
VMS
Record Management
Services Reference
Manual

Order Number: AA—LA83A—TE

April 1988

This document contains general information intended for use in any
VAX programming language, as well as specific information on writing
programs in VAX MACRO that use VMS RMS. It also includes descriptions
of the VMS RMS macros provided for use by VAX MACRO programs.

Revision/Update Information: This revised document supersedes
the Record Management Services
Reference Manual, Version 4.4.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

d D 9 DD a TM

ZK4523

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA &PUERTO RICO*

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire
03061

CANADA

Digital Equipment
of Canada Ltd.
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

INTERNATIONAL

Digital Equipment Corporation
PSG Business Manager
c/o Digital's local subsidiary
or approved distributor

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use ~;
DIGITAL-supported devices, such as the LN03 laser printer and PostScript~~_"
printers (PrintServer 40 or LN03R ScriptPrinter), to produce atypeset-quality
copy containing integrated graphics.

~~
PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE xxiii

NEW AND CHANGED FEATURES xxvii

GENERAL INFORMATION ABOUT VMS RECORD
MANAGEMENT SERVICES

CHAPTER 1 INTRODUCTION TO VMS RMS 1-1

1.1 VMS RMS FUNCTIONS 1-1

1.2 PASSING ARGUMENTS TO VMS RMS 1-2
1.2.1 VMS RMS Services and Control Blocks 1-2
1.2.2 Control Blocks for File Services 1-2
1.2.3 Control Blocks for Record Services 1-4
1.2.4 The Dual Purpose of Control Blocks 1-4

CHAPTER 2 THE PROGRAM INTERFACE WITH VMS RMS 2-1

2.1 THE RUN-TIME ENVIRONMENT AND VMS RMS
PROGRAMMING 2-1

2.2 CONVENTIONS FOR NAMING FIELDS 2-2

2.3 THE VMS RMS CALLING SEQUENCE 2-4

2.4 CONDITION VALUES 2-5

2.5 ALLOWABLE PROGRAM EXECUTION MODES 2-7

2.6 RESERVED EVENT FLAGS 2-7

v

Contents

2.7 DEC MULTINATIONAL CHARACTER SET 2-7

CHAPTER 3 VMS RMS MACROS AND VAX MACRO
PROGRAMMING 3-~

3.1 VMS RMS MACROS 3-1
3.1.1 Conventions for Naming VMS RMS Macros 3-2
3.1.2 Applicable VAX MACRO Syntax Rules 3-5

3.2 USING THE VMS RMS MACROS 3-6
3.2.1 Control Block Initialization Macros 3-7
3.2.2 Control Block Symbol Definition Macros 3-8
3.2.3 Control Block Store Macros 3-8
3.2.4 Service Macros 3-10

CHAPTER 4 VMS RMS EXAMPLE PROGRAMS 4-1

4.1 CREATING, ACCESSING, AND DEACCESSING A FILE 4-1
4.1.1 Example of Opening and Creating Files 4-2
4.1.2 Example of Creating aMultiple-Key Indexed File 4-5

4.2 PROCESSING FILE SPECIFICATIONS 4-9

4.3 CONNECTING AND DISCONNECTING RECORD STREAMS 4-12

4.4 OTHER FILE-PROCESSING OPERATIONS 4-14

4.5 RETRIEVING AND INSERTING RECORDS 4-16

4.6 DELETING RECORDS 4-19

4.7 UPDATING RECORDS 4-21

4.8 USING BLOCK I/O 4-23
4.8.1 Mixed Block and Record I/O 4-24
4.8.2 The Next Block Pointer (NBP) 4-25

vi

Contents

4.9 OTHER RECORD-PROCESSING OPERATIONS 4-27

4.10 CONTROL ROUTINES 4-27

VMS RMS CONTROL BLOCKS

CHAPTER 5 FILE ACCESS BLOCK (FAB) 5-1

5.1 SUMMARY OF FIELDS 5-1

5.2 FAB$L~LQ FIELD 5-3

5.3 FAB$B_BID FIELD 5-3

5.4 FAB$B_BKS FIELD 5-3

5.5 FAB$B_BLN FIELD 5-4

5.6 FAB$W_BLS FIELD 5-5

5.7 FAB$V_CHAN_MODE SUBFIELD 5-5

5.8 FAB$L_CTX FIELD 5-6

5.9 FAB$W_DEQ FIELD 5-6

5.10 FAB$L_DEV FIELD 5-7

5.11 FAB$L_DNA FIELD 5-8

5.12 FAB$B_DNS FIELD 5-9

5.13 FAB$B_FAC FIELD 5-9

vii

Contents

5.14 FAB$L_FNA FIELD 5-11

5.15 FAB$B_FNS FIELD 5-12

5.16 FAB$L_FOP FIELD 5-12

5.17 FAB$B_FSZ FIELD 5-18

5.18 FAB$W_GBC FIELD 5-19

5.19 FA B$W_I F I FIELD 5-20

5.20 FAB$V_LNM_MODE SUBFIELD 5-20

5.21 FAB$L_MRN FIELD 5-21

5.22 FAB$W_M RS FIELD 5-21

5.23 FAB$L_NAM FIELD 5-23

5.24 FAB$B_ORG FIELD 5-23

5.25 FAB$B_RAT FIELD 5-23

5.26 FAB$B_RFM FIELD 5-25

5.27 FAB$B_RTV FIELD 5-26

5.28 FAB$L_SDC FIELD 5-27

5.29 FAB$B_SHR FIELD 5-27

5.30 FAB$L_STS FIELD 5-29

5.31 FAB$L_STV FIELD 5-29

viii

Contents

5.32 FAB$L~CAB FIELD 5-29

CHAPTER 6 NAME BLOCK (NAM) 6-1

6.1 SUMMARY OF FIELDS 6-1

6.2 FILE SPECIFICATION COMPONENT DESCRIPTORS 6-3

6.3 NAM$B_BID FIELD 6-4

6.4 NAM$B_BLN FIELD 6-4

6.5 NAM$B_DEV AND NAM$L_DEV FIELDS 6-4

6.6 NAM$W_DI D FIELD 6-4

6.7 NAM$B_DIR AND NAM$L_DIR FIELDS 6-5

6.8 NAM$T_DVI FIELD 6-5

6.9 NAM$L_ESA FIELD 6-5

6.10 NAM$B_ESL FIELD 6-5

6.11 NAM$B_ESS FIELD 6-5

6.12 NAM$W_FID FIELD 6-6

6.13 NAM$L_FNB FIELD 6-6

6.14 NAM$B_NAME AND NAM$L_NAME FIELDS 6-7

6.15 NAM$B_NODE AND NAM$L_NODE FIELDS 6-7

6.16 NAM$B_NOP FIELD 6-7

ix

Contents

6.17 NAM$L_RLF FIELD 6-8

6.18 NAM$L_RSA FIELD 6-g

6.19 NAM$B_RSL FIELD 6-9

6.20 NAM$B_RSS FIELD 6-9

6.21 NAM$B_TYPE AND NAM$L_TYPE FIELDS 6-9

6.22 NAM$B_VER AND NAM$L_VER FIELDS 6-10

6.23 NAM$L_WCC FIELD 6-10

CHAPTER 7 RECORD ACCESS BLOCK (RAB) ~-~

7.1 SUMMARY OF FIELDS 7-1

7.2 RAB$B_BI D FIELD 7-2

7.3 RAB$L_BKT FIELD 7-2

7.4 RAB$B_BLN FIELD 7-3

7.5 RAB$L_CTX FIELD 7-3

7.6 RAB$L_FAB FIELD 7-3

7.7 RAB$W_ISI FIELD 7-3

7.8 RAB$L_KBF FIELD 7-3

7.9 RAB$B_KRF FIELD 7-4

7.10 RAB$B_KSZ FIELD 7-4

x

Contents

7.11 RAB$ B_M BC FIELD 7-5

7.12 RAB$B_MBF FIELD 7-6

7.13 RAB$L_PBF FIELD 7-7

7.14 RAB$B_PSZ FIELD 7-7

7.15 RAB$B_RAC FIELD 7-7

7.16 RAB$L_RBF FIELD 7-8

7.17 RAB$W_RFA FIELD 7-9

7.18 RAB$L_RHB FIELD 7-9

7.19 RAB$L _ROP FIELD 7-10

7.20 RAB$W_RSZ FIELD 7-20

7.21 RAB$L_STS FIELD 7-20

7.22 RAB$L_STV FIELD 7-20

7.23 RAB$B_TMO FIELD 7-21

7.24 RAB$L_UBF FIELD 7-2~1

7.25 RAB$W_USZ FIELD 7-21

7.26 RAB$L~CAB FIELD 7-22

xi

Contents

CHAPTER 8 ALLOCATION CONTROL XAB (XABALL) 8-1

8.1 SUMMARY OF FIELDS 8-1

8.2 XAB$B~I D FIELDS 8-2

8.3 XAB$B~LN FIELD 8-2

8.4 XAB$L~►LQ FIELD 8-3

8.5 XAB$B_AOP FIELD 8-4

8.6 XAB$B_BKZ FIELD 8-5

8.7 XAB$B_BLN FIELD 8-5

8.8 XAB$B_COD FIELD 8-6

8.9 XAB$W_DEQ FIELD 8-6

8.10 XAB$L_LOC FIELD 8-6

8.11 XAB$L_NXT FIELD 8-6

8.12 XAB$W_RFI FIELD 8-7

8.13 XAB$W_VOL FIELD 8--7

CHAPTER 9 DATE AND TIME XAB (XABDAT) 9-7

9.1 SUMMARY OF FIELDS 9-1

9.2 XAB$Q_BDT FIELD 9-2

9.3 XAB$B_BLN FIELD 9-2

xii

Contents

9.4 XAB$Q_CDT FIELD 9-3

9.5 XAB$B_COD FIELD 9-3

9.6 XAB$Q_EDT FIELD 9-3

9.7 XAB$L_NXT FIELD 9-3

9.8 XAB$Q_RDT FIELD 9-3

9.9 XAB$W_RVN FIELD 9-3

CHAPTER 10 FILE HEADER CHARACTERISTIC XAB (XABFHC) 10-1

10.1 SUMMARY OF FIELDS 10-1

10.2 XAB $ B~►T R FIELD 10-2

10.3 XAB$B_BKZ FIELD 10-3

10.4 XAB$B_BLIV FIELD 10-3

10.5 XAB$B_COD FIELD 10-3

10.6 XAB$W_DXQ FIELD 10-3

10.7 XAB$L_EBK FIELD 10-4

10.8 XAB$W_FFB FIELD 10-4

10.9 XAB$W_GBC FIELD 10-4 i

10.10 XAB$L_HBK FIELD 10-4

10.11 XAB$B_HSZ FIELD 10-4

Contents

10.12 XAB$W_LR L FIELD 10-5

10.13 XAB$W_MRZ FIELD 10-5

10.14 XAB$L_NXT FIELD 10-5

10.15 XAB$B_RFO FIELD 10-5

10.16 XAB$L_SBN FIELD 10-6

10.17 XAB$W_VERLIMIT FIELD 10-6

CHAPTER 11 ITEM LIST XAB (XABITM) 11-1

11.1 SUMMARY OF FIELDS 11-2
11.1.1 XAB$B_BLN Field 11-2
11.1.2 XAB$B_COD Field 11-2
11.1.3 XAB$L_ITEMLIST Field 11-2
11.1.4 XAB$L_MODE Field 11-2
11.1.5 XAB$NXT Field 11-2

11.2 NETWORK FILE ACCESS ITEMS 11-3

11.3 VMS RMS PERFORMANCE MONITORING 11-9

CHAPTER 12 JOURNALING XAB (XABJNL) 12-1

CHAPTER 13 KEY DEFINITION XAB (XABKEY) 13-1

13.1 SUMMARY OF FIELDS 13-1

13.2 XAB$B_BLN FIELD 13-2

13.3 XAB$B_COD FIELD 13-2

xiv

Contents

13.4 XAB$L_COLNAM FIELD 13-3

13.5 XAB$L_COLSIZ FIELD 13-3

13.6 XAB$L_COLTBL FIELD 13-3

13.7 XAB$B_DAN FIELD 13-4

13.8 XAB$B_DBS FIELD 13-4

13.9 XAB$W_DFL FIELD 13-4

13.10 XAB$B_DTP FIELD 13-5

13.11 XAB$L_DVB FIELD 13-7

13.12 XAB$B_FLG FIELD 13-8

13.13 XAB$B_IAN FIELD 13-10

13.14 XAB$B_I BS FIELD 13-10

13.15 XAB$W_IFL FIELD 13-10

13.16 XAB$L_KNM FIELD 13-11

13.17 XAB$B_LAN FIELD 13-11

13.18 XAB$B_LVL FIELD 13-12

13.19 XAB$W_MRL FIELD 13-12

13.20 XAB$B_NSG FIELD 13-12 j

13.21 XAB$B_NUL FIELD 13-12

xv

Contents

13.22 XAB$L_NXT FIELD 13-12

13.23 XAB$W_POSO THROUGH XAB$W_POS7 FIELD 13-13

13.24 XAB$B_PROLOG FIELD 13-13

13.25 XAB$B_REF FIELD 13-14

13.26 XAB$L_RVB FIELD 13-14

13.27 XAB$B_SIZO THROUGH XAB$B_SIZ7 FIELD 13-14

13.28 XAB$B_TKS FIELD 13-15

CHAPTER 14 PROTECTION XAB (XABPRO) 14-1

14.1 SUMMARY OF FIELDS 14-1

14.2 XAB$L_ACLBUF FIELD 14-2

14.3 XA B$ L _AC LCTX FIELD 14-2

14.4 XAB$W_ACLLEN FIELD 14-3

14.5 XAB$W_ACLSIZ FIELD 14-3

14.6 XA B$ L ~►C LSTS FIELD 14-3

14.7 XAB$B_BLN FIELD 14-4

14.8 XAB$B_COD FIELD 14-4

14.9 XAB$W_GRP FIELD 14-4

14.10 XAB$W_MBM FIELD 14-5

xvi

Contents

14.11 XAB$B_MTACC FIELD 14-5

14.12 XAB$L_NXT FIELD 14-5

14.13 XAB$W_PRO FIELD 14-6

14.14 XAB$B_PROT_OPT FIELD 14-7

14.15 XAB$L_UIC FIELD 14-8

CHAPTER 15 REVISION DATE AND TIME XAB (XABRDT) 15-1

15.1 SUMMARY OF FIELDS 15-1

15.2 XAB$B_BLN FIELD 15-2

15.3 XAB$B_COD FIELD 15-2

15.4 XAB$L_NXT FIELD 15-2

15.5 XAB$Q_RDT FIELD 15-3

15.6 XA B$W_RV N FIELD 15-3

CHAPTER 16 RECOVERY UNIT XAB (XABRU)

CHAPTER 17 SUMMARY XAB (XABSUM) ~ 7-1

17.1 SUMMARY OF FIELDS 17-1

17.2 XAB$B_BLN FIELD 17-1

17.3 XAB$B_COD FIELD 17-2

xvi~

Contents

17.4 XAB$B_NOA FIELD 17-2

17.5 XAB$B_NOK FIELD 17-2

17.6 XAB$L_NXT FIELD 17-2

17.7 XAB$W_PVN FIELD 17-2

CHAPTER 18 TERMINAL XAB (XABTRM) 18-1

18.1 SUMMARY OF FIELDS 18-1

18.2 XAB$B_BLN FIELD 18-2

18.3 XAB$B_COD FIELD 18-2

18.4 XAB$L_ITMLST FIELD 18-2

18.5 XAB$W_ITMLST_LEN FIELD 18-3

18.6 XAB$L_NXT FIELD 18-3

VMSRMSSERVICES
$CLOSE
$CONNECT
$CREATE
$DELETE
$DISCONNECT
$DISPLAY
$ENTER
$ERASE
$EXTEND
$FIND
$FLUSH
$FREE
$GET

RMS-3
RMS-6

RMS-10
RMS-21
RMS-23
RMS-25
RMS-2 9
RMS-32
RMS-35
RMS-38
RMS-43
RMS-45
RMS-47

xviii

Contents

$NXTVOL RMS-55
$OPEN RMS-58
$PARSE RMS-66
$PUT RMS-70
$READ RMS-76
$RELEASE RMS-79
$REMOVE RMS-81

$RENAME RMS-85
$REWIND RMS-89
$SEARCH RMS-91

$SPACE RMS-95
$TRUNCATE RMS-97
$UPDATE RMS-99
$WAIT RMS-102
$WRITE RMS-104

APPENDIX A VMS RMS COMPLETION STATUS CODES A-1

APPENDIX B RMS CONTROL BLOCK MACROS B-1

$FAB B-2
$FAB_STORE B-4
$NAM B-6
$NAM_STORE B-7

$RAB B-9
$RAB_STORE B-11

$XABALL B-13
$XABALL_STORE B-14

$XABDAT B-15
$XABDAT_STORE B-16
$XABFHC B-17
$XABFHC_STORE B-18
$XABITM B-7 9
$XABKEY B-20
$XABKEY_STORE B-22

$XABPRO B-24

$XABPRO_STORE B-26
$XABRDT 8-27

$XABRDT_STORE B-28

$XABSUM B-29

$XABSUM _STORE B-30

xix

Contents

$XA BT R M
$XA BT R M _STO R E

B-31
B-32

INDEX

EXAMPLES
3-1 Use of the $XABDAT and $XABDAT_STORE Macros 3-9

4-1 Use of the Create, Open, and Close Services 4-2

4-2 Use of the Create Service for an Indexed File 4-5

4-3 Wildcard Processing Using Parse and Search Services 4-10

4-4 Use of the Connect Service and Multiple Keys 4-13

4-5 Use of the Rename Service 4-15

4-6 Use of the Get and Put Services 4-17

4-7 Use of the Delete Service 4-19

4-8 Use of the Update Service 4-21

4-9 Use of Block I/O 4-25

11-1 Using XABITM to Enable VMS RMS Statistics 11-10

FIGURES
2-1 Argument List Format 2-5

11-1 Item Descriptor Data Structure 11-1

14-1 File Protection Field 14-6

TABLES

3-1 User Control Blocks 3-2

3-2 VMS RMS Services 3-3

3-3 File, Record, and Block I/O Processing Macros 3-12

5-1 FAB Fields 5-1

5-2 Device Characteristics 5-7

5-3 File Processing Options 5-12

5-4 Maximum Record Size for File Organizations and Record
Formats 5-22

6-1 NAM Block Fields 6-1
6-2 NAM$L_FNB Status Bits 6-6
7-1 RAB Fields 7-1

Contents

7-2 Record Processing Options 7-10

8-1 XABALL Fields 8-1

9-1 XABDAT Fields 9-1

9-2 Services and the XABDAT Control Block 9-2

10-1 XABFHC Fields 10-1

11-1 XABITM Fields 11-2

11-2 XABITM Item List 11-3

11-3 System Networking Capabilities 11-8

13-1 XABKEY Fields 13-1

14-1 XABPRO Fields 14-1

15-1 XABDDT Fields 15-2

17-1 XABSUM Fields 17-1

18-1 XABTTM Fields 18-1

RMS-1 Close Service FAB and XAB Input Fields RMS-4

RMS-2 Close Service FAB and XAB Output Fields RMS-5

RMS-3 Connect Service RAB Input Fields RMS-8

RMS-4 Connect Service RAB Output Fields RMS-8

RMS-5 Create Service FAB and XAB Input Fields RMS-11

RMS-6 Create Service FAB and XAB Output Fields RMS-15

RMS-7 Create Service NAM Block Input Fields RMS-16

RMS-8 Create Service NAM Block Output Fields RMS-17

RMS-9 Delete Service RAB Input Fields RMS-22

RMS-10 Delete Service RAB Output Fields RMS-22

RMS-11 Disconnect Service RAB Input Fields RMS-24

RMS-12 Disconnect Service RAB Output Fields RMS-24

RMS-13 Display Service FAB and NAM Input Fields RMS-26

RMS-14 Display Service FAB, NAM, and XAB Output Fields RMS-26

RMS-15 Enter Service FAB and NAM Input Fields RMS-30

RMS-16 Enter Service FAB and NAM Output Fields RMS-30

RMS-17 Erase Service FAB and NAM Input Fields RMS-33

RMS-18 Erase Service FAB and NAM Output Fields RMS-34

RMS-19 Extend Service FAB Input Fields RMS-36

RMS-20 Extend Service FAB Output Fields RMS-36

RMS-21 Find Service RAB Input Fields RMS-39

RMS-22 Find Service RAB Output Fields RMS-41

RMS-23 Flush Service RAB Input Fields RMS-44

RMS-24 Flush Service RAB Output Fields RMS-44

RMS-25 Free Service RAB Input and Output Fields RMS-46

RMS-26 Get Service RAB Input Fields RMS-50

RMS-27 Get Service RAB Output Fields RMS-53

xxi

Contents

RMS-28 Next Volume Service RAB Input and Output Fields RMS-57

RMS-29 Open Service FAB and XAB Input Fields RMS-59

RMS-30 Open Service FAB. and XAB Output Fields RMS-61

RMS-31 Open Service NAM Block Input Fields RMS-63

RMS-32 Open Service NAM Block Output Fields RMS-64

RMS-33 Parse Service FAB and NAM Block Input Fields RMS-67

RMS-34 Parse Service FAB and NAM Block Output Fields RMS-68

RMS-35 Put Service RAB Input Fields RMS-73

RMS-36 Put Service RAB Output Fields RMS-74

RMS-37 Read Service RAB Input Fields RMS-77

RMS-38 Read Service RAB Output Fields RMS-77

RMS-39 Release Service RAB Input and Output Fields RMS-80

RMS-40 Remove Service FAB and NAM Block Input Fields RMS-82

RMS-41 Remove Service FAB and NAM Block Output Fields RMS-83

RMS-42 Rename Service FAB and NAM Block Input Fields RMS-87

RMS-43 Rename Service FAB and NAM Block Output Fields RMS-87

RMS-44 Rewind Service RAB Input Fields RMS-90

RMS-45 Rewind Service RAB Output Fields RMS-90

RMS-46 Search Service FAB and NAM Block Input Fields RMS-92

RMS-47 Search Service FAB and NAM Block Output Fields RMS-93

RMS-48 Space Service RAB Input Fields RMS-96

RMS-49 Space Service RAB Output Fields RMS-96

RMS-50 Truncate Service RAB Input Fields RMS-98

RMS-51 Truncate Service RAB Output Fields RMS-98

RMS-52 Update Service RAB Input Fields RMS-100

RMS-53 Update Service RAB Output Fields RMS-101

RMS-54 Wait Service RAB Input and Output Fields RMS-102

RMS-55 Write Service RAB Input Fields RMS-105

RMS-56 Write Service RAB Output Fields RMS-105

A-1 Completion Status Hexadecimal Values and Codes A-3

A-2 Descriptions of VMS RMS Completion Status Codes A-9

Preface

Intended Audience
This document describes VMS RMS control blocks and services for
programmers.

Document Structure
This document consists of three parts and two appendixes.

• Part I contains general information in four sections:

— Chapter 1 introduces the reader to VMS RMS functions and
associated control blocks.

— Chapter 2 discusses the VMS RMS program interface that applies to
using any VAX programming language.

— Chapter 3 describes the program interface with VAX MACRO,
including how to use VMS RMS macros. This information will also be
of interest to advanced programmers using other VAX programming
languages.

— Chapter 4 describes the groups of VMS RMS services and provides
VMS RMS example programs using VAX MACRO.

• Part II describes the VMS RMS control blocks and their associated fields,
in Chapter 5 through Chapter 18. This information is intended for a
programmer using any VAX programming language.

• Part III describes the VMS RMS services, including the control block fields
accessed by each service. This information is intended for a programmer
using any VAX programming language.

• Appendix A lists VMS RMS messages.

• Appendix B contains the formats and associated usage notes for the VMS
RMS control block initialization and store macros used by VAX MACRO
programmers. Note that this material was formerly located in Part III.

Associated Documents
The following documents contain information related to this reference
manual:

• The Introduction to VMS System Routines and the VMS System Services
Volume contain information about the calling routines on a VMS system.

• The Guide to VMS File Applications contains related information about
VAX RMS, FDL, and the use of files.

• The VMS Networking Manual discusses the support of VMS RMS options
for remote file access to non-VMS systems. For example, when the
remote system is a PDP-11 system running RMS-11, Prolog 3 index files
are not supported and some VMS RMS key definition XAB fields, as well
as other control block fields, are not fully supported.

Preface

For additional information about remote file access between VMS systems,
see the VMS I/O User's Reference Volume.

Conventions
Convention Meaning

RET

CTRL/C

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

$ SHOW TIME In examples, system output (what the system
05-JUN-1988 1 1:55:22 displays) is shown in black. User input (what

you enter) is shown in red.

$ TYPE NIYFILE.DAT In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

input-file, In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

[logical-name] Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

quotation marks The term quotation marks is used to refer
apostrophes to double quotation marks ("). The term

apostrophe (') is used to refer to a single
quotation mark.

Preface

Convention Meaning

lowercase letters and words

uppercase letters and words

Lowercase letters and words used in format
statements in this manual represent information
that you must supply. Such lowercase
information may contain hyphens for readability.
The accompanying text defines the information
to be supplied. For example:

window-size

address

Uppercase letters and words, equal signs (_),
angle brackets (~ >), and dollar signs ($)
must be coded as shown. For example:

RAT=<BLK,CR>

$OPEN

Information enclosed within braces indicates
that you may choose any one of the enclosed
values.

For example: RFM=

FIX
STM
STMCR
STMLF
UDF
VAR
VFC

Preface

Convention Meaning

~) Arguments enclosed within square brackets are
optional, but if an optional argument other than
a trailing optional argument is omitted, you must
include a place holder for the omitted argument.
This rule is shown syntactically below:

$OPEN INFAB [, [ERR] [,SUC]]

If you use either or both of the optional
arguments, you must include the comma shown
in the outside set of brackets. This comma
acts as a delimiter between the first and second
arguments when you use the second argument.
When you omit the second argument and use
the third argument, this comma acts as a place
holder for the omitted argument. If you do not
use either of the optional arguments, you can
omit the comma.

Here is an example of an instance in which the
first optional argument is used and the second
is omitted:

$OPEN INFAB,ERR

Here is an example of an instance in which the
second optional argument is used and the first
is omitted:

$OPEN INFAB „SUC

Here is an example of an instance in which only
the required argument is used:

$OPEN INFAB

New and Changed Features

• Enhancements to the DAP/FAL interface

DAP and FAL are the components of VMS RMS that extend record and
file access through the network. The new features provide you with
information about accessing files and records across a network including
parameters that affect performance, functionality with other VMS systems,
and functionality with non-VMS systems.

To implement the enhancements, you open a file with a new XAB called
the XABITM. You declare a XABITM in the same manner as other XABs
and you select the appropriate features by means of fields within the
XABITM structure.

Most of the network file access controls are implemented explicitly
through XABITM in conjunction with either the $CREATE service or the
$OPEN service. Informational functions are implemented explicitly with
the $DISPLAY service and implicitly with $CREATE and $OPEN.

• Performance monitoring enhancements

You can also use the XABITM to gather RMS performance statistics by
way of the Monitor Utility. To gather statistics for an RMS file, you must
create the file with a XABITM that enables statistics by way of the related
item list. You can also enable statistics gathering from either the FDL
or the DCL interface. If statistics gathering is enabled, it can only be
disabled from DCL.

• Enhancements to RMS multinational keys

The enhancements to the RMS multinational key functions provide a way
to use alternative (non-ASCII) collating sequences. The multinational
key enhancements are based on the National Character Set Utility that
permits you to define alternative collating sequences for special characters
and to establish and maintain libraries of collating sequences. This
eliminates having to redefine an alternative collating sequence when the
application requires it. For information on NCS, see the VMS National
Character Set Utility Manual.

The use of multinational keys requires the setting up of user-specified
collating sequences for multinational characters on a per-key basis. With
these collating keys, a record field can be sorted according to several
languages where each language has its own key of reference.

• Enhanced Asynchronous Interface

The FAB$V_ASY option has been added to the VMS RMS asynchronous
interface to support file operations. File operations and record operations
can request notification of the synchronous completion of asynchronous
operations with the FAB$V_SYNCSTS option or the RAB$V_SYNCSTS
option, respectively.

General Information About VMS Record
Management Services

Part I introduces the reader to general mechanisms and conventions
associated with VMS Record Management Services (VMS RMS). It
discusses the following topics:

• Argument passing

• Control blocks

• Symbols defined by VMS RMS

• Invoking VMS RMS services

• VMS RMS macros used by VAX MACRO programs

• Syntax conventions for VAX MACRO

• Example programs in VAX MACRO

1 Introduction to VMS RMS

This section presents an overview of the general functions available through
VMS Record Management Services (VMS RMS). It also briefly describes the
VMS RMS services and control blocks. Unless otherwise stated, the term
RMS refers to VMS RMS.

1.1 VMS RMS Functions
VMS RMS is a set of generalized services that assist application programs in
processing and managing files and their contents. VAX MACRO programs
can invoke these services by using the corresponding macros supplied in
the system library SYS$LIBRARY:STARLET.MLB. (VMS RMS automatically
searches this library for unresolved references when you assemble a source
program.) Other VAX languages may support a similar means of invoking
VMS RMS services.

Although VMS RMS supports unit-record devices, such as terminals and
printers, it primarily provides a comprehensive software interface to mass
storage devices, such as disk and magnetic tape drives.

VMS RMS provides a variety of disk file organizations, record formats, and
record access modes from which you can select the processing techniques
best suited to your application. VMS RMS supports sequential, relative, and
indexed file organizations, and fixed-length and variable-length record formats
are supported for each file organization. (Relative and sequential files also
support other record formats.) The VMS RMS record access modes permit
you to access records within these files sequentially, directly by key value,
directly by relative record number, or directly by record file address (RFA).
VMS RMS also provides a means of performing block I/O operations to
support users with certain performance-critical applications (such applications
may require user-defined file organizations and/or record formats).

VMS RMS ensures safe and efficient file sharing by providing

• Multiple file access modes, to allow file sharing to be consistent with the
file operations

• Automatic record locking in applicable file access modes, to ensure data
integrity during record updates

• Optional buffer sharing by multiple processes accessing the same file, to
minimize I/O operations

VMS RMS also enforces the security requirements of a multiuser system with i
potential multinode access by restricting file access to one or more user UIC
types and to a list of user names.

For systems that support DECnet network capabilities, VMS RMS provides
a subset of file and record management services through the Data Access
Protocol (DAP) to remote network nodes. Network DAP remote file
operations are generally transparent to application programs.

Introduction to VMS RMS
1.2 Passing Arguments to VMS RMS

1.2 Passing Arguments to VMS RMS
The flexibility inherent in VMS RMS would require application programs to
pass a multitude of arguments to perform such common operations as file
creation and access. To eliminate the potential problems associated with
passing numerous arguments for each service call, the application program
places the arguments in one or more data control blocks before it invokes any
VMS RMS service. The only argument required to invoke most VMS RMS
services is the symbolic address of the appropriate data control block.

1.2.1 VMS RMS Services and Control Blocks
Because VMS RMS operates on files and records, its services generally fall
into one of two groups:

• File services that create and access a new file, access (open) an existing
file, extend the disk space allocated to a file, close a file, obtain file
characteristics, and perform other functions related to files

• Record services that get, find (locate), put (insert), update, and delete
records, and perform other operations not directly related to record I/O,
such as associating one or more record streams (methods of accessing
records) with an open file

To support service operations, VMS RMS provides two types of control
blocks:

• Control blocks that provide file-related arguments to VMS RMS file
services

• Control blocks that provide record-related arguments to VMS RMS record
services

1.2.2 Control Blocks for File Services
File services use a control block called the file access block (FAB). When
creating a file, the user must store arguments in the FAB that define the
file characteristics, the file specification, and certain run-time access options.
When your process opens an existing file, the FAB specifies only the file
specification and the run-time access options.

There are three categories of FAB arguments and the following list briefly
introduces each:

• File specification arguments identify primary and default file
specifications used at run-time to locate the file.

• File characteristics arguments specify the file organization, record type,
allocation information, and other information.

• Run-time access options specify the operations that can be done by
the initiating process and the operations that can be done by sharing
processes, a variety of file-processing options, and the address (or
addresses) of one or more control blocks whose fields supplement or
supersede the information in the FAB.

Introduction to VMS RMS
1.2 Passing Arguments to VMS RMS

The two types of optional control blocks that can supplement or supersede
the information in the FAB are the name block (NAM) and the extended
attribute block (XAB).

The NAM block supplements the file specification information available in
a FAB. It is especially useful for locating and opening files when the file
specification is entered by an interactive user or when a file specification
includes a wildcard character or a search list logical name representing
multiple files.

There is only one type of NAM block, and you usually associate only one
NAM block with a file. To provide an extra level of defaults for a file
specification, however, VMS RMS will apply defaults using additional NAM
blocks that contain the file specifications of related files.

A XAB usually supersedes and supplements the file characteristics specified
in the associated FAB and multiple XABs may be used to support a single
file. There are several types of XABs, each of which is used for a different
purpose. Each type of XAB has a 6-letter mnemonic name consisting of
the prefix "XAB" followed by a 3-letter mnemonic that relates to the XAB
function. For instance, the XAB that supplements and supersedes the file
allocation information in the FAB is called an allocation control XAB, or
XABALL.

The XABs used for file operations are briefly described in the following list:

• Allocation control XAB (XABALL) allows greater control over disk file
allocation and positioning during file allocation.

• Date and time XAB (XABDAT) specifies date and time values for backup,
creation, expiration, and revision times, and the revision number.

• File header characteristic XAB (XABFHC) receives the file characteristics
information contained in the file header block.

• Item list XAB (XABITM) provides a convenient means for using item
lists to pass information between RMS and the application program.

• Journaling XAB (XABJNL) supports file journaling operations.

• Key definition XAB (XABKEY) defines the key characteristics to be
associated with an indexed file.

• File protection XAB (XABPRO) defines file protection characteristics
that specify what class of users or list of users can have certain specified
access rights. For ANSI magnetic tape files using HDR1 labels, this XAB
specifies the accessibility field character.

• Revision date and time XAB (XABRDT) specifies the revision date and
time value and the revision number associated with a file.

• Recovery unit XAB (XABRU) supports the use of recovery units to
assure data file integrity.

• Summary XAB (XABSUM) stores additional file characteristics associated
with an indexed file.

Introduction to VMS RMS
1.2 Passing Arguments to VMS RMS

1.2.3 Control Blocks for Record Services
Record services use a control block known as the record access block, or RAB.
Some of the arguments the user must store in the RAB include the address of
the related FAB, the address of input and output record buffers, the type and
size of general I/O buffers, whether a file's records will be accessed directly
or sequentially, certain tuning options, and other information.

An extended attribute block (XAB) can both supersede and supplement the
record characteristics specified in the RAB. As with a XAB that supersedes
and supplements a FAB, a XAB that supersedes and supplements a RAB has
a 6-letter mnemonic name consisting of the prefix "XAB" followed by three
letters. Note that there are only two XAB types for record operations, the
terminal XAB (XABTRM) and the recovery unit XAB (XABRU).

The XABTRM defines the symbolic address and length of auser-supplied
argument list that defines the terminal operation and provides more flexibility
than using RAB fields.

See the VAX RMS Journaling Manual for details relating to the use of the
XABRU.

1.2.4 The Dual Purpose of Control Blocks
Control blocks provide input to VMS RMS services and they provide output
from VMS RMS services including the following run-time information:

• Detailed file characteristics, including file organization, record format, and
record size

• Device characteristics

• File, directory, and device identifiers

• The address (location) and length of a requested record

• Returned condition values

For this reason, certain programs specifically allocate a NAM block or one
or more XABs dedicated to receiving information returned by VMS RMS
services. Typically, such information can be examined to determine how the
file should be processed.

In most cases, however, control blocks are used both to transmit and to
receive information between the application program and VMS RMS and
should not be located in a read-only program section.

Be sure that control block fields not currently used by a particular service
have valid default values because future versions of VMS RMS may use
them. This applies also to control block fields that are currently described
as "ignored for DECnet operations" because future versions of VMS RMS or
DECnet may support those fields.

2 The Program Interface with VMS RMS

This section introduces the application program interface with VMS RMS that
is applicable to all VAX languages in terms of the following:

• The VMS RMS run-time processing environment

• VMS RMS symbol-naming conventions

• The calling sequence for VMS RMS services

• Allowable program execution modes

• Condition values returned by VMS RMS services

2.1 The Run-Time Environment and VMS RMS Programming
The VMS RMS run-time processing environment consists of a set of blocks
and the run-time services. The control block fields accessed by each service
specify to VMS RMS the appropriate file and record operations. Depending
on the operation, VMS RMS uses one or more control blocks by referring to
one or more fields as input to, or output from, the operation.

To use VMS RMS, you must do the following:

1 Allocate the appropriate control block, usually at assembly time or
compilation time. Control blocks must not reside in read-only storage
and should be aligned on a longword boundary to maximize efficiency.

2 Insert the appropriate values into the control block fields before you
invoke the related service.

3 Invoke the appropriate VMS RMS service. As part of this step, a
condition value should always be examined.

To perform advanced VMS RMS functions, you may need to set various
control block field values at run time between the time the file is opened and
when the VMS RMS service is invoked.

Note that VAX languages perform some of these steps transparently when a
particular language statement or macro is present in a source program.

Two fields in each control block, the block length (BLN) field and the block
identifier (BID) (or block code (COD) field in a XAB), define the length of
the control block (in bytes) and identify the control block _type, respectively.
These internal VMS RMS fields are always used as input arguments by the
VMS RMS service that accesses the control block and must be set before
the control block can be used. The fields are initialized automatically by
the appropriate VAX MACRO assembly-time initialization macro and must
contain the correct value for the type of control block. After the block length
and block identifier fields are established, you must treat them as read-only
fields until the control block is no longer needed.

Part II describes each control block field in detail, including its length and its
symbolic name.

2-1

The Program Interface with VMS RMS
2.1 The Run-Time Environment and VMS RMS Programming

Appendix B lists the VAX MACRO calling format for each VAX MACRO
control block macro.

Part III lists the calling format for each service together with the input control
block fields and the output control block fields for each service.

2.2 Conventions for Naming Fields
VMS RMS uses mnemonic names to identify control block fields. For
example, the mnemonic name for the FAB allocation quantity field is ALQ.

The mnemonic name (usually consisting of three characters) serves as a suffix
to a symbolic name that identifies the location of each control block field.
You should use the symbolic names to be sure you place values in the correct
control block fields. VMS RMS defines each symbolic name as a constant
value equal to the offset, in bytes, from the beginning of the control block to
the beginning of the field. These field names are thus called symbolic of~'sets.

Symbolic offset names are defined when the appropriate VAX MACRO control
block initialization macro is used, when the appropriate VAX MACRO control
block symbol definition macro is used, and when some VAX languages invoke
VMS RMS. Alternatively, all control block symbolic offset names are available
when you use the VAX MACRO $RMSDEF macro in a VAX MACRO program
or procedure.

The format of the symbolic offsets consists of a 3-letter control block identifier
(FAB, NAM, XAB, or RAB), a dollar sign ($), a 1-letter indicator of the length
of the field (B, W, L, Q, or T), an underscore (_), and the field mnemonic,
which is usually three letters.

The general format of the symbolic offset is shown in the following example:

ccc$x_fff

The components of the symbolic offset format are summarized in the
following table.

The Program Interface with VMS RMS
2.2 Conventions for Naming Fields

Component Length Description

ccc 3 letters Identifies the type of control block:
FAB, NAM, XAB (for all XABs), or
RAB.

$ 1 character Separates the control block
identifier from the field length
identifier; a dollar sign ($).

x 1 letter Identifies the length of the field:
B for byte, W for word, L for
longword, Q for quadword, T for
text buffer address. Symbolic
length fields are identified by
the letter S in this position. For
example, the value field XAB$S_
CACHE_TMO specifies the number
of bytes allocated for defining the
value of the cache timeout. See
text for exceptions.

1 character Separates the field length identifier
from the field name; always an
underscore (_).

fff 3 or more letters Identifies the mnemonic name
of the field, which is used in the
VAX MACRO control block macro.
Some mnemonics contain more
than three letters; for example,
symbolic offset XAB$B_PROLOG
(from XABKEY).

For example, the FAB field whose mnemonic is ALQ has a length of one
longword and is identified by the symbolic offset FAB$L _ALQ. The field
NAM$L _RLF is a NAM longword field whose mnemonic RLF reflects its
name, the related file field.

Exceptions to the length designation are NAMW_DID, NAMW_FID,
XAB$W_RFI, and RAB$W_RFA. These symbolic offsets mark the locations of
fields that are three words, not one word.

The length of a T field is specified by the corresponding S field; for example,
the length of the NAM$T_DVI field is specified by the symbolic value field
named NAM$S_DVI.

When a control block field contains options identified by bits, each valid bit
location has a symbolic offset name. Certain control block fields are binary
options fields consisting of bit values. For these bits in a binary options field,
the format of symbolic names resembles the format of the field names, except
for the length indicator. Instead of identifying the field length, which is
always one bit, the length field indicates whether a mask value (M) or bit
offset (V) is defined by the symbolic name, as described below.

The Program Interface with VMS RMS
2.2 Conventions for Naming Fields

Format Description

xxx$M_fff

xxx$V_fff

Indicates a mask value in a binary options field, typically where
multiple bit options can be chosen. Used to set or clear bit
values.

Indicates the symbolic bit offset (number of bits from the
beginning of the binary options field). Used to test bit values or
to set bit values.

The xxx identifies the control block (FAB, NAM, XAB, or RAB); the $and _
are separator characters, and the f~f defines the mnemonic for the bit option.
For example, the option CTG in the FAB file-processing options (FOP) field
has a symbolic bit offset of FAB$V_CTG and a mask value of FAB$M_CTG.

Another type of field can contain only certain values; thus there are no mask
values or symbolic bit offsets. Unlike a binary options field, each possible
value is identified by a symbolic constant value, in the following form:

xxx$C_fff

Note that the letter C replaces the letter M, denoting that this field is a
constant (keyword) value field, not a mask value field. For example, the
file organization (ORG) field of the FAB (FAB$B_ORG) can only contain
the values FAB$C_IDX (indexed), FAB$C_REL (relative), or FAB$C_SEQ
(sequential). In some instances, the letter K is used to denote a constant
(keyword) value field in place of the letter C; otherwise, the naming
convention is the same.

When specifying control block field locations, avoid using actual byte
displacement values to identify control block field locations; instead, use the
supplied symbolic offsets. VMS RMS control block field locations may not
always be the same from release to release of VMS; however, the symbolic
offset names that identify the field locations always identify the same fields.

2.3 The VMS RMS Calling Sequence
VMS RMS uses the standard VAX calling sequence and conventions, and
preserves all general registers across a call, except for register 0 (RO) and
register 1 (R 1). When the service completes execution, it returns control to
the calling program, passing a condition value in R0. You should analyze the
completion value to determine the success or failure of the service and to alter
the flow of execution of your program, if necessary. Where applicable, you
should use the STS field and the STV field of the appropriate control block
for signaling errors, instead of R0. For additional information about VMS
RMS completion values, see Section 2.4.

When calling a VMS RMS service, you must provide an argument list to
specify the associated control block (FAB or RAB) and, optionally, any
completion routines. The argument list is from two to four longwords in
length, as shown in Figure 2-1. (The Rename service, however, uses a
5 -longword argument list.)

The Program Interface with VMS RMS
2.3 The VMS RMS Calling Sequence

Figure 2-1 Argument List Format

31 8 7 0

reserved argument count

control block address

error completion routine address

success completion routine address

optional

ZK-875-82

VMS RMS interprets the fields in the argument list as follows:

• The argument count field contains a binary value, from 1 through 3,
representing the number of arguments in the argument list. For the
Rename service only, set this value to 4.

• The control block address field contains the address of either the FAB (for
file operations) or the RAB (for record operations).

• The error completion routine address field optionally contains the address
of the entry mask of auser-written completion routine to be called if the
requested operation fails. If used, the completion routine executes as an
asynchronous system trap (AST).

• The success completion routine address field optionally contains the
address of the entry mask of auser-written completion routine to be
called if the requested operation completes successfully. If used, the
completion routine executes as an asynchronous system trap (AST).

• The new FAB address field (not shown in Figure 2-1) contains the address
of the FAB that contains the new file name for the Rename service. This
field must be present only for the Rename service.

2.4 Condition Values

Before returning to your program from a file or record operation, VMS RMS
indicates the success or failure of the operation by setting a condition value in
the completion status code field (STS) of the associated control block (FAB or
RAB) .

When first returning to your program after a call to an operation, VMS
RMS also sets general register 0 to the value in the status code field. In
asynchronous operations, register 0 may simply indicate that the operation
has been initiated.

In general, you may receive one of many error or success codes from an
operation. (The discussion of each VMS RMS service in Part III includes a
list of the possible condition values that you can receive.) (See Appendix A
for a complete list of all VMS RMS status codes.) You should test for success
by checking only the low-order bit of the status code for a true condition (bit

2-5

The Program Interface with VMS RMS
2.4 Condition Values

set). The three low-order bits returned in the status code indicate the severity
of the code. The severity codes are as follows:

001 (1)

011 (3)

000 (0)

010 (2

100 (4)

Success (low-order bit set).

Information (low-order bit set).

Warning; indicates a nonstandard condition. The operation may
have performed some, but not all, of the requested function.

Error; you must recognize that a problem exists and provide a
contingency plan in your program for such a condition.

Severe error; normally caused by program logic errors or other
unrecoverable conditions.

The usual method of testing the completion status is to examine register 0 for
success, failure, or specific completion values. For certain completion values,
VMS RMS returns additional information in the status value field (STV) of
the control block. The description of the codes in Appendix A indicates the
instances when the STV contains such information.

The STS and STV fields should be used to signal VMS RMS errors to
ensure that the error message includes all relevant information. For the
file processing and file naming services, use the STS and STV fields of
the specified FAB (use the old FAB for the Rename service). For record
processing and block I/O processing services, use the STS and STV fields of
the corresponding RAB. (Consult Table 3-2 if you are not sure of the group
to which a particular VMS RMS service belongs.)

The recommended way to signal VMS RMS errors is to provide both the STS
and STV fields of the RAB or FAB as arguments to the Run-Time Library
(RTL) routine LIB$SIGNAL (or LIB$STOP). Certain VAX languages provide
a built-in means of signaling errors, such as by providing asystem-defined
function. For a more detailed explanation of condition signaling and invoking
RTL routines, see the VMS Run-Time Library Routines Volume.

VMS RMS services are considered system services for the purpose of
generating system service exceptions on errors. You can choose whether
to test and handle errors in your program or set the system service failure
exception mode (using the Set System Failure Exception Mode system service,
SYS$SETSFM) to have failures automatically signaled. For most applications,
especially if a high-level language is used, testing and handling errors in
your program is the preferred method. If you test for error conditions in
your program, you should be sure to disable any unwanted system service
exception generation.

Note that if the FAB or RAB is invalid or inaccessible, then the error
completion routine will not attempt to store the error code in the STS
field of an invalid control block structure. The following errors can be
detected only by testing RO (or by enabling system service failure exception
mode), following the completion of a VMS RMS operation (even if an error
completion AST has been specified):

The Program Interface with VMS RMS
2.4 Condition Values

RMS$_BLN

RMS$_BUSY

RMS$_FAB

RMS$_RAB

RMS$_STR

Invalid block length field (either FAB or RAB)

User structure FAB/RAB) still in use

FAB not writable or invalid block ID field

RAB not writable or invalid block ID field

User structure (FAB/RAB) became invalid during operation

These completion codes indicate that the FAB or RAB is invalid or
inaccessible. These completion codes can only be detected and signaled
using R0, but are usually rare and, if they occur at all, would most likely
occur during initial program debugging and testing. Thus, you must examine
the completion value in RO (instead of the STS field of the FAB or RAB) for
the completion codes listed above. If necessary, your program could test for
these errors and, if encountered, signal these completion values using RO
instead of the STS and STV fields.

2.5 Allowable Program Execution Modes
Generally, VMS RMS executes in either executive mode or executive AST
mode. When a VMS RMS operation is initiated, processing begins in
executive mode. If device I/O is necessary to process the request, the $QIO
system service is called. VMS RMS specifies an executive-mode AST to
signal completion. At this point, VMS RMS exits from executive mode. If the
operation is being performed asynchronously, control is returned to the caller;
if the operation is synchronous, VMS RMS waits for an event flag in the
access mode of the caller. When the I/O is complete, VMS RMS continues
processing in executive AST mode. Thus, user-mode ASTs can be serviced
while a synchronous VMS RMS operation called from user mode is awaiting
I/O completion. However, processing in user mode during an asynchronous
VMS RMS operation is interrupted by VMS RMS processing in executive AST
mode when I/O completes.

VMS RMS should not be called from kernel mode, from executive AST mode,
nor from executive mode when executive-mode ASTs are disabled.

2.6 Reserved Event Flags
VMS RMS uses system-reserved event flags to synchronize its internal
operations. VMS RMS reserves event flags 27, 28, 29, and 30 for possible
use; in addition, event flag 31 is used to specify a "do not care" event flag for
asynchronous processing.

2.7 DEC Multinational Character Set
You can use any character in the DEC Multinational Character Set in VMS
RMS records, including the key value of an indexed file. Keys are collated
according to their corresponding character code value.

For a list of characters in the DEC Multinational Character Set, see the VAX
EDT Reference Manual.

3 VMS RMS Macros and VAX MACRO Programming

This chapter describes the four types of VMS RMS macros used in VAX
MACRO programming. It begins with a description of each of the four types
of macros, macro naming conventions and macro syntax rules. The remainder
of the chapter describes how to use the macros and includes examples for
each of the four types. Note that in the remainder of Part I, the use of
the term "macro" refers to a program macro written in the VAX MACRO
language.

3.1 VMS RMS Macros
VMS RMS provides four types of macros used by VAX MACRO programs
implementing VMS RMS features. The functions these macros provide are
described below.

• Control block initialization macros initialize a control block at assembly
time. This type of macro performs five separate actions:

— Allocates space within the program image for the specified control
block

— Defines the symbolic names associated with a control block

— Initializes certain control block fields with internally used values

— Initializes specified control block fields with user-specified values

— Initializes certain fields with system-supplied defaults (does not apply
to all control block macros)

As an alternative to using this type of macro, an application program
would have to allocate each control block needed with its correct
length, initialize the internally used fields with the correct values,
and initialize or set user-specified values in the appropriate fields. ~ It
is strongly recommended that the supplied macros be used for VAX
MACRO programs.

• Control block symbol definition macros define control block symbolic
names at assembly time without allocating and initializing the control
block. These macros are needed only when the corresponding
initialization macro is not used and the symbols are not defined by
the VAX language used.

• Control block store macros set (or reset) specified fields in a control block
with user-specified values at run time. Alternatively, you can set values
in control block fields at run time using VAX MACRO instructions, such
as the MOVx and MOVAx instructions. Field locations are made available
using the symbolic name assigned to each control block field to represent
its offset from the start of the control block.

VMS RMS Macros and VAX MACRO Programming
3.1 VMS RMS Macros

• Service macros invoke VMS RMS services at run time. When a service
is invoked, one or more control blocks are examined for required field
values. Values are also returned in one or more control blocks, including
condition codes. VMS RMS services conform to the VAX calling standard
and thus can be invoked directly from any VAX language, if needed,
without the calling program having to use the supplied macro. However,
the appropriate control block must be present with the appropriate field
values set for the requested operation.

VMS RMS stores its macros for use by VAX MACRO programs in
SYS$LIBRARY:STARLET.MLB.

3.1.1 Conventions for Naming VMS RMS Macros
The corresponding macro name that initializes each control block at assembly
time consists of a dollar sign ($)followed by the name of the control block.
Thus, the macro that initializes a FAB is called $FAB; the macro that initializes
an XABALL is called $XABALL.

The macros that define symbolic offsets without performing control
block initialization contain the suffix "DEF" following the corresponding
initialization macro name; for example, $FABDEF and $XABALLDEF.

For the macros that set control block field values at run time, the name of the
assembly time macro is followed by _STORE. Thus, the $FAB macro has a
$FAB_STORE macro for setting FAB values at run time and the $XABALL
macro has a $XABALL _STORE macro for setting XABALL values at run time.

Table 3-1 summarizes the control blocks, their assembly time macro names,
and their functions.

Table 3--1 User Control Blocks

Control Macro
Block Names Function

FAB Describes a file and contains file-related
information

$FAB Allocates storage for a FAB and initializes
certain FAB fields; also defines symbolic offsets
for a FAB

$FABDEF Defines symbolic offsets for a FAB

$FAB_STORE Moves specified values into a previously
allocated and initialized FAB

NAM

$NAM

$NAMDEF

$NAM_STORE

Contains file specification information beyond
that in the file access block

Allocates storage for a NAM and initializes
certain NAM fields; also defines symbolic
offsets for a NAM

Defines symbolic offsets for a NAM

Moves specified values into a previously
specified and allocated NAM

VMS RMS Macros and VAX MACRO Programming
3.1 VMS RMS Macros

Table 3-1 (Cont.) User Control Blocks

Control Macro
Block Names Function

RAB

XAB

Describes a record stream and contains record-
related information

$RAB Allocates storage for a RAB and initializes
certain RAB fields; also defines symbolic offsets
for a RAB

$RABDEF Defines symbolic offsets for a RAB

$RAB_STORE Moves specified values into a previously
specified and allocated RAB

Contains file attribute information beyond that
in the file access block; for XABTRM, contains
information beyond that in the record access
block

$XABxxx' Allocates and initializes an XAB

$XABxxxDEF Defines symbolic offsets for an XABxxx

$XABxxx_STORE Moves specified values into a previously
specified and allocated XABxxx

The variable xxx represents a 3-character mnemonic.

VMS RMS services can be called from any VAX language using the VAX
Procedure and Condition Handling standard. VMS RMS services are system
services identified by the entry point prefix "SYS$" followed by three or
more characters. In the corresponding VAX MACRO macro name, the "SYS"
prefix is not used. For example, the Create service has an entry point of
SYS$CREATE and a VAX MACRO macro name of $CREATE. A complete
description of each service is provided in Part III.

Table 3-2 describes the functions of each VMS RMS service, including the
service entry point name and its corresponding VAX MACRO macro name.

Table 3-2 VMS RMS Services

Service Name Macro Name Description

File Processing and File Naming Macros

SYS$CLOSE $CLOSE Terminates file processing and disconnects
all record streams

SYS$CREATE $CREATE

SYS$DISPLAY $DISPLAY

SYS$ENTER'

SYS$ERASE

$ENTER

$ERASE

Creates and opens a new file of any
organization

Returns the attributes of an open file to the
application program

Enters a file name into a directory

Deletes a file and removes its directory
entry

~ This service is not supported for DECnet operations involving remote file access between
two VMS systems.

3-3

VMS RMS Macros and VAX MACRO Programming
3.1 VMS RMS Macros

Table 3-2 (Cont.) VMS RMS Services

Service Name Macro Name Description

File Processing and File Naming Macros

SYS$EXTEND

SYS$OPEN

SYS$PARSE

SYS$REMOVE'

SYS$RENAME

SYS$SEARCH

$EXTEND

$OPEN

$PARSE

$REMOVE

$RENAME

$SEARCH

Extends the allocated space of a file

Opens an existing file and initiates file
processing

Parses a file specification

Removes a file name from a directory

Assigns a new name to (renames a file

Searches a directory, or possibly multiple
directories, for a file name

Record Processing Macros

SYS$CONNECT $CONNECT

SYS$DELETE $DELETE

SYS$DISCONNECT $DISCONNECT

SYS$FIND

SYS$FLUSH

SYS$FREE

$FIND

$FLUSH

$FREE

SYS$GET $GET

SYS$NXTVOL' $NXTVOL

SYS$PUT

SYS$RELEASE

$PUT

$RELEASE

SYS$REWIND $REWIND

SYS$TRUNCATE $TRUNCATE

SYS$UPDATE $UPDATE

SYS$WAIT $WAIT

Establishes a record stream by associating
a RAB with an open file

Deletes a record from a relative or indexed
file

Terminates a record stream by
disconnecting a RAB from an open file

Locates and positions to a record and
returns its RFA

Writes (flushes) modified I/O buffers and
file attributes

Unlocks all records previously locked by the
record stream

Retrieves a record from a file

Causes processing of a magnetic tape file
to continue to the next volume of a volume
set

Writes a new record to a file

Unlocks a record pointed to by the contents
of the RAB$W_RFA field

Positions to the first record of a file

Truncates a sequential file

Rewrites updates► an existing record in a
file

Awaits the completion of an asynchronous
record operation

~ This service is not supported for DECnet operations involving remote file access between
two VMS systems.

VMS RMS Macros and VAX MACRO Programming
3.1 VMS RMS Macros

Table 3-2 (Cont.~ VMS RMS Services

Service Name Macro Name Description

Block I/O Processing Macros

SYS$READ $READ Retrieves a specified number of bytes from
a file, beginning on block boundaries

SYS$SPACE $SPACE Positions forward or backward in a file to a
block boundary

SYS$WRITE $WRITE Writes a specified number of bytes to a file,
beginning on block boundaries

3.1.2 Applicable VAX MACRO Syntax Rules
One of the conventions of VMS RMS control block macros is to use the
mnemonic name associated with each field as a keyword to identify each
argument. Using a keyword ensures the accuracy of argument value
placement regardless of the ordering you use when you code the related
argument. For example, the mnemonic keyword for the FAB field that
specifies the allocation quantity is ALQ. Thus, when using the $FAB macro
to initialize the allocation quantity field, you might use the following macro
expression:

INFAB: $FAB ALQ=500

This macro statement defines the start of the FAB at label (symbolic address)
INFAB and initializes the allocation field (at symbolic offset ALQ) to provide
500 blocks of space to the file being created.

In this instance, if you want to change the allocation value to 250 blocks at
run time, you could use the following macro expression:

MOVL #250, INFAB+FAB$L_ALQ Set allocation quantity

In fields that contain binary options or keyword values, you should use the
appropriate keyword or symbolic binary option value. For example, the FAB
has a field at symbolic offset ORG that specifies the file organization. Three
keywords are defined for this field; SEQ (sequential file), REL (relative file)
and IDX (indexed file). To specify an indexed file organization, you should
use the following macro expression: ~

OUTFAB: $FAB ORG=IDX

To set this value at run time, you must move the formal title of the value into
the formal title of the field:

MOVAL OUTFAB, R5 Move address into R5

MOVB #FABC_IDX, FABB_ORG(R5) Store constant value

In control block macros, arguments for bit fields that can contain multiple
values are usually enclosed within left angle (<) and right angle (>)
brackets. Consider the file access (FAC) field (FAB$B_FAC) in the FAB, a bit
field that can contain multiple values. To permit a process to do get and put
operations, the following macro expression could be used:

INFAB : $FAB FAC=<GET, PUT> Specify Put and Get operations

VMS RMS Macros and VAX MACRO Programming
3.1 VMS RMS Macros

Control block macro arguments that are interpreted as ASCII characters (such
as a file specification) are enclosed within left angle (<) and right angle (>)
brackets. The use of the left angle (C) and right angle (>) delimiters is
noted in the format and argument descriptions of the control block macros in
Part II.

At run time, you could use the following code sequence to make the file
accessible to a Get operation:

MOVAL OUTFAB, R6 Move addr into R6
BBS #FABV_GET, FABB_FAC(R6), OK Branch if set
BISB #FABM_GET, FABB_FAC(R6) Set if not set

OK: Complete operation

When you use VMS RMS macros, follow the coding rules used by the VAX
MACRO assembler as described in the following list:

• Comments must be separated from the rest of the code line by a
semicolon (;). For example:

$FAB BKS=4 Bucket size

• All the arguments for a macro must be coded in a single statement. If the
arguments do not fit on a line or if you want to use multiple lines, type
the continuation character, a hyphen (-), as the last character on the line,
and then continue typing arguments on the next line. Comments can
follow the hyphen. For example:

$FAB FNA=FLNAM,- Filename address
ALQ=100,- Allocation quantity
BKS=4 Bucket size

• Arguments and subarguments can be separated from each other by one
of the following:

— A comma, with or without spaces or tabs

FNA=FLNAM,ALQ=100

— A space

FNA=FLNAM ALQ=100

— Multiple spaces or tabs

FNA=FLNAM ALQ=100

The comma without a space or tab is preferred. All coding examples in
this manual use a comma to separate arguments.

3.2 Using the VMS RMS Macros
This section provides examples of using the four types of VMS RMS macros.

VMS RMS Macros and VAX MACRO Programming
3.2 Using the VMS RMS Macros

3.2.1 Control Block Initialization Macros
A major advantage to using the control block initialization macros is that
they direct the initialization values to the correct field locations in the control
block. Returned status values do not apply here because RMS evaluates this
type of macro at assembly time.

The program location of a control block initialization macro defines the
beginning of the control block. Because the address of the control block is a
required argument for most services and for some control block macros, the
macro name should be preceded by a label, as shown in the following code
example:

MYFAB: $FAB

Arguments usually require an address, such as a symbolic address, or a value.
VMS RMS initializes the appropriate field by simply taking the supplied
argument and placing it after the appropriate macro data declaration directive,
as shown in the following code example:

.ADDRESS address

.BYTE value

There are fields that must be treated as ASCII character strings or they
become values in a binary options field. Such fields must be enclosed within
left angle (C) and right angle (>) brackets, under the following conditions:

• When the argument is a file specification (ASCII character string)

• When more than one argument is supplied for a binary options field,
where each bit option is identified by a 3-letter mnemonic

• Where otherwise indicated in the format of the macro, such as for
UICs and file identifiers in which multiple values separated by commas
constitute the argument

Here are several examples:

MYFAB: $FAB FAC=<GET, PUT>,- Multioption field
FNM=<DEGREE_DAY.DAT>,- File specification

NXT=MYXPRO,-
ORG=SEQ

XAB address
Single-option field

MYXPRO: $XABPRO PRO=<RWED,RWED,R,R>,- File protection
UIC=<377,377> UIC

The complete format of each control block initialization macro is provided in
Appendix B, showing those arguments that must be enclosed within left angle
(C) and right angle (>) brackets.

Do not position the macro name in a read-only program section, because
control block fields may receive values during the execution of a service. For
efficiency, align the control blocks on a longword boundary. The initialization
macros display an informational message in the listing file if the control block
is not longword aligned.

In summary, initialization macros must be placed in a writable data program
section in which the data has been aligned on a longword boundary.

VMS RMS Macros and VAX MACRO Programming
3.2 Using the VMS RMS Macros

3.2.2 Control Block Symbol Definition Macros
A control block symbol definition macro includes the macro name only and
has no arguments. The macro name has the suffix "DEF" following the name
of the initialization macro that defines all symbols in the affected control
block.

Control block symbol definition macros can be placed in any program section.
VMS RMS does not provide return values for these macros.

3.2.3 Control Block Store Macros
A control block store macro consists of executable run-time code, so it must
be placed within an executable code program section. RO cannot be used to
return condition codes because these macros may use it to move arguments.
The only detectable errors are assembly-time errors.

The calling format of each control block store macro resembles the calling
format of the corresponding initialization macro except that a control block
store macro can take arun-time value as an argument. Run-time values
include date and time values, file identifier values, device identifier values,
directory identifier values, and record file address values.

The following list describes other differences between the format of a control
block store macro and its corresponding control block initialization macro:

• The argument for the address of the FAB, NAM block, RAB, or XAB to
receive the argument values is required. This argument can be omitted
if the control block address is contained in R0. If this argument is not
a register value in the form Rn, the control block address is loaded into
R0. This argument is not present in the corresponding control block
initialization macro.

• For each argument that requires an address, the store macro uses the
VAX MACRO instruction MOVAx (usually MOVAL) to move the .address
into the appropriate control block field. Thus, VAX MACRO expressions
can be used. For instance, you can use a symbolic address to specify
the control block address argument directly (for example, FAB=MYFAB,
NAM=MYNAM, RAB=MYRAB, or XAB=MYXAB).

You may also specify a register that contains the address using the form
Rn, where n is a decimal number from 0 through 12.

• For each argument that requires a nonkeyword data value, the store
macro uses the VAX MACRO instruction MOVx to move data into the
appropriate control block field. Thus, VAX MACRO expressions can be
used. Note that a number sign (#)must precede a literal nonkeyword
value, except when a literal value is enclosed within left angle (C) and
right angle (>) brackets. However, if you specify the address where the
argument value resides, a number sign must not precede the symbolic
address nor the register expression that contains the address.

• For binary option or keyword value fields, use the supplied keyword
without a number sign and do not use a VAX MACRO expression.
Multiple keyword arguments must be enclosed within left angle (C) and
right angle (>) brackets.

VMS RMS Macros and VAX MACRO Programming
3.2 Using the VMS RMS Macros

In some cases, arguments are specified as run-time values using one of the
following forms:

• A VAX MACRO expression

• The symbolic address of the argument value

The format for each store macro is provided in Appendix B, which includes
exceptions to the general rules previously described.

Example 3-1 illustrates the use of the $XABDAT_STORE macro to set
the creation date of the file to the beginning of a fiscal quarter, thereby
establishing a valid starting date for the file data.

Example 3-1 Use of the $XABDAT and $XABDAT_STORE Macros

.TITLE CREAT - SET CREATION DATE
Program that uses XABDAT and XABDAT_STORE

.PSECT LONG WRT,NOEXE

MYFAB: $FAB ALQ=500, FOP=CBT, FAC=PUT, -
FNM=<DISK$: [PROGRAM]SAMPLE_FILE.DAT>,-
ORG=SEQ, RAT=CR, RFM=VAR, SHR=NIL, MRS=52, XAB=MYXDAT

MYXDAT:

ATIM:
BTIM:

$XABDAT

.ASCID /9-AUG-1988 00:00:00.00/

.BLKQ 1

.PSECT CODE NOWRT,EXE

.ENTRY CREAT, ~M<>
START: $BINTIM_S TIMBUF=ATIM, TIMADR=BTIM

BLBC RO,SS_ERR
$XABDAT_STORE XAB=MYXDAT, CDT=BTIM

$CREATE FAB=MYFAB
BLBC RO,ERROR
$CLOSE FAB=MYFAB
BRB FINI
PUSHL FAB$L_STV+MYFAB
PUSHL FAB$L_STS+MYFAB
CALLS #2, G~LIB$SIGNAL
BRB FINI
PUSHL RO
CALLS #1, G~LIB$SIGNAL
RET
.END CREAT

CLOSE:

ERROR:

SS_ERR:

FINI:

Convert ASCII to binary time
Branch on error
Move time into XAB$Q_CDT
Create file; populate
file later
Close file
and exit
Push FAB STS and
STV on stack
Signal error

Push RO
Signal error

This short program creates a file with a creation date of midnight,
August 9, 1988. The FAB at symbolic address MYFAB defines a sequential
file with variable-length records up to 52 bytes in length and specifies an
allocation size of 500 blocks using the contiguous-best-try file processing
option. It also specifies the file specification. The .ASCID assembler directive
defines the constant date-time character string at symbolic address ATIM.

VMS RMS Macros and VAX MACRO Programming
3.2 Using the VMS RMS Macros

The SYS$BINTIM system service is invoked to convert the constant ASCII
time at symbolic address ATIM to binary format in the quadword at BTIM.
The BTIM value is moved into the XAB$Q_CDT field of the XABDAT control
block at symbolic address MYXDAT using the following XABDAT_STORE
macro:

$XABDAT_STORE XAB=MYXDAT, CDT=BTIM

Because the creation date in field XAB$Q _CDT is input to the Create service
($CREATE macro), the value must be stored before the program invokes the
Create service. The file is created, then closed. Note that Create service errors
are signaled using the FAB$L _STS and FAB$L _STV fields, not R0.

3.2.4 Service Macros
The general macro format of VMS RMS service macros is described in Part I.
Part III describes each service in detail, including the VAX calling format.

Note that the general information applicable to invoking VMS RMS services
in Chapter 2 also applies to programs written in VAX MACRO.

The service macros use two general formats:

i. label: macro-name

2. label: macro-name RAB=rab-address,-
ERR=entry,-
SUC=entry

The first format above takes no arguments. You supply the argument list
within your program, and the argument pointer register (AP) is assumed to
contain the address of the argument list. An example of this format is shown
below.

ARG LOC: .BLKL 2

MOVL #1,ARG_LOC Move number of args to ARG_LOC
MOVAL INFAB, ARG_LOC+4 Move FAB address to ARG_LOC+4

MOVAL ARG_LOC, AP Move ARG_LOC address to AP
$OPEN Open file

In this form, the $OPEN macro expands to the following VAX MACRO code:

CALLG (AP), G~SYS$OPEN

In the second format, you supply arguments that automatically generate an
argument list on the stack according to the values you supplied. You specify
these arguments using keywords, which can be in any order. You must
separate keywords using a comma, a blank space, or tabs. The only argument
required when using the second format is the control block address
(FAB=fab-address or RAB=rab-address). This argument must be either a
general register (RO through R 11) containing the control block address, or a
suitable address for a PUSHAL instruction. If you omit this argument, no
other arguments are allowed; in other words, you must use the first format.

VMS RMS Macros and VAX MACRO Programming
3.2 Using the VMS RMS Macros

The ERR=entry and SUC=entry arguments are optional and, if used, provide
the addresses of completion routine entry points. Completion routines are
always executed as ASTs. VMS RMS places the values you supply in the
argument list on the stack during execution of the expanded macro. These
values must be addresses that can be used by a PUSHAL instruction.

Here is an example of the second format:

$OPEN FAB=INFAB

This macro line expands to the following VAX MACRO code:

PUSHAL INFAB
CALLS #01, G~SYS$OPEN

When the argument list contains a completion routine argument, an AST is
queued. When the AST routine executes, the following conditions hold:

• General registers RO through R11 are undefined. The AP contains the
address of the AST argument list; the AST argument value in the AST
argument list specifies the address of the associated control block (FAB or
RAB). The status must be retrieved from the completion status code field
(STS) of the associated control block.

• Any general registers saved by an entry mask can be modified, in addition
to RO and R 1.

• Additional calls to VMS RMS services can be made within the completion
routines.

• To exit from a completion routine, you must perform any necessary
cleanup operations and execute a RET instruction.

The calling format of each VMS RMS service is listed alphabetically in Part III.
The format for the Close service is shown in the following code example:

SYS$CLOSE fab [, [err] [, suc]]

When you use a macro to call a service, remember to omit the "SYS" prefix.
For example, use $CLOSE instead of SYS$CLOSE.

All file-processing macros require the FAB address as an argument and
optionally allow you to specify the entry points for error or success condition
handlers, as shown in the following format illustration:

$macro FAB=fab-addr [,ERR=error-entry] [,SUC=success-entry]

For example, to invoke the $OPEN macro and pass it the FAB address of
INFAB and the error entry point of OPEN_ERR, you could use the following
macro:

$OPEN FAB=INFAB, ERR=OPEN_ERR

Note that the $RENAME macro has a different format, as noted in Table 3-3.
This file processing macro has the following format:

$RENAME OLDFAB=old-fab-addr [,ERR=error-entry]
[,SUC=success-entry] , NEWFAB=new-fab-addr

VMS RMS Macros and VAX MACRO Programming
3.2 Using the VMS RMS Macros

The format for record processing macros and block I/O macros requires the
RAB address as an argument and optionally allows you to specify the entry
points for error or success condition handlers, as shown in the following
format illustration:

$macro R,AB=rab-addr [,ERR=error-entry] [,SUC=success-entry]

Note that the $WAIT macro has a different format, in that it does not use the
error and success arguments:

$WAIT RAB=rab-addr

Table 3-3 lists each service macro according to its macro type.

Table 3-3 File, Record, and Block I/O Processing Macros

File Record
Processing Processing Block I/O

$CLOSE $CONNECT $READ

$CREATE $DELETE $SPACE

$DISPLAY $DISCONNECT $WRITE

$ENTER $FIND

$ERASE $FLUSH

$EXTEND $FREE

$NXTVOL $GET

$OPEN $PUT

$PARSE $RELEASE

$REMOVE $REWIND

$RENAME' $TRUNCATE

$SEARCH $UPDATE

$WAIT

~ Denotes macro with nonstandard format (see text).

After calling a VMS RMS service, you should check the status code returned
in RO (and the STS field of the appropriate control block). The recommended
way to signal errors is to provide both the STS and STV fields of the FAB
or RAB as arguments to the appropriate Run-Time Library routine. The
following VAX MACRO instructions invoke the LIB$SIGNAL routine for a
file-related (FAB) error using the CALLS (stack) form of calling a routine,
where the FAB is located at symbolic address MYFAB (not shown):

PUSHL MYFAB+FAB$L_STV
PUSHL MYFAB+FAB$L_STS
CALLS #2, G~LIB$SIGNAL

Push fields on stack
in reverse order
Invoke signal routine

4 VMS RMS Example Programs

This section includes very brief examples illustrating the implementation of
VMS RMS at the VAX MACRO programming level. See the Guide to VMS
File Applications for VMS RMS examples using the File Definition Language
(FDL) Utility.

Using VMS RMS macros, you can create new files, process existing files,
extend and delete files, and read, write, update, and delete records within
files.

To create and process VMS RMS files, your program must contain calls to
appropriate VMS RMS services. Generally, you make these calls by using
the VAX RMS service macros for run-time processing. When encountered
at run time, the expanded code of these macros generates a call to the
corresponding VMS RMS service. Each macro and its resultant call represent
a program request for a VMS RMS file or record service, or a block I/O
transfer operation.

4.1 Creating, Accessing, and Deaccessing a File
The Create service constructs a new file according to the attributes you
specify in the FAB for the file, whereas the Open service makes an existing
file available for processing by your program. Both of these services, invoked
by the $CREATE and $OPEN macros respectively, allocate resources within
the system to establish access (a path) to a file. You must open or create a
file to perform most file operations and any record operations on that file.
Applications designed for shared access must declare the type of sharing at
this time. The user specifies the various types of shared access by setting bits
in the file access control (FAB$B_FAC) and share (FAB$B_SHR) fields in the
appropriate FAB.

VMS RMS provides several file-processing options for the Create service. The
create-if option (FAB$V_CIF option in the FAB$L _FOP field) requests that
the file be created only if it does not exist. If the file does exist in the specified
directory, the file is opened, not created. The Open and Create services both
establish access to the desired file, but the Create service additionally allocates
disk space and performs functions related to allocation.

When you are finished processing a file, you invoke the Close service
($CLOSE macro) to close the file, disconnect all record streams associated
with the file and free all resources allocated to the file. If you do not explicitly
invoke the Close service when the program image exits, VMS RMS attempts
an implicit close. All resources associated with open files are returned when
the files are deaccessed at image rundown time. However, process permanent
files are not implicitly closed when an image exits. These are special files that
the current CLI opens outside the context of a normal image.

VMS RMS Example Programs
4.1 Creating, Accessing, and Deaccessing a File

4.1.1 Example of Opening and Creating Files
Example 4-1 illustrates the use of the Open, Create, Connect, Get, Put and
Close services to access and copy records from one file to another. Note
that the arguments to the $FAB and $RAB macros are listed vertically on
separate lines for ease irk reading them. However, the argument list must
be contiguous and a common programming error is omission of required
delimiters and continuation characters when the arguments are listed in this
manner.

Example 4-1 Use of the Create, Open, and Close Services

.TITLE COPYFILE

This program copies the input file to the output file.

.PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>

DNM = <.INV>
INRAB: $RAB FAB = INFAB,-

ROP = RAH,-
UBF = REC_BUFF,
USZ = REC SIZE

OUTFAB: $FAB FNM = <OUTFILE
DNM = <.INV>,-
FOP = CTG,-

MRS = REC_SIZE,
RAT = CR

OUTRAB: $RAB FAB = OUTFAB,-
ROP = WBH,-
RBF = REC_BUFF

REC SIZE = 132
REC BUFF:

.BLKB REC_SIZE

.PSECT CODE,NOWRT,EXE

>,-

Primary input file name
Def ault input file type
Pointer to FAB
Read-ahead option
Record buffer
and size
Primary output file name
Default output f i 1 e name
Make contiguous file
Open for PUT operations
Exclusive file access
Maximum record size
Implied carriage control

Pointer to FAB
Write-behind option
Output uses same buffer
as input

Maximum record size

Record buffer

Initialization - Open input and output files and connect streams

.ENTRY COPYFILE,~M<R6> Save R6
$OPEN FAB=INFAB Open input file
BLBC RO,EXIT1 Quit on error
$CONNECT RAB=INRAB Connect to input
BLBC RO,EXIT2 Quit on error
MOVL INFAB+FAB$L_ALQ,- Set proper size for output

OUTFAB+FAB$L_ALQ
$CREATE FAB=OUTFAB Create output file
BLBC RO,EXIT3 Quit on error
$CONNECT RAB=OUTRAB Connect to output
BLBS RO,READ Branch to READ loop
BRB EXIT4 Trap error

Example 4-1 Cont'd. on next page

VMS RMS Example Programs
4.1 Creating, Accessing, and Deaccessing a File

Example 4-1 (Cont.) Use of the Create, Open, and Close Services

EXIT1: MOVAL
BRB

EXIT2: MOVAL
BRB

EXIT3: MOVAL
BRB

EXIT4: MOVAL
BRB

INFAB,R6
F ERR
INRAB,R6
R ERR
OUTFAB,R6
F ERR
OUTRAB,R6
R ERR

Copy records loop

READ: $GET RAB=INRAB
BLBS RO,WRITE
CMPL R0,#RMS$_EOF
BEQL DONE
BRB EXIT2

WRITE: MOVW INRAB+RAB$W_RSZ,
OUTRAB+RAB$W_RSZ

$PUT RAB=OUTRAB
BLBC RO,EXIT4
BRB READ

Close files, signal any errors, and exit

F_ERR: PUSHL FAB$L_STV(R6)
PUSHL FAB$L_STS(R6)
CALLS #2, G~LIB$SIGNAL
BRB EXIT

R_ERR: PUSHL RAB$L_STV(R6)
PUSHL RAB$L_STS(R6)
CALLS #2, G~LIB$SIGNAL

DONE: $CLOSE FAB=INFAB
$CLOSE FAB=OUTFAB

EXIT: RET
.END COPYFILE

Error: Keep FAB address
Signal file error
Keep RAB address
Signal record error
Keep FAB address
Signal record error
If error, retain RAB addr.
Signal record error

Get a record
Write the record
Was error end-of -file?
Successful completion
Error otherwise
Input RAB sets record
size for output RAB
Write the record
Quit on error
Go back for more

Push STV and STS of FAB
on the stack
Signal error

Push STV and STS of RAB
on the stack
Signal error

Close input
and output
Return with status in RO

This example illustrates how you can use the sequential file organization to
create a new file by copying records from an existing file. The newly created
file and the source file have variable-length records.

This example assumes that an external program has identified the input file
as a search list logical name using this statement:

$ ASSIGN [INV] 30JUN85 , [INV .OLD] 30JUN85 INFILE

This dictates that VMS RMS should look for the input file in directory [INV]
first, and if it does not find the file, it should look in directory [INV.OLD].

The program also specifies the default file type INV for the input file using
this statement:

DNM=<.INV> Default input file name

Next the program configures the RAB used for the input file (labeled INRAB).
The first argument links the RAB to the associated FAB (INFAB) and this is
the only required argument to a RAB. The rest of the arguments specify the
read-ahead option (described in later text) and the record buffer for the input
file. The Get service uses the user record buffer address (UBF) field and the
user record buffer size (USZ) field as inputs to specify the record buffer and
the record size, respectively.

4-3

VMS RMS Example Programs
4.1 Creating, Accessing, and Deaccessing a File

Note: When you invoke the GET service, RMS takes control of the record buffer
and may modify it. RMS returns the record size and only guarantees the
contents from where it accessed the record to the completion of the record.

The program then configures the FAB for the output file. The first argument
uses the FNM field to equate the file name to the externally defined logical
name OUTFILE. After the program specifies the default file specification
extension for the output file, it specifies three additional FAB fields.

First it specifies that VMS RMS should allocate contiguous space for the
output file by setting the CTG bit in the FAB$L _FOP field of the FAB.

Next the progam uses aprogram-defined variable to store the value 132 in
the MRS field:

MRS=REC_SIZE
REC SIZE= 132

The program then specifies that each record is to be preceded by a line feed
and followed by a carriage return whenever the record is output to a line
printer or terminal:

RAT=CR

Because the program alternately reads and then writes each record, the input
file and the output file may share the same buffer. However, because the
Put service does not have access to the UBF and UBZ fields, the output RAB
defines the buffer using the RBF and the RSZ fields.

Note that the UBF, USZ, and RBF values are set prior to run time, but that
the RSZ value is set at run time, just prior to invocation of the Put service.
This is done because the input file contains variable-length records and the
Put service relies on the Get service to supply each record's size by way of
the RSZ field, an INRAB output field.

The following statement from the sample program illustrates this feature:

WRITE: MOVW INRAB+RAB$W_RSZ, - Input RAB sets record
OUTRAB+RAB$W_RSZ size for output RAB

The run-time processing macros for the input file consist of a $OPEN, a
$CONNECT, a $GET, and a $CLOSE macro. Because the input file already
exists, the program accesses it with a $OPEN macro. The sole argument to
this macro identifies the FAB to the Open service:

$OPEN FAB=INFAB

Next, the program connects a record stream to the input file by calling the
Connect service and specifying INRAB as the appropriate RAB:

$CONNECT RAB=INRAB

Note that upon completion of each service call, the program tests the
condition value in RO returned by the service before proceeding to the
next call. If the call fails, the program exits with the appropriate control block
address in R6.

After creating the output file and establishing its record stream, the program
begins a processing loop in which the Get service reads a record from the
input file and the Put service writes the record to the output file. When all
file records are copied, as indicated by the detection of the end of the file, the
program exits to label DONE which closes both files.

VMS RMS Example Programs
4.1 Creating, Accessing, and Deaccessing a File

The Close service disconnects the record stream for all RABs connected to
the specified FAB. In a multistream environment (more than one RAB can
be connected to a single FAB), a program may disconnect individual record
streams using the Disconnect service.

4.1.2 Example of Creating a Multiple-Key Indexed File
Example 4-2 creates an indexed file on a remote DECnet node from a
sequential file on the local node. The indexed file contains three keys.

Example 4-2 Use of the Create Service for an Indexed File

.TITLE CREATEIDX - CREATE INDEXED FILE

.IDENT /V001/

This program creates an indexed file with three keys from a
sequential file containing a name and address list. The record
format of the input file is shown below

First Name Column 00-10
Middle Initial Column 11-11
Last Name Column 12-26
Street Column 27-46
City Column 47-58
State Column 59-60
Zip Code Column 61-65
Reserved for

new data Column 66-end of record

The input and output files are specified by the logical names SRC
and DST, respectively. For example:

$ DEFINE SRC DBB1:[TEST]INPUT.DAT
$ DEFINE DST TRNTO::DRA4:[RMS.FILES]OUTPUT.DAT
$ RUN CREATEIDX

.SBTTL Control block and buffer storage

.PSECT DATA NOEXE,LONG

Define the source file FAB and RAB control blocks.

SRC FAB:
$FAB FAC=<GET>,- File access for GET only

DAP file transfer mode

FNM=<SRC:> Name of input file
SRC RAB:

$RAB FAB=SRC_FAB,-
RAC=SEQ,-
UBF=BUFFER,-
USZ=BUFFER_SIZE

Address of associated FAB
Sequential record access
Buffer address
Buffer size

Example 4-2 Cont'd. on next page

VMS RMS Example Programs
4.1 Creating, Accessing, and Deaccessing a File

Example 4-2 (Cont.) Use of the Create Service for an Indexed File

Define the destination file FAB and RAB control blocks.

DST FAB:
$FAB FAC=<PUT>,-

FOP=CTG,-

MRS=128,-
RFM=VAR,-

ORG=IDX,-
XAB=DST KEYO

DST RAB:
$RAB FAB=DST_FAB,-

MBF=3,-
RAC=KEY,-
RBF=BUFFER,-
ROP=LOA,-
RSZ=BUFFER SIZE

File access for PUT only
Allocate contiguous
Open for PUT operations
Exclusive file access
Name of output file
Maximum record size
Variable length records
Implied carriage control
Indexed file organization
Address of start of XAB chain

Address of associated FAB
Use 3 buffers
Random record writes
Buffer address
Specify initial fill size
Buffer size

Define key definition XABs to describe the three keys.

DST KEYO:
$XABKEY REF=O,-

DAN=O,-
DFL=1536,-
IAN=1,-
IFL=1536,-
PROLOG=3,-

NXT=DST KEY1
DST KEY1:

$XABKEY REF=1,-
DAN=2,-
IAN=2,-
IFL=768,-
POS=47,-
SIZ=12,-
FLG=<CHG,DUP>,-
NXT=DST KEY2

DST_KEY2:
$XABKEY REF=2,-

DAN=2,-
IAN=2,-
IFL=768,-
POS=59,-
FLG=<CHG,DUP>,-
SIZ=2,-
NXT=DST ALLO

Primary key is Name
Key reference number
Define data XABALL
Define data fill of 75%
Define index XABALL
Initial index fill 75%
Request Prolog 3
Segmented key: last name,
first initial, middle initial
Address of next XAB in chain
1st alternate key is City
Key reference number
Data level (SIDR) XABALL
Index XABALL
Initial index fill 75%
Starting key position
Key size
Duplicates and changes
Address of next XAB in chain
2nd alternate key is State
Key reference number
Data level (SIDR) XABALL
Index XABALL
Initial index fill 75%
Starting key position
Duplicates and changes
Key size
Designate next XAB

Example 4-2 Cont'd. on next page

VMS RMS Example Programs
4.1 Creating, Accessing, and Deaccessing a File

Example 4-2 (Cont.) Use of the Create Service for an Indexed File

Define allocation control XABs to define multiple areas

DST ALLO:
$XABALL AID=O,-

ALQ=328,-

BKZ=4,-
DEQ=112,-
NXT=DST ALL1

DST ALL1:
$XABALL AID=1,-

ALQ=8,-
AOP=<CBT>,-
BKZ=4,-
DEQ=4,-
NXT=DST ALL2

DST ALL2:
$XABALL AID=2,-

ALQ=112,-
AOP=<CBT>,-
BKZ=2,-
DEQ=38,-
NXT=DST ALL3

Allocate buffer to the size

BUFFER: .BLKB 66
BUFFER SIZE=.-BUFFER

Data area definition
Allocation quantity and
contiguous best try
Bucket size of 4 blocks
Def ault extension quantity
Designate next XAB

Primary key index area
Allocation quantity and
contiguous best try
Bucket size of 4 blocks
Def ault extension quantity
Designate next XAB

Alternate key data area
Allocation quantity and
contiguous best try
Bucket size of 2 blocks
Default extension quantity
Designate next XAB

of the largest record being read.

Buffer for input and output
Buffer size

.SBTTL Mainline

.PSECT CODE NOWRT,BYTE

Start of program

.ENTRY CREATEIDX,~M<R6> Entry point

Open the source and destination files.

EXIT1:

EXIT2:

EXIT3:

EXIT4:

$OPEN
BLBC
$CONNECT
BLBC
$CREATE
BLBC
$CONNECT
BLBC
BRB
MOVAL
BRB
MOVAL
BRB
MOVAL
BRB
MOVAL
BRB

FAB=SRC_FAB
RO,EXIT1
RAB=SRC_RAB
RO,EXIT2
FAB=DST_FAB
RO,EXIT3
RAB=DST_RAB
RO,EXIT4
LOOP
SRC_FAB,R6
F ERR
SRC_RAB,R6
R_ERR
DST_FAB,R6
F ERR
DST_RAB,R6
R_ERR

Open input file
Branch on failure
Connect input record stream
Branch on failure
Create output file
Branch on failure
Connect output record stream
Branch on failure
Bypass signaling code
Keep FAB address
Signal error
Keep RAB address
Signal error
Keep FAB address
Signal error
Keep RAB address
Signal error

Example 4-2 Cont'd. on next page

4-7

VMS RMS Example Programs
4.1 Creating, Accessing, and Deaccessing a File

Example 4-2 (Cont.) Use of the Create Service for an Indexed File

Transfer records until end-of -file is reached .

LOOP: $GET RAB=SRC_RAB
BLBS RO,PUT
CMPL R0,#RMS$_EOF
BNEQ EXIT2
BRB CLOSE

PUT: $PUT RAB=DST_RAB
BLBS RO,LOOP
BRB EXIT4

Close the source and destination files.

F_ERR: PUSHL FAB$L_STV(R6)
PUSHL FAB$L_STS(R6)
CALLS #2, G~LIB$SIGNAL
BRB EXIT
PUSHL RAB$L_STV(R6)
PUSHL RAB$L_STS(R6)
CALLS #2, G~LIB$SIGNAL

$CLOSE FAB=DST_FAB
$CLOSE FAB=SRC_FAB
$EXIT_S
.END CREATEIDX

R_ERR:

CLOSE:

EXIT:

Read next rec from input file
Branch on success
Was it end-of -file (EOF) ?
Branch if not EOF error
Close and exit if EOF
Write 66-byte record to output
On success, continue loop
On error, signal and exit

Push STV and STS fields
on stack
Signal file error
Exit
Push STV and STS fields
on stack
Signal file error

Close output file
Close input file
Exit
Specify starting address

This example program creates an indexed file with a primary key and two
alternate keys that are defined by appropriate key definition control blocks
(XABKEY). For efficiency, the file is divided into areas consisting of a data
area and an index area for each key using multiple allocation control blocks
(XABALL).

In each XABKEY, the DAN and IAN arguments (XAB$B_DAN and XAB$B_
IAN fields) indicate the area identification number (AID) of the corresponding
XABALL. By setting the RAB$V_LOA bit in RAB field RAB$L _ROP, the
program indicates that VMS RMS should use the DFL and IFL arguments
(XAB$W_DFL and XAB$W_IFL fields) to determine the maximum initial fill
size (in bytes) for data and index buckets (each bucket contains the number of
blocks specified in the XABALL BKZ argument, XAB$B_BKZ field).

These are the XABKEY and XABALL control blocks for the primary key (the
NAME key) in this example:

DST_KEYO:
$XABKEY REF=O,-

DAN=O,-
DFL=1536,-
IAN=1,-
IFL=1536,-
PROLOG=3,-

Primary key is Name
Key reference number
Define data XABALL
Define data fill of 75%
Define index XABALL
Initial index fill 75%
Request Prolog 3

VMS RMS Example Programs
4.1 Creating, Accessing, and Deaccessing a File

DST ALLO:
$XABALL AID=O,-

ALQ=328,-

BKZ=4,-
DEQ=112,-
NXT=DST_ALL1

DST_ALL1:
$XABALL AID=1,-

ALQ=8,-
AOP=<CBT>,-
BKZ=4,-
DEQ=4,-
NXT=DST_ALL2

Data area definition
Allocation quantity and
contiguous best try
Bucket size of 4 blocks
Default extension quantity
Designate next XAB

Primary key index area
Allocation quantity and
contiguous best try
Bucket size of 4 blocks
Default extension quantity
Designate next XAB

The allocation information was obtained using the File Definition Language
(FDL) editor which is especially useful when you are creating large indexed
files. The DCL commands CREATE/FDL and CONVERT can be used to
create files by using an FDL file produced by the FDL editor, without any
programming. Instead of using the multiple XABs for the key definition and
area allocations in this program, a simpler approach is to use the FDL file
produced by the FDL editor by invoking the FDL routines FDL$PARSE and
FDL$RELEASE (for more information on these routines, see the VMS Utility
Routines Manual).

Fixed-length records are copied from the sequential input file on the local
node to the indexed file on the remote node. Each variable-length output
record is initially 66 bytes long and may be extended to a maximum of 128
bytes. A subsequent example in this document shows how to access this file
using different key paths.

4.2 Processing File Specifications
The file name and file specification services, Parse and Search, are used for
relatively complex operations such as processing wildcard characters.

Before you can perform operations on a file, you must establish a path to
the file. You do this by specifying the file specification string address and
size (FAB$L _FNA and FAB$B_FNS) fields (and possibly the default file
specification string address and size fields) of the FAB to describe an ASCII
string within the program. In this ASCII string, you can have a concatenation
of the network node name; a logical or device name; the directory name; and
the file name, type, and version number.

If a logical name is used, VMS RMS translates the logical name into
its equivalent file specification before it applies defaults to any missing
components of the file specification. If the logical name is a search list
logical name, VMS RMS translates each element of the search list into an
equivalent file specification before it applies defaults to that element. When
using the Search service, a file specification that may contain a search list
logical name must be handled as if wildcard characters were present in the
file specification.

The Parse service is required prior to the Search service in order to examine
the file specification for wildcard characters or a search list. If the file is
found, the Parse service sets a NAM block bit that VMS RMS uses internally
and sets an appropriate value in the wildcard character context which is used
as input by the Search service. The Parse service is invoked once, then the
Search service is repetitively invoked as many times as there are files that
match the original file specification.

4-9

VMS RMS Example Programs
4.2 Processing File Specifications

If a wildcard is present, the Search service attempts to find all files that match
the file specification. If an asterisk (*) is in the directory field, all directories
on the specified device are searched for files that match the remaining file
specification components. As with the use of wildcard characters, when a
search list logical name is present, a single Parse service and multiple Search
services return all files that match the file specification. With search lists,
however, all list elements are searched for matching file specifications in
the specified order without regard to uniqueness between the resulting file
specifications. Search lists can be used in place of (or in addition to) wildcard
characters to specify a more efficient search order, which can mean different
combinations for the device, directory, file name, file type, and version
number parts of a file specification. Search lists can also contain wildcard
characters, if needed.

In summary, the Parse and Search services use a search list logical name very
much like a wildcard. Unlike the case of opening a file, in which the first
instance where the file is found successfully ends the use of additional search
list file specifications, the Parse and Search services use all search list file
specifications.

Example 4-3 shows how the $PARSE and $SEARCH macros can be used in
wildcard processing.

Example 4-3 Wildcard Processing Using Parse and Search Services

.TITLE WILD

Program to accept wildcard characters in input (partial) file
specification and display full file specification .

$NAMDEF NAM block definitions

.PSECT DATA,NOEXE,WRT
NAM BLK:

$NAM RSA=RES_STR,-
RSS=NAM$C_MAXRSS,-
ESA=EXP_STR,-
ESS=NAM$C_MAXRSS

FAB BLK:
$FAB

EXP_STR:
.BLKB

RES_STR:
.BLKB

RES_STR_D:
.BLKL
.LONG

INP STR:
.BLKB

INP_STR_D:
.LONG
.LONG

INP_STR_LEN:
.BLKL

FOP=NAM,-
NAM=NAM_BLK,-
FNA=INP_STR

NAM$C_MAXRSS

NAM$C_MAXRSS

1
RES_STR

NAM$C_MAXRSS

NAM$C_MAXRSS
INP_STR

1

Result buffer address
Result buffer size
Expanded buffer address
Expanded buffer size

Use NAM block option
Pointer to NAM block
Addr of file name string

Expanded string buffer

Resultant string buffer

Resultant string descriptor

Input string buffer

Input string descriptor

Input string length

Example 4-3 Cont'd. on next page

4-10

VMS RMS Example Programs
4.2 Processing File Specifications

Example 4-3 (Cont.) Wildcard Processing Using Parse and Search
Services

PROMFT D:
.ASCID /Please enter the file

.PSECT

.ENTRY
PUSHAB
PUSHAB
PUSHAB
CALLS
BLBC

CODE,EXE,NOWRT
WILD,~M<>
INP_STR_LEN
PROMPT_D
INP_STR_D
#3,G~LIB$GET_INPUT
RO,EXIT

Store user input string and perform

User prompt string
specification : /

Address for string length
Prompt string descriptor
String buffer descriptor
Get input string value
Quit on error

initial parse to
set up VMS RMS context for subsequent search.

MOVB INP_STR_LEN, -
FAB_BLK+FAB$B_FNS

$PARSE FAB=FAB_BLK
BLBC RO,F_ERR

Set string size

Parse the file spec
Quit and signal on error

Search until all possibilities are exhausted.

SEARCH LOOP:
$SEARCH FAB=FAB_BLK
BLBC RO,SRCHERR

Print out the resultant string from

MOVZBL NAM_BLK+NAM$B_RSL, -
RES_STR_D

PUSHAB RES_STR_D
CALLS #1,G~LIB$PUT_OUTPUT
BLBC RO,EXIT
BRB SEARCH_LOOP

SRCHERR:
CMPL R0,#RMS$_NMF
BEQL S_EXIT

F_ERR: PUSHL FAB_BLK+FAB$L_STV
PUSHL FAB_BLK+FAB$L_STS
CALLS #2, G~LIB$SIGNAL

S_EXIT: MOVL #1,R0
EXIT: RET

.END WILD

the

Find next file
Any more?

search operation

Set string length
String descriptor
Output the result
Quit on error
Go for more

If the error is "No more
files" then this is the
normal completion of the
search loop.
Push STV and STS on stack
in reverse order
Signal error
Suppress ''No More Files"

This program is designed to locate all files corresponding to a partial file
specification input. The program prompts the user for an input string, which
can consist of a partial file specification, using the wildcard characters
and/or any type of logical name, including a search list logical name. In
many respects, this program emulates the DCL command DIRECTORY,
which is discussed in the VMS DCL Dictionary.

The program illustrates the use of the $PAP.SE and $SEARCH file name
processing macros. Here is the program statement that invokes the Parse
service for parsing the file name string:

$PARSE FAB=FAB_BLK

VMS RMS Example Programs
4.2 Processing File Specifications

Before invoking the Parse service ($PARSE macro), the program moves the
input string length to the file name string (FAB$B_FNS) field. If the Parse
service returns an error completion status, the program branches to the
F_ERR error routine.

Assuming no error, the program searches the disk directories specified by the
expanded string area address field in the NAM block (NAM$L _ESA) until all
possible files conforming to the partial file specification input are found. Here
is the program line that invokes the Search service:

$SEARCH FAB=FAB_BLK

A status test is performed immediately after the $SEARCH macro. If an
error is detected, the program branches to the SRCHERR label. If a no-more-
files condition is detected, VMS RMS returns the RMS$_NMF message to
indicate that all files that match the specification have been found. (This
error, however, is not signaled.)

This program contains two Run-Time Library routines: LIB$GET_INPUT and
LIB$PUT_OUTPUT. The LIB$GET_INPUT routine inputs a record from the
current controlling input device, specified by SYS$INPUT, using the VMS
RMS Get service. The LIB$PUT_OUTPUT routine outputs a record (line) to
the current controlling output device, specified by SYS$OUTPUT, using the
VMS RMS Put service. Both routines are discussed in greater detail in the
VMS Run-Time Library Routines Volume.

4.3 Connecting and Disconnecting Record Streams
To associate or disassociate a file with one or more record streams, VMS RMS
provides the Connect and Disconnect services, which are invoked using the
$CONNECT and $DISCONNECT macros.

Before reading and writing file records, the program must open (or create)
the input and output files and then connect the files to the appropriate record
streams by executing the $OPEN (or $CREATE) macro followed by the
$CONNECT macro.

Closing a file implicitly disconnects the record stream. Use the Disconnect
service to explicitly disconnect a record stream that is not to be used
immediately. This keeps the file open but releases various data structures
for use by other processes until your program needs the record stream.

Example 4-4 shows a program in which auser-entered reply determines
which key path is selected to access the indexed file created in Example 4-2.
The user-entered value determines the value specified for the RAB$B_KRF
field. The RAB$B_ILRF value is set before the connect operation occurs
because this field is input to the Connect service.

4-12

VMS RMS Example Programs
4.3 Connecting and Disconnecting Record Streams

Example 4-4 Use of the Connect Service and Multiple Keys

.TITLE MULTIKEY

REC SIZE=128
.PSECT DATA NOEXE,LONG

MODFAB: $FAB FNM=<DATA_OUTPUT.DAT>,-

SHR=<GET, UPD, PUT>,-
MRS=REC_SIZE

MODRAB: $RAB FAB=MODFAB,-
MBF=3,-
UBF=REC_MODBUF,-
USZ=REC_SIZE,-
KRF=O

REC START: .LONG REC SIZE
.ADDRESS REC_MODBUF

REC_MODBUF: .BLKB REC_SIZE

** RMS DATA **
FAB file spec .
Get access needed
Allow Get, Update, Put
Specify record size
RAB; indicate FAB
Use 3 buffers
Specify buffer

Primary is def ault key
Record buffer

TERMINAL I/O DATA **
MPR00: .ASCID / /
MPR01: .ASCID /Enter list order: i-by name, 2-by city, 3-by state, 9-end :/
ENTRYERR: .ASCID /* * Value entered must be 1, 2, 3, or 9. * */

REGANS:

REGBUF:

.LONG 1

.ADDRESS REGBUF
. BLKB 1

DONE: .ASCID /Press RETURN to continue/

.PSECT
START: .WORD
INPUT: PUSHAL

PUSHAL
PUSHAL
CALLS
BLBC
CMPB
BEQLU
CMPB
BEQLU
CMPB
BEQLU
CMPB
BEQLU

BADANS: PUSHAL
CALLS
BLBC
BRB

PRIM: MOVB
BRB

ALT1: MOVB
BRB

ALT2: MOVB
OPEN: $OPEN

CODE
~M<>
MPR00
MPRO1
REGANS
#3, G~LIB$GET_INPUT
RO,FINI
#~A/i/,REGBUF ;
PRIM ;
#"A/2/,REGBUF ;
ALT1 ;
#~A/3/,REGBUF ;
ALT2 ;
#~A/9/,REGBUF ;
FINI ;
ENTRYERR ;
#1, G~LIB$PUT_OUTPUT
RO,FINI
INPUT ;
#O,MODRAB+RAB$B_KRF ;
OPEN
#1,MODRAB+RAB$B_KRF ;
OPEN
#2,MODRAB+RAB$B_KRF ;
FAB=MODFAB ;

BLBC RO,ERROR_OPEN
$CONNECT RAB=MODRAB
BLBC RO,ERROR

Get input
Display prompt

Test value of menu answer
1 means primary
Continue testing
2 means first alternate
Continue testing
3 means second alternate
Continue testing
9 means end program
otherwise, display error message

Entry error; retry
Set key of reference in RAB

Set key of reference in RAB

Set key of reference in RAB
Open file

Connect record stream

Example 4-4 Cont'd. on next page

4-13

VMS RMS Example Programs
4.3 Connecting and Disconnecting Record Streams

Example 4-4 (Cont.) Use of the Connect Service and Multiple Keys

NEXT: $GET
CMPL
BEQLU
BLBC
MOVZWL
PUSHAL
CALLS
BLBS
BRB

CLEAN: $CLOSE
BLBC
PUSHAL
CALLS
BLBC
PUSHAL
PUSHAL
CALLS
BLBC
BRB

ERROR OPEN:
PUSHL
PUSHL
CALLS
BRB

ERROR: PUSHL
PUSHL
CALLS
$CLOSE

FINI: RET
.END

RAB=MODRAB Get record
#RMS$_EOF,RO Test if EOF
CLEAN
RO,ERROR
RAB$W_USZ+MODRAB,REC_START Set ASCII descriptor length
REC_START Display each record
#1, G~LIB$PUT_OUTPUT
RO,NEXT
FINI Repeat until EOF
FAB=MODFAB Close file
RO,ERROR_OPEN
MPR00
#1, G~LIB$PUT_OUTPUT
RO,FINI
DONE
REGANS
#2, G~LIB$GET_INPUT
RO,FINI
INPUT

MODFAB+FAB$L_STV Error opening
MODFAB+FAB$L_STS file. Signal error
#2, G"LIB$SIGNAL using LIB$SIGNAL.
FINI End program
MODRAB+RAB$L_STV Record-related error
MODRAB+RAB$L_STS
#2, G"LIB$SIGNAL Signal error, then
FAB=MODFAB close file

START

Here the SHR argument limits access to processes that perform the Get
service, Put service, and Update service. If you anticipate no file modifications
as your program accesses the file, you can improve performance by having the
SHR argument limit access to processes that use the Get service (SHR=GET).

Errors are signaled according to the recommended practice of using the
FAB$L _STS and FAB$L _STV fields for file errors and RAB$L _STS and
RAB$L _STV fields for record errors.

4.4 Other File-Processing Operations
Other VMS RMS file services include the Display, Erase, Extend, Remove,
and Rename services, which can be invoked using the $DISPLAY, $ERASE,
$EXTEND, $REMOVE, and $RENAME macros, respectively.

Example 4-5 illustrates the use of the Rename service to rename a file from
directory [USER] named NAMES.DAT to directory [USER.HISTORY] named
OLD_NAMES.DAT.

4-14

VMS RMS Example Programs
4.4 Other File-Processing Operations

Example 4-5 Use of the Rename Service

.TITLE RENAME

Program that renames a file into a different directory and
displays the resultant string.

.PSECT DATA,NOEXE,WRT

Define old FAB, old NAM, new FAB, new NAM, and buffers

OLD_FAB : Define old file FAB
$FAB FNM=<[USER]NAMES.DAT>,-

NAM=OLD_NAM Pointer to NAM block
OLD_NAM : Define old file NAM

$NAM ESA=EXP_OLD,- Equivalence string
ESS=NAM$C_MAXRSS,- address and size
RSA=RES_OLD,- Resultant string
RSS=NAM$C_MAXRSS address and size

NEW FAB : Define new file FAB
$FAB FNM=<[USER.HISTORY]OLD_NAMES.DAT>,-

NAM=NEW_NAM Pointer to NAM block
NEW NAM:

$NAM ESA=EXP_NEW,-
ESS=NAM$C_MAXRSS,-
RSA=RES_NEW,-
RSS=NAM$C_MAXRSS

EXP OLD:
.BLKB NAM$C_MAXRSS

EXP NEW:
.BLKB NAM$C_MAXRSS

RES OLD:
.BLKB NAM$C_MAXRSS

RES OLD D:
.BLKL 1
.LONG RESOLD

RES NEW:
.BLKB NAM$C_MAXRSS

RES NEW D:
.BLKL 1
.LONG RES_NEW

MESS:

Equivalence string
address and size
Resultant string
address and size

Old file equivalence
string buffer
New file equivalence
string buffer
Old file resultant
string buffer
String descriptor

New file resultant
string buffer
String descriptor

.ASCID /has been successfully relocated to /

.PSECT CODE,EXE,NOWRT

.ENTRY RENAME,~M<>
Rename f i 1 e

$RENAME OLDFAB=OLD_FAB, NEWFAB=NEW_FAB
BLBC RO,ERROR

Set up descriptors

Example 4-5 Cont'd. on next page

VMS RMS Example Programs
4.4 Other File-Processing Operations

Example 4-5 Cont.) Use of the Rename Service

MOVZBL OLD_NAM+NAM$B_RSL,RES_OLD_D
MOVZBL NEW_NAM+NAM$B_RSL,RES_NEW_D

PUSHAL
CALLS
BLBC
PUSHAL
CALLS
BLBC
PUSHAL
CALLS
BLBS

TERM ERROR:
PUSHL
CALLS
BRB

RES_OLD_D
#1,G~LIB$PUT_OUTPUT
RO,TERM_ERROR
MESS
#1,G~LIB$PUT_OUTPUT
RO,TERM_ERROR
RES_NEW_D
#1,G~LIB$PUT_OUTPUT
RO,DONE

RO
#1,G~LIB$SIGNAL
DONE

ERROR: PUSHL OLD_FAB+FAB$L_STV
PUSHL OLD_FAB+FAB$L_STS
CALLS #2,G~LIB$SIGNAL

DONE: RET
.END RENAME

Push resultant name,
display old file spec.
Branch on error
Push message on stack,
display message
Branch on error
Push resultant name,
display new file spec.
Branch on success

Signal output error
from RO

Push STV and STS on
stack (reverse order)
Signal error

This program uses the Rename service to change both the directory and the
name of the object file, which is being replaced by a new file (created by a
separate program). If the Rename service executes correctly, the resultant
file specification of the old file, the message defined by the ASCII descriptor
following the label MESS, and the resultant file specification of the new file
are displayed as verification that the Rename service successfully completed.

4.5 Retrieving and I nserting Records
The record-processing services provided by VMS RMS insert records into a
file and retrieve records from a file. These services are the Find, Get, and
Put services, which can be invoked by the $FIND, $GET, and $PUT macros,
respectively.

Example 4-6 illustrates the use of the $GET and $PUT macros. It connects
the input and output record streams, reads a record from an indexed file, and
writes the record to a relative file. The program illustrates the use of the key
string buffer, the key string descriptor and the key string length when reading
indexed records and it includes the use of a user prompt string.

VMS RMS Example Programs
4.5 Retrieving and Inserting Records

Example 4-6 Use of the Get and Put Services

.TITLE LOOKUP

This program looks up records in the input file and
writes the records to the output file.

.PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>,- Input file logical name

SHR = <GET,PUT,UPD,DEL> Allow read/write sharing
INRAB: $RAB FAB = INFAB,- Pointer to FAB

KBF = INP_STR,- Key buffer
KRF = 0,- Primary key
RAC = KEY,- Keyed access
ROP = WAT,- Wait for record
UBF = REC_BUFF,- Record buffer
USZ = REC_SIZE and size

OUTFAB: $FAB FNM = <OUTFILE:>,- Output file logical name
BKS = 3,- 3 blocks per bucket
MRS = REC_SIZE,- Maximum record size
ORG = REL, - Relative file
RAT = CR Implied carriage control

OUTRAB: $RAB FAB = OUTFAB,- Pointer to FAB
RBF = REC_BUFF Output uses same buffer

as input
REC_SIZE = 132 Maximum size records
REC BUFF:

.BLKB REC_SIZE Record buffer
INP_STR: Key string buffer

.BLKB REC_SIZE
INP_STR_D: Key string descriptor

.LONG REC_SIZE

.LONG INP_STR
INP_STR_LEN: Key string length

.BLKL 1
PROMPT_D: User prompt string

.ASCID /Please input key value: /

.PSECT CODE,NOWRT,EXE

Initialization - Open input and output files and connect streams

.ENTRY LOOKUP,"'M<> No registers to save
$OPEN FAB=INFAB Open input file
BLBC RO,EXIT1 Quit on error
$CONNECT RAB=INRAB Connect to input
BLBC RO,EXIT2 Quit on error
$CREATE FAB=OUTFAB Create output file
BLBC RO,EXIT3 Quit on error
$CONNECT RAB=OUTRAB Connect to output
BLBC RO,EXIT4 Quit on error
BRB READ Skip error branching

EXIT1: MOVAL INFAB, R6 Keep INFAB address
BRW F_ERR Signal FAB error

EXIT2: MOVAL INRAB, R6 Keep INRAB address
BRW R_ERR Signal RAB error

EXIT3: MOVAL OUTFAB, R6 Keep OUTFAB address
BRB F_ERR Signal FAB error

EXIT4: MOVAL OUTRAB, R6 Keep OUTRAB address
BRB R_ERR Signal RAB error

Example 4-6 Cont'd. on next page

4-17

VMS RMS Example Programs
4.5 Retrieving and Inserting Records

Example 4-6 (Cont.) Use of the Get and Put Services

Loop to copy records

READ:
PUSHAB
PUSHAB
PUSHAB
CALLS
BLBS
CMPL
BEQL
BRB

GET: MOVB

$GET
BLBS
CMPL
BEQL
BRB

PUT: MOVW

$PUT
BLBC
BRB

INP_STR_LEN
PROMPT_D
INP_STR_D
#3,G~LIB$GET_INPUT
RO,GET
R0,#RMS$_EOF
DONE
EXIT
INP_STR_LEN, -
INRAB+RAB$B_KSZ
RAB=INRAB
RO,PUT
R0,#RMS$_RNF
READ
EXIT2
INRAB+RAB$W_RSZ, -
OUTRAB+RAB$W_RSZ
RAB=OUTRAB
RO,EXIT4
READ

Close files and exit

F_ERR: PUSHL FAB$L_STV(R6)
PUSHL FAB$L_STS(R6)
CALLS #2, G~LIB$SIGNAL
BRB EXIT

R_ERR: PUSHL RAB$L_STV(R6)
PUSHL RAB$L_STS(R6)
CALLS #2, G~LIB$SIGNAL

DONE: $CLOSE FAB=INFAB
$CLOSE FAB=OUTFAB

EXIT: RET
.END LOOKUP

Address for string length
Prompt string descriptor
String buffer descriptor
Get input string value
Quit on error or end-of -file
Was error end-of -file?
Successful completion
Error otherwise
Set key size

Get a record
Put if successful
No such record?
Try again
Error otherwise
Set the record size
for output
Write the record
Quit on error
Go back for more

Push STV and STS on
stack in reverse order
Signal message

Push STV and STS on
stack in reverse order
Signal message
Close input
and output
Return with status in RO

This program writes records from an existing indexed input file into a newly
created relative output file.

The program configures the file-sharing field (FAB$B_SHR) in the input FAB
to permit sharing of the file by processes that use the Get, Put, Update and
Delete services.

The output FAB sets the bucket size field (FAB$B_BKS) at three blocks per
bucket, limits the record size in the output file to 132 bytes, specifies the
relative file organization and specifies an implicit carriage control when the
file output is directed to a terminal.

The RAB for the input file establishes the key data, sets the WAIT record
option and defines the record buffer. The output RAB locates the record
buffer. The rest of the first program section assigns values and allocates space
to various program variables. After the program opens and creates the two
files and connects the record streams, it executes a series of instructions at
label READ that input the required key values and the user prompt. Then the
program uses the $GET and $PUT macros to invoke the respective services
for retrieving and inserting the records. The $GET macro uses the INRAB,

4--18

VMS RMS Example Programs
4.5 Retrieving and Inserting Records

and the $PUT macro uses the OUTRAB as shown in the following program
statements:

$GET RAB=INRAB

$PUT RAB=OUTRAB

Each time the program reads or writes a record, it performs a status check. If
the status check is successful, the program branches back to the READ label
for the next record. If any of the status checks indicate an error, the program
branches to the appropriate error handler before exiting.

When the program completes the records transfers, it branches to the DONE
label to close the record and exit.

4.6 Deleting Records
This service can only be used with relative and indexed files. Example 4-7
illustrates use of the Delete service.

Example 4-7 Use of the Delete Service

.TITLE DELETE

This program looks up records in the input file and
deletes those records.

.PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>

FAC = <DEL,GET>
INRAB: $RAB FAB = INFAB,-

KBF = INP_STR,-
KRF = 0,-
RAC = KEY

REC SIZE = 132
INP_STR:

.BLKB REC_SIZE
INP STR D:

.LONG REC_SIZE

.LONG INP_STR
INP_STR_LEN:

.BLKL 1
KEY PMT D:

.ASCID /Please enter key

.PSECT CODE,NOWRT,EXE
value:

Initialization - Open file and connect

.ENTRY DELETE,~M<>
$OPEN FAB=INFAB
BLBC RO,F_ERR
$CONNECT RAB=INRAB
BLBC RO,R_ERR

Input file logical name
DEL access
Pointer to FAB
Key buffer
Primary key
Keyed access
Maximum size records
Key string/record buffer

Key string descriptor

Key string length

Key value prompt string

stream

No registers to save
Open input file
Quit on error
Connect to input
Quit on error

Example 4-7 Cont'd. on next page

VMS RMS Example Programs
4.6 Deleting Records

Example 4-7 (Cont.~ Use of the Delete Service

Delete record loop

READ:
PUSHAB
PUSHAB
PUSHAB
CALLS
BLBS
CMPL
BEQL
BRB

FIND: MOVB

$FIND
BLBS
CMPL
BEQL
BRB

DEL: $DELETE
BLBC
BRB

INP_STR_LEN
KEY_PMT_D
INP_STR_D
#3,G~LIB$GET_INPUT
RO,FIND
R0,#RMS$_EOF
DONE
EXIT
INP_STR_LEN, -
INRAB+RAB$B_KSZ
RAB=INRAB
RO,DEL
R0,#RMS$_RNF
READ
R_ERR
RAB=INRAB
RO,R_ERR
READ

Close files and exit

F_ERR: PUSHL FAB$L_STV+INFAB
PUSHL FAB$L_STS+INFAB
CALLS #2, G~LIB$SIGNAL
BRB EXIT

R_ERR: PUSHL RAB$L_STV+INRAB
PUSHL RAB$L_STS+INRAB
CALLS #2, G~LIB$SIGNAL

DONE: $CLOSE FAB=INFAB
EXIT: RET

.END DELETE

Address for string length
Prompt string descriptor
String buffer descriptor
Get input string value
quit on error or end-of -file
Was error end-of-file?
Successful completion
Error otherwise
Set key size

Locate the record
Continue if found
No such record?
Try again
Error otherwise
Delete the record
Quit on error
Go back for more

Push STV and STS on
stack in reverse order
Signal message

Push STV and STS on
stack in reverse order
Signal message
Close files
Return with status in RO

This program uses a key to find and delete a record. To use the $DELETE
macro, the $FAB macro for the file must set the FAB$V_DEL bit as shown in
the following code example:

INFAB: $FAB FNM=<INFILE:>,-
FAC=

The following program statement invokes the Delete Service and points to
the input RAB:

$DELETE RAB=INRAB

4-20

VMS RMS Example Programs
4.7 Updating Records

4.7 Updating Records
Example 4-S illustrates the use of the Update service.

Example 4-8 Use of the Update Service

.TITLE UPDATE

This program looks up records in the input file and
updates those records.

.PSECT
INFAB: $FAB

INRAB: $RAB

REC_SIZE = 132
INP_STR:

DATA,WRT,NOEXE
FNM = <INFILE:>,
FAC = <GET,UPD>
FAB = INFAB,-
KBF = INP_STR,-
KRF = 0,-
RAC = KEY,-
RBF = INP_STR

.BLKB REC_SIZE
INP STR D:

.LONG REC_SIZE

.LONG INP_STR
INP_STR_LEN:

.BLKL 1
KEY PMT D:

.ASCID /Please input key
DATA_PMT_D:

.ASCID /Please input new

.PSECT CODE,NOWRT,EXE

Input file logical name
Read and Write access
Pointer to FAB
Key buffer .
Primary key
Keyed access
Record buffer
Maximum size records
Key string/record buffer

Key string descriptor

Key string length

Key value prompt string
value: /

Data value prompt string
record value: /

Initialization - Open file and connect

FAB_E:
RAB_E:

.ENTRY UPDATE,~M<>
$OPEN FAB=INFAB
BLBC RO,FAB_E
$CONNECT RAB=INRAB
BLBC RO,RAB_E
BRB READ
BRW F_ERR
BRW R_ERR

Update record loop

READ:

Prompt for key value to look up.

PUSHAB
PUSHAB
PUSHAB
CALLS
BLBS
CMPL
BEQL
BRW

INP_STR_LEN
KEY_PMT_D
INP_STR_D
#3,G~LIB$GET_INPUT
RO,FIND
R0,#RMS$_EOF
ALL_D
EXIT

stream

No registers to save
Open input file
Quit on error
Connect to input
Quit on error
Begin update loop
File (FAB) error
Record CRAB) error

Address for string length
Prompt string descriptor
String buffer descriptor
Get input string value
Quit on error or end-of -file
Was error end-of -file?
Successful completion
Error otherwise

Example 4-8 Cont'd. on next page

4-21

VMS RMS Example Programs
4.7 Updating Records

Example 4-8 (Cont.) Use of the Update Service

ALL_D: BRW
FIND: MOVB

$FIND
BLBS
CMPL
BEQL
BRB

DONE
INP_STR_LEN, -
INRAB+RAB$B_KSZ
RAB=INRAB
RO,UPD
R0,#RMS$_RNF
READ
R ERR

Prompt for new data record.

UPD:
PUSHAB INP STR LEN
PUSHAB DATA_PMT_D
PUSHAB INP_STR_D
CALLS #3,G~LIB$GET_INPUT
BLBC RO,EXIT
MOVW INP_STR_LEN, -

INRAB+RAB$W_RSZ
$UPDATE RAB=INRAB
BLBC RO,R_ERR
BRW READ

Close files and exit

F_ERR : ~- PUSHL
PUSHL
CALLS
BRB

FAB$L_STV+INFAB
FAB$L_STS+INFAB
#2, G~LIB$SIGNAL
EXIT

R_ERR: PUSHL RAB$L_STV+INRAB
PUSHL RAB$L_STS+INRAB
CALLS #2, G~LIB$SIGNAL

DONE: $CLOSE FAB=INFAB
EXIT: RET

.END UPDATE

Set key size

Locate the record
Continue if found
No such record?
Try again
Error otherwise

Address for string length
Prompt string descriptor
String buffer descriptor
Get input string value
Quit on error
Set record size

Write the record
Quit on error
Go back for more

Push STV and STS on
stack in reverse order
Signal message

Push STV and STS on
stack in reverse order
Signal message
Close files
Return with status in RO

This program uses a key and a new record entered from the terminal to
update a record in the input file.

To use the $UPDATE macro, the $FAB macro for the file must specify that
the FAB$V_UPD bit is marked in the file access (FAB$B_FAC) field as shown
in the following code example:

INFAB: $FAB FNM=<INFILE:>,-
FAC=<GET,UPD>

Before updating a record, the program uses the Find service to locate the
record by executing the $FIND macro located at the FIND label.

$FIND RAB=INRAB

4-22

VMS RMS Example Programs
4.8 Using Block I/O

4.8 Using Block I/O

In addition to the major types of record access provided by the sequential,
random by key value or relative record number, and random by RFA access
modes, VMS RMS provides another means to access data in a file: block I/O.

Block I/O operations let you directly read or write the blocks of a file. These
operations are provided for users who must keep system overhead to a
minimum and need no interpretation of file data as logical records, yet still
want to take advantage of the easy file access of VMS RMS. Block I/O is an
intermediate step between the VMS RMS record operations and direct use of
VMS $QIO system services.

The three block I/O services are invoked using the $READ, $SPACE, and
$WRITE macros, respectively.

• The Read service transfers a specified number of bytes to memory.

• The Space service positions a file forward or backward a specified number
of blocks.

• The Write service writes a specified number of bytes to a file.

The Read and Write services always begin on a block boundary.

In addition to the Read, Space, and Write services, you can use the following
services on a record stream connected for block I/O operations:

• The Disconnect service ($DISCONNECT macro)

• The Flush service ($FLUSH macro)

• The Next Volume service ($NXTVOL macro)

• The Rewind service ($REWIND macro)

These services perform miscellaneous operations or disconnect the record
stream. They do not work on the contents of the records themselves.

You cannot perform block I/O operations on shared files. That is, file access
for block I/O operations is denied unless the FAB$V_UPI or the FAB$V_NIL
bit is set in the FAB$B_SHR field.

You specify block I/O operations for a record stream by setting the FAB$V_
BIO bit in the file access (FAB$B_FAC) field as input to the Open or Create
services. If you intend to write to the file, you must set the PUT option in the
FAB$B_FAC field; if you intend to read from the file, you must set the GET
option in the FAB$B_FAC field. Setting the FAB$V_BIO bit when you are
creating a relative or indexed file causes VMS RMS to omit prolog processing
for indexed files and initial space prezeroing in relative files.

For files of unknown organization, block I/O is the only form of processing
allowed. Processing proceeds identically to that for block I/O to the relative
file organization described above.

VMS RMS Example Programs
4.8 Using Block I/O

4.8.1 Mixed Block and Record I/O
How and when VMS RMS allows you to switch between record I/O and
block I/O depends on the organization of the file being accessed.

When you access sequential files, VMS RMS allows you to switch between
record I/O and block I/O with each record operation, if desired. To enable
I/O switching for a record stream connected to a sequential file, use the
following procedure:

1 Set the FAB$V_BRO option in the FAB$B~'AC field as input to the
Create or Open service.

2 Clear the RAB$L_ROP field RAB$V_BIO option as input to the Connect
service.

This procedure informs VMS RMS that it should check the RAB$V_BIO
option in the RAB$L _ROP field after each operation.

To do a block I/O operation:

1 Set the RAB$L _ROP field RAB$V_BIO option.

2 Invoke a VMS RMS block I/O service (Read, Space, or Write).

To do a record I/O operation:

1 Clear the RAB$L _ROP field RAB$V_BIO option.

2 Invoke a VMS RMS record I/O service.

Use care if you do choose to mix record and block I/O operations for
sequential files. When you switch operations on disk devices, the context
of the current record, the next record, and the next block pointer is undefined.
Thus, the first operation after the switch must not use sequential record access
mode. For magnetic tape devices, the context of the next record or next block
indicates the start of the following block on the tape for the first operation
after the switch.

As previously noted, you usually set the FAB$B_FAC field FAB$V_BRO
option only to indicate to VMS RMS that you want to mix record I/O and
block I/O operations. If you decide that you want to perform block I/O
processing only, you can set the RAB$L _ROP field RAB$V_BIO option after
you open the file but before you invoke the Connect service. This connect-
time operation overrides the setting of the FAB$V_BRO option for the current
record stream and indicates to the Connect service that you only intend to
do block I/O for this file, thus eliminating the need to allocate internal I/O
buffers. (However, you must still allocate buffers for block I/O operations
in your application program.) If you set the FAB$V_BRO option when you
create an indexed file, the key definition XABs for that file must be present.

When you access relative or indexed files, switching is available only if you
close and reopen the file. VMS RMS does not permit both types of I/O
simultaneously. When multiple record streams are used, all record streams
must use the same type of I/O, either record I/O or block I/O.

You specify the I/O type when you create or open a file by either selecting
the block I/O option (FAB$V_BIO bit set) or by selecting record I/O (FAB$V_
BIO bit clear). For relative and indexed files, the decision to use block I/O or
record I/O for a file can be postponed, if desired, until the record stream is
connected by the following procedure:

4-24

VMS RMS Example Programs
4.8 Using Block I/O

1 Set the FAB$B_FAC field FAB$V_BRO option when you are opening (or
creating) the file.

2 Indicate the appropriate operation to the Connect service by either setting
the RAB$V_BIO bit in the RAB$L _ROP for block I/O or by clearing it
for record I/O.

4.8.2 The Next Block Pointer (NBP)
For block I/O operations to sequential files on disk devices, VMS RMS
maintains an internal next block pointer (NBP) that does the following
functions:

• Points to the beginning of the file following execution of a Connect
service if the RAB$V_EOF option in the RAB$L _ROP field of the RAB
is cleared. If the RAB$L _ROP field RAB$V_EOF option is set, the NPB
points to the block following the end of file. The RAB$V_EOF option is
relevant only for sequential files doing block I/O processing.

• Points to the block following the highest numbered block transferred by a
read or write operation.

• Points to the next block following an operation invoked by the Space
service.

An explicit Extend service is required for relative and indexed files because
VMS RMS does not automatically extend a file's allocation when using block
I/O processing.

Example 4-9 illustrates how to copy a file using block I/O.

Example 4-9 Use of Block I/O

.TITLE BLOCKIO

This program copies the input file to the output file.
It illustrates block I/O using the VMS RMS $READ and $WRITE
macros.

.PSECT DATA,WRT,NOEXE
INFAB: $FAB FNM = <INFILE:>,-

FAC = <BIO,GET>
INRAB: $RAB FAB = INFAB,-

BKT = 0,-
UBF = REC_BUFF,-
USZ = REC_SIZE

OUTFAB: $FAB FNM = <OUTFILE:>,-
FOP = CBT,-
MRS = REC_SIZE,-

RAT = CR
OUTRAB: $RAB FAB = OUTFAB,-

BKT = 0,-
RBF = REC_BUFF

REC_SIZE = 1024 ;

Input file name
Block I/O read operations
Pointer to FAB
Start with current block
Record buffer

and size
Output file name
Try for contiguous file
Maximum record size
Block I/O write operations
Implied carriage control
Pointer to FAB
Start with current block
Output uses same buffer
as input

Maximum record size

Example 4-9 Cont'd. on next page

VMS RMS Example Programs
4.8 Using Block i/O

Example 4-9 (Cont.~ Use of Block I/O

REC BUFF:
.BLKB REC_SIZE Record buffer

.PSECT CODE,NOWRT,EXE

Initialization - Open input and output files and connect streams

.ENTRY BLOCKIO,~M<>
$OPEN FAB=INFAB
BLBC RO,EXIT1
$CONNECT RAB=INRAB
BLBC RO,EXIT2
MOVL INFAB+FAB$L_ALQ,-

OUTFAB+FAB$L_ALQ
$CREATE FAB=OUTFAB
BLBC RO,EXIT3
$CONNECT RAB=OUTRAB
BLBC RO,EXIT4

Copy loop

READ: $READ RAB=INRAB
BLBS RO,WRITE
CMPL R0,#RMS$_EOF
BEQL DONE
BRB EXIT2

WRITE: MOVW INRAB+RAB$W_RSZ,
OUTRAB+RAB$W_RSZ

$WRITE RAB=OUTRAB
BLBC RO,EXIT4
BRB READ

No registers to save
Open input file
Quit on error
Connect to input
Quit on error
Set proper size
for output

Create output file
Quit on error
Connect to output
Quit on error

Get a block
Write the block
Was error end-of -file?
Successful completion
If not, signal error
Set the record size
for output

Write the block
Quit on error
Go back for more

Error Signaling

EXIT1: MOVL INFAB+FAB$L_STS,R2 Move STS into R2
MOVL INFAB+FAB$L_STV,R3 Move STV into R3
BRB EXIT Signal error

EXIT2: MOVL INRAB+RAB$L_STS,R2 Move STS into R2
MOVL INRAB+RAB$L_STV,R3 Move STV into R3
BRB EXIT Signal error

EXIT3: MOVL OUTFAB+FAB$L_STS,R2 Move STS into R2
MOVL OUTFAB+FAB$L_STV,R3 Move STV into R3
BRB EXIT Signal error

EXIT4: MOVL OUTRAB+RAB$L_STS,R2 Move STS into R2
MOVL OUTRAB+RAB$L_STV,R3 Move STV into R3
BRB EXIT Signal error

Close files and exit

DONE: $CLOSE FAB=INFAB Close input and
$CLOSE FAB=OUTFAB output files
RET Return w/ success in RO

EXIT: PUSHL R3 Push STV and STS
PUSHL R2 on stack
CALLS #2, G~LIB$SIGNAL Signal error
RET Return w/ status in RO
.END BLOCKIO

VMS RMS Example Programs
4.8 Using Block I/O

This example program uses block I/O to transfer the contents of the input file
to the output file. The following program data statements specify block I/O
read operations from the input file by setting the FAB$V_BIO bit (block I/O)
and the FAB$V_GET bit (read) in the FAB$B_FAC field of the input file's
FAB:

INFAB: $FAB FNM = <INFILE>, - ;Input file name

The following data statements specify block I/O write operations to the
output file by setting the FAB$V_BIO bit (block I/O) and the FAB$V_PUT bit
(write) in the FAB$B_FAC field of the output file's FAB:

OUTFAB: $FAB FNM = <INFILE>, - ;Output file name
FAC = <BIO,PUT>,-

The input file's contents are copied until the end of file is encountered. Any
errors are signaled with the convention of using both the STS and STV fields
of the appropriate control block.

4.9 Other Record-Processing Operations
See Part III for details of VMS RMS record services not discussed in this
chapter, including the Flush, Free, Next Volume, Release, Rewind, and
Wait services. A process invokes these services using the $FLUSH, $FREE,
$NXTVOL, $RELEASE, $REWIND, and $WAIT macros, respectively.

4.10 Control Routines
In addition to the general- and special-purpose file-processing macros, VMS
RMS provides three control routines for processing files. These routines are
identified by the following entry point names:

• SYS$RMSRUNDWN

• SYS$SETDDIR

• SYS$SETDFPROT

These routines do not reference fields in user control blocks and are not called
with a macro. Instead, you provide an argument list and call VMS RMS at
the entry point for the routine. None of these routines is widely used, and
none is essential to normal VMS RMS file and record processing.

For information on these routines, see the VMS System Services Reference
Manual.

VMS RMS Control Blocks
Part II describes each VMS RMS control block, including a complete listing
and description of each field.

5 File Access Block (FAB)

The file access block (FAB) defines file characteristics, file access, and certain
run-time options. It also indicates whether other control blocks are associated
with the file.

5.1 Summary of Fields
Certain FAB fields are directly equivalent to certain File Definition Language
(FDL) attributes. For information about FDL, refer to the VMS File Definition
Language Facility Manual.

The symbolic offset, size, FDL equivalent, and a brief description of each FAB
field are presented in Table 5-1.

Table 5--1 FAB Fields

Field Offset
Size
(Bytes) FDL Equivalent Description

FAB$L _ALQ

FAB$B_BID'

FAB$B_BKS

FAB$B_BLN'

FAB$W_BLS

FAB$V_CHAN _MODE

FAB$L _CTX

FAB$W_DEQ

FAB$L _DEV3

FAB$L _DNA

4

1

1

1

2
2

4

2

4

4

FAB$B_DNS 1

FAB$B_FAC

FAB$L _FNA

FAB$B_FNS

FAB$L _FOP

FAB$B_FSZ

FAB$W_GBC

1

4

1

4

1

2

FILE ALLOCATION

None

FILE BUCKET_SIZE

None

FILE MT_BLOCK_SiZE

None

FILE CONTEXT

FILE EXTENSION

None

FILE DEFAULT_NAME

FILE DEFAULT_NAME

ACCESS4

FILE NAME

FILE NAME

FILE4

RECORD CONTROL _FIELD_SIZE

FILE GLOBAL _BUFFER_COUNT

Allocation quantity (blocks)

Block identifier

Bucket size

Block length

Magnetic tape block size

Channel access mode
protection

Context

Default file extension quantity

Device characteristics

Default file specification string
address

Default file specification string
size

File access

File specification string address

File specification string size

File-processing_ options

Fixed-length control area size

Global buffer count

~ This field is statically initialized by the $FAB macro to identify this control block as a FAB.

2This is a 2-bit field.

3This field cannot be initialized by the $FAB macro.

4This field contains options; corresponding FDL equivalents are listed in the description of the field.

5-1

File Access Block (FAB)
5.1 Summary of Fields

Table 5-1 (Cont.) FAB Fields

Field Offset
Size
(Bytes) FDL Equivalent Description

FAB$W_IF13

FAB$V_LNM_MODE

FAB$L _MRN

FAB$W_MRS

FAB$L _NAM

FAB$B_ORG

FAB$B_RAT

FAB$B_RFM

FAB$B_RTV

FAB$L _SDC3

FAB$B_SHR

FAB$L _STS3

FAB$L _STV3

FAB$L _XAB

2
2

4

2

4

1

1

1

1

4

1

4

4

4

None

None

FILE MAX _RECORD_NUMBER

RECORD SIZE

Internal file identifier

Logical name translation access
mode

Maximum record number

Maximum record size

None Name block address

FILE ORGANIZATION File organization

RECORD4 Record attributes

RECORD FORMAT Record format

FILE WINDOW_SIZE Retrieval window size

None Secondary device
characteristics

SHARING4

None

None

None

File sharing

Completion status code

Status values

Extended attribute block
address

2This is a 2-bit field.

3This field cannot be initialized by the $FAB macro.

4This field contains options; corresponding FDL equivalents are listed in the description of the field.

Each FAB field is described below. Unless indicated otherwise, each field
is supported for DECnet operations on remote files with a VMS system as
the remote node. Note that the words "DECnet operations" in the following
descriptions refer to remote file operations between two VMS systems. For
information about the support of VMS RMS options for remote file access to
other systems, see the VMS Networking Manual.

To use a FAB, you must allocate process storage and specify the character
string for the primary file specification and, optionally, the default file
specification. The FAB$L _FNA and FAB$B_FNS fields define the primary
file specification to VMS RMS; the FAB$L _DNA and FAB$B_DNS fields
define the default file specification to VMS RMS.

The format and arguments of the $FAB macro and the $FAB_STORE macro
are defined in Appendix B.

File Access Block (FAB)
5.2 FAB$L~►LQ Field

5.2 FAB$L_ALQ Field
The allocation quantity (ALQ) field defines the number of blocks to be
initially allocated to a disk file when it is created (using a Create service) or to
be added to the file when it is explicitly extended (using an Extend service).
This field corresponds to the FDL attribute FILE ALLOCATION.

This field contains a numeric value in the range of 0 through 4,294,967,295,
although the maximum value depends on the number of blocks available on
the device to be used. A value of 0 indicates no allocation.

When you create a new file using the Create service, VMS RMS interprets the
value in the FAB$L _ALQ field as the number of blocks for the initial extent
of the file. If the value is 0, the minimum number of blocks for the specific
file organization is the allocation quantity used for the initial extent. For
example, in indexed files, only the number of blocks necessary to contain key
and area definitions is used as the initial extent quantity when FAB$L _ALQ
is 0.

When VMS RMS opens an existing file, it sets the FAB$L _ALQ field to
indicate the highest virtual block number currently allocated to the file.

When you use the Extend service, this field specifies the number of blocks to
be added to the file. Note that VMS RMS uses this value as the extension
value when a process extends a file using the Extend service unless the
process changes the value before it invokes the Extend service.

Note that the value 0 is not acceptable for extending a file.

When you use the Create and Extend services, the allocation quantity value is
rounded up to the next disk cluster boundary; the number of blocks actually
allocated is returned in the FAB$L—.ALQ field.

Note that the function of the FAB$L ALQ field with the Create and Extend
services changes if allocation control XABs are present during the operation.
The description of the XABALL control block (see Chapter 8) discusses
allocation control XABs and their effect on the FAB$L ALQ field during file
creation or extension.

5.3 FAB$B_BID Field
The block identifier (BID) field is a static field that identifies a control block
as a FAB. Once set, this field should not be altered unless the control block
is no longer needed. This field must be initialized to the symbolic value
FAB$C_BID (this is done by the $FAB macro).

5.4 FAB$B_BKS Field
The bucket size (BKS) field is used only for relative or indexed files to specify
the number of blocks in each bucket of the file.

This field contains a numeric value in the range of 0 to 63. If you do not
specify a value or specify a value of 0, VMS RMS uses a default of the
minimum number of blocks needed to contain a single record, or a minimum
of two records for indexed files. If the file will be processed by RMS-11, the
bucket size must be less than or equal to 32 blocks.

File Access Block (FAB~
5.4 FAB$B_BKS Field

When calculating the bucket size, you must consider the control information
(overhead) associated with each bucket. Also, certain record types contain
control bytes; thus, the number of records per bucket multiplied by the
number of control bytes per record equals the number of record overhead
bytes per bucket. See the Guide to VMS File Applications for more information.

Before specifying a bucket size, you must be aware of the relationship
between bucket size and record size. You must also consider any record
control bytes (overhead) required by VMS RMS for the type of record chosen.
Because VMS RMS does not allow records to cross bucket boundaries, you
must ensure that the number of blocks per bucket conforms to formulae
designed to handle one of the following:

• Relative files with fixed-length records

• Relative files with variable-length records

• Relative files with VFC (variable with fixed control) records

• Indexed files with fixed-length records

• Indexed files with variable-length records

You can use the Edit/FDL Utility to determine the optimum bucket size.
Note that if an allocation control XAB is specified, the value specified in the
XAB$B_BKZ field supersedes the value specified in the FAB$B_BKS field.
When multiple allocation control XABs are specified, the largest value in any
XAB$B_BKZ field supersedes the value in the FAB$B_BKS field. Refer to
Chapter 8 for information about the XAB$B_BKZ field.

When you open an existing relative or indexed file, VMS RMS sets the
FAB$B_BKS field to the defined size of the largest bucket size in the file.
However, when you create a new relative or indexed file, set the FAB$B_BKS
field before you invoke the Create service rather than use the default.

With indexed files, note that if the FAB$B_BKS field is not specified and a
maximum record size (FAB$W_MRS field) is specified, then VMS RMS selects
a bucket size that allows at least one maximum size record to fit. Generally,
performance for record insertion and sequential retrieval on the primary key
improves if at least six or seven data records fit into a primary data bucket.
If either the bucket size or the disk cluster size is other than one block, use a
default extension quantity (FAB$W_DEQ) that is the least common multiple
of the bucket size and cluster size to avoid allocated but unused blocks within
the file.

This field corresponds to the FDL attribute FILE BUCKET_SIZE.

5.5 FAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
FAB. Once set, this field should not be altered unless the control block is no
longer needed. This field must be initialized to the symbolic value FAB$C_
BLN (this is done by the $FAB macro).

File Access Block (FAB)
5.6 FAB$W_BLS Field

5.6 FAB$W_BLS Field
VMS RMS uses the block size (BLS) field as input for nondisk files. The
BLS field usually defines the size, in bytes, of the blocks on a magnetic tape.
Note that for some devices, this value must be an even number. This field
corresponds to the FDL attribute FILE MT_BLOCK_SIZE.

The FAB$W_BLS field contains a numeric value in the range of 20 through
65,535 for ANSI-formatted tapes and 14 through 65,532 for foreign tapes.
(Foreign tapes are those that are not in the standard ANSI format used by
the VMS operating system and must be mounted using the DCL command
MOUNT/FOREIGN.) If no value or a value of 0 is specified, the default
selected when the volume was mounted is used.

When you create a magnetic tape file, you can set the FAB$W_BLS field
before you invoke the Create service. In all other cases, VMS RMS ignores
this field. When you open an existing sequential file with an Open service,
VMS RMS returns the device buffer size. For terminals, this field defines the
WIDTH setting; for mailboxes, this field defines the maximum message size.

For compatibility with RMS-11, VMS RMS always rounds off the block size
for an ANSI-formatted tape to the next highest multiple of 4. For example,
if you set the block length to 38, VMS RMS sets it to 40. The block size of a
foreign tape is not rounded off by VMS RMS.

To create a magnetic tape for interchange with DEC operating systems other
than VMS, consult the documentation for the recipient system to identify
possible limitations on block size. ANSI standards require that the block size
be less than or equal to 2048 bytes.

5.7 FAB$V_CHAN_MODE Subfield
The channel access mode protection (CHAN_MODE) subfield is the
component part of the FAB$B~CMODES field that specifies the access
mode in which the requested channel is assigned. VMS RMS ignores this
2-bit field unless the process first sets either the FAB$V_UFO bit or the
FAB$V~iFS bit in the FAB$L _FOP field.

The FAB$V_CHAN_MODE subfield may contain one of the four values
listed below with the related constant value for each shown in parentheses.

0 None

1 Executive mode (PSL$C_EXEC)

2 Supervisor mode (PSL$C_SUPER)

3 User mode (PSL$C_USER)

The default value is 0 (none), which is interpreted by VMS RMS as executive
mode.

If the access mode requested is more privileged than the access mode of the
calling process, VMS RMS uses the access mode of the caller and does not
return an error. For more information about logical name concepts, see the
VMS System Services Volume.

There is no corresponding FDL equivalent for this field. The FAB$V_CHAN_
MODE subfield is used locally for channel to DECnet communications but is
ignored on the remote system.

5-5

File Access Block (FAB)
5.7 FAB$V_CHAN_MODE Subfield

To set this field from MACRO level, you include the appropriate expression as
an argument to the $FAB macro. For example, to specify supervisor channel
access mode, you might include a statement in this format:

$FAB . . . ,CHAN_MODE = PSC$C_SUPER, . . .

From ahigh-level language, refer to your documentation as to how (and
whether) you can directly access VMS RMS fields and then incorporate the
appropriate channel access mode expression into the appropriate language
statement.

5.8 FAB$L_CTX Field
The user context (CTX) field allows you to convey user information to a
completion routine in your program. This field contains auser-specified
value, up to four bytes long, and is intended solely for your use. VMS RMS
never uses it for record management activities.

This field corresponds to the FDL attribute FILE CONTEXT.

5.9 FAB$W_DEQ Field
The default file extension quantity (DEQ) field specifies the number of blocks
to be added when VMS RMS automatically extends the file. Automatic
extension only applies to files that reside on disk devices and occurs whenever
your process invokes a Put or Write service and the currently allocated file
space is exhausted. When you invoke a Put service, automatic file extension
occurs when needed, regardless of the file organization. When you invoke
the Write service, automatic extension occurs only for sequential files (indexed
and relative files require the Extend service to extend file allocation).

This field corresponds to the FDL attribute FILE EXTENSION.

This field contains a numeric value in the range 0 through 65,535, which
is rounded up to the next cluster boundary. A large value results in fewer
file extensions over the life of a file; a small value results in numerous file
extensions over the life of a file. When a file has numerous file extensions
that may be noncontiguous, this slows record access.

For file creation, if you do not specify a value or specify 0, VMS RMS uses
the default specified by the DCL command SET RMS_DEFAULT/EXTEND_
QUANTITY. If this value is also 0, then VMS RMS uses the system default
extension quantity specified by the SYSGEN parameter RMS_EXTEND_SIZE.
If this value is 0, then VMS RMS computes the default value.

When the value in this field, the value set by the SET RMS_DEFAULT
/EXTEND_QUANTITY command, and the value of the SYSGEN parameter
RMS_EXTEND_SIZE are all 0, VMS RMS calculates what is often a large
value to minimize the number of extend operations that it must perform. At
times, this value can exceed the available disk quota even though there is
actually enough space for the file if only the required amount is used. You
can use the DCL command SET RMS_DEFAULT/EXTEND_QUANTITY to
limit (explicitly specify) the extension size to the recommended number of
blocks. An appropriate size is the number of blocks specified as the cluster
size for the device (set by the DCL command INITIALIZE/CLUSTER_SIZE).
For large files on a volume where there is sufficient disk space, consider using
a multiple of the cluster size to improve subsequent performance.

File Access Block (FAB)
5.9 FAB$W_DEQ Field

When creating a new file, you can specify the extension quantity for the file
by setting the desired value in the FAB$W_DEQ field before or after issuing a
Create service. This value becomes a permanent attribute for the file.

When processing an existing file, you can temporarily override the default
extension quantity specified when the file was created. To do this, set the
desired value before or after issuing the Open service. Once the file is closed,
the default extension quantity reverts to the value set when the file was
created.

See the discussion under FAB$B_BKS for indexed files.

Note that the use of an allocation control XAB overrides the value in this
field. See Chapter 8 for a detailed description of allocation control XABs.

5.70 FAB$L_DEV Field

The device characteristics (DEV) field allows your program to obtain the
generic characteristics of the device containing the file. You can locate and
test the various bits in the field using symbolic offsets. This is a binary
options field set by VMS RMS when you invoke an Open, Create, Display, or
Parse service (this is set by the Parse service only if the NAM$V_SYNCHK
option in the NAM$B_NOP field is clear).

Table 5-2 describes the bits in the device characteristics field. Each bit
has its own symbolic bit offset and mask value. These definitions are
made available to your program by referring to the $DEVDEF macro in
SYS$LIBRARY:STARLET.MLB. The symbolic bit offset is formed by prefixing
the characteristic name with DEV$V_. The mask value is formed by prefixing
the characteristic name with DEV$M_. For example, the DEV$V_REC bit has
a mask value of DEV$M_REC.

Table 5-2 Device Characteristics

Bit Offset Description

DEV$V_ALL

DEV$V_AVL

DEV$V_CCL

DEV$V_CDP

DEV$V_CLU

DEV$V_DET

DEV$V_DIR

DEV$V_DMT

DEV$V_DUA

DEV$V_ELG

DEV$V_FOD

DEV$V_FOR

DEV$V_GEN

Device is allocated.

Device is available for use.

Carriage control device.

Device has dual access paths, one of which is a remote node
using an MSCP server.

Device is available on a VAXcluster.

Terminal device is detached.

Directory-structured device.

Device is marked for dismount.

Device has dual access paths, both of which use a disk class
driver.

Device is error log enabled.

File-oriented device (disk and magnetic tape).

Device is mounted foreign (non-file-structured).

Device is a generic device.

File Access Block (FAB)
5.10 FAB$L_DEV Field

Table 5--2 (Cont.) Device Characteristics

Bit Offset Description

DEV$V_IDV

DEV$V_MBX

DEV$V_MNT

DEV$V_NET

DEV$V_ODV

DEV$V_OPR

DEV$V_RCK

DEV$V_RCT

DEV$V_REC

DEV$V_RND

DEV$V_RTM

DEV$V_RTT

DEV$V_SDI

DEV$V_SHR

DEV$V_SPL

DEV$V_SQD

DEV$V_SWL

DEV$V_TRM

DEV$V_WCK

Device can provide input.

Device is a mailbox.

Device is currently mounted.

Network device.

Device can accept output.

Device has been enabled as an operator console terminal.

Device has read-check enabled.

Disk device is an RA80, RA81, RA82 or RA60.

Record-oriented device (terminal, mailbox, line printer, for
example). if field is 0, device is assumed to be block-oriented
(disk device or magnetic tape device). All record-oriented
devices are considered sequential in nature.

Device is random access in nature (disk►.
Device is real-time in nature; not suitable for use by VMS RMS.

Terminal device is a remote terminal (DCL command SET HOST).

Single directory device (master file directory only).

Shareable device.

Device is bein~ spooled.

Sequential block-oriented device (magnetic tape).

Device is currently software write-locked.

Terminal device.

Device has write-check enabled.

For DECnet operations, this field represents the actual characteristics of the
target device when a Create, Open, or Display service is invoked. It is not
filled in when a Parse service is invoked using a file specification that contains
a node name.

5.11 FAB$L_DNA Field
The default file specification string address (DNA) field provides the address
of a file specification string VMS RMS uses to apply defaults for any missing
components of the file specification. This field works with the FAB$B_DNS
field, which initializes the default file specification string size, to provide a
default file specification string. Defaults are applied after VMS RMS examines
the primary file specification string that the FAB$L _FNA field (described
below) points to.

This field and the FAB$B_DNS field correspond to the FDL attribute FILE
DEFAULT_NAME.

The FAB$L _DNA field contains the symbolic address of a default file
specification string, which is an ASCII string containing one or more
components of a file specification. The components in the string must be
in the order in which they would occur in a complete file specification.

File Access Block (FAB)
5.11 FAB$L_DNA Field

The default file specification string is used primarily when a process accepts
file specifications interactively; normally, file specifications known to a user
program are specified completely in the FAB$L _FNA and FAB$B_FNS fields.
You can specify defaults for one or more of the following file specification
components:

• Node

• Device

• Directory

• File name

• File type

• File version number

The default file specification string is used only if components are missing
from the string whose address is stored in the FAB$L _FNA field and those
components are present in the default file specification string.

If you use VAX MACRO, you can use the DNM keyword to specify the
FAB$L _DNA and FAB$B_DNS fields.

5.12 FAB$B_DNS Field

The default file specification string size (DNS) field indicates the size, in bytes,
of the string whose address is contained in the FAB$L _DNA field. This field
contains a numeric value in the range 1 to 255.

This field and the FAB$L _DNA field correspond to the FDL attribute FILE
DEFAULT_NAME.

5.13 FAB$B_FAC Field
The file access (FAC) field specifies the operations and services a process is
seeking to use in accessing a file. RMS uses this field, together with the share
field (SHR) in each potential accessor's FAB, to determine whether or not
to permit a process to access a file. The FAC field corresponds to the FDL
primary attribute ACCESS.

Within the FAC field, each bit position corresponds to an operation or service
option that the process intends to use when accessing the file. In this manner,
a process may specify several options, assuming they are compatible, by
setting the appropriate bits. Each option has its own symbolic bit offset and
mask value. For example, the GET service option has a symbolic bit offset of
FAB$V_GET and a mask value of FAB$M_GET.

When RMS attempts to open a file for a process, it examines the process's
FAB$B_FAC field to determine what operations or services the process is
seeking to use in conjunction with the file access.

VMS RMS determines whether or not the process seeking access to the file
intends to use operations and services that are compatible with the sharing
options permitted by processes currently accessing the file. It checks the FAC
field of the requesting process to determine whether it requires read or write
access to the file. It then checks the SHR field of the requesting process to
determine whether it will share read or write access with other processes that

5-9

File Access Block (FAB)
5.13 FAB$B_FAC Field

are accessing the file. A read (GET) implies read access. Delete (DEL), write
(PUT), truncate (TRN), and update (UPD) all imply write access.

For example, assume that Process A opens the file for GET access (FAC=GET)
and is willing to share the file with processes that are doing GET and PUT
accesses (SHR=GET,PUT). Since this is the only process accessing the file,
RMS permits it to read access the file.

Assume that a second process, Process B, wants to access the same file doing
PUT accesses (FAC=PUT) and is willing to share the file with processes
doing GET accesses and PUT accesses (SHR=GET,PUT). Because Process B is
compatible with Process A (they both agree to share the file with any process
that is doing either GET accesses or PUT accesses), VMS RMS permits the
second process to access the file.

Now assume that a third process, Process C, wants GET access (FAC=GET) to
the same file but will share the file only with processes doing GET accesses
(SHR=GET). Although Process C is compatible with Process A (FAC=GET), it
is not compatible with Process B (FAC=PUT), so RMS denies Process C access
to the file. Conversely, if C tries to access the file before B, C gets access and
B is denied access.

VMS RMS always grants file access to the first process accessing a file,
assuming no security access restrictions exist. When a process acquires access
to a file, RMS rejects any attempt to use a service not included in the initial
access request.

The FAB$B_FAC field options are listed below.

Options

FAB$V_BIO
Requests file access for doing block I/O operations that use Read (FAB$V_
GET), Write (FAB$V_PUT) or the Space services. Specifying block I/O
prohibits the use of record I/O operations (such as the Get, Put, Update,
Delete, or Truncate services).

This option corresponds to the FDL attribute ACCESS BLOCK_IO.

FAB$V_BRO
Requests file access for doing either block I/O or record I/O as determined
by the state of the RAB$V_BIO bit in the RAB at connect time. For additional
information, see Section 4.8, under the discussion of block I/O, and
Section 7.19.

This option corresponds to the FDL attribute ACCESS RECORD_IO.

FAB$V_DEL
Requests file access for invoking the Delete service (or the equivalent VAX
language statement that deletes a record). This option applies only to relative
and indexed files.

This option corresponds to the FDL attribute ACCESS DELETE.

FAB$V_G ET
Requests file access for invoking either the Get or Find service (or equivalent
VAX language statement that reads a record). This is the default if a process
requests access to a file without including FAB$B_FAC field information or if
the FABV_DEL, FABV_UPD, or FAB$V_TRN option is set in the FAB$B_
SHR field. If the process takes the FAB$V_GET option together with either

5-10

File Access Block (FAB~
5.13 FAB$B_FAC Field

the FAB$V_BIO option or the FAB$V_BRO option, it can invoke the Read
service.

This option corresponds to the FDL attribute ACCESS GET.

FAB$V_PUT
Requests file access for invoking either the Put or Extend service (or the
equivalent VAX language statement that writes a record or extends a file).
This is the default when a process creates a file. If the process takes the
FAB$V_PUT option together with either the FAB$V_BIO option or the
FAB$V_BRO option, it can invoke the Write service.

This option corresponds to the FDL attribute ACCESS PUT.

FAB$V_TRN
Requests file access for invoking the Truncate service (or the equivalent VAX
language statement that truncates a file). Also allows use of the RAB$L _ROP
truncate-on-put (RAB$V_TPT) option with the Put and Write service. This
option applies only to sequential files.

This option corresponds to the FDL attribute ACCESS TRUNCATE.

FAB$V_UPD
Requests file access for invoking either an Update or Extend service (or the
equivalent VAX language statement that rewrites a record or extends a file).
Also allows use of the RAB$L _ROP update-if (RAB$V_UIF) option for the
Put service.

This option corresponds to the FDL attribute ACCESS UPDATE.

5.14 FAB$L_FNA Field
The file specification string address (FNA) field works with the FAB$B_FNS
field to specify the primary file specification of the file to be processed. If this
string does not contain all the components of a full file specification, VAX
RMS uses the defaults supplied in the default file specification string (see
FAB$L _DNA and FAB$B_DNS). If no default string is present or if the file
specification is still incomplete, VMS RMS provides additional defaults.

This field contains the symbolic address of a file specification string, which
is an ASCII string containing one or more components of a file specification.
This field is used as input by many file-processing services. To obtain the file
specification returned by VMS RMS after it translates any logical names and
applies defaults, a NAM block must be present (see FAB$L _NAM).

If you use VAX MACRO, you can use the FNM keyword to specify the
FAB$L _FNA and FAB$B_FNS fields.

This field and the FAB$B_FNS field correspond to the FDL attribute FILE
NAME.

File Access Block (FAB)
5.15 FAB$B_FNS Field

5.15 FAB$B_FNS Field
The file specification string size (FNS) field specifies the size, in bytes, of the
ASCII file specification string, whose address is contained in the FAB$L _FNA
field. This field contains a numeric value in the range of 0 through 255.

This field and the FAB$L _FNA field correspond to the FDL attribute FILE
NAME.

5.16 FAB$L_FOP Field
FAB$L _FOP is the symbolic offset value for the FAB's file-processing options
(FOP) field. This field specifies which of the various optional file operations
are to be implemented for the process.

The FOP is a 32-bit field in which each file-processing option has a
corresponding bit assignment to let you specify multiple options (multiple
bits can be set), when applicable. Each option has a unique symbolic offset
value and mask value but you need only specify the appropriate 3-letter
mnemonic when coding a function. For example, the spool-file-on-close
option has a symbolic offset value of FAB$V_SPL but to specify the option,
you use the following MACRO statement:

FOP=SPL

As detailed in the appropriate descriptions, the only file-processing option
bits that may be affected by VMS RMS services are the FABV_CBT, FABV_
CTG, FAB$V_RCK, and FAB$V_WCK bits.

This section presents the file-processing options alphabetically within the
various functional categories, of which there are seven:

• Allocation and extension options

• Performance options

• Reliability options

• File name parsing modifiers

• File disposition options

• Magnetic tape processing options

• Nonstandard processing options

Table 5-3 lists each of the options alphabetically by category.

Table 5-3 File Processing Options

Option Symbolic Offset

Allocation and Extension Options

Contiguous best try FAB$V_CBT

Contiguous allocation FAB$V_CTG

Truncate at end of file FAB$V_TEF

File Access Block (FAB)
5.16 FAB$L_FOP Field

Table 5-3 (Cont.) File Processing Options

Option Symbolic Offset

Performance Options

Asynchronous operation

Deferred write

Sequential only

Synchronous status

FAB$V_ASY

FAB$V_DFW

FAB$V_SQO

FAB$V_SYNCSTS

Reliability Options

Read-check FAB$V_RCK

Write-check FAB$V_WCK

File Name Parsing Modifier Options

Create-if

Maximum version number

Use NAM block inputs

Output file parse

Supersede existing file

FAB$V_CIF

FAB$V_MXV

FAB$V_NAM

FAB$V_OFP

FAB$V_SUP

File Disposition Options

Delete on close

Submit command file on close

Spool file on close

Temporary marked for delete

Temporary file

FAB$V_DLT

FAB$V_SCF

FAB$V_SPL

FAB$V_TMD

FAB$V_TMP

Magnetic Tape Options

Do not set to EOF

Current position

Rewind file on close

Rewind file on open

FAB$V_NEF

FAB$V_POS

FAB$V_RWC

FAB$V_RWO

Nonstandard Options

Non-file-structured FAB$V_NFS

User file open FAB$V_UFO

This field corresponds to the FDL primary attribute FILE.

File Access Block (FAB)
5.16 FAB$L_FOP Field

Allocation and Extension Options

FAB$V_CBT
Contiguous best try; indicates that the file is to be allocated contiguously
on a "best effort" basis. It is input to the Create service and output from
the Open service to indicate the file status. Note that the FAB$V_CBT bit
remains set only if allocation using one, two, or three extents is actually
performed. That is, the FAB$V_CBT bit is switched off before the return from
the Create service unless VMS RMS can allocate the file within three extents.
The FAB$V_CBT option overrides the FAB$V_CTG option. Note that this
option is ignored if multiple areas are defined for an indexed file.

This option corresponds to the FDL attribute FILE BEST_TRY_
CONTIGUOUS.

FA B$V_CTG
Contiguous; indicates that the space for the file is to be allocated contiguously.
If this cannot be done, the operation fails. It is input to the Create service
and is output by the Open service to indicate the status of the file. Note that
this option is ignored if multiple areas are defined for an indexed file. The
FAB$V_CBT option overrides the FAB$V_CTG option.

This option corresponds to the FDL attribute FILE CONTIGUOUS.

FAB$V_TEF
Truncate at end of file; indicates that unused space allocated to a file is to be
deallocated on a Close service. The FAB$V_TEF option applies to unshared
sequential files.

This option corresponds to the FDL attribute FILE TRUNCATE_ON_CLOSE.

Performance Options

FAB$V~SY
Asynchronous; indicates that the specified task is to be done asynchronously.
The FAB$V—ASY option is relevant only to tasks that involve I/O operations
and is ignored for process permanent files. The asynchronous I/O option is
typically used with success/error ASTs, or in conjunction with the $WAIT
service, to synchronize the program with task completion. When you specify
FAB$V_ASY, you pass the address of the FAB as an argument to the AST
routine and VMS RMS returns control to your program immediately.

FAB$V_DFW
Deferred write; indicates that writing back to the file of modified I/O buffers
is to be deferred until the buffer must be used for other purposes. This option
applies to relative files, indexed files and sequential files opened for shared
access.

This option corresponds to the FDL attribute FILE DEFERRED_WRITE and is
not supported for DECnet operations.

FAB$V_SQO
Sequential only; indicates that the file can be processed only in a sequential
manner, permitting certain processing optimizations. Any attempt to perform
random access results in an error. The FAB$V_SQO option is input to the
Create and Open services.

~-

~.J

~J

5-14

File Access Block ~FAB)
5.16 FAB$L_FOP Field

This option corresponds to the FDL attribute FILE SEQUENTIAL _ONLY.

Note: For DECnet operations, this option enables file transfer mode for Get, Put,
Read, and Write services. File transfer mode is a Data Access Protocol
(DAP) feature that allows several records to be transferred in a single-
network I/O operation to maximize throughput for single-direction,
sequential access file transfer.

FAB$V_SYNCSTS
When you select this option, VMS RMS returns the success status RMS$_
SYNCH if the requested service completes its task immediatly. The most
common reason for not completing a task immediatly is that the task involves
I/O operations.

The status RMS$_SYNCH is returned in R0. Refer to the FAB$L _STS field
for the actual success status or failure status of the task.

The FAB$V_SYNCSTS option is best used in conjunction with the FAB$V_
ASY option.

Reliability Options

FAB$V_RCK
Read-check; specifies that transfers from disk volumes are to be checked by a
read-compare operation, which effectively doubles the amount of disk I/O at
some increase in reliability. This option is an input to the Open and Create
services. If FAB$V_RCK is set, then checking is performed for the duration
of the access. The FAB$V_RCK option is also an output of the Open service,
which indicates the default for the file. This option is not available for RX01
and RX02 devices, or for any device that has been mounted using the DCL
command MOUNT/FOREIGN.

This option corresponds to the FDL attribute FILE READ_CHECK.

FAB$V_WCK
Write-check; indicates that transfers to disk volumes are to be checked by a
read-compare operation. The FAB$V_WCK option is similar to the FAB$V_
RCK option. This option is not available for RXO1 and RX02 devices, or
for any device that has been mounted using the DCL command MOUNT
/FOREIGN.

This option corresponds to the FDL attribute FILE WRITE _CHECK.

File Name Parsing Modifiers

FAB$V_CI F
Create if nonexistent; opens an already existing file if it exists. If the file does
not exist, it is created and the alternate success status RMS$_CREATED is
returned to indicate that the file was created, not just opened. The FAB$V_
CIF option is input only to the Create service and overrides the FAB$V_SUP
option. When the create-if option is used with a search list logical name and
the file is not found in any of the file specifications supplied using the search
list, the file is created using the file specification from the first element of the
search list.

This option corresponds to the FDL attribute FILE CREATE _IF.

File Access Block (FAB)
5.16 FAB$L_FOP Field

FAB$V_MXV
Maximize version number; indicates that the version number of the file
should be the maximum of the explicit version number given in the file
specification, or one greater than the highest version number for an existing
file in the same directory with the same file name and file type. This option
enables you to create a file with a specific version number (if the requested
version number is greater than that of the existing file) or a file with a version
number that is one higher than the existing file's version number.

This option is used as input to the Create service only and it corresponds to
the FDL attribute FILE MAXIMIZE _VERSION (default is "YES").

FAB$V_NAM
Use NAM block inputs; indicates that the NAM block whose address is
contained in the FAB$L _NAM (name block address) field provides the
device, file, and/or the directory identification when a file is being opened,
closed, or erased (deleted). If a file is being created, the field specifies the
device and directory identification.

This option has no corresponding FDL attribute and it is not supported for
DECnet operations. See Chapter 6.

FAB$V_O F P
Output file parse; specifies that related file resultant file specification strings, if
used, are to provide directory, file name, and file type defaults only (requires
NAM block).

This option corresponds to the FDL attribute FILE OUTPUT_FILE_PARSE.

FAB$V_SUP
Supersede existing file; allows an existing file to be superseded on a Create
service by a new file of the same name, type, and version. The FAB$V_CIF
and the FAB$V_MXV option take precedence over the FAB$V_SUP option.

This option corresponds to the FDL attribute FILE SUPERSEDE.

File Disposition Options

FAB$V_DLT
Delete file on Close; indicates that the file is to be deleted when closed. This
option may be specified for the Create, Open, or Close services. However,
if you set the bit when you create or open a file, VMS RMS deletes the file
when you close it, regardless of the state of the bit when you invoke the
Close service. You can specify the FAB$V_DLT option with the FAB$V_SCF
or FAB$V_SPL option.

This option corresponds to the FDL attribute FILE DELETE_ON_CLOSE.

FAB$V_SCF
Submit command file on Close; indicates that the file is to be submitted as a
batch-command file to the process-default batch queue (SYS$BATCH) when
the file is closed. This option can be specified for the Create, Open, and Close
services. However, if you set the bit when you create or open a file, VMS
RMS submits the file to SYS$BATCH when you close it, regardless of the
state of the bit when you invoke the Close service.

The FAB$V_SCF option applies to sequential files only and it corresponds to
the FDL attribute FILE SUBMIT_ON_CLOSE.

File Access Block (FAB)
5.16 FAB$L_FOP Field

FAB$V_SPL
Spool file on Close; indicates that the file is to be spooled to the process-
default print queue (SYS$PRINT) when the file is closed. This option can
be specified for the Create, Open, or Close services. _However, if you set the
bit when you create or open a file, VMS RMS spools the file to SYS$PRINT
when you close it, regardless of the state of the bit when you invoke the
Close service.

The FAB$V_SPL option applies to sequential files only and it corresponds to
the FDL attribute FILE PRINT_ON_CLOSE.

FAB$V_TMD
Temporary file marked for delete; indicates that a temporary file is to be
created but is to be deleted when the file is closed. This option is input only
to the Create service. The FAB$V_TMD option takes precedence over the
FAB$V_TMP option.

This option corresponds to the FDL attribute FILE TEMPORARY.

FAB$V_TM P
Temporary file; indicates that a temporary file is to be created and retained,
but that no directory entry is to be made for it. This option is used solely as
input to the Create service. If you have a NAM block, you are given the file
identification (FiD) of the file which you can use to reopen the file. If you
do not have a NAM block or if you do not save the FID, the file becomes
inaccessible once it is closed. The FAB$V_TMD option overrides the FAB$V_
TMP option.

This option corresponds to the FDL attribute FILE DIRECTORY ENTRY
("NO" means this bit is set).

Magnetic Tape Processing Options

FAB$V_N E F
Do not position to end of file; inhibits positioning to the end of a file when
a tape file is opened and the FAB$B_FAC (file access) field indicates a Put
service.

This option corresponds to the FDL attribute FILE MT NOT_EOF.

FAB$V_POS
Current position; directs VMS RMS to position the magnetic tape volume set
immediately after the most recently closed file when it creates the next file.
If you use this option when you invoke the $CREATE service, VMS RMS
overwrites all files located beyond the current tape position.

The FAB$V_POS option corresponds to the FDL attribute FILE MT_
CURRENT POSITION. The FAB$V_RWO option overrides the FAB$V_
POS option.

FAB$V_RWC
Rewind file on Close; specifies that the magnetic tape volume is to be
rewound when the file is closed. This option can be specified for the Close,
Create, or Open services.

This option corresponds to the FDL attribute FILE MT_CLOSE _REWIND.

File Access Block (FAB)
5.16 FAB$L_FOP Field

FAB$V_RWO
Rewind on Open; specifies that the magnetic tape volume is to be rewound
before the file is opened or created. If you use this option when you invoke
the $CREATE service, VMS RMS overwrites all files currently on the tape
volume or volume set. The FAB$V_RWO option takes precedence over the
FAB$V_POS option.

This option corresponds to the FDL attribute FILE MT_OPEN _REWIND.

Nonstandard Processing Options

FAB$V_NFS
Non-file-structured; indicates (on an Open or Create service) that the volume
is to be processed in anon-file-structured manner. This option allows the use
of volumes created on non-DIGITAL systems.

The FAB$V_NFS option corresponds to the FDL attribute FILE NON _FILE _
STRUCTURED and it is not supported for DECnet operations.

FAB$V_UFO
User file open; indicates that VMS RMS operations for this file are limited to
opening it or creating it. To perform additional processing of the file, invoke
the SYS$QIO system service using the channel number returned by VMS
RMS in the status value field (FAB$L _STV). This channel is assigned the
access mode of the caller unless otherwise specified by the FAB$V_CHAN _
MODE bits.

If you specify this option, you must set the FAB$B_FHR field FAB$V_UPI
bit option unless the file is not shared (FAB$B_FHR field FAB$V_NIL option
is set). For the Create service, the end-of-file mark is set to the end of the
block specified in the FAB$L _ALQ field on input. For either the Open or
Create services, the FAB$W_IFI field is set to 0 on return to indicate that VMS
RMS cannot perform any more operations on the file. If you set the FAB$V_
UFO option with the Open or Create service, the channel needs only to be
deassigned when you finish with the file. A Close service is not required.

This option corresponds to the FDL attribute FILE USER _FILE _OPEN and it
is not supported for DECnet operations.

5.17 FAB$B_FSZ Field

The fixed-length control area size (FSZ) field is used only for variable with
fixed-length control (VFC) records. When you create a file with this record
type, you must set the value far the fixed-control area before you issue the
Create service. When you open an existing file that contains variable with
fixed control records, VMS RMS sets this field equal to the value specified
when the file was created. The FAB$B_FSZ field is not applicable to indexed
files.

This field corresponds to the FDL attribute FILE CONTROL _FIELD_SIZE.

This field contains a numeric value in the range of 1 to 255 that indicates, in
bytes, the size of the fixed control area; the default size is two bytes. If you
do not specify a value or specify 0, then the default size is used.

lJ

File Access Block (FAB~
5.18 FAB$W_GBC Field

5.18 FAB$W_GBC Field
The global buffer count (GBC) field indicates the requested number of global
buffers f or a file. This field contains a numeric value in the range of 0 to
3 2, 76 7; the default is 0 .

Global buffers support sharing of I/O buffers by more than one process.
The use of global buffers can minimize I/O operations for a shared file, thus
reducing record access time at the cost of using additional system resources.
VMS RMS is able to locate requested records (or blocks) in the global buffers
associated with this file, which it can read directly from memory, eliminating
much I/O. However, since global buffers use global sections, the value
contained in FAB$W_GBC is limited by systemwide restrictions on resources
determined by the system parameters GBLSECTIONS (number of global
sections), GBLPAGES (number of global page table entries), GBLPAGFIL
(number of systemwide pages allowed for global page-file sections, or scratch
global sections), and RMS_GBLBUFQUO (total number of simultaneously
active VMS RMS global buffers allowed for the system).

For a complete description of these parameters, see the VMS System Generation
Utility Manual.

If global buffers are specified for a file, global buffers are used instead of local
(process) buffers, with the exception of deferred write operations (FAB$L _
FOP field FAB$V_DFW option).

The value that is specified when the file is created is returned in the FAB$W_
GBC field as output from the Open service. This value is then used as input
to the Connect service.

If you want to override the default value specified when the file was created,
you can set a different value in the FAB$W_GBC field after opening the file
but before invoking the Connect service. If you do not want to use global
buffers, you can clear the field before issuing the Connect service if the
default value is not 0.

If you modify the value in the FAB$W_GBC field that is returned from the
Open service prior to the Connect service, this action determines whether or
not global buffers are assigned to your process.

If you want to permanently change the default global buffer count value for
the file, use the following DCL command:

$ SET FILE file-spec /GLOBAL_BUFFERS=buffer-count

If you want to permanently clear the default global buffer count for a file, use
the following DCL command:

$ SET FILE file-spec /GLOBAL_BUFFERS=O

You can also vary the number of global buffers used each time you process
the file. If you choose this method, you change (or clear) the FAB$W_GBC
field after you open the file, but before you invoke the Connect service. In
this case, the specified value is assigned to the FAB$W_GBC field, or the
FAB$W_GBC field remains clear only for the current processing of the file;
that is, you do not permanently alter the FAB$W_GBC field in the FAB. If
no value is specified in the FAB$W_GBC field when the file is created, the
default value is 0.

File Access Block (FAB)
5.18 FAB$W_GBC Field

The number of global buffers for a file is determined by the first record stream
to connect to the file (systemwide). If the file is already open and connected,
then the number of global buffers is already set and modifications made
before the Connect service are useful only to request that this process use (or
not use) global buffers.

To specify aread-only global buffer cache, the initial accessor must set the
FAB$B_SHR field FAB$V_SHRGET and FAB$V_MSE bits on. Selecting the
FAB$V_MSE option turns on locking to coordinate access to the global buffer
cache.

You can use global buffers for all file organizations opened for shared record
access. If the global buffer count is nonzero for the first process that connects
to the file, then a temporary global section that is large enough to contain the
specified number of buffers (as well as internal VMS RMS data structures) is
created and mapped. Subsequent processes that connect to the file map this
section, thus allowing multiple processes to reference a single set of one or
more buffers without performing additional I/O operations. Thus, the first
user to open the file requesting global buffers determines the number of the
global buffers.

This field corresponds to the FDL attribute FILE GLOBAL _BUFFER_COUNT
and it is not supported for DECnet operations.

5.19 FAB$W_IFI Field

The internal file identifier (IFI) field is set by VMS RMS to associate the FAB
with the corresponding internal file access block. VMS RMS sets this field
on successful Create or Open services. It is then an input for subsequent
Close, Connect, Display, and Extend services. The Close service deallocates
the internal control structures and clears the FAB$W_IFI field. When the
user file open (FAB$V_UFO) option in the FAB$L _FOP field is specified, no
internal structures are allocated on Create or Open services. Therefore, the
FAB$W_IFI field remains cleared.

There is no FDL equivalent for this field.

5.20 FAB$V_LNM_MODE Subfield
The logical name translation access mode (LNM _MODE) subfield is the
component part of the FAB$B_ACMODES field that specifies the outermost
access mode that VMS RMS uses to translate logical names during parsing.
The FAB$V_LNM_MODE subfield contains one of the following values:

0 None

1 Executive mode (PSL$C_EXEC)

2 Supervisor mode (PSL$C_SUPER)

3 User mode (PSL$C_USER)

The default value is 0 (none), which VMS RMS interprets as user mode.

The FAB$V_LNM_MODE field is not supported for DECnet operations, and
it is ignored during any DECnet remote file access.

There is no corresponding FDL equivalent for this field.

File Access Block (FAB)
5.21 FAB$L_MRN Field

5.27 FAB$L_MRN Field
The maximum record number (MRN) field applies only to relative files and
indicates the highest record number that can be written to a file.

This field contains a numeric value of the highest numbered record allowed
in the file, in the range of 0 to 2,147,483,647, although the maximum value
depends on the number of blocks on the device to be used. The default for
this field is 0.

If you attempt to write (put) or retrieve (get) a record with a relative record
number higher than the specified limit, an error occurs and VMS RMS returns
a message indicating an invalid record number. Checking is suppressed if you
specify 0 for the FAB$L _MRN field.

Note that VMS RMS does not maintain the relative record number of the
highest existing record in the file.

This field corresponds to the FDL attribute FILE MAX _RECORD_NUMBER.

5.22 FAB$W_MRS Field
The maximum record size (MRS) field defines the size of all records in a file
with fixed-length records, the maximum size of variable-length records, the
maximum size of the data area for variable with fixed-length control records,
and the cell size (minus overhead) for relative files.

This field contains a numeric value in the range applicable to the file type
and record format (see Table 5-4) that indicates the size of the records in the
file, in bytes. This value specifies the number of bytes of data and does not
include any control bytes associated with each record.

For fixed-length records, the value represents the actual size of each record
in the file. You must specify a size when you create a file with fixed-length
records.

For variable-length records, the value represents the size of the largest record
that can be written into the file. If the file is not a relative file, a value of 0
is used to suppress record size checking, thus indicating that there is no user
limit on record size, except for the limitations listed in Table 5-4 and certain
physical limitations. For magnetic tape files, a value of 0 sets an effective
maximum record size that is equal to the block size minus 4.

The size of variable-length records must conform to physical limitations.
With indexed and relative files, for example, records may not cross bucket
boundaries. If both the FAB$B_BKS and FAB$W_MRS fields are 0 (not
specified) for an indexed file, VMS RMS attempts to calculate a reasonable
bucket size, usually 2. Thus, if any record requires more than two buckets,
you must explicitly specify the required value for the FAB$B_BKS or the
FAB$W_MRS field. If FAB$B_BKS field is specified, the value should specify
a bucket size large enough to exceed the longest possible record.

For variable with fixed-length control records, the value includes only the
data portion; it does not include the size of the fixed control area.

For all relative files, the size is used in conjunction with the FAB$B_BKS field
to determine the size of the record cell. You must specify the FAB$W_MRS '~
field when you create a relative file.

File Access Block (FAB)
5.22 FAB$W_MRS Field

You specify a value when you invoke a Create service. VMS RMS returns the
maximum record size when you invoke an Open service.

Table 5-4 summarizes the maximum record size allowed for the various file
and record formats.

Table 5-4 Maximum Record Size for File Organizations and Record
Formats

File Organization Record Format
Maximum
Record Size

Sequential Fixed length 32,767

Sequential (disk) Variable length 32,765

Sequential (disk) VFC 32,767-FSZ'

Sequential (disk) Stream 32,767

Sequential (disk) Stream-CR 32,767

Sequential (disk) Stream-LF 32,767

Sequential (ANSI Tape) Variable length 9,995

Sequential (ANSI Tape) VFC 9,995-FSZ'

Relative Fixed length 32,255

Relative Variable length 32,253

Relative VFC 32,253-FSZ'

Indexed, Prolog 1 or 2 Fixed length 32,234

Indexed, Prolog 1 or 2 Variable length 32,232

Indexed, Prolog 3 Fixed length 32,224

Indexed, Prolog 3 Variable length 32,224

~ The FSZ represents the size, in bytes, of the fixed control area in a record having VFC
record format. On a disk device, the length of the largest record in a sequential file using
variable or VFC format is also maintained by VMS RMS and is available through the longest
record length field (XAB$W_LRL) in the file header characteristics XAB (XABFHC). See
Chapter 10.

For DECnet remote file access, the maximum record size may be set by the
/NETWORK_BLOCK_COUNT=n qualifier to the SET RMS_DEFAULT
command or by a $XABITM parameter. DECnet remote file access can
support record sizes as large as the record sizes that VMS RMS supports. The
default number of blocks is equal to the SYSGEN parameter RMS_DFNBC,
the default for which is 8 blocks (4096 bytes). For more information about the
SET RMS_DEFAULT command, see the VMS DCL Dictionary. The SYSGEN
parameters are detailed in the VMS System Generation Utility Manual.

This field corresponds to the FDL attribute RECORD SIZE.

File Access Block ~FAB)
5.23 FAB$L_NAM Field

5.23 FAB$L_NAM Field
The name block address (NAM) field specifies the address of the NAM
block used to invoke a file service, such as an Open or Create. The NAM
block, described in Chapter 6, is required only in conjunction with the file
specification processing services. But it can also be used with other services,
typically to obtain a file specification string after all logical name translation
is completed and all defaults applied. Note that the FAB$L _FOP option
FAB$V_NAM must be specified for the NAM block to be used as input (see
FAB$L _FOP).

5.24 FAB$B_ORG Field
The file organization (ORG) field assigns the organization of the file.

The FAB$B_ORG field is a keyword value field in which each file
organization has a symbolic value. Options are identified using 3-letter
mnemonics. Each option in the FAB$B_ORG field has its own symbolic
constant value. For example, the relative (REL) file organization has a
constant value of FAB$C_REL.

You must set this field before you invoke a Create service. VMS RMS returns
the contents of this field when you invoke an Open service. The options are
described in the following list:

• FAB$C_IDX Indexed file organization

• FAB$C_REL Relative file organization

• FAB$C_SEQ Sequential file organization (default)

This field corresponds to the FDL attribute FILE ORGANIZATION.

5.25 FAB$B_RAT Field
The record attributes (RAT) field indicates the record control information
associated with each record in a file.

Within the FAB$B_RAT field, each record attribute has a corresponding bit
assignment. Each record attribute option in the field has a unique symbolic
bit offset and constant value. For example, the CR record attribute has a
symbolic bit offset of FAB$V_CR and a mask value of FAB$M_CR.

Only the FAB$V_BLK option can be paired with another option. You cannot
use FAB$V CR, FAB$V_FTN, and FAB$V_PRN together in any combination.

For most VMS programs, the default value for this field is FAB$V_CR
(carriage return). When you create your own file, however, the default
value is 0. When you want to create a stream format file or any text file
(a file containing ASCII text), specify the FAB$V_CR option for the Create
service. VMS RMS sets this field when you invoke an Open service. When a
process-permanent file is accessed indirectly for output, the value in this field
is always an input value. VMS RMS automatically converts the records from
the record attributes specified to the actual attributes of the process-permanent
file.

This field corresponds to the FDL primary attribute RECORD.

File Access Block (FAB~
5.25 FAB$B_RAT Field

Options

FAB$V_BLK
Applicable to sequential files only; indicates that records are not permitted to
cross block boundaries.

This option corresponds to the FDL attribute RECORD BLOCK_SPAN.

FAB$V_CR
Indicates that each record is to be preceded by a line feed and followed by a
carriage return when the record is written to a carriage control device such as
a line printer or terminal.

This option corresponds to the FDL attribute RECORD CARRIAGE _
CONTROL CARRIAGE _RETURN.

FAB$V_FTN
Indicates that the first byte of each record contains a FORTRAN (ASA)
carriage control character, r'

This option corresponds to the FDL attribute RECORD CARRIAGE _
CONTROL FORTRAN. Records are defined as follows:

Byte 0 ASCII
Value (hex) Character Meaning

0 (null) Null carriage control (sequence: print buffer
contents).

20 (space) Single-space carriage control (sequence: line
feed, print buffer contents, carriage return).

30 0 Double-space carriage control (sequence: line
feed, line feed, print buffer contents, carriage
return).

31 1 Page eject carriage control (sequence: form
feed, print buffer contents, carriage return).

28 + Overprint carriage control (sequence: print
buffer contents, carriage return). Allows
double printing for emphasis.

24 $ Prompt carriage control (sequence: line feed,
print buffer contents).

Other values Same as ASCII space character: single-space
carriage control.

FA B$V_P R N
Indicates print file format for variable with 2-byte fixed-length control records,
where the fixed control area contains the carriage control specification. The
first byte of the fixed control area constitutes a "prefix" area, and the second
byte constitutes a "suffix" area, specifying carriage control to be performed
before and after printing the record respectively.

File Access Block (FAB)
5.25 FAB$B_RAT Field

This option corresponds to the FDL attribute RECORD CARRIAGE_
CONTROL PRINT.

The coding scheme of both bytes is presented below (even though they are
interpreted separately):

Bit 7 Bits 6-0 Meaning

0 0 No carriage control is specified, that is, NULL.

0 1-7F Bits 6 through 0 are a count of new lines (line feed
followed by carriage return).

Bit 7 Bit 6 Bit 5 Bits 4-0 Meaning

1 0 0 0-1 F Output the single ASCII control
character specified by the
configuration of bits 4 through 0
(7-bit character set).

1 1 0 0-1 F Output the single ASCII control
character specified by the
configuration of bits 4 through 0
that are translated as ASCII characters
128 through 159 ~8-bit character set).

1 1 1 0-1 F Reserved.

5.26 FAB$B_RFM Field
The record format (RFM) field specifies the format for all the records in a file.

The FAB$B_RFM field is a keyword value field where each record format has
a symbolic value. Options are identified by mnemonics. Each option has its
own symbolic constant value. For example, the FIX (fixed) record format has
a symbolic constant value of FAB$C_FIX; the STMCR (stream with carriage
return) record format has a symbolic constant value of FAB$C_STMCR.

When you create the file, you must set this field before you invoke the Create
service. VMS RMS returns the record format when you invoke an Open
service. The record format options are described below.

This field corresponds to the FDL attribute RECORD FORMAT.

Options

FAB$C_FIX
Indicates fixed-length record format.

This option corresponds to the FDL attribute RECORD FORMAT FIXED.

FAB$C_STM
Indicates stream record format. Records are delimited by FF, VT, LF, or CR
LF. This format is supported for sequential files only.

This option corresponds to the FDL attribute RECORD FORMAT STREAM.

File Access Block (FAB~
5.26 FAB$B_RFM Field

FAB$C_STMCR
Indicates stream record format. Records are delimited by CR. This format is
supported for sequential files only.

This option corresponds to the FDL attribute RECORD FORMAT STREAM_
CR.

FAB$C_STMLF
Indicates stream record format. Records are delimited by LF. This format is
supported for sequential files only.

This option corresponds to the FDL attribute RECORD FORMAT STREAM_
LF.

FAB$C_UDF
Indicates undefined record format. The undefined record format is valid for
sequential files only. This is the default value if the FAB is not initialized
with a $FAB macro.

This option corresponds to the FDL attribute RECORD FORMAT
UNDEFINED.

FAB$C_VAR
Indicates variable-length record format. For the $FAB macro, this is the
default value.

This option corresponds to the FDL attribute RECORD FORMAT VARIABLE.

FAB$C_VFC
Indicates variable-length with fixed-length control record format. This format
is not supported for indexed files.

This option corresponds to the FDL attribute RECORD FORMAT VFC.

If you intend to use stream record format, then specify the FAB$V_CR record
attribute (see FAB$B_RAT).

5.27 FAB$B_RN Field
The retrieval window size (RTV) field specifies the number of retrieval
pointers VMS RMS is to maintain in memory for the file. Retrieval pointers
are stored in the file header and indicate the beginning of each extent
associated with the file. If a file has been extended repeatedly, the extents
may be scattered noncontiguously on the disk, requiring numerous retrieval
pointers. When VMS RMS needs to access a new extent, it must first obtain
the retrieval pointer for that extent. VMS RMS first looks for the retrieval
pointer in the retrieval window, which contains the number of retrieval
pointers specified by this field. If the retrieval pointer is not in the retrieval
window, VMS RMS must first read the file header, causing an additional I/O
operation.

This field contains a numeric value in the range of 0 through 127, or 255. A
value of 0 indicates that VMS RMS is to use the system default number of
retrieval pointers. A value of 255 means to map the entire file, if possible. If
you specify a value of 255 when creating a file, the initial number of retrieval
pointers is minimal; as records are added, however, the number of retrieval
pointers increases as the number of extents increases. The system resources

5-26

File Access Block (FAB)
5.27 FAB$B_RTV Field

required for retrieval windows are subtracted from the buffered I/O quota of
the process. Values from 128 to 254 (inclusive) are reserved for future use.

This field corresponds to the FDL attribute FILE WINDOW_SIZE and it is not
supported for DECnet operations.

5.28 FAB$L_SDC Field

The secondary device characteristics (SDC) field is equivalent to the
FAB$L _DEV field, except that secondary device characteristics refer to
the intermediate device used for spooling or the logical link for DECnet
operations. Within the FAB$L _SDC field, the bit definitions are the same as
those defined for the FAB$L _DEV field (see Table 5-2). Like the FAB$L _
DEV field, the bit definitions must first be made available to your process
referring to the $DEVDEF system macro definition; the values are set by
certain VMS RMS services (see FAB$L _DEV for additional information).

5.29 FAB$B_SHR Field

The file sharing (SHR) field defines the record operations that the opening
process allows sharing processes to perform. VMS RMS supports file sharing
for all file organizations.

Within the FAB$B_SHR field, each record operation that sharing processes
are permitted to do has a corresponding bit assignment. You can specify
multiple record operations (multiple bits may be set).

Options are identified by symbolic bit offsets. Note that conflicts between the
names of symbolic offsets in the FAB$B_SHR field and the names of symbolic
offsets in the FAB$B_FAC field are resolved by prefixing the letters SHR to
the symbolic offset in the FAB$B_SHR field. For example, both the FAB$B_
FAC and FAB$B_SHR fields have a bit that specifies the get record option. In
the FAB$B_FAC field, this bit offset is assigned the symbol FAB$V_GET; in
the FAB$B_SHR field, this bit is assigned the symbol FAB$V_SHRGET.

Note that the letters SHR in the mnemonic part of the bit offset symbol
may be omitted by VAX MACRO programs. Thus, the GET option, which
is common to the FAB$B_FAC and FAB$B_SHR fields, has a symbolic
bit offset of FAB$V_SHRGET and a mask value of FAB$M_SHRGET, but
VAX MACRO programs may use the synonyms FAB$V_GET and FAB$M_
GET. This rule applies to the FABV_SHRPUT, FABV_SHRGET, FAB$V_
SHRDEL, and FAB$V_SHRUPD options.

The way in which VMS RMS uses the file access (FAB$B_FAC) field and file
sharing (FAB$B_SHR) field is described in greater detail in the FAB$B_FAC
field discussion.

Note that if you do not specify a value, VMS RMS enters a value of 0 in the
FAB$B_SHR field. Defaults apply as follows:

• If the FAB$B_FAC field is set or defaulted to FAB$V_GET, the FAB$B_
SHR field defaults to FAB$V_SHRGET.

• If the FAB$B_FAC field is set or defaulted to either FABV_PUT, FABV_
DEL, FAB$V_UPD, or FAB$V_TRN, the FAB$B_SHR field defaults to
FAB$V_NIL. Thus, write-sharing must be explicitly requested using the
FAB$B_SHR field (because it is not the default).

File Access Block (FAB~
5.29 FAB$B_SHR Field

See the Guide to VMS File Applications for additional details on file sharing.

This field corresponds to the FDL primary attribute SHARING.

The following list includes descriptions of the sharing options.

Options

FAB$V_MSE
Allows multistream access and is relevant for record operations only. You
must specify FAB$V_MSE whenever you want to call Connect services for
multiple RABs for this FAB.

Note that if you specify the FAB$V~VISE and FAB$V_BIO options, you must
set the FAB$V_UPI bit regardless of the other sharing bits. To specify aread-
only global buffer cache, the initial accessor must set the FAB$B_SHR field
FAB$V_SHRGET and FAB$V_MSE bits. Selecting the FAB$V_MSE option
turns on locking to coordinate access to buffers.

The FAB$V_MSE option is not supported for DECnet operations; an error is
returned. Although VMS RMS cannot perform multistreaming for DECnet
operations, you can obtain similar functionality by using multiple FABs to
access the file in a shared manner.

This option is available for all file organizations and corresponds to the FDL
attribute SHARING MULTISTREAM.

FAB$V_NIL
Prohibits any file sharing by other users. If FAB$V_NIL is specified with
other options, it takes precedence.

This option corresponds to the FDL attribute SHARING PROHIBIT.

FAB$V_SHRPUT
Allows other users to write records to the file or to extend the file.

This option corresponds to the FDL attribute SHARING PUT.

FAB$V_SHRGET
Allows other users to read the file.

This option corresponds to the FDL attribute SHARING GET.

FAB$V_SHRDEL
Allows other users to delete records from the file.

This option corresponds to the FDL attribute SHARING DELETE.

FAB$V_SHRUPD
Allows other users to update records that currently exist in the file or extend
the file.

This option corresponds to the FDL attribute SHARING UPDATE.

FAB$V_UPI
This option is used when the user wants to assume responsibility for
interlocking of multiple, simultaneous accessors of a VMS RMS file. This
option disables all VMS RMS locking for the current access of the file. Except
for block I/O, the FAB$V_MSE option overrides the FAB$V_UPI option.

File Access Block (FAB)
5.29 FAB$B_SHR Field

Usually, the FAB$V_UPI option is used for a file that is open for block I/O
(FAB$V_BIO or FAB$V_BRO).

When you select the FAB$V_UFO option, you must also select the FAB$V_
UPI option if the file is write shared. A file is specified as being write shared
when you select either the FAB$V_PUT option, the FAB$V_DEL option, the
FAB$V_TRN option or the FAB$V_UPD option in the FAB$B_SHR field.

This option corresponds to the FDL attribute SHARING USER_INTERLOCK.

5.30 FAB$L_STS Field
VMS RMS sets the completion status code (STS) field with success or failure
codes before it returns control to your program (except f or a subset of
errors, as detailed in Section 2.4). Register 0 contains the same status as
the STS field. Potential error codes for specific services are listed under their
descriptions in Part III. Status codes are discussed further in Part I.

5.31 FAB$L_STV Field
The status value (STV) field is set by VMS RMS and, on the basis of the
operation performed and the contents of the completion status code (FAB$L _
STS) field, communicates additional completion information to your program.
See Part III for the instances when VMS RMS uses the status value field.

5.32 FAB$L~CAB Field
The extended attribute block address (XAB) field specifies the XAB, or first of
a series of XABs, that you want to use for file operations. This field contains
the symbolic address of an XAB control block. A value of 0 (the default)
indicates no XABs for the file.

For some operations, you must associate extended attribute blocks (XABs)
with a FAB to convey additional attributes about a file. (See Part I for a
description of an XAB.) The FAB$L _XAB field can contain the symbolic
address of the first associated block (of a potential chained list of such blocks)
for the file.

VMS RMS uses XAB values as follows:

1 If you specify an XAB for either an Open or Display service, VMS RMS
returns the file attributes to the XAB.

2 If you specify an XAB for a Create, Close, or Extend service, VMS RMS
uses the XAB as input to those functions.

6 Name Block (NAM)

The name (NAM) block provides additional fields for extended file
specification use, including parsing and obtaining the actual filed specification
used for a file operation.

6.1 Summary of Fields
The symbolic offset, size, and a brief description of each NAM block field are
presented in Table 6-1. Additional details are given in the remaining sections
of this chapter.

Table 6-1 NAM Block Fields

Size
Field Offset (Bytes Description

NAM$B_BID' 1 Block identifier

NAM$B_BLN' 1 Block length

NAM$B_DEV2 1 Device string length

NAM$L _DEV2 4 Device string address

NAM$W_DID2 6 Directory identification

NAM$B_DIR2 1 Directory string length

NAM$L _DIR2 4 Directory string address

NAM$T_DV12 16 Device identification

NAM$L _ESA 4 Expanded string area address

NAM$B_ESL2 1 Expanded string length

NAM$B_ESS 1 Expanded string area size

NAM$W_FID2 6 File identification

NAM$L _FNB2 4 File name status bits

NAM$B_NAME2 1 File name string length

NAM$L _NAME2 4 File name string address

NAM$B_NODE2 1 Node name string length

NAM$L _NODE2 4 Node name string address

NAM$B_NOP 1 Name block options

NAM$L _RLF 4 Related file NAM block address

NAM$L _RSA 4 Resultant string area address

NAM$B_RSL2 1 Resultant string length

NAM$B_RSS 1 Resultant string area size

This field is statically initialized by the $NAM macro to identify this control block as a
NAM.

2This field cannot be initialized by the $NAM macro.

6-1

Name Block (NAM)
6.1 Summary of Fields

Table 6-1 (Cont.~ NAM Block Fields

Size
Field Offset (Bytes) Description

NAM$B_TYPE2 1 File type string length

NAM$L _TYPE2 4 File type string address

NAM$B_VER2 1 File version string length

NAM$L _VER2 4 File version string address

NAM$L _WCC2 4 Wildcard context

2This field cannot be initialized by the $NAM macro.

Each NAM block field is described below. The NAM block fields have no
corresponding FDL equivalents. However, if your application requires the
presence of a NAM block, consider using the $NAM macro (or equivalent)
perhaps in a USEROPEN or a USERACTION routine.

Unless indicated otherwise, each field is supported for DECnet operations
when the remote node is a VMS system. Note that the words "DECnet
operations" in the following descriptions refer to remote file operations
between two VMS systems. For information about the support of VMS RMS
options for remote file access to other systems, see the VMS Networking
Manual.

Depending on the VMS RMS services to be used, the user may need to
allocate program storage for the expanded string and the resultant string.
The Parse service uses the expanded string to pass information related to
wildcards (or search lists) to the Search service. When it creates a resultant
string for other VMS RMS file services, VMS RMS uses the expanded string
as a work area to apply defaults. You can use the resultant string with
VMS RMS file services to provide the file specification that results from the
translation of logical names and the application of defaults. Typical uses of
the resultant string include showing the resulting file specification after a
partial file specification is entered by a terminal user, for error reporting, and
for logging the progress of a program.

To request use of the expanded or resultant strings, you must indicate to VMS
RMS the address and size of the user-allocated buffer to receive the string.
The expanded string is indicated by the NAM$L _ESA and NAM$B_ESS
fields; the resultant string is indicated by the NAM$L _RSA and NAM$B_
RSS fields. When it fills in the expanded or resultant strings, VMS RMS
returns the actual length of the returned string in the NAM$B_ESL or
NAM$B_RSL fields.

The format and arguments of the $NAM and $NAM_STORE macros are
defined in Appendix B.

Name Block NAM)
6.2 File Specification Component Descriptors

6.2 File Specification Component Descriptors
For each element of the fully qualified file specification returned in the
expanded-string field or the resultant-string field in the NAM block, VMS
RMS returns a descriptor in the NAM block. Two fields describe the element:
a 1-byte size field and a 4-byte (longword) address field. The fields of these
descriptors are described as one of the following:

NAM$B_xxx

NAM$L _xxx

(size field of xxx)

(address field of xxx)

Each descriptor is summarized below.

Descriptor

NAMB_NODE, NAML_NODE
Node name descriptor, including access control string and double colon (::)
delimiter.

NAMB_DEV, NAML_DEV
Device name descriptor, including colon (:)delimiter.

NAMB_DIR, NAML_DIR
Directory name descriptor, including brackets ([and] or < and >).

NAMB_NAME, NAML_NAME
File name descriptor or, if the file specification following a node name is
within quotation marks ("file"), a quoted string descriptor.

NAMB_TYPE, NAML_TYPE
File type descriptor, including period (.)delimiter.

NAMB_VER, NAML_VER
File version number descriptor, including semicolon (;) or period (.)
delimiter.

These descriptors are returned, enabling the program to extract a particular
component -from the resultant string without having to parse the resultant
or expanded string. The entire resultant or expanded string, including
delimiters, is described by the various component descriptors. If the value in
the NAM$B_RSL field is nonzero, then the descriptors point to the I~TAM$L _
RSA field. If the value in the NAM$B_RSL field is 0 and the value in the
NAM$B_ESL field is nonzero, then the descriptors point to the NAM$L _ESA-
field. In all other cases, they are undefined.

Name Block ~NAM~
6.2 File Specification Component Descriptors

As an example, a resultant file specification and its file specification
component descriptors are shown below.

NODE"TEST password"::WORK_DISK:[TEST.TEMP]FILE.DAT;3

NODE NODE"TEST password"

DEV WORK_DISK:

DIR [TEST.TEMP]

NAME FILE

TYPE . DAT

VER ;3

You can use the field descriptors individually or collectively to describe
sections of the resultant or expanded string. For example, if you want to use
the file name and file type fields, use NAM$L _NAME for the starting address
and NAM$B_NAME+NAM$B_TYPE for the total length.

6.3 NAM$B_BID Field
The block identifier (BID) field is a static field that identifies this control block
as a NAM block. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
NAM$C_BID (this is done by the $NAM macro).

6.4 NAM$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
NAM block, in bytes. Once set, this field must not be altered unless the
control block is no longer needed. This field must be initialized to the
symbolic value NAM$C_BLN (this is done by the $NAM macro).

6.5 NAM$B_DEV and NAM$L_DEV Fields
The device name length and address (DEV) field contains a pointer to either
the NAM$L _ESA or NAM$L _RSA fields, depending on whether a Parse
service was invoked or an Open, Create, or Search service was invoked.
You can tell which name string is used by referring to the NAM$B_ESL or
NAM$B—RSL fields, which contain the length of the returned file specification
string.

6.6 NAM$W_DID Field
The directory identification (DID) field identifies the directory for the file.
VMS RMS outputs this 3-word field as part of the Open, Create, Display, and
Parse services. If, once you open the file, you want to refer to this directory
again, you can do so more quickly by specifying that the NAM block has a
valid directory identifier.

This field is not supported for DECnet operations; it is ignored on input and
zero-filled on output.

Name Block (NAM)
6.7 NAM$B_DIR and NAM$L_DIR Fields

6.7 NAM$B_DIR and NAM$L_DIR Fields
The directory name length and address (DIR) field contains a pointer to either
the NAM$L_ESA or NAM$L_RSA fields, depending on whether a Parse
service was invoked or an Open, Create, or Search service was invoked.
You can tell which name string is used by referring to the NAM$B_ESL or
NAM$B_RSL fields, which contain the length of the returned file specification
string.

6.8 NAM$T_DVI Field
The device identification (DVI) field defines the device for the file. VMS RMS
outputs this field as part of the Open, Create, Display, and Parse services.
You can use this field with the file identification field to reopen the file by
referring to the NAM block. The symbolic value NAM$S_DVI gives the
length of this field in bytes. The form of this field is a counted string. The
first byte is a count of the number of characters following it.

This field is not supported for DECnet operations; it is ignored on input and
zero-filled on output.

6.9 NAM$L_ESA Field
r ~

The expanded string area address (ESA) field contains the symbolic address of
a user buffer in the application program to receive the file specification string
resulting from the translation of logical names and the application of default
file specification information.

You must specify this field for processing wildcard characters.

6.10 NAM$B_ESL Field
The expanded string length (ESL) field is set by VMS RMS as part of the
Open, Create, and Parse services. This field contains the length, in bytes,
of the file specification string returned in the buffer whose address is in the
NAM$L _ESA field.

6.11 NAM$B_ESS Field
The expanded string area size (ESS) field contains the size of the user-
allocated buffer whose address is contained in the NAM$L _ESA field.

This field contains a numeric value representing the size, in bytes, of the user
buffer that will receive the file specification string, in the range of 0 through
255.

The symbolic value NAM$C_MAXRSS defines the maximum possible length
of an expanded file specification string.

Name Block NAM)
6.12 NAM$W_FID Field

6.12 NAM$W_FID Field
The file identification (FID) field is a 3-word field that VMS RMS uses to
identify the file when it invokes an Open, Create, or Display service. When
you want to open a file by using the file identifier, set this field before you
open the file.

This field is not supported for DECnet operations; it is ignored on input and
zero-filled on output.

6.13 NAM$L_FNB Field
The file name status (FNB) field is a binary options field that VMS RMS
uses to convey status information obtained from the file specification parsing
routine. Each bit within this field denotes a specific status relative to the
various components of the file specification.

Each status bit has its own offset and mask value. For instance, the number of
directory levels (DIR_LVLS) field has a symbolic bit offset of NAM$V_DIR_

LVLS and a mask value of NAM$M_DIR_LVLS. The bits and the conditions
they express for the NAM$L _FNB field are described in Table 6-2.

Table 6-2 NAM$L_FNB Status Bits

Field Offset Description

NAM$V_CNCL _DEV

NAM$V_DIR_LVLS

NAM$V_EXP_DEV

NAM$V_EXP_DIR

NAM$V_EXP_NAME

NAM$V_EXP_TYPE

NAM$V_EXP_VER

NAM$V_GRP_MBR

NAM$V_HIGHVER

NAM$V_LOWVER

NAM$V_NODE

NAM$V_PPF

NAM$V_QUOTED

Device name is a concealed device.

Indicates the number of subdirectory levels (value is 0
if there is a user file directory only); a 3-bit field.

Device name is explicit.

Directory specification is explicit.

File name is explicit.

File type is explicit.

Version number is explicit.

Directory specification is in the group/member number
format.

A higher-numbered version of the file exists (output
from Create and Enter services). For DECnet
operations, this bit is returned as a binary zero.

A lower-numbered version of the file exists (output
from Create and Enter services). For DECnet
operations, this bit is returned as a binary zero.

File specification includes a node name.

File is indirectly accessed process-permanent file.

File specification includes a quoted string; indicates
that the file name length and address field contains
a quoted string file specification. Applies to network
operations or magnetic tape devices only. ~

~ To distinguish network quoted string file specifications from quoted strings containing
ASCII "a" file names (supported for ANSI-labeled magnetic tapes), both the NAM$V_
QUOTED and NAM$V_NODE bits are set.

Name Block NAM)
6.13 NAM$L_FNB Field

Table 6-2 (Cont.~ NAM$L_FNB Status Bits

Field Offset Description

NAM$V_ROOT_DIR

NAM$V_SEARCH_LIST

NAM$V_WILDCARD

NAM$V_WILD_DIR

NAM$V_WILD_GRP

NAM$V_WILD_MBR

NAM$V_WILD_NAME

NAM$V_WILD_SFD 1—
NAM$V_WILD_SFD7

NAM$V_WILD_TYPE

NAM$V_WILD_UFD

NAM$V_WILD_VER

Device name incorporates a root directory.

A search list logical name is present in the file
specification.

File specification string includes a wildcard; returned
whenever any of the other wildcard bits is set.

Directory specification includes a wildcard character.

Group number contains a wildcard character.

Member number contains a wildcard character.

File name contains a wildcard character.

Subdirectory 1 through 7 specification includes a
wildcard character.

File type contains a wildcard character.

User file directory specification includes a wildcard
character.

Version number contains a wildcard character.

6.14 NAM$B_NAME and NAM$L_NAME Fields
The file name length and address (NAME) field contains a pointer to either
the NAM$L_ESA or NAM$L_RSA fields, depending on whether a Parse
service was invoked or an Open, Create, or Search service was invoked.
You can tell which name string is used by referring to the NAM$B_ESL or
NAM$B_RSL fields, which contain the length of the returned file specification
string.

6.15 NAM$B_NODE and NAM$L_NODE Fields
The node name length and address (NODE) field contains a pointer to either
the NAM$L _ESA or NAM$L _RSA fields, depending on whether Parse
service was invoked or an Open, Create, or Search service was invoked.
You can tell which name string is used by referring to the NAM$B~SL or
NAM$B—RSL fields, which contain the length of the returned file specification
string.

6.16 NAM$6_NOP Field
The name block options (NOP) field indicates the options applicable to the
file name parsing services.

Name Block NAM)
6.16 NAM$B_NOP Field

The NAM$B_NOP field is a binary options field in which each option has
a corresponding bit assignment. Multiple options can be specified (multiple
bits can be set) but the default state for each bit is clear (not set). Each option
has its own symbolic bit offset and mask value. For example, the SYNCHK
option has a symbolic bit offset of NAM$V_SYNCHK and a mask value of
NAM$M_SYNCHK.

Each of these options is discussed below.

Options

NAM$V_NOCONCEAL
When used with the Open, Create, Search, or Display services, a concealed
device logical name, if present, is translated into its physical device name (and
directory, if so defined) in the resultant string field, whose address is supplied
by the NAM$L _RSA field. If this option is not set and a concealed device
name is used, the concealed device name appears in the resultant string field,
instead of the physical device name (and directory, if so defined).

NAM$V_PWD
When used with the Create, Open, Parse, Search, or Display services, the
password in the access control string of a node specification, if present, is
returned unaltered in the expanded or resultant file specification fields. If
you do not select this option, the actual password used is replaced by the
word "password" in the resultant or expanded file specification string fields
for security reasons.

NAM$V_SRCHXABS
When used with the Search service for remote file access, this option directs
VMS RMS to fill in the FAB and any chained XABs as if a Display service had
been invoked. This allows you to obtain file attribute information using the
Search service without the need to open the file.

NAM$V_SYNCHK
This gives you the option of using the Parse service to verify the syntax
validity of the file specification without invoking I/O processing that verifies
the actual existence of the specified device, directory and file.

If you invoke the Parse service without setting this bit, an accompanying I/O
process verifies that the device and directory exist. Note that this processing
does not verify the existence of the file; you can only verify the existence of
the file with either a $SEARCH or $OPEN.

If you opt to set the NAM$V_SYNCHK bit when you invoke the Parse
service, VMS RMS does not return the device characteristics (FAB$L _DEV
and FAB$L _SDC fields) and does not fill in the NAM$W_DID and NAM$T_
DVI fields, rendering the results of the $PARSE unusable for subsequent
Search services.

6.17 NAM$L_RLF Field

The related file NAM block address (RLF) field contains the symbolic address
of the NAM block for the related file. This field supports the secondary file
concept of the command language (DCL), giving an extra default level in
processing file specifications.

Name Block (NAM)
6.17 NAM$L_RLF Field

To provide an extra level of file specification defaults, the related NAM block
must have been used previously by an Open, Create, Search or Display
service to create a resultant file specification string. Moving the address of
the related NAM block into the NAM$L _RLF field of the current NAM block
specifies that the previously parsed NAM block's resultant file specification
string should be used as a default when the current NAM block is parsed.
Note that the previously parsed NAM block must contain a resultant file
specification (see NAM$L _RSA and NAM$B_RSS for additional details).

Refer to the Guide to VMS File Applications for additional details on file
specification parsing concepts.

6.18 NAM$L_RSA Field
The resultant string area address (RSA) field contains the symbolic address
of a buffer in your program to receive the resultant file specification string.
The NAM$B_RSS field must also be specified to obtain a resultant file
specification string.

This string is the fully specified name of the file that results from the
resolution of all system defaults, including version numbers and wildcard
character substitution in the expanded file name string. You must specify this
field for wildcard processing.

6.19 NAM$B_RSL Field
The resultant string length (RSL) contains the length, in bytes, of the
resultant file specification string returned in the buffer whose address is
in the NAM$L _RSA field.

6.20 NAM$B_RSS Field
The resultant string area size (RSS) field defines the size of the user-allocated
buffer whose address is contained in the NAM$L _RSA field.

This field contains a numeric value representing the size, in bytes, of the user
buffer that will receive the resultant file specification string, in the range of 0
through 255.

The symbolic value NAM$C_MAXRSS defines the maximum possible length
of a resultant file specification string.

6.21 NAM$B_TYPE and NAM$L_TYPE Fields
The file type length and address (TYPE) field contains a pointer to either the
NAM$L_ESA or NAM$L_RSA fields, depending on whether a Parse service
was invoked or an Open, Create, or Search service was invoked. You can tell
which name string is used by referring to the NAM$B~SL or NAM$B~SL
fields, which contain the length of the returned file specification string.

Name Block (NAME
6.22 NAM$B_VER and NAM$L_VER Fields

6.22 NAM$B_VER and NAM$L_VER Fields
The file version length and address (VER) field contains a pointer to either the
NAM$L _ESA or NAM$L _RSA fields, depending on whether a Parse service
was invoked or an Open, Create, or Search service was invoked. You can
determine the name string that is used by referring to the NAM$B_ESL or
NAM$B_RSL fields, which contain the length of the returned file specification
string.

6.23 NAM$L_WCC Field

The wildcard context (wCC) field contains the information needed to use
wildcard characters in place of the various file specification components. In
particular, this field restarts a directory search to find the next matching file
name, type, and/or version number. You can also use it to identify various
VMS RMS extended contexts; for instance, during remote file processing.

7 Record Access Block (RAB)

The record access block (RAB) defines run-time options for a record stream
and for individual operations within a predefined record stream context. After
you connect the file to a record stream and associate the record stream with
a FAB, you use the RAB fields to specify the next record you want to access
and to identify appropriate record characteristics.

7.1 Summary of Fields
Table 7-1 gives the symbolic offset, size, FDL equivalent, and a brief
description of each RAB field.

Table 7-1 RAB Fields

Field Offset
Size
(Bytes FDL Equivalent Description

RAB$B_BID' 1 None Block identifier

RAB$L_BKT 4 CONNECT BUCKET_CODE Bucket code

RAB$B_BLN' 1 None Block length

RAB$L _CTX 4 CONNECT CONTEXT User context

RAB$L _FAB 4 None File access block address

RAB$W_IS12 2 None Internal stream identifier

RAB$L _KBF 4 None Key buffer address

RAB$B_KRF 1 CONNECT KEY_OF_REFERENCE Key of reference

RAB$B_KSZ 1 None Key size

RAB$B_MBC 1 CONNECT MULTIBLOCK_COUNT Multiblock count

RAB$B_MBF 1 CONNECT MULTIBUFFER_COUNT Multibuffer count

RAB$L _PBF 4 None Prompt buffer address

RAB$B_PSZ 1 None Prompt buffer size

RAB$B_RAC 1 CONNECTS Record access mode

RAB$L _RBF 4 None Record buffer address

RAB$W_RFA 6 None Record file address

RAB$L _RHB 4 None Record header buffer

RAB$L _ROP 4 CONNECTS Record-processing options

RAB$W_RSZ 2 None Record size

RAB$L _STS2 4 None Completion status code

RAB$L _STV2 4 None Status value

~ This field is statically initialized by the $RAB macro to identify this control block as a RAB.

2This field cannot be initialized by the $RAB macro.

SThis field contains options; corresponding FDL equivalents are listed in the description of the field.

7-1

Record Access Block ARAB)
7.1 Summary of Fields

Table 7-1 (font.) RAB Fields

Field Offset
Size
(Bytes) FDL Equivalent Description

RAB$W_STV04 2 None Low-order word status value

RAB$W_STV24 2 None High-order word status value

RAB$B_TMO 1 CONNECT TIMEOUT_PERIOD Timeout period

RAB$L _UBF 4 None User record buffer address

RAB$W_USZ 2 None User record buffer size

RAB$L _XAB 4 None Next XAB address

4Alternate definition of RAB$L_STV field.

Each RAB field is described below. Unless indicated otherwise, each field is
supported for DECnet operations using remote files with a VMS system as
the remote node. Note that the words "DECnet operations" in the following
descriptions refer to remote file operations between two VMS systems. For
information about the support of VMS RMS options for remote file access to
other systems, see the VMS Networking Manual.

The format and arguments of the $RAB macro and the $RAB_STORE macro
are described in Appendix B.

7.2 RAB$B_BID Field
The block identifier (BID) field is a static field that identifies the block as a
RAB. Once set, this field must not be altered unless the control block is no
longer needed. This field must be initialized to the symbolic offset value (this
is done by the $RAB macro).

7.3 RAB$L_BKT Field
The bucket code (BKT) field is used with records in a relative file and when
performing block I/O.

This field contains a relative record number or a numeric value representing
the virtual block number to be accessed.

For relative files, the relative record number of the record acted upon (or
which produced an error) is returned to the RAB$L _BKT field only after the
completion of a sequential operation. That is, VMS RMS returns the relative
record number when you set the record access mode for sequential access
(RAB$B_RAC is RAB$C_SEQ) on the execution of a Get, Put, or Find service.

Before performing block I/O on disk devices, this field must contain the
virtual block number (VBN) of the first block you want to read or write.
For all other devices, this field is not used. If you specify a VBN of 0, VMS
RMS begins the block transfer at the block pointed to by the next block
pointer (NBP). (The NBP is an internal pointer maintained by VMS RMS; it is
described in Section 4.8.)

v

l./

Record Access Block (RAB~
7.3 RAB$L_BKT Field

This field is also input to the Space service to specify the number of blocks to
be spaced forward or backward.

This field corresponds to the FDL attribute CONNECT BUCKET_CODE.

7.4 RAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
RAB, in bytes. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
RAB$C_BLN (this is done by the $RAB macro).

7.5 RAB$L_CTX Field
The user context (CTX) field contains any user-selected value, up to four bytes
long. This field is devoted exclusively to your use. VMS RMS makes no use
of the contents of this field; therefore, you can set any value you want in this
field. For example, you could use this field to communicate with a completion
routine in your program.

This field corresponds to the FDL attribute CONNECT CONTEXT.

7.6 RAB$L_FAB Field
The file access block address (FAB) field contains the symbolic address of the
FAB for the file. Before you invoke the Connect service, you must set this
field to indicate the address of the FAB associated with the open file.

7.7 RAB$W_ISI Field
The internal stream identifier (ISI) field associates the RAB with a
corresponding FAB. VMS RMS sets this field after the execution of a Connect
service. A Disconnect service clears this field. This field should not be altered.

7.8 RAB$L_KBF Field
The key buffer address (KBF) field contains the symbolic address of the buffer
containing the key for random access. Note that the RAB$B_KBF field has the i
same offset as the RAB$B_PBF (prompt buffer address) field, but no conflict
is presented because the fields are used in mutually exclusive operations.

You use this field when the RAB$B_RAC (record access mode) field specifies
random access by key value and you set it to the address of the buffer that
contains the key of the desired record. For a relative file (or for a sequential
disk file with fixed-length records), the key is the relative record number. j
For an indexed file, the key is the key value within the record for the key of ~
reference (RAB$B_KRF).

Record Access Block (RAB)
7.8 RAB$L_KBF Field

Before you invoke the Get or Find service in random mode to an indexed file,
you place the address of a location containing a key value in the RAB$L _
KBF field. The size of this key value must be specified in the RAB$B_KSZ
field. During execution of the Get or Find service, VMS RMS uses the key
value described by the RAB$L _KBF and RAB$B_KSZ fields to search an
index (which you specify through the contents of the RAB$B_KRF) and locate
the desired record in the file. The type of match (that is, exact, generic,
approximate, or approximate and generic) that VMS RMS attempts between
the key value you specify and key values in records of the file is determined
by the RAB$B_KSZ field and the RAB$L _ROP field.

7.9 RAB$B_KRF Field
The key of reference (KRF) field specifies the key or index (primary, first
alternate, and so on) to which the operation applies. The RAB$B_KRF field is
applicable to indexed files only.

This field contains a numeric value representing the key path to records in a
file. The value 0, the default, indicates the primary key. The values 1 through
254 indicate alternate keys.

When your program invokes a Get or Find service in random access mode,
the key of reference specifies the index to search for a match on the key value
that is described by the RAB$L _KBF and RAB$B_KSZ fields. When your
program invokes a Connect or Rewind service, the key of reference identifies
the index in the file of the next record in the stream. The next record is
important when records are retrieved sequentially.

This field corresponds to the FDL attribute CONNECT KEY_OF_
REFERENCE.

7.10 RAB$B_KSZ Field
The key size (KSZ) field contains a numeric value equal to the size, in bytes,
of the record key pointed to by the RAB$L _KBF field.

Note that the RAB$B_KSZ field has the same offset as the RAB$B_PSZ
(prompt buffer size) field but no conflict is presented because the fields are
used in mutually exclusive operations.

For indexed files, the size of the key depends on the key data type:

• For string keys, a value from 1 through the size of the key field can be
used. If the specified size is less than the size of the key field, then only
the leftmost characters of each key are used for comparison.

• For numeric key data types, a value of 0 causes VMS RMS to use the key
data type defined at file creation to determine the key size. A nonzero
value is checked against the defined size, and an error is returned if they
are not equal.

Note that for DECnet operations, the RAB$B_KSZ field must be explicitly
specified as a nonzero value because the key data type information may not
be available to VMS RMS at the local node.

Record Access Block (RAB~
7.10 RAB$B_KSZ Field

The size of the relative record number of a record in a relative file or a
sequential file with fixed-length records is a longword, positive, integer value;
therefore, the key size is 4. For relative record numbers, the default value
of 0 causes a key size of 4 to be used. For DECnet operations, however, the
RAB$B_KSZ field must be explicitly specified as 4 for relative files.

With indexed files, the size of key values in bytes of an indexed file can be
from 1 to 255 bytes.

A program may access indexed file records directly in one of four ways:

• By an exact match

• By an approximate match

• By a generic match

• By a combination of approximate and generic matches

The program specifies the type of match using the RAB$B_KSZ field together
with two bits from the RAB$L _ROP field: the RAB$V_KGE (logically
synonymous with RAB$V_EQNXT) bit and the RAB$V_KGT (logically
synonymous with RAB$V_NXT) bit.

• To specify an exact match, set a value in the RAB$B_KSZ field equal to
the number of bytes in the key, and reset the RAB$V_KGE bit and the
RAB$V_KGT bit.

• To specify an approximate match, set a value in the RAB$B_KSZ field
equal to the number of bytes in the key, and set the appropriate bit.
Specifically, if you want to match on a record having either an equal
key value or the next value (greater for ascending sort order, lesser for
descending sort order) set the RAB$V_KGE (logically synonymous with
RAB$V_EQNXT) bit. If you want to match on a record having the next
value and to ignore equal key values, set the RAB$V_KGT (logically
synonymous with RAB$V_NXT) bit.

Note: Sort order is established in the data type (XAB$B_DTP) field of the
associated XABKEY when the file is created.

• To specify a generic match, set a value in the RAB$B_KSZ field equal to
the number of leading bytes in the key you want to match on, and set the
RAB$V_KGE bit and the RAB$V_KGT bit.

• To specify an approximate generic match, set a value in the RAB$B_KSZ
field equal to the number of leading bytes in the key you want to match
on, and set the appropriate bit.

7.11 RAB$B_MBC Field
The multiblock count (MBC) field applies only to sequential disk file
operations. This field specifies the number of blocks, in the range of 0
through 127, to be allocated to each I/O buffer and correspondingly, the
number of blocks of data to be transferred in each I/O unit. If this field is

Record Access Block ARAB)
7.11 RAB$B_MBC Field

not specified or is specified as 0, the process default for the multiblock count
is used. If the process default is also 0, VMS RMS uses the system default.
If the system default is also 0, then the default size for each I/O buffer is
1 block. The DCL command SET RMS_DEFAULT is used to set process or
system defaults.

When it invokes the Connect service, VMS RMS uses the RAB$B_MBC field
to determine the number of blocks in the I/O transfers for this record stream
and allocates a buffer with the appropriate storage capacity. Note that the
RAB$B_MBF (multibuffer count) field may be used to allocate multiple buffers
of this size for the record stream.

The use of the RAB$B_MBC field optimizes data throughput for sequential
operations, and does not affect the structure of the file. It reduces the number
of disk accesses for record operations, resulting in faster program execution.
However, the extra buffering increases memory requirements.

Note that the RAB$B_MBC field is not used with block I/O. With
multiblocks, the number of blocks in an I/O unit is fixed by the multiblock
count, whereas in block I/O operations the number of blocks being
transferred is specified by the program.

This field corresponds to the FDL attribute CONNECT MULTIBLOCK_
COUNT and it is not supported for DECnet operations.

7.12 RAB$B_MBF Field
The multibuffer count (MBF) field indicates the number of process-local I/O
buffers you want VMS RMS to allocate when you invoke the Connect service
for a record stream.

This field contains a numeric value in the range of 0 to 12 7 that represents
the number of buffers to be allocated.

If this field is not specified or is set to 0, VMS RMS uses the process default
for the particular file organization and device type. If the process default is
also 0, the system default for the particular file organization and device type
applies. If the system default is likewise 0, one buffer is allocated. However,
if read-ahead or write-behind is specified, a minimum of two buffers is
allocated. A minimum of two buffers is also allocated for an indexed file.

VMS RMS requires that at least one buffer allocated for sequential and relative
files and at least two buffers for indexed files, unless the file is to be processed
with block I/O operations only. Multiple buffers can be used efficiently to
overlap I/O time with compute time, particularly in read-ahead or write-
behind processing (see RAB$L _ROP for information on these options), and
to increase use of the buffers (as compared to disk I/O) when performing
random processing.

Note that the RAB$B_MBF field is not used when block I/O access is
specified with the Open, Create, or Connect services because no buffers
are required.

This field corresponds to the FDL attribute CONNECT MULTIBUFFER_
COUNT and it is not supported for DECnet operations.

Record Access Block (RAB)
7.13 RAB$L_PBF Field

7.13 RAB$L_PBF Field
The prompt buffer address (PBF) field points to a character string to be used
as a prompt for terminal input. Note that the RAB$B_PBF field has the same
offset as the RAB$B_KBF (key buffer address) field but because the fields are
used in mutually exclusive operations, no conflict is presented.

This field contains the symbolic address of the buffer containing the prompt
character string. If you select the RAB$V_PMT option of the RAB$L _ROP
field when you invoke a Get service, VMS RMS outputs this character string
to the terminal before the Get service begins its task.

To perform any carriage control on the terminal, you must insert the
appropriate carriage control characters into this character string.

This field is not supported for DECnet operations; it is ignored.

7.14 RAB$B_PSZ Field
The prompt buffer size (PSZ) field indicates the size of the prompt character
string to be used as a terminal prompt. This field contains the size, in bytes,
in the range of 0 to 255.

Note that the RAB$B_PSZ field has the same offset as the RAB$B_PSZ (key
buffer size) field but no conflict is presented because the fields are used in
mutually exclusive operations.

This field is not supported for DECnet operations; it is ignored.

7.15 RAB$B_RAC Field
The record access mode (RAC) field indicates the method of retrieving or
inserting records in the file; that is, whether records are read (or written)
sequentially, directly, or by record file address. Only one access method may
be specified for any single record operation, but you can change the record
access mode between record operations.

The RAB$B_RAC field is a keyword value field in which each record access
mode has a symbolic offset. Options are identified using mnemonics. Each
access mode in the RAB$B_RAC field has its own symbolic constant. For
example, the SEQ (sequential) access mode has the symbolic constant
RAB$C_SEQ.

The RAB$B_RAC field is not applicable to block I/O operations and there is
no corresponding FDL attribute for this field.

The record access mode options and their meanings are described below.

Options

RAB$C_SEQ i
Indicates sequential record access mode (the default); it can be specified with ~
any type of file organization.

Records read from (or written to) sequential files are accessed in chronological
order. That is, older records are accessed before newer records.

Record Access Biock (RAB)
7.15 RAB$B_RAC Field

Records read sequentially from indexed files are accessed by the key of
reference according to the key's sort order. Where records have duplicate
keys, older records are read before newer records regardless of the key's sort
order.

For example, assume an ascending key indexed file with four 2-byte records
(A 1, B 1, B2, C 1) where the key is the first byte of each record. When
processed sequentially, the records are encountered in the following order:

Al B1 B2 C1

Here records B 1 and B2 have the duplicate key B, but record B 1 was inserted
chronologically before record B2 and therefore, is encountered before B2
when the program is reading records sequentially.

If this file is reorganized as a descending-key indexed file, the records are
encountered in the following order:

C1 B1 B2 Al

Note that the chronological order of insertion for the two records with
duplicate keys is maintained without regard to sort order.

When records are written sequentially to indexed files, VMS RMS verifies that
the key value of each successive record is ordered correctly with respect to the
key value in the previously written record. For example, with a descending
key of reference VMS RMS ensures that the key value of the third record
written is less than the value of the second record.

RAB$C_KEY
Indicates random access by key. For relative files and sequential files on
disk with fixed-length records, random access is by relative record number.
Indexed files are accessed directly by specifying the appropriate value for the
key of reference.

RAB$C_RFA
Indicates random access by record file address; used for all disk file
organizations.

7.16 RAB$L_RBF Field
When a program invokes a service that writes records to a file, the output
record buffer address (RBF) field contains the symbolic address of the buffer
that holds the record to be written.

When you invoke the Get or Read service, VMS RMS sets this field to the
address of the record just read from the file; you need not initialize this field.

Record Access Block (RAB)
7.17 RAB$W_RFA Field

7.17 RAB$W_RFA Field

The record file address (RFA) field comprises three words that define the
physical disk address (not symbolic address) of the current record.

After the successful execution of a Get, Put, or Find service, VMS RMS sets
the RAB$W_RFA field to the address of the record acted on by the operation.
This address provides an unambiguous means of directly locating this same
record at some later time but is meaningful for disk files only.

You can store the contents of the RAB$W_RFA field for future use. When
you want to retrieve the record again, merely restore the saved contents of
the field, set the record access mode to random by RFA, and invoke a Get or
Find service.

The following rules apply to RFA access:

1 There are two additional names for portions of this field: RAB$L _RFAO
is the offset of the first of three words; RAB$W_RFA4 is the offset of the
last word.

Using VAX MACRO, the field may be copied:

MOVAL R.ABBLK,RO
MOVL RAB$L_RFAO(RO),SAVE_RFA
MOVW RAB$W_RFA4(RO),SAVE_RFA+4

2 RFA values remain valid for a record in a sequential file as long as the
record is within the space defined by the logical file; that is, until the file
is truncated to a point before the record.

3 RFA values remain valid for a record in a relative file for the life of the
file; that is, until the file is reorganized, using the VMS Convert Utility, or
deleted.

4 With an indexed file, RFA values remain valid until the file is reorganized,
using the VMS Convert Utility, or deleted. Note that the VMS Convert
/Reclaim Utility partially reorganizes a file while maintaining RFA values.

7.18 RAB$L_RHB Field

The fixed-length record header buffer (RHB) field contains the symbolic
address of the record header buffer, which VMS RMS uses only when
processing VFC records.

For a Get service, VMS RMS strips the fixed control area portion of the record
and places it in the buffer whose address is specified in this field. For Put or
Update services, VMS RMS writes the contents of the specified buffer to the
file as the fixed control area portion of the record.

If this field is not specified, VMS RMS assumes the absence of a record
header buffer. When no record header buffer exists, the fixed control area is
discarded for a Get service, zeroed for a Put service, and left unchanged for
an Update service.

The size of the fixed control area is defined in the FAB, using the FAB$B_FSZ
field. You must ensure that the buffer size described in the RAB$L _RHB field
is equal to the value specified by the FAB$B_FSZ field.

Record Access Block (RAB~
7.19 RAB$L_ROP Field

7.19 RAB$L_ROP Field
RAB$L _ROP is the symbolic offset for the RAB's record-processing options
(ROP) field. This field specifies which of the various optional record
operations are to be implemented for the program.

The ROP is a 32-bit field in which each record-processing option has a
corresponding bit assignment to let you specify multiple options (multiple
bits can be set), when applicable. Each option has a unique symbolic offset
and a unique mask value but you need only specify the appropriate 3-letter
mnemonic when coding a function. For example, the end-of-file option is
assigned symbolic offset RAB$V_EOF, but to specify the option, you use the
following MACRO statement:

ROP=EOF

The record-processing option bits are never affected by VMS RMS services.

This section describes the record-processing options alphabetically by
functional category, of which there are seven:

• Connect service input options

• Indexed file options

• Miscellaneous options

• Performance options

• Put service options

• Record locking options

• Terminal device options

This field corresponds to the FDL primary attribute CONNECT.

Table 7-2 lists the options alphabetically by category.

Table 7-2 Record Processing Options

Option Symbolic Offset

Connect Service Options

Block I/O RAB$V_BIO

End of file RAB$V_EOF

Read ahead RAB$V_RAH

Synchronous status RAB$V_SYSCSTS

Write behind RAB$V_WBH

Indexed File Options

Key greater than or equal RAB$V_EQNXT (or RAB$V_KGE)

Limit RAB$V_LIM

Load RAB$V_LOA

Key greater than RAB$V_NXT or (RAB$V_KGT)

Record Access Block (RAB)
7.19 RAB$L_ROP Field

Table 7-2 (Cont.) Record Processing Options

Option Symbolic Offset

Miscellaneous Option

Timeout RAB$V_TMO

Performance Options

Asynchronous RAB$V_ASY

Fast delete RAB$V_FDL

Locate mode RAB$V_LOC

Read ahead RAB$V_RAH

Write behind RAB$V_WBH

Put Service Options

Truncate on put RAB$V_TPT

Update-if RAB$V_UIF

Record Locking Options

Do not lock RAB$V_NLK

Nonexistent record RAB$V_NXR

Lock for read RAB$V_REA

Lock for write RAB$V_RLK

Ignore read lock RAB$V_RRL

Timeout RAB$V_TMO

Manual unlock RAB$V_ULK

Wait to lock RAB$V_WAT

Terminal Device Options

Cancel CTRL/0 RAB$V_CCO

Convert RAB$V_CVT

Extended operation RAB$V_ETO

Prompt RAB$V_PMT

Purge type-ahead RAB$V_PTA

Read, no echo RAB$V_RNE

Read, no filter RAB$V_RNF

Timeout RAB$V_TMO

In the following text, each of the options is described under its symbolic
offset. For example, the asynchronous option is described under RAB$V_
ASY.

Record Access Block (RAB)
7.19 RAB$L_ROP Field

Connect Service Options

RAB$V_BIO
Block I/O; specifies that only block I/O operations are to occur, when mixed
record I/O and block I/O operations are allowed. This option is meaningful
only if the FAB$B_FAC FAB$V_BRO option was specified when the file was
opened (by a Create or Open service). When the RAB$V_BIO option is set
for the Connect service, only block I/O operations are allowed for this record
stream. When the RAB$V_BIO option is clear for the Connect service, only
record I/O operations are allowed when accessing a relative or indexed file
and mixed (block I/O and record I/O) operations are allowed for sequential
files. This option corresponds to the FDL attribute CONNECT BLOCK_IO.

RAB$V_EOF
End-of-file; indicates that VMS RMS is to position the record stream to the
end of the file for the connect record operation only.

This option corresponds to the FDL attribute CONNECT END_OF_FILE.

RABV_RAH, RABV_WBH
Read ahead and write behind; see explanation under "Performance Options".

Note that the first three indexed file options have limited application with
relative files. See the Guide to VMS File Applications for details.

The indexed file options may be enabled or disabled during any record
operation.

As shown in the following chart, synonyms have been defined for the two
key search options, RAB$V_KGT and RAB$V_KGE, to reflect the functional
capability for processing records in ascending or descending order. DIGITAL
recommends you use these synonyms when coding new applications.

Search Option Synonym Definition

RAB$V_KGE RAB$V_EQNXT

RAB$V_KGT RAB$V_NXT

Return the record with an equal key
value, or the next key value according
to the sort order for the current key of
reference.

Return the record with the next key
value according to the sort order for the
current key of reference.

Indexed File Options

RAB$V_EQNXT
The symbolic offset RAB$V_EQNXT is logically synonymous with the
symbolic offset RAB$V_KGE. When you select this option and ascending
sort order is specified, VMS RMS returns the next record having a key value
equal to or greater than the value specified by the RAB$L _KBF and RAB$B_
KSZ fields. If descending sort order is specified, VMS RMS returns the next
record that contains a key value equal to or less than the value specified by
the RAB$L _KBF and RAB$B_KSZ fields.

Record Access Block (RAB)
7.19 RAB$L_ROP Field

Note: Sort order is established in the data type field (symbolic offset XAB$B_
DTP) of the associated XABKEY when the file is created.

If the program specifies a RAB$V_EQNXT search and no record has a key
value identical to the specified search value, VMS RMS returns the record
with the next key value according to the specified sort order. (See the
description of the RAB$V_NXT bit.)

If the program specifies a RAB$V_EQNXT search and a record with a key
value identical to the search key is found, VMS RMS returns the record
regardless of sort order.

For example, consider an ascending-key indexed file having three records, A,
B, and C, where the key for each record is the record itself. When the file is
processed sequentially, the records are encountered in the following order:

A B C

If the program does a RAB$V_EQNXT search specifying the B key value,
VMS RMS returns record B.

If this file is reorganized as descending-key indexed file and it is processed
sequentially, the records are encountered in the following order:

C B A

Again, when the program does a RAB$V_EQNXT search specifying the B key
value, VMS RMS returns record B.

If neither a RAB$V_EQNXT search nor a RAB$V_NXT search (logically
synonymous with RAB$V_KGT) is specified, an exact key match is required
unless a generic key match is specified. (See the description of the RAB$B_
KSZ bit.)

This option corresponds to the FDL CONNECT attribute KEY_GREATER_
EQUAL.

RAB$V_KGE
This option is logically synonymous with the RAB$V_EQNXT option and is
described under RAB$V_EQNXT.

RAB$V_KGT
This bit is logically synonymous with the RAB$V_NXT option and is
described under RAB$V_NXT.

RAB$V_LIM
This option is supported for indexed files only. It permits you to use VMS
RMS as a limit sensor when accessing a file sequentially. When the RAB$V_
LIM bit is set, the key value defined by the RAB$L _KBF and RAB$B_KSZ
fields (limit key value) is compared to the key value in each record as it is
accessed. When a record is accessed that has a key value different from the
limit key value, VMS RMS returns the RMS$—OK_LIM success status code.

This option corresponds to the FDL attribute CONNECT KEY_LIMIT.

RAB$V_LOA
This option is supported for indexed files only. It specifies that VMS RMS is
to load buckets according to the fill size established when the file is created.
The bucket fill size is established in the XAB$W_DFL and XAB$W_IFL fields

7-13

Record Access Block (RAB)
7.19 RAB$L_ROP Field

of the key definition XAB. If LOA is not specified, VMS RMS ignores the
established bucket fill size; that is, buckets are completely filled.

This option corresponds to the FDL attribute CONNECT FILL _BUCKETS.

RAB$V_NXT
The symbolic offset (RAB$V_NXT) is logically synonymous with the symbolic
offset RAB$V_KGT. When the bit is set and ascending sort order is specified,
VMS RMS returns the next record having a key value greater than the value
specified by the RAB$L _KBF and RAB$B_KSZ fields. If descending sort
order is specified, VMS RMS returns the next record having a key value
less than the value specified by the RAB$L _KBF and RAB$B_KSZ fields.
If neither RAB$V_KGT nor RAB$V_EQNXT (logically synonymous with
RAB$V_KGE) is specified, an exact key match is required.

Note: Sort order is established in the data type XAB$B_DTP field of the
associated XABKEY when the file is created.

The key searching usually produces different results depending on the
specified sort order. For example, consider an ascending-key indexed file
having three records, A, B, and C, where the key for each record is the record
itself. When the file is processed sequentially, VMS RMS returns the records
in the following order:

A B C

If the program does a RAB$V_KGT search specifying the B key value, VMS
RMS returns record C.

If this file is reorganized as descending-key indexed file and is processed
sequentially, the records are returned in the following order:

C B A

Now when the program does a RAB$V_KGT search specifying the B key
value, VMS RMS returns record A.

This option corresponds to the FDL CONNECT attribute KEY_GREATER_
THAN.

Miscellaneous Options

RAB$V_TMO
Timeout; in addition to its use for terminals and preventing delays due
to record locks (described later), the RAB$V_TMO option serves a special
purpose for mailbox devices. If specified in combination with a timeout value
of 0 (RAB$B_TMO), Get and Put services to mailbox devices use the IO$M_
NOW modifier. Doing so causes the operation to complete immediately,
instead of synchronizing with another cooperating writer or reader of the
mailbox.

This option corresponds to the FDL attribute CONNECT TIMEOUT_ENABLE
and is not supported for DECnet operations.

See the VMS 1/O User's Reference Volume for a further discussion of
mailboxes.

Record Access Block ARAB)
7.19 RAB$L_ROP Field

Performance Options

RAB$V~►SY
Asynchronous; indicates that this I/O operation is to be performed
asynchronously. When you specify RAB$V~SY, you pass the address of
the RAB as an argument to the AST routine. VMS RMS returns control to
your program as soon as an I/O operation is initiated, even though that
operation may not yet be completed. This option is normally used with
a Wait service to synchronize with operation completion; it is ignored for
process-permanent files.

The RAB$V~SY option corresponds to the FDL attribute CONNECT
ASYNCHRONOUS.

RAB$V_FDL
Fast delete; this option reduces the time required to delete records in indexed
files. The saving in time is achieved by temporarily avoiding the processing
needed to eliminate pointers from alternative indexes to the record. However,
there is a cost associated with this option. First, the structural linkage from
the alternate indexes remains in place but has no utility; therefore, a certain
amount of space is wasted. Second, if the program tries to access the deleted
record from an alternate index, VMS RMS traverses the linkage, finds the
record no longer exists and then generates a "nonexistent record" error
message which the program must process.

You should take the fast delete option only if the immediate saving in time is
of greater benefit to you than the associated costs in space and overhead.

This option corresponds to the FDL attribute CONNECT FAST_DELETE.

RAB$V_LOC
Locate mode; under specified conditions, you have the option of specifying
locate mode instead of move mode, the default method of buffer handling.
In locate mode, your program accesses records directly in an I/O buffer.
Thus, VMS RMS does not have to move records between I/O buffers and an
application program buffer. The RAB$V_LOC option activates locate mode.
VMS RMS supports this option for the Get service only. The conditions that
may prohibit the use of the locate mode option are given in the following list:

• Record crosses block boundaries.

• The FAB$B_FAC field FAB$V_UPD option is set.

• There are multiple record streams.

• Process-permanent files are accessed indirectly.

• Records are compressed in indexed Prolog 3 files.

In move mode, VMS RMS transfers individual records between I/O buffers
and your program buffer. When you invoke a Get service, VMS RMS reads
a block or set of blocks (for sequential files) or a bucket (for relative and
indexed files) into an I/O buffer. VMS RMS then selects the desired record
from the buffer and moves it into the program-specified location. Locate
mode eliminates the last step.

This option corresponds to the FDL attribute CONNECT LOCATE _MODE
and it is not supported for DECnet operations; move mode is always used.

Record Access Block ARAB)
7.19 RAB$L_ROP Field

RAB$V_RAH
Read-ahead; used with multiple buffers (see RAB$B_MBF) to indicate read-
ahead operations. VMS RMS issues I/O requests as soon as possible when
a buffer is needed. When the first buffer is filled, the I/O operation takes
place for the first buffer as the second buffer receives the next record; the
second buffer soon becomes filled and the next record is read into the first
buffer as the I/O operation for the second buffer occurs. The system does
not have to wait for I/O completion, which permits an overlapping of input
and computing. Read-ahead is ignored for unit record device I/O and is
supported only for the nonshared sequential file organization. If the RAB$V_
RAH option is specified when the multibuffer count (RAB$B_MBF) is 0,
two buffers are allocated to allow multibuffering. If two or more buffers are
specified, multibuffering is allowed regardless of what was specified to the
Connect service. Conversely, if a buffer count of 1 is specified, multibuffering
is disabled regardless of what was specified to the Connect service.

This option corresponds to the FDL attribute CONNECT READ~HEAD and
it is not supported for DECnet operations.

RAB$V_SYNCSTS
When you select this option, VMS RMS returns the success status RMS$_
SYNCH if the requested service completes its task immediately. The most
common reason for not completing a task immediately is that the task
involves I/O operations.

The status RMS$_SYNCH is returned in RO only. Refer to the RAB$L _STS
field for the actual success status or failure status of the task.

The RAB$V_SYNCSTS option should be used in conjunction with the
RAB$V~SY option.

RAB$V_WBH
Write-behind; used with multiple buffers (see RAB$B_MBF). When one
buffer is filled, the next record is written into the next buffer while the
I/O operation takes place for the first buffer. The system does not have
to wait for I/O completion, which allows for an overlapping of computing
and output. Write-behind is ignored for unit record devices. This option
is implemented only for the nonshared sequential file organization. If the
RAB$V_WBH option is specified when the multibuffer count (RAB$B_MBF)
is 0, two buffers are allocated to allow multibuffering. If two or more buffers
are specified, multibuffering is allowed regardless of what was specified to the
Connect service. Conversely, if a buffer count of 1 is specified, multibuffering
is disabled regardless of what was specified to the Connect service.

This option corresponds to the FDL attribute CONNECT WRITE _BEHIND
and it is not supported for DECnet operations.

Put Service Options

RAB$V_TPT
Truncate-on-put; specifies that a Put or Write service using sequential record
access mode can occur at any point in the file, truncating the file at that point.
The end-of-file mark is set to the position immediately following the last byte
written.

Record Access Block (RAB)
7.19 RAB$L_ROP Fieid

Truncating a file deletes all records beyond the point of truncation. In a
shared environment, the application must ensure proper interpretation of a
truncate operation. The process must have specified truncate access by setting
the FAB$V_TRN option in the FAB$B_FAC field when the file was opened or
created.

This option applies only to sequential files and corresponds to the FDL
attribute CONNECT TRUNCATE_ON_PUT.

RAB$V_UIF
Update-if; indicates that if a Put service is invoked for a record that already
exists in the file, the operation is converted to an Update. This option is
necessary to overwrite (as opposed to update) an existing record in relative
and indexed files. Indexed files using this option must not allow duplicates
on the primary key. The process must have specified Update access by setting
the FAB$V_UPD option in the FAB$B_FAC field when the file was opened or
created.

When using this option with shared files and automatic record locking, you
should be aware that the Put service, unlike the Update service, briefly
releases record locks until it is determined that an Update should take
place. At that point, the record is relocked for the Update operation. Note
that during the time the Put operation is being converted into an Update
operation, it is possible that another record stream could update or delete the
record.

This option corresponds to the FDL attribute CONNECT UPDATE _IF.

The record-processing options related to controlling record locking are
described below. Except as noted, these options apply to all file organizations
and may be selected for each operation.

Record Locking Options

RAB$V_NLK
Do not lock record; specifies that the record accessed through a Get or Find
service is not to be locked. The RAB$V_NLK option takes precedence over
the RAB$V_ULK option.

This option corresponds to the FDL attribute CONNECT NOLOCK.

RAB$V_NXR
Nonexistent record processing; specifies that if the record directly accessed
through a Get or Find service does not exist (was never inserted into the file
or was deleted), the service is to be performed anyway. For a Get service,
the previous contents of a deleted record are returned. The processing of a
deleted record returns a completion status code of RMS$_OK_DEL, and the
processing of a record that never existed returns RMS$_OK_RNF.

This option applies only to relative files and it corresponds to the FDL
attribute CONNECT NONEXISTENT_RECORD.

RAB$V_REA
Lock record for read; specifies that the record is to be locked for a read
operation for this process, while allowing other accessors to read the record
(but not to modify the record). Use this option only when you do not want
the file to be modified by any subsequent activities. Use the RAB$V_RLK
option to allow possible subsequent modification of the file.

This option corresponds to the FDL attribute CONNECT LOCK_ON_READ.

7-17

Record Access Block (RAB)
7.19 RAB$L_ROP Field

RAB$V_RLK
Lock record for write; specifies that a user who locks a record for modification
is allowing the locked record to be read by other accessors. If both RAB$V_
RLK and RAB$V_REA option are specified, the RAB$V_REA option is
ignored. The RAB$V_NLK option takes precedence over all others.

This option corresponds to the FDL attribute CONNECT LOCK_ON_
WRITE.

RAB$V_RRL
Read regardless of lock; read the record even if another stream has locked the
record. This option allows the reader some control over access. If a record
is locked against all access and this bit is set for either a Put or Get service
request, the record is returned with alternate status RMS$_OK_RRL.

This option corresponds to the FDL attribute CONNECT READ_
REGARDLESS.

RAB$V_TMO
Tmmeout; specifies that if the RAB$V_WAT option was specified, the RAB$B_
TMO field contains the maximum time value, in seconds, to be allowed for
a record input wait caused by a locked record. If the timeout period expires
and the record is still locked, VMS RMS aborts the record operation with the
RMS$_TMO completion status. Note that the maximum time allowed for a
timeout is 255 seconds. Other functions of the RAB$V_TMO option are listed
under "Miscellaneous Options."

This option corresponds to the FDL attribute CONNECT TIMEOUT_ENABLE
and it is not supported for DECnet operations.

RAB$V_ULK
Manual unlocking; prohibits VMS RMS from automatically unlocking records.
Instead, once locked (through a Get, Find, or Put service), a record must be
specifically unlocked by a Free or Release service. The RAB$V_NLK option
(above) takes precedence over the RAB$V_ULK option.

This option corresponds to the FDL attribute CONNECT MANUAL _
UNLOCKING.

RAB$V_WAT
Wait; if the record is currently locked by another stream, wait until it is
available. This option may be used with the RAB$V_TMO option (see above)
to limit waiting periods to a specified time interval.

This option corresponds to the FDL attribute CONNECT WAIT_FOR_
RECORD.

The record-processing options related to terminal devices are described
below. These options map directly into equivalent modifiers to the QIO
function code. For a further discussion of their effects, see the VMS I/O
User's Reference Volume. These options can be selected for each operation.

`J

Record Access Block (RAB~
7.19 RAB$L_ROP Field

Terminal Device Options

RAB$V_CCO
Cancel CTRL/O; guarantees that terminal output is not discarded if the
operator presses CTRL/O.

This option corresponds to the FDL attribute CONNECT TT_CANCEL_
CONTROL _O and it is not supported for DECnet operations.

RAB$V_CVT
Convert; changes characters to uppercase on a read from a terminal.

This option corresponds to the FDL attribute CONNECT TT_UPCASE _
INPUT and it is not supported for DECnet operations.

RAB$V_ETO
Extended terminal operation; indicates presence of a Terminal XAB (XABTRM)
to describe terminal input using extended terminal characteristics. Note that
if this option is specified, all other RAB$L _ROP options specific to terminal
devices are ignored (including the RAB$V_TMO option).

This option is not supported for DECnet operations.

RAB$V_PMT
Prompt option; indicates that the contents of the prompt buffer are to be used
as a prompt for reading data from a terminal (see RAB$L _PBF field).

This option corresponds to the FDL attribute CONNECT TT_PROMPT and it
is not supported for DECnet operations.

RAB$V_PTA
Purge type-ahead; eliminates any information that may be in the type-ahead
buffer on a read from a terminal.

This option corresponds to the FDL attribute CONNECT TT_PURGE _TYPE _
AHEAD and it is not supported for DECnet operations.

RAB$V_RNE
Read no echo; indicates that input data is not echoed (displayed) on the
terminal as it is entered on the keyboard.

This o tion corres onds to the FDL attribute CONNECT TT_READ_ ~ p p
NOECHO and it is not supported for DECnet operations.

RA B$V_R N F
Read no filter; indicates that CTRL/U, CTRL/R, and DELETE are not to be
considered control commands on terminal input but are to be passed to the
application program.

This option corresponds to the FDL attribute CONNECT TT_READ_
NOFILTER and it is not supported for DECnet operations.

RAB$V_TMO
Timeout; for terminal operations, indicates that the content of the RAB$B_
TMO field is to be used to determine the number of seconds allowed between
characters received during terminal input. If the timeout period expires,
VMS RMS returns an error status (see RAB$B_TMO). Other functions of the '~
RAB$V_TMO option are listed under "Miscellaneous Options" and "Record i,
Locking Options".

7-19

Record Access Block (RAB)
7.19 RAB$L_ROP Field

This option corresponds to the FDL attribute CONNECT TIMEOUT_ENABLE
and is not supported for DECnet operations.

7.20 RAB$W_RS2 Field
The record size (RSZ) field contains the size, in bytes, of the record. For a
Write service, the range is 1 through 65,535. For a Put or Update service, the
range is 0 to the maximum value shown in Table 5-4. This field controls the
size ~ of a record that a Put or Update service can write, or the number of bytes
that a Write (block I/O) service can write. This field is required for an Update
service only if the file contains variable-length records or VFC records.

On input from a file, VMS RMS sets this field to indicate the length, in bytes,
of the record that a Get service transfers or that a Read service (block I/O)
reads.

Three notes apply to this field:

1 After a Get service, VMS RMS places the record size in the RAB$W_RSZ
field. On a Read service, VMS RMS sets the RAB$W_RSZ field to the
number of bytes actually transferred.

2 For variable with fixed-length control records, VMS RMS does not include
the size of the fixed control area in the RAB$W_RSZ field.

3 For block I/O operations, some devices require that an even number of
bytes be transferred.

7.21 RAB$L_STS Field
The completion status code (STS) field is set by VMS RMS with the success
or failure status codes for a record operation before returning control to your
program. For an asynchronous operation that has been initiated but not
yet completed, this field is 0. When the operation is complete, the field is
updated with the completion status. See Part I for additional details about
signaling VMS RMS status codes. Potential error codes for specific operations
are listed with their descriptions in Part III.

7.22 RAB$L_SN Field
The completion status value (STV) field communicates additional completion
information to your program, on the basis of the type of operation and the
contents of the completion status code field. For additional information on
the RAB$L _STS and RAB$L _STV fields, see Part I.

The RAB$L _STV field can be accessed using alternate symbolic offsets;
RAB$W_STVO is the location of the first word and RAB$W_STV2 is the
location of the second word within RAB$L _STV.

Record Access Block (RAB)
7.23 RAB$B_TMO Fieid

7.23 RAB$B_TMO Field

The timeout (TMO) field indicates the maximum number of seconds, in the
range 0 to 255, that VMS RMS should wait for an operation to conclude. If
the operation does not conclude within the specified timeout period, VMS
RMS returns an error status code.

To use this field, you must also specify the RAB$V_TMO record-processing
option.

For a Get service using a terminal device, this value specifies the number
of seconds to wait between the characters being typed. If you specify 0
along with RAB$V_TMO, the current contents of the type-ahead buffer are
returned.

When you use await-on-record lock (RAB$V_WAT) with a Get, Find, or Put
service, this value specifies the maximum number of seconds for VMS RMS
to wait for the record to become available.

Note that if the RAB$B_TMO field contains a value of 0 and RAB$V_TMO
is set when you invoke either a Get or Put service to a mailbox device, the
operation terminates immediately, rather than waiting for another process.
For example, if you invoke the Put service to a mailbox device with the
RAB$B_TMO field clear, the Put service does not wait for the receiving
process to get the record.

This field corresponds to the FDL attribute CONNECT TIMEOUT_PERIOD
and it is not supported for DECnet operations.

7.24 RAB$L_UBF Field
The user record buffer address (UBF) field indicates the location of a record or
block buffer.

Note: When you invoke the GET service, RMS takes control of the record buffer
and may modify it. RMS returns the record size and only guarantees the
contents from where it accessed the record to the completion of the record.

This field contains the symbolic address of a work area (buffer) within your
program. The size of this buffer must be defined in the RAB$W_USZ (user
record area size) field.

When you invoke a Get service, this field must contain the buffer address,
regardless of the record transfer mode (locate or move). This option also
applies when you invoke the Read service for block I/O. However, a Put or
Write service never needs a user buffer.

7.25 RAB$W_USZ Field
The user record buffer size (USZ) field indicates the length, in bytes, of the
user record or block buffer. This field contains a numeric value representing
the size of the buffer, in the range of 1 through 65,535.

The user record buffer should be large enough to contain the largest record in
the file. If the buffer is not large enough on an operation with a Get service,
VAX RMS moves as much of the record as possible into the buffer and returns
a warning status code.

7-21

Record Access Block (RAB►
7.25 RAB$W_USZ Field

The value in this field specifies the transfer length, in bytes, for block I/O
operations with a Read service and for a Get service to UDF (undefined)
format sequential files.

7.26 RAB$L~CAB Field
The extended attribute block address (XAB) field contains the symbolic
address of an XAB control block that you want to use when performing
an operation such as a Get service for a terminal device. A value of 0 (the
default) indicates no XABs for this record stream.

For certain record operations, you can associate XABs with a RAB to convey
additional attributes about an operation. (See Part I for the description of an
XAB.)

8 Allocation Control XAB (XABALL)

The allocation control XAB (XABALL) provides additional control over file or
area space allocation on disk devices in order to optimize performance. In the
following descriptions, the terms file and area are synonymous for sequential
and relative files because these file organizations are limited to a single area
(Area 0).

8.1 Summary of Fields
When VMS RMS uses a XAB to create or extend an area, the following
XABALL fields duplicate and take precedence over associated fields in the
related FAB:

• Allocation quantity (ALQ) field, XAB$L ALQ, overrides FAB$L ALQ

• Bucket size (BKZ) field, XAB$B_BKZ, overrides FAB$B_BKS

• Default extension quantity (DEQ) field, XAB$W_DEQ, overrides FAB$W_
DEQ

• The XAB$V_CBT and XAB$V_CTG options of the allocation options field,
XAB$B~OP, override the FAB$V_CBT and FAB$V_CTG options of the
file-processing options field, FAB$L _FOP

When opening a file or displaying a file's attributes, VMS RMS outputs
appropriate information to your program using these fields.

The symbolic offset, size, FDL equivalent, and a brief description of each
XABALL field are presented in Table 8-1.

Table 8-1 XABALL Fields

Size
Field Offset Bytes) FDL Equivalent Description

XAB$B_AID 1 AREA n Area identification number

XAB$B_ALN 1 AREA POSITION ~ Alignment boundary type

XAB$L _ALQ 4 AREA ALLOCATION Allocation quantity

XAB$B_AOP 1 AREA' Allocation options

XAB$B_BKZ 1 AREA BUCKET_SIZE Bucket size

XAB$B_BLN2 1 None Block length

XAB$B_COD2 1 None Type code

XAB$W_DEQ 2 AREA EXTENSION Default extension quantity

XAB$L _LOC 4 AREA POSITION Location

XAB$L _NXT 4 None Next XAB address

~ This field contains options; corresponding FDL equivalents are listed in the description of the field.

2This field is statically initialized by the $XABALL macro to identify this control block as a XABALL.

Allocation Control XAB (XABALL)
8.1 Summary of Fields

Table 8-1 (Cont.~ XABALL Fields

Size
Field Offset (Bytes) FDL Equivalent Description

XAB$W_RFI 6 AREA POSITION FILE_ID Related file identifier
or FILENAME

AREA VOLUME Related volume number XAB$W_VOL 2

Each XABALL field is described below. Unless indicated otherwise, each field
is supported for DECnet operations using remote files with a VMS system as
the remote node. Note that the words "DECnet operations" in the following
descriptions refer to remote file operations between two VMS systems. For
information about the support of VMS RMS options for remote file access to
other systems, see the VMS Networking Manual.

The format and arguments of the $XABALL macro and the $XABALL _
STORE macro are described in Appendix B.

8.2 XAB$B_AID Fields
VMS RMS uses the area identification number (AID) field to determine which
area within a file is supported by this XAB. Note that sequential and relative
files are limited to area 0.

The area is identified by a numeric value in the range 0 through 254 (default
is 0) and is most appropriate for use with index files having multiple areas
allocated.

This field corresponds to the FDL attribute AREA n where n indicates the area
number.

8.3 XAB$B_ALN Field
The alignment boundary type (ALN) field gives you several options for
aligning the allocated area. VMS RMS uses this field in conjunction with
the XAB$L _LOC field and with the XAB$W_RFI field to provide precise
positioning control of the area or area extension.

The XAB$B_ALN field is a keyword value field in which an alignment
boundary option is defined by a symbolic constant value. For example, the
cylinder boundary option has a symbolic constant value of XAB$C_CYL.

Note that if no value is defined for this field, VMS RMS assumes the
XAB$C_ANY option (no additional positioning control desired). Additional
positioning control is not supported for DECnet operations.

The XAB$B_ALN field corresponds to the FDL attribute AREA POSITION.

The following list describes the options for the XAB$B~LN field:

Options

XAB$C_ANY
Any allocation; specifies that no positioning control over the area is desired. If
this option is selected, the XAB$L _LOC and XAB$W_RFI fields are ignored.

This option corresponds to the FDL attribute AREA POSITION NONE.

8-2

Allocation Control XAB (XABALL)
8.3 XAB$B_ALN Field

XAB$C_CYL
Specifies that the area boundary begin at the cylinder number identified by
the location field XAB$L _LOC.

This option corresponds to the FDL attribute AREA POSITION CYLINDER.

XAB$C_LBN
Specifies that the area boundary begin at the logical block number identified
by the location field XAB$L _LOC.

This option corresponds to the FDL attribute AREA POSITION LOGICAL.

XAB$C_RFI
This option is used only for extending an area. It specifies that the area
extension begin as close as possible to the file identified by the related-file-
identification field (XAB$W_RFI), and that the extent begin with the VBN
specified by the location field XAB$L _LOC.

This option corresponds to the FDL attribute AREA POSITION FILE _ID or
AREA POSITION FILE _NAME. If you try to use this option with DECnet
operations, VMS RMS automatically replaces it with the XAB$C~NY option.

XAB$C_VBN
This option applies to area extension only. It specifies that the area extension
begin as close as possible to the virtual block number identified by the
location field XAB$L _LOC.

This option corresponds to the FDL attribute AREA POSITION VIRTUAL.

8.4 XAB$L~LQ Field
This field defines the number of blocks to be initially allocated to an area
when it is created using a Create service, or the number of blocks to be added
to an area when it is explicitly extended using an Extend service (as opposed
to automatic extension). In both cases, this field overrides the allocation
quantity in the associated FAB (see Chapter 5).

The XAB$L _ALQ field accepts numeric values of up to 4,294,967,295 for
initial allocation, but the allocation is limited by the number of blocks
available on the device.

When you create a new area using the Create service, VMS RMS interprets
the value in the XAB$L _ALQ field as the number of blocks for the area's
initial extent. If the value is 0, VMS RMS allocates a minimum number of
blocks depending on the file organization. For example, VMS RMS allocates
only the number of blocks needed for the key and area definitions with
indexed files.

When you use either the Create or Extend services with indexed files, VMS
RMS rounds the allocation quantity value up to the next cluster boundary
and returns this value to the program in the XAB$L ~LQ field. VMS RMS
uses this value as the extension value when you extend an existing area using
the Extend service, unless the program changes the value before invoking the
Extend service. Note that the value 0 is not acceptable for extending an area.

Allocation Control XAB (XABALL)
8.5 XAB$B_AOP Field

8.5 XAB$B~OP Field
The allocation options (AOP) field lets you specify a particular type of
allocation.

This field is a binary options field where one or more options may be selected
by setting the appropriate bits. Each option is identified by a symbolic offset
and has a mask value; for example, the CBT option has an offset of XAB$V_
CBT and a mask value of XAB$M_CBT.

The options for the XAB$B_AOP field are summarized in the following list.

Options

XA B$V_C BT
Contiguous best try; indicates that the allocation or extension should use
contiguous blocks, on a "best effort" basis. This option overrides the FAB$L _
FOP field FAB$V_CBT option.

This option corresponds to the FDL attribute AREA BEST_TRY_
CONTIGUOUS.

XA B$V_CTG
Contiguous; indicates that the initial allocation extension must use contiguous
blocks only; the allocation fails if the requested number of contiguous blocks
is not available. If this is the initial allocation and only a single area is
specified, the file is marked contiguous. This option overrides the FAB$L _
FOP field FAB$V_CTG option.

This option corresponds to the FDL attribute AREA CONTIGUOUS.

XAB$V_HRD
Hard; indicates that if the requested alignment cannot be performed, an error
will be returned. By default, the allocation is performed as near as possible to
the requested alignment.

Note that the XAB$V_HRD option is applicable only to XAB$C_CYL and
XAB$C_LBN alignment boundary types, specified by the XAB$B~LN field.

This option corresponds to the FDL attribute AREA EXACT_POSITIONING.

XAB$V_ONC
On cylinder boundary; indicates that VMS RMS is to begin the allocation on
any available cylinder boundary.

This option corresponds to the FDL attribute AREA POSITION ANY
CYLINDER.

Allocation Control XAB (XABALL)
8.6 XAB$B_BKZ Field

8.6 XAB$B_BKZ Field
When VMS RMS creates relative and indexed files, this field specifies bucket
size using numeric values ranging from 0 through 63 to represent the number
of blocks in a bucket. If this argument is omitted, or if a value of 0 is
inserted, VMS RMS uses a default size equal to the minimum number of
blocks required to contain a single record. For RMS-11 processing, the bucket
size must be less than or equal to 32 blocks.

When calculating the bucket size, you must consider the control information
(overhead) associated with each bucket. Note that some record types contain
control bytes and to calculate the overhead you must multiply the number of
records per bucket by the number of control bytes per record. See the Guide
to VMS File Applications for more information.

The FDL editor can be used to calculate efficient bucket sizes for indexed files.
(For information about the FDL editor, see the VMS File Definition Language
Facility Manual.

When you create a file, VMS RMS uses this field as input to determine the
specified bucket size and upon conclusion, uses the field to output the bucket
size. Because relative files are limited to one area, this field specifies the size
for all buckets in the file. For indexed files, you can specify a different size
for each area using this field in the appropriate XABALL.

When you open an existing file, VMS RMS uses this field to output the bucket
size to your program.

The value in this field overrides the contents of the bucket size field of the
FAB on a Create service (see Chapter 5).

You can specify multiple areas for a single index by having the XAB$B_IAN
and XAB$B_LAN fields in the key definition XAB (XABKEY) indicate that the
lowest level of the index and the remainder of that index occupy different
areas (defined by different XABALLs). However, the number of blocks
per bucket (XAB$B_BKZ value) must be the same for the entire index of a
particular key. If multiple areas are specified for an index and if the XAB$B_
BKZ values are not the same, VMS RMS returns an error because the values
for one index must be the same. However, if you specify the XAB$B_BKZ
field for at least one area and use the default (0) for the XAB$B_BKZ field
of a different area (or areas) of the same index, VMS RMS uses the largest
XAB$B_BKZ value specified among the XABALL control blocks to determine
the bucket size for that index.

This field corresponds to the FDL attribute AREA BUCKET_SIZE.

8.7 XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
XABALL, in bytes. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
XAB$C~ILLEN (this is done by the $XABALL macro).

Allocation Control XAB (XABALL)
8.8 XAB$B_COD Field

8.8 XAB$B_COD Field

The type code (COD) field is a static field that identifies this control block as
a XABALL. Once set, this field must not be altered unless the control block
is no longer needed. This field must be initialized to the symbolic value
XAB$C_ALL (this is done by the $XABALL macro).

8.9 XAB$W_DEQ Field
The default extension quantity (DEQ) field specifies the number (0 to 65,535)
of blocks to be added when VMS RMS automatically extends the area. If you
specify 0, the VMS RMS provides a default extension value.

The value in this field overrides the contents of the default extension quantity
field of the FAB (see Chapter 5).

This field corresponds to the FDL attribute AREA EXTENSION.

8.10 XAB$L_LOC Field
The location (LOC) field contains a numeric value that indicates the beginning
point for area allocation. VMS RMS refers to the location field when
executing a Create or Extend service, but only if the XAB$B_ALN field
specifies an alignment option. The way the XAB$L _LOC field is used
depends on the value specified for the XAB$B_ALN field (a binary options
field). The beginning point for the allocation is determined as follows:

• If the XAB$B_ALN field XAB$C_CYL option is specified, the location
number is the cylinder number (0 through the maximum cylinder number
on the volume) where the allocation begins.

• If the XAB$B_ALN field XAB$C_LBN option is specified, the location
number is the logical block number (0 through the maximum number of
blocks on the volume) where the allocation begins.

• If the XAB$B_ALN field XAB$C_VBN or XAB$C_RFI option is specified,
the location number is the virtual block number (1 through the maximum
number of blocks in the file) where the allocation begins. This applies
only to the Extend service. If the number 0 is specified, or if the number
is omitted during an Extend service, VMS RMS places the file extension
as near to the end of the file as possible.

This field corresponds to the FDL attribute AREA POSITION.

8.11 XAB$L_NXT Field
The next XAB address (NXT) field specifies the symbolic address of the next
XAB in the XAB chain. A value of 0 (the default) indicates that the current
XAB is the last (or only) XAB in the chain.

Allocation Control XAB (XABALL)
8.12 XAB$W_RFI Field

8.12 XAB$W_RFI Field
The related file identification (RFI) field allows you to position files or areas of
an indexed file close to a specified file.

This field contains the 3-word file identification value of the related file.
A value of 0,0,0 (the default) indicates that the current file is to be used.
Specifying the XAB$B_ALN field XAB$C_RFI option and specifying the
XAB$W_RFI field as 0,0,0 are equivalent to specifying the XAB$B_ALN field
XAB$C_VBN option.

You can view the file identification of a file using the DCL command
DIRECTORY with the /FULL qualifier.

The file is created or extended as near to the specified related file as possible
at the virtual block number specified by the LOC argument.

The XAB$W_RFI field is ignored unless the XAB$B_ALN field is set to
XAB$C_RFI. It is also ignored for DECnet operations.

This field corresponds to the FDL attribute AREA POSITION FILE _ID or
AREA POSITION FILE _NAME.

8.13 XAB$W_VOL Field
The relative volume number (VOL) field indicates the specific member of a
volume set upon which the file is to be allocated.

This field contains an integer in the range 0 through 255. The default is 0,
specifying the "current" member of the volume set.

Note that volume placement will be performed only if an alignment type in
the XAB$B~LN field is either XAB$C_CYL or XAB$C_LBN (you cannot
specify XAB$C_VBN or XAB$C_RFI alignment types). If the XAB$B_ALN
field contains a value of 0, placement of the file within the volume set will be
at the discretion of the system, regardless of the contents of the XAB$W_VOL
field.

This field corresponds to the FDL attribute AREA VOLUME.

9 Date and Time XAB (XABDAT)

The date and time XAB (XABDAT) block provides extended control of the
date and time of the file's creation, revision (update), backup, and expiration.

9.1 Summary of Fields
VMS RMS sets certain values for date and time and returns them in XABDAT
fields for your inspection. You can override these system-supplied values
through the use of an XABDAT as input to a Create service. Note that date-
time values are expressed in either absolute (positive) or delta (negative)
format, and several system services are available for date-time conversion
and use (see Example 3-1 in Chapter 3 of this manual and the VMS System
Services Reference Manual).

The symbolic offset, size, FDL equivalent, and a brief description of each
XABDAT field are presented in Table 9-1.

Table 9-1 XABDAT Fields

Size
Field Offset (Bytes) FDL Equivalent Description

XAB$Q_BDT' 8 DATE BACKUP Backup date and time

XAB$B_BLN2 1 None Block length

XAB$Q_CDT' 8 DATE CREATION Creation date and time

XAB$B_COD2 1 None Type code

XAB$Q_EDT 8 DATE EXPIRATION Expiration date and time

XAB$L _NXT 4 None Next XAB address

XAB$Q_RDT' 8 DATE REVISION Revision date and time

XAB$W_RVN' 2 FILE REVISION Revision number

~ This field cannot be initialized by the $XABDAT macro.

2This field is statically initialized by the $XABDAT macro to identify this control block as a
XABDAT.

Table 9-2 describes how the fields of the XABDAT block are used by the
VMS RMS services.

Date and Time XAB ~XABDAT)
9.1 Summary of Fields

Table 9-2 Services and the XABDAT Control Block

Service XAB$Q_BDT XAB$Q_CDT XAB$Q_EDT XAB$Q_BDT, XAB$W_RVN

Close Not used Not used Not used Not used

Create Input Input Input Input'

Display Output Output Output Output

Erase Not used Not used Not used Not used

Extend Not used Not used Not used Not used

Open Output Output Output Output

~ The XAB$Q_BDT field for a Create service is superseded by the current date and time on a Close service. Use the

XABRDT block to specify the XAB$Q_BDT field (see Chapter 15).

The following notes apply to the use of XABDAT fields by VMS RMS services:

1 If the user specifies the XAB$Q _CDT or XAB$Q _RDT field in the
XABDAT as 0 (either explicitly or by default) and if the specified field is
used as an input field by the service, it is replaced with the current date
and time.

2 If the Create service is invoked with a FAB that specifies the FAB$L _FOP
field FAB$V_CIF (create-if) option and if the file to be created already
exists, the Create service is processed like an Open service and the fields
listed above are output fields.

Each XABDAT field is described below. Unless indicated otherwise, each field
is supported for DECnet operations using remote files with a VMS system as
the remote node. Note that the words "DECnet operations" in the following
descriptions refer to remote file operations between two VMS systems. For
information about the support of VMS RMS options for remote file access to
other systems, see the VMS Networking Manual.

The format and arguments of the $XABDAT macro and the $XABDAT_
STORE macro are described in Appendix B.

9.2 XAB$Q_BDT Field
The backup date and time (BDT) field contains a 64-bit binary value
expressing the date and time when the file was most recently backed up.
Note that this field is limited to a granularity of 1 second for remote files.

This field corresponds to the FDL attribute DATE BACKUP.

9.3 XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
XABDAT in bytes. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
XAB$C_DATLEN (this is done by the $XABDAT macro).

Date and Time XAB (XABDAT)
9.4 XAB$Q_CDT Field

9.4 XAB$Q_CDT Field

The creation date and time (CDT) field contains a 64-bit binary value
expressing the date and time when the file was created. Note that this
field is limited to a granularity of 1 second for remote files.

This field corresponds to the FDL attribute DATE CREATION.

9.5 XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block
as an XABDAT. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
XAB$C_DAT (this is done by the $XABDAT macro).

9.6 XAB$Q_EDT Field

The expiration date and time (EDT) field contains a 64-bit binary value that
indicates the date and time after which a file residing on a disk device may be
considered for deletion by the system manager. For files residing on magnetic
tape devices, the XAB$Q _EDT field sets the date and time after which you
can overwrite the file. Note that this field is limited to a granularity of 1
second for remote files.

This field corresponds to the FDL attribute DATE EXPIRATION.

9.7 XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next
XAB to be used. A value of 0 (the default) indicates that the current XAB is
the last (or only) XAB in the chain.

9.8 XAB$Q_RDT Field
The revision date and time (RDT) field contains a 64-bit binary value
expressing the date and time when the file was last updated. Note that
this field is limited to a granularity of 1 second for remote files.

This field corresponds to the FDL attribute DATE REVISION.

9.9 XAB$W_RVN Field
The revision number (RVN) field contains a numeric value that indicates the
number of times this file was opened for write operations.

This field corresponds to the FDL attribute FILE REVISION.

File Header CharacteristicXA6(XABFHC)

The file header characteristic XAB (XABFHC) contains information about a file
that is stored in the file header. VMS RMS copies the file characteristics into
this XAB whenever an Open or Display service executes. The XABFHC fields
are then available for you to examine during processing.

Note that for unshared sequential files, or sequential files shared using the
FAB$V_UPI option, the values in the end-of-file block (XAB$L _EBK), first
free byte in the end-of-file block (XAB$W_FFB), and longest record length
(XAB$W_LRL) fields correspond to the values at the time of the last Close or
Flush service.

On a Create service, only the longest record length (XAB$W_LRL) field of this
XAB is used as input, and then only if the record format is not fixed length.
All other fields are used only as output from the VMS RMS services.

10.1 Summary of Fields
The symbolic offset, size, and a brief description of each RAB field are
presented in Table 10-1. Note that many of these fields are also available in
the FAB.

Table 10-1 XABFHC Fields

Size
Field Offset (bytes) Description

XAB$B_ATR' 1 Record attributes; equivalent to FAB$B_RAT

XAB$B_BKZ' 1 Bucket size; equivalent to FAB$B_BKS

XAB$B_BLN2 1 Block length

XAB$B_COD2 1 Type code

XAB$W_DXQ' 2 Default file extension quantity; equivalent to
FAB$W_DEQ

XAB$L _EBK' 4 End-of-file block

XAB$W_FFB' 2 First free byte in the end-of-file block

XAB$W_GBC' 2 Default global buffer count

XAB$L _HBK ~ 4 Highest virtual block in the file; equivalent to
FAB$L _ALQ

XAB$B_HSZ~ 1 Fixed-length control header size; equivalent to
FAB$B_FSZ

XAB$W_LRL' 2 Longest record length

~ This field cannot be initialized by the $XABFHC macro.

2This field is statically initialized by the $XABFHC macro to identify this control block as a
XABFHC.

File Header Characteristic XAB (XABFHC)
10.1 Summary of Fields

Table 10-1 (Cont.) XABFHC Fields

Size
Field Offset (bytes) Description

XAB$W_MRZ' 2 Maximum record size; equivalent to FAB$W_
MRS

XAB$L _NXT 4 Next XAB address

XAB$B_RFO' 1 File organization and record format; combines
FAB$B_RFM and FAB$B_ORG

XAB$L _SBN' 4 Starting logical block number for the file if it is
contiguous; otherwise this field is 0

XAB$W_ 2 Version limit for the file
VERLIMIT'

This field cannot be initialized by the $XABFHC macro.

Each XABFHC field is described below. There are no FDL equivalents for
the XABFHC fields. Unless indicated otherwise, each field is supported for
DECnet operations using remote files with a VMS system as the remote node.
Note that the words "DECnet operations" in the following descriptions refer
to remote file operations between two VMS systems. See the VMS Networking
Manual for information about the support of VMS RMS options for remote
file access to other systems.

The format and arguments of the $XABFHC macro and the $XABFHC_
STORE macro are described in Appendix B.

10.2 XAB$B_ATR Field

The record attributes (ATR) field indicates the record attributes (special control
information) associated with each record in this file. This field is equivalent
to the FAB$B_RAT field.

This field is a binary options field where each record attribute has a
corresponding bit assignment. Options are identified using mnemonics.
Each option in the field has its own symbolic offset and constant value. For
example, the CR record attribute has the symbolic offset XAB$V_CR and the
mask value XAB$M_CR. The record attribute options are described in the
following list:

Options

XAB$V_BLK
Records do not cross block boundaries in sequential files.

XA B$V_C R
Each record is preceded by a line feed and followed by a carriage return.

XAB$V_FTN
Each record contains a FORTRAN (ASA) carriage return in the first byte.

XAB$V_PRN
Print file format.

10-2

File Header Characteristic XAB (XABFHC)
10.2 XAB$B_ATR Field

For more information about the XAB$B_ATR field, refer to the description of
the FAB$B_RAT field in Chapter 5.

10.3 XAB$B_BKZ Field

The bucket size (BKZ) field specifies the number of blocks in each bucket of
the file. It is equivalent to the FAB$B_BKS (or XAB$B_BKZ) field and is used
only for relative or indexed files.

This field contains a numeric value in the range of 0 to 63.

For more information about the XAB$B_BKZ field, refer to the description of
the FAB$B_BKS field in Chapter 5 and the description of the XAB$B_BKZ
field in Chapter 8.

10.4 XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
XABFHC, in bytes. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
XAB$C_FHCLEN (this is done by the $XABFHC macro).

10.5 XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block
as an XABFHC. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
XAB$C_FHC (this is done by the $XABFHC macro).

10.6 XAB$W_DXQ Field
The default file extension quantity (DXQ) field specifies the number of blocks
to be added when a disk file is extended automatically. This automatic
extension occurs whenever your program performs a Put or Write service and
the currently allocated file space is exhausted.

This field is equivalent to the FAB$W_DEQ (or XAB$W_DEQ) field; it
contains a numeric value in the range 0 through 65,535, which is rounded up
to the value of the next cluster boundary.

For more information about the XAB$W_DXQ field, refer to the description of
the FAB$B_DEQ field in Chapter 5 and the description of the XAB$W_DXQ
field in Chapter 8.

File Header Characteristic XAB (XABFHC)
10.7 XAB$L_EBK Field

10.7 XAB$L_EBK Field
When you open a file, VMS RMS stores the VBN of the physical block where
the next record will be written in the XAB$L _EBK field. For example, assume
that a file is allocated five physical blocks and that the last record written
to the file is at byte OFF 16 in the file's second physical block. When your
program opens this file, VMS RMS stores the VBN of the second physical
block in XAB$L _EBK and it stores 10016 in the XAB$W_FFB field.

If the previous block is full when you open the file, VMS RMS stores the
first location (00016) of the next block in XAB$W_FFB and the VBN of the
next block in XAB$L _EBK. By way of contrast, in a similar situation RMS-11
stores the last byte (20016) of the filled block in the XAB$W_FFB field and
the VBN of the filled block in the XAB$L _EBK field.

The XAB$L _EBK field is meaningful for sequential files only.

10.8 XAB$W_FFB Field
The first free byte in the end-of-file block (FFB) field contains the byte location
in the end-of-file block where the next record will be written. The XAB$W_
FFB field is meaningful for sequential files only.

10.9 XAB$W_GBC Field
The default global buffer count (GBC) field contains the current global buffer
count for this file. For more information about the XAB$W_GBC field, refer
to the description of the FAB$W_GBC field in Chapter 5.

This field is not supported for DECnet operations; it is ignored.

70.10 XAB$L_HBK Field
The highest virtual block (HBK) field contains the virtual block number
currently allocated to this file. It is equivalent to the FAB$L ~LQ field
after a Create, Open, or Display service executes. For sequential files, the
difference between XAB$L _HBK and XAB$L _EBK equals the number of
blocks in the file available for additional records without extending the file.

10.11 XAB$B_HS2 Field
The fixed-length control header size (HSZ) field indicates the length of the
fixed portion for records in the VFC format. It is equivalent to the FAB$B_
FSZ field.

This field contains a numeric value (1 to 255) that indicates, in bytes, the size
of the fixed-length control area. This field is not applicable to indexed files.

For more information about the XAB$B_HSZ field, refer to the description of
the FAB$B_FSZ field in Chapter 5.

File Header Characteristic XAB ~XABFHC)
10.12 XAB$W_LRL Field

10.12 XAB$W_LRL Field
The longest record length (LRL) field contains a numeric value that indicates
the longest record currently in the file, in bytes. This value is meaningful for
sequential files only.

10.13 XAB$W_MRZ Field
The maximum record size (MRZ) field indicates the size of all records in a file
with fixed-length records, the maximum size of variable-length records, the
maximum size of the data area for variable with fixed-length control records,
and the cell size for relative files. It is equivalent to the FAB$W_MRS field.

This field contains a numeric value in the range applicable to the file type and
record format (see Table 5-4), in bytes.

For fixed-length records, the value represents the actual size of each record in
the file.

For variable-length records, the value represents the size of the largest record
that can be written into the file. If the file is not a relative file, a value of 0
is used to suppress record size checking, thus indicating that there is no user
limit on record size.

For variable with fixed-length control records, the value includes only the
data portion; it does not include the size of the fixed control area.

For more information about the XAB$W_MRZ field, refer to the description of
the FAB$W_MRS field in Chapter 5.

10.14 XAB$L_NXT Field
The next XAB address (NXT) field contains the symbolic address of the next
XAB. A value of 0 (the default) indicates that the current XAB is the last (or
only) XAB in the chain.

10.15 XAB$6_RFO Field
The file organization and record format (RFO) field combines the FAB$B_
RFM and FAB$B_ORG fields using an inclusive OR.

File Header Characteristic XAB (XABFHC)
10.15 XAB$B_RFO Field

Record formats are listed below.

Record Format Description

FIX Fixed length

STM Stream, delimited by FF, VT, LF, or CR LF

STMCR Stream, delimited by CR

STMLF Stream, delimited by LF

UDF Undefined

VAR Variable length

VFC Variable length with fixed control area

The file organizations are listed below.

File Organization Description

IDX Indexed sequential

REL Relative

SEQ Sequential

For more information about the XAB$B_RFO field, refer to the description of
the FAB$B_ORG field and the FAB$B_RFM field in Chapter 5.

10.16 XAB$L_SBN Field

The starting logical block number (SBN) field contains the starting logical
block number for a contiguous file; if the file is not contiguous, this field
contains 0.

10.17 XAB$W_VERLIMIT Field

The file version limit (VERLIMIT) field contains the version limit for this file.
This value is not available if the file was opened by file ID.

This field is not supported for DECnet operations; it is ignored.

11 Item ListXAB (XABITM)

The item list XAB (XABITM) provides a convenient means for using item list
information to support VMS RMS functions. An item list consists of one or
more entries that can represent either a control function or a sensing function
that can be passed to the application program by way of the VMS RMS
interface.

Within the item list, you may not include a mix of control and sensing
items related to various VMS RMS-supported functions. However, multiple
XABITMs may be used. VMS RMS logically ignores items that are irrelevant
to any particular function while acting on any item that is relevant.

Each entry in the item list addressed by the XABITM is made up of three
longwords and a longword 0 terminates the list. VMS RMS does not validate
the item list. If the item list is invalid, VMS RMS returns a status of RMS$_
XAB in the RAB$L _STS field. Figure 11-1 illustrates the format for each
entry in the item list.

Figure 11-1 Item Descriptor Data Structure

31 15 0

item code buffer length

buffer address

return length address

ZK-1705-84

You can locate the item list anywhere within the readable address space for
a process but any buffers required by the related function must be located in
read/write memory.

The format and arguments of the $XABITM macro are defined in Appendix B.

For VMS Version 5.0, the XABITM control block supports enhancements
to network file access functions and enhancements to VMS RMS
performance monitoring functions. Although the benefits derived from
these enhancements are readily apparent, functional details are transparent to
most users.

Item List XAB (XABITM)
11.1 Summary of Fields

11.1 Summary of Fields
The symbolic offset, size, and a brief description of each XABITM field are
presented in Table 11-1.

Table 11-1 XABITM Fields

Size
Field Offset (Bytes Description

XAB$B_BLN ~ 1 Block length

XAB$B_COD 1 Type code

XAB$L _ITEMLIST 4 Item list address

XAB$B_MODE 4 Set/sense control

XAB$L _NXT 4 Next XAB address

~ This field is statically initialized by the $XABITM macro to identify the control block as an
XABITM.

11.1.1 XAB$B_BLN Field
The block length (BLN) field is a static field that defines the length of the
XABITM, in bytes. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
XAB$C_ITMLEN by the $XABITM macro.

11.1.2 XAB$B_COD Field
The type code (COD) field is a static field that identifies this control block
as an XABITM. Once set, this field must not be altered unless the control
block is no longer needed. This field must be initialized to the symbolic value
XAB$C_ITM by the $XABITM macro.

11.1.3 XAB$L_ITEMLIST Field
The item list address (ITEMLIST) field contains the symbolic address of the
item list.

11.1.4 XAB$L_MODE Field
The item list mode (MODE) field specifies whether the items in the item list
can be set by the program. It contains either the symbolic value XAB$K_
SETMODE or the symbolic value XAB$K_SENSEMODE (default).

11.7.5 XAB$NXT Field
The next XAB address (NXT) field contains the symbolic address of the next
XAB to be used. A value of 0 (the default) indicates that the current XAB is
the last (or only) XAB in the chain.

Item List XAB (XABITM)
11.2 Network File Access Items

11.2 Network File Access Items

This section lists and briefly describes the items that support network file
access features.

Network items are effectively ignored for local operations. Although the
application program may include network items in the XAB chain for the
related FAB, VMS RMS does not consider any of the network-specific fields
during local processing. Nor does VMS RMS return remote file contents to
the application program during local file processing.

Table 11-2 lists the entries in the XABITM item list relating to network file
access features together with the buffer size required to store the data and a
brief functional description. Note that although the application program can
sense all of the item values from the VMS RMS interface, it can set only the
following item values:

• XAB$_NET_BLOCK_COUNT

• XAB$_NET_EXTPROT

• XAB$_NET_LINK_TIMEOUT

• XAB$_NET_LINK _CACHE _ENABLE

• XAB$_NET_DATA_CRC_ENABLE

• XAB$_UCHAR_CONTIGB

• XAB$_UCHAR_ERASE

• XAB$_UCHAR_LOCKED

• XAB$_UCHAR_NOBACKUP

• XAB$_UCHAR_READCHECK

• XAB$_UCHAR_WRITECHECK

Table 11-2 XABITM Item List

Item

Required
Buffer
Size Description

XAB$_NET_BUFFER_SIZE 4 bytes The size of the buffer allocated for DAP messages
between the local and remote node is a negotiated
value that is decided by DAP. This informational item
returns the actual buffer size, in bytes, allocated for
DAP messages. The buffer size is slightly larger than
the limit specified for the records being transferred.

Item List XAB (XABITM)
11.2 Network File Access Items

Table 11-2 Cont.) XABITM Item List

Item

Required
Buffer
Size Qescription

XAB$_NET_BLOCK_COUNT 4 bytes

XAB$_NET_REMOTE_SYSTEM 4 bytes

This is the value in blocks that the local node wants
to use for buffering messages between itself and the
remote node.

DAP tries to allocate this buffer space at the local
node; however, if the maximum buffer size at the
remote node is smaller, DAP allocates buffer space
based on the smaller value. When the remote system
incorporates VMS/FAL, it allows any size buffer up to
32,767 bytes.

The minimum buffer size for task-to-task network
operations is 4096 bytes.

This informational item returns the identity of the
remote operating system using the symbolic constants
listed in the following chart:

Symbolic Constant Operating System

XAB$K_RT 1 1

XAB$K_RSTS

XAB$K_RSX 1 1 S

XAB$K_RSX 1 1 M

XAB$K_RSX 1 1 D

XAB$K_IAS

XAB$K_VAXVMS

XAB$K_TOPS10

XAB$K_TOPS20

XAB$K_RSX1 1MP

XAB$K_P_OS

XAB$K_VAXELN

XAB$K_MS_DOS

XAB$K_ULTRIX _32

XAB$K_SNA_OS

RT-11

RSTS/E

RSX-1 1 S

RSX-1 1 M

RSX-1 1 D

IAS

VMS

TOPS-10

TOPS-20

RSX-1 1 M—PLUS

P/OS

VAXELN

MS—DOS©

ULTRIX-32

SNA gateway to IBM

~~~ 
MS-DOS is a trademark of Microsoft Corporation. 

IBM is a registered trademark of International Business Machines, Inc. 



Item List XAB (XABITM) 
11.2 Network File Access Items 

Table 11-2 (Cont.) XABITM Item List 

Item 

Required 
Buffer 
Size Description 

XAB$_NET_REMOTE_FILE_ 
SYSTEM 

XAB$_NET_EXTPROT 

4 bytes 

8 bytes 

This informational item returns the identity of the 
remote file system using the symbolic constants listed 
in the following chart: 

Symbolic Constant File System 

XAB$K_RMS 1 1 

XAB$K_RMS20 

XAB$K_RMS32 

XAB$K_FCS 1 1 

XAB$K_RT 1 1 FS 

XAB$K_NO_FS 

XAB$K_TOPS20FS 

XAB$K_TOPS10FS 

XAB$K_RMS32S 

XAB$K_MS_DOSFS 

XAB$K_ULTRIX32_FS 

XAB$K_SNA_FS 

RMS-1 1 

RMS-20 

RMS-32 

FCS-11 

RT-11 

No file system present 

TOPS-20 

TOPS-10 

RMS-32 subset (VAXELN) 

MS—DOS 

ULTRIX-32 

SNA gateway to IBM 

This item permits the application program to specify 
or to sense the extended file protection that is likely 
to be mapped to a protection subset supported by the 
remote system. The application program implements 
extended file protection as part of either a Create or 
Close service by specifying the appropriate protection 
mask in the related subfield: 

Subfield Protection 

XAB$W_SYSTEM_ACC 

XAB$W_OWNER_ACC 

XAB$W_GROUP_ACC 

XAB$W_WORLD_ACC 

System access 

Owner access 

Group access 

World access 



Item List XAB (XABITM) 
11.2 Network File Access Items 

Table 11-2 (Cont.) XABITM Item List 

Item 

Required 
Buffer 
Size Description 

XAB$_NET_SYSCAP_LOCAL 

XAB$_NET_SYSCAP_REMOTE 

XAB$_NET_DAPVER_LOCAL 

8 bytes 

8 bytes 

5 bytes 

Each of the protection mask fields provides the 
following mask values for further defining access: 

Mask Value Protection Function 

XAB$M_RED_ACC 

XAB$M_WRT_ACC 

XAB$M_EXE_ACC 

XAB$M_DLT_ACC 

XAB$M_APP_ACC 

XAB$M_DIR_ACC 

XAB$M_UPD_ACC 

XAB$M_CHG_ACC 

XAB$M_EXT_ACC 

Deny read access 

Deny write access 

Deny execute access 

Deny delete access 

Deny append access 

Deny directory access 

Deny update access 

Deny change protection 
access 

Deny extend access 

Note that not all systems support all of the protection 
mask fields. 

This informational item permits the applicatin program 
to read the network capabilities of the local system by 
returning symbolic bit vector values. See Table 1 1-3 
for a description of the network capabilities bit vectors 
used by the local and remote systems. 

This informational item permits the application program 
to read the network capabilities of the remote 
system by returning symbolic bit vector values. See 
Table 1 1-3 for a description of the network capabilities 
bit vectors used by the local and remote systems. 

This informational item returns the version of DAP on 
the local system using five symbolic bytes: 

Symbolic Byte Version Information 

XAB$B_VER_DAP 

XAB$B_VER_ECO 

XAB$B_VER_CUS 

XAB$B_VER_DSV 

XAB$B_VER_CSV 

DAP protocol version 

DAP protocol ECO level 

Customer modification level 
of DAP protocol; set to 0 by 
DIGITAL 

DIGITAL software version 
(release number) 

Customer software version 
number; set to 0 by 
DIGITAL 



Item List XAB ~XABITM) 
11.2 Network File Access Items 

Table 11-2 (Cont.) XABITM Item List 

Item 

Required 
Buffer 
Size Description 

XAB$_NET_DAPVER _REMOTE 

XAB$_NET_LINK_TIMEOUT 

XAB$_NET_DATA _CRC_ENABLE 

5 bytes 

4 bytes 

4 bytes 

XAB$_NET_LINK_CACHE_ENABLE 4 bytes 

XAB$_UCHAR_BADACL 

XAB$_UCHAR_BADBLOCK 

XAB$_UCHAR_CONTIG 

XAB$_UCHAR_CONTIGB 

XAB$_UCHAR _DIRECTORY 

XAB$_UCHAR_ERASE 

XAB$_UCHAR_LOCKED 

XAB$_UCHAR_MARKDEL 

XAB$_UCHAR_NOBACKUP 

XAB$_UCHAR_READCHECK 

XAB$_UCHAR_SPOOL 

AB$_UCHAR_WRITECHECK 

4 bytes 

4 bytes 

4 bytes 

4 bytes 

4 bytes 

4 bytes 

4 bytes 

4 bytes 

4 bytes 

4 bytes 
4 bytes 

4 bytes 

The DAP version is 07-01-00-05-00 for VMS 
Version 5.0. 

This informational item returns the version of DAP on 
the remote system using five symbolic bytes: 

Symbolic Byte Version Information 

XAB$B_VER_DAP 

XAB$B_VER_ECO 

XAB$B_VER_CUS 

XAB$B_VER_DSV 

XAB$B_VER_CSV 

DAP protocol version 

DAP protocol ECO level 

Customer modification level 
of DAP protocol; set to 0 by 
DIGITAL 

DIGITAL software version 
(release number) 

Customer software version 
number; set to 0 by 
DIGITAL 

This item permits the application program to set the 
timeout interval for logical link caching. The setting is 
passed as the number of seconds used to cache the 
logical link. A zero (0) setting enables caching until 
image rundown. The default interval is 30 seconds. 

This item allows the application program to enable 
cyclic redundancy checking at the DAP level. The 
symbolic value XAB$K_ENABLE enables CRC checking 
at the DAP level (the default state); the symbolic value 
XAB$K_DISABLE disables CRC checking at the DAP 
level. 

This item is used to enable or to disable logical link 
caching. The symbolic value XAB$K_ENABLE enables 
link caching (the default state); the symbolic value 
XAB$K_DISABLE disables link caching. 

File's ACL is corrupt. 

File contains bad blocks. 

File is contiguous. 

Keep the file as contiguous as possible. 

File is a directory. 

Erase the file's contents before deleting it. 

File is deaccess-locked. 

File is marked for deletion. 

Do not back up the file. 

Verify read operations to the file. 

File is an intermediate spool file. 

Verify write operations to the file. 

11-7 



Item List XAB (XABITM) 
11.2 Network File Access Items 

The system capabilities supported by various DAP implementations are 
described using a vector of bits wherein a bit is set if the corresponding 
capability is supported. Any attempt to implement a feature at the local 
node that is not supported at the remote node is treated as a protocol 
error. Table 11-3 describes the bit vectors that VMS RMS uses to return 
the networking capabilities for both the local and remote nodes to the calling 
program. Capabilities supported by Version 5.0 of VMS are appropriately 
footnoted. 

Table 11-3 System Networking Capabilities 

Bit Value Capability 

XAB$V_CAP_FILALL' 

XAB$V_CAP_SEQORG' 

XAB$V_CAP_RELORG' 

XAB$V_CAP_EXTEND' 

XAB$V_CAP_SEQFIL' 

XAB$V_CAP_RANRRN' 

XAB$V_CAP_RANVBN' 

XAB$V_CAP_RANKEY' 

XAB$V_CAP_RANRFA' 

XAB$V_CAP_IDXORG' 

XAB$V_CAP_SWMODE' 

XAB$V_CAP_APPEND' 

XAB$V_CAP_SUBMIT' 

XAB$V_CAP_MDS 

XAB$V_CAP_DISPLAY' 

XAB$V_CAP_MSGBLK' 

XAB$V_CAP_UNRBLK 

XAB$V_CAP_BIGBLK' 

XAB$V_CAP_DAPCRC' 

XAB$V_CAP_KEYXAB' 

XAB$V_CAP_ALLXAB' 

XAB$V_CAP_SUMXAB' 

XAB$V_CAP_DIRECTORY' 

Allocation of space at file creation 

Sequential file organization 

Relative file organization 

Manual file extension 

Sequential file access (file transfer mode) 

Random access by relative record number 

Random access by virtual block number 

Random access by key value 

Random access by record file address 

Multikeyed indexed file organization 

Dynamic switching of access modes 

Records appended to end of file 

Command file submission/execution 

Multiple data streams for each file 

Display of file attributes on request 

Blocking of DAP messages up to response (less than 256 bytes) 

Unrestricted blocking of DAP messages 

Blocking of DAP messages up to response (greater than or equal to 256 
bytes) 

DAP message CRC checksum 

Key definition XAB message 

Allocation XAB message 

Summary XAB message 

Directory list operation 

~ Supported for VMS Version 5.0. 



Item List XAB ~XABITM~ 
11.2 Network File Access Items 

Table 11-3 (Cont.) System Networking Capabilities 

Bit Value Capability 

XAB$V_CAP_TIMXAB' 

XAB$V_CAP_PROXAB' 

XAB$V_CAP_FOPSPL' 

XAB$V_CAP_FOPSCF' 

XAB$V_CAP_FOPDLT' 

XAB$V_CAP_SEQRAC' 

XAB$V_CAP_BITOPT 

XAB$V_CAP_WARNING 

XAB$V_CAP_RENAME' 

XAB$V_CAP_WILDCARD' 

XAB$V_CAP_GNGOPT 

XAB$V_CAP_NAMMSG' 

XAB$V_CAP_SEGMSG 

XAB$V_CAP_CHGATTCLS 

XAB$V_CAP_CHGTIMCLS' 

XAB$V_CAP_CHGPROCLS' 

XAB$V_CAP_CHGNAMCLS 

XAB$V_CAP_MODATTCRE 

XAB$V_CAP_NAM3PART 

XAB$V_CAP_CHGATTREN 

XAB$V_CAP_CHGTIMREN 

XAB$V_CAP_CHGPROREN 

XAB$V_CAP_CTLBLKCNT' 

XAB$V_CAP_OCTALVER 

Date and time XAB message 

File protection XAB message 

Spool file on Close FOP option 

Submit command file on Close FOP option 

Delete file on Close FOP option 

Sequential record access 

Bit count option in the FLAGS field 

Warning status message and error recovery message exchange 

File rename operation 

Wildcard operations (excluding directory) 

Go/Nogo option in the ACCOPT field 

Name message 

Segmented DAP messages 

Changing file attributes on Close using ATT message 

Changing file attributes on Close using TIM message 

Changing file attributes on Close using PRO message 

Changing file attributes on Close using NAM message 

Modified attributes returned when file is created 

Three-part name message format in DISPLAY field of both Access and 
Control messages 

Changing file attributes on Rename using ATT message 

Changing file attributes on Rename using TIM message 

Changing file attributes on Rename using PRO message 

BLKCNT field in Control message 

Octal version numbers only in file specifications 

Supported for VMS Version 5.0. 

11.3 VMS RMS Performance Monitoring 
This section describes the implementation of VMS RMS performance 
monitoring from the VMS RMS interface using a XABITM. 

To explicitly obtain VMS RMS performance statistics for a file through the 
VMS RMS interface, the application program enables the statistics function 
using the XAB$_STAT_ENABLE item. This item may contain either the 
symbolic value XAB$K_DISABLE (default) or XAB$K_ENABLE. The XAB$_ 
STAT_ENABLE item may be used on $CREATE to initially mark the file 
for statistics gathering, or it may be used in $DISPLAY (or implied display) 
operations to sense the statistics monitoring state. 



Item List XAB (XABITM~ 
11.3 VMS RMS Performance Monitoring 

You can enable statistics for an existing file from the DCL interface using 
the SET FILE command. See the VMS DCL Dictionary for details. For 
details about using the Monitor Utility for gathering VMS RMS performance 
statistics, see the VMS Monitor Utility Manual. 

Example 11-1 illustrates the use of XABITM to enable statistics monitoring: 

Example 11-1 Using XABITM to Enable VMS RMS Statistics 

ITEMLIST BLOCK [ITM$S_ITEM+4, BYTE] 
INITIAL( REP (ITM$S_ITEM+4) OF (o) ), 

ITEM_XAB $XABITM( mode = SETMODE, 
itemlist = ITEMLIST ), 

ITEM_BUFFER LONG INITIAL ( XAB$K_ENABLE); 
FILE_FAB $FAB( 

XAB = ITEM_XAB, 

)~ 
ITEMLIST[ITM$W_ITMCOD] = XAB$_STAT_ENABLE; 
ITEMLIST[ITM$W_BUFSIZ] = 4; 
ITEMLIST[ITM$L_BUFADR] = ITEM_BUFFER; 
$CREATE( fab = FILE_FAB ) ; 



2 JournalingXA6(XABJNL) 

The j ournaling XAB ($XABJNL) control block supports file j ournaling 
operations. See the VAX RMS Journaling Manual for details. 





13 Key Definition XAB (XABKEY) 

You must provide a key definition XAB (XABKEY) for each key in an indexed 
file in order to define the key's characteristics. Before you create an indexed 
file, you must establish the contents of the XABKEY fields for the primary key 
and for each alternate key. 

When you invoke an Open or Display service for an existing indexed file, you 
can use XABKEYs if you want to provide your program with one or more 
of the key definitions specified when the file was created. Alternatively, the 
summary XAB (see Chapter 17) provides the number of keys, number of 
allocated areas, and the prolog version assigned to the file. 

13.1 Summary of Fields 
Table 13-1 lists the symbolic offset, size, FDL equivalent, and a brief 
description of each XABKEY field. 

Table 13-1 XABKEY Fields 

Field Offset 
Size 
(Bytes) FDL Equivalent Description 

XAB$B_BLN ~ 1 None Block length 

XAB$B_COD' 1 None Type code 

XAB$L _COLNAM 4 None Collating sequence name 

XAB$L _COLSIZ 4 None Collating sequence table size 

XAB$L_COLTBL 4 COLLATING_SEQUENCE Collating sequence table address 

XAB$B_DAN 1 KEY DATA_AREA Data bucket area number 

XAB$B_DBS2 1 None Data bucket size 

XAB$W_DFL 2 KEY DATA_FILL Data bucket fill size 

XAB$B_DTP 1 KEY TYPES Data type of the key 

XAB$L _DVB2 4 None First data bucket virtual block number 

XAB$B_FLG 1 KEYS Key options flag 

XAB$B_IAN 1 KEY INDEX _AREA Index bucket area number 

XAB$B_IBS2 1 None Index bucket size 

XAB$W_IFL 2 KEY INDEX _FILL Index bucket file size 

XAB$L _KNM 4 KEY NAME Key name buffer address 

XAB$B_LAN 1 KEY LEVEL 1 _INDEX _ Lowest level of index area number 
AREA 

XAB$B_LVL2 1 None Level of root bucket 

~ This field is statically initialized by the $XABKEY macro to identify this control block as an XABKEY. 

2This field cannot be initialized by the $XABKEY macro. 

3This field contains options; corresponding FDL equivalents are listed in the description of the field. 

13-1 



Key Definition XAB (XABKEY) 
13.1 Summary of Fields 

Table 13-1 (Cont.) XABKEY Fields 

Field Offset 
Siie 
(Bytes) FDL Equivalent Description 

XAB$W_MRL2 2 

XAB$B_NSG2 1 

XAB$B_NUL 1 

XAB$L _NXT 4 

XAB$W_POSn 2 

XAB$B_PROLOG 

XAB$B_REF4

XAB$L _RVB2

XAB$B_SIZn 

1 

1 

4 

1 

XAB$B_TKS2 1 

None 

None 

KEY NULL _VALUE 

None 

KEY POSITION and 
SEGn_POSITION 

KEY PROLOG 

KEY n 

None 

KEY LENGTH and 
SEGn_LENGTH 

None 

Minimum record length 

Number of key segments 

Null key value 

Next XAB address 

Key position, XAB$W_POSO to 
XAB$W_ POST 

Prolog level 

Key of reference 

Root bucket virtual block number 

Key size XAB$B_SIZO to 
XAB$B_SIZ7 

Total key field size 

2This field cannot be initialized by the $XABKEY macro. 

4For BLISS-32, this field is designated XAB$B_KREF. 

Each XABKEY field is described below. Unless indicated otherwise, each field 
is supported for DECnet operations using remote files with a VMS system as 
the remote node. Note that the words "DECnet operations" in the following 
descriptions refer to remote file operations between two VMS systems. For 
information about the support of VMS RMS options for remote file access to 
other systems, see the VMS Networking Manual. 

The format and arguments of the $XABKEY macro and the $XABKEY STORE 
macro are defined in Appendix B. 

73.2 XAB$B_BLN Field 

The block length (BLN) field is a static field that defines the length of the 
XABKEY, in bytes. Once set, this field must not be altered unless the control 
block is no longer needed. The $XABKEY macro initializes the XAB$B_BLN 
field to the symbolic value XAB$C_KEYLEN. 

13.3 XAB$B_COD Field 
The type code (COD) field is a static field that identifies this control block as 
an XABKEY. Once set, this field must not be altered unless the control block 
is no longer needed. The $XABKEY macro initializes the XAB$B_COD field 
to the symbolic value XAB$C_KEY. 



Key Definition XAB (XABKEY) 
13.4 XAB$L_COLNAM Field 

13.4 XAB$L_COLNAM Field 
When you invoke the Display service, VMS RMS uses this field to return a 
pointer to a memory buffer containing the name of the collating sequence for 
this key. 

The name buffer is in the form of an ASCII counted string where the first 
byte indicates the length of the name and the remaining bytes are the ASCII 
representation of the name itself. The maximum length of the buffer is 32 
bytes, one byte for the count and 31 bytes for the name. 

13.5 XAB$L_COLSIZ Field 
When you invoke the the Display service, VMS RMS returns the size, in 
bytes, of the collating sequence used with this key to this field. 

13.6 XAB$L _COLTBL Field 
VMS RMS provides you with a way to use alternative (non-ASCII) collating 
sequences with indexed file keys. You can define a collating sequence for 
each key of reference, yielding, for example, a file sorted in German by one 
key, French by another key, and so forth. 

This feature is based on the National Character Set Utility, which permits you 
to define alternative collating sequences for special characters and to establish 
and maintain a library of collating sequences. This eliminates having to 
redefine an alternative collating sequence when the application requires it. 
See the VMS National Character Set Utility Manual for details. 

Note: Key compression and index compression are not permitted with collating 
keys. 

To access an alternative collating sequence for a key, enter the symbolic 
address of the appropriate collating table in the XAB$L _COLTBL field. For 
example, you might enter the following: 

DST_KEYO: 
$XABKEY 

COLTBL=FRENCH, - ;symbolic address of French collating table 

VMS RMS responds by storing the specified collating table in the initial blocks 
of the indexed file immediately following the area descriptors. Collating 
tables are typically about one block long. 

When you invoke the Display or the Open service, VMS RMS returns the 
address of the collating table in this field. 

This field corresponds to the FDL attribute COLLATING _SEQUENCE. 



Key Definition XAB (XABKEY) 
13.7 XAB$B_DAN Field 

13.7 XAB$B_DAN Field 
The data bucket area number (DAN) field contains a numeric value that 
identifies the area where the data buckets for this key reside. The number 
reflects the value in the XAB$B~ID field of the XABALL for this XAB chain. 
The numeric value may range from 0 through 254, but the default is 0; that 
is, area 0. 

When you create a new indexed file or when you use allocation XABs to 
define areas (see Chapter 8), you must specify a value for this field to identify 
the file area where the data buckets are to reside. 

When an XABKEY describes the primary key, the data level of the index 
consists of buckets that contain the actual data records of the file. However, 
when the key definition describes an alternate key, the data level of the index 
consists of buckets in which VMS RMS maintains pointers to the actual data 
records. 

The XAB$B_DAN field corresponds to the FDL attribute KEY DATA_AREA. 

13.8 XAB$B_DBS Field 
After an Open or Display service, the data bucket size (DBS) field contains the 
size of the data level (level 0) buckets, in virtual blocks, for the key described 
by the XAB. 

13.9 XAB$W_DFL Field 
The data bucket fill size (DFL) field contains a numeric value that indicates 
the maximum number of bytes (of data) in a data bucket. The largest possible 
fill size is the bucket size, in blocks, multiplied by 512. The default value is 
0, which is interpreted by VMS RMS as the maximum available space (that 
is, no unused space). If the specified size is not 0, but is less than one-half of 
the bucket size (in bytes), then the fill size used is one-half of the bucket size. 

When you create an indexed file, you use this field to specify the number 
of bytes of data you want in each data level bucket. If you specify a value 
that is less than the actual bucket size, the data buckets contain some amount 
of free space. At run time, VMS RMS uses the fill size specified when the 
file was created only if the RAB$L _ROP (record-processing options) field 
RAB$V_LOA option is specified in the RAB; otherwise, VMS RMS fills the 
buckets. 

When an XABKEY describes the primary key, the XAB$W_DFL field describes 
the space in the buckets containing actual user data records. When the 
XABKEY describes an alternate key, the XAB$W_DFL field describes the 
space in the buckets containing pointers to the user data records. 

It is advantageous to use the XAB$W_DFL field if you expect to execute 
numerous random Put and Update services on the file after it has been 
initially populated. You can minimize the movement of records (bucket 
splitting) by specifying less than the maximum bucket fill size when you 
create the file. To use the free space reserved in the buckets, programs that 
execute Put or Update services on the file should not specify the RAB$L_ 
ROP field RAB$V_LOA option. 



Key Definition XAB (XABKEY) 
13.9 XAB$W_DFL Field 

This field corresponds to the FDL attribute KEY DATA —FILL (which is 
expressed as a percentage). 

13.10 XAB$B_DTP Field 

The XAB$B_DTP field specifies the key data type and the key sort order, 
ascending or descending. 

In this keyword value field, each key data type option is defined by a 
symbolic value. If the key sort order is descending, the letter D is prefixed to 
the symbolic value; if the sort order is ascending, the prefix is omitted. For 
example, a XAB$B_DTP field having the value XAB$C_DBN2 is an unsigned, 
2-byte binary number that is sorted in descending order. On the other hand, 
a XAB$B_DTP field having the value XAB$C_BN2 is an unsigned, 2-byte 
binary number that is sorted in ascending order. 

Only one option can be specified. It is identified by a symbolic constant 
value; for example, the STG (string) option has the constant value XAB$C_ 
STG. 

The options for the XAB$B_DTP field are listed in the following chart: 

Keyword Data Type Sort Order 

XAB$C_BN2 Unsigned 2-byte binary Ascending 

XAB$C_DBN2 Unsigned 2-byte binary Descending 

XAB$C_BN4 Unsigned 4-byte binary Ascending 

XAB$C_DBN4 Unsigned 4-byte binary Descending 

XAB$C_BN8 Unsigned 8-byte binary Ascending 

XAB$C_DBN8 Unsigned 8-byte binary Descending 

XAB$C_IN2 Signed 2-byte integer Ascending 

XAB$C_DIN2 Signed 2-byte integer Descending 

XAB$C_IN4 Signed 4-byte integer Ascending 

XAB$C_DIN4 Signed 4-byte integer Descending 

XAB$C_IN8 Signed 8-byte integer Ascending 

XAB$C_DIN8 Signed 8-byte integer Descending 

XAB$C_COL Collating key Ascending 

XAB$C_DCOL Collating key Descending 

XAB$C_PAC Packed decimal string Ascending 

XAB$C_DPAC Packed decimal string Descending 

XAB$C_STG' Left-justified string of Ascending 
unsigned 8-bit bytes 

XAB$C_DSTG Left-justified string of Descending 
unsigned 8-bit bytes 

This is the default value. 

The string data type may consist of from one to eight detached key field 
segments that collectively make up the key. For more information about 
segmented keys, see the descriptions of the XAB$W_POSO through XAB$W_ 
POST field and the XAB$B_SIZO through XAB$B_SIZ7 field. 

13-5 



Key Definition XAB (XABKEY) 
13.10 XAB$B_DTP Field 

Integer, binary, and packed decimal key fields must be a contiguous set of 
bytes. 

The null value (that is, the XAB$V_NUL option in the XAB$B_FLG field is 
set) for the integer, binary, collating and packed decimal data types is 0, and 
the XAB$B_NUL field is ignored (see XAB$B_FLG and XAB$B_NUL). 

The formats of the binary and integer key field data types are presented 
below. 

Key Type Format 

XAB$C_BN2 

XAB$C_DBN2 

XAB$C_BN4 

XAB$C_DBN4 

XAB$C_BN8 

XAB$C_DBN8 

XAB$C_IN2 

XAB$C_DIN2 

XAB$C_IN4 

XAB$C_IN4 

XAB$C_IN8 

XAB$C_DIN8 

LSB at A, MSB at A+ 1 

LSB at A, MSB at A+ 1 

LSB at A, MSB at A+3 

LSB at A, MSB at A+3 

LSB at A, MSB at A+7 

LSB at A, MSB at A+7 

LSB at A, MSB and sign at A+1 

LSB at A, MSB and sign at A+1 

LSB at A, MSB and sign at A+3 

LSB at A, MSB and sign at A+3 

LSB at A, MSB and sign at A+7 

LSB at A, MSB and sign at A+7 

The collating key data types are used in conjunction with collating sequences 
located in the indexed file prolog. Collating sequences are used with 
multinational characters and are specified for each key. Note that key 
compression and index compression are not permitted with collating keys. 

A packed decimal string is a contiguous sequence of bytes specified by two 
attributes: the address (A) of the first byte of the string and a length (L) that 
is the number of digits in the packed decimal. The bytes of a packed decimal 
are divided into two 4-bit fields that must contain decimal digits, except for 
the first four bits (0 through 3) of the last (highest addressed) byte, which 
must contain a sign. The representation for the digits and signs is shown 
below. 

Digit or Sign Decimal Value Hexadecimal Value 

0 

1 

2 

3 

4 

5 

6 

7 

0 0 

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 



Key Definition XAB (XABKEY) 
13.10 XAB$B_DTP Field 

Digit or Sign Decimal Value Hexadecimal Value 

8 

9 

8 8 

9 9 

10, 12, 14, or 15 A, C, E, or F 

1 1 or 13 B or D 

The preferred sign representation is 12 for plus (+) and 13 for minus (- ). 
The length (L) is the number of digits in the packed decimal string (not 
counting the sign) and must be in the range 0 through 31. When the 
number of digits is even, an extra 0 digit must appear in the last four bits 
(4 through 7) of the first byte. Again the length in bytes of the packed 
decimal is L/2 + 1. The value of azero-length packed decimal is 0; it contains 
only the sign byte, which also includes the extra 0 digit. 

The address, A, of the packed decimal specifies the byte containing the most 
significant digit in its high order. Digits of decreasing significance are assigned 
to increasing byte addresses and from high to low within a byte. Thus, +123 
has length 3 and is represented as follows: 

7 4 3 0 

1 2 

3 12 

A 

A+ 1 

ZK-873-82 

Similarly, -12 has length 2 and is represented as follows: 

7 4 3 0 

A 

A+ 1 

ZK-874-82 

0 1 

2 13 

This field corresponds to the FDL attribute KEY TYPE. 

73.11 XAB$L_DVB Field 
After an Open or Display service, the DVB field contains the starting virtual 
block number of the first data level bucket for the key described by the XAB. 



Key Definition XAB (XABKEY) 
13.12 XAB$B_FLG Field 

13.12 XAB$B_FLG Field 

The key options flag (FLG) field specifies the following conditions: 

• Whether duplicate keys are permitted in the file 

• Whether a key value can change 

• Whether data is compressed 

• Whether string key options apply 

Primary key values cannot change, but alternate key values may change, 
depending on application requirements. Primary and alternate keys may be 
duplicated depending on the key field and the application. An alternate key 
field is more likely than a primary key field to use duplicates. 

This field is a binary options field where each key characteristic has a 
corresponding bit assignment. Multiple key characteristics can be associated 
with each key (multiple bits can be set). Each option in the field has its own 
symbolic offset and mask value. For example, the CHG key characteristic has 
a symbolic offset of XAB$V_CHG and a mask value of XAB$M_CHG. 

When you create an indexed file and are defining a string key, you can 
optionally specify the XAB$V_IDX _NCMPR, XAB$V_KEY_NCMPR, and 
XAB$V_NUL options. 

These are the options for the XAB$B_FLG field: 

Options 

XA B$V_C H G 
The key value within the record in the file can be changed by a program 
during an Update service. This option can be specified only for alternate 
keys. 

This option corresponds to the FDL attribute KEY CHANGES. 

XAB$V_DAT_NCM PR 
Do not compress data. This option can be specified to override compression 
of data for Prolog 3 files for the primary key; that is, when XAB$_REF is 0. 

This option corresponds to the FDL attribute KEY DATA_RECORD_ 
COMPRESSION. 

This option is not supported for DECnet operations; it is ignored. 

XAB$V_DU P 
The key value within the record in the file may have the same key value as 
another record (or other records) within the file. 

This option corresponds to the FDL attribute KEY DUPLICATES. 

XAB$V_IDX_NCMPR 
Do not compress index. This option can be specified to override compression 
of keys in the index for Prolog 3 files. This option is only valid if a string key 
is being defined. 

This option corresponds to the FDL attribute KEY INDEX _COMPRESSION 
and it is not supported for DECnet operations. 



Key Definition XAB ~XABKEY) 
13.12 XAB$B_FLG Field 

XAB$V_KEY_NCMPR 
Do not compress key. This option can be specified to override compression of 
each key for Prolog 3 files. For a primary key (XAB$_REF is 0), the primary 
keys at the data level are not compressed; for each alternate key (XAB$_REF 
is greater than 0), the secondary index data records (SIDRs) that point to the 
data record location are not compressed. This option is only valid if a string 
key is being defined. 

This option corresponds to the FDL attribute KEY DATA _KEY_ 
COMPRESSION and it is not supported for DECnet operations. 

XAB$V_N U L 
When set, this bit refers VMS RMS to the XAB$B_NUL field to determine 
whether or not you have defined a null character for removing records from 
the related alternate index. This option can be specified only for alternate key 
indexes using string type keys. 

The defaults and combinations of allowing changeable key values (XAB$V_ 
CHG option) and duplicate key values (XAB$V_DUP option) depend on 
whether a primary or alternate key is being defined by this XABKEY. The 
allowed combinations and defaults for duplicate and changeable key values 
are described below. 

Combinations Primary Key Alternate Key 

XAB$V_CHG and XAB$V_DUP both set Error Allowed 
XAB$V_CHG set, XAB$V_DUP clear Error Allowed 
XAB$V_CHG clear, XAB$V_DUP set Allowed Allowed 
XAB$V_CHG and XAB$V_DUP both clear Default Default 

By default, duplicate keys are not allowed for the primary key and its value 
cannot change. 

If the XABKEY control block is not initialized by the $XABKEY macro, then 
the defaults for alternate keys are the same as for primary keys and null key 
values are not used. However, if the XABKEY control block is initialized by 
the $XABKEY macro, the following defaults apply to alternate keys: 

• Duplicate key values are allowed. 

• Key values can change. 

• Null key values are not allowed. 

These defaults are applied only if the entire XAB$B_FLG field is defaulted. 

Note that VMS RMS supports alternate indexes that prohibit duplicate key 
values but do allow key values to change for Update services. Older versions 
of RMS-11 (in contrast to VMS RMS) do not allow this particular combination 
of attributes for alternate indexes. This factor should be considered when you 
create files with VMS RMS that may also be processed by RMS-11. 

This option corresponds to the FDL attribute KEY NULL _KEY. 



Key Definition XAB (XABKEY) 
13.13 XAB$B_IAN Field 

73.13 XAB$B_IAN Field 
The index bucket area number (IAN) field contains a numeric value in the 
range 0 through 254, representing an area identification number contained in 
the XAB$B_AID field of an XABALL present in the same chain. The default 
is 0 (that is, area 0). 

When you create an indexed file, you use this argument to specify the area of 
the file that the index buckets are to reside in only when both of the following 
are true: 

• You are creating a new indexed file. 

• You are using allocation XABs to define areas. 

When the XABKEY describes the primary key, the index level of the index 
consists of all levels of the tree-structured primary index down to and 
including the level containing pointers to the user data records themselves. 
However, when the key definition describes an alternate key, the index 
level of the index comprises all levels of the tree-structured alternate index 
down to, but not including, the level containing buckets in which VI~iS RMS 
maintains pointer arrays describing the user data records. For directions about 
how to place the lowest level of the index in a location separate from the 
higher levels, see the description of the XAB$B_LAN field. 

This field corresponds to the FDL attribute KEY INDEX AREA. 

13.14 XAB$B_IBS Field 
After an Open or Display service, the index bucket size (IBS) field contains 
the size of the index level (level 1 to n buckets, in virtual blocks, for the key 
described by the XAB). 

13.15 XAB$W_IFL Field 
The index bucket fill size (IFL) field contains a numeric value representing 
the maximum number of bytes in an index bucket. The maximum possible 
fill size is the bucket size, in blocks, multiplied by 512. The default value 
is 0, which is interpreted by VMS RMS as meaning the maximum available 
space (that is, no unused space). If the specified size is not 0, but is less than 
one-half of the bucket size (in bytes) then the fill size used is one-half of the 
bucket size. 

When you create an indexed file, you use this argument to specify the 
number of bytes you want in each index bucket. If you specify less than 
the total possible bucket size, you indicate that the index buckets are to 
contain some amount of free space. At run time, VMS RMS uses the fill size 
specified at creation time if the LOA option is specified in the RAB$L _ROP 
(record-processing options) field of the RAB; otherwise, VMS RMS fills the 
buckets. 

When an XABKEY describes the primary key, the XAB$W_IFL field describes 
the space in the buckets in all levels of the primary index down to and 
including the level containing pointers to the user data records. When an 
XABKEY describes an alternate key, the XAB$W_IFL field describes the space 
in the buckets in all levels of the alternate index down to, but not including, 

13-10 



Key Definition XAB (XABKEY) 
13.15 XAB$W_IFL Field 

the level containing buckets in which VMS RMS maintains pointer arrays 
describing the user data records. 

It is advantageous to use the XAB$W_IFL field if you expect to perform 
numerous random Put and Update services on the file after it has been 
initially populated. You can minimize the movement of index records (bucket 
splitting) by specifying less than the maximum bucket fill size when a file is 
created. To use the free space thereby reserved in the buckets, programs that 
invoke the Put or Update services for writing to the file should not specify 
the RAB$L _ROP field RAB$V_LOA option. 

This field corresponds to the FDL attribute KEY INDEX _FILL (which is 
expressed as a percentage). 

13.16 XAB$L_KNM Field 
The key name buffer address (KNM) field contains the symbolic address of a 
buffer that is available for assigning auser-specified name to the key being 
defined. The name buffer must be at least 32 bytes in length and you may 
use any 32-character string you choose to name the key field. 

If the default value is taken (0 ), VMS RMS assumes no name is to be 
assigned to the key. VMS RMS does not use this string but retains it in the 
file as part of the key definition information for documentation purposes. 

This field corresponds to the FDL attribute KEY NAME. 

13.17 XAB$B_LAN Field 
The lowest level of index area number (LAN) field contains a numeric value 
(0 through 254) representing an area identification number contained in the 
XAB$B_AID field of an XABALL present in the same XAB chain. If the 
XAB$B_LAN field is not specified (that is, if the value is 0), the value in the 
XAB$B_IAN field is used as a default; in other words, the lowest level of the 
index occupies the same area of the file as the remainder of the index. 

This field permits you to separate the lowest level (level 1) of the index from 
all higher levels (levels 2+) of the index in an indexed file; you can use the 
XAB$B_LAN field to specify an area of the index wherein the lowest level of 
the index resides, separate from the area (or areas) specified by the XAB$B_ 
IAN field (wherein all other levels of the index reside). See XAB$B_IAN for 
additional information. 

You can specify the XAB$B_LAN field only when both of the following 
conditions exist: 

• You are creating a new indexed file. 

• You are using allocation XABs to define areas. 

Note that the area specified by the XAB$B_LAN field must have the same 
bucket size as the area specified by the XAB$B_IAN field. 

This field corresponds to the FDL attribute KEY LEVELI_INDEX~REA. 

13-11 



Key Definition XAB (XABKEY) 
13.18 XAB$B_LVL Field 

13.18 XAB$B_LVL Field 

Following an Open or Display service, the level of root bucket (LVL) field 
contains the level of the root bucket for the key described by the XAB. 

13.19 XAB$W_MRL Field 
Following an Open or Display service, the minimum record length (MRL) 
field contains the minimum record length (in bytes) needed to contain the key 
field for the key described by the XAB. 

If the key described by the XAB is the primary key (XAB$_REF is 0), then a 
record must be equal to or greater than the minimum record length returned 
in XAB$W_MRL to be inserted or updated in the file. 

If the key described by the XAB is an alternate key (XAB$_REF is greater 
than 0), then a record must be equal to or greater than the minimum record 
length returned in the XAB$W_MRL field to be recorded in the associated 
index for that alternate key. 

13.20 XAB$B_NSG Field 
Following an Open ar Display service, the number of key segments (NSG) 
field contains the number of key segments that make up the key field for the 
key described by the XAB (see the XAB$W_POSO through XAB$W_POS7 
field). 

13.21 XAB$B_NUL Field 
Normally, VMS RMS updates all indexes to reflect the values in the 
corresponding key fields of the records written to an indexed file. The 
XAB$B_NUL field permits you to instruct VMS RMS not to make an entry 
in an alternate index if a record being entered in an indexed file contains a 
specified null alternate key value. To specify the XAB$B_NUL field, three 
conditions must be satisfied: 

• The XABKEY must define an alternate key. 

• The XAB$B_FLG field XAB$V NUL option must be set when you create 
the file (see XAB$B_FLG). 

• The key data type must be string. 

You can use any ASCII character in the null (NUL) field if you are defining a 
string-type alternate key. The default null value for string-type alternate keys 
is 0 and nonstring keys always use 0 for the null value. 

This field corresponds to the FDL attribute KEY NULL _VALUE. 

13.22 XAB$L_NXT Field 
The next XAB address (NXT) field contains the symbolic address of the next 
XAB. A value of 0 (the default) indicates that the current XAB is the Iast (or 
only) XAB in the chain. 

13-12 



Key Definition XAB (XABKEY~ 
13.23 XAB$W_POSO Through XAB$W_POS7 Field 

13.23 XAB$W_POSO Through XAB$W_POS7 Field 
There are two types of keys, simple keys and segmented keys. 

A simple key is made up of one or more contiguous bytes and it may be used 
with any data type, including the string data type. For simple keys, the first 
byte of the key position field contains a numeric variable whose value relative 
to 0 defines the starting position of the key. The remaining bytes contain 
zeros. 

Segmented keys include two through eight strings of key data (segments) and 
can only be used with string data type key fields. The key segments need 
not be contiguous nor must they be in a particular order. Key segments may 
overlap except for primary keys used with Prolog 3 files. If your application 
requires overlapping key segments in a Prolog 3 file, consider using an 
alternate segmented key. If you must have a primary key with overlapping 
segments, VMS RMS requires you to use either a Prolog 2 or Prolog 1 
structure (which it automatically assigns if the XAB$B_PROLOG field is not 
specified). 

For segmented keys, the first word of the key position field specifies the 
starting position of the first segment and each succeeding byte specifies the 
starting position of one of the remaining segments. When processing records 
that contain segmented keys, VMS RMS regards a segmented key field as a 
single, logically contiguous string beginning with the first segment and ending 
with the last. 

You should note that the XAB$W_POSO through XAB$W_POS7 and the 
XAB$B_SIZO through XAB$B_SIZ7 (key size) fields must define the same 
number of key position values and key size values. 

This field corresponds to the FDL attributes KEY POSITION and SEGn_ 
LENGTH. 

13.24 XAB$B_PROLOG Field 
The prolog (PROLOG) field defines the version or structure level of the file 
index. It contains a numeric value from 0 through 3. 

The XAB$B_PROLOG field is input to the Create service, and it is returned 
by the Display and Open services. 

This field must only be used to define a primary key. 

Prolog 3 is the default prolog level, unless the primary key contains 
overlapping segments. VMS RMS examines the key characteristics and 
determines the correct prolog structure to apply to the file. If the XAB$B_ 
PROLOG field is not specified (that is, if the value is 0), the process default 
prolog level is examined, then the system default prolog level is used. These 
default values are set by the DCL command SET RMS_DEFAULT/PROLOG. 

You should not specify a prolog level 1 because VMS RMS decides whether 
a Prolog 1 or Prolog 2 file should be created, depending on the key type 
defined for the file. If you want to select a prolog level other than Prolog 3, 
you should select either 0 or 2. 

For more detailed information regarding the options for selecting a specific 
prolog level, -see the description of the Create service in Part III. 



Key Definition XAB (XABKEY) 
13.24 XAB$B_PROLOG Field 

This field corresponds to the FDL attribute KEY PROLOG and it is not 
supported for DECnet operations; the default prolog in effect at the remote 
node is used. 

13.25 XAB$B_REF Field 

The key of reference (REF) field defines a key as either the primary key or 
some alternate key. 

Note: For BLISS-32, this field is designated XAB$B_KREF. 

This field contains a numeric value in the range 0 through 254. A value of 0 
indicates that this is the primary key; a value of 1 indicates the first alternate 
key; a value of 2 indicates the second alternate key, and so on. The order of 
the XABKEYs is irrelevant. 

Note that VMS RMS can process an indexed file with 255 defined keys; each 
defined key field, however, has an associated cost in processing and I/O 
time. The time required to build and maintain the index for the key field 
and the disk storage required to contain the index for each key field should 
be considered when you decide whether the field should be an alternate key 
field. A file with six to eight defined keys (the primary key and five to seven 
alternate keys) should be considered as a maximum; a file with two or three 
defined keys is typical. 

This field corresponds to the FDL attribute KEY n where n is the number of 
the key being defined). 

13.26 XAB$L_RVB Field 
After an Open or Display service, the root index bucket virtual block number 
(RVB) field contains the virtual block number for the root bucket of the index 
for the key described by the XAB. 

13.27 XAB$B_SIZO Through XAB$B_SIZ7 Field 
The key size (SIZ) field defines the length of the key field within each record. 
This field contains a numeric value representing the length, in bytes, of the 
key within the record. Up to eight values can be assigned; maximum values 
depend on the type of key. 

The XAB$B_SIZO through XAB$B_SIZ7 field defines the length (in bytes) 
of the key whose starting position is defined in the key position field of the 
XAB. Two types of keys can be defined: simple and segmented (see the 
XAB$W_POSO through XAB$W_POS7 field). 

For a simple key, the XAB$B_SIZO through XAB$B_SIZ7 field contains only 
one key size value (in XAB$B_SIZO). 

For a segmented key, the XAB$B_SIZO through XAB$B_SIZ7 field contains 
a key size value for each segment of the key. You should note that the 
XAB$B_SIZO through XAB$B_SIZ7 field and the XAB$W_POSO through 
XAB$W_POS7 field must contain the same number of key size values and 
key position values. VMS RMS associates the first key position value with the 
first key size value to define the location and length of the first segment of a 
segmented key, and so forth. 

13-14 



Key Definition XAB (XABKEY) 
13.27 XAB$B_SIZO Through XAB$B_SIZ7 Field 

When the data type of the key is string, the total size (sum of all sizes) of the 
key must be less than 256 bytes. 

When the data type of the key is 2-byte integer or 2-byte binary, XAB$B_ 
SIZO must equal 2 and XAB$B_SIZ1 through XAB$B_SIZ7 must contain 0. If 
the size is 0, it defaults to 2. 

When the data type of the key is 4-byte integer or 4-byte binary, XAB$B_ 
SIZO must equal 4 and XAB$B_SIZ1 through XAB$B_SIZ7 must contain 0. If 
the size is 0, it defaults to 4. 

When the data type of the key is 8-byte integer or 8-byte binary, XAB$B_ 
SIZO must equal 8 and XAB$B_SIZ1 through XAB$B_SIZ7 must contain 0. If 
the size is 0, it defaults to 8. 

When the data type of the key is packed decimal, the size specified by 
XAB$B_SIZO must be from 1 through 16, and XAB$B_SIZ1 through XAB$B_ 
SIZ7 must contain 0. 

This field corresponds to the FDL attribute KEY LENGTH or KEY SEGn_ 
LENGTH where n is the number of the segment being defined. 

13.28 XAB$B_TKS Field 
After an Open or Display service, the total key size (TKS) field contains the 
total key size (the sum (in bytes) of XAB$B_SIZO through XAB$B_SIZ7) for 
the key described by the XAB. 





14 Protection XAB (XABPRO) 

The protection XAB (XABPRO) specifies the ownership, accessibility and 
protection for a file. Although an XABPRO is typically used as input to 
the Create service, you can use it to change the protection of a file when 
you execute the Close service if you have write access to the file and have 
accessed the file for some type of modification (Put, Update, Delete, or 
Truncate). 

14.1 Summary of Fields 
The symbolic offset, size, FDL equivalent, and a brief description of each 
XABPRO field are presented in Table 14-1. 

Table 14-1 XABPRO Fields 

Field Offset 
Size 
(Bytes) FDL Equivalent Description 

XAB$L _ACLBUF 4 None Address of buffer that contains ACL 

XAB$L _ACLCTX 4 None ACL positioning context 

XAB$W_ACLLEN Z None Receives the length of an ACL during 
an Open or Display service 

XAB$W_ACLSIZ 2 None Length of buffer containing binary ACEs 

XAB$L _ACLSTS 4 None System error status for ACL processing 

XAB$B_BLN' 1 None Block length 

XAB$B_COD' 1 None Type code 

XAB$W_GRP2 2 FILE OWNER Group number of file owner 

XAB$W_MBM2 2 FILE OWNER Member number of file owner 

XAB$B_MTACC 1 FILE MT_PROTECTION Magnetic tape accessibility 

XAB$L _NXT 4 None Next XAB address 

XAB$W_PRO 2 FILE PROTECTION File protection; contains four separate 
fields denoting protection for system, 
owner, group, and world 

XAB$B_PROT_OPT 1 None File protection options 

XAB$L _UIC 4 FILE OWNER User identification code; contains both 
the group and member fields 

~ This field is statically initialized by the $XABPRO macro to identify this control block as an XABPRO. 

2This field cannot be initialized by the $XABPRO macro. 



Protection XAB (XABPRO) 
14.1 Summary of Fields 

Each XABPRO field is described below. Unless indicated otherwise, each field 
is supported for DECnet operations using remote files with a VMS system as 
the remote node. Note that the words "DECnet operations" in the following 
descriptions refer to remote file operations between two VMS systems. For 
information about the support of VMS RMS options for remote file access to 
other systems, see the VMS Networking Manual. 

The format and arguments of the $XABPRO macro and the $XABPRO_ 
STORE macro are defined in Appendix B. 

14.2 XAB$LJICLBUF Field 
The ACL buffer field (ACLBUF) stores the address of a buffer area that 
contains an access control list (ACL) for this file. The ACL buffer contains one 
or more access control entries (ACE) in binary format. The system processes 
the ACL until it encounters an ACE with a length byte value of 0 or until 
it reaches the end of the buffer as indicated by XAB$W~CLSIZ. The ACL 
buffer is used as input to a Create service and as output from an Open or 
Display service. The address in XAB$L ~CLBUF is used only as input to 
these services. 

During a Create operation, if the XAB$L ~CLBUF field has a value other 
than 0, VAX RMS attempts to create the file using the value in the ACL 
buffer. When the XAB$L ~CLBUF field has a value of 0 during a Create 
operation, the file has an ACL only if an ACL is specified by the systemwide 
defaults. Once a file has been created, the ACL cannot be changed using 
VMS RMS. 

During an Open or a Display operation, if the XAB$L ~CLBUF field has a 
value other than 0, VMS RMS passes this address to the file system. The file 
system then fills the user's buffer with the file's ACL (in binary format). If 
the entire ACL does not fit into the user's buffer the file system puts only as 
many ACEs into the buffer as possible. (See the XAB$L —ACLCTX field for 
more information.) 

You can convert an ASCII ACL to binary format by using the $PARSE _ACL 
system service, and you can convert an ACL from binary format to ASCII 
using the $FORMAT_ACL system service. For information about using the 
$PARSE~CL and $FORMAT~CL services, see the VMS System Services 
Reference Manual. 

The use of this field for DECnet remote file access is not supported. This field 
is ignored during DECnet operations. 

14.3 XAB$LJ~CLCTX Field 
The XAB$L ~CLCTX field is used as a place holder by VMS RMS, and it 
is used as an input and output field by VMS RMS during Open and Display 
operations when the XAB$L ~CLBUF field has a value other than 0. In 
order to read an ACL beginning with the first ACE, the XAB$L ~CLCTX 
field must have a value of 0. When the initial Open or Display operation is 
complete, VMS RMS fills the XAB$L _ACLCTX field with a value that serves 
as a context field, allowing subsequent Open or Display operations that read 
the remainder of the ACL (if the entire list of ACEs did not fit into the user's 
buffer). 

U 



Protection XAB (XABPRO) 
14.3 XAB$L~►CLCTX Field 

For example, suppose you perform an Open operation, find that the value of 
XAB$W—ACLLEN is greater than the ACL buffer, and then perform Display 
operations until all of the ACEs in the ACL have been returned. You can then 
reread the entire ACL on subsequent Opens or Displays only if you set the 
value of the XAB$L ~CLCTX field to 0. 

The use of this field for DECnet remote file access is not supported. This field 
is ignored during DECnet operations. 

14.4 XAB$W_ACLLEN Field 
The ACL length (ACLLEN) field receives the length (in bytes) of the access 
control list for the file during an Open or a Display operation. If the file has 
no ACL, the XAB$W~CLLEN field has a value of 0. 

If the file has an ACL that fits in the user's buffer, the value of the XAB$W_ 
ACLLEN field is equal to the number of bytes in the ACL. Even if the file's 
ACL does not fit into the user's buffer, the value of the XAB$W_ACLLEN 
field is still equal to the number of bytes in the ACL (not just the length of 
that portion that fits into the buffer). 

To determine the number of ACL entries that are in the user's buffer, you 
must process binary ACEs until you find an ACE with a value of 0 or until 
you come to the end of the buffer. 

The use of this field for DECnet remote file access is not supported. This field 
is ignored during DECnet operations. 

14.5 XAB$WJ►CLSIZ Field 
The ACL buffer size (ACLSIZ) field specifies the length of the user buffer that 
contains (or will contain) binary ACEs used as input to a Create service and 
as output to an Open or Display service. 

VMS RMS passes all information, including the ACL buffer, to and from the 
file system using buffered I/O operations. VMS RMS limits buffered I/O 
transfers to 512 bytes, excluding the ACL buffer. Therefore, the size of the 
ACL buffer plus 512 bytes cannot exceed either the BYTLM quota for the 
process or the MAXBUF value for the system. 

The use of this field for DECnet remote file access is not supported. This field 
is ignored during DECnet operations. 

14.6 XAB$L_ACLSTS Field 
The ACL error status (ACLSTS) field contains a system error status relating 
to the processing of ACLs. A value is returned to this field upon a successful 
return from a Create, Open, or Display service. 

Whenever you use the XAB$L ~CLBUF, XAB$L ~CLCTX, XAB$W_ 
ACLLEN, or XAB$W_ACLSIZ fields, be sure to use the following error-
handling guidelines: 

• If the FAB$L _STS field (RO) contains an error status, handle the error in 
the usual manner. 



Protection XAB (XABPRO) 
14.6 XAB$L_ACLSTS Field 

• If the FAB$L _STS field (RO) contains a success status, then you must 
check the value in XAB$L _ACLSTS. If XAB$L _ACLSTS contains a 
success status, then the entire operation completed successfully and 
no further action is required; if XAB$L _ACLSTS contains an error 
status, handle the error appropriately. Note that a value is placed in the 
XAB$L _ACLSTS field only when a success status is returned in FAB$L _ 
STS (RO). 

This extra level of error checking is necessary because the success or failure 
of reading and writing ACLs is independent of the success or failure of the 
whole operation. Thus, in the absence of this additional error checking, it is 
possible to create a file successfully even though an ACL error occurred. 

This field is relevant only when an ACL is used with a Create service or when 
an ACL is returned from an Open or Display service. The use of this field for 
DECnet remote file access is not supported, and it is ignored during DECnet 
operations. 

14.7 XAB$B_BLN Field 
The block length (BLN) field is a static field that defines the length of the 
XABPRO, in bytes. Once set, this field must not be altered unless the control 
block is no longer needed. This field must be initialized to the symbolic value 
XAB$C_PROLEN (this is done by the $XABPRO macro). 

14.8 XAB$B_COD Field 
The type code (COD) field is a static field that identifies this control block 
as an XABPRO. Once set, this field must not be altered unless the control 
block is no longer needed. This field must be initialized to the symbolic value 
XAB$C_PRO (this is done by the $XABPRO macro). 

14.9 XAB$W_GRP Field 
The file owner group number (GRP) field contains the half of the XAB$L_ 
UIC field that defines the group number. Refer to the XAB$L _UIC field 
description for additional information. The contents of the XAB$L _LTIC field, 
rather than the $XABPRO macro, establish the initial value of the XAB$W_ 
GRP field. 

This field corresponds to the FDL attribute FILE OWNER. 



Protection XAB (XABPRO) 
14.10 XAB$W_MBM Field 

14.10 XAB$W_MBM Field 

The file owner member number (MBM) field contains the half of the XAB$L _ 
UIC field that defines the member number. Refer to the XAB$L _UIC field 
description for additional information. The contents of the XAB$L _LTIC field, 
rather than the $XABPRO macro, establish the initial value of the XAB$W_ 
MBM field. 

This field corresponds to the FDL attribute FILE OWNER. 

14.11 XAB$B_MTACC Field 
The magnetic tape accessibility (MTACC) field enables you to access HDR 1 
labels for ANSI-labeled magnetic tapes, in compliance with ANSI standards. 
The value specified in the XAB$B_MTACC field is input to the Create service 
and output from the Open and Display services for magnetic tape only. 

The character to be inserted in the accessibility field of the HDR1 label must 
be one of the following: 

• An uppercase letter from A through Z 

• A digit from 0 through 9 

(SPACE) 
i 

( 

) 

• One of the following special characters: 

C 

Note that if this field is not specified or if the specification is invalid, a space 
character is inserted into the HDR1 accessibility field. 

This field corresponds to the FDL attribute FILE MT_PROTECTION. and it is 
not supported for DECnet operations. 

14.12 XAB$L_NXT Field 
The next XAB address (NXT) field specifies the symbolic address of the next 
XAB in the XAB chain. A value of 0 (the default) indicates that the current 
XAB is the last (or only) XAB in the chain. 



Protection XAB (XABPRO) 
14.13 XAB$W_PRO Field 

14.13 XAB$W_PRO Field 

The file protection (PRO) field specifies the access privileges granted to the 
four classes of users: system, owner, group, and world. 

This field consists of four 4-bit subfields; each subfield is a binary options 
field where each possible access privilege has a corresponding bit assignment. 
The file access privileges must be specified in the following order: 

< SYSTEM,OWNER,GROUP,WORLD > 

To deny access, set the appropriate bits in the protection word to 1. If you 
want to grant access to a specific user class, clear the appropriate bit. 

The following list associates each subfield with its symbolic offset: 

• System XAB$V_SYS 

• Owner XAB$V_OWN 

• Group XAB$V_GRP 

• World XAB$V_WLD 

Additionally, each access specification has the following mask values: 

• No read access XAB$M_NOREAD 

• No write access XAB$M_NOWRITE 

• No execute access XAB$M_NOEXE 

• No delete access XAB$M _NODEL 

A user is granted the maximum number of types of access rights for each of 
the classes to which he belongs. 

Each access code consists of four bits for each user class, or four subfields 
in the word identified by XAB$W_PRO. This field is organized as shown in 
Figure 14-1. 

Figure 14-1 File Protection Field 

15 12 11 8 7 4 3 0 

world group owner system 

ZK-872-82 



Protection XAB (XABPRO) 
14.13 XAB$W_PRO Field 

If you do not explicitly specify file protection when you invoke the Create 
service, VMS RMS attempts to determine file protection in the following 
order: 

1 Using the protection assigned to an existing file of the same name 

2 Using the default file protection of the directory 

3 Using the process-default protection 

The following chart provides detailed descriptions of the four user classes: 

User Class Description 

System 

Owner 

Group 

World 

Specifies access rights for users executing under a system 
UIC, that is, users whose group number is less than the value 
for a system UIC, which is defined by the system manager 
(usually 10 or less). 

Specifies access rights for the owner of the file. A user is 
considered the owner of the file only if both the group and 
member number fields of the accessing process match the 
group and member number fields of the file owner's UIC 
stored with the file. 

Specifies the access rights for users whose group number 
matches the group number field of the file owner. 

Specifies access rights for all users. World access is used for 
granting access to users who are not in the system, owner, 
or group classifications. 

This field corresponds to the FDL attribute FILE PROTECTION. 

14.14 XAB$B_PROT_OPT Field 
The ACL file protection (PROT_OPT) field provides a single option, the 
XAB$V_PROPAGATE option, which is used as input during an Enter or 
a Rename operation. (During a Rename operation, the protection XAB is 
assumed to be attached to FAB2.) 

The XAB$B_PROT_OPT field is a binary options field where each file 
protection option has a corresponding bit assignment. Options are identified 
using mnemonics, and each option has its own symbolic offset and mask 
value. For example, the PROPAGATE option has a symbolic offset of 
XAB$V_PROPAGATE and a mask value of XAB$M_PROPAGATE. 

If the XAB$V_PROPAGATE bit is set in this field during either an Enter or 
Rename operation, the file receives new security attributes when the new 
directory entry is made. These security attributes follow the same rules as 
apply during a Create operation. For example, if a lower version of a new file 
exists, the new file inherits the security attributes of the next lower version of 
the file. If the XAB$V_PROPAGATE bit is not set, the security attributes of 
the new file do not change. 

This field is not supported for DECnet operations; it is ignored. 



Protection XAB (XABPRO) 
14.15 XAB$L_UIC Field 

14.15 XAB$L_UIC Field 

The user identification code (UIC) field combines the two XABPRO fields that 
define the UIC of the owner of a file: the XAB$W_GRP (group number) and 
XAB$W_MBM (member number) fields. Both numbers are octal numbers. 
The valid range f or a group number is 0 to 3 7777; the valid range for a 
member number is 0 to 177777. Note that the maximum value in each case 
(37777 and 177777) is reserved for DIGITAL use only. This field corresponds 
to the FDL attribute FILE OWNER. 

The symbolic offsets for the group number field and the member number 
field respectively are XAB$W_GRP and XAB$W_MBM. 

The total user identification field, including both the group and member 
number fields, has a symbolic offset of XAB$L _UIC. 

Note that if no file protection XAB is provided or if the user identification 
field is null for a Create service, VMS RMS determines the owner's UIC using 
the following logical order: 

1 The owner UIC of an existing version of the file if the creating process 
has ownership rights to the previous version. 

2 The owner UIC of the parent directory, if the creating process has 
ownership privileges to the parent directory. 

3 The UIC of the creating process. 

If you wish to create an output file with a UIC different from your own, you 
must have system privilege (SYSPRV). 



15 Revision Date and TimeXAB (XABRDT) 

The revision date and time XAB (XABRDT) specifies the revision date and 
time and the revision number when a Close service is invoked for a file. The 
XABRDT operates much like the Date and Time XAB (XABDAT) when input 
to the Create, Open, or Display services. However, when you gain access to 
a file for writing, issuing a Close service for that file causes the revision date 
and time to be set from the current date and time and the revision number to 
be incremented. Thus, any revision date and time value you specify through 
the XAB on a Create service is lost. 

You can input the XABRDT to a Close service and cause the file's revision 
date and time and revision number to take on the specified values. If you 
want to change the revision date and time when you close the file, you must 
have write access to the file and have accessed the file for some type of 
modification (Put, Update, Delete, or Truncate). 

15.1 Summary of Fields 
The two XABRDT fields that specify revision information are described below. 

• Revision date and time (XAB$Q _RDT) is a 64-bit binary field that 
indicates the date and time at which the file was last updated. 

• Revision number (XAB$W_RVN) indicates how many times this file has 
been opened for write operations. 

The following list describes how these two XABRDT fields are used by the 
VMS RMS file-processing services. 

Service XAB$Q_RDT XAB$W_RVN 

Close Input Input 

Create Input Input 

Display Output Output 

Erase Not used Not used 

Extend Not used Not used 

Open Output Output 

If you specify a revision date and time of 0, VMS RMS substitutes the current 
date and time when you close the file. If the XABRDT is present when you 
invoke an Open (or a Display) service, the XAB$Q_RDT field contains the 
file's revision date and time value. Because the XAB$Q _RDT field is filled 
(not 0), VMS RMS does not substitute the current date and time. 

Use the XABRDT block only to specify a new (nondefault) value for the 
XAB$Q _RDT and XAB$W_RVN fields. You must set these fields between 
the time you invoke the Open service and the time you invoke the Close 
service. If you set the XAB$Q _RDT and XAB$W_RVN fields before you 
invoke the Open service, the file's revision date, time and number override 

15-1 



Revision Date and Time XAB (XABRDT) 
15.1 Summary of Fields 

the specified values. To determine the contents of the XAB$Q _RDT and 
XAB$W_RVN fields, examine the appropriate fields of the XABDAT block. 

The symbolic offset, size, FDL equivalent, and a brief description of each 
XABRDT field are presented in Table 15-1. 

Table 15-1 XABRDT Fields 

Field Offset 
Size 
(Bytes) FDL Equivalent Description 

XAB$B_BLN' 1 

XAB$B_COD' 1 

XAB$L _NXT 4 

XAB$Q _RDT2 8 

XAB$W_RVN2 2 

None 

None 

None 

DATE REVISION 

FILE REVISION 

Block length 

Type code 

Next XAB address 

Revision date and time 

Revision number 

~ This field is statically initialized by the $XABRDT macro to identify this control block as a 
XABRDT. 

2This field cannot be initialized by the $XABRDT macro; it must be specified before you 
invoke the Close service to be used as input to the Close service. 

Each XABRDT field is described below. Unless indicated otherwise, each field 
is supported for DECnet operations using remote files with a VMS system as 
the remote node. Note that the words "DECnet operations" in the following 
descriptions refer to remote file operations between two VMS systems. For 
information about the support of VMS RMS options for remote file access to 
other systems, see the VMS Networking Manual. 

The format and arguments of the $XABRDT and $XABRDT_STORE services 
are defined in Appendix B. 

15.2 XAB$B_BLN Field 
The block length (BLN) field is a static field that defines the length of the 
XABRDT, in bytes. Once set, this field must not be altered unless the control 
block is no longer needed. This field is initialized to the symbolic value 
XAB$C_RDTLEN by the $XABRDT macro. 

15.3 XAB$B_COD Field 
The type code (COD) field is a static field that identifies this control block as 
an XABRDT. Once set, this field must not be altered unless the control block 
is no longer needed. This field is initialized to the symbolic value XAB$C_ 
RDT by the $XABRDT macro. 

75.4 XAB$L_NXTField 
The next XAB address (NXT) field contains the symbolic address of the next 
XAB to be used. A value of 0 (the default) indicates that the current XAB is 
the last (or only) XAB in the chain. 



Revision Date and Time XAB (XABRDT) 
15.5 XAB$Q_RDT Field 

15.5 XAB$Q_RDT Field 
The revision date and time (RDT) field contains a 64-bit binary value 
expressing the date and time at which the file was last updated. Note that 
this field is limited to a granularity of 1 second for remote files. 

This field corresponds to the FDL attribute DATE REVISION. 

15.6 XAB$W_RVN Field 
The revision number (RVN) field contains a numeric value that indicates the 
number of times this file was opened for write operations. 

This field corresponds to the FDL attribute FILE REVISION. 





6 Recovery UnitXA6 (XABRU) 

The recovery unit XAB ($XABRU) control block supports the use of recovery 
units to assure data file integrity. See the VAX RMS Journaling Manual for 
details. 





7 SummaryXAB~XABSUM) 

The summary XAB (XABSUM) can be associated with a FAB at the time a 
Create, Open, or Display service is invoked. The presence of this XAB during 
these calls allows VMS RMS to return to your program the total number of 
keys and allocation areas defined and the version number when the file was 
created. Note that an XABSUM is used only with indexed files. 

17.1 Summary of Fields 
The symbolic offset, size, and a brief description of each XABSUM field are 
presented in Table 17-1. 

Table 17-1 XABSUM Fields 

Field Offset Size Description 

XAB$B_BLN' Byte Block length 

XAB$B_COD' Byte Type code 

XAB$B_NOA2 Byte Number of allocation areas defined for the file 

XAB$B_NOK2 Byte Numbers of keys defined for the file 

XAB$L _NXT Longword Next XAB address 

XAB$W_PVN2 Word Prolog version number 

~ This field is statically initialized by the $XABSUM macro to identify this control block as 
an XABSUM. 

2This field cannot be initialized by the $XABSUM macro. 

Each XABSUM field is described below. Unless indicated otherwise, each field 
is supported for DECnet operations using remote files with a VMS system as 
the remote node. Note that the words "DECnet operations" in the following 
descriptions refer to remote file operations between two VMS Version 5.0 
systems. See the VMS Networking Manual for information about the support 
of VMS RMS options for remote file access to other systems. 

The format and arguments of the $XABSUM and $XABSUM_STORE macros 
are defined in Appendix B. 

17.2 XAB$B_BLN Field 
The block length (BLN) field is a static field that defines the length of the 
XABSUM, in bytes. Once set, this field must not be altered unless the control 
block is no longer needed. This field is initialized to the symbolic value 
XAB$C_SUMLEN by the $XABSUM macro. 



Summary XAB (XABSUM) 
7 7.3 XAB$B_COD Field 

17.3 XAB$6_COD Field 
The type code (COD) field is a static field that identifies this control block as 
an XABSUM. Once set, this field must not be altered unless the control block 
is no longer needed. This field is initialized to the symbolic value XAB$C_ 
SUM by the $XABSUM macro. 

17.4 XAB$B_NOA Field 
The number of allocation areas (NOA) field indicates the number of allocation 
areas defined when the file was created. Refer to Chapter 8 for information 
about multiple allocation areas. 

17.5 XAB$B_NOK Field 
The number of keys (NOK) field indicates the number of keys defined when 
the file was created. Refer to Chapter 13 for more information. 

17.6 XAB$L_NXT Field 

The next XAB address (NXT) field contains the symbolic address of the next 
XAB. A value of 0 (the default) indicates that the current XAB is the Last (or 
only) XAB in the chain. 

17.7 XAB$W_PVN Field 
The prolog version number (PVN) contains a numeric value that indicates 
the prolog number defined when the file was created. For more information 
about prolog numbers, refer to Chapter 13. 



8 Terminal XAB (XABTRM) 

The terminal XAB (XABTRM) allows extended terminal read operations to 
occur when a VMS RMS Get service is used for a terminal device. Unlike 
most other XABs, the XABTRM is associated with a RAB (record stream). The 
XABTRM provides information that VMS RMS passes to the terminal driver 
to process auser-defined item list that defines the terminal read operation. 

18.1 Summary of Fields 
The symbolic offset, size, and a brief description of each XABTRM field are 
presented in Table 18-1. 

Table 18-1 XABTRM Fields 

Field Offset 
Size 
(Bytes) Description 

XAB$B_BLN' 1 Block length 

XAB$B_COD' 1 Type code 

XAB$L _ITMLST 4 Item list address 

XAB$W_ITMLST_LEN 2 Item list length 

XAB$L _NXT 4 Next XAB address 

i This field is statically initialized by the $XABTRM macro to identify this control block as 
an XABTRM. 

To perform the extended terminal read operation, the following information 
is required: 

• In the RAB, the RAB$L _ROP field RAB$V_ETO option must be specified 
(set). 

• In the RAB, the RAB$L _XAB field must contain the address of the 
XABTRM. 

• In the XABTRM, the XAB$L_ITMLST and XAB$W_ITMLST_LEN fields 
must contain the starting address and length of a valid terminal driver 
read function item list. 

• The item list must be supplied according to the conventions described 
for creating an item list for the terminal driver in the VMS 1/O User's 
Reference Manual: Part I in the VMS 1~/O User's Reference Volume. 

An item list consists of one or more item list entries, where each item 
defines an attribute of the terminal read operation. Instead of defining 
terminal read arguments in the RAB, all such arguments (including certain 
arguments only available with the item list method) are defined in the 



Terminal XAB (XABTRM) 
18.1 Summary of Fields 

item list. The following list shows the RAB$L _ROP options related to a 
terminal read operation and the equivalent item codes: 

RAB$L_ROP 
Bit Offset Item Code 

RAB$V_CVT TRM$_MODIFIERS, bit TRM$M_TM_CVTLOW 

RAB$V_PMT TRM$_PROMPT 

RAB$V_PTA TRM$_MODIFIERS, bit TRM$M_TM_PURGE 

RAB$V_RNE TRM$_MODIFIERS, bit TRM$M_TM_NOECHO 

RAB$V_RNF TRM$_MODIFIERS, bit TRM$M_TM_NOFILTR 

RAB$V_TMO TRM$_TIMEOUT 

Each item code required for the terminal read operation is placed in an 
item list along with other required information. Each item code is made 
up of three longwords. Note that VMS RMS does not validate the item 
list. If the item list is invalid, VMS RMS returns RMS$_QIO status in 
the RAB$L_STS field and the specific terminal driver QIO status in the 
RAB$L_STV field (see the VMS 1/O User's Reference Manual: Part 1 in 
the VMS I/O User's Reference Volume). 

Each XABTRM field is described below. The XABTRM is not supported for 
DECnet operations between two VMS systems. Thus, access to XABTRM 
fields for DECnet operations is not supported. There are no equivalent FDL 
attributes for the XABTRM fields. 

The format and arguments of the $XABTRM macro and the $XABTRM_ 
STORE macro are defined in Appendix B. 

18.2 XAB$B_BLN Field 
The block length (BLN) field is a static field that defines the length of the 
XABTRM, in bytes. Once set, this field must not be altered unless the control 
block is no longer needed. This field is initialized to the symbolic value 
XAB$C_TRMLEN by the $XABTRM macro. 

18.3 XAB$B_COD Field 
The type code (COD) field is a static field that identifies this control block as 
an XABTRM. Once set, this field must not be altered unless the control block 
is no longer needed. This field is initialized to the symbolic value XAB$C_ 
TRM by the $XABTRM macro. 

18.4 XAB$L_ITMLST Field 
The item list address (ITMLST) field contains the symbolic address of the item 
list that defines the extended terminal read operation. 



Terminal XAB (XABTRM) 
18.5 XAB$W_ITMLST_LEN Field 

18.5 XAB$W_ITMLST_LEN Field 

The item list length (ITMLST_LEN) field contains a numeric value that 
indicates the length of the item list, in bytes. 

18.6 XAB$L_NXT Field 
The next XAB address (NXT) field contains the symbolic address of the next 
XAB to be used. A value of 0 (the default) indicates that the current XAB is 
the last (or only) XAB in the chain. 



r



VMS RMS Services 
Part III, VMS RMS Services, lists the format of each VMS RMS service and 
describes each service in detail. Each VMS RMS service is documented in 
a structured format. See the Introduction to VMS System Routines for a 
discussion of the format and how it is used. 

Note that the calling format for each service requires a place holder (a 
comma) if you omit the first optional argument (err) but include the second 
optional argument (suc). 





VMS RMS Services 
$CLOSE 

$CLOSE 

The Close service terminates file processing and closes the file. This 
service performs an implicit Disconnect service for all record streams 
associated with the file. 

FORMAT SYS$CLOSE fab(,(err](,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset FAB$L _STS. 
Symbolic offset FAB$L_STV may contain additional status information. 

ARGUMENTS fab 
VMS usage: fab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

FAB control block whose contents are to be used as indirect arguments for the 
Close service call. The fab argument is the address of the FAB control block. 

err 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-3 



VMS RMS Services 
$CLOSE 

DESCRIPTION You can invoke the Close service only when no operation is currently under 
way (by your process) for the file being processed; that is, when no VMS 
RMS requests for the file are outstanding. When this condition is satisfied, 
the file can be closed to set the internal file identifier field to 0. 

When the Close service is invoked properly, VMS RMS disconnects all RABs 
for you, performs the various cleanup procedures (including file option 
processing and XAB processing), and closes the file. The only types of XABs 
that the Close service processes are the file protection XAB (XABPRO) and 
revision date and time XAB (XABRDT). It processes these XABs only if the file 
was opened or created for write access. 

If a process tries to implement the truncate service when closing a sequential 
file, it must have sole write access to the file. If other processes have write 
access to the file, it remains accessible until all processes have completed. 
If other processes have the file open for read access, VMS RMS defers the 
truncation until the final process having read access closes the file. 

Table RMS-1 lists the control block fields read as input by the Close service. 
Note that if the FAB$V_DLT, FAB$V_SCF, or the FAB$V_SPL bits are set 
by the associated Open or Create service, VMS RMS does not act on them 
for the Close service. For example, if you open the file and specify that it be 
deleted on close by setting the FAB$V_DLT bit, the file is deleted by VMS 
RMS when it is closed regardless of the bit's state when the Close service is 
invoked. 

For additional information on the fields accessed by this service, see Part II. 

Table RMS-1 Close Service FAB and XAB Input Fields 

Field Name 
Option or 
XAB Type Description 

FAB$W_IFI' 

FAB$L _FOP 

FAB$L _XAB 

FAB$V_DLT 

FAB$V_RWC 

FAB$V_SCF2

FAB$V_SPL2

FAB$V_TEF 

XABPRO 

XABRDT 

Internal file identifier. 

File-processing options. 

Deletes file on close. 

Rewinds a magnetic tape volume. 

Submits a file as a batch job (sequential files 
only). 

Submits a file to the print queue (sequential 
files only). 

Truncates data at the end of the file 
(sequential files only). 

Next XAB address. 

Modifies file protection and ownership. 

Modifies revision date and number. 

~ This field is required input to the FAB. 

2This field is not supported for DECnet operations. 

Table RMS-2 lists the control block fields written as output by the Close 
service. 

RMS-4 



VMS RMS Services 
$CLOSE 

Table RMS-2 Close Service FAB and XAB Output Fields 

Field Name 
Option or 
XAB Type Description 

FAB$W_IFI 

FAB$L _STS 

FAB$L _STV 

FAB$L _XAB 

Internal file identifier (cleared). 

Completion status (also returned in register 0). 

Status value. 

Next XAB address. 

XABRDT New revision date and number returned. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT 

RMS$_BUG_DAP 

RMS$_COD 

RMS$_DNR 

RMS$_IMX 

RMS$_NORMAL 

RMS$_SUC 

RMS$_WBE 

RMS$_XAB 

RMS$_ATR 

RMS$_BUSY 

RMS$_CRC 

RMS$_EXENQLM 

RMS$_MKD 

RMS$_PRV 

RMS$_SUP 

RMS$_WER 

RMS$_ATW 

RMS$_CCF 

RMS$_DAC 

RMS$_FAB 

RMS$_NET 

RMS$_SPL 

RMS$_SUPPORT 

RMS$_WLK 

RMS$_BLN 

RMS$_CDA 

RMS$_DME 

RMS$_IFI 

RMS$_NETFAIL 

RMS$_STR 

RMS$_SYS 

RMS$_WPL 

Note that even though a failure is indicated by the completion status code 
value, the file is closed if VMS RMS clears the internal file identifier value 



VMS RMS Services 
$CONNECT 

$CONNECT 

The Connect service establishes a record stream by associating and 
connecting a RAB with a FAB. You can invoke the Connect service only 
for files that are already open. 

FORMAT SYS$CONNECT rab(,(errJ(,sucJj 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L _STS. 
Symbolic offset RAB$L _STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Connect service call. The rab argument is the address of the RAB control 
block. 

err 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the Connect service invokes if the 
operation is unsuccessful. The err argument is the address of the entry mask 
of this user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the Connect service invokes if the 
operation is successful. The suc argument is the address of the entry mask of 
this user-written completion routine. 

RMS-6 



VMS RMS Services 
$CONNECT 

DESCRIPTION Any number of RABs can be connected to a FAB if the multistream (FAB$V_ 
MSE) option is selected when the file is opened or created. Each RAB 
represents an independent record stream. 

When you issue a Connect service, VMS RMS allocates an internal 
counterpart for the RAB. This counterpart consists of the internal controls 
needed to support the stream, such as record pointers and request status 
information. All required I/O buffers are also allocated at this time. 

The Connect service also initializes the next record pointer to the first record. 
In indexed files, the key of reference establishes the index of the next record 
pointer. 

If you set the end-of-file (RAB$V_EOF) option in the RAB$L _ROP field 
when issuing a Connect service, VMS RMS examines the organization of the 
file being processed to determine the end-of-file positioning strategy. 

For sequential or relative files, VMS RMS goes to the next record beyond the 
last currently existing record in the file. (The next record is inserted at the 
logical end of the file, and the service returns RMS$~OF status in response 
to a request for sequential access.) 

For indexed files, VMS RMS verifies that the first record inserted is inserted in 
the proper sort order. If the record cannot be inserted in the proper sort order 
because of user action, VMS RMS returns a sequence error (RMS$_SEQ). 

Get services that specify the sequential record access mode (RAB$B_RAC 
is RAB$C_SEQ) return an RMS$_EOF status. Get services that specify the 
random access mode (RAB$B_RAC is RAB$C_KEY), ignore (turn off) the 
end-of-file positioning. Positioning to end-of-file is supported for all indexed 
files, regardless of how many indexes the file contains. However, the EOF 
positioning is supported only when you access a file by the primary key. If 
the specified key of reference is a secondary key, an RMS$_ROP message is 
returned. 

In most cases, setting the RAB$V_EOF bit guarantees that the next record is 
inserted at the logical end of the file. However, if a relative file or an indexed 
file is shared by two or more active processes, the following scenario may 
develop. 

Assume that process A has invoked the Connect service after setting the 
RAB$V_EOF bit and is positioned to the end of the file. Before process A can 
do a $PUT, process B inserts a record into the file and changes the current 
record position. When process A attempts to do a $PUT into the position 
that was formerly the end of the file, the record may be inserted improperly. 
It may be inserted either before or after the record inserted by process B, 
depending on the respective key values. Or, the $PUT operation may even 
fail if the keys have the same value and duplicates are not allowed. 

Table RMS-3 lists the control block fields read as input by the Connect 
service. For additional information about the fields accessed by this service, 
see Part II. 



VMS RMS Services 
$CONNECT 

Table RMS-3 Connect Service RAB Input Fields 

Field Name 
Option or 
XAB Type Description 

RAB$L _FAB' 

RAB$W_ISI' 

RAB$B_KRF 

RAB$B_MBC2

RAB$B_MBF2

RAB$L _ROP 

RAB$V_ASY 

RAB$V_BIO 

RAB$V_EOF3

RAB$V_RAH2

RAB$V_WBH2

File access block address (required to access 
the internal file identifier field, FAB$W_IFI). 

Internal stream identifier (must be 0). 

Key of reference (applies only to indexed 
files). 

Multiblock count (applies only to sequential 
files residing on disk devices►. 
Multibuffer count. 

Record-processing options: 

Asynchronous: performs Connect service 
asynchronously. 

Block I/O: specifies that only block i/0 
operations are permitted. The FAB$B_FAC 
field FAB$V_BRO or FAB$V_BIO option must 
be specified to the Open or Create service. 

End-of-file: positions to the end of the file 
upon execution of the Connect service. 

Read ahead: allocates at least two buffers 
for multibuffering (applies only to sequential 
files on disk devices). 

Write behind: allocates at least two buffers 
for multibuffering (applies only to sequential 
files on disk devices). 

~ This field is a required input to the Connect service. 

2 This field is not supported for DECnet operations. 

3Refer to text for exceptions. 

Table RMS-4 lists the control block fields written as output by the Connect 
service. 

Table RMS-4 Connect Service RAB Output Fields 

Field 
Name Description 

RAB$W_ISI 

RAB$L _STS 

RAB$L _STV 

Internal stream identifier. 

Completion status code (also returned in Register 0). 

Status value. 

RMS-8 



VMS RMS Services 
$CONNECT 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT 

RMS$_CDA 

RMS$_GBC 

RMS$_KRF 

RMS$_NORMAL 

RMS$_ROP 

RMS$_SUP 

RMS$_BLN 

RMS$_CRMP 

RMS$_IAL 

RMS$_MBC 

RMS$_PENDING 

RMS$_RPL 

RMS$_SUPPORT 

RMS$_BUG_DAP 

RMS$_DME 

RMS$_IFA 

RMS$_NET 

RMS$_RAB 

RMS$_STR 

RMS$_CCR 

RMS$_FAB 

RMS$_IFI 

RMS$_NETFAIL 

RMS$_RFM 

RMS$_SUC 



VMS RMS Services 
$CREATE 

$CREATE 

The Create service constructs a new file according to the attributes 
you specify in the FAB. If any XABs are chained to the FAB, then the 
characteristics described in the XABs are applied to the file. This service 
performs implicit Open and Display services. 

FORMAT SYS$CREATE fab(,(err](,suc]] 

RETURNS VMS usage: cond_value 
type: longword unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset FAB$L _STS. 
Symbolic offset FAB$L _STV may contain additional status information. 

ARGUMENTS fab 
VMS usage: fab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

FAB control block whose contents are to be used as indirect arguments for the 
Create service call. The fab argument is the address of the FAB control block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-10 



VMS RMS Services 
$CREATE 

DESCRIPTION The Create service first uses the information from the specified FAB. If an 
allocation control XAB is present, however, its allocation quantity (XAB$L _ 
ALQ), allocation options (XAB$B~OP, only for the XAB$V_CTG and 
XAB$V_CBT options), bucket size (XAB$B_BKZ), and default extension 
quantity (XAB$W_DEQ) fields are used instead of the corresponding fields 
of the FAB. When either key definition or allocation XABs are present, they 
can be grouped in any order. If a name block (NAM) is also connected to the 
FAB, VMS RMS fills in its fields with information about the created file. The 
Create service leaves the file opened. 

When a search list logical name is used, the file is placed in the first resultant 
search list file specification unless the create-if (FAB$V_CIF) option is 
specified. If you select the FAB$V_CIF option, VMS RMS searches all search 
list file specifications to locate the file. If it finds the file, VMS RMS opens it 
rather than create a new file. If VMS RMS does not find the file, it creates a 
new file using the first resultant search list file specification. 

You do not have to explicitly specify the FAB$V_PUT option when invoking 
a Create service because write is the default access mode when you create a 
file. 

Table RMS-5 lists the control block fields read as input by the Create service. 
For additional information on the fields accessed by this service, see Part II. 

Table RMS-5 Create Service FAB and XAB Input Fields 

Field Name 
Option or 
XAB Type Description 

FAB$L _ALQ 

FAB$B_BKS 

FAB$W_BLS 

FAB$W_DEQ 

FAB$L _DNA 

FAB$B_DNS 

FAB$B_FAC 

Allocation quantity; ignored if an 
allocation XAB is present. 

Bucket size; ignored if an allocation XAB 
is present. 

Block size (applies to magnetic tape 
only. 

Default file extension quantity; ignored if 
an allocation XAB is present. 

Default file specification string address. 

Default file specification string size. 

File access. 

FAB$V_BIO Block I/O access to file. 

FAB$V_BRO Block or record I/O access to file. 

FAB$V_DEL Delete access to file. 

FAB$V_GET' Read access to file. 

FAB$V_PUT' Write access to file and explicit file 
extension. 

FAB$V_TRN Truncate access to file. 

FAB$V_UPD Update access to file and explicit file 
extension. 

i These are the default values supplied by VMS RMS. 

RMS-11 



VMS RMS Services 
$CREATE 

Table RMS-5 (Cont.~ Create Service FAB and XAB Input Fields 

Field Name 
Option or 
XAB Type Description 

FAB$L _FNA2 File specification string address. 

FAB$B_FNS2 File specification string size. 

FAB$L _FOP File-processing options. 

FAB$V_CBT Contiguous best try: indicates that the 
file is to be allocated contiguously on 
a "best effort" basis. If VMS RMS is 
unable to allocate the file within three 
extents, this bit is switched off by the 
Create service. To specify a single 
extent, use the FAB$V_CTG option. 

FAB$V_CIF Create-if: opens a file if it already exists 
or creates a file if it does not already 
exist. 

FAB$V_CTG Contiguous: indicates that the space for 
a file is to be allocated contiguously. 

FAB$V_CHAN_ Assigns the channel access mode. 
MODES

FAB$V_DFW3 Deferred write: writing back to the file 
from the modified buffer is deferred. 
Applies to relative and indexed files 
and sequential files opened for shared 
access. 

FAB$V_DLT Delete: indicates that the file is to be 
deleted when closed. 

FAB$V_LNM_ Specifies the logical name translation 
MODES access mode. 

FAB$V_MXV Maximize version: indicates that the 
created file be given the specific version 
number requested or a version number 
that is one greater than the highest 
version number of an existing file. 

FAB$V_NAM3 Name block inputs: indicates that the 
NAM$W_DID and NAM$T_DVI fields 
in the specified NAM block are used as 
input. 

FAB$V_NFS3 Non-file-structured: indicates that the 
accessed volume is to be processed in a 
non-file-structured manner. 

FAB$V_OFP Output file parse: specifies that the 
resultant file specification string of the 
related file, if used, is to provide file 
name and file type defaults only. 

2These fields must be specified unless you select the FAB$V_TMD or the FAB$V_TMP 
option. 

3This field is not supported for DECnet operations. 

RMS-12 



VMS RMS Services 
$CREATE 

Table RMS-5 (Copt.) Create Service FAB and XAB Input Fields 

Field Name 
Option or 
XAB Type Description 

FAB$V_POS Current position (applies to magnetic 
tapes only). 

FAB$V_RCK Read-check: indicates that transfers 
from disk are to be followed by a 
read-compare operation. 

FAB$V_RWC Rewind on close (applies to magnetic 
tape only). 

FAB$V_RWO Rewind on open (applies to magnetic 
tape only). 

FAB$V_SCF Submit command file: indicates that 
the file is to be submitted as a batch-
command file to the process default 
batch queue (SYS$BATCH) when the file 
is closed (applies to sequential files only). 

FAB$V_SPL Spool: indicates that the file is to be 
spooled to the process default print 
queue (SYS$PRINT) when the file is 
closed (applies to sequential files only). 

FAB$V_SQO Sequential only: indicates that the file 
can be processed in a sequentiai manner 
only, usually to enable DECnet—VAX file 
transfer. 

FAB$V_SUP Supersede: allows an existing file to be 
superseded by a new file of the same 
name, type, and version. 

FAB$V_TEF Truncate at end of file: indicates that 
the unused space allocated to a file 
is deallocated when that file is closed 
(applies to sequential files only►. 

FAB$V_TMD Temporary marked for delete: indicates 
that a temporary file is to be created, 
and then deleted when the file is closed. 

FAB$V_TMP Temporary: indicates that a temporary 
file is to be created and retained, but no 
directory entry is made for this file. 

FAB$V_UF03 User file open: indicates that the file is 
to be created or opened only (no further 
processing of that file by VMS RMS is 
allowed). 

FAB$V_WCK Write-check: indicates that transfers 
to disk are to be followed by a read-
compare operation. 

FAB$B_FSZ Fixed control area size. 

FAB$W_GBC3 Global buffer count for shared files. 

3This field is not supported for DECnet operations. 

RMS-13 



FAB$B_RTV3

FAB$B_SHR 

FAB$L _XAB 

VMS RMS Services 
$CREATE 

Table RMS-5 (Cont.) Create Service FAB and XAB Input Fields 

Field Name 
Option or 
XAB Type Description 

FAB$W_IFI Internal file identifier (must be 0). 

FAB$L _MRN Maximum record number (applies to 
relative files and sequential files having 
fixed-length 512-byte records). 

FAB$W_MRS Maximum record size. 

FAB$L _NAM Name block address. 

FAB$B_ORG File organization: sequential (FAB$C_ 
SEQ'), relative (FAB$C_REL), or indexed 

FAB$B_RAT Record attributes. 

FAB$B_RFM Record format: fixed-length (FAB$C_ 
FIX), variable-length (FAB$C_VAR), 
VFC (FAB$C_VFC), stream (FAB$C_ 
STM), stream with line feed terminator 
(FAB$C_STMLF), stream with carriage 
return terminator (FAB$C_STMCR), or 
unidentified format (FAB$C_UDF'). 

Retrieval window size. 

File sharing. 

FAB$V_SHRDEL Allows other users to delete records 
from the file. 

FAB$V_SHRGET Allows other users to read the file; also 
used with the FAB$V_MSE and FAB$V_ 
GET bits to specify aread-only global 
buffer cache when global buffering is 
enabled. 

FAB$V_MSE3 Allows multistream access. 

FAB$V_NIL Prohibits any type of file sharing by other 
users. 

FAB$V_SHRPUT Allows other users to write records to 
the file and extend it. 

FAB$V_SHRUPD Allows other users to update records in 
the file and extend it. 

FAB$V_UPI Allows one or more users write access 
to a shared file open for block I/O 
(applies to sequential files only). 

Extended attribute block address. 

XABALL Allocation XAB; see Chapter 8. 

XABDAT Date and time SCAB; see Chapter 9. 

XABFHC File header characteristics XAB; see 
Chapter 10. 

~ These are the default values supplied by VMS RMS. 

3This field is not supported for DECnet operations. 

RMS-14 



VMS RMS Services 
$CREATE 

Table RMS-5 (Cont.) Create Service FAB and XAB Input Fields 

Field Name 
Option or 
XAB Type Description 

XABITM Item list XAB; see Chapter 1 1. 

XABKEY Key definition XAB; see Chapter 13. 

XABPRO Protection XAB; see Chapter 14. 

XABRDT Revision date and time XAB; see 
Chapter 15. 

XABSUM Summary XAB; see Chapter 17. 

Table RMS-6 lists the control block fields written as output by the Create 
service. 

Table RMS-6 Create Service FAB and XAB Output Fields 

Field Name 
Option or 
XAB Type Description 

FAB$L _ALQ Allocation quantity: contains actual number 
of blocks allocated. 

FAB$B_BKS Bucket size: applies only to relative and 
indexed files. When multiple areas are 
defined for an indexed file, the largest 
bucket size is returned. 

FAB$W_BLS Device block size (applies to files of 
sequential organization only). 

FAB$W_DEQ Default file extension quantity. 

FAB$L _DEV Device characteristics. 

FAB$B_FAC File access. 

FAB$L_FOP File-processing option. 

FAB$V_CBT If this bit is set on input and remains on 
as output, it indicates that the file was 
allocated within three extents 

FAB$B_FSZ Fixed-length control area size for VFC 
format. 

FAB$W_GBC Global buffer count. 

FAB$W_IFI Internal file identifier. 

FAB$L _MRN Maximum record number. 

FAB$W_MRS Maximum record size. 

FAB$B_ORG File organization. 

FAB$B_RAT Record attributes. 

FAB$B_RFM Record format. 

FAB$L _SDC Secondary device characteristics. 

FAB$B_SHR File sharing. 

RMS-15 



VMS RMS Services 
$CREATE 

Table RMS-6 (Cont.) Create Service FAB and XAB Output Fields 

Field Name 
Option or 
XAB Type Description 

FAB$L _STS 

FAB$L _STV 

FAB$L _XAB 

Completion status code (also returned in 
register 0). 

Status value: contains the I/O channel 
number if the operation is successful. 

Next XAB field. 

XABALL Allocation XAB; see Chapter 8. 

XABDAT Date and time XAB; see Chapter 9. 

XABFHC File header characteristics XAB; see 
Chapter 10. 

XABITM Item list XAB; see Chapter 1 1. 

XABKEY Key definition XAB; see Chapter 13. 

XABPRO Protection XAB; see Chapter 14. 

XABRDT Revision date and time XAB; see 
Chapter 15. 

XABSUM Summary XAB; see Chapter 17. 

Use of the NAM Block for Creating Files 

Table RMS-7 and Table RMS-8 list the NAM block fields that VMS RMS 
uses as input and output for the Create service (provided that the name block 
address field (FAB$L _NAM) is specified). 

Table RMS-7 Create Service NAM Block Input Fields 

Field Name Option Description. 

NAM$W_DID' Directory identification (input only if 
the FAB$L _FOP FAB$V_NAM option 
is set). 

NAM$T_DVI' Device identification (input only if the 
FAB$L _FOP FAB$V_NAM option is 
set) . 

NAM$L _ESA Expanded string area address. 

NAM$B_ESS Expanded string area size. 

NAM$B_NOP NAM block options. 

NAM$V_PWD Password: indicates that a password 
contained in a DECnet access control 
string, if present in a file specification, 
is to be left unaltered in the expanded 
and resultant strings (instead of being 
replaced by the word "password"). 

This field is not supported for DECnet operations. 

RMS-16 



NAM$L _RLF 

NAM$L _RSA 

NAM$B_RSL 

NAM$L _FNB 

NAM$L _RSA 

NAM$B_RSS 

VMS RMS Services 
$CREATE 

Table RMS-7 (Cont.~ Create Service NAM Block Input Fields 

Field Name Option Description. 

NAM$V_NOCONCEAL Do not conceal device name: indicates 
that when a concealed device logical 
name is present, the concealed device 
logical name is to be replaced by the 
actual physical device name in the 
resultant string. 

Related file NAM block address. 

Related file NAM block resultant string 
address. 

Related file NAM block resultant string 
length. 

Related file NAM block file name 
status bits. 

Resultant string area address. 

Resultant string area size. 

Table RMS-8 Create Service NAM Block Output Fields 

Field Name Description 

NAM$W_DID' Directory identification. 

NAM$T_DVI' Device identification. 

NAM$B_ESL Expanded string length. If the NAM$L _ESA field and the 
NAM$B_ESS field are nonzero, and you do not select the 
FAB$V_NAM option, or if the NAM$W_DID field is clear when 
you invoke the Create service, VMS RMS copies the expanded 
file specification string to the buffer specified by the NAM$L _ 
ESA field. 

NAM$W_FID' File identification. 

NAM$L_FNB File name status bits. This is an output field from the Create 
service only if the NAM bit in FAB$L _FOP field is clear, or if 
the NAM$W_DID field is clear when you invoke the Create 
service. 

NAM$B_RSL Resultant string length. If the NAM$L _RSA field and the 
NAM$B_RSS field are both nonzero on input, the resultant file 
specification is copied to the buffer specified by NAM$L _RSA. 

~ This field is not supported for DECnet operations. 

Creating Files with the Create-If Option 

Note that setting the create-if (FAB$V_CIF) option in the FAB$L _FOP field 
specifies that if a new file has the same file specification as an existing file, 
VMS RMS opens the existing file and no new file is created. Some fields 
in the FAB, such as the file organization (FAB$B_ORG) and record format 
(FAB$B_RFM) fields, are input to a Create service, but are output from an 
Open service. For example, the indexed file organization could be specified 
in the FAB$B_ORG field on a create-if operation. However, if an existing 
sequential file has the same file specification as the indexed file that the user 

RMS-17 i~



VMS RMS Services 
$CREATE 

is attempting to create, then the existing file is opened and the FAB$B_ORG 
field is set to sequential. 

Creating Indexed Files 

An indexed file consists of a prolog, with which it begins, and one or more 
index structures. VMS RMS supplies the prolog with certain information 
about the file, including file attributes. 

VMS RMS supports two prolog levels, called Prolog 2 and Prolog 3. Unlike 
Prolog 2 files, Prolog 3 files allow for file compression and additional key 
types. For compatibility with RMS-11 data files that are transported or copied 
(without conversion) between systems, you may want to choose Prolog 2. 

If you want to create a Prolog 3 file, you must be sure that records in the 
file are not larger than 32,224 bytes and, if the primary key is segmented, 
that the segments of the primary key do not overlap (one or more bytes of 
the record are used in more than one segment). If the primary key contains 
overlapping segments, you can consider using that key as an alternate key 
instead of a primary key or you can request (or let VMS RMS assign you) a 
Prolog 2 indexed file. 

Prolog 3 is the default prolog for VMS RMS, although VMS RMS creates a 
Prolog 2 file only if the key characteristics are not compatible with Prolog 3 
files. You can, however, override this default by requesting a specific prolog 
version. The option you choose in requesting a specific prolog level affects 
the behavior of VMS RMS with regard to creating the file and returning error 
messages. 

If you explicitly request a prolog version using the XABKEY XAB$B_ 
PROLOG field in an application program, and if other file characteristics 
are incompatible with that prolog, then VMS RMS returns an error message 
and does not attempt to create the file. For example, if you explicitly specify 
Prolog 2 in the XAB$B_PROLOG field and have requested a key type that is 
available only with Prolog 3 (such as an 8-byte integer key type), an error is 
returned and the file is not created. 

However, if a specific prolog version is not explicitly requested in the XAB$B_ 
PROLOG field, VMS RMS selects the greatest prolog level that can support 
the specified key characteristics and does not return an error completion code. 

In summary, there are two ways in which you can specify a particular prolog 
version: 

• Specify the XAB$B_PROLOG field in an XABKEY block in an application 
program, affecting only the file being created. 

• Use the DCL command SET RMS_DEFAULT/PROLOG to change the 
process default. 

If you do not specify the XAB$B_PROLOG field in your application program, 
VMS RMS examines your process defaults to check for prolog information. If 
this information is not specified in your process defaults, VMS RMS examines 
the system defaults. If no prolog information is specified at the system level, 
VMS RMS attempts to create a Prolog 3 file. 

RMS-18 



VMS RMS Services 
$CREATE 

You need not be concerned with the distinctions between Prolog 2 and Prolog 
1 files. To create an indexed file with a prolog version other than Prolog 
3, specify a Prolog 2 file. If all keys in the file are string keys, VMS RMS 
provides a def ault of Prolog 1; in all other cases, Prolog 2 is the default. If 
the file contains all string keys and Prolog 2 is requested, VMS RMS attempts 
to create a Prolog 1 file only if no binary keys are present. 

Note that RMS-11 and previous versions of VMS RMS return error messages 
if requested to process Prolog 3 files. 

If a failure is indicated, the file may be created, but it may not be opened for 
processing, depending on the nature of the failure. 

RETURN 
VALUES 

The following condition values are described 

RMS$_ACS 

RMS$_ALN 

RMS$_ATR 

RMS$_BKZ 

RMS$_BUG_DAP 

RMS$_CHN 

RMS$_CREATED 

RMS$_DAN 

RMS$_DIR 

RMS$_DNF 

RMS$_DVI 

RMS$_ESA 

RMS$_EXP 

RMS$_FLG 

RMS$_FNF 

RMS$_FSZ 

RMS$_IAL 

RMS$_IFA 

RMS$_IMX 

RMS$_KSI 

RMS$_MRN 

RMS$_NET 

RMS$_NORMAL 

RMS$_POS 

RMS$_RAT 

RMS$_ACT 

RMS$_ALQ 

RMS$_ATW 

RMS$_BLN 

RMS$_BUG_DDI 

RMS$_COD 

RMS$_CRE_STM 

RMS$_DEV 

RMS$_DME 

RMS$_DNR 

RMS$_ENQ 

RMS$_ESS 

RMS$_FAB 

RMS$_FLK 

RMS$_FNM 

RMS$_FUL 

RMS$_IAN 

RMS$_IFI 

RMS$_IOP 

RMS$_LAN 

RMS$_MRS 

RMS$_NETFAIL 

RMS$_NPK 

RMS$_PRV 

RMS$_REF 

in Appendix A: 

RMS$_AID 

RMS$_AOP 

RMS$_BKS 

RMS$_BUG 

RMS$_CDA 

RMS$_CRE 

RMS$_CRMP 

RMS$_DFL 

RMS$_DNA 

RMS$_DTP 

RMS$_ENV 

RMS$_EXENQLM 

RMS$_FEX 

RMS$_FNA 

RMS$_FOP 

RMS$_GBC 

RMS$_IBK 

RMS$_IFL 

RMS$_KNM 

RMS$_LNE 

RMS$_NAM 

RMS$_NOD 

RMS$_ORG 

RMS$_QUO 

RMS$_RFM 

RMS-19 



VMS RMS Services 
$CREATE 

RMS$_RLF RMS$_RPL RMS$_RSS 

RMS$_RST RMS$_RUNDOWN RMS$_SEG 

RMS$_SHR RMS$_SIZ RMS$_STR 

RMS$_SUC RMS$_SUP RMS$_SUPERSEDE 

RMS$_SUPPORT RMS$_SYN RMS$_SYS 

RMS$_UPI RMS$_VER RMS$_WLK 

RMS$_WPL RMS$_XAB 

RMS-20 



VMS RMS Services 
$DELETE 

$DELETE 

The Delete service removes an existing record from a relative or indexed 
file. You cannot use this service when processing sequential files. 

FORMAT SYS$DELETE rab(,(errj(,sucj] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L_STS. 
Symbolic offset RAB$L_STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Delete service call. The rab argument is the address of the RAB control 
block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-21 



VMS RMS Services 
$DELETE 

DESCRIPTION A Delete service always applies to the current record. Therefore, immediately 
before invoking the Delete service, you must establish the current record by 
issuing a Find or Get service. 

Table RMS-9 lists the control block fields read as input by the Delete service. 
For additional information on the fields accessed by this service, see Part II. 

Table RMS-9 Delete Service RAB Input Fields 

Field Name Option Description 

RAB$W_ISI 

RAB$L _ROP 

Internal stream identifier (required). 

Record-processing options. 

RAB$V_ASY Asynchronous: performs Delete service 
asynchronously. 

RAB$V_FDL Fast delete (applies to indexed files). 

Table RMS-10 lists the control block fields written as output by the Delete 
service. 

Table RMS-10 Delete Service RAB Output Fields 

Field Name Description 

RAB$L _STS 

RAB$L _STV 

Completion status code (also returned in register 0). 

Status value. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT 

RMS$_CDA 

RMS$_DNR 

RMS$_IBF 

RMS$_NET 

RMS$_RAB 

RMS$_RSA 

RMS$_SUPPORT 

RMS$_BLN 

RMS$_CHK 

RMS$_FAC 

RMS$_IOP 

RMS$_NETFAIL 

RMS$_RNL 

RMS$_STR 

RMS$_SYS 

RMS$_BUG 

RMS$_CUR 

RMS$_FTM 

RMS$_IRC 

RMS$_NORMAL 

RMS$_RPL 

RMS$_SUC 

RMS$_TRE 

RMS$_BUG_DAP 

RMS$_DME 

RMS$_IAL 

RMS$_ISI 

RMS$_PENDING 

RMS$_RRV 

RMS$_SUP 

RMS$_WLK 

RMS-2 2 



VMS RMS Services 
$DISCONNECT 

$DISCONNECT 

The Disconnect service breaks the connection between a RAB and a FAB, 
thereby terminating a record stream. All system resources, such as I/O 
buffers and data structure space, are deallocated. 

FORMAT SYS$DISCONNECT rab(,(errJ(,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L _STS. 
Symbolic offset RAB$L_STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for the 
Disconnect service call. The rab argument is the address of the RAB control 
block. 

err 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-2 3 



VMS RMS Services 
$DISCONNECT 

DESCRIPTION The Close service (see $CLOSE) performs an implied disconnect for all 
record streams connected to the FAB. Thus, you need not explicitly issue a 
Disconnect service prior to closing the file. However, if more than one RAB 
is connected to a single FAB, then you must explicitly disconnect the desired 
RAB in order to terminate a particular record stream and leave the others 
active. 

Table RMS-11 lists the control block fields read as input by the Disconnect 
service. For additional information on the fields accessed by this service, see 
Part II. 

Table RMS-11 Disconnect Service RAB Input Fields 

Field Name Description 

RAB$W_ISI Internal stream identifier (required). 

RAB$L _ROP Record-processing option, RAB$V_ASY. Asynchronous: 
performs Disconnect service asynchronously. 

Table RMS-12 lists the control block fields written as output by the 
Disconnect service. 

Table RMS-12 Disconnect Service RAB Output Fields 

Field Name Description 

RAB$W_ISI 

RAB$L _STS 

RAB$L _STV 

Internal stream identifier (zeroed). 

Completion status code (also returned in register 0). 

Status value. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT 

RMS$_BUG_DAP 

RMS$_DNR 

RMS$_NORMAL 

RMS$_STR 

RMS$_SYS 

RMS$_ATR 

RMS$_CDA 

RMS$_ISI 

RMS$_PENDING 

RMS$_SUC 

RMS$_WBE 

RMS$_ATW 

RMS$_CRC 

RMS$_NET 

RMS$_RAB 

RMS$_SUP 

RMS$_WER 

RMS$_BLN 

RMS$_DME 

RMS$_NETFAIL 

RMS$_RSA 

RMS$_SUPPORT 

RMS$_WLK 

RMS-24 



VMS RMS Services 
$DISPLAY 

$DISPLAY 

The Display service retrieves file attribute information about a file and 
places this information in fields in the FAB, in XABs chained to the FAB, 
and in a NAM block (if one is requested). 

FORMAT SYS$DISPLAY fab(,(err)(,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset FAB$L_STS. 
Symbolic offset FAB$L _STV may contain additional status information. 

ARGUMENTS fab 
VMS usage: fab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

FAB control block whose contents are to be used as indirect arguments for 
the Display service call. The fab argument is the address of the FAB control 
block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-25 



VMS RMS Services 
$DISPLAY 

DESCRIPTION A file must be open for access by a Create or Open service before the Display 
service can be invoked. 

VMS RMS places the file attribute information in the corresponding fields of 
the FAB and specified XABs. If the FAB$L _NAM field contains a valid NAM 
block address, certain NAM block fields are filled in, including the resultant 
string, and the NAM$B_NOP options are examined. 

Note that the Open and Create services automatically perform an implicit 
Display service (see $OPEN, $CREATE). 

Table RMS-13 lists the control block fields read as input by the Display 
service. For additional information on the fields accessed by this service, see 
Part II. 

Table RMS-13 Display Service FAB and NAM Input Fields 

Field Name Option Description 

FAB$W_IFi Internal file identifier. 

FAB$L _NAM' Name block address. 

FAB$L _XAB' Extended attribute block address. 

NAM$B_NOP NAM block options. 

NAM$V_PWD Password: indicates that a password 
contained in a DECnet access control 
string, if present in a file specification, 
is to be left unaltered in the expanded 
and resultant strings (instead of being 
replaced by the word "password"). 

NAM$V_NOCONCEAL Do not conceal device name: indicates 
that when a concealed device logical 
name is present, the concealed device 
logical name is to be replaced by 
the actual physical device name (and 
directory, if present) in the resultant 
string. 

~ If you want information about a particular XAB or NAM block, you must pass it to the 
Display service as input. 

Table RMS-14 lists the control block fields written as output by the Display 
service. 

Table RMS-14 Display Service FAB, NAM, and XAB Output Fields 

Field Name XAB Type Description 

FAB$L _ALQ Allocation quantity in blocks. 

FAB$B_BKS Bucket size. 

FAB$W_BLS Block size. 

FAB$W_DEQ Default file extension quantity. 

FAB$L _DEV Device characteristics. 

RMS-26 



VMS RMS Services 
$DISPLAY 

Table RMS-14 (Cont.) Display Service FAB, NAM, and XAB Output 
Fields 

Field Name XAB Type Description 

FAB$B_FAC File access. 

FAB$B_FSZ Fixed control area size. 

FAB$W_GBC Global buffer count. 

FAB$L _MRN Maximum record number. 

FAB$W_MRS Maximum record size. 

FAB$B_ORG File organization. 

FAB$B_RAT Record attributes. 

FAB$B_RFM Record format. 

FAB$B_RTV Retrieval window size. 

FAB$B_SHR File sharing. 

FAB$L _STS Completion status code (also returned in 
register 0►. 

FAB$L _STV Status value. 

FAB$L _XAB Next XAB address. 

XABALL Allocation XAB; see Chapter 8. 

XABDAT Date and time XAB; see Chapter 9. 

XABFHC File header characteristics XAB; see 
Chapter 10. 

XABITM Item list XAB; see Chapter 1 1. 

XABKEY Key definition XAB; see Chapter 13. 

XABPRO Protection XAB; see Chapter 14. 

XABRDT Revision date and time XAB; see Chapter 15. 

XABSUM Summary XAB; see Chapter 17. 

NAM$W_DID Directory identification. 

NAM$T_DVI Device identification. 

NAM$W_FID File identification. 

NAM$L _FNB File name status bits. 

NAM$B_RSL Resultant string length: indicates the length 
of the resultant string that is written into 
the buffer whose address is contained in the 
NAM$L _RSA field (if the NAM$L _RSA and 
NAM$B_RSS fields are nonzero). 

RMS-27 



VMS RMS Services 
$DISPLAY 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT 

RMS$_BUG_DAP 

RMS$_DNR 

RMS$_FAB 

RMS$_NETFAIL 

RMS$_PRV 

RMS$_SUC 

RMS$_AID 

RMS$_CDA 

RMS$_ESA 

RMS$_IFI 

RMS$_NORMAL 

RMS$_REF 

RMS$_SUP 

RMS$_ATR 

RMS$_COD 

RMS$_ESL 

RMS$_IMX 

RMS$_OK_NOP 

RMS$_RPL 

RMS$_SUPPORT 

RMS$_BLN 

RMS$_DME 

RMS$_ESS 

RMS$_NET 

RMS$_PLG 

RMS$_STR 

RMS$_XAB 

RMS-28 



VMS RMS Services 
$ENTER 

$ENTER 

The Enter service inserts a file name in a directory. 

FORMAT SYS$ENTER fab(,(errJ(,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset FAB$L _STS. 
Symbolic offset FAB$L_STV may contain additional status information. 

ARGUMENTS fab 
VMS usage: fab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

FAB control block whose contents are to be used as indirect arguments for the 
Enter service call. The fab argument is the address of the FAB control block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

DESCRIPTION The Enter service function is performed automatically by the Create service 
unless you select the FAB$V_TMP option or the FAB$V_TMD option. The 
Enter service, however, allows you to perform this step separately. Note that 
the file must be closed before you invoke the Enter service (FAB$W_IFI must 
be 0). 

When you enter a file name in a directory, no file associated with the FAB 
can be open and no wildcard characters can be used. 

RMS-29 



VMS RMS Services 
$ENTER 

The Enter service requires many NAM block fields as input. You normally 
precede the Enter service with an Open, Create, or Parse service (see $PARSE) 
and a Search service (see $SEARCH), specifying the same FAB and NAM 
block for each service. 

The optional resultant string is moved to the buffer described by the 
NAM$L _RSA and NAM$B_RSS fields (only if both these fields are nonzero). 
If the file version number of the name string described by the expanded string 
length and address fields of the NAM block is omitted or contains a 0, the 
Enter service scans the entire directory. It assigns a version number that is 
one higher than the highest found (or 1 if none is found). 

The Enter service is not supported for DECnet operations with remote files 
between two VMS systems. 

Table RMS-15 lists the control block fields read as input by the Enter service. 
For additional information on the fields accessed by this service, see Part II. 

Table RMS-15 Enter Service FAB and NAM Input Fields 

Field Name Description 

FAB$W_IFI 

FAB$L _NAM 

NAM$W_DID' 

NAM$T_DVI' 

NAM$L _ESA 

NAM$B_ESL 

NAM$W_FID' 

NAM$L _RSA 

NAM$B_RSS 

Internal file identifier (must be 0). 

Name block address. 

Directory identification: identifies the directory in which the 
file name is to be entered. 

Device identification: identifies the device containing the 
directory in which the file name is to be entered. 

Expanded string area address: contains file name, type, and 
version to be entered. 

Expanded string length. 

File identification: identifies the file to be entered into the 
directory. 

Resultant string area address. 

Resultant string size. 

This field is not supported for DECnet operations. 

Table RMS-16 lists the control block fields written as output by the Enter 
service. 

Table RMS-16 Enter Service FAB and NAM Output Fields 

Field 
Name Description 

FAB$L _STS 

FAB$L _STV 

NAM$B_RSL 

Completion status code (also returned in register 0). 

Status value. 

Resultant string length. 

RMS-30 



VMS RMS Services 
$ENTER 

RETURN The following condition values are described in Appendix A: 

VALUES RMS$_BLN RMS$_CDA RMS$_CHN RMS$_DEV 

RMS$_DME RMS$_DNF RMS$_DNR RMS$_DVI 

RMS$_ENT RMS$_ESA RMS$_ESL RMS$_FAB 

RMS$_FNF RMS$_IFI RMS$_NAM RMS$_NORMAL 

RMS$_PRV RMS$_RSL RMS$_RSS RMS$_RST 

RMS$_STR RMS$_SUC RMS$_SUP RMS$_SUPPORT 

RMS$_SYS RMS$_WLD RMS$_WLK 

RMS-31 



VMS RMS Services 
$ERASE 

$ERASE 

The Erase service deletes a VMS RMS disk file and removes the file's 
directory entry specified in the path to the file. If additional directory 
entries have been created for this file by the Enter service, you must use 
the Remove service to delete them. 

FORMAT SYS$ERASE fab(,(err](,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset FAB$L_STS. 
Symbolic offset FAB$L_STV may contain additional status information. 

ARGUMENTS fab 
VMS usage: fab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

FAB control block whose contents are to be used as indirect arguments for the 
Erase service call. The fab argument is the address of the FAB control block. 

err 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-3 2 



VMS RMS Services 
$ERASE 

DESCRIPTION Using the Erase service to delete a file releases the file's allocated space for 
use by another file. The Erase service does not physically remove the data (as 
does overwriting or zeroing). 

Note that the file must be closed before you invoke the Erase service 
(FAB$W_IFI must be zero). You can, however, delete a file that is currently 
open, if you issue a Close service and specify the FAB$L _FOP field FAB$V_ 
DLT option. VMS RMS does not allow you to delete files from magnetic tape 
volumes; they must be overwritten. 

If a search list logical name is specified, the file is deleted only if it is found in 
the first resulting search list file specification. 

Table RMS-17 lists the control block fields read as input by the Erase service. 
For additional information on the fields accessed by this service, see Part II. 

Table RMS-17 Erase Service FAB and NAM Input Fields 

Field Name Option Description 

FAB$L _DNA Default file specification string address. 

FAB$B_DNS Default file specification string size. 

FAB$L _FNA File specification string address. 

FAB$B_FNS File specification string size. 

FAB$L _FOP File-processing options. 

FAB$V_NAM' NAM block inputs: allows use of the 
NAM$W_DID, NAM$T_DVI, and NAM$W_ 
FID fields. 

FAB$W_IFI Internal file identifier (must be 0). 

FAB$L _NAM Name block address. 

NAM$W_DID' Directory identification (input only if the 
FAB$L_FOP field FAB$V_NAM bit is set). 

NAM$T_DVI' Device identification (input only if the 
FAB$L_FOP field FAB$V_NAM bit is set). 

NAM$L _ESA Expanded string area address. 

NAM$B_ESS Expanded string area size. 

NAM$W_FID' File identification (input only if the FAB$L _ 
FOP field FAB$V_NAM bit is set). 

NAM$L _RLF Related file NAM block address. 

NAM$L _RSA Related file resultant string address. 

NAM$B_RSS Related file resultant string size. 

NAM$L _FNB Related file filename status bits. 

This field is not supported for DECnet operations. 

Table RMS-18 lists the control block fields written as output by the Erase 
service. Note that the NAM block fields are used for output only if the name 
block address field is specified in the FAB. 

RMS-33 



VMS RMS Services 
$ERASE 

Table RMS-18 Erase Service FAB and NAM Output Fields 

Field Name Description 

FAB$L _STS 

FAB$L _STV 

NAM$W_DID' 

NAM$T_DVI' 

NAM$B_ESL 

NAM$L _FNB 

NAM$B_RSL 

Completion status code (also returned in register 0). 

Status value. 

Directory identification. 

Device identification. 

Expanded string length. If the NAM$L _ESA field and the 
NAM$B_ESS field are nonzero, and if the FAB$V_NAM bit 
is clear or the NAM$W_DID field contains a zero, VMS RMS 
copies the expanded file specification string to the buffer 
specified by the input NAM$L _ESA field. 

File name status bits. 

Resultant string length (if NAM$L _RSA and NAM$B_RSS are 
both nonzero on input, the resultant file specification is copied 
to the buffer specified by NAM$L _RSA) . 

This field is not supported for DECnet operations. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACS 

RMS$_CDA 

RMS$_DME 

RMS$_DVI 

RMS$_FNF 

RMS$_LNE 

RMS$_NETFAIL 

RMS$_QUO 

RMS$_STR 

RMS$_SUPPORT 

RMS$_WLK 

RMS$_BLN 

RMS$_CHN 

RMS$_DNA 

RMS$_ESA 

RMS$_FNM 

RMS$_MKD 

RMS$_NOD 

RMS$_RLF 

RMS$_SUC 

RMS$_SYN 

RMS$_BUG_DAP 

RMS$_DEV 

RMS$_DNF 

RMS$_ESS 

RMS$_IFI 

RMS$_NAM 

RMS$_NORMAL 

RMS$_RSS 

RMS$_SUP 

RMS$_TYP 

RMS$_BUG_DDI 

RMS$_DIR 

RMS$_DNR 

RMS$_FAB 

RMS$_IOP 

RMS$_NET 

RMS$_PRV 

RMS$_RST 

RMS$_SUPERSEDE 

RMS$_VER 

RMS-34 



VMS RMS Services 
$EXTEND 

$EXTEND 

The Extend service increases the amount of space allocated to a VMS 
RMS disk file. This service is most useful for extending relative files and 
indexed files when you are doing block I/O transfers using the Write 
service. 

FORMAT 

RETURNS 

SYS$EXTEND fab(,(err](,suc]] 

VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset FAB$L _STS. 
Symbolic offset FAB$L _STV may contain additional status information. 

ARGUMENTS fab 
VMS usage: fab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

FAB control block whose contents are to be used as indirect arguments for the 
Extend service call. The fab argument is the address of the FAB control block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-35 



VMS RMS Services 
$EXTEND 

DESCRIPTION The Extend service is performed automatically as data is written to a file, 
regardless of the file's organization. However, when you use block I/O, only 
sequential files are automatically extended. Thus, you must use the Extend 
service for relative and indexed files when using block I/O. Also, you may 
want to extend a file explicitly for performance reasons, such as placing a 
large file extent (an extended part of a file) contiguous with the file. 

You must open the file (FAB$W_IFI must not be 0) before you invoke the 
Extend service; otherwise, an error occurs. The file sharing field (FAB$B_ 
FAC) must specify put (FAB$V_PUT) or update (FAB$V_UPD) access to the 
file to be extended. 

The allocation quantity field (FAB$L _ALQ or XAB$L—ALQ) specifies the 
number of blocks that VMS RMS adds to the file. You can indicate other 
attributes regarding the manner and location for allocation. For example, you 
can indicate that the additional blocks must be allocated contiguously. If you 
do specify contiguous space and not enough contiguous space is available, the 
operation fails. (This extension is not contiguous with the initial file space.) 

If an allocation control XAB is present, its allocation quantity (XAB$L _ALQ) 
and allocation options (XAB$B~OP, XAB$V_CBT and XAB$V_CTG bits 
only) fields are used instead of the corresponding fields in the FAB. The 
allocation quantity field of the XAB is set to the actual extension size. You 
may specify multiple XABs to extend separate areas of indexed files. 

Table RMS-19 lists the control block fields read as input by the Extend 
service. For additional information on the fields accessed by this service, see 
Part II. 

Table RMS-19 Extend Service FAB Input Fields 

Field Name Description 

FAB$L _ALQ 

FAB$L _FOP 

FAB$W_IFI 

FAB$L _XAB 

Allocation quantity; ignored if an allocation XAB is present. 

File-processing options: checked to see whether the FAB$V_ 
CTG or FAB$V_CBT bit is set to indicate contiguous allocation 
(ignored for allocation XAB). 

Internal file identifier (must not be 0). 

Extended attribute block address. Only an allocation XAB 
(XABALL) is processed. 

Table RMS-20 lists the control block fields written as output by the Extend 
service. 

Table RMS-20 Extend Service FAB Output Fields 

Field Name Description 

FAB$L _ALQ Allocation quantity: contains the actual extension allocation 
value if no allocation XAB is present. 

FAB$L_STS Completion status code (also returned in register 0). 

FAB$L _STV Status value (contains the total number of blocks allocated, 
totaled across all allocation XABs►. 

RMS-36 



VMS RMS Services 
$EXTEND 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT 

RMS$_AOP 

RMS$_BUG_DAP 

RMS$_EXT 

RMS$_IFI 

RMS$_NET 

RMS$_RPL 

RMS$_SUPPORT 

RMS$_WLK 

RMS$_AID 

RMS$_ATR 

RMS$_CDA 

RMS$_FAB 

RMS$_IMX 

RMS$_NETFAIL 

RMS$_STR 

RMS$_SYS 

RMS$_WPL 

RMS$_ALN 

RMS$_ATW 

RMS$_COD 

RMS$_FAC 

RMS$_IOP 

RMS$_NORMAL 

RMS$_SUC 

RMS$_WBE 

RMS$_XAB 

RMS$_ALQ 

RMS$_BLN 

RMS$_DME 

RMS$_FUL 

RMS$_LEX 

RMS$_PLG 

RMS$_SUP 

RMS$_WER 

RMS-37 



VMS RMS Services 
$FIND 

$FIND 

The Find service locates a specified record in a file and returns its record 
file address in the RAB$W_RFA field of the RAB. The Find service can be 
used with all file organizations. 

FORMAT 

RETURNS 

SYS$FIND rab(,(err](,sucj] 

VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L _STS. 
Symbolic offset RAB$L _STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Find service call. The rab argument is the address of the RAB control 
block. 

err 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-38 



/"1 
VMS RMS Services 

$FIND 

DESCRIPTION The Find service gives you the following functional capabilities: 

• You can skip records when you are accessing a file sequentially by 
making successive invocations of the Find service. 

• You can establish the current record context prior to invoking an Update, 
Delete, or Truncate service. 

• You can establish a random access starting point in a file for subsequent 
sequential access operations such as the Get service. 

When you follow the Find service with a sequential access operation, such as 
the Get service, the current record context is established by the Find service 
and the sequential access operation establishes a new sequential access context. 
Conversely, when you follow the Find service with a nonsequential access 
operation such as a Delete service or an Update service, the sequential access 
context remains the same as it was prior to the Find service. 

Table RMS-21 lists the control block fields read as input by the Find service. 
For additional information on the fields accessed by this service, see Part II. 

Table RMS-21 Find Service RAB Input Fields 

Field Name XAB Type Description 

RAB$W_ISI Internal stream identifier (required). 

RAB$L_KBF Key buffer address (used only if RAB$B_ 
RAC field contains RAB$C_KEY or if 
RAB$B_RAC contains RAB$C_SEQ and the 
RAB$L _ROP field RAB$V_LIM option is 
set) . 

RAB$B_KRF Key of reference (used only with indexed 
files and if RAB$B_RAC contains RAB$C_ 
KEY). 

RAB$B_KSZ Key size {used only if RAB$B_RAC field 
contains RAB$C_KEY or if RAB$B_RAC 
contains RAB$C_SEQ and the RAB$L _ROP 
field RAB$V_L1M option is set). 

RAB$L _PBF' Prompt buffer address (applies to terminal 
devices only) . 

RAB$B_PSZ' Prompt buffer size (applies to terminal 
devices only). 

RAB$B_RAC Record access mode (RAB$C_SEQ, 
RAB$C_KEY, RAB$C_RFA)2. 

RAB$W_RFA Record file address (used only if RAB$B_ 
RAC contains RAB$C_RFA). 

RAB$L _ROP Record-processing options. 

RAB$V_ASY Asynchronous: performs Find services 
asynchronously. 

~ This field is not supported for DECnet operations. 

2The default for the RAB$B_RAC field is RAB$C_SEQ. 

RMS-39 



VMS RMS Services 
$FIND 

Table RMS-21 (Copt.) Find Service RAB Input Fields 

Field Name XAB Type Description 

RAB$V_CVT' 

RAB$V_KGE3

RAB$V_KGT4

RAB$V_LIM 

RAB$V_NLK 

RAB$V_NXR 

RAB$V_PMT' 

RAB$V_PTA' 

RAB$V_RAH' 

RAB$V_REA 

RAB$V_RLK 

RAB$V_RNE' 

RAB$V_RNF' 

RAB$V_RRL 

Convert: changes characters to uppercase 
for a Find service to a terminal device. 

Key is greater than or equal to compared 
value (applies only to indexed files). 

Key is greater than compared value (applies 
only to indexed files). If neither RAB$V_ 
KGE nor RAB$V_KGT is specified, a key 
equal match is made. 

Limit: the key value described by the KBF 
and KSZ fields is to be compared to the 
value in the record accessed sequentially. 

No lock: specifies that the record accessed 
through the Find service is not to be locked. 

Nonexistent record processing: specifies 
that if the record directly accessed through 
a Find service does not exist, the service is 
to be performed anyway. 

Prompt indicates that the contents of the 
prompt buffer are to be used as a prompt 
for a Find service to a terminal device. 

Purge type-ahead buffer: eliminates any 
information that may be in the type-ahead 
buffer for a Find service to a terminal 
device. 

Read ahead: used with multiple buffers to 
indicate read-ahead operations (sequential 
files only). 

Lock for read: allows other users read 
access to the record. 

Read of locked record allowed: specifies 
that a user who locks a record is allowing 
the locked record to be read by other 
accessors. 

Read no echo: indicates that input data 
entered on the keyboard is not echoed 
(displayed) on the terminal device. 

Read no filter: indicates that CTRL/U, 
CTRL/R, and DELETE are not to be 
considered control commands on terminal 
input, but are to be passed to the 
application program. 

Read regardless of lock: read the record 
even if another stream has locked the 
record. 

~ This field is not supported for DECnet operations. 

3This symbolic offset is logically synonymous with RAB$V_EQNXT. 

4This symbolic offset is logically synonymous with RAB$V_NXT. 

RMS-40 



VMS RMS Services 
$FIND 

Table RMS-21 (Copt.) Find Service RAB Input Fields 

Field Name XAB Type Description 

RAB$V_TMO' Timeout: indicates that the contents of 
the tmeout period field (RAB$B_TMO) is 
to be used on a Find request for a locked 
record (when the RAB$V_WAT option is 
also specified) or for a terminal or mailbox 
device. 

RAB$V_ULK Manual unlocking: specifies that a record 
cannot be automatically unlocked. 

RAB$V_WAT Wait: if record is locked, wait until it is 
available. 

RAB$B_TMO' Timeout period: indicates the maximum 
number of seconds that VMS RMS can use 
to complete a Find request. 

~ This field is not supported for DECnet operations. 

Table RMS-22 lists the control block fields written as output by the Find 
service. 

Table RMS-22 Find Service RAB Output Fields 

Field Name Description 

RAB$L _BKT Bucket code: set to the relative record number for relative files 
accessed sequentially. 

RAB$W_RFA Record file address. 

RAB$L_STS Completion status code (also returned in register 0~. 

RAB$L _STV Status value. 

The record address (RAB$L _RBF) field and the record size (RAB$W_RSZ) 
field are undefined after a Find service. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT RMS$_ANI RMS$_ATR 

RMS$_ATW RMS$_BES RMS$_BLN 

RMS$_BUG RMS$_BUG_DAP RMS$_CDA 

RMS$_CHK RMS$_CONTROLC RMS$_CONTROLY 

RMS$_DEADLOCK RMS$_DEL RMS$_DME 

RMS$_DNR RMS$_EOF RMS$_EXENQLM 

RMS$_FAC RMS$_FTM RMS$_IBF 

RMS$_IOP RMS$_IRC RMS$_ISI 

RMS$_KBF RMS$_KEY RMS$_KRF 

RMS$_KSZ RMS$_MRN RMS$_NET 

RMS-41 



VMS RMS Services 
$FIND 

RMS$_NETFAIL RMS$_NORMAL RMS$_OK_ALK 

RMS$_OK_DEL RMS$_OK_LIM RMS$_OK_RLK 

RMS$_OK_RNF RMS$_OK_RRL RMS$_OK_WAT 

RMS$_PBF RMS$_PENDiNG RMS$_PES 

RMS$_PLG RMS$_RAB RMS$_RAC 

RMS$_REF RMS$_RER RMS$_RFA 

RMS$_RHB RMS$_RLK RMS$_RNF 

RMS$_ROP RMS$_RPL RMS$_RRV 

RMS$_RSA RMS$_SQO RMS$_STR 

RMS$_SUC RMS$_SUP RMS$_SUPPORT 

RMS$_SYS RMS$_TMO RMS$_TRE 

RMS$_WBE RMS$_WER RMS$_WLK 

R M S-42 



VMS RMS Services 
$FLUSH 

$FLUSH 

The Flush service writes out all modified I/O buffers and file attributes 
associated with the file. This ensures that all record activity up to the 
point at which the Flush service executes is actually reflected in the file. 

FORMAT SYS$FLUSH rab(,(err](,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L_STS. 
Symbolic offset RAB$L _STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Flush service call. The rab argument is the address of the RAB control 
block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-43 



VMS RMS Services 
$FLUSH 

DESCRIPTION The Flush service is not required at any time, not even with a Close service, 
because the Close service performs the Flush functions implicitly. 

During asynchronous operations, you must wait for any I/O activity to 
complete before issuing a Flush service. You can also issue a Flush service 
after receiving notification of completion through an asynchronous system 
trap (AST). 

Table RMS-23 lists the control block fields read as input by the Flush service. 
For additional information on the fields accessed by this service, see Part II. 

Table RMS-23 Flush Service RAB Input Fields 

Field Name Description 

RAB$W_ISI Internal stream identifier (required). 

RAB$L _ROP Record-processing option: RAB$V_ASY only. Asynchronous: 
performs Flush services asynchronously. 

Table RMS-24 lists the control block fields written as output by the Flush 
service. 

Table RMS-24 Flush Service RAB Output Fields 

Field Name Description 

RAB$L _STS 

RAB$L _STV 

Completion status code (also returned in register 0). 

Additional status information. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT 

RMS$_BUG_DAP 

RMS$_ISI 

RMS$_PENDING 

RMS$_SUC 

RMS$_WBE 

RMS$_ATR 

RMS$—CDA 

RMS$_NET 

RMS$_RAB 

RMS$_SUP 

RMS$_WER 

RMS$_ATW 

RMS$_DME 

RMS$_NETFAIL 

RMS$_RSA 

RMS$_SUPPORT 

RMS$_WLK 

RMS$_BLN 

RMS$_DNR 

RMS$_NORMAL 

RMS$_STR 

RMS$_SYS 

RMS-44 



VMS RMS Services 
$FREE 

$FREE 

The Free service unlocks all records that were previously locked for the 
record stream. 

FORMAT SYS$FREE ra6(,(err](,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L _STS. 
Symbolic offset RAB$L _STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Free service call. The rab argument is the address of the RAB control 
block. 

err 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-45 



VMS RMS Services 
$FREE 

DESCRIPTION The Free service unlocks all records previously locked for the record stream 
(see also $RELEASE). If no records are locked for the record stream, VMS 
RMS returns a status code of RMS$_RNL. 

Table RMS-25 lists the control block fields read as input and written as 
output by the Free service. For additional information on the fields accessed 
by this service, see Part II. 

Table RMS-25 Free Service RAB Input and Output Fields 

Field 
Use Name Description 

Input RAB$W_ISI Internal stream identifier (required). 

Output RAB$L_STS Completion status code also returned in register 0). 

RAB$L _STV Status value. 

RETURN The following condition values are described in Appendix A: 

VALUES RMS$_ACT RMS$_BLN RMS$_BUG_DAP RMS$_ISI 

RMS$_NET RMS$_NETFAIL RMS$_NORMAL RMS$_PENDING 

RMS$_RAB RMS$_RNL RMS$_RSA RMS$_STR 

RMS$_SUC RMS$_SUP RMS$_SUPPORT 

RMS-46 



VMS RMS Services 
$GET 

$GET 

The Get service retrieves a record from a file. 

Note: When you invoke the GET service, RMS takes control of the record buffer 
and may modify it. RMS returns the record size and only guarantees the 
contents from where it accessed the record to the completion of the record. 

FORMAT 

RETURNS 

SYS$GET rab(,(err](,suc]J 

VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L _STS. 
Symbolic offset RAB$L _STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Get service call. The rab argument is the address of the RAB control 
block. 

err 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-47 



VMS RMS Services 
$GET 

DESCRIPTION The Get service is performed by using one of three possible record access 
modes, as specified by the record access (RAB$B_RAC) field. The three 
record access modes are sequential (SEQ), which is the default, random by 
key (KEY), and random by record file address (RFA). 

Relevant Record Access Modes 

The sequential access mode is relevant for all file organizations as well as for 
all devices. It is the only access mode allowed for nondisk devices, such as 
terminals, mailboxes, and magnetic tape devices. In this mode, records are 
retrieved from a given file in the same order in which they were written to 
that file. This is not the case, however, for records retrieved from indexed 
files. Sequential Get services for indexed files return records by key value in 
the specified sort order, ascending or descending. The next record's key of 
reference for sequential access to indexed files is established by one of the 
following services: 

• Connect 

• Rewind (see $REWIND) 

• Find or Get using random access by key 

• Find or Get using random access by RFA 

When you use random access by key with any operations related to these 
services, the key of reference is established by the key of reference field 
(RAB$B_KRF). When you use random access by RFA in conjunction with a 
Find or Get service, however, the key of reference is always set to the primary 
key. 

You can use random access by key to retrieve records by key value. For 
relative files and sequential files having fixed-length records, the key value 
is the relative record number. For indexed files, the key value depends on 
the data type of the specified key of reference. The key value is used to 
search the index of the specified key of reference to locate the desired record. 
A random access by key also establishes the next record for subsequent 
sequential retrieval. This type of access may be used in this way to establish 
a starting point for sequential retrieval of records at other than the beginning 
of the file. 

You can use random access by RFA to retrieve records directly from files 
residing on disk devices. However, a record's address can be determined only 
if the record has been accessed previously. The Find, Get, and Put services 
each return the RFA value as output in the RAB$W_RFA field. 

Random access of records in a file is prohibited when you open the file and 
select the FAB$V_SQO option; that is, if you specify sequential operations 
only. 

Input from Stream Format Files 

For stream format files, VMS RMS fills the user buffer with data until a 
terminator is reached. If the buffer fills before a terminator is encountered, 
the remainder of the data preceding the terminator is discarded, and an 
RMS$_RTB error is returned. If the terminator for stream format (FAB$B_ 
RFM contains FAB$C_STM) is not CRLF (carriage return followed by line 
feed), the terminator is stored in the buffer following the record and included 
in the size of the record. 

RMS-48 



VMS RMS Services 
$GET 

Input from Terminal Devices 

There are two methods of obtaining input from a terminal using VMS RMS: 

1 Using the RAB$L _ROP field to define the terminal input operation. 
Certain options applicable to the RAB$L _ROP field are used for terminal 
device input, such as whether a prompt is to be displayed and whether 
a time limit between characters is enforced. These options may require 
certain information to be placed in other fields of the RAB (see Chapter 7). 
The maximum buffer size is 512 bytes. 

2 Using an item list to define the terminal input operation in conjunction 
with a terminal XAB (XABTRM). The ETO option of the RAB$L _ROP 
field must be set and the user must provide an item list in the calling 
program, which VMS RMS passes to the terminal driver using the item 
list address and length specified in the XABTRM (see Chapter 18). This 
method allows use of any terminal input option supported by the terminal 
driver, in contrast to the subset of RAB$L _ROP options available using 
the other method. The maximum buffer size is 512 bytes. 

VMS RMS uses the standard terminator set when performing input operations 
from terminal devices. The second longword of the I/O status block used 
is returned in the RAB$L _STV field. The terminating character is returned 
in the lower word of the status value field (RAB$W_STVO); however, note 
that with extended terminal operations, the terminating character is in the 
first byte of RAB$W_STVO, not in the entire RAB$W_STVO word. More 
information about the second longword of the I/O status block is available in 
the VMS I/O User's Reference Manual: Part I in the VMS 1/O User's Reference 
Volume. The RAB$W_STVO field is device dependent for terminal devices. 

The CTRL/Z character terminates the Get service and acts as an end-of-file 
marker for VMS RMS. If you enter aCTRL/Z in response to a request for 
data, VMS RMS returns the completion status code for end-of-file (RMS$_ 
EOF). VMS RMS takes the data you enter before the CTRL/Z but the next 
Get service returns a single end-of-file error (RMS$_EOF) without accepting 
any further input from the device. VMS RMS resumes taking input if you 
request a subsequent Get service. 

VMS RMS also supports the use of escape sequences from terminal devices 
that are accessed locally and have escape sequences enabled. Escape 
sequences for a terminal are enabled by the SET TERMINAL command 
(described in the VMS DCL Dictionary). Escape sequences are returned in the 
record buffer. The record size (RAB$W_RSZ) is the offset within the buffer 
(RAB$L _RBF) to the beginning of the escape sequence. The high-order word 
of the status value field (RAB$W_STV2) contains the length of the escape 
sequence, except for extended terminal operations. In this case, the escape 
sequence length is returned in the first byte of RAB$W_STV2, not the entire 
RAB$W_STV2 word, and the terminator position is returned in the second 
byte of the RAB$W_STV2 word. When a partial escape sequence warning 
(RMS$_PES) is returned, the remaining characters in the escape sequence are 
returned by the next read request from the terminal. 

RMS-49 



VMS RMS Services 
$GET 

Input from Mailbox Devices 

Mailboxes may be used to synchronize activity across cooperating processes. 
Normally, a Get service from a mailbox device is not completed until a record 
is present in the mailbox. When the Get service is completed, the status value 
field (RAB$L _STV) contains the process identification (PID) of the process 
that put the record into the mailbox. However, if the timeout (TMO) record 
option is specified with a value of 0 in the timeout field and if no messages 
are present in the mailbox, then the Get service returns an end-of-file error 
(RMS$_EOF). This technique assures your process of an immediate return, 
whether or not messages are present in the mailbox. 

Using the RAB$L_STV Field 

The RAB$L _STV field contains additional status information for a number of 
situations. When the completion status is arecord-too-big warning (RMS$_ 
RTB), RAB$L _STV contains the total record size. For record-oriented devices 
such as terminals and mailboxes, the second longword of the I/O status 
block is returned in the RAB$L _STV field, whenever the completion status 
(RAB$L _STS) is a success code. The alternate field definitions of RAB$W_ 
STVO and RAB$W_STV2 are provided to reference the respective low- and 
high-order words of the RAB$L _STV field. The record size field (RAB$W_ 
RSZ) always reports the amount of data returned, regardless of the completion 
status (RAB$L _STS). The presence of valid data on error conditions may then 
be detected by checking the record size field. 

The User Record Area 

The Get service always requires the presence of a user record area, as 
specified by the user record buffer address (RAB$L _UBF) and user buffer 
area size (RAB$W_USZ) fields in the RAB. 

For undefined format files, the RAB$W_USZ field defines the amount of data 
to be returned on each Get service. 

Table RMS-26 lists the control block fields read as input by the Get service. 
For additional information on the fields accessed by this service, see Part II. 

Table RMS-26 Get Service RAB Input Fields 

Field Name 
Option or 
XAB Type Description 

RAB$W_ISI 

RAB$L _KBF 

RAB$B_KRF 

RAB$B_KSZ 

Internal stream identifier (required). 

Key buffer address: used only if the 
RAB$B_RAC field contains RAB$C_KEY, 
or if the RAB$B_RAC field contains 
RAB$C_SEQ and you select the RAB$V_ 
LIM option. 

Key of reference: used only with indexed 
files and only if the RAB$B_RAC field 
contains RAB$C_KEY. 

Key buffer size: used only if the RAB$B_ 
RAC field contains RAB$C_KEY, or if the 
RAB$B_RAC field contains RAB$C_SEQ 
and you select the RAB$V_LIM option. 

RMS-50 



VMS RMS Services 
$GET 

Table RMS-26 (Cont.) Get Service RAB Input Fields 

Field Name 
Option or 
XAB Type Description 

RAB$L _PBF' 

RAB$B_PSZ' 

RAB$B_RAC 

RAB$W_RFA 

RAB$L _RHB 

RAB$L _ROP 

RAB$V_ASY 

RAB$V_CVT' 

RAB$V_ETO' 

RAB$V_KGE3

RAB$V_KGT4

RAB$V_LIM 

RAB$V_LOC' 

RAB$V_NLK 

Prompt buffer address (applies to 
terminal devices only). 

Prompt buffer size (applies to terminal 
devices only). 

Record access mode (RAB$C_SEQ, 
RAB$C_KEY, RAB$C_RFA).2

Record file address: used only if the 
RAB$B_RAC field contains RAB$C_RFA. 

Record header buffer: used for the 
fixed-length control area of VFC records. 

Record-processing options. 

Asynchronous: performs Get services 
asynchronously. 

Convert: changes characters to 
uppercase for a Get service to a terminal 
device. 

Extended terminal operation: specifies 
that an XABTRM and an item list 
are used to define the terminal input 
operation. If this option is specified, no 
other RAB$L _ROP options applicable to 
terminal devices can be used. 

Search for equal key value or next key 
value according to sort order (applies 
only to indexed files). 

Search for next key value according to 
sort ot~der; if neither the RAB$V_KGE 
(RAB$V_EQNXT) option nor the RAB$V_ 
KGT (RAB$V_NXT) option is specified, 
VMS RMS looks for a key match. 

Limit: specifies that the key value 
described by the RAB$L _KBF field and 
the RAB$B_KSZ field is to be compared 
with the value in the record accessed 
sequentially. 

Locate mode: specifies that Get service 
record operations use locate mode. 

No lock: specifies that the record 
accessed through the Get service is 
not to be locked. 

This field is not supported for DECnet operations. 

2The default for the RAB$B_RAC field is RAB$C_SEQ. 

3This symbolic offset is logically synonymous with RAB$V_EQNXT. 

4This symbolic offset is logically synonymous with RAB$V_NXT. 

RMS-51 



VMS RMS Services 
$GET 

Table RMS-26 Cont.) Get Service RAB Input Fields 

Field Name 
Option or 
XAB Type Description 

RAB$V_NXR Nonexistent record processing: specifies 
that if the record directly accessed 
through a Get service does not exist, the 
service is to be performed anyway. 

RAB$V_PMT' Prompt: indicates that the contents of 
the prompt buffer are to be used as a 
prompt on a Get service to a terminal 
device. 

RAB$V_PTA' Purge type-ahead: eliminates any 
information that may be in the type-
ahead buffer, on a Get service to a 
terminal device. 

RAB$V_RAH' Read ahead: used with multiple buffers 
to indicate read-ahead operations 
(sequential files only►. 

RAB$V_REA Lock for read: allows other users read 
access to the record. 

RAB$V_RLK Read of locked record allowed: specifies 
that a user who locks a record for 
modification is allowing the locked record 
to be read by other accessors. 

RAB$V_RNE' Read no echo indicates that input data 
entered on the keyboard is not echoed 
(displayed) on the terminal device. 

RAB$V_RNF' Read no filter: indicates that CTRL/U, 
CTRL/R, and DELETE are not to be 
considered control commands on 
terminal input, but are to be passed 
to the application program. 

RAB$V_RRL Read regardless of lock: read the record 
even if another stream has locked the 
record. 

RAB$V_TMO' Timeout: indicates that the content of 
the timeout period field (RAB$B_TMO) is 
to be used. 

RAB$V_ULK Manual unlocking: specifies that records 
cannot be automatically unlocked. 

RAB$V_WAT Wait: if record is locked, wait until it is 
available. 

This field is not supported for DECnet operations. 

RMS-52 



VMS RMS Services 
$GET 

Table RMS-26 Cont.) Get Service RAB Input Fields 

Field Name 
Option or 
XAB Type Description 

RAB$B_TMO' 

RAB$L _UBF 

RAB$W_USZ 

RAB$L _XAB XABTRM' 

Timeout period: indicates the maximum 
number of seconds that VMS RMS 
allows between characters for a Get 
service to terminal and mailbox devices 
only, or the maximum number of seconds 
VMS RMS waits for a locked record 
if you specify the RAB$V_TMO and 
RAB$V_WAT options in the RAB$L_ 
ROP field. 

User record buffer address (required). 

User record buffer size (required). 

Next XAB address: indicates the address 
of an XABTRM control block (the 
RAB$L _ROP field RAB$V_ETO option 
must be set for an extended terminal 
operation) . 

This field is not supported for DECnet operations. 

Table RMS-2 7 lists the control block fields written as output by the Get 
service. 

Table RMS-27 Get Service RAB Output Fields 

Field Name Description 

RAB$L _BKT 

RAB$L _RBF 

RAB$W_RFA 

RAB$W_RSZ 

RAB$L _STS 

RAB$L_STV 

Bucket code: set to the relative record number for relative files 
when the record access mode is sequential. 

Record buffer address. 

Record file address. 

Record size. 

Completion status code (also returned in register 0). 

Status value (contains a terminator character for terminal input 
or the record length if the requested record is too large for the 
user buffer area). 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT RMS$_ANI RMS$_BES 

RMS$_BLN RMS$_BUG RMS$_BUG_DAP 

RMS$_CDA RMS$_CHK RMS$_CONTROLC 

RMS$_CONTROLY RMS$_DEADLOCK RMS$_DEL 

RMS$_DME RMS$_DNR RMS$_EOF 

RMS$_ENQ RMS$_EXENQLM RMS$_EXP 

RMS-53 



VMS RMS Services 
$GET 

RMS$_FAC RMS$_FTM RMS$_IBF 

RMS$_IOP RMS$_IRC RMS$_ISI 

RMS$_KBF RMS$_KEY RMS$_KRF 

RMS$_KSZ RMS$_MRN RMS$_NET 

RMS$_NETFAIL RMS$_NORMAL RMS$_OK_ALK 

RMS$_OK_DEL RMS$_OK_LIM RMS$_OK_RLK 

RMS$_OK_RNF RMS$_OK_RRL RMS$_OK_WAT 

RMS$_PBF RMS$_PENDING RMS$_PES 

RMS$_PLG RMS$_RAB RMS$_RAC 

RMS$_RER RMS$_RFA RMS$_RHB 

RMS$_RLK RMS$_RNF RMS$_ROP 

RMS$_RPL RMS$_RRV RMS$_RSA 

RMS$_RTB RMS$_SQO RMS$_STR 

RMS$_SUC RMS$_SUP RMS$_SUPPORT 

RMS$_SYS RMS$_TMO RMS$_TNS 

RMS$_TRE RMS$_UBF RMS$_WBE 

RMS$_WER RMS$_WLK RMS$_XAB 

RMS-54 



VMS RMS Services 
$NXTVOL 

$NXTVOL 

The Next Volume service allows you to process the next tape volume in 
a multiple volume set. This service applies only to files on magnetic tape 
volumes. 

FORMAT SYS$NXTVOL rab(,(errJ(,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L _STS. 
Symbolic offset RAB$L _STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Next Volume service call. The rab argument is the address of the RAB 
control block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-55 



VMS RMS Services 
$NXTVOL 

DESCRIPTION You use the Next Volume service when you want to proceed to the next 
volume in the set before the end of the current volume (EOV label) is reached 
on input, or before the end-of-tape (EOT) mark is reached on output. VMS 
RMS positions your process to the first file section on the next volume. File 
sections occur when a file is written on more than one volume, the portion of 
the file on each of the volumes constituting a file section. 

When you perform a Next Volume service for input files, VMS RMS responds 
as follows. 

• If the current volume is the last volume of the set, VMS RMS reports 
end-of-file information. 

• If another file section exists, the next volume is mounted. When 
necessary, the current volume is rewound and a request to mount the 
next volume is issued to the operator. 

• The header label (HDR 1) of the file section on the newly mounted volume 
is read. If this is not the volume being sought, the operator is requested 
to mount the correct volume. 

When you perform a Next Volume service for output files, the following 
sequence occurs: 

1 The file section on the current volume is closed with the appropriate 
end-of-volume labels, and the volume is rewound. 

2 The next volume is mounted. 

3 A file with the same file name and the next higher file section number is 
opened for output, and processing continues. 

If your program is operating asynchronously, it must wait for any I/O activity 
on this volume to complete before issuing a Next Volume service. 

The Next Volume service performs a Flush service for write-accessed volumes 
(see $FLUSH), thus writing the I/O buffers on the current volume before 
creating the next file section. If this is an input-only file, then all records 
currently contained in the I/O buffers are lost, and the next Get service 
returns the first record on the next volume. 

The Next Volume service is not supported for DECnet operations for remote 
file access between two VMS systems. 

Table RMS-28 lists the control block fields read as input and written as 
output by the Next Volume service. For additional information on the fields 
accessed by this service, see Part II. 

RMS-56 



VMS RMS Services 
$NXTVOL 

Table RMS-28 Next Volume Service RAB Input and Output Fields 

Use Field Name Description 

Input 

Output 

RAB$W_ISI 

RAB$L _ROP 

RAB$L _STS 

RAB$L _STV 

Internal stream identifier (required). 

Record-processing option, RAB$V_ASY. 
Asynchronous only: performs Next Volume service 
asynchronously. 

Completion status code (also returned in 
register 0). 

Status value. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT RMS$_BLN RMS$_CDA 

RMS$_DNR RMS$_DPE RMS$_IOP 

RMS$_NORMAL RMS$_PENDING RMS$_RAB 

RMS$_STR RMS$_SUC RMS$_SUP 

RMS$_SYS 

RMS$_DME 

RMS$_ISI 

RMS$_RSA 

RMS$_SUPPORT 

RMS-57 



VMS RMS Services 
$OPEN 

$OPEN 

The Open service makes an existing file available for processing by your 
program. The Open service specifies the type of record access to be used 
and determines whether or not the file can be shared. The Open service 
also performs an implicit Display service. 

FORMAT 

RETURNS 

SYS$OPEN fab((errj~,suc]] 

VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset FAB$L _STS. 
Symbolic offset FAB$L _STV may contain additional status information. 

ARGUMENTS fab 
VMS usage: fab 
type: longword unsigned) 
access: modify 
mechanism: by reference 

FAB control block whose contents are to be used as indirect arguments for the 
Open service call. The fab argument is the address of the FAB control block. 

err 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-58 



VMS RMS Services 
$OPEN 

DESCRIPTION You must open a file to perform any record operations and most file 
operations. If any XABs are chained to the FAB, VMS RMS places the 
attribute values in the fields of the appropriate XAB. If you specify a NAM 
block in the FAB, the contents of the device, directory, and file identification 
fields can be used with the open-by-NAM-block option to open the file. The 
NAM block fields are filled in with auxiliary file specification information. 

Table RMS-29 lists the control block fields read as input by the Open service. 
For additional information on the fields accessed by this service, see Part II. 

Table RMS-29 Open Service FAB and XAB Input Fields 

Field Name 
Option or 
XAB type Description 

FAB$V_CHAN_MODE3 Channel access mode assignment. 

FAB$W_DEQ Default file extension quantity: if 
a nonzero value is present in this 
field, it applies only to this open of 
the file. 

FAB$L _DNA Default file specification string 
address. 

FAB$B_DNS Default file specification string size. 

FAB$B_FAC File access field. 

FAB$V_BIO Block I/O access. 

FAB$V_BRO Block or record I/O. 

FAB$V_DEL Delete access. 

FAB$V_GET' Read access. 

FAB$V_PUT Write access. 

FAB$V_TRN Truncate access. 

FAB$V_UPD Update access. 

FAB$L _FNA2 File specification string address. 

FAB$B_FNS2 File specification string size. 

FAB$L _FOP File-processing options. 

FAB$V_DFW3 Deferred write: indicates that 
writing back to the file from the 
modified buffer is deferred (applies 
to relative and indexed files only). 

FAB$V_DLT Delete: indicates the file is to be 
deleted when it is closed. 

FAB$V_NAM3 Name block inputs: indicates that 
the NAM$W_FID, NAM$W_DID, 
and NAM$T_DVI fields in the 
specified NAM block are to be 
used to describe the file. 

~ This is the default value supplied by VMS RMS. 

2These fields must be specified by the user. 

3This field is not supported for DECnet operations. 

RMS-59 



VMS RMS Services 
$OPEN 

Table RMS-29 (Cont.) Open Service FAB and XAB Input Fields 

Field Name 
Option or 
XAB type Description 

FAB$V_NFS3 Non-file-structured: indicates that 
the accessed volume is to be 
processed in a non-file-structured 
manner. 

FAB$V_OFP Output file parse: specifies that 
the related file resultant file 
specification string, if used, is 
to provide file name and file type 
defaults only. 

FAB$V_RCK Read-check: indicates that transfers 
from disk are to be checked by a 
followup, read-compare operation. 

FAB$V_RWC Rewind on close (applies to 
magnetic tapes only). 

FAB$V_RWO Rewind on open (applies to 
magnetic tapes only). 

FAB$V_SCF3 Submit command file: indicates 
that the file is to be submitted as a 
batch-command file to the process 
default batch queue (SYS$BATCH) 
when the file is closed (applies to 
sequential files only). 

FAB$V_SPL3 Spool: indicates that the file is to 
be spooled to the process default 
print queue (SYS$PRINT) when the 
file is closed (applies to sequential 
files only). 

FAB$V_SQO Sequential only: indicates that 
the file can be processed in a 
sequential manner only. 

FAB$V_TEF Truncate at end of file: indicates 
that unused space allocated to a 
file is to be deallocated when that 
file is closed (applies to sequential 
files only). 

FAB$V_UF03 User file open: indicates the file 
is to be opened only (no further 
VMS RMS processing of that file is 
allowed). 

FAB$V_WCK Write-check: indicates that 
transfers to disk are to be followed 
by aread-compare operation. 

FAB$B_FSZ Fixed control area size: unit record 
devices only. 

FAB$W_IFI Internal file identifier (must be 0►. 

3This field is not supported for DECnet operations. 

RMS-60 



VMS RMS Services 
$OPEN 

Table RMS-29 (Cont.) Open Service FAB and XAB Input Fields 

Field Name 
Option or 
XAB type Description 

FAB$V_LNM _MODES

FAB$L _NAM 

FAB$B_RAT 

FAB$B_RFM 

FAB$B_RTV3

FAB$B_SHR 

FAB$L _XAB4

FAB$V_SHRDEL 

FAB$V_SHRGET 

FAB$V_MSE3

FAB$V_NIL 

FAB$V_SHRPUT 

FAB$V_SHRUPD 

FAB$V_UPI 

XABITM 

Specifies the logical name 
translation access mode. 

Name block address. 

Record attributes; only for process 
permanent files with print file 
format. 

Record format; unit record devices 
only. 

Retrieval window size. 

File-sharing field. 

Shared delete access. 

Shared read access. 

Multistream access; also used with 
the FAB$V_MSE and FAB$V_GET 
bits to specify aread-only global 
buffer cache when global buffering 
is enabled. 

No shared access. 

Shared write access. 

Shared update access. 

Shared write access for block I/O 
(applies to sequential files only). 

Extended attribute block address. 

Item list XAB; see Chapter 1 1. 

3This field is not supported for DECnet operations. 

4The appropriate XAB must be specified as input if you desire information about that 
particular XAB on output from the Open Service. 

Table RMS-30 lists the control block fields written as output by the Open 
service. 

Table RMS-30 Open Service FAB and XAB Output Fields 

Field Name 
Option or 
XAB Type Description 

FAB$L _ALQ 

FAB$B_BKS 

FAB$W_BLS 

FAB$W_DEQ 

Allocation quantity: contains the highest 
numbered block allocated to the file. 

Bucket size (does not apply to sequential 
files). 

Device block size (applies only to sequential 
files). 

Default file extension quantity. 

RMS-61 



VMS RMS Services 
$OPEN 

Table RMS-30 (Cont.) Open Service FAB and XAB Output Fields 

Field Name 
Option or 
XAB Type Description 

FAB$L_DEV. 

FAB$B_FAC 

FAB$L _FOP 

FAB$B_FSZ 

FAB$W_GBC 

FAB$W_IFI 

FAB$L _MRN 

FAB$W_MRS 

FAB$B_ORG 

FAB$B_RAT 

FAB$B_RFM 

FAB$L _SDC 

FAB$B_SHR 

FAB$L _STS 

FAB$L _STV 

FAB$L _XAB 

FAB$V_CBT 

FAB$V_CTG 

FAB$V_RCK 

FAB$V_WCK 

XABALL 

XABDAT 

XABFHC 

XABITM 

XABKEY 

XABPRO 

XABRDT 

XABSUM 

Device characteristics. 

File access. 

File-processing options. 

Contiguous best try: indicates that the file 
is allocated contiguously on a "best effort" 
basis. 

Contiguous: indicates that space for the file 
is allocated contiguously. 

Read-check: transfers are followed up by a 
read-compare operation. 

Write-check: transfers are followed up by a 
read-compare operation. 

Fixed-length control area size (applies only to 
VFC records). 

Global buffer count. 

Internal file identifier. 

Maximum record number (for relative files 
only). 

Maximum record size. 

File organization. 

Record attributes; used as output field except 
for process-permanent files with print file 
format. 

Record format. 

Spooling device characteristics. 

File sharing. 

Completion status code (also returned in 
register 0►. 
Status value (contains the I/O channel 
number if the operation is successful). 

Next XAB address. 

Allocation XAB; see Chapter 8. 

Date and time XAB; see Chapter 9. 

File header characteristics XAB; see 
Chapter 10. 

Item list XAB; see Chapter 1 1. 

Key definition XAB; see Chapter 13. 

Protection XAB; see Chapter 14. 

Revision date and time XAB; see Chapter 15. 

Summary XAB; see Chapter 17. 

RMS-62 



VMS RMS Services 
$OPEN 

Using the Name Block for Opening Files 

Table RMS-31 and Table RMS-32 list the NAM block fields (further described 
in Chapter 6) used as input and output for the Open service (provided that 
the NAM block address field is specified in the FAB). 

Table RMS-31 Open Service NAM Block Input Fields 

Field Name Option Description 

NAM$W_DID' Directory identification (input only if 
the FAB$L _FOP field FAB$V_NAM 
option is set). 

NAM$T_DVI' Device identification (input only if 
the FAB$L _FOP field FAB$V_NAM 
option is set). 

NAM$L _ESA Expanded string area address. 

NAM$B_ESS Expanded string area size. 

NAM$W_FID' File identification (input only if the 
FAB$L_FOP field FAB$V_NAM 
option is set). 

NAM$B_NOP NAM block options. 

NAM$V_PWD Password: indicates that a password 
contained in a DECnet access 
control string, if present in a file 
specification, is to be left unaltered 
in the expanded and resultant strings 
(instead of being replaced by the 
word "password") . 

NAM$V_NOCONCEAL Do not conceal device name: 
indicates that when a concealed 
device logical name is present, the 
concealed device logical name is to 
be replaced by the actual physical 
device name in the resultant string. 

NAM$L _RLF Related file NAM block address. 

NAM$B_RSL Related file NAM block resultant 
string length. 

NAM$L _RSA Related file NAM block resultant 
string address. 

NAM$L_FNB Related file NAM block file name 
status bits. 

NAM$L _RSA Resultant string area address. 

NAM$B_RSS Resultant string area size. 

~ This field is not supported for DECnet operations. 

RMS-63 



VMS RMS Services 
$OPEN 

Table RMS-32 Open Service NAM Block Output Fields 

Field Name Description 

NAM$W_DID' 

NAM$T_DVI' 

NAM$B_ESL 

NAM$W_FID' 

NAM$L _FNB 

NAM$B_RSL 

Directory identification. 

Device identification. 

Expanded string length. If the NAM$L _ESA and NAM$B_ESS 
fields are nonzero, and if the FAB$L _FOP field FAB$V_NAM 
option is clear or the NAM$W_DID and NAM$W_FID fields 
are 0 on input, the expanded file specification string is copied 
to the buffer specified by the NAM$L _ESA field. 

File identification. 

File name status bits. 

Resultant string length. If the NAM$L _RSA field and the 
NAM$B_RSS field are nonzero, and if the FAB$V_NAM bit is 
clear or the NAM$W_FID field is zero when you invoke the 
Open service, the resultant file specification is copied to the 
buffer specified by the NAM$L _RSA field. 

~ This field is not supported for DECnet operations. 

The NAM block file specification string descriptors can be used to identify 
individual components of the expanded or resultant file specification. These 
fields include the following: 

• NAM$B_NODE and NAM$L_NODE 

• NAM$B_DEV and NAM$L _DEV 

• NAM$B_DIR and NAM$L _DIR 

• NAM$B_NAME and NAM$L _NAME 

• NAM$B_TYPE and NAM$L _TYPE 

• NAM$B_VER and NAM$L _VER 

For additional information about these descriptors, see Chapter 6. 

RETURN The following condition values are described in Appendix A: 

VALUES RMS$_ACC RMS$_ACS RMS$_ACT 

RMS$_AID RMS$_ATR RMS$_BLN 

RMS$_BUG_DAP RMS$_BUG_DDI RMS$_CHN 

RMS$_COD RMS$_CRMP RMS$_DEV 

RMS$_DIR RMS$_DME RMS$_DNA 

RMS$_DNF RMS$_DNR RMS$_DVI 

RMS$_ENQ RMS$_ENV RMS$_ESA 

RMS$_ESS RMS$_EXP RMS$_FAB 

RMS$_FLK RMS$_FNA RMS$_FNF 

RMS$_FNM RMS$_FOP RMS$_IFA 

RMS-64 



VMS RMS Services 
$OPEN 

RMS$_IFI RMS$_IMX RMS$_IRC 

RMS$_KNM RMS$_KSI RMS$_LNE 

RMS$_NAM RMS$_NET RMS$_NETFAIL 

RMS$_NOD RMS$_NORMAL RMS$_OK_NOP 

RMS$_ORG RMS$_PLG RMS$_PLV 

RMS$_PRV RMS$_QUO RMS$_RAT 

RMS$_REF RMS$_RLF RMS$_RPL 

RMS$_RSS RMS$_RST RMS$_RUNDOWN 

RMS$_SHR RMS$_STR RMS$_SUC 

RMS$_SUP RMS$_SUPERSEDE RMS$_SUPPORT 

RMS$_SYN RMS$_SYS RMS$_TYP 

RMS$_UPI RMS$_VER RMS$_WLK 

RMS$_XAB 

RMS-65 



VMS RMS Services 
$PARSE 

$PARSE 

The Parse service analyzes the file specification string and fills in various 
NAM block fields. 

FORMAT SYS$PARSE fab(,(err](,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset FAB$L _STS. 
Symbolic offset FAB$L _STV may contain additional status information. 

ARGUMENTS fab 
VMS usage: fab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

FAB control block whose contents are to be used as indirect arguments for the 
Parse service call. The fab argument is the address of the FAB control block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-66 



VMS RMS Services 
$PARSE 

DESCRIPTION The functions of the Parse service are performed automatically as part of the 
Open, Create, and Erase services. One special purpose of the Parse service is 
to prepare the FAB and NAM blocks for wildcard character processing to be 
used in the Search service. If wildcard characters, search list logical names, 
or a node name are present in the file specification, VMS RMS allocates 
internal data structures (including a device channel) to store the context 
for subsequent searches. This space is released when the Search service 
encounters a no-more-files condition (in which case an RMS$_NMF error 
status is returned) or when another Parse service is performed using the same 
FAB and NAM blocks. To release this space, use a Parse service that specifies 
the NAM$B_NOP field NAM$V_SYNCHK option and sets the FAB$B_DNS 
and NAM$L _RLF fields to zero. 

Note that the file must be closed before you invoke the Parse service 
(FAB$W_IFI must be 0). 

By default, the Parse service assigns a channel to the device and does a 
lookup of the directory in addition to analyzing the file specification and 
filling in the NAM block fields. To request a Parse service without I/O, 
specify the NAM$B_NOP field NAM$V_SYNCHK option. The result of 
a Parse service without I/O cannot be used as input to subsequent Search 
services. 

Table RMS-33 and Table RMS-34 list the fields in both the FAB and NAM 
block that the Parse service uses as input and output. In addition, the string 
component descriptors are filled in by VMS RMS as output from the expanded 
string (see Chapter 6). 

The expanded file specification string is moved to the buffer described by 
the expanded string area address (NAM$L _ESA) and size (NAM$B_ESS) 
fields of the NAM block (only if both fields are nonzero). The NAM$L _ESA 
and NAM$B_ESS fields must be specified (nonzero) for wildcard character 
processing. 

Table RMS-33 lists the control block fields read as input by the Parse service. 
For additional information on the fields accessed by this service, see Part II. 

Table RMS-33 Parse Service FAB and NAM Block Input Fields 

Field Name Option Description 

FAB$L _DNA Default file specification string. 

FAB$B_DNS Default file specification string size. 

FAB$L _FNA File specification string address. 

FAB$B_FNS File specification string size. 

FAB$L _FOP File-processing option, FAB$V_OFP. 
Output file parse: indicates that VMS 
RMS uses only the file name and file 
type fields of a related file resultant 
string whose address is contained in 
the NAM$L _RSA field. 

FAB$W_IFI Internal file identifier must be zero). 

FAB$L _NAM Name block address. 

NAM$L _ESA Expanded string area address. 

RMS-67 



VMS RMS Services 
$PARSE 

Table RMS-33 (Cont.) Parse Service FAB and NAM Block Input 
Fields 

Field Name Option Description 

NAM$B_ESS 

NAM$B_NOP 

NAM$L _RLF 

Expanded string area size. 

NAM block options. 

NAM$V_NOCONCEAL Do not conceal device name: indicates 
that when a concealed device logical 
name is present, the concealed device 
logical name is to be replaced by the 
actual physical device name in the 
expanded string. 

NAM$V_PWD Password: indicates that a password 
contained in a DECnet access control 
string, if present in a file specification, 
is to be left unaltered in the expanded 
and resultant strings (instead of being 
replaced by the word "password"). 

NAM$V_SYNCHK Performs Parse service with no I/O. 

Related file NAM block address. 

NAM$L _RSA Related file NAM block resultant string 
area address. 

NAM$B_RSL 

NAM$L _FNB 

Related file NAM block resultant string 
length. 

Related file NAM block file name 
status bits. 

Table RMS-34 lists the control block fields written as output by the Parse 
service. 

Table RMS-34 Parse Service FAB and NAM Block Output Fields 

Field Name Description 

FAB$L _DEV 

FAB$L _SDC 

FAB$L _STS 

FAB$L _STV 

NAM$B_DEV 

NAM$L _DEV 

NAM$W_DID~ 

NAM$B_DIR 

NAM$L _DIR 

Device characteristics (unless you select the NAM$V_ 
SYNCHK option). 

Secondary device characteristics (unless you select the 
NAM$V_SYNCHK option). 

Completion status code (also returned in register 0). 

Status value. 

Address of file specification device descriptor. 

Size of file specification device descriptor. 

Directory identification (unless you select the NAM$V_ 
SYNCHK option). 

Address of file specification directory descriptor. 

Size of file specification directory descriptor. 

This field is not supported for DECnet operations. 

RMS-68 



VMS RMS Services 
$PARSE 

Table RMS-34 (Cont.~ Parse Service FAB and NAM Block Output 
Fields 

Field Name Description 

NAM$T_DVI' 

NAM$B_ESL 

NAM$W_FID' 

NAM$L _FNB 

NAM$B_NAME 

NAM$L _NAME 

NAM$B_NODE 

NAM$L _NODE 

NAM$B_RSL 

NAM$B_TYPE 

NAM$L _TYPE 

NAM$B_VERSION 

NAM$L _VERSION 

NAM$L _WCC 

Device identification (unless you select the NAM$V_ 
SYNCHK option). 

Expanded string length. 

File identification (zeroed). 

File name status bits: contains information about the 
parse results. 

Address of file specification name descriptor. 

Size of file specification name descriptor. 

Address of file specification node descriptor. 

Size of file specification node descriptor. 

Resultant string length (zeroed). 

Address of file specification type descriptor. 

Size of file specification type descriptor. 

Address of file specification version descriptor. 

Size of file specification version descriptor. 

Wildcard context. 

i This field is not supported for DECnet operations. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACS 

RMS$_CHN 

RMS$_DNA 

RMS$_ESS 

RMS$_IFI 

RMS$_NORMAL 

RMS$_STR 

RMS$_VER 

RMS$_BLN 

RMS$_DEV 

RMS$_DNF 

RMS$_FAB 

RMS$_LNE 

RMS$_QUO 

RMS$_SUC 

RMS$_WCC 

RMS$_BUG _DDI 

RMS$_DIR 

RMS$_DNR 

RMS$_FNA 

RMS$_NAM 

RMS$_RLF 

RMS$_SYN 

RMS$_CDA 

RMS$_DME 

RMS$_ESA 

RMS$_FNM 

RMS$_NOD 

RMS$_RUNDOWN 

RMS$_TYP 

RMS-69 



VMS RMS Services 
$PUT 

$PUT 

The Put service inserts a record into a file. 

FORMAT SYS$PUT rab(,(err](,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L_STS. 
Symbolic offset RAB$L_STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Put service call. The rab argument is the address of the RAB control 
block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

DESCRIPTION The Put service usually adds records to the logical end of a sequential file. 
For relative files, it may add records to the logical end of the file or it may 
insert new records in cells formerly occupied by deleted records. VMS RMS 
directs the Put service where to insert the record using the contents of the 
record's primary key field. 

RIViS-70 



VMS RMS Services 
$PUT 

Inserting Records into Sequential Files 

When using sequential record access mode to process sequential files, you 
usually insert records at the end of the file only. The records to be inserted 
cannot be larger than the maximum length that was specified when the file 
was created. 

You can use random access by relative record number mode and the update-if 
record-processing option (RAB$V_UIF) to insert fixed-length records into a 
sequential file residing on a disk device. 

VMS RMS also provides for establishing the logical end of the file when two 
or more processes are doing shared write operations. For example, assume 
that processes A and B are sharing a sequential file and each process is putting 
data into the file. Process A puts a record at the end of the file and intends to 
put another record at the new end-of-file location. However, before process A 
can put the next record in the file, process B gains access to the file and puts 
a record at the end of the file. In order to ensure that the next record from 
process A does not overwrite the record just inserted by process B, VMS RMS 
updates process A's write pointer to the new end-of-file position. That is, the 
location immediately following the location of process B's record. 

The truncate-on-put option (RAB$V_TPT) can be used with sequential files. 
This option lets you add records at locations other than the logical end of 
the file. When you add a record using the truncate-on-put option, the file is 
automatically truncated, effectively deleting all data between the new record 
(logical end of the file) and the physical end of the file. If you try to use this 
option without having truncate access, VMS RMS rejects the operation and 
issues a file access error (RMS$_FAC). 

For stream format files, VMS RMS writes the contents of the user's buffer into 
the file beginning at the current entry position. If the last byte in the buffer 
is not a terminator, VMS RMS automatically adds the appropriate terminator. 
For stream format, the terminator is CRLF (carriage return character followed 
immediately by a line feed character). 

Mailboxes may be used to synchronize activity between processes. Usually, 
a Put service to a mailbox does not conclude until another accessor reads the 
record. If you select the timeout option (RAB$V_TMO) and specify a timeout 
period of 0, the Put service does not wait for another accessor to read the 
record. 

At the conclusion of the Put service, the RAB$L _STV field contains the 
process identification (PID) of the process that read the record. 

Inserting Records into Relative Files 

When processing relative files, you can use either sequential or random access 
by key mode. Records cannot be larger than the size specified at file creation 
time, and the record's relative record number must not exceed the maximum 
record number established for the file. Usually, if the target record cell for 
a Put service contains arecord, arecord-already-exists error (RMS$_REX) is 
returned as the completion status (RAB$L _STS). If you specify the update-if 
(RAB$V_UIF) record option, VMS RMS overwrites the existing record instead 
of returning an error message. If you try to use the update-if option but do 
not have update access, VMS RMS rejects the operation and issues a file 
access error (RMS$_FAC). 

RMS-71 



VMS RMS Services 
$PUT 

Inserting Records into Indexed Files 

In an indexed file, you can use sequential access or random access by key 
mode. When sequential access is used to insert records, the primary key 
value of the record to be inserted must be consistent with the specified sort 
order of the file. That is, the key must be greater than or equal to the primary 
value of the previous record if ascending sort order is specified. If descending 
sort order is specified, the key must be less than or equal to the primary key 
value of the previous record. 

The records cannot be larger than the size established when the file was 
created if a maximum length was specified. Each record written must contain 
a primary key, but the records do not have to contain alternate keys. If 
alternate keys are partially or completely missing because of the record length 
limitation, VMS RMS does not make an entry for the record in the associated 
alternate index. Put services to an indexed file do not require a separate key 
value or key of reference. By examining the contents of the primary key in 
the record, VMS RMS determines where to insert the record. 

When inserting a record into an indexed file, VMS RMS compares the key 
values in the record with the key values of records previously inserted into 
the file to determine whether or not the new record's key value duplicates 
any existing key values. If the record duplicates a key value in an index 
where duplication is not allowed, VMS RMS rejects the operation with an 
RMS$_DUP error code. Where duplicate keys are allowed, VMS RMS inserts 
the record. 

Records with duplicate keys are inserted in chronological order; that is, VAX 
RMS inserts each record having duplicate keys at the end of a "chain" of 
identically keyed records so that newer records are stored closer to the end of 
the file regardless of sort order. 

If you specify the update-if (RAB$V_UIF) option when duplicates are not 
allowed on the primary key, VMS RMS overwrites the existing record 
with the same primary key value, rather than returning a duplicate record 
error (RMS$_DUP). This gives the appearance of an Update service being 
performed on the existing record. Alternate key values are modified to reflect 
the newly inserted record. 

To use the RAB$V_UIF option, you must have update access to the file. If 
update access to the file is not permitted, the Put service (which becomes an 
Update service when this option is selected) fails, and VMS RMS returns a 
file access error (RMS$_FAC). 

Be careful when invoking the PUT service with the RAB$V_UIF option and 
automatic record locking for a shared file. The Put service, unlike the Update 
service, momentarily releases record locks previously applied by a Get or 
Find service, until the PUT service is converted into an Update service. This 
could allow another record stream to delete or update the record between the 
invocation of the Put service and the conversion to an Update service. To 
avoid this complication, you should use the Update service instead of the Put 
service with the update-if option to update an existing record in afile-sharing 
situation. 

The record address field (RAB$L _RBF) and the record size field (RAB$W_ 
RSZ) are required inputs to the Put service, and some Put service options 
require additional fields. 

A successful Put service returns the record file address (RFA) in the RAB$W_ 
RFA field. 

RMS-72 



VIV~S RMS Services 
$PUT 

Table RMS-35 lists the control block fields read as input by the Put service. 
For additional information on the fields accessed by this service, see Part II. 

Table RMS-35 Put Service RAB Input Fields 

Option or 
Field Name XAB Type Description 

RAB$W_ISI 

RAB$L _KBF 

RAB$B_KSZ 

RAB$B_RAC 

RAB$L _RBF 

RAB$L _RHB 

RAB$W_RSZ 

RAB$L _ROP 

Internal stream identifier (required). 

Key buffer address (used as input only with 
random access by relative record number 
mode). 

Key size (used only if RAB$B_RAC is KEY 
and the file is a relative file). 

Record access mode (SEQ, KEY)' . 

Record buffer address. 

Record header buffer (applies only to 
variable with fixed control records). 

Record size. 

Record-processing options. 

RAB$V_ASY Asynchronous: performs Put services 
asynchronously. 

RAB$V_CCO2 Cancel CTRL/O: guarantees that terminal 
output is not discarded if the operator 
enters CTRL/O. 

RAB$V_LOA Load: specifies that buckets are to be 
loaded according to the fill size established 
at file creation time. 

RAB$V_REA3 Lock for read: allows other users read 
access to the record. This is not valid for 
relative files. 

RAB$V_RLK3 Read of locked record allowed: specifies 
that a user who locks a record for 
modification is allowing the locked record 
to be read by other accessors. 

Timeout: indicates that the content of the 
timeout period field (RAB$B_TMO) is to be 
used. 

RAB$V_TM02

RAB$V_TPT Truncate-on-put: specifies that a Put 
service with a record accessed sequentially 
can occur at any point in the file, truncating 
the file at that point. 

RAB$V_UIF Update-if: converts a Put service to a 
record that already exists to an Update 
service. 

~ The default for the RAB$B_RAC field is RAB$C_SEQ. 

2This field is not supported for DECnet operations. 

3This option is meaningless unless you specify manual unlocking. 

RMS-73 



VMS RMS Services 
$PUT 

Table RMS-35 (Cont.) Put Service RAB Input Fields 

Field Name 
Option or 
XAB Type Description 

RAB$V_ULK 

RAB$V_WBH 

RAB$V_WAT 

RAB$B_TMO' 

Manual unlocking: specifies that records 
cannot be automatically unlocked. 

Write behind: two buffers are allocated to 
allow multibuffering. 

Wait: if record is locked, wait until it is 
available (applies to relative files). 

Timeout period: a value of zero indicates 
that VMS RMS should not wait to complete 
a Put service (applies to mailbox devices 
only). 

The default for the RAB$B_RAC field is RAB$C_SEQ. 

Table RMS-36 lists the control block fields written as output by the Put 
service. 

Table RMS-36 Put Service RAB Output Fields 

Field Name 
Option or 
XAB Type Description 

RAB$L _BKT 

RAB$W_RFA 

RAB$L _STS 

RAB$L _STV 

Bucket code: set to the relative record number 
for sequential access to relative files. 

Record file address. 

Completion status code (also returned in 
register 0). 

Status value' . 

~ On the successful completion of a Put service to arecord-oriented device, the RAB$L _ 
STV field contains the second longword of the I/O status block. See the VMS 1/O User's 
Reference Manual: Part I in the VMS 1/O User's Reference Volume for details on specific 
devices. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT RMS$_BLN RMS$_BUG 

RMS$_BUG_DAP RMS$_CDA RMS$_CHK 

RMS$_CONTROLC RMS$_CONTROLO RMS$_CONTROLY 

RMS$_DME RMS$_DNR RMS$_DUP 

RMS$_ENQ RMS$_EXT RMS$_FAC 

RMS$_FTM RMS$_FUL RMS$_IBF 

RMS$_IDX RMS$_IOP RMS$_IRC 

RMS$_ISI RMS$_KBF RMS$_KEY 

RMS-74 



VMS RMS Services 
$PUT 

RMS$_KSZ RMS$_MRN RMS$_NEF 

RMS$_NET RMS$_NETFAIL RMS$_NORMAL 

RMS$_OK_ALK RMS$_OK_DUP RMS$_OK_IDX 

RMS$_PENDING RMS$_PLG RMS$_RAB 

RMS$_RAC RMS$_RBF RMS$_RER 

RMS$_REX RMS$_RHB RMS$_RLK 

RMS$_RPL RMS$_RRV RMS$_RSA 

RMS$_RSZ RMS$_RVU RMS$_SEQ 

RMS$_SQO RMS$_STR RMS$_SUC 

RMS$_SUP RMS$_SUPPORT RMS$_SYS 

RMS$_TRE RMS$_WBE RMS$_WER 

RMS$_WLK RMS$_WPL 

RMS-75 



VMS RMS Services 
$READ 

$READ 

The Read service retrieves a specified number of bytes from a file 
(beginning on a block boundary) and transfers them to memory. A Read 
service using block I/O can be performed on any file organization. 

FORMAT SYS$READ rab(,(err](,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L_STS. 
Symbolic offset RAB$L _STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Read service call. The rab argument is the address of the RAB control 
block. 

err 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-76 



VMS RMS Services 
$READ 

DESCRIPTION To use the Read service, you must do the following: 

1 Supply a buffer area into which VMS RMS is to transfer data (user record 
area address field, RAB$L _UBF). 

2 Indicate the number of bytes to be transferred (user record area size field, 
RAB$W_USZ). 

3 Indicate the first virtual block number (VBN) for the transfer (bucket 
number field, RAB$L _BKT). If the value for the VBN is 0, the transfer 
starts with the block indicated by the NBP (Next Block Pointer). 

Table RMS-3 7 lists the control block fields read as input by the Read service. 
For additional information on the fields accessed by this service, see Part II. 

Table RMS-37 Read Service RAB Input Fields 

Field Name Description 

RAB$L _BKT 

RAB$W_ISI 

RAB$L _ROP 

RAB$L _UBF 

RAB$W_USZ 

Bucket number: must contain the virtual block number of the 
first block to read. When this field has a value of 0, then the 
next block is read. 

Internal stream identifier. 

Record-processing option, ASY (RAB$V_ASY). Asynchronous: 
performs Read services asynchronously. 

User record buffer address. For block I/O, alignment of the 
user's record buffer on a page or at least a quadword boundary 
may improve performance. 

User record area size: indicates the length of the transfer, in 
bytes' . 

~ Certain devices require that an even number of bytes be transferred. For further details, 
see the VMS 1/O User's Reference Manual: Part 1 in the VMS I/O User's Reference 
Volume. 

Table RMS-38 lists the control block fields written as output by the Read 
service. 

Table RMS-38 Read Service RAB Output Fields 

Field Name Description 

RAB$L_RBF 

RAB$W_RFA 

RAB$W_RSZ 

RAB$L _STS 

RAB$L _STV 

Record address. 

Record file address. 

Record size: indicates the actual number of bytes transferred. 

Completion status code (also returned in register 0). 

Status value. 

RMS-77 



VMS RMS Services 
$READ 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT 

RMS$_CONTROLC 

RMS$_EOF 

RMS$_ISI 

RMS$_PBF 

RMS$_RSA 

RMS$_SUPPORT 

RMS$_USZ 

RMS$_BLN 

RMS$_CONTROLY 

RMS$_FAC 

RMS$_NET 

RMS$_PENDING 

RMS$_STR 

RMS$_SYS 

RMS$_WBE 

RMS$_BUG_DAP 

RMS$_DME 

RMS$_FTM 

RMS$_NETFAIL 

RMS$_RAB 

RMS$_SUC 

RMS$_TMO 

RMS$_CDA 

RMS$_DNR 

RMS$_IOP 

RMS$_ 
NORMAL 

RMS$_RER 

RMS$_SUP 

RMS$_UBF 

RMS-78 



VMS RMS Services 
$RELEASE 

$RELEASE 

The Release service unlocks the record specified by the contents of the 
record file address (RAB$W_RFA) field of the RAB. 

FORMAT SYS$RELEASE rab(,(err](,suc]J 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L _STS. 
Symbolic offset RAB$L _STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Release service call. The rab argument is the address of the RAB control 
block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-79 



VMS RMS Services 
$RELEASE 

DESCRIPTION The Release service unlocks a specified record (see also the discussion of the 
Free service). If the named record is not locked, VMS RMS returns a status 
code of RMS$_RNL. 

Table RMS-39 lists the control block fields read as input and written as 
output by the Release service. For additional information on the fields 
accessed by this service, see Part II. 

Table RMS-39 Release Service RAB Input and Output Fields 

Field Name Description 

Input RAB$W_ISI 

RAB$W_RFA 

Output RAB$L _STS 

RAB$L _STV 

Internal stream identifier (required). 

Record file address (required). 

Completion status code (also returned in register 0►. 
Status value. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT 

RMS$_ISI 

RMS$_PENDING 

RMS$_STR 

RMS$_BLN 

RMS$_NET 

RMS$_RAB 

RMS$_SUC 

RMS$_BUG_DAP 

RMS$_NETFAIL 

RMS$_RNL 

RMS$_SUP 

RMS$_CDA 

RMS$_NORMAL 

RMS$_RSA 

RMS$_SUPPORT 
~„I 

RMS-80 



VMS RMS Services 
$REMOVE 

$REMOVE 

The Remove service deletes a file name from a directory. It is the reverse 
of the Enter service. 

FORMAT SYS$REMOVE fab(,(errJ(,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset FAB$L _STS. 
Symbolic. offset FAB$L _STV may contain additional status information. 

ARGUMENTS fab 
VMS usage: fab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

FAB control block whose contents are to be used as indirect arguments for 
the Remove service call. The fab argument is the address of the FAB control 
block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-81 



VMS RMS Services 
$REMOVE 

DESCRIPTION The Remove service searches for the first file name that matches the expanded 
name string and directory ID in the user's NAM block, and then it deletes 
the file name without deleting the actual file. The Remove service is similar 
to the Erase service, except that the Erase service also deletes the file after 
performing an implicit Remove. Note that you must close the file before 
invoking the Remove service (that is, the value of FAB$W_IFI must be 0). 

The Remove service accepts wildcard characters and search lists, and it 
is usually preceded by a call to the Parse service in order to fill in the 
appropriate fields of the NAM block. Because the Remove service returns 
the wildcard context field of the NAM block (NAM$L _WCC), the Remove 
service can be used on multiple successive calls in order to remove successive 
file names that match a wildcard file specification. 

Be careful when you mix calls to the Search and Remove services. For 
example, assume you invoke the following service sequence: 

• PARSE 

• SEARCH 

REMOVE 

• SEARCH 

• REMOVE 

VMS RMS responds by doing the following: 

1 Searches for the first file specification that matches the expanded name 
string 

2 Searches for and removes the second file specification 

3 Searches for the third file specification 

4 Searches for and removes the fourth file specification 

If you want to remove the directory entry of a file and you have that file's 
ID, then you can improve the speed of the Remove service by specifying the 
NAM bit in the FAB$L _FOP field. In order to do this properly, you must first 
parse the name of the file specification (to clear the NAM$W_FID field), place 
the correct FID in the NAM block, and then perform the Remove service. 

The Remove service is not supported for DECnet operations for remote file 
access between two VMS systems. 

Table RMS-40 lists the control block fields read as input by the Remove 
service. For additional information on the fields accessed by this service, see 
Part II. 

Table RMS-40 Remove Service FAB and NAM Block Input Fields 

Field Name Description 

FAB$L _FOP' File-processing option, FAB$V_NAM only. NAM block inputs: 
indicates that the NAM$W_FID field is used as input. 

FAB$W_IFI Internal file identifier (must be zero. 

~ This field is not supported for DECnet operations. 

RMS-8 2 



VMS RMS Services 
$REMOVE 

Table RMS-40 (Cont.) Remove Service FAB and NAM Block Input 
Fields 

Field Name Description 

FAB$L _NAM 

NAM$W_DID' 

NAM$T_DVI' 

NAM$L _ESA 

NAM$B_ESL 

NAM$W_FID' 

NAM$L _FNB 

NAM$L _RSA 

NAM$B_RSL 

NAM$B_RSS 

NAM$L _WCC 

Name block address. 

Directory identification; identifies the directory from which the 
file is to be removed. 

Device identification; identifies the device containing the 
directory from which the file is to be removed. 

Expanded string area address specifying the name, type, and 
version of the file to be removed. 

Expanded string length. 

File identification: if nonzero and FAB$L_FOP field FAB$V_ 
NAM bit is set in the input FAB, the first file in the directory 
with this file identification is removed. 

File name status bits (wildcard character bits only). 

Resultant string area address: specifies the name, type, and 
version number of the last file removed (required for wildcard 
character processing). 

Resultant string length. 

Resultant string area size. 

Wildcard character context value. 

~ This field is not supported for DECnet operations. 

Table RMS-41 lists the control block fields written as output by the Remove 
service. 

Table RMS-41 Remove Service FAB and NAM Block Output Fields 

Field Name Description 

FAB$L _STS 

FAB$L _STV 

NAM$B_RSL 

NAM$L _WCC 

Completion status code (also returned in register 0). 

Status value. 

Resultant string length. 

Wildcard context value. 

The resultant string is moved to the buffer described by the NAM$L ~ZSA 
and NAM$B_RSS fields (only if both fields are nonzero on input). 

RMS-83 



VMS RMS Services 
$REMOVE 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_BLN 

RMS$_DME 

RMS$_ESA 

RMS$_IFI 

RMS$_PRV 

RMS$_RST 

RMS$_SUPPORT 

RMS$_WLK 

RMS$_CDA 

RMS$_DNF 

RMS$_ESL 

RMS$_NAM 

RMS$_RMV 

RMS$_STR 

RMS$_SYS 

RMS$_CHN 

RMS$_DNR 

RMS$_FAB 

RMS$_NMF 

RMS$_RSL 

RMS$_SUC 

RMS$_WCC 

RMS$_DEV 

RMS$_DVI 

RMS$_FNF 

RMS$_NORMAL 

RMS$_RSS 

RMS$_SUP 

RMS$_WLD 

RMS-84 



VMS RMS Services 
$RENAME 

$RENAME 

You can use this service to change the name, type, or version of a file, or 
to move a file to another directory by changing its directory specification. 
However, note that you cannot use this service to move a file to another 
device. 

FORMAT SYS$RENAME old-fab,(err],(suc],new-fab 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset FAB$L _STS. 
Symbolic offset FAB$L _STV may contain additional status information. 

ARGUMENTS old-fab 
VMS usage: fab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

FAB control block whose contents are to be used as indirect arguments for the 
Rename service call. The old-fab argument is the address of the FAB control 
block that specifies the old file name. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-85 



VMS RMS Services 
$RENAME 

new-fab 
VMS usage: fab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

The new-fab argument is the address of the FAB control block that specifies 
the new file name. 

Note: If you invoke the Rename service using the $RENAME macro and if 
you do not specify arguments, you must construct an additional field 
within your argument list to contain the address of the FAB that specifies 
the new file name. This additional field is placed in the argument list 
following the field for the success completion routine (see Part I), and the 
argument count is set to 4. 

DESCRIPTION The Rename service performs the equivalent of two Parse services (old and 
new name), a Search service for the old directory, an Enter service to insert 
the new file name into the new directory, and a Remove service to delete the 
old file name from the old directory. 

Note that you must close the file before invoking the Rename service 
(FAB$W_IFI must be 0), and no wildcard character specifications are allowed. 
You can move a file from one directory to another using this service, but both 
directories must be on the same disk device. 

If the Rename service is successful, the new directory entry is created and the 
old entry is deleted. If the service fails, the old entry remains and the new 
entry is deleted. 

Table RMS-42 lists the fields in two FABs and two NAM blocks that the 
Rename service uses as input and output. In the table, these blocks are called 
FAB1 and NAM1 for the old entry, and FAB2 and NAM2 for the new entry. 
For output, FAB2 is not used, although it must be in writable memory. To 
check or signal the completion codes in FAB$L _STS and FAB$L _STV, use 
the first FAB (FAB 1). 

The resultant file specification string for each of the names (old and new) is 
placed in the buffer described by the NAM$L _RSA and NAM$B_RSS fields 
of the separate NAM blocks (only if both fields are nonzero). 

Table RMS-42 lists the control block fields read as input by the Rename 
service. For additional information on the fields accessed by this service, see 
Part II. 

RMS-86 



VMS RMS Services 
$RENAME 

Table RMS-42 Rename Service FAB and NAM Block Input Fields 

Control Block Field Name Description 

FAB 1 and FAB2 FAB$L _DNA 

FAB$B_DNS 

FAB$L _FNA 

FAB$B_FNS 

FAB$W_IFI 

FAB$L _NAM 

NAM 1 and NAM2 NAM$L _ESA 

NAM$B_ESS 

NAM$L _RLF 

NAM$L _RSA 

NAM$B_RSS 

Related file NAM NAM$L _RSA 
blocks 

Default file specification string address. 

Default file specification string size. 

File specification string address. 

File specification string size. 

Internal file identifier (must be zero►. 
Name block address. 

Expanded string area address 
(must be nonzero). 

Expanded string area size 
(must be nonzero). 

Related file NAM block address. 

Resultant string area address. 

Resultant string area size. 

Related file resultant string area address. 

NAM$B_RSL Related file resultant string length. 

NAM$L _FNB Related file name status bits. 

Table RMS-43 lists the control block fields written as output by the Rename 
service. 

Table RMS-43 Rename Service FAB and NAM Block Output Fields 

Control Block Field Name Description 

FAB1 

NAM1 and NAM2 

FAB$L _STS 

FAB$L _STV 

NAM$W_DID' 

NAM$T_DVI' 

NAM$B_ESL 

NAM$W_FID' 

NAM$L _FNB 

NAM$B_RSL 

NAM$L _WCC 

Completion status code (also 
returned in register 0). 

Status value. 

Directory identification. 

Device identification. 

Expanded string length. 

File identification. 

File name status bits. 

Resultant string length. 

Wildcard context. 

~ This field is not supported for DECnet operations. 

RMS-8 7 



VMS RMS Services 
$RENAME 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACC 

RMS$_CDA 

RMS$_DIR 

RMS$_DNF 

RMS$_ENT 

RMS$_FAB 

RMS$_IDR 

RMS$_NAM 

RMS$_NMF 

RMS$_QUO 

RMS$_RMV 

RMS$_RUNDOWN 

RMS$_SUPPORT 

RMS$_TYP 

RMS$_BLN 

RMS$_CHN 

RMS$_DME 

RMS$_DNR 

RMS$_ESA 

RMS$FNA 

RMS$_IFI 

RMS$_NET 

RMS$_NORMAL 

RMS$_REENT 

RMS$_RSS 

RMS$_STR 

RMS$_SYN 

RMS$_VER 

RMS$_BUG_DDI 

RMS$_DEV 

RMS$_DNA 

RMS$_DVi 

RMS$_ESS 

RMS$_FNM 

RMS$_LNE 

RMS$_NETFAIL 

RMS$_PRV 

RMS$_RLF 

RMS$_RST 

RMS$_SUC 

RMS$_SYS 

RMS$_WLD 

RMS-88 



VMS RMS Services 
$REWIND 

$REWIND 

The Rewind service sets the context of a record stream to the first record 
in the file. VMS RMS alters the context of the next record to indicate the 
first record as being the next record. 

FORMAT SYS$REWIND rab(,(err](,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L _STS. 
Symbolic offset RAB$L _STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Rewind service call. The rab argument is the address of the RAB control 
block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-89 



VMS RMS Services 
$REWIND 

DESCRIPTION The Rewind service implicitly performs the Flush and Free services, writing 
out all I/O buffers and releasing all locked records. This service is valid for 
all file organizations on disk volumes and for sequential files on tape volumes. 
For indexed files, the key of reference field establishes the index to be used 
for subsequent sequential accesses. You cannot rewind a unit record device, 
such as a card reader, a mailbox, a printer, or a terminal. You cannot rewind 
indirectly accessed process-permanent files. Also, you cannot rewind a file 
that was opened with the FAB$L _FOP field FAB$V_SQO option set. 

Table RMS-44 lists the control block fields read as input by the Rewind 
service. For additional information on the fields accessed by this service, see 
Part II. 

Table RMS-44 Rewind Service RAB Input Fields 

Field Name Description 

RAB$W_ISI Internal stream identifier (required). 

RAB$B_KRF Key of reference (used only with indexed files). 

RAB$L _ROP Record-processing option, RAB$V_ASY option only. 
Asynchronous: performs a Rewind service asynchronously. 

Table RMS-45 lists the control block fields written as output by the Rewind 
service. 

Table RMS-45 Rewind Service RAB Output Fields 

Field Name Description 

RAB$L_STS 

RAB$L_STV 

Completion status code (also returned in register 0). 

Status value. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT 

RMS$_BOF 

RMS$_DNR 

RMS$_KRF 

RMS$_PENDING 

RMS$_STR 

RMS$_SYS 

RMS$_ATR 

RMS$_BUG_DAP 

RMS$_DPE 

RMS$_NET 

RMS$_QUO 

RMS$_SUC 

RMS$_WBE 

RMS$_ATW 

RMS$_CDA 

RMS$_IOP 

RMS$_NETFAIL 

RMS$_RAB 

RMS$_SUP 

RMS$_WER 

RMS$_BLN 

RMS$_DME 

RMS$_ISI 

RMS$_NORMAL 

RMS$_RSA 

RMS$_SUPPORT 

RMS$_WLK 

RMS-90 



VMS RMS Services 
$SEARCH 

$SEARCH 

The Search service scans a directory file and fills in various NAM block 
fields. This service should be preceded by the Parse service, in order to 
initialize the NAM block appropriately. 

FORMAT SYS$SEARCH fab(,(err](,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset FAB$L _STS. 
Symbolic offset FAB$L _STV may contain additional status information. 

ARGUMENTS fab 
VMS usage: fab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

FAB control block whose contents are to be used as indirect arguments for the 
Search service call. The fab argument is the address of the FAB control block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-91 



VMS RMS Services 
$SEARCH 

DESCRIPTION The basic functions of the Search service and the Parse service are performed 
automatically as part of the Open, Create, and Erase services. Note that you 
must close the file before invoking the Search service (FAB$W_IFI must be 0). 

When called, the Search service scans the directory file specified by the 
directory identification (NAM$W_DID) field of the NAM block. It looks for 
an entry that matches the file name, type, and version number specified by 
the expanded string area address and expanded string length fields. Upon 
finding a match, VMS RMS returns the file name, type, and version number 
in the buffer described by the resultant string area address and size fields. 
VMS RMS also fills in the file identification field to enable a subsequent 
open-by-NAM-block operation. You can also use the Search service to obtain 
a series of file specifications whose names match a file specification that 
contains wildcard characters or search lists. 

The resultant file specification string is placed in the buffer described by 
the resultant string area address (NAM$L _RSA) and size (NAM$B_RSS) 
fields of the NAM block (only if both fields are nonzero). The NAM$L _RSA 
and NAM$B_RSS fields must be specified (nonzero) for wildcard character 
processing. 

Table RMS-46 lists the control block fields read as input by the Search 
service. For additional information on the fields accessed by this service, see 
Part II. 

Table RMS-46 Search Service FAB and NAM Block Input Fields 

Field Name Option Description 

FAB$W_IFI 

FAB$L _NAM 

NAM$W_DID' 

NAM$T_DVI' 

NAM$L _ESA 

NAM$B_ESL 

NAM$L _FNB 

NAM$B_NOP 

NAM$V_PWD 

Internal file identifier (must be zero). 

Name block address. 

Directory identification of the 
directory to be searched. 

Device identification of device 
containing directory to be searched. 

Expanded string area address: 
specifies file name, type, and version 
of file. 

Expanded string length. 

File name status bits (wildcard 
character options only). 

NAM block options. 

Password: indicates that a password 
contained in a DECnet access 
control string, if present in a file 
specification, is to be left unaltered 
in the expanded and resultant strings 
(instead of being replaced by the 
word "password"). 

~ This field is not supported for DECnet operations. 

RMS-92 



VMS RMS Services 
$SEARCH 

Table RMS-46 (Cont.) Search Service FAB and NAM Block Input 
Fields 

Field Name Option Description 

NAM$L _RSA 

NAM$B_RSS 

NAM$V_NOCONCEAL Do not conceal device name: 
indicates that when a concealed 
device logical name is present, the 
concealed device logical name is to 
be replaced by the actual physical 
device name in the resultant string. 

NAM$V_SRCHXABS Performs Display service on 
remote files (for output fields, see 
description of Display service). 

Resultant NAM block string area 
address: specifies name, type, and 
version of last file found (required for 
wildcard character processing►. 
Resultant NAM block string area 
size. 

NAM$L _WCC Wildcard character context value. 

Table RMS-47 lists the control block fields written as output by the Search 
service. 

Table RMS-47 Search Service FAB and NAM Block Output Fields 

Field Name Description 

FAB$L _STS 

FAB$L _STV 

NAM$B_DEV 

NAM$L _DEV 

NAM$B_DIR 

NAM$L _DIR 

NAM$W_FID' 

NAM$L _FNB 

NAM$B_NAME 

NAM$L _NAME 

NAM$B_NODE 

NAM$L _NODE 

NAM$B_RSL 

NAM$B_TYPE 

NAM$L _TYPE 

NAM$B_VERSION 

Completion status code (also returned in register 0). 

Status value. 

Address of file specification device descriptor. 

Size of file specification device descriptor. 

Address of file specification directory descriptor. 

Size of file specification directory descriptor. 

File identification. 

File name status bits (wildcard status bits only). 

Address of file specification name descriptor. 

Size of file specification name descriptor. 

Address of file specification node descriptor. 

Size of file specification node descriptor. 

Resultant string length. 

Address of file specification type descriptor. 

Size of file specification type descriptor. 

Address of file specification version descriptor. 

~ This field is not supported for DECnet operations. 

RMS-93 ~ 



VMS RMS Services 
$SEARCH 

Table RMS-47 (Cont.~ Search Service FAB and NAM Block Output 
Fields 

Field Name Description 

NAM$L _VERSION 

NAM$L _WCC 

Size of file specification version descriptor. 

Wildcard character context value. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACS 

RMS$_DME 

RMS$_ESA 

RMS$_FNF 

RMS$_NETFAIL 

RMS$_PRV 

RMS$_STR 

RMS$_SYS 

RMS$_BLN 

RMS$_DNF 

RMS$_ESL 

RMS$_IFI 

RMS$_NMF 

RMS$_RSL 

RMS$_SUC 

RMS$_WCC 

RMS$_CHN 

RMS$_DNR 

RMS$_FAB 

RMS$_NAM 

RMS$_NORMAL 

RMS$_RSS 

RMS$_SUP 

RMS$_DEV 

RMS$_DVI 

RMS$_FND 

RMS$_NET 

RMS$_NOVALPRS 

RMS$_RST 

RMS$_SUPPORT 

RMS-94 



VMS RMS Services 
$SPACE 

$SPACE 

The Space service lets you space (skip) a tape file forward or backward a 
specified number of blocks. 

FORMAT SYS$SPACE rab(,(errJ(,sucJJ 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L _STS. 
Symbolic offset RAB$L _STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Space service call. The rab argument is the address of the RAB control 
block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-95 



VMS RMS Services 
$SPACE 

DESCRIPTION The Space service is intended primarily for use with magnetic tape files; the 
tape is skipped forward or backward the number of blocks specified in the 
bucket number field. (The size of each block on any tape is specific to that 
tape and is defined on the tape itself, not by VMS or VMS RMS.) If the value 
in this field is positive, the tape skips forward; if the value is negative, the 
tape skips backward. For disk files, the next block pointer (NBP) is updated 
to reflect the new sequential operation position. 

Table RMS-48 lists the control block fields read as input by the Space service. 
For additional information on the fields accessed by this service, see Part II. 

Table RMS-48 Space Service RAB Input Fields 

Field Name Description 

RAB$L_BKT 

RAB$W_ISI 

RAB$L _ROP 

Bucket code: indicates the number of blocks to space forward 
(positive value) or backward (negative value). 

Internal stream identifier. 

Record-processing option, RAB$V_ASY only. Asynchronous: 
performs Space services asynchronously. 

Table RMS-49 lists the control block fields written as output by the Space 
service. 

Table RMS-49 Space Service RAB Output Fields 

Field Name Description 

RAB$L _STS 

RAB$L _STV 

Completion status code (also returned in register 0). 

Status value (the absolute number of blocks actually skipped; 
the value is always positive). 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT 

RMS$_CDA 

RMS$_EOF 

RMS$_NETFAIL 

RMS$_RSA 

RMS$_SUPPORT 

RMS$_BLN 

RMS$_DME 

RMS$_IOP 

RMS$_NORMAL 

RMS$_STR 

RMS$_SYS 

RMS$_BOF 

RMS$_DNR 

RMS$_ISI 

RMS$_PENDING 

RMS$_SUC 

RMS$_WBE 

RMS$_BUG_DAP 

RMS$_DPE 

RMS$_NET 

RMS$_RAB 

RMS$_SUP 

RMS-96 



VMS RMS Services 
$TRUNCATE 

$TRUNCATE 

The Truncate service removes records from the end of a sequential file. 

FORMAT SYS$TRUNCATE rab(,(err](,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L _STS. 
Symbolic offset RAB$L _STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword . (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Truncate service call. The rab argument is the address of the RAB control 
block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

DESCRIPTION You can only truncate a sequential file that is open for exclusive access. The 
file-sharing (FAB$B_SHR) field must be set or defaulted to NIL, and the file 
access (FAB$B_FAC) field must specify a truncate access (FAB$V_TRN). 

RMS-97 



VMS RMS Services 
$TRUNCATE 

The Truncate service deletes the record indicated as the current record, and all 
following records. You can only use this service immediately after successful 
execution of a Get or Find service (thereby setting the context of the current 
record). 

VMS RMS declares the logical end of file to be the starting record position 
for the truncation and then uses the end of file to establish the context of the 
next record. You can then add records to the file by issuing successive Put 
services. 

Table RMS-50 lists the control block fields read as input by the Truncate 
service. For additional information on the fields accessed by this service, see 
Part II. 

Table RMS-50 Truncate Service RAB Input Fields 

Field Name Description 

RAB$W_ISI 

RAB$L _ROP 

Internal stream identifier (required). 

Record-processing option, RAB$V_ASY only. Asynchronous: 
performs Truncate services asynchronously. 

Table RMS-51 lists the control block fields written as output by the Truncate 
service. 

Table RMS-51 Truncate Service RAB Output Fields 

Field Name Description 

RAB$L _STS 

RAB$L _STV 

Completion status code (also returned in register 0). 

Status value. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT 

RMS$_BUG_DAP 

RMS$_DME 

RMS$_IOP 

RMS$_NORMAL 

RMS$_RSA 

RMS$_SUPPORT 

RMS$_WLK 

RMS$_ATR 

RMS$_CDA 

RMS$_DNR 

RMS$_ISI 

RMS$_PENDING 

RMS$_STR 

RMS$_SYS 

RMS$_ATW 

RMS$_CUR 

RMS$_DPE 

RMS$_NET 

RMS$_RAB 

RMS$_SUC 

RMS$_WBE 

RMS$_BLN 

RMS$_DEADLOCK 

RMS$_FAC 

RMS$_NETFAIL 

RMS$_RER 

RMS$_SUP 

RMS$_WER 

RMS-98 



VMS RMS Services 
$UPDATE 

$UPDATE 

The Update service allows you to modify the contents of an existing 
record in a file residing on a disk device. 

FORMAT SYS$UPDATE rab(,(err](,suc]J 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L _STS. 
Symbolic offset RAB$L_STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Update service call. The rab argument is the address of the RAB control 
block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-99 



VMS RMS Services 
$UPDATE 

DESCRIPTION The record to be updated by the Update service must first be locked by this 
stream, using either a Find or Get service. When updating a record, you must 
use move mode (not locate mode); that is, you must supply a buffer. 

The record length for sequential files cannot change. For relative files with 
variable-length or variable with fixed-length control records, the length of the 
replacement record can be different from the length of the original record, but 
cannot be larger than the maximum size you set when you created the file. 

For stream format files, the Update service functions in the same manner as 
the Put service, with one exception. When using the Update service, you do 
not have to set the RAB$L _ROP field RAB$V_TPT option to update data in 
the middle of a file. 

For indexed files, the length of the replacement record written by the Update 
service may be different from the original record but RMS does not permit 
you to change the primary key. Each replacement record must be large 
enough to contain a complete primary key, but it does not have to contain all 
alternate keys. 

If an alternate key is partially or completely missing in the replacement 
record, the key must have the characteristic that the values can change; this is 
also true if the replacement record contains a key that was not present in the 
original record. 

Update operations to an indexed file do not require a key value or key of 
reference. Before writing the record, VMS RMS compares the key values 
(primary and alternate) in the replacement record with the key values of the 
original record already existing in the file. This comparison takes the defined 
characteristics of each key into account. For example, if a particular key is not 
allowed to change, VMS RMS rejects the operation with an RMS$_CHG error 
code if the replacement record contains an altered value in the associated key. 
Similarly, this comparison determines whether the replacement record would 
result in the presence of duplicate key values among records of the file. If 
duplicates would occur, VMS RMS verifies the defined characteristics for the 
keys being duplicated. If duplicates are not allowed for a particular key, VMS 
RMS rejects the operation with an RMS$_DUP error code. If duplicates are 
allowed, VMS RMS performs the operation. 

Subsequent sequential operations on a given index retrieve records with 
identical key values in the order in which the records were written. 

Table RMS-52 lists the control block fields read as input by the Update 
service. For additional information on the fields accessed by this service, see 
Part II. 

Table RMS-52 Update Service RAB Input Fields 

Field Name Option Description 

RAB$W_ISI 

RAB$L _RBF 

RAB$L _RHB 

RAB$L _ROP 

Internal stream identifier (required). 

Record buffer address. 

Record header buffer (applies only to variable 
with fixed control records). 

Record-processing options. 

RMS-100 



VMS RMS Services 
$UPDATE 

Table RMS-52 (Cont.) Update Service RAB Input Fields 

Field Name Option Description 

RAB$W_RSZ 

RAB$V_ASY Asynchronous: performs Update services 
asynchronously. 

RAB$V_WBH Write-locked: two buffers are allocated to 
allow multibuffering. 

Record size (required). 

Table RMS-53 lists the control block fields written as output by the Update 
service. 

Table RMS-53 Update Service RAB Output Fields 

Field Name Option 

RAB$W_RFA 

RAB$L_STS 

RAB$L _STV 

Record file address. 

Completion status code (also returned in register 0). 

Status value. 

RETURN 
VALUES 

The following condition values are described in Appendix A: 

RMS$_ACT 

RMS$_BUG 

RMS$_CHK 

RMS$_DUP 

RMS$_FTM 

RMS$_IRC 

RMS$_NORMAL 

RMS$_PLG 

RMS$_RHB 

RMS$_RSA 

RMS$_SUC 

RMS$_TRE 

RMS$_WPL 

RMS$_ATR 

RMS$_BUG_DAP 

RMS$_CUR 

RMS$_ENQ 

RMS$_IBF 

RMS$_ISI 

RMS$_OK_DUP 

RMS$_RAB 

RMS$_RNL 

RMS$_RSZ 

RMS$_SUP 

RMS$_WBE 

RMS$_ATW 

RMS$_CDA 

RMS$_DME 

RMS$_EXP 

RMS$_IDX 

RMS$_NET 

RMS$_OK_IDX 

RMS$_RBF 

RMS$_RPL 

RMS$_RVU 

RMS$_SUPPORT 

RMS$_WER 

RMS$_BLN 

RMS$_CHG 

RMS$_DNR 

RMS$_FAC 

RMS$_IOP 

RMS$_NETFAIL 

RMS$_PENDING 

RMS$_RER 

RMS$_RRV 

RMS$_STR 

RMS$_SYS 

RMS$_WLK 

RMS-101 



VMS RMS Services 
$WAIT 

$WAIT 

The Wait service suspends image execution until an asynchronous record 
service completes. Upon completion of the service, VMS RMS returns 
control to your program at the point following the Wait service call. 

FORMAT SYS$WAIT rab 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L _STS. 
Symbolic offset RAB$L_STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Wait service call. The rab argument is the address of the RAB control 
block. It can be either the RAB whose I/O request is in progress or some 
other RAB. 

DESCRIPTION The Wait service takes no arguments to define entry points for user-written 
completion routines; the completion routines are specified by the service 
being awaited. 

Any completion routines specified on the operation being awaited are 
declared as ASTs before VMS RMS returns control. They are executed 
before the WAIT service completes unless ASTs are disabled. Completion 
routines are always executed as asynchronous system traps (ASTs). 

Table RMS-54 lists the control block fields read as input and written as 
output by the Wait service. For additional information on the fields accessed 
by this service, see Part II. 

Table RMS-54 Wait Service RAB Input and Output Fields 

Field 
Use Name Description 

Input RAB$W_ISI Internal stream identifier (required). 

RAB$L _STS Status completion code. 

Output RAB$L_STS Completion status code (also returned in register 0). 

RMS-102 



VMS RMS Services 
$WAIT 

RETURN The following condition values are described in Appendix A: 

VALUES RMS$_BLN RMS$_CDA RMS$_ISI RMS$_NORMAL 

RMS$_RAB RMS$_STR RMS$_SUC 

The VMS RMS completion status codes for the Wait service are determined by 
the VMS RMS service being awaited, unless the address of the RAB specified 
for the wait is different from that specified for the awaited operation. In this 
case, RMS$_NORMAL is returned. 

RMS-103 



VMS RMS Services 
$WRITE 

$WRITE 

The Write service transfers auser-specified number of bytes (beginning 
on a block boundary to a VMS RMS file of any file organization. 

FORMAT SYS$WRITE rab(,(err](,suc]] 

RETURNS VMS usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

The value returned in RO is also returned in symbolic offset RAB$L _STS. 
Symbolic offset RAB$L_STV may contain additional status information. 

ARGUMENTS rab 
VMS usage: rab 
type: longword (unsigned) 
access: modify 
mechanism: by reference 

RAB control block whose contents are to be used as indirect arguments for 
the Write service call. The rab argument is the address of the RAB control 
block. 

err 

VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level error completion routine that the service invokes if the operation 
is unsuccessful. The err argument is the address of the entry mask of this 
user-written completion routine. 

suc 
VMS usage: ast_procedure 
type: procedure entry mask 
access: call without stack unwinding 
mechanism: by reference 

AST-level success completion routine that the service invokes if the operation 
is successful. The suc argument is the address of the entry mask of this 
user-written completion routine. 

RMS-104 



VMS RMS Services 
$WRITE 

DESCRIPTION You specify the number of bytes to be written by the Write service in the 
record size (RAB$W_RSZ) field of the RAB and the address of the buffer for 
the transfer in the record address (RAB$L _RBF) field. In the bucket number 
(RAB$L _BKT) field, you indicate the virtual block number of the first block 
to be written; if this number is 0, the transfer starts with the block indicated 
by the NBP. 

A sequential file is automatically extended if you write a block past the end 
of the currently allocated space when using block I/O (or record I/O). For 
sequential files, VMS RMS maintains a logical end of file to correspond to the 
last block and highest byte written within the block. For relative and indexed 
files, you must use the Extend service when using block I/O. 

Table RMS-55 lists the control block fields read as input by the Write service. 
For additional information on the fields accessed by this service, see Part II. 

Table RMS-55 Write Service RAB Input Fields 

Field Name Option Description 

RAB$L _BKT 

RAB$W_ISI 

RAB$L _RBF 

RAB$L _ROP 

RAB$W_RSZ 

Bucket number: must contain the virtual block 
number of the first block to be written. 

Internal stream identifier. 

Record buffer address. For block I/O, 
alignment of the user's record buffer on a 
page or at least a quadword boundary may 
improve performance. 

Record-processing options. 

RAB$V_ASY Asynchronous: performs Write services 
asynchronously. 

RAB$V_TPT Truncate on Put: specifies that a Write service 
truncate the file after the transferred data. 

Record size: indicates the transfer length, in 
bytes.' 

~ Certain devices require that an even number of bytes be transferred. For further details, 
see the VMS I/O User's Reference Volume. 

Table RMS-56 lists the control block fields written as output by the Write 
service. 

Table RMS-56 Write Service RAB Output Fields 

Field Name Description 

RAB$W_RFA Record file address. 

RAB$L_STS Completion status code (also returned in register 0). 

RAB$L _STV Status value: contains the actual number of bytes transferred if 
an end-of-file error occurs. 

RMS-105 



VMS RMS Services 
$WRITE 

RETURN The following condition values are described in Appendix A: 

VALUES RMS$_ACT RMS$_ATR RMS$_ATW 

RMS$_BLN RMS$_BUG_DAP RMS$_CDA 

RMS$_CONTROLC RMS$_CONTROLO RMS$_CONTROLY 

RMS$_DME RMS$_DNR RMS$_EOF 

RMS$_EXT RMS$_FAC RMS$_FTM 

RMS$_FUL RMS$_IOP RMS$_ISI 

RMS$_NET RMS$_NETFAIL RMS$_NORMAL 

RMS$_PENDING RMS$_RAB RMS$_RBF 

RMS$_RSA RMS$_RSZ RMS$_STR 

RMS$_SUC RMS$_SUP RMS$_SUPPORT 

RMS$_W BE RMS$_W ER RMS$_W LK 

RMS-106 



A VMS RMS Completion Status Codes 

This appendix includes two tables: one is a listing of VMS RMS completion 
status codes ordered by the hexadecimal coding, and the other is a more 
descriptive listing ordered alphabetically. See Part III for a listing of the status 
codes applicable to individual VMS RMS services. 

This appendix lists completion status codes for the RMS Journaling product 
and some of the completion status codes for the SNA VMS Data Transfer 
Facility but does not provide details. See the VAX RMS Journaling Manual 
for an explanation of RMS Journaling status codes and the DECnet/SNA VMS 
Data Transfer Facility User's Guide for details of the SNA VMS Data Transfer 
Facility completion status codes. VMS RMS completion status error codes 
generally fall into one of four groups: 

• Programming errors 

• Program design errors 

• System environment errors 

• Operator/user errors 

Here is a brief description of each group: 

Error Group 

Programming Errors 
These errors are caused by incorrect programming and are usually detected 
during the early stages of developing and debugging a program that uses 
VMS RMS. Typical examples are missing values for required fields, referring 
to a RAB instead of a FAB, invalid address for a buffer, and so forth. This 
type of error is generally self-explanatory and usually requires only a minor 
change to the program. 

Program Design Errors 
These errors are caused by more subtle errors that may rarely occur, 
particularly if asynchronous record I/O, multistreamed sharing, or shared 
files are involved. These errors may occur long after a program has been 
in use and could require either a major program revision or the addition of 
substantial error recovery code to handle the error conditions. Record-lock 
errors, resource-exhaustion errors, and record-stream-currently-active errors 
are typical progam design errors. 

System Environment Errors 
These errors include hardware errors and VMS RMS or other system software 
errors that are not caused by your program. You may need to add substantial 
defensive error-handling code or you may be able to run the program again 
without error. 

Operator/User Errors 
These errors include errors by the user of the program, such as not mounting 
a device before running the program, or typing an invalid file specification. 
As with system environment errors, you may need to add substantial 

A-1 



VMS RMS Completion Status Codes 

defensive error-handling code or simply reprompt the user for the correct 
information or user action. 

These are conditions in which completion status codes may not be returned 
as expected: 

• The completion status codes that apply to the Close service do not include 
errors introduced by the FAB$V_SCF option and the FAB$V_SPL option. 
If the request is serviced successfully, then a success completion code is 
returned, even if the request is found to be in error by the job controller 
process. 

• The Wait service has unique errors. This service can return any status 
code of the awaited operation. 

• Errors associated with output operations may not necessarily be reported 
as the status of a particular operation because modified I/O buffers are 
not always written out immediately. Such errors are reported as the 
status of a subsequent operation, which may be an input, output, or 
control operation. 

Procedures for signaling VMS RMS completion status codes are discussed 
in Chapter 2 for VAX languages other than VAX MACRO. VAX MACRO 
users should refer to Chapter 3 and the example programs in Chapter 4 for 
information on signaling VMS RMS errors. Note that certain errors may not 
be signaled using the FAB$L _STS/FAB$L _STV or RAB$L _STS/RAB$L _ 
STV fields; these are denoted below and in Chapter 2. 

A description of each completion status code is listed in this appendix. When 
an error description indicates that the STV field should be examined for a 
secondary status code, this usually indicates anon-VMS RMS completion 
status (such as an ACP completion status). Non-VMS RMS errors are not 
described in this document; see the VMS System Messages and Recovery 
Procedures Reference Volume. 

Please note that when you submit an SPR, you should also provide a 
magnetic tape copy of the file causing the error. 

When using the debugger, use the debug command EXAMINE/CONDITION 
to view the message corresponding to the value in RO or the STS field or the 
STV field. For example, you can view the error codes in the STS and STV 
fields of the FAB at symbolic address (label) MYFAB when debugging a VAX 
MACRO program by entering the following commands: 

DBG> EXAMINE/CONDITION MYFAB+FAB$L_STS 
DBG> EXAMINE/CONDITION MYFAB+FAB$L_STV 

For additional information about the debugger, see the VMS Debugger Manual. 

Table A-1 lists the codes by hexadecimal values and includes a very brief 
description of each code. Table A-2 is ordered alphabetically and provides 
more detailed descriptions of the codes. 



VMS RMS Completion Status Codes 

Table A-1 Completion Status Hexadecimal Values and Codes 

Hex Value Status Code Message Text 

00010001 

00010001 

00010609 

00010611 

00010619 

00010631 

00010651 

00010679 

00018009 

00018011 

00018019 

00018021 

00018029 

00018031 

00018039 

00018041 

00018049 

00018051 

00018059 

00018061 

00018069 

00018071 

00018198 

000181A0 

000181A8 

00018180 

00018188 

000181C0 

000181C8 

0001825A 

00018262 

00018272 

0001827A 

00018282 

0001828A 

00018292 

0001829A 

000182A2 

RMS$_SUC 

RMS$_NORMAL 

RMS$_CONTROLO 

RMS$_CONTROLY 

RMS$_CREATED 

RMS$_SUPERSEDE 

RMS$_CONTROLC 

RMS$_FILEPURGED 

RMS$_PENDING 

RMS$_OK_DUP 

RMS$_OK_IDX 

RMS$_OK_RLK 

RMS$_OK_RRL 

RMS$_KFF 

RMS$_OK_ALK 

RMS$_OK_DEL 

RMS$_OK_RNF 

RMS$_OK_LIM 

RMS$_OK _NOP 

RMS$_OK_WAT 

RMS$_CRE _STM 

RMS$_OK_RULK 

RMS$_BOF 

RMS$_RNL 

RMS$_RTB 

RMS$_TMO 

RMS$_TNS 

RMS$_BES 

RMS$_PES 

RMS$_ACT 

RMS$_DEL 

RMS$_DNR 

RMS$_EOF 

RMS$_FEX 

RMS$_FLK 

RMS$_FNF 

RMS$_PRV 

RMS$_REX 

Normal successful completion (same as RMS$_NORMAL) 

Normal successful completion (same as RMS$_SUC) 

Operation completed under CTRL/0 

Operation completed under CTRL/Y 

File did not exist was created 

Created file superseded existing version 

Operation completed under CTRL/0 

Created file deleted oldest version 

Asynchronous operation not yet completed 

Record inserted had duplicate key 

Index update error occurred 

Record locked but read anyway 

Record locked against read but read anyway 

Known file found 

Record is already locked 

Deleted record successfully accessed 

Nonexistent record successfully accessed 

Retrieved record exceeds specified key value 

XAB not filled in for block I/O 

Record locked after wait 

File created in stream format 

See the VAX RMS Journaling Manual for details. 

Beginning of file detected 

Record not locked 

nnn-byte record too large for user's buffer 

Timeout period expired 

Terminator not seen 

Bad escape sequence 

Partial escape sequence 

File activity precludes operation 

RFA-accessed record deleted 

Device not ready, not mounted, or unavailable 

End of the file detected 

File already exists, not superseded 

File currently locked by another user 

File not found 

Insufficient privilege or file protection violation 

Record already exists 



VMS RMS Completion Status Codes 

Table A-1 (Copt.) Completion Status Hexadecimal Values and Codes 

Hex Value Status Code Message Text 

000182AA RMS$_RLK 

00018282 RMS$_RNF 

000182BA RMS$_WLK 

00018X2 RMS$_EXP 

000182CA RMS$_NMF 

000182D2 RMS$_SUP 

000182DA RMS$_RSA 

000182E2 RMS$_CRC 

000182EA RMS$_WCC 

000182F2 RMS$_IDR 

0001830A RMS$_NOVALPRS 

0001831 A RMS$_RUH 

00018322 RMS$_JND 

0001832A RMS$_BADPHASE 

00018332 RMS$_TOWDR 

0001833A RMS$_NEXDR 

00018342 RMS$_INVDRMSG 

0001834A RMS$_RU_ACTIVE 

00018352 RMS$_UNKRUFAC 

0001835A RMS$_LIMBO 

000183EC RMS$_DTFCDDREC 

000183F4 RMS$_AID 

000183FC RMS$_ALN 

00018404 RMS$_ALQ 

0001840C RMS$_ANI 

00018414 RMS$_AOP 

0001841C RMS$_BKS 

00018424 RMS$_BKZ 

0001842C RMS$_BLN 

00018434 RMS$_BUG 

0001843C RMS$_BUG_DDI 

00018444 RMS$_BUG_DAP 

0001844C RMS$_BUG _RU_ 
ACTIVE 

00018454 RMS$_BUG_RURECERR 

0001845C RMS$_BUG_FLUSH_ 
JNL _FAILED 

00018464 RMS$_BUG _RU_ 
ABORT_FAIL 

Target record currently locked by another stream 

Record not found 

Device currently write-locked 

File expiration date not yet reached 

No more files found 

Network operation not supported; DAP code =nnnn 

Record stream currently active 

Network DAP level CRC check failed 

Invalid wild card context ~WCC► value 

Invalid directory rename operation 

$SEARCH operation not preceded by valid $PARSE 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 

See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

Invalid area ID = n 

Alignment options error for area ID = n 

Invalid allocation quantity (negative, or 0 on $EXTEND► 
Not ANSI D format 

Allocation options error for area ID = n 

Bucket size too large (FAB) 

Inconsistent bucket size for area ID = n 

Invalid block length for control block (RAB/FAB) 

Internal RMS error condition detected 

Invalid default directory 

Data Access Protocol error detected; DAP code =nnnn 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 



VMS RMS Completion Status Codes 

Table A-1 (Cont.) Completion Status Hexadecimal Values and Codes 

Hex Value Status Code Message Text 

0001848C RMS$_BUSY User structure (FAB/RAB) still in use 

00018494 RMS$_CCR Cannot connect RAB 

0001849C RMS$_CHG Invalid key change in $UPDATE (CHG not set) 

000184A4 RMS$_CHK Bucket format check failed for VBN =nnnn 

000184AC RMS$_COD Invalid or unsupported type field in XAB at nnnn 

00018464 RMS$_CUR No current record (operation not preceded by $GET/$FIND) 

000184BC RMS$_DAN Invalid data area number for key = n 

000184C4 RMS$_DEV Error in device name or inappropriate device type for operation 

000184CC RMS$_DIR Error in directory name 

000184D4 RMS$_DME Dynamic memory exhausted 

000184DC RMS$_DNA Invalid default file name string address 

000184E4 RMS$_DTP Invalid key data type for key = n 

000184EC RMS$_DUP Duplicate key detected (DUP not set) 

000184F4 RMS$_DVI Invalid device ID value in NAM block 

000184FC RMS$_ESA Invalid expanded string address 

00018504 RMS$_ESS Expanded string area too small 

0001850C RMS$_FAB Invalid FAB or FAB not accessible 

00018514 RMS$_FAC Record operation not permitted by specified file access (FAC) 

0001851 C RMS$_FLG Invalid key definition flags for key = n 

00018524 RMS$_FNA Invalid file name string address 

0001852C RMS$_FNM Error in file name 

00018534 RMS$_FSZ Invalid fixed control header size 

0001853C RMS$_FOP Invalid file options 

00018544 RMS$_FUL Device full (insufficient space for allocation) 

00018554 RMS$_IAN Invalid index area number for key = n 

0001855C RMS$_IDX Index not initialized 

00018564 RMS$_IFI Invalid internal file identifier (IFI) value 

0001856C RMS$_IMX Invalid duplicate XAB or nondense XAB at nnnn 

00018574 RMS$_IOP Operation invalid for file organization or device 

0001857C RMS$_IRC Illegal record encountered; VBN or record number 
=nnnn 

00018584 RMS$_ISI Invalid internal stream identifier (ISI) value 

0001858C RMS$_KBF Invalid key buffer 

00018594 RMS$_KEY Invalid record number key or key value 

0001859C RMS$_KRF Invalid key-of-reference for $GET/$FIND 

000185A4 RMS$_KSZ Invalid key size for $GET/$FIND 

000185AC RMS$_LAN Invalid lowest-level-index area number for key = n 

00018584 RMS$_RUNDOWN Operation invalid during RMS rundown 

000185BC RMS$_LNE Logical name translation count exceeded 



VMS RMS Completion Status Codes 

Table A-1 (Cont.) Completion Status Hexadecimal Values and Codes 

Hex Value Status Code Message Text 

000185C4 RMS$_DTFCVT See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

000185CC RMS$_MRN Invalid maximum record number or record number exceeds 
MRN 

000185EC RMS$_DTFQUASYN See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

000185D4 RMS$_MRS Invalid maximum record size 

000185DC RMS$_NAM Invalid NAM block or NAM block not accessible 

000185E4 RMS$_NEF Not positioned to EOF on $PUT {sequential organization only) 

000185F4 RMS$_NOD Error in node name 

000185FC RMS$_NPK No primary key defined for indexed file 

0001860C RMS$_ORG Invalid file organization value 

00018614 RMS$_PBF Invalid prompt buffer 

0001861C RMS$_PLG Error detected in file's prolog (reconstruct file) 

00018624 RMS$_POS Invalid key position (greater than MRS) for key = n 

0001862C RMS$_DTFQUAVAL See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

00018634 RMS$_QUO Error in quoted string 

0001863C RMS$_RAB Invalid RAB or RAB not accessible 

00018644 RMS$_RAC Invalid record access mode 

0001864C RMS$_RAT Invalid record attributes 

00018654 RMS$_RBF Invalid record buffer 

0001865C RMS$_RFA Invalid record file address in RAB 

00018664 RMS$_RFM Invalid record format 

0001866C RMS$_RHB Invalid record header buffer 

00018674 RMS$_RLF Invalid related NAM block 

0001867C RMS$_ROP Invalid record options 

00018684 RMS$_RRV Invalid RRV record encountered 

0001868C RMS$_RVU Error updating RRVs, some paths to data may be lost 

00018694 RMS$_RSS Invalid resultant string size 

0001869C RMS$_RST Invalid resultant string address 

000186A4 RMS$_RSZ Invalid record size 

000186AC RMS$_SEQ Primary key out of sequence (SEQ access) 

00018664 RMS$_SHR Invalid file-sharing (SHR) options 

000186BC RMS$_SIZ Invalid key size for key = n 

000186C4 RMS$_SQO Operation not sequential (SQO set) 

000186CC RMS$_DTFSESEST See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

000186D4 RMS$_SYN File specification syntax error 

000186DC RMS$_TRE Error in index tree 

000186E4 RMS$_TYP Error in file type 

000186EC RMS$_UBF Invalid user buffer address 



VMS RMS Completion Status Codes 

Table A-1 (Cont.) Completion Status Hexadecimal Values and Codes 

Hex Value Status Code Message Text 

000186F4 RMS$_USZ Invalid user buffer size 

000186FC RMS$_VER Error in version number 

00018704 RMS$_XNF Required XAB not found 

0001870C RMS$_XAB Invalid XAB or XAB not accessible at nnnn 

00018714 RMS$_ESL Invalid expanded string length 

0001871 C RMS$_DTFSESTER See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

00018724 RMS$_ENV Support for RMS service call or feature not present 

0001872C RMS$_PLV Unsupported prolog version 

00018734 RMS$_MBC Invalid multiblock count 

0001873C RMS$_RSL Invalid resultant string length 

00018744 RMS$_WLD Invalid wildcard operation 

0001874C RMS$_NET Network operation failed at remote node; DAP code =nnnn 

00018754 RMS$_IBF Illegal bucket format in VBN =nnnn 

0001875C RMS$_REF Invalid key-of-reference = n 

00018764 RMS$_IFL Index bucket fill size larger than bucket size for key = n 

0001876C RMS$_DFL Data bucket fill size larger than bucket size for key = n 

00018774 RMS$_KNM Key name buffer not accessible for key 

0001877C RMS$_IBK LAN bucket size not equal to IAN bucket size for key = n 

00018784 RMS$_KSI Index bucket cannot hold two keys for key-of-reference = n 

0001878C RMS$_LEX Invalid $EXTEND for area n containing an unused extent 

00018794 RMS$_SEG Overlapping segments or segmented key must be string for 
key = n 

000187AC RMS$_UPI UPI not set when sharing and BIO or BRO set 

00018784 RMS$_ACS Error in access control string 

000187BC RMS$_STR User structure (FAB/RAB) became invalid during operation 

000187C4 RMS$_FTM Network file transfer mode precludes operation (SQO set) 

000187CC RMS$_GBC Invalid global buffer count 

000187D4 RMS$_DEADLOCK Deadlock detected 

000187DC RMS$_EXENQLM Exceeded enqueue quota 

000187E4 RMS$_JOP See the VAX RMS Journaling Manual for details. 

000187F4 RMS$_JNS See the VAX RMS Journaling Manual for details. 

000187FC RMS$_NRU See the VAX RMS Journaling Manual for details. 

00018804 RMS$_IFF Invalid file attributes for requested file access 

0001880C RMS$_DTFTRATBL See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

00018814 RMS$_DTFUNSTYP See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

0001881 C RMS$_DTFVERMIS See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

00018824 RMS$_DTFACC See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

00018824 RMS$_DTFACC See the DECnet/SNA VMS Data Transfer Facility User's Guide. 



VMS RMS Completion Status Codes 

Table A-1 (Cont.) Completion Status Hexadecimal Values and Codes 

Hex Value Status Code Message Text 

00018826 RMS$_BOGUSCOL Invalid or inaccessible collating table 

00018834 RMS$_ERRREADCOL Error encountered while trying to read collating table 

00018836 RMS$_ERRWRITECOL Error encountered while trying to write collating table 

00018854 RMS$_DTFCRE See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

00018864 RMS$_NOTSAMEJNL See the VAX RMS Journaling Manual for details. 

0001885C RMS$_DELJNS See the VAX RMS Journaling Manual for details. 

0001C002 RMS$_ACC ACP file access failed 

0001COOA RMS$_CRE ACP file create failed 

0001C012 RMS$_DAC ACP file deaccess failed during $CLOSE 

0001C01A RMS$_ENT ACP enter function failed 

0001CO22 RMS$_EXT ACP file extend failed 

0001CO2A RMS$_FND ACP file or directory lookup failed 

0001C032 RMS$_MKD ACP could not mark file for deletion 

0001 CO3A RMS$_DPE Device positioning error 

0001 C042 RMS$_SPL Spool or submit of command file failed on $CLOSE 

0001 C04A RMS$_DNF Directory not found 

0001 C052 RMS$_RUF See the VAX RMS Journaling Manual for details. 

0001 C05A RMS$_WRTJNL_AIJ See the VAX RMS Journaling Manual for details. 

0001 C062 RMS$_WRTJNL _BIJ See the VAX RMS Journaling Manual for details. 

0001 C072 RMS$_WRTJNL _RUJ See the VAX RMS Journaling Manual for details. 

0001 C07A RMS$_RRF See the VAX RMS Journaling Manual for details. 

0001 COCC RMS$_ATR File attributes read error 

0001 COD4 RMS$_ATW File attributes write error 

0001CODC RMS$_CCF Cannot close file 

0001COE4 RMS$_CDA Cannot deliver AST 

0001COEC RMS$_CHN Assign channel system service request failed 

0001COF4 RMS$_RER File read error 

0001COFC RMS$_RMV ACP remove function failed 

0001C 104 RMS$_RPL Error detected while reading prolog 

0001 C 10C RMS$_SYS QIO system service request failed 

0001C1 14 RMS$_WER File write error 

0001C11C RMS$_WPL Error detected while writing prolog 

0001 C 124 RMS$_IFA Illegal file attributes detected Mile header corrupted► 
0001C12C RMS$_WBE Error on write behind 

0001C134 RMS$_ENQ ENQ system service request failed 

0001C13C RMS$_NETFAIL Network operation failed at remote node 



VMS RMS Completion Status Codes 

Table A-1 (Cont.) Completion Status Hexadecimal Values and Codes 

Hex Value Status Code Message Text 

0001 C 144 RMS$_SUPPORT Network operation not supported 

0001C14C RMS$_CRMP CRMPSC system service failed to map global buffers 

0001 C 154 RMS$_DTFCFGFIL See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

0001C15C RMS$_REENT File could not be renamed and recovery failed; file has been lost 

0001 C 164 RMS$_ACC_RUJ See the VAX RMS Journaling Manual for details. 

0001C16C RMS$_TMR SETIMR system service request failed 

0001 C 174 RMS$_ACC_AIJ See the VAX RMS Journaling Manual for details. 

0001 C 17C RMS$_ACC_BIJ See the VAX RMS Journaling Manual for details. 

0001 C 18C RMS$_DTFDEFFIL See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

0001 C 194 RMS$_DTFREGFIL See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

Table A-2 Descriptions of VMS RMS Completion Status Codes 

Status Code Description 

RMS$_ACC File access error; the STV field contains an ACP error code. Take corrective 
action appropriate to the STV status code. 

RMS$_ACS Error in access control string of the node name. 

RMS$_ACC_AIJ See the VAX RMS Journaling Manual for details. 

RMS$_ACC_BIJ See the VAX RMS Journaling Manual for details. 

RMS$_ACC_RUJ See the VAX RMS Journaling Manual for details. 

RMS$_ACT File activity precludes operation; operation attempted during other file I/O. 
Modify the source program to detect and respond to this condition. 

RMS$_AID Bad area identification number field in allocation XAB; the STV field contains the 
area ID. 

RMS$_ALN Invalid alignment boundary type in allocation XAB; the STV field contains the 
area ID. 

RMS$_ALQ Incorrect allocation quantity; the value exceeds the maximum allowed (Create 
service) or exceeds the maximum allowed or is equal to zero (Extend service). 

RMS$_ANI Records in a magnetic tape file are not ANSI D format. 

RMS$_AOP Invalid allocation option in allocation XAB; the STV field contains the area ID. 

RMS$_ATR Read error on file header; the STV field contains an ACP error code. Take 
corrective action appropriate to the STV status code, if possible. 

RMS$_ATW Write error on file header; the STV field contains an ACP error code. Take 
corrective action appropriate to the STV status code, if possible. 

RMS$_BADPHASE See the VAX RMS Journaling Manual for details. 

RMS$_BES Bad escape sequence (terminals only, warning). Modify the source program to 
detect and recognize this condition or reenter the input specifying the correct 
escape sequence. 

RMS$_BKS Invalid bucket size in FAB or inconsistent record length. The bucket size 
specified in the FAB is larger than 63. If the bucket size is specified as zero, the 
maximum record size is too large. 



RMS$_BUG 

RMS$_BUG_DAP 

RMS$_BUG_DDI 

RMS$_BUG_FLUSH_ 
JNL _FAILED 

RMS$_BUG _ 
RUCRECERR 

RMS$_BUG_RU_ 
ABORT_FAIL 

RMS$_BUG _RU_ 
ACTIVE 

RMS$_BUSY 

RMS$_CCF 

RMS$_CCR 

RMS$_CDA 

RMS$_CHG 

VMS RMS Completion Status Codes 

Table A-2 (Cont.) Descriptions of VMS RMS Completion Status Codes 

Status Code Description 

RMS$_BKZ Invalid bucket size in the allocation XAB; the STV field contains the area ID. 

RMS$_BLN Invalid value in block length field; this completion code is not available in the 
FAB$L _STS/FAB$L _STV or RAB$L _STS/RAB$L _STV fields. 

RMS$_BOF Beginning of file detected (warning); you invoked the Rewind service or Space 
service at the beginning of the file. The STV field contains the number of blocks 
spaced. You may need to modify the source program to detect and respond to 
this condition. 

RMS$_BOGUSCOL Either the collating sequence is missing, is inaccessible to RMS, or is in a format 
that RMS cannot interpret. This situation is typically created by an application 
program error. Verify that a valid NCS sequence is available to RMS. 

Internal VMS RMS error detected. Submit an SPR. 

Data Access Protocol error. Submit an SPR. 

Invalid default directory. Submit an SPR. 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 

See the VAX RMS Journaling Manual for details. 

FAB or RAB cannot be used because either a prior operation needs to complete 
before VMS RMS can use the FAB or RAB for the requested operation, or the 
user illegally called VMS RMS from executive mode at AST level or from kernel 
mode and interrupted another VMS RMS operation. Use multiple I/O streams or 
use the Wait service as necessary. This completion code is not available in the 
FAB$L _STS/FAB$L _STV or RAB$L _STS/RAB$L _STV fields. 

For the $CLOSE service, an output file could not be closed successfully; user 
buffer identifies the file by its device ID and file ID. 

Cannot connect RAB; process has specified either a nonexistent or inaccessible 
RAB. This usually results from one of the following actions: 

• The program tried to do block I/O (setting RAB$V_BIO in RAB$L _ROP) with 
multistreaming (setting FAB$V_MSE bit in FAB$B_SHR). 

• The program tried to connect to multiple RABs to a FAB without first setting 
the FAB$V_MSE bit in the FAB$B_SHR field. 

• The program tried to use multistreaming with file access across DECnet. 

Cannot deliver AST; the STV field contains the STS value of the operation. The 
AST limit quota for the process has probably been exhausted. You need to 
increase the quota or decrease the level of AST activity. Take corrective action 
for the actual operation based on the STV value. 

The process tried to change a key value in a file that does not have the key 
change option. 

A-10 



VMS RMS Completion Status Codes 

Table A-2 (Cont.) Descriptions of VMS RMS Completion Status Codes 

Status Code Description 

RMS$_CHK Index file bucket check byte mismatch; the bucket has been corrupted. The STV 
field contains the VBN of the bucket. This error can be caused by any of the 
following conditions: 

• The combination of a disk backed up using standalone BACKUP and files 
with the /NOBACKUP qualifier 

• Inadvertent modification of the file using block I/O or non-VMS RMS 
programs 

• Hardware, VMS RMS, or other system software errors 

Try to recreate the rest of the file. If the problem recurs and appears to be 
caused by VMS RMS or system software, submit an SPR. 

RMS$_CHN Channel assignment failure; the STV field contains a system error code. Take 
corrective action appropriate to the STV status code, if possible. 

RMS$_COD Invalid type code in XAB; the STV field contains the XAB address. 

RMS$_CONTROLC Operation completed under CTRL/C; terminal I/O may have been truncated 
(success) . 

RMS$_CONTROLO Operation completed under CTRL/O; terminal output may have been truncated 
(success). 

RMS$_CONTROLY Operation completed under CTRL/Y; terminal I/O may have been truncated 
(success) . 

RMS$_CRC Network DAP level CRC failed on Close. The network link may be experiencing 
hardware errors. Retry the operation. 

RMS$_CRE ACP file creation failed. The STV field contains an ACP error code. Take 
corrective action appropriate to the STV status code. 

RMS$_CREATED File created with the FAB$V_CIF (create-if) option because the file was not 
found. If the file is found, it is opened (not created) and RMS$_NORMAL is 
returned (success). 

RMS$_CRE_STM File created in stream format (success). 

RMS$_CRMP For the Connect service, the. requested number of global buffers is unobtainable; 
no global sections or an insufficient number of global pages or global page file 
entries were available to grant the requested number of global buffers. Reduce 
the number of global buffers requested in the FAB$W_GBC field and retry 
the Connect service, or wait until an orderly shutdown of the system can be 
arranged and increase the appropriate system generation parameters, then retry 
the operation. 

RMS$_CUR No current record; operation not immediately preceded by a successful Get or 
Find service. 

RMS$_DAC ACP file deaccess failed during Close. The file was deaccessed. The STV field 
contains an ACP error code. Take corrective action appropriate to the STV 
status code. 

RMS$_DAN Invalid data area number in key definition XAB; the STV field contains the key 
number. 

RMS$_DEADLOCK The VMS lock manager detected a deadlock. Modify the source program, if 
necessary. 

A-11 



VMS RMS Completion Status Codes 

Table A-2 Cont.) Descriptions of VMS RMS Completion Status Codes 

Status Code Description 

RMS$_DEL 

RMS$_DELJNS 

RMS$_DEV 

RMS$_DFL 

RMS$_DIR 

RMS$_DME 

RMS$_DNA 

RMS$_DNF 

RMS$_DNR 

RMS$_DPE 

RMS$_DTFACC 

RMS$_DTFCDDREC 

RMS$-DTFCFGFIL 

RMS$_DTFCRE 

RMS$_DTFCVT 

RMS$_DTFDEFFIL 

RMS$_DTFQUASYN 

RMS$_DTFQUAVAL 

RMS$_DTFREGFIL 

RMS$_DTFSESEST 

RMS$_DTFSESTER 

RMS$_DTFTRATBL 

RMS$_DTFUNSTYP 

RFA-accessed record deleted; the program attempted to access a previously 
deleted record. Modify the source program, if necessary. 

See the VAX RMS Journaling Manual for details. 

Bad device or inappropriate device type for operation. 

Data bucket fill size larger than bucket size specified in the key definition XAB; 
the STV field contains the key number. 

Error in directory name; the directory name specified incorrectly. For example, a 
directory or subdirectory name exceeded 39 characters in length, or the use of 
a logical name resulted in more than one directory name in the file specification. 
Verify the syntax of either the directory name in the file specification or the 
logical name, if applicable. 

Dynamic memory exhausted. Occurs only if the related I/O segment in the 
control region is full and the file is either a direct access process-permanent file 
or the user has disallowed the use of the program region for I/O buffers to RMS. 

Invalid default file specification string address. 

Directory not found; specified directory name does not exist on the specified 
device. Verify that the device and directory are specified correctly. Create 
the directory on that device or use a different directory. When performing an 
Open service, consider using a search list logical name if the same file exists in 
multiple device/directory locations. The STV field contains a system error code. 
Take corrective action appropriate to the STV status code. 

Device not ready, not mounted, or unavailable. Make sure that the volume is 
physically loaded, that the device is ready, and that the DCL command MOUNT 
has been completed successfully. Check that the correct controller is set on the 
drive. Retry the operation. 

Device positioning error; magnetic tape improperly positioned. Examine the 
RAB$L _STV field for secondary status information; take corrective action 
appropriate to this information. Retry the operation. If this error persists, it may 
indicate a system software or hardware failure. Contact your system operator 
or manager. 

See the DECnet/SNA VMS Data 

See the DECnet/SNA VMS Data 

See the DECnet/SNA VMS Data 

See the DECnet/SNA VMS Data 

See the DECnet/SNA VMS Data 

See the DECnet/SNA VMS Data 

See the DECnet/SNA VMS Data 

See the DECnet/SNA VMS Data 

See the DECnet/SNA VMS Data 

See the DECnet/SNA VMS Data 

See the DECnet/SNA VMS Data 

See the DECnet/SNA VMS Data 

See the DECnet/SNA VMS Data 

Transfer Facility User's 

Transfer Facility User's 

Transfer Facility User's 

Transfer Facility User's 

Transfer Facility User's 

Transfer Facility User's 

Transfer Facility User's 

Transfer Facility User's 

Transfer Facility User's 

Transfer Facility User's 

Transfer Facility User's 

Transfer Facility User's 

Transfer Facility User's 

Guide. 

Guide. 

Guide. 

Guide. 

Guide. 

Guide. 

Guide. 

Guide. 

Guide. 

Guide. 

Guide. 

Guide. 

Guide. 

A-12 



VMS RMS Completion Status Codes 

Table A-2 (Cont.~ Descriptions of VMS RMS Completion Status Codes 

Status Code Description 

RMS$_DTFVERMIS See the DECnet/SNA VMS Data Transfer Facility User's Guide. 

RMS$_DTP Invalid data type in key definition XAB; the STV field contains the key number. 

RMS$_DUP Duplicate key detected; key definition XAB key option flag not set to allow 
duplicate key values. 

RMS$_DVI Invalid device identification in the NAM block. 

RMS$_ENQ Lock manager system service failed; the STV field contains a $ENQ system 
service error code. Take corrective action appropriate to the STV status code, 
if possible. 

RMS$_ENT ACP enter function failed. The STV field contains an ACP error code. Take 
corrective action appropriate to the STV status code, if possible. 

RMS$_ENV Environment error; support for the VMS RMS service or selected option is not 
present in system. 

RMS$_EOF For Find or Get services, end of the file detected; the program attempted to read 
beyond the last record in the file. If necessary, modify the source program to 
detect and respond to the condition. 

For a Read (block I/O) service, end of the file detected. Checking for the logical 
end of the file is performed only for sequential file organization. If an RMS$_EOF 
error occurs, it implies that the first virtual block number specified is at or past 
the end of the file. If the RMS$_EOF error occurs during a transfer, the record 
size field is set to the number of bytes before the logical end of the file. For 
relative or indexed file organization, this status code indicates an attempt to read 
past the end of the currently allocated space. 

For a Write service (block I/O), end of the file detected for a sequential file; 
implies that the file could not be extended. Determine whether sufficient disk 
space is available on the disk device in use (use the DCL command SHOW 
DEVICE). If you do not have enough space, purge or delete files that are no 
longer needed; then retry the operation. 

RMS$_ERRREADCOL An I/O error occurred when the program tried to read the file's collating 
sequence. This is typically due to a hardware problem; otherwise, submit 
an SPR. 

RMS$_ERRWRITECOL An I/O error occurred when the program tried to write the sequence to the file. 
This is usually due to a hardware problem; otherwise, submit an SPR, 

RMS$_ESA Invalid expanded string area address in NAM block. 

RMS$_ESL Invalid expanded string length in NAM block. 

RMS$_ESS Expanded string area too short. 

RMS$_EXENQLM Exceeded process enqueue limit. Reduce the number of locks held at one time 
and retry, or have the system manager increase this limit for your process. Log 
out and log in, and then retry the operation. 

RMS$_EXP File expiration date not yet reached; tried to overwrite magnetic tape files. If the 
file can be overwritten, remount the volume using the /OVERRIDE=EXPIRATION 
qualifier. (You must be the volume owner or have VOLPRO privilege to overwrite 
a volume.) Otherwise, use a different volume. 

ACP file extend failed. The STV field contains an ACP error code. Take 
corrective action appropriate to the STV status code, if possible. 

RMS$_EXT 



VMS RMS Completion Status Codes 

Table A-2 (Cont.) Descriptions of VMS RMS Completion Status Codes 

Status Code Description 

RMS$_FAB 

RMS$_FAC 

RMS$_FEX 

RMS$_FILEPURGED 

Invalid FAB; block identifier field incorrect. This completion code is not available 
in the FAB$L_STS/FAB$L_STV fields. 

Operation not allowed by the value set in the FAB$B_FAC field. For the Extend 
service, verify that the FAB$B_FAC field specifies put or update access for the 
file to be extended. Modify the source program if necessary. 

File already exists, not superseded; the program attempted to create or rename 
a file with the same file specification as an existing file. Choose a different file 
specification; delete the existing file (if a new file is to be created). For the 
Create service, consider using the FAB$L _FOP field FAB$V_SUP option to 
request that an existing file be superseded. 

This informational message indicates that the newly created file version 
exceeded the maximum number of versions allowed for the file; therefore, 
the oldest version is deleted. 

RMS$_FLG Invalid combination of values in key XAB$B_FLG field; the STV field contains 
the key number. (Example: XAB$V_CHG or XAB$V_NUL for primary key.) 

RMS$_FLK File currently locked by another user; the program attempted to create or open 
a file that is currently being accessed by another user, and the file was not 
accessed for sharing. Wait until the other user deaccesses the file and retry the 
operation. 

RMS$_FNA Invalid file specification string address in FAB. 

RMS$_FND ACP file or directory lookup failed; error occurred during a directory search. The 
STV field contains an ACP error code. Take corrective action appropriate to the 
STV status code, if possible. 

RMS$_FNF File not found. Check the file specification and verify that the device, directory, 
file name, and file type are correct. If a logical name was specified, verify that 
the current equivalence name assigned to the logical name is correct. Verify that 
the correct volume is mounted and that the file was not inadvertently deleted. 

RMS$_FNM Syntax error in file name. 

RMS$_FOP Invalid file-processing options. 

RMS$_FSZ Invalid fixed control area size in FAB (equal to 1 for print files). 

RMS$_FTM Network DAP file transfer mode does not permit operation. 

RMS$_FUL Device full; cannot create or extend file. 

RMS$_GBC Invalid global buffer count. 

RMS$_IAL Invalid argument list. Applies to the SYS$RMSRUNDWN, SYS$SETDFPROT, 
and SYS$SETDDIR services. See the VMS System Services Reference Manual. 

RMS$_IAN Invalid index area number in key definition XAB; the STV field contains the key 
number. 

RMS$_IBF 

RMS$_IBK 

RMS$_IDR 

Invalid bucket format; STV contains bucket VBN. Submit an SPR. 

Bucket size of lowest level of index area number (XAB$B_LAN) not equal to that 
of specified index area number (XAB$B_IAN field) in key definition XAB; the 
STV field contains the key number. 

Invalid directory rename operation; attempted to rename a directory file into 
a directory tree that contained the directory file. The directory would then be 
inaccessible. 

A-14 



VMS RMS Completion Status Codes 

Table A-2 (Copt.) Descriptions of VMS RMS Completion Status Codes 

Status Code Description 

RMS$_IDX Index not initialized; internal VMS RMS error. Submit an SPR. 

RMS$_IFA Invalid file attributes; file header corrupted. Check the STV field for additional 
information. Take corrective action appropriate to the STV status code, if 
present. 

RMS$_IFF Invalid file attributes for requested access. Usually, this occurs when attempting 
to open an ANSI magnetic tape file for write access and the file has a nonzero 
value for its buffer offset value. VMS RMS does not allow the creation of a 
magnetic tape file with a nonzero buffer offset. You can, however, access such 
a file for read and write operations if you specify block I/O. 

RMS$_IFI Invalid internal file identifier in FAB; file already closed or not open (Close or 
Connect services), file already open or not closed (Create service), file not open 
(Display and Extend services►, or file already open (other services). 

RMS$_IFL Index bucket fill size larger than bucket size specified in key definition XAB; the 
STV field contains the key number. 

RMS$_IMX More than one XAB of the same type or nondense XAB is present for the file; 
the STV field contains the XAB address. 

RMS$_INVDRMSG See the VAX RMS Journaling Manual for details. 

RMS$_IOP Invalid operation attempted; operation is one of following: (1 ►block I/O 
when record I/O access, (2) record I/O when block I/O access, (3) rewind of 
process-permanent file, (4) inappropriate device type or file organization. 

RMS$_IRC Invalid record encountered in file or invalid byte count field or control byte field 
contained in that record; the STV field contains the virtual block number for 
sequential and indexed files or the relative record number for relative files of the 
corrupted record. This error can be caused by the following conditions: 

• The combination of a disk backed up using standalone BACKUP and files 
with the /NOBACKUP qualifier 

• Inadvertent modification of files by block I/O or non-VMS RMS programs 

• Hardware errors, VMS RMS errors, or other system software errors. 

For sequential and indexed files, try to recreate the rest of the file. For relative 
files, reinsert the bad record with the Put service using the RAB$L _ROP field 
RAB$V_UIF option. If this does not solve the problem, submit an SPR. 

RMS$_ISI Invalid internal stream identifier in RAB; record stream already connected 
(Connect service) or was not connected (other services). 

RMS$_JND See the VAX RMS Journaling Manual for details. 

RMS$_JNS See the VAX RMS Journaling Manual for details. 

RMS$_JOP See the VAX RMS Journaling Manual for details. 

RMS$_KBF Invalid key buffer address. 

RMS$_KEY Invalid record key for random operation to a relative file or invalid packed 
decimal key for an indexed file. 

RMS$_KFF Known file found; this code is reserved for DIGITAL usage only. 

RMS$_KNM Invalid key name buffer address in key definition XAB; the STV field contains 
the key number. 

RMS$_KRF Invalid key of reference in RAB$B_KRF field. 



VMS RMS Completion Status Codes 

Table A--2 (Cont.) Descriptions of VMS RMS Completion Status Codes 

Status Code Description 

RMS$_KSI The size of the index buckets specified for the key must be large enough to hold 
at least two key values: the STV value contains the key of reference. 

RMS$_KSZ Key size not equal to 4 (relative file) or key size too large (indexed file). 

RMS$_LAN Invalid index lowest-level-bucket area number in key definition XAB; the STV 
field contains the key number. 

RMS$_LEX Attempted to extend area containing an unused extent. 

RMS$_LNE Logical name error; an error was detected in file name processing. Usually this 
is caused by exceeding the maximum logical name translation count, typically 
when the equivalence string for a logical name is identical to the name itself. 
This error can also indicate a fatal error in logical name translation, or invalid 
syntax for aprocess-permanent file equivalence string. 

RMS$_MBC Invalid multiblock count. Must not be greater than 127. 

RMS$_MKD ACP could not mark file for deletion. The STV field contains an ACP error code. 
Take corrective action appropriate to the STV status code, if possible. 

RMS$_MRN Invalid value for maximum record number (negative) or relative key greater than 
maximum record number. 

RMS$_MRS Invalid value for maximum record size. 

RMS$_NAM Invalid or inaccessible NAM block. 

RMS$_NEF Attempted to use the Put service to a sequential file not positioned to the end 
of the file. 

RMS$_NET 

RMS$_NETFAIL 

RMS$_NMF 

RMS$_NOD 

RMS$_NORMAL 

RMS$_NOVALPRS 

RMS$_NPK 

RMS$_OK_ALK 

RMS$_OK_DEL 

RMS$_OK_DUP 

Network operation failed at remote node; the STV field contains a DAP code. 
Take corrective action appropriate to the STV status code, if possible. 

Network operation failed at remote node; the STV field contains an FAL status 
code. Take corrective action appropriate to the STV status code, if possible. 

No more files found; the directory or volume set does not contain any more files 
that meet the file specification (wildcard operation). This is the normal status to 
indicate the end of a wildcard search operation. Modify the source program, if 
necessary, to detect and respond to this condition. 

Node name error. 

Operation successful (synonym for RMS$_SUC, success). 

Search service not preceded by a Parse service. Correct the source program to 
invoke the Parse service before invoking the Search service. 

No primary key defined in key definition XAB when creating an indexed file. 

Record is already locked; the program attempted to lock a previously locked 
record. No action is usually required, although this can depend on application 
requirements (success). 

Deleted record successfully accessed; a previously deleted record was read 
successfully. No action is usually required, although this can depend on 
application requirements (success). 

Record inserted had duplicate key; the record was inserted successfully and had 
one or more key values that duplicated the values of other records (success). 



VMS RMS Completion Status Codes 

Table A-2 (Cont.) Descriptions of VMS RMS Completion Status Codes 

Status Code Description 

RMS$_OK_IDX Index update error occurred; the record was inserted successfully but an error 
occurred on index update, which could cause slow access to that record 
using that key path. Examine the value of the VMS RMS error in the RAB$L_ 
STV field. Take corrective action appropriate to the STV status code. File 
reorganization is recommended (success). 

RMS$_OK_LIM Retrieved record exceeds specified key value; the retrieved record exceeds the 
specified key value when the RAB$L _ROP RAB$V_LIM option was specified. It 
was read successfully. No action is usually required, although this can depend 
on application requirements (success). 

RMS$_LIMBO See the VAX RMS Journaling Manual for details. 

RMS$_NEXDR See the VAX RMS Journaling Manual for details. 

RMS$_NOTSAMEJNL See the VAX RMS Journaling Manual for details. 

RMS$_NRU See the VAX RMS Journaling Manual for details. 

RMS$_OK_NOP XAB not filled in for block I/O; operation executed successfully when block 
I/O access was specified. One or more XABALL or XABKEY blocks were not 
filled. No action is usually required, although this can depend on application 
requirements (success). 

RMS$_OK_RLK Record locked but read anyway; the retrieved record was locked but was read 
successfully. No action is required (success). 

RMS$_OK_RNF Nonexistent record successfully accessed; a nonexistent record was read 
successfully. No action is required (success). 

RMS$_OK_RRL Record locked against read, but read anyway; a record locked against reading 
was read successfully. No action is required (success). 

RMS$_OK_RULK See the VAX RMS Journaling Manual for details. 

RMS$_OK_WAT Record locked after wait; the retrieved record was locked but has been read 
successfully after a wait period. No action is required (success). 

RMS$_ORG Unknown file organization. 

RMS$_PBF Invalid prompt buffer address. 

RMS$_PENDING An asynchronous operation was initiated but is not yet completed; no action is 
required (success). 

RMS$_PES Partial escape sequence (terminals only, warning); the user buffer was filled 
before a complete escape sequence was entered. The remainder of the escape 
sequence is returned with the next input operation. Increase the size of the 
user buffer to allow escape sequences or modify the program, if necessary, to 
recognize and respond to this condition. 

RMS$_PLG Error in file prolog; file is corrupted. 

RMS$_PLV Prolog version unsupported. 

RMS$_POS Invalid key position (greater than MRS) in key definition XAB; the STV field 
contains the key number. 

RMS$_PRV Insufficient privilege or file protection violation; the current process is denied 
access because of the file protection. Check the access rights associated 
with the file and change them if needed. if you are not the file owner or have 
insufficient privilege, request that the file owner change the protection. 

RMS$_QUO Error in quoted string. 

A-17 



VMS RMS Completion Status Codes 

Table A-2 (Cont.) Descriptions of VMS RMS Completion Status Codes 

Status Code Description 

RMS$_RAB Not a valid RAB; block identifier field incorrect. This completion code is not 
available in the RAB$L _STS/RAB$L _STV fields. 

RMS$_RAC Invalid value in record access mode field of RAB. 

RMS$_RAT Record attributes invalid in FAB. 

RMS$_RBF Invalid record address. 

RMS$_REENT An attempt to use the ACP enter function for new file specification failed after 
the old file specification was removed, making it impossible to reenter the file 
specification. Examine the STV field for additional information. The file could 
not be renamed and recovery failed; the file has been lost. 

RMS$_REF Invalid key of reference in XAB; key of reference was greater than number in file 
or equal to 255. 

RMS$_RER File read error; the STV field contains a system error code. Take corrective 
action appropriate to the STV status code, if possible. 

RMS$_REX Record already exists; while inserting a record into a relative file using random 
access mode, the specified record number is the same as an existing record; the 
new record was not written over the existing record. Note the condition. Modify 
the source program, if _necessary, to detect and respond to this condition. You 
may want to specify the RAB$L _ROP field RAB$V_UIF option. 

RMS$_RFA Invalid record file address contained in RAB. 

RMS$_RFM Invalid record format. 

RMS$_RHB Invalid or inaccessible record header buffer. 

RMS$_RLF Invalid or inaccessible related file block, or user has exceeded the limit of 255 
related file name blocks, or related file name blocks are linked circularly. 

RMS$_RLK Target record currently locked by another stream; the requested record cannot 
be accessed. Modify the source program, if necessary, to detect and respond 
to this condition. 

RMS$_RMV ACP remove operation failed. The STV field contains an ACP error code. Take 
corrective action appropriate to the STV status code, if possible. 

RMS$_RNF Record not found; the requested record in an indexed or relative file either was 
never written or was deleted. Modify the source program, if necessary, to 
detect and respond to this condition. 

RMS$_RNL Record not locked (warning); no records were locked for this record stream 
when the operation was invoked. If necessary, modify the source program. 

RMS$_ROP Invalid record option. 

RMS$_RPL Error while reading prolog; the STV field contains an ACP error code. Take 
corrective action appropriate to the STV status code, if possible. 

RMS$_RRF See the VAX RMS Journaling Manual for details. 

RMS$_RRV Invalid RRV record encountered in indexed file; file may be corrupted. 

RMS$_RSA Record stream currently active (asynchronous operations); operation attempted 
while an I/O request was outstanding for this record stream. 

RMS$_RSL Resultant string length field of NAM block invalid. 

RMS$_RSS Resultant string area size is too small. 

RMS$_RST Invalid resultant string area address in NAM block. 



VMS RMS Completion Status Codes 

Table A-2 (Cont.~ Descriptions of VMS RMS Completion Status Codes 

Status Code Description 

RMS$_RSZ Invalid record size. 

RMS$_RTB Record too large for user's buffer (warning); the record just returned was too 
large for the user buffer provided. The RAB$L_STV field contains the size of 
the record; the returned record is truncated to the size of the user buffer. Modify 
the source program by increasing the size of the user buffer. You can determine 
the size of the largest record in a file using the DCL command ANALYZE/RMS_ 
FILE or by examining the contents of the XABFHC field XAB$W_LRL after 
opening the file with the XABFHC chained to the FAB. 

RMS$_RUF See the VAX RMS Journaling Manual for details. 

RMS$_RUH See the VAX RMS Journaling Manual for details. 

RMS$_RU_ACTIVE See the VAX RMS Journaling Manual for details. 

RMS$_RUH See the VAX RMS Journaling Manual for details. 

RMS$_RVU Error while updating RRVs; some paths to data may be lost. File reorganization 
is strongly recommended. 

RMS$_RUNDOWN Operation invalid during RMS rundown. 

RMS$_SEG Segmented key for key data type other than string. The STV field contains the 
key of reference. 

RMS$_SEQ Primary key of record to be written is not equal to or greater than key of 
previous record and RAB$B_RAC field is set to RAB$V_SEQ. 

RMS$_SHR Invalid value in the file-sharing field of FAB. This condition can be caused by 
attempting to access a sequential file that cannot be shared. (Only relative files, 
indexed files, and sequential files with 512-byte fixed-length records can be 
shared.) 

Invalid key size specified in key definition XAB XAB$B_SIZO through XAB$B_ 
SIZ7 field; specified size exceeds maximum record size, not equal to defined 
length on binary and integer key data types, greater than 16 for packed decimal 
key data type, or equal to 0 for string or packed decimal. The STV field contains 
the key of reference. 

Spool or submit command file option to a Close service failed; the STV field 
contains a system error code. Take corrective action appropriate to the STV 
status code. 

Operation not sequential; file was opened with FAB$L _FOP field FAB$V_SQO 
option, random access is not permitted. 

User structure (FAB/RAB) became invalid during the execution of a file or record 
operation. This completion code is not available in the FAB$L_STS/FAB$L_ 
STV or RAB$L _STS/RAB$L _STV fields. 

Operation successful (synonym for RMS$_NORMAL). 

Network operation not supported; the STV field contains a DAP code. Take 
corrective action appropriate to the STV status code, if possible. 

RMS$_SUPERSEDE Created file supersedes existing version of same file; no action is required 
(success) . 

RMS$_SUPPORT Network operation not supported; the STV field contains a FAL/DAP status 
code. Take corrective action appropriate to the STV status code, if possible. 

RMS$_SYN Syntax error in file specification. 

RMS$_SIZ 

RMS$_SPL 

RMS$_SQO 

RMS$_STR 

RMS$_SUC 

RMS$_SUP 



VMS RMS Completion Status Codes 

Table A-2 (Cont.) Descriptions of VMS RMS Completion Status Codes 

Status Code Description 

RMS$_SYS Error in system QIO directive; the STV field contains the directive or QIO status 
code. Take corrective action appropriate to the STV status code, if possible. 

RMS$_TMO Timeout period expired (terminal input, locked record, or mailbox devices, 
warning); the Find, Get, or Read service did not complete. For terminal and 
mailbox devices, the characters (if any) received before the timeout period 
expired are discarded. For disk record operations, the requested record was 
locked for the entire timeout period and was not read. Modify the source 
program, if necessary, to detect this condition and retry the requested service. 

RMS$_TMR SETIMR system service request failed. 

RMS$_TNS Terminator not seen (terminals only; warning►; the terminal Get service 
terminated when the user buffer was filled to capacity, before a terminator 
sequence was encountered. Subsequent Get services can retrieve additional 
characters from that input line, including the terminator character sequence, 
which is not in the current user buffer. Modify the source program to detect 
and respond to this situation or provide a user buffer large enough to contain an 
entire input line including the terminator character sequence. 

RMS$_TOWDR See the VAX RMS Journaling Manual for details. 

RMS$_TRE Index tree error; file is corrupted. 

RMS$_TYP Error in file type. 

RMS$_UBF Invalid user record buffer address. 

RMS$_UNKRUFAC See the VAX RMS Journaling Manual for details. 

RMS$_UPI The FAB$B_SHR field FAB$V_UPI option not set when file sharing FAB$L _FOP 
field FAB$V_BIO or FAB$V_BRO option was set. 

RMS$_USZ Invalid user record area size. 

RMS$_VER Error in version number. 

RMS$_WBE Error writing behind; the STV field contains a system error code. Take 
corrective action appropriate to the STV status code, if possible. 

RMS$_WCC Invalid wildcard context value. Verify that the NAM block has not been 
inadvertently modified between VMS RMS service calls. 

RMS$_WER File write error; the STV field contains a system error code. Take corrective 
action appropriate to the STV status code, if possible. 

RMS$_WLD Invalid wildcard operation. 

RMS$_WLK Device currently write-locked when write access was attempted. Verify the 
status of the device; reset the write-lock switch, if necessary. Notify the system 
operator if the error cannot be corrected. 

RMS$_WPL Error while writing prolog; the STV field contains an ACP or system error code. 
Take corrective action appropriate to the STV status code, if possible. 

RMS$_WRTJNL _AIJ See the VAX RMS Journaling Manual for details. 

RMS$_WRTJNL _BIJ See the VAX RMS Journaling Manual for details. 

RMS$_WRTJNL _RUJ See the VAX RMS Journaling Manual for details. 

RMS$_XAB Not a valid XAB, not readable or writable, invalid code or length; the STV field 
contains the XAB address. 

Could not locate XAB needed for this operation. Modify the source program 
to include the XAB and specify the address of the XAB in the FAB$L _XAB or 
RAB$L _XAB field. 

RMS$_XNF 

A-20 



B RMS Control Block Macros 

This appendix lists the format of each VMS RMS control block macro and 
includes special syntax notes that differ from the rules provided in Part I. 
Note that in this appendix the use of the term "macro" refers to a VAX 
MACRO macro. 



VMS RMS Control Block Macros 
$FAB 

$FAB 

The $FAB macro allocates storage for a FAB and initializes certain FAB 
fields with defaults and user-specified values. No value is returned for this 
assembly-time operation. 

FORMAT $FAB ALQ=allocation-quantity, 
BKS =bucket-size, 
BLS =block-size, 
CHAN_MODE= charmel-access-mode 
CTX =user-context-value, 
DEQ =extension-quantity, 
DNA =default-filespec-address, 
DNM = <filespec> , 
DNS =default-filespec-string-size, 
FAC = <810 BRO DEL GET PUT TRN UPD> , 
FNA = filespec-string-address, 
FNM = <filespec> , 
FNS = filespec-string-size, 

<CBT CIF CTG DFW DLT 
MXV NAM NEF NFS OFP 

FOP = POS RCK RWC RWO SCF 
SPL SQO SUP TEF TMD 
TMP UFO WCK> , 

FSZ=header-size, 
GBC =global-buffer-count, 

LNM_MODE =logical-name-translation-
access-mode, 

MRN =maximum-record-number, 
MRS =maximum-record-size, 
NAM = nam-address, 

(IDX 
ORG= { REL ~ -

~ SEQ 
CR l 

RAT = ! <BLK FTN> J . ~ PRN 



VMS RMS Control Block Macros 
$FAB 

FIX 
STM 
STMCR 

RFM= STMLF 
UDF 
VAR 
VFC 

RTV -window-size, 
SHR = <DEL GET MSE NIL PUT UPD UPI> , 
XAB = xab-address 

ARGUMENTS For a description of the control block fields that correspond to the $FAB 
macro arguments, see Chapter 5. In some cases, specific default values are 
assigned automatically when you omit an argument. If there is no specific 
default, VMS RMS uses a default value of 0. 

Arguments fall into three categories: values, addresses, and keywords. Rules 
applicable to these argument categories are described in Chapter 3. 

Note that multiple arguments can be specified for the FAC, FOP, RAT, and 
SHR keywords, but the arguments must be enclosed within left angle (C) 
and right angle (>) brackets. The DNM and FNM arguments must also be 
delimited by these signs. 

The DNM and FNM arguments contain ASCII characters and have no 
corresponding field in the FAB. If the DNM argument is present, VMS RMS 
places its appropriate address and size in the FAB$L _DNA and FAB$B_ 
DNS fields. Similarly, if the FNM argument is present, VMS RMS places its 
appropriate address and size in the FAB$L _FNA and FAB$B_FNS fields. 



VMS RMS Control Block Macros 
$FAB_STORE 

$FAB_STORE 

The $FAB_STORE macro moves user-specified values into fields of the 
specified FAB. The expanded $FAB_STORE code executes at run time 
on a previously initialized (allocated} FAB, in contrast to the $FAB macro, 
which initializes the FAB at assembly time. The $FAB_STORE macro must 
reside in a code program section. 

FORMAT $FAB_STORE fab=fab-address, 
ALQ = #allocation-quantity, 
BKS = #bucket-size, 
BLS = #block-size, 
CHAN_MODE= #channel-access-mode 
CTX =user-context-value, 
DEQ = #extension-quantity, 
DNA =default-filespec-address, 
DNS = #default-filespec-string-size, 
FAC = G810 BRO DEL GET PUT TRN 

UPD> , 
FNA = filespec-string-address, 
FNS = #filespec-string-size, 

<CBT CIF CTG DFW DLT 
MXV NAM NEF NFS OFP 

FOP = POS RCK RWC RWO SCF 
SPL SQO SUP TEF TMD 
TMP UFO WCK> , 

FSZ= #header-size, 
GBC = #global-buKer-count, 
LNM_MODE= #logical-name-

tra nsla tion-access-mode, 
MRN= #maximum-record-number, 
MRS= #maximum-record-size, 
NAM= nam-address, 

IDX l 
ORG = ~ REL J . SEQ 

CR l 
RAT = ! <BLK FTN> 1 . ~ PRN 



VMS RMS Control Block Macros 
$FAB_STORE 

FIX 
STM 
STMCR 

RFM= STMLF 
UDF 
VAR 
VFC 

RTV = #window-size, 
SHR = <DEL GET MSE NIL PUT UPD 

UPI> , 
XAB - xab-address 

ARGUMENTS For a description of the control block fields that correspond to the $FAB_ 
STORE macro arguments, see Chapter 5. 

Arguments fall into several categories: values, addresses, keywords, and 
the address of the control block to receive the specified arguments. Rules 
applicable to these argument categories for the control block store macros are 
described in Chapter 3. 

The FAB argument fab-address is required for the $FAB_STORE macro and 
is not present for the $FAB macro. Conversely, the DNM argument ~ilespec 
and FNM argument default-~lespec are not available for the $FAB_STORE 
macro, although you can use the DNA/DNS and FNA/FNS arguments to 
specify file specifications at run time. 

Note that RO is usually used by the $FAB_STORE macro; thus, RO is not 
preserved and does not contain a return status. 



VMS RMS Control Block Macros 
$NAM 

$NAM 

The $NAM macro allocates storage for a NAM block and initializes certain 
NAM fields with default values and user-specified values. No value is 
returned for this assembly-time operation. 

FORMAT $NAM ESA =expanded-string-address, 
ESS =expanded-string-size, 

NOP = ~NOCONCEAL PWD 
SRCHXABS SYNCHK> , 

RLF =related-file-nam-block-address, 
RSA =resultant-string-address, 
RSS =resultant-string-size 

ARGUMENTS For a description of the control block fields that correspond to the $NAM 
macro arguments, see Chapter 6. 

Arguments fall into three categories: values, addresses, and keywords. Rules 
applicable to these argument categories are described in Chapter 3. 

Note that multiple arguments can be specified for the NOP keyword, but 
the arguments must be enclosed within left angle (C) and right angle (> 
brackets. 



VMS RMS Control Block Macros 
$NAM_STORE 

$NAM_STORE 

The $NAM_STORE macro moves user-specified values into fields of the 
specified NAM block. The expanded $NAM_STORE code executes at 
run time on a previously initialized (allocated) NAM block, in contrast to 
the $NAM macro, which initializes a NAM block at assembly time. The 
$NAM_STORE macro must reside in a code program section. 

FORMAT $NAM_STORE NAM= nam-address, 
DID = #directory-identification, 
DVI = #device-identification, 
ESA =expanded-string-address, 
ESS = #expanded-string-size, 
F/D = #file-identification, 
NOP = <NOCONCEAL PWD 

SRCHXABS SYNCHK> , 
RLF=retated-file-nam-block-address, 
RSA =resultant-string-address, 
RSS = #resultant-string-size 

ARGUMENTS For a description of the control block fields that correspond to the $NAM_ 
STORE macro arguments, see Chapter 6. 

Arguments fall into several categories: values, addresses, keywords, and 
the address of the control block to receive the specified arguments. Rules 
applicable to these argument categories for the control block store macros are 
described in Chapter 3. 

The NAM argument nam-address is required for the $NAM_STORE macro 
and is not present for the $NAM macro. Also, the $NAM_STORE argument 
fields below are not available for the $NAM macro. 

• The DID argument directory-identification sets the NAM$W_DID field, 
which is a 3-word field used when the FAB$L SOP field FAB$V_NAM 
option is set. This argument is usually specified by its symbolic address. 
If a register is used to contain a value for the NAM$W_DID field, do 
not use R 12, because two contiguous registers must be used to contain 
the value of this 3-word field. Note that you cannot use the byte, word, 
or longword displacements for an offset, or for indexed or deferred 
addressing. 

• The DVI argument device-identification sets the NAM$T_DVI field, 
which is a 16-byte field used when the FAB$L SOP field FAB$V_NAM 
option is set. This argument must be passed by its symbolic address. A 
register must not be specified to contain a value for this argument. 



VMS RMS Control Block Macros 
$NAM_STORE 

• The FID argument file-identification sets the NAM$w_FID field, which 
is a 3-word field used when the FAB$L _FOP field FAB$V_NAM option 
is set. This argument is specified by its symbolic address. If a register 
is used to contain a value for the NAM$W_FID field, do not use R12, 
because two contiguous registers must be used to contain the value of 
this 3-word field. Note that you cannot use the byte, word, or longword 
displacements for an offset, or for indexed or deferred addressing. 

Note that RO is usually used by the $NAM_STORE macro; thus, RO is not 
preserved and does not contain a return status. 



VMS RMS Control Block Macros 
$RAB 

$RAB 

The $RAB macro allocates storage for a RAB and initializes certain RAB 
fields with defaults and user-specified values. You cannot use this macro 
within a sequence of executable instructions. No value is returned for this 
assembly-time operation. 

FORMAT $RAB BKT=bucket-code-number, 
CTX =user-context-value, 
FAB = fab-address, 
KBF=key-buffer-address, 
KRF -key-of-reference-number, 
KSZ -key-size, 
MBC = multiblock-count-number, 
MBF= multibuHer-count-number, 
PBF= pvompt-buffer-address, 
PSZ= pvompt-buffer-size, 

(KEY l 
RAC=j RFA 1. ~ SEQ 
RBF= vecord-buffer-address, 
RHB =record-header-buffer-address, 

<ASV 810 CCO CVT EOF EQNXT 
ETO FDL KGE KGT LIM LOA 

ROP = LOC NLK NXR NXT PMT PTA 
RAH REA RLK RNE RNF RRL 
TMO TPT UIF ULK WAT WBH> , 

RSZ=record-size, 
TMO=tlme-out-number-of-seconds, 
UBF= usev-record-buffer-address, 
USZ= usev-record-buffer-size, 
XAB = xab-address 



VMS RMS Control Block Macros 
$RAB 

ARGUMENTS For a description of the control block fields that correspond to the $RAB 
macro arguments, see Chapter 7. In some cases, specific default values are 
assigned automatically when you omit an argument. These specific defaults 
are noted in the text that explains each field in Chapter 7. If there is no 
specific default, VMS RMS uses a default value of 0. 

Arguments fall into three categories: values, addresses, and keywords. Rules 
applicable to these argument categories are described in Chapter 3. 

Note that multiple arguments can be specified for the ROP keyword, but 
the arguments must be enclosed within left angle (C) and right angle 
(>) brackets. Note too that the arguments KGE and EQNXT are logically 
synonymous, as are the arguments KGT and NXT. 



VMS RMS Control Block Macros 
$RAB_STORE 

$RAB_STORE 

The $RAB_STORE macro moves user-specified values into fields of the 
specified RAB. The expanded $RAB_STORE code executes at run time 
on a previously initialized (allocated) RAB, in contrast to the $RAB macro, 
which initializes the RAB at assembly time. The $RAB_STORE macro 
must reside in a code program section. 

FORMAT $RAB_STORE RAB=rab-address, 
BKT =lfbucket-code-number, 
CTX =user-context-value, 
FAB = fab-address, 
KBF=key-buffer-address, 
KRF= #key-of-reference-number, 
KSZ= #key-size, 
MBC= #multiblock-count-number, 
MBF= #multibuffer-count-number, 
PBF= yrompt-buffer-address, 
PSZ= #prompt-buffer-size, 

(KEY 
RAC = { RFA ~ , 

~ SEQ 
RBF= vecord-buffer-address, 
RFA = #record-file-address, 
RHB =record-header-buffer-address, 

<ASY 810 CCO CVT 
EOF EQNXT ETO FDL 
KGE KGT LIM LOA 

ROP= LOC NLK NXR NXT 
PMT PTA RAH REA 
RLK RNE RNF RRL 
TMO TPT UIF ULK 
WAT WBH> , 

RSZ= #record-size, 
TMO=hime-out-number-of-

seconds, 
UBF= usev-record-buffer-address, 
USZ= lfuser-record-buffer-size, 
XAB = xab-address 



VMS RMS Control Block Macros 
$RAB_STORE 

ARGUMENTS For a description of the control block fields that correspond to the $RAB_ 
STORE macro arguments, see Chapter 7. 

Arguments fall into several categories: values, addresses, keywords, and 
the address of the control block to receive the specified arguments. Rules 
applicable to these argument categories for the control block store macros are 
described in Chapter 3. 

The RAB argument rab-address is required for the $RAB_STORE macro 
and is not present for the $RAB macro. Also, the RFA argument record-
file-address is a value (not an address), and it is not available for the $RAB 
macro. The value for the 3-word RAB$W_RFA field must be set before each 
RFA record access. 

This argument is specified by its symbolic address. If a register is used to 
contain a value for the RAB$W_RFA field, do not use R12, because two 
contiguous registers must be used to contain the value of this 3-word field. 
Note that you cannot use the byte, word, or longword displacements for an 
offset, or for indexed or deferred addressing. 

Note that multiple arguments can be specified for the ROP keyword, but 
the arguments must be enclosed within left angle (<) and right angle 
(>) brackets. Note too, that the arguments KGE and EQNXT are logically 
synonymous as are the arguments KGT and NXT. 

Note that RO is usually used by the $RAB_STORE macro; thus, RO is not 
preserved and does not contain a return status. 



VMS RMS Control Block Macros 
$XABALL 

$XABALL 

The $XABALL macro allocates and initializes an XABALL, which allows 
extended control of file disk space allocation, both for initial allocation and 
later extension. No value is returned for this assembly-time operation. 

FORMAT $XABALL A/D =area-identification-number, 
ANY 
CYL 

ALN = LBN . 
RFI 
VBN 

ALQ =allocation-quantity, 
AOP = CCBT CTG 

HRD ONC> , 
BKZ =bucket-size, 
DEQ =extension-quantity, 
LOC =location-number, 
NXT =next-xab-address, 

VOL =volume-number 

ARGUMENTS For a description of the control block fields that correspond to the $XABALL 
macro arguments, see Chapter 8. 

Arguments fall into three categories: values, addresses, and keywords. Rules 
applicable to these argument categories are described in Chapter 3. 

Note that multiple arguments can be specified for the AOP keyword, but 
the arguments must be enclosed within left angle (<) and right angle (> 
brackets. 



VMS RMS Control Block Macros 
$XABALL_STORE 

$XABALL_STORE 

The $XABALL _STORE macro moves user-specified values into fields of 
the specified XABALL. The expanded $XABALL _STORE code executes 
at run time on a previously initialized (allocated) XABALL, in contrast to 
the $XABALL macro, which initializes an XABALL at assembly time. The 
$XABALL _STORE macro must reside in a code program section. 

FORMAT $XABALL_STORE XAB=xaball-address, 
AID = #area-identification-number, 

ANY 
CYL 

ALN = LBN . 
RFI 
VBN 

ALQ = #allocation-quantity, 

AOP = ~CBT CTG 
HRD ONC> , 

BKZ = #bucket-size, 
DEQ = #extension-quantity, 
LOC = #location-number, 
NXT =next-xab-address, 
RFI = #related-file-identification, 
VOL = #volume-number 

ARGUMENTS For a description of the control block fields that correspond to the $XABALL _ 
STORE macro arguments, see Chapter 8. 

Arguments fall into several categories: value, address, keyword, and the 
address of the control block to receive the specified arguments. Rules 
applicable to these argument categories for the control block store macros 
are described in Chapter 3. 

The XAB argument xaball-address is required for the $XABALL _STORE 
macro and is not present for the $XABALL macro. Also, the RFI argument 
related file identification sets the XAB$W_RFI field, which is a 3-word field 
used when the XAB$B_ALN field XAB$V_RFI option is set. This argument 
is usually specified by its symbolic address. If a register is used to contain 
a value for the XAB$W_RFI field, do not use R12, because two contiguous 
registers must be used to contain the value of this 3-word field. Note that 
you cannot use the byte, word, or longword displacements for an offset, or 
for indexed or deferred addressing. 

Note that RO is usually used by the $XABALL _STORE macro; thus, RO is not 
preserved and does not contain a return status. 



VMS RMS Control Block Macros 
$XABDAT 

$XABDAT 

The $XABDAT macro allocates and initializes an XABDAT. No value is 
returned for this assembly-time operation. 

FORMAT $XABDAT EDT=date-time, 
NXT =next-xab-address 

ARGUMENTS For a description of the control block fields that correspond to the $XABDAT 
macro arguments, see Chapter 8. 

Rules applicable to arguments are described in Chapter 3. 



VMS RMS Control Block Macros 
$XABDAT_STORE 

$XABDAT_STORE 

The $XABDAT_STORE macro moves user-specified values into fields of 
the specified XABDAT. The expanded $XABDAT_STORE code executes 
at run time on a previously initialized (allocated) XABDAT, in contrast to 
the $XABDAT macro, which initializes an XABDAT at assembly time. The 
$XABDAT_STORE macro must reside in a code program section. 

FORMAT $XABDAT_STORE XAB = xabdat-address, 
CDT = #creation-date-time, 
EDT = #expiration-date-time, 
RDT = #revision-date-time, 
RVN = #revision-number, 
NXT =next-xab-address 

ARGUMENTS For a description of the control block fields that correspond to the $XABDAT_ 
STORE macro arguments, see Chapter 8. 

Arguments fall into several categories: values, addresses, keywords, and 
the address of the control block to receive the specified arguments. Rules 
applicable to these argument categories for the control block store macros are 
described in Chapter 3. 

The XAB argument xabdat-address is required for the $XABDAT_STORE 
macro and is not present for the $XABDAT macro. Also, the arguments 
below differ from the general rules. 

• The CDT argument creation-date-time sets the XAB$Q _CDT field, 
which is a quadword field. However, if a register is used to contain a 
literal value for the XAB$Q_CDT field, do not use R12, because two 
contiguous registers must be used to contain the value of this quadword 
field. 

• The EDT argument expiration-date-time sets the XAB$Q _EDT field, 
which is a quadword field. The rules for the other time fields (see above) 
also apply to this one. 

• The RDT argument revision-date-time sets the XAB$Q _CDT field, 
which is a quadword field. The rules for the other time fields (see above) 
also apply to this one. 

Note that RO is usually used by the $XABDAT_STORE macro; thus, RO is not 
preserved and does not contain a return status. 



VMS RMS Control Block Macros 
$XABFHC 

$XABFHC 

The $XABFHC macro allocates and initializes an XABFHC. No value is 
returned for this assembly-time operation. 

FORMAT $XABFHC NXT=next-xab-address 

ARGUMENTS For a description of the control block fields that correspond to the $XABFHC 
macro arguments, see Chapter 10. 

Rules applicable to arguments are described in Chapter 3. 



VMS RMS Control Block Macros 
$XABFHC_STORE 

$XABFHC_STORE 

The $XABFHC_STORE macro moves user-specified values into fields of 
the specified XABFHC. The expanded $XABFHC_STORE code executes 
at run time on a previously initialized (allocated) XABFHC, in contrast to 
the $XABFHC macro, which initializes an XABFHC at assembly time. The 
$XABFHC_STORE macro must reside in a code program section. 

FORMAT $XABFHC_STORE XAB=xabfhc-address, 
NXT =next-xab-address 

ARGUMENTS For a description of the control block fields that correspond to the $XABFHC_ 
STORE macro arguments, see Chapter 10. 

Arguments fall into several categories: values, addresses, keywords, and 
the address of the control block to receive the specified arguments. Rules 
applicable to these argument categories for the control block store macros are 
described in Chapter 3. 

The XAB argument xabfhc-address is required for the $XABFHC_STORE 
macro and is not present for the $XABFHC macro. 

Note that RO may be used by the $XABFHC_STORE macro; thus, RO is not 
preserved and does not contain a return status. 



VMS RMS Control Block Macros 
$XABITM 

$XABITM 

FORMAT 

ARGUMENTS 

The $XABITM macro allocates and initializes an XABITM. No value is 
returned for this assembly-time operation. 

$XABITM ITEML/ST =item-list-address, 
MODE = j sensemode l 

l setmode 1 
NXT =next-xab-address 

For a description of the control block fields that correspond to the $XABITM 
rnacro arguments, see Chapter 11. 

Rules applicable to arguments are described in Chapter 3. 

ITEMLIST defaults to 0 but a valid pointer must be specified when you use a 
$XABITM macro. MODE defaults to sensemode. 



VMS RMS Control Block Macros 
$XABKEY 

$XABKEY 

The $XABKEY macro allocates and initializes an XABKEY. No value is 
returned for this assembly-time operation. 

FORMAT $XABKEY COLTBL =collating-table-address, 
DAN =data-bucket-area-number, 
DFL =data-bucket-fill-size, 

' BN2 
DBN2 
BN4 
DBN4 
BN8 
DBNS 
IN2 
DIN2 

DTP = < 
~N4 ~ 
INS 
D/N8 
COL 
DCOL 
PAC 
DPAC 
STG 

. DSTG 
<eHG DAT_NCMPR DUP 

FLG = /DX_NCMPR 
KEY_NCMPR NUL> , 

lAN =index-bucket-area-number, 
IFL =index-bucket-file-size, 
KNM =keg-name-buffer-address, 
LAN =lowest-level-index-area-number, 
NUL =null-key-value, 
NXT =next-xab-address, 

PROLOG =prolog-level, 
REF= key-of-reference-value, 

lJ 



VMS RMS Control Block Macros 
$XABKEY 

ARGUMENTS For a description of the control block fields that correspond to the $XABKEY 
macro arguments, see Chapter 13. 

Arguments fall into three categories: values, addresses, and keywords. Rules 
applicable to these argument categories are described in Chapter 3. 

Multiple arguments can be specified for the FLG keyword, but the arguments 
must be enclosed within left angle (C) and right angle (>) brackets. 
Defaults are applied to the XAB$B_FLG field only if no FLG argument is 
specified. Consider the following: 

KEY_1: $XABKEY REF = 1, POS = 0, SIZ = 10 

This line specifies the key for alternate index 1. Therefore the macro defaults 
the XAB$B_FLG field to allow duplicates and changes (the default for 
alternate keys). However, if an FLG argument is explicitly specified, the 
results are different, as shown below. 

KEY_2: $XABKEY REF = 1, POS = 0, SIZ = 10, FLG =CHG 

In this case, the CHG bit is set in the XAB$B_FLG field and the DUP bit 
remains clear, to disallow duplicates on this key. 

Depending on whether the key being defined is simple or segmented, you 
would use one of the following two formats for the POS and SIZ arguments: 

POS =position 

SIZ = size 

or 

POS ~position0,. . .,position7> 

SIZ xsize0,.. .,size7> 

You must include the angle brackets for multiple argument key positions and 
sizes. 



VMS RMS Control Block Macros 
$XABKEY_STORE 

$XABKEY_STORE 

The $XABKEY_STORE macro moves user-specified values into fields of 
the specified XABKEY. The expanded $XABKEY_STORE code executes 
at run time on a previously initialized (allocated) XABKEY, in contrast to 
the $XABKEY macro, which initializes the XABKEY at assembly time. The 
$XABKEY_STORE macro must reside in a code program section. 

FORMAT $XABKEY_STORE XAB=xabkey-address, 
COLTBL = #collating-table-address, 
DAN = #data-bucket-area-number, 
DFL = #data-bucket-fill-size, 

' BN2 
DBN2 
BN4 
OBN4 
BNS 
DBN8 
IN2 
DIN2 

DTP-< 
DIN4 ~ 
INS 
DINB 
COL 
DCOL 
PAC 
DPAC 
STG 

. DSTG , 
<CHG DAT_NCMPR 

FLG = DUP IDX_NCMPR 
KEY_NCMPR NUL> , 

IAN= ~~ndex-buckeri 
area-number, 

IFL = #index-bucket-fill-size, 
KNM=key-name-buffer-

address, 

LAN= ~~O1M1'est-level-index-
area-number, 

NUL = #null-key-value, 
NXT =next-xab-address, 

B-22 



VMS RMS Control Block Macros 
$XABKEY_STORE 

PROLOG = #prolog-level, 
REF = #key-of-reference-value, 
SIZ = <size, ... 

ARGUMENTS For a description of the control block fields that correspond to the $XABKEY_ 
STORE macro arguments, see Chapter 13. 

Arguments fall into several categories: values, addresses, keywords, and 
the address of the control block to receive the specified arguments. Rules 
applicable to these argument categories for the control block store macros are 
described in Chapter 3. 

The XAB argument xabkey-address is required for the $XABKEY_STORE 
macro and is not present for the $XABKEY macro. The POS and SIZ 
arguments can be either symbolic addresses or a list of up to eight 
values, where each value must be preceded by a number sign (# ), and 
the entire list must be enclosed within left angle and right angle brackets 
( C#value,...,#value> ). The number of POS and SIZ values must be equal. 
Alternatively, each POS and SIZ value can be specified as an argument, using 
the following form: 

POSO = #value, POS1 = #value, . , POST = #value 

SIZO = #value, SIZ1 = #value, ... , SIZ7 = #value 

Note that RO is usually used by the $XABKEY_STORE macro; thus, RO is not 
preserved and does not contain a return status. 



VMS RMS Control Block Macros 
$XABPRO 

$XABPRO 

The $XABPRO macro allocates and initializes an XABPRO. No value is 
returned for this assembly-time operation. 

FORMAT $XABPRO ACLBUF= ACL-buffer-address, 
ACLCTX = <ACL-context> , 
ACLSIZ = ACL-buffer-size, 

MTACC =magnetic-tape-
accessibility, 

NXT =next-xab-address, 
PRO = system, owner, 

group, world> , 
PROT_OPT = <PROPAGATE> , 
UIC = <group, member> 

ARGUMENTS For a description of the control block fields that correspond to the $XABPRO 
macro arguments, refer to Chapter 14. 

Rules applicable to arguments are described in Chapter 3. 

For the MTACC argument, an ASCII radix indicator is required. For example, 
the letter Z is entered as the accessibility character with the following macro 
expression: 

$XABPRO MTACC = ~A/Z/ 

In this example, the circumflex (~) followed by an uppercase A (~A) indicates 
that ASCII text follows. The two slashes (//)delimit the ASCII text. VMS 
RMS converts all lowercase characters to uppercase. No other modification is 
made. 

For the PRO argument, the angle brackets are required syntax, and each 
user class must be separated from the others by a comma. When you omit a 
class to use the default protection, you must retain the comma to indicate the 
omission, unless no other class follows. 

To allow all system users read and write access, use the default file protection 
for the file owner (by omission), allow group users read access, and use the 
default for world users, you would specify <RW„R> .You may specify all, 
some, or none of the access characters and place multiple characters in any 
order, for each user class. 

B—~4 



VMS RMS Control Block Macros 
$XABPRO 

Here is a listing of the user classes together with the letters used to represent 
them: 

• R read access 

• W write access 

• E execute access 

• D delete access 

The absence of a code specifies that the access associated with the code is 
denied to the user. 

A user is granted the maximum number of access rights for each of the classes 
to which he belongs. 

For the UIC argument, the value for the group item must be in the range 
of 0 to 37777; the value for the member item must from 0 to 177777. Note 
that the maximum values (37777 and 177777) are reserved for DIGITAL use 
only. The group number and member number must be enclosed within angle 
brackets, placed in the order <group,member> ,and be separated by a 
comma. Each number is interpreted as an octal number. 



VMS RMS Control Block Macros 
$XABPRO_STORE 

$XABPRO_STORE 

The $XABPRO_STORE macro moves user-specified values into fields of 
the specified XABPRO. The expanded $XABPRO_STORE code executes 
at run time on a previously initialized (allocated) XABPRO, in contrast to 
the $XABPRO macro, which initializes an XABPRO at assembly time. The 
$XABPRO_STORE macro must reside in a code program section. 

FORMAT $XABPRO_STORE XAB=xabpro-address, 
ACLBUF = ACL-buffer-address, 
ACLCTX = #<ACL-context> , 
ACLSIZ= #ACL-buffer-size, 
MTACC = #magnetic-rape-

accessibility, 
NXT =next-xab-address, 

PRO =system, owner, 
group, world> , 

PROT_OPT = <PROPAGATE> , 
UlC = #uic-value 

ARGUMENTS For a description of the control block fields that correspond to the $XABPRO_ 
STORE macro arguments, see Chapter 14. 

Arguments fall into several categories: values, addresses, keywords, and 
the address of the control block to receive the specified arguments. Rules 
applicable to these argument categories for the control block store macros are 
described in Chapter 3. 

The XAB argument xabpro-address is required for the $XABPRO_STORE 
macro and is not present for the $XABPRO macro. Also, the following 
arguments do not comply with the general rules: 

• The PRO argument (file protection) can be either a symbolic address 
or a list of keyword values. If you specify a list of keywords, it 
must be enclosed within left angle (C) and right angle (>) brackets 
and the number sign (#) must be omitted; for example, PRO = 
CRWED,RWED,R,R> . 

• The UIC argument (group,member) can be either a symbolic address 
or a list of two data values. If the data values are constants, they must 
be specified with an octal radix without a preceding number sign (# ). 
This argument can be passed by its symbolic address or by using a VAX 
MACRO expression. 

Note that RO is usually used by the $XABPRO_STORE macro; thus, RO is not 
preserved and does not contain a return status. 



VMS RMS Control Block Macros 
$XABRDT 

$XABRDT 

The $XABRDT macro allocates and initializes an XABRDT. No value is 
returned for this assembly-time operation. 

FORMAT $XABRDT NXT=next-xab-address 

ARGUMENTS For a description of the control block fields that correspond to the $XABRDT 
macro argument, see Chapter 15. 

Rules applicable to arguments are described in Chapter 3. 



VMS RMS Control Block Macros 
$XABRDT_STORE 

$XABRDT_STORE 

The $XABRDT_STORE macro moves user-specified values into fields of 
the specified XABRDT. The expanded $XABRDT_STORE code executes 
at run time on a previously initialized (allocated) XABRDT, in contrast to 
the $XABRDT macro, which initializes the XABRDT at assembly time. The 
$XABRDT_STORE macro must reside in a code program section. 

FORMAT $XABRDT_STORE XAB=xabrdt-address, 
RDT = #revision-date-time, 
RVN= #revision-number, 
NXT =next-xab-address 

ARGUMENTS For a description of the control block fields that correspond to the $XABRDT_ 
STORE macro arguments, see Chapter 15. 

Arguments fall into several categories: values, addresses, keywords, and 
the address of the control block to receive the specified arguments. Rules 
applicable to these argument categories for the control block store macros are 
described in Chapter 3. 

The XAB argument xabrdt-address is required for the $XABRDT_STORE 
macro and is not present for the $XABRDT macro. Also, the RDT argument 
revision-date-time and RVN argument revision-number are not present 
in the $XABRDT macro. The RDT argument revision-date-time is usually 
passed by its symbolic address. However, if a register is used to contain a 
value for the XAB$Q RDT field, do not use R12, because two contiguous 
registers must be used to contain the value of this quadword field. 

Note that RO is usually used by the $XABRDT_STORE macro; thus, RO is not 
preserved and does not contain a return status. 

~„J 



VMS RMS Control Block Macros 
$XABSUM 

$XABSUM 

The $XABSUM macro allocates and initializes an XABSUM. No value is 
returned for this assembly-time operation. 

FORMAT $XABSUM NXT=next-xab-address 

ARGUMENTS For a description of the control block fields that correspond to the $XABSUM 
macro argument, see Chapter 17. 

Rules applicable to arguments are described in Chapter 3. 



VMS RMS Control Block Macros 
$XABSUM _STORE 

$XABSUM_STORE 

The $XABSUM_STORE macro moves user-specified values into fields of 
the specified XABSUM. The expanded $XABSUM_STORE code executes 
at run time on a previously initialized {allocated) XABSUM, in contrast to 
the $XABSUM macro, which initializes the XABSUM at assembly time. 
The $XABSUM_STORE macro must reside in a code program section. 

FORMAT $XABSUM_STORE XAB=xabsum-address, 
NXT =next-xab-address 

ARGUMENTS For a description of the control block fields that correspond to the 
$XABSUM_STORE macro arguments, see Chapter 17. 

Arguments fall into several categories: values, addresses, keywords, and 
the address of the control block to receive the specified arguments. Rules 
applicable to these argument categories for the control block store macros are 
described in Chapter 3. 

The XAB argument xabsum-address is required for the $XABSUM_STORE 
macro and is not present for the $XABSUM macro. 

Note that RO may be used by the $XABSUM _STORE macro; thus, RO is not 
preserved and does not contain a return status. 

B-30 



VMS RMS Control Block Macros 
$XABTRM 

$XABTRM 

The $XABTRM macro allocates and initializes an XABTRM. No value is 
returned for this assembly-time operation. 

FORMAT $XABTRM ITMLST=item-list-address, 
ITMLST_LEN=ctem-list-length, 
NXT =next-xab-address 

ARGUMENTS For a description of the control block fields that correspond to the $XABTRM 
macro arguments, see Chapter 18. 

Rules applicable to arguments are described in Chapter 3. 



VMS RMS Control Block Macros 
$XABTRM_STORE 

$XABTRM_STORE 

The $XABTRM_STORE macro moves user-specified values into fields of 
the specified XABTRM. The expanded $XABTRM_STORE code executes 
at run time on a previously initialized (allocated) XABTRM, in contrast to 
the $XABTRM macro, which initializes an XABTRM at assembly time. The 
$XABTRM_STORE macro must reside in a code program section. 

FORMAT $XABTRM_STORE XAB=xabtrm-address, 
ITMLST =item-list-address, 
ITMLST_LEN= #item-list-length, 
NXT =next-xab-address 

ARGUMENTS For a description of the control block fields that correspond to the 
$XABTRM _STORE macro arguments, see Chapter 18. 

Arguments fall into several categories: values, addresses, keywords, and 
the address of the control block to receive the specified arguments. Rules 
applicable to these argument categories for the control block store macros are 
described in Chapter 3. 

The XAB argument xabtrm-address is required for the $XABTRM_STORE 
macro and is not present for the $XABTRM macro.. 

Note that RO is usually used by the $XABTRM _STORE macro; thus, RO is 
not preserved and does not contain a return status. 

B-32 



Index 

Q 

Access 
modes • 1-1 
run-time options• 1-2 

Access control list 
See ACL 

Access control list buffer field 
See XAB$L _ACLBUF field 

Access control list buffer size field 
See XAB$W_ACLSIZ field 

Access control list context field 
See XAB$L _ACLCTX field 

Access control list error status field 
See XAB$L _ACLSTS field 

Access control list length field 

See XAB$W_ACLLEN field 
Access specification 

list of mask values• 14-6 
ACE (access control list) 

VMS RMS limitation • 14-2 
ACL (access control list} 

conversion methods• 14-2 
use with VMS RMS control block• 14-2 

Actual offset value 
avoiding use of • 2-4 

Alignment boundary type field 

See XAB$B_ALN field 
Allocation control extended address block 

See XABALL block 
Allocation options field 

See XAB$B_AOP field 
Allocation quantity field 

See FAB$L _ALQ field 
Area allocation quantity field 

See XAB$L _ALQ field 
Area default extension quantity field 

See XAB$W_DEQ field 
Area identification number (AID) 

program example • 4-8 
Area identification number field 

See XAB$B_AID field 
Argument 

delimiters • 3-10 

Argument (cont'd.) 

initialization and control block store macros • 
3-8 

passing • 1-2 
separator • 3-6 
specifying as run-time values•3-9 
to FAB • 1-2 
to RAB• 1-4 

Argument keyword 
delimiting for service • 3-10 

Argument list 
count field • 2-5 
description • 2-4 
error routine address field • 2-5 
new FAB address field•2-5 
passing to service • 3-10 
success routine address field • 2-5 

ASCII character 
delimiting in control block fields • 3-6, 3-7 

Asynchronous I/O option 

See FAB$V_ASY 
See RAB$V_ASY option 

Asynchronous operation 
contrasted with synchronous operation • 2-7 
using RO.2-5 

B 
Backup date and time field 

See XAB$Q _BDT field 
BID field 

See Block identifier field 
BLN field 

See Block length field 
Block boundary option 

See FAB$V_BLK option 
Block code field 

See XAB$B_COD field 
Block I/O 

additional services that use•4-23 
applicable services•4-23 
description • 4-23 
how to execute • 4-24 
how to specify for relative and indexed files • 

4-24 

Index-1 



Index 

Block I/O (cont'd.) 

program example•4-25 
requirements for mixing with record I/0.4-23 
restrictions to • 4-23 
services • 3-5 
specifying•4-23 
use of NBP for sequential files•4-25 
with multiple record streams•4-25 
with record I/O processing • 4-25 

Block I/O execution 
contrasted with record I/O execution • 4-24 

Block I/O option 

See FAB$V_BIO option 

See RAB$V_BIO option 
Block identifier field 

See FAB$B_BID field 
See NAM$B_BID field 
See RAB$B_BID field 

Block length field 
See NAM$B_BLN field 

Block length field in allocation XAB 
See XAB$B_BLN field 

Block length field in date and time XAB 

See XAB$B_BLN field 
Block length field in file access block 

See FAB$B_BLN field 
Block length field in file header characteristics XAB 

See XAB$B_BLN field 
Block length field in item list XAB 

See XAB$B_BLN field 
Block length field in key XAB 

See XAB$B_BLN field 
Block length field in protection XAB 

See XAB$B_BLN field 
Block length field in record access block 

See RAB$B_BLN field 
Block length field in revision date and time XAB 

See XAB$B_BLN field 
Block length field in summary XAB 

See XAB$B_BLN field 
Block length field in terminal XAB 

See XAB$B_BLN field 
Block or record I/O option 

See FAB$V_BRO option 
Bucket boundary 

file organization considerations• 5-4 
Bucket code field 

See RAB$L_BKT field 

Bucket size field 
See FAB$B_BKS field 

Bucket size field in allocation XAB 
See XAB$B_BKZ field 

Bucket size field in file header characteristics XAB 
See XAB$B_BKZ field 

Bucket split 
minimizing• 13-4 

BYTLM quota 
limiting size of user's ACL buffer• 14-3 

C 
Caller access mode• 5-5 
Calling sequence• 2-4 
Calling services • 1-1 
Cancel CTRL/0 option 

See RAB$V_CCO option 
Carriage return option 

See FAB$V_CR option 
CDT argument • B-16 
Channel access mode protection option • 5-5 
Channel access mode subfield 

See FAB$V_CHAN_MODE 
See FAB$V_CHAN_MODE subfield 

CHG (change) option 
in XAB$B_FLG field • B-21 

Close service 
condition values• RMS-5 

See also Completion status codes 
contrasted with Disconnect service • 4-5 
control block input fields •RMS-4 
control block output fields •RMS-4 
function•4-1 
introduction • 4-1 
limitations with XABs• RMS-4 
use restrictions•RMS-4 

Collating key data type • 13-6 
Collating sequence name field 

See XAB$L _COLNAM field 
Collating sequence size field 

See XAB$L _COLSIZ field 
Collating sequence table field 

See XAB$L _COLTBL field 
Comment separator• 3-6 
Completion routine 

condition for AST execution • 3-1 1 
service macro arguments • 3-1 1 

Index-2 



Index 

Completion status code 
description • 2-5, A-9 to A-20 
errors for inaccessible control block condition • 

2-6 
handling • 3-12 
hexadecimal values • A-2 to A-9 
listing conditions when not returned • A-2 
severity codes • 2-6 
testing • 2-5 

Completion status code field 
use with debugger• A-2 

Completion status code field in FAB 
See FAB$L _STS field 

Completion status code field in RAB 
See RAB$L _STS field 

Completion status code value field 
use with debugger• A-2 

Completion status field 
See also FAB$L _STS field 
as alternative to use of RO.2-4 
for signaling errors• 2-6 

Completion status value field 
as alternative to use of RO.2-4 
for signaling errors•2-6 

Completion status value field in FAB 
See FAB$L _STV field 

Completion status value field in RAB 
See RAB$L _STV field 

Condition value 
See Completion status code 

Connect service•RMS-6 
comparing positioning for various file 

organizations • RMS-7 
condition values• RMS-9 
connecting record stream •4-4 
control block input fields• RMS-7 
control block output fields• RMS-8 
program example • 4-12 
use with multiple keys • 4-12 

Contiguous best try option 
See FAB$V_CBT option 

Contiguous option 
See also FAB$V_CTG option 
See FAB$V_CTG option 

Continuation character• 3-6 
Control block 

dual purpose • 1-4 
field name conventions • 2-2 
for extended attributes • 1-3 
for file name operations • 1-3 

Control block (cont'd.) 

for file services • 1-2 
for record services • 1-4 
macro names• 3-2 
requirements for valid default values • 1-4 
symbolic bit offset • 2-4 
symbolic constant (keyword► value • 2-4 
symbolic naming exceptions • 2-3 
symbolic offsets • 2-2 
types of macros• 3-1 
use restrictions • 2-1 
use with VAX languages • 2-1 

Control block store macro 
description • 3-1 
example • 3-9 
placement guidelines • 3-8 
requirement for number sign•3-8 
use of RO.3-8 

Control routine•4-27 
CONVERT command • 4-9 
Convert option 

See RAB$V_CVT option 
CREATE/FDL command•4-9 
Create-if option • 4-1 

See also FAB$V_CIF option 
$CREATE macro • 3-10 
Create service •RMS-10 

condition values •RMS-19 
contrasted with Open service • 4-1 
control block input fields •RMS-1 1 
control block output fields •RMS-15 
function • 4-1 
handling search list •RMS-1 1 
invoking • 4-1 
program example•4-2 
prolog level •RMS-18 
using the create-if option •RMS-17 
using the NAM block •RMS-16 
using to create indexed files •RMS-18 
XAB override in various fields •RMS-1 1 

Creation date and time field 
See XAB$Q_CDT field 

CTRL/Z 
using as end-of-file marker• RMS-49 
using to terminate Get service• RMS-49 

Current position option 
See FAB$V_POS option 

Index-3 



Index 

D 
DAP (data access protocol) • 1-1 
Data access protocol 

See DAP 
Data bucket area number (DAN► 

program example•4-8 
Data bucket area number field 

See XAB$B_DAN field 
Data bucket fill size (DFL) 

program example • 4-8 
Data bucket fill size field 

See XAB$W_DFL field 
Data bucket size field 

See XAB$B_DBS field 
Data level 

comparing for primary and alternate keys • 13-4 
Data type of key field 

See XAB$B_DTP field 
Date and time extended address block 

See XABDAT block 
Debugger 

use with completion status codes • A-2 
DEC Multinational Character Set 

using • 2-7 
DECnet remote file access 

specifying maximum record size• 5-22 
Default extension quantity field 

See FAB$W_DEQ field 
Default file extension quantity field in XABFHC 

See XAB$W_DXQ field 
Default file specification string address field 

See FAB$L _DNA field 
Default file specification string size field 

See FAB$B_DNS field 
Default global buffer count field 

See XAB$W_GBC field 
Deferred write option 

See FAB$V_DFW option 
Delete on close option 

See FAB$V_DLT option 
Delete service •RMS-21 

condition values• RMS-22 
See also Completion status codes 

control block input fields• RMS-22 
control block output fields• RMS-22 
program example • 4-19 
requirements• RMS-22 
use restrictions •RMS-21 

Delete service option 

See FAB$V_DEL option 
Delete sharing option 

See FAB$V_SHRDEL option 
Delimiter 

using in control block arguments• 3-5, 3-6, 
3-7 

$DEVDEF macro 
source of DEV field bit definitions• 5-7 

Device characteristics field 
See FAB$L _DEV field 

Device identification field 
See NAM$T_DVI field 

Device name address descriptor 

See NAM$L _DEV descriptor 
Device name address field 

See NAM$L _DEV field 
Device name length field 

See NAM$B_DEV field 
Device name size descriptor 

See NAM$B_DEV descriptor 
Directory address descriptor 

See NAM$L _DIR descriptor 
Directory identification field 

See NAM$W_DID 
Directory name length address field 

See NAM$L _DIR field 
Directory name length field 

See NAM$B_DIR field 
Directory size descriptor 

See NAM$B_DIR descriptor 
Disconnect service •RMS-23 

condition values• RMS-24 
See also Completion status codes 

control block input fields• RMS-24 
control block output fields• RMS-24 
program example • 4-12 
using with multiple RABs• RMS-24 

Disk cluster boundary 
determining allocation quantity•5-3 

Display service •RMS-25 
condition values• RMS-28 
control block input fields •RMS-26 
control block output fields• RMS-26 
requirements• RMS-26 

DNA (default name address) argument • B-5 
DNM (default name) argument• B-3 
DNM (default name) field•4-3 

Index-4 



Index 

DNM (default name) keyword 
specifying FAB$L _DNA and FAB$B_DNS fields 

from VAX MACRO. 5-9 
DNS (default name size) argument• B-5 
DUP (duplicate) option 

in XAB$B_FLG field•B-21 
Duplicate key 

examples • 7-8 
incompatibility between VMS RMS and RMS-1 1 

• 13-9 
insertion order• RMS-72 
retrieving records • 7-8 

E 
EDT argument • B-16 
End-of-file field in XABFHC 

See XAB$L _EBK field 
End-of-file mark 

positioning for user file open option • 5-18 
End-of-file option 

See RAB$V_EOF option 
End-of-file positioning •RMS-7 
Enter service •RMS-29 

condition values •RMS-31 
control block input fields• RMS-30 
control block output fields• RMS-30 
requirement for NAM block fields •RMS-30 

Erase service• RMS-32 
alternative •RMS-33 
condition values •RMS-34 

See also Completion status codes 
control block input fields• RMS-33 
control block output fields• RMS-33 
requirements for using •RMS-33 
use restriction •RMS-33 

Error 
recommended method for signaling•2-6 

Error completion routine • 2-5 
Error status code • 2-6 

from invalid control blocks• 2-6 
Escape sequence 

using from terminal devices •RMS-49 
ETO (extended terminal operation) option • 

RMS-49 
Event flag 

for synchronous operations• 2-7 
Executive-mode (PSL$C_EXEC) constant 

for FAB$V_CHAN_MODE • 5-5 

Expanded string 
requesting • 6-2 

Expanded string area address (ESA) 
program example • 4-12 

Expanded string area address field 

See NAM$L _ESA field 
Expanded string length field 

See NAM$B_ESL field 
Expanded string size field 

See NAM$B_ESS field 
Expiration date field 

See XAB$Q_EDT field 
Extended attribute block 

See XAB block 
Extended attribute block address field 

See FAB$L _XAB field 
See RAB$L _XAB field 

Extended terminal operation option 
See RAB$V_ETO option 

Extend service •RMS-35 
condition values •RMS-37 
control block input fields •RMS-36 
control block output fields• RMS-36 
invoking • 5-1 1 
requirements• RMS-36 
use restriction •RMS-36 
XAB overrides• RMS-36 

F 
FAB$B_ACMODES 

See FAB$V_CHAN_MODE and FAB$V_LNM_ 
MODE 

FAB$B_BID field•5-3 
FAB$B_BKS field • 5-3 

considerations for calculating • 5-4 
default logic • 5-4 
limitation for RMS-1 1 •5-3 
performance considerations• 5-4 
requirements for RMS-11 compatibility • 5-5 
selecting default size for indexed files• 5-4 
variations for XABs • 5-4 

FAB$B_BLN field • 5-4 
FAB$B_DNS field • 5-9, B-3 

specifying default file specification • 5-2 
FAB$B_FAC field • 5-9 

comparing with FAB$B_SHR field • 5-9 
for specifying sharing options • 4-1 
interdependency with FAB$B_SHR field • 5-27 

Index-5 



Index 

FAB$B_FAC field (cont'd.) 

options • 5-10 
use with FAB$B_SHR • 5-10 

FAB$B_FNS field • 5-12 
specifying primary file specification • 5-2 

FAB$B_FSZ field • 5-18 
FAB$B_ORG field • 5-23 

options• 5-23 
use by various services• 5-23 

FAB$B_RAT field • 5-23 
default logic•5-23 
options • 5-23 

FAB$B_RFM field • 5-25 
keywords • 5-25 
options• 5-25 

FAB$B_RTV field • 5-26 
FAB$B_SHR field•5-27 

comparing option names with file access option 
names • 5-27 

conflict with FAB$B_FAC field • 5-27 
default logic • 5-27 
for specifying sharing options • 4-1 
interdependency with FAB$B_FAC field • 5-27 
option naming convention • 5-27 
options• 5-28 

FAB$C_FIX option• 5-25 
FAB$C_STMCR option • 5-25 
FAB$C_STMLF option • 5-26 
FAB$C_STM option • 5-25 
FAB$C_UDF option • 5-26 
FAB$C_VAR option•5-26 
FAB$C_VFC option • 5-26 
FAB$L _ALQ field • 5-3 

as output field • 5-3 
functional variations for XABs • 5-3 
setting at run time• 3-5 
use with Create service • 5-3 
use with Extend service• 5-3 
use with Open service • 5-3 

FAB$L _CTX field • 5-6 
FAB$L _DEV field • 5-7 

bits listed • 5-7 
FAB$L _DNA field • 5-8, 5-9, B-3 

components listed • 5-9 
specifying default file specification • 5-2 

FAB$L _FNA field • 5-1 1 
specifying primary file specification • 5-2 

FAB$L _FOP field • 5-12 
options • 5-13 

FAB$L _MRN field • 5-21 
consequence of exceeding • 5-21 

FAB$L _NAM field • 5-23 
FAB$L _SDC field • 5-27 

comparing with FAB$L _DEV field • 5-27 
FAB$L _STS field • 5-29 

handling for ACL error status• 14-3 
FAB$L _STV field • 5-29 

examples of using • 3-12 
for invoking SYS$QIO.5-18 
for total number of blocks allocated •RMS-36 
with I/O channel •RMS-16 

FAB$L _XAB field • 5-29 
FAB$V_ASY option • 5-14 

use restriction • 5-14 
FAB$V_BIO option • 5-10 

how used to specify I/O type • 4-24 
FAB$V_BLK option • 5-23 
FAB$V_BRO option 

use for sharing files • 5-28 
FAB$V_CBT option • 5-13 

precedence over FAB$V_CTG option • 5-14 
FAB$V_CHAN_MODE option 

list of values • 5-5 
setting from MACRO.5-6 

FAB$V CIF option • 5-15 
precedence over FAB$V_SUP option • 5-15 

FAB$V_CR option • 5-24 
restriction against use with FAB$V_FTN and 

FAB$V_PRN options • 5-23 
FAB$V_CTG option • 5-14 

subordinate to FAB$V_CBT option • 5-14 
FAB$V_DEL option • 5-10 

for enabling Delete service•4-20 
FAB$V_DFW option • 5-14 

exception to use of global buffers • 5-19 
FAB$V_DLT option • 5-16 

qualified use by Close service •RMS-4 
use with FAB$V_SCF or FAB$V_SPL option • 

5-16 
FAB$V_FTN option • 5-24 

restriction against use with FAB$V_CR and 
FAB$V_PRN options • 5-23 

. 

FAB$V_GET option • 5-10, 5-28 
use with block I/O operations • 5-10, 5-1 1 

FAB$V_LNM_MODE option 
values listed • 5-20 

FAB$V_LNM_MODE subfield • 5-20 
FAB$V_MSE option • 5-28 

enabling multiple RABs•RMS-7 
for overriding the FAB$V_UPI option • 5-29 
requirement for read-only buffer cache • 5-20, 

5-28 

Index-6 



Index 

FAB$V_MSE option (cont'd.) 

use with other options• 5-28 
FAB$V_MXV option • 5-15 
FAB$V_NAM option • 5-16 
FAB$V_NEF option • 5-17 
FAB$V_NFS option • 5-18 

relationship to CHAN_MODE subfield • 5-5 
FAB$V_NIL option • 5-28 

effect on specifying user file open option • 5-18 
precedence over other options• 5-28 
requirement for block I/O.4-23 

FAB$V_OFP option • 5-16 
FAB$V_POS option • 5-17 

subordinate to FAB$V_RWO option • 5-17, 
5-18 

FAB$V_PRN option • 5-24 
restriction against use with FAB$V_FTN and 

FAB$V_CR options • 5-23 
FAB$V_PUT option • 5-1 1, 5-28 

use with block I/O operations• 5-10 
FAB$V_RCK option • 5-15 

restricted use • 5-15 
FAB$V_RWC option • 5-17 
FAB$V_RWO option • 5-17 

precedence over FAB$V_POS option • 5-17, 
5-18 

FAB$V_SCF option • 5-16 
qualified use by Close service• RMS-4 
use restriction • 5-16 

FAB$V_SHRDEL option • 5-28 
FAB$V_SHRGET option 

requirement for read-only buffer cache• 5-20, 
5-28 

FAB$V_SPL option • 5-16 
qualified use by Close service• RMS-4 

FAB$V_SQO option • 5-14 
prohibiting random access •RMS-48 

FAB$V_SUP option • 5-16 
subordinate to FAB$V_CIF option • 5-15 

FAB$V_SYNCSTS option • 5-15 
FAB$V_TEF option • 5-14 

restriction to sequential files • 5-14 
FAB$V_TMD option • 5-17 

inhibiting automatic Create •RMS-29 
precedence over FAB$V_TMP option • 5-17 

FAB$V_TMP option • 5-17 
inhibiting automatic Create• RMS-29 
subordinate to FAB$V_TMD option • 5-17 

FAB$V_TRN option 
in file access field • 5-1 1 
requirement for truncate-on-put operation • 

7-17 

FAB$V_UFO option • 5-18 
effect on internal structures • 5-20 
relationship to CHAN_MODE subfield • 5-5 

FAB$V_UPD option • 5-1 1, 5-28 
requirement for implementing update-if option • 

7-17 
requirement for Update service•4-22 

FAB$V_UPI option•5-28 
regirement for setting • 5-29 
requirement for block I/O.4-23 
requirement for user file open option • 5-18 

FAB$V_WCK option • 5-15 
restricted use • 5-15 

FAB$W_BLS field • 5-5 
limitation • 5-5 
setting • 5-5 

FAB$W_DEQ field • 5-4, 5-6 
default logic• 5-6 
overriding default• 5-7 

FAB$W_GBC field • 5-19 
as output• 5-19 
changing • 5-19 
clearing • 5-19 
overriding default • 5-19 

FAB$W_IFI field • 5-20 
FAB$W_MRS field • 5-21 

as output• 5-22 
program example•4-4 
summary • 5-22 
use with fixed-length records • 5-21 
use with variable-length records • 5-21 

FAB (file access block) • 5-1 
argument categories • 1-2 
description • 1-2 
requirements for• 5-2 
summary of fields • 5-1 

$FAB macro • B-2 
argument categories • B-3 

$FAB_STORE macro•B-4 
argument categories • B-5 
FAB argument requirement•B-5 
run-time arguments•B-5 

FAC field 
See FAB$B_FAC field 

Fast delete option 
See RAB$V_FDL option 

FDL$PARSE•4-9 
FDL$RELEASE•4-9 
FDL Editor 

as alternative to multiple XABs in. example•4-9 

Index-7 



Index 

Field length 
identifier in symbolic name • 2-3 

File 
characteristics argument for FAB • 1-2 
organizations • 1-1 
specification argument for FAB • 1-2 

File access block 
See FAB 

File access block address field 
See RAB$L _FAB field 

File access field 
See FAB$B_FAC field 

File component descriptor 
address field • 6-3 
example • 6-4 
field value logic• 6-3 
list of • 6-3 
size field • 6-3 
suggested use of• 6-4 

File Definition Language Editor 

See FDL Editor 
File extension 

using Extend service•RMS-36 
File header characteristic extended address block 

See XABFHC 
See XABFHC block 

File identification field 
See NAM$W_FID field 

File name address descriptor 

See NAM$L _NAME descriptor 
File name address field 

See NAM$L _NAME field 
File name length field 

See NAM$B_NAME field 
File name size descriptor 

See NAM$B_NAME descriptor 
File name status field 

See NAM$L _FNB field 
File name string 

component parts • 4-9 
File name string address( FAB$L _FNA) field 

how used to specify file name string • 4-9 
File name string size (FAB$B_FNS) field 

how used to specify file name size • 4-9 
File organization and record format field 

See XAB$B_RFO field 
File organization field 

See FAB$B_ORG field 
File owner group number field 

See XAB$W_GRP field 

File owner group number field (cont'd.) 

in XABPRO field• 14-4 
File owner member number field 

See XAB$W_MBM field 
File positioning 

effect on shared files •RMS-7 
File-processing 

services listed • 3-3 
File-processing option 

as service output • 5-12 
categories listed • 5-12 
naming convention • 5-12 

File-processing options field 

See FAB$L _FOP field 
File protection extended address block 

See XABPRO block 
File protection field 

See XAB$W_PRO field 
File protection option field 

See XAB$B_PROT_OPT field 
File section 

defining in context of multiple volumes • 
RMS-56 

File sharing 
features • 1-1 

File sharing field 
See FAB$B_SHR field 

File specification 
component descriptors • 6-2 
default requirements•4-9 
how handled by Search service • 4-9 
parsing •RMS-66 

File specification address 

See FAB$L _FNA field 
File specification size 

See FAB$B_FNS field 
File specification string address•4-9 
File specification string size•4-9 
File type address descriptor 

See NAM$L _TYPE descriptor 
File type address field 

See NAM$L _TYPE field 
File type length field 

See NAM$B_TYPE field 
File type size descriptor 

See NAM$B_TYPE descriptor 
File version address descriptor 

See NAM$L _VER descriptor 
File version address field 

See NAM$L _VER field 

Index-8 



Index 

File version length field 

See NAM$B_VER field 
File version limit field 

See XAB$W_VERLIMIT field 
File version size descriptor 

See NAM$B_VER descriptor 
Fill level 

comparing primary key and alternate keys • 
13-10 

Find service• RMS-38 
capabilities• RMS-39 
condition values• RMS-41 
control block input fields• RMS-39 
control block output fields• RMS-41 

First data bucket start virtual block number field 
See XAB$L _DVB field 

First free byte field 
See XAB$W_FFB field 

Fixed-length control area size field 

See FAB$B_FSZ field 
Fixed-length header control size field 

See XAB$B_HSZ field 
Fixed-length record format option 

See FAB$C_FIX option 
Flush service• RMS-43, RMS-44 

condition values• RMS-44 
See also Completion status codes 

control block input fields• RMS-44 
control block output fields •RMS-44 

FNA argument• B-5 
FNM argument•B-3 
FNM keyword 

for specifying FAB$L _FNA and FAB$B_FNS 
fields from VAX MACRO.5-1 1 

FNS argument• B-5 
FORTRAN carriage control option 

See FAB$V_FTN option 
FORTRAN carriage control option list• 5-24 
Free service• RMS-45 

condition values• RMS-46 
control block input and output fields •RMS-46 

G 
$GET macro 

program example • 4-16 
Get option 

See FAB$V_GET option 

Get service• RMS-47, RMS-53 
applicable access modes• RMS-48 
condition values•RMS-53 

See also Completion status codes 
control block input fields •RMS=50 
control block output fields•RMS-53 
requirement for user record area •RMS-50 
returning terminator character for terminal 

input• RMS-49 
return status for various file access methods • 

RMS-7 
using input from mailbox devices• RMS-50 
using stream input •RMS-48 
using terminal input• RMS-48 
using the RAB$L_STV field for additional status 

information • RMS-50 
Get sharing option 

See FAB$V_GET sharing option 
Global buffer • 5-19 

determining number of• 5-20 
Global buffer count field 

See FAB$W_GBC field 

H 
HDR1 labels 

accessing from XAB$B_MTACC field • 14-5 
Highest virtual block field 

See XAB$L _HBK field 

I/O mode 
how to switch for sequential fiies•4-24 
procedure for delaying decision until stream 

connection • 4-24 
when mode switching allowed •4-24 

Index bucket area number (IAN) 
program example•4-8 

Index bucket area number field 
See XAB$B_IAN field 

Index bucket fill size (IFL) 
program example • 4-8 

Index bucket fill size field 
See XAB$W_IFL field 

Index bucket size field 
See XAB$B_IBS field 

Index-9 



Index 

Indexed file 

block allocation • 8-3 
bucket size for multiple areas •RMS-15 
composition •RMS-18 
creating •RMS-18 
creating with multiple-key•4-5 
default bucket size • 5-3 
determinating key value •RMS-48 
determining keys and areas • 17-1 
determining key size• 7-4 
determining maximum record size• 5-21 
determining number of buffers• 7-6 
establishing index• RMS-7 
example of processing duplicate keys• 7-8 
example of specifying • 3-5 
fast delete option • 7-15 
identifying data area • 13-4 
inhibiting index update • 13-12 
initial extent quantity • 5-3 
inserting records with Put service• RMS-71 
invoking Get and Find services for • 7-4 
key of reference • 7-3 
methods of accessing records • 7-5 
options • 7-10 
positioning area • 8-7 
PROLOG selection •RMS-19 
restriction against VFC format • 5-18 
restriction to changing primary key •RMS-100 
separating index levels • 13-1 1 
setting bucket size • 5-4 
size of data bucket • 13-4 
specifying bucket size• 8-5 
specifying index area • 13-10 
specifying index bucket size • 13-10 
string key options • 13-8 
update-if option • 7-17 
use of areas in • 4-8 
use of end-of-file option •~ RMS-7 
verifying sort order• RMS-7 
with allocation options • 5-14 
with collating sequences• 13-3 
with deferred-write option •RMS-12 
with Get service •RMS-48 
with XABKEY • 13-1 

Index level 
comparing primary key and alternate keys • 

13-10 
Initialization macro 

advantages described • 3-7 
example • 3-5 
functions • 3-1 

Initialization macro (cont'd.) 

multiple bit field • 3-5 
placement guidelines• 3-7 
using • 3-6 

Inserting record 
program example • 4-16 

Internal file identifier field 
See FAB$W_IFI field 

Internal stream identifier field 
See RAB$W_ISI field 

10$M_NOW modifier 
for Get and Put services • 7-14 

Item list • 18-1 
guidelines for supplying • 18-1 

Item list address field 
See XAB$L _ITEMLIST field 
See XAB$L _ITMLST field 

Item list extended address block 
See XABITM block 

Item list length field 
See XAB$W_ITMLST_LEN field 

J 
Journaling extended address block 

See XABJNL block 

K 
Key 

defining as simple or segmented • 13-13 
determining match method • 7-5 
example of finding and deleting a record•4-20 
example of updating a record•4-21 
selecting path • 4-12 
size restriction for string type • 13-15 
types of matches • 7-5 

Key buffer address field 
See RAB$L _KBF field 

Key definition extended address block 

See XABKEY block 
Key greater than 

See RAB$V_NXT option 
Key greater than or equal 

See RAB$V_EQNXT option 
Key name buffer address field 

See XAB$L _KNM field 

Index-10 



Index 

Key of reference 
establishing • RMS-48 

Key of reference field 

See RAB$B_KRF field 

See XAB$_REF field 
Key option 

comparing primary and alternate keys • 13-8 
Key options flag field 

See XAB$B_FLG field 
Key position field 

See XAB$W_POSO through XAB$W_POS7 
field 

Key size field 

See RAB$B_KSZ field 

See XAB$B_SIZO through XAB$B_SIZ7 field 
Key string buffer 

program example • 4-16 
Key string descriptor 

program example • 4-16 
Key string length 

program example • 4-16 

L 
Length field 

using to indicate constant (keywords value• 2-4 
using to indicate mask or bit offset•2-3 

Level of root bucket field 
See XAB$B_LVL field 

LIB$GET_INPUT 
example of use in program • 4-12 

LIB$PUT_OUTPUT 
example of use in program • 4-12 

LIB$SIGNAL (or LIB$STOP► 
using to signal errors• 2-6 

Limit option 
See RAB$V_LIM option 

Load option 
See RAB$V_LOA option 

Locate mode 
comparing with move mode for buffer handling • 

7-15 
Locate mode option 

See RAB$V_LOC option 
Location field in XABALL 

See XAB$L _LOC field 
Lock record for read option 

See RAB$V_REA option 

Lock record for write option 

See RAB$V_RLK 
Logical name translation 

requirements for parsing•4-9 
Logical name translation access mode subfield 

See FAB$V_LNM_MODE subfield 
Longest record length field 

See XAB$W_LRL field 
Lowest level of index area number field 

See XAB$B_LAN field 

M 
Macro 

applicable VAX MACRO syntax rules • 3-5 
arguments for service completion routines• 

3-11 
capabilities listed • 4-1 
control block initialization • 3-1 
library location • 3-2 
names and control blocks • 3-2 
naming conventions • 3-2 
rules applicable to programming•3-6 
service • 3-1 
using•3-6 

Macro field 
example of initializing • 3-5 
setting at run time• 3-5 

Magnetic tape accessibility field 
See XAB$B_MTACC field 

Manual unlock option 

See RAB$V_ULK option 
MAXBUF system parameter 

limiting size of user's ACL buffer• 14-3 
Maximum record number field 

See FAB$L _MRN field 
Maximum record size 

default value for remote file access• 5-22 
Maximum record size field 

See FAB$W_MRS field 
Maximum record size field in XABFHC 

See XAB$W_MRZ field 
Maximum version option 

See FAB$V_MXV option 
Minimum record length field 

See also XAB$W_MRL field 
in XABKEY • 13-12 

Index-11 



Index 

Mixed I/O 

precautions listed • 4-24 
Mode field in XABITM 

See XAB$L _MODE field 
Mode switching 

when permitted • 4-24 
Multiblock count field 

See RAB$B_MBC field 
Multibuffer count field 

See RAB$B_MBF field 
Multinational Character Set 

See DEC Multinational Character Set 
Multiple argument 

delimiting in control block fields•3-5, 3-7 
specifying in control block fields• B-3 

Multiple key 
example of use with Close service • 4-12 
performance cost of using • 13-14 
recommended number • 13-14 

Multiple-key indexed file 
creating • 4-5 

Multiple record stream 
with block I/O.4-25 

Multistream access option 

See FAB$V_MSE option 

N 
NAM$B_BID field•6-4 
NAM$B_BLN field • 6-4 
NAM$B_DEV descriptor• 6-3 
NAM$B_DEV field•6-4 
NAM$B_DIR descriptor • 6-3 
NAM$B_DIR field•6-5 
NAM$B_ESL field • 6-5 
NAM$B_ESS field • 6-5 
NAM$B_NAME descriptor•6-3 
NAM$B_NAME field•6-7 
NAM$B_NODE descriptor • 6-3 
NAM$B_NODE field • 6-7 
NAM$B_NOP field • 6-7 

options listed • 6-8 
NAM$B_RSL field • 6-9, RMS-63 
NAM$B_RSS field • 6-9 
NAM$B_TYPE descriptor • 6-3 
NAM$B_TYPE field • 6-9 
NAM$B_VER descriptor • 6-3 
NAM$B_VER field • 6-10 
NAM$L _DEV descriptor • 6-3 

NAM$L _DEV field • 6-4 
NAM$L _DIR descriptor • 6-3 
NAM$L _DIR field • 6-5 
NAM$L _ESA field • 6-5 
NAM$L _FNB field • 6-6, RMS-63, RMS-87 
NAM$L _FNB status bit 

listing • 6-6 
NAM$L _NAME descriptor • 6-3 
NAM$L _NAME field • 6-7 
NAM$L _NODE descriptor • 6-3 
NAM$L _NODE field • 6-7 
NAM$L _RLF field • 6-8 
NAM$L _RSA field • 6-9, RMS-63 
NAM$L _TYPE descriptor • 6-3 
NAM$L _TYPE field • 6-9 
NAM$L _VER descriptor • 6-3 
NAM$L _VER field • 6-10 
NAM$L _WCC field • 6-10 

returned by Remove service •RMS-82 
NAM$T_DVI field • 6-5 
NAM$V_CNCL _DEV bit • 6-6 
NAM$V_CONCEAL field •RMS-26, RMS-63 
NAM$V_DIR_LVLS bit • 6-6 
NAM$V_EXP_DEV bit• 6-6 
NAM$V_EXP_DIR bit•6-6 
NAM$V_EXP_NAME bit•6-6 
NAM$V_EXP_TYPE bit • 6-6 
NAM$V_EXP_VER bit•6-6 
NAM$V_GRP_MBR bit• 6-6 
NAM$V_HIGHVER bit•6-6 
NAM$V_LOWVER bit•6-6 
NAM$V_NOCONCEAL option • 6-8, RMS-16, 

RMS-68 
NAM$V_NODE bit• 6-6 
NAM$V_PPF bit • 6-6 
NAM$V_PWD field •RMS-26, RMS-63, RMS-68 
NAM$V_PWD option • 6-8, RMS-16 
NAM$V_QUOTED bit • 6-6 
NAM$V_ROOT_DIR bit • 6-7 
NAM$V_SEARCH_LIST bit • 6-7 
NAM$V_SRCHXABS option • 6-8 
NAM$V_SYNCHK option • 6-8, RMS-68 

use with Parse service • 5-7 
using for Parse service without I/O •RMS-67 

NAM$V_WILDCARD bit • 6-7 
NAM$V_WILD_GRP bit • 6-7 
NAM$V_WILD_MBR bit•6-7 
NAM$V_WILD_NAME bit•6-7 
NAM$V_WILD_SFD 1 bit • 6-7 
NAM$V_WILD_TYPE bit • 6-7 
NAM$V_WILD_UFD bit • 6-7 

Index-12 



Index 

NAM$V_WILD_VER bit • 6-7 
NAM$W_DID field • 6-4 
NAM$W_FID field•6-6 
NAM (name block) 

summary of fields • 6-1 
using from higher-level language• 6-2 
using from VAX MACRO.6-2 

NAM (name block) option 

See FAB$V_NAM option 
Name block 

See NAM 
Name block address field 

See FAB$L _NAM field 
Name block options field 

See NAM$B_NOP field 
Naming convention 

macros • 3-2 
services • 3-3 

$NAM macro•B-6 
argument categories • B-6 

$NAM_STORE macro • B-7 
argument categories• B-7 
comparing with $NAM macro• B-7 
NAM$T_DVI argument • B-7 
NAM$W_DID argument• B-7 
NAM$W_FID argument•B-7 
requirements • B-7 

NBP (next block pointer) 
default for block transfer• 7-2 
for block I/O.4-25 
functions listed • 4-25 

NETWORK_BLOCK_COUNT qualifier 
for specifying maximum record size • 5-22 

Next block pointer 

See NBP 
Next key 

See RAB$V_NXT option 
Next or equal key option 

See RAB$V_EQNXT option 
Next Volume service•RMS-55 

condition values •RMS-57 
control block input and output fields •RMS-56 
flush logic•RMS-56 
input logic sequence•RMS-56 
output logic sequence• RMS-56 
requirements for using•RMS-56 

Node name address descriptor 

See NAM$L _NODE descriptor 
Node name address field 

See NAM$L _NODE field 

Node name length field 

See NAM$B_NODE field 
Node name size descriptor 

See NAM$B_NODE descriptor 
No lock option 

See RAB$V_NLK option 
Nonexistent record option 

See RAB$V_NXR option 
Non-file-structured option 

See FAB$V_NFS option 
NOP field 

specifying multiple values• B-6 
No sharing option 

See FAB$V_NIL option 
Not end-of-file option 

See FAB$V_NEF option 
Null character field 

See XAB$B_NUL field 
Number of allocation areas field 

See XAB$B_NOA field 
Number of key segments field 

See XAB$B_NSG field 
Number of keys field 

See XAB$B_NOK field 
Number sign (# ) 

requirement for in control store macro • 3-8 

O 
$OPEN macro 

expansion of • 3-10 
for invoking the open service • 4-1 
using in example • 3-10, 3-1 1 

Open service •RMS-58 
condition values •RMS-64 
contrasted with Parse and Search services• 

4-10 
control block input fields •RMS-59 
control block output fields •RMS-61 
function • 4-1 
invoking • 4-4 
NAM input fields• RMS-63 
NAM output fields• RMS-63 
program example•4-2 
requirements for using•RMS-59 

Option 
specifying by symbolic bit offset•2-3 

Index-13 



Index 

Optional argument 

to service • 3-1 1 
Output file parse option 

See FAB$V_OFP option 
Output record buffer address field 

See RAB$L _RBF field 

P 
Packed decimal byte 

structure for key type • 13-6 
Packed decimal string 

as key type • 13-6 
$PARSE macro 

for processing wildcard characters • 4-10 
Parse service• RMS-66, RMS-67 

condition values •RMS-69 
control block input fields• RMS-67 
control block output fields• RMS-68 
preparing for file search • 4-9 
preparing for wildcard character processing • 

" RMS-67 
program example•4-9 
requirements for using •RMS-67 

Path to file 
file specification string address•4-9 
file specification string size • 4-9 

Performance 
improving with SHR argument • 4-14 

Print format option 

See FAB$V_PRN option 
Print format options for VFC records with 2-byte 

control area • 5-25 
Program 

using wildcard characters • 4-12 
Program execution mode 

using to call services • 2-7 
Program interface • 2-1 
Programming language 

using control blocks with • 2-1 
Programming rules•3-6 
Prolog field 

See XAB$B_PROLOG field 
Prolog level •RMS-18 
Prolog version number field 

See XAB$W_PVN field 
Prompt buffer address field 

See RAB$L _PBF field 

Prompt buffer size field 

See RAB$B_PSZ field 
Prompt option 

See RAB$V_PMT option 
Protection extended address block 

See XABPRO block 
Purge type-ahead option 

See RAB$V_PTA option 
$PUT macro 

program example • 4-16 
Put service• RMS-70 

condition values •RMS-74 
See also Completion status codes 

control block input fields •RMS-73 
control block output fields• RMS-74 
inserting records by sort order •RMS-72 
inserting records into indexed files• RMS-71 
inserting records into relative files• RMS-71 
inserting records into sequential files• RMS-71 
inserting records with duplicate keys •RMS-72 
record locking caution •RMS-72 
record-processing options • 7-16 
requirements for using•RMS-72 
update-if logic •RMS-72 
using RAB$V_TPT option •RMS-71 
using RAB$V_UIF option •RMS-71 
using with mailboxes •RMS-71 
using with stream format files •RMS-71 

Put service option 
See FAB$V_PUT option 

Put sharing option 

See FAB$V_PUT sharing option 

R 
RO 

use by control block store macros • 3-8 
use in asynchronous operations • 2-5 

RAB (record access block) 
summary of fields • 7-1 

RAB$B_BID field • 7-2 
RAB$B_BLN field • 7-3 
RAB$B_KRF field • 7-4 

for selecting key path • 4-12 
for various services • 7-4 

RAB$B_KSZ field • 7-4 
DECnet requirement • 7-4 
key size compared to data types • 7-4 
shared offset • 7-4 

Index-14 



Index 

RAB$B_KSZ field (cont'd.) 

use with limit option • 7-13 
use with search key • 7-12, 7-14 

RAB$B_MBC field • 7-5 
default logic• 7-5 
performance benefit • 7-6 
use restriction • 7-5, 7-6 

RAB$B_MBF field• 7-6 
default logic• 7-6 
performance benefit• 7-6 
use restriction • 7-6 
use with read-ahead option • 7-16 
use with write-behind option • 7-16 
values for various organizations • 7-6 

RAB$B_PSZ field • 7-7 
shared offset • 7-7 

RAB$B_RAC field • 7-7 
options • 7-7 
use restriction • 7-7 

RAB$B_TMO field 
use with RAB$V_TMO option for mailbox 

service• 7-14 
RAB$B_TMO field • 7-21 

for various record functions• 7-21 
requirement for RAB$V_TMO option• 7-21 
use with timeout option for terminal operation • 

7-19 
RAB$C_KEY option • 7-8 
RAB$C_RFA option • 7-8 
RAB$C_SEQ option • 7-7 
RAB$L _BKT field 

as output• 7-2 
use with block I/O.7-2 

RAB$L _CTX field • 7-3 
RAB$L _FAB field • 7-3 
RAB$L _KBF field • 7-3 

shared offset • 7-3 
use with limit option • 7-13 
use with RAB$B_KSZ field • 7-4 
use with search key • 7-12, 7-14 

RAB$L _PBF field • 7-7 
requirement for carriage control • 7-7 

RAB$L _RBF field • 4-4, 7-8 
RAB$L _RHB field • 7-9 

buffer size compatibility with FAB$B_FSZ• 7-9 
default logic• 7-9 
use by various services• 7-9 
use restriction • 7-9 

RAB$L _ROP field • 7-10 
options listed • 7-10 
specifying key match method • 7-5 

RAB$L _STS field • 7-20 
RAB$L _STVO field 

for returning terminating character •RMS-49 
RAB$L _STV field • 7-20 

alternate access to • 7-20 
for returning I/O status block• RMS-49 
for returning I/O status block from Put service • 

RMS-74 
for returning PID from Put service •RMS-71 
for returning process identification (PID) • 

RMS-50 
for returning record length• RMS-53 
using with Get service• RMS-50 

RAB$L _UBF field • 7-21 
buffer logic • 7-21 

RAB$L _XAB field • 7-22 
requirement for using XABTRM • 18-1 

RAB$V_ASY option • 7-1 1, 7-14 
use restriction • 7-15 

RAB$V_BIO option • 7-1 1 
RAB$V_CCO option • 7-18 
RAB$V_CVT option • 7-19 
RAB$V_EOF option • 7-12 
RAB$V_EQNXT option • 7-12 

examples • 7-13 
specifying key match method • 7-5 

RAB$V_ETO option 
requirement for using XABTRM • 18-1 

RAB$V_FDL option • 7-15 
use restriction • 7-15 

RAB$V_KGE option 

See RAB$V_EQNXT option 

See RAB$V_NXT option 
RAB$V_LIM option • 7-13 
RAB$V_LOA option • 7-13 

determining fill size • 13-10 
example of use•4-8 
use restriction • 13-4, 13-1 1 

RAB$V_LOC option • 7-15 
use restriction • 7-15 

RAB$V_NLK option • 7-17 
precedence over RAB$V_ULK option • 7-17 

RAB$V_NXR option • 7-17 
output from Get service • 7-17 
relevant completion codes • 7-17 
use restriction • 7-17 

RAB$V_NXT option • 7-14 
examples • 7-14 
specifying key match method • 7-5 

RAB$V_PMT option • 7-19 
RAB$V_PTA option • 7-19 

Index-15 



Index 

RAB$V_RAH option • 7-12, 7-15 
default logic • 7-16 
use restriction • 7-16 

RAB$V_REA option • 7-17 
use restriction • 7-17 

RAB$V_RLK option • 7-18 
precedence over RAB$V_REA option • 7-18 

RAB$V_RNE option • 7-19 
RAB$V_RNF option • 7-19 
RAB$V_RRL option • 7-18 
RAB$V_SYNCSTS option • 7-16 
RAB$V_TMO option 

for immediate mailbox service • 7-14 
RAB$V_TMO option • 7-14, 7-18, 7-19 
RAB$V_TPT option• 7-16 

use restriction • 7-16 
using with Put service• RMS-71 

RAB$V_UIF option • 7-17 
effects on Put service • 7-17 
use restriction for indexed files • 7-17 
using with Put service• RMS-71 

RAB$V_ULK option • 7-18 
subordinate to RAB$V_NLK option • 7-18 

RAB$V_WAT option • 7-18, 7-19 
precedence over other options • 7-19 
use with the RAB$V_TMO option • 7-18 

RAB$V_WBH option • 7-12, 7-16 
default logic • 7-16 
use restriction • 7-16 

RAB$W_ISI field• 7-3 
RAB$W_RFA field • 7-9 

additional symbolic offsets • 7-9 
as argument to $RAB_STORE macro • B-12 
example • 7-9 
guidelines for using• 7-9 

RAB$W_RSZ field • 4-4, 7-20 
for various services • 7-20 
operational notes listed • 7-20 

RAB$W_STVO offset 
alternate access to RAB$L _STV • 7-20 

RAB$W_STV2 field 
for returning length of escape sequence• 

RMS-49 
RAB$W_STV2 offset 

alternate access to RAB$L _STV • 7-20 
RAB$W_USZ field • 7-21 

recommended value • 7-21 
use with block I/O.7-22 

RAB$_V_WAT option 
use with timeout option for record locking • 

7-18 

RAB (record access block) 
arguments • 1-4 
described in context of example•4-4 
description • 1-4 
general description • 7-1 
summary of fields • 7-1 

$RAB macro• B-9 
argument categories • B-10 

$RAB_STORE macro•B-1 1 
argument categories • B-12 
comparing with $RAB macro • B-1 1 
requirements • B-12 
RFA argument • B-12 

RDT (revision-date-time) argument • B-16 
Read ahead option 

See RAB$V_RAH option 
Read check option 

See FAB$V_RCK option 
Read-no-echo option 

See RAB$V_RNE option 
Read no filter option 

See RAB$V_RNF option 
Read regardless of lock option 

See RAB$V_RRL option 
Read service •RMS-76 

condition values• RMS-78 
control block input fields •RMS-77 
control block output fields •RMS-77 
requirements for using •RMS-77 

Record 
formats • 1-1 
requirements for reading or writing in a file• 

4-12 
Record access block 

See RAB 
Record access field 

See RAB$B_RAC field 
Record attribute field 

See FAB$B_RAT field 
Record attributes field in XABFHC 

See XAB$B_ATR field 
Record buffer field 

See RAB$L _RBF field 
Record file address field 

See RAB$W_RFA field 
Record format field 

See FAB$B_RFM field 
Record header buffer field 

See RAB$L _RHB field 
Record I/O 

how to execute • 4-24 

Index-16 



Index 

Record locking record-processing options • 7-17 
Record-processing 

services listed • 3-3 
Record-processing macro 

format example • 3-12 
Record-processing option 

for Connect service • 7-10 
Record-processing options field 

See RAB$L _ROP field 
Record size field 

See RAB$W_RSZ field 
Record stream 

in the context of a RAB • 7-1 
Recovery unit extended address block 

See XABRU block 
Recovery unit XAB 

See XABRU block 
Register 

saving when making call • 2-4 
Register 0 

See RO 
Related file identification field 

See XAB$W_RFI field 
Related file identification field in XABALL 

See XAB$W_RFI field 
Related file NAM block address field 

See NAM$L _RLF field 
Relative file 

buffer requirement• 7-6 
defining cell size•5-21 
description of relative record number • 7-5 
determining record length • 5-21 
establishing highest record number • 5-21 
nonexistent record processing • 7-17 
omitting initial prezeroing • 4-23 
random access • 7-3 
record size limit • 5-21 
RFA value•?-9 
specifying bucket size • 8-5 
specifying cell size • 10-5 

Relative file field 
record access• 7-2 

Relative volume number field 
See XAB$W_VOL field 

Release service •RMS-79, RMS-80 
condition values •RMS-80 
control block input and output fields• RMS-80 

Remove service• RMS-81, RMS-82 
caution against mixing with Search service • 

RMS-82 
comparing with Erase service• RMS-82 

Remove service (cont'd.) 

condition values •RMS-84 
control block input fields •RMS-82 
control block output fields •RMS-83 
improving performance •RMS-82 
requirements for using•RMS-82 
use with wildcard characters and search lists• 

RMS-82 
Rename service •RMS-85, RMS-86 

alternative to specifying arguments to 
$RENAME macro• RMS-86 

condition values•RMS-88 
control block input fields •RMS-86 
control block output fields •RMS-87 
exception in argument list•2-5 
format • 3-1 1 
indicating successful completion • 4-16 
program example • 4-14 
requirements for using •RMS-86 

Reserved event flag 
use of • 2-7 

Restriction 
to calling services• 2-7 

Resultant string 
requesting • 6-2 

Resultant string area address field 
See NAM$L _RSA field 

Resultant string area size field 
See NAM$B_RSS field 

Resultant string length field 
See NAM$B_RSL field 

Retrieval window size field 
See FAB$B_RTV field 

Retrieving record 
program example • 4-16 

Revision date and time extended address block 
See XABRDT block 

Revision date and time field 
See XAB$Q_RDT field 

Revision number field 
See XAB$W_RVN field 

Rewind on close option 

See FAB$V_RWC option 
Rewind on open option 

See FAB$V_RWO option 
Rewind service •RMS-89, RMS-90 

condition values• RMS-90 
control block input fields• RMS-90 
control block output fields •RMS-90 
use restriction •RMS-90 

RMS$_OK_LIM success status code • 7-13 

Index-17 



Index 

RMS-1 1 
block identifier field limitation • 5-3 

$RMSDEF macro 
access to symbolic offset names • 2-2 

RMS_DFNBC system parameter 
for specifying default network block count• 

5-22 
Root index bucket virtual block field 

See XAB$L _RVB field 
Run-time 

access options • 1-2 
implementation of services • 4-1 
information • 1-4 
processing environment • 2-1 

S 
Search 

synonyms • 7-12 
Search list 

as alternative to using wildcard characters • 
4-10 

using with Remove service• RMS-82 
$SEARCH macro 

for processing wildcard characters • 4-10 
Search service• RMS-91, RMS-92 

condition values• RMS-94 
control block input fields •RMS-92 
control block output fields• RMS-93 
example of completion code handling • 4-12 
program example • 4-9 
requirement for Parse service • 4-9 
using with wildcard characters and search lists • 

RMS-92 
Search string translation 

requirements for parsing•4-9 
Secondary device characteristics field 

See FAB$L _SDC field 
Segmented key • 13-13 

restriction against overlapping • 13-13 
Separator 

in symbolic name•2-3 
Sequential only option 

See FAB$V_SQO option 
Service 

allowable program execution modes • 2-7 
block I/O.3-5 
calling example • 3-1 1 
invoking at run time • 3-1 

Service (cont'd.) 

naming conventions•3-3 
passing argument list to • 3-10 

Service macro 
description • 3-1 
for creating and processing files • 4-1 
format• 3-10, 3-1 1 
format rules • 3-1 1 
types • 3-12 

Services 
restrictions to calling • 2-7 

SET FILE command 
for changing global buffer count value • 5-19 

SET RMS_DEFAULT command•?-6 
to limit default extension quantity• 5-6 

Set system failure exception mode 

See SYS$SETSFM 
Severity code 

in completion status code field • 2-6 
S field in symbolic offset 

for specifying field length • 2-3 
Shared access 

requirement to specify • 4-1 
Shared file 

end-of-file positioning •RMS-7 
SHR field 

See FAB$B_SHR field 
Sign representation 

preference for key type coding • 13-7 
Simple key • 13-13 
Sort order 

establishing•?-5 
Space service •RMS-95 

condition values• RMS-96 
control block input fields• RMS-96 
control block output fields• RMS-96 

Spool file option 
See FAB$V_SPL option 

Starting logical block number field 

See XAB$L _SBN field 
Stream record format option 

See FAB$C_STM option 
Stream record format with carriage return option 

See FAB$C_STMCR option 
Stream record format with line feed option 

See FAB$C_STMLF option 
STS (status) field 

See also Completion status field 
See also FAB$L _STV field 
contents • 2-6 

Index-18 



Index 

STV (status value) field 

See also Completion status value field 
contents • 2-6 

Submit command file option 

See FAB$V_SCF option 
Success completion routine• 2-5 
Summary extended address block 

See XABSUM block 
Summary XAB 

for key information • 13-1 
Supersede existing file option 

See FAB$V_SUP option 
Supervisor-mode (PSL$C_SUPER) constant 

for FAB$V_CHAN_MODE • 5-5 
Symbol definition macro 

description • 3-1 
using • 3-7 

Symbolic address 
use in locating start of control block•3-7 

Symbolic bit offset 
use in specifying options • 2-3 

Symbolic naming exception 
control block• 2-3 

Symbolic offset 
control block• 2-4 
format • 2-2 
use in locating control block fields • 2-2 

Synchronous status option 

See FAB$V_SYNCSTS option 

See RAB$V_SYNCSTS option 
SYS$BINTIM • 3-10 
SYS$CLOSE 

See Close service 
SYS$CONNECT 

See Connect service 
SYS$CREATE 

See Create service 
SYS$DELETE 

See Delete service 
SYS$DISCONNECT 

See Disconnect service 
SYS$DISPLAY 

See Display service 
SYS$ENTER 

See Enter service 
SYS$ERASE 

See Erase service 
SYS$EXTEND 

See Extend service 

SYS$FIND 
See Find service 

SYS$FLUSH 
See Flush service 

SYS$FREE 
See Free service 

SYS$GET 
See Get service 

SYS$LIBRARY: STARLET. MLB 
as source of macros • 1-1 

SYS$NXTVOL 
See Next Volume service 

SYS$OPEN 
See Open service 

SYS$PARSE 
See Parse service 

SYS$PUT 
See Put service 

SYS$QIO 
for additional processing • 5-18 
use in I/O operation • 2-7 

SYS$READ 
See Read service 

SYS$RELEASE 
See Release service 

SYS$REMOVE 
See Remove service 

SYS$RENAME 
See Rename service 
noting format difference • 3-1 1 

SYS$REWIND 
See Rewind service 

SYS$SEARCH 
See Search service 

SYS$SETSFM 
use in signaling errors• 2-6 

SYS$SPACE 
See Space service 

SYS$TRUNCATE 
See Truncate service 

SYS$UPDATE 
See Update service 

SYS$WAIT 
See Wait service 

SYS$WRITE 
See Write service 

SYSPRV privilege 
requirement for creating files with different UIC • 

14-8 

Index-19 



Index 

System service exception • 2-6 
System service exception generation 

disabling•2-6 

T 
Temporary file delete option 

See FAB$V_TMD option 
Temporary file option 

See FAB$V_TMP option 
Terminal device record-processing option • 7-18 
Terminal extended address block 

See XABTRM block 
Terminal read operation 

RAB$L_ROP field options • 18-2 
T field in symbolic offset 

for specifying varying field length•2-3 
Timeout field 

See RAB$B_TMO field 
Timeout option 

See RAB$V_TMO option 
Total key size field 

See XAB$B_TKS field 
Truncate at end-of-file option 

See FAB$V_TEF option 
Truncate-on-put option 

See RAB$V_TPT option 
Truncate option 

See FAB$V_TRN option 
Truncate service •RMS-97 

condition values•RMS-98 
See also Completion status codes 

control block input fields•RMS-98 
control block output fields• RMS-98 
use restriction •RMS-97 

Type code field in allocation XAB 

See XAB$B_COD field 
Type code field in date and time XAB 

See XAB$B_COD field 
Type code field in file header characteristics XAB 

See XAB$B_COD field 
Type code field in item list XAB 

See XAB$B_COD field 
Type code field in key XAB 

See XAB$B_COD field 
Type code field in protection XAB 

See XAB$B_COD field 

Type code field in revision date and time XAB 

See XAB$B_COD field 
Type code field in summary XAB 

See XAB$B_COD field 
Type code field in terminal XAB 

See XAB$B_COD field 

U 
UIC (user identification code) 

delimiting in control block fields • 3-7 
Undefined record format option 

See FAB$C_UDF option 
Update-if option 

See RAB$V_UIF option 
Update service •RMS-99, RMS-100 

comparing with Put service for stream format 
files • RMS-100 

condition values •RMS-101 
control block input fields •RMS-100 
control block output fields •RMS-101 
invoking • 5-1 1 
program example•4-20 
requirements for using •RMS-100 
using with indexed files •RMS-100 

Update sharing option 

See FAB$V_UPD option 
User context field 

See RAB$L _CTX field 
User-entered reply 

as used in example for selecting key path • 4-12 
User file-open option 

See FAB$V_UFO option 
User identification code field 

See XAB$L _UIC field 
User-mode (PSL$C_USER) constant 

for FAB$V_CHAN_MODE • 5-5 
User process interlock option 

See FAB$V_UPI option 
User prompt string 

program example • 4-16 
User record buffer address field 

See RAB$L _UBF field 
User record buffer size field 

See RAB$W_USZ field 

Index-20 



Index 

V 
Variable-length format option 

See FAB$C_VAR option 
Variable-length record 

guidelines for specifying • 5-21 
VAX language 

use with control blocks • 2-1 
VAX MACRO 

See Macro 
VAX Procedure and Condition Handling Standard 

for calling services • 3-3 
VFC record format option 

See FAB$C_VFC option 

W 
$WAIT macro 

format difference • 3-12 
Wait option 

See RAB$V_WAT option 
Wait service •RMS-102 

condition values •RMS-103 
control block input and output fields •RMS-102 

Wildcard character 
use with Remove service• RMS-82 
use with Search service • 4-10 

Wildcard context field 
See NAM$L _WCC field 

Wildcard substitution 
specifying NAM$L _RSA field • 6-9 

Write-behind option 

See RAB$V_WBH option 
Write check option 

See FAB$V_WCK option 
Write service• RMS-104, RMS-105 

condition values •RMS-106 
control block input fields •RMS-105 
control block output fields •RMS-105 

X 
XAB$B_AID field • 8-2 
XAB$B_ALN field • 8-2 

XAB$B_AOP field• 8-3 
options • 8-4 

XAB$B_ATR field • 10-2 
options• 10-2 

XAB$B_BKZ field 
as output• 8-5 
default logic•8-5 
determining bucket size•8-5 
in allocation XAB (XABALL) • 8-4 
in file header characteristics allocation XAB 

(XABFHC) • 10-3 
RMS-1 1 restriction • 8-5 
size requirements for multiple index areas•8-5 

XAB$B_BLN field 
in allocation XAB (XABALL) • 8-5 
in date and time XAB (XABDAT) • 9-2 
in file header characteristics XAB (XABALL) • 

10-3 
in item list XAB (XABITM) • 1 1-2 
in key XAB (XABKEY) • 13-2 
in protection XAB (XABPRO) • 14-4 
in revision date and time XAB (XABRDT) • 15-2 
in summary XAB (XABSUM) • 17-1 
in terminal XAB (XABTRM) • 18-2 

XAB$B_COD field 
See also COD field 
in allocation XAB (XABALL)•8-5 
in date and time XAB (XABDAT) • 9-3 
in file header characteristics XAB (XABFHC) • 

10-3 
in item list XAB (XABITM) • 1 1-2 
in key XAB (XABKEY) • 13-2 
in protection XAB (XABPRO) • 14-4 
in revision date and time XAB (XABRDT) • 15-2 
in summary XAB (XABSUM) • 17-1 
in terminal XAB (XABTRM) • 18-2 

XAB$B_DAN field • 13-4 
requirement for • 13-4 

XAB$B_DBS field • 13-4 
XAB$B_DTP field • 13-5 

data formats • 13-6 
data type restrictions • 13-5 
options • 13-5 
use with search key • 7-13, 7-14 
value prefixes for sorting • 13-5 

XAB$B_FLG field • 13-8, B-21 
option allowable combinations listed • 13-9 
options • 13-8 

XAB$B_HSZ field • 10-4 
use restriction • 10-4 

Index-21 



Index 

XAB$B_IAN field• 13-10 
conditional usage • 13-10 
indicating index level•8-5 

XAB$B_IBS field • 13-10 
XAB$B_LAN field • 13-1 1 

indicating index level • 8-5 
relationship to XAB$B_AID field • 13-1 1 
requirement for compatibility with XAB$B_IAN 

field • 13-1 1 
use restriction • 13-1 1 

XAB$B_LVL field • 13-12 
XAB$B_MTACC field• 14-5 

default logic• 14-5 
valid character codes • 14-5 

XAB$B_NOA field • 17-2 
XAB$B_NOK field • 17-2 
XAB$B_NSG field • 13-12 
XAB$B_NUL field • 13-12 

use restrictions • 13-12 
XAB$B_PROLOG field • 13-13 

default logic • 13-13 
service usage • 13-13 
use restriction • 13-13 

XAB$B_PROT_OPT field • 14-7 
XAB$B_RFO field • 10-5 

values listed• 10-6 
XAB$B_SIZO through XAB$B_SIZ7 field • 13-14 

default logic • 13-15 
requirement for compatibility with XAB$W_ 

POSO through XAB$W_POS7 field • 13-14 
with segmented key • 13-14 
with simple key • 13-14 

XAB$B_TKS field • 13-15 
XAB$C_ALLEN value•8-5 
XAB$C_ALL value • 8-6 
XAB$C_DATLEN value • 9-2 
XAB$C_DAT value•9-3 
XAB$C_FHCLEN value• 10-3 
XAB$C_FHC value • 10-3 
XAB$C_ITMLEN value • 1 1-2 
XAB$C_ITM value • 1 1-2 
XAB$C_KEYLEN value• 13-2 
XAB$C_KEY value• 13-2 
XAB$C_PROLEN value• 14-4 
XAB$C_PRO value • 14-4 
XAB$C_RDTLEN value• 15-2 
XAB$C_RDT value• 15-2 
XAB$C_SUMLEN value • 17-1 
XAB$C_SUM value• 17-2 
XAB$C_TRMLEN value• 18-2 
XAB$C_TRM value• 18-2 

XAB$L _ACLBUF field • 14-2 
determining value for Create service• 14-2 
determining value for Open and Display service • 

14-2 
handling ACE• 14-2 

XAB$L _ACLCTX field • 14-2, 14-3 
XAB$L _ACLSTS field • 14-3 

error handling guidelines• 14-3 
use restriction • 14-4 

XAB$L _ALQ • 8-3 
XAB$L _COLNAM field • 13-2 
XAB$L _COLSIZ field • 13-3 
XAB$L _COLTBL field • 13-3 
XAB$L _DVB field • 13-7 
XAB$L _EBK field • 10-3 
XAB$L _HBK field • 10-4 

comparing with FAB$L _ALQ field • 10-4 
XAB$L _ITEMLIST field • 1 1-2 
XAB$L _ITMLST field • 18-2 

requirement for valid terminal driver • 18-1 
XAB$L _KNM field • 13-1 1 
XAB$L _LOC field • 8-6 

determining value• 8-6 
requirement for alignment option • 8-6 

XAB$L _MODE field • 1 1-2 
XAB$L _NXT field 

in XABALL•8-6 
in XABDAT•9-3 
in XABFHC• 10-5 
in XABKEY • 13-12 
in XABPRO. 14--5 
in XABRDT • 15-2 
in XABSUM • 17-2 
in XABTRM • 18-3 

XAB$L _RVB field • 13-14 
XAB$L _SBN field • 10-6 
XAB$L _UIC field • 14-4, 14-8 

combining the XAB$W_GRP and XAB$W_ 
MBM fields• 14-8 

order of determining value • 14-8 
setting XAB$W_GRP field • 14-4 
setting XAB$W_MBM field • 14-5 

XAB$NXT field 
in XABITM • 1 1-2 

XAB$Q _BDT field • 9-2 
XAB$Q_CDT field • 9-2 
XAB$Q_EDT field • 9-3 
XAB$Q_RDT field • 9-3, 15-2 
XAB$V_BLK option • 10-2 
XAB$V_CBT option • 8-4 

Index--22 



Index 

XAB$V_CHG option • 13-8 
use restriction • 13-8 

XAB$V_CR option • 10-2 
XAB$V_CTG option • 8-4 
XAB$V_DAT_NCMPR option • 13-8 
XAB$V_DUP option • 13-8 
XAB$V_FTN option• 10-2 
XAB$V_HRD option•8-4 

use restrictions • 8-4 
XAB$V_IDX _NCMPR option • 13-8 

use in defining string keys • 13-8 
use restriction • 13-8 

XAB$V_KEY_NCMPR option• 13-8 
use in defining string keys • 13-8 
use restriction • 13-9 

XAB$V_NUL option • 13-9 
setting for various data types• 13-6 
use in defining string keys • 13-8 
use restriction • 13-9 
with XAB$B_NUL field • 13-9 

XAB$V_ONC option • 8-4 
XAB$V_PRN option • 10-2 
XAB$V_PROPAGATE option • 14-7 
XAB$W_ACLLEN field • 14-3 

determining value • 14-3 
limitation • 14-3 

XAB$W_ACLSIZ field • 14-3 
limitations imposed by MAXBUF• 14-3 
limitations imposed by user's BYTLM quota • 

14-3 
XAB$W_DEQ field • 8-6 
XAB$W_DFL field • 13-4 

advantages of using • 13-4 
comparing for primary and alternate keys • 13-4 
determining value• 13-4 
use with RAB$V_LOA option • 7-13 

XAB$W_DXQ field in XABFHC• 10-3 
XAB$W_FFB field • 10-4 
XAB$W_GBC field in XABFHC • 10-4 
XAB$W_GRP field • 14-4 
XAB$W_IFL field • 13-10 

advantages of using • 13-1 1 
XAB$W_ITMLST_LEN field • 18-2 

requirement for valid terminal driver • 18-1 
XAB$W_LRL field • 10-4 

use restriction • 10-5 
XAB$W_MBM field• 14-5 
XAB$W_MRL field • 13-12 

comparing primary key and alternate keys• 
13-12 

XAB$W_MRZ field in XABFHC • 10-5 
determining value• 10-5 

XAB$W_POSO through XAB$W_POS7 field • 
13-12 

requirement to be compatible with XAB$B_ 
SIZO through XAB$B_SIZ7 field • 13-13 

XAB$W_PRO field • 14-6 
default logic • 14-7 
organization • 14-6 
required ordering of arguments• 14-6 
subfield offsets • 14-6 
user classes • 14-7 

XAB$W_PVN field • 17-2 
XAB$W_RFI field • 8-7 

as argument to $XABALL _STORE macro • 
B-14 

requirement for XAB$C_RFI•8-7 
specifying • 8-7 

XAB$W_RVN field • 9-3, 15-3 
XAB$W_VERLIMIT field in XABFHC • 10-6 
XAB$W_VOL field • 8-7 

use restriction • 8-7 
XAB$_REF field • 13-14 
XAB (extended attribute block) 

description • 1-3 
naming conventions for FAB • 1-3 
naming conventions for RAB • 1-4 
program example•4-8 
types • 1-3 

XABALL block • 1-3, 8-1 
relationship to FAB fields • 8-1 
summary of fields • 8-1 

$XABALL macro • B-13 
argument categories • B-13 

$XABALL _STORE macro • B-14 
argument categories • B-14 
comparing with $XABALL macro • 6-14 
requirements • B-14 

XABDAT block • 9-1 
brief description • 1-3 
summary of fields • 9-1 
value selection logic • 9-2 

$XABDAT macro • B-15 
$XABDAT_STORE macro • B-16 

argument categories • B-16 
argument variations • B-16 
example of use • 3-9 
requirements • 6-16 

XABFHC block • 10-1 
brief description • 1-3 
summary of fields • 10-1 

Index-23 



Index 

XABFHC block (cont'd.) 

use exception • 10-1 
values for shared sequential files • 10-1 

$XABFHC macro • B-17 
$XABFHC_STORE macro • B-18 

argument categories • B-18 
requirements • B-18 

XABITM block • 1 1-1 
brief description • 1-3 
summary of fields • 1 1-1 

$XABITM macro • B-19 
XABJNL block • 12-1 

brief description • 1-3 
XABKEY block• 13-1 

brief description • 1-3 
data type options• 13-5 
default logic • 13-9 
summary of fields • 13-1 
XAB$W_MRL field • 13-12 

$XABKEY macro • B-20, B-21 
argument categories • B-21 
position and size options• B-21 

$XABKEY_STORE macro • B-22 
argument categories • B-23 
requirements • B-23 

XABPRO block • 14-1 
brief description • 1-3 
summary of fields • 14-1 
XAB$B_BLN field• 14-4 
XAB$W_GRP field• 14-4 

$XABPRO macro • B-24 
ASCII radix indicator requirement in MTACC 

argument • B-24 
describing UIC argument•B-25 
example of MTACC argument• B-24 
listing user classes• B-25 
XAB$W_PRO field requirements • B-24 

$XABPRO_STORE macro • B-26 
argument categories • B-26 
argument exceptions to general rules•B-26 
requirements• B-26 

XABRDT block • 15-1 
brief description • 1-3 
comparing with XABDAT • 15-1 
default logic • 15-1 
service use of XAB$Q_RDT and XAB$W_RVN 

fields • 15-1 
summary of fields • 15-1 
use restriction • 15-1 

$XABRDT macro • B-27 
$XABRDT_STORE macro • 6-28 

argument categories • B-28 

$XABRDT_STORE macro (cont'd.) 

requirements • B-28 
XABRU block • 16--1 

brief description • 1-3 
XABSUM block • 17-1 

brief description • 1-3 
summary of fields • 17-1 
use restriction • 17-1 

$XABSUM macro• B-29 
$XABSUM_STORE macro • B-30 

argument categories • B-30 
requirements • B-30 

XABTRM block • 18-1 
brief decription • 1-4 
requirements to use • 18-1 
summary of fields • 18-1 

$XABTRM macro• B-31 
$XABTRM_STORE macro • B-32 

argument categories• B-32 
requirements• B-32 

Index-24 



Reader's Comments VMS Record 
Management Services 

Reference Manual 
AA—LA83A—TE 

Please use this postage-paid form to comment on this manual. If you require a written reply to a software 
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your 
comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 
Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 
Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less  

What I like best about this manual is  

What I like least about this manual is  

I found the following errors in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version   of the software this manual describes. 

Name/Title   Dept.  

Company   Date  

Mailing Address  

  Phone  



--- Do Not Tear -Fold Here and Tape 

d e9B0 a 
TM 

~— — -- Do Not Tear -Fold Here 

No Postage 
Necessary 
if Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications Spit Brook 
ZK01-3/J35 110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

III~~~~~II~II~~~~II~~~~I~II~I~~I~I~~I~~I~I~~~I~II~~I 

U 

C
u

t 
A

lo
n
g
 D

o
tt

e
d

 L
in

e
 



f"1 Reader's Comments VMS Record 
Management Services 

Reference Manual 
AA—LA83A—TE 

Please use this postage-paid form to comment on this manual. If you require a written reply to a software 
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your 
comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less  

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version  of the software this manual describes. 

Name/Title   Dept.  

Company   Date  

Mailing Address  

Phone  



--- Do Not Tear -Fold Here and Tape 

d a9ao a TM 

— — — Do Not Tear -Fold Here 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications—Spit Brook 
ZK01-3/J35 110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

III~~~~~II~II~~~~II~~~~I~II~I~~I~I~~ ~I~I~~~I~II~~I 

No Postage 
Necessary 
if Mailed 

in the 
United States 

C
u

t 
A

lo
n

g
 D

o
tt

e
d

 L
in

e
 


