JRTTAS

PROGRAM LIBRARY

DECUS NO. 11-304
TITLE LISP-II
AUTHOR Jeffrey Kodasky
COMPANY Applied Research Laboratories
University of Texas at Austin
Austin, TX 78712
DATE B & January 1977
SCURCE LANGUAGE MACRO

ATTENTION

This is @ USER program. Other than requiring that it conform to submittel and review stondards,
no quality control hes been imposed upon this progrem by DECUS.

The DECUS Program Library is a clecring house only; it dees nct generate or test programs. No
warranty, express or implied, is mode by the contributor, Digital Equipment Computer Users
Society or Digital Equioment Corporation cs to the occuracy or functioning of the program or
related material, end no responsibility s assumed by these perties in connection therewith.

GENERAL INFORMATION

Object Computer(s) __ PDP-l] Source Computer (if different)
File Name _LIsP Version No. .
Title LISP-I '
Author_”. _leffrey Kodesky
Submitter (if other than author)
Affiliation : ' : s mpe in
Address P.O. Box 8029 —
Austin, TX 78712 Cowntry USA
Monitor/Operating System pT.l] DEC No.
Core Storoge Required 16K Starting Address
Peripherals Required)
Other Softwars Required DEC or DECUS No.
Source Language MACRO - Category

Rastrictions, Deficiencies, Problems ralotivel ‘:3_. fras

Date of Planned or Possible Future Revisions

]

TAPES AVAILABLE

Paper Tapes Object Binory [] ObjectAsCll [T] Source [Other

DECtape [] LINCrope [} Format Mogtooe: 7 Track (X 9Track [J 8P1 800

Cbisct Files [] Source Files [X] Cocumentation Files [_] Other
ABSTRACT i

LISP-11 is on interpreter for the LISP language which runs in the backroung under RT-I1.
There are 125 LISP functions implemented with provision to conditionaily assemble cut as momy
as 40 in order to maximimize free spacs.

NOTE: Users who belisve they have found LISP system bugs, omissions or errors in the
documentiation should moil these with printed cutput (where possible) to the
outhor at the above acddress.

7420%-1231-M874

1.

-

oo

(92]

rJ

[SN]

(72 B 93]

(2]

5

-
b

TABLE OF CONTENTS

INTRODUCTION
USING LISP
.1 Running LISP

.2 Entering Programs
2.2.
2.2.

1
2

Inputting LISP Expressions in Conversational Mode

LISP Subsystems

.3 Syntax Summary

2.3.

2.3.

1

-
-

2.

-

oo

Lexical Class Definitions
Partial Syntax Definition
3.2.1 Atoms

-

3.2.2 S-expressions

FUNCTION DEFINITIONS

.1 Functicn Types

.2 Notation

.3 Functions

(2 R V2 N VY 2 I 2
w (93] (2] (92]

(93]

(72 BN V2]

[N V2)
21

-

(7% B V3]

3.

(2 N V2 I 2]

2]

3.

..

1

o

o 92

(93]

~3

3.10

11
12

Elementary Functions and Predicates
List Manipulation Functions
Evaluation Sequence Control Functions
Property List Manipulation Functions
Functionals

Arithmetic Functions and Predicates
Debugging and Error Processing Functions
Miscellaneous Functions

Input/Output Functions

String Functions

Character Functions

Array Functions

SYSTEM ATOMS
ERRCR MESSAGES

.1 Interpretation of Backtrace on Error Condition

.2 Gartage Collection Warning Message

‘o
N

mmmmmubuur—‘lw
(4]

I A
o YNNI o SRR ~ U VL N F% B o

TABLE OF CONTENTS (Cont'd)

6. IMPLEMENTATION CONSIDERATIONS

6.1 General
-6.2 Memory Layout
6.3 Cell Format

6.4 S-expression Representation

6.5 The OBLIST

6.6 Calling Convention

7. PROGRAMMING CONVENTIONS

Naming
Register Usage
Notation
Module Format

NN NN
(VA S VI S I

8. BUILDING LISP

Miscellaneous Rules

8.1 Building LISP from the Distribution Package
8.2 Adding a SUBR or FSUBR

8.3 Deleting a SUBR or FSUBR

8.4 Adding an APVAL or Indicator

APPENDIX A
The LISP Interpreter:
APPENDIX B

APPLY and EVAL Descripticn

Examples of Conversational LISP

1. INTRODUCTION
This manual documents the details of how this program implements
the LISP language on the PDP-11 series computers with the RT-1l1 operating
system. -
This implementation is an interpretive system which is available
to users in both batch and conversational modes of operation.
Familiarity with the LISP language is assumed throughout the
remainder of this manual. The following are suggested references:
Friedman, D. P., THE LITTLE LISPER, (Science Research Associates,
Menlo Park, California, 1974).
Siklossy, L., LET'S TALK LISP, (Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1975).
Weissman, C., LISP 1.5 PRIMER, (Dickenson Publishing Co., Inc.,
Belmont, California, 18967).
McCarthy, J., LISP 1.5 PROGRAMMER'S MANUAL, (M.I.T. Press,

Cambridge, Massachusetts, 1969).

USING LISP

rJ

"~
P

RUNNING LISP

LISP is executable only as a background program under RT-11 and
is invoked by the monitor RUN command: RUN LISPZ The LISP interpreter
responds with '*' signaling that it expects a standard format cpmmand
string containing at most one output specification and multiple input
specifications. Input specifications other than the first are considered
to be LISP subsystems and are lcaded without any echo to the output file
starting with the highest channel. The default output and first input
device is TT:. Any combination of the switches listed in the following
table may occur after any specification, but if a switch appears more
than once the earliest occurrence overrides the others. After the
command line is successfully entered control is transferred to mainlcop
which identifies itself by printing 'Eval:'. At this point LISP expressions
may be input as described in Section 2.2.

Those switches which may be dynamically altered by the user

program have the corresponding atom's print name in the last column.

Switch Meaning Default Atom
/A:NNNN Allocate NNNN words for array space 0

/G Print garbage collection message OFF %G
/1 Inhibit recognition of C...R atoms OFF %1

/L:N Listing control switch 1 5L

[23]

Switch Meaning Default Atom

Value=0 Only user output is printed
1 Input is echoed to output file
2 Input is echoed in internal format
3 Input is echoed with parenthesis count
/M Maximize usable core space by forcing the USR OFF

to swap if possible

/0 Enable octal format for integer printout OFF ‘ %0

/R Output special constructions in LISP readable OFF %R
format . \

/S:NNNN Allocate NNNN words for LISP stacks 1000.

/T Print EVAL timing message OFF 5T

/N Enable wide line (132 col.) output instead OFF W

of TTY (80 col.)
/X Expert switch: allows primitive operations OFF %X
on atoms (CAR, CDR)

/2 Allow generation and legal usage of infinity OFF $Z

Bad switches and extra output specifications are ignored. Default file

extensions for input and output are .LSP and .LST, respectively.

2.2 ENTERING PROGRAMS
2.2.1 INPUTTING LISP EXPRESSIONS IN CONVERSATICNAL MODE
Rub out any CTRL/U work as usual to delete the previous character

and current line, respectively. In addition, since S-expressions may

extend over several lines any character in lexical class 8 (e.g., CTRL/X)
may be used to delete the entire S-expression.
Note that atom names and numbers may not extend over line

boundaries, whereas strings may.

(3]

.2.2 LISP SUBSYSTEMS

A LISP subsystem is a canned set of function and const;nt
definitions which constitutes an extension of the facilities provided
by LISP, e.g., a subsystem may contain a set of application oriented
primitives which can be utilized by the user to construct programs in
some particular application area.

A subsystemAis physically a file containing text in normal

LISP format. It is specified in the command string or can be read in
using the SYSIN function. When specified in the command string, it is
read in, one S-expression at a time, and evaluated. No echo or printing
of results is done. If it is read in under SYSIN, the printing is

controlled by the state of the %L switch at the time SYSIN is called.

~

.3 SYNTAX SUMMARY
2.3.1 LEXICAL CLASS DEFINITIONS

Each ASCII character belongs to a lexical class and that class
determines the significance of the character. The following table lists
the classes and their members. A function (CHLEX) is provided which
changes the lexical ciass of a character but it should be used with care.
Unpredictable results with respect to number representation will be

generated if classes 2, 4, 6, and 13 are altered indiscriminately.

Lexical

Letters except E and Q

LhSS g/ <a>20\ _

ASCII codes 3 140, codes < 40
which are not in class 0 or

Class Members

0 <CR> <LF> <FF> <VT>
1

2 Digits 0-9
3

4 E

5 Q

6 + -

7 4

8

15

9 (

10)

11 [

12]

13

14 s

15 <space> <tab>
16 "
17 '

18 R

19 <empty>

Comments ’ -
End of line tokens
Components of literal atoms

Components of literal atoms and
numbers

Components—of non-standard literal
atoms

Decimal exponent indicator and
component of literal atoms

Octal radix indicator and component
of literal atoms

Numeric sign and component of
non-standard literal atoms

Universal unary operator

All characters not in another
class

Decimal point or dotted pair
indicator

Delimiter
Delimiters
QUOTE token
String token

Comment token

Class 8 is used only as an editing aid when input is from TT:. Typing
any character from lexical class 8 followed by a lexical class 0 character

causes the S-expression currently being input to be deleted.

Class 0 characters delimit atom print names and numbers but have no

other significance.

Class 11 is equivalent to class 9 except that it '"marks'" the oéen paren-

thesis for matching by a class 12 character.

Class 12 characters are equivalent to an arbitrary number of class 10
characters in order to closé all parentheses up to and including the next
level "marked" open parenthesis, e.g., the following groups are equivalent
S-expressions:

a) (X) (X] [X) [X]

b) (((X] (((X))) (((xX)] [C(X] ([xD

¢) (({X]] CCCeX] (CCex)d)

Class 15 characters delimit atom print names and numbers the same as
class 14; however, whereas multiple class 14 characters may not occur
any number of class 15 characters may occur (with or without a single

class 14 character).

Class 16 is provided as a shorthand for quoting S-expressions on input.

"X is equivalent to (QUOTE X) where X represents any S-expression.

Class 17 is used to delimit the beginning and end of a string. All
classes with the exception of 7 (and 17) lose their significance when

they occur within the string field.

)

Class 18 is used to mark the start of a comment field which extends to

the end of the line. All classes (except 0) lose their significance

within a comment field. (Comments are set up just as in MACRO).

Class 19 is a special class which is initially empty. Its members act
like class 1 members except that they are also delimiters; e.g., if | is
put in class 19 then the following S-expression (ﬁELP!) would be repre-
sented as a list of two atoms, the first being HELP and the second !.

If | were not in class 19 then the list would consist of only one atom,

HELP!. ’

2.3.2 PARTIAL SYNTAX DEFINITION
2.3.2.1 ATOMS

There are three types of atoms in this implementation: literal
atoms, numerical atoms, and stréng atoms. Literal atoms ®may contain an
arbitrary number of characters (the print name must be input on a single
line) from classes 1 to 6 except that they must not begin with a class 2
character. Non-standard literal atoms are formed the same way as literal
atoms but any character in classes 7-19 may be included in the name if

it is preceded by a class 7 character.

Numerical atoms are either integer or floating point. Integers are

formed with class 2 characters (octal integers are formed with digits 0-7
terminated by a Q) optionally preceded by a class 6 character. If an
integer is larger than 32767 (or smaller than -32768) it is automatically
converted to floating point (octal integers may not be more than 6 digits--

the least significant 16 bits are kept). Floating point atoms are formed

with classes 2, 4, 6, and 13 in the standard manner. Any numbers too
large to be represented in the normal floating point format are repre-
sented as infinity (infinity prints as 1ES99) if that option is selected.
Whenever an ambiguity arises with respect to the interpretation of "."
a numerical interpretation is attempted first;
e.g., (A.S) is equivalent to (A 0.5) not (A . §5)

(+.B) is a dotted pair, (+.0) is a list of.;;e floating point atom

whose value is 0.

Numbers may not extend over line boundaries.

Integers are terminated by classes 0, 1, 3, 6-12, 14-19. (Class §
terminates the number if a non-octal digit was scanned; else any character
following the class S5 character terminates the octal number field.) Floating
point numbers are terminated by any character which would violate the

format rules (e.g., a second decimal point, a second sign, a second E, etc.).

String atoms are formed by a class 17 character follcwed by an arbitrary
number of characters from classes 1-6, 8-16, 18, 19. Line boundaries
are ignored within a string field. Characters from classes 7 and 17

may be included if preceded by a class 7 character.

Examples: Literal Atoms
legal constructions illeg;l constructions
ANYNUMBEROFCHARS 9CANTSTARTLITERALATOM

431S0K prints as 31SOK
%317

4A is the same atom as A
41234 prints as 1234

+ES +5E

Numerical Atoms

- -

legal constructions illegal constructions
773100Q (truncates to 173100(8)) 9Q

-347Q 1234567Q

+74932 (converted to floating point) +5E

-3.7E+4 -3.7E 4 (two atoms)
-1E1 -El

All literal atoms are represented uniquely in memory. All references
to a given literal atom refer to the same memory location. System atoms
(indicators, APVALS, and functions) ;hould not be used for anything but

their intended purpose (e.g., do not use T as a program variable).

2.3.2.2 S-EXPRESSIONS

The domain of LISP is the set of S-expressions. The most
primitive S-expressions are atoms. Atoms may be combined into more
complex structures, the "unit" of '"'structure’" being the "dotted pair".
The dotted pair consists of a nCAR" part and a "CDR" part. It is
represented on input and output by a character from class 9 or 11,
followed by the CAR S-expression, followed by a character from ﬁlass 13,
followed by the CDR S-expression, followed finally by a character from
class 10 or 12. (Note that thié constitutes a recursive definition
for non-atomic S-expressions, i.e., an S-expression is either an atom
or a dotted pair of two S-expressions.) An arbitrary number of characters
from class 15 or 0 may optionally separate the components of a dotted

pair on input. (A single space is used on output.)

The simplest dotted pair is one in which the CAR and CDR parts are

atomic, e.g.,

Dotted Pairs

legal constructions illegal constructions
(A.B) (.A)

(X.NIL) (B.) T
(B.((A.A).B)) A

(r . 2) (1.2) (this is a list of

one numeric atom)

(A. (B.C)) (A.B.C)

Dotted pairs whose only atomic CDR part is the atom NIL occur
frequently and thus have a shorthand representation as ''lists'. The

syntax for lists is shown below along with the dotted pair equivalents:

{(A.NIL) is equivalent to the list (A)

(A.(B.NIL)) is equivalent to the list (A B) or (A,B)

(A.(B.(C.NIL))) is equivalent to the list (A B C) or (A,B,C), etc.

((A.B).((C.D).NIL)) is equivalent to the list ((A.B) (C.D))

((A.NIL).((B.NIL).NIL)) is equivalent to the list ((A) (B))

The S-expressions in a list may be separated by an arbitrary
number of characters from classes 0 or 15 and at most one character from

class 14,

S-expressions are in general not stored uniquely; i.e., if the
dotted pair (A.B) is found several times each will be stored in a

different memory lccation.

10

A hybrid shorthand format is also available for dotted gg}rs
as shown below (useful for dotted pairs which are '"almost" lists)
(A.(B.(C.D))) may also be‘input as (A BC.D)
or (A,B,C.D)

where A B C D stand for any S-expressions.

The semantics of LISP functions often require lists of, the form
(QUOTE S), S being any S-expression. A special shorthand is available
to input lists of this form. A character from class 16 followed by any
S-expression is equivalent to a "list whose CAR is QUOTE and whose CDR
is a list containing the S-expression.

e.g., "(ANYTHING) is converted on input to (QUOTE (ANYTHING))

"B is converted on input to (QUOTE B)

Output of composite S-expressions is always in list or hybrid
format. A new line is started if the current line is full or if the

next atom print name won't fit on it.

i

3. FUNCTION DEFINITIONS
3.1 FUNCTION TYPES

There are four function types in LISP identified by the indicators
EXPR, SUBR, FEXPR, and FSUBR. Functions of type EXPR and FEXPR are stored
in memory as list structures representing LAMBDA expressions to be executed
in an interprefive manner. Functions of type SUBR and FSUBR are stored
as machine code and executed directly by the computer when calfed. User
functions are either type EXPR or FEXPR while system functions are type
SUBR or FSUBR. Functions of type EXPR and SUBR take a specified number
of arguments and an error will result if an incorrect number is supplied.
Functions of type FEXPR and FSUBR, sometimes called ''special forms', take
an arbitrary number of arguments. Furthermore, these arguments are un-
evaluated when passed to the function. When writing FEXPR functions,
the user should be aware that two arguments are actually supplied; the
first is a list of unevaluated arguments for the function; the second
is the association list (ALIST) as it exists at the time of the function
call.

All LISP functions return exactly one value. The range of this
value depends upon the classification of the function as a normal function,
pseudofunction, or predicate. Normal functions calculate a result which
depends on the arguments which were input. Pseudofunctions perform a
side effect operation (i.e., changing some internal data structures of
the LISP system, printing, etc.) and return a value which may or may not
bear any relation to the arguments given it. Predicates are functions

which return a truth value that depends on some relationship which holds

12

among the arguments. LISP represents false by the atom NIL, while truth
is represented by anything other than NIL. Unless otherwise specified
LISP predicates return the specific atom *T* as their value for truth.

Some pseudofunctions modify the structure of existing S-expressions
and should be used with care. In many cases a portion of one S-expression
may be shared by several other S-expressions. Thus modifying that portion

will change all the S-expressions which share that portion.

3.2 NOTATION .

Throughout this section function descriptions will be given
using EVAL notation. Angle brackets are used to enclose the mnemonic
for the generic argument type which is expected by the function. For
SUBRS the argument class refers to the evaluated arguments that are
passed to the function. For FSUBRS the argument class refers to the
unevaluated arguments as passed to the function. Repeated arguments
or an indefinite number of arguments will be represented by an ellipsis
(...). If an argument supplied to a function does not belong to the
generic type expected by the function unexpected results may occur or
a LISP error may be generated. }he behavior of the functions for un-
expected argument types is also described for those functions which can
detect the error. (Some functions have no way to verify the argument
type but assume it is well formed. An ill-formed argument is then

usually detected only after several nested calls to additional functionms.)

13

Generic mnemonic

<ATOM>, <A>, <Al>, etc.

<BOOL>

<EXP>, <E>, <El>, etc.

<FCTN>, <FCT>, <F1>, etc.

<LAT>

<LIST>

<LITATM>

<NAT>

<NUMBER>, <N>, <N1>, etc.

<SEXPR>, <S>, <SI>, etc.

Description
The argument

string atom.

The argument

must be an atom, either

a literal atom, numeric atom, or

may be any S-expression

but will be interpreted as a truth value:

NIL is false, anything else is true.

The argument
which can be
The argument
e.g., LAMBDA
The argument
atoms.

The argument
The argument
atom.

The argument
S-expression.
The argument
The argument

S-expression.

must be some LISP expression
evaluated by EVAL.

must be a LISP function,
expression or function name.

must be a list of literal

must be a list (or NIL).

must be a single literal

must be some non-atomic

must be a numeric atom.

may be any arbitrary

The function descriptions appear in groupings according to

complexity and usage and logical relation.

An alphabetic index of

system atoms (which includes all system functions) appears in Section 4.

The LAMBDA expressions accompanying many of the function descriptions
should not be taken too literally. In most cases recursion is suggested,

whereas function evaluation is actually iterative.

3.3. FUNCTIONS

3.3.1 - ELEMENTARY FUNCTIONS AND PREDICATES o

(ALPHAP <ATOM1> <ATOM2>)

.PREDICATE; SUBR

ALPHAP compares the print names of its arguments and returns true if
the first argument alphabetically precedes the second argument., It
returns false if the second precedes the first or if they are the same.
The ASCII code sequence is used to determine the 'alphabetization.
ALPHAP can be used to compare literal atoms and string atoms. False

is returned if either argument is numeric or non-atomic.

(ATOM <S>)

PREDICATE; SUBR

ATOM returns true if its argument is either a literal atom, numeric
atom, or string atom. It returns false if the argument is any other

S-expression,

(CAR <NATS>)

NORMAL; SUBR

CAR returns the left part of the dotted pair argument (the contents of
the CAR field). In list terms it returns the first elemen; of the list.

If the argument is atomic an error is generated unless the "expert"

15

switch %X is on. (In the case of a literal atom, a string atom is
returned whose value is the atom's print name. Numeric or string atoms

are returned identically.)

(CDR <NATS>)

NORMAL; SUBR o

CDR returns the right part of the dqtted pair argument (the contents

of the CDR field). 1In list terms it returns the remainder of the list
after the first element is deleted. If the argument is atomic an error
is generated unless the "expert" switch %X is on. (In the case of a
literal atom, the property list (without the atom's print name) of the

atom is returned. In the case of a numeric or string atom NIL is

returned.)

(CAAR <NATS>)
(CADR <NATS>)
(CDAR <NATS>)
(CDDR <NATS>)

(CAAAR <NATS>)

NORMAL; SUBR

Multiple CAR-CDR functions are allowed and may contain an arbitrary
number of A's and D's (subject to the usual restriction that the print
name must be contained on a single input line). Evaluation is from

right to left, i.e., (CADDR <NATS>) = (CAR (CDR (CDR <NATS>))).

(One SUBR is used to implement all variations of multiple CAR-CDR
operations. This SUBR actually scans the currently associated p;;;t

name to perform the CAR-CDR operations. The atoms CAAR, CADR, CDDR, ...,
do not actually exist in the system until they are read in and recognized

by READ.)

(CONS <51> <82>)

NORMAL; SUBR

CONS builds a new composite S-expression. It constructs the dotted

pair (<S1> . <82>) by obtaining “a new cell from the available free cell
list and placing a pointer to <S1> in the CAR field and a pointer to <S2>
in the CDR field.

(Note: (CAR (CONS S1 S2)) = S1 and tCDR (CONS S1 s2)) = S2

and although (CONS (CAR S) (CDR S)) is "EQUAL" to S it is not "EQ" to S.

It is a new cell at a different address.)

(EQ <S1> <52>)

PREDICATE; SUBR

EQ returns true if its two arguments share the same memory location and
false otherwise. Literal atoms‘are stored uniquely in LISP so that

their equality may be determined by simple comparison of machine addresses.

Numbers, strings, and lists are not stored uniquely so EQ will return

false unless the two arguments are physically the same.

(EQN <S1> <§82>)
PREDICATE; SUBR
EQN is similar to EQ except that it also works for numeric or string

atoms as well. EQN will return true if its arguments are EQ or if they

17

are both numeric atoms which have the same value. (They may be numpers
of different types; for mixed types the integer is converted to real
before comparison. Comparison of floating point numbers has the same
dubious merit as in FORTRAN.) 1In addition EQN will return true if both
arguments are strings containing the same characters, or if one argument
is a literal atom and the other is a string atom containing the same
characters asvin the literal atom's print name. In all other c;ses

EQN returns false.

(EQUAL <S1> <§82>) (LAMBDA (S1 S2) (COND
((ATOM S1) (EQN S1 S52))
PREDICATE; SUBR : ((ATOM S2) F)

((EQUAL (CAR S1)(CAR §52))
(EQUAL (CDR S1) (CDR S2)))
(T F)))
EQUAL is used to do similar comparisons involving general S-expressions.
EQUAL returns true if both arguments are equivalent S-expressions.

S-expressions are equivalent if they are both atoms and are EQN, or if

they are composed of the same atoms in the same corresponding positioms.

(GRADP <S1> <S2>)

PREDICATE; SUBR

GRADP returns true if its first argument resides at a lower memory
address than its second argument. It returns false if the first argu-
ment resides at the same or higher address than the second argument.
This function can be used as an arbitrary but consistent ordering
predicate for literal atoms since a given literal atom will always
reside at the same address during the course of a LISP run (unless it

is removed from the OBLIST via REMOB).

(LIST <E1> <E2> ... <E-N>)
NORMAL; FSUBR
LIST takes an arbitrary number of arguments and constructs a new list
such that (EVAL <El1>) is the firsi element (EVAL <E2>) the second, etc.
If no arguments are given the result is NIL.
(Note: As an FSUBR, LIST receives unevaluated arguments. It evaluates
them and returns a list of the results. Contrast this with
(EVLIS (<El1> <E2> ...)). EVLIS receives one argument which has already
been evaluated. EVLIS then eva;uates each element of its list type
argument and returns a list of the results, e.g.,
EVAL: ' EVAL:
(LIST A B C D) is equivalent to - (EVLIS "(A B C D))
and also equivalent to EVAL:
. (CONS A (CONS B
(CONS C (CONS D NIL))))

(MEMBER <S> <LIST>) (LAMBDA (S L) (COND
((NULL L) NIL)
NORMAL; SUBR . ((EQUAL S (CAR L)) L)

(T (MEMBER S (CDR L)))))
MEMBER searches the top level o% <LIST> for the first occurrence of an
element EQUAL to <S>. If such an element is not found the value of
MEMBER is NIL. If it is found the value of MEMBER is ﬁhe remainder of
the list beginning with <S>.
(MEMBER uses internal calls to CAR and CDR to search the list. If the
second argument is not a list and no element is equal to <S>, an error

will be generated when trying to take the CAR of the final CDR atom.)

(MEMQ <S> <LIST>)

NORMAL; SUBR

MEMQ is identical to MEMBER in all respects except that it uses EQ
rather than EQUAL to test for the equality of <S> with an elemént of

<LIST>.

(NOT <BOOL>)

(NULL <S>)

PREDICATE; SUBR

NULL returns true if its argument is the atom NIL. It returns false
for all other S-expressions. (NULL is the same function as the logical

negation function NOT.)

(NUMBERP <S>)
PREDICATE; SUBR
NUMBERP returns true if its argument is a number (fixed point or floating

point). It returns false if its argument is any other S-expression.

(QUOTE <3>)

NORMAL; FSUBR

The value of QUOTE is <S>, t is essentially a do-nothing function
designed to prevent evaluation of its argument. In LISP functions, atoms
are usually evaluated as variables and lists as function calls. When
QUOTE precedes an S-expression, it is effectively a signal to the EVAL
interpreter that the S-expression represents actual data to the function
and is not to be evaluated. Like any FSUBR the arguments are not
evaluated when passed to QUCTE. QUOTE merely returns the unevaluated

first argument as its value.

20

(Since QUOTE occurs frequently and its function is so trivial, it is
not actually implemented as an FSUBR. The atom QUOTE is used as an
indicator and specifically recognized by EVAL. In particular, there

is no FSUBR indicator or value on the property list of QUOTE.)

(RPLACA <NATS> <S>)

PSEUDOFUNCTION; SUBR

RPLACA replaces the CAR field of its first argument with a pointer to

its second argument. The value of RPLACA is its first argument which

has been physically modified. (Contrast this with (CONS <S> (CDR <NATS>))
which forms an equivalent S-expression result without modifying <NATS>.
Note, however, that RPLACA can be used to create circular struétures.
These circular structures could cause‘infinite loops in certain processes
such as printing.) If the first argument is atomic the value of RPLACA

3
is its first argument unchanged (i.e., the call is ignored).

(RPLACD <NATS> <S>)

PSEUDOFUNCTICN; SUBR

RPLACD replaces the CDR field oflits first argument with a pointer to

its second argument. The value Bf RPLACD is its first argument which

has been physically modified. (Contrast this with (CONS (CAR <NATS>) <S8>)
which forms an equivalent S-expression result without modifying <NATS>.
Note, however, that RPLACD can be used to create circular lists.

Circular lists should be used with extreme caution since they could

cause infinite loops in certain processes such as printing.) If the
first argument is atcmic the valus of RPLACD is its first argument

unchanged (i.e., the call is ignored).

21

(SET <LITATM> <S8>) (LAMBDA (L S) (COND
((SASSCC L "ALIST NIL) -
PSEUDOFUNCTION; SUBR (RPLACD (SASSOC L "ALIST NIL) S))
(T (PUT L "APVAL S))))
SET is the principal value assignment function. The value of SET is
its second argument. If <LITATM> has an associated value on the ALIST
it is changed to <8>. If it is not on the ALIST it is made a global
by putting <S> on its property list with the indicator APVAL. (When
evaluating a literal atom, EVAL first checks for a global value and if
none exists it then checks for a binding on the ALIST.)
A épecial construction exists for altering the evaluation context:
(SET (QUOTE (ALIST)) <S>) makes <S> the new association list. (Refer
to MAINLOOP, EVAL, APPLY, and ALIST.) The user should be aware that

no protection is provided that would prevent changing the value of the

system globals T, F, OBLIST, NIL, *T* (such changes would be catastrophic).

(SETQ <LITATM> <EXP>)

PSEUDOFUNCTION; FSUBR

SETQ is similar to SET except the first argument is not evaluated.
e.g., EVAL: EVAL:

(SETQ A S) is equivalent to (SET "A S)

(STRINGP <S8>)
PREDICATE; SUBR
STRINGP returns true if its argument is a string. It returns false if

it is any other S-expression.

22

3.3.2 LIST MANIPULATION FUNCTICNS

(APPEND <LIST> <S>) (LAMBDA (L S) (COND
((NULL L) S)
NORMAL; SUBR (T (CONS (CAR L) (APPEND (CDR L) S)))))

APPEND is usually used to concatenate two lists. The first argument is
copied and its terminal NIL is replaced with a pointer to <S>.

(APPEND uses internal calls to CAR and CDR. 1If the first argument is not
a list, then an error will be generated when trying to take the CAR of

the final CDR atom.)

(CONC <EXP1> <EXP2> ...)
PSEUDOFUNCTION; FSUBR
CONC is similar to NCONC in that it concatenates its arguments into
one list. However, CONC accepts an Qrbitrary number of (unevaluated)
arguments, evaluates them, and ;hen concatenates them. The value of
CONC is its evaluated first argument with its final CDR modified.
EVAL: EVAL:
(CONC A B O) is equivalent to (NCCNC A (NCONC B C))

(Refer to the cautions under NCONC and RPLACD.)

2

(COPY <S>)

NORMAL; SUBR

COPY returns a new S-expression which is equivalent to its argument
but which uses different cells. Dotted pairs, numbers, and strings
are copied completely. Literal atoms are not copied (they are stored

' uniquely and always reside in tﬁe same memory location).

(EFFACE <S> <LIST>) (LAMBDA (S L) (COND
((NULL L) NIL)
PSEUDOFUNCTION; SUBR - ((EQUAL (CAR L) S) (CDR L))

(T (RPLACD L (EFFACE S (CDR L))))))

23

EFFACE removes the first occurrence of <S> as an element of <LIST> and
returns its modified second argument.
Contrast EFFACE with the following function which produces an equivalent
list result without modifying the existing S-expressions.
(DELETE (LAMBDA (S L) (COND
((NULL L) NIL)
((EQUAL (CAR L) S) (CDR L)J—
(T (CONS (CAR L) (DELETE S (CDR L}))))
(EFFACE uses internal calls to CAR and CDR to search the list. If the

second argument is not a list and no element is equal to <S>, an error

will be generated when trying to take the CAR of the final CDR atom.)

(LENGTH <S>) (LAMBDA (S) (COND
((ATOM S) 0)
NORMAL; SUBR (T (ADD1 (LENGTH (CDR S))))))

LENGTH returns a fixed point numeric atom whose value is equal to the
number of CAR elements in its argument. If <S> is atomic it returns 0.
If <S> is a list it returns the number of elements in the list. If <S>
is not a list then length ignores the final CDR atom and counts the

elements as if it were a list.

(NCONC <LIST> <8>) (LAMBDA (L S) (COND
((NULL L) S)
PSEUDOFUNCTION; SUBR ((NULL (CDR L)) (RPLACD L S))

(T (RPLACD L (NCONC (CCR L) S))) D
NCONC joins its two arguments into a single S-expression by modifying
its first argument. The value of NCONC is its first argument with the
terminal NIL replaced by a pointer to <S>. Contrast NCONC with APPEND,
which yields an equivalent result without modifying existing S-expressions.
(Refer to the cautions under RPLACD.)
(NCONC uses internal calls to CAR and CDR. If the first argument is

not a list then an error will result.)

24

(PAIR <LIST1> <LIST2>) (LAMBDA (L1 L2) (COND
((OR (NULL L1)(NULL L2)) NIL] ™
NORMAL; SUBR ’ (T (CONS (CONS (CAR L1)(CAR L2))
(PAIR (CDR L1)(CDR L2))))))
PAIR creates a new list whose length is equal to the length of the
shorter of its two arguments lists. The value of PAIR is a list of
dotted pairs, the CAR of each dotted pair being an element of <LIST1>
and the CDR being the corresponding element of <LIST2>.
EVAL:
(PAIR "(A B C)"(D E F G))
VALUE IS ...:
((A.D) (B.E) (C.F))

(PAIR uses internal calls to CAR and CDR. If either argument is not

a list then an error will result.)

(REVERSE <LIST>) (LAMBDA (L) ! (COND
((NULL L) NIL)
NORMAL; SUBR (T (NCONC (REVERSE (CDR L)) (CONS(CAR L) NIL))))

REVERSE returns a new list whose elements are the same as in its argument
list, except that the top level order is reversed. Sublists are not
reversed.
EVAL:
(REVERSE "(A (B C)(D E) F))
VALUE IS ..
(F (DE) (BC) A)
(REVERSE uses internal calls to CAR and CDR. If its argument is not

a list an error will result.)

25

(REVERSIP <LIST>)

PSEUDOFUNCTION; SUBR

REVERSIP returns an S-expression equivalent to that returned by REVERSE
except that <LIST> is modified to effect the reversal.

(REVERSIP uses internal calls to CDR. If its argument is not a list

an error will result.)

(SIZE <S>)
NORMAL; SﬁBR
SIZE returns a fixed point numeric atom which gives the number of actual
memory cells which are needed to represent <S> exclusive of those required
to store the atoms themselves.
e.g., (SIZE <ATOM>) = 0

(SIZE <LAT>) = (LENGTH <LAT>)

(SIZE <S8>) & (SIZE (COPY <S>)) since copy does not make use of

common sub S-expressions.

(SUBLIS <LIST> <S>) (LAMBDA (L S) (COND
((NULL L) S)
NORMAL; SUBR (T (SUBLIS (CDR L)

(SUBST (CDAR L) (CAAR L) S))) 1))

SUBLIS receives a list of dotted pairs (such as the output of PAIR) as
its first argument. The value of SUBLIS is a new S-expression obtained
from <S> by substituting the right part of each dotted pair for every
occurrence of the lefﬁ part (the original <S> is not modified).

EVAL:

(SUBLIS "((A. 1)(B. XTRA)(C Y 2)) "(A (B AC) Q)
VALUE IS ...

(1 XTRA 1 (Y 2)) (Y 2))

26

(SUBLIS uses internal calls to CAR and CDR. If its first argument is

not a list of dotted pairs an error will result.)

(SUBST <S1> <S2> <S83>) (LAMBDA. (S1 S2 S3) (COND
((EQUAL S2 s3) S1)
NORMAL; SUBR ((ATOM S3) s3)

(T (CONS (SUBST S1 S2 (CAR S3))
(SUBST S1 S2 (CDR S3))))))

SUBST returns a new S-expression obtained from <§5; by substitu;ing <S1>
for each occurrence of <S2> within <S3>. (The original <S3> is not
modified.)
EVAL:
(SUBST "NEW "OLD ''(OLD SHOES ((MY OLD (OLD) HAT)) NEW NOSE))
 VALUE IS ...
(NEW SHOES ((MY NEW (NEW) HATj) NEW NOSE)
3.3.3 EVALUATION SEQUENCE CONTROL FUNCTIONS
(AND <EXP1> <EXP2> ...)
PREDICATE; FSUBR
AND evaluates its arguments one at a time from.left to right until it
encounters a null result or the:end of the argument list. If all the
arguments evaluate to non-null results the value of AND is true. If
any argument evaluates to NIL no further arguments are evaluated and
the value of AND is NIL. If no arguments are supplied to AND the

result is true.

(APPLY <FCTN> <LIST>)

NORMAL; SUBR

The value of APPLY is the result of applying the function <FCTN> to the
list of arguments <LIST>. The first argument to apply must be either

a LAMBDA or LABEL expression or the name of a function of type EXPR

or SUBR.

(Refer to appendix A for an outline of the APPLY implementation:)

(COND <LIST1> <LIST2> ...)

NORMAL; FSUBR

Each argument to COND is a list of one or more expressions. COND
proceeds by evaluating the first expression of the first list. If the
first expression evaluates to NIL then COND proceeds to the next list
(leaving the remaining expressions of the first list unevaluated) and
evaluates its first expression. COND continues in this fashion until
the first expression of one of the argument lists evaluates to a non-
null result. In this case COND evaluates the remaining expressions i
the list and returns the value of the last one. (If none follow the
first, the value of COND is NIL.) No further arguments of COND are
evaluated. If no first expressions evaluate to non-null results or if
no arguments are given to COND the value returned by COND is NIL.
(COND uses internal calls to CAR, CDR, and PROGN to search and evaluate
the lists of expressions. If the selected <LIST> is not actually a

list, an error will result within PROGN.)

28

(EVAL <EXP>)
NORMAL; SUBR
EVAL returns the result obtained by evaluating the evaluated argument
passed to it.
EVAL:
(EVAL (QUOTE F))
VALUE IS ...
NIL
The top level function EVAL evaluates (QUOTE F) to F and passes it to
the SUBR EVAL which evaluates F to NIL. Evaluation takes place within
the current context (és defined by the association list, ALIST).

(Refer to appendix A for an outline of the EVAL implementation.)

(EVALQUOTE <FCTN> <LIST>) (LAMBDA (FN ARGS) (COND
((OR (GET FN '"FEXPR) (GET FN "FSUBR))
NORMAL; SUBR (EVAL (CONS FN ARGS)))

(T (APPLY FN ARGS))))
EVALQUOTE is similar to APPLY in that its value is the result obtained
by applying the function <FCTN> to the list of arguments <LIST>. However,

EVALQUOTE will also properly handle functions of type FEXPR or FSUBR.

(EVLIS <LIST>) (LAMBDA (L) (COND
((NULL L) NIL)
NORMAL; SUBR (T (CONS (EVAL (CAR L))

(EVLIS (CDR L)))) 1))
EVLIS receives a list of expressions and returns a new list formed by

evaluating each successive expression.

EVAL:
(EVLIS "("A (CDR "(B C)) T))
VALUE IS ...

(A (C) *T)

(FUNCTION <FCTN>)

PSEUDOFUNCTION; FSUBR

The argument of FUNCTION is expected to be a function name or a LAMBDA
expression. FUNCTION is required in certain very special cases to
prepare an environment for a functional argument being passed to another
function. Its value is the so-called FUNARG expression. In most cases
when passing a functional argument QUCTE may be used interchangeably
with FUNCTION. However, if any free variables exist within the function
definition, then FUNCTION essentially causes the bindings at the time
FUNCTION is entered to be used at the time the argument function is
evaluated (unless a 'mon-local" SET was performed).

(Refer to appendix A for an outline of the implementation of FUNCTION
with respect to APPLY and EVAL.)

(There is no actual FSUBR implemented for FUNCTION. The atom is used

as an indicator and specifically recognized by EVAL.)

(GO <LITATCOM>)

PSEUDOFUNCTION; FSUBR

GO is used to control the execution sequence within a PROG expression.
The argument must be one of the atoms which are used as labels within
the most recent PROG expression.

(Refer to the example under PRCG.)

30

(OR <EXP1> <EXP2>'...)

PREDICATE; FSUBR

OR evaluates its arguments one at a time from left to right until it
encounters a non-null result or the end of the argument list. If all
the arguments evaluate to NIL the value of OR is NIL. If any argument
evaluates to a non-null result no further arguments are evaluated and
the value of OR is true. If no aréuments are supplied to OR thé result

is NIL.

(PROG <LAT> <S1> <82> <83> ...) °

PSEUDOFUNCTION; FSUBR

The PROG function is used to form iterative functions as opposed to
recursive functions. The first arguﬁent is a list of atoms which serve
as local variables within the scope of the PROG expression. (No explicit
check is made that <LAT> is well;formed.) These variables are initialized
to NIL by dotting each with NIL and appending them to the association
list. The remaining arguments are either literal atoms which serve as
labels or else expressions which serve as statements of a sequential
progfamming language. The expressions are evaluated in order until a

GO or RETURN function is encountered or the end of the argument list

is reached. In the latter case the value of PROG is NIL. If RETURN

is encountered then PROG returns as its value the result of the RETURN
expression. If GO is encounter;d the sequential execution is continued
starting with the expression following the atom (label argument) which

is the argument to GO. GO and RETURN may be executed in other functions

which are called from within a PROG expression.

e.g., the following is an iterative program to generate the reverse of
a list (compare with the LAMBDA expression provided for REVERSE).
(LAMBDA (L) (PROG (U V)

(SETQ U L)
LABL (COND ((NULL U) (RETURN V)}))

(SETQ V (CONS (CAR U) V))
(SETQ U (CDR U})
(GO LABL))}
(PROGN <EXP1> <EXP2> ...)
PSEUDOFUNCTION; FSUBR
PROGN is used to perform a simple sequence of operations where LISP
normally allows only one. PROGN evaluates each of its arguments in

turn and returns the value of the last one as the value of PROGN. If

no arguments are given to PROGN the value returned is NIL.

(RETURN <S>)

PSEUDOFUNCTION; SUBR

RETURN causes LISP to exit the most recent PROG expression with <S> as
the value of PROG.

(Refer to the example under PROG.)

{SELECT <EXP1> <LIST1> <LIST2> ... <LIST-N> <EXP2>)

NORMAL; FSUBR

SELECT is similar to COND in that it selectively evaluates its arguments
until a test is satisfied at which time it terminates. Each argument to
SELECT except the first and last are assumed to be lists of expressions.
SELECT proceeds as follows: <EXP1> is evaluated. Then the first

expression of the next <LIST> argument is evaluated. If the result is

32

not EQUAL to the value of <EXP1>, then none of the remaining expressions
in the <LIST> are evaluated and the first expression of the next <LIST>
is evaluated. SELECT continues in this way until a result is found
equal to the value of <EXP1> or the end of the <LIST>s occurs. In the
latter case the value of SELECT is the result of evaluating <EXP2>. In
the former case the remaining expressions of the <LIST> are evaluated
and the value of the last one is the result of SELECT. If none %ollow
the first then the value of <EXP1>, which is equal to the value of the
first expression in the list, is:the result of SELECT.

(SELECT uses internal calls to CAR, CDR, PROGN, and EVAL to search and
evaluate its arguments. If the selected <LIST> is not in fact a list

an error in CAR or CDR will occur within PROGN.)

3.3.4 PROPERTY LIST MANIPULAT&ON FUNCTIONS
Every literal atom in LISP has a property list associated with it. The
property list contains items of information about, or properties of, the
atom. Each property is characterized by an indicator (which is usually
a literal atom itself, although this is not necessary) and an associated
S-expression. The property list looks as follows:

(<INDICATOR1> <PROPERTY1> <INDICATORZ> <PRCPERTY2> ...)
The indicators EXPR, SUBR, FESPR, FSUBR, and APVAL have special significance |
within LISP and should be used with care.
(Every literal atom has an implied property, its print name (PNAME). The
PNAME cannot be obtained or changed using GET, PROP, or PUT but must be

handled by special functions.)

(DEFINE LIST f (LAMBDA (L) (DEFLIST L "EXPR))
PSEUDOFUNCTION; SUBR N
DEFINE is used to put EXPR function definitions on the property lists of
atoms (using the indicator EXPR). The argument is assumed to be a list
of lists each of which is length two. The first element of the sublist
is a literal atom which is the function name. The second element is the
definition. The value of DEFINE is a list of the function names.
(See notes under DEFLIST.)
e.g., EVAL:
(DEFINE ' (
(FUNCTIONONE (LAMBDA (ETC) ETC))
(FUNCTIONTWO (LAMBDA (ETC) ETC))))
VALUE IS ...

(FUNCTIONONE FUNCTIONTWO)

(DEFLIST <LIST> <LITATM>) (LAMBDA (L I) (COND
((NULL L) NIL)
PSEUDOFUNCTICON; SUBR (T (CONS (PUT (CAAR L) I (CADAR L))

(DEFLIST (CDR L) IJ))))
DEFLIST is used to simultaneously assign a new property to a number of
different atoms. The first argument is a list of lists each of which is
length two. The first element of the sublist is a literal atom to which
the property (the second element of the sublist) is assigned with the
indicator <LITATM> (the second argument). The value of DEFLIST is a
list of all the atoms which have had a property assigned.
(DEFLIST uses internal calls to CAR, CDR, and PUT. If the first
argument is ill-formed an error will most likely result within CAR or
CDR.)

(Refer to notes under PUT.)

(GET <LITATM> <S>) (LAMBDA (L I) (COND .
((PROP L I NIL) (CADR (PROP L-FNIL)))
NORMAL; SUBR (TF))

GET is the inverse of PUT in thaé it retrieves the value associated with
the indicator <S> on the property list of <LITATM>. If <S> is not on
the property list the value of GET is NIL.

(Refer to notes under PUT and PROP.) —

(No check is made for <LITATM>. If it is not in fact atomic NIL will

most likely be the result of GET.)

(PROP <LITATM> <S> <FCTN>)

NORMAL; " SUBR

PROP is similar to GET in that it searches the property list of <L1TAIM>
for the indicator <S>. However, if if is found PROP returns the entire
property list beginning with <S>. 1If it is not found then <FCTN>, which

must be a function of no arguments, is applied and the result is the

value of PROP.

(PUT <LITATM> <S1> <S2>)

PSEUDOFUNCTION; SUBR

PUT searches the property list ;f <LITAT™> for the indicator <S1>; if
it is found the associated property value is changed to <S82>; if it is
not found a list of the indicator <S1> followed by the property value
<S2> is appended to the property list of <LITATM> (in this way an
indicator appears at most once on any given property list). The value
of PUT is <LITATM>.

(Note: PUT modifies the existing property list structure if the

indicator is found.)

(REMPROP <LITATM> <S>)

PSEUDOFUNCTICN; SUBR

REMPROP removes the property whose indicator is <S> from the propé;éy
list of <LITATM>. (The indicator and associated value are removed from
the property list by physically médifying the list structure.) The value

of REMPROP is true if the indicator was found and deleted, and false if

the indicator was not present to start with. —

3.3.5 FUNCTIONALS

(MAP <LIST> <FCTN>) (LAMBDA (L FN) (COND
((NULL L) NIL)
PSEUDOFUNCTION; SUBR (T (PROGN (APPLY FN (LIST L))

(MAP (CDR L) FN))))
MAP applies the function <FCTN> to <LIST> and successive non-null CDRs
of <LIST>. <FCTN> must describe a function of only one argument. The
value of MAP is always NIL. MAP is always used to perform some side
effect operation.
(If the first argument to MAP, MAPC, MAPCAR, MAPLIST, MAPCON is not a list

the final CDR is ignored.)

(MAPC <LIST> <FCTN>) (LAMBDA (L FN) (COND
((NULL L) NIL)
PSEUDOFUNCTION; SUBR (T (PROGN (APPLY FN (LIST (CAR L)))

(MAPC (CDR L) FN})) 1))
MAPC is similar to MAP except that <FCTN> is applied to the CAR of

successive CDRs of <LIST>. The result of MAPC is always NIL.

(MAPCAR <LIST> <FCTN>) (LAMBDA (L EN) (COND
((NULL L) NIL)
NORMAL; SUBR (T (CONS (APPLY FN (LIST (CAR L)))

(MAPCAR (CDR L) FN})))))
MAPCAR is similar to MAPC except that the result of MAPCAR is a list
of all the results of applying <FCTN> to the CAR of successive CDRs

of <LIST>.
36

e.g., EVAL:
(MAPCAR "(A B C D) (LAMBDA (X) (CONS X NIL)))
VALUE IS ... |
((A) (B) (©) (D))

(MAPCON <LIST> <FCTN>) (LAMBDA (L FN) (COND

((NULL L) NIL)
PSEUDOFUNCTION; SUBR (T (NCONC (APPLY FN (LIST L))

(MAPCON (CDR L) FN)J)))

MAPCON is similar to MAP excepttzhat the result of MAPCON is a list
formed by concatenating all the results of applying <FCTN> to successive
CDRs of <LIST>. The result of each application of <FCTN> must therefore
itself be a list. (Note that the list structure is modified by the
concatenation.)
e.g., EVAL:

(MAPCON '"(A B C D) "(LAMBDA (X) (CONS X NIL)))

VALUE IS ..
((ABCD) (BCD) (CD) (D))

(MAPLIST <LIST> <FCTN>) (LAMBDA (L FN) (COND
((NULL L) NIL)
NORMAL; SUBR (T (CONS (APPLY FN (LIST L))

(MAPLIST (CDR L) FN)))))
MAPLIST is similar to MAP except that the result of MAPLIST is a list
of all the results of applying <FCTN> to successive CDRs of <LIST>.
e.g., EVAL:
(MAPLIST '"(A B C D) "(LAMBDA (X) (CONS X NIL)))
VALUE IS ...
(((A BCD)) ((BCD)) ((CD)) ((D}))

37

(SASSOC <S> <LIST> <FCTN>) (LAMBDA (S L FN) (COND
((NULL L) (APPLY FN NIL)))

NORMAL; SUBR ((EQUAL S (CAAR L)) (CAR L))

: (T (SASSOC S (CDR L) FN))))
SASSOC searches its second argument, which must be a list of dotted
pairs, for an clement whose CAR is EQUAL to <S>. 1If such an element
is found it is returned as the value of SASSOC. If none is found then
<FCTN>, which must be a function of no arguments;—is applied and the
result is the value of SASSOC.
e.g., EVAL:

(SASSCC "B "((A . 1) (BX) (C. 2) (B . 5)) NIL)
VALUE IS ...
(8 X)
(SASSOC uses internal calls to CAR and CDR to search <LIST>. If it is
ill-formed an error will result.)
(SEARCH <LIST> <FCT1> <FCT2> <FCT3>) (LAMBDA (L F1 F2 F3) (COND
({(NULL L) (APPLY F3 (LIST NIL}))
NORMAL; SUBR ((APPLY F1 (LIST L))
(APPLY F2 (LIST L)))
(T (SEARCH (CDR L) F1 F2 F3)))

SEARCH applies <FCT1>, which must be a function of one argument, to
<LIST> and successive CDRS of <LIST> until a non-null result is obtained
or the end of <LIST> is reached. In the latter case <FCT3>, which must
be a function of one argument, is applied to NIL and the result is the
value of SEARCH. In the former case the value of SEARCH is the resuit
of applying <FCT2>, which must also be a function of one argument, to
the remaining portion of the list. Thus SEARCH is used to apply some

function to a portion of a list depending on a condition which must be

met by some elements of the list.

3.3.6 ARITHMETIC FUNCTIONS AND PREDICATES

Unless otherwise noted arithmetic functions will take either fixed point
or floating point numbers and convert them if necessary in order to
perform their specific operation. If integer overflow occurs the result
of the computation is automatically converted to floating point. If
floating point overflow occurs an error is generated unless legal opera-
tions with infinity are to be allowed. (I1legal operations with infinity
are noted in the function descriptions.) A non-numeric argument to an
arithmetic function will generate an illegal argument error unless
otherwise noted. Functions of multiple arguments will resolve the

mixed mode problem by converting integers to floating point and performing

floating point operations.

(ADD1 <NUMBER>)
NORMAL; SUBR
ADD1 returns a number of the same type as its argument, if possible,

whose value is <NUMBER> + 1.

(DIFFERENCE <N1> <N2>)

NORMAL; SUBR

DIFFERENCE returns a number whose value is <N1> - <N2>.

(® - » is always illegal.)

(DIVIDE <N1> <N2>) (LAMBDA (N1 N2) (LIST (QUOTIENT N1 N2)
(REMAINDER N1 N2)))

NORMAL; SUBR

DIVIDE returns a list of two numbers, the first is (QUOTIENT <N1> <N2>)

and the second is (REMAINDER <N1> <N2>).

(Refer to notes under QUOTIENT and REMAINDER.)

39

(FIX <NUMBER>)
NORMAL; SUBR
FIX rcturns an integer type atom (a copy of the argument is returned
if it was already an integer). The integer returned is obtained by
truncating the magnitude of <NUMBER>. An error is generated if the
number is too large for representation as an integer.
e.g., EVAL:
(FIX 4.9)
VALUE IS ..
4
EVAL:
(FIX -4.9)
VALUE IS

-4

(FIXP <S>)
PREDICATE; SUBR

FIXP returns true if its argument is a fixed point numeric atom and

false if it is any other S-expression.

(FLOAT <NUMBER>)

NORMAL; SUBR

FLOAT returns a floating point numeric atom (a copy of the argument is

returned if it was already a floating point atom) whose value is equal

to <NUMBER>.

40

(FLOATP <S8>)
PREDICATE; SUBR
FLOATP returns true if its argument is a floating point number. It

returns false if it is any other S-expression.

(GREATERP <N1> <N2>)

PREDICATE; SUBR

GREATERP returns true if <N1> is algebraically greater than <N2>. It
returns false if <N1> is less than or equal to <N2>. 1If either argument

is floating point then the comparison is done in floating point.

(INFP <S>)
PREDICATE; SUBR
INFP returns true if its argument is either plus or minus infinity.

It returns false if it is any other S-expression.

(LESSP <N1> <N2>) (LAMBDA (N1 N2) (GREATERP N2 N1))
PREDICATE; SUBR

LESSP returns true if <N1> is algebraically less than <N2> and false

if it is greater than or equal to <N2>, If either argument is floating

point then the comparison is done in floating point,

(LOGAND <N1> <N2> ...)

NORMAL; FSUBR

LOGAND returns an integer atom which is obtained by evaluating its
arguments and forming the bit by bit logical AND. Any floating point

atoms are converted to integer prior to ANDing.

4

(LOGOR <N1> <N2> ...)

NORMAL; FSUBR

LOGOR rcturns an integer atom which is obtained by evaluating its
arguments and forming the bit by bit logical inclusive OR. Any floating

point atoms are converted to integer prior to ORing.

(LOGXOR <N1> <N2> ...)

NORMAL; FSUBR

LOGXOR returns an integer atom which is obtained by evaluating its
arguments and forming the bit by bit logical exclusive OR. Any floating

point atoms are converted to integer prior to ORing.

(LSHIFT <N1> <N2>)

NCRMAL; SUBR

LSHIFT returns an integer atom obtained by performing a shift on the

integer value of <N1>, <N2> is the shift count: if <N2> is positive
the shift is end-around to the left by <N2> bits; if <N2> is negative

the shift is end-off (with sign replication) to the right by - <N2> bits.

{(MAX <N1> <N2Z> ...)
NORMAL; FSUBR
MAX evaluates all its arguments and returns a copy of the argument which

is algebraically largest.

(MIN <N1> <N2> ...)
NORMAL; FSUBR
MIN evaluates all its arguments and returns a copy of the argument which

is algebraically smallest.

42

(MINUS <NUMBER>)
NORMAL; SUBR

MINUS returns a numeric atom whose value is the negative of <NUMBER>.

(MINUSP <S>)
PREDICATE; SUBR

MINUSP returns true if its argument is a numeric atom whose value is

less than zero. It returns false if it is any other S-expression.

(ONEP <S>)
PREDICATE; SUBR
ONEP returns true if its argument is a numeric atom whose value is 1

(or 1.0). It returns false if it is any other S-expression.

(PLUS <N1> <N2> ...)
NORMAL; FSUBR
PLUS evaluates all its arguments and returns a numeric atom whose value

is their sum. (® - = is always illegal.)

(QUOTIENT <N1> <N2>)

NORMAL; SUBR

QUOTIENT returns a numeric atom whose value is <N1>/<N2>. QUCTIENT
always returns a floating point result (unless <N1> and <N2> are both
integers and <N2> divides <N1>).

(0/0 and =/» are always illegal.)

(RANDOM <BOOL>)

NORMAL; SUBR

RANDOM returns a pseudo-random number between 0.0 and 1.0. If <BQOL>
is NIL the sequence is reinitiated. Calls with <BOOL> non-null return

the next number in the sequence.

{RECIP <NyMBER>) - {LAMBDA (N) (QUOTIENT 1 N))
NORMAL; SUBR
RECIP returns a numeric atom whose value is equal to the reciprocal of
<NUMBER>. (This is of floating point type unless <NUMBER> = 1.)
(REMAINDER <N1> <N2>) {(LAMBDA (N1 N2) (DIFFERENCE N1

(TIMES N2 (FIX (QUOTIENT N1 N2)))))
NCRMAL; SUBR
REMAINDER returns a numeric atom whose value is calculated in the
usual manner:

REMAINDER = <N1> - integer part (<KNI>/<N2>) * <N

(Due to the fact that FIX truncates the magnitude of its argument the
remainder will always be the same sign as <NI>.)
REMAINDER will return a fixed point result if <N1> and <N2> are both
fixed point, otherwise floating point. An error will be generated if
the quotient is too large for integer format (i.e., >32767 or <-32768).
(The following are undefined and illegal operations: (REMAINDER 0 0)

(REMAINDER = X) where X # 0).

{SUB1 <NUMBER>)
NORMAL; SUBR

SUB1 returns a number whose value is <NUMBER> - 1.

(TIMES <N1> <N2> ...)
NORMAL; FSUBR
TIMES evaluates all its arguments and returns a numeric atom whose value

is their product. (0 x = is always illegal.)

(ZEROP <S>)
PREDICATE; SUBR
ZERQP returns true if its argument is a numeric atom whose value is
zero. It returns false if it is any other S-expression.
3.3.7 DEBUGGING AND ERROR PROCESSING FUNCTIONS
(ERROR <S$>)
PSEUDOFUNCTION; SUBR
ERROR causes a recoverable error to occur. The argument will appear
as part of an error message printed in response to this function.
Coﬁtinued execution of the current top level evaluation will be aborted
unless an ERRSET function is in control.
e.g., EVAL:

(ERRQOR '"™MESSAGE)

VALUE IS ...
***++*ERROR MESSAGE

(ERRSET <EXP> <BOOL1> <BOOL2>) If no errors occur ERRSET is equivalent to:
(LAMBDA (E Bl B2) (CONS (EVAL E) NIL))

PSEUDOFUNCTION; SUBR

ERRSET is a function which allows LISP to recover from a recoverable

error without aborting the top level evaluation in progress. If no error

occurs during the evaluation of <EXP> (note that since ERRSET is a SUBR
the arguments are evaluated prior to calling ERRSET; during this evalua-
tion the current call to ERRSET offers no protection) then the value of
ERRSET is a list whose single element is the result of evaluating <EXP>.
If a recoverable error occurs the result of the most recent ERRSET is
NIL. At the time the error occurs <BOOL1> controls printing of the
error message itself--if it is false the message is not printed. <BOOL2>
controls printing of the back trace--if it is false the back trace is
not printed.
e.g., EVAL:
(ERRSET " "A T T)
VALUE IS .
(A)
EVAL:
(ERRSET "A T T)
VALUE IS ...
*****ERROR A8 A
(EVAL)
NIL
EVAL:
(ERRSET A TT)
VALUE IS ...
****+*ERROR A8 A
(EVAL EVLIS EVAL MAINLOCP)

EVAL:

(XILL <S>) -
PSEUDOFUNCTION; SUBR
KILL is similar to ERROR except it causes a non-recoverable (fatal)
error which terminates the LISP run.
e.g., EVAL:

(KILL "MESSAGE)

VALUE IS ...
#*+%eXT] LED MESSAGE

(MAINLOOP)

.

(LCOK <NUMBER>)

NORMAL; SUBER

LOOK returns an integer atom whése value is the contents of the memory
location specified by <NUMBER>.‘ (A trap to 4 will result if non-existent
memory is referenced.) If <NUMBER> is odd it is decremented prior to

being used as an address.

(TRACE <LAT>) (LAMBDA (L) (COND
> ((NULL L) NIL)
PSEUDOFUNCTION; SUBR ((PUT (CAR L) "TRACE Q)

(TRACE (CDR L)))))
TRACE puts a counter (initialized to 0) on the property list of each
atom in <LAT> (the value of TRACE is always NIL). After that time
(and until an UNTRACE call remers the counter) a message is printed
each time a function whose name appeared in <LAT> is called.
The message is of the form:

(<number>) LEVEL ARGUMENTS OF <NAME>

47

where <NAME> is the name of the function and <number> is the nesting
level of the current call. Following the message the arguments éfé
printed one per line (evaluated in the case of expressions and SUBRS--
one unevaluated list of arguments in the case of FSUBRS and FEXPRS).
Every function that is entered is also exited. At the time the function
is exited a message of the following form is printed:

(<number>) LEVEL RESULT OF <NAME>.
On the following line is the actual value returned by the function.
<number> indicates the nesting level and should be paired with the
most recent occurrence of the same number in the '"arguments of" message
to compare the arguments and result of the <number>th level call to the
function. As noted SUBRS and FSUBRS can be traced; however, internal

calls are not traced. Furthermore, COND, PROG, QUOTE, LABEL, FUNCTION

cannot be traced because they are handled specially.

(TRACESET <LAT>) (LAMBDA (L) (COND
((NULL L) NIL)
PSEUDOFUNCTION; SUBR (T (CONS (PUT (CAR L) "TRACESET T)

(TRACESET (CDR L))))))
TRACESET puts a flag on the property list of each atom in <LAT>. The
value of TRACESET is the same <LAT>. The TRACESET flag on an EXPR or
FEXPR function atom causes all SET or SETQ calls at the top level of
a top level PROG call to be traced. A message of the form

<variable> = <assignment> is printed for each such SET call encountered.

(UNDEF <S>)

PREDICATE; FSUBR

UNDEF returns true if its argument is a <LITATM> that does not have an
APVAL or a binding cn the association list. It returns false for all

other situations.

48

(UNTRACE <LAT>)
PSEUDOFUNCTION; SUBR
UNTRACE removes the TRACE counter and indicator from the property list

of each atom in <LAT>. The value of UNTRACE is always NIL.

(UNTRACESET <LAT>)
PSEUDOFUNCTION; SUBR
UNTRACESET removes the TRACESET flag from the property lists of each

atom in <LAT>. The value of UNTRACESET is its unchanged argument.

1 3

3.3.8 MISCELLANEOUS FUNCTIONS

(ADDR <S>)

NORMAL; SUBR

ADDR returns an integer atom whqse value is the address of the first

cell of the argument.

(ALIST)
PSEUDOFUNCTION; SUBR
ALIST returns the current association list at the time ALIST is called.

This shows all the bindings but not the APVALS of the literal atoms.

(FREE)
PSEUDOFUNCTION; SUBR

FREE returns an integer atom whose value is the number of free cells

immediately available.

49

(GENSYM <LITATM>)

PSEUDOFUNCTION; FSUBR

GENSYM returns an entirely new literal atom each time it is called.

The literal atom has a print name of XNNNNNN where X is a single letter
obtained from <LITATM> and NNNNNN is a unique octal number. The letter
used is the first letter of the <LITATM> print mame and the number is
the next-number in the series for that letter. If no (legal) drgument
is specified to GENSYM the letter from the last call is used. If no call
precedes a call with no argument (or illegal argument) then the letter G
is used. The atoms created by GENSYM are not placed on the OBLIST. If
an atom with the same print name is subsequently read in it will not be
related to the GENSYM atom. In order to keep GENSYM names from being
discarded some portion of existing active S-expressions or property

lists must contain references to them.

(INTERN <STR>)

PSEUDOFUNCTION; SUBR

INTERN creates a <LITATM> whose print name is the value of the string
atom <STR> and inserts it on the OBLIST. If an atom of the same print
name already exists INTERN returns the existing atom rather than create
a new one. The value of INTERN is a literal atom with a print name
equivalent to <STR>. (INTERN modifies <STR> to a literal atom. NIL

is returned if a bad argument has been specified.)

(LABEL <LITATM> <FCTN>)
PSEUDOFUNCTION; FSUBR
LABEL accomplishes almost the same thing as DEFINE except that it binds

the function definition to the name on the association list rather than

50

incorporating it on the atom's property list. This is similar to fhe
case for variables, which may have bindings on the ALIST or APVALs.
For function atoms, the EXPR or FEXPR definition takes precedence over
the LABEL binding in the same way that the APVAL supersedes the ALIST
binding for variables.

(There is no FSUBR implemented for LABEL. It is an indicator specifically

recognized by APPLY.)

(MAINLOOP) (LAMBDA () (PROG ()
. A (SETQ %ANS (PRINT (EVAL (READ))))
PSEUDOFUNCTION; SUBR ' (GO A))

MAINLOOP is the actual driver for LISP and is LISP callable. While in
control it expects to read an S-expression, evaluate it, and print it.

It remains in control until an end-of;file on SYSIN is detected, at which
time it exits with NIL to the cgller. If there was no caller, it looks

for an unfinished SYSIN file and if not found, it exits LISP. If the T

switch is on, a timing message is printed for each top level EVAL.

(RECLAIM)
PSEUDOFUNCTION; SUBR
RECLAIM causes a garbage collection to occur whether or not it is needed.

The value of RECLAIM is always NIL.

(REMOB <LITATM>)

PSEUDOFUNCTION; SUBR

REMOB removes <LITATM> from the OBLIST. If no active lists refer to
<LITATM> then the cells used to store it will be collected in the next

garbage collection. In any case if an atom with the same print name

51

is subsequently read in it will have no relation to the (previously)

existing atom. The value of REMOB is always NIL.

(TEMPUS)
PSEUDOFUNCTION; SUBR
TEMPUS returns a floating point atom which represents the RT-11 system

time in seconds.

3.3.9 INPUT/OUTPUT FUNCTIONS

(CLOSE <N>)

PSEUDOFUNCTION; SUBR

CLOSE releases channel <N> by closing the associated ENTER'd or LOOkUP'd
file, releasing the handler if no other channel requires it, and releasing

the I/0 buffers. The value of CLOSE is always NIL.

(ENTER <STR>)

PSEUDOFUNCTION; SUBR

<STR> must be a legal file specification for a new output file. The new
file is opened and writing to it is done via the OUTPUT function. If
<STR> is illformed or if an attempt to open too many files is made an
error is generated. The value of ENTER is an integer, the channel number
assigned.

(A maximum of 9 channels may be open at any one time: SYSIN, SYSOUT,

and 7 others.)

52

(INPUT <N>)

PSEUDOFUNCTION; SUBR

INPUT works just like READ except that the LOOKUP'd file associated
with channel <N> is used instéad of the current SYSIN. INPUT returns

the next S-expression from channel <N>.

(LOOKUP <STR>)

PSEUDOFUNCTION; SUBR

<STR> must be a legal file specification for an already existing file
to be used for input. The new file is opened and input is done via the
INPUT function. If <STR> is illformed or if an attempt is made to open
too many files an error is generated. The value of LOOKUP is an integer,
the channel number assigned. »

(A maximum of 9 channels may be open at any one time: SYSIN, SYSOUT,
and 7 others.) ;

(OUTPUT <N> <S>)

PSEUDOFUNCTION; SUBR

OUTPUT works just like PRINT except that the ENTER'd file associated

with channel <N> is used instead of the current SYSCUT. The value of

OUTPUT is <S>.

(PRINT <S>)

PSEUDOFUNCTION; SUBR

PRINT causes its.argument to be printed to the current SYSOUT. The
value of PRINT is its unchanged argument. If the %R switch is on, all

non-standard atoms and strings are printed in LISP readable format.

If the %0 switch is on all integers are printed in octal format. A

carriage-return/line-feed is done after <S> is printed.

(PRIN1 <8>)
PSEUDOFUNCTION; SUBR
PRIN1 is similar to PRINT except that the final carriage-return/line-feed

is not done. This allows multiple S-expressions to be printed,on a line.

(READ)

PSEUDOFUNCTION; SUBR

READ causes an S-expression to be read from the current SYSIN. All
<LITATM>s are either found on the OBLIST or put there. The value of
READ is the S-expression read in.

READ automatically recognizes atoms of the form CAAR, CADR, CDDR,

CAAAR, ..., and when installing them on the OBLIST puts a special SUBR
indicator on their property lists. This feature is inhibited by turning
the %I switch on. The echoing features of READ are controlled by the %L
switch. (There is never any echo or printing while reading or evaluating

LISP subsystems.)

(SYSIN <STR>)

PSEUDOFUNCTION; SUBR

<STR> must be a legal file name specification for an exiting file on
an input device. SYSIN causes <STR> to be immediately opened as the
next system input file. Input comes from <STR> until an end-of-file

is detected at which time the previous SYSIN file is used. SYSIN may

be used to read in LISP subsystems in which case the results of all the
evaluations are written to the output file. An error is generated if
<STR> is an illformed argument or if an attempt was made to open too

many channels. SYSIN returns the channel number of the previous SYSIN.

(SYSQUT <STR>)
PSEUDOFUNCTION; SUBR
SYSOUT changes the current output file to <STR>. <STR> must be a legal
output specification; a new file is entered on the output device. If
<STR> is NIL then SYSOUT closes the current output file and reverts to
the previous one. If <STR> is illformed or if an attempt was made to
open too many channels an error is generated. In addition, if an attempt
is made to close the final SYSOUT file by calling SYSOUT with NIL then

an error will be generated and tée file will remain open. It can only

be closed by exiting LISP.

SYSOUT returns NIL or the channel number of the previous SYSOUT.

(TERPRI)

PSEUDOFUNCTION; SUBR

The value of TERPRI is NIL. It ;rints a carriage-return/line-feed to
the output file. A call on PRIN1 followed by a call to TERPRI is equi&a-

lent to a call on PRINT.

3.3.10 STRING FUNCTIONS
Most string functions will perform correct operations using the print
name of a literal atom as an argument. However, GENSYM atoms should

not be used since they will usually not be handled recognizably.

S5

(PNAME <ATOM>)
NORMAL; SUBR
- PNAME returns a string whose value is the print name of a literal atom
or the ASCII print image of a number. It returns NIL if argument is

not atomic.

(POSITION <STR1> <STR2> <N>)

NORMAL; SUBR

POSITION searches <STR1> for the first occurrence of <STR2> starting
with the <N>th character of <STR1>. It returns a number <M> such that
<STR2> matches <STR1> beginning at the <M>th character of <STR1>. If
no match is found or if arguments are illegal POSITION returns 0. (If
<STR2> is the NULL string 0 is returned.)

(Strings made from GENSYM atoms not handled recognizably.)

(SEGMENT <STR> <N1> <N2>)

NORMAL; SUBR

SEGMENT returns a new string atom made up of the characters from the
<N1>th position through the <N2>th position of <STR>. If <STR> is not
a valid argument (i.e., a number or list) NIL is returned; if there are
no characters between <N1> and <N2> (e.g., N2<N1) then the NULL string

is returned.

(STRING <S1> <S2> ...)
NORMAL; FSUBR
After evaluating each argument STRING creates a new string atom by

concatenating all its arguments in the following manner: Non-atomic

56

S-expressions as arguments are ignored; literal atom print names are
concatenated along with strings; numbers are converted to charact;;;
by converting each number to an integer and truncating to 7 bits.
Strings are limited to a length of 255 characters.

(GENSYM atoms will not concatenate recognizably.)

(STRLEN <STR>)

NORMAL; SUBR

STRLEN returns an integer whose value is the number of characters in <STR>.
NIL is returned if the argument is a number or list.

(Characters in GENSYM atoms are counted incorrectly.)

(VALUE <STR>)

NORMAL; SUBR

VALUE returns the numeric atom which is represented by the STRING <STR>.
(If the argument to VALUE is a number it is returned unchanged; if it
is a list then NIL is returned.) If <STR> is not proper numeric syntax
then NIL is returned. (If the resulting number is too ;arge and the %2
switch is off then‘an error is g;nerated.)

3.3.11 CHARACTER FUNCTIONS

(ADVANCE <BOOL>)

PSEUDOFUNCTION; SﬁBR

ADVANCE will advance the input pointer and read the next character of
the input file if <BOOL> is NIL; I€ <BOOL> is non-null ADVANCE will

back up the input pointer and read the previous character again

(leaving the pointer pointing to the previous character). Attempts to
back up more than 6 characters will result in %EOF being returned. The
value of ADVANCE is either the 3%EOF atom or an integer atom whose value
is the ASCII code of the character read.

(In interactive mode the user should be aware that characters are not

available to ADVANCE until a carriage-return is typed.)

(CHLEX <N1> <N2>)

PSEUDOFUNCTION; SUBR

CHLEX changes the lexical class of the character whose ASCII code is
<N1> to lexical class <N2> (<N2> must be between 0-19 or the call is
ignored). The change takes effect immediately. The value of CHLEX is
the old lexical class of character <N1> (or NIL if the call was ignored).
(Refer to Section 2.3.1 for cautions.) If <N2> is NIL, CHLEX returns

the current lexical class of character <N1> without changing it.

(EXPLODE <ATOM>)

NORMAL; SUBR

EXPLODE returns a list of integer atoms representing the ASCII codes
of the characters in the print name of <ATOM> if it is a literal atom
or string. It returns NIL if the argument was a number or non-atomic
expression.

(GENSYM atoms will be recognizably exploded.)

3.3.12 ARRAY FUNCTIONS
SET recognizes the form (SET "(X 1 3 9 2) "B) and attempts to interpret

X as an array. If the atom X has the array property then the subscript

58

list is evaluated, and the appropriate element is indexed and reset to
point to B. When presented with (X 1 3 7) EVAL first looks for éJ;R,
FSUBR, EXPR, or FEXPR on the property list of X. It then looks for
ARRAY and if found it evaluates the subscripts, indexes the appfopriate
element, and returns the associated value. If the ARRAY indicator is

not found then an association on the ALIST is sought for X.

(ARRAY <LITATM> <LIST>)
PSEUDOFUNCTION; SUBR
ARRAY defines and allocates a néw array whose name is <LITATM>. <LIST>
is a list of dotted pairs which give the range of each subscript.
e.g., EVAL:

; (ARRAY "X "((0O ; 4)(-2 . 11)))
will allocate a 5 by 14 array, fhe first index ranges from 0 to 4 and
the second from -2 to 11. Each element of the array can be a pointer
to an arbitrary S-expression. ARRAY puts the indicator ARRAY with the
value <LIST> on the property list of <LITATM>. ARRAY initializes each
element to NIL. The value of ARRAY is NIL. If <LIST> is NIL, the
ARRAY property of LITATM is removed and the space is reclaimed. (The
space is then available to be allocated for another array or for I/0

buffer and handler space.)

(CLARRAY <LITATM>)

PSEUDOFUNCTION; SUBR

<LITATM> must have an ARRAY property or an error is generated.
CLARRAY sets all elements of the array to NIL. The value of CLARRAY

is NIL.

4. SYSTEM ATOMS
The following alphabetical list includes all the system atoms
which are present on the OBLIST after initialization. Notice that the

command string switches G, I, L, O, R, T, W, X, Z are represented as

%

system apvals %G, %I, %L, %0, %R, %T, %W, %X, %Z. These apvals are
initialized to the values assigned to the command-string switches and
may be accessed or altered under program control. Notice also the

existence of the atom %ANS; it always contains the result of the last

top level evaluation. (Refer to the MAINLOOP function description.)

Atom Type Description
ADDR SUBR 3.3.8
ADD1 SUBR 3.3.6
ADVANCE SUBR 3.3.11
ALIST SUBR 3.3.8
ALPHAP SUBR 3.3.1
AND FSUBR 3.3.3
APPEND SUBR 3.3.2
APPLY SUBR 3.3.3
APVAL INDICATOR

ARRAY SUBR 3.3.12
ATOM SUBR 3.3.1
CAR SUBR 3.3.1
CDR SUBR 3.3.1
CHLEX SUBR 3.3.11
CLARRAY SUBR 3.3.12
CLOSE SUBR 3.3.9

40

Atom Type Description

CONC FSUBR 3.3.2
COND SUBR 3.3.3
CONS SUBR 3.3.1
COPY SUBR 3.3.2
DEFINE SUBR 3.3.4
DEFLIST SUBR 3.3.4
DIFFERENCE SUBR 3.3.6
DIVIDE SUBR 3.3.6
EFFACE SUBR 3.3.2
ENTER SUBR 3.3.9
EQ SUBR 3.3.1
EQN SUBR 3.3.1°
EQUAL SUBR 3.3.1
ERROR SUBR 5.3.7
ERRSET SUBR 3.3.7
EVAL SUBR 3.3.3
EVALQUOTE SUBR 3.3.3
EVLIS SUBR 3.3.3
EXPLODE SUBR 3.3.11
EXPR INDICATOR

F "APVAL VALUE:=NIL
FEXPR INDICATOR

FIX SUBR 3.3.6
FIXP SUBR 3.3.6
FLOAT SUBR 3.3.6

6l

Atom Tme Descrigtion

FLOATP SUBR 3.3.6
FREE SUBR 3.3.8
FSUBR INDICATOR

FUNARG INDICATOR

FUNCTION INDICATOR 3.3.3
GENSYM' FSUBR 3.3.8
GET SUBR 3.3.4
GO FSUBR 3.3.3
GRADP SUBR 3.3.1
GREATERP SUBR 3.3.6
INFP SUBR 3.3.6
INPUT SUBR 3.3.9
INTERN SUBR 3.3.8
KILL SUBR 3.3.7
LABEL INDICATOR 3.3.8
LAMBDA INDICATOR

LLENGTH SUBR 3.3.2
LESSP SUBR 3.3.6
LIST FSUBR 3.3.1
LOGAND FSUBR 3.3.6
LOGOR FSUBR 3.3.6
LOGXOR FSUBR 3.3.6
LOOK SUBR 3.3.7
LOOKUP SUBR 3.3.9
LSHIFT SUBR 3.3.6

Atom Type Description

MAINLOOP SUBR 3.3.8 __

MAP SUBR 3.3.5

MAPC SUBR 3.3.5

MAPCAR SUBR : 3.3.5

MAPCON SUBR 3.3.5

MAPLIST SUBR 3.3.5 -

MAX FSUBR 3.3.6

MEMBER SUBR 3.3.1

MEMQ SUBR 3.3.1

MIN FSUBR 3.3.6

MINUS SUBR 3.3.6

MINUSP SUBR 3.3.6

NCONC SUBR 3.3.2

NIL APVAL vALUE:zNIL

NOT SUBR 3.3.1

NULL SUBR 3.3.1

NUMBERP SUBR 3.3.1

OBLIST APVAL VALUE:=LIST of hash buckets, i.e., contains
¢ all existing literal atoms

ONEP SUBR 3.3.6

OR FSUBR 3.3.3

QUTPUT SUBR 3.3.9

PAIR SUBR 3.3.2

PLUS FSUBR 3.3.6

PNAME SUBR 3.3.10

Atom

POSITION
PRINT
PRINI
PROG
PROGN
PROP

PUT
QUOTE
QUOTIENT
RANDOM
READ
RECIP
RECLAIM
REMAINDER
REMOB
REMPROP
RETURN
REVERSE
REVERSIP
RPLACA
RPLACD
SASSOC
SEARCH
SEGMENT

SELECT

Type
SUBR
SUBR
SUBR
FSUBR
FSUBR
SUBR
SUBR
INDICATOR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR

FSUBR

Descrigtion
3.3.10
3.3.9

3.3.9
3.3.3
3.3.3
3.3.4

3.3.4

w
(7]
—

3.3.6
3.3.6
3.3.9
3.3.6
3.3.8
3.3.6
3.3.8
3.3.4

3.3.3

3.3.2

3.3.1

3.3.1

Atom

SET
SETQ
SIZE
STRING
STRINGP
STRLEN
SUBLIS
SUBR
SUBST
SUB1
SYSIN
SYSOUT

T
TEMPUS
TERPRI
TIMES
TRACE
TRACESET
UNDEF
UNTRACE
UNTRACESET
VALUE
ZEROP
SANS
AEOF

Trpe
SUBR
FSUBR
SUBR
FSUBR
SUBR
SUBR
SUBR
INDICATOR
SUBR
SUBR
SUBR
SUBR
APVAL
SUBR
SUBR
FSUBR
SUBR
SUBR
FSUBR
SUBR
SUBR
SUBR
SUBR
APVAL
INDICATOR

Description

3.3.1
3.3.1
3.3.2
3.3.10
3.3.1
3.3.10

3.3.2

3.3.2
3.3.6
3.3.9
3.3.9-
VALUE:=*T*
3.3.8
3.3.9
3.3.6
3.3.7
3.3.7
£.3.7
3.3.7
3.3.7
3.3.10

3.3.6

VALUE:=last top level EVAL result

o®
<

o
[]

APVAL

APVAL

APVAL

APVAL

APVAL

APVAL

APVAL

APVAL

APVAL

APVAL

Descrigtion

VALUE:
VALUE:
VALUE:
VALUE:
VALUE:
VALUE:
VALUE:
VALUE:
VALUE:

VALUE:

=<BOOL>==/G
=<BOOL>==/1
=0,1,2,3,==/L
=<BOOL>==/0
=<BOOL>==/R
=<BOOL>==/T—
=<BOOL>==/W
=<BOOL>==/X
=<BOOL>==/2

=*T*

5. ERROR MESSAGES

Errors detected by LISP functions will cause the evaluation in

progress to be aborted, printing an identification message and optional

argument and a backtrace list. Operation resumes at the top level

MAINLOOP unless an ERRSET function is encountered in the backtrace, in

which case operation resumes by returning to the ERRSET caller with a

NIL result. Non-recoverable errors will cause the LISP run to terminate

with the KILLED message.

Recoverable errors

Code Argument
Al ---
A2 offending function object
A3 ---
A4 ---
AS ---
A6 offending label atom
A7 offending argument
A8 offending variable atom
A9 offending function object
Al0 offending atom
GC1 ---
GC2 ---

&7

Comment
<UNUSED>

function object has no
definition--APPLY

<UNUSED>

RETURN occurred outside
PROG context

GO occurred outside PROG
context

GO refers to an unassigned
label

illegal first argument to SET
unbound variable--EVAL

function object has no
definition--EVAL

CAR or CDR of atom
(suppressed with X switch)

<UNUSED>

free space is exhausted

Code

Gl
G2

I1

12

I3

14

I5

I01

102

103

I04
R1

R2

R3

R4

RS

R6

Fl

Argggent

new array requested

argument

argument

channel/file specification

Comment

<UNUSED>

- -

recursion limit exceeded--
stack space exhausted

array space exhausted

improper argument for
numeric function

<UNUSED> -—
hard math error--infinity

generated and not allowed--

illegal operation with

infinity

improper argument for array
function

illegal file specification
or channel number

attempt to open too many
channels

device handler and 1/0 buffer
space is exhausted

attempt to close the last SYSOUT
unexpected ,) or]

. out of context--improper
dotted pair construction

unmatched
too many [or (.
(max [= 29;
max (= 255 per [)

undecodable number

print name/string too long
(>255 chars)

improper number of SUBR
arguments

Code Argument Comment

F2 PAIR result improper number of EXPR
arguments

Fatal system errors (internal LISP errors which should never occur)

T1 --- illegal trap code
T2 --- stacks corrupted
- »T3 --- -unmatched marked stack item
01 = input error
02 --- output error
5.1 INTERPRETATION OF BACKTRACE ON ERROR CONDITION

The backtrace list contains the names ‘of the functions which have
been entered but not completed. The leftmost function is the one in which
the error was detected. (If an error occurred in a utility routine the
PC of the utility routine is placed in the backtrace list.) The user
should not be concerned by occurrences of functions which he did not call
since many functions make internal calls and transfers to o;her functions.
Some functions which are implemented in a recursive fashion (e.g., READ)

may actually appear consecutively many times in the backtrace list.

5.2 GARBAGE COLLECTION WARNING MESSAGE

The garbage collector uses as much space as is available in
order to do its job. If the recursion depth is almost at a maximum the
collection will be slowed down but it will always continue to completion.
1f the collector fails to recover at least 1/64 of the total free space
area then a warning message is printed. No other action is taken and

no indication is available to the program.

69

6. IMPLEMENTATION CONSIDERATIONS
6.1 GENERAL

In this implementation of LISP full word space is not distinct
from free space, but has the same‘list structure. The basic unit of
free space is the cell. Each cell is two words long with the first word
being at an address which is a multiple of 4. Thus, all pointers or
links to other cells are only 14 bits long. The first word of each cell
is the CAR pointer. The second word is either a full word of data or
it is the CDR pointer. In this way full word space is incorporated in
free space, only one garbage collection technique is needed, there is
no bit map overhead, and the user is not faced with a decision as to
the relative allocation of free versus full space. However, it is
slightly more extravagant with respect to memory usage than the conven-
tional approach to full word space.

SUBR and FSUBR function calls, utility function calls, and

error processor calls are all implemented via the TRAP instruction.

6.2 MEMORY LAYOUT

The following diagram shows the layout of the background
partition after LISP has been loaded and started. There are three stacks
used by LISP: 'SP, for general usage and arithmetic operations; RS, for
LISP argument transmission; and R4, for LISP function linkage. With
separate stacks for linkage and arguments backtracing after an error is
facilitated as well as garbage collection, since only those S-expressions
with pointers on the argument stack need be saved (the OBLIST is always

on the RS stack).

70

The initialization code, whose primary
function is to build the OBLIST and

install the system atoms, is converted
“to auxiliary buffer space (print name

buffer*, parenthesis count buffer and

I1/0 buffers) after execution.

The first item on the argument trans-
mission stack (RS) is always the

v

OBLIST, for convenience. The OBLIST
consists of 32 consecutive cells at
the beginning of the free space used

as headers to hash buckets.

The first item on the function linkage
(recursion) stack is always the
address of the LISP exit routine. The
exit routine closes any open file§ and
restores the contents of locations 0

and 2 which were used by LISP as a

special header for the atom NIL.

'The size of this buffer (256 characters)
is the only limit on string size or atom

print name size.

71

ENDLSP ——o

RMON
(& USR)

SSTART ———ant

RS
STACXK
(ARGUMENT)

R4
ISTACK

LisP
STACX
SPACE

(LINKAGE)

FSTART —o

FREE
SPACE

OBLIST BUCKETS

ASTART ——ine

HBOUND ——in

ARRAY SPACE

e e ——
DEVICE HANDLER

& 1/0 BUFFER
SPACE

Lisp

INTERPRETER

SUBR & FSUBR

& UTILITY FUNCTIONS

e ccew oo - -

TRAP DISPATCHER

INITIALIZATION
CODE

(AUXILIARY BUFFER
SPACE)

l sP
STACK

NIL HEADER

(ENOLSP
z SYSLOw)

Device handlers, I/0 buffers, and

arrays share the same memory block.

-At initialization time all handlers

needed for reading subsystems are

loaded contiguously starting at

HBOUND.

When a handler or 1/0

buffer is no longer needed it is

released and the space is reclaimed

on the AVAIL list.

The block which

abuts ASTART is available for an

array.

If no block abuts ASTART

then array space is exhausted.

New arrays are allocated directly

below ASTART.

Whenever array

space is released the arrays are

slid up so that array space is

always contiguous.

If a new handler is required but

there is no block of available

memory on AVAIL
contain it then

buffer space is

large enough to
handler--1/C

exhausted.

FSTART ——={

ASTART ——am SIZE -’

AYAIL

HBOUND ———u¢

——

HANOLER r

SIZE o/

HANDLERS &
I/0 BUFFERS

ARRAY SPACE " }
INITIALIZATION'
LITATM POINTER TIME ARRAY oM
SPACE
SIZE] ALLOCATED
ARRAY SPACE ~ LAST
ARRAY TO BE
LITATM POINTER ALLOCATED

INITIALIZATION
TIME SUBSYSTEM
HANDLER SPACE

6.3

CELL FORMAT

15 210
CAR oM
CDR F

A cell consists of two consecutive words of memory such that

the first word has an address which is a multiple of 4. Thus, all

pointers to cells need only be 14 bits long.

"MARK"

"DATAH

The first word of a celi contains three fields as follows:

M

D

is a 1-bit field which is used by the garbage collector to
mark a cell for preservation. M must not be set except in
special circumstances relating to garbage collection

{see the SUBR "SIZE™). M is set by the garbage collector
during its marking phase, and cleared during its clean-up
phase.

is a 1-bit field which governs the interpretation of the
second word of the cell. If D is 0 then the second word
consists of two fielﬁs as shown in the diagram with the
interpretation given below. If D is one then the second
word is interpreted as a single 16-bit field consisting
of a full word of data.

is a 14-bit field which is interpreted as a pointer to

another cell--the CAR of the S-expression.

The second word of a ccll contains two fields (if D is 0)-
as follows:
"FORMAT" F 1is a 2-bit field which is used to distinguish literal atoms,
string atoms, and lists. (Refer to Section 6.4.)
CDR is a 14-bit field which is interpreted as a pointer to

another cell--the CDR of the S-expréggicn.

6.4 S-EXPRESSION REPRESENTATION
Dotted pairs are represented using a single cell. The first
word contains the pointer to the CAR of the dotted pair. The second

word contains the pointer to the CDR of the dotted pair. The format

field is 0.
CAR OF
- DOTTED
PAIR
DOTTED -
PAIR o OL,
? 0
CDR OF
COTTED
PAIR

When a function returns a dotted pair (A.B) as its value it is

returning a pointer to a cell as shown:

_| wHERE A sTANDS FOR
(A.B) ——wmt A 0 =| THE ADDRESS OF THE
L] FIRST CELL IN THE
REPRESENTATION OF A,
B O | AND LIKEWISE FOR B.

74

Atoms come in three classes as far as the representation of

the header is concerned: literal atoms, numeric atoms, and string atoms.

The header or first cell of a numeric atom is structured as shown.

PIXED POINT

(INTEGER) et 1-
NUMBER L
INTEGER —
FLOATING POINT ~ L_ -
(REAL) NUMBER — = 5 1 1
S EXP MANT MANT
3 oL

The diagonal slash represents a pointer to NIL (whose header
is located at address 0; thus, it is a field which is 0).

A fixed point number is represented in a single cell, with a
null CAR pointer and data bit=1 in the first word, and a 16-bit integer
in the second word. i

A floating point number is represented using two cells. The
first has a CAR pointer which points to the second. The data bits in
both cells are on. The data in the first cell is interpreted as the
most significant word in the stapdard PDP-11 floating point format.

The data in the second cell is the least significant word (extension
of the mantissa). Although multiple precision is not implemented the
representation would merely involve extending the list of mantissa cells.

In addition to the usual PDP-11 floating point interpretation

additional subclasses are recognized:

75

floating point number
floating point zero

(-0 interpreted as 0)

+ infinity
(interpreted as + infinity)
- infinity

(interpreted as - infinity)

Exponent Mantissa
word word -
X X
usual PDP-11
0 interpretation
-0 0
, N
0 -1
0 =20
? additions
-0 -1
-0 =0
7

* String atoms are represented with a header cell followed by

an arbitrary number (including none to represent the null string) of

data cells. No distinction is made between the two format classes of

strings in any of the LISP functions provided (with the exception of

READ: it builds strings only with the format field=3); they merely

propagate the existing format bits and process the data information

é 1= Looo

identically.
STRING i P 0 - L &] -
2 OR Hi BYTE | LO BYTE HIBYTE | LO BYTE
3 CHAR 2 | CHAR CHAR 4 {CHAR 3

The CDR field of the header cell is presently unused and is

set to zero by READ.

76

Literal atoms are similar to string atoms except that the CDR
pointer of the header cell points to the atom's property list and the
format field is 1. The string pointed to by the CAR of the header is

- the atom's print name.

ATOM - ° 0- L o | = Looo

LITERAL
1 1
1 Hi BYTE [LO BYTE
7 CHAR 2 |CHAR 1
‘ —
PROPERTY LiST PRINT NAME

Given a pointer to a cell in RO: (1) if D is non-zero at (RO)
then RO points to a number, (2) else if F at 2{RO) is zero then RO
points to a dotted pair, (3) else if F at 2(RO) is 2 or 3 then RO
points to a string atom, (4) else RO points to a literal atom.

A special type of literal atom is the GENSYM atom represented

as shown:
GENSYM ol d - o 1 - L -
ATOM ’ 0-" N L
M1 8YTE |LO BYTE ,
? ! 200 CHAR INTEGER

!

PROPERTY LIST

NOTE: Characters in strings and atom PNAMES are formed from 7-bit ASCII
values; thus bit 15 can be used to signal a GENSYM atom. (This
property is only needed on printout and is not checked or used by
any other LISP functions besides GENSYM and PNAME.)

77

Cxamples:

g I . -
THE ATOM CAR ppgea o O‘ k
]
} G 1 A C
I
I
|
]
: sUBR |0 -
i 1
: -] 0 —
1
i
|
i Y
{
| { lo- -
! A L
: 0 NNN]
|
1
]
|
!
|
]
}
b - - -
]
!
|
!
1
!
THE LIST (CAR "A) —e{ CAR |0~
]
0
*/ 0 - L QuoTE {0 -
i 1
0 ? 0
A 0 -
0

6.5 THE OBLIST

The OBLIST is a list of 32 (consecutive, to facilitate h;;h
indexing) cells; the CAR of each points t§ a list (bucket) of objects
(literal atoms) whose print names all hash to the same value. All
objects on the OBLIST are automatically saved during a garbage collection.
After initialization the OBLIST contains all the system atoms. Each
literal atom encountered by READ is installed on the OBLIST if i; d&es
not already exist there. READ does this by hashing the print name and
scanning the appropriate bucket for a match using EQN. If it is not
found it is installed with a nuli property list. If it is found then

READ identifies the existing atom with the one read in and any properties

are inherited.

6.6 CALLING CONVENTION s

Calls to SUBRs, FSUBRs, and utility routines are via the TRAP
instruction which results in an effective JSR PC using the inverted
R4(linkage) stack. Consequently, return from a function is via a
JMP @-(R4). (Similar to the Fortran threaded code return except the
stack is inverted.) RO is used ;y the dispatcher but Rl through R3
are preserved.

All function atoms have the indicator SUBR or FSUBR on their
property lists with an integer value associated. The low byte of the
integer gives the number of arguments (not used for FSUBRs since they
always take one list of arguments) and the high byte gives the TRAP code.

The number of arguments passed to a SUBR is checked within EVAL
prior to calling the SUBR for an external call. There is no checking on

internal calls from other functidns.

79

7. PROGRAMMING CONVENTIONS
7.1 NAMING

Labeling of files, entry points, trap codes, etc., is based
on atom names for LISP SUBRs or FSUBRs, e.g., the atom "CONS" represents
a LISP SUBR. The actual assembly code is located in a file '"CONS.MAC"
whose global entry point is "CONS". The entry point must be the lowest
core location of the function. The size of the function in byt;s is
given by the global "ZICONS'. The SUBR is called by "'QCONS' which is
equal to TRAP+NNN. The global location ''YCONS" contains the pointer
to the atom "'CONS'". Utility routines follow this convention alsc. The
following exceptions occur since the atom names are not unique within
the first 5 characters:

FLOTP==FLOATP MNUSP==MINUSP REVIP==REVERSIP
RPLD==RPLACD TRSET==TRACESET UNTRSET==UNTRACESET

STRGP==STRINGP

7.2 REGISTER USAGE

Registers RO through R3 are available for use by any function.
If a "closed" function uses one of them in a special manner that fact
is noted in the module documentation. Only the explicit error TRAPs ;
are noted in each module along with the explicit function calls. Unless ‘
otherwise specified the C bit is not significant on exit. If certain
registers are always preserved within a function (and its support ‘

routines, etc.) that fact is also noted.

80

7.3 NOTATION L
Notation for stack arguments is as follows: ARGl represents

the first argument to a routine and is located at (RS); ARG2 is located

at 2(RS), etc. Non-LISP functions which pass arguments on the general

stack (SP) refer to the corresponding arguments as ARGl (SP), ARG2(SP), etc.

Register arguments are noted in additional comments.

7.4 MODULE FORMAT
Standard module header format:
; <FUNCTION TYPE: UTILITY, SUBR, OR FSUBR> : <QPTIONAL NAME OR TITLE COMMENT>
; ENTRY: <NUMBER OF ARGS> <ARG1l TYPE> ; <ARG2 TYPE> ; ...
(Unless otherwise specified arguments are assumed to be on RS stack.)
; EXIT: <NUMBER OF ARGS> <ARGl VALUE> ; <ARGZ VALUE> ; ...
; ERRORS: <ERROR CODE> , <ERROR EXPLANATION>
; CALLS: <FUNCTION NAME> , <OPTIONAL EXPLANATION>

; <ADDITIONAL COMMENTS>

7.5 MISCELLANEOUS RULES .
1) Recursive functions.shall not save anything on SP stack when
recursing, i.e., the SP stack is not to be used recursively.
2) Only list valued arguments or pointers outside the free
space area may reside on the R5 stack.
3) All entries on the RS stack must be even. Bit 0 is used
as a special marker for ERRSET and PROG arguments.

4) S-expressions which are being modified or built should be

saved on the RS stack across CONS or GETC calls, i.e., do

not leave a pointer to an S-expression, which is not
pointed to by any other S-expression, in a GPR (Rl to R3)
across a possible GETC call since it will be lost if the

garbage collector is called.

8. BUILDING LISP
8.1 BUILDING LISP FROM THE DISTRIBUTION PACKAGE

LISP sources are distributed as .MAC files. The initialization
codes and trap handler are located in the file LISP.MAC. Parameters,
definitions, and macros common to all modules are located in the file
LSPMAC.MAC. The remaining modules are for the most part named as
<ATOM>.MAC where ATOM is the corresponding function atom print Aame
for the function implemented in the module. Utility routines are
labeled as <UTILITY MNEMONIC>.MAC.

To build LISP, first edit LSPMAC.MAC to include the hardware
option switches desired: FPU, FIS, EIS, EAE (the only modules affected
by the switches are: LISP.MAC, ADR.MAC, CMR.MAC, DVI.MAC, DVR.MAC,
IR.MAC, MLI.MAC, MLR.MAC, RI.MAC).

Then assemble each source module as follows:

<FILNAM>,<FILNAM>/N:TTM/C = LSPMAC,<FILNAM>

For convenience all the object modules (except LISP.0BJ) should
be inserted in a library, e.g., LSPLIB.OBJ.

The functions included in a LISP load module are controlled
by the option switches NOSTRG, NOARRY, NODBUG, NOMATH, NOAUXF. Only
LISP.MAC is sensitive to'these switches. Remnants of string, array, etc.,
code will still exist in other system SUBR's and FSUBR's; however, the

memory savings shown in the table will result.

83

Define:

NOSTRG

NOARRY

NODBUG

NOMATH

NOAUXF

—
Depending on hardware options.

8.2

Finally link the object modules:
LISP, LISP = LISP,LSPLIB

To remove the functions:

STRING,EXPLODE, VALUE, STRLEN, SEGMENT,
POSITION

_ ARRAY, CLARRAY

ERRSET, TRACE, TRACESET, UNDEF , UNTRACE,
UNTRACESET

ADD1,DIFFERENCE,DIVIDE,FLOAT,FIX,
GREATERP, LSHIFT ,MAX,MIN,MINUS, PLUS,
RANDOM, SUB1,TIMES,QUOTIENT ,REMAINDER,
RECIP

GENSYM, LOGAND, LOGOR , LOGXOR , SEARCH,
SELECT,SIZE,SUBLIS,SUBST,TEMPUS

4

ADDING A SUBR OR FSUBR

programming conventions described in Section 7.

called by means of the appropriate global trap code.

and save approximately

390 words

280 words

‘220 words

1240-1600 words*

490 words

When adding a SUBR or FSUBR the user should adhere to the

Other SUBRs may be

The proper number

of arguments must be present on the stack prior to the call. Exit from

a SUBR or FSUBR is via JMP 2-(R4).

When the result of a SUBR or FSUBR

is reduced to a function of an existing quantity a shortcut can be used.

The function may be called using its trap code QXXXX followed by a

HALT (.WCRD 0).

The trap dispatcher recognizes this situation and does

not save a return PC on the R4 stack so that exiting from the called
function will return directly to the caller of the user's SUBR.
If an FSUBR is being written only one argument is passed--
a list of the arguments to the function. The global ALIST contains a
pointer to the association list. If multiple evaluations are done the
ALIST should be saved on the stack and restored ﬁ;ior to each evaluation.
After editing the source, assemble it and insert it in the
object module library. Then edit LISP.MAC to insert an ENTERS or ENTERF
macro in an appropriate place and finish the LISP building operations.
The arguments to the macros ENTERS and ENTERF give the unique universal
name (unique within the first S characters--refer to Section 7), the
number of arguments (not present for ENTERF), and optionally a bracketed

print name if it differs from the first macro argument.

8.3 DELETING A SUBR OR FSUBR

A LISP function may be deleted simply by removing the éppropriate
ENTERS or ENTERF macro call within LISP.MAC and re-linking. The removed
function cannot be called by any remaining function or an undefined
global error will result. The conditional assembly parameters at the
start of LISP.MAX define all the dependencies of the system functions.
Thus a better method of removing a function is to simply leave the
associated conditional variable undefined. If there is no associated
conditional variable then the function is an integral part of the

interpreter and cannot be removed.

8.4 ADDING AN APVAL OR INDICATOR o
Adding indicators is trivial, only requiring an ENTERI macro
call to be inserted within LISP.MAC. Adding an APVAL requires the
addition of an ENTERA macro call as well as some code. Each APVAL
must be initialized within LISP.MAC and furthermore they must be

initialized in the same order as they occur in the macro calls.,

APPENDIX A

THE LISP INTERPRETER: APPLY AND EVAL DESCRIPTION

The following descriptions are only suggestive of the actual

workings of APPLY and EVAL. In particular, the tracing complications

are left out along with certain error checking features and the multiple

CAR/CDR function implementaiion.

These descriptions follow those given in the LISP 1.5

Programmer's Manual, which were used as a guide in developing this

implementation.

(APPLY

(LAMBDA (FN ARGS) (COND
((NULL FN) NIL)
((ATOM FN) (COND
((GET FN "EXPR) (APPLY expr® ARGS))
((GET FN "SUBR) (subr® (SPREAD> ARGS)))
(T (APPLY (CDR (SASSOC FN (ALIST)
"(LAMBDA () (ERROR "A2)))) ARGS)))
((EQ (CAR FN)"LABEL) (PROGN (SETQ (ALIST) (CONS (CONS (CADR FN)
(CADDR FN)) (ALIST))) (APPLY (CADDR FN) ARGS)))
((EQ (CAR FN)"'FUNARG) (PROGN (SETQ (ALIST) (CADDR FN))
(APPLY (CADR FN) ARGS))
((EQ (CAR FN)''LAMBDA) (PROGN (SETQ (ALIST) (NCONC
(PAIR (CADR FN) ARGS) (ALIST))) (EVAL (CADDR FN))
(T (APPLY (EVAL FN) ARGS)))))

87

))

(EVAL (LAMBDA (FORM) (COND
((NULL FORM) NIL)
((OR (NUMBERP FORM) (STRINGP FORM)) FORM)
((ATOM FORM) (COND
; ((GET FORM "APVAL) apvall)
(T (CDR (SASSOC FORM (ALIST) "(LAMBDA () (ERROR "A8)))))
((EQ (CAR FORM) "QUOTE) (CADR FORM)) -
((EQ (CAR FORM) "FUNCTION) (LIST "FUNARG (CADR FORM) (ALIST)))
((EQ (CAR FORM) "COND) ("COND (CDR FORM)))
((EQ (CAR FORM) "PROG) ("PROG (CDR FORM)))
((ATOM (CAR FORM)) (COND
((GET (CAR FORM) "EXPR) (APPLY expr: (EVLIS(CDR FORM))))
((GET (CAR FORM) "FEXPR) (APPLY fexpr' (LIST (CDR FORM) (ALIST))))
((GET (CAR FORM) "SUBR) (subr> (SPREAD" (EVLIS (CDR FORM)))))
((GET (CAR FORM) "FSUBR) ((£subr’ (CDR FORM)))
((GET (CAR FORM) "ARRAY) (INDEX' (CAR FORM) (EVLIS(CDR FORM))))
(T (EVAL (CONS (CDR (SASSOC (CAR FORM) (ALIST)
"(LAMBDA () (ERROR "A9)))) (CDR FORM))))))
(T (APPLY (CAR FORM) (EVLIS (CDR FORM)))))))

1 The value of GET is set aside so that it need not be calculated twice.

2

This is the meaning of the lower case variable.

The value of GET is set aside so that it need not be calculated twice.
This value is an integer atom which contains the TRAP code as well as
the number of arguments expected (for SUBR's only). Control is trans-
ferred to the SUBR or FSUBR by constructing the appropriate TRAP
instruction and executing it. This is the meaning of the lower case

variable in the function position.

))

SPREAD is a pseudofunction describing a utility section within the
EVAL code. It effectively takes a single list argument and returns
multiple values by spreading the elements of the list on the RS

(argument transmission) stack.

INDEX is a utility function which locates that portion of the array
space referred to, calculates the offset to the-desired element, and

returns the value of that element.

89

B

APPENDIX B

EXAMPLE OF CONVERSATIONAL LISP

THE FOLLOWING EXARMFLE APFERRT IN THE LIZF 1.5 FROGRRMMER S

MANUAL.

R LIJP
ir'l . .41 UIIT

EVRL:

CSYSIN TTSTJRB 2

9

WALUE IS..

o

AFTER A 123 SECONDE. .
1
EVAL:
CDEFINE "y
5 1
CTHEQREM “LAMECGR <> <TH1 NIL NIL <CAOR %) (CROCOR 22100
2 3 4 4 4 S S5 9422
“TH1 (LAMBLR <A1 A2 A 20 <COND <INULL A)
2 2 4 4 4) &
CTHZ A1 RZ NIL NIL Cor» o7
& 85 S
COF (MEMBER CCAR AY £ CCOND <CATOM (CAR R
£ 7 S 2 T 7 232 A A3
{THY1 YCOND (i MEMEER <(CRR R)> A1) AL
a A BT o b C 3
(T JCONS CCRR R)> A1) 2 “COR RAY Ci
g £ L o CER A A 23
(T CTH1 A2 CCOND (CMEMBER (<CRR AR) RAZ2) A2
g 3 A BC D o] C B
f7 (CONS i CAR R Y22 LCODR RAY C2220000)
g C L D CBR A A 2276€%5422
tTH2 CLAMBDA <AL A2 C41 C2 C» <COND
oy 3 4 4 4
CONULL C> oTH AL RZ C1 C2»»
56)]
CCATOM CCAR £ ¢THZ 81 R2 “COND
5€ 7 TS 6 v
CCMEMBER CCRR T2 C41» Ciy T
23 A A 8 2 3
CCONS (CAR C» 2103 €2 (CDR Cord)
9 A 3l aa27 v Ted
(T “THZ A1 Rz C1 <COND ({MEMBER
5 = T 23
CCAR CY C2x C22 (T <CONS «CRR C» 2321
A A Q 28 =8 A R 287
CCOR Coddanod
7 TeS432

0
o

CTH (LAMBDA (AL R2 C1 C2) (COND (C(NULL R2) (AND (NOT <{NULL C2))

2 3 4 4 4 Sé € 6 g 8 8?7
(THR (CRR C2Z) R1 ARZ C1 (COR C2))3)> (T {THL (CAR AR2) A1 (COR AZ)
7 8 8 8 8765 S5 6 7 7 .2 7
€1 €253
65432

{THL <(LAMBDR (U A1 RZ C1 C2) (COND

2 3 4 4 4
‘ ({EQ@ (CAR U> (QUOTE NOT)>) (THiAR (CADR U) R4 A2 C1 C2)»
36 4 77 76 6§ 7 7 €5
({EQ@ C(CAR U) (QUOTE AND)> (TH2L <CDR U) R4+ R2 C1 C2))
S8 ? T ve 6 v 7 63
(L EQ (CAR W IGUOTE ORY) CAND (THiL <(CADR U) AL A2 C1 C2
36 v 77 76 6 4 8 3 7
{THiL <CRDODR U» A1 A2 C1 C2) M
? 8 3 ? 635
({E@ CCAR U) (QUOTE IMPLIES)) <AND (THiL <(CADDOR U) A1 A2 C1
Se ? vy <76 6 ? 8 8
C2» (THiR «CACR U) A1 A2 C1 C2> M
v v] 8 7 65
({ER (CAR U) (QUOTE EQUIY)) (AND {TH2L <(CDR U) A4 RZ C1 C2
Se 7 Fad 76 6 7 8] ke
<TH2R <CDR U) A1 RZ C1 C2>
v 8 8 7 65
(T C(ERROR <LIST (QUOTE THL) U A1 R2 C1 C2)))
S & 7 g 8 765
bR D) ' .
422 :

{THR <LAMBDA (U AL A2 C1 C2Z) <(COND

2 3 4 4 4

({EQ <CAR U> (QUOTE NOT)>)> (THiL (CRADR U) A1 ARZ Ci C2))
36 7 7 76 6 ? 7 65
{(E@ (CAR U) ¢QUOTE AND)) ¢AND (THiR (CRDR U) A1 A2 C1 C2)
56 v 27 76 6 7 8 8 7
{TH1iR <{CADDR U)> A1 RZ C1 C2) M
7 8 & 7 635
{¢EQ (CAR U) (QUOTE OR>> (THZR <CDR U)> R1 R2Z C1 C2))
S8 7 v 7 V6 & v 7 €35
({EQ@ C(CAR U) (QUOTE INPLIESY) (TH41 <(CRDR U) <(CARDOLR W)
356 7 77 76 6 7 77 v
A1 A2 C1 C2)

635
({E@ <(CAR U> (QUOTE EQUIY)>)> (AND (TH11 (CADR U) (CADDR U)
Sé v ? T 76 6 7 8 8 8 8
A1 R2 C1 C2) <{TH11 (CADDOR U) <(CADR U) AL AZ C1 C2) N

P 8 g 8 8 7 65
(T C(ERROR {LIST (QUOTE THR) U A1 RZ C1 C21))
S 6 v g 8 763
)
432

9

2

~ THAR

-

‘.

)

<,

CATONM

SR S EPAE §]
— — 3
I o
P S
[RO
(o]
Dan]

& -
[
Py e

CLAMBDA
CCRTOM
SE
{TH Al

T QR

2 [ac)

B0
-~

43

FTH2L CLAMBLOAR (N

CLANBDA

4
W

5

cre
DR
(O

4
\.'l

A

0R ¢MEMBER “ A1)
FANS ¥ C1) C2) O

e 8 7 o8
{MEMBER ¥ A2 ¢TH A1

4

:
s
s
[

23

R *“MEMBER % C2

A1

3 SRS SR

)
T 0P CIEMPER

LU
"

©THAL CLSMBDR ¢ R1 A2 C1 C2» (COND

4 4

" 3R (MEMBER Y C10

- -

Az C1 22

R2 C1 C2) (COND
4 4

")
2 3 4 4
CCARATAM CCRR VWYY QR CMEMEBER
SR N -) v 3 8
CTHIL (CRDR W LCONS YCAR %> A1) RZ €1
T 8 g 2 2 2 2
T (R CMEMBER CCAR %) £2) (THiL (CHADR
9 € T a2 2 T e
A2y QL D200
2 TES
P
432
- THER CWo81 RZ 01 C2y CCOND

4 4

Wr) (QOR CMEMEER
ve B

[0

V) A1 RAZ C(LCONE

2
CCAR YY ORI
8

0~ D

DO g

c 2
]

&

-]

)
=

92

<}

*TH11 CLAMBOR (V1 Y2 A1 A2 C1 C2) (LCOND

e 3 4 4 4
CCATOM VY1) (OR (MEMBER ¥1 C1) (THiR V2 (CONS ¥1 R1) A2 Ci1
Sé 6 &6 g vv 8 8
ca

VES

T (QOR (NEMBER %1 C2) (THiR ¥2 A1 <(CONS5S ¥1 A2) C1 C2»)M
3 6 b v 7 8 8 “TES
2
432

Ty

10

WALUE IS. ..

.. RFTER " 8. 817 SECONDS. ..

<THEOREM THi THZ TH THL THR THilL THiR TH2L TH2R TH11)

EYARL :
<TRRCE "V TH] ; EOF ON TSTJARB. LSP., S0 INPUT 1S NOW FrROM TT:
9 i @

YRLUE IS. ..

... RFTER 8. 917 SECONDS. ..

HIL

EYAL .

 THEQOREM "{ARROWI{OR A (NOT BIXI)I{(CIMPLIESCAND P Q)(EQUIY P Q]
8 b <3 4 43223 4 44 8
YRLUE IS. ..

{1] LEYEL ARGUMENTS OF TH

NIL

C{OR R CNOT B2

HIL

cCIMPLIES <AND P Q)CEQUIY P Q1))

ra LEYEL ARGUMENTS JF TH

DS

NIL

HIL

CLIMPLIES CAND P RICEQUIY P QYD)

(21 LEVYEL ARGUMENTS OF TH
TR

CCAND P @YD

NIL

CCEQUIV P @)D

4] LEYEL ARGUMENTS OF TH
cA P A

NIL

HIL

COEQUIY P QO

GRARBARGE COLLECTION NUMBER 1 AT 439. 932 FREED 1578 CELLS

4] RESULT OF TH
T 93

T

-31 RESULT OF TH
;&T*

21 RESYULT CGF TH

+T =+

[2]1 LEVYEL ARGUMENTS QF TH

HIL
CONOT B
NHIL

COITHMPLTES AND PO (EQUIY P Q)00

(21 LEYEL ARGUMENTS QF TH

NIL

NTL

DB e

COITMPLIES CRAND P QO CEQUIY P @000

[4] LEYEL ARRGUMENTS 0OF TH
HNIL

CORAND R Qo

TR

CCEQUTIY P Q@0

{51 LEYEL RARGUMENTS QF TH
QP

HIL

"B

CYEQUIY P @0

(3] RESULT OF TH
* T

{41 RESULT OF TH

RESULT OF TH

21 RESULT OGF TH
K

1] RESULT QF TH

* T

.. AFTER SI.IIZ SECONDS.
* T ow

EVAL :
CFREE»

3 t}
YRLUE I5..

. . RFTER J.BI2 ZTECONDS. .
1083

94

EVAL .
{RECLAIM)
8 a
YRLUE IS. ..

GARBAGE COLLECTION NUMBER

. AFTER 3. 667 SECONDS. .

NIL®

EYAL :

95

AT

S26. 658

FREED

1762

CELLS

