
~
CDECUS

US CHAPTER
EASl(l

THE NEWSLETTER FOR THE BASIC SPECIAL INTEREST GROUP

April 1983 Vol. 4 No. 1 (Part 2}

THE NEW BASIC FOR THE DEC PROFESSIONAL 350

By Artie Alvidrez, Software Project Leader, Ross Systems, Inc.

•Hoss Systems, Inc., a California-based timesharing and Software producing company, was selected in 1982 as one of the
"software producers" for the new PROFESSIONAL 350 microcomputer developed by DEC. The opportunity to put a major
software application on this new system provided the company with one of the first exposures to the new BASIC language,
and it proved to be quite an experience for us.

Our application involved a financial-based decision support system called MAPS (Management Aid for Planning Strategies),
a software tool for the PDP-11 and VAX computers which has been in use since 1975. The package consists of a number of
separate tasks written in both BASIC+2 and PASCAL. Development of the software to run on the PRO 350 called for the
compilation and task building of the source on the VAX using DEC's PROFESSIONAL TOOL-KIT, downloading to the PRO
via the unique communications interface provided for the PRO, to eventual running and testing on the micro. It was a time

consuming cycle, enhanced by the availability of a new type of BASIC compiler for development called TOOL-KIT BASIC.
This new BASIC appeared to us to be an interesting merging of BASIC+2 for the PDP-11 and VAX-11 BASIC. As far as we
could tell, this TOOL-KIT BASIC contained the best of both worlds and much more . It allowed for the declaring of specific
data types I ike V AX-11 BASIC, and included al I built in functions of both types of BASIC. Like the VAX, it allows the use
of equivalent-like functions such as the string functions POS and INSTR as well as SEG$ along with LEFT, MID, and RIGHT.

But included in this BASIC was the availability of LABELS, the use of line continuations without the need for ampersand
backslash combinations, u~e of case-statements and other constructs such as the 0TH E RWISE, EN D-1 F, and ITERATE. Built
in to TOOL-KIT BASIC is the availability of RMS-11 for handling all file 1/0.

Even though we developed our application on the VAX, the TOOL-KIT compiler commands looked just like BASIC+2 on the
PDP-11 rather than DCL. Modules were fetched using the OLD command, and then compiled with switches like /DOUBLE,
/WORD. or /DEBUG. Compile time was very slow, much slower than it would take on a PDP-11. Since both the PRO 350
hardware and TOOL-KIT software was in field-test stage, we discovered errors in the compiler which made development a

little more frustrating than we would have liked. The support team at DIGITAL suggested that we use the /MACRO switch
for our basic compiles in order to generate a MACRO assembly source which could then be re-assembled into an object module
using the MACRO/RSX command in DCL. In order to create a task, the TOOL-KIT included an RSX-11 Task Builder which
necessitated the use of .CMD and .ODL files for the creation of a task. The .TSK file could then be downloaded to the PRO

and finally tested. If errors were found here, the cycle had to be repeated. Happily, TOOL-KIT BASIC includes a BASIC+2-
like debugger, but if your task image exceeded 24K you were out of luck.

After months of deve 1opment, we finally succeeded in producing the first major application for the PROFESSIONAL 350,

a menu-driven financial modeling tool for use in the business environment called MAPS/Pro .

Copyright © Digital Equipment Corporation 1983
All Rights Reserved

It is assumed that all articles submitted to the editor of this newsletter are with the authors' permission to publish in any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
.:ditor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

STATIC INITALIZATION

OF

BASIC PROGRAMS

- or -

HOW TO SAVE PROGRAM SPACE

HOW TO SAVE EXECUTION TIME

By

Joe Mulvey

BASIC Language Development Manager

for RTL & SML

4

Tables

!nit
Code

Program

DATA
Stmts

o CONCEPTS OF DYNAMIC AND
STATIC INITIALIZATION

o HOW IT WORKS: ADVANTAGES OF
STATIC INITIALIZATION

o HOW TO DO IT YOURSELF

o SUMMARY

"DYNAMIC" OR "RUN-TIME INITIALIZATION"

DEFINE VALUES, DATA STRUCTURES

IN PROGRAM BY ARITHMETIC

OR STRING ASSIGNMENT EXECUTION

RUNTIME STATIC
INITIALIZED INITIALIZED

+------------------+ +----------------+
I DIM .. . I
I COMMON/HAP .. . I
I DECLARE .. . I
I- - - - - - - I
I READ ... I
I assignments I
I- - - - - - - I ----->
I I
I I
I I
I - - - - - - - - - I
I I
I I
+------------------+

0 ALL BASIC

0 COSTS SPACE, TIME

5

I DIM ...
I COMMON / HAP
I DECLARE ...
I- - - - - -
I
I
I
I
I- - - - - -
I
I
I
I

...
- -

- -

I
I
I
I
I
I
I
I
I
I
I
I
I

Tables

Program

SAVED
SPACE

+----------------+

0

0

SOME MACRO/BLISS

SAVES SPACE, TIME

0

0

PROGRAM SECTION
(PS!CT)

NAMED SECTION OF TASK MEMORY

POSSESSES ATTRIBUTES RECOGNIZED
BY LINKER

o CONTENTS OF PSECT "CONTRIBUTED" PROM
.OBJ'S AS THEY ARE ENCOUNTERED BY
LINKER

HF.CT •x• 1

r---------7,
I I
I- - - - - - - - - - - -I
1 I
I I cs
1 1
I- - - - - - - - - - - -I
I I
I I
I I

--------+

ATTRIBUTES COM! FROM 1

♦- --------------+
I lll MAP (X) AS• 12 I PROGl .BAS
1---
I 21 MAP (X) BS• 24 PROG2.BAS
I
I 31 MAP (X) cs. Jfi PROGJ.BAS
+

---------·-------------------1-----------------------·"· --.. _ ... __ _

PSECT ATTRI8UTES1

0 USED BY LINICERS

o LOCAL/GLOBAL

0

0

ABSOLUTE/RELOCATABLE

READ-WRlT!/REAO-ONLY

8

BASIC (AMO OTHER LANGUAGES) DEFINES

DATA STRUCTURES USING PS!CTS WITH
ATTRIBUTES 1

GL08AL

RELOCATABLE

RUO-WRITI!:

OVERLAY (IMPORTANT I)

DATA

A:

MODULE A:

OVERLAY ATTRIBUTE1

FIRST OCCURRENCE or PSECT DECLARATION

IN EACH ,OBJ CAUSES ALLOCATION TO START

AT P5ECT RELATIVE ADDRESS 8

.PSECT FOO O~, ••• ,PSECT FOO OVR,,,,

A

Bl:

WHEN MODULES A,B, ANO C ABOVE ARE

ASSEMBLED ANO LINKED .TOGETHER,

LABELS A, Bl, ANO C REFERENCE THE

SAME LOCATION IN TASK MEMORY

{
+----------- --+ J I I
I I
I- - - - - - - I
I I
I I
I I
I- - - - - I
I I
I I
I I
+--------------------+

B

PSECT NAME MUST CORRESPOND TO

COMMON OR MAP NAME

IN THE BP2 PROGRAM.

C:

MODULE C:

,PSECT FOO OVR, •••

C

MAP (FOO) • , • . PSECT roo RW,O,GBL,REL,OVR

P&ECT MUST BE DEFINED
APPROPRIATELY IN TASK OVERLAY

STRUCTURE (.OOL) TO BE
ASSOCIATED WITH
BP2 MODULES THAT

REFERENCE SAME PSECT

9

CORR!:SPONDl!:NCE OP' BASIC DATA TYPES
AND MACRO DECLARATIONS

INTEGER DATA TYPES

MACRO DIRECTIVE SYSTEM SPECIP'IC

+-~:=--7
~-~::: _____________________ _ _:~::~-~value> ------------l------------------7 ~-~~~D ______________________ :_.woRD_<value> _ J _________________

1
I LONG (2 WORD) I .LONG <value> I VAX-ll MACR0-32 I
I I .WORD <low-order value> I POP-ll MACRO-ll I
I I .WORD <high-order value> I I
+--- +

CORRESPONDENCE OF BASIC DATA TYPES
AND MACRO DEC LAAATIONS

FLOATING POINT DATA TYPES

TYPE MACRO DIRECTIVE SYSTEM SPECIFIC

+--·----------------- ·-------------+ I SINGLE I .Ft.OAT <value> I VAX-ll MACRO-32 I
I I .FLT2 <value> I PDP-ll MACRO-ll I
1---------------------------1----------------------------1-----------------1
I DOUBLE I .DOUBLE <value> I VAX-ll MACRO-32 I
I I .FLT4 <value> I PDP-11 MACRO-ll I
1---------------------------1---··------------------------1-----------------1
I G-FLOATING (VAX ONLY) I .G FLOATING <value> I I
1---------------------------1---- -----------------------1-----------------1
I ff-FLOATING (VAX ONLY) I .H FLOATING <value> I I
+-------------------------------- ---+

CORRESPONDENCE OF BASIC DATA TYPES
AND MACRO DECLARATIONS

MISCELLANEOUS DATA TYPES

TYPE MACRO DIRECTIVE:

+---+ I PACKED DECIMAL (VAX ONLY) I .PACKED <value>,<symbc,l> I
+---1
I STATIC STRING I .ASCII /string data/ I
I I .BLKB <I of characters> I
+---+

12

SUMMARY

0 SAVE PROGRAM SP.a.CE

- NO DATA STATEMENTS

- NO "TEMPORARY" STORAGE

0 SAVE EXECUTION TIME

- NO VARIABLE .a.SSIGNMENT

- NO READ STATEMENT

SUMMARY

o USE MACRO/BLISS+ LINKER

- CAN BE AUTOM.a.TEO

- REQUIRES SOME EXPERTISE

- CAN USE BP2 BUILD COMM.a.ND

13

BP28LD for 8ASIC-rLUS•2:

o "•• ••o•ndad and eaolan~t~rM BP2BLD dl~loque

0
Allows you to tal<e I d.,•,wlt lnstall1tion

0 Provides on•llne HELP In re1pon1a to

0 SuMMarlres the options vou selected

I ?

0 Allows vou to c...,_noe answer• durino the dlaloque

fll" Of selected option• 1ut0Metle111y
o Gen•rat•• COMMand

0 Inetella apeclfle 8P2 utllltlea

o Uod1te1 BASiC•PLUS•2

BP2BLD tor version 1.b

♦-- ♦
B1alc Plus Two ouild Version ~l.b0
Inout device <MM~:> ~Ml:
CCL/MCR Ne~e <BP2> EIS
Default MISEG/LlBR for BUILD <EISCOM> NONE
Soeclfy Location of Disk Library <NO>
Uae 8P2 Resident Library <NO> YES

Absolute Address - 6P2 Library<???> 352
Soeeify Location BP2 Res Lib <NO>

Build 8P2 Utilities <NO>
Specify Location of Utllltle1 <NO>
CustoMIZe only 7 <NO>

♦-- ♦

BP2BLO for Version 2

♦-- ♦ I
~hat device la the distribution medium mounted on <MM0:> (SJ:

Do You ~•nt the default lnst•llation <YES>
~h•t neMe do you went to use to Invoke 8P2 <RP?>
Here is• 1ummerv of the OPtlon1 you have selected:

Do You wl1h to cha~o~ any of your answer ■ <Nn>
The 8P28LD dielooue 11 coMolete.
The fnsta11etion wl 11 take •hout an l hour to co,.plete.

. I

. -- --0·------- ♦

16

NEW BPZ INSTALLATION FEATURES

♦---♦ I New Re ■ fdent BP2RES Ind nr2s"L1
I Llbrel'le ■ I One, hoti,, or r,one I

1------------------1--1 I Opt f one 1 I RUN, LOAD, Md I
I Run Suoport I z,..,edhte "od<! I

1------------------1--1 I New Choices Link Run ■ uoport with BPZRES?
I Defeult for r~sldent llbl'ary?
I fn1tall Re1equencel'?

ln1t111 Du•P Analyzer? (RSTS)
l Device and account for co•pller .ork ftle1? I

:------------------1------------------------------------~-----------t
I New Default ■ Date tv~•
I Date tyoe atze
I CROSS.REFERENCE: ~EY•OROS
I SYNTAX.CHECK
I FLAG: OECLINI~G
I Ll1ttng page length end wloth

♦---♦

CLO BP2BLO

Use BP2 Resident Library <NO>

Do you went to tn1ta11 8P2RES <NO>
Do you want to tn1ta11 8P25~L <NO>
"hich 6P2 l'etfdent lfbrel'Y do you went as th• d~feult <NONE>

OLD BP28LO

Build BP2 Utilttt111 c'lO>
Soecify Location of Utflittee <NO>

,-.f,. BP2BL0

Oo you went to ln1tell the 8P2 Reseouencer <NO>
Enter the device end eccount for the ~P2 Re ■ eouencer <LB:[l,54}>
Oo vou want to Install the BP2 Dump Analyzer <NO>
Enter the device anrl account for th• BP2 Dump Analyzer <SY:>

17

♦-------- ♦ ♦-------------- ♦
♦---------- ♦

■ sa> I flASIC on I ... ,.
' VAX/VHS I I

♦---------- ♦ 0ASIC BASIC

♦---------- ♦ Ua•r's I BASIC on I Ref•renc•

·••> I RSX•11H/ I 11:2::>

Guld• I H•PLUS _, He,,vel

♦----------♦

♦---------- ♦ z ■ a> I BASIC on I ••=>
I ASTS/E I

♦---------- ♦
♦-------- ♦ ♦ --------------+

Th• BASIC User'• Guld• contain• 1anguao• usage
Information common to aJl thr•e 1y•tems:

o Elements of• BASIC Proorem

o Simple I/O and PHS Fil••

o Program Control

o Data D•flnitlon

o Functions end Arrays

o Formettlno OutPut with PRINT USING

o Compiler Olrectfve1

o Reaerved Keywords end Coding Conventions

BASIC on VAX/VHS Systems lnclud•• lnform•tion on:

o Getting atarted end almole DCL commends

o Compiler command, end oualiflers

o OCL commenos end ouellfler1

o Creating end using subprograms

o Using th• VAX•!! Symbolic Debugger

o Using libraries end shereeble images

o U1ing sy1tem service• end RTL routines

o Using new VAX•\! BASIC features

o ASCII eodea and data definition

20

♦------ ♦

p

0

C
k
e
t

===>
G
u
I
d
e

♦------♦

For,.•t (old)

6ASTC on RSX•IIM/M-PLUS Syste•a and dASIC on
RSTS/E Syate•• Include lnfor•atlon onl

o Getting atarted and sf•ole co.,•ands

o Co•ollar co•manda an~ qualifier•

o Proora• aeg•entatlon and optimization

o u~lng th~ 8ASIC•PLUS•2 Debugger

o Using libraries and 8ASIC•PLUS•~ utilities

o Comoile•ti•e end run•tl•e error •essaoes

o ASCII codes end data definition

The BASIC Reference Manual de ■ crlbea:

o Proor•• ela•ents and structure

o Co•oil•r commends and directives

o Stete~•nta and functions

o 8ASIC•PLUS•2 debuoger co.,•ends

o Reserved Keywords and Coding Conventions

+---,

COM(MONJ ((co,.•na"')J (det a•tyoe)

nu.,•vbl
1tr•vbl [:iint•exol
nu.,•arr(nu••cnst(,nu••cnstl)
atr•arr(nu••cnst[,nu•-cnst])(:nu••cnstl ►
FILL•ltem }

(••• J
[••• J
I.,. l
[...]
C. • • l

~---·

21

Record Structures in VAX-11 BASIC V2

By

Torn Benson

24

0

0

0

0

0 kECORU te■platea
a.:.ate■ent.

defined by the IIECOIID

o 4 RECOkD na■e can be used wherever a BASIC
da.:.a-type keyword 1• valid.

o RECORD data structures can be co■poaed or
variables :or any valid BASIC data type or •ther
IIECOIIII types.

!"eco!"d-naae is the na■e or the data st!"uctu!"e.

oa.:.a-type is a valid BASIC data-type keywo!"d,
o~ anothe~ ~eco~d-naae.

component-na~e is a variable, a!"ray, O!" FlLL
ite■•

Each line or a r ■co!"d block can
optional l1n~ number '

1<.,u RECORD EMPLOYEE
LOt;(i [KP NUMBER
STRING FTRST NAKE • 10
STRING LAST HAKE• 20

ENO RECORD EHPturEE

nave •"

1000 DECLARE EMPLOYEE EKP_REC_l, EKP_REC_2

I
i
25

RECORD reoord•n■■e
(data-type oo■pon■nt-na■e, ••• t , ...

END aECORD (record-na■eJ

RECOkO TEMPLATES all~cate no storage;
define the name a~ a data structu!" ■•
TE11PLATE as a dat.a-type in a ~ecla!"ative
decla!"es a RECORD INSTANC~, for which
allocated.

they only
Usinll the
state■ent

sto!"age i.s

Only ass11Lnment and co■parison (wquality ano
inwquality) ope!"ations a!"e allowed on ent1!"e
!"ecoras. Ele■wntary components may be useo as
no!"mal bA~lC p!"ogram variables. :hey a!"e specified
by. the RECORD instance na■ e and the component na■e,
•~pa!"ated by•::•.

DECLARE EHP_WAGE_CLASS EHP

[NPUT •wage Class•; EHP::WAGE CLASS
5ELECT·EHP::~AGE CLASS -

CASE "A" -
INPUT 'Rate";EHP: :HOURLY WAGE
INPUT 'kegular pay';EHP::REGULAR PAY Y:D
INPUT •Overtime pay' ;EHP::OVEkTIHl_PAY_Y:lJ

CASE "b"
INPU: 'Salary';EHP: : SALAklED: :IEakLY SALi,kY
[!<PUT •Pay YTL' ;H,P: :SALAk[ELi:: P,H_Y'!'ll

Ci<5E •c•
U1PUT 'Salary' ;EHP: :EXECUTIVE:: YEARLY SaLAkY
INPUT •P~y ITL•;EHP::EXECUT[VE::PAI_Y'!'D
[NPUT •Expen~es";EHP: :EXPEl<SES_Y:D

ENO SELECT

10 RECORD RECTYPE
GROUP GROUP 1

lHTEGER-A
GROUP GROUP 2

Cl,TEGEk-il, C
END GROUP GROUP~
GROUP GROUP s (TU)

lNTEGER-D, E
ENO GROUP GROUP 3

ENO GROUP GROUP 2 -
ENU RECORD RECTYPE -

LiECLAkE RECTYPE REC
PkrNT REC::GROUP1::GROUP;/::B, REC::C
PRINT REC::GROUP1::GR(JUPj(l:i.)::l;
PRlN: REC: :GROUPj(1~): :E

28

Elliptical references:

o The RECORD instance must always be specified.

o Any dimensioned GROUP name must always be
s.-ecifi,.d.

o Any other intermediate component name may be
omitted.

o The final component n.me must be specified.

10 RECOR!; COMPLEX
RHL RE
REAL IH

Ehli RECORD

20 D~F COMPLEX ADO(COHPLEl OP1, OP~)
ALJLi: :RE : OP1: :RE + OP2: :RE
i,LJLJ:: IH : OP1:: lH + OP2:: CH
El,D UEF

jU LiECLAkE COMPLEX A,b,C

~O 11,PUT "A : ";A: :RE,A:: lH
l11PLiT •r; • ";8::RE,b::LH

C : A J.;D (A, IJ)

RECORD JPl ITEM DESCR1n-0R
WORD BUf"FER-L.ENGTH
WORD ITEH CUDE
L.ONc; BUFF!R ADDRESR
I.ONG RETURN-L.ENGTH hUDRESS

END Rt::CORD JPI_TTEH_DE~r: '.l lPTOR

RECORD JPI tTEH LIST
JPI 1rrH DE!CRIPTO~ JPl ITEH(2)
I.ONG L.ISf TERMINATOR -

END RECORD JPf_lTEH_L.l~'!'

UECLARE JPI_lTEH_LlST l'!'EHS

lTEHS JP{ ITEH(O) ITEM CODE
[TEMS JPCITEH(Ol BUFF'E'R LENGTH
ITEMS JPCITEH(O) BUFF ER-AIJl>R ESS
ITEM!:i JPl:lTEH(O) RETURN :LENCi'!'H_AODRESS

lTEHS JPI l TEH(1) ITEM CODE
ITEMS JPl-lTEH(l) BUFFEk LENGTH
ITEMS JPl-lTEH(1) BUFFER-ADDRESS
ITEHS JPr:rrEHC, l RE'!'URN:LEIH,TH_AU)kESS

IT~HS : :JPl l:EM(2); :ITEM CODE
I:EHS::JPI-l'!'EH(2): :BUFF'E'R LENGTH
ITEMS:: JP J.-t :EH(~): : BUFFER-A Dl.ikESS
ITEHS::Jr1:1TEH(2): :RETURN:LENGTH_AuURESS

l:EHS::LIST '!'ERHINA'!'OR : 0

29

: JP1$ PRCNAH
= LEN 1°USER NAME)
= LOC (USER:l,AHE)
: LOC (USER NAME LENGTH) - -• ,. JP1$ ACCOUNT
= LEN lACCOUNT IIAME l
= LOC (ACCOUNT-NAME)
= LOC (ACCOUN'!':LE!lc;TH)

=, JP{$ CPU'l'IH
= 4 -
: l..OC (CPU TU-IE)
: l,.OC (CPU::lHE_LEIH,Tn)

The CC0 directory hierarchy can be created and
■aintained usin& the COO Dictionary Mana1e■ent
Utility (OHU). It allows you to

o Create dictionary and
sub-dictionaries.

o Delete dictionary
sub-dictionaries, and objects.

director in,

o Rena■• COD entries.

The Data Definition Language Utility (COOL) allows
you to enter record definitions and new dictionary
oirectories into the CDD.

o Create a CDDL source file containing the record
definition, using an edito~.

o Invoke COOL to insert the definition into the
dictionary.

DEFlhE RECORO CDD$TOP.CORPORATE.AOORESS REC

ENO

UESCkIPTION IS -
t• Contains standard format for addresses •1.

ADDRESS STRUCTURE.
STREET OATATYPE IS TEXT

SIZE IS 30 CHARACTERS.
CITY
STATE
ZIP CODE

-NEW

OLD

OATATYPE TEXT SIZE
DATATYPE TEXT SIZE

STRUCTURE.
DATATYPE IS UNSIGNED
SIZE IS ij DIGITS
BLANK WHEN ZERO.
OATATYPE IS UNSIGNED
SIZE IS 5 DIGITS.

ENO ZIP CODE STRUCTURE.
ENO ADDRESS-STRUCTURE.
ADDRESS_REC.

30.
2.

NUMERIC

NUMERIC

o List entriea, their attribute,, and history
lists.

o Make a backup copy of the dictionary.

o Copy directori•• within tbe dictionary.

DEFINE RECORD path-name

[DESCRIPTION [IS) 1• text 1 /],

ENO l (path-name ll [RECORD),
{ ('liven-name l l

To access a COD record definition from VAX-11 BASIC, use

SINCLUOE SFROH SCDD cdd-path-name

For example,

SINCLUDE SFROH SCDD •CDD$TOP,PERSONNEL.SERVLCE.SALARY_REC"

Or, if CDDSOEFAULT • CDO~TOP,PERSONNEL,

SINCLUDE SFROH SCOD •SERVICE,SALARY_REC•

32

o /SHOW:((NOJCDD DEFINITIONS)
- •peoifres whether or not to list

record definitions extracted from
th• COO in tha l1st1na f1la.

o /(NO]AUDIT[: lstr-lit}]
[: { file-speo} l

- spacifi•• what.her or not to lo&
audit entries in the CDD for record
de(.1nit1ons extracted from it.

ln addition, t o the str - lit or file-spec you
specify, BAS IC includes tha following infor111at ion
~n audit entries :

o The access was i n a SASlC program

o '!'he access was an extnaction (COMPILE)

o The name of the progr•m aodule that request ed
the ex t raction and the date and t i me of tne
request .

DEFINE RECORD basicdef
DESCRIPTI ON rs

1• This is an example recor d containing 1/
/ 1 data-types native to VAX-11 BASIC •1 .

employee STRUCTURE .
street DATATYPE TEXT SIZE 30,

SIZE Jll.
SIZE 2.

city OATATrPE TEXT
state DATATXPE TEXT
zip_code STRUCTURE.

new DATATYPE PACKED NUMERIC SIZE 4 DIGITS.
old DATATYPE PACKED NUMERIC ~IZE 5 DIGITS.

EhO zip code STRUCTURE.
emp number DATATYPE
wage class DATATXPE
salary ytd DATATYPE

END employee STRUCTURE .
END basicdef.

33

IS SIGNED wORD.
TEXT Sll.E 2.
IS D_FLOAilNG.

Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl

define record cdd$top.ba•io.1nte1er•
description is

end

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

t• Test of selected intea;er data-type• •1.
baaicint structure.

11y_byte datatype is sia;ned byte.

■y_ubyta datatype is unsigned byte.

■y_word datatype ; is signed word.

my_uwo!"d datatype is unsigned word.

■y_long datatype is signed longword.

my_ulong datatype is unsigned l ongword.

end basicint st.rue ture.
integers.

f,include T,fro11 Jedd 'integers'
I Test of selected integer data-types
RECORD BASlCINT I UNSPECIFIED

BYTE KY BYTE I SIGNED BYTE
GROUP KCUBYTE . I UNSIGNED BYTE

BYTE lrYTE_VA:1.UE
END GROUP
WORD KY WORD SIGNED WORD
GROUP KY-UWORO UNSIGNED WORD

WORD WORD_VALUE
ENO GROUP
LONG KY LONG SIGNED LONGWORD
GROUP KY-ULONG. UNSIGNED LONGWORD

LONG
EIIO GROUP

roNG_VALUE

ENO RECORD

o If a non-iero SCALE is specified in a COD
definition Gf a fixed-point (integer) or
floating point field, BASIC reports the warning
•COOATTSCA, COO specifies SCALE for <name>.
llot supported•.

o If a BASE other than 10 is specified in the
definition or an integer O!" floating point
field, BASIC reports the warning •CDOATTBAS,
COD attributes for <name> are other than base
10•.

36

Cl
Ct
Ct
Cl
Cl
C 1
C 1
Cl
C 1
Cl
Cl

define record cdd$top.basic.funnyintegers
description is

end

/ 1 Test of quadword and octaword integer data-types •1.
basicint structure.

my_byte datatype 15 signed byte scale 2.

my_long datatype i:, :1igned longword ba:se 8.

my_quad lfat.atype 1:, signed quadWO!"d scale 5.

my_octa datatype is :1igned octawo!"d base 16.

end basicint structure.
funnyintegers.

lincluoe Jfrom Jedd 'funnyintegers'
I Test of quadword and octaword
RECORD BASICINT

integer data- types
I UNSPECIFIED

BYTE HY BYTE
LONG HCLONG
GROUP HY-QUAD

STRING ~TRING VALUE : 8
END GROUP -
GROUP HY OCTA

STRING ~TRING VALUE ; 16
END GROUP

END RECORD

I SIGNED BYTE
I SIGNED LONGWORD
t SIGNfD QUAD•ORD

SIGNED OCTAWORD

o lf a field of type BIT is not a multiple of
eight bits in length, BASIC signals the er!"o!"
"CDuBlTFLD, field (name> f!"Om coo has bit
offset or length".

0 lf a definition contains a field of
aata-type, BASIC signals the e!"!"O!"
data type specifi~d in COO fo!"
supportea".

37

the VIRTUAL
"CDUUNSOit':-,
<name> not

USING USEROPEN IN V2 BASIC

By

Stepnen Reilly

40

IITIODUCTION

- ••• 0~£1 clauae faaturaa
- Wbat 1a USEIOPEN 1
- Bow to uae USIIOPIN
- Uaeful hint ■ and warnin1•
- Wrap-up

NEW OPEN CLAUSES

- On VMS
- All type ■ of OPINe

- On lSTS/E
- Sequantial, lelative, Indexed
- Not virtual or ter•inal for•et fil••

NEW OPEN CLAUSES

- 1urrE1

- Sequential file• •ultiblock count
- Indexed and lelative fil•• •ultibuffer

- EXTENDStZI Nev for IP2 only
Function of the cluateraiae of the •ed1a on lSTS/!

- lECOlDTYPE Nev for IP2 only)
- LIST
- NONI
- ANY
- FOITIAN

IIW OPEi CLAUSES

- The nev cl••••• are u ■ ed with IMS filea only

- On lSl-ltM and lSX-llK-PLUS
- Sequential, lelati••• Indexad, Vi r t u a l

Kot T•r•inal for•at filea

KEW OP!N CLAUSES

- to 14StC-PLOS-2

'
- The clauaea wi ll not affect device specific OPEN■

10 OPEK "TI:" rot INPUT 4S rtLE 1 1%

NEW OPEN CLAUSES

DEFAULTNAME (Nev for IP2 only

OPEN "ACCT.DAT" AS FILI 11%, SEQUENTIAL FIXED,
DIF4ULTNAKI "St:11,IO]TEST"

41

- leaultant atrin1 ic SY:(l,IO(ACCT.DAT

- Alao u1eful becauae the channal 1• naaocia t ed with the LON.
tf the LUM ia •••iso•d to• diff•r•n~ devica and the
fila apac do•• not h••• an explicit device the OPEN wil l
u•• tba prawioua LUM eaaisnaent . (IP2 only)

BOV TO OSI A USllOPlN IOUTIN!

10 KAP (IUP) STllNG PILI_IUPFER • 80%

OPIN "DAT.DAT" AS FILI 11% , SEQUENTIAL VARIABLE, KAP IUP ,
USElOPIN USI

""
CLOSI IU

__________ ,,. _____________ , _____ .,., _________________________________ .,,. ___ ::,. Ool\Yl ,"1~

CALLING MECHANISM (-lls)

!'AB

RS---------->! I I 1--------1
• 1---------~-------I

I - I 2 I I -------1
1----1 1--------1
I !'AB Addr 1----.---1
I I 1---1
1-----1 i_:::_::::_~-~~~-~-1

1-------1
1---1
1---1 1---1 1--------1

___ al ___ . .,.,,., ___ , __ --------------••H"'l■-----"'-------·:-"'W-k•------·----------~tr..!W~l~M' .. :"'_...,,,,,,..,,,,ll'.".r." ~

;+

A SAKPL! US!lOPIN lOUTlN! FOR TH! lle

, TITLE USR

Thia routine will link a protection XAB to
the end of a linked llat of XAB1 10 that the
file will be created with a protection code different
from the default protection cod• for the disk it 11 on.

INPUT:
2(15) • Addre1a to the PAI
4(15) • Addre1a to the RAI

OUTPUT:
10 • the STS field of either the FAI or RAB

44

USR: :
;+

l $:

)$:

A SAMPLE OSElOP&N lOOTIN& FOi TR! Ile
!FF!CT:

The file ia created, a connect 1a done if no error• occured

11 - 13 are deatro7ed.

!XT!lllALS:

,MCALL
$GNCAL
$FBCAL
$UCAL

$GNCA L,FAl$11,1Al$1,XAl$1,MAK$1,$FICAL,$11CAL

A SAMPLE 0S!ROPEM lOOTIII! FOR THE 111

;+
Set the protection code for the XAB

PROCOD:
XAB$8 Ill$PRO

, IF OF RSX

X$Pl0 60942 (l,RW!D,l,R)
• IF!'

X$Pll0 40 Set pro'tection

• l!:IIDC
XAB$E

A SAKPL! llSE!lOPEN ROUTINE l'OR TH! 11 •

NOV 2(15),lZ ; Get FAI pointer

llallt down through the United liat of XAh (1t any) and
inaert the PRO XA!' at the end,

$FETCH !l3,XAB,R2 Get the ,l1 rs t XAB addr 1f any
BEQ 2$ Bl!. if none

SPl!'.TCN RI ,IIXT,R3 Get the next XAI on the liat
BEQ 3$ If non• left BR
KOV RI, R3 R3 . current XAB addreaa
BR 1$ Cont until done

$STORE IPROCOD,XAB , R2 St o ra our XU addre11 in the FU
BR 4$ Cont

$STORE IPR.OCOD,NXT,Rl Store our XAII addra11 in the Laat XAII

45

OD l11t

A 2•0 l:UKPLI or DSIIOfll

10 OPIM "ACCT.DAT" POI IIPDT Al, PILI Ill, SIQUIITIAL, UlllOPII SPOOL_PILI

CLOH IU

__ , ____ ., • ..,~r.;~ ...

A 2ND IXAKPLI or USIIOPIM

20 FUNCTION LONG SPOOL_FILI (PAI OUl_FAI, LOMG OUl_lAI, LONG CRAHN!L)

l!COID UI
STR.IHG FILL • 4
LONG FOP

IND U:COI.D

IXTIINAL LONG FUNCTION S!S$0PIN
IXTII.HAL LONG FUNCTION STSSCONIICT
!XTII.IAL LONG COISTAIT SS$; IOIKAL
!XT!I.NAL LOIG CONSTAIT fAl$K SPL
DICLAI.I LONC IKS_STATDS -

open file vith PAI
coaaect te file vith I.Al
norael return etatu•

___________ ,_ __ ~ N.":Matu

A 2ND IIAKPLI or USII.OPIN

OUI._FAl::rOP • OUR_FAl:1ro, 01. FA1$K_SPL

I opea aad conaact the file

RHS_STATUS • SYS$0PIN(OUR FAB

IF IMS STATUS AND SS$ NORMAL
THIii - -

RKS STATUS• SYS$COHNICT(OUl_lAI
ENO Ir -

SPOOL_FILI • lKS_STATUS

!NO FUNCTION

48

I Set the epool bit

IIITS

Doa't ••t cha locate ■ode bit la the lOP field of the tAI

- Could cauee iacorrect data
- Could aleo oeuee acce~ n violation oa VAi

- Don't uee the CTI, IKT and ttftr with IP2 US!lOP!N

- Ace••• Cr•ation aad r•vie•d data
- Null k•l'•
- Uh id
- luck•t eiziag

WlAP-UP

- le ■e ■ber the new clau••• of th• OPEN atate ■ent

- FOlTtAN argu■•nt pa1aing (for the -11•1) and the VAi atandard
pa1aing ••chania ■•

- Kake 1ure that bit oriented field• for either FAI or tAB
are treated aa auch

49

HOW TO · USI TR! t!KAP STAT!K!NT

- All data tJpea are allowed

- 001, ■ trios• allowed for FI!LD 1tateaeot

- All •erialtlea ill th• t!KAP atate■allt auat be datiaed 1D .th•
correepoadilll KAP DYSAKlC atata■aat.

10 KAP DYMAKIC (IUP) STtlNG 9Tt!IT, CITY, LONG %IP

BOW TO US! TH! REMAP STATEMENT

- The KAP DYNAMIC ■uat ha•e a correapoadiag atatic KAP

10 KAP (IUP) ,TtlNG PILL• 100%
KAP DYNAMIC (IUP) STRING STREET, CITY, LONG %IP

__ .,.. __ _

BOW TO USE TH! REMAP STATEMENT

- The atat1c HAP ■uat be lon1 aaoush to handle any element of
the HAP DYNAMIC

- String• lenstha dafaultad to aero

- All nuaarica are baaed on their data type langth

52

Z1i,

BUf

vu.-11 IIASlC

&UF

------------ ,,.

HOW TO USE THI l!HAP STATIH!NT

- At each invocation of a 1ubprosr•• (if, SUB and FUNCTION,
all l!KAP variable ■ ara pointing to the besinnin& of th•
buffer . (BASIC-PLUS 2 only)

- At each invocation of a 1ubprosra■ th• l!KAP variable•
are NOT ra-1nitial1&ed thi, 1, a r••triction in V2.
(VAX-11 BASIC only)

Execute th• l!KAP atat•••nt before th• a l!HAP variable
ia rafaranced.

53

IIK4P YS JIILD

lua vitb VZ of V4X-ll 1411CZ

- 20 ti••• fa•ter

- lun witb V2 of 14SIC•PLUS 2

• 2 ti••• fatter (ISTS/!

l!ASONS (VAX IASIC)

- PIILD ltateaent

- Kuat be looked up in ITL internal table

- FI!LDed variable bains aaaisn•d

- Looked up in lTL internal tabla

- Used so 1pace aa1ociatad to l/0 buffer not deallocated

WlAP·UP

- IIKAP atateaent

- Diaaection of a buffer

• Leaa run ti•• code
• Ko table look-up
- luff•~ addraaa deter■iaed at link ti••

- Ho apec1al converaion function•
- CVT$%

56

IIASO•S (IPZ)

- IP2 OTS

• IIK4P buffer addreaa daterained at tink tiaa
• FIILD buffer addreea deteraiaed at rua ti••

- fIILDad variable auat be cbecked

- See Lt aa1i1ned to dyne ■ ic apace

- Dee1111n apace and •• •1 1a to tbe buffe r

- Tbe KAP aeaociated with a l!KAP atateaent

• I• ra!arenced by a OPEN
- Juat a buffer area

- Deacriptora aoc be allocated if not referenced

- Coa■oa include file

USING BASIC-PLUS-2 V2 FOR THE
!

PROFESSIONAL

By

Stephen Reilly

57

FllATUUS

- RE DIRECT command

- N~ w dabugg•r coamand that will rad1ract all debugger I/0 to
the debugging terminal while &11 program I/0 i• unaffected

- Good if developing ~or•• - oriented applications

- CHAIN

- With 8P2 V2, on RSX-llK and RS X-llK+ the program to ba chained t<
no longer needs to be inatalled

- On the Profesaional, all tasks including those chained to must
be inotalled.

- EDITS(- ,1%) should not be used when processing 8 bit
character set

- The user Cask must have RMS

- Error messages printing on the Professional is done through
common routines that r,equire RKS .

- Error messages will look a little different. Any error
printed will be preceded by th,e error number.

- Af t er error message is pr i nted o ut, the user must type
the (RESUME> key . This c o ntinue• program execution for
continuable e r rors and exits applications for non-continuable
errors

60

- The Compiler

- Does not support the RUN and LOAD commands
- Does not support immediate mode ■ tatements

.... . _. ___________________ _

BUILDING AN APPLICATION

- Produced .CMO file:

SY:CT/CP•SY:CT/HP
UNITS • 15
ASG • TI:13 : 15
ASG • SY:5:6 : 7:8 : 9:10: 1 1 : 12
EXTTSK• 952
CLSTR•PBESML,RHSRES:RO

REQUIRED EDITING TO .CHO FILE

SY:CT/CP•SY:CT/HP
UNITS • 19
ASG • TI: I 3: I 5
ASC • SY : 5:6:7 : 8 : 9 : 10:11:12
EXTTSK• 952
CLSTR•PBESML,POSRES,RHSRES : RO

I
I

!
I
I

61

1--------1 1---------1
I I I Compile I
I Source 1--------->I
I I I I , ________ , 1---------1

I
I
I

,,v
I \

I \ 1---------1
I \ I Modify I

I \ Yes I CNO I
/Generate \ I files I
\ Command ,------>, I

\ files?/ 1---------1
\ I I

\ I I
\ I I

I I
!No I
I I

PRODUCED .OOL FILE

.ROOT B~SIC2-RHSROT-USER,RHSALL
USER: .PCTR SY:CT-LIBR
LIBR: • FCTR LB: [l, 5] PBEOTS /LB
@LB:[l,.5]PBEICl
@LB: [I , S] RH~ RLX

.ENO

REQUIRED EDITING TO .CHO FILE

• HNSBUF:0
• DHSBUF:O
• HH$8UF:O
• KLSBUF : O
• HSSBUF:500
• FLSSUF:O

DEFINE BUFFER SIZES
(4540) static single c hoice menu
(4540) dynamic single choice menu
(1000) multi-screen menu
(3410) help text/menu
(3100) message record buffer
(4310) file selection/speclficatl o n
for OOFIL and NEWFIL routine

WRITING BASIC-PLUS-2 PROGRAMS IN A COBOL-LIKE FORMAT

Bruce K. Snyder and Lori Vanderspool
North Shore Sanitary District

Gurnee, Illinois

ABSTRACT

The primary language of most of the programmers in our area
is COBOL thus making it difficult to .-f.iud a progr8-~er who
has a good knowledge of BASIC. Therefore, the District has
had to resort to hiring COBOL programmers and training them
in BASIC, To reduce the training time, the District has
experimented with writing its BASIC programs in a form that
is as close as possible to the structure of COBOL.

This paper shows a sample report program written in BASIC
PLUS-2 but which is written in a COBOL-like structure. Thus
all the data and report lines will have been pre-defined in
a data division. Using this technique, not only has it been
easier for beginning programmers to learn BASIC, but there
have been other benefits as well. Foremost, programs are
easier to maintain. Also, a systematic review process can

,be incorporated into the programming function.

Finally, data is presented showing that programs written with
this technique take no additional CPU time and are roughly
the same size as programs conventionally written.

REASONS FOR ADOPTING A
NEW PROGRAMMING FORMAT

Even though there are many computers manufactured
by Digital Equipment Corporation, it holds true that
moat of the programmers in the market still have
COBOL as their primary language, This makes it hard
to find qualified BASIC programmers. In many cases,
then, the District has had to hire COBOL programmers
and then teach them the syntax of BASIC. The disad
vantage of doing this is the lost time in having new
programmers learn another language.

Secondly, writing programs using a version of the
st..andard DEC template always resulted in programs
that appeared to take "too long" to write. Then,
once completed, the programs were very difficult to
verify as being correct since the code was hard to
understand. This same problem has also periodically
made maintaining the programs difficult.

Therefore, in addition to better design and manage
ment controls, a better format for programming had to
be derived. The above circumstances led to an inves
tigation of using some of the advantages of COBOL
as a formatting technique when writing programs in
BASIC.

It might be mentioned here that two reasons precluded
the District from converting outright to programming
in COBOL itself. First, all the previously-written
programs in the District had been written in BASIC
and it is easier to use only one language if at all
possible. Secondly, most of the standard software
from Digital is written in BASIC.

64

DESCRIPTION OF THE EXAMPLE PROGRAM

This section of the paper discusses the program that
has been provided as an example for future reference.
The discussion is presented in four sections corres
ponding to the four divisions of a typical COBOL
program. Note that the name of each of the four
divisions has been highlighted with asterisks. Each
subpart of a division, such as a section or paragraph,
has been highlighted with equal signs. Column nine
has been rel!erved only_ for backslashes and comment
indicators. Column ten is always blank. The above
practices are used to help the readability of the
program.

Identification Division

The Identification Division is the first part of a
COBOL program. Thus our BASIC program also starts
with such a division. Note that in the example
program all the lines in this division are comment
lines. There are separate lines to place the name
of the program, the author, the name of the firm,
the dates of the program, and a general description
and purpose of the program.

Environment Division

The next division of the program is the Environment
Division. The purpose of this division is to detail
programming practices that are unique to a particular
computer. Note that there are both executable and
comment lines in this division. The comment lines
list the computers that were used to write and com
pile the program.

The Special-Names statement is used to associate any
special escate sequences to variable names so that
if the code were to be transferred to another com
puter, only the lines in this part of the program
would have to be changed. The variable names could
remain the same.

Finally, the assignment of files to specific channels
is also done in this part of the program.

Data Division

The third division in a COBOL program is called the
Data Division. In this part of the program, all the
files, record layouts, and other variables used in
the program are "mapped out". The Data Division is
divided into two sections.

The first section is called the File Section. In
this section, the record layduts of all the files,
except the print files, are laid out. In the pro
gram given here as an example, there are three files
that are mapped. Note that the first line of each
file is a comment line that starts with "FD", which
stands for file description. The rest of the lines
for a file are executable MAP and DIM statements .
Note that, for the variables that are not strings,
the length of the variable is still listed as a
comment so that all the numbers in a map can very
quickly be added to verify the accuracy of the
program.

The second section of the Data Division is called
the Working-Storage Section . The miscellaneous
variables and accumulators used in the program are
first logically ~rouped. In the example program,
there are three such groups: general variables,
employee accumulators, and subtotal accumulators.
Each group of variables is placed in a map . After
each such variable has been mapped, the same vari
ables are assigned initial values through the use
of a LET statement. The combination of MAP and LET
statements thus have the same effect as the PICTURE
statement in a COBOL program. Note also that even
though some variables do not have to be assigned
initial values, this is done anyway so that every
variable format is both explicit and consistent.

After the miscellaneous variables have been mapped
and assigned values, the print record layouts are
then mapped and assigned values. The sample pro
gram has nine detail lines and four su1D111Sry lines
that are needed. Thus each one must be mapped and
assigned initial values. Note that there are two
differences for the print record layouts. First,
each such layout has two maps. The first map is a
detailed map showing each segment of a print line.
The second map treats the entire print line as one
variable. This is necessary since BASIC programs
cannot· have group fields in the same manner aa a
COBOL program. The purpose of having a generalized
map is to reduce the coding needed whenever a given
print line needs to be printed.

The second difference is that all the variables in
a print record layout llllSt be string variables.
This is helpful in properly aligning the report and
makes it easy to code directly from a printer layout
chart. Constant variables are assigned values with
the LET statements. Fields that should be blank
or will have values later assigned to them are at
this time assigned a blank status.

65

Procedure Division

The last division of a COBOL program is the Procedure
Division. This divisio•n contains the logic of the
program. Note that by coding a BASIC program in a
COBOL-like format we have greatly reduced the length
of the actual logic portion. This is the most impor
tant aspect of programming with this technique. All
the layouts of files and records as well as the ini
tial assignment of values to variables is coded apart
from the logic of the program.

This simple standard bas two profound benefits. It
first of all enables a lower-level programmer, or a
non-programmer, to do the coding of the first three
divisions of the prograom directly from a program
specification. After these three divisions have been
reviewed for consistency with the specification, the
program can then be passed along to a more senior
level programmer for the coding of the actual logic.
Thus, a shop can therefore better utilize each pro
grammer to the fullest extent of each programmer's
abilities.

Secondly, the simple fact of separating the data
from the logic insures that no time is wasted in
coding logic for the wrong layouts. It also has
a profound impact on the ease of coding and there
fore the future maintainability of the program.

Note that each paragraph has only one entry point
and one exit point except for where a reference is
made to a lower-level subroutine (or subprogram for
t hat matter). Except for the GOTO statement t ha t
refers the program to the END statement, the only
GOTO statements allowed are ones that call the same
line number as the GOTO statement itself is on.
All of these coding techniques help to make the
program easy to read and verify for accuracy.

'When it comes time for the program to print a series
of lines, the program first formats into the print
variables the values from any other variables that
need to be printed. Then, to print the series of
lines, all that is •needed is one print statement
with a separate clause referencing either the
generalized map for a given print line or the name
of a field that was initialized in the Environment
Division , for such printer control statements as
line feeds and form feeds.

COMPARISON WITH CONVENTIONAL
PROGRAMMING TECHNIQUES

'When the District first installed its payroll system,
the W-2 form printing program was written in the
conventional way using a version of DEC's standard
template . That version of the W-2 program used 262
CPU seconds and is 15KW in size, excluding the
run-time system. The version written in the COBOL
style used 271 CPU seconds and is 16KW in size.
Thus, there is very little difference, This has
held true for similar tests.

But, the important comparison comes in the savings
in programmer time . Programs written with this
technique can be written in half the time and parts
of the code can be written by programmers with less
experience. This can thus greatly improve the pro
ductivity of the shop.

1000

1100

1200

1300

2000

3000

3900

41Hi0

4900

*********************** PROCEDURE DIVISION. ************************ &

=::::.;::.;:: ::.::=::=~==-= :::.:=:: :.::.. ==-:: ... - INITIAL PARAGRAPH. ===~~~~~-~ =~ ===-,---, --- &

' \ ON ERROR GOTO 19000
\ OPEN "PR:PRI01.MST" FOR INPU'l' AS FII,E #PM%

,INDEXED VARIABLE
ACCESS READ

: ALLOt'l NOllE
MAP PRHJH'.

\ OPEK "~R:PRR06.NST" FOR INPUT AS FILE IPC%
,RELATIVE FIXED
,ACCESS READ
,ALLOH NONE

MAP PRR06H
\ OPEN "~R:PRI10.MST" FOR INPUT AS FILE IHS%

, INDEXED FIXED
, ACCE·SS READ
,ALLOW NONE
,MAP PHI10M

\ OPEN "LP:" FOR OUTPUT AS FILE #LP%

\ GET #PC%, RECORD 4%

\\ INPUT "ENTER YEAR ON W-2 FORMS <YY>", GEN.INPUT.YEAR$
PRIN'.i'

INPUT "ARE THE i:-2 FORllS LOADED IN LP: <Y/N>" i

\
\ GOTO 1100 IF LEF'l'(CV'1'$$(GEN.Q$,34%) ,1%) <> "Y'

PRINT

\\ INPUT "IS THIS A RESTART <Y/N>", GEN.Q$
IF LEFT(CVT$$(GEN.0Si34%) ,1%) = "Y"

THEN GOSUB 2301:J
ELSE GOSUB 4000

GOSUB 3000 UNTIL GEN.EOF$ = "Y"
\ GOSUB 5000
\ GOSUB 7000

CLOSE I% FOR I%
\ GOTO 32767

= 1% TO i21

GEN.Q$

Open Payi;oll
Master File

Open Payroll
Codes File

Open P~yroll
Historical
File

Open LP:

Get FICA
limit
Enter year
for which
W-2's are
to be run.

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

If forms are &
not ready, &
ask again. &

If restart
do that para
else do
regular read
Continue,
print last
f'l-2, subto
tal.
Close all
files and
finish.

&
&
&
&
&

&
&
&

&
&
&

RESTART PARAGRAPH. =====~=L=:~=L:L:=L====== &

PRINT
\\ PRINT "ENTER THE SSN APPEARING BEFORE THE LAST ";

INPUT "SUBTOTAL **NO DASHES**", GEN . LAST.SSN$
\ PRINT
\ INPUT "ENTER THE CONTROL NO. APPEARING ON THAT W-2",

GEN.W2CTRLNO%
\ GEN.W2CTRLNO% = GEN.W2CTRLNO% + 1%

\ GET #HS% UNTIL HS.SSN$ = GEN.LAST.SSN$
\ GET IHSI UNTIL HS.SSN$ <> GEN.LAST.SSN$ AND

(MID$(ES.CK.DATE$,1%,2%) = GEN.INPUT.YEAR$)

\ RETURN

Enter last
SSN and
control jl
so that we
can know
where to
begin.

Find last
employee.
Go past that
employee
until check
year= input
year.
Return.

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

===L======L=====L=~== ACCUMULATOR PARAGRAPH. ---=~LL==~L===:=====~=- &
&

EMP.EIC - EMP.EIC + HS.ENP.EIC Add employee &
\ EMF.FED.TAX = EMF.FED.TAX + HS.FED.TAX totals &
\EMF.GROSS.PAY= EMF.GROSS.PAY+ HS.GROSS.TOTAL &
\\ EMF.DEF.COMP = EMP.DEF.COHP + HS.DEF.COMP &

EMF.FICA = EMF.FICA + HS.FICA &
\\EMF.STATE.TAX= EMF.STATE.TAX+ HS.STATE.TAX &

EHP.SSNS = HS.SSN$ Reset ssn. &
\ GOSUB 4000 Read para. &
\ IF (CVT$$(EMP.SSN$,2%) <> HS.SSN$) A.ND Print W-2 if &

EMP.GROSS.PAY > 0 not same er:tp &
THEN GOSUB 5000 unless gross &
ELSE IF (CVT$$(EMP.SSN$,2%) <> HS.SSN$) AND pay<= 0 &

El·':P. GROSS. PAY <= 0 then reset &
THEN GOSUB 6000 para &

RETURN Return &

--=--============"'="'"==== READ PARAGRAPH. ---==-·===::========.,====::== &
& GET #HS% UNTIL MID$(HS.CK.DATE$Ll%f2%) = Get next &

G~N. NP0T.YEAR$ check with &
same year. &

RETURN Return

68

500~

5100

5200

5300

6000

--------·--------- EMPLOYEE W-2 FORK PRINT PARAGRAPH. :::m~E~===E~==== &

IF EMP.GROSS.PAY > PC.FICA.MAX
THEN EMF.FICA.PAY= PC.FICA.MAX

ELSE
EMP.FICA.PAY

DL.01.W2CTRLNO$
\ DL.04.EIC$
\ DL.05.EMP.SSN$

\\ DL.05.FED.TAX$
DL. 0 5. Pl,Y. TIPS$

\ DL.05.FICA$
\ DL.06.EMP.NAME~

~ 8I'.:M:Kl5~t~tl"
\ DL.08.CITY$
\ DL.09.STATE$
\ DL.09.ZIP$
\ DL.09.ST.TAX~
\ DL.09.ST.PAY,,

0 SUE.DEF.COMP
.\ SUB. EIC

= E1'1P.GROSS.PAY
NUH1$(GEN.W2CTRLNO%)

= FORMAT$(EHP.EIC1 GEN.F$)
= LEFT(ENP.SSN$ 3~)+" "+

l!ID (EMP. SSN~, 4% 62%) +"-"+
- M~tiIH1

1·
1
tr:_1~:~h.Ux!GEN.F$l

FORMAT$ EMP. GROSS. PP,Y -
HS.DEF. OMP,GEN.F$l
FORMAT$(EMP.FICA,GBN.F$)

= PH.EMF.NAME$
= FORMAT$(EMP.FICA.PAY,GEN.F$)
= PM.ADDRESS$
= PM.CITY$

PM.STATE$
= NUM1$(PM.ZIP)
= FORMAT~!EMP.STATE.TAX,GEN.F$)
= FORMAT:,; EMF.GROSS.PAY -

HS.DEF. OHP,GEN.F$)

= SUB.DEF.COMP
= SUB.Ere
= SUB.FED.TAX

SUB.FICA

+ E~lP. DEF. COMP
+ ENP.EIC
+ EMP.FED.TAX
+ EMP.FICA 0 SUB.FED.TAX

.\ SUB.FICA
\ SUB.FICA.PAY
\ SUB.GROSS.PAY

= SUB.FICA.PAY
= SUB.GROSS.PAY

+ EMP.FICA.PAY !
+ EMF.GROSS.PAY!

PM.OED.CODE%(!%) ,PM.DED.AMT(I%) = 0% 0 GET iPM%, KEY #0 EQ CVT$$(EMP.SSN$,2%)
.\ R% = RECOUNT
\ FOR I%= 0% TO ((R%-324%)/l0%)-1%

\ MOVE FROM #PM%LFitL$ = 324% + (1%*10%)
,PM.DED.cODE%(I%)

\ SL.03.~:=~¥~B~A~T'i'' IF PH.DED.CODE%(I%) = 4%
\ NEXT I%

PRINT #LP%,
LINE.FEED
LINE.FEED
DL.01.ALL
LINE.FEED
LINE,_FEED
DL.0.l.ALL
LINE,_FEED
DL.0.l.ALL
LINE.FEED
LINE .FEED
DL.04.ALL
LINE.FEED
LINE. FEED
DL.05.ALL
LINE.FEED
LINE.FEED
LINE.FEED
DL,06,ALL
LINE.FEED
LINE.FEED,
DL.07.ALLS:
DL.08.ALLI; DL.09.ALL;
LINE.FEED;
LINE.FEED;
LINE.FEED;
LINE.FEED

\\. GEN.W2CTRLNO% = GEN.W2CTRLNO% + 1%
FOR I%= 1% TO 10%

\ GOSUB 7000 IF GEN.W2CTRLN0% / (42% * I%) = 1%
\ NEXT I%

0 GOSUB 6000
\ RETURN

I
i
i
1
!

Determine
FICA pay.

Format the
print line.

&
&
&
&
&

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

Accumulate &
values for &
subtotal W-2 &

&
&
&

Determine if &
employ~e is &
cover;ea by a &
pension. &

&
&
&
&
&

Print the &
employee W-2 &

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

Increment
the counter.
Do a sub W-2
if count
divisible by
42.
Reset para.
Return

&
&
&
&
&
&
&
&
&

RESET PARAGRAPH. =================~======= &

EMP.DEF.COHP,
EMP.EIC,
EMP.FED.TAX,
EMP.FICA,
EMP.FICA.PAYJ_
EMF.GROSS.PAY,
EMF.STATE.TAX =

\ EMP.SSN$ = HS.SSN$

\ RETURN

0

69

Zero the
accumulators

Reset emp
ssn.
Return

&
&
&
&
&
&
&
&
&
&

[Q]
occus DECUS SUBSCRIPTION SERVICE ORDER FORM

RETURN TO: Subscription Service

DECUS
One Iron Way, M R02-1 /Cl 1
Marlboro, MA 01752

• All checks payable to DECUS
• All orders MUST be paid in full

• No refunds will be made
• Prices indicated are FY'84 prices

Name-----------------,--,--------DECUS Membership No. _____ _
(First) (Last)

Company/Affiliation----------------------------------

Mailing Address------------------------- Mail Stop ______ _

City _________ State/Country ______ Zip Code----- Phone (

PUBLICATIONS SUBSCRIPTION SELECTIONS

CODE PUBLICATION

MSL MUMPS/STRUCTURED LANGUAGES NEWSLETTER

LHS LABS/HMS/SITE MGMT NEWSLETTER

OAO OA/DIBOL/COBOL/GRAPH NEWSLETTER
VAX VAX/VMS NEWSLETTER
RSX RSX/IAS NEWSLETTER
RT RTl 1 NEWSLETTER

SPR Spring Proceedings

FAL Fall Proceedings

BASIC PLAN: This plan allows you to

receive one (1) selection for one year

STANDARD PLAN: This plan allows you

to receive up to three (3) selections at one

low price.

DELUXE PLAN: This plan allows you to

receive up to six (6) selections for one year .

ALL: This will allow you to receive all

publications listed above for one year

for only one price.

Insert Code
From Above:

ALL J

CODE PUBLICATION

RST RSTS NEWSLETTER

LGS LARGE SYSTEMS NEWSLETTER
EDU EDUSIG NEWSLETTER
DTR DATATRIEVE NEWSLETTER
NTW NETWORKS NEWSLETTER
sos SS&OS NEWSLETTER
BAS BASIC NEWSLETTER

APL APL NEWSLETTER
ALL ALL PUBLICATIONS PRODUCED

Check
One:

□ Member/DIGITAL Employee

□ Non Member

□ Member/DIGITAL Employee

□ Non Member

□ Member/DIGITAL Employee

□ Non Member

□ Member / DIGITAL Employee

□ Non Member

$ 12.00

$ 24.00

$ 25.00

$ 50.00

$ 45.00

$ 90.00

S 120.00

S240.00

TOTAL AMOUNT OF ORDER$ ______ _

I un~erstand that neither DECUS nor Digital Equipment Corporation is responsible for any publication not published by a

S~ec,al lntetest Group or the contents of any publication published by a Special Interest Group. I also understand that there
will be no refunds even if I decide to cancel my subscription.

Signature----------------------------- Date ________ _

DIGITAL Employees Only: Badge No.-------------__,,__ ___ _
c.c. ---------

Cost Center Manager's Signature ____________________ _ C.C. _________ _

72 3/83

[g
CECUS
DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
ONE IRON WAY, MRO2-1/C11
MARLBORO, MASSACHUSETTS 01752

ASSOCIATE .. tlllllP

MOVING OR REPLACING A DELEGATE?

Please notify us immediately to guarantee continuing
receipt of DECUS literature. Allow up to six weeks
for change to take effect.

() Change of Address
() Delegate Replacement

DECUS Membership No.: _______ _

Name: _____________ _

Company: ____________ _

Address: _____________ _

State/Country: __________ _

Zip/Postal Code: __________ _

Mail to: DECUS - ATT: Membership
One Iron Way, MR02-1/C11
Marlboro, Massachusetts 01752 USA

BULK RATE
U.S. POSTAGE

PAID
PERMIT NO. 129

NORTHBORO, MA
01532

