




THE I I ffl ft• DECUS 
la1kfl,r1111111111111111111111111111111111RT-11SIGNEWSLETTERIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

December 1984 Volume 10 Number 5 

Contributions to the newsletter should be sent toa 

Ken Demers 
Adaptive Automation, Inc. 
5 Science Park 
New Haven, CT 06511 
203 786-5050 

Other communications can be sent toa 

John T. Rasted 
JTR Associates 
58 Rasted Lane 
Meriden, CT 06450 
203 634-1632 

or 

RT-11 SIG 
c/o DECUS 
One Iron Way 
MR2-3/E55 
Marlboro, MA 01752 
617 481-9511 Ext. 4141 



---- ------ - - --~ 



Table of Contents 

FROM THE EDITOR • • • • • • • • • • • • • • • • • • • • • • • • 5 
USER INPUT 

RT-11 Internals • • • • • • • • • • • • • • • • • • • • • 5 
DY Handler Modification to Read Bad Blocks •••••••• 45 
Dial Up Security Program for RT-11 •••••••••••• 47 

USER RESPONSES 
Improvements to the Floating Point Macros Presented in Aug 48 

DECUS LIBRARY 
FTALK: PDP-11 to SBC 11/21 (Falcon) Communication Program 49 
STONE: A Program for Resolving Mossbauer Spectra ••••• 49 
C Language System in RT-11 Format •••••••••••• 50 
CIT1O1s Routines to Drive the CT1O1 & VT1OO Terminals •• 51 
Complete File Sort Utility •••••••••••••••• 52 
Kermit-11: Communications Protocol Software ••••••• 53 
User Command Linkage - Plus ••••••••••••••• 54 
DECODE4a RT-11 SAY File Disassembler ••••• • ••••• 55 
VLOAD1 Program For the RT-11 Extended Memory Monitor ••• 56 
Symposium Tape From the RT-11 SIG, Spring 1984, Cincinnati 57 

3 





FROM THE EDITOR 

After approximately eight years, I have decided to relinquish 
my position of RT-11 newsletter editor. If you are interested in 
becoming the next newsletter editor, please contact me as soon as 
possible. The next editor will be chosen from those applicants that 
respond by February 28th, 1985. I will continue to be very active 
within the RT-11 SIG. I hope to become the RT-11 SIG'S communication 
representative. The publication of the "mini-tasker" 'is one of the 
responsibilities of this new position. 

I would personnally like to thank all of you around the world, 
who have taken the time and effort to submit so many informative 
articles to the "mini-tasker" over the years. Please keep up the 
good work. 

USER INPUT 

I haven't sent anything for awhile. We have been rather busy here. To make up, I 
have enclosed some 45 pages of notes I used for European DECUS training sessions 
the last two years. They are not well coordinated, full of minor errors, and 
hardly in language intended for publication. 

But I think they could be valuable for two reasons: first, because they deal 
with some monitor issues that I have not yet seen in print. The second reason is 
precisely because they are not in 'publication language' - they were written in 
a hurry and seem to me to document fairly well the way programmers talk to each 
other. 

I have held them back because I believe that training session notes belong to 
the attendees for a year. They pay for them and patrons rules apply. Two years 
ago I would not have published them anyway - but DEC have loosened up since then 
and are not as easily offended. 

45 pages is a lot - but at least you can't complain about not getting enough 
from mel I have some more stuff in the pipeline and plan to rework the short 
history of RT-11 to deal with new releases. 

Allth•r~,~ 
Ian Hammond 

5 



rt-11 internals 
No one can explain 'how an operating system works'. RT-11 probably has around 
two thousand separate mechanisms - many of which are interdependent. Further, as 
RT-11, and other DEC operating systems, tend to be innovative, there is no cur
rent literature which adequately covers many of the techniques used. 

As Ralf Stammerjohn says, an operating system is just a large program. Thus an 
operating system can be approached with the same techniques you would use to 
analyse the 'generic' program. 

Therefore, the object of todays session is not to provide a detailed description 
of the whole monitor. The goal of todays session is to focus on the best techni
ques to use in analysing the RT-11 operating system. 

The monitor is more than the sum of its code and its comments. Often it is more 
important to know 'why' a particular approach is used in the code. And the 'why' 
often has its roots in history or politics. Thus we will deal today with some 
history and politics. 

RT-11 monitor code is always subject to space restrictions. The monitor and the 
CUSPS are entirely written in MACRO. Some of the space-saving techniques make 
the code difficult to follow. We will look at some specific examples here. 

During the morning, and perhaps the early afternoon, we will work bottom-up thru 
Bootstrap, KMa--1/KMOVL Y, USR and RMON. 

However, since this session is advertised as 'starting where the SSM leaves off' 
I have a difficult task - since the SSM is very detailed. Therefore I plan to 
spend a large part of the afternoon dealing with interrupts, forks, scheduling, 
context switching, etc. That is, the dynamics of the FB operating system. 

The definite non-goals for todays session are XM, MTT and FORTRAN & BASiC. But, 
I will mention some related m<"terial to the XM monitor (I have rarely used the 
first three of these and I only seem to get a bad reputation for admitting I 
often use (and like) the last). 

This session is a general training session. We will however have trouble cover
ing all the material related to what is a very complex piece of software. Thus, 
we cannot afford to get sidetracked by individual problems in the monitor. You 
should see me during the week if you have specific problems, or use the Q & A 
sessions. We will also try to set up a birds-of-a-feather for monitor internals 
during this symposium. 

I have already presented some of this material in the SIG newsletters and at 
other DECUS presentations. I cannot apologise for the repetition, since without 
it this training session would be very incomplete. But, there is a lot of new 
material as well. 

You should have all received handouts and a pocket reference. I want to remind 
you that this material is copyright - specifically, it should not be reproduced 
in SIG newsletters. The handouts are working notes: They would give a misslead
ing impression without the accompanying commentary and discussion. 

6 



RT-11 HISTORY 

An operating system is not much more than the sum of the work that was put into 
writing it. It reflects both the strengths and the weaknesses of its authors. In 
the case of RT-11 there a number of points that are worth knowing when looking 
at the monitor. 

DEC's first O/S for the eleven, OOS-11, was not a success. It was too small to 
be a big system, and too big to be a small system. Around 1970 DEC realized they 
needed a small, fast, easy-to-use operating system for the eleven, in the same 
tradition as OS/8 for the PDP-8. And indeed, RT-11 is a child of OS/8. 

OS/8 
OS/8 is generally credited to Richy Lary. Lary also wrote the micro-code for the 
LSl-1 and the PDP-11/60. 

The first version of RT-11 included members of the OS/8 team. 

The entire monitor structure, and most of the original philosphy of RT-11 comes 
from OS/8: RMO!",I, USR, CSI and KMO!",I and most of the V1 monitor commands. 

8KW and DECtapes 
RSX-11 was around as a 'run-time' system during the early days of RT-11. One 
proposal was that RT-11 use a subset of the RSX-11 file structure, and this was 
investigated. However, the idea was eventually dropped and an OS/8-like struc
ture was adopted. The reason: RT-11 had to fit into 8kw. 

This point illustrates one of RT-11 strongest influences: the system was 
designed to run in 8kw. 

The second goal was good performance on DEC tapes. 

The 8k and DECtape goals influenced the initial design of RT-11 heavily, and the 
architecture today is mostly unchanged. 

VERSIOI OIE 
RT-11 V1 was small, fast but not always easy to use. That is, it used to crash 
on occasions, and gave very few reasons why. 

The error messages were also small, fast and not easy to use: 

?M-fl L NOT FND? 

The documentation was small, fast and not always easy to use. The entire system 
documentation occupied somewhat less space than the current System Users Guide. 
And about a quarter of that was used for fairly useless appendices. 

However, the basic monitor design was clean. This is principally because the 
design was based on a mature system - in this case OS/8. 

Here is a list of the strengths of the system that were already clear with V1: 

small 
fast 

easy-to-use 

ran in 8kw (now requires 12kw) 
very little system monitor overhead 
very fast contiguous file structure 
unmapped environment permits fast interrupts 
small monitor permits large programs 
very simple program request structure 
programs are loaded into low memory 
no sysgen required to run system 

The major weakness in V1 was the implementation of program request calls. The V1 
documentation warned this would change in V2 (more on this later). Other 
weaknesses emerged later as the monitor design was expanded. 

7 



V2 
From our point of view, looking at the monitor, V2 should be considered one the 
best RT-11 releases. V2 added the FB monitor. To do this the developer had to 
rebuild the SJ monitor without substantially changing its architecture (for com
patibility reasons). Now, since the SJ system was built for a singe-user envi
ronment, it did not employ many of the mechanisms that you would expect to find 
in a multi-user environment. 

The original coding of the V2 FB monitor was so solid that the current FB moni
tor is still mostly the same code. Even though the FB monitor only needed sup-
port for two jobs, the developer produced scheduler/system that would handle up 
to 128 jobs. When it came time to do the System Job monitor (MJ) much of the 
work had already been done. 

Foreground programs are the result of a link operation - no special code is 
needed in the program. This follows RT-11's approach to overlays, and later in 
V4 to the virtual settop, which are also LINK operations. FG .REL files are a 
superset of a OC program. You can RUN a .REL file in the OC. 

V3 
What can you say about Aversion three. Version three was truly a dramatic 
release of RT-11. Fantastic and rotten at the same time. RT-11 reached a peak of 
popularity with V2, and the V3 group were given the go-ahead for a lot of new 
functionality. They literally shovelled the functionality into the system. And 
as I have said before, RT-11 got a bit too big for its bootstraps. V3 added: 

XM monitor DCL - abbreviations, factors 
Conmand files HELP SHOW 
Escape Sequence support Error logging 

V3 al so added a long list of bugs that are still being discovered. If the system 
breaks today, then there is a good statistical chance that the problem will be 
traced to V3. 

But, V3 changed the face of RT-11. It was a new system. In retrospect I am very 
glad that V3 happened; whether Digital would underwrite an effort to add OCL 
support to RT-11 today is doubtful. But then, Digital's recent more conservative 
approach to operating system development is partly because of the poor reliabil
ity of ventures like V3 which add so much functionality to the system. 

Despite the bugs, a lot of the V3 code is very good. The OCL implementation is a 
miracle in some ways (more later). 

V4 
V4 put RT-11 back on the tracks; it was RT-11's biggest maintenance release. One 
of the main tasks of the group was to clean up their own house - i.e. the after
math of V3. Anton Chernoff, who led V2 and did the FB monitor, returned from a 
stint with RSTS to do V4. And V4 has prooved to be the most reliable release. 
You can still use the distribution kit without adding patchs for most tasks. 
Among the clean-up tasks were: 

PIP, OJP rewritten DIR moved from SUPERMAC to MACRO 
HELP moved from TECO to MACROSYSGEN moved from FORTRAN to MACRO 
Error logging redone Escape sequences removed 
XM substantially debugged XMSUBS and MTT created 
Monitor /handler separation 

V4 was very compatible with V3. Few users would have had troubles moving to V4. 
V4 kept the changes in the background, quiet and subtle. Things like automatic 
installation of handlers; filenames/devices added to error messages; virtual 
settop. V4 added the System Job monitor. 

V3 failed to deliver a software support manual (who could describe V3?); V4 more 
than made up for this with an excellent SSM that made operating system tasks 
that were usually reserved for wizards, available to all advanced programmers. 

8 



TERMINOLOCY 

MACRO and SHAKESPEARE 
Is it MONLOW or SYSPTR? A rose is not a rose by any other name to MACRO - it is 
an undefined symbol. RT-11 did not define standard mnemonics for many of the 
monitor structures until fairly recently, and even now there does not exist a 
file which defines these for users. I have included a pocket reference with most 
of the main definitions. 

KW 
'K' defaults to kilowords, not kilobytes. 

USR 
USR is pronounced 'U. S. R. ', not 'USER', which is ambiguous with that mystic 
object, the user. If you have read the symposium schedule, you wil I see that the 
U.S.R. has also become ambiguous - see the session titled 'RT-11 Tutorial of 
Device Directories and the USSR'. (This session will deal with file-structure 
internals - so I will leave that topic alone today) 

MJ 
There is no well defined mnemonic for the System Job monitor, and SJ won't work. 
I will call the System Job monitor 'MJ' - for Multi-job, and 'XJ' for XM System 
Job monitor. 

oc; 
Although the OC program really only exists in a FB/XM/XJ environment, I will 
also refer to the program area of the SJ monitor as the OC. This makes sense if 
you think of the SJ monitor as a 'BG only' monitor. 

EXACT NUMBERS 
During todays session I will refer to a number of mechanisms you can use with RT 
that are not documented. Whether or not you can usefully employ these mechanisms 
depends on your understanding of them. Therefore, I will describe them, but I 
will not provide recipes for their use. Further, you should be aware that since 
they are not documented, they are subject to change. Indeed, some of them are 
certain to change with V5. 

SLIDES 
Rather than invest my time in making set of slides, I have put together this set 
of fairly detailed notes on the session. Thus, we will be working mostly from 
the notes rather than from the non-existant slides. The advantage is that you 
will have to do less in the way of actually taking notes. The disadvantage is 
that you will spend more time following notes than looking at me - well, maybe 
that is an advantage. 

10O'CLOCK 
I rarely say anything sensible before the hour of 10 AM. So forgive me if I take 
a while to get started. This is also the reason that I have reserved the first 
hour or so for the non-technical topics of history and politics. 

9 



RT-11 POLITICS 
Why are history, philosophy (in its technical sense) and politics important in 
understanding the internals of an operating system? 

An operating system is the sum of the work of its authors. Understanding the 
limitations of, and the pressures on, the development group is important to 
understanding the software. The answer to the question 'why is this piece of 
code like this' is often only answered by a historical, philosophic or political 
reason. A full understanding of RT-11 is not possible without touching on these 
topics. 

All the opinions expressed below are opinions - based on guesswork and a long 
history of DEC watching. There are certainly mistakes - so please don't quote 
me. This section is intended to give an overall impression only. 

M:>RKLOAD 
Typically, the development group consists of up to seven programmers and up to 
five or six technical writers. To this you must add two or three managers. The 
RT-11 group not only handles the development of new versions, they also handle 
maintenance of the existing version (and perhaps previous versions). 

The RT-11 group are not responsible for languages such as FORTRAN and BASIC. (I 
am not sure if anyone is presently responsible for BASIC!) Some of the RT-11 
components are shared with other operating systems. MACRO is much the same for 
RT-11 and RSX-11, RT-11 produces KEO, but the same basic KEO software is also 
used for RSX. 

EXTERNAL INFLUENCES 
A development group inside a company as large as DEC is subject to the corporate 
politics. The company defines and maintains goals for the various operating sys
tems. As we have often heard from Digital: 

RT-11 is Digitals small, fast, single-user system 
RSX-11M is Digitals multi-task, multi-user system 
RSTS is Digitals multi-user time-share system 

Implicit in these statements, for example, is that RT-11 is not pennitted to 
become a multi-user system. 

RT-11 must also follow corporate philosophy in a positive sense. This is the 
reason that RT-11 V3 adopted escape-sequence support and error-logging. 

RT-11 is also subject to the pressures of other project groups within Digital. 
This is the main reason that RT-11/XM arrived, 

RT-11 is also subject to user presstJ"es. The group solicits and maintains a long 
list of user wishlist items. These are regularly discussed, and many of them 
appear in new versions. The reason that some do not are because of the influ
ences mentioned above, and because of the following: 

RT-11 INTERNAL INFLUENCES 
The development group has finite resources in terms of programmers, writers and 
time. There is never time to do everything. The complete wishlist listing is 
more than a couple of inches high. 

Compatibility with previous releases is a large issue. With over 50,000 RT-11 
sites active, the group must be extraordinarily careful about changes to the 
system. This affects monitor components the most. 

Some RT-11 structures have definite limits that cannot be exceeded. For example, 
V1 of RT-11 defined the USR at 2kw. This limit may not be exceeded. The 2kw lim
it was met some years ago, and any new USR functionality requires finding new 
space by compressing the code. At present it requires around about 2 days work 
to find an additional word of space in the USR. 

The development group also have their own wishlist items. 

10 



POLITICS 
An operating system is not something that will be supported and developed ad 
infinitum. A development group like RT-11 is an expensive proposition. Therefore 
the future of RT-11 is dependent on Digital policy - which translates into poli
tics as in any large company. 

Dll'ing V3 RT-11 was at its zenith inside Digital. Shortly after the release of 
V4 there was talk of its demise. This seems to have changed in the past six 
months (which perhaps has something to do with the slide from 36% growth to 
26%). At present RT-11 seems very healthy. 

RT-11 is Digitals biggest selling system in terms of numbers. Over 50,000 sites 
have been reported. Obviously, this is a profitable product for the company. 
Further, RT-11 is an industry standard for OEMS and system houses, and for many 
of Digitals own layered products. 

However, 'when your on a good thing stick to it' also applies. One reason that 
RT-11 is so popular is because it is so simple. Thus, its popularity does not 
ensure that the system will grow and grow. The reverse is true. 

Questions like 'Will RT-11 run on the professional' can no longer be asked with
in the same frame of reference we used to use in the RT-11 vs RSX-11 wars. The 
Professional is a new kind of product aimed at a new kind of market. It is not 
aimed at the professional programmer, not even at the amateur programmer. It is 
aimed at the absolute non-programmer who wants to know nothing about the inter
nal operations of the machine. 

In a few years we will find the Digital user community divided into producers 
and consumers. The Professional is aimed at the straight consumer. 'The 
Professional' is not the end of the line, it is the beginning of a new line. I 
guess it will eventually steal a lot of layered products from RT-11. 

HUMAN WEAKNESS 
RT-11 is the product of human beings and reflects the strengths and fallibility 
of that species. The RT-11 monitor code is the produce of four different devel
opment groups - not all of whom understood completely what the code produced by 
the preceding group was supposed to be doing. 

The original code is often elegant, and almost without exception professional. 
The patched code is usually spaghetti. Snakes and ladders. And it has little 
bugs and big bugs in it. This problem is not unique to RT-11. Something was rot
ten in Denmark a long time ago. As one writer points out, the first machine, the 
Babbage machine, was also the first machine to be delivered late and not work. 

This is where history becomes important. RT-11 V3 added the most functionality 
to the system. It also added the most bugs. When you are looking at the code you 
should treat V3 additions quite differently to V2 and V4. 

11 



RT-11 MEMORY LA YOJT 
RT-11 looks like this: 

At this point the author produces a strange object 1mm wide by 2 meters high. 

The basic PDP-11 memory consists of 32k 16-bit words. That is a structure that 
is 2048 times higher than it is wide (if a bit is symmetric). 

4kw (1/Bth) of the memory is allocated for 1/0 space. This may be reduced to 2k 
(1/16th) with a 30kw memory switch. Less than 256w (11128th) is allocated for 
vectors. In retrospect the vector space is far too small (less than 80 vectors). 

RT-11 requires at least 2kw (1/16) for the SJ monitor. An FB system with the USR 
set NOSWAP requires 6kw (3/16). 

Using this model, a 128kw machine is eight meters high. A 1 megabyte machine is 
32 meters, and a 4 megabyte machine reachs 96 meters. My 30 megabyte disk drive 
would be about a kilometer long (if these figures are incorrect then I have 
proved yet once again that I am not capable of the simplist arithmetic (particu
larly if it involves division which I no longer understand at all)). 

When RT-11 bootstraps, it loads resident components to the top of memory. The 
system device handler goes at the very top. 

Below that comes RMON - the Resident MONitor. 

i/o space 
28kw/30kw 

sy.sys 
RMON 

Below RMON is some plastic space that stretchs to fit in LOADed handlers, FG or 
System jobs and command files (during their exectution). We will call this the 
'Stretch Area'. 

i/o space 
sy.sys 
rmon 
LP.SYS 
MYFG.REL 
MYCOM.COM 

If the USR is set NOSWAP, it is loaded under the stretch area. 

When KMON runs, it is loaded just below the USR. KMON includes the 512 word 
overlay section (KMOVL Y). Nothing fits between KMON and the USR. 

i/o space 
sy.sys 
rmon 
Ip.sys 
myfg.rel 
mycom.com 
USR 
kmovly 
KMON 
MYPROG.SAV 
vectors 

And if your program is small enough, it will load into memory without swapping 
KMON out. 

RT-11 is the DEC system for unmapped machines. 

12 



BOOTSTRAP 

• Just because everything is different doesn't mean that anything has changed.• 
San Francisco Oracle 

"Once in my life I would like to own something outright before its broken.• 
Miller, Death of a Salesman 

(These quotes are co,m,ents to the patch levels recorded in BSTRAP) 

The bootstrap is RT-11's cellar (dungeon?). This code occupies the first five 
blocks of the monitor image and resides on blocks O and 2 thru 5 of a bootable 
device. 

Starting the Machine presents its own special problems. Its a little bit like 
the reverse regurgitation of the common cartoon of a small fish eating a slight
ly smaller fish only to be eaten itself by a slightly larger fish, ad infinitum. 

(1) The SSM tables 7-6 and 7-7 give the wrong locations for the date and time. 
The correct locations are given below. There is a summary of the all the boot 
fixed locations in the pocket reference. 

5000 btime 
5002 

; high-order time from dup 
; low-order time 

5004 ; date 

(2) If you want to write a program that bootstraps a device you should use the 
following algorithm: 

1. Get and assemble the bootstrap somewhere in memory 
2. Do a hard RESET instruction 
3. Read 1 word from the device with a .READ 
4. Go to PR7 
5. Copy the boot into low memory 
6. Setup the registers 
7. Jump the the bootstrap 

It is crucial that you reaccess the: device after the RESET. This emulates hard 
bootstraps that also access the device after the RESET. 

STARTING UP 
One of the first things RT has to do is work out who its parents are. The pur
pose of this genetic search is to work out whether it has inherited such things 
as a PS or MTPS/MFPS instead. RT-11 uses the following tests: 

PS PSW 
LKCS Line-clock status register 

177776 
177540 
1 CLOCKS Processor has a clock if it has LKCS or no odd-address trap 
CFCC FPUS FPU processor 

VT.CSR VS60 
172540 PCLOCK 
(r5) -rPD If its a PDT then VT11 and VT.CSR do not exist 
172032 VS6.SP VS60 
177760 P7.LSS 11/70 
MUL 3,3 EIS 
177570 SR 
177570 SR 
MEDINS,100 
CMPN CIS 

Read checks for switch register 
Write checks for lights register 
11/60 check 
Commercial Instruction Set 

13 



SYSGEN parameters 
One of the undocumented SYSGEN parameters in RT-11 is MEXST which encloses code 
for 22-bit support. However, this does not mean that 22-bit support is already 
there in RT-11; this code is just in preparation for that task. 

System handler 
The system device handler goes right at the top of memory. It is important that 
system device handlers keep all memory references inside their address spaces -
otherwise they risk hitting No Mans land in the 1/0 page. 

HANDLER INSTALLATl()II 
One of the nicest things RT-11 does for you is automatically install all the 
handlers it finds on the system device. It makes sure that these handlers are 
valid by calling the installation check routine at location 200 of the handler, 
if such a routine exists. 

Note that the bootstrap process calls the installation check at location 202 for 
a handler that is being loaded as the system device handler. 

A problem arises if you have more handlers on the system device than you have 
device slots for. For example, I know of sites that may have up to 40 handlers 
on SY:. In this case you would like the automatic bootstrap load to be more 
selective. The following code wilt stop RT-11 from automatically installing a 
handler at boot time. However, you can still install the handler with the 
INSTALL command. 

.asect 

.=200 
br 
return 

check: cmp 
return 

r patch 
dd.sys 
200/ 
202/ 
204/ 
206/ 
210 
"C 

VM: Installation 

check 

(sp),#6000 

0 401 
0 207 
0 21627 
0 6000 
0 207 

;always accept load as SY: 
;is this coming from BSTRAP? 
;c=1 => it came from BSTRAP 

I the same with patch 

One of the most clever pieces of code in RT-11 is the VM: handler installation 
code. The size of the VM: device depends on how much memory your computer has. 
VM: does not know this before the installation - so it cannot set location 50 of 
the handler to tell RT-11 the device size in blocks. 

But it can. RT-11 runs the installation check before picking up the device size 
from location 50. The VM: handler installation routine sizes memory and moves 
the result to relative location SO of the handler in memory. RT-11 then picks up 
the device size. 

14 



~ -

KMON 
I call KMCN the Kaleidescope Monitor for two reasons. First, because of the wide 
range of functions it provides. Second, because its environment is like the mov
ing patterns of a Kaliedescope: KMCN is not only position independent, it is the 
only piece of software I know that slides up & down in memory as it executes. 

Add to the these two features the fact that KMCN includes an interpreter for one 
of the worlds more difficult and idiosyncratic syntaxes, DCL, and you have the 
reason why KMCN is the most complex part of the monitor. 

KMON is also subject to space restrictions. For example, the undocumented PASCAL 
and TECO commands are available only in the FB/XM monitors - there was not 
enough space left in SJ monitor for these commands. 

KMON has the following general layout: 

USR 
KMOVLY 
KMON 
relocation 
move routines 

USR-2kw 
It is important to realize that the USR is always contiguous with KMON. Thus, 
KMON can directly address locations in the USR. When KMON slides, the USR slides 
with it. (XM is different) 

KMOVLY- 0.5k 
KMOVL Y is a 512. word overlay section. KMOVL Y is not just an add-on to KMON: 
This is where most of the work is actually done. KMON acts largely as a set of 
service routines for KMOVL Y procedures. 

(In earlier releases the SJ KMOVL Y was 256. words to save space). 

KMOYL Y routines include everything from APL to UNLOAD. 

A KMON overlay may not exceed 512. words. Now, to keep the block size of KMON 
down to a minimum, there is also an effort to get as much code as possible into 
each overlay. Thus, there is often some otherwise inexplicable juggling of rou
tines between overlay segments. 

Further, KMOVLY routines may not perform certain functions. For example, they 
must return to the KMON root segment to slide up and down. Thus KMOVLY routines 
are often interrupted with seemingly meaningless jumps to short KMON routines. 

KMOYL Y does not use the standard RT-11 overlays produced by the linker. The 
overlays are defined largely by a set of MACRO' s. 

KMOVL Y always runs with the USR locked. This means it is free to use the USR 
buffer for 1/0 operations (which it does for LOAD, SET etc.). 

KMON-3.Skw 
The KMON root segment is the heart of the DCL interpreter. It also handles most 
of the functions concerned with exiting a OC program and R'ing a OC program. 

15 



KUMOVE: 

"The awful shadow of some unseen power, floats 'tho unseen, amongst us• 
- Shelly, Hymn to intellectual beauty 

The quotations in these notes come from the RT -11 sources at the label shown 
above (in this case KUMOVE). The quotes started in the FB monitor of V2. They 
are often a very good indication of the kind of problem faced by the code they 
describe. 

The first few routines are used to move KMON/USR up and down in memory. 

There is one routine that cannot be moved by the move routine, - and that is the 
short routine that actually does the moving. This is like standing on the branch 
of a tree that you are currently chopping off. The size of the routine that can
not be moved sets the size for the minimal move in memory. This is currently 17. 
words. 

The move-up routine is located at the start of KMON. 

Dl.D'ing execution, the code that moves KMON/USR down is located, appropriately, 
at the top of the USR. 

movedn 
USR 
KMOVLY 
KMON 
moveup 

However, as we all know, the USR is very tight on space. Therefore the MOVE[ll.l 
routine is actually stored in KMON, and moved into an impure area at the end of 
the USR before execution. 

MINMOV 
This size of the Minimal Move is important - since it sets the basic unit size 
with which KMON can allocate memory. 

KMON can only free a segment of memory that is at least twice the size of MINMOV 
(this parameter is called MINFRE). 

WHEN DOES KMON MOVE 
KMON slides to make space, or reclaim space. Initially the picture is: 

RMON 
USR 
KMON 

To LOAD a handler, KMON slides down to get the space: 

RMON 
handler 
USR 
KMON 

After an UNLOAD it slides up again. 

The following components require space: 

Command files 
Handlers 
Foreground or System Jobs 
GT handler 

16 



OPTIMISIJIC SPACE ALLOCATICJII 

Assume the following commands: 

commands 

LOAD MT 
FRUN MYJ()B 
LOADVM 

memory 
RMON 
MT 
MYJ()B.REL 
VM 
USR 
KMON 

Now, unloading MT leaves a hole in memory: 

commands 

UNLOAD MT 

memory 
RMON 
<hole left by MT> 
MYJ()B.REL 
VM 
USR 
KMON 

But, unloading VM lets KMON reclaim the space: 

commands 

UNLOADVM 

memory 
RMON 
<hole left by MT> 
MYJ()B.REL 
USR 
KMON 

Thus, the rule is, LOAD the things you need least, last. That way, if you need 
some additional memory for a job, you can unload some handlers to get the space, 
without having to unload everything. 

Lets reLOAD the VM handler: 

commands 

LOADVM 

memory 
RMON 
<remainder of MT hole> 
VM 
MYJOB.REL 
USR 
KMON 

KMON searchs thru the memory map to find a space large enough for the handler. 
Only when it finds no such space does it move down KMON/USR to make space. 

Now, lets reLOAD MT: 

commands 

LOAD MT 

memory 

~~inder of MT hole> 
VM 
MYJOB.REL 
MT 
USR 
KMON 

Using this kind of technique, you can very easily use up all memory. 

17 



COMMAND FILE ALLOCATIOol 

Command files are usually a special case in every sense, and this also applies 
to memory allocation. 

KMON allocates space in the stretch area to store command file data. 

KMON reads a command file until it finds EOF, or CTRL/C. 

KMON works a line at a time. It reads from the command file into a line buffer, 
stripping comments. 

Each line is stored separately in the stretch area. This means, that the monitor 
memory allocation routine is called each time it needs to store data in the 
stretch area. 

Now, consider the following command file: 

TIME 
TIME 

<1000 more TIME commands> 
TIME 
TIME 

KMON will allocate memory separately for each line, moving down in memory when a 
hole is not available. 

Now, since MINMOV sets the size of the minimum hole, and MINMOV is 17 words, 
KMON will slide down in memory every 34 characters. Thus, since KMON+USR is 
about 6k words, and the move loop is about 6 instructions, it will require about 
1000 instructions to store each byte. 

The command file above takes many minutes before it displays the time. 

COMMAND FILE HOLES 
One good way to waste space is with command files that load handlers. 

Consider what happens when weplace the first set of LOAD commands in a command 
file: 

commands 

~YCOM 

~AVJOB 
LOADVM 

memory 
RMOol 
MYCOM.COM 

~tJOB.REL 
VM 
USR 
KMON 

After execution, the memory map will be: 

commands 

RULE 

memory 
RM<l'J 
<hole left by mycorn.com> 
MT 
MYJOB.REL 
VM 
USR 
KM<l'J 

If you are tight on memory space, interpolate CTRL/C's between command file 
lines. 

18 



KMON START 
Having found a reasonable place in memory to execute, KMON generally starts by 
finishing up the EXIT from the program that just completed. 

This piece of code has an average of one conditional every three lines, which 
makes it difficult to read. But, there is not much happening there anyway. 

Two points of interest are the CONllJ code (which is used for MINC) and the IND 
code which is used for AUTOPATCH. However, the essential point for IND is the 
operation of the INOEXT monitor offset, which we will deal with later. 

L.NKSIF 
Ignore all the code surrounded by L.NKSIF conditionals. This code has not been 
fully finished - it is the remains of the end of V3. This code was to have han
dled overlay command files for the LINK command. 

R&RUN 
R, RUN and GET have a significant amount of code in the KMON root. 

The difference between Rand RUN is as follows: 

R 
R uses USERTOP (location 50) to determine how long the program in. An R command 
requires two read operations. The first gets block O and acquires USERTOP. Block 
0 is moved down to the vector area, and then the resident monitor is called to 
issue the second read request which pulls in the remainder of the program. 

RUN 
RUN uses a scatter load. After acquiring block zero, RUN uses the bitmap (loca
tions 360:400) to work out which blocks to load into memory. Thus, blocks that 
we not written into by the linker will not be loaded into memory. This feature 
was primarily designed for use with the GET & SAVE commands, to permit you to 
build program images in memory, with multiple GET's, and then store the result 
with a SAVE command. These commands come directly from OS/8, where this kind of 
technique was used in place of a LINKER. (They are redundant in RT-11). 

Note, that KMON may occupy memory that will be needed by the program when it is 
eventually loaded. Thus, RUN copies such code out to the swap file. Then, the 
program is loaded into memory by swapping in from the swap file. 

MRRT simplifies this whole procedure by locating all the code that runs a pro
gram in the resident monitor. Thus, swap files are not required. 

SJ SRESET 
Another way that space was saved in USR was by moving the .SRESET routine in to 
the USR buffer area. Thus, everytime a program executes a .SRESET request under 
the SJ monitor, it causes a reread of the USR. This is kinda crazy (note that 
BASIC and KEO perform three .SRESET' s on the way up - which causes three extra 
clacks on a floppy drive as they reread the USR). 

Since this is crazy, and the monitor people knew about it they put in a work
around for KMON. KMON has a second copy of the .SRESET code that it uses instead 
of running the USR version. 

Note, that PIP, DIR and C:UP do not use .SRESET either (because of efficiency, 
and critically for /WAIT operations). 

19 



sj sreset 

You can do a soft reset a la PIP with the following skeleton: 

<purge all channels, except overlay channel if in use> 
mov @#sysptr,rO ;point to the monitor 
add pnptr(rO),rO ;point to the pnames 

10$: tst (r1) ;this one loaded? 
beq 20$ ;nope 
.releas r1 ;yes - forget it 
bes 30$ ;that was the last one 
tst (r1 )+ ;do the next 
br 10$ 

30$: 

Note, that this routine does not reset CDFN or QSET. 

EXIT 
While we're on the subject, we will finish up the discussion on KM()'I.I swapping. 

If you exit a program, RMON has to find space in memory to run KM()'I.I. KM()'I.I always 
runs as high as possible in memory. If your program is small, it will remain in 
memory and KM()'I.I will be loaded above it. 

Indeed, if you did not use .SETTOP to acquire the memory used by KM()'I.I it will 
still be in memory and will not need to be reread. 

However, if your program overlays the area needed by KM()'I.I, then that portion of 
your program will be written out to the swap file (SWAP.SYS), and then KM()'I.I will 
be read into that area. 

RT-11 uses this technique so that the following commands will work: 

1. REENTER 
2. SAVE 
3. Examine, Deposit and Base 

These conmands are typically rarely used. Thus, for the most part all this swap
ping is redundant. 

Indeed, the idea behind MRRT was to get rid of this swapping, since it made 
TU58's more impossible than they already were. 

You can stop KMON swapping your program out with the following command at the 
end of your program: 

.settop "#0 ;forget the memory we got 

SWAPPIPIC & SUDIPIC 
Before leaving sliding and swapping we should ask the question Why? Why Slide? 

I am sure that if RT-11 had been designed in 1980 rather than 1970 this kind of 
sliding would not have been used. The original reason was the 8kw/DECtape goal. 
Both those restrictions dissappeared years ago. The design of KM()'I.I is now archa
ic. A pain. 

It should just be a standard RT-11 oc; program. 

GET/SAVE are not required. These could be handled with a separate utility. 

REENTER is perhaps useful, but at the cost of these incredible contortions not 
worth it. 

E/8/D are so restricted that they are also not worth it. 

Note that VS has announced a SET KMON [NQ]SWAP option. 

20 



DCL 

•walking on water wasn't built in a day• - Jack Kerouac 

The DCL interpreter begins with a monster TECO macro, and then continues over 
many more pages to just get even more confusing. 

(One advantage of the TECO macro is that TECO is required to put RT-11 together, 
this is one reason it is included in the standard kit). 

I can't imagine that many more than three people have ever fully understood how 
the DCL interpreter really functions (one for V3, V4 and VS). This is a little 
bit like the story about the Principia Matlmatica - it was rumoured that only 
two people had read it in its entirety and it was not certain if this meant the 
authors). 

DCL, and KMCN, are just about the opposite of the Principia (I guess, since I am 
waiting till I understand DCL before moving onto Principia). 

The name DCL has an interesting history: 

CCL 
OCL5 
DCL 

Version three 

Concise Conrnand Language 
Digital Conrnand Language Standard 
Digital Conrnand Language 

introduced OCL5 with the following (first) sentence: 

"RT-11 has an expanded set of monitor commands based on the DIGITAL coomand 
language standard•. 

Note how careful the language is ('based on'). 

Indeed, the 'S' has been dropped because there is no standard. RT-11, VAX and 
RSX are all different. 

RSX for example does not display an 'Ambiguous' error message - it chooses one 
of the options instead. RT-11 is the only one of the three to support EXECUTE. 
VAX (and probably RSX) do not support factoring. 

(RT-11 accepts P for PRINT, which is ambiguous with the PASCAL command. However, 
the reason for that was mostly so that we wouldn't stumble on to the fact there 
was a PASCAL command.) 

Every language has a syntax. Usually, the syntax comes at the same time as the 
language. DCL syntax however had to be designed such that it would interface 
with all the existing CSI command formats. 

Having had to reimplement DCL for a project, I can assl.l'e you that the syntax is 
a dog. Setting up the default devices, types, programs, prompts, continuations, 
plus versus comma, PIP/OOP/FILEX: you name it - it's horrid. 

RT-11, cramped for space, sliding/swapping, has a tough job doing anything. DCL 
in this environment is one of the seven wonders of RT-11. 

The DCL interpreter is a token-driven/table-driven interpreter. 

The byte tokens include ifs and gotos, but no explicit counting mechanisms. 

The tables describe the permissable command options, and the parameters for the 
options. The big TECO macro is used to pack the ascii information in the OPTlo-J 
tables. 

DCL internals could occupy more than a day. But, we would need one of the three 
people I mentioned before. 

(However, the worst command to do, tl.l'ns out to be the LIBRARY command - it has 
so many variants that I still haven't got it right). 

21 



USR 

The USR is 2k words long. That figure was defined by RT-11 V1. Some programs 
allocate a 2kw space to overlay the USR during execution. Therefore, the size of 
the USR cannot be changed, without changing all such programs. Since there are 
some 50000 RT-11 installations, this could mean modifying hundreds of thousands 
of programs. Therefore, the size of the USR cannot be altered. 

The 2kw allocated to the USR was more or less full with V1 of RT-11. 

V2, V3 and V4 have all added functionality to the USR. VS will add more. How do 
you add functionality without increasing the size of the USR? 

The answer is, you optimize the existing code to require less space. When you 
look at the USR code you must always remember that you are looking at code that 
has been squeezed a hundred times to find an extra word. 

One report has it that it takes a programmer two days to find a free word in the 
USR. Thus, if RT-11 requires a new routine of 10 words, then 20 working days are 
required to find the space. At present, looking for more space in the USR is a 
bit like trying to get blood out of a stone. 

Wishlist items that would require additional code in the USR are usually doomed 
to failure - since the space is just not there. 

The USR code is very difficult to read because it has been optimized so often 
for space. It is unlikely that anyone understands it fully. 

The USR has conditionals for SJ, FB and XM. It also has an incredible number of 
conditionals for all the different flavours of MRRT - which makes reading quite 
painful. 

Working on the USR could not be described as fun, and that perhaps explains the 
absence of humorous quotations in the USR sources. 

When the RT-11 group are developing new code for the USR they need additional 
space for debugging. Thus, during the development cycle, the GElNAM routine is 
temporarily moved into RMON to gain that space. 

D~ing the rest of the USR discussion I will point out places that they have 
saved code. Some of these techniques have already been discussed in the KMON 
section. 

22 



USR El.JFFER- o.skw 

The USR buffer is located at the beginning of the USR. The USR buffer is used 
for two purposes: 

Data Directory segment buffer, KMON i/o buffer 
Code On~ly USR code 

buffer data 
The main reason for the USR buffer is to perfonn directory operations. The size 
of the buffer, 512 words, corresponds with the 2-block size of a directory seg
ment. 

This buffer is also used for KMON/KMOVLY purposes. For example, SET reads the 
first two blocks of a handler into this buffer to perform SET operations. Thus, 
the reason that SET reads only two blocks in is explained. 

The USR directory routines keep track of which directory segment of which volume 
is present in the buffer. That is, the buffer acts as a cache. This sometimes 
saves rereading the directory if the segment is already in the buffer. This 
infonnation is stored in the following RMON offsets: 

CHKEY: • byte 
BLKEY: .word 

device-slot,unit 
directory-segment 

Since a segment number is always non-zero, the value zero in BLKEY is used to 
signify that no segment is in the buffer. 

Note, that RT-11 does not have any mechanism for knowing when you physically 
change a volume. The worst case for this is a floppy with a single active direc
tory segment. If you change such a volume, and the directory segment is in the 
USR buffer, RT-11 may report File Not Found, etc., since it is only looking at 
the segment in the buffer. 

Previous releases of RT-11 would even go so far as to write out that segment to 
the new volume. 

If you have this kind of problem, the solution is to purge the cache. You could 
do this by clearing BLKEY (with the USR appropriately .LOCKED), however, this 
might not work in all RT-11 environments. A better way is to look for a known 
file on the system device. Currently, to purge the cache I do a lookup to 
SY:SWAP.SYS. 

buffer code 
Since RT-11 is never quite sure whats in the USR buffer, it always rereads the 
USR before executing the code in the buffer. Thus, SET USR NOSWAP does not mean 
that the USR will not occasionally be reread from disk. This is particularly 
true for the SJ monitor. 

The first routines in the USR buffer are used to relocate the USR code. This 
saves space since PIC code would be longer. The relocation tables are not easy 
to follow - but who needs to follow theml 

The following routines are in the buffer: 

SJ 
SJ/FB 

FATAL CDFN 
QSET 

SRESET HRESET 

Note, that the USR is handled differently under XM. It need never be reread and 
may exceed 2kw. 

The SJ FATAL routine prints monitor fatal error messages. It includes a SYSCEN 
option PANISC. I have not seen this conditional described anywhere, and have 
never tried it. But, I would assume, from reading the code, that it would add a 
print out of the all registers to fatal error messages. It does not seem to have 
an equivalent under the FB monitor. 

23 



USRST: - USR Start 

After the buffer comes the USR dispatcher. The first check is for USR recursion 
under the SJ monitor. I have the feeling that the FB monitor does not check for 
recursion at present. 

The first good reason that the USR is not recursive comes next: Some parameters 
to the USR call are stored in the locations ARGM1, ARGM2, ARGM3. USREMT notes 
whether this is an old (V1) or new (V2) style EMT. 

ARGM1 usually points to the filename for the request. Note, that this address is 
sometimes odd. That is, RT-11 OJSP's set bit O of this parameter to indicate 
that they wish to examine or modify the directory entry for the file. This is 
how [No]SETDATE and [No]PROTECT are implemented. In this case the fourth word of 
the EMT block will point at the routine to be called: 

area: .byte chan,subcode decoded 
.word filnam-address + 1 RO 
.word size or sequence ARGM1 
.word sequence ARGM2 
.word extra-word routine address ARGM3 

A spin-off of this is that RT-11 will not properly detect odd-address errors in 
the FILNAM block parameters. Instead it will handle these by calling an unspeci
fied extra-word routine (which will probably be null - and thus go to the loca
tion zero exit code). 

Note that this functionality could (and probably will) change in VS. If you use 
undocumented monitor features, you must always be prepared to change it when a 
new release comes out. You should only use such functionality when it is abso
lutely required. 

Further, no guarantee can be made for the information detailed here. Before 
using such features you must be competent to understand just what is going on. I 
have not used some of these techniques with V4, and they may have changed in 
detail. 

Indeed, the main reason for understanding this functionality is so that you can 
debug better, since sometimes debugging a program means debugging the monitor. 

I would even more strongly advise against using this knowledge to modify the 
monitor. I put my last patch into RT-11 in V2B. Since then I have been able to 
workaround any monitor problems within my programs, or sometimes with special 
p1.rpose handlers. Modifying the monitor is a thankless task and you always get 
burnt when a new release arrives. Always. 

24 



DIRECTORY ROJTINES 
The common directory routines follow: 

LOOKUP RENAME DELETE ENTER CLOSE 

I would like to say "these are straightforward" and continue with other topics. 
But, nothing in the USR is straightforward - however, the operations they per
form are fairly clear to us all. 

Until fairly recently (in one of the V4 patchs), RT-11 had no checks in the USR 
to see if a directory was valid. This meant that looking-up an uninitialized 
volume (usually a floppy) would happily hang or crash the system. 

Note, that if the system crashs while RT-11 is performing a directory segment 
expand/split, ~u could have a time bomb in the directory. The last thing RT 
updates is the pointer to the next free segment. Thus, after the crash, RT may 
not know about the new segment. Thus, the next time expansion/split occurs it 
will reuse a segment for a second time. This makes interesting reading of direc
tory dumps. 

SPESHL 
Of particular interest is the way the USR performs directory operations for spe
cial directory devices. It does not, for example, use the .SPFUN defined for 
this function for MT:. Instead, it uses a special version of the .READ request. 
This format will also work from user programs - its only disadvantage is that it 
is not reentrant. 

It builds the following EMT block: 

area: .byte 
.word 
.word 
.word 
.byte 
.word 

chan,read-subcode 
sequence (zero for V1) 

filnam address 
size 
377,func 
0 

;blk 
;buff 
;went 
;function 
;completion (wait) 

The USR uses .READW - however, .REAOC works quite well also. 

The function codes are positive. They are: 

I seem to set the BATBIT in @COIITXT to disable address checking when I use these 
cal Is. I am, in retrospect, not sure why. 

This technique is ~eentrant because the handlers rettrn status via fixed 
RMON locations. They are: 

SPSIZE 
SPUSR 

The size of the file 
Error status (one word) (Standard RMON offset) 

The routine to get the address of SPSIZE is: 

sysptr=54 
Smtps=362 

gspsiz: 
mov sysptr,rO 
add #Smtps+2,r0 
movb -2(r0),r1 
asl r1 
add r1,r0 

10S: cmp (r0)+,#207 
bne 10S 
return ; rO -> spsize 

This is a dreadful technique - but the only one available at present. 

25 



FETCH, DSTAlUS 

dstatus 
DSTATI.JS is a prerequisite for FETCH, since FETCH needs the information given by 
DSTATI.JS to perform. 

DSTATI.JS has been reimplemented a few times. During V3 it used to reread the 
first two blocks of the handler into the USR buffer to get the required data. 
This was horrid, since many programs (such as PIP) used DSTATUS constantly to 
check whether a device was MT: or not MT:. 

V4 stores all the data required for DSTATI.JS in the monitor tables. Indeed, this 
is one routine that could quite usefully move out of the USR into RMON. Thus 
making access to it faster, and providing extra space in the USR. 

An example of the incomprehensible natl.l'e of large programs. DSTAT and FETCH 
used to have a common routine, RDDEV, to read the first two blocks of a handler 
into the buffer. This was no longer required in V4 for DSTAT. However, the code 
in FETCH did not change. It appears that this routine is now redundant - and 
occupies 13 words of precious USR space. 

FETCH 
FETCH is fairly easy. FETCH gets the following information from the monitor: 

ARGM1 Address to load the handler 
DVREC Disk block of handler (block 1 of handler file) 
HSIZE Handler size 

FETCH checks the SYSGEN options - in fact, this is redundant since INSTALL has 
already performed the check. 

Having read the handler in, FETCH points to the last word of the handler, and 
pushs the following pointers in, if required: 

erl$g=1 
mmg$t=2 
tim$it=4 

1. fork routine 
2. inten routine 
3. timeout routine 
4. error logging 
5. memory management 

putwrd, putbyt, getbyt, mpphy, reloc 

CSI 

CSI is just about the only acronym that means the same thing on all PDP-11 oper
ating systems: Command String Interpreter. 

It is also one routine that really does not need to be in the USR. There is 
nothing in the CSI code that cannot be done by programs for themselves. 

However, encapsulating this functionality in the monitor has spinoffs. For exam
ple, the RSTS RT-11 emulator decodes extended filename syntax in its CSI. I try 
to use the CSI for directory operations whenever possible. 

command files 
In V3, the CSI was extended to handle command file input and .GTUN. (fhis need
ed a lot of USR space). Standard RT-11 supports command file input only via CSI 
calls (including GETUN). Specifically, this means that you can't access command 
files via .TTYIN. 

I got around this problem with a utility handler. The handler uses the E16LST to 
intercept TTYIN's. It then checks to see if a command file is active (and a few 
other tests). If a command file is active, it uses GTLIN to fill an internal 
buffer, and feeds these characters back to TTYIN calls. A fragment of the 
handler (which also perfonns other functions) is appended. 

26 



errors 
No matter what the setting of .SCCA is, any "'C in a command file is final. This 
applies to most CSI errors, which also ignore SET ERROR NO-IE directives. CSI 
errors do not set the USERRB either. Why? 

USR space restrictions always apply as an answer - everything costs space. The 
reason that "'C is final is simple: KMON stops storing command file data when it 
finds "C - thus, after "'C it must return to KMON to pick up more input from the 
command file. 

wildcards 
.CSISPC will accept names with wildcard characters. These are represented in 
the RADSO code with the following: 

% 34 
$ 35 

RMON 

"Things are more like they are now than they ever were before.• 
Dwight D. Eisenhower 

This quote introduces V4 RMONFB - and signifies that with V4, RMONFB had more or 
less become stable, but more, finally performed mostly as the system documenta
tion purported. 

The original quotation to the FB monitor after the title: 

"The age ••• of sophistors, economists and calculators, has succeeded.• 
Burke 

The quote is apt. And RMONFB is the crown of RT-11. (I am also a fan of RMONSJ, 
though I find few others who like it), 

The original FB monitor was written by Anton Chernoff for V2, and he returned to 
RT-11 for V4. Most of the quotations are also his work. 

The FB monitor was written to be upwards compatible with SJ. There is almost no 
common code. And indeed, the common code that exists has usually moved from FB 
to SJ (for the timer etc.). At 4220 words, RMONFB is over twice the size of the 
1996 word RMONSJ. System Jobs and XM make it somewhat larger. 

RMONSJ is the minimal size monitor and suffers space constraints. RMONFB, while 
still forced to remain reasonable, is allowed to use all the space it needs to 
do the job properly. 

Reading the V3 RMONFB sources was complicated by the XM and MTT conditionals. In 
V4 most of this code was removed to the separate modules XMSUBS and MTT. Both 
these modules should be considered a part of RMONFB. 

27 



$RMON 

RMON begins, for both SJ and FB, with the RMON fixed-offset data base. Most of 
these are well described in the documentation. Lower case entries below are 
bytes. 

FB 
FB 
SJ 

$RMON JMP $INTEN is the usual contents of this location. The RSTS 
emulator has a zero in this location - which is used to signal 
that its RSTS. Other emulators also change the code slightly 
here for the same purpose. 

SCSW The channel status tables. There are 17. channels here, not 
16. However, the SJ monitor uses parts of channel 17 for its 
impure data. Channel 17 is used internally by RT-11. 

BLKEY 
CHKEY 
$DATE 
DFLC 

Discussed in the KMON section 
As above. 
The RT-11 date. 
Set to stop the monitor aborting in the middle of a directory 
modify (particularly an expand/split). 

$USRLC Where the USR buffer is at present. 
QCOMP Points to the handler i/o completion routine 
SPUSR As discussed in SPESHL operations in the USR section 
SYUNIT SY: device unit. Note, its in the high byte of this word. 
sysver RT-11 Version. I don't know if anyone uses this. 
sysupd RT-11 update. 
CONFIC Well described. 
SCROLL Points to CT database. 
TTKS Points to physical TKS 
TTKB 
TTPS 
TTPB 
MAXBLK Maximum file size. 
E16LST See below. 
CNTXT Points to current jobs impure area. 
JQBNUM Current job number 
$TIME Current time of day (2 words) 
SYNCH .SYNCH entry pointer 
LOWMAPMap of system protected words in low memory 
USRLOC Another way of finding the USR. 
CTVECT VT11 vector. 
ERRCNT Error count return from programs. Currently unused. 
SMTPS br putpsw 
$MFPS br getpsw 
SYINDX Slot number of system device 
STATWD DCL and conmand file flags. 
CONFC2 Additional configuration information. 
SYSGEN SYSGEN options included. 
USRARE Size of USR in bytes. Always 2kw except for XM. 
errlev current setting of set error 
ifrnxns Indirect File MaXimum NeSting level. 
EMTRTN Address of emt return path - Srmon for BATCH E16LST routines. 
FORK Address of $FORK - SRMON 
PNPTR Address of SPNAME table - SRMON 
MONAME.RADS0 /RT11FB/ 
HSUFFX Handler radS0 suffix (. radS0 / XI) 
DECNET Reserved for the mysteries of DECnet. 
EXTIND low byte returns error status (a la USERRB) 

High byte 100 => KMON running IND; 200 => IND running KMON 

28 



IMPURE AREA 

"Merely corroborative detail, intended to give artistic verisimilitude to an 
otherwise bald and unconvincing narrative.• 

W.S. Gilbert, The Mikado 

Ttv-ee pages are required to describe the impure area of a job. In fact, as far 
as job impure areas go, thats not very large - I know of one that requires 20. 

A job can have at most two job processes running under the FB monitor. The root 
process a completion routine. The impure area allocates space to save root vari
ables while a completion routine is running. 

RT-11 requires per-job impure space to save data during context switchs. The FB 
monitor uses the jobs stack for this purpose. However, XM has problems finding 
the job's stack at the best of times, and thus allocates space in the impure 
area for context switchs. 

RT-11 requires job variables to record soch things as the address of the TRPSET 
routine, or the current state of the job. 

RT-11 uses a bitmap to protect locations in the vector area. Under the SJ moni
tor the ~ fixed-offset BITMAP is used for this purpose. FB permits each job 
to • PROTECT vectors; thus each job requires a bitmap, and KMON must check the 
inclusive OR of all soch bitmaps when loading a program. 

All this data is collected together in the impure area for the job. 

JOB NUMBERS 
RT-11 can always find the current jobs impure area by looking at the CONTXT 
fixed-offset. The RMON table $1MPUR is a list of the start-addresses of all the 
impure areas. A job number (always a multiple of two) is an index into this 
table. 

It is worth noting that the original FB monitor only had to deal with two jobs. 
However, the author laid all the groundwork for multiple jobs. Indeed, when it 
came time to do System Jobs, most of the essential code was already in RMON, and 
only a few parameters had to be changed. (there was substantial work in SRUN and 
in doing the new MQ: handler). 

The RT-11 scheduler can handle up to 128 jobs - since it has a byte to store the 
even job number. However, in certain structures, the job number must be fitted 
into a byte with a channel number. This leaves four bits - enough for 16 jobs. 

29 



ERRORS AND OTHER FEATURES 

• As far as we know, our computer has never had an undetected error.• 
Conrad H. Weishart, Union Carbide Corporation 

The RMON code begins by handling errors. One of the major tasks of a monitor is 
to correctly detect errors, and dispatch them to user routines where possible. 

Errors provide many of the best quotations: 

'The fault, dear Brutus, is not in our stars, but in ourselves• 
Shakespeare, Julius Caesar 

• And oftentimes the excusing of a fault doth make the fault worse by the excuse' 
Shakespeare, John IV 

FPPERR: 
FPU errors are processed in two stages. They have to be. 

The floating point processor is asynchronous with the CPU. This means that it 
can detect an error after control has returned to the CPU. When the FPU finds an 
error it issues an interrupt. So what? 

Here is what. FPU interrupts run at priority level 8 which is interesting since 
priority level 7 is supposed to the highest around. FPU interrupts can interrupt 
anything, which makes them hard to handle, since they could interrupt crucial 
code sequences that can't be broken. 

Thus, the first stage of FPU error processing sets a flag, and if the CPU is at 
PR7, simply dissappears. It reasons, since we are at PR7, we must be in an 
interrupt sequence, therefore, our flag will be seen during the RMON exit path. 

What this works out at is: If you have code that goes to PR7 with out using 
$1NTEN, you could risk delaying or in the very worst case, losing FPU errors. 

FPPERR is the second stage which passes the error to the job. 

POWER FAIL, SYSTEM HALT 

"Extreme remedies are very appropriate for extreme diseases.• 
Hippocrates, Aphorisms 

At system halt the system is dead - thus: 

"The death of God left the Angels in a strange position.• 
BarthE"lme, On Angels 

However, all is not lost - there is still enough to debug on. RMO!\IFB is careful 
not to modify registers during the error path (they suffer more monitor crashs 
during development than most users will ever see). In some cases the PC will 
have been popped off the stack into R4. Sometimes the stack is replaced with 
USERSP (location 40). 

ERRCOM 
This routine prints fatal error messages. One error message you should watch out 
for is 'Directory unsafe'; this means that the job died in the middle of a 
directory-modify operation and may no longer be consistant. 

If you want to see a nice piece of subtle code, look at the routine that prints 
the piece address: 

; print the number in r4 
mov #30,rO 
sec 

3$: rol r4 
rolb rO 
.ttyout 
mov #206,rO 

4$: asl r4 
beq 5$ 
rolb rO 
bes 4$ 
br 3$ 30 

5$: 

-------



EMT DISPATCHER 

"What's it going to be then, eh?" 
A. Burgess - Clockwork Orange 

One of THE hacks of RT-11 is that the TTCNFC word is located just before the EMT 
dispatcher. Thus, to locate this word ',QU take the EMT vector and push down to 
TTCNFG. Rumour has it that TECO wanted it this way. Rumour has it that a sub
stantial part of RT-11 is the way it is, because TECO wanted it that way. 

The EMT dispatcher is a short piece of code that must have many weeks of work 
invested in it. The dispatcher must: 

1. Work out what its going to be 
2. Work out if its V1, 374, 375, 376 or 377 
3. If its old, work out if its E16 
4. Check some addresses 
5. Not check SOME addresses 
6. Setup channel pointers 
7. Preset some registers 
8. Call the routine 

V1 EMT's have all the parameters on the stack. V2 uses RO or a parameter block. 
The planned desupport for V1 requests did not take place because the additional 
overhead to handle both fonns seemed bearable. Anyway, not all requests were 
converted to V2. CSI requests still exist only in V1 form. 

RT-11/FB may take a couple of hundred instructions to dispatch an EMT - this is 
not real fast. In some cases it makes sense to bypass the monitor. For example, 
I have an application that serves upto 238 channels - all of which require 
close/purge fairly frequently. Rather than call the monitor to .PURCE a channel 
(or check to see if its open with .WAIT) I just find the CSW and clear it. Ten 
instructions instead of two hundred. 

Other EMT' s that I do by hand include .SRESET (as mentioned earlier) and DSTATUS 
(so that I don't have to wait for the USR). However, I do this only in critical 
situations. 

V1&V2 
V1 program requests use three bits of the EMT to encode the channel. This limits 
them to 16 channels, and makes it difficult to write code that changes the chan
nel number dynamically. V2 program requests use RO or RO as a pointer to a par
ameti~r block. We will use the .READW request as an example: 

On entry to the dispatcher: 

vi 

oldpc-2 EMT +read+chan 
rO block number 
n(sp) buffer 
n+2(sp) wordcount 
n+4(sp) completion 

v2 

rO=area • byte chan,read 
area+2 block number 
area+4 buffer 
area+6 wordcount 
area+1 O completion 

RT-11 normalizes the request, and exits the dispatcher as follows: 

(sp) block number 
rO block number 
r1 -> buffer (n(sp) for vi, area+4 for v2) 
r2 0 for vi , 100000 for v2 

USR sub-dispatcher uses r2 
r3 -> CSW area (if any) 
r4 unrefined 
rS -> impure area 

31 



- - - ~ - ·- -- ·--------- - ---- -----------

SUB-DISPATCHERS 

For many requests, the EMT dispatcher is not the end of the line. There are a 
number of sub-dispatchers: 

EMT16 
This dispatchs V1 requests that do not have a channel number. These are: 

ttyin 
exit 

ttyout dstat fetch 
print sreset qset 

csigen csispc lock 
settop rctrlo astx 

unlock 
hreset 

Note that ASTX is used only in XM - it acts as an exit under SJ/FB. 

BATCH uses the EMT16 dispatch list to get control of the following: 

ttyin ttyout exit print 

Your programs can also do the same. You locate the start of the list with the 
E16LST offset in the monitor tables. You then save the contents of the dispatch 
entry you want to modify in a .DEVICE list to make sure it gets put back when 
your program crashs. You locate the start address of the routine by adding 
E16L5T to the value. And you replace the value with an offset relative to E16LST 
to your own routine. 

Setting up calls via the E16LST is certain to provide hours of frustrating fun 
the first time you do it. 

Your routine can either do the whole job and return to monitor. Or it can decide 
not to do it, and pass control to the standard RMOJ routine. If your program 
does perform the task, it must use the routine specified by the EMTRTN fixed
offset to return to the monitor. 

USR 
USR routines go thru this sub-dispatcher. This includes some routines that have 
just passed thru the EMT16 sub-dispatcher. 

dstat rename lookup enter close2 fetch delete qset2 

Note that CLOSE only comes here if a directory needs to be modified, or the 
channel was opened on a special-directory device. Notice, that purges to such 
devices do not come here. 

CSI 
Part of the FB CSI code must be in RMOJ. This part collects the input line for 
CSI requests that specify terminal input. If this were left to the USR, then the 
USR could be blocked/locked for hours while you came back from lunch. 

KMON 
While not truly a sub-dispatcher, this is a related topic, and there is space 
left on this page for the topic. 

Some requests are eventually routed to KMOJ for final processing. These apply to 
oc; programs only. 

abort EXIT CHAIN 

Since FG and System Jobs can also EXIT, a lot of the code for this request must 
be in RMON. And since it's there, oc; uses it as well. 

32 



REQUEST PROCESSORS 

The routines that process program requests are generally straightforward (yes, 
we can say that in RM<l',IFB). The software environment is so well defined by the 
time that they get control, that they have little choice in what they do. Furt~ 
er, at this level, the world has been reduced to monitor tables and pointers -
so, there is also little choice in who they do it to. 

Here are one or two simple examples: 

SSCCA 
This routine processes .SCCA requests. On entry the address of the callers SCCA 
flag-word is on the top of the stack (see EMT dispatcher above). For FB systems, 
this value is simply moved into the impure area I.SCCA offset. For XM systems, 
the address must be converted to a PARl+displacement two word address (unless it 
is zero). 

Note that the name SCCA probably originally meant Set Control C Ast. However, we 
ended up with a flag-word rather than an AST. 

S$ETOP 
Life is a bit more complicated here. Having got the jobnumber (JOBNUM) the 
request is immediately rerouted to XMSUBS if its XM. The routine then checks to 
make SU"e the requested high address is in range. SETTOP then checks to see if 
its inside the current limits. If its under the jobs low limit, the requested 
value is changed to the low limit. If its under the high limit, it is accepted, 
otherwise it's changed to the high limit. 

For EC programs, it then no so rashly assumes that we wil I overwrite the USR 
(since 99% of SETTOPs request all available memory) and calls ENQUSR to get con
trol of the USR. If the USR is currently locked, or in use, by another job, then 
it could take some time to return. The EC job will be blocked waiting for the 
USR. 

When control returns from ENQUSR, SETTOP has control of the USR and sets it in 
NOSWAP mode. This is perhaps not true - but since SETTOP has control of the USR, 
that is irrelevant. 

SETTOP checks to see if the new EC hig~limit will overwrite KMON (if it is 
still in memory). It it does, KMLOC is cleared, which signals that KMON is no 
longer in memory. 

SETTOP checks to see if it really does need to swap the USR. If it doesn't, it 
simply exits, calling DEQUSR to make it accessable by other jobs. Otherwise, it 
now checks to see whether it is permitted to set the USR SWAP (since the termi
nal SET command can prohibit this). If it may swap the USR, then it sets the 
SWAP mode and exits (releasing the USR with DEQUSR). Otherwise, it takes the USR 
load address as the new value for SETTOP and loops back. This loop must socceed, 
since it is specifying an address lower than the USR. 

In a program that had more room a different algorid1'll would have been used. In 
an RT-11 monitor, the algoritlni that requires least space is used. Even if it 
requires redundant locking/waiting on the USR. 

33 



··- · --- ·---- -- - ··- ---- -- -·--------··---- ·- ·-··- -·--·-- --- -- - -------- ------- ---- - ------- --------

RESIDENT TELETYPE HANDLER 

This is the part I dread. If you have no really good reason to get into the ter
minal handler, then don't. 

The tenninal handler is where the system interfaces with human beings. And, des
pite the fact that human beings are intel Ii gent, or perhaps because of it, they 
are the most difficult peripheral to interface. 

Some 26 pages of the monitor sources are occupied with this task, with hundreds 
of labels and conditionals. Probably the most complex part of adding System Job 
support was adding the CTRL/X functionality - since that meant figuring out what 
the tenninal software was doing. 

There is no way to describe this software wholly. Usually if you have a question 
with this code, it will be a quite specific question, and it will not be neces
sary to learn the whole routine. 

Terminal interrupts are time-const.ming. On an LSl-11/2 with a single interrupt 
priority, a terminal interrupt will block all other interrupts. This can cause 
real-time processes to time out, and it is often necessary to turn the terminal 
off during data acquisition. Otherwise, a random carriage return at the console 
could bring an experiment that had run quite happily for a couple of hours to 
its knees. Since disabling the terminal is per se dirty, the best way to do it 
is quick and dirty - via the TTKS/TTPS offsets. 

You should however wait until RT-11 has completed any current tenninal output 
before turning off the interrupts. You do this by waiting for bit 6 to go low -
not bit 7. This is because bit 7 can set in the middle of an instruction. 

One little hobby I have is looking for bugs in the monitor. And, I will set you 
the exercise of working out what the bug is in TTOPT2. This routine can be 
called by either TTYOUT /PRINT at PRO to put a character in the output ring
buffer, or during input interrupts to put a character in the output ring-buffer. 

high-speed input ring buffer 
This routine is perhaps a more dignified way to get around the LSl-11/2 problem 
above. The high-speed ring-buffer stores characters in a separate ring-buffer 
and supplies these to the standard input routine at fork level. 

READ&WRITE 

"I'm quite illiterate, but I like to read a lot" 
Salinger, Catcher in the Rye 

'Their manner of writing is very peculiar, being neither from the left to the 
right, like the Europeans; nor from the right to the left, like the Arabians; 
from up to down, like the Chinese; nor from down to up, like the Cascagians. • 

Swift, Gullivers Travels 

• 'So it doesl' said Pooh, 'it goes inl' 
'So it does!' said Piglet, 'and it comes outl" 

Milne, Winnie the Pooh 

1/0 is the main reason operating systems were ever invented. RT-11 is very fast 
at this game, and the 1/0 routines are fairly simple. 

Note, that the SJ monitor is still faster than FB. I had a problem with floppy 
benchmarks in BASIC one time. FB seemed to take six times as long as SJ. The 
reason was that FB was just slow enough to miss the sector skew on the floppies, 
and had to wait a full rotation for the sector to renrn. The main reason was 
BASIC. 

34 



The personal code for READ occupies only four instructions, two of which are 
NOP'sL For the rest, it provides common code for both ~ITE, SDAT & SPFUN. 

All these routines use the common code TSWCNT to do most of the checking. ~ITE 
must additionally set the C.USED entry in the CSW area (some cusps like KEO also 
play with this variable). 

After checking the 1/0 request, it is sent to the queue manager, to be placed on 
the queue of the requested device. 

completion i/o problem 
With V3 RT-11 started checking for eof /hderr both before and after a request was 
posted to the queue manager. This presents a special problem for completion 1/0. 
Given that a .REAIX returns with an error, it is impossible to work out if that 
error was registered before the request was sent to the queue manager, or after 
it was sent to queue manager. The difference is very different. If the error was 
registered before the queue manager call, then no completion routine will have 
been scheduled. If it was registered after the queue manager call, then a com
pletion routine will have been scheduled. In daisy-chained completion i/o this 
can create havoc. 

My solution until now has been to clear all errors in the CSW before the request 
(this will only work if ~u only have a single 1/0 request active at a time). 
Then any eof/hderr errors must have occurred aft«:r the queue manager call, and a 
completion routine will be delivered. Note that system HERR's (error code is 
negative) are always registered before the queue-manager call. 

QJEUE MANAGER 
The queue manager takes an 1/0 request and converts it into an 1/0 queue ele-
ment, which it places on the handlers queue. On entry to QMANGR, most of the 
parameters are in the registers: 

rO = block number (from the emt dispatcher) 
r1 = unit number (in high byte) 
r2 -> fourth word of handler 
r3 -> CSW area 
r4 = went (negative => write) 
rs -> buffer, word-count 

R1 R2 and R4 show what READ/~ITE and TSWCNT have produced since the EMT was , 
dispatched. 

QMANGR saves some registers and looks for a queue element for the request. Th_e 
job goes in to wait-state if none is available. Which would be unfortunate if 
the job was in a completion routine. 

It then fills in the 1/0 queue element. 

q. link 
q.csw 
q.blkn 
q. func 
q.unit 
q.jnum 
q.buff 
q.wcnt 

q.comp 

q.par 

clears this 
r3 goes here 
rO goes here 
clears this at first 
high-byte of r1 goes here 
job-number • 8 (overlays unit-number) 
(rS)+ goes here (relocated for XM) 
r4, now on stack, popped here 
(rS)+ popped past request went 
(r5)+ goes here. . 
If the low-byte is 377, then its really a SPFUN, and the high-
this is computed by XM in relocating q. buff 

QMANGR then wants to put the queue element in the handler queue. Two cases 

emerge: 
1. The handler is not busy. QMANGR sets it up as the first element and calls the 
handler. Finis. 

35 



2. The handler is busy. QMANGR hunts down the queue to find a place for the ele
ment. It searchs until it finds a request with a lower job number, or the end of 
the queue. 

Note that in case two, RMONFB does not update the LOE entry of the handler. 

This scheduling takes place in system state with the handler in hold-state. We 
will discuss both these states later. 

QUEUE ABORT 
Rather than discuss queue completion, I will discuss queue aborts. Aborting an 
1/0 request is not a completely deterministic process under RT-11 and explains 
the need for the handler HOLD state. 

A job exits. The monitor wants to abort all pending 1/0 for the job, and finds 
that the job has an 1/0 request in progress in a handler. Thus it calls the 
handler at its abort entry point to abort the request. The handler abort routine 
cleans up and exits the handler via the DRFIN routine. 

Sounds simple in theory and it usually works. 

However, when IOABRT calls the handler abort routine, it does so in system state 
at PRO. The handler could, in the abort-routine time-window, interrupt and com
plete of its own accord. Thus, you could have two handler completions, one as a 
result of the final interrupt and one as a result of the abort entry point. 

Thus the handler-hold state. When the handler is in hold-state, COMPLT ignores 
all handler completions, and simply sets the complete-in-hold-state. Thus, on 
the return to the monitor 1/0 abort routines, multiple handler completions have 
been reduced to a single complete-in-hold-state flag. The 1/0 abort routine 
checks this flag, and calls for completion for the handler if its set. 

However, there is a little worm in this code. This comes from RT-11's history, 
and is a good illustration of what operating system developers can inherit. 

In V1 of RT-11 handler aborts were not ~ally required. A job exit just meant 
RESET and start over. 

In V2, the FB monitor had to live with this heritage, and developed the HOLD 
technique to stay compatible. However, the crucial assLrnption in V2 was that by 
the time control returned to IOABRT, that all activity on the handler would be 
finished. 

In V3 this assumption became false with the introduction of the .FORK request. 

Now, going back to the example above, if now the handler completes of its own 
accord and schedules a FORK routine, then this fork routine will not be sche
duled until after the IOABRT code (which is in system state) is finished. Then 
when the fork routine is finally scheduled it could try to complete the next i/o 
queue element for the handler. 

This is not an undocumented feature of RT-11, it is a bug. 

36 



INTERRIJPTS 

• Life is made of interruptions• 
Gilbert, Patience 

"For sleep, health and wealth to be truly enjoyed, they must be interrupted.• 
Richter, Flower, Fruit and Thorn pieces 

• Allow time and moderate delay; hast manages all things badly. • 
Statius 

SINTEN 
This is the famous 10% of the code that executes 90% of the time (not really -
the idle loop fits this description better). 

Speed is of paramount importance here. All devices are supposed to interrupt at 
PR7, and come here to lower priority. Obviously SINTEN's task to get back to 
them as soon as possible. The code here (for a Q-BUS machine), is as follows: 

jsr 
.word 

Sinten: mov 
inc 

inti vi::. word 
bgt 

r5,Sinten 
"C<PRn>&PR.7 

· r4,-(sp) 
(pc)+ 
-1 

;;; save r4 
;;; bump level pointer 

;;; branch if already switched stacks 
;;; save users's stack pointer 

;;; switch to system stack 

mov 
tasksp::. word 

mov 
rmonsp::. word 

1$ 
sp,(pc)+ 
0 
(pc)+,sp 
rmstak 
r4,-(sp) 
r4 
(r5)+,r4 
r4 

;••boot•• 
1$: mov 

mfps 
bic 
mtps 
mov 
call 

(sp)+ ,r4 
(r5) 

;;; save r4 for the ps modify 
;;; get the ps 
;;; down to handler priority 
;;; set the ps 
;;; get r4 back again 
;; call the handler 

This routine, including the cal I, requires 21 memory references (note the easy 
way to compute instruction times is just by the number of memory references). I 
guess that's about 50 usecs on an 11/23 and 100 usecs on an 11/03. 

RS and R4 are saved on the stack at the time of the interrupt. In any case they 
belong to the job/system running that stack. 

If this is the first interrupt, then INTLVL will increment from its initial 
value of -1 to 0, triggering a stack swap. Note, that the .ROM globals are 
largely irrelevant in the code. 

The comment ; .. boot .. means that this variable has to be setup when the system 
bootstraps. 

Why not use a MTPS PRn instead of the three step sequence above? Maybe something 
to do with the trace bit. Additionally, this code must occupy the same amount of 
space as the equivalent PS method: 

mov #ps,r4 
bic (r5)+ ,(r4) 

And the reason this code is a word longer than it need be is because it has to 
the same size as the equivalent MTPS code. Sometimes, hidden in these mysterious 
little pieces of code, are undocumented engineering screw-ups. For example, the 
11/40 is very sensitive about the way you address its PS word. When you change 
mysterious code in the monitor, or do it yourself instead of calling the monitor 
then you risk bumping into engineering screw-ups. 

37 



SCHEDJLING 

'Scheduling' is the interaction of a number of separate processes, rather than 
the task of a single procedure. We will go into this subject in detail. 

Two of the basic concepts here are: (1) Preempting; (2) Retiring 

Preempting 
Preempting is an agressive force. A new task preempts or displaces the current 
running task in the machine. The new task is permitted to take over because it 
has a higher hardware or software priority than the task it displaces. 

Retiring 
Retiring is a passive force. It may lead to nothing more important than the idle 
loop. Retiring is the way a preempting task gives control back to a lower prior
ity task. It may give control back to the task it initially preempted, or during 
its execution, the preempting task may have altered the system state such that 
on retirement the system gives control to a task different to the task that was 
preempted. 

Interrupt 
In a simple system structure, a preempting force always begins as a hardware 
interrupt. In any system, the majority of preempting forces are the results of 
interrupts (clocks, disks, terminals). 

Now, if you want a system where a preempting force can originate in software, 
rather than as an interrupt, the easiest way to this is to use a psuedo-inter
rupt in the software. Thus, in our discussion we can consider all preemptive 
actions to be the result of a hardware interrupt or a software pseudo-interrupt. 

In a steady-state system, if no interrupts occur, the system will stay in steady 
state. Turn off all the disks and clocks on your system to try this out! 

A more important corollary is that the best way to focus on scheduling is to 
follow the possible paths that an interrupt can follow. 

Moving up the ladder 
Since the ladder is a priority system, a task can always be sure that no-one is 
executing higher on the ladder. Therefore, a task can move freely up the ladder. 
The restriction is that it must inform the monitor that it has moved up the 
ladder. Therefore, to move up the ladder, a task moves right up to PR7 with a 
psuedo-interrupt, and then moves back down the ladder, under monitor control, to 
the desired step. This is the pseudo-interrupt. 

Moving down the ladder 
A task must obey certain rules in moving down the ladder. 

A task may never move below its hardware priority without monitor assistance. 

For example, given a PRS task is preempted by a PR6 task. Then if the PR6 task 
decides to move to PR4, you could have the situation where a PR4 task was 
preempting a PRS task. 

Therefore, interrupt service routines use the FORK mechanism to move down the 
ladder. The task is placed on the FORK queue and other interrupts are permitted 
to complete. When all the interrupts are done, tasks on the FORK queue are pro
cessed. 

The other way for a task to move down the ladder is to pass its work onto some 
other task further down the ladder. Thus when an interrupt service routine 
requests a completion or synch routine, it is actually requesting someone lower 
down the ladder to take the work over. Thus calling for completion ends in the 
retirement of the interrupt and a change in system state. 

38 



SYSTEM STATES 

In the previous scheduling section we dealt with operations that were mainly the 
results of 'actions'. 

However, in the last paragraph, we dealt with the completion mechanism. Another 
way of looking at the completion mechanism, is by seeing it as a mechanism that 
transforms an 'action' into a 'state' ('completion' is used in a generic sense 
here, rather than just meaning handler completion). 

For example, a handler completes an 1/0 transfer and calls the completion man
ager. The completion manager translates this act of completion into the altera
tion of the state of the job waiting for that completion. It unblocks the job. 

The contrast is as follows. Above system state, in the interrupt world, priority 
originates and maps onto hardware priority. Below system state, in the job 
world, priority is determined by the state of the jobs as mapped into a number 
of system variables (I.STATE, I.BLOK). 

The two worlds, of interrupts and jobs, are quite different. Interrupts have a 
limited repetoire of options available to them (no program requests), but life 
is also much faster in the interrupt world. Priorities change very quickly in 
this dynamic environment. 

The job world moves much more slowly. Swapping between jobs requires a rather 
long context switch whereas swapping between interrupts requires less than 25 
memory references. Only one job runs at a time - whereas up to four interrupts 
may be nested at any given time. Finally, the interrupt world is based on the 
machines hardware whereas the job world is based on the monitors transformation 
of the interrupt world as represented in its tables. Once again, it is the com
pletion process that maps the interrupts actions into changes in those tables. 

As you might imagine, the interrupt world, being based on hardware reality, is 
very similiar in all POP-11 operating systems. There just are not many different 
ways to handle an interrupt (although I have seen some methods that would make 
you wonder about that). 

Where operating systems differ is in the job world - which is essentially a cre
ation of the monitor. 

SYSTEM STATE 

Before dealing with system states (note the 's') in detail, we have to recognise 
a third-world: System State (no 's'). 

System State is the middleperson in between the interrupt and job world. It has 
two main functions. 

Firstly, it augments the hardware machine by simulating a couple of hardware 
devices the engineers didn't supply. 

Secondly, it provides the monitor with a safe place that is neither in the 
interrupt world or in the job world. It uses this environment to change states 
of both the interrupt world (IOABRT) and jobs. 

Interrupt world 

$1NTEN: 

Process FPU 
Fork routines 
Process the clock 
Abort jobs 
Schedule jobs 
Context switch 
Schedule completion 

Delayed interrupt 
(These are a cut above system state) 
This is a psuedo-fork routine 
Catch up with delayed aborts 
Catch up with changes to system states 
Swap job context 
i.e. completion routines 

39 



$ENSYS: 
Psuedo-i nterrupt 
Schedule 1/0 
Block job 

Job world 

COMPLETICJl,I 

$ENSYS 
Start a handler 

Completion means changing the state of a jobs runnability. This is a table dri
ven operation. 

We will consider an example. A job issues a .TTYIN request for a character. None 
is available, so TSTIN calls $SYSWf to block the job with TTIWfS. 

"Now the serpent was more subtil than any beast of the field.• Genesis 3:1 

$SYSWf is well described in the SSM (3-311). What is not obvious is that when 
job becomes runnable again, it execute $SYSWf rather than the continuation of 
T$TIN. This is ensured by the call to $ENSYS (which also retains the original 
value of R4 for $SYSWf when it restarts), 

The job is now blocked. A user, any user, types a character at the terminal, 
which causes TTINC3 to call UNBLOK to unblock the job. UNBLOK causes a schedul
ing pass which returns control to $SYSWf, which then runs the decision routine 
again. The paths are: 

Retire T$TIN, $SYSWf, $ENSYS, SWAPME, $RQSIG, ••• 

Restart TTINC3, UNBLOK, $RQTSW, INTACT, EXUSER, EXSWAP, CNTXSW, 
$SYSWf, T$TIN, $SYSWf, TSTIN job 

SSYSWf blocks the job. 

TTINC3 is the interrupt, and UNBLOK is the completion component. 

$RQTSW thru CNTXSW restart the job. If the character was not EOL, and TSTIN 
wanted EOL, then TSTIN and $SYSWf retire the job again. (Which means that every
time you type a character to the FC you cause a context switch, even if the FC 
program doesn't get control), 

SYSTEM STATES 
Now we finally come to deal with system states, we find we have already dealt 
with them. 

40 



-~ 

The system ladder 
You can picture the priority system of an operating system as a ladder. Tasks 
higher up the ladder have precedence over the tasks below them. 

Further, you can picttre this ladder leaned up against the wall of a multi-story 
building with a number of balconies. Tasks can retire to the balconies giving 
control to tasks on the ladder below them. However, by remaining on a balcony a 
task has the potential to enter the system at some later stage at a high priori
ty. These balconies are represented in operating systems by queues. 

The system must provide mechanisms for climbing up and down the ladder. 

An interrupt is born 
I tend to think of the total interrupt behaviour of a machine as Flak. However, 
this is rather well-behaved flak, that has to get landing permission. 

In our model, an interrupt starts somewhere undefined in the sky. It goes into a 
flight loop until it gets permission to land. On top of our builcing is the Flak 
Flight controller. He requests from the interrupt the step on the ladder 
required for landing. Air traffic rules do not permit an interrupt to land lower 
than someone already on the ladder (This is hardware). 

Communications between the flight controller and the ladder personnel are not 
very good. Thus, when ever permission is granted to land, the flight controller 
temporarily blocks all other landings until the ground crew on the ladder signal 
that the interrupt has safely landed (all interrupts occur at PR.7 - SINTEN is 
the ground crew). 

However, every rule has its exception, and there is one type of interrupt that 
can always land - Mr. F.P.U •• The ground crew get rid of him as quickly as pos
sible. 

the interrupt has landed 
When a regular kind of interrupt lands, the first thing it does is report to the 
ground crew which step on the ladder it has landed on. The ground crew send this 
information to the flight controller to permit other interrupts to land higher 
up. 

This takes time, so some interrupts who really only want to make a very short 
visit, don't bother to tell the ground crew. They just do their job and take off 
again. The flight controller can detect this and it causes no problems (except 
that it might have an affect on the special handling the ground crew give to Mr. 
F.P.U., if Mr. F.P.U. lands in the middle of one of these short visits.) 

Once an interrupt has landed on a particular step of the (hardware) ladder it 
can start to do its work. If its work is going to take a long time it might to 
decide to move down the ladder. But, it can't do this by itself, since there 
could be someone on the step below it. It must ask permission of the ground crew 
to move down. In fact, the ground crew has a single level that interrupts can 
move down to (the fork queue - note VAX has four fork queues). 

However, an interrupt can move freely up the ladder and back to its original 
position, since, by our rule above, it can be certain that no-one is on a step 
of the ladder above it. In practise an interrupt tends to make only trips to the 
top of the building (PR.7) and back to its original step. 

Eventually, perhaps after having being preempted a couple of times, an interrupt 
will either retire from the ladder by taking off, or call the ground crew to 
move down the ladder. If it does not, then the whole ladder will come to a stop. 
When an interrupt takes off, or retires, control generally returns to the next 
lower interrupt or task on the ladder. 

41 



Alices interrupt restuarant 
When an interrupt wants to come down the ladder, it goes to Alices Interrupt 
Resaurant on the fifth floor. Since this is an American Cafe, it has to wait in 
line for service (fork queue). Note that it now loses alt priority; it's just 
another interrupt waiting in line. In fact it's no longer an interrupt. 

Ricks fast-food place 
Actually, there is another place it can go to. Since RT-11 is a fast system, it 
also provides a fast-food place. However, the food is so terrible there that no
one actually eats it. They just come in to make a quick telephone call to the 
COMPLETIO\I department to tell them that all their work's been done. In this case 
the COMPLETIO\I department may give the interrupt another job to do (i.e. sche
dule the next queue element for that balcony). 

after the interrupts over 
Whenever there is an interrupt reported, the ground crew send someone to wait 
outside Alice's. This supervisor waits until the last interrupt has taken off, 
and checks to see if they left any mess lying around. The first thing they check 
is the fork queue. Each person on the fork queue gets a chance to run until 
there are no more. 

Then our fifth floor supervisor checks to see if the clock has changed, whether 
Mr. F.P.U. left his visiting card, and finally the bereavment notices for jobs 
deceased are checked. All of these activities take place on the fifth floor. 
(The fifth floor is System State) 

'It is not enough to be busy; so are the ants. The questions is, what are we 
busy about?• Thoreau 

The last task of the supervisor is to return control to the guys on the ladder 
below. Now, interrupts, forks, clocks, Mr. F.P.U, and bereavements could all 
have changed the working roster. It could be that one of the people waiting on 
the balconies below can now move back out onto the ladder and start washing 
those windows again. Thus the supervisor checks to see if any of the people sun
ning themselves on the balcony should get back to work. 

If one of them should, and they are highest up the ladder, the supervisor rear
ranges things (context switch) and calls them out to get going. 

When one of these people under the fifth floor is done, they call up to the 
supervisor and ask permission to go back to the sun-shades and gin and tonic. 
The supervisor then looks for the next person to send out on to the ladder. 

'To be idle is the ultimate purpose of the busy" Samuel Johnson 

When everybody on the lower four floors is relaxing with nothing to do, the 
supervisor gets very busy with the Idle loop. The supervisor frantically looks 
up and down the ladder for some good reason to get somebody out on the ladder. 
Since this is the case 90% of the time, you can imagine that the supervisor is 
kind of paranoid. Time is lunch. 

42 



SCHEDJllflC PlA Y 

The following is a dramatic one-act play based on the IOABRT /FORK problem. There 
are two reasons I choose this scenario: (1) A problem sometimes shows the struc
ture better; (2) I have this scenario in my head at present, so it's easier to 
put this together; it wasn't easy - even though it is simplified, the scenario 
still requires over 25 steps. 

The scenario is as follows: 

BG runs 
BG .READ goes to Handler queue 
BG read starts, enables interrupt 

FG runs, BG waits 
FG read goes to Handler queue 

BG exits 
IOABRT sets handler HOLD state 
IOABRT to goes to Handler abort 
BG read interrupts and goes to Fork queue 
IOABRT request goes via drfin to COMPLT 
COMPLT sets handler hold/completed state 
IOABRT clears hold/complete, 
exeunt BG read request 
starts FG read request 

FG read starts, enables interrupt 
IOABRT exeunts 

BG fork starts, exits request via drfin 
COMPLT removes FG read request 

FG read interrupts, no queue element 

We will need: 

BG 
FG 
IOABT 
DR 

BG.read BG.rea2 BG.exit(doubled by BG) 
FC. read FG. rea2 
1O.abt 

DR remains seated and displays only the state of the handler (run/hold/complete) 

43 



, ___ ,,,, 

JOB SYSTEM AST INT 
kmon jobwait forkq drlqe intwait seated 

drcqe seated 

drbeg 

job ioabrt complt 

drabt drast 

drfin drfin system-halt 
$dr 

The action is: 

step actor from to to because 
1. FC kmon job jobwait FRUN FC, • twait FG 

2. oc; kmon job RUN OC 

3. OC.read job drcqe intwait OC .READ, startio, pause 

4. oc; job jobwait FC • twait done; context switch 
4. FC jobwait job 

6. Fe.read job drlqe FC .READ, wait in lqe 

7. FC job jobwait FG • twait, context switch 
7. oc; jobwait job 

8. OC.exit job IOABRT OC .EXIT, abort i/o 

9. DR $run Shold IOABRT 

10. 10.abt system drabt IOABRT 

11. OC.read intwait drast forkq interrupt, preempts drabrt 
fork queues behind ioabrt 

12. 10.abt drabt complt 

13. DR $hold $hold/complete 10.abt/complt & hold 

14. 10.abt complt IOABRT 10.abt done 

15. DR Shold/c $run IOABRT 

16. OC. rea2 DRcqe exeunt CMPLT2 

17. FC.rea2 DRlqe DRcqe iostart/intwait Scheduled 

18. IOABRT system exeunt done 

19. OC.read forkq system drfin complt schedule fork 

20. FC. rea2 DRcqe Fe.done exeunt FC request completes 

21. Fe.read intwait drast fork complt 
complt system-halt no queue element 

all actors remain standing 

44 



DSIR ----------------------------------------------------------------------DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH 

APPLIED MATHEMATICS DIVISION 

P.O. Box 1335 Wellington New Zealand 
Telephone (4) 727 855 Telex 3276 Research 
7th Floor Rankine Brown Building Victoria University of Wellington 

" ........................................................................... . 
7 August, 1984 

Ken Demers 
Adaptive Automation 
5 Science Park 
New Haven, CT 
06511 
U. S. A. 

Dear Ken: 

I have often been annoyed by the fact that when a bad block occurs on a 
floppy disk during a read operation, the whole block is flagged as bad by 
the handler, even though in general it is only one sector out of 4 (or 2 
for double density) that has caused the error. Further I consider it useful 
to be able to look at the bad sector anyway, since it is possible that only 
a small proportion of those 128 bytes (or 256 bytes for double density) are 
in error. 

To this end I have modified the DY handler for RT-11 V5,0 to qttempt to 
continue with data transfer process after an error has been detected, while 
still flagging the error in the normal way when the I/0 request is 
returned. This means that all those good sectors within the 'bad' block are 
transferred correctly, and that the information read from the bad sector is 
also transferred, so that the user may determine how much of it really is 
bad. (At the moment a COPY/IGNORE command to copy a file containing a bad 
block in which it is the first sector that is faulty will repeat the block 
previous to the bad block when writing the output file). 

The accompanying listing is of an input file for the Source Language Patch 
Program (SLP.SAV). There are three different patches identified: 

Patch 001 is the standard TSX-Plus V4.1 file TSXDY.SLP for patching RT-11 
V5.0 DY.MAC. This has been included for completeness, since TSX-Plus users 
must install this patch if any other patches are installed. 

Patch 002 implemr;i1ts the mechanism whereby errors are reported if the retry 
count is exhausted, but are ignored internally by the handler in the sense 
that the process of data transfer is continued after an error has occurred. 

Patch 003 is a further optional enhancement which implements the option 
SET DY [NO]IGNORE 

This causes the handler to not report bad blocks at all when they occur, 
although the retry process is performed as usual, and the information is 
transferred as usual, as provided by patch 002. This allows programs which 
terminate on detecting bad blocks to continue with whatever data has been 
provided by the handler. One side effect of using the SET DY TGNORE option 
is that some diskette drive hardware may behave differently, because there 
is no hardware initialise command executed after the error has been 
detected. Thus for example, a DSD-440 drive will flash the red LED for two 
minutes after the bad block has been detected. Patch 002 must be installed 
if patch 003 is included. 

45 



-125 
.DRSET IGNORE, <BIS (PC)+, @-(R4)>, O.IGN, NO ;003 

-210 
O.IGN: MOV (PC)+, R3 ;003 

TST (PC)+ ;003 
MOV R3, 0$IGN ;003 
BR O.GOOD ;003 

-314,314 
ADD #2, RO ; INCREMENT BUFFER ONE WORD, ;001 

-384,384 
CMP Q.BUFF-Q.BLKN(R4),#140000; CHECK PAR6 LOWER B~DNDARY. ;001 

-435 
MOV DYCQE, R4 GET QUEUE ELEMENT. ;002 
BIT #HDERR$, @-(R4) IF HARD ERROR BIT IS SET, ;002 
BNE DYABRT WE MUST INITIALISE DEVICE. ;002 

-461 
BR INTDSP NO ERROR, CONTINUE. ;002 

SETERR: MOV R4, -(SP) SAVE R4. ;002 
MOV DYCQE, R4 GET QUEUE ELEMENT. ;002 

0$IGN: BIS #HDERR$, @-(R4) SET HARD ERROR BIT. ;002 
MOV (SP)+, R4 RESTORE R4. ;002 

-508 
DEC DYTRY IF RETRY COUNT IS EXHAUSTED, ;002 
BEQ SETERR CONTINUE AS IF NO ERROR. ;002 

-511 
JMP DYINIT GO TO RETRY OPERATION. ;002 

-513,513 
BEQ SETERR EXHAUSTED, SO CONTINUE ;002 

I 

Of course no guarantees can be given with these patches, but they do seem 
to work on those bad blocks that I have tried. Good luck! 

Regards, 

,/1 / I I 

/y_"'I lb{'9.-(,,..i'Y':r-lf:} 
Cl ,J 

Dr. R. D. Brownrigg 
Scientist - Computing Section. 

46 

' '-._...../ 



I thought that the readers of the "Mini Tasker" 
might be interested in the enclosed program. 

I have recently set up my RT-11 system to be used 
with a remote console terminal, with a dial-up connection 
over regular phone lines. Clearly anyone with a terminal 
could dial up, log in and wreak havoc with that system. 
The enclosed program gives a modest improvement in 
security with little effort: after running the program 
"SECURE" the console terminal cannot be used until the 
correct password is typed. Of course, one has to remember 
to run SECURE before hanging up the phone, but with this 
restriction it seems to work quite well. I have given it 
a modest degree of testing and it seems to be bug-free; 
however I invite readers to let me know if there are 
problems or improvements which could be made. 

DALHOUSIE UNIVERSITY 
DEPARTMENT OF PHYSICS 

Halifax, Nova Scotia, Canada, B3H 3J5 
Departmental Telephone: (902) 424-2337 

Telex: 01921863 

.TITLE SECURE 

.ENABL L.C 

Yours sincerely, 

IJ~ 
D. ~:dall 
Assistant Professor 

a MACRO Program designed to restrict the use of the RT-11 s~stem console 
to Password holders. It is particular!~ desi~ned for aPPlications where 
the console Port is attached to a modem, to Prevent unauthorised remote 

; dial-uP use of the system. 

Written by David A. Tindall (PhYsics Department, Dalhousie University, 
Halifax, Nova Scotia, Canada B3H 3J5) 1984-10-03 as a result of a 
suggestion from PhiliP Staal of D.R.E.A., Dartmouth N.S. 

+MCALL 
.SCCA 

.EXIT,.SCCA,.TTYIN 
START: tMAREA,tSCCA ; Disable Control-C abort 

JSW=44 
PASLEN=PASEND-PASWRD 
BIS 150000,@tJSW LOO~·: . CLR __ R_5 __ -------- . ..... . 

NEXT! • TTY IN 

STOP: 
MAREA: 

CMPB 
BNE 
INC 
CMP 
BLE 
.EXIT 
.BLKW 

RO,PASWRD<R5) 
LOOP 
RS 
R5,tPASLEN-1 ··NE·x·r··-·•··· ·· 

5 
SCCA! .WORD 0 
PASWRD! .ASCII /Open Sesame/ 
PASE ND : • END - ----'S"--T'-'~BT _ ___ . ___ __ 

Job Status Word 
F'ASword LENgth 
Set lowercase and special mode bits ··-····-· •-·•-·-···-·-···· .. -··•···• ·---~ .. --- ···-- . ......... _, .. ____ ········--· .... ___ .. . ,, . . 

; RS counts correct characters inPut 
; Get next character typed 

Does it match next character in password? 
If not then start again 

; Here if match found - move Pointer 
; End of Password? 
; If not ~o ·bad:. for -another· ··character 

RePlace "Open Sesame" with desired password 
; Password can be any lensth 

47 



--· ·- - - ·· --- - ---·-- · - - - - ··--· ---- -

USER RESPONSES 

Fol1owin9 are ~imProved ~ versions of the macros submitted bv John T. 
Davies III in the August minitasker. This version allows the use of anv 
GP re9ister as stack Pointer for floating Point operations and coPies the 
floating Point condition codes to the PSW so thev mav be used 
for b r an c hes. It now behaves more like the FIS on the 11/03. 
John for Presentins this idea. 

as conditi,:,ns 
Many thanks t,:, 

.MACRO 
L.DFP:::; 
LDF 
ADDF 
::·;'TF 
CFCC 
.ENDM 

.MACRO 
LDFPS 
LDF 
MULF 
STF 
CFCC 
.. ENDM . , 
.MACRO 
LDF-P:::; 
L.DF 
SUBF 
NECiF 
STF 
CFCC 
.ENDM 

.MACRO 
LDFP:::; 
LDF 
LDF 
DIVF 
::HF 
CFCC 
.ENDM 

FADD , X 
#7L',40 
! X)+,RO 
(X)+,RO 
RO,-(X) 

FMUL,X 
#7440 
(X)+,RO 
(X)+,RO 
F:O, - < X) 

fl:;UB, X 
#7440 
(X)+,RO 
<X)+,RO 
RO 
RO,-(X) 

F'.::;UB 

FDIV,X 
#7440 
<X)+,RO 
<X)+,Rl 
RO,Rl 
Rl,-<X> 

COPY FP condition codes to PSW 

48 

Lester R. Shields 
Weirton Steel Corporation 
Computer Process Control 
Weirton, WV 26062 



DECUS LIBRARY 

revision 
11-e:;r:;7 

FTALK 

Version: Vl.0B, June 1984 

Author: Timothy w. Coressel, Rockwell International, Golden, co 

Operating System: RT-11 V5.0 

Source Language: ~ACRO-11 

Memory Required: 1KW 

Special Hardware Required: Two DL ports (i.e., DLVII-J) 

FTALK is a software package for linking a development PDP-11 
computer to a SBC 11/21 (Falcon) computer used in dedicated type 
applicatons. This program allows a user to download stand-alone 
programs from any mass storage device existing on a PDP-11 
computer to the Falcon. It also allows one terminal to 
communicate to both the PDP-11 computer and the Falcon. 

Changes and Improvements: FTALK is now able to download programs 
to the Falcon that consist of 2 blocks of more of executable code. 

Documentation on magnetic media. 

Media (Service Charge Code): Write-Up and Listing (DA), Floppy 
Diskette (KA), e:;00 1 Magtape (MA) 

Format: RT-11 

revision 

STONE: A Program for Resolving Mossbauer Spectra 

Version: July 1984 

author: A.J. Stone, K.M. Parkin and M.D. Dyar 

Submitted By: M. Darby Dyar, Massachusetts Institute of 
Technology, Cambridge, MA 

Operating system: RT-11 V4.0, MINC Vl.2 

Source Language: FORTRAN IV 

Memory Required: 40KB 

Special Hardware Required: (Two) RX0?. floppy disk ports or 
storage greater than 1e:;00 blocks 

49 

11-72~ 



-- - - - ---- -- -~------------ ----------

This program is an overlaid, condensed version of the larger 
program MOSSPEC, which is in use worldwide. It fits a sum of 
Lorentzian or Lorentzian/Gaussian combined lines to a given 
Mossbauer s~ectrum by means of the Gauss non-linear regression 
procedure with a facility for constraining any set of parameters 
or linear combination of parameters. Results are output as a 
table of the fitted parameters, including the statistical values 
for standard deviation, xA2, and Misfit. 

This program was developed to enable sophisticated Mossbauer 
curve-fitting to be done on a very small computer, such as would 
be present in a laboratory environment. Use of the detailed 
User's Manual is strongly recommended. 

Note: Use of the accompanying manual is strongly recommended. 

Changes and Improvements: Corrected bug in subroutine STOST~. 

Restrictions: Program requires approximately 90~ blocks of free 
space for swapping on and off the disk; therefore it can only be 
run off RX02 (double density) floppies: one floppy for the 
operating system +STONE.SAV and one floppy for the few .TMP files 
and the empty blocks (contiguous). This program can also be run 
off any storage medium with a total of 1~~0 blocks. 

Media (Service Charge Code): 

Format: RT-11 

Manual (E~), RX0~ Floppy Diskette 
{KA.) , 'i~~' Mag tape (MA) 

C Language System in RT-11 Format 

Version: November 1981 

Author: David Conroy, Robert Denny, Charles Forsyth, Clifford 
Geshke, and Martin Minow 

Submitted By: N. A. Bourgeois, Jr.NAB Software Services, Inc., 
Albuquerque, NM 

Operating System: RSTS/E V7.2/V8.0, RSX-llM V4.0, VMS V3.2, 
TSX-PLUS v2.2-vs.0, RT-11 V4.0/V5.0 

Source Language: C, MACR0-11 

Memory Required: 5'iKB 

Special Hardware Required: Floating point operation requires FPU. 

This tape contains the •c Language System, Second Master Release 
Version of November 1983", the same information as is contained 
on the tape for DECUS PART NO. ll-SP-18. The information is 
simply repacked from the DOS format of 11-SP-18 into an RT-11 
compatible format. The files from each of the 14 DOS (UICl 
accounts are contained in RT-11 Logical Disk files. The files 
from DOS (5,1] are in the RT-11 LO file 501.DSK. The logical disk 
files are all full with the largest being 3179 blocks and the 
smallest being 159. See the catalog listing of ll-SP-18 for 
further information. 

50 



Documentation on magnetic media. 

Media (Service Charge Code): ~0~• Magtape (MA) 

Format: DOS-11 

new 
11-74~ 

User Command Linkage-Plus 

Version: V~J, July 1984 

Author: William K. Walker, Monsanto Research Corp., 
Miamisburg, OH 

Operating System: RT-11 VS and 5.01 

Source Language: MACRO-11 

Memory Required: 8872 Words 

UCL+ is a user command linkage program for use with RT-11 VS and 
later monitors (it will also work under TSX+). It allows dynamic, 
on-line definition of user commands (or •symbols") and is 
upward-compatible with the UCL program distributed with RT-11 
VS.01. Among the extended features are: 

1. An •execute-immediate" mode for commands that are defined 
in terms of other UCL+ commands. 

2. Deletion of multiple symbol definitions in a single command 
line. 

3. 

4. 

s. 

~-

7. 

8. 

9. 

Optional chaining to additional •ucL's". 

A user-definable "run-by-name-path" which extends the RT-11 
"run-from-SY~" default. 

Provision to STORE/RECALL program settings to/from a separate 
".UCL" file. 

A PASS-ON command that allows you to force UCL+ to "pass-on" 
a given command string to the next "UCL" in the chain (the 
default mode) or to a program that you specify. 

DISPLAY of command expansions with or without execution. The 
DISPLAY command can also be used to output pre-defined ASCII 
strings to the console, the printer, or some other 
device/file (handy for sneaky escape sequences}. 

Several useful built-in •hard-wired" commands including a 
DCL-style R~O command for use with the DECUS RUNOFF program. 

Provision for accepting lower-case input (as well as most 
control characters}. 

10. Provision to list all program parameters, including SYl_!lbol 
definitions; list output may be directed to devices/files 
other than the console. 

54 

'--.__/ 

'-.._./ 

, _ _____,/ 



revision 
11-731 

Kermit-11 

Version: V2.20, August 1984 

Author: Brian Nelson 

Submitted By: Rebecca Dent, Change Software Inc., Toledo, OH 

Operating System: RSTS/E V7.2 or later, RSX-llM V4.A or later, 
RSX-llM-PLUS v2.1, RT-11 V4.0 or later 

Source Language: MACRO-11 

Memory Required: 20KW 

Kermit is a protocal originally developed at Columbia University 
which has been used to implement error free packet file transfer 
and communications between computer systems, both mainframe to 
mainframe and micro to mainframe. 

This Kermit-11 was developed by the author for RSTS/E, 
RSX-llM-PLUS, RSX-llM and RT-11. 

Kermit-11 will run on RSX-llM version 4.0 and RSTS/E version 7.2 
as long as the task was built without using RMSRES. To be able to 
build Kermit on RSTS/E version 7.2 of RSX-ll version 4.0 you will 
have to get RMSLIB.OLB and MAC.TSK from RSX-11 V4.l or RSTS/E 
VB.0. The need for version 2 of RMSLIB is due to the use of 
$SEARCH, $PARSE, $RENAME and $DELETE. The need for the newest 
MAC.TSK is due to the use of new directives such as .SAVE, 
.RESTORE and .INCLUDE /FILENAME/. 

Note: For RSTS/E system users please note that you do not have to 
create RMS files as output. You can instead either type 
set record-format stream, modify the default in KllRMS, MAC 
or put the set command in one of the following files: 

SY:KERMIT.INI 
LB: [1,2lKERMIT.INI 
SY: [1,2lKERMIT.INI 
KERMIT:KERMIT.INI 

Restrictions: Minimum System requirements to ASSEMBLF, and LINK 
KERMIT: 

RSTS/E V8.0 or later, with multiple private delimiters and RMS V2 
RSX-llM V4.l or lateri with full duplex terminal driver and RMS V2 
RSX-llM-PLUS V2.l or ater, with full duplex terminal driver and 
RMS V2. RT VS will not run under RT-11 SJ. Needs FB or XM. 

Minimum system requirements to RUN KERMIT: 

RSTS/E V7.2 or later, with multiple private delimiters 
RSX-llM V4.0 or later with full duplex terminal driver 
RSX-llM-PLUS v2.0 or iater, with full duplex terminal driver 
RT-11 V4. 

53 



Complete File Sort Utility 

Version: V3, July 1984 

Author: John M. Crowell, Crow4ell, Ltd., Los Alamos, NM 

Operating System: RT-11 V4.~, 5.0, 5.1 

Source Language: MACR0-11 

Memory Required: l~KW 

Special Hardware Required: EIS 

revision 
11-444 

RTSORT is a substantial revision of nECUS Library Program 11-444, 
originally by Bob Schilmoeller and Paul Styrvoky of St. Johns's 
University, Collegville, MN. The program performs a multiple key 
sort of a data file in either alphabetical or ~SCII order. The 
sort is accomplished via a Tag Array built with the specified sort 
fields and block and record addresses. A Shell Sort puts the Tag 
Array in ascending or descending order. The sorted data is 
written to a file, and, optionally, printed on the termial. 

A maximum of 1~ sort fields is allowed. Maximum record length is 
?.04~ bytes. Records must be separated by a /CR/LF. 

In the preparation of this version, no changes in the sorting 
procedure were made. Revisions consist of the following: 

1. Replacement of redundant code with subroutines. 
2. Improves decimal/ASCII conversion. 
3. Runtime memory allocation. 

The results of these revisions are: 

1. Up to 30% increase in maximum number of sorted records. 
2. Size reduction of SAV image from ~0 blocks to~ blocks. 

A maximum of 1~ sort fields is allowed. Maximum record length is 
204~ bytes. Records must be separated by a /CR/LF. 

Documentation on magnetic media. 

Media (Service Charge Code): Floppy Diskette (KA), 
~00' Magtape (~A) 

Format: RT-11 

52 

'----"' 

.__,,, 

·--



,,--, 

Note: Hardcopy documentation is available. See DECUS part no. 
11-SP-18 for ordering information. 

Restrictions: DECUS C supports a subset of the current version of 
C. Minor problems may be encountered in converting from other 
dialects of c. 

Documentation on magnetic media. 

Media (Service Charge Code): 2400' Magtape (PC) 

Format: RT-11 

CIT101: Routines to Drive the CIT101 and VT100 Terminals 

Version: V2.2, March 1984 

revision 
11-424 

Author: Ralston w. Barnard, Sandia National Labs, Albuquerque, NM 

Operating System: RT-11 VS.0 

Source Language: FORTRAN IV, MACR0-11 

Memory Required: 1328 (10) wds - max. 

Special Hardware Required: VT100 terminal, CIT-101 terminal 

CIT101 is a MACRO subroutine which is an extension of the DECUS 
Program Library Number 11-424, •vT•. It is a collection of 
FORTRAN-callable routines for control of the VT100 terminal 
functions. Additions to this package include support for the 
enhanced screen-control features of the CIT101 terminal (including 
both the 10A and llC ROM sets), and for the CIT101 and VTl~~/102 
printer ports. Both of these extra features are individually 
available as conditional assemblies in the source code. The 
original submission has been recoded to reduce its size. The code 
has also been divided into "I and n• PSECTs. 

The original demos provided with 11-424 are included. Also 
included are three routines which use the CIT101 library - for 
centering text, displaying text in two columns, and for putting 
out a string of numbers after a prompt. The file CICALL.TXT is a 
handy summary of all the calls. 

Changes and Improvements: Enhancements to functionality; improved 
efficiency and size. 

Documentation on magnetic media. 

Media (Service Charge Code): Write-Up (AA), Floppy Diskette (~A), 
~0~• Magtape (MA) 

Format: RT-11 

51 

-----·· - "'"""'""-···-··------ ------- ----------- - ----- -----------



------

------

The V6J distribution also includes the source text and 
instructions necessary to create an on-line HELP facility for 
UCL+. 

Restrictions: UCL+ will run under RT-11 VS or later monitors. 
Version 5 must be sysgened for UCL support. 

Documentation on magnetic media. 

Media (Service Charge Code}: 

Format: RT-11 

Flo~py Diskette (KA}, 
~AA Magtape (MA) 

OECODE4: RT-11 SAV Files Disassembler 

Version: V2, February 1984 

Author: Henry o. Peterson, Bend, OR 

Operating System: RT-11 V3, Heath HT-11 Hl~lA-5 

Source Language: MACR0-11 

Memory Required: 5.4KW 

revision 
11-10q 

Other Software Required: If documentation is reformatted or 
revised, RUNOFF (DECUS No. 11-530), is required. 

Now, even if your computer is the result of a pact between the 
fortress at Maynard and an entity 150A km to its west (and 
slightly left); even if as might be expected its software matured 
well before the LSI-11 revolution you can more likely, using that 
software, get away with fitting the decoder to and using it more 
efficiently with that computer. 

No more are your programs at the mercy of unpredictable or 
underdeveloped foreign systems! Now you can render such a system 
user friendly (as well as capitalize on it). 

DECODE 4.~ is a modified version of DECOOE 3.0 (DECUS No. 11-342). 
The program provides some additional features over version 3.~ at 
the expense of being initially somewhat awkward to use. DECODE 
3.0 may be preferable in some cases. 

DECODE 4.0 is intended to allow easier decoding of relatively 
large .SAV files on a machine with relatively small diskette 
capacity such as Heath HT-11 hardware running either the 
Heath-supplied software or running RT-11, version 3. DECODE 4.0 
was developed from DECODE 3.0 using the above-mentioned Heath 
HT-11 system. 

55 



Changes and Improvements: Assembles with Heath HT-11 System and 
Utilities. Uses separate file to supply repetitive command line 
information. Listing controls allow decoder output to be printed 
or stored on files in parts. Decoding, with Heath HT-11 System, 
is easier or possible starting at addresses above or below 1000, 
octal. ".BLKW" can be replaced with ".WORD 0, •• 0" equivalents. 
Operation with system diskette removed is discussed in write-up 
and if you decide it is somewhat supported, write-up has decoding 
example, etc. 

Restrictions: Has not been checked with LDA files. 

Documentation on magnetic media. 

Media (Service Charge Code): Manual (EA), Floppy Diskette (KA), 
~00' Magtape (MA) 

Format: RT-11 

Keywords: Heath-11, LSI-11 
Disassemblers 
Operating System Index: RT-11 

new 
11-741 

VLOAD: A Program for RT-11 Extended Memory Monitor 

Version: V2, January 1984 

Author: Raquel K. Sanborn, Research Corporation of the University 
of Hawaii, Honolulu, Hawaii 

Operating System: RT-11 V4, XM Monitor 

Source Language: MACRO-11 

Memory Required: 28KW 

Other Software Required: RT-11 Extended Memory Monitor. 

Special Hardware Required: Memory Management Unit; Extended 
Memory (more that 28K words) 

This is a program for RT-11 Extended Memory Monitor. It's purpose 
is to run a un-overlaid foreground (or system) virtual job in such 
a way as to allow it to run with full (or part, programmer 
selectable) 32K words of memory. As a result, it only takes up 4K 
words in the background job's space and makes the most of the 
extended memory. 

Note: This program will need to be adapted to each use, and 
should be installed by someone with MACRO-11 experience. 
In order to load virtual job as a single step, it must be 
read into contiguous physical memory. Since the 4K words 
in the KERNAL mapped space and the .SETTOP extended-memory 
(user space) are different, you cannot read (and probably 
write) across this boundry. This is why the file is read 

56 

-------



,,_ 

into high memory (above the 4K words and moved down to it's 
execution address. 

Restrictions: RT-11 time of day feature doesn't work. All 
restrictions of virtual jobs apply; e.g. no interrupt routines; no 
access to KERNAL Mapped Monitor Memory; I/0 page not valid unless 
explicity mapped. 

Documentation on magnetic media. 

Media (Service Charge Code): Write-Up (AA), Floppy Diskette (KA), 
~~~• Magtape (MA) 

Format: RT-11 

Keywords: RT-11 - Utilities 
Operating System Index: RT-11 

new 
11-SP-~~ 

Symposium Tape from the RT-11 Sig, Spring 1984, Cincinnati, OH 

Version: Spring 1984 

Author: various 

Submitted By: R. w. Barnard, Sandia National Laboratories, 
Albuquerque, NM 

Operating System: RT-11 vs.0, and RT-11 V5.l for the 
Professional-350 

Source Language: BASIC-11, FORTRAN IV, FORTRAN 77, MACR0-11 

Memory Required: Various 

Other Software Required: If necessary, it will be specified in 
each individual program's documentation. 

Special Hardware Required: various (Specified in each individual 
program's documentation). 

The symposium tape from the RT-11 SIG contains fifteen packages. 
The packaging format is variable-size subdevices; the files 
TAPE.DIR and README.lST at the beginning of the tape describe the 
contents and how to recover them from the tape. The tape contains 
the following submissions: 

1. Benchmarks for comparing RT-11 FORTRAN-77 with FORTRAN-IV. 
2. Program to read individual files from a magtape written with 

the BUP backup utility. 
3. Disk librarian (including the sources), which allows on-line 

cataloging and location of files. 
4. Second release of HGRAPH, a 2- and 3-dimensional plotting 

package for use on Tektronix-compatible termials and various 
plotters. 

5. Program and data files to display natural images (e.g., 
photographs) on the PR0-35~ under RT-11. The program 
illustrates how to access the graphics bitmap of the PRO. 

57 



~- Vector-to-Raster translator for LA10~ graphics. The program 
converts graphics instructions into a "bitmap" file which can 
be printed on the LA100 in graphics mode. 

7. Programs for the control of DZ(V)ll I/0 lines under DIBOL. 
B. A FORTRAN program line number resequencer which works for both 

FORTRAN-IV and FORTRAN-77. 
9. An RT-11 version of RU~OFF which is an almost complete 

emulation of DSR (Digital Standard Runoff fot the V~X). 
10. An update of the TSX+ (*) system services library for FORTRAN 

users. 
11. Two different UCL (User Command Linkage) programs: one causes 

keyboard commands to be treated in a way compatible with TSX+, 
while the other can be used as an enhancemant to the 
DEC-distributed UXL provided with RT-11 version 5.01. 

12. An object file to source file translator. In contrast to one 
which works on .SAV files, this translator can determine 
variable names, subroutine names, and .PSECT information. 

13. The King James version of the Bible, converted to magnetic 
media with an optical scanner. 

14. "Housekeeping" files, such as a program for RSTS/E users to 
recover files from the subdevices, and annotated directories 
of this and previous SIG tapes. 

No guarantees are made as to the completeness, useability, or 
quality of the programs on tape and the material has not been 
checked or reviewed. 

(*) TSX+ is a product of S & H Computer Systems, Inc. 

Note: Only one program (I~AGE - RT-11 Natural Display Program), 
is specific for RT-11 VS.1 on the Professional-350. 

Restrictions: If necessary, it will be specified in each 
individual program's documentation. 

Documentation on magnetic media. 

Media {Service Charge Code): Write-Up {AA), 2400' Magtape {PS) 

Format: RT-11 

58 

Keywords: Symposia Tapes -
RT-11 
Operating System Index: RT-11 

--··-...... 





"The Following are trademarks of Digital Equipment Corporation: 

DEC PDT 
DECnet P/OS 
DECmate Professional 
DECsystem-10 Rainbow 
DECSYSTEM-20 RSTS 
DECUS RSX 
DECwriter RT 
DIBOL UNIBUS 
Digital logo VAX 
Edu System VMS 
IAS VT 
MASSBUS Work Processor 
PDP 

UNIX is a trademark of Bell Laboratories. 

Copyright •oECUS and Digital Equipment Corporation 1984 

All Rights Reserved 

It is assumed that all articles submitted to the editor of this newsletter are with the author,' permission to publish In any DECUS 
publication. The articles are the responsibility of the authors and, therefore, DECUS, Dlgltal Equipment Corporation. and the 
editor assume no responsibility or liability for articles or Information appearing in the document. The views herein expressed are 
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporetlon. 

60 

.~ 


