
Educational Services

VMS Utilities and Commands I
Student Workbook

EY-9764E-SG-0002

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital Equipment
Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
DEC/CMS EduSystem
DEC/MMS IAS
DECnet MASSBUS
DECsystem-10 PDP
DECSYSTEM-20 PDT
DECUS RSTS
DECwriter RSX

Second Edition, November 1988

UNIBUS
VAX
VAXcluster
VMS
VT

d a
TM

This document was prepared using VAX DOCUMENT, Version 1.0

TABLE OF CONTENTS

About This Course xvii

MODULE 1 HARDWARE AND SOFTWARE OVERVIEW 1-1

INTRODUCTION 1-3

OBJECTIVES 1-3

COMPONENTS OF THE HARDWARE ENVIRONMENT 1-5

The Central Processing Unit (CPU) 1-5

The Console Subsystem 1-6

Main Memory 1-6

Input/output Subsystem 1-6

T'I-~ VMS OPERATING SYSTEM 1-7

DIGITAL Command' Language (DCL) 1-8

Utilities 1-9

Optional Layered Products 1-10

T'I~ WORKING ENVIRONMENT 1-11

The Process 1-11

Parts of a Process 1-12

Process Types 1-13

T'he System User Authorization File (SYSUAF} 1-14

SUIVfi.VJ[ARY 1-15

APPENDIX A PERIPHERAL DEVICES 1-17

Terminals 1-17

Printers and Printer/Plotters 1-18

Disk Drives 1-20

Tape Drives 1-22

APPENDIX B SYSTEM CONFIGURATIONS 1-24

Single Processor Configurations 1-24

Multiple—Processor Configurations 1-27

Tightly—Coupled Configurations 1-28

VAXcluster Systems 1-29

NETWORKS 1-32

iii

MQDULE 2 GETTING STARTED 2-1

INTRODUCTION 2-3

OBJECTIVES 2-4

RESOURCES 2-4

LOGGING IN TO A VMS SYSTEM 2-5

USER NAME AND PASSWORD 2-6

BEGINNING AND ENDING A TERMINAL SESSION 2-7

DCL CO FOP.MAT 2-9

CO CONSTRUCTION 2-9

DCL F'EAT'URES 2-13

EDITING A DCL CO D LINE 2-14

T'I-~ RECALL CO 2-17

GETTING HELP 2-20

The Documentation Set 2-20

The On—Line Help Facility 2 22

CHANGING YOUR PASSWORD 2 24

SYSTEM MESSAGES 2 25

DISPLAYING CHARACTERISTICS OF TERMINAL, PROCESS, AND SYSTEM 2-28

Terminal Characteristics 2-28

T'I-~ SHOW TERMINAL CO 2-29

'THE SET TERMINAL CO 2-29

S Y 2-31

MODULE 3 CREATING AND EDITING TEXT FILES 3-1

INTRODUCTION 3-3

OBJECTIVES 3-4

RESOURCES 3-4

CHOOSING AN EDITOR 3-5

EDT Editing Utility 3-6

The Extensible VAX Editor (EVE} 3_7

USING THE EDT EDITOR 3_g

Invoking the EDT Editor 3_g

EDT Screen Layout 3_g

Using EDT Help 3-9
The EDT Keypad 3-11

Commonly Used Features 3-11

iv

Ending an EDT Editing Session 3-15
EDT File Recovery 3-16

USING EVE 3-17
Invoking the EVE Interface 3-17
EVE Screen Layout 3-17
The EVE Interface 3-18

MOVING TIC EVE CURSOR 3 20

INSERTING TEXT IN EVE 3_22

ERASING TEXT 3-22

DEFINING AN EDT-LIKE KEYPAD X23

CANCELING AN EDT-LIKE KEYPAD X23
Using EVE Help 3_2$

Ending an EVE Session 3-29
EVE File Recovery 3 29

S Y 3-30

APPENDIX A EDT LINE-MODE EDITING 3-31
Inserting Text 3-31
Substituting Text 3-32
Moving Text from One Location to Another 3-33
Deleting Text 3-34
Using Buffers in EDT 3-35

How to Create Buffers 3-35
Copying Text from One Buffer to Another 3-3b
Copying Text from a File into a B u ffer 3-3 6
Copying Text from a Buffer into a File 3-36
Deleting Buffers 3-36

APPENDIX B EVE 3-37
Inserting Text 3-37
Locating Text 3-3 8

Marking Locations in Text 3-3 g

Replacing Text 3-39
Restoring Text 3-40

RESTORE CI::[ARACTER 3-40
RESTORE LINE 3-40
RESTORE WORD 3-40

Using Buffers in EVE 3-41
Using Multiple Buffers 3-42

v

Using Multiple Windows 3-43

DELETE WINDOW 3-'~

ENLARGE WINDOW 3- ~

NEXT WINDOW 3- ~

PREVIOUS WINDOW 3-~

SHRINK WINDOW 3-~5

sPLrr wINDOw 3-4s
DEFINnvG KEYS 3-46

Saving Key Definitions 3-47

Using Key Definitions 3~7

MODULE 4 COMMUNICATING WITH OTHER USERS 4-1

INTRODUC'T'ION 4--3

OBJECTIVES 4-3

RESOURCES 4-3

IlWOKING AND OBTAINING HELP FROM THE MAIL AND PHONE UTILITIES 4-5

'THE MAIL UTILITY 4-7

Organization of Mail Messages 4-7

Using the MAIL Utility 4-8

Reading a New Message 4-9

Sending a Message 4-11

Displaying a List of Messages 4-13

Deleting a Message 4-14

Exiting from the Mail Utility 4-17

T'I-~ PHONE UTILITY 4-18

The Phone Help Facility 4-19

CO GATING WITH OPERATORS 4-21

The REQUEST Command 4-21

S Y 4-22

MODULE 5 MANAGING FILES s-1

INTRODUCTION 5-3

OBJECTIVES 5-3

RESOURCES 5-3

FILE SPECIFICATIONS 5-5

DEFAULTS FOR FILE SPECIFICATIONS 5-6

DEVICE SPECIFICATIONS 5-7

DIRECTORY STRUCTURE 5-9

DIRECTORY NAlV1.ES IN TI-~ HIERARCHY 5- l d

vi

FILE 1~'1ANIPULATION CO S 5-11

FINDING FILES AND DFTERMINING 'THEIR CHARACTERISTICS 5-13
Using Wildcards in File Specifications 5-15

ORGANIZING YOUR DIRECTORY STRUCTURE 5-17

CREATING A S UBDIRECTORY 5-18

CHANGING YOUR DEFAULT DIRECTORY OR DEVICE 5-19

DISPLAYING YOUR DEFAULT DIRECTORY OR DEVICE 5-19

MOVING WITHIN A DIRECTORY HIERARCHY 5-20

PROTECTING DISK AND TAPES 5-23

PROTECTING FILES IN YOUR DIRECTORY HIERARCHY 5-24
Three Levels of Disk File Protection 5-24

UIC-Based Protection 5-25

DETERMINING AND ALTERING FILE PROTECTION 5-28

DELETING A SUBDIRECTORY 5-30

Access Control Lists 5-32
Commands to Obtain ACL Information 5-33
Creating an Access Control List 5-33
Deleting an Access Control List 5-35
Assigning the Same ACL to Other Files 5-35

S Y 5-36

APPENDIX A DEVICE INFORMATION 5-37
Specifying Devices 5-37

APPENDIX B--NETWORKING INFORMATION 5-43
Managing Files on Another VMS System in Your Network 5-43

Methods of File Management in a Network 5-43
Using DCL File-Manipulation Commands in a Non-VAXcluster Network Environment 5-44

T~vo Node Specification Formats 5-44

Using DCL File-Manipulation Commands in a VAXcluster Environment 5-47

T~vo Cluster Device Specification Formats 5-47

MODULE fi CUSTOMIZING THE USER ENVIRONMENT f>-1

INTRODUCTION 6-3

OBJECTIVES b-3

RESOURCES f~-3

LOGICAL NAMES 6-5

Logical Name Tables 6-6

Private 6-6
Shared 6-6

vii

Common User Operations Dealing with Logical Names 6-8

Adding Logical Names 6-9

USING LOGICAL NAIVIFS 6-10

Logical Name Translation for Logical Names that Have Single Equivalence Strings 6-10

Sample Recursive Translation 6-11

Displaying the Contents of Logical Name Tables 6-12

Determining the Equivalence of a Logical Name 6-14

Removing Logical Names 6-15

System-Defined Logical Names 6-17

Specifying Logical Name Access Modes 6-19

Duration of aProcess-Private Logical Name Assignment 6-19

USING DCL SYMBOLS 6-20

DEFINING KEYS 6-25

S Y 6-27

MODULE 7 WRITING COMMAND PROCEDURES 7-1

nvTRoDucTION 7-3

oBJECTIVEs 7-4

RESOURCES 7-4

DEVELOPING A COMMAND PROCEDURE 7-5

Components and Conventions 7-7

LOGIN CO PROCEDURE 7-10

TERMINAL INPUT/OUTPUT 7-12

Performing Terminal Input and Output 7-13

Symbol Substitution 7-18

PASSING P TERS TO CO PROCEDURES 7-21

Parameters 7-21
Local Symbols P 1 - P8 7-21
Passing Parameter Values to a Command Procedure 7 21

CONTROLLING PROGRAM FLOW 7-23
The IF Comm and 7 23
Restrictions to IF-THEN-ELSE 7-24
The GOTO Command 7--24

LEXICAL FUNCTIONS 7 28
Format and Syntax 7-28

SUMMARY 7-32

viii

r"1 MODULE 8 USING DISK AND TAPE VOLUMES 8-1
n~TRonucTlON 8-3

OBJECTIVES 8-3

RESOURCES 8-3

CREATING PRIVATE VOLUMES: TIC CO SEQUENCE 8-6

MOUNTING A VOLUIVIE WITH AN UNKNOWN LABEL 8-7

TIC BACKUP UTILITY 8-8

SAVE-SET SPECIFICATIONS 8-8

S Y 8-12

MODULE 9 SUBMITTING BATCH AND PRINT JOBS 9-1

nvTRonucTlON 9-3

oBJECTIVEs 9L-4
REsouRCEs 9-~
PRIG A FILE 9-5

PRINT Command in DCL 9-5

Types of Print Queues 9-6

Qualifiers for the PRINT Command 9-8

OBTA►IIVING STATUS OF QUEUES 9-10

Queue Status List- 9-13

Modifying a Print Job Already in the Queue 9-14

Deleting a Print Job 9-15

SUBMITTING A BATCH JOB 9-16

DCL SUBMIT Command 9-16

How a Batch Job Executes 9-17

Writing a Batch Command Procedure 9-18

Qualifiers for the SUBMIT Command 9-19

OBTAINING STATUS OF BATCH QUEUES 9-22

Modifying a B atch Job Already in the Queue 9-24

DFT .F.TING A BATCH JOB 9-25

T[~►NDLING BATCH AND PRINT JOBS 9-26

Characteristics Common to Both Batch and Print Jobs 9-26

BATCH AND PRINT QUEUE ETIQUETTE 9-26

S y 9-27

ix

MODULE 10 DEVELOPING PROGRAMS 10-1

INTRODUCTION 10-3

oBJECTIVEs 10-4

RESOURCES 10-4

PROGRAM DEVELOPMENT ON A VMS SYSTEM 10-5

THE VMS SYMBOLIC DEBUGGER UT'ILTTY 10-10

A SAMPLE PROGP;AM —GRADES 10--11

Execution of GRADES 10-12

S Y 10-13

MODULE 11 EXERCISES 11-1

~~ARDWARE AND SOFTWARE OVERVIEW 11-3

WRITTEN EXERCISE I 11--3

WRITTEN EXERCISE II 11-5

GETTING STARTED 11-8

LABORATORY EXERCISE I 11-8

LAB ORATORY EXERCISE II 11-9

WRITTEN EXERCISE I 11-10

LABORATORY EXERCISE III 11-12

LAB ORATORY EXERCISE IV 11-13

CREATING AND EDITING TEXT FILES 11-14

INTRODUCTION TO THE LABORATORY EXERCISES 11-14

LABORATORY EXERCISE I — TIC EDT EDITOR 11-15

LABORATORY EXERCISE II —THE EVE EDITOR 11-17

LABORATORY EXERCISE III —THE EVE EDITOR 11-18

CO GATING WITH OTI-~R USERS 11-19

LABORATORY EXERCISE I 11-19

LABORATORY EXERCISE II 11-20

LABORATORY EXERCISE III 11-21

11~iA,NAGING FILES 11-22

WRiTT~N EXERCISE I 11-22

WRITTI'EN EXERCISE II 11-23

LABORATORY EXERCISE I 11-24

x

LABORATORY EXERCISE II 11-25

WRITTEN EXERCISE III 11-26

LABORATORY EXERCISE III 11-27

WRITTEN EXERCISE IV 11-28

CUSTOMIZING T'I~ USER ENVIROr1MENT 11-29

WRITTEN EXERCISE I 11-29

LABORATORY EXERCISE I 11-31

LABORATORY EXERCISE II 11-32

WRITTEN EXERCISE II 11-33

LABORATORY EXERCISE III 11-34

LABORATORY EXERCISE IV 11-35

WRITING CO PROCEDURES 11-36

WRITTEN EXERCISE I 11-36

INTRODUCTION TO LABORATORY EXERCISES 11-38

LABORATORY EXERCISE I 11-39

LABORATORY EXERCISE II 11-40

OPTIONAL LABORATORY EXERCISE 11-41

USING DISK AND TAPE VOLUMES 11-42

WRi't~t'EN EXERCISE I 11-42

WRITTEN EXERCISE II 11-43

WRITTEN EXERCISE III 11-44

LABORATORY EXERCISE I 11-5

SUBMITTING BATCH AND PRINT JOBS 11-46

LABORATORY EXERCISE I 11-46

LABORATORY EXERCISE II 11-47

~iARDWARE AND SOFTWARE OVERVIEW SOLUTIONS 11-48

WRl l~l EN EXERCISE I 11-48

WR1'i~l'~N EXERCISE II 11-50

GETTING STARTED-SOLUTIONS 11-52

LABORATORY EXERCISE I 11-52

LABORATORY EXERCISE II 11-54

WRITTEN EXERCISE I 11-55

LABORATORY EXERCISE III 11-56

xi

LABORATORY EXERCISE IV 11-57

CREATING AND EDITING TEXT FILES SOLUTIONS 11-59

LAB ORATORY EXERCISE I — 'TIC EDT EDITOR 11-59

LABORATORY EXERCISE II —THE EVE EDITOR 11-62

LABORATORY EXERCISE III —THE EVE EDITOR 11-64

CO ICATING WITH OTHER USERS—SOLUTIONS 11-65

LABORATORY EXERCISE I 11-65

LABORATORY EXERCISE II 11-67

LABORATORY EXERCISE III 11-68

11~IANAGING FILES—SOLUTIONS 11-69

WR1TT.~N EXERCISE I 11-69

WR1T1'EN EXERCISE II 11-70

LABORATORY EXERCISE I 11-71

LABORATORY EXERCISE II 11-72

WRITTEN EXERCISE III 11-73

LABORATORY EXERCISE III 11-74

WRITTEN EXERCISE TV 11-75

CUSTOMIZING T'I-~E USER ENVIRONIV~NT—SOLUTIONS 11-77

WRlZ~1'~N EXERCISE I 11-77

LABORATORY EXERCISE I 11-79

LABORATORY EXERCISE II 11-81

WRITTEN EXERCISE II 11-82

LABORATORY EXERCISE III 11-83

LAB ORATORY EXERCISE IV 11-84

WRITING CO PROCEDURES—SOLUTIONS 11-85

WRl'1~1'~N EXERCISE I 11-85

LAB ORATORY EXERCISE I 11-87

LABORATORY EXERCISE II 11-88

OF'ITONAL LABORATORY EXERCISE 11-89

USING DISK AND TAPE VOLLnV~,S SOLUTIONS 11-91

WRi'l~i'EN EXERCISE I 11-91

WR171~EN EXERCISE II 11-92

WR1T1'.~N EXERCISE III 11-93

xii

LABORATORY EXERCISE I 11-94

SUBMITTING BATCH AND PRINT JOBS--SOLUTIONS l.1-95

LABORATORY E~RCISE I 11-95

LABORATORY EXERCISE II 11-96

MODULE y 2 TEST 12-1

TEST 12-3

ANSWERS 12-9

EXAMPLES
2-1 How to Log In and Log Out 2-8
2 2 Changing Your Password 2-24
3-1 Using the Help Facility On-Line 3-10
3-2 Recovering a File After a System Interruption 3-16
4-1 Getting Help for MAIL Utility Commands 4-6
4-2 Reading a Mail Message 4-9
4-3 Sending a Mail Message 4-11
4--4 Listing Messages and Reading Old Messages 4-13
4-5 Using the REQUEST/REFLY Command 4-21
5-1 Sample Directory File 5-16
5-2 Using VMS Commands to Create and Maintain a Directory Hierarchy 5-22
5-3 Changing Your Default Protection Code 5-29
5-4 Deleting a Subdirectory from a Directory Hierarchy 5-30
5-5 Removing Subdirectories from a Directory Hierarchy 5-31
5-b Modifying an Access Control List 5-34
6-1 Using Logical Names to Abbreviate Device and File Specifications 6-9
6-2 Displaying the Contents of the Process, Job, Group, and System Logical Name Tables 6-13
6-3 Determining the Value of a Logical Name 6-14
6-4 Assigning, Changing, and Deleting Logical Name Assignments 6-16
6-5 Using ASSIGN Command to Alter the Default Output Device of Your Process 6-19
6-~ Defining, Displaying, Using, and Deleting DCL Symbols 6-23
7-1 A Sample Command Procedure 7-8
7 2 A Sample LOGIN.COM File 7-11

7-3 A Sample of Output from a Command Procedure 7-14
7-4 Using .Terminal Input and Output 7-17
7-5 Using Symbol Substitution 7-20
7-6 Passing Parameters to Command Procedures 7-22
7-7 Controlling Program Flow 7-26
7-8 Using Lexical Functions with the INFO.COM Command Procedure 7-30
7-9 Using Lexical Functions with the PRINT.COM Command Procedure 7-31
8-1 Mounting a Disk with an Unknown Label 8-7
8-2 Creating a Save Set on a Tape 8-9

8-3 Transferring Files to a Tape 8-1 U
8-4 Restoring Files from a Tape to a Directory 8-11

9-1 Issuing the PRINT Command 9-5
9-2 Queue Status Display Corresponding to Figure 9-1 9-12

9-3 Full Format Queue Status Display X13

9-4 Issuing the SUBMIT Command 9-16

9-5 Sample Batch Run of COUNT 1. COM 9-21

9-6 Full Format Queue Status Display 9--22

10-1 GRADES.FOR Source File 10-11

10-2 Execution of GRADES 10-12

11-1 Process Parameters of a Sample Interactive Process 11-6

FIGURES
1 Course Map xxvi

1-1 VAX Hardware Subsystems 1-5

1-2 Parts of a Process 1-12

1-3 Sample Hardcopy and Video Terminals 1-17
1-4 Sample Printers and Printer/Plotter 1-19

1-5 Examples of Disks 1 21

1-6 Examples of Disk Drives 1-21

1-7 Examples of Tape Media 1-23

1-8 Sample Tape Drives 1-23

1-9 MicroVAX II 1-25

1-10 VAX 8600 1-26
1-11 ATightly-Coupled System Configuration 1-28
1-12 VAXcluster System Structure 1-30

1-13 A DECnet Network 1-33
2-1 Enter a Valid User Name and Password 2-5
2-2 The Elements of a Command Line 2-9
2-3 The Elements of a System Message 2-25
3-1 EDT Screen Layout -Line Mode and Keypad Mode 3-8
3-2 EDT Keypad Definitions 3-12
3-3 EVE Screen Layout 3-17
3-4 EVE Keypad Definitions (VT100--Series Terminals) 3-18
3-5 EVE Keypad Definitions (V'I'200-Series Terminals) 3-19
3-b EDT-Like Key Definitions for VT200-Series Terminals 3-24
3-7 EDT-Like Key Definitions for VT100-Series Terminals 3-26
4-1 The Relationship Between a Mail Message, Folder, and File 4-15
4-2 Using the Phone Utility 4-19
S-1 Naming Directories 5-10
5-2 File Specification in the Directory Hierarchy 5-21
5-3 File Access to Disk and Tape Volumes 5-23
5-4 Interaction of Access Categories 5-26
5-5 Elements of a Protection Code: Determines Which Users Have Access to a File 5-26
5~ Device Specifications Used to Identify the Desired Device for a Given Operation 5-37
6-1 The Relationship Between Your Terminal, the Operating System, and the Logical Name

Tables Associated with Your Process 6-7
6-2 The Relationship Between Your Terminal, the Operating System, and Your Global Symbol

Table 6-21
7-1 Command Procedure Development Process 7-6
8-1 Volume Manipulation Commands 8-5
9-1 Execution and Generic Print Queues 9-7
10-1 A Flow Diagram of the Five Major Programming Steps 10-6

Div

10-2 The Four Program Development Commands 10-7

TABLES
1 Course Conventions xxvii
2-1 Elements of a DCL Command Line 2-10
2-2 The Three Types of DCL Qualifiers 2-12
2-3 Features of DCL 2-13
2-4 Moving the Cursor 2-14
2 5 Changing Data on the Command Line 2-15
2-6 Recalling a Previously Issued Command Line 2-16
2-7 Recalling a Previous Command Line with the RECALL Command 2-17
2-8 Controlling the Display of Information at Your 'I~rminal 2-18
2-9 Terminating an Operation 2-19
2-10 Manuals for Locating Information About Your System 2-21
2-11 Using the DCL HELP Facility 2-23
2-12 Elements of the System Message 2-26
2-13 Severity Levels in System Error Messages 2-27
2-14 Commands for Displaying the Characteristics of Your Terminal, Process, and System 2-30
3-1 Moving the EDT Cursor 3-13
3-2 Changing the EDT Cursor Direction 3-13
3-3 Deleting 'Next in EDT 3-14
3-4 Restoring Text in EDT 3-14
3-5 Moving the Cursor Using Keys 3-20
3-6 Using Commands to Move the Cursor 3-21
3-7 Keys for Deleting Text 3-22
3-8 Responding to REPLACE Prompts 3-39
3-9 ~ Creating and Manipulating Buffers 3-41
3-10 Creating and Manipulating Windows 3-43
4--1 MAIL Commands Used to Read a Mail Message 4-10
4--2 MAIL Commands Used to Send Messages 4-12
4-3 MAIL Commands Used to Maintain Messages 4^16
4-4 Commonly Used Phone Commands 4-20
5-1 Syntax of a Local Disk File Specification 5-5
5-2 File Specification Defaults 5-6
5-3 Naming a Device 5-8
5-4 Directory Names 5-10
5-5 File Manipulation Commands 5-11
5--6 Manipulating Files in a Directory 5-12
5-7 Using the DIRECTORY Command to Determine the Characteristics of Files 5-14
5-8 Wildcards Used to Specify File Names, 'Types, and Versions 5-15
5-9 Using Wildcards to Specify Files 5-16
5-10 Characters Used to Specify Directories 5-2U
5-11 Summary of Effects of Access Rights to Files 5-27
5-12 Determining a User's Category by Comparing User's UIC to File Owner's UIC 5-27
5-13 Determining and Altering File Protection 5-28
5-14 Examples of Using Other Devices 5-38

5-15 Moving a Hierarchical File Structure from one Disk Device to Another 5-39
5-16 Codes for Some Supported Devices on a VMS System 5-40
5-17 Summary of Device Terminology 5-41

xv

5-18 Generic Specification with the SHOW DEVICE Command 5-42
5-19 Examples of Specifying Files on Remote Nodes 5~5
5 20 DECnet-VAX DCL File-Manipulation Command Summary 5-46
5 21 Commands Used to Determine the Nodes and Devices in Your Systems

Environment 5-48
6-1 Displaying the Contents of Logical Name Tables 6-12
6-2 Commands to Delete Logical Names 6-15
6-3 Process Logical Names Defined by the System 6-17
6-4 Job Logical Names Defined by the System 6-18
6-5 System Logical Names Defined by the System 6-18
6-6 Commands for Displaying and Deleting DCL Symbols 6-22
6-7 Comparison of Logical Names and DCL Symbols 6-24
7-1 System Logical Names Used with Terminal I/O 7-12
7 2 Displaying Information on the Terminal 7-13
7 3 Getting Information from the User 7-15
7~ Redirecting Input and Output 7-16
7-5 Symbol Substitution 'I~chniques 7-19
7-6 Relational Operators Used in Expressions 7 25
7-7 Frequently Used Lexical Functions 7--29
8-1 Commands for Creating and Accessing Private Disk and Tape Volumes 8-6
9-1 Printing Jobs with Different Characteristics 9-9
9-2 Modifying Print Jobs in a Queue 9-14
9-3 Logical Name Definitions for Interactive and Batch Processes 9-17
9-4 Submitting Batch Jobs 9-20
9-5 Displaying Batch Queue Status 923
9-6 Modifying a Batch Job 9L-2r4
10-1 Languages and Associated File Types 10-g

xvi

~ About This Course

About This Course xvii

r1 INTRODUCTION

The VMS Utilities and Commands course is a lecture/lab course designed to show you how to
perform typical nonprivileged operations on a VMS system by entering commands at a terminal.

The course has been organized into a series of units, or modules, each designed to cover a
well-organized topic, or group of topics. Each module contains its own learning objectives.

Suggested Laboratory Exercises are provided to allow you to reinforce, through practice, your
knowledge of the topics covered.

COURSE DESCRIPTION
The VMS Utilities and Commands course describes the working environment of a VMS system
and introduces frequently used operations that you can perform by entering commands at an
interactive terminal.

Among the major topics covered by the course are:

• Using on-line and printed VMS documentation to obtain information

• Creating, editing, and maintaining text files

• Communicating with other users on a system and network

• Using logical names and symbols to tailor your working environment

• Writing and using command procedures

• Using private disk and tape volumes to back up your own files

• Submitting batch and print jobs

About This Course xix

PREREGIUISITES
There are no formal prerequisites for this course. However, you can derive the greatest benefit
from this course if you have:

• A basic knowledge of a computer system.

• The ability to work on a system using an interactive terminal.

If you have not worked with computers before, we recommend that you take the Introduction to
Computer Systems class before attending this one.

xx About This Course

~"1 COURSE GOALS
To effectively use the nonprivileged facilities of the VMS system, you should be able to perform
the following operations:

• Use on-line and printed documentation to obtain information about VMS features

• Understand the basic hardware and software components of a VMS system

• Enter syntactically correct DIGITAL Command Language (DCL) commands to obtain infor-
mation from the system

• Create files using a text editor (EDT or EVE)

• Communicate with other users and system operators

• Organize files into subdirectories and maintain them

• Use logical names, symbols, and key definitions to modify your working environment

• Create and use command procedures to automate repetitive tasks

• Use the printer to produce hard copies of files and use the batch processing facility to
execute command procedures

• Use private disk and tape volumes to back up and store personal files

• Follow the program development steps to produce executable programs on a VMS system
(OPTIONAL}

About This Course xxi

COURSE NONGOALS
This course introduces the concepts and command sequences necessary to achieve the course
goals. You will not learn to use the following:

• The MCR command language interpreter or other RSX utilities that reside on your system.

• Any programming language in a VMS environment. The module dealing with programming
gives a generic overview of the various programming steps. It is recommended that stu-
dents enroll in aprogram-specific course to obtain the greatest benefit from a programming
language.

• The use of commands or utilities that require privileges beyond the most basic privileges
granted to users of your system.

• The use of commands. that manipulate a multiprocess environment.

• VMS programmed system services, common run-time library routines, or other features that
require direct interaction with the operating system.

• Use of programmer productivity tools, databases, word processors, or any other optional
software.

• References to and materials associated with VAXcluster systems.

• Advanced command procedure techniques, such as error handling, file I/~, dynamic arrays,
CALL and GUSUB commands.

• Any functions, commands, or information related to "system management."

• File applications, such as sorting records within a file and merging files.

xxii About This Course

COURSE RESOURCES
In addition to the VMS system itself, there are three major resources available to you for com-
pleting this course:

• This Student Workbook

• The manuals of the VMS documentation set

• Your Instructor

About This Course xxiii

DOCUMENTATION

You should have access to the following manuals to complete this course:

• Course Student Workbook

• Guide to VMS Files and Devices

• VMS DCL Dictionary

• Guide to Using VMS Command Procedures

• VMS Mail Utility

• VMS Phone Utility

• VAX EDT Reference Manual

• VAX Text Processing Utility Manual

• VMS DCL Concepts Manual

One complete VMS documentation set should be available for reference.

xxiv About This Course

COURSE ORGANIZATION
This is a lecture/lab course that includes structured laboratory sessions. Lecture sessions con-
sist of instructor presentations and class discussions. Laboratory sessions consist of instructor
demonstrations or directed individual study. You should try to complete the laboratory exercises
during the laboratory sessions.

The material in the Student Workbook is divided into units, or modules of study. Each module
covers one or more of the skills typically required by a nonprivileged user of a VMS system.

A module contains the following instructional elements:

• An introduction, which describes the purpose of the modules, provides some motivation
for mastering its objectives, and outlines its contents.

• One or more objectives, which describe the operations for which the module provides
instruction. Objectives are designed to focus your study efforts on a selected number of
skills.

• A list of resources you may need to complete the unit. Some of these resources are
distributed with this course; others are not. Since a complete document set is distributed
with each VMS operating system, you should consult your course instructor for access to
materials that do not come with this course.

• The module text, which includes the following elements:

— Descriptive text

— Illustrations, which clarify the relationships among various elements of a VMS system,
or summarize steps of a particular process

— Tables, which summarize the operations covered by the modules, and list the commands
needed to perform those operations

Examples, containing sample listings from actual terminal sessions

There is also a Laboratory Exercises module, which provides the practice needed to master
the objectives of each module. Solutions to the exercises are also provided.

About This Course xxv

COURSE MAP DESCRIPTION
The course map shows how each module of the course is related to the other modules, and
to the course as a whole. Prerequisite modules are those whose arrows in ,the map point into
another module.

Figure 1: Course Map

CREATING/
EDITING

TEXT FILES

_~

GETTING
STARTED

SUBMITTING
BATCH b

PRINT JOBS

USING
DISK/TAPE
VOLUMES

1
WRITING

COM MAN D
PROCEDURES

TTB_X0340_88

xxvi About This Course

COURSE CONVENTIONS
Table 1 describes the conventions used in the Student Workbook.

Table 1: Course Conventions

Convention Meaning

new terms, prompts

CTRUX

SHAW QUEUE

$ SHOW QUEUE/qualifier [queue-name]

$ SHOW QUEUE/ALL ENTRIES SYS$PRINT

[]

Type vs. Enter

Terms that are introduced for the first time and
system prompts are printed in italics.

Press and hold the key labeled CTRL while you
press another key {X). Many control key sequences
have special meanings.

Names of commands in text are shown in upper-
case and bold.

Formats and command syntax are shown in bold.
Words in uppercase are required, and words in
lowercase represent elements that you must
replace according to the description in the text.

Actual examples of commands are shown in
monospace type.

Square brackets indicate that the enclosed item
is optional. {Square brackets are not optional,
however, in the syntax of some file specifications
assignment statements.}

When the word "type" is used in text, it means
that you simply type a command. When the word
"enter" is used, you must type the command and
press the RETURN key.

About This Course xxvii

MODULE 1
HARDWARE AND

SOFTWARE OVERVIEW

HARDWARE AND SOFTWARE OVERVIEW 1- 1

INTRODUCTION
When you begin work on a VMS system, you enter an environment consisting of devices,
programs, and data. The devices that compose the physical computer are called hardware. The
programs that control the hardware and process the data are called the software. To perform
job-related tasks on the system, you must use both the hardware and the software.

This module provides an introduction to VAX hardware, and an overview of the VMS software
environment.

OBJECTIVES
To work on a VMS system, you should be able to:

• Identify the functions of each component of the hardware environment.

• Identify and describe the functions of each component of the software environment.

• Identify elements that make up a process in the VMS environment.

HARDWARE AND SOFTWARE OVERVIEW 1- 3

COMPONENTS OF THE HARDWARE ENVIRONMENT

• VAX computer hardware is divided into four subsystems

• Each has a different function

Figure 1-1: VAX Hardware Subsystems

CONSOLE
SUBSYSTEM

CENTRAL
PROCESSOR

(CPU

MAIN
MEMORY

I/O SUBSYSTEM

TTB_X0300_98

The Central Processing Unit (CPU)

• Executes instructions one at a time

• Some of the VAX family of processors include

— MicroVAX I I

— .MicroVAX I

— VAX-11 /7$0

— vAx 8z5o

— VAX 8650

HARDWARE AND SOFTWARE OVERVIEW 1- 5

The Console Subsystem

• Communicates directly with the CPU

• Is primarily used for

— Starting up and shutting down the system

— I nstal I i ng software

— Remote hardware diagnosis

Main Memory

• Main memory is used to store instructions and data temporarily

Input/Output Subsystem

• Provides input to and output from the system

• Consists of peripheral devices

— Refer to Appendix A for examples of peripheral devices

• Common peripherals include

Terminals

Printers

Disk drives

Tape drives

1- 6 HARDWARE AND SOFTWARE OVERVIEW

~ THE VMS OPERATING SYSTEM

• The VMS operating System is a collection of programs that

— Control the operations of the system

— Manage the system's resources

• The operating system performs three major functions

1. Provides the means for users to communicate with the hardware devices that make up
the system

2. Creates a working environment in which users can access the resources needed to
perform tasks, without interfering with other users' activities on the system

3. Schedules the use of the CPU, physical memory, and peripheral devices to provide
equitable access for all users, while using these resources as efficiently as possible

• Typical activities of the operating system include

— Loading programs and data into memory from storage

— Scheduling the order of action by the CPU

— Allocating resources, such as physical memory

— Scheduling input and output (I/O) to other devices

HARDWARE AND SOFTWARE OVERVIEW 1- 7

DIGITAL Command Language (DCL)

• The means by which a user communicates with the system

• DCL uses common words for commands and qualifiers

• These common words make it easier to

— Remember DCL commands

Enter DCL commands at a terminal

Recognize and correct syntax errors

• DCL commands can be used to

— Perform file manipulation tasks

Display information about

The status of the system
Users on the system
Devices connected to your system
Resources available on the system

Execute user-written programs or system utilities

• DCL commands are translated by the Command Language Interpreter ~CLI), which

— Interprets the DCL command for correct syntax

— Calls the VMS routines that perform the command

1- 8 HARDWARE AND SOFTWARE OVERVIEW

Utilities
Utilities are software tools that perform specified tasks. These utilities

• Are provided with the VMS software

• May have their own set of commands and command prompts

• Perform a wide variety of tasks, such as

— Communication Utilities

MAIL
PHONE

— Text editors

EDT Editor
Extensible VAX Editor (EVE)

— Text Processors

Digital Standard Runoff (DSR)

— Debugging and Programming Tools

VMS Debugger

HARDWARE AND SOFTWARE OVERVIEW 1- 9

Optional Layered Products

• Layered products are available for VMS systems

• These optional layered products

— Perform specific tasks that enhance the capabilities of the system

— Are provided separately

• Types of layered products include

— Language compilers

— Communications software

— Diagnostics software

— Office automation products

— Data management tools

1- 10 HARDWARE AND SOFTWARE OVERVIEW

THE WORKING ENVIRONMENT

The Process

• Your working environment is defined in terms of a process

• All work on a system is performed within a process

• The system uses processes to

— Schedule the execution of programs by the CPU

— Determine the availability of system resources

— Allocate system resources

HARDWARE AND SOFTWARE OVERVIEW 1- 11

Parts of a Process

• A process has four components

— The Hardware Contex~Values contained in the processor registers that describe what
the process is doing

— The Software Contexf—Used by the operating system to control what the program is
allowed to do

— Virtual Address Space—Is the range of memory addresses known to a process

— The Program (Image}— Contains instructions to do the actual work

• These components provide the environment used by the system to run an image

Figure 1-2: Parts of a Process

TTB_X0258_88

4 ~s G-

~D -FG.~K 3 ~l

....

1- 12 HARDWARE AND SOFTWARE OVERVIEW

Process Types

• Interactive Process

— Created when a user logs in

— One of the most common process types

— Terminates when the user logs out of the system

• Subprocess

— A process that uses some of the same resources as the parent process

— Subprocesses allow users to have several programs executing at once

• Batch Process

— Created by the system so that it can execute a special file called a command procedure

— Frees up your terminal for other work

HARDWARE AND SOFTWARE OVERVIEW 1-13

The System User Authorization File (SYSUAF)

• SYSUAF contains the information used to create a process.

• Information about each user is placed in this file by the system manager.
This information includes:

— User Identification Code (UIC). The UIC is used to determine the owner of files and to
determine file access.

— Default directory. This determines the disk and directory used by the user at login time.

— Privileges. Privileges determine whether the user can perform a given task.

Priority. The process priority determines how a particular process will compete with
other processes to get work done on the system.

1- 14 HARDWARE AND SOFTWARE OVERVIEW

SUMMARY

• There are four main functional subsystems of VAX computers:

— The CPU -executes instructions.

— The console subsystem -communicates with the CPU to monitor and control the system.

— Main memory -stores data and instructions.

— The I/O subsystem -consists of devices that provide input to and produce output from
the system. These devices are referred to as peripherals. Peripherals include terminals,
printers, disk drives, and tape drives.

The software environment is made up of several components:

• The VMS Operating System

— Controls software on the system

— Provides the means of communication with other hardware devices on the system

— Schedules the allocation of resources and the execution of programs

— Operates transparently to the user

• The user interface with the VMS system is the DIGITAL Command Language (DCL)

— The means by which a user communicates with the system

-- Uses common English-like words

-- Interpreted by the Command Language Interface (CLI}

• Utilities are software tools that perform specific tasks

— Provided with the system software

— Include tools such as editors, text formatters, and communication utilities

• Optional Software Products

— Perform tasks beyond those of the system software

— Must be purchased and installed separately

HARDWARE AND SOFTWARE OVERVIEW 1-15

The working environment is defined in terms of a process:

• The system creates and controls processes

• Information used to create processes is stored in the System User Authorization File
{SYS$SYSTEM :SYSUAF. DAT)

1- 16 HARDWARE AND SOFTWARE OVERVIEW

APPENDIX A—PERIPHERAL DEVICES

Terminals

• Used to communicate with the computer

• Two types of terminals

-- Hardcopy

-- Video

Figure 1-3: Sample Hardcopy and Video Terminals

AVIDEO
TERMINAL

A HARDCOPY
TERMINAL

TTB_X0302_88_S

HARDWARE AND SOFTWARE OVERVIEW 1- 17

Printers and Printer/Plotters

• Printers provide output from the system

• Various sizes and types include

— Line printers (high speed}

— Letter quality printers (high-quality print)

— Laser printers (high-quality print and graphics)

• Printer/plotters are used for graphic output

1- 18 HARDWARE AND SOFTWARE OVERVIEW

r"1
Figure 1-4: Sample Printers and Printer/Plotter

I

~~
LINE PRINTER

LASER PRINTER

LETTER-QUALITY PRINTER

a

0
0
0
0

P

PRINTERlPLOTTER
TTB_X0303_88_S

HARDWARE. AND SOFTWARE OVERVIEW 1- 19

Disk Drives

• Record and read data on magnetic disks

• Are sometimes called mass storage devices

• Disks used in the drives

— Are called storage media

— Usually store frequently used data

— Are either removable or fixed

— Various types of removable disks include

partridges
Disk packs
Diskettes
CDRI~M

1- 2Q HARDWARE AND SOFTWARE OVERVIEW

r"1 Figure 1-5: Exampies of Disks

DISK CARTRIDGE
(TOP LOADING)

DISK PACK
(TOP LOADING)

DISK CARTRIDG E
(FRONT LOADING)

0 .~

Figure 1-6: Exampies of Disk Drives

0

!111111 IIIiI Ilililllllllllllllilllllllllll

DUAL DISKETTE DRIVE

DISK CARTRIDGE DRIVE

DISKETTE

TTB_X0304_88_S

DISK PACK DRIVE

TTB_X0305_88_S

HARDWARE AND SOFTWARE OVERVIEW 1- 21

Tape Drives

• Record and read data on magnetic tapes

• Tapes usually store

— backup copies of data

— Infrequently used data

• Two kinds of tape s

— Reel Tapes

— Tape cartridges

1- 22 HARDWARE AND SOFTWARE OVERVIEW

Figure 1-7: Examples of Tape Media

REEL TAPE

Figure 1-8: Sample Tape Drives

-'̂ G
CARTRIDGE TAPE DRIVE

TAPE CARTRIDGE

TTB_X0306 _88_S

Iiq MIIIIIIIIIIIIIIIII~IMII~ IIIINilliillllliililll I~~IIIIIIIIIIII I~I~I~~INIliilli IIII

REEL-T~-REEL TAPE DRIVE

TTB_X0307_88_S

HARDWARE AND SOFTWARE OVERVIEW 1- 23

APPENDIX B—SYSTEM CONFIGURATIONS

• You can build different configurations with

— VAX processors

— Peripheral devices

• System configurations can be classified as

— Single processors

— Multiple-processor configurations

• A system can be:

— A single VAX processor and its peripheral devices

— A collection of VAX processors

Single Processor Configurations

• Any single VAX processor and its peripheral devices

• The family of VAX processors includes

— VAX 8810

— VAX 8650

— VAX 8250

— VAX-111785

— VAX-11 /780

— MicroVAX 3000

— MicroVAX I I

1- 24 HARDWARE AND SOFTWARE OVERVIEW

n

Figures 1-9 and 1-10 are not drawn to scale.

Figure 1-9: MicroVAX II

TTB_X0308_88

HARDWARE AND SOFTWARE OVERVIEW 1- 25

Figure 1-10: VAX 8600

1~

M ~ ~Y /~̀71
~~ ~~ O ~t~• ~ ~Ii V

iiii~~~~~~n~
niNN~~~~~~in~~~~~~n~~~ ~~~~~~~n~~~~~~

~f

TTB X0309 88 S

1— 26 HARDWARE AND SOFTWARE OVERVIEW

Multiple-Processor Configurations

• Two or more communicating processors

• There are three classifications

— Tightly-coupled multiprocessors

— Networks

— VAXcluster systems

HARDWARE AND SOFTWARE OVERVIEW 1- 27

Tightly-Coupled Configurations

• Share operating system code

• Cannot operate independently

• Provide high performance

• Used in compute-intensive applications

• Example: VAX 882

-- Two or more CPUs share memory by means of a system bus

— Master processor runs the VMS operating system and controls the attached processor

Figure 1-11: ATightly-Coupled System Configuration

COMMON
MEMORY

BUS

CPU CPU

TTB_X0164_88

1- 28 HARDWARE AND SOFTWARE OVERVIEW

VAXcluster Systems

• Flexible multiprocessing system

• Member nodes can share:

-- Disk and tape devices

— A common file system

• in addition to providing the functions of a network, VAXcluster systems provide

— Higher availability of system resources

— Faster and easier sharing of information and resources between nodes

• A VAXcluster system configuration

— May have hardware similar to a network configuration

— May contain the same components as a network

VAX processors
Communication devices
Transmission media
Terminal servers
D EC net software

— May have other VAXcluster system specific hardware

Hierarchical Storage Controller (HSC)
Computer Interconnect (CI)

• Major difference between a VAXcluster system and a network is VAXcluster system software,
which synchronizes access to shared resources

HARDWARE AND SOFTWARE OVERVIEW 1- 29

COMPUTER
INTERCONNECT

Figure 1-12: VAXcluster System Structure

SIMPLE VAXcluster 8YSTEM

DUAL-
PORTED
DISK

EXPANDED VAXcluster SYSTEM

~-~

HSC

~~1
~ ~

COMPUTER
INTERCONNECT

\ ~/

TTB_X0168_88

1- 30 HARDWARE AND SOFTWARE OVERVIEW

Notes on Figure 1-12:

1. The expanded VAXcluster system has added a third VAX system (with a local disk}, and
two HSC controllers with two dual-ported disks connected to them.

2. Any of the three VAX systems in the expanded VAXciuster system can mount the two disks
that are connected to the HSC controllers. HSC disks are more available to users than local
disks, because HSC disks are not dependent upon the availability of any processor.

3. The disks are dual-pathed to the HSC controllers, further increasing the disks' availability in
the VAXcluster system. If one HSC fails, all traffic to connected disks automatically switches
to the second HSC.

HARDWARE AND SOFTWARE OVERVIEW 1- 31

NETWORKS

• Consist of two or more communicating processors

• VMS system can be connected to

— Other DIGITAL systems

— Other manufacturers' systems

• DIGITAL-to-DIGITAL networks are established using

— Two or more processors

— Hardware communication devices

— Data transmission media

— Terminal servers (optional)

— D E C net software

• DECnet software enables communication between networked systems

• A user logged in to one of these systems can

— Communicate with a user who is logged in to another node

— Access disk files stored on another node

— Write programs that communicate with programs running on another node

1- 32 HARDWARE AND SOFTWARE OVERVIEW

n

r"1

Figure 1-13: A DECnet Network

~ ~

DISK

~ ~

~~
~~

DISK

PROCESSOR
A

COMMUNICATION
DEVICE

DATA
TRANSMISSION
MEDIUM

COMMUNICATION
DEVIGE

PROCESSOR
B

TTB_X0312_88

HARDWARE AND SOFTWARE OVERVIEW 1- 33

Notes on Figure 1-13:

1. This network consists of two processors, or nodes. Each node has a disk drive.

2. Each processor in the network has an attached communication device. The communication
devices are connected. by a data transmission medium.

3. Access to disk files stored on a given node depends upon the availability of that node. For
example, if Processor A is shut down, any disk files stored on Processor A's disk become
inaccessible to users logged in to Processor B.

y- 34 HARDWARE AND SOFTWARE OVERVIEW

MODULE 2
GETTING STARTED

GETTING STARTED 2- 1

INTRODUCTION
To perform daily tasks on a VMS system, you must issue instructions written in the DIGITAL
Command Language (DCL). DCL consists of a vocabulary and rules of grammar, as in any
language.

The DCL vocabulary includes commands, parameters, and qualifiers, all of which perform func-
tions similar to those of verbs, nouns, adverbs, and adjectives in English. When you arrange
them to form a command line, the Command Language Interpreter (CLI) causes images to be
run to perform the requested actions.

This module introduces you to:

• Communicating with the VMS system by using the DIGITAL Command Language (DCL)

• Using both on-line and printed VMS documentation

GETTING STARTED 2- 3

OBJECTIVES
To effectively use the interactive features of the VMS system, you should be able to:

• Log i n and log out of the system.

• Use the DIGITAL Command Language (DCL) to make VMS perform tasks.

• Use the VMS Help facility and VMS documentation to obtain information about DCL com-
mands and error messages.

• Interpret any VMS error messages and issue a corrected command by using the DCL
command—line editor.

• Obtain and interpret information about the terminal, process, and system.

RESOURCES

• VMS General User's Manual
4 ~-

• VMS DCL Dictionary

,.~ ~ c- ~:.:~..

i
,~... ỳ ~- ...~

t
~- ~.

`;~ _

"e,.

ti

5

'~

.'~-• L

2- 4 GETTING STARTED

LOGGING IN TO A VMS SYSTEM

Figure 2-1: Enter a Valid User Name and Password

USERNAME: SMITH
PASSWORD:

TERMINAL

SYSTEM
DISK

USERNAME
PASSWORD

VMS
OPERATING
SYSTEM

USER
AUTHORIZATION
FILE

TTB_X0313_88_S

GETTING STARTED 2- 5

USER NAME AND PASSWORD
Your User Name:

• Consists of 1 to 12 characters

• Is assigned by the system manager

Your Password:

• Consists of 1 to 31 characters

• Legal characters include:

— A through Z

— 0 through 9

— $ (dollar sign)

— _ (underscore)

2- 6 GETTING STARTED

l'1

BEGINNING AND ENDING A TERMINAL SESSION

To log in to the system:

• Tum on your terminal. If your terminal has a REMOTE/LOCK switch, set the switch to
REMOTE.

• Press the RETURN key on the terminal keyboard.

• In response to the prompt Usemame:, type your user name, then press RETURN.

• In response to the prompt Password:, type your password, then press RETURN. The system
does not display your password.

To log out of the system:

• At the DCL prompt ($), type LOGOUT and press RETURN.

GETTING STARTED 2- 7

Example 2-1: How to Log In and Log but

VAX/VMS SUPER
Username: SMITH
Password:
Welcome to VAX/VMS SUPER
Last interactive login on Wednesday, 30-DEC-1987 10:27

$ LOGOUT
SMITH logged out at 5-JAN-1988 10:53:51.92

~-
..

r , cam. ~..~-.

2- 8 GETTING STARTED

DCL COMMAND FORMAT
Figure 2-2 illustrates the basic parts of a DCL command line.

Figure 2-2: The Elements of a Command Line

COMMAND STRING

FILE SPECIFICATION LIST

~'

~y ~Q~~~ o~ ~-~~ Z~~ ~~~~

r ~
$PRINT FILEI.US,FILE2.LIS/COPIES=2

SYSTEM PROMPT

COMMAND

LIST ELEMENT

LIST ELEMENT SEPARATOR

LIST ELEMENT

QUALIFIER DELIMITER

POSITIONAL QUALIFIER

QUALIFIER VALUE DELIMITER

QUALIFIER VALUE

TTB_X0314_88

COMMAND CONSTRUCTION

• One or more spaces or tabs separate commands, command options, and parameters from
each other.

• Slash marks (/) separate qualifiers from commands and parameters.

• Commas (,) separate elements in a parameter list.

• Pressing RETURN passes the comma a to the DCL CLI for execution regardless of the
cursor position on the line.

G5
~G

-~

~- ~~

~'~
L ~~ ,`~ ̀ .

. ,~ 2 • ~~
}

~ ~,.5

Z
.G

~`

•~5

o'~ ̀

GETTING STARTED 2- 9

Table 2-1: Elements of a DCL Command Line

Command Element Definition

Command Line A command line is the complete specification of a DCL command.
One command line can consist of up to 1424 characters.

{NOTE: By entering a hyphen {-) prior to pressing RETURN, you
can enter the command line in segments. Each command line seg-
ment can consist of up to 256 characters. The system concate-
Hates the segments into one DCL command prior to interpreting
the command.)

Required Elements of a Command Line

Verb The verb of the command line is like the verb of a sentence in
English. It specifies the action of your request. The verb usually
consists of one word.

Example: $HELP

Sometimes a verb requires a keyword to further specify the action
to be taken.

Example: $SHOW PROCESS

Parameter Parameters) receive the action of the verb, much like the object
does in an English sentence.

Example: $PRINT FILE1. TXT

In the instruction PRINT FILET.TXT, PRINT is the verb and FILET.TXT
is the parameter.

optional Elements of a Command Line

Qualifier The qualifiers) of the command line describe or modify the action
taken by the verb. A slash (~ precedes each qualifier. You can
place qualifiers after the verb or after a parameter. {Some qualifiers
accept one or more values.)

Format: /qualifier[-(value[,...])]

Example: $SHOW PROCESS/ALL

The qualifier /ALL modifies the action. (There are three types of
qualifiers. For an explanation of the qualifier types, refer to Table
2-2).

Value A value assigns a specific quantity to a qualifier. If you specify
more than one value, you must separate the values with commas
and enclose them in parentheses.

Example: $PRINT/COPIES=2 FILEI.TXT

In the above instruction, /COPIES=integer is a ualifier to the verb q
PRINT. The value of the qualifier is the integer 2.

2- 10 GETTING STARTED

Table 2-1: Elements of a DCL Command Line (Copt)

Command Element Definition

Optional Elements of a Gommand Line

S

I

Label:

When you are in interactive mode, the DCL CLI ignores the dollar
sign. However, the dollar sign must precede commands you place
in files. (This technique will be discussed in the Batch and Print
Jobs module and the Command Procedures module.)

The exclamation mark (!} indicates a comment. The system dis-
regards anything on a command line following an exclamation
mark. (The exclamation mark helps document commands you
place within a file.)

Examples:

$!The DCL CLI ignores this comment line

$ SHOW PROCESS !This comment is ignored

The label is a character string that identifies a particular line in a
file that contains DCL commands. Such a file is referred to as
a command procedure. You should use labels only in command
lines within command procedures.

GETTING STARTED 2- 11

Table 2-2: The Three Types of DCL Qualifiers

Qualifier Type Comments

Command Qualifiers

Positional Qualifiers

Parameter Qualifiers

Command qualifiers have the same meaning regardless of where
they appear i n the command line.

Examples:

$ PRINT/HOLD FILEI.TXT Or

$ PRINT FILEI.TXT/HOLD

Since /HOLD is a command qualifier, the above two commands have
the same effect. Both commands place the request in a hold state.

Positional qualifiers have different meanings depending on where
they appear i n the command line.

Example:

$ PRINT/COPIES=2 FILEI.TXT,FILE2.TXT

A positional qualifier placed after the verb, but before the first pa-
rameter, affects the entire command line. Therefore, this command
requests the printing of two copies of FILEI.TXT and two copies of
FI LE2.TXT.

$ PRINT FILEl.TXT/COPIES=2,FILE2.TXT

A positional qualifier placed after a parameter affects only that pa-
rameter. Therefore, this command line requests the printing of two
copies of FILEI.TXT and one copy of FILE2.TXT.

There are several types of parameter qualifiers. Refer to the com-
mand descriptions in the VMS DCL Dictionary for the names and
types of parameter qualifiers that can be used with each command.

2- 12 GETTING STARTED

DCL FEATURES
Table 2-3 shows some of the aspects of DCL which make it convenient for the user to issue
commands.

Table 2-3: Features of DCL

Feature Example Description

Continuation

Abbreviation

Prompting

$ PRINT/COP IES=2 -

_$ FILE1. TXT, FILE2 . TXT, -

$ FILE3 . TXT, FILE4 . TXT

$ LOGOUT !These are

$ LOGO !equivalent

$ LO

$ PRINT

File: FILEI.TXT

The hyphen continues a command line over
more than one line of input.

You can abbreviate commands and
keywords to four or fewer characters.

Type a command and press RETURN. DCL
will prompt for the required and optional
parameters.

L`,►~~

S ~-

~~

G ~-

~E-~

+n~.~--.

4

~:

GETTING STARTED 2- 13

EDITING A DCL COMMAND LINE
To accomplish various tasks, you will have to perform many of the following operations on a
DCL command line:

• Move the cursor

• Add or delete data from the command line

• Recall a previously issued command line

• Control information displayed at your terminal

• Terminate an operation

Table 2-4: Moving the Cursor

Operation
Special
Function Key Comments

Moving the Cursor to the Left LEFT ARROW
CTRUD

Moving the Cursor to the Right RIGHT ARROW
CTRUF

Moving the Cursor to the Be- CTRUH
ginning of the Line

Moving the Cursorto the End CTRUE
of the Line

Moves the cursor one character to the
Left. Holding the LEFT ARROW key
down moves the cursor until the key is
released.

Moves the cursor one character to the
right. Holding the RIGHT ARROW key
dawn moves the cursor until the key is
released.

Moves the cursor to the beginning of the
line.

Moves the cursor to the end of the line.

~:

§:... {~

;~~
5..,,

--^'

j
t ,t
,, ~

~~, y.,~ ~:, . ~.

2- 14 GETTING STARTED

r"1 Table 2-5: Changing Data on the Command Line

Operation
Special
Function Key Comments

Deleting a Character DELETE Deletes the character to the left of the
cursor. (Note that on a hardcopy ter-
minal the system responds by typing
a backslash (~} followed by the delete
character.)

Deleting a Word LF Deletes the preceding word.
CTRUJ

Deleting the Line CTRUU Erases all characters to the left of the
cursor. When the cursor is at the end
of the line, pressing the CTRUU key se-
quenceerases the entire command line.

Clearing the Line and the CTRUX Discards the current line and deletes
Type-Ahead Buffer data in the type-ahead buffer.

Replacing a Character text... Pressing any keyboard character causes
that character to replace the character
originally at the cursor position. This is
referred to as the OVERSTRIKE mode
of operation. OVERSTRIKE mode is the
default data entry mode.

Inserting a Character CTRUA CTRUA changes the terminal's data en-
try mode from OVERSTRIKE mode to
INSERT mode. When you press any
keyboard key in INSERT mode, the orig-
inal text moves to the right, making room
for the new characters}. If you are
in INSERT mode, CTRUA changes the
terminal's mode back to OVERSTRIKE.

GETTING STARTED 2- 15

Table 2-6: Recalling a Previously Issued Command Line

Operation
Special
Function Key Comments

Recalling the most recent UP ARROW Consecutively recalls the last command
commands CTRUB passed to the DCL CLI. Commands

used for recalling previously entered
commands from the command buffer
are not retained.

Recalling recently entered DOWN ARROW Recalls recently entered commands from
commands the command buffer. After recalling

the mast recently entered .command,
pressing the DOWN ARROW key dis-
plays ablank line.

Refreshing a DCL command CTRUB Redisplays the last unentered com-
mand line on your terminal. (Note that
on a hardcopy terminal, the system is-
sues aRETURN prior to retyping the
current command line.)

2- 16 GETTING STARTED

r"1 THE RECALL COMMAND

The RECALL command displays previously-entered commands so that the user can re-use
them. Up to 20 commands are stored in the RECALL buffer.

Press RETURN after you have redisplayed a command to have the system execute that com-
mand.

Table 2-7: Recalling a Previous Command Line with the RECALL Command

Operation Command/Qualifier Comments

Displaying the RECALL buffer RECALUALL

Recalling the third most re- RECALL 3
Gently entered command line

Recalling the most recently
entered PRINT command

Erasing the RECALL buffer

RECALL PRINT

RECALUERASE

The /ALL qualifier displays a numbered
list of the commands you have en-
tered.

Adding the parameter 3 to the RE-
CALL command recalls the third most
recently entered command line.

The command parameter PRINT re-
callsthe last PRINT command entered.

The /ERASE qualifier empties the con-
tents of the RECALL buffer.

GETTING STARTED 2- 17

Table 2-8: Controlling the Display of Information at Your Terminal

Operation
Special
Function Key Comments

Redisplaying the CTRUW Within some programs, CTRUW refreshes
Terminal Screen the current terminal display. (This key se-

quence is useful within the EDT editor.)

Suspending CTRUS Suspends the display of information at your
Terminal Output terminal.

HQLD SCREEN The HOLD SCREEN key on VT200-series ter-
minals also suspends the display.

NO SCROLL The NO SCROLL key on VT100-series termi-
nals also suspends the display.

Resuming CTRUQ Allows the program suspended by CTRUS to
Terminal Output resume execution.

HOLD SCREEN Depressing the HOLD SCREEN key again af-
ter halting the terminal display resumes the
display on VT200-series terminals.

NO SCROLL Depressing the NO SCROLL key again after
halting the terminal display resumes the dis-
play on VT100-series terminals.

Suppressing and CTRVO Suppresses the current image's output. The
Resuming Terminal routine that generates the display continues
Display to execute, returning control to the terminal

when it terminates. The command echoes as
Output off. Entering the key sequence a sec-
ond time, enables the terminal to receive out-
put again. The command echoes as Output
on.

2- 18 GETTING STARTED

r"'1 Table 2-9: Terminating an Operation

Operation
Special
Function Key Comments

Canceling a Command Line CTRVY
i

~P

CTRVC

~ the execution of the current
 image. Control returns to DCL com-

mand level. The command echoes as
Interrupt.

Within certain applications, CTRVC can-
cels command processing. CTRVC
echoes as Cancel. (When CTRVC is
not enabled, use CTRUY.)

Closing a File CTRUZ Indicates the end of a file entered at
the terminal (for example, a file you
opened with the CREATE command}.
in certain utilities, the CTRUZ key se-
quence is equivalent to the EXIT com-
mand (for example, the MAIL Utility).
The command echoes as Exit.

Determining Your CTRLJT Momentarily interrupts output to dis-
Current Process play a line of statistical information about
Operation the current process. This key sequence

is only informative. It does not affect
the process operation.

GETTING STARTED 2- 19

GETTING HELP

The Documentation Set

• Contains

— Information about the VMS system

— Discussions of concepts

— Command examples

— Definitions

— Restrictions and problems

• Refer to Table 2-10 as an index to documentation

2- 20 GETTING STARTED

(~
Table 2-10: Manuals for Locating Information About Your System

Topic VMS Manual

Commands and Qualifiers

Concepts of the Operating System

Definitions of Terms and Acronyms

Information and Error Messages Issued
by the System

Location of Major Topics in the Document
Set

Restrictions and Known Problems with
Current Operating System Release

Software Available for Your Use

VMS DCL Dictionary

Refer to each command for a description, syntax,
and examples

VMS Glossary and Concepts Manual

VMS Glossary anal Concepts Manual

VMS System Messages and Recovery Procedures
Reference Manual

Overview of VMS Documentation VMS Master In-
dex

VMS 1/erston V5.0 Release Notes
(Current Version)

A VMS Operating System (Current Version)
Software Product Descripifon is included with the
VMS documentation set

GETTING STARTED 2- 2~

The On-Line Help Facility
To invoke the Help facility:

• Enter the HELP command at the VMS prompt

• Select a topic from the displayed list

— Entering a topic printed in uppercase yields text on the DCL command of the same
name

— Entering a topic printed in lowercase yields text on a general topic

• Press CTRUZ to leave the Help facility

• Table 2-11 lists commands for operating the Help facility

2- 22 GETTING STARTED

Table 2-11: Using the DCL HELP Facility

Operation Command Comments

Displaying a List of Available
Help Topics

Displaying Instructions on the
Help Facility

Displaying a List of Hints

$ HELP

$ HELP INSTRUCTIONS

$ HELP HINTS

Displaying Information About $HELP SHOW

the SHOW Command

Displaying Information About
the SHOW PROCESS Com-
mand

Redisplaying the Previous
HELP Screen

Returning to DCL Command
Level

$ HELP SHOW PROCESS

RETURN

CTRL/Z

The HELP command lists the topics
on which you can obtain information.
The system responds with the Topic?
prompt.

Displays detailed instructions on how
to use the Help facility.

Produces lists of commands grouped
by function.

The SHOW parameter used with the
HELP command produces an informa-
tive display on the SHOW command.
The system responds with the prompt
SHOW Subtopic~

By including the keyword PROCESS,
you can have the system produce an
informative display on the SHOW PRO-
CESS command. SHOW PROCESS
Subtopic? is the system prompt.
Pressing the question mark key (?} re-
displays the previous HELP message.

Moves you one level closer to DCL
level. When you are at the Topic?
prompt, pressing RETURN returns you
to DCL command level.

CTRL/Z returns you to DCL command
level regardless of the HELP prompt.
Both commands echo as EXlT.

GETTING STARTED 2- 23

CHANGING YOUR PASSWORD

The DCL command SET PASSWORD changes your password. When changing your password,
user input is not echoed at the terminal. You must enter the new password twice. If the two
entries do not match, the password does not change.

• Passwords should be changed periodically for security reasons.

• System Managers may force you to change your password by placing an expiration date on
it.

Example 2-2: Changing Your Password

$ SET PASSWORD

Old password: QUINOA
New password: FERMATA
Verification: FERMATA

Note that in a real session, neither the old password nor the new password and its verification
appear on the screen.

OR

$ SET PASSWORD/GENERATE
Old password:

pyffhi pyff-hi
koogaldo koo-gal-do
aimidder ai-mid-der
izuzwa i-zuz-wa
uscoilf us-coilf

Choose a password from this list, or press RETURN to get a new list.

New password:

Verification:

2- 24 GETTING STARTED

SYSTEM MESSAGES
A system message consists of the following parts:

• System message delimiter

• Facility code

• Severity level code

• Message identification code

• Message text

Figure 2-3: The Elements of a System Message

SYSTEM
MESSAGE
DELIMITER

FACILITY
CODE

SEVERITY
LEVEL CODE

MESSAGE
IDENTIFICATION
CODE

%DCL-W-IVVERB, -unrecognized command verb -check spelling
\THINK\

MESSAQE TEXT MESSAGE TEXT

TTB_X03 / 6_88

GETTING STARTED 2- 25

Table 2-12 describes the parts of the VMS system message.

Table 2-12: Elements of the System Message

Message
Element Code Purpose

System % Ali system messages begin with either
Message - a percent sign (%} or a hyphen (-}. The
Delimiter percent sign precedes the first system

message received, while the hyphen
precedes ail additional messages.

Facility DCL Names the portion of the operating
Code system that detected an error.

Severity S Describes the severity of the error. (For
Level I an explanation of each severity level
Code W code, see Table 2--13.)

E
F

Message IVVERB Used to locate further information about
Identification a message.
Code

Message unrecognized Gives a more detailed explanation of
Text command the error, and suggests an action to

verb- recover from the error.
check
spelling

2- 26 GETTING STARTED

~'1 Table 2-13: Severity Levels in System Error Messages

Severity
Level Abbreviation Comments

Success S VMS does not usually display success
messages.

Informational I VMS sometimes displays additional in-
formation about success of operation.

Warning W Some operations may have succeeded.
Others may have failed.

Error E The operation probably failed, but some
part may have succeeded.

Severe (or F The operation failed.
Fatal) Error

GETTING STARTED 2- 27

DISPLAYING CHARACTERISTICS OF TERMINAL,
PROCESS, AND SYSTEM

Your working environment is defined by the characteristics assigned to:

• Your terminal

• Your process

• Your system

Terminal Characteristics

• Physical (hardware}

• Assigned by System Manager

• Displayed and changed with the following commands:

— SET TERMINAL

SHoViI TERMINAL

2- 28 GETTING STARTED

THE SHOW TERMINAL COMMAND
The SHOW TERMINAL command displays the current characteristics of a terminal. Each char-
acteristic corresponds to an option of the SET TERMINAL command.

Example:

$ SHOW TERMINAL

Terminal: _VTA145: Device Type: PRO_Series Owner: SMITH
Physical terminal: _LTA88: Username: SMITH
Input: 9600 LFfill: 0 Width: 80 Parity: None
Output: 9600 CRfill: 0 Page: 24
Terminal Characteristics:
Interactive Echo Type ahead No Escape
No Hostsync TTsync Lowercase Tab
Wrap Scope No Remote No Eightbit
Broadcast No Readsync No Form Fulldup
No Modem No Local echo No Autobaud Hangup
No Brdcstmbx No DMA No Altypeand Set speed
Line Editing Overstrike editing No Fallback No Dialup
No Secure server Disconnect No Pasthru No Syspassword
No SIXEL Graphics No Soft Characters Printer port Application keypad
ANSI_CRT Regis No Block_mode Advanced_video
Edit mode DE C_CRT No DEC CRT2 No DEC CRT3

THE SET TERMINAL COMMAND
The SET TERMINAL command changes the system's interpretation of the terminal's character-
istics.

Example:

$ SET TERMINAL/WIDTH=132

This example changes the width of the terminal screen to 132 characters.

~~

..~

1

~~

GETTING STARTED 2- 29

Table 2-14: Commands for Displaying the Characteristics of Your Terminal, Process, and
System

Information
VMS Command
and Option

Command
Qualifier

Time of Day

Terminal Characteristics

Process Parameters

- Default Device
- Default Directory
- User Name
- Priority
- Process Identification Code (PID)
- User Identification Code (UIC)

- Account Name

- Process Quotas and Limits

- Privileges

Space Available for Your Use on Your
Def au It Device

All Processes Running on Your System

Names of All Users Currently Logged
in to Your System

Names of Devices on Your System

$ SHOW TIME

$ SHOW TERMINAL

$ SHOW PROCESS

$ SHOW PROCESS

$ SHOW PROCESS

$ SHOW PROCESS

$ SHOW QUOTA

$ SHOW SYSTEM

$ SHOW USERS

$ SHOW DEVICE S

None

None

None

/QUOTAS

/QUOTAS

/PRIVILEGES

None

None

None

None

LJ

2- 30 GETTING STARTED

~"1

f ""1

r'1

SUMMARY
To log in to the system:

• Press RETURN.

• Type your user name, then press RETURN.

• Type your password, then press RETURN.
Remember that your password is not displayed.

To log Out of the system:

• Type LOGOUT, then press RETURN.

DCL Command Elements

Command Element Definition

Command line A command line is the complete specification of a DCL command.

Required Elements of a Command Line

Verb The verb specifies the action of your request.
Parameter Parameters) receives the action of the verb.

Optional Elements of a Command Line

Qualifier The qualifiers) describes or modifies the action taken by the verb.
A slash (/) precedes each qualifier.

Value A value assigns a specific quantity to a qualifier.

$ The dollar sign must precede commands you place in files.

! The exclamation mark (I) indicates a comment.

Label: The label is a character string that identifies a particular line in a
command procedure.

Getting Hel p

The documentation set contains information about the VMS system, discussions of concepts,
and command definitions and examples.

The on-line Help facility is invoked by entering the HELP command.

System Messages

System messages consist of the system message delimiter, facility code, severity level code,
message identification code, and the message text.

GETTING STARTED 2- 31

r

MODULE 3
CREATING AND EDITING TEXT FILES

CREATING AND EDITING TEXT FILES 3- 1

INTRODUCTION
One of the most common tasks for a user is the creation and modification of text files. Text files
can assume a number of forms and can serve many purposes. They can be:

• Memos and letters

• Data files that are used by other programs and utilities

• Computer programs written in a language like FORTRAN, Pascal, or COBOL

VMS software provides a number of ways to create, maintain, and modify text files. The two
most popular are:

• The EDT Editor

• The Extensible VAX Editor (EVE)

CREATING AND EDITING TEXT FILES 3- 3

OBJECTIVES
To create and modify text files on a VMS system, you should be able to:

• Use the proper DCL command to invoke a text editor.

— EDT Editor

— EVE Editor

• Identify the major features of each editor.

• Use appropriate commands and keys to perform editing tasks such as:

Moving the cursor

— Adding and deleting text

— Selecting and manipulating text strings

• Terminate an editing session.

• Use available on-line help facilities.

• Recover files that were being edited at a system interruption.

RESOURCES

• VMS Guide fo Te~rt Processing

• VMS Text Processing Utilify Reference Manual (Appendix F)

• VMS EDT Reference Manual

3- 4 CREATING AND EDITING TEXT FILES

CHOOSING AN EDITOR

There are many reasons for choosing one editor over another. Your choice may be based on
ease of editing, the ability to edit more than one file simultaneously, or using multiple buffers
and windows.

EDT is the editor supplied with many DIGITAL systems. The EVE editor is an editor available
only on VMS systems.

Restrictions may apply in unique situations, such as having to edit only on a hardcopy terminal.

Features of both the EDT and EVE editors follow. This listing should aid you in deciding which
editor to choose.

CREATING AND EDITING TEXT FILES 3- 5

EDT Editing Utility

• Default text editing utility supplied with a VMS system

• Available on most DIGITAL systems

• Allows editing on hardcopy terminals

• More system load than EVE

• Two editing modes are available

— Line mode

— Keypad mode

• Line mode

— Automatically entered when EDT is invoked

— Indicated by an asterisk prompt (*)

— Works with the file on a line-by-line basis

— Primarily intended for a hardcopy terminal

• Keypad mode

— Requires a video terminal

— Entered by using the CHANGE command at the line-mode prompt (*)

— Works with the file as a unit

— Modifications made on the screen become modifications to the file

3- fi CREATING AND EDITING TEXT FILES

r"1 The Extensible VAX Editor (EVE)
Using EVE, it is possible to manipulate and edit text both in newly created files and exis~ng files.

• Features include:

— Keypad editing

— Insert and overstrike modes for text entry

— Automatic word wrap

— Multiple windows

• Can be customized to the user's needs, using the features of the VAXTPU programming
language

• Primarily a VMS editor

• Less system load than EDT

• Provides more features than EDT

• Provides EDT-like keypad if desired

• Functions on VT100 and VT200-series and later terminals, and on VAX workstations

— Cannot currently be used on hardcopy terminals

EVE was designed with both ease of learning and ease of use in mind. Testing has shown it to
be easier to learn and use than EDT.

Each editor will be discussed in greater detail in the remainder of this module.

CREATING AND EDITING TEXT FILES 3- 7

USING THE EDT EDITOR

Invoking the EDT Editor

• Command format: $EDIT file-name

• The command qualifier IEDT is available but not required

EDT Screen Layout

Figure 3-1: EDT Screen Layout -Line Mode and Keypad Mode

Input ill• dotes not •xlst
(EOB~
• Chang•

TTB_X091E_~9

3- 8 CREATING AND EDITING TEXT FILES

Using EDT Help

• From Line mode

— Type HELP at the asterisk (*} prompt. Topics are then listed

Type HELP topic-name

— Enter CHANGE to switch to Keypad mode (if desired}

• From Keypad mode

— Press PF2 (VT140} or HELP (VT244}

— Press key on which you want help

— Press space bar to exit

CREATING AND EDITING TEXT FILES 3- 9

Example 3-1: Using the Help Facility On-Line

$ EDIT MYFILE.TXT
1 Although the computer has always been

*help

HELP

You can get help on a topic by typing:

HELP topic subtopic subsubtopic...

A topic can have one of the following forms:

1. An alphanumeric string (e.g. a command name, option, etc.)
2. The match-all or wildcard symbol (*)

Examples: HELP SUBSTITUTE NEXT
HELP CHANGE SUBCON~iND
HELP CH

If a topic is abbreviated, HELP displays the text for all topics that
match the abbreviation.

Additional information available:

CHANGE CLEAR COPY DEFINE DELETE EXIT FILL
FIND HELP INCLUDE INSERT JOURNAL KEYPAD MOVE
PRINT QUIT RANGE REPLACE RESEQUENCE SET SHOW
SUBSTITUTE TAB TYPE WRITE

*HELP CHANGE

The CHANGE command puts EDT in change mode. Use change mode to edit at
the character level rather than the line level.

Format : CHANGE [range] [; nokeypad command (s)]

The optional range specifies the cursor position when you enter change
mode. If you omit range, the current position is used.

There are three submodes of change mode. Which submode you use depends
on the type of terminal you are using and whether or not you wish to use
the auxiliary (numeric) keypad for editing commands. These modes are:

1. Hardcopy mode
2. Keypad mode
3. Nokeypad mode

If the CHANGE command contains a semicolon (;) it may be followed by
nokeypad commands. If the last nokeypad command is EX, EDT returns to
line mode for the next command line. This is the only form of the
CHANGE command that may be used in a startup command file or macro.

Additional information available:

ENTITIES HARDCOPY KEYPAD NOKEYPAD SUBCON~~,NDS

*QUIT

3- 10 CREATING AND EDITING TEXT FILES

The EDT Keypad
Commonly Used Features

• GELD key PF1 activates a~er~nate definitions for keypad keys

• Moving the cursor

— By character, word, or line

— To the top or bottom of files

— In forward or reverse direction

• Deleting and undeleti ng text

— By character, word, or line

CREATING AND EDITING TEXT FILES 3- 11

Figure 3-2 illustrates the definitions EDT assigns to the terminal keypad.

Figure 3-2: EDT Keypad Definitions

PF1

GOLD

7

PAGE
COMMAND

4

ADVANCE
BOTTOM

1

WORD
CHNQCASE

0

PF2

HELP

8

SECT
FILL

5

BACKUP
TO P

2

EOL
DEL EOL

LINE
OPEN LINE

PF3

FNDNXT
FIND

9

APPEND
REPLACE

6

CUT
PASTE

3

CHAR
SPECINS

SELECT
RESET

PF4

DEL L.
UND L

DEL W
UND W

DEL C
UND C

ENTER
SUBS

TTB_X0317_88

3- 12 CREATING AND EDITING TEXT FILES

Table 3-1 shows various ways of moving the cursor in the EDT editor.

Table 3-1: Moving the EDT Cursor

Function Key

Move one character in any direction

Move to the beginning of the next line

Move to the beginning of the next word

Move to the end of the line

Move to the next section of the text {16 lines)

Move to the bottom of the buffer

Move to the top of the buffer

Arrow keys (UP, DOWN, LEFT, RIGHT

LINE (0 on keypad)

WORD (1 on keypad)

EOL (2 on keypad)

SECT (8 on keypad)

GOLD key (PF1) followed by 4 on keypad

GOLD key (PFi) followed by 5 on keypad

Table 3-2 shows how to change the direc~on of your cursor while in the EDT editor.

Table 3-2: Changing the EDT Cursor Direction

Direction Key

Set cursor to forwarcl ADVANCE (4 on keypad)

Set cursor to backward BACKUP (5 on keypad)

CREATING AND EDITING TEXT FILES 3-13

Table 3-3 shows several methods of deleting text using the EDT editor.

Table 3-3: Deleting Text i n EDT

Function Key Comments

Delete characters

Delete words

Delete lines

<X (VT200-series terminal)
DELETE (VT100-series)

Deletes the character to the left of the
cursor
Deletes the character on which the
cursor is positioned

DEL W (- on keypad) Deletes characters from the cursor
position to the beginning of the next
word

DELL (PF4 on keypad) Deletes text from the currerrt cursor
position to the beginning of the net
line

GOLD (PF1) followed by EOL Deletes text between the cursor and
(2 on keypad) the end of the line

DEL C (, on keypad)

Table 3-~4 shows three methods of restoring text using the EDT editor.

Ta bie 3-4: Restoring Text i n EDT

Function Keypad Sequence

Restore the last character deleted

Restore the last word deleted

Restore the last line deleted

GOLD (PF1) followed by DEL C (, on keypad)

GOLD (PF1) followed by DEL W (- on keypad)

GOLD (PF1) followed by DELL (PF4 on keypad)

3- 14 CREATING AND EDITING TEXT FILES

Ending an EDT Editing Session

• From Keypad mode

• Press CTRUZ to return to Line mode

• At the asterisk prompt

— Enter EXIT to end the session and save changes, or

— Enter QUIT to end the session without saving changes

Qr:

• Press PF1 then keypad key 7 (Goid—Command)

• At the Command: prompt

— Enter EXIT to end the session and save changes, or

— Enter QUIT to end the session without saving changes

CREATING AND EDITING TEXT FILES 3- 15

EDT File Recovery

• Jou rnali ng

— Allows file recovery after a system interruption or failure

— Used to reproduce the current editing session

— Last few file modifications may not be recovered

• Journai File

— The default file name is the same as the input file name

— The default file type is J~U

— Contains keystrokes and editing commands of your current terminal session

• Syntax

$ EDiT/RECOVER fife-name

• Specify the original file type (not JOU}

Example 3-2: Recovering a File After a System Interruption

$ EDIT MYFILE.TXT
*CHANGE

Editing session i n p r4g ress.

System interruption occurs.

System recovers.

$ EDIT/RECOVER MYFILE.TXT

3- 16 CREATING AND EDITING TEXT FILES

USING EVE

Invoking the EVE Interface
Command format: $ EDIT/TPU file-name

EVE Screen Layout

Figure 3-3: EVE Screen Layout

END OF
FILE MARKER

O STATUS LINE

O COMMAND LINE

MESSAQE ~ ►Editing new file; could not find DRA1:[SMtTN]FILE.TXT
BUFFER ~

 ► [End of fl le]

Buffer FILE.TXT Insert Forward

TTd X031 •_dA

CREATING AND EDITING TEXT FILES 3- 17

The EVE Interface
Figure 3-~4 shows the way EVE defines the keypad for a VT144-series terminal.

Figure 3-4: EVE Keypad Definitions (VT100-Series Terminals)

PF1

FIND

7

SELECT

4

1
~--~-

0

PF2

HELP

8

REMOVE

NEXT
SCREEN

5 t
2

1

PF3

FORWARD
REVERSE

9

INSERT
HERE

6

3
-~

PREV
SCREEN

PF4

DO

MOVE BY
LINE

ERASE
WORD

INSERT
OVERSTR

TTB_X0310_88

3-- 18 CREATING AND EDITING TEXT FILES

Figure 3-5 shows the way EVE defines the keypad for a VT204-series terminal.

Figure 3-5: EVE Keypad Definitions (VT200-Series Terminals)

F10

EXIT

F11 F12 F13 F14

FORWARD
REVERSE

MOVE BY
LINE

ERASE
WORD

INSERT
OVERSTR

HELP DO

FIND

SELECT

~-

INSERT
HERE

PREV
SCREEN

r

REMOVE

NEXT
SCREEN

-.~

TT~_X0920_e•

CREATING AND EDITING TEXT FILES 3- 19

MOVING THE EVE CURSOR

The following table describes the editing that move the cursor.

Table 3-5: Moving the Cursor Using Keys

Key Cursor Destination

UP ARROW Moves the cursor up one character.

DOWN ARROW Moves the cursor down one character.

LEFT ARROW Moves the cursor one character to the left.

RIGHT ARROW Moves the cursor one character to the right.

CTRVE Moves the cursor to the end of the current line.

CTRUH Moves the cursor to the beginning of the current line.

MOVE BY LINE Moves the cursor to the end of the current line or to the end
of the next line if the cursor is already at the end of a line,
when the current direction is forward. Moves the cursor to the
beginning of the current line or to the beginning of the previous
line if the cursor is already at the beginning of a line, when the
current direction is reverse.

PREV SCREEN Moves the cursor to the previous screen of the current buffer.

NEXT SCREEN Moves the cursor to the next screen of the current buffer.

3- 20 CREATING AND EDITING TEXT FILES

The following table describes the EVE commands that move the cursor.

Tabie 3-6: Using Commands to Move the Cursor

Command Cursor Destination

TOP Moves the cursor to the beginning of the current buffer.

BOTTOM Moves the cursor to the end of the current buffer.

BUFFER Puts the specified buffer in the current window, and moves the
cursor to the last location it occupied in that buffer. Creates a
new buffer if the specified buffer does not exist.

GET FILE Creates a new buffer that contains the text of the specified file,
[file-name] places the new buffer in the current window with the cursor at

the beginning of the new buffer. If you specify a nonexistent
file, an empty buffer is created.

LINE Moves the cursor to the beginning of line n in the current buffer.
n must be a positive integer.

MOVE BY WORD Moves the cursor to the beginning of the next word when the
current direction is forward. Moves the cursor to the beginning
of the previous word when the current direction is reverse.

OTHER WINDOW When there are two editing windows on your screen, the cur-
sor moves to the last location it occupied in the other editing
window.

CREATING AND EDITING TEXT FILES 3- 21

INSERTING TEXT IN EVE
The INSERT/OVERSTRIKE key changes the current editing mode. The editing mode is dis-
played in the status line.

Text is inserted at the current cursor position when in Inset mode, while text already in the file
moves to the right.

Text already in the file is overwritten when in Overstrike mode at the current cursor position.

ERASING TEXT
Table 3-7 shows the editing keys used to erase text.

Tabie 3-7: Keys for Deleting Text

Key Effect

DELETE <X Deletes the character to the left of the cursor.
ERASE WORD Deletes the current word or, if the cursor is not on a word,

deletes the next word.

CTRUU Deletes all characters from the current cursor position to the
beginning of the line.

SELECT Marks text for removal from the initial cursor position to wherever
you move the cursor.

REMOVE Removes the text that was marked by the SELECT key.
INSERT HERE Inserts the text in the INSERT HERE buffer into the file at the

current cursor position.

3- 22 CREATING AND EDITING TEXT FILES

("1

r"1

DEFINING AN EDT-L,KE KEYPAD

The command SET KEYPAD EDT defines an EDT-like keyboard. Note that this command does
not enable you to enter EDT commands by using the DO key. You only have access to the
EDT-like functions by pressing the keypad keys.

The EDT-style keypad does not fully implement EDT. The differences are:

• CTRUZ makes EVE write the buffer to a file and exit to the DCL prompt.

• GOLD/KP7 is defined as the DO key when the keypad is set to EDT.

• GOLD/KP8 is defined as FILL, to reformat the currently selected text or the current para-
graph. If you want this key to fill only the selected text tas in real EDT) redefine the key as
FILL RANGE.

• EVE defines the ENTER key as RETURN.

CANCELING AN EDT-LIKE KEYPAD
The command SET KEYPAD NOEDT cancels the EDT-like keypad setting.

For VT100-series terminals, this command sets the keypad to VT100, which is the default setting.

For VT200-series terminals, this command sets the keypad to NUMERIC, which is the default
setting.

CREATING AND EDITING TEXT FILES 3- 23

Figure 3-6: EDT-Like Key Definitions for VT200-Series Terminals
R

E
S

U
L
T

 O
F

 S
E

T
 K

E
ifP

A
D

 E
D

T
 C

O
M

6
IA

N
D

~-

p
W
Z
LL
W
O

W .,,~
m

F
O
Z
Z

V

~_

r O
~ r

c

O ~.
N O
r- O ~►
~ d ~

W ~

J
N r-
~ O

m

~ O
~ ~
~ ~ O

LL

r K
tL W

t0

N

C

O O

O y

O
o e

0 •
X p

~~ Q

a+

p

0

a
e

... Oi d
O
Q

V

~ m ~a
O

A

O
Q

t
~ O

a
e

ac

•

3° ~ n e
Q

M

~ ~ ~a
O

..

~ ~ n 0
Q

s
rp~ N O
tìuJ d

O

b
O
a
O

a

O

d
A
H

J
O

~ N

W

}

i
E
e
E
O

W

J

O

C
W

3

L
•
O

O

O

m

J
•
d
r
C

Y

C

J

3

'' a`
O

J

O
a
•
CG

LL

p

y

b

O

t
U

Y
V
O
J

J
Q
H
U

H
LL

H

A

C
7
V

TT~

1~

Z

m

O
a+

O

d

V

x

N
.%

W

A V

F
LL_

N

W
A

R
N

IN
Q

:
D

E
F

IN
IN

Q
 C

T
R

U
X

 H
A

S
 U

N
P

R
E

D
IC

T
A

B
L

E
 R

E
S

U
L

T
S

Z
O
F- Z

=
0

~ ~
LL V

M-
Z

Y ~ ~ LLW < p
Z m W ~
O ~

C 00
V ~ F- i-
Z W p p
~ Y W W
LL

O

i a
}
W
Y
W
J
d

t
y

g
C ~

~ O
d ~
n

p
W

Z
_O

Z f'
_O

Z
H ~

Z V LL
O ~ ~
H W ~
U p O
~ ~ ~
LL ~_ O

= O
Vf J

W
N

~ ~
Y

D

t
O

W
Y
W
J
a

N

A
* a0 d

O

e
N
A
O x
0
H
f-

3- 24 CREATING AND EDITING TEXT FILES

n Figure 3-6: EDT-Like Key Definitions for VT200-Series Terminals (Cont.)

Help Do

Keypad Help

Ksy Defs

Flnd

Find

Wild Find

Select

select

Reset

.--

Move Lsft

Sta of LI

Insert Hers

Pasts

Restore

PrevScrsen

Pr• Scr

Mov• Up

Top

Move Down

Bottom

Remov•

Cut

Copy

NextScrsen

Nex Scr

Move R19ht

End of LI

SAMPLE KEYBOARD KEY

8

Repeat

~---- SHIFT FUNCTION

'f' - UNSHIFTED FUNCTION

~----- GOLD OR CTRL FUNCTION

SAMPLE KEYPAD OR FUNCTION KEY

Append

EDT Rep

~--- KEY LABEL

f ---- EDT DEFAULT FUNCTION

~- EDT QOLD FUNCTION

F17 F18 F10 F20

PF1

Qold

PF2

Keypad Help

Key Defs

PF3

Fnd N xt

FI nd

PF4

Del L

Res Lin

7

Move by Pa

Do

8

Sect

Fill

9

Append

EDT Rep

Del W

Res Wor

4

Forward

Bottom

5

Revers•

Top

6

Remove

Ins Her

Del C

Res Cha

1 2 3 Enter

Word

Chng Cas

EOL

Dsl EOL

Char

Spec Ins
Return

Subs

0

Line

Open Line

Select

Reset

WARNIN4: DEFININQ CTRL/X HAS UNPREDICTABLE RESULTS

TTY_X0321_9e

CREATING AND EDITING TEXT FILES 3- 25

Figure 3-7: EDT-Like Key Definitions for VT100-Series Terminals

W

1
= 3 A

~ O

s $
W

~>
O

O ~
~ b

E
~~ ~

~ o
s m

d

~--- ~
s

F

t

V

0
w
0
d

~C

fA
W

H
J

m

0
d
m

°s

0
a • 0

I

.~. O
r
d.

C

ti~ a s

i
a ~ ~

Q

W ;

W ~
O ~ 0

d

0

a

F

.~

W

z e

C

O

J ~ d
•

e

Y

3,
~ ~

0

W
W

t .~

N

v

C
V

c'

~ ~ t = O
O
•

•

} O

y
m d

C

H ~

J
r N

y

d W

i
N ~ a

•
W

r
* A L

•

N d
•

r
s •
c

W

~ E
E

W 0

W

3

C
•

W

O

M

t

•

a
i
V

o°°.
V .a

J
~Q

V

v

r
O
•

~ 7

K

N it

a~

~'
~~ ~~ ~

W

Y
W c

_~ ~ ~ ~ ~ O

~ _ ~ ~ ~ ~ ~
Y W

O W
C ~

Q <
O

W YI
ac ~t
W ~

4
W

t~t ~

e

a 7
1b

W

W
A

R
N

IN
t3

:
D

E
F

IN
IN

G
 C

T
R

U
X

 N
A

S
 U

N
P

R
E

D
IC

T
A

B
L
E

 R
E

S
U

L
T

8

~ ~
a •

o
~ C

s

3- 26 CREATING AND EDITING TEXT FILES

Figure 3-7: EDT-Like Key Definitions for VT100-Series Terminals (Cunt.)

PF1

Gold

PF2

Keypad H~Ip

K.y D.fs

PF3

Fnd Nxt

Find

PF4

D.I L

R.s Lin

7

Mov• by Pa

Do

8

S.ct

FIII

9

App.nd

EDT R.p

D.I W

R.s Wor

4

Forward

Bottom

5

Rev.rs•

Top

6

R.mov•

Ins H.r

D.I C

R.s Cha

1

Word

Chng Cas

2

EOL

D.1 EOL

0

Lin•

Open Lln•

3

Char

3p.c Ins

s.l.ct

Rest

Enter

Return

Subs

WARNING: DEFININQ CTRL/X HAS UNPREDICTABLE RESULTS

SAMPLE KEYPAD OR FUNCTION KEY

0 f --- KEY LABEL

App.nd ~- EDT DEFAULT FUNCTION

EDT Rsp (f --- EDT GOLD FUNCTION

TTa_xoaz~ ea

CREATING AND EDITING TEXT FILES 3- 27

Using EVE Help

• Line mode

— Press DO (on a VT2~~-series terminal) or PF4 (on a VT140-series terminal)

Type HELP

Enter the topic for which you want help

Press RETURN to exit help

• Keypad mode

— Press PF2 (VT14U) or HELP (VT2~0)

Press key on which you want help

Press RETURN to exit

3- 28 CREATING AND EDITING TEXT FILES

("°1 Ending an EVE Session

• Press CTRUZ to exit and save modifications

• Press DO (VT200) or PF4 (VT100}

— Type EXIT at command prompt to save modifications, or

— Type QUIT at command prompt to disregard modifications

EVE File Recovery

• Journaling facility is similar to that of EDT

— Allows file recovery after a system interruption

— Used to reproduce the editing session

— Last few changes are not recovered

• Journal file

— The default file name is the same as the input file name

The default file type is TJL

— Contains keystrokes and editing commands of your current terminal session

• Command syntax:

$ EDIT/TPU/RECOVER file-name

• Specify the original file type (not TJL}

• Example:

$ EDIT/TPU/RECOVER MYFILE.TEXT

CREATING AND EDITING TEXT FILES 3- 29

SUMMARY

There are two editors available on a VMS system: EDT (the default editor} and EVE.
Two editing modes are available with EDT:

• Line mode

• Keypad mode

EVE features include:

• Keypad editing

• Insert and Overstrike modes for text entry

• Automatic word wrap

• Multiple windows

The EDT Editor is invoked by:

$ EDIT file-name

The EVE Editor is invoked by:

$ EDIT/TPU file-name

HELP is available within both editors.

An EDT editing session is ended by pressing CTRUZ then entering EXIT or QUIT, or by pressing
PF1 then keypad key 7 and entering EXIT or QUIT.

An EVE editing session is ended by pressing CTRUZ or by pressing either DO or PF4 then
entering EXIT or QUIT.

3- 30 CREATING AND EDITING TEXT FILES

(""1 APPENDIX A—EDT LINE-MODE EDITING
EDT's line edi~ng facility can be used with any interactive terminal. Line editing uses the line as
its point of reference. Line editing commands are useful for manipulating large blocks of text.

To aid in locating and edi~ng text, EDT assigns line numbers. These line numbers are not part
of the text and are not kept in the file when you finish an editing session.

The following commands deal with line-mode editing.

Inserting Text
Use the INSERT command to insert text. The cursor indents 16 spaces and waits for the text
to be inserted. You can enter as many lines as you wish.

Example:

$ EDIT INSERT.FYI
1 This is line 1
*

2 This is line 2
*

3 This is line 3
*

4 etc.
*

[EOB]

*INSERT 2
This is the new text which is being typed
in the file. It is being inserted prior to
line 2
*EXIT

$ EDIT INSERT.FYI
1 This is line 1
*

2 This is the new text which is being typed
*

3 in the file. It is being inserted prior to
*

4 line 2
*

5 This is line 2
*

6 This is line 3
*

7 etc.
*

[EOB]

*QUIT

CREATING AND EDITING TEXT FILES 3- 31

Substituting Text
Use either the SUBSTITUTE or SUBSTITUTE NEXT command to substitute strings of text.

The SUBSTITUTE command operates on the current line or on a specified range within the
buffer.

Syntax:

*SU BSTITUTE/ol d-string/new-strl ng

Example:

*SUBSTITUTE /FORTRAAN/PAS CAL

To substitute a string throughout the complete buffer, use the WHOLE parameter in conjunction
with the SUBSTITUTE command:

Example:

*SUBSTITUTE/FORTRAN/PASCAL/WHOLE

The SUBSTITUTE NEXT command operates on the next occurrence of the specified string
within the buffer.

Syntax:

*SUBSTITUTE NEXT/old-string/new-string

Example:

*SUBSTITUTE NEXT/FORTRAN/PASCAL

3~-- 32 CREATING AND EDITING TEXT FILES

/1 Moving Text from One Location to Another
Use either the MOVE or COPY command to move one or more lines of text from one location
to another.

Note that the MOVE command deletes the text from the original location, whereas the COPY
command does not delete the text.

Syntax:

*MOVE first-range TO second-range

In the following example, lines 20 through 30 are moved above line 10. Note that "second-range"
always refers to a single line.

*MOVE 20 THRU 30 TO 10

To move the current line, enter:

*MOVE TO 15

To move text without deleting the text in the original position, use the COPY command.

Syntax:

*COPY first-range TO second-range

In the following example, lines 35 through 43 are moved above line 7.

*COPY 35 THRU 43 TO 7

CREATING AND EDITING TEXT FILES 3- 33

Deleting Text

The DELETE command deletes lines or group of lines.

Syntax:

*DELETE range

The following example shows how to delete line 2 in a file.

$ EDIT MYFILE.TXT

1 This is Line 1

* TYPE WHOLE

2 This is line 2

3 This is Line 3

4 This is Line 4

* DELETE 2
1 line deleted

3 This is Line 3
* TYPE WHOLE

1 This is Line 1
3 This is Line 3

4 This is Line 4

One of EDT's features is the ability to edit more than one file. To accomplish this, you must
understand the relationship between buffers and files.

The following section describes the use of buffers in EDT.

3- 34 CREATING AND EDITING TEXT FILES

Using Buffers in EDT
Buffers are temporary storage areas for text. Buffers enable you to:

• Divide one or more files into sections.

• Move part or ail of another file into your editing session.

• Create a file from part or all of the text in a buffer.

When an editing session has started, a buffer called MAIN is automatically provided by EDT.
The MAIN buffer serves as the work area for you.

How to Create Buffers

• Press the C~iOLD key, followed by the COMMAND function.

• At the Command: prompt, enter

— The FIND command

— An equal sign (~)

— Buffer name of your choice (buffer names must begin with a letter)

Example:

Command: FIND=PASCAL

You can now insert and edit text as if you were in the MAIN buffer.

To return to the MAIN buffer, enter:

Command: FIND=MAIN

CREATING AND EDITING TEXT FILES 3- 35

Copying Text from One Buffer to Another

The COPY command is used to copy the contents of one buffer irrto another buffer. In the
following example, the contents of the buffer MAIN are copied into the buffer FORTRAN. The
current buffer becomes FORTRAN.

*COPY =MAIN TO =FORTRAN

Copying Text from a File into a Buffer

The INCLUDE command copies a file (outside of EDP irrto a buffer. In this example, a file
named MYFILE.TXT is copied into the MAIN buffer.

*INCLUDE MYFILE.TXT =MAIN

Copying Text from a Buffer into a File

The WRITE command copies text from your current editing session into a file of your choice. In
this example, the entire contents of the current buffer are written to a file named MYFILE.FOR.

*WRITE MYFILE.FOR

Deleting Buffers

Use the line-mode command CLEAR to delete buffers during an editing session. In the following
example, the buffer PASCAL is deleted.

*CLEAR PASCAL

3- 3fi CREATING AND EDITING TEXT FILES

APPENDIX B—EVE
The following EVE commands are discussed in addition to the commands included in the previ-
ous EVE section of the module.

Inserting Text
You can insert:

• Text -Characters will be inserted iMo the buffer at the cuRent cursor position by typing in
the text.

• Files -Files can be inserted using the INCLUDE FILE command. The contents of the
specified file are inserted into the buffer at the line before the current cursor location.

Syntax:

INCLUDE FILE [file-name]

• Special Nonprinting Characters -Press CTRW and then press the special nonprin~ng
character.

Example of i nserti ng a form feed into the buffer:

Press CTRW

Press CTRUL

CREATING AND EDITING TEXT FILES 3- 37

Locat i n Text g
Syntax:

FIND search-string

The FIND key is used to locate specified text strings.

If the search string is in lowercase characters, EVE disregards the case of letters and locates
any occurrence of the string.

If the search string contains one or more uppercase letters, EVE locates only the occurrences
of the string #hat match the search string exactly.

If a search string is found, EVE displays the string in highlighted type. EVE also defines the
search string as a select range. While the search string is highlighted, you can perform any
operation on it that requires a select range.

Marking Locations in Text

The MARK and GO TO commands are used when you are editlng a large file and wish to return
to a specific location later on during an editing session.

Press DO and enter MARK label-name. The label name can be one or more alphanumeric
characters.

Press DO and enter GO TO label-name to move the cursor to the marked location.

3- 38 CREATING AND EDITING TEXT FILES

Replacing Text
The REPLACE command allows you to replace a text string in the current buffer with another
text string.

Format:

• Press D4

• Enter REPLACE

• Enter the string to be replaced following the "Dld string" prompt

• enter the new string at the "New string" prompt

EVE moves the cursor to the first occurrence of the string, and prompts: Replace? Type
yes,no,a/l,last or quit. The following table lists the response and the action by EVE.

Table 3-8: Responding to REPLACE Prompts

Response EVE's Action

YES Replaces the string and attempts to locate another occurrence of the string in
the current direction.

NO Does not replace the string, and attempts to locate another occurrence of the
string in the current direction.

ALL Replaces the string and all other occurrences of the string in the current direc-
tion. The cursor is moved to the position where the last replacement occurred.

LAST Replaces this occurrence of the string and stops the REPLACE procedure.
The cursor does not move.

QUIT Does not replace this occurrence of the string and stops the REPLACE pro-
cedure. The cursor does not move.

CREATING AND EDITING TEXT FILES 3- 39

Restoring Text
The RESTORE command restores (or undeletes) the last word, serrtence, or line erased by any
of the following:

• Any EVE command or any key bound to an EVE command

• The DELETE key

• Also includes the P1=4, MINUS, KP6, COMMA, and KP2 keys when the keypad is set to
EDT

RESTORE CHARACTER

The RESTORE CHARACTER command restores (or undeletes) the character last erased by
any of the following:

• The ERASE CHARACTER command or any key bound to that command

• The DELETE key

• Also includes the COMMA key when the keypad is set to EDT

RESTORE LINE

The RESTORE LINE command restores (or undeletes) the line last erased by any of the follow—
ing:

• The EVE commands ERASE LINE, ERASE START OF LINE, or any key bound to these
commands

• The GOLD/DELETE key sequence on a VT200 terminal

• Also includes the PF4 or GOLD/KP2 keys when the keypad is set to EDT

RESTORE WORD

The RESTORE WORD command restores (or undeletes} the word last erased by any of the
following:

• The ERASE WORD command or any key bound to that command

• Also includes the MINUS key when the keypad is set to EDT

3- 40 CREATING AND EDITING TEXT FILES

Using Buffers in EVE
Buffers are used during an editing session as storage areas. The following table describes the
commands that are used to create and manipulate buffers.

Table 3-9: Creating and Manipulating Buffers

Command Function

BUFFER

GET FILE

SHOW

WRITE FILE

Puts the specified buffer in the current window and moves the
cursor to the last location it occupied in that buffer. Creates a
new buffer if the specified buffer does not exist.

Creates a new buffer containing the text of the specified file,
places the new buffer in the current window, and places the
cursor at the beginning of the new buffer. If a file is specified
that does not exist, an empty buffer is created.

Displays a screen of Information about the current buffer. If
more than one buffer is active in the editing session, press the
DD key to display information about the other buffers.

Writes the contents of the current buffer to a file. If a file name
is not specified, EVE uses the buffer name as the file name.

CREATING AND EDITING TEXT FILES 3- 41

Using Multiple Buffers

Use multiple buffers when you want to edit more than one file. This is very useful if you want to
move text from one file to another file.

To create a new buffer

• Press DO

• Enter GET FILE file-name

To change the buffer in the current window

• Press DO

• Enter BUFFER buffer-name

When you exit from using multiple buffers, EVE writes the contents of the current buffer to a file
and asks if you want to write the other buffer to a file.

V

3- 42 CREATING AND EDITING TEXT FILES

r'1 Using Multiple Windows
EVE allows you to view multiple windows on your terminal screen at the same time. You can
view and edit either two sections of the same buffer (one file) or multiple buffers (multiple files)
simultaneously.

The following table lists commands that are used to create and manipulate windows.

Table 3-10: Creating and Manipulating Windows

Command Function

TWO WINDOWS Splits the terminal screen and creates two editing windows,
moving the cursor to the last position it occupied in the text
of the bottom window.

OTHER WINDOW Moves the cursor to the last position it occupied in the other
window.

ONE WINDOW Removes the other window from the screen, expanding the cur-
rent window to occupy the complete screen.

GET FILE Creates a new buffer containing the text of the specified file,
places the new buffer in the current window, and places the
cursor at the beginning of the new buffer. If a nonexistent file
is specified, an empty buffer is created. After you create two
windows on your terminal screen, use the GET FILE command
to create a new buffer i n one of the windows.

BUFFER Puts a new buffer in the current window, and moves the cursor
to the last position it occupied in the buffer. Creates a new
buffer if the specified buffer does not exist. After you create two
windows on your terminal screen, use the BUFFER command
to put a different buffer in one of the windows.

CREATING AND EDITING TEXT FILES 3- 43

DELETE WINDOW

The DELETE WINDOW command deletes the window in which the cursor is located, if you are
using more than one window. Be aware that any edits or modifications made to the file in the
current window wi II not be saved.

ENLARGE WINDOW

Syntax:

ENLARGE WINDOW integer

This command enlarges the window in which the cursor is located by the number of lines spec-
ified. EVE shrinks the other windows on the screen accordingly.

Integer is the number of lines you want to add to the current window. The minimum value is 1.
The maximum value is 20 for a VT100 or VT200 screen.

NEXT WINDOW

The NEXT WINDOW command moves the cursor from the current window to the window below.
If the cursor is already in the bottom window, EVE moves the cursor to the top window.

PREVIOUS WINDOW

The PREVIOUS WINDOW command moves the cursor from the current window to the window
above. If the cursor is already in the top window, EVE moves the cursor to the bottom window.

U

--_

~.J

3- 44 CREATING AND EDITING TEXT FILES

SHRINK WINDOW

Syntax:

SHRINK WINDOW integer

The SHRINK WINDOW command reduces the size of the window the cursor is currently in by
the number of lines specified. EVE enlarges the other windows accordingly.

Integer is the number of lines by which you want to shrink the window. The minimum value is
1. The maximum value is 9, which is the number of lines by which you can shrink a window if
you have only two windows on the screen.

SPLIT WINDOW

Syntax:

SPLIT WINDOW integer

The SPLIT WINDOW command splits the window in which the cursor is located.

Integer is the number of smaller windows that you want to appear on the terminal screen. If
you omit the integer, the current window is replaced with two windows.

CREATING AND EDITING TEXT FILES 3-- 45

DEFINING KEYS

You can define keys to execute frequently used EVE commands. You may also save key
definitions to be used from one editing session to the next.

EVE does not allow you to define:

• The DO key

• The RETURN key

• The space bar

• All printing characters on the main keyboard

DIGITAL recommends that you do not define the following keys and control key sequences:

• DELETE

• F6 (VT200-series terminal)

• HELP (VT200-series terminal) or PF2 (VT100-series terminal)

• CTRVC

• CTRUR

• CTRUS

• CTRUT

• CTRVU

• CTRUQ

• CTRUX

• CTRVY

To define a key

• Press DD

• Enter DEFINE KEY

• Type the key to be associated with the EVE command

• A message, Key defined, appears if you have successfully defined a key

3- 46 CREATING AND EDITING TEXT FILES

n

r"1

Saving Key Definitions
The SAVE EXTENDED TPU command saves all key definitions in a section file that you specify.
This command must be executed before ending an editing session.

Format:

SAVE EXTENDED TPU device:[directory]file-name.TPU$SECTION

You should include the device, directory, and file name that you choose. The section must be
TPU$SECTI~N.

If you specify the same file name each time you execute the SAVE EXTENDED TPU command,
all key definitions will accumulate in the same file from ail editing sessions.

Using Key Definitions
To use this extended version of EVE, you must include the /SECTION qualifier when invoking
EVE.

Syntax:

EDIT/TPU/SECTION-device:[directory]file-name.TPU$SECTION file-name

Example:

$ EDIT/TFU/SECTION=DISK:[SMI TH]EVEDEFS.TPU$SECTION MYFILE.TXT

CREATING AND EDITING TEXT FILES 3- 47

MODULE 4
COMMUNICATING WITH OTHER USERS

COMMUNICATING WITH OTHER USERS 4- 1

r""1 INTRODUCTION

The ability to communicate with users, both on your system and on other VMS systems is
invaluable. There are two VMS utilities and a DCL command that allow you to do this. They
are:

• The Mail utility (MAIL}, which allows you to send and receive messages to other users.

• The Phone utility (PHONE} for communicating interactively with other users that are lagged
in.

• The REQUEST command, which allows you to send a message to an operator's terminal.

OBJECTIVES
To effectively communicate with other users, you should be able to:

• Send and receive mail messages.

• Print and delete mail messages.

• Organize mail messages by using mail folders.

• Place and answer calls using the Phone utility.

• Send messages to a system operator using the REQUEST command.

RESOURCES

• VMS Mail Utility Manual

• VMS Phone Utility Manua!

• VMS DCL Dictionary

COMMUNICATING 1NITH OTHER USERS 4- 3

INVOKING AND OBTAINING HELP FROM THE MAIL
AND PHONE UTILITIES

• Enter the command that invokes the utility

$ MP,IL

or

$ PHONE

• To use the HELP feature, enter the HELP command at the utility's prompt.

MAIL> HELP

• Follow the on-line HELP instructions

• To exit the utility, enter

— The EXlT command at the utility's prompt, or

— The CTRUZ key sequence, which brings the utility's prompt to the screen, followed by
another CTRUZ key sequence

COMMUNICATING WITH OTHER USERS 4- 5

Example 4-1: Getting Heip for MAIL Utility Commands

MAIL> HELP

HELP

Allows you to obtain information about the MAIL Utility.

To obtain information about all of the MAIL commands, enter the
following command:

MAIL> HELP

To obtain information about individual commands or topics, enter
HELP followed by the command or topic name.

Format:

HELP [topic]

Additional
/EDIT
BACK
EDIT
FORWARD
MARK
REMOVE
V5_CHANGES

Topic? READ

information
/PERSONAL NAME
COMP RE S S COP Y
ERASE EXIT
GETTING_STARTED
MOVE NEXT
REPLY SEARCH

available:
/SELF
CURRENT
EXTRACT
HELP
PRINT
SELECT

/SUBJECT ANSWER ATTACH
DEFINE DELETE DIRECTORY
FILE FIRST Folders
KEYPAD LAST MAIL
PURGE QUIT READ
SEND SET-SHOW SPAWN

4- G COMMUNICATING WITH OTHER USERS

THE MAIL UTILITY

• Allows you to send messages to and receive messages from other users, both on your
system or within a network.

Organization of Mail Messages

• By default, a file named MAIL.MAI stores mail messages. The system creates this file
automatically.

• MAIL organizes messages in folders. Three of these folders are named:

— N EWMAI L -Contains new messages you have not yet read.

— MAIL -Contains old messages you have already looked at.

— WASTEBASKET -Contains messages marked for deletion.

The Wastebasket folder is emptied automatically when you exit from MAIL.

COMMUNICATING WITH OTHER USERS 4- 7

Using the MAIL Utility

• Use the MAIL command to invoke the utility

$ MAIL
MAIL>

• Enter MAIL commands to

— Read messages you have received

— Send messages to other users

— Obtai n a list of mai I messages you have received

-- Delete old mail messages

4- 8 COMMUNICATING WITH OTHER USERS

Read i ng a New Message
When you log in to the system, you are notified of any new mail messages.

If you are currently logged in, the Mail utility displays an informational message on your terminal
screen.

• To read the first new message

— Invoke the Mail utility

— Press RETURN at the MAIL> prompt

• To read a message you receive while using the Mail utility

— Enter the READ/NEW command

MAIL> READ/NEW

• The folder you are currently in is displayed in the upper right-hand corner of the screen

Example 4-2: Readi ng a Mai I Message

$ MAIL

You have 1 new message.

MAIL>

~1 12-DEC-1987 09:19:25

From: SPEEDY: :JIM
To: SMITH
Subj: Status meeting

John ,

NEWMAIL

I will be out of town so I will not be able to attend the status
meeting. Fill me in when I get back.

Jim

MAIL>

COMMUNICATING WITH OTHER USERS 4- 9

Table 4-1: MAIL Commands Used to Read a Maii Message

Operation Format/Example Comment

Displaying the contents of a READ n
message in the current folder
of the current file

READ

READ/NEW

NEXT

FIRST

LAST

CURRENT

BACK

Displays the message associated with
the message number (n)

Displays the next page of the current
message having the next-highest mes-
sage number

Displays new messages that arrived
while you are in MAIL

Displays the first page of the mes-
sage having the next-highest message
number

Displays the contents of the message
having the lowest message number

Displays the contents of the message
having the highest message number

Displays the contents of the current
(last-read} message

Displays the contents of the message
preceding the current message

4- 10 COMMUNICATING WITH OTHER USERS

n

Sending a Message

• Using the SEND command

— At the MAII..> prompt, enter the SEND command

-- Enter the node cif different from your node) and user name

— Enter the subject of the message

— Enter the message

Press RETURN at the end of each line
Press CTRUZ after the last line
Press CTRUC to cancel the message

Example 4-3: Sending a Mail Message

$ MAIL

MAIL> SEND
To: SMITH
Subj: Department Meeting
Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:

Jim,

There will be a department meeting on Friday at 9:00 am.
Please attend if at all possible.
John
CTRL/Z
MAIL>

COMMUNICATING WITH OTHER USERS 4-11

Table 4-2: MAIL Commands Used to Send Messages

operation Format/Example Comment

Routi ng a message or
the contents of a fi le
to a user or group of
users

Routi ng a copy of the
current (last-read} mes- To : JONES

MAIL> SEND [/qualifier] [file-specification)

MAIL> SEND

To : JONES, ALAN

Sub j : Today' s Agenda

MP,IL> SEND/EDIT

To: @DISTRIBUTION.DIS

Sub j : Today' s Agenda

MAIL> SEND MYFILE.LIS

To : JONES

Sub j : Today' s Agenda

sage to a user or group
of users

Routi ng a message or
the contents of a file
to the sender of the
current (last-read} mes-
sage

MAIL> FORWARD

Sub j : Good News !

Routes the contents of your message
to each user listed after the To: prompt.

Routes the contents of your message
to each user listed in the file named
DISTRIBUTION.DIS. You enter the mes-
sage by using the EDT editor. The
message is sent when you exit the ed-
itor.

Routes the contents of the file MY-
FILE.LIS to the mail file of the user
~oNEs.
Routes a copy of the current mes-
sage to each user listed after the To:
prompt.

ANSWER or
REPLY [/qualifier] [file-specification]

MAIL> REPLY

Sub j : You' re Right !

The REPLY or REPLY/EDIT command
routes your message to the sender of
the current message. (REPLY and
ANSWER are synonyms.)

4- 12 COMMUNICATING WITH OTHER USERS

Displaying a List of Messages

• The DIRECTORY command displays a numbered list of your mail messages.

MAIL> DIRECTORY

• To read an old message

— Enter the DIRECTORY command

— Enter the desired message number

Example 4-4: Listing Messages and Reading Old Messages

MAIL> DIRECTORY

~ From

1 SPEEDY::JIM
2 SPEEDY::SMITH
3 SPEEDY::JONES

MAIL> 3

~3
From:
To•
Subj

John,

Date

12-DEC-1987
12-DEC-1967
12-DEC-1987

12-DEC-1987 09:22:53
SPEEDY :: JONE S
SMITH
Party

Subject

Status meeting
Schedule of meetings
Party

We're having an office party next Thursday.
Would you like to come?

Tom

MAIL>

MAI L

MAIL

COMMUNICATING WITH OTHER USERS 4-13

Deleting a Message

• The DELETE command moves a message to the Wastebasket folder. The message is not
deleted u nti I you exit M ai I .

• Either a single message or a range of messages can be deleted.

• If a message number is omitted, this command marks the message you are currently reading
for deletion.

MAIL> DELETE 3 (Deletes message number 3)

MAIL> DELETE 1, 3, 5-7 (Deletes message numbers 1, 3, 5, 6, 7)

• Deleted messages may be recovered from the Wastebasket folder by using the MOVE
command.

4- 14 COMMUNICATING WITH OTHER USERS

r'""1
Figure 4-1: The Relationship Between a Mail Message, Foider, and File

MSG

TTB_X0325_88

COMMUNICATING WITH OTHER USERS 4- 15

Table 4-3: MAIL Commands Used to Maintain Messages

Operation Example Comments

Displaying a list of folders

Dispaay ng a li st of messages

Moving between folders

Filing a message

Copyi ng a message to a fi le

Printing a message

Emptying the Wastebasket
folder

DIRECTORY/FOLDER

DIRECTORY CALENDAR

SELECT CALENDAR

MOVE CALENDAR

EXTRACT DWAYNE.TXT

PRINT

PURGE or EXIT

Displays a list of all folders in
the current mail file.

Produces a list of all the mes-
sages i n the folder. Each mes-
sage contains a message num-
ber.

Moves you between fo Ide rs of
your choice.

Moves the current message to
the folder named CALENDAR.

Places a copy of the current
message into a sequential file
with the file name specified.

Places a copy of the current
message into the default queue
for printing.

Discards all messages in the
Wastebasket folder.

4- 16 COMMUNICATING WITH OTHER USERS

Exiting from the Mail Utility

• Enter the EXIT command, or

• Press CTRUZ at the M~IL> prompt

COMMUNICATING WITH OTHER USERS 4-17

THE PHONE UTILITY
You can use the Phone utility to contact another user by:

• Entering the name of a user as a parameter to the PHONE command.

$ PHONE HARKINS

• Entering the name of a user from within the Phone utility.

$ PHQNE

DIAL HARKINS

The system responds to your request by displaying a repeating message on the terminal of user
HARKINS. To respond to this message, HARKINS must:

• Enter the PHONE command at the DCL level.

$ PHONE

• Enter the ANSWER command or the REJECT command at the %prompt.

ANSWER or REJECT

To enter a command while having a conversation, type the percent sign (%) followed by the
command.

4- 18 COMMUNICATING WITH OTHER USERS

n The Phone Help Facility

• To display a list of available help topics, enter the HELP command.

• To display a particular help text, enter the command HELP help-option.

• After you receive the help display, type any character to refresh the Phone split screen.

• Entering either the EXIT command or pressing CTRVZ returns you to DCL command level.
(Remember, to errter the EXIT command during a conversation, you must first type a percent
sign.)

Figure 4-2: Using the Phone Utility

VMS PHONE FACILITY 10-FEB-84

your phone commands:
- -~-- -

SUPER::SMITH

your message

their message

SUPER::HARKINS

TTB_X0326_88

COMMUNICATING WITH OTHER USERS 4-19

Table 4-4: Commonly Used Phone Commands

Operation Format/Example Comment

Choosing whom to cal I

Requesting a terminal link

Accepti ng a termi nal link

Rejecting a terminal link

Placing others on hold

Reversing the hold

Terminating a terminal link

Leaving the Phone utility

DIRECTORY [node [::]]

DIAL user -naive

DIAL DONE S

ANSWER

REJECT

HOLD

UNHOLD

HANGUP

EXIT

CTRL/Z

Displays a list of people with
whom you could talk on your
system or any other system i n
the network.

Displays a repeating message
on the terminal JONES is logged
in to, that signifies a terminal
link request.

Links your terminal to the ter-
minal of the caller. The split
screen is displayed.

Terminates the repeating mes-
sage caused by the DIAL com-
mand entered by another user.

Places all other terminals in the
conversation on HOLD.

Reverses your previously en-
tered HOLD command.

Terminates the links of all ter-
minals in the conversation.

Exits the Phone utility by first
executing an automatic HANG U P
command.

4- 20 COMMUNICATING WITH OTHER USERS

r"1 COMMUNICATING WITH OPERATORS
There may be times when you wish to communicate with a system operator. For example, you
may need to have a magnetic tape mounted so you can access it.

The REQUEST Command
The REGIUEST command displays a message at a system operator's terminal and optionally
requests a response from the operator.

• Sending a general message

$ REQUEST "message-text"

$ REQUEST "Please mount magtape 4 on MTAO : "

• Sending a message and expecting an operator to reply

$ REQUEST/REPLY "message-text"

$ REQUEST/REPLY "Please mount magtape 4 on MTAO"

Example 4-5: Using the REQUEST/REPLY Command

$ REQUEST/REPLY "Please mount magtape 4 on MTAO"

~OPCOM-S-OPRNOTIF, operator notified waiting... 11:23:02.92

~OPCOM-S-OPREPLY, AFTER 11:30

13-MAR-1988 11:26:03.87, request 7 completed by operator OPAO

COMMUNICATING WITH OTHER USERS 4- 21

SUMMARY

The Maii Utility

The Mail utility allows you to send to and receive messages from other users, both on your
system and within a network. The Mail utility is invoked by entering MAIL at the DCL prompt.

• To read a new message, press RETURN at the MAIL> prompt.

• To read a message received while you are in the Mail utility, enter the READ/NEW command.

• To send a message, enter the SEND command at the MAIL> prompt.

Enter the node (if different from your node) and user name

— Enter the subject of the message

— Enter the message

Press CTRUZ after the last line of the message

The Phone Utility

You can use the Phone utility to contact another user by:

• Entering the name of a user as a parameter to the PHONE command.

• Entering the name of a user from within the Phone utility.

To enter a command while having a conversation, type the percent sign (%) followed by the
command.

The REQUEST Command

The REQUEST command displays a message at a system operator's terminal and optionally
requests a reply.

REQUEST "message-text"

REQUEST/REPLY "message-text"

4- 22 COMMUNICATING WITH OTHER USERS

MODULE 5
MANAGING FILES

MANAGING FILES 5- 1

a

.7. INTRODUCTION
File management on a VMS system involves moving files between devices, directories, and/or
systems; protecting files from undesired manipulation; and maintaining and organizing collections
of files in a directory.

The VMS system provides the following means to help manage files:

• Devices that store files.

• A file system that organizes, protects, and retrieves files stored on the system.

• Commands and utility programs that allow you to communicate with the devices and the
system.

This module shows you how to organize and maintain a collection of files.

OBJECTIVES
To store and retrieve the many files used during daily operations, and to protect these files from
unauthorized use, you should be able to:

• Locate files stored on disks.

• Locate directories i n directory trees.

• Add and remove files from a directory.

• Display contents of files.

• Protect files from being accessed by unauthorized users.

RESOURCES

• Guide to VMS Files and Devices

• VMS DCL Dictionary

MANAGING FILES 5- 3

r~

FILE SPECIFICATIONS

• A file is a logically related collection of records.

• Use a file specification to identify a file you may wish to access.

Table 5-1 illustrates the syntax of a file specification.

Example: $TYPE DBAO : [SMITH] MYF' ILE .DAT; 7

Table 5-1: Syntax of a Local Disk File Specification

Name Reference Rules of Naming Example

Device

Directory

Name

Type

Version

Storage device name

Gatalog of files

Name of file

Kind of file

Unique number used to dif-
ferentiate files with the same
name and type

1 to 255 characters

1 to 39 characters

0 to 39 characters

0 to 39 characters

1 to 32767 (integer)

DBAO:

[SMITH]

MYFILE

DAT

7

The following characters are allowed in directory names, file names, and file types:

• A through Z

• 0 through 9

• Underscore (~

• Dollar sign ($)

• Hyphen (-)

MANAGING FILES 5- 5

DEFAULTS FOR FILE SPECIFICATIONS

• Each part of a file specification is called a field

• You can omit fields and allow the system to supply defaults for those fields

• To override the default value for a field, supply a value for that field

• The following table summarizes the defaults used by the system

Table 5-2: File Specification Defaults

Field i n File
Specification Default

Device Device established at login by the system manager or specified by the last.
SET DEFAULT command

Directory Directory established at login by the system manager or specified by the last
SET DEFAULT command

Name None

Type Depends on the DCL command

Version The highest version number

5- 6 MANAGING FILES

DEVICE SPECIFICATIONS

• Physical device name

— Refers to a specific physical system device

— Device code

— Controller character (Optional}

— Unit number (~ptionai}

• Logical device name

— Synonym for a physical device name

— Established by the system manager

~: ; S ~~.~. ~

a
~~.

MANAGING FILES 5- 7

Table 5-3: Naming a Device

Device
Specification Function Value

Default
Value

Device type code

Controller character

Unit number

Device specification
delimiter

Identifies device type

Names controller to which de-
vice is attached

Names relative position on
controller of desired unit

Marks the end of the device
specification

2-13 characters None

Cane or more of the A
characters A-Z

Decimal numbers from 0
0-65535

(colon) None

NOTE

Refer to Appendix A for further information regarding devices.

5- 8 MANAGING FILES

~ DIRECTORY STRUCTURE

• A directory is a file that catalogs another set of files on a disk.

• Each disk contains a Master File Directory (MFD) that catalogs all User File Directories
(UFDs). Each UFD contains the name of each file and pointers to where the file is located
on the disk.

• Directory files have a file type of DIR.

• Users can further subdivide their files by creating subdirectories. Subdirectories will be
discussed later in this module.

,~.
~~,

~~~; ~~ 

. _ ~-

t ~ +►~ 
~.:_ 

~F 

`.~ A ::R ~ MiF~, 1  R ;J1 

~~....,. 

A ~.~ T 

~,., 
t 

1. ~/'fr 

FAf 

~_ 

V Q~ 
~l 

O (' • Z 

MANAGING FILES 5- 9 



DIRECTORY NAMES IN THE HIERARCHY 

Table 5-4: Directory Names 

Directory Type Example Naming Convention 

Master File [000000] Each disk contains one MFD, named [000000]. 
Directory (MFD) 

User File [SMITH] Your user name is usually your UFD name. 
Directory (UFD) 

Subdirectory (SFD) [SMITH.PAYROLL] You choose the names for the subdirectories 
you create. 

Figure 5-1: Naming Directories 

MFD 
LEVEL 0 

UFDs 
LEVEL 1 

SFDs 
LEVEL 2 

SFDs 
LEVEL 3 

[SMITH.PAYROLL] 

[SMITH. PAYROLL. MODULES] 

• 

• 

• 

[SMITH.PAYROLL.DOCUMENTS] 

TTB X0327_88 

The names given in the rectangles are directory names. 

5- 10 MANAGING FILES 



FILE MANIPULATION COMMANDS 
The following table lists examples of some DCL commands used to manipulate files. There are 
many qualifiers that modify the ac~on of these commands. Refer to the VMS DCL Dictionary 
for more details. 

Table 5-5: File Manipulation Commands 

CJperation Comments and Examples 

Creating a file without using The CREATE command creates a new file without using a text 
a text editor editor. 

Copying a file 

Changing an existing file name 
to new file name 

Removi ng a f i le 

Removing files on an inter-
active basis 

$ CREATE MYF ILE .TXT 

The COPY command creates a new file from an old file. 

$ COPY OLDFILE .TXT NEWFILE .TXT 

The RENAME command changes all or part of an existing file 
name. 
$ RENAME OLDFILE.TXT NEWFILE.TXT 

The DELETE command removes a file. A specific version num-
ber must be used to remove a file. 

$ DELETE MYF ILE .TXT ; 2 

The /CONFIRM qualifier initiates a system prompt to confirm 
whether or not the file should be deleted. 

A "Y" response deletes the file; an "N" response does not delete 
the file. 

$ DELETE/CONFIRM MYFILE.TXT;* 

tSystem prompts:} 

DISK: [SMITH] MYFILE .TXT; 3, delete? 

DISK: [SMITH] MYFILE .TXT; 2, delete? 

DISK: [SMITH] MYFILE .TXT; 1, delete? 

MANAGING FILES 5- y 1 



Table 5-6: Manipulating Flles in a Directory 

Operation Comments 

Removing all versions The DCL command PURGE removes all but the highest-numbered ver-
of a!I files except the Sion of all files. 
latest version 

Displaying the contents 
of a file at your termi-
nal 

$ PURGE 

The PURGE file-name command removes all but the highest-numbered 
version of a particular file. 

$ PURGE MYFILE .TXT 

The TYPE command displays the contents of a file at your terminal. 
Note that only ASCII files may be displayed. 

$ TYPE MYFILE.TXT 

Appending one or more The APPEND command adds the contents of one or more files to the 
files to the end of an- end of the specified output file. 
other file 

Searching files for all 
occurrences of the 
specified 
search-strings) 

Comparing contents of 
two files and dispiay-
i ng differences 

Controlling the listing 
output from differences 

$ APPEND OLDFILE.TXT NEWFILE.TXT 

The SEARCH command searches one or more files for the specified 
string(s). The search string "March 13" must be enclosed in quotation 
marks because it contains a space character. 

$ SEARCH MYF ILE .TXT "March 13 " 

The DIFFERENCES command compares the contents of two files and 
creates a listing of the records that do not match. This listing goes to 
your terminal by default. 

$ DIFFERENCES MYFILE.TXT YOURFILE.TXT 

The /OUTPUT qualifier tells the system to send the listing of differences 
to a file. 

$ DIFFERENCES/OUTFUT=DIFF.TXT MYFILE.TXT YOURFILE.TXT 

5- 12 MANAGING FILES 



r1 FINDING FILES AND DETERMINING THEIR 
CHARACTERISTICS 

Use the DIRECTORY command to: 

• Find files on a peripheral storage device on your system. 

• Display the contents of directories or the characteristics of files. 

MANAGING FILES 5- 13 



Table 5-7: Using the DIRECTORY Command to Determine the Characteristics of Files 

CJperation Comments 

Listing all files in your 
directory 

Checking for a unique 
file i n your directory 

Obtaining all info rma-
tion about a particular 
file i n your directory 

Determining the size 
of files in your direc-
tory 

Determi ni ng the owns r 
and protection of a file 

The DIRECTORY command lists all files and information about them 
in your directory. 

$ DIRECTORY 

The file specification must be included to obtain information concerning 
a particular file in your directory. 

$ DIRECTORY MYF ILE . TXT 

The /FULL qualifier overrides the default directory display, which is 
BRIEF. Omit the file specification to obtain full informatian about ail 
files in your directory. 

$ DIRECTORY/FULL MYFILE.TXT 

or 

$ DIRECTORY/FULL 

The /SIZE qualifier lists the size of files. in 512-byte blocks used. 
The ISIZE=ALL qualifier lists the size of files both in blocks used and 
blocks allocated by the system. 

$ DIRECTORY/SIZE [file-specification] 

or 

$ DIRECTORY/SIZE=ALL [file -specification] 

The /OWNER qualifier determines if the owner's UIC is displayed. 

The /PROTECTION qualifier determines if the protection of the file is 
displayed. 

$ DIRECTORY/OWNER/PROTECTION MYFILE.TXT 

5- 14 MANAGING FILES 



Using Wildcards in File Specifications 

• Wildcards are used to: 

— Specify more than one fi ie 

— Abbreviate a file specification 

— Match one or more characters in directory names, file names, or file types 

• Wildcards can be used in conjunction with each other or separately. 

Table 5-8: V1lildcards Used to Specify File Names, Types, and Versions 

Symbol Meaning 

* Asterisk 

Percent 

Match 0-39 characters in a file name, file type, or version number 

Match exactly one character in a file name or file type 

MANAGING FILES 5-15 



Example 5-1: Sample Directory Fiie 

Directory WORK2:[SMITH] 

PAY .FOR; 2 PAY .FOR; 1 
PAYOFF.FOR;3 PROBLEMS.TXT;4 

Total of 8 files . 

PAYI.FOR;1 
REPORT.MEM;9 

PAY2 . FOR; 14 
REPORT . RNO; 6 

Table 5-9: Using Wildcards to Specify Files 

Directory 
Specification Description Corresponding Files 

$ DIRECTORY PAY.FOR;* 

$ DIRECTORY * . *; 1 

$ DIRECTORY * . *; 

$ DIRECTORY PAY$ .FOR; 

$ DIRECTORY PAY* . *; 

All versions of PAY. FOR 

Ali files with a version num-
ber of 1 

All files, types, and versionsi 
All versions of files with file 
type of FOR and file name 
beginning with PAY, followed 
by exactly one character 

All files whose first three let-
ters are PAY, including all file 
types and all versions 

PAY.FOR;2 
PAY.FOR;1 

PAY.~OR;1 
PAYI.FOR;1 

All files in the directory 

PAYI.~OR;1 
PAY2.FOR;14 

PAYI .FOR;1 
PAY.FOR;2 
PAY.FOR;1 
PAYOFF. FOR;3 
PAY2.FOR;14 

l Issuing the DIRECTORY command with no qualifiers or wildcards lists all files, types, and versions by default. 

5— 16 MANAGING FILES 



ORGANIZING YOUR DIRECTORY STRUCTURE 

• Files can be organized into subdirectories. 

• Reasons for grouping files into subdirectories are to: 

-- Organize the directory structure 

— Protect them from accidental modification or loss 

— Decrease the time for the system to find them 

• Each UFD can have a maximum of seven levels of subdirectories below it. 

• Files are usually grouped by: 

— Function (all command files} 

— Application (aii files for a given project) 

— Type (all FORTRAN files) 

• Subdirectories can catalog other subdirectories as well as files. 

MANAGING FILES 5- 17 



CREATING A SUBDIRECTORY 

• The command CREATE/DIRECTORY [directory.subdirectory] creates a subdirectory 

• The subdirectory name must be enclosed in brackets 

• The subdirectory name includes the directory name where it is created 

• Separate subdirectory names with a period 

• The directory or subdirectory itself is a file 

— The directory or subdirectory has a file type of DIR 

— Version number of file type DIR is 1 

• Example: 

$ CREATE/DIRECTORY/LOG [SMITH.DOC] 

(System response:) 
CREATE-I-CREATED DISK: [SMITH.DOC] created 

• The directory [SMITH] is a UFD 

• The subdirectory [.DOCJ is the next level below the directory [SMITH] 

• The file DOC.DIR;1 now resides in [SMITH] 

• The /LOG qualifier displays on your terminal the fact that the subdirectory was created 

• To create another subdirectory beneath the [.DOC] subdirectory: 

$ CREATE/DIRECTORY [directory. subdirectory subdirectory] 

• Example: 

$ CREATE/DIRECTORY/LOG [SMITH.DOC.FORTRAN] 

~SCREATE- I -CREATED DISK : [SMITH .DOC . FORTR.AN] created (System response ) 

• The subdirectory [.FORTRAN] is listed under the subdirectory [SMITH.DOC] 

• The file FORTRAN. DI R now resides in [SM ITH. DUC] 

5- 18 MANAGING FILES 



CHANGING YOUR DEFAULT DIRECTORY OR DEVICE 

• The DCL command SET DEFAULT changes the default device and/or the directory name 
for your current process. 

— A physical device name must be terminated with a colon (:). 

-- A directory or subdirectory name must be enclosed in square brackets. 

• Syntax: 

~ SET DEFAULT device-name:[directory-name] 

or 

$ SET DEFAULT [directory-name.subdirectory-name] 

• Examples: 

$ SET DEFAULT DISK2:[BORGERT] (Device name and directory name change) 

$ SET DEFAULT [SMITH.DOCJ (Device name r®mains the same) 

DISPLAYING YOUR DEFAULT DIRECTORY OR DEVICE 

• The DCL command SHOW DEFAULT displays your current default device and directory 
names. 

• Examples: 

$ SHOW DEFAULT 

DISK:[SMITH] (System response) 

$ SET DEFAULT [SMITH.DOC] 

$ SHOW DEFAULT 

DISK:[SMITH.DOC] (System response) 

k 
i 

~~' 
.~ 

~~~ 

~ ~~ ~ _~.
~ .. :a,.: . .. ~.

,~:
~~ ,, •~'"

..
~r.,~

:~...%

MANAGING FILES 5— 19

MOVING WITHIN A DIRECTORY HIERARCHY
Special characters used to move within a directory hierarchy:

HYPhen (-)

• Period (.)

• Ellipsis (...)

The hyphen and period characters are normally used in conjunction with the SET DEFAULT
command to move from your current directory to another directory or subdirectory.

The ellipsis, used with the DIRECTORY command, refers to the current directory and all subdi-
rectories beneath it.

Table 5-10: Characters Used to Specify Directories

Symbol Meaning

- (hyphen) Move one level up in directory hierarchy

. (period) Move one level down in directory hierarchy
(MUST be followed by a subdirectory name)

... (ellipsis) Use current directory and all directories below it

..
~.

,.

5- 20 MANAGING FILES

Figure 5-2: File Specification in the Directory Hierarchy

DIRECTORY NAME

MASTER FILE DIRECTORY
(000000]

USER FILE DIRECTORY
[SMITH]

SUBDIRECTORY
[SMITH.PROJ]

SUBDIRECTORY
[SMITH.PROJ.LAB]

.~

FILES CONTAINED COMMENTS

USERI.DIR

0
USER2.DIR

SMITH.DIR

LOGIN.COM

O

MAIL.MAI

PROJ.DIR

MOD.DIR

0
NOTE.TXT

LAB.DIR

i

MON.TXT

0
I TUE.TXT

O1 [000000] SMITH.DIR

O [SMITH] PROJ.DIR

THE MASTER FILE DIRECTORY
(MFD} CATALOGS THE FILES
THAT IMPLEMENT THE USER
FILE DIRECTORIES.

THE USER FILE DIRECTORY (UFD)
CATALOGS FILES. NOTE THAT
PROJ.DIR IMPLEMENTS THE
SUBDIRECTORY [SMITH.PROJ].

THE 3UB FILE DIRECTORY
(SFD} [SM ITH. PROJ]
IS A LEVEL 2 DIRECTORY.

SFD [SMITH.PROJ.LAB]
IS A LEVEL 3 DIRECTORY.
LEVEL 8 IS THE MAXIMUM
DIRECTORY LEVEL.

O3 [SMITH.PROJ]LAB.DIR

O4 [SMITH.PROJ.LABJMON.TXT

TTB_X0328_88

MANAGING FILES 5- 21

Example 5-2: Using VMS Commands to Create and Maintain a Directory Hierarchy

$ SHOW DEFAULT
DISK: [SMITH]

$ CREATE/DIRECTORY/LOG [SMITH.COM]
CREATE-I-CREATED, DISK:[SMITH.COM] created
$ CREATE/DIRECTORY/LOG [SMITH.UTLCOM]
CREATE-I-CREATED, DISK:[SMITH.UTLCOM] created
$ CREATE/DIRECTORY/LOG [.UTLCOM.FIL]
CREATE-I-CREATED, DISK:[SMITH.UTLCOM.FIL] created
$ CREATE/DIRECTORY/LOG [.UTLCOM.EDT]
CREATE-I-CREATED, DISK:[SMITH.UTLCOM.EDT] created

$ DIRECTORY [...]

Directory DISK:[SMITH]

COM. DIR; 1 FORCALL .MAR; 1
PRINT .FOR; 1 RANDOM. FOR; 1

Total of 8 f Iles .

Directory DISK:[SMITH.UTLCOM]

EDT.DIR; 1 FIL.DIR; 1

Total of 2 files .

Grand total of 2 directories, 10 files.

$ RENAME [SMITH] * .MAR, * .TXT [. UTLCOM . F IL] * .
$ SET DEFAULT [.UTLCOM.FIL]
$ DIRECTORY

Directory DISK:[SMITH.UTLCOM.FIL]

FORCALL .MAR; 1 STRPROG .TXT; 1

Total of 2 files .

~=

f

f

NIl~lUL .FOR; 1 POLA .QUO; 1
STRPROG.TXT;1 UTLCOM.DIR;1

5- 22 MANAGING FILES

PROTECTING DISK AND TAPES

Figure 5-3: File Access to Disk and Tam Volumes

FILE ACCESS REQUEST

TERMINAL

VMS
COMMAND
LANGUAGE
INTERPRETER

VMS
FILE
SYSTEM

VOLUME PROTECTION CODE

DIRECTORY PROTECTION CODE

FILE PROTECTION CODE

~ ~

DISK
FILE

VOLUME PROTECTION CODE

TAPE
FILE

TTB__X0329_88_ S

MANAGING FILES 5- 23

PROTECTING FILES IN YOUR DIRECTORY
HIERARCHY
Change file protection to:

• Restrict access to your files

• Prevent unauthorized moving or deletion of files

• Assign a special protection code for all files created in a particular directory

• Delete a subdirectory

Three Levels of Disk File Protection

• Volume Protection

— Controls who can access a particular disk volume

• Directory Protection

Controls who can access a particular directory

• File Protection

— Controls who can access a particular file

— Two means of protecting files:

User Identification Code (UIC-based) protection
Access Control Lists (ACLs)

5- 24 MANAGING FILES

UIC-Based Protection

• Format: [group,member]

— Can be either numeric or alphanumeric

— Group = 0-37776 (octal numbering system)

— Member = 4-177776 toctal numbering system)

• Examples:

— Numeric UIC: [100,30]

— Alphanumeric UIC: [PAYR~LL,SMITH] or [SMITH]

• The system manager assigns UICs to all users

• Each file is assigned a protection code and a UIC when it is created

• Protection codes are checked against a user's UIC before allowing them access to a file

MANAGING FILES 5- 25

Figure 5-4: Interaction of Access Categories

TTB_X0330_88

Figure 5-5: Elements of a Protection Code: Determines Vllhich Users Have Access to a
Flle

PROTECTION CODE

~ ~ ~
(S:RWED, O:RWED,G:RE,W)
~~

PROTECTION CODE
DELIMITER

USER CATEGORY
SYMBOL (SYSTEM)

USER CATEGORY
DELIMITER

USER CATEGORY
ACCESS CODES (READ,
WRITE, EXECUTE
AND DELETE)

USER CATEGORY
SEPARATOR

TTB_X0331 _88

5- 26 MANAGING FILES

Table 5-11: Summary of Effects of Access Rights to Files

(R)ead (W)rite (E)xecute (D)elete

Disk Directory

Disk File

Tape File

Can read list of
files in directory

Can read con-
tents of files}

Can read list of
files on tape

Can modify Ifst
(Add files)
Read access
also needed

Can modify con-
tents of files)

Can add files
on the volume

Can access ex~ Can delete the directory
plicitly named
files

Can execute ex- Can delete files)
ecutable files

Does not ap- Does not apply
ply

Table 5-12: Determining a User's Category by Comparing User's UIC to File owner's UIC

Category Group Number Member Number

SYSTEM

OWNER

GROUP

WORLD

0-10 (Octal)

Matches group number of file UIC

Matches group number of file UIC

Does nat matter

Does not matter

Matches member number of file UIC

Does not matter

Does not matter

MANAGING FILES 5- 27

DETERMINING AND ALTERING FILE PROTECTION

Table 5-13: Determining and Altering Flle Protection

Operation Comments

Displaying the default The default protection applies to all newly created files in the current
protection assigned to directory.
new files

$ SHOW PROTECTION

Obtaining the protec-
tion code of a given
file

Displays the current protection of an existing file.

$ DIRECTORY/PROTECTION MYFILE.TXT

Changing the default The default protection, once changed, affects ail future files created
protection assigned to i n this particular directory. Files created before changing the default
new files protection will retain the previous protection.

$ SET PROTECT ION= (S : RWED, O : RWED, G : RWE, W : RWE) /DEFAULT

Changing the protec- The protection code can be changed to allow more or less access to
tion code of an exist- an existing file.
ing file

$ SET PROTECTION= (S : RWED, O : RWE, G : RW, MYFILE.TXT

NOTE

If you omit a protection category when you issue the SET PROTECTION command, the
protection for that category remains unchanged.

5- 28 MANAGING FILES

Example 5-3: Changing Your Default Protection Code

~1

$ SET DEFAULT [SMITH . DOC] -

$ SHOW PROTECTION
SYSTEM=RWED, OWNER=RWED,.GROUP=RE, WORLD=NO ACCESS

~$ DIRECTORY/OUTPUT=DIRECTORY.LIS
$ DIRECTORY/OWNER/PROTECTION ----~

Directory DISK:[SMITH.DOC]

DIRECTORY . LI S; 1 [GROUP 11, SMITH] (RWED, RWED, RE,)
EDT. DIR; 1 [GROUPII, SMITH] (RWE, RWE, RWE, RE)

Total of 1 file .

$ SET PROTECTION= (S :R, G:R) /DEFAULT

$ SHOW PROTECTION
SYSTEM=R, OWNER=RWED, GROUP=R, WORLD=NO ACCESS

$ DIRECTORY/OUTPUT=DIRECTORY.LIS
$ DIRECTORY/OWNER/PROTECTION

Directory DISK:[SMITH.DOC]

DIRECTORY.LIS;2
DIRECTORY.LIS; 1
EDT.DIR;1

Total of 2 files .

[GROUP 11, SMITH]
[GROUP 11, SMITH]
[GROUP 11, SMITH]

(R, RWED, R, }
(RWED, RWED, RE,)
(RWE , RWE, RWE , RE }

O
~ \... '+.

MANAGING FILES 5- 29

DELETING A SUBDIRECTORY

• Before a subdirectory can be deleted, all files cataloged in that subdirectory must be deleted.

• Set your default to the directory or subdirectory containing the subdirectory name to be
deleted.

• The protection on the subdirectory to be deleted must allow the owner DELETE access.
The directory protection must be changed to reflect this, since by default the system never
assigns DELETE access to a DIR file type.

• The subdirectory can now be deleted.

Example 5-4: Deleting a Subdirectory from a Directory Hierarchy

$ SET DEFAULT [SMITH.DOC]
$ DIRECTORY

Directory DISK:[SMITH.DOC]

CLASS.LIST;4 CLOCK.EXE;1
JOE_EVE . TPU$ SECT ION; 1
REMIND . EXE; 1 REMLOG . EXE; 1

Total of 11 files .

COLOR.COM;4
MYF ILE . TXT ; 1
TRNG .PLAN; 6

DEG.EXE; 1
NOTE.COM;4
VT100.CLR;1

$ DELETE *.*;*
$ DIRECTORY

DIRECT-W-NOFILES, no files found

$ SET DEFAULT [SMITH]
$ DELETE DOC.DIR;1

DELETE-W-FILNOTDEL, error deleting DISK:[SMITH]DOC.DIR;1
-RMS-E-PRV, insufficient privilege or file protection violation

SET PROTECTION= (O : RWED) DOC .DIR

DELETE DOC .DIR; 1

DIRECTORY DOC.DIR
DIRECT-W-FILES, no files found

5- 30 MANAGING FILES

Example 5-5: Removing Subdirectories from a Directory Hierarchy

$ SET DEFAULT [SMITH]
$ DIRECTORY [SMITH...]
Directory DISK: [SMITH]
DOC .DIR; 1 MYF ILE .TXT; 1 MYTEXT .TXT; 1 TXT .TXT; 1
Total of 4 files .

Directory DISK: [SMITH.DOC]
FORTRAN .DIR; 1 MYFILE .TXT; 1 MYTEXT . TXT;1 TXT .TXT; 1
YOUR.FILE;1
Total of 5 files .

Directory DISK: [SMITH.DOC.FORTRAN]
MYFILE .TXT; 1 MYTEXT .TXT; 1 TXT .TXT; 1
Total of 4 files.

YOUR. FILE; 1

Grand total of 3 directories, 13 files .~
$ SET PROTECTION=O:RWED [SMITH...]*.*;*
$ DELETE [SMITH ...] * . *;
DELETE-W-FILNOTDEL, error deleting DISK: [SMITH]DOC.DIR;1

-RMS-E-MKD, ACP could not mark file for deletion
-SYSTEM-F-DIRNOTEMPTY, directory file is not empty
DELETE-W-FILNOTDEL, error deleting DISK: [SMITH]FORTRAN.DIR;1

-RMS-E-MKD, ACP could not mark file for deletion
-SYSTEM-F-DIRNOTEMPTY, directory file is not empty
$ DIRECTORY [SMITH...]
Directory DISK: [SMITH]
DOC .DIR; 1
Total of 1 file .

Directory DISK:[SMITH.DOC]
FORTRAN .DIR; 1
Total of 1 file .

Grand total of 2 directories, 2 files.
$ DELETE [SMITH ...] * . * ;
DELETE-W-FILNOTDEL, error deleting DISK: [SMITH]DOC.DIR;1

-RMS-E-MKD, ACP could not mark file for deletion
-SYSTEM-F-DIRNOTEMPTY, directory file is not empty
$ DIRECTORY [SMITH...]
Directory DISK: [SMITH]
DOC .DIR; 1
Total of 1 file .
$ DELETE [SMITH ...] * . *;
$ DIRECTORY [SMITH...]
DIRECT-W-NOFILES, no files found

MANAGING FILES 5- 31

Access Control Lists

• An optional layer of protection

• Can be used for more control than U!C-based protection

• Usually used when access is to be provided for specific users but not all users on a system

• Based on identifiers

— Users can have one or more identifiers

-- Files specify access rights for holders of various identifiers

5- 32 MANAGING FILES

~ Commands to Obtain ACL Information

• SH01N ACL file-name

• DIRECTORY/ACL file-name

• DIRECTORY/FULL file-name

• DIRECTORY/SECURITY file-name

Creating an Access Control List

• The DCL command EDIT/ACL file-name invokes the ACL editor

• Access Control List Entries (ACEs) can be added to the ACL

— No limit to the number of ACEs contained in an ACL

— No limit to the number of ACE characters contained in an ACL

— ACEs are enciosed in parentheses

• Syntax:

(TYPE, [OPTIONS],[ACCESS])

• The first field indicates the group or subset of a group that will have access to files

• The second field indicates options (if any) that apply to the ACE

• The third field indicates the type of access to be granted to the file (READ, WRITE, EXE-
CUTE, DELETE, CONTROL, NONE)

MANAGING FILES 5- 33

Example 5-6: Modifying an Access Control List

$ DIRECTORY/FULL MYFILE.TXT

Directory DISK:[SMITH]

MYFILE.TXT;1
Size: 1/3
Created: 17-DEC-1986 14:18

Expires: <None specified>

File organization: Sequential

File ID : (25168, 6, 0)
Owner : [GROUP 11, SMI TH]
Revised: 17-DEC-1986 14:24 (3)

Backup: <No backup recorded>

File attributes: Allocation: 3, Extend: 0, Global buffer

No version limit

Record format: Variable length, maximum 47 bytes

Record attributes: Carriage return carriage control

Journaling enabled: None
File protection: System:RWED, Owner:RWED, Group:RE, World:

Access Cntrl List: None

Total of 1 file, 1/3 blocks .

$ EDIT/ACL MYFILE.TXT

(IDENTIFIER=VMS,ACCESS=READ+WRITE+EXECUTE+DELETE)

CTRL/Z

$ DIRECTORY/FULL MYFILE.TXT

Directory DISK:[SMITH]

MYFILE.TXT;1
Size: 1/3
Created: 17-DEC-1986 14:18
Expires: <None specified>
File organization: Sequential
File attributes: Allocation: 3, Extend: 0, Global buffer count:

No version limit
Record format: Variable length, maximum 47 bytes
Record attributes: Carriage return carriage control
Journaling enabled: None
File protection: System:RWED, Owner:RWED, Group:RE, World:
Access Cntrl List: (IDENTIFIER=VMS, ACCESS=READ+WRITE+EXECUTE+DELETE}

count 0,

Total of 1 file, 1/3 blocks .

File ID : (25168, 6, 0)
Owner : [GROUP 11, SMITH]
Revised: 17-DEC-1986 14:45 (4)
Backup: <No backup recorded>

0,

5- 34 MANAGING FILES

I'~ Deleting an Access Control List

• Use the SET ACL command to delete an Access Control List

• Example:

$ SET ACL/DELETE MYFILE.TXT

Assigning the Same ACL to Other Files

• To save time, you can copy ACLs onto other files in your directory. Create the ACL once,
then use the SET ACL command to perform the copy.

• Example:

$ SET ACL/LIKE= (OBJECT TYPE=FILE, OBJECT NAME=MYFILE .TXT) * .TXT;

MANAGING FILES 5- 35

SUMMARY

Directory Type Example Naming Convention

Master File [000000] Each disk contains one M FD, named [000000].
Directory (MFD)

User File [SMITH] Your user name is usually your UFD name.
Directory (UFD)

Subdirectory (SFD) [SMITH.PAYHOLL] You choose the names for the subdirectorfes
you create.

Use the DIREC'ToRY command to:

• Find files on a peripheral storage device on your system

• Display the contents of directories or the characteristics of files

You may want to change file protection to:

• Restrict access to your files

• Prevent unauthorized moving or deletion of files

• Assign a special protection code for all files created in a particular directory

• Delete a subdirectory

There are two means of protecting files:

— User Identification Code (UIC-based) protection

— Access Control Lists (ACLs)

5- 36 MANAGING FILES

APPENDIX A—DEVICE INFORMATION

Specifying Devices

Figure 5-6: Device Specifications Used to Identify the Desired Device for a Given Oper-
ation

DEVICE SPECIFICATION

0

VMS
OPERATING
SYSTEM

VAX DEVICES
TT8__X0332_88_S

MANAGING FILES 5- 37

Table 5-14: Examples of Using Other Devices

Operation Comments

Listing files i n a
directory on another
disk

Locating a file in a di-
rectory on another disk

Copying a file from
another disk to your
default disk and
directory.

Listing all files on a
tape device

Finding a file on a tape
device

Copying a file from tape
to a disk

Lists all files in the directory [SMITH] located on the disk DBA2:.

$ DIRECTORY device-name:[directory-name]
$ DIRECTORY DBA2:[SMITH]

Searches for the file name MYFILE.TXT in the directory [SMITH]
located on the disk DBA2:.

$ DIRECTORY device-name:[dlrectory-name)flle-name
$ DIRECTORY DBA2:[SMITH)MYFILE.TXT

Copies the latest version of MYFILE.TXT from another disk to your
default disk and directory.

$ COPY device-name:[directory-name]fllename file-name
$ COPY DBA2: [SMITH]MYFILE.TXT MYFILE.TXT

Lists all files on magnetic tape on device MTA2:.

$ DIRECTORY device-name:
$ DIRECTORY MTA2:

Searches for the file MYFILE.TXT on magnetic tape on device MTA2:.

$ DIRECTORY device-name:file-name
$ DIRECTORY MTA2 : MYF ILE .TXT

Copies the file MYFILE.TXT from the tape on MTA2: to your default
disk and directory.

$ COPY device-name:file-name disk:[directory-name]file-name
$ COPY MTA2 : MYF ILE .TXT * . * ;

5- 38 MANAGING FILES

Table 5-15: Moving a Hierarchical File Structure from one Disk Device to Another

Command Comment

COPY command Copies all versions of the files in and below the SFD [SMITH.UTLCOM]
on device DBAO: to the directory [JONES] on device DRA2:, preserving
the hierarchical file structure.

$ COPY DBAO : [SMITH . UTLCOM ...] * . * . * DRA2: [JONES ...] * . * .

Copies all versions of the files in and below the SFD [SMITH.UTLCOM]
on device DBAO: to the directory [JONES.UTLCOM] on device DRA2:,
preserving the hierarchical file structure.
If the file UTLCOM.DIR does not exist in the directory [JONES], the COPY
command fails.

$ COPY DBAO : [SMITH . UTLCOM ...] * . * ; *DRA2: [JONES . UTLCOM ...] * . * ;

MANAGING FILES 5- 39

Table 5-16: Codes for Some Supported pevices on a VMS System

Code Device Type

GS Console Storage Device

DB RP05, RP06 Disk

D D TU58 Cassette Tape

DJ RA60 Removable Disk

DL RL02 Cartridge Disk

DM RK06, RK07 Cartridge Disk

DQ R80 Disk

DR RM03, RM05, RM80, RP07 Disk

DU RA82, RA80, RA81, RC25, RD54, RD53 Disk, RX33, RX50 Floppy Diskette

DX RX01 Floppy Diskette

DY RX02 Floppy Diskette

LA LPA11-K Laboratory Peripheral Accelerator

LC Line Printer on DM F32

LP Line Printer on LP11

LT Interactive Terminal or Terminal Server

MB Mailbox

M F TU78 Magnetic Tape

MS TS11, TU80 Magnetic Tape

MT TE16, TU45, TU77 Magnetic Tape

M U TA78, TK50, TU81 Magnetic Tape

NET Network Communication Logical Device

NL System "Null" Device

OP Operator's Console

RT Remote Terminal

TT Interactive Terminal on DZ11

TX Interactive Terminal on DMF32

XA DR11-W General Purpose DMA Interface

XD DMP-11 Synchronous Communications Lines

XE DEUNA Communication Device

X F D R 32 Interface Ad apte r

XG DM F32 Synchronous Communications Lines

XJ DUP11 Synchronous Communications Lines

XM DMC11 Synchronous Communications Lines

XQ DEQNA Communication Device

5- 40 MANAGING FILES

Table 5-17: Summary of Device Terminology

Term Definition

Peripheral Device

Mass Storage Device

Record-Oriented Device

Physical Device Name

Logical Device Name

Generic Device Name

Cluster Device Name

A unit on the system used for information input, output,
or storage. A device can be classified either as a mass
storage device or as arecord-oriented device.

A device used for storing information on a magnetic medium.
Examples include disks and tapes.

A device used for reading and writing single units of data.
Terminals, printers, and card readers are examples of
these devices.

A specific physical device on the system. Consists of a
device-type code, a controller character, and a unit num-
ber.

A synonym for a physical device name. Often used to refer
to a specific volume, regardless of the device on which it
is mounted. Usually the system manager sets up logical
names.

A group of devices, consisting of a physical device name
that does not specify the controller and the unit number.

Name of a device on a node in a cluster, consisting of a
cluster node name and a device name or allocation class
separated by a dollar sign.

MANAGING FILES 5- 41

Table 5-18: Generic Specification with the SH01N DEVICE Command

Operation Comment

Using Physical flevice Names

Specifying a particular device

Using Generic Device Names

Specifying all devices of a given type
except terminals

Specifying all devices of a given type on a
single controller

Specifying all devices of a given type at the
same position on different controllers

Specifying all terminals

Specifying your assigned terminal

Displays full i~orma~on on the magne~c tape
(M~ unit (0) on controller A.

$ SHOW DEVICE/FULL MTAO:

Displays brief characteris~cs of all RA60 devices.

$ SHOW DEVICE DJ:

Shows brief characteristics of all MT magnetic
tape devices on controller A.

$ SHOW DEVICE MTA:

Displays brief characteristics of ail terminals (T~
with unit number 1 on any controller.

$ SHOW DEVICES TT1:

Displays brief characteristics of all system
terminals.

$ SHOW DEVICE T

Displays brief characteristics of your assigned
terminal. TT: is asystem-defined logical name
equating to your terminal.

$ SHOW DEVICE TT

5- 42 MANAGING FILES

~'1 APPENDIX B—NETWORKING INFORMATION

Managing Files on Another VMS System in Your
Network

Methods of File Management in a Network

• Use the SET HOST command

— Enter SET HOST

Both processors must be running DECnet
You must know a user name and password of an account on the remote system

-- Enter DCL file-manipulation commands

• Use an access-control string in your DCL commands

— Include an access-control string in your DCL file-manipula~on commands

A user name of an account on the remote system
A password for the account on the remote system

• Use a proxy account

-- Established by the system manager

— Associates your user name with an account on the remote system

-- The remote account provides needed system values

• Use the. DECnet defaults

-- The system manager can establish a default DECnet account

-- The DECnet account supplies needed system values

MANAGING FILES 5- 43

Using DCL File-Manipulation Commands in a
Non-VAXcluster Network Environment

Two Node Specification Formats

• Nodename::

— The remote system process obtains needed values from its default DECnet account

(If there is no default DECnet account, your file-manipulation request fails)

-- You have file access rights based on the DECnet account UIC

• Nodename"access control string"::

— The remote system creates a process using the access control string values

— The new remote account supplies needed system values

5- 44 MANAGING FILES

Table 5-19: Examples of Specifying Files on Remote Nodes

Action Example

Specifies file PAY. FOR; ~ in the $DIRECTORY DIPPER :: DBA1: [SMITH] PAY .FOR; 1

directory [SMITH] on disk DBA1:
on remote node DIPPER:.

Specifies the same as above ex-
ample. Access to the file uses
the U IC of user SMITH.

Specifies the same as above ex-
ample. The process supplies the
defaults under the account for
SMITH.

Specifies the file PAY.FOR in the
subdirectory [SM ITH. DOC] on the
default disk of user SMITH on
node DIPPER:.

$ DIRECTORY DIPPER"SMITH CORONA"::DBAl:[SMITH]PAY.FOR;1

$ DIRECTORY DIPPER" SMITH CORONA" :: DBAl : [SMITH] PAY. FOR; 1

$ DIRECTORY DIPPER"SMITH CORONA" :: [SMITH . DOC] PAY .FOR

MANAGING FILES 5- 45

Table 5-20: DECnet-VAX DCL File-Manipulation Command Summary

Function Comments

Adding the contents of one
or more files to the end of an-
other file (files may be local
or remote)

Copying one or more files to
or from a remote node

Creating a disk file on a re-
mote node

Displaying information about
a file

Displaying the contents of a
fife at a terminal on a remote
node

Deleting one or more files at
a remote terminal

Appends the contents of file DEMO.DAT in the directory [JAFFE]
on the remote node BOSTON:: to the file TEST.DAT in your
current directory on your local node.

$ APPEND input-file(,...] output-file[,...]

$ APPEND BOSTON"JAFFE ANN"::DEMO.DAT TEST.DAT

Copies the file DECI2.DAT from your current directory to the
directory [JANES] on the remote node WHYNOT::. Defaults on
the remote node come from the UAF record specified within
quotes. The same file name is retained.

$ COPY input-file[,...] output-file[,...]

$ COPY DEC12 . DAT WHYNOT"JANES JIL" :: * .

Creates the file TEST. DAT in the directory [MODEL] on disk
DBA1: of remote node TRNTO::.

$ CREATE file-specification

$ CREATE TRNTO :: DBA1: [MODEL] TEST .DAT

Text is entered into file TEST .DAT

CTRL/Z

Lists the files in the subdirectory [JANES.SUB1] located on the
remote node WHYNOT::.

$ DIRECTCJRY file-specification

$ DIRECTORY WHYNOT"JANES JIL" :: [JANES . SUB1]

Displays the file PAY.DOC;1 in the directory [GREEN] on disk
DBA1: located on remote node DIPPER::.

$ TYPE file-specification

$ TYPE DIPPER: :DBA1:[GREEN]PAY.DOC;1

Deletes all versions of the file PAY.FOR in subdirectory [JONES.SUB1]
located on remote node WHYNOT :.

$ DELETE file-specification

$ DELETE WHYNOT"JANES JIL" :: [JANES . SUB1]PAY .FOR;

5- 46 MANAGING FILES

Using DCL File-Manipulation Commands in a
VAXcluster Environment

Two Cluster Device Specification Formats

1. Format Example

node-name device-name PETER$DUA1:

— Node name (name of HSC50 or VAX)

— Dollar-sign ($)

— Device name

2. Format Example

$allocation-class device-name 1DUAO:

— Dollar-sign ($}

— Allocation class (a number between 0 and 255}

— Dollar-sign ($}

— Device name

MANAGING FILES 5- 47

Table 5-21: Commands Used to Determine the Nodes and Devices in Your Systems
Environment

Operation Command/Example Comments

Determining the names
of nodes in a network

Determining the names
of nodes in a VAX-
ciuster system

Determining the names
of devices accessible
to your node

$ SHOW NET

$ SHOW CLUSTER

$ SHOW DEVICES

Displays a list of nodes in your network.

Displays a list of nodes (HSC and VAX) in
your cluster.

Displays a list of devices accessible to your
node.

5- 48 MANAGING FILES

MODULE 6
CUSTOMIZING THE
USER ENVIRONMENT

CUSTOMIZING THE USER ENVIRONMENT 6- 1

INTRODUCTION
In earlier modules, you have learned to enter commands to the operating system and to specify
the locations of devices, directories, and files. The command strings and device and file speci-
fications that perform these opera~ons are some~mes lengthy and complex, which can lead t0
typographical and syntactical errors.

This module introduces logical names and demonstrates how to use them in place of complicated
device and file specifications in command strings. It also explains how to create and use symbols
to tailor the command language. Finally, it describes how to define terminal keys to perform
frequently used functions.

OBJECTIVES
To tailor the user environment, you should be able to:

• Create and use logical names for file access.

• Use the logical names the VMS system defines for all users.

• Create and use symbols as command synonyms.

• Define and use terminal keys to speed up execution of frequently used DCL commands.

n RESOURCES

• VMS DCL Dictionary

• VMS DCL Concepts Manual

CUSTOMIZING THE USER ENVIRONMENT 6- 3

LOGICAL NAMES

• A logical name is a name you can use in place of all or part of a file specification

• It is used to:

— Achieve device and file independence in programs or procedures

— Reduce typing and improve readability fused as replacement for long file specifications)

— Pass data among programs, or between a command procedure and a program

• Format:
~~r`Mu$

DEFINE logical-name equivalence string[,...] m , or ~. ...
$ ASSIGN equivalence-name [,...] logical-name

• Logical names and their equivalence strings can each have a maximum of 255 characters
including alphanumeric characters, dollar signs, and underscores)

• Stored in logical name tables

'~.

G ~ ~~~ .._

~~~ ~~ ~. 

~ ~. 

CUSTOMIZING THE USER ENVIRONMENT 6- 5 



Logical Name Tables 
Private 

• Process logical name table 

Used only by your process 

— /PROCESS -DCL command qualifier 

Shared 

• Job-wide logical name table 

— Used by your process and its subprocesses 

— /JOB -DCL command qualifier 

• Group logical name table 

— Used by UIC group member processes 

— Privilege is needed to add logical names to this table 

-- /GROUP -DCL command qualifier 

• System logical name table 

— Used by all system processes 

— Privilege is needed to add logical names to this table 

— /SYSTEM -DCL command qualifier 

W3 

~... . 

r ~ ~ 
~

^ t ;  ~ i  . 4~, ter ....... 

✓ '4

~~ 

6- 6 CUSTOMIZING THE USER ENVIRONMENT 



Figure 6-1: The Relationship Between Your Terminal, the Operating System, and the 
Logical Name Tables Associated with Your Process 

$ logical-name command 

TERMINAL 

VMS 
COMMAND 
LANGUAGE 
INTERPRETER 

VMS 
OPERATING 
SYSTEM 

PROCESS 
LOGICAL 
NAME 
TABLE 

SYSTEM 
LOGICAL 
NAME 
TABLE 

JOB-YVIDE 
LOGICAL 
NAME 
TABLE 

GROUP 
LOGICAL 
NAME 
TABLE 

TTB_X0333_88_S 

CUSTOMIZING THE USER ENVIRONMENT 6- 7 



Common User Operations Dealing with Logical Names 

• Display the contents of logical name tables 

• Determine the equivalence string of a logical name 

• Add or alter logical name assignments in your process logical name table 

• Override system-defined logical names in your process logical name table 

• Remove a logical name from your process logical name table 

'~`~ 

::" ~--.. 

s' 
r 

<:~ 

~.. ~...~.~ 

V 

6- 8 CUSTOMIZING THE USER ENVIRONMENT 



Adding Logical Names 

• ASSIGN command 

Format: 

$ ASSIGN[/table-name)[/mode-name] equivalence-name[,...] logical-name[:] 

Example: 

$ ASSIGN DISK: [SMITH.UANDC] MINE 

• DEFINE command 

Format: 

$ DEFINE[/table-name][/mode-name] logical-name[:] equivalence-name[,...] 

Example: 

$ DEFINE MINE DISK:[SMITH.UANDC] 

Example 6-1: Using Logical Names to Abbreviate Device and File Specifications 

$ CREATE/DIRECTORY/LOG [SMITH.LOG] 
CREATE-I-CREATED, DISK:[SMITH.LOG] created 

$ ASSIGN [SMITH.LOG] MY LOG 

$ COPY/LOG [SMITH]MYFILE.TXT MY LOG 
COPY-S-COPIED, DISK: [SMITH]MYFILE.TXT;1 copied to 

DISK: [SMITH. LOG]MYFILE.TXT;1 (1 block 

$ TYPE MY LOG:MYFILE.TXT 
This is a file for use in displaying the use of logical names 
to abbreviate devices and file specifications. This is in 
the module entitled "Customizing the User Environment". 

~~ 

!"~, 

CUSTOMIZING THE USER ENVIRONMENT 6- 9 



USING LOGICAL NAMES 

Logical Name Translation for Logical Names that Have 
Single Equivalence Strings 

• The system translates logical names automatically. 

• Logical name tables are searched for the first occurrence of a logical name. 

Search order: 

Process Logical Name Table 
Job-Wide Logical Name Table 
Group LOgical Name Table 
System Logical Name Table 

• Translates left-most portion of all file specifications to see if it is a logical name. 

• Translates: 

— Up to 14 times (recursively}. 

— Until no more equivalence names to be translated. 

Until left-most component of the specification is not delimited by a colon, a space, a 
comma, or an end of line. 

— Until equivalence name is a logical name that has the TERMINAL attribute. If a logical 
name has the TERMINAL attribute, the translation is "TERMINAL" (completed} after the 
first translation. 

— If the logical name has the CONCEALED attribute, the translation normally displays the 
logical name for the device, rather than the physical name for the device. 

NQTE 

Both TERMINAL and CONCEALED are translation attributes. They are defined by using 
the /TRANSLATION ATTRIBUTES= qualifier for either the DEFINE or ASSIGN DCL 
commaads. 

6— 10 CUSTOMIZING THE USER ENVIRONMENT 



~ Sample Recursive Translation 

• Command 

$ DIRECTORY PROJECTS 

• First table search (looking for PROJECTS) 

"PROJECTS" _ "DISK USER: [ELLEN]" (LNM$PROCESSTABLE) 

• Second table search (looking for DISK USER) 

"DISK USER" _ "DBAO:" (LNM$SYSTEM TABLE) 

• Result 

— DBAO:[ELLEN] -Searched 

V' 

,. 

F ~ ~S 

~' 

0T 

rtLL_ y~~ ~~ 
~~~ 

~-_

CUSTOMIZING THE USER ENVIRONMENT 6- 11

Displaying the Contents of Logical Name Tables

Table 6-1: Displaying the Contents of Logical Name Tables

Command Comments

$ sHow LOGI cAz

$ SHOW LOGICAL/FULL

$ SHOW LOGICAL/PROCESS

$ SHOW LOGICAL/JOB

$ SHOW LOGICAL/GROUP

$ SHOW LOGICAL/SYSTEM

By default, displays logical names from the process, job-wide,
group, and system logical name tables

Displays all of the attributes of logical names from the process,
job-wide, group, and system logical name tables

Displays logical names from your process logical name table

Displays logical names from your job-wide logical name table

Displays logical names from your group logical name table

Displays logical names from the system logical name table

~~

~-

6- 12 CUSTOMIZING THE USER ENVIRONMENT

n Example 6-2: Displaying the Contents of the Process, Job, Group, and System Logical
Name Tables

$ SHOW LOGICAL/PROCESS

(LNM$PROCESS TABLE)

"SYS$CON~iAND" _ " DISK$RTA1: "
"SYS$DISK" _ "DISK:"
"SYS$ERROR" _ " DISK$RTA1:"
"SYS $INPUT" [super] _ "_DISK : "
"SYS $INPUT" [exec] _ " D I SK$RTA1: "
"SYS$OUTPUT" [super] _ " DISK$RTA1:"
"SYS$OUTPUT" [exec] _ " DISK$RTA1:"
"TT" _ "RTA1: "
$ SHOW LOGICAL/JOB

(LNM$JOB 803E4E40)

"SYS$LOGIN" _ "DISK: [SMITH]"
"SYS$LOGIN DEVICE" _ "DISK:"
"SYS$REM ID" _ "SMITH"
"SYS$REM NODE" _ "SUPER::"
"SYS $SCRATCH" _ "DISK : [SMITH] "
$ SHOW LOGICAL/GROUP

(LNM$GROUP 000011)

"MY DISK" _ "DJAO : "
$ SHOW LOGICAL/SYSTEM

(LNM$SYSTEM TABLE)

"DBG$INPUT" _ "SYS$INPUT:"
"DBG$OUTPUT" _ "SYS$OUTPUT:"
"DISK$BROWNY SYS" _ "DISK:"
"SYS $ANNOUNCE" _ ".Welcome to Browny "
"SYS$COMMON" _ "DISK: [SYSO . SYSCONIl~iON .] "
"SYS$DISK" _ "DISK:"
"SYS$ERRORLOG" _ "SYS$SYSROOT:[SYSERR]"
"SYS$HELP" _ "SYS$SYSROOT:[SYSHLP]"
"SYS $MAINTENANCE" _ "SYS$SYSROOT:[SYSMAINT]
"SYS $MANAGER" _ "SYS$SYSROOT:[SYSMGR]"
"SYS $MESSAGE" _ "SYS$SYSROOT:[SYSMSG]"
"SYS $NODE" _ "BROWNY::"
"SYS$SYLOGIN" _ "SYS$MANAGER:SYLOGIN.COM"
"SYS$SYSDEVICE" _ "DISK:"
"SYS$SYSROOT" _ "DISK:[SYSO.]"
_ "SYS$COMMON:"
"SYS $SYSTEM" _ "SYS $ SYSROOT : [SYSEXE] "
"SYS$UPDATE" _ "SYS$SYSROOT:[SYSUPD]"

~~

CUSTOMIZING THE USER ENVIRONMENT 6- 13

Determining the Equivalence of a Logical Name

• Two commands are available to determine the equivalence of a logical name

• Format:

$ SHOW LOGICAL logical-name

Iteratively translates the logical name up to 14 levels until everything is resolved

$ SHOW TRANSLATION logical-name

Displays the first equivalence string it finds and stops (no iteration is performed}

Example 6-3: Determining the Value of a Logical Name

$ ASSIGN DJAO: DISK1

$ ASSIGN DISK1: MYNAME

$ SHOW TRANSLATION MYNAME
MYNAME _ "DISK1:" (LNM$PROCESS TABLE)
$ SHOW LOGICAL MYNAME
"MYNAME" _ "DISK1:" (LNM$PROCESS TABLE)
1 "DISK1" _ "DJAO:" (LNM$PROCESS TABLE)

6-- 14 CUSTOMIZING THE USER ENVIRONMENT

Removing Logical Names

Table 6-2: Commands to Delete Logical Names

Operation Command String/Example Comments

Delete a logical name assignment

$ DEASSIGN MYF ILE

$ DEASSIGN/ALL

$ DEASSIGN/JOB

$ DEAS S I GN/GROUP

$ DEASSIGN/SYSTEM

Deletes the logical name MYFILE frdm
your process logical name table.

Deletes all assignments that you have
placed in your process logical name
table.

Deletes a logical name in your job ta-
ble.

Deletes a logical name in your group
table. GRPNAM privilege is needed.

Deletes a logical name i n the system
table. SYSNAM privilege is needed.

CUSTOMIZING THE USER ENVIRONMENT 6- 15

Example 6-4: Assigning, Changing, and Deleting Logical Name Assignments

$ ASSIGN DJAO: DISK1
$ ASSIGN DISK1:[SMITH] LOG
$ SHOW LOGICAL/PROCESS

(LNM$PROCESS TABLE)

"DISKl" _ "DJAO:"
"LOG" _ "DISK1:[SMITH]"
" S YS $ CON~iAND " _ "_DISK : "
"SYS$DISK" _ "DISK:"
"SYS$ERROR" _ " DISK$RTA1:"
"SYS$INPUT" [super] _ " DISK:"
"SYS$ INPUT" [exec] _ " D ISK$RTA1: "
"SYS$OUTPUT" [super] _ " DISK$RTA1:"

"SYS$OUTPUT" [exec] _ " DISK$RTA1:"
"TT" _ "RTA1 : "

$ ASSIGN DJA1: DISK1
~DCL-I-SUPERSEDE, previous value of DISK1 has been superseded

$ SHOW LOGICAL/PROCESS

(LNM$PROCESS TABLE)

"DISK1" _ "DJA1: "
"LOG" _ "DISKl:[SMITH]"
"SYS$CON~iAND" _ " DISK$RTA1: "
"SYS$DISK" _ "DISK:"
"SYS$ERROR" _ " DISK$RTA1:"
"SYS$INPUT" _ " DISK$RTA1:"
"SYS$OUTPUT" [super] _ " DISK$RTA1:"
"SYS$OUTPUT" [exec] _ " DISK$RTA1:"
"TT" = "RTA1:"

$ DEASSIGN/ALL
$ SHOW LOGICAL/PROCESS

(LNM$PROCESS TABLE)

"SYS$COM~iAND" _ " DISK$RTA1: "
"SYS$DISK" _ "DISK: "
"SYS$ERROR" _ " DISK$RTA1:"
"SYS$INPUT" _ " DISK$RTA1:"
"SYS$OUTPUT" [super] _ " DISK$RTA1:"
"SYS$OUTPUT" [exec] _ " DISK$RTA1:"
"TT" _ "RTAl : "

fi- 16 CUSTOMIZING THE USER ENVIRONMENT

System-Defined Logical Names
When you log in, the system:

• Defines a number of logical names and stores them in your process logical name table

• Creates ajob-wide logical name table for your process and all of its potential subprocesses

You may override these permanently or temporarily with the ASSIGN or DEFINE commands

Refer to the following tables for lists of system-defined logical names

Table 6-3: Process Logical Names Defined by the System

Logical Name Equivalence Name

SYS$C4MMAND original value of SYS$INPUT, equated to your terminal for interactive
use and command procedures.

SYS$DISK Default disk established at login. Can be changed by the SET DE-
FAULT command.

SYS$ERROR Default device to which the system writes messages. For an interactive
user, the system equates SYS$ERR4R to the terminal.

SYS$4UTPUT Default output devices. For an interactive user, SYS$C7UTPUT is
equated to the terminal.

SYS$INPUT Default input device. Far all interactive use, SYS$INPUT is equated to
the terminal. For command procedures, it is equated to the command
file on disk.

TT Default device name for your terminal in interactive mode and for the
console in batch mode.

CUSTOMIZING THE USER ENVIRONMENT 6- 17

Table 6-4: Job Logical Names Defined by the System

Logical Name Equivalence Name

SYS$LOGIN

SYS$LOGIN_DEVICE

SYS$SCRATCH

Default disk and directory established at login time. This "home" direc-
tory is specified in the authorization record.

Default disk established at login. Unlike the logical name SYS$DISK,
SYS$LOGIN_DEVICE is not changed by the SET DEFAULT command.

Default device and directory to which temporary files are written. This
is always equated to your default directory.

Table 6-5: System Logical Names Defined by the System

Logical Name Equivalence Name

SYS$SYSTEM

SYS$H ELP

SYS$LIBRARY

SYS$MESSAGE

SYS$SHARE

SYS$SYSDEVICE

SYS$NODE

Device and directory of operating system programs and procedures.

Device and directory name of system help files.

Device and directory name of system libraries.

Device and directory name of system message files.

Device and directory name of system shareable images.

VMS system disk, device referred to in the system logical names listed
above.

Current network node name for the local system, if DECnet is active
on the system.

~4~ ~
~~ ~ '~._

~-

6- 18 CUSTOMIZING THE USER ENVIRONMENT

Specifying Logical Name Access Modes

• /USER_MODE (temporary assignment)

• /SUPERVISOR_MODE (default -permanent assignment)

Duration of aProcess-Private Logical Name
Assignment

• Supervisor mode assignments last until you

— Log out

Assign the particular logical name to a different equivalence string

— Remove the logical name assignment by using the DEASSIGN command

• User mode assignments last:

— Until the next image run in your process completes execution. (An image is a program
in its executable form.)

Example 6-5: Using ASSIGN Command to Alter the Default Output Device of Your Pro-
cess

$ ASSIGN/USER MODE OUTPUT.LIS SYS$OUTPUT

$ SHOW PROCESS

$ TYPE OUTPUT.LIS
22-OCT-1987 16:20:03.20 RTA1: User: SMITH
Pid: 202001F8 Proc. name: SMITH UIC: [GROUPII,SMITH]
Priority: 4 Default file spec: DISK: [SMITH]
Devices allocated: DISK$RTA1:

CUSTOMIZING THE USER ENVIRONMENT 6- 19

USING DCL SYMBOLS

• symbols are names that represent character strings or numeric values

• Can be used as DCL command synonyms allowing the user to tailor DCL command format

• Equated to an equivalence string (which is enclosed in " ")

— Complete command string

— Portion of a command string

• Stored in one of two tables (each process has its own}

— LOCAL

— GLOBAL

• Defined with = or = _ (assignment operators)

— Local with =

— Global with = _

— Example:

$ SD = _ "SET DEFAULT"

• Can abbreviate symbol names using the asterisk (*) as the abbreviation character

• Example:

- $ M*AIL = "MAIL"

The abbreviations "M", "MA", "MAI", and "MAIL" now will invoke the Mail utility

• Translation is not iterative

• Examples:

- $PROTECT = _ "SET PROTECT ION= (S : R, O : RWED, G : R, W) "

- $PROTECT [SMITH] * . *;

• Often defined in a command file named LOGIN.COM (usually located in your default direc-
tory) for use in every terminal session

6- 20 CUSTOMIZING THE USER ENVIRONMENT

f"1
Figure 6-2: The Relationship Between Your Terminal, the Operating System, and Your

Global Symbol Table

$ command-synonym command

TERMINAL

VMS
COMMAND
LANGUAGE
INTERPRETER

R:' '~-,-,~:

GLOBAL SYMBOL
TABLE

LOCAL SYMBOL
TABLE

TTB_X0334_88_S

CUSTOMIZING THE USER ENVIRONMENT 6- 21

Table 6-6: Commands for Displaying and Deleting DCL Symbols

Operation Command String/Example Comments

Display Symbols

Display a single
global symbol

Display all global
symbols

Display all global
symbols using a
wiidcard

Delete Symbols

Delete a single
global symbol

$ SHOW SYMBOUGLOBAL symbol-name

$ SHOW SYMBOL /GLOBAL S D

$ SHOW SYMBOL/GLOBAL/ALL

$ SHOW SYMBOL /GLOBAL S

$ DELETE/SYMBOUGLOBAL symbol-name

DELETE/SYMBOL/GLOBAL SD

Delete all global $DELETE/SYMBOL/GLOBAL/ALL

symbols

Displays the value of the
symbol SD

Displays the values of all
symbols defined in your
global symbol table

Displays the values of all
symbols defined in your
global symbol table be-
ginning with the letter "s"

Deletes the symbol SD
from your global symbol
table

Deletes all symbols from
your global symbol table

U
6- 22 CUSTOMIZING THE USER ENVIRONMENT

Example 6-6: Defining, Displaying, Using, and Deleting DCL Symbols

$ DIRP =_ "DIRECTORY/OWNER/PROTECTION"
$ SD =_ "SET DEFAULT"
$ RETURN =_ "SET DEFAULT SYS$LOGIN"

$ SHOW SYMBOL/GLOBAL/ALL

$RESTART =_ "FALSE"
$SEVERITY =_ "1"
$STATUS =_ "X00030001"
DIRP =_ "DIRECTORY/OWNER/PROTECTION"
SD =_ "SET DEFAULT"
RETURN =_ "SET DEFAULT SYS$LOGIN"

$ SD SYS$SYSTEM

$ DIRP DCL . EXE
Directory SYS$COMMON:[SYSEXE]

DCL.EXE;1 [SYSTEM]

Total of 1 file .

$ RETURN

$ DELETE/SYMBOL/GLOBAL/ALL

$ SHOW /SYMBOL/GLOBAL/ALL

$RESTART =_ "FALSEr'
$SEVERITY =_ "1"
$STATUS =_ "$sX00030001"

(RWED , RWED , RWED , RE)

CUSTOMIZING THE USER ENVIRONMENT 6- 23

Table 6-7: Comparison of Logical Names and DCL Symbols

Symbols Logical Names

USE Equated to all or part of a command Used in place of ali or part of a
string file specification

CREATE _ (LOCAL) ASSIGN or DEFINE
_ _ (GLOBAL)

DISPLAY SHOW SYMBOL SHOW LOGICAL or
SHOW TRANSLATION

DELETE DELETE/SYMBOL DEASSIGN

QUALIFIERS Used for: Used for:
/LOCAL (DIS, DEL)1 /PROCESS (CRE, DIS, DEL)1
/GLOBAL (DIS, DEL) /JOB
/ALL (DIS, DEL)1 /GROUP (CRE, DIS, DEL)'

/SYSTEM
/ALL (DIS, DEL)1

(DIS, DEL)
(DIS)~

NOTES /LOCAL is the default /ALL is the default
for display and for display
delete /PROCESS is the default

for create and
delete

1 DIS means DISPLAYIl~TG
DEL means DELETING
CRE means CREATING

U

6- 24 CUSTOMIZING THE USER ENVIRONMENT

~ DEFINING KEYS

• Definitions often contain part or all of a DCL command string

• Reduces typing of lengthy or frequently used DCL commands

• Terminal types and associated definable keys include

— VT52-type terminals

All definable keys located on the numeric keypad

— VT100-type terminals

All keys located on the numeric keypad
LEFT and RIGHT arrow keys

— Terminals with LK201 keyboards

All keys on the numeric keypad
Keys on the editing keypad (except the UP and DOWN arrow keys)
Keys on the function key row across the top of the keyboard (except function keys
F1 through F5)

• Keys KPO - KP9, PERIOD, COMMA, and MINUS must be enabled for definition purposes.
These keys are enabled by using either of the following commands:

$ SET TERMINAL/APPLICATION

$ SET TERMINAL/NONUMERIC

• Keypad keys PF1 - PF4 can also be defined

• Format:

$ DEFINE/KEY key-name equivalence string /qualifiers

• One or more of the fallowing qualifiers may be used to alter the action of a defined key:

— /TERMINATE -Produces an automatic return

— /NOECHO -Suppresses the display of the command being invoked

— /ERASE -Erases the characters on the current line before displaying and executing the
command invoked by the defined key

/NOLOG -Suppresses the informational message you receive when you initially define
a key

CUSTOMIZING THE USER ENVIRONMENT 6- 25

• To display a key definition, issue the DCL command:

SHOW KEY/FULL key-name

Example:

$ SHOW KEY/FULL PF1
PF1 = "directory"

(echo, noterminate, noerase, nolock)

• To delete a key definition, issue the DCL command:

DELETE/KEY key-name

Example:

$ DELETE/KEY PF1

DCL-I-DELKEY, HOME key PF1 has been deleted

6-- 26 CUSTOMIZING THE USER ENVIRONMENT

SUMMARY

• A logical name is a name you can use in place of all or part of a file specification

• They are used to:

— Achieve device and file independence in programs or procedures

— Reduce typing and improve readability (used as replacement for long file specifications)

— Pass data among programs, or between a command procedure and a program

• Logical names and their equivalence strings can each have a maximum of 255 characters
(including alphanumeric characters, dollar signs and underscores)

• Any other characters must be enclosed in quotation marks

• Stored in logical name tables

System Defined Logical Names

When you log in, the system:

• Defines a number of logical names and stores them in your process logical name table

• Creates ajob-wide logical name table for your process and all of its potential subprocesses

You may override these permanently or temporarily with the ASSIGN or DEFINE commands

DCL Symbols

• Symbols are names that represent character strings or numeric values

• Can be used as DCL command synonyms allowing the user to tailor DCL command format

• Equated to an equivalence string (which is enclosed in " ")

— Complete command string

Portion of a command string

• Stored in one of two tables (each process has its own)

LOCAL

GLOBAL

CUSTOMIZING THE USER ENVIRONMENT 6- 27

Defining Keys

• Definitions often contain part or all of a DCL command string

• Reduces typing of lengthy or frequently used DCL commands

Syntax:

$ DEFINE/KEY key-name equivalence string /qualifiers

To display a key definition, issue the DCL command:

SHOW KEY/FULL key-name

To delete a key definition, issue the DCL command:

DELETEIKEY key-name

6- 28 CUSTOMIZING THE USER ENVIRONMENT

MODULE 7
WRITING COMMAND PROCEDURES

WRITING COMMAND PROCEDURES 7- 1

~~

INTRODUCTION

Command procedures are files consisting of DCL commands. They can be used to automatically
execute command sequences that are needed repeatedly. In addition to the command verbs,
qualifiers, and parameters commonly used at the interactive level, command procedures allow
the use of DCL command language features that provide increased functionality and flexibility,
including:

• Symbols that can be used as numeric and string variables

• Instructions that allow you to control program flow

• Lexical functions

This module presents the material needed to create, test, and run a command procedure inter-
actively. in a later module, you will learn how to run command procedures independently of your
interactive process, as batch jobs.

WRITING COMMAND PROCEDURES 7- 3

OBJECTIVES
To write DCL command procedures, you should be able to:

• Define what a command procedure is and describe why command procedures are used.

• Create a command procedure, using standard DCL command elements.

• Control terminal input and output in a command procedure by:

-- Displaying messages on the terminal

— Accepting input from the user

— Redirecting input or output from the terminal to another location

• Pass data to a command procedure using parameters.

• Control the flow of execution within a command procedure using:

-- The IF command

-- The GOTO command

• Use the proper lexical function to obtain the information needed in a command procedure.

RESOURCES

• Guide to Using VMS Command Procedures

• VMS DCL Dictionary

?- 4 WRITING COMMAND PROCEDURES

DEVELOPING A COMMAND PROCEDURE
The steps you take to develop a command procedure are similar to the steps you take to develop
any computer program in any language. The following steps are illustrated in Figure 7-1.

1. Design the command procedure.

• Determine what tasks the procedure should perform.

• Decide what results the procedure should produce.

2. Create the command procedure.

• Use the text editor of your choice.

• Specify the file type COM for the command procedure.

3. Execute and test the command procedure.

• Use the "at sign" (~} to execute the procedure interactively.

• Use the DCL command SET VERIFY to:

— Display each line of the procedure as it executes

— Help you locate errors if they occur

4. Modify and retest the command procedure, if necessary.

• Repeat steps 2 and 3.

• Use the DCL command SET NOVERiFY after the procedure has been tested and
perfected.

5. Add comments to the command procedure so it is easy to read and maintain. Comments
should:

• Describe the procedure in detail.

• Describe any parameters that are passed to the procedure.

WRITING COMMAND PROCEDURES 7- 5

Figure 7-1: Command Procedure Development Process

DEVELOPMENT STEP CORRESPONDING DCL
COMMAND (IF ANY

DESIGN PROCEDURE NONE

WRITE PROCEDURE

TEST PROCEDURE

ADD COMMENTS
TO PROCEDURE

MODIFY PROCEDURE

RE-TEST PROCEDURE
USING

$ SET VERIFY

$ EDIT filename.COM

$ (g~filename.COM

$ EDIT filename.COM

$ SET VERIFY
$ ~v filename.COM

$ EDIT filename.COM

TTB_X0335_88

7- fi WRITING COMMAND PROCEDURES

Components and Conventions
Consistent formats and clear programming style make your command procedures easy to read,
test, and maintain. Example 7-1 illustrates some of the conventions below.

• DCL command lines

Use full command names, no abbreviations

— Precede each command line with the dollar sign ~$) prompt

— Continue a line by placing a hyphen at the end of the line ado not begin the continued
line with a dollar sign)

• Comments

— Precede all comment lines with an exclamation mark (I)

— Use blank comment lines to separate blocks of commands

• Labels

Use labels to mark locations within a procedure

— Place the label on a li ne by itself

F011ow the label with a colon (:)

• Data lines

Place data in a command procedure immediately after the command that will use it

— Do not place a dollar sign at the beginning of a data line

(Terminated by the first occurrence of the dollar sign)

WRITING COMMAND PROCEDURES 7- 7

Example 7-1: A Sample Command Procedure

REPORTI.COM

This command procedure sets your default directory
to the REPORTS.MONDAY subdirectory, prints out a report
for Monday, returns you to your login device and
directory, then exits.

Set your default to the REPORTS.MONDAY subdirectory

SET DEFAULT DISK1:[REPORTS.MONDAY]

Check to verify you are in the correct directory

Print out the report for Monday

PRINT MONDAY.RPT

Return to your login device and directory

SET DEFAULT SYS$LOGIN
EXIT

7- 8 WRITING COMMAND PROCEDURES

Execution of REPORTI.COM:

Example 7-1: A Sample Command Procedure (Cont)

$ @REPORT 1
Job MONDAY (queue SYS$PRINT, entry 44) started on WORK$TXAO

Now try it with VERIFY turned on:

$ SET VERIFY

$ @REPORTI
$! REPORTI.COM

$!

$!

$! This command procedure sets your default directory

$! to the REPORTS.MONDAY subdirectory, prints out a report

$! for Monday, returns you to your login device and

$! directory, then exits.

$!

$!

$! Set your default to the REPORTS.MONDAY subdirectory

$!

$ SET DEFAULT DISK1:[REPORTS.MONDAY]

$! Check to verify you are in the correct directory

$!

$! Print out the report for Monday

$!

$ PRINT MONDAY.RPT
Job MONDAY (queue SYS$PRINT entry 46) started on WORK$TXAO

$!

$! Return to your login device and directory

$!

$ SET DEFAULT SYS$LOGIN
$ EXIT

WRITING COMMAND PROCEDURES 7- 9

LOGIN COMMAND PROCEDURE

• Is a command procedure that is executed automatically each time you .log in

• Must be called L4GIN.C4M and placed in your default login directory

• Contains logical names, symbols, and other commands to set up your terminal session

• Can be disabled for a particular session by typing /NOCOMMAND after your user name at
the Username: prompt

• Example 7-2 shows a typical LAG I N. CAM file

~.__
` ~ ~~4

~'_. ~.

~ ~ ~ ~ ~~ ~_
-~.~ ~- ~ ~~

~ '~ ~~

r
r

~~

•.

,.

. ~ .~
..~- _

~ 1N.-. 1~~;:~ t

~: ~

fir►

V •.
i

O s
~.~5

~ ~ ~, ~ ~,
~ ._

~ppt : '..

w

ti

~`.~ ~~.
r ~.
i •.l

t ~'
~~ .~_^ ; r, `~ t

~ V
,,y.,

~,~

~~S`~
Llllj

r

l
\ ~~

#yr('j~
\~ .~

'vim'

..

7- 10 WRITING COMMAND PROCEDURES

("1

I"~1

Example 7-2: A Sample LOGIN.COM File

LOGIN.COM

Logical names for common files and directories

ASSIGN SYS$LOGIN_DEVICE:[BLOOM.PASCAL] PASCAL
ASSIGN SYS$LOGIN DEVICE:[BLOOM.GAMES] FUN
ASSIGN SYS$LOGIN~DEVICE:[BLOOM.PROCEDURES]CLEANUP.COM CLEANUP

Commonly used commands

SED =_ "SET DEFAULT"
HOME __ "SET DEFAULT SYS$LOGIN"
CLR =_ "SET TERMINAL/WIDTH=80"
EDT =_ "EDIT"
DS =_ "DIRECTORY/SIZE=ALL"
SD =_ "SHOW DEFAULT"
M =_ "MAIL"
PU =_ "PURGE/LOG"
XX =_ "DELETE"

Key definitions

SET TERMINAL/APPLICATION KEYPAD

DEFINE/KEY/NOLOG/TERMINATE PF1 "SHOW USERS"
DEFINE/KEY/NOLOG/TERMINATE PF3 "SHOW TIME"
DEFINE/KEY/NOLOG/TERMINATE KP9 "SHOW QUEUE/ALL/FULL LPAO"
DEFINE/KEY/NOLOG/TERMINATE KPO "LOGOUT"

EXIT

WRITING COMMAND PROCEDURES 7- 11

TERMINAL INPUT/OUTPUT

• Several DCL commands allow you to perform terminal input and output operations

• These commands make use of predefined logical names

• Terminal input and output operations are used to:

— Display messages and command output on the terminal screen

— Prompt the user for input

--- Redirect terminal output to a file

-- Allow the use of an interactive utility, such as an editor

Table 7-1: System Logical Names Used with Terminal i/0

Logical Name Description Associated File or Device

SYS$COMMAND

SYS$INPUT

SYS$OUTPUT

SYS$ERROR

Initial input stream for your
process

Default input stream for your
process

Default output stream for your
process

Default file to which the sys-
tem writes error messages

(At Login)

Terminal

Terminal

Terminal

Terminal

{During Execution
of a Procedure)

Terminal

Command Procedure File

Terminal

Terminal

7- 12 WRITING COMMAND PROCEDURES

~ Performing Terminal Input and Output

Table 7-2: Displaying Information on the Terminal

Command/Example Comments

$ WRITE SYS$OUTPUT string

$ WRITE SYS$OUTPUT "Hello"

$ WRITE SYS$OUTPUT symbol

$ WRITE SYS$OUTPUT FILENAME

$ TYPE SYS$ INPUT

text

text

text

$ TYPE SYS$INPUT

MENU CHOICES:

1. Add a user

2. Remove a user

3. List users

Character strings are enclosed in quotation marks.

The symbol's value is automatically substituted.

Information to be displayed follows the TYPE command. A
dollar sign marks the end of the information.

WRITING COMMAND PROCEDURES 7- 13

Example 7-3: A Sample of Output from a Command Procedure

$! REPORT2.COM

$!

$!

$! This command procedure sets your default directory to the
$! [REPORTS.MONDAY] subdirectory, prints out a report for Monday,
$! returns you to your login device and directory, then exits.

$!

$ WRITE SYS$OUTPUT ""
$ WRITE SYS$OUTPUT "Changing your defaul} directory"

$!

$! Set your default to the correct subdirectory

$!

$ SET DEFAULT DISK1:[REPORTS.MONDAY]

$!

$ WRITE SYS$OUTPUT ""
$ WRITE SYS$OUTPUT "Printing the Monday report"

$!

$! Print out the report for Monday

$!

$ PRINT MONDAY.RPT

$!

$! Return to your login device and directory

$!

$ WRITE SYS$OUTPUT ""
$ WRITE SYS$OUTPUT "Changing back to your login directory"

$!

$ SET DEFAULT SYS$LOGIN
$ EXIT

Execution of REPORT2.COM:

$ @REPORT2

Changing your default directory

Printing the Monday report

Job MONDAY (queue SYS$PRINT, entry 46) started on WORK$TXAO

Changing back to your login directory

7- 14 WRITING COMMAND PROCEDURES

~"1 Table 7-3: Getting Information from the User

Command/Example Comments

$ INQUIRE symbol "prompt"

$ INQUIRE NAME "Filename"

$ READ/PRON~T=string SYS$CONIl~lAND symbol

$ READ/PROMPT="Filename : " SYS$CONIlKAND NAME

The prompt string is optional. The user's
response is converted to uppercase.
Multiple blanks and tabs are replaced
with a single space. The response is
then assigned to a local symbol. If no
prompt string is supplied, the symbol
name is used as the prompt.

The user's response is stored in the lo-
cal symbol.

WRITING COMMAND PROCEDURES 7- 15

Table 7-4: Redirecting Input and Output

Command/Example Comments

$ ASSIGN/USER MODE SYS$COMMAND SYS$INPUT

or
$ DEFINE/USER MODE SYS$ INPUT SYS$COM~IAND

$ @command file-name/OUTPUT=output+file-name

$ @COMFILE.COM/OUTPUT=COM STAT.DAT

$ ASSIGN/USER MODE output_file_name SYS$OUTPUT

or
$ DEFINE/USER MODE SYS$OUTPUT output file-name

$ DEFINE/USER MODE SYS$OUTPUT COM STAT.DAT

The ASSIGN or DEFINE command
redirects the input stream from the
command procedure file to the ter-
minal. The /USER_MODE qualifier
specifies that the change remains
i n effect only while the next image
i s executing.

Redirects output to the file you spec-
ify.

Redirects the output stream to the
file you specify while the next im-
age is executing.

U

U

7- 1 fi WRITING COMMAND PROCEDURES

Example 7-4: Using Terminal Input and Output

$!
$! NOTICE.COM
$f

$!

$!

$!
$!
$!
$!
$!

$

$!
$! Redirect the logical SYS$INPUT from the command
$! procedure to the terminal.
$!
$ ASSIGN/USER MODE SYS$CONIl~lAND SYS$ INPUT $~ —

$! Have the user create the message.

$!
$ EDIT MESSAGE.TXT
$f

$! When the user exits the editor, the command procedure
$! continues.
$!
$!
$! Send the message. The lines following the MAIL
$! command are data lines used by the MAIL utility.
$! The dollar sign indicates the end of the data.

$!
$ MAIL
SEND MESSAGE.TXT
@DIST.DIS
A NOTE FROM YOUR SUPERVISOR

$!
$! Leave the procedure

$!
$ EXIT

This command procedure creates a text file containing
the message you specify, then mails it to DIST.DIS,
a predefined distribution list.

First, display instructions to the user.

WRITE SYS$OUTPUT "
WRITE SYS$OUTPUT "Enter your message. Press CTRL/Z when done
WRITE SYS$OUTPUT "

If

WRITING COMMAND PROCEDURES 7- 17

Symbol Substitution

• In a command procedure symbols can be used as

Command synonyms

Parameters

Variables

• The system must translate symbols into their corresponding values

• Some DCL commands automatically replace symbols with their values

• Most DCL commands do not perform automatic symbol substitution

• To force symbol substitution

— Enclose the symbol name in apostrophes (')

In a character string, precede the symbol with two apostrophes (") and end the symbol
with a single apostrophe ('}

• See Table 7-5 for examples

7- 18 WRITING COMMAND PROCEDURES

Table 7-5: Symbol Substitution Techniques

Symbol Usage Substitution Technique Example

Command synonym (first item
after $prompt}

I n the right-hand side of an =
or = =assignment statement

In an IF, WRITE, or INQUIRE ~~.
command ~~ ,~ 7 ..:~ ~- ~ ~ ~~~~.

I n a DCL command that does
not perform automatic sym-
bol substitution

In a character string

Concatenating two symbols
in a DCL command that does
not perform automatic sym-
bol substitution

Automatic

Automatic

Automatic

$ XX = "DELETE"

$ XX FILE .TXT; 1

$ COUNT =COUNT + 1

$ F ILESPEC =NAME + " .TXT"

$ I F COUNT . GT . 10 THEN -

WRITE SYS$OUTPUT COUNT

Surround the symbol with apos- $RUN 'PROGRAM'

trophes (').

Place two apostrophes in front
of the symbol, and one apos-
trophe after it.

Surround each symbol with
apostrophes. Do not leave a
space between the symbols.

$ WRITE SYS$OUTPUT -

"The file "FILE' exists . "

$ PRINT 'NAME' 'TYPE'

.~

~~.

8

~-.-M^ ~~ Vii..

L^=~ ~~

asie

r~ •~.

..

t:..a

~'1

..~.. ~:.

~~
~

~

'~

WRITING COMMAND PROCEDURES 7- 19

Example 7-5: Using Symbol Substitution

$! REPORT3 . COM

$!

$!

$! This command procedure sets your default directory to the
$! [REPORTS.'DAY'] subdirectory, prints out a report for the
$! day of your choice, returns you to your login device and
$! directory, then exits.

$!

$! Ask which daily report to print out

$!

$ INQUIRE DAY "Day to print a report"

$ WRITE SYS$OUTPUT ""
$ WRITE SYS$OUTPUT "Changing your default directory"

$! Set your default to the correct subdirectory

$ SET DEFAULT DISK1:[REPORTS.'DAY']
$ t

$ WRITE SYS$OUTPUT ""
$ WRITE SYS$OUTPUT "Printing the ''day' report"

$!

$! Print out the report for the correct day
$!

$ PRINT ' DAY' . RPT

$!

$! Return to your login device and directory
$!

$ WRITE SYS$OUTPUT ""
$ WRITE SYS$OUTPUT "Changing back to your login directory"

$!

$ SET DEFAULT SYS$LOGIN
$ EXIT

Execution of REPORT3.COM:

$ @REPORT3

Day to print report for: TUESDAY

Changing your default directory

Printing the TUESDAY report

Job TUESDAY (queue SYS$PRINT, entry 47) started on WORK$TXAO

Changing back to your login directory

7- 20 WRITING COMMAND PROCEDURES

PASSING PARAMETERS TO COMMAND
PROCEDURES

Parameters

• Parameters are the objects of DCL commands

• Parameters can be

— Keywords

— File specifications

— Integer or string values

• You can specify parameters for a command procedure at execution time

Local Symbols P1 - P8

~~ ~ ~.

~ \ rte. ~. ~..~
..~.

• The system automatically provides eight local symbols: P1 through P8

• These symbols are initially assigned null values

Passing Parameter Values to a Command Procedure

• If you specify parameters when you execute the command procedure, the system

— Assigns the values you specify to the symbols P1 - P8

— Maintains the null value if you do not specify a parameter

• Syntax:

$ @command~rocedure.com parameter_1 parameter_2 ... parameter_8

~f
4

WRITING COMMAND PROCEDURES 7- 21

Example 7-6: Passing Parameters to Command Procedures

$! REPORT4.COM
f

f

$! This command procedure sets your default directory to th®

$! [REPORTS .' P1'] subdirectory, prints out a report for the day of

$ ~ your choice, returns you to your login device and directory,

$! then exits.

$!
$ WRITE SYS$OUTPUT ""
$ WRITE SYS$OUTPUT "Changing your default directory"

$! Set your default to the correct subdirectory
f

$ SET DEFAULT DISK1:[REPORTS.'P1']

$!
$ WRITE SYS$OUTPUT ""
$ WRITE SYS$OUTPUT "Printing the " P1' report"

$!
$! Print out the report for the correct day

$!
$ PRINT ' P 1' . RPT
$!
$! Return to your login device and directory

f

$ WRITE SYS$OUTPUT ""
$ WRITE SYS$OUTPUT "Changing back to your login directory"
$ t

$ SET DEFAULT SYS$LOGIN
$ EXIT

Execution of REPOR'~4 . COM

$ @REPORT4 TUESDAY

Changing your default directory

Printing the TUESDAY report

Job TUESDAY (queue SYS$PRINT, entry 47) started on WORK$TXAO

Changing back to your login directory

.~.._ ~ ~ ~ ,,;, _ ._. t r ►
...

~i

E; ~~

-^Y ~: ~_.: \~

Gb v ~- r`~

~,~

~,
F ̀ ~

~~

' ~ ,~
~~~ ~ ~~~ 

U 
7- 22 WRITING COMMAND PROCEDURES 



CONTROLLING PROGRAM FLOW 

• Normally commands are executed sequentially in a command procedure 

• Control flow statements allow you to alter the order of execution 

• Control flow commands include 

— The IF command 

— The GOTO command 

The IF Command 

• Formats: 

$ IF conditional expression THEN command 

$ IF conditional expression 
$ THEN command 
$ command 
$ ENDIF 

$ IF conditional expression 
$ THEN command 
$ command 
$ ELSE command 
$ ENDIF 

• Accepts multiple statements for execution when the condition is true 

• The conditional expression is tested. 

If the condition is true, the commands} following THEN are performed. 

— If the condition is false, the next DCL command in sequence is performed or an optional 
ELSE statement can be performed. 

• The commands} following THEN or ELSE can be any valid DCL command 

• Syntax for asingle-line IF-THEN-ELSE command: 

$ IF conditional expression THEN command ELSE command 

j

~` 

r ~ 
r- ~ 

~~ ~ ti `s few_ ~~ 

WRITING COMMAND PROCEDURES 7- 23 



Restrictions to IF-THEN-ELSE 

• A command block started by a THEN statement must be terminated by an ENDIF statement 

• A THEN statement must be the first executable statement following an IF statement 

• THEN, ELSE, and ENDIF statements cannot be abbreviated to fewer than four characters 

• do not specify labels on a THEN or ELSE statement 

Labels are legal on an ENDIF statement 

• Command procedures may branch within the current command block, but branching into 
the middle of another command block is not recommended 

The GOTO Command 

• Syntax: 

$ GOTO label 

• No conditional testing is performed 

• Control is transferred to the specified label 

:~ 
~: 

7-- 24 WRITING COMMAND PROCEDURES 



Table 7-6: Relational Operators Used in Expressions 

Operator Description 

String Operators 

.EQS. Tests if two character strings are equal. 

.GES. Tests if the first string is greater than or equal to the second 
string (collating sequence}. 

.GTS. Tests if the first string is greater than the second string. 

. LES. Tests if the first string is less than or equal to the second string. 

.LTS. Tests if the first string is less than the second string. 

.NES. Tests if the two strings are not equal. 

Numeric Operators 

.EQ. Tests if two numbers are equal. 

.GE. Tests if the first number is greater than or equal to the second 
number. 

.GT. Tests if the first number is greater than the second number. 

.LE. Tests if the first number is less than or equal to the second 
number. 

.LT. Tests if the first number is less than the second number. 

. N E. Tests if two numbers are not equal. 

logical Operators 

.NOT. Tests for the opposite of a given condition. 

.AND. Tests if both of two conditions are met. 

.OR. Tests if one of a group of conditions is met. 

1NRITING COMMAND PROCEDURES 7- 25 



Example 7-7: Controlling Program Flow 

DEL DIR.COM 

This command procedure deletes previously emptied 
directories. It assumes that the directory to be 
deleted is owned by the procedure' s user . 

Check to see if the user entered the directory name. 
If yes, skip to the confirmation question. 
If no, display a message and ask for the directory name 

IF P1 .NES. "" THEN GOTO CONFIRM 

WRITE SYS$OUTPUT " " 
WRITE SYS$OUTPUT "This procedure deletes an emptied directory" 
WRITE SYS$OUTPUT "The .DIR file extension is assumed." 
WRITE SYS$OUTPUT " " 
INQUIRE P1 "Directory name" 

CONFIRM: 
INQUIRE P2 "Confirm, please (Y/N} " 

If the user answers 'No', abandon this procedure. 

IF .NOT. P2 THEN GOTO NODELETE 

Reset the directory protection so that the owner 
can delete it, delete the directory and display 
the system message. Note that the procedure 
substitutes the directory name for the symbol P1. 

SET PROTECT ION= (O : RWED ) ' P 1' .DIR; 
DELETE/LOG ' P 1' .DIR; 
GOTO END 

NODELETE: 

WRITE SYS$OUTPUT 
WRITE SYS$OUTPUT "Directory file not deleted." 

END: 
EXIT 

rr rr 

7- 26 WRITING COMMAND PROCEDURES 



Execution of DEL DIR.COM: 

Example 7-7: Controlling Program Fiow (Copt) 

$ @DEL DIR TEST 
Confirm, please (Y/N} : Y 
DELETE-I-FILDEL, DISK:[DENISE]TEST.DIR;1 deleted (3 blocks) 

Second execu~on: 

$ @DEL DIR 

This procedure deletes an emptied directory 
The .DIR file extension is assumed. 

Directory name: TEST2 
Confirm, please (Y/N) : Y 

DELETE-I-FILDEL, DISK: [DENISE] TEST2 .DIR;1 deleted (3 blocks) 

Third execution: 

$ @DEL DIR 

This procedure deletes an emptied directory 
The .DIR file extension is assumed. 

Directory name: TEST3 
Confirm, please (Y/N) : N 

Directory file not deleted. 

WRITING COMMAND PROCEDURES 7- 27 



LEXICAL FUNCTIONS 

• Lexical functions provide information about an item or list of items 

• The information is returned in a symbol that can then be used in a command procedure 

• Lexical functions return integer or character strings, depending on the lexical function 

Format and Syntax 

• All lexical functions begin with F$, followed by the function name 

WHO = F$PROCESS ( ) 

• All lexical functions have arguments enclosed in parentheses. 
Parentheses are required even with null arguments. 

— Integer or character strings: 

WHAT = F$EXTRACT (0, 3, "MAILMAN" } 

— Symbols: 

HOWLONG = F$LENGTH (P 1 } 

— Keywords: 

WHERE = F$TRNLNM ("SYSDISK" ) 

— Null arguments: 

WHEN = F $TIME ( ) 

• Multiple arguments are separated by commas 

• Optional arguments, when omitted, are indicated by commas 

• Table 7-7 describes some lexical functions 

• Examples 7-,8 and 7-9 demonstrate the use of some lexical functions 

7- 28 WRITING COMMAND PROCEDURES 



Table 7-7: Frequently Used Lexical Functions 

Lexical Function Description 

F$TIME( ) 

F$PROCESS( ) 

F$MODE( ) 

F$LENGTH(string) 

F$LOCATE(substring, string) 

F$EXTRACT(offset, number,string) 

F$CVTIM E([input-time], [format],[fieldJ) 

F$G ETSYI (item, [node]) 

F$ENVIRONMENT(item) 

F$GETQUI( ) 

Returns the current date and time string. 

Returns the current process name. 

Returns a character string indicating the mode 
in which a process is running (INTERACTIVE, 
BATCH, or OTHER). 

Returns the length of a string. 

Locates the substring in the string and returns the 
offset position. 
Extracts a substring from a character string ex-
pression. 
Returns information about absolute, combination, 
or delta time strings. 

Invokes the $GETSYI System Service to return 
status and identification information about your 
system, or a node in your cluster. 

Returns information about the DCL command en-
vironment (PRIVILEGES, DEVICE, and DIREC-
TORY}. 

Returns information regarding queues and the 
batch and print jobs currently in those queues. 

~~ 

.~-

'`J\~ ~ ~. 

e ~, 
r' 

~, ~ ~ ._ ~~ ~~~ 

~ ̀I° 
~~~ 

t

WRITING COMMAND PROCEDURES 7- 29

Example 7-8: Using Lexical Functions with the INFO.COM Command Procedure

INFO.COM

This command procedure allows the user to leave a message
on the terminal screen, along with information about the

process. The time when the message was left is also displayed.

Use lexical functions to determine the current time

and day of the week
TIME = F$TIME ()
CURR_TIME = F$EXTRACT (12, 5, TIME)
WEEKDAY = F$CVTIME (TIME, , "WEEKDAY") ! Returns Monday, Tuesday, etc.

Clear the screen using the TYPE/PAGE NL: command
TYPE/PAGE NL:

Display process name, the time, and the day of the week.
NAME= F$PROCESS ()
WRITE SYS$OUTPUT NAME
WRITE SYS$OUTPUT " "
WRITE SYS$OUTPUT "IT IS ' ' CURR TIME' ON A ' 'WEEKDAY' "
WRITE SYS$OUTPUT " "

Leave the procedure

END:
EXIT

Execution of 1 N FO. COM

$ @INFO

DENISE

IT IS 12:23 ON A Monday

c:

r

.`

~1 vY`~ E.

,.
t .~.....

e .~, ,
r

~~~ 

'~ ~`~.,~ 

..~ 
~~ -.. ~ 

Z, ►` ~ 

1'~ ,~.-. 
' ~~~ ~~~ -;~ 

~~ ~ 

~~~~ 

~;
4;

~~

~•K

—f

i ~ ~ F ~`~.

`~ S

tr

i ,~ ~ "'7 ~ ~~ '.~

7- 30 WRITING COMMAND PROCEDURES

Example 7-9: Using Lexical Functions with the PRINT.COM Command Procedure

$! PRINT.COM

$!
$! This procedure allows you to print multiple copies
$! of any file you choose . It will ask for the file
$! name and number of copies if the information is
$! not supplied on the command line. The procedure
$! will not let the user print a binary file.

$ NAME_F I LE

$ IF P1 .EQS. "" THEN INQUIRE Pl "File to be printed"

$ LENGTH=F$LENGTH (P 1)
$ IF LENGTH .EQ. 0 THEN GOTO NAME FILE

$ PERIOD=F$LOCATE (" . ", P1 }
$ FNAME=F$EXTRACT (0 , PERIOD, P 1)

$! Gheck to see if user entered file type. If yes, separate
$! filename from file type . I f no, assign .LIS type to the file
$!
$ IF LENGTH .EQ. PERIOD
$ THEN FTYPE=".LIS"
$ ELSE FTYPE=F$EXTRACT (PERIOD,LENGTH-PERIOD,Pl)
$ ENDIF

$! Check to see if user entered a binary file type . If yes, exit .
$! If no, see how many copies they want.

$ IF FTYPE .EQS. ".OBJ" .OR. FTYPE .EQS. ".EXE"

$ THEN WRITE SYS$OUTPUT "YOU CANNOT PRINT A ''FTYPE' FILE"
$ EXIT
$ ENDIF

$ NUMBER_COP IES

$ IF P2 .EQS. "" THEN INQUIRE/NOPUNCTUATION P2 "HOW MANY COPIES DO YOU WANT?

$ IF NUMBER .LE. 0 THEN GOTO NUMBER COPIES

$! Print the correct number of copies then exit from the procedure

$!
$ PRINT/COPIES='P2' 'FNAME "FTYPE'

$

$ EXIT

X77 ~ C

S~rS

.r- -~ r< .*.

t \r

r-•

~,a

yry~'

~~

~~

.~.~
~K._

~_. .~~.
~ ~

~n_~__

+?.ns,.

~ ~,

WRITING COMMAND PROCEDURES ?- 31

~.
~.. ~~~

r~.

SUMMARY

• A command procedure is a file containing DCL command strings

• These command strings are made up of

— DCL command verbs

— Command parameters

— G?ualifiers

• Command procedures frequently make use of

— DCL symbols -command synonyms, numeric and string variables

— Control flow commands - IF, GOTO

— Lexical functions

• You can perform terminal input and output functions using

— INQUIRE

— READ SYS$COMMAND

— WRITE SYS$OUTPUT

— TYPE SYS$INPUT

• Control flow commands allow you to alter the order of command execu~on

— IF-THEN or IF-THEN-ELSE transfers control based on the results of conditional
expressions

— GOTO unconditionally transfers control

• You can pass numeric and string information to the command procedure using the local
symbols P1 - P8 associated with every command procedure

• Lexical functions allow you to gather and use system and process informa~on in command
procedures

7- 32 WRITING COMMAND PROCEDURES

MODULE 8
USING DISK AND TAPE VOLUMES

USING DISK AND TAPE VOLUMES 8- 1

r

__

INTRODUCTION

In addition to your default disk device, your system includes a number of tape devices and disks.
You can use one of these devices whenever you wish to store copies of files on a private volume.
Private volumes can be created on disks or tapes. Private volumes are used to preserve files,
transfer files from one system to another, and provide more space on a system (system quotas}.

This module introduces the steps and commands required to create and use private volumes.

OBJECTIVES
Ta maintain private volumes, you should be able to:

• Allocate, initialize and mount a private volume

• Use the BACKUP utility to save and restore files on a private volume

• Dismount and deallocate a private volume

RESOURCES

• VMS DCL Dictionary

• VMS Backup Utility Manual

• VMS Mount Utility Manual

USING DISK AND TAPE VQLUMES 8- 3

Figure 8-1: Volume Manipulation Commands

$ volume manipulation command

INTERACTIVE
TERMINAL

i

MAGNETIC
TAPE

VMS
COMMAND
LANGUAGE
INTERPRETER

VMS
OPERATING
SYSTEM

DECtape II DISK
PACK

0
O
0

FLOPPY
DISK

TTB_X0336_88_S

F,

USING DISK AND TAPE VOLUMES 8- 5

CREATING PRIVATE VOLUMES: THE COMMAND
SEGIUENCE

The following table lists DCL commands used to create and access disk and tape volumes.

Table 8-1: Commands for Creating and Accessing Private Disk and Tape Volumes

Operation Command and Comments

Allocate a device

Initialize a tape or disk

Make the volume accessible
to you

Allocates a device for exclusive use. The logical name DISK
is placed in your process logical name table and assigned the
name of the allocated device. Other users are unable to access
the device.

$ ALLOCATE device [logical-name]

$ ALLOCATE DM DISK

Builds the appropriate disk structure on the volume. Establishes
volume ownership and protection. Usually used for new vol-
umes.

$ INITIALIZE device label

$ INITIALIZE DMA2: TEST DISK

You can access the device as well as manipulating files on the
volume. Logical names are often used.

$ MOUNT device label [logical-name]

$ MOUNT DMA2 : TEST DISK DISK

Prohibit further access to the Closes all open files. Dismounts and unloads the volume.
volume Deletes the logical name assignment made by the MOUNT com-

mand.

$ DISMOUNT device

$ DISMOUNT DMA2

Deallocate a device Frees the device for use by other users. Does not delete a
logical name assigned by the ALLOCATE command.

$ DEALLOCATE device

$ DEALLOCATE DMA2

8- 6 USING DISK AND TAPE VOLUMES

MOUNTING A VOLUME WITH AN UNKNOWN LABEL

• MOUNT command format:

$ MOUNT/OVERRIDE-IDENTIFICATIC3N device-name volume-label logical-name

• Requirements are:

Volume ownership or

— VOLPRO privilege

Example 8-1: Mounting a Disk with an Unknown Labe

AMOUNT-I-MOUNTED, MYVOL
$ SHOW DEVICE/FULL MYDISK

Disk DMAO:, device type RK07,

mounted on DMAO:

is on-line, allocated,
mounted, error logging enabled.

Error count
Owner process
Owner process ID
Reference count

Volume label
Cluster size
Free blocks
Extend quantity
Mount status
File ID cache size
Quota cache size
Write-thru caching enabled

33
"SMITH"

OOOOOOA2
2

"MYVOL"
3

53703
5

Process
64
0

~.wJy

deallocate on dismount,

Operations completed 3891
Owner UIC [100,0]
Dev Prot S:RWED,O:RWED,G:RWED,W:RWED
Default buffer size 512

Relative volume no.
Transaction count
Maximum files allowed
Mount count
Cache name
Extent cache size

Volume is subject to mount verification, file

~.,,~ `'; a..

high-water

0
1

6723
1

"DRAO:XQPCACHE"
64

marking.

~~ "~

e, ~

USING DISK AND TAPE VOLUMES 8- 7

THE BACKUP UTILITY
The Backup utility performs the following operations

• Copies files between disks

• Saves disk files to a BACKUP save set

• Restores files to disk from a BACKUP save set

Format:

$ BACKUP/qualifier input-specifier output-specifier

• Tapes must be mounted using the /FOREIGN qualifier to the MOUNT command

• Files specified are placed in a save set

• A save set can exist on a tape or disk

• When used with tape volumes, BACKUP can create and gain access to save sets only

SAVE-SET SPECIFICATIONS
A save-set specification is a label for a BACKUP save set. The Backup utility creates and labels
a save set and then writes files to the save set. Asave-set, specification can include:

• Anode name

• A device s ecification ~~ p ~~

• A directory ~
``~

• A save-set name

• A period (the mandatory delimiter after the save-set name)

• A save-set type (usually BCK or SAV)

~~
R

8- 8 USING DISK AND TAPE VOLUMES

Example 8~-2 demonstrates how to create a save set on a tape.

Example 8-2: Creating a Save Set on a Tape

$ SET DEFAULT [SMITH]

$ ALLOCATE MUAO:
~DCL-I-ALLOC, WHYNOT$MUAO: allocated

$ INITIALIZE MUAO: SOURCE

~,.... '` $ MOUNT /FOREIGN MUAO
...~~`"~~! AMOUNT-I-MOUI~ED, SOURCE mounted on WHYNOT$MUAO:

$ BACKUP IGNO' E~LABEL PROCESSING [...] MUAO :MY BACKUP . BCK

$ DISMOUNT MUAO:

$ DEALLOCATE MUAO:

~~~ 
~: 

r"'"'~1 

:.. 

'... 

. .~ .r... 

~* 
Js;~t° C 

. ~. 

~~ 

.r

.~ 

~.. 
..... 

~,~ 

USING DISK AND TAPE VOLUMES 8- 9 



Example 8--3 shows how to transfer files from a disk to tape. 

Example 8-3: Transferring Files to a Tape 

-~~-

.~ ,... „ 

$ ALLOCATE MUAO: 
~DCL-I-AI,LOC, WHYNOT$MUAO: allocated 

$ INITIALIZE MUAO: SOURCE 

$ MOUNT/FOREIGN MUAO: 
AMOUNT-I-MOUNTED, SOURCE mounted on WHYNOT$MUAO: 

$ SET DEFAULT [SMITH.FORTRAN] 

$ BACKUP/IGNORE=--LABEL PROCESSING *.*;* MUAO:FOR.BCK 

$ BACKUP/REWIND/LIST MUAO:FOR.BCK 
Listing o f save set (.s 

Save set: 
Written by: 
UIC: 

Date: 
Command: 
Operating system: 
BACKUP version: 
CPU ID register 
Node name: 
Written on: 
Block size: 
Group size: 
Buffer count 

FOR.BCK 
SMITH 
[0000.1, 000051] 
25-JAN-1988 13:31:37.89 
BACKUP/IGNORE=LABEL PROCESSING 
VAX/VMS version X5.0 
V5.0 
08000000 
WHYNOT:: 
_WHYNOT$MUAO: 
8192 
10 
3 

* , *; * MUAO:FOR.BCK 

[SMITH.FORTRAN]EXAMPLES.FOR;1 2 21-JAN-1988 15:16 
[SMITH.FORTRAN]FILES.FOR;1 2 21-JAN-1988 15:16 
[SMITH.FORTRAN]TEXT.FOR;1 2 21-JAN-1988 15:16 

Total of 3 files, 6 blocks 
End of save set 

$ DISMOUNT MUAO: 
$ DEALLOCATE MUAO: 

8- 10 USING DISK AND TAPE VOLUMES 



Example 8-~4 illustrates how to restore files from a tape to a disk. 

Example 8--4: Restoring Files from a Tape to a Directory 

$ MOUNT/FOREIGN MUAO: 
$MOUNT-I-MOUNTED, SOURCE mounted on WHYNOT$MUAO: 

$ DIRECTORY [SMITH.FORTRAN] 
DIRECT-W-NOFILES, no files found 

$ SET DEFAULT [SMITH.FORTRAN] 

$ BACKUP/IGNORE=LABEL PROCESSING MUAO:FOR.BCK 

$ DIRECTORY 

$Directory DISK:[SMITH.FORTRAN] 

EXAMPLES.FOR;1 FILES.FOR;1 TEXT.FOR;1 

Total of 3 f ilea . 

*.*; 

USING DISK AND TAPE VOLUMES 8- 11 



SUMMARY 

Creating Private Volumes: The Command Sequence 

The following commands are used to create and access disk and tape volumes. 

Operation Comments 

Allocating a Device 

Initialize a tape or disk 

Make the volume accessible 
to you 

Prohibit further access to the 
volume 

Deallocating a device 

Allocates a device for exclusive use. 

$ ALLOCATE device [logical-name] 

Establishes volume ownership and protection. 

$ INITIALIZE device label 

You can access the device as well as manipulating files on the 
volume. 

$ MOUNT device label [logical-name] 

Closes all open files. Dismounts and unloads the volume. 

$ DISMOUNT device 

Frees the device for use by other users. 

$ DEALLOCATE device 

The Backup Utility 

The Backup utility performs the following operations: 

• Copies disk files 

• Saves disk files to a BACKUP save set 

• Restores files to disk from a BACKUP save set 

Format: 

$ BACKUP/qualifier input-specifier output-specifier 

• Tapes must be mounted using the /FOREIGN qualifier to the MOUNT command. 

• Files specified are placed in a save set, which can be on tape or disk. 

• When used with tape volumes, BACKUP can create and gain access to save sets only. 

8- 12 USING DISK AND TAPE VOLUMES 



MODULE 9 
SUBMITTING BATCH AND PRINT JOBS 

SUBMITTING BATCH AND PRINT JOBS 9- 1 





("1 
INTR4DUCT14N 

The PRINT command allows you to obtain a hardcopy version of a file. Usually your print job 
must wait in an orderly list of print requests called a queue. The system uses factors such as the 
priority and size of your job to determine how long your job waits before printing. This does not 
affect your terminal session because as soon as you issue the PRINT command your terminal 
is freed up so you can do other jobs. Commands are provided so you can check on your job's 
progress in the queue and determine when it has completed. 

The VMS system provides a similar facility for queuing command procedures for execution. Until 
now, you have run command procedures interactively. They process as though you were typing 
in each command. However, you can create a batch process to execute a command procedure 
independently of your interactive process. The SUBMIT command allows you to do this. The 
VMS system also determines when sufficient system resources are available for processing a 
job from the batch queue, and begins to process one or more jobs from that queue. You do not 
need to be logged i n for your batch job to execute. 

This module discusses the PRINT and SUBMIT commands and their qualifiers. These com-
mands have different functions. However, they have several concepts and qualifiers in com-
mon. 

SUBMITTING BATCH AND PRINT JOBS 9- 3 



OBJECTIVES 
To effectively handle batch and print jobs, you should be able to perform the following operations: 

• Print one or more files. 

• Submit command procedures to be executed as a batch job. 

• Display and modify the status or characteristics of print and batch jobs. 

• Delay processing of batch or print jobs. 

• Delete a batch or print job from its queue. 

RESOURCES 

• VMS DCL Dictionary 

• Guide to Using VMS 

9- 4 SUBMITTING BATCH AND PRINT JOBS 



PRINTING A FILE 

PRINT Command in DCL 

• Use the PRINT command to print files. 

• The PRINT command uses a default file type of LIS if you do not specify a type. 

• Job numbers indicate the order in the queue. 

• The print queue named SYS$PRINT handles print requests by default. 

• The first available printer prints the job. 

Example 9-1: Issuing the PRINT Command 

$ PRINT MYFILE.TXT 
Job MYF ILE (queue SYS $PRINT, entry 4 5 6) started on LPAO 

SUBMITTING BATCH AND PRINT JOBS 9- 5 



Types of Print Glueues 

• Execution queue 

— Associated with each printer 

— Usually has the same name as the physical device name 

Responsible for the actual printing of jobs 

• Generic queue 

Responsible for the distribution of print jobs to printers with similar characteristics 

— Holds jobs until the first available execution queue is free 

• To specify a particular queue, use the /QUEUE qualifier 

9- 6 SUBMITTING BATCH AND PRINT JOBS 



Figure 9-1: Execution and Generic Print Queues 

JOB I I JOB I I JOB 
240 249 250 

GENE RIC QUEUE SYS$PRINT 

EXECUTION QUEUE LPA~ 

EXECUTION QUEUE LPB~ 

JOB I I JOB 
245 22g 

EXECUTION QUEUE LPCa 

DEVICE 
LPA~ 

DEVICE 
LP60: 

DEVICE 
LPCU: 

J4B 
229 

TTB_X0338_88_S 

SUBMITTING BATCH AND PRINT JOBS 9— 7 



Qualifiers for the PRINT Command 

• Number of copies 

/COPIES 

— Defaults to one copy 

— Number of copies can be 1 - 255 

• Number of times your complete job is printed 

/J4B_CC~UNT 

— A value from 1 to 255 

Default is one printing 

• Spacing of the print job 

/[No]SPACE 

— For single spacing use /[No]SPACE (Default) 

— For double spacing use /SPACE 

• Number of pages to print 

/PAGES=[lowlim,],uplim 

— lowlim =First page to be printed 

— u p l i m =Last page to be printed 

• Time job is released to print 

(AFTER=time 

Default is current date and time 

Time can be specified as absolute time, or a combination of absolute and delta time 

• Whether the system notifies you when the job is completed or aborted 

/NOTIFY 

I[N~]NoTiFY is the default 

9- 8 SUBMITTING BATCH AND PRINT JOBS 



Tabie 9-1: Printing Jobs with Different Characteristics 

Operation Example 

Requests that two copies of the file 
MEMO.TXT be printed. 

Requests that two copies of the file 
M EMO.TXT and three copies of the file 
MYFILE.TXT be printed. 

Requests three printings of the file 
M EMO.TXT. 

Requests adouble-spaced 
copy of the file M E M O. TXT. 

Prints pages 6 through 8. 

Prints page 6 through the end of file. 

Releases the file MEMO.TXT for printing 
at 6 p. m. on the current date. 

$ PRINT/COP IES=2 MEMO .TXT 

$ PRINT MEMO.TXT/COPIES=2,MYFILE.TXT/COPIES=3 

$ PRINT/JOB COUNT=3 MEMO. TXT 

$ PRINT MEMO. TXT/SPACE 

$ PRINT/PAGES= (6, 8) MYF ILE .TXT 

$ PRINT/PAGES= (6, "") MYFILE .TXT 

$ PRINT/AFTER=18:00 MYFILE .TXT 

SUBMITTING BATCH AND PRINT JOBS 9- 9 



OBTAINING STATUS OF GIUEUES 

• Format: 

$ SHOW GIUEUE/qualifier [queue-name] 

• Example: 

$ SHOW QUEUE/ALL ENTRIES SYS$PRINT 

Terminal queue SYS$PRINT, on WHYNOT::$PRINTER, mounted form DEFAULT 
Jobname Username Entry Blocks Status 

MYFILE SMITH 45 60 Frinting 
LICENSES SMITH 48 78 Pending 
TAGS SMITH 49 88 Pending 
OFFICERS SMITH 52 90 Pending 

• Format: 

$ SH011V QUEUE/BY JOB_STATUS[-keyword[,...]] [queue-name] 

Keywords for the BY JOB STATUS qualifier include: 

— EXECUTING (Displays executing jobs) 

— HOLDING (Displays jobs on hold) 

— PENDING (Displays pending jobs} 

— RETAINED (Displays jobs retained in queue after execution) 

— TIMED_RELEASE (Displays jobs on hold until a specified time) 

• Example: 

$ SHOW QUEUE/BY JOB STATUS=TIMED RELEASE SYS$PRINT 

Terminal queue SYS$PRINT, on WHYNOT::$PRINTER, mounted form DEFAULT 
Jobname Username Entry Blocks Status 

MYFILE SMITH 96 1 Holding until 2-DEC-1988 15:00 

9- 10 SUBMITTING BATCH AND PRINT JOBS 



• Format: 

$ SHOW QUEUE/DEVICE=[keyword[,...]] (queue-name) 

• Keywords for /DEVICE qualifier include: 

— PRINTER (Displays all print queues) 

— SERVER (Displays all server queues) 

— TERMINAL (Displays ail terminal queues) 

• Example: 

$ SHOW QUEUE/DEVICE=SERVER 

Server queue WHYNOT$NARROW, stopped, on WHYNOT :: , mounted form DEFAULT 

Jobname Username Entry Blocks Status 

MYFILE SMITH 97 1 Holding until 2-DEC-1988 15:00 

Server queue WHYNOT$WIDE, stopped, on WHYNOT::, mounted form DEFAULT 

• Format: 

$ SHOW ENTRY [entry-number] /[qualifier) 

• Example: 

$ SHOW ENTRY 96 

Jobname Username Entry Blocks Status 

MYFILE SMITH 96 1 Holding until 2-DEC-1988 15:00 
On terminal queue SYS$PRINT 

• Example: 

$ SHOW ENTRY 96/FULL 

Jobname Username Entry Blocks Status 

MYFILE SMITH 96 
On terminal queue SYS$PRINT 

1 Holding until 2-DEC-1988 15:00 

Submitted 2-DEC-1988 09:18 /FORM=DEFAULT /PRIORITY=100 
DISK: [ SMITH] MYFILE . TXT; 1 

SUBMITTING BATCH AND PRINT JOBS 9- 11 



Example 9-2: Queue Status Display Corresponding to Figure 9-1 

$ SHOW QUEUE/DEVICE/ALL ENTRIES 

Printer queue LPAO 

Jobname Username Entry Blocks Status 

MYFILE.TXT JONES 225 10 Printing at block 6 

Printer queue LPBO 

Jobname Username Entry Blocks Status 

USELESS.MEM JONES 231 233 Printing at block 34 

Printer queue LFCO 

Jobname Username Entry Blocks Status 

SCHEDULE SMITH 229 109 Printing at block 88 

PAYROLL JONES 228 144 Pending 

SPREAD JONES 245 156 Pending 

Generic printer queue SYS$PRINT 

Jobname Username Entry Blocks Status 

FILE.LOG SMITH 250 198 Pending 

TYPE.COM JONES 249 206 Pending 

CHECK ANDERSON 240 220 Pending 

9- 12 SUBMITTING BATCH AND PRINT JOBS 



Glueue Status List 

Example 9-3: Full Format Queue Status Display 
$ SHOW QUEUE/DEVICES/FULL/ALL ENTRIES 

Terminal queue COMP, on WHYNOT::WHYNOT$TTA2:, mounted form DEFAULT 
/BASE FRIORITY=4 /DEFAULT=(FEED,FORM=DEFAULT) Lowercase 
/OWNER= [GROUP 1, SYSTEM] /PROTECT ION= (S : E, O : D , G : R, W : W) 

Printer queue LNO1, on WHYNOT::WHYNOT$LPAO:, mounted form DEFAULT 
/BASE PRIORITY=4 /DEFAULT=(FEED,FORM=DEFAULT) 
/LIBRARY=SYSDEVCTL LNO1 Lowercase /OWNER=[GROUPI,SYSTEMJ 
/PROTECTION= (S :E, O: D, G:R, W:W) /SEPARATE= (FLAG, RESET= (ANSI$RESET) j 

Server queue NM$QUE01, on WHYNOT::, mounted form DEFAULT 
/BASE PRIORITY=4 /DEFAULT=(FEED,FORM=DEFAULT) 
/OWNER=[GROUFI,SYSTEM] /PROCESSOR=NM$DAEMON /PROTECTION=(S:E,O:D,G:R,W:Rj 
/RETAIN=ERROR 

Generic printer queue NM$QUEUE 
/GENERIC= (NM$QUE01, NM$QUE02) /OWNER= [GROUPI, SYSTEM] 
/PROTECTION=(S:E,O:D,G:R,W:R) /RETAIN=ERROR 

Jobname Username Entry Blocks Status 

NMAIL SMITH 1630 146 Holding until 24-NOV-1988 11:26 
Submitted 24-NOV-1988 11:16 /PRIORITY=100 
` $1$DUAO : [ SYSCOMMON . NMAIL] NMAIL$19881122170 65820 . WRK; 1 

SUBMITTING BATCH AND PRINT JOBS 9-13 



Modifying a Print Job Already in the Queue 

• You can change characteristics of your print job if it is not currently printing. 

• You can move your job to another queue. 

• Use the SET ENTRY command. 

• See Table 9-2 for examples. 

Table 9-2: Modifying Print Jobs in a Queue 

Command Comments 

$ SET ENTRY 100/COPIES=S 

$ SET ENTRY 80/RELEASE 

$ SET ENTRY 95/REQUEUE=FASTJOBS 

Changing the number of copies to five. 

Releasing a job that was previously held. 

Moving a print job to another printer. 

9- 14 SU6MITTING BATCIi AND PRINT JOBS 



r"1 Deleting a Print Job 

• You can delete a print job while it is printing or while it is pending in a queue. 

• You may need to do this if you accidentally print a file with non-ASCII characters, such as 
an .EXE or .OBJ file. 

• Use the DELETE/ENTRY command 

• Example: 

$ DELETE/ENTRY=120 

SUBMITTING BATCH AND PRINT JOBS 9-15 



SUBMITTING A BATCH JOB 

DCL SUBMIT Command 

• Use the SUBMIT command to execute a command procedure through a batch process. 

• The SUBMIT command uses a default file type of CAM unless another file type is specified. 

• Each job i n the queue consists of a command procedure. 

• Job numbers indicate the order in the queue. 

• SYS$BATCH is the default system batch queue. 

• The VMS system creates a batch process to execute the command procedure. 

Example 9-4: Issuing the SUBMIT Command 

$ SUBMIT ACTION.COM 

Job ACTION (queue SYS$BATCH, entry 136) pending 

~~ 

~ F~ 

.~ 

9- 16 SUBMITTING BATCH AND PRINT JOBS 



How a Batch Job Executes 

• batch job's relationship to job that submitted it 

— Runs independently 

— Uses same UAF characteristics 

-- Executes same LOGIN . C4M file 

• Batch job's SYS$OUTPUT assigned to batch log file 

— Created i n login defau It d i recto ry

— Fite name is the same as the name of batch command procedure 

— File type i s LCaG 

— File is printed, then deleted on completion of batch job 

• Logical name assignments for batch processes are shown in Table 9-3. 

Table 9-3: Logical Name Definitions for Interactive and Batch Processes 

Logical Name 

Definition When 
Interactive Process 
Begins to Execute 

Definition When 
Batch Process 
Begins to Execute 

SYS$INPUT 

SYS$OUTPUT 

SYS$COMMAND 

SYS$ERROR 

Interactive terminal 

Interactive terminal 

interactive terminal 

Interactive terminal 

Batch command file 
Batch log file 
Batch command file 

Batch log file 

SUBMITTING BATCH AND PRINT JOBS 9- 17 



Writing a Batch Command Procedure 

• For command procedures running in batch, consider 

-- The system's login command procedure is executed 

— Your login command procedure is executed 

Use the F$MODE() lexical function 

Bypass symbol definitions (not used in command procedures} 

Bypass commands that require a terminal (such as INQUIRE, SET TERMINAL). 

• By defau It, severe errors terminate batch jab execution 

• The batch process's default directory is the one specified as SYS$L~GIN 

• Verification is on in batch process by default 

`J 

9- 18 SUBMITTING BATCH AND PRINT JOBS 



(qualifiers for the SUBMIT Command 

The SUBMIT command: 

• The /QUEUE qualifier overrides the default system queue. 

• The /PARAMETERS qualifier passes parameters to the command procedure. 

• The /LOG FILE qualifier renames the log file. 
The default is the command file name with a file type of LOG. 

• The /PRINTER qualifier redirects where the log file is printed. 
The default queue is SYS$PRINT. 

• The /KEEP qualifier retains a copy of your log file in your directory. 
The default action is to print the log file and then delete it. 

• The /AFTER qualifier delays the execution of the job until a later tlme. 
The default is to place the job in the queue immediately. 

• The /NOTIFY qualifier notifies you when the job completes or aborts. 
The default is /NONOTIFY. 

• Refer to Table 9-4 for examples. 

SUBMITTING BATCH AND PRINT JOBS 9- 19 



Table 9-4: Submitting Batch Jobs 

Operation Comments 

Submitting a job with no parameters The SUBMIT command uses a default file type of COM. 
The file submitted is ACTION.COM in this example. 

$ SIIBMIT ACTION 

Submitting a job to a specified queue By default, the system batch queue SYS$BATCH is 
used. 

$ SUBMIT/QUEUE=SLOWBATCH ACTION 

Submitting a job after a specified The file MYFILE.TXT will be held until the specified dime 
time ~19:nfl} after which it will be processed. 

$ SUBMIT/AFTER=19:00 MYFILE.TXT 

Submitting a job that requires pa- Up to eight parameters may be specified using symbols 
rameters P1-P8. The symbols are local to the specified command 

procedures. P1 is 3 and P2 is SUM. 

$ SUBMIT/PARAMETERS= (3, SUM) MATH 

Changing the log file name The log file is called WENDY.LOG instead of MYFILE.LOG. 

Keeping the log file 

$ SUBMIT/LOGFILE=WENDY MYFILE 

The log file is queued to printer LPBD instead of SYS$PRINT. 

The log file i s printed and retained i n the user's logi n 
directory. 

$ SUBMIT/KEEP MYFILE 

9- 20 SUBMITTING BATCH AND PRINT JOBS 



Example 9--5: Sample Batch Run of COUNTI.COM 

$ TYPE COUNTI.COM 

$! COUNTI.COM 

$! 
$ SHOW TIME 
$ SHOW LOGICAL/PROCESS/JOB 

$ EXIT 

$ SUBMIT COUNTl.COM 

Job COUNTI (queue SYS$BATCH, entry 366) started on SYS$BATCH 

Output from the system's LOGIN procedure 

$! COUNTI.COM 

$! 
$ SHOW TIME 

13-JAN-1988 09:31:22 
$ SHOW LOGICAL/PROCESS/JOB 

(LNM$PROCESS TABLE} 

"EVE$INIT" _ "SYS$LOGIN:EVE.INIT" 
"SYS$CONIlKAND" = " WHYNOT$RTA1: " 
"SYS$DISK" _ "WHYNOT$DJAO:" 
"SYS$ERROR" _ " WHYNOT$RTA1:" 
"SYS$INPUT" [WHYNOT] _ " WHYNOT$DJAO:" 
"SYS$INFUT" [exec] _ " WHYNOT$RTA1:" 
"SYS$OUTPUT" [WHYNOT] _ " WHYNOT$RTA1:" 
"SYS$OUTPUT" [exec] _ " WHYNOT$RTA1:" 
"TT" _ "RTA1:" 

(LNM$JOB 803E1730) 

"SYS$LOGIN" _ "WHYNOT$DJAO:[SMITH]" 
"SYS$LOGIN DEVICE" _ "WHYNOT$DJAO:" 
"SYS$REM ID" _ "SMITH" 
"SYS$REM NODE" _ "WHYNOT::" 
"SYS$SCRATCH" _ "WHYNOT$DJAO:[SMITH]" 

SUBMITTING BATCH AND PRINT JOBS 9- 21 



OBTAINING STATUS OF BATCH QUEUES 

• Format: 

$ SHOW ~UEUE/qualifier [queue-name] 

Example 9--6: Full Format Queue Status Display 

$ SHOW QUEUE/BATCH/FULL/ALL ENTRIES WHYNOT BATCH 

Batch queue WHYNOT SYSTEM, on WHYNOT:: 

/BASE PRIORITY=3 /JOB LIMIT=4 
/PROTECT ION= (S : W, O : W, G, W ) 

/OWNER=[GROUPI,SYSTEM] 

Jobname Username Entry Status 

MYFILE SMITH 1388 Holding until 3-DEC-1988 18:00 

DRAFT SMITH 1425 Holding until 4-DEC-1988 01:00 

TEST JONES 1352 Holding until 7-DEC-1988 00:00 

Batch queue WHYNOT BATCH, on WHYNOT:: 
/BASE PRIORITY=2 /JOB LIMIT=3 /OWNER=[GROUPI,SYSTEM] 
/PROTECT ION= (S : E, O : D , G : R, W : W) 

9- 22 SUBMITTING BATCH AND PRINT JOBS 



Table 9-5: Displaying Batch Queue Status 

Operation Comments 

Displaying a list of batch jobs 6y default, the only jobs displayed other than your own are 
those currently executing. To display all jobs, add the qualifier 
/ALL ENTRIES to the SHOW QUEUE command. For more job 
information, add the qualifier /FULL to either the SHOW QUEUE 
or SHOW ENTRY command. 

$ SHOW QUEUE/BATCH 

$ SHOW QUEUE/BATCH/ALL ENTRIES 

$ SHOW QUEUE/BATCH/FULL 

$ SHOW QUEUE/BATCH/FULL/ALL ENTRIES 

$ SHOW ENTRY/BATCH 

$ SHOW ENTRY/BATCH/FULL 

Displaying a list of batch jobs In any SHOW QUEUE command, you can specify a queue 
on a particular queue name instead of /BATCH. You can also use the qualifiers /FULL 

and /ALL ENTRIES. 

$ SHOW QUEUE FASTJOBS 

$ SHOW QUEUE/ALL ENTRIES FASTJOBS 

SUBMITTING BATCH AND PRINT JOBS 9- 23 



Modifying a Batch Job Already in the Queue 

• Can change job characteristics if it is not currently executing 

Can move a job to another queue 

• Privileges required to affect jobs 

— Queued by you--None 

— Queued by processes in your UIC group--GROUP 

— Queued by anyone--WORLD or OPER 

Table 9-6: Modifying a Batch Job 

Operation Comments 

Changing the characteristics The entry number (or job number) parameter specifies the num-
of ajob ber of the job you want to change. 

$ SET ENTRY 100/KEEP 

In this example, the log file will not be deleted. 

Moving a job to another queue In this example, the job MYFILE.TXT (entry number 94) is being 
moved from a printer using narrow paper to a printer using wide 
paper. 

$ SET ENTRY 90 /REQUEUE=WIDE 

9- 24 SUBMITTING BATCH AND PRINT JOBS 



n  DELETING A BATCH JOB 

• Can delete a batch job while it is executing or while it is pending in the queue 

• Use the DELETE/ENTRY command 

• Example: 

$ DELETE/ENTRY=120 

SUBMITTING BATCH AND PRINT JOBS 9- 25 



HANDLING BATCH AND PRINT JOBS 

Characteristics Common to Both Batch and Print Jobs 

• The name used to identify the job 

• The VAX node on which the job is processed 

• Whether the system displays the job number when the job is queued 

• Whether the system notifies you when the job completes 

• Whether the system deletes the log file after the job completes 

BATCH AND PRINT (QUEUE ETIQUETTE 
The following suggestions are given to insure that the VMS system batch and print queues flow 
efficiently and smoothly, with no "time lags" or "backups." 

• Check the size of your print jobs before submitting them. 

• If feasible, submit large print or batch jobs after hours. 

• Set up a file size limit din blocks} over which a job should be submitted after hours. 

• If submitting a large job, verify that the paper supply is sufficient to handle that job, or have 
an operator check on the paper supply. 

• Do not print files that are not compatible with the particular device. 

• Pick up your completed job promptly. Do not allow your finished jobs to sit in the printer 
area endlessly. 

9- ~6 SUBMITTING BATCH AND PRINT JOBS 



('1 SUMMARY 
Pri nti ng a Fi le 

• The PRINT command uses a default file type of LIS. 

• Job numbers indicate the order in the queue. 

• The print queue, named SYS$PRINT, handles print requests by default. 

• The first available printer prints the job. 

Submitting a Batch Job 

• The SUBMIT command uses a default file type CAM unless another file type is specified. 

• Each job i n the queue consists of a command procedure. 

• Job numbers indicate the order in the queue. 

• SYS$BATCH is the default system batch queue. 

• The VMS system creates a batch process to execute the command procedure. 

Writing a Batch Command Procedure 

• There are two ways to run a command procedure. 

— Interactive 

Batch 

• By defas~lt, severe errors terminate batch job execution. 

• The batch process's default directory is the one specified as SYS$LOGIN. 

Deleting a Batch or Print Job 

• Can delete a batch or print job while it is executing or while it is pending in the queue 

• Use the DELETE/ENTRY command 

SUBMITTING BATCH AND PRINT JOBS 9- 27 





MODULE 10 
DEVELOPING PROGRAMS 

DEVELOPING PROGRAMS 10- y 





INTRODUCTION 
This module presents a general discussion of the steps in developing a program on a VMS 
system as well as an introduction to a sample program. 

It does not provide details regarding any of the programming languages, such as FORTRAN or 
PASCAL. 

Tools that significantly decrease the time spent developing VMS programs include: 

• Interactive Text Editor (EDT} 

• Compilers 

• VAX MACRO Assembler 

• VMS Linker 

• VMS Librarian 

• VMS S mbolic Debu er Y gg 

• System-Supplied Routines ' 

The editors, assembler and compilers, and linker are utilities that prepare source programs for 
execution. The VMS Symbolic Debugger detects logic errors in executable image files. 

The librarian enables you to store frequently used segments of code, such as procedures or 
functions, in specially indexed files called libraries. You can reference procedures or functions 
stored in a library with a program. The linker combines the code from the library with your source 
code to produce an executable image file. 

System libraries contain a large number of predefined routines that user programs (such as 
routines that manipulate strings or generate random numbers} can call. 

DEVELOPING PROGRAMS 10- 3 



OBJECTIVES 
Most of the programming languages available on a VMS system, involve the following program 
development steps: 

• Creating a text file containing the source statements of the program 

• Compiling or assembling the text file to create a file containing object code 

• Linking the object file or files to produce a file containing executable code 

• Running the executable image produced from the linker 

• Debugging the program to correct errors 

RESOURCES 
For more detailed explana~ons of developing programs, refer to the following documents: 

• Guide to VMS Programming Resources 

• VMS DCL Dictionary 

LJ 

10- 4 DEVELOPING PROGRAMS 



PROGRAM DEVELOPMENT ON A VMS SYSTEM 
A user must complete the following steps ~to develop a program: 

• Create a text file that contains the source statements of your program. 

• Compile or assemble the text file to produce a file containing object code. 

• Link the object file or files to produce an executable image file. 

• Run the executable code produced by the linker. 

• Debug the program to correct errors. 

Figure 1 D-1 illustrates the orderly flow of these five program development steps. 

DEVELOPING PROGRAMS 10- 5 



Figure 10-1: A Flow Diagram of the Five Major Programming Steps 

EDIT 

• 

COMPILE 
OR 

ASSEMBLE 

NO 

DEBUG 

LINK 

NO 

C END 

TTB_X0261_68 

10- 6 DEVELOPING PROGRAMS 



f"1 Each of the five program development steps is discussed on the pages that follow. As you read 
each step, refer to Figure 1 C~--2. 

Figure 10-2: The Four Program Development Commands 

O 
EDIT GRADES.FOR 

0 
GRADES.FOR 

FORTRAN[/qualifier] GRADES 

0 

0 

GRADES.OBJ 

LINK[/qualifier] GRADES 

RUN[/qualifier] GRADES 

GRADES.EXE 

TTB_X0330_88 

DEVELOPING PROGRAMS 10- 7 



1. Create a text file that contains the source statements of your program. 

Name the source file using the file type that relates to the source code programming lan-
guage. Below are the defau~ file types for a number of languages. 

Table 10-1: Languages and Associated File Types 

Language File Type 

BASIC BAS 

C C 

COBOL COB 

FORTRAN FOR 

MACRO MAR 

PASCAL - PAS 

PL/i PLI 

2. Compile or assemble the text file you created to produce a file containing object code. 

The compiler or assembler translates the source statements of each input file into object 
code, producing one or more object files of type OBJ. 

To compile or assemble the code, you must use the DCL command related to the language 
of the source code in the text file. The following are examples of compile and assemble 
commands. 

Language Compiler/Assembler Command 

BASIC 

C 

coBoL 
FORTRAN 

MACRO 

PASCAL 

PVI 

$ BASIC file -specification 

$ CC file -specification 

$ COBOL file -specification 

$ FORTRAN file -specification 

$ MACRO file -specification 

$ PASCAL file -specification 

$ PLI file -specification 

~J 

10- 8 DEVELOPING PROGRAMS 



3. Link the object file or files to produce an executable image. 

The linker searches personal and system libraries for external procedures and functions that 
it cannot find in the specified input files. 

To link the object file(s), invoke the VMS Linker with the DCL command LINK. You can 
specify the names of the files to be linked, such as object code files or modules from 
libraries, after the command. Separate names with commas. The linker assumes that the 
file type of input files is 46J. 

The Linker's file output contains executable code assigned the file type of EXE. 

4. Invoke the image activator to run the executable code produced by the Linker. 

To execute a program, enter the DCL command RUN followed by the name of a single 
executable image file. The RUN command assumes that the file type field of the input file 
specification is EXE. 

You should not attempt to execute a program without correcting compiler and linker errors 
first. 

5. Debug the program to correct errors. 

DEVELOPING PROGRAMS 10- 9 



THE VMS SYMBOLIC DEBUGGER UTILITY 
The VMS Symbolic Debugger simplifies the debugging job. Debug commands implement many 
of the same debugging techniques used on paper. 

The VMS Symbolic Debugger allows you to observe and manipulate your program interactively 
as it executes. By issuing debugger commands at the terminal, you can: 

• Start, stop, and resume the execution of the program 

• Trace the execution path of the program 

• Monitor selected locations, variables, or events 

• Examine and modify the contents of variables, or force events to occur 

• Test the effect of modifications without having to edit the source code, recompile, and, in 
some cases, relink. 

There are three ways to invoke the debugger: 

1. Include the debugger in the executable image. 

2. Halt the program and invoke the debugger with the DCL command DEBUG. 

3. Run the program with the debugger. 

To use the Help facility of the Debugger, invoke the symbolic debugger and enter the HELP 
command. 

10- 10 DEVELOPING PROGRAMS 



A SAMPLE PROGRAM -GRADES 

The GRADES program (written in FORTRAN), contains the names of students and their grade 
averages for a particular course. The program obtains the names and grades from you, com-
putes the average of the grades, and outputs the results to the terminal and to a designated file, 
ENGLISH. DAT. 

Example 10-1: GRADES.FOR Source File 

PROGRAM GRADES 
CHARACTER STUDENT_NAME*30, DONE*4 
REAL AVERAGE 

OPEN (UNIT=1, FILE='English', STATUS='New') 

10 TYPE 2 0 
20 FORMAT (/' Student name ? ' , $ ) 
ACCEPT 30, STUDENT_NAME 
3 0 FORMAT (lA3 0 ) 

CALL COMPUTE (AVERAGE) 

TYPE 40, STUDENT NAME, AVERAGE 
WRITE (1, 40) STUDENT_NAME, AVERAGE 
40 FORMAT (/' Student: ',A30,'Average: ',F10.1) 

TYPE 50 
50 FORMAT (/' Are you done ? (Yes /No) ' , $ ) 
ACCEPT 60, DONE 
60 FORMAT (lA4 ) 
IF (DONE . NE . ' Y' .AND . DONE . NE . ' y') GOTO 10 

CLOSE (UNIT=1) 
END 

SUBROUTINE COMPUTE (AVERAGE) 

INTEGER ICOUNT 
REAL TOTAL, GRADE 
ICOUNT = 0 
TOTAL = 0 

10 TYPE 2 0 
20 FORMAT (' Input grade (or 0 to end input } : ' , $ } 
ACCEPT 3 0 , GR.ADE 
3 0 FORMAT (F 10.0 ) 

IF (GR.A►DE . NE . 0) THEN 
ICOUNT = ICOUNT + 1 

TOTAL = TOTA.L + GRADE 
GO TO 10 

ENDIF 

40 IF (ICOUNT.NE.O} AVERAGE = TOTAL/ICOUNT 

RETURN 
END 

DEVELOPING PROGRAMS 10- 1 y 



Execution of GRADES 
Example 2 depicts a sample run of the GRADES program. 

Example 10-2: Execution of GRADES 

$ FORTRAN GRADES 
$ LINK GRADES 
$ RUN GRADES 
Student name? JOHN SMITH 
Input grade (or 0 to end input): 45 
Input grade (or 0 to end input): 80 

Input grade (or ~ to end input): 99 
Input grade (or 0 to end input): 0 

Student: JOHN SMITH Average: 74.7 

Are you done ? (Yes /No ) N 

Student name? MARY HAGERTY 

Input grade (or 0 to end input): 82 

Input grade (or 0 to end input): 69 

Input grade (or 0 to end input): 94 

Input grade (or 0 to end input): 0 

Student: MARY HAGERTY Average: 81.7 

Are you done ? (Yes /No ) N 

Student name? HOSIAH HOWER 
Input grade (or 0 to end input): 90 

Input grade (or 0 to end input): 78 

Input grade (or 0 to end input): 81 

Input grade (or 0 to end input): 0 

Student: HOSIAH HOWER Average: 83.0 

Are you done ? ( Yes /No ) Y 

$ TYPE ENGLISH.DAT 

Student : JOHN SMITH Average : 74 .7 

Student: MARY HAGERTY Average: 81.7 

Student: HOSIAH HOWER Average: 83.0 

10- 12 DEVELOPING PROGRAMS 



SUMMARY 

Program Development on a VMS System 

A user must complete the following steps to develop a program: 

• Create a text file that contains the source statements of your program. 

• Compile or assemble the text file to produce a file containing object code. 

• Link the object file or files to produce an executable image file. 

• Run the executable code produced by the linker. 

• Debug the program to correct errors. 

For more detailed explanations of developing programs, refer to the following documents: 

• Guide to VMS Programming Resources 

• VMS DCL Dictionary 

DEVELOPING PROGRAMS 10-13 





MODULE 11 
EXERCISES 

EXERCISES 11- 1 





HARDWARE AND SOFTWARE OVERVIEW 

WRITTEN EXERCISE 

In the exercise below, match each description with the appropriate componen# of the hardware 
environment. Components of the hardware environment may be used once, more than once, or 
not at all. 

Hardware Components 

a. CPU 

b. Console Subsystem 

c. Main Memory 

d. I/O Subsystem 

Descriptions 

y. 

2. 

3. 

4. 

5. 

Stores instructions and data 

Used to monitor and control the system 

Consists of peripherals 

Executes instructions 

Used for starting up and shutting down the system 

EXERCISES 11- 3 



Write the letter of the term that best completes each of the following statements. 

1.   are used to connect the various subsystems of the computer. 

a. Peripheral devices 
b. Network communication devices 
c. Interconnect devices 
d. Storage devices 

2.   have a screen for displaying information. 

a. Hardcopy terminals 
b. Video terminals 
c. Laser printers 
d. Mass storage devices 

3.   is NOT a peripheral device. 

a. Terminal 
b. Printer 
c. CPU 
d. Disk drive 

4.   are high-speed machines that are usually used for large quantities of stored output. 

a. Hardcopy terminals 
b. Disk drives 
c. Laser printers 
d. Line printers 

5.   is NOT a type of disk. 

a. Reel 
b. Cartridge 
c. Diskette 
d. Disk pack 

6. record data on magnetic media. 

a. Disk drives 
b. Tape drives 
c. Terminal servers 
d. VAXcluster systems 

11- 4 EXERCISES 



I"1 WRITTEN EXERCISE II 

The example on the following page displays the characteristics of a privileged process on your 
system. Using the information displayed in the example, determine the value of each of the 
following parameters: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Account name 

Default Device and Directory Specification 

Interactive Terminal Specification 

Password 

Process Identification Code 

Process Name 

User Identification Code 

User Name 

Priority 

Privileges (list them) 

10.  

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

CPU Limit 

Open File Quota 

Subprocess Quota 

EXERCISES 11- 5 



Example 11-1: Process Parameters of a Sample Interactive Process 

31-DEC-1987 13:45:39.54 VTA15: 
Pid: 20400140 Proc. name: SMITH 
Priority: 4 Default file spec: DISK: 
Devices allocated: VTA15: 
Process Quotas: 

Account name: VMS 
CPU 1 imit 
Buffered I/O byte count quota: 
Timer queue entry quota: 
Paging file quota: 
Default page fault cluster: 
Enqueue quota 
Max detached processes: 

Accounting information: 
Buffered I/O count: 
Direct I/O count: 
Page faults: 
Images activated: 
Elapsed CPU time 
Connect time: 

Process privileges: 
GRPNAM 
GROUP 
TMPMBX 
NETMBX 

User: SMITH 
UIC: 

[ SMITH] 
[ GROUP 11, SMI TH ] 

Infinite Direct I/O limit: 18 
12192 Buffered I/O limit: 18 

10 Open file quota: 63 
90 63 Subprocess quota: 2 
64 AST limit: 22 
40 Shared file limit: 0 
1 Max active jobs: 0 

21298 Peak working set size: 
11639 Peak virtual size: 
26172 Mounted volumes: 

112 
0 00:11:33.90 
0 04:58:58.78 

may 
may 
may 
may 

Process rights identifiers: 
INTERACTIVE 
LOCAL 
VMS 
SYS$NODE SUPER 

Process Dynamic Memory Area 
Current Size (bytes) 
Free Space (bytes ) 
Size of Largest Block 
Number of Free Blocks 

1500 
1789 

0 

insert in group logical name table 
affect other processes in same group 
create temporary mailbox 
create network device 

25600 
21184 
21072 

3 

Current Total Size (pages) 
Space in Use (bytes ) 
Size of Smallest Block 
Free Blocks LEQU 32 Bytes 

50 
4416 
56 
0 

11- 6 EXERCISES 



~"'1 
Match each of the following operations with the parameter that controls your ability to perform 
it. Some operations are controlled by more than one parameter. 

Parameters 

a. Password 

b. Priority 

c. Privilege 

d. Process Identification Number (PID} 

e. Resource Limit 

f. User Identification Code (UIC} 

g. User Name 

Operations 

1.   Logging in to your system 

2.   Deleting a file that belongs to another user 

3.   Creating a group logical name 

4.   Opening a large number of files 

EXERCISES 11- 7 



GETTING STARTED 

LABORATORY EXERCISE 
If you have not already done so, obtain your user name and password from your instructor. 
complete the following activities at an interactive terminal: 

1. Log i n to the system, using the user name and password assigned to you. 

2. Enter the following command lines at your terminal. 
After each command, press RETURN. 

• SHOW TIME 

• sHoW usERs 
• SHOW TERMINAL 

3. ~.og out of the system. 

111- 8 EXERCISES 



LABORATORY EXERCISE II 

1. Enter the following command line at your terminal: 

PRODUCE NONESUCH.FIL 

Since neither the command nor the parameter of the preceding command line exists, the 
operating system will display one or more error messages at your terminal. 

a. How severe was this error? 

b. What part of the system produced this error message? 

2. Use the command line editor to recall the PRODUCE command and change it to the TYPE 
command. Now execute the command and observe the results. 

a. How severe was this error? 

b. What part of the system produced this error message? 

c. Did the message text differ from the previous exercise? 

EXERCISES 11- 9 



WRITTEN EXERCISE 
Match the letter of a special function key with each of the operations described below. You may 
not use every letter in the list. 

Special Function Keys 

a. CTRUB 

b. CTR U~ 

c. CTRUC~ 

d. CTRUR 

e. CTRUS 

f. CTRUU 

g. CTRLJY 

h. DELETE or RUBC~UT 

i. RETURN 

Operations 

1.   You have logged in to your system. Along string of messages, all of which you 
have seen before, scrolls past on your screen. Suppress the messages, without stopping 
or aborting the program that produces them. 

2.   You have just typed the string TYPE FILE&. The cursor is positioned immediately 
after the ampersand (&}. Delete the ampersand (&}. 

3.   You have entered the SHAW SYSTEM command. A listing of users on your system 
scrolls past on your screen. Abort further execution of the command and return control to 
you r termi nal. 

4.   You have entered the following command lines at your terminal: 

$ DIFFERENCES/IGNORE=BLANK_LINES 
_$ FILE1 

$ FILEB 

The cursor is immediately to the right of the number eight on the last line. Delete the last 
line, without deleting the preceding lines of the command string. 

11- 10 EXERCISES 



5. You have entered the following string at your terminal: 

$ SHOW PROCESS/ALL 

Lines of information scroll past on your terminal screen. Stop the display and halt, but do 
not abort, the program that generates it. 

6.   Resume generation of the display that you stopped in the preceding operation. 

7.   You have made extensive corrections to a command line at a hardcopy terminal. 
The ou~ut looks like this: 

$ PRYNT\TNY\NT9\9\ FILIN\NI\ 

Display the line without the echoed corrections. 

8. You have just issued a command line. Recall this command. 

f"1 
EXERCISES 11- 11 



LABORATORY EXERCISE III 
Log in to your system and use the on-line Help facility to obtain the information listed below. 
When you have finished your work, log out. 

1. A listing of ail topics available through the Help facility 

2. A description of the login procedure 

3. A description of the /FULL qualifier of the LOGOUT command 

4. A description of the TIME option of the SHOW command 

11- 12 EXERCISES 



~ LABORATORY EXERCISE IV 

1. Determine the following characteristics of your terminal: 

a. Number of characters displayed in an output Line 

b. Receive speed 

c. Transmit speed 

d. Terminal type (LA34, VT10o, and so on} 

2. Determine the value of each of the following process parameters: 

a. Account Name 

b. CPU Time Limit 

c. Default Directory Specification 

d. Default Device for Input and Output 

e. Priority 

f. Privileges 

g. Process Identification Code 

h. Process Name 

I. User Identification Code 

j. User Name 

3. Display the names of all processes running on your system. 

4. Display the names of all users on your system. 

5. Display the names of all devices on your system. 

6. Log out of your system. 

EXERCISES 11- 13 



CREATING AND EDITING TEXT FILES 

INTRODUCTION TO THE LABORATORY EXERCISES 
Students should feel free to choose either the EI~T Editor exercises or the EVE Editor exercises. 
They should choose the editor that they will be primarily using. 

However, if they would like practice in both editors, they can complete all the exercises for this 
module. 

11- 14 EXERCISES 



LABORATORY EXERCISE I -THE EDT EDITOR 

1. Use the EDT editor to create a text file named EXERCISEI.TEXT. 

a. Invoke the EDT editor, using the appropriate DCL command. 

b. Notice the message displayed on the terminal screen. 

c. Change from Line mode to Keypad mode. 

2. Before you begin entering text, you should become familiar with the Help facility that is a 
part of the EDT editor. 

a. Invoke the Help facility from keypad mode by pressing the appropriate key. 

b. Display information about specific keypad keys. 

c. Exit from Help. 

3. Type in the following text: 

The purpose of this exercise is to allow 
you practice using the basic capabilities 
of the EDT Editor Utility. 

4. End the editing session normally. 

a. Return to Line mode. 

b. Type in the command that ends the session and saves your actions. 

c. Notice the system message displayed on the terminal screen. 

EXERCISES 11- 15 



5. Begin another editing session, using the file EXERCISEI.TEXT. 

a. Invoke the EDT Editor, using the appropriate DCL command. 

b. Notice that the first line of the file is displayed on the terminal screen. 

c. Change from Line mode to Keypad mode. The file's contents are displayed on the 
screen. 

6. Modify the text. 

a. Using the appropriate keys, move the cursor to the beginning of the word "basic" in the 
second line. 

b. Delete the words "basic capabilities" and modify the line so that it reads: 

you practice using the simpler functions 

?. End the editing session. 

11- 16 EXERCISES 



LABORATORY EXERCISE II -THE EVE EDITOR 

1. Use the EVE editor to create a file called EXERCISE3.TEXT. 

a. Notice the messages that are displayed on the terminal screen. 

2. Type in the lines listed below. DO NOT press the RETURN key while you are typing. The 
automatic word wrap feature causes new lines to begin when text reaches the right margin -
of the terminal screen. 

Notice the automa~dc word wrap feature of EVE. 

This is an exercise that uses the EVE editor. 
This editor allows you to type text into a file. 
The word wrap feature will automatically wrap lines as you type, 
so that you do not have to press the RETURN key at the end of each line. 

3. End the editing session and save your work. 

a. Use the appropriate key sequence or line—mode command to end the editing session. 

b. Notice the system messages displayed on the terminal screen. 

4. Begin another editing session, using the file EXERCISE3.TEXT. 

a. Notice the system messages displayed on the terminal screen. 

5. Modify the text of the first sentence to read: 

This is an example that uses the editor. 

a. Move the cursor to the beginning of the word "EVE." 

b. Use the appropriate key to delete the word "EVE." 

o. Move the cursor to the beginning of the word "exercise". 

d. Use the appropriate key to switch from Insert mode to overstrike mode. 

e. Type over the words "exercise that uses" with the words "example that uses." 

fi. Er~d the editing session normally. 

EXERCISES 11-17 



LABORATORY EXERCISE III -THE EVE EDITOR 
This exercise lets you practice editing more than one file on your terminal screen. 

1. Edit a file of your choice. 

2. Split you r termi nal screen into two windows. 

3. Edit another file of your choice. 

4. Move text from one file into the other file. 

5. Exit the file so the moved text is saved. 

11-- 18 EXERCISES 



~ COMMUNICATING WITH OTHER USERS 

LABORATORY EXERCISE 

1. Invoke the M ai I uti I ity and send several mai I messages to someone i n your class. 

2. Ask your mail recipient to send a message to you. 

3. Read your messages. 

4. obtain a list of your mail messages. 

5. Read only the second mail message. 

6. Delete the fourth mail message. 

7. Create a text file in your default directory. Send this file as a mail message. 

8. Pick a message and move it to a folder named Test. Select the Test folder and check to 
see if the message is there. 

9. List the folders you have. In addition to the folder you just created, what other folders do 
you have? 

10. Create a distribution list for Mail. Include several members of your class. Send a short 
message to the people on the distribution list. 

EXERCISES 11- 19 



LABORATORY EXERCISE II 

1. Invoke the Phone utility. 

2. Obtain a list of available users. 

3. Establish a phone connection with one of the users. 

4. Terminate all conversations. 

11- 2Q EXERCISES 



LABORATORY EXERCISE III 
Send a request to a system operator using the REG?llEST command. 

EXERCISES ~1- 21 



MANAGING FILES 

WRITTEN EXERCISE 
Suppose your default directory contains the following files: 

A .DAT; 1 
B .DAT ; 3 
MAILIST.COB;1 

A .FOR; 2 
B .FOR; 1 
MAILD22.DAT;2 

AREA.FOR;2 
C .DAT ; 4 
MAILF22.DAT;2 

AREA .FOR; 1 
C .FOR; 1 
MAILJI4 . DAT; 1 

1. List the files that are specified by the following file specifications (using the DIRECTQRY 
command): 

a. *. FOR;2 

b. *.FOR 

~ A* ~.* ., 

e. °/a. DAT 

# *•* . , 

2. Give a single file specification that describes the following lists of files: 

a. A. DAT;1, A. FO R;2 

b. A. DAT;1, B. DAT;3, C. DAT;4 

C. MAILD22.DAT;2, MAILJI4.DAT;1, MAILF22.DAT;2 

d. A.DAT;1, MAILJI4.DAT;1 

11- 22 EXERCISES 



WRITTEN EXERCISE II 
Next to each file maintenance operation, write the letter that corresponds to the VMS command 
best suited to accomplish it. Specify each command at least once. 

Commands 

a. APPEND 
b. COPY 
c. DELETE 
d. DELETE/CONFIRM 
e. DIFFERENCES 
f . DIRECTORY 
g. DIRECTORY/OUTPUT=file-specification 
h. PRINT 
i. PURGE 
' RENAME 1• 
k. TYPE 

operations 

1.   Display the contents of a file at your terminal. 

2.   Display the contents of your default directory at your terminal. 

3.   Remove a specified file from your default directory. 

4.   Remove all but the most recent version of a specified file from your defau~ directory. 

5.   Create an exact duplicate of a file in your defau~ directory. 

6.   List the contents of a file at the default system printer. 

7.   Compare the contents of two files. 

8.   Add the contents of one file to another. 

9.   Change a file name to a new file name. 

10.   Display the name of each file in your default directory and remove or retain 
it by entering a "Y" or an "N" at your terminal. 

11.   List the contents of your default directory in a file for future reference. 

EXERCISES 11- 23 



LABORATORY EXERCISE 

1. Create a subdirectory called [.SUB1 ] 

2. Copy some files from your login directory into [.SUB1 ] 

3. Move yourself to that subdirectory 

4. Obtain a directory listing of all files in the subdirectory 

5. Combine two files to create a new file named NEWFILE.DAT 

6. Create another subdirectory beneath [.SUB1 ] and name the new subdirectory [.SUB2] 

7. Copy some files from [.SUB1 ] into [.SU62] 

8. Obtain a directory listing of all files in the subdirectory 

9. Delete both subdirectories 

11- 24 EXERCISES 



LABORATORY EXERCISE II 

1. Create a file in your login directory. What protection code does this newly created file have 
and how did it get that protection code? 

2. Change the protection code for this file to (S:R,U:R,G;R,W:R}. Display the protection code 
to verify the change. 

3. Delete this file. What happened and why? 

4. Change your default protection code to {S:R,D:RWED,G:R,W:R}. Create a new file named 
NEWFILE.TXT. What protection code does this new file have and why? 

5. Change your default protection to give all persons in your UIC group RWED access and all 
persons in the WORLD category RWE access. 

EXERCISES 11- 25 



WRITTEN EXERCISE III 

Next to each directory maintenance operation, write the letter of the VMS command best suited 
to perform the job. You may use each command more than once; you may not use others at all. 

Commands 

a. COPY 
b. CREATE 
c. CREATE/DIRECTORY 
d. DELETE 
e. DELETE/DIRECTORY 
f. DIRECTORY 
g. RENAME 
h. SET DEFAULT 
i. SET PROTECTION 
j. SHOW DEFAULT 
k. SHOW PROTECTION 

Operations 

1.   Display the name of your current default directory. 

2.   Display the contents of a directory hierarchy. 

3.   Remove a directory from a directory hierarchy. 

4.   Add a directory to a directory hierarchy. 

5.   Move files from one directory to another. 

6.   Change your current default directory. 

7.   Change the protection code of a directory file. 

8.   Display the name of your current default device. 

9. Change your current default device. 

11- 26 EXERCISES 



LABORATORY EXERCISE III 

1. Choose a file in your directory. 
Issue a DCL command to obtain Access Control List information regarding that file. 

2. Modify the U I C protection on the above file so that your group has no access. 

3. Modify the ACL information to allow Read, Write, and Execute access to the file. 

4. Check to see if an ACL was created. Have some of your fellow students try to access the 
file. 

5. Delete the ACL on the above file. 

EXERCISES 11- 27 



WRITTEN EXERCISE IV 
Each of the following questions describes an operation a user wishes to perform on a given disk 
or tape file. Given the UIC of the user, and the owner UIC and protection code of the file, its 
directory, or its volume, determine whether the file system will permit the operation to occur. If 
the operation is permissible, write the word TRUE in the space that precedes the question; if it 
is not, write the word FALSE. 

1.   A user with a UIC of [100,200] wishes to delete a file on a tape volume. 

Volume Owner UIC: [100,200] 
Volume Protection Code: (S:RWED,O:RWED,G:RWED,W:RE) 

2. A user with a UIC of [363,2] wishes to create a file on an RX33 disk volume. 

3. 

4. 

5. 

Volume Owner UIC : [ 363, 0 ] 
Volume Protection Code : (S : RE, O : RWED, G: RE, W) 

A user v~~ith a UIC of [4,4] wishes to read a file on an RA60 disk volume. 

File Owner UIC: 
File Protection Code: 

[ 411, 22 ] 
(S, O:RWED, G, W:R) 

A user with a UIC of [100,200] wishes to update a record in a file on an RA80 
disk volume. 

Volume Owner UIC: 
Volume Protection Code: 
Directory Owner UIC: 
Directory Protection Code: 
File Owner UIC: 
File Protection Code: 

[1, 1] 
(S : RWED, O; RWED, G : RWED, W : RWED ) 
[100,210] 
(S:RWE,O:RWE,G:RWE,W:RE} 
[100,210] 
(S : RE, O : RWED, G : RWE , W : RE ) 

A user with a UIC of [521,6] wishes to read a file on an RA81 disk volume. 

Volume Owner UIC: 
Volume Protection Code: 
Directory Owner UIC: 
Directory Protection Code: 
File Owner UIC: 
File Protection Code: 

[1► 1] 
(S : RWED, 0 : RWED, G : RWED, W : RWED ) 
[ 521, 13 ] 
(S : RWE , O : RWE , G, W ) 
[521, 13] 
(S:R,O:RWED, G:R,W:R) 

11- 28 EXERCISES 



~ CUSTOMIZING THE USER ENVIRONMENT 

WRITTEN EXERCISE 
Write the letter of the system-defined logical name below that best fits each of the device and 
directory descriptions on the following page. Some answers require more than one letter. 

System-Defined Logical Names 

a. SYS$COMMAND 

b. SYS$DISK 

c. SYS$ERROR 

d. SYS$HELP 

e. SYS$iNPUT 

f. SYS$LIBRARY 

g. SYS$LOGIN 

h. SYS$NODE 

i. SYS$OUTPUT 

j. SYS$SYSDEVICE 

k. SYS$SYSTEM 

EXERCISES 11- 29 



Device and Directory Descriptions 

1. Specifies the default device to which the system writes output during a 
terminal session. 

2.   Specifies the default device to which the system writes messages during a 
terminal session. 

3.   Specifies your default disk. 

4.   Specifies the directory in which help files are cataloged. 

5.   Specifies the directory in which system libraries are cataloged. 

6.   Specifies your default user file directory (UFD). 

7.   Specifies the device from which the command language interpreter and utility 
programs read input during a terminal session. 

8.   Specifies the directory in which operating system programs and procedures 
are cataloged. 

9.   Specifies your terminal during an interactive process. 

10.   Specifies the disk on which system programs and routines are stored. 

11.   Specifies the name of the current network node. 

11- 30 EXERCISES 



LABORATORY EXERCISE 
Complete each of the following exercises at an interactive terminal. Display only one logical 
name table for each exercise. 

1. Display at your terminal the contents of the logical name table used by your process. This 
particular logical name table contains process-private logical names. 

2. Display at your terminal the contents of the logical name table used by your process and its 
subprocesses. This particular logical name table contains shareable logical names. 

3. Display at your terminal the contents of the logical name table used by your UIC group 
member processes. This particular logical name table contains shareable logical names. 

4. Display at your terminal the contents of the logical name table used by all system processes. 
This particular logical name table contains shareable logical names. 

5. Create a logical name for your default directory. 

a. Check the proper logical name table to make sure your newly created logical name 
exists. 

b. Use the logical name in conjunction with the DIRECTORY command to view the file 
names in your default directory. 

c. Delete your newly created logical name after correctly performing this exercise. 

EXERCISES 11- 31 



LABORATORY EXERCISE II 
Complete each of the following laboratory exercises at an interac~ve terminal. 

1. Create a subdirectory. 

2. Create a logical name for your newly created subdirectory. 

3. Create a logical name for a text file in your default directory. 

4. Check the process logical name table to see if your new logical names exist. 

5. Using only logical names, move the text file into your new subdirectory. 

6. After completing this exercise, remove the above logical names. 

11- 32 EXERCISES 



WRITTEN EXERCISE II 
Write the letter of the symbolic name type that best fits each of the following characteristics. 

Symbolic Name Types 

a. Command Synonym 

b. Logical Name 

Characteristics 

1.   Represents device, directory, and file specifications 

2.   Translated by the file system 

3.   Translated by the Command Language Interpreter 

4.   Defined by the direct assignment statement (_) 

5.   Deleted by the DEASSIGN command 

6.   Displayed by the SHOW SYMBOL command 

7.   Defined by the ASSIGN command 

8.   Represents commands and command strings 

9.   Deleted by the DELETE/SYMBOL command 

EXERCISES 11- 33 



LABORATORY EXERCISE III 

Create global symbols to perform the following tasks. You may create these global symbols 
interactively or in the file LOGIN.COM. 

1. Display a directory listing along with sizes of all files in your directory. 

2. Show the time of day. 

3. Display all global symbols at your terminal. 

4. Move to another default directory. 

5. Retum to your original default directory. 

To correct mistakes you may have made when you defined a DCL symbol, use the 
DELETEJSYMBoL command to remove the faulty definition, then enter it again. 

6. Try the symbols to see if they work. How can you get rid of the symbols without using the 
DELETE/SYMB4L command? 

11- 34 EXERCISES 



LABORATORY EXERCISE IV 

1. Define KP2 to be the SHOW TIME command. Try it first without the /TERMINATE qualifier, 
then with the !TERMINATE qualifier. What is the difference? 

2. Define KP3 to be the SET DEFAULT command. Create a subdirectory. Try to move to the 
subdirectory by using your newly defined key. 

3. Delete the key definition for KP2. See if it worked by displaying all your key definitions 
again. 

EXERCISES 11- 35 



WRITING COMMAND PROCEDURES 

WRITTEN EXERCISE 
To complete these exercises, use the following symbol definitions: 

COUNT = 2 
P1 = "MYFILE.TXT" 
P2 = "DATA.DAT" 

Part A: 

FILENAME _ "PROGRAM" 
FILE TYPE _ ".FOR" 

Each command below uses a symbol in some way. Indicate whether or not the symbol is used 
correctly. If it is used correctly, rewrite the command, replacing the symbol with its value (see 
above}. If the symbol is used incorrectly, rewrite the command correctly. 

Examples: 

a. $ TYPE "P 1 " 

Incorrect - $TYPE ' P 1' 

b. $EDIT ' P 2' 

1. 

2. 

3. 

4. 

Correct - $EDIT DATA . DAT 

$ FILE _ 'FILE NAME' + 'FILE TYPE' 
_ 

- 

$ WRITE SYS$OUTPUT COUNT "copies of the file" 

$ IF COUNT . LT . 10 THEN GOTO END 

$ WRITE SYS $OUTPUT "The file ' 'FILE NAME' ' 'FILE TYPE' " 

11- 36 EXERCISES 



Part B: 

In the commands below, replace the underlined text with symbols, using the proper symbol 
substitution techniques. 

Use the same symbol values you used i n Part A. 

Example: 

$ PRINT MYFILE .TXT 

$ PRINT ' P 1' 

1. $WRITE SYS$OUTPUT "The file is MYFILE .TXT" 

Z. $TYPE PROGRAM. FOR 

'~. $EDIT DATA .DAT 

4. $WRITE SYS$OUTPUT "2 copies of the file DATA. DAT exist . " 

rJ. $FILE _ "PROGRAM" + " .FOR" 

EXERCISES 11- 37 



INTRODUCTION TO LABORATORY EXERCISES 
These lab exercises are designed to give you practice in creating, testing, and running command 
procedures. 

The procedures in these exercises will include the commonly used functions of command pro-
cedures, such as: 

• Terminal input and output 

• Symbol assignment and symbol substitution 

• Controlling program flow 

• Passing data to procedures 

• Using simple lexical functions 

~J 

11- 38 EXERCISES 



I""1 LABORATORY EXERCISE 
LOGIN.GOM is one of the most commonly used command procedures. This procedure is ex-
ecuted~ automatically each time you log in to a VMS system. It is used to tailor your working 
environment on the system to better suit your needs. 

Write a LOGIN.COM procedure of your own that performs the following actions: 

1. Exit if the process mode is not interactive. Use the lexical function F$MODEt) to test the 
mode of the process. 

2. Define a logical name that points to one of your subdirectories: 

disk name:[directory_name.subdirectory_name] 

where disk name is your default disk, and directory_name is your top level directory. 

3. Define global symbols to be used as command synonyms. These command synonyms 
should perform the following actions: 

a. Set default 

b. Show all users currently logged in to the system 

c. Display your current directory 

d. Set your default to your login disk and directory 

4. Display the following information on your terminal: 

a. The current date and time 

b. The current default directory 

EXERCISES 11- 39 



LABORATORY EXERCISE II 

Write a command procedure that allows you to create files that everyone on your system can 
access. The procedure performs the following tasks: 

1. Asks for the file name, if it is not provided. 

2. Displays a message that indicates the name of the fife being edited. 

3. Transfers control to the terminal and then allows you to edit the file. 

4. Sets the protection on the file so that the WORLD has READ access. 

5. Prints a copy of the file for yourself, if you choose. 

The name of the file you are creating should be supplied as P1. 

This exercise uses terminal input and output including: 

• INQUIRE 

• WRITE SYS$OUTPUT 

• DEFINE/USER MODE or ASSIGN/USER MODE 

11- 40 EXERCISES 



n

OPTIONAL LABORATORY EXERCISE 

Write a command procedure that displays a message on your terminal screen that states when 
you will return. The procedure performs the following: 

1. Asks you for the number of minutes you will be away. 

2. Erases the screen and then displays the message, 12 li nes from the top: 

"Back in N minutes" 

(where N is the number of minutes you supplied in Part 1 }. 

3. It waits, and at one-minute intervals subtracts 1 from the number of minutes, erases the 
screen, and redisplays the message with the new value. 

4. When only one minute is left, it erases the screen and displays the message: 

"I'll be right back." 

This exercise uses terminal input and output commands, including: 

• INQUIRE/NOPUNCTUATION 

• WRITE SYS$OUTPUT 

• TYPE SYS$INPUT 

This procedure also uses the DCL command WAIT. For more information on this command, 
refer to the VMS DCL Dictionary or use the HELP command. 

This command procedure does not use lexical functions. 

EXERCISES 11- 41 



USING DISK AND TAPE VOLUMES 

WRITTEN EXERCISE 

The list below contains the major steps that you must complete to create and use a private vol-
ume. Indicate the order of these steps by writing the appropriate number in the space preceding 
each step. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Allocate device 

Deallocate device 

Dismount volume 

Initialize volume 

Load volume 

Mount volume 

Unload volume 

11- 42 EXERCISES 



I"1 
WRITTEN EXERCISE II 

Choose the VMS command best suited to perform each of the following operations and write its 
letter in the space provided. 

VMS. Commands 

a. ALLOCATE 

b. DEALLOCATE 

c. DISMOUNT 

d. INITIALIZE 

e. MOUNT 

f. SHOW DEVICE/FULL 

Operations 

1.   Build the appropriate structure on a disk (usually used for a new tape). 

2.   Terminate access by your process to the contents of a volume. 

3.   Display the owner UIC and protection code of a volume. 

4.   Initiate access by your process to the contents of a volume. 

5.   Release a device from exclusive use by your process. 

6. Reserve a device for exclusive use by your process. 

EXERCISES 11- 43 



WRITTEN EXERCISE III 
Write a VMS command string to perform each of the following operations. 

1. Allocate any available tape unit to your process and assign the logical name TAPE to it. 

2. Initialize a tape volume that you have loaded on TAPE. Assign the label TAP BK to the unit. 

3. Mount TAP BK on the tape device so that the Backup utility can process it. 

4. Back up all files in your default directory to a save set on TAP BK. 

5. List the contents of the save set TAP BK at your terminal. 

6. Terminate access to TAP_BK, allowing the system to automatically unload the volume. 

7. Release the tape device so others on your system can use it. 

8. Delete the logical name TAPE from the logical-name table that stores it. 

11- 44 EXERCISES 



r"'1 LABORATORY EXERCISE I 
Complete the following exercises at an irrteractive terminal. Note that your device names may 
differ from the device and directory names given in the solutions. 

1. Allocate the tape. 

2. Initialize the tape, giving it a label name of MYTAPE. 

3. Mount the tape, so that BACKUP can be used. 

4. Obtain a listing of the files in your directory. 

5. Transfer all files from your directory to the tape. 

6. Confirm that all files transferred successfully to the tape. 

7. Dismount the tape. 

8. Deallocate the tape. 

EXERCISES ~ 1- 45 



SUBMITTING BATCH AND PRINT JOBS 

LABORATORY EXERCISE 
NOTE 

Several of the laboratory exercises in this module ask you to create command procedure 
files. 

Complete the following exercises at an interactive terminal. 

1. Choose a text file and print it, using the generic pent queue SYS$PRINT. 

2. Use a single PRINT command to print two copies of the same file, giving the print job priority 
3 on SYS$PRINT. 

3. Display a list of all queues on your system and ail jobs in the queues. 

4. Select an execution queue from the queue display. (An execution queue will have the same 
name as its associated device, without the colon.) Print the same file, queuing it directly to 
the physical queue. 

5. Choose two text files. Print these two files so that you get two copies of the first file and 
three copies of the second file. 

6. Send a text file to the print queue, requesting that the file not be printed until an hour from 
now. 

7. Display the queue status of the job waiting to be printed. Delete this job from the queue. 

11- 46 EXERCISES 



n  LABORATORY EXERCISE II 

1. Display at your terminal screen all of the batch queues on the system. 

2. Submit a command procedure to the batch queue that displays the time, displays ail pro-
cesses on the system, and shows all logical names on the system. Save the log file. You 
will need to examine it shortly. 

3. Submit the above command procedure to batch so that the log file will not be printed. 

4. Submit the above command procedure to batch so that the log file will not be created. 

5. Examine the log file created in Step 2. Answer the following questions: 

— Find the entry for your batch job from the SH4V11 SYSTEM command. 
What was its process ID? 

— Did your LOGIN.COM file execute? Did the system-wide login procedure execute? 

— How much CPU time did your batch job use to execute? 

— How much elapsed time did your batch job use to execute? 

EXERCISES 11- 47 



HARDWARE AND SOFTWARE 
OVERVIEW-SOLUTIONS 

WRITTEN EXERCISE 

In the exercise below, match each description with the appropriate component of the hardware 
environment. Components of the hardware environment may be used once, more than once, or 
not at all. 

(Compare your answers with those shown below. For additional information, consult your in-
structor.) 

Hardware Components 

a. cPu , 

b. Console Subsystem 

c. Main Memory 

d. I/O Subsystem 

Descriptions 

1.  c  Stores instructions and data 

2.  b  Used to monitor and control the system 

3.  d  Consists of peripherals 

4.  a  Executes instructions 

5.  b  Used for starting up and shutting down the system 

11- 48 EXERCISES 



Write the letter of the term that best completes each of the following statements. 

1.  c  are used to connect the various subsystems of the computer. 

a. Peripheral devices 
b. Network communication devices 
c. Interconnect devices 
d. Storage devices 

2.  b  have a screen for displaying information. 

a. Hardcopy terminals 
b. Video terminals 
c. Laser printers 
d. Mass storage devices 

3.  c  is NOT a peripheral device. 

a. Terminal 
b. Printer 
c. CPU 
d. Disk drive 

4.  d  are high-speed machines that are usually used for large quantities of stored output. 

a. Hardcopy terminals 
b. Disk drives 
c. Laser printers 
d. Line printers 

5.  a  is NOT a type of disk. 

a. Reel 
b. Cartridge 
c. Diskette 
d. Disk pack 

6.  b  record data on magnetic media. 

a. Disk drives 
b. Tape drives 
c. Terminal servers 
d. VAXcluster systems 

EXERCISES 11- 49 



WRITTEN EXERCISE 11 

Compare your answers with those shown below. For additional information, consult your instruc-
tor. 

1. VMS Account name 

2. DISK:[SMITH] Default Device and Directory Specification 

3. VTA15: Interactive Terminal Specification 

4. (Not Displayed) Password 

5. 20400140 Process Identification Code 

6. SMITH Process Name 

7. jGROUPI I ,SMITH] User Identification Code 

8. SMITH User Name 

9.  4  Priority 

Privileges (list them) 

10. G R PNAM 

11. GROUP 

12. TMPMBX 

13. N ETM BX 

14. Infinite CPU Limit 

15.  63  Open File Quota 

16.  2  Subprocess Quota 

11- 50 EXERCISES 



Match each of the following operations with the parameter that controls your ability to perform 
it. Some operations are controlled by more than one parameter. 

Parameters 

a. Password 

b. Priority 

c. Privilege 

d. Process Identification Number (PID} 

e. Resource Limit 

f. User Identification Code (UIC) 

g. User Name 

Operations 

1. g,a Logging in to your system 

To log in to a system, you must know the user name of a record in the UAi=. You must also 
know the password that corresponds to that user name. 

2. c,f Deleting a file that belongs to another user 

Your ability to delete a file depends on your UIC. 

3.  c  Creating a group logical name 

4.  a  Opening a large number of files 

A resource limit (FILLM) determines the number of files that you can open simultaneously. 

EXERCISES 11- 51 



GETTING STARTED-SOLUTIONS 

LABORATORY EXERCISE 

1. Log i n to the system, using the user name and password assigned to you. 

Press RETURN on the terminal keyboard 
At the Username: prompt, type your user name and press RETURN. 
At the Password: prompt, type your password and press RETURN. 

If typed successfully, you should get a "Welcome" message from the system. 
If typed unsuccessfully, the system will output an error message to your terminal, notifying 
you that either your Username or Password was illegal. 
Retyping your Username and Password will correct this situation. 

2. Enter the following command lines at your terminal. 
After each command, press RETURN. 

• SHOW TIME 

$ SHOW TIME 
31-DEC-1987 14:10:32 

• SHOW USERS 

$ SHOW USERS 

VAX/VMS Interactive Users 
31-DEC-1987 13:30:33.86 

Total number of interactive users = 6 
Username Process Name PID Terminal 

BECKER BECKER 20200332 VTAl15: LTA76: 
CHAPUT Mary 20200342 VTAlll: LTA57: 
COVERDALE COVERDALE 20200390 VTA131: LTA74: 
GOEHRING Judy 202003A7 VTA139: LTA82: 
SMITH SMITH 20200331 VTA145: LTA88: 
JOHNSTON JOHNSTON 20200352 VTA124: LTA67: 

11- 52 EXERCISES 



• SHOVII TERMINAL 

$ SHOW TERMINAL 

r"1 

Terminal: RTA2: Device Type: VT200_Series Owner: SMITH 
Username: SMITH 

Input : 9600 LFfill 0 Width: 80 Parity: None 
Output: 9600 CRfill: 0 Page : 2 4 

Terminal Characteristics: 
Interactive Echo Type ahead No Escape 
No Ho st sync TTsync Lowercase Tab 
Wrap Scope No Remote E i ghtb it 
Broadcast No Readsync No Form Fulldup 
No Modem No Local echo No Autobaud Hangup 
No Brdcstmbx No DMA No Altypeand Set speed 
Line Editing Insert editing No Fallback No Dialup 
No Secure server Disconnect No Pasthru No Syspassword 
No SIXEL Graphics Soft Characters Printer port Application keypad 
ANSI~CRT No Regis No Block mode Advanced video 
Edit mode DEC CRT DEC CRT2 No DEC CRT3 

3. Log out of the system. 

$ LOGOUT 
or 

$ LOGOUT/FULL 

EXERCISES 11- 53 



LABORATORY EXERCISE II 

1. Enter the following command line at your terminal: 

$ PRODUCE NONESUCH.FIL 
~DCL-W-IVVERB, unrecognized command verb - check validity 
and spelling ~PRODUCE~ 

a. How severe was this error? 

It was a warning. 

b. What part of the system produced this error message? 

DCL was the part of tF~e system that was upset. 

2. Use the command line editor to recall the PRODUCE command and change it to the TYPE 
command. Now execute the command and observe the results. 

$ TYPE NONESUCH.FIL 
TYPE-W-SEARCHFAIL, error searching for DISK: [SMITH]NONESUCH.FIL; 

-RMS-E-FNF, file not found 

a. How severe was this error? 

Severity levels of warning and error. 

b. What part of the system produced this error message? 

Messages came from the TYPE program and RMS. 

c. Did the message text differ from the previous exercise? 

The first exercise was an Unrecognized Command while the second was a Nonexistent 
File. 

The system notifies you that after searching for the file it cannot be found since it does 
not exist. To correct the error, re-issue the TYPE command followed by a legal file 
name. 

11- 54 EXERCISES 



WRITTEN EXERCISE 

1.  b  You have logged in to your system. Along string of messages, all of which you 
have seen before, scrolls past on your screen. Suppress the messages, without stopping 
or aborting the program that produces them. 

2.  h  You have just typed the string TYPE FILE&. The cursor is positioned immediately 
after the ampersand (&). Delete the ampersand (&). 

3.  g  You have entered the SHOW SYSTEM command. A lis~ng of users on your system 
scrolls past on your screen. Abort further execution of the command and return corrtrol to 
your terminal. 

4.  f  You have entered the following command lines at your terminal: 

$ DIFFERENCES/IGNORE=BLANK_LINES -
_$ FILET 
$ FILE8 

The cursor is immediately to the right of the number eight on the last line. Delete the last 
line, without deleting the preceding lines of the command string. 

5.  a  You have entered the following string at your terminal: 

$ SHOW PROCESS/ALL 

Lines of information scroll past on your terminal screen. Stop the display and halt, but do 
not abort, the program that generates it. 

6.  c  Resume generation of the display that you stopped in the preceding opera~on. 

7.  d  You have made extensive corrections to a command line at a hardcopy terminal. 
The output looks like this: 

$ PRYNT\TNY\NT9\9\ FILIN\NI\ 

Display the line without the echoed corrections. 

8.  a  You have just issued a command line. Recall this command. 

EXERCISES 11- 55 



LABORATORY E~CERCISE III 
Use the following commands: 

1. A listing of all topics available through the Help facility 

$ HELP 

2. A description of the login procedure 

$ HELP LOGIN 

3. A description of the /FULL qualifier of the LOGOUT command 

$ HELP LOGOUT/FULL 

4. A description of the TIME option of the SHOW command 

$ HELP SHOW TIME 

11- 56 EXERCISES 



LABORATORY EXERCISE IV 

1. To display the characteristics of your terminal, enter the SHOW TERMINAL command. 

a. The WIDTH setting of your terminal determines the number of characters displayed in 
an output line. 

b. The receive speed of your terminal input is the first number specified for the SPEED 
setting of you r termi nal . 

c. The transmit speed of your terminal output is the second number specified for the 
SPEED setting of your terminal. 

d. Your terminal type appears following "Device type" in the SHOW TERMINAL display. if 
the terminal type (/VT52, /VT1 ~~, lLA36, /LA124, or some other value} does not match 
the physical characteristics of your terminal, consult your system manager. 

EXERCISES 11- 57 



2. To display the specified process parameters, enter the command lines shown below and. 
look for the information specified within the parentheses. 

a. $ SHOW PROCESS/QUOTAS ~ACCOU~It Nall'1@J 

I~. $SHOW PROCESS/QUOTAS CPU Llflllt~ 

c. s sxow pRocEss (Default File Specification) 

d. $SHOW TERMINAL ~OI' ~ SHOW PROCESS 

e. 

f. 

g• 

h. 

$ SHOW PROCESS ~PCIOtI~/~ 

$ SHOW PROCESS/PRIVILEGES ~PI'IVII2g@S~ 

$ SHOW PROCESS ~PID~ 

$ SHOW PROCESS ~PI'OC@SS Nalll@J 

I. $SHOW PROCESS ~UIC~ 

j. $SHOW PROCESS ~US@f~ 

3. Display the names of all processes running on your system. 

$ SHOW SYSTEM 

4. Display the names of all users on your system. 

$ SHOW USERS 

5. Display the names of all devices on your system. 

$ SHOW DEVICES 

6. Log out of your system 

$ LOGOUT or 
$ LOGOUT/FULL 

11- 58 EXERCISES 



/"'~ CREATING AND EDITING TEXT FILES-SOLUTIONS 

LABORATORY EXERCISE I -THE EDT EDITOR 

1. To create the file: 

a. Enter the command: 

$ EDIT EXERCISEI.TEXT 

b. The system displays the following: 

Input file does not exist 
[ EOB ] 
* 

The message indicates that the file EXERCSSEI.TEXT did not previously exist in your 
directory. The [EBB] marker indicates the end of the buffer. The asterisk indicates that 
you are in Line mode. 

c. To enter Keypad mode, type the CHANGE command at the line-mode prompt, then 
press RETURN: 

*CHANGE 

The screen display erases, and the [EBB] marker appears in the upper left corner of 
the screen. 

2. To become familiar with the available Help: 

a. Invoke the Help facility from keypad mode by pressing the appropriate key: 

Press PF2 on the keypad. 

or 

Press HELP (on the VT200 keyboard). 

The keypad diagram is displayed on your terminal screen. 

EXERCISES 11- 59 



b. You can display an explanation of each defined key by pressing the key while in HELP. 
You might want to begin with the following keys: 

• HELP (PF2) 

• DELETE 

• DOWN ARROW 

• GOLD (PF1) 

• DELETE/UNDELETE LINE (PF4) 

Examine any of the key definitions you wish. 

c. To exit from Help: 

Press the SPACE BAR 

3. Type in the text as indicated. 

Note that EDT does not automatically wrap at the end of a line. You must explicitly press 
RETURN to insert carriage returns into the text. 

4. To end the editing session and save your work: 

a. Press CTRUZ. This returns you to Line mode. 

b. At the line-mode prompt, type the EXIT command and press RETURN. 

*EXIT 

c. The system displays the full file specification and the file's length in lines. The system 
then returns you to the DCL level. 

DISK: [SMITH]EXERCISEI.TEXT;1 3 lines 

1WJ 

11- 60 EXERCISES 



5. To edit the file: 

a. Enter the command: 

$ EDIT EXERCISEI.TEXT 

b. The system displays the following: 

1 The purpose of this exercise is to allow 

The first line of text is displayed on the screen. 

~. At the line-mode prompt, type C then press RETURN. 
The contents of the file EXERCSSEI.TEXT are displayed on the screen. 

6. To modify the text: 

a. Move the cursor to the beginning of the word "basic." 
You can do this by using either the arrow keys, or the keypad keys D (zero} and 1 {one). 
The keypad key 4 moves the cursor from line to line; the keypad key 1 moves the cursor 
from word to word. 

b. To delete a word, press the MINUS (-) key (below PF4 on the keypad}. 
The word to the right of the cursor is deleted. 
If you press it again, the next word to the right of the cursor is deleted. 

Type in the modifications to the text as shown. 

7. End the editing session normally by pressing CTRUZ, and then entering the EXIT command 
at the line-mode prompt. 

EXERCISES 11-fit 



LABORATORY EXERCISE II -THE EVE EDITOR 

1. To create the file, enter the command: 

$ EDIT/TPU EXERCISE3.TEXT 

a. You should see messages at the bottom of the screen indicating that the file EXER-
CISE3.TEXT did not previously exist in your directory. The cursor should be positioned 
at the top of the screen, next to the end of file marker. 

The status line appears at the bottom of the screen. It contains the name of the buffer. 
In this case, the buffer name is the same as the file name. In addition, the status line 
indicates the editing mode and search direction. The default values for these are Insert 
and Forward. 

2. Type in the text as indicated. 

Note that the EVE editor automatically wraps at the end of a line. You need not press 
RETURN to insert carriage returns into the text. 

3. To end the editing session and save your work: 

a. Press CTRUZ. This automatically ends the editing session. 

You can also end an EVE editing session using aline-mode command. 

Press PF4 or DO. At the Command: prompt, type the EXIT command and press RE-
TURN. 

b. An informational message is displayed that includes the full file specification and the 
number of line in the file. The system then returns you to the DCL level. 

NOTE 

If you wish to end an EVE editing session without saving changes, you must exit using Line 
mode. Press PF4 or DO, and at the prnmpt, type QUIT and press RETURN. You will be 
asked if you wish to continue the quitting process. Type Y and press RETURN. 

11- 62 EXERCISES 



4. Enter the command: 

$ EDIT/TPU EXERCISE3.TEXT 

a. A message is displayed indicating that three lines were read from the file, and the 
contents of the fife appear on the terminal screen. The cursor is at the top of the file. 

5. To modify the file: 

a. There are two ways to delete words, depending on the terminal you are using: 

• VT100—Press the COMMA (,) key on the keypad. The word to the right of the 
cursor is deleted. Repeat this step until the word is deleted. 

• VT200—Press the F13 key along the top of the keyboard. The word to the right of 
the cursor is deleted. Repeat this step until the word is deleted. 

b. To delete single characters, use the DELETE key (near the RETURN key}. 

c. There are two ways to switch editing modes, depending on the terminal you are using: 

• VT100--Press ENTER on the keypad. 

• VT20(}—Press 1=14 along the top of the keyboard. 

The status line indicates that the editing mode is now Overstrike. 

Type in the words "example that uses." Note that when you are in Overstrike mode, the 
new characters replace existing characters. 

6. End the editing session normally by pressing CTRUZ, and then entering the EXIT command 
at the line-mode prompt. 

EXERCISES 11- 63 



LABORATORY EXERCISE III -THE EVE EDITOR 

This exercise lets you practice editing more than one file on your terminal screen. 

1. Edit a file of your choice. 

$ EDIT/TPU FILEI.TXT 

2. Split your terminal screen into two windows. 
Press DO or Pi=4, at the command prompt, and enter: 

TWO WINDOWS 

3. Edit another file of your choice. 

GET FILE FILE2.TXT 

or 

GET FILE2.TXT 

4. Move text from one file into the other file. 
Select the text that you wish to move. 
Issue the OTHER command to move to the other file. 
Position the cursor where you wish to insert the text. 
Press INSERT HERE. 

5. Exit the file so the moved text is saved. 

EXIT 

NOTE 

The editor will prompt you as to whether or not you wish the second file on the screen to 
be written. Answer Y for Yes or N for No. 

11- 64 EXERCISES 



COMMUNICATING WITH OTHER USERS-SOLUTIONS 

LABORATORY EXERCISE I 

1. Invoke the Mail utility and send several mail messages to someone in your class. 

$ MAIL 
MAIL> SEND 

2. Ask your mail recipient to send a message to you. 

3. Read your messages. 

MAIL> READ or 
MAIL> 1 or 
MAIL> (press RETURN) 

4. Obtain a list of your mail messages. 

MAIL> DIRECTORY 

5. Read only the second mail message. 

MAIL> READ 2 

6. Delete the fourth mail message. 

MAIL> DELETE 4 or 
MAIL> DELETE (if it is the current message on your screen) 

7. Create a text file in your default directory. Send this file as a mail message. 

$ CREATE file-name 
CTRL/Z (echoes as "Exit") 

$ MAIL 
MAIL> SEND file-name 

EXERCISES 11- 65 



8. Pick a message and move it to a folder named Test. 
Select the Test folder and check to see if the message is there. 

MAIL> READ 1 

MAIL> MOVE TEST 

Folder TEST does not exist. 
Do you want to create it (Y/N, default is N) ? 
EMAIL-I-NEWFOLDER, folder TEST created 
MAIL> SELECT TEST 
EMAIL-I-SELECTED, 1 message selected 
MAIL> DIRECTORY 

Y 

9. List the folders you have. In addition to the folder you just created, what other folders do 
you have? 

MAIL> DIRECTORY/FOLDERS 

You could see three folders named MAIL, NEWMAIL, and WASTEBASKET. 

10. Create a distribution list for Mail. Include several members of your class. Send a short 
message to the people on the distribution list. 

$ CREATE DISTRIBUTION.DIS 
USER1 
USER2 

CTRL/Z (echoes as "Exit") 

$ MAIL 
MAIL> SEND 
TO: @DISTRIBUTION.DIS 

11- 66 EXERCISES 



LABORATORY EXERCISE 11 

1. Invoke the Phone utility. 

$ PHONE 

2. Obtain a list of available users. 

DIRECTORY 

3. Establish a phone connection with one of the users. 

USER 1 
DIAL USER2 

4. Terminate aii conversations 

~HANGUP or CTRL/Z 

USER 2 
ANSWER 

EXERCISES 11- 67 



LABORATORY EXERCISE III 
Send a request to a system operator using the REQUEST command. 

$ REQUEST "Please mount magtape" 

11- 68 EXERCISES 



MANAGING FILES-SOLUTIONS 

WRITTEN EXERCISE I 

1. List the files that are specified by the following file specifications: 

a. *. FOR;2 
A .FOR; 2 , AREA .FOR; 2 

b. *.FOR 
A .FOR; 2 , AREA .FOR; 2 , AREA .FOR; 1, B .FOR; 1, C .FOR ;1 

C A* *•* ., 
A .DAT ; 1, A .FOR; 2 , AREA .FOR; 2 , AREA .FOR; 1 

AREA .FOR; 2 , AREA .FOR; 1 

e. %.DAT 
A .DAT ; 1, B .DAT ; 3 , C .DAT ; 4 

* # •tk . , 

All files 

2. Give a single file specification that describes the following lists of files: 

a. A.DAT;1, A.FOR;2 
A.* or A.*; 

b. A. DAT;1, B. DAT;3, C. DAT;4 
~ .DAT or ~ .DAT; 

~. MAILD22.DAT;2, MAILJI 4.DAT;1, MAILF22.DAT;2 
MAIL* .DAT; * or MAIL~~~ .DAT 

d. A.DAT;1, MAILJI 4.DAT;1 
* .DAT; 1 

EXERCISES 11- 69 



WRITTEN EXERCISE II 
Commands 

a. APPEND 
b. COPY 
c. DELETE 
d. DELETE/CONFIRM 
e. DIFFERENCES 
f. DIRECTORY 
g. DIRECTORY/OUTPUT=file-specification 
h. PRINT 
i. PURGE 
j. RENAME 
k. TYPE 

Operations 

1.  k  Display the contents of a file at your terminal. 

2.  f  Display the contents of your default directory at your terminal. 

3.  c  Remove a specified file from your default directory. 

4.  i  Remove all but the most recent version of a specified file from your default directory. 

5.  b  Create an exact duplicate of a file in your default directory. 

6.  h  List the contents of a file at the default system printer. 

7.  a  Compare the contents of two files. 

8.  a  Add the contents of one file to another. 

9. ~_ Change a file name to a new file name. 

10.  d  Display the name of each file in your default directory and remove or retain 
it by entering a "Y" or an "N" at your terminal. 

11.  g  List the contents of your default directory in a file for future reference. 

11- 70 EXERCISES 



LABORATORY EXERCISE 

1. Create a subdirectory called [.SUB1 j 

$ CREATE/DIRECTORY [XXX.SUB1] 

2. Copy some files from your login directory into [.SUBi] 

$ COPY/LOG EXISTING-FILE-NAMES [XXX.SUB1]* 

3. Move yourself to that subdirectory 

$ SET DEFAULT [XXX .SUB1 ] 

r') 
4. Obtain a directory listing of all files in the subdirectory 

$ DIRECTORY 

5. Combine two files to create a new file named N EWFI LE. DAT 

$ COPY FILEI,FILE2 NEWFILE.DAT 

6. Create another subdirectory beneath [.SUB1] and name the new subdi~ectory [.SUB2] 

$ CREATE/DIRECTORY [XXX.SUBI.SUB2] 
or 
$ CREATE/DIRECTORY [.SUB2] (Assuming you are in the subdirectory [.SUB1]) 

7. Copy some files from [.SUB1] into [.SU62] 

$ COPY EXISTING-FILE-NAN~S [ .SUB2] 

8. Obtain a directory listing of all files in the subdirectory [.SUB2] 

$ DIRECTORY 

9. Delete both subdirectories. 

$ DELETE * . *; * (Assuming you are in subdirectory [ .SUB2] 
$ SET DEFAULT [ - .SUB1 ] 
$ SET PROTECTION=(O:RWED) SUB2.DIR 
$ DELETE *.*;* 
$ SET DEF [-] (Login directory) 
$ SET PROTECT ION= (O : RWED) SUB1 . D IR 
$ DELETE SUBI.DIR;1 

EXERCISES 11- 71 



LABORATORY EXERCISE II 

1. Create a file in your login directory. What protection code does this newly created file have 
and how did it get that protection code? 

$ CREATE MYFILE.TXT 
Type in text 
CTRL/Z 

The protection applied to this file is the default protection the VMS system puts on newly 
created files. You can display the file's protection with the following command: 

$ DIRECTORY/PROTECTION MYFILE.TXT 

2. Change the protection code for this file to (S:R,C.):R,G;R,W:R). 
Display the protection code to verify the change. 

$ SET PROTECTION= (S : R, O : R, G: R, W: R) MYFILE . TXT 
$ DIRECTORY/FROTECTION MYFILE.TXT 

3. Delete this file. What happened and why? 

$ DELETE MYFILE.TXT;* 

The system issues a system message informing you that you cannot delete this file, because 
you changed the file protection so that the owner does not have DELETE privilege. 

4. Change your default protection code to (S:R,O:RWED,G:R,W:R). Create a new file named 
NEWFILE.TXT. What protection code does this new file have and why? 

$ SET PROTECT ION= (S : R, O : RWED, G : R, W: R) /DEFAULT 

In changing your default protection, you have specified that files now created should have 
this new default protection. You can check this by issuing the command: 

$ DIRECTORY/PROTECTION NEWFILE.TXT 

5. Change your default protection to give all persons in your UIC group RWED access and all 
persons in the WORLD category RWE access. 

$ SET PROTECTION=(G:RWED,W:RWE)/DEFAULT 

11- 72 EXERCISES 



WRITTEN EXERCISE III 
Commands 

a. COPY 
b. CREATE 
c. CREATE/DIRECTORY 
d. DELETE 
e. DELETE/DIRECTORY 
f. DIRECTORY 
g. RENAME 
h. SET DEFAULT 
i. SET PROTECTION 
j. SHOW DEFAULT 
k. SHOW PROTECTION 

Operations 

1.  j  ~ Display the name of your current default directory. 

2.  f  Display the contents of a directory hierarchy. i 

3.  d  Remove a directory from a directory hierarchy. 

4.  c  Add a directory to a directory hierarchy. 

5.  g  Move files from one directory to another. 

6.  h  Change your current default directory. 

7.  i  Change the protection code of a directory file. 

8.  j  Display the name of your current default device. 

9.  h  Change your current default device. 

EXERCISES 11- 73 



LABORATORY EXERCISE III 

1. Choose a file in your directory. Issue a DCL command to obtain Access Control List infor-
mation regarding that file. 

$ DIRECTORY/SECURITY file-name 

2. Modify the UIC protection on the above file so that your group has no access. 

$ SET PROTECTION=(G) file-name 

3. Modify the ACL information to allow Read, Write, and Execute access to the file. 

$ EDIT/ACL file-name 
(IDENTIFIER=xxxx,ACCESS=READ+WRITE+EXECUTE) 

4. Check to see if an ACL was created. Have some of your fellow students try to access the 
file. 

$ DIRECTORY/SECURITY file-name 

5. Delete the ACL on the above file. 

$ SET ACL/DELETE file-name 

NoT~ 
Check with your instructor to see what your GRQUP identifier is. 

11- 74 EXERCISES 



~,,,~ WRITTEN EXERCISE IV 

1. FALSE A user with a UIC of [100,200] wishes to delete a file on a tape volume. 

Volume Owner UIC: [100,200] 

Volume Protection Code: (S:RWED,O:RWED,G:RWED,W:RE) 

Files on a tape volume cannot be deleted. 

2. TRUE A user with a UIC of [363,2] wishes to create a file on an RX33 disk volume. 

Volume Owner UIC: [363,0] 
Volume Protection Code : (S : RE, O : RWED, G: RE, W) 

The user is a member of the same group as the owner of the volume. Since group members 
have been granted EXECUTE rights, the user can create a new file. 

3. TRUE A user with a UIC of [4,4] wishes to read a file on an RA60 disk volume. 

File Owner UIC : [ 411, 22 
File Protection Code : (S, O : RWED, G, W : R) 

The user belongs to the SYSTEM user category. System users do not have READ access 
rights to the file. However, READ access rights have been granted to members of the 
WORLD category; therefore, the user will be able to read the file. 

EXERCISES 11- 75 



4. TRUE A user with a UIC of [100,200] wishes to update a record in a file on an RA80 
disk volume. 

Volume Owner UIC: 
Volume Protection Code: 
Directory Owner UIC: 
Directory Protection Code: 
File Owner UIC: 
File Protection Code: 

[1, 1] 
(S : RWED, O; RWED, G : RWED, W : RWED ) 
[ 100, 210 ] 
(S:RWE,O:RWE,G:RWE,W:RE} 
[ 100, 210 ] 
(S:RE, O:RWED, G:RWE,W:RE) 

The user can access files on the volume because all access rights to the volume have been 
granted to all user categories. The user is a member of the same group as the owner of 
the file and the directory in which it is listed. Members of the GROUP category have been 
granted WRITE access rights; therefore, the user can update the file. 

5. FALSE A user with a UIC of [521,6] wishes to read a file on an RA81 disk volume. 

Volume Owner UIC: 
Volume Protection Code: 
Directory Owner UIC: 
Directory Protection Code: 
File Owner UIC: 
File Protection Code: 

[1►ll 
(S : RWED, O : RWED, G : RWED, W : RWED ) 
[ 521, 13 ] 
(S : RWE , O : RWE , G, W ) 
[ 521, 13] 
(S:R,O:RWED, G:R,W:R) 

The user can access files on the volume because ail access rights to the volume have been 
granted to all user categories. The user is a member of the same group as the owner of 
the file and the directory in which it is listed. Members of the GROUP category, however, 
cannot read the directory; therefore, the user will be unable to read the file. 

11- 76 EXERCISES 



r"1 CUSTOMIZING THE USER 
ENVIRONMENT-SOLUTIONS 

WRITTEN EXERCISE I 

System-Defined Logical Names 

a. SYS$COMMAND 

b. SYS$DISK 

c. SYS$ERROR 

d. SYS$HELP 

e. SYS$INPUT 

f. SYS$LIBRARY 

g. SYS$LOGIN 

h. SYS$NODE 

i. SYS$OUTPUT 

J. SYS$SYSDEVICE 

k. SYS$SYSTEM 

EXERCISES 11- 77 



Device and Directory Descriptions 

1.  i  Specifies the default device to which the system writes output during a 
terminal session. 

2.  c  Specifies the default device to which the system writes messages during a 
terminal session. 

3.  b  Specifies your default disk. 

4.  d  Specifies the directory in which help files are cataloged. 

5. f Specifies the directory in which system libraries are cataloged. 

6. Specifies your defauk user file directory {UFD). 

7.  a  Specifies the device from which the command language interpreter and utility 
programs read input during a terminal session. 

8.  k  Specifies the directory in which operating system programs and procedures 
are cataloged. 

9. a,c,e,i Specifies your terminal during an interactive process. 

10.  j  Specifies the disk on which system programs and routines are stored. 

11.  h  Specifies the name of the current network node. 

11- 78 EXERCISES 



P1 LABORATORY EXERCISE 
Compare your results with those described below For additional help consult your instructor. 

Complete each of the following exercises at an interac~ve terminal. Display only one logical 
name table for each exercise. 

1. Display at your terminal the contents of the logical name table used by your process. This 
particular logical name table contains process-private logical names. 

$ SHOW LOGICAL/PROCESS 

2. Display at your terminal the contents of the logical name table used by your process and its 
subprocesses. This particular logical name table contains shareable logical names. 

$ SHOW LOGICAL/JOB 

3. Display at your terminal the contents of the logical name table used by your UIC group 
member processes. This particular logical name table contains shareable logical names. 

$ SHOW LOGICAL/GROUP 

(There may not be any logical names defined in this table.) 

4. Display at your terminal the contents of the logical name table used by all system processes. 
This particular logical name table contains shareable logical names. 

$ SHOW LOGICAL/SYSTEM 

EXERCISES 11- 79 



5. Create a logical name for your default directory. 

$ ASSIGN WORK2:[SMITH] MYDIR 

a. Check the proper logical name table to make sure your newly created logical name 
exists. 

$ SHOW LOGICAL MYDIR 
"MYDIR" _ "WORK2: [SMITH] " (LNM$PROCESS TABLE) 

b. Use the logical name in conjunction with the DIRECTORY command to view the file 
names in your default directory. 

$ DIRECTORY MYDIR 

Directory WORK2:[SMITH] 

CALENDAR.EXE;1 CLASS.LIST;4 
JOE_EVE.TPU$SECTION;1 
MAIL.DIR;1 PERSONAL.LGP;4 
UTL . DIR; 1 WEEKDAY .EXE; 1 

Total of 13 files . 

CLOCK.EXE;1 
KEYS . COM; 5 
REMLOG .EXE; 1 

DEG .EXE; l 
LOGIN . COM; 6 
TODO.DAT;17 

c. Delete your newly created logical name after correctly performing this exercise. 

$ DEASSIGN MYDIR 

OR 

$ DEASSIGN/PROCESS MYDIR 

11- 80 EXERCISES 



n LABORATORY EXERCISE II 
Compare your results with the example specified. For additional help, consult your instructor. 

Complete each of the following laboratory exercises at an interactive terminal. 

1. Create a subdirectory. 

$ CREATE/DIRECTORY/LOG [SMITH. TEXT] 

CREATE-I-CREATED, DISK:[SMITH.TEXT] created 

2. Create a logical name for your newly created subdirectory. 

$ ASSIGN [SMITH. TEXT] MY TEXT 

3. Create a logical name for a text file in your default directory. 

$ ASSIGN MYFILE.TXT;1 OUTPUT 

4. Check the process logical name table to see if your new logical names exist. 

$ SHOW LOGICAL/PROCESS 

(LNM$PROCESS TABLE) 

"MY TEXT" _ " [SMITH .TEXT ] " 
"OUTPUT" _ "MYFILE.TXT;1" 
" SYS $ CONQ~iAND" _ " D I SK$ RTA1: " 
"SYS$DISK" _ "DISK:" 
"SYS$ERROR" _ " DISK$RTA1:" 

"SYS$INPUT" _ " DISK$RTA1:" 
"SYS$OUTPUT" [super] _ " DISK$RTA1:" 

"SYS$OUTPUT" [exec] _ DISK$RTA1: " 
"TT" _ "RTA1:" 

5. Using only logical names, move the text file into your new subdirectory. 

$ COPY/LOG OUTPUT MY TEXT 

COPY- S-COPIED, DISK : [ SMITH] MYFILE . TXT; 1 copied to 
DISK: [SMITH.TEXT]MYFILE.TXT; 1 (1 block) 

6. After completing this exercise, remove the above logical names. 

$ DEASSIGN OUTPUT 

$ DEASSIGN MY TEXT 

EXERCISES 11- 81 



WRITTEN EXERCISE II 
Write the letter of the symbolic name type that best fits each of the following characteristics. 

Symbolic Name Types 

a. Command Synonym 

b. Logical Name 

Characteristics 

1.  b  Represents device, directory, and file specifications 

2.  b  Translated by the file system 

3.  a  Translated by the Command Language Interpreter 

4.  a  Defined by the direct assignment statement (_) 

5.  b  Deleted by the DEASSIGN command 

6.  a  Displayed by the SHOW SYMBOL command 

7.  b  Defined by the ASSIGN command 

8.  a  Represents commands and command strings 

9.  a  Deleted by the DELETE/SYMBOL command 

11- 82 EXERCISES 



LABORATORY EXERCISE III 
Create global symbols to perform the following tasks. You may create these global symbols 
interactively or in the file LOGIN.COM. Your global symbols may differ from the exercise answers. 

1. Display a directory listing along with sizes of all files in your directory. 

$ DS =_ "DIRECTORY/SIZE" 

2. Show the time of day. 

$ TIME _= "SHOW TIME" 

3. Display all global symbols at your terminal. 

$ GLO =_ "SHOW SYMBOL/GLOBAL/ALL" 

4. Move to another default directory. 

$ MOVE __ "SET DEFAULT" 

5. Return to your original default directory. 

$ RETURN =_ "SET DEFAULT SYS$LOGIN" 

6. Symbols disappear when you log out. 

EXERCISES 11- 83 



LABORATORY EXERCISE IV 

1. Define KP2 to be the SHOW TIME command. Try it first without the /TERMINATE qualifier, 
then with the /TERMINATE qualifier. What is the difference? 

$ SET TERMINAL/NONUMERIC 

$ DEFINE/KEY KP2 "SHOW TIME" 

$ DEFINE/KEY KP2 "SHOW TIME"/TERMINATE 

The difference is the first time you have to press RETURN after pressing KP2. The second 
time the return is automatically supplied. 

2. Define KP3 to be the SET DEFAULT command. Create a subdirectory. Try to move to the 
subdirectory by using your newly defined key. 

$ DEFINE/KEY KP3 "SET DEFAULT " 

$ CREATE/DIRECTORY [SMITH.TEMPORARY] 

Press KP3 key, type in [SMITH.TEMPORARY] and press the RETURN key. 
To see if it worked, issue the SHOW DEFAULT command. 

3. Delete the key definition for KP2. See if it worked by displaying all your key definitions 
again. 

$ SHOW KEY/ALL (Displays all key definitions) 

$ DELETE/KEY KP2 

$ SHOW KEY/ALL 

11- 84 EXERCISES 



WRITING COMMAND PROCEDURES-SOLUTIONS 

WRITTEN EXERCISE 
Part A: 

Each command below uses a symbol in some way. Indicate whether or not the symbol is used 
correctly. If it is used correctly, rewrite the command, replacing the symbol with its value. If the 
symbol is used incorrectly, rewrite the command correctly. 

1. 

2. 

3. 

4. 

$ FILE _ 'FILE NAME' + 'FILE TYPE' 

Incorrect. Correct command is: $FILE =FILE NAME +FILE TYPE 

[~o not use symbol substitution characters on the right-hand side of an =assignment state-
me nt. 

$ WRITE SYS$OUTPUT COUNT "copies of the file" 

Incorrect. Correct command is: $WRITE SYS$OUTPUT COUNT, "copies of the file" 

Separate the items in the output list with commas. The values will be concatenated. Note 
that the symbol COUNT is substituted automatically. 

An alternate method: $WRITE SYS$OUTPUT "' 'COUNT' copies of the file" 

If you place the symbol COUNT within the quoted string, symbol substitution does not occur 
automatically. For symbol substitution to occur, precede the symbol with two apostrophes. 

$ IF COUNT . LT . 10 THEN GOTO END 

Correct. $ IF 2 . LT . 10 THEN GOTO END 

DCL automatically performs symbol substitution in an IF command. 

$ WRITE SYS$OUTPUT "The file ' 'FILE NAME'' 'FILE TYPE' " 

Correct. $WRITE SYS$OUTPUT "The file PROGR.AM.FOR" 

I n a character stri ng, a symbol must be preceded by two apostrophes and followed by one. 

EXERCISES 11- 85 



P

ar t 

B: 

In the commands below, replace the underlined text with symbols, using the proper symbol 
substitution techniques. Use the same symbol values you used in Part A. 

1. $WRITE SYS$OUTPUT "The file is MYFILE . TXT" 

$ WRITE SYS$OUTPUT "The file is " P 1 "' 

2. $TYPE PROGRAM. FOR 

$ TYPE 'FILE NAME' 'FILE TYPE' 

3. $EDIT DATA .DAT 

$ EDIT ' P 2' 

4. $WRITE SYS$OUTPUT "2 copies of the file DATA. DAT exist . " 

$ WRITE SYS$OUTPUT "' 'COUNT' copies of the file ' ' P2' exist . " 

rJ. $FILE _ "P RO GR,AM" + " .FOR" 

$ FILE =FILE NAND +FILE TYP E 

11- 86 EXERCISES 



LABORATORY EXERCISE 

LOGIN.COM 

Check to see if process is interactive. If not, exit. 

IF F$MODE() .NES. "INTERACTIVE" THEN EXIT 

Define a logical name that points to the 
COMPROC subdirectory. 

DEFINE COMPROC DISK1 : [MANN. COMPROC] 

Create global symbols to be used as command synonyms. 

SED 
WHO 
SHD 
HOME 

__ "SET DEFAULT" 
__ "SHOW USERS" 
__ "SHOW DEFAULT" 
__ "SET DEFAULT SYS$LOGIN" 

Display some 

SHOW TIME 

SHOW DEFAULT 

Resets default 
Displays all users 
Displays current directory 
Resets default to login values 

"time and place" information on the terminal. 

Leave the procedure in an orderly 

EXI T 

manner. 

EXERCISES 11- 87 



LABORATORY EXERCISE II 

$! CREATE_FILE.COM 

$! 
$! 
$! Expected parameters: P1 = name of file to be edited 

$! 
$! This command procedure allows you to edit a file, sets the 
$~ protection on the file so that the World has READ access, 
$! then gives you the option of printing a copy of it. 
$! 
$! Be sure the name of the file is assigned to P1. If not, ask: 
$! 
$ IF P1 .EQS. "" THEN INQUIRE P1 "Filename" 

$! 
$! Display a message that indicates what file is being created: 

$! 
$ WRITE SYS$OUTPUT " " 
$ WRITE SYS$OUTPUT "Editing the f ile ' ' P 1' .. . 
$ WRITE SYS$OUTPUT " " 
$f 

$! Redirect SYS$INPUT so that it points to the terminal: 

$! 
$ DEFINE/USER MODE SYS$INPUT SYS$COMMAND $~ —

$! Alternately, ASSIGN/USER MODE SYS$COM~SAND SYS$INPUT 
$! 
$! Allow the user to edit the file: 

$! 
$ EDIT ' P 1' 
$! 
$! Set the required protection for the file: 
$! 
$ SET PROTECTION=(W:Rj 'P1' 
$f 

$ ! Present the option of printing the file 
$! 
$ INQUIRE/NOPUNCTUATION ANS "Print a copy of the file? 
$ IF ANS THEN PRINT 'P1' 
$ EXIT 

~~ 

ff 

11- 88 EXERCISES 



OPTIONAL LABORATORY EXERCISE 
$ ! BACK SOON.COM $ ~ —

$ ! This command procedure asks the user how many minutes he/she will 
$ ! be away. It erases the screen and displays the message "Back in 
$ ! ' n' minutes" . It waits a minute, recalculates the value of N, and 
$ ! redisplays the message. When only one minute is left, it displays 
$ ! "I will be right back". 

$ ! Inquire for the number of minutes the user intends to be away. 
$ WHEN 
$ INQUIRE/NOPUNCTUATION BACKSOON "How many minutes? " 
$ ! 
$ ! If no answer, ask again. 
$ IF BACKSOON .EQS. "" THEN GOTO WHEN 

$ ~ 
$ ! Top of time loop 
$ LOOP 
$ IF BACKSOON .EQ. 1 THEN GOTO RIGHTBACK i 

$ ! 
$ ! Erase the screen 
$ SET TERMINAL/WIDTH=80 i

$ ! 
$ ! Use the TYPE SYS$INPUT command to type eleven blank lines on ~ 
$ ! the terminal. 
$ TYPE SYS$ INPUT 

EXERCISES 11- 89 



$ ! Now use the WRITE SYS$OUTPUT command to display 
$ ! the message on the screen. 

$ ! 

$ WRITE SYS$OUTPUT " Back in " BACKSOON' minutes" 

$ ! 

$ ! Wait one minute--note that the terminal is 
$ ! tied up with this procedure. 
$ WAIT 00:01:00.00 

$ ! 

$ ! Subtract 1 from the number of minutes 
$ BACKSOON=BACKSOON - 1 

$ ! 

$ ! Loop until only one minute is left. 
$ GOTO LOOP 

$ ! 

$ ! The last step 
$ RIGHTBACK: 

$ ! 

$ ! Erase the Screen 
$ TYPE/PAGE NL: 

$ ! 

$ ! Use the TYPE SYS$INPUT command to type 
$ ! the necessary blank lines. 
$ TYPE SYS$ INPUT 

$ ! 

$ WRITE SYS$OUTPUT " 
$ END: 
$ EXIT 

I will be right back." 

11- 90 EXERCISES 



USING DISK AND TAPE VOLUMES-SOWTIONS 

WRITTEN EXERCISE 
The list below contains the ma'or ste s that ou must com late to create and use a rivate ~~~ 1 P Y P P 
volume. Indicate the order of these steps by writing the appropriate number in the space that 
precedes each one. 

1.  1  Allocate device 

2.  7  Deallocate device 

3.  5  Dismount volume 

4.  3  Initialize voiu me 

5.  2  Load volume 

6.  4  Mount volume 

7. 6 Unload volume 

EXERCISES 11- 91 



WRITTEN EXERCISE II 
Choose the VMS command best suited to perform each of the following operatoons and write its 
letter i n the space provided. 

VMS Commands 

a. ALLOCATE 

b. D EALOOCATE 

~. DISMOUNT 

d. INITIALIZE 

e. MOUNT 

f. SHOW DEVICE/FULL 

Operations 

1.  d  Build the appropriate structure on a disk (usually used for a new tape}. 

2.  c  Terminate access by your process to the contents of a volume. 

3.  f  Display the owner UIC and protection code of a volume. 

4.  a  Initiate access by your process to the contents of a volume. 

5.  b  Release a device from exclusive use by your process. 

6.  a  Reserve a device for exclusive use by your process. 

11- 92 EXERCISES 



WRITTEN EXERCISE III 

1. Allocate any available tape unit to your process and assign the logical name TAPE to it. 

$ ALLOCATE MT: TAPE 

2. Initialize a tape volume that you have loaded on TAPE. Assign the label TAP_BK to the unit. 

$ INITIALIZE TAPE TAP BK 

3. Mount TAP BK on the tape device so that the Backup utility can process it. 

$ MOUNT/FOREIGN TAPE 

4. Back up all files in your default directory to a save set on TAP BK. 

$ BACKUP/IGNORE=LABELPROCESSING [...]*.*;* TAPE:TAP BK.BCK 

5. List the contents of the save set TAP_BK at your terminal. 

$ BACKUP/LIST TA,PE:TAP BK.BCK 

6. Terminate access to TAP_BK, allowing the system to automatically unload the volume. 

$ DISMOUNT TAPE 

7. Release the tape device so others on your system can use it. 

$ DEALLOCATE TAPE 

$. Delete the logical name TAPE from the logical name table that stores it. 

$ DEASSIGN TAPE 

EXERCISES 11- 93 



LABORATORY EXERCISE 

Complete the following exercises at an interactive terminal. Note that your device names may 
differ from the device and directory names given in the solutions. 

1. Allocate the tape. 

$ ALLOCATE MTAO: 

2. Initialize the tape, giving it a label name of MYTAPE. 

$ INITIALIZE MTAO: MYTAPE 

3. Mount the tape, so that BACKUP can be used. 

$ MOUNT/FOREIGN MTAO: 

4. Obtain a listing of the files in your directory. 

$ DIRECTORY 

5. Transfer all files - from your directory to the tape. 

$ BACKUP/IGNORE=LABEL PROCESSING *.*;* MTAO:JANI.BCK 

6. Confirm that all files transferred successfully to the tape. 

$ BACKUP/REWIND/LIST MTAO:JANI.BCK 

7, Dismount the tape. 

$ DISMOUNT MTAO: 

8. Deailocate the tape. 

$ DEALLOCATE MTAO: 

11- 94 EXERCISES 



SUBMITTING BATCH AND PRINT JOBS-SOLUTIONS 

LABORATORY EXERCISE I 

1. Choose a text file and print it, using the generic print queue SYS$PRINT. 

$ PRINT filename 

(Filename is the name of your file in all solutions.} 

2. Use a single PRINT command to print two copies of the same file. 

$ PRINT/COPIES=2 filename 

3. Display a list of all queues on your system and all jobs in the queues. 

$ SHOW QUEUE/ALL ENTRIES , 

4. Select an execution queue from the queue display. (An execution queue will have the same 
name as its associated device, without the colon.} Print the same file, queuing it directly to 
the physical queue. 

$ PRINT/QUEUE=LPAO filename 

{LPAO mayor may not be the name of your physical queue, depending upon how the system 
is set up.) 

5. Choose two text files. Print these two files so that you get two copies of the first file and 
three copies of the second file. 

$ PRINT f first f filename/COP IES=2 , secondf filename/COPIES=3 

6. Send a text file to the print queue, requesting that the file not be printed until an hour from 
now. 

$ PRINT/AFTER=TIME filename 

7. Display the queue status of the job waiting to be printed. Delete this job from the queue. 

$ SHOW ENTRY entry-number 

$ DELETE/ENTRY=entry-number 

EXERCISES 11- 95 



LABORATORY EXERCISE II 

1. Display at your terminal screen all of the batch queues on the system. 

$ SHOW QUEUE/BATCH 

2. Submit a command procedure to batch that displays the time, displays all processes on the 
system, and shows all logical names on the system. Save the log file. You will need to 
examine it shortly. 

$! NAME OF .COM FILE 
$f 

$ SHOW TIME 
$ SHOW SYSTEM 
$ SHOW LOGICAL 
$ EXIT 

3. Submit the above command procedure to batch so that the log file will not be printed. 

$ SUBMIT/NOPRINTER FILENAME.COM 

4. Submit the above command procedure to batch so that the log file will not be created. 

$ SUBMIT/NOLOG FILENAME.COM 

11- 96 EXERCISES 



5. Examine the log file created in Step 2. Answer the following questions: 

— Find the entry for your batch job from the SHOW SYSTEM command. What was its 
process I D? 

— Did your LOGIN.COM file execute? Did the system-wide login procedure execute? 

— How much CPU time did your batch job use to execute? 

— How much elapsed time did your batch job use to execute? 

Your batch name entry should have a name similar to BATCHXXX (XXX would be the ID number 
of your job}. Also in the right margin of the SHOW SYSTEM display, you should see the letter 
B. 

The entries marked with a B are batch jobs. Both your LOGIN.COM file and the system-wide login 
procedure should have executed, assuming they exist. You may see some of your LOGIN.COM 
file commands in the log file. 

Both the CPU time and elapsed time are in the accounting information in the last lines of the log 
file. 

EXERCISES 11- 97 





MODULE 12 
TEST 

TEST 12- 1 





TEST 

Underline the best answer to each of the following questions. 

1. When logging in to a VMS system, you typically need to supply your: 

a. User identification code and user name 

b. User name and password 

c. User identification code and password 

d. User identification code, user name, and password 

2. Which DCL command displays a text file on the terminal screen? 

a. EXAM I N E 

b. TYPE 

c. SHOW 

d. DIRECTORY 

3. Which command can move a file from one disk to another? 

a. RENAME 

b. COPY 

C. CREATE 

d. CONVERT 

4. Your default directory is [JOHNSON]. Which of the following DCL commands creates the 
subdirectory [JOHNSON.BUDGET]? 

a. CREATE/SUBDIRECTORY [JOHNSON.BUDGET] 

b. CREATE/DIRECTORY [JOHNSON.BUDGET] 

C. CREATE/DIRECTORY [JOHNSON]BUDGET.DIR 

d. CREATE/SUBDIRECTORY BUDGET.DiR 

TEST 12- 3 



5. - What must you do before the VMS system will allow you to delete a subdirectory? 

a. Delete all the files in the subdirectory. 

b. Log in to the SYSTEM account. 

c. Make backup copies of the files in the subdirectory. 

d. Notify other users on the system that you are deleting the subdirectory. 

6. Which DCL command do you use to put a job in a batch queue? 

a. SEND/BATC H 

b. BATCH 

C. SUBMIT 

d. QUEUE/BATCH 

7. Which DCL command do you use to put a job in a print 
queue? 

a. SEND/PRINT 

b. PRINT 

G. SUBMIT 

d. QUEUE/PRINT 

8. Which of the following requires you to use the ASSIGN command? 

a. Defining a DCL symbol 

b. Creating a new user name 

c. Defining a logical name 

d. Setting 
a file's protection 

12- 4 TEST 



9. If a logical name is already defined, which command do you use to assign a new value to 
the logical name? 

a. RENAME 

b. DEASSIGN 

c. CREATE 

d. ASSIGN 

10. !f a file already exists, which command do you use to assign a new name to the file? 

a. RENAME 

b. DEASSIGN 

~. CREATE 

d. ASSIGN 

11. Which logical name refers to the disk and directory that are the default when you log in? 

a. SYS$COM MAN D 

b. SYS$LOG i N 

c. SYS$INPUT 

d. SYS$OUTPUT 

12. Which of the following DCL commands defines the symbol SD as the DCL command SET 
DEFAULT? 

a. SET DEFAULT =_ "SD" 

b. "SD" _ _ "SET DEFAULT" 

C. SD =_ "SET DEFAULT" 

d. "SET DEFAULT" _= SD 

TEST 12- 5 



13. Which of the following do you use to assign a global value to a symbol name? 

a = 

b =-

~. DEFINE 

d. DEFINE/GLOBAL 

14. Which of the following operators would you use to test if two character strings are equal 
following an IF command in a DCL command procedure? 

a = 

b. 

c. . EQ. 

d. .EQS. 

15. In a DCL command procedure, a label is followed by which of the following characters? 

a. -

b. $ 

d. space 

16. Which DCL command do you use to display your password? 

a. EXAMINE PASSWORD 

b. SHOW PASSWORD 

~. SHOW PROCESS/PASSWORD 

d. There is no command to do this 

12- 6 TEST 



17. Which DCL command do you use to change your password? 

a. RENAME PASSWORD 

b. CHANGE PASSWORD 

C. SET PASS WO R D 

d. There is no command to do this 

18. The DCL command that terminates a process is: 

a. L4G4UT 

b. EXIT 

c. DELETE 

d. QUIT 

TEST 12- 7 



19. Match each of the following DCL commands with its function. 
You will not use all of the DCL commands. 

DCL Command: 

a. START 

b. ~a 

~. SUBMIT 

d. CREATE 

e. RUN 

Function: 

1.   Execute a compiled and linked program 

2.   Execute a command procedure in batch mode 

3.   Execute a command procedure interactively 

20. Match the VMS system component with its function. 
You may select a system component once, more than once, or not at all. 

VMS System Component: 

a. CPU 

b. I/O Interface 

~. Disk Drive 

d. Physical Memory 

e. Virtual Memory 

Function: ` 

1.   The system component typically used by the hardware when referring to 
memory 

2.   The system component typically used by a programmer when referring to 
memory 

3.   The pathway through which data is transferred to other hardware devices 

4.   The only system component that performs computations 

5. The only system component that is conceptual, and not a piece of hardware 

12- 8 TEST 



f'1 ANSWERS 
Underline the best answer to each of the following questions. 

1. When logging in to a VMS system, you typically need to supply your: 

a. User identification code and user name 

b. User name and password 

c. User identification code and password 

d. User identification code, user name, and password 

2. Which DCL command displays a text file on the terminal screen? 

a. EXAM I N E 

b. TYPE 

~. SHOW 

d. DIRECTORY 

3. Which command can move a file from one disk to another? 

a. RENAME 

b. COPY 

c. CREATE 

d. CONVERT 

4. Your default directory is [JOHNSON]. Which of the following DCL commands creates the 
subdirectory [JOHNSON.BUDGET]? 

a. CREATE/SUBDIRECTORY [JOHNSON.BUDGET] 

b. CREATE/DIRECTORY [JOHNSON.BUDGETI 

C. CREATE/DIRECTORY [JOHNSON]BUDGET.DIR 

d. CREATE/SUBDIRECTORY BUDGET.DIR 

TEST 12- 9 



~. What must you do before the VMS system will allow you to delete a subdirectory? 

a. Delete all the files in the subdirectory. 

b. Log in to the SYSTEM account. 

c. Make backup copies of the files in the subdirectory. 

d. Notify other users on the system that you are deleting the subdirectory. 

6. Which DCL command do you use to put a job in a batch queue? 

a. SEND/BATC H 

b. BATCH 

~. SUBMIT

d. QUEUE/BATCH 

7. Which DCL command do you use to put a job in a print queue? 

8. SEND/PRINT 

b. PRINT

~. SUBMIT 

d. QUEUE/PRINT 

8. Which of the following requires you to use the ASSIGN command? 

a. Defining a DCL symbol 

b. Creating a new user name 

c. Defining a logical name 

d. Setting a file's protection 

12-10 TEST 



9. If a logical name is already defined, which command do you use to assign a new value to 
the logical name? 

a. RENAME 

b. DEASSIGN 

~. CREATE 

d. ASSIGN 

10. if a file already exists, which command do you use to assign a new name to the file? 

a. RENAME 

b. DEASSIGN 

C. CREATE 

d. ASSIGN 

11. Which logical name refers to the disk and directory that are the default when you log in? 

a. SYS$COMMAND 

b. SYS$LOGIN 

~. SYS$INPUT 

d. SYS$O UTP UT 

12. Which of the following DCL commands defines the symbol SD as the DCL command SET 
DEFAULT? 

a. SET DEFAULT =_ "SD" 

b. "SD" __ "SET DEFAULT" 

C. SD =_ "SET DEFAULT" 

d. "SET DEFAULT" _= SD 

TEST 12- 11 



13. Which of the following do you use to assign a global value to a symbol name? 

a -

b. _ _ 

~. DEFINE 

d. DEFINE/GLOBAL 

14. Which of the following operators would you use to test if two character strings are equal 
following an IF command in a DCL command procedure? 

a. 

b ----

c. . EQ. 

d. . EQS. 

15. In a DCL command procedure, a label is followed by which of the following characters? 

a. -

b. $ 

d. space 

16. Which DCL command do you use to display your password? 

a. EXAMINE PASSWORD 

b. SHOW PASSWORD 

c. SHOW PROCESS/PASSWORD 

d. There is no command to do this 

12- 12 TEST 



17. Which DCL command do you use to change your password? 

a. RENAME PASSWORD 

b. CHANGE PASSWORD 

~. SET PASSWORD 

d. There is no command to do this 

18. The DCL command that terminates a process is: 

a. LOGOUT 

b. EXIT 

~. DELETE 

d. QUIT 

TEST 12- 13 



19. Match each of the following DCL commands with its function. 
You will not use all of the DCL commands. 

DCL Command: 

a. START 

b. a~ 

~. SUBMIT 

d. CREATE 

e. RUN 

Function: 

1.  a  Execute a compiled and linked program 

2.  c  Execute a command procedure in batch mode 

3.  b  Execute a command procedure interactively 

20. Match the VMS system component with its function. 
You may select a system component once, more than once, or not at all. 

VMS System Component: 

a. CPU 

b. IIU Interface 

c. Disk Drive 

d. Physical Memory 

e. Virtual Memory 

Function: 

1.  d  The system component typically used by the hardware when referring to 
memory 

2.  a  The system component typically used by a programmer when referring to 
memory 

3.  b  The pathway through which data is transferred to other hardware devices 

4.  a  The only system component that performs computations 

5.  a  The only system component that is conceptual, and not a piece of hardware 

12- 14 TEST 


