
[Q]

/1

I'

U.S. CHAPTER THE DATA MANAGERS

NEWSLETTER OF THE DATA MANAGEMENT SYSTEMS SPECIAL INTEREST GROUP

FEBRUARY Vol. 4 --- No. 2 1982 ----------------
Please address contributions to:

Paul D. Clayton, Editor

c/o DECUS

One Iron Way, MR2-3/E55

Marlboro, Mass. 01752

CALL FOR MENU INPUT
MENU RESPONSES

SAMPLE PROGRAMS
VAX INFO. AR.CH.

WORD PROCESSING

(DETAILS INSIDE)

(NEWS AT 11:00)

Copyright© 1982, Digital Equipment Corporation
All Rights Reserved

It is assumed that all articles submitted to the editor of this newsletter are with the authors' permission to publish in any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

VD.IIIC. -

~lN's; TAICeA100KATW
~A~ . weeKI.Y PA't'Cffe<»: .•.

t624.891. 35 !
Hell-teH-tteff /

Reprinted by permission of the Philadelphia Bulletin
and the Register and Tribune Syndicate

*

*

*

*

*

*

*
*

*
*
*

Seq.
No.

1.0

1.1.1
1.1.2
1.1.3

2.0
2.1.1
2.1.2
2.1.3
2.2.1
2.2.2
2.3.1
2.3.2
2.4.1
2.5.1
2.6.1
2.6.2

3.0
3.1.1
3.2.1
3.2.2
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

4.0
4.1.1
4.1.2
4.2.1
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8

Page
No.

1-1

Cov.
Cov.
Cov.

2-1
2-7
2-10
2-2
2-10
2-2
2-12
2-3
2-8
2-5
2-13

3-11
3-1
3-17
3-3
3-12
3-13
3-15
3-18

4-1
4-7
4-2
4-3
4-4
4-8
4-9
4-11
4-13
4-15
4-17

DMS SIG Newsletter Cumulative Index
Feb. 1982

Brief Description

Index

The Irony of Progress
Final Exam
Graves Inc. Cartoon on the Computer Industry

SIG Business
New Newsletter Ed., desc. new layout and SIG resources. V3-4.
New items of interest from Newsletter Editor. V4-l.
Points of Interest from Newsletter Editor. V4-2.
Letter from Sat Mohan, desc. current events in the SIG. V3-4.
Letter from New SIG Chairman, Sandy Krueger. V4-2.
Letter to members for Menu input and newsletter articles.V3-4.
Call for Menu Input. V4-2.
Open request for DMS-500 interest from DOW Chemical. V3-4.
DECUS Fall '81 Menu Ballot for EVERYONE to VOTE on. V4-l.
DMS SIG Steering Committee Member List. V3-4.
Updated DMS SIG Steering Committee Member List. V4-2.

RMS Interests
Request for an RMS Product Group Chairman. V4-l.
RMS-11 Menu Respones to Spring '81 DECUS. V3-4.
RMS-11 Menu Response to Fall '81 DECUS. V4-2.
Sample Relative RMS-11 program corrected from DEC doc. V3-4.
Commenting "DEF" Command Files. V4-l.
Larry Craig's unfortunate experience with RMS-11. V4-l.
RMS-11 Workshop Session Transcription from Miami 81. V4-2.
OMS! Pascal Interface to RMS-llK. V4-2.

FMS Interests
FMS Working Group Survey from Judy Kessler. V3-4.
FMS sessions at Los Angeles DECUS, Fall '81. V4-l.
FMS Menu Responses to Spring '81 DECUS. V3-4.
Patching FMS-11 Forms for VT-100 Special Features. V3-4.
General Comments on FMS-11 from Sebern Eng •• V3-4.
FMS-11 Internal Form Structure. V4-l.
Performance Optimization of FMS on RSX-llM. V4-l.
FMS Interface with OMSI Pascal Ver. 1.2G. V4-l.
CAI FMS Program from Bob Nusbaum. V4-2.
FMS Interface with OMSI Pascal Ver. 2.0. V4-2.
FMS Application Handout from Miami '81. V4-2.

1-1

*
*

*

*
*

*

*
*

5.0
5.1.1
5.1.2
5.1.3
5.2.1
5.3.1
5.3.2
5.3.3

6.0

5-7
5-11
5-11
5-1
5-2
5-9
5-12

6.1.1 6-1
6.2.l 6-8
6.2.2 6-9
6.3.1 6-3
6.3.2 6-3
6.3.3 6-4

6.3.4 6-4
6.3.5 6-5
6.3.6 6-5

7.0
7.2.1 7-1

8.0
8.1.l 8-1
8.2.1 8-1

DBMS Interests
DBMS-11 Issues: Miami to Los Angles. V4-l.
DBMS 10/20 Co-ordinator Report. V4-2.
DBMS-11 Los Angles Report from Mike Antin. V4-2.
DBMS-11 Menu responses to Spring '81 DECOS. V3-4.
Using DBMS-11 at NASA in spacecraft command and control. V3-4.
New Features of DBMS-11 Ver. 1.8. V4-l.
DBMS-11 Technical Session From L.A. Symposium. V4-2.

TECO Interests
Letter to TECO calling for input and positions available.V3-4.
Letter From TECO Newsletter Co-ordinator. V4-2.
TECO Utility for BP2 Compilation. V4-2.
Request for information on TECO written in UNIX for VAX.V3-4.
Req. for info on TECO sources for ver 36 and VAX support.V3-4.
Req. for answers to problems and about a screen editing ver.

of TECO. V3-4.
Req. for doc. for TECO macros distributed with RT11-V4. V3-4.
New Co-ordinator for TECO newsletter items,interest. V4-l.
users guide for screen text editor based on TECO. V4-l.

VAX Information Architecture Interests
Overview of the complete VAX Information Package. V4-2.

Word Processing Interests
Letter from Chairman, Paul D. Clayton. V4-2"
Word Processing Advanced Hints and Techniques. V4-2.

1-2

Items of Interest from the Newsletter Editor
Paul D, Clayton

Seq. 2.1.3

'Ihe Los Angles Symposium is a memory and a successful one at
that. There were a number of events which bear acknowledgement.

Firs t, the DMS SIG has a new SIG Chairman, Sandy Krueger, Sandy's
opening letter is enclosed .

Second, VAX now has Information Architecture which is a complete
package of data management software. Doug Dickey has the position of
Product Group Chairman for the VAX Information Architecture products. If
you have any questions, problems, reports, please call Doug. As I said in
my first issue, the setup of this newsletter was expandable, and Vax
Info. Arch. is now section 7.0 of the index. This issue has a brief
overview of the products, with a better report due for the next issue.

Third, we now have a section on word processing interests that
can be of value to you. 1.llis issue contains some comments I have
concerning the DEC software package DX/IAS , and an article from the DECUS
Proceedings of Miami, 1981. Some advanced concepts are explained about
using DEC' s word processing in a day-to-day environment. word processing
will be section 8.0 in the index from this day on.

Fourth, a number of SIG Steering Committee members have moved,
assumed new roles or been added t o the list. Please note the inclusion of
a new membership list and update your notebook accordingly,

***** DMS SIG Newsletter Articles on SIG Tapes*****

As the newsletter editor, I have entered into machine readable
media (WS200 & PDP 11/ 70) most of the articles that have appeared in this
news letter since I took over. What I have done is to take the articles
that I have and submit them to all the DEC Operating System SIG's
(RSX/IAS, RT, VAX, DEClO and DEC20) tape copy program which is sponsored
at each symposium. They should appear in the L.A. tape with file
extensions of '.DMS'. There is a copy of the c ummul itive index so that
you can tell what articles you want. I hope to continue and expand this
in the future so that everyone can get there copies as they need them. As
far as I can tell, this is a first for any newsletter!!

***** New Name for This Newletter *****

·we have changed our name to the 'The Data Managers' • The title of
'The Schema' is retired as of this issue. It is my hope that this name
will continue to cover the broad areas the DMS SIG is responsible for,

Paul D. Clayton

(

Seq. 2.2.2

Letter from DMS SIG Cha irman
January 25, 1982

The worst part about being DMS SIG Chairman is the constant
ache in the back of your head where you have made a mental note that
Paul Clayton is expecting a letter for the next SIG Newsletter.
So here goes.

The best place to begin is by thanking the past chairman and
father of us_all, Sat Mohan, for bringing us as far as we've gone and
l eaving me with the excellent organization that we now have. I'm also
pleased to report that even though Sat is moving up into the upper
echelon of DECUS, he has consented to continue with us for awhile as
Planning Coordinator. For my money, a little Mohan is better than none.

. Les Angeles was an important symposia for the SIG, primarily
with the annoucement of the VAX Information Architecture product set.
I expect to see a great deal of renewed interest i n DEC information
management software. Special thanks is due to the DEC contingent that
at tended L.A., led by /\nita Moeder and Fred Howell. Some, but I'm sure
not all, of the others were Rick Landau, Harri Rantiainen, Jim Donnelly,
Tom McIntyre, Bill Noyes and Bill Harrelson.

The SIG Steering Committee was out in full force a t L. A. and
did a real bang-up job. While Sat and I we re busy transferring batons,
everything kept running because of their efforts, Thanks again.

L.A. was important also because we had an opportunity to get
together with the VAX and DATATRIEVE Sig's and do some advance
"Coordinated" planning for Atlanta. Our three SIG' S are jointly
sponsoring an Information Management Theme Day at Atlanta where we will
have a continuous run of sessions for both technical and managerial types,
headed by a keynote speaker. Check the symposia catalog, when it arrives,
for more details,

Another first at Atlanta will be half hour business sessions for
each of our Product groups and some proposed Working groups where SIG
members can get together , discuss needed activities and sessions, and
hopefully volunteer to help organize some of the SIG activities in those
areas. I hope to make these sessions a regular part of all future symposia .

Now some notes about direction changes. The SIG in the past
has existed_primarily to support DEC products (i.e. DBMS-11, RMS, FMS,
etc). We will continue to do so. But more and more we run into people
at symposia, _lookin~ t o discuss issues related to data management
(i:e· DBMS with Decision Support Systems, DBMS on Micros, DBMS in a
Scient1f1c Envi~onment, etc). In the past we have s upported sessions
when we could find them. In the future, I hope to have Working g roups
operating at ~he same level that our Product Groups operate, even to the
extent of having DEC counterparts. The Working Group business sessions
mentioned above will be our first attempt at setting them up. I hope
to g~nerate some support and alot of ideas for these groups. Please
participate. Lets get issue oriented!

Sandy Krueger

-o en -a en
ru ro w m

<.O .c <.O .c
CD. CD.
-1\.)-N
0 r,..) 0 ~
: N: W

~

)

Doug Dickey, Sandy Krueger,
Sat Mohan, Steve Pacheco
and Chris Wool

Books Anyone?

Anything your heart and wallet
could want.

(Left to Right)

The new wave for DEC

)

Now if they could only make the
RMS-11 Manual understandable!

The only notable operating
system not shown was IAS!

)

MENU PROCESS

The DMS SIG is changing the format of the MENU Procedure
used to pass questions and comments to DEC for formal response.

The goal of the new procedure is to obtain a faster response
from DEC when their answer is known or obvious. We will ask the
various groups within DEC to respond to menu items during the SIG
closing session at subsequient symposia. These answers will also
appear in the newsletter. Questions which will require analysis
effort on DEC's part will also appear in the newsletter allong
with their answers.

Newsletter readers are requested to send in MENU i terns prior
to each symposia. These will be combined with the MENU items
collected at the symposia and ranked based on frequency. The
upper half of each group: DBMS-11, DBMS-32, DBMS-10/20, RMS,
FMS, TECO, and any other data management related product produced
by DEC and supported on the PDP-11, VAX and 10/20 systems.

This change is being made to allow an immediate response to
questions which arise at the symposia. We hope this will benifit
the people who are unable to attend symposia.

Seq. 2.3.2

Please write down your requests for answers to bugs,
enhancements or general questions on paper in as easily understood
form as possible. Mail all menu items to the address listed below.

Steve Pacheco
Athena Systems Inc.
206 S. Broad Str.
Pawcatuck, CT. 06379

The elevators were not
for the weak stomached!

Now you know why it takes so
long to get things delivered!

DEC uses Blimps!

""Cl (J)
"'<D '° .0 "'. ~"'
OW
~N

Seq. 2.6.2
DMS SIG Steering Committee Members

Feb 8, 1982

If you have any questions or concerns contact the person that has
the responsibility for the area you want to discuss.

SIG Chairman
Sany Krueger
AMAX Copper Inc.
833 Roosevelt Ave,
Cartaret, N.J., 07008

Symposia Co-ordinator
Barbara Mann
TRW Inc,
One Space Park, R3/2030
Redondo Beach, Calif. 90278

Publications Co-ordinator
Stephen Pacheco
Athena Systems Inc.
206 S. Broad Str.
Pawcatuck, CT. 06379

Newsletter Editor

(201) 541-8347

(213) 536-4190

(203) 599-3061

Paul D. Clayton (215) 441-2708
Republic Management Systems
One Neshaminy Interplex, Suite 306
Trevose, Pa. 19047

Product Groups Co-ordinator
Robert F. Curley (215) 662-3083
Department of Radiation Therapy
University of Pennsylvania Hospital
3400 Spruce Street
Philadelphia, Pa. 19104

DBMS-li Product Group Chairman
Michael Antin
Polaroid Corp.
1265 Main Street W4-2B
Waltham, MA. 4570

DBMS 10/20 Product Group Chairman
Robert F. Curley
Same as above

RMS Product Group Chairman
Robert F. Curley
Same as above

)

(617) 684-7308

)

FMS Product Group Chairman
Judy Kessler (617) 742-3140
Eye Research Institute of Retina Foundation
20 Staniford Street
Boston, Mass. 02114

TECO Product Group Chairman
Carl Marbach (215) 542-7008
RSTS Professional
Box 361
Fort Washington, Pa. 19034

Vax Information Architecture
Doug Dickey

Product Group Chairman
(703) 556-7400

CTEC Inc.
6862 Elm Str.
McLean, Virg. 22101

Seminars Co-ordinator
Sandy Krueger
Same as above

Performance Working Group Co-ordinator
Burt Weaver (612) 571-1249
Consulting Engineer
Weaver & Associates Inc.
2852 Anthony Lane South
Minneapolis, Minn. 55418

user Support co-ordinator
Douglas Dickey
Same as above

Planning Co-ordinator
Satish Mohan
TIW Industries Ltd.
Metals Group
629 Eastern Ave.
'lbronto, Ontario
M4M 1E4

Projects Co-ordinator
T. Chris Wool
E,I. DuPOnt
Louviers Building
Wilmington, Delaware, 19898

DEC Counterpart
Anita L. Moeder
Digital Equipment Corp.
MKl-2/003
Continental Blvd.
Merrimack, N.H. 03054

TECO Newsletter Co-ordinator
Greg Steinkuhler
TRT Telecommunications
P.O. Box 8876
Ft, Lauderdale, Fl, 33301

(416) 461-8111 Ext. 269

(302) 366-4610

(305) 792-5100

Seq. 2.6.2

.,, en

"'"' cg fl
~N
0 C) :f\,)

DMS SIG Site Profile

The purpose of
the members of
return it to:

this questionnaire is to obtain a profile of the sites of
the DMS SIG. Please take a few moments fill it out and
T.C. Wool, E.I. DuPont, Engineering Dept. Louviers Bldg.,

Wilmington, DE 19898.

Name: Address: ------------- ----------------
Company: ------------
Phone: -------------

Please circle the appropriate items below:

CPU Type: PDP-11 VAX System 10

Model: -----------
Memory Size: (Specify Units)

Disk Drives:

Tape Drives:

Operating
System:

Languages:

Layered
Products:

RK0S

RM03

RPOS

TE16

TU70

RSX-llM

RSTS/E

VMS

TOPS-10

IAS

FORTRAN

BASIC

RMS

DBMS-11

DECNET

RK06

RM0S

RP06

TSll

TU72

RK07

RM80

RP07

TUl0

TU77

RSX-llM+

RT-11

TOPS-20

COBOL

PL/1

FMS

RL0l

RP02

RP20

TU16

TU78

VAX-11 DBMS

TECO

Note - Respondees will receive a copy of all responses.

RL02

RP03

Other

System 20

RM02

RP04

TU40 TU45

Other --------

version

version

Version

Version

Version

PASCAL

Other --------

DATATRIEVE

DBMS-10/20

--- - - --- - - ---·- -· .

RMS-11 Workshop Session
Spring 1981 DECUS Symposium

Miami, Florida

Speaker: Tim Day - RMS Development Group

Prepared Questions Answered:

Seq. 3.3.4
Page 1 of 2

Q: An initial sequential GET by KRF field for an index file was done. The
person then did a GET by RFA and RMS ignored the KRF field , the
retrieve got the next record on the primary key. Why?

R: This is a user error in that it is well documented that a GET by RFA
has no meaning except in the context of the primary key. When you have
done a GET by RFA you have set your context into the primary key. Any
values placed into the KRF field are meaningless and ignored.

Q.: Why not place the index of a file on a separate device? This could be
done by keeping the name of the index file in the prologue of the data
file and opening it on a separate channel.

R: This will probably not come to life because of the large amount of
problems that can arise in maintaining, tracking, backing-up and
recovering that form of a file. If someone wanted to be really tricky
and modify the RMS code on their own, it MIGHT be doable. Doing this
with a "shared file" would cause problems!! .The reason for doing this
is really for a performance increase, DEC's overall committment to
performance is by other means such as buckets, areas and placement .

Q: What is the best way to load an index file, last or first record
first?

R: If a file is loaded in descending order you will end up with a file
that is longer than necessary with records not packed to the best they
could be. The smallest, densest file will result from loading the file
in ascending order.

Q: Someone wanted a utility to compress a file on-line and in-place.
R: No committment to this from DEC, although a show of hands showed an

interest in it.

Q: Another question was raised about "hashed indexes" for a file and its
possible implementation in RMS.

R: This is just another way to retrieve data from a file in a much faster
way than by using indices as RMS does. The proper use of hashed
indices should get ANY record at random in two (2) I/O' s. In the
current use of indices, it COULD take many more I/O's to a device.

Questions From Attendees:

Q: What about placing the indices into a temporary file when an OPEN is
executed, possibly on a separate disk to increase performance?

R: This might work for a file in a single-user per file environment. In a
file openned for sharing, the indices would be extremely hard to
maintain without corruption. If RMS were to become part of an
operating system and have knowledge of everything going on, this might
be feasible. Right now though, there are too many drawbacks to this
idea.

3-15

Q:

R:

What is the true story about reclaiming space left from deleted
records in an index file?
There are a lot of different types of deletes that take place. The
worst case being that for a shared file with duplicate keys. The
problem arises because RMS has to leave enough of the record to
describe the primary key, which oddly enough is the only way RMS can
tell that a record has been deleted. This is needed because another
person may have your current record as his next record. Generally
speaking, the remains (or fossils) of any deleted records are
compressed in the buckets to leave a contiguous space which is then
available to hold a record IF the record length PLUS any RMS overhead
is smaller than the space available. The remains of deleted records
will stay in the file for the life of the file or until it is
reloaded, using IFL for example.

Q: What methods are available for optimizing the structure of a file such
as that found on the VAX?

R: DEC is exploring the possibility of developing a utility to aid in
defining a file with performance kept in mind.

POINTS OF INTEREST:

Concerning ODL Files and Resident Libraries.

An ODL file is a way to do disk overlaying and under the RMS
implementation, if you use a non-overlayed version, you are going to
get between 7 and 44KB of RMS code/buffers added to your task space.
In an overlayed environment, RMS will get down to about 10KB of your
task space in some situations. This may not apply when using RMS from
a High Leval Langauge, such as Fortran IV+. The above numbers were
gotten from using MACRO-11 assembly language. The disadvantages of
disk overlays are many, First, the program execution speed can be
affected depending on the sequence of operations and the overlay
structure itself. This is because overlay implies I/O. Second,
optimizing an ODL file is plain hard work. Third, the task image on
disk will grow depending on the tree structure defined. This may cause
problems for those systems cramped for disk room. Fourth, the time
needed to task build an overlayed program increases depending on the
tree structure.

The cure for many of these problems is the use of resident
libraries. In terms of RMS, this means that you have a single, shared
copy of RMS code placed into physical memory which all tasks are
linked to at task build time. The first advantage is that there are no
overlay I/O operations as all the library is resident together.
Second, you don't need complex overlay files for RMS code. The ODL
file that you would use is 3 lines long, which account for approx.
1.5KB of RMS code in your task image. Third, the task images on disk
become smaller and the program should execute faster because of the
lack of overlay I/O operations. The disadvantage to using libraries is
that you give up 2 APR's (or 8KW of your task space), plus the little
extra RMS code in your 24KW (remember you "lost" 2 APR's) task space.

The breakeven point at which to change from having separate copies
of RMS code in everyone's task space and installing a resident RMS
library which will consume approx. 46KB of physical memory is four (4)
simultaneous memory resident tasks using RMS. This would decrease your
OVERALL memory requirements with a possible increase in execution
speed.

)

Goals of RMS.

Areas.

The greatest goal of RMS is reliable tracking of a user's data.
Considerable code was put into RMS to insure that data will not be
lost or corrupted. This was done at the expense of execution time.
Second, is a content addressable capability which generated the index
file organization. Third, is the ability to have multiple indices.
Fourth, good sequential access performance on the primary key. The
overall structure of RMS was towards this goal. Fifth was fair to good
access on alternate keys. This can be done by using bucket size, areas
and placement. Sixth is Relative File Address (RFA) access which is
guaranteed to be the same for the life of the file. Seventh is good
space utilization within the file structure. An area for improvement
is reclaimation of space left by deleted records.

Even if you specify no areas, you are given an area zero (0), but
you as a user don't know it. It won't even show when you "DSP /FU".
The best conditions are if your file and, hence your areas, are
contiguous. For the most part, the use of areas is a trial and error
thing in search of the best performance. Proper use of areas will
boost sequential access with little increase in random retrieval. The
use of areas does not impact the user program, this frees you to try
many schemes.

DEF' Utility.

Is there any way to back up to previous entry in the case of
errors?

There is a better (?) problem area in that DEF does not attach the
terminal being used for input, which on a heavily loaded system, if
DEF is checkpointed, any user input typed while DEF is checkpointed
will be sent to MCR NOT DEF. Naturally, MCR does NOT know what a
bucket is, you let your imagine take over from here. There is a patch
in the works for this. In answer to re-entering previous parameters, a
future release of DEF will confront this issue. CTRL-Z is the
universal input to terminate an RMS utility.

Odds and Ends.

If a user has a contigious file with a bucket size that spans
physical disk blocks, RMS will issue a multi-block read/write to the
disk ACP. This increases the performance of your program .

DEC is looking at a means to zero out a file in preparation to
re-populating it. This would allow a user to maintain the physical
location of a file on a volume. This would be more controlled than
deleteing and re-creating the file on a multi-user system.

.,, en
o, CD

(C .0
CD•

"' w
0 W ;:;~

~
-..J

RMS-11 LA DECUS Symposium Menu Response

1. Menu #1 / RMS/ Enhancement/ There should be a common syntax for
all access methods and languages for the specification of RMS
files.

As the name implies, Record Management Services (RMS) is a set of
subroutines that in t erface at a leve l between the language
application program and the operating system. RMS itself has one
interface (syntax) defined, which is documented in the RMS-11
Macro-11 Reference Manual. Any application, and high level
languages ARE an application from the RMS point of view,
determines its own syntax for using the RMS Macro interface. For
most languages, I/0 is described by a standard for the language.
Therefore, the syntax is defined by the language, not by the
underlying service.

2. Menu #2 / RMS-11 / Enhancement/ Provide a new utility or change
"RMSDEF" to calculate area sizes and recommend file factors given
information such as expected number of record, length of record,
fixed or variable length, key attributes, etc.

RMS-11 has developed such a utility. Since we have not yet field
tested it, we are not announcing this as part of the product. We
do anticipate that it will be part of our next release.

3. Menu #4 / RMS-11 / Enhancement/ Support for RMS in DIBOL.

This comes as a surprise to us for two reasons. First, due to the
manner in which DEC develops its products, it is not the
responsibility of the RMS-11 group to require languages to support
RMS. Second, and probably most confusing, is that DIBOL HAS
supported RMS for a number of years. Possibly there is another
question that is really being asked here, and we would be happy to
respond to it.

4. Menu #5 / RMS-11 /Enhancement/ Provide a utility to compress an
indexed or relative file.

Relative file compression is currently a feature of RMSCNV. When
you specify a relative file as output and a relative file as
input, CNV reads the input file sequentially, bypassing cells in
the file without a valid record. It writes the output file
sequentially also, beginning with cell #1 and continuing in
ascending cell number order u~til end of file.

Indexed compression is also accomplished by either RMSCNV or
RMSIFL in the sense that buckets from the input file that are
currently unused and unreclaimable by RMS will be •compressed" to
free space in the output file, depending of course upon the output
file's allocation.

5.

6.

PAGE 2

As to other definitions that the word compress could imply, we are
researching methods to better reclaim space within a file that
current processing algorithms cannot reclaim. We cannot predict
what the final solution, if any, will be for future space
reclamation functions.

Another meaning of compress is data compression. This is also
being investigated as a future enhancement to RMS-11. Again, we
can't predict specifics on what solution would be chosen.

Menu #7 / RMS-11 / Enhancement/ Provide record locking rather
than bucket locking.

Bucket locking is implemented via device logical block
contention lists kept by the operating system. Since RMS has
context only within a task, it has no means of recording what
activity is occuring on a file (device), and must depend upon the
operating system to enforce the locking at a device level. To
provide true record locking, RMS itself would have to be
significantly changed to manage buffers globally among other
things. Since it is our opinion that record locking is not
dramatically more efficient than bucket locking , we would probably
choose to put our development resources into other activities
(i.e. compression and space reclamation).

Menu #10 / RMS-11 / Question / There appears to be problems
associated with transferring files on DECnet using RMS. RMS has a
much lower transfer rate than using qio operations. In addition,
qio allows the sending of blocks larger than 512 bytes and RMS
does not.

Again, I believe there is some confusion. RMS-11 does not do
network operations in its current release. If this is an RMS-32
question, then your assumptions are correct. For block I/0,
RMS-32 does transfer one block at a time consisting of 512 bytes .
Using qio, it is possible to select a larger transfer size
consisting of multiple blocks .

.,, (/)

"'"' '° .a "'. ~w
o iv :t\J

OMSI Pascal Interface to RMS-11

The following is the beginning of the users manual for a package of
routines that provide a means for using RMS-11 from OMSI Pascal. The complete
package was submitted to the RSX/IAS SIG Tape for distribution on the Los
Angles, 1981 tape. Anyone can get a copy through there Local Users Group (LUG)
so PLEASE 00 NOT CALL Me OR Ken for a copy. The inclusion of the following
excerpt is to wet your appetite and give you an idea of its capabilities. Our
thanks go to Ken & Co. for giving it to DECUS !!!

1.0

2.0

3.0

PRM-11 USER'S GUIDE
OMSI PASCAL INTERFACE TO RMS-11

Kenneth G. Tibesar
3M Engineering Systems and Technology Labs

St. Paul, Minnesota 55144

Pascal Record Management User's Manual

Table Of Contents

Introduction To PRM
1.1 PRM Design
1,2 User Interface
1.3 File Operations
1.4 Record Operations
1,5 RFA
1.6 Memory Requirements
Preparing for PRM
2,1 Pre-defined Data Structures
2,2 Control Buffers
2.2.l RmsFileDesc - File Description
2.2,2 RetRecord - Record Retrieval
2.2.3 StoRecord - Record Storage
2,2,4 IdxKeyDesc - Indexed Key Description
2.3 Record Buffers
2.3.l Non-Shared Buffers
2.3.2 Shared Buffers
2.4 Key Buffers
2,5 PRM External Calls
2.6 Rms-11 Initialization
2,7 Task Build
2,8 user Space Optimization
2.9 PRM Pit-Falls
2,9,l Record Size
2.9.2 Rms Initialization
2.9.3 File Sharing
Detailed Description of PRM Buffers
3.1 RmsFileDesc - File Description
3.2 RetRecord - Record Retrieval
3.3 stoRecord - Record Storage
3.4 IdxKeyDesc - Indexed Key Description
3.5 user Defined Record Buffers

))

4.0 Detailed Description of PRM Routines
4.1 General Use
4 , 2 File Access and Creation
4.2.l PRMClo
4.2.2 PRMCre
4,2,3 PRMKey
4.2.4 PRMQpe
4.3 Record Retrieval and Storage
4.3.l PRMDel
4.3.2 PRMFre
4.3.3 PRMRet
4,3,4 PRMSto

Appendix A
Appendix B
Appendix C
Appendix D

PRM program example - Access an existing RMS files
PRM program example - RMS indexed file creation
Command and overlay descriptor files example
PRM Error Codes

Preface

Record Management Services (RMS-11) is a software package written and
supported by DEC. The package is a data management tool that supports
sequential, relative and indexed (ISAM) files,

Pascal Record Management (PRM-11) is a non-supported interface
developed by 3M Engineering and Systems Technology Labs. PRM was developed as
an interim until the OMSI Pascal Compiler directly supports RMS-11,

PRM was developed and tested using Vl,2G of OMSI Pascal and DEC
RSX-llM+ operating system, Known problems will occur when using OMSI Pascal
Vl.2H due to changes in initialization procedures. version 2 of OMSI Pascal
can be used only if the version l switch is used.

Comments and questions concerning PRM should be directed in writing to:
Kenneth Tibesar
3M Center, Bldg, 518-1
St, Paul, Minnesota 55144

PLEASE - NO PHONE CALLS

Introduction to PRM

PRM-11 is a set of routines written in OMSI Pascal with in-line
MACRO-11 code to interface to RMS-11, DEC supported high level languages
interface to RMS-11 by using key words supported by the language compiler. The
present versions of OMSI Pascal for the PDP-11 do not support RMS-11
interface, PRM provides the interface via a set of external procedures that
are similiar to the key words used by DEC langua9es. PRM routines ~re called
by the user code when RMS-11 operations are required. The PRM routines are
linked to the user code during the task build.

PRM routines use DEC supported MACRO-11 routines to perform RMS-11
operations, RMS-11 requires attribute blocks describing the file (FAB) and
record (RAB). PRM defines fields within the attribute blocks. This allows
Pascal to directly control the contents of the files RABs and FABs. The
contents of the RABs and FABs are indirectly controlled by the PRM user by
loading pre-defined buffers and using one of the PRM external procedures.

))

User buffers required by PRM r outines are allocated in the user space.
'l'he user defines only the nwnber of buffers required for the application.
The buffers are loaded by the PRM user to indicate file or record access
parameters. The buffers are also used by PRM as working space. By using
buffers allocated globally (from the heap), PRM can preserve variables
between PRM calls.

Normally, RMS-11 r equires the user to reserve POOL space. The POOL
space is used by RMS internal code as control structures known as BDB's (Buffer
Descriptor Blocks). The POOL space has to be allocated based on the nwnber of
simultaneously opened files. This design would waste user space that cannot
be reclaimed even though the file is closed. To avoid this loss of valuable
user space, PRM dynamically allocates and de-allocates the space when required
by RMS-11. RMS-11 allows the MACRO-11 programmer to specify a GSA (Get Space)
routine . The PRM GSA routine simply calls the Pascal Run-Time-System NEW and
DISPOSE routines to manage HEAP space. RMS-11 uses the declared GSA routine
when it requires or releases space. Space is not used until a file is opened
and returned to the Pascal heap when the file is closed.

PRM was modeled after syntax used by existing DEC supported languages
that interface to RMS-11. The following is a list of PRM and high level
language comparisons:

DEC - Compilers s upport command s that perform RMS-11 file and record
operations.

PRM - External procedures linked to the Pascal program perform RMS-11
file and record operations.

DEC- Descriptive key words are used with RMS-11 commands to specify
attributes of the file and record operations.

PRM - Descriptive field names are used to load records passed to the
external procedures. The record fields specify attributes of
the file or record operation.

DEC - A comple tion code indicating the success or failure of each RMS
operation is made available to the user. The completion code
is available through the use of a reserved word.

PRM - A completion code is returned with each PRM call. The code is
the standard RMS-11 completion code. In addition, PRM
provides debugging completion codes for the PRM programmer.

The PRM interface to OMSI Pascal uses the Pascal internal record
s truc ture to pass data. Pre-defined records are included in the TYPE
declaration of the User Pascal program. The Pascal programmer determines the
operation to be performed (open, close, get record, etc.) and loads the
appropriate record buffer. Once loaded, the record address is passed to the
specific PRM routine that performs the file or r ecord operation. The PRM
routines load the RMS attribute blocks (RAB and/or FAB) with the control codes
necessary to satisfy the user request. If data is to be stored or retrieved,
the User Pascal program is also required to pass the address of a data buffer.
The data buffer is loaded with data retrieved or the contents s tored .

In addition to control and data buffer addresses, an address of a
status buffer is required with all PRM calls. The status buffer is loaded
with a completion code . 'l'he code is a standard MACRO-11 RMS success/error
code (refer to RMS-11 User's Manual, Appendix B). In addition PRM will return
debugging error codes for the PRM user. PRM error codes are only generated
due to PRM user program procedural err ors . Refer to Appendix D for detail on
PRM error codes.

(

The user should check the completion code following each PRM call. If
the file is not opened properly, no r ecord operations should be perfo~med . If
the user continues after an error in a f ile open or c r eation, PRM will catch
the error . All record operations on an improperly opened or created file are
prohibited. Any call tha t a ttempts acce s s to an improperly opened file will
be rejected and a PRM error code will be returned.

--u Ul ., "'
"' .c "'.
r-.,W
0 W
;::; en

3-20

DEAR DECUS,

THE ATTACHED PROGRAM IS MY LAST CONTRIBUTION TO THE CAUSE AS FMS'
PRODUCT MANAGER. I HAVE SINCE MOVED ON TD OTHER THINGS, BUT FMS WILL
BE ABLY CARED FOR BY JIM DONNELLY, A FORMER FMS USER WHO HAS JOINED
DIGITAL.

THIS PROGRAM WAS INITIALLY DEVELOPED AS A GENERAL-PURPOSE CAI PROGRAM
TO DEMONSTRATE HOW EASY IT IS WITH FMS TO WRITE GENERIC APPLICATIONS
THAT ARE SHAPED COMPLETELY BY THE TEXT ON THE SCREEN AND BY THE NAMED
DATA PARAMETERS STORED WITH THE FORM. IT TURNS OUT TO BE EVEN MORE
GENERAL THAN THAT -- IT IS A GENERAL-PURPOSE QUESTION-ASKER ANO
ANSWER-LOGGER, WITH ANSWER VALIDATION LIMITED PRIMARILY BY THE FMS Vl
LIMIT OF 16 NAMED DATA PARAMETERS PER FORM. I AM NOW USING IT TO
GATHER MARKET RESEARCH INFORMATION IN MY NEW JOB IN THE CSS PRODUCT
LINE.

IT IS MY GIFT TO THE MORE THAN A THOUSAND LOYAL FMS USERS WHO ARE
ALREADY OUT THERE AND TO THE THOUSANDS MORE OF YOU WHO HAVE NOT YET
DISCOVERED THE JOYS OF THIS FLEXIBLE, STIMULATING, EASY-TO-USE, AND
FUN PRODUCT. I HOPE THAT IT WILL NOT ONLY BE USEFUL TO YOU IN ITS
CURRENT FORM, BUT ALSO WILL PROVOKE SOME THINKING ON HOW TO USE SOME
OF THE MORE OBSCURE FEATURES Of THE PRODUCT.

BOB NUSBAUM
DIGITAL EQUIPMENT CORPORATION

(

5 REM AUTHOR: ROBERT NUSBAUM - DIGITAL EQUIPMENT CORP. - FMS PRODUCT MANAGER (RETIRED)
10 REM QUICK AND DIRTY CAI DEMO
20 REM DESIGNED TO SHOW HOW EASY CAI BECOMES
30 REM WITH FMS-11 AND VAX-11 FMS
40 REM
50 REM THIS PROGRAM IS A GENERAL PROGRAM TO ASK QUESTIONS
60 REM VIA FMS FORMS AND LOG THE ANSWERS IN A FILE.
70 REM ALL INFORMATION OTHER THAN THE SCREEN DISPLAYS
80 REM IS STORED WITH THE FORMS USING THE "NAMED DATA"
90 REM FACILITY OF FMS.
100 REM
110 REM THIS PROGRAM WAS DEVEWPED USING BASIC+2 AND FMS/RSTS,
120 REM THEN MOVED Tu VAX, AND THENCE TO A PDT USING RT-11 AND
130 REM BASIC-11. IF ANYONE IS INTERESTED, IT COULD ALSO BE
140 REM RUN ON RSX AND IAS.
150 REM
160 REM
170 REM
180 REM

REM
REM
REM
REM
REM
REM
REM
REM

THE PROGRAM TAKES ALL THE INPUT FROM THE USER AND
CONCATENATES IT INTO A SINGLE STRING (FGETAL WAS NO'!'
USED IN THIS CASE BECAUSE THE USER HAD A STRONG
OBJECTION TO THE FMS CONVENTION OF USING TAB FOR THE
NEXT FIELD KEY.). IF A NAMED DATA ITEM NAMED "LOG"
IS PRESENT AND HAS A VALUE OF "Y", IT WRITES A RECORD
TO DISK CONTAINING THE FORM NAME AND THE DATA FROM THE
FORM. IT THEN ATTEMPTS TO MATCH THE DATA ENTERED AGAINST
THE SET OF PRE-DEFINED (EXPECTED) ANSWERS FOR THIS
FORM, WHICH BY CONVENTION HAVE BEEN STORED AS NAMED
DATA WITH NAMES OF THE FORM

190
200
202
204
205
210
220
230
240
250
260
270
280
282
284
290
300
310
320
330
340
350
360
370

REM ANSN.
REM IF NO MATCH IS FOUND, N IS SET EQUAL TO ZERO.
REM
REM THE PROGRAM THEN RESPONDS TO THE USER IN ONE OF THREE
REM WAYS. THE PROGRAM RETRIEVES THE NAMED DATA I'l'EM WITH
REM THE NAME RSPN, US ING THE N DETERNINED ABOVE. THEY ARE
REM INTERPRETED AS FOLLOWS:
REM

B=MESSAGE
F=FORMNAME
X

WRITE MESSAGE TO BOTTOM OF SCREEN
OVERLAY FORM ON SCREEN WITH RESPONSE
DO NOTHING FOR RESPONSE

REM
REM
REM
REM
REM

NO ITEM NAMED RSPN EXISTS DO NGrHING FOR RESPONSE

REM
REM
REM

THE PROGRAM THEN TAKES ITS FLOW DIRECTIONS FROM NAMED
DATA PARAMETERS OF THE FORM ANSN. THE FIVE OPTIONS

380 REM DEFINED ARE :
390 REM
400 REM
410 REM
420 REM
430 REM
435 REM
440 REM
450 REM
990 REM
1000 REM

R
N=F'ORMNAME
L=LIBSPEC(FORMNAME)
C

X

1001 REM PGM BEGINS HERE
1002 REM
1010 CALL FINIT(3000)
1020 CALL FLOPEN('PD0:CAI.FLB')
1030 LET M$='F'IRST'

RE-ASK THE QUESTION
GO TO NEXT FORM (SAME LIBRARY)
GO TO NEXT FORM (CHANGE LIBRARIES)
ASK USER TO PRESS <CR> TO CONTINUE

(NEXT ACTION IS IN N. D. ITEM ACTNA)
EXIT FROM PROGRAM

-c, Cf)
'"rn
"' .0 rn. ~_,,.
0 W
;; 0)

1040 OPEN "PDl:CUSTO" FOR OUTPUT AS FILE #2%
1050 REM
1051 REM •rap OF ANSWER ANALYSIS ROUTINE
1052 REM
1060 LET C = RCTRLC
1070 REM DISABLE CONTROL-C ABORT
1100 CALL FCLRSH(MS)
1104 CALL FGETAF(VS,T%,F$,I%)
1106 REM CODE TO TREAT <CR> LIKE <TAB> UNLESS AT END OF FORM
1108 IF T%=0% THEN LET T%=1%
1110 CALL FPFT(T%)
1120 CALL FSTAT(S%)
1130 I F S%=-l9% THEN GO TO 1170
1160 GO TO 1104
1170 REM AT END OF FORM
1175 CALL FRETAL(XS)
1180 REM CHECK NAMED DATA WHETHER TO LOG ANSWERS ON THIS FORM
1190 CALL FNDATA('LOG ',LS)
1200 CALL FSTAT(S%) ® IF S%=-15 THEN GO TO 1220
1205 I F L$ <> 'Y' THEN GO TO 1220
1210 PRINT #2%,MS&SEG$(' ',1%,6-LEN(M$));X$
1220 LET 1%=1%
1222 LET BS='
1230 LET P$=B$
1240 LET I$=STR$(I%)
1245 CALL FNDATA('ANS'&!$&' ',P$)

-!" 1250 CALL FSTAT(S%)
.i:,. 1260 IF S%=-15% THEN LET I$="0" ® GO TO 1300

1270 IF X$=P$ THEN GO TO 1300
1280 LE'r I%=I%+1%
1290 GO TO 1240
1300 REM
1301 REM RESPOND TO STUDENT HERE
1302 REM
1310 CALL FNDATA('RSP'&I$&' ',RS)
1315 CALL FSTAT(S%)
1320 I F S%=-15% THEN GO TO 1360
1321 REM TREAT NO RESPONSE DEFINED AS 'X'
1330 LET Rl$=SEGS(RS,1%,1%)
1340 IF Rl$<> 'B' THEN GO TO 1350
1342 CALL FPUTL(TRM$(SEG$(RS,3,LEN(R$))))
1344 CALL FGET
1346 GO TO 1400
1350 IF Rl$ <> 'F' THEN GO TO 1360
1352 CALL FSHOW(SEG$(R$,3%,8%))
1354 CALL FPUTL('PRESS RETURN WHEN YOU ARE READY TO CONTINUE')
1356 CALL FGET
1357 CALL FCLRSH(M$)
1358 CALL FPUTAL(X$)
1359 GO TO 1400
1360 IF RlS='X' THEN GO TO 1400
1399 REM
1400 REM
1401 REM ROUTINE TO GUIDE LESSON FLOW
1402 REM
1410 LET A$='
1415 LET A9$='ACT'&I$&'
1420 CALL FNDATA(A9$,AS)
1430 CALL FSTAT(S%)

))

1440 IF S%=-15% THEN GO TO 1600
1450 LET A1$=SEGS(A$,1%,1%)
1460 IF Al$ <>'R' THEN GO TO 1470
1462 REM RE-ASK THE QUESTION
1464 CALL FPUTAL
1466 GO TO 1210
1470 IF AlS <> 'C' THEN GO TO 1500
1471 REM REQUEST 'RETURN' TO CONTINUE
1474 CALL FPUTL('PRESS RETURN WHEN YOU ARE READY TO CONTINUE')
1478 CALL FGET
1482 LET A9$='AC'r'&IS&'A '
1486 GO TO 1420
1500 IF AlS<>'N' THEN GO TO 1530
1501 REM 'N' MEANS GO TO NEXT FORM, SAME LIBRARY
1510 LET MS=SEGS(AS,3%,8%)
1520 GO TO 1100
1530 IF AlS<>'L' THEN GO TO 1590
1531 REM 'L' MEAMS GO TO NEXT FORM, CHANGE LIBRARIES
1538 LET L$=SEGS(L$,3%,LEN(A$))
1542 LET L2%=POS(L$,' (' ,1%)
1546 IF L2%=0% THEN GO TO 1800
1550 LET LlS=SEG$(L$,L2%-1%)
1551 REM GET LIBRARY FILESPEC
1554 CALL FLCLOS
1558 CALL FLOPEN(Ll$)
1562 CALL FSTAT(Sl%,S2%)
1566 IF Sl% <0 THEN CALL FPUTL('STATUS 1 '&STR$(S1%)&', STATUS 2

WHILE OPENING '&Ll$)
1570 LET R2%=POS(L$,')' ,L2%+1%)
1574 IF R2%=0% THEN GO TO 1800
1578 LET MS=SEG$(L$,L2%+1%,R2%-l%)
1582 GO TO 1210
1590 IF Al$='X' THEN GO TO 5000
1600 CALL FPUTL('MISSING ACTION CODE IN FORM, EXITING LESSON')
1610 GO TO 5000
1800 REM BAD ACTION IN MAMED DATA
1810 CALL FPUTL('BAD ACTION: '&A$)
1820 STOP
5000 REM SHUTDOWN ROUTINE
5005 CLOSE #2%
5010 CALL FLCLOS
5020 CALL FLOPEN('CAI.FLB')
5030 CALL FCLRSH('BLANK ')
5040 CALL FLCLOS
5050 LET C = CTRLC
5060 GO TO 9999
9999 END

)

' &STR$ (S2%&'

)

.,, (/)

"'Cl)
~ fJ

"' !'-
0 W ;:;m

f'
CJ1

FMS PASCAL EXAMPLE
PROGRAM PasDemlDataFile)I
{

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
}

Same Prosram as extended example in APPendix B Df the FMS/RSX B0ftware
reference manual, Adapted directlw fr0m the FORTRAN PrD ■ ram on
PS B-16, witho•Jt all the checkin>i for errors fr·on, t.he FMS rou\.ines,
Written for OMSI Pascal version 1,20,
Uses the FORTRAN callable FMS HLL r0utine••

Reouires the followins task-build command:

>TKB PasDem/CP/FP=PasD•m,f300,4JHI.LFOR,FDVLIB/1.B,r.300,411PASUB/LB

Author:

Edit:

Kurt W, P,1Pke
SPectroriix, Inc+
24590 Glen Rd,
Shorewood, MN 55331
Tel, 1612) 474-0831

10/21/81 Modify for OMSI Pa&cal 2,0H

CONST
ImPureSize = 1000;
FmsLun = 41
MaxStrinS = 7;
LineLensth = 151
MaxFileName = 30;
MaxDataLensth = 255;

{ Size of
{ LllN for·

M.=:n:in1um
M,n:i mum

imP1..1re a,·ea}
FMS librarw I/0}
strins len,Hh }
'fputl' line l•nsth}

{
{

{
{

Maximum len■ th of file names}
Maximum d.;ita (bytes) for 'fset,al' }

TYPE
ImPureTYPe = PACKED ARRAY fl,,lmeureBizeJ OF chari
Strin ■ = PACKED ARRAY C1,,MaxStrinsJ OF char;
ResPonseTYPe PACKED ARRAY Cl,,JJ OF ch,ar;
FileNameTYPe = PACKED ARRAY Cl,,MaxFileNameJ OF charl

VAR

{

*
}

N•Jll : char;
DataFile : text;
ImPureArea : ImPureTYPel
Size : inte~er;
L1Jn : inteser;
LibName : Strir,s;
Response : ResPonseTYPei
Form, Form1 : Strir,s;
ExitForm Strinsl
FileName : FileNameT~Pel

Globally accessible FMS routines from HI.LFOR

PROCEDURE Fclrsh(VAR Name: Strin■); NonPa•cali
PROCEDURE FinitCVAR ImP I ImPureTYPel VAR Siz : inteser); NonPascali
PROCEDURE FlChanCVAR Chan I inteserll NonPasc,ill
PROCEDURE FlOPenlVAR Name I Strin■); NonPa•cal;
PROCEDURE FnDatalVAR r~s I ResPonseTYPel VAR Fname Fil~NameTYPe);

NonPascall
PROCEDURE FlClosl Nor.Pascall

{

*
}

Main pro~ram code

BEGIN { PasDem}
Null := chrl◊l;
Asciz(',EXIT, ',ExitFormll
Size t= IffiPureSize;
Finit(ImPureArea,Size)I
L.un : = Fmsl.un;
FlChan(Lur,);
Asciz('DEMLIE< ',LibName);
FlOper,(LibNameli
REPEAT

Get.Menu('FIRST •, 'CHOICE • ,ResPC•nse,Forn,1 l;
IF Form1 <> ExitForm THEN

BEGIN
ResPonse[2J := 'F'; ResPonset3J .- Null;
FnData(Re&Ponse,FileName);
OPenFile(DataFile,FileNameli
REPEAT

Form := Forni!;
FormSeries(Form,DataFile)I
GetMer,u('LAST ','CHOICE ',ResPonse,Forml

UNTIL ResPonseCll <> •1•;
close(DataFile)
END

UNTIL (Form ExitForml OR <Form1 ExitFormli
Flclos

END, -C PasDem }

{

*
*
*
}

Routir,e to oper, a file Siver, c1n ASCIZ file r,an,e, The filte ,,,.n,e n,ust
be blan~. filled to avoid a swr,ta>: error from the Pascal n,r,-time
swsten1.

PROCEDURE OPenFile(UAR FileVar text; FileName

VAR NullPos,i I inteserl

BEGIN -C OPenFile J
NullPos := 11
WHILE FilenameCNullPosl <> Null no NulJPos I= NullPoa + 1;
FOR i := NullPos TO MaxFileName no FileNameCiJ := '
rewrite<FileVar,FileName)

END; { OPenFile}

t-
o,

{

*
*
*
*
}

Routine to follow a series of data entrw for~•• After each form
is disPlawed and the data stored in a file, the routjne looks in
the Name Data for the next for~ to process. If tt1~ next form is
•,NONE,• the end of ti·1e seriJ:?-s has been hit Bnd t.he routine e:-:tts,

PROCEDURE FormSeries(VAR Form ! Strin■;

VAR FileVar : text);
{ Starti 11~ fc1rm name}
{ File variable far 1/0}

TYPE DataBuffer

VAR
Coun t ,DataPos : i.nteger;
Data : DataBufferi
DataName,NoneForrn : Strins;

PROCEDURE FsetallVAR buf
PROCEDURE FnDatalVAR InP

BEGIN { FormSeries}

DataBufferli NanPascal;
Strin,H VAR Data : Strins)i Nor.PascaH

A sci z ('.NONE. ", None Form);
REPEAT

FclrshlFormH
Fsetal(Datal;
DataF'os != 1;
Count != 1;
WHILE Data[DataPosl

BEGIN
Null DO

write(FileUar,DBt ■ CDataPosJ);

IF Count= 78 THEN
BEGIN
writeln(FileVar);
Count ,- 1
END;

DataPos I= DataPos + 1
END, {WHILE}

writeln(FileVar);
Asciz('NXTFRM ',DataName);
FnData(DataName,Form);

UNTIL Form= NoneFormi
END; { FormSeries}

{

*
*
*
}

Routine to Produce an ABCIZ strin ■ from a blank-filled strir.g,
This is often necessar~ since all the FMS FORTRhN ro1.1t.j r,es r·ec".fui re
ASCIZ strinSs, and tl1e P8scal. camPiler rj<>es not ins~rl B nl1ll.

PROCEDURE Ascizl InStrins : Strins; { Input strin■}
{ Outp1Jt string }

{

*
*
}

VAR OutStrins : Strtns);
BEGIN

OutStrins != InStrinsi
OutStrins[MaxStrinsJ ,- Null

END; { Asciz }

Routine to tlet ~ menu choice fro~ the
and loops until the □ PeratcJr tYPes in

Disp]ays the menu

PROCEDURE GetMenu(Menu : Strin'3;
Data : String;

{ Narr1e of l1H:'r11.1 t.o di SP 1 a~,:
{ Resr:,onse fiP-ld r12.me }

VAR Response ResPonseTYPei { R~spor1~e value}
VAR Namedata : Strins); { Na~e Dat~ of response}

TYPE LineTsiPe PACKED ARRAY [!,,Linelen ■ thJ OF chRr;

VAR
Termi nator, Status, Stat2
ErrorLine : LineTYPe;

PROCEDURE FnDataCVAR res : ResPonseTwPei VAR Data : Strinsl;
NonF'ascal;

PROCEDURE Fset(VAR res : ResponseTwPe; VAR Trm ! inte ■ er; VAR Num I Strini);
NonPascal;

PROCEDURE Fstat(VAR Stt : inteseri VAR sti.2 : integer); NunF•a,scaU
PROCEDURE FPutlCVAR line : linetype); Nor.Pascal,

BEGIN { GetMenu}
ErrorLine := 'Ille~al Choice '; Errorl.ine[l.inel.en~tt1J t- Nullf
Asciz(Menu,Menu);
Fclrsh(Menul,
Asciz(Data,Data);
REPEAT

Fset(ResPonse,Terminator,Data);
FnData<ResPonse,NameData);
Fstat(Status,Stat2l1
IF Status<• 0 THEN FPutl(ErrorLine)

UNTIL Status 0
END; { GetMenu}

.,, (f)

"'"' (C .0
(1>'

"'.i:,.
0 W ;:;~

l.
2 .

3 .

l.
2.
3 .

l.
2 .
3 .

l.
2.
3 .

f- 4.
-..J 5 .

l.
2 .
3.

l.
2 .
3 .

l.
2 .
3 .
4.
5 .
6.
7 .
8.
9 .
10.
11.
12.

FMS Application Programming Handout
Miami ' 81 Symposium

*********** FORM DRIVER** ******

RUN-TIME COMPONENT OF RMS.
SET OF SUBROUTINES TO ALLOW AN APPLICATION PROGRAM TO ACCESS FORMS AND
CONTROL OPERATOR INTERACTION .
LINKED WITH APPLICATION PROGRAM.

******** FORM DRIVER FEATURES********

FLEXIBLE SET OF CALLS.
INTERFACES TO COMMON PROGRAMMING LANGUAGES.
SUPPORT FOR FORM AND FIELD A'ITRIBUTES SUPPORT FOR OPERATOR HELP.

******** FORMS CONTAIN********

CONSTANT BACKGROUND TEXT .
VARIABLE FIELDS .
ASSOC IATED NAMED DATA .

******** FORM ATTRIBUTES********

FORM NAME.
SCREEN WIDTH (80 OR 132 COLUMNS) .
SCREEN AREA TO CLEAR.
SCREEN BACKGROUND .
HELP FORM NAME.

******** BACKGROUND TEXT********

CONSTANT INFORMATION .
CANNOT BE MODIFIED BY OPERATOR.
PROMPTS FOR FIELDS OR EXPLANATORY TEXT VTlOO VIDEO ATTRIBUTES.

*** * ****FIELDS ********

IDENTIFIED BY SIX CHARACTER NAME AND INDEX.
MODIFIABLE BY APPLICATION AND/OR TERMINAL OPERATOR .
ASSOCIATION BETWEEN PROGRAM AND FIELDS MADE AT RUN TIME.

******** FIELD ATTRIBUTES******* *

VTlOO VIDEO ATTRIBUTES.
DEFAULT VALUE.
HELP TEXT.
EMBEDDED TEXT CHARACTERS .
RIGHT OR LEFT JUSTIFICATION.
AUTOTAB TO NEXT FIELD.
DISPLAY-ONLY.
CLEAR CHARACTER FOR SCREEN DISPLAY .
BLANK OR ZERO FILL.
FIXED DECIMAL FOR MONEY.
INDEXED.
NO-·ECHO SUPERVISOR PROTECT.

******** DATA VALIDATION********

l.
2.
3.

CHARACTER VALIDATION BASED ON FIELD PICTURE.
RESPONSE REQUIRED IN FIELD .
MUST FILL FIELD IF ANY DATA ENTERED .

********HELP********

HELP TEXT FOR EACH FIELD .
HELP FORM FOR EACH FORM .

l.
2.
3. HELP FORMS CAN BE CHAINED TPANSPARENT TO CALLING PROGRAM .

******** NAMED DATA ********

ASSOCIATES ASCII DATA WITH FORM.
NOT DISPLAYED AS PART OF FORM .

l.
2 .
3 .
4 .
5.
6.

CAN BE USED TO EMBED APPLICATION LOGIC
UP TO 60 BYTES OF TEXT PER ENTRY .

IN FORMS.

l.
2.

FMS

UP TO 16 ENTRIES PER FORM.
ACCESSED BY NAME OR INDEX.

******** FMS INITIALIZATION

SET UP FORM DRIVER IMPURE AREA.
OPEN FORM LIBRARY.

CALLS TO USE:

CALL FINIT (IMPURE, 2000)
* CALL FLCHAN (1)

* CALL FLOPEN (' FRMLIB.FLB ')

INITIALIZE IMPURE
SET FORM LIBRARY
CHANNEL
OPEN FORM LIBRARY

* NOT REQUIRED FOR MEMORY RESIDENT FORM SUPPORT

** ****** BASIC FORM PROCESSING CALLS

CASE 1. DISPLAY A FORM .
CASE 2. WRITE DATA 'ID A FORM .
CASE 3. GET INPUT FROM THE TERMINAL OPERATOR .
CASE 4. RETURN FIELD VALUES FROM A FORM.
CASE 5. DISPLAY APPLICATION MESSAGES.

******** DISPLAY A FORM********

CLEAR ENTIRE SCREEN AND DISPLAY FORM . - (FCLRSH)
CLEAR SPECIFIED AREA AND DISPLAY FORM . - (FSHOW)

WRITE DATA TO A FORM.
WRITE DATA 'ID ALL FIELDS. - (FPUTAL)
WRITE DATA TO A SPECIFIED FIELD. - (FPUT)

GET INPUT FROM '['HE TERMINAL OPERATOR
GET ALL FIELDS . - (FGETAL)
GET A SPECIFIED FIELD. - (FGET)
GET ANY FIELD. - (FGETAF)

AREA

-u (/)

'""' "' .D "'.
~:1>
O W

; i:o

CASE 1: NO APPLICATION PROCESSING OF INPUT IS NECESSARY AT THE FIELD LEVEL.

FMS CALLS TO USE:
WRITE DATA TO ALL FIELDS. - (FPUTAL)
GET ALL FIELDS. - (FGETAL)

CALL FCLRSH ('FORM')
READ RECORD INTO DATA
CALL FPUTAL (DATA)
CALL FGETAL (DATA)
WRITE RECORD FROM DATA

ADVANTAGES:

DISPLAY FORM
GET RECORD FROM DATA BASE
WRITE DATA TO FORM
LET OPERATOR MODIFY DATA
WRITE UPDATED RECORD

l. APPLICATION REQUIRES NO KNOWLEDGE TO FORM CONTENT OR LAYOUT.
2. FORM DRIVER HANDLES ALL INTERACTION WITH TERMINAL OPERATOR.
3. TERMINAL OPERATOR CAN MOVE BE'IWEEN FIELDS AT WILL UNTIL SATISFIED.

DISVANTAGES:
1. APPLICATION CANNOT PROCESS INPUT UNITL ENTIRE FORM IS COMPLETE.
2. ORDER OF FIELDS IN A RECORD MUST BE THE SAME AS THE ORDER IN A FORM.

CASE 2 : APPLICATION PROCESSING IS NECESSARY AT THE FIELD LEVEL AND/OR THE
APPLICATION PROGRAM REQUIRES CONTROL OVER THE ORDER OF FIELD ENTRY.

FMS CALL TO USE:
GET A SPECIFIELD FIELD. - (FGET)

10

20

CALL FCLRSH ('ORDER')
CALL FGET (ACCT, TERM, 'ACCT')
PROCESS INPUT
IF ACCT NOT VALID GOTO 10
CALL FGET (PARTNO, TERM, 'PARTNO')
PROCESS INPUT
IF PARTNO NOT VALID GOTO 20
CALL FPUT (DESC, 'DESC')
CALL FGET (QUANT, 'I'ERM, ' QUANT 1

)

ADVANTAGES:

DISPLAY FORM
GET ACCOUNT NUMBER
PROCESS
IF INVALID, GET FIELD AGAIN
ELSE GET PARY NUMBER
PROCESS
IF INVALID, GET FIELD AGAIN
ELSE WRITE DESCRIPTION FIELD
GET QUANTITY 'ro ORDER

l. APPLICATION PROGRAM GETS IMMEDIATE CONTROL AFTER EACH FIELD IS ENTERED
TO VALIDATE INPUT, RESPOND TO ERRORS, AND UPDATE THE FORM.

2. APPLICATION PROGRAM HAS ABSOLUTE CONTROL OVER ORDER IN WHICH FIELDS
ARE ACCESSED

DISAVANTAGES:
l. TERMINAL OPERATOR HAS NO CONTROL OVER MOVEMENT BETWEEN FIELDS.
2. APPLICATION PROGRAM MUST ACCESS ALL FIELDS IN A FORM BY NAME.

)))

CASE 3: APPLICATION PROCESSING IS NECESSARY AT THE FIELD LEVEL AND THE
-- - TERMINAL OPERATOR SHOULD CONTROL MOVEMENT BETWEEN FIELDS.

FMS CALLS TO USE:
GET A SPECIFIED FIELD. - (FGET)
PROCESS A FIELD TERMINATOR. - (FPFT)

10 CALL FGET (RESP, TERM, FIELD)
PROCESS INPUT FOR THE FIELD
IF TERM EQUAL 1 GOTO 20

GET INPUT FOR A FIELD
PROCESS INPUT
IF TERMINATOR ENTER, FORM
COMPLETE

CALL FPFT (TERM) ELSE DETERMINE NEXT FIELD TO
GET

CALL FGCF (FIELD)
GOTO 10

20

USE OF FGET/FPFT CALLS:

10
20

CALL FCLRSH ('FORM')
CALL FGET (RESP, TERM, '*')
CALL FGCF (FIELD)
GOTO 20
CALL FGET (RESP, TERM, FIELD)
PROCESS INPUT FOR FIELD
CALL FPFT (TERM)
CALL FGCF (FIELD)

GET FIELD NAME
GET INPU'I' FOR FIELD

DISPLAY FORM
GET INPUT FOR FIRST FIELD
GET FIELD NAME
PROCESS INPUT
GET INPUT FOR A FIELD
PROCESS INPUT
DETERMINE NEXT FIELD TO GET
GET FIELD NAME

IF TERM NOT EQUAL l GOTO 10 IF TERMINATOR NOT ENTER, GET
THE FIELD

CALL FSTAT (STAT)

IF STAT EQUAL 2 GOTO 10

ADVANTAGES:

ELSE CHECK FOR INCOMPLETE
FORM
GET INPUT FOR INCOMPLETE
FIELD
ELSE DONE

1. TERMINAL OPERATOR CAN MOVE BETWEEN FIELDS AT WILL UNITL SATISIFED.
2. APPLICATION PROGRAM GETS IMMEDIATE CONTROL AFTER EACH FIELD IS ENTERED

TO VALIDATE INPUT, RESPOND TO ERRORS, AND UPDATE THE FORM.
3. APPLICATION PROGRAM REQUIRES NO KNOWLEDGE OF FORM LAYOUT.

DISAVANTAGES:
1. MORE COMPLEX TO IMPLEMENT THAT THE SINGLE 'GET ALL FIELDS' CALL.

CASE 4: INPUT IS REQUIRED IN ANY ONE FIELD IN A FORM.

FMS CALL TO USE:
GET ANY FIELD. - (FGE'I'AF)

)

-o en ., co
<O ..a "'.
"'.,:,.
O W
:: CX)

CALL FCLRSH ('FORMl')

CALL FGETAF (RESP, TERM, FIELD)
IF FIELD EQUAL 'BADGE' GOTO 10
ELSE FIND BADGE NUMBER CORRESPONDING TO
CALL FPUT (BADGE, 'BADGE')
GOTO 20

DISPLAY FORM WITH 'IWO FIELDS
NAME AND BADGE NUMBER
GET INPUT FOR EITHER FIELD
BRANCH IF BADGE NUMBER

NAME ENTERED
; DISPLAY BADGE NUMBER

10

20

FIND NAME CORRESPONDING TO BADGE NUMBER ENTERED
CALL FPUT (NAME, 'NAME') ; ELSE DISPLAY NAME

CASE 5: APPLICATION PROGRAM HAS TO SYNCHRONIZE WITH THE TERMINAL OPERATOR

FMS CALL TO USE:
GET A SPEICIFIED FIELD, - (FGET)

CALL FCLRSH (' FORMl')
CALL FGETAL (DATA)
PROCESS INPUT
CALL FPUT (VALUEl,'FIELDl')
CALL FPUT (VALUE2,'FIELD2')
CALL FGET

CALL FCLRSH ('FORM2')

DISPLAY FORM
GET INPU'I' FOR FORM
PROCESS
WRITE DATA
WRITE DATA
WAIT FOR TERMINAL OPERATOR TO
ACKNOWLDEGE
DISPLAY NEXT FORM

****~*** RETURN FIELD VALUES FROM FORM********
(NO OPERATOR INPUT ALLOWED)

CASE 1. RETURN A SPECIFIED FIELD VALUE
CASE 2. RETURN ALL FIELD VALUES

CASE 1: ACCESS INDIVIDUAL FIELDS IN A FORM AFTER THE FORM IS COMPLETED BY THE
TERMINAL OPERATOR IN ORDER TO: VALIDATE INPUT FOR INDIVIDUAL FIELDS,
CREATE A RECORD WITH FIELDS IN A DIFFERENT ORDER THAN THEY ARE IN THE
FORM. CREATE A RECORD CONTAINING FIELDS FORM SEVERAL SOURCES,
INCLUDING THIS FORM,

FMS CALL TO USE:
RETURN A SPECIFIED FIELD, - (FRETN)

10

20

CALL FCLRSH ('FORM')
CALL FGETAL

CALL FRETN (RESPA, 'FIELDA')
PROCESS FIELD VALUE
IF RESPA VALID GOTO 20
CALL FGET (RESPA, TERM, 'FIELDA')
GOTO 10
CALL FRETN (RESPB, 'FIELDB')
PRECESS FIELD VALUE

DISPLAY FORM
ALLOW OPERATOR TO COMPLETE
E'ORM BUT DON' T RETURN DATA
RETURN VALUE FORM FIELD A
PROCESS DA'rA
IF VALID CONTINUE
ELSE GET INPUT FOR FIELD
PROCESS
RETURN VALUE FOR FIELD B
PROCESS

CASE l• RETURN THE DATA FOR AN ENTIRE FORM AS A SINGLE RECORD AFTER GETTING
OPERATOR INPUT FOR EACH FIELD INDIVIDUALLY.

FMS CALL TO USE:
RETURN ALL FIELDS. - (FRETAL)

CALL FCLRSH ('FORM')
10 CALL FGET (RESP, TERM, FIELD)

PROCESS INPUT FOR FIELD
IF TERM EQUAL 1 GOTO 20

DISPLAY FORM
GET INPUT E'OR A FIELD
PROCESS INPUT
IF TERMINATOR ENTER, FORM
COMPLETE

CALL FPET (TERM) ELSE DETERMINE NEXT FIELD TO
GET

20

CALL FGCF (FIELD)
GOTO 10
CALL FRETAL (DATA)
WRITE RECORD FORM DATA

GET FIELD NAME
GET INPUT FOR FIELD
RETURN ALL FIELD VALUES
WRITE RECORD

******** DISPLAY APPLICATION MESSAGES********

1, ERROR MESSAGES
2. INFORMATIONAL MESSAGES

FMS CALL TO USE:
WRITE MESSAGE TO LAST LINE OF SCREEN. - (FPUTL)

10

20

CALL FGET (RESP, TERM, 'CHOICE') GET FIELD
IF RESP VALID GOTO 20 IF RESPONSE VALID CONTINUE

ELSE DISPLAY ERROR MESSAGE
CALL FPUTL ('INVALID RESPONSE. VALID CHOICES ARE 1, 2, OR 3,')
GOTO 10 ; GET THE FIELD AGAIN

.,, (f)
a, CD

<O .0
CD.
c., ...
0 W
;: CX)

..
N
0

1.
2.
3.
4.

5.

10

10

20

1.
2.
3.

******** ADDITIONAL FORM DRIVER CALLS SUPPORT********

NAMED DATA
SUPERVISOR ONLY MODE
SCROLLED AREAS
NAMED DATA USAGE
A. RANGE CHECKING
B. TABLE LOOKUPS
C. FORM LINKAGE
D. FORM SPECIFIC INFORMATION
ACCESS NAMED DATA
A. BY NAME (FNDATA)
B. BY INDEX (FIDATA)

******** USE OF FNDA'I'A FOR FORM LINKAGE ********

CALL FCLRSH (FORM)
CALL FGETAL (DATA)
PROCESS INPUT
CALL FNDATA (' NXTFRM, FORM')
CALL FSTAT (STAT)
IF STAT > 0 GO'l'O 10

DISPLAY FORM
GET INPUT FOR FORM
PROCESS
GET NAME OF NEXT FORM
CHECK FOR NO NAMED DAT.II.
IF NAMED DATA FOUND, DISPLAY
NEXT FORM

******** USE OF FNDATA FOR MENUS********

CALL FCLRSH ('MENU')
CALL FGET (RESP, TERM, 'CHOICE')
CALL FNDATA (RESP,FORM)
IF STAT> 0 GOTO 20
CALL FPUTL ('INVALID SELECTION')
GOTO 10
CALL FCLRSH (FORM)

DISPLAY MENU FORM
GET MENU SELECTION
CHECK FOR NO NAMED DATA
IF FOUND OK
ELSE INVALID RESPONSE
GET ANOTHER SELECTION
DISPLAY FORM CORRESPONDING
TO SELECTION SUPERVISOR ONLY
MODE

******** SUPERVISOR ONLY MODE********

PROVIDES FIELD PROTECTION FOR DATA RETRIEVAL AND MODIFICATION CONTROL
ALLOW OPERATOR ACCESS TO SUPERVISOR ONLY FIELDS_ (FSPOFF)
RESTRICT OPERATOR ACCESS TO SUPERVISOR ONLY FIELDS (FSPON)

USE OF FSPOFF/FSPON:

CALL FCLRSH ('ACCESS')
CALL FGET (PASSWD, TERM, 'PASSED')
IF PASSWD EQUAL 'XYZZY'
CALL FSPOFF

)

DISPLAY FORM
GET PASSWORD
IF CORRECT PASSWORD
ALLOW OPERATOAR ACCESS TO
SUPERVISOR ONLY FIELDS

PROCESS FORMS

CALL FSPON

WRITE DATA TO A LINE IN A SCROLLED AREA (FOUTLN)
GET INPUT FOR A LINE IN A SCROLLED AREA (FINLN)
USE OF FOUTLN:

INITIALIZE A FIVE LINE SCROLLED AREA FROM
A DATA BUFFER.

CALL FCLRSH (' FORM')
CALL FOUTLN ('SCRFLD'

REPEAT FOR I= 2 TO 5
CALL FPFT (8, 'SCRFLD')

A(l)

CALL FOUTLN (' SCRFLE' , A(l)
END REPEAT
REPEAT 4 TIMES
CALL FPF'I' (9, ' SCRFLE')
END REPEAT

USE OF FINLN/FOUTLN:

ALLOW ENTRY AND REVIEW OF 50 LINES OF
DATA IN A SCROLLED AREA.

10

20

CALL FCLRSH ('FORM')
I = l
CALL FINLN ('SCRFLD' , A(l), TERM)
IF I= l AND TERM= 7 OR 9

CALL FPUTL ('BEGINNING OF DATA')
GOTO 10
IF I= 50 AND TERM= 6 OR 8

CALL FPUTL ('END OF DATA')
GOTO 10
IF TERM 7 OR 9
I = I = 1
IF TERM 6 OR 8
I = I + 1
CALL FPFT (TERM, 'SCRFLD')
CALL FOUTLN ('SCRFLD', A(I))
GOTO 10

RESET SUPERVISOR ONLY
MODE 'l'O RESTRICT
ACCESS 'ID FIELDS ACCESS
SCROLLED AREAS

DISPLAY FORM
WRITE DATA TO FIRST LINE OF
SCROLLED AREA
INITIALIZE THE RES'r
MOVE DOWN ONE LINE
WRITE DATA TO NEW LINE

GO BACK TO FIRST LINE
MOVE UP ONE LINE

DISPLAY FORM
INITIALIZE BUFFER INDEX
GET INPUT FOR SCROLLED LINE
CHECK FOR BEGINNING OF DATA
AND SCROLL BACKWARD
IF SO, DISPLAY MESSAGE
GET LINE AGAIN
CHECK FOR END OF DATA AND
SCROLL FORWARD
IF SO , DISPLAY MESSAGE
GET LINE AGAIN
IF SCROLL BACKWARD
DECREMENT BUFFER INDEX
IF SCROLL FORWARD
INCREMENT BUFFER INDEXZ
PRECESS TERMINATOR
WRITE DATA TO NEW LINE
GET INPUT

7J CJ)

"'"'
<O "" "'.
OW
;: 00

Seq. 5.1.2

DBMS 10/20 COORDINATOR

Having held this post (DBMS 10/20 Coordinator) since the week or two
prior to the Spring DECUS Symposi um in Miami Beach, and having been involved
with the DECUS Organization and OMS SIG only slightly longer, I find it a mite
difficult to address the newsletter with knowledge , confi dence, and authority.
I am not currently blessed with the "Black Book" so carefully developed by my
predecessor so rny resource list is limited to those people I have met at the
two Symposia I have attended and those who have been mentioned in passing
dur ·ing informal discussio ns and at get-acquainted-cocktail-party sessions. Now,
after baring my soul and off-loading the responsibility fo r performance in ti1is
office, let me offer some ways of using u,e DBMS 10/20 Coordinator in your
site.

My understanding of tile position with ·' the structure of the DMS SIG is
one of providing a central information and query point through which more
information should flow than at the present time. I can not help 10/20 sites
who do not request advice, counsel, or assistance in the sel ection of a DBMS
or in tr,e solving of vexing problems. To date my inventory of requests is none
received and therefore, 100% success ful solutions. I am not offering myself
as a DBMS 10/20 guru, though I have slept many nights on the snow covered
rocky peaks, but rather as a foe al point for i nforma ti on about the product,
user experiences (both good and bad), and a distribution point for solutions
to problems wl1i ch more experienced hands have al ready solved .

My fervent hope i s that the paucity of DBMS 10/20 queries I have inter
cepted means that the software is bullet-proof and running wel 1 everywhere.
I know better. The ins ta l 1ation here at the Nashville Gas Company has experienced
some extren,ely vexing disruptions . Ou t of humanity and concern for my fellow
users I would be haPf'Y to share lhe solutions, s uch as they are, wttncothers
fac ing similar s ituations. Perhaps the inaction I witness is i:>ecause you all
do not know I exist. My raucous behavior in the"computeri zed service lines"
during the Symposia and at other functions makes me doubt this excuse, however.
So here I stand , ready to serve, DBMS 10/20 Coordinator for the OMS SIG, with
little to do. Try me. Not all at once, but a fe'w at a ti,ne and let's try to
~enerate more involvement with software problems, successes, and solutions at
tile user 1 eve l .

I am trying to r etreive the "Black Book". Anyone who would like to serve
as a resource for DBMS 10/ 20 questions, just send me a business ca rd or a note
to that effect, and l wiil happily add you to the too-short list.

A final comment about my tenure in this position. My company management
i, now pursuing a different path for Data Processing, so that this cheery
yreet i ng is also ti;e beginning of the erid. After the Fa 11 DEC US in Los Angel es,
there will prnbably be a new DBMS 10/20 Coordinator to deal with. I would like
all ti1e DBMS 10/;>0 users to i1elp me to help the new Coordinator off to a good
start with a backlog of requests, and offers of assistance, so that my brief
tenure wi 11 have had some pos'iti ve effect.

DBMS l 0/20 Coor·di nation and choreography provided by:
Jack Hi 11
Director, Data Services
Nashv·J 11 e Gas Company
814 C11urch Street
Nashville, Tennessee 37203
(615) 244-7080 8AM to 5PM Central prevailing Time

(

Seq. 5.1.3

DBMS-11: THE LOS ANGELES SYMPOSIUM REPORT

Micha-t.1 1 i➔ ntin

DBMS-11 Coordinat or
t' o1· the DMS SIG

Pol a r o id CorPor t i o 11
1. 26::; Mai n ;-;t rPe
Waltt,a 1i1 , MA t 02 54
(t~ l "?) 68 4 ··<:i!J/4

Since the old sea,· ha s Passed, sr)d r1ow that Atliiin·ta is onl~ folJT'
1~011ths awa y it seems like ,3 fl 3PPT' □Priate ·t:ime ·to ·tt1i1·1k back. on the
Past SY mPosilJm held ir1 Los Ari~ele s at the beSinrlir·1s of Decembe1·, 1981.

F(Jr ·thcJse DBMS-·1 1 users who did r 1 □ t i1ttend~ I t1 ave Passed alo r1~
via ·Lhe newsletter an e>(ce1·2t of ·t he !·1ando~Jts from tt1e 1:1BMS--11 Techr·1i·
c2l 1·utori;Jl. Tl1e Pre~~entatiorl was made bs Arlrl Har rison of Digital.
S ti e discussed some of tt1e r1ew fe atu r·es of tt1e ne :{ t r·elease which
st1ou l d be avai labl e for al l three 0Peratir1S ssstems (RSX-- 1 1M,RSX- 11M
PLUS, a nd IAS) bs t he time thi s report come s o ut ir1 the n e ws lette r ~
~':if'1ver ~:-} l of t,h<~ i teni -::; t h at 1;Je t'P s ut,mi tttid thro1.1~h th£-:> flM S SIG menu i n

the SPr ins o f 1981 were inc o 1•porated into tl,e latest 1·eleases1
Severa l others were d i scussed a t the Tec hr,ical Tutorial a r, d are sum--
1n arize d :in tt1e har·1do1J t+

The Pr:lmar~ t□ Pic of the sess ion was ttie str1Jct1J1•e of ttie data
dj.(=·tio1·lar~. Arin ~1arri son Provi ded insig~its ~Jb □ lJt the dic ·tionars con-
tent s a nd i llustra·ted a stra i ~l1t-fo1·ward techniGue usi r1 ~ [1BQ for ac-
cess:L11S the DBMS--11 dat a dic~tionar~. It reGuir-e s a little work! a
subscf1e1na comPile and a few ma niP•J l~itions of ·lhe redirecti □ r) t~ible.

I·r ~0 1J t1~1ve doubts abo1Jt wt,2t ~~o u would ~ain fro1n Peek ing in ·to
th e data dic~tionar~, with DBQ, Pe 1·~1 aPs sou would like to k 11 ow wt,at the
s tr•Jcture of the dictionar~ looks like . You can see for' ~~O L1rse lf ! I
!1 Ave in c~l uded six di aS rams fraffi the h a ndout which show a ll t he record
a nd set relationships for the d a ta dictiona rs. VOILA ! Note tt1at in
·tt,e irl·teres t o f savi n ~ DE CUS s ome ma ne~ , I h ave no t inclL1ded the 30
Pa~e da·ta dic ti o r)ars sc hema sou t·ce li sti nS wt1ich was a l s o Part (J f the
h a nd ou t . I will be Slad~ however to send a c: □P~ to a 11~JCJn e who wou ld
1:ike to receive it f

As a lwa\~s, I a1n ea~er to h ea1· from all DBMS--11 u sers. I·r sou
have a Probl.em, will do m~ best to pu·t s□ 1J in contac:t with ott1er
•J sers w!10 ma~• tlave e>:Perienced s j_milar difficulties~ E~ve n if ~01J do
not have a problem or a Guestion. w □ 1Jld li~.P ·to kr,ow wi10 is 1JsinS
DBMS·- 11 out t11ere in tt,e c1•1Jel wo r ld. "Oen "'U (/)

ru ro rum
c.o ..c r.c .a ro • ro •
_. µ, - ~
o-o-: w: rv

DBMS-11

TECHNICAL SESSION

Ann Harrison
Digital EquipMent Corp

I. Version 2. 0 AnnounceMent

JI.. DMS SIG Menu response

Jn:. Data Dictionar~ Topics

) \

/

I. DBMS-11 Version 2,0 AnnouceMent

Available in Mid-JanuarH

For RSX-11M, RSX-11N-PLUS, IAS

Replaces Versions 1,6, 1.7, & 1,8

--4 Major Features

Multiple databases

Datatrieve-11

Journalling control

~ New features since Version 1.8

DBG - datat~pes
repeating groups

DBO - New voluMe on journal

Exit status froM all utilities

SubscheMas and CALC records

Docuft'lentation

Security

)

-0 (/)

"'"' ~~
~ "'
OW
~w

DHS SIG Menu response

Fall 1981 List Response:

- Alias
FDML translates naMes

- PerforMance
TiMer and docuMentation

- Restructure Utilit~

*

*

*
- Data Dictionar~ *

Covered later this session

*->I will be in the caMp ground
to talk about these questions

DMS SIG Menu response

Fall 1981 List Response:

~ Describe the iMplications of using
a single thread s~steM,

Two attributes that Make it single
threaded:

Lack of concurrenc~ control

All access is done through
a single prograM (DBM)

"'O CJ)

"'"' cg -fl
N Ul
0 W
~w

~ IAS user inforMation:

)

Operator/OBA interface changed

DML prograMs are restricted to
56 KB

Version 2,0 uses More node pool
than Version 1,7 even for
a single database s~steM

)

TI. DMS SIG Menu response

)

-+ Good news froM last session:

Datatijpes: DBQ supports theM all

PerforMance MeasureMent:
DBQ tiMer
Described use of statistics

Journalling: End of VoluMe

)

'!'
U1

DMS SIG Menu response

Concurrenc~ ProbleMs:

Recover~
Undetected interference can

corrupt data and pointers

lMplications:

Data integritH is reduced in
concurrent update Mode

PrograMs which don't share data
can run safelH

Al 1 re·9uests channel through DBM

ProbleMs:

Buffer Contention
Other re9uests wait for I/0 to

coMplete
Context switch tiMe

!Mplic:ations:

PrograMs that run with others
that are I/0 intensive suffer

All solutions are ver~ costl~ in
address space and ph~sical MeMor~

(

DMS SIG Menu response

Data Dictionar~

(

Expand the data dictionar~ ta include
coMMents froM the scheMa description
subscheMa, DMCL, and the DBA.
Provide a utilit~ to extract this
inforMation.

SoMe of it is there now:

CoMMent entries froM ScheMa

DBREPS subscheMa report

" (JJ a,"'
<O .0 "' .
... (J1

0 W
~w

Data Dictionar~ Reports:

)

DMCL report:
- all areas defined in the scheMa
- ever~ DHCL and what it contains

Range Map:
- page range of each area in

scheMa
- page range of each record within

the area

ScheMa record description:
- all declared attributes plus
- actual DBKe~ positions used
- length including prefix
- starting position of each field
- and More

ScheMa set description
- All sets defined in the scheMa
- And the CALC set
- Owner, MeMber, and set

characteristics

ScheMa procedure report
ScheMa protocol report
- InforMation stored b~ DBCLUC

SubscheMa data dictionar~ listing
- Records froM the subscheMa with
- Data tHpe, offset, b8te length,

character length, picture
- and COMMENT

))

Even More Data Dictionar~ Reports

SubscheMa Record Description
SubscheMa Set Description

- Appropriate subsets of the
e~uivalent scheMa reports

- Plus privac~ lock inforMation

)

III.. Data Dictionar~ Topics

'I:
-.J

Interactive Dictionar~ In~uir~ Tool

Your old friend DBQ can do it!

Procedure:
- Define a new redirection table

entr~
- Create a dictionar~ identical

in size to the target
- CoMpile NETSC.SCH froM the kit
- Create a subsche~a NETSS.SSC

which includes all records
and sets

- CoMpile that subscheMa
- DBG> DB NETSS
- ReMove the new redirection table

entr~, Map to target database
- DBQ> READY

~Wl•l"ri!
A~

SS-S$A•DS"I '6Sfl·~~

-0 (/l

"'"' "' .c "' .
CJ> U1

OW z; w

])TnC.L

SD•0f3

)

o111,d ?Jmet.'.5

Jo<!<Ylb I

s.f-01"1

)

fuuscl...:~
~u-.-i

,sR-031

~N""~ ;, 12,~rd//llv~

S°ArYH)S"6

'fu6s.:k<w-~
i?.u.,,..,J/ Ar,i!I

~~Am- O~(,

$,/x<-1.\ l l'l'C.
t,ta4l<

S$- O:l.Co

5o~,,i., l'l"lil
f\r (?,

.SSA· oi~

)

3

.,, Cf>

"'"' '° -"' "'. _, "'
0 W ;;;w

i(.ewr-ds

</1
CD

~6~krm"a
+•·(. Id

~'I>T<,-071

5DR.· sr..1>'< -01!, &.huna 1 -----------1 f1el~
~il>~ - ()<{ .l.

5't>R· S1>1t6-<>1.2.

(

4

Sc..htmo,
1-'leaau--

6-01 D

S-5 R· 01 f.

Kec.o;-d

m,,.,tu-
~- 5 rni:-o?S" 6mR.- as~

(

,, en
"'ro "' -" ro.
00 ('1

0 W
""' CD W

5

0'1
,:.,
0

w6sc.At.wtc
Ownar "°,e.51;,,.e-0,1 &l6a..l,~ rn,,,,,,-

r5s-c,R-e,-s'/
fismR-o&F

i(f PK..ES£.fll TAT ttJI'/

)

~C:,r;,;/,,~
1.~1c1

SSPi?- 01'1/

s:.tZ ssp.e- os-1

)

-0 CJ)
"'(1)

"' .0 (1) .

(0 0,

0 W -· <O "'

0,

co

MEMO FROM THE NEW TECO NEWSLETTER EDITOR
GREG STE!Nf<UHLER

SEPTEMBER 30 1 1981

The TECO SIG is attempting a comeback. We're doing this by
establishing communications with current TECO users and interested future
TECO users" Expertise is definately not a requirement for participation~

We r1eed your help and your contributions. Do you have questions?
Send them to us ar,onomously if desired. We,11 answer everything we can,
and wt1at we can,t, we'll thr·ow out to the user community. On all
c:or-r·espondi~nce include the c:iperati i ng sy£,tem and the TECO ver-si an number
at your site (CTRL v,.,$$ or .. EO=$$ will qive the version number·).

Do you have a favorite macro? Let's have it and we,11 all share the
wealth.

Bv the way, did you knc:>w that TECO is up to version 36 (for PDP·-11,
DEC-10 is up to version 3 and PDP-8 is up to version 7) and that it comes
with a page editor macro called VTEDIT?

VTEDIT requires nc) knowledge of TECO commands for its usage!!! But,
if you do kr,ow TECO, you now have character editing, macro editing, and
page editing at your fingertips!!!

With version 36,
Programmable Editor~.

TECO has, once again, proved itself to be 'The
Here are some highlights:

-the• • statement now gives TECO the ELSE capability
within the 'if' block;
-the 'F' statement provides for qreater FLOW control within
'loop' and 'if' blocks.

-2-

TECO has advanced to the point that someday a TECO guru will emerge
who, in his madness, will produce the ultimate --- the TECO operating
system (miaybe someone al ready has and cal 1 ed it UNIX!). To his honor· we
dedicate the following:

TECO GURU DF THE MONTH

by Franklin Reynolds
of TRT Telecommunications

Send all 'TECO GURU OF THE MONTH' drawings, questions, and macros to,

GREG STEINKUHLER
TRT TELECOMMUNICATIONS
P.O. BOX 8876
FT. LAUDERDALE, FL.

33310

-o en
., Cl>

<O .0
Cl>.
~ en
o "-' -:...

"' <D

DATAGUARD CORPORATION

Robe rt F. Curley
P . O. Bo x 332
Flo urtowrn . PA 1 903 1

Dea r Mr. Curley:

15 SPINNING WHEEL ROAD
HINSDALE, ILLINOIS 60521

312-789-2277

Septe mber 21, 1981

I have enclosed a sample run and a listing o f a TECO utility

which has proven q uite useful to our BASIC+2 RSTS progra mmers.

Since we ar e consulting on several different systems, it is con

venient t o insure our BASIC+2 modules ar e compiled with the

des ired switche s . For i nstance , it i s quite fru st r ating t o dis

cove r that one of you r modules wa s compile d with th e wr o ng math

package a f ter a le ng thy task build .

In order to eliminate the se sources of erro rs and improve morale

a t the same time , I have d eveloped the enclosed TECO uti lity .

This uti lity will compile th e last f ile editted with TECO, pro

v i ded it has an extension of ".B2S".

As the ut ility is wel l comme nted, i t can be easily modifi ed t o

do any set sequence of command s t o the last file editted with

TECO.

S i ncerely ,

/)1 ~iA /] d_A<JJ
Mark J, hlaz ~

))

Sample run (all inpu t act ually t yped is underline d)

TECO A. B2S/ 72

*EX$ $

Ready

MUNG BP2

Ready

BP2

PDP-11 BASI C-PLUS-2 Vl.6 BL-01.60

BASIC2

OLD A.B2S

BASIC2

COMPILE/NOL I NE/NOCHAIN/ OBJECT/ DOUBLE

BASIC2

EXIT

Ready

Ready

Page 2

-0(1)

"'"' <O .c "'.
- 0,
o i-J -. ,._,N

DATAGUARD CORPORATION • 15 SPINNING WHEEL ROAD• HINSDALE, ILLINOIS 60521 • 312-789-2277

)

I• TECO utility: aPZ.TEC
This utility will exeau\e the ATPK CCL, whioh will ao■Pil• \he
last rile editted tr ii ha• the extension •.az■ •.
It 1• exeauted with• MING aPZ ■onitor oo■■■nd or ■n •EoaPZtt• ao■■and
f'ro• TECO.

*'
CEJ-10> •L

IOt

EJ\t
(.-2,.))(J
(. -2 •. > D

I:ERTECFt
OJ
91\. T"Pt\
IUOt
H><O
HK
"o• oo•u

V
J
:s.azst•u

J
:s1t•s

< .-1,Z>D

H><F
HK

I!EWBP2Ft
OJ
aI\.T"P/"0:1~38$\
IUOt
HXO
HK
"o

I• Build• 2 di ■ it leadin■ zero ,111ed Jo, nu■ber •I
I• I• \he Job nu■,er l••• than ten? •I
t• Yos?, \hon we noed • loadin■ zero •I

I• Inter\ th• Jo, nu■,ar •t
I• Store th• Job nu■,er in ■-r••• J •I
I• D•l•t• the Jo, nu■,er Vro■ \ha text ,u,rer •I

I• Build \ho TECFJJ.TitP f'ilo ePon •t
I• 0Pon read, •TECF• + •I
I•+ Jo, nu■,ar + •I
I•+ ••T"flt• •I
t• Return the oPon s\■ \u1 in ■-ro■ 0 •t
I• Stora \ho TECO • ■o■ory• ,11a opon •t
I• Claar tho toxt ,u,ror •t
I• A\\OMP\ th• TECO ••o•ory• f'ilo OPon •t
I• JF th• open was unsuooesrul, rePort this and •~•rt •I

t• Raad in tho TECO ••■ory ,11e •I
I• Bet 10th• '••innin■ of' th• ,urf'er •t
I• IF tho last Filo odi\\ed da•• no\ havo •I
I• ■n ox\on1ian of' •.azs•. report 1h11 and ■,or\ •t

I• Oet to the bo■ innin■ of' th• \ox\ ,urfor •t
I• IF \hor• ar• anY swi\ah•• delete the■ •I

t• Storo \ho 8ASIC + Z f'ilo 1Poaif'iaatien •I
t• Clear \ho \ex\ buf'For •t
t• Build \he indiroot ao■■■nd f'il• oPon •t '* 0Pen ,or OU\PU\, ·aP2F· + .,
I•+ Jo, nu■ber + •I
t• + ••T"fl•: Crea\o ■\ \OP of UFD •I
I• Return opon 1\atu1 in a-r•■ 0 •I
I• 8\oro indiroa\ ao■■■nd file open •I
I• Clear th• \ext ,u,rer •I
I• Atte■P\ th• indireat oo•••nd f'il• oPen •I

Seq. 6.2.2
Page 2 of 2

oo·u I• IF tho oPon w■• unsuoaes1Ful, rePor\ this f'aat and abort •I

"AUnabl• to areate in4iroat oo-■nd file - Abortin■"A"C"C

IEOt
IH
I BP2Ft
OJ
al\. T"Pt\
H)(Q

HK

IBP2
OLD t OF II

EXIT

• "o ••

I• Build tho CCL ao-■nd 1\ro■• for ATPK •I
I• Th• exit 10 ■oniler and i1oue ■oniter oo■•and •I
I• Th• ATPK CCL (oou14 v■rY ,Y installation> •I
t• •attzF• + •I
I•+ Jo, nu■b•r + •I
t• + •.TMft• •I
,. 8\oro th• ATPK CCL OOM■■nd line<• aft2FJJ.T"ft) .,
I• Cloar th• ,u,rar •I

I• auild tho indtroo\ oo■■■nd f'ilo •I

CO"PILE/NOLI .. /NOCHAIN/08JECT/DOUltLE

t• Exit lo ■onitor, f'oroin■ ATftK CCL oo■-■nd lino •I

6-10

6-11

--- - - ·-- - - 0 OJ '.-~ ~ ~ - -·-- - --.

VAX INFORMATION ARCHITECTURE OVERVIEW

The VAX information architecture is made up of a highly
integrated set of information management products that are
supported by the VAX/VMS operating system, These products were
developed on the principle that a typical user needs a variety of
approaches to meet all of his or her information management
needs.

With VAX information architecture, different users, different
departments, different applications, and different VAX systems
can have different file structures. Yet these different file
structures can all be accessed through a single set of consistent
commands .

Because the components of the architecture are arranged in layers
above the operating system, it is possible for the components on
one level to use the faciliti~s of the other components.

On the top level, the VAX languages and VAX-11 FMS (Forms
Management System) provide a user interface for interactive and
language-callable video forms. VAX-11 DATATRIEVE supports
English-like queries, hard-copy reports, and graphics. On the
next level is the VAX-11 Common Data Dictionary, which integrates
the other components of the architecture, and the VAX-11
DATATRIEVE high-level and distributed data access facilities.
The lowest level consists of two multi-user, data management
facilities: VAX-11 RMS (Record Management Services) and VAX-11
DBMS (Database Management System).

Figure 1 shows these components as a series of interlocking
building blocks that fit into a well-defined software structure.

- 4 -

(

VAX INFORMATION ARCHITECTURE OVERVIEW

VAX-11
LANGUAGES

VAX-11
VMS

VAX-11
+---------.>----------t--------+--------+

VAX-11
COMMON DATA

DICTIONARY

VAX-11 RMS

VAX/VMS

DATATRIEVE

VAX-11 DBMS

-------------------------------------+
Figure 1: The VAX Information Architecture

This modular design offers several benefits. You have the
flexibility to choose the appropriate solutions for both central
and departmental applications. You gain an increase in control
over your information, which in turn provides increased integrity
and security, More efficient data processing tools mean
increased programmer productivity. Finally, you can protect your
current software investments while building a foundation for
future growth.

The following sections focus on the features and benefits of
three components of the VAX information architecture.

VAX-11 COMMON DATA DICTIONARY (COD)

When data is managed with conventional file or record management
methods, the programmer must include a description of the data
and how it will be used in the logic of the program. To use the
data effectively, the data processor must understand how the
program is written and how the data is stored. In addition,
storing data definitions in programs can lead to different
definitions being created for the same data, which increases the
likelihood of data redundancy and inconsistency.

The Common Data Dictionary, or COD, provides a major step towards
eliminating redundant data definitions by serving as the central
VAX/VMS storage facility for data descriptions shared by VAX-11

- 5 -

-0 CJ)
DJ (1)

(C .c
(1).

~-.J
0 ;,_, ..., .
-IS~

VAX INFORMATION ARCHITECTURE OVERVIEW

)

DBMS and DATATRIEVE. The COD stores only the data descriptions.
not the data itself.

The COD is organized as a hierarchy of -0ictionary directories and
dictionary objects, similar to the VMS directory system. This
structure allows different users to organize their portions of
the dictionary according to their needs. Figure 2 shows how an
organization might set up its directories under the topmost
directory, CDD$TOP.

CDD$TOP
I \

I \
I \

____ DIV A DIV B
I I --,

I I \
I I \

MARKETING ENGINEERING
I

EMPLOYEES
I

I
SMITH

I
I

MEDICAL_HIST

Figure 2: Example of COD Hierarchy

In this example, Div is i on A and Div is ion B do not have access to,
or even awareness of, the other's portion of the COD. The
departments within Division A. -- marketing and engineering -
have their own sections of COD space and share access to some
directories, such as "EMPLOYEES". Smith, an engineer in. Division
A, would have ac cess to those portions of the COD storing the
data descriptions he needs to do his job. The directory
hierarchy allows him to arrange those definitions in whatever way
he finds most useful. Each group using the CDD c an use access
control lists to protect directories and prevent unauthorized
users from reading, updating, or deleting stored definitions.

The CDD structure, therefore, permits flexibility on an
organizational, departmental, and individual level. In addition,
because programmers no l onger need to embed data definitions in
their programs, the CDD provides data independence and data
integrity.

You manage the CDD with the Dictionary Management Utility (DMU).
You can use DMU to backup and res t ore the CD D, to create and
delete COD objects, to create and delete dictionary directories,
and to create and delete control lists.

- 6 -

))

VAX INFORMATION ARCHITECTURE OVERVIEW

VAX-11 DBMS

VAX-11 DBMS is a CODASYL-compliant general purpose database
management system based on the March 1981 Working Document Of the
ANSI Data Definition Language Com,nittee . It pr ovides multi-user
support with data security and performance features need ed for
large-scale applications. At the same time, its ease-of-use
features make it suitable for developing small- and medium-scale
databases .

A database consists of database -storage files and the database
root file. The storage files are for storing database records.
The root files con tain data def in itions used by the Database
Control System (DBCS), the run-time controller of VAX-11 DBMS.
The major functions of the DBCS are to monitor database usage,
act as an intermediary between VAX-11 DBMS and VAX/VMS, and
manipulate database records on behalf of user programs. A
separate VMS process, the DBHS Monitor, controls access to the
database.

A major fea ture of database prograrmning is that records can be
directly linked in meaningful relationships called sets. If you
were dP,signing an in~entory application, for example, you would
want the relationship between the parts you keep on hand and the
supplier who provides those parts to be accurately represented in
the database. Because VAX-11 DBMS is a network model database
management system, you can define set relationships between any
rP.cords in the database, not just those sequentially or
hierarchically above and below the record.

The schema, storage schema, and Subschema contain the definiti on s
for records and relati onships between those records. The schema
and subschema describe the data characteristics and relationships
of the database; the storage schema defines the physical
structure. Yo u use data definition languages, or DDLs, to write
the three schemas. These are then compiled and stored in the
COD.

There are several ways to process data stored in VAX-11 DBMS
databases:

• The interactive DML (data manipulation language) utiHty, DBQ

• Callable DBQ, which allows all languages that conform to the
VAX/VMS Calling Standard to access a VAX-1 1 DBMS database

• VAX-11 DATATRIEVE

Figure 3 shows how these various components interact at run time
with the database and the COD. (DBCS is the VAX-11 DBMS Database
Control System; DBQ is Database Query.)

- 7 -

)

" C/l ,,, Cl)

<o .0
Cl).

N --.,

0 "' -· ..,. ~

-.J
w

VAX INFORMATION ARCHITECTURE OVERVIEW

APPLICATION
PROGRAM

INTERACTIVE
USER

DATATRIEVE

DBCS

MONITOR

COD

DATABASE

Figure 3: Run-time Interaction of CDD, DATATRIEVE, and DBMS

The DBO (Database Operator) utilities provide a variety of system
procedures to help operate and maintain databases . These
procedures include database alteration, verification, reporting
statistics, and backing up and restoring databases. DBJ and DBR
are separate processes that handle journaling and recovery
functions. Certain DBO operations start these processes
automatically.

VAX-11 DATATRIEVE

VAX-11 DATATRIEVE is a data management tool for inquiry, update,

- 8 -

(

VAX INFORMATION ARCHITECTURE OVERVIEW

and maintenance of information stored in databases. It has the
flexibility to meet the needs of casual users and professional
data processors. DATATRIEVE can serve as a single, high-level
interface to RMS files and VAX-11 DBMS databases. As a result,
if an application changes or a new one is added to the system,
data processors do not need to learn new skills.

Figure 4 fccuses on the DATATRIEVE section of the illustration
used in Figure 1 to highlight DATATRIEVE's role in the VAX
information architecture.

QUERY AND
REPORTING

HIGH LEVEL
DATA ACCESS

GRAPHICS

DISTRIBUTED
ACCESS

+--------------------------+

Figure 4: VAX-11 DATA'TRIEVE Components

Entire applications can be written in DATATRIEVE, or programs can
use the VAX-11 DATATRIEVE Call Inter face to access data and to
produce reports . A program accesses DATATRIEVE similarly to the
way an interactive user does. Programs pass command lines to
DATATRIEVE and receive back recor·ds, print lines, and messages .
Once the programs have retrieved records from DATATRIEVE, they
can perform complex statistical analyses, other varieties of
large-scale computations, and complicated report formatting;
they can also produce data and use it to modify and store
DATATRIEVE domains. The Call Interface, therefore , allows you to
combine the data manipulation power of DATATRIEVE with the
computational strengths of programming languages such as COBOL,
BASIC , and FORTRAN.

The VAX-11 DATATRIEVE interface to VAX-11 DBMS lets you query,
report, and manipulate data in CODASYL databases created and
managed by VAX-11 DBMS. The DATATRIEVE record selection
expression contains optional clauses that let you work with
database se: relationships. To allow database-specific
operations. several DATATRIEVE verbs are reserved for use with
VAX-11 DBMS. In addition, the DATATRIEVE Context Searcher helps
you simplify your record selection ex press ions when you work with
complex set relationships.

The DATA TR IE VE Report \lri ter helps you display data in
easy-to-read fonnats. You can display a report on your terminal,

- 9 -

.,, Cf)
o, CD

<O .c
CD.

w:--i
0 "' -:... ..,,.

-.J
./,.

)

VAX INFORMATION ARCHITECTURE OVERVIEW

print it on a hard-copy printing device, or store it in a VAX-11
RMS file for display or printing at a later time. The DATATRIEVE
Editor closely resembles the VAX-11 EDT Editor. It lets you edit
in either line or character mode and use keypad or nokeypad
commands. With the Editor, you can change the CDD definitions of
procedures, dcmains, records, and tables, and you can correct
errors that result from faulty typing, syntax, or logic in your
DATATRIEVE cotmnands and statements.

The DATATRIEVE interface to VAX-11 FMS, a forms management
utility, lets you display, modify, and store records with a video
terminal whose screen is controlled by FMS forms definition, If
a form name is used as part of a DATATRIEVE domain definition,
DATATRIEVE automatically uses the form to collect or display the
associated data.

With DATATRIEVE Graphics, you can generate several different
types of graphs using a VT125 terminal. The graphics include pie
charts, histograms, scatter plots, and time series. In these
charts and graphs, you can plot field values against other field
values, against frequency of occurrence , and against dates.

The Distributed Data Manipulation Facility (DDMF) allows you to
retrieve data from remote VAX-11 DATATRIEVE nodes through DECnet
communications software. This capability makes it possible to
use DATATRIEVE to retrieve data on remote VAX systems, whether
that data is stored in RMS files or DBMS databases •

DOCUMENTATION FOR THE VAX INFORMATION ARCHITECTURE

Documenting as diverse and complex a product set as the VAX
information architecture offers many challenges, in particular
because each component can be used alone or in combination with
other parts of the architecture, The conventional user's
guide/reference manual approach seemed too limited for products
with a wide range of capabilities that would be used by
professional data processors, progratmners, and casual users
alike.

Hence, the documentation sets described in the next three
sections not only document software features, they address the
tasks you may want to carry out with the software, In addition,
each documentation set offers comprehensive explanations of data
management concepts , complete descriptions of command syntax, and
cross-references to sources of further information.

The documentation dir ectory that follows can guide you to the
manuals that describe the VAX information architecture components
that interest you most . Each summary explains the purpose of the
manual, describes its intended audience, and lists the manual's

- 10 -

)

VAX INFORMATION ARCHITECTURE OVERVIEW

concepts and features. Order numbers are listed at the beginning
of each section; to order manuals, see the last page of this
booklet .

- 11 -

-o en 0,"'
<O .c "'. _,,.....,
0 i-.J ...,, ~

Word Processing Passages

Paul D. Clayton

Seq. 8.1.1

We are using a WS248 in conjunction with a PDP 11/70 for mass storage
of all documents. The software package we use is DX/IAS which was written by
DEC. In using the software we have encountered a number of problems that when
reported to DEC fall on deaf ears. I am using this newsletter as a means of
spreading the word and providing a forum for future passages by any interested
parties. Below is a list of the changes we have made to the DX/IAS software
here at Naval Air Development Center, Pa .• If anyone is interested in how we
did what we did, feel free to call and we will see what we can work out to pass
information back and forth.

FILES MODIFIED:
WP8DIR - 1) ADD IN CODE FOR PAGE HEADERS TO BE PRINTED ON THE TOP OF

EACH SUCCESSIVE PAGE.

WP8PIP - l) MODIFY CODE TO STORE/RETRIEVE ALL THE PRINT SETTINGS OF A
A DOCUMENT. THE REPLACEMENT CHARACTERS WERE BEING LOST
IN TRANSFERRING A DOCUMENT BACK AND FORTH.

WPBLPT - 1) ADD IN COMMENTS FOR DEFINING WHAT THE POSITIONS IN THE
DOCUMENT HEADER ARE.

2) MOVE THE POSITION OF THE 'LN' (DIAGNOSTIC LINE NUMBERS) IN
THE HEADER. THIS ELIMINATES THE CONFLICT WITH THE 'SE'
(STOP BEFORE EACH PAGE) OPTIION.
IMPACTED MODULES: WP8LPT,NEWSET,DISPLA

3) PUT IN CODE TO INITIALIZE THE PRINT DARK VARIABLE 'DA'.

FILES ADDED:
WP8CHG - 1) REWORK OF 'WDE' TO PROVIDE THE CAPABILITY TO CHANGE A DOCUMENT

NAME. UP TO 64 CHARACTERS CAN BE ENTERED. NO CHANGE TO ANY
OTHER DATA IN A DOCUMENT HEADER.
IMPACTED MODULES: WPSCHG

???TKB.CMD - ARE NEW TASK BUILD COMMAND FILES FOR ALL THE DX PROGRAMS
WHICH MAKE USE OF THE FORTRA.~ IV RESIDENT LIBRARIES. THIS
SAVES APPROX. l0KW OF CORE FOR **EACH** COPY OF A DX PROGRAM
WHEN IT EXECUTES. CORRESPONDING CHANGES HAVE BEEN MADE
TO 'DXINS.CMD' 'rO USE THESE FILES.
IMPACTED MODULES: DXINS.CMD

WPBSPE - l) This is a spelling DETECTION program that will take a WPS file
or a standard host text file and check it for unknown words. A
listing is generated with all unknown words underlined for easy
locating of errors. The dictionary we have is approx.
forty-four (44) thousand words long. There is a means to add
words to the dictionary as new ones are found and verified.
The host operating system must have RMS-llK avaible for this
program to run.

WORD PROCESSING WITH DEC COMPUTERS
ADVANCED PRACTICAL HINTS AND TECHNIQUES

Seq. 8.2.1

Lawrence H. Eisenberg
171 41 Nance Street

Encino, California 91316

ABSTRACT

This paper d"iscusses various handy hints and kinks associat
ed with the use of Word Processing Systems on the PDP-8 and
PDP-11 systems. While developed primarily with WPS-8, the
routines and hints offered generally are applicable with
WPS-11 and other commercially available systems currently
utilizing the WPS-8 format. The discussion presented below
consists of the various matters presented at the Spring 1981
Symposium ill a Panel Discussion with Vicki Ann Rose, Mana
ger, Marketing Development and Research -- Word Processing
and Scott Shulga, Manager, Market Planning and Development
-- Word Processing of Digital Equipment Corporation,
Merrimack , ~.H. and Lawrence H. Eisenberg.

•USING YOUR INDEX• APPLICATION

Will Allow You io:

• CREATE OPERATOR STATISTICS
• LOG FILE/DOCUMENT lOCATION
• GENERATE TABLE OF CONTENTS

INTRODUCTION

The following is a "super11 application for develop
ing a file (or document) lo!!ating systemt to
generate Table of Contents, _ or . record op·erator
statistics. It is based on "adding fields 11 when
first creating your documents (i.e. 1 by adding the
11 field" names to the name of your document, you
create fields which may be referenced in your
index). It has numerous uses!!! It will allow
users to build upon their index, Information such
as author <a>kac, date <d>1O/10/8O, typist <t>db,
location of document <loc>RL2:SECT1O, can be includ
ed along with the title. The C denotes Create from
the MAIN MENU.

Example: C "Using Your Index" <a>kac <d)1O/1O/8O
<t>db <loc>RL2:SECT10

[When you view the index of your documents, every
thing following the left angle bracket will not be
displayed• but may be referenced using list proces
sing. Read on ---]

Another use may be to generate Table of Contents by
typing in titles, page numbers, etc. The index then
can be used as a list document in list processing
and the form can be whatever the you require. A
field can be included to indicate that this is a
title line <tl> and used in list processing, those
not containing <tl> will not print (if you don't
define it to be printed).

The really neat thing is that the system automatic
ally assigns the fields <n>document name, <ll>docu
ment number and <>end of record. Other data needed
can be created within the document name. The limit
for titles is 68 characters. The other feature of
th:l.5 procedure is that when "1 11 for index is typed,
only the information to the first "<" is displayed.

Proce«Jlngs of the Digltal Equlpment Computer IJSfm Socl~ty

The other information is stored in document 1, the
system index. Please note that it is not necessary
for the list document to be vertical. The system
looks only to the next 11 <11 for the next field.

APPLICATION PROCEDURE

The main idea of modifying the index file generated
by Digital 's word processing system is to create a
more detailed file indexing scheme. This is accom
plished by including parameters in a list processing
format ip each. record of the dl.skette index file.

The term "list processing format" means a variable
name enclosed in brackets 11 <11 and ">" usually with a
value following the closing bracket.

e.g., <n>manual A.

These fields or parameters can be edited directly
into the system generated index file. document file
one (1), or when a new file is created on a diskette
or RLO, the parameter can be included in the file
name. For example, in creating a normal non
modified file the format would be:

C filename

But with the modifications it could look like:

C filename (field l>value 1 <field2>val ue2
<field3>value3

An example of 1 ts use would be:

C Letter to John Jones <a>kac <d)1O/1O/8O <t>db

This would translate as:

<a>
<d>
<t>

Create Letter to John Jones
author, kac
date, 10/10/80
typist, db

-a Cl) 7J C/)
ru ro w ro

(C ..0 cc .0 ro • ro •
, 00 _,_ CO
o No :....
--h. -+,.
(0 ~ ~

Modifying the file index without altering the normal
system created values does not hamper the original

Mlami Beach· May 1981

intent of the diskette index. When the file is
deleted the parameters added to the index file are
also deleted. The only requirement when passing
these parameters to the index file is that ~~pace
must follow the filename. Spacing between the other
added fields is not necessary.

Because our index is a document, fields can be added
or deleted at any time, If it is necessary to ex
ceed the 68 character limit - keep in mind that this
restraint is only during CREATING titles. once docu
ment one is called up for editing, the one line
limit no longer applies. That is, you may add as
much as you feel is necessary to the description in
document one, so long as you do not disturb the
required sequence following your descriptive matter,

On Digital 's word processing system the index is
created automatically and maintained by the system
for each diskette with one index file per diskette.
When a file name is created an associated document
number is assigned by the system and that newly
created file can be accessed by either the file name
or document number. Upon inspection of this system
index file the information was stored in a list
processing format of:

<n> TITLE OF EACH DOCUMENT <U>2<>

Recognizing the fact that the '<n>' is the name of
the document and the '<ii>' is the associated
document position on each diskette.

An overview of list processing is a method of
processing variable names and the data associated
with each name against a standard form letter and
producing a separate letter for each grouping of
variable names . A common application of list
processing is where a form ietter is created fOr
each address of a mailing list. Sorting and
selection criteria may be performed on the list
processing file. In the example of the mailing list
the addresses could be sorted on zip code and then
only one state could be selected to produce the form
letter.

By modifing the system created index. which by DEC
design is always document number one. more variable
names and values may be added without affecting the
indexing concept of the word processor. Thus, the
following variable names (or parameters) and values
could be entered for each document in the index
file.

Parameters

<flpy)

<s>

<SS>

Diskette Number
Manual Number
Section number of the

manual
Sub-section number

Now, a file exists that contains the desired
information and can be copied, combined with other
indexes to produce a master index and printed using
list processing.

To illustrate how these parameters are entered for a
new file for Manual 1, Section 3, Sub-section 5 on
diskette number 12 the command would be:

C NEW FILENAME <flpy>12l<s>3<SS>5

This command with a space after the file name
establishes the parameters in the diskette index for
each file created by this procedure . Several func
tions now may be performed on this modified index
file. Producing sorted indexes according to the
desi r ed formats and printing selected file informa
tion is the biggest advantage. For example, an
alphabetical list of file names for one diskette of
a documentation manual may be produced indicating
the diskette· number; manual number, section and
sub-section; and document position on the diskette ..

All of the above procedures have been designed in
order to ease the task of indexing, editing. print
ing, cross-referencing, and filing of word proces
sing documentation.

Using your index in th i s manner allows the user to:

** Record Operator Statistics (author, date,
typist I etc.)

C Mechanical Procedures Manual <a>kac
<d> 10/ 10/80<t>db

** Record File Locations (diskette II. RL#,
etc .)

C Mechanical Procedures Manual <d>12A or
<rl>2<sec>10

u Generate Table of Contents (code in titles,
page numbers, etc.)

C MPH <tl>Mechanical Procedures Manual
<pg)12 <chart>III.

** Break down documents for ease of editing by
section, page, etc .

C MPM/1 (pg)lO <div)4

** Keep track of correspondence by topic,
case, KEYWORDS.

C J.Jones <c>/112568-80 <re>litigation
<k>drunken driving

** Use the word processor for a database in
KEY areas by coding in keywords and then
sorting on those needed .

** If a document change~ - <r>revised dates.
can be added.

H If it is a master <m> document - it can be
denoted.

** Using Document 1 - Allows for index
flexibility because it can be edited.
Information can be added deleted or
changed.

Adding <fields> + values to document one (1) can
give the user a lot of flexibility in ~ 2£
Contents generation, archival information. allow to
sort on (kw>key words, <re>topics, (gc>general
correspondence, add <r>revised dates, sort on date
for deletion or archiving, and in conjunction with
list processing and the wild card <*> feature. opens

a lot 9f areas. TRY IT!! ! ! . All that is needed are
a few fields that they requl.re and can be adapted to
their needs. It is NOT necessary to have the fields
identical in the index, the system will bypass those
tt does not need and use only the ones specified.
If you are looking for the same information, it must
be coded in that matter. If <re> is used for
regarding. it must always be <re> and not <RE) or
<R>.

All the the normal list processing rules are in

~

!!!!!!!!! IDEAS!!!!!!!!!!

Have you ever been asked if you could track any of
the following? Using this procedure, NOW YOU CAN.

<t>typist
<a>author
<d)date
<div>division
<di>date i n
<I>letter
<w>what
<c>case title
<at>attorney
<r>revised date
<kw>keywords
<dist .. >district

<tl>ti tle line
<flpy>floppy number
<sec>section number
(dod)due out date
<p>page number
<ta>turn-around time
<m>memo
<re>regarding: topic
<cfl>case number
<rep>response to
<info>sent information
<srep>sales rep

Use a little imagination and you have indexing by
page, section I table of content~ generation,
tracking of correspondence. turn-around times,
revised dates, logon information, storing of
keywords, a list of who to send literature to,
product announcements, etc~

PLEASE NOTE: If this procedure is going to be used•
especially by new operators, do a 11 GO GET DOCUMENT''
and make a back-up of the index document (#1) to
protect file information. Remember that document 1
is the ~ystem generated document and cannot be
deleted or the Index will be lost. To recreate a
lost Index I however, you may edit each document by
document number and pick up the document name. You
then may recreate the Index, using the field identi
fiers normally created in the Index.

LIST PROCESSING HINTS

FIELD IDENTIFIERS AND DATA PROCESSING

The "lists" which are developed in list processing
often are useful for data processing activities as
well as many of the Word Processing and List Proces
sing purposes. For PDP-11 users. many of the data
files developed under Word Processing may be addres
sed dir'ectl.y by data processing~ However, for PDP-8
users the WPS-8 files (which are saved in a format
similar to COS-310) cannot be addressed dir ectly by
COS-310 or 0S/8. While the WS-200 series originally
was disigned to provide for direct communication
between Word Processing and COS-310, this feature no
longer is supported and the WS-200, as with all
other WPS-8 systems, requires conversion to utilize
the files. (Conversion utilities for WPS-8 to both
COS-310 and OS/8 are available thr0ugh the DECUS
LIBRARL These utilities transfer list processing
type files between the various systems. The conver
sion procedures are not discussed in this paper.)

It is most helpful, therefore, to maintain the
LIST FIELD IDENTIFIERS as upper case characters.
While the DEC WPS manuals show the field identifiers
(e.g. - <ficld1>) as lower case fields (indeed, the
entire article, above, uses lower case), such was
not meant to be a required form for identifying the
fields. The use of lower case by DEC was a throw
back to computer manuals which used lower case to
indicate operator decisions, as opposed to upper
case which indicated mandatory acts.

Since each of the WPS-8 systems utilizes special
characters to indicate lower (and upper) case
shifts, any conversion program is going to require
considerable additional (and wasted) time in order
to perform the conversion, as each of the special
characters will have to be stripped from the field
before the data can be used by the data processing
system.

If there is even the remotest possibility that your
list files will be used in data processing, it is
important to avoid the use of hard [the RETURN key]
returns except at the end of a field identifier. In
other words use one identifier for every line of
text:. For example:

DO NOT USE

<NAME>John Doe
<ADDRES>123 Any Street
Our Town, U.S.A.

00123

DO USE

<NAME)John Doe
<ADDS 1>123 Any Street
<ADDS2>0ur Town, U.S.A.
<ADDS3>
<ADDS4>
<ZIP>00123

In many conversion programs , and nearly all data
processing programs, the carrier returns within a
field may be read as a terminator, and the informa
tion following the return ma.y be lost during the
conversion or use by the program.

While the use of several fields may appear somewhat
cumbersome at first, the benefits soon become very
apparent. Also, the more available fields. the
easier it is to edit and to SORT!

SELECTION SPECIFICATION - TO SELECT ONLY IF SOME
CHARACTER EXISTS

The DEC manuals fail to disclose the selection
specification which can be used to select a record
only if a field has information . The wild card
specifications presented by DEC are <?> and <*>.
The <?> is used to replace a letter (i.e .• it must
be preceded or followed by some cha racter other than
a <?>). The (ff) is used to define a field as
contain i ng ANY OR NO characters .

From time to time it is necessary to select a record
ONLY IF A GIVEN FIELD HAS SOME INFORMATION. E.g.:

(1) if<field5> =<?><*>
then process record

.,, en
'"ct>

<O .D
ct>.

N ,0
0, -:
(.D

ex,
c:..,

(2) not if<field5> =
then process l"ecord

Of the examples given, each should result in the
record being processed only if the information is
present. Example 1 is believed to be more reliable.

DELETING UNUSED LINES FROM FINAL OUTPUT WHERE THERE
IS NO DATA

This is a repeat of an article dealing with this
same subject in the last Symposium Papers. It does
include some updated information which may prove
helpful to you.

DEFINING THE PROBLEM: EMPTY FIELDS ON LINES WHICH
SHOULD NOT BE PRINTED. The problem which often is
encountered is how to eliminate blank lines which
are printed when there is a field which is empty,
but which has been defined in the form. We will use
an address block as an example.

<NAME>
<TITLE>
<COMPANY>
<APT/SUITE#>
<ADDR 1 >
<ADDR2>
<ADDR3>
<CI/ST/ZP>
<DROP>

In the example presented it is obvious that several
of the fields might not be present in the final
printout. The individual may have no title; s/he
may not be associated with a company; there may be
no apartment or suite number; there may only be a
Single· .address , 1:i'ne. HoWev.er,.,•if the FORM· is
created in the ,manner indicated, which, in the
example (and only by way of illustration) would be
the same as the LIST, the final output would be
printed with blank lines for each line on which
there is missing data.

There is a solution . It takes a little planning,
but once understood, it is simple to apply to every
situation. (Just keep in mind, however, that this
solution will cause each missing field to disappear
and to bring the following line up one line feed!
Yau must remember to allow for this, if the missing
lines could affect other line-count features of your
form.)

The first step is in the creation of a FORM. To
accomplish the desired result for any set of circum
stances it is necessary to create two FORMS. [NOTE:
If you are positive that there are no spaces follow
ing any blank field • then the FIRST FORM is not re
quired, i.e .• you may proceeddirectly from your
list as with the second form described below. J The
first FORM should include only the variable informa
tion, and will. itself, become the LIST which then
will be used to create the actual FORM or PRINTOUT .
THERE CAN BE NO SPACES OR TABS ON ANY LINE WHICH MAY
•DISAPPEAR•, EITHER IN THE ORIGINAL LIST OR ON THE
FORM. (Adjust the Left Ruler in lieu of a single
tab, if indentation is desired.)

The FIRST FORM is created to determine which, if
any, fields are not present and automatically to
create a 11 wrap 11 , as opposed to a HARD RETURN, for
each such field. It also is used to create the

second LIST. To accomplish this. it is necessary to
c r eate "soft" returns on each line ~ which may not
have information upon a field. This is done by
using dummy rulers after each line which reasonably
is expected to "wra~ Using the LIST above. and
assuming that EVERY LINE may possibly have a missing
field, we could create a form as follows [NOTE THE
RULERS!]:

1.--------------------------R-
• 1 2 • 3 • 4 • 5
••.• . o•.... o' •..••.••• 0 ••••••• • • 0 ••••••••• 0 ••
L------------------- R
«NAME><NAME>
LT------------------R-
«TITLE><TITLE>

«COMPANY><COMPANY>
LT R-
<<APT/SUITEU><APT/SUITEU>

R-
<<ADDR 1><ADOR1 >
LT R-
«ADDR2><ADDR2>

R-
«ADDR3><ADDR3>
LT R-
<<CI/ST/ZP><CI/ST/ZP>

R-
«DROP><DROP>

LT R-
«>

Note that each of the rulers is identical. except
for the dummy tab which follows every alterriate
ruler. The only purpose for the tab is to create a
new ruler which can be imbedded. (If the rulers
were ident{cal, they Would- all disappear , and the
method described could not be used.) Also note that
the last line. DROP, has been indented by changing
the left margin. The "indent" feature may be used
on any line and is used to avoid the insertion of
tabs or spaces which necessarily will defeat this
utility. Also note the 11 «> 11 identifter to create
the new list! (Down arr~indicate hard returns
which may be observed with GOLD VIEW.)

Using the blue EDIT keys , proceed to the beginning
of each line AFTER A LINE WHICH MIGHT RESULT IN AN
EMPTY FIELD. Use the Blue LINE key to travel from
line to line. With the cursor on the left margin,
strike the RUB CHAR OUT key ONCE. (This will delete
the hard return and, upon a GOLD VIEW , will disclose
a funny looking circle at the end of the sentence,
instead of a down arrow.) Repeat for each line
which might reasonably be expected to have an empty
field. [If it becomes necessary to edit the l ast
letter. back the cursor to the end of the line -
this will place it under the last letter -- and
insert the new characters. The last letter will
continue to travel and, if undesired, must be
deleted .] Run the List Processing feature, creating
a document. The- document created by this feature
will, itself, become the LIST for the second part of
the program.

Upon completion, you will have created a form which ,
when operated with the List Processing Feature, will
result in a new LIST which will have "wraps" in each
empty field, between a ruler . YOU MUST BE CAREFUL
TO AVOID TABS OR SPACES IN EMPTY FIELDS AND IN THE
FORMS or this utility will not work properly.

(

Tne SECOND STEP is to create a:wther FORM, which is
identical to the first, except- for the special field
indentifiers. REMEMBER - if' :rour original list is
free of imbedded spaces f o llowing empty fields, this
ste p ma y be your first step.

Fr om the following illustration, note that that
extra field identifiers have been removed. This
will be the final list and will eliminate the spaces
between lines which otherwise would have been
created as a result of unwanted fields.

If you should find spaces between lines, the problem
most likely will be that tabs or spaces were imbed
ded in either the FORMS or the original LISTS.
Check them carefully.

The following form is such an illustration:

1 2 • 3 • ~ • 5
• ••.• 0 ••••••••• 0 ••••••••• o .•••.. ••• 0 ••••••••• 0 • •
L-------------------u

<NAME>
LT R-
<TITLE>
L R-
COMPANY>
LT R-
<APT/SUITED>
L---- R-
<ADDR 1>
LT R-
<ADDR2>
L R-
<ADDR3>
LT R-
<CI/ST/ZP>
-------L R-

<DROP>
LT R-

As with the first FORM, line feed to the begin
ning of each line AFTER the field which may not
be present; and enter a RUB CHAR OUT to delete
the hard return . (If you merely copied the
document, be careful, as you may delete a
character from the preceding line . To edit this
problem, BACK UP to the preceding line (you will
be on the last character). Ee-type the last
character (the one which is above the cursor)
and any character which was deleted. Finish with
a hard return. Delete the remaining character
above the cursor, which should remove the hard
return, also. (Check with GOLD VIEW.)

Now. USING THE NEW LIST CREATED BY THE LAST FORM
AS YOUR LIST DOCUMENT, run the list processing
again. This time. the new docU111ent (which also
can be a direct PRINT) will cause all of the
empty fields t o "foldn upon the111selves, so that
all of the rulers with 11 soft" returns will col
lapse and final output wi ll be liithout lines be
tween infonnation. While all rulers will appear
on the screen, there will be no ret urns within
themi the printer will skip to the next line of
text without printing the "empty" lines.

If it appears that the re is a space between
rulers on which there was no data, check to see
if there had been a space or tab on either of

the FORMS or LISTS used for the procedure,
Check your original LIST with GOLD VIEW. Each
empty field's right arrow should be followed by
an immediate down arrow (without a space).

Remember, you only have to create the two forms
ONCE. They can be used for every processing
run. (Actually , you need create the form only
once, and then add the extra field identifiers
to one ol the forms. If you should get a line
wrap, because of the extra space required by the
new field identifiers, don I t worry. The program
automatically will adjust.)

PROGRAMMING NOTE: Although you can use the same
selection specification for both forms, you also
can use the simple specification of "process
record" for the second run, as you already have
specified the records to be used.

COMFORT NOTE: Although this may appear somewhat
clumsy, it actually is rather easy and once you
get the hang of it, you will find the procedure
very useful!

USING LIST PROCESSING TO CREATE AN INDEX OR
TABLE OF CONTENTS

NOTE: The following discussion provides a
method for creating an Index or Table of Con-
tents within a document. It is not the same as.
nor an alternative to, the preceding discussion
which uses the system index for a similar
result.

Pr~sent,ly there is _little .ease. w_ith which .to
create an· i ndex· or a table of Contents with the
existing WPS-8 or WPS-11 systems. While 11-based
systems automatically can create an index and
Table of Contents, and other dedicated word pro
cessing systems do the same, some ingenuity is
required to acomplish this with DEC's systems
(although we are assured that this, too, will
change some day!) .

For the time bei.ng, a fairly long document can
become a LIST document using the following pro
cedure.

First, copy the document over to another loca
tion (or on another diskette), as you are going
to alter it (i.e., destroy it) considerably.

Second, decide on some easy shorthand for the
categories you are going to use with your index
or table of contents. For example, you might
wish to use <H> for headers; <N> for names, etc.
Choose a c haracter to be used as a dummy field
identifier . e.g. <X> .

Enter a terrninator and the dummy field identi
fier in the PASTE buffer, as you will be usirig
it quite a bit d uring this exercise. (To enter
it in the paste buffer , type it and then cut
it.)

o.g.: <><X>

Start the document with the dummy field (e.g • •
<X>) and proceed to the first data which is to " Cf) "'co u::, .Q

Cl>.

W 00

8- t:
(0

be used in the Table of Contents or Index.
Let's suppo3e the first data is a header, which
will use the <H> identifier. Enter a terminator
<> and field identifier <H> immediately preced
ing the header and then enter the PASTE immedi
ately after the header. Thus, the document
would appear something like this:

:----- t o p o r p a g e -----
l<X>

(miscellaneous data)

<><H>TITLE OF DOCUMENT<><X>

: <><H>Fir3t Subheading<><X>

(miscellaneous data)
<><X><N>(desired name)<><X>

(miscellaneous data)

l <> [entered ps last character in document]
1------- b o t t o m o f p a g e -----

In the same manner, identify the different titles
throughout the document, such as names, subtitles,
books, etc., until you have identified each item
which will be used in your index or Table of
Contents.

CAUTION: As you proceed through the document, enter
the PASTE in a random manner (i.e., insert the durrmy
field identi.fier <><X>) about every 2/3 screen, or
more often. This is necessary as no field may
contain more than 1500 characters, and to avoid an
err:or_ message you will have to insert the dUll1!lY
fi E! ld ·every SO oftei.. It aoesn·t niatter ·how often
you use the dummy field, as it never will be
referenced during list processing.

At the very end of the document, be sure to enter a
terminator <> or an error message will occur (it
won't affect your program, but no error is more
comforting than some buzz error which might leave
some doubt}.

After proceeding through the entire document, you
can create a very simple FORM and SELECTION SPECIFI
CATION. The FORM may consist of a single entry
(e.g., <H>). The .selection specification may be
"proce.ss record 11 • Operating the List Processing,
then. will transfer each datum identified with the
<H>, and will skip all of the rest. (If you have to
format the output, it will be much easier to do so
after running the list processing.)

Also, if you. have the type of document which might
require some form of sorting, such as alphabetical
listings, you can perform some minimal alphabetical
sorting by use of the wild cards in your selection
specification. (This will require several runs
through the list processingj e.g.: if <N>;A• then
process r ecord, Will pick up every name starting
with an upper case A, etc.) If there are only a few
records, then use of the cut and paste feature will
probably result in an easier, as well as faster,
alphabetical processing.

Another feature, Which will result in much faster
operation if .several field identi fiers are being
used, is to utilize the double LIST feature (i.e.,

)

create a new LIST with a single pass). To create a
new LIST, set up your FORM (for the above example)
as follows:

«H><H>
«N><N>
«>

Processing the entire document will fill a new
document with each field, in a random manner. and
you then can run a second pazs which will be more
selective as to the order in which you want the
items to appear. All of the dummy <X> field data
will be omitted from the new LIST.

COMBINING TABULATED & CENTERED TEXT

Flush left, tabulated, or flush right text can print
on the same line with text which haa been centered
(using GOLD CENTER), as . follows:

Using an "f" ruler, type two lines; one line is used
for the centered text and the other line is used for
the tabulated or flush date. Either line may be en
tered first, provded that the SECOND line is input
as a .super.scripted line a For example:

F----·-------------------R
TITLE [GOLD CJ

FLUSH RIGHT DATA
qqqqq qqqqq qqqq

1.------------------R-
Return to your normal ruler.

Upon printing, the half spaced ruler, combined with
the superscripting (half space raise} will print
evetything· on _the ~am!? line _._. e.g. -!

FLUSH LEFT DATA TITLE FLUSH RIGHT DATA

MAINTAINING REQUIRED SPACES ON PRINTED OUTPUT

Often it is necessary to maintain required spaces
between words, especially with dates and names. One
way to accomplish this is available if you do not
use BOLDING in your document. Since the printer
Will allow BOLD to indicate a two wheel print com
mand, you can insert any character where your space
otherwi3e would appear, being certain to bold that
character. (E . g . , press the select key, enter the
character, pre5s the white bold key.)

When printing your document, indicate 'IV (two wheel)
printing. The bolded character will not print. but
the space will be fixed. Oh, yes. Don 1 t forget to
stop the printer after you have printed your docu
ment. It will be waiting for the second pass.

APPLICATION NOTE: This same procedure may be used
to print out a Table of Contents, Index I or other
special purpose excerpts. You can't edit it, as
such, but you can view it.

LINE NUMBERING USING WORD PROCESSING

Presently there is no easy way to number the lines
on a document under WPS-8. Perhaps some day the
p,owers to be will provide us with this feature, but
for the time being it 1s necessary to use some
planning in order to accomplish line numbering.

A.t the moment, one way to number lines, whether

)

starting with 1 and proceeding to nnnn, or repeating
the sar.ie number of line.s per page, i.s to do it by
brute force a

Create your document in the normal manner, but allow
sufficient extra space on the left margin ruler for
the numbers to be used plus at least two spaces.
Thus, if you ordinarily would use the left margin
for your left _ruler and expect to use three digits
for the numbers, set your left ruler, initially,
five spaces to the right. (NOTE: There will be a
slight variance in this procedure for inside
paragraphs. Thi.s is discussed below.)

Upon completion of the document, AND AFTER FINAL
EDITING, the line numbers can be added by re-setting
the left margin on the ruler to its normal location
AND INSERTING A TAB AT THE FORMER LEFT HARGIH
LOCATION. While this would ordinarily cause the
text to "re-wrap", it will make no difference.
Proceed to the beginning of each line, using the
BLUE LIN£ editor keya

Enter the line number and then TAB. Repeat this for
each line to be numbered. Since the text already
has been edited, the new- line numbers will not
affect your prior formatting, as you are using all
of the extra space with the line numbers and tabs.

The use of the line numbers and tabs will not affect
right justification, as each line number will follow
a soft return. HOWEVER, SUBSEQUENT EDITING WILL BE
VERY DIFFICULT. Therefore, try to avoid numbering
the lines until the document is ready for final
output.

INSIDE PARAGRAPHS

·To us·e the line numbering feature on inside pa·ra
graphs, where the numbering ts to remain on the left
margin, use a W (wrap) in the ruler instead of the L
for Left-· Margin. The first line of each inside
paragraph will have to be double tabbed, but you·
will find it fairly easy to master after a few
attempts. When you are ready to 1n.sert the line
numbers, it will be nece::ssary to remove the W f"rom.
the ruler. and to replace it with a T (tab). When
tabbing over from the number insertions. the text
will remain formatted in the same location as with
the W, and, as before, right justification will
rematn undisturbed.

If further editing may be expected• it may be easier
to retain a copy of the document before line number
inputting, especially where the editing may be
extensive. The procedure indicated is not intended
as a solution, but, rather. as a procedure which MY
make life somewhat easier for you.

INSERTION OF PORTIOHS OF LONG DOCUMENTS, TOO LONG
FOR •CUT AND PASTE•, AIID/OR \/HERE ALI. IHBEDDED
MATERIAL IS DESIRED, AND/OR WHERE A •GO GET• ROUTINE
IS NOT AVAILABLE BECAUSE THERE IS INSUFFICIENT ROOH
REMAINING ON THE DISKETIE

It is not at all unusual to have the need to use a
portion of a long document in a document presently
being created.. Quite often, also, the size of the
required material exceeds the buffer space allowed
with the "cut and paste" method (which often deletes
a lot of the material you wanted); the remaining

))

space on ti".e diskette is insufficient to allow you
to GO GET the old document. and then cut out the
unwanted portions (even if all you want is in the
first few pages) or you want to retain imbedded
materials. such as rulers an d page markers, and t he
cut and paste method won't r etain them. Do not lose
hope, there is a fairly simple remedy.

SOLUTION: Edit the old document to the portion 3

desired. Enter a "boil erplate library" type of
indicator at the beginning of the text to be copied,
and a <> terminator. E.g.:

<<COPYl>>text material (may be as l o ng as
needed) <>

Use the same procedure for each section to be
copied, bu t identify each portion with different
names, e.g.: «COPY1>), «COPY2». etc . (These
identifiers can be removed , later. quite easily by
u:s i ng the blue <> key to advance through the
document arxl rubbing out the identifiers.)

Note the drive and document number of the old
document. Return to your new document and. with the
Gold Henu (i.e., the editor menu) featu re . change
the boilerplate library to the drive and document
number containing the old document.

Proceed to the portion of the new document which ts
to receive the old document's information. enter
GOLD LIBRARY and the name (e.g., COPY1. COPY2,
etc .). The information will be transferred, incl ud
ing all imbedded materials, such as rulers.

After using this method, be certain to reset the
boilerplate library. in the editor menu. for i ts
usual docUfflent _location ..

ABBREVIATION AND BOILERPLATE LIBRARIES

There is no end to which the system libraries may be
utilized br the Word Processing operator. These
features no,t only are among the most important
individual assets of the entire system, they have
the added benefit of providing some fun and relief
from what otherwise might be a boring day.

Naturally, the needs of each user will be different.
We believe that the following hints will be of
interest to most Users a

UPPER VS. IDWER CASE FOR FIELD IDENTIFIERS.

Again, as With List Processing, there is no require
ment that you use lower case field identifiers for
the libraries. In fact., upper case identifiers
generally are much preferable, as reference to the
library document may be made in upper or lower case
and still retrieve the document. whereas if the
library fhld identifier is in lower- case, only a
lower case identifier will retrieve it. This
especially can be annoying if you are seeking an
abbreviation library document (which does not echo
the input on the screen) and you happen to have the
caps lock activated.

LOCATION OF LIBRARIES

The Word Processing manuals and the s elf-paced
teaching manuals for WPS~ identify SYSTEM 2 and
SYSTEM 3 as the location for the abbreviation and

)

"t) (/)

"' (D
<C ..0 "' .
... 00
o i-J -· <0-

'I"
01

boilerplate libraries. Indeed, all the :K>ftware for
Word Processing comes with SYSTEM 2 and SYSTEM 3
initiated as the respective libraries.

There i s no magic in the assignment of location.:, for
the libraries and your own particular needs· should
dictate where these libraries are located. and even
whether you might wish to change libraries 1 during
different operations (a very helpful and powerful
feature).

In a client or job oriented operation. where each
client or job is assigned an individual data disk
ette (or RL01 allocation) it might be most helpful
to always have the boilerplate library as the first
document to be created on that data diskette (which
always will be document 12, as #1 is reserved for
the diskette' s index). If this is done, data which
is repetitious for each client or job easily snay be
recalled by using the same abbreviations or identi
fiers for each diskette. For example, in our own
operations we would identify the name and sddress
block of our client with a field identifier of
<<CLIENT». Since this information resides only on
the diskette in use, every time the library identi
fier of CLIENT is used, the name and address of that
particular client is displayed in the document.

In this manner, the SYSTEM diskette's space is re
served for other needs, and many other libraries.

ALTERNATING LIBRARIES

There is no particular requil"'ement that the library
document always be in the same location. On the
other hand. it often is helpful to be able to have
several docum_ents available on e given .d.iskette
'which ¢an ' be· ·utilize·d . as a ifbf'ary .. docUment for a
particular purpase. This especially is helpful in
creating new documents where there is going to be
repetitious use of some phrases. A new abbreviation
library can be created, for these phrases only, and
the phrases called with short entrie.s (and no de
lays) . When completed, the library contents can be
deleted (or retained, if desired) and the library
document changed to the standard document.

The use of such a "temporary" library especially is
appreciated when orie no longer has to search through
the current document fot' specific phrases to be "cut
and pasted" at a specific location.

If a library document becomes too lengthy, then it
takes a considerable period of time: for the computer
to find the phrases you need. To avoid this pro
blem, you often can break your library documents
into categories. and, knowing the category desired.
assign that document as the library (abbreviation or
boiler plate) document for the current assignment.

USE OF THE HELP COMMAND FOR LIBRARY CONTENTS

As use of library documents increases it becomes
increasingly difficult to remember field identifier
assignments, and hard copy reminders become anti
quated, misplaced, or unhandy. There is. however,
an on-line solution, and that is a HELP COMMAND.

When cr eating a library document, the first field
identifier should be <<HE» for the abbreviation
library and «HELP» for the boilerplate library.
(Entering "help" will call the field in both case:s,

although the extra letters ("lp") will appear on the
screen after an abbreviation library call.)

Prepare a Table of Contents which identifies each
field identifier and ita meaning, which can be
called by the HELP command. As each new abbrevia
tion is added to the library. the HELP section also
is updated with the new COD'IJ'lland information. E.g.:

«HELP»CLIENT, OPPONENT, CAPTION, ENVELOPES«

To aeek and examine the HELP information. which only
can be accompliahed while editing a document, the
operator . aimply (1) enters the SELect key; (2)
enters GOLD ABBREVIATION or GOLD LIBRARY and the
word HELP (although only HE is required for an
abbreviation); and the HELP information is diaplayed
upon the screen. [Reference to "sub-help" libraries
snay be followed with another GOLD LIBRARY coDJDand.]
After examining the displayed information, the
operator (3) strikes the CUT key and all the
displayed information 1s removed from the screen to
the position where the SELect was inserted and the
library may be accessed for the desired field.

By no means is the information provided here ex
hausti-ve of the potential for the HELP library. One
may use HELP as a key to provide the operator with
special instructions with respect to procedures to
be followed with specific routines or documents. In
fact, one can have a separate libra_ry entitled HELP.
(To access the library. the library document is
changed to [diskette/area] .HELP, from the Editor
Menu, which automatically will change t'he library
document.)

SETTING UP THE LIBRARY DOCUMENTS TO DELETE TIIE HARD
RETURN

There are two methods available to avoid hard
returns following a Library Document call. (I.e.,
where special formatting is required the formatting
must follow the library field identifier in order to
be imbedded.)

The first method, of course, 13 to have the library
information begin immediately after the field
identifier (<<field»Data xxx).

The second utilizes the soft return described in
preceding sections. The following is an example:

«DOCUMENT»
LT------------·-----R--

TITLE

(data)
«

Without modification, if DOCUMENT is referenced by
the library an extra return will result, as creation
of the document necessarily required a hard return
after the field identifier.

However, with the insertion of a new ruler (a dummy
ruler is indicated, but it should represent &

required format) the hard return can be changed to a
soft return (by moving to the beginning of the line
immediately after the field identifier and striking
the RUB CHAR OUT key) and, when referenced~ the soft.
return will be ignored. The imbedded ruler also will

appear. The same result can !}e attained by usi ng a
PRINT CONTROL (but be sure to include both the START
and t he END PRINT CONTROLS)w Go to the beginning of
the line on which the BEGIN PRINT CONTROL appears
and enter your RUB CHAR OUT key. The hard return
will dissolve into a soft return.

USE OF LIBRARY DOCUMENTS FOR EURA RULER STORAGE

Quite often the ten ruler storage availability of
the Word Processing System is inadequate, ei.ther
because more rulers are required or because it is
difficult to remember which i s which. There 1s an
alternative.

Using the same technique for removing the hard
return described in the foregoi ng sections, rulers
can be saved in a library and can be called by
document type. This especially can be helpful for
unusual documents, but also is helpful for general
documents. The following are examples of two
rulers. Expan~ion of the concept is quite unlimited
and. obviously. up to the individual user.
«LETTER>>
L--P--T--------o• ---J----
«

«SCHEDULE»
L--T---T---< ·----,-----.------.-->R
«

Naturally. a schedule of all of the ruler.s can be
part of the HELP library.

. SPREADING A TITLE OR HEADING

One additional note. The so~ return also can be
used to soread .a word. _or. aeries of . words. accrosE
an entire page. Provided that the fl:IGHt MARGIN ii,
set With a J (Justification). everything on the soft
return line will be spread aeross the page if the
next line commences with any type of an imbedded
conmand (e.g., ruler, print control, page marker,
etc.). Example:

L--P---T---T------..,--J-------
(Miscellaneous text to the next line)

L--T----T--T-------n J-------
By cl"'eating a soft return (i.e.• using the RUB CHAR
OUT at the beiinning of the first line after "TITLE"
in the above example• the iford nnTLE" will be
spread accross the page as fnllows:

T I T L E

In order to create the "'soft11 return, it only was
nece-.ssary to modify some portion of the ruler, imbed
it and then delete the hard return with the RUB CHAR
OUT from the beginning of the line.

SOME ADVAKCED FEATURES FOR INDEXES (INDEX!?)

In a preceding section of" this paper. we have
discussed the manner in which an index or a Table of
Contents can be -created, using the List Processing
features of the Word Processing Systems. Here we
will discuss, briefly. two enhanced features -
including page numbers and sorting.

To include page numbers it is , of course , necessary
to have a "finished" copy of the document, as you
will have to insert the page numbers after each word
to be referenced.

Using a "finished" copy, we mark each word which is
to become part of the index. Using the techniques
described above, we enter the field identifier
before the word, or phrase, and follow it with a
space and the page number. Then. the terminating
left/right arrow and dunrny field identifier follow
the number. For example. we are indexing on the
phrase 11 List Processing11 :

[Text ••• <><I>List Processing 22<><X> • ••]

In a long document, we do not attempt t.o identify
each page where the word or phrase appears, but
merely repeat the process .

Depending upon how involved the index may be. we
will either run the Lis t Processor on the <I> field
and pick up every instance using a "sub list" which
will be SORTed, or we will use a conditional run,
based upon the first l etter of the field creating a
semi alphabetical listing.

[The "sub-list" is quite simple. It is identified
as «I><I>.J

If we create a long index. we then SORT the II sub
list" index using the SORT package which is avail
able through your DEC WPS representative.

What's this? You say your rep doesn't know what you
are talking about? If you have any difficulty. send
this author two blank diskettes, a returnable mailer
AND _RETURN POSTAGE. and w~ . w~ll send- you-_- a .. copy -of
the SORT package and its instructions. Two dlsk·
ettes are required as the SORT is in DIBOL and
operates on COS-310, whereas the instructions are on
a WPS diskette. One caveat: you must be licensed
for DIBOL (although moBt word processing users are).

Upon completion of the SORT, it is a fairly simple
!Oatter to "cut" the repetitions and allow their page
numbers . to now onto the fin,t use of the term.
(Using a RIGHT ARROW ">" as the right margin -
before the R or J - will allow these numbers to
flow backwards so you can have several numbers, with
commas , on the same line.)

PERMANENT CUTTING OF LONG SECTIONS OF A DOCUMENT

As you may realize. it is not possible to "cut" more
than about 2-1/2 pages of' a document at one time.
If you want to delete several pages• and do not have
to save them for any other purpcse, then this can be
accomplished with a single operation without concern
over the actual length of t.he material being
deleted.

The procedure requires that you proceed to the
starting point of the "cut" (which can be the end or
the beginning of the "cut") and press the white SEL
key. Then, illlllediately press the red CUT key. This
will remove all da~a from the paste buffer.

Press the white SEL key again and proceed to the
point where you wish to end the cut. Press the GOLD
REPLC keys (GOLD and •). Thb will replace all of

-ocn ., .,,
<C .Q
<1)'

"'"' 0 ., -· (0 ~

CX>
6,

the data betwe e n the SELect position and your
current place with a single null. The cut data is
not replaceable so do not use this as a "cut and
pa:s t c" r outine. (For long 11 CUT ANO PASTE" routines ,
refer t o the sectiOn above which discU!ises chang ing
your document to a library doc ument.]

TRANSPORTING RULER AND PRINT SETTINGS TO NEW SYSTEMS

Often it becomes necessary to transpor t your ruler
and print :,ettings from one system diskette to
another. There i s a fairly ea sy way to accomplish
this.

For the ruler settings. you merely create a single
doc ument using your old sys t e m diskette and then
begin t o enter ruler settings separated by some
meaning ful code so you can identify the settings
when used on the ne w system. E.g.:

0
L--P---T---->----- -R
1
D--P--T----T-- -R

etc.

Placing this document diskette under contro l of the
new system d iskette (and the document may. of
course. reside on the new system diskette) you
me r e ly advance below each ruler, enter GOLD RULER
and then SHIFT [number] to preserve t he ruler.
Continue with each ruler until all 10 have been
trans ferred over (or as many as are needed).

NOTE: The same procedure can be used in your
LIBRARY to save more than t en rulers, or t o call
rulers ··by · (focument namt . Just enter the RULER NAME
between the arrows (e.g. <<LETTER») and follow t he
id entifier with a return. Place the de5ired ruler
under the identifie r. then enter a singl e RUB CHAR
OUT t o remove the hard return and enter your end of
field marker (<<). Now, when you call the RULER
from the LIBRARY, it will a ppear where you want it
without extra returns.

For PRINTING COMMAtms, create up to ten separate
documents and merely file them away. Go i nto the
PRINT MENU for each document (either as you create
them and afterward) and call up your PRINT COMMANDS
from your old SYSTEM diskette. Save the commands on
the document by using the GOLD MENU. Placing the
d iskette with your "new" SYSTEM diskette, you merely
begin to print each of the documents. Wh en in the
PRINT MENU enter SS nn to save your PRINT COMMANDS
as r eflected on the particular document.

The procedure al so is available for spec ial printing
requirements o n documents where there are insuffi
cient printer commands (i.e. - 10) available . Just
identify a document with the name of the particular
type of printer commands you want to save, and you
always can assign that to any of the numbers you
wish fo r special purposes. (We find that r eserving
control number 9 for this pur pose works out just
fine .)

* CREATING A TELEPHONE LOG
(CAN BE USED FOR CREATING A MAIL LOGGING SYSTEM)

INTR ODUCTION: The fo l l owing ap p lication is f o r
creating a telephone logging system on the DIGITAL

word processor. It can be used by a secretary t o
record all messages coming into an office. It ls
assumed that the operator is very familiar with the
word processing software and it30perat1on.

By doing a "GLOBAL SEARCH &. REPLACE" on the TELE
PHONE LOCi Application Notes. you would create "MAIL
LOG 11 Applicati on Notes. This memo serves as a brief
explanation of both procedures.

Primarily, both applications call for an area on a
system or diskette to be dedicated to the storage of
telephone me.,sages and a separate area for mail l og
ging. It is necessary for the user to be familiar
with list processing, creating forms. and the use of
document 1 (the INDEX). The codes in the following
application are suggested and can be "added to" or-
11deleted from" depending on the company or customer
wishing t o utilize t hi::i as a proced ure. The method
for the telephone log and mail log is identical in
implementation. The difference is in the "list"
code used. One being:

<Code)Telephone Mes::iage

a nd the other•

<Code>Mail Message

The report::i generated wo uld have title changes and
the other informat i on would be the same. As with
the telephone log, the asterisk indicates "new"
informat ion . The date may be incorporat ed as part
of the title as well as f or ease of chronologi cal
input.

Some coding during creating to designate mail type
could be:

c *1/John Jones - ind icating that the mail is a
(l)etter.

c *m/John Jones - indicating that the mail i s a
(m)emo.

c *p/John Jones - indicating that the mail is a
(p)ackage.

c *i / John J ones - indicating that the mail is
(i) nformation .

c *cc/John Jones - indi ca ting that this is. a
(c)arbon (c)opy from .

c *pr/John Jones - indica ting that the mail is
(p)er your (r)equest.

c *b/DEC WP - indicating that t he mail is a
(b) rochure.

c *a/Sears - indicating that the mail i .s an
(a)dv ertisement.

The other codes listed i n the telephone l og proce
dur e also can be used designating "A'' for Action,
11 RR" reply requested. or whatever is required. Using
the mail log requires that the secretary summari ze
all incoming mail for quick reference by the reader.
Both applications can be implemented eas ily and can
be designed to meet the user 1 s needs.

APPLICATION FOR TELEPHONE LOG

THIS IS A PROCESS WHICH ALLOWS A SECRETARY:

to take phone messages,
enter messages into the syste m in a

te lephone l og a r ea.
and

)

to accompli s h the above in as few st e ps _ as
necessary by using Use r Define Keys and
List Process ing.

Each message is entered by creating a separate docu
men t and using a user define key (UDK) to call up an
empty list pr ocessing record. These field identi
fiers will enable the user to organize the informa
tion into .specific ca t egories.

The reader (the person the call is directed to) then
i s able to review the list of messages by looking at
the designated area 's index and the n proceed to take
action. By recording each message in a separate
document , the reader can be acting on one message
while t he secretary can be ente ring new messages
(assuming that the r eader has his/her own terminal).
Also, a message can be incorporated into another
document or sent to someone else via communi cations
by using the Gold:Get Document or the OX feature.
When creating the document which will hold a mes
sage, a code is incorporated into the title of the
document which will communicate between reader and
secretary exactly what has to be l ooked at, by whom,
and what has been handled and no longer needs
attention.

By using field ident ifiers, a secretary can obtain a
print ou t of all calls which need to be returned or
ac ted upon through the list proce ssing method . This
is especially . helpful if the reader is away on a
bus iness trip and the secr etary would like to give
him a hard copy sutmnary o f ca lls to scan upon the
his/her re turn or to brief the reader in his/t)er
absence.

PROCEDURE FOR SETTING UP THE TELEPHONE LOG

1. ASSIGN AN AREA.

Determine whic h area on the system will be
devoted to te lephone messages. For the purpose
of t his application, the araa chosen is four (4)
on a 200 System.

2 DETERMINE FIELD IDENTIFIERS.

Des ign field id enti fier·s that will be most help
ful to organizi ng the telephone information. An
example of the ident ifiers to use are as
follows:

<Date)10/17/80 Fri 12: 13 - Use GOLD
Date/Time
<To>
<From>
<Company>
<Subject>
<Tele No>
<Request>
<Code>Telephone Message
<Action>
<Follow Up>
<>

3. RETRIEVE FIELD IDENTIFIERS VIA UDI[.

Access the FIELD IDENTIFIERS via a user define
ke y (UDK) eithe r by typing the entire Identifi
ers or by placing them in an abbreviation li
brary and typing the command assigned in the

abbreviati on library into your defin1L i on in the
UDK. The fol.lowing are ex:amples of both methods
of setting a user define key to accomplish this.

Type dk 1 command at main menu. Any number may be
chosen from O t o 9 to stor e t he definiti on, i .e . dk
2. dk 3. etc. For purposes of this example, DK 1 is
used.

TYPE DK 1 Return

ENTER:

<Date> Return <To> Re turn <From> Return
<Company> Return <Subject> Return <Tele No>
Return <Request> Re turn <Code> Telephone
Mes sage Return <Action> Return <Follow Up)
Ret urn <> Backup Para Advance <> Gold:\ <>
Gol d Halt

RESULT:

In typing Return. Backup . Para, etc. make sure
you press the key l a beled keys Return, Backup, Para ,
etc. and do not spell out the actual word. Notice.
t hat by typi ng Backup Pa ra Ad vance <> Gold:\ <> the
system will automatically print the ident ifier:,.
backup to the beginning of the paragraph, advance to
the enter sign . 11 >11 in <Date >. insert Gold Date/Time,
and advance to the next enter sign ">" . The cursor
will position itself for entry and where t o begin
typing the information at <To>.

or def ine DK 1 a s follows:

Gold:=tl Backup Para Advance <> Gold:\ <>
Gold Halt

(t'l = telephone log "identlfie"r::i f ro111
abbreviation librar y.)

Acces sing your abbreviati on library gi ves more
flexibility in recalling t elephone log information.
If the field 5 change or more than one person i s
usi ng this ;>rocedure. they can have their o-wn list
stored.

u Please rote that in both definitions that typed
text (words or characters) will appear to be one
space apart, They are stored this way within the
UDK but are not entered this way in the document.

q. ESTABLI::U A CODE to be incorporated in the title
of the docl.fflent which will hold a telephone message
for identifying what calls should be looked at, what
calls have been handled and r e quire action by the
(R)eader or (S) ecretary, and what calls ha ve been
canpleted.

Coding should relate the need::i of a particular
office and sh o uld be as simple as possi ble . Using
f amiliar tenninology would be be.st. I f many people
are using the telephone log , it will be necessary to
speci fy peop1e. departments. etc . Coding can be a.,
simple as putting the person's initials in t he code
to designate that their action is required if the
call i s to be referred to someone else for action or
some scheme• such as the f ollowi ng example, may be
adopted:

)

-c Cf)
'"<1)
"' .D "'.
0, CX>

C N -· "'~

a:,
-'.J

•1 denotes new call/information.
*A/ -

R/ -
denotes a new call requiring (A)ction
denotes call was (R) ead. This is

SR/

RH/

entered by (R)eader.
- denotes call was (R)ead and _ requires

action by (S)ecretary.
- denotes call was (R)ead and (N)o action

required.
RA/ - denotes call was (R)ead and (A)ction 1s

required by reader.
RD/ - deno tes call was (R)ead and can be

(D)eleted.
SRS/ - denotes call was acted on by (S)ecretary

after being (R)ead.

UTILIZING THE TELEPHONE LOG TO RECORD MESSAGES.

The procedure is as follows:

1. When a t elephone message is received. create a
document which will record the message in the desig
nated area for the telephone log.

Example: c 4.1/John Smith 617-555-1212

The above example creates a document entitled John
Smith in area 4 (designated telephone log area) .
The asterisk (*) in the title is part of the code
which tells the reader when looking at the area l,I
index that a call has been received from John Smith.
The "*" designates that it is a new call and should
be read in the telephone file.

2. When the new telephone message file is created,
type Gold: 1 to place the field identifiers in the
document . Then type in the information correspond
ing to each ,identifier and .. filE!. ·t _he document. ·. The
message is now recorded and can be referred- to. As
the list of message documents grows with each new
call, the asterisk in the title quickly identifies
the calls that require action~

3. When a call is acted upon, it is noted by the
reader in the <Action> line by logging in the date
us ing the Gold: Date/Time next to the <Action>. The
<Follow Up> identifier provides an area for the
reader to enter a summary of the call and action
taken. The reader then edits the index (Document 1)
and codes the call by adding either with an "RN 11

denoti ng that the message was read and no further
action necessary , "RS11 denoting instructions for
further action by the secretary, or "RA" denoting he
has reviewed the call but has not as yet taken
action. When further action required by the secre
tary (all calls coded RS) is comple t ed, she then
edits the index and codes t he call by adding another
"S" or her initials. (SRS). If a summary of the
actio n taken by the secreatry should again be
brought to the attention of the reader it will noted
with another 11 • 11 designating that it should be
re-read.

An example of a coded index (Document 1 of an area)
is as follows:

<n>*/John Smith 617-555-1212 <#>7 <>
<n>*A/Kar en Black 883-1111 <#>6<>
<n>*SRS/Bill Jones 888-5000 <U>5<>
<n>RN/Wendy Turner l,1-5555 <11>4<>
<n>RA/Jane Doe 223-5555 <P>3<>
<n>RD/Mary Brown 212-555-1212 <il>2<>
<n>Area 4 Index <I!> 1 <>

4. GENERATING TELEPHONE MESSAGE REPORTS

When someone is out of the office for a period of
time and it is necessary to print a list of me.ssages
received. which must be acted upon, etc., it can be
done by by u.slng the list processing feature.

The list used is the actual index (Document 1) of
the designated area for the telephone log. In this
example, document 14. 1.

Then a specification is created to capture and print
only those calls on the list which require action.,
i.e. all calls coded with an A*. For example:

If <n>:::*At<•>
then process record

Using the <•> wild card feature of list processing,
all messages regardless of content but requiring
(A)action will be processed.

NEXT create a form which will print out the 11st
required. The followi ng is an example of a form:

TELEPHONE LOG

FOR SALES REPRESENTATIVE: JENNIFER JOHNSON

DATE NAME & TELE HO. File g

-------- --------1
I
:<1s~

<Date>
I
I< IE>

<n> 4.<D>

The · form can contain as many or as few of the fi e lds
required. It could be just a listing as shown
above, or give all information entered by creating a
form cailing for all fields to be filled in.

An example of the result:

DATE

TELEPHONE LOG

NAHE & TELE NUMBER

10/14/80 Tue */JohnSmith 617-555-1212

10/11,1/80 Tue A*/Karen Black 883-1111

10/ 14/80 Tue *SRS/B111 Jones 888-5000

10/14/80 Tue RN/Wendy Turner 4-5555

10/1 4/80 Tue RA/Jane Doe· 223-5555

File #

4. 7

4.6

"·5
11.l,I

4.3

10/14 /80 Tue RD/Mary Brown 2 12-555-1 2 12 4.2

This p:-ccess for handling mes sages ca n be very
effective . Also , as a means of recor ding a ll me!i
sages and doc umenting all action taken on each is
very efficient·. You will dlscover that there are
many variations that can be ~mployed to make this
procedure even more effi cient for your particular
needs. such as entering more information into the
ti tle of your document . using different identifiers,
set ti ng up a form which can arrange the information
obtained in your list to suit your needs, etc,

This process proves to be time saving when someone
is out of the office but has access to a terminal
which is remotely connected to the main system in an
office. A caller. salesperson, etc •• can rev i ew all
calls, communicate with the secretary regarding what
act i on has or should be taken without having to talk
with the secretar y directly . This is particularly
helpful if the manager is visiting a different time
zone or is reviewing calls afte r office hours.

On occasion, it a l so can be used as a reminder to do
something or call someone (tickler file) by creating
a document entitled *Notes and then typing several
notes serving as a constant reminder of issues which
should be handle along with the calls. Or, by
creating a document A=Jim McDonald l,1-5556 to remind
the reader that they wanted to call this person.

There are many ways in which to use this log and
many variations you can make With a little imagina
tion and practice. Try it, you'll like itl!!!

11 CREATING A CALENDAR" APPLICATION

T',i s feature was developed as a time managem_ent ~-ool
to efficiently handle the sched uling of mee tings and
appointments, whereby more detailed information on
the meetings can be presented. A list of things
that mus t be done each week or month can also be
incorporated into this calendar.

The setting up of a calendar on a word processing
system is a f ai.rly simple procedure. The steps are
as follows:

1. Choose an area (or diskette) which will contain
the calendar for a full year .

2. Each month should be created in a sepa r a te docu
ment within the same area or diskette .

3. Choose the format you wish to use and create the
:first document entitled January or the current
month. Type the calendar in the format you
have chosen and file the document.

At the top of the calendar is a date and time nota
tion . Each time a new item is entered in the calen
dar. the date and time should be entered at the top
of the calendar to let the manager know when the
last notation was made ..

After the area provided for Friday. you will notice
angle brackets "<>". This will enable you to ad-

(

vznce ra pi dly to this s ymbol and giv e yo u an entire
work week at a glance by press ing the "<>" key.

The format belo w should conti nue on to include the
2nd, 3rd, and 4th week of the month with a "ne w
page" command between each week. All you need do
once the calendar is formed is type in the meetings
or appointments in the appropri ate places.

Note that at the bottom of each week, an area ha,
been provided for notes. This area allows more
detail wh en required on any meeting scheduled in
that week. The angle brackets at the end of the
note allows you to advance rapidly to the end of the
l ast note and cont i nue on easily with any additional
notes as you edit the calendar during the month.
EACH WEEK SHOULD BE ON A SEPARATE PAGE.

After filing the document entitled "January", you
are ready to create "February". Simply create a
doc ument en titled 11 Febr uary 11 and then use the
COLO :GET DOCUMENT feature to call up the calendar
for January in the February document. Then all you
need do is edit this document by changing the
January dates to the appropriate February dates.
Continue this procedure for each of the following
months through December.

Another he lpful i dea which can be incorporated into
this calendar is to create a "do list" which can be
referred to readily. Simply make a list of all the
things that must be done · for the month at the top of
the calendar with a ne w page command after the 11st
and before the calendar. We have Chosen to code
each item in the list to designate what has to be
done , what i s presently being worked on, and what
has been completed.

An example of the 11do 0 lis't which has been used in
creating the following calendars is:

"Do" List

<> Call Sally Smith (617) 223-5555.
<x> Find out if Staff Meeting is Wednesday.
<x> Meet with John Smith o n presentation.
<-> Meet with Bill Brown subj: product application.
<> Get Print Requistition for WP Manuals .
<> Process paperwork for expenses.

When each item in the list has been entered. it b
preceded with angle br~ckets O as a symbol desig
nating an i tero to be performed; when the 1 tem is in
the process of being completed. we add a hyphen
between the angle brackets <->; and when it has bee n
completed, we add an x between the angle brackets
<J1:>. You can also create a list .on a week by -week
basis by placing the li s t at the top of each week
separated by page markers.

The following is an example of a basic calendar on
the word processor. Other examples to follow show
how the 11do" list is incorporated. As you examine
these calendars, you might consider furtt'ter auto
mation by use of your list processing functions.

" V) "' ~ "'.a <1).

--., a,
0 fC) -· <O -

1st
Week
Jan

1/30/80 Wed 9: 11

9 10 11 12 13 15 16 17 18 19 20

Ron":·--·--·--·--·--·--·--·--·--·--·--·--·-
12/311

I
Tues ! • • · · • • · · •. •--• •--•-
1/1

__ : ·--·--·--·--·--·--·--·--· ·--·--·--·-
Wed I
1/2 I

Thur : • • • • • • • • ·--•--•---- -

1/3 : . __ :. __ . __ . __ . __ . __ . __ . __ . __ . __ . __ . __ . __ ._
Fri I
1/4 I

I
<> I•--•--•--·--·--•--·--•--•--•--•-._. __ ._
Sat :
1/5

__ : ·--·--·--·--·--·--·--·--·--·--·--·--·-
Sun l
1/6

otes :<>

An example of a calendar which has been filled in
and inciorporates the "do" list is below.

MONTH: AUGUST

ht
Week
Aug 18 9 10 11 12 13 14 15 16 17 18 19 20

~i New Yo; k tr 1;-::::-: ::::-: :-=--:::-: :-:-::-:-: 7:7::: ::-=::-: :::::-: ::::-:-: ::::-=-: :-=-:-::-: :"
8/4 I

: ·--·--·--·-
Tues l John Brown [••• • •••••••••••••]
8/5 : 9:00 - 11 :OO Strategy Mtg.

l Dartmouth Room

Wed ; ·--·--·--ca11to Joh~ Smtth--·--·--·--·--·--·-
8/6 231-2294 re:ABC

(See Notes) __ :. __ . __ . __ . __ . __ . __ . __ . __ . __ . __ . __ . __ ._
Thur :
8/7 I

~l ·--·--·--·f>et;r fra~klin ~~•--·--•--·--•--•-

8/ 8 Your 01Tice
11 :30 - lunch
(See Notes)

~~r! ·--·--·--·--·--·--·--·--·--·--·--·--·-
s,9

I. __ . __ . __ . __ . __ . _ _ . __ . __ . __ . __ . __ . _ _ ._
~:
8/10 l

Notes:

8/4 - Delta FL 111 departs Boston 9:00 and arrives New York at 9:45. Take taxi
to New York office to meet with sal es r ep. Delta FL 222 departs New York at
4: 10 and arrives Boston 4:50 .

)))

8/6 - Phone Call to John Smith concerns memo from him dated 6/20 (located in
6/20 mall log).

8/8 - Peter Franklin, wants to disc uss the XYZ program.<>

8/26/80 Tue 9:24

HO NTH: AUGUST

2nd l
Week I
Aug :os 09 10 11 12 13 15 16 17 18 19 20 Roi,:·--· swr·--·--·--·--·--·--·--·--·--·-
8/11 l 10:00

.
Tues : Bo-,ton all day
8/12 ;(See Notes)

:
--•·--·--·--·--·--·--·--·--·--·--·--·--·-W'ed : Mike Jenning.s Jack Flint
8/13 I 12:00 - 1:00 2:30 - 3:30

:
:. ,,.

Thur f XYZ •••••••••• • ••• , ••••••••••••••••••••••••••] Ted Lansing
8/14 !extended to 3:30 4:30 HK

I __ , ·-·--·--·--·--·--·--·--·--·--·--·--·-Fri I Vaqation Day
8/15 I

l
<> ~.. • • • • • • • • • • • •
Sat I -- -- -- --
8/16 I

I
Su~-··;·--·--·--·--·--·--·--.---~ ·~·--•-- ·-
s111 I

I

Notes:

8/12 - Trip to Boston to consult with Bob Griffith, 606 State Street<>

GENERAL PURPOSE HINTS

The following hints have been developed over a long
period of time and have been helpful to many of us.
We hope that they will be of some assistance to you.

PRINTING A DOUBLE UNDERSCORE - Two Hethodo

Quite often there is a need to print a double under
score -- especially where columns of data are
involved. Two fairly successful methods can be
used.

Method One. If the double underscore is to be used
with tabulated work, and the last item in the column
is to be double underscored, use the select key at
the beginning of the item and go to the end of the
item. Enter the white "underline" key, which will
cause a .single underscore. (If you want the under
score to extend in front of the item, insert spaces
in front of the item, and underscore those spacia-s.)
Then, tab over to the same point on the following
line and insert your underscore. using the underline
key, so that it covers the same area immediately

above. Ud.ng the select key at the beginning of the
underscore• go to the end of the underscore and
enter the GOLD SUPERSCRIPT. This will cause the
second underscore to print one-half space up and
will give a very presentable double double under
.score. (.ln alternative to the superscript would be
to change the left margin in the ruler to the "f"
for half spacing. Just be sure to change it back
again for the remaining text.)

Method Two. Several print wheels have a double
underscore character as part of their character set.
Currently, the following Diablo wheels have this
character:

Courier Legal 10A
Pica Legal 10A
Prestige Elite Legal

1. When you get to the beginning of a line of text
which is to be double underscored, put in a ruler of
F for half line spacing. Tab over and type each of
the numbers to be underscored. Press RETURN.

)

" CJ) a, m
~~
ex, po

~ ::
(0

case back-slash (date/time) key] once tor each
character to be underlined.

3- When the la.st long vertical character on that
line has been typed, back up the line and press
SELECT LINE CiOLD SUPERSCRIPT. This will move your
double under.score right underneath the numbers.
Press RETURN twice and change your ruler back.

JJ. When printing the document with the Courier
Legal 10A or the Pica Legal 10A ~eels, you must use
the replacement character (R 1 l) from the Print
Menu. This is not necessary :ror the Prestige Elite
Legal wheel, a:s the ":" character is not on that
wheel but is, in fact, the double underscore.

TRIPLE SPACING BETWEEN DOUBLE SPACED PARAGRAPHS

It is a real pain to triple space between paragraphs
which are created with a double spaced ruler. Here
1:s an easy to u:,e USER 0EFIN£0 KEY to handle the
problem . Set your UDK for: GOLD PARA, GOLD RULER.
L, RETURN, RETURN, GOLD RULER, D, RETURN. Upon
reaching the end of your paragraph simply enter the
UDK instead of · your GOLD PARA for the end of the
paragraph. [If you don't use GOLD PARA. then
replace that instruction with a RETURN. If you use
indented paragraphs, then substitute the last RETURN
with a GOLD PARA. J

CHANGING THE DEFAULT RULER OR PRINT MENU SETTING

Surprisingly. many users are unaware of the fact
that the default RULER and PRINT MENU settings are
the same as the zero settings. If you wish to alter
your default settings (i.e., the settings which are

co prese_nt. when_ tl')e d.ocument:: is created initially) . all
<b you have to do is change tne settings for GOLD RULER

0 or PRINT MENU O [SS 0) to the desired defaults.

RECOVERING AN ERASED USER DEFINED KEY

Ever go into a User Defined Key to examine it and
then strike a character thereby deleting the entire
key? lf you haven't, then you probably don't use
these keys I There is a way to recover. the "erased"
information. But, you have to be careful (and this
is not intended for 200 systems).

If you are in a document and have gone into the UDK
from the Editor Menu, then you are going to have to
decide whether the UDK is more important than any of
the information which you may have edited. This
technique is going to lose any NEW information which
may have been input. (E.g . , iC you merely were
editing an -existing document. but had made no
changes. then this will not affect your document.
If you had made some changes. or if the document had
never been filed. don't take a chance -- re-type
your UDK.) If you entered the UDK from the Hain
Menu. then there 1::i no risk at all.

Upon realizing that you have lost your UDK informa
tion, 00 NOT PRESS THE GOLD HALT KEY. Simply turn
off your computer and re-start it in the usual man
ner. The UDK will be saved.

STORING HORE THAN 10 UDKs ON NON-200 SYSTEMS

Generally. UDK storage 15 limited to 10 UDKs per
SYSTEM diskette. However. it is quite simple to
store as many UDKs as one wishes. Store your . UDKs

(

on different SYSTEM diskettes, as you generally
would. You still are limited to 10 per SYSTEM
diskette. When you want. to use the UDKs stored on a
different diskette, enter the F key from the Hain
Menu and press RETURN. Remove the SYSTEM diskette
and replace it with the SYSTEH diskette which ha.s
the UDKs which you want to u:se. Press RETURN twice
and the new UDKs now are available to you. (You
even can replace the other SYSTEM diskette at thi&
time. in case you have information on it which has
to be used. Ju.st make sure that your default li
braries have not been changed.

AUTOHATIC DELETION OF SEVERAL DOCUHEHTS AT ONE TIME

Often it 13 desireable to purge a diskette of :1ever
al documents at one time and you don't nece3sar1ly
want to sit there all day while you instruct the
machine to do the deleting. This can be done with a
simple USER DEFINED KEY and editing ot the document
INDEX. ALWAYS USE CARE WHEN EDITING THE DOCUMENT
INDEX. IF NECESSARY, USE A GOLD GET OF DOCUMENT fl
IN A SPARE LOCATION, SO THAT IF YOU LOSE YOQR INDEX
YOU CAN RE-CREATE IT IMMEDIATELY.

Edit document 11 (the diskette's index) and mark the
documents to be deleted by inserting, immediately
after the "<n>" for each such document an unique
character followed by a space. For example:

<n>XX document name <1>8<>

The space between your characters and the document
-oame is important.

After editing the index, file it. Then, using a
USER DEFINED KEY (g 1 here) whtch bas. been defined:

D Space XX Space Return y Return GOLD: 2

and a USER DEFINED KEY (2 in this example) as:

GOLD: 1 GOLD: 1 GOLD: 1 GOLD: 1 GOLD: 1 ••• GOLD: 1

you can proceed to delete. automatically, each of
the documents which you have marked with your
special characters by entering GOLD~ l. [NOTE: The
loop which you created is limited to 10 document., at
a time.]

HOVING COLUMNS

Here's how to move columns quickly and easily, (Of
course you can use the same technique for deleting
columns and other u::ies, al so.)

Assuming a columnur text of four columns, to move
:iolumn 3 to column 2 1s location and column 2 to
:olumn 3's location. store a user .defined key:

Advance Tab Advance Tab Sel Tab Cut Backup Tab
Paste

Position your cursor at the beginning of the line
where the columns _ are to be transposed. U:1e your
UDK and the columns will be transposed. Of course
you would adjust the UDK to reflect a different
number of tab positions.

SWAPPING IIORDS

Ever wish that vou had a SWAP WORD key just as the

SWAP cha racter key? Well~ · why not cr eate your own?
The UDK to swap a pair of words is quite simple:

Delwrd Word G-Del

Position the cursor just in front of the offe nding
word. enter your UDK and the words are swapped.
This is a real handy tool, especially for those
split infinitive.sf

A UDK FOR PRINTING A DOCUMENT WHILE EDITING ANOTHER

If you use SE YES (stop before printing every page)
then you know that you have to enter an "R" before
the printer will :start printing the next page. If
you are editing a document. this can become a pain.
but there · is a simple UDK to take care of the mat
ter. Create your UDK:

GOLD:M R Return

Entering this UDK while you are editing a document
will start the printer with a minimum of interrup
tion to your edit.ing. (Sorr y - this won't work for
78s as they can't use UDKs and the printer at the
same time.]

SUHHUI

DEC's Word Processing Systems (and even those which
utilize DEC equipment) clearly are among the most

.,

powerful available on the market today. The
potential - indeed the need -- for improvements is
all too obvious. if DEC intends to remain a serious
contender for the general business Word Processing
Market.

In the meantime. there are numerous routines which
are available in the existing system which can make
it work better and faster for you, and that is what
automated word processing is supposed to be all
about.

The examples provided here are but a few of the many
work saving features which are available. It
appears that these examples ne ver previous ly ha ve
been documented, at least publicly. by DEC. wh i ch
really is a shame. Now, several of the hints pro
vided here have been made available through the
courtesy of DEC's Word Processing people who par
ticipated so helpfully in the presenta tion of the
Hints and Kinks session.

We do hope that the information provided within this
article will be of some assistance to the Word Pro
cesser user and that this Article may become part of
your Word Processing Manuals.

Perhaps by the time you come to Los Angeles we will
have a good deal more for you. In the meantime.
please feel free to write to us regarding any
particular matters you would like to see discussed
at future Symposia.

" Cf) """' <O .Cl "'.
<D 00

0 "' -. <D ~

[g
CECUS
DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
ONE IRON WAY, MR2-3/E55
MARLBORO, MASSACHUSETTS 01752

INSTALLATION • C lb

MOVING OR REPLACING A DELEGATE?

Please notify us immediately to guarantee continuing
receipt of DECUS literature. Allow up to six weeks
for change to take effect.

() Change of Address
() Delegate Replacement

DECUS Membership No.: _______ _

Name: _____________ _

Company: ____________ _

Address: _____________ _

State/Country: __________ _

Zip/Postal Code : __________ _

Mail to: DECUS -ATT: Membership
One Iron Way, MR2-3
Marlboro, Massachusetts 01752 USA

BULK RATE
U.S. POSTAGE

PAID
PERMIT NO. 129

NORTHBORO.MA
01532

