
THE I I -.fflft• DECUS la,kc, Ill 11111111111111111111111111111111 RT-11 SIG NEWSLETTER 111111111111 II 11111111111111111111 I 11

October 1983

PIP LD

PAT

SLP

XM

FILEX

~ON

~
ClDECUS

U.S. CHAPTER

Jsw

Volume 9, Number 4

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL

DECnet Digital Logo

DECsystem-10 EduSystem

DECSYSTEM-20 IAS

DECUS MASSBUS

DECwriter PDP

UN IX is a trademark of Western 1::lectric Corporation

Copyright© Digital Equipment Corporation 1983
All Rights Reserved

PDT

RSTS

RSX

UNIBUS
VAX

VMS
VT

It is assumed that all articles submitted to the editor of this newsletter are with the authors' permission to publish in any DECUS
publication. The articles are the responsibilltY of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the authors and do not-necessarily express the views of DECUS or Digital Equipment Corporation.

~

~

THE I I m n. DECUS la,kc, II I I I I I I I I I I I I I I I I I I 111 111111111111 RT-11 SIG NEWSLETTER 11111 1111 II 11111111 11 I 111111 1111111 11

October 1983 Volume 9, Number 4

TABLE OF CONTENTS

ADDRESSES
Newsletter Submissions ••••••••••••••••••••••••••••••••••o••• J

FROM THE EDITOR
Vo 1 unt e er s Ne e de d • . . • . . . • .. • • o • o • • • • • • • • •••••• o o • o o • • • • • • • • • o 4

USER INPUT
Documentation Directory For RT-11 Device Handlers •··••·••••• 4
Patch To Allow RT-11 V5.0 RXOJ Support ••·••••••••••••••••••• 11
Bit Manipulation Program•···•••·•••••••••••••••••••••••••••• 12
RT-11 v5.o Extended Memory Patch•··••••·•••••••••••••••••••• 19
Cursor Driven Command File Driver•·••••••••••••••••••••••••• 23

USER REQUESTS
FRT,MAC Question o ••••• o o ••••• o ••••• o •••• o ••••••••••••••• J4
RT-11 VJ Serial Printer Handler••••••••••••••••••••••••••·•• J4

USER RESPONSES
Change to DATE Program •••••••••••••o••oo•••••o•oo•oo ■ oooo•o•

UPCOMING SYMPOSIUM INFORMATION
RT-11 Ses s ion :Notes•.. o. o ••••••• o ••••••• o. o ••• o ••

Las ·vegas Schedule••......••.• ·•• o. o •••••••

PAST SYMPOSIUM INFORMATION
J 06A Clock Board Support ••••••••••••••••••••••••••••••••••••
RT-11 Macro/Fortran Interacti ons ••.•••••••••••••••••••••••••
~~ACDBG/RT-11: A User's Critique •..•••••••••••••••••••••••.••
Creation 8.nd Handling of Multi-Volume Directories •••••••••••

SOFTW ARE PERFORMANCE REPORTS
SIPP/PIP/Backup Problem •••••0••••0••••••••••••••••••••••••••

SYMPOSIUM TAPE INFORMATI ON

J4

35
J6

38
46
48
49

50

Call For SIG Tape Submissions •••••••0••••••••••••••••••••••• 51
Tape Copy Release Agreement •·•·•••••••••••••••••••·••••••••• 51
Tape Copy R~lease Form···••••••••••~••••·•••••••~••••••••••• 52

2

THE I I m n. DECUS ta,kc, II I I I I I I I I I I II 111111111111111111111 RT-11 SIG NEWSLETTER 11111 I 11 I 11, I 111111111111111111111111

October 1983 Volume 9, Number 4

Contributions to the newsletter should be sent to:

Ken Demers
MS-48
United Technologies Research Center
East Hartford, Ct. 06108
(203) 727-7139 or 7240

Other communications can be sent to:

John 'I'. Rasted
JTR Associates
58 Rasted Lane
Meriden , Ct. 06450
(203) 634-1632

RT-11 SIG
c/o DECUS
One Iron Way
MR2-3/E55
Marlboro, Ma . 01752
(61 7) 467- 1-}141

3

.______,,,

From The Editor

I still need more volunteers to convert the audio tapes recorded
at DECUS Symposium RT:..11 sessions into articles for the "Minitasker".
You will only be responsible for converting the tape from any one
session. Please contact me as soon as possible.

Thankyou,

Ken Demers

USER INPUT

- DSIR
DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH

APPLIED MATHEMATICS DIVISIOK

P.O. Box 1335 Wellington New Zealand
Telephone (4) 727 855 Telex 3276 Research
7th Floor Rankine Brown Building Victoria University of Wellington , .. (

SCIN 123: 1 3 MAY 1983

A DOCUMENTATION DIRECTORY FOR RT-11 DEVICE HANDLERS AND INTERRUPTS.

R. D. BROWNRIGG

ABSTRACT: An exhaustive list is presented of those references to device
handlers and interrupt processing contained in the DEC
documentation available for the RT-11 version 4.0 operating
system.

1. INTRODUCTION.

The following references are to section numbers, figures, and tables
contained in the various manuals available for the RT-11 version 4.0
operating system. All references have direct relevance to device
handlers in particular or interrupt processing in general. In some
cases, further information is provided in parentheses to clarify exactly
which aspects of these topics are mentioned or discussed in the
particular section referred to. Page numbers are also provided.

The manuals referred to and their abbreviations are as follows:
MAM - DIGITAL 'microcomputers and memories' handbook (1982 edition)
GEN - RT-11 Installation and System Generation Guide
SYS - RT-11 System User's Guide
REF - RT-11 Programmer's Reference Manual
SUP - RT-11 Software Support Manual

4

2. DIGITAL 'microcomputers and memories' handbook

ARCHITECTURAL OVERVIEW
PROCESSOR STATUS WORD (interrupt priority)

PROGRAMMING TECHNIQUES
POSITION INDEPENDENT CODE (virtual address space)
STACKS (subroutines, interrupts)
INTERRUPTS (interrupt enable bit)

LSI- 11 BUS
INTERRUPTS (vector, device priority)

MEMORY MANAGEMENT (kernel mode, user mode)
MEMORY RELOCATION
PROTECTION
PAGE ADDRESS REGISTER (PAR)
VIRTUAL AND PHYSICAL ADDRESSES

3. RT-11 Installation and System Generation Guide

1.1.3.2 Do You Need to Perform the System Generation Process?

MAM CHAPTER
MAM CHAPTER

MAM CHAPTER
MAM CHAPTER
MAM CHAPTER
MAM CHAPTER

MAM CHAPTER
MAM CHAPTER

MAM CHAPTER
MAM CHAPTER
MAM CHAPTER
MAM CHAPTER
MAM CHAPTER

(device I/0 timeout, error logging, extra device slots) GEN 1-14
Table 1-5 Features Available Only Through System

Generation Process (device I/0 timeout, error logging) GEN 1-15

2.8.13 Jnstalling Other Devices (RT-11 bootstrap action) GEN 2-31

8.2.3 Monitor Services for Target Applications
(device timeout, error logging) GEN 8-5

8.3 Studying the SYSGEN dialogue
(device I/0 timeout, error logging, extra device slots) GEN 8-15

F.1 System Conditionals (device I/0 timeout, error logging) GEN F-1

4. RT-11 System User's Guide

1.2.2 Device Handlers (definition)

3.3 Physical Device Names (standard names)
Table 3-1 Permanent Device Names
3.5 Device Structures (random access, sequential access)

4.4 Keyboard Monitor Commands
(INSTALL device handler)
(LOAD device handler)
(REMOVE device handler)
(SET handler characteristics)

Table 4-13 SET Device Conditions and Modification
(SHOW device assignments, handler status)
(UNLOAD device handler)

5

SYS 1-5

SYS 3-3
SYS 3-3
SYS 3-5

SYS 4-15
SYS 4-112
SYS 4-126
SYS 4-139
SYS 4-149
SYS 4-150
SYS 4-160
SYS 4-176

2
2

8
8
8
8

9
9

10
10
10
10
10

17.1 Calling and Using RESORC
Table 17-1 RESORC Options
17.2.3 Device Handler Status Option (/D)
17.2.6 Device Assignments Option (/L)

19.1 Uses (error logging)
19.2 Error Logging Subsystem
Figure 19-1 Error Logging Subsystem

5. RT-11 Programmer's Reference Manual

1.1.2.7 Programmed Request Errors
(processor status, error byte)

1.1.3.1 Initialization and Control
(I/0 requests, timer requests, queue elements)

1.1.3.5 Input/Output Operations
(I/0 requests, completion routines)

1.1.3.7 Timer Support (timer requests)
1.1.3.11 Interrupt Service Routines (.INTEN, .SYNCH)
1.1.3.12 Device Handlers (special macros)

2. 12
Table
2. 16
2. 17
2. 18
2. 19
2.20
2.21
2.22
2.23
2.24
2.29
2.30
2.37
2.38
2.57
2.58
2.63
2.76
2.79
2.80
2.92

.CTIMIO (cancel device timeout)
2-1 Timer Block Format (I/0 timeout)

.DRAST (driver asynchronous trap)

.DRBEG (driver begin)

.DRBOT (driver bootstrap)

.DRDEF (driver definitions)

.DREND (driver end)

.DRFIN (driver finish)

.DRSET (driver SET options)

.DRVTB (driver vector table)

.DSTATUS (device status)

.FETCH/.RELEASE (device handler load/unload)

.FORK (dismiss interrupt)

.HRESET (hardware reset)

.INTEN (interrupt notify)

.QELDF (queue element define)
,QSET (set queue length)
,READ/.READC/.READW (read/with completion/with wait)
.SPFUN (special function I/0)
.SYNCH (synchronise with user state)
.TIMIO (I/0 timeout)
.WRITE/.WRITC/.WRITW (write/with completion/with wait)

6. RT-11 Software Support Manual

2.1.3 Interrupt Vectors (standard)
Figure 2-4 Interrupt Vector Area
2.1.4 I/0 Page (addresses)
Figure 2-5 I/0 Page
2.1.5 System Device Handler (bootstrap)
Figure 2-6 System Device Handler
2.2.1 Device Handlers and Free Space (loading into memory)
Figure 2-11 SJ System with Two Loaded Handlers
Figure 2-12 SJ System with One Handler Unloaded
Figure 2-13 SJ System with Both Handlers Unloaded
2.3.4 Size of Device Handlers (where specified)

6

SYS 17-1
SYS 17-2
SYS 17-3
SYS 17-5

SYS 19-1
SYS 19-2
SYS 19-3

REF 1-12

REF 1-15

REF 1-19
REF 1-23
REF 1-25
REF 1-26

REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF

SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP

2-24
2-25
2-30
2-31
2-31
2-32
2-33
2-34
2-34
2-35
2-36
2-44
2-46
2-56
2-57
2-86
2-87
2-94
2-121
2-127
2-129
2-142

2-8
2-10
2-10
2-11
2-11
2-12
2-19
2-20
2-21
2-22
2-39

3.2
3.2.1
3.2.2
Figure
3.3
3. 3. 1
Figure
Figure
Figure
Figure
Figure
Figure
Figure
3.3.2
Figure

Clock Support and Timer Service
SJ Systems Without Timer Servipe
Systems With Timer Service (timer implementation)

3-5 Timer Queue Element Format
Queued I/O System (components)
I/O Queue (structure)

3-6 Components of the Queued I/O System
3-7 I/O Queue Element Format
3-8 I/O Queue with Three Available Elements
3-9 I/O Queue with Two Available Elements
3-10 I/O Queue with One Available Element
3-11 I/O Queue When One Element is Returned
3-12 I/O Queue When Two Elements are Returned
Completion Queue (structure)

3-13 Device Handler Queue when a New Element is
Added

Figure 3-14 Completion Queue Element Format
3-3~2.1 SJ Considerations (interruptibility)
3.3.2.2 .SYNCH Considerations (format)
Figure 3-15 Synch Queue Element Format
3.3.3 Flow of Events in I/O Processing
3.3.3.1 Issuing the Request (blocking)
3.3.3.2 Queuing the Request in SJ (I/O initiation)
3.3.3.3 Queuing the Request in FB and XM

(system state, holding)
3.3.3.4 Performing the I/O Transfer
3.3.3.5 Completing the I/O Request
Figure 3-16 Device Handler/Resident Monitor Relationship
3.4.1 User and System State (context switching, system stack)
3.4.1.1 Switching to System State Asynchronously

(interrupts, interrupt level, $INTEN)
Table 3-2 Values of the Interrupt Level Counter
Table 3-3 Job's Stack after $INTEN
Figure 3-17 Interrupts and Execution States
3.4.1.2 Switching to System State Synchronously ($ENSYS)
Table 3-4 Job's Stack after $ENSYS
3.4.1.3 Returning to User State
3.6.1.1 Configuration Word (hardware, monitor, clock)
Table 3-9 The Configuration Word, Offset 300
3.6.1.4 System Generation Features Word

(I/O timeout, error logging)
Table 3-12 System Generation Features Word, Offset 370
3.6.3 Queue Element Format Summary
3.6.3.1 I/O Queue Element
Figure 3-24 I/O Queue Element Format
3.6.3.2 Completion Queue Element
Figure 3-25 Completion Queue Element Format
3.6.3.3 Synch Queue Element
Figure 3-26 Synch Queue Element Format
3.6.3.4 Fork Queue Element
Figure 3-27 Fork Queue Element Format
3.6.3.5 Timer Queue Element
3.6.4 I/O Channel Format (channel status word)
Figure 3-28 Timer Queue Element Format
Figure 3-29 I/O Channel Description

7

SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP

SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP

SUP
SUP
SUP
SUP
SUP

SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP

SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP

3-9
3-9
3-9
3-10
3-11
3-12
3-12
3-13
3-14
3-15
3-15
3-16
3-16
3-17

3-17
3-18
3-18
3-18
3-19
3-19
3-19
3-20

3-20
3-22
3-22
3-22
3-24

3-25
3-25
3-26
3-26
3-27
3-27
3-28
3-51
3-51

3-54
3-54
3-59
3-60
3-60
3-60
3-60
3-61
3-61
3-61
3-61
3-61
3-61
3-62
3-62

'--._./

3.6.5 Device Tables SUP 3-62
3.6.5.1 $PNAME Table (permanent names) SUP 3-62
3.6.5.2 $STAT Table (device status) SUP 3-63
Table 3-16 Channel Status ~ord (CSW) SUP 3-63
3.6.5.3 $DVREC Table (code locations) SUP 3-64
3.6.5.4 $ENTRY Table (entry points) SUP 3-64
3.6.5.5 $HSIZE Table (handler size) SUP 3-64
3.6.5.6 $DVSIZ Table (device size) SUP 3-64

4.2.4.1 Page Address Register (PAR) SUP 4-13
Figure 4-14 Correspondence Between Pages and Active Page

Registers SUP 4- 13
Figure 4-15 Page Address Register (PAR) SUP 4-13
4.2.5 Converting a 16-Bit Address to an 18-Bit Address SUP 4-14
4.2.7 Kernel and User Processor Modes SUP 4-16
Figure 4-19 Processor Status Word and Active Page Registers SUP 4-17
4.6.5 I/0 Queue Element (XM) SUP 4-59
4. 8. 1 PAR 1 Restriction SUP 4-66
4. 8. 3 PAR2 Restriction SUP 4-67

6.2
6.2.1
6.2.2
Figure
6.2.3
6.3

Figure
Figure

Interrupt-Driven I/0
How an Interrupt Works (interrupt vector, RTI)
Device and Processor Priorities

6-1 RT-11 Priority Structure
Processor Status (PS) Word
In-Line Interrupt
Handlers

Service Routines Versus Device

6-2
6-3

Processor (PS) Word
In-Line Interrupt Service Routines and Device
Handlers

6.4.1 Get to Know Your Device
6.4.2 Study the Structure of an Interrupt Service Routine
6.4.3 Study the Skeleton Interrupt Service Routine
6.5 Structure of an Interrupt Service Routine
6.5,4 Lowering Processor Priority: .INTEN (system state)
6.5.5 Issuing Programmed Requests: .SYNCH (user state)
6.5.6 Running at Fork Level: .FORK (system state, fork block)
Table 6-1 Synch Block

SUP
SUP
SUP
SUP
SUP

SUP
SUP

SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP

Table 6-2 Fork Block
6.5.7 Summary of .INTEN, .FORK, and .SYNCH
Table 6-3 Summary of Interrupt Service

SUP
Action (registers) SUP
Routine Macro

Calls
6.5.8 Exiting From Interrupt Service: RTS PC
Figure 6-4 Summary of Registers in Interrupt Service

Routine Macro Calls
6.6
Figure
6.7

Figure
Figure
Figure

Skeleton outline of an Interrupt Service Routine
6-5 Skeleton Interrupt Service Routine
Interrupt Service Routines in XM Systems
(kernel mapping, PAR1, .SYNCH)

6-6 Kernel and Privileged Mapping
6-7 Interrupt Service Routine Mapping Error
6-8 PAR1 Restrictions for Interrupt Service

Routines

8

SUP
SUP

SUP
SUP
SUP

SUP
SUP
SUP

SUP

6-2
6-3
6-3
6-3
6-4

6-4
6-5

6-7
6-8
6-10
6-10
6-11
6-13
6-14
6-15
6-15
6-16
6-17

6-17
6-18

6-18
6-19
6-19

6-20
6-21
6-22

6-23

7.1
7. 1. 1
7. 1. 2
7. 1.3
7. 1. 4
7. 1. 5
7.1.6
7- 1.7
7. 1. 8

How to Plan a Device Handler
Get to Know Your Device
Study the Structure of a Standard Device Handler
Study the Skeleton Device Handler
Think About Using the Special Features
Study the Sample Handlers
Prepare a Flowchart of the Device Handler
Write the Code (position independent code)
Install, Test, and Debug the Handler

7.2 Structure of a Device Handler
7.2.1 Preamble Section
7.2.1.1 .DRDEF Macro (.MCALL, SYSGEN conditionals)
7.2.1.2 Device-Identifier Byte
Table 7-1 Device-Identifier Byte Values
7.2.1.3 Device Status Word (.SPFUN, aborts, internal queuing)
Table 7-2 Device Status Word
7.2.1.4 Device Size Word
7.2.2 Header Section
7.2.2.1 Information in Block 0
Table 7-3 Information in Block 0
7.2.2.2 First Five Words of the Handler
7.2.2.3 .DRBEG Macro
7.2.2.4 Multi-Vector Handlers: .DRVTB Macro
Table 7-4 Handler Header Words
7.2.2.5 PS Condition Codes
7.2.3 I/0 Initiation Section (system state)
7.2.4 Interrupt Service Section
7.2.4.1 Abort Entry Point (.FORK)
7.2.4.2 Lowering the Priority to Device Priority
7.2.4.3 .DRAST Macro
7.2.4.4 Guidelines for Coding the Interrupt Service Section

(.FORK, retries)
7.2.5 I/0 Completion Section

(channel status word, end-of-file)
7.2.6 Handler Termination Section
7.2.6.1 The .DREND Macro
7.2.6.2 Pseudo-Devices

7.3 Skeleton Outline of a Device Handler
Figure 7-1 Skeleton Device Handler

7.4
7.4.1
7.4.2
7.4.3

Handlers that Queue Internally
Implementing Internal Queuing
Interrupt Service for Handlers that Queue Internally
Abort Procedures for Handlers that Queue Internally

7.5 SET Options
7.5.1 How the SET Command Executes
7.5.2 SET Table Format
7.5.3 .DRSET Macro
Figure 7-2 SET Option Table
7.5.4 Routines to Modify the Handler
7.5.5 Examples of SET Options

9

SUP 7-1
SUP 7-1
SUP 7-2
SUP 7-2
SUP 7-2
SUP 7-2
SUP 7-2
SUP 7-2
SUP 7-3

SUP 7-3
SUP 7-3
SUP 7-3
SUP 7-6
SUP 7-6
SUP 7-7
SUP 7-7
SUP 7-8
SUP 7-9
SUP 7-9
SUP 7-9
SUP 7-9
SUP 7-9
SUP 7-10
SUP 7-10
SUP 7-11
SUP 7-11
SUP 7-13
SUP 7-14
SUP 7-14
SUP 7-14

SUP 7-15

SUP 7-16
SUP 7-18
SUP 7-18
SUP 7-19

SUP 7-19
SUP 7-19

SUP 7-20
SUP 7--20
SUP 7-21
SUP 7-22

SUP 7-22
SUP 7-23
SUP 7-23
SUP 7-24
SUP 7-24
SUP 7-25
SUP 7-25

Device I/0 Timeout
.TIMIO Macro (.FORK, kernel mapping)

7-5 Timer Block Format
.CTIMIO Macro (.FORK, abort)
Device Time-out Applications
Multi-terminal Services

Table
7.6.2
7.6.3
7.6.3.1
7.6.3.2 Typical Timer Procedure for a Disk Handler

(system stack)
7.6.3.3 Line Printer Handler Example
Figure 7-3 Line Printer Handler Example

7,7 Error Logging
7.7,1 When and How to Call the Error Logger (.FORK)
7.7.1.1 To Log a Successful Transfer
7.7,1,2 To Log a Hard Error
7.7.1.3 To Log a Soft Error
7.7.1.4 Differences Between Hard and Soft Errors
7,7.1.5 To Call the Error Logger
7,7,2 Error Logging Examples
7,7,3 How to Add a Device to the Reporting Program

Special Functions
.SPFUN Programmed Request

7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.8.5

How to Support Special Functions in a Device Handler
Variable Size Volumes
Bad Block Replacement
Devices with Special Directories

7.9 Device Handlers in XM Systems
7.9,1 Naming Conventions and the System Conditional
7.9.2 XM Environment (PAR1, PAR2, kernel mapping)
7.9,3 The Queue Element in XM
Figure 7-4 Device Handler in XM
7.9.4 DMA Devices: $MPPHY Routine
7.9.5 Character Devices: $GETBYT and $PUTBYT Routines
7,9.5.1 $GETBYT Routine
7.9,5,2 $PUTBYT Routine
7.9.6 Any Device: $PUTWRD Routine
7.9,7 Handlers That Access the User Buffer Directly (PAR1)
Figure 7-5 Device Handler Mappi ng to User Buffer Area
Figure 7-6 PAR1 Mappin~

7,10 -ystem Device Handlers and Bootstraps
7.10.1 Monitor Files
7.10.2 Creating a System Device Handler
7.10.2.1 Primary Driver
7.10.2.2 Entry Routine
7.10.2.3 Software Bootstrap
7.10.2.4 Bootstrap Read Routine
7.10.2.5 Bootstrap Error Routine
7.10.2.6 .DRBOT Macro
7.10.3 DUP and the Bootstrap Process
7.10.3.1 BOOT ddn:filnam
7.10,3.2 COPY/BOOT xxn:filnam ddm:
Table 7-6 DUP Information
7.10,3,3 BOOT ddn:
Figure 7-7 BOOT ddn:filnam Procedure
Figure 7-8 COPY/BOOT xxn:filnam ddm: Procedure
Table 7-7 DUP Information
Figure 7-9 BOOT ddn: Procedure

10

SUP 7-28
SUP 7-28
SUP 7-29
SUP 7-30
SUP 7-31
SUP 7-31

SUP 7-31
SUP 7-32
SUP 7-33

SUP 7-34
SUP 7-35
SUP 7-35
SUP 7-35
SUP 7-35
SUP 7-36
SUP 7-36
SUP 7-37
SUP 7-37

SUP 7-38
SUP 7-38
SUP 7-39
SUP 7-40
SUP 7-40
SUP 7-40

SUP 7-41
SUP 7-41
SUP 7-41
SUP 7-42
SUP 7-43
SUP 7-44
SUP 7-44
SUP 7-45
SUP 7-45
SUP 7-45
SUP 7-47
SUP 7-49
SUP 7-49

SUP 7-50
SUP 7-50
SUP 7-51
SUP 7-51
SUP 7-51
SUP 7-52
SUP 7-52
SUP 7-52
SUP 7-53
SUP 7-53
SUP 7-53
SUP 7-54
SUP 7-54
SUP 7-55
SUP 7-55
SUP 7-56
SUP 7-56
SUP 7-57

- -- --~ ------- - - --------------

7.11 How to Assemble, Link, and Install a Device Handler
7.11.1 Assembling a Device Handler
7.11.2 Linking a Device Handler
7.11.3 Installing a Device Handler
7,11.3.1 Using the Bootstrap to Install Handlers

Figure 7-10

Figure 7-11
1.11.3.4
7.11.3.5
7.11.3.6

Automatically
Using the INSTALL Command to Install Handlers
Manually
Using the DEV Macro to Aid Automatic
Installation
Bootstrap Algorithm for Installing Device
Handlers
Installing a New Device Handler
Installing Devices Whose Hardware Is Present
Writing an Installation Verification Routine
Overriding the Hardware Restriction

7,12 How to Test and Debug a Device Handler
7.12.1 Using ODT to Test a Handler
Figure 7-12 ODT and a Device Handler in Memory
7.12.2 Using ODT in XM

SUP 7-57
SUP 7-57
SUP 7-58
SUP 7-58

SUP 7-58

SUP 7-59

SUP 7-60

SUP 7-60
SUP 7-61
SUP 7-62
SUP 7-62
SUP 7-65

SUP 7-65
SUP 7-66
SUP 7-67
SUP 7-68

Ru sse ll L. Morrison II
Plessey Peripheral Systems
P.O. Box 19616
Irvine, CA 92714

(714)540-9945

I have discovered a small problem with RT-11 V5 and RX03
dual sided, dual density floppies: the new version has all
the code that used to support RX03's deleted. What used to be
a relatively simple patch to enable RX03 support is now a
rather involved patch which re-enters all the old RX03 support
code.

If you wo 11ld l ike a copy of this patch please request in
writing to the editor of the "Mini-Tasker".

Sincerely,

~#-- ·~
Russell L. Morrison II
Systems Analyst,
Software Support

11.

HIGH LEVEL MULTILANGUAGE MACHINE-INDEPENDENT PROGRAMMATION
(16 , 3:2, 1.6, .. . BITS) ·: A SUB!HtUTINE FOR BIT MANIPULATIONS
IN BASIC AND FORTRAN IV .

BY DANIEL GUINIER

LABORATOIRE DE PHYSIOLOGIE COMPAREE DES REGULATIONS
GROUPE DE LABORATOIRES DU CNRS DE STRASBOURG-CRONENBOURG
2 3: F:UE DU LOESS
8. P. 20 CF-:
6701.? STRASBOURG CEDEX,

INTRODUCTION :

HANCE

MANIPULATION OR EXAMINATION OF BITS OF A MEMORY WORD PERMITS
COMPRESSION OF BINARY DATA THAT CAN REACH A VERY INTERESTING RATE
FOR STORAGE , CODING OR DATA ACQ UISITION . THIS ALSO ALLOWS LOGICAL
OPERATIONS APART FROM USING MACHINE CODE OR ASSEMBLER LANGUAGE WHICH
ARE PARTICULAR TO A GIVEN COMPUTER.

WE HAVE REALIZED A SUBROUTINE AND ITS CALLING PROGRAM WRITTEN AS IN
FORTRAN IV AND ALSO IN BASIC (TESTED WITH ZX81 SINCLAIR WHICH IS THE LEAST
EXPEN~IVE MODEL IN THE MARKET OF MICRO-COMPUTERS> . OUR PURPOSE IS TO USE
THIS METHOD ON ALL T'r'PES ANC• OF-:GANIZATIONS OF COMPUTERS <16, 3:2, 1:6, .. . BITS)
AS WELL AS TO COMPARE THESE TWO LANGUAGES.

METHODS :

REPRESENTATION OF INTEGERS :

AN INTEGER I IS STORED IN A MEMOH WOF.:D OF 16,]:2, 1:6, ... BITS
WHOSE THE HIGHEST WEIGHTED BIT IS THE BIT OF SIGN; IF THIS BIT IS RESET TO
ZERO , THE NUMBEF-: rs POSITIVE, OTHEF-:WISE , IT IS POSITIVE.

EXAMPLE :

16 15 14 11: 12 11 10 9 8 7 6 5 4 1: 2 1

I I I I I I I I I I I I I I I

12.

- LET NBRBIT=16, 32 OR ?6, THE NUMBER OF BITS PER NORD .
- LET J, THE INDEX FOR THE POSITION OF THE BITS IN THE WORD (J=1 TO NBRBIT).
- LET BIT(J)=0 OR 1 , THE ACTUAL VALUE OF THE J TH. BIT IN THE WORD.

IF NBRBIT=16 -(2**15-1) <=
IF NBRBIT=32 -(2**31-1) <=
IF N8RBIT=l6 -(2**?5-1) <=

<= 2**15-1 THAT IS -?2767 (=

(::: ~'.*t::i:1-1
(=: ~'*'*]::;-·1

BINARY - DECIMAL CONVERSION

THE VALUE OF A MACHINE WORD WHICH I S THE IMAGE OF A FIE LD INTEG ER I
CAN BE EXPRE SSED AS :

THE NBRBIT-TH BIT GIVES THE SIGN OF I

D:AMPLE

16 15 14 1? 12 11 10 9 4 l

I I OI or [11 0I [11 OI f1I (1[1I (1I f1I f1I £1I 1I 1I

IF NE APPLY WHAT WAS DESCRIBED ABOVE

I = + 67 BECAUSE BITCNBRBIT) = BI T(16) - £1

THIS IS A BINAR Y - DECIMAL CONVERSION.

DECIMAL - BINARY CONVERSION

FOR A POSITIVE INTEGER I, THAT IS AN I WITHOUT I TS SI GN BIT,
CAN BE CONVERTED INTO BINARY REPRESENTAT I ON CONTAINED IM THE ELEMENTS BITCJ)
OF AN ARRAY BIT() THAT ARE THE RESIDUALS OF SUCCESSIVE DIVIS I ONS PER TWO.

EXAMPLE : - TAKE THE ABSOLVE VA LUE OF I = 67

=]:]: F:ES I C1 UAL BI T ,: 1) = 1
= 1G F.: E ~; I [:i LI AL E: I T (2) = 1
= p _, F.:E5 I[:,I_IAL E: I T(]:) = €1

E: { 2 = 4 ; F.'ESI[:iUAL E: I T (4) = t1
::: r,

.::. Rgi f.1 UA L E: I T (5) = f1
= 1. F.:ESI (:,UAL BIT(6) = 0
= 0 F.:E:SI C• UA L BI T (7) = 1

ALL OTHE R BI TS FRO M BI T(8) TO E:ITCNBR E: IT - 1), THAT I S BITC15>
ARE RESET TO ZERO AND BIT(NBRBIT) = £1 IF I IS POSITIV E.

THIS IS A DECIMAL - BINARY CONVERSION.

13

FO R NEGATIVE NUMBERS

IN THE PRECEDING CONVERSIONS, WE WORKED N POSITIVE INTEGERS TO
AVOID TWO ' S COMPLEMENTATION, FORM IN WHICH NEGAT VE INTEGERS ARE
~SLIALY STORED, THIS OPERATION WAS AUTOMATICALLY ONE BY A SINGLE INSTRUCTION
OF SIGN CHANGE AND COMPLEMENTATION BY I = I (+ /- 2**(N BRBIT-1)
WHE N 8ITCNBRBIT) = 1

E)<F!t·1PLE

16 15 14 1J 12 11 1.0 9 C• ,_, 7' f. c:_, 4

-· + f;? I f1I f1J or OI OI (11 BI £1I (11 1I f1I BI €11 BI 1I 1I

-- - · f.;? I 11 1.I 1.I 1.I 1I 1.I 1.I 1.I 1! BI 1I 1.I 1.I 1. I (1! 11

NUMERICAL EXAMPLES :
>!·:>I-=:+: ,1,: :t: * If: If: Y.-: *)/: >/•:)/: :j: :f: :t: * :+: :+: :+:

I tJF'UT

I :1_:::'. 0
ou-;-F·UT

(10[1(1[1 (1[1[1(110[1(1(111.

2ND. EXAMPLE : ********* *********** *****

I f·IF'UT:
I == -" 6?
Ji= [1

OUTPUT

1111 1.1.1.1. 1(1111. HH

:-nH. o:RMF'L.E
:t::t:>1•::t::f::t:*' *' *' * *' *'* *'
I t·ff"UT
I = 6?
I 1. = 1
E:IT 1 -· 1
E:IT 2 -· (1

E:IT 3: = 1.
E: IT 4 -· 1
E:IT 5 - 1
E:IT 6 = 1
BIT 7 = i:::1 I

BIT 8 = 1.
OUTF'UT
-6?
111111111 i:::11. 11.1. 131,

E:IT 9 - 1
E: I TH1 = 1
BIT11. = 1.
BI Ti 2 = 1
BI TU: = 1
BI T14 = 1.
BI T 1. 5 = 1
E: IT if. = 1

14

4TH. E'.=<F1MPl..E
*' *' *' *' *' *' * * * *' * * * *'

I t·!PUT
I= 6?
11.= 1
E:IT 1 = 2
BIT :? - :=.::

BIT::=2
BIT 4 -- ::::
BIT :i = 2
E:n1::-2
BIT ? = 2
BIT t: -- :::·
OUTF"UT :
-H:9
:l 1.111111 (11. £1 [1(1 [111

LI ST rrrns :
*********'*

E:IT 9
BIT10
BIT11
BIT12
BIT 1 '.!:
BIT14
E:IT15
BITH

-· 1
= 1
= 1
- 1
= 1
= 1.
= 1
= 1

SUBROUTINE BIT01 INCLUDES THREE PRINCIPAL PHASES
SEARCH OF THE BITS ' LEVEL FOR THE FIELD INTEGER I.
POSSIBLE CHANGES OF THIS LEVEL (0 OR 1).
REL.EASING OF A NEW FIELD INTEGER I AFTER A CHANGE OF LEVEL OF THE BITS.

THESE PHASES ARE IMPLICIT FOR THE TWO VERSIONS (BASIC AND FORTRAN).
THE LISTINGS BELOW INCLUDE THE TWO VERSIONS WITH MAINS AND SUBROUTINES

AND ALSO FOUR NUMERICAL EXAMPLES.

INPUT AND OUTPUT ARGUMENTS

FOf<'.TPFlri J './

11

Fl ()

BITSET(::,

t-rnFrn IT Nf1

T'r'PE FUNCTION

IN/OUT INTEGER FOR THE LEVEL OF THE BITS OF THE
ARRAY BITC), UNCHANGED FOR OUTPUT IF
IN[;, OR I 1=f1

It-i

rn

rn

IF IND OR I1=0 EXAMINATION OF THE BITS'
LE'./EL, OTHERWISE POSSIBLE CHANGE OF THESE
LE'./ELS .

OUT INTEGEF-'. FIHFllr' (0,1J, LOA[:,EC, flITH THE BITS
LE'./EL OF THE INTEGER FIELD I.

INTEGER ARRAY, GIVING THE BITS' LEVEL TO CHANGE
FOP FILL. BITSET () INCLU[:,E[:, IN (EL 1J

NUMBER OF BITS IN A MACHINE WORD
CNBRBIT=16 , 32 , 36, ... BITS).

15

4

5

6

C

C

* LISTING OF THE FORTRAN IV VERSION*

* MAIN PROGRAM FORTRAN IV*

ItHEGEF.: E:IT(3:6) , BITSET(J:6)

C•FITF! t·JE:F.:E:IT /16/L EC, IMF'/5 , ?/

C•O 1 J:: i, ~H: F.: E: IT
8 I T ~; E T (,J) = -1

l•JF.'.ITEr:: IMP, 2)
FUF.:MFIT(··· $I= I)

F:EHD(LEC, 3:) I
FOF.'.MAT(I5)
l•JF.'.ITE<IMP, 4)
FOf?MAT('. $IN[:•= ,.)
REA[:r(LEC., ::,:::, IN[:r

IF(IND EQ 0)GO TO 7

DO 6 J:::i, NE:F.:E: IT
l•.IF.:ITE(IMP, 5:r .r
FOF.'.MAl('' $E:IT '', I2., ,· = 1

::,

f?EF1[:r (L.EC, 3:) K
IF(K. GT. 1. OF.'.. K. LT. 0)GO TO 6
E:ITSET(,J)=t=::
CONT I t·lUE

CALL SUE:ROUTINE E:IT01
CALL BIT(11(I.. INC•, E:IT , E:IT SET., NE:~:E:IT)

OUTPUT HSUL.TS.
t,Jr..:ITE(IMP., :::)I, <E:IT(K), K=t·lE:PE:IT, 1., -1)
FOF.:MFIT(/18// , 2:-,:., 1.6I1//)

~-TC•P
END

* SUBROU TINE FORTRAN IV*
~************************

':-UBPOUTINE E:ITt11(I, INC• ., E:IT, E:ITSEL l·H:F.'.E:IT)

C DANIEL GUINI EF.'. (1983) C N. R. 5. STF.'.ASE:OURG

C SUB~OUTINE FOPTRAN IV FOR EXA MI NATION AND/OR CHANGE OF THE VALUE
~ OF ONE OR SEVE RAL. BITS IN A MACHINE WORD FOR ANY TYPE OF COMPUTER
C AF.'.CHITECTL.!F.:E (:1.6., 3:2., 3:6, E:ITS)

16

1

,.,
.... .:

4

C: _,

INTEGEF.: BIT(36), BITSET(}:6)

l·IBR=NBF.:BI T-1
IP=I
BIT(NBF::E:IT)=(1

IF(IP GE. 0)GO TO 1

BIT(l·lE:RBIT)=1
IP=IP+2. **(NBPBIT-1)

BIT<,J)=MOC•(IF', 2)
IP=IP/2

IF(IND. ED. 0)RETURN

IF(BITSET(J). NE. 0)80 TO 3
BIT CD= f1
BITSET(,T)=-:t.
GO Tl' 4

IF(BITSET(J) NE . 1)GO TO 4
E:IT CJ)= 1
BITSET(,T)=-1
CONTil·4UE

I==B1T(t·◄ E:F.:)

t·J ==NE: P-· 1

DO 5 ,T=N, 1., -·i

I=I*2+BIT(cT)

IF(BIT(NBRBIT) EQ. i)I=I-2 **(NBRBIT-1)

PETUF.:N
EN[:,

* LISTING OF THE BASIC VERSION*

* MAIN PROGRAM BASIC *

010 DIM A(36)
020 DIM 8(36)

038 LET N0=16

17

040 FOR J=1 TO NB
050 LET B(J)=-1
[160 t·lE)-,:T cT

070 PRINT" I ="
0BO HJPUT I
09[1 PF.:ItH II Il= 11

H.10 Hff'UT I1

110 IF I1=0 THEN GOTO 190

120 FOR J=1 TO N0
13:[1 PPINT II BIT"; J.: II ="
14(:1 Il·!PUT K
150 IF K>l OR K<0 THEN GOTO 170
160 LET B(J)=K
1?ll r-10:T ,r

HH3 F:EM " CALL SUBROUTINE BI H11
190 GOSUB 1000

~~(:n3 PRHIT II SOF.:TIE HS RES UL TATS"
210 PF-'.It·,IT II I = "_; I
220 pf;:rr-H II ETAT DES BITS C•E I"
230 FOR J=1 TO N0
240 PRINT A(J)
25[1 t-.lE;•::T ,J

26€1 STOP

* SUBROUTINE BASIC*

1[1[1[1 REM II

11?.11[1 F:EM II SUBF:OUTINE BIH11
1020
10::0

F:EM II F!F'.GUMENTS
F:EM II

1040 LET N1=N0-1
H.1513 LET I:;::= I
1060 LET A(N0)=0

LIL Fl(), B(), N£1 11

1070 IF I2>=0 THEN GOTO 1100

1080 LET A(N0)=1
1090 LET I2=I2~2**(N0-l)

1100 FOR J=1 TO Nl

1110 LET I3=INT (12/2)
1120 LET A(J)=I2-I3*2
1130 LET I2=I3
1140 NE)-,:T ,J

1150 IF 11=0 THEN RETURN

1160 FOR J=1 TO NB

1170 IF B(J)()0 THEN GOTO 1210
1180 LET A(J)= 0
1190 LET B(J)=-1
1200 GOTO 1240

18

1210
1220
1230
1240

1250
1260

12?0

1280
1290

1300
1310

132£1

IF B(J)C>1 THEN GOTO 1240
LET A(J)= 1
LET B(J)=-1
NEXT J

LET I =A(N1)
LET N2=N1-1

FOR J=N2 TO 1 STEP -1

LET I=1*2+A(J)
NEXT cT

IF A<N0)()1 THEN RETURN
LET I=I-2**(N0-1)

RETURN

CONCLUSION

THE USER CAN DIRECTLY VERIFY OR HANDLE BITS' LEVEL OF A MEMORY WORD
WHITOUT A SPECIFIC ASSEMBLER OR MACHINE CODE WHICH ARE PARTICULAR TO A GIVEN
COMPUTER; THIS SUBROUTINE IS COMPLETELY TRANSPORTABLE TO ANY TYPE OF MACHINE.

THE READER WILL NOTICE SOME DIFFERENCES BETWEEN THE TWO HIGH LEVEL
LANGUAGES AND ESPECIALLY WILL APPRECIATE THE MNEMONIC AND RELATIVE STATEMENTS
QUALITIES OF FORTRAN.

I recently came across a problem with the RT-11 V5 Extended Memory
monitor on 18-bit Qbus systems. I would like to share this problem (and its
solution) with you and the other users out there.

The problem, simply(??) stated, is that DEC has been supplying the LSI
11/23+ chip set for some time, and thus some LSI systellls (ours, for example)
already have 22-bit addressing capability, even though the CPU is plugged
into an 18-bit Qbus. Under these conditions, the memory sizing routine in
RT-11 V5 does a "wrap-around", that is, the upper four bits of a 22-bit ad
dress are ignored, making the next address after "777777" equal to "000000"
instead of "1000000". This is not especially critical in the Single Job
monitor, where it simply causes the RESORC routine to report 4Mb of memory,
and the VM Virtual Memory Disk Emulator thinks the same thing. Using the VM
driver under these conditions can cause RMON to be written over and will
generally cause the system to crash.

In the RT-11 V5 Extended Memory monitor, the boostrap routine sizes
memory and reports to RT-11 that it has 4Mb available. This causes the XM
monitor to crash on loading, so users can't even have the use of the back
ground partition.

Since Plessey Peripheral Systems' main product line is Qbus systems,
t .his state of affairs was wholly unacceptable, and some sort of "work
around" or patch had to be developed. The result of our work consists of
two unsupported patches, either or both of which may be installed to fix
this problem. Since these patches alter the RT-11 source files, care must
be exercised in using them; i.e., be sure you have adequate backups of your
distribution.

19

These patches are presented as a courtesy only. We have tested these
patches on the DEC RT-11 distribution and have found them to work as de
scribed. However, Plessey Peripheral Systems makes no guarantee as to the
accuracy or f'unctionality of these patches, and will in no case provide SUP
port for systems on which they are applied. Plessey will assume no
responsibility for any damages resulting from the use of these patches.

The first patch is an addition to SYSGEN of a new parameter, MODE22.
This parameter turns on/off 22-bit addressing in the RT-11 system, both in

the extended memory monitor and the VM driver. The patch consists of three
SLP files, to be applied to SYSGEN.COH, BSTRAP.HAC, and VH.HAC, respecti
vely.

The first SLP file, SYSGEN.SLP, is as follows:

-/ .IFF <ESCAPE> .GOTO M020/, •
• IFF <ESCAPE> .GOTO Q3A

-/ .GOTO Q3/

.Q3A: .IFF XM .GOTO M020
.ASK [<TROE>] MODE22 Do you want 22-bit support (Y)?

-/ .IF DHM = "LS• .GOSOB LSC/
• IF DNM = "VM" • GOSUB VM22

-/.CTLP90:.RETORN/

• VM22: .IFT XM .RETURN
;
.ASK [<TROE>] MODE22 Do you want 22-bit support (Y)?
.RETURN

-/.G5:/
.SETS ARG "MODE22,22-bit support•
.GOSUB SET

I

The second SLP file, BSTRAP.SLP, is as follows:

-/.SBTTL tt

.IIF NDF MODE22

.IIF NE HODE22
-/ BIS
• IIF NDF MODE22

BIS
.IIF EQ PDT$0P

BCS
BIT

I

Extended Memory Bootstrap •t
MODE22 = 000000
HODE22 = 000020
#20,@#SR3/,/ BIT #20,@#SR3/
MODE22 = 000000
#MODE22,@#SR3
HOP
20$
#MODE22,@#SR3

It should be noted that the first line of this file should be read as
"minus slash period SBTTL tab asterisk eight spaces Extended Memory Boot
strap nine spaces asterisk slash"

The third SLP file, VM.SLP, is as follows:

-/MODE22 = 000020/,,
.IIF NDF MODE22 MODE22 = 000000
.IIF HE MODE22 MODE22 = 000020
I

20

-- · --- --- --- - - ···--- - --- -- - - -- --- - -------------------

Once these files have been created, they may be i rnpler,ien t ed by the
following com;,ands :

-~
•~N, COM=SYSGEN, COM, SYSGEN .~
•~TRAP. MAC=BSTRAP. HAC, BSTRAP. SLP
*YM, MAC=YM •. MAC, VM.-.fil.P
•.:.c

Having implemented these fi l e s, perforc a SYSGEN, or edit your
SYSGEN.CND file to include a li.ne :

MODE22 = 000000 ;22-bit support

which will di sable 22-bit suppor t in both the Extended Menory monitor
and j_n the Vl·l driver. When you perform a SYSGEN, you will notice a new
question:

Do you want 22-bit support (Y)?

This question will be asked i f you se l ect the XM monitor, or, if you
don' t select the XM J;JOnitor, when you selec t the Vll Virtual Memory Driver.
Please note that the default base address of the VM driver in XM systems
(BASE=10000) will make it uni nstallable on 18-bit systems.

The second patch consists of the addition of a SET command t o the VVi
driver. The patch is implemented through an SLP f'ile, VMSET.SLP, the text
of which is as fo llows:

-/REINST:/,/.EVEN/
REIHST: .ASCIZ •?VM-W-Revome/install

.EVEN

.IF EQ MMG$T

.BYTE 17, 10

.BLKW

.BLKW

. WORD

.WORD
C.BT22: MOV

MOV
BR
.ENDC

-/.DRSET/, .

256 •
0
R3,V.BIT
R3,I.BIT
PRI

. IF EQ MMG$T

.DRSET 22BIT,1,S.BT22,NO

.ENDC

.DRSET BASE,1600,S.BASE,OCT

.IF EQ MMG$T
S.BT22: MOY (PC)+,R3

.WORD 21

DEC
BR
.ENDC
.ENABL

-/.ENDC/,/$$.SET/
.ENDC

PRI: MOV
ADD
.PRINT

R3
C.BT22

LSB

PC,RO
#REINST-.,RO

21

5$:
10$: RTS PC

.DSABL LSB
$$.SET - .

-/BIS M«>DE22, @#HHSR3/, /BEQ 20$/
MOV (PC)+,R1

I.BIT: .WORD MODE22
MOV #t~.SR3,R2
BIS R1 ,@R2
BCS 20$
BIT R1,@R2
BEQ 20$

-/CLR @#MMSR3/,/JMP 100$/
CLR @R2
BR 100$

-/.WORD HODE22/,.
V.BIT: .WORD HODE22
I

This patch i s ir.iplemented through the following commands:

.].LSLf
*lli.11AC.:.n~ET, SLP
•..:.c

After entering these commands, either recor.1pile the VM driver or per
form a SYSGEN. Upon completion, a command of the form:

SET VH [N0]22BIT

will be available.

Please note that these two patches are in no way i ncompatible; that is,
they may both be in place at once. Note as well that the second patch,
Hhich implements a SET cor:1uand for the Vl-i driver only, does no thine; for the
Extended Merr;ory Monitor problem. It should also be noted that, while the
second patch in no way alters the functionality of' the VM driver, it does
change the warning message printed after a SET command from:

?VM-W-Regove and reinstall this handler

to:

?VH-H-Remove/install VH

While this is not a big deal for most users, this message might be con
fusing to l ess sophisticated users, since it can't be found in any of the
manuals.

Please note that neither of these patches will correct the RESORC
report that there are 4Mb of memory installed. It will, however, fix any
problems connected with usine the VM driver or the Extended Memory monitor .
Please note as well that any software that directly manipulates the memory
management re gisters of the 11/23 will need to be written to take the prob
lems of the 18-bit bus into account.

I hope that these patches will be of use to those DEC and DEC
compatible users who have been a little perplexed at some of the glitches in
RT-11 V5's extended memory features.

22

nussell L. Horrison II
Plessey Perj.pheral S:,sterns
P.O. 3ox 196 16
Irvine , CA 92714

(7 14) 540-9 945

Sincer e ly,

~/i!J~,
The Cursor Driven Command File Driver does the following:

1, You give the program the name of a menu file which is displayed on the
screen, A me nu file has the name of previously created command files togeth
er with a short description,

2, You move t he cur sor anywhere wit~in t~e command file name, This name must
be alphanumeric and can be 1 to 6 cnaracters,

3. You hit the return keyi If the comm~nd file is creijted properly and is
spelled correctly on the menu, it will then execute,

A couple of comments/observations on the program:

1, It runs on a LSI 11/23 under TSX+; a VT100 terminal in ANSI mode,

2, The escape sequences which we use as a standard at the top of EVERY
menu are as follows; <I tried the program an out of date,,kind of off the
wall sequence and it didn't work,,sd be warned):

ESC = the escape char,
er= Car, return; lf =linefeed,

ESC<ESCC?31ESCC2JESC1;24rESCCHESC(Omcrlf

ESC< = If in VT52 Plode. reset to ANSI

ESCC?31 = If screen 132 col set to so; the question mark is not part of
the sequence but since we have C-ITOH's that use it as part of their se
quence we put it in and it works on a VT100 ok,

ESC[2J = Erase entire screen,

ESCc1;24r = Set top-bottom scrolling region,

ESC[H = Cursor unconditionally to HOME position,

ESCCOm = Clear all attributes,

3, You may move the cursor anywhere with the six character command file
name and the program will work, If you put a call to this program and the
menu names in all command files referenced by your menu system, it can make
getting around the system, significantly faster,

I'd like to thank Bruce Johnson of ITI for showing me much faster/easier
ways out of the trenches at various and sundry times.

2)

Hope you have fun with it; Any comments, experiences in implementing it,
etc, would be most welcome,

I created it out of sheer frustration <ain't it always the way?l, after
see in•~ DEC:350,

(*$L+,$A+*)
PROGRAM PAS;

RONALD ROSENTHAL
HO CECOM

U,S, ARMY ELECTRONICS COMMAND
DRSEL-MS-0

FT, MONMOUTH, NJ 07703
(201) 544-2109

/*<" i i I I I I I I I I l I i I t i l i · • .. - ' _,

PROGRAM LOGIC;
READ MENU INTO ARRAY
MOVE CURSOR TIL CR
GET CURSOR POSITION
STUFF INTO X,Y
GET COMMAND STRING
SETUP ASSEMBLER LINK TO COMMAND STRING INTERPRETER
EXECUTE COMMAND STRING AND
EX IT PROGRAM

\
\
\
\
\
\
\
\
\
V

<! ! ! ! ! ! ! ! I!!!!!!!!!!!! I!! I I I I I! I I I! I! _I! I!!!!!!!!! I I I I!!! I!! I!!!!! I! I!!!'>*/
CONST

MAX COL= 115;
MAXROW"'26;

MINCOL=L
BLANK=040B;
ESCAPE=33B;
LEFTBR= 1338;
SI X=066B;
SMALLN= 1 56B;

TYPE

UPARROW=136B;
SURPRISE=041B;

CURSORRIGHT=103B;
CURSORLEFT=104B;
CURSORUP=101B;
CURSORDOWN=102B;

CR - 15B;
LF ::::: 12B;

NINE=9;

R = 1. . MAXROW;
C = 1 .. MAXCOL;
MN= ARRAY [R,CJ OF CHAR;
NAME~ ARRAY [CJ OF CHAR;
CURPOS = FILE OF NAME;

CHARSET=SET OF CHAR;
VAR

GOOD: BOOLEAN;
NAMEMENU:ARRAY (1 .. 14J OF CHAR; [MENU FILE NAME FROM COMMAND FILE]
F : FILE OF CHAR; [MENU FILE POINTER J
D:CHAR; [RECEIVES CHARS FROM FJ
MENU:MN; [STORES SCREENMENU IN 2D ARRAY . J
BUFFER:NAME; [TEMP STORAGE FOR NUMBERS FROM <READ CURSOR POSITION> J

24

ENDDFESCAPESEGUENCE: INTEGER;
SCREEN: TEXT;
ROW: R;
MENUCOL,SCREENCOL,COL:C;
INCREMENT,LEFTCOL,RIGHTCOL: INTEGER;
LENGTHOFARRAY,LENGTHOFSTRING,DONE,COLBOUNDARY,DPOS : INTEGER;
STOPCHAR,S,SAMPLE:CHAR;
JOBSTAT ORIGIN 44B: INTEGER;
CMDLENGTH ORIGIN 510B : INTEGER;
CMDFLE ORIGIN 512B:ARRAY [1 .. 9] OF CHAR;

J•<--->*I
PROCEDURE P020BEEP;

CONST

BEGIN

DING = 7B;
DONG = 7B;

WRITE (CHR<DING) , CHR<DONG));
END; (P020BEEPJ

J•<--->•J
PROCEDURE P030EXECUTECOMMANDFILE;
f* THIS POROCEDURE CALLS AN ASSEMBLY LANGUAGE MACRO CALL*/
I* TO EXECUTE THE STRING OF CHARACTERS ALREADY BUILT. *I
BEGIN
I* JOBSTAT SETS A BIT IN THE JSW INDICATING THERE'S A COMMAND FILE•/
I * TO BE EXECUTED WHEN THE EXIT MACRO IS EXECUTED. •I

JOBSTAT : = JOBSTAT + 4000B;

[*$C
. MCALL . EX IT
CLR RO
. EXIT
*]
END; [END PROCEDURE]
J•<--->*I
PROCEDURE P040CREATECOMMANDFILE;
!•VAR INTERNAL*/
VAR CMDCDL, I1 : INTEGER;
BEGIN

I* LENGTH OF COMMAND STRING SHOULD BRE SET HERE; IT WILL BE PASSED TD THE
JOBSTATUS AREA WHEN COMMAND FILE IS EXECUTED•/

CMDLENGTH : = NINE;

FOR !1 - 1 TO 9 DO
BEGIN
CMDFLE [I1] - I I . ,
END;

CMDCOL - 2 ;
CMDFLE [1] - , J. ,
CMDFLE [8] - CHRCCR);
CMDFLE [9] - CHR (LF);

25

'-.__.;"

FOR 11 := LEFTCOL TO RIGHTCOL DO
BEGIN
CMDFLE CCMDCOLJ := MENU [ROW, I1J;
CMDCOL CMDCOL + 1;
END;

END; [END PROCEDUREJ

!•<--->~!
PROCEDURE POSOTRUEFALSE (VAR CH:CHAR; SKIPSET:CHARSET; VAR DB:BOOLEAN);
/*VAR INTERNAL*/
BEGIN

IF CH IN SKIPSET THEN
BEGIN

DB: =TRUE;
END;

END; [END OF P050TRUEFALSEJ

,~<--->•!
PROCEDURE P060TESTCHAR;
/*VAR INTERNAL*/

BEGIN
GOOD:=FALSE;
IF <SAMPLE:>= 'A') AND <SAMPLE<= 'Z') THEN

BEGIN
GOOD:=TRUE;

END;
P050TRUEFALSE (SAMPLE, C 'A' .. 'Z 'J, GOOD);
P050TRUEFALSE (SAMPLE, C '0' . . '9'J, GOOD);

END; [END PROCEDURE]

'*<--->•!
PROCEDURE P070FINDMENUCOL (DMENU:MN;DROW:R;SCREENCOL.:C;VAR ACTUALMENUCOL:C; VAR ENDE

C::;, SC.A.i>£:.:1vrrc;.1:~;

/* THIS ROUTINE IS TD TAKE THE COLUMN NUMBER RETURNED BY THE CURSOR POSITION*/
I* REPORT AND CORRELATE IT TO THE ACTUAL COLUMN POSITION IN THE ARRAY OF THE MENU K

C.) ~ \:>T '.I:r-l C.Cd\.t:". ft-/
/*THE CPR DID NOT COUNT ESCAPE SEQUENCES AND WHEN A TAB WAS ENCOUNTERED IT*/
I* ACTUALLY INSERTED TABCOUNT (USUALLY EIGHT) NUMBER OF SPACES IN THE COLUMN*/
I* NUMBER; WHEREAS IN THE CORE ARRAY THERE IS ONLY 1 CHARACTER <llB ELEVEIN*/
I* OCTAL). *I

CONST TAB=11B;TABCNT=8;

VAR DONE,APPARENTMENUCOL: INTEGER;CH:CHAR;

BEGIN

REPEAT

DDNE: =0;
ACTUALMENUCOL:=0;
APPARENTMENUCOL:=0;

BEGIN

ACTUALMENUCOL : = ACTUALMENUCOL + 1 ;
CH:= DMENU [DROW,ACTUALMENUCOLJ;

IF CH= CHR<ESCAPE> THEN

26

BEGIN

END;

ACTUALMENUCOL := ACTUALMENUCOL + 1;
CH:= DMENU [DROW,ACTUALMENUCOLJ;

IF CH= CHR(LEFTBR)
THEr..f

BEGIN
ENDESCAPE := ACTUALMENUCOL + 2;
ACTUALMENUCOL ACTUALMENUCOL + 2;
END

ELSE

BEGIN
ENDESCAPE := ACTUALMENUCOL + 1;
ACTUALMENUCOL ACTUALMENUCOL + 1;
END;

ACTUALMENUCOL ACTUALMENUCOL + 1;

I* THIS VARIABLE IS TO STOP THE LEFT SCAN OF Pi10FINDSTRINGBOUNDARY FROM*/
I* OVERSHOOTING ITS TARGET WHEN SCANNING LEFT; <IT IS ASSUMED THAT ONLY THE*/
I* HIGHLIGHT SEQUENCE <ESCt1M> STOP SEQUENCE <ESC[lM>; OR DOUBLE HEIGHT DOUBLE*/
I* WIDTH <ESC#N> WILL BE USED.) *f

/*THIS COULD HAPPEN IF COMMAND FILE NAME IS RIGHT AGAINST*/

I* THE ESCAPE SEQUENCE FOR HIGHLIGHTING ON THE MENU; E.G., ESC[1MXXXXXX
N'EST PAS??*/

IF CH= CHR(TAB) THEN
BEGIN

ACTUALMENUCOL := ACTUALMENUCDL + 1;
APPARENTMENUCOL := APPARENTMENUCOL + TABCNT;

END;

IF CH= CHRCCR> THEN
BEGIN

DONE: =li
END;

IF CH> CHR(37B) THEN
BEGIN

APPARENTMENUCOL := APPARENTMENUCOL + 1;
END;

IF APPARENTMENUCOL = SCREENCOL THEN
BEGIN

END
UNTIL DONE = 1;

DONE:= 1;
El\JD;

END; [PO7OFINDMENUCOLJ

27

'*<--->~,
PROCEDURE POBOTESTFORESCAPEBOUNDARY CDCDL,ENDCOL: INTEGER; VAR DB:BOOLEAN);

BEGIN
IF DCOL = ENDCOL THEN

BEGIN
DB : = FALSE;
END;

END; [P080TESTFORESCAPEBOUNDARYJ

/~(--- ------------------------->*!
PROCEDURE P090TESTFORSTRINGLENGTH CCOLNOW,COLBEGIN,LS INTEGER; VAR DB:BDOLEAN) ;
/*VAR INTERNAL*/
BEGIN

IF ABS <COLNOW - COLBEGIN) > LS THEN
BEGIN
DB : = FALSE.,
END;

END; [END PROCEDURE]

'*<--->*!
PROCEDURE PlOOTESTCOLIMITS CDCDL,MIN,MAX : INTEGER; VAR DB:BOOLEAN);
/*VAR INTERNAL.it·/
BEGIN

IF CDCDL < MIN> OR CDCOL > MAX> THEN
BEGIN
DB : = Ft>,LSE;
END;

END; [END PROCEDURE)

,~<--->*!
PROCEDURE P110FINDSTRINGBOUNDARY (ENDESCAPE: INTEGER; DMENU:MN; DROW:Ri DCOL:C;

~ VAR DCOLBOUNDARY: C .• VAR I NC: INTEGER) ;

VAR NUMCHARS,DLENGTHOFSTRING: INTEGER ;

BEGIN

NUMCHARS := 0 ;
DLENGTHOFSTRING - 6;
COLBOUNDARY:=DCOL;
DOl'JE : = 0;

REPEAT
GOOD : = TRUE;
SAMPLE:= DMENU EDROW,COLBOUNDARYJ;
P060TESTCHAR;

IF GOOD= TRUE THEN
BEGH!
POBOTESTFORESCAPEBOUNDARY (COLBOUNDARY,ENDESCAPE,GOOD)i
END;

IF GOOD= TRUE THEN
BEGIN
P090TESTFORSTRINGLENGTH <COLBOUNDARY,DCOL ,DLENGTHOFSTRING,GOOD);
END;

28

IF GOOD= TRUE THEN
BEGIN
P100TESTCOLIMITS (COLBOUNDARY,MINCOL,MAXCOL,GODD>;
END;

IF GOOD= TRUE THEN

ELSE

BEGIN

END

BEGIN

END;
UNTIL DONE = L

COLBOUNDARY:= COLBOUNDARY + INC;
NUMCHARS:=NUMCHARS + 1;

DONE : == L
COLBDUNDARY - CDLBDUNDARY - INC;

I* IF SOMEONE PUTS THE CURSOR ON A NO-NO WE WANT TD MOVE IT BACK TO ITS •I
I* STARTING POINT. *I

IF NUMCHARS = 0 THEN
BEGIN

COLBOUNDARY:= COLBOUNDARY + INC;
END;

DCOLBOUNDARY := COLBOUNDARY;

END; [END PROCEDURE]
!•<--->•!
PROCEDURE P120GETCHAR;
!•VAR INTERNAL-!!·/
/•THIS PROCEDURE IS FOR DIPLSAY THE MENU*/
BEGIN

GET< F);

D: =F·'··;
END; [P120GETCHARJ

l•<--->•J
PROCEDURE P130DISPLAYSTOREFILE;
!•VAR INTERNAL*/
BEGIN

READ (NAMEMENU);
RESET (F,NAMEMENU);

COL :=1;
ROW : =L

WHILE NOT EOFIF) DO BEGIN

I• DISPLAY MENU AND STORE IN ARRAY IN CORE;
DISPLAY SCREEN

IF D=CHR(OOOB> THEN BEGIN
END

ELSE
BEGIN

WRITE (D);

MENU[ROW,COLJ:=D;
COL: =CDL+L

29

IF D = CHR(LF) THEN
BEGIN

END;

END;

COL: =i;
ROW: =ROW+l;

ONE READ ONE WRITE PER MODULE!!!!!!*/

P120GETCHAR;

END; [END OF WHILEJ

CLOSE(F);

END; CP130DISPLAYSTOREFILEJ

!*<--->•!
PROCEDURE P140ECHOFF;
!•VAR INTERNAL*/

BEGIN
WRITE(CHR(035B), 'F');

END; CP140ECHOFFJ

!*<--->*!
PROCEDURE P150ECHON;
/*VAR INTERNAL*/

BEGIN
WRITE(CHR<035B), 'E');

END; CP150ECHONJ

l•C--->*I
PROCEDURE P160GETCURSORPOSITION;

BEGIN

END; EP160GETCURSDRPOSITIONJ

WRITE(CHR(ESCAPE));
WRITE(CHR(LEFTBR));
WRITE<CHR(066B));
WRITE<CHR(156B));

!*<-- >•I
PROCEDURE P170GETCURSORPOSITION;
BEGIN
P160GETCURSORPOSITION;
END; EP170GETCURSORPOSITIONJ

!~<--- ---- -------------------->*!
PROCEDURE P180GETSCREENCHAR (VAR CH:CHAR);

f* THIS PROCEDURE WILL BE MADE AN EXTERNAL PROCEDURE THAT*/
I* WILL BE CALLABLE FROM ANY PASCAL PROGRAM. *I

VAR JOBtTAT ORIGIN 44B: INTEGER;

I* B & CARE ON AND OFF VT100 ESCAPE LETTER ACTIVATION. *I
f* S & TARE ON AND OFF SINGLE CHAR. ACTIVATION *I
I* WHEN ON YOU DON'T NEED A CR TO RETURN A CHAR TO YOU *I

30

BEGIN

I* JOBSTAT DOES THE SAME THING FOR RT11 ASS DOES FOR TSX+ *I
I* SEE PROCEDURE P085. . FOR TURNING OPTIONS OFF. ·'If-/

WR I TE < CHR < 035B), 'B 1 >;
WRITE <CHR<035B>, '5');
JOBSTAT JOBSTAT OR 10000B;

REPEAT
[$C
. MCALL . TTYIN
. TTYIN
MOVB RO,@CH(6)
]

UNTIL CH# CHR (O);

END; [P180GETSCREENCHARJ

f*<--->*I
PROCEDURE P190REVERSEP1800PT10NS;

I* THIS PROCEDURE WILL BE MADE AN EXTERNAL PROCEDURE THAT*/
I* WILL BE CALLABLE FROM ANY PASCAL PROGRAM. *I

VAR JOBSTAT ORIGIN 44B : INTEGER;

BEGIN

I* B & CARE ON AND OFF VT100 ESCAPE LETTER ACTIVATION. *I
I* S & TARE ON AND OFF SINGLE CHAR. ACTIVATION *I
I* WHEN ON YOU DON'T NEED A CR TO RETURN A CHAR TO YOU *I

I* JOBSTAT DOES THE SAME THING FOR RT11 ASS DOES FOR TSX+ *I
I* SEE PROCEDURE POBO . . FOR TURNING OPTIONS ON. *I

WRITE (CHR <035B), 'C');
WRITE <CHR <035B), ' T') ;
JOBSTAT := JOBSTAT AND NOT 10000B;

END; [END PROCEDURE P190REVERSEP1800PTIONSJ

!*<--->*!
PROCEDURE P200SCANTIL;

VAR X: INTEGER ;
BEGIN

X: =0;

FOR X:= 1 TO LENGTHOFARRAY DO
BEGIN

BUFFER [X J : = I Ii

END;

WHILES# STOPCHAR DO
BEGIN

END;

X:=X-t-1;
BUFFER[XJ : = S;
PlBOGETSCREENCHAR(S);

LENGTHOFSTRING X;

31

END; EP200SCANTILJ

!*<--->*!
PROCEDURE P210ARRAYTONUM;
f*VAR INTERNAL*/

VAR I1, I2: INTEGER;R1:REAL;
BEGIN
R 1: ==O. 0;
I2 : = 0;
DPOS: =0;
FOR Ii:=LENGTHOFSTRING DOWNTO 1 DO

BEGIN
Rl R1+(<0RD<BUFFERCI1J) - ORD('O')) * EXP10(12));
I2 I2 + 1;

END;
DPOS TRUNC(R1);
END; EP210ARRAYTONUMJ

!•<--->*!
PROCEDURE P220MOVECURSOR;
VAR ENDSW: INTEGER;
BEGIN
ENDSW : = 0;

REPEAT
BEGIN

P180GETSCREENCHARC9);

IFS= CHR(ESCAPE) THEN BEGIN
P180GETSCREENCHAR(S);

END;
IFS= CHR(LEFTBR) THEN BEGIN

END;
IFS= CHR(CURSORRIGHT> THEN

P180GETSCREENCHARCS);

BEGIN
WRITE (CHR(ESCAPE));
WRITE (CHR(LEFTBR));
WRITE < CHR (103B)) ;
END;

IFS= CHR(CURSORLEFT> THEN BEGIN

END;
IFS= CHR(CURSORUP) THEN BEGIN

END;

WRITE (CHR(ESCAPE));
WRITE (CHR(LEFTBR));
WRITE (CHR(CURSORLEFT));

WRITE (CHR(ESCAPE));
WRITE (CHRCLEFTBR));
WRITE (CHR<CURSORUP));

IFS= CHR(CURSORDOWN) THEN BEGIN

/*IFS - CHR(CR) THEN

END;

BEGIN

END;

WRITE <CHR<ESCAPE));
WRITE (CHR(LEFTBRJ);
WRITE (CHR(CURSORDOWN));

ENDSW : = 1,

32

*f
IFS= CHR(LF) THEN BEGIN

END;
ENDSW 1;

END [END OF REPEAT]
UNTIL ENDSW = 1;
END; tP220MOVECURSORJ

--- - ~ - · - --·· ---- - - --- ----------

'*<--- - ---------------------->*!
PROCEDURE P230STUFFINTOXY1
f*VAR INTERNAL*/
BEGIN
STOPCHAR : = J ; I;

LENGTHOFARRAY : = 2 ;
P180GETSCREENCHAR<S);
P180GETSCREENCHAR(S);
P180GETSCREENCHAR(S) ;
P200SCANTIL;
P210ARRAYTONUM;
ROW : = DPOS;
P180GETSCREENCHAR(S);
STOPCHAR : = 'R ';
P200SCANTIL
P2iOARRAYTONUM;
SCREENCOL : = DPOS;
END; [P230STUFFINTOX YJ

/-ll·MAIN PROGRAM* /

BEGIN
P130DISPLAYSTOREFILE;
P220MOVECURSOR;
P160GETCURSORPOSITION;
P230STUFFINTOXY;
I* THESE NEXT TWO STATEMENTS ARE FOR DEBUGGING PURPOSES COMMENTED OUT *I
/*WRITE ('SCREEN',SCREENCOL);*/
/*WRITE ('ROWXXX',ROW);*/
P070FINDMENUCOL <MENU,ROW,SCREENCOL,MENUCOL,ENDOFESCAPESEGUENCE);
INCREMENT : =-1;

P110FINDSTRINGBOUNDARY (ENDOFESCAPESEGUENCE,MENU,RDW,MENUCOL,LEFTCOL, INCREMENT);
INCREMENT: =1;

P110FINDSTRINGBOUNDARY <ENDOFESCAPESEGUENCE,MENU,ROW,LEFTCOL,RIGHTCOL, INCREMENT);
P040CREATECOMMANDFILE;
I* SAME METHOD USED HERE FDR THIS DEBUGGING STATEMENT *f
/ *WRITE (LEFTCOL,RIGHTCOL, CMDFLE);*/
P190REVERSEP1800PTIONS;
P030EXECUTECOMMANDFILE;
END.

33

USER REQUESTS

I am running RT-11 on a PDP 11/23 to prepare a TU-58 to
run stand-alone on a 11/04. What do I have to change in FRT.MAC
which is part of the stand- alone module? Where can I get the latest
documentation on FRT.MAC and SIMRT.MAC.

Joseph F. Heinig
NASA Goddard Space Flight Center
Code 564.J
Advanced Systems Section
Greenbelt Road
Greenbelt, Md. 20771

We are in urgent need of a serial handler for a printer with
X-on/X-off protocol for operation under Version_:! of RT-11.

If you can advise us as to where we might find such a handler,
we would be most grateful.

Very truly yours,

VARTRON CORPORATION / ____ ,_ .. _ _ _
750 WELCH ROAD

PALO ALTO, CALIFORNIA 94304

PHONE: (415) 328-2531

(

~Je·
Pat Vartanian
DECUS Associate 118501

USER RESPONSES

The very usefull prograrnm DATE, published by R.M.Harrington in Mini

tasker March 1983 Vol 9, No.l, could be added with some lines to

accept time from 20: to 23: hours (for night-workers!)

Change the lines between the comment "HH OR H FORMAT" and "NOW

CHECK FOR ERRORS" as follows:

HH OR H FORMAT

HH: CMP Rl,-ff-541

BPL TTI1 too much input

IDV ::J:f34460, R2 Range 0-9

JSR PC, CHECKR

CMPB -1 (Rl) ,;!}40 CK for Space

BEQ CKE

34

CMPB -1 (Rl) ,1:f 61

BEQ ADJ

CMPB -1 (Rl) ,q:f62

BNE TIM

INC Rl

.MJV :ff 31460, R2

JSR PC, CHECKR

ADJ: DEC Rl

CMPB -1 (Rl) ,tf40

BNE TIM

CKE: CMPB -2 (Rl) ,:ff 'E

BNE TIM

NOW CHECK FOR ERRORS

--- -------- ----------------

CK for 1

CK for 2

Range 0-3

Adjust Pointer

CK for Space

CK for 'E' of time

L.Kahlbau

Yours sincerely

c/o SIEMENS,SARL

Fertigungstechnik

Estr.de Almeirim

7000 Evora

PORTUGAL

L. Kahlbau

UPCOMING SYMPOSIUM INFORMATION

ANNOUNCING

RT- l 1 SESSION NOTES

for
DECUS LAS VEGAS

There wi I I be a volume of Session Notes containing the vi
suals for some of the RT-11 papers to be given at the DECUS 1983
Fal I Symposium in Las Vegas. Additionally, the volume wi I I con
t!3in "The Best of RT-11, Volume 2", as an added bonus.

Look for the document at the DECUS store at the Symposium.

35

1983 FALL SY~POSIA IN LAS VEGAS

Even though there was very little time between the Spring
symposia and the Fall symposia, I received a record number of sub
missions for the RT-11 SIG. The scheduling problem was compounded
by the fact that the number of meeting rooms was less than before.
The end result of all this is a schedule that is a little different
than before. First of all, we will be starting at 8:30 in the
morning instead of 9:00. Second, the coffee break time was elimina
ted so that we could hold more sessions. Cookies and milk will be
available in a number of locations so that you will not have to go
the entire morning or afternoon without food. Finally, you will
notice that a number of RT-11 sessions are scheduled for Friday
morning and afternoon. The thought here was that this was really
a five-day convention and that we should better utilize Friday in
order to avoid "session burnout." As always, I will be available
at the symposia to listen to constructive criticism only so long as
you buy the beer.

I have attached a Master Index of all the RT-11 sessions
to enable you to make plans to attend the symposia. I hope to see
you there.

RT-11

CODE

ROOl

R002

R.004

ROOS

R007

ROOS

R009

ROlO

ROll

R012

TITLE/SPEAKER

USING A PDP-11/23 AS A FILE SERVER FOR ATTACHED
LSI-ll'S
Fouts, Martin

MIGRATION OF DBMS SOFTWARE FROM RT-11 TO RSX-llM
Natale, Robert C.

RT-11 USERS SPEAKOUT
Rhodes, Ned W.

RT-11/TSX-PLUS COMPATIBILITY ISSUES
Peterson, Jack J.

RT-11 SIG BUSINESS MEETING
Rasted, John T.

RT-11 SIG SYMPOSIUM WRAP-UP
Rasted, John T.

DECUS LIBRARY LAYERED PRODUCTS PANEL FOR RT-11
Bourgeois, Nick

RT-11 ROADMAP
Rasted, John T.

RT-11 USER APPLICATION WORKSHOP
Rasted, John T.

RT-11 USER COMMAND LINKAGE
Crowell, John M.

36

TIME REQ.

1 hour

30 minutes

2½ hours

1 hour

30 minutes

30 minutes

1½ hours

30 minutes

1 hour

30 minutes

R013

R014

R017

R018

R019

k'l'-11 FUTURES WORKSHOP
Crowell, John M.

HOW TO DEVELOP RT-11 DEVICE HANDLERS
Rhodes, Ned W.

COMBATTING FLASH FLOODS WITH PDP-llS
Peterson, Jack J.

TSX-PLUS INTERNALS
Bramlet, Jan

ACCESSING MEMORY ABOVE 56KB FROM RT-11 FORTRAN
Trellue, Ron

1 hour

1 hour

1 hour

1 hour

1 hour

ROZO SHARED REGIONS AND RESIDENT LIBRARIES FOR RT-11 XM 1 hour
Adams, Greg

R021

R022

R023

R024

R025

R027

R029

R030

R031

R032

RT-11 XM NEW USER
Adams, Greg

RT-11 FEEDBACK SESSION
RT-11 Software Development Group

RT-11 LANGUAGES PANEL
RT-11 Software Development Group

RT-11 PRODUCT PANEL
RT-11 Software Development Group

RT-11 DIRECTORY STRUCTURES INTERNALS
Gentry, Martin

RT-11 IND NEW USER
Metsch, James

USING TSX-PLUS SHARED RUN-TIME SYSTEMS
Crapuchettes, Jim

IMPROVING PERFORMANCE OF RT-11 FORTRAN PROGRAMS
Crapuchettes, Jim

TSX-PLUS REAL-TIME I/0 TECHNIQUES
Crapuchettes, Jim and Clark, Tim

TSX-PLUS QUESTION & ANSWER AND MAGIC
Kingsbury, Dan

37

1 hour

1 hour

30 minutes

1 hour

1 hour

1 hour

1 hour

1 hour

1 hour

1 hour

PAST SYMPOSIUM INFORMATION --------------------------
From: William K. Walker

Monsanto Research Corp.
P, o. Box 32 08-123
Miamisburs, Ohio 45342
(513) 865-3557

I Save a short Presentation durins the Foreisn PeriPherals Forum
at the St. Louis DECUS meetins on the model 306A clock board
from Grant TechnoloSY Systems. This is a KWV11-C eauivalent
board that also includes a really slick battery-backed calendar
clock option. A number of PeoPle expressed interest in a couple
of utilities which I had written to set the calendar clock and
to set the RT-11 date and time from the clock values. This
stuff was not ready for the RT-11 SIG tape at the time and I
didn't have any listinss with me. I have since found time to
clean-up these routines and to add some additional code and
assembly conditionals to make them more seneral. I am enclosins
source listinss for those of you who misht be interested, For
those of You who are too lazy to do Your own tYPins, I have also
submitted them to the DECUS library,

,title set306,mac
,enabl le
,ident /wkw02/
,nlist end

Sincerely,

William K+ Walker

This Prosram sets UP the date and time on the calendar clock oPtion for
the GTSC model 306A real-time clock/calendar clock board.

This is NOT a real soPhisticated Prosram if YOU tell it to set UP
sarbase on the board, it will cheerfully do so, It is, however, simPle,
and relatively easy to understand,

Note that there are conditionals in the code for three different set-up
variables. You may choose to read/write the resisters in binary or BCD
format, you may keep AM/PM or 24-hour clock time, and YOU can have the
board compensate for Dawlisht Savinss Time, Note also that the Prosram
turns all interrupt enable bits off. The alarm times are undisturbed
however.

This Prosram will run under versions 4 and 5 of RT-11 and Probably
earlier and later versions as well+

Contributed by: William K. Walker
Monsanto Research Corp.
P. O. Box 32 OS-123
Miamisburs, Ohio 45342

38

.mcall

ccba
re!:la
re!:lb
re!:ld

+!:ltlin, • e:-:i t

= 170400
= ccbat12
= ccbat13
= ccbat15

;Base address for clock re!:listers
;Re!:lister A address
;Re!:lister B address
;Resister D address

; Conditionals!

dm
ck24
dse

+iif
+iif
,iif

Sf:!t

ndf
ndf
ndf

dvrset
dvset

= 4
= 2
= 1

dm,
ck24,
dse,

:;:; 200
= 160
:::: 40

;Disable if board is to operate in BCD mode
;Disable if board is to keep AM/PM time
;Disable if board is not to compensate for dawlisht savinss

time

dm = 0
ck24 = 0
dse = 0

bset = set!dm!ck24!dse

set306!
mov
mov
mov

10$! tstb
bmi

20$! movb
SC)b

movb
,!:ltlin
call
movb
.stlin
call
movb
.stlin
call
movb
,Stlin
call
movb
.stlin
call
movb

+if ea ck.24
.stlin
bicb
cmPb
bea
cmPb
bne
bisb

,endc
30$! .stlin

call
movb

tccba,r0
tsec,r1
t6,r2
@tresa
10$
(r0)tdr1>+
r2,20$

@tresd,r0
tbuf,tweara
ascbin
r0,wear
tbuf,tmontha
ascbin
r0,month
tbuf,tdawa
ascbin
r0,daw
tbuf,tdawwka
ascbin
r0,dawwk
tbuf,thoura
ascbin
r0,hour

tbuf,tamPma
t240,buf
buf,t'A
30$
buf,t'P
30$
t200, ho•Jr

tbuf,tmina
ascbin
r0,min

;set UP to Srab current time data off board
; (really Just after alarm times), ••

;Update in prosress?
;Branch if so
;Get the data •••

;set 'valid RAM and time' bit
;PromPt for and set wear
;convert to aPProPriate binarw
;store result
;Get, convert, and store month,,,

;Do daw of month, ••

;Do daw of week,,,

; Hour,,,

;'AM or PM?'
;Make response UPPer case, 7-bit
;AM?

;set PM <hish-order> bit

39

.stlin
call
movb

.stlin
mov
mov
mov
movb
movb

40$: movb
sob
movb
bicb
.e:dt

ascbird
mov
clr
tstb
bne
ret1Jrn

10$: tstb
bea
movb
bic

+if ea dn1
.,..-..._ .rePt

asl
.endr

+iff
asl
mov
asl
asl
add

.endc
tst

20$: movb
bic

+if ea dm
bis

.iff
add

.endc
ret1Jrn

b•Jf: ,bH.b

sec: ,byte
.bYte

min: .byte
,byte

ho•J r: ,byte
.bYte

da1:1wk: ,byte
da!:! t +bYte
month: +bYte
\:/ear: ,byte

tb•Jf, tseca
ascbin
rO,sec

tb•Jf, tseta
tsec,rO
tccba,r1
t10.,r2
tbset,@tresb
tdv T'set, @t res a
(r0)t,(r1>+
r2,40$
tdvset,@tresa
tset,@tresb

tb1Jf,r1
rO
< r1 >+
10$

< r1>
20$
-(r1),r0
t~C<17>,r0

4
rO

rO
r0,r2
rO
rO
r2,r0

(r1)t

-<r1>,r2
t~C <17 > ,r2

r2,r0

r2, rO

;second •••

;"Hit <return> to set clock ••• •
;Ro= > data buffer
;R1 => clock resisters
;R2 = no. of bYtes to transfer
;Tossle set-up bits
;Reset divider chain
;Load resisters •••

;Remove divider reset
;start clock
;E:dt to RT-11

;R1 => inPut buffer
;clear RO; will contain result
;Test first character
;continue if not null
;Return with zero result otherwise

;Test 2nd character
;If null, number is 0-9
;Get 10's character
;strip out ASCII stuff

;Move left 4 bits into hish-order nibble

;MultiPlw bw 10. bY doins <n*2>+<n*B), ••

;Get one's character
;striP out ASCII stuff

;set low-order nibble

;Add to result for 10's character

134. ;Buffer for .stlin reauest

0 ;Data b1Jffer for clock resisters •••
0
0
0
0
0
0
0
0
0

40

; Prompt messases:

YearG:
monthG:
daYG:
daYwkG:
hourcd
iillllPmG:
mined
secG:
setG:

,end

,title
,ident
,Ea' nabl
,nlist

,ascii
,ascii
,ascii
,ascii
,asc ii
,ascii
,ascii
+ascii
,ascii
,even

set306

/ Ye a r (1983=83)? / (200>
/ Month (Jan=l)? / (200>
I DaY? /(200>
/Day of week (Sun=l)? / (200 >
/ Hour? / (200 >
/ AM or PM <A or P>? 1 <200>
/ Minute? / (200>
I Second? / (200 >
/Hit <return > to set clock.,,/ (200>

setdt.mac
/wkw02/
le
end

This Prosram sets the RT-11 date and time from the GTSC model 306A
clock board .

The handiest way to use this Prosram is to run it in your start-up
command file. It can, of course, be run at anY time You may wish to
brins the RT - 11 date and time into asreement with the the clock on the
306A,

This Prosram will run under a version 4 or 5 monitor.

Contributed bY: William K, Walker
Monsanto Research Corp,
P, O+ Box 32 OS-123
Miamisburs, Ohio 45342

,mcall ,Sval, ,Print, ,sdttm, ,exit

ccba
resa

= 170400
= ccbat12

;calendar cloc k base addres s
;•Resister A" address

jsw = 44 ;Address of job stat1Js word
userrb = 53 ;Address of user error byte
SYSVer = 276 ;offset of monitor version n1Jmbe r
sever$ = 10 ;severe error bit in user error byte

eis = 1 ;Disable if YOU do not have EIS instructions
;1t50hz = 1 ;Remove semicolon if YOIJ have 50Hz line-time clock
; am Pm = 1 ;Remove semicolon if board is set UP for AM/PM time
;bed - 1 ;Remove semicolon if board is set UP in BCD mode
datime = 1 Hlisable if YOU don't want date and time Printed on e:dt

NOTE: The mainline code in this Prosram doesn't really do very much,
If You strip out this mainline code and add the aPProPriate
GLOBL and PSECT stuff, You have a MACRO or FORTRAN-callable
subroutine named GSDTM that will set the RT-11 date and time
from the 306A cloek. ·'--._./

41

_,

setdt:

20s:
.if df

30S:

40$!
.endc

chnbit:
wr!'.lver:

♦ if df
csize:
cstart:

cend:
.endc

• !:!val
bic
ClllPb

b!'.lt
beG

.Print
bisb
C 1 r
.e:dt

mov

call
datime
mov
mov
mov
mov
mov
movb
sob
bis
clr

.e:dt

,word
.asciz
• f:!ven
datime
.word
,asciz
,asciz
,even

:l:area,:l:sYsver
:l:~C<377>,rO
r0,:1:4
20$
10$

,Get RT-11 version number,.,

;rest for version 4
,Branch if V5 or later
,Branch if V4

:l:wr!'.lver ,Co111Plain if earlier than V4
:l:severS,@:l:userrb ,Set severe error bit
rO ,Do a hard exit.,,

:1:4000,chnbit

!'.lsdtm

:1:1000,SP
csize,rO
:l:cstart, rl.
:l:510,r2
i'O,<r2)+
(r1>+,<r2>+
r0,30$
chnbit,@:l:jsw
rO

40

,Set-up for V4-stYle chain exit

,Set date and time from 306A

,Pass DATE and TIME commands to RT-11
; on e:-:it, ••

/?SETDT-F-Wron51 Version Of RT-11/

cend-cstart
/DATE/
/TIME/

; "Get-and-set• date and time fro111 GTSC model 306A clock board,

+iif ndf bed, noon :::: 12.
,iif df bed, noon = 22 H22 = 12. in BCD)

!'.lsdtm:
IIIOV :l:10.,r3 ;Get read'::! to move 10 b'::ltes
mov :l:ccba,r4 ; startins from the cc base address
mov :l:sec,r5 ; to the local b1Jffer

10$: tstb @:I:re!'.la ,Clock tJPdate in Pro!'.lress?
bmi 10$,Branch if so

20s: movb (r4>+,<r5)+ ,Move a b'::lte to the buffer
sob r3,20$,KeeP !:loin!'.! until done

+if df amPm ,Code for AM/PM time •••
tstb hr ;Is time PM?
beG 30$,Branch if not
movb hr,rO met hours value
bic :1:~c-<17>, rO ,Mask for hour value
add :l:noon,rO ,Make it a 24-hour time value
movb rO,hr ;store •corrected' val•.Je

30S:
,endc

42

,iif df bed, call bcdbin

cl r· re;
movb month, 1<:.i

,if ndf el :;
, re Pt 5
asl r·5
,endr

.iff
ash t5,r5

, E.'ndc

bisb da':lm,r5
,if ndf e i :;

,rePt 5
asl r ~:i
,endr

,iff
ash t5,r5

,endc

movb '::!ear, r4
1:,Ub t72,,r4
bis 1'4, r5
ITIOV r5,date

cl 1' rO
cl r rl
movb hr,r1
call IYIIJ 1 d60
movb mi.n,r5
add r5, r l.
call muld60
movb sec,r5
add r 5, r 1
adc rO

,if ndf l t50h:;.:

call muld60
,iff

call muld50
,endc

mov !'0,timehi
mov r1,timelo

, !,dttm tar-ea,tdate

ret1Jrri

Buffer for clock resisters:

sec: , b':lt e 0
, b':lte 0

min: , b':lte 0
,b'.:lt e 0

in: ,byte 0
,byte 0
, b\:lte 0

da':lm: , b':lte 0
month: ,byte 0
\:!ear: , b':lte 0

- ----- - --- --------------

;convert resister values to binar':l,
if necessar··cJ

,Clear- R5
;Get the month

;Shift left 5 bits,,,

;Shift left 5 bits, EIS code

;Get the da'::l of the month

;Shift left 5 bits,,,

;Shift left 5 bits, EIS

;Get the '::!ear·
;Offset it from 1972
;stuff it into !'5
;save result as date word

,Clear RO (~Jill be hiSh-order
; Clei:n Rl (will be low-order
;Get hour and
; convert it to minutes
,Get min1Jtes,
; add them in, and
; convert to seconds
; Get second,;

Past

time)
time)

m :i. dn i Sht

;Add to get seconds from midnisht,,,

;convert to ticks (60Hz clock)

,Convert to ticks (50Hz clock)

;store hish-order time
;store low-order time

;set the RT-11 date and time

43

; Date and time words for +SDTTM reo1Jest:

date: ,word 0
tilTlehit ,word 0
ti1T1elo: ,word 0

area: ,word 0,0 ;EMT a rs1.1111ent block for ,SDTTM

This ro1Jtine m1JltiPl i es a do1Jble-precision (two - word) inteser bw 60,
It takes advantase of this special case, and does it as (64*N>-<4*N>,

m1Jld60:
,if ndf

,iff

,endc

eis
mov
clc
asl
rol
sob
mov
mov

mov
clc
asl
rol
sob

ashc
mov
mov
ashc

SIJb
sbc

t2,r4

r1
rO
r4,10$
r0,r2
r1,r3

:1=4, r4

rl
1-0
r4,20$

:1=2,r0
r0,r2
r1,r3
14,r0

r3,r1
rO

s1.1b r2, rO
return

,if df lt50hz

;Non-EIS code,,,
;MIJltiPlY RO,R1 bY 4,,,

;save res1Jlt <n*4>,,,

;Now 1T1ultiPlw by 16 to set n*64

;EIS code, ..
;M1JltiPlY RO,R1 bY 4, ••
;save result,,.

;Now m1JltiPlY by 16 to get n*64

;subtract R2,R3 frolTI RO,Rl,,,

; For those of You with 50Hz line-ti1T1e-clotks, this routine ITIUltiPlies
a two-word inteser in RO,R1 by 50, It does this b'.:l treatir,g 50*n a s
(32+16+2>*n,

m1Jld50:
. if ndf eis

clc
asl
rol
mov
mov

mov
clc

10$: asl
rol
sob
mov
ITIOV

rl
rO
rO,-(sp)
r1,-(sp)

13,r4

rl
rO
r4,10$
rO,-(sp)
r1,-(sp)

;Non-EIS c od e ,,,
;MultiPlY RO,Rl bY 2,,,

;save result <n*2>

;Now 11t1JltiPlY bw 8 to set n*16,,,

;save result <n*16)

44

clc
asl
T'O 1

,iff
ashc
mov
mov

ashc
ITIOV

mov

ashc

,endc
add
adc
add

add
adc
add

ret1Jrn
,endc
• if df bed

; This routine
; them from BCD

bcdbird
mov
mov

10$! movb
bic
beG
ror
!TIOV

ro r
ror
add
movb
bic
add
movb

20$! sob
return

,endc

,end setdt

r1
rO

t1,r0
rO,-(sp)
r1,-(sp)

t3,r0
rO,-(sp)
r1,-(sp)

t1,r0

(sp)t,r1
rO
(sp)t,rO

(sp)t,r1
rO
(sp)t,rO

sees throush
to b i_na r·\:l,

tsec,rO
t10,,r1
(r0),r2
t~C<360>,r2
20$
r2
r2, r3
r2
r2
T'3, r2
(r0),r3
f.~C<17>,r3
r·3, r2
r2,(r0)t
rl,10$

;Now multiPl\:l b\:l 2 so that RO,R1 is n*32,,,

;EIS code to do same as above,,,
;n*2,,,

iReturn

the list of clock resister values and chanses

iRO => resister value list
iR1 = repeat count
iGet a value
iMask for 10's diSit
iNothins to do if zero
iMultiPlw this value b\:l 10,,,

iResult in R2
iGet val1.1e asain
iMask for one's disit
iAdd this to Previous result
;store binary value
iGo do another until done
; Then ret1J r·n

45

RT-11 MACRO/FORTRAN Interactions

John M, Crowe 11
Los Alamos National Laborator\:/

Los Alamosr NM

Ned W, Rhodes, Session ChairPerson
E-S\:/stem s

Falls Chur-ch, VA

Reported bs Gavin Perr~, DECUS Scribe Service

This tutorial covered the mechanism for callins MACRO
routines from a FORTRAN prosram, The material is covered in the
FORTRAN Users Guide anci the FORTRAN Librar\:/ Guide, When writins
FORTRAN prosrams une sometimes needs to sPeed UP certain
critical parts of the Prosram, These time critical routines
will be faster if coded in MACRO routines which can be called
from a FORTRAN Prosram usins the technimues Presented here,
These technimues include basic information on FORTRAN
conventions for Passins arsuments to a subroutine, Also
included are some of the Pitfall s encountered when writins
FORTRAN callable routines, with hints on how to Set around them,

When a CALL statement is issued from a FORTRAN Prosram, the
code senerated declares the subroutine name as a Slobal and
passes the address of an arsument block in R5 to the routine ac
follows:

.GLOBL SUBRTN
MOV
,JSR

A Fm: 3
X
y
z

:f:AFrn,R5
PC, SUBRTN

the number of arsuments
the address of Parameter X
etc for the rest of the arsuments

The MACRO routine can now set the arsument addresses
throush R5, The first word of the arsument block contains the
number of arsuments beinS passed in the low bste, The hish
b~te, while usualls 0, is officiall~ undefined, This Permits

the use of certain tricks, (see below) The first word in the
arsument blo c k is followed bw the addresses of each of the
a 1-suments in the In the s1Jb ro1Jt i ne, these Pa 1-arrrete rs m aY be
accessed bw indexins R5 (e.s. 2(R5)), This is safer than
altering the value of R5, since other routines maw also want to
referen~e the arsuments Pointed to bs R5,

Functi.CJn Calls

A FORTRAN function call returns with the answer in RO, If
the answer is Inteser*4 or Literal*4 the low order result will
be in RO and the hi•h order part in R~. _For a Real ~ariab~e,
the low order portion of the result 1s 1n Rl and the h1sh orjer

46

Pcn·tior, is in F:O. Do1Jble Precision r·eturns fo1Jr words with RO
containinS the most siSnificant Portion of the result and the
remaining Portions in Rl to R3 (least significant). For a
complex number the high order Portion of the real number is in
RO, the low Part in R1, while the ima•inarw Portions of the
value will be in R2 and R3, FORTRAN expects to find the results
returned to it in this format,

GOTCHA's

Missind arsuments will have -1 as the address, so be sure
to check for addresses of -1 when there is a chance of missins
dr~i,.Jnrint~; in th01 -::oill (e~f. C/'1i..L. (r:,,B, ,X)), If nc ar~juments ar·e
Passed the first word will contain O in the low byte, so wou maw
want to check for th~t toe, FORTRAN doesn't care if you save
the resisters RO to R5 and it won't save them for wou between
calls to Your routines, so be sure to save any values that will
be needed in other calls tc a routine, The stack must also be
SdVea, It is vers imPortant that for every Push onto the stack
there is also a Pull from the stack, Fou1· out of seven •otcha's
were MIND THE STACK, It doesn't matter how manw times it 's
said, everwone sometime ends UP leavin~ a number on the stack,
When this haPPens, a return to PC goes to never-never land, If
tne st2ck contains v the Prosram will Just exit without even

~:; a~~ .i. n::.:: \·.~ u od b:.~ t·:J t Som·r, r·u~~ 111:.~ ~:; onto t. ht:.1 st ac:·k are nc) t c:ibi../ i ou·::. t

For example, if CSISFC i~ called it Pushes the number of
switches onto the stack even if it is zero. Don't modifs
FORTRAN constants unless sou want 2+2=5, It is not the value
lhat is Passed but the address, FORTRAN won't know that the
.'./d:Lue of the
f"J~,)at in:::i :.::,oint

constant has been chansed, If ~ou are usins the
instruction set and chansins defaults for the

Precision er the mode, be sure tc save the value of the current
flc::3":} -::ind }-=-·or:-· thf:!1"f1 ~Jhf.-)1"1 done 1.Jit.h th12 difl:-<!:rf:::·nt modi;::, or
Precision, Don't mune R5 until done with all the arsuments or
~ou ma~ Srab the wrons value,

FILE I /0

FORTRAN has an □ TS work area where it keeps track of what
1/0 channels are open and various prosram linkaSes, Tel l
FORTRAN if ~ou open or close I/0 channels b~ usinS the librars
ro utines IGETC and IFREE resPectivels, Don't use CSIGEN since
it clo ses channels 0-8 which are often opened by FORTRAN, Use
CSISPC instead, but watc h the switch number push on the stack,
Jf FORTRAN doesn't know about the channels sou open it mas set a
channel already open when it trYs to open a channel,

COMMON BLOCK

The common block statement creates a PSECT wn1ch ~ou can
use from sour MACRO routinesl Just declare that PSECT in the
Mr-'.1CRO, See the FOFnR/'1N Users Guide fcJr .the format,

FORTRAN ERROR TRAPS

An error in FORTRAN causes a TRAP instruction with the
ar1ument 200 + the error number, You can use these errors to
tell the user about fatal errors; be sure to do soruething that
will allow for a Sraceful exit anYwaw (such as MOV -1, RO> since

a CALL SETERR ma~ have been execu ted which will keep it frC)lll

exit.ins until the error count re aches the count level speci fied,
I f the r El .i. i,'. -~l r·1 :,1 ch an c e th a t. fir· 1· or· tr a P s ,,; i l J. b 0:, cc:' 11 e d (E' i th E•:- r
sou call them or sou use □ TS routines that ma~ tr ap) be sure
tha t the tr aP vector has been initialized ,

The PSECT lasout of a FORT RA N Prosram was d i scussed, The
fi rst statement of a FORTRAN Pr q~ram starts with a call to $SOTI
to ini ti alize the OTS followed bs a Point.er to the MAIN which
·t,. h ft r, Po :i. n t ~=· t. o ·I:, h E·J i-,1,::; ta to l:..-i E1 i r: i t j_ ·== l i z. €~ d ., I t. :i. '==· Po-=~<.::. i C:, J. E• to
writ e threaded code to be used with threaded (□ TS) routines and
Pro~rams but it was not recommended,
a list of entr~ Points to the thre ade d

The threaded struct ure is
routines, followed bs

addresses for the Parameters and constants, A nami nS conv ention
identifies the FORTRAN operat ion codes the data tsPes and

(to te ll how man~ levels of Pointe rs back to so

before ~cu'll reach the value), More information on this
ava ilable in th~ documentation of FORTR AN or from John Crowell,

MACDBG/RT-11: A User's Critique

.John M,. Crowell
Lo s Alamos National Laborators

Lois 1;Jamo•:; i NM

RePorted bs Marsaret Wa t ters, DE CUS Scribe Service

John Crowell discussed the Problems and the advantases cf
DIGITAL's debujSins s~stem, MACDBG, This Prosram is a re mo te
ssmbolic debus~ins tool wh ic h runs under RT-11S J or RT-11XM on a
PDP-11 or an LSI-11, This s~stem has sever al features inclu dins
the followins: it loads Prosrams into the tarset prosram via a
Serial Line Unit (SLU); it examines and chanses the tarset
memory and resisters; it has a RUN/HALT Prosr a mf it is
Prosrammed to find breakpoint s , watch Points, and tracepoints;
the Host console can be used as a tarset terminal; ana it
r t'! c{ u i r-· (-:, s a n O D T :i. r-, t h e t a r ~~ e t , F i n ,:i i n Si t h e t r· a c- E· P o i. n t s i ·=· "" r:
especially useful tool in debu ssins , as the Potentially
Problematic Poin t in the tarset Prosram is indicat ed, ~et the
Prosram continues to run, so the user can observe the effect the
Po int has on the ProSram,

This ssstem aiso nas some non-essential features that are
helpful. There is a 'HelP' Pase; a Status display (on the
VT100 only); a command key Pad Con the VT100 and the LA120
onl¥); Prosrammable kews CVT100 and LA120 onl~); indirect

a nd a loSSinS console I/0 to file,

The Debus Service Module <DSM) is optional, however it is
reGui~ed fbr findins breakPoints, watchpoints, tracepoints, and
for sinsle stePPinS, The DSM reside s in the Tarset RAM, and
takes UP 464 octal bYtes, It contains a loader for rnovinS
blocks of data into tarset memorw, There is also a handler for
handlins breakpoints, watohPoints, traoePoints, a nd for sinsle
stePPins, The module speeds up loadins and dePositinS in the
tarset memory, This module should not be used if the user does

48

not have the necessars RAM, or if he does not have RAM at
locations 14 or 16, The Prosram also should not be used if uses
BPTs or if it used instructions that alter the T-bit, The DSM

The speaker w3rned that a user
and it can be loaded
must be careful that

his ProSram does not write over the DSM, He also w~rned that
under SJ, the 'halt" instruction corrupts DSM (or at least
MACDBG thinks it does>,

Crowell Pointed out several Problems that he has noticed
while usins MACDBG, The maJor Pro blem is that MACDBG sets th e
cu1·sor ke~s to the 'APPlication Code', which does not matter
w11.t1e Mt1CDBG is in us.er ·;;inc,2 it does not 1.J·::.e th,t cursor kess ,
However, MACDBG does not reset the ke~s to 'Cursor Code' before
exitinS, This particularls baffled Crowell, MACDBG has several
buss of its own, but Crowell said that it is a Powerful tool
none theless, and that it is the most cost effective software
t.i·1at h f:•~ has t.?c:1u::Sht. ::.r1 a · ·t~r':::'. lonS tit'i!et

C1·edtion and Handlin~ of Multi-Volume Directories Under RT-11 With TECO

Maarten van Swaas
Kansas State Universits, DePartment of Computer Science

Manhattan, KS

Jack Crowell, Session ChairPerson
Los Alamos National laborator~

Los. Alamo~;, NM

Reporte d bs J, Rick Mihalevichr DECUS Scribe Service

Mans small RT-11 s~stems are based on floPPW disk storase,
Files and their backup copies can easils extend over 50-100 disk
volumes, and locating an individual file can become a tedious
c hore of browsins throush a larse collection of disks or Printed
di r·;.~ctor·:i.f.,'S-,

TECO can retrieve volume ID records and file names from a
volume without invokins directors operations from USR, This
caPabilit~ makes it Possible to use TECO ~or the creation of a
multi-volume directors file, Because retrieval of the directors
information does not invoke USR, the outPut volume can share a
sPindle with the inPut volumes from which the directories must
bp obta i ni?d +

A set Qf TECO macros for creation and use of a multi-volume
directorw file was described. The PackaSe Presented includes
Provisions for the creation of a new directorw file, for
insertion / replacement/ deletion of a sinile-volume directors
in the file, and for locatins selected files f~om the director~,
Because the directors file can extend over more than half the
sPace on a sinsle volDme, a mechanism was discussed to edit ~
larse file-in-Place,

49

The Presen ter offered coPies of these macros, To obtain a
cops one needs to send a floPPs to: Maarten Van Swaas, Kansas
State Universit~ , Manh attan, Kansas 66506, The Prese n ter
reouested that a Packa~e co mplete with retu rn addr es s and enoush
P □ s t6Se for return be in c luded wi th the fl □ PPS,

SOFTWARE PERFORMANCE REPORTS

OPERATING S YS TEM VERS ION SYST.e:Jvl ffiOGriAM OR occuMcr-.:T TJTL-C: 1 V ERSION OR DOCUMENT PART MO.

[T-11 SIPP VO 00 2 -A T;g
DEC OFFICE AND CONTACT PERSON

Lanham
00 'TOU H..,VE SOUftCE

H-'MIE: Ned W. Rhodes YES□ ~
FIRM:

ADDRESS:

CUST. NO.:

E-Systems, Melpar Division

7700 Arlington Blvd.
Falls Church, Va. 22046

REPORT TYPE/ PRIORITY

§ PROBL.:,-?,,,; f£RROR

SUGGESTED ENHANCEMENT

OTHER

1 §HEAVY S Y STEM fMPACT

2. .
1

MOOERA.TE. .': Y'S"TEM IMP

3 . Mt NOR SYSTEM IMPACT

A . T NO SIGNIFI C ANT IMPAC

5 . 00CUMENT/l.TION/5U'r....G.£S

SUBMITTED EY: PHONE:

Gar , L. Fuller 703 560-50 00 X2858
C-'N THE PROBLEM BE REPRODUCED AT WILL? vc:s[J N{

ATTACHMENTS

MAG TA~E □ Fl..OPPY CISKS□ LISTING□ OECTAPE□
COULD THIS SPR HAVE BEEN PREVENTED BY

SETTER OR MORE DOCUMENTATION'?

PLEASE EXPLAIN I N PROVIOEO S?ACE BELOW.

CPU TYPE: SERIAL NO~ I MEMORY SIZE DISTRIBUTION MEDIUM SYSTEM DEVICE DO NOT PUBLISH

LS 1-11/23 iAB02254 128 K RX-02 RL-01

1. A problem with the SIPP utility occurs whEn both of the following
conditions are met:

(1) An optional com-filespec is supplied in the SIPP command string:

(2) A modification is made to the input file in the address range-
1000 ~ (Base+ Offset) 6 2000 (octal).

[

The problem is characterized by the
(destined for the com-filespec channel)
address 1000 (i.e. Block 1).

insertion of the command file text
into the input file starting at

The probable diagnosis is that there is a channel mix-up when buffering
the command file te x t. WhJ the 1000 - 2000 address range is a factor is
undetermined.

The problem may be reproduced by performing any of the customization
patches supplied in the RT-11 Installation Guide (AA~H376B-TC) Ch. 2.7
which specif y addresses in the indicated range and by additionally
specifying a com-filespec.

2. The/Hand /V switches are transposed in the minirefprence.
are correct in the system utilities manual.

They

3. BACKUP/MULTI - If a file is too large
and it is the last file being trans£erred,
output volumes instead of giving a message

50

to fit on the output volume
it continues to prompt for
that the file is too large.

SYMPOSIUM TAPE INFORMATION

CALL
RT-1 ·1 S

FOR
G TAP E

SUBIVI ISSI 01'-IS

Ass ernbl inq the Hr-11 S IG Tapes a t the OECUS Symposia (and
producing a quality product) has turned out to be difficult. ,he
Spring, 1983, tape was done after the Symposium, and I propose to
do the same this time. fh e refore, any S IG Tape submissions which
ar e ready now can be sent to me for preparation. Please note,
that eve n if you send a tape subm is sion early, the DECUS U. S. Sym
posium rape Copy He I ease Form MU Q.L.]E _fil~J~J;_Q ! ! A copy of the
Re lease Form is attached below.

Please send al I submittals, along with the Release Form to,

R. W. Barnard
Sandia Nationa l Laboratories
Division 2 565A
P. 0. Box 5800
Albuquerque, NM 87185

Remember that the RT-11 SIG accepts not only 9-track, 800
bpi, magne tic tapes, but also RX01 and RX02 floppies. (I can also
read TU- 58 DEC tape I I 's). Thank you.

ATTACHMENT D

D]
!Ea.JS

TAPE COPY RELEASE AGREEMENT

Release Form
Number:

The DECUS Program Library and the DECUS Tape Copy Facility provide a clearing house function only; programs are not
sold or generated or tested. All programs and information and copies are provided "AS IS". DIGITAL EQUIPMENT COMPUTER
USERS SOCIETY, DIGITAL EQUIPMENT CORPORATION, AND THE CONTRIBUTOR DISCLAIM ALL WARRANTIES
ON THE PROGRAMS, INCLUDING WITHOUT LIMITATION, ALL IMPLIED WARRANTIES OR MERCHANTABILITY
AND FITNESS.

The following authorization is assumed for all programs copied on the copy facility:

Full permission and consent is hereby given to DECUS and to the DECUS Special Interest Group to reproduce,
distribute, and publish and permit others to reproduce in whole or in part, in any form and without restriction,
this program and any information relating thereto . The submitter hereby warrants and represents that he had
good and sufficient right, interest, and title in and to this program and the related information to grant such
permission to DECUS.

Signed Date

51

ATTACHMENT C

[g]
CEO.JS

Release Form
Number:

-DECUS U.S. SYMPOSIUM TAPE COPY RELEASE FORM

Name -------------------------------------
Company ------------------------------------
Address

City State ZIP Telephone ---------- ------ ----- ----------
ProgramName(s) _______________________________ _

SIG Tape Submitted to : D RSTS/E

□ RSX

Contents of Tape:

□ VAX
OSTRUCT. LANG.

ORT-11 DTOPS-10
DTOPS-20

Number of Files PPN

Is this material account specific? -------------------------
Number and Kinds of Tape Submitted: D f)OS Format

D 7-track

D 800 BPI

Description:

D ANSI Format D Other --------
□ 9-track D Other --------
□ 1600 BPI D Other --------

Guilelines:

Users who wish to participate in the exchange should bring a 2400 foot (preferably new) quality tape to the Symposium.
The tape and cannister should be clearly labeled with the user's name and address.

1. No proPrietary or licensed aoftware (including whole or partial copies) may be submitted.

2. Users who would like to submit modifications to licensed DIGITAL software may submit files to be appended
to the original source program. ONLY the modifications may be submitted.

3. Users are encouraged to include a README file on their tape including the submitter's name and address, and
a description of the files he/she is submitting.

4. Tapes should be compatible with standard system software. Please indicate the number of files and the PPN,
UIC or account, and tape format.

5. Tapes should be 9-track, and be labeled with the sender's name and address.

IMPORTANT! RELEASE AGREEMENT ATTACHED

52

"'--._/

