
A
[i]DEClJS

(JSC:•ii'.PTER [6ASl(](fil9
THE NEWSLETTER FOR THE BASIC SPECIAL INTEREST GROUP

May 1982 Vol. 3 No. 2

BASIC-PLUS-2 DEVELOPMENT SUPPORT TEAM
1 . 0· BP2 TASK STRUCTURE

This artic l e addresses the l a yout of a BP2 t ask i n memory.
Topics d isc ussed include overall memory layout, psect usage, dynamic
ar ea a1 location, and management for I/0 buffer spac e and string space.
Th e data covered in this article is for inform ation only and may
change in a future release .

I f you take advantage of the physical layout of a task rather
than the programing conv e ntions used to create it ; Murphy's law
guarantees that something will change. This article provides
background information to enhance your ability to diagnose suspected
problems rather than teaching you how to modify the layout. This
a rt icle takes a few liber ties with the actual location of items and
t er ms because of the differences across the PDP-11 operating systems.
Th ese cases are noted on first occurence and then ignor ed. Refer t o
th e par ticular operating system manuals for the symbolic re ference if
you n eed more da ta about a particular fe atu re.

2.0 GENERAL MEMORY LAYOUT

Any PDP-11 task may be divided into 4 areas in
areas are shown below:

HIGH
ADDRESS

LOW
ADDRESS

un-used address space

CODE/DA TA PSECTS

STACK

LOW CORE/TASK HEADE R

Copyright ©Digital Equipment Corporation 1982
All Rights Reserved

memory. These

Jt is assu med that all articles submitted to the editor o f this newsletter are with the authors' permission to publish in any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or information appearing in the document. The view$ herein expressed are
th ose of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

These are the never ending chronicles of man's never ending wars
with machines.

A PDP/11 IS NEVER DOWN UNTIL IT IS DOWN
by Keith Goodwin

Otero Junior College, Colorado

Back in 1977 Otero Junior College's Data Processing was done on a
CDC 6400 located at Colorado State University. This was all right -
except - Otero Junior College and Colorado State University are 200
miles apart. This was all right - except the higher education system of
Colorado thought that it was saving money by putting Data Processing
onto the State owned micro wave system. This was all right - except that
one of the legs of the system that went between the two schools was
maintained by the State of Colorado, and the other leg was maintained by
(you guessed it) Ma Bell. If a bird took to the air anywhere between the
two locations the microwave system went down, and the State of Colorado
and Ma Bell would point the accusing finger at each other. This means
that the system was down almost all of the time, and when it was up
every Freshman at Colorado State University had priority over Otero
Junior College - because, you know, they'er ONLY a Junior College.

All in all the Data Processing at Otero Junior College was
depressing. I began to cast about for a alternative to the situation.
Vendors were like wolves at my door. The DEC wolf assured me that I
would have no trouble comming up on a PDP/11 34. And best of all -

"A PDP/11 IS NEVER DOWN UNTIL IT IS DOWN".
Who could argue with logic like that.

We signed on the dotted line and awaited the delivery of our new
computer. DEC had arranged for us to lease time on Southern Colorado
Power's PDP/11 70 until our own arrived. we thought that this would work
well for the two or three months that we had to wait, because -

"A PDP/11 IS NEVER DOWN UNTIL IT IS DOWN".
Continued page 13

BP2 TASK STRUCTURE
GENE RAL MEMORY LAYOUT

Page 2

On RSTS/E systems the low address area is called low core while
on RSX type system this area is called the task header. This a rea is
detailed in the operating system manuals. The primary c hara cte ristic
of this area is that it is read only storage (you should never modify
it with your code). The area of interest to the BP2 OTS (object time
system) is the location designated as $OTSV - OTS vector pointer.
This pointer is one word of the set of 4 words called the Low Core
Co ntext area. The other three words of the low core context are : (1)
.FSRPT - File Storage Region Pointer, (2) N.OVPT Ove rl;iy Runtime
System Pointer, and (3) $VEXT - Vector Extension a r ea Pointe r. All
four pointers {which must be referenced symbolically) are set up at
TKB time. Any mod ifications to these pointers at run time will be
lost on the next context switch of the task. $OTSV points to the BP2
OTS work area. This work area contains pointers to the current task
context as maintained by BP2; for example: pointers to the current
line number, module name, I/O buffer area, string space, and free
space.

Th e next major area of a task is the STACK area. This is the
standard PDP-11 stack area. It is used by BP2 for calls, temporary
storage, etc. During the running of a BP2 program the stack pointer
should be at the original top of the stack at the beginning of each
line/statement (not clause).

The next major area is the CODE/DATA PSECT area. If you are not
familiar with psect's and their attributes, you should break out your
copies of the MACRO-11 and TKB manuals and get busy. The psect's used
in BP2 are described in a subsequent section of this article. At this
introductory level, it is sufficient to say that all code and data is
organized by usage of psect's. A task map is your best guide to where
t he individual psect's may be located within the in-core task i mage.

The last area designated above as UNUSED ADDRESS SPACE is used by
BP2 as the dynamic area of a task. This area is "claimed" at either
TKB time or at run time by the exte nd task directive. The dynamic
area is used for string and I/O operations.

Another possible address area for a task may be located at the
high end of the high address segment. This is the area for memory
resident libraries {HISEG's, KEYBOARD MONITOR's, SHARED GLOBAL AREAS
(SGA' s) , RUN TIME SYSTEMS, SHARED LIBRARIES, and so forth) • During
TKB time, space is allocated for the various segments of a task. The
basic algorithm used by TKB is to allocate memory resident libraries
from the top of the address space {APR 7) down while code/data
sections from object modules are allocated from the bottom of the
address space (APR 0) upwards. (If you don't know about APR's, you
should study the KT-11 hardware manuals, the memory management
directives, and ask a friendly co-worker to explain them to you. J If
you are using memory resident areas, the unused address space still
exists between the top of the psect area and the bottom of the memory
resident area. This means that the BP2 dynamic area is virtually
allocated between two code areas.

3

BP2 TASK STRUCTURE
GENERAL MEMORY LAYOUT

Page 3

The following d i agrams illustrate a task in-memory. These
illustrations should help you fix a mental image of a program as it
exists at run time. This image will be expanded to include
progressively more detail in the remainder of the artic le. The first
diagram shows a single segm e nt task, the second diagram shows a single
segment task with a resident library, the third shows a multi-segment
(overlayed) task. The fourth modifies the diagram for a multi-segment
task with resident libraries. In all of these diagrams , the area
shown as the unused add r ess space {which is what it is at TKB time)
becomes the task extension area which becom es the BP 2 dynamic area at
run time.

HIGH
ADDRESS

LOW
ADDRESS

SINGLE SEGMENT TASK

unused address space

CODE/DATA PSECTS
(USER CODE)
{OTS CODE)

STACK

LOW CORE/TASK HEADER

SINGLE SEGMENT TASK WITH RESIDENT LIBRARY

HIGH
ADDRESS

RESIDENT LIBRARY
{OTS PSECTS)

unused address space

CODE/DATA PSECTS
(USER CODE)
{OTS CODE)

STACK

LOW LOW CORE/TASK HEADER
ADDRESS

4

BP2 TASK STRUCTURE
GENERAL MEMORY LAYOUT

MULTI-SEGMENT TASK

HIGH unused address space
ADDRESS

OVERLAY LOAD AREA
(CODE/DATA PSECTS)

CODE/DATA PSECTS - ROOT

STACK

(USER CODE)
(OTS CODE)

LOW LOW CORE/TASK HEADER
ADDRESS

MULTI-SEGMENT TASK WITH RESIDENT LIBRARY

HIGH
ADDRESS

LOW
ADDRESS

RESIDENT LIBRARY
(OTS PSECTS)

un-used address space

OVERLAY LOAD AREA
(CODE/DATA PSECTS)

CODE/DATA PSECTS - ROOT

STACK

(USER CODE)
(OTS CODE)

LOW CORE/TASK HEADER

Page 4

By reviewing the preceding illustrations, you will see that we
have begun dividing any view of a task into its primary areas and have
further subdivided those areas into psect's. The next section defines
the psect areas.

BP2 TASK STRUCTURE
PSECT USAGE

3.0 PSECT USAGE

Page 5

Since this article is about a higher level language, this section
will make a distinction between the psect's used by the OTS and the
psect's generated by the compiler based on the source language input.
Before the psect's are actually described let's review the definition
of a pi;ect. A PSECT (program section) is a block of code or data
consisting of a name, a set of attributes and a length. A psect is
the basic unit produced by a language processor. As input to TKB the
psect definitions are used to determine the placement of code and data
in the task image. A psect's name is used interna l ly by the language
processor or TKB to maintain tables which contain data about the psect
attributes and length. The psect's attributes define the section's
contents, its placement in the task image, and possibly the mode of
access allowed (r Eed· ~nly or read-write). The program section (psect)
length determine ~ how much address space TKB must reserve for the
section. Please refer to a TKB manual for more information about
PSECT's.

4.0 BP2 OTS PSECT USAGE

The BP2 OTS is built to run in the 'BP20TS' psect. If you
examine a tas k map for a BP2 ta s k, you can observe that all modules
extracted from the disk libraries for BP2 are contained in the BP20TS
psect. BP2 object modules mapped into a task by way of a resident
library are included in a psect such as "???OTS" where the question
marks are replaced by the CCL/MCR (3 character nam e used to invoke the
compiler). The · installation task "RESSTB" modifies the resident
library psect because a disk modules and resident library modules may
not contain identical psect's. The blank psect is no longer used by
the BP2 object time system. All of this doesn't make much difference
until you start trying to debug a program and you want to identify the
module owner. If it is a BP2 module, you c an now identify it by the
psect in which i t resides. The psect usage also comes in handy when
you suspect that modules from the current version and the previous
version are being intermixed by the user. This simple convention of
psect usage will assure that BP2 Vl.5 object module patches can not be
applied to BP2 Vl.6 and vice versa. The only other psect set by th e
BP2 OTS is " . 99998". This is the patch space psect in resident
libraries. The OTS psec ts are set with the attributes of read / write,
instruc tion space, local, reloactable, and concatenated
(RW, I, LCL, REL, CON).

5.0 COMPILER GENERATED PSECT'S

Wh e n a use r program is compiled BP2 normally us e s 12 psect's to
contain the results of the compilation. In addition, the user may
indirectly generate psect's via the COMMON / MAP statements of the
language. If the us e r program contains a sour ce line such as the
following:

BP2 TASK STRUCTURE
COMPILER GENERATED PSECT'S

Page 5

10 COMMON (JUNK) A$=100

a psect definition for "JUNK" is g e nerated by the compiler. You can
observe the results of this generation process by the BP2 restrictions
on COMMON/MAP names e.g. six character and special symbol
limitations. The blank COMMON, indicated in a TKB map as the psect
".$$$$.", can be generated by BP2 if the user does not name COMMON
areas. The 13 primary psect's generated are as follows:

PSECT
NAME

$ARRAY
$CODE
$FLAGR
$FLAGS
$FLAGT
$ICI01
$ICI02
$I DATA
$PDATA
$SAVSP
$STRNG
$TDATA
$SYMTB

GENERAL
USAGE

Array header storage
Threaded code generated from user's source
Re cursion flag area
Subroutine recursion flag
Recursion flag area size indicator
I/O Vector area
I/O Impure (dirty) area
Impure OTS area and numeric variable area
Constant (pure) data area
Initial stack pointer save area
String Header storage
Temporary array header storage area
Symbol table storage for DEBUG

The compiler generated psect's have attributes set by the
intended usage of the psect. The three primary uses are control
psect's, code psect, and data psect's. The control psect's are
$FLAGR, $FLAGT, and $FLAGS which have attributes of "RW, D, GBL, REL,
CON" that is read/write, data, global, relocatable, and concatenated.
The code psect, $CODE, contains the BP2 threaded code and has the
attributes of "RW, I, LCL, REL, CON" that is read/write, instruction
space, local, relocatable, and concatenated. The data psect's are
divided into 'hree additional categories: COMMON/MAP areas, OTS I/O
areas and actual data. COMMON/MAP data areas are assigned the
attributes of "RW, D, GBL, REL, OVR". The OTS I/O areas are $ICIO1
and $ICI02 and have the attributes "RW, D, GBL, REL, OVR". The
remaining psect's ($ARRAY, $!DATA, $PDATA, $SAVSP, $STRNG, $TDATA, and
$SYMTB) have attributes of "RW, D, LCL, REL, CON". The psect
attributes have significance when determining which routines may be
placed in resident libraries and how data will be loaded when you
overlay a task.

The I/O psect's deserve more detailed treatment than they were
just given. These psect's ($ICI01 and $ICI02) control the I/O
operations for BP2. $ICIO2 is a run time impure (dirty) area used for
system specific data structures and RMS user (BP2) data structures.
In other words, it contains a FAB block, a default device string, DPB
(directive parameter block) and some miscellaneous data structures.
$ICIO1 controls which I/O operations are valid from any given BP2
task. (That's right - this is where the control for the Illegal I/O
operation message comes from.) $ICIO1 is organized by the classes of

BP2 TASK STRUCTURE
COMPILER GENERATED PSECT'S

Page 7

I/O operations a BP2 task may perform. There are sixteen cl a sses of
I/O operations allowed. The following diagram illustrate s the classes
of I/O operations:

I INITIALIZATION CLASS

I OUTPUT CLASS

I INPUT CLASS

I OPEN CLASS

I CLOSE CLASS

I GET SEQUENTIAL CLASS

I GET RANDOM CLASS

I PUT SEQUENTIAL CLASS

I PUT RANDOM CLASS

I FIND SEQUENTIAL CLASS

I FIND RANDOM CLASS

I UPDATE CLASS

I DELETE CLASS

I RESTORE CLASS

I UNLOCK CLASS

I RESERVED

Each class of possible I/0 operation is subdivided by the four
primary types of file OPEN supported by BP2. The four types are
terminal/virtual, sequential, relative, and indexed. Thus there are
four types of I/O which may be performed on sixteen classes of I/O
operations which indicates that the $ICI01 psect is 128 bytes or 64
words or 64 entries in length (it's a jump table). This table is
filled in by TKB and the BP2 task initialization code. The modules in
the BASRMS object library of BP2 all contribute to the $ICIO1 psect.
If you linked all of the BASRMS modules in your task the Jump table
would be completely filled in and you would also have all of the
BP2/RMS code for all I/O operations. By using the BUILD switches of
BP2 and the specialized ODL files, each task links in only the code to
support the type(s) of I/O it is using at TKB time.

BP2 TASK STRUCTURE
COMPILER GENERATED PSECT'S

Page 8

The remaining entries in $ICI01 are zero at task inititalization
time. The BP2 init-routine scans the table and inserts the address of
the Illegal operation message generator in all table entries
containing a zero. This mechanism reduces the run time error checking
for some of the possible I/0 combinations and could be by-and-large
replaced by a link time weak reference facility. Since we have
digressed from the task layout, let me leave you with one last thought
about $ICI01 and $ICI02. A word of warning - ADJACENCY IS ASSUMED FOR
$ICI01 AND $ICI02. If you use the sequential switch of TKB so that
the psect's are not in alphabetic order, you can cause the BP2 I/0
system to collapse. This is fairly difficult to do but a small
potential f o r problems exists. Adjacency is also assumed for the flag
psects: $FLAGR, $FLAGS and $FLAGT.

The $IDATA psect also contains storage for the OTS. $IDATA is
used as storage for the line number table (for chaining) at task
initialization time, as the primary storage area for the OTS work ar ea
at run time and as the argument address passing area for subroutines.
On task initialization, the first word of $IDATA is used as the line
number table existence indicator. If the task was chained to, then
the address of the chain-to line number is looked up and sto red until
the end of task initialization. If there was no chain-to line number
then the address of the first line is used. After this bit of
housekeeping the line number storage area becomes the OTS work area.

In the beginning of this article referenc e was made to the symbol
"$0TSV" as being the pointer to the OTS work area. $OTSV points
within the $IDATA psect, to the actual physical location of the work
area. The remainder of the $IDATA psect contains numeric variable
data from the user's program. You can realize a n immediate size
benefit if you construct CHAIN with line number tasks as ov e rlayed
tasks. In this case the root module contains the dispatch control
logic (based on line numbers) while the overlays perform the real
work. In this way you can compile the overlays without line numbers
and save that space in the root segment. You also save space in the
root by reducing the size of the line table since you have reduced the
number of lines.

The remaining psect's are used as indicated in the pr eceding
diagtam and are not explained any further in this article.

6.0 OTHER PSECTS IN IMAGE

Since this article discusses the task layout, it should at least
reference the other psect's you may see when you examine a task map.
The remaining psect's are not part of BP2 but are used by
BP2-RMS-OPERATING SYSTEM to run your BP2 task image. Your primary
guide to these psect's is the TKB manual for your particular operating
system.

9

BP2 TASK STRUCTURE
OTHER PSECTS IN IMAGE

Page 9

Below is a list of the psect's for operating system s upport
single segment but overlayed tasks.

PSECT
NAME

$$ALER
$$MRKS
$$OVDT
$$RDSG
$$RTS
$$SGD0
$$SGD2

GENERAL
USAGE

Subroutine to handle autoload errors
Mark segments routine
Overlay data
Read segments routine
Return instruction
Start of task segment descriptors
End of task segment descriptors

of

Below is a list of the psect's required for support of
multi-segment tasks.

PSECT
NAME

$$ALVC
$$AUTO
$$OVRS
$$RGDS
$$SGD1
$$WNDS

GENERAL
USAGE

Segment a utoload vectors
Overlay auto-load routine
Overlay data
Region descriptors
Task segment descriptors
Task window descriptors

7.0 EXPANDED MULTI-SEGMENT TASK WITH RESIDENT LIBRARY ILLUSTRATION

The following illustration shows th e major a reas (PSECT'S)
discussed in this article. Two major items are omitted from this
illustration. The first omission is the sizes for the psect shown.
This is left to you and a task map because the sizes and even the
inclusion of some of the psect's is highly variable by task. The
second omission is t he entire RM S structure.

HIGH
ADDRESS

RESIDENT LIBRARY
(OTS PSECTS)

.99998 SPACE
???OTS SPACE

unused address space

OVERLAY LOAD AREA
(CODE PSECTS)

10

$$ RTS *
$$ALVC SPACE
$TDATA SPACE
$STRNG S PACE

BP2 TASK STRUCTURE Page 10
EXPANDED MULTI-SEGMENT TASK WITH RESIDENT LIBRARY ILLUSTRATION

LOW
ADDRESS

$PDATA SPACE
$IDATA SPACE
$FLAGT *
$FLAGS *
$FLAGR *
$CODE SPACE
$ARRAY SPACE
BP2OTS SPACE

(DATA PSECTS)
.$$$$. *
(USER) *

(* - may resolve to lower segment)

I CODE/DATA PSECTS - ROOT
I .$$$$. SPACE
I $$WNDS SPACE
I $$VEX1 SPACE
I $$VEX0 S PACE
I $$SGD2 SPACE
I $$SGD1 SPACE
I $$SGD0 SPACE
I $$RTS SPACE
I $$RGDS SPACE
I $$RDSG S PACE
I $$OVRS SPACE
I $$OVDT SPACE
I $$MRKS SPACE
I $$AUTO SPACE
I $ $ALVC SPACE
I $$ALER SPACE
I $TDATA SPACE
I $STRNG SPACE
I $SAVSP SPACE
I $PDATA SPACE
I $IDATA SPACE
I $ICIO2 SPACE
I $ICIO1 SPACE
I SFLAGT SPACE
I $FLAGS SPACE
I SFLAGR SPACE
i $CODE SPACE
I $ARRAY SPACE
I BP2OTS SPACE
I • BLK. SPACE

STACK

LOW CORE/TASK HEADER

11

BP2 TASK STRUCTURE Page 11
BP2 DYNAMIC AREA COMMENTS

8.0 BP2 DYNAMIC AREA COMMENTS

Throughou~ this article several references ha ve been mad e to the
unused address space at run time and to the BP2 dynami c ar ea . This
section briefly discusses the dynamic area. First, let's consider how
BP2 uses the dynamic area. To over-simplify, the dynamic area is used
for dynamic string handling, I/O buffers, the program context, scratch
buffers etc. The mechanism BP2 uses to acquire this space is the
extend fask command at TKB time or extend task directive at run time.
If you are not familiar with these mechanisms refe r to the T~B manual
and the system directives manual. After a task extension, the
acquired space and the remaining unused address space may be
illustrated as follows:

BEFORE EXTENSION

unused address space

I code/data psects

AFTER EXT ENS ION

I unused address space

string space

free space

I/O buffer space

I code/data psects

String space expands down from the top of the task and is used
for string storage. I/O buffer space expands up and is used for I /O
buffers and data blocks associated with I/O. Free space is the amount
of space not currently allocated to either I/O or string space. When
an operation requires dynamic space, free space is chec~ed_ to s:e. if
there is enough space currently available. If there 1s insuff1c1ent
space, a string compression is performed to attempt to gather :nou~h
free space. If there is still insufficient space a task extension is
performed for the amount of space needed for the operation (rounded to
the next 32 word block boundry). If this task extension fails, the
program aborts with a maximum memory _ ex~eeded error • . Assuming the
extension succeeded, the next operation is to move string space to the
new top-of-memory, thereby creating a large enough free space are~.
Based on th e operation which started this this process, free space 1s
then reduced and either string space or I/O space is increased. The
BP2 Vl.6 USER'S GUIDE, chapter 3, section 10, co~tains ~ore
information about the handling of I/O space. Also, a previous article
of this series discussed th e "$SI ZE" routine which can be used to
examine the allocations for the various areas.

12

BP2 TASK STRUCTURE Page 12
BP2 DYNAMIC AREA COMMENTS

This article has referenced several other manuals and resources
that you can access and that you should be using. The intent of the
article has been to provide a framework (albeit a BP2 framework) to
enhance your understanding of the BP2 products. Other articles
address other aspects of BP2. As stated in the first aiticle of this
series, we would appreciate your input and feedback.

Wat Stories (cont.)

Everything was going along smoothly until Friday - all of the
terminals on campus went dead. We called up Southern Colorado Power to
find out what was wrong. It seems that one of the local cowboys had
started has Friday night partying a little early and ran his pick-up
truck into the wall down at the power company. When he hit the wall he
drove the computer room window mounted air conditioner right into the
back of the PDP/11 70 and knocked the computer over. So the computer was
down.

DEC field service came out and righted the computer, reset allot
the breakers and rebooted the system. And that son of a gun started
right up. Which only goes to show you that A PDP/11 IS NEVER DOWN UNTIL
IT rs DOWN.

THE LIGHTS ARE ON - SO IT MUST BE RUNNING
by Steve Harrison

Skidmore, Owens and Merrill, San Francisco

In the old days we had a PDP/11 45 with all of the lights in the
front, you know one of the computers that you could tell was running
because all of those lights blinked on and off.

One day it seemed that the computer went down, but it acted like
it was up. A user could input to a terminal and it would echo. The
lights were blinking on and off. But the darned things that didn't seem
to work. As we watched the lights a pattern emerged - the lights were
incrementing by one every time someone hit a key. And the machine told
us it was up. we also found that if someone sat at the console and keyed
the computer seemed to process.

DEC field service came out and told us that the clock had died,
so even though the lights were on the machine was not running.

13

EXTENSIONS TO BASIC-PLUS-2

In response to number of requests, we have developed several
extensions to BASIC-PLUS-2. These extensions take the form of MACRO
subroutines CALLable from a BASIC-PLUS-2 program. In anticipation of
Version 2 syntax plus features, these extensions are unsupport ed. The
routines have been checked for correctness, but are not be guaranteed
that they will work under all conditions. Anyone who experiences a
problem with them or needs further information should submit an
information SPR to BP2.

BASIC-PLUS-2/RMS EXTENSIONS

To use these routines effectively you must have a copy of the RMS-11
MACRO Programmer's Reference Manual handy and be familiar with its
contents.

A. RFA ACCESS

The ability to obtain the RFA (RMS Record's File Address) and
subsequentially use it to retrieve the record is provided in four
subroutines:

1.

Note: All numeric parameters must be integer. J

CALL RETRFA BY REF (A%, B%)

This routine returns the RFA of the record last accessed on
channel A%. B% must be the first of three contiguous
integers. It is recommended that B% be in COMMON or a MAP,
because the next two words will be written into.

10 COMMON (RFA) B%, FILL$=4%

2. CALL GETRFA BY REF (A%, B%)

This routine will effect a "GET by RFA" on a file. The
parameters are as above. RFA access is a form of random
access. This routine set up the parameters necessary for RFA
access and then jumps into the standard GET routine.
Therefore, it is used in place of a GET and will process just
like an ordinary GET returning, if necessary, the ordinary
errors. In addition, a special error - il32 "Record has been
deleted" will be returned if the record has been deleted
since the RFA was saved, or the RFA was bad.

100 COM RFA%, RFA1%, RFA2%
110 GET #1%, KEY #1% EQ KEY$ &

\ CALL RETRFA BY REF (1%, RFA%)

500 CALL GETRFA BY REF (1%, RFA%)

14

EXTENSIONS TO BASIC-PLUS-2 Page 2

B.

C.

D.

INDEXED NULL KEY

To enable the NULL KEY feature, specify the NULKEY routine before
the OPEN statement to which it applies:

CALL NULKEY BY REF (NUMK%, KRF%, VAL$) where NUMK% is the
total number of keys in the file, KRF% is the key number to
which it applies, and VAL$ is a one-byte string containing
the null key value. NULKEY cannot be used on the primary
key.

SEGMENTED KEYS

To define a segmented key in BASIC-PLUS-2, one inserts the
following call (not call by REF) before the OPEN statement:

CALL SEGKEY (NUMK%, KRF%, Al$, A2$, ••• AN$) where NUMK% and
KRF% are as above. Al$, etc., are the segments of the key.
Up to eight (8) can be defined, and each must be part of the
MAP statement used in the accompanyingOPEN statement.
Furthermore, in the OPEN statement one must specify a dummy
key in the KEY field of the OPEN statement, and insure that
the sum of segment lengths. If necessary, use a COMMON
statement with the same name as the MAP to redefine
variables.

To access Index Files with segmented keys use the multi MAP
Facility with standard GET's and PUT's.

BUCKET FILL FACTORS

To make use of bucket fill factors on indexed files, one inserts
the following before the OPEN:

CALL BKTFIL BY REF (NUMK%, KRF%, DATF%, INDXF%)) where NUMK%
and KRF% are as above. DATF% expresses the data bucket fill
factor in bytes and ranges from 0 to the bucketsize. IDNXF%
is the corresponding factor for index buckets. This call
only sets the numbers; in order to cause it to take effect,
one must set a bit in the ROP field - see SETROP for
details.

E. RECORD PROCESSING OPTIONS

During the execution of the program, it may be necessary
and clear certain record processing options. This
accomplished by two calls:

CALL SETROP BY REF (CHAN%, BITS%)
CALL CLRROP BY REF (CHAN%, BITS%)

to set
can be

where CHAN% is the channel number of the file used and BITS% is
the value to be SET or CLEARED. The values once set stay set
until explicitly cleared with the CLRROP call or the file is

15

EXTENSIONS TO BASIC-PLUS-2 Page 3

F.

G.

H.

I.

closed. One may only use the following values:

VALUE MEANING SYMBOLIC

16

4096

8192

Load by fill factor

Fast delete

Update if

RB$LOA

RB$FDL

RB$UIF

For further details, see The RMS Manual. The use of any other
value will result in .unpredictable results! The SETROP with a
value of 16 is necessary to trigger the bucket fill factors set
up by the BKTFIL call.

DEFAULT ALLOCATION QUANTITY

To set the default file extension quantity use the following call
before the OPEN statement to create the file.

CALL DEFALQ BY REF (A%)

A% specifies the minimum disk file extension as the number of
blocks.

DEFAULT FILE NAME STRING

A default file name string (RMS field DNA) may be set with the
call (not CALL BY REF) below:

CALL DEFFNA (NAME$)

SET RMS FOP FIELD

The following call may be used to set the RMS FOP field:

CALL SETFOP BY REF (BIT%)

where BIT% is the value to be set. By using this call, you may
set the deferred write bit (FB$DFW - 8192.) of the FAB.

Multiple record streams can be connected to a single RMS Indexed
or Relative file by using a special form of the OPEN. First one
OPEN's the file in a normal manner, say on Channel A%. Next one
uses the following statement:

OPEN A$ AS FILE # B%, INDEXED (RELATIVE)
CONNECT A%
MAP BUF

The restrictions are:

16

&
&

EXTENSIONS TO BASIC-PLUS-2 Page 4

a. The file name, A$, is a dummy for syntax commpleteness only.

b. The Channel number, 8%, must not be the same as A% and must be a
val id channel.

c. The record buffer referenced in the MAP should be different from
that of the original.

d. No key specifications are to be used.

In general, the number of streams to be connected is limited only
by the number of channels or memory space available. Each
connected stream takes as much memory as a regularly opened file
less 50 bytes. Files opened by this method can be accessed and
CLOSED as normal files.

In general, all of the calls affecting OPENS can
order and there can be as many of each as
however, all must come immediately before the
SETROP must appear after an OPEN and before
operation to which it applies.

EXAMPLES

be called in any
numbers of keys;
open statement.
the first record

To set up bucket fill factor and use on an Indexed file, and to
use segmented keys:

15 MAP {BUF) Q$=22, REC$=78
20 CALL SEGKEY (2%,0%,B$,D$,A$)

25 CALL BKTFIL BY REF (2%,1%,256%,256%)

30 OPEN FIL$ FOR OUTPUT AS FILE fl% &

, INDEXED FIXED &

0 0 0

, ACCESS WRITE, ALLOW NONE
, MAP BUF
, PRIMARY Q$
, ALTERNATE E$

140 CALL SETROP BY REF (1%, 16%)

150 PUT U%

0 0 0

1000 CLOSE #1%

&
&

&

In this example the MAP at line 10 defines the segments of the
primary key while the MAP at line 15 redefines the record layout.
The call at 20 sets up the primary key as a segmented key

17

EXTENSIONS TO BASIC-PLUS-2 Page 5

consisting of three (3) segments (8$, D$, and A$) for a total
length of 17 bytes. In statement 30, there is a dummy key Q$
where length is greater than 18, so all is well. At line 25, the
bucket fill factor is defined for the alternate key as 256 bytes.
Since the bucket size at line 30 defaults to one block(512
bytes), the buckets will be only half filled when initially
filling. The SETROP aat line 140 activates this partial filling.

The above routines a re "hidden" in the BP2 object 1 ibrary on the
standard distribution tape. So you need only to reference them
and re-TKB to have them included in your Task. The entry points
plus modules names are as follows:

ENTRY MODULE

BKTFIL XABSET

NULKEY XABSET

SEGKEY XABSET

CLRROP FIXROP

SETROP FIXROP

DEFALQ FABSET

DEFFNA FABSET

SSTFOP FABSET

CLRROP FIXROP

SETROP FIXROP

GETRFA GETRFA

RETRFA GETRFA

18

EXTENSIONS TO BASIC-PLUS-2 Page 6

BASIC-PLUS-2 DEBUGGING AIDS

A. Hidden Debugger Option.

B.

The BP2 debugger has one hidden command - "BPT". This command is
used to generate an unexpected breakpoint into DDT or a reserved
instruction trap if ODT has not been included in the Task.

OTS Dynamic Area Size

CALL $SIZE BY REF (CORE%, IOBSZ%, STRSZ%, FRESZ%)

This routine returns the size in words for the current task size
(CORE%), the current 1/0 buffer space allocation (IOBSZ%), the
current string space allocation (STRSZ%), and the amount of free
space (FRESZ%). The following calls may be used to return the
parameters on an individual bases.

A.
B.
c.
D.

CALL
CALL
CALL
CALL

$CORE BY REF (CORE%)
$IOBSZ BY REF (IOBSZ%)
$STRSZ BY REF (STRSZ%)
$FRESZ BY REF (FRESZ%)

If you are running TRAX-11 in TST mode, the individual calls (not
the $SIZE form) should be used to avoid a multiple definition
between the BP2 routine and a parameter in TPSCOM. An alternate
name for the $SIZE call in TRAX TST mode is $BPSIZ.

USEFUL FUNCTIONS

A. CALL RAD (A%, A$)

This routine uses a straight call not a CALL BY REF. The input
string is limited to 3 upper case characters plus"$", ".", and
blank. The output integer is the RAD50 conversion or zero if an
error was encountered in the conversion.

19

MAP, MOVE, and FIELD Performance

The purpose of this article is to give some insight on the performance of
the MAPS, MOVEs, and FIELDS statements in BASIC~PLUS-2, VAX-11 BASIC,
BASIC-PLUS (when applicable) and also some helpful hints in transferring
files across the different operating systems.

This first part of the article is a report on the perfomance testing that
was conducted for the MAP, MOVE, and FIELD statements. The following
conditions were present:

System: PDP-11/34, VAX 11/780
Operating systems: RSTS/E V7.0, RSX-llM V3.2, VAX/VMS V2.0
BASIC: BASIC-PLUS-2 Vl.6(patched), BASIC-PLUS and VAX-11 BASIC Vl.0
(VB)
Math option: EIS instruction set (except VMS)
Switches: NOCHAIN, NOLINE, S.INGLE, NODEBUG
Library: none

Note: Each test was done on a stand-alone machine

The following program was used to create the necessary BLOCK I/0 files with
10,000 records and record sizes of 512 bytes.

10 OPEN "TIME.DAT" FOR OUTPUT AS FILE tl%,VIRTUAL,RECORDSIZE 512%
20 OPEN "TIMFLD.DAT" FOR OUTPUT AS FILE i2%,RECORDSIZE 512%
30 FOR 1%= 1% TO 10%
40 READ LAST$,FIRST$
50 SSN$="999-99-9999"
60 PRINT I%
70 FOR X% =1% TO 1000%
80 WRKHRS= INT(RND*50%) + INT(RND*l0%)
90 HOUWAG=INT(RND*l2%) + INT(RND*l0%)
100 YTDHRS= INT(RND*l000%) + INT(RND*l0%)
110 YTDWRK= INT(RND*l000%) + INT(RND*l0%)
120 GROSS=0
130 MOVE TO #1%,LAST$=16%,FIRST$=16%,SSN$=12%,WRKHRS,HOUWAG
140 MOVE TO #1%,FILL$=52%,GROSS,YTDHRS,YTIMRK
150 PUT #1%
160 A$=CVTF$(WRKHRS) B$=CVTF$(HOUWAG) C$=CVTF$(GROSS)
170 D$=CVTF$(YTDHRS)e$=CVTF$(YTDWRK)
180 MOVE TO i2%,LAST$=16%,FIRST$=16%,SSN$=12%,A$=4%,B$=4%
190 MOVE TO #2%,FILL$=52%,C$=4%,D$=4%,E$=4%
200 PUT #2%
210 NEXT X%
220 NEXT I%
230 CLOSE il%,t2%
240 DATA 'SMITH' ,'STEVE','SMITH','BOB' ,'SMITH','JOH~':'SMI;H'
250 DATA 'FRED','SMITH','TOM' ,'SMITH' ,'BILL','SMITH , FRED
260 DATA 'SMITH' ,'JOHN' 'SMITH' 'ME' 'SMITH' 'BILL'
270 END

The next three programs test the different methods in which BASIC programs

20

MAP/MOVE/FIELD PERFORMANCE Page 2

can assign fields in a buffer to variables. Each timing program reads a re
cord in the file! accesses the fields in the buffer, keeps a running sum of
some of the fields and then updates some of the fields in the buffer
without actually updating the record.

The following programs use
buffer to the variable.
BASIC-PLUS because it does
tests results will reflect

MAP or MOVE or FIELD to assign fields in the
The first two programs are not used under

not support MAP and MOVE statements and the
this.

TEST l
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
155
160

TEST 2
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
165
170

TEST 3
10
20
30
40

- MAPS
SUM, SUMI, SUM2=0
MAP (TEST) LAST$, FIRST$, SSN$=12, WRKHRS, HOUWAG, FILL$=460%
MAP (TEST) FILL$=52%, GROSS, YTDHRS, YTDWRK, FILL$=448%
OPEN "TIME.DAT" FOR INPUT AS FILE 111%, VIRTUAL, MAP TEST
A=TIME (0%)
FOR I%= 1% TO 10000%

GET U%
GROSS= WRKHRS * HOUWAG
SUM = SUM + GROSS
SUMI= SUMI+ YTDHRS
SUM2 = SUM2 + YTDWRK
YTDHRS = YTDHRS + WRKHRS
YTWRKS = YTDWRK + GROSS

NEXT 1%
PRINT TIME(0%) - A, SUM, SUMl, SUM2
CLOSE #1
END

- MOVES
SUM, SUMI, SUM2 = 0
OPEN "TIME.DAT" FOR INPUT AS FILE U%,VIRTUAL,RECORDSIZE 512%
A = TIME(0%)
FOR I%= 1% TO 10000%

GET U%
MOVE FROM #1%, LAST$=16%, FIRST$=16%, SSN$=12%, WRKHRS, HOUWAG
MOVE FROM #1%, FILL$=52%, GROSS, YTDHRS, YTIMRK
GROSS= WRKHRS * HOUWAG
SUM = SUM + GROSS
SUMl =SUMI+ YTDHRS
SUM2 = SUM2 + YTIMRK
TEMPI= YTDHRS + WRKHRS
TEMP2 = YTIMRK + GROSS
MOVE TO #1%, FILL$=56%, TEMPI, TEMP2

NEXT 1%
PRINT TIME(0%) - A, SUM, SUMI, SUM2
CLOSE #1 .
END

- FIELDS
!EXTEND USED ONLY FOR BASIC-PLUS
SUM, SUMI, SUM2 = 0
OPEN "TIMFLD.DAT" FOR INPUT AS FILE #1%, RECORDSIZE 512%
A = TIME(0%)

21

MAP/MOVE/FIELD PERFORMANCE

FOR I%= 1% TO 10000%
GET #1 %

Page 3

50
60
70
80
90
100
110
120
130
140
150
160
l 70
180
190
200
205
210

FIELD #1, 16% AS LAST$, 16% AS
FIELD #1, 48% AS Z$, 4% AS B$,
FIELD #1, 56% AS Z$, 4% AS D$,
WRKHRS = CVT$F(A$) \ HOUWAG
YTDHRS = CVT$F(D$) \ YTDWRK
GROSS= CVT$F(C$)

FIRST$, 1 2%
4% AS C$

AS SSN$, 4% AS A$

GROSS= WRKHRS * HOUWAG
SUM = SUM + GROSS
SUMI= SUMl + YTDHRS
SUM2 = SUM2 + YTIMRK

4% ASE$
CVT$F(B$)
CVT$F(E$)

LSET C$ = CVTF$~ROSS) \ LSET D$
LSET E$ = CVTFS(YTDWRK + GROSS)

CVTF${YTDnns + t,fOllUOC)

NEXT I%
PRINT TIME(0%) - A, SUM, SUMI, SUM2
CLOSE U
END

The following results are found when running the above programs. The timing
was done by using real time not CPU time.

Time (seconds)

o.s. Lang.

RSTS\E V7.0 BP
RSTS \ E V7.0 BP2
RSX-llM V3.2 BP2
VMS V2. 0 VB

File type

BLOCK 1/0
BLOCK 1/0
BLOCK I/0
BLOCK 1/0

FIELD

188
188
292.8
57.4

MOV

186. 4
189.5
51

MAP

182.8
178.8
50.8

The following program was used to create the necessary sequential files
with 10,000 records and fixed record sizes of 512 bytes.

10 OPEN "TIME.DAT" FOR OUTPUT AS FILE 111,SEQUENTIAL FIXED,RECORDSIZE 512
20 OPEN "TIMFLD,DAT" FOR OUTPUT AS FILE #2,SEQUENTIAL FIXED,RECORDSIZE 512
30 FOR 1%= 1% TO 10%
40 READ LAST$,FIRST$
50 SS N$="999-99-9999"
60 PRINT I%
70 FOR X% =1% TO 1000%
80 WRKHRS= INT(RND*50%) + INT(RND*l0%)
90 HOUWAG=INT(RND*l2%) + INT(RND*l0%)
100 YTDHRS= INT(RND*l000%) + INT(RND*l0%)
110 YTIMRK= INT(RND*l000%) + INT(RND*l0%)
120 GROSS=0
130 MOVE TO #1%,LAST$=16%,FIRST$=16%,SSN$=12%,WRKHRS,HOUWAG
140 MOVE TO #1%,FILL$ =5 2%,GROSS,YTDHRS,YTIMRK
150 PUT #1%
160 A$=CVTF$(WRKHRS) B$=CVTF$(HOUWAG) C$=CVTF$(GROSS)

22

MAP/MOVE/FIELD PERFORMANCE

1 70 D$=CVTF$ (YTDHRS) e$=CVTF$ (YTDWRK)
180 MOVE TO i2%,LAST$=16%,FIRST$=16%,SSN$=12%,A$=4%,B$=4%
190 MOVE TO #2%,FILL$=52%,C$=4%,D$=4%,E$=4%
200 PUT i2%
210 NEXT X%
220 NEXT I%
230 CLOSE #1%,#2%
240 DATA 'SMITH', 'STEVE', 'SMITH', 'BOB', 'SMITH', 'JOHN', 'SMITH'.
250 DATA 'FRED' ,'SMITH','TOM' ,'SMITH','BILL' ,'SMITH' ,'FRED'
260 DATA 'SMITH','JOHN' ,'SMITH','ME','SMITH','BILL'
270 END

Page 4

The following three programs test the different methods in which a
BASIC-PLUS-2 or VAX-11 BASIC program can assign fields in a buffer (using
se- quential files) to a variable. Each timing program reads a record in
the file, accesses the fields in the buffer, keeps a running sum of some of
the fields, and then updates some of the fields in the buffer without
actually updating the record.

The following programs use MAP or MOVE or FIELD to assign fields in the
buffer to the variable. BASIC-PLUS was not used with this test set because
that BASIC-PLUS does not support RMS files and this is reflected in the
test results.

TEST l
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
155
160

TEST 2
10
20
30
40
50
60
70
80
90

- MAPS
SUM, SUMI, SUM2=0
MAP (TEST) LAST$, FIRST$, SSN$=12, WRKHRS, HOUWAG, FILL$=452%
MAP (TEST) FILL$=52%, GROSS, YTDHRS, YTDWRK, FILLS=448%
OPEN "TIME.DAT" FOR INPUT AS FILE ill%, SEQUENTIAL FIXED, MAP TEST
A=TIME (0%)
FOR I%= 1% TO 10000%

GET #1%
GROSS= WRKHRS * HOUWAG
SUM = SUM + GROSS
SUMl =SUMI+ YTDHRS
SUM2 = SUM2 + YTDWRK
YTDHRS YTDHRS + WRKHRS
YTWRKS = YTDWRK + GROSS

NEXT I%
PRINT TIME(0%) - A, SUM, SUMl, SUM2
CLOSE #1
END

- MOVES
SUM, SUMl, SUM2 = 0
OPEN "TIME.DAT" FOR INPUT AS FILE #1%,VIRTUAL,RECORDSIZE 512%
A = TIME(0%)
FOR I%= 1% TO 10000%
GET #1 %

MOVE FROM #1%, LASTS=l6%, FIRSTS=l6%, SSN$=12%, WRKHRS, HOUWAG
MOVE FROM #1%, FILLS=52%, GROSS, YTDHRS, YTDWRK
GROSS= WRKHRS * HOUWAG
SUM = SUM + GROSS

23

MAP/MOVE/FIELD PERFORMANCE

100
110
120
130
140
150
160
165
170

SUMI= SUMl + YTDHRS
SUM2 = SUM2 + YTDWRK
TEMPl = YTDHRS + WRKHRS
TEMP2 = YTDWRK + GROSS
MOVE TO #1%, FILLS=56%, TEMPl, TEMP2

NEXT I%
PRINT TIME(0%) - A, SUM, SUMI, SUM2
CLOSE #1
END

- FIELDS
!EXTEND USED ONLY FOR BASIC-PLUS
SUM, SUMl, SUM2 •= 0
OPEN "TIMFLD.DAT" FOR INPUT AS FILE #1%, RECORDSIZE 512%
A = TIME(0%)
FOR I%= 1% TO 10000%

GET #1%

Page 5

TEST 3
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
205
210

FIELD #1, 16% AS LAST$, 16% AS
FIELD #1, 48% AS Z$, 4% AS BS,
FIELD #1, 56% AS ZS, 4% AS D$,
WRKHRS = CVTSF(A$) \ HOUWAG
YTDHRS = CVTSF(DS) \ YTDWRK
GROSS= CVTSF(C$)

FIRST$, 12%
4% AS CS

AS SSN$, 4% AS A$

GROSS= WRKHRS * HOUWAG
SUM= SUM+ GROSS
SUMI= SUMI+ YTDHRS
SUM2 = SUM2 + YTDWRK

4% ASE$
CVT$F(B$)
CVT$F(E$)

LSET C$ CVTF$(GROSS) \ LSET D$
LSET E$ = CVTFS(YTDWRK + GROSS)

CVTF$(YTDHRS + WRKHRS)

NEXT I%
PRINT TIME(0%) - A, SUM, SUMl, SUM2
CLOSE #1
END

These results are found when running the above programs. The timing was
done by using real time and not CPU time.

o.s. Lang.

RSTS\E V7.0 BP
RSTS\E V7.0 BP2
RSX-llM V3.2 BP2
VMS V2.0 VB

File type

SEQUENTIAL
SEQUENTIAL
SEQUENTIAL
SEQUENTIAL

Time (seconds.)

FIELD

188
268.8
56

MOV

187.4
189. 6
51

MAP

183
182.4
51

Notes: It is recomended that when using the FIELD statement,the file that
is to be fielded should have a record size of 512. Mapping variables was
con- sistently faster then moving variables from a dynamic buffer. The
slowest method was FIELDing of variab l es from a buffer. The FIELD
statements times would vary depending on the number of CVT's that were

24

MAP/MOVE/FIELD PERFORMANCE Page 6

done.

The rest of this article is a step by step approach to transfer files
across the different systems.

File Transfer RSTS/E TO VAX/VMS or RSX based systems

TERMINAL FORMAT FILES

1. Create DOS tape on RSTS with files and programs

ASSIGN MM0:. DOS

2.

PIP MM0: (1,2)=*.*

Mount magnetic tape on VAX or RSX-llM+ using the foreign switch.

MOUNT MT0: /FOR

3. Using FLX, transfer files with the /RS switch on output and /DO
switch on input.

FLX>SY: /RS=MT0: [l, 2] *.*/DO

4. If the error message "FMTD ASCII RECORD FORMAT BAD" occurs, then
use the /IM switch in FLX. This error should only occur when the
terminal format file has a record greater then 512.

FLX>SY:/RS=MT0: [1,2]*.*/DO/IM

To access these files a user must create a formatting program that
reads the file as sequential fixed 512 and outputs it as a
terminal format file.

VIRTUAL ARRAYS

1. Create DOS tape on RSTS with files in an account VAX can read.

ASSIGN MM0:.DOS PIP MM0: (1,2)=*.*

2. Mount magnetic tape on VAX or RSX-llM+ using the foreign switch.

MOUNT MT0: /FOR

3. Using FLX, transfer files with the /RS switch on output and the
/DO and /IM switches on input.

FLX>SY:/RS=MT0: [1,2]*.*/DO/IM

4. OPEN the file ORGANIZATION VIRTUAL.

RMS FILES

25

MAP/MOVE/FIELD PERFORMANCE Page 7

SEQUENTIAL (VARIABLE or FIXED), RELATIVE, and INDEXED FILES

Use RMS backup (RMSBCK) and RMS restore (RMSRST) utilities. See RMS-11
User's Guide, Sections 9.1 and 9.6.

If the error message "RST -- CLOSE ERROR ON FILE <filename>, ERROR CODE
177760" occurs in RMSRST then use the switch "fR". See RMS-11 Users's

Guide, Sections 9.1 and 9.6 for information on the switch.

BASIC-PLUS programs

1. Do the same as was done to Terminal Format files

2. If the program was written in NOEXTEND mode the; run
program, which can be found on the BP2 Re-build kit
floppy of the VAX BASIC kit. This will insure that if
program through the transla- tor on VMS, the program
correctly.

File Transfer RSX Systems to VAX

the FORMAT
or the first
you run the
will be read

The only problem that could happen is if the file to be transfered is a
RMS sequential stream. This is because that VAX-11 RMS does not have
sequential stream files. To get around the problem used the RMSDEF in
conjunction with RMSCNV, on VMS, to convert the files to sequential
variable or write a BP2 program that reads the program as sequential
stream and writes it out as se- quential variable file.

26

INCREASING BASIC-PLUS-2 COMPILER SPEED

This article is one of a series of articles on Basic Pl.us-2 Vl.6. This
article describes how to increase compilation speed of the Basic Pl.us-2
compiler by relocating the compilers work files. Any problems encountered
with the information in this article should be reported via an FYI SPR
only.

The Basic Plus-2 compiler uses two scratch files when compiling a
program. One file contains the compiler hash tables, intermediate language,
symbol table, etc. The second file contains a temporary copy of the source
program being compiled. These files are normally opened in the current
directory. Compile speed may be increased by placing these scratch files on
a high speed disk such as an RS04 fixed head disk, or by placing them on a
disk that is not highly used, thus avoiding disk contention for these
files. The disk chosen must have a minimum number of free blocks according
to the formula:

free blocks= (number of currently executing copies of the compiler)
*(128. + (number of blocks of largest 'OLDed' program))

Example:

An RS04 fixed head disk holds a maximum of
2000 blocks (Files-ll). Therefore, if the
largest program to be 'OLDed' is 72 blocks, a
maximum of ten (10) copies of the Basic
Plus-2 compiler may be executing at any one
time.

Since the Basic Plus-2 compiler is written in itself, these files are
opened with a standard Basic Plus-2 'OPEN' statement. Redirecting the LUNS
used for these files to a device other than SY: will not work unless the
device contains a directory for every possible account the compiler will be
run from. Although this method may be used to avoid protection problems
described later in this article, it may not be feasible to create a
directory for every possible account. A better way of moving these files is
to specify a device and a directory. Every executing version of the
compiler will then use this device and directory no matter what account it
is running under. There is no conflict between the work files opened in the
same directory because a unique file name based on terminal number (RSX) or
job number (RSTS/E) is used when these files are opened.

On RSX based operating systems, these work files are opened as
'temporary'. There is no directory entry made for them and they are
automatically deleted when the compiler task ends execution. When the disk

27

INCREASING BP2 COMPILER SPEED

to be used is 'nitalized, the
(/PRO=[RWED,RWED,RWED,RWED]) must be used. This will
running under any UIC to access this disk.

correct
enable

Page 2

protection
the com pi 1 er

On RSTS/E systems, the RUN command uses these files to store vital
compiler information before executing the user program. This data is then
restored from these work files when the user program completes execution.
Therefore, these files are not opened as temporary and they remain in the
account when the compiler task exits. An exception to this is using the
EXIT command to exit the compiler, which will cause these files to be
deleted. These files are opened with 'logout' names, thus causing them to
always be deleted when logging out if they are in the current account. If
they have been opened in another directory or disk, they will not be
deleted, possibly causing that disk to become cluttered with unused scratch
files.

Due to the protection method used for non-privileged users on RSTS/E
systems, patch number 3.5.7 (Allowing cross account creations) must be
applied if the compiler is to be used from a non-privileged account. This
patch will allow the work files to be opened in another directory provided
it has the same project number as the account the compiler is running
under.

In order to move these scratch files to another disk or directory, the
compiler task image must be patched. The field that must be changed is 14
bytes long and contains a device and directory only. The starting address
of this field is:

2:22030
2:33474
3:33254

on RSTS/E
on RSX-llM/RSX-llM PLUS
on IAS

Below is sample patching procedure for each of these systems. This
patch will change the location of the compiler work files from SY: to
DS0: (1, 11]. These patches should be modified to reflect the device/account
to be used for a particular installation,

For RSX-llM/RSX-llM PLUS:

RUN $ZAP
LB: [l,54]BASIC2.TSK
2:33474;0R
0, 344"
54523V
51504
0, 346"
20072V
35060
0, 350"
20040V
30533
0,352"

(address of INSPAR psect)
(offset into psect)
(old contents SY)
(DS)

(old contents :)
(0:)

((1)

28

INCREASING BP2 COMPILER SPEED

For IAS:

20040V
30454
0, 354"
20040V
56461
0,356"
20040V
20040
0, 360"
20040V
20040
0, 344"
X

RUN LB:(11,l]ZAP
LB: (11, 1] BASIC 2. TSK
3:33254;0R
0, 344"
54523V
51504
0,346"
20072V
35060
0,350"
20040V
30533
0, 352"
20040V
30454
0, 354"
20040V
56461
0, 356"
20040V
20040
0, 360"
20040V
20040
0, 344"
X

For RSTS/E:

RUN $0NLPAT
Command file name? <LF>

('1)

(1 J)

(blank fill)

(blank fill)
(check for correct device/account)
(exit ZAP)

(address of INSPAR psect)
(offset into psect)
(old contents SY)
(DS)

(old contents :)
(0:)

((1)

(, 1)

(1 l)

(blank fill)

(blank f i 11)
(check new device/account)
(exit ZAP)

File to patch? LB: [1,2]BASIC2.TSK
Base address? 2:22030
Offset address? 344

Base Offset Old
022030 000344 054523
022030 000346 020072

New?
? 51504
? 35060

29

Page 3 INCREASING BP2 COMPILER SPEED Page 4

022030 000350 020040 ? 30533
022030 000352 020040 ? 30454
022030 000354 020040 ? 56461
022030 000356 020040 ? 20040
022030 000360 020040 ? 20040
022030 000362 ?????? ? "Z
Offset address? "Z
Base address? "z
File to patch? "Z

Another optional patch which may be applied to the BASIC PLUS-2
compiler on RSTS/ E will allow the compiler work file used for the hash and
symbol tables to use the RSTS / E V7.0 Random Data Caching feature. This
patch may be applied with or without the above patch to mov e the work files
to another device and/or account. In order for the work file to be cached,
the compiler must be run from a privileged account and Da ta Caching must
have been selected durning the RSTS/E SYSGEN and must be en abled. If the
compiler is not run from a privileged account, the file will not be cached
and no error message will be produced. Please note that this patch is not
available for any other operating systems.

RUN $ONLP/\T
Command file name? <LF>
Fi le to patch? $BAS IC2. TSK
Base address? 36:35750-33150
Offset address? 360

Base Offset Old New?
002600 000360 000000 ? 23350+32
002600 000362 000000 ? "z
Offset address? "z
Base address? 2:23350
Offset address? 32

Base Offset Old
023350 000032 000000
023350 000034 000000
Offset address? "Z
Base address? "Z

New?
? 400
? "Z

(420 for contiguous and cached)

File to patch? "z

A time trial was run using the above patches on a PDP-11/40 syste~
with RK05J disks running RSTS/E V7.0. The VT5DPY CUSP was used and three
cases were tried. The first case used a standard compiler without the above
patches. The second case used a standard compiler with the first patch ·
above applied to move the work files to a different disk and the compiler
was moved off the system disk. The third case used a standard compiler with
both patches above applied as well as flagging the compiler task image for
sequential data caching and moving the compiler off the system disk. The
system was used stand alone for the three cases. The results, as measured
in wall clock time in seconds for OLD and COMPILE commands, were:

Case 1 - No Patches 491

30

INCREASING BP 2 COMPILER SPEED

Case 2

Case 3

Work files on a different disk

Work files moved and Dat a Caching

465

434

Page 5

A 10% increase in compiler speed was realized fr om this time trial. On
a system with faster disks and many more users, greater than 10 % speed
increase may be realized.

31

PORTABILITY ISSUES

PDP-11 BASIC-PLUS-2 is c urrently distributed on RSTS/E,
RSX-llM, RSX-llM+, IAS, TRAX, and compatibility mode on VMS. A
great deal of effort has been made to make the language compatible
across all systems, however, there are some features which are not
compatible. For the most part, this i s because these features take
advantage of system capabiliti e s which are unavailable on other
systems.

tf you must write applications to run on more than one system,
or if you will be migrating from one system to another in the
future, this article could prove helpful in providing a few hints
on keeping your BASIC-PLUS-2 programs as transportable as possible.
Some other sugg es tions are added to channel all BASIC programs
being developed, towards a single, transportable BASIC, that will
be compatible across operating systems, and with a ny future
releases of BASIC.

First, a few general hints. If you do
features (such as WINDOWSIZE, CLUSTERSIZE,
to QIO routines), or "dying" features (such
to isolate them in subprograms. This will
and prevent the entire program logic from
features.

For example:

instead of

use system specific
RSTS/E SYS calls, calls
as FIELD and CVT), try
help to minimize change

being tied to these

10 A$ SYS(CHR$(6%) + CHR$(22%) •••)

use

10 CALL PUTMSG(MESSAGE$,RECEIVER%)

Where PUTMSG handles the send/receive functions. In BASIC-PLUS you
can isolate the SYS calls by placing them in the program at certain
line numbers. This enables yo u to append other BASIC files to the
program that override that line, replacing it with the code for the
new system. To minimize the trouble in changing sources, designate
certain line numbers of the program to a lways hold the
incompa tabilites. For example:

3250 GOSUB 17050 !INC OM PATIBLE OPEN

17050
8%
1 7051

OPEN '(4,8)RSTS,DAT/FI :6' FOR INPUT AS FILE #1%, MODE

RETURN

It is also convenient to make an object library of the system
specific routines. Then you can extract the appropriate module for
the target system at build tim e . If you are unsure whether a

32

TRANSPORTABILITY ISSUES Page 2

feature works the same across all systems, check your Language
Reference Manual. The Language Reference Manual contains all the
features and tells you which elements of the language are system
specific. For more information on these system specific elements
you should consult your User's Guide. Each system's User' s Guide
describes BASIC features that exist only on that system, or behave
differently on that system. Also, be sure to read the BASIC Release
Notes because they often contain important information and
exceptions for each system.

Consider your future requirements carefully. Extra effort is
required to create programs that are easily transported across
systems, but this effort is trivial compared to that required to
recode existing programs to be transportable.

The remainder of this article contains specific details on
cross-system compatibility as well as recommendations for writing
more readable and maintainable BASIC-PLUS-2 programs. Some of the
suggestions may seem obvious, but they are included here to help
you avoid poor programming habits. BASIC places no constraints on
structure and style, therefore some effort is required to produce
clear and concise code. Please keep the suggestions in mind as you
code, they really can help.

When using services provided by the system, check to see if a
BASIC feature will perform the same function. For example, the
BASIC-PLUS-2 functions, CTRLO, CTRLC, RCTRLO, RCTRLC, NOECHO, ECHO,
ONECHR, and statements, NAME AS, KILL, and SLEEP, all provide the
same features on different operating systems. They can help you to
avoid using system calls.

One of the more confusing compatibility issues is file I/O.
There are three separate types of I/O to be addressed: terminal
format files, device specific I/O, and RMS files. The next section
of the article discusses the transportability aspects of these
types of I/O.

TERMINAL FORMAT FILES

BASIC-PLUS-2 provides a type of file which treats I/O as if it
were to a terminal. This is a terminal format file, and is accessed
in BASIC-PLUS-2 with an OPEN statement with no ORGANIZATION clause
specified. All I/O to terminal format files should be with PRINT,
INPUT, and MAT I /0 statements (except MAT _READ). The files are
sensitive to comma and semicolon formatting on PRINT statements.
When terminal format files are to be used for INPUT, data should be
formatted with commas, just as if the data were from the terminal.
For example if you wish to say:

10 INPUT #1%, A,B,C

then your file should look like this

33

TRANSPORTABILITY ISSUES Page 3

124,2786,.8

Therefore, to get this into the file using a BASIC program you must
do this:

10 PRINT #1%, A;','; B; ','; C

BASIC-PLUS-2 does not handle these files the same across all
systems. The differences are discussed below.

On RSTS/E, all file and record operations for terminal format
files are handled by the system. RMS is not used, therefore support
is not linked into the task image for these files. However, on all
other systems, terminal format files are implemented as sequential
variable files, and all file and record I /O is done through RMS.
Therefore, when using the BUILD command for BP2 programs using
terminal format on non-RSTS/E systems, the "/SEQ" switch is
required. To convert your RSTS/E stream files to so that thay can
be recognized by an RSX (or VMS) based system, write a BASIC-PLUS-2
program to read the records in and then write them to a sequential
variable RMS file. In fact, there is a short BP2 program on the
rebuild kit, called FORMAT.B2S, which will do this for you.

Although terminal format files may be implemented as
seque~tial variable files on some systems, you should never specify
SEQUENTIAL VARIABLE in the O~EN statement if you really want a
terminal format file. BASIC-PLUS-2 accesses the files differently.

The MODE clause in the OPEN statement is not
on all systems. BP2, through RMS, supports 2
systems: MODE 16% and MODE 8192%. To write your
transportably, use the BP2 keywords CONTIGUOUS
respectively for these MODES.

fully supported
modes across all

OPEN statement
and ACCESS READ,

Programs using terminal format files are transportable to some
extent but there are differences that should be known. TEMPORARY
for terminal format files creates a file that is checked when
closed. On RSTS / E, TEMPORARY for terminal format files is
implemented as a TENTATIVE file (see the RSTS/E Programming Manu~l)
and on RSX based systems, it is implemented as a TEMPORARY file
(deleted on CLOSE). Note that with RMS files TEMPORARY is
implemented the same across all systems (that is, the file is
deleted when closed). On RSTS/E, you can write to a terminal format
file when not at the end of the file (at your own risk!), however,
on the other systems where BP2 uses RMS, you can write to the file
only if you are at the end of the file.

Transportable:

10 OPEN 'X.X' FOR OUTPUT AS FILE #1%, &

CONTIGUOUS
20 OPEN 'Y. Y' FOR INPUT AS FILE #1%, &

ACCESS READ

Non-transportable:

34

TRANSPORTABILITY ISSUES

10
20

OPEN 'X.X' FOR OUTPUT AS FILE #1%, MODE 16%
OPEN 'Y.Y' FOR INPUT AS FILE #1%, MODE 8192%

Page 4

Device specific I/O is used for non-file structured I/O (for
example, opening such devices as a terminal or paper tape reader).
When opening a non-file structured device, BASIC-PLUS-2 passes all
I/O directly to the operating system for processing with one
exception: on RSX based systems, spooled devices (a device accessed
through a queue manager), are processed through RMS, and programs
accessing this device through BP2 must be built with RMS SEQUENTIAL
support ("/SEQ"). In the general case, where BP2 uses the operating
system for I/O, programmers should check their system manuals for
how specific devices are handled.

Example:
10 OPEN 'LP:' FOR OUTPUT AS FILE #1%

requires RMS on RSX based systems if LP: is a spooled device.
20 OPEN 'PR:' FOR OUTPUT AS FILE #1%

I/O is handled by system.

RMS files and BASIC-PLUS-2 features that provide access to RMS
are compatible, and should be used whenever transportability is
crucial to your application.

Example:

10 OPEN 'BAR.FOO' FOR OUTPUT AS FILE #1%, &

SEQUENTIAL, RECORDSIZE 132%, &

ACCESS WRITE
20 OPEN 'FIi.BAR' FOR INPUT AS FILE #1%, &

RELATIVE, ACCESS MODIFY, &
ALLOW NONE

These examples will perform the same across all systems.

Another recomendation for transportability is to use RSX file
naming conventions. If you omit the version number, then these file
names are accepted on RSTS/E also. Even nine character file names
are allowable in the OPEN st~tement, although they are truncated to
the first six on RSTS/E. On RSTS/E use "[1,3]" not "(1,3)"; RSX
does not accept parentheses for brackets. Remember too, that RSTS/E
uses decimal numbers for accounts, while RSX based systems use
octal. This problem is easily avoided by using accounts which could
exist on either system, but this could lead to some confusion when
transferring files (be sure the files get put in the account you
think they'll get put in).

Transportable:

10 OPEN 'DK0: [20,17]LONGFILES.NAM' FOR OUTPUT &
AS FILE #1%

Non-transportable

35

TRANSPORTABILITY ISSUES

10 OPEN 'DK0: (20,17)FILNAM.DAT' FOR OUTPUT
AS FILE #1 %

Page 5

&

Avoid CHAINing when possible. Use subprograms to provide
segmentation; they are better structured because there is only one
entry and exit point. Subprograms allow more flexibility than
CHAINing, because (1) you can call MACRO or BP2 subroutines, (2)
you can pass up to eight paramaters to BP2 subprograms, and (3)
there is no defined limit on the number of parameters that can be
passed to MACRO routines. Through the use of COMMON, large amounts
of data can be made available to subprograms. Subprograms are very
transportable, whereas CHAINing has some significant differences
across systems. CHAINing with a line number is not supported on RSX
systems in the current release. On RSX and IAS the task you are
CHAINing to must be installed. On IAS you must have real-time
privileges (to execute RQST$), and no CHAINing is allowed in
compatibility mode on VMS. If segmentation is desired, use
subprograms; if CHAINing is a must, then CHAIN without line
numbers.

Avoid default values and syntax. Each system may have
different default values for good reasons and these can cause
compatability problems. Data types should be explicit. Use integers
for FOR loops and channel numbers. ERR and ERL return integer
values and should be checked against integers to avoid unnecessary
conversions. Never fall through your error traps into the end of a
program. Exit error traps with RESUME. Never depend on the value of
ERR, ERL, and ERN$ outside of an error handler. The following
example illustrates some of these points.

Use

5

110
115
120
130
140

19000

Not

5

110

ON ERROR GOTO 19000

FOR I% = 1% TO 10%
INPUT #1%, A$
PRINT #2%, A$

NEXT I%

IF ERR = 11% AND ERL
RESUME 140

ELSE
ON ERROR GOTO

ON ERROR GOTO 19000

FOR I% = 1 TO 10

36

115% THEN

0

&
&

&

TRANSPORTABILITY ISSUES

115
120
130
140

19000

NEXT I%

INPUT U, A$
PRINT U, A$

IF ERR=ll AND ERL=ll5 THEN RESUME 140

Conversions can also be avoided by checking
functions return.

Page 6

what data types

In PRINT and INPUT be sure to state the punctuation between
variables explictly.

Use
10
20

Not
10
20

INPUT 'three intgers'; A%,B%,C%
PRINT 'Integer l'; A%; 'Integer 2'; B%;

'Integer 3'; C%

INPUT 'three intgers'A%,B%,C%
PRINT 'Integer l'A%'Integer 2'B%'Integer 3'

&

Avoid other unintentional side effects. Close files explicitly
as soon as you are done with them. This is a good practice on any
system because, (1) closing files frees internal space which can
then be used for buffers or string space, and (2) difficulties with
files getting locked if the program exits abnormally can be
avoided.

The BASIC language encourages haphazard program design. This
does not mean you must code that way. You should not jump into or
out of DEFs or into FOR loops. Eliminate the GOTOs that GOTO GOTOs.
Use different names for integer, real, list and matrix variables.
The statement

10 C VAL (MID$ (C$ (C%, 5%) ,C% (C%, 2%) , C%))

may work, but it is probably meaningless to any future maintainer.
Have DEFs do their own error trapping. Use MAP and MOVE statements
instead of FIELDs and the CVT functions; LINPUT instead of INPUT
LINE followed by CVT$$ or EDIT$. Note that not all TIME functions
are available everywhere. TIME(0%) which returns the clock time in
seconds from midnight is supported on all systems but TIME(l%),
TIME(2%), etc are not supported on the RSX based systems. However
the DATE$() and TIME$() functions are supported across all systems;
they return dd-mmm-yy and hh:mm AM / PM respectively.

Using a template as an outline for your BASIC programs can
help in writing functional, readable code. By using the one
provided in the back of your User's Guide, or developi ng your own,
you encourage a program structure that is divided into functional
sections. Limiting one statement to a line prevents "losing"
statements that are imbedded.

20 AMNT%=12% \FL .TOT=OPl+oP2 \ GOTO 40 &

37

TRANSPORTABILITY ISSUES Page 7

\TOT=VAL(SS$) \ B.TOT=0.0

Here the last two statements on line 20 are never executed.

Provided below is a template for function definitions. If the
outline is followed, it will force the user to trap his/her own
errors within the function itself as well as provide a description
of what the function does. Programs are much easier to read when
you know what to look for and where to look for it.

N DEF FN •••. &

\ ON ERROR GOTO N + 90 &
&

Function description &

&

N+l Function Code &

N+89 FNEXIT
N+90 ! Local function error handler &

Error handler code ••• &

\ &

\ &

\ &

\ ON ERROR GOTO 0 &

N+99 FNEND

It is suggested that N (the start of your function definitions),
begin at line 15100 and each new definition start at a line number
which is a multiple of 100.

Always put data declaration statements (such as DIMENSION,
COMMON, and MAP) before the referencing the variables contai ned in
them. Note that the MAP, COMMON, and DIMENSION statements are NOT
executable statements. Therefore:

20
30

10000

10005
10010
10015

IF STUDENT.RECORD% THEN GOSUB 10000

MAP (ADDR) NUM%, STR.ADDRS$=32%, APT.NO$=4%, &
CITY$=18%

DIM TO.TAL%(1500%), SUB.TOTAL%(4500%)
COMMON (FIXSTR) OUT.LIN$=132%, SUB.LIN$=12%
RETURN

makes no sense at all, in BASIC -PLUS-2 . Th e MAP, arrays, and COMMON
will be allocated regardless of STUDENT.RECORD% and nothing will be
executed at run-time in the subroutine.

Initialize your variables before using them. This resolves any
doubts a maintainer may have when supporting code he or she did not
write. A manual update some time in the future will expl a in how to
initialize va riables in COMMONS and MAPS with no cost to execution

38

TRANSPORTABILITY ISSUES Page 8

time.

As BASIC continues to develop, a major goal is to provide
cross-system functionality. In order to provide a single BASIC th a t
is compatible across all systems, a~biguities will, from time to
time, be removed from the language. To be sure that your programs
do not take advantage of these ambiguities, specify options and
values.

A future article will deal with those BASIC functions which
can be used to increase the performance o r functionality of BASIC
on a particular system at the cost of transportability.

~
[Q]DEClJS

U.S. CHAPTER

□ INPUT

□ OUTPUT

To Submit: BASIC SIG Editor
remove form and DECUS
return to: MR2-3/E55

One Iron Way
Marlborough, MA 01752
USA

0 WAR STORY

{check one)

A SIG Information Interchange

PLEASE REPRINT, THE FOLLOWING IN THE NEXT EDITION OF BASIC SIG

CAPTION:

MESSAGE: - --------

----·---------------------- ------- -------

- - -----"- --

CONTACT:

NAME

ADDRESS _____________________________ _

TELEPHONE
IF THIS IS A REPLY TO A PREVIOUS l/0) WHICH NUMBER?
DATE
SIGNATURE

[g
a:cus
DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
ONE IRON WAY, MR2-3/E55
MARLBORO, MASSACHUSETTS 01752

MOVING OR REPLACING A DELEGATE?

Please notify us immediately to guarantee continuing
receipt of DECUS literature. Allow up to six weeks
for change to take effect.

() Change of Address
() Delegate Replacement

DECUS Membership No. : _______ _

Name: _____________ _

Company: ____________ _

Address: _____________ _

State/Country : ___________ _

Zip/Postal Code: __________ _

Mail to: DECUS - ATT: Membership
One Iron Way, MR2-3
Marlboro, Massachusetts 01752 USA

~ -g ~-g !. i i ~
. ~ !. i: ~ ~ ~ x·

c~i-Z?S[~3
a. o· :, ;·"' s; ~-
; .:J 3; ~ g 5'
M n CD • 5' - tC
~- 0 0 ... ;;·or
. ~ - ~:, g

Cl. s -

BULK RATE
U.S. POSTAGE

PAID
PERMIT NO. 129

NORTHBORO.MA
01532

