

＇口ITQ＊？f「～もU

 FGHIUKLMMOFGE：GTUVW×Tz\｛－1\}事由ว $\uparrow \subset+\vdash+\geq-\diamond$ AECHEFGHIUKLMNOF

 CDEFGHIUKLMMOFQF：STUVWXYZ ～\downarrow U ω つ $\uparrow \subset+\vdash \rightarrow \geq-$－$A E C D E F G H I J K L M$

 CEEEGHIdKLMXOFGFETUYWXIED中

 OAECDEFGHIJKLMMOFQF：STUVWNT

 $\triangle E E C E E G H I U K L M O E Q E S T U Y W K T$

 $\rightarrow 2-O A E C D E F G H I J K M A O F Q F: T U V$

－

 KL LMOF $\rightarrow+\rightarrow-$ AAC

 ？f「～もUんこ个 TLE－VA1＂ 3456789（ㄷ．． $\Leftrightarrow=7 \vee \wedge \neq 4 \div$
 QEQESTUVW $\triangle A E C E E E G H$

 （＊）

 U

 ruvwxT

 （

The following are trademarks of Digital Equipment Corporation:

DEC	DIBOL	PDT
DECnet	Digital Logo	RSTS
DECsystem-10	EduSystem	RSX
DECSYSTEM-20	IAS	UNIBUS
DECUS	MASSBUS	VAX
DECwriter	PDP	VMS
		VT

UNIX is a trademark of Bell Laboratories.

GOOW NOTATTON TS A OOOO TEACHEF

Lee Witcoxy meesrtment of phemios GUNY Stons Erook N．Y． 11791

In onls three innes T specifiec a procedure Hamedy कvemamen ron this wrocedure with an arsumenty zswimmed verieble（A）fo be the result and diswhesed its velue．Finsllsy t seved toth the veriende wne the wrocedure in ms privete librory
 LOAD，LINK，MAF ：AFl．Eliminetes ell this．Mamors
 ummecessery．

Mane AFt concewts are newn not only to eutomatic combtetion but mew also to the wes in which commatetion i：comed．ved．

I Gon＇t ordimarisy ereach to the comverteds but Ferhafs mome of sour reeders ere exweriemense the frustretion T exprience in mealins whth mhoot moministrators end colleasues who wre botelly fsnorset of AFL，If these worde oen help wour reacre in discussione whin sum personsy I＇d be plesed

AFt is a sraceful notetion witod for wwlicetion bo Enneral enhewion from fourth srmbe on：No current comwter lansuese comes elose to this in wformme simblified mechine interaction while enrichims human thousht．

फ़et i：AFl．．

AF＇．is both a motetion mad a Frosmemins lensuese The embrsonic notetiomg whblished in A962，bs kemeth ruensom brousht clampicstion mod consistence to diverse notetions then used in apelied methemetice severcl wears seseed pefore
 Frosmmins Lensueses at TBM Corporetion，

AFt．is interactiveyterser and mowertul．Th comerce theres a nish demenc（reletive to wupws） for AFL Frosramerst was is hish beceuse wospamers wieldims ofl mober cen he so productive Apl．is best knotm in；Enrowe wnd Coneos．

In U．s．sehools wn colleses Apl hes been
 APl．one meeds an AFl．terminel．Buty to whehese an Arl terminel（bhout 4200 extra）ectucators needed to कртreciate AFL：CATCH－22．

Nen Concepts
Come all be Fresirientsy Teansy Frincifelsy Gonool Eoerdsj sit at me Am terminol．Let me कhow
 erumation：Let＇s telk about computine es e vehicle


```
474 4.2 2 2 37%9914949
5.4
    ) Fav:=
```

Limes rot imsembed are outwe from the computer． wertue is Tver巨on＇s fenous＂fommine fumotion＂ whinh converts punction specipioctions into mechime prosrems．The ssmbel ω is \Rightarrow whemwevery o stend－in for ens erstument one misht mess to the furctiont mbmame The varientes of AFl．．ere lists or strinst or rectwnsuler arpess of arbitrarils mans dimensions．mok is e commend to distles x^{*} The computation proceeds prom risht to left $=0$ thet MATA is displesed first．

Frimitive wumbions

sumbl．s such es：t and x menote runctions thet apels to arsuments at lett and risht and returm results．Lemrnims to ume a comeuter means learnins the membins of euch＂Frimitive rumetions＂mnd lemrmins to combine these to moduce mew functions Euted to tewks remured for aperimuler subiect．

A wellwhesem eet of primitive functions sives $A \mathrm{FL}$ its wrwessiveness．Like anternetionel raed sisnsy key－mbokes rewnementims primitives hove been destsmed to mumकest whet they mesme． 3 ．

$$
\text { 中(WEVEFSE) } \phi \text { (SOFT WUF) 个(TAKE) } \downarrow \text { (OBOF) }
$$

474922237991949
122234447797999
999987744432221
999
primitives，like those aboveg aperoximete the losic
 momered blocks in oorted order bofore ne cori edd． The bwste memnirs of a cowen or wo AFt wrimitives cen be leerned im a few hours：These tokens are useful in ordiners convereetion I wrefers atd
 reveree order＂ 1 wrefer teboners who express simmle ideas simwly mo suscestively．
［continued on page 3］

NOTABLE AND QUOTABLE

John Backus

Leader of the original FORTRAN developement team
（Commenting on current trends in FORTRAN extensions to an ACM SICPLAN conference in June，1978）

I＇m not in favor of any of them．I think conven－ tional languages are for the birds．They＇re really low level languages．They＇re just extensions of the von Neumann computer，and they keep our noses pressed in the dirt of dealing with individual words and computing addresses，and doing all kinds of silly things like that，things that we＇ve picked up from programming computers；we＇ve built them into programming languages；we＇ve built them into FOR－ TRAN；we＇ve built them into PL／I；we＇ve built them into almost every language．The only languages that broke free from that are LISP and APL，and in my opinion they haven＇t gone far enough．［from R．L． Wexelblat，ed．，History of Programming Languages，New York，Academic Press，1981．Thanks to Homer Hartung for bringing this to the Editor＇s attention．］

Copyright(c)1984, Digital Equipment Corporation. All rights reserved.

It is assumed that all articles submitted to the editor of The Special Character Set or his representatives are with the author's permission to publish in any DECUS publication and that the author has the right to grant such permission. These articles are the responsibility of the authors and, therefore, DECUS, the APL Special Interest Group, the Digital Equipment Corporation, and the editor assume no responsibility or liability for articles or information appearing in The Special Character Set. The views expressed are those of the authors and do not necessarily express the views of DECUS, the APL Special Interest Group, the Digital Equipment Corporation or the editor.

The Special Character Set is the official publication of the APL Special Interest Group of the Digital Equipment Computer Users Society. Unsolicited manuscripts are welcome.

For subscription information and an application, contact:

Membership Services DECUS
249 Northboro Road BPO2
Marlboro, MA 01752

APL SIG STEERING COMMITTEE

Chairman:	Larry LeBlane
	Teletype Corp.
	2330 Eastern Ave.
	Elk Grove, IL 60007
	312-860-8181
Library	
Coordinator:	Susan Abercrombie
	Ventrex Laboratories
	217 Read Street
	Portland, ME 04103
	207-773-7231
Standards	
Representative: OPEN	
Newsletter	
Editor:	Douglas Bohrer
	Bohrer and Company
	903 Ridge Road Suite 3
	Wilmette, IL 60091
	312-251-9449
Symposia	
Coordinator:	OPEN
European	
Contact:	Jean-Pierre Barasz
	BARTS
	54 Rue d'Amsterdam
	75008 Paris, France
	33-1-633-3297

STYLE SHEET
by Douglas Bohrer
Bohrer and Co.
903 Ridge Rd Suite 3
Wilmette, IL 60091
We look forward to your contribution to The Special Character Set. Your cooperation on a few matters of style would help get the newsletter out on time. The newsletter staff is all volunteer and the time you save us is appreciated.

Set-Up
Basically, your contibution should look like this article. Use black ink. Type your text single spaced. Use only one side of each sheet of paper. Skip one line between paragraphs. Set your margin at $43 / 8$ inches wide. For type with 10 characters per inch, you would have 43 characters per line. For type with 12 characters per inch, you would have 52 characters.

Titles

Please start the title of your article on the left margin using all capital letters. Skip one line, then put your name, title, firm and mailing address. (You may omit your title, firm and mailing address for reasons of modesty, privacy, shame or whatever.) Sub-heads in your article should begin at the left margin with a blank line above and below them.

Letterhead will not be reproduced. Drawings should be either $43 / 8$ or 9 inches wide.

Commercial Guidelines
The newsletter will follow strictly the guidelines related to the non-commercial nature of DECUS. If you have any questions on these, please contact the newsletter editor or the DECUS office.

CONTENTS

```
GOOD NOTATION IS A GOOD TEACHER........ 1
NOTABLE AND QUOTABLE. . . . ................ . 1
AND THEN THERE WERE 3.......................... 3
NEW DEC APL PRODUCT MANAGER.............. 3
APL AT ANAHEIM............................ 3
A PLOTTING WORKSPACE ........................ 6
LARGE DATABASE HANDLING WITH APL-NET., 13
ADVERTISING UNLIKELY..................... 16
DECUS EUROPE LETTER...................... 18
US SUBSCRIPTION REPORT............................... 19
DECUS AUSTRALIA LETTER.................. \(2 \emptyset\)
SURVEY RESULTS.................................. 21
DEAR APL FANATIC............................. 22
```


SUITE TERMINAL

The terminal for our hospitality suite in Anaheim will be an LA12-AB with APL keycaps provided by Bruce Hunter (617-493-4963), DEC's marketing wizzard for the Correspondent. The LA12 comes standard with an APL character set. APL keycaps are slightly extra.

AND THEN THERE WERE 3

Douglas Bohrer
Editor, The Special Character Set
Kevin Walker, formerly an APL SIG Steering Committe member, has accepted a position with Digital Equipment Corporation. As a result, he has resigned his Steering Committee position. We are down to 3 Steering Committee members. We are getting dangerously close to a forced merger with another SIG. If you plan to attend a O.S. Symposium in the next year you could become a Steering Committee member, with emergency powers for Iife. The current Steering Committee is prepared to be very ilexible on your duties. We will need someone to represent the AFL SIG at various committee meetings at the Symposia. If you can help, please contact Doug Bohrer at 312-251-9449, Sue Abercrombie at 800-341-0463 or Larry LeBlanc at 312-860-8181.

NEW DEC APL PRODUCT MANAGER
Douglas Bohrer
Editor, The Special Character Set
Dave Quigley has been named APL Product Manager for Digital. He replaces Roger Matus, former DECUS APL SIG Chairmen. Roger has gone on to other duties within DEC. Dave promises enhanced cooperation with the SIG. He says that a lot of engineering effort is going into VAX-11 APL enhancement. Dave refused to confirm or deny rumors that STSC is working on an APL for the Rainbow. He did say that he would be happy to help with questions on DEC's APL products for the VAX and DEC-10/20. His address is ZK2-3/Q08, 110 Spit Brook Rd., Nashua, NH 03062, phone 603-881-2343.
Turning to another Digital development, Greg Adams, a DEC RT-11 guru, mentioned the "possibility" that APL would be one of the "national character sets" implemented on the PRO under RT-11 while answering questions at the DECUS EUROPE Symposium in Amsterdam. If it happens, your editor will try to be a field test site.

APL AT ANAHETM
Susan Abercromble
Ventrex Laboratories

217 Read Street

Portland, Maine 04103
At Anaheim, the APL SIG is still small, but still high quality. We are repeating two sessions which played to enthusiastic audiences in Cincinnati. An introduction to APL will highlight the reasons for using APL and a discussion of the applications for which APL is especially well suited, together with a brief tutorial. A panel on the (nearly) free APL interpreters available through DECUS (APL-11 for RSTS, RSX, and RT; SCI-APL for VAX) will describe these products and give users a chance to discuss them with experts.

DIGITAL (remember them?) has scheduled a session to discuss the features of VAX-11 APL. DEC's presentations on this product have been excellent in the past, and we haven't had a DEC session for several symposia, so this should be of particular interest.

We will try to have an APL terminal available to allow us to give hands-on demonstrations using one of the exhibit hall vax systems.

California or bust!

GOOD NOTATION [continued from page 1]

Arras Thimkins

White tisp anc looo encomrase meere to think in berms of nierarehash list structuresy Amb ememureses users to thark an temme of rectemsunzr

 pleasen now easile one mos manimulete errass wth APL wrjmitaves:

> Operetors and Trsisht

Most iteretive loope which one would reed to write in FORTPAN EASTC, or FASCAL Ere elimineteg by AFL OFERATORS E.
 mutiplioevjof teoles To sum o list of mbmbers

10
(auestion)
(bes the emestion)
(asemim)
〔omemtiom trivizis
(olimo out)
(remult)

$$
\begin{aligned}
& +/ 123 \\
& \left(4+12^{4} 3\right)+4 \\
& (6+112)+3)+4 \\
& (13)+3)+4 \\
& (6)+4
\end{aligned}
$$

क户

万世与ismea os follows：

3
 be ancom：

Them the semeral σ कe is hamoted mos

 епकиfred instsht which is immeriatels transferableg

 84）

Here is \＃n utterts triviel pumetiom to wum the
This is en TF

this＂the art of bessims the evestiom＂Bomslas Hofstanter swemos mum of his momk toond．Escher ari xach extollthe this art．So often recureive

 stited to wererse enuoetion＂

in w ece of t if the shove exmmelle Then sou will

datay oftratoke chanse ftrmbioms imbo obher

 punction spe all are comstrueted om an idertical Temarcive temwletw，I hed fover roticen e fimehis between sum－ow mro MJNTMUM－OF

$9 \quad 8 \quad 2 \quad 9 \quad 8 \quad 4 \quad 8 \quad 6 \quad 27$
）OREEFUE：
Eumorri flof

$+/(2 \mid r) / r$
A
＝UMOTM I．I $1 \quad \% \quad 9 \quad 7$

A

कeलorsen＇s theorem is expresced；
$(A / K)=N(V / N E)$
 expreseion it hed trouble remmberins demorman＇w locete odd terms then uses（locxa－compess）to theorem．Now $]$ could never forset it！Good demselect even terms．The operctor：is used in temers find vivid wews to exwems impormat ideas．

Brevits and Wit

To further demonstrete the mimble brevits AFL consider：

This useful function reburns the etortins inced the risht hand strims in the left hend strims． two musem as（lowical－monmemwion）anc as （summeduction），Flesse compere this expressiomy sumong with correspondins prosrems in FASCALy BASTC（16 1ines）FOURTH（e 1imes）LTSF（6 Intes）siven by Lawremee Teslery Goientifio Americen Gewtmber BA．How cen we acmire 16 lines of Bastc for such an utterle triviel fumbiomT The very concert of a function which twkes an arsument and returns z velue $i s$ abemnt in BASTC If movity is the soul of wity EASTC is dimwited indeed．T＇m attracted hs teechers with e trenchant wit．

In Clasaroom and baborators
Hed T cless elreary mrew．ered for Apl．be mo more then three oless weriodsy x would white on the blackboerd for mote－tekers：

while eswleimine thet this is the rolsmomiel Pumction with coefficients wiven be x ： \boldsymbol{f} could Gemonstrate：

1． 234
$371 \% 21$
There is o triwle benirit from wuch commortment \quad ） 1 provide ma membisuous definitiom +2 ）twech w wothwhie motebion white usines it in context． 3 ） i show now to attomete z Combtation，NO OTHEE COMFUTEE AANGUAGE CAN EE UEED IN THTS WAY，AFL cen be woven into bhe werm of ： mbject bacter FonTRAN ond FASOAL ©an mot！A fobric woven whth heme woot and silk were could heve shedl कpees，TVersom＇s dipect definition motation
 bhets cleary unclutwered eswostion．
＂APl As ©ifficult＂
To imewime thet Apl is difficult becouse it uses a boxer of so exotio mew sumbols is to be missuided．One misht as well commbed thet the difficults of mathemetics wtems from its usw of the Greek mphotet，AFL，like methemeticey is wifficult becatse thimkine is difticult．we need all the felp we cen set trom intellisent notebion AFl． wrimitives are metewhores worth learmins and
 comeutation．

It wou dom＇t use imtermetionel symonsy wou will need provinciol RESERVE－WORDS．In ApFlemsott BASLC for Exemeley \quad f eant meme
 wort work either beceuse this would be interereted： II AT A\％कecense AT is \＃RESFFVETMWORO and Amwlemort imnores alenkel？Whet is wortinhile ahout this？This is an umulcone kind of difficulteg hevins nothins to do with idees．

In APL ome mes neme veriebles and Pumetions however mne flewses－m．
shofegrry cafttal．amp coma
I use umerdires，Por remdemilitw，bo miwtinsuimh furctions from verimbles ot a mlmwe but the lansusse does rot meaure thise Ip the tesk at herch involves only + mo $*$ them other frimitive functions simple font extst．It is still true thet
$2+2 \times 2$

Concembents one con use मिL from des 1 （realisticelly at collese tevely bfter $\%$ or 10 hours rexcins and wroctioe ot e terminel）．In this senee Abl is by far the tasiest extant Janchase to uses On the other hemoy bocouse the motetion is so rich wh rowerfuly it is offficult to mester．That makes it interestina：

The Future of AFL in Fowmetion

In some of oum finest Univerefties Aple hes flourimned for yezrs in umbreremume inetruction anc in somnstimeted rewemrch fers．Hervergy Yeley U0 Berkeles？

Now AFL is floumshine in wersoncl commters： Hish comt when imhibited Am use in mowdmis hes 11 but verisheg：Alresds there ere frum Am Arterprebers to rurs on bis bles＇s FC．obher versione will rum on Motorole 68000 micrombonines （e．s．Macinvoshy Ampere）The Ammere mechime is $=$ mervel of advenced technolose（dewen）it has Ame in， ROMッ 256 kostes of RAM कmd m mineature dimbisoo kbses．Thise lap wizes machine will retail for about t1500（1gea），We will wee APl．intesreted with vivio spephite on the Mecintosh end other FCs．A decision to introduce AFt maseivelw into seneral educetion is fesemble Now．

So we are beck to CATCHE2．Fowers with the purse un Ectustion have never meen Abl．Not one professor in fittwr T suspect，hes mon tides hou wommbins misht be incormoneted into clasw offerimes （I exclure commater sejemee of courwe）Mmme tembhers feml m responsibility to wo this but don＇t know how to bewim：others consider commuters irrelevent or worme．The wes IS difficult． Commutine cent simply be whmkec onto mi almede over burdemed currieulum．rou bon＇t meke a sucesstul motion wioture bs whotosramhims whe procenium erch from e mamera cost in cement．You कめ＂t simble tronslete text mook eaustions into computer lansumwet that roes not work！Thet boes
 write mew texts．

HELF：
DE compers is msremsivels marketins FRO comwters to colleses My cemwus iust contracted for 200 of these with（sou sueswed it）Benc． FCETRAN：and FASCAL！From whet I cen Iemmm MEC compens has no whan to develow mи A户t interwreter for the Fro．Whet a eits！Cam womeme out there in DECUBLANM suszest \Rightarrow respectanle AFL．．to rum on the FGO under FOSt where misht one murmewo e mutweble character FOM row the FRo ？

A Plotting Workspace

Paul Kobrin
American Petroleum Institute
Washington, D.C. 20005

This article describes the contents of a plotting workspace we use under VAX-11 APL. The functions in it are capable of turning a numeric vector or matrix into a scattergram on a character terminal.

The plotting function is called, simply enough, PLOT. It takes the vector or matrix to be plotted as its argument and returns an explicit result, a character array containing the graph. PLOT may be called from other functions or executed directly. When the epsilon symbol in it is converted to the more common execute primitive, it will run under non-DEC APL's.

Depending on how certain options are set, PLOT will produce a variety of graphs. If its argument is a vector, the elements are plotted as vertical values against the integers as the horizontal values. Similarly, if the argument is a matrix, each column is plotted separately against the integers. To the extent possible, a different print character is used for each column. Alternatively, if the numeric scalar . ZCOL exists, its value specifies the number of the column to contribute the horizontal values. For example, column 1 might contain x values while columns 2 and 3 contain two corresponding sets of y values.

The options are set by creating and initializing global variables all of whose names begin with an underlined character. . ZCOL, previously mentioned, is one such variable. Other global variables permit assignment of a title and axis labels, logarithmic scaling of either or both axes, choice of plotting characters and control of horizontal and vertical size of the graph.

In addition to the PLOT function and the five functions which it invokes, the workspace contains another function called EZPLOT which may be used to run PLOT. EZPLOT is niladic and does not return an explicit result. Its purpose is to provide a conversational, menu-based method of setting the global variables just described. EZPLOT contains a help capability which displays the character array EZPLOTHOW. Finally, the workspace contains a character array called PLOTHOW which describes the PLOT function.

sevan

The functions and two HOW variables in the workspace are displayed below. Following that display is a sample session using EZPLOT to generate a scattergram of one column of random numbers plotted against another column of random numbers. Note that the data vector X is created before EZPLOT is run and is specified within EZPLOT.

PLOTHOW
PLOT IS A MONADIC FUNCTION WHICH RETURNS AN EXPLICIT RESULT, A CHARACTER MATRIX WHICH CONTAINS A GRAPH. THE FULL FUNCTIONALITY OF PLOT IS AVAILABLE THROUGH THE CONVERSATIONAL INTERFACE FUNCTION EZPLOT. THE FOLLOWING DOCUMENTATION IS PROVIDED TO USE PLOT DIRECTLY, PERHAPS AS PART OF A LARGER APPLICATION.

THE ARGUMENT OF PLOT IS A NUMERIC VECTOR OR MATRIX. IF A VECTOR, ITS ELEMENTS ARE PLOTTED ON THE Y AXIS WITH INTEGERS ON THE X AXIS. IF A Matrix, the elements of each column are plotted on the y axis with integers ON THE X AXIS IF THE SCALAR . ZCOL DOES NOT EXIST. HENCE, THERE WILL BE AS MANY CURVES AS THERE ARE COLUMNS IN THE MATRIX. IF . ZCOL IS ASSIGNED A NUMBER, THE COLUMN WITH THAT NUMBER IS PLOTTED ON THE X AXIS.

IF THE CHARACTER VECTOR .ZTITLE EXISTS, ITS VALUE WILL APPEAR AS A TITLE CENTERED ABOVE THE GRAPH. IF THE CHARACTER VECTOR .ZXLABEL EXISTS, ITS VALUE WILL APPEAR AS AN AXIS BELOW THE X AXIS. IF THE CHARACTER VECTOR .ZYLABEL EXISTS, ITS VALUE WILL APPEAR VERTICALLY NEXT TO THE Y AXIS.

IF THE VARIABLE .ZYLOG EXISTS (ANY VALUE), THE Y AXIS WILL HAVE A LOGARITHMIC SCALE. SIMILARLY, IF .ZXLOG EXISTS, THE X AXIS WILL HAVE A LOGARITHMIC SCALE.

IF THE CHARACTER SCALAR OR VEC'TOR . ZCHARS EXISTS, EACH CURVE WILL BE ASSIGNED ONE OF ITS CHARACTERS AS A PLOT CHARACTER. THE FIRST CURVE GETS THE FIRST CHARACTER, ETC. IF THERE ARE MORE CURVES THAN CHARACTERS, THE CYCLE OF CHARACTERS IS REPEATED. DEFAULT CHARACTERS ARE PROVIDED IF THIS VARIABLE DOES NOT EXIST.

EZPLOTHOW
EZPLOT IS A CONVERSATIONAL FRONT END USED TO SET THE PARAMETERS OF PLOT, A FUNCTION WHICH GRAPHS ONE OR MORE CURVES ON A PAIR OF AXES. EZPLOT IS RUN BY ENTERING ITS NAME.

A MENU APPEARS OFFERING FOUR CHOICES. THE FIRST IS TO SET, ALTER OR DISPLAY THE VALUES OF THE GRAPHIC PARAMETERS. THIS MUST BE EXECUTED BEFORE A GRAPH CAN BE PLOTTED. THE SECOND CHOICE PLOTS THE GRAPH. THE THIRD CHOICE BRINGS UP THIS HELP TEXT. THE FOURTH CHOICE EXITS THE FUNCTION. THE REST OF THE TEXT DEALS WITH CHOICE 1.

ONCE CHOICE 1 IS SELECTED, DESCRIPTIONS OF THE 11 PARAMETERS ARE DISPLAYED ALONG WITH THEIR DEFAULT AND CURRENT VALUES. THE USER IS PROMPTED TO RETURN TO THE MENU BY TYPING 0 (ZERO) OR TO ENTER THE NUMBER OF THE PARAMETER TO BE ALTERED. IF AN INTEGER FROM 1 TO 11 IS ENTERED, THE USER WILL BE PROMPTED AGAIN, THIS TIME TO RETURN TO THE MENU BY TYPING M, TO RESTORE THE defallt of the chosen parameter by typing d, or to set a value by typing it. DO NOT ENTER A VALUE THAT LOOKS LIKE THE DEFAULT; TO GET THE DEFAULT, ENTER D. THE FIRST SEVEN PARAMETERS ARE FULLY DESCRIBED WHEN THEY ARE DISPLAYED. HENCE, ONLY THE REST WILL BE DISCUSSED BELOW. NOTE THAT ONLY PARAMETER 10 NEEDS TO BE SET; DEFAULTS SUFFICE FOR THE OTHERS.

PARAMETER 8 SELECTS PRINT CHARACTERS. THE FIRST PRINT CHARACTER IS FOR THE FIRST CURVE, ETC. CHARACTERS WILL BE USED IN CYCLE IF THERE ARE MORE CURVES THAN CHARACTERS.

PARAMETER 9 SELECTS THE COLUMN OF THE INPUT MATRIX WHICH WILL BE PLOTTED ON THE X AXIS. OTHER COLUMNS WILL BE PLOTTED ON THE Y AXIS. IF NO COLUMN IS SELECTED (THE DEFAULT), aLL COLUMNS WILL BE PLOTTED ON THE Y AXIS AGAINST THE CONSECUTIVE INTEGERS ON THE X AXIS.

PARAMETER 10 IS THE NAME OF THE VARIABLE CONTAINING THE MATRIX OR VECTOR TO BE PLOTTED. VECTORS ARE PLOTTED AGAINST THE CONSECUTIVE INTEGERS. COLUMNS CORRESPOND TO CURVES.

PARAMETER 11 IS THE NAME OF THE VARIABLE TO RECEIVE THE GRAPH. THE DEFAULT, NO VARIABLE, DISPLAYS THE GRAPH ON THE SCREEN.

An example illustrating the use of EZPLOT follows. We begin by creating a data vector which will be plotted.

X_1.LO.LO(\%15)\#.IO60 " SINE CURVE EZ̄PLOT
EZPLOT

1. REVIEW/ENTER/CHANGE SETTINGS
2. GENERATE GRAPH
3. HELP
4. EXIT

ENTER NUMBER
. BX:
1

1. NUMBER OF VERTICAL DIVISIONS 21
2. NUMBER OF HORIZONTAL DIVISIONS 60
3. TITLE
4. X AXIS LABEL
5. Y AXIS LABEL
6. LOGARITHM ON X AXIS NO NO
7. LOGARITHM ON Y AXIS NO NO
8. PRINT CHARACTERS 0 *\#+ $0^{*} \#+$
9. COLUMN NUMBER CORRESPONDING TO X AXIS
10. INPUT DATA VARIABLE
11. OUTPUT (GRAPH) VARIABLE

ENTER NUMBER OF ITEM TO SET/CHANGE OR O (ZERO)
TO RETURN TO MENU
. BX:
10
ENTER M TO RETURN TO MENU WITHOUT SETTING/CHANGING ITEM. ENTER D TO RESTORE DEFAULT.
ENTER VALUE OR TEXT (WITHOUT QUOTES) TO SET/CHANGE ITEM.
X
ENTER NUMBER OF ITEM TO SET/CHANGE OR O (ZERO)
TO RETURN TO MENU
. BX:
0

1. REVIEW/ENTER/CHANGE SETTINGS
2. GENERATE GRAPH
3. HELP
4. EXIT

ENTER NUMBER
. BX :

1. REVIEW/ENTER/CHANGE SETTINGS
2. GENERATE GRAPH
3. HELP
4. EXIT

ENTER NUMBER
. BX:
4
aALL FUNCTIONALITY OF THIS PROGRAM IS AVAILABLE THRU EZPLOT,
AA CONVERSATIONAL INTERFACE.
[4]
[5]
[9] NHDIV $\leftarrow H D I V$
[10] $S 2: \rightarrow(2=\rho \rho D A T A) / S 3$
[11] DATA+ (($\rho D A T A), 1) \rho D A T A$
[12] S3: $\rightarrow\left(2=\left[N C \quad 13 \rho^{\prime} C O L^{\prime}\right) / S K I P\right.$
[13] DATA $-(1(, \mathrm{pDATA})[1]),[2] D A T A$
[1.4] $\rightarrow N E X T$
[15] SKIP:DATA $\left[; 1 \phi_{1} C O L\right] * D A T A[; 1 C O L]$
[16] NEXT:V $+1+S+0-1+\rho D A T A$
[17] $\rightarrow\left(2 \neq \square N C 14 \rho^{\prime} V L O G^{\prime}\right) / H L O G$
[18] DATA $[; 1+1 \mathrm{~V}]+\mathrm{D}_{\mathrm{D}} A T A[; 1+1 \mathrm{~V}]$
[19] HLOG: $\rightarrow\left(27\left[N C 14 \rho \cdot H L O G^{\prime}\right) / P A S S\right.$
[20] DATA[;1] \oplus DATA[;1]
[21] PASS: $D X-L 1.5+(N H D I V-1) \times(D X+0.5 \times K) \div(K+U=0)+U \leftarrow \Gamma / D X \leftarrow, D X-L / D X+D A T A[; 1]$
[22] $D+L 1.5+(N V D I V-1) \times(D+0.5 \times K) \div(K+U=0)+U \leftarrow[/, D+S p D-L /, D+D A T A[; 1+1 V]$
[23] $M+(N V D I V, N H D I V)^{\prime}$ '
[24] $M[; 1]+{ }^{\prime} \mid$
[25] $M[1 ;]+1-$
[26] $J<1$
[27] NCHARS $+10 * x+\circ \nabla \Delta \triangle C u '$
[28] $\rightarrow\left(2 \neq \square N C 15 \rho^{\prime}\right.$ CHARS')/K2
[29] NCHARS - CHARS
[30] $K 2: I+1$
[31] $K 1: \rightarrow(1=\rho, 1, \quad S \leftarrow(S>0) / S \leftarrow D X \times D[; J]=I) / J U M P$
[32] $M[I ; S]+(V \rho N C H A R S)[J]$
[33] JUMP: $\rightarrow(N V D I V \geq I+I+1) / K 1$
[34] $\rightarrow(V \geq J+J+1) / K 2$
[35] GRAF $+\oplus M$
[36] GRAF*' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',(GRAF,[1]' '),[1]' '
[37] GRAF*((((GRAF'' '),' '),' '),' ')
[38] INCR $+(([/ D A T A[; 1])-L / D A T A[; 1]) \div J \div$ LNHDIV $\div 15$
[39] $\operatorname{HVALUES}+(\mathrm{L} / \operatorname{DATA[} ; 1])+I N C R \times 0,1 \mathrm{~J}$
[40] $\rightarrow\left(2 \pm \square N C \quad 14 \rho^{\prime} H_{L O G}{ }^{\prime}\right) / L 1$
[41] HVALUES $+\star H V A L U E S$
[42] $L 1: H P T S \leftarrow L 10+1,(N H D I V \div \delta) \times 1 J$
[43] GRAF[1+NVDIV;HPTS]*'|'
[44] GRAF[2+NVDIV;,HPTS०.+5+19]<HCOMBINE HVALUES
[45] VINCR $\leftarrow(([/ D)-L / D \leftarrow, D A T A[; 1+1 V]) \div J+L N V D I V \div 8$
[46] VVALS*
[47] $\rightarrow\left(2 \pm\left[L W C ~ 1 ~ 4 \rho^{\prime} V L O G^{\prime}\right) / L 2\right.$
[48] VVALS**VVALS
[49] L2:VPTS +1 , (NVDIV:J) $\times 1 J$
[50] GRAF[VPTS;10]+1-1
[51] GRAF[VPTS; 19]+((J+1),9) pVCOMBINE VVALS
[52] $\rightarrow\left(2 \neq\right.$ [NC $15 \rho^{\prime}$ TITLE')/M1
$[53] \rightarrow(0>D \leftarrow 0.5 \times N H D \bar{I} V-\rho T I T L E) / M 1$
[54] GRAF $+\left(\left(\left(10+\lceil D) \rho^{\prime}\right.\right.\right.$ ' $)$, TITLE, (4+LD) ρ^{\prime} '),[1]' ',[1]GRAF
[55] $M 1: \rightarrow\left(27 \square N C 160^{\prime} X L A B E L^{\prime}\right) / M 2$
[56] $\rightarrow(0>D+0.5 \times N H D I V-\rho X L A B E L) / M 2$
[57] $G R A F-(G R A F,[1] ' ~ '),[1]\left((10+\lceil D) \rho ' ~ '), X L A B E L,(4+L D) \rho^{\prime}\right.$
[58] $M 2: \rightarrow(2 \neq \square N C 1$ G'YLABEL')/0
[59] $\rightarrow(0>D \leftarrow 0.5 \times N V D I V-\rho Y L A B E L) / 0$

∇

[1] $\bar{A} W R I T T E N ~ B Y ~ P A U L ~ K O B R I N, ~ O C T O B E R ~ 4, ~ 1982 . ~$

```
[3] MENU:
[4] '''. REVIEW/ENTER/CHANGE SETTINGS'
```

[6] '2. GENERATE GRAPH'
[7] '3. HELP'
[8] '4. EXIT'
[9] ' '
[10] 'ENTER NUMBER'
[11] $\rightarrow(1=N O \leftarrow \square) / R E V I E W$
[12] $\rightarrow(2=N O) / G E N$
$[13] \rightarrow(3=N O) / H E L P$
[14] $\rightarrow(4=N O) / 0$
[15] 'TRY AGAIN'
[11] $\rightarrow M E N U$
[17] REVIEW:' ,
$\left[\begin{array}{ll}{[18]} \\ {[19]} & \text { DEFAULT } \\ \text { CURRENT: }\end{array}\right.$
[20] $c+{ }^{+} 21^{\prime}$
[21] $\rightarrow\left(27\right.$ [NC $\left.14 \rho^{\prime} \underline{V}^{\prime} D V^{\prime}\right) / L 1$
[22] $C+\mp V D I V$
[23] L1:'1. NUMBER OF VERTICAL DIVISIONS 21 , C

[26] $C+$ HDIV

[29] $\rightarrow\left(2 \neq\right.$ LNC $\left.115 p^{\prime} \underline{T} I T L E E^{\prime}\right) / L 3$
[30] $C \leftarrow T I T L E$
[31] L3:T3. TITLE ${ }^{\text {, }, C}$
[32] C+1;
[33] $\rightarrow\left(2 \pm\right.$ [TNC 1 G $\left.^{\prime} \underline{X}^{\prime} L A B E L^{\prime}\right) / L 4$
[34] $C+X L A B E L$
[35] $L 4: \overline{\text { T}} 4 . X$ AXIS LABEL \quad, C
$\begin{array}{llll}{[36]} & C+1 \\ {[37]} \\ \rightarrow(2 \pm[2 N C & 1 & \left.f_{p^{\prime}}{ }^{\prime} Y L A B E L^{\prime}\right) / L 5\end{array}$
[38] C $-\underline{Y L A B E L}$

[40] C+'NO'
[41] $\rightarrow\left(2 \neq\left[N C 14 \rho^{\prime}{ }^{H} L O G^{\prime}\right) / L 6\right.$

[45] $\rightarrow\left(2 x \square N C 14 \rho \underline{V}^{\prime}\right.$ VOG $\left.^{\prime}\right) / L 7$
[46] C+'YES'
[47] L7:'7. LOGARITHM ON Y AXIS No ', C
[48] C+'O*x+oV \triangle cu'
[49] $\rightarrow\left(2 \pm\left[\right.\right.$ NC $115 \rho^{\prime}$ CHARS')/L8
[50] C+CHARS
[51] L8: 18 ; PRINT CHARACTERS O*x+ov
[52] $C+1$;
[53] $\rightarrow(2 \neq \square N C 13 \rho '$ COL' $) / J 9$
[54] $C+C O L$
[55] J9:'9̄. COLUMN NUMBER CORRESPONDING TO X AXIS ', C
[56] $C \neq 1$;
[57] $\rightarrow(2 \neq$ ПNC 1 5p'INPUT')/L9
[58] C+INPUT
[59] L9:'10. INPUT DATA VARIABLE \quad, C
[6] $c+1$ '
[§1] $\rightarrow\left(27 \square N C 1\right.$ © ρ^{\prime} OUTPUT' $) / L 10$
[62] c+outpur
[〔3] L10:'11. OUTPUT (GRAPH) VARIABLE ',C
[64] SET:
'ENTER NUMBER OF ITEM TO SET/CHANGE OR O (ZERO)'
' TO RETURN TO MENU'
[8] $\mathrm{NO}+\square$
[69] $\rightarrow((N O>L N O) \vee(N O<\lceil N O) \vee(N O<1) \vee(N O>11)) / M E N U$
[70] ,
[71] 'ENTER M TO RETURN TO MENU WITHOUT SETTING/CHANGING ITEM.'
[72] 'ENTER D TO RESTORE DEFAULT.'
[73] 'ENTER VALUE OR TEXT (WITHOUT QUOTES) TO SET/CHANGE ITEM.'
[74] '
[75] VAL \leftarrow, \square
[70] $\rightarrow\left(\left(^{\prime} M^{\prime}=1 \uparrow V A L\right) \wedge 1=\rho V A L\right) /$ MENU
$[77] \rightarrow(I 1, I 2, I 3, I 4, I 5, I\}, I 7, I 8, K 9, I 9, I 10)[N O]$
[78] \rightarrow MENU
[79] $I 1: \rightarrow\left(V A L=' D^{\prime}\right) / I 11$
[80] VDIV + \&VAL [138]N1:
[81] \rightarrow SET [139] $C+227 \rho{ }^{\prime}$ FUNCTION
$\begin{array}{ll}\text { [139] C }+2 \text { 27 } \rho^{\prime} \text { 'FUNCTION } & \leftarrow \text { PLOT 2INPUT' } \\ \text { [140] C[2:1 }\end{array}$
[141] $\pm[\mathrm{FX} C$
[142] ПSINK + IEX 1 80'EUNCTION'
[143] \rightarrow MENU
[144] HELP:
[145] EZPLOTHOW
[146] $\rightarrow M E N U$
∇

$\nabla Z-$ CENTER X
[1] $Z+((L 4.5-0.5 \times \rho Z) \rho \prime$ ' $), Z,\left(\lceil 4.5-0.5 \times \rho Z \leftarrow\right.$ FORMAT $X) \rho^{\prime}$,
∇

[98] \rightarrow SET
[99] $I 5: \rightarrow\left(\left(D^{\prime}=1 \uparrow V A L\right) \wedge 1=\rho V A L\right) / I 51$
[100] YLABEL $+V A L$
Z - FORMAT X;U
[101] \rightarrow SET
[102]I51:C+[EXX 'YLABEL'
[103] \rightarrow SET
[104] $\mathbf{C l}: \rightarrow\left(\left({ }^{\prime} D^{\prime}=1+V A L\right) \wedge 1=\rho V A L\right) / I 1$
[105] HLOG*'YES'
[106] \rightarrow SET
[107] 1: $C+$ [DEX 'HLOG'
$[108] \rightarrow$ SET
$[109] I 7: \rightarrow\left(\left(D^{\prime}=1 \uparrow V A L\right) \wedge 1=\rho V A L\right) / I 71$
[110] VLOG ${ }^{\prime}$ YES'
[111] \rightarrow SET
[112]I71:C+ $\square E X$ 'VLOG'
[113] \rightarrow SET
VZ-HCOMBINE $X ; N ; I$
1] $\mathrm{N}+\mathrm{pX}+, \mathrm{X}$
$[114] I 8: \rightarrow\left(\left(D^{\prime}=1 \uparrow V A L\right) \wedge 1=\rho V A L\right) / I 81$
[2] $2+1$
[115] CHARS $-V A L$
[116] \rightarrow SET
[4] $L 1: 2+2$, CENTER $X[I]$
[117]I81:C*1EX 'CHARS'
[5] $\rightarrow(N \geq I+I+1) / L 1$
[1] $\quad 2+0$
[2] $\rightarrow((1000>\mid X) \wedge X=\lceil X) / L 1$
[3] $\quad Z+0+((3-L 10 \otimes \mid X) \times(1000>\mid X) \wedge 0.001 \leq \mid X)-3 \times(0.001>\mid X) \vee 10000000 \leq \mid X$
[82] I11:C* ${ }^{2} E X$ 'VDIV'
[83] $\rightarrow S E T$
[84] $12: \rightarrow\left(V A L=D^{\prime}\right) / I 21$
[85] HDIV $\leftarrow V A L$
[86] \rightarrow SET
[87] I21: C C पIEX 'HDIV'
[88] $\rightarrow S E T$
[89] $I 3: \rightarrow\left(\left({ }^{\prime} D^{\prime}=1 \uparrow V A L\right) \wedge 1=\rho V A L\right) / I 31$
[140] $C[2 ; 1$ OUUT̈PUT $] \not-Q U T P U T$
[90] TITLE $+V A L$
[91] \rightarrow SET
[92] I31:C* पEX 'TITLE'
[93] \rightarrow SET
[94] $I 4: \rightarrow\left(\left(^{\prime} D^{\prime}=1 \uparrow V A L\right) \wedge 1=\rho V A L\right) / I 41$
[95] XLABEL $\leftarrow V A L$
[96] $+S E T$
[4] $L 1: 2 *(9, Z) \Psi(X \times 1000 \geq \mid X)+(1000<\mid X) \times U \times \in \quad 0 \mp X \div U+10 *^{-} 3+L 10 \otimes(X=0)+\mid X$
[5] $Z+\left(Z \not{ }^{\prime} 1\right) / Z$
r
∇
**
IT1
∇
[118] \rightarrow SET
$[119] K 9: \rightarrow\left(\left(^{\prime} D^{\prime}=1+V A L\right) \wedge 1=\rho V A L\right) / K 91$
[120] COL $+9 V A L$
[121] \rightarrow SET
[122]K91: $C+[$ EXX 'COL'
[123] $\rightarrow S E T$
$[124] I 9: \rightarrow\left(\left(D^{\prime}=1+V A L\right) \wedge 1=\mathrm{p} V A L\right) / I 91$
**
[125] INPUT \leftarrow VAL
[126] $\rightarrow S E T$
[127]I91: C+ПEX 'INPUT'
[128] \rightarrow SET
$[129] I 10: \rightarrow\left(\left(D^{\prime}=1 \uparrow V A L\right) \wedge 1=\rho V A L\right) / I 101$
[130] OUTPUT $+V A L$
[131] \rightarrow SEI
$[132] I 101: C+[$ IEX 'OUTPUT'

```
    [1] }\begin{array}{c}{\nablaZ+RTJUST X }\\{Z+((9-\rhoZ)\rho', '),Z+FORMAT X}
```

 [1] }\begin{array}{c}{\nablaZ+RTJUST X }\\{Z+((9-\rhoZ)\rho', '),Z+FORMAT X}
 \nabla
    ```
    \nabla
```

$\nabla Z \leftarrow V C O M B I N E X ; N ; I$
[133] \rightarrow SET
[1] $N+\rho \mathrm{X}+, \mathrm{X}$
[134]GEN:
$[135] \rightarrow\left(2=\left[N C \quad 1 / \rho^{\prime}\right.\right.$ OUTPUT' $) / N 1$
[2] $2+{ }^{\prime \prime}$
[136] PLOT qINPUT
[3] $I+1$
[137] \rightarrow MENU
[4] $L 1: 2 \leftarrow 2, R T J U S T$ X[I]
[5] $\rightarrow(N \geq I+I+1) / L 1$
∇

LaRGE DATA BASE HANDLING WITH APL-NET, A HIGH-PERFORHANCE APL SYSTEM FOR THE DECSYSTEM-20
by Jean-Pierre Barasz
Business Applied Real Time 5ystems (BARTS)
54, rue d'Amsterdam
75UU9-Paris, FRANCE
Abstract
APL systems are rarely used as a support for large data bases, for efficiency reasons. This paper will attempt to show how a powerful file system and a well designed set of APL extensions can provide a means to efficiently create, maintain and query large data bases.

Introduction

Handling large data bases in APL (up to several hundred million bytes) involves 2 different processing phases:

- the loading phase, which typically involves reading and processing sequential files generally produced in non-APL environments, inverting the file, selecting data, numeric conversion etc..., and storing the reorganized data in some APL-oriented file structure designed to facilitate the query and/or the maintainance of the data base.
- accessing the data base, possibly with simultaneous updating and querying.

This paper presents selected features of APL-NET, a high-performance APL system for the DECSYSTEM-20, and shows how they can be used effectively in these 2 phases of large data base handling.

Interpreter Performance

APL has an undeserved notoriety for being slow compared to compiled languages, as it is interpreted. Although an APL system must analyse statements before executing the machine instructions that perform the prescribed functions - whereas a compiled system separates the 2 phases and does the analysis and code production phase only once - the parallel array processing characteristic of APL can in many cases completely eliminate this disadvantage. In addition, there are important variations in the internal speed of different APL system implementations, as well as in the performance of different language compilers. Speed ratios of 2 or 4 to 1 are not uncommon.

Parallel Processing

The key to efficient processing in APL is processing large chunks of data in parallel. In order to execute a primitive function, for example $A+B$, an APL system will do the same amount of work to analyse the statement (and possibly, in some implementations, produce machine code), whatever the size of A and B. The actual machine resources needed to execute the addition function, however, are proportional to the size of the result of the operation. The "work" involved in analysing the expression, checking for argument conformability, obtaining space for the result, etc, in a good APL interpreter represents 200 to 300 machine instructions. In some implementations, it may be a good deal more. The work in doing the actual addition of two elements is typically 4 to 10 machine instructions. An eacy computation shows that in adding 2 scalars, the interpretation cost may be 100 times the actual execution cost, in the worst case, whereas in adding two $1000-\mathrm{el}$ lement arrays, the interpretation cost may be only a negligible percentage of actual execution cost.

Although most APL systems have relatively good performance in the interpretation of some primitive functions, less care has been given to the power and efficiency of such features as file systems. In applications where files are small or file access rare, the efficiency of file systems is not important, but the weaknesses of such systems prohibits their use when the amount of data gets large.

Background on APL File Systems

Relatively early in the evolution of APL systems, the need for a means to store data external to the workspace arose and was met by file systems such as APL*PLUS (trade mark of S.T.S.C.), and I.P. SHARP's. These file systems, which have served as models for many of the file systems developped since, gave only partial solutions.

In a manner conforming with APL "philosophy", those file systems did away with "job control language", logical or physical disc space allocation and various other esoteric systemdependent features. They allowed the storage of APL arrays with all their attributes (rank, type and dimensions), concurrent update access by several users, and sophisticated access protection mechanisms.

Despite their qualities, these file systems had two important weaknesses: the addressing of data components of APL files, and the means to access "non-APL" files produced by other systems.

APL-NET File System and Extensions

APL-NET allows handling of large data bases, thanks to its key system for APL files, various other enhancements of the file system and other system functions that allow efficient parallel processing of large chunks of data.

Keyed Files vs. Sequential Component Files
In "sequential component" file systems, the addressing of the data stored in the file is through component numbers, a set of contiguous integers starting at 1 . It is not possible to delete file components other than at the beginning or end of the file; applications must replace deleted components with empty arrays, although this technique only partially releases file space.

The component number can rarely be used directly as a meaningful "key" into the data base. This means that access mechanisms such as indexes, hash-coding, etc. must be written in APL code. Maintaining file indexes or keys at the application level, in APL code, has two major drawbacks:

- inefficiency since the cost of accessing one component grows rapidly as a function of the total number of components, since APL code must be interpreted for each file access.
- fragility in case of system crashes, where the application-maintained indexes may not correctly reflect the state of the data in the file in case it was being updated at the time of crash.

APL-NET provides a much more sophisticated file system for APL components, called "keyed APL component files". As in the APL*PLUS file system, the file is made up of "components" containing APL arrays. The components are time-stamped and signed with the user number of the last component writer. File accesses are controlled with an access control matrix specifying individual access rights for each authorized user or user group. The file system is internally interlocked to allow simultaneous multiple user update. It also provides an interlocking mechanism at the user level as a system function. Where the APL-NET file system differs from APL*PLUS is in the "key" system and the support functions. To each component is associated a key. The key is either a 1 - to 13-digit integer scalar, an integer vector of less than 30 elements, or a character vector of less than 120 elements.

In addition to the system functions that allow reading, writing or removing (multiple) components, APL-NET provides functions to manipulate and count the keys, give subsets of keys between specified boundaries, query the neighbors of a given key, sequential access, appending, etc.. All in all, 30 system functions are associated with file management.

The "keyed" file system allows users to directly implement complex access schemes by using the component key as meaningful data (part number, customer number, etc...). The (internal) management of the keys and data has no inherent limitations other than the physical disc space. There is no "reservation" of space for the keys or data. Disc space is released to the system as components are removed or replaced by smaller ones.

Applications using the keyed file system are simpler to write and maintain, more secure, and more cpu efficient than comparable ones using the less sophisticated APL*PLUS-like file systems.

External Files (Non-APL)
We have seen how the APL-NET keyed files can serve as a support for large data bases, but before using a data base, it must be built from data files generally "external" to the APL system.

To build the APL files from external files, one must have the possibility either to access external files from APL, or to access APL files from other environments (COBOL, FORTRAN, etc.). In most APL systems that allow access to external files from APL, the process is generally too expensive for large data bases, as reading and processing records one at a time turns out to be exactly the kind of process where APL is not very efficient. In systems where APL files may be accessed and built from other languages, it is possible to write the data base loading programs in another language, although such programs are often "use-once and modify" type of programs, typically what APL is supposed to be good at, but not "batch-oriented languages". The machine efficiency is traded for programmer inefficiency.

APL-NET has solved the external file access problem by providing the following features.

At the choice of the programmer, an external file may be viewed as a sequential collection of fixed-length bit, word, ASCII-character records, as a set of (possibly non-contiguous) pages, or as variable length ASCII-character records terminated by line-feed characters. The way a file is viewed and record length (where applicable) is determined is through the parameters of the single system function DFOPEN, which is used to create, open, or supersede an existing file. A file may be simultaneously open in different modes on several channels.

Accessing data may be sequential or direct, even for variable length ASCII files! An arbitrary number of records may be read (or written) in a single call to the $\square F R E A D$ (or [IFWRITE) system function(s). Reading multiple records yields a matrix result, except for variable length ASCII files, where a vector containing embedded "new-line" characters is returned.

End-of-file processing is easily performed, since the $\square F R E A D$ function will return a "short" matrix or vector if fewer than the requested number of records exist beyond the requested first record. The powerful APL-NET error trapping mechanism may be effectively used to detect and process the end-of-file condition, which sets an error event if one attempts to read sequentially after having reached the end of the file.

Hence,

1000 IFREAD 10

will read a thousand (or fewer) records from the file opened on channel 1 at the current file position, and

10 ITREAD 1,I
will read 10 records starting with record number 1.

Example of control logic for processing a sequential 8U-character record ASCII file "chunks" at a time:

```
    \nablaLOAD FILEE;BLOC;DATA
    'CARDS.FILE.3' [FOPEN 1 0-7}8
a 7: ASCII CHARACTERS
[6] A 80: RECORD LENGTH IS 80
[7] 58 [TRAP EOF & ERROR TRAP TO LABEL 'EOF'
[9] BLOC*1000 A ARBITRARILY LARGE BLOC
                            a ARBITRARIY LARGE bLOC
- a SIZE FOR EFFICIENT
[11] & PARALLEL PROCESSING
[12] LOOP: DATA&BLOC पFREAD 1 0
[13] a READ BLOC AT CURRENT
[14] A FILE POSITION: YIELDS
[15] & 1000 BY 80 MATRIX
[16] PROCESS DATA \diamond ->LOOP
[17] EOF: DFCLOSE 1 a CLOSE FILE
    \nabla
```

[1]
[2]
[3]
[4]
[5]
[5]
[8]
[9]

Reading records "chunks" at a time is 10 time faster in APL-NET than the fastest APL program that reads records one at a time to build the matrix!

Processing Variable Length Record ASCII Files
APL-NET has numerous system functions which may be useful to efficiently process variable length ASCII files. In many cases, the input file is composed of heterogeneous records, perhaps of differing length. Without the system functions discussed below, it would be difficult to process such a file in large chunks to benefit from APL's inherent efficiency whenever parallel processing can be used.

As discussed before, APL-NET permits reading several records at one time from a variable length record ASCII file with a single call to the $[1 F R E A D$ system function. This yields a character vector with embedded "new-line" characters as record delimiters. APL-NET provides a system function, पSTACK, and its inverse, पUNSTACK, which can be used to transform a vector into a matrix and vice-versa, by specifying delimiting and filling characters. The delimiting character is the character which separates individual "records", and the filling character is used to pad on the right the matrix rows made up of "short" records. Example:

```
    A+'/*' [LSTACK 'JOHN/SAM/PETER/ELSA'
    A
pA
```

JOHN*
SAM**
PETER
ELSA*
45

Using the "new-line" and "space" characters as delimiting and filling characters, respectively, allows breaking up the records of a variable length ASCII file into a matrix which can be processed efficiently. Example:
pDATA ${ }^{\prime} \overline{6}$ ' पSTACK 1000 [IFREAD 10
1000125
if the longest record is 125 characters long.
CSTACK is 7 times faster than a similar routine written in APL.

A frequent problem with loading a data base is the selection of specific records for appropriate processing. APL-NET offers a system function, DSEARCH, used for string searches, which accepts a data argument of arbitrary rank. The search argument, a vector, is looked up in each row of the data argument. The result is of the same shape as the data argument and contains a 1 one in the corresponding leftmost position(s) of the data argument where the search string is matched. Appropriate processing of the result of the search yields a powerful selection mechanism. Example:
A
JOHN*
SAM**
PETER
ELSA*
A ISEARCH 'SA'
00000
10000
00000
00100
ПSEARCH may in many cases bring a significant increase in efficiency in data base loading and other selection processes.

Another frequent problem with data base loading is the numerizing of fields from the source file. APL-NET provides a system fuention for numeric conversion, $\square N U M E R I C$, which works with a field description and a character matrix data argument, yielding the numeric values of the fields as result. Since the data is known to be homogeneous within the fields, the conversion algorithms are particularly efficient.

Conclusion

A fast APL interpreter, with a good set of extensions including a powerful file system, is capable of running applications handling large amounts of data, provided care is taken to process data in parallel whenever possible. Such applications may run as well, if not better, than applications written in less powerful and user-friendly languages.

ADVERTISING UNLIKELY

Douglas Bohrer

Editor, The Special Character Set
As the culmination of the "renegade editorsin advertising investigation, I drafted a policy and questionaire for distribution in Cincinnati. I showed advance copies to Mike York, DECUS Newsletter Coordinator, and the members of the ad hoc advertising committee. After making the changes they suggested, I had several hundred printed at my own expense. During the leadership conference on the Sunday before sessions began I showed the survey to several people including Charles Mustain, incoming Executive Board member and former Publications head. There seemed to be agreement that it was $O K$ to pass it out.

Susan Abercrombie, an APL SIG Steering Committee member, was in charge of the DECUS Library booth on the display floor. She began distributing surveys at the booth on Monday morning.

The DECUS Management Council banned the questionaire on Monday afternoon. They did not have a copy of the questionaire at the meeting, nor did they ask for any input from Sue, me or anybody else. The stated reason for totally prohibiting further distribution was that the questionaire looked "officially sanctioned" and some members would mistakenly assume that the adoption of the proposed policy was all but inevitable.

I tried passing out the questionaire on Wednsday as I walked through the halls and had an outgoing DECUS Board member threaten me with expulsion from the symposium if I continued. As a result of all this activity, there were only 64 responses, which are summarized below.

The combination of negative board reaction and sizeable negative feedback on the responses to the questionaire make any change in the current advertising policy extremely unlikely.

Many people I talked to thought that the action banning the survey was ill considered. I have reprinted the questionaire so that you can judge for yourself. While the Management Council and Executive Board have the power to censor anything they choose to, I feel that banning independent questionaires on DECUS policy issues will stifle most organizational change. Procedures specifying what steps are needed to approve distributing such questionaires would be useful for the future.

ADVERTISING QUESTIONAIRE RESULTS

DRAFT NEWSLETTER ADVERTISING POLICY

The following policy has been proposed to allow commercial paid advertising in DECUS Newsletters. The revenue would be used to lower subscription fees. Your input will be helpful in considering whether or not this or any policy change with regard to advertising should be adopted. (So far only a few renegade editors have endorsed this proposal.)

PROPOSED POLICY

1. A special exemption to the non-commerciality guidelines is granted to newsletter advertising sections. Advertising sections must be entirely separate from editorial content. The current policy banning commercialism remains in effect for all editorial content.
2. Acceptable advertising will contain information about products that work on or with Digital Equipment Corporation products. The products advertised may be Digital made or competing products as long as they are usable with some Digital made product. Newsletter editors are responsible for accepting advertising appropriate to their publications. Advertisers may appeal any exclusion to the Management Council.
3. Advertising fees will be set annually by the SIG(s) sponsoring each newsletter with the approval of the Management Council. The revenue will be used to offset production costs and lower subscription prices for newsletters. Money for advertisements must be paid in advance of the publication deadline for the newsletter direct to DECUS.
4. Foreign chapters, who reprint newsletters, will have the option of negotiating the inclusion of advertisements in their reprints or removing the advertising section.

QUESTIONAIRE

1. DECUS newsletters should accept advertising. Strongly

Strongly
Agree 3 Disagree $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
2. A pilot program with one or two small newsletters taking advertising should be tried before adopting an advertising policy for all newsletters.
Strongly
Agree 12

3
4
5
6
Strongly

Disagree
7
3. What changes in the proposed policy would make it more acceptable? What comments would you like to make on accepting advertising?

DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
 P.O. Box 510 CH-1213 Petit-Lancy 1, Geneva Switzerland Tel. (O22) 933311 Telex 422593

Geneva
27 July 84
To: Douglas Bohrer
Bohrer \& Company
903 Ridge Road, Suite 3
Wilmette
Illinois 60091

Dear Douglas,
Here are the European newsletter distribution figures I promised to send you. When reading them, remember that, for the moment, they are free to the membership (paid by DEC still) in Europe. We are currently testing our subscription system and members will have to start paying for them in January next year, we expect.

Regarding your questions about accepting advertising inside SIG newsletters, I remain sceptical about the practical aspects of it, as I mentioned to you in Cincinnati. Most of my European colleagues to whom I have spoken are in broad agreement with me, although a few like the idea in principle. However, as I said in June, as long as any adverts are included as an "appendix" in the newsletters as you had proposed, we in Europe would be free to make our own choice at that time. The only thing I would ask of you is that we are kept informed of any change with sufficient warning that the European board can discuss the matter in good time.

Yours sincerely

Alan Silverman
(European SIG Coordinator)

Copies to
Mark Grundler (DECUS US)
Mike York (DECUS US)
Ralf Broeck (DECUS Europe Chairman)
Otto Titze (DECUS Europe deputy SIG Coord.)
Gaby Neukom (DECUS Europe SIG Secy)
Dale Brandt (DECUS Europe Administrator)

DIGITAL EGUIFMENT COMPUTEF USERS SOLTETY
DECUS AUSTRALIA

$$
7 \text { May } 1984
$$

Dear Doug:
Your letter regarding newsletter adwertising arriued or the very dey I left for a Chapter Board meeting. You could riot tieue timed it better!

First I must express, both my persorial thants for your anquiry, and also thet of the Decus Australia Eoard. I hieve worked for mery years to estatiist real communication tetween Decus members worldwide and at last we do apaeer to te getting somentiere. I belieue that my vieit ta Las Veges was the most produetive that i have ever made. Whilst I was there, I wes made to feel welcome ty the us chapter, and the Events which have followed have shown the sircerity of all inuolved.

The Eoard qaue cereful consideration to your proposals and give your ideas full supfort. The idea of incorporatirg aduerts into a special section at the rear of the publication is excellent in that it leaves other chafters free to publish or not defending af the relevence of the sdvert. We decided thet we would te willing, at least in principle, to reprint any Eduerts, but thet we would do so without requiring any fart of the adyertising fee.

Our mumbers are of coursemuch lower ther: youre and are etill building up agein after the introduction of a sutiscriftion fee. Gurrent numbers are:-
$A F L \quad 13$
EASIC 143
DATATRIEVE 121
EDUSIG 53
LARGE SYSTEMS 26
NETUORKS 132
RSTS 104
$5 S \varepsilon 05$ 35
STR LANG. 109
LAEGGEITE MGMT 97
FT11 148
GAGFAFHISS 185
FSX IAS 140
VAXPMS 232

Dra guestion which youmight be 引ble to foilou up for us eoncerne the cost of the bromides which we recejve to mate our reforints from. We have just received the first accourt from the bs chapter and besed on locel frices, the cost is untelievatiy figh. (some 400-50日\% higher than would dreamt af!.) I work in this field at present setting uf phototypesetting systems for the govermment so l telieve l have a realistic apfrobch to costing, and I canciot euen start to guess why the charges are so high. I hope that the us Chapter made a typing error when sending the accourit.

Again our sincere thanks for thinking atout us and i hope we can continue to all wark for the benefit of Decus warlduide.

SURVEY RESULTS

Here are the results of the survey published in the last issue. There were a total of 9 responses. If it hadn't been for all the articles you guys sent in the underwhelming response rate would have destroyed the editor's morale. We got 25 responses from the questionaire in issue number 1, when our circulation was about 10 percent of what it is now.

1. I use the following computers (check all that apply):

| _2_PDP-11/03 | LSI-11 (Q-BUS) | MINC |
| :---: | :---: | :---: |
| 2_PDP-11/23 | 11/23+(Q-BUS) | Q-BUS 68000 |
| 3_Rainbow 100 | series | _1_Professional 300 series |
| 5_VAX-11 | | Micro-VAX |
| _1_DEC-20 | | __DEC-10 |
| _NONE OF THE | ABOVE | |
| __OTHER 11/44 | 11/34A 11/24 | $1 / 45$ PDP-8 |

2. I have access to the following media (check all that apply):
```
_6.5.25 inch floppy __RL02
_6_8 inch RX01 floppy single density _2_8 inch RXO2 floppy double density
_6_0.5 inch magnetic tape 800 BPI _7_0.5 inch magnetic tape 1600 BPI
_3_0.5 inch magnetic tape 6250 BPI
___Other portable media_(2)RL01 RK07 RX50K
```

3. I use the following operating system(s) (check all that apply and fill in version):

4. I use the following APL's (check all that apply):
```
    2 APL-11 V1 (RT-11)
        APL-11 V2 (RSX-11)
4 VAX-11 APL
    1 None of the above
        Others BURROUGHS APL V3.1
```

 1 APL-11 V 2 (RT-11)
 2 APL-11 V 1 (RSTS/E)
1 APL-SF (TOPS-10,TOPS-20)
5. I do most of my APL work using (pick one):

4 APL special character set
5 TTY mnemonics
6. This newsletter should accept paid advertising (circle one):
strongly agree
strongly disagree

7. What do you want the APL SIG to do that it isn't?
(2)MORE PARTICIPATION FROM MEMBERS
(2)MORE VAX-11 PARTICIPATION

MORE SYSTEM INDEPENDENT HINTS
(3)MORE PARTICIPATION FROM DEC, ESPECIALLY NEWS ARTICLES

MAKE A BETTER APL--11
GET AN APL FOR THE RAINBOW
MICRO-VAX APL
FULL SCREEN APL EDITOR FOR THE VAX
MORE LIBRARY SUBMISSIONS
8. What is the APL SIG doing that you think we should stop?

NO RESPONSES
9. What should the APL SIG continue doing ?
(2) NEWSLETTER

SYMPOSIA PRESENTATIONS
EXISTING
THE SPECIAL CHARACTER SET PAGE 22 OCTOBER 15,1984

15 October 1984
Dear APL Fanatic:
I thank all of you who sent me material for this issue. It was great to have so many varied contributions from all over the world. The next issue is totally empty. This worries me. Please, PLEASE, write me some more articles so that we can keep this newsletter alive.

Almost anyone can write an article. It doesn't have to be long or heavy. Write an article about how your site uses APL or/and how it chose APL in the first place. Write an article about that handy function you just wrote. Write a testimonial about how APL changed your life.

Maybe you already have an article on an APL topic, but you published it somewhere else. Let me republish it if you can give me copyright permission.

I have printed a style sheet for any article you write. However, even if your article is in another format I'll take it. I can read RT-11 RX02 floppies. I have a volunteer typist. JUST GIVE ME SOMETHING TO PRINT!

The deadline for the next issue is 15 February 1984. However, if you have something now SEND IT NOW. The sooner I get your article, the better I'll sleep nights after worrying about the next issue.

