
Building a DEC GKS Workstation
Handler System
Order Number: AA-MJ34A-TE

April 1989

This guide explains how to write GKS workstation handlers that DIGITAL does not
directly support. Chapter 1, Introduction, and Chapter 2, How GKS Works, provide
background information about DEC GKS, and the remainder of the book explains
how to build a full workstation handler.

Operating System and Version: VMS Version 4.7 or higher. ULTRIX Version 3.0
or higher. VAXstation requirement: VAXstation
Windowing Software Versions 3.3 or higher, or
DECwindows Version 1.0.

Software Version: DEC GKS Version 4.0

digital equipment corporation
maynard, massachusetts

First printing, May 1986
Revised March 1987, April 1989

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1986, 1987, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ALL—IN-1 EduSystem
DEC IAS
DEC/CMS MASSBUS
DEC/MMS PDP
DECnet PDT
DECmate P/OS
DECsystem-10 Professional
DECSYSTEM-20 Q—bus
DECUS Rainbow
DECwriter RSTS
DIBOL RSX

RT
ULTRIX
UNIBUS
VAX
VAXcluster
VMS
VT
Work Processor

d ~9~ a
TM

ZK4634

Contents

Preface xiii

Summary of Technical Changes xv

Chapter 1 Introduction

1.1 Writing Handlers for Your Devices 1-2

1.2 Workstation Handlers 1-3

Chapter 2 How GKS Works

2.1 The GKS System 2-1
2.1.1 Inquiries 2-1
2.1.2 Transformations ~ 2-2
2.1.3 Input 2-4
2.1.4 Output 2-4

2.2 Communication Between the Kernel and Your Handler 2-5
2.2.1 DEC GKS Data Types 2-6
2.2.2 Parameter Passing 2-6

iii

Chapter 3 Building a Workstation Handler System

3.1 Required Capabilities 3-2

3.2 Hardcopy Output Devices 3-3

3.3 Workstation Handler Data Structures 3-4
3.3.1 Building the Workstation Description Table 3-4

3.4 Workstation State List 3-25

3.5 Required Functions 3-32
3.5.1 Segment Simulation 3-32
3.5.2 Message and Constant Files 3-33

3.6 Suggested Escape Function 3-34
3.6.1 INQUIRE GDP EXTENT 3-34

3.7 Developing Your Device Function Table 3-35

3.$ Linking Your Handler to DEC GKS 3-44

3.9 Defining Workstation Handler Logical Names 3-44
3.9.1 Handler Logical Names 3-45
3.9.2 Adding Logical Names t0 GKSTARTUP.COM 3-48
3.9.3 Reentrance 3-48

Chapter 4 Workstation Handler Control and Transformation Functions

4.1 Active Attribute Array 4-1

4.2 Function Descriptions 4-3
OPEN WORKSTATION 4-4
CLOSE WORKSTATION 4-6
CLEAR WORKSTATION 4-7
UPDATE WORKSTATION 4-9
PERFORM DEFERRED OUTPUT 4-11
ESCAPE 4-12
SET WORKSTATION WINDOW 4-14
SET WORKSTATION VIEWPORT 4-16
SET NORMALIZATION TRANSFORMATION 4-18
SET DEFERRAL MODE 4-20

iv

REDRAW ALL SEGMENTS ON WORKSTATION 4-22
SET GLOBAL INTERACTIONS 4-23
MESSAGE 4-2 5
SET NDC TRANSFORMATION 4-26

Chapter 5 Workstation Handler Input Functions

5.1 Writing Input Functions 5-1
5.1.1 INITIALIZE Functions 5-2
5.1.2 SET Functions 5-2

5.2 REQUEST, SAMPLE, and EVENT Input 5-2
5.2.1 Managing SAMPLE and EVENT input 5-3
5.2.2 GKS$STORE~VENTS 5-4

5.3 Function Descriptions 5-6
INITIALIZE LOCATOR 5-7
INITIALIZE STROKE 5-13
INITIALIZE VALUATOR 5-18
INITIALIZE CHOICE 5-21
INITIALIZE STRING 5-25
INITIALIZE PICK 5-28
SET LOCATOR MODE 5-31
SET STROKE MODE 5-33
SET VALUATOR MODE 5-35
SET CHOICE MODE 5-37
SET STRING MODE 5-39
SET PICK MODE 5-41
REQUEST LOCATOR 5-43
REQUEST STROKE 5-45
REQUEST VALUATOR 5-47
REQUEST CHOICE 5-49
REQUEST STRING 5-51
REQUEST PICK 5-53
SAMPLE LOCATOR 5-55
SAMPLE STROKE 5--56
SAMPLE CHOICE 5-58
SAMPLE VALUATOR 5--60
SAMPLE STRING 5-61
SAMPLE PICK 5--63

v

Chapter 6 Workstation Handler Inquiry Functions
INQUIRE LIST OF POLYLINE INDEXES 6-3
INQUIRE POLYLINE REPRESENTATION 6-5
INQUIRE LIST OF POLYMARKER INDEXES 6-7
INQUIRE POLYMARKER REPRESENTATION 6-9
INQUIRE LIST OF TEXT INDEXES 6-11
INQUIRE TEXT REPRESENTATION 6-13
INQUIRE TEXT EXTENT 6-15
INQUIRE LIST OF FILL AREA INDEXES 6-25
INQUIRE FILL AREA REPRESENTATION 6-27
INQUIRE LIST OF PATTERN INDEXES 6-29
INQUIRE PATTERN REPRESENTATION 6-31
INQUIRE LIST OF COLOR INDEXES 6-33
INQUIRE COLOR REPRESENTATION 6-35
INQUIRE WORKSTATION TRANSFORMATION 6-37
INQUIRE LOCATOR DEVICE STATE 6-39
INQUIRE STROKE DEVICE STATE 6-42
INQUIRE VALUATOR DEVICE STATE 6-45
INQUIRE CHOICE DEVICE STATE 6-47
INQUIRE STRING DEVICE STATE 6-50
INQUIRE PICK DEVICE STATE 6-52
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATE 6-55
INQUIRE PIXEL ARRAY DIMENSIONS 6-57
INQUIRE PIXEL ARRAY 6-60
INQUIRE PIXEL 6-62
INQUIRE SEGMENT NAMES ON WORKSTATION 6-64
INQUIRE WORKSTATION CATEGORY 6-66
INQUIRE WORKSTATION CLASSIFICATION 6-68
INQUIRE DISPLAY SPACE SIZE 6-69
INQUIRE POLYLINE FACILITIES 6-71
INQUIRE PREDEFINED POLYLINE REPRESENTATION 6-73
INQUIRE POLYMARKER FACILITIES 6-75
INQUIRE PREDEFINED POLYMARKER REPRESENTATION 6-77
INQUIRE TEXT FACILITIES 6-79
INQUIRE PREDEFINED TEXT REPRESENTATION 6-81
INQUIRE FILL AREA FACILITIES 6-83
INQUIRE PREDEFINED FILL AREA REPRESENTATION 6-85
INQUIRE PATTERN FACILITIES 6-87
INQUIRE PREDEFINED PATTERN REPRESENTATION 6-88
INQUIRE COLOR FACILITIES 6-90
INQUIRE PREDEFINED COLOR REPRESENTATION 6-91
INQUIRE GDP PRIMITIVES 6-92
INQUIRE GENERALIZED DRAWING PRIMITIVE 6-94 u

vi

INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE TABLES 6-96
INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES 6-98
INQUIRE DEFAULT LOCATOR DEVICE DATA 6-100
INQUIRE DEFAULT STROKE DEVICE DATA 6-102
INQUIRE DEFAULT VALUATOR DEVICE DATA 6-104
INQUIRE DEFAULT CHOICE DEVICE DATA 6-106
INQUIRE DEFAULT STRING DEVICE DATA 6-108
INQUIRE DEFAULT PICK DEVICE DATA 6-110
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION
ATTRIBUTES 6-112
INQUIRE DEFAULT DEFERRAL STATE VALUES 6-114
INQUIRE NUMBER OF SEGMENT PRIORITIES SUPPORTED 6-116
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES 6-117
INQUIRE SIZE OF HANDLER STORAGE 6-119

Chapter 7 Workstation Handler Metafile Functions
WRITE ITEM TO METAFILE 7-3
GET ITEM FROM METAFILE 7-5
READ ITEM FROM METAFILE 7-7

Chapter 8 Workstation Handler Set Representation Functions

8.1 Function Descriptions 8-2
SET POLYLINE REPRESENTATION 8-3
SET POLYMARKER REPRESENTATION 8-5
SET TEXT REPRESENTATION 8-7
SET FILL AREA REPRESENTATION 8-9
SET PATTERN REPRESENTATION 8-11
SET COLOR REPRESENTATION 8-13

Chapter 9 Workstation Handler Output Functions

9.1 Coordinate Data 9-1

9.2 Attributes 9-2

9.3 Aspect Source Flags 9-2

9.4 Segment Overlap 9-5

vii

9.5 Output Function Descriptions 9-5
POLYLINE 9-6
POLYMARKER 9-8
TEXT 9-10
FILL AREA 9-15
CELL ARRAY 9-19
GDP 9-22
HIGHLIGHT EXTENT 9-24

Chapter 10 Workstation Handler Segment Functions
CREATE SEGMENT 10-2
CLOSE SEGMENT 10-3
RENAME SEGMENT 10-4
DELETE SEGMENT 10-5
SET SEGMENT TRANSFORMATION 10-7
SET VISIBILITY 10-9
SET SEGMENT PRIORITY 10-11
SET DETECTABILITY 10-13
SET HIGHLIGHTING 10-14

Appendix A Transformations

A.1 Concatenating Transformation Matrixes A-1

A.2 NDC Transformation and Segment Simulation A-2

A.3 NDC Transformation When Your Handler Supports Segments A-4

A.4 Algorithms for Transformations A-6
A.4.1 Transformations Assuming an Identity NDC

Transformation A-6
A.4.2 Transformations Assuming the Nonidentity NDC

Transformation A-8
A.4.2.1 Transforming from NDC to LDC A-8
A.4.2.2 Transforming from WC to LDC A-9

viii

Appendix B Stroke Text Simulation Routines
GKS$SIM_STROKE_TEXT B-2
GKS$SIM_STROKE_TEXT_EXTENT B-6
GKS$SIM_STROKE_INQ_TEXT_FAC B-9

Appendix C Pick Simulation Functions
GKS$FIND_SEGMENT C-2
GKS$FIND_SEG _EXTENT C-6

Appendix D Workstation Handler Function Examples

D.1 Data Structures D-1

D.2 Control Functions D-8

D.3 Transformation Functions D-16

D.4 Output Functions D-21

D.5 Output Attribute Functions D-26

D.6 Inquiry Functions D-28

D.7 DFT Building Macro D-32

D.8 Linking Command Procedure D-34

Index

Examples
3-1 Sample DFT-Building Macro 3-42

ix

Figures

1-1 The Application, GKS Kernel, and Handlers 1-2

1-2 Workstation Handler Diagram 1-4

6-1 Text Extents 1 6-17

6-2 Text Extents 2 6-18

6-3 Text Extents 3 6-19

6-4 Text Extents 4 6-20

6-5 Text Extents 5 6-21

6-6 Pixel Array Dimensions 6-58

A-1 Transformation Pipeline for Segment Simulation A-3

A-2 Transformation Pipeline for Handlers that Support Segments A-5

Tables
2-1 GKS State Lists and Description Tables 2-2

2-2 GKS Coordinate Systems 2-3

2-3 DEC GKS Data Types 2-6

2-4 Passing Mechanisms for DEC GKS Data Types 2-7

3-1 GKS Level 2c Required Capabilities 3-2

3-2 Workstation Handler Workstation Description Table Structure 3-5

3-3 WDT Items for All Workstation Types Except MI and MO 3-6

3-4 WDT Items for OUTPUT and OUTIN Workstations 3-6

3-5 WDT Items for LOCATOR Logical Input Devices 3-21

3-6 WDT Items for STROKE Logical Input Devices 3-22

3-7 WDT Items for VALUATOR Logical Input Devices 3-23

3-8 WDT Items for CHOICE Logical Input Devices 3-23

3-9 WDT Items for PICK Logical Input Devices 3-24

3-10 WDT Items for STRING Logical Input Devices 3-24

3-11 WSL Elements for All Workstation Types 3-26

3-12 WSL Elements for OUTIN, OUTPUT, and MO Workstations 3-26

3-13 WSL Items for LOCATOR Logical Input Devices 3-28

3-14 WSL Items for STROKE Logical Input Devices 3-29

3-15 WSL Items for VALUATOR Logical Input Devices 3-30

3-16 WSL Items CHOICE Logical Input Devices 3-30

3-17 WSL Items PICK Logical Input Devices 3-31

3-18 WSL Items for STRING Logical Input Devices 3-31

x

3-19 GKSMSGS and GKSDEFS File Extensions 3-33
3-20 Keywords for DFT Macro 3-36
3-21 Keywords for DFT_INPUT Macro 3-38
3-22 Keywords for DFT_GKS_INQ Macro 3-39
3-23 Keywords for DFT_WS_INQ Macro 3-40
4-1 Active Attribute Array Structure 4-2
4-2 Call Back Table Output Parameter 4-5
7-1 Required Metafile Format 7-2
7-2 Metafile Format Items Determined by Your Functions 7-2
9-1 ASF Bits 9-3
9-2 No Change Bits 9-3
9-3 GKS Bitmask Constants 9-4

r"1

xi

Preface

This book explains how to build DEC GKS workstation graphics handlers.

Document Structure

Chapter 1, Introduction, and Chapter 2, How GKS Works, provide background
information about DEC GKS. Review these chapters for an overview of DEC
GKS before you write a handler. If you are unfamiliar with any of the concepts
in these chapters, refer to the DEC GKS Reference Manual.

The remainder of this book explains how to build a workstation handler
system. The workstation handler is the most efficient way to implement DEC
GKS on your device, but it is far bigger and more complex than the device
handler system. Chapter 3, Building a Workstation Handler System, describes
data structures normally contained in a workstation handler system, as well as
how to build and link the system. Chapter 4, Workstation Handler Control and
Transformation Functions, through Chapter 10, Workstation Handler Segment
Functions, describe the functions you must write to implement a workstation
handler.

The appendixes provide additional information about transformations and
built-in simulation routines for workstation handler systems, as well as example
workstation handler functions.

Intended Audience

This book is intended for experienced systems programmers with a strong
background in graphics. Fa ' 'arity with DEC GKS is assumed.

Associated Documents

This manual is part of the DEC GKS documentation set that includes the
following books:

~ The DEC GKS Reference Manual

• The DEC GKS User Manual

• The DEC GKS C Binding Reference Manual

• The DEC GKS FORTRAN Binding Reference Manual

• The DEC GKS GKS$ Binding Reference Manual

• The DEC GKS Device Specifics Reference Manual

• The Building a DEC GKS Device Handler System

• The Building a DEC GKS Workstation Handler System

• The DEC GKS Installation Guide

The reader should have a thorough understanding of the DEC GKS Reference
Manual.

In addition, to develop a GKS implementation that conforms to the national
standard, the reader should be familiar with the ANSI GKS standard, X3.124,
available from the American National Standards Institute, Inc. The descriptions
of GKS functions and data structures in this book are based on the ANSI
standard.

xiv

Summary of Technical Changes

New and Changed Features

This is a new DEC GKS Version 4.0 manual, replacing in part the Version 3.0
manual, Writing VAX GKS Graphics Handlers, which is divided into two manuals
for Version 4.0: Building a DEC GKS Device Handler System and Building a DEC
GKS Workstation Handler System. Changes and additions to these manuals are
minor.

The following is a change from Version 3.0 to Version 4.0 related to building a
workstation graphics handler:

• The funtion OPEN WORKSTATION in Chapter 4, Workstation Handler
Control and Transformation Functions, has a new parameter, CALL _
BACK_TABLE.

xv

Chapter 1

Introduction

The DEC Graphical Kernel System (GKS) is a run-time library of graphics
routines. A GKS implementation consists of a kernel and at least one handler.
The kernel interprets calls to the GKS$ interface or a binding (that is, GKS
functions as explained in the DEC GKS Reference Manual), and performs
device-independent operations. Kernel operations include some inquiry
functions, maintaining certain state tables, issuing calls to handlers, and some
simulation routines.

Handlers perform device-specific operations. Handler operations include
performing output, getting input, and responding to inquiries for workstation-
specific information. You use a different handler for each type of workstation.
The kernel can work with multiple handlers to drive many different devices
simultaneously, as shown in Figure 1-1.

Introduction 1-1

Figure 1-1: The Application, GKS Kernel, and Handlers

APPLICATION

GKS KERNEL

VAXstation I
Handler

Workstation
Manager

VT125 VT240

ZK-5008-86

This chapter explains the process of writing handlers for devices that DIGITAL
does not directly support.

1.1 Writing Handlers for Your Devices

You can write a handler to support any graphics device that DIGITAL does
not support, then use those devices for GKS operations with your system. By
writing a custom handler for your specific device, you can take full advantage
of the features and capab' 'ties available in your workstation.

Writing a handler involves writing graphics functions, and creating data
structures and tables that serve as interfaces between your handler and the GKS
kernel.

DEC GKS provides two methods of writing handlers. You can either write
a device handler or a workstation handler. The following section describes
how to write workstation handlers only. For information about writing device
handlers, see the Building a DEC GKS Device Handler System.

1-2 Introduction

1.2 Workstation Handlers

The steps for writing a full workstation handler parallel writing a device
handler except that you must provide approximately 125 routines and build
several data structures. The routines include the following:

• Control operations

• Input functions

• Setting output attributes

• Output functions

• Transformations

• Inquiries

• Metafile functions (for metafile handlers)

• Segment operations (optional)

Figure 1-2, Workstation Handler Diagram, illustrates the operation of a
workstation handler system.

Introduction 1-3

Figure 1-2: Workstation Handler Diagram

APPLICATION

GKS$CALLS STATUS, DATA

GKS KERNEL

L ~\~

WORKSTATION HANDLER FUNCTIONS

ZK-5010-86

When the GKS kernel receives a GKS command it interprets the command. If
the kernel can perform the function by itself (for example, returning information
from a table internal to the kernel), it performs the function and returns the
result to the calling process.

If the kernel cannot perform the function specified by the GKS command, it
executes auser-written function. At the completion of this process the function
returns a result to the GKS kernel for eventual delivery to the calling process.

The advantage of a workstation handler is increased performance gained by
taking advantage of the device's specific capabilities. The disadvantage is the
longer time needed to implement the handler.

If your workstation has a large amount of intelligence or features, including
complete hardware support for segments and pick input, and time-to-
implementation is not a consideration, you should probably write a workstation
handler. Another situation where you might choose to write a workstation
handler is to support a metafile handler.

On the other hand, if you need to implement GKS as soon as possible on a
device DIGITAL does not support directly, or if your device does not have
significant intelligence or functionality, you should probably write a device
handler. You can write a workstation handler after the device is running with a
device handler system.

1-4 Introduction

See Appendix D, Workstation Handler Function Examples, for more information
about developing full workstation handlers.

~"1

Introduction 1-5

Chapter 2

How GKS Works

This chapter provides the background information you need to develop GKS
graphics handlers. It explains how GKS works, and the communications
between the GKS kernel and the handlers.

2.1 The GKS System

The GKS system performs graphics output, accepts input on a graphics
workstation, and performs inquiries and transformations. The following
sections describe each of these operations. Note that these sections describe
how the kernel interacts with a handler. If you are developing a workstation
handler system you must provide functions to support each interaction.

2.1.1 Inquiries

GKS inquiries give you information from the state lists and description tables
shown in Table 2-1.

How -GKS Works 2-1

Table 2-1: GKS State Lists and Description Tables

Name Contents

GKS Description Table Constant information .about the GKS utility, including
the implementation level and maximum number of
transformations. This is a read-only structure contained
in the kernel.

GKS State List The current state of GKS, such as the list of open
workstations, current normalization transformation
number, and the value of each output attribute. This is a
read/write structure maintained by the kernel.

Segment State List The current state of each open segment, including
the segment name, the workstations with which it is
associated, and its priority and visibility. This is a
read/write structure maintained by the kernel.

Workstation Description Constant information about each workstation, including
Table its category and its input and output capabilities. This is

a read-only structure contained in the handler.

Workstation State List Information about each open workstation's current input
and output attributes. This is a read/write structure.
Some of its information is maintained jointly by the
kernel and the handler or workstation manager.

Additional GKS inquiries get information about picture elements (pixels) on an
output device.

1Viost inquiry functions operate by looking up the requested information in the
appropriate table. In device handler implementations, the workstation manager
supplied by DIGITAL responds to most inquiry operations. Your device handler
need only respond to the inquiries described in Chapter 4.

In workstation handler systems, you must provide functions to respond to 20
inquiries into- the WSL, 23 inquiries into the WDT, and 3 pixel inquiries.

2.1.2 Transformations

Transformations let you map coordinates from one GKS coordinate system to
another. In a device handler system, the workstation manager performs all
transformations. In a workstation handler system, you must provide functions
to perform transformations.

2-2 How GKS Works

GKS uses three coordinate systems, as shown in Table 2-2.

Table 2-2: GKS Coordinate Systems

Coordinate System Description

World Coordinates (WC) A coordinate system defined by an X-axis and a Y-axis
which intersect at 0 on each axis and continue to infinity
in both the positive (up or right) and negative (down or
left) direction. You define the portion of world coordinate
space in which you will work by specifying the X and Y
coordinates of the corners of a rectangle. The rectangle
you specify is called the world window. Points in WC
space are represented as real numbers.

Normalized Device An imaginary display system with decimal coordinates
Coordinates (NDC) from 0 to infinity on both the X and Y axis. Only the

portion from 0 to 1 on each axis is visible. You map the
world window to a portion of NDC space called the world
viewport. Then you specify the portion of NDC space you
want to use on a particular workstation. This is called the
workstation window.

Logical Device A coordinate system with the origin based in the lower
Coordinates (LDC) left corner and assuming square units. The units may be

based on the unit size of the device's native coordinate
system. You map the workstation window to a portion of
LDC space called the workstation viewport. Your device's
specifications should list its coordinate range.

In addition to logical device coordinates, GKS also uses device coordinates
(DC). The device coordinate system is the coordinate system your device
understands. It may be integer or real numbers, and the origin may be at any
point on the display surface. If your device uses a different origin, integer
device coordinates, or nonsquare coordinates, you must convert your device
coordinates to LDC. Your handler functions must also convert points from LDC
to DC for output functions.

The multiple coordinate systems let GKS operate independently of the size
or X/Y aspect ratio of individual workstations. You can generate graphics
images using any world coordinate system you need, then map that system to a
normalized coordinate system. Finally, you map from the normalized system to
device-specific coordinates. You can map entire images or portions of images,
and you can use clipping functions to make GKS display or clip portions of
images that fall outside the areas you specify.

You map from WC space to NDC space (that is, from the world window to the
world viewport) by selecting a normalization transformation. GKS maintains a
list of up to 256 normalization transformations.

How GKS Works 2-3

You map between NDC space and DC space (or in other words, between the
workstation window and the workstation viewport), by defining a workstation
transformation. You set up a workstation transformation by specifying a
workstation window and a workstation viewport. When the handler performs
the transformation it replaces the "current transformation" values with the
"requested transformation" data, and updates the output display.

2.1.3 Input

Graphic input can come from a variety of devices, such as a keyboard, a mouse,
or a light pen.

GKS has several logical input device types. They allow you to enter a single
point or a series of points in a stroke, choose from a menu, enter text, or select
a value in a range. If you write a full handler, you must provide functions to
implement each logical input device type mode you want.

If you write a device handler, you need only write one routine to simulate all
input types. The workstation manager uses this one routine to gather data and
simulate the other logical input device types.

For input routines that return points, the workstation handler gets input
in device coordinates and converts it to NDC using the workstation
transformation. For device handler systems, the workstation manager converts
the points to NDC, and then passes the NDC coordinates to the kernel.

2.1.4 Output

GKS generates graphic images and sends them to output devices. You can send
output to such devices as a terminal screen, a printer, a plotter, or a metafile.

Output is made up of primitives. Primitives are graphic elements such as lines,
text, and markers. The appearance of each primitive is controlled by attributes,
such as the width, style, and color of lines. When you design your handler you
create bundles of attributes to define output types. For example, you can define
linetypes with a particular line style, width, and color. At run time, a GKS
application can select a bundled output type, as well as set individual attributes.
Then it can set bits in an Attribute Source Flag (ASF) to tell GKS whether you
want to use the bundled or individual attributes when it draws the primitive.

Both the bundled and individual attributes for each primitive are stored in the
GKS state list. When an application calls an output function, the GKS kernel
binds the primitive to the current attributes, and passes the attributes to the
workstation along with the primitive information.

2-4 How GKS Works

When the kernel calls an output function, the handler maps the picture
from world coordinates to normalized device coordinates using the current
normalization transformation. The current transformation is the last one you
selected.

Then the handler maps the points to device coordinates using the current
workstation transformation, and displays the output. If the workstation
cannot perform dynamic regeneration, the output may require a workstation
regeneration.

When you write a handler, you must decide how to manage operations such
as drawing wider lines and filling areas of the display. If your workstation can
draw variable-width lines and fill areas of the display surface, your handler
should use these capab' 'ties.

If your device cannot perform operations such as these, you may choose to
simulate them in a device handler. If you do, the workstation manager will
simulate the operation and pass it to your handler as commands your handler
can perform. For example, if your device cannot draw variable-width lines, the
workstation manager can simulate thicker lines by commanding your handler
to draw several thin lines close together.

2.2 Communication Between the Kernel and Your Handler

The kernel calls your handler routines as functions, passing them all the
information they need as formal parameters. Your functions can only return
information to the handler in formal parameters and a return status. Parameters
for each function are listed in the function description.

Function descriptions also contain status codes. Your function can either return
one of the status codes listed in the function descriptions, or another status
code specific to your system.

If the function returns one of the status codes in the function description, the
GKS kernel responds to the status code automatically. The response may be to
proceed (for example, if the code indicates normal successful completion), or it
may handle the error using the GKS error-handling procedure (as described in
the DEC GKS Reference Manual).

If the function returns a status code that is not in the function description,
the GKS kernel passes a message to the user. You can develop messages
specifically for your handler using the VMS Message utility. For information
about developing and implementing messages, see the VAX/VMS Message
Utility Reference Manual. If you do not implement your own error messages,
GKS treats the condition as an unexpected error. The default response to such

How GKS Works 2-5

an error is a GKS "unexpected errror" warning, followed by any error message
the handler generates.

Device handler systems also implicitly pass information to the kernel through
the workstation manager through the Workstation Description Table.

2.2.1 DEC GKS Data Types

DEC GKS uses the following data types, as shown in Table 2-3.

Table 2-3: DEC GKS Data Types

Data Type Description

Integers 32-bit signed integers.

Reals 32-bit FLOATING.

Text Seven- or eight-bit characters

One-dimensional Arrays Groups of integers, reals, or both. Arrays start at the
default minimum index for your programming language
(for example, 0 in C, and 1 in FORTRAN or PL,/T). Indexes
into the array are passed assuming the minimum index
is 1, so if you program in a language with a different
minimum index, your function must compensate.

Two-dimensional Arrays Groups of integers, reals, or both. If your programming
language does not support two-dimensional arrays, your
handler must treat the array as one-dimensional, of the
size [NUMBER_ROWS times NUMBER_COLUMNS]. In
this case your handler must concert indexes expressed as
[ROW,COLUMN] to aone-dimensional index. The kernel
either passes indexes into the array in either column-major
or row-major format according to a variable in the
Workstation Description Table, or passes a flag indicating
which format the array is in. In the last case, the handler
must interpret the indexes.

2.2.2 Parameter Passing

DEC GKS passes the data types as shown in Table 2-4.

2-6 How GKS Works

Table 2-4: Passing Mechanisms for DEC GKS Data Types

Data Type Passed by

Integers

Reals

Read-only Text Strings

Read/Write Text Strings

Arrays

Reference.

Reference.

Scalar string descriptor (DSC$K_CLASS~).

Two modifiable arguments passed by reference. The first
argument is an integer. When passed to the function it
contains the size of a string buffer. When returned from
the function it should contain the bytes written to the
buffer. The second argument is the string buffer, passed
by reference (in other words, a pointer to the buffer).

Passed by reference. For atwo-dimensional array, the
kernel passes these three additional parameters:

• NUMBER_COLUMNS

• NUMBER_ROWS

• COLUMN _1ViAJOR SLAG

How GKS Works 2-7

Chapter 3

Building a Workstation Handler System

This chapter explains how to build a workstation handler system. Chapters
4 through 10 describe the functions you must build into your workstation
handler.

At a minimum, your functions must perform the operation described in each
function description. However, the method you use to perform each function
depends on your device.

You should design your workstation handler to suit the requirements and
capab' 'ties of the device you want to support. If your device has built-in
graphics capab' 'ties, such as the ab' 'ty to draw polygon fill areas or to perform
clipping, you do not need to perform these tasks in software. If your hardware
does not have certain capab' 'ties, you must provide them in your handler
functions.

Most workstation handler functions perform a GKS operation that users or
application programs request, using a GKS$ command. For example, when
the user gives the GKS$POLYLINE command, the kernel runs your polyline
function. Note that the function descriptions are written for users who already
know what the functions should do. If you are not fa ' 'ar with GKS functions,
or if you want more information about particular functions, see the DEC GKS
Reference Manual.

Building a Workstation Handler System 3-1

3.1 Required Capabilities

In order for your handler to comply with the GKS level 2c implementation
standard, you must provide the support listed in Table 3-1. These are the
m. inimum required capab' 'ties. Your system may include additional support.

Items marked with an asterisk (*) state the minimum number of styles required
for a primitive. The actual styles are specified in the GKS standard.

Table 3-1: GKS Level 2c Required Capabilities

Item
Minimum
Requirement

Foreground colors 1

Linetypes 4*

Linewidths 1

Predefined polyline bundles 5

Settable polyline bundles 20

Marker types 5*

Marker sizes 1

Predefined polymarker bundles 5

Settable polymarker bundles 20

Character- and string-precision text character heights 1

Character- and string-precision text character expansion factors 1

String precision fonts 1

Character precision fonts 1

Stroke precision fonts 2

Predefined text bundles 6

Settable text bundles 20

Predefined patterns (for workstations supporting pattern interior 1
style)

Settable patterns (for workstations supporting pattern interior style) 10

Hatch styles (for workstations supporting hatch interior style) 3

Predefined fill area bundles 5

Settable fill area bundles 10

Settable normalization transformations 10

3-2 Building a Workstation Handler System

Table 3-1 (Cow.): GKS Level 2c Required Capabilities

Item
Minimum
Requirement

Segment priorities (for workstations supporting segment priorities) 2

Input classes 6

Prompt and Echo Types per device 1

Maximum string buffer size (characters) 72

Maximum stroke buffer size (points) 64

3.2 Hardcopy Output Devices

If you are building a handler for a hardcopy device, it should generate output
whenever the workstation is cleared. It is important to note that when segments
are redrawn, the screen is first cleared, so hardcopy output should be generated.
The following functions may cause the screen to be cleared.

If the workstation supports segments, then the workstation handler must
determine when to generate hardcopy output. The following functions should
generate output:

• Update Workstation—Only if new frame is necessary, and segments are
actually redrawn.

• Close Workstation Should contain an implicit Update Workstation and
Clear Workstation.

• Redraw All Segments on Workstation Always.

• Clear Workstation—Always.

In addition, you can also produce hard copy as a part of any other function.

If the kernel is simulating segments, the workstation should produce hard copy
whenever the function Clear Workstation is called, before the workstation is
actually cleared. It should also produce hard copy during the Close Workstation
function, as a result of an implicit Clear Workstation function call.

6uiiding a Workstation Handler System 3-3

3.3 Workstation Handler Data Structures

Your handler must be able to reply to inquiries from the kernel. It must
also store data passed from the kernel, and refer to that information when it
performs subsequent operations.

Logically, all the information the workstation needs to manage can be divided
into two groups. One group contains information that never changes. This
information includes your workstation's capab' 'ties and your predefined
output primitive representations (or bundles). The other group contains
information about the state of your workstation handler at any given time. This
information includes the current output bundles, and the current and requested
transformations.

The GKS standard refers to the data structure that holds constant information
as the Workstation Description Table, or WDT. The data structure containing
dynamic information about your workstation is called the Workstation State
List, or WSL.

You are not required to provide either data structure. The kernel never reads
from or writes directly to any data structure maintained by the workstation
handler. This gives you freedom to optimize the data structures which your
handler maintains. For example, if your device has a hardware color table,
and you can read the hardware color table to implement an Inquire Color
Representation function, there is no need to keep a color table in software. You
are only required to maintain the information usually associated with the data
structures, and be able to return the information when the kernel requests it.
However, since you will almost certainly need some form of each of these data
structures, the following sections fully describe the Workstation Description
Table and the Workstation State List. You should use these sections only as
guidelines, and modify them according to your own needs.

3.3.1 Building the Workstation Description Table

The WDT contains information about your workstation's capabilities and
pointers to the structures you have built. It is a read-only structure.

The tables in this section list WDT information according to the workstation
type. This information is specified by the GKS standard. Your handler must be
able to give the kernel all the information listed for the type of workstation you
are supporting.

3-4 Building a Workstation Handler System

It is possible to support several different workstations with the same handler.
If you support several devices that operate s' ' arly, you may choose to build
a single handler, and include code for dealing with minor differences between
your devices. In this case, you must write a separate WDT for each device.

Several of the items in the WDT can be data structures. The contents of each
data structure are described in the following table. Note that you may choose
to build the data structure within your WDT, or your WDT may simply contain
a pointer to structures located elsewhere.

The data item names in these tables correspond with the data item names in
the function descriptions.

Table 3-2 contains a list of items that are required for all workstations.

Table 3-2: Workstation Handler Workstation Description Table
Structure

Item Data Type Description

WORKSTATION_CATEGORY Integer The workstation category. One of:

• GKS$K_WSCAT_OUTPUT (0)
for OUTPUT

• GKS$K_WSCAT~NPUT (1) for
INPUT

• GKS$K_WSCAT_OUTIN (2) for
OUTIN

• GKS$K_WSCAT_IViO (4) for
METAFILE OUTPUT

• GKS$K_WSCAT_IVII (5) for
METAFILE INPUT

Table 3-3 contains a list of items required for all workstation types except MI
and MO.

Building a Workstation Handler System 3-5

Table 3-3: WDT Items for All Workstation Types Except MI and MO

Item Data Type Description

DEV_COORDINATE_UNITS Integer

DEV_DISPLAY~PACE _
SIZE ~C

DEV_DISPLAY~PACE _
SIZE Y

RASTER _DISPLAY_SPACE _
SIZE ~C

Real

Real

Integer

RASTER_DISPLAY~PACE_ Integer
SIZE Y

The coordinate system the device
uses. One of:

• GKS$K~V[ETERS (0) for
METERS

• GKS$K_OTHER_UNITS (1) for
OTHER UNITS

The X dimension of the display size,
in logical device coordinates.

The Y dimension of the display size,
in logical device coordinates.

The X dimension of the display size,
in raster units. For raster devices,
this is the number of columns in the
display. For vector devices, this is
the highest resolution possible in the
X direction.

The Y dimension of the display size,
in raster units. For raster devices,
this is the number of rows in the
display. For vector devices, this is
the highest resolution possible in the
Y direction.

Table 3-4 contains a list of items you must provide for all OUTPUT or OUTIN
workstations.

Table 3-4: WDT Items for OUTPUT and OUTI N Workstations

Item Data Type Description

DISPLAY_TYPE Integer The display classification. One of:

• GKS$K_WSCLASS_VECTOR
(0) for VECTOR

• GKS$K_WSCLASS_RASTER (1)
for RASTER

• GKS$K_WSCLASS_OTHER (2)
for OTHER

3-6 Building a Workstation Handler System

Table 3-4 (Cont.): WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

DMAF—POLYLINE Integer A flag indicating whether the device
can display a change to the polyline
representations without redrawing
the entire display. Either:

• GKS$K—IMM (0) if the device
can display the change without
redrawing the entire display.

• GKS$K ERG (1) if the device
must redraw the display.

DMAF~'OLYMARKER Integer A flag indicating whether the
device can display a change to the
polymarker representations without
redrawing the entire display. Either:

• GKS$K_IMM (0) if the device
can display the change without
redrawing the entire display.

• GKS$K _IRG (1) if the device
must redraw the display.

DMAF_TEXT Integer A flag indicating whether the device
can display a change to the text
representations without redrawing
the entire display. Either:

• GKS$K_IMM (0) if the device
can display the change without
redrawing the entire display.

• GKS$K~RG (1) if the device
must redraw the display.

Building a Workstation Handler System 3-7

Table 3-4 ~Co~.~: WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

DMAF_FILL Integer A flag indicating whether the device
can display a change to the fill area
representations without redrawing
the entire display. Either:

• GKS$K~MM (0) if the device
can display the change without
redrawing the entire display.

• GKS$K ERG (1) if the device
must redraw the display.

DMAF~'ATTERN Integer A flag indicating whether the device
can display a change to the pattern
representations without redrawing
the entire display. Either:

• GKS$K~MM (0) if the device
can display the change without
redrawing the entire display.

• GKS$K_IRG (1) if the device
must redraw the display.

DMAF_COLOR Integer A flag indicating whether the device
can display a change to the color
representations without redrawing
the entire display. Either:

• GKS$K~MM (0) if the device
can display the change without
redrawing the entire display.

• GKS$K _IRG (1) if the device
must redraw the display.

3-8 Building a Workstation Handler System

Table 3-4 ~Cont.): WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

DMAF WS— Integer A flag indicating whether your
TRANSFORMATION device can change the workstation

transformation without redrawing the
entire display. Either:

• GKS$K.~MM (0) if the device
can display the change without
redrawing the entire display.

• GKS$K.~RG (1) if the device
must redraw the display.

DEF_DEFER~VIODE Integer The default deferral mode. One of:

• GKS$K~SAP (0)

• GKS$ K BNIG (1)

• GKS$K_BNIL (2)

• GKS$K~STI (3)

REGEN_1VIODE Integer The default implicit regeneration
mode. This flag controls whether
the device will redraw the display
immediately upon receiving a
change to an attribute that cannot be
displayed without regenerating the
display. One of:

• GKS$K~RG~UPPRESSED (0)

• GKS$K ERG ALLOWED (1 }

If implicit regeneration is allowed,
the device updates the display upon
receipt of the change. If implicit
regeneration is suppressed, the
device updates the display at the
next workstation update, or when the
regeneration mode is changed.

Building a Workstation Handler System 3-9

Table 3-4 (Cont.y: WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

NUM _LINE _TYPES Integer The number of linetypes the device
supports. The GKS standard
requires that your device support the
following four linetypes:

LIST_LINE_TYPES

• Solid

• Dot

• Dashed

• Dot-dashed

Therefore, the minimum number
of linetypes is four. You may also
supply additional linetypes, so this
value should equal four plus the
number of additional linetypes you
supply.

Data The linetypes data structure.
structure This is an integer structure containing

the linetypes your device supports.
You must list the linetypes required
by the GKS standard. You can also
support as many additional linetypes
as you want. These additional types
should be identified with integers
less than zero.

NUM_LINEWIDTHS Integer The number of linewidths the device
supports. One of:

• 0 if the device supports a
continuous range of widths.

• The number of discrete widths
your device supports. This must
be at least one.

NOMINAL _LINEWIDTH Real The width in LDC that the device
draws when the line width scale
factor is set to 1.0. This must be
greater than 0.

MINIMUM_LINEWIDTH Real The width in LDC of the narrowest
line your device can draw. This must
be greater than 0.

3-10 Building a Workstation Handler System

Table 3-4 (Copt.): WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

MAXIMUM _LINEWIDTH Real The width in LDC of the thickest
line your device can draw. This
must be greater than or equal to the
minimum line width.

NUMBER~'REDEF~'LINE_ Integer The number of predefined polyline
IND bundles.

PREDEF~'LINE _BUNDLES Data The polyline structure. You must
structure supply at least five bundles, and they

must be numbered consecutively
from 1. The structure must contain
the following information for each
bundle:

1. LINE _TYPE— the linetype,
integer.

2, LINEWIDTH~CALE_
FACTOR=the linewidth scale
factor expressed as a real
number.

3. COLOR~NDEX—the index into
the device's color table, integer.

NUM ~VIARKERTYPES Integer The number of marker types your
handler supports. The GKS standard
requires that your device support at
least the following five marker types:

• Dot

• Plus Sign

• Asterisk

• Diagonal Cross

• Circle

You may also supply additional
marker types, so this value should
equal five plus the number of
additional marker types you supply.

Building a Workstation Handler System 3-11

Tabls 3-4 (Cunt.►: WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

LIST_l1~IARICERTYPES Data
structure

The marker type structure.

This is an integer structure containing
the marker types your device
supports. You must list the marker
types required by the GKS standard.
You can also support as many
additional marker types as you want.
These additional types should be
identified with integers less than
zero.

NUM~ViSIZES Integer The number of marker sizes your
device can draw. A zero indicates
that the device supports a continuous
range.

NOMINAL _1VISIZE Real The size in LDC of the marker that
your device draws when marker size
scale factor is set to 1.0. This must
be greater than 0.

MINIMUM _1ViSIZE Real The width in LDC of the smallest
marker your device can draw. This
must be greater than 0.

I~~IAaQMUM~ViSIZE Real The width in LDC of the largest
marker your device can draw. This
must be greater than or equal to the
minimum marker size.

NUMBER~'REDEF_ Integer The number of predefined poly-
PMA►RK~ND marker bundles.

3-12 Building a Workstation Handler System

Table 3-4 ~Cont.): WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

PREDEF_P'MARK_BUNDLES Data
structure

The polymarker bundle structure.
You must supply at least five
bundles, and they must be num-
bered consecutively from 1. The
structure must contain the following
information for each bundle:

1. MARKER _TYPE— the
polymarker type. Integer.

2. MSIZE SCALE —FACTOR—
the marker size scale factor
expressed as a real number.

3. COLOR_INDEX—an integer
index into the device's color
table.

NUM_FONT_PREC_PAIRS Integer The number of font/precision pairs
the device supports. According to
the GKS standard, you must supply
at least four pairs. Of these, one
must be Font 1 with string precision,
one must be Font 1 with character
precision, and two must be stroke
precision.

LIST_FONT_PREC..~'AIRS Data The font information structure. The
structure following information is required for

each font:

• The font number. Integer.

• The font's precision. Integer.

Font number 1 must conform to
the ASCII character set (defined
in ANSI standard x3.4-1977).
Implementation-specific fonts must
be numbered with a negative integer.

Building a Workstation Handler System 3-13

Table 3-4 ~Cont.): WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

NUM_CHAR~XP_
FACTORS

Integer

MINIMUM _CHAR _EXP Real
FACTOR

MAXIMUM _CHAR _EXP_ Real
FACTOR

NUM_CHAR~IEIGHTS Integer

MINIMUM_CHAR_HEIGHT Real

MAXIMUM _CHAR _HEIGHT Real

NUM ~'REDEF_TEXT~ND Integer

The number of character expansion
factors in Font 1. Either:

• 0 if the device supports a
continuous range.

• The number of discrete
expansions your device supports.
This must be 1 or greater.

Note that for this and the five
following items, you only need
to include information for Font 1,
because this is the only font for
which the workstation handler
returns information.

The rYunimum character expansion
factor for Font 1. This must be
greater than 0.

The maximum character expansion
factor for Font 1. This must
be greater than or equal to the
minimum character expansion factor.

The number of character heights in
Font 1. Either:

• 0 if the device supports a
continuous range.

• The number of discrete heights
your device supports. This must
be 1 or greater.

The minimum character height in
Font 1, expressed in LDC. This must
be greater than 0.

The maximum character height in
Font 1, expressed in LDC. This
must be greater than or equal to the
minunum character height.

The number of predefined text
bundles you will provide.

3-14 Building a Workstation Handler System

Table 3—~4 (Cont.~: WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

PREDEF_TEX'I;BUNDLES Data
structure

NUM FILL ~NTSTYLE Integer

LIS'I~FILL ~NTSTYLE Data
structure

NUM MATCH STYLE Integer

LIS'T~-IATCH~TYLE Data
structure

NUM ~'REDEF~'ILL AND Integer

The text bundle structure. You must
supply at least two bundles, and they
must be numbered consecutively
from 1. The structure must contain
the following information for each
bundle:

1. FONT— the font, integer.

2. PREC—the text precision
expressed as an integer.

3. CHAR~XP~ACTOR—the
character expansion factor
expressed as a real number.

4. CHAR~PACE—the text
spacing, expressed as a real
number.

5. COLOR~NDEX—an integer
index into the device's color
table.

The number of fill area interior
styles. This must be in the range 1-4.

The fill style data structure.

The number of hatch styles available
on your device. This must be 0 or
greater.

The hatch style data structure.

The number of predefined fill area
style bundles.

Building a Workstation Handler System 3-15

Table 3-4 (Cont.): WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

PREDEF_FILL _BUNDLES Data The fill area bundle structure. You
structure must supply at least five bundles,

and they must be numbered consec-
utively from 1. The structure must
contain the following information for
each bundle:

1. FILL _INTSTYLE— the fill area
style, integer.

2. FILL STYLE AND—integer.1

3. COLOR~NDEX—an integer
index into the device's color
table.

NUM ~'REDEF~'ATT_IND Integer The number of predefined pattern
representations.

PREDEF_PATT_REPS Data The pattern bundle structure. This is
structure optional, but if you provide pattern

bundles, the structures must be
numbered consecutively from 1. The
structure must contain the following
information for each bundle:

1. PATT DIM~C—Integer count of
the X values in the pattern.

2. PATT_DIM _Y—Integer count of
the Y values in the pattern.

3. PATT~RRAY—The two-
dimensional pattern structure.

1 The meaning of FILL STYLE _IND depends on the value of FILL _INTSTYLE. If FILL _
INTSTYLE is GKS$K~NTSTYLE~ATTERN (2), FILL~TYLE_IND is an index into the pattern
bundle table. If FILL ~NTSTYLE is GKS$K~NTSTYLE MATCH (3), FILL STYLE AND is a
pointer into the hatch style table. If FILL _INTSTYLE is any other value, FILL _STYLE _IND is
not used and should be zero.

~)

3-16 Building a Workstation Handler System

Table 3-4 (Copt.): WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

NUM _COLORS

COLOR~VAILABLE

Integer

Integer

NUM~'REDEF_COLOR_ Integer
REP

PREDEF COLOR_REPS

NUM _GDP

Data
structure

Integer

The number of colors your device
supports. Either:

• 0 if the device supports a
continuous range of colors.

• The number of discrete colors
your device supports. This must
be 2 or greater.

A flag indicating whether your device
has a color display. Either:

• GKS$K_NiONOCHROME (0) if
the device is monochrome.

• GKS$K_COLOR (1) if the device
has a color display.

The number of predefined color
representations. Must be 2 or
greater.

The color bundle structure. You must
supply at least two bundles, and they
must be numbered consecutively
from 1. The structure must contain
the following information for each
bundle:

1. RED—a real number represent-
ing the red intensity.

2. GREEN—a real number
representing the green intensity.

3. BLUE—a real number represent-
ing the blue intensity.

The intensity value for each color
must be in the range 0 to 1.0
inclusive.

The number of GDPs your device
supports. This must be 0 or greater.

Building a Workstation Handler System 3-17

Table 3-4 ~Cont.): WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

LIS'~GDP Data The GDPstructure. Here you indicate
structure the attributes used for each GDP.

You must supply the following
information for each GDP:

1. GDP~D—Integer. The identifier
for the primitive.

2. NUM ~TTRIB_USED—Integer.
The number of sets of attributes
used.

3. LINE _USED An integer flag.
One of:

• 0 if the GDP does not use
line attributes.

• 1 if the primitive uses line
attributes.

4. MARK_USED An integer flag.
One of:

• 0 if the GDP does not use
marker attributes.

• 1 if the primitive uses
marker attributes.

5. TEXT=USED An integer flag.
One of:

• 0 if the GDP does not use
text attributes.

• 1 if the GDP uses text
attributes.

6. FILL _USED—An integer flag.
One of:

• 0 if the GDP does not use
fill attributes.

• 1 if the primitive uses text
attributes.

N~IAX 'LINE _BUNDLES Integer The maximum number of polyline
bundle table entries. Must be 5 or
greater.

3-18 Building a Workstation Handler System

~.!

Table 3-4 (Coot.): WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

MAX~'MARK_BUNDLES

MAX_TEXT BUNDLES

MAX~'ILL _BUNDLES

MAX _PATT_IND

MAX _COLOR _IND

NUM SEGMENT_
PRIORITIES

Integer

Integer

Integer

Integer

Integer

Integer

DMAF~EGMENT_XFORM Integer

DMAF~NVISIBILITY Integer

The maximum number of polymarker
bundle table entries. Must be 5 or
greater.

The maximum number of text bundle
table entries. Must be 2 or greater.

The maximum number of fill area
bundle table entries. Must be 5 or
greater.

The maximum number of hatch
pattern bundle table entries. Must be
0 or greater.

The maximum number of color
intensities. Must be 2 or greater.

The number of segment priorities the
device supports. Either:

• 0 if the device supports a
continuous range of priorities.

• The number of priorities. Must
be 2 or greater.

A flag indicating whether your
device can perform dynamic segment
transformations. Either:

• GKS$K_IMM (0) for dynamic
change.

• GKS$K_IRG (1) for no dynamic
change.

A flag indicating whether your device
can make visible segments invisible
dynamically. Either:

• GKS$K_IMM (0) for dynamic
change.

• GKS$K_IRG (1) for no dynamic
change.

Building a Workstation Handler System 3-19

Table 3-4 ~Cont.): WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

DMAF_VISIBILITY Integer A flag indicating whether your device
can make invisible segments visible
dynamically. Either:

• GKS$K_IMM (0) for dynamic
change.

• GKS$K~RG (1) for no dynamic
change.

DMAF_HIGHLIGHTING Integer A flag indicating whether your
device can perform highlighting
dynamically. Either:

• GKS$K~MM (0) for dynamic
change.

• GKS$K~RG (1) for no dynamic
change.

DMAF~EGMENT_PRIORITY Integer

DMAF~EGMENT_OVERLAP Integer

3-20 Building a Workstation Handler System

A flag indicating whether your
device can change segment priority
dynamically. Either:

• GKS$K~MM (0) for dynamic
change.

• GKS$K ERG (1) for no dynamic
change.

A flag indicating whether your device
can dynamically update the display
while adding primitives to open
segments that overlap segments of
higher priority. Either:

• GKS$K~MM (0) for dynamic
change.

• GKS$K_IRG (1) for no dynamic
change.

V

Table 3—~4 (Cont.): WDT Items for OUTPUT and OUTIN Workstations

Item Data Type Description

DMAF_DELETE SEGMENT Integer A flag indicating whether your device
can delete segments dynamically.
Either:

• GKS$K~MM (0) for dynamic
change.

• GKS$K ERG (1) for no dynamic
change.

The rest of the tables in this section list information required by OUTIN or
INPUT workstations.

The items in Table 3-5 are required if your workstation supports LOCATOR
input. One such structure is needed for each LOCATOR logical input device.

Table 3-5: WDT Items for LOCATOR Logical Input Devices

Item Data Type Description

DEVNUM

INI'I=LOCN ~C

INIT_LOCN Y

NUM ~'ROMP'I=
ECHO_TYPES

LIST~'ROMP'T~CHO_
TYPES

ECHO~REA

LOCATOR DATA_
RECORD

Integer

Real

Real

Integer

Structure of
integers

Structure of 4
reals

The locator device number. Must be 1 or
greater.

The default initial locator X position in
WC.

The default initial locator Y position in
WC.

The number of prompt and echo types
supported. Must be 1 or greater.

List of available prompt and echo types
for locator input.

The default echo area in DC.

Structure The locator data record required for PET 1.
This is an implementation-dependent PET,
so the data record is also implementation
dependent.

building a Workstation Handler System 3-21

The items in Table 3-6 are required if your workstation supports STROKE
input. One such structure is needed for each STROKE logical input device.

Table 3-6: WDT Items for STROKE Logical Input Devices

Item Data Type Description

DEVNUM

MAXIMUM _BUFSIZE

NUM ~'ROMPT_
ECHO_TYPES

LIST~'ROMPT~CHO_
TYPES

ECHO~REA

STROKE _DATA _
RECORD

Integer

Integer

Integer

Structure of
integers

Structure of 4
reals

Structure

The stroke device number. Must be 1 or
greater.

The maximum input buffer size in bytes.
Must be 64 or greater.

The number of prompt and echo types.
Must be 1 or greater.

List of available prompt and echo types
for STROKE input.

The default echo area in LDC.

The stroke data record required for PET 1.
This is an implementation-dependent PET,
so the data record is also implementation
dependent. It must contain at least
the default input buffer size in bytes,
expressed as an integer of 1 or greater.

The items in Table 3-7 are required if your workstation supports VALUATOR
input. One such structure is required for each VALUATOR logical input
device.

3-22 Building a Workstation Handler System

Table 3-7: WDT Items for VALUATOR Logical Input Devices

Item Data Type Description

DEVNUM

INIT_VALUE

NUM ~'ROMPT_
ECHO_TYPES

LIST~'ROMPT~CHO_
TYPES

ECHO~REA

VALUATOR_DATA_
RECORD

Integer

Real

Integer

Structure of
integers

Structure of 4
reals

Structure

The valuator device number. Must be 1 or
greater.

The default initial value.

The number of prompt and echo types.
Must be 1 or greater.

List of available prompt and echo types
for VALUATOR input.

The default echo area in LDC.

The valuator data record required for
PET 1. This is an implementation-
dependent PET, so the data record is also
implementation dependent. This must
contain at least the default low value and
high value, expressed as real numbers.

The items in Table 3-8 are required if your workstation supports CHOICE
input. One such structure is needed for each logical input device of type
CHOICE.

Table 3-8: WDT Items fow CHOICE Logical Input Devices

Item Data Type Description

DEVNUM

MAX_NUM_CHOICE

NUM ~'ROMPT_
ECHO_TYPES

LIST_PROMPT~CHO_
TYPES

ECHO_AREA

CHOICE_DATA_
RECORD

Integer

Integer

Integer

Structure of
integers

Structure of 4
reals

Structure

The choice device number. Must be 1 or
greater.

The maximum number of choices. Must
be 1 or greater.

The number of prompt and echo types.
Must be 1 or greater.

List of available prompt -and echo types
for CHOICE input.

The default echo area in LDC.

The choice data record required for PET 1.
This is an implementation-dependent PET,
so the data record is also implementation
dependent.

Building a Workstation Handler System 3-23

The_items in Table 3-9 are required if your workstation supports PICK input.
One such structure is required for each PICK logical input device.

Table 3-9: WDT Items for PICK Logical Input Devices

Item Data Type Description

DEVNUM

NUM ~'ROMPT_
ECHO_TYPES

LIST_PROMP'T_ECHO_
TYPES

ECHO~REA

PICK_DATA_RECORD

Integer

Integer

Structure of
integers

Structure of 4
Teals

Structure

The pick device number. Must be 1 or
greater.

The number of prompt and echo types.
Must be 1 or greater.

List of available prompt and echo types
for PICK input.

The default echo area in LDC.

The pick data record required for PET 1.
This is an implementation-dependent PET,
so the data record is also implementation
dependent.

The items in Table 3-10 are required if your workstation supports STRING
input. One such structure is required for each STRING logical input device.

Table 3-10: WDT Items for STRING Logical Input Devices

Item Data Type Description

DEVNUM

MAXIMUM _BUFSIZE

NUM _PROMPT
ECHO_TYPES

LIS'T_PROMP'T_ECHO_
TYPES

ECHO_AREA

Integer

Integer

Integer

Structure of
integers

Structure of 4
Teals

3-24 Building a Workstation Handler System

The string device number. Must be 1 or
greater.

The maximum input buffer size in bytes.
Must be 72 or greater.

The number of prompt and echo types.
Must be 1 or greater.

List of available prompt and echo types
for STRING input.

The default echo area in LDC.

Table 3-10 (Copt.): WDT Items for STRING Logical Input Devices

Item Data Type Description

STRING _DATA _
RECORD

Structure The string data record required for PET 1.
This is an implementation-dependent PET,
so the data record is also implementation
dependent. This must contain the default
input buffer size and initial cursor
position. Both values are integers of 1 or
greater.

3.4 Workstation State List

The GKS standard defines the Workstation State List (WSL) as a read/write
structure that contains current information about one workstation. You are
not required to build a WSL for your workstation handler, but if you want to
keep any global read/write information (such as a device channel number),
you must store it in the WSL. You might also use the WSL to store primitive
representation information and other data.

A separate WSL should exist for each open workstation. The kernel allocates
storage for your WSL at open workstation time, and passes the address of that
storage space to your Open Workstation function. If you choose to implement a
WSL, your Open Workstation function must initialize the WSL at that address.
The kernel lso passes the address to each function that may need the WSL.

Table 3-11, Table 3-12, and Table 3-13 list the elements of the WSL
maintained in the handler. Note that these tables list only suggested items.
Your WSL can contain any data you want, in any structure you choose. The
only restriction is that your handler must be able to return all of the following
information in response to inquiries from the kernel.

The initial value of most entries in the WSL is the same as the corresponding
item in the WDT. The following tables list the initial value WDT for these
items.

If the initial value shown for an item is something other than WDT, that is the
initial value the item should take.

Building a Workstation Handler System 3-25

Table 3-11 lists elements that exist for all workstations. Their initial values are
passed by the kernel at Open Workstation.

Table 3-11: WSL Elements for All Workstation Types

Item Data Type

CONNECTION ~D

WSTYPE

String

Integer

Table 3-12 lists elements that exist for OUTIN, OUTPUT, and MO worksta-
tions. Note that since the WDT for metafile output (MO) workstations does not
contain most of these values, if you are supporting an MO workstation, items
marked WDT are actually implementation-dependent constants.

Table 3-12: WSL Elements for OUTI N, OUTPUT, and MO Workstations

Item Initial Value Data Type Description

STORED_
SEGMENTS

DEFER_MODE

REGEN _MODE

DISPLAY_
EMPTY

NEW-FRAME

GLOBAL _
INTERACTIONS_
PRESENT

TRANSFORM _
FLAG

NUMBER_
PLINE _IND

PLINE _
BUNDLES

NUMBER _
PMARK_IND

Empty

WDT

WDT

List of integers

Integer

Integer

GKS$K~MPTY Integer

GKS$K_ Integer
NEWFRAME _
NOTNECESSARY

GKS$K_FALSE Integer
(0)-

GKS$K_
NOTPENDING
(0)

WDT

WDT

WDT

Integer

Integer

Structure

Integer

The list of stored segments. Not necessary
if the kernel is simulating segments.

The deferral mode.

The regeneration mode. Not necessary if
the kernel is simulating segments.

A flag stating whether the display surface
is empty.

A flag stating whether a new frame is
necessary upon update. Not necessary if
the kernel is simulating segments.

A flag stating whether global interactions
are in progress. GKS$K_TRUE (1) if there
are global interactions.

A flag stating whether a transformation is
pending.

The number of polyline bundles.

The polyline bundle structure.

The number of polymarker bundles.

3-26 Building a Workstation Handler System

Table 3-12 ~Cont.y: WSL Elements for OUTI N, OUTPUT, and MO Workstations

Item Initial Value Data Type Description

PMA►RK_ WDT
BUNDLES

NUM _TEX'~ WDT
IND

TEX'1~ WDT
BUNDLES

NUM FILL _ WDT
IND

FILL _BUNDLES WDT

NUM ~'AT'~ WDT
IND

PATT WDT
BUNDLES

NUM_COLOR_ WDT
REP

COLOR_ WDT
BUNDLES

WORLD_
WINDOW

WORLD_ 0.0, 1.0, 0.0, 1.0
VIEWPORT

REQ WS_ 0.0, 1.0, 0.0, 1.0
WINDOW

REQ _ws_ o.o, x ~Ax,
VIEWPORT 0.0, Y_IVIAX

CUR_WS_
WINDOW

CUR WS_
VIEWPORT

Structure

Integer

Structure

Integer

Structure

Integer

Structure

Integer

Integer

The polymarker bundle structure.

The number of text bundles.

The text bundle structure.

The number of fill bundles.

The fill area style bundle structure.

The number of pattern bundles.

The pattern bundle structure.

The number of color bundles.

The color bundle structure.

0.0, 1.0, 0.0, 1.0 Four reals in WC The world window.

Four reals in
NDC

Four reals in
NDC

Four reals in
LDC

0.0, 1.0, 0.0, 1.0 Four reals in
NDC

0.0, X _1VIAX, Four reals in
0.0, Y_1VIAX LDC

The world viewport.

The requested world viewport.

The requested world viewport. X _1ViAX
and Y_1VIAX are the X and Y components
of the display surface size as listed in the
WDT.

The current workstation window.

The current workstation viewport.
X _1VIAX and Y~ViAX are the X and Y
components of the display surface size as
listed in the WDT.

Building a Workstation Handler System 3-27

For INPUT and OUTIN workstations, the WSL should also include items for
each type of logical input device the workstation supports. The following tables
list the items for each logical input device type.

Table 3-13: WSL Items for LOCATOR Logical Input Devices

Item Initial Value Data Type Description

DEVNUM WDT Integer The logical input device
number.

OPMODE GKS$K_ Integer The input operating mode.
INPUT~VIODE _
REQUEST (0)

ECHO_SWITCH GKS$K~CHO Integer The echo/noecho switch.
(1)

0 Integer The normalization
transformation the device
should use to convert the
points to WC.

INIT_LOCN ~C, WDT Real The initial locator position,
INIT_LOCN_Y in WC.

PROMPT_ 1 Integer The prompt and echo type.
ECHO_TYPE

ECHO~REA WDT Array of 4 reals The initial echo area.

LOC_DATAREC WDT Data structure The locator data record.

XFORM

3-28 Building a Workstation Handler System

Table 3-14: WSL Items for STROKE Logical Input Devices

Item Initial Value Data Type Description

DEVNUM

OPMODE

ECHO~WITCH

XFORM

NUM _INIT_
POINTS

INITX ARRAY,
INITY~►RRAY
PROMPT_
ECHO_TYPE

ECHO~REA

STK DATAREC

WDT Integer

GKS$K_ Integer
INPUT._MODE _
REQUEST (0)

GKS$K~CHO Integer
(1)

0

0

Empty

1

WDT

WDT

Integer

Integer

Data structure

Integer

Array of 4 Teals

Data structure

The logical input device
number.

The input operating mode.

The echo/noecho switch.

The normalization
transformation the device
should use to convert the
points to WC.

The initial number of
points in the input.

The initial array of points
in the stroke.

The prompt and echo type.

The initial echo area.

The stroke data record,
containing at least the
input buffer size.

Building a Workstation Handler System 3--29

Table 3-15: WSL Items for VALUATOR Logical Input Devices

Item Initial Value Data Type Description

DEVNUM

OPMODE

ECHO~WITCH

INIT_VALUE

PROMPT_
ECHO_TYPE

ECHO~REA

VAL _DATAREC

WDT

GKS$K_
INPUT~VIODE _
REQUEST (0)

GKS$K~CHO
(1)

WDT

1

WDT

WDT

Integer

Integer

Integer

Real

Integer

Array of 4 reals

Data structure

The logical input device
number.

The input operating mode.

The echo/noecho switch.

The initial value.

The prompt and echo type.

The initial echo area.

The valuator data record,
containing at least the low
and high values.

Table 3-16: WSL Items CHOICE Logical Input Devices

Item Initial Value Data Type Description

DEVNUM

OPMODE

ECHO~WITCH

INIT~TATUS

INIT CHOICE

PROMPT
ECHO_TYPE

ECHO_AREA

CHOICE _
DATAREC

WDT Integer

GKS$K_ Integer
INPUT~VIODE _
REQUEST (0)

GKS$K~CHO
(1)

GKS$K_
NOCHOICE

Undefined

1

WDT

WDT

Integer

Integer

Integer

Integer

Array of 4 reals

Data structure

The logical input device number.

The input operating mode.

The echo/noecho switch.

The initial choice status.

The choice that will be returned if the
user makes no selection.

The prompt and echo type

The initial echo area.

The choice data record.

3-30 Building a Workstation Handler System

Table 3-17: WSL Items PICK Logical Input Devices

Item Initial Value Data Type Description

DEVNUM

OPMODE

ECHO~WITCH

INIT~TATUS

INIT~EGMENT

INITIAL _
PICKID

PROMPT_
ECHO_TYPE

ECHO~REA

PICK_
DATAREC

WDT

GKS$K_
INPUT_1VIODE _
REQUEST (0)

GKS$K~CHO
(1)

GKS$K_
NOPICK

Undefined

Undefined

1

WDT

WDT

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Array of 4 Teals

Data structure

The pick logical input device number.

The input operating mode.

The echo/noecho switch.

The initial pick status.

The segment number that will be returned
if the user makes no selection.

The pick identifier that will be returned if
the user makes no selection.

The prompt and echo type.

The initial echo area.

The pick data record.

Table 3-18: WSL Items for STRING Logical Input Devices

Item Initial Value Data Type Description

DEVNUM

OPMODE

ECHO~WITCH

INIT~TRING

PROMPT
ECHO_TYPE

ECHO~REA

STRING _
DATAREC

WDT

GKS$K_
INPUT~VIODE _
REQUEST (0)

GKS$K~CHO
(1)

Undefined

1

WDT

WDT

Integer

Integer

Integer

Integer

Integer

Array of 4 Teals

Data structure

The string logical input device number.

The input operating mode.

The echo/noecho switch.

The initial string record.

The prompt and echo type.

The initial echo area.

The string data record, containing at least
the initial buffer size and initial cursor
position.

Building a Workstation Handler System 3-31

3.5 Required Functions

After you decide how to manage data for the WDT and WSL, you can develop
the functions you need.

Different workstation categories require different functions. The following
chapters provide information about each set of functions:

• Chapter 4, Workstation Handler Control and Transformation Functions

• Chapter 5, Workstation Handler Input Functions

• Chapter 6, Workstation Handler Inquiry Functions

• Chapter 7, Workstation Handler Metafile Functions

• Chapter 8, Workstation Handler Set Representation Functions

• Chapter 9, Workstation Handler Output Functions

• Chapter 10, Workstation Handler Segment Functions

Review these chapters to determine which functions you need.

The description of each function includes a discussion of the function's effects.
The functions you write should generate the results listed in the function
description. Some descriptions provide sample algorithms. In addition, the DEC
GKS Reference Manual provides a full discussion of each DEC GKS function.

3.5.1 Segment Simulation

You can choose either to support segments within your workstation handler, or
to allow the GKS kernel to simulate segments. Simulating segments simplifies
your handler and requires fewer functions, but depending on the capab' 'ties of
your device, it may be far less efficient.

If you want to support segments within your handler, you must supply the
functions described in Chapter 10, Workstation Handler Segment Functions. If
you want the GKS kernel to simulate segments, do not provide the functions
in Chapter 10, Workstation Handler Segment Functions, but you must supply
the functions PERFORM DEFERRED OUTPUT (described in Chapter 4,
Workstation Handler Control and Transformation Functions), and HIGHLIGHT
EXTENT (described in Chapter 9, Workstation Handler Output Functions).

The kernel determines whether to simulate segments by checking whether
segment functions appear in your DFT. If it finds segment functions, it uses
them to support segments. If it does not find segment functions, it simulates
them.

3-32 Building a Workstation Handler System

Note that you must either supply all segment functions, or let the kernel
support all segment functions. You cannot support some functions and have
the kernel simulate the rest. The macro that builds your DFT checks whether
you have included any segment functions, and it will not build your DFT unless
you have either included all the segment functions, or none of them. The
DFT macro also checks for HIGHLIGHT EXTENT and PERFORM DEFERRED
OUTPUT, and will not build your DFT if your handler includes these functions
and any segment functions, or if your handler does not include either the
segment functions or these two functions.

3.5.2 Message and Constant Files

Your GKS system contains files that defiine GKS status codes and constants.
You should include these files in each of your handler routines if you want to
use the predefined codes and constants. The function descriptions in this guide
presume that you will use these predefined values.

The status codes are defined a ffie named GKSMSGS. The constants are defined
in GKSDEFS. Both files are stored in the SYS$LIBRARY directory after you
install DEC GKS.

Note that there are several versions of each file. There is one version for each
language that DEC GKS supports. You should append the file extension for the
language you are using to the file names when you include them. Table 3-19
lists the file extension for each language.

Table 3-19: GKSMSGS and GKSDEFS File Extensions

Language File Extension

Ada® .ADA

BASIC .BAS

C .H

FORTRAN .FOR

PL/I .PLI

Pascal .PAS

®Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

In addition, the ffie GKSDEFS.PL2 is also provided for handlers written in PL/I.
You can use either this file or GKSDEFS.PLI.

Building a Workstation Handler System 3-33

3.6 Suggested Escape Function

This section lists the one escape function that the GKS kernel calls other than
in response to an application level command. The GIGS kernel calls it by calling
your handler's Escape function. You should include this function along with
any other escape functions that your handler supports.

3.6.1 INQUIRE GDP EXTENT

This escape function should return the extent of GDPs supported by your
handler. The function returns the extent in world coordinates. If your handler
supplies GDPs not known to the kernel, and you do not provide this function,
the GKS kernel sets the extent of unknown GDPs equal to the extent of the
world coordinate points passed in the GDP data record.

The escape function identifier for INQUIRE GDP EXTENT is -404, or the
constant GKS$K~SC_INQ_GDP~XTENT. You should include this function
if your handler supports GDPs not known to the GKS kernel. If you do,
your handler's Escape function (described in Chapter 4) should perform this
operation.

Data is passed to the escape functions in the input data record. For information
about data passing to and from the Escape function, see Chapter 4.

The kernel passes a 16-byte input data record to the function. The record is
structured as follows:

• Number of integers in the integer array

• Number of real numbers in the real number array

• Number of strings in the string arrays

• Address of the integer array

There are seven integers in this function's integer array, so the first element in
the data record is the number 7. There are no real numbers in the real number
array, so the second element in the data record is zero. There are no strings, so
the third element in the record is zero, and the string arrays are not included in
the data record.

The fourth element is a pointer to an eight-element array of integers. The
integers contain the following information in the order shown:

1. The address of the workstation state list.

2. The number of points that define the GDP. This number is also the size of
the arrays that the next two integers point to.

~,

V
3-34 Building a Workstation Handler System

3. The address of an array containing the X component of each point in the
GDP definition.

4. The address of an array containing the Y component of each point in the
GDP definition.

5. The identifier of the GDP.
6. The address of the GDP data record.
7. The address of the current attribute list. See Chapter 9 for more information

about the attribute array.

Your function returns the GDP extent in a 20-byte output data record. It is
structured as follows:

• Number of integers in the integer array
• Number of real numbers in the real number array
• Number of strings in the string arrays
• Address of the integer array
• Address of the real number array

The integer array should contain an error status code, or zero if the status
is success, so the first element in the data record is the number 1. The four
corners of the extent are returned in the real number array, so the second
element in the data record is 4. There are no strings, so the third element in
the record is zero, and the string arrays are not included in the data record.

The fourth element is a pointer to aone-element array of integers. The integer
should be the status code.

The fifth element is the address of an array of four real numbers. Your function
should write the GDP extent to this location. These should be world coordinate
values in the order XMIN, XMAX, YMIN, YMAX.

3.7 Developing Your Device Function Table

The Device Function Table (DFT) lists the address of each function you supply.
When the kernel needs to run a specifiic function it Bends the address in this
table.

To build your DFT, you create a macro that invokes up to four other macros,
depending on the functions in your Workstation Handler. These four macros
are supplied by DIGITAL.

Building a Workstation Handler System 3-35

The following is a list of the different macros in the order in which they must
appear in your macro.

1. DFT Holds header information and the major output and segment
functions. This is a required macro.

2. DFT~NPUT Holds input functions. This is an optional macro.

3. DF'1=GKS~NQ Holds workstation state list inquiry functions.

4. DF'I=WS~NQ Holds workstation description table inquiry functions.
This is a required macro.

Your macro must call the macros DFT, DF'1=WS~NQ, and DFT GKS_INQ.
Include DF~INPUT only if your handler is type OUTIN or INPUT.

Table 3-20 through Table 3-23 list the function name and the keyword for
each of the macros. Note that items marked with an asterisk must appear in
handlers that support segments. If you include any of the 12 functions marked
with an asterisk, you must include them all. If you do not, your DFT will
not build. Items marked with a dagger must be included in handlers that do
not support segments. If you want the kernel to simulate segments for your
handler, put these two functions in. You must include both, or your handler
will not build. Finally, be sure that you either include the 12 segment functions,
or the two segment simulation functions. If you include any combination of
asterisked and double asterisked functions, your handler will not build.

Table 3-20: Keywords for DFT Macro

Function Keyword

Handler DFT name

Workstation Category

Workstation Level

Open Workstation

Close Workstation

Clear Workstation

Update Workstation

Perform Deferred Actions

Set Deferral State

Set Global Interactions

Escape

Create Segment

3-36 Building a Workstation Handler System

HANDLER

WS_CAT; one of OUT, IN, OI, MO, MI

WS_LEVEL; must be 2c

OPEN _WS

CLOSE_WS

CLEAR_WS

UPDATE_WS

PERFORM_DEFERRED **

SET_DEFER

SET_GLOBAL

ESC

CREATE AEG *

Table 3-20 ~Cont.): Keywords for DFT Macro

Function Keyword

Close Segment

Rename Segment

Delete Segment

Redraw Segment

Highlight Extent

Set NDC Transformation

Message

Polyline

Polymarker

Text

Fill Area

Cell Array

Generalized Drawing Primitive

Set Polyline Representation

Set Polymarker Representation

Set Text Representation

Set Fill Area Representation

Set Pattern Representation

Set Color Representation

Set Segment Transformation

Set Segment Visibility

Set Segment Priority

Set Segment Detectab' 'ty
Set Segment Highlighting

Set Workstation Window

Set Workstation Viewport

Set Normalization Transformation

CLOSE AEG

RENAME AEG

DELETE~EG

REDRAW~EG

HIGHLIGHT_EXT **

SET~IDC—XFORM

MSG

PLINE

PMARKER

TXT

FILL AREA

CELL ARRAY

GDP

SET_1'LINE _REP

SET~'MARK~EP

SET_TEXT_REP

SET_FILL _REP

SET~'ATT_REP

SET_COLOR~tEP

SET~EG _...XFORM *

SET~EG _VIS *

SET~EG ~'RIOR

SET~EG_DETECT

SET_SEG ~-iIGH

SET WS_WIND

SET WS_VIEW

SET~TORM_XFORM

Building a Workstation Handler System 3-37

Table 3-2'f : Keywords for DFT~INPUT Macro

Function Keyword

Initialize Locator INI'~ LOCATOR

Initialize Stroke INIT~TROKE

Initialize V~►luator INI'I=VALI~ATOR

Initiali~~ ~l~oice INI'I=CHOICE

Initialise Suing INI'I~STRING

Initialize Pick II\IIT_PICK

Set Locator SET_LOCATOR

Set Strobe SET_._STROKE

Set Valuator SE'~VALUATOR

Set Choice SE'~CI~OICE

Set String SET._.STRING

t Pick SET~ICK

Request Locator REQ _LOCATOR

Request Stroke REQ STROKE

Request Valuator REQ _VALt,~ATOR

Request Choice REQ _CI~iOICE

Request String REQ STRING

Request Pick REQ WICK

Sample Locator SAM _LOCATOR

Sample Stroke SAM....STROKE

Sample Valuator SAM ~ALCTATOR

Sample Choice SAM _CHOICE

Sample String SAM.~TRING

Sample Pick SAM.~ICK

Write Item to Metafile WRITE~TEM

Get Item Type GET_ITEM _TYPE

Read Item from Metafile READ~TEM

3—~8 ~ritding a Workstation Nandter System

Table X22: I~e~wa►~ds DFT_~KS_IIVQ Macro

Function Ifey~arord

Inquire DVS Deferral

Inquire List Pol~line
Representation

Inquire Polyline Representation

Inquire List Pol~nark
Representation

Inquire Folymarker
Representation

Inquire List Text Representation

Inquire Text Representation

Inquire Text Extent

Inquire List Fill Area
Representation

Inquire F211 Area Representation

Inquire List Pattern
Representation

Inquire Pattern Representation

Inquire List Color Representation

Inquire Color Representation

Inquire V1~S Transformation

Inquire Locator State

Inquire Stroke State

Inquire Valuator State

Inquire Choice State

Inquire String State

Inquire Pick State

Inquire Pixel

Inquire Pixel Dimension

Inquire Pixel Array

INQ _~VS_DEFER

INQ _LIST~'LINE

INQ~LINE_REP

INQ _LIST.~'MARK

INQ ~'1VIARI~~tEP

INQ _LIST=TEXT

INQ _TEXT_REP

INQ _TEXT_._EXTENT

TNQ_LIST_FILL

INQ FILL CEP

INQ ~.IST~'ATT

TNQ ~ATT_REP

INQ_LIS'I=COLOR

INQ_COLOR_REP

INQ _~S_XFORM

INQ _T..00ATOR STATE

TNQ STROKE _._STATE

TNQ VALUATOR~.STATE

INQ _CI-IOICE STATE

TNQ STRING STATE

INQ~'ICK~TATE

INQ ..~'IXEL

INQ._PIXEL _DTI1EiEN

INQ ~'IXEL BRAY

Building a WQ~tcstat~an ~a~d~er System x--39

Table 3-23: Keywords for DFT_WS_I NQ Macro

Function Keyword

Inquire

Inquire

Inquire

Inquire

Inquire

Inquire

Inquire

Inquire

Inquire

Inquire

Inquire

Inquire

Inquire

Inquire

Inquire

Inquire

Inquire

WS Category

WS Classification

Maximum Display

Polyline Facilities

Predefined Polyline

Polymark Facilities

Predefined Polymark

Text Facilities

Predefined Text

Fill Area Facilities

Predefined Fill Area

Pattern Facilities

Predefined Pattern

Color Facilities

Predefined Color

Available GDPs

GDP

Inquire Dynamic Modification of
WS Attributes

Inquire Default Deferral

Inquire Maximum Length State
Tables

Inquire Number Segment
Priorities

Inquire Dynamic Modification of
Segment Attributes

Inquire Segment Names

Inquire Number Logical Input
Types

Inquire Default Locator

Inquire Default Stroke

Inquire Default Valuator

INQ _WS_CAT

INQ _WS_CLASS

INQ _MAX _DISP

INQ _I'LINE _FAC

INQ _I'REDEF~'LINE

INQ _I'MARK_FAC

INQ _I'REDEF_I'MARK

INQ _TEXT_FAC

INQ ~'REDEF_TEXT

INQ _FILL _FAC

INQ ~'REDEF_FILL

INQ _I'ATT_FAC

INQ ~'REDEF_I'ATT

INQ_COLOR_FAC

INQ _1'REDEF_COLOR

INQ _AVAIL _GDP

INQ _GDP

INQ _DYN_NiOD_WS

INQ _DFLT_DEFER

INQ _MAX _LEN _STATE _TABLE

INQ _NUM_SEG_I'RIOR

INQ _DYN AEG _ATTR

INQ AEG _NAMES

INQ _NUM _LOG INPUT

INQ _DEF_LOCATOR

INQ _DEF_STROKE

INQ _DEF_VALUATOR

3-40 Building a Workstation Handler System

Table 3-23 (Cont.y: Keywords for DFT_WS_iNQ Macro

Function Keyword

Inquire Default Choice INQ _DEF_CHOICE

Inquire Default String INQ _DEF~TRING

Inquire Default Pick INQ _DEF~'ICK

Inquire Storage Size INQ STORAGE SIZE

Your macro must contain the following elements:

• A call to the function DFT

• The name of your DFT

• The workstation category

• The GKS implementation level

• Your function names paired with the keywords listed in Table 3-20

• A call DFT~NPUT (if required), followed by the function names paired
with the keywords listed in Table 3-21

• A call DFT_GKS_INQ (if required), followed by the function names paired
with the keywords listed in Table 3-22

• A call to DFT_WS~NQ, followed by the function names paired with the
keywords listed in Table 3-23

For example, suppose you want to assemble a DFT for an OUTIN workstation.
Assuming your handler DFT name is WS_HANDLER_DFT, your macro would
look like Example 3-1.

Building a Workstation Handler System 3-41

Example 3-1: Sample DFT-Building Macro

O

0

DFT -
HANDLER = WS_HANDLER_DFT,-
WS_CAT = OI,-
WS_LEVEL = 2C,-
OPEN_WS = WS_OPEN,-

SET_NORi~i_XFORM = WS_SET_NORM_XFORM
® DFT_INPUT -
O INIT_LOCATOR = WS_INIT_LOC,-

READ_ITEM = WS_READ_I~ETA

DFT_GKS_INQ -
INQ_WS_DEFER = WS_INQ_DEFER,-

INQ_PIXEL_ARRAY = WS_INQ_PIX_ARRAY

DFT_WS_INQ -
INQ_WS_CAT = WS_INQ_CAT,-

INQ_STORAGE_SIZE = WS_INQ_STORAGE

3-42 Building a Workstation Handler System

O The first line of your macro must call DFT.

® This line names your DFT. The DFT name you supply following
HANDLER =will become a global symbol for your DFT. You will use this
symbol when you link your handler to the workstation manager.

® This line specifies the workstation category. The workstation category must
be one of the following:

• OUT (for OUTPUT)

• OI (for OUTIN)

• IN (for INPUT)

® This line specifies the GKS level. For a level 2c handler, use 2C.

® This line begins the list of keywords shown in Table 3-20, paired with your
function names.

@ This line calls the macro DFT_INPUT. It is necessary because your handler
supports input.

O This line begins the list of keywords shown in Table 3-21, paired with your
function names.

® This line calls the macro DFT_GKS~NQ.

m This line begins the list of keywords shown in Table 3-22, paired with your
function names.

® 'This line calls the macro DFT_WS~NQ.

® This line begins the list of keywords shown in Table 3-23, paired with your
function names.

After you write your macro, assemble it with the VMS command:

Z MACRO filename +SYSsLIBRARY:GKS~WS_HAND_DFT_1KAC/LIB

Filename is the name of your macro. Note that the assembler cannot detect
spelling errors or incorrect punctuation (such as hyphens or commas). If you
encounter unusual errors when you assemble your macro, check these items
first.

Building a Workstation Handler System 3-43

3.8 Linking Your Handler to DEC GKS

After you build your DFT you should link your handler into a shareable image.
To link your handler, do the following.

1. Use the VMS Librarian U ' 'ty to put all the object files, except the device
function table, into an object library. Use any library name you want. For
this example, assume you use the name WS~iANDLER.OLB.

2. Give the DCL command:

$ LINK/SHAREABLE=WS_HANDLER -
/MAP=WS_HANDLER /FULL /CROSS -
WS_HANDLER_DFT, SYS$INPUT /OPTIONS

WS_HANDLER/LIBRARY
UNIVERSAL = WS_HANDLER_DFT

For more information about the VMS Librarian Utility, see the VMS Librarian
Reference Manual. For more information about the VMS Linker Utility, see the
VMS Linker Reference Manual.

When you finish these steps your handler is linked to DEC GKS and you can
test your system.

3.9 Defining Workstation Handler Logical Names

The final step in making your handler work with DEC GKS is defining logical
names.

3-44 Building a Workstation Handler System

3.9.1 Handler Logical Names

First, define these logical names:

• GKS$WORKSTATION_IlII

• GKS$FUNCTION TAB_IIII

In each of these logical names, nn is the workstation type you want to use with
your handler. This may be any number that is not already used by another
handler. To find out what numbers are already in use, use the DCL command
SHOW LOGICAL GKS$LIST TYPES. This command returns a list of the
workstation types in use, as shown in the following example.

= SHOW LOGICAL GKSZLIST_TYPES
"GKSSLIST_TYPES" _ "2" (LNM$SYSTEM_TABLE)

"3"
"cJ"

"10"
"11"
N 1211

"13"
"14"
"15"
"31"
"32"
"~"
"~"

"38"
"51"
"52"
"53"
"~"

"55"
"56"
"61"
"70"
"72"

s

The number 110 does not appear in this list, so assume you have chosen the
workstation type 110.

Building a Workstation Handler System 3--45

GKS$WORKSTATION~n is defined to be the name of the handler shareable
image.

If your shareable image is not installed, you need to define the name of
your shareable image as another logical name, and its definition must be the
complete file specification of the shareable image.

For example, suppose you want to test the handler DISK$:[SMITHjWS_
HANDLER. This handler is not installed, so you must define a logical name
with this file specification as its value. For example, enter the command:

$ DEFINE WS_HANDLER DISK$:[SMITHjWS_HANDLER

Now you can use the logical name WS~IANDLER as the definition of
GKS$~VORKSTATION_nn. Assume you select the workstation number 110.
Enter the command:

$ DEFINE GKS$WORKSTATION_110 WS_HANDLER

GKS$FUNCTION TAB~cn is defined to be the name of the universal symbol
used when linking the workstation handler.

For example, if your workstation function table is VAS DLER DFT, enter
the command:

$ DEFINE GKS$FUNCTION TAB_110 WS_HANDLEA_DFT

Next, add your workstation type to the list of workstation tees in GK:S$LIST_
TYPES. To do this locally, repeat the command SHOW LOGICAL GKS$LIS'I=
TYPES, then redefine the logical name to equal each type listed, as well as your
new workstation type. For example:

$ DEFINE GKS$LIST_TYPES 2, 3, 5, 10, li, 12, 13, 14, 15, 31, 32, 33, 34,

38, 51, 52, 53, 54, 55, 56, 61, 70, 72, 110

3-46 Building a Workstation Handler System

~.i

S SHOW LOGICAL GKS=LIST_TYPES
"GKS=LIST_TYPES" _ "2" CLNMsSYSTEM_TABLE)

_ "3"
_ "5"
_ "10"
_ "11"
_ "12"
_ "13"
_ "14"
_ "15"
_ "31"
_ "32"
_ "~M

_ "~"

_ "~"

_ "51"
_ "52"
_ "53"
_ "~ n

_ "55"
_ "~"
_ "61"
_ "70"
_ "72"

"GKS=LIST_TYPES" _ "2" (LNI~i=PROCESS_TABLE)
_ "3"
_ "5"
_ "10"
_ "11"
_ "12"
_ "13"
_ "14"
_ "15"
_ "31"
_ "32"
= M ~"

_ "~"

_ "~"

_ "51"
_ "52"
_ "53"
_ "~"
_ "55"
= n ~c "

_ "61"
_ "70"
_ "110"

s

While you develop your handler, define its workstation number in your process
table. When you install your finished handler, define it in the system table.

Building a Workstation Handler System 3-47

3.9.2 Adding Logical Names to GKSTARTUP.COM

Finally, place the shareable image in SYS$LIBRARY, and install the image using
the VMS Install utility.

While you test your handler, you may wish to define the logical names de-
scribed in Section 3.9 only locally. When you are finished testing your handler,
these logicals should be added to the file SYS$MANAGER:GKSTARTUP.COM.

3.9.3 Reentrance

Your handler must be totally reentrant. This means that the shareable image
cannot have 'copy-on-reference" pages. You can tell whether your image has
copy-on-reference pages by examining the link map that the system produces
when you link your shareable image. (See the VAX/VMS Linker Reference
Manual for more information.)

If your shareable image has copy-on-reference pages, then you must define
the logical name GKS$NON~EENTR,ANT_IIII as TRUE. This will make
the system activate a new image of the handler each tune the workstation is
opened.

Do not define this logical name if your device is reentrant.

Note that FORTS handlers that use local variables,_.. C handlers that
use the Crun-time library, or any handlers that write global variables, are
non-reentrant.

3-48 Building a Workstation Handler System

Chapter 4

Workstation Handler Control and
Transformation Functions

This chapter describes the workstation handler control and transformation
functions.

In addition, this chapter includes the function PERFORM DEFERRED OUTPUT.
You must provide this function only if you want to use the GKS kernel to
simulate segments. If you intend to support segments in your handler, do not
include the PERFORM DEFERRED OUTPUT function.

This chapter also describes the active attribute array, a data structure that
is passed to the CLOSE WORKSTATION control function, as well as to the
INITIALIZE INPUT function and several output functions. You need to know
the structure of the array to get data for your functions.

4.1 Active Attribute Array

The active attribute array is a dynamic data structure that lists the current
attributes for each output primitive. It contains bundle indexes and a list of
geometric and nongeometric attributes. The kernel passes the active attribute
array to the handler when it calls the CLOSE WORKSTATION control function,
the INITIALIZE INPUT function, and many output functions. Your workstation
handler functions must be able to find the data they need from this array.

The active attribute array contains current values for each output attribute, read
from the GKS State List. The attributes for a particular primitive change each
time the application user calls a SET function for that primitive. For example,
the GKS$ interface function GKS$SET_LINE _TYPE changes the LINE _TYPE
record in the GKS State List. This establishes a new current line type. Then
when the user calls GKS$POLYLINE, the kernel passes the current polyline
attributes in the active attribute array.

Workstation Handler Control and Transformation Functions 4-1

The active attribute array is a read/write structure. However, the handler must
treat it as a read-only structure. Your functions must never write to this structure.
If the handler must change values in the attribute array (for example, for a
simulation routine), then it must create a copy of the array.

The kernel passes the entire array to some functions, and passes portions of
the array to other functions. The description of each function that receives
information from this array lists the portion of the array that the kernel passes,
as shown in Table 4-1.

Table 4-1: Active Attribute Array Structure

Item Data Type

POLYLINE INDEX Integer

LINE TYPE Integer

LINEWIDTH SCALE _FACTOR F-float

POLYLINE_COLOR~NDEX Integer

PICKED Integer

POLYMARKER~NDEX Integer

MARKERTYPE Integer

MARKSIZE SCALE _FACTOR F-float

POLYMARKER_COLOR~NDEX Integer

PICK_ID Integer

FILL AREA INDEX Integer

INTERIOR STYLE Integer

FILL STYLE INDEX Integer

FILL _AREA_COLOR~NDEX Integer

PATTERN _REFERENCE _ F-float
POINT~C

PATTERN DEFERENCE _ F-float
POINT Y

PATTERN~IEIGHT~C F-float

PATTERN_HEIGH'T;Y F-float

PATTERN WIDTH ~C F-float

PATTERN WIDTH Y F-float

PICKED Integer

TEXT_INDEX Integer

4-2 Workstation Handler Control and Transformation Functions

Table 4-1 (Cont.~: Active Attribute Array Structure

Item Data Type

FONT Integer

PRECISION Integer

CHAR~XP_FACTOR F-float

CHAR~PACE F-float

TEXT_COLOR~NDEX Integer

CHARACTER~IEIGH'T~C F-float

CHARACTER~IEIGH'~Y F-float

CHARACTER WIDTH~C F-float

CHARACTER WIDTH_Y F-float

TEXT~'ATH Integer

TEXT~LIGNMENT_HORIZ Integer

TEXT_ALIGNMEN'~VERT Integer

PICKED Integer

CELL ~RRAY~'ICK~D Integer

4.2 Function Descriptions

This section contains the control and transformation function descriptions.

Workstation Handler Control and Transformation Functions 4-3

Open Workstation

Open Workstation

This function opens the workstation and makes it available for input and
output. It must do the following:

• Allocate and initialize the workstation state list, as described in Chapter 3,
Building a Workstation Handler System.

• Clear the display surf ace, if it is not clear.

• Assign a channel to the physical device.

• Open and initialize any input devices.

• Perform any device-specific initialization.

It is possible for one handler to support more than one device type. If your
handler does, you can use the WSTYPE value to identify the device type that
the kernel is opening, and load the WDT for that device type.

Required
Required for all workstations.

Input Parameters

WSL The address of the handler's local data area.

WSTYPE The workstation type expressed as an integer value.
The low-order word is the actual workstation type. The
high-order word is any device specific information.

DEVNAME String. The actual device name. Passed by descriptor.

WS—ID Integer. The workstation identification number.

4-4 Workstation Handler Control and Transformation Functions

Open Workstation

Output Parameters

LEVEL Integer. The GKS level the handler supports. In this
implementation your handler should return the value
GKS$K_LEVEL ~C (8).

CALL _BACK_TABLE Address. An array of function addresses as specified in
Table 4-2.

Table 4-2: Call Back Table Output Parameter

Function Data Type

GKS$INQUIRE _DEVICE ~iAND_ Integer
WDT()

GKS$SIM~TROKE_TEXT() Integer

GKS$SIM~TROKE_TEXT_EXTENT() Integer

GKS$STORE EVENTS() Integer

GKS$INPUT_OUTPUT_CONFLICT(} Integer

GKS$INPUT~EDRAW_INPUT() Integer

GKS$INPUT_UPDATE_INPUT() Integer

GKS$INPUT~ZEFRESH _INPUT() Integer

GKS$INPUT~ET_WS_VIEWPORT() Integer

GKS$FIND_SEGMENT() Integer

GKS$FIND~EG EXTENT() Integer

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$_ERROR_26 Specified workstation cannot be opened.

Workstation Handler Control and Transformation Functions 4-5

Close Workstation

Close Workstation

This function closes the workstation. It must do the following:

• Do any clean-up required by your device or your handler.

• Cleaz the display (if desired).

• Deassign the device channel.

If your workstation is type MO, it should use the ATTRIB~RRAY values to
update the values in the metafile. Other workstation types need not use the
attribute array.

Required
Required for all workstations.

Input Parameters

WSL

ATTRIB~RRAY

The address of the handler's WSL.

The active attribute array explained in Section 4.1.

Status Codes

Code Meaning

GKS$~UCCESS Success.

4-6 Workstation Handler Control and Transformation Functions

Clear Workstation

Clear Workstation

This function clears the display surface if necessary, if -your handier supports
segments, it performs the following operations;

• Flushes out any defend output.
• Clears the workstation, performing any requested workstation

transformations.
• Deletes all segments on this works#anon.
• Sets NEW~RAME to NO.
• Sets DISPLAY~PTY to EMPTY.

If your handler does not support segments, it performs the following operations;

• For a hardcopy device, generates hard copy.
• Clears the workstation, performing any requested workstation

transformations.

• Sets DiSPLAY~MPTY to EMPTY.

Required
Required for OUTPUT, OUTiN, and MO workstations.

input Parameters

~vsL
CLEAR~LAG

The address of the handler's local data area.

An integer flag that controls whether to clear the _display
surface. If the flag is GKS$K_CLEAR_ALVI~AYS (1~, then
always clear the surface. If the flag is GKS$K_CLEAR_
CONDITIONALLY (0), then clear the .surface only if it is
not already clear.

Workstation Handler Control and Transformation functions ~--~'

Clear Workstation

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

4-8 Workstation Handler Control and Transformation Functions

Update Workstation

Update Workstation

This function is only required if the kernel is not simulating segments for this
device. The function performs all deferred actions for the workstation, possibly
by calling a PERFORM DEFERRED ACTIONS routine, without first clearing the
display surface. Then, if the DEF~VIODE flag is PERFORM and NEW_FRAME
is YES, it performs the following steps in order.

1. If DISPLAY~MPTY is NOTEMPTY, the function clears the display surface
and sets the DISPLAY~MPTY to EMPTY.

2. If the flag T~SFORM~LAG is PENDING, meaning a transformation
is pending on the workstation, it assigns the values of REQUESTED_
WS_WINDOW to CURRENT_WS_WINDOW, and REQUESTED_WS_
vIEWPORT to CURRENT_WS_VIEWPORT. Then it sets TRANSFORM_
FLAG to NOTPENDING.
These flags and values are stored in the WSL. Note that the transformation
update may require the handler to recompute geometric attributes.

3. If there are visible segments on the workstation, the function redisplays
them, and sets DISPLAY~MPTY to NOTEMPTY.

4. Sets NEW~RAME to NO.

Note that these operations are equivalent to the following:

• If NEW_FRAME is YES, or if DEF~VIODE is PERFORM, perform the
function REDRAW ALL SEGMENTS ON WORKSTATION (described later
in this chapter).

• If NEW~RAME is NO, or if DEF_NiODE is POSTPONE, perform all
deferred actions.

Conditional
This function is required only if the kernel is not simulating segments for the
device.

Workstation Handler Control and Transformation Functions 4-9

Update Workstation

Input Parameters

WSL The address of the handler's local data area.

UPDATE_ Integer. Either GKS$K.~OSTPONE~LAG (0) or
REGENERATION SLAG GKS$K_PERFORM SLAG (1).

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

4~-1 Q Workstation Handler Control and Transformation Functions

Perform Deferred Output

Perform Deferred Output

This function flushes any buffered output to the device. This function is also
used to simulate deferral modes for devices that cannot change modes, and it
is required by all workstations regardless of their implicit deferral mode. That
is, if a workstation's deferral mode is ASAP and cannot be changed (such as
the metafile output), this function is required even though all it does is return
GKS$~UCCESS.

Conditional
Required for OUTPUT, OUTIN, and MO workstations where the workstation
handler does not support segments.

Input Parameters

WSL The address of the handler's local data area.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Control and Transformation Functions 4-11

Escape

Escape

This function performs escape operations specified by the ESCAPE ~D param-
eter. Note that the kernel does not look at the data records passed to or from
this function. The kernel only checks the first longword of the input data record
for the WS~D value, then passes the entire record directly to the handler.

Note that applications can call escape functions for devices that are not open.
For example, the "inquire list of escape functions" escape function can be called
without the device being open. In this case, the kernel loads the device on
which the escape function should be performed, and calls that device's escape
routine. When it does, it sets the WSL parameter to zero.

Required
Required for all workstations.

Previous Initialization Required
Some device-dependent initialization may be required.

Input Parameters

WSL The address of the handler's local data area.

ESCAPE_ID Integer specifying what escape function this is.

IN—RECORD~IZE The size in bytes of the data record array being passed, not
including the first longword.

IN~tECORD~RRAY The actual data record array. Passed starting at the second
longword. The first longword is used by the kernel to
obtain the workstation id number.

4-12 Workstation Handler Control and Transformation Functions

Escape

Modified Parameters

OUT~ECORD_SIZE The size in bytes of the output data record. On input this
is the size of the array. On output the number of bytes
written into the array.

Output Parameters

OUT—RECORD_ARRAY The output data record.

TOTAL ~ECORD_SIZE The total size in bytes of the output data record. This may
be longer than the returned size if the output data record
was not large enough.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_180 Specified escape function is not supported.

GKS$~RROR_181 Specified escape function identification is invalid.

GKS$_ERROR_182 Contents of escape data record are invalid.

Workstation Handler Control and Transformation Functions 4-13

Set Workstation Window

Set Workstation Window

This function sets the workstation window, actor d- ing to the following
algorithm:

~ . Sets REQUESTED_WS—WINDOW accorcling to the input parar~teter
WINDOW_LIMITS.

2. If D~NAA~IIG_1ViODIFICATIQN.,~ACCEPTED~4R_WORRSTATIC~N~_
TRANSFORMATION is IMM, or if DISPLAY~MPTY is EMPT~C:

• Sets ~URREN'I_WS_WINDOW to the new window specified in the
input parameter WINDQ~T LIMITS.

• Recomputes geometric attributes as needed.

• Sets T~SFORM FLAG to NOTPENDING, and returns TRANSFORM _
FLAG ~ NOTPENDING.

3. Otherwise, if DYNE!►MIC~VIC~►DIFI~ATIE~N_AGCEPTED.._FOR_...
WOR~STATION_T~SFQRMATION is IRG and DISPLA~_.EMFTY
is NO'FEMPTY:

• Sets TR;ANSFORM~LAG to PENDING.
• If the handler is performing segments and R,EGEN~C~DE is

ALLOWED,. calls REDRAW ALL SEGMENTS.
• If the handler is perf owning segments and REGEI~I._.~VIO~DE is

S~JPPRESSED, sets NEW._FRANfE to DES.
4. Returns the value of T~SFORM._FLAG as PENDING.

,All flags shown in this algorithm are described in chapter 3. They are normally
maintained in the WSL.

This function may change the clipping rectangle and the normalization
transformation.

Rec~uir~d
Required for O~,TTPL,IT, OLiTIN, INPI3T, and MO workstations.

4-14 Worl~station Hander control and Transfornnation Functions

Set Workstation Window

Input Parameters

WSL The address of the handler's local data area.

WINDOW LIMITS The requested workstation window in NDC. Ordered as
XMIN, XMAX, YMIN, YMAX.

Output Parameters

TRANSFORM_FLAG Integer. Either GKS$K~TOTPENDING (0) or GKS$K_
PENDING (1).

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Control and Transformation Functions 4-15

Set Workstation Viewport

Set Workstation Viewport

This function sets the workstation viewport, according to the following
algorithm:

1. Sets REQUESTED WS_VIEWPORT according to the input parameter
VIEWPORT_LIMITS.

2. If DYNAMIC~VIODIFICATION~CCEPTED~OR WORKSTATION_
TRANSFORMATION is IMM, or if DISPLAY~MPTY is EMPTY:

• Sets CURRENT WS_VIEWPORT equal to the input parameter
VIEWPORT_LIMITS.

• Recomputes geometric attributes as needed.

• Sets TR,ANSFORM~'LAG to NOTPENDING.

• Returns the value GKS$K~TOTPENDING (0) as PENDING.

3. Otherwise, if DYNAMIC_I1/IODIFICATION_ACCEPTED~OR_
WORKSTATION_TR.ANSFORMATION transformation is IRG and
DISPLAY~MPTY is NOTEMPTY:

• Sets T~SFORM~LAG to PENDING.

• If the handler is performing segments and REGEN~VIODE is
ALLOWED, calls REDRAW ALL SEGMENTS.

• If the handler is performing segments and REGEN~VIODE is
SUPPRESSED, sets NEW~RAME to YES.

4. Returns the value of PENDING as TRANSFORM~LAG.

All flags shown in this algorithm are described in Chapter 3. They are normally
maintained in the WSL.

This function may change the clipping rectangle and the normalization
transformation.

Required
Required for OUTPUT, OUTIN, INPUT, and MO workstations.

4-16 Workstation Handler Control and Transformation Functions

Set Workstation Viswport

Input Parameters

WSL The address of the handler's local data area.

VIEWPORT_LIMITS Array of four real numbers defiining the workstation
viewport in LDC. Ordered as XMIN, XMAX, YMIN,
YMAX.

Output Parameters

TRANSFORM~LAG Integer. Either GKS$K_NOTPENDING (0) or GKS$K_
PENDING (1).

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR~54 Workstation viewport is not within the display space.

Workstation Handler Control and Transformation Functions 4-17

Set Normalization Transformation

Set Normalization Transformation

This function establishes a new normalization transformation. The transforma-
tion information is usually stored in the WSL.

This function changes the clipping rectangle. Also, the handler may need to
recompute geometric attributes.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL The address of the handler's local data area.

WINDOW Array of four real numbers in WC. The world window
limits, passed as a (1 x 4) array, ordered as XMIN, XMAX,
YMIN, YMAX.

VIEWPORT Array of four real numbers in NDC. The world normaliza-
tion viewport limits, passed as a (1 x 4) array, ordered as
XMIN, XMAX, YMIN, YMAX.

CLIP_FLAG Integer. If GKS$K _CLIP (1), clipping is enabled and
the clipping rectangle is the viewport or the workstation
window, whichever is smallest. If GKS$K~10CLIP (0),
the clipping rectangle is the workstation window.

Output Parameters
None.

4-18 Workstation Handler Control and Transformation Functions

Set Normalization Transformation

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Control and Transformation Functions 4-19

Set Deferral Mode

Set Deferral Mode

This function establishes a new deferral mode and implicit regeneration mode.
These values are usually stored in the WSL. If the new implicit regeneration
mode is GKS$K~RG~LLOWED (1), or the new deferral mode is a higher
mode than the one currently in effect, then the function also performs any
necessary regeneration.

Input Parameters

WSL

DEF~VIODE

The address of the handler's local data area.

Integer value of deferral mode. One of:

• GKS$K~SAP (0)

• GKS$K_BNIL (2)

• GKS$K~STI (3)

REGEN~VIODE Integer value of the regeneration mode. One of:

• GKS$K~RG~UPPRESSED (0)

• GKS$K ERG ALLOWED (1)

Output Parameters
None.

4-20 Workstation Handler Control and Transformation Functions

Set Deferral Mode

Status Codes

Code Meaning

GKS$~UCCESS Success

Workstation Handler Control and Transformation Functions 4-21

Redraw All Segments on Workstation

Redraw All Segments on Workstation

This function redraws all segments associated with the workstation. It performs
the following operations:

• Executes all deferred actions.

• Clears the display surface if necessary.

• Performs any pending workstation transformation update.

Redraws all visible segments.

• Sets NEW_FRAME~►CTION to GKS$K~TEWFRAME~VOTNECESSARY
(0).

• Sets DISPLAY~MPTY to GKS$K~TOTEMPTY (0), if necessary.

Required
Required for OUTPUT, OUTIN, and MO workstations where the workstation
handler supports segments.

Input Parameters

WSL The address of the handler's local data area.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

4-22 Workstation Handler Control and Transformation Functions

Set Global Interactions

Set Global Interactions

This function signals whether global interactions are present for the worksta-
tion. This information is usually stored in the WSL. The function also performs
any actions necessary for deferrals.

This function is needed in order to perform BNIG deferral. If the device is in
BNIG deferral mode and GLOBAL _INTERACTIONS~RESENT is GKS$K_
TRUE (1) ,then all deferred actions must be performed, and actions may not be
deferred as long as the workstation remains in BNIG mode, or until this func-
tion is executed with GLOBAL _INTERACTIONS~'RESENT = GKS$K~ALSE
(0). This means that as long as GLOBAL ~NTERACTIONS~'RESENT is
GKS$K _TRUE (1), output operations should be performed as soon as possible.

The workstation handler is responsible for performing its own BNIL deferral.
That is, if it is in BNIL deferral mode and an input is in progress on that
particular workstation, then that workstation should perform all deferred
actions, and it should perform all output operations as soon as possible as long
as input is in progress.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSL The address of the handler's local data area.

GLOBAL _ Integer. GKS$K_FALSE (0) means no global interac-
INTERACTIONS_ Lions are in progress. GKS$K_TRUE (1) means global
PRESENT interactions are in progress.

Output Parameters
None.

Workstation Handler Control and Transformation Functions 4-23

Set Global Interactions

Status Codes

Code Meaning

GKS$~UCCESS Success.

4-24 Workstation Handler Control and Transformation Functions

Message

Message

This function sends a message to the workstation. It may write the message on
the workstation display or on a separate device associated with the workstation.
It may also affect the workstation in a purely local way.

Required
Required for MO, OUTPUT, OUTIN, and INPUT workstations.

Input Parameters

WSL

MESSAGE

The address of the handler's local data area.

String descriptor pointing to the message to be displayed.

Output Parameters
None.

Status Codes

Code Meaning

GKS$_SUCCESS Success.

Workstation Handler Control and Transformation Functions 4-25

Set NDC Transformation

Set NDC Transformation

This function sets the segment's NDC transformation. See Appendix A,
Transformations, for a discussion of the NDC transformation. Note that as a
result of this function the handler may need to recompute geometric attributes.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL

NDC_TRANSFORM

The address of the handler's local data area.

A 1 x 6 array of real numbers of the transformation
ordered as M(1,1), M(1,2), M(1,3), M(2,1), M(2,2), M(2,3).
Locations M(1,3) and M(2,3) are in NDC.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

4-26 Workstation Handler Control and Transformation Functions

Chapter 5

Workstation Handler Input Functions

This chapter describes the workstation handler input functions.

5.1 Writing Input Functions

You only need to write input functions if your device is type OUTIN or INPUT.
If it is, you must supply the INITIALIZE, SET, and REQUEST functions for
the types of input your workstation supports. The GKS standard requires that
OUTIN workstations be able to perform all six input types (that is, CHOICE,
LOCATOR, VALUATOR, STRING, STROKE, and PICK input), so in order
to support an OUTIN workstation you must provide the INITIALIZE, SET,
REQUEST, and SAMPLE functions for all six input types.

Before you write PICK input functions, read Appendix C, Pick Simulation
Functions. This appendix describes built-in functions you can use to make
PICK functions easier to write.

The GKS standard also states that INPUT workstations can support from
one to all six input types, so for an INPUT workstation you must supply the
INITIALIZE, SET, REQUEST and SAMPLE functions for at least one input type,
and as many input types as your device supports.

Workstation Handler Input Functions 5-1

5.1.1 INITIALIZE Functions

The INITIALIZE functions prepare your workstation for the input operation.
These preparations include identifying the logical input device on which you
will do input, and passing the current output attributes, the echo area, and
input type-specific data to the workstation.

The kernel passes a data record in each initialize function. The format varies
depending on the input type. The data record for each input type is described
in each initialize function description.

The workstation should store the data that the kernel passes. Your REQUEST
INPUT functions will probably need this information for the input operation.

5.1.2 SET Functions

The SET functions set the workstation's operating mode and echo flag to
values passed as input parameters. They must store these values for use by the
REQUEST INPUT functions.

5.2 REQUEST, SAMPLE, and EVENT Input

The REQUEST and SAMPLE functions get input from the workstation. Each
REQUEST function prepares the workstation to accept input, prompts the user
for input, updates the display surface to show the input (if echoing is set to
GKS$K~CHO (1)), and stores the input data. When the user signals that the
input is complete (in some workstation-specific manner), the function sends
data to the kernel, and passes a "success" status code. If the user invokes a
BREAK operation to cancel input, the handler should return the status code
'none". At the end of the input operation the function sets the workstation
back to output.

The SAMPLE functions return the current value of a logical input device. That
is, they do not wait for the user to signal that input is complete; rather, they
return whatever the value of the input device is at the moment the function is
executed.

EVENT input returns data when a predefined event occurs. GKS does not
require separate EVENT input functions.

5-2 Workstation Handler Input Functions

5.2.1 Managing SAMPLE and EVENT Input

When the kernel calls one of your handler's SET MODE functions (for example,
Set Locator Mode) for SAMPLE or EVENT mode input, your function should
start a conceptual subprocess that monitors the input device. This can be done
in VMS through AST routines, updating the data structures asynchronously
when input is performed by the user.

You can use the same subprocess for SAMPLE or EVENT input. The only
difference between sample and event mode input from the workstation
handler's perspective is that for event mode input, the routine must call the
built-in function GKS$STORE EVENTS to return the input data when a trigger
is fired. Section 5.2.2 describes GKS$STORE~VENTS. For sample mode
input, triggers are ignored and the SAMPLE function returns the routine's
current values when the kernel calls it.

In cases where more than one logical input device is active on a single
workstation, one action may be interpreted as the trigger for more than one
input function. For example, a single carriage return can trigger both LOCATOR
and STROKE input in request or event mode. In this case, the handler must
update all affected logical input devices during the AST routine for the input.
For event mode input, if you have a trigger for more than one input device, this
information will be passed to the kernel in GKS$STORE~VENTS.

Also, if your workstation handler is echoing input with complement mode
during sample or event mode input, and the echo area overlaps with an
output window, it is possible that the handler may not always complement
out the cursor. For example, a cursor drawn in the forground color can be
overdrawn by output in the background color. When the input function tries
to move the cursor by first complementing out the original cursor, it finds the
color currently at the cursor's location, and draws in that color's complement.
Since the original cursor's location is now filled by the background color, the
input function draws in the foreground color, and the result is that the cursor
reappears rather than disappears. To solve this problem, your handler can set
a flag whenever input and output are intermixed, then erase the input echoing
primitives whenever it draws overlapping output, and redraw the input echoing
after it draws the output.

Some functions require function-specific processing as well. These requirements
are explained in the function descriptions in this chapter.

Workstation Handler Input Functions 5-3

5.2.2 GKS$STORE_EVENTS

This section describes the built-in function GKS$STORE~VENTS, which
your handler calls to return event-mode input. When your handler calls it, the
function checks whether all the events can be added to the event queue. If they
can, it adds the events to the queue and returns a success message. If not, it
returns an error status and does not add any of the events to the queue. If this
happens, the function that called GKS$STORE~VENTS must report the error
to the user.

Input Parameters

GKS$STORE~VENTS accepts the following input parameters:

WS_ID Workstation id for the device that is reporting these events.
Integer, passed by reference.

NUM_SIM~VENTS Number of simultaneous events that are being reported.
Integer, passed by reference.

EVENT_DATA Data structure, passed by reference. This structure contains
information about each event being reported. There is one
iteration of this structure for each simultaneous event. The
structure contains these items:

• Log_dev~um ~: the logical device where event N
occurred. Integer.

• Input_class~: the input class of event N. Integer.

• Data_n: An array containing the data record of event
N. Its format depends on the input class.

The value of Input_class~l is one of the following:

• GKS$K~NPUT_CLASS_LOCATOR (1)

• GKS$K~NPUT_CLASS~TROKE (2)

• GKS$K~NPU~CLASS_VALUATOR (3)

• GKS$K_INPU'~CLASS_CHOICE (4)

• GKS$K_INPUT_CLASS~'ICK (5)

• GKS$K~NPUT CLASS_STRING (6)

5-4 Workstation Handler Input Functions

The contents of Data~1 depend on the input type. For Locator input, it
contains these three items:

• pos~c The X component of a point, expressed in NDC. Real.
• pos_y The Y component of a point, expressed in NDC. Real.
• fill Four fill characters. String.

For Stroke input, Datan contains this information:

• npts The number of points in the stroke. Integer.
• pos~c Pointer to an array. The array contains the X component of each

point, expressed in NDC.
• pos_y Pointer to an array. The array contains the Y component of each

point, expressed in NDC.

For Choice input, Data_n contains this information:

• status The choice status, either GKS$K~TATUS_OK or GKS$K_
STATUS~TOCHOICE. Integer.

• choice~um The choice number, meaningful if status equals GKS$K_
STATUS_OK. Integer.

• dill Four fill characters. String.

For Valuator input, Data_n contains this information:

• value The measure of the valuator device. Real.
• fill Eight fill characters. String.

For String input, Datan contains this information:

• length The size of the string. Integer.
• string The pointer to the string buffer.
• dill Four dill characters. String.

For Pick input, Data n contains this information:

• status The pick status, either GKS$K_STATUS_OK or GKS$K_STATUS_
NOPICK. Integer.

• picked The pick id, meaningful only if status equals GKS$K~TATUS_
OK. Integer.

• seg~ame The segment name, meaningful only if status equals GKS$K_
STATUS_OK. Integer.

Workstation Handler Input Functions 5-5

The structure can be expressed as the following:

struct report_events_type
{
int input_clasa; /* input class of the event */
int logical_dev_num;
union { /* only one of these is 'active' */

struct report_locator locator; /* at a time. See structure
struct report_atroke stroke;
struct report_choice choice;
struct report_valuator valuator;
atruct report_string string;
struct report_pick pick;
} report ;

};

Output Parameters

GKS$STORE EVENTS returns the following output parameter:

ALLOWED

*/

GKS$K_TRUE if the events fit on the event queue, or
GKS$K~ALSE if they did not.

5.3 Function Descriptions

This section contains the input function descriptions.

1J
5-6 Workstation Handler Input Functions

Initialize locator

Initialize Locator

This function initializes the device to accept input of type LOCATOR. It should
store the input parameters in the WSL for the logical input device you specify.

The GKS standard specifies the following prompt and echo type (PET) defini-
tions for LOCATOR input:

PET Definition

Less than 0 Prompting and echoing is LOCATOR device dependent.

1 Designate the current locator position using an implementation-
defined technique.

2 Designate the current locator position using a vertical line and a
horizontal line spanning the display surface or the workstation
viewport, and intersecting at the current locator position.

3 Designate the current locator position using a tracking cross.

4 Designate the current locator position using arubber-band
line connecting the initial locator position (given in the input
parameters) and the current locator position.

5 Designate the current locator position using a rectangle. The
diagonal of the rectangle is the line connecting the initial locator
position (given in the input parameters) and the current locator
position.

6 Display a digital representation of the current locator position, in
locator device-dependent coordinates, within the echo area.

7 or greater Reserved for registration or future standardization.

The data record depends on the PET. For user-defined PETS (those with
numbers less than 0), the data record is user defined.

The kernel passes the data record exactly as specified by the application. The
workstation handler must know the format of the data records the application
will pass for each PET.

Workstation Handler Input Functions 5-7

Initialize locator

The GKS standard defines data records for PETS 4 and 5. For PET 4, the first
item in the data record is the following:

Item Data Type

Attribute control flag Integer. One of GKS$K_ACF_CURRENT (0) or
GKS$K~CF_SPECIFIED (1).

The remainder of the data record depends on the setting of Attribute Control
Flag. If Attribute Control Flag equals GKS$K_ACF_SPECIFIED (1), the remain-
der of the data record is as follows:

Item Data Type

Linetype ASF

Linewidth Scale Factor ASF

polyline Color Index ASF

polyline Index

Linetype Index

Linewidth Scale Factor

polyline Color Index

Integer. One of:

• GKS$K~SF_BUNDLED (0)

• GKS$K _ASF~NDIVIDUAL (1)

Integer. One of

• GKS$K~SF_BUNDLED (0)

• GKS$K—ASF~NDiVIDUAL (1)

Integer. One of:

• GKS$K~SF_BUNDLED (0)

• GKS$K_ASF_INDIVIDUAL (1)

Integer. A defined polyline bundle index.

Integer. A defined line type.

Real. The linewidth scale factor.

Integer. A defined color bundle index.

If Attribute Control Flag equals GKS$K~CF_CURRENT (0), the current
polyline attributes at LOCATOR initialization are used.

5-8 Workstation Handler Input Functions

Initialize locator

For PET 5, the first two items in the data record are as follows:

Item Data Type

Polyline/Fill Area Control Flag Integer. One of:

• GKS$K~CF~'OLYLINE (0)

• GKS$K~CF_FILL _AREA (1)

Attribute Control Flag Integer. One of:

• GKS$K_ACF_CURRENT (o)

• GKS$K_ACF~PECIFIED (1)

The remainder of the data record depends on the settings of Polyline and
Attribute Control Flag. If Attribute Control Flag equals GKS$K~CF_
SPECIFIED (1) and Polyline/Fill Area equals GKS$K~CF~'OLYLINE (0),
the remainder of the data record is as follows:

Item Data Type

Linetype ASF

Linewidth Scale Factor ASF

Polyline Color Index ASF

Integer. One of

• GKS$K~SF_BUNDLED (o)

• GKS$K ~SF_INDIVIDUAL (1)

Integer. One of:

• GKS$K_ASF_BUNDLED (o)

• GKS$K ~SF~NDIVIDUAL (1)

Integer. One of:

• GKS$K~SF_BUNDLED (o)

• GKS$K ~SF~NDIVIDUAL (1)

Workstation Handler Input Functions 5-9

Initialize Locator

Item Data Type

Polyline Index

Linetype Index

Linewidth Scale Factor

Polyline Color Index

Integer. A defined polyline bundle index.

Integer. A defined linetype.

Real. The linewidth scale factor.

Integer. A defined color bundle index.

If Attribute Control Flag equals GKS$K~CF~PECIFIED (1) and Polyline/Fill
Area is GKS$K~CF~ILL~,REA (1), then the remainder of the data record is
as follows:

Item Data Type

Fill Area Interior Style ASF Integer. One of

• GKS$K~SF_BUNDLED (0)

• GKS$K_ASF~NDIVIDUAL (1)

Fill Area Style Index ASF Integer. One of:

• GKS$K_ASF_BUNDLED (0)

• GKS$K_ASF~NDIVIDUAL (1)

Fill Area Color Index ASF Integer. One of:

• GKS$K_ASF_BUNDLED (0)

• GKS$K_ASF_INDIVIDUAL (1)

Fill Area Index

Fill Area Interior Style

Fill Area Style Index

Fill Area Color Index

Integer. A defined fill area bundle index.

Integer. A defined fill area interior style.

Integer. A defined fill area style.

Integer. A defined color bundle index.

If Attribute Control Flag equals GKS$K~CF_CURRENT (0) and
Polyline/Fill Area is GKS$K~ACF~'OLYLINE (0), the current polyline at-
tributes at LOCATOR initialization are used.

5-10 Workstation Handler Input Functions

Initialize Locator

If Attribute Control Flag equals GKS$K~CF_CURRENT (0) and
Polyline/Fill Area is GKS$K~CF~ILL~REA (1), the current polyline
attributes at LOCATOR initialization are used.

Required
Required for OUTIN workstations and for INPUT workstations that support
LOCATOR input.

Input Parameters

WSL

DEVNUM

XFORM

INIT_LOCN _X

INIT_LOCN _Y

PROMPT_ECHO_TYPE

ECHO_AREA

DATA_REC_SIZE

LOC_DATAREC

ATTRIB_ARRAY

The address of the handler's local data area.

Integer value of the locator device number.

Integer. The transformation used to convert the initial
position from WC to NDC. It is not used by the handler,
but must be stored for return in the INQUIRE LOCATOR
DEVICE STATE function.

Real. The X value of the initial locator position, in NDC.

Real. The Y value of the initial locator position, in NDC.

Integer. The desired prompt and echo type.

A [1 x 4] array of real numbers defining the allowable echo
array in LDC. Ordered as XMIN, XMAX, YMIN, YMAX.

Integer. Number of bytes in the data record array.

The locator data record. Passed by reference. The data
record is passed straight through from the kernel to the
handler.

An array holding the current values of the entire attribute
array. This array is defined in Section 4.1. It is supplied to
give the handler the information necessary to perform the
various PETs.

Workstation Handler Input Functions 5-11

Initialize locator

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_60

GKS$~RROR_63

GKS$~RROR_65

GKS$~RROR_80

GKS$~RROR_84

GKS$~RROR_92

GKS$~RROR_140

GKS$~RROR_141

GKS$~RROR_144

GKS$~RROR_145

GKS$~RROR_146

GKS$~RROR_152

Success.

Polyline index is invalid.

Linetype is equal to zero.

Linewidth scale factor is less than zero.

Fill area index is invalid.

Pattern or hatch style index is equal to zero.

Color index is less that zero.

Specified input device is not present on this workstation.

Specified input device is not in REQUEST mode.

Specified prompt and echo type is not supported on this
workstation.

Echo area is outside display space.

Contents of input data record are invalid.

Initial value is invalid.

5-12 Workstation Handler Input Functions

Initialize Stroke

Initialize Stroke

This function initializes the logical input device to accept input of type STROKE.
It should store the input parameters in the WSL entries for the specified stroke
device.

The GKS standard specifies the following prompt and echo type definitions for
STROKE input:

PET Definition

Less than 0 Prompting and echoing is stroke device dependent.
1 Display the current stroke using an implementation-defined

technique.

2 Display a digital representation of the current stroke position, in
device-dependent coordinates, within the echo area.

3 Display a marker at each point of the current stroke.

4 Display a line joining successive points of the current stroke.

5 or greater Reserved for registration or future standardization.

The data record depends on the PET. For user-defined PETS (those with
numbers less than 0), the data record is user-defined.

Data records for all PETs contain the following four items. For PETs 1 and 2,
these are the only required items for the data record.

Item Data Type

Input Buffer Size

Editing Position

X, Y Interval

Time Interval

Integer. The size of the input buffer.

Integer. The initial editing position.

Array of two reals. The distance in NDC between
points on the stroke, on both the X and Y axis.
The cursor must be moved at least this distance
before the handler accepts an input point.

Real. The minimum time allowed between points.
This interval must expire before the handler
accepts an input point, even though the cursor
may have moved the required distance.

Workstation Handler Input Functions 5-13

Initialize Stroke

For PETs 1 and 2, this is the entire data record. For PET 3, the next item in the
data record is the following:

Item Data Type

Attribute control flag Integer. One of

• GKS$K~CF_CURRENT (o)

• GKS$K—ACF_SPECIFIED (1)

For PET 3, the remainder of the data record depends on the setting of Attribute
Control Flag. If Attribute Control Flag equals GKS$K_ACF~PECIFIED (1), the
remainder of the data record for PET 3 is as follows:

Item Data Type

Marker Type ASF

Markersize Scale Factor ASF

Polymarker Color Index ASF

Polymarker Index

Markertype Index

Markersize Scale Factor

Polymarker Color Index

Integer. One of:

• GKS$K_ASF_BUNDLED (o)

• GKS$K_ASF_INDIVIDUAL (1)

Integer. One of:

• GKS$K~SF_BUNDLED (0)

• GKS$K~SF~NDIVIDUAL (1)

Integer. One of:

• GKS$K_ASF_BUNDLED (0)

• GKS$K—ASF_INDIVIDUAL (1)

Integer. A defined polymarker bundle index.

Integer. A defined markertype.

Real. The markersize scale factor.

Integer. A defined color bundle index.

If Attribute Control Flag equals GKS$K_ACF_CURRENT (0), the current
polyline attributes at STROKE initialization are used.

5-14 Workstation Handler Input Functions

Initialize Stroke

For PET 4, the next item in the data record is the following:

Item Data Type

Attribute control flag Integer. One of:

• GKS$K~CF_CURRENT (0)

• GKS$K—ACF_SPECIFIED (1)

For PET 4, the remainder of the data record depends on the setting of Attribute
Control Flag. If Attribute Control Flag equals GKS$K_ACF_SPECIFIED (1), the
remainder of the data record is as follows.

Item Data Type

Linetype ASF

Linewidth Scale Factor ASF

Polyline Color Index ASF

Polyline Index

Linetype Index

Linewidth Scale Factor

Polyline Color Index

Integer. One of:

• GKS$K~SF_BUNDLED (0}

• GKS$K ~SF_INDIVIDUAL (1)

Integer. One of

• GKS$K~SF_BUNDLED (0)

• GKS$K~SF~NDIVIDUAL (1)

Integer. One of:

• GKS$K~SF_BUNDLED (0)

• GKS$K_ASF_INDIVIDUAL (1)

Integer. A defined Polyline bundle index.

Integer. A defined linetype.

Real. The linewidth scale factor.

Integer. A defined color bundle index.

If Attribute Control Flag equals GKS$K~CF_CURRENT (0), the current
Polyline attributes at STROKE initialization are used.

Workstation Handler Input Functions 5-15

Initialize Stroke

Required
Required for OUTIN workstations and for INPUT workstations that support
STROKE input.

Input Parameters

WSL

DEVNUM

XFORM

NU1Vi~NIT_I'OINTS

INITX ARRAY

iNITY~RRAY

PROMPT~CHO_TYPE

ECHO_AREA

D~4TA~tEC_SIZE

STK—DATAREC

ATTRIB_ARRAY

The address of the handler's local data area.

Integer. The stroke logical device number.

Integer. The transformation used to convert the initial
stroke from WC to NDC. It is not used by the handler,
but must be stored for return in the Inquire Stroke Device
State function.

Integer. The number of points in the initial stroke array.

Array of seals. The X component of the initial stroke, in
NDC.

Array of seals. The Y component of the initial stroke, in
NDC.

Integer value of the desired prompt and echo type.

A [1 x 4] array of real numbers defining the allowable echo
array in LDC. Ordered as XMIN, XMAX, YMIN, YMAX.

Integer. The number of bytes in the data record array.

The stroke data record passed by reference.

The attribute array, defined in Section 4.1. It is supplied to
give the handler the information necessary to perform the
various PETs.

Output Parameters
None.

5-16 Workstation Handler Input Functions

Initialize Stroke

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_60

GKS$_ERROR_63

GKS$~RROR_65

GKS$~RROR_66

GKS$~RROR_67

GKS$~RROR_92

GKS$~RROR_140

GKS$~RROR_141

GKS$_ERROR_144

GKS$~RROR_145

GKS$~RROR_146

GKS$_ERROR_152

GKS$~RROR_153

Success.

Polyline index is invalid.

Linetype is equal to zero.

Linewidth scale factor is less than zero.

Polymarker index is invalid.

A representation for the specified Polymarker index has not
been defined on this workstation.

Color index is less than zero.

Specified input device is not present on workstation.

Specified input device is not in REQUEST mode.

Specified prompt and echo type is not supported on this
workstation.

Echo area is outside display space.

Contents of input data record are invalid.

Initial value is invalid.

Number of points in the initial stroke is greater than the buffer
size.

Workstation Handler Input Functions 5-17

Initialize Valuator

Initialize Valuator

This function initializes the logical input device for input of type VALUATOR.
It should store the input parameters in the WSL entries of the specified
VALUATOR logical input device.

The GKS standard specifies the following prompt and echo types for
VALUATOR input:

PET Definition

Less than 0 Prompting and echoing is VALUATOR device dependent.

1 Designate the current VALUATOR value using an implementation-
defined technique.

2 Display a graphical representation of the current VALUATOR
value, such as a dial or pointer, within the echo area.

3 Display a digital representation of the current VALUATOR value
within the echo area.

4 or greater Reserved for registration or future standardization.

The data record for the user-defined PETs is undefined. For all other PETS, the
data record must contain at least the following two values:

Item Data Type

Low Value

High Value

Real. The low value of the valuator range.

Real. The high value of the valuator range.

Required
Required for OUTIN workstations and for INPUT workstations that support
VALUATOR input.

5-18 Workstation Handler Input Functions

Initialize Valuator

Input Parameters

WSL

DEVNUM

INIT_VALUE

PROMPT~CHO_TYPE

ECHO_AREA

DATA~EC_SIZE

VAL _DATAREC

ATTRIB~RRAY

The address of the handler's local data area.

Integer. The valuator device number.

Real. The initial value of the valuator.

Integer. The desired prompt and echo type.

A [1 x 4] array of real numbers defining the allowable echo
array in LDC. Array is ordered as XMIN, XMAX, YMIN,
YMAX.

Integer. The number of bytes in the data record array.

The locator data record, passed by reference. The data
record is passed straight through from the kernel to the
handler.

Array. The attribute array defined in Section 4.1. It is
supplied to give the handler the information necessary to
perform the various PETs.

Output Parameters
None.

Workstation Handler Input Functions 5-19

Initialize Valuator

Status Codes

Code Meaning

GKS$_SUCCESS

GKS$_ERROR_140

GKS$.~RROR.~141

GKS$~RROR_144

GKS$_ERROR_145

GKS$~RROR_146

GKS$~RROR_152

Success.

Specified input device is not present on workstation.

Specified input device is not in REQUEST mode.

Specified prompt and echo type is not supported on this
workstation.

Echo area is outside display space.

Contents of input data record are invalid.

Initial value is invalid.

5-20 Workstation Handler Input Functions

Initialize Choice

Initialize Choice

This function initializes the logical input device for input of type CHOICE. It
should store the input parameters in the WSL entries for the specifiied CHOICE
logical input device. If the number of choices in the data record exceeds the
maximum number of choice alternatives listed in the WDT, the handler must
return an error.

The GKS standard specifies the following prompt and echo type definitions for
CHOICE input:

PET Definition

Less than 0 Prompting and echoing is CHOICE device dependent.

1 Designate the current CHOICE number using an implementation-
defined technique.

2 Use abuilt-in prompt supplied by the device. The choice data
record should contain a prompt array structure that specifies
which device-specific prompt capab' 'ty to use. For example, the
array may specify which subset of a set of choice buttons to light
up.

3 Let the user choose by selecting a choice string using an
implementation-defined technique. In this case the choice data
record should contain the number of choice strings, and the actual
choice strings. The strings are displayed in the echo area. The
return value is the number of the string selected.

4 Let the user make a choice by selecting a choice string using an
alphanumeric keyboard. The function should display the choice
strings in the echo area, then prompt the user to type one of the
strings. The input the user types should be echoed in the echo
area. The function should return the number of the first string in
the choice data record that matches the user's input.

Workstation Handler Input Functions 5-21

Initialize Choice

PET Definition

5 Let the user make a choice by selecting a primitive (or a set of
primitives) from the segment named in the choice data record.
The function should display the segment by mapping the unit
square (o, l) by (o, l) in NDC space to the echo area. The PICK
identifiers in the segment should be mapped to the choice
numbers in adevice-dependent manner, so that picking the
primitives associated with a pick identifier makes the function
return a choice number. After the user chooses, there should be
no logical connection between the segment and the choice device.

6 or greater Reserved for registration or future standardization.

The data record depends on the PET. Data records for user-defined PETs and
PET 1 are undefined. The data records for the remaining PETS are as follows:

For PET 2:

Item Data Type

Number of choice alternatives Integer. The number of choices.

Array of prompts Array of integer flags. Each flag corresponds to
one choice alternative. GKS$K_TRUE (1) means
the choice should be active (in the case of lit
buttons, the corresponding button should be lit).
GKS$K~ALSE (o) means the choice should not
be active.

For PETs 3 and 4:

Item Data Type

Number of choice strings Integer. The number of choices.

Array of choice strings The choice strings.

5--22 Workstation Handler Input Functions

Initialize Choice

For PET 5:

Item Data Type

Segment name

Number of choice alternatives

Array of pick identifiers

The segment the user may pick from.

Integer. The number of choices available.

Array of integer. The pick identifiers within the
segment.

Required
Required for OUTIN workstations and for INPUT workstations that support
CHOICE input.

Input Parameters

WSL

DEVNUM

INIT_STATUS

INIT_CHOICE

PROMPT_ECHO_TYPE

ECHO~REA

DATA~ZEC_SIZE

CHOICE _DATAREC

Address. The address of the handler's local data area.

Integer. The choice device number.

Integer. The initial status. One of:

• GKS$K~TATUS_NONE (0)

• GKS$K_STATUS_OK (1)

• GKS$K~TATUS._NOCHOICE (2)

Integer. The initial choice number.

Integer. The desired prompt and echo type.

A [1 x 4] array of real numbers defining the allowable echo
array in LDC. Ordered as XMIN, XMAX, YMIN, YMAX.

Integer. Number of bytes in the data record array.

Address. The choice data record, passed by reference. The
data record is passed straight through from the kernel to
the handler.

Workstation Handler Input Functions 5-23

Initialize Choice

ATTRIB~RRAY The attribute array defined in Section 4.1. It is supplied to
give the handler the information necessary to perform the
various PETs.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_140

GKS$~RROR_141

GKS$~RROR_144

GKS$~RROR_145

GKS$~RROR_146

GKS$~RROR_152

GKS$~RROR_120

GKS$~RROR_122

GKS$_ERROR_123

Success.

Specified input device is not present on workstation.

Specified input device is not in REQUEST mode.

Specified prompt and echo type is not supported on this
workstation.

Echo area is outside display space.

Contents of input data record are invalid.

Initial value is invalid.

Specified segment name is invalid.

Specified segment does not exist.

Specified segment does not exist on specified workstation.

5-24 Workstation Handler Input Functions

Initialize String

Initialize String

This function initializes the workstation for input of type STRING. It should
store the input parameters in the WSL for the string device.

The GKS standard specifies the following prompt and echo type definitions for
STRING input:

PET Definition

Less than 0 Prompting and echoing is STRING device dependent.

1 Display the current STRING value in the echo area.

2 or greater Reserved for registration or future standardization.

The data record for user-defined PETS is undefined. For PET 1, the data record
should contain at least the following:

Item Data Type

Input Buffer Size

Initial Cursor Position

Integer. The size in bytes of the input buffer.

Integer. The initial cursor position.

Required
Required for OUTIN workstations and for INPUT workstations that support
STRING input.

Workstation Handler Input Functions 5-25

Initialize String

Input Parameters

WSL

DEVNUM

INIT STRING

PROMPT_ECHO_TYPE

ECHO~REA

DATA_REC_SIZE

STRING _DATAREC

ATTRIB_ARRAY

Address. The address of the handler's local data area.

Integer. The string device number.

String. The initial string, passed by descriptor.

Integer. The desired prompt and echo type.

A [1 x 4] array of real numbers defining the allowable echo
area in LDC. Ordered as XMIN, XMAX, YMIN, YMAX.

Integer. Number of bytes in the data record array.

The string data record passed by reference. The data
record is passed straight through from the kernel to the
handler.

The attribute array defined in Section 4.1. It is supplied to
give the handler the information necessary to perform the
various PETs.

Output Parameters
None.

5-26 Workstation Handler Input Functions

Initialize String

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_140

GKS$~RROR_141

GKS$~RROR_144

GKS$~RROR_145

GKS$~RROR_146

GKS$_ERROR_152

Success.

Specified input device is not present on this workstation.

Specified input device is not in REQUEST mode.

Specified prompt and echo type is not supported on this
workstation.

Echo area is outside display space.

Contents of input data record are invalid.

Initial value is invalid.

Workstation Handler Input Functions 5-27

Initialize Pick

Initialize Pick

This function initializes the device for PICK mode input. It should store the
input parameters in the ~VSL for the device.

The GKS standard specifies the following prompt and echo type definitions for
PICK input:

PET Definition

Less than 0 Prompting and echoing is pick device dependent.

1 Use an implementation-defined technique that at least highlights
the picked primitive for a short period of time.

2 Echo the contiguous group of primitives within the segment with
the same pick identifier as the picked primitive, or all primitives
of the segment with the same pick identifier as the picked
primitive.

3 Echo the whole segment containing the picked primitive.

4 or greater Reserved for registration or future standardization.

There are no predefined data records for any PICK input PET. However, DEC
GKS suggests that the first element of the data record be the aperture, or the
distance around the point the user picks that may contain the segment. This
should be expressed in NDC.

See Appendix C, Pick Simulation Functions, for simulation functions you can
use to simplify this routine.

Required
Required for OUTIN workstations and for INPUT workstations that support
PICK input.

5-28 Workstation Handler Input Functions

Initialize Pick

input Parameters

WSL

DEVNUM

INIT~TATUS

INIT~EGMENT

INITIAL _PICKID

PROMPT_ECHO_TYPE

ECHO~REA

DATA—REC_SIZE

PICK_DATAREC

ATTRIB_ARRAY

The address of the handler's local data area.

Integer. The logical input device number.

Integer. The initial pick status. Either:

• GKS$K ~TATUS_OK (1)

• GKS$K_STATUS_NOPICK (2)

Integer. The initial segment name.

Integer. The initial pick identifier.

Integer. The desired prompt and echo type.

A [1 x 4] array of real numbers defining the allowable
echo array in LDC. The array is ordered as XMIN, XMAX,
YMIN, YMAX.

Integer. The number of bytes in the data record.

The pick data record, passed by reference. The data record
is passed straight through from the kernel to the handler.

The entire attribute array as described in Section 4.1. It is
supplied to give the handler the information necessary to
perform the . various PETs.

Output Parameters
None.

Workstation Handler Input Functions 5-29

Initialize Pick

Status Codes

Code Meaning

GKS$~UCCESS

GKS$_ERROR_140

GKS$~RROR_141

GKS$_ERROR_144

GKS$_ERROR_145

GKS$_ERROR_146

GKS$~RROR_152

Success.

Specified input device is not present on workstation.

Input device is not in REQUEST mode.

Specified prompt and echo type is not supported on this
workstation.

Echo area is outside display space.

Contents of input data record are invalid.

Initial value is invalid.

5-30 Workstation Handler Input Functions

Set locator Mode

Set Lceator Mode

This function sets the specified LOCATOR device to the OPMODE specified
in the input parameters, and sets echoing on or off depending on the value of
ECHO~WITCH. It should also store the OPMODE and ECHO_SWITCH in
the device's WSL.

In addition, you may let your Set Locator Mode function perform other oper-
ations depending on the input mode. For example, in SAMPLE mode, your
function might start an AST routine that performs prompting and echoing on
the logical input device, and stores the current locator measure. In this case
your Sample Locator function would only need to return the measure.

For event mode, your function might start an AST that will prompt for in-
put, maintain the current locator measure, then call the built-in function
GKS$STORE~VENTS with the current measure when it receives the event
trigger.

For simplicity, your Set Locator Mode function can start a single AST for either
SAMPLE or EVENT mode. In this case the AST will ignore triggers while
operating in SAMPLE mode.

Required
Required for OUTIN workstations and for INPUT workstations that support
LOCATOR input.

Workstation Handler Input Functions 5-31

Set Locator Mode

Input Parameters

WSL

DEVNUM

OPMODE

ECHO_SWITCH

The address of the handler's local data area.

Integer. The locator device number.

Integer. The input mode. One of:

• GKS$K~NPUT~ViODE~EQUEST (0)

• GKS$K~NPUT~ViODE_SAMPLE (1)

• GKS$K~NPUT~VIODE~VENT (2)

Integer value that determines whether or not to echo the
input. One of

• GKS$K~TOECHO (0)

• GKS$K~CHO (1)

Output Parameters

OLD~VIODE Integer. The input mode in effect before you changed it.

Status Codes

Code Meaning

GKS$_SUCCESS Success.

GKS$_ERROR_140 Specified input device is not present on this workstation.

5-32 Workstation Handler Input Functions

Set Stroke Mode

Set Stroke Mode

This function sets the specified STROKE device to the OPMODE specified in
the input parameters, and sets echoing on or off depending on the value of
ECHO~WITCH. It should also store the OPMODE and ECHO~WITCH in
the STROKE device's WSL.

In addition, you may let your Set Stroke Mode function perform other oper-
ations depending on the input mode. For example, in SAMPLE mode, your
function might start an AST routine that performs prompting and echoing on
the logical input device, and stores the current stroke measure. In this case your
Sample Stroke function would only need to return the measure.

For event mode, your function might start an AST that will prompt for in-
put, maintain the current stroke measure, then call the built-in function
GKS$STORE EVENTS with the current measure when it receives the event
trigger. For both Sample and Event modes, your AST should delete the echo of
the stroke points it returns. For example, if there are eight points in the stroke
buffer and the GKS kernel calls Sample Stroke and requests five points, the first
five points should be returned, and the echo should only show the remaining
three points.

For simplicity, your Set Stroke Mode function can start a single AST for either
SAMPLE or EVENT mode. In this case the AST will ignore triggers while
operating in SAMPLE mode.

Required
Required for OUTIN workstations and for INPUT workstations that support
STROKE input.

Workstation Handler Input Functions 5-33

Set Stroke Mode

Input Parameters

WSL

DEVNUM

OPMODE

ECHO~WITCH

The address of the handler's local data area.

Integer. The stroke device number.

Integer. The input mode. One of:

• GKS$K_INPUT_IVIODE_REQUEST (0)

• GKS$K _INPUT_1VIODE _SAMPLE (1)

• GKS$K_INPUT_NiODE~VENT (2)

Integer value that determines whether or not to echo the
input. One of:

• GKS$K_INPUT_IVIODE_REQUEST (0)

• GKS$K_INPUT_IVIODE_SRMPLE (1)

• GKS$K_INPUT_IViODE~VENT (2)

Output Parameters

OLD~VIODE Integer. The input mode in effect before you changed it.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_140 Specified input device is not present on this workstation.

5-34 Workstation Handler Input Functions

Set Valuator Mode

Set Valuator Mode

This function sets the specified VALUATOR device to the OPMODE specified
in the input parameters, and sets echoing on or off depending on the value of
ECHO~WITCH. It should also store the OPMODE and ECHO~WITCH in
the VALUATOR device's WSL.

In addition, you may let your Set Valuator Mode function perform other
operations depending on the input mode. For example, in SAMPLE mode, your
function might start an AST routine that performs prompting and echoing on
the logical input device, and stores the current valuator measure. In this case
your Sample Valuator function would only need to return the measure.

For event mode, your function might start an AST that will prompt for in-
put, maintain the current valuator measure, then call the built-in function
GKS$STORE EVENTS with the current measure when it receives the event
trigger.

For simplicity, your Set Valuator Mode function can start a single AST for either
SAMPLE or EVENT mode. In this case the AST will ignore triggers while
operating in SAMPLE mode.

Required
Required for OUTIN workstations and for INPUT workstations that support
VALUATOR input.

Workstation Handler Input Functions 5-35

Set Valuator Mode

Input Parameters

WSL

DEVNUM

OPMODE

ECHO~WITCH

The address of the handler's local data area.

Integer. The valuator device number.

Integer. The input mode. One of:

• GKS$K_INPUT~VIODE_REQUEST (0)

• GKS$K~NPUT~VIODE SAMPLE (1)

• GKS$K~NPUT_1ViODE~VENT (2)

Integer flag that determines whether or not to echo the
input. One of:

• GKS$K_INPUT~VIODE_REQUEST (0)

• GKS$K _INPUT_iViODE —SAMPLE (1)

• GKS$K_INPUT~ViODE~VENT (2)

Output Parameters

OLD~VIODE Integer. The input mode in effect before you changed it.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_140 Specified input device is not present on this workstation.

5-36 Workstation Handler Input Functions

Set Choice Mode

Set Choice Mode

This function sets the specified CHOICE device to the OPMODE specified in
the input parameters, and sets echoing on or off depending on the value of
ECHO~WITCH. It should also store the OPMODE and ECHO~WITCH in
the CHOICE device's WSL.

In addition, you may let your Set Choice Mode function perform other oper-
ations depending on the input mode. For example, in SAMPLE mode, your
function might start an AST routine that performs prompting and echoing on
the logical input device, and stores the current choice measure. In this case
your Sample Choice function would only need to return the measure.

For event mode, your function might start an AST that will prompt for in-
put, maintain the current choice measure, then call the built-in function
GKS$STORE.~VENTS with the current measure when it receives the event
trigger.

For simplicity, your Set Choice Mode function can start a single AST for either
SAMPLE or EVENT mode. In this case the AST will ignore triggers while
operating in SAMPLE mode.

Required
Required for OUTIN workstations and for INPUT workstations that support
CHOICE input.

Workstation Handler Input Functions 5-37

Set Choice Mode

Input Parameters

WSL

DEVNUM

OPMODE

ECHO_SWITCH

The address of the handler's local data area.

Integer. The choice device number.

Integer. The input mode. One of:

• GKS$K~NPUT_MODE_REQUEST (0)

• GKS$K_INPUT_1VIODE_SAMPLE (1)

• GKS$K~NPUT~ViODE_EVENT (2)

Integer flag that determines whether or not to echo the
input. One of:

• GKS$K~NPUT~VIODE_REQUEST (0)

• GKS$K ~NPUT_NiODE SAMPLE (1)

• GKS$K_INPUT_1VIODE~VENT (2)

Output Parameters

OLD_IVIODE Integer. The input mode in effect before you changed it.

Status Codes

Code Meaning

GKS$_SUCCESS Success.

GKS$_ERROR_140 Specified input device is not present on this workstation.

5-38 Workstation Handler Input Functions

Set String Mode

Set String Mode

This function sets the specified STRING device to the OPMODE specified in
the input parameters, and sets echoing on or off depending on the value of
ECHO_SWITCH. It should also store the OPMODE and ECHO—SWITCH in
the STRING device's WSL.

In addition, you may let your Set String Mode function perform other oper-
ations depending on the input mode. For example, in SAMPLE mode, your
function might start an AST routine that performs prompting and echoing on
the logical input device, and stores the current string measure. In this case your
Sample String function would only need to return the measure.

For event mode, your function might start an AST that will prompt for in-
put, maintain the current string measure, then call the built-i~ function
GKS$STORE EVENTS with the current measure when it receives the event
trigger. For both Sample and Event modes, your AST should delete the echo of
the characters it returns. For example, if there are eight characters in the string
buffer and the GKS kernel calls Sample String and requests five characters,
the first five points should be returned, and the echo should only show the
remaining three characters.

For simplicity, your Set String Mode function can start a single AST for either
SAMPLE or EVENT mode. In this case the AST will ignore triggers while
operating in SAMPLE mode.

Required
Required for OUTIN workstations and for INPUT workstations that support
STRING input.

Workstation Handler Input Functions 5-39

Set String Mode

Input Parameters

WSL

DEVNUM

OPMODE

ECHO~WITCH

The address of the handler's local data area.

Integer. The string device number.

Integer. The input mode. One of

• GKS$K~NPUT~VIODE~EQUEST (0)

• GKS$K ~NPUT~VIODE SAMPLE (1)

• GKS$K_INPUT~VIODE~VENT (2)

Integer flag that determines whether or not to echo the
input. One of:

• GKS$K~NPUT_NiODE_REQUEST (0)

• GKS$ K ~NPUT_1VIODE SAMPLE (1)

• GKS$K_INPUT_IVIODE_EVENT (2)

Output Parameters

OLD~VIODE Integer. The input mode in effect before you changed it.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_140 Specified input device is not present on this workstation.

5-40 Workstation Handler Input Functions

Set Pick Mode

Set Pick Mode

This function sets the specified PICK device to the OPMODE specified in
the input parameters, and sets echoing on or off depending on the value of
ECHO~WITCH. It should also store the OPMODE and ECHO_SWITCH in
the device's WSL.

In addition, you may let your Set Pick Mode function perform other operations
depending on the input mode. For example, in SAMPLE mode, your function
might start an AST routine that performs prompting and echoing on the logical
input device, and stores the current pick measure. In this case your Sample
Pick function would only need to return the measure.

For event mode, your function might start an AST that will prompt for input,
maintain the current pick measure, then call the built-in function GKS$STORE_
EVENTS with the current measure when it receives the event trigger.

Required
Required for OUTIN workstations and for INPUT workstations that support
PICK input.

Workstation Handler Input Functions 541

Set Pick Mode

Input Parameters

WSL

DEVNUM

OPMODE

ECHO~WITCH

The address of the handler's local data area.

Integer. The pick device number.

Integer. The input mode. One of:

• GKS$K~NPUT_MODE_REQUEST (0)

• GKS$K—INPUT_NiODE—SAMPLE (1)

• GKS$K~NPUT~1/IODE~VENT (2)

Integer flag that determines whether or not to echo the
input. One of:

• GKS$K_INPUT~ViODE_REQUEST (0)

• GKS$K—INPUT_1VIODE SAMPLE (1)

• GKS$K~NPUT~VIODE~VENT (2)

Output Parameters

OLD_IVIODE Integer. The input mode in effect before you changed it.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$_ERROR_140 Specified input device is not present on this workstation.

5-42 Workstation Handler Input Functions

Request Locator

Request Locator

This function gets LOCATOR input. It performs the following operations:

• If echoing is enabled, echoes the initial position and prompts for input
using the current PET.

• Upon receipt of input, updates the prompt and echo to reflect new position,
and stores the new location in the buffer area.

• Upon receipt of the trigger code, converts the input value to NDC and
returns it.

• If the user performs a BREAK operation, the function should return the
status GKS$K~TATUS~TONE (0). Otherwise, it should return GKS$K_
STATUS_OK (1).

Required
Required for OUTIN workstations and for INPUT workstations that support
LOCATOR input.

Input Parameters

WSL

DEVNUM

The address of the handler's local data area.

Integer. The locator device number.

Workstation Handler Input Functions 5-43

Request Locator

Output Parameters

LOC_X

LOC_Y

STATUS

Real. The X component of the locator point, in NDC.

Real. The Y component of the locator point, in NDC.

Integer. The input status. Either:

• GKS$K_STATUS_NONE (0)

• GKS$K_STATUS_OK (1)

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_140

GKS$~RROR_141

Success.

Specified input device is not present on workstation.

Specified input device is not in request mode.

5-44 Workstation Handler Input Functions

Request Stroke

Request Stroke

This function gets STROKE input. It performs the following operations:

• If echoing is enabled, echoes the initial stroke and prompts for input using
the current PET.

• Upon receipt of input, updates prompt and echo to reflect new position,
and stores the new coordinates in buffer area.

• Upon receipt of the trigger code, converts the stroke points to ND~, and
returns the points.

• If the user performs a BREAK operation, the function should return the
status GKS$K~TATUS~TONE (0). Otherwise, it should return GKS$K_
STATUS_OK (1).

If the operator enters more points than the stroke input buffer size allows,
the additional points are lost, and the handler should notify the user in a
device-dependent manner.

Required
Required f~; OUTIN workstations and for INPUT workstations that support
STROKE input.

Input Parameters

tiVSL

DEVNUM

The address of the handler's local data area.

Integer. The stroke device number.

Workstation Handler Input Functions 5-45

Request Stroke

Modified Parameters

NUMB~'TS Integer. The number of points stored in the two stroke
arrays. On input, the size of the smallest array; on output,
the number of elements written in the array.

Output Parameters

STROKE ~C Array of reals. The X components of the stroke input, in
NDC.

STROKE _Y Array of reals. The Y components of the stroke input, in
NDC.

STATUS Integer. The input status. Either:

• GKS$K~TATUS_OK (1)

• GKS$K~TATUS_NONE (0)

TOTAL _I'TS Integer. The total number of points entered in the stroke.
If this is larger than NUM _I'TS, the user entered more
points than the arrays STROKE ~C and STROKE _Y could
hold.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$_ERROR_140 Specified input device is not present on workstation.

GKS$~RROR_141 Specified input device is not in request mode.

5--46 Workstation Handler Input Functions

Request Valuator

Request Valuator

This function gets VALUATOR input. It performs the following operations:

• If echoing is enabled, echoes the initial value and prompts for input accord-
ing to the current PET.

• Upon receipt of input, updates prompt and echo to reflect new position,
and updates the value in the buffer area.

• Upon receipt of the trigger code, returns the value.

• If the user performs a BREAK operation, the function should return the
status GKS$K_STATUS~TONE (0}. Otherwise, it should return GKS$K_
STATUS_OK (1).

Required
Required for OUTIN workstations and for INPUT workstations that support
VALUATOR input.

Input Parameters

WSL

DEVNUM

The address of the handler's local data area.

Integer value of the valuator device number.

Output Parameters

VALUE Real. The current value.

STATUS Integer. The input status. Either:

• GKS$K_STATUS—OK (1)

• GKS$K_STATUS—NONE (0)

Workstation Handler Input Functions 5-4?

Request Valuator

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_140 Specified input device is not present on workstation.

GKS$~RROR_141 Specified input device is not in request mode.

5-48 Workstation` Handler Input Functions

Request Choice

Request Choice

This function gets CHOICE input. It performs the following operations:

• If echoing is enabled and the initial status is GKS$K_STATUS_OK (1),
echoes the initial choice.

• Prompts for input according to the current PET.
• Upon receipt of input, updates prompt and echo to reflect new choice, and

stores it in the ~ buffer area.

• Upon receipt of the trigger, returns the value stored in buffer area.
• If the initial status was GKS$K_STATUS_NOCHOICE (2), and no choice

was made, returns the status GKS$K~TATUS~TOCHOICE (2). If the user
performs a BREAK operation, the function should return the status GKS$K_
STATUS~TONE (0). Otherwise, it should return GKS$K_STATUS_OK (1).

Required
Required for OUTIN workstations and for INPUT workstations that support
CHOICE input.

Input Parameters

WSL

DEVNUM

The address of the handler's local data area.

Integer. The choice device number.

Workstation Handler Input Functions 5-49

Request Choice

Output Parameters

CHOICE Integer. The selected choice number.

STATUS Integer. The input status. One of:

• GKS$K~NPUT_111IODE_REQUEST (0)

• GKS$K_INPUT_1VIODE _SAMPLE (1)

• GKS$K~NPUT_IVIODE~VENT (2)

Status Codes

Code Meaning

GKS$_SUCCESS Success.

GKS$_ERROR_140 Specified input device is not present on workstation.

GKS$_ERROR_141 Specified input device is not in request mode.

5-50 Workstation Handler Input Functions

Request String

Request String

This function gets STRING input. It performs the following operations:

• If echoing is enabled, echoes the initial string and prompts for input
according to the current PET.

• Upon receipt of input, updates prompt and echo to reflect new string, and
updates the buffer area.

• Upon receipt of the trigger code, returns the value stored in buffer area by
copying it to the STRING buffer area.

• If the user performs a BREAK operation, the function should return the
STATUS value GKS$K_STATUS~IONE (0). Otherwise, it should return
GKS$K ~TATUS_OK (1).

Required
Required for OUTIN workstations and for INPUT workstations that support
STRING input.

Input Parameters

WSL

DEVNUM

The address of the handler's local data area.

Integer value of the string device number.

Modified Parameters

STRING—SIZE Integer. On input, this is the size of the output string
buffer in bytes; on output, this is the size of the actual
string returned.

Workstation Handler Input Functions 5-51

Request String

Output Parameters

STRING Address. The string buffer, passed by reference.

STATUS Integer. The input status. Either:

• GKS$K~TATUS_.1\TONE (0)

• GKS$K~TATUS_OK (1)

TOTAL —CHAR Integer. The total number of characters in the string. If
this is greater than STRING SIZE, the user entered more
characters than the buffer STRING could hold.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS~RROR_140 Specified input device is not present on workstation.

GKS$~RROR_141 Specified input device is not in request mode.

5-52 Workstation Handler Input. Functions

Request Pick

Request Pick

This function gets PICK input. If your workstation supports segments, and it
can perform PICK input, It performs the following operations:

• If echoing is enabled, echoes the initial pick and prompts for input accord-
ing to the current PET.

• Upon receipt of input, updates prompt and echo to reflect new pick, and
updates the buffer area.

• Upon receipt of the trigger code, returns the segment name and pick id.
• If the user performs a BREAK operation, the function should return the

STATUS value GKS$K~TATUS~TONE (0). Otherwise, it should return
GKS$K_STATUS_OK (1).

If the user picks overlapping segments, your function should return the highest-
priority segment. If the overlapping segments all share the same priority, then
the pick result is implementation dependent.

If the kernel is simulating segments, or your workstation cannot perform pick
input, this function should get the location of an input point, s' ' ar to the
REQUEST LOCATOR function. Then it should call the simulation function
GKS$FIND_SEGMENT to get the segment name and pick id. GKS$FIND_
SEGMENT also returns the segment extent and the pick extent, and your
function can use these values for highlighting the picked segment.

See Appendix C, Pick Simulation Functions, for information about simulation
functions that make writing this function easier.

Required
Required for OUTIN workstations and for INPUT workstations that support
PICK input.

Workstation Handler Input Functions 5-53

Request Pick

Input Parameters

WSL

DEVNUM

The address of the handler's local data area.

Integer. The pick logical device number.

Output Parameters

STATUS Integer. One of:

• GKS$K~NPUT~VIODE_REQUEST (0)

• GKS$K _INPUT_IVIODE _SAMPLE (1)

• GKS$K_INPUT_NiODE~VENT (2)

SEGMENT

PICKID

Integer. The name of the picked segment.

Integer. The pick id of the picked segment.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$_ERROR_140 Specified input device is not present on this workstation.

GKS$~RROR_141 Specified input device is not in request mode.

5-54 Workstation Handler Input Functions

Sample locator

Sample locator

This function gets LOCATOR input. It returns the current locator position, in
NDC.

Required
Required for OUTIN workstations and for INPUT workstations that support
LOCATOR input.

Input Parameters

WSL The address of the handler's local data area.

DEVNUM Integer. The stroke device number.

Output Parameters

LOC~C

LOC_Y

Real. The X component of the locator position, in NDC.

Real. The Y component of the locator position, in NDC.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_140 Specified input device is not present on workstation.

GKS$~RROR_142 Specified input device is not in sample mode.

Workstation Handler Input Functions 5-55

Sample Stroke

Sample Stroke

This function gets STROKE input. It returns points in NDC from the stroke
buffer, then clears the points it returns from the stroke buffer. If you implement
this function using the AST described in the Set Stroke Mode description, this
function only needs to return the current values in the stroke buffer.

Your function should only remove from the stroke buffer a number of points
equal to or less than the value of the parameter NUM ~'OINTS. This keeps the
handler from losing input by clearing points from the buffer without passing
them to the GKS kernel.

Also, your device handler should erase the echo of points as it passes them
to the GKS kernel. For example, if there are eight points in the stroke buffer
and the kernel calls Sample Stroke and requests five points, the first five points
should be returned, and the echo should only show the remaining three points.

Required
Required for OUTIN workstations and for INPUT workstations that support
STROKE input.

Input Parameters

WSL

DEVNUM

The address of the handler's local data area.

Integer. The stroke device number.

Modified Parameters

NUM.~OINTS Integer. On input the size of the arrays STROKE ~C and
STROKE _Y. Your function should write no more than this
many points to the output buffers. On output the number
of elements written in the array.

5-56 Workstation Handler Input Functions

Sample Stroke

Output Parameters

STROKE ~C Array of reals. The X components of the stroke input, in
NDC.

STROKE _Y Array of reals. The Y components of the stroke input, in
NDC.

TOTAL _l'TS Integer. The total number of points entered in the stroke.
If this is larger than NUM _PTS, the user entered more
points than the arrays STROKE ~C and STROKE _Y could
hold.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_140 Specified input device is not present on workstation.

GKS$~RROR_142 Specified input device is not in sample mode.

Workstation Handler Input Functions 5-57

Sample Choice

Sample Choice

This function gets CHOICE input. It returns the current choice. If you imple-
ment this function using the AST described in the Set Choice Mode description,
this function only needs to return the current values in the choice buffer.

Required
Required for OUTIN workstations and for INPUT workstations that support
CHOICE input.

Input Parameters

WSL

DEVNUM

The address of the handler's local data area.

Integer. The choice device number.

Output Parameters

STATUS Integer. The choice status, either GKS$K_STATUS_OK (1)
or GKS$K_STATUS_NOCHOICE (0).

CHOICE _NUM Integer. The choice number. This is valid only if STATUS
is GKS$K_STATUS_OK.

5-58 Workstation Handler Input Functions

Sample Choice

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_140 Specified input device is not present on workstation.

GKS$_ERROR_142 Specified input device is not in sample mode.

Workstation Handler Input Functions 5-59

Sample Valuator

Sample Valuator

This function returns the current VALUATOR value. If you implement this
function using the AST described in the Set Valuator Mode description, this
function only needs to return the current values in the valuator buffer.

Required
Required for OUTIN workstations and for INPUT workstations that support
VALUATOR input.

Input Parameters

WSL

DEVNUM

The address of the handler's local data area.

Integer. The valuator device number.

Output Parameters

VALUE Real. The current value.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_140 Specified input device is not present on workstation.

GKS$~RROR_142 Specified input device is not in sample mode.

5-60 Workstation Handler Input Functions

Sample String

Sample String

This function returns the current string in the STRING device buffer, then clears E
the string that it returns from the device buffer. If you implement this function ~
using the AST described in the Set String Mode description, this function only
needs to return the current values in the string buffer.

Your function should only remove from the string buffer a number of characters
equal to or less than the value of the parameter STRING~IZE. This keeps
the handler from losing input by clearing characters from the buffer without
passing them to the GKS kernel.

Also, your device handler should erase the echo of characters as it passes them
to the GKS kernel. For example, if there are eight characters in the stroke
buffer and the GKS kernel calls Sample String and requests five characters, the
first five characters should be returned, and the echo should only show the
remaining three characters.

Required
Required for OUTIN workstations and for INPUT workstations that support
STRING input.

Input Parameters

WSL

DEVNUM

The address of the handler's local data area.

Integer. The stroke device number.

Modified Parameters

STRING SIZE Integer. On input, the size of the buffer STRING. Your
function should write no more than this many characters
to the output buffer. On output, the number of characters
written to the buffer.

Workstation Handler Input Functions 5-61

Sample String

Output Parameters

STRING

TOTAL _CHAR

The string.

Integer. The total number of characters the user entered.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_140 Specified input device is not present on workstation.

GKS$_ERROR_142 Specified input device is not in sample mode.

5-62 Workstation Handler Input Functions

Sample Pick

Sample Pick

This function gets PICK input. It returns the current pick value. If the kernel
is simulating segments, or your workstation cannot perform pick input, this
function should get the location of an input point, s' ' ar to the SAMPLE
LOCATOR function. Then it should call the simulation function GKS$FIND_
SEGMENT to get the segment name and pick id. GKS$FIND~EGMENT also
returns the segment extent and the pick extent, and your function can use these
values for highlighting the picked segment.

See Appendix C, Pick Simulation Functions, for information about simulation
functions that make writing this function easier.

Required
Required for OUTIN workstations and for INPUT workstations that support
PICK input. If you implement this function using the AST described in the Set
Pick Mode description, this function only needs to return the current values in
the pick buffer.

Input Parameters

WSL

DEVNUM

The address of the handler's local data area.

Integer. The pick device number.

Workstation Handler Input Functions 5-63

Sample Pick

Output Parameters

STATUS Integer. One of:

• GKS$K _STATUS_OK (1)

• GKS$K~TATUS.~tOCHOICE (0)

SEGMENT_NAME

PICK_ID

Integer. The name of the picked segment. This is valid
only if STATUS is GKS$K~TATUS_OK.

Integer. The pick id of the picked segment. This is valid
only if STATUS is GKS$K_STATUS_OK.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_140 Specified input device is not present on workstation.

GKS$~RROR_140 Specified input device is not in sample mode.

5-64 Workstation Handler Input Functions

Chapter 6

Workstation Handler Inquiry Functions

This chapter describes the workstation handler inquiry functions. You must
provide a function for each inquiry.

All inquiries return the information listed as output parameters. If the inquiry
completes successfully, it should return the status GKS$_SUCCESS. If the
inquiry fails, it should return the error code that best describes the problem.
In addition, if the inquiry fails, the data returned in the output parameters is
implementation dependent, unless specifically noted in the function description.

Most of the errors possible in an inquiry are detected by the kernel. You do
not have to test for any abnormal condition for which there is no status code
specified in the function description.

Your handler only needs to respond to workstation-specific inquiries. This
means that it must return information stored in your workstation's data
structures. Most of these items are included in the recommended WDT and
WSL structures, so parameter names in the function descriptions correspond
with names in these structures whenever possible. The overview of each
function tells which data structure usually contains the information that inquiry
returns.

Inquiries for data from the WDT must be able to return information without the
workstation being open. If the workstation is not open, the WDT is not present
in the local data area. Therefore, your inquiry functions must either contain the
data within their own code or be able to access the WDT in some way.

Note that because you design your own means of storing data for your handler,
you must also develop your own method of returning the data. If you keep
data in coherent structures, most of your inquiries need only index to the
correct place in a table.

Workstation Handler Inquiry Functions 6-1

Because inquiries do not alter graphic data or workstation information in
any way, you have a lot of choice in how you implement them. The sole
requirement is that your inquiry functions be able to identify the data the
kernel needs from the input parameters, and return the correct response in the
output parameters.

6-2 Workstation Handler Inquiry Functions

Inquire List of Polyline Indexes

Inquire List of Polyline Indexes

This inquiry returns the number of Polyline bundles defined, and a list of
defined indexes. This information is normally maintained in the WSL.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL The address of the handler's local data area.

Modified Parameters

NUM 'LINE ENTRIES Integer. On input, this is maximum number of indexes that
the function can write to LIST_I'LINE—IND. On output,
this is the number of entries the handler has written to
LIST~'LINE~ND.

Output Parameters

LIST~'LINE AND Integer array. The list of indexes.

TOTAL ~TUM_IND Integer. The total number of defined Polyline bundles. If
this is greater than NUM~'LINE~NTRIES, not all the
indexes have been written to LIST_PLINE _IND.

Workstation Handler Inquiry Functions 6-3

Inquire list of Polyline Indexes

Status Codes

Code Meaning

GKS$~UCCESS Success.

6-4 Workstation Handler Inquiry Functions

Inquire Polyline Representation

Inquire Polyline Representation

This inquiry returns information about the polyline bundle associated with the
polyline index you specify as an input parameter. This information is
normally maintained in the WSL. If the specified index is not available and
SET~tEALIZED is GKS$K~EALIZED (1), the function should return informa-
tion for index 1.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL

PLINE INDEX

SET_REALIZED

The address of the handler's local data area.

Integer. The polyline index.

• GKS$K~ET (0)

• GKS$K~EALIZED (1)

Integer. GKS$K~ET (0) means the function should
return the value exactly as it was specified in the last
call to the SET POLYLINE REPRESENTATION function.
GKS$K_REALIZED (1) means to return the actual value
the workstation uses. For example, the set linewidth scale
factor may be 2.7, but if your device can only use whole-
number scale factors, the realized value may have been
rounded up to 3.0.

Workstation Handler Inquiry Functions 6-5

Inquire Polyline Representation

Output Parameters

LINE _TYPE

LINEWIDTH~CALE_
FACTOR

COLOR_INDEX

Integer. The linetype in the bundle.

Real. The linewidth scale factor in the bundle.

Integer. Index into the color array.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_60

GKS$_ERROR_61

Success.

Polyline index is invalid.

A representation for the specified polyline index has not
been defined on this workstation.

6-6 Workstation Handler Inquiry Functions

Inquire List of Polymarker Indexes

Inquire List of Polymarker Indexes

This inquiry returns the number of polymarker bundles defined for the worksta-
tion, and a list of the defined polymarker indexes. This information is normally
maintained in the WSL.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL The address of the handler's local data area.

Modified Parameters

NUM 'MARK _
ENTRIES

Integer. On input, this is maximum number of indexes that
the function can write to LIST_l'MARK~ND. On output,
this is the number of entries the handler has written to
LIST_1'MARK~ND.

Output Parameters

LIST~'MARK~ND Integer array. The list of defined indexes.

TOTAL _NUM _IND Integer. The number of polymarkers defined. If this is
larger than NUM_PMARK~NTRIES, LIST_I'MARK~ND
does not contain all the defined indexes.

Workstation Handler Inquiry Functions 6-7

Inquire List of Polymarker Indexes

Status Codes

Code Meaning

GKS$~UCCESS Success.

6-8 Workstation Handler Inquiry Functions

Inquire Polkmarker Representation

Inquire Polkmarker Representation

This inquiry returns information about the polymarker bundle associated with
the polymarker index specified in the input parameters. This information is
usually maintained in the WSL. If the specified index is not available and SE's
REALIZED is GKS$K~tEALIZED (1), the function should return information
for index 1.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL The address of the handler's local data area.

PMARK~NDEX Integer. The polymarker bundle that you want information
about.

SET~EALIZED

• GKS$K~ET (0)

• GKS$K ~ZEALIZED (1)

Integer. GKS$K~ET (0) means the function should return
the value exactly as it was specified in the last call to
the SET POLYMARKER REPRESENTATION function.
GKSK_GKSK~ZEALIZED (1) means to return the actual
value the workstation uses. For example, the set linewidth
scale factor may be 2.7, but if your device can only use
whole-number scale factors, the realized value may have
been rounded up to 3.0.

Workstation Handler Inquiry Functions 6-9

Inquire Polymarker Representation

Output Parameters

MARKER_TYPE

MSIZE _SCALE _
FACTOR

COLOR_INDEX

Integer. The polymarker used in the bundle.

Real. The marker size scale factor used in the bundle.

Integer. The bundle's index into the color table.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_66 Polymarker index is invalid.

GKS$_ERROR_67 A representation for the specified polymarker index has
not been defined on this workstation.

6-10 Workstation Handler Inquiry Functions

Inquire List of Text Indexes

Inquire List of Text Indexes

This inquiry returns the number of text bundles defined and a list of the text
indexes. This information is usually maintained in the WSL.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL The address of the handler's local data area.

Modified Parameters

NUM_TEXT_ENTRIES Integer. On input, this is maximum number of indexes
that the function can write to LIST_TEXT_IND. On output,
this is the number of entries the handler has written to
LIST_TEXT_IND.

Output Parameters

LIST TEXT_IND Integer array. The list of text indexes.

TOTAL _NUM AND Integer. The total number of defined text bundles. If this
is greater than NUM _TEXT~NTRIES, LIST = TEXT_IND
does not contain all the text indexes.

Workstation Handler Inquiry Functions 6-11

Inquire List of Text Indexes

Status Codes

Code Meaning

GKS$~UCCESS Success.

6-12 Workstation Handler Inquiry Functions

Inquire Text Representation

Inquire Text Representation

This inquiry returns information about the text bundles associated with the
index you specify in the input parameters. This information is normally main-
tained in the WSL. If the specified index is not available and SET_REALIZED is
GKS$K_REALIZED (1), the function should return information for index 1.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL The address of the handler's local data area.

TEXT_INDEX Integer. The index of the text bundle you want information
about.

SET_REALIZED

• GKS$K_REALIZED (1)

Integer. GKS$K_SET (0) means the function should return
the value exactly as it was specified in the last call to
the SET TEXT REPRESENTATION function. GKS$K_
GKS$K_REALIZED (1) means to return the actual value
the workstation uses. For example, the set linewidth scale
factor may be 2.7, but if your device can only use whole-
number scale factors, the realized value may have been
rounded up to 3.0.

Workstation Handler Inquiry Functions 6-13

Inquire Text Representation

Output Parameters

FONT Integer. The font used in the bundle.

PREC Integer. The precision used in the bundle.

CHAR~XP_FACTOR Real. The bundle's character expansion factor.

CHAR_SPACE Real. The bundle's character spacing.

COLOR_INDEX Integer. The bundle's index into the color table.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$_ERROR_72 Text index is invalid.

GKS$_ERROR_73 A representation for the specified text index has not been
defined on this workstation.

6-14 Workstation Handler Inquiry Functions

("1 Inquire Text Extent

Inquire Text Extent

This function calculates the text extent box and concatenation point for the
string specified in the input parameters, with the specified text precision and
text attributes. Note that clipping is not performed on the extent rectangle.

The GKS kernel passes the Attribute Source Flags (ASFs) to this function.
Your function must check the ASFs to determine whether any nongeometric
attributes are bundled. If they are, the function must get the bundled values
from the bundle table. See Chapter 9, Workstation Handler Output Functions,
for information about the ASFs.

For precisions GKS$K_TEXT_PRECISION~TRING (0) and GKS$K_TEXT_
PRECISION _CHAR (1), the text extent parallelogram is the minimum that
completely encloses the character bodies of the string. For text paths GKS$K_
TEXT~.'ATH_UP (2) and GKS$K_TEXT~'ATH_DOWN (3), the widest
character in the font is enclosed. For GKS$K_TEXT~'RECISION~TROKE (2)
precision, if the character width and character base vectors are perpendicular,
the extent is a rectangle.

The concatenation point can be used as the origin of a subsequent text string.
If text path is GKS$K_TEXT_PATH_RIGHT (0) or GKS$K_TEXT_PATH_
LEFT (1), t'~ a concatenation point is displaced from the text position, in a
direction determined by the horizontal component of text alignment. If the
text alignment is GKS$K~-IALIGN _LEFT (1), the displacement is to the right.
If the text alignment is GKS$K~-IALIGN~IGHT (3), the displacement is to
the left. If the text alignment is GKS$K~-IALIGN_CENTER (2) or GKS$K_
VALIGN~-iALF (3), the displacement is zero. The size of the displacement
equals the length of the sides of the text extent parallelogram parallel to the
character base, plus one character space.

If text path is GKS$K_TEXT~'ATH_UP (2) or GKS$K_TEXT_PATH_DOWN
(3), the concatenation point is displaced from the text position in a direction
determined by the vertical component of text alignment. If the component is
GKS$K_VALIGN_TOP (1) or GKS$K_VALIGN_CAP (2), the displacement is
down. If the component is GKS$K_VALIGN_BASE (4) or GKS$K VALIGN_
BOTTOM (5), the displacement is up. Unless the vertical component of text
alignment is GKS$K_VALIGN~-iALF (3), the size of the displacement equals
the length of the sides of the text extent parallelogram parallel to the character
up vector, plus one character space.

Workstation Handler Inquiry Functions 6-15

Inquire Text Extent

The effect of control characters in the character string is workstation dependent,
but must be consistent with their effect in the TEXT function.

Figure 6-1, Text Extents 1, through Figure 6-5, Text Extents 5, show text extent
boxes_ for several combinations of character spacing, character up vector, text
path, and text alignment.

6-16 Workstation Handler Inquiry. Functions

Inquire Text Extent

Figure 6-1: Text Extents 1

P
E4

I
I
I
I
I
I

I
 . ,

E11 IE2
C

E3

CHARACTER SPACING = 0.2
CHARACTER UP VECTOR = (0.1)
TEXT PATH =DOWN
TEXT ALIGNMENT = (LEFT.TOP)

P: text position
C: concatenation point
E1,E2, corners of text extent rectangle, which
E3,E4: for TEXT PATH = UP or DOWN encloses the

widest character in the font

ZK-5003-86

Workstation Handler Inquiry Functions 6-17

Inquire Text_Extent

Figure 6-2: Text Extents 2

E4 E3

P

E1

CHARACTER SPACING = 0
CHARACTER UP VECTOR = (0.1)
TEXT PATH =RIGHT
TEXT ALIGNMENT = (CENTRE.BOTTOM)

P: text position
C: concatenation point
E1,E2, corners of text extent rectangle, which
E3, E4: for TEXT PATH = U P or DOWN encloses the

widest character in the font

ZK-5004-86

6-18 Workstation Handler. Inquiry Functions

Inquire Text Extent

Figure 6-3: Text Extents 3

E4

E1

E3

P

E2

CHARACTER SPACING = -0.2
CHARACTER UP VECTOR = (0.1)
TEXT PATH =LEFT
TEXT ALIGNMENT = (RIGHT.BASE)

P: text position
C: concatenation point
E1,E2, corners of text extent rectangle, which
E3, E4: for TEXT PATH = U P or DOWN encloses the

widest character in the font

ZK-5005-86

Workstation Handler Inquiry Functions 6-19

Inquire Text Extent

Figure 6-4: Text Extents 4

E3

E4

E1

E2

CHARACTER SPACING = 0
CHARACTER UP VECTOR = (-1.1)
TEXT PATH =RIGHT
TEXT ALIGNMENT = (NORMAL.NORMAL)

P: text position
C: concatenation point
E1,E2, corners of text extent rectangle, which
E3, E4: for TEXT PATH = U P or DOWN encloses the

widest character in the font

ZK-5006-86

6-20 Workstation Handler Inquiry Functions

Inquire Text Extent

Figure 6-5: Text Extents 5

E41

E1

C
~t I E3

P
E2

CHARACTER SPACING = 0
CHARACTER UP VECTOR = (0.1)
TEXT PATH = UP

TEXT ALIGNMENT = (CENTER BOTTOM)

P: text position
C: concatenation point
E1,E2, corners of text extent rectangle, which
E3, E4: for TEXT PATH = U P or DOWN encloses the

widest character in the font
ZK 5007-86

Required
Required for OUTPUT and OUTIN, workstations.

Workstation Handler Inquiry Functions 6-21

Inquire Text Extent

Input Parameters

WSL

TEXT_X

TEXT_Y

STRING

ATTRIB~RRAY

Integer. The address of the handler's local data area.

Real. The X value of the starting text position, in WC.

Real. The Y value of the starting text position, in WC.

Class S descriptor. The actual text character string.

Integer array. Contains the following elements from the
Active Attribute Array:

Attribute Description

TEXT_INDEX Integer. The index into the text bundle
table. If the text index is not present
in the text bundle table, the function
should assume text index 1.

FONT Integer. The text font number (either
a DIGITAL-supported font, or a
handler-specific font).

PREC Integer. The text precision. One of:

• GKS$K_TEXT~'RECISION_
STRING (o)

• GKS$K_TEXT~'RECISION_
CHAR (1)

• GKS$K_TEXT~'RECISION_
STROKE (2)

CHAR_EXP
FACTOR

CHAR_SPACE

COLOR_INDEX

CHARACTER_
HEIGHT_X

CHARACTER_
HEIGHT Y

Real. The text character expansion
factor.

Real. The text character spacing value.

Integer. The index into the color table.

Real. The X component of the charac-
ter height vector, WC.

Real. The Y component of the charac-
ter height vector, WC.

6-22 Workstation Handler Inquiry Functions

Inquire Text Extent

Attribute Description

CHARACTER_
WIDTH _X

CHARACTER_
WIDTH _Y

TEXT_I'ATH

TEXT_
ALIGNMENT_
HORZ

TEXT
ALIGNMENT_
VERT

ASF_IVIASK

Real. The X component of the charac-
ter width vector, WC.

Real. The Y component of the charac-
ter width vector, WC.

Integer. The direction of the text
string. One of:

• GKS$K TEXT~'ATH~IGHT (0)

• GKS$K_TEXT~'ATH_LEFT (1)

• GKS$K_TEXT_PATH_UP (2)

• GKS$K_TEXT~'ATH DOWN (3)

Integer. The horizontal text alignment.
One of:

• GKS$K~-IALIGN.~TORMAL (0)

• GKS$K~iALIGN_LEFT (1)

• GKS$K~IALIGN_CENTER (2)

• GKS$K_HALIGN_RIGHT (3)

Integer. The vertical text alignment.
One of:

• GKS$K_VALIGN_NORMAL (0)

• GKS$K_VALIGN_TOP (1)

• GKS$K_VALIGN_CAP (2)

• GKS$K_VALIGN_HALF (3)

• GKS$K_VALIGN_BASE (4)

• GKS$K_VALIGN_BOTTOM (5)

A 32-bit bitmask holding the attribute
source flags.

Workstation Handler Inquiry Functions 6-23

Inquire Text Extent

Output Parameters

CONC~C Real. The X value of the concatenation point in WC.

CONC_Y Real. The Y value of the concatenation point in WC.

REC_)C An array of four Teals describing the X coordinates of the
extent rectangle in WC; point order starts with lower left
and moves in a counterclockwise direction.

REC_Y An array of four Teals describing the Y coordinates of the
extent rectangle in WC; point order starts with lower left
and moves in a counterclockwise direction.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_101 Invalid code in string.

6-24 Workstation Handler Inquiry Functions

Inquire list of Fill Area Indexes

Inquire List of Fill Area Indexes

This inquiry returns the number of defined fill area bundles and list of fill area
indexes. This information is usually maintained in the WSL.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL The address of the handler's local data area.

Modified Parameters

NUM _FILL _ENTRIES Integer. On input, this is maximum number of indexes
that the function can write to LIST_FILL _IND. On output,
this is the number of entries the handler has written to
LIST_FILL_IND.

Output Parameters

LIST_FILL AND Integer array. The list of fill area indexes.

TOTAL_NUM—IND Integer. The number of defined fill area styles. If this
number is greater than NUM _FILL _ENTRIES, then LIST_
FILL —IND does not contain all the defined fill indexes.

Workstation Handler Inquiry Functions 6-25

Inquire list of Fill Area Indexes

Status Codes

Code Meaning

GKS$~UCCESS Success.

6-26 Workstation Handler Inquiry Functions

Inquire Fill Area Representation

Inquire Fill Area Representation

This inquiry returns the fill area bundle values for the index you specify as an
input parameter. This information is usually maintained in the WSL. If the
specified index is not available and SET~tEALIZED is GKS$K~EALIZED (1),
the function should return information for index 1.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL

FILL INDEX

SET_REALIZED

The address of the handler's local data area.

Integer. The fill index.

• GKS$K_REALIZED (1)

Integer. GKS$K_SET (0) means the function should
return the value exactly as it was specified in the last
call to the SET FILL AREA REPRESENTATION function.
GKS$K_REALIZED (1) means to return the actual value
the workstation uses. For example, if the FILL _STYLE _
IND was set to be hatch style 4, and your workstation can
only do hatch style 1, then the realized value would be 1.

Output Parameters

FILL ~NTSTYLE

FILL STYLE _IND

COLOR_INDEX

Integer. The fill area style in the bundle.

Integer. The fill style index in the bundle.

Integer. The bundle's index into the color table.

Workstation Handler Inquiry Functions 6-27

Inquire Fill Area Representation

Status Codes

Code Meaning

GKS$_SUCCESS Success.

GKS$_ERROR_80 Fill area index is invalid.

GKS$~RROR_81 A representation for the specified fill area index has not
been defined on this workstation.

6-28 Workstation Handler Inquiry Functions

Inquire List of Pattern Indexes

Inquire List of Pattern Indexes

This inquiry returns the number of defined pattern representations and a list of
the fill pattern indexes. This information is usually maintained in the WSL.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL The address of the handler's local data area.

Modified Parameters

NUM~'ATT~NTRIES Integer. On input, this is maximum number of indexes that
the function can write to LIST~'ATT~ND. On output,
this is the number of entries the handler has written to
LIST-1'ATT_IND.

Output Parameters

LIST_PATT_IND Integer array. The list of pattern indexes.

TOTAL _NUM _IND Integer. The number of patterns defined. If this number
is greater than NUM—PATT_ENTRIES, LISLPATT_IND
does not contain all the indexes.

Workstation Handler Inquiry Functions 6-29

Inquire list of Pattern Indexes

Status Codes

Code Meaning

GKS$~UCCESS Success.

6-30 Workstation Handler Inquiry Functions

Inquire Pattern Representation

Inquire Pattern Representation

This inquiry returns information about the pattern you specify as an input
parameter. The information includes the size of the pattern, and the pattern
itself represented as an array of color indexes. This information is usually main-
tained in the WSL. If the specified index is not available and SET_REALIZED
is GKS$K_REALIZED (1), the function should return information for index 1.
Pattern index 1 is present if PATTERN is supported on the workstation.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL

PATT_INDEX

SET~EALIZED

COL _1VIAJOR_FLAG

The address of the handler's local data area.

Integer. The .pattern index.

• GKS$K_REALIZED (1)

Integer. GKS$K_SET (0) means the function should
return the value exactly as it was specified in the last
call to the SET PATTERN REPRESENTATION function.
GKS$K_REALIZED (1) means to return the actual value
the workstation uses. For example, the set number of rows
may be 12, but if your device can work with no more than
10 rows, the actual NUM~OWS would be 10.

Integer flag. GKS$K_TRUE (1) means PATTERN_ARRAY
should be column major, and GKS$K~ALSE (0) means it
should be row major.

Workstation Handler Inquiry Functions 6-31

Inquire Pattern Representation

Modified Parameters

NUM~tOWS

NUM _COLS

Integer. The number of rows in the pattern. On input
this is maximum number of rows the function can write to
PATTERN ARRAY. On output, this is the number of rows
the handler has written to PATTERN ARRAY.

Integer. The number of columns in the pattern. On input
this is maximum number of columns the function can write
to PATTERN~RRAY. On output this is the number of
rows the handler has written to PATTERN ARRAY.

Output Parameters

PATTERN ARRAY Two-dimensional array of integers describing the pattern.

PATT_DIM ~C Integer. The total number of rows in the pattern. If this
value is greater than NUM_ROWS, the PATTERN_
ARRAY does not contain all the rows in the pattern.

PATT DIM _Y Integer. The total number of columns in the pattern. If
this value is greater than NUM_COLS, the PATTERN_
ARRAY does not contain all the columns in the pattern.

Status Codes

Code Meaning

GKS$_SUCCESS Success.

GKS$~RROR_85 Specified pattern index is invalid.

GKS$._.ERROR_88 A representation for the specified pattern index has not
been defined on this device.

GKS$~RROR_90 Interior style PATTERN is not supported on this
workstation.

6-32 Workstation Handler Inquiry Functions

Inquire List of Color Indexes

Inquire List of Color Indexes

This inquiry returns the number of defined color indexes and a list of the
defined indexes. This information is usually maintained in the WSL.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL The address of the handler's local data area.

Modified Parameters

NUM_COLOR_
ENTRIES

Integer. On input, this is maximum number of indexes that
the function can write to LIST_COLOR~ND. On output,
this is the number of entries the handler has written to
LIST COLOR~ND.

Output Parameters

LIS~COLOR_IND Integer array. The list of defined color indexes.

TOTAL ~1UM~ND Integer. The number of defined colors. If this is greater
than NUM_COLOR_ENTRIES, LIST_COLOR~ND does
not contain all the indexes.

Workstation Handler Inquiry Functions 6-33

Inquire List of Color Indexes

Status Codes

Code Meaning

GKS$_SUCCESS Success.

6-34 Workstation Handler Inquiry Functions

Inquire Color Representation

Inquire Color Representation

This inquiry returns the color representation for the index you specify as an
input parameter. The information is usually maintained in the WSL. If the
specified index is not available and SET~tEALIZED is GKS$K~tEALIZED (1),
the function should return information for index 1.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL

COLOR_INDEX

SET_REALIZED

The address of the handler's local data area.

Integer.

• GKS$K~ET (0)

• GKS$K _REALIZED (1)

Integer. GKS$K~ET (0) means the function should
return the value exactly as it was specified in the last
call to the SET COLOR REPRESENTATION function.
GKS$K_.REALIZED (1) means to return the actual value
the workstation uses. For example, the set color index may
contain the RED values 0.75. If your workstation can only
accept values with one digit right of the decimal, it might
return the value 0.7.

Workstation Handler Inquiry Functions 6-35

Inquire Color Representation

Output Parameters

RED Real. The red intensity.

GREEN Real. The green intensity.

BLUE Real. The blue intensity.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_93 Color index is invalid.

GKS$_ERROR_94 A representation for the specified color index has not been
defined on this workstation.

6-36 Workstation Handler Inquiry Functions

Inquire Workstation Transformation

Inquire Workstation Transformation

This inquiry returns information about the current and requested workstation
transformation. This information includes whether or not a transformation is
pending for the workstation, the current workstation window and viewport, and
the requested workstation window and viewport. The information is usually
maintained in the WSL.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL The address of the handler's local data area.

Output Parameters

TRANSFORM _FLAG

REQ _WS_WINDOW

CUR_WS_WINDOW

REQ _WS_VIEWPORT

CUR_WS_VIEWPORT

Integer flag. Either:

• GKS$K_1'ENDING (1)

• GKS$K_NOTPENDING (0)

Array of 4 reals. The requested workstation window,
ordered as XMIN, XMAX, YMIN, YMAX; all in NDC.

Array of 4 reals. The current workstation window, ordered
as XMIN, XMAX, YMIN, YMAX; all in NDC.

Array of 4 reals. The requested workstation viewport,
ordered as XMIN, XMAX, YMIN, YMAX; all in LDC.

Array of 4 reals. The current workstation viewport,
ordered as XMIN, XMAX, YMIN, YMAX; all in LDC.

Workstation Handler Inquiry Functions 6-37

Inquire Workstation Transformation

Status Codes

Code Meaning

GKS$~UCCESS Success.

6-38 Workstation Handler Inquiry Functions

Inquire Locator Device State

Inquire Locator Device State

This inquiry returns information about the locator input device you specify.
The information is usually maintained in the WSL.

Required
Required for OUTIN and INPUT workstations that support LOCATOR input.

Input Parameters

WSL

DEVNUM

SET~tEALIZED

The address of the handler's local data area.

Integer. The locator logical input device number.

• GKS$K~ET (0)

• GKS$K_REALIZED (1)

Integer. GKS$K—SET (o) means the function should return
the data record exactly as it was specified in the last call to
SET LOCATOR MODE. GKS$K~EALIZED (1) means to
return the actual data record that the workstation uses.

Modified Parameters

DATA_REC—SIZE Integers. The size of the data record, in bytes. On input
this is the maximum number of bytes your function can
write to LOC—DATA~ECORD. On output, this is the
number of bytes written into the data record.

Workstation Handler Inquiry Functions 6-39

Inquire Locator Device State

Output Parameters

OPMODE

ECHO~WITCH

XFORM

INIT LOCN_X

INIT LOCN_Y

PROMPT~CHO_TYPE

ECHO_AREA

LOC_DATA~tECORD

TOTAL _DATA _SIZE

Integer. One of

• GKS$K_INPUT~VIODE_REQUEST (0)

• GKS$K _INPUT_IVIODE SAMPLE (1)

• GKS$K~NPUT~VIODE~VENT (2)

Integer. Either:

• GKS$K_NOECHO (0)

• GKS$K~CHO (1)

Integer. The transformation used to convert points from
WC to NDC, as set in INITIALIZE _LOCATOR.

Real. The X component of the initial locator position, in
NDC.

Real. The Y component of the initial locator position, in
NDC.

Integer. The prompt and echo type.

Array of 4 reals. The corners of the echo area in LDC, in
the order XMIN, XMAX, YMIN, YMAX.

Array. The locator data record as defined in Chapter 5.
If SET_REALIZED = GKS$K_SET (0), this must be the
data record which was passed to the handler at the last
call to INITIALIZE _LOCATOR. For SET_REALIZED =
GKS$K_REALIZED (1), this must be the full data record
for the current PET, with set values replaced by realized
values. If the set data record was incomplete (for example,
if the application omitted some fields), the realized data
record must include the defaults used in place of the
unspecified values.

Integer of the total size of the data record. If this is larger
than DATA_REC_SIZE, LOC_DATA~ECORD was not
big enough to hold the entire data record, so the entire
data record was not written.

6-40 Workstation Handler Inquiry Functions

Inquire Locator Device State

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_140

Success.

Specified input device is not present on this workstation.

Workstation Handler Inquiry Functions 6-41

Inquire Stroke Device State

Inquire Stroke Device State

This inquiry returns information about the stroke input device you specify. This
information is usually maintained in the WSL.

Required
Required for OUTIN and INPUT workstations that support STROKE input.

Input Parameters

vVSL

DEVNUM

SET_REALIZED

The address of the handler's local data area.

Integer. The stroke logical input device number.

• GKS$K~ET (0)

• GKS$K_REALIZED (1)

Integer. GKS$K_SET (0) means the function should return
the data record exactly as it was specified in the last call
to SET STROKE MODE. GKS$K~EALIZED (1) means to
return the actual data record that the workstation uses.

Modified Parameters

INIT_PTS

DATA~ZEC_SIZE

Integer. The number of the points in the points array.
On input this is the maximum number of points your
function may write to the points array. On output, this is
the number of points written in the points array

Integer. The size of the data record, in bytes. On input,
this is the maximum number of bytes your function can
write to STROKE_DATA~tECORD. On output, this is the
number of bytes written into the data record.

6-42 Workstation Handler Inquiry Functions

Inquire Stroke Device State

Output Parameters

OPMODE Integer. One of

• GKS$K_INPUT_MODE_REQUEST (0)

• GKS$K ~NPUT_1VIODE _SAMPLE (1)

• GKS$K~NPUT~VIODE~VENT (2)

ECHO~WITCH Integer. Either:

• GKS$K~OECHO (0)

• GKS$K ECHO (1)

XFORM

TOTAL _I'TS

Integer. The transformation used to convert the points
from jN'C to NDC. This is set in the INITIALIZE _S'T}~OKE
function.

Integer. The total number of points in the stroke. If this is
larger than INIT_I'TS, the INIT—X and INIT Y arrays were
not large enough to contain all the initial points, so some
of them were not written to the array.

INITX ARRAY Array of reals. The X component of the initial points, in
NDC.

INITY_ARRAY Array of reals. The Y component of the initial points, in
NDC.

PROMPT~CHO_TYPE Integer. The prompt and echo type.

ECHO.~REA Array of 4 reals. The corners of the echo area in LDC as
XMIN, XMAX, YMIN, YMAX.

STROKE_DATA_ Array. The stroke data record as defined in Chapter 5. If
RECORD SET~EALIZED = GKS$K_SET (0), this must be the data

record which was passed to the handler at the last call to
INITIALIZE_STROKE. For SET_REALIZED = GKS$K_
REALIZED (1), this must be the full data record for the
current PET, with set values replaced by realized values.
If the set data record was incomplete (for example, if the
application omitted some fields), the realized data record
must include the defaults used in place of the unspecified
values.

Workstation Handler Inquiry Functions 6-43

Inquire Stroke Device State

TOTAL _DATA SIZE Integer of the total size of the data record. If this is larger
than DATA ~ZEC~SIZE, STROKE _DATA CORD was
not big enough to hold the entire data record, so the entire
data record was not written.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_140

Success.

Specified input device is not present on this workstation.

6-44 Workstation Handler Inquiry Functions

Inquire Valuator Device State

Inquire ValuaWr Device State

This inquiry returns information about the valuator input device you specify.
The information is usually maintained in the WSL.

Required
Required for INPUT and OUTIN workstations that support VALUATOR input.

Input Parameters

WSL

DEVNUM

The address of the handler's local data area.

Integer. The valuator logical input device number.

Modified Parameters

DATA~EC.:_SIZE Integer. The size of the data record, in bytes. On input
this is the maximum number of bytes your function can
write to VAL _DATA RECORD. On output, this is -the
number of bytes written into the data record.

Workstation Handler Inquiry Functions 6-45

Inquire Valuator Device State

Output Parameters

OPMODE

ECHO_SWITCH

INIT_VALUE

PROMPT~CHO_TYPE

ECHO_AREA

VAL _DATA_RECORD

TOTAL _DATA _SIZE

Integer. One of:

• GKS$K_INPUT_1VIODE_REQUEST (0)

• GKS$K ~NPUT_IVIODE _SAMPLE (1)

• GKS$K_INPUT_IVIODE_EVENT (2)

Integer. Either:

• GKS$K~TOECHO (0)

• GKS$K~CHO (1)

Real. The initial value of the valuator.

Integer. The prompt and echo type.

Array of 4 reals. The corners of the echo area in LDC as
XMIN, XMAX, YMIN, YMAX.

Array. The valuator data record as defined in Chapter 5.

Integer of the total size of the data record. If this is larger
than DATA~EC_SIZE, VAL _DATA~ECORD was not
big enough to hold the entire data record, so the entire
data record was not written.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$_ERROR_140

Success.

Specified input device is not present on workstation.

6-46 Workstation Handler Inquiry Functions

Inquire Choice Device State

Inquire Choice Device State

This inquiry returns information about the choice input device you specify. The
information is usually maintained in the WSL.

Required
Required for INPUT and OUTIN workstations that support CHOICE input.

Input Parameters

WSL

DEVNUM

The address of the handler's local data area.

Integer. The choice logical input device number.

Modified Parameters

DATA_REC_SIZE Integer. The size of the data record, in bytes. On input
this is the maximum number of bytes your function can
write to CHOICE_DATA_RECORD. On output, this is the
number of bytes written into the data record.

Workstation Handler Inquiry Functions 6-47

Inquire Choice Device State

Output Parameters

OPMODE

ECHO~WITCH

INITIAL STATUS

INITIAL _CHOICE

PROMPT_ECHO_TYPE

ECHO~REA

CHOICE _DATA _
RECORD

TOTAL _DATA SIZE

Integer. One of:

• GKS$K~NPUT~VIODE~EQUEST (0)

• GKS$K~NPUT_NiODE SAMPLE (1)

• GKS$K~NPUT_IVIODE~VENT (2)

Integer. Either:

• GKS$K~TOECHO (0)

• GKS$K~CHO (1)

Integer. The initial choice status, either:

• GKS$K~TATUS_OK (1)

• GKS$K~TATUS_NOCHOICE (2)

Integer. The value of the initial choice.

Integer. The prompt and echo type used.

Array of 4 reals. The corners of the echo area in LDC as
XMIN, XMAX, YMIN, YMAX.

Array. The choice data record as defined in Chapter 5.

Integer of the total size of the data record. If this is larger
than DATA_REC~SIZE, CHOICE_DATA_RECORD was
not big enough to hold the entire data record, so the entire
data record was not written.

6^48 Worl~station Handler Inquiry Functions

Inquire Choice Device State

Status Codes

Code Meaning

GKS$~UCCESS

GKS$—ERROR_140

Success.

Specified input device is not present on workstation.

Workstation Handler Inquiry Functions 6-49

Inquire String Device State

Inquire String Device State

This inquiry returns information about input devices of type string on the
workstation. The information is usually maintained in the WSL.

Required
Required for OUTIN and INPUT workstations that support STRING input.

Input Parameters

WSL

DEVNUM

The address of the handler's local data area.

Integer. The string logical input device number.

Modified Parameters

INIT STRING _SIZE Integer. On input, this is the maximum number of bytes
the function can write to the string buffer area. On output,
this is the number of characters written into the buffer.

DATA_REC_SIZE Integer. The size of the data record, in bytes. On input
this is the maximum number of bytes your function can
write to STRING_DATA~ECORD. On output, this is the
number of bytes written into the data record.

6-50 Workstation Handler Inquiry Functions

Inquire String Device State

Output Parameters

OPMODE

ECHO~WITCH

TOTAL STRING _SIZE

INIT~TRING

PROMPT~CHO_TYPE

ECHO~REA

STRING _DATA _
RECORD

TOTAL _DATA~IZE

Integer. One of:

• GKS$K_INPUT_IVIODE~EQUEST (0)

• GKS$K_INPUT_MODE~AMPLE (1)

• GKS$K_INPUT_NiODE.~VENT (2)

Integer. One of:

• GKS$K~tOECHO (0)

• GKS$K~CHO (1)

Integer. The total number of bytes in the string. If
TOTAL _STRING _SIZE is larger than INIT_STRING _
SIZE, then not all the initial string was copied into
INIT~TRING.

The string buffer, passed by reference.

Integer. The prompt and echo type.

Array of 4 reals. The corners of the echo area in LDC.
Ordered as XMIN, XMAX, YMIN, YMAX.

Array. The string data record as defined in Chapter 5.

Integer of the total size of the data record. If this is larger
than DATA~EC_SIZE, STRING_DATA~tECORD was
not big enough to hold the entire data record, so the entire
data record was not written.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_140

Success.

Specified input device is not present on workstation.

Workstation Handler Inquiry Functions 6-51

Inquire Pick Device State

Inquire Pick Device State

This inquiry returns information about an input device of type pick on your
workstation. This information is usually maintained in the WSL.

Required
Required for OUTIN and INPUT workstations that support PICK input.

Input Parameters

WSL

DEVNUM

SET_REALIZED

The address of the handler's local data area.

Integer. The pick logical input device number.

• GKS$K~EALIZED (1)

Integer. GKS$K_SET (0) means the function should return
the data record exactly as it was specified in the last call to
SET PICK MODE. GKS$K_REALIZED (1) means to return
the actual data record the workstation uses.

Modified Parameters

DATA~EC_SIZE Integer. The size of the data record, in bytes. On input,
this is the maximum number of bytes your functions can
write to PICK_DATA~ECORD. In output this is the
number of bytes written to PiCK_DATA~ECORD.

6-52 Workstation Handler Inquiry Functions

Inquire Pick Device State

Output Parameters

OPMODE

ECHO~WITCH

INIT~TATUS

INIT~EGMENT

INIT~'ICKID

PROMPT~CHO_TYPE

ECHO_AREA

PICK_DATA_RECORD

Integer. One of:

• GKS$K~NPUT~VIODE~EQUEST (0)

• GKS$K_INPUT_1ViODE _SAMPLE (1)

• GKS$K~NPUT~VIODE~VENT (2)

Integer. One of:

• GKS$K~TOECHO (0)

• GKS$K~CHO (1)

Integer. One of:

• GKS$K~TATUS_OK (1)

• GKS$K~TATUS_NOPICK (2)

Integer. The initial segment name.

Integer. The initial pick identifier.

Integer. The current prompt and echo type for this input
device.

Array of 4 reals. The corners of the echo area in LDC.
Ordered as XMIN, XMAX, YMIN, YMAX.

Array. The pick data record as defined in Chapter 5. If
SET_REALIZED = GKS$K~ET (0), this must be the data
record which was passed to the handler at the last call
to INITIALIZE_I'ICK. For SET~EALIZED = GKS$K_
REALIZED (1), this must be the full data record for the
current PET, with set values replaced by realized values.
If the set data record was incomplete (for example, if the
application omitted some fields), the realized data record
must include the defaults used in place of the unspecified
values.

Workstation Handler Inquiry Functions 6-53

Inquire Pick Device State

TOTAL _DATA~IZE Integer of the total size of the data record. If this is larger
than DATA~EC_SIZE, PICK_DATA~ECORD was not
big enough to hold the entire data record, so the entire
data record was not written.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_140

Success.

Specified input device is not present on this workstation.

6-54 Workstation Handler Inquiry Functions

Inquire Workstation Deferral and Update State

Inquire Workstation Deferral and Update State

This function returns the current values of DEF_1VIODE,REGEN_NiODE,
DISFLAY~MPTY, and NEW_FRAME. This information is usually maintained
in the WSL.

Note that if the workstation does not perform segments, the value of NEW_
FRAME will not be meaningful.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSL The address of the handler's local data area.

Output Parameters

DEF_IVIODE Integer. The device deferral mode. One of:

• GKS$K~SAP (0)

• GKS$K_BNIG (1)

• GKS$K_BNIL (2)

• GKS$K_ASTI (3)

REGEN_1VIODE Integer. The implicit regeneration mode. One of:

• GKS$K~RG~UPPRESSED (0)

• GKS$K_IRG_ALLOWED (1)

Workstation Handler Inquiry Functions 6-55

Inquire Workstation Deferral and Update State

DISPLAY~MPTY Integer. A flag indicating whether the display surface is
empty. Either:

• GKS$K~tOTEMPTY (0)

• GKS$K~MPTY (1)

NEW_FRAME Integer. A flag indicating whether the screen must be
redrawn at update. Either:

• GKS$K~ALSE (0)

• GKS$K_TRUE (1)

Status Codes

Code Meaning

GKS$~UCCESS Success.

6-56 Workstation Handler Inquiry Functions

Inquire Pixel Array Dimensions

Inquire Pixel Array Dimensions

This inquiry calculates the number of columns and rows of pixels that lie within
the rectangle defined by the input parameters. The input parameters P and Q
define opposite corners of a rectangle in WC. There is no implicit relationship
between these corners, so P may be above, below, left, or right of Q.

Figure 6-6, Pixel Array Dimensions, illustrates the pixel array dimensions.

Workstation Handler Inquiry Functions 6-57

Inquire Pixel Array Dimensions

Figure 6-6: Pixel Array Dimensions
P

IX
E

L
_R

O
W

S
=1

0

 PIXEL _COLS=18 ~~
PX, PY

QX,QY

ZK-5018-86

The handler should apply the current normalization and workstation trans-
formation to map the rectangle onto the display surface. Then it returns the
number of rows and columns of pixels within the rectangle. Note that it
performs no clipping.

Required
Required for OUTPUT and OUTIN workstations.

6-58 Workstation Handler Inquiry Functions

Inquire Pixel Array Dimensions

Input Parameters

WSL

P_X

P_Y

Q —~'~

Q _Y

The address of the handler's local data area.

X coordinate of the first point, in WC.

Y coordinate of the first point, in WC.

X coordinate of the second point, in WC.

Y coordinate of the second point, in WC.

Output Parameters

PIXEL SOWS

PIXEL _COLS

Integer. The number of rows of pixels.

Integer. The number of columns of pixels.

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Inquiry Functions 6-59

Inquire Pixel Array

Inquire Pixel Array

This inquiry builds a color array. The function maps the specified point onto
the display surface according to the current normalization and workstation
transformation. This point becomes the upper-left corner of an array of pixels
with the number of rows and columns given as input parameters.

Then the function returns an array containing the color index of each pixel,
oriented so that the first dimension increases with an increase along the X axis,
and the second dimension increases with a decrease along the Y axis. If the
function cannot determine the color index of a pixel, it returns the value -1 for
that cell, and sets the INVALID~LAG to GKS$K_TRUE (1). This might occur
if the normalization and workstation transformations map part of the pixel array
off the display surf ace.

The function should start writing the color information at the point in the array
specified by the X and Y of f set parameters.

If the device cannot return the pixel array it should return the error code
GKS$~RROR_40.

Required
Required for OUTIN and "OUTPUT workstations.

Input Parameters

WSL The address of the handler's local data area.

PAC Real. The X coordinate of the reference point on the
display, in WC.

P_Y Real. The Y coordinate of the reference point on the
display, in WC.

COL_MAJOR~LAG Integer flag. GKS$K_TRUE (1) means the array is column
major and GKS$K_FALSE (0) means it is row major.

6-60 Workstation Handler Inquiry Functions

Inquire Pixel Array

ARRAY_ROW Integer. The index to the row of COLOR_INDEX_ARRAY
where your function should begin writing.

ARRAY_COL Integer. The index to the column of COLOR_INDEX_
ARRAY where your function should begin writing.

TOTAL SOW Integer. The total number of rows in the color array.

TOTAL _COL Integer. The total number of columns in the color array.

NUM MOWS Integer. On input, this is the number of pixel rows your
function should get from the display. On output, this is
the number of rows actually returned.

NUM_COLS Integer. On input, this is the number of pixel columns
your function should get from the display. On output, this
is the number of rows actually returned.

Output Parameters

COLOR_INDEX_ Atwo-dimensional integer array containing the colors of
ARRAY the pixels you selected.

INVALID_FLAG Integer flag. If GKS$K _TRUE (1), there are invalid values
in the color index array. If GKS$K_FALSE (0), no invalid
values are present.

Status Codes

Code Meaning

GKS$_SUCCESS Success.

GKS$_ERROR_1 Dimensions of color array are invalid.

GKS$~RROR_40 Specified workstation has no pixel store read-back
capability.

Workstation Handler Inquiry Functions 6-61

Inquire Pixel

Inquire Pixel

This inquiry returns the color index of one pixel on the display. It applies the
current normalization and workstation transformations to the point supplied
in the input parameters and returns the color index of the pixel at that point.
If the device has no pixel read-back capab' 'ty it should return the error code
GKS$~RROR_40. If the device has pixel read-back capab' 'ties but it cannot
determine the color of the pixel in the input parameters (for example, if the
pixel is not on the display surf ace), the device should return the color code -1.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSL Integer.

PAC X coordinate of the pixel, in WC.

P_Y Y coordinate of the pixel, in WC.

Output Parameters

COLOR—INDEX Integer. The pixel's index into the color table.

6-62 Workstation Handler Inquiry Functions

Inquire Pixel

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_40 Specified workstation has no pixel store read-back
capab' 'ty.

Workstation Handler Inquiry Functions 6-63

Inquire Segment Names on Workstation

Inquire Segment Names on Workstation

This inquiry returns a list of open segments on the workstation. This inf orma-
tion is usually kept in the WSL.

Required
Required for OUTPUT and OUTIN workstations that support segments.

Input Parameters

WSL Integer. The address of the handler's local data area.

Modified Parameters

NUM_SEG_NAMES Integer. On input, this is the maximum number of
segment names that the function can write to SEG _LIST.
On output this is the number of segment names the
handler has written to SEG _LIST.

Output Parameters

SEG _LIST Array of integers. The list of segment names on this
workstation.

TOTAL_SEG_NAMES Integer. The total number of segment names on this
workstation. If this is greater than NUM_SEG_NAMES,
then SEG _LIST was too small to hold all the names, and
some were not written to the array.

6-64 Workstation Handler Inquiry Functions

Inquire Segment Names on Workstation

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Inquiry Functions 6-65

Inquire Workstation Category

Inquire Workstation Category

This inquiry returns the workstation category of the workstation type you
identify in the input parameters. This information is normally contained in the
WDT.

Required
Required for all workstations.

Input Parameters

WSTYPE Integer. The workstation type. This WSTYPE is the full 32
bit WSTYPE, including any bitmasks.

Output Parameters

WORKSTATION_ Integer. One of:
CATEGORY

• GKS$K_WSCAT_OUTPUT (0)

• GKS$K_WSCAT_INPUT (1)

• GKS$K_WSCAT OUTIN (2)

• GKS$K_WSCAT_1Vi0 (4)

• GKS$K_WSCAT_1VII (5)

6-66 Workstation Handler Inquiry Functions

Inquire Workstation Category

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Inquiry Functions 6-67

Inquire Workstation Classification

Inquire Workstation Classification

This inquiry returns the workstation classification of the workstation type you
identify in the input parameter. This information is normally contained in the
WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE Integer. The workstation type.

Output Parameters

DISPLAY_TYPE Integer. One of:

• GKS$K_WSCLASS_VECTOR (0)

• GKS$K_WSCLASS~tASTER (1)

• GKS$K_WSCLASS_OTHERD (2)

Status Codes

Code Meaning

GKS$_SUCCESS Success.

6-68 Workstation Handler Inquiry Functions

Inquire Display Space Size

Inquire Display Space Size

This inquiry returns the display surface size for the workstation type in the
input parameters. It returns both the vertical and horizontal dimensions in both
LDC units and raster units. This information is normally contained in the WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE Integer. The workstation type.

Output Parameters

DEV_COORDINATE _ Integer flag. Either:
UNITS

• GKS$K_1VIETERS (0)

• GKS$K_OTHER_UNITS (1)

DEV_DISPLAY~PACE_ Real. The X dimension in LDC.
SIZE ~C

DEV_DISPLAY_SPACE _ Real. The Y dimension in LDC.
SIZE _Y

RASTER_DISPLAY_ Integer. The X dimension in raster units.
SPACE SIZE ~C

RASTER_DISPLAY_ Integer. The Y dimension in raster units.
SPACE SIZE _Y

Workstation Handler Inquiry Functions 6-69

Inquire Display Space Size

Status Codes

Code Meaning

GKS$_SUCCESS Success.

6-70 Workstation Handler Inquiry Functions

Inquire Polyline Facilities

Inquire Polyline Facilities

This inquiry returns information about the workstation type's polyline capa-
b' 'ties from the WDT. This includes the number of lines supported, and the
maximum, minimum, and nominal linewidths.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE Integer. The workstation type.

Modified Parameters

NUM_LTYPES Integer. On input, this is the maximum number of line
types that the function can write to LIST_LINE_TYPES.
On output, this is the number of entries the handler has
written to LIST_LINE _TYPES.

Workstation Handler Inquiry Functions 6-71

Inquire Polyline Facilities

Output Parameters

TOTAL _NUM_LTYPES Integer. The number of linetypes your device supports.
If this is larger than NUM _LTYPES, then LIST_LINE _
TYPES was too small to hold all the line types, and some
were not written to the array.

LIST_LINE _TYPES Array of integers. The list of linetype bundle indexes.

NUM_LINEWIDTHS .Integer. The number of linewidths the device supports.
This is 0 if the device supports a continuous range of
linewidths, or the discrete number of linewidths.

NOMINAL _ Real. The size in LDC of the linewidth the device draws
LINEWIDTH when the linewidth is set to 1.

MAXIMUM _ Real. The size in LDC of the largest linewidth the device
LINEWIDTH supports.

MINIMUM _ Real. The size in LDC of the thinnest linewidth t~.e device
LINEWIDTH supports.

NUMBER_PREDEF_ Integer. The total number of predefined linetypes.
PLINE AND

Status Codes

Code Meaning

GKS$~UCCESS Success.

6-72 Workstation Handler Inquiry Functions

Inquire Predefined Polyline Representation

Inquire Predefined Polyline Representation

This inquiry returns information about the specified predefined Polyline rep-
resentation on the workstation. This information is normally contained in the
WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE

PLINE _INDEX

Integer. The workstation type.

Integer. The Polyline index.

Output Parameters

LINE _TYPE

LINEWIDTH_SCALE_
FACTOR

COLOR_INDEX

Integer. The linetype in the bundle.

Real. The bundle's linewidth scale factor.

Integer. The bundle's index into the color table.

Workstation Handler Inquiry Functions 6-73

Inquire Predefined Polyline Representation

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_60 Polyline index is invalid.

GKS$_ERROR_62 A representation for the specified polyline index has not
been predefined on this workstation.

6-74 Workstation Handler Inquiry Functions

Inquire Polymarker Facilities

Inquire Polymarker Facilities

This inquiry returns information about the polymarker capabilities of the
workstation type you specify, including the marker types it supports, and the
maximum, minimum, and nominal marker sizes. This information is normally
contained in the WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WST'YPE Integer. The workstation type.

Modified Parameters

NUM~VITYPES Integer. On input, this is the maximum number of marker
types that the function can write to LIST~/IARKERTYPES.
On output, this is the number of entries the handler has
written to LIST~VIARKERTYPES.

Workstation Handler Inquiry Functions 6-75

Inquire Polymarker Facilities

Output Parameters

NUM_IVIARKERTYPES Integer. The number of linetypes your device sup-
ports. If this is larger than NUM_IVITYPES, then LIST_
MARKERTYPES was too small to hold all the line types,
and some were not written to the array.

LIST—MARKERTYPES Array of integers. The marker types the device supports.

NUM _IVISIZES Integer. The number of marker sizes the device supports.
This is 0 if the device supports a continuous range, or the
discrete number of sizes.

NOMINAL _NiSIZE Real. The size in LDC of the marker the device draws
with marker size = 1.

MINIMUM _1VISIZE Real. The size in LDC of the smallest marker the device
supports.

MAXIMUM _IVISIZE Real. The size in LDC of the largest marker the device
supports.

NUMBER_l'REDEF_ Integer. The number of predefined marker types.
PMARK_IND

Status Codes

Code Meaning

GKS$_SUCCESS Success.

6-76 Workstation Handler Inquiry Functions

Inquire Predefined Polymarker Representation

Inquire Predefined Polymarker Representation

This inquiry returns information about the predefined polymarker representa-
tion you specify on the workstation type you specify in the input parameters.
This information is usually contained in the WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE

PMARK INDEX

Integer. The workstation type.

Integer. The index into the polymarker table.

Output Parameters

MARKER _TYPE

MSIZE _SCALE _
FACTOR

COLOR_INDEX

Integer. The marker type in the bundle.

Real. The marker size in the bundle.

Integer. The index into the color table.

Workstation Handler Inquiry Functions 6-77

Inquire Predefined Polymarker Representation

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_66 Polymarker index is invalid.

GKS$~RROR_68 A representation for the specified polymarker index has
not been predefined on this workstation.

6-78 Workstation Handler Inquiry Functions

Inquire Text Facilities

Inquire Text Facilities

This inquiry returns information about the text capabilities of the device you
specify. This data is usually stored in the WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE Integer. The workstation type.

Modified Parameters

NUM_FONT_I'REC Integer. On input, this is the maximum number of font-
precision pairs that the function can write to LIST—FONT
and LIST~'REC. On output, this is the number of entries
the handler has written to LIST_FONT and LIST_I'REC.

Workstation Handler Inquiry Functions 6-79

Inquire Text Facilities

Output Parameters

NUM~ONT_I'REC_
PAIRS

LIST~ONT

LIST_I'REC

NUM_CHAR_HEIGHTS

MINIMUM _CHAR _
HEIGHT

MAXIMUM _CHAR _
HEIGHT

NUM_CHAR_EXP_
FACTOR

MINIMUM _CHAR _
EXP_FACTOR

MAXIMUM _CHAR _
EXP~ACTOR

NUM_I'REDEF_TEXT_
IND

Integer. The number of font-precision pairs your device
supports. If this is larger than NUM~ONT~''REC, then
LIST_FONTS and LIST_1'REC were too small to hold all
the font-precision pairs, and some were not written to the
arrays.

Array of integers. The font component of the font-
precision pairs the device supports.

Array of integers. The precision component of the
font-precision pairs the device supports.

Integer. The number of character heights the device
supports for Font 1. This is 0 if the device supports a
continuous range of heights, or the discrete number.

Real. The size in LDC of the smallest height the device
can draw for Font 1.

Real. The size in LDC of the largest height the device can
draw for Font 1.

Integer. The number of character expansion factors the
device supports for Font 1. This is 0 if the device supports
a continuous range, or the discrete number.

Real. The smallest expansion factor the device supports for
Font 1.

Real. The largest expansion factor the device supports for
Font 1.

Integer. The number of predefined text style bundles.

Status Codes

Code Meaning

GKS$~UCCESS Success.

6-80 Workstation Handler Inquiry Functions

Inquire Predefined Text Representation

Inquire Predefined Text Representation

This inquiry returns information about the predefined text representation
specified in the input parameters. This information is usually contained in the
WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

wsTYPE
TEXT~NDEX

Integer. The workstation type.

Integer. The index of the text bundle.

Output Parameters

FONT Integer. The text font in the bundle.

PREC Integer. The test precision in the bundle.

CHAR~XP~ACTOR Real. The character expansion factor.

CHAR~PACE Real. The text spacing.

COLOR—INDEX Integer. The bundle's index into the color table.

Workstation Handler Inquiry Functions 6-81

Inquire Predefined Text Representation

Status Codes

Code Meaning

GKS$_SUCCESS Success.

GKS$_ERROR_72 Text index is invalid.

GKS$~RROR_74 A representation for the specified text index has not been
predefined on this workstation.

6-82 Workstation Handler Inquiry Functions

Inquire Fill Area Facilities

Inquire Fill Area Facilities

This inquiry returns information about the device's fill area capab' 'ties. This
data is usually stored in the WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE Integer. The workstation type.

Modified Parameters

NUM ~-IATCH STYLE Integer. On input, this is the maximum number of hatch
styles that the function can write to LIST_HATCH~TYLE.
On output, this is the number of entries the handler has
written to LIST~-iATCH STYLE.

Workstation Handler Inquiry Functions 6-83

Inquire Fill Area Facilities

Output Parameters

NUM~ILL ~NTSTLYE Integer. The number of fill styles the device supports.

LIST~'ILL _INTSTYLE Longword bitmask. Your function should set the following
bits if the associated fill style is supplied:

Bit Style

0 GKS$K_INTSTYLE_HOLLOW (0)

1 GKS$K ~NTSTYLE _SOLID (1)

2 ~ GKS$K_INTSTYLE~'ATTERN (2)

3 GKS$K_INTSTYLE_HATCH (3)

TOTAL _NUM_ Integer. The number of hatch styles your device supports.
HATCH STYLE If this is larger than NUM MATCH _STYLE, then LIST_

HATCH_STYLE was too small to hold all the hatch styles,
and some were not written to the array.

LIST_HATCH STYLE Array of integers. The hatch styles the device supports.

NUM~'REDEF~ILL _ Integer. The number of predefined fill area styles.
IND

Status Codes

Code Meaning

GKS$~UCCESS Success.

6-84 Workstation Handler Inquiry Functions

Inquire Predefined Fill Area Representation

Inquire Predefined Fill Area Representation

This inquiry returns information about the predefined fill area representation
specified in the input parameter. This information is usually contained in the
WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE

FILL _INDEX

Integer. The workstation type.

Integer. The index into the fill area table.

Output Parameters

FILL ~NTSTYLE Integer. One of:

• GKS$K_INTSTYLE_HOLLOW (0)

• GKS$K_INTSTYLE _SOLID (1)

• GKS$K~NTSTYLE~'ATTERN (2)

• GKS$K~NTSTYLE~IATCH (3)

FILL _STYYE _IND

COLOR_INDEX

Integer. The style index in the bundle.

Integer. The index into the color table.

Workstation Handler Inquiry Functions 6-85

Inquire Predefined Fill Area Representation

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_80 Fill area index is invalid.

GKS$~RROR_82 A representation for the specified fill area index has not
been predefined on this workstation.

6-86 Workstation Handler Inquiry Functions

Inquire Pattern Facilities

Inquire Pattern Facilities

This inquiry returns information about the workstation type's pattern capabili-
ties. This information is usually contained in the WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE Integer. The workstation type.

Output Parameters

NUM ~'REDEF_I'ATT_ Integer. The number of predefined patterns.
IND

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Inquiry Functions 6-87

Inquire Predefined Pattern Representation

Inquire Predefined Pattern Representation

This inquiry returns information about the predefined pattern representation
specified in the input parameters. This information is usually contained in the
WDT.

Required
Required for all workstations.

Input Parameters

WSTYPE Integer. The workstation type.

PATT_INDEX Integer. The pattern bundle index.

COL _I1/IAJOR_FI.AG Integer flag. GKS$K_TRUE (1) means the array is column
major, and GKS$K_FALSE (0) means it is row major.

Modified Parameters

NUM~tOWS

NUM_COLS

Integer. On input, this is the maximum number of rows
that the function can write to PATT_ARRAY. On output,
this is the number of rows the handler has written to
PATT~RRAY.

Integer. On input, this is the maximum number of columns
that the function can write to PATT_ARRAY. On output,
this is the number of rows the handler has written to
PATT~RRAY.

6-88 Workstation Handler Inquiry Functions

Inquire Predefined Pattern Representation

Output Parameters

PATT~RRAY

PATT_DIM ~C

PATT_DIM_Y

Two-dimensional array of integers. The index into the
color table associated with each cell in the array.

Integer. The total number of rows in the pattern. If this
is larger than NUM_ROWS, then PATT~RRAY was too
small to hold all the rows in the pattern, and some were
not written to the array.

Integer. The total number of columns in the pattern. If
this is larger than NUM _COLS, then PATT~RRAY was
too small to hold all the columns in the pattern, and some
were not written to the array.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_85 Specified pattern index is invalid.

GKS$~RROR_89 A representation for the specified pattern index has not
been defined for this workstation.

GKS$~RROR_90 Interior style PATTERN is not supported on this
workstation.

Workstation Handler Inquiry Functions 6-89

Inquire Color Facilities

Inquire Color Facilities

This function returns information about the workstation type's color capabilities.
This information is normally contained in the WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE Integer. The workstation type.

Output Parameters

NUM_COLORS Integer. The number of colors the device supports.

COLOR_AVAILABLE Integer flag. GKS$K_IVIONOCHROME (0) means the
device is monochrome and does not support color.
GKS$K_COLOR (1) means the device supports color.

NUM_I'REDEF_ Integer. The number of defined colors.
COLOR_REP

Status Codes

Code Meaning

GKS$_SUCCESS Success.

6-90 Workstation Handler Inquiry Functions

Inquire Predefined Color Representation

Inquire Predefined Color Representation

This inquiry returns information about the predefined color representation. This
information is usually contained in the WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE

COLOR_INDEX

Integer. The workstation type.

Integer. The index into the color table.

Output Parameters

RED Real. The red component of the color.

GREEN Real. The green component of the color.

BLUE Real. The blue component of the color.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$_ERROR _93 Color index is invalid.

GKS$_ERROR_95 A representation for the specified color index has not been
predefined on this workstation.

Workstation Handler Inquiry Functions 6-91

Inquire GDP Primitives

Inquire GDP Primitives

This inquiry returns information about the GDP capab' 'ties of the device you
specify in the input parameters. This information is usually contained in the
WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE Integer. The workstation type.

Modified Parameters

NUM_GDP Integer. On input, this is the maximum number of GDPs
that the function can write to LIST_GDP. On output,
this is the number of entries the handler has written to
LIST_GDP.

Output Parameters

LIST_GDP Array of integers. The GDP identifiers.

TOTAL _GDP Integer. The number of GDPs your device supports. If this
is larger than NUM _GDP, then LIST_GDP was too small
to hold all the GDPs, and some were not written to the
array.

TOTAL _GDP Integer. The total number of GDPs the device supports.

6-92 Workstation Handler Inquiry Functions

Inquire GDP Primitives

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Inquiry Functions 6-93

Inquire Generalized Drawing Primitive

Inquire Generalized Drawing Primitive

This inquiry returns information about the GDP in the input parameters. This
information is usually contained in the WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE

GDP_ID

Integer. The workstation type.

Integer. The GDP index.

Output Parameters

GDP_ATTRIBUTES 32-bit bitmask that represents the attributes used in the
GDP. If the bit is set, the corresponding attributes are
used. The following bits are defined:

Bit Attribute

0 GKS$K_I'OLYLN_ATTRI (0)

1 GKS$K_I'OLYMR_ATTRI (1)

2 GKS$K_TEXT~TTRI (2)

3 GKS$K_FILLAR_ATTRI (3)

6-94 Workstation Handler Inquiry Functions

Inquire Generalized Drawing Primitive

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$_ERROR_41 Specified workstation type is not able to generate the
specified generalized drawing primitive.

Workstation Handler Inquiry Functions 6-95

Inquire Maximum Length of Workstation State Tables

Inquire Maximum Length of Workstation State Tables

This inquiry returns the maximum length of each type of bundle table in the
workstation state list for the workstation type you specify. This information is
normally contained in the WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE Integer. The workstation type.

Output Parameters

MAX _1'LINE _BUNDLES

MAX _I'MARK _
BUNDLES

MAX _TEXT BUNDLES

MAX _FILL _BUNDLES

MAX _PATT_IND

MAX_COLOR~ND

Integer. The maximum number of the polyline bundle
table.

Integer. The maximum number of polymarker bundle table
entries.

Integer. a maximum number of text bundle table entries.

Integer. The maximum number of fill bundle table entries.

Integer. The maximum number of pattern bundle table
entries.

Integer. The maximum number of color bundle table
entries.

6-96 Workstation Handler Inquiry Functions

Inquire Maximum Length of Workstation State Tables

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Inquiry Functions 6-97

Inquire Number of Available logical Input Devices

Inquire Number of Available Logical Input Devices

This inquiry returns the number of logical input devices of each type available
on the workstation type. This information is normally contained in the WDT.

If the device does not support a particular logical input device type, it should
return the value 0.

Required
Required for INPUT and OUTIN workstations that support STROKE input.

Input Parameters

WSTYPE Integer. The workstation type.

Output Parameters

NUM_LOC_DEV

NUM ~TK _DEV

NUM_VAL _DEV

NUM_CHOICE_DEV

NUM~'ICK_DEV

NUM_STRING _DEV

Integer. The number of locator logical input devices.

Integer. The number of stroke logical input devices.

Integer. The number of valuator logical input devices.

Integer. The number of choice logical input devices.

Integer. The number of pick logical input devices.

Integer. The number of string logical input devices.

6-98 Workstation Handler Inquiry Functions

Inquire Numl~r of Available Logical Input Devices

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Inquiry Functions 6-99

Inquire Default L~ator Device Data

Inquire Default Locator Device Data

This inquiry returns default information about the locator input device specified
in the input parameters. This information is normally contained in the WDT.

Required
Required for OUTIN workstation and INPUT workstations that support
LOCATOR input.

Input Parameters

WSTYPE

DEVNUM

Integer. The workstation type.

Integer. The locator logical input device number.

Modified Parameters

NUMBER~'ET

DATA~EC_SIZE

Integer. On input, this is the maximum number of PETs
that the function can write to LIST_I'ROMPT_ECHO_
TYPES. On output this is the number of PETS the handler
has written to LIST_I'ROMPT~CHO_TYPES.

Ynteger. On input, this is the number of bytes that the
function can write to LOC_DATA_RECORD. On output,
this is the number of bytes the handler has written to
LOC_DATA_RECORD.

6-100 Workstation Handler Inquiry Functions

Inquire Default locator Device Data

Output Parameters

INIT_LOCN ~C

INIT_LOCN _Y

NUM _PROMPT_
ECHO_TYPES

LIST_I'ROMPT_ECHO_
TYPES

ECHO~REA

LOC_DATA~ECORD

LOC_DATA_REC~SIZE

Real. The X coordinate of the initial locator position, in
NDC.

Real. The Y coordinate of the initial locator position, in
NDC.

Integer. The total number of PETs defined for this
workstation and input type. If this is greater than
NUMBER~'ET, then LIST~ROMPT~CHO_TYPES was
too small to hold all the PETS, and some were not written
to the array.

Array of integers. The available prompt and echo types.

Array of four real numbers that describe the echo area in
LDC, in the order XMIN, XMAX, YMIN, YMAX.

Array. The default locator data record.

Integer. The total size of the locator data record. If this
is larger than DATA_REC_SIZE, then LOC_DATA_
RECORD was too small to contain the entire data record,
and does not contain the entire data record.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$_ERROR_140

Success.

Specified input device is not present on this workstation.

Workstation Handler Inquiry Functions 6-101

Inquire Default Stroke Device Data

Inquire Default Stroke Device Data

This inquiry returns default information about the stroke input device specified
in the input parameters. This data is normally contained in the WDT.

Required
Required for OUTIN workstations and INPUT workstations that support
STROKE input.

Input Parameters

WSTYPE

DEVNUM

Integer. The workstation type.

Integer. The stroke logical input device.

Modified Parameters

NUMBER_I'ET

DATA_REC_SIZE

Integer. On input, this is the maximum number of PETs
that the function can write to LIST_PROMPT_ECHO_
TYPES. On output this is the number of PETs the handler
has written to LIST_I'ROMPT~CHO_TYPES.

Integer. On input, this is the number of bytes that the
function can write to STROKE_DATA_RECORD. On
output, this is the number of bytes the handler has written
to STROKE_DATA_RECORD.

6-102 Workstation Handler Inquiry Functions

Inquire Default Stroke Device Data

Output Parameters

MAXIMUM _BUFSIZE

NUM ~'ROMPT_
ECHO_TYPES

LIST_PROMPT~CHO_
TYPES

ECHO~REA

STROKE_DATA_
RECORD

TOTAL _DATA_REC_
SIZE

Integer. The stroke input buffer size.

Integer. The total number of PETs defined for this
workstation and input type. If this is greater than
NUMBER~'ET, then LIST~'ROMPT~CHO_TYPES was
too small to hold all the PETS, and some were not written
to the array.

Array of integers. The prompt and echo types the device
supports.

Array of four real numbers that define the echo area in
LDC, in the order XMIN, XMAX, YMIN, YMAX.

Array. The default stroke data record.

Integer. The total size of the stroke data record. If this
is larger than DATA_REC_SIZE, then STROKE_DATA_
RECORD was not large enough to contain the entire data
record, and does not contain the entire data record.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_140

Success.

Specified input device is not present on this workstation.

Workstation Handler Inquiry Functions 6-103

Inquire Default Valuator Device Data

Inquire Default Valuator Device Data

This inquiry returns default information about the Valuator input device on
the workstation type you specify in the input parameters. This information is
normally contained in the WDT.

Required
Required for OUTIN workstations and INPUT workstations that support
VALUATOR input.

Input Parameters

WSTYPE

DEVNUM

Integer. The workstation type.

Integer. The valuator logical device number.

Modified Parameters

NUMBER_I'ET

DATA~EC_SIZE

Integer. On input, this is the maximum number of PETs
that the function can write to LIST~'ROMPT~CHO_
TYPES. On output this is the number of PETS the handler
has written to LIST~'ROMPT~CHO_TYPES.

Integer. On input, this is the number of bytes that the
function can write to VAL _DATA_RECORD. On output,
this is the number of bytes the handler has written to
VAL _DATA~ECORD.

6-104 Workstation Handler Inquiry Functions

Inquire Default Valuator Device Data

Output Parameters

INIT_VALUE

NUM ~'ROMPT_
ECHO_TYPES

LIST_PROMPT~CHO_
TYPES

ECHO~REA

VAL _DATA~ECORD

TOTAL _DATA~EC_
SIZE

Real. The initial valuator value.

Integer. The total number of PETs defined for this
workstation and input type. If this is greater than
NUMBER_I'ET, then LIST~'ROMPT_ECHO_TYPES was
too small to hold all the PETs, and some were not written
to the array.

Array of integers. The prompt and echo types the device
supports.

Array of four real numbers that define the echo area in
LDC, in the order XMIN, XMAX, YMIN, YMAX.

Array. The default data record.

Integer. The total size of the valuator data record. If
this is larger than DATA_REC_SIZE, then VAL _DATA_
RECORD was too small to hold the entire data record, and
does not contain the entire data record.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_140

Success.

Specified input device is not present on this workstation.

Workstation Handler Inquiry Functions 6-105

Inquire Default Choice Device Data

Inquire Default Choice Device Data

This inquiry returns default information about the choice input device you
specify in the input parameters. This information is normally contained in the
WDT.

Required
Required for OUTIN workstations and INPUT workstations that support
CHOICE input.

Input Parameters

WSTYPE

DEVNUM

Integer. The workstation type.

Integer. The choice logical input device.

Modified Parameters

NUMBER_I'ET

DATA_REC_SIZE

Integer. On input, this is the maximum number of PETs
that the function can write to LIST_I'ROMPT~CHO_
TYPES. On output this is the number of PETs the handler
has written to LIST_I'ROMPT~CHO_TYPES.

Integer. On input, this is the number of bytes that the
function can write to CHOICE_DATA_RECORD. On
output, this is the number of bytes the handler has written
to CHOICE_DATA_RECORD.

6-106 Workstation Handler Inquiry Functions

Inquire Default Choice Device Data

Output Parameters

MAX _NUM _CHOICE

NUM_PROMPT_
ECHO_TYPES

LIST_PROMPT~CHO_
TYPES

ECHO_AREA

CHOICE_DATA_
RECORD

TOTAL _DATA_REC_
SIZE

Integer. The maximum number of choices.

Integer. The total number of PETS defined for this
workstation and input type. If this is greater than
NUMBER_I'ET, then LIST~'ROMPT~CHO_TYPES was
too small to hold all the PETs, and some were not written
to the array.

Array of integers. The prompt and echo types the device
supports.

Array of four real numbers that describe the echo area in
LDC, in the order XMIN, XMAX, YMIN, YI~1AX.

Array. The default choice data record.

Integer. The size of the default data record. If this is larger
than DATA_REC_SIZE, CHOICE_DATA_RECORD was
not large enough to contain the entire data record, and
does not contain the entire data record.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_140

Success.

Specified input device is not present on this workstation.

Workstation Handler Inquiry Functions 6-107

Inquire Default String Device Data

Inquire Default String Device Data

This inquiry returns default information about the string logical input device
specifiied in the input parameters.

Required
Required for OUTIN workstations and INPUT workstations that support
STRING input.

Input Parameters

WSTYPE

DEVNUM

Integer. The workstation type.

Integer. The string logical input device.

Modified Parameters

NUMBER_I'ET

DATA_REC_SIZE

Integer. On input, this is the maximum number of PETS
that the function can write to LIST_PROMPT~CHO_
TYPES. On output this is the number of PETs the handler
has written to LIST~'ROMPT~CHO_TYPES.

Integer. On input, this is the number of bytes that the
function can write to STRING_DATA_RECORD. On
output, this is the number of bytes the handler has written
to STRING_DATA~ECORD.

6-108 Workstation Handler Inquiry Functions

Inquire Default String Device Data

Output Parameters

MAX _BUFSIZE

NUM~'ROMPT_
ECHO_TYPES

LIST_I'ROMPT_ECHO_
TYPES

ECHO~REA

STRING _DATA _
RECORD

TOTAL _DATA_REC_
SIZE

Integer. The maximum size of the STRING input buffer.

Integer. The total number of PETs defined for this
workstation and input type. If this is greater than
NUMBER~'ET, then LIST_I'ROMPT_ECHO_TYPES was
too small to hold all the PETs, and some were not written
to the array.

Array of integers. The prompt and echo types the device
supports.

Array of four real numbers describing the echo area in
LDC, in the order XMIN, XMAX, YMIN, YMAX

Array. The default string data record.

Integer. The total size of the default data record. If this is
larger than DATA_REC_SIZE, STRING_DATA_RECORD
was not large enough to contain the entire data record,
and does not contain the entire data record.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$K_ERROR_140

Success.

Specified input device is not present on this workstation.

Workstation Handler Inquiry Functions 6-109

Inquire Default Pick Device Data

Inquire Default Pick Device Data

This inquiry returns default information about the pick input device you specify.
This information is normally maintained in the WDT.

Required
Required for OUTIN workstations and INPUT workstations that support PICK
input.

Input Parameters

WSTYPE

DEVNUM

Integer. The workstation type.

Integer. The pick logical device number.

Modified Parameters

NUMBER_I'ET

DATA_REC_SIZE

Integer. On input, this is the maximum number of PETs
that the function can write to LIST_PROMPT_ECHO_
TYPES. On output this is the number of PETs the handler
has written to LIST_I'ROMPT~CHO_TYPES.

Integer. On input, this is the number of bytes that the
function can write to PICK_DATA_RECORD. On output,
this is the number of bytes the handler has written to
PICK_DATA_RECORD.

6-110 Workstation Handler Inquiry Functions

Inquire Default Pick Device Data

Output Parameters

NUM ~'ROMPT
ECHO_TYPES

LIST_PROMPT~CHO_
TYPES

ECHO~REA

PICK_DATA_RECORD

TOTAL _DATA_REC_
SIZE

Integer. The total number of PETs defined for this
workstation and input type. If this is greater than
NUMBER~'ET, then LIST_I'ROMPT_ECHO_TYPES was
too small to hold all the PETS, and some were not written
to the array.

Array of integers. The list of available PETs.

Array of four real numbers that describe the echo area in
LDC, in the order XMIN, XMAX, YMIN, YhiAX.

Array. The default pick data record.

The total size of the pick data record. If this is larger
than DATA_REC~SIZE, then PICK_DATA_RECORD was
too small to contain the entire data record, and does not
contain the entire data record.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_140

Success.

Specified input device is not present on this workstation.

Workstation Handler Inquiry Functions 6-111

Inquire Dynamic Modification of Workstation Attributes

Inquire Dynamic Modification of Workstation Attributes

This inquiry returns flags that indicate whether workstations of the type spec-
ified can dynamically modify certain attributes. This information is usually
maintained in the WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE Integer. The workstation type.

Output Parameters

DMAF_I'OLYLINE Integer. A flag stating whether polyline bundle representa-
tions are dynamically changeable. Either:

• GKS$K_IRG (0) Implicit regeneration necessary

• GKS$K_IMM (1) Performed immediately

DMAF_POLYMARKER Integer. A flag stating whether polymarker bundle
representations are dynamically changeable. Either:

• GKS$K_IRG (0) Implicit regeneration necessary

• GKS$K_IMM (1) Performed immediately

6-112 Workstation Handler Inquiry Functions

Inquire Dynamic Modification of Workstation Attributes

DMAF_TEXT

DMAF~ILL

DMAF~'ATTERN

DMAF_COLOR

DMAF_TRANSFORM

Integer. A flag stating whether text bundle representations
are dynamically changeable. Either:

• GKS$K~RG (0) Implicit regeneration necessary

• GKS$K~MM (1) Performed immediately

Integer. A flag stating whether fill bundle representations
are dynamically changeable. Either:

• GKS$K_IRG (0) Implicit regeneration necessary

• GKS$K_IMM (1) Performed immediately

Integer. A flag stating whether pattern bundle -representa-
tions are dynamically changeable. Either:

• GKS$K_IRG (0) Implicit regeneration necessary

• GKS$K_IMM (1) Performed immediately

Integer. A flag stating whether color bundle representa-
tions are dynamically changeable. Either:

• GKS$K~RG (0) Implicit regeneration necessary

• GKS$K_IMM (1) Performed immediately

Integer. A flag stating whether the workstation transforma-
tion is dynamically changeable. Either:

• GKS$K~RG (0) Implicit regeneration necessary

• GKS$K~MM (1) Performed immediately

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Inquiry Functions 6-113

Inquire Default Deferral State Values

Inquire Default Deferral State Values

This inquiry returns the default deferral mode and implicit regeneration mode
values for the specified workstation type. This data is usually maintained in the
WDT.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE Integer. The workstation type.

Output Parameters

DEF~VIODE Integer. The default deferral mode. One of:

• GKS$K~SAP (0)

• GKS$K_BNIL (2)

• GKS$K~STI (3)

REGEN_1ViODE Integer. The default implicit regeneration mode. One of:

• GKS$K~RG_SUPPRESSED (0)

• GKS$K_IRG~LLOWED (1)

6-114 Workstation Handler Inquiry Functions

Inquire Default Deferral State Values

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Inquiry Functions 6-115

Inquire Humber of Segment Priorities Supported

Inquire Number of Segment Priorities Supported

This inquiry returns the number of segment priorities supported by the work-
station type you specify. This information is normally stored in the WDT.

Required
Required for OUTPUT and OUTIN workstations that suppport segments.

Input Parameters

WSTYPE Integer. The workstation type.

Output Parameters

NUM~EGMENT_
PRIORITIES

Integer. The number of segment priorities supported on
this device. This is zero if the device supports an infinite
range of priorities, otherwise it is the discrete number.

Status Codes

Code Meaning

GKS$~UCCESS Success.

6-11 ~ Workstation Handler Inquiry Functions

~1 Inquire Dynamic Modification of Segment Attributes

Inquire Dynamic Modification of Segment Attributes

This inquiry returns flags that indicate the ab' 'ty of the specified workstation
type to perform dynamic modification of segment attributes. This information
is normally stored in the WDT.

Note that if the handler does not support segments, only the attribute DMAF_
HIGHLIGHTING is meaningful.

Required
Required for OUTPUT and OUTIN workstations.

Input Parameters

WSTYPE Integer. The workstation type.

Output Parameters

DMAF~EGMENT Integer. A flag indicating whether the segment transforma-
tion can be changed dynamically. Either:

• GKS$K_IRG (0) Implicit regeneration necessary

• GKS$K_IMM (1) Performed immediately

DMAF_INVISIBILITY Integer. A flag indicating whether segments can be made
invisible dynamically. Either:

• GKS$K~RG (0) Implicit regeneration necessary

• GKS$K~MM (1) Performed immediately

Workstation Handler Inquiry Functions 6-117

Inquire Dynamic Modification of Segment Attributes

DMAF_VISIBILITY Integer. A flag indicating whether segments can be made
visible dynamically. Either:

• GKS$K_IRG (0) Implicit regeneration necessary

• GKS$K_IMM (1) Performed immediately

DMAF_HIGHLIGHTING Integer. A flag indicating whether segments can be
highlighted dynamically. Either:

• GKS$K~RG (0) Implicit regeneration necessary

• GKS$K ~MM (1) Performed immediately

DMAF SEGMENL Integer. A flag indicating whether segment priorities can
PRIORITY be changed dynamically. Either:

• GKS$K_IRG (0) Implicit regeneration necessary

• GKS$K~MM (1) Performed immediately

DMAF_SEGMENT_
OVERLAP

Integer. A flag indicating whether segment overlapping
can be changed dynamically. Either:

• GKS$K_IRG (0) Implicit regeneration necessary

• GKS$K~MM (1) Performed immediately

DMAF_DELETE _ Integer. A flag indicating whether segments can deleted
SEGMENT dynamically. Either:

• GKS$K_IRG (0) Implicit regeneration necessary

• GKS$K_IMM (1) Performed immediately

Status Codes

Code Meaning

GKS$~UCCESS Success.

6-118 Workstation Handler Inquiry Functions

Inquire Size of Handler Storage

Inquire Size of Handler Storage

This inquiry returns the amount of storage that the handler needs. The kernel
allocates this amount of virtual memory for the handler. The address of the
storage space is passed to functions that may require the WSL, in the parameter
WSL. This function is only called before a workstation is opened, so the size of
the storage area is fixed and cannot be changed.

Required
Required for all workstations.

Input Parameters
None.

Output Parameters

STORAGE SIZE Integer. The storage size needed, in bytes.

Status Codes

Code Meaning

GKS$_SUCCESS Success.

Workstation Handler Inquiry Functions 6-119

Chapter 7

Workstation Handler Metafile Functions

This chapter describes the workstation handler metafile functions. You must
provide the function WRITE ITEM TO METAFILE if your device is type MO.
You must ;provide the functions GET ITEM TYPE FROM METAFILE and READ
ITEM FROM METAFILE if your device is type MI.

The kernel calls the function WRITE ITEM TO METAFILE when the user calls
the GKS$WRITE STEM function. The function writes auser-defined data type
to the metafile.

The kernel calls the GET ITEM TYPE FROM METAFILE function when the
user or application calls GKS$GET~TEM. This function reads an item from the
metafile, determines the item type, and calculates the item length. Note that
although your metafiles can contain information in any format, DEC GKS can
only interpret metafiile items according to the format specified in the ANSI GKS
standard, with data items structured as defined in Table 7-1, Required Metafile
Format. This format is also described in the DEC GKS Reference Manual. Your
GET ITEM TYPE FROM METAFILE function must translate the data item to
this format and return the length of the translated item.

Workstation Handler Metafile Functions 7-1

Table 7-1: Required Metafile Format

Required
Item Value Definition

V 1 Version number.

H 4 Number of characters in the string GKSM displayed at the
beginning of each record.

T 3 Length of item type indicator field.

L 8 Length of item data record length indicator field.

I 8 Length of field for each integer in the item data record.

R 14 Length of field for each real in the item data record.

F 1 All numbers formatted according to ISO standard 6093.

RI 1 Reals are not scaled integers.

The remaining header items listed in the GKS standard must be determined by
your function, listed in Table 7-2, Metafile Format Items Determined by Your
Functions.

Table 7-2: Metafile Format Items Determined by Your Functions

Item Definition

GKSM The string GKSM.

N The name of the author/installation.

D Date, in the format yy/mm/dd.
ZERO Not required.

ONE Not required.

All values should be right-justified and blank- or space-padded in their fields.

The kernel calls READ ITEM FROM METAFILE when the user or application
gives the command GKS$READ~TEM. Since a call to READ ITEM FROM
METAFILE must always be preceded by a call to GET ITEM TYPE FROM
METAFILE, you may let your GET ITEM TYPE function store the translated
item in the local data area. If so, your READ ITEM function need only pass the
address of the translated item, not translate the record again.

7-2 Workstation Handler Metafile Functions

Write Item to Metafile

Write Item to Metafile

This function writes a data record, containing nongraphical data provided by
the applications program, to the GKS metafile. The GKS kernel calls it in
response to the GKS$WRITE STEM call from the application.

The kernel uses this function only to write an implementation-specific data type
to the metafile. These data types always have item types greater than 100. The
function should add whatever any information your metafiles require to the
beginning of the data passed in the input parameters, then write the header and
data string to the metafile. Note that if you plan to read the data back using
DEC GKS, your metafile input functions must be able to interpret the header.

Required
Required for MO workstations.

Input Parameters

WSL The address of the handler's local data area.

ITEM_TYPE Integer. The user-specified data type. This must be greater
than 101.

ITEM _DATA _ Integer. The length in bytes of the data record.
RECORD_LENGTH

ITEM_DATA_RECORD Address. Record of length specified in the previous
parameter.

Output Parameters
None.

Workstation Handler Metafile Functions 7-3

Write Item to Metafile

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_160 Item type is not allowed for user items.

GKS$~RROR_161 Item length is invalid.

7-4 Workstation Handler Metafile Functions

Get Item from Metafile

Get Item from Metafile

This function gets the item type and the length of the current item in the
metafile. The length must be the length of the item after it is converted to the
format specified at the beginning of this chapter, so this function must convert
the record. The item type must be a type specified in the GKS standard, or a
user item type. If these conditions are not, met the GKS kernel will be unable
to interpret the item.

Note that in most cases a call to READ ITEM FROM METAFILE follows this
function. You may choose to write the converted record to the local data area
so that the READ ITEM FROM METAFILE function does not need to convert it
again.

Required
Required for MI workstations.

Input Parameters

WSL The address of the handler's local data area.

Output Parameters

ITEM _TYPE Integer. The current record's item type.

ITEM _DATA _
RECORD_LENGTH

Integer. The length, in bytes, of the current record, after
conversion to the format DEC GKS requires.

Workstation Handler Metafile Functions 7-5

Get Item from Metafile

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$_ERROR_162 No item is left in GKS metafile input.

GKS$~RROR_163 Metafile item is invalid.

7-6 Workstation Handler Metafile Functions

Read Item from Metafile

Read Item from Metafile

This function returns the current data record, converted to the format DEC GKS
requires, then marks the next data record as the new current data record. If the
item is larger than the MAXIMUM~TEM_DATA~ECORD_LENGTH, the
excess is truncated. If MAXIMUM~TEM_DATA~ECORD_LENGTH is 0,
the function returns no data record, and marks the next data record as the new
current data record.

Note that if your.. GET ITEM TYPE. FROM METAFILE function stores the
translated record, this function need only find and return the converted record.

Required
Required for MI workstations.

Input Parameters

WSL The address of the handler's local data area.

MAXIMUM_ITEM_ Integer. Size of the buffer to which the record should be
DATA~ECORD_ written. If 0, no record should be written. If the item data
LENGTH record is longer than the buffer, truncate the record.

Output Parameters

DATA_RECORD Address. The metafile data record, passed by reference.

Workstation Handler Metafile Functions 7-7

Read Item from Metafile

Status Codes

Code Meaning

GKS$_SUCCESS Success.

GKS$_ERROR_162 No item is left in GKS metafile output.

GKS$~RROR_163 Metafile item is invalid.

GKS$~RROR_165 Content of item data record is invalid for the specified item
type.

GKS$_ERROR_166 Maximum item data record length is invalid.

7-8 Workstation Handler Metafile Functions

Chapter 8

Workstation Handler Set Representation
Functions

This chapter describes the functions that set output representations. Output
representations control the appearance of the output your device draws, such as
the style, color, and width of polylines. These functions are required only for
workstations of type OUTPUT, OUTIN, and MO.

When the function Open Workstation initializes an OUTPUT or OUTIN
workstation, it should load the predefined bundles for each attribute into the
workstation's WSL. The functions described in this chapter replace predefined
bundles, or define output styles in addition to the predefined bundles.

The changes these functions make remain in effect until the user changes them
again, or until the user closes the workstation.

If your device cannot implement the exact values passed to it (for example, if
the device cannot use the exact color intensity or linewidth scale factor passed
as an input parameter), the device should use the closest approximation that it
can accept. How you implement this (for example, by rounding up or down)
is implementation dependent. However, your handler must store the set value
(the value passed to it) as well as the realized value (the value it actually uses),
and be able to return these values in response to inquiry functions.

Note that these functions update the WSL. If the handler is providing
segment support, and there are primitives that take attributes from the bundle
representation that was changed, then the displayed image must be updated as
follows:

• If the value of the corresponding dynamic modification flag is GKS$K_
IMM, then the change to the image (to reflect the new bundle values)
must be made immediately. These changes may affect primitives outside
of segments. Primitives outside of segments must be maintained on the
display surf ace.

Workstation Handler Set Representation Functions 8-1

• If the value of the corresponding dynamic modification flag is GKS$K~RG,
then a regeneration of the image is needed. In this case, if the value of the
REGEN~ViODE flag (normally maintained in the WSL) is GKS$K~RG_
ALLOWED, then a regeneration is performed. Otherwise, regeneration is
suppressed and the NEWFRAME~CTION~TECESSARY_AT_UPDATE
flag is set to GKS$K~TEWFRAME~TECESSARY.

8.1 Function Descriptions

This section lists the Set Representation function descriptions.

8-2 Workstation Handler Set Representation Functions

Set Polyline Representation

Set Polyline Representation

This function sets a new polyline bundle for the device. The bundle is usually
stored in the tiVSL.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL The address of the handler's local data area.

PLINE _INDEX Integer. The polyline bundle to be set.

LINE_TYPE Integer. The GKS Standard defines the following linetypes.

Description Linetype DEC GKS Constant

Solid 1 GKS$K _LINE _TYPE _
SOLID (1)

Dashed 2 GKS$K_LINE_TYPE_
DASHED (2)

Dotted 3 GKS$K_LINE_TYPE_
DOTTED (3)

Dashed-Dotted 4 GKS$K_LINE _TYPE _
DASHED_DOTTED (4)

Linetypes less than 0 are implementation defined.
Linetypes greater than 4 are reserved for registration
or future standardization.

LINEWIDTH~CALE_ Real. The factor which, multiplied by the nominal
FACTOR linewidth, yields the desired linewidth.

COLOR~NDEX Integer. The index into the color table. This controls the
color the line will appear in.

Workstation Handler Set Representation Functions 8-3

Set Polyline Representation

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_60 Polyline index is invalid.

GKS$_ERROR_64 Specified linetype is not supported on this workstation.

GKS$~RROR_93 Color index is invalid.

8-4 Workstation Handler Set Representation Functions

Set Polymarker Representation

Set Polymarker Representation

This function sets a new polymarker bundle for the device. The bundle is
usually stored in the WSL.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL

PMARK_INDEX

MARKER_TYPE

MSIZE SCALE _
FACTOR

The address of the handler's local data area.

Integer. The polymarker bundle to be set.

Integer. The markertype. The GKS Standard defines the
following markertypes:

Marker-
Description type DEC GKS Constant

Dot (.) 1 GKS$K~ViARKERTYPE_DOT
(1)

Plus sign (+) 2 GKS$K~VIARKERTYPE_I'LUS
(2)

Asterisk (*) 3 GKS$K_IVIARKERTYPE_
ASTERISK (3)

Circle (0) 4 GKS$K_IVIARKERTYPE_
CIRCLE (4)

Diagonal 5 GKS$K~VIARKERTYPE_
Cross (X) DIAGONAL _CROSS (5)

Markertypes less than 0 are implementation defined.
Markertypes greater than 5 are reserved for registration or
future standardization.

Real. The factor that, when multiplied by the nominal
markersize, yields the desired markersize.

Workstation Handler Set Representation Functions 8-5

Set Polymarker Representation

COLOR_INDEX Integer. The index into the color table. This controls the
color the marker will appear in.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_61 Polymarker index is invalid.

GKS$~RROR_70 Specified markertype is not supported on this workstation.

GKS$~RROR_93 Color index is invalid.

8-6 Workstation Handler Set Representation Functions

Set Text Representation

Set Text Representation

This function sets a new text bundle for the device. Bundles are usually stored
in the WSL.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL The address of the handler's local data area.

TEXT~NDEX Integer. The text representation to be set.

FONT Integer. The font to be used.

PREC Integer. The precision.

CHAR~XP~ACTOR Real. The factor which, when mulitipled by the nominal
character size, yields the desired character size.

CHAR~PACE Real. Amount (in LDC) of additional space placed between
consecutive characters.

COLOR_INDEX Integer. The index into the color table. This controls the
color the text will appear in.

Output Parameters
None.

Workstation Handler Set Representation Functions 8-7

Set Text Representation

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_72 Text index is invalid.

GKS$~RROR_76 Requested text font is not supported for the specified precision
on this workstation.

GKS$~RROR_93 Color index is invalid.

8-8 Workstation Handler Set Representation Functions

Set Fill Area Representation

Set Fill Area Representation

This function sets a new fill area bundle for the device. Bundles are usually
stored in the WSL.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL

FILL _INDEX

FILL ~NTSTYLE

The address of the handler's local data area.

Integer. The index to be set.

Integer. The interior style. The fill area interior style must
be one of the following:

Pattern
Integer
Value DEC GKS Constant

Hollow

Solid

Pattern

Hatched

0 GKS$K~NTSTYLE_
HOLLOW

1 GKS$K~NTSTYLE_
SOLID

2 GKS$K~NTSTYLE_
PATTERN

3 GKS$K~NTSTYLE_
HATCH

Workstation Handler Set Representation Functions 8--9

Set Fill Area Representation

FILL STYLE _INDEX

COLOR_INDEX

Integer. The contents of this variable depend on the FILL _
INTSTYLE value, as shown in the following table:

Style Meaning

Hollow Unused.

Solid Unused.

Pattern Index into the workstation's pattern
table. Must be greater than 0.

Hatched Values less than zero indicate
implementation-specific hatch patterns.
Values greater than 0 are reserved for
registration or future standardization.

Integer. The index into the color table. This controls the
color the fill area will appear in.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$_ERROR_80

GKS$~RROR_83

GKS$~RR©R_85

GKS$~RROR_86

GKS$_ERROR_93

Success.

Fill area index is invalid.

Specified fill area interior style is not supported on this
workstation.

Specified pattern index is invalid.

Specified hatch style is not supported on this workstation.

Color index is invalid.

8-10 Workstation Handler Set Representation Functions

Set Pattern Representation

Set Pattern Representation

This function sets a pattern bundle for the device. The input parameters specify
a bundle index and define an array of color indexes. Each element in the array
corresponds to a cell in the pattern, and its value is an index into the color
table. When the handler outputs this pattern, it colors each cell according to the
indexes in the pattern array.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL The address of the handler's local data area.

PATTERN _INDEX Integer. The pattern index to be set.

PATT DIM _X Integer. The number of rows in the pattern.

PATT_DIM _Y Integer. The number of columns in the pattern.

PATT_ARRAY Integer array. This is atwo-dimensional array, passed by
reference, in which each integer represents one cell of the
pattern.

COL _MAJOR_FLAG Integer flag. GKS$K_TRUE means the array is in column-
major format. GKS$K~ALSE means it is in row-major
format.

Output Parameters
None.

Workstation Handler Set Representation Functions 8-11

Set Pattern Representation

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_85 Specified pattern index is invalid.

GKS$~RROR_90 Interior style PATTERN is not supported on this workstation.

GKS$_ERROR_93 Color index is invalid.

8-12 Workstation Handler Set Representation Functions

Set Color Representation

Set Color Representation

This function sets a color bundle for the device. Bundles are usually stored in
the WSL.

Required
Required for OUTPUT, OUTIN, and MO workstations.

Input Parameters

WSL

COLOR_INDEX

RED

GREEN

BLUE

The address of the handler's local data area.

Integer. The color bundle to be set.

Real. The red component of the color.

Real. The green component of the color.

Real. The blue component of the color.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_93

Success.

Color index is invalid.

Workstation Handler Set Representation Functions 8-13

Chapter 9

Workstation Handler Output Functions

This chapter describes the workstation handler output functions. These are
required for OUTPUT, OUTIN, and MO workstations. You must provide an
output function for each output type.

This chapter also includes the function HIGHLIGHT EXTENT. You only need
to include the HIGHLIGHT EXTENT function if you want the GKS kernel to
simulate segments.

9.1 Coordinate Data

Coordinate data controls the location and shape of the output on the display
surface. The kernel passes one or more points, in world coordinates, to the
output functions. The handler function then converts the world coordinate
points to device coordinates according to the current normalization and
workstation transformations, and uses these coordinates to position the output.

The kernel passes points to the functions Polyline, Polymarker, Fill Area,
and GDP, using three parameters. The first parameter, NUM ~'TS, tells
the function how many points the kernel will pass. The second parameter,
X WC—ARRAY, is the address of an array containing the X coordinates of the
input points, in WC. The third parameter, Y WC—ARRAY, is the address of the
array of Y coordinates in WC.

The two arrays contain a number of elements equal to NUM~'TS. For
these functions the kernel also passes the address of two additional arrays,
TEMP~C _ARRAY and TEMP_Y_ARRAY. These arrays are also of length
NUM ~'TS, except for those used in FILL AREA functions, which are (number
of points + 1). Your function may use these arrays to temporarily hold the DC
coordinates it computes.

Workstation Handler Output Functions 9-1

For the output function TEXT, the kernel passes the parameters WC~NIT_X
and WC_INIT_Y. These parameters contain the X and Y coordinates of the text
position, in WC. The handler must convert the coordinates to DC.

For the output function CELL ARRAY, the kernel passes the parameters P_X,
P Y, Q _X, Q _Y, R _X, and R _Y. These parameters contain the X and Y
coordinates of three corners of the output parallelogram. All the points are in
WC, and your function must convert them to DC.

9.2 Attributes

The kernel passes geometric attributes to the output functions TEXT, FILL
AREA, and CELL ARRAY. These attributes are specific to each function. See
the function descriptions for information about them.

The kernel also passes nongeometric attributes to the output functions.
Nongeometric attributes control the appearance of output. For example,
linetype, markersize, and color are all nongeometric attributes.

Attributes are passed in the active attribute array. For information about the
active attribute array, see Section 4.1, Active Attribute Array.

Note that if you simulate output functions within your handler by calling other
handler functions (for example, if you simulate fill areas by making multiple
POLYLINE calls), the calling function must generate and pass the attribute
array as well as the other parameters required by the function it calls.

9.3 Aspect Source Flags

The GKS kernel passes a 32-bit bitmask to the output functions. This
parameter tells your handler whether to use the individual or bundled
nongeometric attributes for each output primitive. The bundled attributes
are the attributes contained in the bundle named by the attribute index. For
example, POLYLINE _INDEX, passed in the Active Attribute Array, contains
an integer that represents one of the workstation's polyline bundles. The
individual primitives are the primitives passed in the Active Attribute Array,
such as LINE. _TYPE and LINEWIDTH _SCALE FACTOR.

Bits 0 through 12 represent individual attributes. If a given bit is SET, then use
the individual value for that attribute. If the bit is clear, use the bundled value
for the attribute. Table 9-1 shows which bit corresponds with which attribute.

~i

9-2 Workstation Handler Output Functions

Table 9-1: ASF Bits

Aspect Bit Integer Value

Linetype 0 1

Linewidth 1 2

Polyline color 2 4

Markertype 3 8

Markersize 4 16

Marker color 5 32

Text Font and Precision 6 64

Character Expansion Factor 7 128

Character Space 8 256

Text Color 9 512

Fill Area Pattern 10 1024

Fill Area Interior Style 11 2048

Fill Area Color 12 4096

The ASF bitmask also contains four bits that tell your handler whether the
aspects for certain primitives have changed since the last time the primitive
was drawn. Your handler should check these "no change" bits if it stores the
attributes for each primitive. If it does, and it determines that the attributes
have not changed, then it does not need to decipher the rest of the ASF for that
primitive.

Table 9-2 lists the no change bits.

Table 9-2: No Change Bits

Primitive Bit Integer Value

Polyline 13 8192

Polymarker 14 16384

Text 15 32768

Fill Area 16 65536

Finally, bit 17 (integer value 131072) indicates whether your output function is
being called by another handler function, usually in order to simulate the first
function. For example, your FILL —AREA function may call your POLYLINE
function to simulate fill areas. In this case, the calling function should set bit
17. If your device stores attribute settings, it should recognize that when bit 17

Workstation Handler Output Functions 9-3

is set, it may need to change some attributes for this primitive, but it should
restore the original attributes after this call. As an example, if the last polyline
was red, your device may have stored red as the polyline color. If your fill area
function calls the polyline function to simulate a blue fill area, it should set bit
17. The polyline function should recognize that because bit 17 is set, it should
draw using the color the fill area function passes, but when it finishes drawing,
it should restore red as the current color.

The GKS constants file GKSDEFS contains constants for bitmask values. You
can use these constants if your handler functions include the GKSDEFS file as
described in Chapter 3, Building a Workstation Handler System. Table 9-3 lists
the constants.

Table 9-3: GKS Bitmask Constants

Bit Constant

0 GKS$M_LINETYPE

1 GKS$M_LINEWIDTH

2 GKS$M_PLINE_COLOR

3 GKS$M~VIARKERTYPE

4 GKS$M~ViARKERSIZE

5 GKS$M_PMARK_COLOR

6 GKS$M_TEXT~ONT~'REC

7 GKS$M_CHAR~XPAN~AC

8 GKS$M_CHAR~PACE

9 GKS$M_TEXT_COLOR

10 GKS$M_FILL ~NTER~TYLE

11 GKS$M_FILL _STYLE

12 GKS$M~'ILL _COLOR

13 GKS$M_UNCHANGE_I'LINE

14 GKS$M _UNCHANGE _I'MARK

15 GKS$M _UNCHANGE _TEXT

16 GKS$M _UNCHANGE _FILL

17 GKS$M SIMULATION

9-4 Workstation Handler Output Functions

9.4 Segment Overlap

If your handler supports segments, then when an output function adds a
primitive to a segment, and that primitive causes the segment to overlap
another segment of higher priority, the following occurs:

• If the flag DMAF~EGMENT_OVERLAP is GKS$K_IMM, then update
the image so that the newly added primitive is overlapped by the higher
priority segment. Primitives outside the segments are retained.

• Otherwise, if the value of the flag REGEN~VIODE is GKS$K~RG_
ALLOWED, then regenerate the image by calling the handler's own
REDRAW_ALL SEGMENTS function. Primitives outside of segments are
deleted from the display surface. If the flag REGEN~VIODE is GKS$K_
IRG _SUPPRESSED, set the NEW_FRAME flag to GKS$K~TEWFRAME _
NECESSARY.

9.5 Output Function Descriptions

This section describes the output functions.

Workstation Handler Output Functions 9-5

Polyline

Polyline

This function outputs a polyline. A polyline is one or more line segments.

The function performs the following operations:

• Gets the values from the bundle table, if attributes are bundled.

• Converts from WC to DC (if needed).

• Clips against clipping rectangle and workstation window.

• Draws line with given attributes.

• Sets DISPLAY~MPTY to NOTEMPTY, if a line is drawn on the display.

Required
Required for OUTPUT, OUTIN, and MO devices.

Input Parameters

WSL The address of the handler's local data area.

NUM~'TS Integer. The number of points in the line to be drawn.

WC_X ARRAY Array of reals of size (NUM _I'TS) containing the X component of
the points, in WC.

WC—Y_ARRAY Array of reals of size (NUM_I'TS) containing the Y component of
the points, in WC.

TEMP_X_ARRAY Scratch array of size (NUM_I'TS) for temporary storage of the
DC coordinates.

TEMP_Y~4RRAY Scratch array of size (NUM_l'TS) for temporary storage of the
DC coordinates.

9-6 Workstation Handler Output Functions

Polyline

ATTRIB~RRAY The following elements from the attribute array:

ASF~vIASK

Attribute Contents

POLYLINE _
INDEX

LINE _TYPE

LINEWIDTH

COLOR~NDEX

PICKED

Integer. The index into the polyline bundle
table.

Integer. The linetype. One of:

• GKS$K_LINETYPE SOLID (1)

• GKS$K_LINETYPE_DASHED (2)

• GKS$K_LINETYPE_DOTTED (3)

• GKS$K_LINETYPE_DASHED_DOTTED
(4)

Real. The linewidth scale factor.

Integer. The index into the color table.

Integer. The current pick id.

The aspect source flags, as described in Section 9.3, Aspect Source
Flags.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Output Functions 9-7

Polymarker

Polymarker

This function outputs a polymarker at each point specified in the input parame-
ters. It performs the following operations:

• Gets the values from the bundle table, if attributes are bundled.

• Converts from WC to DC (if needed).

• Clips against clipping rectangle and workstation window. If a point in
the list of points is outside the clipping rectangle, then no portion of the
corresponding polymarker may be visible. Otherwise, clipping of markers
is workstation dependent.

• Draws marker with given attributes.

• Sets DISPLAY~MPTY to NOTEMPTY, if any markers are drawn.

Required
Required for OUTPUT, OUTIN, and MO devices.

Input Parameters

WSL The address of the handler's local data area.

NUM _I'TS Integer. The number of markers to be drawn. This must be at
least one.

WC—X —ARRAY Array of reals, with size (NUM_1'TS). The X components of the
marker coordinates, in WC.

WC—Y—ARRAY Array of reals, with size (NUM_1'TS). The Y components of the
marker coordinates, in WC.

TEMP~C_ARRAY Scratch array of size (NUM_1'TS) for temporary storage of the
DC coordinates, if needed.

TEMP_Y—ARRAY Scratch array of size (NUM_I'TS) for temporary storage of the
DC coordinates, if needed.

9-8 Workstation Handler Output Functions

Polymarker

ATTRIB_ARRAY The following attributes from the attribute array:

ASF_1VIASK

Attribute Contents

POLYMARKER_
INDEX

MARKER_TYPE

MSIZE _
SCALE _
FACTOR

POLYMARKER_
COLOR~NDEX

PICK.._ID

Integer. The index into the polymarker
bundle table.

Integer. The polymarker type. One of:

• GKS$K ~VIARKERTYPE _DOT (1)

• GKS$K~VIARKERTYPE_PLUS (2)

• GKS$K~VIARKERTYPE~STERISK (3)

• GKS$K_IViARKERTYPE_CIRCLE (4)

• GKS$K_IVIARKERTYPE_DIAGONAL_
CROSS (5)

Or aworkstation-dependent markertype with
a value less than 0.

Real. The marker width scale factor

Integer. The index into the color table.

Integer. The current pick id.

The aspect source flags, as described in Section 9.3, Aspect Source
Flags.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Output Functions 9-9

Text

Text

This function outputs a character string. It performs the following operations:

• Gets the values from the bundle table, if attributes are bundled.

• Converts from WC to DC (if needed).

• Clips against clipping rectangle and workstation window. If a portion of
the text is outside the clipping rectangle, then no part of the text may be
visible. Otherwise, clipping of markers is workstation dependent.

• Draws text with given attributes.

• Sets I~ISPLAY~MPTY to NOTEMPTY, if any text is drawn.

If the transformation produces a character height or width of zero, the han-
dler returns an error. In this case, whether or not to produce any output is
workstation dependent.

If the character string contains a control character, the workstation may either
ignore the character, generate some visual effect, or return an error code.

If clipping is enabled, the device must clip at the clipping rectangle. The
portion of the string that falls outside the rectangle is not displayed. However,
whether the device draws characters that fall on the clipping rectangle border,
or the portion of the string that falls within the rectangle, depends on the text
precision.

• For stroke precision text, the device must draw the portion of the string
that falls within the clipping rectangle. If a character falls on the clipping
rectangle border, the device must output the portion of the character within
the rectangle, but not the portion of the character outside of the rectangle.

• For character precision text, the _device must draw the portion of the string
that falls within the clipping rectangle. If a character falls on the clipping
rectangle border, the device may either display the character, not display
the character, or display the portion of the character within the rectangle
and clip the portion outside.

• For string precision text, the device may either display the portion of the
string that falls inside the clipping rectangle, display the entire string, or
display none of the string. If your device displays the portion of the string
within the rectangle, it may either display any character that falls on the

9-10 Workstation Handler Output Functions

Text

clipping rectangle border, display the portion of the character within the
rectangle, or not display the character.

Note that DIGITAL provides a simulation routine to perform stroke precision
text with DEC GKS fonts. For information about implementing text using the
stroke precision simulation functions, see Appendix B, Stroke Text Simulation
Routines.

Required
Required for OUTPUT, OUTIN, and MO devices.

Input Parameters

WSL

TEXT~OS_X

TEXT~OS_Y

CHAR~TRING

ATTRIB_ARRAY

The address of the handler's local data area.

Real. The X value of the starting text position, in WC.

Real. The Y value of the starting text position, in WC.

The actual text character string, passed by class S descriptor.

The following elements from the attribute array:

Attribute Contents

TEXT_INDEX

FONT

Integer. The index into the text
bundle table.

Integer. The text font num-
ber. This may be a DIGITAL-
supported font or a handler-
specific font.

Workstation Handler Output Functions 9-11

Text

Attribute Contents

PREC

CHAR~XP_FACTOR

CHAR~PACE

COLOR_INDEX

CHARACTER_HEIGHT_X

CHARACTER_HEIGHT_Y

CHARACTER_WIDTH~C

CHARACTER_WIDTH_Y

TEXT~'ATH

Integer. The text precision. One
of:

• GKS$K_TEXT~'RECISION_
STRING (0)

• GKS$K_TEXT~'RECISION_
CHAR (1)

• GKS$K_TEXT~'RECISION_
STROKE (2)

Real. The text character expan-
sion factor.

Real. The text character spacing.

Integer. The index into the color
table.

X component of the character
height vector, in WC.

Y component of the character
height vector, in WC.

X component of the character
width vector, in WC.

Y component of the character
width vector, in WC.

Integer. The direction of the text
string. One of:

• GKS$K_TEXT~'ATH_
RIGHT (0)

• GKS$K_TEXT~'ATH_LEFT
(1)

• GKS$K_TEXT~'ATH_UP
(2)

• GKS$K_TEXT~'ATH_
DOWN (3)

9-12 Workstation Handler Output Functions

Text

Attribute Contents

TEXT_ALIGNMENT_HORZ Integer. The horizontal text
alignment. One of:

• GKS$K~ IALIGN~tORMAL
(0)

• GKS$K _HALIGN _LEFT (1 }

• GKS$K_HALIGN_CENTER
(2)

• GKS$K~IALIGN_...RIGHT
(3)

TEXT_ALIGNMENT_VERT Integer. The vertical text align-
ment. One of:

• GKS$K_VALIGN_NORMAL
(0)

• GKS$K_VALIGN_TOP (1)

• GKS$K VALIGN _CAP (2)

• GKS$K_VALIGN~-iALF (3)

• GKS$K_VALIGN_BASE (4)

• GKS$K_VALIGN_BOTTOM
(5)

PICK_ID Integer. The current pick id.

ASF~VIASK The aspect source flags, as described in Section 9.3, Aspect Source
Flags.

Output Parameters
None.

Workstation Handler Output Functions 9-13

Text

Status Codes

Code Meaning

GKS$~UCCESS Success.

GKS$~RROR_101 Invalid code in string.

9-14 Workstation Handler Output Functions

Fill Area

fill Area

This function fills the polygon defined by the input points according to the fill
area style currently selected. It performs the following operations:

• Gets the values hom the bundle table, if attributes are bundled.
• Converts hom WC to DC (if needed).

• Clips against clipping rectangle and workstation window.
• Draws the fill area with given attributes.

• Sets DISPLAY~MPTY to NOTEMPTY, if it draws on the display.

If the fill area interior style is HOLLOW, the function draws the boundary
of the polygon. For other interior styles, the function draws the fill area so
that regions which share a common edge appear without a gap between
them, and without overlap to the extent that can reasonably be achieved. If the
polygon is clipped, new boundaries that result from clipping replace the original
boundaries.

For interior styles other than hollow, the function fills the fill area. If the fill
area is complex, it may contain shapes that are not within the fill area. For
example, adonut-shaped fill area contains a hollow center that is not within the
fill area's borders and should not be filled in. To determine whether a portion
of a fill area should be filled, a point is considered to be within the polygon if
a straight line drawn from the point in any direction crosses the boundary of
the polygon an odd number of times. Note that tangential contacts with the
boundary do not count as a crossing.

If transformations make all the points in the fill area boundary the same, then
whether anything is drawn is workstation dependent, and no error results.
If two or more sides of the boundary polygon have a line segment in com-
mon, whether the line segment is considered part of the bounding polygon is
implementation dependent, and no error results.

The polygon passed to the handler is not necessarily closed. That is, the first
and last point in the point arrays may be different. In this case, your function
should close the area by connecting the first and last points. An additional
location is provided in the scratch arrays so that a closed, transformed polygon
can be built when necessary.

Workstation Handler Output Functions 9-15

Fill Area

Required
Required for OUTPUT, OUTIN, and MO devices.

Input Parameters

WSL

NUM ~'TS

WC~X _ARRAY

WC_Y~RRAY

TEMP_X _ARRAY

TEMP_Y_ARRAY

ATTRIB_ARRAY

The address of the handler's local data area.

Integer. The number of points that define the fill area. There are
always at least three points.

Array of reals, size NUM_1'TS. The X component of the coordi-
nates, in WC.

Array of reals, size NUM_PTS. The Y component of the coordi-
nates, in WC.

Scratch array of size (NUM ~'TS +1) for temporary storage of the
DC coordinates.

Scratch array of size (NUM ~'TS +1) for temporary storage of the
DC coordinates.

The following attributes are from the attribute array:

Attribute Contents

FILL _AREA _
INDEX

FILL _INTSTYLE

Integer. The index into the fill area bundle
table.

Integer. The fill area interior style. One of:

• GKS$K~NTSTYLE_HOLLOW (0)

• GKS$K ~NTSTYLE _SOLID (1)

• GKS$K~NTSTYLE~'ATTERN (2)

• GKS$K_INTSTYLE~-IATCH (3)

9-16 Workstation Handler Output Functions

Fill Area

ASF~I/IASK

Attribute Contents

FILL STYLE _
IND

FILL _AREA _
COLOR~NDEX

PATTERN _
REFERENCE _
POINT~C

PATTERN_
REFERENCE _
POINTY

PATTERN _
HEIGHT~C

PATTERN_
HEIGHT_Y

PATTERN_
WIDTH ~C

PATTERN_
WIDTH_Y

PICK_ID

Integer. The fill area style index. If FILL _
INTSTYLE is GKS$K_INTSTYLE_PATTERN,
the style index is an index into the pat-
tern table. If FILL INTSTYLE GKS$K_
INTSTYLE _HATCH, then the style index is
the device-dependent hatch style.

Integer. The index into the color table.

Real. If FILL INTSTYLE is GKS$K_
INTSTYLE_I'ATTERN, then this is the X
value of the pattern reference point, in WC.

Real. If FILL _INTSTYLE is GKS$K_
INTSTYLE ~'ATTERN, then this is the Y
value of the pattern reference point, in WC. If
not, this is undefined.

Real. If FILL _INTSTYLE is GKS$K_
INTSTYLE _PATTERN, then this is the X
component of the pattern height vector for
the pattern array. If not, this is undefined.

Real. If FILL INTSTYLE is GKS$K_
INTSTYLE ~'ATTERN, then this is the Y
component of the pattern height vector for
the pattern array. If not, this is undefined.

Real. If FILL INTSTYLE is GKS$K_
INTSTYLE _PATTERN, then this is the X
component of the pattern width vector for the
pattern array. If not, this is undefined.

Real. If FILL INTSTYLE is GKS$K_
INTSTYLE _PATTERN, then this is the Y
component of the pattern width vector for the
pattern array. If not, this is undefined.

Integer. The current pick id.

The aspect source flags, as described in Section 9.3, Aspect Source
Flags.

Workstation Handler Output Functions 9-17

Fill Area

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

9-18 Workstation Handler Output Functions

Cell Array

Cell Arrey

This function draws a cell array. It performs the following operations:

• Gets the values from the bundle table, if attributes are bundled.
• Converts from WC to DC (if needed).

• Clips against clipping rectangle and workstation window.
• Draws the cell array with given attributes.

• Sets DISPLAY~MPTY to NOTEMPTY, if the function draws on the display
surface.

A cell array is defined as a rectangle divided into a grid. The corners of the
rectangles, and the number of rows and columns in the grid, are passed as
input parameters. Your handler should divide the rectangle into the number of
rows and columns specified in the input parameters. Each resulting cell must
be the same size.

Then your handler must color the grid according to the color index array. This
is an integer array with the same number of rows and columns. The array
is passed as an input parameter, and each integer in the array is an index
into the color table. The first index in the color array (specified by the input
variables INI~ROW and INIT_COL, which serve as offsets into the color
array) corresponds to the cell in the P corner of the rectangle. The subsequent
points are colored row-by-row if the input parameter COL _11/IAJOR is GKS$K_
FALSE, or column-by-column if COL ~VIAJOR is GKS$K_TRUE. The number
of rows and columns in the cell array, and the number of rows and columns
following the offset into the color array, are always equal. On a raster display,
each pixel with its center within a cell takes the color of the cell.

The cell array grid is subject to all transformations, and these transformations
may convert the grid and the cells to parallelograms. If the transformation
places part of a cell outside the clipping area, the cell is clipped at the clipping
boundary. If transformations make the corners of a cell coincident or colinear,
whether any output appears is workstation dependent, and no error results.

If your handler cannot draw cell arrays, drawing the boundary of the cell array
is sufficient to conform with the GKS standard.

Workstation Handler Output Functions 9-19

Cell Array

Required
Required for OUTPUT, OUTIN or MO devices.

Input Parameters

WSL The address of the handler's local data area.

CELL _RECTANGLE Array containing the points of the cell rectangle, defined as
follows:

PAC Real. The X coordinate of the P corner of the
cell rectangle, in WC.

P_Y Real. The Y coordinate of the P corner of the
cell rectangle, in WC.

Q ~C Real. The X coordinate of the Q corner of the
cell rectangle, in WC.

Q _Y Real. The Y coordinate of the Q corner of the
cell rectangle in WC.

R ~C Real. The X coordinate of the R corner (the
point associated with the DX,1 cell), in WC.

R_Y Real. The Y coordinate of the R corner (the
point associated with the DX,1 cell), in WC.

INIT~ZOW Integer. The index to the starting row of the color index
array.

INIT_COL Integer. The index to the starting column of the color
index array.

DIM_ROWS Integer. The total number of rows in color index array.

DIM _COLS Integer. The total number of columns in color index array.

COLOR INDEX _ The address of the cell array.
ARRAY

DISPLAY_ROW Integer. The number of row cells to display.

DISPLAY_COL The number of column cells to display.

9-20 Workstation Handler Output Functions

Cell Array

COL _1ViAJOR_FLAG Integer. A flag that states whether the color index array is
column major. Either:

• GKS$K_TRUE (0) if the color index array is column
major.

• GKS$K~ALSE (1) if the color index array is row
major.

SCRATCH _CELL The address of a scratch area the same size as the cell
array.

CELL ~RRAY_PICK_ID Integer. The current pick id.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Output Functions 9-21

GDP

GDP

This function draws the graphic primitive specil"ied by the input parameters. It
performs the following operations:

• Gets the values from the bundle table, if attributes are bundled.

• Converts from WC to DC (if needed).

• Clips against clipping rectangle and workstation window. If a point in
the list of points is outside the clipping rectangle, your function may either
draw the GDP, or not draw it and return the status code GKS$ERROR_105.

• Draws GDPs with given attributes.

• Sets DISPLAY~MPTY to NOTEMPTY, if any GDPs are drawn.

Required
Required for OUTPUT, OUTIN, and MO devices.

Input Parameters

WSL

NUM ~'TS

WC~C ARRAY

WC—Y_ARRAY

TEMP~C _ARRAY

TEMP_Y~RRAY

GDP_ID

GDP DATA
REC_SIZE

The address of the handler's local data area.

Integer. The number of points where you want to draw the GDP.

Array of size NUM~'TS containing the X points, in WC.

Array of size NUM_PTS containing the Y points, in WC.

Scratch array of size (NUM_PTS) for temporary storage of the
DC coordinates.

Scratch array of size (NUM~'TS) for temporary storage of the
DC coordinates.

Integer. This identifies the GDP you want.

Integer. The number of bytes of the GDP data record.

9-22 Workstation Handler Output Functions

GDP

GDP_DATA_
RECORD

ATTRIB_ARRAY

ASF_1ViASK

The address of the GDP data record. This data record is not
touched by the kernel and is passed directly as the user created it.

The entire attribute array defined in Section 4.1, Active Attribute
Array.

The aspect source flags, as described in Table 9-3, GKS Bitmask
Constants.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS

GKS$~RROR_100

GKS$~RROR_102

GKS$~RROR_103

GKS$~RROR_104

GKS$~RROR_105

Success.

Number of points is invalid.

Generalized drawing primitive identifier is invalid.

Content of generalized drawing primitive data record is invalid.

At least one active workstation is not able to generate the
specified generalized drawing primitive.

At least one active workstation is not able to generate the
generalized drawing primitive under the current transformation
and clipping rectangle.

Workstation Handler Output Functions 9-23

Highlight Extent

Highlight Extent

This function highlights the extent specified in the input parameters. The
form of highlighting is device dependent. For example, your device could use
complement mode to fill the extent, or it could draw a line around the extent
using a polyline routine.

Required
Required for OUTPUT, OUTIN, and MO workstations where the workstation
handler does not support segments.

Input Parameters

WSL The address of the handler's local data area.

EXTENT Array of eight real numbers that define the corners of the
extent to be highlighted, in the order X 1, Y 1, X2, Y2, X3,
Y3, X4, Y4.

FLAG Integer flag. GKS$K_TRUE means highlight the extent.
GKS$K_FALSE means remove the highlighting.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

9-24 Workstation Handler Output Functions

Chapter 10

Workstation Handler Segment Functions

This chapter describes the workstation handler segment functions. You must
supply these functions if your device supports segments. If your device does
not support segments, do not supply these functions, and the GKS kernel
will simulate the segment operations. Note that if you let the kernel simulate
segments, you must supply the functions HIGHLIGHT EXTENT (described
in Chapter 9, Workstation Handler Output Functions) and PERFORM
DEFERRED OUTPUT (described in Chapter 4, Workstation Handler Control
and Transformation Functions).

Workstation Handler Segment Functions 10-1

Create Segment

Create Segment

This function creates a segment using the specified segment name. The segment
name is stored in the set of stored segments in the device's jNSL. All output
drawn between this call and the next call to CLOSE SEGMENT is collected into
this segment.

Required
Required for OUTPUT, OUTIN, and MO workstations where the workstation
handler supports segments.

Input Parameters

WSL

SEGMENT~IAME

The address of the handler's local data area.

Integer. The name to be associated with the segment.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

10-2 Workstation Handler Segment Functions

Close Segment

Close Segment

This function closes the segment that is currently active. Subsequent output
primitives are not stored in the segment.

Required
Required for OUTPUT, OUTIN, and MO workstations where the workstation
handler supports segments.

Input Parameters

WSL The address of the handler's locat data area.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Segment Functions 10-3

Rename Segment

Rename Segment

This function changes the name of the specified segment to the new name
specified.

Required
Required for OUTPUT, OUTIN, and MO workstations where the workstation
handler supports segments.

Input Parameters

WSL The address of the handler's local data area.

OLD~EGMENT_NAME Integer. The existing segment name.

NEW_SEGMENT_NAME Integer. The new segment name.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

10-4 Workstation Handler Segment Functions

Delete Segment

Delete Segment

This function removes the segment name from the set of stored segments. The
set of stored segments is usually kept in the WSL. If a segment state list is
maintained, this function should also delete it.

If the dynamic modification flag DMAF_DELETE_SEGMENT is GKS$K_IMM
(1), then the segment is deleted immediately, but primitives outside of segments
remain on the display surface. Otherwise the following occurs:

• If the REGEN_1VIODE is GKS$K_IRG_ALLOWED, then the image is
regenerated. Primitives outside of segments are no longer shown on the
display surface.

• If the REGEN _11/IODE is GKS$K_IRG SUPPRESSED, the regenera-
tion is suppressed and NEW—FRAME is set to GKS$K_NEWFRAME _
NECESSARY.

Required
Required for OUTPUT, OUTIN, and MO workstations where the workstation
handler supports segments.

Input Parameters

WSL

SEGMENT_NAME

The address of the handler's local data area.

Integer. The name of the segment to be deleted.

Output Parameters
None.

Workstation Handler Segment Functions 10-5

Delete Segment

Status Codes

Code Meaning

GKS$~UCCESS Success.

10-6 Workstation Handler Segment Functions

Set Segment Transformation

Set Segment Transformation

This function applies the transformation array to the segment named in the
input parameters.

The transformation matrix is passed as an array of six real numbers, ordered
as M(1,1), M(1,2), M(1,3), M(2,1), M(2,2), M(2,3). Your handler should arrange
them into a matrix of the following form:

m(1,1) m(1,2) m(1,3)
m(2,1) m(2,2) m(2,3)

Locations M(1,3) and M(2,3) are in NDC. The other components are unitless.
For more information about transformations, see Appendix A, Transformations.

If the dynamic modification flag DMAF_SEGMENT~CFORM is GKS$K_IMM
(1), then the transformation is changed immediately, but primitives outside of
segments remain on the display surface. Otherwise the following occurs:

• If the REGEN~VIODE is GKS$K~RG_ALLOWED, then the image is
regenerated. Primitives outside of segments are no longer shown on the
display surf ace.

• If the REGEN~VIODE is GKS$K_IRG~UPPRESSED, the regenera-
tion is suppressed and NEW~RAME is set to GKS$K~TEWFRAME_
NECESSARY.

Required
Required for OUTPUT, OUTIN, and MO workstations where the workstation
handler supports segments.

Workstation Handler Segment Functions 10-7

Set Segment Transformation

Input Parameters

WSL

SEGMENT~tAME

TRANSFORMATION _
ARRAY

The address of the handler's local data area.

Integer. The name of the segment.

The address of an array of six real numbers. The transfor-
mation matrix, passed as an array.

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

10-8 Workstation Handler Segment Functions

Set Visibility

Set Visibility

This function changes the visibility of the segment named in the input pa-
rameter. If VISIBILITY is GKS$K _VISIBLE (1) and dynamic modifiication flag
DMAF_VISIBILITY is GKS$K~MM (1), or if VISIBILITY is GKS$K~NVISIBLE
(0) and D1~ZAF~NVISIBILITY is GKS$K ~MM (1), then the segment is made
visible or invisible immediately, and primitives outside of segments remain on
the display surface. Otherwise the following occurs:

• If the REGEN ~VIODE is GKS$K ERG ALLOWED (1), then the image is
regenerated. Primitives outside of segments are no longer shown on the
display surface.

• If the REGEN~ViODE is GKS$K—IRG~UPPRESSED (0), the regener-
ation is suppressed and NEW~RAME is set to GKS$K_NEWFRAME_
NECESSARY (1).

Required
Required for OUTPUT, OUTIN, and MO workstations where the workstation
handler supports segments.

Input Parameters

WSL The address of the handler's local data area.

SEGMENT—NAME Integer. The name of the segment whose visibility is
changed.

VISIBILITY Integer. The visibility. Either:

• GKS$K—INVISIBLE (0)

• GKS$K—VISIBLE (1)

Workstation Handler Segment Functions 10-9

Set Visibility

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

10-10 Workstation Handler Segment Functions

Set Segment Priority

Set Segment Priority

This function assigns the specified priority to the segment. The segment priority
is only meaningful if your device supports more than one segment priority.

Segment priority is used when you display overlapping segments. There,
the higher-priority segment overlaps the others. The priority is also used to
determine which of two or more overlapping segments are selected in pick
input. If the overlapping segments all share the same priority, then the pick
result is implementation dependent.

If the dynamic modification flag DMAF_SEGMENT_1'RIORITY is GKS$K_
IMM (1), then the display is changed to reflect changes in overlapping due to
the change in priorities immediately, and primitives outside of segments remain
on the display surface. Otherwise the following occurs:

• If the REGEN ~VIODE is GKS$K ERG _ALLOWED (1), then the image is
regenerated. Primitives outside of segments are no longer shown on the
display surface.

• If the REGEN~VIODE is GKS$K_IRG~UPPRESSED (0), the regener-
ation is suppressed and NEW~RAME is set to GKS$KNEWFRAME _
NECESSARY (1).

Required
Required for OUTPUT, OUTIN, and MO workstations where the workstation
handler supports segments.

Input Parameters

WSL The address of the handler's local data area.

SEGMENT—NAME Integer. The name of the segment whose priority is
changed.

PRIORITY Real. The new priority.

Workstation Handler Segment Functions 10-11

Set Segment Priority

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

10-12 Workstation Handler Segment Functions

Set Detestability

Set DetectabilBty

This function assigns the detestability to the segment. Detestability is used in
pick input. You can only pick segments with the detestability setting GKS$K_
DETECTABLE (1) and the visibility setting GKS$K VISIBLE (1).

Required
Required for OUTPUT, OUTIN, and MO workstations where the workstation
handler supports segments.

Input Parameters

WSL The address of the handler's local data area.

SEGMENT_NA►ME Integer. The name of the segment whose detestability will
be changed.

DETECTABILITY Integer. The new detestability. Either:

• GKS$K_UNDETECTABLE (0)

• GKS$K_DETECTABLE (1)

Output Parameters
None.

Status Codes

Code Meaning

GKS$~UCCESS Success.

Workstation Handler Segment Functions 10-13

Set Highlighting

Set Highlighting

This function assigns the specified highlighting value to the segment. If a seg-
ment is visible and the HIGHLIGHTING field is set to GKS$K_SEGMEN'l=
HIGHLIGHTED (1), the primitives in the segment are able to be highlighted
in an implementation-dependent fashion. If the segment is invisible or
HIGHLIGHTING is set to GKS$K~EGMENT~TORMAL, no highlighting
occurs.

If the dynamic modification flag DMAF~IIGHLIGHTING is GKS$K_IMM
(1), then the segment is highlighted immediately, and primitives outside of
segments remain on the display surface. Otherwise the following occurs:

• If the REGEN ~1/IODE is GKS$K ERG _ALLOWED (1), then the image is
regenerated. Primitives outside of segments are no longer shown on the
display surface.

• If the REGEN~VIODE is GKS$K_IRG_SUPPRESSED (0), the regener-
ation is suppressed and NEW~RAME is set to GKS$K_NEWFRAME_
NECESSARY (1).

Required
Required for OUTPUT, OUTIN, and MO workstations where the workstation
handler supports segments.

Input Parameters

WSL The address of the handler's local data area.

SEGMENT—NAME Integer. The name of the segment where highlighting
should be enabled or disabled.

HIGHLIGHTING Integer. The new highlighing mode. Either:

• GKS$K~EGMENT—NORMAL (0)

• GKS$K_SEGMENT_HIGHLIGHTED (1)

10-14 Workstation Handler Segment Functions

Set Highlighting

Output Parameters
None.

Status Codes

Code l~ieaning

GKS$~UCCESS Success.

Workstation Handler Segment Functions 10-15

Appendix A

Transformations

Transformations convert the data points from WC space to LDC space.
Transformations are performed during operations that draw on the display
surface or return the coordinates of points on the display surface. This
appendix discusses the process of performing transformations in the following
two cases:

• When your handler supports segments directly.
• When the GKS kernel simulates segments.

A.1 Concatenating Transformation Matrixes

The kernel passes points in WC when it calls a function that requires the
handler to generate output. The handler generates points in NDC during input
operations that return coordinates.

The GKS standard defines up to five transformations which must be done on a
set of data points to convert them between WC and LDC. Each transformation
is expressed as a matrix multiplication. To go from WC to LDC, each point
must be transformed using all five transformations. This would require five
matrix multiplications on each point, and that process would be very slow.

A more efficient technique is to compose the five transformation matrixes into a
single matrix. In this case, instead of performing five matrix multiplications on
each point, the handler performs the matrix multiplications once, then uses the
results to perform a single matrix multiplication on every data point.

Transformations A-1

The kernel passes the transformation matrixes to your handler, either implicitly
or explicitly, in the following functions:

• Set Normalization Transformation Defines the WC-NDC transformation.

• Set Workstation Window, Set Workstation Viewport Define the NDC-LDC
transformation.

• Set Segment Transformation Defines the segment transformation. Used
only if the handler supports segments.

• Set NDC Transformation Establishes additional transformation for
segment-related functions.

The handler uses this information to compose the transformations in the most
efficient manner.

A.2 NDC Transformation and Segment Simulation

The NDC transformation function is unique to the workstation handler system.
It occurs in the transformation operation in two different places, depending on
whether the handler supports segments, or the kernel simulates segments.

When the kernel simulates segments for your handler, it stores a segment
transformation for each segment. If the kernel determines that the handler
needs information about the segment transformation, it passes the information
to the handler in the NDC transformation. When a segment is displayed, the
handler must apply the NDC transformation to the segment after the WC-NDC
transformation and before the NDC-LDC transformation.

The NDC transformation is also used during the Insert Segment function.
When the GKS kernel performs an Insert Segment function, the NDC
transformation includes information about the open segment transformation,
the insert segment transformation, and the segment transformation of the
inserted segment.

In either of these cases, the NDC transformation is a matrix multiplication,
applied as follows:

[Y ~ [M21 M22 M23] * [y]

In this formula, x and y are the points in NDC, matrix M is the NDC
transformation, and x' and y' are the points in NDC after the transformation.

The order of transformation operations is called a pipeline. The pipeline for
handlers that use segment simulation is shown in Figure A-1.

A-2 Transformations

Figure A-1: Transformation Pipeline for Segment Simulation

WC

I Output primitives

WC --~

N DC

clip rectangle stored

N DC ----~
N DC'

WC-N DC transformation

N DC transformation

Highlight Extent

i

clip

put

N DC' --~

LDC

i
LDC

N DC-LDC transformation

ZK-5164-86

firansformations A-3

A.3 NDC Transformation When Your Handler Supports
Segments

When the device handler supports segments, the kernel passes it the Open
Segment transformation in a call to the Set Segment Transformation function.
If there has been no call to this function, the handler should use the default
segment transformation.

Since the handler already has the segment transformation, the NDC
transformation is only used during the Insert Segment function. In this case,
the NDC transformation will contain information about the Insert Segment
transformation and the segment transformation of the inserted segment. In
other cases, the NDC transformation will be the unity transformation.

The matrix multiplication is performed as explained in Section A.2, with the
exception that matrix M is the concatenation of the segment transformation
with the NDC transformation. Figure A-2 shows the transformation pipeline
for handlers that support segments.

A-4 Transformations

Figure A-2: Transformation Pipeline for Handlers that Support
Segments

DOING SEGMENTS

I Output

WC --~
NDC

clip rectangle stored

NDC —i►
NDC'

NDC'

seg xform

NDC"

clip

' Input

~~

NDC" —~
LDC

1
LDC

WC-NDC transformation

NDC transformation

Segment transformation

NDC-LDC transformation

ZK-5165-86

Transformations A-5

A.4 Algorithms for Transformations

Since there are a number of transformation equations, they are presented here
already derived. Note that these equations are for the least capable device.
Some devices may be capable of performing all or some of these equations
themselves.

A.4.1 Transformations Assuming an Identity NDC Transformation

The NDC transformation is the identity transformation in many cases. If the
NDC transformation is the identity, the transformations can be simplified a
great deal. Therefore, your handler should test for the unity transformation.

The following is the derivation of the valid transformations assuming the
identity NDC transformation. These allow GKS conversions from WC to NDC,
from WC to LDC, and from NDC to LDC. The notation ndc refers to the label
NDC' in Figure A-1, because it is the identity transformation, ndc =ndc'.

The variables xmin, ymin, xmax, and ymax are indexes into arrays holding the
various boundaries.

The variable names are defined as follows:

world.~cratio

world~coffset

worlci_view

world window

ws~cratio

ws~coffset

ws_window

ws_view

xratio

offset

ndc~c, ndc_y

ldc~c, ld~y

wc~c, wc_y

Ratio of the world viewport to the world window

Offset of the world window to the world viewport

Values of the world viewport

Values of the world window

Ratio of the workstation viewport to the workstation window

Offset of the workstation viewport to the workstation window

Values of the workstation window

Values of the workstation viewport

Composite of worlci_xratio with ws~cratio

Composite of world~coffset with ws~coffset

Coordinates of a point in NDC space

Coordinates of a point in LDC space

Coordinates of a point in WC space

A-6 Transformations

we -> ndc =_>

ndc -> ldc =_>

we -> ldc =_>

ldc -> we =_>

Use the formulas to determine the values of the variables. The equations are
derived for the X values only. The equations for the Y values are identical
except for the substitution of the Y points.

world_xratio = Cworld_view [xmax] - world_view [xmin])
/ (world_window [xmax] - world_window [xmin]) ;

world_xof f set = world_window [xmin] - (world_vi ew [xmin]
(world_window [xmax] - world_window [xmin])
/ Cworld_view [xmax] - world_view [xmin]))

ws_xratio = (ws_view [xmax] - wa_view [xmin]) / (ws_window [xmax] - ws_window [xmin])

wa_xof f set = ws_view [xmin] - (ws_window [xmin] * wa_xratio)

xratio = world_ratio * ws_xratio

xoffset = world_xof f set * xratio - ws_xof f set

Use the formulas to determine the value of a point in the new coordinate
system:

ndc_x = Cwc_x - world_xoffset) * world_xratio;

ldc_x = (ndc_x * ws_xratio) + ws_xoffset;

ldc_x = (wc_x * xratio) -xoffset;

wc_x = (ldc_x +xoffset)/xratio

These expressions find the displacement of a point from the origin of the
coordinate system (that is, the distance from the 0,0 point), then express this
distance as a fraction of the length of a line drawn from the origin, through the
point, and continuing to the far edge of the viewport. Then the expressions add
the offset of the viewport's origin to yield the point's location on the screen.

Use the formulas for clipping.

xclip~nax

xclip~nin

The maximum x value of the clipping rectangle

The minimum x value of the clipping rectangle

If clipping is on then the boundary is:
xclip_min = MAXC wg_window[xmin],world_view[xmin])
xclip_max =MIN(ws window [xmax],world_view[xmax]])

else if clipping is off then:
xclip_min = ws_window[xmin]
xclip_max = ws_window[xmax]

For clipping, the boundary may be kept in NDC or DC.

Transformations A-7

A.4.2 Transformations Assuming the Nonidentity NDC
Transformation

If the NDC transformation is not unity, then the handler must incorporate it
in the transformation pipelines. The following formulas allow transformations
including the NDC transformation. The symbols NDC' and NDC" refer to
Figure A-2.

A.4.2.1 Transforming from NDC to LDC

The NDC to NDC' transformation is a simple matrix multiplication done
as follows. If the kernel is simulating segments, the matrix M is the NDC
transformation. If the handler is managing segments, the matrix M is the
composition of the NDC transformation and the segment transformation.

ndc x' M1_1 M1_2 M1_3 ndc_x
ndc_y' _= M2_1 M2_2 M2_3 * ndc_y

1

This becomes the following two equations as defined by matrix multiplication:

ndc_x' = M1_1 * ndc x + M1_2 * ndc_y + M1_3

ndc_y' = M2_1 * ndc_x + M2_2 * ndc_y + M2_3

To get the NDC -> LDC transformation, go from NDC to NDC' to LDC. For
the X component, this yields the following:

(1) ndx_x -> ndc_x' __> ndc x' = M1_1 * ndc_x +
M1_2 * ndc_y + M1_3

(2) ndc' -> ldc =_> ldc_x' _ (ndc_x' * ws patio) +
ws xoff set

Substituting ndc~c' in equation 1 for ndc_x' in equation 2 yields:

ldc_x = ((M1_i * ndc_x + M1_2 * ndc_y + M1_3) *
ws_xratio) + ws_xoffset

Expanding the equation yields the following:

ldc_x = Mi_i * ws_xratio * ndc_x + M1_2 * wa_xratio *
ndc_y + Mi_3 * ws_xratio + ws_xoffset

Combine_ the constants together as follows:

xf orm_xof f set = Mi_3 * ws patio + ws_xof f set ;
xform_x_2 = M1_2 * ws_ratio
xform_x_1 = M1_i * ws_ratio

A-8 Transformations

So the point in ldc is:

ldc_x = xform_x_i * ndc_x + xform_x_2 * ndc_y +
xf orm_xof f s et

As a check, if ndc- > ndc' xf orm is identity:

ldc_x = xform_x_i * ndc_x + xform_xoffset
(where xform_x_i = ws_ratio)

This was derived in Section A.4.1.

A.4.2.2 Transforming from WC to LDC

Section A.4.1 showed that the following:

(3) we -> ndc =_> ndc_x = (wc_x - world_xoffset)
world_xratio;

and the Section A. 4.2.1 showed the following:

(4) ndc -> do =_> dc_x = xform_x_1 * ndc_x +
xf orm_x_2 * ndc_y + xf orm_xof f set

where

xf orm_xof f set = M1_3 * ws_xratio + ws_xof f set ;
xform_x_2 = M1_2 * ws xratio
xform_x_i = Mi_i * ws_xratio

Substituting equation (3) for ndc~c in equation (4) yields the following:

(5) ldc_x = xform_x_1 * ((wc_x - world_xoffaet) * world_xratio)
+ xf orm_x_2 * ndc_y + xf orm_xof f set

By equation 3,

ndc_y = (wc_y - worldyouffset) * world_yratio

Expanding equation 5 and substituting for nd~y yields the following:

ldc x = ((wc_x - world_xoffaet) * world_xratio * xform_x_1) +
xform_x_2 * world_yratio
(wc_y - worldyouf f set) + xf orm_xof f set

Combining the constants together yields the following:

wc_xform_x_1 = xform_x_1 * world_xratio
wc_xform_x_2 = xform_x_2 * world_xratio

Transformations A-9

Substituting the new constants yields the following:

ldc_x = ((wc_x - world_xoffaet) * wc_xform_x_1) +
wc_xf orm_x_2 * (wc_y - worldyouf f set) + xf orm_xof f set

Expanding the equation yields the following:

ldc_x = Cwc_x * wc_xform_x_i - world_xoffset * wc_xform_x_1) +
wc_xform_x_2 * wc_y - wc_xform_x_2 * worldyouffset) +
xf orm_xof f set

Rearranging the terms yields the following:

C6) ldc_x = wc_x * Nc_form_x_1 + wc_xform_x_2 * wc_y -
world_xof feet * rrc_xf orm_x_i - wc_xf orm_x_2 *
worldyouf f set + xf orm_xof f set

Combining the new constants together yields the following:

wc_xf orm_xof f aet = xf orm_xof f set - world_xof f set
wc_f orm_x_1 - wc_xf orm_x_2 * worldyouff set

Substituting the new constants into equation 6 yields the transformation from
WC to LDC as follows:

ldc_x = wc_x * wc_form_x_1 + wc_form_x_2 *
arc _y + roc _xf orm_xof f s et

As a check, assume the following:

vrc_xform_x_i = wa_xratio * world_xratio
~►c_xform_xoffset = ~rs_xoffset - Cworld_xoffset * ws_xratio * world_xratio)

If ndc- > ndc' xf orm is identity, then

ldc_x = wc_x * wc_xf orm_x_1 + wc_xf orm_xoff set

A-10 Transformations

Appendix B

Stroke Text Simulation Routines

DEC GKS provides routines to simula#e stroke-precision text for workstation
handlers. These routines let you implement stroke precision text using
DIGITAL-supplied fonts by writing routines that unbundle the text attributes
and call the simulation routines contained in the kernel. The text attributes
must be unbundled because bundled values are usually stored in the
workstation state list (WSL), and the simulation routines have no access to the
WSL.

The stroke-precision text simulation routines are described in this appendix.
They are the only supported mechanism for implementing the DIGITAL-
supplied stroke fonts. However, you may choose to develop your own fonts
and implement direct support for stroke text in your handler.

The text simulation routines require the address of your polyline and fill area
routines. This could be a problem for handlers written in Pascal, since Pascal
passes functions by a special descriptor called a Bound Procedure Value.
Pascal can simply the address (called passing by immediate value), but if you
chose this method, the routine must have the Pascal Attribute UNBOUND.
This means that the function can only address variables that are contained
in the local data structure, or variables that are declared local to the routine.
Therefore, if you write your handler in Pascal, you must declare any function
which will be passed to the kernel. as unbound, and pass it by immediate value.

Stroke Text Simulation Routines B--1

GKSSSIM_STROKE_TEXT

GKSSSIM_STROKE_TEXT

This routine positions and draws the stroke text specified in the call. It performs
all calculations needed for the text.

Syntax

GKS$SIM_STROKE_TEXT (loc_data_ptr,
text _pos~c,
text~os_y,
character string,
attribute~rray,
polyline~ddr,
fill~rea~ddr►

RETURNS: longword condition value

Arguments
lo~dat~ptr

data type: longword integer (signed)

access: read-only

mechanism: by reference

This is the same local data pointer that the kernel passed to the handler. It is
not modified by this routine, but the handler's polyline or fill area routines may
modify it when GKS$SIM~TROKE_TEXT calls them.

B-2 Stroke Text Simulation Routines

GKSSSIM_STROKE_TEXT

tex~pos`x

tex~po~y

data type: F-floating

access: read-only

mechanism: by reference

The X and Y values of the text starting position in World Coordinates (WC).

character string

data type: character string

access: read-only

mechanism: class S descriptor

The actual text character string to be written.

attribute~rray

data type: array or record

access: read-only

mechanism: by reference

An array or record containing the following items. Note that these items must
be the unbundled values. That is, the handler must determine the bundled
values by looking into the bundle tables, then pass GKS$SIM STROKE _TEXT
the actual values that the simulation routine should use.

Stroke Text Simulation Routines B-3

GKSSSIM_STROKE_TEXT

Item Description

TEXT_INDEX

TEXT_FONT

TEXT_1'RECISION

CHARACTER _
EXPANSION FACTOR

CHARACTER_SPACING

TEXT_COLOR~NDEX

CHARACTER~iEIGHT_
X

CHARACTER_HEIGHT_
Y

CHARACTER_WIDTH_
X

CHARACTER_WIDTH_
Y

TEXT_I'ATH

TEXT~LIGNMENT_
HORZ

TEXT~LIGNMENT_
VERT

PICKED

An integer holding the index into the text bundle table.

The number of aDIGITAL-supported stroke font, integer.

The precision of the text to be drawn, integer.

The character expansion factor, real.

The character spacing, real.

The index into the color table, integer.

X component of the character height vector, WC, real

Y component of the character height vector, WC, real.

X component of the character width vector, WC, real.

Y component of the character width vector, WC, real.

The direction of the string, integer.

The horizontal text alignment, integer.

The vertical text alignment, integer.

The active pick id for this primitive, integer.

polyline~ddr

data type:

access:

mechanism:

longword integer (signed)

read-only

by value

The address of the handler's polyline function, passed by value (that is, the
function address, passed by value, not by Bound Procedure Value).

B-4 Stroke Text Simulation Routines

GKSSSIM_STROKE_TEXT

fill_area~ddr

data type: longword integer (signed)

access: read-only

mechanism: by value

The address of the handler's fill area function, passed by value (that is, the
function address passed by value, not by Bound Procedure Value).

Error Messages

Status Code Message

GKS$~RROR_76 Requested text font is not supported for the specified
precision on this workstation.

GKS$~RROR_101 Invalid character code in string.

DECGKS$~RROR_ Illegal font specification in logical.
NEG_32

Stroke Text Simulation Routines B-5

GKS=SIM_STROKE_TEXT_EXTENT

GKSSSIM _STROKE _TEXT_EXTENT

This routine performs all calculations needed to describe the text extent and
concatenation point of the text given the parameters passed to it.

Syntax

GKS$SIM_STROKE_TEXT~XTENT (text~os~c,
text ~os_y,
character string,
attribute~rray,
concat~c,
concat_y,
extent~rray~c,
extent_array_y)

RETURNS: longword condition value

Arguments
tex~pos`x

tex~po~y

data type: F-floating

access: read-only

mechanism: by reference

The X and Y values of the text starting position in World Coordinates (WC).

B-6 Stroke Text Simulation Routines

GKSSSIM_STROKE_TEXT_EXTENT

character string

data type:

access:

mechanism:

attribute array

data type:

access:

mechanism:

character string

read-only

class S descriptor

array or record

read-only

by reference

An array or record containing the following items. Note that these items must
be the unbundled values. That is, the handler must determine the bundled
values by looking into the bundle tables, then pass GKS$SIM~TROKE_TEXT
the actual values that the simulation routine should use.

Item Description

TEXT INDEX

TEXT FONT

TEXT PRECISION

CHARACTER _
EXPANSION _FACTOR

CHARACTER SPACING

TEXT COLOR INDEX

CHARACTER HEIGHT X

CHARACTER HEIGHT Y

CHARACTER WIDTH X

CHARACTER WIDTH Y

TEXT_I'ATH

TEXT~LIGNMENT_
HORZ

TEXT_ALIGNMENT
VERT

PICK ~D

The index into the text bundle table, integer.

The number of aDIGITAL-supported stroke font, integer.

The precision of the text to be drawn, integer.

The text character expansion factor, real.

The text character spacing value, real.

The index into the color table, integer.

X component of the character height vector, WC, real.

Y component of the character height vector, WC, real.

X component of the character width vector, WC, real.

Y component of the character width vector, WC, real.

The direction of the string, integer.

The horizontal text alignment, integer.

The vertical text alignment, integer.

The active pick id for this primitive, integer.

Stroke Text Simulation Routines B-7

GKSSSIM_STROKE_TEXT_EXTENT

concat~r

conca~y

data type: F-floating

access: write-only

mechanism: by reference

The X and Y value of the concatenation point in WC.

exten~array~r

exten~array_y

data type: array of four reals

access: write-only

mechanism: by reference

Arrays of X and Y values of the four corners of the text extent array in tiVC,
starting with the corner with the lowest X and Y coordinates, and moving
counterclockwise around the rectangle.

Error Messages

Status Code Message

GKS$~RROR_76 Requested text font is not supported for the specified
precision on this workstation.

GKS$_ERROR_101 Invalid character code in string.

DECGKS$~RROR_ Illegal font specification in logical.
NEG_32

B-8 Stroke Text Simulation Routines

GKS=SIM_STROKE_INQ_TEXT_FAC

GKSSSIM _STROKE_INQ_TEXT_FAC

This routine lets the handler inquire what font numbers are available using the
simulation routines, so that it can respond accurately to inquire text fa ' 'ties
calls.

Syntax

GKS$SIM_STROKE_INQ_TEXT~AC (array length,
font_numbers~rray,
font_count_returned,
font count)

RETURNS: longword condition value

Arguments
array~ength

data type: longword integer (signed)

access: read-only

mechanism: by reference

The length of the FONT~TUMBERS~RRAY.

fnn~number~rray

data type: longword integer (signed)

access: read/write

mechanism: by reference

An array of integers of sufficient length to hold the font numbers of the avail-
able fonts. Should be 30 to 50 elements long, and is allocated and passed by
the handler.

Stroke Text Simulation Routines B-9

GKSSSIM _STROKE _INQ _TEXT_FAC

fon~coun~returned

data type: longword integer (signed)

access:

mechanism:

write-only

by reference

The number of fonts returned. The returned value is less than or equal to the
array length.

fondcount

data type: longword integer (signed)

access: write-only

mechanism: by reference

The actual number of fonts that were found. The returned value may be more
than FONT_COUNT~ETURNED.

Error Messages

Status Code Message

GKS$SUCCESS Success.

DECGKS$~RROR_ Illegal font specification in logical.
NEG_32

B-10 Stroke Text Simulation Routines

Appendix C

Pick Simulation Functions

These functions simulate segment operations for pick input routines. You
should use them to implement pick input if your handler does not support
segments directly.

The function GKS$FIND~EGMENT is useful in pick input operations. With
this function, you can use your LOCATOR input algorithm to get pick input.

The function GKS$FIND~EG EXTENT accepts a segment name and pick
id, and returns the segment's boundaries. You should use it as part of your
Initialize Pick Input function to determine the initial cursor position.

Pick Simulation Functions C-1

GKS=FIND_SEGMENT

GKSSFIND_SEGMENT

This function finds the highest priority segment within a rectangle defined by
the input parameters, and returns the segment's name and extent rectangle.
Your functionpasses a point and a distance from .that point, then GKS$FIND_
SEGMENT returns the name of the highest priority segment within the rect-
angle. It also returns the pick id, the segment boundaries, and the primitive
extent. If it finds no segment in the area defined by the point and the distance,
it returns the value FALSE. Otherwise it returns the value TRUE.

The input rectangle is defined by the parameters X, Y, APERTURE~C, and
APERTURE _Y. X and Y define the center point of the rectangle. Its top and
bottom edges are distance APERTURE_Y from the input point, in both the up
and down directions, and its sides are distance APERTURE~C from the point in
both the right and left directions.

The X and Y coordinates are in NDC, after the segment transformation. The
aperture coordinates are in NDC with no segment transformation applied to
them.

Syntax

GKS$FIND_SEGMENT (loc_data~tr,
x,

Y•
aperture~c,
aperture_y,
se~name,
picked,
sec,~extent,
pick extent,
prim_extent)

RETURNS: GKS~K_TRUE (1) if a segment is found
GKS~K_FALSE (o) if no segment is found

C-2 Pick Simulation Functions

GKSSFIND_SEGMENT

Arguments
lo~data_ptr

data type: longword integer (signed)

access: read-only

mechanism: by reference

The local storage area assigned to the workstation containing the segment.

x

y

data type: F-floating

access: read-only

mechanism: by reference

The X and Y coordinates of the input point in NDC.

aperture~r

aperture_y

data type: F-floating

access: read-only

mechanism: by reference

The dimension of the aperture, in the X and Y dimension. The aperture is a
rectangle whose top and bottom are distance APERTURE _Y from the input
point, in both the up and down directions, and whose sides are distance
APERTURE _X from the point in both the right and left directions. The points
are expressed in NDC.

Pick Simulation Functions C-3

GKSSFIND_SEGMENT

se~name

data type: longword integer (signed)

access: write-only

mechanism: by reference

The name of the segment found by the function, or zero if no segment was
found.

picl ►mid
data type: longword integer (signed)

access: write-only

mechanism: by reference

The pick id of the segment found by the function, or zero if no segment was
found.

sewextent

data type: array of eight F-floating

access: write-only

mechanism: by reference

The segment extent rectangle in NDC, ordered as (X1,Y1), (X2,Y2), (X3,Y3),
(X4,Y4).

picl~extent

data type: array of eight F-floating

access: write-only

mechanism: by reference

The pick extent rectangle in NDC, ordered as (X1,Y1), (X2,Y2), (X3,Y3), (X4,Y4).

C-4 Pick Simulation Functions

GKSSFIND_SEGMENT

prim~exrtenf

data type•

access:

mechanism:

array of eight F-floating

write-only

by reference

The primitive extent rectangle in NDC, ordered as (X1,Y1), (X2,Y2), (X3,Y3),
(X4,Y4).

Pick Simulation Functions C-5

GKS=FIND_SEG_EXTENT

GKSSFIND_SEG_EXTENT

This function accepts a segment name and pick id, and returns the segment
extent rectangle and pick extent rectangle. Both rectangles are passed as NDC
points after the segment transformation. Your Initialize Pick Input function can
use this function to find the initial segment. It should pass a segment name and
pick id, then place the cursor within the borders that this function returns.

Syntax

GKS$FIND_SEG_EXTENT (loc_data_ptr,
segment name,
pick_id,
seg_extent,
pick extent)

RETURNS: GKS$K_TRUE (1) the segment is found
GKS$K_FALSE (o) if the segment or pick id is not found

Arguments
lo~dat~ptr

data type: longword integer (signed)

access: read-only

mechanism: by reference

The local storage area assigned to the workstation containing the segment.

seg_.name

data type: longword integer (signed)

access: read-only

mechanism: by reference

The name of the segment whose extent should be found.

C-6 Pick Simulation Functions

GKSSFIND_SEG_EXTENT

picl►~id

data type: longword integer (signed)

access: read-only

mechanism: by reference

The pick id of the segment whose extent should be found.

sewextent

data type: array of eight F-floating

access: write-only

mechanism: by reference

The segment extent rectangle in NDC, ordered as (X1,Y1), (X2,Y2), (X3,Y3),
(X4,Y4).

picl►~extent

data type: array of eight F-floating

access: write-only

mechanism: by reference

The pick extent rectangle in NDC, ordered as (X1,Y1), (X2,Y2), (X3,Y3), (X4,Y4).

Pick Simulation Functions C-7

Appendix D

Workstation Handler Function Examples

This appendix contains programming examples for workstation handler systems.
You can pattern your functions and data structures on these samples. Note that
your actual code will be different so you can take advantage of your device's
functionality.

D.1 Data Structures

C This module contains the structure definitions for the
C Workstation Description Table C WDT)

C Predefined polyline bundle structure
STRUCTURE 1predef_pline_bundles/

INTEGER*4 line_type
REAL*4 linev►idth_scale_fsctor
INTEGER*4 color_index

END STRUCTURE

C Predefined polymarker bundle structure
STRUCTURE /predef_pmark_bundlea/

INTEGER*4 marker_type
REAL*4 msize_scale_factor
INTEGER*4 color_index

END STRUCTURE

C Predefined text bundle structure
STRUCTURE 1predef_text_bundles/

STRUCTURE /font_prec/ list_font_prec
INTEGER*4 font
INTEGER*4 prec

END STRUCTURE
REAL*4 char_exp_factor
REAL*4 char_space
INTEGER*4 color_index

END STRUCTURE

Workstation Handler Function Examples D-1

C Predefined fill bundle structure
STRUCTURE /predef_fill_bundles/

INTEGER*4 f ill_intstyle
INTEGER*4 f ill_style_ind
INTEGER*4 color index

END STRUCTURE
C Predefined pattern bundle structure

STRUCTURE /predef_patt_reps/
INTEGER*4 patt_dim_x
INTEGER*4 patt_dim_y
INTEGER*4 patt_array(2.2)

END STRUCTURE

C Predefined color bundle structure
STRUCTURE /predef_color_reps/

REAL*4 red
REAL*4 green
REAL*4 blue

END STRUCTURE

C List of Generalized Drawing Primitives (GDP) structure
STRUCTURE /list_gdp/

INTEGER*4 gdp_id
INTEGER*4 gdp_attributes

END STRUCTURE

C The Workstation Description Table (WDT)

STRUCTURE /wsdt_struct/

C Workstation type is VT125 CBlack and White)
INTEGER*4 workstation_type /GKS$K_VT125BW/

C Workstation category is OUTPUT only
INTEGER*4 workstation_category /GKS$K_WSCAT_OUTPUT/

C Device coordinate units is OTHER
INTEGER*4 dev_coordinate_units /GKS$K_OTHER_UNITS/

C Display space size in device coordinate units
REAL*4 dev_display_space_size x / 767.0 /
REAL*4 dev_display_space_size_y / 479.0/

C Display space size in raster units
INTEGER*4 raster_display_space_size_x / 768 /
INTEGER*4 raster_display_space_size_y / 480 /

C Type of device is RASTER
INTEGER*4 display_type /GKS$K_WSCLASS_RASTER/

C Dynamic modification for polyline bundle representation is IRG
INTEGER*4 dmaf_polyline /GKS$K_IRG/

C Dynamic modification for polymarker bundle representation is IRG
INTEGER*4 dmaf_polymarker /GKS$K_IRG/

C Dynamic modification for Text bundle representation is IRG
INTEGER*4 dmaf_text /GKS$K_IRG/

C Dynamic modification for fill bundle representation is IRG
INTEGER*4 dmaf_fill /GKS$K_IRG/

C Dynamic modification for pattern bundle representation is IRG
INTEGER*4 dmaf_pattern /GKS$K_IRG/

D-2 Workstation Handler Function Examples

C Dynamic modification for color bundle representation is IMM
INTEGER*4 dmaf_color /GKS$K_IMM/

C Workstation transformation is IRG
INTEGER*4 dmaf_ws_transformation /GKS$K_IRG/

C Segment highlighting is IRG
INTEGER*4 dmaf_highlighting /GKS$K_IRG/

C Default deferral mode is ASAP (As Soon As Possible)
INTEGER*4 def_defer_mode /GKS$K_ASAP/

C Default implicit regeneration mode is SUPPRESSED
INTEGER*4 regen_mode /GKS$K_IRG_SUPPRESSED/

C Number of available linetypes is 4
INTEGER*4 num_linetypes /4/

C The list of available linetypes is SOLID, DASHED, DOTTED, DASH-DOTTID
INTEGER*4 list_line_types(4)

C Number of available linewidtha is 1
INTEGER*4 num_linewidths /i/

C Nominal linewidth is 1.0
REAL*4 nominal_linewidth /1.0/

C Minimum linewidth is 1.0
REAL*4 minimum_linewidth /1.0/

C Maximum linewidth is 1.0
REAL*4 maximum_linewidth /1.0/

C Number of predefined polyline bundles is 5
INTEGER*4 number_predef_pline_ind /5/

RECORD /predef_pline_bundlea/ pline_bundles (5)

C Number of available markertypes is 5
INTEGER*4 num_markertypes /5/

C List of available marker types is DOT, PLUS, ASTERISK, CIRCLE,
C and DIAGONAL CROSS

INTEGER*4 list_markertypes(5)

C Number of available marker sizes is 1
INTEGER*4 num_maizes /1/

C Nominal marker size is 1.0
REAL*4 nominal_maize /1.0/

C Minimum marker size is 1.0
REAL*4 minimum_msize /1.0/

C Maximum marker size is 1.0
REAL*4 maximum_msize /1.0/

C Number of predefined polymarker bundles is 5
INTEGER*4 number_predef_pmark_ind /5/

RECORD /predef_pmark_bundles/ pmark_bundles (5)

C Number of text font and precision pairs - not used as only
C text simulation is done.

INTEGER*4 num_font_prec_pairs /-1/

Workstation Handler Function Examples D-3

C List of text font and precision pairs
INTEGER*4 list_fontC50)
INTEGER*4 list_prec(50)

C Number of available character expansion factors
INTEGER*4 num_char_exp_factors /1/
REAL*4 minimum_char_exp_factor /1.0/
REAL*4 maximum_char_exp_factor /1.0/

INTEGER*4 num_char_heights /16/
REAL*4 minimum_char_height /12.0/
REAL*4 maximum_char_height /160.0/
INTEGER*4 num_predef_text_ind /2/

RECORD /predef_text_bundles/ text_bundlea (2)

C Number of available fill area interior styles is 1
INTEGER*4 num_fill_intstyle /1/

C List of fill area interior styles is HOLLOW
INTEGER*4 list_fill_intstyle /1/

C Number of available hatch styles is 0
INTEGER*4 num_hatch_atyle /0/

C Number of predefined fill area bundles is 5
INTEGER*4 num_predef_fill_ind /5/

INTEGER*4 liat_hatch_style(i)
RECORD /predef _f ill_bundles/ f ill_bundles (5)

C Number of predefined pattern indices is 0 - pattern

C is not supported.
INTEGER*4 num_predef_patt_ind /0/
RECORD /predef_patt_repa/ patt_bundles Ci)

C Number :of available colors or intensities is 4
INTEGER*4 num_colors /4/

C Color available is COLOR
INTEGER*4 color_available /GKS$K_COLOR/

C Number of predefined color representations is 4
INTEGER*4 num_predef_color_rep /4/

RECORD /predef_color_reps/ color_table (4)

C Number of available generalized drawing primitives is 0
INTEGER*4 num_gdp /0/

RECORD /list_gdp/ liat_of_gdp (1)

INTEGER*4 bundles_initialized / 0 /
INTEGER*4 max_pline_bundles / 5 /
INTEGER*4 max_pmark_bundles / 5 /
INTEGER*4 max_text_bundles / 2 /
INTEGER*4 max_fill_bundles / 5 /
INTEGER*4 max_patt_ind / i /
INTEGER*4 max_color_ind / 4 /

END STRUCTURE

D-4 Workstation Handler Function Examples

C This module contains the Workstation State List (WSL)
C The polyline bundle structure

STRUCTURE /pline_bundles/
INTEGER*4 pline_index
INTEGER*4 line_type
REAL*4 linewidth_acale_factor
INTEGER*4 color_index

END STRUCTURE
C The polymarker bundle structure

STRUCTURE /pmark_bundlea/
INTEGER*4 pmark_index
INTEGER*4 marker_type
REAL*4 msize_scale_factor
INTEGER*4 color_index

END STRUCTURE
C The text bundle structure

STRUCTURE /text bundles/
INTEGER*4 text_index
STRUCTURE /font_prec_pair/ list_font_prec
INTEGER*4 font
INTEGER*4 prec
END STRUCTURE
REAL*4 char_exp_factor
REAL*4 char_space
INTEGER*4 color_index

END STRUCTURE

C The fill bundle structure
STRUCTURE /fill_bundles/

INTEGER*4 f ill_index
INTEGER*4 f ill_intstyle
INTEGER*4 fill_style_ind
INTEGER*4 color_index

END STRUCTURE

C The pattern bundle structure
STRUCTURE /patt bundles/

INTEGER*4 patt_index
INTEGER*4 patt_dim_x
INTEGER*4 patt_dim_y
INTEGER*4 patt_array(2,2)

END STRUCTURE

C The color bundle structure
STRUCTURE /color_bundle/

INTEGER*4 color_index
REAL*4 red
REAL*4 green
REAL*4 blue

END STRUCTURE

Workstation Handler Function Examples D-5

C The Workstation State List data structure.
STRUCTURE /ws_state_liat/

INTEGER*4 begin_structure
INTEGER*4 unit_num
INTEGER*4 channel
CHARACTER*80 connection_id
INTEGER*4 wstype
INTEGER*4 segment_set
INTEGER*4 defer_mode
INTEGER*4 regen_mode
INTEGER*4 display_empty
INTEGER*4 new_frame
INTEGER*4 global_interactions_present
INTEGER*4 tranaf orm_f lag
REAL*4 ndc_matrix(3,3)
INTEGER*4 clip_flag
REAL*4 clip_rectangle(1:4)
INTEGER*4 number_pline_ind
RECORD /pline_bundles/ set_pline_bundles (5)
RECORD /pline_bundles/ real_pline_bundles (5)

INTEGER*4 number_pmark_
RECORD /pmark_bwadles/
RECORD /pmark_bundle~/

Ind
set_pmark_bundles (5)
real_pmark_bundles (5)

INTEGER*4 num_text_ind
RECORD /text_bundles/ aet_text_bundlea (2)
RECORD /text_bundles/ real_text_bundles (2)

INTEGER*4 num_fill_ind
RECORD /fill_bundles/ set_fill_bundles (5)
RECORD /fill_bundlea/ real_fill_bundles (5)

INTEGER*4 num_patt_ind
RECORD /patt_bundles/ set_patt_bundles (i)
RECORD /patt_bundles/ real_patt_bundles (1)

INTEGER*4 num_color_ind
RECORD /color_bundle/ set_color_table (4)
RECORD /color_bwndle/ real_color_table (4)

REAL*4 world_window(4)
REAL*4 world_viewport(4)

REAL*4 req_ws_window(4)
REAL*4 req_ws_viewport(4)
REAL*4 cur_ws_window(4)
REAL*4 cur_ws_viewport(4)

REAL*4 trans_matrix(3,3)
INTEGER*4 end_structure

END STRUCTURE

C INDIV_ATTRIBUTES.FOR
C The escape data record - note none currently supported.

STRUCTURE /ESCAPE_DATA_RECORD/
END STRUCTURE

D-6 Workstation Handler Function Examples

C The attribute array and related structures
C The polyline attributes.

STRUCTURE /LINE_ATTR/
INTEGER*4 polyline_index
INTEGER*4 line_type
REAL*4 lineMidth_scale_factor
INTEGER*4 polyline_color_iadex
INTEGER*4 pick_id

END STRUCTURE
C The polyline attributes.

STRUCTURE /I~ARKER_ATTR/
INTEGER*4 polymarker_index
INTEGER*4 markertype
REAL*4 markersize_scale_factor
INTEGER*4 polymarker_color_index
INTEGER*4 pick_id

EHD STRUCTURE

C The polyline attributes.
STRUCTURE /FILL_ATTR/

INTEGER*4 fill_area_index
INTEGER*4 interior_style
INTEGER*4 fill_style_index
INTEGER*4 fill_area_color_index
REAL*4 pattern_refernce_point_x
REAL*4 pattern_refernce_point_y
REAL*4 pattern_height_x
REAL*4 pattern_height_y
REAL*4 pattern_~►idth_x
REAL*4 pattera_Midth_y
INTEGER*4 pick_id

END STRUCTURE

C The polyline attributes.
STRUCTURE /TEXT_ATTR/

INTEGER*4 text_index
INTEGER*4 font
INTEGER*4 precision
REAL*4 char_exp_factor
REAL*4 char space
INTEGER*4 text_color_fadex
REAL*4 char_height_x
REAL*4 char_height_y
REAL*4 char_r~idth_x
REAL*4 char_~idth_y
INTEGER*4 text_path
INTEGER*4 text_align_horfz
INTEGER*4 text_align_vert
INTEGER*4 pick_id

END STRUCTURE

C The attribute structure.
STRUCTURE /ATTRIBUTES/

RECORD /LINE_ATTR/ line_attributea
RECORD /IrIARKER_ATTR/ marker_attributes
RECORD /FILL_ATTR/ fill_attributes
RECORD /TEXT_ATTR/ text_attributes
INTEGER*4 cell_array_pick_id

END STRUCTURE

Workstation Handler Function Examples D-7

D.2 Control Functions

ccc

C "Open Workstation"
C Input Parameters:
C wsl workstation state list

C wstype workstation type
C devnam device name
C ws_id workstation identifier

C
C Output Parameters:
C level GKS level of handler

C
C Value Returned:
C GKS$_SUCCESS Success
C GKS$_ERROR_26 Specified workstation cannot be opened

C
CCC

INTEGER*4 FUNCTION HANDLER__OPEN WS(wal, wstype, devname,
+ ws_id, level)

IMPLICIT NONE
INCLUDE 'sys$library:gksdefs.for/nolist'

INCLUDE 'wsdt.for/nolist'
INCLUDE 'ws_state_list.for/nolist'

INCLUDE 'indiv_attributes.for/nolist'
INCLUDE 'sys$library:gksmsgs.for/nolist'
INCLUDE 'ssdef.for/nolist'

C Parameters
RECORD /ws_state_list/ wsl
INTEGER*4 wstype
CHARACTER*(*) devname

INTEGER*4 ws_id
INTEGER*4 level
RECORD /wsdt_struct/ wsdt
COMMON / workdesc / wsdt

RECORD / attributes / dummy_att_array
INTEGER*4 i, j, total_rows,total_columns, status
INTEGER*4 dummy_var / 0 /

CHARACTER*3 clear_text
INTEGER*4 HANDLER__INQ_
INTEGER*4 HANDLER__INQ_
INTEGER*4 HANDLER__INQ_
INTEGER*4 HANDLER__INQ_
INTEGER*4 HANDLER__INQ_
INTEGER*4 HANDLER__INQ_
INTEGER*4 HANDLER__SET_
INTEGER*4 HANDLER__SET_
INTEGER*4 HANDLER__SET_
INTEGER*4 HANDLER__SET_
INTEGER*4 HANDLER__SET_
INTEGER*4 HANDLER__SET_
INTEGER*4 LIB$GET_LUN
INTEGER*4 SYS$TRNLNM

PREDEF_PLINE_REP
PREDEF_PMARK_REP
PREDEF_TEXT_REP
PREDEF_PATT_REP
PREDEF_FILL_REP
PREDEF_COLOR_REP
PLINE_REP
PMARKER_REP
TEXT_REP
PATT_REP
FILL_REP
COLOR_REP

D-8 Workstation Handler Function Examples

C Wake up the debugger if the debugging logical is defined

status=SYS$TRNLNMC XVAL(0),'LN~i=FILE_DEV',
+ 'GKSZ:HANDLER_DEBUG',XVALCO),XVALCO))
IF C status .Eq. SSZ_NORMAL) THEN

CALL LIBsSIGNALC XVALCSS=_DEBUG))
ELSEIF C status .NE. SS=_NOLOGNAI~) THEN

HANDLER__OPEN_WS = status
RETURN

ENDIF
clear_text = CHARC'iB'X) // '[H'

C * Find an unused unit number

wsl.unit_num = 0
status = LIB=GET_LUNCwsl.unit_num)
IF (status .NE. 1) GOTO 999

C * Open Device

OPEN Cwsl.unit_num, FILE = devname, STATUS = 'UNKNOWN',
+ ERR = 999, IOSTAT = status)

GOTO 1000
C Open error or error on LIB=GET_LUN goes here
999 HANDLER__OPEN_WS = GKS=_ERROR_26

RETURN

1000 CONTINUE
C
C I
C Initialize the bundle table for workstation description table)
C I
C

CALL BUNDLE_INIT()
C
C I
C Initialize workstation state list I
C I
C

wsl.connection_id = devname
wsl.wstppe = wstype
wsl . def er_mode = wsdt .def _def er_mode
wsl.regen_mode = wadt.regen_mode

wsl.diaplay_empty = GKS=K_E1~IPTY
wsl.new_frame = GKSsK_NEWFRAME_NOTNECESSARY

wsl.global_interactions_preaent = 0

wsl.tranaform_flag = GKSsK_NOTPENDING

Workstation Handler Function Examples D-9

wal.aumber_pline_ind = wsdt.number_predef_pline_ind

DO 10 i i,wal.number_pline_ind
wsl.set_pline_bundlesCi).pline_index = i

statue = handler__inq_predef_pliae_repC wstype, i,
+ wal.set_pline_bundlesCi).line_type,
+ wal.set_pline_buadleaCi).linewidth_acale_factor,
+ wsl.set_pline_bundleaCf).color_index)

status handler__set_pline_repC wal, i,
+ wal.set_pline_bundleaCi).line_type,
+ wal.set_pline_bundles Cf).linewidth_scale_factor,
+ wal.set_pline_bundlea(i).color_index)

10 CONTINUE

wal.aumber_pmark_ind = wadt.number_predef_pmark_ind
DO 20 i i,wsl.aumber_pmark_ind

wsl.set_pmark_bundleaCi).pmark_index = i
status = handler__inq_predef_pmark_rep C wstype, i,

+ wal.set_pmark_bundleaCi).marker_type,
+ wsl.set_pmark_bundlesCi).maize_acale_factor,
+ wsl.set_pmark_bundlesCi).color_index)

status handler__set_pmarker_rep C wal, i,
+ wsl.set_pmark_bundleaCi).marker_type,
+ wsl.set_pmark_bundleaCi).maize_acale_factor,
+ wal.set_pmark_bundleaCi).color_index)

20 CONTINUE

wsl.num_text_ind = wsdt.num_predef_text_ind
DO 30 i i,wal.num_text_iad

wsl.set_text_bundleaCi).text_index = i
status = handler__inq_predef_text_repC watype, i,

+ wal.set_text_bwadlea(i).list_font_prec.font,
+ wal.set_text_bundleaCi).list_font_prec.prec,
+ wal.set_text_bundleaCi).char_exp_factor,
+ wsl.set_text_bundleaCi).char_apace,
+ wal.set_text_bundleaCi).color_index)

status handler__set_text_repC wal, i,
+ wsl.aet_text_bundleaCi).liat_font_prec.font,
+ wsl.set_text_bundleaCi).list_font_prec.prec,
+ wal.set_text_bundleaCi).char_exp_factor,
+ wal.aet_text_bundleaCi).char_apace,
+ wal.aet_text_bundleaCi).color_index)

30 CONTINUE

wsl.num_fill_ind = wadt.num_predef_fill_ind
DO 40 i i,wal.num_fill_ind

wsl . set_f ill_bundlea Ci) . f ill_index i
status handler__inq_predef_fill_repC watype, i,

+ wsl.set_fill_bundleaCi).fill_intstyle,
+ wal.set_fill_bundles(i).fill_atyle_ind,
+ wsl.set_fill_bundleaCi).color_index)

status handler__set_fill_repC wal, i,
+ wal.set_fill_bundleaCi).fill_intatyle,
+ wal.set_fill_bundlesCi).fill_atyle_ind,
+ wsl.set_fill_bundleaCi).color_index)

40 CONTINUE

D-10 Workstation Handler Function Examples

wsl.num_patt_ind = wsdt.num_predef_patt_ind
DO 50 i = i,wsl.num_patt_ind

wsl.set_patt_bundles(i).patt_index = i
status = haadler__inq_predef_patt_rep (watype, i,

+ wsl.set_patt_bundles(i).patt_dim_x,
+ wal.set_patt_bundles(i).patt_dim_y,
+ wsl.set_patt_bundles(i).patt_array,
+ total_rowa, total_columns)

status = handler__set_patt_rep (wsl, i,
+ wsl.set_patt_bundles(i).patt_dim_x,
+ wsl.set_patt_bundles(i).patt_dim_y, i,
+ wsl.set_patt_bundlea(i).patt_array)

50 CONTINUE

wsl.num_color_ind = wsdt.num_predef_color_rep
DO 60 i = i,wsl.num_color_ind

wsl.set_color_table(i).color_index = i - 1
status = handler__inq_predef_color_rep (wstype, i - 1,

+ wsl.set_color_table(i).red,
+ wsl.set_color_table(i).green,
+ wsl.set_color_table(i).blue)

status = handler__aet_color_rep (wsl, i - i,
+ wsl.set_color_table(i).red,
+ wal.set_color_table(i).green,
+ wal.set_color_table(i).blue)

60 CONTINUE

C Initialize the default workstation window and viewport
wsl.req_ws_window(1) = 0.0
wsl.req_ws_window(2) = 1.0
wsl.req_ws_window(3) = 0.0
wsl.req_ws_window(4) = 1.0

wsl.cur ws_window(1) = 0.0
wsl.cur wa_window(2) = 1.0
wsl.cur_ws_window(3) = 0.0
wsl.cur_ws_window(4) = 1.0

wsl.req_ws_viewport(1) = 0.0
wsl.req_ws_viewport(3) = 0.0
wsl.cur_rrs_viewport(i) = 0.0
wsl.cur_ws_viewport(3) = 0.0

C Grab biggest square available on the display
IF (wadt.dev_display_apace_size_x .gt.
+ wsdt.dev_display_space_size_y) THEN

C x is bigger than y
wsl.req_ws_viewport(2) = wsdt.dev_display_space_size_y
wal.req_ws_viewport(4) = wadt.dev_display_apace_aize_y
wsl.cur_ws_viewport(2) = wsdt.dev_display_space_size_y
wsl.cur_ws_viewport(4) = wsdt.dev_diaplay_apace_aize_y

ELSE
C y is bigger than x

wsl.req_ws_viewport(2) = wsdt.dev_display_space_size_x
wal.req_ws_viewport(4) = wadt.dev_display_apace_size_x
wsl.cur_ws_viewport(2) = wsdt.dev_display_space_size_x
wal.cur_wa_viewport(4) = wsdt.dev_display_space_size_x

END IF

Workstation Handler Function Examples D-11

C Initialize the NDC transformation matrix to the identity
CALL SET_MATRIX_IDC wsl.ndc_matrix)

C GKS level is 2c
level = GKS=K_LEVEL_2C

C Initialize the graphics on the device

WRITE(wsl.unit_num,ii) clear_text
ii format('+',A)

CALL ENTER_GRAPHICSC wsl)
WRITE Cwsl . unit_num,12.) ' S [0 , 0] (A [0 , 0] [76? , 479] I (D) SiTO) S CCO) '

12 format('+',A)
WRITECwsl.unit_num,i3) 'WCVI3MiF3NOPiPCM2)SO)'

13 format('+',A)
WRITE(wsl.unit_num,14) 'Q.'

14 format('+',A)
WRITECwsl.wait_num,15) 'T[+9,+0] (S1,H2,S[9,20] ,M[1,2] ,DO,IO,AO)'

15 format('+',A)
WRITE(wal.unit_num,16) 'SCE)'

16 format('+',A)

CALL EXIT_GRAPHICS(wal)
C Return status of success.

HANDLER__OPEN_WS = GKSs_SUCCESS
RETURN
END

CCC
C
C "Bundle_Init"
C
C This routine initializes the bundle tables in the Workstation
C Description Table C WDT).
C
CCC

SUBROUTINE BUNDLE_INIT()
IMPLICIT NONE
INCLUDE 'sys=library:gksdefs.for/nolist'

INCLUDE 'wsdt.for/nolist'

D-12 Workstation Handler Function Examples

RECORD /r►sdt_struct/ wsdt
COI~iON / rorkdeac / Msdt

INTEGER*4 i
INTEGER*4 GKS=SIM_STROKE_INq_TEXT_FAC
INTEGER*4 total_fonts
INTEGER*4 status

C check if bundles are all already initialized
if C Msdt.bundles_initialized .eq. i) then

return
end if

C Bundle table for polyline
rrsdt.pline_bundlesCi).line_type = GKS:K_LINETYPE_SOLID
r►sdt.pline_bundlesCi).linerridth_scale_factor = 1.0
rsdt.pline_bundlesCi).color_index i
r~sdt.pline_bundlesC2).line_type = GKS=K_LINETYPE_DASHID
rsdt.pline_bundlesC2).linexidth_scale_factor = 1.0
rsdt.pliae_bundlesC2).color_index = 2
rsdt.pline_bundlesC3).liae_type = GKS=K_LINETYPE_DASHID
Msdt.pline_bundles(3).linexidth_acale_factor = 1.0
Msdt.pline_bundles(3).color_index = 1
rsdt.pline_bundleaC4).line_type GKS=K_LINETYPE_DOTTID
rsdt.pline_bundlesC4).lineridth_scale_factor = 1.0
rsdt.pline_bundlesC4).color_index = 1
Madt.pline_bundlesCS).line_type =

+ GKS=K_LINETYPE_DASHED_DOTTED
rsdt.pliae_bundlesC5).line~idth_scale_factor = 1.0
rsdt.pline_bundleaCS).color_index 1

wsdt.list_line_typesCi) = GKS=K_LIHETYPE_SOLID
Msdt.list_line_types(2) = GKSsK_LINETYPE_DASHID
Madt.list_line_typesC3) = GKS=K_LINETYPE_DOTTID
rsdt.list_line_typesC4) GKSZK_LINETYPE_DASHID_DOTTED

C Bundle table for polymarkers
madt.pmark_bundlesCi).marker_type = GKS~K_I~IARKERTYPE_DOT
wsdt.pmark_bundlesCi).msize_scale_factor 1.0
Nsdt.pmark_bundlesCi).color_index = 1
rsdt.pmark_bundlesC2).marker_type = GKS=K_MARKERTYPE_PLUS
xsdt.pmark_bundlesC2).msize_acale_factor = 1.0
Msdt.pmark_bundlesC2).color_index = 1
Msdt.pmark_bundles(3).marker_type = GKS$K_MARKERTYPE_ASTERISK
Bradt.pmark_bundleaC3).msize_acale_factor = 1.0
rrsdt.pmark_bundlesC3).color_index = 1
r►sdt.pmark_bundlesC4).marker_type = GKSsK_1rIARKERTYPE_CIRCLE
Msdt.pmark_bundlesC4).msize_scale_factor = 1.0
Msdt.pmark_bundles(4).color_index = 1
xsdt.pmark_bundlesCS).marker_type =

+ GKS=K_MARKERTYPE_DIAGONAL_CROSS
~rsdt.pmark_bundlesCS).msize_scale_factor = 1.0
rrsdt.pmark_bundlesC5).color_index = 1

rrsdt.list_markertypes(i) GKS=K_MARICERTYPE_DOT
rradt . list_markertypes (2) = GKS=K_l~+iARKERTYPE_PLUS
wsdt.list_markertypesC3) = GKS=K_I~ARKERTYPE_ASTERISK
rsdt.list_markertypesC4) = GKS=K_I~IARKERTYPE_CIRCLE
Msdt.list_markertypesC5) _ GKS=K_MARKERTYPE_DIAGONAL_CROSS

Workstation Handler Function Examples D-13

C Bundle table for text
status = GKS$SIM_STROKE_INQ TEXT_FAC(50, wsdt.list_font,
+ wadt.num_font_prec_pairs, total_fonts)
DO 10 i = i,wsdt.num_font_prec_pairs

wsdt.list_prec(i) = GKS$K_TEXT_PRECISION_STROKE
10 CONTINUE

wsdt.text_bundles(1).list_font_prec.font = 1
wsdt.text_bundles(i).liat_font_prec.prec =

+ GKS$K_TEXT_PRECISION_STROKE
wsdt.text_bundlea(i).char_exp_factor = 1.0
wsdt.text_bundles(i).char_space = 0.0
wsdt.text_bundles(1).color_index = i
wsdt.text_bundles(2).list_font_prec.font = 1
wadt.text_bundles(2).list_font_prec.prec =

+ GKS$K_TEXT_PRECISION_STROKE
wadt.text_bundles(2).char_exp_factor = 1.0
wadt.text_bundles(2).char_space = 0.0
wsdt.text_bundles(2).color_index = 2

C Bundle table for fill area
wsdt.fill_bundles(1).fill_intstyle = GKS$K_INTSTYLE_HOLLOW
wsdt.f ill_bundles(i).f ill_style_ind = i
wsdt.f ill_bundles(i).color_index = i
wsdt.fill_bundles(2).fill_intstyle = GKS$K_INTSTYLE_HOLLOW
wsdt.fill_bundles(2).fill_style_ind = 1
wsdt.fill_bundles(2).color_index = 2
wsdt.fill_bundles(3).fill_intstyle = GKS$K_INTSTYLE_HOLLOW
wsdt.fill_bundles(3).fill_style_ind = 1
wedt.fill_bundles(3).color_index = 3
wsdt.fill_bundles(4).fill_intatyle = GKS$K_INTSTYLE_HOLLOW
wsdt.f ill_bundles(4).fill_style_ind = 1
wsdt.fill_bundles(4).color_index = 1
wsdt.fill_bundles(5).f ill_intatyle = GKS$K_INTSTYLE_HOLLOW
wsdt.fill_bundlea(5).fill_style_ind = i
wadt.f ill_bundles(5).color_index = 2

C Bundle table for patterns
wadt.patt_bundlea(1).patt_dim_x = 0
wadt.patt_bundles(i).patt_dim_y = 0
wsdt.patt_bwndlea(1).patt_array(1,1) = i
wsdt.patt_bundlea(i).patt_array(1,2) = 0
wsdt.patt_bundlea(1).patt_array(2,1) = 0
wsdt.patt_bundles(1).patt_array(2,2) = i

C Bundle table for color representation
wsdt.color_table(1).red = 0.0
wsdt.color_table(1).green = 0.0
wsdt.color_table(i).blue = 0.0
wadt.color_table(2).red = 0.0
wsdt.color_table(2).green = 1.0
wsdt.color_table(2).blue = 0.0
wsdt.color_table(3).red = 1.0
wsdt.color_table(3).green = 0.0
wadt.color_table(3).blue = 0.0
wsdt.color_table(4).red = 0.0
wsdt.color_table(4).green = 0.0
wsdt.color_table(4).blue = 1.0

D-14 Workstation Handler Function Examples

C bundles are all initialized so set flag
wsdt.bundles_initialized = i
RETURN
END

CCC
C
C "Close Workstation"
C Input Parameters:
C wal address of local data area allocated for driver
C attrib_array attribute array with any information needed to close
C down the workstation
C
C Output Parameters:
C NONE.
L
C Value Returned:
C GKS$_SUCCESS Success
C
CCC

INTEGER*4 FUNCTION HANDLER__CLOSE_WS(wsl, attrib_array)

IMPLICIT NONE
INCLUDE 'indiv_attributes.for/nolist'
INCLUDE 'ws_state_list.for/nolist'

INCLUDE 'sys~library:gkamsgs.for/nolist'

C Parameters
RECORD /ws_state_list/ wsl
RECORD /attributes/ attrib_array

C Do any clean-up required - may want to reset terminal attributes

C Deassign device channel.

CLOSE (UNIT = wal.unit_num)
C Clear display Cif desired)

HANDLER__CLOSE_WS = GKS$_SUCCESS

RETURN
END

Workstation Handler Function Examples D-15

D.3 Transformation Functions

CC
C
C "Set Normalization Transformation"
C Input Parameters:
C wsl address of local data area allocated for driver
C window normalization window limitaC XMIN, XMAX, YMIN, YMAX)
C in WC
C viewport normalization viewport limits(XMIN, XMAX, YMIN,
C YMAX) in NDC
C clip_flag when TRUE implies clipping is enabled, and clipping
C rectangle is the viewport; when FALSE implies clipping
C is disabled and the clipping rectangle is [0,i] x
C [0,1]
C
C Output Parameters:
C NONE.
C
C Value Returned:
C GKS=_SUCCESS Success
C
CC

INTEGER*4 FUNCTION HANDLER__SET_NORM_XFORM(wsl, window,
+ viewport, clip_flag)

IMPLICIT NONE
INCLUDE 'sysslibrary:gksdefs.for/nolist'
INCLUDE 'sysZlibrary:gksmags.for/noliat'

INCLUDE 'wa_state_liat.for/noliat'

C Parameters
RECORD /wa_atate_liat/ wsl
REAL*4 windowCl:4)
REAL*4 viewportCl:4)
INTEGER*4 clip_flag

INTEGER*4 i

C Set normalization window limits.
DO 10 i 1,4

wal.world_window(i) = window(i)
wsl.world_viewport(i) = viewportCi)

10 CONTINUE

D-16 Workstation Handler Function Examples

C Call a routine to update the various transformation variables
C This uses the formulas specified in Appendix A.

CALL UPDATE_TRANSFORMATION(wsl)
wsl. clip_flag = clip_flag
IF (clip_flag .NE. GKS$K_NOCLIP) THEN

D020i=1,4
wal.clip_rectangle(i) = viewport(i)

20 CONTINUE
ELSE

wsl.clip_rectangle(i) = 0.0
wsl.clip_rectangle(2) = 1.0
wsl.clip_rectangle(3) = 0.0
wsl.clip_rectangle(4) = 1.0

END IF
C Recomputing geometric attributes at this point is not
C necessary as everything is kept in WC and uses simulation

C Return statue of success.
HANDLER__SET_NORM_XFORM = GKS$_SUCCESS

RETURN
END

CC
C
C "Set NDC Transformation"
C Input Parameters:
C wsl address of local data area allocated for driver
C ndc_transform NDC transformation array - ordered M(i,i),
C M(1,2) , M(1,3) , M(2,1) , M(2,2) , M(2,3)
C Locations M(1,3) and M(2,3) are in NDC.
C
C Output Parameters:
C NONE.
C
C Value Returned:
C GKS$_SUCCESS Success
C

CC

INTEGER*4 FUNCTION HANDLER__SET_NDC_XFORM(wsl, ndc_transform)

IMPLICIT NONE
INCLUDE 'ws_state_list.for/nolist'

INCLUDE 'sys$library:gksmsgs.for/nolist'

C Parameters
RECORD /wa_state_list/ wsl
REAL*4 ndc_transform(1:6)

Workstation Handler Function Examples D-17

C Save the 1 x 6 matrix in a 3 x 3
wsl.ndc_matrix(1,1) = ndc_transform(1)
wal . ndc_matrix (i , 2) = ndc_transf orm (4)
wsl.ndc_matrix(1,3) = 0.0
wsl.ndc_matrix(2,1) = ndc_transform(2)
wal.ndc_matrix(2,2) = ndc_tranaform(5)
wal.ndc_matrix(2,3) = 0.0
wsl.ndc_matrix(3,1) = ndc_transform(3)
wal.ndc_matrix(3,2) = ndc_transform(6)
wal.ndc matrix(3,3) = 0.0

C Recomputing geometric attributes at this point is not
C necessary as everything is kept in WC and uses simulation

C Call a routine to update the various transformation variables
C This uses the formulas specified in Appendix A.

CALL UPDATE_TRANSFORMATION(wal)
C Return status of success.

HANDLER__SET_NDC_XFORM = GKS~_SUCCESS

RETURN
END

CC

C
C "Set Workstation Window"
C Input Parameters:
C wal address of local data area allocated for driver
C window_limita workstation window limits(XMIN, XMAX, YMIN, YMAX)
C in NDC
C
C Output Parameters:
C transform_f lag transformation update state either GKSZK_PENDING (0)
C or GKS$K_NOTPENDING (i)
C
C Value Returned:
C GKSs_SUCCESS Success
C
CC

INTEGER*4 FUNCTION HANDLER__SET_WS_WINDOW(wal, window_limita,
+ transf orm_f lag)

IMPLICIT NONE
INCLUDE 'sya$library:gkadefa.for/noliat'
INCLUDE 'sys~library:gkamsgs.for/noliat'
INCLUDE 'ws_atate_liat.for/noliat'
INCLUDE 'wadt.for/noliat'

C Parameters
RECORD /wa_atate_liat/ wsl
REAL*4 window_limita(1:4)
INTEGER*4 traasf orm_f lag

INTEGER*4 i
RECORD / wadt_atruct / wadt
COMMON / workdeac / wadt

C Set requested workstation window.
DO l0i=1,4

wal.req_ws_window(i) = window_limita(i)
10 CONTINUE

D-18 Workstation Handler Function Examples

IF ((wal.diaplay_empty .Eq. GKS$K_EMPTY) .OR.
+ (wadt.dmaf_wa_tranaformation .EQ. GKS$K_IMM))
+ THEN

wal.tranaform_flag GKS$K_NOTPENDING

D020i=1,4
wal.cur_wa window(i) = window_limits(i)

20 CONTINUE

C Call a routine to update the various transformation variables
C This uses the formulas specified in Appendix A.

CALL UPDATE_TRANSFORMATION(wal)
C Recomputing geometric attributes at this point is not
C necessary as everything is kept in WC and uses simulation

C IF (wal.workatation_tranaformation .EQ. GKS$K_IMM) THEN
C do dynamic modification. (THIS HANDLER CAN'T)

C Update workstation transformation update state.
wsl.transform_flag = GKS$K_NOTPENDING
tranaform_flag = GKS$K_NOTPENDING

ELSE IF ((wadt.dmaf_wa_tranaformation .eq. GKS$K_IRG)
+ .AND. (wal.diaplay_empty .EQ. GKS$K_NOTEMPTY)) THEN

wal.tranaform_flag = GKS$K_PENDING
tranaf orm_f lag = GKS$K_PENDING

END IF

C Return status of success.
HANDLER__SET_WS_WINDOW = GKS$_SUCCESS

RETURN
END

CC
C
C "Set Workstation Viewport"
C Input Parameters:
C wal address of local data area allocated for driver
C viewport_limita workstation viewport limits(XMIN, XMAX, YMIN,
C YMAX) in DC
C
C Output Parameters:
C tranaform_flag transformation update state either GKS$K_PENDING (0)
C or GKS$K_NOTPENDING (1)
C
C Yalue Returned:
C GKS$_SUCCESS Success
C GKS$_ERROR_54 Workstation viewport is not within the display apace
C
CC

INTEGER*4 FUNCTION HANDLER__SET_WS_YIEWPORT(wsl,
+ viewport_limits , transf orm_f lag)

IMPLICIT NONE
INCLUDE 'ays$library:gkadefs.for/noliat'
INCLUDE 'sys$library:gkamags.for/noliat'
INCLUDE 'wa_atate_liat.for/noliat'
INCLUDE 'wadt.for/noliat'

Workstation Handler Function Examples D-19

C Parameters
RECORD /ws_state_list/ wsl
REAL*4 viewport_limits(1:4)
INTEGER*4 transf orm_f lag

INTEGER*4 i

RECORD / wsdt_struct / wsdt
COMMON / workdesc / wsdt

C Make sure requested viewport is within the display space
IF ((viewport_limits(1) .LT. 0.0) .OR.
+ (viewport_limits(2) .GT. wsdt.dev_diaplay_space_size x)
+ .OR. (viewport_limits(3) .LT. 0.0) .OR.
+ (viewport_limits(4) .GT. wsdt.dev_display_space_size_y))
+ THEN

HANDLER__SET_WS_VIEWPORT = GKS$_ERROR_54
RETURN

END IF
C Set requested workstation viewport.

DO 10 i = 1,4
wsl.req_ws_viewport(i) = viewport_limits(i)

10 CONTINUE

C If dynamic modification accepted for workstation transformation is
C IMM or if display surface empty is empty:

IF ((wsdt.dmaf_ws_transformation .EQ. GKS$K_IMM) .OR.
+ (wsl.display_empty .EQ. GKS$K_EMPTY)) THEN

D020i=1,4
wsl.cur_ws_viewport(i) = viewport_limits(i)

20 CONTINUE

C Call a routine to update the various transformation variables
C This uses the formulas specified in Appendix A.

CALL UPDATE_TRANSFORMATION(wsl)

C Recomputing geometric attributes at this point is not
C necessary as everything is kept in WC and uses simulation
C IF (wsdt.dmaf_ws_transformation .EQ. GKS$K_IMM) THEN
C do dynamic modification. (THIS HANDLER CAN'T)

wsl.transform_flag = GKS$K_NOTPENDING
transform_flag = GKS$K_NOTPENDING

ELSE IF ((wsdt.dmaf_ws_transformation .EQ. GKS$K_IRG)
+ .AND. (wsl.display_empty .EQ. GKS$K_NOTEMPTY)) THEN

wsl.transform_flag = GKS$K_PENDING
transf orm_f lag = GKS$K_PENDING

END IF

C Return status of success.
HANDLER__SET WS VIEWPORT = GKS$_SUCCESS

RETURN
END

D-20 Workstation Handler Function Examples

D.4 Output Functions

cccccccccccccccc

cccc

cccc

ccc

C "Polyline"
C Input Parameters:
C wsl address of local data area allocated for driver
C num_pts
C wc_x_array
C wc_y_array
C temp_x_array
C temp_y_array
C attrib_array
C asf _mask
C
C Output Parameters:

number of points in the line to be drawn C >= 2)
an array of the x coordinates in WC
an array of the y coordinates in WC
a temporary array of the transformed x coordinates
a temporary array of the transformed y coordinates
an array of polyline attributes
a 32-bit bitmask holding the attribute source flags

C NONE.
C
C Value Returned:
C GKSs_SUCCESS Success
C
CC

INTEGER*4 FUNCTION HANDLER__POLYLINE(wal, num_pta,
+ wc_x_array, wc_y_array, temp_x_array, temp_y_array,
+ attrib_array, asf_mask)

IMPLICIT NONE
INCLUDE 'sys$library:gksdefs.for/nolist'
INCLUDE 'sysslibrary:gksmags.for/nolist'

INCLUDE 'ws_state_list.for/nolist'
INCLUDE 'indiv_attributes.for/nolist'

C Parameters
RECORD Iws_state_list/ wal
INTEGER*4 num_pts
REAL*4 we x_array(*)
REAL*4 wc_y_array(*)
INTEGER*4 temp_x_arrayC*)
INTEGER*4 temp_y_arrayC*)
RECORD /line_attr/ attrib_array
INTEGER*4 asf_mask

C
C
C
C
C
C
C
C
C
C
C
C
C

Declare local variables:
index index into polyline attributes list

C$ REGIS command to set color
L$ REGIS command to set line type
ascii x x coordinate in ASCII
ascii_y y coordinate in ASCII
linetype line type (SOLID, DASHID, DOTTED, DASH-DOTTED)
linewidth line width
color color of polyline

Workstation Handler Function Examples D-21

INTEGER*4 index, i
CHARACTER*5 Ls, C=
CHARACTER*3 ascii_x, ascii_y

REAL*4 ratio
INTEGER*4 linetype, color
REAL*4 linewidth

C Determine the index for the bundle table.
index = attrib_array.polyline_index
IF(index .GT. wsl.number_pline_ind) THEN

index = 1
END IF

C +

C If the attribute is individual, then get it from the individual I
C attributes liBt. Otherwise get it from the bundle table. I
C +

IF(BTEST(asf_mask, 0)) THEN
linetype = attrib_array.line_type

ELSE
linetype = wsl.real_pline_bundles(index).line_type

END IF

IF(BTEST(asf_mask, 1)) THEN
linewidth = attrib_array.linewidth_scale_factor

ELSE
linewidth =

+ wsl.real_pline_bundles(index).linewidth_scale_factor
END IF
IF(BTEST(aaf_mask, 2)) THEN

color = attrib_array.polyline_color_index
ELSE

color = wal.real_pline_bundles(index).color_index
END IF

C +
C Decide on requested line type. i
C +

GO TO (110,120,130,140) linetype

C W(P1) --SOLID
110 L= _ 'W(P'//CHAR(linetype + 48)//')'

GO TO 150

C W(P2) --DASHID
120 Ls = 'W(P'//CHAR(linetype + 48)//')'

GO TO 150

C W (P4) - -DOTTID
130 L= _ 'W(P'//CHAR(linetype + 49)//')'

GO TO 150

C W(P3) --DASH-DOTTID
140 Ls = 'W(P'//CHAR(linetype + 47)//')'
150 CONTINUE

C +
C Ignore linewidth; we only do linewidth of i. I
C +

D-22 Workstation Handler Function Examples

C +
C Decide on different shades of color. i
C +

IF (color .GE. 4) THEN
color = 1

END IF
C$ _ 'W(I'//CHAR color+48)//')'

C +
C CONVERT THE WORLD COORDINATES TO DEVICE COORDINATES I
C +

CALL CONVERT_WC_TO_DC(wsl.trans_matrix,
+ wc_x_array, wc_y_array, temp_x_array, temp_y_array,
+ num_pts)

C +
C CLIPPING SHOULD BE PERFORMED HERE ~ ~ ~ ~ ~ ~ ~ ~ I
C +

C +
C CONVERT THE DEVICE COORDINATES TO EQUIVALENT ASCII CODE I
C +

CALL INT_TO_ASCII(temp_x_array(1), temp_y_array(1),
+ ascii_x, ascii_y)
CALL ENTER_GRAPHICS(wsl)

C Turn on the linetype
WRITE(wsl.unit_num,503) L$

503 FORMAT('+',A)

C Turn on the color
WRITE(wsl.unit_num,504) C$

504 FORMAT('+',A)
C Position the cursor to the first point

WRITE(wsl.unit_num,502) 'P['//ascii_x//','//ascii_y//']V'
502 FORMAT('+',A)

C +
C Draw the line I
C +

DO 10 i = 2, num_pts
C Convert the device coordinates to equivalent ascii code

CALL INT_TO_ASCII(temp_x_array(i), temp_y_array(i),
+ ascii_x, ascii_y)

WRITE(wsl.unit_num,505) '['//ascii_x//','//ascii_y//']'
505 FORMAT('+',A)
10 CONTINUE

C +
C Return REGIS attributes to their default values. I
C +

C Set writing pattern to a solid line.
WRITE(wsl.unit_num,506) 'W(Pi)'

506 FORMAT('+',A)

CALL EXIT_GRAPHICS(wsl)
C Display surface is not empty.

wsl.display_empty = GKS$K_NOTEMPTY

Workstation Handler Function Examples D-23

C Return success status
HANDLER__POLYLINE = GKS$_SUCCESS
RETURN
END

CC
C
C "Text"
C Input Parameters:
C wsl address of local data area allocated for driver

C text_pos x starting text position in WC
C text_pos_y
C char_string actual text character string
C attrib_array an array of text attributes
C asf mask a 32-bit bitmask holding the attribute source flags
C
C Output Parameters:
C NONE.
C
C Yalue Returned:
C GKS$_SUCCESS Success
C GKS$_ERROR_101 Invalid code in string
C
CC

INTEGER*4 FUNCTION HANDLER__TEXTC wsl, text_pos x,
+ text_pos_y, char_atring, attrib_array, asf_maak)

IMPLICIT NONE
INCLUDE 'sys$library:gksmsgs.for/nolist'
INCLUDE 'sys$library:gksdefs.for/nolist'
INCLUDE 'ws_state_list.for/nolist'
INCLUDE 'iadiv_attributes.for/nolist'

C Parameters
RECORD /ws_state_list/ wsl
REAL*4 text_pos x

REAL*4 text_pos_y
CHARACTER*(*) char_atring

RECORD /text_attr/ attrib_array
INTEGER*4 asf _mask

C
C
C Declare local variables:
C index index into polyline attributes list
C C$ REGIS command to set color
C P$ REGIS command to position the cursor
C status value returned from library function
C length length of the descriptor
C address address of the descriptor
C
C

D-24 Workstation Handler Function Examples

INTEGER*4 index, i, status, length, address
INTEGER*4 color
CHARACTER*i c
CHARACTER*5 C~
CHARACTER*10 P~
RECORD /text_attr/ uabundle_text
INTEGER*4 LIB$ANALYZE_SDESC
INTEGER*4 GKS=SIM_STROKE_TEXT
EXTERNAL HANDLER__POLYLINE, HANDLER__FILL_AREA

REAL*4 ratio
C Determine the index for the bundle table.

index = attrib_array.text_index
IF(index .GT. wal.num_text_ind) THEN

index = 1
END IF

C +
C Error check: I
C +

status = LIBsANALYZE_SDESCC char_string, length, address)
DO 10 i = 1, length

c = char_stringCi:i)

+ LGT(c, CHARCI5*16+7))) THEN
HANDLER__TEXT = GKS=_ER~ROR_101
RETURN
END IF

10 CONTINUE

C +
C If the attribute is individual, then get it from the individual I
C attributes list. Otherwise get it from the bundle table. I
C +

CALL UNBUNDLE_TEXT_ATTR (wsl, unbundle_text ,
+ attrib_array, asf_maak)

IF (color .GE. 4) THEN
color = i

END IF
C: _ 'W(I'//CHAR color+48)//')'

C Determine the precision.
GO TO 0210, 220, 230) Cunbundle_text.precision+l)

C String precision--NOT IMPLEMENTED
210 GO to 230

C Character precision--NOT IMPLEMENTED
220 GO TO 230

Workstation Handler Function Examples D-25

C Stroke precision.
230 status = GKS$SIM_STROKE_TEXT(wsl, text_pos_x,

+ text_pos_y, char_string, unbundle_text,
+ HANDLER__POLYLINE, HANDLER__FILL_AREA)

C Display surface is not empty.
wsl.display_empty = GKS$K_NOTEMPTY

C Return success status.
HANDLER__TEXT = GKS$_SUCCESS

RETURN
END

D.5 Output Attribute Functions

cc

C "Set Polyline Representation"
C Input Parameters:
C wsl address of local data area allocated for driver
C pline_index polyline index
C line_type type of polyline, one of GKS$K_LINE_TYPE_SOLID,
C GKS$K_LINE_TYPE_DASHED, GKS$K_LINE_TYPE_DOTTED,
C or GKS$K_LINE_TYPE_DASHED_DOTTED
C linewidth_scale_factor linewidth scale factor
C color_index color index
C
C Output Parameters:
C NONE.
C
C Value Returned:
C GKS$_SUCCESS Success
C GKS$_ERROR_60 Polyline index is invalid
C GKS$_ERROR_64 Specified linetype is not supported on this workstation
C GKS$_ERROR_93 Color index is invalid
C
CC

INTEGER*4 FUNCTION HANDLER__SET_PLINE_REP(wsl,
+ pline_index, line_type, linewidth_scale_factor, color_index)

IMPLICIT NONE
INCLUDE 'sys$library:gksdefs.for/nolist'
INCLUDE 'sys$library:gksmsgs.for/nolist'
INCLUDE 'ws_state_list.for/nolist'
INCLUDE 'wsdt.for/nolist'

C Parameters
RECORD /ws_state_list/ wsl
INTEGER*4 pline_index
INTEGER*4 iine_type
REAL*4 linewidth_scale_factor
INTEGER*4 color_index

RECORD / wsdt_struct / wsdt
COMMON / workdesc / wsdt

D-26 Workstation Handler Function Examples

C +
C Error checking. I
C +

IF((pline_index .LE. 0) .OR.
+ (pline_index .GT. wsl.number_pline_ind)) THEN

HANDLER__SET PLINE_REP = GKS$_ERROR_60
RETURN

END IF

IF ((line_type .ne. GKS$K_LINETYPE_SOLID) .AND.
+ (line_type .ne. GKS$K_LINETYPE_DASHED) .AND.
+ (line_type .ne. GKS$K_LINETYPE_DOTTED) .AND.
+ (line_type .ne. GKS$K_LINETYPE_DASHED_DOTTID)) THEN

HANDLER__SET PLINE_REP = GKS$_ERROR_64
RETURN

END IF

IF((color index .LT. 0) .OR.
+ (color_index .GE. wsdt.num_colors)) THEN

HANDLER__SET_PLINE_REP = GKS$_ERROR_93
RETURN

END IF
C +
C Set the polyline bundle. I
C +

C Put in the SET values
wsl.set_Aline_bundlea(pline_index).line_type = line_type
wsl.set_pline_bundles(Aline_index).linewidth_scale_factor =

+ linewidth_acale_factor
wsl.set_pline_bundles(pline_index).color_index = color_index

C Put in the REALIZID values
wsl.real_Aline_bundles(pline_index).line_type = line_type
wal.real_pline_bundles(Aline_index).linewidth_acale_factor =

+ 1 0
wsl.real_pline_bundles(pline_index).color_index = color_index

C Return status of success.
HANDLER__SET_PLINE_REP = GKS$_SUCCESS

RETURN
END

Workstation Handler Function Examples D-27

D.6 Inquiry Functions

ccc

C "Inquire Liat of Polyline Indices"
C Input Parameters:
C wal address of local data area allocated for driver
C
C Modified Parameters:
C num_pline_entries (I)number of entries available in the array;
C (0)number of entries written in the array
C
C Output Parameters:
C list_pline_ind list of defined polyline indices
C total num_ind total number of indices available
C
C Value Returned:
C GKSs_SUCCESS Success
C
CCC

INTEGER*4 FUNCTION HANDLER__INQ_PLINE_IND(wal,
+ num_pline_entries, liat_pline_ind, total_nt~m_ind)

IMPLICIT NONE
INCLUDE 'sys$library:gkamaga.for/nolist'
INCLUDE 'sysslibrary:gkadefa.for/nolist'
INCLUDE 'ws_state_liat.for/nolist'

C Parameters
RECORD /wa_state_liat/ wsl
INTEGER*4 num_pline_entries
INTEGER*4 list_pline_ind(*)
INTEGER*4 total_num_ind

INTEGER*4 i

IF (num_pline_entries .GT. wsl.number_pline_ind) THEN
num_pline_entries = wsl.number_pline_ind

END IF
total_num_ind = wal.number_pline_ind
DO 100 i = i,num_pline_entriea

list_pline_ind(i) = wal.set_pline_bundlea(i).pline_index
100 CONTINUE
C Return status of success.

HANDLER__INQ_PLINE_IND = GKSS_SUCCESS
RETURN
END

D-28 Workstation Handler Function Examples

CCC
C
C "Inquire Polyline Representation"
C Input Parameters:
C wsl address of local data area allocated for driver
C pline_index polyline index
C set_realized returned value is GKS$K_VALUE_SET
C or GKS$K_YALUE_REALIZED
C
C Output Parameters:
C line_type line type in the bundle
C linewidth_scale_factor line width scale factor in the bundle
C color_index polyline color index
C
C Value Returned:
C GKS$_SUCCESS Success
C GKS$_ERROR_60 Polyline index is invalid
C GKS$_ERROR_61 A representation for the specified polyline index has not
C been defined on this workstation
C

CCC

INTEGER*4 FUNCTION HANDLER__INQ_PLINE_REP(wsl, pline_index,
+ set_realized. line_type, linewidth_scale_factor,
+ color_index)

IMPLICIT NONE
INCLUDE 'sys$library:gksdefs.for/nolist'
INCLUDE 'sys$library:gksmsgs.for/nolist'
INCLUDE 'ws_state_list.for/nolist'

C Parameters

RECORD /ws_state_list/ wal
INTEGER*4 pline_index
INTEGER*4 set_realized
INTEGER*4 line_type
REAL*4 linewidth_scale_factor
INTEGER*4 color_index

C Error checking
IF ((pline_index .LT. 0) .OR.
+ (pline_index .GT. wsl.number_pline_ind)) THEN

HANDLER__INQ_PLINE_REP = GKS$_ERROR_60
RETURN

END IF

IF (set_realized .EQ. GKS$K VALUE_SET) THEN
line_type = wsl.set_pline_bundles(pline_index).line_type
linewidth_scale_factor =

+ wsl.set_pline_bundles(pline_index).linewidth_scale_factor
color_index =

+ wsl.set_pline_bundles (pline_index).color_index
ELSE

line_type = wsl.real_pline_bundles(pline_index).line_type
linewidth_scale_factor =

+ wsl.real_pline_bundles(pline_index).linewidth_scale_factor
color_index =

+ wsl.real_pline_bundles(pline_index).color_index
END IF

Workstation Handler Function Examples D-29

C Return status of success.
HANDLER__INQ_PLINE_REP = GKS$_SUCCESS

RETURN
END

CC
C
C "Inquire Polyline Facilities"
C Input Parameters:
C wstype workstation type
C
C Modified Parameters:
C num_ltypes (I)number of available elements in the array;
C CO)number of elements written in the array
C
C Output Parameters:
C total_num_ltypes total number of linetypes
C list_line_types list of available linetypes
C num_line_widtha number of available linewidths
C nominal_linewidth nominal linewidth CLOG)
C minimum_linewidth minimum linewidth CLOG)
C maximim_linewidth maximum linewidth CLOG)
C number_predef_pline_ind number of predefined polyline iadices
C
C Value Returned:
C GKS$_SUCCESS Success
c
CC

INTEGER*4 FUNCTION HANDLER__INQ_PLINE_FAC(wstype, num_ltypes,
+ total num_ltypes, list_line_types, num_linewidths,
+ nominal_linewidth, minimum_linewidth, maximum_linewidth,
+ number_predef_pline_ind)

IMPLICIT NONE
INCLUDE 'sys$library:gksdefs.for/nolist'
INCLUDE 'sys$library:gksmsgs.for/nolist'
INCLUDE 'wsdt.for/nolist'

C Parameters

INTEGER*4 wstype
INTEGER*4 num_ltypes
INTEGER*4 total num_ltypes
INTEGER*4 list_line_types(*)
INTEGER*4 num_linewidths
REAL*4 nominal_linewidth
REAL*4 minimum_linewidth
REAL*4 maximum_linewidth
INTEGER*4 number_predef_pline_ind

INTEGER*4 i

D-30 Workstation Handler Function Examples

RECORD /wsdt_struct/ wsdt
COMMON /workdeac/ wsdt

C Make sure that the bundle tables are initialized first.
CALL BUNDLE_INIT()
IF (num_ltypes .GT. wsdt.num_linetypes) THEN

num_ltypes = wsdt.num_linetypes
END IF

total_num_ltypes = wsdt.num_linetypes
DO 100 i = 1, num_ltypes

list_line_types(i) = wadt.list_line_types(i)
100 CONTINUE

num_linewidths = wsdt.num_linewidths
nominal_linewidth = wsdt.nominal_linewidth
minimum_linewidth = wadt.minimum_linewidth
maximum_linewidth = wsdt.maximum_linewidth
number_predef_pline_ind = wadt.number_predef_pline_ind

C Return status of success.
HANDLER__INQ_PLINE_FAC = GKSS_SUCCESS

RETURN
END

CCC
C
C "Inquire Predefined Polyline Representation"
C Input Parameters:
C wstype workstation type
C pline_index predefined polyline index
C
C Output Parameters:
C linetype linetype
C linewidth linewidth scale factor
C color_index polyline color index
C
C Value Returned:
C line_type linetype
C line width_acale_factor linewidth scale factor
C color_index polyline color index
C
C Value Returned:
C GKSs_SUCCESS Success
C GKSs_ERROR_60 Polyline index is invalid
C GKS$_ERROR_62 A representation for the specified polyline index has not
C been predefined on this workstation
C
CCC

INTEGER*4 FUNCTION HANDLER__INQ_PREDEF_PLINE_REP(wstype,
+ pline_index, line_type, line width_scale_factor,
+ color_index)

IMPLICIT NONE
INCLUDE 'sysslibrary:gksdefs.for/nolist'
INCLUDE 'sys=library:gkamsgs.for/nolist'
INCLUDE 'wsdt.for/nolist'

Workstation Handler Function Examples D-31

C Parameters
INTEGER*4 wstype
INTEGER*4 pline_index
INTEGER*4 line_type
REAL*4 line_width_scale_factor
INTEGER*4 color_index
RECORD /wsdt_struct/ wsdt
COMMON /workdesc/ wsdt

C Make sure that the bundle tables are initialized first.
CALL BUNDLE_INIT()
IF (pline_index .GT. wsdt.number_predef_pline_ind) THEN

HANDLER__INQ_PREDEF_PLINE_REP = GKS$_ERROR_62
RETURN

END IF
line_type = wsdt.pline_bundles(pline_index).line_type
line width_scale_factor =
+ wsdt.pline_bundles(pline_index).linewidth_scale_factor
color_index = wsdt.pline_bundles(pline_index).color_index

C Return status of success.
HANDLER__INQ_PREDEF_PLINE_REP = GKS$_SUCCESS
RETURN
END

D.7 DFT Building Macro

Create a DFT for the FORTRAN VT handler.

.TITLE FORTRAN_DFT

;FORTRAN DFT_ADDR::

D-32 Workstation Handler Function Examples

DFT -
HANDLER = FORTRAN_DFT_ADDR,-
WS_CAT = OUT,-
OPEN_WS = HANDLER__OPEN_WS,-
CLEAR_WS = HANDLER__CLEAR_WS,-
SET_DEFER = HANDLER__SET_DEFERRAL, -
PERFORIK_DEFERRED = HANDLER__PERFORM_DEFERRED,
SET_GLOBAL = HANDLER__SET_GLOBAL, -
HIGHLIGHT_EXT = HANDLER__HIGHLIGHT_EXTENT, -
MSG = HANDLER__MESSAGE, -
CLOSE_WS = HANDLER__CLOSE_WS, -
SET_NDC_XFORM = HANDLER__SET_NDC_XFORM, -
ESC = HANDLER__ESCAPE,-
PLINE = HANDLER__POLYLINE,-
PMARKER = HANDLER__POLYMARKER,-
FILL_AREA = HANDLER__FILL_AREA,-
TXT = HANDLER__TEXT,-
CELL_ARRAY = HANDLER__CELL_ARRAY,-
GDP = HANDLER__GDP,-

SET_PLINE_REP = HANDLER__SET_PLINE_REP,-
SET_PMARK_REP = HANDLER__SET_PMARKER_REP,-
SET_TEXT_REP = HANDLER__SET_TEXT_REP,-
SET_FILL_REP = HANDLER__SET_FILL_REP,-
SET_PATT_REP = HANDLER__SET_PATT_REP,-
SET_COLOR_REP = HANDLER__SET_COLOR_REP,-

SET_WS WIND = HANDLER__SET_WS_WINDOW,-
SET_WS VIEW = HANDLER__SET WS_VIEWPORT,-
SET_NORM_XFORM = HANDLER__SET_NORM_XFORM

DFT_GKS_INQ-
INQ_WS_DEFER = HANDLER__INQ_WS_DEF_UPDATE,-
INQ_LIST_PLINE = HANDLER__INQ_PLINE_IND,-
INQ_PLINE_REP = HANDLER__INQ_PLINE_REP,-
INQ_LIST_PMARK = HANDLER__INQ_PMARK_IND,-
INQ_PMARK_REP = HANDLER__INQ_PMARK_REP,-
INQ_LIST_TEXT = HANDLER__INQ_TEXT_IND,-
INQ_TEXT_REP = HANDLER__INQ_TEXT_REP,-
INQ_TEXT_EXTENT = HANDLER__INQ_TEXT_EXTENT,-
INQ_LIST_FILL = HANDLER__INQ_FILL_IND,-
INQ_FILL_REP = HANDLER__INQ_FILL_REP,-
INQ_LIST_PATT = HANDLER__INQ_PATT_IND,-
INQ_PATT_REP = HANDLER__INQ_PATT_REP,-
INQ_LIST_COLOR = HANDLER__INQ_COLOR_IND,-
INQ_COLOR_REP = HANDLER__INQ_COLOR_REP,-
INQ WS_XFORM = HANDLER__INQ_WS_XFORM,-
INQ_PIXEL = HANDLER__INQ_PIXEL,-
INQ_PIXEL_DIMEN = HANDLER__INQ_PIXEL_ARRAY_DIM,-
INQ_PIXEL_ARRAY = HANDLER__INQ_PIXEL_ARRAY

Workstation Handler Function Examples D-33

DFT_WS_INQ -
INQ WS_CAT = HANDLER__INQ_WS_CAT,-
INQ_WS_CLASS = HANDLER__INQ_WS_CLASS,-
INQ_MAX_DISP = HANDLER__INQ_DISPLAY_SIZE,-
INQ_PLINE_FAC = HANDLER__INQ_PLINE_FAC,-
INQ_PREDEF_PLINE = HANDLER__INQ_PREDEF_PLINE_REP,-
INQ_PMARK_FAC = HANDLER__INQ_PMARK_FAC,-
INQ_PREDEF_PMARK = HANDLER__INQ_PREDEF_PMARK_REP,-
INQ_TEXT_FAC = HANDLER__INQ_TEXT_FAC,-
INQ_PREDEF_TEXT = HANDLER__INQ_PREDEF_TEXT_REP,-
INQ_FILL_FAC = HANDLER__INQ_FILL_FAC,-
INQ_PREDEF_FILL = HANDLER__INQ_PREDEF_FILL_REP,-
INQ_PATT_FAC = HANDLER__INQ_PATT FAC,-
INQ_PREDEF_PATT = HANDLER__INQ_PREDEF_PATT_REP,-
INQ_COLOR_FAC = HANDLER__INQ_COLOR_FAC,-
INQ_PREDEF_COLOR = HANDLER__INQ_PREDEF_COLOR_REP,-
INQ_AVAIL_GDP = HANDLER__INQ_LIST_GDP,-
INQ_GDP = HANDLER__INQ_GDP,-
INQ_DYN_MOD_WS = HANDLER__INQ_DYN MOD_WS_ATTR,-
INQ_DYN_SEG_ATTR =HANDLER__INQ_DYN_MOD_SEG_ATTR,-
INQ_DFLT_DEFER = HANDLER__INQ_DEF_DEF_STATE,-
INQ_MAX_LEN_STATE_TABLE = HANDLER__INQ_MAX WS_STATE,

INQ_STORAGE_SIZE = HANDLER__INQ_SIZE_STORAGE
.END

D.8 Linking Command Procedure

:!
$! This command procedure makes the shareable image for the handler
Z ! and then defines the logicals needed to run it.
s !
S ! It is linked "/debug" to allow for shareable image debugging
~ !
S ! The WORKDESC common attributes must be redefined so that they
S ! area NOSHR,WRT
_ !
~ link/debug/share=ws_handler.exe/map/full/cross fortran_dit,syssinput/opt

handler/lib
universal = fortran_dit_addr
PSECT_ATTR=WORKDESC,NOSHR,WRT

D-34 Workstation Handler Function Examples

$!

$! Use workstation type 110. but this can be any unused number.
$!

$ def gks$wstype 110
$ def gks$workstation_110 ws_handler
$ def ws_handler disk$: [your_directory]ws_handler.exe
$ def gks$function_tab_110 fortran_dit_addr

$!

$! workstation is non-reentrant so define a logical.
$! NOTE: - when debugging don't define this logical as the image
$! name will be changed.

$!

$! def gks$non_reentrant true
$!

$! Define the logical GKS$$HANDLER_DEBUG to be anything so that the
$! debugger will wake up in open workstation.
$ def gks$$handler_debug T

Workstation Handler Function Examples D-35

Index

A
Attributes, 2-4

geometric, 9-1 to 9-2
nongeometric, 9-2

Attribute Source Flag, 2-4

B
Bundles, 2-4

C
Cell Array function, 9-19 to 9-21
CHOICE~ATAREC

in WSL, 3-30
CHOICE~ATA~iECORD, 3-23
Clear Workstation function, 4-7 to 4-8
Close Segment function, 10-3
Close Workstation function, 4-6
COLOR_AVAILABLE, 3-17
COLOR~UNDLES, 3-27
Communications

between server and handler, 2-5 to 2-7
CONNECTION_ID, 3-26
Coordinate systems, 2-3

device coordinates, 2-3
Logical device coordinates, 2-3
mapping, 2-3

from DC to LDC, 2-3
from NDC to DC, 2-4
from WC to NDC, 2-3

normalized device coordinates, 2-3
table, 2-3
world coordinates, 2-3

Create Segment function, 10-2

r'1

CUR_WS_VIEWPORT, 3-27
CUR_WS_WINDOW, 3-27

D
Data Structures

for workstation handlers, 3-4 to 3-31
Data types, 2-6

arrays
one-dimensional, 2-6
two-dimensional, 2-6

integer, 2-6
real numbers, 2-6
table, 2-6
text, 2-6

DC
See Device coordinates

DEFER~IAODE, 3-26
DEF~EFERJNIODE, 3-9
Delete Segment function, 10-5 to 10-6
Description Table

GKS, 2-2
Workstation, 2-2

Device coordinates, 2-3
DEVNUM, 3-21, 3-22, 3-23, 3-24

in WSL, 3-28, 3-29, 3-30, 3-31
DEV_COORDINATE_UNITS, 3-6
DEV~ISPLAY_SPACE_SIZE~C, 3-6
DEV~ISPLAY_SPACE_SIZE_Y, 3-6
DISPLAY~MPTY, 3-26
DISPLAY_TYPE, 3-6
DMAF_COLOR, 3-8
DMAF~ELETE_SEGMENT, 3-21
DMAF~ILL, 3-8
DMAF~-IIGHLIGHTING, 3-20
DMAF~NVISIBILITY, 3-19

Index-1

DMAF~'ATTERN, 3-8
DMAF~OLYLINE, 3-7
DMAF~OLYMARKER, 3-7
DMAF_SEGMENT_OVERLAP, 3-20
DMAF_SEGMENT~RIORITY, 3-20
DMAF_SEGMENT~CFORM, 3-19
DMAF_TEXT, 3-7
DMAF_VISIBILITY, 3-20
DMAF_WS_TRANSFORMATION, 3-9

E
ECHO~►REA, 3-21, 3-22, 3-23, 3-24

in WSL, 3-28, 3-29, 3-30, 3-31
ECHO_SWITCH

in WSL, 3-28, 3-29, 3-30, 3-31
Escape function, 4-12 to 4-13

F
Fill Area function, 9-15 to 9-18
FILL BUNDLES, 3-27
FLAG~'RESENT, 3-26

G
GDP function, 9-22 to 9-23
Get Item from Metafile function, 7-5 to 7-6
GKS$FIND_SEGMENT, C-2 to C-5
GKS$FIND_SEG~XTENT, C-6 to C-7
GKS$NON~EENTRANT~n, 3-48
GKS$SIM _STROKE _INQ _TEXT~AC,

B-9 to B-10
GKS$SIM_STROKE_TEXT, B-2 to B-5
GKS$SIM_STROKE_TEXT~XTENT, B-6 to 6-8
GKSDEFS, 3-33

file extensions for different languages, 3-33
GKS Description Table, 2-2
GKS Kernel, 1-1
GKSMSGS, 3-33

file extensions for different languages, 3-33
GKS State List, 2-2

H
Handlers, 1-1
Hard-copy output

in workstation handlers, 3-3
Highlight Extent function, 9-24

i
Initialize Choice function, 5-21 to 5-24
Initialize Locator function, 5-7 to 5-12
Initialize Pick function, 5-28 to 5-30
Initialize String function, 5-25 to 5-27
Initialize Stroke function, 5-13 to 5-17
Initialize Valuator function, 5-18 to 5-20
INITIAL_PICKID

in WSL, 3-31
INITX_ARRAY

in WSL, 3-29
INITY~►RRAY

in WSL, 3-29
INIT_CHOICE

in WSL, 3-30
INIT~OCN~C, 3-21

in WSL, 3-28
INIT_LOCN_Y, 3-21

in WSL, 3-28
INIT_SEGMENT

in WSL, 3-31
INIT_STATUS

in WSL, 3-30, 3-31
INIT_STRING

in WSL, 3-31
INIT_VALUE, 3-23

in WSL, 3-30
Input, 2-4

for device handlers, 2-4
logical input types, 2-4
transformations in, 2-4

Inquire Choice Device State function,
6-47 to 6-49

Inquire Color Facilities function, 6-90
Inquire Color Representation function,

6-35 to 6-36
Inquire Default Choice Device Data function,

6-106 to 6-107
Inquire Default Deferral State Values function,

6-114 to 6-115
Inquire Default Locator Device Data function,

6-100 to 6-101
Inquire Default Pick Device Data function,

6-110 to 6-111
Inquire Default String Device Data function,

6-108 to 6-109
Inquire Default Stroke Device Data function,

6-102 to 6-103
Inquire Default Valuator Device Data function,

6-104 to 6-105

Index-2

Inquire Display Space Size function, 6-69 to 6-70
Inquire Dynamic Modification of Segment Attributes

function, 6-117 to 6-118
Inquire Dynamic Modification of Workstation

Attributes function, 6-112 to 6-113
Inquire Fill Area Facilities function, 6-83 to 6-84
Inquire Fill Area Representation function,

6-27 to 6-28
INQUIRE GDP EXTENT, 3-34 to 3-35
Inquire GDP Primitives function, 6-92 to 6-93
Inquire Generalized Drawing Primitive function,

6-94 to 6-95
Inquire List of Color Indexes function,

6-33 to 6-34
Inquire List of Fill Area Indexes function,

6-25 to 6-26
Inquire List of Pattern Indexes function,

6-29 to 6-30
Inquire List of Polyline Indexes function,

6-3 to 6-4
Inquire List of Polymarker Indexes function,

6-7 to 6-8
Inquire List of Text Indexes function, 6-11 to 6-12
Inquire Locator Device State function,

6-39 to 6-41
Inquire Maximum Length of Workstation State

Tables function, 6-96 to 6-97
Inquire Number of Available Logical Input Devices

function, 6-98 to 6-99
Inquire Number of Segment Priorities Supported

function, 6-116
Inquire Pattern Facilities function, 6-87
Inquire Pattern Representation function,

6-31 to 6-32
Inquire Pick Device State function, 6-52 to 6-54
Inquire Pixel Array Dimensions function,

6-57 to 6-59
Inquire Pixel Array function, 6-60 to 6-61
Inquire Pixel function, 6-62 to 6-63
Inquire Polyline Facilities function, 6-71 to 6-72
Inquire Polyline Representation function,

6-5 to 6-6
Inquire Polymarker Facilities function,

6-75 to 6-76
Inquire Polymarker Representation function,

6-9 to 6-10
Inquire Predefined Color Representation function,

6-91
Inquire Predefined Fill Area Representation function,

6-85 to 6-86

Inquire Predefined Pattern Representation function,
6-88 to 6-89

Inquire Predefined Polyline Representation function,
6-73 to 6-74

Inquire Predefined Polymarker Representation
function, 6-77 to 6-78

Inquire Predefined Text Representation function,
6-81 to 6-82

Inquire Segment Names on Workstation function,
6-64 to 6-65

inquire Size of Handler Storage function, 6-119
Inquire Size of Handler Storage function, 6-119
Inquire String Device State function, 6-50 to 6-51
Inquire Stroke Device State function, 6-42 to 6-44
Inquire Text Extent function, 6-15 to 6-24
Inquire Text Facilities function, 6-79 to 6-80
Inquire Text Representation function,

6-13 to 6-14
Inquire Valuator Device State function,

6-45 to 6-46
Inquire Workstation Category function,

6-66 to 6-67
Inquire Workstation Classification function, 6-68
Inquire Workstation Deferral and Update -State

function, 6-55 to 6-56
Inquire Workstation Transformation function,

6-37 to 6-38
Inquiries, 2-1 to 2-2
Insert Segment

and the NDC transformation, A-2

K
Kernel, 1-1

L
LDC

See Logical device coordinates
LIST_FILL _INTSTYLE, 3-15
LIST_FONT_PREC_PAIRS, 3-13
LIST_GDP, 3-18
LIST_HATCH_STYLE, 3-15
LIST_LINE_TYPES, 3-10
LIST_MARKERTYPES, 3-12
LIST_PROMPT_ECHO_TYPES, 3-21, 3-22, 3-23,

3-24
LOCATOR_DATA_RECORD, 3-21
LOC_DATAREC

in WSL, 3-28
Logical device coordinates, 2-3

1 ndex-3

M
MAXIMUM~UFSIZE, 3-22, 3-24
MAXIMUM_CHAR~XP_FACTOR, 3-14
MAXIMUM_CHAR_HEIGHT, 3-14
MAXIMUM~INEWIDTH, 3-11
MAXIMUM_MSIZE, 3-12
MAX _COLOR_IND, 3-19
MAX _FILL _BUNDLES, 3-19
MAX_NUM-CHOICE, 3-23
MAX ~ATT_IND, 3-19
MAX _PLINE_BUNDLES, 3-18
MAX ~MARK_BUNDLES, 3-19
MAX _TEXT_BUNDLES, 3-19
Message function, 4-25
MINIMUM_CHAR_EXP_FACTOR, 3-14
MINIMUM_CHAR_HEIGHT, 3-14
MINIMUM_LINEWIDTH, 3-10
MINIMUM_MSIZE, 3-12

N
NDC

See Normalized device coordinates
NDC transformation, A-2 to A-6
NEW~RAME, 3-26
NOMINAL~INEWIDTH, 3-10
NOMINAL _MSIZE, 3-12
Normalization transformation, 2-3
Normalized device coordinates, 2-3
NUMBER_PLINE_IND, 3-26
NUMBER_PREDEF~LINE_IND, 3-11
NUMBER_PREDEF_PMARK_IND, 3-12
NUM_CHAR_EXP_FACTORS, 3-14
NUM_CHAR_HEIGHTS, 3-14
NUM_COLORS, 3-17
NUM_COLOR_REP, 3-27
NUM~ILL_IND, 3-27
NUM _FILL _INTSTYLE, 3-15
NUM_FONT_PREC_PAIRS, 3-13
NUM_GDP, 3-17
NUM _HATCH _STYLE, 3-15
NUM_INIT_POINTS

in WSL, 3-29
NUM_LINEWIDTHS, 3-10
NUM _LINE _TYPES, 3-10
NUM_MARKERTYPES, 3-11
NUM _MSIZES, 3-12
NUM_PATT_IND, 3-27
NUM_PREDEF_COLOR_REP, 3-17
NUM _PREDEF_FILL _IND, 3-15

1 ndex-4

NUM_PREDEF~ATT_IND, 3-16
NUM _PREDEF_TEXT_IND, 3-14
NUM_PREDER~'MAR_IND, 3-26
NUM_PROMPT~CHO_TYPES, 3-21, 3-22, 3-23,

3-24
NUM_SEGMENT~RIORITIES, 3-19
NUM_TEXT_IND, 3-27

0
Open Workstation

initializing the WSL, 3-25
Open Workstation function, 4-4 to 4-5
OPMODE

in WSL, 3-28, 3-29, 3-30, 3-31
Output, 2-4 to 2-6

and overlapping segments, 9-5
considerations in writing a handler, 2-5
coordinate data, 9-1
geometric attributes, 9-1 to 9-2
nongeometric attributes, 9-2
simulating output functions, 2-5
transformations in, 2-5

P
Passing mechanisms, 2-6 to 2-7

table, 2-6
PATT_BUNDLES, 3-27
Perform Deferred Output function, 4-11
PICK_DATAREC

in WSL, 3-31
PICK_DATA_RECORD, 3-24
PLINE_BUNDLES, 3-26
PMARK_BUNDLES, 3-27
Polyline function, 9-6 to 9-7
Polymarker function, 9-8 to 9-9
PREDEF_COLOR_REPS, 3-17
PREDEF_FILL _BUNDLES, 3-16
PREDEF_PATT_REPS, 3-1 S
PREDEF_PLINE_BUNDLES, 3-11
PREDEF_PMARK_BUNDLES, 3-13
PREDEF_TEXT_BUNDLES, 3-15
Primitives, 2-4
PROMPT_ECHO_TYPE

in WSL, 3-28, 3-29, 3-30, 3-31

R
RASTER_DISPLAY_SPACE_SIZE~C, 3-6
RASTER_DISPLAY_SPACE_SIZE_Y, 3-6

Read Item from Metafile function, 7-7 to 7-8
Redraw All Segments on Workstation function,

4-22
Reentrant handlers, 3-48
REGENJNIODE, 3-9, 3-26
Rename Segment function, 10-4
Request Choice function, 5-49 to 5-50
Request Locator function, 5-43 to 5-44
Request Pick function, 5-53 to 5-54
Request String function, 5-51 to 5-52
Request Stroke function, 5-45 to 5-46
Request Valuator function, 5-47 to 5-48
REQ_WS_VIEWPORT, 3-27
REQ_WS_WINDOW, 3-27

S
Sample Choice function, 5-58 to 5-59
Sample Locator function, 5-55
Sample Pick function, 5-63 to 5-64
Sample String function, 5-61 to 5-62
Sample Stroke function, 5-56 to 5-57
Sample Valuator function, 5-60
Segment State List, 2-2
Segment transformation, A-2
Set Choice Mode function, 5-37 to 5-38
Set Color Representation function, 8-13
Set Deferral Mode function, 4-20 to 4-21
Set Detestability function, 10-13
Set Fill Area Representation function, 8-9 to 8-10
Set Global Interactions function, 4-23 to 4-24
Set Highlighting function, 10-14 to 10-15
Set Locator Mode function, 5-31 to 5-32
Set NDC Transformation function, 4-26
Set Normalization Transformation function,

4-18 to 4-19
Set Pattern Representation function, 8-11 to 8-12
Set Pick Mode function, 5-41 to 5-42
Set Polyline Representation function, 8-3 to 8-4
Set Polymarker Representation function,

8-5 to 8-6
Set Segment Priority function, 10-11 to 10-12
Set Segment Transformation

and the NDC transformation, A-4
Set Segment Transformation function,

10-7 to 10-8
Set String Mode function, 5-39 to 5-40
Set Stroke Mode function, 5-33 to 5-34
Set Text Representation function, 8-7 to 8-8
Set Valuator Mode function, 5-35 to 5-36
Set Visibility function, 10-9 to 10-10

Set Workstation Viewport function, 4-16 to 4-17
Set Workstation Window function, 4-14 to 4-15
State List

GKS, 2-2
Segment, 2-2
Workstation, 2-2

STK~ATAREC
in WSL, 3-29

STORED_SEGMENTS, 3-26
STRING~ATAREC

in WSL, 3-31
STRING~ATA~iECORD, 3-25
Stroke-precision text simulation

and Pascal Bound Procedure Value, B-1
implementing, B-1

STROKE BATA RECORD, 3-22

T
Text function, 9-10 to 9-14
TEXT~UNDLES, 3-27
Transformation matrix

combining, A-1
Transformation pipeline

for handlers that simulate segments
figure, A-2

for handlers that support segments
figure, A-4

Transformations, 2-2 to 2-4
derivation

assuming the identity NDC transformation,
A-6 to A-7

assuming the non-identity NDC
transformation, A-8 to A-10

NDC, A-2
Segment, A-2
workstation, 2-4

TRANSFORM_FLAG, 3-26

u
Update Workstation function, 4-9 to 4-10

V
VALUATOR~ATA~iECORD, 3-23
VAL~ATAREC

in WSL, 3-30

Index-5

W
WC

See World coordinates
Worksation State List

for workstation handlers
initial values, 3-25

Workstation Description Table, 2-2
for workstation handlers, 3-4 to 3-25

contents, 3-4
contents for CHOICE input devices, 3-23
contents for LOCATOR input devices, 3-21
contents for PICK input devices, 3-24
contents for STRING input devices, 3-24
contents for STROKE input devices, 3-22
contents for VALUATOR input devices,

3-22
for all workstation types except MI and MO,

table, 3-5
for INPUT and OUTIN workstations,

3-21 to 3-25
for OUTPUT and OUTIN workstations,

3-6 to 3-21
Table, 3-5

Workstation handler, 1-3
advantages, 1-4
figure, 1-3
hard copy output, 3-3
Open Workstation

initializing the WSL, 3-25
required capabilities, 3-2 to 3-3

table, 3-2
Workstation Handler escape functions

INQUIRE GDP EXTENT, 3-34 to 3-35
Workstation handler functions

Cell Array, 9-19 to 9-21
Clear Workstation, 4-7 to 4-8
Close Segment, 10-3
Close Workstation, 4-6
Create Segment, 10-2
Delete Segment, 10-5 to 10-6
Escape, 4-12 to 4-13
Fill Area, 9-15 to 9-18
SDP, 9-22 to 9-23
Get Item from Metafile, 7-5 to 7-6
Highlight Extent, 9-24
Initialize Choice, 5-21 to 5-24
Initialize Locator, 5-7 to 5-12
Initialize Pick, 5-28 to 5-30
Initialize String, 5-25 to 5-27
Initialize Stroke, 5-13 to 5-17

Workstation handler functions (cont'd.)
Initialize Valuator, 5-18 to 5-20
Inquire Choice Device State, 6-47 to 6-49
Inquire Color Facilities, 6-90
Inquire Color Representation, 6-35 to 6-36
Inquire Default Choice Device Data,

6-106 to 6-107
Inquire Default Deferral State Values,

6-114 to 6-115
Inquire Default Locator Device Data,

6-100 to 6-101
Inquire Default Pick Device Data,

6-110 to 6-111
Inquire Default String Device Data,

6-108 to 6-109
Inquire Default Stroke Device Data,

6-102 to 6-103
Inquire Default Valuator Device Data,

6-104 to 6-105
Inquire Display Space Size, 6-69 to 6-70
Inquire Dynamic Modification of Segment

Attributes, 6-117 to 6-118
Inquire Dynamic Modification of Workstation

Attributes, 6-112 to 6-113
Inquire Fill Area Facilities, 6-83 to 6-84
Inquire Fill Area Representation, 6-27 to 6-28
Inquire GDP Primitives, 6-92 to 6-93
Inquire Generalized Drawing Primitive,

6-94 to 6-95
Inquire List of Color Indexes, 6-33 to 6-34
Inquire List of Fill Area Indexes, 6-25 to 6-26
Inquire List of Pattern Indexes, 6-29 to 6-30
Inquire List of Polyline Indexes, 6-3 to 6-4
Inquire List of Polymarker Indexes, 6-7 to 6-8
Inquire List of Text Indexes, 6-11 to 6-12
Inquire Locator Device State, 6-39 to 6-41
Inquire Maximum Length of Workstation State

Tables, 6-96 to 6-97
Inquire Number of Available Logical Input

Devices, 6-98 to 6-99
Inquire Number of Segment Priorities Supported,

6-116
Inquire Pattern Facilities, 6-87
Inquire Pattern Representation, 6-31 to 6-32
Inquire Pick Device State, 6-52 to 6-54
Inquire Pixel, 6-62 to 6-63
Inquire Pixel Array, 6-60 to 6-61
Inquire Pixel Array Dimensions, 6-57 to 6-59
Inquire Polyline Facilities, 6-71 to 6-72
Inquire Polyline Representation, 6-5 to 6-6
Inquire Polymarker Facilities, 6-75 to 6-76

u

Index-6

Workstation handler functions (cont'd.)
Inquire Polymarker Representation,

6-9 to 6-10
Inquire Predefined Color Representation, 6-91
Inquire Predefined Fill Area Representation,

6-85 to 6-86
Inquire Predefined Pattern Representation,

6-88 to 6-89
Inquire Predefined Polyline Representation,

6-73 to 6-74
Inquire Predefined Polymarker Representation,

6-77 to 6-78
Inquire Predefined Text Representation,

6-81 to 6-82
Inquire Segment Names on Workstation,

6-64 to 6-65
inquire Size of Handler Storage, 6-119
Inquire String Device State, 6-50 to 6-51
Inquire Stroke Device State, 6-42 to 6-44
Inquire Text Extent, 6-15 to 6-24
Inquire Text Facilities, 6-79 to 6-80
Inquire Text Representation, 6-13 to 6-14
Inquire Valuator Device State, 6-45 to 6-46
Inquire Workstation Category, 6-66 to 6-67
Inquire Workstation Classification, 6-68
Inquire Workstation Deferral and Update State,

6-55 to 6-56
Inquire Workstation Transformation,

6-37 to 6-38
Message, 4-25
Open Workstation, 4-4 to 4-5
Perform Deferred Output, 4-11
Polyline, 9-6 to 9-7
Polymarker, 9-8 to 9-9
Read Item from Metafile, 7-7 to 7-8
Redraw All Segments on Workstation, 4-22
Rename Segment, 10-4
Request Choice, 5-49 to 5-50
Request Locator, 5-43 to 5-44
Request Pick, 5-53 to 5-54
Request String, 5-51 to 5-52
Request Stroke, 5-45 to 5-46
Request Valuator, 5-47 to 5-48
Sample Choice, 5-58 to 5-59
Sample Locator, 5-55
Sample Pick, 5-63 to 5-64
Sample String, 5-61 to 5-62
Sample Stroke, 5-56 to 5-57
Sample Valuator, 5-60
Set Choice Mode, 5-37 to 5-38
Set Color Representation, 8-13

Workstation handler functions (cont'd.)
Set Deferral Mode, 4-20 to 4-21
Set Delectability, 10-13
Set Fill Area Representation, 8-9 to 8-10
Set Global Interactions, 4-23 to 4-24
Set Highlighting, 10-14 to 10-15
Set Locator Mode, 5-31 to 5-32
Set NDC Transformation, 4-26
Set Normalization Transformation,

4-18 to 4-19
Set Pattern Representation, 8-11 to 8-12
Set Pick Mode, 5-41 to 5-42
Set Polyline Representation, 8-3 to 8-4
Set Polymarker Representation, 8-5 to 8-6
Set Segment Priority, 10-11 to 10-12
Set Segment Transformation, 10-7 to 10-8
Set String Mode, 5-39 to 5-40
Set Stroke Mode, 5-33 to 5-34
Set Text Representation, 8-7 to 8-8
Set Valuator Mode, 5-35 to 5-36
Set Visibility, 10-9 to 10-10
Set Workstation Viewport, 4-16 to 4-17
Set Workstation Window, 4-14 to 4-15
Text, 9-10 to 9-14
Update Workstation, 4-9 to 4-10
Write Item to Metafile, 7-3 to 7-4

Workstation handlers, 1-5
Workstation State List, 2-2

for workstation handlers, 3-25 to 3-31
Workstation transformation, 2-4
Workstation viewport, 2-3
Workstation window, 2-3
WORKSTATION_CATEGORY, 3-5
World coordinates, 2-3
World viewport, 2-3
World window, 2-3
WORLD_VIEWPORT, 3-27
WORLD_WINDOW, 3-27
Write Item to Metafile function, 7-3 to 7-4
Writing handler, 1-4
Writing handlers, 1-2
WSTYPE, 3-26

X
XFORM

in WSL, 3-28, 3-29

Index-7

Reader's Comments Building a DEC GKS Workstation
Handler System

Order No. AA—MJ34A—TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ❑ ❑ ❑

Completeness (enough information) ❑ ❑ ❑ ❑

Clarity (easy to understand) ❑ ❑ ❑ ❑

Organization (structure of subject matter) ❑ ❑ ❑ ❑

Figures (useful) ❑ ❑ ❑ ❑

Examples (useful) ❑ ❑ ❑ ❑

Index (ability to find topic) ❑ ❑ ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.

Company Date

Ma' ' g Address

 Phone

— — Do Not Tear -Fold Here and Tape

d a9ao a TM

~- — — Do Not Tear -Fold Here

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL 6E PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications Spit brook
ZK01-3/J35
110 SPiT BROOK ROAD
NASHUA, NH 03062-9987

Iil~~~~~ll~ll~~~~ll~~~~l~ll~i~~l~l~~l~~l~l~~~l~ll~~i

C
u
t
A

io

tie
d
 L

in
e

n Reader's Comments Building a DEC GKS Workstation
Handler System

Order No. AA—MJ34A—TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ~ ❑ ❑ ❑

Completeness (enough information) ❑ ❑ ❑ ❑

Clarity (easy to understand) ❑ ❑ ❑ ❑

organization (structure of subject matter) ❑ ❑ ❑ ❑

Figures (useful) ❑ ❑ ❑ ❑

Examples (useful) ❑ ❑ ❑ ❑

Index (ability to find topic) ❑ ❑ ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.

Company Date

Mailing Address

 Phone

— Do Not Tear -Fold Here and Tape

d 9 9

~- — Do Not Tear -Fold Here

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications Spit Brook
ZK01-3/J35
110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

C
u
t
A

lo
n

g
 D

o
tt

e
d

 L
in

e

