4-9
Transfers data out
GPI data channel 4-10
GPI programmed 4-9
Transfers timing, GPI programmed 4-9

Index-5

Index-6

Transfers
data channel 3-10
data channel in 3-11
data channel out 3-10
GPI programmed 4-9
programmed I/0 3-10

w

Wire-wrap pins, GPI interface 4-16f
Wiring card, general purpose A-1
Word counter 2-18

moisten & seal

Documentation Comment Form

Manual Title
Manual No.

Your Name

Your Title

Company
Street
City State Zip

Please help us improve our future publications by answering the questions below. Use the
space provided for your comments. Thank you.

Is this manual easy to read?

Is it easy to understand?

Are the topics logically organized?

Is the technical information accurate?

Can you easily find what you want?

Does it tell you everything you need to know?

ooooooog
gooooooo?2

Do the illustrations help you?

If you wish to order manuals, contact your sales representative or dealer.

Comments:

Date

] 18G10 VIA ‘o10qisam
] aanIg 19Indwon QObP
O (612d) sa91A195 uBisad :NLLV
]
]
] [919‘199919(] 4 '
]
]
]
] ‘8assaJppe Aq pred aq ||im abejsod
]
] ZLLLO VN 'OHOSHLNOS 92 ON LIWHId SSV1D LSHIA
— 1IVIN A1d3d SSIANISNF
]
]
S31V.1S A3LINN
IHLNI
Q3YN 4l
AHVSS3O3N
39v1S0Od ON
R

134-755

