
[g
DECUS

The De VIAS Letter

~
[Q]DEClJS

U-5. CHAPTER

~
[Q]DEClJS

US CHAPTER

The RSX Multi-Tasker

· September 1983

-,

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
DECnet Digital Logo
DECsystem-10 Edu System
DECSYSTEM-20 IAS
DECUS MASSBUS
DECwriter PDP

UN IX is a trademark of Western Electric Corporation

Copyright© Digital Equipment Corporation 1983
All Rights Reserved

PDT
RSTS
RSX
UNIBUS
VAX
VMS
VT

It is assumed that all articles submitted to the editor of this newsletter are with the authors' permission to publish in any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Dlgital Equipment Corporation, and the
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the au thors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

))

The DeVIAS
Volume

In This mue
Curley's Corner: News from the Chairman

Letters :

Mary Roberson:
William Ferry:
John Gu idi :
Bob Turke lson:

System Directory/Librarian Package?
Digital Counterpart for IAS SIG
Con IAS? TTY Patch. BAD on I AS
Status of SRD

Preliminary description of IAS V3.2
UIC d irectory for RSX Fall 82 SIG tape
The Magic of Sysgening IAS
LIST utility from Paul Clayton's tape
DeVIAS Questions and Answers

Next Issue:

More from the Clayton tape
Preview of the RSX Spring 83 SIG tape

No.

Letter
16

Frem the Editor
I hope some of those receiving this newsletter are using IAS
or at least know someone who is and can pass the letter
along.

For those of you who don't even know what an IAS is, my
condolences. You may, however, find the enclosed matter of
interest since much that affects I AS also affects RSX.

For those of you who didn't get the previous issue, I need
submissions. I will take anything that can be printed in a
free-press society and has some relevance to IAS, DEC or
DECUS.

I hope to publish at the rate of one issue every month or
two, so I n eed material.

C.OOtributions
The DeVIAS Letter needs contributions in order to continue
as an effective medium for exchange of information regarding
IAS.

Contributions may be submitted in any form you wish.
Original s on 8½ x 11 pape r are preferred. However , even
p hotocopies of relevant match-book covers would be
appreciated.

Send all contributions to:

Ontar i o Hydro
700 University Avenue
Toron to , Ontario
CANADA, MSG 1X6

Attn: John w. Drummond
Mail Stop - M2El0

jj

De ar IA S SIG Member,

Department of Radiation Therapy
Un iv er s i t y o f Penns y 1 v an i a
Room 410 - 1 33 South 36th Street
Philadelphia, Pennsylvania 19104
31 July 1983

There are several issues that bear upon us directly. The most
important, in my view, is th e newsletter sharing with the RSX SIG.
The DECUS management ha s d ec ided that any n e w SIG will share the
newsletter with an established SIG for th e first year. This makes
sense in a couple of ways, (a)it gives the new SIG time to get its
newsletter act established before bein g forced into a paid
subscription program on its own and (b)it allows DECUS to plan ahead
in its Subscription Service budget. Thus, we will share the
Newsletter with the Multi-tasker for this fiscal year. I have asked
that the pages of each newsletter (~h e Multi-Tasker" and "The DeVIAS
Letter") be different, and that we alternate place me nt on top. The
RSX S IG has already indicated a willingness to share and be helpful.

Scheduling for the Fall Symposium in Las Vegas is d on e. John
Jenkinson did the preliminary work but was unable to attend the week
scheduling me e ting in Marlboro, Massachusetts. Both Jim Hopp (the
Symposia Coordinator for the RSX SIG) and Steve Finch (of Emulex
Corporation, Costa Mesa, California) did the on site work necessary
for us to have IA S sessions in Las Vegas. Thank you both for taking
up the gauntlet on short notice. This brings up an important SI G
issue: we need a volunteer to be Symposia Coordinator. I would be
glad to hear from you now or find me in Las Vegas and we can discuss
the job (some DECUS paid travel is required).

The sessions on the schedule for Las Vegas are:
Nibbles and Bits of IAS, Ke n Guralnik, Thursd ay , 27 October,

8-1 lpm
IAS Lan g uag e Panel, Mike Reilly, Tuesday, 25, October

10-10: 30am
IAS SIG Opening Session and Roadmap, Bob Curley, Monday, 24 October

8:30-9:30am
IAS SIG Closing Session and Wish List, Ken Guralkik, Friday,

28 October, 10-1 lam
IAS/VM S User panel, John Jenkinson, Tuesday, 25 October

12:30-1:30pm
IAS SIG Planning, SIG Steering Committee, Thursday, 27 October

7-8pm
IAS QA, Bob Curley, Monday, 24 October

8-1 lpm
IAS Product Panel, Tim Lei sm an, Monday, 24 October

2-3pm
The IAS QIO Unveiled, Mike Reilly, Thursday, 27 October

10-1 lam
Aerodynamic Laborat ory Data System in IAS, Stephen L. Tomlin,

Thursday, 27 October, 12-lpm
Enhan c ing System Security of IAS, Larry Barrett, Tuesday, 25 October

10: 30-1 lam

((

IAS.RSTS/E.RSX.VMS, Curley et al, Tuesday, 25 October
5:30-6:30pm

You should have Autopatch E if you have any kind of
support. Even if you have not ordered Autopatch before.
software support office if you hav e not already received it.

software
Ask your

I would like to hear from you about talkin g to your IA S system
with DEC personal comput e rs. Really, any personal computers, but
especially with DEC PC's. I have a DECmate II a nd will get a Rainbow
•sometim e soon". And, I KNOW that intercommunication is NEVER as
simple as it should b e . Anyone who has so lved the problems -- please
l e t me know. Thanks.

I noticed that there is a new contribution to the DECUS library,
from Ne w Zealand, that is IAS spe cif ic. Why is it that we contribute
so little to the Library? I have heard th at question often, in the
halls of DECU S . I would like to hear your answers or opinions.
Please.

The RSX SIG has an active group working on SRD. It would be
nice, since mo st of us use it, if o ur S IG help e d. Please call or send
me your name, to be connected with this worthwhile effort.

I h a ve asked Ken Guralnik (EG&G, Las Vega s) to start up a
me chanism that will permit us to focus our desires for IAS on DEC. It
is often called a "Wish List" or " S IG Menu", but Ken has com e up with
a better name. He 'll tell you about it shortly, but if you can't
wai t, call him at 702-647- 555 1. There are, of cours e , wish es that
neve r co me true. But, if DEC never knows, your wishe s will never come
true. I have found the Development group very helpful and reasonable
in my requests.

The [14,*) UFD tapes that Paul Clayton spoke of in St. Louis are
ready. A very cooperative, but anonymous, person ha s created three
BRU tapes (two at 1600bpi and one at 800bpi) of the whole collection.
Send me a request, I'll se nd you a tape, you copy it and return the
original to me. If you missed St. Louis, Paul Calyton described a
herculean effort wh ere by he collect ed over 100 individual programs or
collections from DEC US sour ce s (and his own contributi o ns). All run
on IA S. His sources include the ''Best of ICR'', of Stodola, Wood and
Gael; 11 Reece• s Pieces" of Frank Borger and many Symposia RSX/IAS
Tapes. Some r e quired extensive modification of command files, and the
like, to work. Paul has offered to share them with us.

Sandy Krue ge r, a long time De VIA S member, has been elected
Chairman of the SIG Council. As many of you know, Sandy has been
Chairman of th e DMS SI G for a couple years, succeeding Sat Mohan (also
a De VIAS Member). The SIG Chairmen were invited to a meeting last
wee kend at the O'Hare Hilton. We voted to form a group, that consists
mainly of SIG Chairmen, to be called the SIG Council and elected Sandy
to chair it. The SIG Council is an effort to make DEC US more
representative, since you talk to me and I'm supposed to talk to DECUS
management. To make it all work yo u must talk to me or the SIG

2

(

)

ch ai rman you feel will listen best. There are many important (and
d ev isive issues) that must b e add r essed and so lve d by this level of
the mem ber sh ip so that DECUS can co ntinue to be the helpful
organiza tion that it has been for so long. Contri bu te yo ur id e as a nd
criticisms t o your SIG Chairmen.

I wa s as ked a few wee ks ago for items to form a "handout• at the
La s Vegas mee ting. I r es pond ed tha t we d idn' t hav e that act together
yet. I'd li ke to hear fr om you who think that hand o uts are a goo d
idea for this SIG. I th in k that o ur newsl e tter is a goo d forum fo r
those things (fe w as th ey are) and the Proceedings th e ri ght p lace for
formal pape r s. Many of t he SIG' s use the h a ndo ut s as a mechani s m to
earn money for SIG activities. Any o pini o ns ?

My wor k address ha s changed. My n ew office i s at 36 th and Waln ut
St r eets in Philadelphia and the add ress ab ove does not us ual ly enter
the Universit y nor Hospital Mail Sy s tem. My Old addres s, 340 0 Spruc e
Street, ususlly entered the Hospital Mail and so metimes got to me .
Sometimes it would enter the University Mail and never get to me. (I
wa s appr o ached in San Di ego a c oupl e of years ago, at a DE CUS
Sympo sium, with the words: " Oh , Yo u're Bob Curley I get your
mail'' by someo n e else whose badge said '' Uni versity of Pe nnsylvania'').
Thu s , you may u s e the n e w address abo ve, or th e Po s t Offi c e Box th at I
ren t t o avoid the i ssue al together: P. 0. Box 322 , Fl our town,
Penn sy l van ia 1903 1-0322. Or yo u may phone, 2 15- 662 - 3083 (8am-4: 30pm
Ea stern Time).

Another lette r that I received recently asked if we wanted to
have it ems for sale in th e DECU S Store at the Symposia. You've all
se e n th e VAX Tie s and v ar ious Sig Tee Shirts. Do we wi s h to se ll (or
more practically, buy) IAS items? A vo l unteer to organize and
maintain th at e fort would be apprecia ted. I answered this le tter that
we would have no items this Symposium. Again , this is a mech an ism for
SIG's t o make a few bucks for SIG acti vities.

I must th a nk, again, the many people wh o make thi s n ews lett er
pos s ibl e . Th e obvious one is John Dr ummon d. But there are you who
send in items a nd the DEC US Sta ff who get it pri nted and mai l e d.
There are you who send in your s ub scr iption dollars to support a ll the
effo rts and ultimately make it possible. Tha nks to all of yo u who
contribute .

Robert F.
Cha irman
IAS S I G

3

Cur 1 e y

Bell Technical Operations i i ~ ;; i ►t •): I

Bell Techn ica l Operations Corporation
Subsidi ary of Textron Inc.

To : Robert Curley

16 February 1983

1050 East Valencia Road
Tucson, Arizona 85706
602/ 294-2651
TWX 9 10-952- 1103

Del aware Valley !AS Local
P.O. Box 322
Flourtown, PA 19031

RE: Disk and Tape Management System f or PDP 11/70 !AS

Dear Mr . Curley :

We are looking for an automated tool which would assu re that the most
recent version of a file is accessed and provide informat ion for configur
ation control purposes.

Specifically, the tool s hould (1) automatically record file name, ver
sion, date, and device ID, (2) prompt th e operator for the correct disk or
tape, and (3) then only accept the specified di sk or tape. The PD P 11/70
!AS operating system now selects the most recent vers i on from the mounted
devi ce, but what we want i s the most recent version anywhere.

I woul d appreciat e hearing from other users who have solved or are
trying to so lve t his problem through disk and tape management syst ems or
other methods.

Very truly yours,

BELL TECHNICAL OPERATION CORPORATION

/ na,,7 k "l?r✓,.,"1.4c-YJ
Mary Roberson
Systems Analyst

4

28 June 1983

Mr. Robert F. Curley, Chairman
IAS SIG
Hospital of the University of Pennsylvania
3400 Spruce Street
Philadelphia, Pennsylvania 19104

Dear Mr. Curley:

As you know, DECOS is a valuable vehicle for information exchange
between Digital and our customers. Our objective is to insure that
Digital customers realize the maximtm1 benefit to better meet the
needs of the marketplace. Our decision to extend support of the
IAS product set was based on the clear feedback we received from your
organization regarding the need for continued support.

I am pleased to honor your request to have Tim Leisrnan serve as the
11Digital Counterpart" to the newly formed IAS SIG. Tim brings to
this position his experience as a "Digital Counterpart" to the
RSX-IAS SIG, his enthusiasm for IAS and a sincere interest in the
needs of the IAS user community.

We believe that IAS has a bright future. This is based on the
quality of the product and the quality of the communication between
Digital and the IAS user community. With your continued support and
the support of the IAS community we look positively to the future.

Sincerely,

. . " J c:> -w ,;,.&~,,,.J_ 9--::vu."f
William P. Ferry /
Corporate Manager
Software Product Services

WPF:j

(

BOLTON
[(97-5111
5

\CHUSETTS (/1 775

(

Bob;

John Guidi
The Computing Center
The Jackson Laboratory
Bar Harbor, Maine

04609
phone: (207)288-3371 X-391

Question: Does anyone have the DECUS C system running on an IAS V3.0
system? If so, would you please contact me at the above address?

We are running IAS V3.0 and recently we have had some hardware
problems which prompted a visit by DEC Regional Support. To our
delight, the person sent up was intimately familiar with IAS. Some of
his suggestions and comments may be of interest to other IAS users, so
I pass them to you to do with as you see fit.

o Bruce Wright of Duke University published a patch for the IAS
V3.0 terminal handler in the April 1981 issue of the
Multi-Tasker (Vol 14, Number 4, pp.106-107). The patch
causes parity errors in the type-ahead buffer to be handled
the same as breaks or framing errors. Without this patch,
parity errors in the type-ahead buffer can fill up the
terminal buffer, locking out all terminals.

o The BAD utility distributed with IAS V3/V3.l does not inhibit
retries of marginal sectors. The error log may fill up when
you run BAD, and if so, you should include any sectors where
retries occured in a subsequent run of BAD.
The BRUSYS.SYS image on the IAS V3.l distribution contains
the RSX-llM version of BAD which has been referred to as a
"snowplow" - it does not stop to perform retries. We created
a bootable tape by building the Virtual MCR (VMR) utility and
running the BRUSYS.SYS image through it to tape. When
booted, the tape loads a system containing the CNF
configuration program to describe devices, the FMT disk
formatter, the "snowplow" BAD, and a copy of BRU. To do
volume maintenance, we bring the system down, boot this tape,
run the CNF configuration program, and then run the
appropriate utilities.
NOTE: Once you have BRUed onto a volume, you will be unable
to use DSC to make a copy of that volume. BRU writes
information into the home block which DSC does not know how
to handle. We have been told that this is no great sacrifice
as BRU is said to perform better than DSC. Also with BRU,
you can specify the location of the index file.

Sincerely,

6

(

)

ignored. Various alternate coding sequences will cause th e problem to disappear
from the test program, but instances where "real" programs encounter this bug
are much harder to find.

C(]o(HON ID (1) , IT
DIMENSION I0 (2)
EQUIVALENCE (I0(1),ID(1))
FORMAT (I3)
IT : 1
WRITE (5, 1) I0(2)
IT = 2
WRITE (5, 1) 10(2)
END

>FOR TEST :TEST
.HAIN.
>IKB TEST :TEST
>RUN TEST

1
2

TT 11 STOP

>FCR TEST:TEST/CD:E!S
. MAIN.
>IKB TEST :TEST
>RUN TEST

0
2

TT11 - STOP

HELP YOURSELF

"Help Yourself" is a place for you to get your tough questions answered. Each
month, questions from readers will be published. If you have a question, send a
letter to the ltJlti-Tasker at one of the addresses listed on the cover.

We would also like to publish the answers to questions. If you can help
someone, send a letter to the Multi-Tasker or call Ralph Stam er john at (3 14)
694-4252. Your answer will be sent directly to the person in need and published
in the next edit ion of the ltllti-Tasker.

ANSWERS TO PREVIOUS QUESTIONS

IAS TERMINAL LOCKOUT

Bruce Wright from the IA.ike University Medical Center had an answer for the IAS
terminal lockout question in the January, 1981 edition.

))

The IAS terminal lockout problem is a very well-known problem. The basic cause
is that the IAS terminal handler will buffer up parity errors without regard for
the typeahead buffer size. This is not done for framing errors (a bit is set
indicating that a framing error has occurred, but it doesn't buffer up framing
error messages). If a line is generating enough parity errors without any task
doing a read on the line to get the parity error report, the ENTIRE terminal
buffer area can be fil led up with parity error reports for ~E terminal! The
result of this is (as was observed) a <bel> response from any terminal whenever
anything is typed on a terminal. It has nothing to do with system load static,
etc., although parity errors on terminal lines can be generated by line
cross-talk.

We have been trying (> 1 year) to get DEC to respond to this problem, but the
only response we ever get is that th is is considered a feature (!!) because it
is possible for a task to get a report on EVERY parity error which occurs on a
line. This may be des irable for communications applications, but for other uses
of terminals it is UNACCEPTABLE! This is especially true as the fix is quite
easy. The following code was developed for IAS V3. 0, and works for the field
test re lease of IAS V3. 1 as well since the appropriate module has not been
chang ed. The effect of the patch is that on ly the first parity error in
typeahead is reported (if the term inal is not in typeahead all parity errors
will be reported). This is the way breaks or framing errors are current.y
handled. In the module ISRRTN, the subroutine UARTER (Uart error), the
following patch:

- 40

PATC H AUTHOR DATE

LO I BRUCE C. WRIGHT 10-SEP-80

-41 6 ,422
BHI 20$;++L01

10$: ASL R5 ; ++071
BPL 12$;++L01
MOV #TE.BCC , R5 ;-+-+071
BR 14$;++LOI

12$: MOV #TE. VER,R5 ;++L01
14 $: BIT ISC.BRK, (R4) ;++L01
-428, 42 8
20$: MOV #TE. DAO, R5 ;++L01
I

REASON

TREAT PARITY ERRORS LIKE
FRAMING ERRORS (COPIED
FROM IAS V3.0 LOCAL MODS)

SKIP ON DATA OVERRUN.
TRY FOR BREAK (FRAMING ERROR)
J IF NOT
ELSE GET CODE
AND JOIN C(]o(MON CODE
GET PARITY ERR OR CODE
ALREADY SEEN A BREAK?

GET DATA OVERRUN CODE

THlS MONTH'S QUESTIONS

6502 CROSS ASSEMBLER

I have been attempting to locate a 6502 cross assembler for the PDP-11 for
either RT-11 or RSX-1 lM for quite some time now. Rumor has it that there is
"more than one version out there" which is probably a safe assumption. If

Bob Curley

NASA/Goddard Space Flight Center
Code 933
Greenbelt, MD 20771
301-344-5003

July 18, 1983

Dept. of Radiat ion Therapy
Universi t y of Pennsylvania Hospital
3400 Spruce Street
Philade lphia, PA 19104

Dear Bob :

The enclosed materials were sent to the SRD Working Grou p members and others
who have contacted me concerning SRO. I thought the RSX SIG Steering
Committee would be interested in the s tatus of SRD. The quest ionnaire
concerns the emphasis that the SRD Working Group should place on two program
versions under consideration. It is being sent to you for your information,
but feel free to return it if you want.

If you would like a copy of the vers ions of SRO under consideration, please
send me a tape . I will assume 1600 bpi BRU forma t unless you state
otherwise.

Sincerely,

Bob Turkelson

8

((

SRD Working Group Questionnaire
SRD Version 6.3 has been submitted to the Spring 1983 RSX SIG t ape ([352 , 4]).
This version was · produced by merging Glen Everhart's recent modifications
which appeared on the Spring and Fall 1982 tape (/HD, /SM, and /BK switche s)
into V6.2.

At the recent Spring 198J Symposium in St . Louis, the working group discussed
desired e nhancements to this version of SRD. Enclosed is a wish-list
generat ed by suggestions made by those interested in SRO.

Henry Tumblin, to whom I had submit ted changes which went into V5.0 on the
Fall 1979 tape when he was in the Files -11 Working Group, has sent me his new
version of SRD. He has done much work i n cleaning up t he code and source cod e
documentation, as well as adding some useful features. His version has a sort
on date switch, a multi-column listing format, a delta date specification
f eature (such as for files crea t ed the l as t S days, or the last 2 weeks, for
example), and it uses $EDMSG to generate messages. Unfortunately, he started
with SRD VS.O. 1~e process of bringing his version up to date with the V6 .3
features would be much easier and faster had he modifi ed V6.0 from Phil
Stephensen-Payne, who merged VS.O with Ray Van Tassle's version, for the
Spring 1981 tape . Henry 's recent suggestion was to modify his version, with
his help, to incorporate features added s ince VS .O which he has not yet
included. Our goa l would be to have this version distributed on the Spring
1984 tape, since only a few months remain before the Fall 1983 Symposium. Of
course, we can still try for the Fall t ape .

As an e xample of how Henry's version is documented, I have attach~~ lis t ings
of modules SRDINI and SRDLST from both versions. (£1>. ,.,,,. '"""" "' "

I was only recently able to try this vers ion (after Henry explained that he
had a so lution for the problem for the RSX-llM version he had sent to me) .
With limited test ing so far, his version works well.

An example of the multi-column f ormat he uses to displ ay file names is
attached . We would need to allow the generation of th e current V6 .3 format by
a switch (which could be defaul ted) so programs and command fil es would
continue to work.

Some people have s ugges t ed ignor ing Henry's version for now, since he started
with an early version and to bring it up to date with adequate testing would
be quite time consuming . On the other hand, since he has made many valuable
contributions it might be worth the effort to me rge them.

Please l e t me know your feelings on how the work ing group should proceed by
re turning the enclosed questionnaire.

9

(

SRD Working Group Questionnaire

Please give your opinions on how the SRD Working Group should proceed:

1. Should the working group add features to V6.3 for the Fall 1983 SIG tape?

2. Should the working group plan to adopt Henry Tumblin's version for the
Spring 1984 tape?

3. If so, should the working group be modifying only Henry Tumblin's version
now, even though we may not be ready with a compatible version by
the Fall 1983 SIG tape? (The code required for many of the desired
modifications would be the same for either version, so our work
upgrading V6.3 would not be entirely "lost.")

Example Directory Listing From Henry Tumblin's SRD

[Directory of
SRD. CMD; 1
SRDINI. COR; 1
SRDPRE.COR;l
SRDSUB.COR;l
SRDMOD.DOC;l
SRDINI.MAC;l
SRDPRE.MAC;l
SRDSUB.MAC;l
SRDXX:2.MAC; 1

VD0:[352,004] 4-JUL-83
SRD. COR; 1
SRDLST. COR; 1
SRDREP. COR; 1
SRDTRP. COR; 1
SRD.HLP;l
SRDLST.MAC;l
SRDREP.MAC;l
SRDTRP. MAC; 1
SRDXX3.MAC;l

[36 files listed out of 36 files in

17: 12
SRDATA.COR;l
SRDNUD.COR;l
SRDROT.COR;l
SRDTST. COR; 1
SRDATA.MAC;l
SRDNUD.MAC;l
SRDROT.MAC;l
SRDTST.MAC;l
SRD.RNO;l

VDO: [352,004]]

SRDDBF.COR;l
SRDOPR. COR; 1
SRDSRT. COR; 1
SRD.DOC;l
SRDDBF.MAC;l
SRDOPR.MAC; 1
SRDSRT.MAC;l
SRDXXl.MAC; 1
README. lST; 1

)

Fall 79 V5.0

Spring 81

Fall 81

Spring 82

Fall 82 V6,2

Spr i ng 83

SRD

Ray Van Tassle
I

V6 . 0 (Phil Stephensen-Payne)

V6 .l

Glen Everhart

Gle n Everhart

V6 . 3

12

!
Carl Friedberg

!

))

July 15, 19 83

Suggestions for SRD Modifications

0 For multi-header files, show the correct file size.

0 Add a line showing the switch defaults when /ID specifie d.

o Include t he capability to handle vers ion numbers ;O and ; -1 as PIP does.

0 Me r ge in t he /FO switch from Ray Van Tassle 's ver s ion of SRO, so that
file se l ection ma y be based upon f i le owner . Also it would be nice
if / -FO:[g ,m] displayed a l l files not owned by [g, m],

o When displaying the SRO command line, display the original command before

0

substitution of special characters.

Merge in the fi l e sorting fea tures from the version in the U. s. Forest
Service collection of programs on the SIG t apes (Spring and Fall
1982 [307,120]). TI1is version allows sorting by file name , fi le
type, and vers ion in ascending or descending order . It also has a
nice command file genera t or fea ture.

o Merge in t he single charac t er wildcar d in UI C capability, as found in DIR

0

0

0

(Spring 1982 [350,300]) (and perhaps other SRO versions) .

Fix some prob lems whi ch have been a r ound for a while. For exampl e , wh en
an e rror occurs readi ng a file header (such as a fi l e - id, sequence
number check), SRD displays an err or message, but then proceeds
through whatever tes t ing would have been done t o determine if the
file name should be listed , which means tha t the name of the file i n
error may not be displayed , or that meaningless tests are made .
When using one of the date switches, if a header con t ains an invalid
date format, SRD displays a fat al error mes sage telling the use r to
enter the date i n a correct fo rmat, without giving the offending
file name, and then quits working on that directory . The same
routine (CVDATE in mo dule SRDSUB) which verifies a date specified in
the command line switches is used t o check the date wi th in the file
header. If the error is from a file header dat e, SRO shoud give an
appropriate error message and con tinue going through the directory.

The addition of an /ER switch which displays the file names which cause
a n erro-r while reading the f ile header.

A change should be made so that the following won 't happen: Spec ifying
the /AF switch with a date will find no files if the system date and
time have not been set. SRD looks for all files between the
specified dat e and the "current" system date. This is OK under mos t
circumstances , but i t surprised one user who was checking a disk he
had just copied (to make s ure the copy was performed in t he correct
direction).

13

0

0

0

0

0

0

0

0

0

Add a swit ch to allow selection based upon al located file size (all files
equa l to or greater than a specified size).

Add a /TB switch to always print the total number of blocks in the
selected files, even when it woul d not otherwise be calculat e d (for
example, when neither the middle nor full listing is desired).

Modify the command fil e to generate SRD:

o Re duce the number of questions necessary for choos ing the default
swi tches f or most sys tems by grouping one or two se t s of
op tions most people choose, and asking the user i f that set of
opt ions is desired. For example, many people choose
/LI/SR/-WD and /-NA/-RD/WI/AT/M2.

o Perha ps show a default set of default s witch set tings, giving an
experienced user the option o f ent e ring any changes to this by
t yping the switch settings desired. The full que st i on and
answer method of choosing default switch s e ttings would still
be available.

o Supply the source files in a universal library, from which SRO.CMD
ext racts them, does the assembly. and inserts the object modules
i nto an ob ject library which the task builder r eferences .

o Create SRDDEF.HLP showing the default switches, which SRD.HLP could
refere nce.

Generate a DCL interface - ei ther external or internal to SRD . Paul
Sorens on 's DIR program (Spring 1982 (350,300]) has internal DCL type
qualifiers. Hen ry Tumblin has a pars ing module to handle DCL type
qualifiers, but this module was not completed .

Several other desi rable features are in Henry Tumblin's version now (such
as sorting by dat e, ap pending to an output fi le, limi ted multiple
file specifications) .

Investigate handling name d directories a nd s ubdi rectories for future
versions of RSX-llM-PLUS.

The working group should decide what header a nd trailer forma ts should be
used.

The working group should decide whether to keep the /BE, /BF, /AE, and
/AF switches for inclusive and exc lusive dat e specificat ions, or
find a better method.

and documentation, help f iles , and Multi-taske r articles ...

14

((

IAS V3.2

PRODUCT DES CR IPT ION

IAS is a general purpos e operating sy s tem that runs on PDP-11/23
Plus through 11/70 central processors. It is a multiuser
timesharing system that suppo rts concurrent interactiv e , batch,
and real-time appli ca ti ons .

Th e goal s of the IA S V3.2 product ar e to:

o Enhance the us eability , reliability, and supportability of
th e IAS system.

0

0

0

Keep IAS and its suppo rted dependent prod uc ts (BASIC-PLUS-2,
PDP-11 COBOL, FORTRAN IV, PDP-11 FORTRAN 77, FMS-11,
DATATRIEVE-11 AND DECnet) as cu rr e nt as possible with their
RSX-llM co unt erpa rts .

Support th e Installed Base Marketing Gro up (IBG) add-on
market s ales strategies through adding support for new
hardware.

Increas e ha rdware and file compatibility with VAX/VMS to
f a cilitate migrati on to VAX /VMS .

To accomplish these goals , a maintenance release will be
deve loped. IAS V3.2 will be an updated release of the cur r ently
offered IAS sy s tem. Th e principl e fe a ture s which comprise V3.2
a re:

0

0

0

0

0

Fix all kn own bug s.

Provide a private node pool are a for the IAS executive
thereby incr e asing the number of nodes available in the
System Common (SCOM) node pool f or user tasks.

Incorpo rat e the additional functionality in the Files-11 ACP
needed for RMS V2.0.

Fully support all c urrent PDP-11 CPU's inc luding th e 11 /23 ,
11/23 Plus, a nd 11/24. The " ex tended addressing " RLV22 and
RXV22 controllers will be the only suppo rted disk devices o n
the 11 /23 Pl us.

Provide support for additional h ardware including t he
UDA50 /RA60 , 80 , 81 fixed disks; the TSl l unibus t a pe drive; the
RM80 and RP07 mas sbus disk drives; and the TU77 ma ssbus tape
drive.

15

(

0 Include the common utilities from RSX-llM V4.l needed for

BASIC-PLUS-2/IAS
DECnet-I AS
FORTRAN IV/IAS
PDP-11 FORTRAN 77/IAS

(Test sites will be licensed for these layered products and
will be provided them as they become available during the
test.)

o Enhance the backup and restore utility (BRU) to allow backups
of larger disks onto multiple smaller disks.

IAS will be provided on identical format distribution kits as
V3.l with the addition of a 1600 bpi tape kit for the TSll tape
drive.

PREREQUISITES

Hardware - The minimum hardware configurations currently listed
in the IAS V3.l SPD will be supported with the addition of:

o the 11/23, 11/23 Plus, and 11/24 CPU's

o the RM80 and RP07 disks

o the TSll and TU77 tape drives

Software - None. IAS V3.2 will contain all of the software that
is currently furnished with V3.l with the exception of the
unoverlayed macro assembler (PURMAC). This includes the
executive services, file system, MCR, privileged and
non-privileged utilities and I/O drivers. The terminal handler
will be updated to support the TC.TBF characteristic, the IO.RST
and IO.RTT functions, and RSX-llM compatible character AST's.

SITE CONFIGURATTONS DESIRED

The following should be included among the chosen test sites:

CPU's:

Peripheral

11/23 Plus
11/24
11/44

Devices: RM80 disk drive
RP07 disk drive
multiple DR or DB type controllers on a single CPU
TSll tape drive

For phase 2:

UDA50 controller with one or more RA60/80/81 drives

16

)

CONTENTS OF RSX F82 SIG TAPE - LISTED BY UIC

[300,001] DOCUMENTATION ON CONTENTS OF THIS TAPE, INCLUDING THIS FILE,
[300,002] BIGTPC,TSK [AND BIGTPC,OBJJ PROGRAM TO MAKE DU~.ICATES OF

THIS AND OTHER ARBITRARY FORMAT TAPES,
[300,120] - JOHN OSUDAR LATEST VERSION OF VSI VARIABLE SEND DATA

DRIVER, WITH SPEED ENHANCEMENTS, AND ASSOCIAl~D VSUTIL UTILITY PROGRAM,
[300,134] WAYNE BAISLEY PAPER ON 'AST'S AND SST'S IN AN OVERLAY

ENVIRONMENT",
AUTOLOAD OVERLAY ROUTINES FOR SYSLIB,
AUTOLOAD OVERLAY TRACE (AUT) AND FORMATTER (ATFl PROGRAMS,

[300,135] MANARD STEWART OLYMPIC SIZED POOL FOR RSX-llM V4,0
FILES AND DOCUMENTATION FOR MOVING SOME OF THE CRASH CODE FROM THE EXEC

TO EXCOM2, GAINING ABOUT 1/2 K OF POOL,
300,136] STEPHEN DOVER PAC GAME WITI~ REVISIONS SINCE S82 TO REDUCE

IMPACT ON SYSTEM PERFORMANCE WHEN SEVERAL COPIES ARE RUNNING AT THE SAME
TIME, ALSO SAVES HIGH SCORE,

[300,137] STEPHEN DOVER CEN GAME-· MODIFIED FROM S82 TAPE TO REDUCE
IMPACT ON SYSTEM WHEN TWO OR MORE COPIES ARE RUNNING AT THE SAME TIME,

[300,140] RAY VAN TASSLE MEMORY-RESIDENT DISK FOR 22-BIT SYSTEMS.
C PROGRAMS: RANDOM NUMBER GENERATOR, QUICKSORT, FILE SORTER,

[300,201-214] DAVID BURCH FERMILAB COMMUNICATIONS SOFTWARE PACKAGE
FOR INTERPROCESSOR COMMUNICATIONS VIA A DRll-W LINK,

[301,067] DAVID BARSKY ENTRY FULL-SCREEN DATA ENTRY SYSTEM,
MODELED AFTER KED/EDT,

[303,040] MICHAEL □ OTHOUDT SOURCES FOR FLECS AND ALECS STRUCTURED
LANGUAGE PREPROCESSORS FOR FORTRAN AND MACRO,

[307,020] GARY MAXWELL UPDATED USGS PAU<AGEI INCLUDES LATEST OF
CSH - CHECKPOINT SPACE HANDLER DISPLAY I EMPTY CHECKPOINT FILE,
CWD CHANGE WORKING DIRECTORY,
DVCDAT DEVICE DATABASE DISPLAY,
SNAP GET PMD TO TAKE A SNAPSHOT OF A TASK WHILE IT'S STILL RUNNING,
WHO WHO IS ON SYSTEM AND WHAT ARE THEY RUNNING,

/BACISVENT□□LS [307,30-3/J - JOE SVENTEK ON 2ND DRU BACKUP SET=SVENTOOLS,
A NEW RELEASE OF THE COMPLETE SOFTWARE TOOLS KIT,

[307,050J CHARLES SPALDING NEW RELEASE OF S82 RUNOFF BY THIS AUTHOR,
[307,100] - PHILIP KURJAN ACCOUNT ACCOUNTING PROGRAM FOR RSX-llM

VJ,21 NOT AS COMPREHENSIVE AS KMS ACCOUNTING, BUT NO SYSGEN REQUIRED,
GRAF PLOTTING PROGRAM FOR HP 7220 PLOTTER,

[307,120] DONALD MCCOY MISCELLANEOUS UTILITIES FOR RSX-11M V4,0
INCLUDES INTERUSER MAIL SYSTEM, CUT <RADIX CONVERTER>, SNOOPY CALENDAR,

COOKIE, CCL, VIRTUAL DISKS, WHO, □PA, REW CREWIND MMII, RN□, SRD, OTHERS,
[307,131] STEPHEN REINIER BLP - 'BLOOPER' TERMINAL LOCKUP PROGRAM,
[307,132] STEPHEN REINIER DVC UF~ATING DEVICE STATUS UTILITY

(LIKE DEV BUT UPDATING CONTINUOUSLY),
[307,133] STEPHEN REINIER RRU REMOTE TERMINAL RUN PROGRAM,
[307,134] STEPHEN REINIER TRM TERMINAL STATUS REPORT PROGRAM,
[307,135] STEPHEN REINIER PTl TERMINAL 'SPECIAL EFFECTS' PROGRAM

FOR VT-100'S,
[307,136] STEPHEN REINIER RSX CILLIS - PROGRAM FOR MANIPULATING DOS

CIL FILES,
[307,211] DENNIS PULSIPHER

MC2 CATCH-ALL TASK DESIGNED TO DO 'FLYING INSTALLS",
CPA CRASHED POOL ANALYZER,
□PA ON-LINE POOL ANALYZER,

[312,022] RICHARD KIRKMAN MISCELLANEOUS UTILITY ROUTINES FOR BASIC,
CORAL, ,,, ?

17

[312, 3 15] - GLENN EVERHART
BIGTPC - - LAl~ST VERSION, WORKS ON VMS AS WELL AS RSX,
DDT - - WORKS WITH I/D SPACE ON Mt V2,
FLOATING POINT EMULATOR FORM AND Mt,
FILE REC OVERY PROGRAM,
TECO MACRO TO EMULATE EDT V2,
TRUNC FILE TRUNCATE AND FFL FAST FLX UTI LITIES,

[3 12,322] GLENN EVERHART VEDRV - VIRTUAL DISK DRIVER WITH MULTIPLE
FILES PER VIRTUAL DISK UNIT, THIS VERS ION HAS ADDITI ONAL SECURITY
ENHANCEMENTB,

[312, 3 32] - GLENN EVERHART SRD REVISED FROM 682 TAPE, WITH /BK SWITCH
TO INSERT EXTRA BLANKB BEFORE FILENAME (FOR COMPATIBILITY Wil~ OLDER SRD
FORMATS UBED BY POBTF~OCESSORBI,

[312,345] GLENN EVERHART PORTACALC - PORTABLE IFORTI~AN-BABEDI SPREAD-
BHEET CALCULATOR PROGRAM,

[312,347] - GLENN EVERHART MODIFICATIONS TO 2 MEMORY-REBIDENT DI SK
DRIVER S , ORIGINALS ON THI S TAPE ALSO,

[326,*l - JOHN JENKINSON
BPELL - - SPELLING CHECKER PROGRAM,
FLOPPY - - FLOPPY DISK BTRUCTURE ANALY BIS PROGRAM,
MSTRMD - - MASTERMIND GAME ,
DOCEXT - - DOCUMENTATION EXTRACTW~ PROGRAM,

[3 30,002] - FRANK KEEFER FDT - FORTRAN SYMBOLIC DEBUGGING TOOL -
UPDATED FOR 11M V 4,0, F7 7 W/ STRING MANIPULATION FEATURES,

[332 ,012] - JOHN CLEMENT S RUNOFF - - ENHANCED, WITH MANY DSR FEATURES
AND SOME EXTRAS; WILL RUN ON RSX, IAS, OR VMS INCOMPATIBILITY MODE,

[332,115] - JACK LEES CAT - CATCHALL TASK FOR MCR, IMPLEMENTS
CHECK FOR SPECIAL COMMA ND S, PASSES LINE TO DCL IF NOT RECOGNIZED,

[333,100] - ALLEN WAT SON
SL P FILE TD MAKE CCL EITHER A CLI OR CATCHALL UNDER M-PLUS,
HE LP FILES FOR TECO AND RUNOFF,
PAPERS ON M TOM-PLUS CONVERSION AND SRO FROM ANAHEIM SYMPOSIUM,
COMMAND FILE TO SET UP SYSMVR,CMD FORM-PLUS V2 ,
EDT SETUP FILE FOR SETTING UP DEFINED KEYS,

[3 33,101] - ALLEN WATSON SRD DESIGNED FOR BUILDING AB MULTIUSER
M-P LU B TASK, NON-OVERLAID,

SLP FILE FDR UNSUPF'ORTED M-PLUS Vl
COPY OF TERMINAL OUTPUT IN A FILE),

UTILITIES INC, TECO MACROS,

[333 , 102] - ALLEN WATSON
LOG UTILITY (CREATES

[333, 103] - ALLEN WATSON
[333,104] - ALLEN WATSON

FOREIGN - MOUNTED TAPE
TMV - TAPE MOVE UTILITY, FOR MOVING

FORWARD, BACKWARD, REWINDING, WRITING MULTIPLE
TAPE MAl'!IS:!;;, ETC,

[334,002] - SCOTT SNADOW UTILITIES TO MODIFY TASK IMAGE FILEBI
MODLUN -- CHANGE LUN ASS IGNMENTS,
MODT SK MODIFY OTHER TABK OPTION INFORMATION,

[343,031-32J - BRW:E MITCHELL MEMORY-RESIDENT PSEUDO-DISK FOR 22-BIT
SYSTEMS ,

[343,033] - BRUCE MITCHELL IDLE TERMINAL MONITOR PROGRAM TO LOG OFF
IDLE TERMINALS .

[344,*J JIM DOWNWARD KMSKIT ENHANCEMENTS PKG FOR RSX-11M V4,0 -

[350,◊t~~L~D~fT~~L~E~=: ACCOUNTINGM~=g~~~~~E~~=YT2~~:~:;HOOTING UTILITIES:
FILEID (GIVEN FILE ID , FINDS FILE),
FNDBLK <FINDS OWNER OF DISK BLOCK>,
D~(ZAP (DI SPLAY/MODIFY CONTENT S OF DISK BLOCK>,
TCI (TASK IMAGE COMPARE UTILITY),

18

((

FOR VT100 FEATURES>,
TO DO NIGHTLY BACKUPS, ERROR LOG LISTINGS, ETC,

VT100TST <TEST PROGRAM
NUMEROUS COMMAND FILEB

[350,060] - ROSS AMANN
[350,061] - ROSB AMANN

PSZ - PGM TO CREATE/REMOVE COMMON PARTITIONS,
RE- RELEASE OF RUNOFF FROM S81 TAPE,

[351,010] - JOHN LLOYD DISPLAY TOP CPU USERS ON VT100 JUST /...IKE ON
A VAX,

[351,020] - BENSON ACKERMAN
PROGRAMS,

[351,030] - BRIAN NELSON
[351,040] DENNIS COSTELLO
[351,041] - DENNIS COSTELLO
[351,042] DENNIS COSTELLO
[351,043] DENNIS COBTELLO
[351,044] DENNIS COSTELLO
[351,045] DENNIS COSTELLO
[351,046] DENNIS COBTELLO

COMPLEX RA DIX2 FFT AND Bl····CUBIC SPLINE

WHYTED TEXT EDITOR FOR RSX AND RSTS,
DESCRIPTION OF [351,41 -51:J,
AT P - ACTIVE TASK LIBT WITH PRIORITIEB,
STOP - ABORT All ACTIVE TASKS AT TI:
REW - REWIND A MAGTAPE,
TAPE - SHOW STATUS OF TAPE DRIVE,
PRV ···· SET /l~ESET TERMINAL PRIVILEGE,
FILEDEF -- PROGRAM TO SET UP LUN- TO- FILE

PROGRAMS WHICH DD NOT SPECIFY FILENAMES

BATCH BYSTEM, WITH VTl DRIVER AND BATMAN
(SHOULD ALSO WORK ON V4,0l,

ABSIGNMENTS FOR FORTRAN-77
IN OPEN BTATEMENTS,

[351,047] - DENNIS COSTELLO
MANAGER FOR RSX-11M V3,2

[351,050] - DENNIS COSTELLO
[351,051] - DENNIS COBTELLO

DEVICES,

ACCOUNTING AND MIBCELLANEOUS,
UCB - DISPLAY UCB, DCB, SCB ADDRESSES OF All

[351,070] VINCENT GRAHAM LIST - PROGRAM TO LIST FILES AT THE TERMINAL,
WITH FILENAME DISPLAYED ON SCREEN OF VT52/VT100/TEKTRONIX SCOPE,

[351,71-73] - VINCENT GRAHAM RSXNET - PROGRAM FOR ASYNCHRONOUS
COMMUNICATIONS BETWEEN SYSTEMS , USING A NULL MODEM OR A DIALUP LINE,

[351,074] - VINCENT GRAHAM VTM - PROGRAM TO FORMAT MESSAGES FOR DISPLAY
ON THE VTlOO BCREEN, USING All VT100 VIDEO ATTRIBUl~S.

[351,075] - VINCENT GRAHAM RSXMBG - RSX ERROR MESSAGE MODULE, WILL
RETURN MESSAGE STRING IN A BUFFER OR PRINT IT ON THE TE RMINA L ,

[351,076] - VINCENT GRAHAM WHO - PROGRAM TO SELECTIVELY LIST ENTRIES
FROM THE ACCOUNT FILE , NOTE: THIS IS NOT THE SAME WHO AS IS
DISTRIBUTED IN THE KMSKIT,

[351,077] - VINCENT GRAHAM UBERS - PROGRAM TO DIBPLAY LIST OF USERS
CURRE NTLY LOGGED IN TO THE SYSTEM,

[351,110] - J. F, VIBERT DATABASE MANAGEMENT FOR BIBLIOGRAPHIC
REFERENCES, DOCUMENTATION, ETC, IN FRENCH,

[35:l, 1.11 J -- J, F. VIBERT ANOTHER IMPLEMENTATION OF CCL, WRITTEN
IN FORTRAN, DOCUM ENTA TION ETC , IN FRENCH,

[351,120] - DEREK FRANKS PATCH TOKED FOR MULTIUSER VERSION ON Mt,
[351,130] BARRY BREEN ADVENTURE WRITTEN IN OMSI PASCAL,
[35 2 ,002] - BOB TURKELSON TALK PROGRAM V06,00 FOR COMMUNICATION FROM

SYSTEM WITH A FULL DUPLEX TERMINAL DRIVER VIA AN ASYNCHRONOUS SERIAL
INTERFACE TO A REMOTE SYBTEM,

[352,004] - BOB TORKELSON BOB DENNY ' S UPDATED VERSION OF SRD,
[370,130] - MICH AEL LEVINE

INDEX FORTRAN CROBB- REFERENCER,
SUPERMAC -- MACROS TO MAKE MACRO BTRUCTURED LANGUAGE,
FRAG -- DISK FRAGMENTATION DI SF~AY UTILITY,
HP11C PROGRAM LI BTINGS FOR CONVERTING BETWEEN DECIMAL

FLOATING POINT FORMATS,
3D PLOTTING,

AND PDP/VAX BINARY

[374,001] - BOB DENNY
DECUS C COMPILER,

[374,003] - BOB DENNY

BINARY KIT AND DOCUMENTATION FOR THE
WITH DEBUGGER, TOOLS, AND UTILITIES,

FIXED AND TESTED WITH BL32,
[374,004] BOB DENNY
[374,005] - BOB DENNY

LOADABLE XDT FOR RBX-11M V4,0, WITH BUGB

VIRTUAL DISK WITH ERROR LOGGING SUPPORT ,
FILES- 11 REPAIR TOOLS & INFO,

19

(

)

TIIE MAGIC OF SYSGENING IAS

Mike Reilly - Development Manag er with Digital for !AS.

Mike Garcia - Development Engineer with Digital for !AS

For the next few minutes we're going to be giving you a general overview of the IAS
system generation procedure and the functions performed by each of the tasks which are
included, or which are invoked, as part of the IAS system generation procedure. We are
going to go into a little bit of detail in some areas but, in most cases, the concepts of
what is done will be fairly straight forward and ther e is no sense for us to go into great
detail to show, for example, how to search through a list, or how to create an entry in
the list, and so forth, which is done in the standard manner.

The order in which we will be presenting the individual tasks will be the order in
which you would normally see them if you were going _through an IAS system generation.
Beginning with the initial hardware boot of the system, we will go through a little bit
about the boot block and the boot procedure to bring up an !AS sys tem which has already
been generated and then we will talk about System Generation Phase I, which is the task
that creates a file on the disk. This file is what is going to be later brought into
memory and is going to become your running IAS system. To bring up this system is an MCR
task called BOO (for boot), so t hat will follow. After BOO we will talk about Sysgen
Phase II, the second part of Sysgen which actually executes in the system which you have
generated and then finally saving the system which you have generated so you will be able
to hardware boot it and start the procedure all over again.

System generation is used to create a file on a disk which is a system image. A
system image is simply a b'yte by byte copy of what is in memory. If you view a file as
just the contiguous, or continuous, series of bytes beg inning with 0 and continuing out
through the end of the file, that is exactly what it i s in this case. It is simply a byte
that would be loaded into the memory location is in the identical location in the disk
image. This file normally is called IAS. SAV and is normally created in a UIC of [11, 17];
as we will see you have options of changing both of these.

As I said, Sysgen Phase I is the task that will create this file and turn it into an
IAS system image. Sysgen fhase I is the most complicated part of the process because it
must perform all the functions that would normally be done by an executive and several
installed tasks on a running system. It performs all of its functions on a disk image,
but it must do the same things that happen if you, for example, enter at a terminal the
INStall command. Sysgen has to handle the install, parse the command, install the task
and activate it if needed. There are a couple of tasks that it actually has to activate,
so it even has to act as if it is the executive when it is writing out the disk image.
The task BOO, which is normally called MCR BOO in the source listings, is a task that will
simply read a bl ock, the first 512 bytes of a disk image, into memory and then begin
executing it. That disk image will continue the process of reading in the rest of the
system image.

Sysgen fhase II, which is very simple, straight forward, is simply a command file
process.

Finally, SAV. SAV has the task of taking an IAS system whic h is running in memory,
writing it out to the disk in such a way that it can be brought back in at a later time
and continue to run as if it had never been written onto disk at all.

20

))

As I said we will go through the tasks in the order in which you would normally see
them, so we will begin with the BOOT process and Mike Garcia will stand.

The following information is a summary of what actually happens as a user is ready to
bring up a running system. The information contained here is the boot block, information
on reading the system image into memory, and starting the system. These points will be
expanded upon, as Mike said, as we follow along throughout the talk. Tue information here
is common for bootstrapping all RK, RL, RM and RP disks. Also included here is the power
recovery trap vector used to restart the system in re-entering SAV, after boot of a saved
system. The PDP-11 ROM bootstrap program reads the first block from the disk into memory
at real address 0. It then transfers control at address 0. Qi the slide you can see the
boot code being put up to real 0 including the address that it points to in the SAV entry
file.

System generation has created an !AS image file on the disk with the first block of
that file being a device specific bootstrap. Sysgen will have set several parameters into
the bootstrap code including the base address of the ex ec, the disk address and size of
the image file it is creating, in the first register address for the disk controller.

The MCR BOO function has copied this first block of the image file to bloc k~ of the
target disk. When the ROM loads memory, the bootstrap program overlays itself with a copy
of itself and, therefore can continue executing.

These following items will be initialized by Sysgen Phase I. The first one is two
words for a logical block number of the SAVed file. Four words are reserved for power
recovery trap vector and some space for the base address of the exec and the size of the
SAV file in one K words. Some other additional parameters are required both by BOO and
SAV. Qie parameter is provided to be stored by the BOO function to allow a boot to be
performed from a unit other than 0. And the following information is required by SAV,
three bytes for a write-data function code, an offset to a place to insert that function
code, an offset to the code to execute after booting a saved image and an offset to write
the saved image. Two parameters, one for a saved user PAR0, another for the address it
saved to return to, have been initialized by the MCR SAV function and used after boot of
the SAVed image file. Qi the slide we can see the address in the boot code which points
to the module, SAVENT, which is the address of re-entry to the SAV module. MCR SAV and
BOO functions rely on all the parameters mentioned above being fixed offsets within the
boot block, since they do not read in the symbol table. Sysgen fhase I, on the other
hand, does read in the symbol table.

When the system is booted into memory, via either the MCR BOO function or the RCM, the
bootstrap program does an indirect jump to the power recovery vector at real address 24.
This causes the execution of code which will set up the kernel active page registers
followed by a jump to the power recovery routine of the exec, call ed PCWER.UP. The first
time the output of Sysgen fhase I is booted, Sysgen fhase II will eventually be found
active and control passed to it.

As mentioned previously the start of the bootstrap is at address 0. The RAD5O word
sys, S-Y-S, identifies the boot block. At this point we are now ready for real booting to
be done. Note that SAV will also use this code to write the saved image back out to disk,
by changing the function code to a write. Disk specific stuff is done at this point to
finish reading in the rest of the system image. If there is non-existent memory you must
start all over again •

If all is successful and there is no more memory to transfer, we now set up the PSW

21

and return to restart the system. By moving kernel priority seven into the PSW, we
simulate a trap via the power recovery vector. Power recovery trap vector must be
addresses 24 and 26. SAV modifies this trap vector by putting the address of a second
routine in the bootstrap code into location 24 so that the bootstrap will transfer control
via that routine to the SAV task. When SAV gets control back it will restore the vector
to its original contents.

The SAV subroutine sets kernel APR0 and APR1 for 4K read/write and maps both to real
memory 0. It then . sets up user PAR0, 4K read/write, and maps it using a saved APR value
and also sets up APR7 to the I/0 page. Memory management is now started, followed by
setting up of the executive stack pointer. PS and the PC are set up to return to user
mode via an RT! and SAV will then bring up the system.

The third and last routine in the bootstrap will be used in the event of a real power
recovery. This routine sets up kernel APR0, APR1 and APR7 for 4K read/write operation and
maps APR0 and APR1 to real zero. APR7 is set to external page and memory management is
then enabled. It will jump to APR1 by adding 20,000 to the program counter, restores
kernel APR0 and goes to the executive power-up routine.

Now, that is just a summary of what's going to be mentioned throughout and Hike
[Reilly) will continue with Sysgen one.

As soon as an !AS system image is read into memory, either one block at a time, as
sane of the boot blocks do, or the entire system image in one read request, if possible ,
otherwise in some cases a large system is broken up into as large pieces as possible. As
Hike mentioned the bootstrap code sets up scme kernel mapping r egisters so that it is
possible for SAV, which is the next part of the bootstrap process, to access both itself,
which is its task code, and various parts of the system that it needs to get to.
Initially control is transferred from the boot block to SAV through the SAVENT entry point
which was mentioned. It is simply hardwired into the boo t block and when the code reached
that point returns it to SAV. SAV is running in user mode, with access to the boot block.
SAV uses the boot block to determine the system device and the unit number which it will
use later. The first thing SAV does, when it begins executing, is what it calls an ECO
test. There is a test to determine that an 11/40 processor has been properly ECO'd, which
means there is a necessary change to the hardware that has been applied. If that test
passes, then SAV will continue to set up memory parity registers and the stack limit
register if they exist. These are options of various PDP 11's, so SAVE will determine if,
either the parity registers, or the stack limit register or both exist, and set them up
appropriately. SAV is also capable of generating values for these registers if the system
initially was used on a machine that did not have these registers so there are no saved
contents.

Following this, SAV will restore the power fail vector. As Mike mentioned, the power
fail vector is used to gain entry to SAV when it saves the system. When it writes it out
to the disk image it over writes the contents of the power fail vector with the entry
point into SAV. It will now restore the original power fail vector, so that if a power
recovery occurs it will be handled normally. Mike mentioned that the boot block is read
in at real memory address zero, the executive, however, does not begin at the bottom of
memory. As shown in this diagram, and this one will be used later on also, the executive
virtual address zero begins at the end of the boot code. So on a power fail, the virtual
zero, actually virtual 24, which is an offset to virtual zero, will be used and then the
value that SAV restores is used on power recovery.

Following this, SAV restores the memory management register s. When the s ystem was

22

((

initi ally saved, written out to the disk for the first time, SAV created a stack of all
the hardware registers that it could find at that time, included were memory management
registers. So these are restored both in kernel mode and user mode so that the hardware
is set up in the same manner, the same fashion it was when the system was previously
running. Following thi s there is a check for an 11/44, 11/70 processor, which are 22 bit
CPU's that require special registers, called UMRs (for Unibus Mapping Registers). These
register s allow Unibus peripherals access to the entire memory available in the larger
mac hines. SAV has been set up t o restore the UMR's on the machine that you originally ran
SAV, in other words when you first saved the system, if you were on a machine with UHRs
they were saved. SAV will use those values, if you are again running on a machine that
requires the unibus mapping registers . If not, then SAV will generate UMR values and load
these into the registers so that you can ta ke an IAS system, generated onto another
machine (for example an 11 / 40, 11 /34), save it and then, when you boot it on a 22 bit
processor (an 11/44, 11 /70) , SAV will generate the necessary LHR content values and the
machine will run as if you had initially used it on the 22 bit machine. SAV will also
perform the opposite. If you save the system on a 22 bit processor and run it on one of
the smaller machines it will skip the UMR values that it saved and simply not restore them
since the re is no place to put them.

The next thing that SAV does is size memory, determine the size of memory i n the
hardware configuration it has, and adjust any partitions as needed. If your last
partition in the system i s the GEN partition it will expand and contract it as needed,
setting up the appropriate data structures to indicate the current size of the partition.
SAV is also capable of completely eliminating any partitions that no l onger exist. For
example, if you have a partition which starts beyond the end of memory, on yo ur current
configuration, SAV will s imply eliminate that partition, it will just not exist any more .
It will also have to remove any ta sks which were installed to run in that partition.

Following this SA V has to check for the system clock. When the system is generated
you can specify one of two types of clocks, a line clock or a programmable c l ock . SAV
wil l initially check to see if the same clock that you generated fo r is present in the
system, if so, it will be used. If not SAV will test for the other type of clock, the one
you did not specify. If that is pr esent, it will be used . It will be properly
initi alized by SAV and the system will continue as if the correct c l oc k had been found.

Following t his , SAV uses the information that it picked up from the boot block on the
device which was bootstrapped (the unit number, device name), searches through the system
data base and redirects the device SY: to whatever physical device was booted, so that if
you save on a unit 3 of an RP06 for example and then you boot on unit zero, SA V will
mod ify the system so that the booted device SY is now unit zero.

At this point the system is ready to run, so SAV enables task switching, declares a
power fail AST and then, its final step, the one which seems to take the longest time and
if you watched your disk, if it has any type of indication as to what it is doing, you'll
see it's very busy. What SA V does is it reinstalls each task whic h was installed in the
system when it was saved. Not reinstalled as if you had installed it, but what it
actually does is it has to modify an indication s tored in the system which points to the
task image so that it now points to the disk address. When a system is moved as part of
the co py procedure for DSC or BRU, it is necessary that the next time you boot the system
all of the tasks which were installed can be located without the system having to know the
file name of each task, go out and locate it through the file system and reinstall it. So
what is done is the fil e system identification number is saved in the image on the disk.
SAV goes through and takes each task and its identification number, converts it to the
disk address, and sets the disk address into the data base in memory. So that at this

23

(

)

point it is now possible to find any task image directly on the disk, as it was when the
system was previously running.

The last thing that happens is SAV prints out its message, its identification, IAS
version 3.1, memory size, it tells you whether a partition or partitions were expanded or
contracted and gives you other information that is needed. For example if it had switched
the system clock it will tell you that it did so. The last thing that it will do will
prompt for date and time, allow you to enter a date and time, and then exits. At that
point you have an identical IAS system with what was running before you initially entered
the SAV command and wrote it out to disk. The power fail AST which was declared by SAV
will cause the exec utive to enter any task or device handler which has declared a power
fail AST, that task or handler will be able to reinitial ize itself to t he new hardware
configuration. If it is a device handler it will normally determine if the peripheral
that it is communicating with is still present, it will determine whether it is still
running with UMR's as it was before, if it needs to allocate them and so forth. And the
system continues as if it had never been written out to the disk.

Now, the next thing that you are going to do, or that we are going to assume is going
to happen, is that you wish to generate a new IAS system image. This is done with a task
which is called SYSGEN Phase I or SGN1. As I mentioned before, SYSGEN Phase I or SGN1 is
the most complex part of the system generation procedure. It is working with a file which
it has to use as if that file was memory. It has to know that this file is a copy of
memory and that it will contain both real and virtual addresses. As shown here, it has to
know when it writes things into the disk image, it has to know where on the disk to write
them which corresponds to the real address, when it is setting up the pointers in the
system it has to know the virtual addresses that the executive will later use to access
all the data bases that it needs to get to. Normally a sysgen procedure begins by
installing a task which is given the name INV, this is a virtual install task. This is a
task that installs other tasks just as the INS command does on a normal I AS system, excep,
this task reads and writes the disk file. All the processing which it must go through is
the same processing that must go through when you install a task from a terminal. After
that task is installed assuming you have edited the command file which is going to be
given to SYSGEN Phase I or you are going to enter the commands one by one from the
terminal, you will run the task SGN 1.

SGN1 will begin by prompting for a device and file name. This allows you to specify
the name of the IAS system and what disk it is to be written on. Normally you're going to
do a system generation onto the current system disk. However if you wish to make a system
bootable on another disk, then you specify that disk in the initial prompt to SYSGEN Phase
I and it will use files on the disk you specify , instead of on the system disk. The
system generation manual for IAS describes all of the individual directives, the commands
that are given to SYSGE N to indicate what devices you wish to include, what tasks are to
be instal l ed, what processor you are using. All the necessary information to create an
IAS system . These parameters are entered either through the command file or a term inal,
they are parsed by SYSGEN Phase I for correct syntax to make sure all is valid and to make
sure that you don' t do things like trying to allocate the executive and a partition to the
same area of memory. SYSGEN then creates an internal data base of all the things it's
going to be doing to this disk file.

Following this, SYSGEN1, having read the commands either from the file or from your
terminal, knows which disk you are going to be using for the IAS system you are going to
build and it l ooks for a file which contains the bootstrap code for that disk. It will
read the STB file, which was created when this boot code was task-built. It will look for
the offsets from the beginning of the boot block where various bytes of information need

24

)

to be plugged in. SYSGEN Phase I will always read the SIB file for the corresponding disk
that you're going to gen onto.

Following this, it will look for a file called EXECUTIVE.SIB, a list of all the
executive symbols that it needs to know. The last file it looks for at this point is the
exec utive task image itself. The IAS executive is overlaid, so that SAV has to know the
size of the main segment of the exec utive and of each of the overlays, so it reads this by
reading the executive task image file. After it completes this, it will determine whether
you have used a base address for the executive in one of the parameters, it will set up
the proper real memory address with the executive to be loaded into, and take into account
the size of the bootstrap. As shown in the diagram, the boot code always remains in
memory , below the executive. SYSGEN knows the size of the boot code, it is one of the
symbols it reads from the SIB file, so it knows where to place the executive.

Following this, it allocates the mapping for the overlays in the system . SGN1 finds
where each overlay will be placed and what memory management information is needed, so
that when the executive is running it will be able to access the overlay it needs.

Once SAV has all of this information it is ready to create the system image. It
begins by opening the system image file, actually creating a new one, using either the
name you specified or the default IAS.SAV. It then attempts to write the last 32 words of
the file which causes the file system to allocate the file to the proper size that you
specified. A system image must be contiguous and SYSGEN has to have access to any word in
the file in any order, so it has to make sure that all of the file is allocated and it
does that by simply writing the last 32 words.

The first thing that gets written out into this file is the executive. It is copied,
block by block, from the EXECUTIVE. TSK file into the IA S. SAV file. Using the virtual
addresses that SYSGEN 1 cal c ul ates , the over l ays and the executive will be mov ed into the
disk image, into their proper posi tions. Also in the executive, there are certain values
that have to be filled in by SYSGEN and these are filled in as the appropriate block is
copied out to the disk.

The next thing it does is begin to generate the data base, beginning with the devices
that were specified during the beginning portion of SYSGEN, when it read commands that
were entered. It takes a standard physical unit directory entry, which it maintains in
the task image, fills in values from tables it has, or from input given during the SYSGEN
process, and writes these out into the area in the system that will become the system
common area. It allocates these physical unit directories, or PUDs, entries in the
reverse order that they were specified during the initial reading of commands, so that the
last device which was specified will have the first PUD entry. In addition the entries
for a pseudo-device CO:, which is the c onsole terminal, CL: which is the console list
device, and TT0: will be created. TT0: s hould have been specified as one of the
parameters entered during the ear ly parts of SYSGE N, so what the SYSGEN process will do at
this time is simply test to make sure you have the TT0:. If TT0: is not found it is
considered a diagnost ic, not a fatal, error and SYSGEN will continue. It really doesn't
care i f you have a terminal handler or not. However, it doesn't give instructions in what
to do with a system without one .

Followj_ng this, it installs all of the global common areas that were specified.
Normally this is an FCS common area, possibly an IAS common area and SYSRES , the system
common area. These are installed by SAV going through the procedure of creating the data
structures necessary in the system common area so that when the system is brought up, the
tasks for these common areas look as if they had been installed by install commands from

25

the terminal. Once this is done SAV can start working on the partitions and it will go
out and generate the data base needed for each partition which was specified. Depending
upon the n\.lJJber and type of partitions there are many different things that SAV will do.
The end result is it will have the necessary data base set up for all of the partitions or
it sets a special flag byte indicating it can not set up some of the partitions and it
will be handled after the system is booted, during SYSGEN Phase II. There is a check then
for the system disk being installed. It is a fatal error if there is no system disk and a
fatal error if SYSGEN fuase II has not been installed.

Memory is then allocated for two tasks. SAV has to install, load and activate two
tasks in the disk image so that when it is brought into memory these two tasks will become
active. Che of them is the system disk handler, the other one is SYSGEN Phase II. They
are both placed in a special state indicating that they have just been loaded so that when
the system is brought into memory the executive will see this state and it will begin to
activate the tasks; allow them to run.

SYSGEN then goes back to the system common area, creates an alpha table,_which is a
fixed length table of tasks by name and a pointer to the data structure. This 11st 1s
alphabetical so that the task can be found quickly when you wish to find an installed
task. To go with each of these tasks that is installed is an entry called an STD, which
is simply the data base for a task which is installed in the system. This is also created
by SYSGEN.

Finally, SYSGEN has to go through and create another data base for tasks which are
active , this is called a ATL. It has to do this for the system disk, and for SYSGEN 2.
It al so does it for the special tasks used for timesharing. There are 3 of them. Cxie of
them, Tss,, the second one TSS2 and the third one is a TSNUL 1. These 3 ATL entries are
always created in SGa-1, whether you generate timesharing system or not. They are not
marked as active. There are special pointers in the system common area that will allow
the executive to find these ATL entries when you bring up timesharing.

After this the data base is complete and SYSGEN writes out the remainder of SGOM. It
has a copy of the system SCOM data base in the sysgen task. All it does is take this copy
and write it out to the disk. All through the SYSGEN1 process it has been filling in
whatever values were needed, so it nows writes out all of the pointers, list heads, all of
the little bytes of information that are needed when the system is going to begin running.

The last thing that SYSGEN Phase I does is it takes the boot block, the boot file
which it already found and copies the boot block itself to the beginning of the IAS system
image it just created so that when you are finished you will have on the disk, a copy of
the boot block: It is hardware dependent, it will only work on the device which you
specify. This is followed by the IAS image which is going to be loaded into memory by
this boot code. SYSGEN has completed all of the necessary bits and pieces it's supposed
to handle. It prints out its last message which says 'End of SYSGEN Phase I' and it is
completed.

Curing this process it has communicated with the virtual install task INV. SYSGEN
behaves as if it is MGR in this case, in that it will insert its own corrrnand into the MGR
queue for INV and then request that INV be activated. INV will read whatever install
command is present and execute it. Before INV is requested for the first time, SYS GEN
Phase I allocates a node in SGc»I on the running system, so this is now in real memory, and
it fills it in with the values that are needed by INV to find various locations and
offsets in the disk image. Things like the logical block number of the system image, the
size of the boot code, the size of the various executive overlays, and where to find the

26

((

information it needs in the d i sk image. INV will go and read this node, to pick up all
the information it needs each time it's called to install a task.

After SYSGEN1 has closed all of its files and printed out its message it is then ready
for you to bootstrap the system. The MGR BOO command is what will handle that and Mike
[Garcia) will take over.

Ok, now that SYSGEN I had completed we're r ead y for the boot process using the MGR BOC
conrnand, to boot up the image just created by SYSGEN 1 and to get the bootstrap up to real
memory zero. The intent of the MGR function BOO is to perform an initial boot of an IAS
system image. It will simulate the function of a hardware ROM from any device.
Alternatively, it will write the bootstrap block zero on a specified device, by default
the latest version of IAS.SAV is the image booted into the memory. The specified file to
be booted must be an IAS system image created by SYSGEN 1. Boot will check this out to
see if it is the correct ·file.

Before going into detail about what boot does, a summary of its operation is it first
operates validates command syntax, it reads block one of the IAS image file, verifies it
as an IAS system image, closes the IAS image file, and checks the privileges of the
requesting terminal to see if it is privileged. If the user is attempting to boot, the
terminal must be a privileged terminal. If the user is attempting to write a bootstrap
block, the object device must not be SY: or redirected to SY:, unless the t e rminal is
privileged.

There are 2 choices on performing the MCR boot function. First choice is the MCR
command BOO with the optional file specification, which inserts the device unit number
into the bootstrap block to be moved. It moves the whole block to real zero and up. You
see the boot code going up to real zero [on the diagram]. It moves what we call special
instructions to real 1000 and up and jumps to the special instructions which enters kernel
mode, disables memory management, and then jumps to real zero. The second choice is to
issue the MGR command BOO along with the /WB switch where virtual block one is to be
copied from the specified file to bootstrap block zero of the disk device . As Mike
mentioned BOO is linked to the STB file for whatever device is being genned so it knows
offsets in the boot block.

The boot procedure starts by getting the boot command line. It will validate the
syntax and parse the command. If there is na syntax error, 800 will exit. It will then
check to see if the device is a random an access device and also if it is a directory
device since we can not boot say a line printer or a terminal. If all is valid we now
proceed to open a file to read the boot block, which is the first block of the IAS image
file. We now have the first block. If it was written by SYSGEN or SAV, the first word is
a !ranch instruction and the second word must be "SYS" in RAD50. One of the offsets in
the boot block is the base APR address of the base of the executive. This address must be
between 200 and 777700, therefore the offset itself must be between 2 and 7777. Boot
validates the specified file image by checking all those facts. If all is OK, the
starting LBN of the system image is now written in the boot block. In other words, the
address of the system image is stored into the copy of the boot block just read in. Cxi
the slide again we can see the LBN in the boot code which gets moved up.

Boot checks the privileges of the requesting terminal. If the terminal is privileged,
boot will allow anything to be done. If it is not privileged it will disallow the actual
boot or the writing of block zero of the system device. If the privilege is OK and the
user specified the WB switch, the boot block is then written. If the WB switch was not
specified we move to the routine that moves the device unit number into the bootstrap

27

(

)

block. It then moves it all into low memory, starting with real zero, followed by some
special boot instructions. When done, we jwip to real zero to perform the actual boot.

Now to get at real zero, we need to map an APR to real zero, 4K read/write.. Since we
are running under user mode APR~, we will use APR 1 and map it to real zero and inhibit
all interrupts. Twenty thousand is then moved into APR 1 before the routine goes into a
loop moving one word at a time to real zero. We then jump to the special instructions at
real address memory 1000, but since it is mapped to APR 1 it is 21000 for the boot
procedure. Special instructions are there to get us into kernel mode by clearing the
current mode bits that are in the PSW. They set kernel APR~ and 1 to real memory address
zero and set 4K read/write for both. The twenty thousand bit in the PC is cleared and we
then set the starting address to the bootstrap, do a reset and jump to the starting
address to star t the boot. That is the end of the special instructions and that is the
end of the MGR BOO procedure and we are ready to get SYSGEN Phase II into the system.

Believe it or not, you sit there and you are ready to do SYSGEN2 and the message comes
up for SYSGEN generation Phase II, but there is an awful lot that goes on before that
message is printed. SYSGEN II is installed and loaded by SYSGEN I such that booting the
new system disk results in the running of SYSGEN II. SYSGEN II is loaded at the top of
the specified partition to avoid memory fragmentation. You can see where SYSGEN II
resides in memory on the slide.

SYSGEN II performs the following functions automatically. It checks to make sure
there is sufficient memory available, if there isn't it will just exit. It checks to see
that system disk handler is active, requests and loads a TTY handler and mounts the system
disk, fixes Files-11 ACP, and after mounting the system disk it will open a file called
SYSBLD. CMD and execute all the commands found in that file. Note that any task required
by SYSGEN II must be installed before SYSGEN II uses it. Also note that after SYSGEN
Phase II exits, the user should do a SAVE to preserve the system as generated. If the
SAVE is not performed, the IAS image file will still contain the output of SYSGEN Phase I.
That is, a runnable IAS system with SYSGEN Phase II activated. Note that if it is
desirable to boot the IAS system, the MCR function BOO must be used with the WB switch to
initialize the boot block zero of the system image.

SYSGEN II begins by finding the system size as specified in SYSGEN I. Previous mode
bits of the PSW are again set to kernel, and the PSW is then saved. If we run out of
memory, that is less memory is specified during SYSGEN I, SYSGEN II traps at priority 7
and prints the diagnostic message: "All memory specified does not respond." If memory is
OK, SYSGEN II will inhibit interrupts, set APR 3 to map over the bootstrap, in other words
set PAR 3 to map to zero for booting. A call is made to subroutine SPD 3 to prevent APR 3
from being modified during task switching. APR 3 must be restored to finish.

The IAS system image has now been booted and a call is made to a subroutine to
redirect the PUD for SY: to the appropriate unit of the system disk as it must be the
device and unit number that will specify during SYSGEN I. It extracts this information
from the offset in the boot block. At this point SYSGEN II gets a saved image size from
the bootstr ap and converts it to 32 word core blocks from memory management. SYSGEN II
will scan the task partition directories setting up what SYSGEN I could not set up. If
the SG flag is set it must be cleared. The SG flag is a bit from SYSGEN I that SYSGEN II
has to look at to set up its hole pointers. The hole pointers are now adjusted and
manipulated in a loop until all free space in the partitions is found. SPD 3 is called
again to reset APR 3 and the stack is also reset at this point. This section of SYSGEN
Phase II is completed by enabling interrupts.

28

))

SYSGEN Phase II continues by requesting the TTY handler. LUN 2 is assigned to TTY and
LUN 3 is assigned to SY0:. Here the "GET LUN" directive is used to find the physical
system device. The routine will point to the buffer in order to move the device name into
it. It then appends the period(.) as the third character in the device name, converts
those 3 characters to RAD 50 and puts them back into the buffer. A check is made on the
name of each task in the ATL to find the system disk handler . It was put into the ATL by
SYSGEN Phase I. It will loop through the ATL notes until it finds the system disk
handler. When the system disk handler is found, another check is done to see if it is
active. If the system disk handler is not found the message: "Unable to find ATL or
system disk handler" is printed.

When we find the system disk handler, SYSGEN II moves along and tries to find the STD
entry of the TT handler in the ATL, and will loop until it finds it. When it finds the TT
handler, SYSGEN II waits for the load request state to change, that is the TT handler to
be loaded. It will check every 1 O ticks until it is finally loaded. Once it is loaded,
we wait for the TT handler to become active. Again, we wait 10 ticks until it becomes
active. Once it is in memory, we wait 10 more ticks to give the executive time to
complete the activation of the task. The TT handler is now in memory and in active state
and resides directly below where you see the system disk handler. When the TT handler
loads successfully, its ATL node will be charged to SYSGEN II. Consequently, as long as
the TT handler is resident and therefore active, SYSGEN II can not be removed from the
system. To circumvent this, it will now c harge the TT ATL to TT handler itself, as SYSGEN
I does when SYSGEN II and the system disk handler.

SYSGEN II is now ready, finally, to type the message: "System Generation Phase II."
The Files-11 ACP is fixed in memory, and the fixed task list is scanned until it finds
F11ACP. The routine will loop until it finds the STD for F11ACP and when it does find it,
the ATl.node is charged to F11ACP and sets F11ACP as its own requester. SYSGEN II will
decrement its own pool usage count. If F 11ACP can not be fixed in memory we have the
diagnostic message: "Error fixing F11ACP." That is only a warning, if it does not find
that ACP, SYSGEN II just continues along. At this point SYSGEN II gets the PUD of the TI:
in use and sets the UIC to [1, 1]. TI: is set as logged on and privileged, and as the
console terminal CO~:.

We now go to the subroutine to obey the contents of the SYSBLD command file to build
the IAS system. In the SYSBLD subroutine, the first step is to create the command to
mount the system disk, "t-bunt SY0:/0VR". SYSGEN II now opens [11,17] SYSBLD.CMD, which is
the default command input file and goes through each command one at a time. If there is
an open error or read error on SYSBLD. CMD a fatal error message is issued and SYSGEN II
will exit.

Another routine is called to obey an MCR type command line. This routine checks each
command in SYSBLD.CMD to see if it is comment. It checks for both types of comments, the
semicolon and the exclamation point, both types of these comments are ignored. It also
ignores 2 special cases, the asterisk (*) Delay command and the "Log" command. These two
commands may appear in older versions of IAS. The routine sets up the SPAWN DPB and
executive request SPAWN is issued. It converts the first 3 letters of the corrvnand line to
RAD50 and stores them in the SPAWN DPS as the name of the task to be SPAWNed, for example,
PIP and INSTALL. If the MCR task is not installed, an attempt is made to run MCR's
multifunction task, ••• MFT, to do the job instead, and it will use MFT as the task name.
If all this fails, a diagnostic error message: "Task not installed" is printed and SYSGEN
II exits with a Fatal request error.

Finally SYSBLD. CMD is closed when end of file is reached. SYSGEN II is now ready to

29

print the " End of System Generation Phase II" message and will then exit. After SYSGEN II
completes and exits the user should always perform typical post SYSGEN2 functions and then
s ave the system. Mike [Reilly) i s ready to di scus s SAV.

We started with the SAV task and we end with the SAV task. This time the job of SAV
is to write the contents of memory out to the disk. SAV will do this by verifying that
the system is quiet, that nothing is happening, that all user s ex cept the user who is
actually attempting to save to the system are logged out , all disks have been dismounted,
that there is no activity in the SEND/RECEIVE queues, no tasks tha t ar e waiting to be
loaded into memory and basically, no activity within the system. There are qualifiers to
the SAV c ommand when you enter the SAV command to override some of these chec ks. SAV then
will map itself to the boot block that was left in memory by the BOO coOllland, use the
logical block number found in the boot block to know wher e on the disk memory is to be
written, use the size of the system image found in the boot block to know how much memor y
to write, and i t wil l convert the read function cod e in the boot block to a write function
code. Since it is identical code, it will just write instead of read. SAV then builds a
stack to store all of the hardware r egister s that are going to be restored when the system
comes back up. It then jumps to the boot code so that the boot code will be executed , and
the system image will be written out to the disk. That completes the System Generation
discussion.

30

(

Cervantes Convention Center
St. Louis, Missouri
Thursday, 26 May 1983

~

½

(

BOOT
ADDRESS

I

A

s

SAVE

SAVENT

,1,

CODE

IAS SYSTEM
IMAGE 0~

DISK

REAL I
BOOT

31

(

)))

REAL 0 0
BOOT ' ,

V IRTUAL 0 1000
EXEC

SCOM

SYSTEM DISK
HANDLER

BOO

-i.--- i---i...--- -I--'

SG2 ... BOOT CODE
LBN

SPECIAL CODE

32 33

(

LIST File Listing Utility

Written by:

William Wood
The Institute For Cancer Research

7701 Burholme Av e,
PhiladelPhia, Pa, 19111

(215) 728 2760

Versi on 2

LIST File Listins Utility

LIST is a utility for displayins selected p ortions of a file, It
Provides facilities for disPlaYins lines, positionins in the file, and
searchins for character strinss, In addition, outPut from LIST can be
redirected from the terminal to a file,

This manual e xPlains how to use LIST, Throughout the manu a l, op-
tional Parts of a command are enclosed in souare brac ke t s ,

1,0 Runnins LIST

The LIST command line has the following syntax:

2,0 Switches

3,0 Fspec

LISTC /s witchesJ fsPecC,f spec, ,,J Cc ommand s JC > C>JfileJ

/HD

/GO

Write a hea der record containins each file's name
and the date to the s t a ndard output befo re listin~
each file,

List all files selected bY fspe c witho ut pr omPtinS
(s e e below: FsPec).

fspec ~aY be a simPle file name, an indirect c o~ma nd file na~e
Preceded by @, or, i n some installations, a file n a me containins SRD
wild card characters o r sw i tches, If the file name is an indirect
f i le name, LIST will list the named files i n the indirect file one at
a time, If it is an SRD-t YPe file name, LIST will list the files se
lected bY SRD, In either case, LIST will Prompt YOU with each of the
se lected file names to see if YOU want i t listed, unless / GO was se
lected (see above: Switches) , Responses to the promPt are:

y
<er> or N
G
-z

List the file,
Don't list the file,
List this a nd remaining files with no PromPtinS,
Don't list this file and remaini nS files,

If command s are siven on LIST 'S c o mmand line, theY will be exe
cuted once for e a ch file selected bw the fspec, If the s tand ar d out-
Put is redirected bw a command line , it will
each file selected,

remain redirected for

Note: Normal SRD wild card cha racters and switches maw be used

34 35

((

)

LIST File Listing Utilitw

in an SRD-twPe file name; however, do not use the /SE:
switch, as this is th e default switch, Also, onlw the
most recent versions will be selected unless ;* is sPec
ified,

3,1 Default Fields in File Names

More than one file maw be listed during the same LIST session
twPing LIST and then a carria ■e-return. LIST will Prompt f or a
name, After each file has been listed, LIST will prompt f or a
file name.

Whenever LIST attempts to oPen a file, the device, ui c , name ,
extension are remembered and become the defaults, The d e faults
used to rePlace missin ■ fields of subseouent file names entered
listins. For example:

PDS> LIST
FILE? LB:(22,2JLIST,DOC

bw
file

new

and
are
for

When wou are finished listin■ LBl(22,2JLIST,DOC, if YOU wanted to see
LB:C22,2JVG3.DOC, YOU would onlw have to t~Pe!

FILE? VG3

and LIST would suPPlw the missin ■ fields of the file name,

If LIST can't open a file after suPPlwfng the defaults, it
the file name as entered, Initiallw, the defaults are SY:
device and ,LST for the extension,

4,0 Numbers

tries
for the

Numbers are used to Position LIST in the file and as a r ■uments to
commands. Nu•bers always Precede the command thew affect. A num ber
rnaY be a simPle number, one of several special line number variables,
or a search Pattern, The value of a search Pattern is the number of
the line that matches the Pattern, Some commands oPtionallY take two
numbers as arsuments; when sPecif~ins more than one number, separ a te
the two numbers bw a comma, e.~. 1,45 In addition, numbers mas be
added and subtracted from one another, e.g. $-9 is the 10th l i ne from
the end of the file.

LIST scans the input on a command line from left to ri ■ ht,

Whenever it encounters a number, dot (the current line number) is set
to that number. MultiPle line numbe rs ma y appear next to each other;
LIST Positions to each in turn, e,g, 1/SUBR/ searches for SUBR after
line 1.

36

))

LIST File Listing Utilitw

4,1 Line Number Variables

$

t

@

*

4,2 Search Patterns

Dot is the current line number, Whenever LIST en
counters a line number, the value of dot is reset to
that line number,

Dollar is the last line of the file,

Sharp is the line number disPlawed bw the most recent
Pr ompt.

At-sisn is the line number of the top of the last
screen disPla Ye d bw LIST,

Star is set bw the= command and is eoual to the value
of dot when the= command was last issued . * serves
to mark a line of interest for future reference,

Semi -c olon is eaual to the current screen si z e.

A search Pattern is a strins of cha rac ters bracketed bw slashes
(/) or backwards slashes(\):

/string/
\strin9\

causes LIST to search forward from dot for string,
causes LIST to search backwards from dot-1 for
strinSe

There are several characters which have a s Pecial meaning when they
appear inside a search strins:

7.

means that the following character is to be treat
ed as itself, not as a special character,
specifies that the match must occur at the be ■ in
nins of the line only. % itself mus t appear at
the be ■ innin ■ of the Pattern, otherwise it has no
special meanins.
causes the nex t character to be interpreted as a
control character.

Once specified, a pattern becomes the default Pattern and ma y be in
voked by II or\\ . Pattern£ ~aY be used an~where a number may appear~
the value of a Pattern is the line number of the matched lina ,

37

LIST File Listing Utility

4,3 ExamPles of Line Numbers

.-10
1,$
/S UBR/
/Y.SUBR/

\\

/' / He' 's/
2/HELL0/-5

10 lines before the current line,
Line 1 and the last line of the file,
First line which matches SUBR,
First line which matches SUBR at the
the line,

besinnins of

First line which matches the default Pattern while
scanning backwards.
First line which matches /He's
5 lines before first occurrence of HELLO at or
after line 2.

It is Possible to sPecifY fairlY comPlex line numbersl the value
of a line number is always the last number evaluated, For inst a nce,

l/SUBR/t1//,,t3/END/t1//

specifies two line numbersl the first is the second occurrence of
SUBR at or after line onel the second is the s econd occurrenc e of END
at or after 3 after the first line number,

s.o Coia"ands

LIST accepts com~ands on it's co•mand line or when it PromPt s
with the current line number and a •>• character. Commands are sin~le
characters and are Preceded b~ zero, one, or two numbers which are ar
su•ents to the co~•and. More than one command maw be entered on a
comaand linel LIST scans the command line f rom left to right, Posi
tionins to line numbers and e xecuting command s ,

There are two tYPe s of commandsl those that Pri nt and those that
affect LIST's state without Printing, Commands that Print usu a llw
Print from dot (the current line number) unless two line numbers were
specified, in which case Printing occurs from the first line nuruber.
Other commands 'eat UP' the number(s) that are their argumentsl in
other words, dot is reset to the value it had before the command, with
it's ar~ument(s>, was executed,

If a line number appears at the end of the command line with no

com1Dand after it, the default command (p) is e~-:ecuted.
Thus /SUBR/ is e<rnivalent to /SUBR/P both c ause Printing to
begin at the first occurrence of SUBR,

38

((

LIST File Listing Utility

5,1 Comaands That Print

p

G

?

DisPlays lines from the file, Dot is alwaYs left at the last
line Printed Plus 1, Pis the default command, and is option
al at the end of the command line,

P Print as many lines as will fit within the current
screen size (initially 231, starting at the cur
rent line (dot),

nP Print as •any lines as will fit within the current
screen size startins at linen.

n1,n2P Print lines n1-n2.

Like P, G disPlaYs lines from the file, however with zero or
one argu11ents G only Prints one line, and the va lue of dot is
not changed,

G
nG

Print the current l ine ,
Print linen,

n1,n2G Print lines n1-n2.

DisPlaYs only lines matching the current search Pattern.
? DisPlay a screen-full of lines matching the cur

rent Pattern, If the end of the file i s reached,
dot is left at line 1, else dot is left at the
next line matching the current Pattern,

n? DisPlaY a screen-full of lines matching the cur
rent Pattern, starting at linen, If the end of
the file i s reached, dot is left at line 1, else
dot is left at the next line matching the current
Pattern.

n1,n2? DisPlaY all lines matching the current Pattern
between lines nl and n2, Dot is left at nl,

Note: LIST usually chanses most control characters to null s
before Printin~ a record, however when two line numbers
are specified or when the G command is executed, al l
characters are written out unchansed. Thus it is Possi
ble to write out portions of a file without losing a nw
characters.

Other Coamands

L The L command causes the last command line to be ree xecuted,

s

The command sets the line number variable,
serves to

n=

Sets the
s

mark a line for later reference,
Set * to dot,
Set * to n,

screen size.
Reset the screen size to 23,

39

*• to dot,

(

*

LIST File Listing Utility

C

F

N

R

X

nS Set the screen size ton,
nl,n2S Set the screen size to Cn2-nl)tl,

Sets the column range which will be read from the inPut file,
C Reset the column ranse to 1-512,
nC Set the column range to 1-n,
n1,n2C Set the column ranse to n1-n2.

Create a 'virtual file' by restricting LIST to a contiguous
subset of the lines in the file,

F Reset the virtual file to correspond to the actual
file,

nF Make a virtual file between dot and dot+n-1, Dot
becomes the new line 1 of the virtual file,

nl,n2F Make a virtual file between nl and n2, Ni becomes
the new line 1 of the virtual file,

Turn Prompt mode on/off, When PromPt mode is off, LIST will
not Prompt with the current line number, but will leave the
cursor after the last line Printed, If the screen size is set
to one and Prompt mode is set off (1SN accomPlishes this) then
LIST will be in line-bY-line mode, in which one line is Print
ed for each carriase-return.

Resets the screen size to 23, the screen width to it's orisi
nal value, the column ranse to 1-512, the virtual file to the
full, actual file, and prompt mode to on,

Finish listins the file, Xis identical to ~z CEOF),

Space (blank) is the null command, and does nothing,

5,3 Installation Specific Commands

Not all installations have the following commands,

W Sets the screen width,
W Reset the screen width to it's ori ■ inal value,
nW Set the screen width ton,

H Invokes LIST as a subtask to Print a help file,

V Routes all the following output from the command line to the
Printer port of the DTBO la VTIOO look-alike),

6,0 Definins and Using the Macro

40

)

LIST File Listing Utility

LIST has a simPle text replacement macro facility,
remembered text from a line of LIST commands, The macro
enclosins the text in sauare brackets ICJ), When M is
the command line, the Mis replaced by the macro text,

For exaaPlel

C@tl//PJ

The macro is
is defined by
specified on

defines a macro to search for the current Pattern starting from the
top of the last screen + 1, and Print from there, To invoke the
macro, t~Pe Mon the command line,

The text of the macro is not executed when it is defined by en
closins it in sauare brackets, It is not executed until an Mis
twPed. M maw aPPear with other commands and line numbers on the com
mand linei first the macro text replaces the M, then the command line
is executed. In addition, M may be used more than once on a command
line.

7,0 Redirecting Output From LIST

The outPut from a line of LIST commands, which normally soes to
the terainal, ma~ be redirected to a file, To write a new file, Put
>FILE at the end of the commands, where FILE is a standard file name,
To append to an existing file, Put >>FILE at the end of the command
line, If FILE doesn't exist, it will be created, The carriasecontrol
tYPe of newly created files is identical to the carria ■ econtrol tYPe
of the file beins listed, while that of aPPended files is the same as
that of the file being aPPended to.

Once a file name has been specified usins >FILE or >>FILE, that
file name becomes the default file name for file redirection onlY, and
need not be specified a ■ ain, i,e, >or>> alone is all that is needed
to redirect output to that file,

41

LIST File Listins Utilit~

8.0 Examples of Commonl~ Used Co~mands

<er > Hittins return Prints the next screen.
45 Start Printins at line 45 •
• -5 Print from 5 lines back.

Print startins half a screen back.
@- Start Printins one and one-half screens back.
<esc> Hittins escaPe Prints from 2 screens back.
$-9 Print the last 10 lines in the file.
ISUBRI Locate the strins SUBR and Print from there.
II II alone defaults to the last search pattern sPecified.
45/SUBRI Locate SUBR at or after line 45 and disPla~ a screen.
IERR/-5 Display startins 5 lines before next occurrence of ERR.
$-SOISUBRI Look for a subroutine in the last 51 lines of the file.
1,10 P r int lines 1-10.
ISUBRl,/END/ Print the next subroutine.
1ISUB/,.+5IENDI Print from SUB at or after 1 to END at or after 5 after SUB
/SUBRI? Display lines containing SUBR.
? DisPla~ lines containins the current pattern.
10,$>T.TMP Write lines 10 throush the end of the file to T.TMP.

LIST *•FTN /XVAL/,$?X would Print all occurrences of XVAL in *•FTN.

42

Name:

Mailing
Address:

DeVIAS Questions - Answers

----------- -- - -·-----------

Phone
Number:

Instructions

1) Complete relevant part of form
2) Mail to Editor, 'l'he DeVJA~; Letter
3) Question and/or Answer will be published in next

newsletter.

Date Submitte d: ____ ! ____ / ___ _

Question:

Answer:

43

"-._.../ .

NOTES

45

