
BASlll
'Twas the r,ight before start1JP

And all throu ■ h the shop
Not a pro ■ ram was workin ■

Not even a lookup,

The coders hun ■ by their VT100s in despair,
With hoPes that a miracle soon would be there,

The users were nestled all snu ■ in their beds,
While visions of reports danced in their heads,

out in the coffee room there arose such a clatter,
I sPran ■ from mY cubicle to see what

And what to mw wonderin ■ ewes should showuP,

April 1984

But a suPer coder, in his hand a DECUS coffee cuP,

His resume' showed he'd been hackin ■ for seasons,
He turned out clean code that used the latest version,

More raPid than easles, the Pro~rams they came,
With whistles and bells and 6 letter discriPtive

F<UN RECADD
RUN MTHEND

RUN INQURY
RUN YEREND

eses were ■ lasss, his bodw Pale and lean,

RUN UPDATE
RUN BATJOB

From ni ■ hts and weekends in front of the screen,

A wink of his ese, and a twist of his head,
Soon save me to know I had nothin ■ to dread,

He &Poke not a word, but went strai ■ ht to his work,
Turnin■ specs into code, then turned with a Jerk,

And lasing his fin ■ er on the <return> keY,
The s~stem come uP and ran perfectl~+

UPDATE uPdated, and DELETE, it deleted,
And when he ran COMPLT, the whole thin ■ completed,

He tested each whistle, he tested each bell
Not once usin■ ON ERROR GOTO, the whole thing ran swell.

RUN DELETE
RUN COMPLT

testing was finished, the s~stem concluded,
The user's last chanses were even included,

Picked up his check, and took his DECUS coffee cup,
And when off to work for a friend at a sta~t-uP,

sisned off the s~stem, and turned it all in,
and waited for the comments and Praise to besin.

But the user replied with new reeuests and the taunt,
"It's exactlls what I asked for, but not what I want,•

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
DECnet Digital Logo
DECsystem• 10 EduSystem
DECSYSTEM•20 IAS
DECUS MASSBUS
DECwriter PDP

UNIX is a trademark of Bell Laboratories.

Copyright© Digital Equipment Corporation 1984

All Rights Reserved

PDT
RSTS
RSX
UNIBUS
VAX
VMS
VT

It is assumed that all articles submined to the editor of this newsletter are with the authors' permission to publish In any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or Information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

BASIC SIG Steering Committee

Chairman

Daniel Esbensen
Touch Technologies, Inc.
609 S. Escondido Blvd.
Suite 101
Escondido, CA 92025
619/743-0494

Handout Coordinator

Bob van Keuren
NCCS
2235 Meyers Avenue
Escondido, CA 92025
619/745-6006

DEC Counterpart

Joe Mulvey
DEC
ZKO2-3/K06
11 0 Spitbrook Road
Nashua, NH 03062
603/881-2228

I

'
.. ·.

Newsletter Editor

Ted Bear
2185 Cox Road
Aptos, CA 95003
408/245-7990 ext. 578

Symposium Coordinator

Ray Strackbein
ICS
180 Luring Drive
Palm Springs, CA 92262
714/320-8007

Wish List

Bill Tabor

I / ;

Computer Products, Inc.
1400 NW 70th Street
Ft. Lauderdale, FL 22209
305/974-5500 ext. 269

BASIC Wars
~ WfP ·;

I got the January '84 issue of the BASIC SIG newsletter
today. So you want war stories, do you? Well, here's one
from way back in the trenches of time, at least so far as
DEC's software goes.

For all who worship at the alter of User-Friendly, particularly
from the pew of BASIC-11 1 version 1, (yeah, yeah, we're ultra
conservative; we also don't have a super budget) BEWARE.
In the continual quest of user input errors in control strings
it was observed that some people had trouble remembering that
'V<CR}' ='yes', etc. So we began to repeat the prompts.

And then is was discovered that a simple test would suffice.
Instead of

100 IF C$(}"V" THEN (XXX)

We tried

100 IF SEG$(C$,1 1 1)<>"V" THEN (XXX)

Works fine, too. Until a non-literal minded user (programmer,
actually) just typed a <CR> for a negative response. OOPS!
The program promptly went out to lunch; trapped to 000004
and back into the monitor. Goodbye, application code!

It seems that BASIC-11 won't take a segment of a null string.
One would think that since the string is carried as a null,
SEG$ would return a null, and, of course, the conditional's
test for equality would fail. But no, SEG$ gets itself all
wrapped up. So it became a choice, force explicit responses
from the users (V or N, for example) or allow them more freedom.
You have to remember that we're not dealing with engineers,
but secretaries, book keepers and the like. Not that the
engineers are much better. Allowing them to type "Y", "N",
"yes", "no", or anything else is easier. For them. And simply
testing for a null string before taking the SEG$ has avoided the
problem.

Maybe DEC fixed this little insect in later releases.

Good luck all,

v~
Tim Mueller

Energy Technology, Inc.
1440 Phoenixville Pike
West Chester, PA 19380
(215) 647-6810

2

'-.._./

Letter From Spain

Since I'm a little bit far from the "Software Free World"
(I'm 60 miles west of the Sahara Desert), the only information
I set is from the BASIC SIG.

I want to exchanse information about COMPUTERS AND LAWS, software
will be appreciated. This University would like to establish
relations with U.S. universities researchins in Laws and computers.

So, Please HELP me, send me some BYTES.

• .J.J I ~ •~ /a • lAf,._aA?i4~,4p,4CL,1P,
I. ,-- -

y A411•~~

t ~ ~*c--la Cu4tara.

Comisi6n de Informitica Jur!dica

3

Facultad de Oerecho
Universid~d de la Laguna

Tenerife,Espana

(EASl(Jt}I9

Dear Ted,

Attached you will find the response to the SPR
submitted by Milwaukee Public Schools concerning
their difficulties using GFLOAT and HFLOAT
datatypes in VAX BASIC.

A copy of this SPR was printed in your January
1984 issue of the BASIC SIG Newsletter and
may be confusing to anyone wishing to use
GFLOAT or HFLOAT datatypes in VAX BASIC.
It seems appropriate that the response
to this SPR be published in the next
issue of the BASIC SIG Newsletter so
that anyone interested in using
GFLOAT or HFLOAT datatypes is
provided with the correct information.

Note that the response refers to
the KU750 option, which applies to
the VAX-11/750 that this customer
was running. The name of the option
on other systems may be different,
but the same concept applies.

Tom Lavigne

4

SPR NO. 11-63458

D I G I T A L
SPR ANSWER FORM

SYSTEM VERSION PRODUCT
SOFTWARE: VAX/VMS 3.4 Basic

VERSION
2.2

COMPONENT

The response received for your Software Performance Report is as
follows. Please contact your local office for further assistance.

PROBLEM:

Any program which uses real values and which is compiled with the
GFLOAT and HFLOAT qualifiers will fail.

SOLUTION:

Thank you for your SPR. The error you observe when attempting to use
GFLOAT and HFLOAT operations indicates that your system does not have
G & H microcode in operation.

In order to use GFLOAT and HFLOAT variables or constants in any
language you must have G & H microcode in your system or link your
program with LIB$ESTEMU from SYS$LIBRARY:STARLET.OLB. For example:

LINK program,SYS$LIBRARY:STARLET/INCLUDE=LIB$ESTEMU

If you link your program with LIB$ESTEMU, the VAX/VMS run-time
library will trap any OPCDEC faults generated by use of GFLOAT/HFLOAT
instructions and then emulate the instructions in software. Please
refer to page 6-33 of the VAX-11 Run Time Library User's Guide for
more information on LIB$ESTEMU.

If your system has G & H microcode support installed, no OPCDEC
faults should be generated. The occurrance of OPCDEC faults can
indicate either that you have not chosen to install the KU750
microcode option or that you are not loading the microcde when you
boot the system.

5

In Defense of BASIC-11

1. Introduction

By Arthur H. Stroud

Department of Mathematics
Texas A&M University

College Station, Texas 77843

It seems that most articles about BASIC are about data
processing applications. Here I will say a few words about
a scientific application. In particular I want to point out
some features of BASIC-11 which make it well suited to this
application and which I would hate to see omitted in future
"improvements" of the language.

2. A Scientific Application

I am interested in algorithms for numerical analysis
calculations, in particular algorithms for the numerical
evaluation of definite integrals. There are nany different
types of integrals to be considered. There are single
integrals, double integrals, triple integrals. There are
integrals over bounded regions, over unbounded regions, over
the entire space. There are integrals with special types of
weight functions, integrals with rapidly oscillating
integrands, integrals of numerical data, and so on. There
are literally hundreds of useful algorithms which are
known. (A standard reference is: P. J. Davis and P.
Rabinowitz, Numerical Integration, Academic Press, 1975.)

I am developing an interactive system of such
algorithms. Without going into a description of this
system, the main features of it will be:

1. It will contain a brief description of each
algorithm.

2. Each algorithm can be called upon to
evaluate an integral provided by the user.

3. To evaluate an integral the user will have
to provide, among other things, a subroutine
that evaluates the function to be integrated
(the integrand).

In order to be interactive as much as possible it is
desirable that the subroutine that evaluates the integrand
should not have to be compiled and linked to the main part
of the system. To my knowledge this can only be done at

6

present with an interpreted language. This is where
BASIC-11 comes in.

3. BASIC-11 and Enhancements

As pointed out in the article by J. Coleman and D.
Nasater, "Interpretive Business Basic with RMS-llK," pp.
76-103 in the August 1983 issue of this Newsletter, the
trend seems to be away from interpretive to compiled
BASICs. They also point out advantages of interpretive
BASIC for business applications.

To get to the point as quickly as possible I will
simply state the features that I like about BASIC-11 for my
application and the enhancements that I would make to it.

The features most important to me are:

Al - The OVERLAY statement

A2 - The ability to stop a program, enter a subroutine,
and continue without compiling and linking.

Keeping Al and A2, the enhancements that I would make
are:

Bl - Provide FORTRAN-like independent subroutines1
mainly the ability to pass arguments to the
subroutine, and independent variable names.
Independent line numbers are not that important.

B2 - Add to the OVERLAY statement the ability to shift
all line numbers in the overlay segment by a given
amount. In other words a relocatable overlay.

B3 - Have two identical versions of the same language,
an interpreted version and a compiled version,
both having features Al, A2, Bl, B2. (Now there
is a radical suggestion if there ever was one!)

I have never heard anyone mention both a compiled version
and an interpreted version of exactly the same language.
Having worked on my system for several years, I have reached
the conclusion that every language -- BASIC, FORTRAN,
Assembly Language, whatever -- should come both ways. Why
not? Do we want to beat the Japanese or not?

4. Summary

Let's not "improve" BASIC-11 by making it like some
other language. Let's show some imagination and really
improve it. And in the process let's not forget the
scientific user. There's no reason why DEC can't prov i de
the best.

7

BASCAL or PASIC?
A Structured Approach For

Programming in VAX BASIC

Dr. Kuriakose Athappilly
College of Business

Western Michigan University

Programming in BASIC had been very unstructured in the past. But that
situation has been changed considerably since the introduction of VA,~-BASIC.
Many of the programming features in VAX-BASIC are so close to those in PASCAL
(one of the most structured languages now available) that the VAX-BASIC is
now nick-named BASCAL or PASIC. This paper attempts to show the structure
features in VAX-BASIC. While doing so, the paper will briefly deal with
some of the introductory concepts of structured programming such as the
essential features and the basic approaches.

8

Th"I'RODUCTION

In the early days of computers, computer memories were limited and
more expensive than they are today. As a result, most of the programs
were written with an intent of minimal use of memory and maximum
efficiency. Experienced programmers, therefore, taxed their skills to
use complicated and nonstandard techniques in their programs.
Subsequently, the programs were extremely difficult to understand and
to use by others. No doubt, "debugging" and "maintenance" became more
and more time consuming and expensive, especially because of the
increasing salary rates of the programmers. Now, the computer costs
have decreased markedly and memory sizes increased remarkably along
with computer speed. The emphasis today is, therefore, on good design
and clarity which gave birth to the notion of structured programming.

ESSENTIALS OF A STRUCTCTRED PROGRAM

Structured programming is a way of designing and writing programs
so that the programs may be clearly understood and easily modified by
others. The emphasis here is on program clarity for the continued use
of it with easy debugging and maintenance tasks. Thus essential
features of a structured program are:

1. It is easy to read.

2. It is clearly understood.

3. It is easy to debug.

4. It is easy to modify.

BASIC APPROACHES TO STRUCTURED PROGRAMMING

Theoretically, any structured process must be based on two
fundamental concepts for its effective operation. These two concepts
are analysis and synthesis. In the analysis stage, we break down a
process into smaller parts until each part can be tackled in the
desired manner. In the synthesis, however, we combine the individually
tackled parts or units into one single system.

Structured programming, as it came into existence more under the
influence of natural expediency than that of a sound theory, did not
emphasize on the principles of analysis and synthesis in the
beginning. As a practical approach, therefore, structured programming
developed with the technique of the TOP-OOWN aesign.

9

TOP-OOWN DESIGN

According to TOP-DOWN design, a program is conceived as a complete
unit. This ccrnplete unit should , represent a systematic development of
a set of procedures in a certain sequence. A procedure may be simple
or complex. A complex procedure will in turn be broken down into a
sequence of simpler procedures unti 1 at last these procedures can be
written into distinct codes such that each statement in the procedure
yields exactly one statement in the program.

The top-down design has been a justifiable approach as long as the
program has not been very complex and not very large. But, when large
problems are to be solved, dependence on top-down design alone proved
to be insufficient. Subsequently, the idea of "divide and conquer"
came into existence. The technique used to implement this idea is
called modularization or modular design.

MODULAR DESIGN

According to MJDULAR design, a program, because of its complexity,
is not conceived as one single unit to start with. Rather, we start
outlining the individual modules which consist of functions and
subroutines. Once we decide the number of modules and their functions,
we code and test these modules individually. Once we find that every
module in the program works as desired, we combine them into one large
module program.

In principle, these two techniques, top-down design and modular
design, are opposite in direction. But, in practice, they are
complementary. They are, indeed, the offshoots of the principles of
analysis and synthesis. To solve a sufficiently complex problem,
therefore, we may start with identifying many modules--modular
design. Here occurs the process of analysis. Then, for each module,
we may adopt a top-down design. In the end, we bring all modules
together to make it a single program-a synthesis. Thus, the two basic
approaches to structured programming are analysis and synthesis, and
two basic techniques used for the implementation of this approach are
the modular design and top-down structure.

PRJGRAM STRUCTURES

After learning the two basic approaches of structured programming
we can now turn our attention to the development of structured
programming. A program, as we know, is a sequence of statements. The
way these statements are related to one another is known as the
•structure• of the program. In structured programming there are
basically three program structures. They are:

l. SEOUENCE STRUCTURE

2. DECISION STRUCTURE

10

'-.._..-, '

SEQUENCE STRUCTURE

In a sequence structure,
sequential flow of program logic.
as follows:

each statement is executed in a
In a flowchart form, it may appear

I
I
V

I I
I STATEMENT 1 I
I I

I
I
V

I I
I STATEMENT 2 I
I I

I
V

•

In this program structure, each procedure occurs sequentially. 'l'he
procedure may be a single statement, or, as described above, a
module. In order to implement this sequential or step by step
approach, we must carefully plan the program. we must take extreme
care to avoid unnecessary branching and the use of GOTO statements. If
we use many GOTO statements to branch back and f9rth, the program
becomes difficult to understand. Often such programs are referred to
as ftspaghetti programsft as against structured programs. Let us suppose
that we have a problem whose programming job consists of only three
tasks:

l. To read one record.

2. To calculate the wage.

3. To print out the result.

11

These tasks are performed with statements which are linked together in
a simple sequence structure. ~hese tasks can be flowcharted as '--'
follows:

START·

INPUT

PROCESS

OUTPUT

END

12

The program to accomplish this task will be as follows:

ILLUSTRATION 1: SEQUENCE STRUCTURE

10 INPUT "ENTER NAME~ HOURS~ AND RATE";NAMES, &

HOUR,RATE
20 LET WAGE= HOUR* RATE
30 PRINT NAMES,HOUR,RATE~WAGE
40 END

--
READY
FWNNH

ENTER NAME, HOURS, AND RATE? DAVID,25,3.7
DAVID 25 3.7 92.5

DECISION STRUCTURE

Decision structure refers to conditional branching. Conditional
branching occurs in two distinct contexts. One is the double decision
context and the other is the multiple decision context. The double
decision context is handled in t"'10 ways using IF-'T'H'EN statements and
IF-THEN-ELSE statements.

1. DOUBLE DEC IS ION AND IF-THEN STATEMEN'l'

In the double decision structure, a test condition along with
two possible resulting paths are presented. One of these two
paths will be chosen depending on whether or not a particular
condition is met. In flowchart, this situation is shown as
follows:

NO

STATEMENTS

13

STATEMENTS STATEMENTS

In VAX-BASIC double decision situations can be tackled either by IF
THEN statements or by IF-THEN-ELSE statements.

Suppose in the previous example, we have to decide the wage on
overtime and regular time basis. The computer, therefore, must make a
check after it reads the record.

The corresponding program will be:

ILLUSTRATION 2! IF-THEN SELECTION STRUCTURE

10 INPUT •TYPE IN YOUR NAME, HOURS, AND RATE•; &
NAME$,HOURS,RATE

20 IF HOURS :::- 40 THEN 50
30 LET WAGE = HOURS* RATE
40 GO TO 60
50 WAGE= (40 * RATE> + (HOURS - 40) *<RATE·* 1.5)
60 PRINT NAME$,HOURS,RATE,WAGE
70 END

TYPE IN YOUR NAME, HOURS, AND RATE? DAVID BRENT,40,3
DAVID BRENT 40 3 120

14

Here the condition is tested in line 20. If the condition is false, we
have to use our unconditional branching in line 40 to continue the
execution.

2. OOUBLE DECISION AND IF-'T'HEN-ELSE STATEMEN'l"

VAX-BASIC provides a convenient feature to avoid the GO TO
statement in line 40 of the previous program. ~his feature is the
IF-THEN-ELSE statement as we have seen in the chapter dealing with
control statements.

The previous program using IF-THEN-ELSE statements is as
follows:

ILLUSTRATION 3: IF-THEN-ELSE SIMPLE SELECTION STRUCTURE

10 INPUT •TYPE IN YOUR NAME, HOURS AND RATE•; &
N$,HOUR,RATE

20 IF HOUR> 40
THEN WAGE= (40 *RATE)+ (HOUR-40>*<RATE* 1.5)
ELSE
WAGE= HOUR* RATE

30 PRINT NS,HOUR,RATE,WAGE
40 END

TYPE IN YOUR NAME, HOURS AND RATE? DAVID BRENT,42,3
DAVID BRENT 42 3 129

We did not use any GO TO statements in this program. But when we have
many tasks to accomplish in either selections a simple IF-'l'HEN-ELSE
statement would be inadequate. For example, the previous problem may
be elaborated as follows:

Let us assume that there are three tasks to be accomplished in
either case. Let these three tasks be:

l. determination of the number of overtime or regular time.

2. calculation of .wage.

3. total wage in each category.

In a situation shown above, we may use the IF-THEN-ELSE statement as
follows:

15

... ~ - . ----- - - - - ---------

--·--------
ILLUSTRATION 4: IF-THEN-ELSE COMPLEX SELECTION SlRUCTURE

10

20
30
40
45
50
60
70
80
90
100
110
115
120
130
140
150
160

3.

INPUT •TYPE IN YOUR NAME, HOURS AND RATE•; &
N$,HOUR,RATE

IF HOUR > 40 THEN 50 ELSE 120
1--
REM THE •THEN" PART BEGINS

LET WAGE= (40*RATE) t (HOUR-40)*RATE
LET OVER_TIME = OVER_TIME + 1
LET TOTAL_OVER_WAGE = TOTAL_OVER_WAGE + WAGE
GO TO 160
REM T~E •THEN• PART ENDS
!--
REM THE •ELSE• PART BEGINS

LET WAGE= HOUR* RATE
LET REG_TIME = RET_TIME + 1
LET TOTAL-REG_WAGE = TOTAL_REG_WAGE + WAGE
REM THE •ELSE' PART ENDS
!-------------------------------- -----------------

MOLTIPLE DECISIONS OR CASE STRUCTURE

The IF-THEN-ELSE statement is convenient if there are only
two alternatives to test. When there are more than two
alternatives to choose from, we enter into a case structure. Two
techniques which VAX-BASIC provides for case structure are the ON-
00-'ro statements and the NESTED-IF-THEN-ELSE statements.

A. THE ON-GO-TO STATEMEN'l'

Suppose we want to determine the wages according to
categories of working hours. Let us assume that the firm
determines the rates according to the table given below.

--
HOURS WORKED CATEGORY COMMISSION RATE
--
LESS THAN 20 PART TIME $5.00

20 - LESS THAN 40 REG-TIME $6.00

40 - LESS THAN 60 OVER TIME $9.00

60 - LESS THAN 80 DOUBLE TIME $12.00

16

The case structure for the above situation can easily be
calculated by applying a simple ari themtic expression to the
QN..r.,.o-ro expression. The ON-GO-'T'Q statement might be as
follows:

10 ON (HOURS/20 + 1) GO ro 100,200,300,400

Suppose we have Peter, John, Jacob, Tom, Dick and Harry who
have worked 15, 35, 50, and 70 hours. A simple program
involving case structure with ON-GO-ro statement will be as
follows:

ILLUSTRATION 5! ON-GO-TO CASE STRUCTURE

10 !THIS PROGRAM CALCULATES WAGES ACCORDING TO
20 !FOUR DIFFERENT RATES. IT UTILIZES CASE STRUCTURE.
30 !THE TECHNIGUE IS ON-GO-TO
40 !--
50 PRINT ·NAME·,·H□URS·,•cATEGORY·,•wAGE·
60 PRINT •----•,•----•,•--------•,•----•,•-----•
70 READ NAMES,HOUR
80 IF NAME$= STOP THEN 440
90 ON (HOUR/40 + 1) GO TO 100,200,300,400
95
100 REM CASE1: HOURS< 20
105
110 WAGE= HOUR* 57.
115 RATES= •PART TIME•
120 GO TO 420
125
200 REM CASE2! HOURS - 20 - LESS THAN 40
210 WAGE= HOUR* 6Z
215 RATE$= "REGULAR•
220 GO TO 420

300 REM CASE3! HOURS 40 TO< 60
305 RATE$= ·ovER TIME·
310 WAGE= HOUR* 97.
320 GO TO 420
325
400 REM CASE~: HOURS 60 TO< 80
410 WAGE= HOUR* 127.
415 RATE$= "DOUBLE TIME•
420 PRINT NAMES,HOUR,RATES,WAGE
430 GO TO 70
440 !
450 DATA •PETER",15,"JOHN•,35,•JAC □B•,50

460 DATA "TOM",20,.DICK",70,"HARRY",55,·srop•,o
470 END

17

READY
RUNNH

NAME

PETER
JOHN
JACOB
TOM
DICK
HARRY

HOURS

15
35
50
20
55
70

CATEGORY WAGE
-------·-
F'ART TIME 75
REGULAR 210
OVER TIME 450
REGULAR 120
OVER TIME 495
DOUBLE TIME 840

--
It must be noted, that the ON-GO-TO statement necessitates the
use of GO TO statements. Yet the ON-GO-TO statement is an
efficient tool for structured programming because of its
ability to classify into specific categories.

A. NESTED IF-THEN-ELSE STATEMENT

The ON-GO-TO statement is convenient to use as long as
there is a relationship between the case number of the
expression in the ON-GO-TO statement and the breakdown of the
data to analyze. If the relationship does not exist, we have "-----/
to use NESTED IF-THEN-ELSE statements to handle case
structure. Let us try to find wages for a different set of
rates as described below.

HOURS WORKED

LESS THAN 15

15 - LESS THAN 40

40 - LESS THAN 50

50 - LESS THAN 70

18

CATEGORY

F'ART TIME

REGULAR

OVER TIME

DOUBLE TIME

RATE

$5.00

$6.00

$9.00

$12.00

I
I

V

Task 1

Code=
Task 2

Task 3

~ode•, Task 4

The NES'l'.'ED IF-THEN ELSE statements in this case may be
represented as follows:

Flowcharts

1
Case 1

Case 2

.,

l
I I Case

I
~'f 4 Case 3 T

{
!

I I

'f
f

t '), I; ~
[l

:iw I ~ ,., 1 J

6
The program on commissions can be rewritten with NESTED IF
THEN-ELSE statements with one line change. The line number 90
might be replaced as follows:

19

------------------------------- -------------------
ILLUSTRATION 6: NESTED IF-TYEN-ELSE CASE STRUCTURE

10 !THIS PROGRAM CALCULATES WAGES ACCORDING TO
20 1 FOUR DIFFERENT RATES. IT UTILIZES CASE STRUCTURE.
30 !THE TECHNIQUE IS ON-GO-TO
40 1--
50 PRINT 1 NAME 1

,
1 HOURS 1

,
1 CATEGORY 1

,
1 WAGES"

60 PRINT •----•,•----•,•--------•,•----•,ft _____ •
70 READ NAME$,HOUR
80 IF NAMES= STOP THEN 440

90 IF HOUR< 15 &
THEN 100 &
ELSE IF HOUR< 40 &

THEN 200 &
ELSE IF HOUR< 50 &

T~EN 300 &
ELSE 400

100 REM CASEl: HOURS< 15
105 !
110 WAGE= HOUR* 57.
115 RATE$= 'PART TIME'
120 GO TO 420
125 !
200 REM CASE2: HOURS - 20 TO <. 40
210 WAGE= HOUR* 67.
215 RATE$= 'REGULAR'
220 GO TO 420
225 !
300 REM CASE3: HOURS 40 TO< 50
305 RATE$= 'OVER TIME'
310 WAGE= HOUR* 9%
320 -GO TO 420
325
400 REM CASE4: HOURS 50 TO < 70
410 WAGE= HOUR* 127.
415 RATE$ = • DOUBLE TIME•·
420 PRINT NAMES,HOUR,RATES,WAGE
430 GO TO 70
440
450 DATA 1 PETER 1 ,15, 1 JOHN 1 ,35,"JACOB',50
460 DATA 'TOM",20,"DICK',45,"HARRY",55,"STOP',O
470 END

READY
RUNNH
--
NAME HOURS CATEGORY WAGE

----- --------
PETER 15 PART TIME 75
JOHN 35 REGULAR 210
JACOB 50 OVER TIME 450
TOM 20 REGULAR 120
DICK 55 OVER TIME 495
HARRY 70 DOUBLE TIME 840

20

True

Care must be taken in a case structure for proper indentation
and the continuation symbol (&) required for the multiline
statement.

LOOP STROCT1JRE

'l'he loop structure is also known as the ITERATION STRUCTURE. In
flowchart one can depect a loop structure as follows:

EVENT

.l
CV

FOR

ss

TASK 1

• -di' r----,
I

i TASK X I

I ~ ··- - - r - ____,I

t
\

CV:- Control Variable
IV:- Initial Value
FV:- Final Value
SS:- Step Size

In VAX-BASIC we have learned two ways of constructing loop structures:

1. Use of counter, and test for exit.

2. Use of FOR-NEXT statements.

For example, consider the following two program statements:

21

ILLUSTRATION 7: LOOP STRUCTURE WITHOUT FOR-NEXT

10 LET C = 0
20 LET C = C + 1
30 IF C)· 20 THEN 60
40 F'RINT C, c~2
50 GO TO 20
60 END

ILLUSTRATION 8: LOOP STRUCTURE WITH FOR-NEXT

10 FOR C = 1 TO 20
20 PRINT C, c-2
30 NEXT C
40 ENI!

It may be noted that the segment 2 is more easy to understand, and has
less number of statements than segment l. In segment l, we need to
initialize the counter, make a test for exit with the IF-THEN state
ment, and often we may have to use GO TO statements too. 'T'hus,
counters and tests tend to clutter a program and in a way obscure the
purpose of the loop. Hence, it is a good practice to use FOR-NEXT
statements for loop-structure whenever possible.

In some cases, knowing the exact number of loopings will be
difficult or impractical. In such contexts, modified versions of FOR
NEXT provided by VAX-BASIC may be used. These modifiers for loop
structure are FOR-UNTIL and FOR-WHILE as dis cussed in the chapter on
CONTR:>L STATEMENTS.

FOR/NEXT I UNTIL/NEXT --
10 FOR X% = 1% TO 5 %
20 PRINT X%;
30 NEXT
40 END

READY
RUNNH

X%;

1 2 3 4 5

I 5 X% = 1
I 10 UNTIL X% = 5%
I 20
I 30
I 40
I 50

I READY
I RUNNH

PRINT X%
X% = X% + .1%
NEXT
END

1 2 3 4

--- -------

22

l

CASE STRUCTURE US I:~G SELECT STATEMENT

The SELECT statement is perhaps more useful than any of the
previous techniques discussed earlier in multiple decision contexts.
The general format of the SELECT statement is as follows:

SELECT

CASE

CASE

CASE

END SELECT

Select-expression

Case-values

STATEMENTS

Case-values

STATE~1ENTS

ELSE

STATEMENTS

The SELECT ex~ression can be numeric or string. For Example, if we desire to
categorize people according to age groups in many irregular combinations,
SELECT statement can be conveniently used as follows:

ILLUSTRATION: SELECT/CASE

SELECT

CASE
PRINT
PRINT

CASE
PRINT

CASE
PRINT

CASE
PRINT

CASE
PRINT

END SELECT

AGE OF PERSON

15
"YOU ARE TOO YOUNG TO GET MARRIED"
"PLEASE BE PATIENT"

16 TO 20
"YOU ARE IN RIGHT AGE TO MAKE EXPLORATIONS"

21 TO 30
"THIS IS THE MOST OPPORTUNE TIME"

31 TO 55
"TIME FOR SECONDARY AND TERTIARY EXPERIMENTS"

ELSE
"YOU ARE GETTING OLD, BETTER TO GIVE UP"

23

The modifiers are key words that qualify a statement. By qualifying a
statement, we are able to execute a statement conditionally or to create
an implied loop. The IF and UNLESS modifiers enable us to list a conditional '-------' '
expression and FOR, UNTIL, WHILE modifiers enable us to create loops.

For instance,

1. 10 PRINT "YES" IF K 0 is equivalent to

2. 10 PRINT"*" FOR X% = 1% TO 5% """

3. 10 PRINT"*" UNLESS K = 0 It""

10 IF K O THEN PRINT "YES"

10 FOR X% = 1% TO 5%
20 PRINT"*"
30 NEXT X%

10 IF KO THEN PRINT"*"

In short, gone are the days of BASIC spaghetti programs with innumerous
GO TO statements going up and down. With the use of the selection structures
and loop structures mentioned in the paper, we can develop reasonably sound
structured programs in VAX-BASIC. We would not be far from truth when we say
that the revised VAX-BASIC versions are as good as PASCAL to implement :
structured programs.

24

IMPLEMENTATION OF ·sTROCTURED PROGRAMMING

For the sake of simplicity, the program we choose is very small
and less complicated. The idea is to illustrate most of the concepts
and techniques discussed in this chapter in the development of a
structured program.

'T'he development of a structured program can be viewed as
undergoing what is sometimes known as the cycle of birth, death, and
resurrection. The birth of the structured program takes place through
the process of the input, cutout specifications of the problem-the
STEP 1. This is the FIRST LOOR at structured programming. At this
stage, we do not have a clear perception of its parts. We simply see
the problem as a whole, and as such it can not be tackled. Hence, we
want to have a closer look at it by dividing it into well defined
parts. Thus, in structured programming, the gradual death process
occurs through progressive and systematic breakdowns of the problem.
This breakdown begins with an ANALYTIC VIEW of the problem--the STEP 2.
Here we examine the complexity of the problem and we try to adopt the
"divide and conquer" principle. We delineate the major tasks involved
in the problem. Once we delineate the tasks, we introduce the
technique of modularity, namely, we assign each task to functions or
subroutines. This marks the first-level breakdown, the SUBROUTINE
BREAKDOWN-the STEP 3 • Once each module has been defined, it is easy
to introduce the TOP-OOWN DESIGN to each module. In this stage,
usually there is a general partitioning of each unit into three maier
units. These three units in each module can usually be identified as
Preparation, Process, and Conclusion.

The preparatory unit introduces into the specified task. The
process unit does the necessary calculations and computations. In the
conclusion unit, the task is wrapped-up. This process may be called
the UNITS BREAKOOWN--the STEP 4.

Each of this unit is further broken down into procedures--the STEP
S. This process can be called the PROCEDURE BRFAKOOWN. At this stage,
care must be taken to choose appropriate program structures such as
sequence, selection, or looping. In STEP 6, the procedures are further
broken down into subprocedures if necessary. These procedures or sub
procedures, in turn, are broken down into activities. 'l'his may be
called the ACTIVITY BREAKOOWN. ~he death processes ends with it.

Thus, the activities are translated into the particular codes.
Obviously, in BASIC, these activities are translated into BASIC state
ments.· After this process, we make sure that each of the monules works
as desired through testing and debugging. Comments, documentation, and
indentations are also inserted as deemed appropriate. These are the
cosmetic processes for the funeral. Finally, we combine each of these
finished monules together and make it one single program. This is the
SYNTHESIS. This synthesis brings about resurrection--structured
program. '!'his is STEP 7 •

25

STEPS IN STRUCTURED PROGRAMMING

STEP

1

2

3

4

5

6

7

EVENT

FIRST-LOOK

ANALYSIS

SUBROUTINES
BREAK-DOWN

UNIT
BREAKDOWN

PROCEDURE
BREAKDOWN

ACTIVITY
BREAKDOWN

SYNTHESIS

DESCRIPTION

A whole view
of the Problem
without knowins
what the Parts
are.

E:<amine what
the maYor tasks
are.

Assisn each ta s k
into each module
(modularization).

DIAGRAM

Each mod1Jle is
broken down into
maJor units. (top
down desi~n besins>

Each unit is broken
dowr, into ma Jo r
Procedures or sub
Procedures. <sele
ction of Prosram
str•Jctures).

Each procedure or
subProcedure is bro
ken down into act
ivities translatable
to lan~uase codes.

Combinins all mod
ules tosether. (Ap
ProPriate Program
structures, comments,
documentation, inden
tation, and remarks
are necessary).

26

ILLUSTRATION OF A STRUCTURED PROGRAM

STEP l : FIRST LOOK

The problem is to generate a multiple choice quiz program which
will allow the user to answer the questions anci will give out the
result of the quiz.

STEP 2 : ANAL YS IS

Obviously, the program must contain the set of multiple choice
questions, it must receive the answers as input from the user, it must
examine its rectitude and validity if necessary, it must assess the
number of right and wrong answers and finally, it should print out the
result. It is also desirable to explain to the user the nature and
purpose of the program in the beginning.

STEP 3: FIRST-LEVEL BREAKDOWN: SUBROUTINES

In this stage we assign the major tasks delineated in the analysis
stage into different modules in the proper sequence. Thus, we might
arrive at:

MODULE 1: Subroutine explaining the nature and purpose of the
program.

IDDULE 2: Subroutine to present the current question.

MODULE 3: Subroutine to answer the current question,
a validity check.

MODULE 4: Subroutine to verify the answer.

MODULE 5: Subroutine to print out the results.

to make

STEP 4, SETP S, AND ST'EP 6 (UNIT PROCEDURE A..lID AC't'IVI'Y'Y BREAKDOWNS) .
Step 4, Step 5, and Step 6 are combined in one table shown

below. After the modules dealing with different levels of breakdown
and coding are well defined, each module is tackled individually.

27

MODULE 1

F'REF·Af<AT ION
UNIT

PROCESS
UNIT

CONCLUSION
UNIT

MODULE 2

PREPARATION
UNIT

PROCESS
UNIT

STEP 4
PROCEDURE

STEF· 5
ACTIVITY

STEP 6
BMiIC STATEMENT

Select a
s•Jb routine

Call a 100 GOSUB 1000
sub ro1Jt ine

E:-:Plain
PIJ T'POSE?

ar,d r,atu T'P.

Printout 100 PRINT "PURPOSE"
PIJT'POSe

Printout
nat•Jre.

End of sub- Return
routine. to ffiain

line.

PROCEDURE

Select a
s•Jb ro•Jt i ne

1. Present
a•Jestion
:tl.

ACTIVITY

Call a
s•Jbroutine

Present
the a1Jes-
tion.

Present
choice 1

Present
choice 2.

Present
choice 3.

28

100 PRINT "NATURE"

1020 RETURN

BASIC STATEMENT

120 GOSUB 2000

.120 PRINT "5X2 rs·

210 PRINT, 4

220 PRINT, 6

230 PRINT, 8

Present 240 PRINT, 10
choice 4.

..., Present
01Jestion •
+2. • •

•
•

3. Present
otJestior, .
=1=3.

•
•

4. F·resent •
01Jestior, • ♦

:1:4. • •
- ---- ♦ ♦

• •

C'
...J ♦ Present • ♦

01Jestior, ♦

t5. ♦ •
•
♦ ♦

CONCLUSION End the Ret1J rr1 999 RETURN
UNIT s•Jb routine. to main

line.

29

\ ·-

~
\ Start _,)

I
\k

GOSUE i

GOSUB 2

~ GOSUB 3
i
i

-------,

j E;QSUB 4
i

GOSUB 5

FLOWCHART ?OR THE ~lAI:'i LI~E OF THE PROGR.A:-!

Subroutine fot'

Explanation of the Program

Subroutine for
Current Question in the test

Subroutine for
Answer and Validity Check

Subroutine for
Key and Correctness Check

Subroutine fot'
Displaying the Results

30

As described above, the rest of the monules, namely, moaule 3, module
4, and module 5 can be aeveloped in a similar fashion.

After we develop each module, S'T'EP 7: SYN'T'HES IS, they should bE!
combined into one single program. This constitutes the 1-'ain Line of
the program. This process marks STEP 7-'l"H'E SYN'T'HESIS. ~he main line
for this program may be as follows:

100 GOSUB 100
110 FOR Q = 1 TO
120 GOSUB 2000

130 GOSUB 3000

140 GOSUB 4000

150 NEXT C~
160 GOSUB 5000
170 STOP

5
SUBROUTINE FOR EXPLANATIO~
Q = QUESTION
SUBROUTINE FOR CURRENT
GUEST ION.
SUBROUTINE FOR ANSWER AND
VALIDITY CHECK.
SUBROUTINE FOR KEY AND
COF.:RECTNESS.

SUBROUTINE FOR RESULTS.

The canplete program is given below.

31

QUIZ F'ROGF,AM

1. 0
20
30
r ◊
50
60
70
80
90
100
110
120
130
140
150
160
200
210
220
230
240
250
260
270

THE PURPOSE OF THIS PROGRAM IS GO GENERATE A
FIVE QUESTION MULTIPLE CHOICE QUIZ WHICH WILL
TELL THE USER IF THE QUESTION IS ANSWERED
CORRECTLY AND WILL ALSO GIVE THE NUMBER RIGHT
AT THE END OF THE QUIZ.

GOSUB 200
FOR Q:;:: l TO 5

GOSUB 300
GOSUB 870
GOSUB 990

NEXT Q

GOSUB 1070

!SUBROUTINE FOR EXPLANATION
!Q = QUESTION
!SUBROUTINE FOR CURRENT QUESTION
!SUBROUTINE FOR ANSWER AND VALIDY CHECK
!SUBROUTINE FOR KEY AND CORRECTNESS

!SUBROUTINE FOR RESULTS.
!------------------------------------ -----------
REM - SUBROUTINE FOR EXPLANATION
!--
PRINT •**•
PRINT
PRINT •THE FOLLOWING IS A BASIC MATH QUIZ.
PRINT •ANSWER EACH QUESTION WITH THE LETTER OF•
PRINT •CHOICE YOU FEEL ANSWERS THE QUESTION•
RETURN
!-------------------------------- -------- ------
REM - SUBROUTINE FOR CURRENT QUESTION.

280 !--
300 ON Q GO TO 310,420,530,630,740
310 PRINT
320 PRINT
330 PRINT •QUESTION t1•
340 PRINT "WHICH IS THE ANSWER TO THE FOLLOWING FOR X?"
350 PRINT
355 PRINT •x = <2*3> + ((5-1)*2>•
360 PRINT
370 PRINT ,•A) 36.6•
380 PRINT ,•B> 9 1

390 PRINT ,"C) 14'
400 PRINT ,•D> -14•
410 RETURN
420 PRINT
430 PRINT
440 PRINT •QUESTION t2•
450 PRINT •WHICH OF THE FOLLOWING IS THE CORRECT•
460 PRINT •SOLUTION FOR YIN THE EQUATION BELOW?'
465 PRINT
470 PRINT •y = (((3*2>-1)-2) t 1•
475 PRINT
480 PRINT ,•A> 4•

32

490 PRINT ,"B) -4"
500 PRINT ,"C) 3"
510 PRINT ,"D) 26"
520 RETURN
530 PRINT
540 PRINT
550 PRINT "QUESTION 13 1

560 PRINT "WHICH OF THE FOLLOWING IS THE CORRECT SOLUTION"
570 PRINT ~FOR ZIN THE EQUATION BELOW?¥
580 PRINT
585 PRINT •z = ((CC3*2>*C3-1)/2)-1)/1)"
590 PRINT
595 PRINT ,"A) o•
600 PRINT ,"B) 5 1

605 PRINT ,"C) 4 1

610 PRINT ,"D) 2 1

620 RETURN
630 PRINT
640 PRINT
650 PRINT "QUESTION t4"
660 PRINT "WHICH OF THE BELOW IS NOT A PROPER"
670 PRINT "MATHEMATICAL EXPRESSION IN VAX BASIC?•
680 PRINT
690 PRINT ,"A) CA*B-4*X+Y>*l-3/4*Cl)"
700 PRINT ,"B) 1*2*3*4*5*611*1-1"
710 PRINT ,"C) 222/l+o•
720 PRINT ,"D) 3*C5/1C2*3>>"
730 RETURN
740 PRINT
750 PRINT
760 PRINT "QUESTION f5"
770 PRINT "WHICH OF THE BELOW IS A CORRECT VERSION•
780 PRINT "OF THE QUADRATIC FORMULA?"
790 PRINT
800 PRINT ,"A) <-B + SQRTCB**2-4*A*C))/(2*A>"
810 PRINT ,•B> B-4*A*C"
820 PRINT ,•c> B**2-4*Al2*A•
830 PRINT ,"D) SQRT<B**2-4*A*C)"
840 RETURN
850 1

--
860 REM - SUBROUTINE FOR VALIDITY CHECK AND ANSWER
865 1

--
870 PRINT
880 PRINT "WHAT IS YOUR CHOICE•;
890 INPUT A$
900 IF A$= "A" THEN 960
910 IF AS= •B• THEN 960
920 IF A$= •c• THEN 960
930 IF AS= "D" THEN 960
940 PRINT •INVALID RESPONSE, PLEASE . RETYPE.ENTRY.•
950 GO TO 880

33

960
970
980
985
990
1000
1010
1020
1022
1025
1030
1035
1040
1050
1055
1065
1070
1080
1090
1100
1105
1110
1115
1120
1130
1140
1150
1160
1165
1170
1175
1180
1185
1190
1200
1210

RETURN
1--
REM - SUBROUTINE FOR KEY AND CORRECTNESS
1--
READ K$:
IF AS= KS THEN 1025
PRINT
PRINT •IN-CORRECT, •;K$' WAS THE CORRECT ANSWER,"
GO TO 1040
PRINT
F'RINT • coRRECT ! ' • ;,,a;. IS THE CORRECT ANSWER. I

LET C = C+1 !C=NUMBER OF QUESTIONS CORRECT
RETURN
!--
REM - SUBROUTINE FOR RESULTS
1--
LET P = C/.05 !P=PERCENTAGE CORRECT
PRINT
PRINT
PRINT
PRINT
PRINT

•THAT IS THE END OF OUR FIVE QUESTION QUIZ•
•you HAD •;c;• OUT OF FIVE QUESTIONS CORRECT.·
•THAT IS •;p;•z,•

IF C = S
IF C = 4
IF C = 3
IF C <
PRINT

3

THEN
THEN
THEN
THEN

1160
1170
1180
1190

PRINT •GREAT JOB, YOU GOT THEM ALL CORRECT!!•
GO TO 1200
PRINT •GOOD JOB, YOU ALMOST GOT THEM ALL 1 •

GO TO 1200
PRINT •FAIR JOB, THAT IS ABOUT AVERAGE.•
GO TO 1200
PRINT "YOU DID NOT DO VERY WELL,"
RETURN

1215 DATA ·c·,·A·,·B•,·o·,·A·
1220 END

~---

34

U.S. CHAPTER DECUS
Program Library

SOFTWARE ABSTRACTS
DECUS PROCEEDINGS

For your convenience and information listed below are the current DECUS
Proceedings that are available and can be ordered through the DECUS
office in Marlboro, Massachusetts. As availability changes this list
will be updated.

Europe
U.S. Fall
Canada
U.S. Spring
Australia

Europe
U.S. Fall
Canada
U.S. Spring
Europe

U.S. Fall
U.S. Spring

1980
1980
1981
1981
1981

1981
1981
1982
1982
1982

1982
1983

Amsterdam, Holland
San Diego, California
Montreal, Quebec
Miami, Florida
Brisbane, Australia

Hamburg, Germany*
Los Angeles, California
Toronto, Canada
Atlanta, Georgia
Warwick, United Kingdom

Anaheim, California
St. Louis, Missouri

DECUS
Part No.

PR0-81/V07.l
PR0-81/V07.2
PR0-81/V07.3
PR0-81/V07.4
PR0-81/V07.5

PRQ-82/V08.l
PR0-82/V08.2
PR0-82/V08.1
PR0-82/V08.4
PRO-EUR-82

PRO-ANA-82
PRO-STL0-83

Media
Service
Codes

YA
YA
YA
YA
Y'A.

y 'A.
YA
Y'A.
YA
YA

Y'A.
YA

* Available from Geneva only. None available until further notice.

PLEASE NOTE: The DECUS Proceedings are no longer grouped together in
one volume; they are each listed separately. European, Canadian and
Australian Proceedings will be listed by the year, date and place of
the symposium. U.S. Proceedings will be listed by the year, season
(Spring or Fall) and place of the symposium.

35

CATALOG

Version: September 1981

Author: Lars Palmer, Ph.D.AB Hassle, Molndal, Sweden

Operating System: VAX/VMS

Sourde Language: Datatrieve

revision
VAX-40

This is a very special offering. It consists of an index of the
DECUS Library program offerings in machine readable format. It
has been in use within Europe now for some time and is updated
regularly. The aim is to update it in the Library at least twice
a year i.e., it will contain material more recent than the current
catalog. This version is updated to correspond to the 1983/84
catalog.

The material is in the form of a large file that can be loaded
into a datatrieve ISAM file and used with the procedures enclosed.
The routines needed to load the files are on the media. If you do
not have datatrieve you should note that the magtapes also
contain, beside the basal files, printouts from the files sorted
by the several different criteria (the datatrieve command files to
do this sort are on the media).

Note: This material is produced as a private initiative of the
submitter. The Library has no responsibility either for
the correctness of the material or for the updating of it.

Changes and Improvments: Updated to reflect 1983/84 catalog.

Documentation on magnetic media.

Media (Service Charge Code): ~00' Magtape (MA)

Format: VAX/ANSI (Blocked at 2048)

36

Keywords: Catalog
Operating System Index:
VAX/VMS

February 27, 1984

Symposium Tape from the VAX SIG, Spring 1983, St. Louis

Version: Spring 1983

Author: Various

Submitted By: Joe L. Bingham, Mantech International,
Alexandria, VA

Operating System: VAX/VMS V3.2

new
V-SP-17

Source Language: APL, VAX-11 BASIC, BLISS-32, C, VAX-11 COBOL,
DCL, VAX-11 FORTRAN, MACR0-32, PASCAL, TECO

These programs were submitted for the Tapecopy project at the
Spring '83 DECUS Symposium. This is a very large tape, over
96,000 blocks plus about 7,5~0 blocks of general information and
indexes into the VAX SIG tapes. It is a potpourri on new and
revised programs, command procedures and other interesting (even
useful) material. You have to browse through the tape to
appreciate it but some of the things available are: programs to
facilitate communications between VAXes and other computers, EDT
initializer procedures, spelling and grammer checkers, command
line editors, tape manipulation routines (Need to copy a UNIX tar
tape?), a touch typing tutor, a few thousand blocks of line
printer pictures and many routines to make the VAX System
Manager's job easier - from monitoring resources to logging off
idle users.

No guarantees are made as to the completeness, usability, or
quality of the programs on the tape and the material has not been
checked or reviewed.

Note: Release notes (User Instructions) are distributed with the
tape.

Restrictions: See individual program documentation.

Sources may or may not be included. Documentation may or may not
be included on the magnetic media.

Media (Service Charge Code): 2400' Magtapes (PB)

Format: v~s Backup (Blocked at 2048)

37

Keywords: Symposia Tapes - VMS
Operating System Index:
VAX/VMS

December 12, 1983

Symposium Tape from the VAX SIG. Fall 1981, Las Vegas

Version: Fall 1981

Author: various

Submitted By~ Joe L. Bingham, ~antech International,
Alexandria, VA

Operating System: VAX/VMS V1 . X

new
V-SP-22

Source Language: VAX-ll BASIC, BLISS-32, C, DCL, v,X-ll FORTRAN,
MACR0-32, PASCAL, TECO

Other Software Required: FORTR,N Compiler. ijowever, most FORTRAN
and all other sources using a compiler include the compiled
version.

This tape includes material submitted for the Tapecopy proiect at
the Fall 1983 (Las Vegas) DECUS symposium. This is a large tape
with about 71500 blocks of submitted material and ll50~ blocks of
general information and indexes into the VAX SIG tapes. It is a
potpourri of new and revised programs, command proc~dures and
other useful material. This tape contains new releases of several
of the most asked about software packages which have appeared on
past tapes (the LBLTOOLS Unix-like overlay to VMS, Denison's
spelling and grammer checker, the KERMIT and VAXNET communications
packages, the VPW poor man's all-in-one system, the ICE command
line editor and several others) and much material appearing for
the first time (TYPIST for those aspiring to greater keyboard
skills, back issues of the pageswapper, an enhanced RUNOFF and a
graphics package, to name a few) and many utilities for general
use and for the VAX System Manager.

This tape contains the first extensive collection of games since
the Spring 1979 tape (many old, some new) and a system for
controlling access to them.

No guarantees are made as to the completeness, usability, or
quality of the programs on the tape. The material has not been
checked or reviewed and documentation may or may not be included.

Note - Release notes are distributed with each tape.

Restrictions· Complete sources are not included.

Completed sources are not included. Documentation may or may not
be on the magnetic media.

Media {Service Charge Code): 2400' Magtapes (PB)

Format: VMS/Backup (Blocked at 7952)

38

Keywords: Symposia Tapes - V~S
Operating System Index:
VAX/VMS

February 6, 1984

new
11-685

INDENT/BASIC-PLUS-2 Programming Templates

Version: Vl.0, October 1983

Author: Janet Scherer et.al., North Shore Sanitary District,
Gurnee, IL

Operating System: RSTS/E V7.2

Source Language: BASIC-PLUS-2, INDENT

Memory Required: 32K

Other Software Required: RMS File Support

Special Hardware Required: VT52 or VT100 (latter preferable)

This package, which consists of both templates and utility
subprograms, may be used to write data entry/etlit programs in
BASIC-PLUS-2 with INDENT as the screen handler. The templates
include subprograms which will add, update, inquire about, or
delete a single record from an RMS indexed file; update entire
forms; or update an individual field (allowing the programmer to
insert additional validation and/or file lookups). These
templates MUST be modified to meet the needs of your own
application.

Any of the above templates may call one or more standard utility
subprograms. Utilities include: one subprogram for each RMS verb
(e.g. GET, PUT); one subprogram for each of your common
•end-of-screen• prompts; a subprogram for any FINPT call; and a
subprogram for any FUPD call.

Templates for the INDENT screen definition, .CMD and .ODL files,
and some programmer aids are also included.

Note: Probably minor modifications needed for RSTS/E va.0.

Restrictions: Should use COTREES for the overlays.

Documentation on magnetic media.

Media (Service Charge Code): 600' Magtape (MA)

Format: DOS-11

39

Keywords: Tools - Application
Development, RSTS BASIC
Operating System Index:
RSTS/E

February 20, 1984

new
11-677

DISPLY Enhancement

Version: va.01, October 1983

Author : Ben Ethridge

Operat ing System: RSTS/E V7.2

Source Language: BASIC-PLUS-2

Memory Required: 32K

Other Software Required: Digital Equipment Corporation's DISPLY
Program V7.2

This program performs the following functions:

User defined keyboards are sent messages from the DISPLY program
if user defined warning levels are exceeded. For example, the
user has told the DISPLY program to warn keyboards 40 and 45 of
any irregular system static. Also, the user has set the disk
space warning level for device "DBO:" to 5000 blocks. If the
DISPLY program sees that the free disk space on DBO: has dropped
to 4000 blocks it sends a broadcast message to keyboards 40 and 45
giving the date, time, the message:"Disk DBO is at 4000 Blocks"
and a warning bell.

Actions are performed by the DISPLY program if certain warning
levels are exceeded or certain conditions are met when the DISPLY
program checks the system statistics. For example, the user has
told the DISPLY program to hold shutup if account {1,50] is still
online when shutup is run. If the DISPLY program sees that shutup
is running and [1,50] is online it changes the priority of the
shutup job to -128. It further sends all user defined keyboards a
message that [1,50] is online and shutup has been suspended.

The user may enter special"@" commands to force the DISPLY
program to detach and process the"@" command file. This gives
the user the ability to run any program the user desires from the
DISPLY program. For example, the user has predefined the "@ut"
command to mean "Log into the System Account and Run the Utility
Program."

Documentation on magnetic media.

Media (Serv i ce Charge Code): 600' magtape (MA)

Format: DOS-11

40

Keywords: Utility - System
Management, RSTS - Utilities
Operating System Index:
RSTS/E

RUNOFF for RSX-11 and RSTS/E

Version: S1.4, October 1983

Author: Charles H. Spalding III, Adept Technology, Inc.,
Mountain View, CA

Operating System: IAS, RSX-11~, RSTS/E

Source Language: MACRO-11

Memory Required: 10KW to 14KW

RUNOFF greatly aids the preparation of documents and manuals.
Some of the facilities provided by the program are: automatic
line fill and right margin justification, hyphenation, section
labeling, pagination, positioning of tables and figures, and
creation of tables of contents and an index.

This version of RUNOFF is an update and enhancement of an earlier
DECUS library version. (It is not, however, derived from DECUS
No. 11-530. In particular, this version does NOT run under RT-11,
nor does it support the •transparent string• feature of that
version.)

This program includes several features for producing documents
which are to be copied on both sides of the paper. Other new
features include the following: the ability to combine multiple
input files; up to three tables of contents can be produced (e.g.,
Contents, Figures, and Tables; the Contents table can be
automatically generated); subentries can be recorded in the index;
the index buffer self-expands as required.

Changes and Improvements: Many bugs have been fixed and several
existing features have been enhanced. The user manual has been
extensively updated, including descriptions of all the new
features.

Documentation on magnetic media.

Media (Service Charge Code): Write-Up (AA), Manual (EB),
600' Magtape (MA)

Format: DOS-11

41

Keywords: Text Manipulation,
RUNOFF
Operating System Index:
RSX-11/IAS, RSTS/E

February 20, 1984

iligital ®ff rra ilattuu.rmrut ~rmiu.ar

Digital 's Educational Services is offering a
seminar titled, "Software project management for

small to medium sized projects." The three day
course will be of interest to anyone responsible

for software purchase, coding, usage,implernentation,
management or maintenance.

Seminar leader John Rakos will be teaching project
managers a successful method for designing and

implementing software on micro and mini Digital
computers. The complete seminar will be based on
case studies from the instructor's thirteen years

of experience in software project management and
the computer training business in projects with

Digital, Bell Northern Research Laboratories, and
for the Canadain government. Several workshops in
desigining projects from start to finish will be

presented. Mr. Rankos' expertise lies in bringing
software project management tehniques previously "--

developed for mainframe computers to the world of
mini and micro computers, where these techniques

are just as necessary.

Seminars are scheduled for San Francisco, Chicago
New York City and Washington D.C. For information

or to register, contact Educational Services in
Bedford, Massachuseetes, at {617) 276-4949.

42

How Do You Feel Today

@ @l @ @ 0
ANlCIOCJ$

(9

1F··\-.
/ ~ 0 \

i
i -.. ___ /

~
(- - ' •. - - :
\. - ,I

43

Hor

/\'1 r SCH 1,1ous

c::::::::,

©

e

~)
\.~ /
J E'A/ou~

0

'IDtttas tqe Nigqt ~f nrr ~tart ll_p
'Twas the nisht before startup

And all throush the shop
Not a Prosram was workin~

Not even a lookup.

The coders huns b~ their VT100s in despair,
With hoPes that a miracle soon would be there,

The users were nestled all snus in their bedsY
While visions of rePorts danced in their heads.

When out in the coffee room there arose such a clatter,
I sPrans from m~ cubicle to see what was the matter.

And what tom~ wonderins eyes should showuP,
But a super coder, in his hand a DECUS coffee cuP,

His resume' showed he'd been hackins for seasons,
He turned out clean code that used the latest version.

More ra P id than easles, the Prosrams they came,
Wi th whistles and bells and 6 letter discriPtive names:

RUN RECADD
i:;:UN MTHEND

RUN INCWRY
RUN YEREND

RUN UPDATE
F-:UN BAT JOB

His eyes were SlassYr his bods Pale and leany

RUN DELETE
RUN COMPLT

F ro m nishts and weekends in front of the screen .

A wink of his e~e, and a twist of his head,
Soon Save me to know I had nothins to dreac.

He s Poke not a word, but went straisht to his work,
Turnins specs into code, then turned with a Jerk,

And lasins his finser on the <return> ke~ ,
The ssstem come UP and ran Perfectl~.

UPDATE updated, and DELETE, it deletedr
And when he ran COMPLT, the whole thins comPleted.

He tested each whistle, he tested each bell
Not once using ON ERROR GOTO, the whole thin• ran swell.

The testin! was finished, the system concluded,
The user's last chanses were even included.

He Picked UP his check, and took his DECUS coffee cup,
And when off to work for a friend at a start-up.

We sisned off the s~stem, and turned it all in,
and waited for the comments and Praise to besin.

But the user rePlied with new reGuests and the taunt,
"It's exactllY what I asked for, but not what I want.•

~
~ DEaJS

US. CHAPTER 44

