
\

' ,.

· · THE

,.-_ mini• DECUS . . la,kc, 1111 II 11111111111111111111111111111 RT-11 s,G NEWSLETTER I I II 111111 I 11111 II 11111111111111 I 1111

May 1984

PIP LD

DJJl

PAT

XM

Volume 10, Number 3

FILEX

llAfolV

~
CDECUS

U.S. CHAPTER

lJ(Jp

llELp

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
DECl}et Digital Logo
DECsystem-10 EduSystem
DECSYSTEM-20 IAS
DECUS MASSBUS
DECwriter PDP

UN IX is a trademark of Bell Laboratories.

Copyright© Digital Equipment Corporation 1984

All Rights Reserved

PDT
RSTS
RSX
UNIBUS
VAX
VMS
VT

It is assumed that all articles submitted to the editor of this newsletter are with the authors' permission to publl1h In any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liebilitY for articles or information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

,_,

THE I I ffl ft• DECUS la,kc, 11 11111111111111111111111 111111 II 11 RT-11 SIG NEWSLETTER 11 II 111111111111111111111111 I 11111111

MAY 1984 VOLUME 10, NUMBER J

Contributions to the newsletter should be sent toe

Ken Demers
Adaptive Automation
5 Science Park
New Haven, CT
06511
(203) 436-1029

Other communications can be sent toe

John T. Rasted
JTR Associates
58 Rasted Lane
Meriden, ct.
06450
(203) 634-1632

or

RT-11 SIG
c/o DECUS
One Iron Way
MR2-J/E55
Marlboro, Ma.
01752
(617) 467-4141

1

TABLE OF CONTENTS

USER INPUT
UCL - Command Parser Program••·••••···••··•••·••••••••••••••••·
TECO Program To Shorten Link Maps•······•••·••••·••••••••••••••
RT-11 V5 Report•....•.••••••.....•••••••.•••
Future RT-11 Features . ·········••·•••••••••·•••·•••••••••·••••
Australian RT-11 SIG Tape ···············•••••·•·••••••··•••••••

DECUS LIBRARY
TSXLIB Updated•.•.•.••••••..••••••••••••••••
C Language System For The Professional JOO Series••••••·•••••••
RUNOFF For The Professional JOO Series ··•••••·••·••••••••••••••
TTLIB - VT100 Library For The Professional JOO Series •.••••••••
COMPAG - Combine Pages Routines For The Professional JOO Series
CVLLIB - General Purpose Library For The Professional JOO Series
SORT - For The Professional JOO Series·····•••·•••·••••••••••••
INDEX - FORTRAN Cross-Referencer For The Professional JOO Series
TECO V36 For The Professional JOO Series ···••••••••••••••••••••
RENUM - FORTRAN Renumbering Pgm For The Professional JOO Series
CVLLIB - General Purpose Library•·••••••••·•·••••••••••••••••••
Indirect Command File Processor•·••••·•••••••••••••••·•••••••••
BRUCE - Backup and Restore Utility•••••••••••••••••••••••••••••
FLECS - FORTRAN With Extended Control Structure For The Prof JOO
MINC A/D Routines •.••••••••••••••••••••••••••••.•••••••••••••••
Monitor Commands For Namelist Package •·••••••••••••••••••••••••
File Manipulation Commands ··••••••••·••••·•••••••••••••••••••••
DIBOL '83 Screen Handler Package ·•····•••••••••·••••••••••••·••
WORD - Document Spelling Checker/Corrector··•••••••••·•••••••••

PAST SYMPOSIUM INFORMATION
How To Write RT-11 Device Handlers ··•·••••·••••••••••••••••••••

2

'-'

J
5
8
9

11

16
17
18
18
19
20
20
21
21
22
23
23
24
25
26
27
27
28
29

'---"

JO

USER INPUT
.TITLE UCL

This program is a UCL program for RT-11 VS.
It provides a command parser for simply running programs residing
on other disks then SY: or DK:
H. H. NKG-AZG

.MCALL • PRINT, .EXIT, .CHAIN

.ENABL LC

$GLEN = 510
$CTEXT = 512
$JSW = 44
MX.LEN = 38.
CHAIN$ = 400

UCL:: BIT #CHAIN$, @ll$JSW ;Have we been chained to?
BNE UCLl
.PRINT IIIDENT
BR UCLEX ;No, take exit

UCLl: CMP $GLEN, IIMX. LEN ;Yes, can print
BGT UCL2 all error text on 1 line?

See if command matches to one in the command list:

MOV
MOV

IICOMNDS, RO
ff PROG 50 , R3

;Command list pointer
;Program list II

Enclosed you find a User Command Language program (VS) with a command
parser for executing .RU DEV:NAME by simply typing NAME in
response to the monitor dot. The nice thing is that it works
independent of the assignments SY: and DK:. The program NAME may
also be a little program which chains to another program or indirect
command file after e.g. menu selection.

I hope to see a lot of other/better UCL programs from RT-11 users in
the MINITASKER!

H. Haenen
Dept. Clin. Neurology AZG
P.O. Box 30.001

Yours

9700 RB GRONINGEN / The Netherlands

3

NEXT: MOV
MOV

@//510, Rl
11512, R2

;Nr. chars in input command
;Pointer to command string

COMPAR: CMPB (RO)+, (R2)+
BEQ

1$: TSTB
BNE
TSTB
BEQ
ADD
BR

OK: TSTB
BNE
MOV
MOV
MOV
MOV
.CHAIN

OK
(RO)+
1$
(RO)
NOTHNG
116, R3
NEXT

(RO)
COMPAR
(R3)+,@/1500
(R3)+ ,@If 502
(R3)+,@ll504
EXT ,@/1506

;No match: skip rest of string
;+Skip null byte
;A second null byte?-> end of all

;Point to next program

; Nu•ll byte?
;If not-> keep checking
;Store program in comm area

NOTHNG: .PRINT IIERRMSl
MOV ll$CTEXT,RO
ADD $GLEN ,RO
MOVB /1200,(RO) ;SET "NO CRLF" at end of input string.
.PRINT ll$CTEXT
.PRINT IIERRMS2
BR UCLEX

UCL2: .PRINT /!RUDE
UCLEX: .EXIT

----------------- DATA AREA'S-----------------

AREA: .BLKW 10

COMNDS: .ASCIZ /LISDAT/ ;Command list
.ASCIZ /STUDAT/
.ASCIZ /TABDAT/
.ASCIZ /PARDAT/
.ASCIZ /CHECK/
.ASCIZ /SPELL/
.ASCIZ /LIJST/
.BYTE 0 ;Terminator and End of command list
.EVEN

·--' PROG 50 : • RAD 50
.RAD50
.RAD50
.RAD50
.RAD50
.RAD50
.RAD50

EXT: .RAD50

/DBSLISDAT/
/DBSSTUDAT/
/DB STAB DAT/
/DBSPARDAT/
/DBSCHECK /
/DLlSPELL /
/QN5LIJST /
/SAV/

;Corresponding program list

IDENT: .ASCIZ <15)<12)/UCL V02.00/
ERRMSl: .ASCII <15><12)/?UCL-F-The command "/<ZOO>
ERRMS2: .ASCIZ /" has no meaning at NKG-AZG!/
RUDE: .ASCIZ <15><12)/All that typing ••• and it's wrong/

.END UCL

4

I read the mini-tasker each time with a lot of pleasure. In
this letter I want to react on an article in the last
newsletter (January 1984 Vol. 10, nr. 1) and additionally I
have a contribution for you.

First my reaction on the article "Method for shortening link
maps" on pages 5 to 7. I think that the idea of shortening
link maps is good, although it should be better if changes
will be made in the link program. A wish that I have
submitted already in Zlirich, September 1983, but it was not
understood by Digital~ "a linkmap is never longer than two
pages" was the answer. They don't write Fortran! So I made my
own procedure but I did it in TECO. Below you see my solution
and it has several advantages above that in your newsletter:

1. It runs much easier:

.MUNG SHMAP
Long .MAP-file
Short map-file

dd:xxxxxx.MAP
dd:xxxxxx.SMP

2. It runs faster.

3. The line with transfer address and program size has been
removed to the top of the list. Mostly you are only
interested in these numbers.

4. It shows all routine names in the $CODE section.

macr,~ S read string and put it in Q9
OMS= > input length unlimited
nMS => read not mot-e then n characters
QB=-1 => ctrl-Z entered

@-"·US#
CO Cl [2 [3 U3 Q3"E 256U3 ' ETTJO .Ul 40ET <-··'·T;> 14ET OU9 O,OX9 OUB
("·TTJ2 13-Q2"E Ql,.X9 :Q'3U9 O; '

127-Q2"E .-Ql"G lET B·'' T 32····-T B"T 14ET -D ' @O!A!
26-Q2"E 26·h·T -1U8 O; '
3:Z-Q2"G @O!A! ·
Q3-(.-Ql} "G Q2@I/ I Q2··-~T '
!A!

> 13-''T lO"·T Ql, .D QOET Q9]3]2 Jl JO

@EI## 2ED 134ET
!AGAIN!
@"A#Long .MAP-file : # 14MS
@:ER#=""··EQ9#"U 1]'.'A#File not found# 13""'T lOAT 1]Q !AGAIN! '
@_#Transfer address# -L 2XA
@ER#='"'EQ9#
@AA#Short map-file : # 14MS
@EWti=··"'EQ9#
Y 3L B,.P B,.K GA 13@I## lO@I## B,.F
<@:_#Segment size#; OL B, .K ZJ A 3K J 3L B, .P

--- @:_#$CODE#; L B,.K ZJ A 3K J @:_#OTS$tJ*; OL B,.P
>
EF HKEX

®fi>
5

My contribution is a method to simulate include-statements in
FORTRAN-IV programs concerning common areas.
If you write FORTRAN programs with a lot of routines you
always have trouble if you have to change one or more common
areas. You have to edit each routine seperately and probably
you make one or more mistakes. These problems are now
history 1 In my solution I use two indirect command files ar1d
a TECO procedure. (The TECO procedure is essential).

1. UPDCOM.COM starts the TECO procedure and recompiles the
routines changed. Command: @ UPDCOM

2. F.COM is my standard FORTRAN compilation procedure
command: @ F file

3. UPDCOM.TEC changes the common areas and creates an
indirect command file "UPDATE.COM" for recompilation. (If
a routine has been changed more than once because of
changes in more than one common area, the file will be
recompiled once.)

Restrictions:

1. Every common area must be placed in a file commonname.CMN.
If the common area must be changed, edit only this file.
Do not use command-lines in this file!
Define the common area with the statement
"tab COMMON/name/" with no blanks between COMMON and/ and
between name and/.

2. Enclose the common area in your routines by "C<CR>" lines.

Working of the TECO-procedure:

1. It asks "name of COMMON:" . Give it. CTRL-Z is stop.
2. The file DK:name.CMN will be searched for.
3. In all .FOR files of DK: is searched for the string:

tab COMMON/name/
4. If found the text between the C(CR) before and C(CR) after

will be deleted and the contents of file name.CMN will be
inserted. The name of the routine changed is stored
internally.

5. A recompile command file is generated.

Example:

file AREA.CMN

LOGICAL*! FLAG
COMMON/AREA/A,B,I,FLAG,
1 D,E,F

FORTRAN routines:

SUBROUTINE R
C
C

COMMON/AREA/A,B,I,
1 D,E,F

C

6

COMMON/AREA2/

C

To change all routines with common AREA:

(! UPDCOM
Name of COMMON: AREA
etc .

. ENABLE QUIET
MUN/NOINI SY:UPDCOM . ,
; Compile the updated files . ,
$@UPDATE
DEL UPDATE.COM

Listing UPDCOM.COM

.ENABLE QUIET
DEL/NOQ O:'Pl' .OBJ,L: ' Pl ' .LST
RUN SY:FORTRA 0: ' Pl'[-lJ,L: ' Pl'[-l]='Pl ' /S

Listing: F. cm1

macro S read string and put it in Q9
OMS=> input length unlimited
nMS =) rsad not more then n characters
QB=-1 => ctrl-Z entered

@"·US#
CO tl [2 [3 U3 Q3"E 256U3 ' ETUO .Ul 40ET <-''T;> 14ET OU9 O,OX9 OUB
<"'-TU2 13-Q2"E Ql, .:{9 :Q9TJ9 O;

127-Q2"E .-Ql"G lET BAT 32"T B"'T 14ET -D' @O!A! '
26-Q2"E 26"-T -lUB O; '
32-Q2 "G @O!A! '
Q3-(.-Ql)"G Q2@I// Q2"T
!A!

> 13"·T lO''·T Ql, .D QOET Q9]3]2 Jl JO

@EI## 2ED 134ET O,OXU
!AGAIN! 13.,..T lO"T @AA#Name of COMMON : # 6MS
l+QB"E @O!EXIT! '
@:ER#=Q9.CMN#"U @"A#UPDCOM-F-COMMON file "# :G9 @"A#.CMN" not found#

@O!AGAIN! '
@"A# updated in file :# 10.,..T 13.,..T
@EN4f:*.FOR4F

7

<:@EN##; G* 13@!## lO@I##>
J lXF K HXD HK Y HXC HK
<@ER#QF# OUF

< :@_:jfc_.-j•4-a-;)'COMMON/Q9/#"S HK @ER#AEQF# @EW#AEQF#
<:@N~OMMON/AEQ9/#; -lUF -@S#

C

.UO @S## -lL QO,.K GC
>

I o;'
> EC QF"S @AA# # GF 2ROT J :XU HK'
GD -Z; OJ lXF K HXD HK

)

HK @O!AG.AIN!

!EXIT! HK @EW#UPDATE.COM# GU
16ED J < .-Z; lXF .UO :Z:@S#QF#"S QOJ K I L ' >
k<.-Z; 3D @I#ce# L:ZR-4DL >

~ ~SY:F
Listin~: UPDCO~.TEC

I hope you can place these contributions in one of the
following MINI-TASKERS.

Greetings~--

Akzo Pharma bv
SYSTEM DEVELOPMENT & AUTOMATION

Ronald Beetz
Akzo Pharma bv
Weth. v. Eschstraat 1
P.O. Box 20
5340 BH Oss
The Netherlands.

RT-11 1)5 Report

!n about October 1982, after the last Australian
asked if I wanted to be a Field Test site for RT-11

DECUS Symposium, was
V5. Filled with a desire

for the latest and best from DEC, I naturally accepted at once. In due course,
after signing a number of licences, non-disclosure agreements and H-P agree
ments, a box of floppy discs and a pile of grotty photocopies arrived. It was.

RT-11 Y05.02. For those who have not met this aspect of DEC ' s
code-numbering, the V stands for "Official Release Version", (supposedly free of
bugs), a Y stands for "Field Test Version", (shouldn't have too many bugs, and
the users will help find those), and an X stands for "Very Unofficial Highly
Experimental Version" (in-house use onl y, and provided they can get it to link).
So I took the photocopies home and read them, and loaded the software onto a
couple of my systems at work and booted them. Some of the users still bear
(bare) the scars.

8

DEC provided me with a form called a QAR: Quality Assurance Report.
Fortunately, it was in machine-readable form, because we sent off nearly thirty
of the things. And quality "Assurance" has nothinq to do with it: the function
of the form is "Bug Report". I didn ' t bother wiih QAR'ing the manuals, as the
number of typographical errors was immense, but I had some confidence that DEC
could sort that out themselves. (In fact, they did a superb job.)

In due c ourse of time, Y05.08 a r rived. One wonders where the intervening
versions got to, or what happened to them. Y05.08 certainly removed a few bugs,
but it added a few new ones. Somewhere along the line the Linker lost the abil
ity to AC, so the onl y wa y out of it when it got hung (which it did frequently)
was to reboot! And the new SL handler managed to get the entire system into
Gordian knots. Actuallv, some of my "testers" developed quite ingenious ways
around some of the bugs,

Finall y came the message: Field Test is over. Panic: you can't release
it in that state! But released it was, and I got my version very early by way
of compensation for the testing. Someone at work suggested that it wasn ' t so
much Field Testing as Character Testing. However, on inspection of the finished
product (manuals too), I was very agreeably surprised, RT-11 V5 is a smooth,
reliable and well-documented product. To be sure, there are a few small bugs
(latest count is 24 SPR's, but some were due to a faulty SYSGEN), but it's a
very great pleasure to work with. And when I compare it with V28 •••

Anyhc,t,;,
of cour~.e,
that 11 tt-,ev 11

it was great (grate?) fun , and a real education. The twin marvels,
were that " they " managed to get so many bugs into the system, and

managed to get almost all of them out again.

Fut u re RT-11 Features
or, Is There Life After Death?

He had lots of discussion abo u t this at the last s ymposium. The DEC visi
tor for RT-11 was Greg Adams, the new RT-11 Product Manager. To a large degree,
Greg is the one who s;ts RT-il policy, so he was a very good bloke to lean on.
He had lots of ideas to tr y out on us, and the welcome news that RT is not a
dying breed at Maynard (as it was for a while). He was also ver y easy to get on
with - as all RT users seem to be! He definitely enjoyed having him along. The
fc1llot.-,1i rig summ.ar ►1 of th~ rr,etgi e: SE-'=-"=· i or,s is frc,rn n"l'.J no te-s ar,d rr,erric,r i e-s •

First of all, let it be noted that all RT users at the Symposium were
sure of the need for continuing development of RT-11, despite its present
very nice state and the downwards thrust of VAX hardware. The following
ments were presented to Greg in that light.

TSX+ or Multi-Tasking

•_ier ~,
(1,)5)

com-

There is VERY wide support for the merging of RT and TSX+. The ability to
"switch terminals" under TSX+ is very popular. The most c ommon use of this
seems (to me, RNC) to be the ability to interrupt an editing session to do some
thing else, such as running a spelling checker. The use of KEX in the
foreground and compilers etc in the background is a partial step in this direc
tion, but we lack monitor access from the foreground still with this approach.
Hith the increasing use of the 11/23(+) with at least l / 4Mb, not to mention the
new 11/73 (J-11 chip set), there seems to be a real demand for a multi-tasking
form of RT. The alternative of using RSX did not seem to meet with any form of
popular or even polite support. Int;resti n gly, quite a few users had had e x per
ience with all three, and did not wish to go to RSX.

9

RTEM

Greg gave a talk on this, an RT-11 (FB) emulator under RSX. He was very
confident about the qualit y of this product, and assured us that even the RT-11
development group had been using it without pran9s for some time. It does not
really provide the same functionality as TSX+, and does require a larger system
(and a 9oin9 RSX, which isn ' t all that easy to find), but it does present one
avenue for users for expar,sion. Only a few EMT's don·· t work (are not support
ed), and those ones aren't all that common.

RT11SJ

The possibility of dropping this Monitor was discussed, and met with little
objection, provided that a version of FB of a similar small size becomes avail
able. That is, the only real value seen in the SJ monitor was its small size.
The nuisance value of the differences between SJ and FB was seen as significant
both to the users and to DEC. DEC have to support two different monitors,
essentially, for no real gain. The users have to 90 to all sorts of devious and
anno y ing machinations to try to make programs behave the same under either moni
tor. (My personal opinion is that SJ is a menace!)

RT11XM

Few people use this monitor at present (which was mildly embarrassing, as
Greg more or less wrote it!). This is at least partl y due to the reputation it
acquired on it's first release, when it was a bit wonky. The availability of
KEX may help to alter this. That is, since most users have managed without XM
in the past, there is a certain inertia acting against any change. Given good
reason, such as KEX, this could slowl y change. The question remains hc,t~iev er
whether the present XM is what is really wanted. Many (most) saw a great demand
for a re•,1amped ver:-ion as outlined above under TSX+.

Tt·,e Net,J RTl 1 • SYS

Out of all the above comes a proposal for a new form of RT-11, It would
feature only one monitc,r, c_alled RT11.SYS. This v.iould be like the FB monitor,
but with many tuning options. A small version of limited functionality for
those users with very large SJ-type run-time packages would be essential. An
average version for the typical FB user would be the middle- of-the-road offer
ing, presumabl y to be known as Good Old RT (GORT). Only half the GORT users
might ever actually use the foreground. At a somewhat larger core-size, we
could have a virtual version of RT which offered much increased functionality.
That is, the user would (probably?) be in page O, but most of the monitor
routines would be in virtual memory. This should lead to a very smart and fast
system. Switching to virtual memory would be done only by the monitor (via
EMT's) for its own purposes, so that there should be very few bugs and user
software should stay simple. Alternately, we could have a more sophisticated
linker t-Jhich v.•ould put overlays in e x tended memory to the e x tent of the space
available and the rest on disc automatically: overlay changing would then be
then just a matter of juggling the PAR's most of the time. This would have
remarkable effects on the speed of the Fortran compiler (about 24 overlays) and
the linker itself (10 about overlays). Finally, at the high end, we would have
the multi-tasking (and wh y not multi-user) version of RT/TSX+. This might well,
in the long run, eclipse all the others. The problem here is that, while con
ceptually quite different from the internals of RSX, it would effectively be
competing with it (unless all RSX users migrate quickly to VMS, which seems
quite on the cards) .

10

The key point here is the radical change in rnemory prices: there is little
difference between a 64Kb memory board and a 256Kb board (MSVll-DD@ A$842 and
MSVll-LK@ A$1755), relative to either disc prices or current "A-class" software
licences. This means that the old ways of thinking (RT in 8Kb) are now irre
levant. That's NOT to say that we want the monitor to gro"'' to RSX/UNIX size!
Tt-,e "visible" (ie in page O) part MUST sta~i as small as pc,ss.ible. But the
extended memory could well be used to immense advantage. I foresee a problem in
retaining compatability between 16-bit (LSill./2) and 18./22-bit systems, but this
could surely be handled with the options mentioned above, or with a clever bit
of "paging" code, which either loads from disk or switches to extended memory.
This code would be in the resident monitor, and would be used by the monitor as
well as CUSP's and user programs.

I can see tr,at some1,,Jt-,ere along the line a degree c,f imcompatibility will
eventually be introduced. I s.ee it, I regret it, and I 1,Jelcome it. The basic
GORT would hopefully hide it, while the more powerful. version would show it.
But if advantages outweigh the disadvantages, I believe that it would be worth
while. What do you think, and what would you want for it to be worth while?

Non-SYSGEN'ed Standard System Package

Numerous comparisons were drawn between RT and CP./M-MS./DOS. The virtues of
RT were not in dispute, but the price of a full licence was seen as a major
problem. As many users don't do a SYSGEN, the possibility of a standard 1 or 2
Floppy distribution kit with a single small manual, along the lines of the Rain
bow and Decmate software kits, was brought up. This would run quite happily on
packaged systems (including the PC350 if possible), and at (say) $300 would sell
like hot cakes. This idea partly presumes the single-monitor concept outlined
above. The monitor provided would probably be GORT.

If such an idea could be pushed through, there would need to be another
"full" kit available, with complete documentation and fully commented sources.
This source kit need not contain any compiled files (apart from MACRO and LINK,
if not included in the basic kit), as the basic kit would be quite sufficient to
get you up and going. A price of $1000 for the full kit would be reasonable.
The kit of the full range of manuals would be a separate item again, priced at
whatever is (un)reasonable (as usual).

These ideas were kicked around by quite a few people on several occasions,
and Gre9 was an very keen participant in the discussions, I 3ot the mes~e3e
that Greg was very interested in finding out just what the users wanted: how
many radical changes he can push through may be another matter, of course, but
at least DEC is listening.

Roger Caffin
Australian RT-11 SIG Chairman

The Australian RT-11 SIG Tape 1

This long awaited Oeuvre approaches gestation. It has changed form a bit
along the way, for a number of reasons. Many of the SIG tapes contain a lot of
repetition from year to year: this is unnecessary and even undesirable. Some
of the programs put on the tapes have been Library i terns, and there has. been
some debate over these. The conclusion we seem to have come to is as follows.
It is quite appropriate for a program submitter to bring his program to the Sym
posium and make it available to all attendees: it is his, after all. After the
Symposium however it is taken off the SIG tape as it is not in the SIG's
interest to give it away i,,ihen the Librar~i is relying on the revenue.

11

Anyho w , this is the index to the collections. Note that all "files" fit on
a single RXOl, e v en if they look bigger. The files are a c tuall y floppy images,
and can be accessed v ia LD: or XD:, or ma y be copied to a floppy and accessed
normally, The " e x tra " space is the invisible s pace (director y , etc) at the
front of the f lopp),. The ,-;hc,le tape has been submitted tc, the DECUS librar y .

"Fi le"

AR .DSK
BANLIF.DSK
BASEXT.DSK
CALHAE.DSK
CCHITl.DSK
CCHIT2.DSK
CCHIT3.DSK
CDUMP .DSK
CGWl .DSK
CGI--J2 . DSK
CHESS .DSK
CHITLl. DSK
CHITL2 .DSK
COMM .DSK
COMPAG.DSK
CP , DSK
DECODE. D:::;K
DECUSl.DSK
DEMO .DSK
DXSCAN.DSK
EXFILE.DSK
FGMON .DSK
FLECSl.DSK
FLECS2.DSK
FLECS3.DSK
FLECS4.DSK
FLECS5.DSK
FLOPPY.DSK
GAMES .DSK
GRAPHl.DSK
GRAPH2.DSK
KB . DSK
LSTPRO.DSK
ODDS .DSK
PI CA)< . DSK
RATFOR.DSK

RAYB .DSK
RESEQ .DSK
RHODES.DSK
SFOC .DSK
SORT .DSK
SPOOL .DSK
STAGE2.DSK
STUFF .DSK
TSTE .DSK
TTLIB .DSK
UPDATE.DSK
VARR.AY.DSK
t)I RTAL. DSK
XASM .DSK
)<D . DSK

Size

40P
SOP

419P
27P

446P
435P
469P
140P
494P
41SP
230P
494P
494P
200P

84P
40P
70P

449P
SOOP
134P

68P
72P

455P
300P
435P
120P
285P
494P
471P
340P
398P

58P
60P

500P
266P
380P

110P
190P
166P
125P
341P

87P
75P

494P
240P
432P

65P
79P
40P
50P

150P

Date

10-Aug-83
11-Aug-83
06-May -83
06-Ma:,, -S3
Ol-Sep-S3
Ol-Sep-S3
01-Sep-S3
07-Sep-83
Ol-Sep-83
Ol-Sep-83
11-Aug-83
29-Jun-83
29-Jun-S3
20-0ct-S3
13-Jul-82
10-Aug-S3
22-~Tul-S2
12-Ma>,-83
31-Aug-83
0 6-Ma:,, -83
22-,.Jul-82
07-Sep-83
1l-Au•3-S3
11-Aug-83
11-Aug-83
11-Aug-83
11-Aug-83
30-Aug-83
12-Ma), -83
lO-Au•3-83
10-Aug-S3
22-~Tul-82
12-May-83
28-Jun-83
12-Ma)'•-83
11-Aug-83

30-Au,3-83
10-Aug-S3
22-Jul-82
07-Sep-83
29-Aug-S3
22-,Jul-82
11-Aug-'-83
02-Sep-83
10-Aug-83
29-Aug-83
10-Aug-83
12-May-83
10-Aug-S3
ll-Au,3-83
10-Aug-83

Description

ARchives NEW versions of files to a backup
Banner and Life (old?)
Peek/Poke t ype extensions to Basic:
Dec:us paper on interupts i n Fortran
Utilities and C extensions

Disc: Dump Utility
CB, CSPLM foreground spooler, CSPOOL, ...
LR/LW Comms handlers, C bits and games
Chess game+ DOC
Utilities and Fo rtran exten s ions

Terminal, Net, Comms: Communications pkg ' s
Multi-column post-RUNOFF processor
Universal Cop y Program
PDP-11 dissembler
Sundry td ts
l.)T125 pictures
Flopp y disc analyser
Interprocessor Communications Program
Foreground Monitor for running several progs
Fortran Language w Ex tended Control Structures

Sundr y (c:omms) , inc Screen
t)ar i c,us Games
Graphics Software

KB device handler
List Proces sor for letters
t) ar i c,us Games.
Program for In terac:t i •s>e Con trc,l and e><per imen t
RATFOR; Rational Fo rtran

XNET, PO. MAC
Fortran Line Number Resequenc:er
Sundr)'•
Structured Focal Ex tensions
Sort Utiliq,
Greg Adam's Transparent Spooler
Stage 2 Macro Processor
Greg Adam'·s. UCL.SAt) , and c,ther bi ts
Time Share Terminal Emulator
t)TlOO Li brar),
Archive disk Updating program
C extensions for virtual arrays
Fortran Ex t ' ns for Disk-based Virtual Array s
Cross assemblers for 8080 & 6800
Logical device handler

12

.-.....

For a limited time for Australian DECUS members, the individual DSK compo
nents of this tape may be obtained in the normal manner. You send enough
floppies, in a plastic bag, in reinforcing such as masonite or metal, in a Jiffy
bag, with a return address label and return postage, to RNC. You include a list
of what files you would like. NOTE: a single "file" request will probably be

restored to the fl oppy as a directly readable disk, but multiple requeS t s will
usually be copied as files, packed on floppies, and you will have to unpack
them. For those who haven't done this before, the following should do it with
standard RT-11:

COPY/FILE/DEV d v a:NAME.DSK dub:

This
dub:
ture
tt-,en
disc.

copies a file on d va : to the device dub: i t'::.elf. That is, the device
is written on starting at block O. This means that the directory struc

in the file is transferred to the dub: too. The device size will probably
appear less than it should. In V5 this can be fixed by SQUEEZEing the

Alternate media supported are mag tape (800 or 1600 bpi, but SPECIFY!) and
RL02 disks. Tape should be sent packaged like floppies. What you do wit h RL02
disks is up to '.>'O U, t,ut remember that CSIRO can ' · t cover any co'::-ts ,

Turn-around time for single floppies should be short: only a few days.
For requests for "lots of floppies" it will be longer. Mag tape will also take
a bit longer, although with 2400' tape the fastest is to just dump the lot (COPY
DLl: MT:). RL02 disks will also take a few days, and again the fastest is to
dump the lot.

Sundry files in the SIG tape

Many of the "files" listed on the SIG tape are obviously part of a system,
and so are not listed separately. Ho we ver, there are also man y little bits, in
several collections. These are listed below:

Program Size Date "Fi le" Description
AD .MAC 4 Ol-cTul-82 RHODES
ADTEST .FOR 1 01-Jul-82 RHODES
AN H·1AL. DAT 32 21-Au,3-83 cm~2 Data for CELL
BANNER . SAt.) ~-;, 22-Sep-80 BANLIF Prints l ar •3e text banners
BAM~ER. SAtJ 52 17-Dec-79 GAMES Prc,babl\.' the same
BB .MAC E:3 28-Dec-81 cm~1 BB/CB package
BB .SAtJ 13 28 -D .. e:-81 CGl.Jl BB/CB p.a-.e:k.a-.g,;,
BL .MAC 36 28-Dec-81 CGWl BB/CB package
BL .SAlJ 7 28-Dec-81 CGWl 88/CB package
CALC .SAV 32 05-Feb-81 STUFF "Calculator" c,n screen (ver'.).1 simple)
CB .MAC 34 22-Dec-81 CG!,-Jl 88/CB package
CB .RNO 109 28-Dec-81 CGl,-ll BB/ CB package
CB .SA1) 10 22-Dec-81 CGHl BB/CB package
CDUMP .SAV 48P 06-Sep-78 STUFF CGWs '::-peci al dump prc,gram
CELL C 48 24-Aug-83 CGW2 Picture drat~li ng prcogram, use':: . ANIMAL
CELL . COM 1 20-cTul-83 CG~~2 CELL.C
CELL .SAV 26 24-Aug-83 cm,i2 CELL.C
CLIB .OBcT 81 28-Mar-82 CGH2 C library
CLIST .c 10 20-Au,3-83 CG1,-J2 C Pretty Printer
CLIST .COM 1 21-Aug-83 CGH2 CLIST
CLIST .SAV 15 21-Aug-83 cm,12 CLIST
CLKlOO.MAC 4 Ol-cTul-82 RHODES Clo ck display
COM .MAC 32 21-cTul-82 ODDS
COM .MAC 32 21-cTu 1-82 DECUSl
COM .MAC 38 24-Aug-83 CG1,-J2 In terprcoc:essc,r Ccomms prog, uses LR, LW

13

COM .SAV 7
CONSOL.MAC 1
CSPLM .MAC 27
CSPLM • T)<T 7
CSPOOL.COM 1
CSPOOL. H..JI 1
CSPOOL.MAC 34
C:::;POOL. REL 7
CSPOOL. T><T 10
DECU:::; .DOC 6
DECUS .FOR 1 ~. .:,

DI REC .MAC 12
DI SASM. SAt.J 17
DISC .SAl) 9
DX .c 27
DX .COM 1
D>< . SAt.,1 19
FLAG .SAt.J 17
GO .FOR 8
HANDLE. SAl) 7
w .:, .MAC 28
HSPOOL.MAC 4
KB2 .MAC 33
LIFE .SAl) 8
LIFE .SAt.) 11
LIFE .n:T --, .:,

LPC .MAC 34
LPC • T)<T 7
LPCF .MAC 34
LR .MAC 12
LR .SYS 3
Llrl .MAC 6
LW ,-., ... ,-.

.-=1-10 2
t'1ACLI 8 .MAC 38
MAILER.MAC 17
MAILER.SAV 6
MC .MAC 4
MTCON .FOR 7
NET .MAC 60
NZPAT .t1AC 98
NZPAT .SAi.! 14
f'-.JZPAT . T><T 6
PEEK .FOR 1
PLANE .SAt.,' 48
PO .MAC ~,-=

,.:,"1._1

P[l}<.E .FOR 1
PROGRA.SAV 6
PUSSY .CAT 103
RDSEC .MAC 1
RDSEC . 08.T 1
READ .ME 3
READ .ME 3
READ .ME 3
RHODES.RME 2
RTMOt·,J .MAC 33
SCAN .DOC 2
SCAN ,SAV 24
SCREEN.MAC 4
SETUP .SAl) ..,

I

SLIDE . SA') 27

24-Aug-83 cm,i2
01-,Jul-82 RHODES
05-Jul-80 CG!rll
05-Aug-79 CG!rll
03-Dec:-78 CG!rll
02-Dec-78 CGWl
03-Dec:-78 CGWl
03-Dec:-78 cm,a
04-Dec:-78 cm-a
18-,Jul-82 CALHAE
24-Jul-82 CALHAE
02-Dec:-78 CGWl
04-Mar-82 STUFF
19-Aug-81 STUFF
20-Aug-83 cm,i2
21-Aug-83 CGW2
21-Aug-83 CG!rl2
16-Mar-83 STUFF
Ol-Jul-82 RHODES
18-Ma)i -82 STUFF
01-.Tul-82 RHODES
Ol-.Tul-82 RHODES
01-.Tt.J 1-82 RHODES
22-Sep-80 BAt·-lLI F
12-0c:t-79 GAl"1ES
22-Sep-80 BANLIF
05-Dec:-78 cm..JI
05-Aug-79 CG!rll
12-Ma>>-79 CGWl
03-Jun-82 cm,12
93-'J•.Jn-82 CGW2
03-.Tun-82 CG!rl2
03-.Tun-82 CGi...J2
01-.Tul-82 RHODES
28-Apr-81 DECUSl
18-Aug-81 DECUSl
04-Dec:-78 cm-a
01-,Jul-82 RHODES

COMM
23-.Tu 1-82 DECUSl
23-.Tul-82 DECUSl
22-Aug-82 DECUSl
Ol-Jul-82 RHODES
18-Ma)>-80 GAMES
25-Aug-83 RAYB
Ol-cTul-82 RHODES
17-Aug-82 STUFF
05-Dec:-80 ODDS
19-Aug-83 CG!rl2
1::1-Aug-83 CGW2
21-Au,3-83 cm,i2
24--Tul-82 DECUSl
24-Jul-82 ODDS
Ol-clul-82 RHODES
12-May-83 STUFF
02-Sep-83 STUFF
25-Jul-83 STUFF
Ol-Jul-82 RHODES
25-Aug-83 STUFF
02-Dec:-82 STUFF

14

COM

CGW' s Foregt·ound Spooler (good)

Greg Adam ' s Foregt·ound Spc,oler

Interrupts in Fortran (paper)

Fortran ac:c:ess to directory entries
Di sas-sembl er

Ac:c:esses individual sec:tors, (+RDSEC)
DX.C
DX.C
Banner heading on listing

Dec:odes bloc:k O of ¾%.SYS to TT:

Conro)i ··· s LI FE

Alternate LP handler
Alternate LP handler
Alternate LP t-,andler
LR/LW Comms Handlers.
LR/LW Comm-;;. Handlers
LR/U,l Comm·;;. Handl.ers
LR/U..J Comms Handlers

Types mailinq labels from list
MAILER.MAC
Odd mac:ros

Cc,mmun i c:at ions
Versatile Patc:h program
NZPAT.MAC
NZPAT.MAC

747 landing game
RT-11 / TSX+ DLV-llJ Port Handler

Dec:odes block O of *.SAV to TT:
LP Picture File
Subroutine for DX.C
RDSEC.MAC
Various explanatory text files

"Monitor" for multi-terminal
Compares contents of two discs
SCAN

Sends ESC string to VTlOO to set it up
Automated "slide" maker (on VTlOO)

SNAKE .FOR 20 28-Aug-82 CGW2 Game: worm on screen
SNAKE .SAV 31 28-Aug-82 CGW2 Snake.for
SP .SYS 2 06-Jun-83 STUFF Part of SPOOL
SPACE ,DAT 1 24-~Tul-82 ODDS Space Invaders. (11 -510)
SPACE .FOR 66 22-~Tul-82 ODDS
SPACE ,SAV 60 24-~Tul-82 ODDS
SPACHK.MAC 2 22-Aug-82 ODDS
SPOOL ,DOC 2 02-Sep-83 STUFF Greg Adams Transparent Spooler
SPOOL .REL 8 22-Aug-83 STUFF SPOOL
SPOOLX.REL 7 11-Aug-83 STUFF SPOOL
SPX .SYS 2 10-Aug-83 STUFF
SPY .FOR 1 01-~Tul-82 RHODES
SST .DOC 118 09-Jan-78 GAMES Super Star Trek
SST .SAlJ 184 09-Jan-78 GAMES II (part ial, lacks. PLAQUE.SAV)
STDIO .H 7 16-Mar-82 cm~2 C Librar y
SUPORT . OB~T 1 28-Mar-82 CGl--12 C routines
TAB .MAC 10 18-Aug-81 DECUSl Compresses <TAB)/(SP> tc, DEC standard
TAB .SAV 5 18-Aug-81 DECUSl TAB.MAC
TERMNL.MAC 22 COMM Communications
TICTAC.SAV 10 14-Sep-80 GAMES 3-D Ti c-Tac-Tc,e (?)

TO . MAC 14 23-Aug-83 CGW2 TT Interceptor, Shc,ws control ch '. s .
TO .SAV 3 23-Aug-83 CGl--12 TO.MAC
TRACE . SAV 17 19-Apr-83 STUFF Execution tracer. Put on SY: . Details?
UCL .SAV 11 13-Aug-83 STUFF User Command Linkage, G Adams.
V50,JER. SL I 8 02-Sep-83 STUFF Slides to go with SLIDE: sho~Js format
VM .MAC 21 01-Jul-82 RHODES DECUS VM handler (?)
WORMl .FOR 3 02-0ct-81 GAMES Patterns on screen
WORMl .SAV 17 01-0ct-81 GAMES
WORM3 .FOR 3 21-May-82 GAMES
l--lORM3 .SAV 17 21-May-82 GAMES
XFIL .MAC 7 03-Dec-78 CGWl File transfer, channel to channel
XNET .MAC 67 09-Aug-83 RAYB Comms Package (uses. PO)

Not all files have descriptions. Some are obvious, some are not. The latter
lack a description for that reason: RNC doesn't know what they do. Help would
be appreciated, You might also notice some duplicates: the clean-up hasn't
been finished yet. But for what it is worth

Please note: requests for files from this list will not be filled. If you
want one, request the .OSK file.

RN Caffin
Australian RT-11 SIG Chairman

15

DECUS LIBRARY

TSXLIB Updated

Like RT-11, TSX-Plus offers the MACRO programmer a number

of system services via programmed requests or EMTs. RT-11 makes

its system services available to the FORTRAN programmer through

the system subroutine library, SYSLIB. TSXLIB makes the

TSX-Plus EMTs available to the FORTRAN programmer as a library

of callable routines. The package includes the MACRO source

modules for all the routines, a user's manual in machine read

able form, a cross reference chart, an indirect command file to

build the library, and the implemented library.

The library has been updated to include all EMTs through

TSX-Plus V5.0. It is available from the DECUS Program Library

(order #11-490) on RX01 Floppy Diskette (KA) and 600-ft Magtape

(MA), both in RT-11 format. The address for the DECUS Program

Library is:

DECUS

One Iron Way

Marlboro, MA 01752

With this release, maintenance of TSXLIB has been assumed

by NAB Software Services, Inc. of Albuquerque, NM.

16

N. A. Bourgeois, Jr.

3-Apr-84

C Language System (Binary Version) for RT-ll, for the
~- Professional-300 Series

Version: December 1981

Author: Robert Denny, Martin Minnow, David Conroy,
Charles Forsythe

Submitted By: Ian Calhaem, Ph.D., Dept. of Scientific and
Industrail Research, Wellington, New Zealand

Operating System: RT-11 V5.l (PRO support requires VS.l or later)

Source Language: ~ACRO

Memory Required: 24KW ~inimum

"C" is a general purpose programming language well suited for
professional usage. The DECUS "C" distribution contains a
complete "C" programming system including:

o A compiler for the "C" language. The entire language is
supported except for floating-point, macros with arguments, bit
fields and enumeration.

o A common runtime library (standard I/0 library) for "C" programs
running uder the RT-ll operating system. By using this library,
"C" programs may be developed on one operating system for
eventual use on another.

o Several "C" programs, including a cross-referencer lister for
"C" programs, a lexical analyser program generator,
cross-assemblers for several microcomputers, and several games.

o Extensive documentation for the compiler and runtime library.

Note: Sources nre not included. All software is distributen in
Binary format. For sources users should order DECUS ~o.
ll-SP-18, which is a more complete offering.

Restrictions: Documentation in RUNOFF format only.

Sources are not included. Documentation on magnetic media.

Media (Service Chnrge Code): 5 l/4" Floppy Diskettes (.lB)

Format· RT-11

17

Keywords: Structured
Languages, PRO - 300 Series,
RT-ll - PRO
Operating System Index: RT-ll

RUNOFF M02.4H for RSTS, RSX and RT, for the Professional - 100
Series

Version: December l981

Author: Chester Wilson

Submitted By: Ian Calhaem Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-ll V5.l or higher for Professional-100
Series support,
P/OS Vl.7 or higher as RSX files need FCS
support

Source Language~ ~ACRO

Memory Required: 8KW to l0KW

Document preparation is greatly aided by RUNOFF. Automatic line
fill, right margin justification, hyphenation, pagination, index
creation and decimal notation sectioning are among the facilities
provided. This program is an updated and enhanced version of
RUNOFF (DECUS No. l l ·-510). This release supports the RT and P/OS
operating systems with a common baseline.

This version of RUNOFF has a modified hyphenation algorithm,
conforming to the UNIX V7 table and digram threshold values. It
also has support for transparent printer control strings which are
passed directly to the output without affecting the fill and
justify processing. Tbis facility makes it possible to use
special features found on many letter quality printers, as well as
implementation of specialized pre-processor programs which can
provide mathematical typesetting, graphics, etc.

Restrictions: To assemble under RT-11 VS.l set KMON NOINT.

Documentation on magnetic media.

Media (Service Charge Code): 5 1/4" Floppy Diskette (J~)

Format: RT-11

Keywords: RUNOFF, RT-11 - PRO,
Text Manipulation, PRO - 300
Series
Operating System Index:
RT-11, P/0S

TTLIB: VT100 Library, for the Professional - 100 Series

Version: December 1981

Author: Chester Wilson

Submitted By: Ian Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-ll VS.l (PRO support requires V5.l or later)

18

Source Language: MACRO

TTLTB is a library of programs to conveniently control a VT100
type terminal in ANSI mode. Routines allow drawing boxes and
lines. cursor positioning, screen appearance, video attributes,
screen and line clearing, screen and keyboard behavior, graphics
facilities, assorted heights and widths, tab settings and
clearings, and reporting cursor position.

Routines are provided for FORTRAN and MACRO calling programs. ~s
TTLIB is a library, only the routines which are actually used are
loaded into the user's programs.

Documentation on magnetic media.

Media (Service Charge Code)· 5 1/4" Floppy Diskette (JA)

Format: RT--11

Keywords: VT100 Routines,
RT-ll - Libraries, RT-11 - PRO,
PRO - 100 Series
Operating System Index: RT-11

COMPAG: Combine Pages for the Professional - 300 Series

Version: December 1983

Author: Chester Wilson

Submitted By: Ian Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 VS.l (PRO support requires VS.l or later)

Source Language: MACRO

COMPAG provides the ability to easily combine pages so they may be
spread across a printer form rather than taking up a page each.
It can cope with up to 8 columns within the output page, the size
of each column being determined by the width of the page.
Alternatively a series of left margins may be specified, one for
each column in sequence.

Tab conversion is usually performed on the output file, to reduce
size. This uses the DEC standard for hardware tabs. Underscoring
in the input file will be retained in the output.

COMPAG was designed to be used with RUNOFF output files, but will
work with any files.

Documentation on magnetic media.

Media (Service Charge Code): 5 1/4" Floppy Diskette (JA)

Format: RT-11

19

CVLLIB: General Purpose Library for RT MACRO and FORTRAN, for the
Professional - 300 Series

Version: December 1983

Author: Chester Wilson

Submitted By: Ian Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 VS.l (PRO support requires VS.l or later)

Source Language: MACRO

Special Hardware Required: FIS or FPU to make use of floating
point routines.

CVLLIB is a personal general-purpose library for the RT-11 MACRO
and FORTRAN programmer. Routines cover facilities such as reading
and writing decimal (up to triple precision) and octal (up to
double precision) integers, money formats (double and triple
precision), dates and times, filenames and RAD50 formats.

The library has been split into three segments:

General/MACRO portion
Real Number portion

FORTRAN portion

CVGLIR
CVRLIB

CVFLIB

Manual: CVLLIB
Manual: included in
CVLLIB
Manual: CVFLIB

The author has provided excellent documentation with this library
and it should be a valuable addition to every user's program
collection.

Documentation on magnetic media.

Media (Service Charge Code): 5 1/4" Floppy Diskettes (JC)

Format: RT-11

SORT for RT-11, for the Professional-100 Series

Version: December 1981

Author: Chester Wilson and Darrell Whimp

Submitted By: Ian Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT -11 VS.l (PRO support requires VS.l or later)

Source Language· FORTR~N IV, M~CRn-11

SORT is a general purpose high speed RT-ll memory/disc sort/merge
utility program, capable of coping with files as large as RT-11
can manage. Sorting may be ~SCTI or alphanumeric, and
considerable trouble was taken by the original author to enhance
the speed of the sorting.

Documentation on magnetic media.

20

Media (Service Charge Code): 5 1/4" Floppy Diskette (.Tl\)

Format! RT 11

INDEX: FORTRAN Cross-Referencer, for the Professional-300 Series

Version: VS.~, December 1983

Author: Michael Levine

Submitted By: Ian Calhaem, Ph.n., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.l (PRO support requires V5.l or later)

Source Language: MACR0-11

Memory Required: 24KW

INDEX is a cross-referencing program that does for FORTRAN what
CREF does for MACRO. A source program run through INDEX will be
checked for all of its variable name and label usage. ~he names
and labels used in the program, the lines on which they were usen,
and how they were used. If needed, the variables from the
specified programs can be saved along with those of other programs
and later printed out as a super index giving variable names and
the names of all the programs it was used in. Also included is
the capability to exclude from the index listing all variables
that appear only once in a program in a common block or type
declaration but are not used elsewhere (or list only those if
wanted). The user can also list only those variables that are
global (defined in a common block) or those that are local.

Documentation on magnetic media.

Media (Service Charge Code): 5 1/4" Floppy Diskette (JA)

Format: RT-11

TECO V1~ for RT-11, for the Professional-100 Series

Version: December 1981

Author: Andrew Goldstein, Mark Barnhall and Ian Calhaem

Submitted By: Ian Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-ll VS.l (PRO support requires VS.l or later)

Source Language'. MACRO

Memory Required: lhKW

TBCO is a powerful text editor that runs under most RT-ll
,.-, operating systems. It is suitable for editing almost any form of

text file including programs, manuscripts, correspondence, and the
like. TECO is a character oriented editor, and as such is free
from many of the inconveniences associated with many line
oriented editors. In addition, TECO has most of the facilties

21

found in a programming language, such as arithmetic loops,
conditional execution, GOTO's etc., allowing the user to write
editing programs to alphabetize lists, reformat tables, renumber
statement labels, and much, much more.

This version of TECO includes support for PR0-300 Series
terminals, which do not respond to the usual tests for VT100 type
terminals in ANSTI mode. It will therefore run under RT-11 '-".
version 5.1 or later.

Note: From RT-11 version 5.1 or later TECO is not supplied with
RT-11 distribution. It can only be obtained through OECUS.

Restrictions· Although complete sources are not included .OBJ
files are provided and the source of the terminal driver module,
so the user can configure TECO for special use. Command files are
provided to assemble both a background and a virtual (system job)
version of TECO.

Associated Documentation· To obtain the TECO manual see DECUS
No. 11-450.

Media (Service Charge Code): 5 1/4" Floppy Diskette (JA)

Format RT 11

RENUM: FORTRAN Renumbering Program, for the Professional-300
Series

Version: V4.01, December 1983

Author: Eric Morton

Submitted By: Ian Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.l (PRO support requires VS.l or later)

Source Language: FORTRAN-IV-PLUS

RENUM is intended to provide two useful services for the FORTRAN
programmer:

1. Replace the existing statement number in a FORTRAN program with
a new (an equivalent) series of sequential statement numbers,

2. Produce a cross-referenced table of all variable names used in
the source code showing the line numbers where all references
to each variable name occur.

The line number used for cross-referencing agree with those on a
compiler-generated listing. Either or both of these services,
along with a listing of the source code, can be produced; the two
functions are completely independent. Control is by means of
terminal-entered command strings following the standard RT-11
rules. Input files (up to six per command line) cna be on any
disk device, and output files can be directed to any device. 11hen
renumbering, a new disk file (by the original name) is created for
the renumbered source code, and the original file is changed to , _ __,.
.OLD. RENUM version 4 adds several new useful features including;
the ability to specify the starting new statement numbers and the
increment between new statement numbers; a reformatted source

22

listing; flagging the range of DO loops; and improved variable
name scanning, especially in logical IF statements.

Documentation on magnetic media.

Media (Service Charge Code): 5 1/4" Floppy Diskette (J~)

Format: RT-11

CVLLIB: General Purpose RT-11 Library

Version: V3A, July 1983

Author: Chester Wilson

Operating System: RT-11 V3 or later

Source Language: MACRO-11

Special Hardware Required: To use floating point routines you
must have an EIS.

CVLLIB is a (personal) general purpose library for the RT-11
MACRO, FORTRAN or C programmer. Routines cover facilities such as
reading and writing decimal (up to triple precision) and octal and
hexidecimal (up to double precision) integers, money format
(double or triple precision), dates and times, filenames and
Radix50 formats. Numerous convenience routines are included.
Multiple precision arithmetic routines are included, none of which
requires an EIS or FIS. Real (floating point) routines are
included, but these require either a KEVll or a floating-point
hardware unit (FPU).

This 3A comprises the MACRO, FORTRAN and Real number sections of
CVLLIB. The C portion is to be released separately at a later
date.

Changes and Improvements: Reorganized internally, bug fixes and
manuals updated.

Restrictions: Interfaces for DECUS 'C' will be released later as
a separate submission.

Documentation on magnetic media.

Media (Service Charge Code): Floppy Diskettes (KD),
2400' Magtape (PA)

Format: RT-11

Indirect Command File Processing for RT-11 V4.0

Version: February 1983

Author: Russell L. Morrison II, Plessey Peripheral Systems,
Irvine, CA

Operating system: RT-11 V4.A

Other Software Requited: RT-11 V4.0 Autopatch Revision D

Special Hardware Required: Line Time Clock
23

This manual consists of a description of a patch to the RT-11 V4.~
Indirect Command File Processor from Autopatch Revision D. Users
may patch IND.SAV which is found in the RT-11 Autopatch Revision D
in the manner described in the manual. IND.SAV provides RT-11
with RSX-like command files, having features such as parameter
substitution, terminal input (•AsK•), limited math, and flow
control c•.GoTo• and •.aosua•).

Note: The media contains a manual only.

Restrictions: The patch described in this manual is operating
system dependent. It will only work with IND.SAV from RT-11 V4.0
Autopatch Revision D. In order for the patch to be effective,
RT-11 must be SYSGENed with timer support in the Single Job (SJ)
monitor.

Media (Service Charge Code): Floppy Diskette (KA),
~00' Magtape (MA)

Format: RT-11

BRUCE: A Backup and Restore Utility with Consolidation and
Enhancement

Version: V01.l, October 1983

Author: Bruce D. Sidlinger, Alcor Inc., San Antonio, TX

Operating System: RT-11 vs.0 or later

Source Language: RT-11 IND

Other Software Required: IND.SAV (included with RT-11 VS.0)

BRUCE, a •Backup and Restore Utility with Consolidation and
Enhancement•, is submitted as both a useful utility program and as
a demonstration of what can be done with the INDirect command file
processor included with RT-11 Version S.

BRUCE copies all of the files from a disk onto another (scratch)
disk or tape of equal or larger capacity. The files appear on the
output device in EXT, FILNAM sorted order. If there were no
errors, BRUCE then initializes the input disk and copies the files
back. The result is a •squeezed• (Consolidated) disk with all of
the .SYS files adjacent (hence the performance Enhancement), and
with a •neat-looking• (unsorted) directory.

Restrictions: BRUCE cannot restructure the current system disk
(SY:), but the Backup phase is still applicable. BRUCE also
requires some space on SY: for its work files and the output
volume must already be initialized.

Documentation on magnetic media.

Media (Service Charge Code): Floppy Diskette (KA),
600' Magtape (MA)

Format: RT-11

24

FLECS: FORTRAN Language with Extended Control Structures, for the
Professional - 300 Series

Version: V28.02, December 1983

Author: T. Beyer, L. Yarborough and Ian Calhaem

Submitted By: Ian Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.1 (PRO support requires V5.1 or later)

Source Language: FLECS

Memory Required: 28KW

FLECS is an extension of the FORTRAN language which provides the
control structures necessary to support recent concepts of
structured programming. Currently implemented as a translator
which converts FLECS programs to FORTRAN, the system is written in
FLECS and is easily adaptable to new machines and systems. The
entire system including source code and documentation has been
placed in the public domain by the author. The purpose of making
the system available is to convince as many members of the Fortran
Community as possible that structured programming when properly
supported by a language is quite natural and requires
substantially less support than programming in standard Fortran.

This release supports the PR0-300 Series compute r s, but many
restrictions make it difficult to compile two of the source files
on a PRO. For this reason the distribution includes these .OBJ
files as well as full source code.

Note: The source has been updated to reflect the FORTRAN 2.~
compiler.

Restrictions: The Professional-300 Series memory restricts the
compiling of some modules. To avoid this situation .OBJ files
have been included for two modules which otherwise give dynamic
memory overflow.

Documentation on magnetic media.

Media (Service Charge Code): 5 1/4" Floppy Diskette {JA)

Format: RT-11

Airplane Landing Simulation Game, for the Professional-300 Series

Version: December 1983

Author: Bill Green, Les Parent and Ian Calhaem

Submitted By: Ian Calhaem, Ph.D., Dept. of Scientific and
Industrial Research, Wellington, New Zealand

Operating System: RT-11 V5.1

Source Language: FORTRAN-IV

Memory Required: 16KW

25

This program is an airplane landing simulation game. It provides
a psuedo graphic display of an aircraft instrument panel with real
time updates at one second intervals. The program simulates a
real instrument landing approach from an altitude of 25000 feet to
the runway, with instructions from ground radar control. ~ircraft
climbs, dives, and stalls are properly simulated. An off airport
landing as well as go-around for a missed approach are both
possible.

Source code is supplied for both VT100 compatible and VTS?.
compatible terminals, and command files are supplied to enable
versions to be produced for background, foreground and system job.

Documentation on magnetic media.

Media (Service Charge Code): 5 1/4" Floppy Diskette (JA)

Format: RT-11

new
11-687

FORTRAN Callable Subroutines Package for Fast Continuous A/0 on
the MINC

Version: Vl.0, November 1983

Submitted By: Digital Equipment Corporation

Operating System: RT-11 vs.0

Source Language : FORTRAN IV, MACRO-ll

Memory Required: 280 (decimal) Words

Other Software Required: MACR0-11 Assembler, RT-ll 0/S, FORTRAN
IV compiler

Special Hardware Required: MNCAD-MINC A/D Module, MNCKW-MINC
Clock Module

Assembly routines, ADCONT, WAITFD, and STOPIT, constitute a
FORTRAN callable package capable of providing dedicated,
continuous (buffer management with transfer to peripheral storage)
analog-to-digital acquisition at rates two to eight times faster
than the maximum rates provided by REAL-11 routines in a fraction
of the memory space. The interface is also less complex and was
modeled after MINC BASIC. Experienced users should be able to
modify the sources for use with Kand V series logic running under
RT-11. A programmable clock and A/D modules are required.

Documentation on magnetic media.

Media (Service Charge Code): Floppy Diskette (KA),
600' Magtape (MA)

Format: RT-11

26

Monitor Commands for Namelists Package

Version: Vl.0, November 1983

Author: John Alexander, Shiva Associates, Sepulveda, CA

Operating System: RT-11

Source Language: TEC0-11

Other Software Required: TEC0-11

This is a group of keyboard monitor "Executives" that is intended
to allow the user to utilize a "Namelist" file to perform keyboard
monitor commands, and others on a group of modules. The
"executives" call up TECO files to perform the work. The TECO
executive gets the namelist of modules, or single files, and
creates further com lines that operate on the specified files.

This can be very useful to the user that has 5 to 1~5 modules that
make up a major program. A typical executive is one that will
merge files into a single file to allow global edits. When
finished the user may then utilize spli~ .N to split them out
again. To execute any of these "executlves", type in"@" in front
of the executive name and a carriage return. The executive's name
will prompt the user for inputs.

For example: To create an alphabetized name list of files type in
@NAM.N To seP. a directory of the available executives type in
@D.N. To copy a group of modules in a namelist to a device type
in @COPY.N, etc.

In general any executives that end in "E" are more general
executives, e.g., COPYE.N allows the user to specify a different
file type to copy than the module names have in the name list
file. RENAME.N allows a source namelist and a destination
namelist, etc.

Restrictions: Dependent upon RT-11 Executives that utilize TECO.

Documentation on magnetic media.

Media (Service Charge Code): Write-Up (AA), Floppy Diskette (KA),
600' Magtape (MA)

Format: RT-11

File Manipulation Commands

Version: Vl.0, November 1983

Author: John Alexander, Shiva Associates, Sepulveda, CA

Operating System: RT-11

Source Language: TEC0-11

Other Software Required: TEC0-11
27

This is a group of file manipulation "Executives" that is intended
to allow the user to make "global" changes to all lines of a file.
The "executives" call up TECO files to perform the work. The TECO
executive gets the name of modules and creates further com lines
that operate on the specified files. This can be very useful to
the user that desires to utilize the code that has already been
written and write supporting documentation, or to manipulate data
files, etc. Some examples of "operations" that can be performed
are: 1) Number all lines of a file, 2) Move a set of columns to a
new column location for all lines, 3) Pad out the end of line to a
given column, 4) Cut excessively long lines to a given column, 5)
Fix all lines (long or short) to a given column), ~) Eliminate all
"tabs" from a file, 7) Replace spaces with tabs, where possible,
8) Shuffle two files together, 9) Combine columns of one file with
columns of another file, 10) Strip comments out of code, and 11)
Strip code out of comments, etc., etc. To execute any of these
"executives", type in"@" in front of the exec name and a carriage
return. The executive's will prompt the user for ~nput.

Restrictions: Dependent upon RT-11 Executives that utilitze TECO.

Documentation on magnetic media.

Media (Service Charge Code): Write-Up (AA), Floppy Diskettes
(KB), 1;00' Mag tape (MA)

Format: RT-11

revision
11-494

DIBOL 'R3 Screen Handler Package

Version: V4."', February 19q4

Author: David L. Wyse, Projects Unlimited, Inc., Dayton, OH

Operating System: RSTS/E VB, RSX-llM-PLUS V?..1, Micro/~SX Vl.~,
RT-11 V5.0, CTS-300 VB.~, CTS-500 vs.0, VAX/VMS V1.~

Source Language: DIBOL

Other Software Required: nIBOL '83 Compiler

This is a Screen Handling package written in DIBOL '83 and is
transportable across all DIB0L supported operating systems. The
package consists of three DtBOL '83 subroutines: "DISPL", a screen
d!splay_~uhroutine w~i~h allows full u~e of VT100 type advanced
video, 11ne and spec1a1 character drawing features and will format
numeric fieids with decimai points; the "ACr.PT" which accepts
input from a VT100 type terminal including decimal point numeric
fields, using the optimized IO features of DIB0L 1 83; and "CENT"
which uses the DISPL subroutine to disolay a literal in the center
of a line with the capahility of using the advanced and special
video features of VT100 type terminals.

Changes and Improvements: Subroutines have been updated to use
DIBOL '83 features including improved screen IO ann faster
execution times.

Documentation on magnetic media.

28

Media (Service Charge Code): Floppy ryiskette (~A) Format: RT-11,
600' Magtape (MA) Format: DOS-11

WORD: Document Spelling Checker/Corrector

Version: ,June 1983

Author: R. R. DiMarco, South East Old Electricity Board,
Brisbane, Australia

Operating System: RSTS/E, RT-11, TSX-PLUS

Source Language: MACR0-11

Memory Required: 18KB

Special ~ardware Required: EIS

The WORD package consists of a 15000 word dictionary file ann a
number of simple programs that allow the dictionary to he used to
in the correction of spelling errors in documents. The major
components of the kit are:

WORDS.DIC ••• dictionary file
WORDS.S~V ••• flags possible spelling errors
WORDE.SAV ••• corrects spelling errors
SPELL.S~V ••• finds correct spelling from abbreviation
SOUND.SAV ••• finds correct spelling from sound

Documentation on magnetic media.

Media (Service Charge Code): Floppy Diskettes (~B),
600' Magtape (~A)

Format: RT-11

29

Past Symposium Information

HOW TO WRITE Rl'-11 DEVICE HANDLERS

, Ned W, Rhodes
E-Systems, Melpar Division

7700 Arlington Boulevard
Falls Church, Virginia 22046

ABSTRACT

Device handlers for RT-11 are easy to develop if the proper
design methodology is followed, First the user must get to
know the device and its associated registers. Next a wait
loop routine should be written to check out the basic
operation of the device, Then the dynamic characteristics
should be verified with an interrupt service routine. Finally
the full device handler can be developed based upon both the
wait loop and interrupt service routines,

1 • INTRODUCTION

In the real-time environment, the system is usually
called upon to control external devices or to
collect data from external devices, Given that a
hardware interface exists between the computer and
the external device, software is required to
actually control and command the device.

The ultimate goal of this paper is to provide a
method to follow to develop device drivers, The
real key to their development is to break the
problem (handler) down into small, easily
understood steps and then to develop the handler in
an incremental fashion. A possible method is
suggested by the three types of software routines
used to control external devices. If a wait loop
routine is developed first, the structure of an
interrupt service routine follows easily.
Similarly, once the interrupt service routine has
been developed, the formal device driver is easily
implemented. The key is to experiment and to learn
about the device using progressively more complex
routines as the handler is developed,

Although the focus of this paper is on the ADV-11,
analog--to-digital (A/D) converter for the QBUS,
there is an equivalent A/D converter for the
UNIBUS, and everything that is said about the QBUS
A/D converter will pertain to the UNIBUS version,
In fact, most devices that have QBUS and UNIBUS
interfaces are software compatible, This means
that the software developed for the QBUS version
will run without change on a UNIBUS machine,

2, GENERAL DESCRIPTION OF DEVICE CONTROL
ROUTINES

2.1 Wait Loop Routines

The wait loop ia the simplest of the software
routines to program. The theory behind the wait
loop is that the program will start an I/O
operation and then sit in a tight loop that does
nothing more than test the •done" bit on the device
interface, The routine is called a wait loop by

30

virtue of the fact that the computer is "waiting"
for the external device or interface to complete
the operation.

This type of routine wastes computer resources
because the computer is tied up in the tight wait
loop and is therefore unavailable to do other
work. To solve this problem, wait loops or "do
nothing" loops can be converted to "do something"
loops. This is accomplished by testing the done
bit as usual, but then, instead of looping back to
test the bit again, a useful piece of code or
subroutine call is performed next, Once that is
completed, the bit test is again performed. While
this technique allows the computer to do additional
work while the I/O is continuing, it suffers from
the fact that the device may finish its task and be
ready to perform another while the computer is off
in the "do something" loop. This could lead to
lost or missed data. In time-critical applications
this may be a problem,

2.2 Interrupt Service Routines

An additional level of sophistication is added when
the wait loop routine is converted to an interrupt
service routine. Here, the I/O is initiated as in
the wait loop, and then the interrupt is enabled on
the device interface card, Now, when the device
has completed the I/O, the setting of the done bit
will "vector" the computer to an interrupt service
routine. The computer is now free to do other
tasks while the external device is performing the
I/O; the computer will be interrupted after the I/O
operation is completed.

This additional functionality is not added without
cost. This type of routine must properly set up
the interrupt vector and ensure that the interrupt
enable bit is set so that an interrupt will be
generated, Failure to properly set up the
interrupt vector may lead to a system crash when
the interrupt is generated because the vector does
not point to the interrupt services routine,

2.3 Device Driver Routine

There are potential problems with the interrupt
service routine approach that can be solved by
rewriting the routine in the framework of a device
handler. First of all, the interrupt service
routine would have to be linked with every routine
that wants to use the device, and by nature of the
fact that only one interrupt service routine can be
pointed to by the interrupt vector, simultaneous
access to a device would be prohibited.

In a device handler, the mechanics of the interrupt
service routine are formalized. Usually the
handler framework is supplied as a part of the
operating system, and the user merely adapts his
interrupt service routine to this framework. With
a device driver, access to devices can be shared,
and a copy of the routine does not have to be
included with each routine that wants to use the
device; it resides in system space, available for
use by any program.

3. ADV-11 A/D CONVERTER

Before any code can be written to
external device, you have to take some

control
time to

program to know the device. In order to
device, you have to know how many
device uses and how each bit in
registers is used.

registers
each of

an
get
the
the
the

The ADV-11 is a 16-channel analog-to-digital
converter that samples analog data at specific
user-defined rates, and stores the 12-bit digital
equivalent for further processing. A/D conversions
can be initiated by program control, clock
overflow, or external events. For the purposes of
this paper, we will examine how to acquire data
under program control.

3.1 Device Registers

Two registers on the ADV-11 are used to command and
control the A/D converter. The CSR or command and
control register is used to select the desired
channel for data conversion, to enable interrupts
and to start data conversion. The other register
is the data buffer register, and it holds the
result of the A/D conversion.

3. 1. 1 Command and Control Register. Figure
shows the format of the command and control
register. Bit 15, the high order bit of the CSR is
the error bit, It is set whenever an error
condition is detected by the device, Bit 14 is the
interrupt enable bit for the error conditions. If
bit 14 is set and an error condition is detected
that will also set bit 15, then an interrupt will
be generated. For the purposes of this paper, the
error bits (14 and 15) will be ignored.

Bits 12 and 13 are not used while bits 11-8 will
contain the address of the analog channel that is
currently addressed for data conversion.

Bits 1-5 are special bits that control how the
device is commanded externally and in the
maintenance mode. Again, for the purposes of this
paper, these bits will be ignored.

31

Bits O, 6, and 7 usually have the same function on
every QBUS or UNIBUS device. Bit O is usually
considered the "GO" bit. Once all the registers in
the device are set up, the I/0 transfer is usually
started by setting the "GO" bit. This is true with
the ADV-11. Once the channel address is loaded in
the CSR, setting the "GO" bit will initiate the A/D
conversion for that channel.

Bit 7 is usually the "DONE" bit. It indicates that
the I/0 transfer has completed. Setting bit 6 will
cause an interrupt to be generated when the "DONE"
bit (bit 7) is set; no interrupt will be generated
unless bits 6 and 7 are set.

3.1.2 Data Buffer Register. The other register of
importance on the ADV-11 is the data buffer
register and it is detailed in Figure 2. Unlike
the CSR, the data buffer register has different
functions depending upon whether the computer is
reading or writing to the register. When the data
register is read, bits 0-11 will contain the
digital representation of the analog voltage. When
data is written into the register, the offset value
of the analog data can be changed. In the read
mode, bits 13-15 are unused and bit 12 will be set
at the end of a data conversion if bit 3 of the CSR
is also set.

As mentioned above, the converted data occupies
only the 12 bits that correspond to decimal values
of 0-4095. Negative values are in the range of 0-
2047 and positive values are in the range of 2048
to 4095. In order to convert the digital values to
the proper 16-bit two's complement values, 2048
must be subtracted from the 12-bit quantities,
This data conversion can take place either in the
software routine that acquires the data, or in the
analysis routine, The software routines that will
be presented in this paper will convert all the
data to the proper two's complement values.

3.2 Device Bus Address

On PDP-11's and LSI-11's, the upper -4K words of
address space are reserved for device addresses.
When external devices are installed in QBUS or
UNIBUS systems, each device must have a unique
address on the bus so that the software routines
can address that device. The net result is that
the device registers look like memory addresses to
the software routines and no special I/0
instructions are required of the computer.

Many devices have "standard" addresses that have
been established by the manufacturer. The use of
these standard addresses for certain types of
devices means that the software need not be
reconfigured every time a new device is added to
the system because the software can expect the
device to answer to a fixed address.

The standard address for the ADV-11 is 770400
(octal), This address is set on the card by a row
of DIP switches and the address corresponds to the
address of the CSR register. The address of the
data buffer register follows the CSR and is
770402. All of the example programs that follow
will use these standard addresses.

Iii COMMAND AND CONTROL REGISTER

15 14

ERR
INT ENA

13 12 11

MSB

NOT USED

10 09

MUX ADDRESS
READ/WRITE

08 07

AD
DONE

Figure 1

06

DONE
INT ENA

05

CLK
START

ENA

04

EX
START

ENA

03

ID
ENA

02

MAINT

01

AD
START

NOT USED

DATA BUFFER REGISTER

VERNIER D/A (WRITE)

00

LSB

ID CONVERTED DATA (READ)

Figure 2

32

3.3 Device Vector Address

Besides the bus address of the interface card, the
other item that has to be set is the device
interrupt vector. The interrupt vector is
important when the device will be programmed to use
interrupts. When a device requests an interrupt,
the CPU will save the current processor state on
the system stack and "vector" or begin executing an
interrupt service routine whose address is stored
at the vector address.

On PDP-11 systems, vector addresses are contained
in memory from about 60-500 (octal). Vector
addresses contain two pieces of information and
occupy two words. The first word of the interrupt
vector contains the address of the interrupt
service routine while the second word contains the
processor status word (PSW) for that interrupt
service routine. The major field of interest in
the PSW is the processor priority bits . These bits
will determine the executing priority of the
interrupt service routine.

When an interrupt is taken, the CPU stores the
current processor state which consists of the
current program counter and the current processor
status word. Then it loads the program counter
with the address contained in the first word of the
interrupt vector and the PSW from the second word
of the vector. The loading of the program counter
from the interrupt vector is equivalent to jumping
to that address, which is the address of the
interrupt service routine . The RTI instruction
(ReTurn from Interrupt) restores or reloads the old
PSW and program counter from the stack which
resumes the execution of the program where it was
interrupted.

3.4 Device Bus Grant Level

The other setable parameter on a device interface
card is the bus grant level. The bus grant level
is concerned with the order in which interrupts are
serviced in the computer. For the purposes of this
paper, only the bus qrant level is of interest and
does not affect how the software routines are
developed. Additional information about the bus
grant level is contained in literature that
describes the theory and operation of the QBUS and
UNIBUS.

Very simply, there are four bus grant levels
available and the bus arbitration logi c on the PDP-
11 will only grant an interrupt to a device whose
bus grant level is greater than the current
execution priority of the CPU. For example, the
CPU normally operates at priority 0. If an
interface requests an interrupt and its bus grant
level is 5, then the interrupt will be granted and
an interrupt service routine will begin
execution. The priority of the interrupt service
routine is contained in the second word of the
interrupt vector and is set when the interrupt
service routine is entered. If the interrupt
service routine is operating at priority 5 and
another device at bus grant level 5 requests an
interrupt, the request is queued and held off until
the processor priority falls below 5. This
lowering of the priority can occur under software

33

control, or by the RTI instruction at the end of
the interrupt service routine.

4. DESIGN METHOD FOR DEVELOPING DEVICE DRIVERS

Now, this paper will address how device drivers can
be easily developed. As was suggested before, the
easiest path to a device driver involves writing
two routines before the actual device driver
itself. First a wait loop routine should be
designed and tested. Then, based upon what is
learned from that routine, an interrupt service
routine should next be developed. Finally, the
interrupt service routine should be formalized and
incorporated into a full device driver. It has
been my experience that, if this development path
is follCMed, the device driver is easy to develop
and its design will follow logically from the wait
loop and interrupt service routines.

The examples that follow all implement a way to
acquire data from the ADV-11. In each example, two
pieces of infonnation are required from the user.
First of all, since the A/D converter can convert
up to 16 channels of infonnation, the user must
provide the number of channels that IIIUSt be
converted. In order to make things easier, all the
routines will assume that the channels are
connected in sequential order so that the
individual channel numbers will not be required.
That means that if three channels are requested,
then the routine knCMs that channels O, 1 and 2 are
being requested. Although random access of the
individual channels is supported with this device,
the examples will not implement that particular
feature.

5. WAIT LOOP

Listing shows an implementation of a software
routine that collects data from the A/D converter
using the wait loop approach. Because the routine
is FORTRAN callable, arguments are passed to the
routine using the standard parameter block (Figure
3). In the parameter block, the first parameter
contains the number of para.meters being pas5ed,
followed by the addresses of the parameters.
Register 5 points to this parameter block upon
entry to the routine.

The first few instructions merely set up the
parameters for the routine. The number of channels
to acquire is stored in register 1 and the address
of the buffer to receive the converted values is
stored in register 2. The next instruction clears
the A/0 CSR register which has the effect of
setting the channel address (bi ts 8-11 l to zero.
The instruction that increments the CSR register
will set the "GO" bit and will begin the conversion
for channel o.

The wait loop itself consists of the two
instructions at the label "LOOP:". Here the
routine does a byte test on the lower half (bits 0-
7) of the CSR register. When the conversion is
done, bit 7 will be set. If we conside·r only the
lower eight bits of the CSR as a two's complement
number, bit 7 corresponds to the sign bit.
Therefore, the branch positive (BPL) will be taken
if bit 7 is not set or the conversion is not

ready. Note that a bit test instruction could have
been used to explictly test for the done bit
instead of the test byte instruction.

The next few instructions read in the data from the
A/D converter and start the next conversion.
First, the number of channels to acquire (R1) is
decremented. If it is O, then the desired number
of conversions has been performed and the branch is
taken to "DONE:", where the data is read from the
data register and stored in the user's buffer. If
there are more channels to acquire, the channel
address is incremented by one with the INCB
instruction. This instruction affects the top byte
of the CSR which will increment the channel
address. Next the converted data is read from the
data register and stored in the user's buffer. The
number 2048 is subtracted from the data to put it
in the proper two's complement form and the A/D
converter is started again by the INC instruction
which sets the "GO" bit. Now the routine returns
to the wait loop to wait for the conversion to
finish.

The routine exits when the last channel is
converted and the data is stored in the user
buffer. This type of routine is an excellent way
to start handler development and it is easy to
debug such an application because a debugger can be
used in the wait loops and print statements can be
used to follow the program execution. Because
interrupts are not used in this routine, any
programming errors that are encountered are usually
non-fatal.

6. INTERRUPT SERVICE ROUTINE

Once the basic operation of the device is
established through the use of the wait loop
routine, the interrupt service routine approach can
be addressed. In the interrupt service routine,
the basic structure of the wait loop will be
changed so that the software can take advantage of
the fact that the device can generate interrupts.

Listing 2 shows the form of the interrupt service
routine for the ADV-11. The interrupt service
routine usually contains three separate parts. The
first part, which starts at "INIT: ", sets up the
interrupt vector and the PSW for the interrupt
service routine. Note that once the device
generates an interrupt, the routine "ADISR" will be
entered and the priority of the the interrupt
service routine will be 7 as indicated by the 340
(octal) in the interrupt vector. In addition to
setting up the interrupt vector, the A/D status
register is cleared to halt any operations that may
have been started earlier.

With an interrupt service routine such as this one,
the basic philosophy is to initiate the I/0
operation and then perform another task while the
1/0 is being performed. The problem that the
software designer then needs to address is how to
determine when the 1/0 operation is complete so
that other 1/0 operations can be started or that
analysis of the acquired data can begin. If the
device generates an interrupt at the completion of
all the 1/0, then that interrupt can be used. If,
on the other hand, an interrupt is generated at the

34

end of each word of the I/0 transfer, another
method must be used to indicate that the entire
operation is completed.

Many routines use a flag or semaphore to indicate
that an operation is totally complete. In that
case, the I/0 operation can be started, and when
the flag is set, the main calling routine knows
that all the I/0 has finished.

The second portion of the interrupt service routine
is the initiation section which starts at "START:"
in Listing 2. The function of the initiation
section is to initially start the I/0 and clear the
user's done flag. In this case, once the I/0 is
started, the interrupt service routine portion of
the routine will continue to acquire data until the
requested number of channels have been read.

The initiation section begins by storing the number
of channels to convert in the memory location
"LENGTH". Next the data buffer address and the
address of the done flag are stored in other memory
locations. Memory locations have to be used in
this case, because the contents of the general
purpose registers will not be known when the
interrupt portion of the routine is entered. The
user's flag is then cleared to indicate that the
transfer is not completed and then the A/D
converter is started.

The way in which the A/D converter is started
deserves further attention. Because the CSR
register was initially cleared in the initiation
section, the channel address was also set to
zero. In order to begin the 1/0 transfer, the
software routine must set the "GO" bit. In order
to allow the computer to respond to the interrupt,
the "interrupt e.nable" bit on the interface card
must also be set. The interrupt enable bit is
usually bit 6 and so loading a 101 (octal) into the
A/D CSR register performs the dual function of
setting the "GO" bit and enabling the device
interrupt.

Now, all the rest of the work will be performed by
the interrupt service portion of the routine. The
interrupt service portion begins at label
"ADISR:". The code in the interrupt service
routine looks very similar to the code in the wait
loop routine except that memory locations are used
instead of general purpose registers. First, the
number of channels to acquire is decremented. If
the last channel was converted, the routine jumps
to the completion section at label "DONE:". If
this was not the last channel, then the channel
address in the CSR is incremented by one, the data
is moved from the A/D data buffer register and
stored in the user's buffer using an indirect store
instruction (the memory location "BUFFER" points to
the user's buffer). Now, the next A/D conversion
is started again by setting the "GO" bit on the
interface card. There is no need to set the
interrupt enable bit again as it is already set
from the initiation section,

A few clean-up items must be performed at this
point. First, the converted data must be unbiased
and put into the proper 16-bi t two's c0111plement
form by subtracting 2048. Finally the buffer

Ii FORTRAN PARAMETER BLOCK

Addr of Argument in

Figure 3

QUEUE ELEMENT

.. ,11 .. ~ .. ' .
Q.Link g Link to next Queue element

(') ~~·-' 2 n--,;,.,._ __ +-" -1-.~--,01 ~ .. ~ .. ,~ ,.--~

Q.BLKN 4 Block number

Q.FUNC reservec Job UNIT Special functior

IQ.UNIT 6 1 bit number numbez code 8 bits

Q.JNUM 4 bits 3 bits

Q.BUFF 10 User buffer address

Q.WLNT 12 Word count

completion j-= wait
Q.COMP routine 1-= asynchronous

14 code even-= completion
routine
addr

IQ.PAR 16 Programmable address reg. 1 value Par l

20 RESERVED

.,..,
''C"'l::>"1:7"1:"

Figure 4

35

address stored in "BUFFER" must be adjusted to
point to the next memory location in the user's
buffer, Because the PDP-11 is byte addressable,
two must be added instead of one, The interrupt
service routine now completes with the RTI
instruction and the computer resumes execution
where it was interrupted,

The completion section of the interrupt service
routine reads in the last channel converted and
subtracts 2048 to unbias the data, Now, the user's
flag is set to indicate that the I/O is completed,
the CSR is cleared to reset the interrupt enable
bit and to reset the channel address to 0, and the
interrupt service routine is exited with the RTI
instruction,

Debugging this type of routine is significantly
harder than the wait loop routine because most
debuggers will not work within an interrupt service
routine and the routine cannot use RT-11 system
services within an interrupt service routine
without performing some synchronization with the
operating system. This routine will allow the I/O
to continue while other calculations are being
performed. The calling routine is free to sit in a
tight loop waiting for the flag to be set, or to do
other work and check the done flag periodically .

7. DEVICE DRIVER

In order to incorporate the interrupt service
routine into the operating system, it has to be
formalized and placed in the framework called the
device driver. In general, device drivers have
three parts. The first is the initiation section
where the I/O is started. The second section is
the interrupt service portion or the continuation
section, Finally, when the I/O request is
completed, the completion section is used. Listing
3 contains an implementation of a handler to
acquire data from the ADV-11. Besides the three
sections mentioned, this paper will discuss the
macros that RT-11 provides to help make handler
development easier and the data structure known as
the queue element. Further explanation of these
macros and the structure of device drivers can be
found in the Software Support Manual for the RT-11
Operating System.

7.1 RT-11 Queue Element

One of the reasons to develop an operating system
is to adopt standard conventions in the area of
system communications and input and output to
external devices. The queue element is the data
structure used by RT-11 to initiate I/O
operations. Its structure is shown in Figure 4.
I/O works as follows under RT-11. First a program
decides that it will perform 1/0 to a particular
device. Using RT-11 system calls, the routine will
associate a channel number with a particular
device. Fran then on, all I/O to a device is
referred to by channel number. Now, the software
routine invokes an RT-11 macro to perform the
I/O. In order to service the request, the system
"buys" a queue element fran the list of available
queue elements and transfers the parameters of the
I/0 operation to the queue element. Next, the
queue element is placed in a queue for the

36

particular device handler. If the handler is
currently busy with another I/O request, the queue
element remains on the queue and will be processed
when the previous I/O has completed. If the
handler is not busy, the operating system calls the
handler at the initiation section. Note that the
handler can always assume that the current queue
element is the first one on the queue for the
handler.

7.2 RT-11 Device Macros

In what is known as the preamble section of the
handler, various options and constants are set
up. RT-11 provides a set of macros that define the
fields in the queue element (.QELDF) and sets up
the various communications paths to the operating
system (.DRBEG, .DRAST, .DRFIN, .DREND, .FORK),
This section also contains conditional assembly
parameters for the various options supported by the
operating system such as Extended Memory, Error
Logging and Timeout support, In addition, various
status words and constants can be set up in the
preamble section. These types of parameters and
constants are well documented in the Software
Support Manual for the RT- 11 Operating System and
will not be repeated here as they do not help
considerably in understanding how device drivers
operate,

7.3 Initiation Section

This section of the device driver initiates or
starts the I/O operation and is called the "header"
section in RT-11. The macro .DRBEG sets up the
entry point to the initiation section and provides
information about the device registers, name, size
and status.

Upon entry to the initiation section, the device
must validate the I/O request. For example, write
only devices will not perform read requests and
read-only devices will not perform write
requests. This validation of the type of request
is performed by examining the word count field of
the queue element, Normally, the address of the
queue element is held in R4 and all other
references to the queue element are made as
symbolic offsets to the address in R4 .

By convention, a word count of 0 is a seek request
and may be used to position a .mechanical device to
a particular area. In the case of this device, a
seek has no meaning and the I/O request can be
completed right away. A write request is signified
by a negative word count and since this is a read
only device, write requests will abort and return
an error code. Read requests have a positive word
count field in the queue element.

In order to start the I/O, the handler merely needs
to set the channel address to zero, set the "GO"
bit and enable the interrupt. The operating system
is responsible for loading the interrupt vector
when the handler is loaded. The MOV instruction
loads a one into the CSR register, sets the "GO"
bit and clears out the channel address bits at the
same time. The interrupt is enabled with the Bit
Set (BIS) instruction. The initiation section is
now finished and the RETURN instruction will return

control to the operating system while the I/O
proceeds.

7.4 Interrupt Section

The .DRAST macro sets up the entry to the
continuation section of the handler. The other two
parameters to the macro set the priority of the
interrupt service routine, while the last parameter
is the address of the abort I/O routine. The abort
I/O routine will be entered whenever a job is
aborted by either a control-C or error. Its
purpose is to allow the handler to stop any I/O
that is in progress in a controlled manner.

The first thing that the continuation section must
do is point to the queue element as all the
information about the I/O in progress is stored
there. Now, the routine is ready to read the data
from the device and store it in the user's
buffer. The address of the user's buffer is stored
in the queue element, but this address is different
depending upon the RT-11 monitor being used. In
the unmapped environment (SJ and FB) the address in
the queue element is the direct address of the
user's buffer, In the mapped environment (XM) the
user's address consists of page references and
offsets within the page, In order to make it
easier to store and retrieve information, RT-11
provides hooks into the operating system for the
computation of the proper physical address from the
user's virtual address for the mapped environment.

In this case, the address stored at offset "BUFF"
of the queue element contains the proper address in
the unmapped environment. In that case, the. data
need only be read from the data register and stored
directly in the user's buffer. Then the data can
be unbiased and the buffer address in the queue
element can be incremented to point to the next
item in the buffer, In the case of the mapped
environment, the monitor routine "$PTWRD" will take
the top item from the stack, store it in the user's
buffer, and increment the address in the queue
element. The routine assumes that R4 points to the
queue element and that the data to be stored is on
the top of the stack,

The saving of the data in the mapped environment is
accomplished by reading the data register and
storing the data in RO (RO and R4 are available for
use in interrupt service routines). The data is
then unbiased and stored on the stack. The routine
"$PTWRD" is then called to actually move the data
to the user's buffer,

The final task that the continuation section must
perforrr. is either to end the data transfer if all
the data has been transferred, or start the next
transfer if it has not. As with the other routines
mentioned above, the word count is decremented, If
it is zero then the transfer is complete and the
routine branches to the completion section. If the
transfer is not complete, the channel address is
incremented by one and the "GO" bit is set by
adding 401 (octal) to the contents of the CSR,
Adding 400 (octal) will increment the top byte of
the CSR register which will increment the channel
address and adding 1 will set the "GO" bit in the
lower byte of the CSR. The routine can now exit

37

the continuation section and wait for the next data
conversion to complete,

7.5 Completion Section

The I/O completion, as the name implies, is entered
at the completion of the I/O. In this section, the
routine must leave the device in the proper
termination condition. In the case of the ADV-11,
all that is required is to disable the interrupt
and then exit. In the case of other devices,
additional tasks may be required, The macro ,DRFIN
performs the task of placing the current queue
element on the monitor's completion queue and
restarting the handler if there is another queue
element on the handler's queue. Once on the
completion queue, the monitor will take the proper
action depending on whether the I/O was one with
wait, no wait or completion routine requested,

7.6 Abort Section

The ",DRAST" macro has a parameter that indicates
the address of an abort routine if one is wanted.
In the case of this handler, the abort section of
the handler is the same as the completion
section. If the I/O is aborted, all that is
required is to disable the interrupt and return-
the data will not be used in this case.

8. CONCLUSIONS

This paper has presented a method of design to
follow in order to simplify the development of
device handlers for RT-11. In order to develop
device handlers, the user should first get to know
the device, That implies that he should study each
of the registers used to control a device, and the
purpose of each of the bits in the registers.
Next, armed with an understanding of how the device
works, the user should write a wait loop routine to
ve rify the user's understanding of the device,
Once the wait loop routine is fully operational and
debugged, an interrupt service routine should be
the next step. The interrupt service routine will
give the user confidence that he truly understands
how the device will operate under interrupt
conditions.

Once the interrupt service routine is completed,
the full device handler can easily be developed,
The handler normally consists of the preamble
portion that sets up the handler data structures,
the initiation section that starts the I/O
operation, the continuation section that
reinitiates the I/O until the requested number of
words have been transferred, the completion section
that terminates the I/O, and the abort section that
handles abnormal termination of the I/O operation.

During development of the device handler, there are
various timing considerations to think about. The
wait loop, although the most wasteful of computer
resources, will respond the fastest to changes in
the device. This is due to the fact that the
computer is constantly monitoring the device in a
tight loop, The interrupt service routine will
give good performance, but it has a property known
as interrupt latency. The latency is the time
required for the computer to detect the interrupt,

save its current status, and vector to the
interrupt service routine. In time-critical
applications, this time period may be too long.

may be spent in the operating system fozwarding the
request to the handler itself. The net result is
that one should consider all the advantages and
disadvantages of the various software methods as
they apply to your application before choosing the
particular implementation necessary to solve your
particular problem,

The handler, while the most general of the
routines, is probably the slowest to respond. In
addition to the interrupt latency, additional time

I
SCAN::

LOOP:

DONE:

LISTING 1

.TITLE SCAN

This routine implements data collection fran an ADV-11
A/D converter using a wait loop technique

ADSTATz170400 1CSR REGISTER
ADBUFF>-ADSTAT+2 1DATA REGISTER

MOV (RS)+,RO ;PASS# PARAMETERS
MOV (R5)+,R1 1ADDRESS OF LENGTH OF SCAN
MOV (R1) ,R1 1LENGTH OF SCAN
MOV (R5)+,R2 ;ADDRESS OF BUFFER
CLR @#ADSTAT 1CLEAR A/D STATUS REG
INC @#ADSTAT 1START A/D
TSTB @#ADSTAT 1DONE?
BPL LOOP 1BRANCH BACK IF NOT DONE
DEC R1 1IS THE SCAN DONE?
BEQ DONE 1BRANCH TO DONE IF YES.
INCB @#ADSTAT+1 1INCREMENT MUX NUMBER
MOV @#ADBUFF, (R2) 1MOVE VALUE FROM A/D BUFF TO DATA BUFF
SUB #2048.,(R2)+ 1UNBIAS THE DATA
INC @#ADSTAT 1START THE A/D AGAIN
BR LOOP 1GET MORE DATA
MOV @# AD BUFF , (R2) 1READ THE DATA
SUB #2048.,(R2)+ 1UNBIAS THE DATA
RTS PC 1RETURN
.END

LISTING 2

.TITLE SCAN -- Scan the A/D converter once with interrupts

This routine implements data collection from an ADV-11
A/D converter using an interrupt service routine.

ADSTAT=170400
ADBUFF=ADSTAT+2
ADVECT=340

1STATUS REGISTER
1DATA REGISTER
1INTERRUPT VECTOR

Initialization routine -- Set up the interrupt vector

INIT:: M:JV
MOV
CLR
RETURN

#ADISR,@#ADVECT 1INTERRUPT SERVICE ROUTINE
#340,@#ADVECT+2 1PRIORITY 7
@#ADSTAT 1START OUT AT A ZERO

START::

Start the conversion, flag will be set nonzero
when it completes

MOV @2 (RS) ,LENGTH 1LENGTH OF SCAN
HOV 4 (RS) ,BUFFER 1ADDRESS OF BUFFER
HOV 6(R5) ,FLAG 1ADDRESS OF DONE FLAG
CLR @FLAG 1CLEAR IT
HOV #101,@#ADSTAT I ENABLE INTERRUPTS AND
RETURN 1AND RETURN TO CALLER

A/D interrupt service routine

38

START IT OFF

'--....-/

ADISR:: DEC
BEQ
INCB
MOV

INC
SUB
ADD
RTI

LENGTH
DONE

;IS THE SCAN DONE?
;BRANCH TO DONE IF YES,

@#ADSTAT+1 ;INCREMENT MUX NUMBER
@#ADBUFF,@BUFFER;MOVE VALUE FROM A/0 BUFF TO DATA BUFF
@#ADSTAT ;START THE A/D AGAIN
#2048,,@BUFFER ;UNBIAS THE DATA
#2,BUFFER ;BUMP THE ADDRESS

;INTERRUPT RETURN

DONE:

LENGTH:
BUFFER:
FLAG:

Get the last channel and set the flag

MOV @#ADBUFF,@BUFFER;READ THE DATA
SUB #2048,,@BUFFER ;UNBIAS THE DATA
INC @FLAG ;SET THE FLAG
CLR @#ADSTAT ;DISABLE INTERRUPT AND CLEAR CHANNEL
RTI ; INTERRUPT RETURN

,l«lRD 0 1SCAN LENGTH
,WORD 0 ;BUFFER ADDRESS
,l«lRD 0 ;SCAN COMPLETE FLAG

,END

LISTING 3

,TITLE AD-11 DRIVER

This handler will scan the A/0 once,
The length of the scan is determined by the number
of words requested in the I/O queue element,

,IDENT /V04,0/

, SBTTL PREAMBLE SECTION

,MCALL ,QELDF, ,DRBEG, ,DRAST, ,DRFIN, ,DREND, ,FORK

SYSGEN DEFAULT DEFINITIONS

MMG$T = 1
,IIF
,IIF
,IIF

NDF,MMG$T
NDF,ERL$T
NDF,TIM$IT

DEVICE UNIBUS ADDRESSES

,IIF
,IIF

NDF,AD$VEC
NDF,AD$CSR

ADBUFF = AD$CSR + 2
HDERR = 1

MMG$T = 0
ERL$G = 0
TIM$IT = 0

AD$VEC=340
AD$CSR=170400

DEVICE STATUS INFORMATION

ADDSIZ = 0
ADSTS = 40370

DEFINITION OF Q ELEMENT SYMBOLICS

,QELDF
WCNT Q,WCNT - Q,BLKN
BUFF= Q,BUFF - Q,BLKN

,SBTTL SET OPTIONS

NO SET OPTIONS
39

;A/D VECTOR
;A/D CSR

;BUFFER REGISTER
;HARD ERROR ON CHANNEL

;DEVICE BLOCK SIZE
;DEVICE STATUS WORD

RET:

ADERR:

ADDONE:

LISTING 3 (Continued)

.SBTTL HEADER SECTION

.DRBEG AD,AD$VEC,ADDSIZ,ADSTS

ENTRY POINT FROM QUEUE MANAGER

MOV
TST
BEQ
BMI

ADCQE,R4
WCNT(R4)
ADDONE
ADERR

ASSUME A READ

MOV tlltADBUFF ,RO
MOV lt1,@ltAD$CSR
BIS lt100,@ltAD$CSR
RETURN

.SBTTL INTERRUPT SERVICING

.DRAST AD,4,ADDONE
MOV ADCQE,R4
.IF EQ,MMG$T
MOV @ltADBUFF,@BUFF(R4)
SUB lt2048.,@BUFF(R4)
ADD lt2,BUFF(R4)
.IFF
MOV @#ADBUFF,R0
SUB #2048. ,RO
MOV R0,-(SP)
CALL @$PTWRD
.ENDC
DEC WCNT(R4)
BEQ ADDONE
ADD #401,@#AD$CSR
RETURN

.SBTTL I/O COMPLETION SECTION

BIS *HDERR,@Q.CSW-Q.BLJCN(R4)

BIC #100 ,@#AD$CSR
.DRFIN AD
.DREND AD

.END

40

;POINT TO CURRENT QUEUE ELEMENT
;WHAT DO YOU WANT??
;SEEK COMPLETES RIGHT AWAY
;WE DON'T DO WRITES

;CLEAR OUT A/D FLAG
;START A/DAT CHANNEL 0
; ENABLE INTERRUPT
;BYE

;POINT TO ELEMENT

;READ THE ~RD
;UNBIAS THE DATA
;BUMP BUFFER ADDRESS

;READ THE ~RD
;UNBIAS THE DATA
;STACK IT
;GIVE TO THE USER

;ONE LESS ~RD
;WE ARE DONE
;START NEXT CONVERSION
;RETURN

;SET ERROR BIT IN CHANNEL
;DISABLE INTERRUPT

