
OECUSNO.

COMPANY

CATE

SQU~CELANGUAGE

ATTENTION

11-304

LISP-II

Jeffrey Kodasky

Applied Research Laboratories
University of Texas at AU$tin
Austin, TX 78712

. 6 January 1977

MACRO

This is o USER program. Other than requiring that it conform to submittal and review stcindords,
no quality control hCS bettn impcMd upcn tnis progrom by DECUS.

The DECUS Program Librcry is a clearing house only; it dcei not :.;enerate or test prcgrams. No
warranty, express or implied, is made by the contributor, Digital Equipment COfflf:)uter lh,ers
Society or Digital Equipment C~ation cs to tne accuracy ot functioning or the ?f'ogram CK

related material, ond nc respot".sibility is .:zssumed by these pcrties in connection therewith.

' . . ·;
"

~ I • _ ••

f

GENERAL INFORMATION

Obied C~ter(s)_....,.po__,p._1..,1 ______________ _,;Source Co,,puter (if different) ____ _

Fi le Name USP Version No. ----------Tit I e LISP-II
Author -

--~Je .. ffm~~y..li:K .. ndns,ky~------~--------------------
Submitter (if otner than auth«) -----------------------------
Affi I iation:_...aA4lpppfUJi ea.d:i.s.Re~se1eaJaccccc~..Jl~ab=-a:mtmzicc0DJi eus~J JJln~iv~eum:u·.t;tyt...Q;afLI.1Jc121ss:muatuAwulSJstWino._ ___________ _
Address P.O. Box 8029

Austin, TX 78712 Country -----------USA
N\on it«/ Operating Symm_.B~I.._-..... 11...._ _____________ DEC No. _____________ _

Core Storage Required 16K Startin; Address ---------
Peripherals Required --------------------------------O ther Softwar. Raquirad DEC« OECUS No. ----------------- --------Source langucge ____ MA~Ca.iB.a-P--. ______ Catagory _______________ _

Rastrictions, Deficiencies, Prcblems _ __.m.-...fnt..._iwv.ae-"ilf'-bu~;.,..,.&oa.· flii-.------------------

Date of Planned c. Pouible Future Revisions

TAPES AVAILABLE

Paper Tapes Obfect Binary □ Obi•ct ASCU □ Source □ Other

DECtaoe D LINCtape D Fermat___ Magtape: 7 Track Ci] 9 Track ·□ BP1 __ 8CO ___ _

Obi•ct Files 0 Source Files rEJ Oocumentation Files □ Other --------
ABSTRACT

USP-II is an intarpteter for,+,. USP language whid, runs in the backrcung under RT-11.
There ere 125 LISP functions implemented with provisicn to ca,diticnally assemble cut as many
as 60 in order to maxlmimize free space.

NOTE: Users who believe they have found USP system bugs, omissions Of efTOf'S in the
documentation should mail the• with printed output (where poss3ble) to the
author at the- aboYe ackna.

..

l.
., ...

INTROOUCTION

USING LISP

2.1 Running LISP

2.2 ~n~ering Programs

TABLE OF CONTENTS

2.2.1 Inputting LISP Expressions in Conversational.Mode ·

2.2.2 LISP Subsystems

2.3 Syntax Summary

2.3.l Lexical Class Definitions

2.3.2 Partial Syntax Definition

2.3.2.l Atoms

2.3.2.2 S-expressions

3. FUNCTION DEFINITIONS

3.1 Function Types

3.2 Notation

3.3 Functions

3.3.l Elementary Functions and Predicates

3.3.2 List Manipulation Functions

3.3.3 Evaluation Sequence Control Functions

3.3.4 Property List Manipulation Functions

3.3.5 Functionals

3.3.6 Arithmetic Functions and Predicates

3.3. 7 Debugging and Error Processing Functions

3.3.8 ~iscellaneous Functions

3.3.9 Input/Output Functions

3.3.10 String Functions

3.3.11 Character Functions

3.3.12 Array Functions

4. SYSTEM ATOMS

5. ERROR ~ESSAGES

5.1 Interpretation of Backtrace on Error Condition

S.2 Garbage Collection Warning Message

l

3

3

4

4

5

5

5

8

8

10

13

13

14

16

16

24

28

34

3i

40

46

50

53

56

58

59

61

69

71

71

TABLE OF CONTENTS (Cont'd)

6. IMPLEMENTATION CONSIDERATIONS

6.1 General

- 6. 2 Memory Layout

6.3 Cell Fomat

7.

6.4 S-expression Representation

6.5 The OBLIST
6.6 Calling Convention

PROGRAMMING CONVENTIONS

7.1 Naming

7.2 Register Usage

7.3 Notation

7.4 Module Format

7.S Miscellaneous Rules

8. BUILDING LISP

8.1 Building LISP from the Distribution Package

8.2 Adding a SUBR or FSUBR
8.3 Deleting a SUBR or FSUBR
8.4 Adding an APVAL or Indicator

APPENDIX A

The LISP Interpreter: APPLY and EVAL Description

Page

73

73

73

76

11

82

82

83

83

83

84

84

84

87

87

88

89

90

91

APPENDIX B 95

Examples of Conversational LISP ~

ii

•• J •
1

1. INTRODUCTION

This manual documents the details of how this program implements

the LISP language on the PDP-11 series computers with the RT-11 operating

system.

This implementation is an interpretive system which is available

to users in both batch and conversational modes of operation.

Familiarity with the LISP language is assumed throughout the

remainder of this manual. The following are suggested references:

Friedman, D. P., THE LITTLE LISPER, (Science Research Associates,

Menlo Park, California, 1974).

Siklossy, L., LET'S TALK LISP, (Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1975).

Weissman, C., LISP 1.5 PRIMER, (Dickenson Publishing Co., Inc.,

Belmont, California, 1967).

McCarthy, J., LISP 1.5 PROGRA.~ER'S MANUAL, (M.I.T. Press,

Cambridge, Massachusetts, 1969).

""I ...
2. 1

USING LISP

RUNNING LISP

LISP is executable only as a backgTound program under RT-11 and

is invoked by the monitor RUN command: RUN LISP. The LISP interpreter

responds with I ir I signaling that it expects a standard format cpmmand

string containing at most one output specification and multiple input

specifications. Input specifications other than the first are considered

to be LISP subsystems and are leaded without any echo to the output file

starting with the highest channel. The default output and first input

device is IT:. Any combination of the switches listed in the following

table may occur after any specification, but if a switch appears more

than once the earliest occurrence overrides the others. After the

command line is successfully entered control is transferred to mainloop

which identifies itself by printing 'Eval: '. At this point LISP expressions

may be input as described in Section 2.2.

Those switches which may be dynamically altered by the user

program have the corresponding atom's pTint name in the last column.

Switch Meaning Default

/A:NNNN Allocate NNNN words for array space 0

/G Print garbage collection message OFF

/I Inhibit recognition of C ... R atoms OFF

/L;N Listing control switch 1

2

Atom

%G

%I

\L

Switch Meaning Default Atom

/M

/0

/R

Value•O Only user output is printed

1 Input is echoed to output file

2 Input is echoed in internal format

3 Input is echoed with parenthesis count

Maximize usable core space by forcing the USR

to swap if possible

Enable octal format for integer printout

Output special constructions in LISP readable

format

/S:NNNN Allocate NNNN words for LISP stacks

/T

/W

/X

/Z

Print EVAL timing message

Enable wide line (132 col.) -output instead

of TTY (80 col.)

Expert switch: allo~s ·primitive operations

on atoms (CAR, CDR)

Allow generation and legal usage of infinity

OFF

OFF

OFF

1000.

OFF

OFF

OFF

OFF

\0

\R

\T

\W

\X

\Z

Bad switches and extra output specifications are ignored. Default file

extensions for input and output are .LSP and .LST, respectively.

2.2

2.2.1

ENTERING PROGRAMS

INPUTrING LISP EXPRESSIONS IN CONVERSATIONAL MODE

Rub out any CTRL/U work as usual to delete the previous character

and current line, respectively. In addition, since S-expTessions may

3

extend over several lines any character in lexical class 8 (e.g., CTRL/X)

may be used to delete the entire S-expression.

Note that atom names and numbers may not extend over line

· boundaries, whereas strings may.

2.2.2 LISP SUBSYSTEMS

A LISP subsystem is a canned set of function and constant

definitions which constitutes an extension of the facilities provided

by LISP, e.g., a subsystem may contain a set of application oriented

primitives which can be utilized by the user to construct programs in

some particular application area.

A subsystem is physically a file containing text in normal

LISP format. It is specified in the command string or can be read in

using the SYSIN function. When specified in the command string, it is

read in, one S-expression at a time, and evaluated. No echo or printing

of results is done. If it is read in under SYS!N, the printing is

controlled by the state of the %L switch at the time SYSIN is called.

2.3 SY~'TAX SUMMARY

2. 3. l LEXICAL CLASS DEFINITIONS

Each ASCII character belongs to a lexical class and that class

determines the significance of the character. The following table lists

the classes and their members. A function (CHLEX) is provided which

changes the lexical class of a character but it should be used with care.

Unpredictable results with respect to number representation will be

generated if classes 2, 4, 6, and 13 are altered indiscriminately.

4

Lexical
Class Members

0 <CR> <LF> <FF> <VT>

l Letters except E and Q

2 Digits 0-9

3 ' $ \ & * I < = > ?

4 E

s Q

6 + -

7 t

8 ASCII codes ~ 140, codes
which are not in class
15 ~

9 (

10)

11 [

12]

13

14

15 <space> <tab>

16 "
17

18

19 <empty>

@ \

< 40
O or

5

Comments

End of line tokens

Components of literal atoms

Components of literal atoms and
numbers

Components-of non-standard literal
atoms

Decimal exponent indicator and
component of literal atoms

Octal radix indicator and component
of literal atoms

Numeric sign and component of
non-standard literal atoms

Universal unary operator

All characters not in another
class

Decimal point or dotted pair
indicator

Delimiter

Delimiters

QUOTE token

String token

Cot11Dent token

Class 8 is used only as an editing aid when input is from TT:. Typing

any character from lexical class 8 followed by a lexical class 0 character

causes the S-expression currently being input to be deleted.

Class O characters delimit atom print names and numbers but have no

other significance.

Class 11 is equivalent to class 9 except that it "marks" the open paren­

thesis for matching by a class 12 character.

Class 12 characters are equivalent to an arbitrary number of class 10

characters in order to close all parentheses up to and including the next

level "marked" open parenthesis, e.g., the following gToups are equivalent

S-expressions:

a)

b)

c)

(X) (X] [X) [X]

(((X] (((X))) (((X)] [((X] ([X])

(([X]] ((((X] ((((X))))

Class 15 characters delimit atom print names and numbers the same as

class 14; however, whereas multiple class 14 characters may not occur

any number of class 15 characters may occur (with or without a single

class 14 character).

Class 16 is provided as a shorthand for quoting S-expressions on input.

"Xis equivalent to (QUOTE X) where X represents any S-expression.

Class 17 is used to delimit the beginning and end of a string. All

classes with the exception of 7 (and 17) lose their significance when

they occur within the string field.

6

Class 18 is used to mark the start of a comment field which extends to

the end of the line. All classes (except O) lose their significance

within a cOllllllent field. (Co•ents are set up just as in MACRO).

Class 19 is a special class which is initially empty. Its ■embers act

like class 1 members except that they are also delimiters; e.g., if 1 is

put in class 19 then the following 5-expression (HELP!) would be repre­

sented as a list of two atoms, the first being HELP and the second!.

If! were not in class 19 then the list would consist of only one atom,

HELP!.

2.3.2 PARTIAL SYNTAX DEFINITION

2.3.2.l ATOMS

There are three types of atoms in this implementation: literal

atoms, numerical at011S, and string atoms. Literal atODLS may contain an

arbitrary number of characters {the print name must be input on a single

line) from classes l to 6 except that they must not begin with a class 2

character. Non-standard literal atoms are for.aed the same way as literal

atoms but any character in classes 7-19 may be included in the name if

it is preceded by a class 7 character.

Numerical atoms are either integer or floating point. Integers are

formed with class 2 characters (octal integers are foned with digits 0-7

terminated by a Q) optionally preceded by a class 6 character. If an

integer is larger than 32767 (or smaller than -32768) it is automatically

converted to floating point (octal integers may not be more than 6 digits-­

the least significant 16 bits are kept). Floating point atoms are formed

7

with classes 2, 4, 6, and 13 in the standard manner. Any numbers too

large to be represented in the normal floating point format are repre­

sented as infinity (infinity prints as 1E999) if that option is selected.

Whenever an ambiguity arises with respect to the interpretation of

a numerical interpretation is attempted first;

e.g., (A.S) is equivalent to (A 0.5) not (A. S)

It "

(+.B) is a dotted pair, (+.O) is a list of one floating p~int atom

whose value is O.

Numbers may not extend over line boundaries.

Integers are terminated by classes 0, 1, 3, 6-12, 14-19. (Class 5

terminates the number if a non-octal digit was scanned; else any character

following the class 5 character terminates the octal number field.) Floating

point numbers are terminated by any character which would violate the

format rules (e.g., a second decimal point, a second sign, a second E, etc.).

String atoms are formed by a class 17 character followed by an arbitrary

number of characters from classes 1-6, 8-16, 18, 19. Line boundaries

are ignored within a string field. Characters from classes 7 and 17

may be included if preceded by a class 7 character.

Examples: Literal Atoms

legal constructions illegal constructions

ANYNUMBEROFCHARS 9CANTSTARTLITERALATOM

t31SOK prints as 31SOK

%$!?

tA is the same atom as A

+1234 prints as 1234

+ES +SE

8

Numerical Atoms

legal constructions

773100Q {truncates to 173100(8)) ·

-347Q

+74932 {converted to floating point)

-3.7E+4

-lEl

illegal constructions

9Q

1234S67Q

+SE

-3.7E 4

-El

(two atoms)

All literal atoms are represented uniquely in memory. All references

to a given literal atom refer to the same memory location. System atoms

(indicators, APVALS, and functions) should not be used for anything but

their intended purpose (e.g., do not use T as a program variable).

2.3.2.2 S-EXPRESSIONS

The domain of LISP is the set of S-expressions. The most

primitive S-~xpressions are atoms. Atoms may be combined into more

complex structures, the "unit" of "structure" being the "dotted pair".
,.;

The dotted pair consists of a "CAR" part and a "CDR" part. It is

represented on input and output by a character from class 9 or 11,

followed by the CAR 5-expression, followed by a character from class 13,

followed by the CDR 5-expression, followed finally by a character from

class 10 or 12. (Note that this constitutes a recursive definition

for non-atomic S-expressions, i.e., an S-expression is either an atom

or a dotted pair of two S-expressions.) An arbitrary number of characters

from class 15 or O may optionally separate the components of a dotted

pair on input. (A single space is used on output.)

9

..

The simplest dotted pair is one in which the CAR and CDR parts are

atomic, e.g. ,

legal constructions

(A.B)

(X.NIL)

(B. ((A.A) .B))

(1 2)

(A. (B.C))

Dotted Pairs

illegal constructions

(.A)

(B.)

.A

(1.2) (this is a list of
one numeric atom)

(A.B.C)

Dotted pairs whose only atomic CDR part is the atom NIL occur

frequently and thus have a shorthand representation as ''lists". The

syntax for lists is shown below along with the dotted pair equivalents:

(A.NIL) is equivalent to the list (A)

(A.(B.NIL)) is equivalent to the list (AB) or (A,B)

(A.(B.(C.NIL))) is equivalent to the list (ABC) or (A,B,C), etc.

((A.B).((C.D).NIL)) is equivalent to the list ((A.B) (C.D))

((A.NIL). ((B. NIL) .NIL)) is equivalent to the list ((A) (B))

The S-expressions in a list may be separated by an arbitrary

number of characters from classes O or 15 and at most one character from

class 14.

S-expressions are in general not stored uniquely; i.e., if the

dotted pair (A.B) is found several times each will be stored in a

different memory location.

to

A hybrid shorthand format is also available for dotted pairs

as shown below (useful for dotted pairs which are "almost" lists)

(A.(B.(C.D))) may also be input as (AB C.D)

or (A,B,C.D)

where ABC O stand for any 5-expressions.

Toe semantics of LISP functions often require lists of.the form

(QUOTE 5), S being any 5-expression. A special shorthand is available

to input lists of this form. A character from class 16 followed by any

S-expression is equivalent to a 'list whose CAR is QUOTE and whose CDR

is a list containing the S-expression.

e.g., "(ANYTHING) is converted on input to (QUOTE (ANYTHING))

"B is converted on input to (QUOTE B)

Output of composite S-expressions is always in list or hybrid

format. A new line is started if the current line is full or if the

next atom print name won't fit on it.

II

3. FUNCTION DEFINITIONS

3.1 FUNCTION TYPES

There are four function types in LISP identified by the indicators

· EXPR, SUBR, FEXPR, and FSUBR. Functions of type EXPR and FEXPR are stored

in memory as list structures representing LAMBDA expressions to be executed

in an interpretive manner. Functions of type SUBR and FSUBR are stored

as machine code and executed directly by the computer when called. User

functions are either type EXPR or FEXPR while system functions are type

SUBR or FSUBR. Functions of type EXPR and SUBR take a specified number

of arguments and an enor will result if an incorrect number is supplied.

Functions of type FEXPR and FSUBR, sometimes called "special forms", take

an arbitrary number of arguments. Furthermore, these arguments are un­

evaluated when passed to the function. When writing FEXPR functions,

the user should be aware that two arguments are actually supplied; the

first is a list of unevaluated arguments for the function; the second

is the association list (ALIST) as it exists at the time of the function

call.

All LISP functions return exactly one value. The range of this

value depends upon the classification of the function as a normal function,

pseudofunction, or predicate. Nonnal functions calculate a result which

depends on the arguments which were input. Pseudofunctions perform a

side effect operation (i.e., changing some internal data structures of

the LISP system, printing, etc.) and return a value which may or may not

bear any relation to the arguments given it. Predicates are functions

which return a truth value that depends on some relationship which holds

12

among the arguments. LISP represents false by the atom NIL, whil~_truth

is represented by anything other than NIL. Unless otherwise specified

LISP predicates return the specific atom *T* as their value for truth.

Some pseudofunctions modify the structure of existing S-expressions

and should be used with care. In many cases a portion of one S-expTession

may be shared by several other S-expressions. Thus modifying that portion

will change all the S-expressions which share that portion.

3.2 NOTATION

Throughout this section function descriptions will be given

using EVAL notation. Angle brackets are used to enclose the mnemonic

for the generic argument type which is expected by the function. For

SUBRS the argument class refers to the evaluated arguments that are

passed to the function. For FSUBRS the argument class refers to the

unevaluated arguments as passed to the function. Repeated arguments

or an indefinite number of arguments will be represented by an ellipsis

(...). If an argument supplied to a function does not belong to the

generic type expected by the fun~tion unexpected results may occur or

a LISP error may be generated. The behavior of the functions for un­

expected argument types is also described for those functions which can

detect the error. (Some functions have no way to verify the argument

type but assume it is well formed. An ill-formed argument is then

usually detected only after several nested calls to additional functions.)

13

. ,
•

Generi~ mnemonic

<ATOM>, <A>, <Al>, etc.

<BOOL>

<EXP>, <E>, <El>, etc.

<FCTN>, <FCT>, <Fl>, etc.

<LAT>

<LIST>

<LITATM>

<~AT>

<NUMBER>, <N>, <Nl>, etc.

<SEXPR>, <S>, <Sl>, etc.

nescription

The argument must be an atom, either

a literal atom, numeric atom, or

string atom.

The argument may be any S-expression

but will be interpreted as~ truth value:

NIL is false, anything else is true.

The argument must be some LISP expression

which can be evaluated by EVAL.

The argument must be a LISP function,

e.g., LAMBDA expression or function name.

The argument must be a list of literal

atoms.

The argument must be a list (or NIL).

The argument must be a single literal

atom.

The argument must be some non-atomic

S-expression.

The argument must be a numeric atom.

The argument may be any arbitrary

S-expression.

The function descriptions appear in groupings according to

complexity and usage and logical relation. An alphabetic index of

system atoms (which includes all system functions) appears in Section 4.

14

The LAMBDA expressions accompanying many of the function descript~o_!ls

should not be taken too literally. In most cases recursion is suggested,

whereas function evaluation is actually iterative.

3.3. FUNCTIONS

3.3.1 ·-- ELEMENTARY FUNCTIONS AND PREDICATES

(ALPHAP <ATOMl> <ATOM2>)

PREDICATE; SUBR

ALPHAP compares the print names ~fits arguments and returns true if

the first argument alphabetically precedes the second argument. It

returns false if the second precedes the first or if they are the same.

The ASCII code sequence is used to determine the·alphabetization.

ALPHAP can be used to compare literal atODlS and string atoms. False

" is returned if either argument is numeric or non-atomic.

(ATOM <S>)

PREDICATE; SUBR

ATOM returns true if its argument is either a literal atom, numeric

atom, or string atom. It returns false if the argument is any other

S-expression.

(CAR <NATS>)

NORMAL; SUBR

CAR returns the left part of the dotted pair argument (the contents of

the CAR field). In list terms it returns the first element of the list.

If the argument is atomic an enor is generated unless the "expert"

15

switch %Xis on. (In the case of a literal atom, a string atom is

returned whose value is the atom's print name. Numeric or string atoms

are returned identically.)

(CDR <NATS>)

NORMAL; SUBR

CDR returns the right part of the dotted pair argument (the coatents

of the CDR field). In list terms it returns the remainder of the list

after the first element is deleted. If the argument is atomic an error

is generated unless the "expert" switch %Xis on. (In the case of a

literal atom, the property list (without the atom's print name) of the

atom is returned. In the case of a numeric or string atom NIL is

returned.)

(CAAR <NATS>)

(CADR <NATS>)

(CDAR <NATS>)

(COOR <NATS>)

(CAAAR <NATS>)

NORMAL; SUBR

Multiple CAR-CDR functions are allowed and may contain an arbitrary

number of A's and D's (subject to the usual restriction that the print

name must be contained on a single input line). Evaluation is from

right to left, i.e., (CADDR <NATS>) = (CAR (CDR (CDR <NATS>))).

16

(One SUBR is used to implement all variations of multiple CAR-CDR

operations. This SUBR actually scans the currently associated print

name to perform the CAR-CDR operations. The atoms CAAR, CADR, CDDR, •.. ,

_ do not actually exist in the system until they are read in and recognized

by READ.)

(CONS <Sl> <S2>)

NORMAL; SUBR

CONS builds a new composite S-expression. It constructs the dotted

pair (<Sl>. <S2>) by obtaining~ new cell from the available free cell

list and placing a pointer to <Sl> in the CAR field and a pointer to <S2>

in the CDR field.

(Note: (CAR (CONS Sl S2)) • Sl and (CDR (CONS Sl S2)) • S2

and although (CONS (CARS) (CDR S)) is "EQUAL" to Sit is not "EQ" to S.

It is a new cell at a different address.)

(EQ <Sl> <S2>)

PREDICATE; SUBR

EQ returns true if its two arguments share the same memory location and

false otherwise. Literal at01DS are stored uniquely in LISP so that

their equality may be determined by simple comparison of machine addresses.

Numbers, strings, and lists are not stored uniquely so EQ will return

false unless the tvo arguments are physically the same.

(EQN <Sl> <S2>)

PREDICATE; SUBR

EQN is similar to EQ except that it also works for numeric or string

atoms as well. EQN will return true if its arguments are EQ or if they

17

are both numeric atoms which have the same value. (They may be numbers

of different types; for mixed types the integer is converted to real

before comparison. Comparison of floating point numbers has the same

dubious merit as in FORTRAN.) In addition EQN will return true if both

arguments are strings containing the same characters, or if one argument

is a literal atom and the other is a string atom-containing the same

characters as in the literal atom's print name. In all other cases

EQN returns false.

(EQUAL <Sl> <S2>)

PREDICATE; SUBR

(LAMBDA (Sl S2) (COND
((ATOM Sl) (EQN Sl S2))
((ATOM S2) F)
((EQUAL (CAR Sl)(CAR S2))

(EQUAL (CDR Sl) (CDR S2)))
(T F)))

EQUAL is used to do similar comparisons involving general S-expressions.

EQUAL returns true if both arguments are equivalent S-expressions.

S-expressions are equivalent if they are both atoms and are EQN, or if

they are composed of the same atoms in the same corresponding positions.

(GR.ADP <Sl> <S2>)

PREDICATE; SUBR

GRADP returns true if its first argument resides at a lower memory

address than its second argument. It returns false if the first argu­

ment resides at the same or higher address than the second argument.

This function can be used as an arbitrary but consistent ordering

predicate for literal atoms since a given literal atom will always

reside at the same address during the course of a LISP run (unless it

is removed from the OBLIST via REMOB).

18

(LIST <El> <E2> ••. <E-N>)

NORMAL; FSUBR

LIST takes an arbitrary number of arguments and constructs a new list

- such that (EVAL <El>) is the first element (EVAL <E2>) the second, etc.

If no arguments are given the result is NIL.

(Note: As an FSUBR, LIST receives unevaluated arguments. It evaluates

them and returns a list of the results. Contrast this with

(EVLIS (<El> <E2> ...)). EVLIS receives one argument which has already

been evaluated. EVLIS then evaluates each element of its list type

argument and returns a list of the results, e.g.,

EVAL: EVAL:

(LIST A B C D) is equivalent to - (EVLIS "(A B C D))

and also equivalent to EVAL:

(CONS A (CONS B

{CONS C (CONS D NIL))))

(MEMBER <S> <LIST>)

NORMAL; SUBR

(LAMBDA (SL) (COND
((NULL L) NIL)
((EQUALS (CARL)) L)
(T (MEMBERS (CDR L)))))

MEMBER searches the top level of <LIST> for the first occurrence of an

element EQUAL to <S>. If such an element is not found the value of

MEMBER is NIL. If it is found the value of MEMBER is the remainder of

the list beginning with <S>.

(MEMBER uses internal calls to CAR and CDR to search the list. If the

second argument is not a list and no element is equal to <S>, an error

will be generated when trying to take the CAR of the final CDR atom.)

19

(ME~Q <S> <LIST>)

NORMAL; SUBR

MEMQ is identical to MEMBER in all respects except that it uses EQ

· rather than EQUAL to test for the equality of <S> with an element of

<LIST>.

(NOT <BOOL>)

(NULL <S>)

PREDICATE; SUBR

NULL returns true if its argument is the atom NIL. It returns false

for all other S-expressions. (NULL is the same function as the logical

negation function NOT.)

(NUMBERP <S>)

PREDICATE; SUBR

NUMBER? returns true if its argument is a number (fixed point or floating

point). It returns false if its argument is any other S-expression.

(QUOTE <S>)

NORMAL; FSUBR

The value of QUOTE is <S>. It is essentially a do-nothing function

designed to prevent evaluation of its argument. In LISP functions, atoms

are usually evaluated as variables and lists as function calls. When

QUOTE precedes an S-expression, it is effectively a signal to the EVAL

interpreter that the S-expression represents actual data to the function

and is not to be evaluated. Like any FSUBR the arguments are not

evaluated when passed to QUOTE. QUOTE merely returns the unevaluated

first argument as its value.

20

(Since QUOTE occurs frequently and its function is so trivial, it is

not actually implemented as an FSUBR. The atom QUOTE is used as an

indicator and specifically recognized by EVAL. In particular, there

_ is no FSUBR indicator or value on the property list of QUOTE.)

(RPLACA <NATS> <S>)

PSEUDOFUNCTION; SUBR

RPLACA replaces the CAR field of its first argument with a pointer to

its second argument. The value of RPLACA is its first argument which

has been physically modified. (Contrast this with (CONS <S> (CDR <NATS>))

which forms an equivalent S-expression result without modifying <NATS>.

Note, however, that RPLACA can be used to create circular structures.

These circular structures could cause infinite loops in certain processes

such as print~ng.) If the first argument is atODlic the value of RPLACA
j

is its first argument unchanged (i.e., the call is ignored).

(RPLACD <NATS> <5>)

PSEUDOFUNCTION; SUBR

RPLACD replaces the CDR field of its first argument with a pointer to
I

its second argument. The value of RPLACD is its first argument which

has been physically modified. {Contrast this with (CONS (CAR <NATS>) <S>)

which forms an equivalent S-expression result without modifying <NATS>.

Note, however, that RPLACD can be used to create circular lists.

Circular lists should be used with extreme caution since they could

cause infinite loops in certain processes such as printing.) If the

first argument is atomic the value of RPLACD is its first argument

unchanged (i.e., the call is ignored).

21

...

(SET <LITATM> <S>)

PSEUDOFUNCTION; SUBR

(LAMBDA (LS) (COND
((SASSOC L "ALIST NIL)

(RPLACD (SASSOC L "ALIST NIL) S))
(T (PUT L "APVAL S))))

SET is the principal value assignment function. The value of SET is

its second argument. If <LITATM> has an associated value on the ALIST

it is changed to <S>. If it is not on the ALIST it is made a global

by putting <S> on its property list with the indicator APVAL. {When

evaluating a literal atom, EVAL first checks for a global value and if

none exists it then checks for a binding on the ALIST.)

A special construction exists for altering the evaluation context:

(SET (QUOTE (ALIST)) <S>) makes <S> the new association list. (Refer

to MAINLOOP, EVAL, APPLY, and ALIST.) The user should be aware that

no protection is provided that would prevent changing the value of the

system globals T, F, OBLIST, NIL, *T* (such changes would be catastrophic).

(SETQ <LITATM> <EXP>)

PSEUDOFUNCTION; FSUBR

SETQ is similar to SET except the first argument is not evaluated.

e.g., EVAL:

(SETQ AS) is equivalent to

(STRINGP <S>)

PREDICATE; SUBR

EVAL:

(SET ''A S)

STRINGP returns true if its argument is a string. It returns false if

it is any other S-expression.

22

3. 3 .• 2 LIST MANIPULATION FUNCTIONS

(APPEND <LIST> <S>)

NORMAL; SUBR

(LAMBDA .(LS) (COND
((NULL L) S)
(T (CONS (CARL) (APPEND (CDR L) S)))))

- APPEND is usually used to concatenate t~o lists. The first argument is

copied and its terminal NIL is replaced with a pointer to <S>.

(APPEND uses internal calls to CAR and CDR. If the first argument is not

a list, then. an error will be generated when trying to take the 'CAR of

the final CDR atom.)

(CONC <EXP!> <EXP2> •.•)

PSEUDOFUNCTION; FSUBR

CONC is similar to NCONC in that it concatenates its arguments into

one list. However, CONC accepts an arbitrary number of (unevaluated)

arguments, evaluates them, and then concatenates them. The value of

CONC is its evaluated first argument with its final CDR modified.

EVAL: EVAL:

(CONC A B C) is equivalent to (NCONC A (NCONC BC))

(Refer to the cautions·under NCONC and RPLACD.)

(COPY <S>)

NORMAL; SUBR

COPY returns a new S-expression which is equivalent to its argument

but which uses different cells. Dotted pairs, numbers, and strings

are copied completely. Literal atoms are not copied (they are stored

uniquely and always reside in the same memory location).

(EFFACE <S> <LIST>)

PSEUDOFUNCTION; SUBR

(LAMBDA {SL) {COND
((NULL L) NIL)
((EQUAL {CARL) S) (CDR L))
{T (RPLACD L (EFFACES (CDR L))))))

23

EFFACE removes the first occurrence of <S> as an element of <LIST> and

returns its modified second argument.

Contrast EFFACE with the following function which produces an equivalent

- list result without modifying the existing 5-expressions.

(DELETE (LAMBDA (SL) (COND
((NULL L) NIL)
((EQUAL (CARL) S) (CDR L)J-
(T (CONS (CAR L) (DELETE S (CDR L))))).)

(EFFACE uses internal calls to CAR and CDR to search the list. If the

second argument is not a list and no element is equal to <S>, an error

will be generated when trying to take the CAR of the final CDR atom.)

(LENGTH <S>)

NORMAL; SUBR

(LAMBDA (S) (COND
((ATOM S) O)
(T (ADDl (LENGTH (CDR S))))))

LENGTH returns a fixed point numeric atom whose value is equal to the

number of CAR elements in its argument. If <S> is atomic it returns 0.

If <S> is a list it returns the number of.elements in the list. If <S>

is not a list then length ignores the final CDR atom and counts the

elements as if it were a list.

(NCONC <LIST> <S>)

PSEUDOFUNCTION; SUBR

(LAMBDA (LS) (COND
((NULL L) S)
((NULL (CDR L)) (RPLACD LS))
(T (RPLACD L (NCONC (CDR L) S)))

NCONC joins its two arguments into a single S-expression by modifying

))

its first argument. The value of NCONC is its first argument with the

terminal NIL replaced by a pointer to <S>. Contrast NCONC with APPEND,

which yields an equivalent result without modifying existing S-expressions.

(Refer to the cautions under RPLACD.)

(NCONC uses internal ca·lls to CAR and CDR. If the first argument is

not a list then an error will result.)

24

(PAIR <LISTI> <LIST2>)

NORMAL; SUBR

(LAMBDA (Ll L2) (COND
((OR (NULL Ll) (NULL L2)) NILJ -
(T (CONS (CONS (CAR Ll)(CAR L2))

(PAIR (CDR Ll)(CDR L2))))))

PAIR creates a new list whose length is equal to the length of the

shorter of its two arguments lists. The value of PAIR is a list of

dotted pairs, the CAR of each dotted pair being an element of <LISTl>

and the CDR being the corresponding element of <LIST2>.

EVAL:

(PAIR "(A 8 C)" (D E F G))

VALUE IS .•. !

((A • D) (B • E) (C • F))

(PAIR uses internal calls to CAR and CDR. If either argument is not

a list then an error will result.)

(REVERSE <LIST>)

NORMAL; SUBR

(LAMBDA (L) ; (COND
((NULL L) NIL)
(T (NCONC (REVERSE (CDR L)) (CONS(CAR L) NIL)))))

REVERSE returns a new list whose elements are the same as in its argument

list, except that the top level order is reversed. Sublists are not

reversed.

EVAL:

(REVERSE "(A (B C)(D E) F))

VALUE IS •••

(F (DE) (BC) A)

(REVERSE uses internal calls to CAR and CDR. If its argument is not

a list an enor will result.)

25

(REVERSIP <LIST>)

PSf:UDOFUNCTION; SUBR

REVERSIP returns an S-expression equivalent to that returned by REVERSE

except that <LIST> is modified to effect the reversal.

(REVERSIP uses internal calls to CDR. If its argument is not a list

an error will result.)

(SIZE <S>)

NORMAL; SUBR

SIZE returns a fixed point numeric atom which gives the number of actual

memory cells which are needed to represent <S> exclusive. of those required

to store the atoms themselves.

e.g., (SIZE <ATOM>) = 0

(SIZE <LAT>) = (LENGTH <LAT>)

(SIZE <S>), (SIZE (COPY <S>)) since copy does not make use of

common sub S-expressions.

(SUBLIS <LIST> <S>)

NORMAL; SUBR

(LAMBDA (L S) (COND
((NULL L) S)
(T (SUBLIS (CDR L)

(SUBST (CDAR L)(CAAR L) S)))))

SUBLIS receives a lis~ of dotted pairs (such as the output of PAIR) as

its first argument. The value of SUBLIS is a new S-expression obtained

from <S> by substituting the right part of each dotted pair for every

occurrence of the left part (the original <S> is not modified).

EVAL:

(SUBLIS "((A. 1) (B. XTRA) (CY Z)) "(A (BA C) C))

VALUE IS ...

(1 (XTRA 1 (Y Z)) (Y Z))

26

(SUBLIS uses internal calls to CAR and CDR. If its first argument is

not a list of dotted pairs an error will result.)

(SUBST <51> <S2> <S3>)

NORMAL; SUBR

(LAMBDA. (Sl S2 S3) (COND
((EQUAL 52 S3) 51)
((ATOM S3) S3)
(T (CONS (SUBST Sl S2 (CAR 53))

(SUBST Sl S2 (CDR S3))))))

SUBST returns a new 5-expression obtained from <53> by substituting <Sl>

for each occunence of <S2> within <53>. (The original <S3> is not

modified.)

EVAL:

(SUBST "NEW "OLD "(OLD SHOES ((MY OLD (OLD) HAT)) NEW NOSE))

VALUE IS ...

(NEW SHOES ((MY NEW (NEW) HAT)) NEW NOSE)

g-

3.3.3 EVALUATION SEQUENCE CONTROL FUNCTIONS

(AND <EXPl> <EXP2> ...)

PREDICATE; FSUBR

AND evaluates its arguments one at a time from.left to right until it

encounters a null result or the>end of the argument list. If all the

arguments evaluate to non-null results the value of AND is true. If

any argument evaluates to NIL no further arguments are evaluated and

the value of AND is NIL. If no arguments are supplied to AND the

result is true.

27

(APPLY <FCTN> <LIST>)

NORMAL; SUBR

The value of APPLY is the result of applying the function <FCTN> to the

list of arguments <LIST>. The first argument to apply must be either

a LAMBDA or LABEL expression or the name of a function of type EXPR

or SUBR.

(Refer to appendix A for an outline of the APPLY implementation:)

(COND <LISTl> <LIST2> ...)

NORMAL; FSUBR

Each argument to COND is a list of one or more expressions. COND

proceeds by evaluating the first expression of the first list. If the

first expression evaluates to NIL then COND proceeds to the next list

(leaving the remaining expressions of the first list unevaluated) and

evaluates its first expression. COND continues in this fashion until

the first expression of one of the argument lists evaluates to a non­

null result. In this case COND evaluates the remaining expressions in

the list and returns the value of the last one. (If none follow the

first, the value of COND is NIL.) No further arguments of COND are

evaluated. If no first expressions evaluate to non-null results or if

no arguments are given to COND the value returned by COND is NIL.

(COND uses internal calls to CAR, CDR, and PROGN to search and evaluate

the lists of expressions. If the selected <LIST> is not actually a

list, an error will result within PROGN.)

28

(EVAL <EXP>)

NORMAL; SUBR

EVAL returns the result obtained by evaluating the evaluated argument

passed to it.

EVAL:

(EVAL (QUOTE F))

VALUE IS

NIL

The top level function EVAL evaluates (QUOTE F) to F and passes it to

the SUBR EVAL which evaluates F to NIL. Evaluation takes place within

the current context {as defined by the association list, ALIST).

{Refer to appendix A for an outline of the EVAL implementation.)

(EVALQUOTE <FCTN> <LIST>)

NORMAL; SUBR

(LAMBDA (FN ARGS) (COND
((OR (GET FN "FEXPR) (GET FN "FSUBR))

(EVAL (CONS FN ARGS)))

(T {APPLY FN ARGS))))

EVALQUOTE is similar to APPLY in that its value is the result obtained

by applying the function <FCTN> to the list of arguments <LIST>. However,

EVALQUOTE will also properly handle functions of type FEXPR or FSUBR.

(EVLIS <LIST>)

NORMAL; SUBR

(LAMBDA (L) (COND
((NULL L) NIL)
(T (CONS (EVAL (CARL))

(EVLIS (CDR L))))))

EVLIS receives a list of expressions and returns a new list formed by

evaluating each successive expression.

EVAL:

(EVLIS "(" A (CDR "(B C)) T))

VAWE IS ...

(FUNCTION <FCTN>)

PSEUDOFUNCTION; FSUBR

(A (C) *T*)

The argument of FUNCTION is expected to be a rJnction name or a LAMBDA

expression. FUNCTION is required in certain very special cases to

prepare an environment for a functional argument being passed to another

function. Its value is the so-called FUNARG expression. In most cases

when passing a functional argument QUOTE may be used interchangeably

with FUNCTION. However, if any free variables exist within the function

definition, then FUNCTION essentially causes the bindings at the time

FUNCTION is entered to be used at the time the argument function is

evaluated (unless a "!'lon-local" SET was performed).

(Refer to appendix A for an outline of the implementation of FUNCTION

with respect to APPLY and EVAL.)

(There is no actual FSUBR implemented for FUNCTION. The atom is used

as an indicator and specifically recognized by EVAL.)

(GO <LITATOM>)

PSEUDOFUNCTION; FSUBR

GO is used to control the execution sequence within a PROG expression.

The argument must be one of the atoms which are used as labels within

the most recent PROG expression.

(Refer to the example under PROG.)

30

(OR <EXP!> <EXP2>· •..)

PREDICATE; FSUBR

OR evaluates- its arguments one at a time from left to right until it

- encounters a non-null result or the end of the argument list. If all

the arguments evaluate to NIL the value of OR is NIL. If any argument

evaluates to a non-null result no further arguments are evaluated and

the value of OR is true. If no arguments are supplied to OR the result

is NIL.

(PROO <LAT> <Sl> <52> <S3> ..•) ~

PSEUOOFUNCTION; FSUBR

The PROG function is used to form iterative functions as opposed to

recursive functions. The first argument is a list of atoms which serve

as local variables within the scope of the PROO expression. (No explicit

check is made that <LAT> is well-formed.) These variables are initialized

to NIL by dotting each with NIL and appending them to the association

list. The remaining arguments are either literal atoms which serve as

labels or else expressions which serve as statements of a sequential

programming language. The expressions are evaluated in order until a

GO or REnJRN function is encountered or the end of the argument list

is reached. In the latter case the value of PROG is NIL. If RETURN

is encountered then PROG returns as its value the result of the RETIJRN

expression. If GO is encountered the sequential execution is continued

starting with the expression following the atom (label argument) which

is the argument to GO. GO and RETURN may be executed in other functions

which are called from within a PROG expression.

31

e.g., the following is an iterative program to generate the reverse of

a list (compare with the LAMBDA expression provided for REVERSE).

(LAMBDA (L) (PROG (UV)

(PROGN <EXPl> <EXP2>· ...)

PSEUOOFUNCTION; FSUBR

. (SETQ U L)
LABL (COND ((NULL U) (RETURN V)))

(SETQ V (CONS (CAR U) V))
(SETQ U (CDR U))
(GO LABL) }}-

PROGN is used to perform a simple sequence of operations where LISP

normally allows only one. PROGN evaluates each of its arguments in

turn and returns the value of the last one as the value of PROGN. If

no arguments are given to PROGN the value returned is NIL.

(RETURN <S>)

PSEUOOFUNCTIO~; SUBR

RETUR~ causes LISP to exit the most recent PROG expression with <S> as

the value of PROG.

(Refer to the example under PROG.)

(SELECT <EXPl> <LISTl> <LIST2> ... <LIST-N> <EXP2>)

NORMAL; FSUBR

SELECT is similar to COND in that it selectively evaluates its arguments

until a test is satisfied at which time it terminates. Each argument to

SELECT except the first and last are assumed to be lists of expressions.

SELECT proceeds as follows: <EXPl> is evaluated. Then the first

expression of the next <LIST> argument is evaluated. If the result is

32

not EQUAL to the value of <EXPl>, then none of the remaining expr~~ions

in the <LIST> are evaluated and the first expression of the next <LIST>

is evaluated. SELECT continues in this way until a result is found

- equal to the value of <EXPl> or the end of the <LIST>s occurs. In the

latter case the value of SELECT is the result of evaluating <EXP2>. In

the former case the remaining expressions of the <tlST> are evaluated

and the value of the last one is the result of SELECT. If none follow

the first then the value of <EXPl>, which is equal to the value of the

first expression in the list, is.the result of SELECT.

(SELECT uses internal calls to CAR, CDR, PROGN, and EVAL to search and

evaluate its arguments. If the selected <LIST> is not in fact a list

an error in CAR or CDR will occur within PROGN.)

~

3.3.4 PROPERTY LIST MANIPULATION FUNCTIONS

Every literal atom in LISP has a property list associated with it. The

property list contains items of information about, or properties of, the

atom. Each property is characterized by an indicator (which is usually

a literal atom itself, although this is not necessary) and an associated
I

S-expression. The property list looks as follows:

(<INDICATOR!> <PROPERTYl> <INDICATOR2> <PROPERTY2> ...)

The indicators EXPR, SUBR, FESPR, FSUBR, and APVAL have special significance

within LISP and should be used with care.

(Every literal atom has an implied property, its print name (PNAME). The

PNAME cannot be obtained or changed using GET, PROP, or Ptrr but must be

handled by special functions.)

(DEFINE LIST

PSEUDOFUNCTION; SUBR

(LAMBDA (L) (DEFLIST L "EXPR))

DEFINE is used to put EXPR function definitions on the property lists of

atoms (using the indicator EXPR). · The argument is assumed to be a list

of lists each of which is length two. The first element of the sublist

is a literal atom which is the function name. The second element is the

definition. The value of DEFINE is a list of the function names.

(See notes under DEFLIST.)

e.g.' EVAL:

(DEFINE " (

(FUNCTIONONE (LAMBDA (ETC) ETC))

(FUNCTIONTWO (LAMBDA (ETC) ETC))))

VALUE IS

(FUNCT!ONONE FUNCTIONTWO)

(DEFLIST <LIST> <LITATM>)

PSEUDOFUNCTION; SUBR

(LAMBDA (L i) (COND
((NULL L) NIL)
(T (CONS (PUT (CA.AR L) I (CADAR L))

(DEFLIST (CDR L) I)))))

DEFLIST is used to simultaneously assign a new property to a number of

different atoms. The first argument is a list of lists each of which is

length two. The first element of the sublist is a literal atom to which

the property (the second element of the sublist) is assigned with the

ind.icator <LITATM> (the second argument). The value of DEFLIST is a

list of all the atoms which have had a property assigned.

(DEFLIST uses internal calls to CAR, CDR, and PUT. If the first

argument is ill-formed an error will most likely result within CAR or

CDR.)

(Refer to notes under PUT.)

(GET <LITATM> <S>)

NORMAL; SUBR

(LAMBDA (LI) (COND
((PROP LI NIL) (CADR (PROP L·I-NIL)))
(T F)))

GET is the inverse of Pt1I' in that it retrieves the value associated with

- the indicator <S> on the property list of <LITATM>. If <S> is not on

the property list the value of GET is NIL.

(Refer to notes under Ptrr and PROP.)

(No check is made for <LITATM>. If it is not in fact atomic NI(will

most likely be the result of GET.)

(PROP <LITATM> <S> <FCTN>)

NORMAL;"SUBR

PROP is similar to GET in that it searches the property list of <LITATM>

for the indicator <S>. However, if it is found PROP returns the entire

property list beginning with <S>. If it is not found then <FCTN>, which

must be a function of no arguments, is applied and the result is the

value of PROP.

(PUT <LITATM> <Sl> <S2>)

PSEUDOFUNCTION; SUBR

PUT searches the property list of <LITATM> for the indicator <Sl>; if

it is found the associated property value is changed to <S2>; if it is

not found a list of the indicator <Sl> followed by the property value

<S2> is appended to the property list of <LITATM> (in this way an

indicator appears at most once on any given property list). The value

of PUT is <LITATM>.

(Note: Ptrr modifies the existing property list stTUcture if the

indicator is found.)

(REMPROP <LITATM> <S>)

PSEUDOFUNCTION; SUBR

REMPROP removes the property whose indicator is <S> from the property

list of <LITATM>. (The indicator and associated value are removed from

- the property list by physically modifying the list structure.) The value

of R~~PROP is true if the indicator was found and deleted, and false if

the indicator was not present to start with.

3.3.5 FUNCTIONALS

(MAP <LIST> <FCTN>)

PSEUDOFUNCTION; SUBR

(LAMBDA (L FN) (COND
((NULL L) NIL)
(T (PROGN (APPLY FN (LIST L))

(MAP (CDR L) FN)))))

MAP applies the function <FCTN> to <LIST> and successive non-null CDRs

of <LIST>. <FCTN> must describe a function of only one argument. The

value of MAP is always NIL. MAP is always used to perform some side

effect operation.

(If the first argument to MAP, MAPC, MAPCAR, MAPLIST, MAPCON is not a list

the final CDR is ignored.)

(MAPC <LIST> <FCTN>)

PSEUDOFUNCTION; SUBR

(LAMBDA (L FN) (COND
((NULL L) NIL)
(T (PROGN (APPLY FN (LIST (CARL)))

(MAPC (CDR L) FN)))))

MAPC is similar to MAP except that <FCTN> is applied to the CAR of

successive CDRs of <LIST>. The result of MAPC is always NIL.

(MAPCAR <LIST> <FCTIJ>) (LAMBDA (L FN) (COND
((NULL L) NIL)

NORMAL; SUBR (T (CONS (APPLY FN (LIST (CARL)))
(MAPCAR (CDR L) FN)))))

MAPCAR is similar to MAPC except that the result of MAPCAR is a list

of all the results of applying <FCTN> to the CAR of successive CDRs

of <LIST>.
36

e.g., EVAL:

(MAPCAR "(A B C D) '' (LAMBDA (X) (CONS X NIL)))

VALUE IS •••

((A) (B) (C) {D))

(MAPCON <LIST> <FCTN>)

PSEUDOFUNCTION; SUBR

(LAMBDA (L FN) (COND
((NULL L) NIL)
(T (NCONC (APPLY FN (LIST L))

(MAPCON (CDR L) FN)))))

MAPCON is similar to MAP except_.that the result of MAPCON is a list

formed by concatenating all the results of applying <FCTN> to successive

CDRs of <LIST>. The result of each application of <FCTN> must therefore

itself be a list. (Note that the list strocture is modified by the

concatenation.)

e.g., EVAL:

(MAPCON "(ABC D) "(LAMBDA (X) (CONS X NIL)))

VALUE IS ...

((ABC D) (BCD) {CD) (D))

(MAPLIST <LIST> <FCTN>)

NORMAL; SUBR

(LAMBDA (L FN) (COND
((NULL L) NIL)
(T (CONS (APPLY FN (LIST L))

(MAPLIST (CDR L) FN)))))

MAPLIST is similar to MAP except that the result of MAPLIST is a list

of all the results of applying <FCTN> to successive CDRs of <LIST>.

e.g., EVAL:

(MAPLIST "(ABC D) "(L\MBDA (X) (CONS X N!L)))

VALUE IS •••

({(A BC 0)) ((8 C D)) ((C D)) ((D)))

37

(SASSOC <S> <LIST> <FCTN>)

NORMAL; SU BR

(LAMBDA (SL FN) (COND
((NULL L) (APPLY FN NIL))
((EQUAL S (CAAR L)) (CAR L))
(T (SASSOC S (CDR L) FN))))

SASSOC searches its second argument, which must be a list of dotted

pairs, for an clement whose CAR is EQUAL to <S>. If such an element

is found it is returned as the value of SASSOC. If none is found then

<FCTN>, which must be a function of no arguments;_:_is applied and the

result is the value of SASSOC.

e.g., EVAL:

(SASSOC "B "((A . 1) (B X) (C . 2) (B . 5)) NIL)

VALUE IS

(BX)

(SASSOC uses internal calls to CAR and CDR to search <LIST>. If it is

ill-formed an error will result.)

(SEARCH <LIST> <FCTl> <FCT2> <FCT3>)

NORMAL; SUBR

(LAMBDA (L Fl F2 F3) (COND
((NULL L) (APPLY F3 (LIST NIL)))
((APPLY Fl (LIST L))

(APPLY F2 (LIST L)))
(T (SEARCH (CDR L) Fl F2 F3))))

SEARCH applies <FCTl>, which must be a function of one argument, to

<LIST> and successive CDRS of <LIST> until a non-null result'is obtained

or the end of <LIST> is reached. In the latter case <FCT3>, which must

be ·a function of one argument, is applied to NIL and the result is the

value of SEARCH. In the former case the value of SEARCH is the result

of applying <FCT2>, which must also be a function of one argument, to

the remaining portion of the list. Thus SEARCH is used to apply some

function to a portion of a list depending on a condition which must be

met by some elements of the list.

38.

3.3.6 ARITiiMETIC FUNCTIONS AND PREDICATES

Unless otherwise noted arithmetic functions will take either fixed point

or floating point numbers and convert them if necessary in order to

- perform their specific operation. If integer overflow occurs the result

of the computation is automatically converted to floating point. If

floating point overflow occurs an error is generated unless legal opera­

tions with infinity are to be allowed. (Ill~gal operations witn infinity

are noted in the function descriptions.) A non-numeric argument to an

arithmetic function will genera~e an illegal argument error unless

otherwise noted. Functions of multiple arguments will resolve the

mixed mode problem by converting integers to floating point and performing

floating point operations.

(ADDl <NUMBER>)

NORMAL; SUBR

ADDl returns a number of the same type as its argument, if possible,

whose value is <NUMBER>+ 1.

(DIFFERENCE <Nl> <N2>)

NORMAL; SUBR

DIFFERENCE returns a number whose value is <Nl> - <N2>.

(m - ~ is always illegal.)

(DIVIDE <Nl> <N2>)

NORMAL; SUBR

(LAMBDA (Nl N2) (LIST (QUOTIENT Nl N2)
(REMAINDER Nl N2)))

DIVIDE returns a list of two numbers, the first is (QUOTIENT <NI> <N2>)

and the second is (REMAINDER <Ni> <N2>).

(Refer to notes under QUOTIENT and REMAINDER.)

39

. '

(FIX <NUMBER>)

NORMAL; SUBR

F{X returns an integer type atom (a copy of the argument is returned

if it was already an integer). The integer returned is obtained by

truncating the magnitude of <NUMBER>. An error is generated if the

number is too large for representation as an in~eg.er.

e.g.,

(FIXP <S>)

PREDICATE; SUBR

EVAL:

(FIX 4. 9)

VAWE IS ...

4

EVAL:

(FIX -4.9)

VALUE IS •••

-4

FIXP returns true if its argument is a fixed point numeric atom and

false if it is any other S-expression.

(FLOAT <NUMBER>)

NORMAL; SUBR

FLOAT returns a floating point numeric atom (a copy of the argument is

returned if it was already a floating point atom) whose value is equal

to <NUMBER>.

40

(FLOATP <S>)

PREDICATE; SUBR

FLOATP returns true if its argument is a floating point number. It

· returns false if it is any other 5-expression.

(GREATERP <Nl> <N2>)

PREDICATE; SUBR

GREATERP returns true if <Nl> is algebraically greater than <N2>. It

returns false if <Nl> is less than or equal to <N2>. If either argument

is floating point then the comparison is done in floating point.

(INFP <S>)

PREDICATE; SUBR

INFP returns true if its argument is either plus or minus infinity.

It returns false if it is any oiher S-expression.

(LESSP <Nl> <N2>)

PREDICATE; SUBR

(LAMBDA (Nl N2) (GREATER? N2 Nl))

LESSP returns true if <Nl> is algebraically less than <N2> and false

if it is greater than or equal to <N2>. If either argument is floating

point then the comparison is done in floating point.

(LCXiAND <Nl> <N2> .•.)

NORMAL; FSUBR

LOGAND returns an integer atoa which is obtained by evaluating its

arguments and forming the bit by bit logical AND. Any floating point

atoms are converted to integer prior to ANDing.

(LOGOR <Nl> <N2> ...)

NORMAL; FSUBR

1.oc;oR returns an integer atom which is obtained by evalua1:ing its

:1rgumcnts and formin~ the bit by hit logical inclusive OR. Any floating

point atoms are converted to integer prior to ORing.

(LOGXOR <Nl> <N2> ...)

NORMAL; FSUBR

LOGXOR returns an integer atom which is obtained by evaluating its

arguments and forming the bit by bit logical exclusive OR. Any floating

point atoms are converted to integer prior to ORing.

(LSHIFT <Nl> <N2>)

NORMA.L; SUBR

LSHIFT returns an integer atom obtained by performing a shift on the

integer value of <Nl>. <N2> is the shift count: if <N2> is positive

the shift is end-around to the left by <N2> bits; if <N2> is negative

the shift is end-off (with sign replication) to the right by - <N2> bits.

(MAX <Nl> <N2> ...)

NORMAL; FSUBR

MAX evaluates all its arguments and returns a copy of the argument which

is algebraically largest.

(MIN <Nl> <N2> ...)

NORMAL; FSUBR

MIN evaluates all its arguments and returns a copy of the argument which

is algebraically smallest.

42

(MINUS <NUMBER>)

NORMAL; SUBR

MINUS returns a numeric atom whose value is the negative of <NUMBER>.

(MINUSP <S>)

PREDICATE; SUBR

MINUSP returns true if its argument is a numeric atom whose value is

less than zero. It returns false if it is any other S-expression.

(ONEP <S>)

PREDICATE; SUBR

ONEP returns true if its argument is a numeric atom whose value isl

(or 1.0). It returns false if it is .any other S-expression.

(PLUS <Nl> <N2> •.•)

NORMAL; FSUBR

PLUS evaluates all its arguments and returns a numeric atom whose value

is their sum. (= - ~ is always illegal.)

(QUOTIENT <Nl> <N2>)

NORMAL; SUBR

QUOTIENT returns a numeric atom whose value is <Nl>/<N2>. QUOTIENT

always returns a floating point result (unless <Nl> and <N2> are both

integers and <N2> divides <Nl>).

(0/0 and ~/mare always illegal.)

(RANDOM <BOOL>)

NORMAL; SUBR

RANDOM returns a pseudo-random number between 0.0 and 1.0. If <BOOL>

- is NIL the sequence is reinitiated. Calls with <BOOL> non-null return

the next number in the sequence.

(RECIP <NUMBER>)

NORMAL; SUBR

· · ·. {LAMBDA (N) (QUOTIENT 1 N))

RECIP returns a numeric atom whose value is equal to the reciprocal of

<NUMBER>. (This is of floating point type unless <NUMBER> = 1.)

(R~\1AINDER <Nl> <~2>)

NORMAL; SUBR

(LAMBDA (Nl N2) (DIFFERENCE Nl
(TIMES N2 (FIX (QUOTIENT Nl N2)))))

REMAINDER returns a numeric atom whose value is calculated in the

usual manner:

REMAINDER= <Nl> - integer part (<Nl>/<N2>) * <N2>

(Due to the fact that FIX truncates the magnitude of its argument the

remainder will always be the same sign as <Nl>.)

REMAINDER will return a fixed point result if <Nl> and <N2> are both

fixed point, otherwise floating point. An error will be generated if

the quotient is too large for integer format (i.e., >32767 or <-32i68).

(The following are undefined and illegal operations: (Ra\!AINDER O O)

(R£\1AINDER ~ X) where X ~ 0).

(SUBl <NUMBER>)

NORMAL; SUBR

SUB! returns a number whose value is <NUMBER> - 1.

44

(TIMES <Nl> <N2> ...)

NORMAL; FSUBR

TIMES evaluates all its arguments and returns a numeric atom whose value

- is their product. (0 x ~ is always illegal.)

(ZEROP <S>)

PREDICATE; SUBR

ZEROP returns true if its argument is a numeric atom whose value is

zero. It returns false if it is any other 5-expression .

..

3.3.7 DEBUGGING AND ERROR PROCESSING FUNCTIONS

(ERROR <S>)

PSEUDOFUNCTION; SUBR

ERROR causes a recoverable error to occur. The argument will appear

as part of an error message printed in response to this function.

Continued execution of the cun-ent top level evaluation will be aborted

unless an ERRSET function is in control.

e.g., EVAL:

(ERROR ''MESSAGE)

VALUE IS .••

****•ERROR MESSAGE

(ERRSET <EXP> < BOOLl> < BOOL2>)

PSEUDOFUNCTION; SUBR

If no errors occur ERRSET is equivalent to:
(LAMBDA (E Bl B2) (CONS (EVAL E) NIL))

ERRSET is a function which allows LISP to recover from a recoverable

error without aborting the top level evaluation in progress. If no error

occurs during the evaluation of <EXP> (note that since ERRSET is a SUBR

the arguments are evaluated prior to calling ERRSET; during this evalua­

tion the current call to ERRSET offers no protection) then the value of

- ERRSET is a list whose single element is the result of evaluating <EXP>.

If a recoverable error occurs the result of the most recent ERRSET is

NIL. At the time the error occurs <BOOLl> controls printing of the

error message itself--if it is false the message is not printea. <BOOL2>

controls printing of the back trace--if it is false the back trace is

not printed.

e.g., EVAL:

(ERRSET " "A T T)

VALUE IS

(A)

EVAL:

(ERRSET "AT T)

VALUE IS •.•

"ERROR A8 A

(EVAL)

NIL

EVAL:

(ERRSET AT T)

VALUE IS ••.

*** 0 ERROR AB A

(EVAL EVLIS EVAL MAINLOOP)

EVAL:

46

(KILL <S>)

PSEUDOFUNCTION; SUBR

KILL is similar to ERROR ~cept it causes a non-recoverable (fatal)

error which terminates the LISP run.

e.g.,

(LOOK <NUMBER>)

NORMAL; SUBR

EVAL:

(KILL ''MESSAGE)

VALUE IS •.•

•••••KILLED MESSAGE

(MAINLOOP)

LOOK returns an integer atom whose value is the contents of the memory

location specified by <NUMBER>. (A trap to 4 will result if non-existent

memory is referenced.) If <NUMBER> is odd it is decremented prior to

being used as an address.

(TRACE <LAT>)

PSEUDOFUNCTION; SUBR

(LAMBDA (L) (COND
((NULL L) NIL)
((PUT (CAR L) ''TRACI: 0)

(TRACE (CDR L)))))

TRACE puts a counter (initialized to 0) on the property list of each

atom in <LAT> (the value of TRACE is always NIL). After that time

(and until an UNTRACE call removes the counter) a message is printed

each time a function whose name appeared in <LAT> is called.

The message is of the form:

(<number>) LEVEL ARGUMENTS OF <NAME>

47

where <NAME> is the name of the function and <number> is the nesting

level of the current call. Following the message the arguments are

printed one per line (evaluated in the case of expressions and SUBRS-­

one unevaluated list of arguments in the case of FSUBRS and FEXPRS).

Every function that is entered is also exited. At the time the function

is exited a message of the following form is printed:

(<number>) LEVEL RESULT OF <NAME>.

On the following line is the actual value returned by the function.

<number> indicates the nesting level and should be paired with the

most recent occurrence of the same number in the "arguments of" message

to compare the arguments and result of the <number>th level call to the

function. As noted SUBRS and FSUBRS can be traced; however, internal

calls are not traced. Furthermore, COND, PROG, QUOTE, LABEL, FUNCTION

cannot be traced because they are handled specially.

(TRACES ET <LAT>)

PSEUDOFUNCTION; SUBR

(LAMBDA (L) (COND
((NULL L) NIL)
(T (CONS (PUT (CARL) "TRACESET T)

(TRACESET (CDR L))))))

TRACESET puts a flag on the property list of each atom in <LAT>. The

value of TRACESET is the same <LAT>. The TRACESET flag on an EXPR or

FEXPR function atom causes all SET or SETQ calls at the top level of

a top level PROG call to be traced. A message of the form

<variable>= <assignment> is printed for each such SET call encountered.

(UNDEF <S>)

PREDICATE; FSUBR

UNDEF returns true if its argument is a <LITAn.1> that does not have an

APVAL or a binding on the association list. It returns false for all

other situations.

48

{UNTRACE <LAT>)

PSEUDOFUNCTION; SUBR

UNTRACE removes the TRACE counter and indicator from the property list

- of each atom in <LAT>. The value of UNTRACE is always NIL.

(UNTRACESET <LAT>)

PSEUDOFUNCTION; SUBR

UNTRACESET removes the TRACESET flag from the property lists of each

atom in <LAT>. The value of UNTRACESET is its unchanged argument.

3.3.8 MISCELLANEOUS FUNCTIONS

{ADDR <S>)

NORMAL; SUBR

ADDR returns an integer atom whose value is the address of the first
~

cell of the argument.

(ALIST)

PSEUDOFUNCTION; SUBR

ALIST returns the current association list at the time ALIST is called.

This shows all the bindings but not the APVALS of the literal atoms.

(FREE)

PSEUDOFUNCTION; SUBR

FREE returns an integer atom whose value is the number ,of free cells

immediately available.

49

(C~ENSYM <LITATM>)

PSEUDOFUNCTION; FSUBR

GENSYM returns an entirely new literal atom each time it is called.

- The literal atom has a print name of XNNNNNN where Xis a single letter

obtained from <LITATM> and NNNNNN is a unique octal number. The letter

used is the first letter of the <LITATM> print name and the number is

the next-number in the series for that letter. If no (legal) argument

is specified to GENSYM the letter from the last call is used. If no call

precedes a call with no argument (or illegal argument) then the letter G

is us.ed. The atoms created by GENSYM are not placed on the OBL!ST. If

an atom with the same print name is subsequently read in it will not be

related to the GENSYM atom. In order to keep GENSYM names from being

discarded some portion of existing active S-expressions or property

lists must contain references to them.

(INTERN <STR>)

PSEUDOFUNCTION; SUBR

INTERN creates a <LITATM> whose print name is the value of the string

atom <STR> and inserts it on the OBLIST. If an atom of the same print

name already exists INTERN returns the existing atom rather than create

a new one. The value of INTERN is a literal atom with a print name

equivalent to <STR>. (INTERN modifies <STR> to a literal atom. NIL

is returned if a bad argument has been specified.)

(LABEL <LITATM> <FCTN>)

PSEUDOFUNCTION; FSUBR

LABEL accomplishes almost the same thing as DEFINE except that it binds

the function definition to the name on the association list rather than

50

incorporating it on the atom's property list. This is similar to the

case for variables, which may have bindings on the ALIST or APVALs.

For function atoms, the EXPR or FEXPR definition takes precedence over

· the LABEL binding in the same way that the APVAL supersedes the ALIST

binding for variables.

(There is no FSUBR implemented for LABEL. It is an indicator specifically

recognized by APPLY.)

(MAINLOOP)

PSEUDOFUNCTION; SUBR

(LAMBDA() (PROG ()
A (SETQ \ANS (PRINT (EVAL (READ))))

(GO A)))

MAINLOOP is the actual driver for LISP and is LISP callable. While in

control it expects to read an S-expression, evaluate it, and print it.

It remains in control until an end-of-file on SYSIN is detected, at which

time it exits with NIL to the caller. If there was no caller, it looks

for an unfinished SYSIN file and if not found, it exits LISP. If the \T

switch is on, a timing message is printed for each top level EVAL.

(RECLAIM)

PSEUDOFUNCTION; SUBR

RECLAIM causes a garbage collection to occur whether or not it is needed.

The value of RECLAIM is always NIL.

(REMOS <LITATM>)

PSEUDOFUNCTION; SUBR

REMOB removes <LITATM> from the OBLIST. If no active lists refer to

<LITATM> then the cells used to store it will be collected in the next

garbage collection. In any case if an atom with the same print name

51

is subsequently read in it will have no relation to the (previously)

existing atom. The value of REMOB is always NIL.

(TEMPUS)

PSEUOOFUNCTION; SUBR

TEMPUS returns a floating point atom which represents the RT-11 system

time in seconds.

3.3.9 INPUT/OUTPUT FUNCTIONS

(CLOSE <N>)

PSEUOOFUNCTION; SUBR

CLOSE releases channel <N> by closing the associated ENTER'd or LOOKUP'd

file, releasing the handler if no other channel requires it, and releasing

the I/0 buffers. The value of CLOSE is always NIL.

(ENTER <STR>)

PSEUDOFUNCTION; SUBR

<STR> must be a legal file specification for a new output file. The new

file is opened and writing to it is done via the OUTPUT function. If

<STR> is illformed or if an attempt to open too many files is made an

error is generated. The value of ENTER is an integer, the channel number

assigned.

(A maximum of 9 channels may be open at any one time: SYSIN, SYSOUT,

and 7 others.)

52

(INPUT <N>)

PSEUDOFUNCTION; SUBR

INPUT works just like READ except that the LOOKUP'd file associated

- with channel <N> is used instead of the current SYSIN. INPUT returns

the next 5-expression from channel <N>.

(LOOKUP <STR>)

PSEUDOFUNCTION; SUBR

<STR> must be a legal file specification for an already existing file

to be used for input. The new file is opened and input is done via the

INPUT function. If <STR> is illformed or if an attempt is made to open

too many files an error is generated. The value of LOOKUP is an integer,

the channel number assigned.

(A maximum of 9 channels uy be open at any one time: SYSIN, SYSOUT,

and 7 others.)

(OUTPUT <N> <S>)

PSEUDOFUNCTION; SUBR

OUTPUT works just like PRINT except that the ENTER'd file associated

with channel <N> is used instead of the current SYSOUT. The value of

OOTPUT is <S>.

(PRINT <S>)

PSEUDOFUNCTION; SUBR

PRINT causes its argument to be printed to the current SYSOt.rr. The

value of PRINT is its unchanged argument. If the \R switch is on, all

non-standard atoms and strings are printed in LISP readable format.

If the %0 switch is on all integers are printed in octal format. A

carriage-return/line-feed is done after <S> is printed.

(PRINl <S>)

PSEUDOFUNCTION; SUBR

PRINl is similar to PRINT except that the final carriage-return/line-feed

is not done. This allows multiple S-expressions to be printed.on a line.

(READ)

PSEUDOFUNCTION; SUBR

READ causes an S-expression to be read from the current SYSIN. All

<LITATM>s are either found on the OBLIST or put there. The value of

READ is the S-expression read in.

READ automatically recognizes atoms of the form CAAR, CADR, COOR,

CAA.AR, ••• , and when installing them on the OBLIST puts a special SUBR

indicator on their property lists. This feature is inhibited by turning

the %I switch on. The echoing features of READ are controlled by the %L

switch. (There is never any echo or printing while reading or evaluating

LISP subsystems.)

(SYSIN <STR>)

PSEUDOFUNCTION; SUBR

<STR> must be a legal file name specification for an exiting file on

an input device. SYSIN causes <STR> to be irmnediately opened as the

next system input file. Input comes from <STR> until an end-of-file

is detected at which time the previous SYSIN file is used. SYSIN may

be used to read in LISP subsystems in which case the results of all the

evaluations are written to the output file. An error is generated if

<STR> is an illformed argument or if an attempt was made to open too

-many channels. SYSIN returns the channel number of the previous SYSIN.

(SYSOUT <STR>)

PSEUDOFUNCTION; SUBR

SYSOUT changes the current output file to <STR>. <STR> must be a legal

output specification; a new file is entered on the output device. If

<STR> is NIL then SYSOUT closes tn.e current output file and reverts to

the previous one. If <STR> is illformed or if an attempt was made to

open too many channels an error is generated. In addition, if an attempt

is made to close the final SYSOUT file by calling SYSOUT with NIL then

an error will be generated and the file will remain open. It can only

be closed by exiting LISP.

SYSOUT returns NIL or the channel number of the previous SYSOUT.

(TERPRI)

PSEUDOFUNCTION; SUBR

The value of TERPRI is NIL. It prints a carriage-return/line-feed to

the output file. A call on PRINl followed by a call to TERPRI is equiva­

lent to a call on PRINT.

3.3.10 STRING FUNCTIONS

Most string functions will perform correct operations using the print

name of a literal atom as an argument. However, GENSYM atom should

not be used since they will usually not be handled recognizably.

55

(PNAME <ATOM>)

NORMAL; SUBR

PNAME returns a string whose value is the print name of a literal atom

or the ASCII print image of a number. It returns NIL if argument is

not atomic.

(POSITION <STRl> <STR2> <N>)

NORMAL; SUBR

POSITION searches <STRl> for the first occurrence of <STR2> starting

with the <N>th character of <STRI>. It returns a number <M> such that

<STR2> matches <STRl> beginning at the <M>th character of <STRl>. If

no match is found or if arguments are illegal POSITION returns O. (If

<STR2> is the NULL string 0 is returned.)

(Strings made from GENSYM atoms not handled recognizably.)

(SEGMENT <STR> <Nl> <N2>)

NORMAL; SUBR

SEGMENT returns a new string atom made up of the characters from the

<Nl>th position through the <N2>th position of <STR>. If <STR> is not

a valid argument (i.e., a number or list) NIL is returned; if there are

no characters between <Nl> and <N2> (e.g., N2<Nl) then the NULL string

is returned.

(STRING <Sl> <S2> •••)

NORMAL; FSUBR

After evaluating each argument STRING creates a new string atom by

concatenating all its argument~ in the following manner: Non-atomic

56

S-expressions as arguments are ignored; literal atom print names are

concatenated along with strings; numbers are converted to characters

by converting each number to an integer and truncating to 7 bits.

_ Strings are limited to a length of 25S characters.

(GENSYM atoms will not concatenate recognizably.)

(STRLEN <STR>)

NORMAL; SUBR

STRLEN returns an integer whose value is the number of characters in <STR>.

NIL is returned if the argument is a number or list.

(Characters in GENSYM atoms are counted incorrectly.)

{VALUE <STR>)

NORMAL; SUBR

VALUE returns the numeric atom which is represented by the STRING <STR>.

(If the argument to VALUE is a number it is returned unchanged; if it

is a list then NIL is returned.) If <STR> is not proper numeric syntax

then NIL is returned. (If the resulting number is too large and the \Z

switch is off then an error is generated.)

3.3.11 CHARACTER FUNCTIONS

(ADVANCE <BOOL>)

PSEUDOFUNCTION; SUBR

ADVANCE will advance the input pointer and read the next character of

the input file if <BOOL> is NIL. If <BOOL> is non-null ADVANCE will

back up the input pointer and read the previous character again

57

(leaving the pointer pointing to the previous character). Attempt~ to

back up more than 6 characters will result in %EOF being returned. The

value of ADVANCE is either the %EOF atom or an integer atom whose value

- is the ASCII code of the character read.

(In interactive mode the user should be aware that characters are not

available to ADVANCE until a carriage-return is ··typed.)

(CHLEX <Nl> <N2>)

PSEUDOFUNCTION; SUBR

CHLEX changes the lexical class of the character whose ASCII code is

<Nl> to lexical class <N2> (<N2> must be between 0-19 or the call is

ignored). The change takes effect immediately. The value of CHLEX is

the old lexical class of character <Nl> (or NIL if the call was ignored).

(Refer to Section 2.3.l for cautions.) If <N2> is NIL, CHLEX returns

the current lexical class of character <Nl> without changing it.

(EXPLODE <ATOM>)

NORMAL; SUBR

EXPLODE returns a list of integer atoms representing the ASCII codes

of the characters in the print name of <ATOM> if it is a literal atom

or string. It returns NIL if the argument was a number or non-atomic

expression.

(GENSYM atoms will be recognizably exploded.)

3.3.12 ARRAY FUNCTIONS

SET recognizes the form (SET "(X 1 3 9 2) "B) and attempts to interpret

X as an array. If the atom X has the array property then the subscript

58

list is evaluated, and the appropriate element is indexed and reset to

point to B. When presented with (X 1 3 !) EVAL first looks for SUBR,

FSUBR, EXPR, or FEXPR on the property list of X. It then looks for

- ARRAY and if found it evaluates the subscripts, indexes the appropriate

element, and returns the associated value. If the ARRAY indicator is

not found then an association on the ALIST is sought for X.

(ARRAY <LITATM> <LIST>)

PSEUDOFUNCTION; SUBR

ARRAY defines and allocates a niw array whose name is <LITATM>. <LIST>

is a list of dotted pairs which_give the range of each·subscript.

e.g., EVAL:

(ARRAY "X "((0 • 4)(-2 • 11)))

will allocate a 5 by 14 array, the first index ranges from Oto 4 and.

the second f-roa -2 to 11. Each element of the array can be a pointer

to an arbitrary S-expression. ARRAY puts the indicator ARRAY with the

value <LIST> on the property list of <LITATM>. ARRAY initializes each

element to NIL. The value of ARRAY is NIL. If <LIST> is NIL, the

ARRAY property of LITATM is removed and the space is reclaimed. (The

space is then available to be allocated for another array or for I/0

buffer and handler space.)

(CLARRAY <LITATM>)

PSEUDOFUNCTION; SUBR

<LITATM> must have an ARRAY property or an error is generated.

CLARRAY sets all alements of the array to NIL. The value of CI.ARRAY

is NIL.

S9

-

4. SYST~~ ATOMS

The following alphabetical list includes all the system atoms

which are present on the OBLIST after initialization. Notice that the

· command string switches G, I, L, 0, R, T, W, X, Z are represented as

system apvals %G, %I, %L, %0, \R, %T, %W, %X, %Z. These apvals are

initialized to the values assigned to the command--string switches and

may be accessed or altered under program control. Notice also the

existence of the atom %ANS; it always contains the result of the last

top level evaluation. (Refer to the MAINLOOP function description.)

Atom ~ Description

ADDR SUBR 3.3.8

ADDI SUBR 3.3.6

ADVANCE SUBR 3.3.11

ALIST SUBR 3.3.8

ALPHAP SUBR 3.3.1

AND FSUBR 3.3.3

APPEND SUBR 3.3.2

APPLY SUBR 3.3.3

APVAL INDICATOR

ARRAY SUBR 3.3.12

ATOM SUBR 3.3.1

CAR SUBR 3.3.1

CDR SUBR 3.3.l

CHLEX SUBR 3.3.11

CI.ARRAY SUBR 3.3.12

CLOSE SUBR 3.3.9

60

Atom !lE.! Description

CONC FSUBR 3.3.2

COND SUBR 3.3.3

CONS SUBR 3.3.l

COPY SUBR 3.3.2

DEFINE SUBR 3.3.4

DEFLIST SUBR 3.3.4

DIFFERENCE SUBR 3.3.6

DIVIDE SUBR 3.3.6

EFFACE. SUBR 3~3.2

ENTER SUBR 3.3.9

EQ SUBR 3.3.1

EQN SUBR 3.3.1·

EQUAL SUBR 3.3.1

ERROR SUBR 3'.3.7

ERRSET SUBR 3.3.7

EVAL SUBR 3.3.3

EVALQUOTE SUBR 3.3.3

EVLIS SUBR 3.3.3 ..

EXPLODE SUBR 3.3.11

EXPR INDICATOR

F 'APVAL VALUE:•NIL

FEXPR INDICATOR

FIX SUBR 3.3.6

FIXP SUBR 3.3.6

FLOAT SUBR 3.3.6

6\

Atom ~ DescriEtion

FLOATP SUBR 3.3.6

FREE SUBR 3.3.8

FSUBR INDICATOR

FUNARG INDICATOR

FUNCTION INDICATOR 3.3.3

GENSYM FSUBR 3.3.8

GET SUBR 3.3.4

GO FSUBR 3.3.3

GRADP SUBR 3.3.l

GREATERP SUBR 3.3.6

INFP SUBR 3.3.6

INPUT SUBR 3.3.9

INTERN SUBR 3.3.8

KILL SUBR 3.3.7

L\BEL INDICATOR 3.3.8

LAMBDA INDICATOR

LENGTH SUBR 3.3.2

LESSP SUBR 3.3.6

LIST FSUBR 3.3.1

LOGANO FSUBR 3.3.6

LOGOR FSUBR 3.3.6

LOGXOR FSUBR 3.3.6

LOOK SUBR 3.3.7

LOOKUP SUBR 3.3.9

LSHIFT SUBR 3.3.6

62

Atom In>.! Description

MAINLOOP SUBR 3.3.8

MAP SUBR 3.3.S

MAPC SUBR 3.3.S

- MAPCAR SUBR 3.3.S

MAPCON SUBR 3.3.S

MAPLIST SUBR 3.3.S

MAX FSUBR 3.3.6

MEMBER SUBR 3.3.1

MEMQ SUBR 3.3.1
' ,

MIN FSUBR 3.3.6

MINUS SUBR 3.3.6

MINUSP SUBR 3.3.6·

NCONC SUBR 3.3.2

NIL APVAL fALUE:•NIL

NOT SUBR 3.3.l

NULL SUBR ;5.3.l

NUMBERP SUBR 3.3.1

OBLIST APVAL VALUE: 2 LIST of hash buckets, i.e., contains

' all existing literal atoms

ONEP SUBR 3.3.6

OR FSUBR 3.3.3

OUTPUT SUBR 3.3.9

PAIR SUBR 3.3.2

PLUS FSUBR 3.3.6

PNAME SUBR 3.3.10

63

Atom ~ Descri:etion

POSITION SUBR 3.3.10

PRINT SUBR 3.3.9

PRINl SUBR 3.3.9

- PROG FSUBR 3.3.3

PROGN FSUBR 3.3.3

PROP SUBR 3.3.4

PUT SUBR 3.3.4

QUOTE INDICATOR 3.3.l

QUOTIENT SUBR 3.3.6

RANDOM SUBR 3.3.6

READ SUBR 3.3.9

RECIP SUBR 3.3.6

RECLAIM SUBR 3.3.8

REMAINDER SUBR 3.3.6

REMOS SUBR 3.3.8

REMPROP SUBR 3.3.4

RETURN SUBR 3.3.3

REVERSE SUBR 3.3.2

REVERSIP SUBR 3.3.2

RPLACA SUBR 3.3.l

RPLACD SUBR 3.3.l

SASSOC SUBR 3.3.5

SEARCH SUBR 3.3.5

SEGMENT SUBR 3.~.10

SELECT FSUBR 3.3.3

64

Atom !IE.! Description

SET SUBR 3.3.1

SETQ FSUBR 3.3.1

SIZE SUBR 3.3 .. 2

- STRING FSUBR 3.3.10

STRINGP SUBR 3.3.1

STRLEN SUBR 3.3.10

SUBLIS SUBR 3.3.2

SUBR INDICATOR

SUBST SUBR 3.3.2
'

SUBl SUBR 3.3.6

SYSIN SUBR 3.3.9

SYSOtrr SUBR 3.3.9 ·

T APVAL VALUE:••,-..

TEMPUS SUBR 3.3.8

TERPRI SUBR 3.3.9

TIMES FSUBR 3.3.6

TRACE SUBR 3.3.7

TRACESET SUBR 3.3.7

UNDEF FSUBR 3.3.7

UNTRACE SUBR 3.3.7

UNTRACESET SUBR 3.3.7

VALUE SUBR 3.3.10

ZEROP SUBR 3.3.6

\ANS APVAL VALIJE:alast top level EVAL result

\EOF INDICATOR

65

Atom ~ Description

%G APVAL VALUE:=<BOOL>==/G

9aI APVAL VALUE:=<BOOL>==/I

'aL APVAL VALUE:=O,l,2,3,==/L

- ~oO APVAL VALUE:=<BOOL>==/0

0oR APVAL VAWE:=<BOOL>==/R

0aT APVAL VALUE:=<BOOL>==/T·-

~.,w APVAL VALUE:=<BOOL>==/W

%X APVAL VALUE:=<BOOL>==/X

0oZ APVAL VALUE:=<BOOL>==/Z

T APVAL VALUE:=•T*

66

5. ERROR MESSAGES

Errors detected by LISP functions will cause the evaluation in

progress to be aborted, printing an identification message and optional

argument and a backtrace list. Operation resumes at the top level

~i\INLOOP unless an ERRSET function is encountered in the backtrace, in

which case operation resumes by returning to the ERRSET caller with a

NIL result. Non-recoverable errors will cause the LISP run to terminate

with the KILLED message.

Recoverable errors

Code

Al

A2

A3

A4

AS

A6

A7

AB

A9

AlO

GCl

Argument

offending function object

Comment

<UNUSED>

function object has no
definition--APPLY

<UNUSED>

RETIJRN occurred outside
PROG context

GO occurred outside PROG
context

offending label atom GO refers to an unassigned
label

offending argument illegal first argument to SET

offending variable atom unbound variable--EVAL

offending function object function object has no
definition--EVAL

offending atom CAR or CDR of atom
(suppressed with X switch)

<UNUSED>

free space is exhausted

67

Code

Gl

G2

12

13

!4

IS

IOl

I02

10.3

104

Rl

R2

R.3

R4

RS

R6

Fl

Argument

new array requested

argument

Comment

<UNUSED>

recursion limit exceeded-­
stack space exhausted

array space exhausted

improper argument for
numeric function

<UNUSEB>

hard math error--infinity
generated and not allowed-­
illegal operation with
infinity

argument improper argument for array
function

channel/file specification illegal file specification
or channel number

68

attempt to open too many
channels

device handler and I/0 buffer
space is exhausted

attempt to close the last SYSOUT

unexpected,) or J

• out of context--improper
dotted pair construction

unmatched (

too many [or (.
(max [2 29;
max (= 255 per [)

undecodable number

print name/string too long
(> 25S chars)

improper numbe-r of SUBR
arguments

. ,

Code

F2

Argument

PAIR result

Comment

improper number of EXPR
arguments

Fatal system errors (internal LISP errors which should never occur)

Tl illegal trap code

T2 stacks corrupted

T3 --Ynmatched marked stack item

01 input error

02 output error

5.1 INTERPRETATION OF BACKTRACE ON ERROR CONDITION

The backtrace list contains the names ·of the functions which have

been entered but not completed. The leftmost function is the one in which

the error was detected. (If an error occurred in a utility routine the

PC of the utility routine is placed in the backtrace list.) The user

should not be concerned by occurrences of functions which he did not call

since many functions make internal calls and transfers to other functions.

Some functions which are implemented in a recursive fashion (e.g., READ)

may actually appear consecutively many times in the backtrace list.

5.2 GARBAGE COLLECTION WARNING MESSAGE

The garbage collector uses as much space as is available in

order to do its job. If the recursion depth is almost at a maximum the

collection will be slowed down but it will always continue to completion.

If the collector fails to recover at least 1/64 of the total free space

area then a warning message is printed. No other action is taken and

no indication is available to the program.

69

6. IMPLEMENTATION CONSIDERATIONS

6.1 GENERAL

In this implementation of LISP full word space is not distinct

from free space, but has the same list structure. The basic unit of

free space is the cell. Each cell is two words long with the first word

being at an address which is a multiple of 4. Tlw-s, all pointers or

links to other cells are only 14 bits long. The first word of each cell

is the CAR pointer. The second word is either a full word of data or

it is the CDR pointer. In this way full word space is incorporated in

free space, only one garbage collection technique is needed, there is

no bit map overhead, and the user is not faced with a decision as to

the relative allocation of free versus full space. However, it is

slightly more extravagant with respect to memory usage than the conven­

tional approach to full word space.

SUBR and FSUBR function calls, utility function calls, and

error processor calls are all implemented via the TRAP instruction.

6.2 MEMORY LAYOUT

The following diagram shows the layout of the background

partition after LISP has been loaded and started. There are three stacks

used by LISP: ·sp, for general usage and arithmetic operations; RS, for

LISP argument transmission; and R4, for LISP function linkage. With

separate stacks for linkage and arguments backtracing after an error is

facilitated as well as garbage collection, since only those S-expressions

with pointers on the argument stack need be saved (the OBLIST is always

on the RS stack).

70

The initialization code, whose primary

function is to build the OBLIST and

install the system atoms, is converted

-to auxiliary buffer space (print name

buffer*, parenthesis count buffer and

I/0 buffers) after execution.

The first item on the argument trans­

mission stack (RS) is always the.

OBLIST, for convenience. The OBLIST

consists of 32 consecutive cells at

the begiMing of the free space used

as headers to hash buckets.

The first item on the function linkage

(recursion) stack is always the

address of the LISP exit routine. The

exit routine closes any open file~ and

restores the contents of locations 0

and 2 which were used by LISP as a

special ·header for the atom NIL.

* The size of this buffer (2S6 characters)
is the only limit on string size or atom
print name size.

71

RMON
(& USR)

(IMDLSP
INDLSP --,..-----.-----(..=:.,:SYSLOW)

LISP
STACK
SPACE R4

STACK
(LINKAGE)

SSTART -~-----a..---..ii

PST ART

PRH
SPACE

OBLIST IUCXl!TS

ARRAY SPACE

DEVICE HANDLER
& I/0 IUl'flER

HBOUMD-~-s_,_ ... _c_E ____ ---i

LJSP
INTERPRETER
SUBR & FSUBR
& UTILtTY IIUNCTIOMS

TRAP DtSP ATCHER

IMITIALIZ~ TION
cooe:
(AUXILIARY BUFFER
SPACE)

SP
STACX

0 .__ __ M_I L_H_E_A_D_E_R __ __.

Device handlers, I/0 buffers, and

arrays share the same memory block.

-At initialization time all handlers

needed for reading subsystems are

loaded contiguously starting at

HBOUND. When a handler or I/0

buffer is no longer needed it is

released and the space is reclaimed

on the AVAIL list. The block which

abuts ASTART is available for an

array. If no block abuts ASTART

then array space is exhausted.

New arrays are allocated directly

below ASTART. Whenever array

space is released the arrays are

slid up so that array space is

always contiguous.

If a new handler is required but

there is no block of available

memory on AVAIL large enough to

contain it then handler--I/0

buffer space is exhausted.

FSTART

AST ART

AVAIL

HBOUM0

72

ARRAY SPACE

LAST

+
INITIALIZATION'
TIME ARRAY
SPACE

}

ALLOCATED

.,._ _____ _.,.....,_, ARRAY TO BE

.,._ _____ _.,.....,_, ALLOCATED

...,~"'!l!l'l'!'l'!'!1!"1!1!1'~9P'!l!'~!l!'l!al!·

f~;i~

HANDLERS &
I/0 BUFFERS

IHITIALIZAT10H
T1ME sues YSTEM
HANDLER SPACE

6.3 CELL FORMAT

15 2 1 0

CAR

CDR

A cell consists of two consecutive words of memory such that

the first word has an address which is a multiple of 4. Thus, all

pointers to cells need only be 14 bits long.

The first word of a cell contains three fields as follows:

"MARK" M is a 1-bit field which is used by the garbage collector to

mark a cell for presenation. M must not be set except in

special circumstances relating to garbage collection

(see the SUBR "SIZE"~. Mis set by the garbage collector

during its marking phase, and cleared during its clean-up

phase.

"DATAn D is a 1-bit field whi_ch governs the interpretation of the

second word of the cell. If Dis O then the second word

consists of two fields as shown in the diagram with the

interpretation given below. If Dis one then the second

word is interpreted as a single 16-bit field consisting

of a full word of data.

CAR is a 14-bit field which is interpreted as a pointer to

another cell--the CAR of the S-expression.

73

The second word of a ccil contains two fields (if Dis 0)­

as follows:

"FORMAT" F i.s a 2-bit field which is used to distinguish literal atoms,

string atoms, and lists. (Refer to Section 6.4.)

CDR is a 14-bit field which is interpreted as a pointer to

another cell--the CDR of the S-expression.

6.4 S-EXPRESSION REPRESENTATION

Dotted pairs are represented using a single cell. The first

word contains the pointer to the CAR of the dotted. pair. The second

word contains the pointer to the CDR of the dotted pair. The format

field is 0.

·-----OOTTEO
P.t.lR

When a function

returning a pointer to a

(A.BIi

)

;1

returns

cell as

A

8

o-
t

0

a dotted

shown:

lo~-1

74

-

-

CAR OF
DOTTED
PAIR

COR OF
OOTT£0
PAIR

pair (A.B) as its value it

WHERE A ST ANDS FOR
THE ADOR!SS OF THE
FIRST CEL1. IM THE
REPRESENT.U10N OF A,
AND LIKEWISE FOR B.

is

Atoms come in three classes as far as the representation of

the header is concerned: literal atoms, numeric atoms, and string atoms.

The header or first cell of a numeric atom is structured as shown.

PIXED POH4Tt::-7 j (INTEGER) 1
NUMBER I

INTEGER

PLOA TING POINT 7
(REAL) MUMBER

s
'

The diagonal slash represents a pointer to NIL (whose header

is located at address O; thus, it is a field which is 0).

A.fixed point number is represented in a single cell, with a

null CAR pointer and data bit•l in the first word, and a 16-bit integer

in the second word.

A floating point number is represented using two cells. The

first has a CAR pointer which points to the second. The data bits in

both cells are on. The data in the first cell is interpreted as the

most significant word in the stapdard POP-11 floating point format.

The data in the second cell is the least significant word (extension

of the mantissa). Although multiple precision is not implemented the

representation would merely involve extending the list of mantissa cells.

In addition to the usual PDP-11 floating point interpretation

additional subclasses are recognized:

7S

Exponent Mantissa
word word

floating point number ±X

:} floating point
usual PDP-11

zero 0 interpretation

(-0 interpreted as O) -0

+ infinity 0 -1

(interpreted as + infinity) 0 .-o
additions

- infinity -0 -1

(interpreted as - infinity) -0 •O

· String atoms are represented with a header cell followed by

an arbitrary number (including none to represent the null string) of

data cells. No distinction is made between the two format classes of

strings in any of the LISP functions provided (with the exception of

READ: it builds strings only with the format field=3); they merely

propagate the existing format bits and process the data information

identically.

STRING 0 -

2 OR
3

1 -

HI BYTE LO BYTE
CHAR 2 CHAR 1

1 - 000

HI BYTE LO BYTE
CHAR 4 CHAR 3

The CDR field of the header cell is presently unused and is

set to zero by READ.

76

Literal atoms are similar to string atoms except that the CDR

pointer of the header cell points to the atom's property list and the

format field is 1. The string pointed to by the CAR of the header is

- the atom's print name.

LITERAL
ATOM

ftROP!RTY LIST

1

1 - 000

HI BYTE LO BYTE
CHAR 2 CHAR 1

PRINT NAME

Given a pointer to a cell in RO: (l) if Dis non-zero at (RO)

then RO points to a number, (2) else if Fat 2(RO) is zero then RO

points to a dotted pair, (3) el~e if Fat 2(RO) is 2 or 3 then RO

points to a string atom, (4) else RO points to a literal atom.

A special type of literal atom is the GENSYM atom represented

as shown:

GEHSYM
ATOM

PROPERTY LIST

1 - 1 -

HI BYTE LO BYTE
200 CHAR

NOTE: Characters in strings and atom ?NAMES are foned from 7-bit ASCII
values; thus bit 15 can be used to signal a GENSYM atom. (This
property is only needed on printout and is not checked or used by
any other LISP functions besides GENSYM and PNAME.)

71

Ex~mplcs:

THE ATOM CAR

THE LIST (CAR "A)

r-
1
I
I
I
I
I

o-

I
SUBR O -

'------41
I
I

78

0

o-

0

o-
0

o-

0

1 - 1 -

A C

1 -

QUOTE O -

T o

A 0 -

0

6.5 nil: OBLIST

The OBLIST is a list of 32 (consecutive, to facilitate hash

indexing) cells; the CAR of each points to a list (bucket) of objects

"' .

_ (literal atoms) whose print names all hash to the same value. All

objects on the OBLIST are automatically saved during a garbage collection.

After initialization the OBLIST contains all the system atoms. Each

literal atom encountered by READ is installed on the OBLIST if it does

not already exist there. READ does this by hashing the print name and

scanning the appropriate bucket for a match using EQN. If it is not

found it is installed with a null pt"operty list. If it is found then

READ identifies the existing atom with the one read in and any pToperties

are inherited.

6.6 CALLING CONVENTION

Calls to SUBRs, FSUBRs, and utility routines are via the TRAP

instruction which results in an effective JSR PC using the inverted

R4(linkage) stack. Consequently, return from a function is via a

JMP @-(R4). (Similar to the Fortran threaded code return except the

stack is inverted.) RO is used by the dispatcher but Rl through R3

are preserved.

All function atoms have the indicator SUBR or FSUBR on their

property lists with an integer value associated. The low byte of the

integer gives the number of arguments (not used for FSUBRs since they

always take one list of arguments) and the high byte gives the TRAP code.

The number of arguments passed to a SUBR is checked within EVAL

prior to calling the SUBR for an external call. There is no checking on

internal calls fTOII other functions.

7. PROGRAMMING CONVENTIONS

7.1 NAMING

Labeling of files, entry points, trap codes, etc., is based

on atom names for LISP SUBRs or FSUBRs, e.g., the atom "CONS" represents

a LISP SUBR. The actual assembly code is located in a file "CONS.MAC"

whose global entry point is "CONS". The entry po1nt must be the lowest

core location of the function. The size of the function in bytes is

given by the global "ZCONS". The SUBR is called by "QCONS" which is

equal to TRAP+NNN. The global location "YCONS" contains the pointer

to the atom ''CONS". Utility routines follow this convention also. The

following exceptions occur since the atom names are not unique within

the first 5 characters:

FLOTP==FLOATP

RPLD==RPLACD

STP.GP==STRINGP

MNUSP==MINUSP

TRSET==TRACESET

7.2 REGISTER USAGE

REVIP==REVERSIP

UNTRSET==UNTRACESET

Registers RO through R3 are available for use by any function.

If a "closed'' function uses one of them in a special manner that fact

is noted in the module documentation. Only the explicit error TRAPs

are noted in each module along with the explicit function calls. Unless

otherwise specified the C bit is not significant on exit. If certain

registers are always preserved within a function (and its support

routines, etc.) that fact is also noted.

80

7.3 NOTATION

Notation for stack arguments is as follows: ARGl represents

the first argument to a routine and is located at (RS); ARG2 is located

- at 2(RS), etc. Non-LISP functions which pass arguments on the general

sta~k (SP) refer to the corresponding arguments as ARGl(SP), ARG2(SP), etc.

Register arguments are noted in additional comments.

7.4 MODULE FORMAT

Standard module header format:

<FUNCTION TYPE: UTILITY, SUBR, OR FSUBR>: <OPTIONAL NAME OR TITLE COMMENT>

ENTRY: <NUMBER OF ARGS> <ARGl TYPE>; <ARG2 TYPE>; ..•

(Unless otherwise specified arguments·are assumed to be on RS stack.)

EXIT: <NUMBER OF ARGS> <ARGl VALUE>; <ARG2 VALUE>, .•.

; ERRORS: <ERROR CODE>, <ERROR EXPLANATION>

CALLS: <FUNCTION NAME>, <OPTIONAL EXPLANATION>

<ADDITIONAL COMMENTS>

7.S MISCELLANEOUS RULES

1) Recursive functions shall not save anything on SP stack when

recursing, i.e., the SP stack is not to be used recursively.

2) Only list valued arguments or pointers outside the free

space area may resi4e on the RS stack.

3) All entries on the RS stack must be even. Bit O is used

as a special marker for ERRSET and PROG arguments.

4) S-expressions which are being modified or built should be

saved on the RS stack across CONS or GETC calls, i.e., do

81

not leave a pointer to an S-expression, which is not

pointed to by any other S-expression, in a GPR (Rl to R3)

across a possible GETC call since it will be lost if the

garbage collector is called.

8. BUILDING LISP

8.1 BUILDING LISP FROM THE DISTRIBUTION PACKAGE

LISP sources are distributed as .MAC files. The initialization

- codes and trap handler are located in the file LISP.MAC. Parameters,

definitions, and macros common to all modules are located in the file

LSPMAC.MAC. The remaining modules are for the most part named as

<ATOM>.MAC where ATOM is the corresponding function atom print name

for the function implemented in the module. Utility routines are

labeled as <UTILITY MNEMONIC>.MAC.

To build LISP, first edit LSPMAC.MAC to include the hardware

option switches desired: FPU, FIS, EIS, EAE (the only modules affected

by the switches are: LISP.MAC, ADR.MAC, CMR.MAC, DVI.MAC, DVR.MAC,

IR.MAC, MLI.MAC, MLR.MAC, RI.MAC).

Then assemble each source module as follows:

<FILNAM>,<FI~~AM>/N:TI'M/C = LSPMAC,<FILNAM>

For convenience all the object modules (except LISP.OBJ) should

be inserted in a library, e.g., LSPLIB.OBJ.

The functions included in a LISP load module are controlled

by the option switches NOSTRG, NOARRY, NODBUG, NOMATH, NOAUXF. Only

LISP.MAC is sensitive to these switches. Remnants of string, array, etc.,

code will still exist in other system SUBR's and FSUBR's; however, the

memory savings shown in the table will result.

83

Define:

NOSTRG

NOARRY

NODBUG

NOMATH

NOAUXF

*

Finally link the object modules:

LISP, LISP •_LISP,LSPLIB

To remove the functions:

STRING,EXPLOOE,VAUJE,STRLEN,SEGMENT,
POSITION

ARRAY, Cl.ARRAY

ERRSET,TRACE,TRACESET,UNDEF,UNTRACE,
UNTRACESET

ADDl,DIFFERENCE,DIVIDE,FLOAT,FIX,
GREATERP,LSHIFT,MAX~MfN,MINUS,PLUS,
RANDOM,SUBl,TIMES,QUOTIENT,R.EMAINDER,
RECIP

GENSYM,LOGAND,LOGOR,LOGXOR,SEARCH,
SELECT,SIZE,SUBLIS,SUBST,TEMPUS

Depending on hardware options.

8.2 ADDING A SUBR OR FSUBR

and save approximately

390 words

280 words

·220 words

1240-1600 words*

490 words

When adding a SUBR or FSUBR the user should adhere to the

programming conventions descTibed in Section 7. Other SUBRs may be

called by means of the appropriate global trap code. The proper number

of arguments must be present on the stack prior to the call. Exit from

a SUBR or FSUBR is via JMP @-(R4). When the result of a SUBR or FSUBR

is reduced to a function of an existing quantity a shortcut can be used.

The function may be called using its tTap code QXXXX followed by a

HALT (.WORD 0). The trap dispatcher recognizes this situation and does

• I

not save a return PC on the R4 stack so that exiting from the call~

function will return directly to the caller of the user's SUBR.

If an FSUBR is being written only one argument is passed--

a list of the arguments to the function. The global ALIST contains a

pointer to the association list. If multiple evaluations are done the

ALIST should be saved on the stack and restored prior to each evaluation.

After editing the source, assemble it and insert it in the

object module library. Then edit LISP.MAC to insert an ENTERS or ENTERF

macro in an appropriate place and finish the LISP building opera~ions.

The arguments to the macros ENTERS and ENTERF give the unique universal

name (unique within the first S characters--refer to Section 7), the

number of arguments (not present for ENTERF), and optionally a bracketed

print name if it differs from the first macro argument.

8.3 DELETING A SUBR OR FSUBR

A LISP function may be deleted simply by removing the appropriate

ENTERS or ENTERF macro call within LISP.MAC and re-linking. The removed

function cannot be called by any remaining function or an undefined

global error will result. The conditional assembly parameters at the

start of LISP.MAX define all the dependencies of the system functions.

Thus a better method of removing a function is to simply leave the

associated conditional variable undefined. If there is no associated

conditional variable then the function is an integral part of the

interpreter and cannot be removed.

8.4 ADDING AN APVAL OR INDICATOR

Addina indicators is trivial, only requiring an ENTERI macro

call to be inserted within LISP.MAC. Adding an APVAL requires the

addition of an ENTERA macro call as well as some code. Each APVAL

must be initialized within LISP.MAC and furthermore they mst be

initialized in the same order as they occur in the macro calls •.

86

APPENDIX A

THE LISP INTERPRETER: APPLY AND EVAL DESCRIPTION

The following descriptions are only suggestive of the actual

workings of APPLY and EVAL. In particular, the tracing complications

are left out along with certain error checking features and the multiple

CAR/CDR function implementation.

These descriptions follow those given in the LISP 1.5

Programmer's Manual, which were used as a guide in developing this

implementation.

(APPLY (LAMBDA (FN ARGS) (COND

((NULL FN) NIL)

((ATOM FN) (COND

((GET FN "EXPR) (APPLY expr 1 ARGS))

((GET FN "SUBR) (subr2 (SPREA03 ARGS)))

(T (APPLY (CDR (SASSOC FN (ALIST)

"(LAMBDA () (ERROR "A2)))) ARGS))))

((EQ (CAR FN)"LABEL) (PROGN (SETQ (ALIST) (CONS (CONS (CADR FN)

(CADDR FN)) (ALI ST))) (APPLY (CADDR FN) ARGS)))

((EQ (CAR FN)"FUNARG) (PROGN (SETQ (ALIST) (CADDR FN))

(APPLY (CADR FN) ARGS)))

((EQ (CAR FN)"LAMBDA) (PROGN (SETQ (ALIST) (NCONC

(PAIR (CADR FN) ARGS) (ALIST))) (EVAL (CADDR FN))))

(T (APPLY (EVAL FN) ARGS)))))

87

(EVAL (LAMBDA (FORM) (COND

{{NULL FORM) NIL)

((OR (NUMBERP FORM) (STRINGP FORM)) FORM)
((ATOM FORM) (COND

((GET FORM "APVAL) apval1)

. -,

(T (CDR (SASSOC FORM (ALIST) "(LAMBDA () (ERROR "AS)))))))
((EQ (CAR FORM) "QUOI'E) (CADR FORM))

((EQ (CAR FORM) "FUNCTION) (LIST "FUNARG (CADR FORM) (ALIST)))

((EQ (CAR FORM) "COND) ("COND (CDR FORM)))
((EQ {CAR FORM) "PROO) ("PROO (CDR FORM)))

((ATOM (CAR FORM)) (COND

((GET (CAR FORM) "EXPR) (APPLY expr1 (EVLIS(CDR FORM))))

((GET (CAR FORM) "FEXPR) (APPLY fexpr1 (LIST (CDR FORM) (ALIST))))

((GET (CAR FORM) "SUBR) (subr2
(SPREAD

3 (EVLIS (CDR FORM)))))

({GET {CAR FORM) "FSUBR) ((fsubr2 (CDR FORM)))
((GET (CAR FORM) "ARRAY) ,(INDEX4 (CAR FORM) (EVLIS (CDR FORM))))

(T (EVAL (CONS (CDR (SASSOC (CAR FORM) (ALIST)

"(LAMBDA () iERROR "A9)))) (CDR FORM))))))
(T {APPLY (CAR FORM) (EVLIS (CDR FORM)))))))

1 The value of GET is set aside so that it need not be calculated twice.

This is the meaning of the lower case variable.

2 The value of GET is set aside so that it need not be calculated twice.

This value is an integer atom which contains the TRAP code as well as

the number of arguments expected (for SUBR's only). Control is trans­

fened to the SUBR or FSUBR by constructing the appropriate TRAP

instruction and executing it. This is the meaning of the lower case

variable in the function position.

88

. . ..

3

4

SPREAD is a pseudofunction describing a utility section within the

EVAL code. It effectively takes a single list argument and returns

multiple values by spreading the elements of the list on the RS

(argument transmission) stack.

INDEX is a utility function which locates that portion of the array

space referred to, calculates the offset to the-desired element, and

returns the value of that element.

89

APPENDIX B

EXAMPLE OF CONVERSATIONAL LISP

T HE F iJ L L 0 l.Jl NG E ~< Fl MP L E AP F' EA f;• S rr~ T HE L I SF· 1. 5 F" ROG~: AM r1 E: f;'. ✓ S
11AfWAL.

R LISP
:• /l. : 3/G/T

E'/Al,..:
(S 'r' S I H _.· TS T J AS · ·)
0 0

VALUE IS ..

AFTER
1

El.: i"J L:
< r, i:: F rn E ".­
o 1

0 . 1 : ? S E C O rm S. . .

{T~EOREM <LAMBDA (S) <TH1 NIL NIL (CAOR S) r'.CADDR Sl)))

<TH1
"" ~

4 4 4 5 5 5

<LAMSC•A (Al A·"' r. A :::) ,: c •J rm <<NULL A)
3 4 4 4 56 6

(TH1 A1 A"' .:. NIL NIL C) > < T
6 65 5
< Ct J:· < MEt1E:ER <CAR A) C) (co,,c <<ATOM (CAR
6 "'!t "'!t '7 8: A .. ,:, 1:, ,· I

<TH1 r'.COND <<MEMSE~ (CAR A> Al) Al1
Q A BC 0 D C 8
(T {(CNS ~CARR) Al))> A2 (CDR A) C))
8 C C D CSA A A 98
<T (TH1 A! <COND ((MEMBER (CAR A) A2) A2)
8 Q A BC D D C B
(T (CONS (CAR A) A2))) <CDR A) C))))))))
B C D O CSA A A 98765422

(TH2 (LAMBDA (A1 A2 C1 C2 C) <COND
2 ~ 4 4 4

((NULL C) (TH A1 A2 C1 C2))
56 6 6 65
((ATOM (CAR C)) (TH2 A1 A2 (COND
56 7 7~ 6 7
((MEMBER <CAR C) Cl) Cl) (T
8? A A 9 8 9
<CONS <CAR c:, C1))) C2 <CDR C)) :>

9 A A 987 -, 765 I

<T <TH2 A1
s '5

A2 C1 <COND ,: O1EMBER

<CAR
A
< C C•P

C) C2l C2)
A 9 8

C)))> >
7654?2

".'!'
I

<T
s

89
<CONS <CAR C:>
9 A A

90

,: 2)))

987

54!2

A))

t=l9

.,

<TH <LAf1BOA (A1 R2 C1 C2> <CONO ((NULL A2) (AHO <NOT <NULL C2>>
2 3 4 4 4 56 6 6 7 8 87

<THR <CAR C2) Al A2 C1 (COR C2)))) <T ,: THL <CAR A2) A1 <COR
7 8 8 8 8765 5 6 7 7 .:I
C1 C2)))))

65432

(THL <~ANSOA <U A1 A2 C1 C2> CCOND
2 l 4 4 4

< < E Q (CAR U) < QUOTE NOT)) (TH 1 R C CAO R. U) A 1 A 2 C 1 C 2 >)
56 7 7 7 76 6 7 7 65
<<EQ <CAR U) (QUOTE ANO)) <TH2L ,CDR U) A-i-A2 C1 C2>>
56 7 7 ~ 76 6 7 7 65
<(EQ <CAR U> (QUOTE OR)) <AND (TH1L <CAOR U) Ai A2 C1 C2>
56 7 7 7 76 6 7 8 8 7
(TH1L <CROOR Ul A1 A2 C1 C2)))
7 a a 7 65
(<EQ <CAR U> CQUOTE INPLIES>> <ANO <TH1L <CADOR U) Ai A2 C1
56 7 7 7 ~76 6 7 8 8
C2) <TH1R (CAOR U) A1 A2 Ci C2)))

7 7 a s 7 &5
((EQ <CAR U> (QUOTE EQUlY)) (AND (TH2L CCDR U) Ai A2 C1 C2>
56 7 7 7 76 6 7 8 8 7
(TH2R <COR U) A1 A2 C1 C2)))
7 8 8 7 65
f.T <ERROR <LIST (QUOTE THL> U Ai R2 C1 C2)))
5 6 7 8 8 765
)))

4!2

(THR (LANSOA (U A1 A2 C1 C2) <COND
2 3 4 4 4

((EQ <CAR U) <QUOTE NOT)> CTH1L CCAOR Ul A1 A2 C1 C2))
56 7 7 7 76 6 7 7 65
((EQ (CAR Ul (QUOTE AND)) <AND <TH1R <CADR U> Ai A2 C1 C2>
56 7 7 7 76 _6 7 8 8 7
(TH1R CCADDR U> A1 A2 C1 t2)))
7 8 8 7 65
(<EQ <CAR U) CQUOTE OR>> <TH2R CCOR U> A1 A2 C1 C2)>
56 7 7 7 76 6 7 7 65
<<EQ <CAR U) (QUOTE IMPLIES)) <TH11 <CAOR U) <CAOOR U>
56 7 7 7 76 6 7 7 7 7
A1 A2 C1 C2))

65
<<EQ <CAP. U) <QUOTE EQUIY)) <ANO <TH11 <CADR U) <CAOOR U)
56 7 7 7 76 6 7 8 8 8 8
A1 A2 C1 C2) <TH11 <CADDR U) <CAOR U) Ai A2 C1 C2)))

7 7 8 8 8 8 7 65
<T <ERROR (LIST (QUOTE THR) U Ai A2 C1 C2)))
5 6 7 8 8 765
)))

432

91

A2)
7

,
b

· TH1L (lRMBDA (V Al A2 C1 C2) <CONO
1 ~ 4 4 4

, · < A T O t1 \/ _:i ,: :JR < M E f1 S E !.'. './ C 1)
56 6 ~ 7 7
(TH <CONS V Al) A2 C1 ~2)))

s 7 6S
,: T ,: 0 R (ME MB ER \/
5 6

C2> (TH A1 (CONS V A2) C1 C2 :>)) - - . ,· ,·

\TH1R (LAMBDA (V Al A2 C1 C2) <COND
?. 4 4 4

< (A T O f1 \/ > •~ 0 R < M E ~18 E R \,' A 1)
56 6 6 7
(7H A1 A2 (CONS V Cl)

l'"I
C• s

C2)))
7 65

8 7 65

5 t, -I (TH Al A2 C1 V C2))))
8765

~TH2L <LAMBDA (V Al A2 Cl C2) (COND
4 4 4

<<ATOM <CA~ V)) (OR <MEMBER (CAR V) Ci)
:,6 I 76 6 7 8 8 7
(TH1L (CADR V) <CONS (CAR V) A1) A2 C1 C2)))
~ 8 8 765 I"', 3 3 .,

·=· '•'

i:'CAR \,') r-.., .• .. '. <TH1L <CADR Vl Al <CONS (CARY)
'5 6
A2) C1

-I
8 765

4]2

l'"I ... -,:, ,:, I

· TH2R <LAMBDA <V Al A2 Cl C2) (COND
4 4 4

I ~ATOM (CAR V)) (OR (MEMBER
56 ,· 76 6 7
< TH1R (CADF'. './) -t 8 8

<CA;: '·/ ·,

-I

-:CAR'./) A!)
8 8 I

<CAP'./) C1)
3 9 :::

8

C2)))
765

< TH1R < CAC•~: V) A1 A2 C1 , T < 0 R , ~1 E M 8 E R
5 6 8 8

C2))))
8765

..- 7 8 8
< C O r~ S < ,:: A R • .. • ·,

)))

4]2

92

9

(TH1l <LANBCA <V1 V2 A1 A2 C1 C2) <COND
2 3 4 4 4

<<ATOM Y1) (OR CNEMBER V1 C1) <TH1R Y2 <CONS Yi A1) A2 C1
56 & 6 7 7 7 8 8
C2)))

765
i:T <OR f.t1Et1BER \/1 C2) <TH1R \/2 Ai <CONS Y1 A2) Ci C2)))
,: 6 ":I ., 7 8 8 · 765 .) ,· I

)))

432
":,)

10
-

\iALUE IS ...

. . . AFTER 8. 017 SECOHOS ...
<THEOREM TH1 TH2 TH THL THR TH1L TH1R TH2L TH2R TH11)

E'·lAL:
(TRACE "<THJ
0 1 0

;EOF ON TSTJAB. LSP> SO INPUT IS NOW FROM TT:

\/ALUE IS ...

. . . AFTER 0. 017 SECONDS ...
HIL

EVAL.
,: THE0REl1 "<ARROW(t.OR A (r~OT B)))((IMPLIES<ANO p Q)(EQUIY p QJ
0 1 23 4 4l22l 4 44 e

\/ALUE IS ...

C 1 l LEVEL ARGUMENTS OF TH
fl IL
<<OR A ornr 8)))
NIL
,:(IMPLIES <AND p Q)<EQUIV p Q)))

C 2 J LE'./EL ARGUMENTS JF TH
,: A)
rl IL
fHL
<<I fi PLIES <AND p Q) < E QU 1 '·I p Q)))

t :? l LEVEL ARGUMENTS OF TH
(A)
<<AHO p Q))

HIL
•~<EQUIV p Q))

C 4 l LE\/EL ARGUMENTS OF TH
,: ;] p A)
HIL
tl I!..
<<EQUIV ? Q))

GARBAGE COLLECTIOH NUt1SER 1 AT 439. 93! FREED 1578

C 4 l RESULT OF TH
>+ T • 93

..
.-J

CELLS

I ,,
(3] RESULT
:« T,.

(2 J RESULT
,. T *

[2 J L £\.-'EL
r, ! I.
< i: r~ n r 8 , l

NIL

01-= TH

(IF TH

ARGUMENTS OF TH

•, ,_- I f1 P L I E S •. iW D r· 0 ·, < E G! U I V P

[JJ LEVEL A~GUMENTS OF TH
NIL
rlTL
< 8 ·,
< ,:- I !1 P L I !: S < A rm P Q -, i: E O U I '·/ P Q :>))

C4J LEVEL ARGUMENTS OF TH
rl IL
,_ ,- A rm P Q >)

,· ,:_ E I] u I '·:' p Q))

(SJ LEVEL ARGUMENTS OF TH
,:· Q p)

rHL

[5 J RESULT
·• T,.

C 4 J RESULT
,. T 341

[J) RESULT
'i!T~

[2 J RESULT
-•T*

(1 J RESULT
141 T •

EVAL:
<FREE)
0 0

'·/At. U E IS ...

. AFTER
.108::

OF TH

OF TH

OF TH

OF TH

OF TH

5: J:J: SECONDS ..

c1 . o :: : s E c o rm s . .

94

.,

•

E\/AL.
<RECLAIM)
0 0

VALUE IS ...

GARBAGE COLLECTION NUMBER

. . AFTE~
r~ IL -

3. 667 SEC0f40S ...

2 AT 526. 650 FREED 1763 CELLS

95

.. -
.... ,

