
VMS Device Support
Reference Manual

Order Number: AA—PBPXA—TE

June 1990

This manual provides the reference material for the VMS Device Support
Manual, which describes how to write a driver for a device connected to a
VAX processor. This manual describes the data structures, macros, and
routines used in device driver programming.

Revision/Update Information: This book supersedes the reference
material from the VMS Device Support
Manual, Version 5.0. The general device
support information from that manual is
now in the VMS Device Support Manual,
Version 5.4.

Software Version: VMS Version 5.4

digital equipment corporation
maynard, massachusetts

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop—VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GIGI ReGIS VMS
DECnet HSC ULTRIX VT
DECUS LiveLink UNIBUS XUI
DECwindows LN03 VAX
DECwriter MASSBUS VAXcluster a a0~~ Md 9 g

The following is a third-party trademark:

PostScript is a registered trademark of Adobe Systems Incorporated.

ZK5503

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LN03R ScriptPrinter~, to
produce atypeset-quality copy containing integrated graphics.

Contents

PREFACE xi~i

CHAPTER 1 DATA STRUCTURES 1-1

1.1 CONFIGURATION CONTROL BLOCK (ACF) 1-2

1.2 ADAPTER CONTROL BLOCK (ADP) 1-4

1.3 CHANNEL CONTROL BLOCK (CCB) 1-11

1.4 PER-CPU DATABASE (CPU) 1-12

1.5 CHANNEL REQUEST BLOCK (CRB) 1-19
1.5.1 Interrupt Transfer Vector Block (VEC) 1-23

1.6 DEVICE DATA BLOCK (DDB) 1-27

1.7 DRIVER DISPATCH TABLE (DD7~ 1-29

1.8 DRIVER PROLOGUE TABLE (DPI 1-31

1.9 INTERRUPT DISPATCH BLOCK (IDB) 1-35

1.10 I/O REQUEST PACKET (IRP) 1-37

I/O REQUEST PACKET EXTENSION (IRPE) 1-42

1.12 OBJECT RIGHTS BLOCK (ORB) 1-44

1.13 SCSI CLASS DRIVER REQUEST PACKET (SCDRP) 1-46

v

Contents

1.14 SCSI CONNECTION DESCRIPTOR TABLE (SCDT) 1-54

1.15 SCSI PORT DESCRIPTOR TABLE (SPDT) 1-60

1.16 SPIN LOCK DATA STRUCTURE (SPL) 1-66

1.17 UNIT CONTROL BLOCK (UCB) 1-68

CHAPTER 2 VMS MACROS INVOKED BY DRIVERS
ADPDISP 2-2

BI NODE RESET 2-5
CASE 2-6

CLASS CTRL INIT 2-7

CLASS UNIT INIT 2-8
CPUDISP 2-9
D DTA B 2-12

$DEF 2-14

$DEFEND 2-15
$DEFINI 2-16
DEVICELOCK 2-17
DEVICEUNLOCK 2-19
D PTA B 2-21

D PT STORE 2-24

DSBINT 2-27

ENBINT 2-28
$EQULST 2-29
FIND CPU DATA 2-31
FORK 2-32
FORKLOCK 2-33
FORKUNLOCK 2-35
FUNCTAB 2-37
IFNORD, IFNOWRT, IFRD, IFWRT 2-39
INVALIDATE TB 2-41
IOFORK 2-43
LOADALT 2-44
LOADM BA 2-45
LOADUBA 2-46
LOCK 2-47
LOCK SYSTEM_PAGES 2-49

2-1

vi

Contents

PURDPR 2-5y
READ SYSTIME 2-52
RELALT 2-53
RELCHAN 2-54
RELDPR 2-55
RELMPR 2-56
RELSCHAN 2-57
REQALT 2-58
REQCOM 2-59
REQDPR 2-60
REQMPR 2-61
REQPCHAN 2-62
REQSCHAN 2-63
SAVIPL 2-64
SETIPL 2-65
SOFTINT 2-67
SPI$ABORT COMMAND 2-68
SPI$ALLOCATE_COMMAND_BUFFER 2-6►9
SPI$CONNECT 2-70
SPI$DEALLOCATE_COMMAND BUFFER 2-72
SPI$DISCONNECT 2-73
SPI$FINISH_COMMAND 2-74
SPI$GET CONNECTION_CHAR 2-75
SPI$MAP BUFFER 2-77
SPI$RECEIVE_BYTES 2-80
SPI$RELEASE BUS 2-81
SPI$RESET 2-82
SPI$SEND_BYTES 2-83
SPI$SEND COMMAND 2-84
SPI$SENSE_PHASE 2-87
SPI$SET CONNECTION_CHAR 2-88
SPI$SET PHASE 2-90
SPI$UNMAP_BUFFER 2-91
TIMEDWAIT 2-92
TIMEWAIT 2-94
UNLOCK 2-96
UNLOCK SYSTEM PAGES 2-97
$VEC 2-98
$VECEND 2-99
$VECIN! 2-~ 00
$VIELD, VIELD ~ 2-102
WFIKPCH, WFIRLCH 2-104

vii

Contents

CHAPTER 3 OPERATING SYSTEM ROUTINES 3-1
COM$DELATTNAST 3-2
COM$DRVDEALMEM 3-3
COM$FLUSHATTNS 3-4
COMPOST, COMPOST NOCNT 3-5
COM$SETATTNAST 3-6
ERL$DEVICERR, ERL$DEVICTMO,

ERL$DEVICEATTN 3-8

EXE$ABORTIO 3-10
EXE$ALLOCBUF, EXE$ALLOCIRP 3-12

EXE$ALONONPAGED 3-14
EXE$ALONPAGVAR 3-15
EXE$ALOPHYCNTG 3-16
EXE$ALTQUEPKT 3-17
EXE$CREDiT BYTCNT,

EXE$CREDIT BYTCNT BYTLM 3-18
EXE$DEANONPAGED, EXE$DEANONPGDSIZ 3-19
EXE$DEBIT BYTCNT~NW),

EXE$DEBIT BYTCNT BYTLMLNW) 3-20
EXE$DEBIT BYTCNT ALO,

EXE$DEBIT BYTCNT BYTLM ALO 3-22

EXE$FINISHIO, EXE$FINISHIOC 3-24
EXE$FORK 3-26
EXE$INSERTIRP 3-27
EXE$INSIOQ, EXE$INSIOQC 3-28
EXE$INSTIMQ 3-29
EXE$IOFORK 3-30
EXE$MODiFY 3-31
EXE$MODIFYLOCK, EXE$MODIFYLOCKR 3-34
EXE$ONEPARM 3-37
EXE$QIODRVPKT 3-38
EXE$QIORETURN 3-39
EXE$READ 3-40
EXE$READCHK, EXE$READCHKR 3-43
EXE$READLOCK, EXE$READLOCKR 3-45
EXE$RMVTIMQ 3-48
EXE$SENSEMODE 3-49
EXE$SETCHAR, EXE$SETMODE 3-50
EXE$SNDEVMSG 3-52
EXE$WRITE 3-54
EXE$WRITECHK, EXE$WRITECHKR 3-56
EXE$WRITELOCK, EXE$WRITELOCKR 3--58

viii

Contents

EXE$WRTMAILBOX 3-61
EXE$ZEROPARM 3-62
IOC$ALOALTMAP, IOC$ALOALTMAPN,

IOC$ALOALTMAPSP 3-63
IOC$ALOUBAMAP, IOC$ALOUBAMAPN 3-65
IOC$APPLYECC 3-67
IOC$CANCELIO 3-68
IOC$DIAGBUFILL 3-69
IOC$INITIATE 3-70
IOC$IOPOST 3-72
IOC$LOADALTMAP 3-74
IOC$LOADMBAMAP 3-76
IOC$LOADUBAMAP, IOC$LOADUBAMAPA 3-77
IOC$MOVFRUSER, IOC$MOVFRUSER2 3-79

IOC$MOVTOUSER, IOC$MOVTOUSER2 3-80

tOC$PURGDATAP 3-82

IOC$RELALTMAP 3-84
IOC$RELCHAN 3-86
IOC$RELDATAP 3-87

IOC$RELMAPREG 3-89
IOC$RELSCHAN 3-91
IOC$REQALTMAP 3-92
IOC$REQCOM 3-94
IOC$REQDATAP, IOC$REQDATAPNW 3-96
IOC$REQMAPREG 3-98
IOC$REQPCHANH, IOC$REQPCHANL,

IOC$REQSCHANH, IOC$REQSCHANL 3-100
IOC$RETURN 3-102
IOC$VERIFYCHAN 3-103
IOC$WFIKPCH, IOC$WFIRLCH 3-104
LDR$ALLOC_PT 3-107
LDR$DEALLOC_PT 3-108
MMG$UNLOCK 3-109
SMP$ACQNOIPL 3-110
SMP$ACQUIRE 3-111
SMP$ACQUIREL 3-113
SMP$RELEASE 3-114
SMP$RELEASEL 3-115
SMP$RESTORE 3-116
SMP$RESTOREL 3-117

ix

Contents

CHAPTER 4 DEVICE DRIVER ENTRY POINTS
ALTERNATE START-1/O ROUTINE 4-2

CANCEL-1/O ROUTINE 4--4
CLONED UCB ROUTINE 4-6
CONTROLLER INITIALIZATION ROUTINE 4-8
DRIVER UNLOADING ROUTINE 4-10

FDT ROUTINES 4-11

INTERRUPT SERVICE ROUTINE 4-13
REGISTER DUMPING ROUTINE 4-15
START-1/O ROUTINE 4-17
TIMEOUT HANDLING ROUTINE 4-19
UNIT DELIVERY ROUTINE 4-21
UNIT INITIALIZATION ROUTINE 4-22
UNSOLICITED INTERRUPT SERVICE

ROUTINE 4-24

4-1

INDEX

FIGURES
1-1 The I/O Database 1-2

1-2 Configuration Control Block (ACF) 1-3

1-3 Adapter Control Block (ADP) 1-4

1-4 Channel Control Block {CCB) 1-11

1-5 Per-CPU Database (CPU) 1-13

1-6 Channel Request Block (CRB) 1-19

1-7 Interrupt Transfer Vector Block (VEC) 1-24

1-8 Device Data Block (DDB) 1-27

1-9 Driver Dispatch Table (DDT) 1-29

1-10 Driver Prologue Table (DPT) 1-31

1-11 Interrupt Dispatch Block (IDB) 1-35

1-12 1/O Request Packet (1 R P) 1-37

1-13 1/O Request Packet Extension (IRPE) 1-43

1-14 Object Rights Block (ORB) 1-44

1-15 SCSI Class Driver Request Packet (SCDRP) 1-46

1-16 SCSI Connection Descriptor Table (SCDT) 1-55

1-17 SCSI Port Descriptor Table (SPDT) 1-60

1-18 Spin Lock Data Structure (SPL) 1-67

1-19 Composition of Extended Unit Control Blocks 1-70

x

Contents

1-20 Unit Control Block (UCB) 1-71

1-21 UCB Error-Log Extension 1-80

1-22 UCB Local Tape Extension 1-8'I

1-23 UCB Local Disk Extension y-82

1-24 UCB Terminal Extension 1-84

2-1 SCSI Bus Phase Longword Returned to
SPI$SENSE_PHASE 2-87

2-2 SCSI Bus Phase Longword Supplied to SPI$SET PHASE 2-90

TABLES
1-1 Contents of Configuration Control Block 1-3

1-2 Contents of Adapter Control Block 1-6

1-3 Contents of Channel Control Block 1-12

1-4 Contents of Per-CPU Database 1-15

1-5 Contents of Channel Request Block 1-21

1-6 Contents of Interrupt Transfer Vector Block (VEC) 1-24

1-7 Contents of Device Data Block 1-28

1-8 Contents of Driver Dispatch Table 1-30

1-9 Contents of Driver Prologue Table 1-33

1-10 Contents of Interrupt Dispatch Block 1-36

1-11 Contents of an 1/O Request Packet 1-38

1-12 Contents of the I/O Request Packet Extension 1-44

1-13 Contents of Object Rights Block 1-45

1-14 Contents of SCSI Class Driver Request Packet 1-49

1-15 Contents of SCSI Connection Descriptor Table 1-57

1-16 Contents of SCSI Port Descriptor Table 1-63

1-17 Contents of the Spin Lock Data Structure 1-67

1-18 UCB Extensions and Sizes Defined in $UCBDEF 1-69

1-19 Contents of Unit Control Block 1-72

1-20 UCB Error-Log Extension 1-80

1-21 UCB Local Tape Extension 1-82

1-22 UCB Local Disk Extension 1-83

1-23 UCB Terminal Extension 1-86

xi

Preface

The VMS Device Support Reference Manual provides the reference
material for the VMS Device Support Manual, which describes how to
write a driver for a device connected to a VAX processor. This manual
describes the data structures, macros, and routines used in driver
programming.

This manual provides information you need to write a device driver that
runs under VMS Version 5.4 and to load the driver into the operating
system. Digital makes no guarantee that drivers written for earlier
versions of VMS will execute without modification on this version of
the operating system. Although the intent is to maintain the existing
interface, some unavoidable changes might occur as new features are
added.

The use of internal executive interfaces other than those described in this
manual is discouraged.

Intended Audience
This manual is intended for system programmers who are already familiar
with VAX processors and the VMS operating system.

Document Structure
This manual contains the following four parts:

Chapter 1 contains a set of figures and tables that describe the contents of
each data structure in the UO database.

Chapter 2 lists the VMS macros usually invoked by drivers.

Chapter 3 describes the context, synchronization, and UO requirements of
the operating system routines used by drivers or called as the result of a
driver macro invocation.

Chapter 4 supplies a condensed description of the function and
environment of each driver entry point routine.

Associated Documents
Before reading the VMS Device Support Reference Manual, you should
have an understanding of the material discussed in the following
documents:

• The VMS Device Support Manual is the driver programming
companion document

• UAX Hardware Handbook

• UO-related portions of the VMS System Services Reference Manual

Preface

• The section on VMS naming conventions in the Guide to Creating VMS
Modular Procedures

• VMS I l O User's Reference Manual: Part I and VMS I l O User's
Reference Manual: Part II

You may also find useful some of the material in your processor's hardware
documentation, as well as in the following books:

• VMS System Dump Analyzer Utility Manual

• Guide to Maintaining a VMS System

• VAX l VMS Internals and Data Structures

• VMS Delta lXDelta Utility Manual

Conventions
This manual describes code transfer operations in three ways:

1 The phrase "issues a system service call" implies the use of a CALL
instruction.

2 The phrase "calls a routine" implies the use of a JSB or BSB
instruction.

3 The phrase "transfers control to" implies the use of a BRB, BRW, or
JMP instruction.

Typographical conventions used in this book include the following:

• Generally, when first introduced in the text, a new term appears in
bold print. For example:

Under the VMS operating system, a device driver is a set of routines
and tables that the system uses to process an UO request for a
particular device type.

• Terms that serve as arguments to macros appear in boldface in the
text of the manual. For example:

If an at sign (C~) character precedes the oper argument, then the exp
argument describes the address of the data with which to initialize the
field.

• Brackets indicate that the enclosed item is optional. For example:

DSBINT [ipl] [,dst]

Brackets are not optional, however, in the syntax of a directory name
within a file specification or in the syntax of a substring specification
within an assignment statement.

xiv

Preface

• A vertical ellipsis means either that not all data that the system would
display in response to the command is shown or that not all data a
user would enter is shown. For example:

JSB @UCB$L FPC(R5) Restore the driver process.

;Between these instructions, the interrupt service routine
;can make no assumptions about the contents of RO through R4.

POPR #^M<R0, R1, R2, R3, R4, R5> Restore interrupt registers .

XV

1 Data Structures

This chapter provides a condensed description of those data structures
referenced by driver code. It lists their fields in the order in which they
appear in the structures. All data structures discussed in this chapter
with the exception of the channel control block (CCB~exist in nonpaged
system memory.

Many of these structures including the adapter control block (ADP),
channel control block (CCB), channel request block (CRB), configuration
control block (ACF), device data block (DDB), driver dispatch table (DDT),
driver prologue table (DPT), object rights block (ORB), UO request packet
(IRP), UO request packet extension (IRPE), and unit control block (UCB}—
are collectively known as the UO database (see Figure 1-1). The structures
in the I/O database help the VMS operating system and device drivers
monitor the status and control the functions of the UO subsystem. They
provide the following types of information:

• Descriptions of each pending and in-progress UO request

• Characteristics of each device type

• Number and type of each device unit

• Status of current activity on each device unit

• External entry points to all device drivers

• Entry points for controller and device unit initialization routines

• Code that dispatches interrupts to the appropriate servicing routines

• Addresses of device registers

• Bit maps describing the allocation of data paths and map registers

Aside from the UO database structures, this chapter includes descriptions
of those data structures VMS uses to maintain multiprocessing
synchronization and record processor-specific information: the spin
lock data structure (SPL) and the per-CPU database structure (CPU),
respectively. Additionally, it describes the structures that implement the
SCSI port interface that supports the creation of SCSI class driver.

Notes: Driver code must consider fields marked by asterisks (*) to be
read-only fields.

Fields marked "Reserved" or "Unused" are reserved for future use
by Digital unless otherwise specified.

when referring to locations within a data structure, a driver
should use symbolic offsets, not numeric offsets, from the
beginning of the structure. Numeric offsets are likely to change
with each new release of the VMS operating system. The figures in
this chapter list VMS Version 5.4 numeric offsets to aid in driver
debugging.

1-1

Data Structures

Figure 1—y The I/O Database

Process
Control

Block
Describes DDT

Requesting Locates Driver
Process DDB for

Device
Driver

Type
FDT Routine

I/O
Request
Packet

Describes

UCB
Describes

Device

Driver
Start I/O Routine

I/O
Request CRB Driver

Synchronizes Interrupt Service
Controller Routine

Driver
CCB Controller Initialization

-~ Describes Routine
Logical Path
to Device

ADP
IDB Describes

Describes Adapter
Controller

Device
Registers

ZK-1766-GE

1.1 Configuration Control Block (ACF)
The configuration control block (ACF) is used by the SYSGEN
autoconfiguration facility to describe the device it is adding to the system.
Device drivers can gain access to this data structure only if they have
specified a unit delivery routine in the DPT and only when that routine
is executing. Under certain conditions, the information stored in the ACF
might be useful to a unit delivery routine.

The fields described in the configuration control block are illustrated
in Figure 1-2 and described in Table 1--1. An asterisk (*) indicates a
read-only field in tables and figures.

Data Structures
1.1 Configuration Control Block (ACF)

Figure 1-2 Configuration Control Block (ACF)

ACF$L ADAPTER*

ACF$L CONFIGREG*

ACF$B_AFLAG* ACF$B_AUNIT* ACF$W AVECTOR*

ACF$L CONTRLREG*

ACF$W CUNIT* ACF$W CVECTOR*

ACF$L DEVNAME*

ACF$L_DRVNAME*

ACF$B_COMBO_VEC* ACF$B_CNUMVEC* ACF$W_MAXUNITS*

Unused ACF$B_NUMUNIT* ACF$B_COMBO CSR*

ACF$L DLVR_SCRH

~`A read-only field

0

4

8

12

16

20

24

28

32

36

Table 1-1 Contents of Configuration Control Block

Field Name Contents

ACF$L ADAPTER* Address of ADP for adapter currently being configured.
ACF$L CONFIGREG* Address of configuration register for adapter currently being configured.
ACF$W AVECTOR* Offset from base of SCB to interrupt vector of adapter currently being configured.
ACF$6 AUNIT* Adapter unit number of device or controller currently being configured.
ACF$B AFLAG* Flags associated with autoconfiguration operation. Flags defined in this field include

the following:
ACF$V_RELOAD Reloading driver code.

ACF$V_CRBBLT CRB and IDB already built for device.

ACF$V_SCBVEC CVECTOR is offset into SCB.

ACF$V_NOLOAD_DB Do not load I/O database, only load driver.

ACF$V_SUPPORT VMS-supported device.

ACF$V_GETDONE Addresses of data structures in I/O database have been
obtained.

ACF$V_BVP Multiport BVP adapter.

ACF$L CONTRLREG* Address of CSR for controller currently being configured.

(continued on next page)

Data Structures
1.1 Configuration Control Block (ACF)

Table 1-1 (Cont.) Contents of Configuration Control Block

Field Name Contents

ACF$W CVECTOR*

ACF$B_CUNIT*

ACF$L DEVNAME*

ACF$L DRVNAME*

ACF$W MAXUNITS*

ACF$B_CNUMVEC*

ACF$B_COMBO_VEC*

ACF$B_COMBO_CSR*

ACF$B_NUMUNIT*

ACF$L_DLVR_SCRH

Offset into ADP vector table to longword that contains transfer address of interrupt
vector used by controller currently being configured (if ACF$V_SCBVEC is not set).
If ACF$V_SCBVEC is set, this field is the offset from the SCB base to the interrupt
vector of the controller currently being configured.

Unit number of device currently being configured.

Address of counted ASCII string that gives name of controller currently being
configured.

Address of counted ASCII string that gives driver name for controller currently being
configured.

Maximum number of units that can be connected to controller currently being
configured.

Number of interrupt vectors to configure for controller currently being configured.

Offset to vectors for combo device. (The name of this field is ACF$B_COMBO_
VECTOR_OFFSET.)

Offset to start of control registers of combo device. (The name of this field is ACF$B_
COMBO_CSR_OFFSET.)

Number of units to be configured for controller currently being configured.

Field available for use by unit delivery routine. SYSGEN never alters this field.

1.2 Adapter Control Block (ADP)
Each MASSBUS adapter, UNIBUS adapter, Q22 bus, and VAXBI node
configured in a VAX system is represented to VMS and driver routines
by an adapter control block (ADP). The ADP stores adapter-specific static
and dynamic data such as the adapter CSR address and map-register wait
queues.

Figure 1-3

Depending upon the type of UO adapter being described, the ADP size
is variable and subject to the length of the bus-specific ADP extension.
Table 1-2 defines the fields that appear in a UNIBUS ADP; these fields
are pictured in Figure 1-3. Bus-specific extensions start at offset ADP$L_
HOSTNODE in the ADP.

Adapter Control Block (ADP)

ADP$L_CSR*

ADP$L_LINK*

ADP$B_NUMBER* ADP$B_TYPE* ADP$W_SIZE*

ADP$W_ADPTYPE* ADP$W TR*

0

4

8

12

(continued on next page)

1-4

Data Structures
1.2 Adapter Control Block (ADP)

Figure 1-3 (Cont.) Adapter Control Biock (ADP)

ADP$L VECTOR*

ADP$L DPQFL*

ADP$L DPQBL*

ADP$L AVECTOR*

ADP$L BI_IDR*

ADP$W BI_VECTOR* ADP$W BI_FLAGS*

ADP$L SCB_PAGE*

ADP$L BIMASTER*

ADP$B_ADDR_BITS* Unused ADP$W ADPDISP FLAGS*

Reserved

ADP$L MRQFL*/ADP$L HOSTNODE*

ADP$L MRQBL*

ADP$L INTD_UBA* (12 bytes) ^

ADP$L UBASCB* (16 bytes)

ADP$L UBASPTE*
r

ADP$L MRACTMDRS*

ADP$W MRNFENCE* - ADP$W DPBITMAP*

V ADP$W_MRNREGARY* (248 bytes} ^

ADP$W MRFREGARY*

ADP$W MRFFENCE*

(248 bytes) ^
..,

ADP$W UMR_DIS*

ADP$L MR2QFL*

16

20

24

28

32

36

40

44

48

52

56

60

64

76

92

100

104

08

356

604

608

(continued on next page)

1-5

Data Structures
1.2 Adapter Control Block (ADP)

Figure 1-3 (Cont.) Adapter Control Block (ADP)

ADP$L MR2QBL*

ADP$L MR2ACTMDR*

ADP$W MR2NFENCE* Unused

ADP$W MR2NREGAR* (248 bytes) ^

ADP$W MR2FREGAR*

ADP$W MR2FFENCE*

(248 bytes) ^

ADP$W UMR2_DIS*

ADP$L MR2ADDR*

'~A read-only field

612

616

620

24

872

120

124

Table 1-2 Contents of Adapter Control Block

Field Name Contents

ADP$L_CSR*

ADP$L_LINK*

ADP$W SIZE*

ADP$B_TYPE*

ADP$B_NUMBER*

Virtual address of adapter configuration register. For a generic VAXBI adapter, this
field contains the address of the base of the adapter's node space. The VMS adapter
initialization routine writes this field.

The configuration register marks the base of adapter register space, an area that
contains data path registers, map registers, or any other registers appropriate to the
implementation of the adapter.

Address of next ADP. The VMS adapter initialization routine writes this field. A value of
0 indicates that this is the last ADP.

Size of ADP. The VMS adapter initialization routine writes this field when the routine
creates the ADP. For nondirect-vector UNIBUS adapters, ADP$W SIZE includes the
space allocated for the four UNIBUS interrupt service routines (for BR4 to BR7) and
the vector jump table.

Type of data structure. The VMS adapter initialization routine writes the symbolic
constant DYN$C_ADP into this field when the routine creates the ADP.

Number of this type of adapter (for example, the number for a third MASSBUS adapter
is 2). The VMS adapter initialization routine writes this field when the routine creates
the ADP.

(continued on next page}

Data Structures
1.2 Adapter Control Block (ADP)

Table 1-2 (Cont.) Contents of Adapter Control Block

Field Name Contents

ADP$W TR*

ADP$W_ADPTYPE*

ADP$L VECTOR*

ADP$L DPQFL*

Nexus number of adapter. The VMS adapter initialization routine writes this field
when the routine creates the ADP. The driver-loading procedure compares the nexus
number specified in a CONNECT command with this field of each ADP in the system
to determine to which adapter a device is attached. For a generic VAXBI adapter, this
field contains its VAXBI node ID.

Type of adapter. The VMS adapter initialization routine writes the symbolic constant
AT$_UBA into this field when the routine creates an ADP for a UNIBUS adapter or
Q22 bus; AT$ MBA for a MASSBUS adapter; and AT$_GENBI for a generic VAXBI
adapter.

Address of adapter dispatch table. The table is 512 bytes of longword vectors that
correspond to device interrupt vectors (08-777$).

On VAX processors that handle direct-vector interrupts, ADP$L VECTOR points
to the second (or subsequent) page of the SCB. The CPU uses this page when it
dispatches the device interrupt to the driver interrupt service routine. Each vector entry
that corresponds to a vector in use contains the address of the controller's interrupt
dispatcher (CRB$L INTD). (The actual stored value is CRB$L INTD+1, the set low bit
of the address indicating that the interrupt stack is to be used in servicing interrupts.)

On VAX processors that handle non-direct-vector interrupts, ADP$L VECTOR points to
a page allocated from nonpaged pool called the adapter dispatch table (or vector jump
table). Each longword in the page that corresponds to a vector in use contains the
address of the controller's interrupt dispatcher (CRB$L INTD+2). When the UNIBUS
adapter interrupts on behalf of a UNIBUS device, the UNIBUS adapter interrupt service
routine saves RO through R5, determines the vector address of the interrupting device,
indexes into the vector-jump table, and jumps to the instruction at CRB$L INTD+2.

For both types of VAX processor, adapter dispatch table entries that correspond to
unused vectors contain the address of the adapter's unexpected-interrupt service
routine.

Data path wait queue forward fink. IOC$REQDATAP and IOC$RELDATAP read and
write this field. When a driver fork process requests a buffered data path and none
is currently available, IOC$REQDATAP saves driver context in the device's UCB fork
block, inserts the fork block address in the data path wait queue, and suspends the
driver fork process.

When another driver calls IOC$RELDATAP to release a buffered data path, the routine
dequeues a UCB fork block address from the data path wait queue, allocates a data
path to the driver, and reactivates that driver fork process.

This field is also known as ADP$L_MBASCB. For MASSBUS adapters and generic
VAXBI adapters, the VMS adapter initialization routine stores the address of the
adapter's interrupt vector in this field. Certain power failure recovery operations use
the contents of ADP$L MBASCB to refresh the SCB vectors. The actual stored value
is CRB$L INTD+1, the set low bit of the address indicating that the interrupt stack is
to be used in servicing interrupts.

(continued on next page)

Data Structures
1.2 Adapter Control Block (ADP)

Table 1-2 (Cont.) Contents of Adapter Control Block

Field Name , Contents

ADP$L_DPQBL* Data path wait queue backward link. IOC$REQDATAP and IOC$RELDATAP read and
write this field.

This field is also known as ADP$L MBASPTE. For generic VAXBI adapters, the VMS
adapter initialization routine stores here the contents of the first of 16 SPTEs that
map the adapter's node space. For the MASSBUS adapter, the routine stores here
the SPTE value that maps MBA address space. Certain recovery operations use
the contents of ADP$L MBASPTE to restore SPTE values and remap node space
following a power failure.

ADP$L AVECTOR* Address of first SCB vector for adapter.

ADP$L BI_IDR* Longword mask specifying, by a single set bit, which VAXBI node is the destination of
interrupts from this adapter. In VAX 82x0/83x0 systems, the VAXBI node of the primary
processor becomes the destination for interrupts; in VAX 85x0/8700/88x0 and VAX
6000-series systems, it is the VAXBI node at which the memory-interconnect-to-VAXBI
adapter (NBIB, PBIB, or DWMBA/B) resides.

ADP$W BI_FLA.GS* VAXBI device flags field.

ADP$W BI_VECTOR* Offset of the first interrupt vector for this VAXBI node from the start of its SCB page.
ADP$L AVECTOR contains the address of this vector.

ADP$L_SCB_PAGE* Offset to SCB page for this VAXBI device.

ADP$L_BIMASTER* Address of the ADP of the master device of the VAXBI (for example, the DWMBA in a
VAX 6000-series system).

ADP$W_ADPDISP_ Flags used by the ADPDISP macro to control branching according to adapter
FLAGS* characteristics. The following bit fields are defined within ADP$W ADPDISP_FLAGS:

ADP$V ADPDISP_INIT ADPDISP flags have been initialized

ADP$B_ADDR_BITS*

ADP$L HOSTNODE*

ADP$V_ADAP_MAPPING

ADP$V_DIRECT VECTOR

ADP$V AUTOPURGE_DP

ADP$V_BUFFERED_DP

ADP$V_ODD_XFER_BDP

ADP$V_ODD_XFER_DDP

ADP$V_EXTENDED_
MAPREG

ADP$V_QBUS

<15:9>

Adapter mapping supported

Direct-vector interrupts

Autopurging datapath

Buffered datapath supported

Odd transfers supported on buffered data path

Odd transfers supported on direct data path

Alternate map registers (registers 496 to. 8191 }
supported

Q22-#pus adapter

Reserved to Digital

Number of adapter address bits. This field contains the value 22 (for Q22-bus systems)
and 18 (for UNIBUS adapters).

The gffset to the bus-specific ADP extension.

(continued on next page)

Data Structures
1.2 Adapter Control Block (ADP)

Table y-2 (Cont.) Contents of Adapter Control Block

Field Name Contents

ADP$L_MRQFL* Standard-map-register wait queue's forward link and the first longword in the UNIBUS
adapter extension. IOC$ALOUBAMAP, IOC$REQMAPREG, and IOC$RELMAPREG
read and write these fields. When a driver fork process requests a set of standard
map registers and the set is not currently available, IOC$REQMAPREG saves driver
fork context in the device's UCB fork block, inserts the fork block address in the
standard-map-register wait queue, and suspends the driver fork process.

When another driver calls IOC$RELMAPREG to release a set of standard map
registers, the routine dequeues a UCB fork block address from the standard-map-
register wait queue, allocates the requested set of map registers to the driver, and
reactivates that driver fork process.

ADP$L MRQBL* Standard-map-register wait queue's backward link. IOC$ALOUBAMAP,
IOC$REQMAPREG, and IOC$RELMAPREG read and write this field.

ADP$L INTD_UBA* Interrupt transfer vector. The VMS adapter initialization routine places executable
code in this field to allow certain Digital-supplied adapters or controllers to dispatch to
adapter-specific interrupt and error handling routines.

ADP$L UBASCB* Series of four longwords that contain SCB entry values, one for each bus request (BR)
level or interrupt vector. The UNIBUS adapter power failure recovery procedure uses
these values.

ADP$L_UBASPTE* System page-table entry (PTE) values for base of UNIBUS adapter register space and
base of UNIBUS I/O register space. These values contained in this quadword field are
used during UNIBUS adapter power failure recovery.

ADP$L MRACTMDRS* Number of active standard map register descriptors in arrays to which ADP$W
MRNREGARY and ADP$W_MRFREGARY point. IOC$REQMAPREG and
IOC$RELMAPREG use these fields when allocating and deallocating standard map
registers.

ADP$W DPBITMAP* Data path allocation bit map. IOC$REQDATAP and IOC$RELDATAP read and
write this field. The VMS adapter initialization routine sets the bit map to show as
available all the buffered data paths supported by the UNIBUS adapter. (The adapter
initialization routine for certain VAX processors whose UNIBUS adapters or Q22-bus
interfaces do not supply buffered data paths marks three data paths as available. This
facilitates the writing of machine-independent code that can execute regardless of the
presence of buffered data paths.)

The state of each of the available buffered data paths (whether in use or available) is
recorded in the data path allocation bit map. One data path corresponds to each bit
in the field. If a bit is clear, the related data path is currently allocated to a driver fork
process.

ADP$W MRNFENCE* Boundary marker for the array specified by ADP$W_MRNREGARY; contains —1.

ADP$W MRNREGARY* Standard map register "number of registers" array of 124 words. The number of
words, or cells, that are active in this array is contained in ADP$L MRACTMDRS.
Each active cell gives the number of free standard map registers. For each active
cell in this array, there is a corresponding first free map register number in the "first
register" array (ADP$W MRFREGARY). Together, these values give the base map
register and number of free map registers for a block of free map registers. This
information is used to allocate and deallocate standard map registers.

(continued on next page)

Data Structures
1.2 Adapter Control Block (ADP)

Table 1-2 (Cont.) Contents of Adapter Control Block

Field Name Contents

UNIBUS Adapter Extension

ADP$W MRFFENCE* Boundary marker for array specified by ADP$W_MRFREGARY; contains —1.

ADP$W MRFREGARY*

ADP$W_UMR_DIS*

ADP$L MR2QFL*

ADP$L MR2QBL*

ADP$L MR2ACTMDR*

ADP$W MR2NFENCE*

ADP$W MR2NREGAR*

Standard map register "first register" array of 124 words. The number of currently
active cells in this array is contained in ADP$L MRACTMDRS. Each active cell gives
a number of the first free map register within a block of free map registers. For each
active cell in this array, there is a corresponding cell in the "number of registers" array
(ADP$W MRNREGARY) that gives a number of free map registers. Together, these
values give the base map register and number of free map registers for a block of
free map registers. This information is used to allocate and deallocate standard map
registers.

Number of disabled standard map registers. During system initialization, some
standard map registers can be disabled so that their corresponding UNIBUS and Q22-
bus addresses can be accessed directly through UNIBUS-space or Q22-bus-space
physical addresses.

Alternate-map-register wait queue's forward link. IOC$ALOALTMAP,
IOC$REQALTMAP, and IOC$RELALTMAP read and write this field. When a driver fork
process requests a set of Q22-bus alternate map registers and the set is not currently
available, IOC$REQALTMAP saves driver context in the device's UCB fork block,
inserts the fork block address in the alternate-map-register wait queue, and suspends
the driver fork process.

When another driver calls IOC$RELALTMAP to release a sufficient number of map
registers, the routine dequeues a UCB fork block from the alternate-map-register wait
queue, allocates the requested set of map registers to the driver, and reactivates that
driver fork process.

Alternate-map-register wait queue's backward link. IOC$ALOALTMAP,
IOC$REQALTMAP, and IOC$RELALTMAP read and write this field when allocating
and deallocating from the set of Q22-bus alternate map registers.

Number of active map register descriptors in arrays to which ADP$W MR2NREGAR
and ADP$W MR2FREGAR point. IOC$ALOALTMAP, IOC$REQALTMAP, and
IOC$RELMAPREG use these fields when allocating and deallocating Q22-bus
alternate map registers.

Boundary marker for the array specified by ADP$W MR2NREGAR; contains —1.

Alternate-map-register "number of registers" array of 124 words. The number of
words, or cells, that are active in this array is contained in ADP$L MR2ACTMDR. Each
active cell gives a number of map registers in a block of free alternate map registers.
For each active cell in this array, there is a corresponding first free map register
number in the array specified by ADP$W MR2FREGAR. Together, these values
give the base map register and the number of free map registers for a block of free
alternate map registers. IOC$ALOALTMAP, IOC$REQALTMAP, and IOC$RELALTMAP
use this information when allocating and deallocating from Q22-bus alternate map
registers.

(continued on next page)

Data Structures
1.2 Adapter Control Block (ADP)

Table 1-2 (Cont.) Contents of Adapter Control Block

Field Name Contents

UNIBUS Adapter Extension

ADP$W MR2FFENCE* Boundary marker for the array specified by ADP$W MR2NREGAR; contains —1.

ADP$W MR2FREGAR*

ADP$W UMR2_DIS*

ADP$L_MR2ADDR

Alternate map register "first register" array of 124 words. The number of words, or
cells, that are active in this array is contained in ADP$L_MR2ACTMDR. Each active
cell gives the number of the first free map register within a block of free map registers.
For each active cell in this array, there is a corresponding cell in the "number of
registers" array, ADP$W MR2NREGAR. Together, these values give the base map
register and the number of free map registers for a block of free map registers.

Number of disabled Q22-bus alternate map registers. During system initialization,
some map registers can be disabled so that their corresponding Q22-bus addresses
can be accessed directly through physical addresses.

Address of the first Q22-bus alternate map register mapped in CPU node
private space. The value varies for each processor with alternate map registers.
IOC$LOADUBAMAP reads this field when accessing alternate map registers.

1.3 Channel Control Block (CCB)
When a process assigns an UO channel to a device unit with the $ASSIGN
system service, EXE$ASSIGN locates a free block among the process's
preallocated channel control blocks (GCBs). EXE$A,SSIGN then writes
into the CCB a description of the device attached to the GCB's channel.

The channel control block is the only data structure described in this
chapter that exists in the control (P1) region of a process address space. It
is illustrated in Figure 1-4 and described in Table 1-3.

Figure 1-4 Channel Control Block (GCB)

CCB$L UCB*

CCB$L WIND*

CCB$W_IOC* CCB$B_AMOD* CCB$B_STS*

CCB$L DIRP*

~`A read-only field

0

4

8

12

Data Structures
1.3 Channel Control Block (CCB)

Table 1-3 Contents of Channel Control Block

Field Name Contents

CCB$L UCB*

CCB$L_WIND*

CCB$B_STS*

CCB$B_AMOD*

CCB$W IOC*

CCB$L DIRP*

Address of UCB of assigned device unit. EXE$ASSIGN writes a value into this field.
EXE$QIO reads this field to determine that the I/O request specifies a process I/O
channel assigned to a device and to obtain the device's UCB address.

Address of window control block (WCB) for file-structured device assignment. This
field is written by an ACP or XQP and read by EXE$QIO.

A file-structured device's XQP or ACP creates a WCB when a process accesses a
file on a device assigned to a process I/O channel. The WCB maps the virtual block
numbers of the file to a series of physical locations on the device.

Channel status.

Access mode plus 1 of the channel. EXE$ASSIGN writes the access mode value into
this field.

Number of outstanding I/O requests on channel. EXE$QIO increases this field when it
begins to process an I/O request that specifies the channel. During I/O postprocessing,
the special kernel-mode AST routine decrements this field. Some FDT routines and
EXE$DASSGN read this field.

Address of IRP for requested deaccess. A number of outstanding I/O requests can be
pending on the same process I/O channel at one time. If the process that owns the
channel issues an I/O request to deaccess the device, EXE$QIO holds the deaccess
request until all other outstanding I/O requests are processed.

1.4 Per-CPU Database (CPU)
A per-CPU database structure exists for each processor in a VMS
multiprocessing environment. The per-CPU database records processor-
specific information such as the current process control block (PCB), the
priority of the current process, and the physical processor identifier. It
points to the processor's interrupt stack and contains the list heads for the
processor's fork queues and UO postprocessing queue.

To ensure that the path of a processor's activity at booting and on the
interrupt stack remains independent of the paths of other active processors
in the system, VMS places a separate boot stack and a separate interrupt
stack (formerly pointed to by EXE$GL_INTSTK) adjacent to the area
allocated for the per-CPU database structure. The processor's boot stack,
interrupt stack, and per-CPU database fields are virtually contiguous in
system address space, although three naaccess guard pages prevent the
expansion of the stacks beyond the areas reserved for their use. Offset
CPU$L_INTSTK in the per-CPU database points to the interrupt stack.

The fields described in the per-CPU database are illustrated in Figure 1-5
and described in Table 1-4.

Data Structures
1.4 Per-CPU Database (CPU)

Figure 1-5 Per-CPU Database (CPU)

CPU$L CURPCB*

CPU$L REALSTACK*

CPU$B_SUBTYPE* CPU$B_TYPE* CPU$W SIZE*

CPU$B_CUR_PRI* CPU$B_CPUMTX* CPU$B_STATE* CPU$B_BUSYWAIT

CPU$L INTSTK*

CPU$L_WORK REQ*

CPU$L PERCPUVA*

CPU$L_SAVED_AP*

CPU$L HALTPC*

CPU$L HALTPSL*

CPU$L SAVED_ISP*

CPU$L PCBB*

CPU$L SCBB*

CPU$L SISR*

CPU$L POBR*

CPU$L_POLR*

CPU$L P1BR*

CPU$L P1 LR*

CPU$L BUGCODE*

CPU$B_CPUDATA* (16 bytes) '~

CPU$L MCHK MASK*

CPU$L MCHK_SP*

CPU$L POPT PAGE*

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

92

96

100

(continued on next page)

Data Structures
1.4 Per-CPU Database (CPU)

Figure 1-5 (Cont.) Per-CPU Database (CPU)

L .(Reserved (408 bytes)

CPU$Q_SWIQFL* (48 bytes)

CPU$L_PSFL*

CPU$L PSBL*

CPU$Q_WORK_FQFL*

CPU$L QLOST FQFL*

CPU$L QLOST FQBL*

CPU$B_QLOST FLCK* CPU$B_QLOST TYPE* CPU$W QLOST SIZE*

CPU$L_QLOST FPC*

CPU$L QLOST FR3*

CPU$L QLOST FR4*

CPU$Q_BOOT TIME*

CPU$Q_CPUID_MASK*

CPU$L PHY_CPUID*

CPU$L CAPABILITY*

CPU$L TENUSEC*

CPU$L UBDELAY*

CPU$L KERNEL* (28 bytes)

CPU$L NULLCPU*

04

12

560

564

568

576

580

584

588

592

596

600

608

616

620

624

628

32

660

(continued on next page)

~J

V

Data Structures
1.4 Per-CPU Database (CPU)

Figure 1-5 (Cont.) Per-CPU Database (CPU)

CPU$W UKERNEL (14 bytes) .~

CPU$W UNULLCPU*

CPU$W_HARDAFF* CPU$W CLKUTICS*

CPU$L_RANK_VEC*

CPU$L IPL VEC*

CPU$L IPL ARRAY* (128 bytes)

CPU$L TPOINTER*

CPU$W SANITY_TICKS* CPU$W SANITY TIMER*

CPU$L VP_OWNER*

CPU$L VP_VARIANT EXIT*

CPU$L VP_FLAGS*

CPU$L VP_CPUTIM*

Reserved CPU$B_FLAGS*

CPU$L INTFLAGS*

*A read-only field

64

676

680

684

688

92

820

824

828

832

836

840

844

848

Table y —4 Contents of Per-CPU Database

Field Contents

CPU$L_CURPCB*

CPU$L REALSTACK*

CPU$W SIZE*

CPU$B_TYPE*

CPU$B_SUBTYPE*

CPU$B_BUSYWAIT*

Address of current PCB. The scheduler writes this field.

Physical address of boot stack.

Size of the per-CPU database, including the size of the boot stack but not the
interrupt stack or the interrupt stack's guard pages.

Type of data structure. VMS writes the value DYN$C_MP into this field when it
creates the per-CPU database.

Structure subtype. VMS writes the value DYN$C_MP_CPU into this field when it
creates the per-CPU database.

Concurrent busywait count for this processor.

(continued on next page)

Data Structures
1.4 Per-CPU Database (CPU)

Table 1~ (Cont.) Contents of Per-CPU Database

Field Contents

CPU$B_STATE*

CPU$B_CPUMTX*

CPU$B_CUR_PRI*

CPU$L INTSTK*

CPU$L_WORK_REQ*

CPU$L PERCPUVA*

State of this processor.
CPU$C_INIT

CPU$C_RUN

CPU$C_STOPPING

CPU$C_STOPPED

CPU$C TIMOUT

VMS defines the following processor states:
Processor is being initialized.

Processor is running.

Processor is stopping.

Processor is stopped.

Logical console has timed out.

CPU$C_BOOT REJECTED Processor has refused to join multiprocessing
system.

CPU$C_BOOTED Processor has booted, but is waiting to join
multiprocessing active set.

Count of acquisitions of CPUMTX mutex.

Current process priority. The scheduler writes this field.

Address of initial interrupt stack.

Work request bits. A processor sets one or more of these bits in another
processor's per-CPU database when directing an interprocessor interrupt to
that processor.

The following fields are defined within CPU$L WORK_REQ:
CPU$V_INV TBS

CPU$V_INV TBA

CPU$V_TBACK

CPU$V_BUGCHK

CPU$V_BUGCH KACK

CPU$V_RECALSCHD

CPU$V_UPDASTLVL

CPU$V_UPDTODR

CPU$V_WORK_FQP

CPU$V_QLOST

CPU$V_RESCHED

CPU$V_VIRTCONS

CPU$V_IOPOST

<28:31 >

Request to invalidate single address (SMP$GL_
INVALID) in translation buffer

Request to invalidate all addresses in translation buffer

Acknowledgment that a processor requested to
invalidate its translation buffer has done so

Request to bugcheck

Acknowledgment that the processor has saved process
context and per-CPU data so that the crash CPU can
continue to perform a bugcheck

Recalculate per-CPU mask and reschedule

Request to update processor AST level register (PR$_
ASTLVL)

Request to update processor time-of-day register
(PR$ TODR)

Request to process internal fork queue (CPU$Q
WORK IFQ)

Request to stall until quorum regained

Request to initiate software interrupt at IPL 3

Request to enter virtual console mode

Request to request IPL 4 software interrupt

Processor-specific work request bits

Virtual address of this per-CPU database structure.

(continued on next page)

Data Structures
1.4 Per-CPU Database (CPU)

Table 1-4 (Cont.) Contents of Per-CPU Database

Field Contents

CPU$L SAVED_AP*

CPU$L HALTPC*

CPU$L HALTPSL*

CPU$L SAVED_ISP*

CPU$L PCBB*

CPU$L SCBB*

CPU$L_SISR*

CPU$L POBR*

CPU$L POLR*

CPU$L P1 BR*

CPU$L P1 LR*

CPU$L BUGCODE*

CPU$B_CPUDATA*

CPU$L MCHK MASK*

CPU$L MCHK SP*

CPU$L POPT PAGE*

CPU$Q SWIQFL*

CPU$L PSFL*

CPU$L PSBL*

CPU$Q WORK FQFL*

CPU$L QLOST FQFL*

CPU$L QLOST FQBL*

CPU$W QLOST SIZE*

CPU$B_QLOST TYPE*

CPU$B QLOST FLCK*

CPU$L QLOST FPC*

CPU$L QLOST FR3*

CPU$L QLOST FR4*

CPU$Q BOOT TIME*

CPU$Q CPUID_MASK*

Halt restart code.

Halt PC for restart.

Halt PSL for restart.

Saved ISP for restart.

PCBB from power down.

SCBB from power down.

SISR from power down.

PO base register (used by system power failure and bugcheck routines).

PO length register (used by system power failure and bugcheck routines).

P1 base register (used by system power failure and bugcheck routines).

P1 length register (used by system power failure and bugcheck routines).

Bugcheck code.

Processor-specific hardware revision information. The first longword of this 16-
byte field always contains the processor's system ID (SID) register, and is also
defined as CPU$L_SID.

Function mask for current machine check recovery block.

Saved SP for return at end of machine check recovery block. This field is zero if
there is no current recovery block.

System virtual address of a page reserved to this processor that is used as a PO
page table when memory management is being enabled.

Twelve longwords representing the forward and backward links for the software
interrupt queues (fork IPLs 6 through 11).

CPU-specific I/O postprocessing queue forward link.

CPU-specific I/O postprocessing queue backward link.

Work packet queue. This field is also called CPU$Q WORK IFQ.

Quorum loss fork queue forward link.

Quorum loss fork queue blink link.

Quorum loss fork block size.

Quorum loss fork block type.

Quorum loss fork lock.

Quorum loss fork PC.

Quorum loss fork R3.

Quorum loss fork R4.

System time at which this processor was bootstrapped.

Bit mask representing this processor's CPU ID.

(continued on next page)

Data Structures
1.4 Per-CPU Database (CPU)

Table 1~ (Cont.) Contents of Per-CPU Database

Field Contents

CPU$L_PHY CPUID*

CPU$L CAPABILITY*

CPU$L_TENUSEC*

CPU$L UBDELAY*

CPU$L KERNEL*

CPU$L_NULLCPU*

CPU$W_UKERNEL*

CPU$W UNULLCPU*

CPU$W_CLKUTICS*

CPU$W_HARDAFF*

CPU$L_RANK_VEC*

CPU$L_IPL_VEC*

CPU$L_IPL_ARRAY*

CPU$L TPOINTER*

CPU$W SANITY TIMER*

CPU$W_SANITY TICKS*

CPU$L VP_OWNER*

CPU$L VP_VARIANT EXIT*

Integer that uniquely identifies the local processor in a multiprocessor
configuration. This value is system specific. (For example, in a VAX 8300/8350
configuration, it is the VAXBI node ID. For a VAX 8800, it is the left or right bit
from the processor's system ID register (PR$ SID); for a VAX 8810/8820/8830 it
is the CPU number (0 to 3) from PR$_SID. In a VAX 6000-series configuration, it
is the XMI node ID. VMS uses the physical ID principally to locate the per-CPU
database and interrupt stack of a processor that it is restarting.)

Bit mask of this processor's capabilities.

VMS defines the following capabilities in $CPBDEF:

CPB$C_PRIMARY Primary CPU.

CPB$C_NS Reserved to Digital.

CPB$C_QUORUM Quorum required.

CPB$C_HARDAFF Hard affinity. Reserved for diagnostics software.

10-microsecond delay value.

UNIBUS delay counter.

Set of seven longwords that tally the processor's clock ticks in kernel mode, in
executive mode, in supervisor mode, in user mode, on the interrupt stack, in
compatibility mode, and in kernel-mode spin-lock busy-wait state, respectively.

Clock ticks during which the null job has been the current process on this
processor.

Reserved to Digital.

Reserved to Digital.

Reserved to Digital.

Count of processes with hard affinity for this processor.

Longword recording the ranks of all spin locks currently held by the processor.
Spin lock acquisition code issues a Find First Set (FFS) instruction on this
longword to determine if the processor holds any locks that are lower ranked than
the one it seeks.

Vector recording, in inverse order, the IPLs of all spin locks currently held by the
processor (that is, bit 0 represents IPL 31).

Array of 32 longwords, corresponding in inverse order to the 32 IPLs (that is, the
first longword represents IPL 31). Upon each successful spin lock acquisition by
this processor, the IPL vector corresponding to the spin lock's synchronization IPL
(SPL$B_IPL) is incremented.

Address of the sanity timer (CPU$W SANITY TIMER) of the active processor
with the next highest CPU ID.

Number of sanity cycles before this processor times out.

Number of clock ticks until the next sanity cycle.

PCB address of the vector consumer.

Variant exit address to the disabled fault handler.

(continued on next page)

Data Structures
1.4 Per-CPU Database (CPU)

Table 1-4 (Cont.) Contents of Per-CPU Database

Field Contents

CPU$L VP_FLAGS*

CPU$L_VP_CPUTIM*

CPU$B_FLAGS*

CPU$L_INTFLAGS*

Vector processing flags. The following fields are defined within CPU$L VP_
FLAGS:
CPU$V_VP_POWERFAIL

CPU$V_VP_BUGCHECK

C PU$V_V P_CTX_I N IT

CPU$V_VP_CTX_SAVE

Powerfail variant

Bugcheck variant

Initialization in progress for vector context

Save in progress for vector context

CPU$V_VP_CTX RESTORE Restore in progress for vector context

Scheduled time for a vector consumer.

Miscellaneous processor flags. The following fields are defined within CPU$B_
FLAGS:
CPU$V_SCHED Idle loop in wait for CPU scheduler

CPU$V_FOREVER STOP/CPU with /FOREVER qualifier

CPU$V_NEWPRIM Primary-to-be CPU

Interlocked flags. This word contains one flag bit: CPU$V_STOPPING for the
CPU stopping indicator.

1.5 Channel Request Block (CRB)
The activity of each controller in a configuration is described in a channel
request block (CRB). This data structure contains pointers to the wait
queue of drivers ready to gain access to a device through the controller. It
also stores the entry points to the driver's interrupt service routines and
unit/controller initialization routines.

The channel request block is illustrated in Figure 1-6 and described in
Table 1-5.

Figure 1-6 Channel Request Block (CRB)

CRB$L FQFL

CRB$L FQBL

CRB$B_FLCK CRB$B TYPE* CRB$W_SIZE*

CRB$L_FPC

CRB$L_FR3

CRB$L FR4

CRB$L_WQFL*

0

4

8

12

16

20

24

(continued on next page)

1-19

Data Structures
1.5 Channel Request Block (CRB)

Figure 1-6 (Cont.) Channel Request Block (CRB)

CRB$L_WQBL*

Unused CRB$B TT TYPE*

CRB$B_UNIT BRK* CRB$B_MASK* CRB$1N REFC*

CRB$L_AUXSTRUC

CRB$L_TIMELINK*

CRB$L_DUETIME*

CRB$L TOUTROUT*

CRB$L LINK*

CRB$L DLCK*

CRB$L BUGCH ECK*

CRB$L RTINTD* (12 bytes)

ti CRB$L INTD* (40 bytes}

CRB$L_BUGCHECK2*

y CRB$L_RTINTD2* (12 bytes)

^~ CRB$L INTD2* (40 bytes)

*. read-only field

28

32

36

40

44

48

52

56

60

64

68

80

120

24

36

Data Structures

1.5 Channel Request Block (CRB)

Table 1-5 Contents of Channel Request Block

Field Name Contents

CRB$L FQFL Fork queue forward link. The link points to the next entry in the fork queue.

Controller initialization routines write this field when they must drop IPL to utilize certain
executive routines, such as those that allocate memory, that must be called at a lower
IPL. The CRB timeout mechanism also uses the CRB fork block to lower IPL prior to
calling the CRB timeout routine.

CRB$L_FQBL Fork queue backward link. The link points to the previous entry in the fork queue.

CRB$W SIZE* Size of CRB. The driver-loading procedure writes this field when it creates the CRB.

CRB$B_TYPE* Type of data structure. The driver-loading procedure writes the symbolic constant
DYN$C_CRB into this field when it creates the CRB.

CRB$B_FLCK Fork lock at which the controller's fork operations are synchronized. If it must use
the CRB fork block, a driver either uses a DPT STORE macro to initialize this field or
explicitly sets its value within the controller initialization routine.

CRB$L FPC Address of instruction at which execution resumes when the VMS fork dispatcher
dequeues the fork block. EXE$FORK writes this field when called to suspend driver
execution.

CRB$L_FR3 Value of R3 at the time that the executing code requests VMS to create a fork block.
EXE$FORK writes this field when called to suspend driver execution.

CRB$L FR4 Value of R4 at the time that the executing code requests VMS to create a fork block.
EXE$FORK writes this field when called to suspend driver execution.

CRB$L_WQFL* Controller data channel wait queue forward link. IOC$REQxCHANy and
IOC$RELxCHAN insert and remove driver fork block addresses in this field.

A channel wait queue contains addresses of driver fork blocks that record the context
of suspended drivers waiting to gain control of a controller data channel. If a channel
is busy when a driver requests access to the channel, IOC$REQxCHANy suspends
the driver by saving the driver's context in the device's UCB fork block and inserting
the fork block address in the channel wait queue.

When a driver releases a channel because an I/O operation no longer needs the
channel, IOC$RELxCHAN dequeues a driver fork block, allocates the channel to the
driver, and reactivates the suspended driver fork process. If no drivers are awaiting the
channel, IOC$RELxCHAN clears the channel busy bit.

CRB$L WQBL* Controller channel wait queue backward link. IOC$REQxCHANy and IOC$RELxCHAN
read and write this field.

CRB$B_TT TYPE* Type of controller (for instance, DZ11 or DZ32) for terminals. A terminal port driver fills
in this field.

CRB$W_REFC* UCB reference count. The driver-loading procedure increases the value in this field
each time it creates a UCB for a device attached to the controller.

CRB$B_MASK* Mask that describes controller status.

The following fields are defined in CRB$B_MASK:
CRB$V_BSY Busy bit. IOC$REQxCHANy reads the busy bit to

determine whether the controller is free and sets this bit
when it allocates the controller data channel to a driver.
IOC$RELxCHAN clears the busy bit if no driver is waiting to
acquire the channel.

(continued on next page)

Data Structures
1.5 Channel Request Block (CRB)

Table 1-5 (Cont.) Contents of Channel Request Block

Field Name Contents

CRB$V_UN IN IT Indication, when set, that the VMS adapter initialization
routine has created a CRB for a generic VAXBI device, but
has not yet called its controller initialization routine. SYSGEN
reads this bit to determine whether to call the controller
initialization routine and clears it when the initialization routine
completes. This facilitates SYSGEN's processing of multiunit
generic VAXBI devices.

CRB$B_UNIT BRK* Break bits for terminal lines. Used by VMS terminal port drivers.

CRB$L_AUXSTRUC Address of auxiliary data structure used by device driver to store special controller
information. A device driver requiring such a structure generally allocates a block of
nonpaged dynamic memory in its controller initialization routine and places a pointer to
it in this field.

CRB$L_TIMELINK* Forward link in queue of CRBs waiting for periodic wakeups. This field points to the
CRB$L TIMELINK field of the next CRB in the list. The CRB$L TIMELINK field of the
last CRB in the list contains zero. The listhead for this queue is IOC$GL CRBTMOUT.
Use of this field is reserved to Digital.

CRB$L DUETIME* Time in seconds, relative to EXE$GL_ABSTIM, at which next periodic wakeup
associated with the CRB is to be delivered. Compute this value by raising IPL to
IPL$_POWER, adding the desired number of seconds to the contents of EXE$GL
ABSTIM, and storing the result in this field. Use of this field is reserved to Digital.

CRB$L_TOUTROUT* Address of routine to be called at fork IPL (holding a corresponding fork lock if
necessary} when a periodic wakeup associated with CRB becomes due. The routine
must compute and reset the value in CRB$L DUETIME if another periodic wakeup
request is desired. Use of this field is reserved to Digital.

CRB$L_LINK* Address of secondary CRB (for MASSBUS devices only). This field is written by the
driver-loading procedure and read by IOC$REQSCHANx and IOC$RELSCHAN.

CRB$L_DLCK* Address of controller's device lock. The driver-loading procedure initializes this field
and propagates it to each UCB it creates for the device units associated with the
controller.

CRB$L_BUGCHECK* Bugcheck data used to issue an ILLQBUSCFG bugcheck when the multilevel
interrupt dispatching code (at CRB$L RTINTD) determines that a Q22 bus is illegally
configured.

CRB$L RTINTD* Portion of interrupt transfer vector created at system initialization when a MicroVAX
system implements multilevel device interrupt dispatching. The code stored in this
12-byte field implements a conditional lowering to device IPL. See Section 1.5.1 for a
description of the contents of the interrupt transfer vector.

(continued on next page)

Data Structures
1.5 Channel Request Block (CRB)

Table 1-5 (Copt.) Contents of Channel Request Block

Field Name Contents

CRB$L_INTD* Interrupt transfer vector. This 10-longword field (described in Section 1.5.1) stores
executable code, driver entry points, and I/O adapter information. It contains pointers
to the driver's controller and unit initialization routines, the interrupt dispatch block
(IDB), and the adapter control block (ADP). It may also contain fields that describe the
disposition of a controller's data paths and map registers. The interrupt transfer routine
is located at the top of the interrupt transfer vector.

Although certain of the symbolic offsets defined in the data structure definition macro
$VECDEF have negative values, driver code can uniformly refer to the contents of the
VEC structure in the following form:

CRB$L_INTD+VEC$x symbol.

CRB$L_BUGCHECK2* Bugcheck data used to issue an ILLQBUSCFG bugcheck when the multilevel interrupt
dispatching code (at CRB$L_RTINTD2) determines that the Q22 bus is illegally
configured.

CRB$L_RTINTD2* Portion of second interrupt transfer vector initialized and used if multilevel interrupt
dispatching is enabled in a MicroVAX system. See Section 1.5.1 for a description of
the contents of the interrupt transfer vector.

CRB$L_INTD2* Second interrupt transfer vector for devices with multiple interrupt vectors. The data
structure definition macro $CRBDEF supplies symbolic offsets for only the first two
interrupt transfer vector structures.

1.5.1 Interrupt Transfer Vector Block (VEC)
VMS creates the appropriate number of interrupt transfer vector blocks
(VEC) (shown in Figure 1-7) within a CRB if a driver specifies that the
addresses of additional interrupt service routines be loaded into these
structures. For example:

DPT_STORE, CRB, CRB$L_INTD2+VEC$L_ISR, D, isr_for_vec2
DPT_STORE,CRB,CRB$L_INTD+<2*VEC$K_LENGTH>+VEC$L_ISR,D,isr_for_vec3

The offset of the nth vector located within the CRB is equal to the result
of the following formula:

CRB$L_INTD+(n*VEC$K LENGTH)

VMS automatically initializes the interrupt dispatching instructions
and the data structure locations from information located in the primary
vector. The number of device vectors and vector structures actually created
can be overridden by the value specified in the /N C qualifier to the
SYSGEN command CONNECT. For a description of the fields in VEC,
see Table 1-6.

Data Structures
1.5 Channel Request Block (CRB)

Figure 1-7 Interrupt Transfer Vector Block (VEC)

VEC$L BUGCHECK*

VEC$L RTINTD* (12 bytes)

VEC$L_INTD*

VEC$L ISR

VEC$L_IDB*

VEC$L INITIAL

VEC$B_DATAPATH VEC$B_NUMREG VEC$W MAPREG

VEC$L ADP*

VEC$L UNITINIT*

VEC$L_START*

VEC$L UNITDISC*

VEC$W NUMALT VEC$W MAPALT

*A read-only field

0

4

16

20

24

28

32

36

40

44

48

52

Table 1-6 Contents of Interrupt Transfer Vector Block (VEC)

Field Name Contents

VEC$L BUGCHECK*

VEC$L RTINTD*

Bugcheck data used to issue an ILLQBUSCFG bugcheck when the multilevel interrupt
dispatching code determines that the Q22 bus is illegally configured.

Portion of interrupt transfer vector created at system initialization when a MicroVAX
system implements multilevel device interrupt dispatching. The code stored in this
12-byte field implements a conditional lowering to device IPL, as follows:

CMPZV #PSL$V IPL, #PSL$S IPL,-

BGEQ BUGCHECK
SETIPL S^#DIPL

(continued on next page)

Data Structures
1.5 Channel Request Block (CRB)

Table 1-6 (Cont.) Contents of Interrupt Transfer Vector Block (VEC)

Field Name Contents

VEC$L_INTD* Interrupt dispatching code, written by the driver-loading procedure as follows:

PUSHR #~M<R0, R1, R2, R3, R4, R5>
JSB @#

The destination of the JSB instruction is the driver's interrupt service routine, as
indicated at offset VEC$L_ISR. Under normal operations, direct-vector UNIBUS or
Q22-bus adapters—as well as VAXBI system interrupt dispatching—transfer control to
CRB$L_INTD. The code located here causes the processor to execute the PUSHR
instruction to save RO through R5 on the stack and execute a JSB instruction to
transfer control to the driver's interrupt service routine.

In dispatching interrupts from non-direct-vector UNIBUS adapters, the UNIBUS adapter
interrupt service routine transfers control to CRB$L_INTD+2, which contains the JSB
instruction to the driver's interrupt service routine. Because the UNIBUS adapter's
interrupt service routine has already saved RO through R5, interrupt dispatching
bypasses the PUSHR instruction in these instances.

This field, plus VEC$L ISR, is also known as VEC$Q_DISPATCH.

VEC$L_ISR The DPT in every driver for an interrupting device specifies the address of a driver
interrupt service routine.

VEC$L_IDB* Address of IDB for controller. The driver-loading procedure creates an IDB for each
CRB and loads the address of the IDB in this field. Device drivers use the IDB address
to obtain the virtual addresses of device registers.

When a driver's interrupt service routine gains control, the top of the stack contains a
pointer to this field.

VEC$L_INITIAL Address of controller initialization routine. If a device controller requires initialization
at driver-loading time and during recovery from a power failure, the driver specifies a
value for this field in the DPT.

The driver-loading procedure calls this routine each time the procedure loads the
driver. The VMS power failure recovery procedure also calls this routine to initialize a
controller after a power failure.

VEC$W_MAPREG The following bits are defined within VEC$W_MAPREG:
VEC$V_MAPREG Number of first standard map register allocated to the driver

that owns controller data channel.

IOC$REQMAPREG writes this field when the routine
allocates a set of standard map registers to a driver fork
process for a DMA transfer. IOC$RELMAPREG reads the
field to deallocate a set of map registers.

Device drivers read this field in calculating the starting
address of a UNIBUS or MicroVAX/Q22-bus transfer.

VEC$V_MAPLOCK Map register set is permanently allocated (when set).

VEC$B_NUMREG Number of UNIBUS adapter or MicroVAX Q22-bus standard map registers allocated
to driver. IOC$REQMAPREG writes this 15-bit field when the routine allocates a set
of standard map registers. IOC$RELMAPREG reads this field to deallocate a set of
standard map registers.

(continued on next page)

Data Structures
1.5 Channel Request Block (CRB)

Table 1-6 (Copt.) Contents of Interrupt Transfer Vector Block (VEC)

Field Name Contents

VEC$B_DATAPATH Data path specifier. The bits that make up this field are used as follows:

VEC$L ADP*

VEC$L UNITINIT*

VEC$L START*

VEC$L_UNITDISC*

VEC$W MAPALT

VEC$V_DATAPATH Number of data path used in DMA transfer. The routine
IOC$REQDATAP writes this 5-bit field when a buffered data
path is allocated and clears the field when the data path is
released.

The routine IOC$LOADUBAMAP copies the contents of this
field into UNIBUS adapter map regis#ers. These bits also
serve as implicit input to the IOC$PURGDATAP routine.

VEC$V_LWAE Longword access enable (LWAE) bit. Drivers set this bit
when they wish to limit the data path to longword-aligned,
random-access mode. The routine IOC$LOADUBAMAP
copies the value in this field to the UNIBUS adapter map
registers.

Reserved to Digital.

Buffered data path allocation indicator. Drivers set this bit to
specify that the buffered data path is permanently allocated.

Address of ADP. The SYSGEN command CONNECT must specify the nexus number
of the UNIBUS adapter used by a controller. The driver-loading procedure writes the
address of the ADP for the specified UBA into the VEC$L ADP field.

IOC$REQMAPREG, IOC$REQALTMAP, and IOC$RELMAPREG read and write fields
in the ADP to allocate and deallocate map registers.

Address of device driver's unit initialization routine. If a device unit requires initialization
at driver-loading time and during recovery from a power failure, the driver specifies a
value for this field in the DPT. The driver-loading procedure calls this routine for each
device unit each time the procedure loads the driver. The VMS power failure recovery
procedure also calls this routine to initialize device units after a power failure.

MASSBUS drivers that support mixed device types must not use this field. Instead,
they should specify the unit initialization routine in the unit initialization field of the DDT
(DDT$L UNITINIT). Other drivers can use either field.

Address of VMS start protocol routine. Use of this field is reserved to Digital.

Address of unit disconnect routine. Use of this field is reserved to Digital.

The following bits are defined within VEC$W MAPALT:
VEC$V_MAPALT Number of first Q22-bus alternate map register allocated to

driver that owns controller data channel.

IOC$REQALTMAP writes this field when the routine allocates a
set of Q22-bus alternate map registers to a driver fork process
for a DMA transfer. IOC$RELMAPREG reads the field to
deallocate a set of map registers.

Device drivers read this 15-bit field in calculating the starting
address of a MicroVAX Q22-bus transfer that uses a set of
alternate map registers.

VEC$V_ALTLOCK Alternate map register set is permanently allocated (when set).

<6>

VEC$V_PATHLOCK

(continued on next page)

Data Structures

1.5 Channel Request Block (CRB)

Table 1-6 (Cont.) Contents of Interrupt Transfer Vector Block (VEC)

Field Name Contents

V EC$W_N U MALT Number of Q22-bus alternate map registers allocated to driver. IOC$REQALTMAP
writes this field when allocating a set of alternate map registers. IOC$RELMAPREG
reads this field to deallocate a set of alternate map registers.

1.6 Device Data Block (DDB)
The device data block (DDB) is a block that identifies the generic
device/controller name and driver name for a set of devices attached to
a single controller. The driver-loading procedure creates a DDB for each
controller during autoconfiguration at system startup and dynamically
creates additional DDBs for new controllers as they are added to the
system using the SYSGEN command CONNECT. The procedure initializes
all fields in the DDB. All the DDBs in the UO database are linked in a
singly linked list. The contents of IOC$GL_DEVLIST point to the first
entry in the list.

VMS routines and device drivers refer to the DDB.

The device data block is illustrated in Figure 1-8 and described in
Table 1-7.

Figure 1-8 Device Data Block (DDB}

DDB$L LINK*

DDB$L_UCB*

Unused DDB$B_TYPE* DDB$W_SIZE*

DDB$L_DDT

DDB$L_ACPD

ti DDB$T NAME* (16 bytes)

ti DDB$T DRVNAME* (16 bytes)
r

DDB$L SB*

DDB$L_CONLINK*

DDB$L_ALLOCLS*

0

4

8

12

16

20

36

52

56

60

(continued on next page)

1-27

Data Structures
1.6 Device Data Block (DDB)

Figure 1-8 (Cont.) Device Data Block (DDB)

DDB$L 2P_UCB*

'~A read-only field

64

Table 1-7 Contents of Device Data Block

Field Name Contents

DDB$L LINK*

DDB$L UCB*

DDB$W_SIZE*

DDB$B_TYPE*

DDB$L_DDT

DDB$L_ACPD

DDB$T NAME*

DDB$T DRVNAME*

DDB$L_SB*

DDB$L_CONLINK*

DDB$L ALLOCLS*

DDB$L 2P_UCB*

Address of next DDB. A zero indicates that this is the last DDB in the DDB chain.

Address of UCB for first unit attached to controller.

Size of DDB.

Type of data structure. The driver-loading procedure writes the constant DYN$C_DDB
into this field when the procedure creates the DDB.

Address of DDT. VMS can transfer control to a device driver only through addresses
listed in the DDT, the CRB, and the UCB fork block. The DPT of every device driver
must specify a value for this field.

Name of default ACP (or XQP) for controller. ACPs that control access to file-
structured devices (or the XQP) use the high-order byte of this field, DDB$B
ACPCLASS, to indicate the class of the file-structured device. If the ACP_MULTIPLE
system parameter is set, the initialization procedure creates a unique ACP for each
class of file-structured device.

Drivers initialize DDB$B_ACPCLASS by invoking a DPT STORE macro. Values for
DDB$B ACPCLASS are as follows:
DDB$K PACK Standard disk pack

DDB$K CART Cartridge disk pack

DDB$K_SLOW Floppy disk

DDB$K TAPE Magnetic tape that simulates file-structured device

Generic name for the devices attached to controller. The first byte of this field is the
number of characters in the generic name. The remainder of the field consists of a
string of up to 15 characters that, suffixed by a device unit number, identifies devices
on the controller.

Name of device driver for controller. The first byte of this field is the number of
characters in the driver name. The remainder of the field contains a string of up to 15
characters taken from the DPT in the driver.

Address of system block.

Address of next DDB in the connection subchain.

Allocation class of device.

Address of the first UCB on the secondary path. Another name for this field is DDB$L
DP_UCB.

Data Structures
1.7 Driver Dispatch Table (DDT)

1.7 Driver Dispatch Table (DDI~
Each device driver contains a driver dispatch table (DDT). The DDT lists
entry points in the driver that VMS routines call, for instance, the entry
point for the driver start-UO routine.

A device driver creates a DDT by invoking the VMS macro DDTAB.
The fields in the driver dispatch table are illustrated in Figure 1-9 and
described in Table 1-8.

Figure 1-9 Driver Dispatch Table (DDT)

DDT$L_START

DDT$L_UNSOLINT

DDT$L_FDT

DDT$L CANCEL

DDT$L REGDUMP

DDT$W ERRORBUF DDT$W DIAGBUF

DDT$L_UNITINIT

DDT$L ALTSTART

DDT$L MNTVER

DDT$L CLONEDUCB

Unused DDT$W_FDTSIZE*

DDT$L MNTV_SSSC*

DDT$L MNTV_FOR*

DDT$L MNTV_SQD*

DDT$L AUX_STORAGE*

DDT$L AUX_ROUTINE*

~A read-only field

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

Data Structures
1.7 Driver Dispatch Table (DDT)

Table 1-8 Contents of Driver Dispatch Table

Field Name Contents

D DT$L_START

DDT$L UNSOLINT

Entry point to the driver's start-I/O routine. Every driver must specify this address in
the start argument to the DDTAB macro.

When a device unit is idle and an I/O request is pending for that unit, IOC$INITIATE
transfers control to the address contained in this field.

Entry point to a MASSBUS driver's unsolicited-interrupt service routine. The driver
specifies this address in the unsolic argument to the DDTAB macro.

This field contains the address of a routine that analyzes unexpected interrupts from
a device. The standard interrupt service routine, the address of which is stored in
the CRB, determines whether an interrupt was solicited by a driver. If the interrupt
is unsolicited, the interrupt service routine can call the unsolicited-interrupt service
routine.

DDT$L_FDT Address of the driver's FDT. Every driver must specify this address in the functb
argument to the DDTAB macro.

EXE$QIO refers to the FDT to validate I/O function codes, decide which functions are
buffered, and call FDT routines associated with function codes.

DDT$L_CANCEL Entry point to the driver's cancel-I/O routine. The driver specifies this address in the
cancel argument to the DDTAB macro.

Some devices require special cleanup processing when a process or a VMS routine
cancels an I/O request before the I/O operation completes or when the last channel
is deassigned. The $DASSGN, $DALLOC, and $CANCEL system services cancel
I/O requests.

DDT$L REGDUMP Entry point to the driver's register dumping routine. The driver specifies this address
in the regdmp argument to the DDTAB macro.

IOC$DIAGBUFILL, ERL$DEVICERR, and ERL$DEVICTMO call the address
contained in this field to write device register contents into a diagnostic buffer or
error message buffer.

DDT$W_DIAGBUF Size of diagnostic buffer. The driver specifies this value in the diagbf argument to the
DDTAB macro. The value is the size in bytes of a diagnostic buffer for the device.
When EXE$QIO preprocesses an I/O request, it allocates a system buffer of the
size recorded in this field (if it contains a nonzero value) if the process requesting
the I/O has DIAGNOSE privilege and specifies a diagnostic buffer in the I/O request.
IOC$DIAGBUFILL fills the buffer after the I/O operation completes.

DDT$W ERRORBUF Size of error message buffer. The driver specifies this value in the ertgbf argument
to the DDTAB macro. The value is the size in bytes of an error message buffer for
the device.

If error logging is enabled and an error occurs during an I/O operation, the driver calls
ERL$DEVICERR or ERL$DEVICTMO to allocate and write error-logging data into the
error message buffer. IOC$INITIATE and IOC$REQCOM write values into the buffer
if an error has occurred.

DDT$L_UNITINIT Address of the device's unit initialization routine, if one exists. Drivers for MASSBUS
devices use this field rather than CRB$L INTD+VEC$L_UNITINIT. Drivers for
UNIBUS, VAXBI, and Q22 devices can use either field.

DDT$L ALTSTART Address of a driver's alternate start-I/O routine. EXE$ALTQUEPKT transfers control
to the alternate start-I/O routine at this address.

(continued on next page)

lJ

LJ

Data Structures
1.7 Driver Dispatch Table (DDT)

Table 1-8 (Cont.) Contents of Driver Dispatch Table

Field Name Contents

DDT$L_MNTVER

DDT$L_CLONEDUCB

DDT$W FDTSIZE*

DDT$L_MNTV_SSSC*

DDT$L_MNTV_FOR*

DDT$L MNTV_SQD*

DDT$L_AUX_STORAGE*

DDT$L_AUX_ROUTINE*

Address of the VMS routine (IOC$MNTVER) called at the beginning and end
of mount verification operation. The mntver argument to the DPTAB macro
defaults to this routine. Use of the mntver argument to call any routine other
than IOC$MNTVER is reserved to Digital.

Address of routine to call when UCB is cloned.

Number of bytes in FDT. The driver-loading procedure uses this field to relocate
addresses in the FDT to system virtual addresses.

Address of routine to call when performing mount verification for ashadow-set state
change. Use of this field is reserved to Digital.

Address of routine to call when performing mount verification for a foreign device.
Use of this field is reserved to Digital.

Address of routine to call when performing mount verification for a sequential device.
Use of this field is reserved to Digital.

Address of auxiliary storage area. Use of this field is reserved to Digital.

Address of auxiliary routine. Use of this field is reserved to Digital.

1.8 Driver Prologue Table (DPT)
When loading a device driver and its database into virtual memory, the
driver-loading procedure finds the basic description of the driver and
its device in a driver prologue table (DPT). The DPT provides the length,
name, adapter type, and loading and reloading specifications for the driver.

A device driver creates a DPT by invoking the VMS macros DPTAB and
DPT_STORE. The driver prologue table is illustrated in Figure 1-10 and
described in Table 1-9.

Figure 1-10 Driver Prologue Table (DPT)

DPT$L FLINK*

DPT$L BLINK*

DPT$B_REFC* DPT$B_TYPE* DPT$W SIZE

DPT$W_UCBSIZE Unused DPT$B_ADPTYPE

DPT$L_FLAGS

DPT$W_REINITTAB DPT$W_INITTAB

DPT$W MAXUNITS DPT$W UNLOAD

DPT$W_DEFUNITS DPT$W_VERSION*

0

4

8

12

16

20

24

28

(continued on next page)

1-31

Data Structures
1.8 Driver Prologue Table (DPT)

Figure 1-10 (Cont.) Driver Prologue Table (DPT)

DPT$W_VECTOR DPT$W DELIVER

ti DPT$T NAME (12 bytes)

DPT$Q_LINKTIME*

DPT$L_ECOLEVEL*

DPT$L_UCODE*

D PT$Q_LM F 1

D PT$Q_LM F_2*

D PT$Q_LM F_3*

D PT$Q_LM F_4*

D PT$Q LM F_5*

D PT$Q_LM F 6*

D PT$Q_LM F_7*

D PT$Q_LM F_8*

DPT$W_DECW SNAME*

~`~ read-only field

32

36

48

56

60

64

72

80

88

96

104

112

120

lJ

Data Structures
1.8 Driver Prologue Table (DPT)

Table 1-9 Contents of Driver Prologue Table

Field Name Contents

DPT$L FLINK*

DPT$L BLINK*

DPT$W SIZE

DPT$B_TYPE*

DPT$B_REFC*

DPT$B ADPTYPE

DPT$W UCBSIZE

DPT$L FLAGS

Forward link to next DPT. The driver-loading procedure writes this field. The
procedure links all DPTs in the system in a doubly linked list.

Backward link to previous DPT. The driver-loading procedure writes this field.

Size in bytes of the driver. The DPTAB macro writes this field by subtracting the
address of the beginning of the DPT from the address specified as the end argument
to the DPTAB macro. The driver-loading procedure uses this value to determine the
space needed in nonpaged system memory to load the driver.

Type of data structure. The DPTAB macro always writes the symbolic constant
DYN$C_DPT into this field.

Number of DDBs that refer to the driver. The driver-loading procedure increments
the value in this field each time the procedure creates another DDB that points to the
driver's DDT.

Type of adapter used by the devices using this driver. Every driver must specify the
string ~~UBA~~, "MBA", ~~GENBI~~, "NULL", or "DR" as the value of the adapter
argument to the DPTAB macro. Q22-bus drivers should specify ~~ UBA~~ as .the
adapter type. The macro writes the value AT$ UBA, AT$_MBA, or AT$_GENBI in
this field.

Size in bytes of the unit control block for a device that uses this driver. Every driver
must specify a value for this field in the ucbsize argument to the DPTAB macro.

The driver-loading procedure allocates blocks of nonpaged system memory of the
specified size when creating UCBs for devices associated with the driver.

Driver-loading flags. This field is also known as DPT$B_FLAGS. The driver can
specify any of a set of flags as the value of the flags argument to the DPTAB macro.
The driver-loading procedure modifies its loading and reloading algorithm based on
the settings of these flags.

Flags defined in the flag field include the following:
DPT$V_SUBCNTRL

DPT$V_SVP

D PT$V_NOU N LOAD

DPT$V_SCS

DPT$V_DUSHADOW

DPT$V_SCSCI

DPT$V_BVPSUBS

DPT$V UCODE

DPT$V_SMPMOD

DPT$V_DECW_DECODE

Device is a subcontroller.

Device requires permanent system page to be
allocated during driver loading.

Driver cannot be reloaded.

SCS code must be loaded with this driver.

Driver is the shadowing disk class driver.

Common SCS/CI subroutines must be loaded with
this driver.

Common BVP subroutines must be loaded with this
driver.

Driver has an associated microcode image.

Driver has been designed to run in a VMS
multiprocessing environment.

Driver is a decoding class driver.

(continued on next page)

Data Structures
1.8 Driver Prologue Table (DPT)

Table 1-9 (Cont.) Contents of Driver Prologue Table

Field Name Contents

DPT$W INITTAB

DPT$W REINITTAB

DPT$W UNLOAD

DPT$W MAXUNITS

DPT$W_VERSION*

DPT$W DEFUNITS

DPT$W DELIVER

DPT$W VECTOR

DPT$T NAME

DPT$Q_LINKTIME*

DPT$L_ECOLEVEL*

DPT$V_TPALLOC Select the tape allocation class parameter.

DPT$V_SNAPSHOT Driver is certified for system snapshot.

DPT$V_NO_IDB_ Do not select IDB$L_UCBLST for UCB vectors.
DISPATCH

Offset to driver initialization table. Every driver must specify a list of data structure
fields and values to be written into the fields at the time that the driver-loading
procedure creates the driver's data structures and loads the driver.

The driver invokes the VMS macro DPT STORE to specify these fields and their
values.

Offset to driver-reinitialization table. Every driver must specify a list of data structure
fields and values to be written into these fields at the time that the driver-loading
procedure creates the driver's data structures and loads the driver or the driver is
reloaded.

The driver invokes the VMS macro DPT STORE to specify these fields and their
values.

Relative address of driver routine to be called when driver is reloaded. The driver
specifies this field with the value of the unload argument to the DPTAB macro. The
driver-loading procedure calls the driver unloading routine before reinitializing all
device units associated with the driver.

Maximum number of units on controller that this driver supports. Specify this value in
the maxunits argument to the DPTAB macro. If no value is specified, the default is
eight units.

Version number that identifies format of DPT. The DPTAB macro automatically inserts
a value in this field. SYSGEN checks its copy of the version number against the
value stored in this field. If the values do not match, an error is generated. To correct
the error, reassemble and relink the driver.

Number of UCBs that the VMS autoconfiguration facility will automatically create.
Drivers specify this number with the defunits argument to the DPTAB macro. If the
driver also gives a value to DPT$W_DELIVER, this field is also the number of times
that the autoconfiguration facility calls the unit delivery routine.

Relative address of the unit delivery routine that the VMS autoconfiguration facility
calls for the number of UCBs specified in DPT$W DEFUNITS. The driver supplies
the address of the unit delivery routine in the deliver argument to the DPTAB macro.

Relative address of adriver-specific vector. A terminal class or port driver stores the
address of its class or port entry vector table in this field.

Name of the device driver. Field is 12 bytes. One byte records the length of the
name string; the name string can be up to 11 characters. Drivers specify this field as
the value of the name argument to the DPTAB macro.

The driver-loading procedure compares the name of a driver to be loaded with the
values in this field in all DPTs already loaded into system memory to ensure that it
loads only one copy of a driver at a time.

Time and date at which driver was linked, taken from its image header.

ECO level of driver, taken from its image header.

(continued on next page) V

Data Structures
1.8 Driver Prologue Table (DPT)

Table 1-9 (Cont.) Contents of Driver Prologue Table

Field Name Contents

DPT$L UCODE* Address of associated microcode image, if DPT$V_UCODE is set in DPT$L_FLAGS.
Use of this field is reserved to Digital.

DPT$Q_LMF_1 * First of eight quadwords reserved to Digital for the use of the VMS license
management facility. (The others are DPT$Q_LMF 2, DPT$Q_LMF 3, DPT$Q_
LM F 4, D PT$Q_LM F 5, D PT$Q_LM F 6, D PT$Q_LM F 7, and D PT$Q_LM F 8.)

DPT$W DECW SNAME* Offset to counted ASCII string used by decoding drivers.

Interrupt Dispatch Block (IDB)
The interrupt dispatch block (IDB) records controller characteristics.
The driver-loading procedure creates and initializes this block when the
procedure creates a CRB. The IDB points to the physical controller by
storing the virtual address of the CSR. The CSR is the indirect pointer to
all device unit registers.

The interrupt dispatch block is illustrated in Figure 1-11 and described in
Table 1-10.

Figure 1-11 Interrupt Dispatch Block (IDB)

IDB$L_CSR*

IDB$L_OWNER

IDB$B_VECTOR* IDB$B TYPE* IDB$W SIZE*

IDB$B_COMBO_CSR* IDB$B_TT ENABLE* IDB$W UNITS*

Unused IDB$B_FLAGS* IDB$B_COMBO VEC*

IDB$L SPL*

IDB$L ADP*

IDB$L_UCBLST* (32 bytes) ^

*A read-only field

0

4

8

12

16

20

24

28

Data Structures
1.9 Interrupt Dispatch Block (IDB)

Table 1-10 Contents of Interrupt Dispatch Block

Field Name Contents

IDB$L CSR*

IDB$L OWNER

IDB$W_SIZE*

IDB$B_TYPE*

IDB$B_VECTOR*

IDB$W UNITS*

IDB$B TT ENABLE*

IDB$B_COMBO_CSR*

IDB$B_COMBO_VEC*

IDB$B_FLAGS*

Address of CSR. The SYSGEN command CONNECT specifies the address of a
device's CSR. The driver-loading procedure writes the system virtual equivalent of this
address into the IDB$L_CSR field. Device drivers set and clear bits in device registers
by referencing all device registers at fixed offsets from the CSR address.

The driver-loading procedure tests the value of this field. If the value is not a CSR
address, it sets IDB$V_NO_CSR in IDB$L FLAGS and places the device offline by
clearing UCB$V_ONLINE in UCB$L_STS. In this event, it does not call the driver's
controller and unit initialization routines.

Address of UCB of device that owns controller data channel. IOC$REQx CHANy writes
a UCB address into this field when the routine allocates a controller data channel to
a driver. IOC$RELx CHAN confirms that the proper driver fork process is releasing a
channel by comparing the driver's UCB with the UCB stored in the IDB$L OWNER
field. If the UCB addresses are the same, IOC$RELx CHAN allocates the channel to a
waiting driver by writing a new UCB address into the field. If no driver fork processes
are waiting for the channel, IOC$RELxCHAN clears the field.

If the controller is a single-unit controller, the unit or controller initialization routine
should write the UCB address of the single device into this field.

Size of IDB. The driver-loading procedure writes the constant IDB$K LENGTH into this
field when the procedure creates the IDB.

Type of data structure. The driver-loading procedure writes the symbolic constant
DYN$C_IDB into this field when the procedure creates the IDB.

Interrupt vector number of the device, right-shifted by two bits. SYSGEN writes a
value into this field using either the autoconfiguration database or the value specified
in the /VECTOR qualifier to the CONNECT command. Drivers for devices that define
the interrupt vector address through a device register must use this field to load that
register during unit initialization and reinitialization after a power failure.

Maximum number of units connected to the controller. The maximum number of units
is specified in the D~PT and can be overridden at driver-loading time.

Reserved for use by the VMS terminal driver.

Address of the start of CSRs for a multicontroller device such as the DMF32. (The
name of this field is IDB$B_COMBO CSR OFFSET.)

Address of the start of interrupt vectors for a multicontroller device. (The name of this
field is IDB$B_COMBO_VECTOR_OFFSET.)

Flags associated with the IDB. The only flag currently defined is IDB$V_NO CSR. The
driver loading procedure sets this flag if IDB$L CSR does not contain the address of a
CSR.

IDB$L SPL* Address of the device lock that—in a VMS multiprocessing environment—synchronizes
access to device registers and those fields in the UCB accessed at device IPL.

(continued on next page)

Data Structures
1.9 Interrupt Dispatch Block (IDB)

Table 1-10 (Cont.) Contents of Interrupt Dispatch Block

Field Name Contents

IDB$L ADP*

IDB$L UCBLST*

Address of the adapter's ADP. The SYSGEN CONNECT command must specify the
nexus number of the I/O adapter used by a device. The driver-loading procedure
writes the address of the ADP for the specified I/O adapter into the IDB$L ADP field.
List of UCB addresses. The size of this field is the maximum number of units
supported by the controller, as defined in the DPT. The maximum specified in the
DPT can be overridden at driver load time. The driver-loading procedure writes a UCB
address into this field every time the routine creates a new UCB associated with the
controller.

n 1.10 I/O Request Packet (IRP)
When a user process queues a valid UO request by issuing a $QIO or
$QIOW system service, the service creates an UO request packet (IRP).
The IRP contains a description of the request and receives the status of
the UO processing as it proceeds.

The UO request packet is illustrated in Figure 1-12 and described
in Table 1-11. Note that the standard IRP contains space for fields
required by VMS multiprocessing and the VMS class drivers. Under no
circumstances should a driver not supplied by Digital use these fields.

Figure 1-12 I/O Request Packet (IRP)

IRP$L IOQFL

IRP$L IOQBL

IRP$B_RMOD* IRP$B_TYPE* IRP$W SIZE*

IRP$L PID*

I R P$L AST*

IRP$L ASTPRM*

IRP$L WIND*

IRP$L UCB*

IRP$B_PRI* IRP$B_EFN* IRP$W FUNC

IRP$L IOSB*

IRP$W STS IRP$W CHAN*

IRP$L SVAPTE

0

4

8

12

16

20

24

28

32

36

40

44

(continued on next page)

1-37

Data Structures
1.10 I/O Request Packet (IRP)

Figure 1-12 (Cont.) I/O Request Packet (IRP)

IRP$L_BCNT
y

IRP$W_BOFF

IRP$W_STS2 IRP$L_BCNT

IRP$L IOST1

IRP$L IOST2

IRP$L ABCNT

IRP$L_OBCNT

IRP$L_SEGVBN

IRP$L DIAGBUF*

IRP$L_SEQNUM*

IRP$L EXTEND

IRP$L ARB*

IRP$L_KEYDESC*

Reserved (72 bytes) ^

~`A read-only field

48

52

56

60

64

68

72

76

80

84

88

92

96

Table 1-11 Contents of an I/O Request Packet

Field Name Contents

IRP$L IOQFL

IRP$L IOQBL

IRP$W SIZE*

IRP$B TYPE*

I/O queue forward link. EXE$INSERTIRP reads and writes this field when the routine
inserts IRPs into apending-I/O queue. IOC$REQCOM reads and writes this field when
the routine dequeues IRPs from apending-I/O queue in order to send an IRP to a
device driver.

I/O queue backward link. EXE$INSERTIRP and IOC$REQCOM read and write these
fields.

Size of IRP. EXE$QIO writes the symbolic constant IRP$C_LENGTH into this field
when the routine allocates and fills an IRP.

Type of data structure. EXE$QIO writes the symbolic constant DYN$C_IRP into this
field when the routine allocates and fills an IRP.

(continued on next page)

l„J

U

Data Structures
1.10 I/O Request Packet (IRP)

Table 1-11 (Copt.) Contents of an I/O Request Packet

Field Name Contents

IRP$B_RMOD* Information used by I/O postprocessing. This field contains the same bit fields as the
ACB$B_RMOD field of an AST control block. For instance, the two bits defined at
ACB$V_MODE indicate the access mode of the process at time of the I/O request.
EXE$QIO obtains the processor access mode from the PSL and writes the value into
this field.

IRP$L PID* Process identification of the process that issued the I/O request. EXE$QIO obtains the
process identification from the PCB and writes the value into this field.

iRP$L AST* Address of AST routine, if specified by the process in the I/O request. (This field is
otherwise clear.) If the process specifies an AST routine address in the $QIO call,
EXE$QIO writes the address in this field.

During I/O postprocessing, the special kernel-mode AST routine queues a user mode
AST to the requesting process if this field contains the address of an AST routine.

IRP$L ASTPRM* Parameter sent as an argument to the AST routine specified by the user in the I/O
request. If the process specifies an AST routine and a parameter to that AST routine
in the $QIO call, EXE$QIO writes the parameter in this field.

During VO postprocessing, the special kernel-mode AST routine queues a user mode
AST if the IRP$L AST field contains an address, and passes the value in IRP$L
ASTPRM to the AST routine as an argument.

IRP$L WIND* Address of window control block (WCB) that describes the file being accessed in the
I/O request. EXE$QIO writes this field if the I/O request refers to afile-structured
device. An ACP or XQP reads this field.

When a process gains access to a file on afile-structured device or creates a logical
link between a file and a process I/O channel, the device ACP or XQP creates a WCB
that describes the virtual-to-logical mapping of the file data on the disk. EXE$QIO
stores the address of this WCB in the IRP$L WIND field.

IRP$L UCB* Address of UCB for the device assigned to the process's I/O channel. EXE$QIO
copies this value from the CCB.

IRP$W FUNC I/O function code that identifies the function to be performed for the I/O request. The
I/O request call specifies an I/O function code; EXE$QIO and driver FDT routines
map the code value to its most basic level (virtual --~ logical —> physical) and copy the
reduced value into this field.

Based on this function code, EXE$QlO calls FDT action routines to preprocess an I/O
request. Six bits of the function code describe the basic function. The remaining 10
bits modify the function.

IRP$B_EFN* Event flag number and group specified in I/O request. If the I/O request call does not
specify an event flag number, EXE$QIO uses event flag 0 by default. EXE$QIO writes
this field. The I/O postprocessing routine calls SCH$POSTEF to set this event flag
when the I/O operation is complete.

1RP$B_PRI* Base priority of the process that issued the I/O request. EXE$QIO obtains a value for
this field from the process's PCB. EXE$INSERTIRP reads this field to insert an IRP
into apriority-ordered pending-I/O queue.

(continued on next page)

Data Structures
1.10 I/O Request Packet (IRP)

Table 1-11 (Copt.) Contents of an I/O Request Packet

Field Name Contents

IRP$L IOSB*

IRP$W CHAN*

I R P$W STS

IRP$L SVAPTE

Virtual address of the process's I/O status block (IOSB) that receives final status of the
I/O request at I/O completion. EXE$QIO writes a value into this field if the I/O request
call specifies an IOSB address. (This field is otherwise clear.) The I/O postprocessing
special kernel-mode AST routine writes two longwords of I/O status into the IOSB after
the I/O operation is complete.

When an FDT routine aborts an I/O request by calling EXE$ABORTIO, EXE$ABORTIO
fills the IRP$L IOSB field with zeros so that I/O postprocessing does not write status
into the IOSB.

Index number of process I/O channel for request. EXE$QIO writes this field.

Status of I/O request. EXE$QIO initializes this field to 0. EXE$QIO, FDT routines,
and driver fork processes modify this field according to the current status of the I/O
request. I/O postprocessing reads this field to determine what sort of postprocessing is
necessary (for example, deallocate system buffers and adjust quota usage).

Bits in the IRP$W STS field describe the type of I/O function, as follows:
IRP$V BUFIO Buffered-I/O function

IRP$V FUNC Read function

IRP$V_PAGIO Paging-I/O function

IRP$V COMPLX Complex-buffered-I/O function

IRP$V_VIRTUAL Virtual-I/O function

IRP$V CHAINED Chained-buffered-t/O function

IRP$V SWAPIO Swapping-I/O function

IRP$V DIAGBUF Diagnostic buffer is present

IRP$V_PHYSIO Physical-I/O function

IRP$V TERMIO Terminal I/O (for priority increment calculation)

IRP$V_MBXIO Mailbox-I/O function

IRP$V_EXTEND An extended IRP is linked to this IRP

IRP$V_FILACP File ACP I/O

IRP$V MVIRP Mount-verification I/O function

IRP$V SRVIO Server-type I/O

IRP$V_KEY Encrypted function (encryption key address at IRP$L
KEYDESC)

For adirect-I/O transfer, virtual address of the first page-table entry (PTE) of the I/O-
transfer buffer, written here by the FDT routine locking process pages; for buffered-1/O
transfer, address of a buffer in system address space, written here by the FDT routine
allocating buffer.

IOC$INITIATE copies this field into UCB$L SVAPTE before transferring control to a
device driver start-I/O routine.

I/O postprocessing uses this field to deallocate the system buffer for abuffered-I/O
transfer or to unlock pages locked for adirect-I/O transfer.

(continued on next page)

1-,40

Data Structures
1.10 I/O Request Packet (IRP)

Table 1-11 (Cont.) Contents of an I/O Request Packet

Field Name Contents

IRP$W_BOFF

IRP$L BCNT

IRP$W_STS2

IRP$L IOST1

IRP$L IOST2

Byte offset into the first page of a direct-I/O transfer. FDT routines calculate this offset
and write the field.

For buffered-l/O transfers, FDT routines must write the number of bytes to be charged
to the process in this field because these bytes are being used for a system buffer.

IOC$INITIATE copies this fie{d into UCB$W_BOFF before calling a device driver
start-I/O routine.

I/O postprocessing uses 1RP$W_BOFF in conjunction with IRP$L BCNT and IRP$L_
SVAPTE to unlock pages locked for direct I/O. For buffered I/O, I/O postprocessing
adds the value of IRP$W_BOFF to the process byte count quota.

Byte count of the I/O transfer. FDT routines calculate the count value and write the
field. IOC$INiTIATE copies the low-order word of this field into UCB$W_BCNT before
calling a device driver's start-I/O routine.

For abuffered-I/O-read function, I/O postprocessing uses IRP$L_BCNT to determine
how many bytes of data to write to the user's buffer.

The field IRP$W BCNT points to the low-order word of this field to provide
compatibility with previous versions of VMS.

Second word of I/O request status. EXE$QIO initializes this field to 0. EXE$QIO, FDT
routines, and driver fork processes modify this field according to the current status of
the I/O request.

Bits in the IRP$W STS2 field describe the type of I/O function, as follows:
IRP$V_START PAST HWM I/O starts past file highwater mark.

IRP$V_END_PAST HWM I/O ends past file highwater mark.

IRP$V_ERASE Erase I/O function.

IRP$V_PART HWM Partial file highwater mark update.

IRP$V_LCKIO Locked I/O request, as used by DECnet direct (/O.

IRP$V SHDIO Shadowing IRP.

IRP$V_CACHEIO I/O using VBN cache buffers.

First I/O status longword. IOC$REQCOM and EXE$FINISHIO(C) write the contents of
RO into this field. The I/O postprocessing routine copies the contents of this field into
the user's IOSB.

EXE$ZEROPARM copies a 0 and EXE$ONEPARM copies p1 into this field. This field
is a good place to put a $QIO request argument (p1 through p6) or a computed value.

This field is also called IRP$L MEDIA.

Second I/O status longword. IOC$REQCOM, EXE$FINISHIO, and EXE$FINISHIOC
write the contents of R1 into this field. The I/O postprocessing routine copies the
contents of this field into the user's IOSB.

The low byte of this field is also known as IRP$B_CARCON. IRP$B_CARCON
contains carriage control instructions to the driver. EXE$READ and EXE$WRITE copy
the contents of p4 of the user's I/O request into this field.

(continued on next page)

1-41

Data Structures
1.10 I/O Request Packet (IRP)

Table 1-11 (Cont.) Contents of an I/O Request Packet

Field Name Contents

IRP$L ABCNT Accumulated bytes transferred in virtual I/O transfer. IOC$IOPOST reads and writes
this field after a partial virtual transfer.

The symbol IRP$W_ABCNT points to the low-order word of this field to provide
compatibility with previous versions of VMS.

IRP$L OBCNT Original transfer byte count in a virtual I/O transfer. IOC$IOPOST reads this field to
determine whether a virtual transfer is complete, or whether another I/O request is
necessary to transfer the remaining bytes.

The symbol IRP$W_OBCNT points to the low-order word of this field to provide
compatibility with previous versions of VMS.

IRP$L SEGVBN Virtual block number of the current segment of a virtual I/O transfer. IOC$IOPOST
writes this field after a partial virtual transfer.

IRP$L DIAGBUF* Address of a diagnostic buffer in system address space. If the I/O request call
specifies a diagnostic buffer and if a diagnostic buffer length is specified in the DDT,
and if the process has diagnostic privilege, EXE$QIO copies the buffer address into
this field.

EXE$QIO allocates a diagnostic buffer in system address space to be filled by
IOC$DIAGBUFILL during I/O processing. During I/O postprocessing, the special
kernel-mode AST routine copies diagnostic data from the system buffer into the
process diagnostic buffer.

IRP$L SEQNUM* I/O transaction sequence number. If an error is logged for the request, this field
contains the universal error log sequence number.

IRP$L_EXTEND Address of an IRPE linked to this IRP. FDT routines write an extension address to
this field when a device requires more context than the IRP can accommodate. This
field is read by IOC$IOPOST. IRP$V_EXTEND in IRP$W STS is set if this extension
address is used.

IRP$L ARB* Address of access rights block (ARB). This block is located in the PCB and contains
the process privilege mask and UIC, which are set up as follows:
ARB$Q_PRIV Quadword containing process privilege mask

SPARE$L Unused longword

ARB$L_U IC Longword containing process UIC

IRP$L KEYDESC Address of encryption key.

1.11 I/O Request Packet Extension (IRPE)
I/O request packet extensions (IRPEs) hold additional I/O request
information for devices that require more context than the standard
IRP can accommodate. IRP extensions are also used when more than
one buffer (region) must be locked into memory for adirect-UO operation,
or when a transfer requires a buffer that is larger than 64K. An IRPE
provides space for two buffer regions, each with a 32-bit byte count.

FDT routines allocate IRPEs by calling EXE$ALLOCIRP. Driver routines
link the IRPE to the IRP, store the IRPE's address in IRP$L_EXTEND,
and set the bit field IRP$V EXTEND in IRP$W STS to show that an
IRPE exists for the IRP. The FDT routine initializes the contents of the
IRPE. Any fields within the extension not described in Table 1-12 can
store driver-dependent information.

1-42

Data Structures
1.11 I/O Request Packet Extension (IRPE)

If the IRP extension specifies additional buffer regions, the FDT routine
must use those buffer locking routines that perform coroutine calls
back to the driver if the locking procedure fails (EXE$READLOCKR,
EXE$WRITELOCKR, and EXE$MODIFYLOCKR). If an error occurs
during the locking procedure, the driver must unlock all previously locked
regions using MMG$UNLOCI~ and deallocate the IRPE before returning
to the buffer locking routine.

IOC$IOPOST automatically unlocks the pages in region 1 (if defined)
and region 2 (if defined) for all the IRPEs linked to the IRP undergoing
completion processing. IOC$IOPOST also deallocates all the IRPEs.

The UO request packet extension is illustrated in Figure 1-13 and
described in Table 1-12.

Figure 1-13 1/O Request Packet Extension (IRPE)

Unused

V

IRPE$B_TYPE* IRPE$W SIZE*

Unused (31 bytes}

IRPE$W_STS

IRPE$L SVAPTEI

Unused IRPE$W_BOFF1

IRPE$L BCNT1

IRPE$L_SVAPTE2

Unused IRPE$W_BOFF2

IRPE$L BCNT2

ti Unused (16 bytes) ^

IRPE$L EXTEND

*A read-only field

0

9

40

44

48

52

56

60

64

68

84

1-43

Data Structures
1.11 I/O Request Packet Extension (IRPE)

Table 1-12 Contents of the I/O Request Packet Extension

Field Name Contents

IRPE$W SIZE*

IRPE$B_TYPE*

IRPE$W STS

IRPE$L SVAPTEI

IRPE$W BOFF1

IRPE$L BCNT1

IRPE$L SVAPTE2

IRPE$W BOFF2

IRPE$L BCNT2

IRPE$L EXTEND

Size of IRPE. EXE$ALLOCIRP writes the constant IRP$C_LENGTH to this field.

Type of data structure. EXE$ALLOCIRP writes the constant DYN$C_IRP to this field.

IRPE status field. If bit IRPE$V EXTENDIRPE is set, it indicates that another IRPE is
linked to this one.

System virtual address of the page-table entry (PTE) that maps the start of region 1.
FDT routines write this field. If the region is not defined, this field is zero.

Byte offset of region 1. FDT routines write this field.

Size in bytes of region 1. FDT routines write this field.

System virtual address of the PTE that maps the start of region 2. Set by FDT
routines. This field contains a value of zero if region 2 is not defined.

Byte offset. of region 2. This field is set by FDT routines.

Size in bytes of region 2. FDT routines write this field.

Address of next IRPE for this IRP, if any.

1.12 Object Rights Block (ORB)
The object rights block (ORB) is a data structure that describes the rights
a process must have in order to access the object with which the OftB is
associated.

The ORB is usually allocated when the device is connected by means of
SYSGEN's CONNECT command. SYSGEN also sets the address of the
ORB in UCB$L_ORB at that time.

The object rights block is illustrated in Figure 1-14 and described in
Table 1-13.

Figure 1-14 Object Rights Block (ORB)

ORB$L OWNER

ORB$L ACL_MUTEX

ORB$B_FLAGS ORB$B_TYPE* ORB$W SIZE*

ORB$W REFCOUNT Unused

ORB$Q MODE_PROT

ORB$L SYS_PROT

ORB$L OWN_PROT

0

4

8

12

16

24

28

1-44

(continued on next page)

Data Structures
1.12 Object Rights Block (ORB)

Figure 1-14 (Cont.) Object Rights Block (ORB)

ORB$L GRP_PROT

ORB$L WOR_PROT

ORB$L ACLFL

ORB$L ACLBL

ti

32

36

40

44

ORB$K_MIN_CLASS (20 bytes) ~ 48

ORB$K_MAX_CLASS (20 bytes} ^' 88

~`A read-only field

Table 1-13 Contents of Object Rights Block

Field Contents

ORB$L OWNER

ORB$L_ACL_MUTEX

ORB$W_SIZE*

ORB$B_TYPE*

ORB$B_FLAGS

ORB$W_REFCOUNT

ORB$Q_MODE_PROT

ORB$L SYS_PROT

ORB$L_OWN_PROT

U IC of the object's owner.

Mutex for the object's ACL, used to control access to the ACL for reading and writing
The driver-loading procedure initializes this field with —1.

Size in bytes of ORB. The driver-loading procedure writes the symbolic constant
ORB$K_LENGTH into this field when it creates an ORB.

Type of data structure. The driver-loading procedure writes the symbolic constant
DYN$C_ORB into this field when it creates an ORB.

Flags needed for interpreting portions of the ORB that can have alternate meanings.
The following fields are defined within ORB$B_FLAGS:
ORB$V_PROT 16

ORB$V_ACL QUEUE

ORB$V_MODE_VECTOR

ORB$V_NOACL

ORB$V_CLASS_PROT

Reference count.

Mode protection vector. The low byte of this quadword is known as ORB$B_MODE.

System protection field. The low word of this field is known as ORB$W_PROT and
contains the standard SOGW protection.

Owner protection field.

The driver-loading procedure sets this bit to 1, signifying
SOGW protection.

This flag represents the existence of an ACL queue. The
driver-loading procedure does not set this bit.

Use vector mode protection, not byte mode.

This object cannot have an ACL.

Security classification is valid.

(continued on next page)

y —45

Data Structures
1.12 Object Rights Block (ORB)

Table 1-13 (Cont.) Contents of Object Rights Block

Field Contents

ORB$L_GRP_PROT Group protection field.

ORB$L_WOR_PROT World protection field.

ORB$L ACLFL ACL queue forward link. If ORB$V_ACL QUEUE is 0, this field should contain 0.
This field is also known as ORB$L_ACL COUNT and is cleared by the driver-loading
procedure.

ORB$L_ACLBL ACL queue backward link. If ORB$V_ACL QUEUE is 0, this field should contain 0.
This field is also known as ORB$L ACL DESC and is cleared by the driver-loading
procedure.

ORB$R_MIN_CLASS Minimum classification mask.

ORB$R_MAX_CLASS Maximum classification mask.

1.13 SCSI Class Driver Request Packet (SCDRP)
The SCSI class driver allocates and builds a SCSI class driver request
packet (SCDRP) for each UO request it services, passing it to the SCSI
port driver. The class driver routine initializes the SCDRP with the
addresses of the UCB, SCDT, and IRP and copies to it data obtained from
the IRP. The SCDRP also contains the addresses of the SCSI command
buffer and status buffer.

The SCSI class driver passes the address of the SCDRP to the port driver
in the call to SPI$SEND_COMMAND.

The SCDRP is illustrated in Figure 1-15 and described in Table 1-14.

Figure 1-15 SCSI Class Driver Request Packet (SCDRP)

SCDRP$L_FQFL

SCDRP$L FQBL

SCDRP$B_FLCK SCDRP$B_CD_TYPE SCDRP$W_SCDRPSIZE

SCDRP$L_FPC

SCDRP$L FR3

SCDRP$L FR4

SCDRP$L_PORT UCB

SCDRP$L UCB

SCDRP$W STS SCDRP$W_FUNC

0

4

8

12

16

20

24

28

32

(continued on next page)

1-46

Data Structures
1.13 SCSI Class Driver Request Packet (SCDRP)

Figure 1-15 (Cont.) SCSI Class Driver Request Packet (SCDRP)

SCDRP$L SVAPTE

Reserved SCDRP$W BOFF

SCDRP$L BCNT

SCDRP$L_MEDIA

SCDRP$L ABCNT

SCDRP$L SAVD_RTN

Reserved

SCDRP$L CDT

Reserved

SCDRP$L IRP

SCDRP$L SVA_USER

SCDRP$L CMD_BUF

SCDRP$L CMD_BUF_LEN

SCDRP$L CMD_PTR

SCDRP$L_STS_PTR

SCDRP$L SCSI_FLAGS

SCDRP$L DATACHECK

SCDRP$L SCSI_STK PTR

.... c~nnnne~i c+nc+~ c+Tv inn ~..~....~ ti

SCDRP$L CL_RETRY

SCDRP$L DMA TIMEOUT

SCDRP$L DISCON TIMEOUT

Reserved SCDRP$W PAD_BCNT

36

40

44

48

52

56

60

68

72

76

80

84

88

92

96

100

104

108

12

144

148

152

156

(continued on next page)

Data Structures
1.13 SCSI Class Driver Request Packet (SCDRP)

Figure 1-15 (Cont.) SCSI Class Driver Request Packet (SCDRP)

SCDRP$B_TQE (52 bytes)

SCDRP$L_TQE_DELAY*

SCDRP$L SVA_DMA*

SCDRP$L_SVA_CMD*

SCDRP$W_CMD_MAPREG* SCDRP$W MAPREG*

SCDRP$W_CMD_NUMREG* SCDRP$W NUMREG*

SCDRP$L SVA_SPTE*

SCDRP$L SCSIMSGO PTR*

SC D R P$L_SCS I MSG I_PTR*

SCDRP$B_SCSIMSGO_BUF*
r

SCDRP$B_SCSIMSGI_BUF*

SCDRP$L MSGO_PENDING*

SCDRP$L_MSGI_PENDING*

Reserved SCDRP$B_LAST MSGO*

SCDRP$L DATA_PTR*

SCDRP$L_TRANS_CNT*

SCDRP$L_SAVE_DATA CNT*

SCDRP$L SAVE_DATA PTR*

SC D R P$L_S D P_DATA_CNT*

SC D R P$L_S D P_DATA_PTR*

SCDRP$L DUETIME*

SCDRP$L TIMEOUT ADDR*

SCDRP$W BUSY RETRY_CNT* SCDRP$W_CMD_BCNT*

SCDRP$W_SEL_RETRY_CNT* SCDRP$W ARB_RETRY CNT*

60

12

16

20

24

28 ~/

32

36

40

244

48

256

260

264

268

272

276

280

284

288

292

296

300

304 ~.~J

1-48

(continued on next page)

Data Structures
1.13 SCSI Class Driver Request Packet (SCDRP)

Figure 1-15 (Cont.) SCSI Class Driver Request Packet (SCDRP)

SCDRP$W_SEL TQE_RETRY CNT* S C D R P$W_C M D_R ET RY_C N T*

SCDRP$L SAVER3*

SCDRP$L SAVER6*

SCDRP$L SAVER7*

SCDRP$L SAVER3CL*

SCDRP$L SAVEPCCL*

SCDRP$L ABORTPCCL*

SCDRP$L_PO_STK_PTR*

SCDRP$L PO_STK* (24 bytes)

SCDRP$L TAG*

Reserved (40 bytes)

308

312

316

320

324

328

332

336

~40

364

~68

*~1 read-only field

Table 1-14 Contents of SCSI Class Driver Request Packet

Field Name Contents

SCDRP$L FQFL Fork queue forward link. This field points to the next entry in the SCSI
adapter's command buffer wait queue (ADP$L BVPWAITFL), map register
wait queue (ADP$L MRQFL), port wait queue (SPDT$L PORT WQFL), or
system fork queue.

SCDRP$L FQBL Fork queue backward link. This field points to the previous entry in the
SCSI adapter's command buffer wait queue (ADP$L_BVPWAITFL), map
register wait queue (ADP$L MRQFL), port wait queue (SPDT$L PORT
WQFL), or system fork queue.

SCDRP$W_SCDRPSIZE Size of SCDRP. A SCSI class driver, after allocating sufficient nonpaged
pool for the SCDRP, writes the constant SCDRP$C_LENGTH into this
field.

SCDRP$B_CD_TYPE Class driver type. This field is currently unused.

(continued on next page)

1-49

Data Structures
1.13 SCSI Class Driver Request Packet (SCDRP)

Table 1-14 (Cont.) Contents of SCSI Class Driver Request Packet

Field Name Contents

SCDRP$B_FLCK Index of the fork lock that synchronizes access to this SCDRP at fork
level. A SCSI class driver, after allocating sufficient nonpaged pool for
the SCDRP, copies to this field the value of UCB$B_FLCK. All devices
controlled by a single SCSI adapter and actively competing for shared
adapter resources must specify the same value for this field.

SCDRP$L_FPC Address of instruction at which processing resumes when SCSI adapter
resources become available to satisfy a request stalled in an adapter
resource wait queue.

SCDRP$L_FR3 Value of R3 when the request is stalled to wait for SCSI adapter resources.
When the request is satisfied, this value is restored to R3 before the driver
resumes execution at SCDRP$L FPC.

SCDRP$L_FR4 Value of R4 when the request is stalled to wait for SCSI adapter resources.
When the request is satisfied, this value is restored to R4 before the driver
resumes execution art SCDRP$L FPC.

SCDRP$L_PORT UCB SCSI adapter's UCB address. The SCSI port driver reads and writes this
field in order to manage ownership of the SCSI port across bus reselection.

SCDRP$L_UCB SCSI device's UCB address. The SCSI class driver initializes this field to
indicate that the SCDRP is active.

SCDRP$W_FUNC I/O function code that identifies the function to be performed for the I/O
request. The SCSI class driver's start-I/O routine copies the contents of
IRP$W_FUNC to this field.

SCDRP$W_STS Status of I/O request. The SCSI class driver's start-I/O routine copies the
contents of IRP$W STS to this field.

Bits in the SCDRP$W STS field correspond to the bits in the IRP$W STS
field that describe the type of I/O function, as follows:
IRP$V_BUFIO

IRP$V_FUNC

I R P$V_PAG 10

IRP$V_COMPLX

IRP$V_VIRTUAL

IRP$V_CHAINED

IRP$V_SWAPIO

IRP$V_DIAGBUF

IRP$V_PHYSIO

IRP$V TERMIO

IRP$V_MBXIO

IRP$V_EXTEND

IRP$V_FILACP

Buffered-I/O function

Read function

Paging-I/O function

Complex-buffered-I/O function

Virtual-I/O function

Chained-buffered-I/O function

Swapping-I/O function

Diagnostic buffer present

Physical-I/O function

Terminal I/O (for priority increment
calculation)

Mailbox-I/O function

An extended IRP is linked to this IRP

File ACP I/O

(continued on next page)

Data Structures
1.13 SCSI Class Driver Request Packet (SCDRP)

Table 1-14 (Copt.) Contents of SCSI Class Driver Request Packet

Field Name Contents

SCDRP$L_SVAPTE

SCDRP$W_BOFF

SCDRP$L_BCNT

SCDRP$L MEDIA

SCDRP$L_ABCNT

SCDRP$L SAVD_RTN

SCDRP$L CDT

SCDRP$L IRP

SCDRP$L SVA USER

SCDRP$L CMD_BUF

SCDRP$L CMD_BUF_LEN

SCDRP$L_CMD_PTR

IRP$V_MVIRP Mount-verification I/O function

IRP$V_SRVIO Server-type I/O

IRP$V_KEY Encrypted function (encryption key address
at IRP$L KEYDESC)

For adirect-I/O transfer, virtual address of the first page-table entry (PTE)
of the I/O transfer buffer. This address is originally written to IRP$L
SVAPTE by the FDT routine that locks process pages. For abuffered-I/O
transfer, address of a buffer in system address space. This address is
originally written to IRP$L SVAPTE by the class driver FDT routine that
allocates the buffer.

The class driver's start-I/O routine copies the address from the IRP to this
field.

For adirect-1/O transfer, byte offset into the first page of the buffer; for
a buffered-I/O transfer, number of bytes to be charged to the process
requesting the transfer. FDT routines calculate this value and write it to
IRP$W BOFF.

The class driver's start-I/O routine copies the value from the IRP to this
field.

Byte count of the I/O transfer. Class driver FDT routines calculate this
value and write it to IRP$L_BCNT. The class driver's start-I/O routine
copies the value from the IRP to this field.

Spare field.

Accumulated count of bytes transferred. The SCSI class driver maintains
this field to accomplish segmented transfers.

Saved return address from Level 1 JSB.

Address of the SCSI connection descriptor table (SCDT). When the SCSI
class driver's unit initialization routine invokes the SPI$CONNECT macro,
the macro returns the address of the SCDT describing the connection
it established to the SCSI port. The class driver stores that address in
SCDRP$L CDT.

Address of I/O request block. The SCSI class driver copies the address of
the IRP to this field.

System virtual address of a process buffer as mapped in system space (SO
space). The SCSI port driver initializes this field as the result of a class
driver call to SPI$MAP_BUFFER.

Address of the port command buffer. The SCSI class driver initializes this
field with the address returned from a call to SPI$ALLOCATE_COMMAND_
BUFFER.

Length of SCSI command buffer.

Address of the SCSI command descriptor block (its length byte) in the
SCSI command buffer allocated by the SCSI port driver. The SCSI class
driver initializes this field.

(continued on next page)

Data Structures
1.13 SCSI Class Driver Request Packet (SCDRP)

Table 1-14 (Cont.) Contents of SCSI Class Driver Request Packet

Field Name Contents

SCDRP$L_STS_PTR

SCDRP$L_SCSI_FLAGS

SCDRP$L_DATACHECK

SCDRP$L SCSI_STK_PTR

SCDRP$L_SCSI_STK

SCDRP$L_CL RETRY

SCDRP$L DMA_TIMEOUT

SCDRP$L_DISCON_TIMEOUT

SCDRP$W PAD BCNT

SCDRP$B_TQE*

Address of SCSI status byte in the port command buffer. The SCSI class
driver initializes this field.

SCSI flags. The SCSI class and port drivers use the following bits:
SCDRP$V_SOBUF System buffer mapped. A SCSI class

driver sets this bit, before invoking
SPI$MAP_BUFFER, if the data
transfer buffer is in system space
(SO).

SCDRP$V_BUFFER_MAPPED Data transfer buffer mapped. A
SCSI class driver sets this bit, after
invoking SPI$MAP_BUFFER, to
indicate that the data transfer buffer
(either a system or process space
buffer) has been mapped.

SCDRP$V_DISK_SPUN_UP START UNIT command issued. The
VMS SCSI disk class sets this bit.

Address of buffer for datacheck operations. A SCSI class driver maintains
this field.

Stack pointer of the class driver's return address stack.

Class driver's return address stack. This stack is 32 bytes long.

Retry count.

Maximum number of seconds for a target to change the SCSI bus phase
or complete a data transfer.

Upon sending the last command byte, the port driver waits this many
seconds for the target to change the bus phase lines and assert REQ
(indicating a new phase). Or, if the target enters the DATA IN or DATA
OUT phase, the transfer must be completed within this interval.

A class driver can initialize this field to specify aper-request DMA timeout
value.

Maximum number of seconds, from the time the initiator receives the
DISCONNECT message, for a target to reselect the initiator so that it can
proceed with the disconnected I/O transfer. A class driver can initialize this
field to specify aper-request disconnect timeout value.

Pad byte count. This field contains the number of bytes required to
make the size of the user buffer equal to the data length value required
by a specific SCSI command. A SCSI class driver uses this field to
accommodate SCSI device classes that require that the transfer length be
specified in terms of a larger data unit than the count of bytes expressed
in the SCDRP$L BCNT. If the total amount of data requested in the SCSI
command does not match that specified in the SCDRP$L BCNT, this field
must account for the difference.

Timer queue element, used by the port driver to time out pending
disconnected I/O transfers. When this TQE expires, the timer thread
times out expired pending I/O transfers.

(continued on next page) V

Data Structures
1.13 SCSI Class Driver Request Packet (SCDRP)

Table 1-14 (Cont.) Contents of SCSI Class Driver Request Packet

Field Name Contents

SCDRP$L_TQE_DELAY*

SCDRP$L_SVA DMA*

SCDRP$L_SVA CMD*

SCDRP$W MAPREG*

SCDRP$W_CMD_MAPREG*

SCDRP$W_NUMREG*

SCDRP$W_CMD_NUMREG*

SCDRP$L_SVA_SPTE*

SCDRP$L_SCSIMSGO_PTR*

SCDRP$L SCSIMSGI_PTR*

SCDRP$B_SCSIMSGO_BUF*

SCDRP$B_SCSIMSG I_BU F*

SCDRP$L_MSGO_PENDING*

SCDRP$L_MSGI_PENDING*

SCDRP$B_LAST MSGO*

SCDRP$L DATA PTR*

SCDRP$L TRANS_CNT*

SCDRP$L SAVE_DATA_CNT*

Delay time for next TQE delay.

System address of the section of the port DMA buffer allocated for the data
transfer.

System address of the segment of the port DMA buffer allocated for the
port command buffer.

Page number of the first port DMA buffer page allocated for the data
transfer.

Page number of the first port DMA buffer page allocated for the port
command buffer.

Number of port DMA buffer pages allocated for the data transfer.

Number of port DMA buffer pages allocated for the port DMA buffer.

System virtual address of the system page-table entry that maps the first
page of the process buffer in SO space.

SCSI output message pointer.

SCSI input message pointer.

SCSI output message buffer.

SCSI input message buffer.

Output message pending flags. One or more of the following bits are set
in this longword if the port driver is to send the corresponding message:
SCDRP$V_IDENTIFY IDENTIFY message

SCDRP$V_SYNC_OUT

SCDRP$V_BUS_DEVICE_RESET

SC D R P$V_M ESSAG E_PAR ITY
ERROR

SCDRP$V_ABORT

SCDRP$V_NOP

SCDRP$V_MESSAGE_REJECT

SYNCHRONOUS DATA
TRANSFER REQUEST (out)
message

BUS DEVICE RESET message

MESSAGE PARITY ERROR
message

ABORT message

NO OPERATION message

MESSAGE REJECT message

Input message pending flags. The only currently defined bit is SCDRP$V_
SYNC_IN, which is set when the port driver expects to receive a
SYCHRONOUS DATA TRANSFER REQUEST (in) message.

Last message sent.

Current data pointer address.

Actual number of bytes sent or received by the port driver. The port driver
returns a value in this field to the class driver when it completes a SCSI
data transfer.

Running count of bytes (in two's-complement form) to be transferred. The
port driver maintains this count.

(continued on next page)

Data Structures
1.13 SCSI Class Driver Request Packet (SCDRP)

Table 1-14 (Copt.) Contents of SCSI Class Driver Request Packet

Field Name Contents

SCDRP$L_SAVE_DATA PTR*

SCDRP$L_SDP_DATA_CNT*

SCDRP$L SDP_DATA_PTR*

SCDRP$L_DUETIME*

SCDRP$L_TIMEOUT ADDR*

SCDRP$W_CMD_BCNT*

SCDRP$W_BUSY_RETRY_CNT*

SCDRP$W ARB_RETRY_CNT*

SCDRP$W SEL RETRY_CNT*

SCDRP$W_CMD_RETRY CNT*

SCDRP$W_SEL TQE_RETRY
CNT*

SCDRP$L_SAVER3*

SCDRP$L_SAVER6*

SCDRP$L_SAVER7*

SCDRP$L_SAVER3CL*

SCDRP$L_SAVEPCCL*

SCDRP$L_ABORTPCCL*

SCDRP$L_PO_STK_PTR*

SCDRP$L_PO_STK*

SCDRP$L TAG*

Pointer to current port DMA buffer segment. The SCSI port driver
maintains this pointer.

Storage for SDP data count.

Storage for SDP data pointer.

Timeout time for a disconnected I/O transfer.

Address of timeout routine.

Command byte count.

Count of remaining busy retries.

Count of remaining arbitration retries.

Count of remaining selection retries.

Count of remaining command retries.

Count of remaining TQE retries.

Reserved to Digital.

Reserved to Digital.

Reserved to Digital.

Reserved to Digital.

Reserved to Digital.

Reserved to Digital.

Stack pointer of the port driver's return address stack.

Port driver's return address stack. This stack is 24 bytes long.

Reserved to Digital.

1.14 SCSI Connection Descriptor Table (SCDT)
The SCSI connection descriptor table (SCDT) contains information specific
to a connection established between a SCSI class driver and the port,
such as phase records, timeout values, and error counters. The SCSI port
driver creates an SCDT each time a SCSI class driver, by invoking the
SPI$CONNECT macro, connects to a device on the SCSI bus. The class
driver stores the address of the SCDT in the SCSI device's UCB.

The SCSI port driver has exclusive access to the SCDT. A SCSI class
driver has no access to this structure.

The SCDT is illustrated in Figure 1-16 and described in Table 1-15.

Data Structures
1.14 SCSI Connection Descriptor Table (SCDT)

Figure 1-16 SCSI Connection Descriptor Table (SCDT}

SCDT$L FLINK*

Reserved SC DT$W_S IZE*

SCDT$B_FLCK* Reserved

SCDT$L FPC*

SCDT$L FR3*

SCDT$L FR4*

SCDT$L STS*

SCDT$W STATE* SCDT$W SCDT TYPE*

SCDT$L_SPDT*

SCDT$L_SCSI_PORT ID*

SCDT$L_SCSI_BUS_ID*

SCDT$L SCSI_LUN*

Reserved

SCDT$L_SCDRP_ADDR*

SCDT$L BUS_PHASE*

SCDT$L_OLD_PHASES*

■►.i [1 /'~ 1"1 T[h \ A / 1'11 1 A [1 1- ' [1 ~r / A A 1_ . _t _ _ \ n
~vu ~ ~pvv_rnr+~~J <<+~t uy~CSJ

SCDT$L PHASE_STK_PTR*

SCDT$L PHASE_END_STK_PTR*

SCDT$L EVENTS_SEEN*

SCDT$L ARB_FAIL CNT*

SCDT$L_SEL_FAIL_CNT*

SCDT$L_PARERR_CNT*

0

4

8

12

16

20

24

28

32

36

40

44

48

56

60

64

68

112

116

120

124

128

132

(continued on next page)

1-55

Data Structures
1.14 SCSI Connection Descriptor Table (SCDT)

Figure 1-16 (Copt.) SCSI Connection Descriptor Table (SCDT)

SCDT$L MISPHS_CNT*

SCDT$L_BADPHS_CNT*

SCDT$L_RETRY_CNT*

SCDT$L_RST CNT*

SCDT$L CTLERR_CNT*

SCDT$L BUSERR_CNT*

SCDT$L CMDSENT*

SCDT$L MSGSENT*

SCDT$L_BYTSENT*

SCDT$L_CON_FLAGS*

SCDT$L SYNCHRONOUS*

SCDT$W TRANSFER_PERIOD* SCDT$W REQACK OFFSET*

SCDT$W_ARB_RETRY CNT* SCDT$W_BUSY RETRY CNT*

SCDT$W CMD_RETRY CNT* SCDT$W_SEL RETRY_CNT*

SCDT$L DMA TIMEOUT*

SC DT$L_D ISCON_TI M EOUT*

SCDT$L_SEL_CALLBACK*

Reserved (40 bytes) ^

~`A read-only field

Data Structures
1.14 SCSI Connection Descriptor Table (SCDT)

Table 1-15 Contents of SCSI Connection Descriptor Table

Field Name Contents

SCDT$L FLINK*

SCDT$W_SIZE*

SCDT$B_FLCK*

SCDT$L FPC*

SCDT$L_FR3*

SCDT$L FR4*

SCDT$L_STS*

SCDT$W_SCDT TYPE*

SCDT$W STATE*

SCDT$L SPDT*

SCDT$L SCSI_PORT ID*

SCDT$L SCSI_BUS_ID*

SCDT$L SCSI_LUN*

SCDT$L SCDRP_ADDR*

SCDT forward link. This field points to the next SCDT in the port's SCDT
list (at SPDT$L SCDT VECTOR). The SCSI port driver initializes this field
when it creates the SCDT in response to an SP ICON N ECT call.

Size of SCDT. The port driver, after allocating sufficient nonpaged pool for
the SCDT, writes the constant SCDT$C_LENGTH into this field.

Index of the fork lock that synchronizes access to this SCDT at fork
level. The SCSI port driver, when creating the SCDT, initializes this field
with SPL$C_IOLOCK8. The SCDT fork block is used during an ABORT
command request on the connection.

Address of instruction at which the suspended port driver thread is to be
resumed.

Value of R3 when the request is stalled during disconnection. The value in
R3 is restored before a suspended driver thread is resumed.

Value of R4 when the request is stalled during disconnection. The value in
R4 is restored before a suspended driver thread is resumed.

Connection status. This field is a bit map, maintained by the port driver.
The only currently defined bit is SCDT$V_BSY (connection busy}.

Type of SCDT.

SCSI connection state. The VMS SCSI port driver maintains this field,
using the following constants:
SCDT$C_CLOSED Closed

SCDT$C_OPEN Open

SCDT$C_FAIL Failed

Address of port descriptor table with which this SCDT is associated.

SCSI port ID of the port to which this connection is established.

SCSI device ID of the device unit to which this connection is established.

SCSI logical unit number (LUN} of the device unit to which this connection
is established.

Address of SCDRP current on the connection.

(continued on next page}

Data Structures
1.14 SCSI Connection Descriptor Table (SCDT)

Table 1-15 (Cont.) Contents of SCSI Connection Descriptor Table

Field Name Contents

SCDT$L_BUS_PHASE*

SCDT$L OLD_PHASES*

SCDT$W PHASES*

SCDT$L PHASE_STK_PTR*

SCDT$L PHASE_END STK PTR*

SCDT$L EVENTS_SEEN*

SCDT$L ARB_FAIL CNT*

SCDT$L SEL_FAIL_CNT*

SCDT$L_PARERR_CNT*

SCDT$L MISPHS_CNT*

Current SCSI bus phase. The VMS SCSI port driver defines the following
flags in this longword bit map:
SCDT$V_DATAOUT DATA OUT phase

SCDT$V_DATAIN DATA IN phase

SCDT$V_CMD COMMAND phase

SCDT$V_STS STATUS phase

SCDT$V_INV1 Invalid phase 1

SCDT$V_INV2 Invalid phase 2

SCDT$V_MSGOUT MESSAGE OUT phase

SCDT$V_MSGIN MESSAGE IN phase

SCDT$V_ARB ARBITRATION phase

SCDT$V_SEL SELECTION phase

SCDT$V_RESEL RESELECTION phase

SCDT$V_DISCON DISCONNECT message seen

SCDT$V_TMODISCON Disconnect operation timed out

SCDT$V_CMD_CMPL COMMAND COMPLETE message
received

SCDT$V_PND_RESEL Reselection interrupt pending

SCDT$V_FREE BUS FREE phase

Bus phase tracking information.

Bus phase tracking information. This field is 44 bytes long.

Address of the top of the bus phase stack. The VMS SCSI port driver uses
the bus phase stack to maintain a phase histogram.

Address of the bottom of the bus phase stack. The VMS SCSI port driver
uses the bus phase stack to maintain a phase histogram.

Longword bit mask of bus events seen by the VMS SCSI port driver. VMS
defines the following bits:
SCDT$V_PARERR

SCDT$V_BSYERR

SCDT$V_MISPHS

SCDT$V_BADPHS

SCDT$V_RST

SCDT$V_CTLERR

SCDT$V_BUSERR

Count of arbitration failures.

Count of selection failures.

Count of parity errors.

Count of missing phases errors.

Parity error

Bus lost during command

Missing bus phase

Bad phase transition

Bus reset during command

SCSI controller error

SCSI bus error

(continued on next page)

Data Structures
1.14 SCSI Connection Descriptor Table (SCDT)

Table 1—y5 (Cont.) Contents of SCSI Connection Descriptor Table

Field Name Contents

SCDT$L BADPHS_CNT*

SCDT$L_RETRY_CNT*

SCDT$L_RST CNT*

SCDT$L_CTLERR_CNT*

SCDT$L BUSERR_CNT*

SCDT$L_CMDSENT*

SCDT$L MSGSENT*

SCDT$L_BYTSENT*

SCDT$L CON_FLAGS*

SCDT$L SYNCHRONOUS*

SCDT$W REQACK OFFSET*

SCDT$W TRANSFER_PERIOD*

SCDT$W BUSY RETRY CNT*

SCDT$W ARB_RETRY CNT*

SCDT$W SEL RETRY CNT*

Count of bad phase errors.

Count of retries.

Count of bus resets.

Count of controller errors.

Count of bus errors.

Number
of commands sent on this connection.

Number of messages sent on this connection.

Number of bytes sent during DATA OUT phase.

Connection-specific flags. The VMS SCSI port driver sets or clears
these flags according to information the SCSI class driver supplies to the
SPI$SET CONNECTION_CHAR macro. The following bits are defined:
SCDT$V_ENA_DISCON Enable disconnect

SCDT$V_DIS_RETRY Disable command retry

SCDT$V TARGET MODE Enable asynchronous event
notification from target

Synchronous data transfer enabled field. This longword contains
1 if synchronous data transfers are enabled for this connection;
otherwise it contains a 0. The VMS SCSI port driver writes this field
according to information the SCSI class driver supplies to the SP!$SET
CONNECTION_CHAR macro.

For synchronous data transfers, maximum number of REQs outstanding on
the connection before an ACK is transmitted. The VMS SCSI port driver
writes this field according to information the SCSI class driver supplies to
the SPI$SET CONNECTION_CHAR macro.

Number of 4-nanosecond ticks between a REQ and an ACK on this
connection. The VMS SCSI port driver writes this field according
to information the SCSI class driver supplies to the SPI$SET
CONNECTION_CHAR macro.

Remaining number of retries allowed on this connection to successfully
send a command to the target device. The VMS SCSI port driver initially
writes this field according to information the SCSI class driver supplies to
the SPI$SET CONNECTION_CHAR macro.

Remaining number of retries allowed on this connection while waiting for
the port to win arbitration of the bus. The VMS SCSI port driver initially
writes this field according to information the SCSI class driver supplies to
the SPI$SET CONNECTION_CHAR macro.

Select retry count. Remaining number of retries allowed on this connection
while waiting for the port to be selected by the target device. The VMS
SCSI port driver initially writes this field according to information the SCSI
class driver supplies to the SPI$SET CONNECTION_CHAR macro.

(continued on next page)

Data Structures
1.14 SCSI Connection Descriptor Table (SCDT)

Table 1-15 (wont.) Contents of SCSI Connection Descriptor Table

Field Name Contents

SCDT$W CMD_RETRY CNT*

SCDT$L_DMA_TIMEOUT*

SCDT$L DISCON_TIMEOUT*

SCDT$L_S EL_CALLBACK*

Remaining number of retries allowed on this connection to successfully
send a command to the target device. The VMS SCSI port driver initially
writes this field according to information the SCSI class driver supplies to
the SPI$SET CONNECTION_CHAR macro.

Timeout value (in seconds) for a target to change the SCSI bus phase or
complete a data transfer. The VMS SCSI port driver initially writes this field
according to information the SCSI class driver supplies to the SPI$SET
CON N ECTION_CHAR macro.

Disconnect timeout. Default timeout value (in seconds) for a target to
reselect the initiator to proceed with a disconnected I/O transfer. The VMS
SCSI port driver initially writes this field according to information the SCSI
class driver supplies to the SPI$SET CONNECTION_CHAR macro.

Address of class driver's asynchronous event notification callback routine.

SCSI Port Descriptor Table (SPD'~

Figure 1-17

The SCSI port descriptor table (SPDT) contains information specific to a
SCSI port, such as the port driver connection database. The SPDT also
includes a set of vectors, corresponding to the SPI macros invoked by
SCSI class drivers, that point to service routines within the port driver.
The SCSI port driver's unit initialization routine creates an SPDT for
each SCSI port defined for a specific MicroV~►~~/VAXstation system and
initializes each SPI vector.

The port driver reads and writes fields in the SPDT. The class driver reads
the SPDT indirectly when it invokes an SPI macro.

The SPDT is illustrated in Figure 1-17 and described in Table 1-16.

SCSI Port Descriptor Table (SPD'n

SPDT$L FLINK*

Reserved SPDT$W SIZE*

SPDT$B_FLCK* SPDT$B_SCSI_INT MSK* SPDT$W SPDT TYPE*

SPDT$L FPC*

SPDT$L FR3*

SPDT$L FR4*

SPDT$L SCSI_PORT ID*

SPDT$L_SCSI_BUS_ID*

0

4

8

12

16

20

24

28

1-60

(continued on next page)

Data Structures
1.15 SCSI Port Descriptor Table (SPDT)

Figure 1-17 (Cont.) SCSI Port Descriptor Table (SPDT)

SPDT$L STS*

SPDT$L_PORT WQFL;

SPDT$L_PORT_WQBL*

SPDT$L MAXBYTECNT*

Reserved

SPDT$L PORT UCB*

SPDT$L PORT CSR*

SPDT$L_PORT IDB*

SPDT$L DMA BASE*

SPDT$L_SPTE_BASE*

SPDT$L_SPTE_SVAPTE*

SPDT$L ADP*

ti SPDT$L PORT RING* (64 bytes)

SPDT$L PORT RING_PTR*

SPDT$L_OWNERSCDT*

ti SPDT$L SCDT VECTOR* (256 bytes) ^

SPDT$L DLCK*

Reserved

SPDT$B_DIPL*

SPDT$L SEL SCDRP*

SPDT$L_ENB_SEL_SCDRP*

SPDT$L MAP_BUFFER*

SPDT$L UNMAP*

32

36

40

44

48

56

60

64

68

72

76

80

84

148

152

56

412

16

424

428

432

436

(continued on next page)

1-61

Data Structures
1.15 SCSI Port Descriptor Table (SPDT)

Figure 1-17 (Cont.) SCSI Port Descriptor Table (SPDT)

SPDT$L SEND*

SPDT$L SET CONN_CHAR*

SPDT$L_GET CONN_CHAR*

SPDT$L RESET*

SPDT$L CONNECT*

SPDT$L DISCONNECT*

SPDT$L ALLOC_COMMAND_BUFFER*

SPDT$L DEALLOC_COMMAND_BUFFER*

SPDT$L ABORT*

SPDT$L SET PHASE*

SPDT$L SENSE_PHASE*

SPDT$L SEND_BYTES*

SPDT$L RECEIVE_BYTES*

SPDT$L FINISH_CMD*

SPDT$L RELEASE_BUS*

Reserved (52 bytes)

Reserved BUS HUNG VEC*

SPDT$B_TQE* (52 bytes) ^

SPDT$L TQE_DELAY*

SPDT$L_BUS_HUNG_CNT*

SPDT$L TARRST CNT*

SPDT$L RETRY CNT*

SPDT$L STRAY INT CNT*

SPDT$L UNEXP_INT CNT*

440

444

448

452

456

460

464

468

472

476

480

484

488

492

496

00

552

56

608

612

616

620

624

628

1-62

(continued on next page)

Data Structures
1.15 SCSI Port Descriptor Table (SPDT)

Figure 1-17 (Cont.) SCSI Port Descriptor Table (SPDT)

SPDT$L NODISCON_CNT*

SPDT$W_DISCON CNT* Reserved

SPDT$L PORT FLAGS*

SPDT$L VERSION_CHECK*

V Reserved (36 bytes)

SPDT$B_EVENT CNT* SPDT$B_MODE* SPDT$B_STATUS* SPDT$B_CUR_STAT*

Reserved (16 bytes) ^

'~A read-only field

632

636

640

644

48

684

88

Table 1-16 Contents of SCSI Port Descriptor Table

Field Name Contents

SPDT$L FLINK*

SPDT$W SIZE*

SPDT$W SPDT TYPE*

SPDT$B_SCSI_INT MSK*

SPDT$B_FLCK*

SPDT$L FPC*

SPDT$L FR3*

SPDT$L FR4*

SPDT$L SCSI_PORT ID*

SPDT$L SCSI_BUS_ID*

SPDT forward link. This field points to the next SPDT in the system SPDT
list. The SCSI port driver initializes this field when it creates the SPDT.

Size of SPDT. The VMS SCSI port driver initializes this field to SPDT$C_
PKNLENGTH or SPDT$C_PKSLENGTH when creating the SPDT.

SPDT type. The VMS SCSI port driver initializes this field to SPDT$C_
PKN or SPDT$C_PKS when creating the SPDT.

Port-specific interrupt mask.

Index of the fork lock that synchronizes access to this SPDT at fork level.
The SCSI port driver, when creating the SPDT, copies to this field the
value of UCB$B_FLCK. The SPDT fork block is used during reselection
and disconnection.

Address of instruction at which the suspended port driver thread is to be
resumed.

Value of R3 when the request is stalled during disconnection. The value in
R3 is restored before a suspended driver thread is resumed.

Value of R4 when the request is stalled during disconnection. The value in
R4 is restored before a suspended driver thread is resumed.

SCSI port ID, an alphabetic value from A to Z.

SCSI device ID of the port, a numeric value from 0 to 7.

(continued on next page)

Data Structures
1.15 SCSI Port Descriptor Table (SPDT)

Table ~ —16 (Copt.) Contents of SCSI Port Descriptor Table

Field Name Contents

SPDT$L_STS*

SPDT$L PORT WQFL*

SPDT$L_PORT_WQBL*

SPDT$L MAXBYTECNT*

SPDT$L_PORT UCB*

SPDT$L PORT CSR*

SPDT$L PORT IDB*

SPDT$L DMA BASE*

SPDT$L SPTE_BASE*

SPDT$L SPTE_SVAPTE*

SPDT$L_ADP*

SPDT$L PORT RING*

SPDT$L PORT RING_PTR*

SPDT$L OWNERSCDT*

SPDT$L SCDT_VECTOR*

SPDT$L_DLCK*

SPDT$B_DIPL*

SPDT$L SEL SCDRP*

SPDT$L_ENB_SEL_SCDRP*

SPDT$L_MAP_BUFFER*

Port device status. This field is a bit map maintained by the port driver.
The following bits are defined:
SPDT$V_ONLINE

SPDT$V TIMOUT

SPDT$V_ERLOGIP

SPDT$V_CANCEL

SPDT$V_POWER

S P DT$V_BSY

SPDT$V_FAILED

Online

Timed out

Error log in progress

Cancel I/O

Power failed while unit busy

Busy

Port failed operation or initialization

Port wait queue forward link. This field points to the first SCDRP waiting
for the port to be free.

Port wait queue backward link. This field points to the last SCDRP waiting
for the port to be free.

Maximum byte count for a transfer using this port.

Address of port UCB.

Address of the port hardware's CSR.

Address of the port IDB.

Base address of the port's DMA buffer.

System virtual address of the system page-table entry mapping the first
page of the port's DMA buffer.

System virtual address of the system page-table entry that double-maps
the data transfer buffer.

Address of the adapter control block managing port resources.

64-byte field recording the PCs of port channel request and release
transactions.

Pointer to the current port channel ring buffer entry.

Address of the SCDT of the connection that currently owns the port.

256-byte vector, recording the SCDT addresses associated with
connections active for a given SCSI device ID (0 through 7).

Address of device lock that—in a VMS multiprocessing environment—
synchronizes access to device registers and those fields at the SPDT
accessed at device IPL. The port driver initializes this field from UCB$L
DLCK when it creates the SPDT.

Interrupt priority level (IPL) at which the device requests hardware
interrupts. The port driver initializes this field from UCB$L DLCK when it
creates the SPDT.

SCDRP used during selection interrupt.

SCDRP used to enable selection.

Address of the port driver routine that executes in response fo a class
driver's SPI$MAP_BUFFER macro call. The port driver initializes this field.

(continued on next page)

Data Structures
1.15 SCSI Port Descriptor Table (SPD~

Table 1-16 (Cont.) Contents of SCSI Port Descriptor Table

Field Name Contents

SPDT$L UNMAP*

SPDT$L SEND*

SPDT$L SET CONN_CHAR*

SPDT$L GET CONN_CHAR*

SPDT$L RESET*

SPDT$L CONNECT*

SPDT$L DISCONNECT*

SPDT$L ALLOC_COMMAND_
BUFFER*

SPDT$L DEALLOC_COMMAND_
BUFFER*

SPDT$L ABORT*

SPDT$L SET PHASE*

SPDT$L SENSE_PHASE*

SPDT$L SEND_BYTES*

SPDT$L RECEIVE_BYTES*

SPDT$L FINISH_CMD*

SPDT$L RELEASE_BUS*

Address of the port driver routine that executes in response to a class
driver's SPI$UNMAP_BUFFER macro call. The port driver initializes this
field.

Address of the port driver routine that executes in response to a class
driver's SPI$SEND_COMMAND macro call. The port driver initializes this
field.

Address of the port driver routine that executes in response to a class
driver's SPI$SET CONNECTION_CHAR macro call. The port driver
initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPI$GET CONNECTION_CHAR macro call. The port driver
initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPI$RESET macro call. The port driver initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPI$CONNECT macro call. The port driver initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPI$DISCONNECT macro call. The port driver initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPI$ALLOCATE_COMMAND_BUFFER macro call. The port driver
initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPI$DEALLOCATE_COMMAND_BUFFER macro call. The port
driver initializes this field.

Address of the port driver routine that executes in response to a class
driver's SPI$ABORT COMMAND macro call. The port driver initializes this
field.

Address of the port driver asynchronous event notification (AEN) routine
that executes in response to a class driver's SPI$SET PHASE macro call.
The port driver initializes this field.

Address of the port driver AEN routine that executes in response to a class
driver's SPI$SENSE_PHASE macro call. The port driver initializes this
field.

Address of the port driver AEN routine that executes in response to a class
driver's SPI$SEND_BYTES macro call. The port driver initializes this field.

Address of the port driver AEN routine that executes in response to a class
driver's SPI$RECEIVE BYTES macro call. The port driver initializes this
field.

Address of the port driver AEN routine that executes in response to a class
driver's SPI$FINISH_COMMAND macro call. The port driver initializes this
field.

Address of the port driver routine that executes in response to a class
driver's SPI$RELEASE_BUS macro call. The port driver initializes this
field.

(continued on next page)

1-65

Data Structures
1.15 SCSI Port Descriptor Table (SPDT)

Table 1—~ 6 (Cont.) Contents of SCSI Port Descriptor Table

Field Name Contents

SP DT$B_BU S_H U NG_V EC*

SPDT$B TQE*

SPDT$L TQE_DELAY*

SPDT$L BUS_HUNG_CNT*

SPDT$L TARRST CNT*

SPDT$L RETRY CNT*

SPDT$L STRAY INT CNT*

SPDT$L UNEXP_INT CNT*

SPDT$L NODISCON_CNT*

SPDT$W DISCON_CNT*

SPDT$L PORT FLAGS*

SPDT$L VERSION_CHECK*

S P DT$B_C U R_STAT*

SPDT$B_STATUS*

SPDT$B_MODE*

SPDT$B_EVENT CNT*

Vector of suspected hung connections.

Timer queue element (52 bytes long), used by the port driver to time out
pending disconnected I/O transfers. When this TQE expires, the timer
thread times out expired pending I/O transfers.

Delay time for next TQE delay.

Count of detected bus hangs.

Count of target-initiated bus resets.

Total of retry attempts.

Count of interrupts occurring when channel is unowned.

Count of unexpected interrupts occurring when channel is owned.

Count of reselections when port is not disconnected.

Count of outstanding disconnects.

Port-specific flags. The following bits are defined:
SPDT$V_SYNCH

SPDT$V_ASYNCH

SPDT$V_MAPPING_REG

SPDT$V_BUF DMA

SPDT$V_D lR_DMA

SPDT$V AEN

Port supports synchronous mode
data transfers.

Port supports asynchronous mode
data transfers.

Port supports map registers.

Port supports buffered DMA transfers.

Port supports direct DMA transfers.

Port supports asynchronous event
notification.

SPDT$V LUNS Port supports logical unit numbers.

Value used to check driver versions.

Copy of CUR_STAT register.

Copy of STATUS register.

Copy of MODE register.

Count of events while servicing current interrupt.

1.16 Spin Lock Data Structure (SPL)
The spin lock data structure records all information necessary to properly
grant, release, and record the ownership of a spin lock. Each static system
spin lock (including the fork locks) and device lock uses an SPL to record
the IPL required for spin lock acquisition, its rank, and its owner. The
spin lock structure also maintains a history of spin lock use and a variety
of counters used in accounting -and debugging.

Static system spin locks are assembled from module LDAT and are
located from a vector of longword addresses starting at SMP$AR,_
SPNLKVEC. UCB$L_DLCK contains the address of the device lock for
the corresponding device unit.

Data Structures
1.16 Spin Lock Data Structure (SPL)

The fields described in the spin lock data structure are illustrated in
Figure 1-18 and described in Table 1-17.

Figure 1-18 Spin Lock Data Structure (SPL)

SPL$B_VEC_INX* SPL$B_RANK* SPL$B_IPL* SPL$B_SPINLOCK*

SPL$W WAIT CPUS* SPL$W OWN_CNT*

SPL$B_SUBTYPE* SPL$B TYPE* SPL$W SIZE*

SPL$L_OWN_CPU*

SPL$L OWN_PC VEC* (32 bytes) ^

SPL$L_WAIT PC*

SPL$Q_ACQ_COUNT*

SPL$L BUSY WAITS*

SPL$Q SPINS*

SPL$L TIMO_INT*

SPL$L RLS_PC*

*A read-only field

0

4

8

12

16

48

52

60

64

72

76

Table 1-17 Contents of the Spin Lock Data Structure

Field Contents

SPL$B_SPINLOCK* The following fields are defined within SPL$B_SPINLOCK:
SPL$V_INTERLOCK Spin lock access interlock. When set, this bit signifies that

the spin lock is owned.

<7:1 > Reserved to Digital.

SPL$B_IPL* IPL required for spin lock acquisition.

(continued on next page)

SPL$B_RANK* Spin lock rank. Note that the internal value of a spin lock's rank, as stored in this
field, is the inverse of the spin lock's logical rank, as displayed by the System Dump
Analyzer. For instance, the structure of a spin lock with a logical rank of 0 contains the
value 31 in this field.

SPL$B_VEC_INX* Index of the next entry to be written in the spin lock PC vector index (SPL$L OWN_
PCVEC). SPL$B_VEC_INX is updated upon each successful acquisition or release of
the spin lock.

SPL$W OWN_CNT* Ownership count. This field is —1 if the spin lock is unowned, zero or positive if owned.
When a processor initially acquires a spin lock, this field goes from —1 to zero. A
positive ownership count signifies concurrent acquisitions by a single processor.

Number of processors waiting to obtain the spin lock.

Size of spin lock data structure (SPL$C_LENGTH).

Type of data structure. VMS writes the value DYN$C_SPL in this field when it creates
the SPL data structure.

SPL$B_SUBTYPE* Spin lock subtype. This field can contain the following values:

SPL$L OWN_CPU*

Data Structures
1.16 Spin Lock Data Structure (SPL)

Table 1-17 (Cont.) Contents of the Spin Lock Data Structure

Field Contents

SPL$W_WAIT_CPUS*

SPL$W_SIZE*

SPL$B_TYPE*

SPL$C_SPL_SPINLOCK

SPL$C_SPL_FORKLOCK

SPL$C_SPL DEVICELOCK

Static system spin lock

Fork lock

Device lock (dynamic spin lock)

Physical ID of owner CPU. This field is initialized to —1. Upon a successful acquisition,
VMS copies the physical ID of the acquiring processor from CPU$L_PHY CPUID to
this field.

SPL$L OWN_PC VEC* Last eight calling PCs of acquirers and releasers of the spin lock. SPL$B_VEC_INX
serves as the index of the next vector to be written in this array.

SPL$L WAIT PC* Last busy-wait PC.

SPL$Q_ACQ_COUNT* Count of successful acquisitions.
SPL$L BUSY WAITS* Count of failed acquisitions.

SPL$Q_SPINS* Count of number of spins.
SPL$L TIMO_INT* Timeout interval before a spin lock acquisition attempt fails.
SPL$L RLS_PC* PC of the last unconditional release of a set of nested acquisitions of the spin lock.

1.17 Unit Control Block (UCB)
The unit control block (UCB) is avariable-length block that describes a
single device unit. Each device unit on the system has its own UCB. The
UCB describes or provides pointers to the device type, controller, driver,
device status, and current UO activity.

During autoconfiguration, the driver-loading procedure creates one UCB
for each device unit in the system. ~1 privileged system user can request
the driver-loading procedure to create UCBs for additional devices with
the SYSGEN command CONNECT. The procedure creates UCBs of the
length specified in the DPT. The driver uses UCB storage located beyond
the standard UCB fields for device-specific data and temporary driver
storage.

Data Structures
1.17 Unit Control Block (UCB)

The driver-loading procedure initializes some static UCB fields when
it creates the block. VMS and device drivers can read and modify all
nonstatic fields of the UCB. The UCB fields that are present for all devices
are illustrated in Figure 1-20 and described in Table 1-19. The length of
the basic UCB is defined by the symbol UCB$K LENGTH.

UCBs are variable in length depending on the type of device and whether
the driver performs error logging for the device. VMS defines a number
of UCB extensions in the data structure definition macro $UCBDEF and
defines a terminal device extension in $T'TYUCBDEF. Table 1-18 lists
those extensions that are most often used by device drivers, indicating
where each is described in this chapter. Note that use of the dual-path
extension is reserved to Digital; its contents should remain zero.

Table 1-18 UCB Extensions and Sizes Defined in $UCBDEF

Extension Used by Size Figure Table

Base UCB

Error log extension

Dual-path extension

Local tape extension

Local disk extension

Terminal extension'

All devices

All disk and tape devices

Reserved to Digital

All tape devices

All disk devices

Terminal class and port
drivers

UCB$K SIZE

UCB$K_ERL LENGTH

UCB$K DP_LENGTH
(UCB$K_2P_LENGTH)

UCB$K LCL TAPE_LENGTH

UCB$K LCL DISK_LENGTH

UCB$K TT LENGTH

1-20 1-19

1-21 1-20

1-22

1-23

1-242

1-21

1-22

1-23

~ The terminal UCB extension is defined by the data structure definition macro, $TTYUCBDEF.

2 Fields marked by asterisks may be written only by the VMS terminal class driver (TTDRIVER.EXE); aport driver may only
read these fields.

In order to use an extended UCB, a device driver must specify its length
in the ucbsize argument to the DPTAB macro. For instance:

DPTAB

UCBSIZE=UCB$K LCL TAPE LENGTH,-

As represented in Figure 1-19, each UCB extension used in a disk or tape
driver builds upon the base UCB structure and any extension $UCBDEF
defines earlier in the structure. (Note that UCB extensions shown in
bold boxes are reserved to Digital.) For instance, if you specify a UCB
size of UCB$K LCL_TAPE_LENGTH, the size of the resulting UCB
can accommodate the base UCB, the error log extension, the dual-path
extension, and the local tape extension.

Data Structures
1.17 Unit Control Block (UCB)

Figure 1-19 Composition of Extended Unit Control Blocks

Base UCB

(UCB$K_LENGTH)

I
Terminal
Driver

Extension

Error Log
Extension

(UCB$K_ERL_LENGTH)

Dual—Path
Extension

(UCB$K_DP_LENGTH)

1
Local Disk
Extension

(UCB$K_LCL_DSK_LENGTH)

Mailbox
Extension

(UCB$K_MB_LENGTH)

Loral Tape
Extension

(UCB$K_LCL_TAPE_LENGTH)

MSCP Disk/Tape
Extension

(UCB$K_MSCP_DISK_LENGTH,
UCB$K MSCP_TAPE_LENGTH)

Legend:

Bold boxes indicate UCB extensions that
are reserved to Digital.

NI Extension
(UCB$K_NI_LENGTH)

Network
Mailbox

Extension

ZK-6620-GE

A device driver can further extend a UCB by using the $DEFINI, $DEF,
$DEFEND, and MELD macros. For instance:

$DEFINI UCB

.=UCB$K_LCL_DISK_LENGTH
$DEF UCB$W_XX_FIELDl .BLKW 1

$DEF UCB$W_XX_FIELD2 .BLKW 1
$DEF UCB$L_XX_FLAGS .BLKL~ 1

_MELD UCB, 0, <—

<XX BIT2, , M>, —

$DEF UCB$K_XX_LENGTH
$DEFEND UCB

In this case, too, the driver must ensure that it specifies the length of the
extended UCB in the ucbsize argument of the DPTAB macro:

DPTAB —,

UCBSIZE=UCB$K XX LENGTH,—

Data Structures
1.17 Unit Control Block (UCB)

Figure 1-20 Unit Control Block (UCB)

UCB$L_FQFL*

UCB$L FQBL*

UCB$B_FLCK UCB$B_TYPE* UCB$W_SIZE*

UCB$L FPC

UCB$L_FR3

UCB$L_FR4

UCB$W INIQUO* UCB$W_BUFQUO*

UCB$L ORB*

UCB$L_LOCKID*

UCB$L CRB*

UCB$L DLCK*

UCB$L DDB*

UCB$L PID*

UCB$L_LINK*

UCB$L VCB*

UCB$L_DEVCHAR

UCB$L DEVCHAR2

UCB$L_AFFINITY*

UCB$L_XTRA

UCB$W_DEVBUFSIZ UCB$B_DEVTYPE UCB$B_DEVCLASS

UCB$Q DEVDEPEND

UCB$Q_DEVDEPEND2

UCB$L_fOQFL*

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

88

96

(continued on next page)

1-71

Data Structures
1.17 Unit Control Block (UCB)

Figure 1-20 (Cont.) Unit Control Block (UCB)

UCB$L_IOQBL*

UCB$W CHARGE* UCB$W UNIT*

UCB$L_IRP

UCB$B_AMOD* UCB$B_DIPL UCB$W REFC*

UCB$L_AMB*

UCB$L_STS

UCB$W QLEN* UCB$W DEVSTS

UCB$L DUETIM*

UCB$L OPCNT*

UCB$L_SVPN*

UCB$L SVAPTE*

UCB$W BCNT UCB$W BOFF

UCB$W_ERRCNT UCB$B_ERTMAX UCB$B_ERTCNT

UCB$L_PDT*

UCB$L DDT*

UCB$L_MEDIA_ID*

*A read-only field

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

Table 1-19 Contents of Unit Control Block

Field Name Contents

UCB$L_FQFL*

UCB$L FQBL*

Fork queue forward link. The link points to the next entry in the fork queue.
EXE$IOFORK and VMS resource management routines write this field. The queue
contains addresses of UCBs that contain driver fork process context of drivers waiting
to continue I/O processing.

Fork queue backward link. The link points to the previous entry in the fork queue.
EXE$IOFORK and VMS resource management routines write this field.

(continued on next page)

Data Structures
1.17 Unit Control Block (UCB)

Table 1-19 (Copt.) Contents of Unit Control Block

Field Name Contents

UCB$W SIZE*

UCB$B_TYPE*

UCB$B_FLCK

UCB$L FPC

UCB$L FR3

UCB$L FR4

UCB$W_BUFQUO*

UCB$W_IN IQUO*

UCB$L_ORB*

UCB$L_LOCKID*

Size of UCB. The DPT of every driver must specify a value for this field. The driver-
loading procedure uses the value to allocate space for a UCB and stores the value
in each UCB created. Extra space beyond the standard bytes in a UCB (UCB$K
LENGTH) is for device-specific data and temporary storage.

Type of data structure. The driver-loading procedure writes the constant DYN$C_UCB
into this field when the procedure creates the UCB.

Index of the fork lock that synchronizes access to this UCB at fork level. The DPT of
every driver must specify a value for this field. The driver-loading procedure writes the
value in the UCB when the procedure creates the UCB. All devices that are attached
to a single I/O adapter and actively compete for shared adapter resources and/or a
controller data channel must specify the same value for this field.

When VMS creates a driver fork process to service an I/O request for a device, the
fork process gains control at the IPL associated with the fork lock, holding the fork lock
itself in a VMS multiprocessing environment. When the driver creates a fork process
after an interrupt, VMS inserts the fork block into aprocessor-specific fork queue
based on this fork IPL. A VMS fork dispatcher, executing at fork IPL, obtains the fork
lock (if necessary), dequeues the fork block, and restores control to the suspended
driver fork process.

This field is also known as UCB$B_FIPL. Drivers designed to execute exclusively in
a VMS uniprocessing environment store the fork IPL associated with the UCB in this
field.

Fork process driver PC address. When a VMS routine saves driver fork context in
order to suspend driver execution, the routine stores the address of the next driver
instruction to be executed in this field. A VMS routine that reactivates a suspended
driver transfers control to the saved PC address.

VMS routines that suspend driver processing include EXE$IOFORK,
IOC$REQxCHANy, IOC$REQMAPREG, IOC$REQALTMAP, IOC$REQDATAP, and
IOC$WFIKPCH. Routines that reactivate suspended drivers include IOC$RELCHAN,
IOC$RELMAPREG, IOC$RELALTMAP, IOC$RELDATAP, EXE$FORKDSPTH, and
driver interrupt service routines.

When a driver interrupt service routine determines that a device is expecting an
interrupt, the routine restores control to the saved PC address in the device's UCB.

Value of R3 at the time that a VMS routine suspends a driver fork process. The value
of R3 is restored just before a suspended driver regains control.

Value of R4 at the time that a VMS routine suspends a driver fork process. The value
of R4 is restored just before a suspended driver regains control.

Buffered-I/O quota if the UCB represents a mailbox.
Initial buffered-I/O quota if the UCB represents a mailbox.

Address of ORB associated with the UCB. SYSGEN places the address in this field
when you use SYSGEN's CONNECT command.

Lock management lock I D of device allocation lock. A lock management lock is used
for device allocation so that device allocation functions properly for cluster-accessible
devices in a VAXcluster (DEV$V_CLU set within UCB$L DEVCHAR2).

{continued on next page)

Data Structures
1.17 Unit Control Block (UCB)

Table 1-19 (Copt.) Contents of Unit Control Block

Field Name Contents

UCB$L_CRB* Address of primary CRB associated with the device. The driver-loading procedure
writes this field after it creates the associated CRB. Driver fork processes read this
field to gain access to device registers. VMS routines use UCB$L_CRB to locate
interrupt-dispatching code and the addresses of driver unit and controller initialization
routines.

UCB$L DLCK* Address of device lock that—in a VMS multiprocessing environment—synchronizes
access to device registers and those fields in the UCB accessed at device IPL. The
driver-loading routine copies the address of the device lock in the CRB (CRB$L DLCK)
to this field as it creates a UCB for each device on a controller.

UCB$L DDB* Address of DDB associated with device. The driver-loading procedure writes this field
when the procedure creates the associated UCB. VMS routines generally read the
DDB field in order to locate device driver entry points, the address of a driver FDT, or
the ACP associated with a given device.

UCB$L PID* Process identification number of the process that has allocated the device. Written by
the $ALLOC system service.

UCB$L LINK* Address of next UCB in the chain of UCBs attached to a single controller and
associated with a DDB. The driver-loading procedure writes this field when the
procedure adds the next UCB. Any VMS routine that examines the status of all
devices on the system reads this field. Such routines include EXE$TIMEOUT,
IOC$SEARCHDEV, and power failure recovery routines.

UCB$L VCB* Address of volume control block (VCB) that describes the volume mounted on the
device. This field is written by the device's ACP and read by EXE$QIOACPPKT,
ACPs, and the XQP.

UCB$L_DEVCHAR First longword of device characteristics bits. The DPT of every driver
should specify symbolic constant values (defined by the $DEVDEF macro in
SYS$LIBRARY:STARLET.MLB) for this field. The driver-loading procedure writes
the field when the procedure creates the UCB. The $QIO system service reads the
field to determine whether a device is spooled, file structured, shared, has a volume
mounted, and so on.

The system defines the following device characteristics:
DEV$V_REC

DEV$V CCL

DEV$V_TRM

D EV$V_D I R

DEV$V_SDI

DEV$V_SQD

DEV$V SPL

DEV$V_OPR

D EV$V_RCT

D EV$V_N ET

D EV$V_FO D

Record-oriented device

Carriage control device

Terminal device

Directory-structured device

Single directory-structured device

Sequential block-oriented device (magnetic tape, for example)

Device spooled

Operator device

Device contains RCT

Network device

File-oriented device (disk and magnetic tape, for example)

(continued on next page)

Data Structures
1.17 Unit Control Block (UCB)

Table 1-19 (Cont.) Contents of Unit Control Block

Field Name Contents

UCB$L DEVCHAR2

UCB$L_AFFINITY*

DEV$V_DUA

DEV$V_SHR

DEV$V_GEN

D EV$V_AVL

D EV$V_M NT

D EV$V_M BX

DEV$V_DMT

D EV$V_E LG

D EV$V_ALL

DEV$V_FOR

DEV$V_SWL

D EV$V_I DV

DEV$V_ODV

DEV$V_RND

DEV$V_RTM

DEV$V_RCK

DEV$V_WCK

Dual-ported device

Shareable device (used by more than one program simultaneously)

Generic device

Device available for use

Device mounted

Mailbox device

Device marked for dismount

Error logging enabled

Device allocated

Device mounted as foreign (not file structured)

Device software write-locked

Device capable of providing input

Device capable of providing output

Device allowing random access

Real-time device

Read-checking enabled

Write-checking enabled

Second longword of device characteristics. The DPT of every driver should
specify symbolic constant values (defined by the $DEVDEF macro in
SYS$LIBRARY:STARLET.MLB) for this field. The driver-loading procedure writes
the field when the procedure creates the UCB.

The system defines the following device characteristics:
DEV$V_CLU Device available clusterwide

D EV$V_D ET

D EV$V_RTT

DEV$V_CDP

DEV$V_2P

DEV$V_MSCP

DEV$V_SSM

D EV$V_S RV

D EV$V_R E D

D EV$V_N N M

DEV$V_WBC

D EV$V_WTC

DEV$V_HOC

Detached terminal

Remote-terminal UCB extension

Dual-pathed device with two UCBs

Two paths known to device

Disk or tape accessed using MSCP

Shadow set member

Served by MSCP server

Redirected terminal

Device name has a prefix of the format "node$"

Device supports write-back caching

Device supports write-through caching

Device supports host caching

Bit mask of the CPU-IDs of processors in a VMS multiprocessing system that have
physical connectivity to the device. Such processors can thereby access the device's
registers and initiate I/O operations on the device.

(continued on next page)

Data Structures
1.17 Unit Control Block (UCB)

Table 1-19 (Cont.) Contents of Unit Control Block

Field Name Contents

UCB$L_XTRA SMP alternate STARTIO wait.

UCB$B_DEVCLASS Device class. The DPT of every driver should specify a symbolic constant (defined by
the $DCDEF macro) for this field. The driver-loading procedure writes this field when it
creates the UCB.

Drivers with set mode and device characteristics functions can rewrite the value in this
field with data supplied in the characteristics buffer, the address of which is passed in
the I/O request.

VMS defines the following device classes:
DC$_DISK Disk

DC$_TAPE Tape

DC$ SCOM Synchronous communications

DC$ CARD Card reader

DC$_TERM Terminal

DC$ LP Line printer

DC$_WORKSTATION Workstation

DC$_REALTIME Real time

DC$_BUS Bus

DC$_MAILBOX Mailbox

DC$_MISC Miscellaneous

Note that the definition of a device as a real-time device (DC$_REALTIME) is
somewhat subjective; it implies no special treatment by VMS.

UCB$B_DEVTYPE Device type. The DPT of every driver should specify a symbolic constant (defined by
the $DCDEF macro) for this field. The driver-loading procedure writes the field when it
creates the UCB.

Drivers for devices with set mode and set characteristics functions can rewrite the
value in this field with data supplied in the characteristics buffer, the address of which
is passed in the I/O request.

UCB$W_DEVBUFSIZ Default buffer size. The DPT can specify a value for this field if relevant. The driver-
loading procedure writes the field when it creates the UCB.

Drivers for devices with set mode and set characteristics functions can rewrite the
value in this field with data supplied in the characteristics buffer, the address of which
is passed in the I/O request. This field is used by RMS for record I/O on nonfile
devices.

UCB$Q_DEVDEPEND Device-descriptive data interpreted by the device driver itself. The DPT can specify a
value for this field. The driver-loading procedure writes this field when it creates the
UCB.

Drivers for devices with set mode and set characteristics functions can rewrite the
value in this field with data supplied in the characteristics buffer, the address of which
is passed in the I/O request.

UCB$Q_DEVDEPND2 Second longword for device-dependent status. This field is an extension of UCB$Q
DEVDEPEND.

(continued on next page)

Data Structures
1.17 Unit Control Block (UCB)

Table 1-19 (Cont.) Contents of Unit Control Block

Field Name Contents

UCB$L_IOQFL*

UCB$L IOQBL*

UCB$W UNIT*

UCB$W CHARGE*

UCB$L_IRP

UCB$W_REFC*

UCB$B_DIPL

UCB$B_AMOD*

UCB$L AMB*

UCB$L STS

Pending-I/O queue listhead forward link. The queue contains the addresses of IRPs
waiting for processing on a device. EXE$INSERTIRP inserts IRPs into the pending-I/O
queue when a device is busy. IOC$REQCOM dequeues IRPs when the device is idle.

The queue is a priority queue that has the highest priority IRPs at the front of the
queue. Priority is determined by the base priority of the requesting process. IRPs with
the same priority are processed first-in/first-out.

Pending-I/O queue listhead backward link. EXE$INSERTIRP and IOC$REQCOM
modify the pending-I/O queue.

Number of the physical device unit; stored as a binary value. The driver-loading
procedure writes a value into this field when it creates the UCB. Drivers for multiunit
controllers read this field during unit initialization to identify a unit to the controller.

Mailbox byte count quota charge, if the device is a mailbox.

Address of IRP currently being processed on the device unit by the driver fork process.
IOC$INITIATE writes the address of an IRP into this field before the routine creates
a driver fork process to handle an I/O request. From this field, a driver fork process
obtains the address of the IRP being processed.

The value contained in this field is not valid if the UCB$V_BSY bit in UCB$L_STS is
clear.

Reference count of processes that currently have process I/O channels assigned to
the device. The $ASSIGN and $ALLOC system services increment this field. The
$DASSGN and $DALLOC system services decrement this field.

Interrupt priority level (IPL) at which the device requests hardware interrupts. The DPT
of every driver must specify a value for this field. The driver-loading procedure writes
this field when the procedure creates the UCB. When the driver-loading procedure
subsequently creates the device lock's spin lock structure (SPL), it moves the contents
of this field into SPL$B_IPL.

In a VMS uniprocessing environment, device drivers raise IPL to device IPL before
reading or writing device registers or accessing other fields in the UCB synchronized
at device IPL. In a VMS multiprocessing environment, drivers obtain the device lock at
UCB$L DLCK, thereby also raising IPL to device IPL in the process.

Access mode at which allocation occurred, if the device is allocated. Written by the
$ALLOC and $DALLOC system services.

Associated mailbox UCB pointer. A spooled device uses this field for the address of
its associated device. Devices that are nonshareable and not file oriented can use this
field for the address of an associated mailbox.

Device unit status (formerly UCB$W_STS). Written by drivers, IOC$REQCOM,
IOC$CANCELIO, IOC$INITIATE, IOC$WFIKPCH, IOC$WFIRLCH, EXE$INSIOQ,
and EXE$TIMEOUT. This field is read by drivers, the $QIO system service routines,
IOC$REQCOM, IOC$INITIATE, and EXE$TIMEOUT.

This longword includes the following bits:
UCB$V TIM Timeout enabled.

UCB$V_INT Interrupts expected.

(continued on next page)

Data Structures
1.17 Unit Control Block (UCB)

Table 1-19 (Cont.) Contents of Unit Control Block

Field Name Contents

UCB$W DEVSTS

UCB$V_ERLOG I P

UCB$V_CANCEL

UCB$V_ONLINE

UCB$V_POWER

UCB$V TIMOUT

UCB$V_INTTYPE

U CB$V_BSY

UCB$V MOUNTING

UCB$V_DEADMO

UCB$V_VALID

U CB$V_U N LOAD

UCB$V TEMPLATE

UCB$V_MNTVERIP

UCB$V WRONGVOL

UCB$V_DELETEUCB

UCB$V LCL VALID

UCB$V SUPMVMSG

UCB$V_MNTVERPND

UCB$V DISMOUNT

UCB$V_CLUTRAN

UCB$V WRTLOCKMV

UCB$V SVPN_END

Device-dependent status.

Error log in progress.

Cancel I/O on unit.

Device is on line.

Power has failed while unit was busy.

Unit is timed out.

Receiver interrupt.

Unit is busy.

Device is being mounted.

Deallocate device at dismount.

Volume appears valid to software.

Unload volume at dismount.

Template UCB from which other UCBs for this device are
made. The $ASSIGN system service checks this bit in the
requested UCB and, if the bit is set, creates a UCB from
the template. The new UCB is assigned instead.

Mount verification in progress.

Volume name does not match name in the VCB.

Delete this UCB when the value in UCB$W REFC
becomes zero.

The volume on this device is valid on the local node.

Suppress mount-verification messages if they indicate
success.

Mount verification is pending on the device and the device
is busy.

Dismount in progress.

VAXcluster state transition in progress.

Write-locked mount verification in progress.

Last byte used from page is mapped by a system virtual
page number.

Read and written by device drivers.

The system defines the following status bits:
UCB$V JOB

UCB$V TEMPL_BSY

UCB$V PRMMBX

Job controller has been notified.

Template UCB is busy.

Device is a permanent mailbox.

UCB$V_DELMBX Mailbox is marked for deletion.

UCB$V_SHMMBS Device is shared-memory mailbox.

Disk drivers use bits in UCB$W DEVSTS as follows:
UCB$V ECC ECC correction made.

(continued on next page) ~.J

Data Structures
1.17 Unit Control Block (UCB)

Table 1-19 (Cont.) Contents of Unit Control Block

Field Name Contents

UCB$W QLEN*

UCB$L DUETIM*

UCB$L OPCNT*

UCB$L SVPN*

UCB$V_DIAGBUF

UCB$V_NOCNVRT

UCB$V_DX_WRITE

UCB$V_DATACACHE

Diagnostic buffer is specified.

No logical block number to media address conversion.

Console floppy write operation.

Data blocks are being cached.

Length of pending-I/O queue (pointed to by UCB$L IOQFL).

Due time for I/O completion. Stored as the low-order 32-bit absolute time (time in
seconds since the operating system was booted) at which the device will time out.
IOC$WFIKPCH and IOC$WFIRLCH write this value when they suspend a driver to
wait for an interrupt or timeout.

EXE$TIMEOUT examines this field in each UCB in the I/O database once per second.
If the timeout has occurred and timeouts are enabled for the device, EXE$TIMEOUT
calls the device driver timeout handler.

Count of operations completed on device unit since last bootstrap of VMS system.
IOC$REQCOM writes this field every time the routine inserts an IRP into the I/O
postprocessing queue.

Index to the virtual address of the system PTE that the driver loading procedure has
permanently allocated to the device. The system virtual address of the page described
by this index can be calculated by the following formula:

(index * 20016) + 8000000016
If a DPT specifies DPT$M_SVP in the flags argument to the DPTAB macro, the
driver-loading procedure allocates a page of nonpaged system memory to the device.
The procedure writes the system PTE's index into UCB$L SVPN when the procedure
creates the UCB.

Disk drivers use this field for ECC error correction.

UCB$L_SVAPTE For adirect-1/O transfer, the virtual address of the system PTE for the first page to be
used in the transfer; for abuffered-I/O transfer, the virtual address of the system buffer
used in the transfer.

IOC$INITIATE writes this field from IRP$L SVAPTE before calling a driver start-I/O
routine. Drivers read this value to compute the starting address of a transfer.

UCB$W_BOFF For adirect-1/0 transfer, the byte offset in the first page of the transfer buffer; for a
buffered-1/O transfer, the number of bytes charged to the process for the transfer.

IOC$INITIATE copies this field from the IRP. Drivers read the field in calculating the
starting address of a DMA transfer. If only part of a DMA transfer succeeds, the driver
adjusts the value in this field to be the byte offset in the first page of the data that was
not transferred.

UCB$W_BCNT Count of bytes in the I/O transfer. IOC$INITIATE copies this field from the IRP. Drivers
read this field to determine how many bytes to transfer in an I/O operation.

UCB$B_ERTCNT Error retry count of the current I/O transfer. The driver sets this field to the maximum
retry count each time it begins I/O processing. Before each retry, the driver decreases
the value in this field. During error logging, IOC$REQCOM copies the value into the
error message buffer.

(continued on next page)

Data Structures
1.17 Unit Control Block (UCB)

Table 1-19 (Cont.) Contents of Unit Control Block

Field Name Contents

UCB$B_ERTMAX Maximum error retry count allowed for single I/O transfer. The DPT of some drivers
specifies a value for this field. The driver-loading procedure writes the field when the
procedure creates the UCB. During error logging, IOC$REQCOM copies the value into
the error message buffer.

UCB$W_ERRCNT Number of errors that have occurred on the device since VMS booted. The driver-
loading procedure initializes the field to 0 when the procedure creates the UCB.
ERL$DEVICERR and ERL$DEVICTMO increment the value in the field and copy the
value into an error message buffer. The DCL command SHOW DEVICE displays in its
error count column the value contained in this field.

UCB$L_PDT* Address of port descriptor table (PDT). This field is reserved for VMS SCS port drivers.

UCB$L_DDT* Address of DDT for unit. The driver load procedure writes the contents of DDB$L DDT
for the device controller to this field when it creates the UCB.

UCB$L_MEDIA ID* Bit-encoded media name and type, used by MSCP devices.

Figure 1-2~ UCB Error-Log Extension

~' Base UCB (164 bytes)

UCB$B_CEX UCB$B_FEX UCB$B_SPR UCB$B_SLAVE'

UCB$L_EMB*

UCB$W_FUNC Unused

UCB$L_DPC

~A read-only field

0

164

168

172

176

Table 1-20 UCB Error-Log Extension

Field Name Contents

UCB$B_SLAVE*

UCB$B_SPR

UCB$B_FEX

Unit number of slave controller.

Spare byte. This field is reserved for driver use. MASSBUS adapter drivers use this
field to store a fixed offset to the MASSBUS adapter registers for the unit.

Device-specific field. This field is reserved for driver use. Certain VMS disk drivers
(such as DLDRIVER in one of the appendixes to the VMS Device Support Manual use
this field to store an index in a hardware function dispatch table.

(continued on next page)

Data Structures
1.17 Unit Control Block (UCB)

Table 1-20 (Cont.) UCB Error-Log Extension

Field Name Contents

UCB$B_CEX

UCB$L EMB*

UCB$W_FUNC

UCB$L DPC

Device-specific field. This field is reserved for driver use. Certain VMS disk drivers
(such as DLDRIVER in one of the appendixes to the VMS Device Support Manual use
this field to store an index into a software function case table.

Address of error message buffer. If error logging is enabled and adevice/controller
error or timeout occurs, the driver calls ERL$DEVICERR or ERL$DEVICTMO
to allocate an error message buffer and copy the buffer address into this field.
IOC$REQCOM writes final device status, error counters, and I/O request status
into the buffer specified by this field.

I/O function modifiers. This field is read and written by drivers that log errors.

Device-specific field. This field is reserved for driver use. Certain VMS disk drivers
(such as DLDRIVER in one of the appendixes to the VMS Device Support Manua
use this field to store the driver's return PC across a dispatch to a hardware function
routine.

Figure 1-22 UCB Local Tape Extension

rsase u~rs ~ i n4 Qytes~

Error Log UCB Extension (16 bytes)

Dual Path UCB Extension (12 bytes)

UCB$B_PREV_RECORD UCB$B_ONLCNT UCB$W DIRSEQ

UCB$L RECORD

Reserved

UCB$L_TMV_RECORD

UCB$W TMV_CRC2 UCB$W_TMV_CRC1

UCB$W_TMV_CRC4 UCB$W TMV_CRC3

0

64

80

192

196

200

204

208

212

Data Structures
1.17 Unit Control Block (UCB)

Table 1-21 UCB Local Tape Extension

Field Name Contents

UCB$W_DIRSEQ

UCB$B_ONLCNT

UCB$B_PREV_RECORD

UCB$L RECORD

UCB$L_TMV_RECORD

UCB$W TMV_CRC1

UCB$W_TMV_CRC2

UCB$W TMV_CRC3

UCB$W_TMV_CRC4

Directory sequence number. If the high-order bit of this word, UCB$V_AST
ARMED, is set, it indicates that the requesting process is blocking ASTs.

Number of times the device has been placed on line since VMS was last
bootstrapped.

Tape position prior to the start of the last I/O operation.

Current tape position or frame counter.

Position following last guaranteed successful I/O operation.

First CRC for mount verification's media validation.

Second CRC for mount verification's media validation.

Third CRC for mount verification's media validation.

Fourth CRC for mount verification's media validation.

Figure 1-23 UCB Local Disk Extension

ease UCB (i 64 bytes)

Error Log UCB Extension (16 bytes)

Dual Path UCB Extension (12 bytes)

Reserved UCB$B_ONLCNT UCB$W DIRSEQ

UCB$L MAXBLOCK

UCB$L_MAXBCNT

UCB$L DCCB

UCB$L_QLENACC

UCB$L MEDIA

UCB$L BCR

UCB$W_EC2 UCB$W EC1

UCB$B_OFFRTC UCB$B_OFFNDX UCB$W OFFSET

0

64

80

192

196

200

204

208

212

216

220

224

(continued o~n next page)

Data Structures
1.17 Unit Control Block (UCB)

Figure 1-23 (Cont.) UCB Local Disk Extension

UCB$L DX BUF

UCB$L DX BFPNT

UCB$L DX_RXDB

Unused UCB$B_DX_SCTCNT UCB$W DX_BCR

228

232

236

240

Table 1-22 UCB Local Disk Extension

Field Name Contents

UCB$W DIRSEQ

UCB$B_ONLCNT

UCB$L MAXBLOCK

UCB$L MAXBCNT

UCB$L DCCB

UCB$L QLENACC

UCB$L MEDIA

UCB$L BCR

UCB$W EC1

UCB$W EC2

UCB$W OFFSET

UCB$B_OFFNDX

UCB$B_OFFRTC

Directory sequence number. If the high-order bit of this word, UCB$V_AST ARMED,
is set, it indicates that the requesting process is blocking ASTs.

Number of times device has been placed on line since VMS was last bootstrapped.

Maximum number of logical blocks on random-access device. This field is written by a
disk driver during unit initialization and power recovery.

Maximum number of bytes that can be transferred. A disk driver writes this field during
unit initialization and power recovery.

Pointer to cache control block.

Queue length accumulator.

Media address.

Byte-count register. Some disk drivers use this field as an internal count of the number
of bytes left to be transferred in an I/O request. The symbol UCB$W BCR points to
the low-order word of this field.

ECC position register. This field records the starting bit number of an error burst. Disk
driver register dumping routines copy the contents of this field into an error message
or diagnostic buffer.

The VMS correction routine IOC$APPLYECC reads the contents of this field to locate
the beginning of an error burst in a disk block.

ECC position register. Records the exclusive OR correction pattern. Disk driver
register dumping routines copy the contents of this field into an error message or
diagnostic buffer.

The VMS ECC correction routine IOC$APPLYECC reads the contents of this field to
correct disk data.

Current offset register contents.

Current offset table index. When a disk driver transfer ends in an error, the disk driver
can retry the transfer a number of times with different offsets of the disk head from the
centerline. This field is an index into a driver table of offset positions.

Current offset retry count. This field records the number of times to try a particular
offset setting in a disk transfer retry.

(continued on next page)

Data Structures
1.17 Unit Control Block (UCB)

Table 1-22 (Cont.) UCB Local Disk Extension

Field Name Contents

UCB$L_DX_BUF

UCB$L_DX_BFPNT

UCB$L DX_RXDB

UCB$W_DX_BCR

UCB$B_DX_SCTCNT

Address of sector buffer (used by floppy-disk drivers).

Pointer to current sector (used by floppy-disk drivers).

Address of saved receiver-data buffer (used by floppy-disk drivers).

Current floppy byte count (used by floppy-disk drivers).

Current sector byte count (used by floppy-disk drivers).

Figure 1-24 UCB Terminal Extension

tease u~r~ ~~ b4 4ytes~

UCB$L_TL CTRLY

UCB$L TL_CTRLC

UCB$L TL_OUTBAND

UCB$L TL BAN DQU E

UCB$L TL_PHYUCB

UCB$L_TL_CTLPID

UCB$Q_TL BRKTHRU
r

UCB$L TT RDUE

UCB$L TT_RTIMOU

UCB$L_TT STATEI

UCB$L_TT STATE2

UCB$L TT_LOGUCB

UCB$L_TT_DECHAR

UCB$L_TT_DECHAI

UCB$L_TT_DECHA2

UCB$L_TT_DECHA3

0

164

168

172

176

180

184

188

196

200

204

208

212

216

220

224

228

1-84

(continued on next page)

Data Structures
1.17 Unit Control Block (UCB)

Figure 1-24 (Cont.) UCB Terminal Extension

UCB$L TT WFLINK

UCB$L_TT WBLINK

UCB$L_TT WRTBUF

UCB$L TT MULTI

UCB$W_TT SMLTLEN UCB$W_TT MULTILEN

UCB$L TT SMLT

UCB$B_TT DELFF UCB$B_TT DECRF UCB$W TT_DESPEE

Unused UCB$B_TT DEPART

Reserved UCB$W TT DESIZE UCB$B_TT_DETYPE

UCB$B_TT LFFILL UCB$B_TT CRFILL UCB$B TT RSPEED UCB$B TT TSPEED

Unused UCB$B_TT PARITY

UCB$L TT TYPAHD

UCB$B_TT LASTC UCB$B_TT LINE UCB$W TT CURSOR

UCB$B_TT ESC UCB$B_TT FILL UCB$W TT BSPLEN

UCB$W TT UNITBIT UCB$B_TT INTCNT UCB$B TT ESC_O

UCB$B TT OUTYPE UCB$B TT_PREMPT UCB$W TT HOLD

UCB$L TT GETNXT

UCB$L TT PUTNXT

UCB$L TT CLASS

UCB$L_TT PORT

UCB$L TT OUTADR

UCB$W_TT PRTCTL UCB$W TT OUTLEN

UCB$W_TT DS_ST UCB$B_TT DS TX UCB$B_TT DS_RCV

UCB$B_TT OLD UCB$B_TT MAINT UCB$W TT DS_TIM

UCB$L TT FBK

UCB$L TT_RDVERIFY

232

236

240

244

248

252

256

260

264

268

272

276

280

284

288

292

296

300

304

308

312

316

320

324

328

332

(continued on next page)

1-85

Data Structures
1.17 Unit Control Block (UCB)

Figure 1-24 (Cont.) UCB Terminal Extension

UCB$L_TT_CLASSI

UCB$L_TT_CLASS2

UCB$L_TT ACCPORNAM

UCB$L_TP_MAP

Unused UCB$B_TP_STAT

336

340

344

348

352

Table 1-23 UCB Terminal Extension

Field Name Contents

UCB$L_TL_CTRLY*

UCB$L TL_CTRLC*

UCB$L_TL_OUTBAND*

UCB$L_TL_BAN DQU E*

UCB$L_TL_PHYUCB*

UCB$L_TL_CTLPID*

UCB$Q_TL_BRKTHRU*

UCB$L_TT_RDUE*

UCB$L_TT_RTIMOU*

UCB$L_TT_STATE 1

Listhead of CTRL/Y AST control blocks (ACBs).

Listhead of CTRL/C ACBs.

Out-of-band character mask.

Listhead of out-of-band ACBs.

Address of physical UCB.

Process ID of controlling process (used with SPAWN).

Facility broadcast bit mask.

Absolute time at which a read timeout is due.

Address of read timeout routine.

First longword of terminal state information.

The following fields are defined within UCB$L TT STATEI
TTY$V ST POWER Power failure

TTY$V_ST CTRLS

TTY$V_ST FILL

TTY$V_ST CURSOR

TTY$V_ST SENDLF

TTY$V_ST_BACKSPACE

TTY$V_ST_M U LTI

TTY$V_ST_W R ITE

TTY$V_ST_EOL

TTY$V ST EDITREAD

TTY$V_ST_RDVER I FY

TTY$V ST RECALL

TTY$V_ST_READ

Class output

Fill mode

Cursor

Forced line feed

Backspace

Multi-echo

Write in progress

End of line

Editing read in progress

Read verify in progress

Command recall

Read in progress

(continued on next page) ~J

Data Structures
1.17 Unit Control Block (UCB)

Table 1-23 (Cont.) UCB Terminal Extension

Field Name Contents

UCB$L_TT STATE2* Second longword of terminal state information.

The following fields are defined within UCB$L TT STATE2:
TTY$V_ST_CTRLO Output enable

TTY$V_ST DEL Delete

TTY$V_ST PASALL

TTY$V_ST NOECHO

TTY$V_ST WRTALL

TTY$V_ST PROMPT

TTY$V_ST NOFLTR

TTY$V_ST_ESC

TTY$V_ST BADESC

TTY$V_ST N L

TTY$V_ST REFRSH

TTY$V_ST ESCAPE

TTY$V_ST TYP FU L

TTY$V_ST SKIPLF

TTY$V_ST ESC_O

TTY$V_ST_W RA P

TTY$V_ST OVRFLO

TTY$V_ST AUTOP

TTY$V_ST CTRLR

TTY$V_ST SKI PCRLF

TTY$V_ST EDITING

TTY$V_ST TABEXPAND

TTY$V_ST QUOTING

TTY$V_ST OVERSTRIKE

TTY$V_ST TERMNORM

TTY$V_ST ECHAES

TTY$V_ST PRE

TTY$V_ST_NINTMULTI

TTY$V_ST RECONNECT

TTY$V_ST CTSLOW

Pass-all mode

No echo

Write-all mode

Prompt

No control-character filtering

Escape sequence

Bad escape sequence

New line

Refresh

Escape mode

Type-ahead buffer full

Skip line feed

Output escape

Wrap enable

Overflow condition

Autobaud pending

Clock prompt and data string from read buffer

Skip line feed following a carriage return

Editing operation

Expand tab characters

Quote character

Overstrike mode

Standard terminator mask

Alternate echo string

Pre-type-ahead mode

Noninterrupt multi-echo mode

Reconnect operation

Clear-to-send low

TTY$V_ST TABRIGHT Check for tabs to the right of the current position

UCB$L TT LOGUCB* Address of logical UCB, if the redirect bit is set (DEV$V_RED in UCB$L_
DEVCHAR2). If this UCB describes the logical UCB, the contents of UCB$L_
TT LOGUCB are zero.

UCB$L TT_DECHAR* First longword of default device characteristics.

(continued on next page)

Data Structures
1.17 Unit Control Block (UCB)

Table 1-23 (Cont.) UCB Terminal Extension

Field Name Contents

UCB$L TT DECHAI*

UCB$L_TT DECHA2*

UCB$L_TT DECHA3*

UCB$L_TT WFLINK*

UCB$L_TT WBLINK*

UCB$L TT WRTBU F*

UCB$L_TT MULTI*

UCB$W_TT MULTILEN*

UCB$W_TT_SMLTLEN*

UCB$L_TT SMLT*

UCB$W_TT DESPEE*

UCB$B_TT DECRF*

UCB$B_TT DELFF*

UCB$B_TT DEPART*

UCB$B_TT DETYPE*

UCB$W_TT DESIZE*

UCB$W_TT SPEED*

UCB$B_TT CRFILL*

UCB$B_TT LFFILL*

UCB$B_TT PARITY*

UCB$L TT TYPAHD*

UCB$W TT CURSOR*

Second longword of default device characteristics.

Third longword of default device characteristics.

Fourth longword of default device characteristics.

Write queue forward link.

Write queue backward link.

Current write buffer block.

Address of current multi-echo buffer.

Length of multi-echo string to be written.

Saved length of multi-echo string.

Saved address of multi-echo buffer.

Default speed.

Default carriage-return fill.

Default line-feed fill.

Default parity/character size.

Default terminal type.

Default line size.

Terminal line speed. This field is read and written by the class driver, and read by
the port driver. It contains the following byte fields:
UCB$B_TT TSPEED

UCB$B_TT RSPEED

Transmit speed

Receive speed

Number of fill characters to be output for carriage return.

Number of fill characters to be output for line feed.

Parity, frame and stop bit information to be set when the PORT SET LINE service
routine is called. This field is read and written by the class driver, and read by the
port driver.- It contains the following bit fields:
UCB$V_TT XXPARITY Reserved to Digital.

UCB$V_TT DISPARERR

UCB$V_TT USERFRAME

UCB$V_TT LEN

UCB$V_TT STOP

UCB$V_TT PARITY

UCB$V_TT ODD

Address of type-ahead buffer.

Current cursor position.

Reserved to Digital.

Reserved to Digital.

Two bits signifying character length (not counting
start, stop, and parity bits), as follows: 002 = 5 bits;
012 = 6 bits; 102 = 7 bits; and 112 = 8 bits.

Number of stop bits: clear if one stop bit; set if two
stop bits.

Parity checking. This bit is set if parity checking is
enabled.

Parity type: clear if even parity; set if odd parity.

{continued on next page)

Data Structures
1.17 Unit Control Block (UCB)

Table 1-23 (Cont.) UCB Terminal Extension

Field Name Contents

UCB$B_TT LINE* Current line position on page.

UCB$B_TT LASTC* Last formatted output character.

UCB$W_TT BSPLEN* Number of back spaces to output for non-ANSI terminals.

UCB$B_TT FILL* Current fill character count.

UCB$B_TT ESC* Current read escape syntax state.

UCB$B_TT ESC_O* Current write escape syntax state.

UCB$B_TT INTCNT* Number of characters in interrupt string.

UCB$W TT UNITBIT* Enable and disable modem control.

UCB$W TT HOLD Port driver's internal flags and unit holding tank. This is read and written by the port
driver, and is not accessed by the class driver. It contains the following subfields:
TTY$B TANK CHAR Character.

TTY$V TANK PREMPT Send preempt character.

TTY$V TANK STOP Stop output.

TTY$V TANK_HOLD Character stored in TTY$B TANK CHAR.

TTY$V TANK BURST Burst is active.

TTY$V TANK DMA DMA transfer is active.

UCB$B_TT PREMPT Preempt character.

UCB$B TT OUTYPE* Amount of data to be written on a callback from the class driver. When negative,
this field indicates that there is a burst of data ready to be returned; when zero, it
signifies that no data is to be written; and when 1, it indicates that a single character
is to be written. This field is written by the class driver and read by the port driver.

UCB$L TT GETNXT* Address of the class driver's input routine. This field is read by the port driver.

UCB$L TT PUTNXT* Address of the class driver's output routine. This field is read by the port driver.

UCB$L TT CLASS* Address of the class driver's vector table. This field is initialized by the CLASS_
CTRL INIT macro. The port driver reads UCB$L_TT CLASS whenever it must call
the class driver at an entry point other than UCB$L TT GETNXT or UCB$L TT
PUTNXT.

UCB$L TT PORT Address of the port driver's vector table.

UCB$L TT OUTADR Address of the first character of a burst of data to be written. This field is only valid
when UCB$B TT OUTYPE contains —1. It is read and written by the port driver,
and written by the class driver.

UCB$W TT OUTLEN Number of characters in a burst of data to be written. This field is only valid when
UCB$B_TT OUTYPE contains —1. It is read and written by the port driver, and
written by the class driver.

(continued on next page)

1-89

Data Structures
1.17 Unit Control Block (UCB)

Table y-23 (Cont.) UCB Terminal Extension

Field Name Contents

UCB$W_TT PRTCTL

UCB$B_TT DS_RCV

UCB$B_TT DS_TX

UCB$W TT DS_ST*

UCB$W TT DS_TIM*

Port driver control flags. The bits in this field indicate features that are available to
the port; the class driver specifies which of these features are to be enabled.

The following fields are defined within UCB$W TT PRTCTL.
TTY$V_PC_NOTI M E

TTY$V_PC_DMAENA

TTY$V_PC_DMAAVL

TTY$V_PC_PRMMAP

TTY$V_PC_MAPAVL

TTY$V_PC_XOFAVL

TTY$V_PC_XOFENA

TTY$V_PC_NOCRLF

TTY$V_PC_BREAK

TTY$V_PC_PORTFDT

TTY$V PC_NOMODEM

TTY$V_PC_NOD ISCON N ECT

TTY$V_PC_SMART READ

TTY$V_PC_ACCPORNAM

TTY$V_PC_M U LTIS ESS ION

Current receive modem.

Current transmit modem.

Current modem state.

Current modem timeout.

No timeout. If set, the terminal class driver is
not to set up timers for output.

DMA enabled. If set, DMA transfers are
currently enabled on this port.

DMA supported. If set, DMA transfers are
supported for this port.

Permanent map registers. If set, the port driver
is to permanently allocate UNIBUS/Q22-bus
map registers.

Map registers available. If set, the port driver
has currently allocated map registers.

Auto XOFF supported. If set, auto XOFF is
supported for this port.

Auto XOFF enabled. If set, auto XOFF is
currently enabled on this port.

No auto line feed. If set, a line feed is not
generated following a carriage return.

Break. If set, the port driver should generate
break character; if clear, the port should turn off
the break feature.

FDT routine. If set, the port driver contains FDT
routines.

No modem. If set, the port cannot support
modem operations.

No disconnect. If set, the device cannot support
virtual terminal operations.

Smart read. If set, the port contains additional
read capabilities.

Access port name. If set, the port supports an
access port name.

Multisession terminal. If set, the port is part of a
multisession terminal.

(continued on next page)

Data Structures
1.17 Unit Control Block (UCB)

Table 1-23 (Cont.) UCB Terming! Extension

Field Name Contents

UCB$B_TT MAINT*

UCB$B_OLD*

UCB$L TT FBK*

UCB$L_TT RDVERIFY*

UCB$L TT CLASSI

UCB$L TT CLASS2*

UCB$L TT ACCPORNAM

UCB$L TP_MAP*

UCB$B_TP_STAT

Maintenance functions. This field is used as the argument to the port driver's
PORT MAINT routine. It is written by the class driver and read by the port driver.

It contains several bits that allow the following maintenance functions:
I O$ M_LOO P

I O$ M_U N LOO P

1O$M AUTXOF ENA

1O$M AUTXOF DiS

1O$M_LINE_OFF

Set loopback mode.

Reset loopback mode.

Enable the use of auto XON/XOFF on this line. This is
the default.

Disable the use of auto XON/XOFF on this line.

Disable interrupts on this line.

1O$M_LINE_ON Reenable interrupts on this line.

Reference these bits by using the mask, shifted as follows:

BITB #IO$M LOOP@-
7, UCB$B TT MAINT (R5) ;Set loopback mode

UCB$B TT MAINT also defines the bit UCB$V_TT DSBL that, when set, indicates
that the line has been disabled.

The full name of this field is UCB$B_TT OLDCPZORG; it currently serves as a filler
byte.

Address of fallback block.

Address of read/verify table. Reserved for future use.

First class driver longword.

Second class driver longword.

Address of counted string.

UNIBUS/Q22-bus map registers.

DMA port-specific status.

The following fields are defined within UCB$B_TP_STAT.
TTY$V_TP_ABORT DMA abort requested on this line.

TTY$V TP_ALLOC Allocate map fork in progress.

TTY$V TP_DLLOC Deallocate map fork in progress.

2 VMS Macros Invoked by Drivers

This chapter describes VMS macros frequently used by device drivers.
When referring to the macro descriptions contained herein, you should be
aware of the following conventions:

• If an argument is enclosed in brackets, you can choose to include that
argument or omit it.

• VMS assigns values by default to certain arguments. If you omit
one of these arguments, the macro behaves as if you specified the
argument with its default value. In the macro descriptions contained
in this chapter, the format signifies such arguments by an equal sign
(_)separating the argument from its keyword. For example:

SETIPL [ip1=31]

• If an argument takes a keyword value, you should specify the keyword
value using all uppercase letters. For example:

preserve=YES
condition=RESTORE

General information about the structure of macros and their arguments
appears in the UAX MACRO and Instruction Set Reference Manual.

VMS Macros Invoked by Drivers
ADPDISP

ADPDISP

Causes a branch to a specified address given the existence of a selected
adapter characteristic.

FORMAT ADPDISP select,addrlist(,adpaddr](,crbaddrJ
(, ucbaddr] (, ecrbaddr] (,scratch=RO]

PARAMETERS select
Determines which ADP field or bit field is the basis for dispatching; and,
by implication, which adapter characteristic. See the Description section
that follows for a list of legal values for select.

addrlist
A list containing one or more pairs of arguments in the following format:

<flag, destination>

The values ADPDISP accepts for flag depend upon the adapter
characteristic specified in select and are listed in the Description section
that follows. The destination argument contains the address to which
the code generated by the invocation of ADPDISP passes control if the
specified flag is set.

~adpaddr]
Register containing the address of the adapter control block. If adpaddr
is not specified, one of the following address fields must be specified.

~crbaddrJ
Register containing the address of the channel request block.

~ucbaddr]
Register containing the address of the unit control block.

~ecrbaddr]
Registzr containing the address of the Ethernet controller data block
(ECRB).

scratch-RO]
Register, destroyed in macro invocation, used in computing the ADP
address if adpaddr is not specified.

VMS Macros Invoked by Drivers
ADPDISP

DESCRIPTION ~PDISP dispatches upon the following adapter characteristics:

select
Possible Value of flag in
addrlist Definition

ADAP_TYPE

ADDR_BITS

ADAP_MAPPING

AUTOPURGE_DP

BUFFERED_DP

DIRECT VECTOR

ODD_XFER_BDP

ODD_XFER_DDP

EXTENDED_MAPREG

QBUS

UBA, MBA, GENBI, DR, or
NULL. (See those symbols
prefixed with AT$ defined
by the $DCDEF macro in
SYS$LIBRARY:STARLET.MLB.)

18 or 22

YES or NO

YES or NO

YES or NO

YES or NO

YES or NO

YES or NO

YES or NO

YES or NO

Adapter type.

Number of adapter address bits.

Does adapter support mapping?

Does adapter support autopurging datapaths?

Does adapter support buffered datapaths?

Does adapter directly vector device interrupts?

Does adapter support odd-aligned transfers
over its buffered data paths?

Does adapter support odd-aligned transfers
over its direct data paths?

Does adapter support extended set (8192) map
registers?

Is this a Q22-bus device?

Specification of select=ADAP_TYPE causes ADPDISP to generate a
CASEW instruction using ADP$W ADPTYPE as an index into the case
table. Specification of select=ADDR BITS similarly causes ADPDISP to
dispatch from the contents of ADP$B_ADDR_BITS (16 or 22 bits). If any
of the other conditions is specified for select, ADPDISP issues a BBC or
BBS instruction on the contents of bit field ADP$V select in ADP$W_
ADPDISP FLAGS.

You cannot use a single invocation of ADPDISP to dispatch on more than
one adapter characteristic. For example, if an autopurging datapath that
supports direct vectoring is being sought, you must use the ADPDISP
macro twice.

ADPDISP requires that the address of an ADP, CRB, UCB, or ECRB be
specified. If anything other than an ADP is specified, the scratch register
is used in determining the ADP address.

VMS Macros Invoked by Drivers
ADPDISP

EXAMPLES

D
ADPDISP

ADPDISP

SELECT=ADAP_MAPPING,-

ADDRLIST=«NO, 10$>, <YES, 20$», -
ADPADDR=R3

ADPDISP transfers control to the instruction at 10$ if the adapter does
not support mapping, or to 20$ if it does. ADPDISP uses the value in R3
to locate the ADP.

SELECT=ADAP_TYPE,-

ADDRLIST=«CI, 10$>, <MBA, 20$>, <UBA, 30$», -
UCBADDR=R5,-
SCRATCH=R1

ADPDISP transfers control to 10$ if the adapter is a CI, 20$ if the adapter
is a MASSBUS adapter, and 30$ if it is a UNIBUS adapter. ADPDISP
determines the location of the ADP from a chain of pointers starting at
the UCB address specified in R5. In doing so, it destroys the contents of
scratch register R1.

ADPDISP -

SELECT=ADDR_BITS,-

ADDRLIST=«18, 10$>, <22, 20$», -
ADPADDR=R3

ADPDISP transfers control to 10$ for all adapters using an 18-bit address
and 20$ for all using a 22-bit address. The ADP address is supplied in R3.

2-4

VMS Macros Invoked by Drivers
BI NODE RESET

BI NODE RESET

Initiates BIIC self-test on the specified VAXBI node.

FORMAT BI NODE RESET csr

PARAMETERS csr
General purpose register that contains the address of the VAXBI node's
control and status register (CSR).

DESCRIPTION The BI_NODE_RESET macro uses the recommended instruction sequence
to disable arbitration on the specified VAXBI node, and sets the node
reset and self-test status bits in the BIIC CSR. The use of any instruction
sequence other than that defined by the BI_NODE_RESET macro to
perform these actions may cause an undefined condition on the VAXBI
bus.

VMS Macros Invoked by Drivers
CASE

CASE

Generates a CASE instruction and its associated table.

FORMAT CASE src,displist(,type=Wj(,limit=#0](,nmode=S^#]

PARAMETERS src
Source of the index value to be used with the CASE instruction.

displist
List of destinations to which control is to be dispatched, depending on the
value of the index.

type-W]
Data type of src (B, W, or L).

~~II)7%t=#0]
Lower limit of the value of src.

~nmode-S^#]
Addressing mode used to reference the case-table entries; the default,
short-literal mode, is good for up to 63 entries.

EXAMPLE

10$: CASE
src=ITEMC,

displist=<FIRST,SECOND, THIRD,FOURTH>

This invocation of the CASE macro expands to the following code:

CASEW ITEMC, #0, s^#«30001-30000>/2>-1
30000$:

.SIGNED_WORD

.SIGNED_WORD

.SIGNED_WORD

.SIGNED_WORD

30001$:

FIRST-30000$
SECOND-30000$
THIRD-30000$
FOURTH-30000$

VMS Macros Invoked by Drivers
CLASS CTRL INIT

CLASS CTRL INIT

Generates the common code that must be executed by the controller
initialization routine of all terminal port drivers.

FORMAT CLASS_CTRL_INIT dpt, vector

PARAMETERS dpt
Symbolic name of the port driver's driver prologue table.

vector
Address of the port driver vector table.

DESCRIPTION A terminal port driver's controller initialization routine invokes the
CLASS_CTRL_INIT macro to relocate the class and port driver vector
tables and perform other required initialization.

To use the CLASS_CTRL_INIT macro, the driver must include
an invocation of the $TZ'~~MACS definition macro (from
SYS$LIBRARY: LIB . MLB).

VMS Macros Invoked by Drivers
CLASS UNIT INIT

CLASS UNIT INIT

Generates the common code that must be executed by the unit initialization
routine of all terminal port drivers.

FORMAT CLASS UNIT INIT

DESCRIPTION A terminal port driver's unit initialization routine invokes the CLASS_
UNIT_INIT macro to perform initialization tasks common to all
port drivers. To use the CLASS_UNIT_INIT macro, the driver must
include an invocation of the $TZ'YMACS definition macro (from
SYS$LIBRARY:LIB.MLB).

The CLASS_UNIT_INIT macro binds the terminal port and class driver
into a single, complete driver by initializing the following UCB fields as
indicated:

Field Contents

UCB$L_TT_CLASS

UCB$L TT PORT

UCB$L_TT GETNXT

UCB$L TT PUTNXT

UCB$L DDT

Class driver vector table address

Port driver vector table address

Address of the class driver's get-next-character routine
(CLASS_G ETNXT)

Address of the class driver's put-next-character routine
(CLASS_PUTNXT)

Address of the terminal class driver's driver dispatch
table

Prior to invoking this macro, the unit initialization should place in RO the
address of the port driver vector table.

VMS Macros Invoked by Drivers
CPUDISP

CPUDISP

Causes a branch to a specified address according to the CPU type of the VAX
processor executing the macro code.

FORMAT CPUDISP addrlist,(environsVMS],continue=NO

PARAMETERS addrlist
List containing one or more pairs of arguments in the following format:

<CPU-type, destination>

The CPU-type parameter identifies the type or subtype of a VAX processor
for which the macro is to generate a case table entry. The CPUDISP macro
identifies the following VAX systems by type alone:

CPU Type VAX System

9AQ VAX 9000-2xx/9000-4xx

9 R R VAX 6000-4xx

9CC VAX 6000-2xx/6000-3xx/62xx/63xx

8PS VAX 8810/8820/8830

8NN VAX 8530/8550/8700/8800

790 VAX 8600/8650

8SS VAX 8200/8250/8300/8350

780 VAX-11 /780 and VAX-11 /785'

785 VAX-11 /785

750 VAX-11 /750

730 VAX-11 /730

670 VAX 4000-300

650 MicroVAX 3400/3600/3900-series system

520 VAX 3000 FT

420 VAXstation 3100/MicroVAX 3100

410 VAXstation 2000/MicroVAX 2000

60 VAXstation 3520/3540

UV2 MicroVAX II

~ Because the VAX-11/785 has the same CPU type as the VAX-11/780, the CPUDISP macro
contains special code to distinguish between the two processors. This code tests a bit within the
processor's system identification register (PR$_SID) that indicates whether it is aVAX-11/785.

VMS Macros Invoked by Drivers
CPUDISP

The CPUDISP macro identifies the following VAX systems by type and
subtype:

CPU Type Subtype VAX System

UV

CV

RV

MicroVAX II processor-based system

UV2 MicroVAX II

410 VAXstation 2000/MicroVAX 2000

CVAX processor-based system

420 VAXstation 3100/MicroVAX 3100

520 VAX 3000 FT

650 MicroVAX 3400/3600/3900-series system

9CC VAX 6200/6300-series system

60 VAXstation 3520/3540

CVAX-Rigel processor-based system

9 R R VAX 6000-4xx

670 VAX 4000-300

You can supply any combination of generic type and subtype in a single
invocation of the CPUDISP macro. Should the CPUDISP macro code be
executed on the appropriate processor, the following transfers of control
are possible:

• If you specify a generic type but no subtype, CPUDISP causes the
branch designated for the generic type to be taken for all of its
subtypes.

• If you specify one or more subtypes but not the generic type, CPUDISP
causes the branch designated for each subtype to be taken.

• If you specify both the generic type and one or more subtypes,
CPUDISP causes the branch designated for each specified subtype
to be taken. For those subtypes that you do not specify, CPUDISP
causes the branch designated for the generic type to be taken.

The destination parameter contains the address to which the code
generated by the invocation of the CPUDISP macro passes control to
continue with CPU-specific processing.

denviron-VMS]
Identification of the run-time environment of the code generated by the
CPUDISP macro. There is no need to change the default value of this
argument.

continue-NO
Specifies whether execution should continue at the line immediately
after the CPUDISP macro if the value at EXE$GB_CPUTYPE does not
correspond to any of the values specified as the CPU-type in the addrlist
argument. A fatal bugcheck of UNSUPRTCPU occurs if the dispatching
code does not find the executing processor identified in the addrlist and
the value of continue is NO.

VMS Macros Invoked by Drivers
CPUDISP

DESCRIPTION The CPUDISP macro provides a means for transferring control to a
specified destination depending on the CPU type of the executing
processor. For those processors that do not have a unique CPU type,
CPUDISP also provides the means to dispatch on a particular CPU
subtype.

To accomplish this, CPUDISP builds one or two case tables. The first
CASEB instruction uses words in the first case table to set up a transfer
based on each CPU-type specified in the addrlist argument. CPUDISP
constructs the second case table in the event it encounters a CPU subtype
in the addrlist.

CPUDISP constructs appropriate symbolic constants for each CPU-type
listed in addrlist, and compares them against the contents of EXE$GB_
CPUTYPE. These constants have the form PR$_SID_TYPCPU-type.

For each CPU subtype it encounters in the addrlist argument, CPUDISP
also constructs symbolic constants of the form PR$ XSID xx~yy, where xx
is the generic CPU type (for example CV) and yyy is the CPU subtype (420,
520, 650, 9CC, or 60 for CV). It compares the value of PR$ XSID xx~yy
against the contents of EXE$GB_CPUDATA+15.

VMS Macros Invoked by Drivers
DDTAB

DDTAB

Generates a driver dispatch table (DDS labeled devnam$DDT.

FORMAT DDTAB devnam ,(start=+lOC$RETURN]
,(unsolic=+lOC$RETURN]
functb (,cancel=+lOC$RETURN]

(, regdmp=+lOC$RETURN] (, diagbf=OJ
(, erlg6f=0] (,unitinit=+lOC$RETURN]
(, altstart=+lOC$RETURN]
(, mntver=+lOC$MNTVER]
(, cloneducb=+lOC$RETURN]

PARAMETERS devnam
Generic name of the device.

start-+lOC$RETURN]
Address of start-UO routine.

~unsolic-+lOC$RETURN]
Address of the routine that services unsolicited interrupts from the device.
Only MASSBUS device drivers use this field.

functb
Address of the driver's function decision table.

cancel-+lOC$RETURN]
Address of cancel-UO routine.

~regdm p-+IOC$RETURNJ
Address of the routine that dumps the device registers to an error message
buffer or to a diagnostic buffer.

~diagbf-0]
Length in bytes of the diagnostic buffer.

~erlgbf-0]
Length in bytes of the error message buffer.

~unitinit-+lOC$RETURN]
Address of unit initialization routine. MASSBUS drivers should use this
field rather than CRB$L_INTD+VEC$L_UNITINIT. IJNIBUS, Q22-bus,
and generic VAXBI drivers can use either one.

~altstart-+lOC$RETURN]
Address of alternate start-UO routine. To initiate this routine, a driver
FDT routine e~uts by means of VMS routine EXE$ALTQUEPKT instead of
EXE$QIODRVPKT.

2-12

VMS Macros Invoked by Drivers
DDTAB

~mntver-+lOC$MNTVER]
Address of the VMS routine that is called at the beginning and end of a
mount verification operation. The default, IOC$MNTVER, is suitable for
all single-stream disk drives. Use of this field to call any other routine is
reserved to Digital.

[cloneducb-+lOC$RETURN]
Address of routine called when a UCB is cloned by the $ASSIGN system
service.

DESCRIPTION The DDTAB macro creates a driver dispatch table (DDT). The table has
a label of devnam$DDT. Just preceding the table, DDTAB generates the
driver code program section with the following statement:

.PSECT $$$115 DRIVER

The DDTAB macro writes the address of the VMS universal executive
routine vector IOC$RETURN into routine address fields of the DDT that
are not supplied in the macro invocation (with the exception of the mntver
argument). IOC$RETURN simply executes an RSB instruction.

A plus sign (+)precedes the address of any specified routine that is part
of VMS: that is, it is an address that is not relative to the location of the
driver. No plus sign precedes the address of a routine (such as a start-UO
routine) that is part of the driver module.

EXAMPLE

DDTAB -
DEVNAM=XX, -

START=XX_START,-
FUNCTB=XX_FUNCTABLE,-

CANCEL=+IOC$CANCELIO,-
REGDMP=XXl REGDUMP,-
DIAGBF=«15*4>+«3+5+1>*4», - ;Diagnostic buffer size
ERLGBF=«15*4>+<1*4>+<EMB$L DV REGSAV» ;Error message buffer

;DDT-creation macro
;Name of device
;Start-I/0 routine
;FDT address
;Cancel-I/0 routine
;Register dumping routine

size

This code excerpt uses the DDTAB macro to create a driver dispatch table
for the XX device type. Note that because the cancel-UO routine is part of
VMS, its address is preceded by a plus sign (+).

2—~ 3

VMS Macros Invoked by Drivers
$DEF

$DEF

Defines adata-structure field within the context of a $DEFINI macro.

FORMAT $DEF sym(,alloc](,siz]

PARAMETERS sym
Name of the symbol by which the field is to be accessed.

~alloc]
Block-storage-allocation directives, one of the following: .BLKB, .BLK:W,
,.BLKL, .BLKQ, or .BLKO.

~siz]
Number of block storage units to allocate.

DESCRIPTION See the descriptions of the $DEFINI, $DEFEND, MELD, and $EQULST
macros for additional information on defining symbols for data structure
fields.

You can define a second symbolic name for a single field, using the $DEF
macro a second time immediately following the first definition, leaving the
alloc argument blank in the first definition. The following example does
this, equating SYNOTIYM2 with LABEL2:

$DEFINI JLB ;Start structure definition

$DEF LABELl .BLKL 1 ;First JLB field

$DEF SYNONYM2 ;Synonym for LABEL2 field

$DEF LABEL2 .BLKL 1 ;Second JLB field

$DEF LABEL3 .BLKL 1 ;Third JLB field

$DEFEND JLB ;End of JLB structure

For another example of the use of the $DEF macro, see the description of
the $DEFINI macro.

VMS Macros Invoked by Drivers
$DEFEND

$DEFEND

Ends the scope of the $DEFINI macro, thereby completing the definition of
fields within a data structure.

FORMAT $DEFEND struc

PARAMETERS struc
Name of the structure that is being defined.

DESCRIPTION See the descriptions of the $DEFINI, _YIELD, and $EQULST macros for
additional information on defining symbols for data structure fields.

VMS Macros Invoked by Drivers
$DEFINI

$DEFINI

Begins the definition of a data structure.

FORMAT $DEFINI struc(,g61=LOCALj(,dot=0]

PARAMETERS strut
Name of the data structure that is being defined.

~gbI-LOCAL]
Specifies whether the symbols defined for this data structure are to be
local or global symbols. The default is to make them local.

To make the definitions of symbols global, you must specify GLOBAL for
the value of the gbl argument.

dot-o]
Offset from the beginning of the data structure of the first field to be
defined. The $DEFINI macro moves this value into the current location
counter (.).

DESCRIPTION The $DEF macro defines fields within the structure specified by the
invocation of the $DEFINI macro, and the $DEFEND macro ends the
definition. See the descriptions of the _YIELD and $EQULST macros for
additional information on defining symbols for data structure fields.

EXAMPLE

$DEFINI UCB „ UCB$K LCL DISK LENGTH

;Start UCB extension, begin definitions

at end of local disk UCB extension

$DEF UCB_W_DL_PBCR .BLKW 1 ;Partial byte count
$DEF UCB_W_DL_CS .BLKW 1 ;Control status register
$DEF UCB_W_DL_BA .BLKW 1 ;Bus address register
$DEF UCB_A_DL_BUF_PA .BLKL 1 ;Physical buffer physical address
$DEF UCB_K_DL_LEN .BLKW 1 ;Length of extended UCB

$DEFEND UCB

This code excerpt, when assembled in VMS Version 5.0, produces the
following symbol listing:

UCB_A_DL_BUF_PA

UCB_K_DL_LEN

UCB$K_LCL_DISK_LENGTH

UCB_W_DL_BA

UCB_W_DL_CS

UCB W DL PBCR

OOOOOOD2
OOOOOOD6

= OOOOOOCC
OOOOOODO
OOOOOOCE
OOOOOOCC

2-16

VMS Macros Invoked by Drivers
DEVICELOCK

DEVICELOCK

Achieves synchronized access to a device's database as appropriate to the
processing environment.

FORMAT DEVICELOCK (lockaddr](,lockipl](,savipl](,condition]
(,preserve=YESJ

PARAMETERS ~lockaddr]
Address of the device lock to be obtained. If lockaddr is not present,
DEVICELOCK presumes that R5 contains the address of the UCB and
uses the value at UCB$L_DLCK(R5) as the lock address.

~lockipl]
Location containing the IPL at which the device database is synchronized.
In a uniprocessing environment, the DEVICELOCK macro sets IPL to the
specified lockipl; if no lockipl is specified, it obtains the synchronization
IPL from the device lock's data structure. In a multiprocessing
environment, the VMS routine called by DEVICELOCK raises IPL to
the IPL value contained in the device lock's data structure, regardless of
whether the lockipl argument is present.

Digital recommends that you specify a lockipl value to facilitate
debugging.

~savipl]
Location at which to save the current IPL.

jcondition]
Indication of a special use of the macro. The only defined condition
is NOSETIPL, which causes the macro to omit setting IPL. In some
instances, setting IPL is undesirable or unnecessary when a driver obtains
a device lock. For example, when an interrupt service routine issues the
DEVICELOCK macro, the dispatching of the device interrupt has already
raised IPL to device IPL.

preserve-YES]
Indication that the macro should preserve RO across the invocation. If
you do not need to retain the contents of R0, specifying preserve=NO can
enhance system performance.

DESCRIPTION In a uniprocessing environment, the DEVICELOCK macro raises IPL to
lockipl (if condition=NOSETIPL is not specified).

In a multiprocessing environment, the DEVICELOCK macro performs the
following actions:

• Preserves RO through the macro call (if preserve=YES is specified).

• Stores the address of the device lock in R0.

VMS Macros Invoked by Drivers
DEVICELOCK

• Calls either SMP$ACQUIREL or SMP$ACQNOIPL, depending upon
the presence of condition=NOSETIPL. SMP$ACQUIREL raises IPL
to device IPL prior to obtaining the lock, determining appropriate IPL
from the device lock's data structure (SPL$B_IPL).

In both processing environments, the DEVICELOCK macro performs the
following tasks:

• Preserves the current IPL at the specified location (if savipl is
specified)

• Sets the SMP-modified bit in the driver prologue table (DPT$V
SMPMOD in DPT$L_FLAGS)

EXAMPLE

L1•

DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),-

LOCKIPL=UCB$B_DIPL (R5) , -

SAVIPL=- (SP) , -

PRESERVE=YES

SETIPL #31

BBc #UCB$v PowER,-

UCB$W STS (R5) , L1

;Lock device access

Raise IPL

;Save current IPL

Save RO

;Disable all interrupts

;If clear - no power failure

;Service ower failure!
p

DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5),- ;Unlock device access

NEWIPL= (SP) +, - ;Restore IPL

PRESERVE=YES ;Save RO

BRW RETREG ;Exit

;Return for no power failure

WFIKPCH RETREG,#2 ;Wait for interrupt

The start-I/O routine of DLDRIVER invokes the DEVICELOCK macro
to synchronize access to the device's registers and UCB fields. Thus
synchronized at device IPL, and holding the device lock in a VMS
multiprocessing environment, the routine raises IPL to IPL$_POWER
(IPL 31) to check for a power failure on the local processor. If a power
failure has occurred, the routine releases the device lock and pops the
saved IPL from the stack before servicing the failure. If a power failure
has not occurred, the routine branches to set up the I/O request. Note
that, in this instance, it is the wait-for-interrupt routine, invoked by the
WFIKPCH macro, that issues the DEVICEUNLOCK macro and pops the
saved IPL from the stack.

2-18

VMS Macros Invoked by Drivers
DEVICEUNLOCK

DEVICEUNLOCK

Relinquishes synchronized access to a device's database as appropriate to
the processing environment.

FORMAT DEVICEUNLOCK (lockaddr](,newipl](,condition]
(,preserve=YES]

PARAMETERS ~lockaddr]
Address of the device lock to be released or restored. If lockaddr is not
present, DEVICEUNLOCK presumes that R5 contains the address of the
UCB and uses the value at UCB$L_DLCK(R5) as the lock address.

~newipl]
Location containing the IPL to which to lower. A prior invocation of the
DEVICELOCK macro may have stored this IPL value.

condition]
Indication of a special use of the macro. The only defined condition
is RESTORE, which causes the macro—in a VMS multiprocessing
environment—to call SMP$RESTOREL instead of SMP$RELEASEL.
This releases a single acquisition of the spin lock by the local processor.

preserve-YES]
Indication that the macro should preserve RO across an invocation. If you
do not need to retain the contents of R0, specifying preserve=NO can
enhance system performance.

DESCRIPTION In a uniprocessing environment, the DEVICEUNLOCK macro lowers IPL
to newipl. If an interrupt is pending at the current IPL or at any IPL
above newipl, the current procedure is immediately interrupted.

In a multiprocessing environment, the DEVICEUNLOCK macro performs
the following tasks:

• Preserves RO through the macro call (if preserve=YES is specified}.

• Stores the address of the device lock in R0.

• Calls SMP$RELEASEL or, if condition=RESTORE is specified,
SMP$RESTOREL.

• Moves any specified newipl into the local processor's IPL register
(PR$_IPL). If an interrupt is pending at the current IPL or at any IPL
above newipl, the current procedure is immediately interrupted.

In either processing environment, the DEVICELOCK macro sets the
SMP-modified bit in the driver prologue table (DPT$V SMPMOD in
DPT$L_FLAGS).

VMS Macros Invoked by Drivers
DEVICEUNLOCK

EXAMPLE

DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),- ;Lock device access

CONDITION=NOSETIPL,- ;Do not set IPL

PRESERVE=NO ;Do not preserve RO

20$: MOVQ UCB$L_FR3(R5),R3 ;Restore driver context

JSB @UCB$L FPC(R5) ;Call driver at interrupt return address

40$: DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5),- ;Unlock device access

PRESERVE=NO ;Do not preserve RO

When the device interrupts, DLDRIVER's interrupt service routine
immediately obtains the device lock so that it can examine device registers
and preserve their contents. It then calls the driver's start-UO routine at
the location in which it initiated device activity. The routine forks and
returns control to the interrupt service routine, which releases the device
lock.

VMS Macros Invoked by Drivers
DPTAB

DPTAB

Generates a driver prologue table (DPT) in a program section called $$$105_
PROLOGUE.

FORMAT DPTAB end,adapter,(flags=OJ,ucbsize,(unloadj
(maxunits=8],~defunits=l],(deliver),(vector]
,name(,psect=$$$105 PROLOGUE]
(,smp=NO)(,decodej

PARAMETERS end
Address of the end of the driver.

adapter
Type of adapter (as indicated by the symbols prefixed by AT$ defined by
the $DCDEF macro in SYS$LIBRARY:STARLET.MLB). The adapter type
can be any of the following:

UBA UNIBUS adapter or Q22-bus interface

MBA MASSBUS adapter

GENBI Generic VAXBI adapter

DR DR device

NULL No actual device for driver

flags-0]
Flags used in loading the driver. Drivers use the following flags:

DPT$M SVP

DPT$M_NOUNLOAD

Indicates that the driver requires a permanently allocated
system page. Disk drivers use this SPTE during
ECC correction and when using the system routines
IOC$MOVFRUSER and IOC$MOVTOUSER.

When this flag is set, the driver-loading procedure
allocates a permanent system page-table entry (SPTE}
for the device. It stores an index to the virtual address of
the SPTE in UCB$L_SVPN when it creates the UCB. A
driver can calculate the system virtual address of the page
corresponding to this index by using the following formula:

{index * 20016 -I- 8000000016

Indicates that the driver cannot be reloaded. When this bit
is set, the driver can be unloaded only by rebooting the
system.

VMS Macros Invoked by Drivers
DPTAB

DPT$M_SMPMOD Indicates that the driver has been designed to execute
within a VMS multiprocessing environment. Use
of any of the VMS multiprocessing synchronization
macros (DEVICELOCK/DEVICEUNLOCK, FORKLOCK
/FORKUNLOCK, or LOCK/UNLOCK) automatically sets
this flag, as long as the code using the macro resides in
the same module as the invocation of DPTAB.

ucbsize
Size in bytes of each UCB the driver-loading procedure creates for
devices supported by the driver. This required argument allows drivers
to extend the UCB to store device-dependent data describing an UO
operation. Figure 1-20 describes the VMS-defined extensions to the UCB
and discusses the means by which a driver can define adevice-specific
extension.

unload]
Address of the driver routine invoked by the SYSGEN RELOAD command
before it unloads an old version of the driver to load a new version.
The driver-loading procedure calls this routine before reinitializing all
controllers and device units associated with the driver.

jmaxunits.8]
Maximum number of units that this driver supports on a controller. This
field affects the size of the IDB created by the driver-loading procedure.
If you omit the maxunits argument, the default is eight units. You can
override the value specified in the DPT by using the /MAXUNITS qualifier
to the SYSGEN CONNECT command.

~defunits-l]
Maximum number of UCBs to be created by SYSGEN's
AUTOCONFIGURE command (one for each device unit to be configured).
The unit numbers assigned are zero through defunits-1.

If you do not specify the deliver argument, AUTOCONFIGURE creates
the number of units specified by defunits. If you specify the address of a
unit delivery routine in the deliver argument, AUTOCONFIGURE calls
that routine to determine whether to create each UCB automatically.

deliver]
Address of the driver unit delivery routine. The unit delivery routine
determines which device units supported by this driver the SYSGEN
AUTOCONFIGURE command should configure automatically. If you omit
the deliver argument, the AUTOCONFIGUR,E command creates the
number of units specified by the defunits argument.

vector]
Address of adriver-specific transfer vector. A terminal port driver specifies
the address of its vector table in this argument.

name
Name of the device driver. The driver-loading procedure will permit the
loading of only one copy of the driver associated with this name. A driver
name can be up to 11 alphabetic characters and, by convention, is formed
by appending the string DRIVER to the 2-alphabetic-character generic
device name, for example, QBDRIVER. (Digital reserves to customers
driver names beginning with the letters J and Q.)

2-22

VMS Macros Invoked by Drivers
DPTAB

~psect-$$$105 PROLOGUE]
Program section in which the DPT is created. The default value of this
argument is required for all non-Digital-supplied device drivers.

~smp=NO]
Indication of whether the driver is suitably synchronized to execute in
a VMS multiprocessing system. Note that use of any of the spin lock
synchronization macros in a device driver causes the DPTAB macro to
indicate multiprocessing synchronization.

decode]
Offset to name used by workstation windowing software.

DESCRIPTION The DPTAB macro, in conjunction with invocations of the DPT_STORE
macro, creates a driver prologue table (DPT). The DPTAB macro places
information in the DPT that allows the driver-loading procedure to identify
the driver and the devices it supports. The DPTAB macro, in invoking the
$SPLCODDEF definition macro, also defines the spin lock indexes used in
the DPT_STORE, FORKLOCK, and LOCK macros.

EXAMPLE

DPTAB

DPT_STORE

DPT_STORE

DPT_STORE

DPT_STORE

DPT_STORE

DPT_STORE

DPT_STORE

DPT_STORE

DPT_STORE

DPT_STORE

DPT_STORE

DPT STORE

END=XA_END,-

ADAPTER=UBA, -
FLAGS=<DPT$M SVP!-

DPT$M_SMPMOD>,-

UCBSIZE=UCB$K SIZE,-

NAME=XADRIVER

INIT

UCB, UCB$B_FLCK, B, -
SPL$C_IOLOCK8

UCB, UCB$B_DIPL, B, 22
UCB, UCB$L_DEVCHAR, L,

DEV$M_AVL!-
DEV$M_RTM!-
DEV$M_ELG!-
DEV$M_IDV!-
DEV$M_ODV>

UCB, UCB$B_DEVCLASS, B, -
DC$_REALTIME

UCB, UCB$B_DEVTYPE, B, -
DT$_DR11W

UCB, UCB$W_DEVBUF S I Z , W, -
XA DEF BUFSIZ

REINIT
DDB, DDBL_DDT, D, XADDT
CRB,CRB$L_INTD+VEC$L ISR,

XA_INTERRUPT ;Address

CRB,CRB$L_INTD+VEC$L INIT D,-

XA_CONTROL_INIT ;Address of controller

;End of initialization END

<-

;DPT-creation macro

;End of driver label
;Adapter type
;Allocate permanent SPTE

;Multiprocessing driver
UCB size

;Driver name
;Start of load initialization table

;Fork lock index
;Device interrupt IPL
;Device characteristics
;Available
;Real time device
;Error logging enabled

Input device
;Output device

;Device class

;Device type

Default buffer size
;Start of reload initialization table

;Address of DDT
D

IAL

of interrupt service routine

initialization routine

This excerpt from ~:ADRIVER.l~/IAR contains the DPTAB macro and the
series of DPT_STORE macros that create its driver prologue table.

2-23

VMS Macros Invoked by Drivers
DPT STORE

DPT STORE

Instructs the VMS driver-loading procedure to store values in a table or data
structure.

FORMAT DPT_STORE str type,str off,oper,exp(,pos](,sizeJ

PARAMETERS str type
Type of data structure (CRB, DDB, IDB, ORB, or UCB) into which the
driver-loading procedure is to store the specified data, or a label denoting
a table marker. Table marker labels indicate the start of a list of DPT_
STORE macro invocations that store information for the driver-loading
procedure in the driver initialization table and driver reinitialization table
sections of the DPT. If this argument is a table marker label, no other
argument is allowed. The following labels are used:

INIT Indicates the start of fields to initialize when the driver is loaded

REINIT Indicates the start of additional fields to initialize when the driver is loaded
and reinitialized when the driver is reloaded

END Indicates the end of the two lists

str off
Unsigned offset into the data structure in which the data is to be stored.
This value cannot be more than 65,535 bytes.

oper
Type of storage operation, one of the following:

Type Meaning

B

W

L

D

V

Write a byte value.

Write a word value.

Write a longword value.

Write an address relative to the beginning of the driver.

Write a bit field. If you specify a V in the oper argument, the driver-
loading procedure uses the exp, pos, and size arguments as operands
to an INSV instruction.

If an at sign (C~) precedes the oper argument, the exp argument indicates
the address of the data that is to be stored and not the data itself.

exp
Expression indicating the value with which the driver-loading procedure
is to initialize the indicated field. If an at-sign character (@)precedes the
oper argument, the exp argument indicates the address of the data with
which to initialize the field. For example, the following macro indicates
that the contents of the location DEVICE_CHARS are to be written into
the DEVCHAR field of the UCB.

2-24

DPT STORE UCB,UCB$L DEVCHAR,@L,DEVICE CHARS

VMS Macros Invoked by Drivers
DPT STORE

epos]
Starting bit position within the specified field; used only if oper=V.

~SIZ@]
Number of bits to be written; used only if open=V.

DESCRIPTION The DPT_STORE macro places information in the DPT that the driver-
loading procedure uses to load specified values into specified fields. The
DPT_STORE macro accepts two lists of fields:

• Fields to be initialized only when a driver is first loaded

• Fields to be initialized when a driver is first loaded and reinitialized if
the driver is reloaded

The DPTAB macro stores the relative addresses of these two lists, called
initialization and reinitialization tables, in the DPT. A driver constructs
the initialization tables by following the DPTAB macro with one or more
invocations of the DPT_STORE macro.

Drivers use the DPT STORE macro with the INIT table marker label to
begin a list of DPT_STORE invocations that supply initialization data for
the following fields:

UCB$B_FLCK Index of the fork lock under which the driver performs
fork processing. Fork lock indexes are defined by the
$SPLCODDEF definition macro (invoked by DPTAB) as
follows:

IPL Fork Lock Index

8 SPL$C_IOLOCK8

9 SPL$C_IOLOCK9

10 SPL$C_IOLOCKI O

11 SPL$C_IOLOCKII

UCB$B_DIPL Device interrupt priority level.

Other commonly initialized fields are as follows:

UCB$L DEVCHAR

UCB$B_DEVCLASS

UCB$B_DEVTYPE

UCB$W DEVBUFSIZ

UCB$Q DEVDEPEND

Device characteristics.

Device class.

Device type.

Default buffer size.

Device-dependent parameters.

Drivers use the DPT_STORE macro with the R,EINIT table marker label
to begin a list of DPT_STORE invocations that supply initialization and
reinitialization data for the following fields:

DDB$L DDT Driver dispatch table. Every driver must specify a value
for this field.

VMS Macros Invoked by Drivers
DPT STORE

CRB$L_INTD+
VEC$L_ISR

CRB$L_INTD2+
VEC$L_ISR

CRB$L INTD+
V EC$L INITIAL

CRB$L INTD+
VEC$L_UNITINIT

Interrupt service routine.

Interrupt service routine for second interrupt vector.

Controller initialization routine.

Unit initialization routine (for UNIBUS, Q22 bus, and
generic VAXBI device drivers). Note that MASSBUS
drivers must specify the address of the unit initialization
routine in an invocation of the DDTAB macro.

For an example of the use of the DPT_STORE macro, see the description
of the DPTAB macro.

VMS Macros Invoked by Drivers
DSBINT

DSBINT

Blocks interrupts from occurring on the local processor at or below a specified
IPL.

FORMAT DSBINT (ip1=31J(,dst= (SP)]
(, en viron=MULTIPROCESSOR]

PARAMETERS ~ip1-31]
IPL at which to block interrupts. If no ipl is specified, the default is IPL
31, which blocks all interrupts.

~dst--(SP)J
Location in which to save the current IPL. If no destination is specified,
the current IPL is pushed onto the stack.

[en viron-MULTIPROCESSOR]
Processing environment in which the DSBINT synchronization macro
is to be assembled. If you do not specify environ, or if you do specify
environsMiTLTIPROCESSOR, the DSBINT macro generates the
following assembly-time warning message, where acx is an IPL above
IPL 2:

%MACRO-W-GENWARN, Generated WARNING: Raising IPL to #xx provides no multiprocessing synchronization

If you are certain that the purpose of the macro invocation is to block only
local processor events, you can disable the warning message by including
environ=UNIPROCESSOR in the invocation.

DESCRIPTION The DSBINT macro first stores the current IPL of the local processor and
then moves the specified IPL into the processor's IPL register (PR$_IPL}.

Note that the DSBINT and ENBINT macros provide full synchronization
only in a uniprocessing environment. In a multiprocessor configuration,
DSBINT and ENBINT are suitable only for blocking events on the local
processor. To provide synchronized access to system resources and devices
in a multiprocessing environment, you must use the DEVICELOCK
/DEVICEUNLOCK, FORKLOCK/FORKUNLOCK, and LOCKlUNLOCK
macros.

2-27

VMS Macros Invoked by Drivers
ENBINT

ENBINT

Lowers the local processor's IPL to a specified value, thus permitting interrupts
to occur at or beneath the current IPL.

FORMAT ENBINT (src=(SP)+]

PARAMETERS
Location containing the IPL to be restored to the processor IPL register
(PR$_IPL) of the local processor. If you do not specify a value in src,
ENBINT moves the value on the top of the stack into PR$_IPL.

DESCRIPTION The ENBINT macro complements the actions of the DSBINT macro,
restoring an IPL value to PR$_IPL. Procedures invoke this macro to lower
IPL to a previously saved level. If an interrupt is pending at the current
IPL or at any IPL above the IFL specified by src, the current procedure is
immediately interrupted.

Note that the DSBINT and ENBINT macros only provide full
synchronization in a uniprocessor environment. In multiprocessor
configurations, DSBINT and ENBINT are only suitable for blocking
events on the local processor. To provide synchronized access to system
resources and devices in a multiprocessing environment, you must use
the DEVICELOCK/DEVICEUNLOCK, FORKLOCK/FORKUNLOCK, and
LOCK/UNLOCK macros.

VMS Macros Invoked by Drivers
$EQULST

$EGIULST

FORMAT

PARAMETERS

Defines a list of symbols and assigns values to the symbols.

$EQULST prefix,~gb1=LOCAL],init,~incr=lJ,list

prefix
Prefu~ to be used in forming the names of the symbols.

~gbl_LOCAL]
Scope of the definition of the symbol, either LOCAL, the default, or
GLOBAL.

init
Value to be assigned to the first symbol in the list.

jincr~ 1J
Increment by which to increase the value of each succeeding symbol in the
list. The default is 1.

list
List of symbols to be defined. Each element in the list can have one of the
following forms:

<symbol> where symbol is the string appended to the prefix,
forming the name of the symbol; the value of the symbol is assigned
based on the values of init and incr.

<symbol,value> where symbol is the string that is appended to
the prefix, forming the name of the symbol, and value specifies the
value of the symbol.

DESCRIPTION See the descriptions of the $DEFINI and YIELD macros for additional
information on defining symbols for data structure fields.

VMS Macros Invoked by Drivers
$EQULST

EXAMPLE

$EQULST XA_K_, , 0 , 1, <-
<fnctl, 2>-
<fnct2, 4>-
<fnct3, 8>-
<statusa,2048>-
<statusb,1024>-
<statusc,512>-

;Define CSR bit values

This code excerpt produces the following symbols:

XA_K_FNCTl = 00000002

XA_K_FNCT2 = 00000004

XA_K_FNCT3 = 00000008

XA_K_STATUSA = 00000800

XA K_STATUSB = 00000400

XA_K_STATUSC = 00000200

VMS Macros Invoked by Drivers
FIND CPU DATA

FIND CPU DATA

Locates the start of the current process's per-CPU database area (CPU).

FORMAT FIND_CPU_DATA reg(,amod=G^)~istack=NO]

PARAMETERS reg
Register to receive the base virtual address of the current processor's
per-CPU database structure (CPU)).

~amod-G"]
Addressing mode.

~istack-NO]
Mechanism by which the base of the per-CPU database structure is
calculated. Use istack=YES used only when it is certain that the
processor is executing on the interrupt stack. The mechanism used when
istack=NO is somewhat slower, but works whether the processor is
executing on the interrupt stack or kernel stack.

DESCRIPTION The FIND_CPU_DATA macro loads the starting virtual address of the
current processor's per-CPU database (CPU) into the specified register. A
driver generally invokes the FIND_CPU_DATA macro in the process of
determining the current process of the current CPU when executing in
system context.

Such a driver must adhere to the following rules:

• It must invoke the FIND CPU DATA macro in kernel mode at or
above IPL$_RESCHED.

• It must ensure that it will not be rescheduled after issuing the macro
while it is using the information returned by FIND_CPU_DATA. It
typically does this by remaining at IPL$_RESCHED or greater.

EXAMPLE

FIND_CPU_DATA RO

MOVL CPU$L CURPCB (RO) , R1

The FIND_CPU_DATA macro returns the starting virtual address of
the current processor's per-CPU database in R0. The subsequent MOVL
instruction obtains the address of the process currently active on that
processor and places it in Rl.

VMS Macros Invoked by Drivers
FORK

FORK

Creates a fork process, in which context the code that follows the macro
invocation executes.

FORMAT FORK

DESCRIPTION The FORK macro calls EXE$FORK to create a fork process. When the
FORK macro is invoked, the following registers must contain the values
listed:

Register Contents

R3 Contents to be placed in R3 of the fork process

R4 Contents to be placed in R4 of the fork process

R5 Address of fork block

00(SP) Address of caller's caller

Unlike EXE$IOFORK, EXE$FORK does not disable device timeouts by
clearing the UCB$V TIM bit in the field UCB$L_STS.

VMS Macros Invoked by Drivers
FORKLOCK

FORKLOCK

Achieves synchronized access to a device driver's fork database as
appropriate to the processing environment.

FORMAT FORKLOCK (lock](,lockipl]~savipl](,preserve=YES]
(,fip1=N0]

PARAMETERS flock]
Index of the fork lock to be obtained. If the lock argument is not present
in the macro invocation, FORKLOCK presumes that R5 contains the
address of the fork block and uses the value at FKB$B_FLCK(R5) as the
lock index.

~lockipl]
Location containing the IPL at which the fork database is synchronized.
Although the value of this argument is ignored by the macro, Digital
recommends that you specify a lockipl value to facilitate debugging.

(savipl]
Location at which to save the current IPL.

preserve-YES]
Indication that the macro should preserve RO across the invocation. If
you do not need to retain the contents of R0, specifying preserve=NO can
enhance system performance.

~tipl-NO]
Indication that the macro does not need to determine whether the contents
of the lock argument or FKB$B_FLCK(R5) is a fork lock index or a fork
IPL. The FORKLOCK macro ignores the contents of this argument in a
multiprocessing environment.

The VMS fork dispatcher uses fip1=YES to determine whether a fork block
it is servicing contains a fork lock index or a fork IPL. Because a device
driver initializes offset UCB$B_FLCK (also known as UCB$B_FIPL) in
the fork block, it does not need to determine its contents when it issues a
FORKLOCK macro.

DESCRIPTION In a uniprocessing environment, the FORKLOCK macro raises IPL
according to one of the following methods:

• It sets IPL to the IPL that corresponds to the fork lock index in the
spin lock IPL vector (SMP$AR,_IPLVEC).

• If you specify fip1=YES, the FORKLOCK macro takes the following
actions:

If offset FKB$B_FLCK (FKB$B_FIPL) contains a fork lock index,
it sets IPL to the IPL that corresponds to the fork lock index in the
spin lock IPL vector (SMP$AR_IPLVEC).

2-33

VMS Macros Invoked by Drivers
FORKLOCK

If offset FKB$B_FLCK (FKB$B_FIPL) contains a fork IPL, it sets
IPL to that fork IPL.

In a multiprocessing environment, the FORKLOCK macro stores the
fork lock index in RO and calls SMP$ACQUIRE. SMP$ACQUIRE uses
the value in RO to locate the fork lock structure in the system spin lock
database (a pointer to which is located at SMP$AR_SPNLKVEC). Prior to
securing the fork lock, SMP$ACQUIRE raises IPL to its associated IPL

In both processing environments, the FORKLOCK macro performs the
following tasks:

• Preserves RO through the macro call (if preserve=YES is specified)

• Preserves the current IPL at the specified location (if savipl is
specified)

• Sets the SMP-modified bit in the driver prologue table (DPT$V
SMPMOD in DPT$L_FLAGS)

EXAMPLE

FORKLOCK -

LOCK=UCB$B_FLCK (R5) , -

PRESERVE=NO
INCW UCB$W_QLEN (R5)
BBSS #UCB$V BSY, UCB$W STS (R5) ,

20$
PUSHL R5
BSBW IOC$INITIATE
POPL R5
FORKUNLOCK -

LOCK=UCB$B_FLCK (R5) , -
NEWIPL= (SP) +, -

PRESERVE=NO
RSB

20$:

;Lock fork database
;Save the current IPL
;Do not preserve RO
;Bump device queue length

;If set, device is busy
;Save UCB address
Initiate I/O function

;Restore UCB address

;Unlock fork database
;Restore previous IPL
;Do not preserve RO

;Place IRP in UCB pending-I/O queue

The VMS routine that determines whether a device can immediately
service an UO request synchronizes its access to the fork database by
invoking the FORKLOCK macro. The FORKLOCK macro raises IPL to
fork IPL and, in a multiprocessing environment, obtains the corresponding
fork lock.

Thus synchronized, the VMS routine tests a bit in the UCB to determine
whether the device is busy. If the device is not busy, VMS calls a routine
that initiates driver processing of the I/O request, still at fork IPL and
holding the fork lock. Later, possibly with an invocation of the WFIKPCH
macro, the driver start-UO routine returns control to this routine, which
issues the FORKUNLOCK macro to relinquish fork level synchronization.

2-34

VMS Macros Invoked by Drivers
FORKUNLOCK

FORKUNLOCK

Relinquishes synchronized access to a device driver's fork database as
appropriate to the processing environment.

FORMAT FORKUNLOCK (lock](,newipl](,condition]
(,preserve=YES]

PARAMETERS flock]
Index of the fork lock to be released or restored. If lock is not present,
FORKUNLOCK assumes that R5 contains the address of the fork block
and uses the value at FKB$B_FLCK(R5) as the fork lock index.

~newipl]
Location containing the IPL to which to lower. A prior invocation of the
FORKLOCK macro may have stored this IPL value.

condition]
Indication of a special use of the macro. The only defined condition
is RESTORE, which causes the macro—in a VMS multiprocessing
environmen~to call SMP$RESTORE instead of SMP$RELEASE. This
releases a single acquisition of the fork lock by the local processor.

(preserve- YES]
Indication that the macro should preserve RO across an invocation. If you
do not need to retain the contents of R0, specifying preserve=NO can
enhance system performance.

DESCRIPTION In a uniprocessing environment, the FORKUNLOCK macro lowers IPL to
newipl. If an interrupt is pending at the current IPL or at any IPL above
newipl, the current procedure is immediately interrupted.

In a multiprocessing environment, the FORKUNLOCK macro performs the
following tasks:

• Preserves RO through the macro call (if preserve=YES is specified).

• Stores the fork lock index in R0.

• Calls SMP$RELEASE or, if condition=RESTORE is specified,
SMP$RESTORE .

• Moves any specified newipl into the local processor's IPL register
(PR$_IPL). If an interrupt is pending at the current IPL or at any IPL
above newipl, the current procedure is immediately interrupted.

VMS Macros Invoked by Drivers
FORKUNLOCK

In either processing environment, the FORKUNLOCK macro sets the
SMP-modified bit in the driver prologue table (DPT$V SMPMOD in
DPT$L_FLAGS).

For an example of the use of the FORKUNLOCK macro, see the
description of the FORKLOCK macro.

VMS Macros Invoked by Drivers
FUNCTAB

FUNCTAB

Creates a driver's function decision table (FDT) and generates FDT entries.

FORMAT FUNCTAB (actionJ,codes

PARAMETERS faction]
Address of an FDT routine that VMS calls when preprocessing an UO
request whose function code matches a function indicated in the codes
argument. A plus sign (+) precedes the address of any specified FDT
routine that is part of VMS. No plus sign precedes the address of an FDT
routine that is contained within the driver module.

You cannot specify an action argument in a driver's first two invocations
of the FUNCTAB macro.

codes
List of UO function codes that VMS preprocessing services by calling the
FDT routine specified in the action argument of the FITNCTAB macro
invocation. The macro expansion prefixes each code with the string IO$_;
for example, READVBLK expands to IO$_READVBLK

DESCRIPTION A device driver uses several invocations of the FUNCTAB macro to
generate the three components of a function decision table:

• The list of valid UO function codes

• The list of buffered I/O function codes

• One or more FDT entries

The first two invocations of the FUNCTAB macro in a driver generate the
lists of valid UO functions and buffered UO functions, respectively. These
invocations include the codes argument, but not the action argument. If
no buffered UO functions are defined for the device, the codes argument
to the second invocation of the FUNCTAB macro specifies an empty list.

Each succeeding invocation of the FUNCTAB macro generates an FDT
entry. Each FDT entry specifies all or a subset of the valid UO function
codes and the address of an FDT routine that performs UO preprocessing
for those function codes. You can specify any valid UO function code in
more than one of these FUNCTAB macro invocations, thus causing more
than one FDT routine to be called for a single valid UO function code.

VMS Macros Invoked by Drivers
FUNCTAB

EXAMPLE

XX FUNCTABLE:

FUNCTAB ~-
<READLBLK, -

READPBLK, -
READVBLK, -
SENSEMODE,-

SENSECHAR, -
SETMODE, -
SETCHAR, -

FUNCTAB ,-

<READLBLK, -
READPBLK, -
READVBLK,-

SENSEMODE,-

SENSECHAR, -
SETMODE,-

SETCHAR, -

FUNCTAB XX_READ,-

<READLBLK,-

READPBLK, -
READVBLK, -

FUNCTAB +EXE$SETMODE,-

<SETCHAR, -
SETMODE,-

FUNCTAB +EXE$SENSEMODE,-

<SENSECHAR, -
SENSEMODE,-

;Function decision table
Valid functions

;Read logical block
;Read physical block
;Read virtual block
;Sense reader mode
;Sense reader characteristics

Set reader mode
;Set reader characteristics

Buffered-I/0 functions
;Read logical block
;Read physical block
;Read virtual block
;Sense reader mode
;Sense reader characteristics
;Set reader mode
;Set reader characteristics

;Read function FDT routine
;Read logical block
;Read physical block
;Read virtual block

;Set mode/characteristics FDT routine
;Set reader characteristics

Set reader mode

;Sense mode/characteristics FDT routine
;Sense reader characteristics
;Sense reader mode

This function decision table specifies that the routine XX_READ be
called for all read functions that are valid for the device. XX READ
appears later in the driver module. VMS UO preprocessing will call
routines EXE$SETMODE and EXE$SENSEMODE for the device's set-
characteristics and sense-mode functions. Because each of these routines
is part of VMS, a plus sign (+)precedes its name in the FUNCTAB macro
argument.

2-38

VMS Macros Invoked by Drivers
IFNORD, IFNOWRT, IFRD, IFWRT

IFNORD, IFNOWRT, IFRD, IFWRT

Determines the read or write accessibility of a range of memory locations.

FORMAT IFNORD
IFNOWRT
`IFRD
IFWRT

siz , adr , dest ~, mode=#0]

PARAMETERS siz
Offset of the last byte to check from the first byte to check, a number less
than or equal to 512.

adr
Address of first byte to check.

Best
Address to which the macro transfers control, according to the following
conditions:

Macro Condition

IFNORD If either of the specified bytes cannot be read in the specified access
mode

IFNOWRT If either of the specified bytes cannot be written in the specified
access mode

IFRD If both bytes can be read in the specified access mode

IFWRT If both bytes can be written in the specified access mode

mode-#0]
Mode in which access is to be checked; zero, the default, causes the check
to be performed in the mode contained in the previous-mode field of the
current PSL.

DESCRIPTION The IFNORD and IFRD macros use the PROBER instruction to check
the read accessibility of the specified range of memory by checking the
accessibility of the first and last bytes in that range. The IFNORD macro
passes control to the specified destination if either of the specified bytes
cannot be read in the specified access mode. The IFRD macro transfers
control if both bytes can be read in the specified access mode. Otherwise,
the macros transfer to the next in-line instruction.

The IFNOWRT and IFWRT macros use the PROBEW instruction to check
the write accessibility of the specified range of memory by checking the
accessibility of the first and last bytes in that range. The IFNOWRT
macro passes control to the specified destination if either of the specified

2-39

VMS Macros Invoked by Drivers
IFNORD, IFNOWRT, IFRD, IFWRT

bytes cannot be written in the specified access mode. The IFWRT macro
transfers control to the specified destination if both bytes can be written
in the specified access mode. Otherwise, the macros transfer to the next
in-line instruction.

EXAMPLE

MOVZWL $SS ACCVIO,RO ;Assume read access failure
MOVL ENTRY_LIST(AP),R11 ;Get address of entry point list
IFRD #4*4, (R11) , 50$;Branch forward if process

has read access
BRW ERROR ;Otherwise stop with error

The connect-to-interrupt driver uses the IFRD macro to verify that the
process has read access to the four longwords that make up the entry
point list. The address of the entry point list was specified in the p2
argument of the $QIO request to the driver.

2-40

VMS Macros Invoked by Drivers
INVALIDATE TB

INVALIDATE TB

Allows a single page-table entry (PTE} to be modified while any translation
buffer entry that maps it is invalidated, or invalidates the entire translation
buffer.

FORMAT INVALIDATE_TB (addr, instl(,inst2](,inst3](,inst4]
(,inst5](,inst6](,save r2=YES]
(,checks=YES]]

PARAMETERS ~addr]
Virtual address mapped by the PTE for which invalidation is required.
If addr is blank, then the macro invalidates all PTEs in the translation
buffer.

~instl]
First instruction that modifies the PTE.

~%nSt2]
Second instruction that modifies the PTE.

~inst3]
Third instruction that modifies the PTE.

~inst4]
Fourth instruction that modifies the PTE.

~inst5]
Fifth instruction that modifies the PTE.

~ll]Sts~
Sixth instruction that modifies the PTE.

save r2. YES]
Indication that the value in R2 at the invocation of this macro should be
preserved across the macro call. By default, INVALIDATE_TB preserves
the value in R2; any value but YES supplied in this argument overrides
this behavior.

checks-YES]
Argument enabling or disabling the generation of assembly-time warning
messages that indicate misuse of the macro. When any value but YES is
supplied in the checks argument, the INVALIDATE_TB macro does not
generate these messages.

2--41

VMS Macros Invoked by Drivers
INVALIDATE TB

DESCRIPTION When privileged code alters page mapping information, modifying a valid
PTE in an active page table, it must notify the operating system. The
operating system then takes suitable steps to invalidate all translation
buffer entries that reference this PTE.

The INVALIDATE_TB macro allows you modify a single PTE and
invalidate a single translation buffer cache entry by supplying the virtual
address mapped by the PTE in the addr argument and at least one
instruction argument. INVALIDATE_TB executes up to six instructions
that modify the PTE while preventing all other processors in the system
from referencing the page it maps. Because the INVALIDATE_TB macro
calls system routines that rely on the stack contents and use R2, none of
the specified instruction arguments should reference the stack or use R2.

To invalidate the entire translation buffer (without modifying PTEs),
invoke the INVALIDATE TB macro with no addr and instruction
arguments. Note that, if the addr argument is not present and any
instruction arguments are specified, the INVALIDATE TB macro
invalidates the entire translation buffer but does not execute any of
the instructions. In this case, if checks=YES is not overridden, the macro
generates an assembly-time warning message if any instruction arguments
are present.

To invoke INVALIDATE_TB, code must be executing at or below IPL$_
INVALIDATE, holding in a VMS multiprocessing environment no spin
lock ranked higher than INVALIDATE. If you issue the INVALIDATE TB
macro from pageable code, you must ensure that the location of the code
has been locked in memory.

EXAMPLE

MOVL 8(SP),R2 ;Load virtual address to invalidate
MOVL 12 (SP) , R3 ;Load address of PTE

INVALIDATE_TB R2,- ;Invalidate translation buffer
INST1=<BICL2 #PTE$M VALID,(R3)> ;Clear PTE valid bit

The INVALIDATE_TB macro causes the PTE corresponding to the virtual
address supplied in R2 to be flushed from the system's translation buffers.
The macro causes the specified BICL2 instruction to be executed while
other processors in the system are prevented from referencing the stale
PTE.

2-42

VMS Macros Invoked by Drivers
IOFORK

IOFORK

Disables timeouts from a target device and creates a fork process, in which
context the code that follows the macro invocation executes.

FORMAT IOFORK

DESCRIPTION The IOFORK macro calls EXE$IOFORK to disable timeouts from a target
device (by clearing UCB$V TIM in UCB$L_STS) and to create a fork
process for a device driver.

When the IOFORK macro is invoked, the following registers must contain
the values listed:

Register Contents

R3

R4

R5

00(SP)

Contents to be placed in R3 of the fork process

Contents to be placed in R4 of the fork process

Address of a UCB that will be used as a fork block for the fork process
to be created

Address of caller's caller

EXAMPLE

WFIKPCH XA TIME_OUT,IRP$L MEDIA(R3) ;Wait for interrupt
IOFORK ;Device has interrupted; fork

The start-UO routine of a driver initiates an I/O request by invoking the
WFIKPCH macro. The WFIKPCH macro sets UCB$V INT and UCB$V
TIM in UCB$L_STS to record an expected interrupt and enable timeouts
from the device, saving the PC of the instruction following IOFORK
at UCB$L FPC in the driver's fork block. When the device interrupts,
the driver's interrupt service routine clears UCB$V INT and issues the
instruction JSB C~UCB$L_FPC(R5), transferring control to the IOFORK
macro invocation.

The IOFORK macro clears the UCB$V TIM bit, creates a fork block,
inserts it in the appropriate fork queue, requests a software interrupt at
that fork IPL from the local processor, and returns control to the driver's
interrupt service routine at the instruction following the JSB. When the
processor's IPL drops below the fork level, the fork dispatcher dequeues
the fork block, obtains proper synchronization, and resumes execution at
the instruction in the driver that follows the IOFORK invocation.

2-43

VMS Macros Invoked by Drivers
LOADALT

LOADALT

Loads a set of Q22-bus alternate map registers.

FORMAT LOADALT

DESCRIPTION The LOADALT macro calls IOC$LOADALTMAP to load a set of Q22-
bus alternate map registers (registers 496 to 8191). Map registers must
already be allocated before the LOADALT macro can be invoked.

When the LOADALT macro is invoked, register R5 must contain the
address of the UCB. LOADALT destroys the contents of RO through R2.

2-44

VMS Macros Invoked by Drivers
LOADMBA

LOADMBA

Loads MASSBUS map registers.

FORMAT LOADMBA

DESCRIPTION The LOADMBA macro calls IOC$LOADMBAMAP to load MASSBUS map
registers. The driver must own the MASSBUS adapter, and thus the map
registers, before it can invoke LOADMBA.

when the LOADMBA macro is invoked, the following registers must
contain the following values:

Register Contents

R4 Address of the MBA's configuration register (MBA$L_CSR}

R5 Address of UCB

LOADMBA destroys the contents of RO through R2.

2-45

VMS Macros Invoked by Drivers
LOADUBA

LOADUBA

Loads a set of UNIBUS map registers or a set of the first 496 Q22-bus map
registers.

FORMAT LOADUBA

DESCRIPTION The LOADUBA macro calls IOC$LOADUBAMAP to load a set of ITNIBUS
map registers or a set of the first 496 Q22-bus map registers. Map
registers must already be allocated before the LOADUBA macro can
be invoked.

When the LOADUBA macro is invoked, register R5 must contain the
address of the UCB. LOADUBA destroys the contents of RO through R2.

2-46

VMS Macros Invoked by Drivers
LOCK

LOCK

Achieves synchronized access to a system resource as appropriate to the
processing environment.

FORMAT LOCK lockname(,lockiplJ(,savipl](,condition]
(,preserve=YES]

PARAMETERS /ockname
Name of the resource to lock.

~lockipl]
Location containing the IPL at which the resource is synchronized.
Although the value of this argument is ignored by the macro, Digital
recommends that you specify a lockipl value to facilitate debugging.

~savipl]
Location at which to save the current IPL.

~conditionJ
Indication of a special use of the macro. The only defined condition is
NOSETIPL, which causes the macro to omit setting IPL.

preserve-YES]
Indication that the macro should preserve RO across the invocation. If
you do not need to retain the contents of R0, specifying preserve=NO can
enhance system performance.

DESCRIPTION In a uniprocessing environment, the LOCK macro sets IPL to the IPL that
corresponds to the constant IPL$_lockname.

In a multiprocessing environment, the LOCK macro performs the following
actions

• Preserves RO through the macro call (if preserve=YES is specified).

• Generates a spin lock index of the form SPL$C_lockname and stores
it in R0.

• Calls SMP$ACQUIRE to obtain the specified spin lock.
SMP$ACQUIRE indexes into the system spin lock database (a pointer
to this database is located at SMP$AR_SPNLKVEC) to obtain the spin
lock. Prior to securing the spin lock, SMP$ACQUIRE raises IPL to the
IPL associated with the spin lock, determining the appropriate IPL
from the spin lock structure (SPL$B_IPL).

2-47

VMS Macros Invoked by Drivers
LOCK

In either processing environment, the LOCK macro performs the following
tasks:

• Preserves the current IPL at the specified location (if savipl is
specified)

• Sets the SMP-modified bit in the driver prologue table (DPT$V
SMPMOD in DPT$L_FLAGS)

2-48

VMS Macros Invoked by Drivers
LOCK SYSTEM PAGES

LOCK SYSTEM PAGES

Locks a paged code segment in system memory.

FORMAT LOCK_SYSTEM_PAGES (startva],endva(,iplJ

PARAMETERS ~startva]
System virtual address in the first page to be locked. If the startva
argument is omitted, the starting virtual address defaults to the current
PC.

endva
System virtual address in the last page to be locked.

~~p~~
IPL at which the locked code segment is to execute. If the ipl argument is
omitted, the locked code segment executes at the current IPL.

DESCRIPTION
The LOCK SYSTEM_PAGES macro calls a memory management routine
to lock as many pages as necessary into the system working set. The
macro accepts a virtual address that indicates the first page to be locked
and a virtual address that indicates the last page to be locked. You can
also supply the IPL at which the code in the locked pages is to execute.

The LOCK SYSTEM_PAGES macro executes under the following
conditions:

• The LOCK SYSTEM_PAGES macro should be used only on system
virtual addresses.

• All pages requested in a single LOCK SYSTEM_PAGES macro call
must be virtually contiguous. If you must lock discontiguous memory,
you must invoke the LOCK SYSTEM_PAGES macro once for each
page or set of contiguous pages.

• You must invoke LOCK SYSTEM PAGES at IPL 2 or lower to allow
page faulting to occur.

• When the locked code segment is finished, it must invoke the
UNLOCK SYSTEM_PAGES macro to release all previously locked
pages. In other words, there must be exactly one UNLOCK SYSTEM_
PAGES macro call per LOCK SYSTEM_PAGES macro call.

• When it invokes the UNLOCK SYSTEM_PAGES macro, the code must
ensure that the stack is exactly as it was when the LOCK SYSTEM_
PAGES macro was invoked. That is, if the code has pushed anything
on the stack, it must remove it before invoking UNLOCK SYSTEM_
PAGES.

2-49

VMS Macros Invoked by Drivers
LOCK SYSTEM PAGES

• If the ipl argument is supplied to the LOCK SYSTEM_PAGES
macro, the locked code segment must invoke the appropriate system
synchronization macros (LOCK, FORKLOCK, or DEVICELOCK and
UNLOCK, FORKUNLOCK or DEVICEUNLOCK) to obtain and
release any spin locks required to protect the resources accessed at
the elevated IPL.

• If it specified the ipl argument to the LOCK SYSTEM_PAGES macro,
the code segment must restore the previous IPL, either explicitly,
through the use of the ipl argument to the UNLOCK SYSTEM_
PAGES macro, or through the use of one of the system synchronization
macros.

EXAMPLE

30$:

100$:

TSTB (RO)
LOCK_SYSTEM_PAGES,-

END=100$
LOCK LOCKNAME=MMG,-

SAVIPL=- (SP)

MOVL W^MMG$GL SYSPHD,R3

UNLOCK LOCKNAME=MMG,-

NEWIPL= (SP) +

UNLOCK_SYSTEM_PAGES

Fault in page

Lock down pages

Synch with MMG

Save current IPL

Get system PHD

Unlock MMG

Restore IPL

Unlock pages

In this example, the LOCK SYSTEM_PAGES macro locks all pages
between labels 30$ and 100$ into the system working set. The UNLOCK
SYSTEM_PAGES macro does the coroutine return to unlock those pages
locked by the LOCK SYSTEM_PAGES macro call.

VMS Macros Invoked by Drivers
PURDPR

PURDPR

Purges a UNIBUS adapter buffered data path.

FORMAT PURDPR

DESCRIPTION The PUR.DPR macro calls IOC$PURGDATAP to purge a UNIBUS adapter
buffered data path. A driver within an UO subsystem configuration that
does not provide buffered data paths may use the PURDPR macro because
the purge operation detects memory parity errors that may have occurred
during the transfer. When the PURDPR macro is invoked, R5 must
contain the address of the UCB.

When PURDPR returns control to its caller, the following registers contain
the following values:

Register Contents

RO Status of the purge (success or failure)

R1 Contents of data-path register, provided for the use of the driver's
register dumping routine

R2 Address of first map register, provided for the use of the driver's register
dumping routine

R3 Address of the CRB

VMS Macros Invoked by Drivers
READ SYSTIME

READ SYSTIME

Reads the current system time.

FORMAT READ SYSTIME dst

PARAMETER dst
Quadword into which the macro inserts the system time.

DESCRIPTION The READ_SYSTIME macro generates the code required to obtain a
consistent copy of the system time from EXE$G ~1 SYSTIME.

Use of the READ_SYSTIME macro is subject to the following restrictions:

• IPL must be less than 23.

• The processor must be executing in kernel mode.

• When using the macro within pageable program sections (or within
code executing at IPL 2 and below), you must ensure that the pages
involved are locked in memory.

EXAMPLE

READ_SYSTIME RO

The READ_SYSTIME macro inserts the current system time in RO and
R1.

VMS Macros Invoked by Drivers
RELALT

RELALT

Releases a set of Q22-bus alternate map registers allocated to the driver.

FORMAT RELALT

DESCRIPTION The RELALT macro calls IOC$RELALTMAP to release a set of Q22-bus
alternate map registers (registers 496 to 8191) allocated to the driver.
When the RELALT macro is invoked, R5 must contain the address of the
UCB. RELALT destroys the contents of RO through R2.

VMS Macros Invoked by Drivers
RELCHAN

RELCHAN

Releases all controller data channels allocated to a device.

FORMAT RELCHAN

DESCRIPTION The RELCHAN macro calls IOC$RELCHAN to release all controller data
channels allocated to a device. When the RELCHAN macro is invoked, R5
must contain the address of the UCB. RELCHAN destroys the contents of
RO through R2.

VMS Macros Invoked by Drivers
RELDPR

RELDPR

Releases a UNIBUS adapter data path register allocated to the driver.

FORMAT RELDPR

DESCRIPTION The RELDPR macro calls IOC$RELDATAP to release a UNIBUS adapter
buf~'ered data path allocated to the driver.

When the RELDPR macro is invoked, R5 must contain the address of the
UCB. RELDPR destroys the contents of RO through R2.

VMS Macros Invoked by Drivers
RELMPR

RELMPR

Releases a set of UNIBUS map registers or a set of the first 496 Q22-bus
map registers allocated to the driver.

FORMAT RELMPR

DESCRIPTION The RELMPR macro calls IOC$RELMAPREG to release a set of map
registers allocated to the driver. When the RELMPR macro is invoked, R5
must contain the address of the UCB. RELMPR destroys the contents of
RO through R2.

VMS Macros Invoked by Drivers
RELSCHAN

RELSCNAN

Releases all secondary channels allocated to the driver.

FORMAT RELSCHAN

DESCRIPTION The RELSCHAN macro calls IOC$RELSCHAN to release all secondary
data channels (for example, the MASSBUS adapter's controller data
channel) allocated to the driver.

When the RELSCHAN macro is invoked, R5 must contain the address of
the UCB. RELSCI~CAN destroys the contents of RO through R2.

VMS Macros Invoked by Drivers
REQALT

REQALT

Obtains a set of Q22-bus alternate map registers.

FORMAT REQALT

DESCRIPTION ~e REQALT macro calls IOC$REQALTMAP to obtain a set of Q22-bus
alternate map registers (registers 496 to 8191). When the RE ~f1 LT macro
is invoked, the following registers must contain the following values:

Register Contents

R5 Address of UCB

00(SP) Address of caller's caller

The REQALT macro destroys the contents of RO through R2.

VMS Macros Invoked by Drivers
REQCOM

REGICOM

Invokes VMS device-independent I/O postprocessing.

FORMAT REQCOM

DESCRIPTION The R.EQCOM macro calls IOC$REQCOM to complete the processing of an
I/O request after the driver has finished its portion of the processing.

When the REQCOM macro is invoked, the following registers must contain
the following values:

Register Contents

RO First longword of I/O status

R1 Second longword of I/O status

R5 Address of UCB

The REQCOM macro destroys the contents of RO through R3. All other
registers are also destroyed if the action of the macro initiates the
processing of a waiting I/O request for the device.

VMS Macros Invoked by Drivers
REQDPR

REQDPR

Requests a UNIBUS adapter buffered data path.

FORMAT REQDPR

DESCRIPTION The REQDPR macro calls IOC$REQDATAP to request a UNIBUS adapter
buffered data path.

When the REQDPR macro is invoked, the following registers must contain
the following values:

Register Contents

R5 Address of UCB

00(SP) Address of caller's caller

The REQDPR macro destroys the contents of RO through R2.

VMS Macros Invoked by Drivers
REQMPR

REQMPR

Obtains a set of UNIBUS map registers or a set of the first 496 Q22-bus map
registers.

FORMAT REQMPR

DESCRIPTION The ftEQMPR macro calls IOC$REQMAPREG to obtain a set of map
registers. When the REQMPR. macro is invoked, the following registers
must contain the following values:

Register Contents

R5 Address of UCB

00(SP) Address of caller's caller

The REQMPR macro destroys the contents of RO through R2.

VMS Macros Invoked by Drivers
REQPCHAN

REGIPCHAN

Obtains a controller's data channel.

FORMAT RE~PCHAN (pri]

PARAMETERS ~priJ
Priority of request. If the priority is HIGH, REQPCHAN calls
IOC$REQPCHANH; otherwise it calls IOC$REQPCHANL.

DESCRIPTION The REQPCHAN macro calls IOC$REQPCI~[ANH or IOC$REQPCHANL,
depending on the priority specified, to obtain a controller's data channel.

When the REQPCHAN macro is invoked, the following registers must
contain the following values:

Register Contents

R5 Address of UCB

00(SP) Address of caller's caller

The REQPCHAN macro returns the address of the device's CSR in R4 and
destroys the contents of RO through R2.

VMS Macros Invoked by Drivers
REQSCHAN

RE(~SCHAN

Obtains a secondary MASSBUS data channel.

FORMAT REQSCHAN (pri]

PARAMETER ~pri]
Priority of request. If the priority is HIGH, REQSCHAN calls
IOC$REQSCHANH; otherwise it calls IOC$REQSCHANL.

DESCRIPTION The REQSCHAN macro calls IOC$REQSCHANH or IOC$REQSCHANL,
depending on the priority specified, to obtain a secondary MASSBUS data
channel.

When the REQSCHAN macro is invoked, the following registers must
contain the following values:

Register Contents

R5 Address of UCB

00(SP) Address of caller's caller

The REQSCHAN macro returns the address of the device's CSR in R4 and
destroys the contents of RO through R2.

VMS Macros Invoked by Drivers
SAVIPL

SAVIPL

Saves the current IPL of the local processor.

FORMAT SAVIPL ~dst~(SP)J

PARAMETER ~dst--(SP)]
Address of longword in which to save the current IPL.

DESCRIPTION The SAVIPL macro stores the current IPL of the local processor, as
recorded in the processor IPL register (PR$_IPL), in the specified location.

VMS Macros Invoked by Drivers
SETIPL

SETIPL

Sets the current IPL of the local processor.

FORMAT SETIPL (ip1=31J(environsMULTIPROCESSOR]

PARAMETERS

$MACRO-W-GENWARN,

~ip1-31]
Level at which to set the current IPL. The default value sets IPL to 31,
blocking all interrupts on the local processor.

den viron-MULTIPROCESSOR]
Processing environment in which the SETIPL synchronization macro
is to be assembled. If you do not specify environ, or if you do specify
environsMULTIPROCESSOR, the SETIPL macro generates the
following assembly-time warning message, where xx is an IPL above
IPL 2:

Generated WARNING: Raising IPL to #xx provides no multiprocessing synchronization

If you are certain that the purpose of the macro invocation is to block only
local processor events, you can disable the warning message by including
environ=UNIPROCESSOR in the invocation.

DESCRIPTION The SETIPL macro sets the IPL of the local processor by moving the
specified ipl or IPL 31 into its IPL register (PR$_IPL).

Note that the SETIPL macro provides full synchronization only in a
uniprocessing environment. In a multiprocessor configuration, SETIPL
is suitable only for blocking events on the local processor. To provide
synchronized access to system resources and devices in a multiprocessing
environment, you must use the DEVICELOCK/DEVICEUNLOCK,
FORKLOCKlFORKUNLOCK, and LOCK/UNLOCK macros.

2-65

VMS Macros Invoked by Drivers
SETIPL

EXAMPLE

DEVICELOCK - ;Secure device lock

LOCKADDR=UCB$L_DLCK (R5) , - (also raises IPL to device lock's IPL)
SAVIPL=- (SP) ;Save current IPL on stack

SETIPL #IPL$ POWER,- ;Raise IPL to 31

ENVIRON=UNIPROCESSOR ;Avoid assembly-time warning

BBC #UCB$V POWER, -

UCB$W_STS (R5) , 30$; If clear, no power failure

;Service power failure

DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK (R5) , -

NEWIPL= (SP) +

;Branch

30$: ;Start device

;Release device lock

;Restore old IPL from stack

WFIKPCH ;Wait for interrupt

Here, the DEVICELOCK macro achieves synchronized systemwide access
to the device registers. The SETIPL macro then synchronizes the local
processor against its own powerful interrupt event. The code does not
need to synchronize systemwide against powerful events, because its
interest is truly limited to the local processor.

Note that the WFIKPCH macro conditionally releases the device lock and
restores the old IPL prior to returning control to the caller's caller.

VMS Macros Invoked by Drivers
SOFTINT

SOFTINT

Requests a software interrupt from the local processor at a specified IPL.

FORMAT SOFTINT ipl

PARAMETER ipl
IPL at which the software interrupt is being requested.

DESCRIPTION The SOFTINT macro moves the specified ipl into the local processor's
Software Interrupt Request Register (PR$_SIRR), thus requesting a
software interrupt at that IPL on the processor.

The processor may take either of the following actions:

• If the local processor is executing at an IPL below the level of the
requested interrupt, it immediately transfers control to a software
interrupt service routine for the appropriate IPL.

• If the local processor is executing at an IPL equal or above the level
of the requested .interrupt, it does not transfer control to the software
interrupt service routine until its IPL drops below the specified ipl.

The SOFTINT macro does not provide the capability of requesting a
software interrupt from another processor in a VMS multiprocessing
environment.

VMS Macros Invoked by Drivers
SPI$ABORT COMMAND

SPI$ABORT COMMAND

Aborts execution of the outstanding SCSI command on a given connection.

FORMAT SPI$ABORT_COMMAND

DESCRIPTION The SPI$ABORT_COMl~/IAND macro aborts the outstanding SCSI
command on the connection specified in SCDRP$L_CDT. The SCSI port
driver's abort routine sends the SCSI ABORT command to the target
device.

Note: V~~Xstation 3520/3540 systems do not implement the abort-SCSI-
command function.

Inputs to the SPI$ABORT_COMMAND macro include the following:

Location Contents

R4

R5

SCDRP$L CDT

Address of the SPDT

Address of the SCDRP

Address of the SCDT

The port driver returns SS$_NORMAL status in R0, and preserves the
contents of R3, R4, and R5. The original SPI$SEND_COMMAND call
completes with SS$ ABORT status.

VMS Macros Invoked by Drivers
SPI$ALLOCATE COMMAND BUFFER

SPI$ALLOCATE COMMAND BUFFER

Allocates a port command buffer for a SCSI command descriptor block.

FORMAT SPI$ALLOCATE COMMAND BUFFER

DESCRIPTION The SPI$ALLOCATE_COMMAND_BUFFER macro allocates a port
command buffer for a SCSI command descriptor block.

Typically a SCSI class driver requests two additional longwords when
specifying the size of the requested buffer, the first for the SCSI status
byte and the second for the length of the SCSI command. The port
command buffer allows the SCSI port driver to access both the SCSI
command descriptor block and the SCSI status byte during the SCSI
COMMAND and STATUS phases.

Inputs to the SPI$ALLOCATE_COMMAND_BUFFER macro include the
following:

Location Contents

R1 Size of requested buffer. This value should include the
size of the SCSI command, plus 4 bytes reserved for the
SCSI status byte and 4 bytes in which the SCSI class
driver places the size of the SCSI command.

R4 Address of the SPDT.

R5 Address of the SCDRP.

SCDRP$L CDT Address of the SCDT.

SCDRP$W CMD_ Page number of the first port DMA buffer page allocated
MAPREG for the port command buffer.

SCDRP$W CMD_ Number of port DMA buffer pages allocated for the port
NUMREG DMA buffer.

The port driver returns the following values to the class driver, preserving
the contents of R3, R4, and R5:

Location Contents

RO

R1

R2

SS$_NORMAL

Size of port command buffer

Address of port command buffer

VMS Macros Invoked by Drivers
SPI$CONNECT

SPI$CONNECT

FORMAT

PARAMETERS

Creates a connection from a class driver to a SCSI device.

SPI$CONNECT select callback j,select context]]

select callback
Address of a routine in the class driver that executes in response to
asynchronous event notification from the target device. The port driver
invokes the selection callback routine at this address, holding the fork lock
and no other locks at IPL 8; it passes to the routine the address of the
SPDT in R4 and any optional selection context in R5.

If the SCSI class driver does not provide a callback address, no selections
are allowed on the connection that is established.

select context
Longword context value to be passed to selection callback routine. When
the port driver invokes the selection callback routine, it passes this value
to it in R5. For instance, some class drivers may specify the address of
the UCB in this argument (select_context=R5) if the selection callback
routine needs access to the device unit's UCB. The select context value
can help a class driver that supports multiple device units to identify
which unit is generating the asynchronous event.

DESCRIPTION The SPI$CONNECT macro establishes a connection between the class
driver and a SCSI device. It also links a SCSI class driver to the port
driver. Before a SCSI class driver can exchange commands and data with
a SCSI device, it must invoke SPI$CONNECT.

In response to the call to SPI$CONNECT, the port driver allocates and
links an SCDT for the connection. It marks the connection state open and
initializes default connection information. If the connection already exists,
it returns SS$_DEVALLOC status to the class driver.

Inputs to the SPI$CONNECT macro include the following:

Location Contents

R1

R2

SCSI device ID (bits <31:16>) and SCSI port ID (bits
<15:0>). Valid SCSI device IDs are integers from 0 to 7;
valid SCSI port IDs are integers 0 and 1, corresponding
to controller IDs A and B.

SCSI logical unit number (bits <31:16>). Bits <15:0> are
reserved. Valid SCSI logical unit numbers are integers
from 0 to 7.

VMS Macros Invoked by Drivers
SPI$CONNECT

The port driver returns the following values to the class driver:

Location Contents

RO

R2

R3

Port status. The port driver returns one of the following
values:
SS$_DEVALLOC Connection already open

SS$_DEVOFFLINE

SS$_INSFMEM

for this target.

Port is off line and allows
no connections.

Insufficient memory to
allocate SCDT.

SS$_NORMAL Connection formed.

SS$_NOSUCHDEV Port not found.

Address of the SCDT.

Port capability mask. The following bits are defined by
the $SPDTDEF macro (in SYS$LIBRARY:LIB.MLB):
SPDT$M_SYNCH

SPDT$M_ASYNCH

SPDT$M_MAPPING_REG

SPDT$M_BUF_DMA

SPDT$M_DIR_DMA

SPDT$M_AEN

SPDT$M_LUNS

R4 Address of the SPDT.

Supports synchronous
mode.

Supports asynchronous
mode.

Supports map registers.

Supports buffered DMA.

Supports direct DMA.

Supports asynchronous
event notification.

Supports LUNs (logical unit
numbers).

VMS Macros Invoked by Drivers
SPI$DEALLOCATE COMMAND BUFFER

SPI$DEALLOCATE COMMAND BUFFER

FORMAT

DESCRIPTION

Deallocates a port command buffer.

SPI$DEALLOCATE COMMAND BUFFER

The SPI$DEALLOCATE_COMMAND_BUFFER macro deallocates a port
command buffer.

Inputs to the SPI$DEALLOCATE_COMMAND_BUFFER macro include
the following:

Location Contents

R4

R5

SCDRP$L CDT

SCDRP$W CMD_
MAPREG

SCDRP$W CMD_
NUMREG

Address of the SPDT.

Address of the SCDRP.

Address of the SCDT.

Page number of the first port DMA buffer page allocated
for the port command buffer.

Number of the port DMA buffer pages allocated for the
port DMA buffer.

The port driver returns SS$_NORMAL status in R0, and preserves the
contents of R3, R4, and R5.

VMS Macros Invoked by Drivers
SPI$DISCONNECT

SPI$DISCONNECT

Breaks a connection between a class driver and a SCSI port.

FORMAT SPI$DISCONNECT

DESCRIPTION The SPI$DISCONNECT macro breaks a connection between a class
driver and a SCSI device unit and deallocates the associated SCDT. The
connection must not be busy when it is being disconnected.

Normally a connection between a class driver and a SCSI device unit lasts
throughout the runtime life of a system. A SCSI class driver should never
need to invoke this macro.

Inputs to the SPI$DISCONNECT macro include the following:

Location Contents

R 1 SCSI device I D (bits <31:16>) and SCSI port I D (bits
<15:0>). Valid SCSI device IDs are integers from 0 to 7;
valid SCSI port IDs are integers 0 and 1, corresponding
to controller IDs A and B.

R2 SCSI logical unit number (bits <15:0>). Valid SCSI
logical unit numbers are integers from 0 to 7.

R4 Address of the SPDT.

R5 Address of the SCDT.

The port driver returns SS$_NORMAL status in R0, and preserves the
contents of R3, R4, and R5.

VMS Macros Invoked by Drivers
SPI$FINISH_COMMAND

SPI$FINISH COMMAND

Completes an I/O operation initiated with asynchronous event notification.

FORMAT SPI$FtNISH COMMAND

DESCRIPTION The SPI$FINISH_COMMAND macro allows the host acting as a target
to send a status byte, return the COMMAND COMPLETE message, and
drive the SCSI bus to BUS FREE. The class driver's callback routine
should invoke SPI$FINISH_COMMAND or SPI$RELEASE_BUS, but not
both, before exiting.

The SPI$FINISH_CO D function is a higher-level function that
class drivers can use to finish an UO operation that is executing with
asynchronous event notification.

Inputs to the SPI$FINISH_COMMAND macro include the following:

Location Contents

R1 Address of the system buffer containing the SCSI status
byte

R4 Address of the SPDT

The port driver returns SS$_NORMAL status in R0, destroys R2, and
preserves all other registers.

VMS Macros Invoked by Drivers
SPI$GET CONNECTION CHAR

SPI$GET CONNECTION CHAR

Returns characteristics of an existing connection to a specified buffer.

FORMAT SPI$GET CONNECTION CHAR

DESCRIPTION The SPI$GET_CONNECTION_CHAR macro returns characteristics of an
e~usting connection to a specified buffer.

The connection characteristics buffer has the following format:

Longword Contents

1

2

Number of longwords in the buffer, not including this
longword. The value of this field must be 10.

Connection flags. Bits in this longword are defined as
follows:

Bit Description

0 ENA DISCON. When set, this bit indicates
that disconnect and reselection are enabled
on this connection.

1 DIS_RETRY. When set, this bit indicates
that command retry is disabled on this
connection.

3 Synchronous. When this longword contains 0, the
connection supports asynchronous data transfers; when
it contains a nonzero value, the connection supports
synchronous data transfers.

4 Transfer period. If the synchronous parameter is
nonzero, this field contains the number of 4-nanosecond
ticks between a REQ and an ACK. The default is 6410.

5 REQ-ACK offset. If the synchronous parameter is
nonzero, this field contains the maximum number of
REQs outstanding before there must be an ACK.

6 Busy retry count. Maximum number of retries allowed on
this connection while waiting for the bus to become free.

7 Select retry count. Maximum number of retries allowed
on this connection while waiting for the port to be
selected by the target device.

8 Arbitration retry count. Maximum number of retries
allowed on this connection while waiting for the port to
win arbitration of the bus.

VMS Macros Invoked by Drivers
SPI$GET CONNECTION_CHAR

Longword Contents

9

10

11

Command retry count. Maximum number of retries
allowed on this connection to successfully send a
command to the target device.

Phase change timeout. Default timeout value (in
seconds) for a target to change the SCSI bus phase
or complete a data transfer. This value is also known as
the DMA timeout.

Upon sending the last command byte, the port driver
waits this many seconds for the target to change the bus
phase lines and assert REQ (indicating a new phase).
Or, if the target enters the DATA IN or DATA OUT phase,
the transfer must be completed within this interval.

If this value is not specified, the default value is 4
seconds.

Disconnect timeout. Default timeout value (in seconds)
for a target to reselect the initiator to proceed with a
disconnected I/O transfer.

If this value is not specified, the default value is 4
seconds.

Inputs to the SPI$GET_CONNECTION_CHAR macro include the
following:

Location Contents

R2 Address of the connection characteristics buffer.

R4 Address of the SPDT.

R5 Address of the SCDRP.

SCDRP$L CDT Address of the SCDT.

The port driver returns the following values to the class driver, preserving
R3, R4, and R5:

Location Contents

RO

R2

Port status. The port driver returns one of the following
values:
SS$_NORMAL Normal, successful completion

SS$_NOSUCHID No connection for this SCSI
connection ID

Address of the connection characteristics buffer in which
device characteristics are returned.

VMS Macros Invoked by Drivers
SPI$MAP_BUFFER

SPI$MAP BUFFER

Makes the process buffer involved in a data transfer availab{e to the port
driver.

FORMAT SPI$MAP BUFFER

DESCRIPTION The SPI$MAP_BUFFER macro makes the process buffer involved in a
data transfer accessible to the port driver. Typically, the I/O buffer is
specified in the $QIO call, is in process space (PO space), and is mapped
by process page-table entries. Because a port driver executes in system
context, it cannot access a process's page table.

The means by which the SPI$MAP_BUFFER macro makes a process
buffer available to the port driver depends upon the port hardware. For
certain implementations, it allocates a segment of the port's DMA buffer
and a set of system page-table entries that double-map the process buffer.
In others, it obtains a set of port map registers and loads them with the
page-frame numbers of the process buffer pages.

VMS Macros Invoked by Drivers
SPI$MAP_BUFFER

Inputs to the SPI$MAP_BUFFER macro include the following:

Location Contents

R4

R5

Address of the SPDT.

Address of the SCDRP. The class driver must provide
values in the following fields:
SCDRP$L BCNT Size in bytes of the buffer

to be mapped. The largest
single transfer that can be
mapped is determined by
the port driver in the call
to SPI$CONNECT. The
SPI$CONNECT macro
returns this value to the
class driver in R1. If
the class driver must
accomplish transfers larger
than this value, it must
segment them.

SCDRP$W BOFF Byte offset into the first
page of the buffer.

SCDRP$L SVA USER For direct DMA buffering,
system virtual address
of the process buffer to
map in system space (SO
space)

SCDRP$L SVAPTE System virtual address of
the page-table entry that
maps the first byte of the
user buffer.

SCDRP$L SCSI_FLAGS SCSI mapping flags. If
SCDRP$V_SOBUF is set,
SPI$MAP_BUFFER does
not double-map the buffer
into system space.

SCDRP$W STS Transfer direction flags.
IRP$V_FUNC must be set
for read I/O functions and
clear for write I/O functions.

The port driver returns the following values to the class driver, preserving
R3, R4, and R5:

Location Contents

RO Port status. The port driver returns one of the following
values:
SS$_NORMAL Normal, successful completion

SS$_BADPARAM Bad parameter provided by class
driver lJ

VMS Macros Invoked by Drivers
SPI$MAP BUFFER

Location Contents

R5 Address of the SCDRP. The port driver initializes the
following fields:
SCDRP$L_SVA_USER

SCDRP$L_SVA_SPTE

SCDRP$W_NUMREG

SCDRP$W_MAPREG

System virtual address
of the process buffer as
mapped in system space
(SO space)

System virtual address
of the system page-table
entry that maps the first
page of the process buffer
i n SO space

Number of port DMA buffer
pages allocated

Page number of the first
port DMA buffer page
allocated

VMS Macros Invoked by Drivers
SPI$RECEIVE_BYTES

SPI$RECEIVE_BYTES

Receives command, message, and data bytes from a device acting as an
initiator on the SCSI bus.

FORMAT SPI$RECEIVE_BYTES

DESCRIPTION The SPI$RECEIVE_BYTES macro allows the host to receive information
from the device acting as an initiator. A class driver uses SPI$RECEIVE_
BYTES to receive command, message, and data bytes. This macro
uses DMA operations for the transfer of large segments of data where
appropriate.

Inputs to the SPI$RECEIVE_BYTES macro include the following:

Location Contents

RO Size of the system buffer into which the target returns
the requested bytes

R1 Address of the system buffer into which the target device
returns the requested bytes

R4 Address of the SPDT

The port driver returns the following values to the class driver, destroying
R2, and preserving all other registers:

Location Contents

RO Port status. The port driver returns one of the following
values:
SS$_NORMAL Normal, successful completion.

SS$_CTRLERR Timeout occurred during the
operation.

R1 Actual number of bytes received.

2-80

VMS Macros Invoked by Drivers
SPI$RELEASE_BUS

SPI$RELEASE BUS

Releases the SCSI bus.

FORMAT SPI$RELEASE BUS

DESCRIPTION The SPI$RELEASE_BUS macro allows the host acting as a target to
release the SCSI bus. The class driver's callback routine should invoke
either SPI$RELEASE_BUS or SPI$FINISH_COMMAND, but not both,
before exiting.

The class driver should use SPI$RELEASE_BUS instead of SPI$FINISH_
COMl~/IAND if it must explicitly send the SCSI status byte and
COMMAND COMPLETE message using SPI$SEND_BYTES, or if it
simply wants to drop off the bus and terminate the thread in certain error
conditions.

Inputs to the SPI$RELEASE_BUS macro include the following:

Location Contents

R4 Address of the SPDT

The port driver returns SS$_NORMAL status in R0, destroys R2, and
preserves all other registers.

VMS Macros Invoked by Drivers
SPI$RESET

SPI$RESET

Resets the SCSI bus and SCSI port hardware.

FORMAT SPI$RESET

DESCRIPTION The SPI$RESET macro first resets the SCSI bus and then resets the port
hardware. A SCSI class driver should rarely invoke this macro; those class
drivers that do use it should be aware of the impact of a reset operation
on other devices on the same bus. The VMS SCSI port driver logs an error
when a class driver invokes the SPI$RESET macro.

Inputs to the SPI$RESET macro include the following:

Location Contents

R4

R5

SCDRP$L CDT

Address of the SPDT.

Address of the SCDRP.

Address of the SCDT.

The port driver returns the following value to the class driver, preserving
R3, R4, and R5:

Location Contents

RO Port status. The port driver returns one of the following
values:
SS$_NORMAL Normal, successful completion.

SS$ ABORT Reset aborted before completion.

lJ

U

VMS Macros Invoked by Drivers
SPI$SEND_BYTES

SPI$SEND_BYTES

Sends command, message, and data bytes to a device acting as an initiator
on the SCSI bus.

FORMAT SPI$SEND_BYTES

DESCRIPTION The SPI$SEND_BYTES macro allows the host to send information to
the device acting as an initiator. A class driver uses SPI$SEND_BYTES to
send command, message, and data bytes. This macro uses DMA operations
for the transfer of large segments of data where appropriate.

Inputs to the SPI$SEND_BYTES macro include the following:

Location Contents

RO Size of the system buffer that contains the bytes to be
sent

R1 Address of the system buffer that contains the bytes to
be sent

R4 Address of the SPDT

The port driver returns the following values to the class driver, destroying
R2, and preserving all other registers:

Location Contents

RO Port status. The port driver returns one of the following
values:
SS$_NORMAL Normal, successful completion.

SS$_CTRLERR Timeout occurred during the
operation.

R1 Actual number of bytes sent.

2-83

VMS Macros Invoked by Drivers
SPI$SEND_COMMAND

SPI$SEND_COMMAND

Sends a command to a SCSI device.

FORMAT SPI$SEND_COMMAND

DESCRIPTION The SPI$SEND_COMMAND macro sends a command to a SCSI device.
A class driver invokes this macro, after calling SPI$ALLOCATE_
COMMAND_BUFFER to allocate a port command buffer and formatting a
SCSI command descriptor block in it.

The port driver responds to the SPI$SEND_COMMAND macro call by
arbitrating for ownership of the SCSI bus, selecting the target device,
sending the SCSI command descriptor block to the target, and waiting for
a response. Prior to returning to the class driver, the port driver sends
data to or receives data from the target device, obtains command status,
processes SCSI message bytes, and transfers the data. When it returns
from the SPI$SEND_COMMAND call, the port driver returns port status
and SCSI status to the class driver.

VMS Macros Invoked by Drivers
SPI$SEND_COMMAND

Inputs to the SPI$SEND_COMMAND macro include the following:

Location Contents

R4

R5

SCDRP$L CDT

Address of the SPDT.

Address of the SCDRP. The class driver must provide
values in the following fields:
SCDRP$L CMD_PTR Address of the port

command buffer. The
first longword of the

port command buffer
contains the number
of bytes in the buffer
(not including the count
longword). Subsequent
bytes contain the SCSI
command descriptor block.

SCDRP$L BCNT Size in bytes of the
mapped process buffer.

SCDRP$W PAD_BCNT Number of bytes to make
the size of the buffer equal
to the data length value
required in the command.

SCDRP$L SVA USER System virtual address
of the process buffer as
mapped in system space
(SO space).

SCDRP$L STS_PTR Address of the status
longword. The

port

driver
copies the SCSI status
byte it receives in the
bus STATUS phase into
the low-order byte of this
buffer.

SCDRP$W FUNC

Address of the SCDT.

Read or write operation.

2-85

VMS Macros Invoked by Drivers
SPI$SEND_COMMAND

The port driver returns the following values to the class driver, preserving
R3, R4, and R5:

Location Contents

RO

R5

Port status. The port driver returns one of the following
status values:
SS$_BADPARAM Bad parameter specified by the

SS$_CTRLERR

SS$_DEVACTIVE

SS$_LINKABORT

SS$_NORMAL

SS$ TIMEOUT

class driver.

Controller error or port hardware
failure.

Command outstanding on this
connection.

Connection no longer exists.

Normal, successful completion.

Failed during selection or
arbitration.

Address of the SCDRP. The port driver provides
information in the following fields:
SCDRP$L STS_PTR

SCDRP$L TRANS_CNT

Address of the status
longword. The port driver
copies the SCSI status
byte it receives in the
bus STATUS phase into
the low-order byte of this
buffer.

Actual number of bytes
sent or received by the
port driver during the Data
phase.

VMS Macros Invoked by Drivers
SPI$SENSE_PHASE

SPI$SENSE_PHASE

Returns the current phase of the SCSI bus.

FORMAT SPI$SENSE PHASE

DESCRIPTION The SPI$SENSE_PHASE macro allows the host to read the current SCSI
bus phase, and the state of the ATN signal, while using the asynchronous
event notification feature.

A class driver must supply the address of the SPDT in R4 as input to the
SPI$SENSE_PHASE macro.

The port driver returns the following values to the class driver, destroying
R2, and preserving all other registers:

Location Contents

RO SS$_NORMAL.

R1 SCSI bus phase (and ATN signal). This SCSI-defined
longword has the format illustrated in Figure 2-1.

Figure 2-1 SCSI Bus Phase Longword Returned to SPI$SENSE_PHASE

31 30 3 2 1 0

ATN 0 MSG C/D I/O

ZK-1377A-GE

VMS Macros Invoked by Drivers
SPI$SET_CONNECTION_CHAR

SPI$SET_CONNECTION_CHAR

Sets characteristics of an existing connection.

FORMAT SPI$SET_CONNECTION_CHAR

DESCRIPTION The SPI$SET_CONNECTION_CHAR macro sets characteristics of an
existing SCSI connection. Prior to altering the characteristics of a
connection, a SCSI class driver should read and examine the current
connection characteristics using the SPI$GET_CONNECTION_CHAR
macro.

The class driver specifies the characteristics to be set for the connection in
a connection characteristics buffer. The buffer has the following format:

Longword Contents

1

2

Number of longwords in the buffer, not including this
longword. The value of this field must be 10.

Connection flags. Bits in this longword are defined as
follows:

Bit Description

0 ENA_DISCON. When set, this bit enables
disconnect and reselection on the
connection.

1 DIS_RETRY. When set, his bit disables
command retry on the connection.

3 Synchronous. When this longword contains 0, the
connection uses asynchronous data transfer mode;
when it contains a nonzero value, the connection uses
synchronous data transfer mode.

4 Transfer period. If the synchronous parameter is
nonzero, this field controls the number of 4-nanosecond
ticks between a REQ and an ACK. The default is 6410.

5 REQ-ACK offset. If the synchronous parameter is
nonzero, this field controls the maximum number of
REQs outstanding before there must be an ACK.

6 Busy retry count. Maximum number of retries allowed on
this connection while waiting for the port to become free.

7 Select retry count. Maximum number of retries allowed
on this connection while waiting for the port to be
selected by the target device.

VMS Macros Invoked by Drivers
SPI$SET CONNECTION_CHAR

Longword Contents

8

9

10

11

Arbitration retry count. Maximum number of retries
allowed on this connection while waiting for the port to
win arbitration of the bus.

Command retry count. Maximum number of retries
allowed on this connection to successfully send a
command to the target device.

Phase change timeout. Default timeout value (in
seconds) for a target to change the SCSI bus phase
or complete a data transfer. This value is also known as
the DMA timeout.

Upon sending the last command byte, the port driver
waits this many seconds for the target to change the bus
phase lines and assert REQ (indicating a new phase).
Or, if the target enters the DATA IN or DATA OUT phase,
the transfer must be completed within this interval.

If this value is not specified, the default value is 4
seconds.

Disconnect timeout. Default timeout value (in seconds)
for a target to reselect the initiator to proceed with a
disconnected I/O transfer.

If this value is not specified, the default value is 4
seconds.

Inputs to the SPI$SET_CONNECTION_CHAR macro include the
following:

Location Contents

R2 Address of the connection characteristics buffer.

R4 Address of the SPDT.

R5 Address of the SCDRP.

SCDRP$L CDT Address of the SCDT.

The port driver returns the following values to the class driver, preserving
R3, R4, and R5:

Location Contents

RO Port status. The port driver returns one of the following
values:
SS$_NORMAL Normal, successful completion

SS$_NOSUCHID No connection for this SCSI
connection ID

VMS Macros Invoked by Drivers
SPI$SET PHASE

SPI$SET PHASE

Sets the bus to a new phase.

FORMAT SPI$SET PHASE

DESCRIPTION The SPI$SET_PHASE macro allows the host to set the SCSI bus to a new
phase. A class driver uses this macro to drive the phase transitions of the
SCSI bus while using the asynchronous event notification feature.

Inputs to the SPI$SET_PHASE macro include the following:

Location Contents

RO

R4

New SCSI bus phase. This SCSI-defined longword has
the format shown in Figure 2-2.

Address of the SPDT.

Figure 2-2 SCSI Bus Phase Longword Supplied to SPI$SET PHASE

31 3 2 1 0

Must be zero MSG C/D I/O

ZK-1376A-GE

The port driver returns SS$_NORMAL status in R0, destroys R2, and
preserves all other registers.

VMS Macros Invoked by Drivers
SPI$UNMAP_BUFFER

SPI$UNMAP_BUFFER

Releases port mapping resources and deallocates port DMA buffer space, as
required to unmap a process buffer.

FORMAT SPI$UNMAP BUFFER

DESCRIPTION The SPI$iTNMAP_BUFFER macro releases mapping resources and
deallocates port DMA buffer space, as required to unmap a process buffer.

Inputs to the SPI$UNMAP_BUFFER macro include the following:

Location Contents

R4

R5

Address of the SPDT.

Address of the SCDRP. The class driver must provide
values in the following fields:
SCDRP$W_NUMREG Number of port DMA buffer

pages allocated

SCDRP$W MAPREG Page number of the first
port DMA buffer page

The port driver returns the following values to the class driver, preserving
R3, R4, and R5:

Location Contents

RO SS$_NORMAL.

R5 Address of the SCDRP. The port driver clears
SCDRP$W NUMREG and SCDRP$W MAPREG.

VMS Macros Invoked by Drivers
TIMEDWAIT

TIMEDWAIT

Waits a specified interval of time for an event or condition to occur.

FORMAT TIMEDWAIT time(,ins1](,ins2](,ins3](,ins4](,insSJ
(, ins6] (,donelblj (,imbedlbl] (, ublbl]

PARAMETERS time
Number of 10-microsecond intervals to wait. VMS multiplies this value
by aprocessor-specific value in order to calculate the interval to wait.
The processor-specific value is inversely proportional to the speed of the
processor, but is never less than 1.

If you do not specify any embedded instructions, increase the value of
time by 25 percent.

If you specify embedded instructions that take longer to execute than the
average, such as the POLYD instruction, they will cause TIMEDWAIT to
wait proportionally longer.

dins 1]
First instruction in the loop.

~ins2]
Second instruction in the loop.

~ins3J
Third instruction in the loop.

jins4]
Fourth instruction in the loop.

~ins5]
Fifth instruction in the loop.

~ins6]
Sixth instruction in the loop.

~done/bl]
Label placed after the instruction at the end of the TIMEDWAIT loop;
embedded instructions can pass control to this label in order to pass
control to the instruction following the invocation of the TIMEDWAIT
macro.

~imbed/bl]
Label placed at the first of the embedded instructions; after executing a
processor-specific delay, the TIMEDWAIT macro passes control here to
retest for the condition.

VMS Macros Invoked by Drivers
TIMEDWAIT

~ub/bl]
Label placed at the instruction that performs the processor-specific delay
after each execution of the loop of embedded instructions; embedded
instructions can pass control here in order to skip the execution of the rest
of the embedded instructions in a given execution of the embedded loop.

DESCRIPTION The TIMEDWAIT macro waits for a period of time for an event or
condition to occur. You can specify up to six instructions for this macro to
execute in a loop to determine whether the event has occurred.

The TIMEDWAIT macro does not read the processor's clock. The interval
it waits is approximate and depends upon the processor and the set of
instructions you choose for testing to see if the condition exists.

TIMEDWAIT returns a status code (success or failure) in R0, destroys the
contents of R1, and preserves all other registers.

EXAMPLE

TIMED~nTAIT TIME=#600*1000,—

INS1=<TSTB RL_CS (R4) >,
INS2=<BLSS 15$>,—
DONELBL=15$

BLBC R0, 25$

;6-second wait loop
- ;Is controller ready?

If LSS - yes
;Label to exit wait loop
;Time expired - exit

The unit initialization routine of DLDRIVER issues the TIMEDWAIT
macro to wait a maximum of six seconds if another unit is busy on the
controller's channel.

2-93

VMS Macros Invoked by Drivers
TIMEWAIT

TIMEWAIT

Waits for a specified bit to be cleared or set within a specified length of time.

FORMAT TIMEWAIT time,bitval,source,contexi
(,sense=.TRUE.]

PARAMETERS time
Number of 10-microsecond intervals to wait. VMS multiplies this value
by aprocessor-specific value in order to calculate the interval to wait.
The processor-specific value is inversely proportional to the speed of the
processor, but is never less than 1.

bitval
Mask that determines which bits to test.

source
Address of bits to test.

context
Context in which the bits are to be tested (B, W, or L).

sense-. TRUE.J
If .TRUE., test for one or more of the specified bits set; otherwise test for
all bits cleared.

DESCRIPTION The TIMEWAIT macro checks for a specific state by testing bits for a
specified length of time.

If the state comes into existence during the specified interval, the
TIMEWAIT macro places a success code in RO and returns control to
its caller. If the state does not occur during the specified period, the
TIMEWAIT macro places a failure code in RO and returns control to its
caller. The TIMEWAIT macro destroys the contents of R1, and preserves
the contents of all other registers.

Because the TIMEDWAIT macro provides more flexibility and a more
controlled environment for detection of events or conditions, Digital
recommends its use over the TIMEWAIT macro.

VMS Macros Invoked by Drivers
TIMEWAIT

EXAMPLE

MOVQ R0, - (SP)
TIMEWAIT #3,#RL CS M CRDY,-

RL_C S (R4) , W

MOVQ (SP) +, RO

Save R0, R1

;Restore RO,Rl

DLDRIVER's unit initialization routine uses the TIMEWAIT macro to wait
30 microseconds for the RL11 controller to be ready before proceeding.

VMS Macros Invoked by Drivers
UNLOCK

UNLOCK

Relinquishes synchronized access to a system resource as appropriate to the
processing environment.

FORMAT UNLOCK lockname ~,newiplJ~,conditionJ
(",preserve= YESJ

PARAMETERS /ockname
Name of the system resource to be released or restored.

~newipl]
Location containing the IPL to which to lower. A prior invocation of the
LOCK macro may have stored this IPL value.

condition]
Indication of a special use of the macro. The only defined condition
is RESTORE, which causes the macro—in a VMS multiprocessing
environment—to call SMP$RESTORE instead of SMP$RELEASE, thus
releasing a single acquisition of the spin lock by the local processor.

preserve-YES]
Indication that the macro should preserve RO across an invocation. If you
do not need to retain the contents of R0, specifying preserve=NO can
enhance system performance.

DESCRIPTION In a uniprocessing environment, the UNLOCK macro lowers IPL to
newipl. If an interrupt is pending at the current IPL or at any IPL
above newipl, the current procedure is immediately interrupted.

In a multiprocessing environment, the UNLOCK macro performs the
following tasks:

• Preserves RO through the macro call (if preserve=YES is specified).

• Generates a spin lock index of the format SPL$C_lockname and
stores it in R0.

• Calls SMP$RELEASE or, if condition=RESTORE is specified,
SMP$RESTORE. These routines index into the system spin lock
database (a pointer to which is located at SMP$AR_SPNLI~:VEC) to
release the appropriate spin lock.

• Moves any specified newipl into the local processor's IPL register
(PR$_IPL). If an interrupt is pending at the current IPL or at any IPL
above newipl, the current procedure is immediately interrupted.

In either processing environment, the UNLOCK macro sets the SMP-
modified bit in the driver prologue table (DPT$V SMPMOD in DPT$L_
FLAGS).

VMS Macros Invoked by Drivers
UNLOCK SYSTEM PAGES

UNLOCK SYSTEM PAGES

Terminates a request to lock down a series of system pages.

FORMAT UNLOCK_SYSTEM_PAGES (ipl]

PARAMETERS ~ipl]
IPL at which to continue execution.

DESCRIPTION The UNLOCK SYSTEM_PAGES macro terminates a request to lock down
a series of contiguous system pages. In a code segment that uses this
locking technique, there must be exactly one UNLOCK SYSTEM_PAGES
macro call per LOCK SYSTEM_PAGES macro call. When the locked code
segment completes, it must invoke the UNLOCK SYSTEM_PAGES macro
to release all previously locked pages.

The UNLOCK SYSTEM_PAGES macro executes under the following
conditions

• When it invokes the UNLOCK SYSTEM_PAGES macro, the code must
ensure that the stack is exactly as it was when the LOCK SYSTEM_
PAGES macro was invoked. That is, if the code has pushed anything
on the stack, it must remove it before invoking UNLOCK SYSTEM_
PAGES.

• If it specified the ipl argument to the LOCK SYSTEM_PAGES macro,
the code segment must restore the previous IPL, either explicity,
through the use of the ipl argument to the UNLOCK SYSTEM_
PAGES macro, or through the use of one of the system synchronization
macros (UNLOCK, FORKUNLOCK or DEVICEUNLOCK). If it lowers
IPL, the locked code segment must invoke the appropriate system
synchronization macro to release any spin locks that were required to
protect the resources accessed at the elevated IPL.

VMS Macros Invoked by Drivers
$VEC

$VEC

Defines an entry in a port driver vector table within the context of a $VECINI
macro .

FORMAT $VEC entry, routine

PARAMETERS entry
Name of the vector table entry, specified without the PORT_ prefix.

routine
Name of the service routine within the driver that corresponds to the entry
point.

DESCRIPTION A terminal port driver uses the $VEC macro to validate and generate a
vector table entry. A driver need not invoke the $VEC macro to associate a
routine with each entry in the vector table. The $VECINI macro initializes
all unspecified entry points with the address of the driver's null entry
point.

To use the $VEC macro, the driver must include an invocation of the
$TTYMACS definition macro (from SYS$LIBRARY:LIB.MLB). See the
description of the $VECINI macro for an example of creating a port driver
vector table.

VMS Macros Invoked by Drivers
$VECEND

$VECEND

Ends the scope of the $VECINI macro, thereby completing the definition of a
port driver vector table.

FORMAT $VECEND ~endJ

PARAMETER fiend]
Flag controlling the generation of the end of the vector table. This
argument is generally omitted so that the $VECEND macro can generate
the end of the vector table. Otherwise, the $VECEND macro does not
generate the end of the table.

DESCRIPTION A terminal port driver uses the $VECEND macro to generate the longword
of zeros that terminates a port driver vector table initialized by the
$VECINI and $VEC macros. It also positions the location counter at label
drivername$VECEND, as defined by the $VECINI macro.

To use the $VECEND macro, the driver must include an invocation of
the $TTYMACS definition macro (from SYS$LIBRARY:LIB.MLB). See the
descriptions of the $VECINI and $VEC macros for additional information
on creating a port driver vector table.

VMS Macros Invoked by Drivers
$VECINI

$VECINI

Begins the definition of a port vector table.

FORMAT $VECINI drivername, null routine (,prefix=PORT)
(,size=_LENGTH]

PARAMETERS drivername
Prefu~ (usually two letters) of the driver name (for example, DZ).

null routine
Address of the driver's null entry point, usually specified in the format
drivername$NULL. This address contains an RSB instruction.

~, prefix-PORT
Prefu~ to be added to the symbols defined in subsequent invocations of the
$VEC macro.

,size]
Number of bytes allocated for the vector table.

DESCRIPTION A terminal port driver uses the $VECINI macro to begin the definition of a
port vector table and initialize each table entry to point to the driver's null
entry point. The $VECINI macro generates the label drivername$VEC
at the beginning of the table and drivername$VECEND at the end of the
table.

The $VEC macro defines valid entries within the port driver vector table
specified by the invocation of the $VECINI macro, and the $VECEND
macro ends the table's definition.

To use the $VECINI macro, the driver must include an invocation of the
$TTYIVIACS definition macro (from SYS$LIBRARY:LIB.MLB).

EXAMPLE

$VECINI DZ32,DZ$NULL

$VEC STARTIO,DZ32$STARTIO

$VEC SET_LINE,DZ32$SET_LINE

$VEC XON,DZ32$XON

$VEC XOFF,DZ32$XOFF

$VEC STOP,DZ32$STOP

$VEC ABORT,DZ32$ABORT

$VEC RESUME,DZ32$RESUME

$VEC MAINT,DZ32$MAINT

$VECEND

;Start new output
;Set new parity/speed

Send XON
;Send XOFF

;Stop current output
;Abort current output
;Resume stopped output
;Invoke maintenance functions

In this example, the $VECINI macro creates a port driver vector table.
The table entries defined by the eight subsequent invocations of the $VEC

2-100

VMS Macros Invoked by Drivers
$VECINI

macro (PORT_STARTIO, PORT_SET LINE, and so on) are set up to point
to the specified routines in the port driver. The $VECINI macro initializes
any entry point not defined by a $VEC macro (for instance, PORT_SET_
MODEM) with the address of the null entry point, DZ$NULL.

The $VECEND macro concludes the definition of the port driver vector
table.

VMS Macros Invoked by Drivers
$YIELD, _YIELD

$YIELD, _YIELD

Defines symbolic offsets and masks for bit fields.

FORMAT $YIELD mod,inibit,fields
{ _YIELD }

PARAMETERS mod
Module in which this bit field is defined; the prefu~ portion of the name of
the symbol to be defined.

1~11~i~
Bit within the field on which the positions of the bits to be defined are
based.

fields
One or more fields of the form <sym,[size=l],[mask]>, where these
arguments are defined as follows:

Argument Meaning

sym String appended to the string "mod$" to form the name of this bit
field.

[size=l] Size in bits of this bit field. If you specify a value greater than 1,
the YIELD macro generates a symbol for the size of the bit field.

[mask] Character "M" if the YIELD macro is to generate a symbol for the
mask of the bit field, blank otherwise.

DESCRIPTION The $YIELD and YIELD macros define bit fields whose names have the
form mod$x_sym and mod x_sym (where x can be V, S, or M and sym is a
value supplied in the fields argument). Because the dollar-sign character
($) is reserved for use in VMS-defined symbols, use of the YIELD macro
is recommended for non-Digital-supplied device drivers.

See the descriptions of the $DEFINI and $EQULST macros for additional
information on defining symbols for data structure fields.

_YIELD

VMS Macros Invoked by Drivers
$YIELD, _YIELD

EXAMPLE

$EQULST XA_K_, , 0, 1, <-

<fnctl, 2>-
<fnct2, 4>-
<fnct3, 8>-
XX_CSR, 0, <-

<G0, , M>, -
<FNCT, 3 , M>, -
<XBA, 2 , M>, -
<IE, , M>, -
<MAINT>, -
<ATTN>, -

;Define CSR bit values

;Control/status register
;Start device
;Function bits
;Extended address bits
;Enable interrupts
;Maintenance bit
;Status from other processors

This code excerpt produces the following symbols:

XX_CSR M FNCT =
XX_CSR M GO =
XX_CSR M IE =
XX_CSR M XBA =
XX_CSR S_FNCT =
XX_CSR_S_XBA =
XX_CSR V FNCT =
XX_CSR V_GO =
XX_CSR V IE
XX_CSR V MAINT
XX_CSR_V_XBA

0000000E
00000001

00000040
00000030
00000003
00000002
00000001
00000000

= 00000006
= 00000007

= 00000004

2-103

VMS Macros Invoked by Drivers
WFIKPCH, WFIRLCH

WFIKPCH, WFIRLCH

Suspends a driver fork thread and folds its context into a fork block in
anticipation of a device interrupt or timeout. When WFIKPCH is invoked,
the fork thread keeps ownership of the controller channel while waiting; when
WFIRLCH is invoked, the fork thread releases ownership of the controller
channel.

FORMAT f WFIKPCH i excpt(,time=65536] t WFIRLCH f

PARAMETERS excpt
Name of a device timeout handling routine; the address of this routine
must be within 65,536 bytes of the address at which the WFIKPCH macro
is invoked.

time-65536]
Timeout interval, expressed as the number of seconds to wait for an
interrupt before a device timeout is considered to exist. A value equal to
or greater than 2 is required because the timeout detection mechanism is
accurate only to within one second.

DESCRIPTION The WFIKPCH and WFIRLCH macros push time on the stack and
call IOC$WFIKPCH and IOC$WFIRLCH, respectively. After the JSB
instruction that makes the routine call, either of these macros constructs
a word that contains the relative offset to the timeout handling routine
specified in excpt. Because these routines compute and store the address
of the following instruction in the fork block at UCB$L_FPC, the software
timer interrupt service routine can determine the routine's location and
call it if the device times out before it can deliver an interrupt.

IOC$WFIKPCH and IOC$WFIRLCH assume. that, prior to the invocation
of the macro, a DEVICELOCK macro has begin issued both to synchronize
with other device activity and to leave the IPL of the previous code thread
on the top of the stack. Upon storing the context of and suspending the
current code thread, IOC$WFIKPCH and, IOC$WFIRLCH return control
to their caller's caller at the stored IPL.

VMS Macros Invoked by Drivers
WFIKPCH, WFIRLCH

When the WFIKPCH or WFIRLCH macro is invoked, the following
locations must contain the values listed:

Location Contents

R5 Address of UCB

00(SP) IPL at which control is passed to the caller's caller

04(SP) Address (in the caller's caller) at which to return control

The suspended code thread is resumed by the occurrence of an interrupt
signaling the successful completion of a device operation. When an
interrupt occurs, control returns to the instruction following the macro.
If a device timeout occurs before an interrupt can be posted, the
timeout handling routine specified in excpt is called. In both instances,
subsequent code can assume that only R3 and R4 have been preserved
across the suspension.

See the descriptions of the DEVICELOCK, IOFORK, and SETIPL macros
for examples of the use of the WFIKPCH macro.

3 Operating System Routines

This chapter describes the VMS operating system routines that are used
by device drivers and employs the following conventions:

• Most routines reside in modules within the [SYS] facility of VMS. A
routine description provides a facility name (in brackets) only if the
module is not located in the [SYS] facility.

• Many routines are not directly called by device drivers. Rather, VMS
supplies macros that drivers invoke to accomplish the routine call.
The description of a routine that has such a macro interface lists the
name of the associated macro. Chapter 2 describes how a driver can
use these macros.

• System routines generally return a status value in RO (for instance,
SS$_NORMAL). The low-order bit of this value indicates successful (1)
or unsuccessful (0) completion of the routine. Additional information
on returned status values appears in the VMS System Services
Reference Manual and the VMS System Messages and Recovery
Procedures Reference Manual.

• If a register is not used to transfer output or is not explicitly indicated
as destroyed, a driver can assume that its contents are preserved.

3-1

Operating System Routines
COM$DELATTNAST

COM$DELATTNAST

Delivers all attention ASTs linked in the specified list.

module

input

output

synchronization

COMDRVSUB

Location

R4

R5

Contents

Address of listhead of AST control blocks

Address of UCB

Location

Specified listhead

RO through R11

Contents

Empty

Preserved

COM$DELATTNAST executes and exits at the caller's IPL, and acquires
no spin locks.

DESCRIPTION COM$DELATTNAST removes all AST control blocks (ACBs) from
the specified list. Using each ACB as a fork block, it schedules a
fork process at IPL$_QUEUEAST to queue the AST to its target
process. COM$DELATTNAST dequeues each ACB from the head of
the list, thus removing them in the reverse order of their declaration by
COM$SETATTNAST. Note that in certain circumstances attention ASTs
can be delivered to a user process before the delivery of UO completion
ASTs previously posted by the driver.

3-2

Operating System Routines
COM$DRVDEALMEM

COM$DRVDEALMEM

Deallocates system dynamic memory.

module

input

output

synchronization

DESCRIPTION

COMDRVSUB

Location Contents

RO Address of block to be deallocated

IRP$W SIZE Size of block in bytes (must be at least 24 bytes
long}

Location Contents

RO through R11 Preserved

Drivers can call COM$DRUDEALMEM from any IPL.
COM$DRVDEALMEM executes at the caller's IPL and returns control
at that IPL. The caller retains any spin locks it held at the time of the call.

COM$DRVDEALMEM calls EXE$DEANONPAGED to deallocate the
buffer specified by R0. If COM$DRVDEALMEM cannot deallocate memory
at the caller's IPL, it transforms the block being deallocated into a fork
block and queues the block in the fork queue. The code that executes in
the fork process then jumps to EXE$DEANONPAGED.

If the buffer to be deallocated is less than FKB$C_LENGTH in size, or
its address is not aligned on a 16-byte boundary, COM$DRVDEALMEM
issues a BADDALRQSZ bugcheck.

3-3

Operating System Routines
COM$FLUSHATTNS

COM$FLUSHATTNS

Flushes an attention AST list.

module

input

output

C OMDRVSUB

Location Contents

R4 Address of PCB

R5 Address of UCB

R6 Number of the assigned I/O channel

R7 Address of listhead of AST control blocks

UCB$L DLCK Address of device lock

PCB$L_PID Process ID

PCB$W_ASTCNT ASTs remaining in quota

Location Contents

RO SS$_NORMAL

R 1, R2, R7 Destroyed

PCB$W_ASTCNT Incremented by the number of AST control blocks
that are flushed

Specified listhead Updated

synchronization COM$FLUSHATTNS raises IPL to device IPL, acquiring the
corresponding device lock. Before returning control to its caller at the
caller's IPL, COM$FLUSHATTNS releases the device lock. The caller
retains any spin locks it held at the time of the call.

DESCRIPTION A driver's cancel-I/O routine calls COM$FLUSHATTNS to flush an
attention AST list. A driver FDT routine calls COM$FLUSHATTNS to
service a $QIO request that specifies aset-attention-AST function and a
value of 0 in the p1 argument.

COM$FLUSHATTNS locates all AST control blocks whose channel number
and PID match those supplied as input to the routine. It removes them
from the specified list, deallocates them, and returns control to its caller.

Operating System Routines
COMPOST, COMPOST NOCNT

COMPOST, COM$POST_NOCNT

Initiates device-independent postprocessing of an I/O request independent of
the status of the device unit.

module

input

COMDRVSUB

Location Contents

R3 Address of IRP

R5 Address of UCB (COM$POST only)

IRP$L_MEDIA Data to be copied to the I/O status block

IRP$L_MEDIA+4 Data to be copied to the I/O status block

output
Location Contents

RO Destroyed

UCB$L OPCNT Incremented (COM$POST only)

synchronization Drivers call COMPOST and COM$POST_NOCNT at or above fork IPL.
These routines execute at their callers' IPL and return control at that IPL.
The caller retains any spin locks it held at the time of the call.

DESCRIPTION A driver fork process calls COMPOST or COM$POST_NOCNT after it
has completed device-dependent I/O processing for an UO request initiated
by EXE$ALTQUEPKT. Because COM$POST_NOCNT, unlike COMPOST,
does not increment the unit's operations count (UCB$L_OPCNT), a driver
uses COM$POST_NOCNT to initiate completion processing for an UO
request when the associated UCB is not available.

COMPOST and COM$POST_NOCNT insert the IRP into the systemwide
UO postprocessing queue, request an IPL$_IOPOST software interrupt,
and return control to the caller. Unlike IOC$REQCOM, these routines do
not attempt to dequeue any IRP waiting for the device or change the busy
status of the device.

3-5

Operating System Routines
COM$SETATTNAST

COM$SETATTNAST

Enables or disables attention ASTs.

module

input

output

synchronization

COMDRVSUB

Location

R3

R4

R5

R7

AP

IRP$W_CHAN

UCB$L DLCK

PCB$W ASTCNT

PCB$L_PID

00(AP)

04(AP)

08(AP)

Contents

Address of IRP

Address of current PCB

Address of UCB

Address of listhead of AST control blocks

Address of $QIO system service argument list

I/O request channel index number

Address of device lock

Number of ASTs remaining in process quota

Process ID

Address of process's AST routine

AST parameter

Access mode for AST

Location

RO

R1 and R2

R3

R5

R6, R7, R8

PCB$W_ASTCNT

Specified listhead

Contents

SS$_NORMAL, SS$_EXQUOTA, or
SS$_INSFMEM

Destroyed

Address of IRP

Address of UCB

Destroyed

Decremented

Updated

COM$SETATTNAST raises IPL to device IPL, acquiring the corresponding
device lock. It returns control to its caller at the caller's IPL.

DESCRIPTION A driver FDT routine calls COM$SETATTNAST to service a $QIO request
that specifies aset-attention-AST function.

If the p1 argument of the request contains a zero, COM$SETATTNAST
transfers control to COM$FLUSHATTNS, which disables all ASTs
indicated by the PID and UO channel number (IRP$W_CHAN).
COM$FLUSHATTNS searches through the AST control block (ACB)

3-6

Operating System Routines
COM$SETATTNAST

list, extracts each identified ACB, deallocates, and returns to the caller of
COM$SETATTNAST.

If the pl argument of the request contains the address of an AST routine,
COM$SETATTNAST decrements PCB$W ASTCNT and allocates an
expanded AST control block (ACB) that contains the following information:

• Spin lock index SPL$C_QUEUEAST

• Address of the AST routine (as specified in p1)

• AST parameter (as specified in p2)

• Access mode (as specified in p3 and maximized against the current
process's access mode and bit ACB$V QUOTA set to indicate a
process-requested AST)

• Number of the assigned UO channel

• PID of the requesting process

COM$SETATTNAST links the ACB to the start of the specified linked
list of ACBs located in a UCB extension area. (See Section 1.17 for
information on defining an extension to a UCB.) COM$DELATTNAST can
later use the expanded ACB to fork to IPL$_QUEUEAST, at which IPL it
reformats the block into a standard ACB.

If the process exceeds buffered UO or AST quotas, or if there is no
memory available to allocate the expanded ACB, COM$SETATTNAST
restores PCB$W ASTCNT to its original value and transfers control to
EXE$ABORTIO with error status.

3-7

Operating System Routines
ERL$DEVICERR, ERL$DEVICTMO, ERL$DEVICEATTN

ERL$DEVICERR, ERL$DEVICTMO, ERL$DEVICEATTN

Allocate an error message buffer and record in it information concerning the
error.

module

input

output

ERRORLOG

Location Contents

R5 Address of UCB

DDT$W ERRORBUF Size of error message buffer in bytes

UCB$L DEVCHAR Bit DEV$V_ELG set

UCB$W FUNC Bit 10$V_INHERLOG clear

UCB$L IRP Address of IRP currently being processed
(ERL$DEVICERR and ERL$DEVICTMO only)

UCB$L ORB ORB address

Location Contents

UCB$W ERRCNT Incremented

UCB$L EMB Address of error message buffer

UCB$L STS UCB$V_ERLOGIP set

RO through R11 Preserved

SynChronlzatlOn A driver calls ERL$DEVICERR, ERL$DEVICTMO, or
ERL$DEVICEATTN, at or above fork IPL, holding the corresponding
fork lock in a VMS multiprocessing environment. These routines return
control to the caller at the caller's IPL. The caller retains any spin locks it
held at the time of the call.

DESCRIPTION ERL$DEVICERR and EftL$DEVICTMO log an error associated with
a particular UO request. ERL$DEVICEATTN logs an error that is not
associated with an UO request. Each of these routines performs the
following steps:

• Increments UCB$W_ERRCNT to record a device error. If the error-log-
in-progress bit (UCB$V ERLOGIP in UCB$L_STS) is set, the routine
returns control to its caller.

• Allocates from the current error log allocation buffer an error message
buffer of the length specified in the device's DDT (in argument erlgbf
to the DDTAB macro). This allocation is performed at IPL$_EMB
holding the EMB spin lock.

3--8

Operating System Routines
ERL$DEVICERR, ERL$DEVICTMO, ERL$DEVICEATTN

• Initializes the buffer with the current system time, error log sequence
number, and error type code. These routines use the following error
type codes:

ERL$DEVICERR Device error (EMB$C_DE)

ERL$DEVICTMO Device timeout (EMB$C_DT)

ERL$DEVICEATTN Device attention (EMB$C_DA)

• Places the address of the error message buffer in UCB$L_EMB.

• Sets UCB$V ERLOGIP in UCB$L_STS.

• Loads fields from the UCB, the IRP, and the DDB into the buffer,
including the following:

UCB$B_DEVCLASS Device class

UCB$B DEVTYPE Device type

IRP$L PID Process ID of the process originating the I/O request
(ERL$ DEVICERR and ERL$_DEVICTMO)

IRP$W BOFF Transfer parameter (ERL$DEVICERR and
ERL$DEVICTMO)

IRP$W BCNT Transfer parameter (ERL$DEVICERR and
ERL$DEVICTMO)

UCB$L MEDiA Disk size

UCB$W UNIT Unit number

UCB$W ERRCNT Count of device errors

UCB$L OPCNT Count of completed operations

ORB$L OWNER UIC of volume owner

UCB$L DEVCHAR Device characteristics

UCB$B SLAVE Slave unit number

IRP$W FUNC I/O function value (ERL$DEVICERR and
ERL$DEVICTMO)

DDB$T NAME Device name (concatenated with cluster node name if
appropriate)

• Loads into RO the address of the location in the buffer in which the
contents of the device registers are to be stored.

• Calls the driver's register dumping routine, the address of which is
specified in the regdmp argument to the DDT~1B macro.

Note that a driver must define the local disk UCB extension or local tape
UCB extension, as described in Section 1.17, to use these error logging
routines.

3-9

Operating System Routines
EXE$ABORTIO

EXE$ABORTIO

Completes the servicing of an I/O request without returning status to the I/O
status block specified in the request.

module

input

output

SYSQIOREQ

Location Contents

RO First longword of status for the I/O status block

R3 Address of IRP

R4 Address of current PCB

R5 Address of UCB

IRP$L IOSB Address of I/O status block

IRP$B_RMOD ACB$V_QUOTA set indicates process-specified AST
pending

PCB$W ASTCNT Count of available AST queue entries

Location Contents

IRP$L IOSB Zero

IRP$B_RMOD ACB$V_QUOTA clear

PCB$W_ASTCNT Incremented if ACB$V_QUOTA was set

synchronization EXE$ABORTIO executes at its caller's IPL and raises to fork IPL,
acquiring the associated fork lock in a VMS multiprocessing environment.
As a result, its caller cannot be executing above fork IPL. A driver usually
transfers control to EXE$ABORTIO at IPL$ ASTDEL.

EXE$ABORTIO exits at normal process IPL (IPL 0).

DESCRIPTION EXE$ABORTIO performs the following actions:

1 Clears IRP$L_IOSB so that no status is returned by UO postprocessing

2 Clears ACB$V QUOTA in IRP$B_RMOD to prevent the delivery of
any AST to the process specified in the I/O request

3 Updates the count of available AST entries at PCB$W_ASTCNT, if
necessary

4 Inserts the IRP in the local processor's UO postprocessing queue

5 If the queue is empty, requests a software interrupt from the local
processor at IPL$_IOPOST

This interrupt causes UO postprocessing to occur before the remaining
instructions in EXE$ABORTIO are executed.

3-10

Operating System Routines
EXE$ABORTIO

When all UO postprocessing has been completed, EXE$ABORTIO regains
control and completes the UO operation as follows:

• Lowers IPL to zero

• Issues the RET instruction that restores the original access mode of
the caller of the $QIO system service and returns control to the system
service dispatcher

EXE$ABORTIO returns in RO the final status code saved when the exit
routine was called. Any A~Ts specified when the UO request was issued
will not be delivered, and any event flags requested will not be set.

~''"1

Operating System Routines
EXE$ALLOCBUF, EXE$ALLOCIRP

EXE$ALLOCBUF, EXE$ALLOCIRP

Allocates a buffer from nonpaged pool for abuffered-I/O operation.

module

input

output

MEMORYALC

Location

R1

PCB$L_STS

Contents

Size of requested buffer in bytes (EXE$ALLOCBUF
only). This value should include the 12 bytes
required to store header information.

PCB$V_SSRWAIT clear if the process should wait
if no memory is available for requested buffer; set if
resource wait mode is disabled.

Location Contents

RO SS$_NORMAL or SS$_INSFMEM.

R1 Size of requested buffer in bytes (IRP$C_LENGTH
for EXE$ALLOCIRP).

R2 Address of allocated buffer.

R4 See the following discussion.

IRP$W_SIZE (in allocated Size of requested buffer in bytes (for
buffer) EXE$ALLOCBUF), IRP$C_LENGTH (for

EXE$ALLOCIRP).

IRP$B_TYPE (in allocated DYN$C_BUFIO (for EXE$ALLOCBUF), DYN$C_IRP
buffer) (for EXE$ALLOCIRP).

synchronization EXE$ALLOCBUF and EXE$ALLOCIRP set IPL to IPL$ ASTDEL. As a
result they cannot be called by code executing above IPL$_ASTDEL. They
return control to their callers at the caller's IPL.

DESCRIPTION EXE$ALLOCBUF attempts to allocate a buffer of the requested size
from nonpaged pool; EXE$ALLOCIRP attempts to allocate an IRP from
nonpaged pool.

If sufficient memory is not available, EXE$ALLOCBUF and
EXE$ALLOCIRP move the current PCB (CTL$GL_PCB) into R4 to
determine whether the process has resource wait mode enabled. If
PCB$V SSRWAIT in PCB$L_STS is clear, these routines place the process
in a resource wait state until memory is released.

The caller must check and adjust process quotas (JIB$L_BYTCNT
or JIB$L_BYTLM, or both) by calling EXE$DEBIT_BYTCNT or
EXE$DEBIT_BYTCNT_BYTLM. (Note that you can perform this task and
allocate a buffer of the requested size by using the routines EXE$DEBIT_

3-12

Operating System Routines
EXE$ALLOCBUF, EXE$ALLOCIRP

BYTCNT_ALO and EXE$DEBIT_BYTCNT_BYTLM_ALO. These routines
invoke EXE$ALLOCBUF.)

The normal buffered UO postprocessing routine (IOC$REQCOM), initiated
by the REQCOM macro, readjusts quotas and also deallocates the buffer.

Note that the value returned in R1 and placed at IRP$W_SIZE in the
allocated buffer is the size of the requested buffer. The actual size of
the allocated buffer is determined according to the algorithms used by
EXE$ALONONPAGED and the size of the Iookaside list packets. The
nonpaged pool deallocation routine (EXE$DEANONPAGED), called in
buffered I/O postprocessing, uses similar algorithms when returning
memory to nonpaged pool.

3—y 3

Operating System Routines
EXE$ALONONPAGED

EXE$ALONONPAGED

Allocates a block of memory from nonpaged pool.

module

input

output

MEMORYALC

Location

R1

Contents

Size of requested block in bytes

Location Contents

RO SS$_NORMAL or SS$_INSFMEM

R1 Size of the allocated block, which may be larger
than the requested size

R2 Address of allocated block

synchronization EXE$ALONONPAGED executes at its caller's IPL and at IPL$_POOL,
obtaining the POOL spin lock in a VMS multiprocessing environment. For
this reason, it cannot be called by code executing above IPL$_POOL.

EXE$ALONONPAGED returns control to its caller at the caller's IPL. The
caller retains any spin locks it held at the time of the call.

DESCRIPTION Depending upon the size of the requested block, EXE$ALONONPAGED
allocates nonpaged pool either from one of the lookaside lists (SRP, IRP, or
LRP) or from the variable region of nonpaged dynamic memory.

EXE$ALONONPAGED does not initialize the header of the allocated block
of memory.

3-14

Operating System Routines
EXE$ALONPAGVAR

EXE$ALONPAGVAR

Allocates a block of memory from the variable region of nonpaged pool.

module

input

output

MEMORYALC

Location

R1

Contents

Size of requested block in bytes

Location Contents

RO SS$_NORMAL or SS$_INSFMEM

R1 Size of requested buffer, rounded up to a 16-byte
multiple

R2 Address of allocated block

synchronization EXE$ALONPAGVAR executes at its caller's IPL and at IPL$_POOL,
holding the POOL spin lock in a VMS multiprocessing environment. For
this reason, its caller cannot be executing at an IPL above IPL$_POOL.

EXE$ALONPAGVAR returns control to its caller at the caller's IPL. The
caller retains any spin locks it held at the time of the call.

DESCRIPTION EXE$ALONPAGVAR allocates a block of memory of the requested
size from the variable region of nonpaged dynamic memory. Because
EXE$ALONPAGVAR does not attempt to service the request from the
lookaside lists, it is suitable for driver fork processes that may afterwards
return the allocated block to nonpaged pool in pieces.

EXE$ALONPAGVAR does not initialize the header of the allocated block
of memory.

3-15

Operating System Routines
EXE$ALOPHYCNTG

EXE$ALOPHYCNTG

Allocates a physically contiguous block of memory.

module

input

output

MEMORYALC

Location

R1

Contents

Number of physically contiguous pages to allocate

Location Contents

RO SS$_NORMAL, SS$_INSFMEM, or SS$_INSFSPTS

R2 System virtual address of allocated block, if the
allocation succeeds

synchronization EXE$ALOPHYCNTG raises IPL to IPL$_SYNCH and obtains the MMG
spin lock. As a result, its caller cannot be executing above IPL$_SYNCH
or hold any spin lock ranked higher than MMG. (For instance, a driver
fork process executing at IPL$_SYNCH holding the IOLOCK8 fork lock
can call EXE$ALOPHYCNTG.)

EXE$ALOPHYCNTG returns control to its caller at IPL$_SYNCH. The
caller retains any spin lock it held at the time of the call.

DESCRIPTION EXE$ALOPHYCNTG allocates a physically contiguous block of memory.
You cannot deallocate memory allocated by EXE$ALOPHYCNTG.

Note that the number of SPT slots available depends on the value of the
SPTREQ system parameter.

3-16

Operating System Routines
EXE$ALTQUEPKT

EXE$ALTQUEPKT

Delivers an IRP to a driver's alternate start-I/O routine without regard for the
status of the device.

module

input

output

SYSQIOREQ

Location Contents

R3 Address of IRP

R5 Address of UCB

DDT$L ALTSTART Address of alternate start-I/O routine

UCB$B_FLCK Fork lock index

UCB$L DDB Address of unit's DDB

DDB$L DDT Address of DDT

Location Contents

RO through R5 Destroyed

synchronization A driver FDT routine calls EXE$ALTQUEPKT at IPL$_ASTDEL.
EXE$ALTQUEPKT raises to fork IPL (acquiring any required fork lock)
before calling the driver's alternate start-UO routine. When the alternate
start-UO routine returns control to it, EXE$ALTQUEPKT returns control
to its caller at the caller's IPL (having released its acquisition of the fork
lock).

DESCRIPTION EXE$ALTQUEPKT calls the driver's alternate start-I/O routine. It does
not test whether the unit is busy before mal~ing the call.

3-17

Operating System Routines
EXE$CREDIT_BYTCNT, EXE$CREDIT_BYTCNT BYTLM

EXE$CREDIT_BYTCNT,
EXE$CREDIT_BYTCNT_BYTLM

Return credit to a job's buffered-I/O byte count quota and byte limit.

module

input

output

EXSUBROUT

Location Contents

RO Number of bytes to return to the byte count quota
(and byte limit)

R4 Address of current PCB

,~IB$B_FLAGS JIB$V_BYTCNT WAITERS set if there are
processes waiting for byte count quota from this
JIB

JIB$L BYTCNT Job's byte count usage quota

JIB$L BYTLM Job's byte limit (used by EXE$CREDIT BYTCNT
BYTLM)

Location Contents

RO Destroyed

JIB$L BYTCNT Updated

JIB$L BYTLM Updated (by EXE$CREDIT BYTCNT BYTLM)

synchronization EXE$CREDIT_BYTCNT and EXE$CREDIT_BYTCNT_BYTLM raise IPL
to IPL$_SYNCH and obtain the JIB spin lock and the SCHED spin lock (if
JIB$V BYTCNT_WAITERS is set) in a VMS multiprocessing environment.
As a result, their callers cannot be executing above IPL$_SYNCH or hold
any spin lock ranked higher than JIB. (For instance, a driver fork process
executing at IPL$_SYNCH holding the IOLOCK8 fork lock can call these
routines. It cannot, however, hold the SCHED spin lock.)

EXE$CREDIT_BYTCNT and EXE$CREDIT_BYTCNT_BYTLM return
control to their callers at the caller's IPL. Their caller retains any spin
locks it held at the time of the call.

DESCRIPTION EXE$CREDIT_BYTCNT provides a synchronized method of crediting
a job's byte count quota to JIB$L_BYTCNT. EXE$CREDIT_BYTCNT_
BYTLM also credits a job's byte limit to JIB$L_BYTLM.

Both routines round the value specified in RO up to the nearest 16-byte
boundary before applying it to the JIB. Both check JIB$V_BYTCNT_
WAITERS to determine if any process is waiting for the return of
nonpaged pool quota for this JIB. If a process is waiting, EXE$CREDIT_
BYTCNT calls a system routine that attempts to fill any pending requests.

3-18

Operating System Routines
EXE$DEANONPAGED, EXE$DEANONPGDSIZ

EXE$DEANONPAGED, EXE$DEANONPGDSIZ

Deallocates a block of memory and returns it to nonpaged pool.

module

input

output

MEMORYALC

Location Contents

RO Address of block to be deallocated

R1 Size of block in bytes, if from variable pool
(EXE$DEANONPGDSIZ only)

IRP$W_SIZE Size of block in bytes (EXE$DEANONPAGED only)

IRP$B TYPE Type of block to be deallocated
(EXE$DEANONPAGED only)

Location Contents

R 1 and R2 Destroyed

synchronization EXE$DEANONPAGED and EXE$DEANONPGDSIZ execute at the caller's
IPL, at IPL$_SYNCH holding the SCHED spin lock, and at IPL$_POOL
holding the POOL spin lock. As a result, the caller cannot be executing
above IPL$_SYNCH. EXE$DEANONPAGED and EXE$DEANONPGDSIZ
return control to the caller at the caller's IPL. The caller retains any spin
locks it held at the time of the call.

DESCRIPTION EXE$DEANONPAGED and EXE$DEANONPGDSIZ deallocate the
specified block of memory to nonpaged dynamic memory, returning it to
a lookaside list or the variable region of nonpaged pool as appropriate.
These routines also report to the scheduler the availability of the
deallocated pool.

EXE$DEANONPAGED issues a BADDALRQSZ bugcheck if the address of
the pool to be deallocated is not aligned on a 16-byte boundary.

If enabled by the SYSGEN parameter POOLCHECK, these routines
overwrite portions of the deallocated pool with a checksum and aone-byte
pattern. This action is helpful when tracking pool corruption problems.

3-19

Operating System Routines
EXE$DEBIT BYTCNTLNW), EXE$DEBIT BYTCNT_BYTLMLNW)

EXE$DEBIT_BYTCNTLNW),
EXE$DEBIT_BYTCNT_BYTLMLNW)

Determine whether a job's buffered I/O byte count quota usage permits the
process to be granted additional buffered I/O and, if so, adjust the job's byte
count quota and byte limit.

module

input

output

EXSUBROUT

Location Contents

R1 Number of bytes to be deducted; bit 31, when set,
disables the routine's check against IOC$GW_
MAXBU F

R4 Address of current PCB

PCB$L_STS PCB$V_SSRWAIT clear if the process should wait
for buffered-I/O byte quota; set if resource wait mode
is disabled

IOC$GW_MAXBUF Maximum number of buffered I/O bytes the system
allows to a single request

JIB$L BYTCNT Job's byte count usage quota

JIB$L_BYTLM Job's byte limit (used by EXE$DEBIT BYTCNT
BYTLM and EXE$DEBIT BYTCNT BYTLM_NW)

Location Contents

RO SS$_NORMAL or SS$_EXQUOTA

R1 Number of bytes deducted; bit 31 cleared

JIB$L BYTCNT Updated if successful

JIB$L BYTLM Updated if successful (by EXE$DEBIT BYTCNT
BYTLM and EXE$DEBIT BYTCNT BYTLM_NW)

synchronization EXE$DEBIT_BYTCNT, EXE$DEBIT_BYTCNT_NW, EXE$DEBIT_
BYTCNT_BYTLM, and EXE$DEBIT_BYTCNT_BYTLM_NW raise IPL
to IPL$_SYNCH and obtain the JIB spin lock in a VMS multiprocessing
environment. As a result, their callers cannot be executing above IPL$_
SYNCH or hold any spin lock ranked higher than JIB. (For instance, a
driver fork process executing at IPL$_SYNCH holding the IOLOCK8 fork
lock can call these routines. It cannot, however, hold the SCHED spin
lock.)

EXE$DEBIT_BYTCNT, EXE$DEBIT_BYTCNT_NW, EXE$DEBIT_
BYTCNT_BYTLM, and EXE$DEBIT_BYTCNT_BYTLM_NW return
control to their callers at the caller's IPL. The caller retains any spin
locks it held at the time of the call.

3-20

Operating System Routines
EXE$DEBIT_BYTCNTLNW), EXE$DEBIT_BYTCNT_BYTLMLNW)

DESCRIPTION EXE$DEBIT_BYTCNT and EXE$DEBIT_BYTCNT_NW check whether
a process has sufficient quota for a buffer of the specified size and, if so,
deduct the corresponding number of bytes from the job's byte count quota.
EXE$DEBIT_BYTCNT_BYTLM and EXE$DEBIT_BYTCNT_BYTLM_NW
also adjust the job's byte limit. All routines round the value specified in
R1 up to the nearest 16-byte boundary before applying it to the JIB.

If the process's quota usage is too large, EXE$DEBIT_BYTCNT and
EXE$DEBIT_BYTCNT_BYTLM place the process into a resource wait
state, based on the setting of PCB$V SSRWAIT, until sufficient quota
is returned to the job. EXE$DEBIT_BYTCNT_NW and EXE$DEBIT_
BYTCNT_BYTLM_NW do not refer to PCB$V SSRWAIT and return an
error if the process has exceeded its job's quota. These latter routines
never wait for sufficient quota.

If bit 31 in R1 is clear, all routines compare the byte count in R1 against
IOC$GW 1~2AXBUF, returning an error if the system's maximum buffer
allotment to a process is exceeded.

3-21

Operating System Routines
EXE$DEBIT BYTCNT ALO, EXE$DEBIT BYTCNT BYTLM ALO

EXE$DEBIT_BYTCNT_ALO,
EXE$DEBIT_BYTCNT_BYTLM_ALO

Determine whether a job's buffered I/O byte count quota usage permits
the process to be granted additional buffered I/O and, if so, allocates the
requested amount of nonpaged pool and adjust the job's byte count quota and
byte limit.

module

input

output

EXSUBROUT

Location Contents

R1 Number of bytes to be allocated (including the 12
bytes required for the buffer's header) and deducted;
bit 31, when set, disables the routine's check against
IOC$GW MAXBUF

R4 Address of current PCB

PCB$L STS PCB$V_SSRWAIT clear if the process should wait
for buffered-I/O byte quota; set if resource wait mode
is disabled

IOC$GW MAXBUF Maximum number of buffered I/O bytes the system
allows to a single request

JIB$L BYTCNT Job's byte count usage quota

JIB$L BYTLM Job's byte limit (used by EXE$DEBIT BYTCNT
BYTLM_ALO)

Location Contents

RO SS$_NORMAL, SS$_EXQUOTA, or SS$_INSFMEM

R1 Number of bytes deducted; bit 31 cleared

R2 Address of requested buffer

R3 Destroyed

JIB$L BYTCNT Updated if successful

JIB$L BYTLM Updated if successful (by EXE$DEBIT BYTCNT_
BYTLM_ALO)

IRP$W_SIZE (in allocated Size of requested buffer in bytes
buffer)

IRP$B_TYPE (in allocated DYN$C_BUFIO
buffer)

3-22

Operating System Routines
EXE$DEBIT BYTCNT ALO, EXE$DEBIT BYTCNT BYTLM ALO

synchronization EXE$DEBIT_BYTCNT_ALO and EXE$DEBIT_BYTCNT_BYTLM_ALO
raise IPL to IPL$_SYNCH and obtain the JIB spin lock in a VMS
multiprocessing environment. Their callers cannot be executing above
IPL$_SYNCH or hold any spin lock.

EXE$DEBIT_BYTCNT_ALO and EXE$DEBIT_BYTCNT_BYTLM_ALO
return control to their callers at IPL$_ASTDEL.

DESCRIPTION EXE$DEBIT_BYTCNT_ALO checks whether a process has sufficient
quota for a buffer of the specified size and, if so, allocates the buffer from
nonpaged pool and deducts the corresponding number of bytes from the
job's byte count quota. EXE$DEBIT_BYTCNT_BYTLM_ALO also adjusts
the job's byte limit. Both routines round the value specified in R1 up to
the nearest 16-byte boundary before applying it to the JIB.

If there is insufficient nonpaged pool available for the buffer, these
routines return SS$_INSFMEM status to the caller.

If the process's quota usage is too large, EXE$DEBIT BYTCNT_ALO and
EXE$DEBIT_BYTCNT_BYTLM_ALO place the process into a resource
wait state, based on the setting of PCB$V SSRWAIT, until sufficient quota
is returned to the job.

If bit 31 in R1 is clear, these routines compare the byte count in R1 against
IOC$GW 11/iAXBUF, returning an error if the system's maximum buffer
allotment to a process is exceeded.

3-23

Operating System Routines
EXE$FINISHIO, EXE$FINISHIOC

EXE$FINISHIO, EXE$FINISHIOC

Complete the servicing of an I/O request and return status to the I/O status
block specified in the request.

module

input

output

SYSQIOREQ

Location Contents

RO First longword of status for the I/O status block

R1 Second longword of status for the I/O status block
(EXE$FINISHIO only)

R3 Address of IRP

R4 Address of current PCB

R5 Address of UCB

Location Contents

RO SS$_NORMAL

IRP$L IOST1 First longword of I/O status

IRP$L IOST2 Second longword of I/O status (cleared by
EXE$FINISHIOC)

UCB$L OPCNT Incremented

synchronization EXE$FINISHIO and EXE$FINISHIOC execute at their caller's IPL
and raise to fork IPL, acquiring the associated fork lock in a VMS
multiprocessing environment. As a result, their callers cannot be
executing above fork IPL. A driver usually transfers control to these
routines at IPL$_ASTDEL.

EXE$FINISHIO and EXE$FINISHIOC eat at IPL 0 (normal process IPL).

DESCRIPTION EXE$FINISHIOC clears the contents of Rl. Then, EXE$FINISHIO or
EXE$FINISHIOC takes the following steps to complete the processing of
the UO request:

• Increases the number of UO operations completed on the current
device in the operation count field of the UCB (UCB$L_OPCNT). This
task is performed at fork IPL, holding the associated fork lock in a
VMS multiprocessing environment.

• Stores the contents of RO and R1 in the IRP.

• Inserts the IRP in the local processor's UO postprocessing queue.

3-24

Operating System Routines
EXE$FINISHIO, EXE$FINISHIOC

• If the queue is empty, requests a software interrupt from the local
processor at IPL$_IOPOST.

This interrupt causes postprocessing to occur before the remaining
instructions in EXE$FINISHIO or EXE$FINISHIOC are executed.

When all UO postprocessing has been completed, EXE$FINISHIO or
EXE$FINISHIOC regains control and completes the I/O operation as
follows:

• Places status SS$_NORMAL in RO

• Lowers IPL to zero

• Issues the RET instruction that restores the original access mode of
the caller of the $QIO system service and returns control to the system
service dispatcher

The image that issued the $QIO receives SS$_NORMAL status in R0,
indicating that the UO request has completed without device-independent
error.

3-25

Operating System Routines
EXE$FORK

EXE$FORK

Creates a fork process on the local processor.

module

macro

input

output

synchronization

FORKCNTRL

FORK

Location

R5

00(SP)

04(SP)

FKB$B_FLCK

Contents

Address of fork block

Return PC of caller

Return PC of caller's caller

Fork lock index or fork IPL

Location

R3

R4

FKB$L_FR3 (UCB$L FR3)

FKB$L FR4 (UCB$L FR4)

FKB$L FPC (UCB$L FPC)

Contents

Destroyed

Fork IPL

R3 of caller

R4 of caller

00(SP)

EXE$FORK acquires no spin locks and leaves IPL unchanged. It returns
control to its caller's caller.

DESCRIPTION EXE$FORK saves the contents of R3 and R4 (in FKB$L_FR3 and FKB$L_
FR4, respectively) in the fork block specified by R5, and pops the return
PC value from the top of the stack into FKB$L_FPC.

If FKB$B_FLCK contains a fork lock index, EXE$FORK determines the
fork IPL by using this value as an index into the spin lock IPL vector
(SMP$AR_IPLVEC). EXE$FORK inserts the fork block into the fork queue
on the local processor (headed by CPU$~SWIQFL) corresponding to
this IPL. If the queue is empty, EXE$FORK issues a SOFTINT macro,
requesting a software interrupt from the local processor at that fork IPL.

Unlike EXE$IOFORK, EXE$FORK does not disable timeouts by clearing
UCB$V_TIM in the UCB$L_STS field.

3-26

Operating System Routines
EXE$INSERTIRP

EXE$INSERTIRP

Inserts an IRP into the specified queue of IRPs according to the base priority
of the process that issued the I/O request.

module

input

output

SYSQIOREQ

Location Contents

R2 Address of I/O queue listhead for the device

R3 Address of IRP

IRP$B_PRI Base priority of process requesting the I/O

Location Contents

R 1 Destroyed

PSL<2> (Z bit) Set if the entry is first in the queue, cleared if at
least one entry is already in the queue

Pending-I/O queue IRP inserted

synchronization EXE$INSERTIRP must be called at fork IPL or higher. In a VMS
multiprocessing environment, the caller must also hold the associated
fork lock. EXE$INSERTIRP does not alter IPL or acquire any spin locks.
It returns to its caller.

DESCRIPTION EXE$INSERTIRP determines the position of the specified IRP in the
pending-UO queue according to two factors:

• Priority of the IRP, which is derived from the requesting process's base
priority as stored in the IRP$B_PRI

• Time that the entry is queued; for each priority, the queue is ordered
on a first-in/first-out basis

EXE$INSERTIRP inserts the IRP into the queue at that position, adjusts
the queue links, and sets the Z bit in the PSL to indicate the status of the
queue.

3-27

Operating System Routines
EXE$INSIOQ, EXE$INSIOQC

EXE$INSIOQ, EXE$INSIO(~C

Insert an IRP in a device's pending-I/O queue and call the driver's start-I/O
routine if the device is not busy.

module

input

output

SYSQIOREQ

Location Contents

R3 Address of IRP

R5 Address of UCB

UCB$B_FLCK Fork lock index

UCB$L STS UCB$V_BSY set indicates device is busy, clear
indicates device is idle

UCB$L IOQFL Address of pending-I/O queue listhead

UCB$W_QLEN Length of pending-I/O queue

Location

RO,R1,R2

UCB$L STS

UCB$W QLEN

Contents

Destroyed. Other registers (used by the driver's
start-I/O routine) are destroyed if the start-I/O routine
is called.

UCB$V_BSY set.

Incremented.

synchronization EXE$INSIOQ and EXE$INSIOQC immediately raise to fork IPL and, in
a VMS multiprocessing environment, obtain the corresponding fork lock.
As a result, their callers must not be executing at an IPL higher than fork
IPL or hold a spin lock ranked higher than the fork lock.

EXE$INSIOQ unconditionally releases ownership of the fork lock before
returning control to the caller without possession of the fork lock. If
a fork process must retain possession of the fork lock, it should call
EXE$INSIOQC instead.

DESCRIPTION EXE$INSIOQ and EXE$INSIOQC increment UCB$W_QLEN and proceed
according to the status of the device (as indicated by UCB$V BSY in
UCB$W_STS) as follows:

• If the device is busy, call EXE$INSERTIRP to place the IRP on the
device's pending-UO queue.

• If the device is idle, call IOC$INITIATE to begin device processing of
the I/O request immediately. IOC$INITIATE transfers control to the
driver's start-I/O routine.

3-28

Operating System Routines
EXE$INSTIMQ

EXE$INSTIMQ

Inserts a timer queue element (TQE) into the timer queue.

module

input

output

EXSUBROUT

Location Contents

R0, R1 Quadword expiration time for TQE

R5 Address of TQE to be inserted

EXE$GQ_1 ST TIME Expiration time of first TQE in timer queue

Location Contents

R2, R3 Destroyed

TQE$Q TIME Quadword expiration time for TQE

EXE$GQ_1 ST TIME Updated if TQE is inserted at the head of the timer
queue

synchronization EXE$INSTIMQ immediately raises to IPL$_TIMER (IPL$_SYNCH),
obtaining the TIMER spin lock in a VMS multiprocessing environment. As
a result, its caller must not be executing above IPL$_SYNCH or hold any
spin locks of a higher rank. (For instance, a driver fork process executing
at IPL$_SYNCH holding the IOLOCK8 fork lock can call EXE$INSTIMQ.)

EXE$INSTIMQ returns control to its caller at the caller's IPL. The caller
retains any spin locks it held at the time of the call.

DESCRIPTION EXE$INSTIMQ inserts the specified TQE into the timer queue according
to its expiration time. If the expiration time of the new TQE is sooner than
that of the first TQE in the queue, EXE$INSTIMQ raises IPL to interval
clock IPL (obtaining the HWCLK spin lock in a VMS multiprocessing
environment), inserts it on the head of the queue, and updates EXE$GQ_
1ST TIME.

3-29

Operating System Routines
EXE$IOFORK

EXE$IOFORK

Creates a fork process on the local processor for a device driver, disabling
timeouts from the associated device.

module

macro

input

output

synchronization

FORKCNTRL

IOFORK

Location

R5

oo(SP)

04(SP)

FKB$B_FLCK (UCB$B_FLCK)

Contents

Address of fork block (usually the UCB)

Return PC of caller

Return PC of caller's caller

Fork lock index or fork IPL

Location

R3

R4

UCB$L STS

FKB$L_FR3 (UCB$L FR3)

FKB$L FR4 (UCB$L FR4)

FKB$L FPC (UCB$L FPC)

Contents

Destroyed

Fork IPL

UCB$V_TIM cleared, disabling device timeouts

R3 of caller

R4 of caller

00(SP)

EXE$IOFORK acquires no spin locks and leaves IPL unchanged. It
returns control to its caller's caller.

DESCRIPTION EXE$IOFORK first disables timeouts from the target device by clearing
UCB$V TIM in UCB$L_STS.

It saves the contents of R3 and R4 (in FKB$L_FR3 and FKB$L_FR4,
respectively) in the fork block specified by R5, and pops the return PC
value from the top of the stack into FKB$L_FPC.

If FKB$B_FLCK contains a fork lock index, EXE$IOFORK determines
the fork IPL by using this value as an index into the spin lock IPL vector
(SMP$AR_IPLVEC). EXE$IOFORK inserts the fork block into the fork
queue on the local processor (headed by CPU$Q_SWIQFL) corresponding
to this IPL. If the queue is empty, EXE$IOFORK issues a SOFTINT
macro, requesting a software interrupt from the local processor at that
fork IPL.

3-30

Operating System Routines
EXE$MODIFY

EXE$MODIFY

Translates a logical read or write function into a physical read or write function,
transfers $QIO system service parameters to the 1 RP, validates and prepares
a user buffer, and proceeds with or aborts adirect-I/O, DMA read/write
operation.

module

input

output

SYSQIOFDT

Location Contents

R3 Address of IRP.
R4 Address of current PCB.

R5 Address of UCB.

R6 Address of CCB.

R7 Bit number of the I/O function code.
R8 Address of FDT entry for this routine.
00(AP) Virtual address of buffer (p1).

04(AP) Number of bytes in transfer (p2). The maximum
number of bytes that EXE$MODIFY can transfer is
65,535 (128 pages minus one byte).

12(AP) Carriage control byte (p4).

IRP$W FUNC I/O function code.

Location Contents

R0, R 1, R2 Destroyed

IRP$L IOST2 p4

IRP$W STS IRP$V_FUNC set, indicating a read function

IRP$W FUNC Logical read or write function code converted to
physical function

IRP$L SVAPTE System virtual address of the process page-table
entry (PTE) that maps the first page of the buffer

IRP$W BOFF Byte offset to start of transfer in page

IRP$L BCNT Size of transfer in bytes

synchronization EXE$MODIFY is called as a driver FDT routine at IPL$_ASTDEL.

3-31

Operating System Routines
EXE$MODIFY

DESCRIPTION A driver uses EXE$MODIFY as an FDT routine when the driver must both
read from and write to the user-specified buffer. Because EXE$MODIFY
transfers control to EXE$QIODRVPKT if its operations are successful or
EXE$ABORTIO if they are not, it must be the last FDT routine called to
perform the preprocessing of UO read/write requests. A driver cannot use
EXE$MODIFY for buffered UO operations.

EXE$MODIFY performs the following functions:

• Sets IRP$V FUNC in IRP$W STS to indicate a read function.

• Writes the p4 argument of the $QIO request into IRP$L_IOST2
(IRP$B_CARCON).

• Translates logical read and write functions to physical read and write
functions.

• Examines the size of the transfer, as specified in the p2 argument of
the $QIO request, and takes one of the following actions:

If the transfer byte count is zero, EXE$MODIFY transfers control
to EXE$QIODRVPKT to deliver the IRP to the driver's start-UO
routine. The driver start-UO routine should check for zero-length
buffers to avoid mapping them to UNIBUS, Q22-bus, MASSBUS,
or VA►XBI node space. An attempted mapping can cause a system
failure.

If the byte count is not zero, EXE$MODIFY loads the byte
count and the starting address of the transfer into R1 and R0,
respectively, and calls EXE$MODIFYLOCK.

EXE$MODIFYLOCK calls EXE$MODIFYLOCKR. EXE$MODIFYLOCKR
calls EXE$READCHKR, which performs the following tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADPARAM status to EXE$MODIFYLOCKR.

• Determines if the specified buffer is write accessible for a read UO
function, with one of the following results:

If the buffer allows write access, EXE$READCHKR sets
IRP$V FUNC in IRP$W_STS and returns SS$_NORMAL to
EXE$MODIFYLOCKR.

If the buffer does not allow write access, EXE$READCHKR returns
SS$ ACCVIO status to EXE$MODIFYLOCKR.

3-32

Operating System Routines
EXE$MODIFY

If EXE$READCHKR succeeds, EXE$MODIFYLOCKR, moves into IRP$W
BOFF the byte_ offset to the start of the buffer and calls MMG$IOLOCK
MMG$IOLOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:i

• If MMG$IOLOCK succeeds, EXE$MODIFYLOCKR stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps
the first page of the buffer, and returns control to EXE$MODIFY.
EXE$MODIFY calls EXE$QIODRVPKT to deliver the IRP to the
driver's start-UO routine.

• If MMG$IOLOCK fails, it returns SS$ ACCVIO, SS$_INSFWSL, or
page fault status to EXE$MODIFYLOCKR,.

If either EXE$READCHKR or MMG$IOLOCK returns an error
status other than a page fault condition, EXE$MODIFYLOCKR calls
EXE$ABORTIO. In the event of a page fault, EXE$MODIFYLOCKR
adjusts direct UO count and AST count to the values they held before the
UO request, deallocates the IRP, and restarts the UO request at the $QIO
system service. This procedure is carried out so that the user process can
receive ASTs while it waits for the page fault to complete. Once the page
is faulted into memory, the $QIO system service will resubmit the UO
request.

1 For read requests, MMG$IOLOCK performs an optimization for any nonvalid page contained within the
buffer. It creates ademand-zero page rather than fault into memory the requested page. However, if the
buffer extends to more than one page, this optimization is not possible.

3-33

Operating System Routines
EXE$MODIFYLOCK, EXE$MODIFYLOCKR

EXE$MODIFYLOCK, EXE$MODIFYLOCKR

Validate and prepare a user buffer for adirect-I/O, DMA read/write operation.

module

input

output

synchronization

SYSQIOFDT

Location

RO

R1

R3

R4

R5

R6

R7

Contents

Virtual address of buffer

Number of bytes in transfer

Address of IRP

Address of current PCB

Address of UCB

Address of CCB

Bit number of the I/O function code

Location

RO

R1

R2

I R P$W STS

IRP$L SVAPTE

IRP$W BOFF

IRP$L_BCNT

Contents

SS$_NORMAL

System virtual address of the process page-table
entry (PTE) that maps the first page of the buffer

1, indicating a read function

IRP$V_FUNC set, indicating a read function

System virtual address of the PTE that maps the
first page of the buffer

Byte offset to start of transfer in page

Size of transfer in bytes

EXE$MODIFYLOCK and EXE$MODIFYLOCKR are called by a driver
FDT routine at IPL$ ASTDEL.

DESCRIPTION A driver typically calls EXE$MODIFYLOCKR instead of
EXE$MODIF'YLOCK when it must lock multiple areas into memory for a
single UO request and must regain control, if the request is to be aborted,
to unlock these areas. A driver uses either of these routines when it must
both read and write to the user-specified buffer and it is not desirable
to automatically deliver the IRP to the device unit after the buffer has
been successfully locked. A driver cannot use EXE$MODIFYLOCK or
EXE$MODIFYLOCKR for buffered UO operations.

EXE$MODIFYLOCK calls EXE$MODIFYLOCKR..

3-34

Operating System Routines
EXE$MODIFYLOCK, EXE$MODIFYLOCKR

EXE$MODIFYLOCKR calls EXE$READCHKR., which performs the
following tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADPARAM status to EXE$MODIFYLOCKR.

• Dietermines if the specified buffer is write accessible for a read UO
function, with one of the following results:

— If the buffer allows write access, EXE$READCHKR sets
IRP$V_FUNC in IRP$W_STS and returns SS$_NORMAL to
EXE$MODIFYLOCKR,.

— If the buffer does not allow write access, EXE$READCHKR returns
SS$_ACCVIO status to EXE$MODIFYLOCKR.

If EXE$READCHKR. succeeds, EXE$MODIFYLOCKR moves into
IRP$W_BOFF the byte offset to the start of the buffer and calls
MMG$IOLOCK, disabling a paging mechanism used in write-only
operations. MMG$IOLOCK attempts to lock into memory those pages
that contain the buffer, with one of the following results:2

• If MMG$IOLOCK succeeds, EXE$MODIFYLOCKR, stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps the
first page of the buffer, and returns success status to its caller.

• If MMG$IOLOCK fails, it returns SS$ ACCVIO, SS$_INSFWSL, or
page fault status to EXE$MODIFYLOCKR,.

If the initial call was to EXE$MODIFYLOCK and either
EXE$READCHKR, or MMG$IOLOCK returns an error status other than
a page fault condition, EXE$MODIFYLOCKR calls EXE$ABORTIO. In
the event of a page fault, EXE$MODIFYLOCKR adjusts direct UO count
and AST count to the values they held before the UO request, deallocates
the IRP, and restarts the UO request at the $QIO system service. This
procedure is carried out so that the user process can receive ASTs while it
waits for the page fault to complete. Once the page is faulted into memory,
the $QIO system service will resubmit the UO request.

If the initial call was to EXE$MODIFYLOCKR and an error occurs,
EXE$MODIFYLOCKR, by means of a coroutine call, returns control to
the driver's FDT routine with status in R0. The driver performs whatever
device-specific actions are required to abort the request, preserving the
contents of RO and Rl. When the driver issues the RSB instruction,
control is returned to EXE$MODIFYLOCKR. EXE$MODIFYLOCKR
proceeds to abort or resubmit the UO request.

Otherwise, these routines return success status to their callers.

2 For read requests, MMG$IOLOCK performs an optimization for any nonvalid page contained within the
buffer. It creates ademand-zero page rather than fault into memory the requested page. However, if the
buffer extends to more than one page, this optimization is not possible.

3-35

Operating System Routines
EXE$MODIFYLOCK, EXE$MODIFYLOCKR

A driver FDT routine that calls EXE$MODIFYLOCKR, must distinguish
between successful and unsuccessful status when it resumes, as shown in
the following example:

JSB G~EXE$MODIFYLOCKR

BLBS BUF_LOCK_OK

BUF LOCK FAIL:

clean up this $QIO bookkeeping

RSB
BUF LOCK OK:

;continue processing this I/O request

3-36

Operating System Routines
EXE$ONEPARM

EXE$ONEPARM

Copies a single $QIO parameter into the IRP and delivers the IRP to a driver's
start-I/O routine.

module

input

output

synchronization

SYSQIOFDT

Location Contents

R3 Address of IRP

R4 Address of current PCB

R5 Address of UCB

R6 Address of CCB

R7 Bit number of the I/O function code

R8 Address of FDT entry for this routine

00(AP) Address of first function-dependent parameter of the
$QIO request (p1)

Location

IRP$L_MEDIA

Contents

p1

EXE$ONEPAR,M is called as a driver FDT routine at IPL$_ASTDEL.

DESCRIPTION EXE$ONEPARM processes an UO function code that requires only one
parameter. This parameter should need no checking: for instance, for read
or write accessibility. EXE$ONEPAR,M stores the parameter, found at
00(AP), in IRP$L_MEDIA and transfers control to EXE$QIODRVPKT to
deliver the IRP to the driver.

Operating System Routines
EXE$QIODRVPKT

EXE$QIODRVPKT

Delivers an IRP to the driver's start-I/O routine or pending-I/O queue, returns
success status in R0, lowers IPL to 0, and returns to the system service
dispatcher.

module

input

SYSQIOREQ

Location Contents

R3 Address of IRP

R4 Address of current PCB

R5 Address of UCB

UCB$B_FLCK Fork lock index or fork IPL

UCB$L STS UCB$V_BSY set if device is busy, clear if device is
idle

UCB$L IOQFL Address of pending-I/O queue listhead

UCB$W QLEN Length of pending-I/O queue

output
UCB$L STS UCB$V_BSY set

UCB$W QLEN Incremented

synchronization EXE$QIODRVPKT is called by a driver's FDT routine at IPL$_ASTDEL.
It exits at IPL 0 (normal process IPL).

DESCRIPTION EXE$QIODRVPKT calls EXE$INSIOQ. EXE$INSIOQ checks the status of
the device and calls either EXE$INSERTIRP or IOC$INITIATE to place
the IRP in the device's pending-UO queue or deliver it to the driver's
start-UO routine, respectively.

When EXE$INSIOQ returns to EXE$QIODRVPKT at IPL$ ASTDEL,
EXE$QIODRUPKT returns control to the system service dispatcher in the
following steps:

1 Loads SS$_NORMAL into RO

2 Lowers IPL to zero

3 Issues the RET instruction that restores the original access mode of
the caller of the $QIO system service and returns control to the system
service dispatcher

The image that requested the UO operation receives status SS$ NORMAL
in R0, indicating that the UO request has completed without device-
independent error.

3-38

Operating System Routines
EXE$QIORETURN

EXE$G110RETURN

Sets a success status code in R0, lowers IPL to 0, and returns to the system
service dispatcher.

module SYSQIOREQ

input

output

Location Contents

R5 Address of UCB

UCB$B_FLCK Fork lock index or fork IPL

Location Contents

RO SS$_NORMAL

synchronization EXE$QIORETURN is typically called by a driver FDT routine at IPL$_
ASTDEL. Its caller cannot be executing above fork IPL or hold any spin
locks other than the appropriate fork lock.

EXE$QIORETURN releases any fork lock held by its caller before it issues
the RET instruction.

DESCRIPTION EXE$QIORETURN performs the following actions:

• Loads SS$_NORMAL into RO

• Lowers IPL to zero

• Issues the RET instruction that restores the original access mode of
the caller of the $QIO system service and returns control to the system
service dispatcher

The image that requested the UO operation receives status SS$_NORMAL
in R0, indicating that the UO request has completed without device-
independent error.

3-39

Operating System Routines
EXE$READ

EXE$READ

Translates a logical read function into a physical read function, transfers $QIO
system service parameters to the IRP, validates and prepares a user buffer,
and proceeds with or aborts adirect-I/O, DMA read/write operation.

module

input

output

synchronization

SYSQIOFDT

Location

R3

R4

R5

R6

R7

R8

00(AP)

04(AP)

12(AP)

IRP$W_FUNC

Contents

Address of IRP.

Address of current PCB.

Address of UCB.

Address of CCB.

Bit number of the I/O function code.

Address of FDT entry for this routine.

Virtual address of buffer (p7).

Number of bytes in transfer (p2). The maximum
number of bytes that EXE$READ can transfer is
65,535 (128 pages minus one byte).

Carriage control byte (p4).

I/O function code.

Location

R0, R1, R2

IRP$B_IOST2

I R P$W STS

IRP$W FUNC

IRP$L SVAPTE

IRP$W BOFF

IRP$L_BCNT

Contents

Destroyed

p4

IRP$V_FUNC set, indicating a read function

Logical read function code converted to physical

System virtual address of the process page-table
entry (PTE) that maps the first page of the buffer

Byte offset to start of transfer in page

Size of transfer in bytes

EXE$READ is called as a driver FDT routine at IPL$ ASTDEL.

DESCRIPTION A driver uses EXE$READ as an FDT routine when the driver must write
to the user-specified buffer. Because EXE$READ transfers control to
EXE$QIODRVPKT if its operations are successful or EXE$ABORTIO
if they are not, it must be the last FDT routine called to perform the
preprocessing of read I/O requests. A driver cannot use EXE$READ for
buffered-I/O operations.

Operating System Routines
EXE$READ

EXE$READ performs the following functions:

• Sets IRP$V_FUNC in IRP$W_STS to indicate a read function

• Writes the p4 argument of the $QIO request into IRP$L_IOST2
(IRP$B_CARCON).

• Translates a logical read function to a physical read function.

• Examines the size of the transfer, as specified in the p2 argument of
the $QIO request, and takes one of the following actions:

— If the transfer byte count is zero, EXE$READ transfers control
to EXE$QIODRVPKT to deliver the IRP to the driver's start-UO
routine. The driver start-I/O routine should check for zero-length
buffers to avoid mapping them to UNIBUS, Q22-bus, MASSBUS,
or VAXBI node space. An attempted mapping can cause a system
failure.

If the byte count is not zero, EXE$READ loads the byte count and
the starting address of the transfer into R1 and R0, respectively,
and calls EXE$READLOCK.

EXE$READLOCK calls EXE$READLOCKR.

EXE$READLOCKR calls EXE$READCHKR, which performs the following
tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADPARAM status to EXE$READLOCKR.

• Determines whether the specified buffer is write accessible for a read
UO function, with one of the following results:

— If the buffer allows write access, EXE$READCHKR sets
IRP$V FUNC in IRP$W_STS, and returns SS$_NORMAL to
EXE$READLOCKR..

— If the buffer does not allow write access, EXE$READCHKR returns
SS$_ACCVIO status to EXE$READLOCKR,.

If EXE$READCHKR succeeds, EXE$READLOCKR moves into IRP$W_
BOFF the byte offset to the start of the buffer and calls MMG$IOLOCK.
MMG$IOLOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:3

• If MMG$IOLOCK succeeds, EXE$READLOCKR stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps
the first page of the buffer, and returns control to EXE$READ.
EXE$READ transfers control to EXE$QIODRVPKT to deliver the
IRP to the driver's start-UO routine.

• If MMG$IOLOCK fails, it returns SS$ ACCVIO, SS$_INSFWSL, or
page fault status to EXE$READLOCKR.

3 For read requests, MMG$IOLOCK performs an optimization for any nonvalid page contained within the
buffer. It creates ademand-zero page rather than fault into memory the requested page. However, if the
buffer extends to more than one page, this optimization is not possible.

3-41

Operating System Routines
EXE$READ

If either EXE$READCHKR, or MMG$IOLOCK returns an error status
other than a page fault condition, EXE$READLOCKR transfers control to
EXE$ABORTIO. In the event of a page fault, EXE$READLOCKR adjusts
direct UO count and AST count to the values they held before the UO
request, deallocates the IRP, and restarts the UO request at the $QIO
system service. This procedure is carried out so that the user process can
receive ASTs while it waits for the page fault to complete. Once the page
is faulted into memory, the $QIO system service will resubmit the UO
request.

Operating System Routines
EXE$READCHK, EXE$READCHKR

EXE$READCHK,EXE$READCHKR

Verify that a process has write access to the pages in the buffer specified in a
$QIO request.

module

input

output

synchronization

SYSQIOFDT

Location

RO

R1

R3

Contents

Virtual address of buffer

Size of transfer in bytes

Address of IRP

Location

RO

R1

R2

R3

I R P$W STS

IRP$L_BCNT

Contents

Virtual address of buffer (EXE$READCHK), SS$_
NORMAL (EXE$READCHKR), or error status

Size of transfer in bytes

1, indicating a read function

Address of IRP

IRP$V FUNC set, indicating a read function

Size of transfer in bytes

EXE$READCHK and EXE$READCHKR are called by a driver FDT
routine at IPL$_ASTDEL.

DESCRIPTION A driver uses either of these routines to check the write accessibility of a
user-specified buffer. A driver typically calls EXE$READCHKR instead of
EXE$READCHK when it must regain control before the request is aborted
in the event the buffer is inaccessible.

EXE$READCHK calls EXE$READCHKR.

EXE$READCHKR performs the following tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADPARAM status to its caller.

• Determines whether the specified buffer is write accessible for a read
UO function, with one of the following results:

— If the buffer allows write access, EXE$READCHKR, sets IRP$V
FUNC in IRP$W_STS and returns SS$_NORMAL to its caller.

— If the buffer does not allow write access, EXE$READCHKR returns
SS$_ACCVIO status to its caller.

Operating System Routines
EXE$READCHK, EXE$READCHKR

If the initial call was to EXE$READCHK, and EXE$READCHKR returns
error status, EXE$READCHK transfers control to EXE$ABORTIO to
terminate the UO request. If the initial call was to EXE$READCHKR,
and an error occurs, EXE$READCHKR returns control to the driver.
Otherwise, these routines return success status to their callers.

A driver FDT routine that calls EXE$READCHKR must distinguish
between successful and unsuccessful status when it resumes, as shown in
the following example:

JSB G~EXE$READCHKR
BLBS RO,BUF_ACCESS OK

BUF ACCESS FAIL:

clean up this $QIO bookkeeping

JSB G~EXE$ABORTIO
BUF ACCESS OK:

;continue processing this I/O request

Operating System Routines
EXE$READLOCK, EXE$READLOCKR

EXE$READLOCK,EXE$READLOCKR

Validate and prepare a user buffer for adirect-I/O, DMA read operation.

module

input

output

synchronization

SYSQIOFDT

Location

RO

R1

R3

R4

R5

R6

R7

Contents

Virtual address of buffer

Number of bytes in transfer

Address of IRP

Address of current PCB

Address of UCB

Address of CCB

Bit number of the I/O function code

Location

RO

R1

R2

I R P$W STS

IRP$L SVAPTE

IRP$W BOFF

IRP$L BGNT

Contents

SS$_NORMAL

System virtual address of the process page-table
entry (PTE) that maps the first page of the buffer

1, indicating a read function

IRP$V_FUNC set, indicating a read function

System virtual address of the PTE that maps the
first page of the buffer

Byte offset to start of transfer in page

Size of transfer in bytes

EXE$READLOCK and EXE$READLOCKR are called by a driver FDT
routine at IPL$_ASTDEL.

DESCRIPTION A driver typically calls EXE$READLOCKR instead of EXE$READLOCK
when it must lock multiple areas into memory for a single I/O request
and must regain control, if the request is to be aborted, to unlock these
areas. A driver uses either of these routines when it must write to the
user-specified buffer and it is not desirable to automatically deliver the
IRP to the device unit after the buffer has been successfully locked. A
driver cannot use EXE$READLOCK or EXE$READLOCKR for buffered
I/O operations.

EXE$READLOCK calls EXE$READLOCKR.

Operating System Routines
EXE$READLOCK, EXE$READLOCKR

EXE$READLOCKR calls EXE$READCHKR., which performs the following
tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADPAR.AM status to EXE$READLOCKR.

• Determines whether the specified buffer is write accessible for a read
UO function, with one of the following results:

— If the buffer allows write access, EXE$READCHKR, sets
IRP$V FUNC in IRP$W_STS and returns SS$_NORMAL to
EXE$READLOCKR,.

— If the buffer does not allow write access, EXE$READCHKR returns
SS$ ACCVIO status to EXE$READLOCKR..

If EXE$READCHKR succeeds, EXE$READLOCKR, moves into IRP$W_
BOFF the byte offset to the start of the buffer and calls MMG$IOLOCK.
MMG$IOLOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:4

• If MMG$IOLOCK succeeds, EXE$READLOCKR stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps the
first page of the buffer, and returns success status to its caller.

• If MMG$IOLOCK fails, it returns SS$ ACCVIO, SS$_INSFWSL, or
page fault status to EXE$READLOCKR.

If the initial call was to EXE$READLOCK and either EXE$READCHKR
or MMG$IOLOCK returns an error status other than a page fault
condition, EXE$READLOCKR transfers control to EXE$ABORTIO. In
the event of a page fault, EXE$READLOCKR adjusts direct UO count
and AST count to the values they held before the I/O request, deallocates
the IRP, and restarts the UO request at the $QIO system service. This
procedure is carried out so that the user process can receive ASTs while it
waits for the page fault to complete. Once the page is faulted into memory,
the $QIO system service will resubmit the UO request.

If the initial. call was to EXE$READLOCKR and an error occurs,
EXE$READLOCKR, by means of a coroutine call, returns control to
the driver's FDT routine with status in R0. The driver performs whatever
device-specific actions are required to abort the request, preserving the
contents of RO and R1. When the driver issues the RSB instruction,
control is returned to EXE$READLOCKR. EXE$READLOCKR, proceeds to
abort or resubmit the UO request.

Otherwise, these routines return success status to their callers.

4 For read requests, MMG$IOLOCK performs an optimization for any nonvalid page contained within the
bu~'er. It creates ademand-zero page rather than fault into memory the requested page. However, if the
buffer extends to more than one page, this optimization is not possible.

3-46

Operating System Routines
EXE$READLOCK, EXE$READLOCKR

A driver FDT routine that calls EXE$READLOCKR must distinguish
between successful and unsuccessful status when it resumes, as shown in
the following example:

JSB G^EXE$READLOCKR

BLBS BUF_LOCK_OK
BUF LOCK FAIL:

clean up this $QIO bookkeeping

RSB
BUF LOCK OK:

;continue processing this I/O request

Operating System Routines
EXE$RMVTIMQ

EXE$RMVTIMQ

Removes timer queue elements (TQEs) from the timer queue.

module

input

output

EXSUBROUT

Location Contents

R2 Access mode (unused by system subroutine)

R3 Request identification (unused by system subroutine)

R4 Type of TQE entry (TQE$B_RQTYPE) to remove
from queue (TQE$C_ SSNGL) if bit 31 is zero. If bit
31 is set, then R4 contains the address of the TQE.

R5 Process ID (TQE$L_PID)

Location

RO

R1

Contents

If R0=1, then at least one TQE was removed. If
R0=0, then no TQE was removed.

Destroyed

synchronization EXE$RMVTIMQ immediately raises to IPL$_TIMER (IPL$_SYNCH),
obtaining the TIMER spin lock in a VMS multiprocessing environment. As
a result, its caller must not be executing above IPL$_SYNCH or hold any
spin locks of a higher rank. (For instance, a driver fork process executing
at IPL$_SYNCH holding the IOLOCK8 fork lock can call EXE$RMVTIMQ
and might need the SCHED and HWCLK spin locks, but these impose no
additional restrictions on the caller.)

EXE$RMVTIMQ returns control to its caller at the caller's IPL. The caller
retains any spin locks it held at the time of the call.

DESCRIPTION EXE$RMVTIMQ removes the specified TQEs from the timer queue.
Entries are removed by address, type, access mode, request identification,
and process ID. Any entries which meet matching criteria are removed
from queue.

If a system subroutine or a wake request TQE is being removed, access
mode and request identification need not be supplied. If the TQE address
is supplied in R4, no other input need be supplied.

Operating System Routines
EXE$SENSEMODE

EXE$SENSEMODE

Copies device-dependent characteristics from the device's UCB into R1,
writes a success code into R0, and completes the I/O operation.

module

input

output

synchronization

SYSQIOFDT

Location Contents

R3 Address of IRP

R4 Address of current PCB

R5 Address of UCB

R6 Address of CCB

R7 Bit number of the I/O function code

R8 Address of FDT entry for this routine

00(AP) Address of first function-dependent parameter of the
$QIO request

UCB$Q_DEVDEPEND Device-dependent status

Location

RO

R1

Contents

SS$_NORMAL

Device-dependent status

EXE$SENSEMODE is called as a driver FDT routine at IPL$ ASTDEL.

DESCRIPTION A driver uses EXE$SENSEMODE as an FDT routine to process the sense-
device-mode (IO$_SENSEMODE) and sense-device-characteristics (IO$_
SENSECHAR) UO functions.

EXE$SENSEMODE loads the contents of UCB$~DEVDEPEND into
Rl, places SS$_NORMAL status into R0, and transfers control to
EXE$FINISHIO to insert the IRP in the systemwide UO postprocessing
queue.

Operating System Routines
EXE$SETCHAR, EXE$SETMODE

EXE$SETCHAR, EXE$SETMODE

Write device-specific status and control information into the device's UCB and
complete the I/O request (EXE$SETCHAR); or write the information into the
IRP and deliver the IRP to the driver's start-1/O routine (EXE$SETMODE).

module

input

output

synchronization

SYSQIOFDT

Location

R3

R4

R5

R6

R7

R8

00(AP)

UCB$B_DEVCLASS

Contents

Address of IRP

Address of current PCB

Address of UCB

Address of CCB

Bit number of the I/O function code

Address of FDT entry for this routine

Address of location containing device characteristics
quadword (p1)

Device class

Location

RO

UCB$B_DEVCLASS

UCB$B_DEVTYPE

UCB$W DEVBUFSIZ

UCB$Q_DEVDEPEND

IRP$L_MEDIA

IRP$L MEDIA+4

Contents

SS$_NORMAL, SS$_ACCVIO, or SS$ ILLIOFUNC

Byte 0 of quadword (EXE$SETCHAR,
10$_SETCHAR function only)

Byte 1 of quadword (EXE$SETCHAR,
10$_SETCHAR function only)

Bytes 2 and 3 of quadword (EXE$SETCHAR)

Bytes 4 through 7 of quadword (EXE$SETCHAR)

First longword of device characteristics
(EXE$SETMODE)

Second longword of device characteristics
(EXE$SETMODE)

EXE$SETCHAR or EXE$SETMODE is called as a driver FDT routine at
IPL$_ASTDEL.

DESCRIPTION A driver uses EXE$SETCHAR or EXE$SETMODE as an FDT routine
to process the set-device-mode (IO$_SETMODE) and set-device-
characteristics (IO$_SETCHAR) functions. If setting device characteristics
requires device activity or synchronization with fork processing, the
driver's FDT entry must specify EXE$SETMODE. Otherwise, it can
specify EXE$SETCHAR.

3-50

Operating System Routines
EXE$SETCHAR, EXE$SETMODE

EXE$SETCHAR and EXE$SETMODE examine the current value of
UCB$B_DEVCLASS to determine whether the device permits the specified
function. If the device class is disk (DC$_DISK), the routines place SS$_
ILLIOFITNC status in RO and transfer control to EXE$ABOftTIO to
terminate the request.

EXE$SETCHAR and EXE$SETMODE then ensure that the process has
read access to the quadword containing the new device characteristics.
If it does not, the routines place SS$_ACCVIO status in RO and transfer
control to EXE$ABORTIO to terminate the request.

If the request passes these checks, EXE$SETCHAR and EXE$SETMODE
proceed as follows:

• EXE$SETCHAR stores the specified characteristics in the UCB. For
an IO$_SETCHAR, function, the device type and class fields (UCB$B_
DEVCLASS and UCB$B_DEVTYPE, respectively) receive the first
word of data. For both IO$_SETCHAR and IO$_SETMODE functions,
EXE$SETCHAR writes the second word into the default-buffer-size
field (UCB$W_DEVBUFSIZ) and the third and fourth words into the
device-dependent-characteristics field (UCB$ ~(1 DEVDEPEND).

Finally, EXE$SETCHAR stores normal completion status (SS$_
NORMAL) in RO and transfers control to EXE$FINISHIO to insert
the IRP in the systemwide UO postprocessing queue.

• EXE$SETMODE stores the specified quadword of characteristics in
IRP$L MEDIA, places normal completion status (SS$_NORMAL) in
R0, and transfers control to EXE$QIODRVPKT to deliver the IRP to
the driver's start-UO routine.

The driver's start-UO routine copies data from IRP$L MEDIA and the
following longword into UCB$W DEVBUFSIZ, UCB$~,DEVDEPEND,
and, if the UO function is IO$_SETCHAR, UCB$B_DEVCLASS and
UCB$B_DEVTYPE as well.

3-51

Operating System Routines
EXE$SNDEVMSG

EXE$SNDEVMSG

Builds and sends adevice-specific message to the mailbox of a system
process, such as the job controller or OPCOM.

module

input

output

MBDRIVER

Location Contents

R3 Address of mailbox UCB. (SYS$AR JOBCTLMB
contains the address of the job controller's mailbox;
SYS$AR_OPRMBX contains the address of
OPCOM's mailbox.)

R4 Message type

R5 Address of device UCB

UCB$W_UNIT Device unit number

UCB$L DDB Address of device DDB

D DB$T NAME and Device controller name
mailbox UCB fields

Location Contents

RO SS$_NORMAL, SS$_MBTOOSML, SS$ MBFULL,
SS$_INSFMEM, or SS$_NOPRIV

R1 through R4 Destroyed

synchronization Because EXE$SNDEVMSG raises IPL to IPL$_MAILBOX and obtains
the MAILBOX spirt lock in a VMS multiprocessing environment, its caller
cannot be executing above IPL$ MAILBOX. EXE$SNDEVMSG returns
control to its caller at the caller's IPL. The caller retains any spin locks it
held at the time of the call.

DESCRIPTION EXE$SNDEVMSG builds a 32-byte message on the stack that includes the
following information:

Bytes Contents

0 and 1

2and3

4 through 31

Low word of R4 (message type)

Device unit number (UCB$W_UNIT)

Counted string of device controller name, formatted as
node controller for clusterwide devices

EXE$SNDEVMSG then calls EXE$WRTMAILBOX to send the message to
a mailbox.

3-52

Operating System Routines
EXE$SNDEVMSG

EXE$SNDEVMSG can fail for any of the following reasons:

• The message is too large for the mailbox (SS$_MBTOOSML).

• The message mailbox is full of messages (SS$_MBFULL).

• The system is unable to allocate memory for the message (SS$_
INSFMEM).

• The caller lacks privilege to write to the mailbox (SS$_NOPRN).

3-53

Operating System Routines
EXE$WRITE

EXE$WRITE

Translates a logical write function into a physical write function, transfers $QIO
system service parameters to the IRP, validates and prepares a user buffer,
and proceeds with or aborts adirect-I/O, DMA read/write operation.

module

input

output

synchronization

SYSQIOFDT

Location

R3

R4

R5

R6

R7

R8

00(AP)

04(AP)

12(AP)

IRP$W FUNC

Contents

Address of IRP.

Address of current PCB.

Address of UCB.

Address of CCB.

Bit number of the I/O function code.

Address of FDT entry for this routine.

Virtual address of buffer (p~).

Number of bytes in transfer (p2). The maximum
number of bytes that EXE$WRITE can transfer is
65,535 (128 pages minus one byte).

Carriage control byte (p4).

I/O function code.

Location Contents

R0, R 1, R2 Destroyed

I R P$L I OST2 p4

IRP$W_FUNC Logical read function code converted to physical

I R P$W STS

IRP$L SVAPTE

IRP$W BOFF

IRP$L BCNT Size of transfer in bytes

IRP$V FUNC clear, indicating a write function

System virtual address of the process page-table
entry (PTE) that maps the first page of the buffer

Byte offset to start of transfer in page

EXE$WRITE is called as a driver FDT routine at IPL$_ASTDEL.

DESCRIPTION A driver uses EXE$WRITE as an FDT routine when the driver must read
from the user-specified buffer. Because EXE$WRITE transfers control
to EXE$QIODRVPKT if its operations are successful or EXE$ABORTIO
if they are not, it must be the last FDT routine called to perform the
preprocessing of write I/O requests. A driver cannot use EXE$WR,ITE for
buffered UO operations.

3-54

Operating System Routines
EXE$WRITE

EXE$WRITE performs the following functions:

• Writes the p4 argument of the $QIO request into IRP$L_IOST2
(IRP$B_CARCON).

• Translates a logical write function to a physical write function.

• Examines the -size of the transfer, as specified in the p2 argument of
the $QIO request, and takes one of the following actions:

If the transfer byte count is zero, EXE$WRITE transfers control
to EXE$QIODRVPKT to deliver the IRP to the driver's start-UO
routine. The driver start-UO routine should check for zero-length
buffers to avoid mapping them to UNIBUS, Q22-bus, MASSBUS,
or VA.►XBI node space. An attempted mapping can cause a system
failure.

If the byte count is not zero, EXE$READ loads the byte count and
the starting address of the transfer into R1 and R0, respectively,
and calls EXE$WRITELOCK.

EXE$WRITELOCK calls EXE$WRITELOCKR.

EXE$WRITELOCKR calls EXE$WRITECHKR,, which performs the
following tasks:

• Moves the transfer byte count into IftP$L_BCNT. If the byte count is
negative, it returns SS$_BADPARAM status to EXE$WRITELOCKR,.

• Determines whether the specified buffer is read accessible for a write
I/O function, with one of the following results:

— If the buffer allows read access, EXE$WR,ITECHKR returns SS$_
NORMAL to EXE$WRITELOCKR,.

— If the buffer does not allow read access, EXE$WRITECHKR
returns SS$_ACCVIO status to EXE$WRITELOCKR,.

If EXE$WR,ITECHKR. succeeds, EXE$WR,ITELOCKR moves into IRP$W_
BOFF the byte offset to the start of the buffer and calls MMG$IOLOCK.
MMG$IOLOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:

• If MMG$IOLOCK succeeds, EXE$WRITELOCKR stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps
the first page of the buffer, and returns control to EXE$WRITE.
EXE$WRITE transfers control to EXE$QIODRVPKT to deliver the
IRP to the driver's start-UO routine.

• If MMG$IOLOCK fails, it returns SS$ ACCVIO, SS$_INSFWSL, or
page fault status to EXE$WRITELOCKR,.

If either EXE$WR.ITECHKR or MMG$IOLOCK returns an error status,
EXE$WRITELOCKR transfers control to EXE$ABORTIO.

3-55

Operating System Routines
EXE$WRITECHK, EXE$WRITECHKR

EXE$WRITECHK, EXE$WRITECHKR

Verify that a process has read access to the pages in the buffer specified in a
$QIO request.

module

input

output

synchronization

SYSQIOFDT

Location

RO

R1

R3

Contents

Virtual address of buffer

Size of transfer in bytes

Address of IRP

Location

RO

R1

R2

I R P$W STS

IRP$L BCNT

Contents

Virtual address of buffer (EXE$WRITECHK), SS$_
NORMAL (EXE$WRITECHKR), or error status

Size of transfer in bytes

0, indicating a write function

IRP$V_FUNC clear, indicating a write function

Size of transfer in bytes

EXE$WRITECHK and EXE$WRITECHKR, are called by a driver FDT
routine at IPL$_ASTDEL.

DESCRIPTION A driver uses either of these routines to check the read accessibility of a
user-specified buffer. A driver typically calls EXE$WRITECHKR, instead
of EXE$WftITECHK when it must regain control before the request is
aborted in the event the buffer is inaccessible.

EXE$WRITECHK calls EXE$WRITECHKR.

EXE$WRITECHKR performs the following tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADPARAM status to its caller.

• Determines if the specified buffer is read accessible for a write UO
function, with one of the following results:

If the buffer allows read access, EXE$WRITECHKR returns SS$_
NORMAL to its caller.

If the buffer does not allow read access, EXE$WRITECHKR
returns SS$_ACCVIO status to its caller.

3-56

Operating System Routines
EXE$WRITECHK, EXE$WRITECHKR

If the initial call was to EXE$WRITECHK, and EXE$WRITECHKR
returns error status, EXE$WRITECHK transfers control to
EXE$ABORTIO to terminate the UO request. If the initial call was to
EXE$WRITECHKR, and an error occurs, EXE$WRITECHKR returns
control to the driver. Otherwise, these routines return success status to
their callers.

A driver FDT routine that calls EXE$WRITECHKR must distinguish
between successful and unsuccessful status when it resumes, as shown in
the following example:

JSB
BLBS

BUF_ACCESS

clean up

JSB
BUF ACCESS

G~EXE$WRITECHKR
RO,BUF ACCESS_OK
FAIL:

this $QIO bookkeeping

G~EXE$ABORTIO
OK•

;continue processing this I/O request

3-57

Operating System Routines
EXE$WRITELOCK, EXE$WRITELOCKR

EXE$WRITELOCK, EXE$WRITELOCKR

Validate and prepare a user buffer for adirect-I/O, DMA write operation.

module

input

output

synchronization

SYSQIOFDT

Location

RO

R1

R3

R4

R5

R6

R7

Contents

Virtual address of buffer

Number of bytes in transfer

Address of IRP

Address of current PCB

Address of UCB

Address of CCB

Bit number of the I/O function code

Location

RO

R1

R2

IRP$W STS

IRP$L_SVAPTE

IRP$W BOFF

IRP$L_BCNT

Contents

SS$_NORMAL

System virtual address of the process page-table
entry (PTE) that maps the first page of the buffer

0, indicating a write function

IRP$V_FUNC clear, indicating a write function

System virtual address of the PTE that maps the
first page of the buffer

Byte offset to start of transfer in page

Size of transfer in bytes

EXE$WRITELOCK and EXE$WRITELOCKR are called by a driver FDT
routine at IPL$_ASTDEL.

DESCRIPTION A driver typically calls EXE$WR.ITELOCKR. instead of EXE$WRITELOCK
when it must lock multiple areas into memory for a single UO request
and must regain control, if the request is to be aborted, to unlock these
areas. A driver uses either of these routines when it must read from the
user-specified buffer and it is not desirable to automatically deliver the
IRP to the device unit after the buffer has been successfully locked. A
driver cannot use EXE$WR.ITELOCK or EXE$WRITELOCKR for buffered
UO operations.

EXE$WRITELOCK calls EXE$WRITELOCKR.

3-58

Operating System Routines
EXE$WRITELOCK, EXE$WRITELOCKR

EXE$WRITELOCKR calls EXE$WRITECHKR., which performs the
following tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADPARAM status to EXE$WRITELOCKR..

• Determines if the specified buffer is write accessible for a write UO
function, with one of the following results:

— If the buffer allows read access, EXE$WR.ITECHKR, returns SS$_
NORMAL to EXE$WRITELOCKR..

— If the buffer does not allow read access, EXE$WRITECHKR,
returns SS$_ACCVIO status to EXE$WRITELOCKR..

If EXE$WRITECHKR succeeds, EXE$WRITELOCKR moves into IRP$W_
BOFF the byte offset to the start of the buffer and calls MMG$IOLOCK.
MMG$IOLOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:

• If 1~/IMG$IOLOCK succeeds, EXE$WR,ITELOCKR stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps the
first page of the buffer, and returns success status to its caller.

• If MMG$IOLOCK fails, it returns SS$ ACCVIO, SS$_INSFWSL, or
page fault status to EXE$WRITELOCKR.

If the initial call was to EXE$WRITELOCK and either EXE$WR,ITECHKR
or MMG$IOLOCK returns an error status other than a page fault
condition, EXE$WRITELOCKR transfers control to EXE$ABORTIO.
In the event of a page fault, EXE$WRITELOCKR adjusts direct UO count
and AST count to the values they held before the UO request, deallocates
the IRP, and restarts the UO request at the $QIO system service. This
procedure is carried out so that the user process can receive ASTs while it
waits for the page fault to complete. Once the page is faulted into memory,
the $QIO system service will resubmit the UO request.

If the initial call was to EXE$WRITELOCKR and an error occurs,
EXE$WRITELOCKR, by means of a coroutine call, returns control to
the driver's FDT routine with status in R0. The driver performs whatever
device-specific actions are required to abort the request, preserving the
contents of RO and R1. When the driver issues the RSB instruction,
control is returned to EXE$WRITELOCKR. EXE$WRITELOCKR proceeds
to abort the UO request.

Otherwise, these routines return success status to their callers.

3-59

Operating System Routines
EXE$WRITELOCK, EXE$WRITELOCKR

A driver FDT routine that calls EXE$WRITELOCKR must distinguish
between successful and unsuccessful status when it resumes, as shown in
the following example:

JSB G~EXE$WRITELOCKR
BLBS BUF_LOCK_OK

BUF LOCK FAIL:

clean up this $QIO bookkeeping

RSB

BUF LOCK OK:

;continue processing this I/O request

3-60

Operating System Routines
EXE$WRTMAILBOX

EXE$WRTMAILBOX

Sends a message to a mailbox.

module

input

output

MBDRIVER

Location Contents

R3 Message size
R4 Message address

R5 Address of mailbox UCB

Mailbox UCB fields

Location Contents

RO SS$_NORMAL, SS$_MBTOOSML, SS$ MBFULL,
SS$_INSFMEM, or SS$_NOPRIV

R 1 and R2 Destroyed

synchronization Because EXE$WRTMAILBOX raises IPL to IPL$ MAILBOX and obtains
the MAILBOX spin lock in a VMS multiprocessing environment, its caller
cannot be executing above IPL$_MAILBOX. EXE$WR,TMAILBOX returns
control to its caller at the caller's IPL. The caller retains any spin locks it
held at the time of the call.

DESCRIPTION EXE$WRTMAILBOX checks fields in the mailbox UCB (UCB$W
BUFQUO, UCB$W_DEVBUFSIZ) to determine whether it can deliver
a message of the specified size to the mailbox. It also checks fields in the
associated ORB to determine whether the caller is sufficiently privileged
to write to the mailbox. Finally, it calls EXE$ALONONPAGED to allocate
a block of nonpaged pool to contain the message. If it fails any of these
operations, EXE$WRTMAILBOX returns error status to its caller.

If it is successful thus far, EXE$WRTMAILBOX creates a message
and delivers it to the mailbox's message queue, adjusts its UCB fields
accordingly, and returns success status to its caller.

3-6 ~

Operating System Routines
EXE$ZEROPARM

EXE$ZEROPARM

Processes an I/O function code that requires no parameters.

module

input

output

synchronization

SYSQIOFDT

Location

R3

R4

R5

R6

R7

R8

Contents

Address of I R P

Address of current PCB

Address of UCB

Address of CCB

Bit number of the I/O function code

Address of FDT entry for this routine

Location

IRP$L MEDIA

Contents

0

EXE$ZEROPAR,M is called as a driver FDT routine at IPL$ ASTDEL.

DESCRIPTION EXE$ZEROPAR,M processes an UO function code that describes an UO
operation completely without any additional function-specific arguments.
It clears IRP$L_MEDIA and transfers control to EXE$QIODRVPKT to
deliver the IRP to the driver.

Operating System Routines
IOC$ALOALTMAP, IOC$ALOALTMAPN, IOC$ALOALTMAPSP

IOC$ALOALTMAP, IOC$ALOALTMAPN,
IOC$ALOALTMAPSP

Allocate a set of Q22-bus alternate map registers.

module

input

output

[SYSLOA]MAPSUBxxx

Location

R3

R4

R5

UCB$W BCNT

UCB$W BOFF

UCB$L CRB

CRB$L INTD+
VEC$L_ADP

CRB$L INTD+
VEC$W MAPALT

ADP$W_MR2NREGAR,
ADP$W_MR2FREGAR,
ADP$L MR2ACTMDR

Contents

Number of alternate map registers to allocate
(IOC$ALOALTMAPN and IOC$ALOALTMAPSP
only). The value should account for one extra
register needed to prevent a transfer overrun.

Number of first alternate map register to allocate
(IOC$ALOALTMAPSP only).

Address of UCB.

Transfer byte count (IOC$ALOALTMAP only).

Byte offset in page (IOC$ALOALTMAP only).

Address of CRB.

Address of ADP.

VEC$V_ALTLOCK set indicates that alternate map
registers have been permanently allocated to this
controller.

Alternate map register descriptor arrays.

Location

RO

R1

R2

CRB$L INTD+
VEC$W_NUMALT

CRB$L INTD+
VEC$W_MAPALT

ADP$W_MR2NREGAR,
ADP$W MR2FREGAR,
ADP$L_MR2ACTMDR

Contents

SS$_NORMAL, SS$_INSFMAPREG, or
SS$_SSFAIL

Destroyed

Address of ADP

Number of alternate map registers allocated

Starting alternate map register number

Updated

3-63

Operating System Routines
IOC$ALOALTMAP, IOC$ALOALTMAPN, IOC$ALOALTMAPSP

synchronization Callers of IOC$ALOALTMAP, IOC$ALOALTMAPN, or
IOC$ALOALTMAPSP may be executing at fork IPL or above and must
hold the corresponding fork lock in a VMS multiprocessing environment.
Each routine returns control to its caller at the caller's IPL. The caller
retains any spin locks it held at the time of the call.

DESCRIPTION IOC$ALOALTMAP, IOC$ALOALTMAPN, and IOC$ALOALTMAPSP
allocate a contiguous set of Q22-bus alternate map registers (registers 496
to 8191) and record the allocation in the ADP and CRB. These routines
differ in the way in which they determine the number and location of the
alternate map registers they allocate:

• IOC$ALOALTMAP calculates the number of needed map registers
using the values contained in UCB$W_BCNT and UCB$W BOFF.
It automatically allocates one extra map register. When it is later
called by the driver, IOC$LOADALTMAP marks this register invalid
to prevent a transfer overrun.

• IOC$ALOALTMAPN uses the value in R3 as the number of required
registers.

• IOC$ALOALTMAPSP uses the value in R3 as the number of required
registers and attempts to allocate these registers starting at the one
indicated by R4.

If an odd number of map registers is required, these routines round this
value up to an even multiple.

If alternate map registers have been permanently allocated
to the controller, IOC$ALOALTMAP, IOC$ALOALTMAPN, or
IOC$ALOALTMAPSP returns successfully to its caller without allocating
the requested map registers. Otherwise, it searches the alternate map
register descriptor arrays for the required number of map registers. If
there are not enough contiguous map registers available, the routine
returns SS$_INSFMAPREG status.

If the VAX system does not support alternate map registers, the routine
exits with SS$_SSFAIL status.

3-64

Operating System Routines
IOC$ALOUBAMAP, IOC$ALOUBAMAPN

IOC$ALOUBAMAP, IOC$ALOUBAMAPN

Allocate a set of UNIBUS map registers or a set of the first 496 Q22-bus map
registers.

module

input

output

IOSUBNPAG

Location

R3

R5

UCB$W BCNT

UCB$W BOFF

UCB$L CRB

CRB$L_INTD+
VEC$L_ADP

CRB$L_INTD+
VEC$W_MAPREG

ADP$W_MRNREGARY,
ADP$W_MRFREGARY,
ADP$L_MRACTMDRS

Contents

Number of map registers to allocate
(IOC$ALOUBAMAPN only). The value should
account for one extra register needed to prevent a
transfer overrun.

Address of UCB.

Transfer byte count (IOC$ALOUBAMAP only).

Byte offset in page (IOC$ALOUBAMAP only).

Address of CRB.

Address of ADP.

VEC$V_MAPLOCK set indicates that map registers
have been permanently allocated to this controller.

Map register descriptor arrays.

Location

RO

R1

R2

CRB$L INTD+VEC$B_
NUMREG

CRB$L_INTD+VEC$W
MAPREG

ADP$W_MRNREGARY, Updated
ADP$W_MRFREGARY,
ADP$L_MRACTMDRS

Contents

SS$_NORMAL or 0

Destroyed

Address of ADP

Number of map registers allocated

Starting map register number

synchronization The caller of IOC$ALOUBAMAP or IOC$ALOUBAMAPN may be
executing at fork IPL or above and must hold the corresponding fork lock
in a VMS multiprocessing environment. Either routine returns control to
its caller at the caller's IPL. The caller retains any spin locks it held at the
time of the call.

3-65

Operating System Routines
IOC$ALOUBAMAP, IOC$ALOUBAMAPN

DESCRIPTION IOC$ALOUBAMAP and IOC$ALOUBAMAPN allocate a contiguous set
of iJNIBUS map registers or a set of the first 496 Q22-bus map registers
and record the allocation in the ADP and CRB. These routines differ in
the way in which they determine the number of the map registers they
allocate:

• IOC$ALOUBAMAP calculates the number of needed map registers
using the values contained in UCB$W_BCNT and UCB$W_BOFF. It
automatically allocates one extra map register. When it is later called
by the driver, IOC$LOADUBAMAP marks this register invalid to
prevent a transfer overrun.

• IOC$ALOUBAMAPN uses the value in R3 as the number of required
registers.

If an odd number of map registers is required, both routines round this
value up to an even multiple.

If map registers have been permanently allocated to the controller,
IOC$ALOUBAMAP or IOC$ALOUBAMAPN returns successfully to its
caller without allocating the requested map registers. Otherwise, it
searches the map register descriptor arrays for the required number of
map registers. If there are not enough contiguous map registers available,
the routine returns an error status of zero to its caller.

3-66

Operating System Routines
IOC$APPLYECC

IOC$APPLYECC

Applies an ECC correction to data transferred from a disk device into memory.

module

input

output

synchronization

IOSUBRAMS

Location

RO

R5

UCB$W BCNT

UCB$W EC1

UCB$W EC2

UCB$L SVPN

UCB$L SVAPTE

Contents

Number of bytes of data that have been transferred,
not including the block to be corrected; this must be
a multiple of 512 bytes

Address of UCB

Length of transfer in bytes

Starting bit number of the error burst

Exclusive OR correction pattern

Address of system PTE for a page that is available
for use by driver

System virtual address of PTE that maps the transfer

Location

R0, R 1, R2

UCB$W DEVSTS

Contents

Destroyed

UCB$V_ECC set to indicate that an ECC correction
was made

IOC$APPLYECC executes at the caller's IPL, obtains no spin locks, and
returns control to its caller at its caller's IPL.

DESCRIPTION IOC$APPLYECC corrects data transferred from a disk device to memory
by performing an exclusive-OR operation on the data and applying a
correction pattern from the UCB. IOC$APPLYECC also sets a UCB bit
(UCB$V ECC in UCB$W_DEVSTS) to indicate that it has made an ECC
correction.

Note that, to use this routine, the driver must define the local UCB disk
extension, as described in Section 1.17.

3-67

Operating System Routines
IOC$CANCELIO

IOC$CANCELIO

Conditionally marks a UCB so that its current I/O request will be canceled.

module

input

output

IOSUBNPAG

Location Contents

R2 Channel index number

R3 Address of IRP

R4 Address of current PCB

R5 Address of UCB

IRP$L_PID Process identification of the process that queued the
I/O request

IRP$W CHAN I/O request channel index number

PCB$L PID Process identification of the process that requested
cancellation

UCB$L STS UCB$V_BSY set if device is busy, clear if device is
idle

Location Contents

UCB$L STS UCB$V_CANCEL set if the I/O request should be
canceled

synchronization IOC$CANCELIO executes at its caller's IPL, obtains no spin locks, and
returns control to its caller at the caller's IPL. It is usually called by
EXE$CANCEL (if specified in the DDT as the driver's cancel-UO routine)
at fork IPL, holding the corresponding fork lock in a VMS multiprocessing
environment.

DESCRIPTION IOC$CANCELIO cancels UO to a device in the following device-
independent manner:

1 It confirms that the device is busy by examining the device-busy bit in
the UCB status longword (UCB$V BSY in UCB$L_STS).

2 It confirms that the IRP in progress on the device originates from the
current process (that is, the contents of IRP$L_PID and PCB$L_PID
are identical).

3 It confirms that the specified channel-index number is the same as the
value stored in the IRP's channel-index field (IRP$W_CHAN).

4 It sets the cancel-UO bit in the UCB status longword (UCB$V
CANCEL in UCB$L_STS).

3-68

Operating System Routines
IOC$DIAGBUFILL

IOC$DIAGBUFILL

Fills a diagnostic buffer if the original $QIO request specified such a buffer.

module

input

output

IOSUBNPAG

Location Contents

R4 Address of device's CSR

R5 Address of UCB

UCB$L IRP Address of current IRP

IRP$W_STS IRP$V_DIAGBUF set if a diagnostic buffer exists

IRP$L DIAGBUF Address of diagnostic buffer, if one is present

UCB$B_ERTCNT Final error retry count

UCB$L DDB Address of DDB

DDB$L DDT Address of DDT

DDT$L REGDUMP Address of driver's register dumping routine

EXE$GQ_SYSTIME Current system time (time at I/O request completion)

Location Contents

R0, R 1 Destroyed

R2 Address of DDT

R3 Address of IRP

R4 Address of device's CSR

R5 Address of UCB

synchronization The caller of IOC$DIAGBUFILL may be executing at or above fork IPL
and must hold the corresponding fork lock in a VMS multiprocessing
environment. IOC$DIAGBUFILL returns control to its caller at the
caller's IPL. The caller retains any spin locks it held at the time of the
call.

DESCRIPTION A device driver fork process calls IOC$DIAGBUFILL at the end of UO
processing but before releasing the UO channel. IOC$DIAGBUFILL stores
the I/O completion time and the final error retry count in the diagnostic
buffer. (IOC$INITIATE has already placed the UO initiation time in the
first quadword of the buffer.) IOC$DIAGBUFILL then calls the driver's
register dumping routine, which fills the remainder of the buffer, and
returns to its caller.

3-69

Operating System Routines
IOC$INITIATE

IOC$INITIATE

Initiates the processing of the next I/O request for a device unit.

module

input

output

IOSUBNPAG

Location Contents

R3 Address of IRP

R5 Address of UCB

CPU$L PHY CPUID CPU ID of local processor

IRP$L_SVAPTE Address of system buffer (buffered I/O) or system
virtual address of the PTE that maps process buffer
(direct I/O)

IRP$W_BOFF Byte offset of start of buffer

IRP$L BCNT Size in bytes of transfer

IRP$W STS IRP$V_DIAGBUF set if a diagnostic buffer exists

IRP$L_DIAGBUF Address of diagnostic buffer, if one is present

EXE$GQ SYSTIME Current system time (when I/O processing began)

UCB$L DDB Address of DDB

UCB$L_DDT Address of DDT

UCB$L AFFINITY Device's affinity mask

DDT$L_START Address of driver start-I/O routine

Location Contents

R0, R1 Destroyed

UCB$L IRP Address of IRP

UCB$L SVAPTE IRP$L SVAPTE

UCB$W BOFF IRP$W BOFF

UCB$W BCNT IRP$L BCNT (low-order word)

UCB$L_STS UCB$V_CANCEL and UCB$V_TIMOUT cleared

Diagnostic buffer Current system time (first quadword)

synchronization IOC$INITIATE is called at fork IPL with the corresponding fork lock held
in a VMS multiprocessing system. Within this context, it transfers control
to the driver's start-I/O routine.

3-70

Operating System Routines
IOC$INITIATE

DESCRIPTION IOC$INITIATE creates the context in which a driver fork process services
an UO request. IOC$INITIATE creates this context and activates the
driver's start-UO routine in the following steps:

• Checks the CPU ID of the local processor against the device's affinity
mask to determine whether the local processor can initiate the
UO operation on the device. If it cannot, IOC$INITIATE takes
steps to initiate the UO function on another processor in a VMS
multiprocessing system. It then returns to its caller.

• Stores the address of the current IRP in UCB$L_IRP.

• Copies the transfer parameters contained in the IRP into the UCB:

— Copies the address of the system buffer (buffered UO) or the
system virtual address of the PTE that maps process buffer (direct
UO) from IRP$L_SVAPTE to UCB$L_SVAPTE

Copies the byte offset within the page from IRP$W_BOFF to
UCB$W_BOFF

Copies the low-order word of the byte count from IRP$L_BCNT to
UCB$W_BCNT

• Clears the cancel-UO and timeout bits in the UCB status longword
(UCB$V CANCEL and UCB$V TIMOUT in UCB$L_STS).

• If the UO request specifies a diagnostic buffer, as indicated by
IRP$V DIAGBUF in IRP$W_STS, stores the system time in the
first quadword of the buffer to which IRP$L_DIAGBUF points (the
$QIO system service having already allocated the buffer).

• Transfers control to the driver's start-UO routine.

3-71

Operating System Routines
IOC$IOPOST

IOC$IOPOST

Performs device-independent I/O postprocessing and delivers the results of
an I/O request to a process.

module IOCIOPOST

input
Location

IRP$L_PID

IRP$L UCB

I R P$W STS

IRP$L DIAGBUF

IRP$L_SVAPTE

IRP$W BOFF

IRP$L_BCNT

IRP$L_OBCNT

I RP$L IOST1

IRP$W CHAN

IRP$L IOSB

IRP$B_RMOD

I RP$B_E FN

UCB$W QLEN

UCB$L DEVCHAR

PCB$W_DIOCNT

PCB$W_BIOCNT

JIB$L BYTCNT

CCB$W IOC

CCB$L DIRP

Contents

Process identification of the process that initiated the
I/O request

Address of UCB

IRP$V BUFIO set if buffered-I/O request, clear if
direct-I/O request; IRP$V_PHYSIO set if physical-I/O
function; IRP$V EXTEND set if an IRPE is linked
to this IRP; IRP$V_KEY set if IRP$L KEYDESC
contains the address of an encryption key buffer;
IRP$V_FUNC set if read function, clear if write
function; IRP$V_DIAGBUF set if diagnostic buffer
exists; IRP$V_MBXIO set if mailbox read function

Address of diagnostic buffer, if one is present

Address of system buffer (buffered I/O) or system
virtual address of the PTE that maps process buffer
(direct I/O)

Byte offset of start of buffer

Size in bytes of transfer

Original byte count for virtual I/O transfer

First I/O status longword

I/O request channel index number

Address of I/O status block, if specified

Access mode of I/O request; ACB$V_QUOTA set if
request specified AST

Event flag number

Length of pending-I/O queue

DEV$V_FOD set if file-oriented device

Process's direct-I/O count

Process's buffered-I/O count

Job byte count quota

Number of outstanding I/O requests on channel

Address of IRP for requested deaccess

3-72

Operating System Routines
IOC$IOPOST

output
Location Contents

UCB$W QLEN Decremented

PCB$W DIOCNT Incremented for adirect-I/O request

PCB$W BIOCNT Incremented for a buffered I/O request

J!B$L BYTCNT Updated for buffered I/O request

CCB$W IOC Decremented

CCB$L DIRP Cleared if channel is idle

synchronization IOC$IOPOST executes in response to an interrupt granted at IPL$_
IOPOST. It performs some of its functions in a special kernel-mode AST
that executes within process context at IPL$_ASTDEL. It obtains and
releases the various spin locks required to deallocate nonpaged pool and
adjust process quotas.

DESCRIPTION This interrupt service routine processes IRPs in the systemwide and local
CPU UO postprocessing queues, gaining control when the processor grants
a software interrupt at IPL$_IOPOST. when the UO postprocessing queues
are empty, IOC$IOPOST dismisses the interrupt with an REI instruction.

IOC$IOPOST performs several tasks to complete either adirect- or
buffered-UO request:

• For abuffered-I / O read request, it copies data from the system buffer
to the process buffer. If it cannot write to the process buffer, it returns
SS$ ACCVIO status. For read and write requests, it releases the
system buffer to nonpaged pool.

• For adirect-I l O request, it unlocks those process buffer pages that
were locked for the Il0 transfer. (If an IRPE exists, the unlocked
pages include any defined in the IRPE area descriptors.)

IOC$IOPOST performs the following tasks for both direct and buffered UO
requests:

• Decrements the device's pending-UO queue length

• Adjusts direct-UO or buffered-UO quota use

• Sets an event flag if one was specified in the $QIO system service call

• Copies I/O completion status from the IRP to the process's UO status
block (if one was specified in the $QIO system service call).

• Queues a user mode AST (if specified) to the process

• Copies the diagnostic buffer (if specified) from system to process space
and releases the system buffer

• Deallocates the IRP and any IRPEs

Note that many of these operations are performed within process context
by the special kernel-mode AST IOC$IOPOST queues to the process.

3-73

Operating System Routines
IOC$LOADALTMAP

IOC$LOADALTMAP

Loads a set of Q22-bus alternate map registers.

module

macro

input

output

synchronization

DESCRIPTION

[SYSLOA]MAPSUBxxx

LOADALT

Location Contents

R5 Address of UCB

UCB$W BCNT Number of bytes in transfer

UCB$W BOFF Byte offset in first page of transfer

UCB$L SVAPTE System virtual address of PTE for first page of
transfer

UCB$L CRB Address of CRB

CRB$L_INTD+ Number of alternate map registers allocated
VEC$W NUMALT

CRB$L INTD+ Number of first alternate map register allocated
VEC$W MAPALT

CRB$L INTD+ Address of ADP
VEC$L ADP

ADP$L_MR2ADDR Address of the first Q22-bus alternate map register

Location Contents

RO SS$_NORMAL, SS$_INSFMAPREG, or
SS$_SSFAIL

R1, R2 Destroyed

A driver fork process calls IOC$LOADALTMAP at fork IPL, holding
the corresponding fork lock in a VMS multiprocessing environment.
IOC$LOADALTMAP returns control to its caller at the caller's IPL. The
caller retains any spin locks it held at the time of the call.

A driver fork process calls IOC$LOADALTMAP to load apreviously-
allocated set of alternate map registers with page-frame numbers (PFNs).
This enables a device DMA transfer to or from the buffer indicated by the
contents of UCBL_SVAPTE, UCBW_BCNT, and UCB$W BOFF.

IOC$LOADALTMAP confirms that sufficient alternate map registers have
been previously allocated. If not, it issues a UBMAPEXCED bugcheck.
Otherwise, it loads the appropriate PFN into each map register and sets

3-74

Operating System Routines
IOC$LOADALTMAP

the map register valid bit. It clears the last map register. This last invalid
register prevents a transfer overrun.

If the VAX system does not support alternate map registers, the routine
exits with SS$_SSFAIL status.

3-75

Operating System Routines
IOC$LOADMBAMAP

IOC$LOADMBAMAP

Loads MASSBUS map registers.

module

macro

input

LOADMREG

LOADMBA

Location Contents

R4 Address of MBA configuration register
(MBA$L CSR)

R5 Address of UCB

UCB$W BCNT Number of bytes in transfer

UCB$W BOFF Byte offset in first page of transfer

UCB$L_SVAPTE System virtual address of PTE for first page of
transfer

MBA$L MAP Address of first MASSBUS map register

output
Location Contents

R0, R 1, R2 Destroyed

synchronization A driver fork process calls IOC$LOADMBAMAP at fork IPL.
IOC$LOADMBAMAP returns control to its caller at the caller's IPL.

DESCRIPTION Driver fork processes for DMA transfers call IOC$LOADMBAMAP to load
MASSBUS adapter map registers with page-frame numbers (PFNs).

IOC$LOADMBAMAP uses the contents of UCBL_SVAPTE, UCBW_
BCNT, and UCB$W_BOFF to determine the number of pages involved in
the transfer. It then copies the page frame numbers from the page-table
entries associated with this buffer into map registers, starting with map
register 0. IOC$LOADMBAMAP also loads the negated transfer size into
the MASSBUS adapter's byte count register (MBA$L_BCR) and the byte
offset of the transfer into the MASSBUS adapter's virtual address register
(MBA$L VAR.). It clears the last map register. This last invalid register
prevents a transfer overrun.

The driver must own the MASSBUS adapter, and thus its map registers,
before it calls this routine.

3-76

Operating System Routines
IOC$LOADUBAMAP, IOC$LOADUBAMAPA

IOC$LOADUBAMAP, IOC$LOADUBAMAPA

Load a set Of UNIBUS map registers or a set Of the first 496 Q22-bus map
registers.

module

macro

input

output

LOADMREG

LOADUBA

Location Contents

R5 Address of UCB

UCB$W BCNT Number of bytes in transfer

UCB$W_BOFF Byte offset in first page of transfer

UCB$L SVAPTE System virtual address of PTE for first page of
transfer

UCB$L CRB Address of CRB

CRB$L INTD+
VEC$B_NUMREG

CRB$L INTD+
VEC$W MAPREG

CRB$L INTD+
VEC$B_DATAPATH

CRB$L INTD+
VEC$L ADP

U BA$L MAP

UCB$L_SVAPTE

Number of map registers allocated

Number of first map register allocated

Data path specifier; VEC$V_LWAE set if longword
buffering is used, clear if quadword buffering is used

Address of ADP

Address of first UNIBUS or Q22-bus map register

System virtual address of PTE for the first page of
the transfer

Location Contents

R0, R1, R2 Destroyed

synchronization A driver fork process calls IOC$LOADUBAMAP or IOC$LOADUBAMAPA
at fork IPL, holding the corresponding fork lock in a VMS multiprocessing
environment. Either routine returns control to its caller at the caller's
IPL. The caller retains any spin locks it held at the time of the call.

DESCRIPTION A driver fork process calls IOC$LOADUBAMAP or IOC$LOADUBAMAPA
to load apreviously-allocated set of map registers with page-frame
numbers (PFNs). This enables a device DMA transfer to or from the
buffer indicated by the contents of UCBL_SVAPTE, UCBW_BCNT, and
UCB$W_BOFF.

3-77

Operating System Routines
IOC$LOADUBAMAP, IOC$LOADUBAMAPA

Either IOC$LOADUBAMAP or IOC$LOADUBAMAPA confirms that
sufficient map registers have been previously allocated. If not, it issues a
UBMAPEXCED bugcheck. Otherwise, it loads into each map register the
appropriate PFN and data-path number. It sets the map register valid bit
and, if VEC$V LWAE is set in VEC$B_DATAPATH, the longword-access-
enable bit.

IOC$LOADUBAMAP checks the low bit of UCB$W_BOFF to determine
whether the transfer is byte-aligned or word-aligned. If the low bit is
set, it sets the byte-offset bit in each map register. Drivers for byte-
aligned UNIBUS devices that must never set the byte-offset bit call
IOC$LOADUBAMAPA. Drivers for Q22-bus-only devices also call
IOC$LOADUBAMAPA as there is no byte-offset bit in a Q22-bus map
register.

Both IOC$LOADUBAMAP and IOC$LOADUBAMAPA clear the last map
register. This last invalid register prevents a transfer overrun.

~/

Operating System Routines
IOC$MOVFRUSER, IOC$MOVFRUSER2

IOC$MOVFRUSER, IOC$MOVFRUSER2

Move data from a user buffer to a device.

module

input

output

BUFFERCTL

Location Contents

RO Address of byte to be moved (IOC$MOVFRUSER2
only)

R1 Address of driver's buffer

R2 Number of bytes to move

R5 Address of UCB

DPT$B_FLAGS Bit DPT$V_SVP set (causing a system page-table
entry (SPTE) to be allocated to the driver)

UCB$L SVAPTE System virtual address of PTE that maps the first
page of the buffer

UCB$L SVPN System virtual page number of SPTE allocated to
driver

UCB$W BOFF Byte offset to start of transfer in page

RO Next address of user's buffer

synchronization The caller of IOC$MOVFRUSER or IOC$MOVFRUSER2 may be executing
at fork IPL or above and must hold the corresponding fork lock in a VMS
multiprocessing environment. Either routine returns control to its caller
at the caller's IPL. The caller retains any spin locks it held at the time of
the call.

DESCRIPTION A driver calls IOC$MOVFRUSER and IOC$MOVFRUSER2 to move data
from a user buffer to a device that cannot itself map the user buffer to
system virtual addresses (for instance, anon-DMA. device).

In order to accomplish the move, IOC$MOVFRUSER and
IOC$MOVFRUSER2 first map the user buffer using the system page-
table entry (SPTE) the driver allocated in a DPTAB macro invocation.
If an SPTE has not been allocated to the driver, these routines cause
an access violation when they attempt to refer to the location addressed
by the contents of the field UCB$L_SVAPTE. (See the description of the
DPTAB macro in Chapter 2 for information on how to allocate this SPTE.)

IOC$MOVFRUSER2 is useful for moving blocks of data in several pieces,
each piece beginning within a page rather than on a page boundary. To
begin, the driver calls IOC$MOVFRUSER. For each subsequent piece, the
driver calls IOC$MOVFRUSER2.

3-79

Operating System Routines
IOC$MOVTOUSER, IOC$MOVTOUSER2

IOC$MOVTOUSER, IOC$MOVTOUSER2

Move data from a device to a user buffer.

module

input

output

BUFFERCTL

Location Contents

RO User buffer address to which to move the byte
(IOC$MOVTOUSER2 only)

R1 Address of driver's buffer

R2 Number of bytes to move

R5 Address of UCB

DPT$B_FLAGS Bit DPT$V_SVP set (causing a system page-table
entry (SPTE) to be allocated to the driver)

UCB$L SVAPTE System virtual address of PTE that maps the first
page of the buffer

UCB$L SVPN System virtual page number of SPTE allocated to
driver

UCB$W BOFF Byte offset to start of transfer in page

Location

RO

Contents

Next starting address of user's buffer

synchronization The caller of IOC$MOVTOUSER or IOC$MOVTOUSER2 may be executing
at fork IPL or above and must hold the corresponding fork lock in a VMS
multiprocessing environment. Either routine returns control to its caller
at the caller's IPL. The caller retains any spin locks it held at the time of
the call.

DESCRIPTION A driver calls IOC$MOVTOUSER and IOC$MOVTOUSER2 to move
data from a device to a user buffer when the device itself (for instance, a
non-DMA device) cannot map the user buffer to system virtual addresses.

In order to accomplish the move, IOC$MOVTOUSER and
IOC$MOVTOUSER2 first map the user buffer using the system page-
table entry (SPTE) the driver allocated in a DPTAB macro invocation.
If an SPTE has not been allocated to the driver, these routines cause
an access violation when they attempt to refer to the location addressed
by the contents of the field UCB$L_SVAPTE. (See the description of the
DPTAB macro in Chapter 2 for information on how to allocate this SPTE.)

lJ

V

Operating System Routines
IOC$MOVTOUSER, IOC$MOVTOUSER2

IOC$MOVTOUSER2 is useful for moving blocks of data in several pieces,
each piece beginning within a page rather than on a page boundary.
It handles as many pages as you need. To begin, the driver calls
IOC$MOVTOUSER. For each subsequent buffer to move, the driver
calls IOC$MOVTOUSER2.

3-8~

Operating System Routines
IOC$PURGDATAP

IOC$PURGDATAP

Purges the buffered data path and logs memory errors that may have occurred
during an I/O transfer.

module

macro

input

output

[SYSLOA]LIOSUBxxx

PURDPR

Location Contents

R5 Address of UCB

Location Contents

RO Bit 0 set if success, clear if failure

R1 Contents of data path after purge

R2 Address of start of the I/O bus map registers

R3 Address of CRB

synchronization The caller of IOC$PURGDATAP may be executing at fork IPL or above
and must hold the corresponding fork lock in a VMS multiprocessing
environment. It returns control to its caller at the caller's IPL. The caller
retains any spin locks it held at the time of the call.

DESCRIPTION All device drivers that support DMA transfers, including those on VAX
systems that have no buffered data paths (such as the MicroVAX systems),
call IOC$PURGDATAP after a data transfer.

IOC$PURGDATAP performs the following tasks:

• Obtains the start of adapter register space using the following chain of
pointers:

UCB$L_CRB —} CRB$L_INTD+VEC$L_ADP —~ ADP$L_CSR

• Extracts the caller's data path number (buffered or direct) from the
CRB.

• Purges the data path if it is a buffered data path. Note that a purge of
a direct data path (data path 0) is legal and always results in success
status.

• Stores the contents of the data path register in R1. The driver's
register dumping routine writes this value to the error message buffer.

• Clears any purge errors in the data path register.

• Places the appropriate return status in R0.

3-82

Operating System Routines
IOC$PURGDATAP

• Determines the base of UNIBUS or Q22-bus map registers and writes
the value into R2. The driver's register dumping routine writes this
value to the error message buffer.

• In some machine implementations, checks for memory errors that
might have occurred during the DMA operation and, if an error is
detected, logs it.

3-83

Operating System Routines
IOC$RELALTMAP

IOC$RELALTMAP

Releases a set of Q22-bus alternate map registers.

module

macro

input

output

synchronization

[SYSLOA]MAPSUBxxx

RELALT

Location

R5

UCB$L CRB

CRB$L INTD+
VEC$L_ADP

CRB$L INTD+
VEC$W_MAPALT

CRB$L INTD+
VEC$W_NUMALT

ADP$L_MR2QFL

ADP$W MR2NREGAR,
ADP$W MR2FREGAR,
ADP$L_MR2ACTMDR

Contents

Address of UCB

Address of CRB

Address of ADP

Starting alternate map register number; VEC$V_
ALTLOCK set indicates that alternate map registers
have been permanently allocated to this controller

Number of allocated alternate map registers

Head of queue of UCBs waiting for alternate map
registers

Alternate map register descriptor arrays

Location

RO

R1, R2

ADP$W MR2NREGAR,
ADP$W MR2FREGAR,
ADP$L_MR2ACTMDR

Contents

SS$_NORMAL or SS$_SSFAIL

Destroyed

Updated

A driver fork process calls IOC$RELALTMAP at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment.

DESCRIPTION A driver fork process calls IOC$RELALTMAP to release a previously-
allocated set of Q22-bus alternate map registers (registers 496 to 8191)
and update the alternate map register descriptor arrays in the ADP.
IOC$RELMAPREG assumes that its caller is the current owner of the
controller data channel.

3-84

Operating System Routines
IOC$RELALTMAP

IOC$RELALTMAP obtains the location and number of the allocated
map registers from CRB$L_INTD+VEC$W_MAPALT and CRB$L_
INTD+VEC$W NUMALT, respectively. If VEC$V ALTLOCK is set in
CRB$L_INTD+VEC$W_MAPALT, the alternate map registers have been
permanently allocated to the controller and IOC$RELALTMAP returns
successfully to its caller.

After adjusting the alternate map register descriptor arrays,
IOC$RELALTMAP examines the alternate-map-register wait queue. If
the queue is empty, IOC$RELALTMAP returns successfully to its caller.
If the queue contains waiting fork processes, IOC$RELALTMAP dequeues
the first process and calls IOC$ALLALTMAP to attempt to allocate the set
of map registers it requires.

If there are sufficient alternate map registers, IOC$RELALTMAP restores
R3 through R5 to the process and reactivates it. When this fork process
returns control to IOC$RELALTMAP, IOC$RELALTMAP attempts to
allocate map registers to the next waiting fork process. IOC$RELALTMAP
continues to allocate map registers in this manner until the alternate-map-
register wait queue is empty or it cannot satisfy the requirements of the
process at the head of the queue. In the latter event, IOC$RELALTMAP
reinserts the fork process's UCB in the queue and returns successfully to
its caller.

If the VAX system does not support alternate map registers,
IOC$RELALTMAP exits with SS$_SSFAIL status.

3-85

Operating System Routines
IOC$RELCHAN

IOC$RELCHAN

Releases device ownership of all controller data channels.

module

macro

input

output

IOSUBNPAG

RELCHAN

Location

R5

UCB$L CRB

CRB$L LINK

CRB$B_MASK

CRB$L_INTD+VEC$L IDB

IDB$L_OWNER

CRB$L WQFL

Contents

Address of UCB

Address of CRB

Address of secondary CRB

CRB$V_BSY set if the channel is busy

Address of IDB

Address of UCB of channel owner

Head of queue of UCBs waiting for the controller
channel

Location

R0, R1, R2

IDB$L OWNER

CRB$B_MASK

Contents

Destroyed

Cleared if no driver is waiting for the channel
CRB$V_BSY cleared if no driver is waiting for the
channel

synchronization A driver fork process calls IOC$RELCHAN at fork IPL, holding
the corresponding fork lock in a VMS multiprocessing environment.
IOC$RELCHAN returns control to its caller after resuming execution of
other fork processes waiting for a controller channel.

DESCRIPTION A driver fork process calls IOC$RELC~][AN to release all controller data
channel assigned to a device; it calls IOC$RELSCHAN to release only the
secondary data channel.

If the channel wait queue contains waiting fork processes, IOC$RELCI~[AN
dequeues a process, assigns the channel to that process, restores R3 and
R5, moves the address of the CSR (IDB$L_CSR) into R4, and reactivates
the suspended fork process.

3-86

Operating System Routines
IOC$RELDATAP

IOC$RELDATAP

Releases a UNIBUS adapter's buffered data path.

module

macro

input

output

IOSUBNPAG

RELDPR

Location Contents

R5 Address of UCB

UCB$L CRB Address of CRB

CRB$L INTD+ Address of ADP
VEC$L ADP

CRB$L INTD+ Data path specifier; VEC$V_PATHLOCK set if the
VEC$B_DATAPATH data path has been permanently allocated to the

controller

ADP$L_DPQFL Head of queue of UCBs waiting for a UNIBUS
adapter buffered data path

ADP$W DPBITMAP Data path bit map

Location Contents

R0, R 1, R2 Destroyed

ADP$W DPBITMAP Bit representing data path set if the path is not
allocated to another driver fork process

CRB$L INTD+ Bits 0 through 4 cleared if the path is not
VEC$B_DATAPATH permanently allocated

synchronization A driver fork process calls IOC$RELDATAP at fork IPL, holding
the corresponding fork lock in a VMS multiprocessing environment.
IOC$RELDATAP returns control to its caller after resuming execution of
any other fork processes waiting for a buffered data path.

DESCRIPTION A driver fork process must own a LTNIBUS buffered data path when it
calls IOC$RELDATAP.

IOC$RELDATAP obtains the number of the allocated data path from bits
0 through 4 of the data path specifier. If VEC$V_PATHLOCK is set in the
specifier, the data path has been permanently allocated to the controller
and IOC$RELDATAP returns to its caller.

3-87

Operating System Routines
IOC$RELDATAP

If the data path wait queue contains waiting fork processes,
IOC$RELDATAP dequeues the first process, allocates the data path to
it, restores R3 through R5, and reactivates it. Otherwise, it marks the
path available by setting the corresponding bit in the data path bit map
(ADP$W_DPBITMAP}, and returns to its caller.

If the bit map has been corrupted, IOC$RELDATAP issues an
INCONSTATE bugcheck.

3-88

Operating System Routines
IOC$RELMAPREG

IOC$RELMAPREG

Releases a set of UNIBUS map registers or a set of the first 496 Q22-bus
map registers.

module

macro

input

output

synchronization

IOSUBNPAG

RELMPR

Location

R5

UCB$L CRB

CRB$L INTD+
VEC$L ADP

CRB$L INTD+
VEC$W MAPREG

CRB$L INTD+
VEC$B_NUMREG

ADP$L MRQFL

ADP$W MRNREGARY,
ADP$W MRFREGARY,
ADP$L MRACTMDRS

Contents

Address of UCB

Address of CRB

Address of ADP

Starting map register number; VEC$V_MAPLOCK
set indicates that map registers have been
permanently allocated to this controller

Number of allocated map registers

Head of queue of UCBs waiting for map registers

Map register descriptor arrays

Location

RO

R1, R2

ADP$W MRNREGARY,
ADP$W MRFREGARY,
ADP$L MRACTMDRS

Contents

SS$_NORMAL or SS$ SSFAIL

Destroyed

Updated

A driver fork process calls IOC$REL~REG at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment.

DESCRIPTION A driver fork process calls IOC$RELMAPREG to release a previously-
allocated set of ITNIBUS map registers or a set of the first 496 Q22-bus
map registers. IOC$RELMAPREG updates the alternate map register
descriptor arrays in the ADP. IOC$RELMAPREG assumes that its caller
is the current owner of the controller data channel.

3-89

Operating System Routines
IOC$RELMAPREG

IOC$RELMAPREG obtains the location and number of the allocated.
map registers from CRB$L_INTD+VEC$W_MAPREG and CRB$L_
INTD+VEC$B_NiJMREG, respectively. If VEC$V MAPLOCK is set
in CRB$L_INTD+VEC$W_MAPREG, the map registers have been
permanently allocated to the controller and IOC$RELMAPREG returns
successfully to its caller.

After adjusting the map register descriptor arrays, IOC$RELMAPREG
examines the standard-map-register wait queue. If the queue is empty,
IOC$RELMAPREG returns successfully to its caller. If the queue contains
waiting fork processes, IOC$RELMAPREG dequeues the first process and
calls IOC$ALOUBAMAP to attempt to allocate the set of map registers it
requires.

If there are sufficient map registers, IOC$RELMAPREG restores
R3 through R5 to the process and reactivates it. When this fork
process returns control to IOC$RELMAPREG, IOC$RELMAPREG
attempts to allocate map registers to the next waiting fork process.
IOC$RELMAPREG continues to allocate map registers in this manner
until the standard-map-register wait queue is empty or it cannot satisfy
the requirements of the process at the head of the queue. In the latter
event, IOC$RELMAPftEG reinserts the fork process's UCB in the queue
and returns successfully to its caller.

3-90

Operating System Routines
IOC$RELSCHAN

IOC$RELSCHAN

Releases device ownership of only the secondary controller's data channel.

module

macro

input

output

IOSUBNPAG

RELSCHAN

Location

R5

UCB$L CRB

CRB$L LINK

CRB$B_MASK

CRB$L INTD+VEC$L IDB

IDB$L OWNER

CRB$L WQFL

Contents

Address of UCB

Address of CRB

Address of secondary CRB

CRB$V_BSY set if the channel is busy

Address of IDB

Address of UCB of channel owner

Head of queue of UCBs waiting for the controller
channel

Location

R0, R1, R2

IDB$L OWNER

CRB$B_MASK

Contents

Destroyed

Cleared if no driver is waiting for the channel

CRB$V_BSY cleared if no driver is waiting for the
channel

synchronization A driver fork process calls IOC$RELSCHAN at fork IPL, holding
the corresponding fork lock in a VMS multiprocessing environment.
IOC$RELSCHAN returns control to its caller after resuming execution of
other fork processes waiting for the secondary controller's channel.

DESCRIPTION IOC$RELSC~iAN releases a secondary controller's data channel (for
instance, the MASSBUS adapter's controller data channel). The caller
retains ownership of the primary controller's data channel. A driver
fork process calls IOC$RELCI~IAN to release all controller data channels
assigned to a device.

If the secondary channel's wait queue contains waiting fork processes,
IOC$RELSCI~[AN dequeues a process, assigns the channel to that process,
restores R3 through R5, and reactivates the suspended process.

3-91

Operating System Routines
IOC$REQALTMAP

IOC$REQALTMAP

Allocates sufficient Q22-bus alternate map registers to accommodate a
DMA transfer and, if unavailable, places the requesting fork process in an
alternate-map-register wait queue.

module

macro

input

SYSLOA[MAPSUB]xxx

REQALT

Location

R5

00(SP)

04(SP)

UCB$W BCNT

UCB$W BOFF

UCB$L CRB

CRB$L INTD+
VEC$L ADP

CRB$L INTD+
VEC$W_MAPALT

ADP$W_MR2NREGAR,
ADP$W MR2FREGAR,
ADP$L MR2ACTMDR

ADP$L_MR2QBL

Contents

Address of UCB

Return PC of caller

Return PC of caller's caller

Transfer byte count

Byte offset in page

Address of CRB

Address of ADP

VEC$V ALTLOCK set indicates that alternate map
registers have been permanently allocated to this
controller

Alternate map register descriptor arrays

Tail of queue of UCBs waiting for alternate map
registers

3-92

Operating System Routines
IOC$REQALTMAP

output
Location Contents

RO SS$_NORMAL or SS$_SSFAIL

R 1 Destroyed

R2 Address of ADP

CRB$L INTD+ Number of alternate map registers allocated
VEC$W NUMALT

CRB$L INTD+ Starting alternate map register number
VEC$W_MAPALT

ADP$W_MR2NREGAR, Updated
ADP$W_MR2FREGAR,
ADP$L MR2ACTMDR

ADP$L_MR2QBL Updated

UCB$L FR3 R3 of caller

UCB$L FR4 R4 of caller

UCB$L_FPC 00(SP)

synchronization A driver fork process calls IOC$REQALTMAP at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment.

DESCRIPTION A driver fork process calls IOC$REQALTMAP to allocate a contiguous set
of Q22-bus alternate map registers (registers 496 to 8191) to service
the DMA transfer described by UCB$W_BCNT and UCB$W_BOFF.
IOC$REQALTMAP calls IOC$ALOALTMAP.

If alternate map registers have been permanently allocated to the
controller, IOC$REQALTMAP returns successfully to its caller without
allocating map registers. Otherwise, it searches the alternate map register
descriptor arrays for the required number of mad registers.

IOC$ALOALTMAP determines the required number of alternate map
registers from the contents of UCB$W BOFF and UCB$W_BCNT. It
allocates one extra map register; this register is marked invalid when
the driver fork process subsequently calls IOC$LOADALTMAP, thus
preventing a transfer overrun. If an odd number of map registers is
required, IOC$ALOALTMAP rounds this value up to an even multiple.

If sufficient alternate map registers are available, IOC$REQALTMAP
assigns them to its caller, records the allocation in the ADP and CRB, and
returns successfully to its caller.

If IOC$REQALTMAP cannot allocate a sufficient number of contiguous
map registers, it saves process context by placing the contents of R3, R4,
and the PC into the UCB fork block and the UCB into the alternate-
map-register wait queue (ADP$L_MR2QBL). It then returns to its caller's
caller.

If the VAX system does not support alternate map registers,
IOC$REQALTMAP exits with SS$_SSFAIL status.

3-93

Operating System Routines
IOC$REQCOM

IOC$REQCOM

Completes an I/O operation on a device unit, requests I/O postprocessing of
the current request, and starts the next I/O request waiting for the device.

module

macro

input

output

IOSUBNPAG

REQCOM

Location

RO

R1

R5

UCB$L STS

UCB$B_ERTCNT

UCB$B_ERTMAX

UCB$L EMB

UCB$L IRP

UCB$B_DEVCLASS

UCB$L IOQFL

Contents

First longword of I/O status.

Second longword of I/O status.

Address of UCB.

UCB$V_ERLOGIP set if error logging is in progress.

Final error count.

Maximum error retry count.

Address of error message buffer.

Address of IRP.

DC$_DISK and DC$ TAPE devices are subject to
mount verification checks.

Device unit's pending-I/O queue.

Location

RO through R3

IRP$L_IOST1

I R P$L IOST2

UCB$L OPCNT

UCB$L IOQFL

EMB$W DV_STS

EMB$B_DV_ERTCNT

EMB$B_DV_ERTCNT+1

EMB$Q DV_IOSB

UCB$L STS

Contents

Destroyed. Other registers (used by the driver's
start-I/O routine) are destroyed if IOC$INITIATE is
called.

First longword of I/O status.

Second longword of I/O status.

Incremented.

Updated.

UCB$W_STS.

UCB$B_ERTCNT.

UCB$B_ERTMAX.

Quadword of I/O status.

UCB$V_BSY and UCB$V ERLOG I P cleared.

3-94

Operating System Routines
IOC$REQCOM

synchronization A driver fork process calls IOC$REQCOM at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment.
IOC$REQCOM transfers control to IOC$RELCHAN. If the fork process
calls IOC$REQCOM by means of the REQCOM macro (or a JMP
instruction), IOC$RELCI~[AN returns control to the caller of the driver
fork process (for instance, the fork dispatcher).

DESCRIPTION A driver fork process calls this routine after a device UO operation and all
device-dependent processing of an UO request is complete.

IOC$REQCOM performs the following tasks:

• If error logging is in progress for the device (as indicated by UCB$V
ERLOGIP in UCB$L_STS), writes into the error message buffer the
status of the device unit, the error retry count for the transfer, the
maximum error retry count for the driver, and the final status of the
UO operation. It then releases the error message buffer by calling
ERL$RELEASEMB.

• Increments the device unit's operations count (UCB$L_OPCNT).

• If UCB$B_DEVCLASS specifies a disk device (DC$_DISK) or tape
device (DC$ TAPE) and error status is reported, performs a set of
checks to determine if mount verification is necessary. Tape end-of-
file errors (SS$_ENDOFFILE) are exempt from these checks. For a
tape device with success status, checks to determine if CRC must be
generated.

• Writes final UO status (RO and R1) into IRP$L_IOST1 and IRP$L_
IOST2.

• Inserts the IRP in systemwide UO postprocessing queue.

• Requests a software interrupt from the local processor at IPL$_
IOPOST.

• Attempts to remove an IRP from the device's pending-UO queue (at
UCB$L_IOQFL). If successful, it transfers control to IOC$INITIATE
to begin driver processing of this UO request. If the queue is empty, it
clears the unit busy bit (UCB$V BSY in UCB$L_STS) to indicate that
the device is idle.

• E~uts by transferring control to IOC$RELCHAN.

3-95

Operating System Routines
IOC$REQDATAP, IOC$REQDATAPNW

IOC$RE(~DATAP, IOC$REQDATAPNW

Request a UNIBUS adapter buffered data path and, optionally, if no path is
available, place process in data-path wait queue.

module

macro

input

output

IOSUBNPAG

REQDPR

Location Contents

R5 Address of UCB

00(SP) Return PC of caller

04(SP) Return PC of caller's caller

UCB$L CRB Address of CRB

UCB$L CRB Address of CRB

CRB$L INTD+ Address of ADP
VEC$L_ADP

CRB$L INTD+
VEC$B_DATAPATH

Data path specifier; VEC$V_PATHLOCK set if the
data path is permanently allocated to the controller

ADP$W DPBITMAP Data path bit map

Location Contents

RO SS$_NORMAL or bit 0 set (indicating error status)

CRB$L INTD+ Data path specifier
VEC$B_DATAPATH

ADP$W DPBITMAP Bit corresponding to allocated data path cleared

synchronization A driver fork process calls IOC$REQDATAP or IOC$REQDATAPNW at
fork IPL, holding the corresponding fork lock in a VMS multiprocessing
environment.

DESCRIPTION A driver fork process calls IOC$REQDATAP or IOC$REQDATAPNW to
request a UNIBUS adapter buffered data path for a DMA transfer.

If a buffered data path is already permanently allocated to the controller,
IOC$REQDATAP or IOC$REQDATAPNW returns successfully to its caller
without allocating a data path. Otherwise, it searches the data path bit
map for the first available data path.

3-96

Operating System Routines
IOC$REQDATAP, IOC$REQDATAPNW

If IOC$REQDATAP or IOC$REQDATAPNW locates a free data path, it
writes the data path number into CRB$L_INTD+VEC$B_DATAPATH,
updates the data path bit map (ADP$W DPBITMAP), and returns
successfully to its caller. If the bit map has been corrupted, the routine
issues an INCONSTATE bugcheck.

If IOC$REQDATAP cannot allocate a data path, it saves process context
by placing the contents of R3, R4, and the PC into the UCB fork block and
the UCB into the data-path wait queue (ADP$L_DPQBL). It then returns
to its caller's caller. By contrast, if IOC$REQDATAPNW cannot allocate a
data path, it returns immediately to its caller with the low bit in RO clear,
indicating an error.

When called from a driver executing in a VAX system that does not provide
buffered data paths, IOC$REQDATAP and IOC$REQDATAPNW return
control after examining the data path bit map in the ADP.

3-97

Operating System Routines
IOC$REQMAPREG

IOC$REGIMAPREG

Allocates sufficient UNIBUS map registers or a sufficient number of the
first 496 Q22-bus map registers to accommodate a DMA transfer and, if
unavailable, places process in standard-map-register wait queue.

module

macro

input

IOSUBNPAG

RE QMPR

Location

R5

00(SP)

04(SP)

UCB$W BCNT

UCB$W BOFF

UCB$L CRB

CRB$L INTD+
VEC$L ADP

CRB$L INTD+
VEC$W_MAPREG

ADP$W MRNREGARY,
ADP$W_MRFREGARY,
ADP$L_MRACTMDRS

ADP$L MRQBL

Contents

Address of UCB

Return PC of caller

Return PC of caller's caller

Transfer byte count

Byte offset in page

Address of CRB

Address of ADP

VEC$V_MAPLOCK set indicates that map registers
have been permanently allocated to this controller

Map register descriptor arrays

Tail of queue of UCBs waiting for map registers

3-98

Operating System Routines
IOC$REQMAPREG

output
Location Contents

RO SS$_NORMAL

R 1 ~ Destroyed

R2 Address of ADP

CRB$L lNTD+ Number of map registers allocated
VEC$B NUMREG

CRB$L INTD+ Starting map register number
VEC$W MAPREG

ADP$W MRNREGARY, Updated
ADP$W_MRFREGARY,
ADP$L MRACTMDRS

ADP$L MRQBL Updated

UCB$L FR3 R3 of caller

UCB$L FR4 R4 of caller

UCB$L FPC 00(SP)

synchronization A driver fork process calls IOC$REQMAPREG at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment.

DESCRIPTION A driver fork process calls IOC$REQMAPREG to allocate a contiguous set
of UNIBUS map registers or a set of the first 496 Q22-bus map registers
to service the DMA transfer described by UCB$W_BCNT and UCB$W
BOFF. IOC$REQMAPREG calls IOC$ALOUBAMAP.

If map registers have been permanently allocated to the controller,
IOC$REQMAPREG returns successfully to its caller without allocating
map registers. Otherwise, it searches the map register descriptor arrays
for the required number of map registers.

IOC$ALOUBAMAP determines the required number of map registers
from the contents of UCB$W_BOFF and UCB$W_BCNT. It allocates
one extra map register; this register is marked invalid when the driver
fork process subsequently calls IOC$LOADUBA,MAP, thus preventing
a transfer overrun. If an odd number of map registers is required,
IOC$ALOUBAMAP rounds this value up to an even multiple.

If sufficient map registers are available, IOC$REQMAPREG assigns them
to its caller, records the allocation in the ADP and CRB, and returns
successfully to its caller.

If IOC$REQMAPREG cannot allocate a sufficient number of contiguous
map registers, it saves process context by placing the contents of R3, R4,
and the PC into the UCB fork block and R5 into the standard-map-register
wait queue (ADP$L_MRQBL). It then returns to its caller's caller.

3-99

Operating System Routines
IOC$REQPCHANH, IOC$REQPCHANL, IOC$REQSCHANH, IOC$REQSCHANL

IOC$REQPCHANH, IOC$REQPCHANL,
IOC$REQSCHANH, IOC$REQSCHANL

Request a controller's primary or secondary data channel and, if unavailable,
place process in channel wait queue.

module

macro

input

output

IOSUBNPAG

REQPCHAN, REQSCHAN

Location

R5

00(SP)

04(SP)

UCB$L CRB

CRB$L LINK

CRB$B_MASK

CRB$L INTD+VEC$L IDB

CRB$L WQFL

CRB$L WQBL

IDB$L_CSR

Contents

Address of UCB

Return PC of caller

Return PC of caller's caller

Address of CRB

Address of secondary CRB (IOC$REQSCHANH and
IOC$REQSCHANL only)

CRB$V BSY set if the channel is busy

Address of IDB

Head of queue of UCBs waiting for the controller
channel

Tail of queue of UCBs waiting for the controller
channel

Address of device CSR

Location

R0, R1, R2

R4

IDB$L OWNER

CRB$L WQFL

CRB$L WQBL

Contents

Destroyed

Address of device CSR

Address of UCB

Updated

Updated

synchronization A driver fork process calls IOC$REQPCHANH, IOC$REQPCHANL,
IOC$REQSCHANH, or IOC$REQSCHANL holding the corresponding fork
lock in a VMS multiprocessing environment.

3-100

Operating System Routines
IOC$REQPCHANH, IOC$REQPCHANL, IOC$REQSCHANH, IOC$REQSCHANL

DESCRIPTION A driver fork process calls IOC$REQPCHANH or IOC$REQPCHANL
to acquire ownership of the primary controller's data channel; it calls
IOC$REQSCHANH or IOC$REQSCHANL to request the secondary
controller's data channel (for instance, the MASSBUS adapter's controller
data channel).

Each routine examines CRB$V BSY in CRB$B 1~ZASK. If the selected
controller's data channel is idle, the routine grants the channel to the
fork process, placing its UCB address in IDB$L_OWNER and returning
successfully with the device's CSR address in R4.

If the data channel is busy, the routine saves process context by placing
the contents of R3 and the PC into the UCB fork block. (Note that
IOC$RELCHAN moves the contents of IDB$L CSR into R4 before
resuming execution of a waiting fork process.) IOC$REQPCHANH and
IOC$REQSCHANH then insert the UCB at the head of the channel wait
queue (CRB$L WQFL); IOC$REQPCI~[ANL and IOC$REQSCHANL insert
the UCB at the tail of the queue (CRB$L WQBL). Finally, the routine
returns control to its caller's caller.

3-101

Operating System Routines
IOC$RETURN

IOC$RETURN

Returns to its caller.

module

input

None.

None.

output
None.

synchronization IOC$RETURN executes at its caller's IPL and returns control to the caller
at that IPL.

DESCRIPTION IOC$RETURN is a universal executive routine vector in the fixed portion
of the VMS executive. It contains a single RSB instruction. When a driver
invokes the DDTAB macro, the macro writes the address of IOC$RETUR.N
into routine address fields of the DDT that are not supplied in the macro
invocation.

3-102

Operating System Routines
IOC$VERIFYCHAN

IOC$VERIFYCHAN

Verifies an I/O channel number and translates it to a CCB address.

module

input

output

IOSUBPAGD

Location Contents

RO Channel number (in low word)

CTL$GL CCBBASE Base address of process CCB table

CCB$B AMOD Access mode (plus 1) of process owning the channel

Location Contents

RO SS$_NORMAL, SS$_IVCHAN, or SS$_NOPRIV

R1 Address of CCB

R2 Channel index number

R3 Destroyed

synchronization Because IOC$VERIFYCHAN gains access to information stored in
user process virtual address space, it should only be called from code
originating at IPL$ ASTDEL or below.

DESCRIPTION Drivers call IOC$VERIFYCHAN to validate auser-supplied channel
number, construct a channel index, and obtain the address of the CCB to
which the channel number points.

If the channel number is invalid or zero, or if the channel is unowned,
IOC$VERIFYCHAN returns SS$_IVCHAN status to its caller.

If the access mode of the current process is less privileged than
that indicated in CCB$B AMOD, IOC$VERIFYCI~[AN returns SS$_
NORMAL! SS$_NOPRIV status to its caller with the address of the CCB in
Rl.

Otherwise, IOC$VERIFYCHAN returns successfully to its caller with the

address of the CCB in R1.

3-103

Operating System Routines
IOC$WFIKPCH, IOC$WFIRLCH

IOC$WFIKPCH, IOC$WFIRLCH

Suspend a driver fork thread and fold its context into a fork block in
anticipation of a device interrupt or timeout.

module

macro

input

output

IOSUBNPAG

WFIKPCH, WFIRLCH

Location Contents

R3, R4 (Preserved)

R5 Address of UCB

R5 Address of UCB

00(SP) Address following the JSB to IOC$WFIKPCH or
IOC$WFIRLCH

04(SP) Timeout value in seconds

08(SP) IPL to which to lower before returning to the caller's
caller

12(SP} Return PC of caller's caller

EXE$GL_ABSTIM Absolute time

Location Contents

UCB$L DUETIM Sum of timeout value and EXE$GL ABSTIM

UCB$V_INT Set to indicate that interrupts are expected on the
device

UCB$V TIM Set to indicate device I/O is being timed

UCB$V TIMOUT Cleared to indicate that unit is not timed out

UCB$L FR3 R3

UCB$L FR4 R4

UCB$L FPC 00(SP)+2

synchronization When it is called, IOC$WFIKPCH or IOC$WFIRLCH assumes that the
local processor has obtained the appropriate synchronization with the
device database:

• In a uniprocessing environment, the processor must be executing at
device IPL or above.

• In a multiprocessing environment, the processor must own the
appropriate device lock, as recorded in the unit control block (UCB$L_
DLCK) of the device unit from which the interrupt is expected. This
requirement also presumes that the local processor is executing at the
device IPL associated with the lock.

3-104

Operating System Routines
IOC$WFIKPCH, IOC$WFIRLCH

Before exiting, IOC$WFIKPCH or IOC$WFIRLCH achieves the following
synchronization:

• In a uniprocessing environment, it lowers the local processor's IPL to
the IPL saved on the stack.

• In a multiprocessing environment, it conditionally releases the device
lock, so that if the caller of the driver fork thread (the caller's caller)
previously owned the device lock, it will continue to hold it when the
routine exits. IOC$WFIKPCH or IOC$WFIRLCH also lowers the local
processor's IPL to the IPL saved on the stack.

DESCRIPTION A driver fork process calls IOC$WFIKPCH to wait for an interrupt while
keeping ownership of the controller's data channel; IOC$WFIRLCH, by
contrast, releases the channel.

Either routine performs the following operations:

• Adds 2 to the address on the top of the stack to determine the address
of the next instruction in the driver fork thread after the invocation of
the WFIKPCH or WFIRLCH macro. (Note that the macro places the
relative offset to the timeout handling routine in the word following
the JSB to IOC$WFIKPCH or IOC$WFIRLCH.) It pops this address
into the UCB fork block (UCB$L_FPC) so that the driver's interrupt
service routine can resume execution of the driver fork thread with a
JSB instruction.

• Moves contents of R3 and R4 into the UCB fork block.

• Sets UCB$V INT to indicate an expected interrupt from the device
unit.

• Sets UCB$V TIM to indicate that VMS should check for timeouts from
the device unit.

• Determines the timeout due time from the timeout value, now at
the top of the stack, and EXE$GL_ABSTIM, and stores the result in
UCB$L_DUETIM.

• Clears UCB$V TIMOUT to indicate that the unit has not timed out.

• In a multiprocessing environment, issues a DEVICEUNLOCK to
conditionally release the device lock associated with the device unit
and to lower IPL to the IPL saved on the stack. These actions presume
that the DEVICELOCK macro has been issued prior to the wait-for-
interrupt invocation.

• Returns to the caller of the driver fork thread (that is, its caller's
caller) whose address is now at the top of the stack.

In the course of processing, IOC$WFIKPCH or IOC$WFIRLCH explicitly
removes the longwords at 00(SP) through 08(SP) from the stack and
implicitly removes the longword at 12(SP) by exiting with an RSB
instruction.

3-105

Operating System Routines
IOC$WFIKPCH, IOC$WFIRLCH

Note that IOC$WFIRLCH exits by transferring control to IOC$RELCHAN.
IOC$RELCHAN releases the controller data channel and executes the
RSB instruction. Because the release of the channel occurs at fork
IPL, an interrupt service routine cannot reliably distinguish between
operations initiated by IOC$WFIKPCH and IOC$WFIRLCH by examining
the ownership of the CRB.

3--106

Operating System Routines
LDR$ALLOC PT

LDR$ALLOC_PT

Allocates the specified number of system page-table entries (SPTEs).

module

input

output

PTALLO C

Location Contents

R2 Number of SPTEs to be allocated

LDR$GL_SPTBASE Base of system page table

LDR$GL FREE_PT Offset to first free SPTE

Location Contents

RO SS$_NORMAL, SS$_INSFSPTS, or SS$_
BADPARAM

R1 Address of first allocated SPTE

R2 Number of allocated system page-table entries

synchronization Because LDft$ALLOC_PT executes at IPL$_SYNCH and obtains the
MMG spin lock in a VMS multiprocessing environment, its caller cannot
be executing above IPL$_SYNCH or hold any higher ranked spin locks.
(For instance, a driver fork process executing at IPL$_SYNCH holding the
IOLOCK8 fork lock can call LDR$ALLOC_PT.) LDR$ALLOC_PT returns
control to its caller at the caller's IPL. The caller retains any spin locks it
held at the time of the call.

DESCRIPTION LDR$ALLOC_PT allocates the number of system page-table entries
(SPTEs) specified in R2. LDR$ALLOC_PT adjusts the pool of free SPTEs
to reflect the allocation of the SPTEs.

A generic VA►XBI device driver calls LDR$ALLOC_PT if it must map the
device's node window space. It is the caller's responsibility to fill in each
allocated SPTE with apage-frame number (PFN), set its valid bit, and
otherwise initialize it.

If R2 contains a zero, LDR$ALLOC_PT returns SS$_BADPAR,AM status
in RO and clears Rl. If there are no free SPTEs, it returns SS$_INSFSPTS
status to its caller.

3-107

Operating System Routines
LDR$DEALLOC_PT

LDR$DEALLOC_PT

Deallocates the specified system page-table entries (SPTEs).

module

input

output

PTALLO C

Location Contents

R1 Address of first SPTE to be deallocated

R2 Number of SPTEs to be deallocated

LDR$GL SPTBASE Base of system page table

LDR$GL FREE_PT Offset. to first free SPTE

Location Contents

RO SS$_NORMAL, SS$_BADPARAM, or LOADER$
PTE_NOT EMPTY

R1 Address of first allocated SPTE

R2 Destroyed

synchronization Because LDR$DEALLOC_PT executes at IPL$_SYNCH and obtains the
MMG spin lock in a VMS multiprocessing environment, its caller cannot
be executing above IPL$_SYNCH or hold any higher ranked spin locks.
(For instance, a driver fork process executing at IPL$_SYNCH holding the
IOLOCK8 fork lock can call LDR$DEALLOC_PT.) LDR$DEALLOC_PT
returns control to its caller at the caller's IPL. The caller retains any spin
locks it held at the time of the call.

DESCRIPTION LDR$DEALLOC_PT deallocates the number of system page-table entries
(SPTEs) specified in R2, starting at the one indicated by the contents
of R1. LDR$DEALLOC_PT adjusts the pool of free SPTEs to reflect the
addition of the deallocated SPTEs.

If R2 contains a zero, LDR$DEALLOC_PT returns SS$_BADPARAM
status in RO and clears Rl.

It is the caller's responsibility to ensure that the SPTEs to be deallocated
are empty.5 If they are not, LDR$DEALLOC_PT returns LOADER$_PTE_
NOT EMPTY status in R0.

5 Modifications to valid SPTEs require that these SPTEs be flushed from the system's translation buffers.
See the description of the INVALIDATE_TB macro in Chapter 2.

3-108

Operating System Routines
MMG$UNLOCK

MMG$UNLOCK

Unlocks process pages previously locked for adirect-I/O operation.

module IOLOCK

input

output

Location Contents

R1 Number of buffer pages to unlock

R3 System virtual address of PTE for the first buffer
page

None.

synchronization Because MMG$UNLOCK raises IPL to IPL$_SYNCH, and obtains the
MMG spin lock in a VMS multiprocessing environment, its caller cannot
be executing above IPL$_SYNCH or hold any higher ranked spin locks.
MMG$UNLOCK returns control to its caller at the caller's IPL. The caller
retains any spin locks it held at the time of the call.

DESCRIPTION Drivers rarely use MMG$UNLOCK. At the completion of a direct-UO
transfer, IOC$IOPOST automatically unlocks the pages of both the user
buffer and any additional buffers specified in region 1 (if defined) and
region 2 (if defined) for all the IRPEs linked to the packet undergoing
completion processing.

However, driver FDT routines do use MMG$UNLOCK when an
attempt to lock IRPE buffers for adirect-UO transfer fails. The
bu~'er-locking routines called by such a driver EXE$READLOCKR,
EXE$WRITELOCKR, and EXE$MODIFYLOCKR all perform coroutine
calls back to the driver if an error occurs. When called as a coroutine, the
driver must unlock all previously locked regions using MMG$UNLOCK,
and deallocate the IRPE (using EXE$DEANONPAGED), before returning
to the buffer-locking routine.

3-109

Operating System Routines
SMP$ACQNOIPL

SMP$ACQNOIPL

Acquires a device lock, assuming the local processor is already running at the
IPL appropriate for acquisition of the lock.

module

macro

input

output

SPINLOCKS

DEVICELOCK

Location Contents

RO Address of device lock

Location

RO

Contents

Address of device lock

synchronization Upon entry, the local processor must be executing at the synchronization
IPL of the device lock, as it is, for instance, when responding to a device
interrupt.

SMP$ACQNOIPL exits with the IPL unchanged and the device lock held.

DESCRIPTION The DEVICELOCK macro calls SMP$ACQNOIPL when NOSETIPL is
specified as its condition argument.

SMP$ACQNOIPL attempts to acquire the requested device lock, allowing
the acquisition to succeed if the local processor already holds the lock or if
the lock is unowned.

If the lock is unowned, the routine increments by 1 a counter that records
the acquisition level. Each additional (or nested) acquisition of this lock by
the owning processor again increments this counter.

If the lock is owned by another processor, the local processor spin waits
until the lock is released.

3-110

Operating System Routines
SMP$ACQUIRE

SMP$ACGIUIRE

Acquires a fork (ock or spin lock and enforces the appropriate lPL
synchronization on the local processor.

module

macro

input

output

SPINLOCK:S

FORKLOCK, LOCK

Location

RO

Contents

Fork lock or spin lock index

Location

RO

Contents

Fork lock or spin lock index

synchronization When calling SMP$ACQUIRE, the local processor should be executing
at an IPL less than or equal to the synchronization IPL of the lock.
The routine, if necessary, immediately raises IPL to the synchronization
IPL of the lock. Violations of IPL synchronization in afull-checking
multiprocessing environment result in a SPLIPLHIGH bugcheck.

In afull-checking multiprocessing environment, if it must spin wait for
the requested lock to be released by another processor, SMP$ACQUIRE
temporarily restores the original IPL for the duration of the wait. If the
original IPL was less than IPL$_RESCHED, the spin wait occurs at IPL$_
RESCHED.

SMP$ACQUIRE exits with IPL at the synchronization IPL of the lock and
the fork lock or spin lock held.

DESCRIPTION The FORKLOCK and LOCK macros call SMP$ACQUIRE.

In afull-checking multiprocessing environment, SMP$ACQUIRE, having
ensured that IPL has been set to the lock's synchronization IPL, verifies
that the local processor does not currently hold any higher-ranked locks.
If ahigher-ranked lock is held, SMP$ACQUIRE issues an SPLACQERR
bugcheck.

Otherwise SMP$ACQUIRE attempts to acquire the requested lock,
allowing the acquisition to succeed if the local processor already holds
the lock or if the lock is unowned.

3-111

Operating System Routines
SMP$ACQUIRE

If the lock is unowned, the routine increments by 1 a counter that records
the acquisition level. Each additional (or nested) acquisition of this lock by
the owning processor again increments this counter.

If the lock is owned by another processor, the local processor spin waits
until the lock is released.

3-1 ~I 2

Operating System Routines
SMP$ACQUIREL

SMP$ACQUIREL

Acquires a device lock and enforces the appropriate !PL synchronization on
the local processor.

module

macro

input

output

SPINLOCKS

DEVICELOCK

Location

RO

Contents

Address of device lock

Location

RO

Contents

Address of device lock

synchronization When calling SMP$ACQUIREL, the local processor should be executing
at an IPL less than or equal to the synchronization IPL of the device lock.
The routine, if necessary, immediately raises IPL to the synchronization
IPL of the device lock. Violations of IPL synchronization result in a
SPLIPLHIGH bugcheck if full-checking multiprocessing is enabled.

In afull-checking multiprocessing environment, if it must spin wait for
the requested lock to be released by another processor, SMP$ACQUIREL
temporarily restores the original IPL for the duration of the wait. If
the original IPL was less than IPL$_RESCHED, the spin wait occurs at
IPL$_RESCHED. SMP$ACQUIREL exits with IPL at the device lock's
synchronization IPL and the device lock held.

DESCRIPTION The DEVICELOCK macro calls SMP$ACQUIREL when NOSETIPL is not
specified as its condition argument.

SMP$ACQUIREL, having ensured that IPL has been set to the device
lock's synchronization IPL, attempts to acquire the requested device lock,
allowing the acquisition to succeed if the local processor already holds the
lock or if the lock is unowned.

If the lock is unowned, the routine increments by 1 a counter that records
the acquisition level. Each additional (or nested) acquisition of this lock by
the owning processor again increments this counter.

If the lock is owned by another processor, the local processor spin waits
until the lock is released.

Operating System Routines
SMP$RELEASE

SMP$RELEASE

Releases all acquisitions of a fork lock or spin lock by the local processor and
makes the lock available for acquisition by other processors.

module

macro

input

output

SPINLOCKS

FORKUNLOCK, UNLOCK

Location

RO

Contents

Fork lock or spin lock index

Location

RO

Contents

Fork lock or spin lock index

synchronization Upon entry, the local processor must be executing at or above the IPL
at which the lock was originally obtained. This IPL must be greater
than IPL$ ASTDEL. Violations of IPL synchronization in afull-checking
multiprocessing environment result in a SPLIPLLOW bugcheck. At exit,
IPL is unchanged and the lock is released.

DESCRIPTION The FORKLTNLOCK and UNLOCK macros call SMP$RELEASE when the
condition=RESTORE argument is not specified.

SMP$RELEASE first verifies that the local processor owns the specified
lock. If this is not the case, the procedure issues an SPLRELERR
bugcheck. Otherwise, SMP$RELEASE initializes the ownership count
of the lock and releases the lock.

3-114

Operating System Routines
SMP$RELEASEL

SMP$RELEASEL

Releases all acquisitions of a device lock by the local processor and makes
the lock available for acquisition by other processors.

module

macro

input

output

SPINLOCKS

DEVICEUNLOCK

Location

RO

Contents

Address of device lock

Location

RO

Contents

Address of device lock

synchronization Upon entry, the local processor must be executing at or above the IPL at
which the device lock was originally obtained. This IPL must be greater
than IPL$ ASTDEL. Violations of IPL synchronization in afull-checking
multiprocessing environment result in a SPLIPLLOW bugcheck. At exit,
IPL is unchanged and the device lock is released.

DESCRIPTION The DEVICEUNLOCK macro calls SMP$RELEASEL when the
condition=RESTORE argument is not specified.

SMP$RELEASEL first verifies that the local processor owns the specified
device lock. If this is not the case, the procedure issues an SPLRELERR
bugcheck. Otherwise, SMP$RELEASEL initializes the ownership count of
the device lock and releases the lock.

Operating System Routines
SMP$RESTORE

SMP$RESTORE

Releases a single acquisition of a fork lock or spin lock held by the local
processor.

module

macro

input

output

SPINLOCKS

FORKUNLOCK, UNLOCK

Location

RO

Contents

Fork lock or spin lock index

Location

RO

Contents

Fork lock or spin lock index

synchronization Upon entry, the local processor must be executing at or above the IPL
at which the lock was originally obtained. This IPL must be greater
than IPL$ ASTDEL. Violations of IPL synchronization in afull-checking
multiprocessing environment result in a SPLIPLLOW bugcheck. At exit,
IPL is unchanged and the lock may or may not be still held.

DESCRIPTION The FORKUNLOCK and UNLOCK macros call SMP$RESTORE when
RESTORE is specified as the condition argument.

SMP$RESTORE first verifies that the local processor owns the specified
lock. If this is not the case, the procedure issues an SPLRSTERR
bugcheck. Otherwise, SMP$RESTORE proceeds to decrement the
ownership count of the lock. If the ownership count of the lock drops
to its initial state, the procedure releases the lock and makes it available
to other processors.

3-116

Operating System Routines
SMP$RESTOREL

SMP$RESTOREL

Releases a single acquisition of a device lock held by the local processor.

module

macro

input

output

SPINLOCKS

DEVICEUNLOCK

Location

RO

Contents

Address of device lock

Location

RO

Contents

Address of device lock

synchronization Upon entry, the local processor must be executing at or above the IPL at
which the device lock was originally obtained. This IPL must be greater
than IPL$ ASTDEL. Violations of IPL synchronization in afull-checking
multiprocessing environment result in a SPLIPLLOW bugcheck. At exit,
IPL is unchanged and the device lock may or may not be still held.

DESCRIPTION The DEVICEUNLOCK macro calls SMP$RESTOREL when RESTORE is
specified as its condition argument.

SMP$RESTOREL first verifies that the local processor owns the specified
device lock. If this is not the case, the procedure issues an SPLRSTERR
bugcheck. Otherwise, SMP$RESTOREL proceeds to decrement the
ownership count of the device lock. If the ownership count of the device
lock drops to its initial state, the procedure releases the lock and makes it
available to other processors.

3-117

4 Device Driver Entry Points

This chapter describes the standard driver routines and their environment
that VMS uses as entry points in a device driver program. The standard
entry routines are:

• Alternate start-UO

• Cancel-i/O

• Cloned UCB

• Controller initialization

• Driver unloading

• FDT

• Interrupt service

• Register dumping

• Start-UO

• Timeout handling

• Unit delivery

• Unit initialization

• Unsolicited interrupt service

4-1

Device Driver Entry Points
Alternate Start-I/O Routine

Alternate Start-I/O Routine

Initiates activity on a device that can support multiple, concurrent I/O
operations and synchronizes access to its UCB.

specified in Specify the address of the alternate start-I/O routine in the altstart
argument to the DDTAB macro. This macro places the address into
DDT$L_ALTSTART.

called by Called by routine EXE$ALTQUEPKT in module SYSQIOREQ. A driver
FDT routine generally is the caller of EXE$ALTQUEPKT.

synchronization

context

register usage

input

exit

An alternate start-I/O routine begins execution at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment. It must
return control to its EXE$ALTQUEPKT in this context.

Because an alternate start-UO routine gains control in fork process
context, it can access only those virtual addresses that are in system
(SO) space.

An alternate start-I/O routine must preserve the contents of all registers
except RO through R5.

Location Contents

R3 Address of IRP

R5 Address of UCB

The alternate start-UO routine completes UO requests by calling
the routine COMPOST. This routine places each IRP in the I/O
postprocessing queue and returns control to the driver. The driver can
then fetch another IRP from an internal queue. If no IRPs remain, the
driver returns control to EXE$ALTQUEPKT, which relinquishes fork level
synchronization and returns to the driver FDT routine that called it. The
FDT routine performs any postprocessing and transfers control to the
routine EXE$QIORETURN.

DESCRIPTION An alternate start-UO routine initiates requests for activity on a device
that can process two or more UO requests simultaneously. Because the
method by which the alternate start-I/O routine is invoked bypasses
the unit's pending-I/O queue (UCB$L_IOQFL) and the device busy flag
(UCB$V BSY in UCB$L_STS), the routine is activated regardless of
whether the device unit is busy with another request.

4-2

Device Driver Entry Points
Alternate Start-I/O Routine

As a result, the driver that incorporates an alternate start-UO routine
must use its own internal I/O queues (in a UCB extension, for instance)
and maintain synchronization with the unit's pending-UO queue. In
addition, if the routine processes more than one IRP at a time, it must
employ separate fork blocks for each request.

4-3

Device Driver Entry Points
Cancel-I/O Routine

Cancel-I/O Routine

Prevents further device-specific processing of the I/O request currently being
processed on a device.

specified in Supply the address of the cancel-UO routine in the cancel argument of
the DDTAB macro. The macro places this address into DDT$L_CANCEL.
Many drivers specify the system routine IOC$CANCELIO as their cancel-
UO routine.

called by VMS routines call a driver's cancel-UO routine under the following
circumstances:

• When a process issues aCancel-UO-on-Channel system service
($CANCEL)

• When a process deallocates a device, causing the device's reference
count (UCB$W_REFC) to become zero (that is, no process UO channels
are assigned to the device)

• When a process deassigns a channel from a device, using the
$DASSGN system service

• When the command interpreter performs cleanup operations as part of
image termination by canceling all pending UO requests for the image
and closing all image-related files open on process I/O channels

synchronization A cancel-UO routine begins execution at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment. It must
return control to its caller in this context.

COnteXt A cancel-I/O routine executes in kernel mode in process context.

register usage A cancel-UO routine must preserve the contents of all registers except R4
and R5.

Device Driver Entry Points
Cancel-I/O Routine

input
Location Contents

R2 Channel index number

R3 Contents of UCB$L IRP (address of current IRP, if
any, for device)

R4 Address of PCB of the process for which the I/O
request is being canceled

R5 Address of UCB

R8 Reason for cancellation, one of the following:
CAN$C_CANCEL

CAN$C_DASSGN

Called by $CANCEL
system service

Called by $DASSGN or
$DALLOC system service

eXlt The cancel-UO routine issues an RSB instruction to return to its caller.

DESCRIPTION A driver's cancel-UO routine must perform the following tasks:

1 Confirm that the device is busy by examining the device-busy bit in
the UCB status longword (UCB$V BSY in UCB$L_STS).

2 Confirm that the PID of the request the device is servicing (IRP$L_
PID) matches that of the process requesting the cancellation (PCB$L_
PID).

3 Confirm that the channel-index number of the request the device is
servicing (IRP$W CHAN) matches that specified in the cancel-UO
request.

4 Cause to be completed (canceled) as quickly as possible all active
UO requests on the specified channel that were made by the process
that has requested the cancellation. The cancel-UO routine usually
accomplishes this by setting UCB$V CANCEL in the UCB$L_STS.
When the next interrupt or timeout occurs for the device, the driver's
start-UO routine detects the presence of an active but canceled UO
request by testing this bit and takes appropriate action, such as
completing the request without initiating any further device activity.
Other driver routines, such as the timeout handling routine, check the
cancel-UO bit to determine whether to retry the UO operation or abort
it.

4-5

Device Driver Entry Points
Cloned UCB Routine

Cloned UCB Routine

Performs device-specific initialization and verification of a cloned UCB.

specified in

called by

Specify the address of a cloned UCB routine in the cloneducb argument
of the DDTAB macro. The macro places this address into DDT$L_
CLONEDUCB. Only drivers for template devices, such as mailboxes,
specify a cloned UCB routine.

EXE$ASSIGN calls the driver's cloned UCB routine when an Assign UO
Channel system service request ($ASSIGN) specifies a template device
(that is, bit UCB$V TEMPLATE in UCB$L_STS is set).

synchronization A cloned UCB routine executes at IPL$_ASTDEL, holding the UO database
mutex (IOC$GL_MUTEX).

context

register usage

input

A cloned UCB routine executes in kernel mode in process context.

A cloned UCB routine must preserve the contents of R2 and R4.

Location Contents

RO SS$_NORMAL

R2 Address of cloned UCB

R3 Address of DDT

R4 Address of current PCB

R5 Address of template UCB

UCB$L FQFL(R2) Address of UCB$L_FQFL(R2)

UCB$L FQBL(R2) Address of UCB$L_FQFL(R2)

UCB$L FPC(R2) 0

UCB$L FR3(R2) 0

UCB$L FR4(R2) 0

UCB$W_BUFQUO(R2) 0

UCB$L ORB(R2) Address of cloned ORB

UCB$L_LINK(R2) Address of next UCB in DDB chain

UCB$L IOQFL(R2) Address of UCB$L_IOQFL(R2)

UCB$L_IOQBL(R2) Address of UCB$L_IOQFL(R2)

UCB$W_UNIT(R2) Device unit number

UCB$W CHARGE(R2) Mailbox byte quota charge (UCB$W SIZE)

UCB$W_REFC(R2) 0

4-6

Device Driver Entry Points
Cloned UCB Routine

Location Contents

UCB$L STS(R2) UCB$V_DELETEUCB set, UCB$V_ONLINE set

UCB$W_DEVSTS(R2) UCB$V_DELMBX set if DEV$V_MBX is set in
UCB$L DEVCHAR(R2)

exit

UCB$L OPCNT(R2)

UCB$L SVAPTE(R2)

0

0

UCB$W_BOFF(R2) 0

UCB$W_BCNT(R2) 0

UCB$L ORB(R2) Address of cloned ORB

ORB$L OWNER UIC of current process
of template ORB

ORB$L ACL_MUTEX FFFF,
s

of template ORB

QRB$B_FLAGS ORB$V_PROT 16 set
of template ORB

ORB$W PROT 0
of template ORB

ORB$L ACL_COUNT 0
of template ORB

ORB$L ACL DESC 0
of template ORB

ORB$R_MIN_CLASS 0 in first longword
of template ORB

A cloned UCB routine issues an RSB instruction to return control to
EXE$ASSIGN. If the routine returns error status in R0, EXE$ASSIGN
undoes the process of UCB cloning and completes with failure status in
R0.

DESCRIPTION When a process requests that a channel be assigned to a template
device, EXE$ASSIGN does not assign the channel to the template device
itself. Rather, it creates a copy of the template device's UCB and ORB,
initializing and clearing certain fields as appropriate.

The driver's cloned UCB routine verifies the contents of these fields and
completes their initialization.

4-7

Device Driver Entry Points
Controller Initialization Routine

Controller Initialization Routine

Prepares a controller for operation.

specified in

called by

Use the DPT_STORE macro to place the address of the controller
initialization routine into CRB$L_INTD+VEC$L_INITIAL.

SYSGEN calls a driver's controller initialization routine when processing a
CONNECT command. Also, VMS calls this routine if the device, controller,
processor, or adapter to which the device is connected experiences a power
failure.

synchronization VMS calls a controller initialization routine at IPL$_POWER. If it must
lower IPL, the controller initialization routine cannot explicitly do so.
Rather, it must fork. Because SYSGEN calls the unit initialization routine
immediately after the controller initialization returns control to it, the
driver's initialization routines must synchronize their activities. If the
controller initialization routine forks, the unit initialization routine
must be prepared to execute before the controller initialization routine
completes.

The portion of the controller initialization that services power failure
cannot acquire any spin locks. As a result, the routine cannot fork to
perform power failure servicing.

context Because a controller initialization routine executes within system context,
it can refer only to those virtual addresses that reside in system (SO)
space.

register usage A controller initialization routine must preserve the contents of all
registers except R0, R1, and R2.

input
Location Contents

R4 Address of device's CSR

R5 Address of IDB associated with the controller

R6 Address of DDB associated with the controller

R8 Address of controller's CRB

eXlt The controller initialization routine returns control to its caller with an
RSB instruction.

4-8

Device Driver Entry Points
Controller Initialization Routine

DESCRIPTION Some controllers require initialization when the system's driver-loading
routine loads the driver and when the system is recovering from a power
failure. Depending on the device, a controller initialization routine
performs any and all of the following actions:

• Determine whether it is being called as a result of a power failure
by examining the power bit (UCB$V POWER in UCB$L_STS) in the
UCB. A controller initialization routine may want to perform or avoid
specific tasks when servicing a power failure.

• Clear error-status bits in device registers.

• Enable controller interrupts.

• Allocate resources that must be permanently allocated to the
controller.

• If the controller is dedicated to a single-unit device, such as a printer,
fill in IDB$L_OWNER and set the online bit (UCB$V ONLINE in
UCB$L_STS).

• For generic VA►XBI devices, initialize BIIC and device hardware.

4-9

Device Driver Entry Points
Driver Unloading Routine

Driver Unloading Routine

A driver specifies a driver unloading routine if there is any device-specific work
to do when the driver is unloaded and reloaded.

specified in Specify the address of the driver unloading routine in the unload
argument of the DPTAB macro. The driver-loading procedure puts the
relative address of this routine in DPT$W_UNLOAD.

called by SYSGEN calls the driver unloading routine, if it exists, when executing a
RELOAD command.

synchronization SYSGEN calls a driver unloading routine at IPL$_POWER. The driver
unloading routine cannot lower IPL.

context The driver unloading routine executes in process context.

register usage The driver unloading routine can use all registers.

input

exit

Location Contents

R6 Address of DDB

R 10 Address of D PT

The driver unloading routine returns exits with an RSB instruction. If it
returns a success code (bit 0 set) in R0, SYSGEN proceeds to load the new
version of the driver: If it returns a failure code (bit 0 clear), SYSGEN
neither unloads the old version of the driver nor loads the new version.

DESCRIPTION Because the driver unloading routine cannot lower IPL from IPL$_POWER
or obtain spin locks, it is of limited usefulness. It cannot safely modify UO
database fields, but can use COM$DRVDEALMEM to return system
buffers allocated by the driver to nonpaged pool.

4-10

Device Driver Entry Points
FDT Routines

FDT Routines

Perform any device-dependent activities needed to prepare the I/O database
to process an !/O request.

specified in Use the FUNCTAB macro to specify the set of FDT routines that
preprocess requests for UO activity of a given type. Specify the names
of the routines in the order in which you want them to execute for each
type of UO operation.

called by The $QIO system service calls a driver's FDT routines from the module
SYSQIOREQ.

synchronization FDT routines are called at IPL$_ASTDEL and must e~ut at IPL$_
ASTDEL. FDT routines must not lower IPL below IPL$_ASTDEL. If
they raise IPL, they must lower it to IPL$_ASTDEL before passing control
to any other code. Similarly, before exiting they must release any spin
locks they may acquire in a VMS multiprocessing environment.

context FDT routines execute in the context of the process that requested the
UO activity. If an FDT routine alters the stack, it must restore the stack
before returning control to the caller of the routine.

register usage FDT routines must preserve the contents of R3 through R8, the AP, and
the FP.

input
Location Contents

RO Address of FDT routine being called

R3 Address of IRP

R4 Address of PCB of the requesting process

R5 Address of UCB of the device on which I/O activity
is requested

R6 Address ofi CCB that describes the user-specifiied
process-I/O channel

R7 Number of the bit that specifies the code for the
requested I/O function

R8 Address of entry in the function decision table that
dispatched control to this FDT routine

AP Address of first function-dependent argument (p1 }
specified in the $QIQ request

Device Driver Entry Points
FDT Routines

exit In a set of FDT routines associated with an UO function, each, except the
last, must return control to its caller by means of an RSB instruction. The
last must exit using one of the following mechanisms:

Exit Mechanism Function

JMP EXE$ABORTIO

JSB EXE$ALTQUEPKT

JMP EXE$FINISHIO

JMP EXE$FINISHIOC

JMP EXE$QIODRVPKT

Aborts an I/O request and returns status to the caller
of the $QIO system service in R0.

Queues an IRP to the driver's alternate start-I/O
routine without checking the status of the device.

Completes the processing of an I/O request, returning
status to the caller of the $QIO system service.
(EXE$FINISHIO takes the status information from RO
and R1 and returns it in the iOSB specified in the call
to $QIO.)

Completes the I/O processing of an I/O request,
returning status to the caller of the $QIO system
service. (EXE$FINISHIOC takes the status
information from RO and returns it in the IOSB
specified in the call to $QIO, clearing the second
longword of the IOSB.)

Inserts an IRP into a device's pending-I/O queue if
the device is busy, or starts I/O activity if the device is
idle.

DESCRIPTION FDT routines validate the function-dependent arguments to a $QIO
system service request and prepare the UO database to service the request.
For each function that a device supports, a set of FDT routines must
provide preprocessing of requests for that function. For a function that
does not involve an I/O transfer, a set of FDT routines may complete its
processing. Otherwise FDT routines can abort the request, pass it to the
next FDT routine in the set, or pass it to a VMS routine that delivers it to
the driver.

4-12

Device Driver Entry Points
Interrupt Service Routine

Interrupt Service Routine

Processes interrupts generated by a device.

specified in

called by

UNIBUS, Q22-bus, and generic VA►XBI devices require an interrupt service
routine for each interrupt vector the device has. Use the DPT_STORE
macro to place the address of the interrupt service routine into CRB$L_
INTD+VEC$L_ISR.

If the device has two interrupt vectors, use the DPT_STORE macro to
place the address of the second interrupt service routine into CRB$L_
INTD2+VEC$L_ISR.

Tape devices on the MASSBUS require an interrupt service routine that
interrogates the tape formatter (the controller) to determine which drive
needs attention and whether the interrupt is unsolicited.

Disk devices on the MASSBUS use the interrupt service routine provided
by VMS and do not need to provide their own interrupt service routine.

The interrupt service routine is called either by the VMS interrupt
dispatcher (for direct-vectored adapters) or by an adapter interrupt service
routine (for non-direct-vector adapters).

synchronization A driver's interrupt service routine is called, executes, and returns at
device IPL. In a VMS multiprocessing environment, the interrupt service
routine must obtain the device lock associated with its device IPL. It
performs this acquisition as soon as it obtains the address of the UCB of
the interrupting device. It must release this device lock before dismissing
the interrupt.

context At the execution of a driver's interrupt service routine, the processor is
running in kernel mode on the interrupt stack. As a result, an interrupt
service routine can reference only those virtual addresses that reside in
system (SO) space.

4-13

Device Driver Entry Points

Interrupt Service Routine

register usage

input

exit

If an interrupt service routine uses R6 through R11, the AP, or the FP,
it must first save the contents of those registers, restoring their contents
before exiting by means of the REI instruction. MASSBUS drivers must
also preserve the contents of RO and R1.

Location Contents

00(SP) Address of longword that contains the address of
the I DB

04(SP) to 24(SP) For UNIBUS, Q22-bus, and generic VAXBI devices,
the contents of RO through R5 at the time of the
interrupt

28(SP) For UNIBUS, Q22-bus, and generic VAXBI devices,
PC at the time of the interrupt

32(SP) For UNIBUS, Q22-bus, and generic VAXBI devices,
PSL at the time of the interrupt

04(SP) to 16(SP) For MASSBUS devices, the contents of R2 through
R5 at the time of the interrupt

20(SP) For MASSBUS devices, PC at the time of the
interrupt

24(SP) For MASSBUS devices, PSL at the time of the
interrupt

Before an interrupt service routine transfers control to the suspended
driver, it must restore the contents of R3 and R4 from the UCB. It then
transfers control to the address saved in UCB$L_FPC.

When it regains control (after the suspended driver forks), an interrupt
service routine removes the address of the pointer to the IDB from the
top of the stack and restores the registers VMS saved when dispatching
the interrupt (RO through R5 for UNIBUS, Q22-bus, and generic VAXBI
interrupt service routines, R2 through R5 for MASSBUS interrupt service
routines). Finally, an interrupt service routine dismisses the interrupt
with an REI instruction.

DESCRIPTION An interrupt service routine performs the following functions:

1 Determines whether the interrupt is expected

2 Processes or dismisses unexpected interrupts

3 Activates the suspended driver so it can process expected interrupts

For MASSBUS devices, a VMS interrupt service routine performs these
functions.

4-14

Device Driver Entry Points
Register Dumping Routine

Register Dumping Routine

Copies the contents of a device's registers to an error message buffer or a
diagnostic buffer.

specified in Specify the name of the register dumping routine in the regdmp argument
of the DDTAB macro. This macro places the address of the routine into
DDT$L_REGDUMP.

called by The VMS error logging routines (ERL$DEVICERR, ERL$DEVICTMO,
and ERL$DEVICEATTN) and diagnostic buffer filling routine
(IOC$DIAGBUFILL) call the register dumping routine.

synchronization VMS calls a register dumping routine at the same IPL at which the
driver called the VMS routine ERL$DEVICERR, ERL$DEVICTMO,
ERL$DEVICEATTN, or IOC$DIAGBUFILL. Aregister dumping routine
must not change IPL.

context A register dumping routine executes within the context of an interrupt
service routine or a driver fork process, using the kernel-mode stack. As
a result, it can only refer to those virtual addresses that reside in system
(SO) space.

register usage

input

The register dumping routine preserves the contents of all registers except
RO through R2. If it uses the stack, the register dumping routine must
restore the stack before passing control to another routine, waiting for an
interrupt, or returning control to its caller.

Location Contents

RO Address of buffer into which a register dumping
routine copies the contents of device registers

R4 Address of device's CSR (if the driver invoked the
WFIKPCH macro to wait for an interrupt or timeout)

R5 Address of UCB

eXlt The register dumping routine issues an RSB instruction to return to its
caller.

4-15

Device Driver Entry Points
Register Dumping Routine

DESCRIPTION A register dumping routine fills the indicated buffer as follows:

1 Writes a longword value representing the number of device registers to
be written into the buffer

2 Moves device register longword values into the buffer following the
register count longword

4—y6

Device Driver Entry Points
Start-I/O Routine

Start-I/O Routine

Activates a device to process a requested I/O function.

specified in

called by

synchronization

context

register usage

input

Specify the name of the start-UO routine in the start argument of the
DDTAB macro. This macro places the address of the routine into DDT$L_
START.

The start-UO routine is called by IOC$INITIATE and IOC$REQCOM in
module IOSUBNPAG.

A start-I/O routine is placed into execution at fork IPL, holding the
associated fork lock in a VMS multiprocessing environment. It must
relinquish control of the processor in the same context.

For many devices, the start-I/O routine raises IPL to IPL$_POWER
to check that a power failure has not occurred on the device prior to
loading the device's registers. The start-I/O routine initiates device
activity at device IPL, after acquiring the corresponding device lock in
a VMS multiprocessing environment. An invocation of the WFIKPCH or
WFIRLCH macro to wait for a device interrupt releases this device lock.

Because astart-I/O routine gains control of the processor in the context of
a fork process, it can refer only to those addresses that reside in system
(SO) space.

A start-UO routine must preserve the contents of all registers except R0,
R1, R2, and R4. If the start-UO routine uses the stack, it must restore the
stack before completing the request, waiting for an interrupt, or requesting
system resources.

Location

R3

R5

UCB$W BCNT

UCB$W_BOFF

UCB$L SVAPTE

Contents

Address of IRP

Address of UCB

Number of bytes to be transferred, copied from the
low-order word of IRP$L BCNT

Byte offset into first page of direct-I/O transfer;
for buffered-I/O transfers, number of bytes to be
charged to the process allocating the buffer

For adirect-I/O transfer, virtual address of first
page-table entry (PTE) of I/O-transfer buffer; for
buffered-I/O transfer, address of buffer in system
address space

4-17

Device Driver Entry Points
Start-I/O Routine

exit The start-I/O routine suspends itself whenever it must wait for a required
resource, such as a controller data channel or UNIBUS/Q22-bus map
registers. To do so, it invokes a VMS macro (such as REQPCHAN or
REQMPR) that saves its context in the UCB fork block, places the UCB
in a resource wait queue, and returns control to the caller of the start-UO
routine.

The start-I/O routine also suspends itself when it issues a WFIKPCH or
WFIRLCH macro to initiate device activity. These macros also store the
driver's context in the UCB fork block to be restored when the device
interrupts or times out.

The start-I/O routine is again suspended if it forks to complete servicing
of a device interrupt. The IOFORK macro places driver context in the
UCB fork block, inserts the fork block into aprocessor-specific fork queue,
and requests a software interrupt from the processor at the corresponding
fork IPL. After issuing the IOFORK macro, the routine issues an RSB
instruction, returning control to the driver's interrupt service routine.

The routine completes the processing of an I/O request by invoking
the REQCOM macro. In addition to initiating device-independent
postprocessing of the current request, the REQCOM macro also attempts
to start the next request waiting for a device unit. If there are no waiting
requests, the macro returns control to the caller of the start-I/O routine.
This is often the vMS fork dispatcher.

DESCRIPTION A driver's start-UO routine activates a device and waits for a device
interrupt or timeout. After a device interrupt, the driver's interrupt
service routine returns control to the start-I/O routine at device IPL,
holding the associated device lock in a VMS multiprocessing environment.

The start-I/O routine usually forks at this time to perform various device-
dependent postprocessing tasks, and returns control to the interrupt
service routine.

4-18

Device Driver Entry Points
Timeout Handling Routine

Timeout Handling Routine

Takes whatever action is necessary when a device has not yet responded to
a request for device activity and the time allowed for a response has expired.

specified in

called by

Specify the address of the timeout handling routine in the excpt argument
to the WFIKPCH or the WFIRLCH macro.

The WFIKPCH and WFIRLCH macros use this entry point, but only
when the name of a timeout handling routine is provided in their excpt
argument. These macros are used in the driver's start-UO routine; thus,
strictly speaking, the driver itself is the only entity that uses this entry
point.

Routines in the VMS module TIMESCHDL call the timeout handling
routine at the request of the WFIKPCH and WFIRLCH macros.

synchronization A timeout handling routine is called at device IPL and must return to its
caller at device IPL. In a VMS multiprocessing environment, the processor
holds both the fork lock and device lock associated with the device at the
time of the call.

context

register usage

After taking whatever device-specific action is necessary at device IPL, a
timeout handling routine can lower IPL to fork IPL to perform less critical
activities. Because its caller restores IPL to fork IPL (and releases the
device lock in a VMS multiprocessing environment), if a timeout handling
routine does lower IPL, it can do so only by forking or by performing the
following steps:

• Issue a DEVICEUNLOCK macro to lower to fork level

• Perform timeout handling activities possible at the lower IPL

• Issue a DEVICELOCK macro to again obtain the device lock and raise
to device IPL

• Issue an RSB instruction to return to its caller

Because a timeout handling routine executes in the context of a fork
process, it can access only those virtual addresses that refer to system (SO)
space.

A timeout handling routine can use R0, R1, and R2 freely, but must
preserve the contents of all other registers. If a timeout handling routine
uses the stack, it must restore the stack before completing or canceling the
current UO request, waiting for an interrupt, or returning control to its
caller.

4-19

Device Driver Entry Points
Timeout Handling Routine

input
Location Contents

R3 Contents of R3 when the last invocation of
WFIKPCH or WFIRLCH took place

R4 Contents of R4 when the last invocation of
WFIKPCH or WFIRLCH took place

R5 Address of UCB of the device

UCB$L STS UCB$V_IIVT and UCB$V_TIM clear; UCB$V_
TIMOUT set

eXlt The timeout handling routine issues an RSB instruction to return to its
caller.

DESCRIPTION There are no outputs required from a timeout handling routine, but,
depending on the characteristics of the device, the timeout handling
routine might cancel or retry the current I/O request, send a message to
the operator, or take some other action.

Before calling a timeout handling routine, VMS places the device in a
state in which no interrupt is expected (by clearing the bit UCB$V INT in
field UCB$L_STS). If the requested interrupt occurs after this routine is
called, it will appear to be an unsolicited interrupt. Many drivers handle
this situation by disabling interrupts while the timeout handling routine
executes.

4-20

Device Driver Entry Points
Unit Delivery Routine

Unit Delivery Routine

For controllers that can control a variable number of device units, determines
which specific devices are present and available for inclusion in the system's
configuration.

specified in

called by

synchronization

context

register usage

input

exit

Specify the name of the unit delivery routine in the deliver argument to
the DPTAB macro. The macro puts the relative address of this routine in
DPT$W_DELIVER.

SYSGEN's AUTOCONFIGURE command calls the unit delivery routine
once for each unit the controller is capable of controlling. This value is
specified in the defunits argument to the DPTAB macro.

The unit delivery routine is called at IPL$_POWER. It must not lower
IPL.

The unit delivery routine executes in the context of the process within
which SYSGEN executes.

The unit delivery routine can use R0, R1, and R2 freely, but must preserve
the contents of all other registers.

Location Contents

R3 Address of IDB; 0 if none exists

R4 Address of device's CSR

R5 Number of unit that the unit delivery routine must
decide to configure or not to configure

R6 Address of start of the UNIBUS adapter's or Q22-
bus's I/O space (UNIBUS/Q22-bus devices); address
of MBA configuration register (MASSBUS devices)

R7 Address of AUTOCONFIGURE command's

R8

configuration control block (ACF)

Address of ADP

A unit delivery routine issues an RSB instruction to return control to the
SYSGEN autoconfiguration facility. If the routine returns error status in
R0, SYSGEN does not configure the unit.

DESCRIPTION The unit delivery routine determines which units on a controller should be
configured. For instance, a unit delivery routine can prevent the creation
of UCBs for devices that do not respond to a test for their presence.

4-21

Device Driver Entry Points
Unit Initialization Routine

Unit Initialization Routine

Prepares a device for operation and, in the case of a device on a dedicated
controller, initializes the controller.

specified in You can specify a unit initialization routine in two ways, either of which
will suffice for all but a few specific devices.

• Specify the address of the unit initialization routine unitinit
argument of the DDTAB macro. This macro places the address of
the routine into DDT$L_UNITINIT. MASSBUS device drivers must
use this method.

• Use the DPT_STORE macro to place the address of the unit
initialization routine into CRB$L_INTD+VEC$L_UNITINIT.

called by SYSGEN calls a driver's unit initialization routine when processing a
CONNECT command. VMS calls a unit initialization routine when the
device, the controller, the processor, or the adapter to which the device is
connected undergoes power failure recovery.

synchronization VMS calls a unit initialization routine at IPL$_POWER. If it must lower
IPL, the controller initialization routine cannot explicitly do so. Rather,
it must fork. Because SYSGEN calls the unit initialization routine
immediately after the controller initialization returns control to it, the
driver's initialization routines must synchronize their activities. If the
controller initialization routine forks, the unit initialization routine
must be prepared to execute before the controller initialization routine
completes.

The portion of the unit initialization that services power failure cannot
acquire any spin locks. As a result, the routine cannot fork to perform
power failure servicing.

context Because VMS calls it in system context, a unit initialization routine can
only refer to those virtual addresses that reside in system (SO) space.

register usage A unit initialization routine must preserve the contents of all registers
except R0, R1, and R2.

4-22

Device Driver Entry Points
Unit Initialization Routine

input
Location Contents

R3 Address of primary CSR.

R4 Address of secondary CSR, if it exists. (If it does
not, the contents of R4 are the same as those of
R3.)

R5 Address of UCB.

eXlt The unit initialization routine returns control to its caller with an RSB
instruction.

DESCRIPTION Depending on the device, a unit initialization routine performs any or all
of the following tasks:

1 Determines whether it is being called as a result of a power failure
by examining the power bit (UCB$V POWER in UCB$L_STS) in
the UCB. A unit initialization routine may want to perform or avoid
specific tasks when servicing a power failure.

2 Clears error-status bits in device registers.

3 Enables controller interrupts.

4 Sets the online bit (UCB$V ONLINE in UCB$L_STS).

5 Allocates resources that must be permanently allocated to the device
or, for some devices, the controller.

6 If the device has a dedicated controller, as some printers do, fills in
IDB$L_OWNER.

7 For dedicated VA►XBI controllers, initializes BIIC and device hardware.

8 For multiunit VAXBI controllers, tests for the existence of the unit for
which it was called and returns success or failure status to SYSGEN.

4-23

Device Driver Entry Points
Unsolicited Interrupt Service Routine

Unsolicited Interrupt Service Routine

Services an interrupt from a MASSBUS disk that is not the result of a driver's
request.

specified in

called by

synchronization

context

Specify the name of the unsolicited interrupt service routine in the
unsolic argument to the DDTAB macro. This macro places the address of
the routine into DDT$L_IJNSOLINT.

The MASSBUS adapter's interrupt service routine (MBA$INT in module
ADPERRSUB of the SYSLOA facility} calls a driver's unsolicited interrupt
service routine.

An unsolicited interrupt service routine is called, executes, and returns at
device IPL.

Because the unsolicited interrupt service routine executes in kernel mode
on the interrupt stack, it can only refer to those addresses that reside in
system (SO) space.

register usage

The unsolicited interrupt service routine must not alter the contents of
registers ft6 through Rll, the AP, or the FP.

input
Location Contents

R4 Address of MBA's configuration register

R5 Address of UCB

eXlt An unsolicited interrupt service routine issues an RSB instruction to
return control to the MASSBUS adapter's interrupt service routine.

DESCRIPTION Only drivers of MASSBUS disks must provide unsolicited interrupt service
routines. Ail other devices detect unsolicited interrupts in their interrupt
service routines.

The routine that handles these unsolicited interrupts must determine
the nature of the interrupt and act accordingly, depending on the
characteristics of the device and controller. Examples of such unsolicited
interrupts include disks being placed on line or taken off line.

4-24

Index

A
ACB$V_QUOTA • 3-7, 3-10
ACB (AST control block) • 1-38, 1-86, 3-2, 3--4

contents • 3-6
Accessibility of memory

See Buffer
Access violation

See SS$_ACCVIO
ACF (configuration control block) • 1-2 to 1-4
ACL (access rights list) • 1-45
ACP (ancillary control process) • 1-12, 1-39, 1-40,

1-74
See also XQP
class • 1-28
default • 1-28

ACP_MULTIPLE parameter • 1-28
Adapter dispatch table • 1-6, 1-7

address • 1-7
ADP$L_CSR • 3-82
ADP$L_DPQFL • 3-87
ADP$L_MBASCB • 1-7
ADP$L_MBASPTE • 1-8
ADP$W_ADPTYPE • 2-3
ADP$W_DPBITMAP • 3-96
ADP (adapter control block) • 1-4 to 1-11

address • 1-26, 1-36
alternate map register allocation information • 1-10
alternate map register wait queue • 1-10
data path allocation information • 1-9
data path wait queue • 1-7
fields supporting ADPDISP macro • 2-3
map register allocation information • 1-9
map register wait queue • 1-8
size • 1-4

ADPDISP macro • 2-2 to 2-4
examples • 2-4

Affinity

See Device affinity
Allocation class • 1-28
Alternate map registers • 1-8, 1-26 to 1-27, 2-3

allocating • 3-63 to 3-64
allocating permanent • 1-26
loading • 2-44, 3-74 to 3-75
number of active • 1-10, 1-11
number of disabled • 1-11

Alternate map registers (Cont.)
releasing • 2-53, 3-84 to 3-85
requesting • 2-58, 3-92 to 3-93

Alternate map register wait queue • 1-10, 3-93
Alternate start I/O routine • 3-17

address • 1-30, 4-2
context • 4-2
entry point • 4-2
exit method • 4-2
input • 4-2
register usage • 4-2
synchronization requirements • 4-2

ARB (access rights block) • 1-42
AST (asynchronous system trap) • 3-6 to 3-7

See also Attention AST
control • 1-86
delivering • 3-2, 3-11
for aborted I/O request • 3-11
out of band • 1-86
process-requested • 3-7, 3-10, 3-73
queuing • 3-73
special kernel-mode • 1-12
user specified • 1-39

Asynchronous event notification • 2-70, 2-73 to
2-90

Asynchronous SCSI data transfer mode
enabling • 2-88

AT$_G EN BI.1-33
AT$_M BA • 1-33
AT$_U BA • 1-33
Attached processor

See Secondary processor
Attention AST

See also AST
blocking • 1-82, 1-83
delivering • 3-2
disabling • 3-6 to 3-7
enabling • 3-6 to 3-7
flushing • 3-4

Autoconfiguration

See also System Generation Utility

B
BADDALRQSZ bugcheck • 3-3, 3-19

Index-1

Index

BIIC (backplane interconnect interface chip)
self test • 2-5

BIOLM (buffered I/O limit) quota
for mailbox • 1-73

BI NODE RESET macro • 2-5
BOOTED processor state • 1-16
Boot stack • 1-15
BOOT REJECTED processor state • 1-16
BR level

relation to SCB vectors • 1-9
Buffer

allocating • 3-12 to 3-13, 3-14, 3-15, 3-22 to
3-23

allocating a physically contiguous • 3-16
deallocating • 3-3, 3-19
locking • 1-42, 1-43, 3-31 to 3-33, 3-34 to

3-36, 3-40 to 3-42, 3-45 to 3-47, 3-54 to
3-55, 3-58 to 3-60

locking multiple areas • 3-34, 3-45, 3-58
moving data to from system to user • 3-80 to

3-81
moving data to from user to system • 3-79
testing accessibility of • 2-39 to 2-40, 3-31 to

3-33, 3-34 to 3-36, 3-40 to 3-42, 3-43 to
3-44, 3-45 to 3-47, 3-54 to 3-55, 3-56 to
3-57, 3-58 to 3-60

unlocking • 3-109
Buffered data path • 1-8

allocating permanent • 1-26
odd transfer • 1-8
purging • 3-82 to 3-83
releasing • 2-55, 3-87
requesting • 2-60, 3-96 to 3-97

Buffered I/O.1-40, 1-41, 1-79
chained • 1--40
complex • 1-40
postprocessing • 3-72

Bugcheck
BADDALRQSZ • 3-3, 3-19
ILLQBUSCFG • 1-22
INCONSTATE • 3-88, 3-97
SPLACQERR • 3-111
SPLIPLHIGH • 3-111, 3-113
SPLIPLLOW • 3-114, 3-115, 3-116, 3-117
SPLRELERR • 3-114, 3-115
SPLRSTERR • 3-116, 3-117
UBMAPEXCED • 3-74, 3-78
UNSUPRTCPU • 2-10

BYTCNT (byte count) quota
crediting • 3-18
debiting • 3-12, 3-20 to 3-21, 3-22 to 3-23
system maximum • 3-20, 3-22

BYTCNT (byte count) quota (font.)

verifying • 3-20 to 3-21, 3-22 to 3-23
Byte count quota

See BYTCNT
Byte limit

See BYTLM
BYTLM (byte limit) quota

crediting • 3-18
debiting • 3-12, 3-20 to 3-21, 3-22 to 3-23

C
Cache control block • 1-83
Caching • 1-75
Cancel I/O routine • 1-30

address • 4-4
context • 4-4
entry point • 4-4
exit method • 4-5
flushing ASTs in • 3-4
input • 4-5
register usage • 4-4
synchronization requirements • 4-4

Card reader • 1-76
Carriage control • 1-74
CASE macro • 2-6

example • 2-6
CCB$B AMOD • 3-103
CCB (channel control block) • 1-11 to 1-12

address • 3-103
Channel index number • 3-68, 3-103, 4-5
Class driver entry vector table • 1-34
Class driver vector table • 1-89

address • 2-8
relocating • 2-7

CLASS_CTRL_IN IT macro • 1-89, 2-7
CLASS_GETNXT service routine • 1-89, 2-8
CLASS_PUTNXT service routine • 1-89, 2-8
CLASS UNIT INIT macro • 2-8
Cloned UCB routine • 1-78

address • 1-31, 4-6
context • 4-6
exit method • 4-7
input • 4-6
register usage • 4-6
synchronization requirements • 4-6

COM$DELATTNAST • 3-2
COM$DRVDEALMEM • 3-3
COM$FLUSHATTNS • 3-4, 3-6

Index-2

Index

COMPOST • 3-5, 4-2
COMPOST NOCNT • 3-5
COM$SETATTNAST • 3-6 to 3-7
Connection

breaking • 2-73
obtaining characteristics of • 2-75 to 2-76
requesting • 2-70 to 2-71
setting characteristics of • 2-88 to 2-89

Connection characteristics buffer • 2-88
Controller initialization routine

address • 1-25, 2-26, 4-8
context • 4-8
entry point • 4-8
exit method • 4-8
forking • 1-21
for terminal port driver • 2-7
functions • 4-9
input • 4-8
register usage • 4-8
synchronization requirements • 4-8

Coroutine • 3-35, 3-46, 3-59, 3-109
CPU$L_PHY_CPUID • 3-70
CPU$Q_SWIQFL • 3-26, 3-30
CPU$Q_WORK_IFQ • 1-17
CPU (per-CPU database) • 1-12 to 1-19

locating • 2-31
CPUDISP macro • 2-9 to 2-11
CPU ID • 1-17, 3-70
CRB$L_INTD • 1-22 to 1-27
CRB$L_WQFL • 3-86, 3-91
CRB (channel request block) • 1-19 to 1-27

fork block • 1-21
initializing • 2-25
periodic wakeup of • 1-22
primary • 1-73
reinitializing • 2-25
secondary • 1-22

CSR (control and status register)
address • 1-36
bad address • 1-36

CTL$GL_CCBBASE • 3-103

D
Data path • 1-25 to 1-26

autopurging • 1-8, 2-3
buffered • 1-8, 2-3
direct • 2-3
purging • 2-51, 3-82 to 3-83

Data path allocation bit map • 1-9
Data path register

purge error • 3-83
Data path wait queue • 1-7, 3-88, 3-97
Data storage

device specific • 1-41, 1-68, 2-22
Data structure • 1-1

defining bit field within • 2-102 to 2-103
defining field within • 2-14, 2-15, 2-16
initializing • 2-24 to 2-26

Data transfer
byte aligned • 2-3, 3-78
byte count • 1-79, 1-83
byte offset • 1-79, 3-77
mapping local buffer for SCSI port • 2-77 to 2-79
negative byte count • 3-32, 3-35, 3-41, 3-43,

3-46, 3-55, 3-56, 3-59
starting address • 1-79
unmapping local buffer • 2-91
word aligned • 3-78
zero byte count • 3-32, 3-41, 3-55

Data transfer mode
as controlled by a third-party SCSI class driver •

2-88
asynchronous • 2-88
determining setting of • 2-75
synchronous • 2-88

$DCDEF macro • 1-76, 2-3, 2-21
DDB (device data block) • 1-27 to 1-28

address • 1-74
initializing • 2-25
reinitializing • 2-25

DDT$L_ALTSTART • 4-2
DDT$L_CANCEL •4-4
DDT$L_CLONEDUCB • 4-6
DDT$L_REGDUMP•4-15
DDT$L START • 4-17
DDT$L_UNITINIT • 4-22
DDT$L_UNSOLINT • 4-24
DDT (driver dispatch table) • 1-29 to 1-31, 3-102

address • 1-28, 1-80, 2-25
creating • 2-12 to 2-13

D DTAB macro • 2-12 to 2-13, 3-102
example • 2-13

$DEFEND macro • 1-70, 2-15
example • 2-16

$DEFINI macro • 1-70, 2-16
example • 2-16

$DEF macro • 1-70, 2-14
example • 2-16

DEV$V_ELG • 3-8

Index-3

Index

$DEVDEF macro • 1-74, 1-75
Device

allocation class • 1-28
associated mailbox • 1-77
bus • 1-76
card reader • 1-76
cluster accessible • 1-73
cluster available • 1-75
directory structured • 1-74
disk • 1-76, 3-51, 3-95
dual ported • 1-74, 1-75
file structured • 1-28, 1-74
input • 1-75
line printer • 1-76
mailbox • 1-75, 1-76
mounted • 1-75, 1-78
mounted foreign • 1-75
network • 1-74
output • 1-75
random access • 1-75
real time • 1-75, 1-76
record oriented • 1-74
reference count • 1-79
sequential block-oriented • 1-74
shareable • 1-75
spooled • 1-74
synchronous communications • 1-76
tape • 1-76, 3-95
terminal • 1-74, 1-76
timed out • 1-78
workstation • 1-76

Device affinity • 1-75, 3-71
Device allocation lock • 1-73
Device characteristics • 1-74 to 1-75

retrieving • 3-49
setting • 3-50 to 3-51
specifying • 2-25

Device class • 1-76
specifying • 2-25

Device controller • 1-19
multiunit • 1-36, 1-74, 1-77
number of units created for • 2-22
number of units supported by • 1-34, 1-36, 1-37,

2-22
reinitializing • 2-22
single unit • 1-36
status • 1-21

Device controller data channel
See also Secondary controller data channel
obtaining ownership of • 1-36, 2-62, 3-100 to

3-101

Device controller data channel (Cont.)

releasing • 2-54, 3-86
releasing before waiting for interrupt • 3-105
relinquishing ownership • 2-104
retaining ownership • 2-104
retaining while waiting for interrupt • 3-105

Device controller data channel wait queue • 1-21,
3-86, 3-91, 3-101

Device database
synchronizing access to • 2-17 to 2-18

Device driver
branching on adapter characteristics • 2-2 to 2-4
branching on processor type • 2-9 to 2-11
entry points • 1-29, 4-1 to 4-24
for generic VAXBI device • 3-107
implementing a conditional wait • 2-92, 2-94
loading • 1-33
machine independence • 2-2 to 2-4, 2-9 to 2-11
name • 1-28, 1-34, 2-22
program sections • 2-13, 2-21
size • 1-33
suspending • 1-73
unloading • 1-33, 2-22

Device interrupt
direct-vector • 1-7, 1-8, 1-25, 2-3
expected • 1-77, 3-105
multilevel Q22-bus • 1-22
non-direct-vector • 1-7, 1-25
unsolicited • 1-30
waiting for • 2-105, 3-104 to 3-106

Device I PL • 1-77, 2-17 to 2-18
specifying • 2-25

Device lock • 1-68, 1-77, 3-105
acquisition IPL • 3-113
address • 1-22, 1-36, 1-74
multiple acquisition of • 2-19, 3-117
obtaining • 2-17 to 2-18, 3-110, 3-113
releasing • 2-19 to 2-20, 3-115
restoring • 2-19, 3-117

DEVICELOCK macro • 2-17 to 2-18, 2-66, 2-104,
3-110, 3-113

example • 2-18, 2-20, 2-66
Device name • 1-28
Device registers

accessing • 1-25, 1-36, 2-17 to 2-18
saving the value of • 4-16

Device type • 1-76
specifying • 2-25

Device unit • 1-68
allocating • 1-74, 1-75, 1-77
autoconfiguring • 2-22
busy indicator • 1-78

Index-4

Index

Device unit (Cont.)

deaccessing • 1-12
deallocating • 1-78
error retry count • 1-79
marking available • 1-75
marking on line • 1-78
number • 1-77
operations count • 3-95
reference count • 4-4
reinitializing • 2-22
status • 1-77 to 1-79

DEVICEUNLOCK macro • 2-19 to 2-20, 2-66,
3-115, 3-117

example • 2-18, 2-20, 2-66
issued by IOC$WFIKPCH and IOC$WFIRLCH -

3-105
Diagnostic buffer • 1-40, 1-42, 1-79, 1-83, 3-71

copied to process space • 3-73
filling • 3-69
size • 1-30

Direct data path
odd transfer • 1-8

Direct I/O.1-40, 1-79
additional buffer regions for • 1-42 to 1-44
checking accessibility of process buffer for • 3-43

to 3-44, 3-56 to 3-57
locking a process buffer for • 3-31 to 3-33, 3-34

to 3-36, 3-40 to 3-42, 3-45 to 3-47, 3-54
to 3-55, 3-58 to 3-60

postprocessing • 3-72
unlocking process buffer • 3-109

Directory sequence number • 1-82, 1-83
Direct-vector interrupt • 1-7, 1-8, 1-25, 2-3
Disconnect feature

determining setting of • 2-75
enabling • 2-88

Disk driver • 1-78, 1-79

See also MBA, MASSBUS
ECC correction routine for • 3-67
using local disk UCB extension • 1-69, 1-82 to

1-84
DMA transfer

for modify operation • 3-31 to 3-33, 3-34 to
3-36

for read operation • 3-40 to 3-42, 3-45 to 3-47
for write operation • 3-54 to 3-55, 3-58 to 3-60

DPT$V_SVP • 1-79, 2-21, 3-79, 3-80
DPT$W_DELIVER•4-21
D PT$W_U N LOA D • 4-10
DPT (driver prologue table) • 1-31 to 1-35, 1-74,

1-76
creating • 2-21 to 2-26

DPT (driver prologue table) (Cont.)

initialization table • 1-33, 2-25 to 2-26
reinitialization table • 2-25, 2-25 to 2-26

DPTAB macro • 1-69, 2-21 to 2-23
example • 2-23

DPT STORE macro • 2-24 to 2-26
example • 2-23

Driver unloading routine • 2-22, 2-26
address • 1-34, 4-10
context •4-10
exit method • 4-10
functions • 4-10
input • 4-10
register usage • 4-10
synchronization requirements • 4-10

DSBINT macro • 2-27
Dual path UCB extension • 1-69
Dual ported device • 1-74
DYN$C_BU FIO.3-12, 3-22
DYN$C_IRP • 3-12
DZ11 controller • 1-21
DZ32 controller • 1-21

E
ECC error correction • 1-78, 1-79, 1-83, 2-21, 3-67
ECC position register • 1-83
ECRB (Ethernet controller data block) • 2-2
EMB$W_DV_STS • 3-94
EMB spin lock • 3-8
ENBINT macro • 2-28
Encryption key • 1-42
Entry point

specifying in driver tables • 2-13
$EQULST macro • 2-29 to 2-30

example • 2-30, 2-103
ERL$DEVICEATTN • 3-8 to 3-9, 4-15
ERL$DEVICERR • 1-30, 1-80, 1-81, 3-8 to 3-9,

4-15
ERL$DEVICTMO.1-30, 1-80, 1-81, 3-8 to 3-9,

4-15
ERL$RELEASEMB • 3-95
Error

servicing within driver • 3-82 to 3-83
Error log allocation buffer • 3-8
Error logging • 1-79 to 1-80, 3-8 to 3-9

enabling • 1-75
error log sequence number • 1-42
inhibiting • 3-8
in progress • 1-77

Index-5

Index

Error logging (Cont.)

performed by IOC$REQCOM • 3-95
Error logging routine • 1-30
Error log in progress bit

See UCB$V_ERLOGIP
Error log UCB extension • 1-69, 1-80 to 1-81
Error message buffer • 1-81, 1-83, 3-82

allocating • 3-8
filling • 3-9
releasing • 3-95
size • 3-8
specifying size • 1-30
written into by IOC$REQCOM • 3-95

Event flag • 1-39
handling for aborted I/O request • 3-11

EXE$ABORTIO.1-40, 3-7, 3-10 to 3-11, 3-33,
3-42, 3-44, 3--46, 3-50, 3-51, 3-55, 3-57,
3-59, 4-12

EXE$ALLOCBU F • 3-12 to 3-13
EXE$ALLOC I R P• 1-42, 1-44, 3-12 to 3-13
EXE$ALONONPAGED • 3-13, 3-14, 3-61
EXE$ALONPAGVAR • 3-15
EXE$ALOPHYCNTG • 3-16
EXE$ALTQU E PKT • 1-30, 3-5, 3-17, 4-2, 4-12
EXE$ASSIGN • 1-11, 1-12, 4-6
EXE$CANCEL • 3-68
EXE$CREDIT BYTCNT • 3-18
EXE$CREDIT BYTCNT BYTLM • 3-18
EXE$DASSGN • 1-12
EXE$DEANONPAGED • 3-3, 3-13, 3-19
EXE$DEBIT BYTCNT • 3-20 to 3-21
EXE$DEBIT BYTCNT ALO.3-22 to 3-23
EXE$DEBIT BYTCNT BYTLM • 3-20 to 3-21
EXE$DEBIT_BYTCNT BYTLM_ALO.3-22 to 3-23
EXE$DEBIT BYTCNT BYTLM_NW • 3-20 to 3-21
EXE$DEBIT BYTCNT NW • 3-20 to 3-21
EXE$FIN ISH 10.1-41, 3-24 to 3-25, 3-49, 3-50,

3-51, 4-12
EXE$FIN ISH IOC • 1-41, 3-24 to 3-25, 4-12
EXE$FORK • 1-21, 2-32, 3-26
EXE$FORKDSPTH • 1-73
EXE$GB_CPUTYPE • 2-10
EXE$GL ABSTIM • 1-22
EXE$GL INTSTK

replaced by CPU$L INTSTK • 1-12
EXE$GQ_1 ST TIME • 3-29
EXE$GQ_SYSTI M E • 2-52, 3-69
EXE$INSERTIRP • 1-38, 1-39, 1-76, 3-27, 3-28,

3-38
EX E$ I N S I OQ • 1-77, 3-28, 3-38
EXE$INSIOQC • 3-28
EXE$INSTIMQ • 3-29

EXE$IOFORK • 1-72, 1-73, 3-30
EXE$MODIFY • 3-31 to 3-33
EXE$MODIFYLOCK • 3-32, 3-34 to 3-36
EXE$MODIFYLOCKR • 1-43, 3-32, 3-34 to 3-36,

3-109
EXE$ONEPARM • 1-41, 3-37
EXE$QIO.1-12, 1-30, 1-37 to 1-40, 1-42
EXE$QIOACPPKT • 1-74
EXE$QIODRVPKT • 3-32, 3-33, 3-37, 3-38, 3-41,

3-51, 3-55, 3-62, 4-12
EXE$QIORETURN • 3-39
EXE$READ • 1-41, 3-40 to 3-42
EXE$READCHK • 3-43 to 3-44
EXE$READCHKR • 3-32, 3-35, 3-41, 3-43 to 3-44,

3-46
EXE$READLOCK • 3-41, 3-45 to 3-47
EXE$READLOCKR • 1-43, 3-41, 3-45 to 3-47,

3-109
EXE$RMVTIMQ • 3-48
EXE$SENSEMODE • 3-49
EXE$SETCHAR • 3-50 to 3-51
EXE$SETMODE • 3-50 to 3-51
EXE$SNDEVMSG • 3-52 to 3-53
EXE$TI M EOUT • 1-74, 1-77, 1-79
EXE$WRITE • 1-41, 3-54 to 3-55
EXE$WRITECHK • 3-56 to 3-57
EXE$WRITECHKR • 3-55, 3-56 to 3-57, 3-59
EXE$WRITELOCK • 3-55, 3-58 to 3-60
EXE$WRITELOCKR • 1-43, 3-55, 3-58 to 3-60,

3-109
EXE$WRTMAILBOX • 3-52, 3-61
EXE$ZEROPARM • 1-41, 3-62

F
FDT (function decision table)

address • 1-30
creating • 2-37 to 2-38
size • 1-31

FDT routine
adjusting process quotas in • 3-12
allocating IRPE in • 1-42
completing an I/O operation in • 3-24 to 3-25
context •4-11
entry point • 4-11
exit method •4-12
for direct I/O.3-31 to 3-33, 3-40 to 3-42, 3-54

to 3-55
register usage • 4-11
returning to the system service dispatcher • 3-39

Index-6

Index

FDT routine (Cont.)
setting attention ASTs in • 3-6
specifying • 4-11
synchronization requirements • 4-11
unlocking process buffers in • 3-109

File structured device • 1-74
FIND CPU DATA macro • 2-31

example • 2-31
Fork block • 2-104, 3-26, 3-30, 3-104 to 3-106

in CRB • 1-21
in UCB • 1-72 to 1-73

Fork database
accessing • 2-33 to 2-34

Fork dispatcher • 2-33
Forking • 2-32, 2-43, 3-26, 3-30

from controller initialization routine • 4-8
from driver unloading routine • 4-10
from unit initialization routine • 4-22

Fork I P L• 1-73, 2-33 to 2-34
Fork lock • 1-21, 1-68

acquisition IPL • 3-111
multiple acquisition of • 2-35, 3-116
obtaining • 2-33 to 2-34, 3-111 to 3-112
releasing • 2-35 to 2-36, 3-114
restoring • 2-35, 3-116

Fork lock index • 1-73
placing in UCB$B_FLCK • 2-25

FORKLOCK macro • 2-33 to 2-34, 3-111
example • 2-34

FORK macro • 2-32, 3-26
Fork process

creating • 2-32, 2-43, 3-26, 3-30
creation by IOC$INITIATE • 3-70 to 3-71
suspending • 2-104, 3-104 to 3-106

Fork queue • 1-17, 1-72, 3-26, 3-30
FORKU N LOCK macro • 2-35 to 2-36, 3-114, 3-116

example • 2-34
Full duplex device driver • 4-2

I/O completion for • 3-5
FUNCTAB macro • 2-37 to 2-38

example • 2-38

H
HWCLK spin lock • 3-29, 3-48

I/O adapter
configuration register • 1-6
data path register • 2-51
number of address bits • 1-8, 2-3
type • 1-7, 1-33, 2-3, 2-21

I/O database • 1-1, 1-2
creation • 1-33, 2-25

I/O function code • 1-39
I/O postprocessing • 1-41

device-independent • 3-72 to 3-73
for aborted I/O request • 3-10
for full duplex device driver • 3-5
for I/O request involving no device activity • 3-24

to 3-25
I/O postprocessing queue • 1-17, 1-79, 3-5, 3-95
I/O request

aborting • 3-10 to 3-11
canceling • 1-30, 1-78, 3-68
completing • 3-94 to 3-95
outstanding on channel • 1-12
status • 1-40
with no parameters • 3-62
with one parameter • 3-37

I/O status block
See IOSB

IDB$L OWNER • 3-86, 3-100
1DB$V_NO_CSR • 1-36
I DB (interrupt dispatch block) • 1-35 to 1-37

creation • 2-22
size • 2-22

IFNORD macro • 2-39 to 2-40
IFNOWRT macro • 2-39 to 2-40
IFRD macro • 2-39 to 2--40

example • 2-40
IFWRT macro • 2-39 to 2-40
ILLQBUSCFG bugcheck • 1-22
Image termination • 4-4
INCONSTATE bugcheck • 3-88, 3-97
Initialization table • 1-34, 2-25
Initiator

completing an operation (in AEN mode) • 2-74
enabling selection of • 2-70, 2-73 to 2-90
receiving data from target (in AEN mode) • 2-80
sending bytes to target (in AEN mode) • 2-83

I N IT processor state • 1-16
Input device • 1-75
Interprocessor interrupt • 1-16

Index-7

Index

Interrupt
blocking • 2-27, 2-65
interprocessor • 1-16
requesting a software • 2-67

Interrupt dispatcher • 1-7, 1-9
for MASSBUS • 4-24
for UNIBUS • 1-25

Interrupt service routine • 1-73
address • 1-25, 2-26, 4-13
context • 4-13
entry point • 4-13
exit method • 4-14
for MASSBUS device • 4-13
for unsolicited interrupt • 4-24
functions • 4-14
input • 4-14
register usage • 4-14
specifying more than one • 4-13
synchronization requirements • 4-13

Interrupt stack
address • 1-16

INVALIDATE TB macro • 2-41 to 2-42
10$V INHERLOG • 3-8
10$_SENSECHAR function

servicing • 3-49
10$_SENSEMODE function

servicing • 3-49
10$_SETCHAR function

servicing • 3-50 to 3-51
10$_SETMODE function

servicing • 3-50 to 3-51
IOC$ALOALTMAP • 1-10, 3-63 to 3-64, 3-93
IOC$ALOALTMAPN • 3-63 to 3-64
IOC$ALOALTMAPSP • 3-63 to 3-64
IOC$ALOUBAMAP • 3-65 to 3-66, 3-90, 3-99
IOC$ALOUBAMAPN • 3-65 to 3-66
IOC$APPLYECC • 1-83, 3-67
IOC$CANCELIO. 1-77, 3-68, 4-4
IOC$DIAGBUFILL • 1-30, 1-42, 3-69
IOC$GL_CRBTMOUT • 1-22
IOC$GL_DEVLIST • 1-27
IOC$GL MUTEX • 4-6
IOC$GW_MAXBU F • 3-20, 3-22
IOC$ I N ITIATE • 1-30, 1-40, 1-41, 1-77, 1-79, 3-28,

3-38, 3-69, 3-70 to 3-71, 3-95, 4-17
IOC$IOPOST • 1-41, 1-42, 1-43, 3-72 to 3-73

unlocking process buffers • 3-109
IOC$LOADALTMAP • 2-44, 3-74 to 3-75
IOC$LOADMBAMAP • 2-45, 3-76
IOC$LOADUBAMAP • 1-26, 2-46, 3-77 to 3-78
IOC$LOADUBAMAPA • 3-77 to 3-78

IOC$MNTVER • 1-30
IOC$MOVFRUSER • 2-21, 3-79
IOC$MOVFRUSER2.3-79
IOC$MOVTOUSER • 2-21, 3-80 to 3-81
IOC$MOVTOUSER2.3-80 to 3-81
IOC$PURGDATAP • 1-26, 2-51, 3-82 to 3-83
IOC$RELALTMAP • 1-10, 1-73, 2-53, 3-84 to 3-85
IOC$RELCHAN • 1-21, 1-36, 1-73, 2-54, 3-86,

3-95
called by IOC$WFIRLCH • 3-106

IOC$RELDATAP • 1-7, 1-9, 1-73, 2-55, 3-87
IOC$RELMAPREG • 1-8, 1-9, 1-25, 1-26, 1-73,

2-56, 3-89 to 3-90
IOC$RELSCHAN • 1-21, 1-22, 1-36, 2-57, 3-91
IOC$REQALTMAP • 1-10, 1-73, 2-58, 3-92 to 3-93
IOC$REQCOM • 1-30, 1-38, 1-41, 1-76, 1-77,

1-79, 1-81, 2-59, 3-13, 3-94 to 3-95, 4-17
IOC$REQDATAP • 1-7, 1-9, 1-26, 1-73, 2-60, 3-96

to 3-97
IOC$REQDATAPNW • 3-96 to 3-97
IOC$REQMAPREG • 1-8, 1-9, 1-25, 1-26, 1-73,

2-61, 3-98 to 3-99
IOC$REQPCHAN H• 1-21, 1-36, 1-73, 2-62, 3-100

to 3-101
IOC$REQPCHANL • 1-21, 1-36, 1-73, 2-62, 3-100

to 3-101
IOC$REQSCHANH • 1-21, 1-22, 1-36, 2-63, 3-100

to 3-101
IOC$ R EQSCHAN L• 1-21, 1-22, 1-36, 1-73, 2-63,

3-100 to 3-101
I OC$ R ETU R N• 2-13, 3-102
IOC$SEARCHDEV • 1-74
IOC$VERIFYCHAN • 3-103
IOC$WFIKPCH • 1-73, 1-77, 1-79, 3-104 to 3-106
IOC$WFI RLCH • 1-77, 1-79, 3-104 to 3-106
IOFORK macro • 2-43, 3-30
IOSB (I/O status block) • 1-39, 1 ~41, 3-5, 3-10,

3-73, 3-95
I P L$_ASTD E L• 3-10, 3-12, 3-31, 3-34, 3-37, 3-38,

3-40, 3-43, 3-49, 3-50, 3-56, 3-62, 3-73,
3-103, 3-114, 3-116, 3-117, 4-6, 4-11

I P L$_E M B• 3-8
I P L$_10 POST • 3-5, 3-10, 3-25, 3-73, 3-95
IPL$_MAILBOX • 3-52, 3-61
IPL$_POOL • 3-14, 3-15
IPL$_POWER • 4-8, 4-10
IPL$_QUEUEAST • 3-2, 3-3
IPL$_RESCHED • 2-31, 3-111, 3-113
IPL$_TIMER • 3-29, 3-48
IPL (interrupt priority level)

See also Device IPL, Fork IPL
lowering • 2-97, 3-26, 3-30

Index-8

Index

IPL (interrupt priority level) (Cont.)
modifying • 2-17 to 2-18, 2-19 to 2-20, 2-27,

2-28, 2-33 to 2-34, 2-35 to 2-36, 2-47 to
2-48, 2-65, 2-96

raising • 2-49, 2-65
saving • 2-17, 2-33, 2-47, 2-64

I RP$B_CARCON • 1-41, 3-32, 3-41, 3-55
IRP$B_PRI.3-27
IRP$L_BCNT • 3-32, 3-35, 3-41, 3-43, 3-46, 3-55,

3-56, 3-59, 3-70, 3-71, 3-72
IRP$L DIAGBUF • 3-69, 3-70, 3-71
I RP$L IOST2.3-32, 3-41, 3-55
IRP$L KEYDESC • 3-72
I R P$ L MEDIA • 1-41, 3-37, 3-51, 3-62
IRP$L PID • 3-68, 4-5
RP$L SVAPTE • 3-33, 3-35, 3-41, 3-46, 3-55,

3-59, 3-70, 3-71
I RP$V_BU FIO.3-72
I RP$V_D IAG BU F- 3-69, 3-70, 3-71, 3-72
IRP$V_EXTEND • 3-72
I RP$V_FUNC • 3-32, 3-35, 3-41, 3-43, 3-46
IRP$V_KEY • 3-72
IRP$V_MBXIO.3-72
IRP$V_PHYSIO.3-72
IRP$W BOFF • 3-33, 3-35, 3-41, 3-46, 3-55, 3-59,

3-70, 3-71, 3-72
IRP$W CHAN • 3-68, 4-5
IRP (I/O request packet) • 1-37 to 1-42

current • 1-77
deallocation • 3-73
dequeuing from UCB • 1-38
insertion in pending-I/O queue • 3-27, 3-28
size • 1-37
unlocking buffers specified in • 3-109

IRPE (I/O request packet extension} • 1-40, 1-42 to
1-44, 3-72

address • 1-42
allocating • 1-42
deallocation • 1-43, 3-73, 3-109
unlocking buffers specified in • 3-73, 3-109

J
JIB$L BYTCNT • 3-12, 3-18, 3-20, 3-22
J I B$L BYTLM • 3-12, 3-18, 3-20, 3-22
JIB$V_BYTCNT WAITERS • 3-18
JIB spin lock • 3-18, 3-20, 3-23
Job controller • 1-78

sending a message to • 3-53, 3-61

Job quota
byte count • 3-12, 3-18, 3-20 to 3-21, 3-22 to

3-23
byte limit • 3-12, 3-18, 3-20 to 3-21, 3-22 to

3-23

L
LD R$ALLOC PT • 3-107
LDR$DEALLOC PT • 3-108
LDR$GL FREE_PT • 3-107, 3-108
LD R$G L S PTBAS E• 3-107, 3-108
LOADALT macro • 2-44, 3-74
LOADER$_PTE_NOT EMPTY status • 3-108
LOADMBA macro • 2-45, 3-76
LOADUBA macro • 2-46, 3-77
Local disk UCB extension • 1-69, 1-82 to 1-84

required for error logging • 3-9
required for IOC$APPLYECC routine • 3-67

Local tape UCB extension • 1-69, 1-81 to 1-82
required for error logging • 3-9

Lock I D • 1-73
LOCK macro • 2-47 to 2-48, 3-111
Lock manager • 1-73
LOCK SYSTEM PAGES macro • 2-49
Logical I/O function

translation to physical function • 3-31, 3-40, 3-54
Longword access enable bit

See VEC$V_LWAE
Longword-aligned random-access mode • 1-26
Lookaside list

See Nonpaged pool
Loopback mode • 1-91
LWAE (longword access enable) bit

See VEC$V_LWAE

M
Macro

format • 2-1
Mailbox • 1-75, 1-76, 1-77

associated with device • 1-77
buffered I/O quota for • 1-73
I/O function • 1-40
in shared memory • 1-78
marked for deletion • 1-78
permanent • 1-78

Index-9

Index

Mailbox (Cont.)

sending a message to • 3-52 to 3-53, 3-61
MAILBOX spin lock • 3--52, 3-61
Map registers • 1-8, 1-25, 1-26, 2-3

allocating • 3-65 to 3-66
allocating permanent • 1-25
byte offset bit • 3-77
loading • 2-46, 3-77 to 3-78
number of active • 1-9, 1-10
number of disabled • 1-10
of MBA • 2-45, 3-76
releasing • 2-56, 3-89 to 3-90
requesting • 2-61, 3-98 to 3-99

Map register wait queue • 1-8, 3-90, 3-99
MBA$INT • 4-24
MBA$L_BCR • 3-76
MBA$L_MAP • 3-76
MBA$L_VAR • 3-76
MBA (MASSBUS adapter)

registers
map • 2-45, 3-76

releasing secondary data channel • 3-91
Media ID • 1-80
Memory

See also Buffer, Nonpaged pool
detecting parity errors in • 2-51
testing accessibility of • 2-39 to 2-40

MMG$IOLOCK • 3-33, 3-35, 3-41, 3-46, 3-55, 3-59
MMG$UNLOCK • 1-43, 3-109
MMG spin lock • 3-16, 3-107, 3-108, 3-109
Mount verification • 1-40, 1-78
Mount verification routine • 1-30, 1-31
Multilevel device interrupt dispatching • 1-22
Multiprocessor state • 1-16
Mutex

for ACL • 1-45
for I/O database • 4-6

N
Network device • 1-74
Nexus ID • 1--6
Node ID • 1-6
Non-direct-vector interrupt • 1-7, 1-25
Nonpaged pool

allocating • 3-12 to 3-13, 3-14, 3-15, 3-22 to
3-23

deallocating • 3-3, 3-19
lookaside list • 3-13, 3-14
variable region • 3-15

O
Object

protection • 1-45
OPCOM process

sending a message to • 3-53, 3-61
Operator device • 1-74
ORB (object rights block) • 1-44 to 1-46

address • 1-73
cloned • 4-7

Output device • 1-75

P
Page table entry

allocating • 3-107
deallocating • 3-108
modifying • 2-41

Paging I/O function • 1-40
PCB$L_PID • 3-68, 4-5
PCB$V_SSRWAIT • 3-12, 3-20, 3-22
PCB$W ASTCNT • 3-4, 3-6, 3-10
PDT (port descriptor table) • 1-80
Pending-I/O queue • 1-38, 1-76, 3-27, 3-28, 3-37,

3-38, 3-73, 3-95
bypassing • 3-17
length • 1-79, 3-28

Per-CPU database
See CPU

Performance
stack time • 1-17

Physical I/O function • 1-40, 3-72
PID (process identification number) • 1-74
POOL spin lock • 3-14, 3-15, 3-19
Poor man's lockdown • 2-49 to 2-50, 2-97
Port

DMA buffer • 2-77 to 2-79
resetting • 2-82

Port command buffer
allocating • 2-69
deallocating • 2-72

Port driver entry vector table • 1-34
Port driver vector table • 1-89

address • 2-8
creating • 2-99, 2-100
defining entry in • 2-98
relocating • 2-7

PORT MAINT initiate routine • 1-90

Index-~0

Index

Power failure
occurring when device is busy • 1-78

Power failure recovery procedure • 1-25, 1-26, 1-74
PR$_SID processor register • 1-17
PR$_SIRR processor register • 2-67
Process

See also Process quota
current • 1-15
privilege mask • 1-42

Process I/O channel • 1-11, 1-40
deassigning • 4-4
reference count • 1-77, 1-78
validating • 3-103

Processor state
See Multiprocessor state

Processor status longword

See PSL
Processor subtype • 2-9
Processor type • 2-9
Process quota

charging • 1-41, 4-17
PSL (processor status longword)

Z condition code • 3-27
P U R D P R macro • 2-51, 3-82

Q
Q22-bus • 2-3

device interrupt dispatching • 1-22
QUEUEAST spin lock • 3-7
Quota

See Process quota, Job quota

R
Random access device • 1-75
Read check

enabling • 1-75
Read function • 1-40, 1-41

postprocessing for • 3-72
READ SYSTIME macro • 2-52

example • 2-52
Real time device • 1-75, 1-76
Record oriented device • 1-74
Register dumping routine • 1-30, 1-83, 2-51, 3-9,

3-69, 3-82
address • 4-15

Register dumping routine (Cont.)
context •4-15
entry point • 4-15
exit method •4-15
functions • 4-16
input • 4-15
register usage • 4-15
synchronization requirements •4-15

Reinitialization table • 1-34, 2-25
R E LA LT macro • 2-5 3, 3-84
RELCHAN macro • 2-54, 3-86
RELDPR macro • 2-55, 3-87
RELMPR macro • 2-56, 3-89
RELSCHAN macro • 2-57, 3-91
Remote terminal UCB extension • 1-75
REQALT macro • 3-92
REQCOM macro • 2-59, 3-94
REQDPR macro • 2-60, 3-96
REQMPR macro • 2-61, 3-98
REQPCHAN macro • 2-62, 3-100
REQSCHAN macro • 2-63, 3-100
Resource wait mode • 3-12, 3-20, 3-22
Resource wait queue

See also Alternate map register wait queue,
Device controller data channel wait queue

See also Map register wait queue, Secondary data
channe! wait queue, Data path wait queue

buffered data path • 3-88
RUN processor state • 1-16

S
SAVIPL macro • 2-64
SCB (system control block) • 1-7
SCDRP$L_BCNT • 2-78, 2-85
SCDRP$L CMD_PTR • 2-85
SCDRP$L_SCSI_FLAGS • 2-78
SCDRP$L STS_PTR • 2-85, 2-86
SCDRP$L SVAPTE • 2-78
SCDRP$L SVA_SPTE • 2-79
SC D R P$ L SVA USER • 2-78, 2-79, 2-85
SCDRP$L TRANS_CNT • 2-86
SCDRP$W_BOFF • 2-78
SCDRP$W FUNC • 2--85
SCDRP$W_MAPREG • 2-79
SCDRP$W NUMREG • 2-79
SCDRP$W_PAD_BCNT • 2-85
SCDRP$W STS • 2-78
SCDRP (SCSI class driver request packet) • 1-46 to

1-54

Index-11

Index

SCDT (SCSI connection descriptor table) • 1-54 to
1-60

SCH$POSTEF • 1-39
SCHED spin lock • 3-19
SCS (system communications services) • 1-33
SCSI bus

releasing in AEN operation • 2-81
resetting • 2-82
sensing phase of • 2-87
setting phase of • 2-90

SCSI class driver request packet

See SCDRP
SCSI command

determining timeout setting for • 2-76
disabling retry • 2-75, 2-88
enabling retry • 2-75
sending to SCSI device • 2-84 to 2-86
setting disconnect timeout for • 2-76, 2-89
setting DMA timeout for • 2-76, 2-89
setting phase change timeout for • 2-76, 2-89
terminating • 2-68

SCSI command byte
buffering • 2-69

SCSI connection descriptor table

See SCDT
SCSI port descriptor table

See SPDT
Secondary controller data channel • 2-57

obtaining ownership of • 2-63, 3-100 to 3-101
releasing • 3-91

Secondary controller data channel wait queue • 3-91,
3-101

Set device characteristics function • 1-76
Set device mode function • 1-76
SETIPL macro • 2-65

example • 2-66
Set mode function • 1-76
Shareable device • 1-75
SHOW DEVICE command • 1-80
SMP$ACQNOIPL • 2-17
S M P$ACQ U I R E• 2-34, 2-47
SMP$ACQUIREL • 2-17
SMP$AR_IPLVEC • 2-33, 3-26, 3-30
SMP$AR_SPNLKVEC • 1-66, 2-34, 2-47, 2-96
SMP$RELEASE • 2-35, 2-96
SMP$RELEASEL • 2-19
SMP$RESTORE • 2-35, 2-96
SMP$RESTOREL • 2-19
SOFTINT macro • 2-67, 3-26, 3-30
SPDT (SCSI port descriptor table) • 1-60 to 1-66
SPI$ABORT COMMAND macro • 2-68

SPI$ALLOCATE_COMMAND_BUFFER macro • 2-69
SPI$CONNECT macro • 2-70 to 2-71
SPI$DEALLOCATE_COMMAND_BUFFER macro •

2-72
SPI$DISCONNECT macro • 2-73
SPI$FINISH_COMMAND macro • 2-74
SPI$GET CONNECTION_CHAR macro • 2-75 to

2-76, 2-88
SPI$MAP_BUFFER macro • 2-77 to 2-79
SPI$RECEIVE_BYTES macro • 2-80
SPI$RELEASE_BUS macro • 2-81
SPI$SEND_BYTES macro • 2-83
SPI$SEND_COMMAND macro • 2-84 to 2-86
SPI$SENSE_PHASE macro • 2-87
SPI$SET_CONNECTION_CHAR macro • 2-88 to

2-89
SPI$SET_PHASE macro • 2-90
SPI$UNMAP_BUFFER macro • 2-91
SPI (SCSI port interface) • 2-68 to 2-90

calling protocol for • 2-68
extensions to • 2-73 to 2-90

Spin lock
acquisition IPL • 1-67, 3-111
acquisition PC list • 1-68
dynamic • 1-68
multiple acquisition of • 2-96, 3-116
obtaining • 2-47 to 2-48, 3-111 to 3-112
ownership • 1-67, 1-68
rank • 1-67
releasing • 2-96, 3-114
restoring • 2-96, 3-116
static • 1-68
system • 1-68

Spin wait • 1-68, 3-110, 3-112, 3-113
SPL$B_IPL • 1-77
S P L (spin lock data structure) • 1-66 to 1-68
SPLACQERR bugcheck • 3-111
$SPLCODDEF macro • 2-23, 2-25
SPLIPLHIGH bugcheck • 3-111, 3-113
SPLIPLLOW bugcheck • 3-114, 3-115, 3-116, 3-117
SPLRELERR bugcheck • 3-114, 3-115
SPLRSTERR bugcheck • 3-116, 3-117
Spooled device • 1-74
SPTREQ parameter • 3-16
SS$_ACCVIO.3-32, 3-33, 3-35, 3^41, 3^43, 3-46,

3-50, 3-51, 3-55, 3-56, 3-59, 3-73
SS$_BADPARAM • 3-32, 3-35, 3-41, 3-43, 3-46,

3-55, 3-56, 3-59, 3-107
SS$_EXQUOTA • 3-6, 3-20, 3-22
SS$_ILLIOFUNC • 3-51
SS$_INSFMAPREG • 3-64

Index-~12

Index

SS$_I NS FM E M• 3-6, 3-12, 3-14, 3-15, 3-16, 3-52,
3-61

SS$_I NS FS PTS • 3-16, 3-107
SS$_I NS FWS L • 3-33, 3-35, 3-41, 3-46, 3-59
SS$_IVCHAN • 3-103
SS$_MBFULL • 3-52, 3-61
SS$_M BTOOSM L • 3-52, 3-61
SS$_NOPRIV • 3-52, 3-61, 3-103
SS$_SS FA I L• 3-64, 3-75, 3-85, 3-93
Start I/O routine

See also Alternate start I/O routine
activating • 3-28
address • 1-30, 4-17
checking for zero length buffer • 3-32, 3-41, 3-55
context • 4-17
entry point • 4-17
exit method • 4-18
input • 4-17
register usage •4-17
synchronization requirements • 4-17
transferring control to • 3-38, 3-70 to 3-71

STOPPED processor state • 1-16
STOPPING processor state • 1-16
Subcontroller • 1-33
Swapping I/O function • 1-40
Symbol list

defining • 2-29 to 2-30
Synchronous communications device • 1-76
Synchronous SCSI data transfer mode

determining REQ-ACK offset setting • 2-75
determining transfer period setting • 2-75
enabling • 2-88
setting REQ-ACK offset • 2-88
setting transfer period • 2-88

SYS$ALLOC • 1-74, 1-77
SYS$ASS IG N • 1-11, 1-77, 1-78

for template device • 4-6
SYS$CANCEL • 1-30, 4-4
SYS$DALLOC • 1-30, 1-77, 4-4
SYS$DASSGN • 1-30, 1-77, 4-4
SYS$QIO.1-37

device-dependent arguments of • 1-41
SYS$QIOW • 1-37
System buffer

See Buffer, Nonpaged pool
System Generation Utility (SYSGEN)

AUTOCONFIGURE command • 1-2, 1-34, 1-68,
2-22, 4-21

CONNECT command • 1-7, 1-26, 1-36, 1-44,
1-68, 2-22, 4-8, 4-22
/NUMVEC qualifier • 1-23

System Generation Utility (SYSGEN) (Cont.)
RELOAD command •4-10

System page-table entry
allocating • 3-107
allocating permanent • 1-33, 1-79, 2-21, 3-79,

3-80
deallocating • 3-108

System resource
accessing • 2-47 to 2-48

System time • 3-69
reading • 2-52

T
Tape driver • 1-74, 4-13

using local tape UCB extension • 1-69, 1-81 to
1-82

Target
enabling selection from • 2-70, 2-73 to 2-90

Template UCB • 1-78
Terminal • 1-74, 1-76

See also Terminal controller, Terminal class driver,
Terminal port driver, Terminal UCB extension

detached • 1-75
I/O function for • 1-40
redirected • 1-75

Terminal class driver
binding to port driver • 2-8

Terminal controller • 1-21
Terminal port driver • 2-7

binding to class driver • 2-8
control flags • 1-89

Terminal UCB extension • 1-69, 1-84 to 1-91
remote • 1-75

Third-party SCSI class driver
receiving notification of asynchronous events on

target • 2-70, 2-73 to 2-90
Time

reading system • 2-52
TIMEDWAIT macro • 2-92 to 2-93

See also TIMEWAIT macro
example • 2-93

Timeout • 1-78, 2-104
detecting • 1-79
disabling • 2-43, 3-30
due time • 1-79
expected • 1-77, 3-105
for SCSI device • 2-89

Timeout handling routine • 2-104, 4-5
address •4-19

1 ndex-13

Index

Timeout handling routine (Cont.)

context • 4-19
entry point • 4-19
exit method • 4-20
functions • 4-20
input • 4-20
register usage • 4-19
synchronization requirements • 4-19

Timeout interval • 2-104
Timer queue • 3-29, 3-48
Timer queue element

See TQE
TIMER spin lock • 3-29, 3-48
TIMEWAIT macro • 2-94

See also TIMEDWAIT macro
example • 2-95

TIMOUT processor state • 1-16
TQE$B_RQTYPE • 3-48
TQE$Q_TIME • 3-29
TQE (timer queue element)

expiration time • 3-29
inserting in timer queue • 3-29
removing in timer queue • 3-48

Translation buffer
invalidating • 2-41 to 2-42

$TTYMACS macro • 2-7, 2-8, 2-98, 2-99, 2-100
$TTYUCBDEF macro • 1-69

U
UBMAPEXCED bugcheck • 3-74, 3-78
UCB$B_DEVCLASS • 2-25, 3-51
UCB$B_DEVTYPE • 2-25, 3-51
UCB$B DIPL • 2-25
U C B$ B_E RTC N T• 3-69, 3-94
UCB$B_FIPL • 1-73, 2-33
UCB$B_FLCK • 2-25, 2-33
UCB$L_AFFINITY • 3-71
UCB$L_DEVCHAR • 2-25
UCB$L_DUETIM • 3-104, 3-105
UCB$L_EMB • 3-8
UCB$L_IOQFL • 3-28
UCB$L_IRP • 3-71
UCB$L_OPCNT • 3-5, 3-24, 3-94

adjusted by IOC$REQCOM • 3-95
UCB$L_ORB • 1-44
UCB$L_SVAPTE • 1-40, 3-71, 3-79
UCB$L_SVPN • 2-21, 3-67, 3-79
UCB$L TT CLASS • 2-8

UCB$L_TT_PORT • 2-8
UCB$Q_DEVDEPEND • 3-49, 3-51
UCB$V_BSY • 3-28, 3-68, 4-5
UCB$V_CANCEL • 3-68, 3-71, 4-5
UCB$V_ECC • 3-67
UCB$V_ERLOGIP • 3-8, 3-95
UCB$V_ONLINE • 1-36
UCB$V_TEMPLATE • 4-6
UCB$V TIM • 2-43, 3-30, 3-104
UCB$V_TIMOUT • 3-71, 3-104
UCB$W_BCNT • 1-41, 1-79, 3-64, 3-66, 3-71
UCB$W_BOFF • 1-41, 1-79, 3-64, 3-66, 3-71
UCB$W BUFQUO

in mailbox UCB • 3-61
UCB$W_DEVBUFSIZ • 3-51

in mailbox UCB•3-61
UCB$W_EC1 •3-67
UCB$W_EC2.3-67
UCB$W_ERRCNT • 3-8
UCB$W_QLEN • 3-28
UCB$W REFC•4-4
UCB (unit control block) • 1-12, 1-68 to 1-91

as template • 1-78
cloned • 1-31, 1-78
creation • 1-37, 1-68
dual path extension • 1-69
error log extension • 1-69, 1-80 to 1-81
extending • 1-69 to 1-70
local disk extension • 1-69, 1-82 to 1-84, 3-9,

3-67
local tape extension • 1-69, 1-81 to 1-82, 3-9
logical • 1-87
physical • 1-86
reference count • 1-78
remote terminal extension • 1-75
size • 1-33, 1-69 to 1-70, 1-72, 2-22
terminal extension • 1-69, 1-84 to 1-91

$UCBDEF macro • 1-69
Unit delivery routine • 1-2

address • 1-34, 2-22, 4-21
context • 4-21
entry point • 4-21
exit method • 4-21
functions • 4-21
input • 4-21
register usage • 4-21
synchronization requirements •4-21

Unit initialization routine
address • 1-26, 1-30, 2-26, 4-22
context • 4-22
entry point • 4-22

Index-14

Index

Unit initialization routine (font.)

exit method • 4-23
for MASSBUS device • 1-26
functions • 4-23
input • 4-23
of terminal port driver • 2-8
register usage • 4-22
synchronization requirements • 4-22

UNLOCK macro • 2-96, 3-114, 3-116
UNLOCK SYSTEM PAGES macro • 2-97
Unsolicited interrupt service routine • 1-30

address • 4-24
context • 4-24
entry point • 4-24
exit method • 4-24
input • 4-24
register usage • 4-24
synchronization requirements • 4-24

UNSUPRTCPU bugcheck • 2-10

V
VAXBI node

mapping window space of • 3-107
VCB (volume control block) • 1--74, 1-78
VEC$L_INITIAL • 4-8
VEC$L_ISR • 4-13
VEC$L_UNITINIT • 4-22
VEC$Q_DISPATCH • 1-25
VEC$V_LWAE • 3-78
VEC$V_MAPLOCK • 3-90
VEC$V_PATHLOCK • 3-87
VEC (interrupt transfer vector) • 1-9, 1-22 to 1-27

multiple • 1-23
$VECEND macro • 2-99

example • 2-100
$V EC I N I macro • 2-98, 2-100

example • 2--100
$VEC macro • 2-98

example • 2-100
_VIELD macro • 1-70, 2-102 to 2-103

example • 2-103
$VIELD macro • 2-102 to 2-103
Virtual I/O function • 1-40, 1-41
Volume • 1-78

W
WCB (window control block) • 1-12, 1-39
WFIKPGH macro • 2-66, 2-104 to 2-105, 3-104,

4-19
WFIRLCH macro • 2-104 to 2-105, 3-104, 4-19
Working set limit • 3-35, 3-41

insufficient • 3-33
Workstation device • 1-76
Write check

enabling • 1-75

X
XQP (extended QIO processor) • 1-12, 1-74

default • 1-28

Index-15

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact

Continental USA, 800-DIGITAL Digital Equipment Corporation
Alaska, or Hawaii P.O. Box CS2008

Nashua, New Hampshire 03061

Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-267-6215 Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International Local Digital subsidiary or
approved distributor

Internals USASSB Order Processing - WMO/E 15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

sFor internal orders, you must submit an Internal Software Order Form (EN-01740-07).

("1

Reader's Comments VMS Device Support
Reference Manual

AA—PBPXA—TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ❑ ❑ ❑

Completeness (enough information) ❑ ❑ ❑ ❑

Clarity (easy to understand) ❑ ❑ ❑ ❑

Organization (structure of subject matter) ❑ ❑ ❑ ❑

Figures (useful) ❑ ❑ ❑ ❑

Examples (useful) ❑ ❑ ❑ ❑

Index (ability to find topic) ❑ ❑ ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.

Company Date

Mailing Address

Phone

— -- Do Not Tear -Fold Here acid Tape

d a9ao a TM

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

— — Do Not Tear -Fold Here

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications Spit Brook
ZK01-3/J35 1 10 SPIT BROOK ROAD
NASHUA, NH 03062-9987

III~~~~~II~II~~~~II~~~~I~Ii~l~~l~l~~i~~l~l~~~l~ii~~l

u

n

r°1

Reader's Comments VMS Device Support
Reference Manual

AA—PBPXA—TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ❑ ❑ ❑

Completeness (enough information) ❑ ❑ ❑ ❑

Clarity (easy to understand) ❑ ❑ ❑ ❑

Organization (structure of subject matter) ❑ ❑ ❑ ❑

Figures (useful) ❑ ❑ ❑ ❑

Examples (useful) ❑ ❑ ❑ ❑

Index (ability to find topic) ❑ ❑ ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/ri~tle Dept.

Company Date

Mailing Address

Phone

-- Do Not Tear -Fold Here and Tape

d a
TM

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

— -- Do Not Tear -Fold Here

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications Spit Brook
ZK01-3/J35 1 10 SPIT BROOK ROAD
NASHUA, NH 03062-9987

III~~~~~II~II~~~~II~~~~I~II~I~~I~I~~I~~I~I~~~I~II~~I

C
u

t
A

lo
n
g
 D

o
tt
e
d
 L

in
e

