
VMS File Definition
Language
Facility Manual

Order Number: AA-LA81 A-TE

April 1988

This document describes the VMS File Definition Language ~FDL) Facility.

Revision/Update Information:

Software Version:

digital equipment corporation
maynard, massachusetts

This manual supersedes the VAX/VMS
File Definition Language Facility
Reference Manual, Version 4.4.

VMS Version 5.0

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

d D 9 D0 a TM

ZK4544

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA &PUERTO RICO*

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire
03061

CANADA

Digital Equipment
of Canada Ltd.
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

INTERNATIONAL

Digital Equipment Corporation
PSG Business Manager
c/o Digital's local subsidiary
or approved distributor

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SDC►, Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can ® e
DIGITAL-supported devices, such as the LN03 laser printer and PostScript
printers (PrintServer 40 or LN03R ScriptPrinter), to produce atypeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE ix

NEW AND CHANGED FEATURES xi

FDL Description FDL-1

1 FILE DEFINITION LANGUAGE FDL-1
1.1 FDL Primary and Secondary Attributes _ FDL-1
1.1.1 ACCESS Section •FDL-2
1.1.2 ANALYSIS_OF_AREA Section •FDL-3
1.1.3 ANALYSIS_OF_KEY Section •FDL-4
1.1.4 AREA Section •FDL-6
1.1.5 CONNECT Section •FDL-8
1.1.6 DATE Section •FDL-15
1.1.7 FILE Section •FDL-16
1.1.8 KEY Section •FDL-26
1.1.9 NETWORK Section •FDL-32
1.1.10 RECORD Section •FDL-33
1.1.11 SHARING Section •FDL-36
1.1.12 SYSTEM Section •FDL-38
1.1.13 TITLE and (DENT Attributes •FDL-39

2 CREATING FDL FILES FDL-39
2.1 Validity Rules FDL-40

3 CREATING DATA FILES WITH RMS UTILITIES, ROUTINES,
AND FDL FILES FDL-41

FDL Usage Summary FDL-42

CREATE/FDL aualifier FDL-44
/LOG FDL-45

v

Contents

EDIT/FDL Qualifiers FDL-46
/ANALYSIS FDL-47
/CREATE FDL-48
/DISPLAY FDL-49
/EMPHASIS FDL-50
/GRANULARITY FDL-51
/NOINTERACTIVE FDL-52
/NUMBER_KEYS FDL-53
/OUTPUT FDL-54
/PROMPTING FDL-55
/RESPONSES FDL-56
/SCRIPT FDL-57

EDIT/FDL Commands FDL-58
ADD FDL-59
DELETE FDL-60
EXIT FDL-61
HELP FDL-62
INVOKE FDL-63
MODIFY FDL-64
QUIT FDL-65
SET FDL-66
VIEW FDL-67

FDL Examples FDL-68

INDEX

vi

Contents

TABLES
FDL-1

FDL-2

FDL-3
FDL-4

FDL-5

FDL-6
FDL-7

FDL-8

FDL-9
FDL-10

FDL-11

FDL-12

Default Values for ACCESS Secondaries

Default Values for ANALYSIS_OF_KEY Secondaries

Default Values for AREA Secondaries

Default Values for

Default Values for

Default Values for

Default Values for

Default Values for

Default Values for

Maximum Record
Formats

Default Values for SHARING Secondaries

Default Values for SYSTEM Secondaries

CONNECT Secondaries

DATE Secondaries

FILE Secondaries

KEY Secondaries

NETWORK Secondaries

RECORD Secondaries

Size for File Organizations and Record

FDL-2

F D L-4

FDL-6

FDL-8

FDL-15

FDL-16

FDL-26
FDL-32

FDL-33

FDL-36

FDL-36

FDL-38

vii

Preface

Intended Audience
This manual is intended for all programmers using VMS RMS data files.
This audience includes high-level language programmers who use only their
language's input/output statements.

Document Structure
This document consists of the following sections:

• Description—Provides an overview and detailed usage information about
the File Definition Language, Edit/FDL Utility, and Create/FDL Utility.

• Usage Summary—Describes how to invoke, exit, and direct information
from the Edit/FDL and Create/FDL Utilities.

• CREATE/FDL Qualifiers—Describes the /LOG qualifier available when
you invoke the Create/FDL Utility.

• EDIT/FDL Qualifiers—Describes the qualifiers available when you invoke
the Create/FDL Utility.

• EDIT/FDL Commands—Describes the Edit/FDL Utility commands.

• Examples—Provides additional examples of common operations that you
perform with the Edit/FDL Utility.

Associated Documents
To use the File Definition Language Facility, you should be familiar with the
following manuals:

• Guide to VMS File Applications

• VMS Analyze/RMS~'ile Utility Manual

• VMS Convert and Convert/Reclaim Utility Manual

• VMS Record Management Services Manual

ix

Preface

Conventions
Convention Meaning

RET

CTRL/C

$ SHOW TIME
05-JUN-1988 11:55:22

$ TYPE MYFILE.DAT

input-file, . . .

[logical-name]

quotation marks
apostrophes

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (') is used to refer to a single
quotation mark.

x

New and Changed Features

Version 5.0 of the File Definition Language (FDL) Facility includes the
following new features:

• Anew primary attribute, NETWORK, lets you set run-time network
characteristics.

• Anew secondary KEY attribute, COLLATING _SEQUENCE, lets you
specify a collating sequence in a National Character Set (NCS) library.

• Two new KEY TYPES support the use of NCS collating sequences:

— COLLATED

— DCOLLATED

• Anew secondary FILE attribute, FILE ~VIONITORING, has been added.

xi

FDL Description
The File Definition Language (FDL) Facility is comprised of the File Definition
Language, the Create/FDL Utility, and the Edit/FDL Utility.

The description of the facility is divided into three parts.

The first part describes the FDL primary and secondary attributes. The second
part explains how to create FDL files, primarily by using EDIT/FDL. The third
part describes how FDL files are used by the VMS RMS utilities and callable
routines.

1 File Definition Language
File design is one of the most important parts of efficient data processing,
and the File Definition Language (FDL) helps you define specifications for
data files. Section 1.1 gives a brief overview of the primary and secondary
attributes. Then each primary attribute is listed in alphabetical order with
detailed explanations of their secondary attributes.

1.1 FDL Primary and Secondary Attributes
An FDL file consists of a collection of file attributes grouped into related
sections. The 14 section headings are called primary attributes and must be
specified in the following order:

• TITLE

• IDENT

• SYSTEM

~ FILE

• DATE

• RECORD

• ACCESS

• NETWORK

• SHARING

• CONNECT

• AREA

• KEY

• ANALYSIS_OF~REA

• ANALYSIS_OF~CEY

The TITLE, IDENT, AREA, KEY, ANALYSIS_OF_AREA, and
ANALYSIS_OF~CEY sections take values.

The SYSTEM, FILE, DATE, RECORD, ACCESS, SHARING, and CONNECT
sections do not take values. They do, however, serve as labels for the
sections.

FDL-1

FDL Description

The ANALYSIS_OF~,REA and ANALYSIS_OF~CEY sections appear only
in FDL files created with the Analyze/RMS~ile Utility.

Attributes within a section are called secondary attributes. Certain secondaries
can have a third level of attributes called qualifiers. A completed FDL file
consists of attribute keywords followed by their assigned values. Lowercase
letters are legal anywhere; they are equivalent to uppercase letters.

The description of these attributes and the secondary attributes contains
cross-references to the fields (parameters) of the VMS RMS control blocks.

The value assigned to an attribute must be one of the following types:

Switch

Keyword

String value

Is a logical value, set to TRUE (YES) or FALSE (NO). TRUE
or YES sets the attribute; FALSE or NO clears it. You can
specify TRUE, YES, FALSE, and NO as T, Y, F, and N.

Is an actual word that you must type after the attribute name.
You can truncate a keyword to its unique characters.

Is a character string that you must type after the attribute
name. The null string is a valid string value. You should
enclose a string value in a pair of single or double quotation
marks.

Number Is a decimal number.

Throughout this description, the term "DECnet operations" refers to remote
file access between two VMS operating systems. Unless stated otherwise,
attributes are supported for DECnet operations.

ACCESS Section
The ACCESS section allows you to specify the file processing operations you
want performed on your file. The ACCESS keyword itself takes no values.
Table FDL-1 lists the ACCESS secondary attributes and their default values.

Table FDL-1 Default Values for ACCESS Secondaries

Secondary Default Value

BLOCK_IO FALSE

DELETE FALSE

GET GET when performing an Open service
PUT PUT when performing a Create service
RECORD_IO FALSE

TRUNCATE FALSE

UPDATE FALSE

BLOCILIO
Is a switch specifying that block I/O operarions involving Read or Write RMS
services are to be performed, depending on whether you have specified the
GET (Read service) or the PUT (Write service) ACCESS secondary attributes.
If you specify BLOCK~O, no record I/O operations (such as DELETE, GET,
PUT, TRUNCATE, or UPDATE) can be performed. This secondary also
allows you to use the Space service.

This attribute corresponds to the FAB$B~AC field, the BIO option.

FDL-2

FDL Description

DELETE
Is a switch allowing Delete RMS operations to be performed.

This attribute corresponds to the FAB$B~AC field, the DEL option.

GET
Is a switch allowing Get or Find RMS services. GET is the default when you
are opening the file and when one of the following conditions exists:

• No other ACCESS section secondary attribute is defined.

• The DELETE or UPDATE secondary attributes in the SHARING section
have been specified.

If you also specify the BLOCK~O attribute, you may perform Read services.

This attribute corresponds to the FAB$B~AC Meld, the GET option.

PUT
Is a switch allowing Put or Extend RMS services. PUT is the default when
you are creating a file. If you also specify the BLOCK~O attribute, you can
perform Write services.

This attribute corresponds to the FAB$B~AC field, the PUT option.

RECORD_lO
Is a switch allowing mixed record I/O and block I/O operations under certain
circumstances (see the VMS Record Management Services Manual for more
information).

This attribute corresponds to the FAB$B~AC field, the BRO option.

TRUNCATE
Is a switch allowing Truncate RMS operations.

This attribute corresponds to the FAB$B~AC field, the TRN option.

UPDATE
Is a switch permitting Update or Extend RMS services.

This attribute corresponds to the FAB$B~AC Meld, the UPD option.

1.1.2 ANALYSIS_OF~IREA Section
The ANALYSIS_OF~EA section is created and supplied with values by
the Analyze/RMS~ile Utility. This section appears only in FDL files that
describe indexed files.

This primary section has only one secondary—RECLAIMED_SPACE.

RECLAIMED_SPACE
ANALYZE/RMS~ILE supplies a number value for this secondary. The value
is the number of blocks in the area that were reclaimed with the Convert
Utility (using the /RECLAIM qualifier). For more information about using
CONVERT/RECLAIM, see the VMS Convert and Convert/Reclaim Utility
Manual.

FDL Description

1.1.3 ANALYSIS_OF_KEY Section
The ANALYSIS_OF~CEY section is created and supplied with values by the
Analyze/RMS~ile Utility. It appears only in FDL files that define an indexed
file.

The Edit/FDL Utility uses the ANALYSIS_OF~CEY section in its Optimize
script.

The primary attribute ANALYSIS_OF~CEY has a value that is the number of
the key being analyzed (0 is the primary key).

Table FDL-2 lists the ANALYSIS_OF~CEY secondary attributes. All values
returned to the attributes are of the numerical type.

Table FDL-2 Default Values for ANALYSIS_OF_KEY Secondaries

Secondary Default Value

DATA_FILL None
DATA_KEY_COMPRESSION None
DATA_RECORD_COMPRESSION None
DATA_RECORD_COUNT None
DATA_SPACE_OCCUPIED None
DEPTH None
DUPLICATES_PER_SIDR None
INDEX _COMPRESSION None
INDEX_FILL None
INDEX_SPACE_OCCUPIED None
LEVEL 1 _RECORD_COUNT None
MEAN_DATA_LENGTH None
MEAN_INDEX_LENGTH None

DAT~LFILL
Shows the percentage of bytes per bucket in the data level that has been
filled.

DAT~KEY_COMPRESSION
Shows the percentage of compression that has occurred in the primary keys.
If the keys added up to 1000 bytes and compression reduced that figure to
600 bytes, the value shown in the DATA~CEY_COMPRESSION attribute
would be 40 (for 4090).

Negative compression may occur because of the overhead involved. If you
see a negative value, you should disable that type of compression in the KEY
section.

DAT~L RECORD_ COMPRESSION
Is the percentage of compression that has occurred in the level 0 data record.
If the data records added up to 100,000 bytes and compression reduced that
figure to 70,000 bytes, the value shown in the
DATA~ZECORD_COMPRESSION attribute would be 30 (for 30%).

FDL-4

FDL Description

Negative compression may occur because of the overhead involved. If you
see a negative value, you should disable that type of compression in the KEY
section.

This attribute applies only to the primary key.

DATi~LRECORD_COUNT
Shows the number of data records.

DAT~LSPAC~OCCUPIED
Shows the size in blocks of the level 0 of the index structure.

DEPTH
Shows the number of index levels in the index structure. The value does not
include the data level.

DUPLICATES_PER_SIDR
Shows the average number of duplicate key values for the secondary index
data records (SIDR); that is, the value is the total number of duplicates
divided by the total number of SIDRs.

This attribute applies only to alternate keys.

INDEJ~LCOMPRESSION
Shows the percentage of compression that has occurred in the index records
within the index levels. If the full indexes amounted to 10,000 bytes and
compression reduced this value to 8000 bytes, the value shown in the
INDEX_COMPRESSION attribute would be 20 (for 20%).

INDE~FILL
Shows the percentage of bytes per bucket that have been filled in the index
levels.

INDE~SPAC~OCCUPIED
Shows the size in blocks of the index levels (level 1 and greater).

LEVEL 1 _RECORD_COUNT
Indicates the number of records in the level 1 index, which is the index level
immediately above the data. When duplicate key values (for SIDRs) have
been specified, even when SIDR overflow buckets exist, the tuning algorithm
of EDIT/FDL is made more accurate.

Generally, every bucket on level 0 of an alternate key has a pointer record
from level 1 of that alternate key. However, there are no pointers from
level 1 to any overflow buckets. LEVEL1~tECORD_COUNT keeps track of
how many records are in level 1, particularly when duplicate key values force
overflow buckets to be created.

MEAN_DAT~LENGTH
Shows the average length in bytes of the data records. This does not take
compression into account.

MEAN_INDEJ~LLENGTH
Is the average length in bytes of the index records. This does not take
compression into account.

FDL-5

FDL Description

1.1.4 AREA Section
The AREA section is an RMS-specific region of an indexed file. You cannot
create or manipulate these areas from ahigh-level programming language.
Instead, VMS RMS automatically creates various areas for you when you
create an indexed file.

If you want to create or manipulate areas in an indexed file, you must include
the AREA primary attibute in an FDL file. The AREA primary acts as a
header for a section in the FDL file that describes areas. It takes a value that
must be a number in the range 0 to 254. The number identifies the area. To
define multiple areas for an indexed file, you must specify a separate AREA
section for each area.

Most AREA secondaries (except EXACT~'OSITIONING, POSITION, and
VOLUME) have corresponding FILE secondaries. Any values you specify
for these AREA secondaries override any you specify for the corresponding
secondaries in the FILE section.

This attribute corresponds to the XAB$B~ID field.

Table FDL-3 lists the AREA secondary attributes and their default values.

Table FDL-3 Default Values for AREA Secondaries

Secondary Default Value

ALLOCATION 0
BEST_TRY_CONTIGUOUS FALSE
BUCKET_SIZE 0
CONTIGUOUS FALSE
EXACT_POSITIONING FALSE
EXTENSION 0
POSITION None
VOLUME 0

ALLOCATION
Sets the number of blocks that you will initially allocate for this area. Its
value must be an integer in the range 0 to 4,294,967,295. The default is 0,
which means that the system will not allocate space for this area.

This attribute corresponds to the XAB$L ~LQ field.

BEST_TRY_CONTIGUOUS
Is a switch that controls whether the area is to be allocated contiguously if
there is enough space for it. If you set the switch to YES and there is enough
space for the area, the area is allocated contiguously. If you set the switch to
YES and there is not enough space, the area is allocated noncontiguously.

If you set the switch to the default, NO, this attribute has no effect.

This attribute corresponds to the XAB$B~OP field, the CBT option.

BUCKET_SIZE
Sets the number of blocks per bucket for this area. Its value must be an
integer in the range 0 to 63. The default value is 0, which means that VMS
RMS calculates the smallest bucket size capable of holding the largest record.

FDL-6

FDL Description

If the file is to be processed by RMS-11, the bucket size is limited to 32
blocks.

This attribute corresponds to the XAB$B_BKZ field.

CONTIGUOUS
Is a switch that controls whether the file must be allocated contiguously.

When you set the switch to YES, this attribute means that the area must be
allocated contiguously. If there is not enough contiguous space for the area,
you receive an error when you try to create the data file.

When you set the switch to the default, NO, this attribute is ignored.

This attribute corresponds to the XAB$B~,OP field, the CTG option.

EXACT_POSITIONING
Is a switch, set by default to NO. When you set this switch to YES,
then the exact positioning of the area you specified with either the
POSITION CYLINDER or the POSITION LOGICAL attribute must take
place successfully, or else an error occurs.

When you set the switch to NO, the system positions the area as close as
possible to the location requested.

This attribute corresponds to the XAB$B~OP Meld, the HRD option.

EXTENSION
Sets the number of blocks for the default extension quantity for the area. The
extension is the amount of space that the system adds to the area when the
area is filled up.

The value must be an integer in the range 0 to 65,535. The default is 0,
which means that the extension size is determined by the system whenever
the area requires extending.

This attribute corresponds to the XAB$W_DEQ Meld.

POSITION
The POSITION attribute controls the positioning of the area. Its value must
be one of the following keywords:

ANY_CYLINDER Begins the area on any cylinder boundary.

CYLINDER Begins the area on the boundary of the cylinder specified by
number.

FILE_ID Places the area as close to the specified file as possible. The
file must exist. The value you specify must be a valid file
ID containing the file identification number, the file sequence
number, and the relative volume number. It has the following
form (parentheses included):

(FID-num,FlD-seq,RVN)

This attribute is not supported for DECnet operations; NONE
is used.

FDL-7

FDL Description

FILENAME Places the area as close to the specified file as possible.
The file must exist. The value you specify must be a valid
file specification. This attribute is not supported for DECnet
operations; NONE is used.

LOGICAL Begins the area at a logical block, specified by number.

NONE Means that you do not want to control the placement of the
area. NONE is the default value.

VIRTUAL Begins the area at a virtual block, specified by number.

The POSITION attribute corresponds to the XABB_ALN, XABL _LOC, and
XAB$W_RFI fields.

VOLUME
Specifies the relative number of the volume in a Files-11 disk volume set on
which the area is to reside.

This value must be an integer in the range 0 to 255.

The default is 0, which means that you do not want to control the volume
placement of the area.

This attribute corresponds to the XAB$W_VOL field.

1.1.5 CONNECT Section
The CONNECT section specifies run-time attributes that are application-
dependent and related to record access and performance. The CONNECT
keyword itself takes no values. Table FDL-4 lists the CONNECT secondary
attributes.

Table FDL-4 Default Values for CONNECT Secondaries

Secondary Default Value

ASYNCHRONOUS None

BLOCK_10 None

BUCKET_IO None

CONTEXT None

END_OF_FILE None

FAST_DELETE None

FILL_BUCKETS None

KEY_GREATER_EQUAL None

KEY_GREATER_THAN None

KEY_LIMIT None

KEY_OF_REFERENCE None

LOCATE _MODE None

LOCK_ON_READ None

LOCK_ON_WRITE None

MANUAL _UNLOCKING None

MULTIBLOCK_COUNT None

FDL-8

FDL Description

Table FDL-4 (Cont.) Default Values for CONNECT Secondaries

Secondary Default Value

MULTIBUFFER_COUNT None
NOLOCK None
NONEXISTENT_RECORD None
READ_AHEAD None
READ_REGARDLESS None
TIMEOUT_ENABLE None

TIMEOUT_PERIOD None
TRUNCATE_ON_PUT None

TT_CANCEL _CONTROL _O None
TT_PROMPT None
TT_PURGE_TYPE_AHEAD None
TT_READ_NOECHO None
TT_READ_NOFILTER None
TT_UPCASE_INPUT None
UPDATE_IF None
WAIT_FOR_RECORD None
WRITE_BEHIND None

ASYNCHRONOUS
Is a switch indicating that I/O operations are to be performed
asynchronously. When you specify this attribute, VMS RMS returns control
to your program as soon as an I/O operation is initiated, even though
that operation may not yet be completed. The ASY is ignored for process
permanent files.

This attribute corresponds to the RAB$L ~20P field, the ASY option.

BLOCILIO
Is a switch that controls whether block or record I/O operations are
performed. If you set the switch to YES, only block operations are permitted.

If you set the switch to NO, only record operations are allowed for relative
and indexed files. However, if you also specify the ACCESS section
RECORD~O attribute, both block and record operations may be performed
on sequential Hiles.

This attribute corresponds to the RAB$L_1tOP field, the BIO option.

BUCKET_IO
Contains a relative record number or a numeric value representing the virtual
block number to be accessed. You use this attribute with records in a relative
file or when you want block I/O to be performed.

This attribute corresponds to the RAB$L _BKT field.

FDL Description

CONTEXT
Contains any user-selected value, up to four bytes in length. CONTEXT
is devoted exclusively to your use. VMS RMS does not use this attribute,
so you can put any value you want in it. For example, you could use it to
communicate with a completion routine in your program.

This attribute corresponds to the RAB$L _CTX field.

END_OF_FILE
Is a switch indicating that VMS RMS is to position to the end of the file when
a Connect operation takes place.

This attribute corresponds to the RAB$L~OP field, the EOF option.

FAST_DELETE
Is a switch specifying that pointers from the alternate indexes that allow
duplicates are not to be deleted as soon as you delete a record. Instead, the
pointers are deleted when you try to access the deleted record, in which case
an error message is returned. In other words, the FAST_DELETE attribute
prevents the overhead associated with the usual way VMS RMS deletes a
record—updating the data level, the primary index, and then the alternate
indexes.

This attribute corresponds to the RAB$L ~tOP Meld, the FDL option.

FILL_BUCKETS
Is a switch specifying that VMS RMS is to load buckets according to the fill
size established at file-creation time.

If you do not set the switch, VMS RMS ignores the established bucket fill
size, and fills buckets completely.

This attribute corresponds to the RAB$L~OP field, the LOA option.

KEY_GREATER_EQUAL
When using an ascending data type, KEY_GREATER~QUAL is a switch
requesting VMS RMS to access the first record in an indexed file containing
a value (for the specified key of reference) greater than or equal to the value
described by the RAB$L ~CBF and RAB$B~CSZ fields. If you are using a
descending data type, then KEY_GREATER~QUAL accesses the first record
that contains a value for the specified key of reference less than or equal to
the value described by the RAB$L~CBF and RAB$B~CSZ fields.

For more information about the RAB$L ~CBF and RAB$B~CSZ fields, refer to
the VMS Record Management Services Manual.

If you set neither this switch nor the KEY_GREATER_THAN switch, a key
equal match is made.

This attribute corresponds to the RAB$L SOP field, the KGE option.

KEY_GREATER_THAN
When using an ascending data type, the KEY_GREATER_THAN attribute
is a switch requesting VMS RMS to access the first record in an indexed
file containing a value (for the specified key of reference) greater than the
value described by the RAB$L ~CBF and RAB$B~CSZ Melds. When using a
descending data type, the KEY_GREATER_THAN attribute requests VMS
RMS to access the first record that contains a value less than that specified
in the RAB$L ~CBF and RAB$B~CSZ fields. For more information about the

FDL-10

FDL Description

RAB$L ~CBF and RAB$B_ICSZ fields, refer to the VMS Record Management
Services Manual.

If you set neither this switch nor the KEY_GREATER~QUAL switch, a key
equal match is made.

This attribute corresponds to the RAB$L ~tOP field, the KGE option.

KEY_LIMI T
Is a switch indicating that the key value described by the RAB$L ~CBF and
RAB$B~CSZ fields is to be compared to the value in the record accessed in
sequential mode. If you set this switch and the record's key value is greater
than the limit key value, then the RMS$_OK_LIM status code is returned.

This attribute corresponds to the RAB$L SOP field, the LIM option.

KEY_OF_REFERENCE
Specifies the key or index (such as primary, or first alternate) by which you
want to process records in a file. The value 0 indicates the primary key.
Values 1 through 254 indicate alternate keys. The default value is 0 (primary
key).

KEY_OF~EFERENCE is applicable to indexed files only.

This attribute corresponds to the RAB$B~CRF field.

LOCAT~MODE
Is a switch specifying that VMS RMS is to return records by supplying a
pointer to the data rather than copying the data to the user buffer.

This attribute corresponds to the RAB$L~tOP field, the LOC option.

LOCILON_READ
Is a switch specifying that a record is to be locked for read. Other accessors
may read the record while it is locked, but they cannot modify it.

If you specify both the LOCK_ON~tEAD and the LOCK_ON_WRITE
attributes, LOCK_ON_WRITE takes precedence. The NOLOCK attribute
takes precedence over both.

This attribute corresponds to the RAB$L~tOP field, the REA option.

LOCILON_WRITE
Is a switch specifying that a record is to be locked for modification. Other
accessors may read the record while it is locked.

If you specify both the LOCK_ON_WRITE and the LOCK_ON~ZEAD
at#ributes, LOCK_ON_WRITE takes precedence. The NOLOCK attribute
takes precedence over both.

This attribute corresponds to the RAB$L SOP field, the RLK option.

MANUAL_UNLOCKING
Is a switch specifying that VMS RMS cannot unlock records automatically.
Instead, after a record is locked (by a Get, Find, or Put operation), it must be
explicitly unlocked by a Free or Release VMS RMS operation.

The NOLOCK attribute takes precedence over the MANUAL_UNLOCKING
attribute.

This attribute corresponds to the RAB$L _ROP field, the ULK option.

FDL-11

FDL Description

MULTIBLOCI~COUNT
Specifies the number of blocks, in the range 0 to 127, to be allocated to
each I/O buffer. MULTIBLOCK_COUNT applies only when accessing a
sequential disk file.

The MULTIBLOCK_COUNT attribute optimizes data throughput for
sequential operations, and it does not affect the structure of the Cale. It
reduces the number of times you would otherwise have to access the disk for
record operations, so execution time is likewise reduced. However, the extra
buffering increases memory requirements.

If you do not set this attribute or set it to 0, the process default for the
multiblock count is used. If the process default is also 0, RMS uses the
system default. If the system default is also 0, then the default size for each
I/O buffer is one block. You use the DCL command SET RMS_DEFAULT to
set process or system defaults.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the RAB$B~vIBC field.

MULTIBUFFER_COUNT
Specifies the number of buffers, in the range U to 127, to be allocated at
connect time.

If you do not set this attribute or set it to 0, VMS RMS uses the process
default for the particular file organization and device type. If the process
default is also 0, the system default for the particular file organization and
device type applies.

If the system default is likewise 0, one buffer is allocated. However, if
you specify either the READ~HEAD or the WRITE _BEHIND attribute, a
minimum of two buffers are allocated. A minimum of two buffers are also
allocated for an indexed sequential file or for a process permanent file.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the RAB$B~VIBF field.

NOL OCK
Is a switch specifying that the record accessed through a Get or Find RMS
operation is not to be locked. The NOLOCK attribute takes precedence over
all other attributes controlling record locking, such as
MANUAL _UNLOCKING, LOCK_ON_READ, and LOCK_ON_WRITE.

This attribute corresponds to the RAB$L SOP field, the NLK option.

NONEXISTENT_RECORD
Is a switch specifying that if a record randomly accessed with a Get or Find
RMS operation does not e~dst (was never inserted into the file or was deleted),
the record is to be processed anyway, locking the record cell if necessary.

NONEXISTENT~ECORD does not apply to indexed files.

This attribute corresponds to the RAB$L ~tOP Meld, the NXR option.

READ~4HEAD
Is a switch used with multiple buffers (see MULTIBUFFER_COUNT),
indicating read-ahead operations. It indicates that the system does not
have to wait for I/O completion because input and computing can overlap.

FDL-12

FDL Description

In other words, when one buffer is filled, the next record is read into the next
buffer while the I/O operation takes place for the first buffer.

If you specify READ~AHEAD when the multibuffer count is 0, two buffers
are allocated to allow multibuffering. If you specify two or more buffers,
multibuffering is allowed regardless. However, if you specify a buffer count
of 1, multibuffering is disabled.

READ~HEAD is ignored for unit record device I/O. It applies to sequential
file processing only.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the RAB$L SOP Meld, the RAH option.

READ_REGARDLESS
Is a switch specifying that a record is to be read even if it is locked. This
attribute allows some control over access. In other words, if a record is locked
against all access and you request a Find or Get RMS operation, the record is
returned anyway.

This attribute corresponds to the RAB$L SOP field, the RRL option.

T/MEOUT_ENABLE
Is a switch specifying that the maximum time value, in seconds, is allowed for
a record input wait caused by a locked record if the WAIT~OR~ZECORD
attribute was specified. This attribute also applies to the time allowed for a
character to be received during terminal input. If the timeout period expires,
VMS RMS returns an error status.

In addition, TIMEOUT~NABLE serves a special purpose for mailbox devices.
If you specify this attribute with a TIMEOUT~'ERIOD of 0, Get and Put
RMS operations to mailbox devices use the IO$M STOW modifier. The
operation then completes immediately instead of synchronizing with another
cooperating writer or reader of the mailbox. See the VMS 1 /O User's Reference
Volume for a further discussion of mailboxes.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the RAB$L—ROP field, the TMO option.

T/MEOUT_PER/OD
Specifies the maximum number of seconds, in the range 0 through 255, that a
Get RMS operation can use. If a Get operation is specified from the terminal
and you specify 0, the current contents of the type-ahead buffer are returned.

To use this attribute, you must also specify the TIMEOUT~NABLE attribute.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the RAB$B_TMO field.

TRUNCATE_ON_PUT
Is a switch specifying that a Put or Write RMS operation can occur at any
point in a file, truncating the file at that point. A write operarion causes the
end-of-file mark to immediately follow the last byte written.

TRUNCATE_ON~'UT can only be used with sequential files.

This attribute corresponds to the RAB$L ~tOP field, the TPT option.

FDL-13

FDL Description

TT_CANCEL _CONTROL _O
Is a switch guaranteeing that terminal output is not discarded if you press
CTRL/O.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the RAB$L ~tOP field, the CCO option.

TT_PROMPT
Is a switch indicating that the contents of the prompt buffer are to be used as
a prompt on a read from a terminal.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the RAB$L ~ZOP field, the PMT option.

TT_PURGE_TYPE~4HEAD
Is a switch eliminating any information that may be in the type-ahead buffer
on a read from a terminal.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the RAB$L SOP field, the PTA option.

TT_READ_NOECHO
Is a switch indicating that input data is not to be echoed (displayed) on the
terminal as it is entered on the keyboard.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the RAB$L ~ZOP field, the RNE option.

TT_READ_NOFILTER
Is a switch indicating that CTRL/U, CTRL/R, and DELETE are not to be
considered control commands on terminal input, but are to be passed to the
user program.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the RAB$L~tOP field, the RNF option.

TT_UPCAS~INPUT
Is a switch that changes lowercase characters on a read from a terminal to
uppercase.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the RAB$L~OP field, the CVT option.

UPDAT~IF
Is a switch indicating that if a put operation is specified for a record that
already exists in the file, the operation is converted to an update. This
attribute is necessary to overwrite (as opposed to update) an existing record in
relative and indexed sequential files.

Indexed files using UPDATE~F must not allow duplicates on the primary
key.

This attribute corresponds to the RAB$L_ROP field, the UIF option.

FDL-14

FDL Description

WAI T_FOR_RECORD
Is a switch specifying that VMS RMS should wait for a currently locked
record until it becomes available. You can use this attribute with the
TIMEOUT~NABLE and TIMEOUT_I'ERIOD attributes to limit waiting
periods to a specified time.

This attribute corresponds to the RAB$L ~ZOP field, the WAT option.

WRIT~BEHIND
Is a switch used with multiple buffers (see MULTIBUFFER_COUNT) to
indicate write-behind operations. It indicates that the system does not have
to wait for I/O completion because computing and output can overlap. In
other words, when one buffer is filled, the next record is written into the next
buffer while the I/O operation takes place for the first buffer.

If you specify WRITE_BEHIND when the multibuffer count is 0, two buffers
are allocated to allow multibuffering. If you specify two or more buffers,
multibuffering is allowed regardless. However, if you specify a buffer count
of 1, multibuffering is disabled.

WRITE_BEHIND is ignored for unit record device I/O. It applies to
sequential file processing only.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the RAB$L~tOP field, the WBH option.

1.1.6 DATE Section
The DATE section allows you to specify dates and times for certain file
characteristics. The DATE keyword itself takes no values; it serves only to set
off this section. Table FDL-5 lists the DATE secondary attributes and their
default values.

Table FDL-5 Default Values for DATE Secondaries

Secondary Default Value

BACKUP Null-string

CREATION Null-string

EXPIRATION Null-string

REVISION Null-string

In general, you should let the system specify values for the DATE secondaries.
The only secondary you can routinely (and safely) set is EXPIRATION.

BACKUP
Is a string that indicates the date when the data file was last backed up. It
must be of the following form:

dd-mmm-yyyy hh:mm:ss.cc.

This attribute corresponds to the XAB$Q_BDT field.

FDL-15

FDL Description

CREATION
Is a string that indicates the date and time of the data file's creation. It must
be of the following form:

dd-mmm-yyyy hh:mm:ss.cc.

This attribute corresponds to the XAB$Q_CDT field.

EXPIRATION
Is a string that indicates the date and time after which a disk file may be
considered for deletion. For magnetic tape files, the EXPIRATION attribute
sets the date and time after which you can overwrite the file. It must be of
the following form:

dd-mmm-yyyy hh:mm:ss:cc.

This attribute corresponds to the XAB$Q~DT field.

REVISION
Is a string that indicates the date of the last modification of the data file. It
must be of the following form:

dd-mmm-yyyy hh:mm:ss.cc.

This attribute corresponds to the XAB$Q~DT Meld.

1.1.7 FILE Section
The FILE section allows you to specify file processing and file-related
characteristics for your file. The FILE primary keyword takes no values.

FILE section attributes (ALLOCATION, BEST_TRY_CONTIGUOUS,
BUCKET_SIZE, CONTIGUOUS, and EXTENSION) have corresponding
AREA section attributes. If you specify values for these attributes in the
AREA section, they override any values that you specify in the FILE section.

Table FDL-6 lists the FILE secondary attributes and their default values.

Table FDL-6 Default Values for FILE Secondaries

Secondary Default Value

ALLOCATION 0

BEST_TRY_CONTIGUOUS NO

BUCKET_SIZE 0

CLUSTER_SIZE 3

CONTEXT 0

CONTIGUOUS NO

CREATE_IF NO

DEFAULT_NAME Null-string

DEFERRED_WRITE NO

DELETE _ON _CLOSE NO

DIRECTORY_ENTRY YES

EXTENSION 0

FDL-16

FDL Description

Table FDL-6 ~Cont.~ Default Values for FILE Secondaries

Secondary Default Value

FILE_MONITORING NO

GLOBAL _BUFFER_COUNT 0

MAX _RECORD_NUMBER 0

MAXIMIZE_VERSION YES

MT_BLOCK_SIZE 0

MT_CLOSE_REWIND NO

MT_CURRENT_POSITION NO

MT_NOT_EOF NO

MT_OPEN_REWIND NO

MT_PROTECTION Space character

NAME Null-string

NON_FILE_STRUCTURED NO

ORGANIZATION SEQUENTIAL

OUTPUT_FILE_PARSE NO

OWNER System or process default

PRINT_ON_CLOSE NO

PROTECTION System or process default

READ_CHECK NO

REVISION 0

SEQUENTIAL _ONLY NO

SUBMIT-ON_CLOSE NO

SUPERSEDE NO

TEMPORARY NO

TRUNCATE_ON_CLOSE NO

USER_FILE_OPEN NO

WINDOW_SIZE Volume default

WRITECHECK NO

ALLOCATION
Sets the number of blocks that you initially allocate for the data file. The
value you specify must be an integer in the range 0 to 4,294,967,295. The
default is 0, which means that the system does not initially allocate space for
the file.

Note that you can override this attribute by specifying the corresponding
attribute in the AREA section.

This attribute corresponds to the FAB$L _ALQ field.

FDL-17

FDL Description

BEST_TRY_CONT/GUOUS
Is a switch that controls whether the file is to be allocated contiguously
if there is enough space for it. If you set the switch to YES and if there
is enough space for the file, the file is allocated contiguously. If you
set the switch to YES and there is not enough space, the file is allocated
noncontiguously.

If you set the switch to the default, NO, this attribute is ignored. It is also
ignored if no allocation is specified.

Note that you can override this attribute by specifying the corresponding
attribute in the AREA section.

This attribute corresponds to the FAB$L~OP field, the CBT option.

BUCKET_SIZE
Sets the number of blocks per bucket. Its value must be an integer in the
range 0 to 63. The default value is 0, which means that the bucket size
computed by VMS RMS is the smallest bucket size capable of holding the
largest record. If the file is to be processed by RMS-11, the bucket size is
limited to 32 blocks.

If you specify separate areas for the data level and the index levels, then you
must define separate bucket sizes for each area. In such a case, this attribute
has no meaning because it is overridden when you specify the corresponding
attribute in the AREA section.

This attribute corresponds to the FAB$B_BKS field.

CLUSTER_SIZE
Defines the disk cluster size, which is the number of blocks allocated to a
cluster. The system manager or operator determines the disk cluster size
when the disk (or volume) is initialized. The disk cluster size can only be set
when a volume is initialized.

CLUSTER_SIZE is valid only in the output from the Analyze/RMS~ile
Utility. ANALYZE/RMS~ILE then returns the actual value of the disk
cluster size to EDIT/FDL for use during an Optimize script.

Note that the FDL attribute CLUSTER~IZE does not have the same meaning
as the cluster-size in the RSTS/E operating system.

CONTEXT
Contains auser-specified value 4 bytes long. This field is intended solely
for you to convey user information to a completion routine in your program;
VMS RMS never uses it for record management activities.

This attribute corresponds to the FAB$L_CTX field.

CONTIGUOUS
Is a switch that controls whether the file must be allocated contiguously.

When you set the switch to YES, the file must be allocated contiguously. If
there is not enough space for the file's initial allocation, you receive an error.

When you set the switch to the default, NO, the attribute is ignored. It is also
ignored if no allocation is specified. lJ

FDL-18

FDL Description

Note that you can override this attribute by specifying the corresponding
attribute in the AREA section.

This attribute corresponds to the FAB$L_FOP field, the CTG option.

CREATE_IF
Is a switch that opens an already existing file. If you set the switch to YES,
the file is created if it does not already exist. The alternate success status
RMS$_CREATED is then returned to indicate that the file was created, not
just opened. The file is input only on an RMS Create service. The
CREATE~F attribute overrides the SUPERSEDE (supersede existing file)
attribute.

This attribute corresponds to the FAB$L ~'OP field, the CIF option.

DEFAULT_NAME
Takes a string value that can define portions of the file specification of the
data file to be created.

When a utility creates a data file from an FDL file, it first attempts to get
the file specification from the call to the utility. If you supply a full file
specification with the call to the utility, then the values for the
DEFAULT~TAME and NAME attributes are ignored.

If you supply only a partial file specification when you invoke the creating
utility, the utility tries to fill in the remainder of the file specification from the
value of DEFAULT~iAME. If you do not specify a value for
DEFAULT~TAME, the utility uses the VMS RMS defaults.

If you do not supply the utility with a file specification but supply a full
file specification with the NAME attribute, the creating utility uses that ffie
specification. If you supply only a partial file specificarion with the NAME
attribute, then the utility uses that portion, and then looks to the
DEFAULT~tAME attribute for the rest of the file specification.

If the file specification is still incomplete at that point, the utility uses the
VMS RMS defaults to complete the file specification.

For example, if you assign the value WRKD$:.KSM to DEFAULT~VAME,
then, unless you specify otherwise, the created data file has the device name
WRKD$ and the file type KSM in its file specification.

This attribute corresponds to the FAB$L _DNA and the FAB$B_DNS fields.

DEFERRED_WRITE
Is a switch that controls whether the writing of modified I/O buffers back
to the file is deferred until that buffer is needed for other purposes. This
attribute applies only to relative files and indexed files.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the FAB$L~OP field, the DFW option.

DELETE_ON_CLOSE
Is a switch that defines the file status after it has been closed. When you set
the switch to YES, this attribute specifies that the file is to be deleted after it
is closed.

FDL-19

FDL Description

If you set this attribute to YES, you cannot create the file with -CREATE/FDL
or with FDL$CREATE. They both open and then close the data file, which
means that the file will never be around long enough to be used. To create a
file that has the DELETE_ON_CLOSE attribute set to YES, you must use the
FDL$PARSE routine.

When you set the switch to the default, NO, this attribute is ignored.

This attribute corresponds to the FAB$L~OP field, the DLT option.

D/RECTORY_ENTRY
Is a switch that defines the file as a temporary one. When you set the switch
to the default, YES, it means that the file is created and retained with a
directory entry.

When you set this attribute to NO, the file is retained but with no directory
entry. To access that file, you must use its file ID.

This attribute corresponds to the FAB$L SOP field, the TMP option.

EXTENSION
Sets the number of blocks for the default extension value for the file. Each
time the file is automatically extended, the specified number of blocks is
added. The value for this attribute must be an integer in the range 0 to
65,535. The default is 0, which means the extension size is determined by the
system whenever the file must be extended.

Note that you can override this attribute by specifying the corresponding
attribute in the AREA section.

This attribute corresponds to the FAB$W_DEQ field.

F/L~MON/TORING
Is a switch that corresponds to XAB$_STAT~NABLE. Enables performance
monitoring. The default value is NO.

GLOBAL_BUFFER_COUNT
Specifies the number of global buffers to be allocated for the data file. The
value for this attribute must be a number in the range 0 to 32,767. The
default value is 0.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the FAB$W_GBC field.

MA~RECORD_NUMBER
Specifies the maximum number of records that can be placed in a relative file.

The value must be an integer in the range of 0 to 2,147,483,647. The default
value is 0, which means that you can place as many records as you want in
the relative file, up to the maximum 2,147,483,647.

This attribute corresponds to the FAB$L ~vIRN Meld.

MAXIMIZ~VERSION
Is a switch that controls the version number assigned to the file specification
of a data file.

FDL-20

FDL Description

If you set the switch to the default, YES, the FDL Facility gives the file
specification of the data file the greater of two possible version numbers:
either the number that was part of the file specification or a version number
that is one higher than the highest existing version number.

When you set the switch to NO, then giving an explicit version number in
the file specification that is lower than an existing version results in creating a
new data file that has the lower version number. Giving a version number in
the file specification that exactly matches an existing one results in an error.

This attribute corresponds to the FAB$L SOP field, the MXV option.

MT_BLOCI~S/ZE
Sets the number of bytes in a block for magnetic tape files. The value for
this attribute is either 0 or an integer in the range 20 to 65,535 for ANSI-
formatted tapes or 14 to 65,532 for foreign tapes (tapes that are not in the
standard ANSI format used by the VMS operating system and that must be
mounted by means of the DCL command MOUNT/FOREIGN). If the default
value of 0 is taken, then the block size specified when the tape was mounted
is used.

This attribute corresponds to the FAB$W BLS field.

MT_CLOSE_REW/ND
Is a switch that controls whether a magnetic tape volume is rewound when
the file is closed. When you set the switch to YES, the magnetic tape volume
is rewound.

When you set the switch to the default value, NO, the magnetic tape volume
is not rewound.

This attribute corresponds to the FAB$L~OP field, the RWC option.

MT_CURRENT_POSI TION
Is a switch that controls the starting position on a magnetic tape where a
data file is written. When you set the switch to YES, the data file is written
immediately following the current tape file.

In the absence of position specifiers (i.e., MT_CURRENT~'OSITION=NO
and MT_OPEN~EWINI~NO) the file is created at the logical end of the
tape.

This attribute corresponds to the FAB$L ~'OP field, the POS option.

MT_NOT_EOF
Is a switch that prevents positioning to the end of a file when a tape file is
opened and the FAB$B~AC (file access) field of this FAB indicates an RMS
Put operation (the ACCESS PUT attribute has been specified).

This attribute corresponds to the FAB$L _FOP field, the NEF option.

MT_OPEN_REW/ND
Is a switch that controls whether a magnetic tape volume is rewound before
any Open or Create operation. When the switch is set to YES, the magnetic
tape volume is rewound and the current contents of the tape volume or
volume set are overwritten.

FDL-21

FDL Description

When you set the switch to the default value, NO, the magnetic tape volume
is not rewound. An Open operation begins at the current tape position and
writes to the end of the tape. A Create operation rewinds the tape, but then
skips over existing data on the tape. This attribute takes precedence over the
MT_CURRENT_1'OSITION attribute (FAB$L SOP field, the POS option).

This amibute corresponds to the FAB$L~OP field, the RWO option.

MT_PROTECTION
Allows you to control access to a magnetic tape file. By default, this attribute
takes a space character as its value, which means that access is not controlled.
If you assign any character other than the space, then, to access the file, you
must specify the /OVERRIDE=ACCESSIBILITY qualifier and option when
you initialize or mount the volume.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the XAB$B~vITACC field.

NAME
Is the file specification of the data file to be created from this FDL file. If you
supply a creating utility with a name for the data file, that name overrides the
one specified here.

This attribute corresponds to the FAB$L ~1VA and the FAB$B~'NS fields.

NON_FILE_STRUCTURED
Indicates that the volume is to be processed in a manner that is not
file-structured.

This attribute is not supported for DECnet operations; an error is returned if
you try to use it.

This attribute corresponds to the FAB$L SOP field, the NFS option.

ORGANIZATION
Defines the type of file organization. Its value must be one of the following
keywords:

• SEQUENTIAL

• RELATIVE

• INDEXED

The default is SEQUENTIAL.

This attribute corresponds to the FAB$B_ORG field.

OUTPUT_FILE_PARSE
Is a switch specifying that the resultant file specification string, if used, is to
provide directory, file name, and file type defaults only.

This attribute corresponds to the FAB$L SOP field, the OFP option.

OWNER
Specifies who is to be the owner of the data file. The value that you supply
is the user identification code (UIC), in this form:

octal-group-number octal-user-number

FDL-22

FDL Description

For example, OWNER [12,322] indicates that the person in group 12 with the
user number 322 is the owner of the data file.

This attribute corresponds to the XAB$W_GRP and the XAB$W~vIBM fields.

PRINT_ON_CLOSE
Is a switch that controls whether the data file is to be spooled to the process
default print queue when the file is closed. This attribute applies to sequential
files only. When you set the switch to YES, the data file is to be spooled to
the process default print queue (SYS$PRINT) after the file is closed.

When you set the switch to the default, NO, this attribute is ignored.

If you also set DELETE_ON_CLOSE to YES, the file is deleted after it is
printed.

This attribute corresponds to the FAB$L SOP field, the SPL option.

PROTECTION
Defines the levels of file protection.

Its value is a string of one of these two forms:

SYSTEM=code,OW NER=code,GROUP=code, W ORLD=code
SYSTEM:code,OWNER:code,GROUP:code, WORLD:code

The code is a protection specification for READ, WRITE, EXECUTE, and
DELETE in the form:

[Rl[Wl[El[~l
The default gives the data file the current process default protection. To see
what this is, enter the DCL command SHOW PROTECTION.

To deny a specific access right, you omit it from the code. To withhold all
access rights from a user classification, omit the classification from the list.
For example, the following string gives all access rights to SYSTEM and
OWNER, gives only READ access to GROUP, and gives no access rights to
WORLD.

SYSTEM=RWED,OWNER=RWED,GROUP=R

This attribute corresponds to the XAB$W_I'RO field.

READ_CHECK
Is a switch that determines whether transfers from disk volumes are followed
by read-compare operations.

When you set the switch to YES, transfers from disk volumes are followed by
read-compare operations. This double checking increases the likelihood that
the system will catch data errors; however, it also increases disk overhead.

Setting this switch does not permanently mark the file for READ_CHECK; it
merely sets an RMS run-time option. Instead, you must use the
SET FILE/DATA_CHECK=READ command to mark the file permanently.

When you set the switch to the default, NO, the attribute is ignored.

This attribute corresponds to the FAB$L SOP field, the RCK option.

FDL-23

FDL Description

REVISION
Specifies the revision number of the data file. Its value is an integer in
the range 0 to 65,535. Unless you want to change the revision number to
some specific number, you should leave this value at its default of 0. When
REVISION is set to 0, the file's revision number is increased by one every
time the file is opened for write access.

This attribute corresponds to the XAB$W~VN field.

SEQUENTIAL _ONLY
Is a switch indicating that the file can only be processed sequentially, thus
allowing certain processing optimizations. Any attempt to perform random
access results in an error.

For DECnet operations, this attribute enables file transfer mode, which
is a Data Access Protocol (DAP) feature that allows several records to be
transferred in a single network operation. It maximizes throughput for
single-direction, sequential-access file transfer.

This attribute corresponds to the FAB$L~OP field, the SQO option.

SUBM/T_ON_CLOSE
Is a switch that determines whether the data file is submitted to the process
default batch queue (SYS$BATCH) when the file is closed.

When you set the switch to YES, the data file is submitted. This setting
makes sense only if the data file is a sequential command file.

When you set the switch to NO, this attribute is ignored.

If you also set DELETE_ON_CLOSE to YES, the file is deleted after the
batch job completes.

This attribute corresponds to the FAB$L SOP field, the SCF option.

SUPERSEDE
Is a switch that determines whether the existing data file is replaced by a
different one of the same name, type, and version. When you set the switch
to YES, the existing data file is replaced.

When you set the switch to the default, NO, this attribute is ignored.

If you try to create a new file with the same name, type, and version as an
existing file, the old file is deleted if the new one is created successfully.

SUPERSEDE is overridden by the CREATE~F attribute.

This attribute corresponds to the FAB$L SOP field, the SUP option.

TEMPORARY
Is a switch indicating that a temporary file is to be created and deleted when
the file is closed. A directory entry is not created for the temporary file.

If you set this attribute to YES, you cannot create the file with CREATE/FDL
(or with FDL$CREATE). They both open and then close the data file, which
means that the file will never be around long enough to be used. To create
a file that has the TEMPORARY attribute set to YES, you must use the
FDL$PARSE routine.

This attribute corresponds to the FAB$L SOP field, the TMD option.

FDL-24

FDL Description

TRUNCAT~ON_CLOSE
Is a switch that indicates whether any unused space at the end of a sequential
file is deallocated when the file is closed. When you set this switch to YES,
the space is deallocated. This attribute applies to sequential files only.

When you set this switch to the default, NO, this attribute is ignored.

This attribute corresponds to the FAB$L SOP field, the TEF option.

USER_F/ LE_OPEN
Is a switch indicating that VMS RMS only opens or creates a file; no further
RMS operations are performed on the file. If you specify this option, you
must also specify the SHARING USER~NTERLOCK attribute unless you
have also specified the SHARING PROHIBIT attribute.

This attribute is not supported for DECnet operations; an error is returned if
you try to use it.

This attribute corresponds to the FAB$L SOP field, the UFO option.

W/NDOW_S/ZE
Specifies the number of retrieval windows (pointers) you want VMS RMS to
maintain in memory for your file. You can specify a numeric value in the
range 0 to 127, or 255. A value of 0 indicates that VMS RMS is to use the
system default number of retrieval pointers. A value of 255 means to map the
entire file, if possible. Values between 128 and 254, inclusive, are reserved
for future use.

This attribute is not supported for DECnet operations; it is ignored.

This attribute corresponds to the FAB$B~TV field.

WR/TE_CHECK
Is a switch that, when set to YES, indicates that transfers to disk are checked
by aread-compare operation. However, this operation creates extra system
overhead.

Setting this switch does not permanently mark the file for WRITE _CHECK; it
sets an RMS run-time option. You must use the
SET FILE/DATA_CHECK=WRITE command to mark the file permanently.

When you set this switch to the default, NO, this attribute is ignored.

This attribute corresponds to the FAB$L _FOP field, the WCK option.

FDL-25

FDL Description

1.1.8 KEY Section
The KEY primary attribute acts as a header for a section of the FDL file that
describes keys. You must specify a separate KEY section for each key of an
indexed file. The number of the key being described follows the word KEY
(for example, KEY 0, KEY 1, . . .KEY n). The KEY value for the primary key
must be 0. The KEY value for secondary keys can be numbered from 1
to 254.

The KEY primary attribute corresponds to the XAB$B~EF field.

Table FDL-7 lists the KEY secondary attributes and their default values.

Table FDL-7 Default Values for KEY Secondaries

Secondary Default Value

CHANGES NO

COLLATING_SEQUENCE None (only present for files with collated
keys)

DATA _AREA None

DATA_FILL Same as bucket size

DATA _KEY_COMPRESSION YES

DATA_RECORD_COMPRESSION YES

DUPLICATES NO for primary; YES for alternate

INDEX _AREA None

INDEX _COMPRESSION YES

INDEX _FILL Same as bucket size

LENGTH None

LEVEL 1 _INDEX _AREA None

NAME Null-string

NULL _KEY NO

NULL _VALUE ASCII null character

POSITION None

PROLOG System or process default

SEGn_LENGTH None

SEGn_POSITION None

TYPE STRING

CHANGES
Is a switch that, when set to YES, allows an RMS Update operation to change
the value of the key. Such a change is not allowed for the primary key
(regardless of this attribute), so the default setting for primary keys is NO.
With alternate keys the default setting is also NO, but you can specify YES to
allow changes to alternate key values.

This attribute corresponds to the XAB$B~LG field, the CHG option.

FDL Description

COLLATING SEQUENCE
The name of the NCS collating sequence that defines the sorting order of the
characters for this key. The value is a string from 1 to 31 characters long.
You must supply the value; there is no default.

This attribute corresponds to the XAB$L _COLNAM field.

DAT~AREA
Identifies the area, in an indexed file with multiple areas, where you place the
data records. The value is an integer in the range 0 to 254, which must be
the same number as that assigned to the area in an AREA section.

The DATA~REA, LEVELI~NDEX~REA, and INDEX~REA values are
used when the data level and the index levels are placed in separate areas or
when each key is placed in its own area.

This attribute corresponds to the XAB$B_DAN field.

DAT~FILL
Sets the percentage of bytes in each data bucket in the area you want
populated initially. If you anticipate that many records will be inserted
randomly into the file, this value should be less than 100% of the bytes. The
default value is 100%, and the minimum value is 50%. The
/FILL_BUCKETS qualifier to the CONVERT command overrides this
attribute.

This attribute corresponds to the XAB$W_DFL field. Note that XAB$W_DFL
contains a byte count, not a percentage.

DAT~KEY_COMPRESSION
Is a switch that controls whether leading and trailing repeating characters
in the primary key are compressed. The default is YES. For compression
to occur, your indexed file must be defined as a Prolog 3 file with the FDL
attribute KEY PROLOG. However, KEY PROLOG 3 is the default.

This attribute should be set for DECnet operations.

This attribute corresponds to the XAB$B~LG field, the KEY~ICMPR option.

DATi~RECORD_COMPRESSION
Is a switch that controls whether repeating characters are compressed in the
data records. The default is YES. For compression to occur, your indexed
file must be defined as a Prolog 3 file with the FDL attribute KEY PROLOG.
However, KEY PROLOG 3 is the default.

This attribute should be set for DECnet operations.

This attribute corresponds to the XAB$B~'LG field, the DAT~ICMPR option.

DUPLICATES
Is a switch that controls whether duplicate keys are allowed in the indexed
files. For primary keys the default setting is NO, but for alternate keys the
default setting is YES. When you set the switch to YES, this attribute specifies
that there can be more than one record with the same specific key value.

Duplicate alternate keys can be useful. For example, sorting a customer file
on an alternate key of the zip code is a common application and one that
requires duplicate keys. Sorting a file on an alternate gender key (male or
female) is also an application that requires duplicate keys.

FDL-27

FDL Description

When you set this attribute to NO, duplicate keys are not allowed, and any
attempt to write a record where the key would be a duplicate results in an
error.

This attribute corresponds to the XAB$B~'LG field, the DUP option.

INDEaLAREA
Identifies the area, in an indexed file with multiple areas, where you place
the index levels (other than level 1). The value is an integer in the range 0
to 254, which must be the same number as that assigned to the area in an
AREA section.

The INDEX~REA, DATA~REA, and LEVELI~NDEX~REA values are
used when the data level and the index levels are placed in separate areas or
when each key is placed in its own area.

This attribute corresponds to the XAB$B~AN field.

INDEJ~LCOMPRESSION
Is a switch that controls whether leading repeating characters in the index
are compressed. The default value is YES. For compression to occur, your
indexed file must be defined as a Prolog 3 file with the FDL attribute KEY
PROLOG. However, KEY PROLOG 3 is the default.

This attribute should be set for DECnet operations.

This attribute corresponds to the XAB$B_FLG field, the IDX~iCMPR option.

INDEJ~FILL
Sets the percentage of bytes in each index level bucket to be populated
initially. If you anticipate that many records will be inserted randomly into
the file, this value should be less than 100%. The default value is 100% and
the minimum value is 50%.

The /FILL _BUCKETS qualifier to the CONVERT command overrides this
attribute.

This attribute corresponds to the XAB$W~FL field, which is a byte count, not
a percentage.

LENGTH
Sets the length of the key in bytes. This value, along with the POSITION
and TYPE attributes, is used when the key is unsegmented.

This value must be specified; there is no default.

This attribute corresponds to the XAB$B_SIZO field.

LEVEL 1 _INDE~AREA
Identifies the area where you place the level 1 index in an indexed file with
multiple areas. The value is an integer in the range of 0 to 254, which must
be the same number as that assigned to the area in an AREA section.

The LEVELI~NDEX~REA, DATA~REA, and INDEX~REA values are
used when the data level and the index levels are placed in separate areas or
when each key is placed in its own area.

This attribute corresponds to the XAB$B_LAN field.

FDL-28

FDL Description

NAME
Assigns a name to a key. The value is a string from 1 to 32 characters long.
This is an optional value; the default is no name (blank). The string is padded
with ASCII null characters to 32 bytes.

This attribute corresponds to the XAB$L ~CNM field.

NULL _KEY
Controls whether null key values will be allowed in an alternate key field.
The value of this attribute is a switch, set to NO by default. When set to NO,
it means that all records must contain a valid value for this alternate key.

In some databases, such entries are not desirable; some records will not
contain a value for a particular alternate key. By allowing null keys, declaring
a null field, and writing the null field as the alternate key for a record, you
can include the record in the database.

When you set this attribute to YES, null key values are allowed in the
specified alternate index field of a record. Keep in mind that only string keys
can have null values.

A null key value is whatever you set it to be with the KEY NULL _VALUE
secondary. If a record has the specified null value in its alternate key field, a
pathway to that record will not be made in the alternate index structure.

This attribute corresponds to the XAB$B~LG Meld, the NUL option.

NULL _VALUE
Defines the null value that instructs the system not to create an alternate
index entry for the record that has the null value in every byte of the key
field.

If the alternate key is of the STRING type, you can specify the null value
either by specifying the character itself or by specifying an unsigned decimal
number denoting the character's ASCII value. To specify the character,
enclose it in apostrophes. To specify the decimal ASCII value, just type it
with no enclosing characters.

The default is the ASCII null character (which is 0).

This attribute corresponds to the XAB$B~1UL field.

POST T/ON
Defines the byte position of the beginning of the key field within the record.
The first position is 0. Primary keys work best if they start at byte 0. This
attribute, along with the LENGTH and TYPE attributes, is used when the key
is unsegmented.

This attribute corresponds to the XAB$W-1'OSO field.

PROLOG
Defines the internal structure level of an indexed file. There are three different
structure levels—PROLOG 1, PROLOG 2, and PROLOG 3.

Prolog 3 files accept multiple keys (or alternate keys) and all data types.
They also give you the option of compressing your data, indexes, and keys.
PROLOG 3 is the default.

FDL-29

FDL Description

On the other hand, Prolog 1 and 2 files do not allow these options. You
should not specify Prolog 3 if the primary key is segmented and the segments
overlap. If you want to use a Prolog 3 file in this case, consider defining the
overlapping segmented key as an alternate key and then choosing a different
key to be the primary key.

Note that neither RMS-11 Version 1.8 nor RMS-11 Version 2.0 support
Prolog 3 files.

To specify a Prolog 3 file, assign the value 3 to this attribute. To specify
a Prolog 1 or 2 file, assign the value 2. There is no perceivable difference
between PROLOG 1 and PROLOG 2.

If you do not specify a value for this attribute, then the utility that creates a
data file from the FDL file uses the system or process default. To see these
default values, enter the DCL command SHOW RMS_DEFAULT.

This attribute is not supported for DECnet operations; the default prolog in
effect at the remote node is used.

This attribute corresponds to the XAB$B~'ROLOG field.

SEGn_LENGTH
Defines the length of the key segment in bytes. This attribute is used with
the SEGn~'OSITION attribute when the key is segmented. The n is the
number of the segment and may be 0 to 7. The first segment in the key must
be numbered 0, and each key may have up to eight segments. Segmented
keys must be STRING type.

For Prolog 3 files, segments cannot overlap.

This attribute corresponds to any field from XAB$B_SIZO to XAB$B_SIZ7.

SEGn_POSI TION
Defines the key segment's starting byte position within the record. The first
position is 0. Segmented keys must be STRING type.

For Prolog 3 files, segments cannot overlap.

This attribute corresponds to the XAB$W~'OSO (through XAB$W~'OS~
field(s).

TYPE
The TYPE attribute specifies the type of the key. The value must be one of
the following arguments:

BIN2 An unsigned, 2-byte, binary number in the range 0 to 65,535 (2is_~)

BIN4 An unsigned, 4-byte, binary number in the range 0 to
4,294,967,295 (232 -1►.

BIN8 An unsigned, 8-byte, binary value that ranges from 0 to 2sa_ ~

COLLATED A string of ASCII characters. If the key is to be sorted by an
NCS collating sequence, then the key type must be declared as
COLLATED or as DCOLLATED. The sort order is determined by
the collating sequence for that particular key.

FDL-30

FDL Description

DCOLLATED A string of ASCII characters. If the key is to be sorted by an
NCS collating sequence, then the key type must be declared
as COLLATED or as DCOLLATED (descending collated sort
in reverse order according to the collating sequence for that
particular key).

DBIN2 An unsigned, 2-byte, binary value that ranges from 0 to 65,535
(216-1). In an indexed file, records are stored in descending order
for this key of reference.

DBIN4 An unsigned, 4-byte, binary value that ranges from 0 to
4,294,967,295 (232-1). In an indexed file, records are stored
in descending order for this key of reference.

DBIN8 An unsigned, 8-byte, binary value that ranges from 0 to 2 64-1. In
an indexed file, records are stored in descending order for this key
of reference.

DDECIMAL Apacked-decimal value (that is, a continuous string of between 1
and 16 bytes) accessed in descending sort order in an indexed file.
The format of the DDECIMAL type is the same as for DECIMAL,
described next (except that DECIMAL is accessed in ascending
order) .

DECIMAL Apacked-decimal value, which is a continuous string of from 1
to 16 bytes. A DECIMAL value is specified by the address of the
first byte of the string and by the number of decimal digits.

Each byte in a DECIMAL value is divided into two 4-bit fields.
Each of these fields contains the binary representation of one
decimal digit, except for the first 4-bit field in the highest byte,
which represents the sign of the DECIMAL value.

Although 4 bits can represent values up to decimal 16 (a
hexadecimal 10), values greater than 9 are not allowed in a
DECIMAL 4-bit field, except for the sign field.

The byte with address A contains the two beginning digits of
the value. The high-order 4-bit field contains either the most
significant digit or a leading zero if it is needed to make the sign
field appear in the correct 4-bit field.

For example, a DECIMAL value of +123 with address A has a
length of 3 (for 3 digits) and requires 2 bytes of storage.

A DECIMAL value of —5237 at address B would have a length of
4 digits. It would need 3 bytes of storage.

DINT2 A signed, 2-byte integer accessed in descending order in an
indexed file. This data type can represent integers between
—32,768 and +32,767.

DINT4 A signed, 4-byte integer accessed in descending order in an
indexed file. This data type can represent integers between
—2,147,483,648 and +2,147,483,647.

DINT8 A signed, 8-byte integer accessed in descending order in an
indexed file. This data type can represent integers between —2sa

and +263-1.

DSTRING A string of ASCII characters accessed in descending sort order
in an indexed file. The maximum length of the string is 255
characters.

FDL-31

FDL Description

INT2 A signed, 2-byte integer; this data type can represent integers
between —32,768 and +32,767.

INT4 A signed, 4-byte integer; this data type can represent integers
between —2,147,483,648 and +2,147,483,647.

INT8 A signed, 8-byte integer; this data type can represent integers
between —263 and +263-1.

STRING A string of ASCII characters. The longest length allowed is 255
characters.

The default key data type is STRING.

This attribute corresponds to the XAB$B_DTP field.

1.1.9 NETWORK Section
The NETWORK section sets run-time network access parameters.
Table FDL-8 lists the NETWORK secondary attributes and their default
values.

Table FDL-8 Default Values for NETWORK Secondaries

Secondary Default Value

BLOCK_COUNT Varies

LINK_CACHE_ENABLE YES

LINK_TIMEOUT 30

NETWORK_DATA_CHECKING YES

BLOCI~COUNT
Is a number that corresponds to the XABITM item code,
XAB$~VET_BLOCK_COUNT, the requested block count. This is the value,
in blocks, that the local node uses for buffering messages between itself and
the remote node. The value can be 0 to 127. By default, the local node uses
the NETWORK BLOCK COUNT value for the process. If that value is 0, then
the NETWORK BLOCK COUNT value for the system is used. Use the SHOW
RMS command to see what the process and system values are for NETWORK
BLOCK COUNT.

LINI~CACHE_ENABLE
Is a switch that corresponds to the XABITM item code,
XAB$_1VET_LINK_CACHE~NABLE. It enables logical link caching.

L/NILTIMEOUT
Is a number that corresponds to the XABITM item code,
XAB$~TET_LINK_TIMEOUT, the logical link timeout in seconds. The value
can be from 0 to 65,535.

NETWORI~DAT~LCHECKI NG
Is a switch that corresponds to the XABITM item code,
XAB$~JET_DATA_CRC~NABLE. Enables Data Access Protocol (DAP)
level Cyclic Redundancy Check (CRC).

FDL-32

FDL Description

1.1.10 RECORD Section
The RECORD section contains secondary attributes that define records. The
RECORD keyword itself takes no value; it serves only to begin this section.
Table FDL-9 lists the RECORD secondary attributes and their default values.

Table FDL-9 Default Values for RECORD Secondaries

Secondary Default Value

BLOCK_SPAN YES

CARRIAGE_CONTROL CARRIAGE_RETURN

CONTROL _FIELD 2

FORMAT VARIABLE

SIZE No default

BLOCI~SPAN
Is a switch that determines whether records can span block boundaries in a
sequential file. When the switch is set to YES, the default, records can span
block boundaries.

When the switch is set to NO, records cannot span block boundaries; in other
words, they cannot be larger than 512 bytes. However, if the records are
smaller than 512 bytes, VMS RMS stores as many records as possible in a
block until the space remaining is smaller than the next record size. The next
record, then, is stored in a new block.

This attribute corresponds to the FAB$B~AT field, the BLK option.

CARRIAG~CONTROL
Must be one of the following keywords:

CARRIAGE_RETURN Specifies that each record is preceded by a line feed and
followed by a carriage return when the record is written
to a carriage control device, such as a line printer or a
terminal. This is the default.

FORTRAN Specifies that the first byte (byte 0) of each record
contains a FORTRAN (ASA) carriage control character.
The following table lists the byte 0 values and the control
characters they represent.

ASCII
Byte 0 Value Character Meaning

0 null Null carriage control. Sequence: print buffer
contents.

20 space Single-space carriage control. Sequence: line
feed, print buffer contents, carriage return.

30 0 Double-space carriage control. Sequence: line
feed, line feed, print buffer contents, carriage
return.

FDL-33

FDL Description

ASC I I
Byte 0 Value Character Meaning

31 1 Page eject carriage control. Sequence: form
feed, print buffer contents, carriage return.

28 + Overprint carriage control. Sequence: print
buffer contents, carriage return. Allows double
printing for emphasis.

24 $ Prompt carriage control. Sequence: line feed,
print buffer contents.

All others Same as ASCII space character: single-space
carriage control.

NONE Specifies that no carriage control is to be provided.

PRINT Specifies that the carriage control information will come
from the fixed control portion of a variable with fixed
control (VFC) record. The first byte of the fixed control
portion specifies the carriage control to be performed
before printing. The second byte specifies the type of
carriage control to be performed after printing.

The following tables show the encoding scheme of both
bytes.

Bit 7 Bits 0-6 Meaning

0 0 No carriage control is specified, that is, NULL.

0 1 Bits 0 through 6 are a count of new lines aline feed
followed by a carriage return.

Bit 7 Bit 6 Bit 5 Bit 0-4 Meaning

1 0 0 0-1 F Output the single ASCII control
character specified by the configuration
of bits 0 through 4 (7-bit character set).

1 1 0 0-1 F Output the single ASCII control
character specified by the configuration
of bits 0 through 4. The 5 bits are
translated as ASCII characters 128
through 159 (8-bit character set).

1 1 1 0-1 F Reserved.

This attribute corresponds to the FAB$B~tAT parameter.

CONTROL_FIELD
Specifies the size, in bytes, of the fixed control portion of VFC records. Its
value must be a number in the range of 1 to 255. The default is 2.

This attribute corresponds to the FAB$B~SZ field.

FDL-34

FDL Description

FORMAT
Sets the record format for the data file. Its value must be one of the following
keywords:

FIXED Specifies fixed-length records.

STREAM Specifies that the records are STREAM records; the record is
viewed as a continuous stream of bytes, delimited by a special
character. This format is compatible with RMS-11 stream files.
This is valid for sequential files only.

STREAM_CR Specifies that the records are STREAM records; the record is
viewed as a continuous stream of bytes, delimited by a CR
character. This is valid for sequential files only.

STREAM_LF Specifies that the records are STREAM records; the record is
viewed as a continuous stream of bytes, delimited by an LF
character. This is valid for sequential files only.

UNDEFINED Specifies undefined record format, which means that the record
is a continuous stream of bytes with no specific terminator.
This keyword is valid for sequential files only.

VARIABLE Specifies variable-length records. This is the default setting.

VFC Specifies variable with fixed control records. This is valid for
sequential and relative files.

This attribute corresponds to the FAB$B~FM field.

SIZE
Sets the maximum record size in bytes.

When used with fixed-length records, this. value is the length of every record
in the file.

When used with variable-length records, this value is the Longest record that
can be placed in the file. With sequential or indexed files, you can specify 0
and the system will not impose a maximum record length. (Note, however,
that records in an indexed or relative file cannot cross bucket boundaries.)

When used with relative files, the SIZE attribute is used with the
BUCKET_SIZE attribute to set the size of the fixed-length cells.

With VFC records, do not include the fixed control portion of the record in the
SIZE calculation; only the data portion is set by this attribute. The RECORD
CONTROL FIELD attribute sets the size of the fixed control portion.

The fixed area is the size in bytes of the fixed-control portion of VFC records.
Regular variable-length records have afixed-control size of 0.

This attribute corresponds to the FAB$W_MRS field.

Table FDL-10 gives the maximum record sizes in bytes for the various record
organizations and record formats.

FDL-35

FDL Description

Table FDL-10 Maximum Record Size for File Organizations and
Record Formats

File Organization Record Format Maximum Record Size

Sequential Fixed-length 32,767

Sequential (disk) Variable-length 32,767

Sequential (disk) VFC 32,767-FSZ'

Sequential (disk) Stream 32,767

Sequential (disk) Stream CR 32,767

Sequential (disk► Stream LF 32,767

Sequential (ANSI Tape► Variable-length 9,995

Sequential (ANSI Tape) VFC 9,995-FSZ'

Relative Fixed-length 32,255

Relative Variable-length 32,253

Relative VFC 32,253-FSZ'

Indexed, Prolog 1 or 2 Fixed-length 32,234

Indexed, Prolog 1 or 2 Variable-length 32,232

Indexed, Prolog 3 Fixed-length 32,224

Indexed, Prolog 3 Variable-length 32,224

~ The FSZ represents the size of the fixed control area of a record for the variable with
fixed control (VFC) record format. The FSZ is equal to the size, in bytes, for the fixed
control area of VFC records. The length of the largest record in a sequential file on a disk
device with variable or VFC record format is maintained by VMS RMS.

For DECnet operations, the maximum record size is determined by the DCL
command SET RMS/NETWORK_BLOCK_COUNT.

SHARING Section
The SHARING section allows you to specify whether or not you want to
allow multiple readers or writers to access your file at the same time. The
SHARING keyword itself takes no values. Table FDL-11 lists the SHARING
secondary attributes and their default values.

Table FDL-11 Default Values for SHARING Secondaries

Secondary Default Value

DELETE None

GET GET if ACCESS GET has also been specified

MULTISTREAM None

PROHIBIT None

PUT None

UPDATE None

USER_INTERLOCK None

FDL-36

FDL Description

DELETE
Is a switch allowing other users to delete records from the file.

This attribute corresponds to the FAB$B_SHR field, the DEL option.

GET
Is a switch allowing other users to read the file (to perform Find or Get RMS
services or the equivalent VMS language statement that reads a record).
SHARING GET is the default if you have also specified ACCESS GET.

This attribute corresponds to the FAB$B_SHR field, the GET option.

MULTISTREAM
Is a switch allowing multistream access and is relevant for record operations
only. This attribute is not available for sequential files with other than
512-byte, fixed-length records.

This attribute is not supported for DECnet operations; an error is returned if
you try to use it.

This attribute corresponds to the FAB$B_SHR field, the MSE option.

PROHIBIT
Is a switch prohibiting any type of file sharing by other users. If you specify
YES, PROHIBIT takes precedence over all other ACCESS secondaries. If you
specify the DELETE, PUT, TRUNCATE, or UPDATE attribute in the ACCESS
section, the PROHIBIT attribute defaults to YES.

This attribute corresponds to the FAB$B_SHR field, the NIL option.

PUT
Is a switch allowing other users to write records to the file (to perform Put or
Extend RMS services or the equivalent VMS language statement that writes a
record or extends the space allocated to a file).

This attribute corresponds to the FAB$B_SHR field, the PUT option.

UPDATE
Is a switch allowing other users to update records currently existing in the file
(to perform Update or Extend RMS services or the equivalent VMS language
statement that rewrites a record or extends the space allocated to a file).

This attribute corresponds to the FAB$B_SHR field, the UPD option.

USER_INTERLOCK
Is a switch allowing one or more users to write to a sequential file or a shared
file. Usually this attribute is used for a file that is open for block I/O. You
must be responsible for any interlocking required. USER~NTERLOCK is
specified with the DELETE, GET, PUT, and UPDATE attributes.

This attribute corresponds to the FAB$B_SHR field, the UPI option.

FDL--37

FDL Description

1.1.12 SYSTEM Section
The SYSTEM section consists of system identification information. The
SYSTEM primary keyword takes no value. It may be used to help document
your FDL file. Table FDL-12 lists the SYSTEM secondary attributes and their
default values.

Table FDL-12 Default Values for SYSTEM Secondaries

Secondary Default Value

DEVICE Null-string

SOURCE VAX/VMS

TARGET VAX/VMS

DEVICE
Takes a string value that is used for comment purposes only. The intended
use is to name the model of the disk on which the data file will reside, for
example, RP06 or RM03.

SOURCE
Is the name of the operating system you are using to create the FDL file. The
value must be one of the following keywords:

• IAS

• RSTS/E

• RSX-11M

• RSX-IIM-PLUS

• RT-11

• VAX/VMS

TARGET
Is the name of the operating system on which the FDL file is to be used. The
value must be one of the following keywords:

• IAS

• RSTS/E

• RSX-11M

• RSX-IIM-PLUS

• RT-11

• VAX/VMS

FDL-38

FDL Description

1.1.13 TITLE and (DENT Attributes
If you use EDIT/FDL to create your FDL file, the utility prompts you for
a title during the session. The title is a string that you can place at the
beginning of the FDL file. The character string you supply is for comment
purposes only. It can be up to 132 characters long, including the TITLE
keyword.

When the Edit/FDL and Analyze/RMS—File Utilities create an FDL file, they
place a header called the IDENT section after the TITLE in the FDL file. The
IDENT section contains the date and time of the creation of the FDL file,
and it specifies the name of the utility that created it (either EDIT/FDL or
ANALYZE/RMS—FILE).

However, you can also specify the header in the IDENT section. The
character string that you supply can be up to 132 characters long, including
the IDENT keyword.

2 Creating FDL Files
FDL is a powerful tool that can help you easily create the data files for which
you have defined specifications. However, you must first create an FDL file
containing these specifications. You can create FDL files with one of the
following four methods:

• Edit/FDL Utility

• Analyze/RMS~ile Utility

• Text editor

• DCL CREATE command

One way to create FDL files easily is with the Edit/FDL Utility (also known
as the FDL Editor). You can use the EDIT/FDL command to design FDL
files that define commonly needed data files and then to create the data files
when they are needed. EDIT/FDL has some special features that simplify
the process of creating an FDL file. It recognizes FDL syntax and informs
you of syntax errors immediately. It also allows you to model the data file
to be created and to change attribute values to find the most efficient design.
EDIT/FDL gives files the file type FDL by default.

In addition, the Analyze/RMS~'ile Utility can create an FDL file from
an existing data file. The FDL file can then be used with the EDIT/FDL
Optimize script to determine the optimum design of the data file.

You can also use the VMS text editors or the DCL command CREATE to
create text files containing FDL specifications. Using the text editors or
CREATE is not recommended because you must make sure that you place
the primary sections in the correct order and that you give valid values to the
attributes. For more information on validity rules, refer to Secrion 2.1.

FDL-39

FDL Description

The following is an example of a completed FDL file:

TITLE Sequential organization, variable records up to 320 bytes

IDENT 31-DEC-1988 13:08:17
SYSTEM

FILE

RECORD

SOURCE

ALLOCATION
BEST_TRY_CONTIGUOUS
EXTENSION
ORGANIZATION

BLOCK_SPAN
CARRIAGE_CONTROL
FORMAT
SIZE

2.1 Validity Rules

VAX-11 FDL Editor

VAX/VMS

5050
yes
505
sequential

yes
carriage_return
variable
320

The Edit/FDL and Analyze/RMS—File Utilities place the attributes in their
correct format and order automatically. If you use the CREATE command or
a text editor to create an FDL file, you must observe the following validity
rules:

• The primary sections must appear in the order listed in Section 1.1. If you
have two or more AREA primary sections, they must follow one another
in numerical order (for example, AREA 1, AREA 2, . . . ,AREA n).

If you have two or more KEY primary sections, they too must follow one
another in numerical order (for example, KEY 0, KEY 1, . . . ,KEY

n).

Within a KEY primary, any SEGn secondaries should follow one another
in numerical order; the SEGn numbers must be "dense," not "sparse." For
example, if you use SEG3 to label a key segment, segments SEGO, SEG 1,
and SEG2 must also exist.

Each source line can contain exactly one primary or secondary attribute
along with its associated value. Each source line may have no more than
132 characters.

To begin a comment, use the exclamation point. Comments begin at the
exclamation point and continue to the end of the line.

EDIT/FDL ignores leading or trailing blanks or tabs.

FDL string values are terminated by the comment character (!) or the
statement terminator (;). Strings must be enclosed in quotation marks.

You may truncate keywords, but take care to avoid ambiguities. The
Edit/FDL and Analyze/RMS_File Utilities always write out the entire
keyword.

F D L-40

FDL Description

3 Creating Data Files with RMS Utilities, Routines, and FDL Files
Once you have created an FDL file, it can be used by the RMS utilities and
callable utility routines to format data files according to your specifications.
Specifically, the RMS utilities CREATE/FDL and CONVERT, as well as the
CONVERT and FDL callable utility routines, use FDL files. In addition,
EDIT/FDL can use an existing FDL file as an input to the Optimize script.

CREATE/FDL uses the specifications in an existing FDL file to create a
new, empty data file. You can either supply CREATE/FDL with the file
specification of the new data file, or CREATE/FDL can use the specification
given in the FDL file itself.

The Convert Utility, on the other hand, uses the specifications in an FDL file
to create an output data file and to load it with records from an input file or
files.

Like the Convert Utility, the Convert routines (CONV$CONVERT,
CONV$PASS~ILES, and CONV$PASS_OPTIONS) use the specifications in
FDL files to create output data files from within a program.

These .data files can use the full set of VMS RMS creation-time options. They
can be used by all the native VMS high-level languages. This capability gives
the high-level language user a tool for creating efficient data files that use a
minimum amount of system resources. VAX MACRO and BLISS-32 programs
can also use the data files.

The FDL routines (FDL$CREATE, FDL$GENERATE, and FDL$PARSE)
also use FDL files. FDL$CREATE invokes the functions of the Create/FDL
utility to create a file from an FDL specification and then to close the file.
FDL$GENERATE produces an FDL specification from the RMS control blocks
your program supplies and then writes it to either an FDL file or a character
string. FDL$PARSE parses an FDL specification, allocates RMS control blocks
(FABs, RABs, or XABs), and then fills in the relevant fields.

F D L-41

FDL Usage Summary

File Definition Language (FDL) is aspecial-purpose language used to write
specifications for data files. These specifications are written in text files
called FDL files; they are then used by the VMS RMS utilities and library
routines to create the actual data files.

One of the RMS utilities, EDIT/FDL, can help you create these FDL files.
EDIT/FDL was developed especially to manipulate FDL files. It has some
special features designed to simplify the process of creating an FDL file
and should be used in most cases.

Another RMS utility, CREATE/FDL, uses the specifications in an existing
FDL file to create a new, empty data file.

FORMAT CREATE/FDL=fdl-filespec(filespecJ

PARAMETERS fdl-~lespec
Specifies the FDL file from which to create the data file. The default file type
is FDL.

filespec
Specifies an optional file specification for the created file. If you specify a
complete file specification, it overrides any contained in the FDL file. The
default file type is FDL.

FORMAT EDIT/FDL fdl-filespec

PARAMETER fdl-~lespec
Specifies the FDL file to be created, modified, or optimized during this
session. The default file type is FDL.

FDL-42

FDL Usage Summary

usage summary To invoke the Create/FDL Utility, enter the CREATE/FDL command at the
DCL command level. CREATE/FDL produces the empty data file specified
by the command line or by the FDL file. To exit the Create/FDL Utility, let it
run to successful completion.

To invoke the Edit/FDL Utility, enter the EDIT/FDL command at the DCL
command level. EDIT/FDL produces a new version of the input file unless
the /OUTPUT qualifier is used to direct the ouput to a different file. To exit
the Edit/FDL Utility, enter either the EXIT command or the QUIT command.
(Pressing CTRL/Z has the same effect as entering the EXIT command, and
CTRL/C has the same effect as the QUIT command.)

Note: When you enter the EDIT/FDL command, the system refers to a
predefined logical name, EDF. If you create your own logical name for
EDF, the system cannot execute the EDIT/FDL command correctly. Make
sure you do not use EDF for logical names that you create.

FDL-43

CREATE/FDL
CREATE/FDL Qualifier

CREATE/FDL
QUALIFIER

The Create/FDL Utility has only one command qualifier —the /LOG
qualifier. It does not affect the execution of the utility; it only produces an
informational message.

FDL=44

CREATE/FDL
/LOG

/LOG

Controls whether the Create/FDL Utility displays the file specification of
the data file it has created. By default, the utility does not display the file
specification.

FORMAT /LOG
/NOLOG

PARAMETERS None.

EXAMPLES
Q $CREATE/FDL=INVENTORY/LOG DISK$: [COMPANY. ORDERS]PARTS.DAT

y,FDL-I-CREATED, DISK$: [COMPANY.ORDERS]PARTS.DAT;1 CREATED

This command produces the empty output file PARTS.DAT from the
specifications in the FDL file INVENTORY.FDL. In addition, CREATE/FDL
returns the message stating that the file was indeed created.

0 $ CREATE/FDL=INVENTORY/NOLOG PARTS.DAT

This command produces the empty output file PARTS.DAT from the
specifications in the FDL file INVENTORY.FDL. No informational message is
returned.

F DL-45

EDIT/FDL
EDIT/FDL Qualifiers

EDIT/FDL
QUALIFIERS

The DCL command EDIT/FDL begins an interactive session during which
you can create or modify an FDL file. You can supply the editor with file
design decisions and it will supply values for the FDL attributes; or you can
assign values to the attributes yourself.

FDL-46

EDIT/FDL
/ANALYSIS

/ANALYSIS

Indicates that an FDL file (which must have been generated by the
Analyze/RMS_File Utility) is to be used in the Optimize script.

FORMAT /ANALYSIS=fdl-filespec

QUALIFIER
VALUE

fdl-filespec
Specifies the particular FDL file (which must have been generated by the
Analyze/RMS~'ile Utility) to be used in the Optimize script. The default is a
null specification.

EXAMPLE

$ EDIT/FDL/ANALYSIS=Q1_SALES Q2_SALES

This command begins an interactive session in which the analysis information
in the file Q1_SALES.FDL is used to optimize and then create the output file
Q2_SALES.FDL.

FDL-47

EDIT/FDL
/CREATE

/CREATE

Allows you to create an output file without an existing input file.

FORMAT /CREATE

PARAMETERS None.

DESCRIPTION With the /CREATE qualifier, you can create an output file without receiving a
message from EDIT/FDL stating that the file is to be created. EDIT/FDL does
not even try to open the specified file for input; when you use the /CREATE
qualifier, EDIT/FDL knows the file does not exist (or that you want
EDIT/FDL to ignore it).

You can select the Design or the Add Key scripts only when your input file
does not already exist.

EXAMPLE

$ EDIT/FDL/CREATE SALES_DATA

Begins a session in which SALES_DATA.FDL is created. EDIT/FDL does not
issue the informational message stating that the new file SALES_DATA.FDL
will be created.

FDL-48

EDIT/FDL
/DISPLAY

/DISPLAY

Specifies the type of graph you want displayed.

FORMAT /DISPLAY=graph-option

QUALIFIER
VALUE

graph-option
Specifies the type of graph you want displayed. Valid graph options are
as follows:

LINE Plots bucket size against index depth
FILL Plots bucket size by the percentage of load fill by index depth
KEY Plots bucket size by key length by index depth
RECORD Plots bucket size by record size by index depth
INIT Plots bucket size by initial load record count by index depth
ADD Plots bucket size by additional record count by index depth

The default is LINE.

EXAMPLE

$ EDIT/FDL/DISPLAY=KEY TEMP_DATA

This command begins an interactive session in which the default value for the
type of graph to be displayed has been changed from LINE to KEY.
TEMP_DATA is the name of the FDL file to be created.

F D L-49

EDIT/FDL
/EMPHASIS

/EMPHASIS

Allows you to choose between smaller buffers and flatter files. You can
use this qualifier with the /NOINTERACTIVE qualifier if you want EDIT/FDL
to be executed without an interactive terminal dialogue.

FORMAT /EMPHASIS=tuning-bias

QUALIFIER tuning-bias
VALUE Represents how you want to weight the default bucket size for your file.

There are two valid options:

FLATTER_FILES Generally increases bucket size. The bucket size, in turn,
controls the number of levels in the index structure. If a
larger bucket size eliminates one level, then you should
use this option. At some point, however, the benefit of
having fewer levels will be offset by the cost of scanning
through the larger buckets.

SMALLER_BUFFERS Generally decreases the amount of memory you have to
use.

The default is FLATTER~ILES. It should be used unless excessive paging or
RMS CPU time occurs because of oversized buffers. However, if your system
has little extra memory or if you are not sure which tuning-bias will improve
the performance of your program, try tuning your file using
SMALLER_BUFFERS and then FLATTER~ILES.

EXAMPLE

$ EDIT/FDL/EMPHASIS=SMALLER_BUFFERS TEMP_DATA

This command begins an interactive session in which the default value
for the bucket size emphasis has been changed from FLATTER~ILES to
SMALLER_BUFFERS. TEMP_DATA is the name of the FDL file to be created.

FDL-50

EDIT/FDL
/GRANULARITY

/GRANULARITY

Allows you to divide an indexed file into a specified number of areas. Use
this qualifier with the /NOINTERACTIVE qualifier if you want EDIT/FDL to
be executed without an interactive terminal dialogue.

FORMAT /GRANULARITY=n

QUALIFIER
VALUE

n .
Indicates the number of areas into which you want to divide your indexed
file. The default is three areas, as shown in the following table.

Area Contents

0 KEY 0 data

1 KEY 0 index

2 All other indexes

EXAMPLE

$ EDIT/FDL/GR.ANULAR,ITY=1 TEMP_DATA

This command begins an interactive session in which the default value for the
number of areas in an indexed file has been changed from three areas to the
one area. TEMP_DATA is the name of the FDL file to be created.

FDL-51

EDIT/FDL
/NOINTERACTIVE

/NOINTERACTIVE

Causes EDIT/FDL to execute the Optimize script without a terminal
dialogue.

FORMAT

PARAMETERS

DESCRIPTION

/NOINTERACTIVE

None.

The /NOINTERACTIVE qualifier allows you to optimize an existing FDL
file with EDIT/FDL but without an interactive terminal dialogue. You
must have previously entered the ANALYZE/RMS~ILE/FDL command,
specifying your existing RMS data file as the target file. EDIT/FDL then
uses the data from the analysis FDL file while the Optimize script proceeds
noninteractively. If data is missing, EDIT/FDL uses the defaults. However,
if certain critical data items cannot be found in the analysis file, EDIT/FDL
terminates without producing an output file.

EXAMPLE

$ EDIT/FDL/ANALYSIS=TEMP_DATA/NOINTERACTIVE TEMP_DATA

This command begins a noninteractive session in which the FDL file
TEMP_DATA;2 is created from the analysis FDL file TEMP.DATA;1.

FDL-52

EDIT/FDL
/NUMBER_KEYS

/NUMBER_KEYS

Allows you to specify the number of keys in your indexed file.

FORMAT /NUMBER_KEYS=n

QUALIFIER
VALUE

n . Indicates how many keys you want to define for your indexed file. You can
define up to 255 keys. The default is one key.

EXAMPLE

$ EDIT/FDL,/NTtMBER_KEYS=3 TEMP_DATA

This command begins an interactive session in which the default value for
the number of keys in an indexed file is changed from one key to three keys.
TEMP_DATA is the name of the FDL file to be created.

FDL-53

EDIT/FDL
/OUTPUT

/OUTPUT

Specifies the FDL file in which to place the definition from the current
session.

FORMAT /OUTPUT=fdl-filespec

QUALIFIER
VALUE

fdl-filespec
Specifies the output FDL file.

DESCRIPTION If you omit the /OUTPUT qualifier, then the output FDL file will have the
same name and file type as the input file, with a version number that is one
higher than the highest existing version of the file.

The default file type is FDL.

EXAMPLE

S EDIT/FDL/OUTPUT=NEWINDEX INDEX

Begins a session in which the contents of INDEX.FDL are read into the FDL
editor and can then be modified. NEWINDEX.FDL is created; INDEX.FDL is
not changed.

FDL-54

EDIT/FDL
/PROMPTING

/PROMPTING

Specifies the level of prompting to be used during the terminal session.

FORMAT /PROMPTING=prompt-option

QUALIFIER
VALUE

prompt-option
Specifies the level of menu prompting to be used during the terminal session.
Valid prompt options are as follows:

BRIEF Selects a terse level of prompting

FULL Provides more information about each menu question

By default, EDIT/FDL chooses either BRIEF or FULL, depending on the
terminal type and the line speed. High-speed CRT terminals are set to FULL;
nonscope terminals and terminals operating at less than 2400 baud are set to
BRIEF.

If EDIT/FDL has to repeat a question, it repeats the FULL version of the
question, with a BRIEF form of the HELP text. You can also type a question
mark (?) for help on a particular question.

The extra line of HELP text is not given for menu questions, however.

EXAMPLE

S EDIT/FDL/PROMPTING=BRIEF TEMP_DATA

This command begins an interactive session in which the value of the
prompting level for the EDIT/FDL menus is set to BRIEF.

FDL-55

EDIT/FDL
/RESPONSES

/RESPONSES

Allows you to select how you want to respond to script questions.

FORMAT /RESPONSES=response-option

QUALIFIER response -option
VALUE Specifies the type of script response you want to use. The two valid options

are as follows:

AUTOMATIC Indicates that you want all script default responses to be used
automatically. This option speeds the progress of the question
and answer session. Once you have entered the design phase,
you can modify most of the answers you took by default.

MANUAL Indicates that you want to provide all script responses. No default
responses are automatically used.

If you use the SET RESPONSES function, AUTOMATIC is the default. For
EDIT/FDL, however, MANUAL is the default.

EXAMPLE

$ EDIT/FDL/RESPONSES=MANUAL TEMP_DATA

This command begins an interactive session in which the type of script
response is changed from AUTOMATIC (the default) to MANUAL.

FDL-56

EDIT/FDL
/SCRIPT

/SCRIPT

Controls whether EDIT/FDL begins the session by asking a logically
grouped sequence of questions to aid you in creating the FDL file.

FORMAT /SCRI PT=script-title

QUALIFIER script-title
VALUE Identifies the seven valid script titles. The valid options are as follows:

ADD_KEY Allows you to model or add to the attributes of a new index.

DELETE_KEY Allows you to remove attributes from the highest index of your
file.

INDEXED Begins a dialogue in which you are prompted for information
about the indexed data file to be created from the FDL file.
EDIT/FDL supplies values for certain attributes.

OPTIMIZE Requires that you use the analysis information from an FDL file
that was created with the Analyze/RMS_File Utility. The FDL file
itself is one of the inputs to the Edit/FDL Utility. In other words,
you may tune the parameters of all your indexes using the file
statistics from ANALYZE/RMS_FILE.

RELATIVE Begins a dialogue in which you are prompted for information
about the relative data file to be created from the FDL file.
EDIT/FDL supplies values for certain attributes.

SEQUENTIAL Begins a dialogue in which you are prompted for information
about the sequential data file to be created from the FDL file.
EDIT/FDL supplies values for certain attributes.

TOUCHUP Begins a dialogue in which you are prompted for information
about the changes you want to make to an existing index.

DESCRIPTION The default is not to invoke a script automatically. Note that, if you specify
/NOSCRIPT, you can still use the scripts by entering the INVOKE command
in response to the main editor function prompt.

EXAMPLE

$ EDIT/FDL/SCRIPT=INDEXED TEMP_DATA

This command begins an interactive session in which both the main menu
and the script menu are bypassed. Instead, the Indexed script is generated
immediately.

FDL-57

EDIT/FDL
EDIT/FDL Commands

EDIT/FDL
COMMANDS

The EDIT/FDL commands are used during the interactive session only.
EDIT/FDL prompts for one of the following commands at the start of your
interactive session:

ADD
DELETE
EXIT
HELP
INVOKE
MODIFY
QUIT
SET
VIEW

However, because EDIT/FDL is not command oriented but menu oriented,
the prompt may change during the interactive session to fit the needs of the
menu questions. In general, the prompt consists of a short question, the type
of required value or the range of acceptable values (in parentheses), and the
default answer (in brackets), as follows:

question (keyword or range)[default] : answer

In addition, some prompts consist of a short question, a list or a range of
acceptable values (either in parentheses or in a table), the required type of the
value (in parentheses), and the default answer (in brackets), as follows:

(list of values)
question (keyword or range~[default] : answer

If no default is allowed, you see the symbol [-], in which case you must
supply an answer.

FDL-58

EDIT/FDL
ADD

ADD

Allows you to add one or more lines to the FDL ale.

FORMAT ADD

PARAMETERS None.

QUALIFIERS None.

EXAMPLE
Main Editor Function CKeyword)[He1pJ : ADD

This command allows you to add lines to your existing FDL file. When you
enter the ADD command, EDIT/FDL prompts you with another menu:

Legal Primary Attributes

ACCESS attributes set the run-time access mode of the file
ACL entries specify the Access-Control-List of the file
AREA x attributes define the characteristics of file area x
CONNECT attributes set various RMS run-time options
DATE attributes set the date parameters of the file
FILE attributes affect the entire RMS data file
JOURNAL attributes set the journaling parameters of the file
KEY y attributes define the characteristics of key y
RECORD attributes set the non-key aspects of each record
SHARING attributes set the run-time sharing mode of the file
SYSTEM attributes document operating system-specific items
TITLE is the header line for the FDL file

Enter desired primary CKeyword)[FILEJ

After you type the name of the primary attribute, EDIT/FDL provides another
menu showing all the secondary attributes for that primary and asks which
secondary's value you want to change.

FDL-59

EDIT/FDL
DELETE

DELETE

Allows you to delete one or more lines from the FDL file.

FORMAT DELETE

PARAMETERS None.

QUALIFIERS None.

EXAMPLE

Main Editor Function (Keyword) [Help] DELETE

This command allows you to delete lines from your existing FDL file. When
you enter the DELETE command, EDIT/FDL prompts you with a menu
displaying the current primary attributes of your FDL file. After you type
the name of a primary attribute, EDIT/FDL prompts you with another menu
displaying the current secondary attributes for that primary and asks which
secondary's value you want to change.

FDL-60

EDIT/FDL
EXIT

EXIT

Ends the EDIT/FDL session. The EXIT command causes the new FDL file
to be created. This command is equivalent to pressing CTRL/Z.

FORMAT EXIT

PARAMETERS None.

QUALIFIERS None.

EXAMPLE

Main Editor Function (Keyword) [Help] EXIT

This command allows you to leave EDIT/FDL after creating or modifying
your FDL file. It displays the file specification of the FDL file it has created Or
modified and then returns you to DCL command level.

FDL-61

EDIT/FDL
HELP

HELP

Invokes a help session about the EDIT/FDL commands and the File
Definition Language on the screen.

FORMAT HELP

PARAMETERS Nye

QUALIFIERS ~vone.

EXAMPLE

Main Editor Function (Keyword)[Help] HELP

Information available:

Abstract Add Delete Exit Help Invoke Modify
Operation Quit Set View

Topic?

This command allows you to request information about EDIT/FDL while
you are editing your FDL file. It displays a menu of the various topics about
which you can request help.

FDL-62

EDIT/FDL
INVOKE

INVOKE

Prompts for your choice of scripts and initiates your choice. The scripts
guide you through the design and optimization of a data file.

FORMAT INVOKE

PARAMETERS None.

QUALIFIERS None.

EXAMPLE
Main Editor Function CKeyword)[Help] INVOKE

Script Title Selection

Add_key modeling and addition of a sew index's parameters
Delete_key removal of the highest index's parameters
Indexed modeling of parameters for an entire Indexed file
Optimize tuning of all indices' parameters using file

statistics
Relative selection of parameters f or a Relative file
Sequential selection of parameters for a Sequential file
Touchup remodeling of parameters for a particular iadex

Editing Script Title CKeyword) [-]

This command allows you to select which script you want to help you design
your FDL file. After you enter the INVOKE command, EDIT/FDL prompts
you with another menu displaying the possible script choices.

FDL-63

EDIT/FDL
MODIFY

MODIFY

Allows you to change an existing line in the FDL definition.

FORMAT MODIFY

PARAMETERS None.

QUALIFIERS None.

EXAMPLE

Main Editor Function (Keyword) [Help] : MODIFY

This command allows you to modify lines in your existing FDL file. When
you enter the MODIFY command, EDIT/FDL prompts you with a menu
displaying the current primary attributes of your FDL file. After you enter
the name of a primary attribute, EDIT/FDL prompts you with another menu
displaying the current secondary attributes for that primary and asks which
secondary's value you want to change.

FDL-64

EDIT/FDL
QUIT

QUIT

Causes an abrupt end to the EDIT/FDL session. The new FDL file is not
created. The QUIT command is equivalent to pressing CTRL/C.

FORMAT QUIT

PARAMETERS None.

QUALIFIERS None.

EXAMPLE

Main Editor Function (Keyword) [Help] : QUIT

This command returns you to the DCL command level without creating or
modifying an FDL file.

FDL-65

EDIT/FDL
SET

SET

Allows you to establish defaults or to select any of the FDL editor
characteristics you forgot to specify on the command line.

FORMAT SET

PARAMETERS No~B.

QUALIFIERS None.

EXAMPLE

Main Editor Function (Keyword) [Help] : SET

ANALYSIS
DISPLAY
EMPHASIS
GRANULARITY
NUMBER_KEYS
OUTPUT
PROMPTING
RESPONSES

FDL Editor SET Function

f ilespec of FDL Analysis file
type of graph to display
of default bucketsize calculations
number of areas in Indexed files
number of keys in Indexed files
f ilespec of FDL output file
Full of Brief prompting of menus
usage of default reponses in scripts

Editor characteristic to set (Keyword) [-]

This command allows you to establish defaults and to reduce the number of
questions you are asked by the scripts. After you enter the SET command,
EDIT/FDL displays a menu of FDL editor characteristics.

FDL-66

EDIT/FDL
VIEW

VIEW

Displays the attributes contained in the current FDL definition.

FORMAT VIEW

PARAMETERS None.

QUALIFIERS None.

EXAMPLE
Main Editor Function CKeyword)[Help] : VIEW

This command displays your current FDL file a screen at a time.

FDL-67

FDL
FDL Examples

FDL EXAMPLES

Q $EDIT/FDL INDEX

This command begins an interactive session that will modify an FDL file
named INDEX.FDL.

0

D

$ EDIT/FDL/ANALYSIS=INDEXFILE/SCRIPT=OPTIMIZE MAKEINDEX

This command uses the analysis information in INDEXFILE.FDL to create a
more efficient MAKEINDEX.FDL. The sequence of events is as follows:

1 The FDL file MAKEINDEX.FDL is created by EDIT/FDL.

2 INDEXFILE.DAT is created by the CREATE/FDL=MAKEINDEX
command.

3 INDEXFILE.DAT is used in applications.

4 INDEXFILE.FDL is created with the ANALYZE/RMS~ILE/FDL
command.

5 INDEXFILE.FDL is used to optimize MAKEINDEX.FDL.

6 Enter the following command:

$ CONVERT/FDL=biAKEINDEX INDEXFILE.DAT INDEXFILE.DAT

$ F,DIT/FDL/NOINT/A=INVENTORY/G=4
File: SALES

$

This command creates the output FDL file SALES from the analysis FDL file
INVENTORY without an interactive terminal dialogue. In addition,
EDIT/FDL optimizes the input file, changing the granularity factor to four
areas and the number of keys to two. Otherwise, all the defaults supplied by
EDIT/FDL are used.

FDL-68

Index

A
ACCESS attribute •FDL-2
ADD command •FDL-59
ALLOCATION attribute •FDL-6, FDL-17
Alternate index •FDL-29
Alternate key •FDL-5, FDL-29
/ANALYSIS qualifier• FDL-42, FDL-47
ANALYSIS_OF_AREA attribute •FDL-2, FDL-3
ANALYSIS_OF_KEY attribute •FDL-2, FDL-4
Analyze/RMS_File Utility (ANALYZE/RMS_FILE) •

FDL-39
ANALYSIS_OF_AREA section •FDL-3
ANALYSIS_OF_KEY section •FDL-4
creating FDL files •FDL-39, FDL-40
duplicate key values •FDL-5

Area •FDL-28
AREA attribute •FDL-2, FDL-6, FDL-27, FDL-28,

FDL-40
ASYNCHRONOUS attribute •FDL-9
ASY option •FDL-9
Attribute •FDL-1, FDL-46

B
BACKUP attribute •FDL-15
Batch queue

default •FDL-24
BEST_TRY_CONTIGUOUS attribute •FDL-6,

FDL-18
BIN2 value •FDL-30
BIN4 value •FDL-30
BIN8 value •FDL-30
BIO option •FDL-2, FDL-9
4-bit field •FDL-31
BLISS-32 •FDL-41
BLK option •FDL-33
BLOCK_COUNT attribute •FDL-32
BLOCK_IO attribute •FDL-2, FDL-9
BLOCK_SPAN attribute •FDL-33
BRIEF prompt •FDL-55
BRO option •FDL-3
Bucket• FDL-5, FDL-27

boundary •FDL-35

Bucket (cont'd.)
fill •FDL-28

BUCKET_IO attribute •FDL-9
BUCKET_SIZE attribute •FDL-6, FDL-18

C
Carriage control

effect of CARRIAGE_RETURN keyword •
FDL-33

Carriage control device •FDL-33
CARRIAGE_CONTROL attribute •FDL-33
CARRIAGE_RETURN keyword •FDL-33
CBT option •FDL-6, FDL-18
CCO option •FDL-14
Cell •FDL-35
CHANGES attribute •FDL-26
CIF option •FDL-19
CLUSTER_SIZE attribute •FDL-18
COLLATING_SEQUENCE attribute •FDL-27
Comment

in FDL files •FDL-40
Comment character •FDL-40
Compression •FDL-5, FDL-28

negative values •FDL-4
of data record •FDL-27
within data record •FDL-4
within primary key• FDL-4, FDL-27

CONNECT attribute •FDL-2, FDL-8
CONTEXT attribute •FDL-10, FDL-18
CONTIGUOUS attribute •FDL-7, FDL-18
Control block •FDL-2
CONTROL _FIELD_SIZE attribute •FDL-34,

FDL-35
Convert Utility (CONVERT) •FDL-3

creating data files with •FDL-41
FDL output data file •FDL-41
library routine •FDL-41

CR character• FDL-35
CREATE command •FDL-40, FDL-42
Create/FDL Utility (CREATE/FDL) •FDL-41,

FDL-42
creating data files •FDL-41
exiting •FDL-43
invoking •FDL-43
restrictions •FDL-43

Index-1

Index

/CREATE qualifier• FDL-42
EDIT/FDL• FDL-48

CREATE_IF attribute •FDL-19
CREATION attribute •FDL-16
CTG option •FDL-7, FDL-19
CVT option •FDL-14

D
Data bucket •FDL-27
Data files

creating •FDL-39
Data record •FDL-5
DATA_AREA attribute •FDL-27, FDL-28
DATA_FILL attribute •FDL-4, FDL-27
DATA _KEY_COMPRESSION attribute •FDL-4,

FDL-27
DATA _RECORD_COMPRESSION attribute •

FDL-4, FDL-27
DATA _RECORD_COUNT attribute •FDL-5
DATA_SPACE_OCCUPIED attribute •FDL-5
DATE attribute •FDL-2, FDL-15
DAT_NCMPR option •FDL-27
Decimal number •FDL-2
DECIMAL value• FDL-31
Default extension quantity •FDL-20
Default protection •FDL-23
Default value

AREA •FDL-6
DATE •FDL-15
FILE •FDL-16
key •FDL-26
RECORD •FDL-33
SYSTEM •FDL-38

DEFAULT_NAME attribute •FDL-19
DEFERRED_WRITE attribute •FDL-19
DELETE access •FDL-23
DELETE attribute •FDL-3, FDL-37
DELETE command •FDL-60
DELETE_ON_CLOSE attribute•FDL-19, FDL-24
DEL option •FDL-3, FDL-37
DEPTH attribute •FDL-5
DEVICE attribute •FDL-38
DFW option •FDL-19
Directing output of CREATE/FDL •FDL-43
Directing output of EDIT/FDL •FDL-43
DIRECTORY_ENTRY attribute •FDL-19, FDL-20
Disk model •FDL-38
Disk volume transfer• FDL-23

/DISPLAY qualifier •FDL-42, FDL-49
DLT option •FDL-20
Duplicate key •FDL-27
Duplicate key values •FDL-5
DUPLICATES attribute •FDL-27
DUPLICATES_PER_SIDR attribute •FDL-5

E
Edit/FDL Utility (EDIT/FDL) •FDL-39, FDL-40,

FDL-42
ANALYSIS_OF_KEY section •FDL-4
commands •FDL-58
creating FDL files •FDL-39
exiting •FDL-43
invoking •FDL-43
Optimize script •FDL-39
restrictions •FDL-43
scripts •FDL-63

Editor
FDL •FDL-42
text •FDL-42

/EMPHASIS qualifier •FDL-42, FDL-50
END_OF_FILE attribute •FDL-10
EOF option •FDL-10
EXACT_POSITIONING attribute •FDL-7
Example

modifying an FDL file •FDL-68
modifying an FDL file noninteractively •FDL-68
tuning a file •FDL-68

Exclamation point (!)
as comment delimiter •FDL-40

EXECUTE access •FDL-23
EXIT command

EDIT/FDL •FDL-61
Exiting CREATE/FDL •FDL-43
Exiting EDIT/FDL •FDL-43
EXPIRATION attribute •FDL-16
EXTENSION attribute •FDL-7, FDL-20

F
FAB$B_BKS field •FDL-18
FAB$B_DNS field •FDL-19
FAB$B_FAC field •FDL-2, FDL-3
FAB$B_FNS field •FDL-22
FAB$B_FSZ field •FDL-34
FAB$B_ORG field •FDL-22

Index-2

Index

FAB$B_RAT field •FDL-33, FDL-34
FAB$B_RFM field •FDL-35
FAB$B_RTV field •FDL-25
FAB$B_SHR field •FDL-37
FAB$L _ALQ field •FDL-17
FAB$L _CTX field •FDL-18
FAB$L _DNA field •FDL-19
FAB$L _FNA field •FDL-22
FAB$L _FOP •FDL-23
FAB$L _FOP field •FDL-18, FDL-19, FDL-20,

FDL-21, FDL-22, FDL-23, FDL-24, FDL-25
FAB$L _MRN field •FDL-20
FAB$W_BLS field •FDL-21
FAB$W_DEQ field •FDL-20
FAB$W_GBC field •FDL-20
FAB$W_MRS field •FDL-35
FALSE logical value •FDL-2
FAST_DELETE attribute •FDL-10
FDL

See File Definition Language
FDL$CREATE •FDL-41
FDL$GENERATE •FDL-41
FDL$PARSE •FDL-41
FDL file •FDL-41, FDL-42, FDL-54

ANALYSIS_OF_AREA section •FDL-3
comment in •FDL-40
created with ANALYZE/RMS~ILE •FDL-39
creating •FDL-39
with EDIT/FDL• FDL-42, FDL-47

FDL option •FDL-10
FDL routine

creating data files •FDL-41
File

attributes •FDL-1
creating •FDL-39
FDL •FDL-42
temporary •FDL-19

FILE attribute •FDL-2, FDL-16
File Definition Language FDL) •FDL-1, FDL-42

ACCESS attribute •FDL-2
attributes •FDL-1, FDL-46 .
editor •FDL-42
library routine •FDL-41
syntax •FDL-39

File protection •FDL-23
File specification •FDL-19

partial •FDL-19
FILE_MONITORING attribute •FDL-20
Fill factor •FDL-5, FDL-28
FILL _BUCKETS attribute •FDL-10
/FILL _BUCKETS qualifier •FDL-27, FDL-28

Fixed control •FDL-34, FDL-35
FIXED format •FDL-35
Fixed-length record •FDL-35
FLG=CHG option •FDL-26
FLG~DUP option •FDL-28
FLG~NUL option •FDL-29
FORMAT attribute •FDL-35
FORTRAN •FDL-33
FULL prompt •FDL-55

G
GET attribute •FDL-3, FDL-37
GET option •FDL-3, FDL-37
Global buffer •FDL-20
GLOBAL ~UFFER_COUNT attribute •FDL-20
/GRANULARITY qualifier •FDL-42, FDL-51
Group number• FDL-22
GROUP protection code •FDL-23

H
Hardcopy terminal output •FDL-55
HELP command

EDiT/FDL •FDL-62
High-speed terminal output •FDL-55
HRD option •FDL-7

i
IAS •FDL-38
(DENT attribute •FDL-2, FDL-39
IDX _NCMPR option •FDL-28
INDEXED attribute •FDL-22
Indexed file

compression •FDL-28
duplicate keys •FDL-27
Level 1 index •FDL-28

Index levels •FDL-5
Index records •FDL-5
INDEX AREA attribute •FDL-27, FDL-28
INDEX _COMPRESSION attribute •FDL-5, FDL-28
INDEX SILL attribute •FDL-5, FDL-28
INDEX_SPACE_OCCUPIED attribute •FDL-5
INT2 value •FDL-32
INT4 value •FDL-32

Index-3

Index

INT8 value• FDL-32
INVOKE command •FDL-57, FDL-63
Invoking CREATE/FDL •FDL-43
Invoking EDIT/FDL• FDL-43

K
Key

alternate •FDL-5
length •FDL-28
segment length •FDL-30
type •FDL-30

KEY attribute •FDL-2, FDL-26, FDL-40
KEY NULL _VALUE attribute •FDL-29
KEY PROLOG attribute •FDL-27, FDL-28
Keyword •FDL-2

abbreviating •FDL-40
KEY_GREATER_EQUAL attribute •FDL-10
KEY_GREATER_THAN attribute •FDL-10
KEY_LIMIT attribute •FDL-11
KEY_NCMPR option •FDL-27
KEY_OF_REFERENCE attribute •FDL-11
KGE option •FDL-10, FDL-11

L
Language

native to VMS •FDL-41
LENGTH attribute •FDL-28, FDL-29
Length of key segment •FDL-30
LEVEL 1 _INDEX _AREA attribute •FDL-27,

FDL-28
LEVEL 1 _RECORD_COUNT attribute •FDL-5
Level of prompting •FDL-55
LF character •FDL-35
Library routine •FDL-41, FDL-42
LIM•option •FDL-1 1
Line feed •FDL-33
LINK_CACHE_ENABLE attribute •FDL-32
LINK_TIMEOUT attribute •FDL-32
LOA option •FDL-10, FDL-11
LOCATE_MODE attribute •FDL-11
LOCK_ON _READ attribute •FDL-11
LOCK_ON_WRITE attribute •FDL-11
Logical value •FDL-2
/LOG qualifier

CREATE/FDL •FDL-45

M
MACRO •FDL-41
Magnetic tape

file expiration •FDL-16
file protection •FDL-22
files •FDL-21
starting position •FDL-21

MANUAL _UNLOCKING attribute •FDL-11
MAXIMIZE_VERSION attribute •FDL-20
MAX _RECORD_NUMBER attribute •FDL-20
MEAN_DATA_LENGTH attribute •FDL-5
MEAN_INDEX_LENGTH attribute •FDL-5
MODIFY command •FDL-64
MSE option •FDL-37
MT_BLOCK_SIZE attribute •FDL-21
MT_CLOSE_REWIND attribute •FDL-21
MT_CURRENT_POSITION attribute •FDL-21
MT_NOT_EOF attribute •FDL-21
MT_OPEN_REWIND attribute •FDL-21
MT_PROTECTION attribute •FDL-22
MULTIBLOCK_COUNT attribute •FDL-12
MULTIBUFFER_COUNT attribute •FDL-12
Multiple areas •FDL-6, FDL-28
MULTISTREAM attribute •FDL-37
MXV option •FDL-21

N
NAME attribute •FDL-19, FDL-22, FDL-29
Native language

on VMS •FDL-41
NEF option •FDL-21
Negative compression •FDL-4
NETWORK attribute •FDL-32
NETWORK_DATA_CHECKING attribute •FDL-32
NFS option •FDL-22
NIL option •FDL-37
NLK option •FDL-12
/NOINTERACTIVE qualifier• FDL-42, FDL-52
NOLOCK attribute •FDL-12
NO logical value• FDL-2
/NOLOG qualifier

CREATE/FDL •FDL-45
NONE carriage control •FDL-34
NONEXISTENT_RECORD attribute •FDL-12
/NOSCRIPT qualifier •FDL-42, FDL-57

Index-4

Index

Null
key value •FDL-29
string •FDL-2

NULL _KEY attribute •FDL-29
NULL _VALUE attribute •FDL-29
Number value•FDL-2
/NUMBER_KEYS qualifier •FDL-42, FDL-53
NXR option •FDL-12

0
OFP option •FDL-22
Optimize script •FDL-39, FDL-47
ORGANIZATION attribute• FDL-22
/OUTPUT qualifier• FDL-42

EDIT/FDL •FDL-54
OUTPUT_FILE_PARSE attribute •FDL-22
/OVERRIDE=ACCESSIBILITY qualifier •FDL-22
Overwrite tape file •FDL-16
OWNER attribute •FDL-22
OWNER protection code •FDL-23

P
Parameter

for VMS RMS•FDL-2
PMT option •FDL-14
POSITION attribute •FDL-7, FDL-28, FDL-29
POS option •FDL-21
Primary attribute •FDL-1
PRINT carriage control •FDL-34
Print queue •FDL-23
PRINT_ON_CLOSE attribute •FDL-23
Process default •FDL-30

batch queue• FDL-24
print queue •FDL-23

PROHIBIT attribute •FDL-37
Prolog 3 file •FDL-27

compression •FDL-27, FDL-28
key segment length •FDL-30
key segment position •FDL-30

PROLOG attribute •FDL-27, FDL-28, FDL-29
/PROMPTING qualifier •FDL-42, FDL-55
PROTECTION attribute •FDL-23
Protection code •FDL-23
PTA option •FDL-14
PUT attribute •FDL-3, FDL-37

PUT option •FDL-3, FDL-37

Q
QUIT command •FDL-65

R
RAB$B_KRF field •FDL-11
RAB$B_MBC field •FDL-12
RAB$B_MBF field •FDL-12
RAB$B_TMO field •FDL-13
RAB$L _CKT field •FDL-9
RAB$L _CTX field •FDL-10
RAB$L _FOP field •FDL-14
RAB$L _ROP field •FDL-9, FDL-10, FDL-11,

FDL-12, FDL-13, FDL-14, FDL-15
RAH option •FDL-13
RCK option •FDL-23
READ access •FDL-23
READ_AHEAD attribute •FDL-12
READ_CHECK attribute •FDL-23
READ_REGARDLESS attribute •FDL-13
REA option •FDL-11
RECLAIMED_SPACE attribute •FDL-3
Record

maximum length •FDL-35
maximum number •FDL-20
maximum size •FDL-35

RECORD attribute •FDL-2, FDL-33
RECORD CONTROL _FIELD_SIZE attribute •

FDL-35
RECORD_IO attribute •FDL-3
RELATIVE attribute •FDL-22
Relative file record limit •FDL-20
Repeating characters •FDL-27, FDL-28
/RESPONSES qualifier• FDL-42, FDL-56
Restrictions of CREATE/FDL• FDL-43
Restrictions of EDIT/FDL• FDL-43
REVISION attribute •FDL-16, FDL-24
Revision number •FDL-24
RLK option •FDL-11
RM03 device •FDL-38
RMS (Record Management Services •FDL-42

control blocks •FDL-2
creation-time options •FDL-41
default •FDL-19

Index-5

Index

RMS-11
stream files • FDL-35
Version 1.8 • FDL-30

RMS_DEFAULT command • FDL-30
RNE option • FDL-14
RNF option • FDL-14
Routine

library• FDL-41, FDL-42
RP06 device • FDL-38
RRL option • FDL-13
RSTS/E • FDL-38
RSX-11 M • FDL-38
RSX-11 M—PLUS • FDL-38
RT-11 • FDL-38
Rules for FDL validity• FDL-39
RWC option • FDL-21
RWO option • FDL-22

S
SCF option • FDL-24
/SCRIPT qualifier • FDL-42, FDL-57
Scripts

EDIT/FDL• FDL-63
Secondary attribute • FDL-2
Secondary index data record

See SIDR
Segmented key • FDL-30
SEGn secondary• FDL-40
SEGn_LENGTH attribute • FDL-30
SEGn_POSITION attribute • FDL-30
SEQUENTIAL attribute • FDL-22
Sequential file • FDL-25
SEQUENTIAL _ONLY attribute • FDL-24
SET command • FDL-66
SHARING attribute • FDL-2, FDL-36
SHOW RMS_DEFAULT command • FDL-30
SIDR (secondary index data record) • FDL-5
SIZE attribute • FDL-35
SOURCE attribute • FDL-38
Source line • FDL-40
Specification

of file • FDL-19
SPL option • FDL-23
SQO option • FDL-24
Starting key position • FDL-29
STREAM format • FDL-35
STREAM_CR format • FDL-35
STREAM_LF format • FDL-35

String value • FDL-2, FDL-32
Structure

of indexed file • FDL-29
SUBMIT_ON_CLOSE attribute • FDL-24
SUPERSEDE attribute • FDL-24
SUP option • FDL-24
Switch • FDL-2
SYSTEM attribute • FDL-2, FDL-38
System default • FDL-30
System manager • FDL-16
SYSTEM protection code • FDL-23

T
Tape

starting position • FDL-21
TARGET attribute • FDL-38
TEF option • FDL-25
TEMPORARY attribute • FDL-24
Temporary file • FDL-19, FDL-20
Text editor

to create FDL files • FDL-42
TIMEOUT_ENABLE attribute • FDL-13
TIMEOUT_PERIOD attribute • FDL-13
TITLE attribute • FDL-2, FDL-39
TMD option • FDL-24
TMO option • FDL-13
TMP option • FDL-20
TPT option • FDL-13
Transfer from disk volumes • FDL-23
TRUE logical value • FDL-2
TRUNCATE attribute • FDL-3
TRUNCATE_ON_CLOSE attribute • FDL-25
TRUNCATE _ON _PUT attribute • FDL-13
TT_CANCEL _CONTROL _O attribute • FDL-14
TT_PROMPT attribute • FDL-14
TT_PURGE_TYPE_AHEAD attribute • FDL-14
TT_READ_NOECHO attribute • FDL-14
TT_READ_NOFILTER attribute • FDL-14
TT_UPCASE_INPUT attribute • FDL-14
TYPE attribute • FDL-28, FDL-29, FDL-30

u

UFO option • FDL-25
UIC (user identification code) • FDL-22
UIF option • FDL-14

Index-6

Index

ULK option • FDL-11
UNDEFINED format• FDL-35
Unsegmented key • FDL-28
UPDATE attribute • FDL-3, FDL-37
UPDATE_IF attribute • FDL-14
UPD option • FDL-3, FDL-37
UPI option • FDL-37
User classification • FDL-23
User identification code

See UIC
User number• FDL-22
USER_FILE_OPEN attribute • FDL-25
USER_INTERLOCK • FDL-37

V
Validity rules • FDL-39, FDL-40
VARIABLE format• FDL-35
Variable-length record • FDL-35
Version number • FDL-20
VFC record • FDL-34, FDL-35

format of • FDL-35
VIEW command • FDL-67
VMS operating system • FDL-38
VOLUME attribute • FDL-8

W
WAIT_FOR_RECORD attribute • FDL-15
WAT option • FDL-15
WBH option • FDL-15
WCK option • FDL-25
WINDOW_SIZE attribute • FDL-25
WORLD protection code • FDL-23
WRITE access • FDL-23
WRITE_BEHIND attribute • FDL-15
WRITE_CHECK attribute • FDL-25

X
XAB$B_AID field • FDL-6
XAB$B_ALN field • FDL-8
XAB$B_AOP field • FDL-6, FDL-7
XAB$B_DAN field • FDL-27
XAB$B_DPT field • FDL-32

XAB$B_FLG field • FDL-26, FDL-27, FDL-28,
FDL-29

XAB$B_IAN field • FDL-28
XAB$B_LAN field • FDL-28
XAB$B_MTACC field • FDL-22
XAB$B_NUL field • FDL-29
XAB$B_PROLOG field • FDL-30
XAB$B_REF field • FDL-26
XAB$B_SIZO field • FDL-28, FDL-30
XAB$L _ALQ field • FDL-6
XAB$L _KNM field • FDL-29
XAB$L_LOC field • FDL-8
XAB$Q_BDT field • FDL-15
XAB$Q_CDT field • FDL-16
XAB$Q_EDT field • FDL-16
XAB$Q_RDT field. • FDL-16
XAB$W_DEQ field • FDL-7
XAB$W_DFL field • FDL-27
XAB$W_GRP field • FDL-23
XAB$W_IFL field • FDL-28
XAB$W_MBM field • FDL-23
XAB$W_POSO • FDL-29
XAB$W_POSO field • FDL-30
XAB$W_PRO field • FDL-23
XAB$W_RFI field • FDL-8
XAB$W_RVN field • FDL-24
XAB$W_VOL field • FDL-8

Y
YES logical value • FDL-2

Index-7

Reader's Comments VMS File Definition
Language

Facility Manual
AA—LA81 A—TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible td receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ❑ ❑ ❑

Completeness (enough information) D ❑ ❑ ❑

Clarity (easy to understand) ❑ ❑ ❑ ❑

Organization (structure of subject matter) ❑ ❑ ❑ ❑

Figures (useful) D D ❑ ❑

Examples (useful) ❑ ❑ ❑ ❑

Index (ability to find topic) ❑ ❑ ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.

Company Date

Mailing Address

 Phone

---- Do Not Tear -Fold Here and Tape

d e aoao~ 9 9

~----- Do Not Tear -Fold Here

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

III~~~~~II~il~~~~Ii~~~~i~il~i~~l~l~~l~~l~i~~~l~il~~l

Reader's Comments VMS File Definition
Language

Facility Manual
AA—LA81 A—TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ❑ ❑ ❑

Completeness (enough information) ❑ ❑ ❑ ❑

Clarity (easy to understand) ❑ ❑ ❑ ❑

Organization (structure of subject matter) ❑ ❑ ❑ ❑

Figures (useful) ❑ ❑ ❑ ❑

Examples (useful) ❑ ❑ ❑ ❑
Index (ability to find topic) ❑ ❑ ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.

Company Date

Mailing Address

 Phone

— — Do Not Tear -Fold Here and Tape

d a9ao a TM

— — — Do Not Tear -Fold Here

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

III~~~~~II~II~~~~II~~~~I~II~I~~I~I~~I~~I~I~~~I~II~~I

~
~

~
~

~
i~

~
~

~
~

~
~

~

C
u

t
A

lo
n
g
 D

o
tt

ed
 L

in
e

