
Guideto VMS File
Applications

Order Number: AA—LA78A—TE

April 1988

This document is intended for application programmers and designers
who write programs that use VMS RMS files.

Revision/Update Information: This document supersedes the Guide
to VAX/VMS File Applications Manual,
Version 4.4.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

d 0 9
ao

a

TM

ZK4506

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA &PUERTO RICO

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire
03061

CANADA

Digital Equipment
of Canada Ltd.
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

INTERNATIONAL

Digital Equipment Corporation
PSG Business Manager
c/o Digital's local subsidiary
or approved distributor

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575►.
Internal orders should be placed through the Software Distribution Center (SDC►, Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use ,~~;,
DIGITAL-supported devices, such as the LN03 laser printer and PostScript-"
printers (PrintServer 40 or LN03R ScriptPrinter), to produce atypeset-quality
copy containing integrated graphics.

~~;
PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE xvii

NEW AND CHANGED FEATURES xxi

CHAPTER 1 INTRODUCTION 1-1

1.1 FILE CONCEPTS 1-1
1.1.1 Disk Concepts 1-3
1.1.1.1 Logical Structures • 1-3
1.1.1.2 Physical Structures • 1-5
1.1.1.3 Files-1 1 On-Disk Structure Index File • 1-7
1.1.2 Tape Concepts 1-8

1.2 VOLUME PROTECTION 1-10

1.3 RECORD MANAGEMENT SERVICES 1-10
1.3.1 File Definition Language (FDLj 1-11
1.3.2 VMS RMS Data Structures 1-11
1.3.3 VMS RMS Services 1-12

1.4 VMS RMS UTILITIES 1-12
1.4.1 The Analyze/RMS_File Utility 1-12
1.4.2 The Convert Utility 1-13
1.4.3 The Convert/Reclaim Utility 1-14
1.4.4 The Create/FDL Utility 1-14
1.4.5 The Edit/FDL Utility 1-14

1.5 PROCESS AND SYSTEM RESOURCES FOR FILE
APPLICATIONS 1-15

1.5.1 Memory Requirements 1-16
1.5.2 Process Limits 1-17

V

Contents

CHAPTER 2 CHOOSING A FILE ORGANIZATION 2-1

2.1
2.1.1
2.1.1.1
2.1.1.2

2.1.1.3
2.1.2
2.1.2.1
2.1.2.2
2.1.2.3

2.1.2.4

RECORD CONCEPTS
Record Access Modes

Sequential Access • 2-3
Random Access by Key Value or Relative Record
Number • 2-5
Random Access by Record File Address • 2-7

Record Formats
Fixed-Length Record Format • 2-8
Variable-Length Record Format • 2-9
Variable-Length with Fixed-Length Control Field (VFC) Record
Format • 2-11
Stream Record Format • 2-12

2-1
2-2

2-7

2.2 FILE ORGANIZATION CONCEPTS 2-13
2.2.1 Sequential File Organization 2-14
2.2.2 Relative File Organization 2-16
2.2.3 Indexed File Organization 2-18
2.2.3.1 Sequentially Retrieving Indexed Records • 2-19
2.2.3.2 Index Keys • 2-19
2.2.3.3 Other Key Characteristics • 2-20
2.2.3.4 Specifying Sort Order • 2-20
2.2.3.5 Using Collated Keys • 2-22
2.2.3.6 Summary of Indexed File Organization • 2-24

CHAPTER 3 PERFORMANCE CONSIDERATIONS 3-1

3.1 DESIGN CONSIDERATIONS 3-1
3.1.1 Speed 3-1
3.1.2 Space 3-2
3.1.3 Shared Access 3-3
3.1.4 Impact on Applications Design 3-3

3.2 TUNING 3-3
3.2.1 File Design Attributes 3-4
3.2.1.1 Initial File Allocation • 3-4
3.2.1.2 Contiguity • 3-4
3.2.1.3 Extending a File • 3-5
3.2.1.4 Units of I/O • 3-6
3.2.1.5 Multiple Areas for Indexed Files • 3-6
3.2.1.6 Bucket Fill Factor for Indexed Files • 3-6
3.2.2 Processing Options 3_7

vi

Contents

3.2.2.1
3.2.2.2
3.2.2.3
3.2.2.4

Multiple Buffers • 3-7
Deferred-Write Processing • 3-8
Global Buffers • 3-8
Read-Ahead and Write-Behind Processing • 3-9

3.3 TUNING A SEQUENTIAL FILE 3-9
3.3.1 Block Spanning Option 3-10
3.3.2 Multiblock Size Option 3-11
3.3.3 Number Of Buffers 3-11
3.3.4 Global Buffer Option 3-12
3.3.5 Read-Ahead and Write-Behind Options 3-12

3.4 TUNING A RELATIVE FILE 3-12
3.4.1 Bucket Size 3-13
3.4.2 Number of Buffers 3-13
3.4.3 Global Buffer Option 3-14
3.4.4 Deferred-Write Option 3-15

3.5 TUNING AN INDEXED FILE 3-15
3.5.1 File Structure 3-15
3.5.1.1 Prologs • 3-16
3.5.1.2 Primary Index Structure • 3-17
3.5.1.3 Alternate Index Structure • 3-19
3.5.1.4 Records • 3-19
3.5.1.5 Keys • 3-22
3.5.1.6 Areas • 3-23
3.5.2 Optimizing File Performance 3-24
3.5.2.1 Bucket Size • 3-24
3.5.2.2 Fill Factor • 3-26
3.5.2.3 Number Of Buffers • 3-26
3.5.2.4 Global Buffers • 3-27
3.5.2.5 Using the Deferred-Write Option • 3-27

3.6
3.6.1
3.6.1.1
3.6.1.2
3.6.2

PROCESSING IN A VAXCLUSTER
VAXCluster Shared Access

Locking Considerations • 3-29
I/O Considerations • 3-29

Performance Recommendations

3-28
3-28

3-30

vi i

Contents

CHAPTER 4 CREATING AND POPULATING FILES 4-1

4.1 FILE CREATION CHARACTERISTICS 4-1
4.1.1 Using VMS RMS Control Blocks 4-1
4.1.1.1 File Access Block • 4-1
4.1.1.2 Extended Attribute Blocks • 4-2
4.1.2 Using File Definition Language 4-2
4.1.2.1 Using EDIT/FDL • 4-3
4.1.2.2 Designing an FDL File • 4-11
4.1.2.3 Setting Characteristics For FDL Files • 4-14
4.1.3 Using the FDL Routines 4-15

4.2 CREATING A FILE 4-17
4.2.1 Using the VMS RMS Create Service 4-17
4.2.2 Using the Create/FDL Utility 4-17
4.2.3 Using the Convert Utility 4-18
4.2.4 Using the FDL$CREATE Routine 4-18

4.3 DEFINING FILE PROTECTION 4-20
4.3.1 UIC-Based Protection 4-21
4.3.2 ACL-Based Protection 4-21

4.4 POPULATING A FILE 4-22
4.4.1 Using the Convert Utility 4-22
4.4.2 Using the Convert Routines 4-23

4.5 SUMMARY OF FILE-CREATION OPTIONS 4-27
4.5.1 File-Creation Options 4-27
4.5.2 File Characteristics 4-28
4.5.3 File Allocation and Positioning 4-30

CHAPTER 5 LOCATING AND NAMING FILES 5-1

5.1 UNDERSTANDING FILE SPECIFICATIONS 5-1
5.1.1 File Specification Formats 5_2
5.1.1.1 Local Nods • 5-3
5.1.1.2 Remote Node • 5-3
5.1.2 Using File Specification Defaults 5-4

5.2 LOGICAL NAMES AND PARSING 5-4

viii

Contents

5.2.1 Image Activation Using Logical Names 5-5
5.2.2 Example Use of Logical Names 5-5
5.2.3 Types of Logical Names 5-6
5.2.4 Introduction to File Parsing 5-7

5.3 USING ONE FILE SPECIFICATION TO LOCATE MANY FILES 5-9
5.3.1 Processing One File 5-14
5.3.2 Processing Many Files 5-15
5.3.3 Processing One or Many Files 5-16

CHAPTER 6 ADVANCED USE OF FILE SPECIFICATIONS 6-1

6.1 HOW VMS RMS APPLIES DEFAULTS 6-1

6.2 UNDERSTANDING VMS RMS PARSING 6-4
6.2.1 Checking for Open-By-Name Block 6-5
6.2.2 File Specification Formats and Translating Logical Names 6-5
6.2.3 Special Parsing Conventions 6-7
6.2.3.1 Parsing Conventions for a Search List • 6-7
6.2.3.2 Special Processing for a Related File Specification • 6-9
6.2.3.3 Input File Specification Parsing • 6-10
6.2.3.4 Output File Specification Parsing • 6-10

6.3 DIRECTORY SYNTAX CONVENTIONS AND DIRECTORY
CONCATENATION 6-12

6.3.1 Using Normal Directory Syntax 6-12
6.3.2 Rooted-Directory Syntax Applications 6-15
6.3.3 Using Rooted-Directory Syntax 6-15
6.3.4 Concatenating Rooted-Directory Specifications 6-17
6.3.5 An Example of Using a Rooted Directory 6-19

6.4 USING PROCESS-PERMANENT FILES 6-20

ix

Contents

CHAPTER 7 FILE SHARING AND BUFFERING 7-1

7.1 FILE ACCESSING 7-1
7.1.1 Types of File Sharing and Record Streams 7-2
7.1.2 Interlocked Interprocess File Sharing 7-5
7.1.3 User-Interlocked Interprocess File Sharing 7-7

7.2 RECORD LOCKING 7-7
7.2.1 Default Record Locking 7-8
7.2.2 Record Locking Options 7-9
7.2.2.1 Exclusive Locking • 7-9
7.2.2.2 Write Locking • 7-10
7.2.2.3 Read Locking • 7-10
7.2.2.4 No Locking • 7-10
7.2.2.5 Put Service Considerations • 7-11
7.2.2.6 Summary • 7-11
7.2.3 Handling Record Locking Conflicts 7-12
7.2.3.1 Handling the Record-Locked Error • 7-13
7.2.3.2 Waiting for Locked Records • 7-13
7.2.3.3 Reading Regardless of Lock • 7-14
7.2.4 Miscellaneous Record Locking Options 7-14
7.2.4.1 Manual-Unlocking Option • 7-14
7.2.4.2 Lock-Nonexistent-Record Option • 7-15
7.2.5 Record Locking Deadlocks 7-15

7.3 LOCAL AND SHARED BUFFERING TECHNIQUES 7-16
7.3.1 Record Transfer Modes 7-16
7.3.2 Understanding Buffering 7-16
7.3.3 Buffering for Sequential Files 7-18
7.3.4 Buffering for Relative Files 7-19
7.3.5 Buffering for Indexed Files 7-20
7.3.6 Using Global Buffers for Shared Files 7-20

CHAPTER 8 RECORD PROCESSING 8-1

8.1 RECORD OPERATIONS 8-1

8.2 PRIMARY VMS RMS SERVICES 8-1
8.2.1 Locating and Retrieving Records 8-2
8.2.2 Inserting Records 8-3
8.2.3 Updating Records 8-4
8.2.4 Deleting Records 8-5

x

Contents

8.3 SECONDARY VMS RMS SERVICES 8-5

8.4 RECORD ACCESS FOR THE VARIOUS FILE
ORGANIZATIONS 8-6

8.4.1 Processing Sequential Files 8-7
8.4.1.1 Sequential Access • 8-8
8.4.1.2 Random Access • 8-8
8.4.2 Processing Relative Files 8-8
8.4.2.1 Sequential Access • 8-9
8.4.2.2 Random Access • 8-9
8.4.3 Processing Indexed Files 8-9
8.4.3.1 Sequential Access • 8-10
8.4.3.2 Random Access • 8-11
8.4.4 Access by Record File Address (RFA) 8-12

8.5 BLOCK INPUT/OUTPUT 8-13

8.6 CURRENT RECORD CONTEXT 8-14
8.6.1 Current-Record Position 8-15
8.6.2 Next-Record Position 8-16

8.7 SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS 8-17
8.7.1 Using Synchronous Operations 8-17
8.7.2 Using Asynchronous Operations 8-18

CHAPTER 9 RUN-TIME OPTIONS 9-1

9.1 SPECIFYING RUN-TIME OPTIONS 9-1
9.1.1 Using the FDL Editor 9-1
9.1.2 Using Language Statements and VMS RMS 9-5

9.2 OPTIONS RELATED TO OPENING AND CLOSING FILES 9-6
9.2.1 File Access and Sharing Options 9-6 ~
9.2.2 File Specifications 9-7
9.2.3 File Performance Options 9-7 i
9.2.3.1 Extension Size • 9-8
9.2.3.2 Window Size • 9-8
9.2.3.3 Summary of Performance Options • 9-9
9.2.4 Record Access Options 9-10
9.2.5 Options for Adding Records 9-10
9.2.6 Options for Data Reliability 9-11 j

xi

Contents

9.2.7 Options for File Disposition 9-12
9.2.8 Options for Indexed Files 9-12
9.2.9 Options for Magnetic Tape Processing 9-13
9.2.10 Options for Nonstandard File Processing 9-14

9.3 SUMMARY OF RECORD OPERATION OPTIONS 9-14
9.3.1 Record Retrieval Options 9-15
9.3.2 Put Service Options 9-17
9.3.3 Record Update Options 9-19
9.3.4 Record Deletion Options 9-20

9.4 RUN-TIME EXAMPLE 9-20

CHAPTER 10 MAINTAINING FILES 10-7

10.1 VIEWING FILE CHARACTERISTICS 10-1
10.1.1 Performing an Error Check 10-1
10.1.2 Generating a Statistics Report 10-6
10.1.3 Using Interactive Mode 10-11
10.1.4 Examining a Sequential File 10-12
10.1.5 Examining a Relative File 10-16
10.1.6 Examining an Indexed File 10-19

10.2 GENERATING AN FDL FILE FROM A DATA FILE 10-24

10.3 OPTIMIZING AND REDESIGNING FILE CHARACTERISTICS 10-26
10.3.1 Redesigning an FDL File 10-28
10.3.2 Optimizing a Data File 10-29

10.4 MAKING A FILE CONTIGUOUS 10-29
10.4.1 Using the Copy Utility 10-29
10.4.2 Using the Convert Utility 10-30
10.4.3 Reclaiming Buckets in Prolog 3 Files 10-30

10.5 REORGANIZING A FILE 10-31

10.6 MAKING ARCHIVE COPIES 10-31

xii

Contents

APPENDIX A EDIT/FDL OPTIMIZATION ALGORITHMS A-7

A.1 ALLOCATION A-1

A.2 EXTENSION SIZE A-1

A.3 BUCKET SIZE A-1

A.4 GLOBAL BUFFERS A-2

A.5 INDEX DEPTH A-2

GLOSSARY Glossary-1

INDEX

EXAMPLES
2-1 Creating a File Containing Collated Keys 2-23
4-1 Sample FDL Edit Session 4-6
4-2 Sample FDL File 4-10
4-3 Using FDL Routines in a Pascal Program 4-15
4-4 Using the FDL$CREATE Routine in a FORTRAN Program 4-18

4-5 Using the FDL$CREATE Routine from a COBOL Program 4-19

4-6 Using the CONVERT Routines in a FORTRAN Program 4-24

4-7 Using the CONVERT Routines in a COBOL Program 4-25
5-1 Using Logical Names for Remote File Access 5-6
5-2 Selecting the USEROPEN Option to Call a Routine 5-11

5-3 Using the Parse, Search, and Open Services 5-13

6-1 Example of Rooted-Directory Syntax 6-20

7-1 Designing a Pause between Attempts to Access a
Record 7-13

~. 9-1 Specifying Run-Time Attributes 9-3

9-2 Using the FDL$PARSE and FDL$RELEASE Routines 9-21

10-1 Using ANALYZE/RMS_FILE to Create a Check Report 10-2

10-2 Using ANALYZE/RMS_FILE to Create a Statistics Report 10-6

10-3 Examining a Sequential File 10-15

xiii

Contents

10-4 Examining a Relative File 10-18
10-5 Examining an Area Descriptor Path 10-20
10-6 Examining a Primary Record 10-23
10-7 Examining an Alternate Record 10-24

10-8 KEY and ANALYSIS_OF_KEY Sections in an FDL File 10-25

FIGURES
1-1 Files-11 On-Disk Structure Hierarchy 1-4

1-2 Single and Multiple File Extents 1-5

1-3 Tracks and Cylinders 1-6

1-4 Interrecord Gaps 1-9

1-5 Using CONVERT to Create a Data File 1-13

1-6 Using CREATE/FDL to Create an Empty Data File 1-15

2-1 Sequential Access to a Sequential File 2-3

2-2 Sequentially Retrieving Records in a Relative File 2-4

2-3 Sequentially Storing Records in a Relative File 2-5

2-4 Random Access by Relative Record Number 2-6

2-5 Random Access by Record File Address 2-8

2-6 Comparison of Fixed- and Variable-Length Records 2-10

2-7 Writing a VFC Record to a File 2-11

2-8 Retrieving a VFC Record 2-12

2-9 Sequential Fite Organization 2-15

2-10 Relative File Organization 2-17

2-11 Variable-Length Records in Fixed-Length Cells 2-17

2-12 Single-Key Indexed File Organization 2-21

2-13 Multiple-Key Indexed File Organization L-22

3-1 VMS RMS Index Structure 3-18
3-2 A Primary Index Structure 3-20
3-3 Finding the Record with Key 14 3-21
4-1 A Line_Plot Graph 4-12
4-2 A Surface_Plot Graph 4-13
4-3 Design Mnemonics 4-14
7-1 Shared File Access 7-1
7-2 VMS RMS Buffers and the Application Program 7-17
7-3 Using Global Buffers for a Shared File 7-21
8-1 Using RFA Access to Establish Record Position 8-13
10-1 Tree Structure for Sequential Files 10-13
10-2 Record Layout and Content for SEQ. DAT 10-14

xiv

Contents

10-3 Tree Structure of Relative Files 10-17

10-4 An Area Descriptor Path 10-19

10-5 A Key Descriptor Path 10-21

10-6 Structure of Primary Records 10-22

10-7 Structure of Alternate Records 10-22

10-8 The VMS RMS Tuning Cycle 10-27

-raB~Es
2-1 Record Access Modes and File Organizations 2-2

2-2 File Organization Characteristics 2-13

2-3 Sequential File Organization: Advantages and
Disadvantages 2-15

2-4 Relative File Organization: Advantages and
Disadvantages 2-18

2-5 Indexed .File Organization: Advantages and
Disadva~ta~es 2-24

4-1 Summary of EDIT/FDL Commands 4-3

4-2 EDIT/FDL scripts 4-4

6-1 File Specification Defaults 6-1

6-2 Example of Applying Defaults 6-3

7-1 File Access Record Operations 7-3

7-2 File Sharing Record Operations 7-4

7-3 Initial File Sharing and Subsequent File Access 7-6

7-4 Initial File Access and Subsequent File Sharing 7-6

7-5 Compatibility of Record locking options 7-11

8-1 Record Operations and File Organizations 8-2

8-2 Record Access Stream Context 8-14

10-1 ANALYZE/RMS_FILE Command Summary 10-12

xv

Preface

This guide describes how to use file organizations; how to create, populate,
locate, share, and maintain files; and how to process records. It concentrates
on the human and program interfaces provided by the File Definition
Language Facility (FDL) and VMS Record Management Services (VMS
RMS). Both of these interfaces can be used to define file and record
characteristics, the location of a file, run-time characteristics, and related
options. VMS RMS services can be used to create and access files, and to
process records. This guide provides examples of FDL and VMS RMS, as
well as the procedures needed to perform tasks usually required in file-based
application development.

Intended Audience
This document is intended for applications programmers and designers who
create or maintain applications programs that use VMS RMS files. You may
also read it to gain a general understanding of the file and record processing
options available on a VMS system.

Document Structure
This guide contains ten chapters, one appendix, and a glossary.

• Chapter 1 provides general information on the use of files on a VMS
system, including an overview of available media, VMS RMS, FDL, and
resource requirements.

• Chapter 2 describes the, file organizations and record access modes to help
you choose the correct file organization for your application.

• Chapter 3 discusses general performance considerations and specific
decisions you can make in the design of your application.

• Chapter 4 describes procedures necessary to create files, populate files
with records, and protect files.

• Chapter 5 describes file specifications and the procedures needed to use
them.

• Chapter 6 describes the rules of file specification parsing and advanced
file specification use. Information about rooted directories is also
provided.

• Chapter 7 describes file sharing and buffering, including record locking
and the use of global buffers.

• Chapter 8 describes aspects of record processing, including record access
modes; synchronous and asynchronous record operations; and retrieving,
inserting, updating, and deleting records.

• Chapter 9 describes how to specify run-time options and summarizes the
run-time options available when a file is opened and closed and when
records are retrieved, inserted, updated, and deleted.

• Chapter 10 describes procedures needed to maintain properly tuned files,
with the emphasis on efficiently maintaining indexed files.

xvii

Preface

• Appendix A describes the algorithms used by the Edit/FDL Utility.

The glossary provides definitions of terms that are commonly used in this
guide.

Associated Documents
The reader should be familiar with the information in the following
documents:

• The Introduction to VMS describes the use of the VMS operating system
for a general audience.

• Programmers should be familiar with the appropriate documentation for
the VAX language the application will be written in.

Related reference information is available in the following documents:

• The VMS File Definition Language Facility Manual contains information
about the FDL facility.

• The VMS Convert and Convert/Reclaim Utility Manual contains
information about the Convert Utility that is often used in conjunction
with file applications.

• The VMS DCL Dictionary contains information (with examples) about
using DCL commands that define system or process defaults, set file
protection, or define logical names.

• The VMS Record Management Services Manual contains information
about calling VMS RMS services directly and about the control block
options that are available. This book describes the VMS RMS control
blocks that define arguments for VMS RMS service calls performed
through language statements or directly from application programs. This
document also includes special information for VAX MACRO users,
including descriptions of VAX MACRO service and control block macros
and examples of VAX MACRO programs.

• The VMS Utility Routines Manual contains information about calling FDL
routines and Convert routines. It also includes appropriate programming
examples.

• Programmers using DECnet to access remote files may need to consult
the VMS Networking Manual to determine what types of operations are
supported for remote files on non-VMS operating systems. Information
on accessing remote files on a VMS system can be obtained from the
description of the appropriate FDL attributes in the VMS File Definition
Language Facility Manual and the description of the appropriate control
block fields in the VMS Record Management Services Manual.

xviii

Preface

Conventions
Convention Meaning

RET

CTRL/C

$ SHOW TIME
05-JUN-1988 1 1:55:22

$ TYPE MYFILE.DAT

input-file, . .

[logical-name]

quotation marks
apostrophes

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples; a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks (" ►. The term
apostrophe (') is used to refer to a single
quotation mark.

xix

New and Changed Features

Version 5.0 supports multinational key enhancements that provide a
simplified way to use non-ASCII collating sequences with indexed files.
These enhancements are based on the National Character Set Utility that
permits you to define alternative collating sequences for special characters.
You can define a collating sequence for each key of reference. For example,
you can sort a file in German by one key, in French by another key, and so
forth.

You implement an alternative collating sequence for a file by specifying the
address of the desired collating table. You can also specify whether the
collating sequence will be applied in ascending or descending order.

1

1 Introduction

This chapter illustrates basic data management concepts and how they
are applied by the VMS Record Management Services (VMS RMS). VMS
RMS is the data management subsystem of the VMS operating system. In
combination with the VMS operating system, VMS RMS allows efficient
and flexible storage, retrieval, and modification of data on disks, magnetic
tapes, and other devices. VMS RMS may be implemented directly at the
VAX MACRO level or indirectly through the File Definition Language Facility
(FDL). Higher-level languages may also implement VMS RMS through
program-specific processing options. Although VMS RMS supports devices
such as line printers, terminals, and card readers, the purpose of this guide is
to introduce you to VMS RMS record keeping on magnetic tape and disk.

In contrast to magnetic tape storage, disk storage allows faster data access
while providing the same virtually limitless storage capacity. Disks provide
faster access because the computer can locate files and records selectively
without first searching through intervening data. This faster access time
makes disks the most appropriate medium for online file processing
applications.

1.1 File Concepts
The following file concepts are discussed in this manual:

• Files

• Records

• Fields

• Bytes and bits

• Access modes

• Record formats

A file is an organized collection of data stored on a mass storage volume,
such as a disk, and processed by a central processing unit (CPU). Data files
are organized to accommodate the processing of data within the file by an
application program. The basic unit of electronic data processing is the record.
A record is a collection of related data that your program treats as an entity.
For example, all the information about an employee, such as name, street
address, city, and state, constitutes a personnel record. Records are made up
of fields, which are sets of contiguous bytes. For example, a person's name or
address might be a field. A byte is a group of binary digits (bits), which are
used to represent a single character. You can also think of a field or an item
as a group of bytes in a record that are related in some way.

The records in a file must be formatted uniformly. That is, they must conform
to some defined arrangement of the fields that make up each record including
the lengths of the fields, the location of each field in the record, and the type
of data (character strings or binary integers, for instance) in each field. To
process file data, an application must know the arrangement of the record

1-1

Introduction
1.1 File Concepts

fields, especially if the application intends to modify existing records or to add
new records to the file.

The file organization is the arrangement of data within a file. The file
organization, together with the applicable storage medium, determines what
techniques are used to store and retrieve data. Currently, VMS RMS supports
three file organizations, sequential, relative, and indexed:

Sequential Records are arranged one after the other.

Relative Records occupy cells of equal length, and each cell is assigned
a relative record number, which represents the cell's position
relative to the beginning of the file.

Indexed Records can either be retrieved randomly or sequentially in sorted
order using a key embedded in the record.

The record access mode is the way in which a program stores and retrieves
data. VMS RMS supports two record access modes.

Sequential Records are stored or retrieved one after another starting at a
Access particular point in the file and continuing in order through the file.

Random Records are stored and retrieved by key, by relative record
Access number, or by file address. Random access by key or by relative

record number depends upon the file organization. Indexed file
records are stored and retrieved by a key in the data record;
relative file records are retrieved by their relative record numbers.

When a record is accessed randomly by its file address, the
distinction is made by its unique location in the file; that is, its
record file address (RFA).

The record format refers to the way all records in a file appear physically on
the recording surface of the storage medium and is defined in terms of record
length. VMS RMS supports four record formats:

Fixed length

Variable length

Variable with fixed-
length control

Stream

All file records are the same length.

Records vary in length.

Records do not have to be the same length, but
each includes affixed-length control field that
precedes the variable-length data portion.

Records are delimited by special characters or
character sequences called terminators. Records
with stream format are interpreted as a continuous
sequence, or stream, of bytes. The carriage return
and the line feed characters are commonly used as
terminators.

When you design a file, you specify the file storage medium and the file and
record characteristics directly through your application program or indirectly
using an appropriate utility. Chapter 2 outlines VMS RMS file organizations,
record access modes, and record characteristics in detail.

After VMS RMS creates the file, the application program must consider these
record characteristics when storing, retrieving and modifying file records.
Chapters 4 and 8 outline techniques for creating, storing, retrieving, and
modifying data records in a file.

Introduction
1.1 File Concepts

1.1.1 Disk Concepts
This section describes disk concepts as an aid to understanding how a disk
may be configured to enhance data access for improved performance.
Disk structures may be defined as either logical or physical and the two
types of structure interact with each other to some degree. That is, you
cannot manipulate a logical structure without considering the effect on a
corresponding physical structure.

Logical Structures
VMS RMS disk files reside on Files-11 On-Disk Structure disks. The Files-11
On-Disk Structure defines how files are organized on the disk. VMS RMS
defines the internal organization of the files and the methods of accessing file
data.

Two distinct types of disk structuring are used with VMS RMS: Files-11
On-Disk Structure Level 1 and Files-11 On-Disk Structure Level 2. Structure
level 1 is the default for the following operating systems:

• RSX-11M

• RSX-11 D

• RSX—II—PLUS

• Micro/RSX

VMS defaults to structure level 2. The primary difference between the two
structures is that structure level 2 incorporates control capabilities that permit
added features including volume sets (described later).

The term Files-11 On-Disk Structure refers to a logical ordering of the disk,
using the following disk structures (listed in order of ascending hierarchy):

• Blocks

• Clusters

• Extents

• Files

• Volumes

• Volume Sets

Figure 1-1 shows the hierarchy of blocks, clusters, extents, and files in the
Files-11 On-Disk Structure.

The next higher level of Files-11 On-Disk Structure is the volume (not
illustrated) which is the ordered set of blocks that comprise a disk. However,
a volume may include several disks that together make up a structure called
a volume set. Because a volume set consists of two or more related volumes,
the system treats it as a single volume.

Note: The terms disk and volume are used interchangeably in this manual.

Introduction
1.1 File Concepts

Figure 1-1 Files-11 On-Disk Structure Hierarchy

File

Extent 1

Cluster

Block Block

Cluster

Block Block

Cluster

Block Block

Extent 2

Cluster

Block Block

Extent 3

Cluster

Block Block

Cluster

Block Block

ZK-739-HC

The smallest addressable logical structure on a Files-11 On-Disk Structure
disk is a block, comprising 512, 8-bit bytes. During input/output operations,
one or more blocks may be transferred as a single unit between aFiles-11
On-Disk Structure disk and memory.

VMS RMS allocates disk space for new files or extended files using multiblock
units called clusters. The system manager specifies the number of blocks in a
cluster as part of volume initialization.

Note: Do not confuse cluster with a VAXcluster, which is a configuration of
multiple VMS systems sharing common resources.

Clusters may or may not be contiguous, or share a common boundary,
on a disk. Cluster sizes may range from 1 to 65,535 blocks. Generally, a
system manager assigns a disk with a relatively small number of blocks a
small cluster size. Relatively larger disks are assigned a larger cluster size to
minimize the overhead for disk space allocation.

An extent is one or more adjacent clusters allocated to a file or to a portion of
a file. If enough contiguous disk space is available, the entire file is allocated
as a single extent. Conversely, if there is not enough contiguous disk space,
the file is allocated using several extents, which may be scattered physically
on the disk. Figure 1-2 shows how a single file (File A) may be stored as a
single extent or as multiple extents.

With VMS RMS, you can exercise varying degrees of control over file space
allocation. At one extreme, you can specify the number of blocks to be
allocated and their precise location on the volume. At the other extreme, you
can allow VMS RMS to handle all disk space allocation automatically. As
a compromise, you might specify the size of the initial space allocation and
have VMS RMS determine the amount of space allocated each time the file is
extended. You can also specify that unused space at the end of the file is to

Introduction
1.1 File Concepts

Figure 1-2 Single and Multiple File Extents

Single extent for file A

Multiple extent for file A

ZK-738-82

be deallocated from the file, making that space available to other files on the
volume.

When you need a large amount of file storage space, you can combine several
Files-11 On-Disk Structure volumes into a volume set with file extents located
on different volumes in the set. You need not specify a particular volume
in the set to locate or create a file, but you may improve performance if you
explicitly specify a volume for a particular allocation request.

1.1.1.2 Physical Structures
For performance reasons, you should be aware of certain physical aspects of a
disk.

A disk (or volume) consists of one or more platters that spin at very high,
constant speeds and usually contain data on both surfaces (upper and lower).
A disk pack is made up of two or more platters having a common center.

Data is located at different distances from the center of the platter and
is stored or retrieved using read/write heads that move to access data at
various radii from the platter's center. The time required to position the
read/write heads over the selected radius (referred to as a track) is called
seek time. Each track is divided into 512-byte structures called sectors. The
time required to bring the selected sector (logical block) under the
read/write heads at the selected radius (track) is called the rotational latency.
Because seek time usually exceeds the rotational latency by a factor of 2 to 4,
related blocks (sectors) should be located at or near the same track to obtain
the best performance when transferring data between the disk and VMS
RMS-maintained buffers in memory. Typically, related blocks of data might
include the contents of a file or several files that are accessed together by a
performance-critical application.

Another physical disk structure is called a cylinder. A cylinder consists of all
tracks at the same radius on all recording surfaces of a disk.

1-5

Introduction
1.1 File Concepts

Figure 1-3 illustrates the relationship between tracks and cylinders.

Figure 1-3 Tracks and Cylinders

A track is comprised of I ~
the area at a single radius

~ on one recording surface.

Recording occurs on both
surfaces of each platter. The
extreme top and bottom
surfaces of some disk models
are not used for recording.

r-----------1
A cylinder consists of ~

l these tracks in the same I
 radius on all the recording

surfaces.

rRemainder of volume
containing other cylinders.

ZK-740-82

Because all blocks in a cylinder can be accessed without moving the disk's
read/write heads, it is generally advantageous to keep related blocks in the
same cylinder. For this reason, when choosing a cluster size for alarge-
capacity disk, a system manager should consider one that divides evenly into
the cylinder size.

Introduction
1.1 File Concepts

1.1.1.3 Files-11 On-Disk Structure Index File
Each Files-11 On-Disk Structure volume has an index file containing control
information that Files-11 On-Disk Structure software maintains for VMS
RMS. This information is transparent to your program but VMS RMS uses it
to give your program access to individual file records. The Guide to VMS Files
and Devices contains details on the various Files-11 On-Disk Structure control
structures; but the discussion here is limited to two components of the index
file, the home block and the file headers. The home block provides specific
information about the volume including default file values. The following
information is included within the home block:

• The volume name

• Information to locate the remainder of the index file

• The maximum number of files that can be present on the volume at any
given rime

• The user identification code (UIC) of the volume owner

• Volume protection information (specifies which users can read and/or
write the entire volume)

The home block identifies the disk as a Files-11 On-Disk Structure volume.
Initially, the home block is the second block on the volume. Files-11 On-
Disk Structure volumes contain several copies of the home block to ensure
that accidental destruction of this information does not affect VMS RMS
ability to locate other files on the volume. If the current home block becomes
corrupted, the system selects an alternate home block.

The volume's index file provides at least one file header for each file on the
volume. Each file header includes the following information:

• File ownership

• Protection

• Creation date

• Creation time

Each file header also contains a list of the extents that define the physical
location of the file. When a file has many extents, it may be necessary to
have multiple file headers for locating them. When this occurs, each header
is assigned a file identifier number to associate it with the appropriate file.

When you create a file, you normally specify a name that VMS RMS assigns
to the file on a Files-11 On-Disk Structure volume. VMS RMS places the file
name and file identifier associated with the newly-created file in a directory
that contains an entry defining the location for each file. To subsequently
access the file, you specify its name. The system uses the name to define a
path through the directory entry to the file identifier. The file identifier in
turn points to the file header that lists the file's extents.

Introduction
1.1 File Concepts

1.1.2 Tape Concepts
You can also use magnetic tape as a file storage medium with VMS RMS.
VMS RMS supports the standard magnetic tape structure defined by American
National Standard X3.27-1978 (Level 3), Magnetic Tape Labels and Record
Formats for Information Interchange.

Data records are organized on magnetic tape in the order in which they are
entered; that is, sequentially.

Characters of data on magnetic tape are measured in bits per inch (bpi).
This measurement is called density. A 1600-bpi tape can accommodate 1600
characters of data in 1 inch of recording space. A tape has 9 parallel tracks
containing 8 bits and 1 parity bit.

A parity bit is used to check for data integrity using a scheme where each
character contains an odd number of marked bits, regardless of its data bit
configuration. For example, the alphabetic character A has an ASCII bit
configuration of 100 0001 where two bits, the most significant and the least
significant, are marked. With an odd-parity checking scheme, a marked
eighth bit is added to the character so that it appears as 1100 0001. When
this character is transmitted to a receiving station, the receiver logic checks to
make sure that the character still has an odd number of marked bits. If media
distortion corrupts the data resulting in an even number of marked bits, the
receiving station asks the sending station to retransmit the data.

Even though a tape may have a density of 1600 bpi, there are not always
1600 characters on every inch of magnetic tape because of the interrecord
gap (IRG). The IRG is an interval of blank space between data records that
is created automatically when records are written to the tape. After a record
operation, this breakpoint allows the tape unit to decelerate, stop if necessary,
and then resume working speed before the next record operation.

Each IRG is approximately 0.6 inch in length. Writing an 80-character record
at 1600 bpi requires 0.05 inch of space. The IRG, therefore, requires twelve
times more space than the data with a resultant waste of storage space.

VMS RMS can reduce the size of this wasted space by using a record blocking
technique that groups individual records into a block and places the IRG after
the block rather than after each record. (A block on disk is different from a
block on tape. On disk, a block is fixed at 512 bytes; on tape, you determine
the size of a block.) However, record blocking requires more buffer space
for your program, resulting in an increased need for memory. The greater
the number of records in a block, the greater the buffer size requirements.
You must determine the point at which the benefits of record blocking cease,
based on the configuration of your computer system.

Figure 1-4 shows how space can be saved by record blocking. Assume that
a 1600-bpi tape contains 10 records not grouped into record blocks. Each
record is 160 characters long (0.1 inch at 1600 bpi) with a 0.6-inch IRG after
each record; this uses 7 inches of tape. Placing the same 10 records into 1
record block uses only 1.6 inches of tape (1 inch for the data records and 0.6
inch for the IRG).

Introduction
1.1 File Concepts

Figure 1-4 Interrecord Gaps

WITHOUT RECORD BLOCKING

Record Record Record Record Record Record Record Record Record Record

;:ti

~: I RG ~: ~~ I RG `~~~~ I RG I RG :f•: I RG f I RG I RG Y~~ I RG I RG I RG
~' • ~.:yy

f ti K

:•: } i

:'ai ~~

~~:::•

~ ~ u ...
'

..:•Z
::ti~i
•:Y.•i

WITH RECORD BLOCKING

All 10 records
 ~ 1

ZK-741-82

Record blocking also increases the efficiency of the flow of data into the
computer. For example, 10 unblocked records require 10 separate physical
transfers, while 10 records placed into a single block require only 1 physical
transfer. Moreover, a shorter length of tape is traversed for the same amount
of data thereby reducing operating time.

Like disk data, magnetic tape data is organized into files. When you create a
file on tape, VMS RMS writes a set of header labels on the tape immediately
preceding the data blocks. These labels contain information such as the
user-supplied file name, creation date, and expiration date. Additional labels,
called trailer labels, are also written following the file. Trailer labels indicate
whether or not a file extends beyond a volume boundary.

To access a file on tape by the file name, the file system searches the tape for
the header label set that contains the specified file name.

When the data blocks of a file or related files do not physically fit on one
volume (a reel of tape or a tape cartridge), the file is continued on another
volume, creating a multivolume tape file that contains a volume set. When
a program accesses a volume set, it searches all volumes in the set. For
additional information about magnetic tapes, see the Guide to VMS Files and
Devices.

Introduction
1.2 Volume Protection

1.2 Volume Protection
The system protects data on disk and tape volumes to make sure that no one
accesses the data accidentally or without authorization. For disk volumes, the
system provides protection at the file, directory, and volume levels. For tape
volumes, the system provides protection at the volume level only.

In addition to protecting the data on mounted volumes, the system provides
device protection coded into the home block of the disks and tapes. See
Section 1.1.1 for more information.

In general, you can protect your disk and tape volumes with user
identification codes (UICs) and access control lists (ACLs). The standard
protection mechanism is UIC-based protection. Access control lists permit
you to customize security for a file or a directory.

UIC-based protection is determined by an owner UIC and a protection code,
whereas ACL-based protection is determined by a list of entries that grant or
deny access to specified files and directories.

Note: You cannot use ACLs with magnetic tape files.

When you try to access a file that has an ACL, the system uses the ACL
to determine whether or not you have access to the file. If ACL does not
explicitly allow or refuse you access or if the file has no ACL, the system uses
the UIC-based protection to determine access. (See the Guide to VMS System
Security for additional information about system security.)

For detailed information about protecting your files, directories, or volumes,
see Section 4.3.

1.3 Record Management Services
VMS Record Management Services (VMS RMS) is the file and record access
subsystem of the VMS operating system. Used with the VMS operating
system, VMS RMS allows efficient and flexible data storage, retrieval, and
modification for disks, magnetic tapes, and other devices.

You can use VMS RMS from low-level and high-level languages. If you use
a high-level language, it may not be easy or feasible to use the VMS RMS
services directly, because you must allocate control blocks and access fields
within them. Instead, you can rely on certain processing options of your
language's input/output (I/O) statements or upon a specialized language
provided as an alternative to using VMS RMS control blocks directly, the File
Definition Language (FDL).

If you use aloes-level language, you can either use VMS RMS services
directly, or you may use FDL.

Introduction
1.3 Record Management Services

1.3.1 File Definition Language (FDL)
FDL is aspecial-purpose language you can use to specify file characteristics.
FDL is particularly useful when you are using ahigh-level language or when
you want to ensure that you create properly tuned files. Properly tuned files
can be created from an existing file or from a new design for a file. The
performance benefits of properly tuned files can greatly affect application and
system performance, especially when using large indexed files.

FDL allows you to use all of the creation-time capabilities and many of the
run-time capabilities of VMS RMS control blocks including the file access block
(FAB), the record access block (RAB), and the extended attribute blocks (XABs).

For more information about FDL, see Section 4.1.2.

1.3.2 VMS RMS Data Structures
VMS RMS control blocks generally fall into two groups: those pertaining to
files and those pertaining to records.

To exchange file-related information with VMS RMS file services, you use a
control block called a file access block (FAB). You use the FAB to define file
characteristics, file specifications, and various run-time options. The FAB has
a number of fields, each identified by a symbolic offset value. For instance,
the allocation quantity for a file is specified in a longword-length field having
a symbolic offset value of FAB$L _ALQ. FAB$L ~LQ indicates the number
of bytes from the beginning of the FAB to the start of the field.

To exchange record-related information with VMS RMS record services,
you use a control block called a record access block (RAB). You use the
RAB to define the location, type, and size of the input and output buffers,
the record access mode, certain tuning options, and other information. The
symbolic offset values for the RAB fields have the prefix RAB$ to differentiate
them from the values used to identify FAB fields. The RAB symbolic offset
values, have the same general format, where the letter following the dollar
sign indicates the field length and the letters following the underscore are a
mnemonic for the field's function. For example, the multibuffer count field
(MBF) specifies the number of VMS RMS buffers to be used for I/O and has
the symbolic offset value RAB$B_MBF. The value of RAB$B_MBF is equal to
the number of bytes from the beginning of the RAB to the start of the field.

Where applicable, VMS RMS uses control blocks called extended attribute
blocks (XABs), together with FABs and RABs, to support the exchange of
information with VMS RMS services. For example, a Key Definition XAB
specifies the characteristics for each key within an indexed file. The symbolic
offset values for XAB fields have the common prefix XAB$.

For more information about VMS RMS control blocks, see Chapter 4.

Introduction
1.3 Record Management Services

1.3.3 VMS RMS Services
Because VMS RMS performs operations related to files and records, services
generally fall into one of two groups:

• Services that support file processing. These services create and access
new files, access (or open) previously created files, extend the disk space
allocated to files, close files, get file characteristics, and perform other
functions related to the file.

• Services that support record processing. These services get (extract),
find (locate), put (insert), update (modify), delete (remove) records and
perform other record operations.

For more information about the VMS RMS services, see Chapters 7 and 8.

1.4 VMS RMS Utilities
The following are VMS RMS file-related utilities:

• The Analyze/RMS_File Utility

• The Convert Utility

• The Convert/Reclaim Utility

• The Create/FDL Utility

• The Edit/FDL Utility

These utilities let you design, create, populate, maintain, and analyze data
files that can use the full set of VMS RMS create-time and run-time options.
They help you create efficient files that use a minimum amount of system
resources, while decreasing I/O time.

For more information, see the appropriate utility manual.

1.4.1 The Analyze/RMS_File Utility
With the Analyze/RMS~'ile Utility (ANALYZE/RMS_FILE), you can
perform five functions:

• Inspect and analyze the internal structure of a VMS RMS file

• Generate a statistical report on the file's structure and use

• Interactively explore the file's internal structure

• Generate an FDL file from a VMS RMS file

• Generate a summary report on the file's structure and use

ANALYZE/RMS_FILE is particularly useful in generating an FDL file from an
existing data file that you can then use with the Edit/FDL Utility (also called
the FDL editor) to optimize your data files. Alternatively, you can provide
general tuning for the file without the FDL editor.

Introduction
1.4 VMS RMS Utilities

To invoke the Analyze/RMS_File Utility, use the following DCL command:

ANALYZE/RMS_FILE filespec[,...]

The filespec parameter lets you select the data file you want to analyze.

For more information about the Analyze/RMS_File Utility, refer to Chapter
10 of this manual and the VMS Analyze/RMS~ile Utility Manual.

1.4.2 The Convert Utility
The Convert Utility (CONVERT) copies records from ,one or more files to an
output file, optionally changing the record format and file organization to that
of the output file.

CONVERT is particularly useful in the tuning cycle of a file. After you have
analyzed and optimized the file, you can use CONVERT to create a new file
having the new, optimized characteristics and to copy the records in the old
file to the new file. You can also use CONVERT to reformat an indexed file
that has had many record insertions or deletions.

To invoke the Convert Utility, use the following DCL command:

CONVERT input-filespec[,...] output-filespec

Use the input-filespec parameter to specify the file or files you want to
convert, and use the output-filespec parameter to specify a destination file
for the converted records.

Figure 1-5 shows how CONVERT creates data files and loads them with
converted records from an input file.

Figure 1-5 Using CONVERT to Create a Data File

ZK-946-82

Introduction
1.4 VMS RMS Utilities

For more information about the Convert Utility, refer to Chapter 4 and the
VMS Convert and Convert/Reclaim Utility Manual.

1.4.3 The Convert/Reclaim Utility
The Convert/Reclaim Utility reclaims empty buckets in Prolog 3 indexed files
so that new records can be added to them. A bucket is a storage structure
that VMS RMS uses to build and process files.

The Convert/Reclaim Utility does an "in-place" reorganization of the file in
contrast to the Convert Utility, which creates a new file from the old file. For
this reason, the Convert/Reclaim Utility is more appropriate for large disk
files where space is limited. Before using the Convert/Reclaim Utility, be sure
to back up the file.

For more information about the Convert/Reclaim Utility, see Chapter 4 of
this manual the VMS Convert and Convert/Reclaim Utility Manual.

1.4.4 The Create/FDL Utility
The Create/FDL Utility (CREATE/FDL) uses the specifications in an existing
FDL file to create a new, empty data file.

To invoke this utility, use the following DCL command:

CREATE/FDL=fdl-filespec [filespec]

The fdl-filespec parameter specifies the source FDL file for creating the
data file. The filespec parameter gives you the option of assigning a file
specification to the data file.

Figure 1-6 shows how the CREATE/FDL Utility creates empty data files from
the specifications in an FDL file.

For more information about the CREATE/FDL Utility, see Chapter 4 and the
VMS File Definition Language Facility Manual.

1.4.5 The Edit/FDL Utility

The Edit/FDL Utility (EDIT/FDL) creates and modifies files that contain
specifications for VMS RMS data files. The specifications are written in the
file definition language, and the files are called FDL files.

A completed FDL file is an ordered sequence of file attribute keywords and
their associated values. By using an FDL file to specify the characteristics of
a data file, you can use most of the VMS RMS capabilities without having to
access the VMS RMS control blocks directly.

While you are designing the data model, EDIT/FDL informs you of syntax
errors and the effects of altering file characteristics. Using EDIT/FDL, you
can experiment with attributes that are critical to the record-processing
performance of the file, and you can calculate optimum file size.

Introduction
1.4 VMS RMS Utilities

Figure 1-6 Using CREATE/FDL to Create an Empty Data File

FDL File

CREATE/FDL

ZK-945-82

For example, the depth of an index is an important consideration in designing
an indexed file, and bucket size is one variable that determines the number
of levels. EDIT/FDL can show the effects of varying the bucket size on the
index depth to help you choose the optimum bucket size.

To invoke this utility, use the following DCL command:

EDIT/FDL fdl-filespec

The f dl-filespec parameter specifies the FDL file you want to create, modify, or
optimize.

For more information about the Edit/FDL Utility, see the VMS File Definition
Language Facility Manual.

1.5 Process and System Resources for File Applications
To use VMS RMS files efficiently, your application requires various process
and system resources. You may have to adjust specific resources and quotas
for the process running a file application. Before using VMS RMS options,
you should consider their impact on process and system resources. In
some cases, you may need additional memory or disk drives to ensure
that sufficient system resources are available.

Introduction
1.5 Process and System Resources for File Applications

1 5.1 Memory Requirements
One of the most important ways to improve application performance is to
allocate larger buffer areas or more buffers for an application. As described in
Chapter 7, the number of buffers and the size of buckets and blocks can be
fine tuned on the basis of the way the file will be accessed. For indexed files,
the index structure and other factors must also be considered.

When a file is opened or created, VMS RMS maintains the buffers and control
structures charged to process memory use. Memory use generally increases
with the number of files to be processed at the same time. The amount of
memory needed for I/O buffers can vary greatly for each file, but the amount
of memory needed for control structures is fairly constant.

The memory use (working set) of a process is governed by three resource
limits:

• Working set default (WSDEFAULT)

• Working set quota (WSQUOTA)

• Working set extent (WSEXTENT)

These values can ensure that the process has sufficient memory to perform
the application with minimum paging. For a complete description of these
limits, see the Guide to Setting Up a VMS System.

In addition to process requirements, you may want a shared file to use global
buffers to avoid needless I/O when the desired buffer is already in memory.
Global buffer usage is limited by the following SYSGEN parameters:

• VMS RMS global buffer quota (RMS_GBLBUFQUO)

• Global sections (GBLSECTIONS)

• Global pages (GBLPAGES)

• Global page-file pages (GBLPAGFIL)

When DCL opens aprocess-permanent file, VMS RMS places internal
structures for the file in a special portion of P1 space called the process
1/O segment. The segment size is determined by the SYSGEN parameter
PIOPAGES and cannot be expanded dynamically. If there is insufficient
space in the process I/O segment for the internal structures, DCL generates
an error message and does not open the file.

For a complete description of these parameters, see the VMS System Generation
Utility Manual.

Introduction
1.5 Process and System Resources for File Applications

1.5.2 Process Limits
If you anticipate asynchronous record I/O or are going to access a shared file,
you should consider the following process limits:

• Asynchronous system trap limit (ASTLM)

• Buffered I/O limit (BIOLM)

• Direct I/O limit (DIOLM)

• Enqueue quota limit (ENQLM)

• Open file limit (FILLM)

For a complete description of these process limits, see the Guide to Setting Up
a VMS System.

2 Choosing a File Organization

When you write an application program, you want the program to input data,
process it, store it, update it if necessary, and output it at the right time in the
right format. Moreover, the program should perform these functions quickly
and accurately.

To achieve this objective, you should consider the structure of your data files
and the data processing capabilities available to you through VMS RMS.

You should consider these factors when you write the application program,
especially if you have many users simultaneously accessing large files, or if
you have a high level of file activity where many records are stored, retrieved,
updated, or deleted in a given time period.

You may later reconsider these factors if you are not satisfied with the
application program's performance.

This chapter describes file design and structure to help you make the first
important design decision: selecting a file organization. Section 2.1 covers
record access modes and formats. Section 2.2 describes file concepts and
organization.

See Chapter 3 for a description of performance criteria that will help you to
evaluate the performance of your data files.

All of the VMS RMS features described in this chapter are available at the
VAX MACRO programming level, and many are available to higher-level
programming languages that use FDL as an intermediary to the VMS RMS
control blocks. (See the descriptions of the FDL routines in the VMS Utility
Routines Manual for details.)

High-level languages may support only a subset of VMS RMS features. If you
intend to use VMS RMS from ahigh-level •language, refer to your language
manual to determine the VMS RMS capabilities available to you.

2.1 Record Concepts
In considering the structure of your data files, note that a file is an ordered
collection of logically related records treated as a unit.

One design consideration is the way records are transferred to your program
from storage. For disk files, the smallest unit of transfer is a block, but
records are usually transferred in multiple blocks using transfer units that
are primarily dictated by file organization. If you use the sequential file
organization, the multiblock run-time option allows multiple blocks to be
transferred during a single I/O operation. Relative files and indexed files use
buckets to transfer records. A bucket is a storage structure, consisting of 1 to
63 blocks, that is used for building and processing relative and indexed files.

Another design consideration is how records are accessed. This is called the
record access mode. The record access mode specifies the way your program
stores and retrieves file records.

Choosing a File Organization
2.1 Record Concepts

A third consideration in designing files is how records are formatted. The
program that creates the file specifies its record format. Any program that
accesses the file must conform to the defined record format.

A fourth consideration is record layout. The record layout defines the number
and length of record fields. For example, a program that creates records in a
payroll file might use a record layout containing the following fields:

• Employee name

• Social security number

• Pay rate

• Deductions

The next two sections describe VMS RMS record access modes and record
formats, respectively.

2.1.1 Record Access Modes
VMS RMS provides two record access modes, sequential access and random
access. Random access can be further catalogued as one of the three following
modes:

• Random access by key value

• Random access by relative record number

• Random access by record file address (RFA)

Although you cannot change its file organization after you create a file, you
can change the record access mode each time you access a record in the file.
For example, a relative file can be processed in sequential record access mode
one time and in a random access mode the next time. Table 2-1 lists the
combinations of record access modes and file organizations supported by
VMS RMS.

Table 2-1 Record Access Modes and File Organizations

File Organization

Access Mode Sequential Relative Indexed

Sequential Yes Yes Yes

Random by relative Yes' Yes No
record number

Random by key No No Yes
value

Random by record Yes2 Yes Yes
file address

~ Permitted with fixed-length record format on disk devices only

2Permitted on disk devices only

The following sections describe the record access modes and the capability for
switching from one mode to another during program execution.

2-2

Choosing a File Organization
2.1 Record Concepts

2.1.1.1 Sequential Access
In sequential access mode, storage or retrieval begins at a designated point
in the file and continues sequentially through the file. VMS RMS begins
accessing records at the start of the file, unless you specify the starting point
explicitly or establish a starting point through a previous operation.

In the sequential access mode, your program issues a series of requests to
VMS RMS to retrieve or store succeeding records in a file. Before acting on
these requests, VMS RMS checks the file organization to determine how to
proceed. The following sections describe how VMS RMS handles sequential
access for each of the three file organizations.

Sequential Access to Sequential Files

In a sequential file, records are stored adjacent to each other. To retrieve
a particular record within the file, your program must open the file and
successively retrieve all records between the current record position and the
selected record.

Figure 2-1 shows a disk volume surface. Each lettered section on the surface
represents a record in a sequential file, beginning with record A. When the
program requests sequential access to the file records, VMS RMS interprets
each request in the context of the file's organization.

Because this particular file is sequential, VMS RMS complies with each request
(except for the first request) by accessing the record immediately following the
previously accessed record. For example, after VMS RMS accesses record A,
it updates the current-record position to record B in anticipation of the next
request.

Figure 2-1 Sequential Access to a Sequential File

User Program

Read
next record

Read
next record

VMS RMS

 /' — — — —

r

Read
next record

ZK-747-82

There are limitations imposed by sequential access. When accessing data
sequentially, a program can access a previous record only by reopening or
rewinding the file, or by switching to a random access mode. (See Chapter 8
for details.) Another (imitation of sequential access is that you can add
records only to the end of the file.

Choosing a File Organization
2.1 Record Concepts

Sequential Access to Relative Files

Relative files may be accessed sequentially even if some of the fixed-length
file cells are empty (because records were never stored in them or because
records were deleted from them). If a cell is empty, VMS RMS ignores it and
sequentially searches for the next cell that contains a record. For example,
assume a relative file contains records only in cells 1, 3, and 6. VMS RMS
responds to a sequential retrieval request by retrieving the record in cell 1,
then the record in cell 3, then the record in cell 6.

Figure 2-2 shows how VMS RMS checks each cell, ignores an empty cell
when it finds one, and then checks the next cell for a record.

Figure 2-2 Sequentially Retrieving Records in a Relative File

User Program

Read
next record

Read
next record

VMS RMS

Read
next record

ZK-748-82

When storing records sequentially in a relative file, VMS RMS places each
new record in the cell whose relative record number is one higher than the
most recently accessed cell, provided the cell is empty. If the cell is not
empty, the new record cannot be stored in it. Instead, VMS RMS returns an
error status.

As Figure 2-3 shows, the program directs VMS RMS to store record F in
cell 2. Record A already occupies cell 1 but cell 2 is empty, so VMS RMS
can store the record in this cell. If this request is followed by a request to
sequentially store the next record, VMS RMS stores the record in cell 3, which
is also empty. However, if the program tries to store a new record in the next
cell (which already contains record B), the attempt fails.

Note that although VMS RMS cannot store a new record in a cell that is
already occupied, your program is permitted to modify the record currently
occupying the cell.

Sequential Access to Indexed Files

When a program sequentially accesses an indexed file, VMS RMS uses one
or more indexes to determine the order in which to process the file records.
Because index entries are ordered by key values, an index represents a logical
ordering of the records in the file. If you define more than one key for the
file, each index associated with a key will represent a different logical ordering
of the records in the file. Your program, then, can use the sequential access
mode to retrieve records in the logical order represented by any index.

Choosing a File Organization
2.1 Record Concepts

Figure 2-3 Sequentially Storing Records in a Relative File

User Program

Write record
F to cell 2

Cell 2,
now contains
record F

Cel 1 1, start
of file

::`File after':;:}
write~~operation

ZK-749-82

To retrieve records sequentially from an indexed file, your program must
first specify to VMS RMS a key of reference (for example, primary key, first
alternate key, second alternate key, and so on). For succeeding retrievals,
VMS RMS uses the appropriate index to retrieve records based on how
the records are ordered in the index. If VMS RMS accesses the index in
ascending sort order, it returns the record with a key value equal to or higher
than the key value in the previously accessed record. Conversely, if VMS
RMS accesses records in descending order, it accesses the next record having
a key value equal to or lower than the key value in the previously accessed
record.

In contrast to a request to retrieve data sequentially from an indexed file, a
request to store data sequentially in an indexed file does not require a key of
reference. Rather, VMS RMS uses the stored definition of the primary key to
place the record in the primary index and, where applicable, VMS RMS uses
the definition of the appropriate alternate key to place a record pointer in the
alternate index. When a program issues a series of requests to sequentially
store data, VMS RMS verifies that the key value in each successive record is
in the specified order.

2.1.1.2 Random Access by Key Value or Relative Record Number
Random access is supported for all relative files, ali indexed files, and a
restricted set of sequential disk files those having fixed-length records. In
random access mode, your program (not the file organization) determines
the record processing order. For example, to randomly access a record in a
relative file or a record in a sequential disk file having fixed-length records,
your program must provide VMS RMS with the relative record number of
the cell containing the record. Similarly, to randomly access a record from an
indexed file, your program must provide VMS RMS with the appropriate key
of reference and key value.

Choosing a File Organization
2.1 Record Concepts

Random Access to Sequential and Relative Files

Unlike sequential access, random access follows no specific pattern. Your
program may make successive requests for storing or retrieving records
anywhere within the file. In Figure 2-4, the program directs VMS RMS to
retrieve the record from the sixth cell in a relative file (record C) and then
requests VMS RMS to retrieve record F, which occupies the second cell.

Figure 2-4 Random Access by Relative Record Number

Start of file

ZK-750-82

Compare Figure 2-4 with Figures 2-1 and 2-2.

Random Access to Indexed Files

To randomly access a record from an indexed file, your program must specify
both a key value and the index that VMS RMS must search (for example,
primary index, first alternate key index, second alternate key index, and so
on). When VMS RMS finds a record with a matching key value, it passes the
record to your program.

Your program can use several methods to randomly access a record by key:

• Exact match of key values.

• Approximate match of key values. When accessing an index in ascending
sort order, VMS RMS returns the record that has the next higher key
value. Conversely, when the index is accessed in descending sort order,
VMS RMS returns the record that has the next lower key value.

• Generic match of key values. Generic matching is applicable to string
data-type keys only. For a generic match, the program need specify only
a match of some specified number of leading characters in the key.

• Combination of approximate and generic match.

Chapter 8 describes these key match conditions in more detail.

In contrast to record retrieval requests, program requests to store records
randomly in an indexed file do not require the separate specification of a key
value. All keys (primary and any alternate key values) are in the record itself.

When your program opens an indexed file to store a new record, VMS RMS
uses the key definitions stored in the file to find each key field in the record
and to determine the length of each key. After writing the new record into
the file, VMS RMS uses the record's key values to make appropriate entries in

2-6

Choosing a File Organization
2.1 Record Concepts

the related indexes so that the record can be subsequently accessed using any
of its key values.

2.1.1.3 Random Access by Record File Address
Every record on disk has a unique file address the record file address (RFA)
that provides another way to randomly retrieve records in all types of file
organizations.

Note: RFA mode provides the only means of randomly accessing variable-length
records in a sequential file.

An important feature of the RFA is that it remains constant as long as the
record is in the file. VMS RMS returns the RFA to your program each time
the record is retrieved or stored. Your program can either ignore the RFA or
keep it as arandom-access pointer to the record for subsequent accesses.

Figure 2-5 contains two illustrations. The first shows that when a record is
stored in a file, its RFA is returned to the program. The second shows that
when the program wants to subsequently access this record randomly, it
simply provides VMS RMS with the RFA.

2.1.2 Record Formats
Except for the key values that are part of the records stored in indexed
files, VMS RMS is not concerned with record content. Rather, it looks at
the record's format, that is, the way the record physically appears on the
recording surface of the storage medium.

VMS RMS supports four record formats:

• Fixed-length format

• Variable-length format

• Variable-length with fixed-length control field (VFC) format

• Stream format

The fixed-length and variable-length record formats are supported for all
three file organizations. The variable-length with fixed-length control field
(VFC) record format is supported only for sequential and relative files.

Note: In relative fides, all records are stored in fixed-length cells regardless of
their format.

The stream format is supported for sequential files only.

At the VAX MACRO level, you may specify the record format for a file
directly by using the FAB$B_RFM field in the FAB.

Choosing a File Organization
2.1 Record Concepts

Figure 2-5 Random Access by Record File Address

Start of file

Start of file

User Program

Read record
by R FA

VMS RMS

Record file
address

empty empty

ZK-751-82

2.1.2.1 Fixed- Length Record Format
When you specify fixed-length record format, all file records are the same
length. The record length set at file-creation time cannot be changed. It
becomes part of the information that VMS RMS stores and maintains for the
file.

For the fixed-length record format, each record occupies the same amount
of space in the file, and the specified length must be able to accommodate
the longest record in the file. If any record fields are not used, your program
must be able to detect them and provide appropriate error processing.

Choosing a File Organization
2.1 Record Concepts

2.1.2.2 Variable-Length Record Format
When the variable-length record format is specified, each record is only as
long as the data within it requires. When VMS RMS stores avariable-length
record in a file, it prefixes a count field to the record. The count field contains
the number of bytes in the record to accommodate retrieval. VMS RMS builds
the count field from information in your program and treats it separately from
the associated record data field.

VMS RMS uses the following two types of variable-length record formats, V
format and D format:

V format

D format

Applies to variable-length records in disk files. VMS RMS prefixes
the data portion of each record with a 2-byte binary count field that
specifies the length of the record in bytes, excluding the byte field
itself.

Applies to variable-length records in tape files. To comply with
the American National Standard X3.27-1978 (Level 3), Magnetic
Tape Labels and Record Formats for Information Interchange, VMS
RMS stores a 4-byte decimal count field before the data field of
each record on a magnetic tape volume. In contrast to V-format
records, the count field is considered as part of the record; but
before returning the count, VMS RMS adjusts it to include only the
length of the record data.

When you create a file of variable-length records, specify the value (in bytes)
of the largest record permitted in the file. Any attempt to store a record
containing more bytes than the specified value results in an error. If you
specify a value of 0, any length record can be stored in the file; however, you
must consider the bucket capacity limitation defined for relative and indexed
files.

Figure 2-6 compares fixed-length record formats and variable-length record
formats as they apply to sequential files. Each format shows a portion of a file
that contains three records. The comparable record in each format contains
the same number of bytes. The first record has 8 bytes, the second, 16, and
the third, 24. For the fixed-length record format, the record length is set at 32
bytes. Therefore, VMS RMS considers all 32 bytes to be used.

Choosing a File Organization
2.1 Record Concepts

Figure 2-6 Comparison of Fixed- and Variable-Length Records

Fixed
length i ~A

32 bytes * 32 bytes * 32 bytes

D format
variable 8 16 24

length bytes bytes bytes
(tape►

V format
variable
length
(diskl

~~ /
four byte

count fields

~~

1

I
~

I
I

I

8
bytes

~

I

j
I
~

I

16
bytes

24
bytes

`~ ► ~

two byte
count fields

•VMS RMS considers all 32 bytes to be used, even though they may not contain useful information in the eyes
of the user.

ZK-754-82

Clearly, variable-length records can save space; but if records are updated
in place, you should consider trading off some space efficiency for update
flexibility. All records in a relative file are stored in fixed-length cells. Here,
variable-length records do not save space; in fact, the two count-field bytes
prefixing each record actually consume additional space.

In the indexed file organization, record length is limited by the capacity of the
data bucket and the maximum record size.

2-10

Choosing a File Organization
2.1 Record Concepts

2.1.2.3

l"1

Variable-Length with Fixed-Length Control Field VFC) Record Format
VFC records are similar to variable-length records .except that affixed-length
control field is prefixed to the variable-length data portion. Unlike variable-
length records, VFC records cannot be used in indexed files.

When you create a file for VFC records, you must specify the value (in bytes)
of the longest record permitted in the file. Any attempt to store a record
containing more bytes than the specified value results in an error. If you
specify a value of 0, any length record can be stored in the file.

You must also specify the value in bytes of the fixed-length control field. The
fixed-length control field lets you include within the record additional data
that may have no direct relationship to the other contents of the record. For
example, the fixed-length control field may contain line-sequence numbers
for every record in the file. The program does not use the line-sequence
numbers, but they are helpful in locating records during file editing.

At the VAX MACRO level, you establish the length of the control field for
VFC records using the FAB$B_FSZ field in the FAB. The Open, Create, and
Display services provide the control field length in the XAB$B_HSZ field of
the File Header Characteristic XAB. For more information, see the VMS Record
Management Services Manual.

When writing a VFC record to a file, VMS RMS merges the fixed-length
control field with the variable-length record data and prefixes the merged
record with the count field. Figure 2-7 shows how VMS RMS writes a VFC
record to a file.

Figure 2-7 Writing a VFC Record to a File

Create record
(user action►

Write record
and prefix
count field

Fixed control area
portion

Data portion

VMS RMS

Count
field

Fixed control area
portion

Data portion

VFC Record I
ZK-755-82

Choosing a File Organization
2.1 Record Concepts

When VMS RMS reads a VFC record, it uses the count field to determine
the overall length of the record, and it uses the appropriate file attribute to
determine the length of the control field. After subtracting the control-field
length from the overall record length, VMS RMS uses the result to separate
the data from the control information. It then processes the data and stores
the control information in a designated storage area for program use, if
applicable. See Figure 2-8.

Figure 2-8 Retrieving a VFC Record

Read record
(user action)

VMS RMS

Count
field

Fixed control area
portion

Data portion

Separate record Data portion

Fixed control area
portion

Process data
(user action)

ZK-756-82

2.1.2.4 Stream Record Format
Special characters or character sequences called terminators delimit the records
in files using the stream record format. VMS RMS_ treats the terminators as
an integral part of each record.

There are three variations of stream record format:

STREAM_CR This variation uses a carriage return as the terminator.

STREAM_LF This variation uses a line feed as the terminator.

STREAM This variation uses a terminator from a limited set of special
characters: the carriage return (CR); the carriage-return/line-feed
combination (CR/LF); or the form feed (FF).

In astream-formatted file, the data is treated as a continuous stream of bytes,
without control information. VMS RMS supports the stream record format for
sequential files on disk devices only.

Choosing a File Organization
2.2 File Organization Concepts

2.2 File Organization Concepts
The terms file organization and access mode are closely related, but they are
distinct from each other, nonetheless.

You establish the physical arrangement of records in the file the file
organization when you create it. The organization of a file cannot be
changed unless you use a utility conversion routine (such as the Convert
Utility) to create the file again with a different organization.

One of the file attributes you specify prior to creating a file is how records are
inserted into it and subsequently retrieved from it the access mode.

The terms file organization and access mode are sometimes confused because
they share common elements. That is, files are organized sequentially, relative
to some reference value, or by keyed index value. Similarly, a file may be
accessed sequentially, relative to some reference value, or by using a keyed
index value. The following sections emphasize the distinctions between the
types of file organization.

Table 2-2 lists important features of each file organization.

Table 2-2 File Organization Characteristics

Characteristics Sequential Relative Indexed

MEDIUM

Disk Yes Yes Yes
Magnetic tape Yes No' No'

Unit records Yes No No

RECORD FORMATS

Fixed-length Yes Yes Yes
Variable-length Yes Yes Yes

VFC (disk only) Yes Yes No
Stream (disk only) Yes No No

Undefined (disk only) Yes No No

OVERHEAD PER RECORD

0, 1, or 2 bytes2 1 or 3 bytes3 7 to 13 bytes4

~ Although these file organizations are not compatible with magnetic tape operations, you may use magnetic tape to
transport the files.

2Fixed-length records and records with undefined format use no overhead; stream records use either 1 or 2 bytes of
overhead; variable-length and VFC records use 2 bytes of overhead.

3Fixed-length records use 1 byte of overhead; variable-length records and VFC records use 3 bytes of overhead; extra
overhead applies to each cell.

4Prolog 1 and Prolog 2fixed-length records use 7 bytes of overhead. Prolog 1 and Prolog 2variable-length records
use 9 bytes of overhead. For Prolog 3, fixed-length records use 9 bytes of uncompressed overhead, and variable-length
records use 1 1 bytes of uncompressed overhead. For key compression, add 2 bytes of overhead.

5Unit record devices include printers, terminals, card readers, mailboxes, and so forth.

2-13

Choosing a File Organization
2.2 File Organization Concepts

Table 2-2 (Cont.) File Organization Characteristics

Characteristics Sequential Relative Indexed

RECORD OPERATIONS

Connect Yes Yes Yes

Delete No Yes Yes

Disconnect Yes Yes Yes

Find Yes Yes Yes

Flush Yes Yes Yes

Free Yes Yes Yes

Get Yes Yes Yes

Rewind Yes Yes Yes

Truncate Yes No No

Update (disk only) Yes Yes Yes

Put Yes Yes Yes

I/O UNIT

1 or more Bucket Bucket
blocks

I/O TECHNIQUES

Deferred write Normal mode Selectable Selectable

Multiblock count Yes Bucket size Bucket size

Multiple access streams Yes Yes Yes

Multiple buffers Yes Yes Yes

Access sharing Read/write Read/write Read/write

Other features Block-spanning Maximum Areas
records record number

The next three sections describe file organizations.

2.2.1 Sequential File Organization
VMS RMS supports the sequential file organization for all device types. It is
the only organization supported for nondisk devices.

In sequential file organization, records are arranged one after the other in the
order in which they are stored in the file. For example, the fourth record is
located between the third and fifth records, as illustrated in Figure 2-9.

Choosing a File Organization
2.2 File Organization Concepts

Figure 2-9 Sequential File Organization

Fourth record is
located between

third and fifth records

First Second Third Fourth Fifth Sixth
record record record record record record

ZK-742-82

You cannot insert new records between existing records because no physical
space separates them. Therefore, you can only add records to the current end
of the file, that is, immediately following the most recently added record. For
the same reason, you cannot add to the length of an existing record when
updating it.

Some advantages and disadvantages of the sequential file organization are
outlined in Table 2-3.

Table 2-3 Sequential File Organization: Advantages and
Disadvantages

Advantages Disadvantages

Simplest organization

Minimum overhead on disk

Allows block spanning

Optimal if application accesses all
records on each run

Most versatile format: exchange
data with systems other than
VMS RMS; compatible with ANSI
magnetic tape format

No restrictions on the type of
storage media; the file is portable

To get a particular record, most higher-level
languages must access all the records prior
to it no random access by key'

Interactive processing is awkward; operator
must wait as the program searches for a
record

You can add records only to the end of the
file

~ This restriction does not apply to disk sequential files with fixed-length record format.
Records in such files can be stored and retrieved using random access by key, depending
on language capabilities.

Choosing a File Organization
2.2 File Organization Concepts

Table 2-3 (Cont.) Sequential File Organization: Advantages and
Disadvantages

Advantages Disadvantages

Random access by key available
on fixed-format disk sequential
files

2 2.2 Relative File Organization
The relative file organization allows sequential and random access of records
but is supported on disk devices only.

Note: Although relative files are not supported for magnetic tape operations,
magnetic tape can be used to transport relative files.

In fact, relative files provide the fastest random access, and they require fewer
tuning considerations.

A relative file consists of a series of fixed-length record positions (or cells)
numbered consecutively from 1 to n that enables VMS RMS to calculate the
record's physical position on the disk. The number, referred to as the relative
record number, indicates the record cell's position relative to the beginning of
the file.

VMS RMS uses the relative record number as the key value to randomly
access records in a relative file. The preferred method of tracking relative
record numbers is to assign them based on some numeric field within the
record; for example, the account number.

See Section 2.1.1.2 for a description of random access by key.

Each record in the file may be randomly assigned to a specific cell. For
example, the first record may be assigned the first cell and the second record
may be assigned the third cell, leaving the second cell empty. Unused cells
and cells from which records have been deleted may be used to store new
records.

Figure 2-10 illustrates the relative file organization.

Choosing a File Organization
2.2 File Organization Concepts

Figure 2-10 Relative File Organization

Relative cells

/ \\\
1 2 3 4 5 6

1

First Second Third Fourth Fifth
record Empty record record record record
written cell written written written written

- - - -
ZK-743-82

In a relative file, the actual length of the individual records may vary (that is,
different size records can be in the same file) up to the limits imposed by the
specified cell length. For example, think of a relative file configured as shown
in Figure 2-11.

Note that because the records are variable-length records, each is prefixed by
3 bytes: the 2-byte count field (described in Section 2.1.2.2) and a 1-byte field
that indicates whether or not the cell is empty (a delete flag). These bytes
are used only by VMS RMS you need not be concerned with them, except
when planning the file's space requirements.

Figure 2-11 Variable-Length Records in Fixed-Length Cells

FIXED-LENGTH CELLS

256 bytes 256 bytes 256 bytes

Record 1
192 bytes used

Record 2
128 bytes used

~•~~~~• i:!} ~:

~~~:: :r. 

Record 3 
all 253 bytes used 

/.. 

Legend: 

= VMS RMS control information bytes 

= Unused bytes 

ZK-744-82 

Some advantages and disadvantages of relative file organization are outlined 
in Table 2-4. 



Choosing a File Organization 
2.2 File Organization Concepts 

Table 2-4 Relative File Organization: Advantages and 
Disadvantages 

Advantages Disadvantages 

Random access in all languages 

Allows deletions 

Allows random Get and Put 
operations 

Random and sequential access 
with low overhead 

Can be write-shared 

Restricted to disk devices 

File contains a cell for each cell number 
between first and last record in file; limits 
data density 

Program must know relative record number 
or RFA before it can randomly access the 
data; no generic access as in indexed file 
organization 

Interactive access can be awkward if you 
do not access records by relative record 
number 

You can only insert records into unused 
record cells, but you can update existing 
records 

VMS RMS does not allow duplicate relative 
record numbers 

The space taken up by each record is as 
long as the maximum record size 

2.2.3 Indexed File Organization 
The indexed file organization allows sequential and random access of records 
but is supported on disk devices only. 

Note: Although relative files are not supported for magnetic tape operations, 
magnetic tape can be used to transport relative files. 

This type of file organization lets you store data records in an index structure 
ordered by the primary key and to retrieve data using index structures ordered 
by primary or alternate keys. The alternate index structures do not contain 
data records; instead, they contain pointers to the data records in the primary 
index. 

For example, an indexed file may be ordered in ascending sort order by 
the primary key "employee number." However, you may want to set up 
additional (alternate) indexes for retrieving records from the file. Typically, 
you might set up an alternate index that is ordered in descending sort order 
by each employee's social security number. 

Note: The physical location of records in an indexed file is transparent to your 
program because VMS RMS controls record placement. 

In addition to the indexes, each indexed file includes a prolog structure 
that contains information about the file, including file attributes. VMS RMS 
currently supports three distinct prologs Prolog 1, Prolog 2 and Prolog 3 
but VMS RMS will normally create a Prolog 3 indexed file. However, you can 
specify a previous prolog version, typically for compatibility with R1VIS-11. 

2-18 



Choosing a File Organization 
2.2 File Organization Concepts 

2.2.3.1 Sequentially Retrieving Indexed Records 
To sequentially retrieve indexed records, your program must specify the key 
for the first access. VMS RMS then uses the index for that key to retrieve 
successive records. For example, assume there is an index file with three 
records, having primary keys of A, B, and C, respectively. To retrieve these 
records sequentially in ascending sort order, your program must provide the 
key A on the first access; VMS RMS will access the next two records without 
further key inputs from your program. 

To randomly retrieve records in an index file, your program must provide the 
appropriate key value for each access. Now assume an index file with three 
records having primary keys A, B, and C that will be retrieved in C, A, B 
order. On the first access, your program must provide the key C,~ on the next 
access the key A, and on the final access the key B. 

2.2.3.2 Index Keys 
In an indexed file, each record includes one or more key fields (or simply 
keys) that VMS RMS uses to build related indexes. Each key is identified by 
its location within the record, its length, and whether it is ~ a simple key or a 
segmented key. 

A simple key may be any one of the following data types: 

• A single contiguous character string 

• A packed decimal number 

• A 2-, 4-, or 8-byte unsigned binary number 

• A 2-, 4-, or 8-byte signed integer 

Note: RMS-11 cannot process 8-byte numeric keys. 

Segmented keys are fields of character strings having from 2 to 8 segments 
which may be or may not be contiguous; however, VMS RMS treats all key 
segments as a logically contiguous string. 

For an indexed file, you must define at least one key, the primary key, and 
you may optionally define one or more alternate keys. VMS RMS uses 
alternate keys to build indexes that identify records in alternate sort orders. 
As with the primary key, each alternate key is defined by its location and 
length within the record. 



Choosing a File Organization 
2.2 File Organization Concepts 

2.2.3.3 Other Key Characteristics 
In addition to defining keys, you can specify various key characteristics (FDL 
secondary key attributes) including the following: 

Duplicate keys 

Changeable keys 

Null keys 

This characteristic permits you to use the key value in 
more than one record. However, only the first record 
having the key value can be accessed randomly; other 
records having the same key value can only be accessed 
sequentially. 

This characteristic applies to alternate keys only. When 
you specify changeable alternate keys, the alternate keys 
in a record can be changed when the record is updated. 
When an alternate key value is changed, VMS RMS 
automatically adjusts the appropriate index to reflect the 
new key value. 

This characteristic applies to alternate keys only. When 
you fill an alternate key field with null characters, VMS 
RMS does not insert the record in the related index. 

Note: VMS RMS excludes from the related index any record that is not long 
enough to contain a complete alternate key. 

Key characteristics can be defined separately for each key. 

When you do not allow duplicate key values, VMS RMS rejects any attempt 
to put a record into a file if it contains a key value that duplicates a key 
value already present in another record. Similarly, when alternate key values 
cannot be changed, VMS RMS does not allow your program to update a 
record by changing the alternate key value. If you disallow a null value for 
a key, VMS RMS inserts an entry for the record in the associated alternate 
index. 

Figure 2-13 illustrates the general structure of an indexed file in which only 
the primary key is defined. The primary key is the names of employees in 
an employment record file. Figure 2-12 illustrates the general structure of an 
indexed file in which the primary key and one alternate key are defined. The 
primary key is the names of employees, and the alternate key is the badge 
numbers of employees in an employment record file. 

2.2.3.4 Specifying Sort Order 
VMS RMS lets you specify either ascending sort order or descending sort 
order for each key. At the VAX MACRO level, you encode sort order within 
the key data type field (XAB$B_DTP) of the associated key XAB; you use the 
attribute KEY TYPE at the FDL level. For example, if you want to build an 
index of string data type keys in ascending sort order using VAX MACRO, 
you enter the following line in the associated key XAB: 

DTP = STG 

To build an index of string data type keys in descending sort order, you enter 
this line in the associated key XAB: 

DTP = DSTG 

2-20 



Choosing a File Organization 
2.2 File Organization Concepts 

Figure 2-12 Single-Key Indexed File Organization 

KEY DEFINITION 

PRIMARY INDEX (Employee Name) 

ADAMS • • • BAKER CLARK • • • JONES • • . SMITH • • • TAYLOR • . • WYMAN 

1 1 

ADAMS I PINE ST I 35112 
1 I 

• 

• CLARK ELM AVE 24379 • • • JONES MAIN ST 19724 

Note: Assumes one record per bucket 

DATA RECORDS 

• • • SMITH HOLT RD 11733 • • • WYMAN ;MAIN ST i 2254 

 J 

ZK-745-82 

See the VMS Record Management Services Manual for a complete listing of key 
data types used to specify ascending and descending sort order. 

2.2.3.5 Using Collated Keys 
The VMS RMS multinational key feature lets you assign alternative (non-
ASCII) collating sequences to a key. For example, a program can sort records 
using a key that accesses a collating sequence based on French or alternatively 
accesses a collating sequence based on Spanish. 

The basis for this feature is the National Character Set Utility (NCS). When 
an application program creates an index file with an alternative collating 
sequence, it calls NCS. NCS responds by retrieving the collating sequence 
from the NCS library, storing it in local memory and providing the calling 
program with a pointer to it. In addition to naming the collating sequence, 
the calling program must provide NCS with a location for storing the pointer 
(CS_ID) to the memory location of the collating sequence. (For information 
about NCS, see the VMS National Character Set Utility Manual.) 

When the application program creates the data file, it uses the pointer to copy 
the collating sequence from local memory into the data file's prolog space. A 
collating sequence is typically one block long. 

The application program may specify a collated key from either the RMS 
interface or the FDL interface. 

From the RMS interface, the application program identifies the collating 
sequence using an appropriate string descriptor and includes a symbolic 
reference to the location of the pointer. As with all other keys, the application 
program may specify either ascending or descending sort order. From the 
RMS interface, you specify the key data type COL for an ascending sort order 
or the key data type DCOL for descending sort order. 

From FDL, you specify a collated key by selecting the one of the collated key 
data types (collated for ascending sort order, decollated for descending sort 
order) from the INDEXED file script. FDL responds by prompting for the 
name of the collating sequence. If you enter an invalid collating sequence, 

2-21 



Choosing a File Organization 
2.2 File Organization Concepts 

N 

N 

01 
n 

O 
N 

O 

N 
N 

Z 

Q 

H 

Z 

0 

I 
w 
Y 

0 

N 

e 
N 

Q1 

N 

N 

z 
a 

3 

Q 

J 

Q 
H 

Z 
Q 
J 

0 
Z 

2 
H 

w 
z 
O 

Y 
Q 
Q 
J 
U 

w 
Y 
Q 
m 

N 

Q 
O 
Q 

1 \

1 

N 

2 
a 

Z 
Q 

3 

0 
Q 

a 
N 

Z 

Q 

N 

Z 

O 

rn
r 

N 

7 
Q 

W 

Y 
Q 
Q 

U 

N 

h 
M 

r 

w 
2 
a 

0 
a 



Choosing a File Organization 
2.2 File Organization Concepts 

any attempt to use the FDL file for creating a data file will be unsuccessful 
and NCS generates the following error message: 

%NCS-F-NOT_CS, name or id is not a CS 

Example 2-1 illustrates the use of collating keys in a MACRO-32 program 
segment. 

Example 2-1 Creating a File Containing Collated Keys 

.TITLE Example 

Define key type as COL or DCOL 

KEYO: $XABKEY 

DTP=COL 

Descriptor for collating sequence name 

CS_DESC: .ASCID /Spanish/ 
.EXTRN NCS$GET_CS 

Collating sequence name descriptor 

PUSHAL CS_DESC 

Where to store address of collating sequence 

PUSHAL KEYO+XAB$L_COLTBL 

Fetch collating sequence 

CALLS #2,G"NCS$GET_CS 
BLBC RO,ERROR 

Create file 

$CREATE FAB=OUTFAB 
BLBC RO,ERROR 

2-23 



Choosing a File Organization 
2.2 File Organization Concepts 

2.2.3.6 Summary of Indexed File Organization 
Some advantages and disadvantages of the indexed file organization are 
outlined in Table 2-5. 

Table 2-5 Indexed File Organization: Advantages and 
Disadvantages 

Advantages Disadvantages 

Most flexible random access: 
by any one of multiple keys or 
RFA; key access by generic or 
approximate value 

Duplicate key values possible 

Automatic sort of records by 
primary and alternate keys; 
available during sequential access 

Record location is transparent to 
user 

Potential range of key values not 
physically present as in relative file 
organization 

Variety of data formats for keys 

Transparent data compression 

Highest overhead on disk and in memory 

Restricted to disk 

Most complex programming 

Longest record access times 



3 Performance Considerations 

When you design a file, your decisions regarding record access mode, record 
format, and file organization should be aimed at achieving optimum data 
processing performance for your application. This chapter discusses general 
performance considerations and specific trade-offs you can make in the 
design of your data files. In Sections 3.3, 3.4, and 3.5, these trade-offs are 
discussed in the contexts of the three file organizations, sequential, relative, 
and indexed. 

3.1 Design Considerations 
In designing files for optimum data processing performance, you should 
emphasize the following performance factors: 

• Speed You want to increase the speed with which your program 
processes data. 

• Space You want to decrease the space required to store data on disk and 
to process data in memory. 

• Shared access You want your data to be accessible to other users who 
are authorized access to it. 

• Impact on application design You want to minimize the application 
design effort. 

3.1.1 Speed 
The first guideline you can apply to the design process is to decrease the 
amount of program I/O time. 

Storing data on, and retrieving date from, mass storage devices is the most 
time-consuming VMS RMS operation. For example, when an application 
needs data, the disk controller must first search for the data on the disk. The 
disk controller must then transfer the data from the disk to main memory. 
After processing the data, the program must provide for returning the results 
to mass storage via the I/O subsystem. 

One way to reduce I/O time is to have the data in memory so that you 
can minimize search and transfer operations. If data must be transferred to 
memory for processing, you should consider design variables that reduce 
transfer time. 

The first variable you might consider is the set of file attributes that may affect 
I/O time: 

• Initial file allocation 

• Default extension quantity 

• Bucket size (for a relative or indexed file) 

• Number of keys (for an indexed file) 

3-1 



Performance Considerations 
3.1 Design Considerations 

• Number of duplicate key values (for an indexed file) 

The second variable is the file size as measured by the number of records 
in the file. File size affects the time it takes to scan a file sequentially or to 
access records using an index. 

A third variable is the storage device on which your program and data files 
reside. Crucial to I/O performance are the type of device chosen (moving-
head, fixed-head, and so on) and the amount of I/O activity for that device 
within the system. 

To make your applications run faster, consider the following: 

• Keep as much data in memory as possible, but be wary of any significant 
increase in the page fault rate. 

• Minimize the number of I/O transfers by transferring larger portions of 
data. 

• Arrange your data on the disk to minimize disk head motion. 

3.1.2 Space 
When you run your application, you need space to buffer data in memory. 
You can reduce data processing time by increasing the size of the I/O buffers 
VMS RMS uses; however, avoid exceeding the space limitations imposed by 
the working set. 

In addition to the data buffers themselves, the space required to store data 
can vary depending on the file organization you choose. 

For example, sequential file organization requires VMS RMS to add an empty 
byte to a record when the record has an odd number of bytes but must be 
aligned on an even-numbered byte boundary. At the record level, you should 
consider the added space required to prefix atwo-byte count field to each 
variable-length record. 

For the relative file organization, VMS RMS constructs a series of record 
storage cells based on the maximum length of the records. The record cells 
are 1 byte longer than the size of fixed-length records or 3 bytes longer than 
the maximum size specified for variable-length records. 

For the indexed sequential file organization, VMS RMS must add the 
following informational components to your data files: 

• An index for each defined key 

• 15 bytes of formatting information for each bucket 

• A seven-byte header for each record 

• A count field for each variable-length record 

• Other overhead of varying lengths that is needed by VMS RMS to move 
files and to delete records. You should keep the size of records to the 
minimum required for your application. 



Performance Considerations 
3.1 Design Considerations 

You should also consider the effects of compression on the size of your 
indexed files. You can compress keys in data buckets and in index buckets, 
and you can compress data in the primary buckets. If you use key, index, or 
data compression, the file requires less space on the disk, and each I/O buffer 
can hold more information. Compression may even eliminate one index level 
thereby reducing the number of disk transfers needed for random access. 

Note: You cannot use key compression or index compression with the collated 
key data type. 

Random access of compressed files requires slightly more CPU time, but this 
is usually offset by the improved performance you achieve with fewer index 
levels. 

3.1.3 Shared Access 
A file management technique that allows more than one user to 
simultaneously access a file or a group of files is called shared access or 
file sharing. When you try to adjust the performance of shared files, you 
need to pay particular attention to record locking options and the use of 
global buffers. Avoid assigning sharing attributes to files that are not actually 
shared. 

There are essentially three sharing conditions: no sharing, sharing without 
interlocking, and sharing with interlocking. Chapter 7 discusses each of these 
in detail. 

3.1.4 Impact on Applications Design 
The impact on applications design increases as file design complexity 
increases. That is, your application programs require more design effort 
for processing indexed files than for processing sequential files. The primary 
consideration here should be to evaluate whether the benefits derived by 
having direct access to records is worth the added cost of the application 
program design needed to interface with the file management system. 

3.2 Tuning 
The process of designing your files to achieve better processing performance 
is called tuning. 

Tuning requires you to make a number of trade-offs and design decisions. 
For example, if a process had sole access to the processor, it could keep all 
of its data in memory and tuning would be unnecessary; but this situation 
is unlikely. Instead, several processes are usually running simultaneously 
and are competing for the memory resource. If all processes demand large 
amounts of memory, the system responds by paging and swapping, which 
slows down system performance. 

The way you intend to use your programs and data files can determine some 
of the basic tuning decisions. For example, if you know that three files are 
accessed 80 percent of the time, you might consider locating the files in a 
common area on the disk to speed up access to them. The performance of 
programs that use the other files is slower, but the system as a whole runs 
faster. 



Performance Considerations 
3.2 Tuning 

In tuning your file management system, you implement these trade-offs and 
design decisions by specifying file design attributes together with various 
file-processing options and record-processing options. 

3.2.1 File Design Attributes 
The following file design attributes control how the file is arranged on 
the disk and haw much of the file is transferred to main memory when 
needed. These file design attributes generally apply to all three types of file 
organization; other file design attributes that specifically pertain to the various 
file organizations are described under the appropriate heading. 

• Initial file allocation 

• Contiguity 

• File extend quantity 

• Units of I/O 

• The use of multiple areas (for indexed files) 

• Bucket fill factor (for indexed files) 

The following sections discuss how each file design attribute can maximize 
efficiency. 

3.2.1.1 Initial File Allocation 
When you create a file, you should allocate enough space to store it in one 
contiguous section of the disk. If the file is contiguous on the disk, it requires 
only one retrieval pointer in the header; this reduces disk head motion. 

You should also consider allocating additional space in anticipation of file 
growth to reduce the number of required extensions. 

You can allocate space either by using the FDL attribute FILE ALLOCATION 
or by using the file access control block field FAB$L ~LQ. 

3.2.1.2 Contiguity 
Use the FILE secondary attribute CONTIGUOUS to arrange the file 
contiguously on the disk, if you have sufficient space. If you assign the 
CONTIGUOUS attribute and there is not enough contiguous space on the 
disk, VMS RMS does not create the file. To avoid this, consider using the FDL 
attribute BEST_TRY_CONTIGUOUS instead of the CONTIGUOUS attribute. 
The BESL TRY_CONTIGUOUS attribute arranges the file contiguously on 
the disk if there is sufficient space or noncontiguously if the space is not 
available for a contiguous file. 

You can make this choice by accepting the FDL default values for both 
attributes NO for CONTIGUOUS, YES for BEST_TRY_CONTIGUOUS or 
by taking the VMS RMS option FAB$V_CBT in the FAB$L _FOP field. 



Performance Considerations 
3.2 Tuning 

3.2.1.3 Extending a File 
VMS RMS automatically extends files when more space is needed than was 
originally allocated. You may specify a default extension value (in blocks) or 
you may have VMS RMS automatically specify the extension value. 

If you expect to add large amounts of data to a file over a relatively short time 
period, you should consider specifying an extension value that is Large enough 
to minimize file fragmentation and to reduce the total overhead consumed 
by EXTEND operations. As a file becomes fragmented, access time becomes 
greater and processing performance degrades. Similarly, added overhead due 
to VMS RMS having to extend files can degrade performance. 

Conversely, if you only add small amounts of data to the file over a relatively 
long time period, specifying a large extension value results in wasted disk 
space. 

If you do not set a def ault extension quantity, VMS RMS automatically 
chooses an extension size. It does this by using an algorithm that allocates a 
minimal extension value and writes the data to the file. When a file becomes 
filled, this approach can result in severe file fragmentation. 

You can specify the default extension value in the following ways: 

• When you create the file, you can have the FDL editor (EDIT/FDL) 
calculate the value using your responses to the script questions. This is 
the recommended method. 

The FDL editor assigns the value using the FILE EXTENSION attribute. 
For index files with multiple areas, the FDL editor assigns a separate 
value to each area using the specified AREA EXTENSION attributes. 

• If you choose not to use FDL to establish the extension value when you 
create the file, you can specify the value directly in the FAB field 
FAB$W_DEQ if you are using aloes-level language. For index files 
with multiple areas, you can assign separate values to each area using 
appropriate XAB$B_AID fields and related XAB$W_DEQ fields. In this 
case, you must determine the value using the average record size, the 
number of records to be added to the file during a given period of time, 
the number of records per bucket, and the bucket size. 

• If you elect not to assign an extension value using FDL or by using FABs 
and XABs directly, you can establish the extension value at run time using 
the DCL command SET FILE/EXTENSION = n, where n is the default 
extension size for the volume. 

• If you decide not to use any of the previously described methods, you 
can use the value established by the DCL command SET RMS_DEFAULT 
/EXTEND_QUANTITY = n, where n is the extension value. 

The SET RMS_DEFAULT command applies the VMS RMS default 
extension value to files for your process only, unless you use the 
/SYSTEM qualifier with the command. Note that you need the CMKRNL 
privilege to use the /SYSTEM qualifier. 

Note: The value assigned to the default extension size by any other method 
overrides the value assigned by the SET RMS_DEFAULT command. 

For a description of how EDIT/FDL allocates file space, see Appendix A. 



Performance Considerations 
3.2 Tuning 

3.2.1.4 Units of I/O 
Another file design consideration is to reduce the number of times that VMS 
RMS must transfer data from disk to memory by making the I/O units as 
large as possible. Each time VMS RMS fetches data from the disk, it stores 
the data in an I/O memory buffer whose capacity is equal to the size of one 
I/O unit. A larger I/O unit makes more records immediately accessible to 
your program from the I/O buffers. 

In general, using larger units of I/O for disk transfers improves performance, 
as long as the data does not have to be swapped out too frequently. 
However, as the total space used for I/O buffers in the system approaches a 
point that results in excessive paging and swapping, increasing I/O unit size 
degrades system performance. 

VMS RMS performs I/O operations using one of the following I/O unit 
types: 

• Blocks 

• Multiblocks 

• Buckets 

A block is the basic unit of disk I/O and it consists of 512 contiguous 
bytes. Even if your program requests less than a block of data, VMS RMS 
automatically transfers an entire block. 

The other I/O units multiblocks and buckets are made up of block 
multiples. A multiblock is an I/O unit that includes up to 127 blocks but 
whose use is restricted to sequential files. See Section 3.3.2 for details. A 
bucket is the I/O unit for relative and indexed files and it may include up to 
63 blocks. See Section 3.4 and Section 3.5 for details. 

3.2.1.5 Multiple Areas for Indexed Files 
For indexed files, another design strategy is to separate the file into multiple 
areas. Each area has its own extension size, initial allocation size, contiguity 
options, and bucket size. You can minimize access times by precisely 
positioning each area on a specific disk volume, cylinder, or block. 

For instance, you can place the data area on one volume of a volume set 
and place the indexed area on another volume of the volume set. If your 
application is I/O bound, this strategy could increase its throughput. You 
can also ensure that your data buckets are contiguous for sequential access by 
allocating extra space to the data area for future extensions. 

3.2.1.6 Bucket Fill Factor for Indexed Files 
Any attempt to insert a record into a filled bucket results in a bucket split. 
When a bucket split occurs, VMS RMS tries to keep half of the records 
(including the new record if applicable) in the original bucket and moves the 
remaining records to a newly created bucket. 

Excessive bucket splitting can degrade system performance through wasted 
space, excessive processing overhead, and file fragmentation. For example, 
each record that moves to a new bucket must maintain a forward pointer in 
the original bucket. The forward pointer indicates the record's new location. 
At the new bucket, the record must maintain a backward pointer to its 
original bucket. VMS RMS uses the backward pointer to update the forward 
pointer in the original bucket if the record later moves to yet another bucket. 



Performance Considerations 
3.2 Tuning 

When a program attempts to access a record by alternate key or by RFA, 
it must first go to the bucket where the record originally resided, read the 
pointer to the record's current bucket residence, and then access the record. 

To avoid bucket splits, you should permit buckets to be only partially filled 
when records are initially loaded. This provides your application with space 
to make additional random inserts without overfilling the affected bucket. 

Section 3.5.2.2 describes fill factors in more detail. 

3.2.2 Processing Options 
Five processing options can be used to improve I/O operations: two file-
processing options and three record-processing options. The file-processing 
options include the deferred-write option and the global buffer option. The 
global buffer option may be used with all three file organizations, but the 
deferred-write option is restricted to use with relative and indexed files. 

The record-processing options include the multiple buffer option, the read-
ahead option and the write-behind option. The multiple buffer option may 
be used with all three file organizations, but the read-ahead option and the 
write-behind option may be used only with sequential files. 

This section summarizes the options. Section 3.3 through Section 3.5 describe 
the options in the context of tuning files. For additional information about 
buffering, see Chapter 7. 

3.2.2.1 Multiple Buffers 
When a program accesses a data file, it transfers the file from disk into 
memory using I/O units of blocks, multiblocks, or buckets. The I/O units are 
subsequently placed in memory I/O bu f~ers sized to be compatible with the 
I/O units. 

If you do not have enough buffers, excessive I/O transfers may degrade the 
performance of your application. On the other hand, if you have too many 
buffers, performance may degrade because of an overly large working set. 
As a rule, however, increasing the size and number of buffers can improve 
performance if the data read into the buffers will soon be processed and if 
your working set can efficiently maintain the buffers. In fact, changing the 
size and number of buffers is the quickest way to improve the performance of 
your application when you are processing localized data. 

The optimum number of buffers depends on the organization and use of 
your data files. The recommended way to determine the optimum number of 
buffers for your application is to use the Edit/FDL Utility. 

The number of I/O buffers is a run-time parameter you set with the FDL 
editor by adding the CONNECT secondary attribute 
MULTIBUFFER_COUNT to the definition file. (see Chapter 9. With alow-
level language, you can set the value directly into the RAB$B_MBF field of 
the record access block. 

Alternatively, ,the number of buffers may be specified for a process using 
the DCL command SET RMS_DEFAULT/BUFFER_COUNT=n, where the 
variable n represents the desired number of buffers. With this command, you 
may set distinct values for your sequential, relative, and indexed files using 
the appropriate file organization qualifier. If you omit the file organization 
qualifier, sequential organization is assumed. To examine the current settings 

3-7 



Performance Considerations 
3.2 Tuning 

for the process and system default multibuffer count, use the DCL command 
SHOW RMS_DEFAULT. 

If none of the above methods is used, VMS RMS uses the system-wide 
default value established by the system manager. If the system-wide default 
is omitted or is set to 0, VMS RMS uses a value of 1 for sequential and 
relative files and a value of 2 for indexed files. 

For more details about using multiple buffers with sequential files, see 
Section 3.3.3. For more details about using multiple buffers with relative files, 
see Section 3.4.2. For more details about using multiple buffers with indexed 
files, see Section 3.5.2.3. 

Chapter 7 describes the use of multiple buffers in the context of shared files. 

3.2.2.2 Deferred-Write Processing 
One way to improve performance through minimized I/O is to use the 
deferred-write option to keep data in memory as long as practicable. 
However, you must determine if this added performance benefit is worth 
the increased risk of losing data if the system crashes before a buffer is 
transferred to disk. 

With indexed files and relative files, you may use the deferred-write option to 
defer writing modified buckets to disk until the buffer is needed for another 
purpose or until the file is closed. 

Typically, the largest gains in performance come from using the deferred-
write option with sequential access. Retrieving and modifying records one 
after the other permits you to access all of the records from one bucket while 
the bucket is in memory. 

You may also improve performance by using the deferred-write option to 
prevent VMS RMS from writing a shared sequential file to disk on each 
modification. However, this increases the risk of losing data if the system 
crashes before the full buffer is transferred to disk. 

Note that nonshared sequential files behave as if the deferred-write option is 
always specified, because a buffer is only written to disk after it is completely 
filled. 

Deferred-write processing is a default run-time option for some high-level 
languages and can be specified by using clauses in other languages. You 
can activate this option through FDL by adding the CONNECT secondary 
attribute DEFERRED_WRITE. From aloes-level language, you can activate 
the deferred-write option by setting the FAB$V_DFW bit in FAB$L _FOP 
field. 

3.2.2.3 Global Buffers 
If several processes are to share a file, you may want to provide the file with 
global bu f}'ers I/O buffers that two or more processes can access. With global 
buffers, processes may access file information without allocating dedicated 
buffers. If you do not allocate dedicated buffers, you can conserve buffer 
space and buffer management overhead. You gain this benefit at the cost 
of additional system resources, as described in the VMS Record Management 
Services Manual. 



Performance Considerations 
3.2 Tuning 

When you create a file, you can assign the desired number of global buffers 
by using the FDL editor to set the value for the FILE secondary attribute 
GLOBAL _BUFFER_COUNT. From aloes-level language, you can optionally 
set the value directly into the FAB$W_GBC field. Alternatively, you may use 
the DCL command SET FILE/GLOBAL _BUFFERS to set the global buffer 
count. 

Global buffers are not used directly to retain modified information when 
the deferred-write option is enabled. If a global buffer is modified and the 
deferred-write option is enabled, the contents of the global buffer are copied 
to a process local buffer before other processes are allowed to access the 
global buffer contents. Subsequent use of the modified buffer by the process 
that deferred the writeback refer to the process local buffer while it remains 
in the process local cache. Reference to the global buffer by another process 
causes the contents of the process local buffer to be written back to disk. 

If a global buffer is modified and the deferred-write option is not enabled, 
then the contents are written out to disk from the global buffer. Therefore, 
using global buffers along with the deferred-write option may cause a slight 
increase in processing overhead if in fact no further references to the modified 
buffer occur before it is flushed from the cache anyway. For that reason, 
you may want to disable the deferred-write option for processes that do not 
reaccess buffers after records have been written to them. 

Sections 3.3 through 3.5 discuss the use of global buffers in tuning the various 
file types. 

3.2.2.4 Read-Ahead and Write-Behind Processing 
The operation of sequentially organized files can be improved by 
implementing read-ahead and write-behind processing. These features 
improve performance by permitting record processing and I/O operation to 
occur simultaneously. The read-ahead and write-behind features are default 
run-time attributes in some languages, but they must be explicitly specified in 
others. 

You implement read-ahead and write-behind processing by using two buffers. 
The processing program uses one buffer and the I/O subsystem uses the 
other. In read-ahead processing, the program reads data from one buffer as 
the second buffer inputs data from the disk. In write-behind processing, one 
buffer accepts output data from the program, while the second buffer outputs 
program data to disk. 

The next section provides additional information about read-ahead and 
write-behind processing. 

3.3 Tuning a Sequential File 
Sequential files consist of a file header and a series of data records. Records 
are stored in the order in which they are written to the file, which may use 
one of the following record formats: 

• Fixed-length record format 

• Variable-length record format 

• VFC record format 

• Stream record format 



Performance Considerations 
3.3 Tuning a Sequential File 

• Undefined record format 

If records in the fixed-length record format cross block boundaries (using 
the block spanning option), the maximum record length for the fixed-length 
record format in a sequential file is 32,7b7 bytes; otherwise, the maximum 
record length is limited to 512 bytes (one block). 

Although variable-length records can be different lengths, you may specify 
the maximum length for a file. Each variable-length record begins with a 
two-byte count field that VMS RMS uses when it retrieves the record. As 
with the fixed-length format, the maximum record length is 32,767 bytes if 
records are permitted to cross block boundaries. Otherwise, the maximum 
length is limited to 512 bytes, including the two-byte count field. 

VFC records include afixed-length control field (having up to 255 bytes) and 
a variable-length data area. The fixed-length control field can be used for 
any purpose, but it is most commonly used to store information such as line 
numbers and carriage returns. The maximum size of a VFC record with block 
spanning (see Section 3.3.1) is 32,767 bytes minus the number of bytes in the 
fixed-length control field. 

There are three variations of the stream record format: 

STREAM_CR This variation uses a carriage return as the terminator. 

STREAM_LF This variation uses a line feed as the terminator. 

STREAM This variation uses a terminator from a limited set of special 
characters: the carriage return (CR); the carriage-return/line-feed 
combination (CR/LF~; or the form feed (FF►. 

All three variations feature a continuous stream of bytes but are different in 
the way records are delimited. Records are limited to 32,767 bytes in length 
for all variations of the stream record format. 

When the record format is undefined, records are processed as a continuous 
stream of bytes with no specified terminator. 

The following sections provide guidelines for improving the performance of 
sequential file processing using various tuning options. 

3.3.1 Block Spanning Option 
You should always specify that records in a sequential file are permitted to 
span blocks, that is, cross block boundaries. In this way, VMS RMS can pack 
the records efficiently and avoid wasted space at the end of a block. 

By default, the FDL editor activates block spanning for files organized 
sequentially by setting the RECORD secondary attribute BLOCK_SPAN 
to YES. If you are using aloes-level language, you activate the block spanning 
option directly in the FAB by resetting the FAB$V_BLK bit in the 
FAB$L _RAT field. 



Performance Considerations 
3.3 Tuning a Sequential File 

3.3.2 Multiblock Size Option 
A multiblock is an I/O unit that includes up to 127 blocks but can be used 
only with sequential files. When a program instructs VMS RMS to fetch data 
within a multiblock, the entire multiblock is copied from disk to memory. 

You specify the number of blocks in a multiblock using the multiblock count, a 
run-time option. If you are using the FDL editor, specify the multiblock count 
option using the secondary CONNECT attribute, MULTIBLOCK_COUNT. 
From alower-level language, you may set the value into the RAB$B_MBC 
field, directly. Another alternative is to establish the count using a DCL 
command of the following form: 

SET RMS_DEFAULT/BLOCK_COUNT=n 

The variable n represents the specified number of blocks. Here, the specified 
multiblock count is limited to your process unless you specify the /SYSTEM 
qualifier. 

In most cases, the largest practical multiblock value to specify is the number 
of blocks in one track of the disk, a number that varies with the various types 
of disks. (See the VMS I/O User's Reference Volume for the track sizes in 
blocks of DIGITAL-supported disks). However, the most efficient number of 
blocks for your application may be more or less than the number of blocks 
in a track. You should try various sizes of multiblocks until you find the 
optimum value. 

3.3.3 Number Of Buffers 
For sequential files, you can specify the number of buffers at run time. From 
FDL, you can set the number of buffers with the secondary CONNECT 
attribute MULTIBUFFER_COUNT. From a low level language you can set 
the value directly into the RAB$B MBF field in the RAB. From the DCL 
interface, you can establish the number of buffers using a DCL command in 
the following form: 

SET RMS_DEFAULT/SEQUENTIAL/DISK/BUFFER_COUNT=n 

The variable n represents the number of buffers. 

In simple operations with sequential files, one I/O buffer is sufficient. 
Increasing the number of buffers takes space in the process working set 
and could degrade performance. 

With nonshared sequential files, particularly if you want to perform sequential 
access, you can use read-ahead and write-behind processing. With this type 
of processing, a buffer contains the next record to be read or written to the 
disk while a separate buffer completes the current I/O operation. 

The length of the buffers used for sequential files is determined by the 
specified multiblock count. The optimal number of blocks per buffer depends 
on the record size for sequential access to a sequential file, but a value such 
as 16 may be appropriate. 



Performance Considerations 
3.3 Tuning a Sequential File 

3.3.4 Global Buffer Option 
If a file is shareable, you may want to allocate it global buffers. A global 
bu f~'er is an I/O buffer that two or more processes can access. If two or 
more processes are requesting the same information from a file, I/O can be 
minimized because the data is already in the global buffer. This is especially 
true for program sequences in which all of the processes are reading data. 

Note that VMS RMS also provides each process with local I/O buffers to 
attain efficient buffering capacity. 

3.3.5 Read-Ahead and Write-Behind Options 
Specifying the read-ahead and write-behind options for sequential files can 
improve performance. The read-ahead and write-behind options require at 
least two I/O buffers and the multibu f~'er attribute. Note that using more than 
two I/O buffers usually does not improve performance. (See Section 3.3.3.) 

Most languages incorporate the read-ahead and write-behind options by 
default. With some languages, you must specify the read-ahead and write-
behind options explicitly using a clause in the language. If a language does 
not have a clause for specifying the read-ahead and write-behind options, you 
must use a VAX MACRO routine to select these options when you open the 
file. 

At the VAX MACRO level, you can select these options by setting the 
RAB$V_RAH bit in the RAB$L _ROP field for read-ahead processing and 
the RAB$V_WBH bit for write-behind processing prior to requesting the 
Connect service. 

You can also use FDL to select these options by using the secondary 
CONNECT attributes READ~HEAD and WRITE _BEHIND respectively. 

3.4 Tuning a Relative File 
A relative file consists of a file header, fide attributes, a prolog, and a series of 
fixed-length cells. Each cell contains one record that includes adeleted-record 
byte followed by the data portion of the record, which may or may not be 
blank. 

VMS RMS assigns each cell a sequential number, called the relative record 
number, that can be used to randomly access the record. 

A relative file can contain fixed-length records, variable-length records, or 
VFC records. Fixed-length records are particularly useful in relative files 
because of the fixed cell size. 

The maximum size for fixed-length records in a relative file is 32,255 bytes. 
For variable records the maximum size is 32,253 bytes. The maximum size 
for VFC records is 32,253 bytes minus the size of the fixed-length control 
field, which may be up to 255 bytes long. 



i Performance Considerations 
3.4 Tuning a Relative File 

3.4.1 Bucket Size 
With relative files, buckets are used as the unit of transfer between the disk 
and memory. You specify bucket size when you create the file, but you can 
change the size later by converting the file (see Chapter 10.) You can specify 
the bucket size using the FDL FILE secondary attribute BUCKET_SIZE or by 
inserting the value directly into the VMS RMS control block fields 
FAB$B_BKS and XAB$B_BKZ. Although the size can be as large as 63 
blocks, a bucket size larger than one disk track usually does not improve 
performance. 

If you choose to select the bucket size, you should also consider how your 
application accesses the file. For random access, you may want to choose a 
small bucket size; for sequential access, a large bucket size; and for mixed 
access, a medium bucket size. 

One way to improve performance for a relative file is to align the file on a 
cylinder boundary and specify the size of one disk track as the bucket size. 
However, this requires that you can perform an exact alignment on the file. 

If you use the FDL editor to establish the bucket size (this is recommended), 
the editor fixes the size at the optimum value based on your script inputs. 

If you intend to access the file randomly, EDIT/FDL sets the bucket size equal 
to four records because it assumes that four records are a reasonable amount 
of data for a random access. If you intend to access records sequentially, 
EDIT/FDL sets the bucket size equal to 16 records because it assumes that 16 
records is a reasonable amount of data for one sequential access. 

If you find that your application needs more data per access, then use the 
EDIT/FDL command MODIFY to change the assigned values. 

3.4.2 Number of Buffers 
The multibuffer count is a run-time option that you can set with the DCL 
command SET RMS_DEFAULT/RELATIVE/BUFFER_COUNT=n, the FDL 
attribute CONNECT MULTIBUFFER_COUNT, or the VMS RMS control 
block field RAB$B_MBF. The type of record access determines the best use of 
buffers. 

The two extremes of record access are when records are processed either 
completely randomly or completely sequentially. Also, there are cases in 
which records are accessed randomly but may be reaccessed (random with 
temporal locality) and cases where records are accessed randomly but adjacent 
records are likely to be accessed (random with spatial locality). 

In completely sequential processing, the first record may be located randomly 
and the following records accessed sequentially (records are usually not 
referenced more than once). For best performance, you should specify one 
buffer with a large bucket size unless you use the read-ahead option, which 
requires two buffers. 

Large buckets hold more records, so you can access a greater number of 
records before performing I/O operations. However, a small multibuffer 
count, such as the default of 1 buffer, is sufficient. 

When you want to improve sequential access performance, you may get better 
results by tuning the bucket size rather than changing the number of buffers. 

3-13 



Performance Considerations 
3.4 Tuning a Relative File 

Completely random processing means that records are not accessed again, 
and adjacent records are not likely to be accessed. You should use one 
buffer with a minimal bucket size. You do not need to build a memory 
cache because the records are likely to be scattered throughout the file. New 
requests for records most likely result in an I/O operation, and caching extra 
buckets wastes space in your working set. 

In random with temporal locality processing (reaccessed records}, records 
are processed randomly, but the same records may be accessed again. You 
should use multiple small buffers to cache records that are to be reaccessed. 
The bucket size can be small for this type of access because the records 
near the record currently accessed are not likely to be accessed. Caching 
reaccessed records in large buckets wastes space in memory. Multiple buffers 
allow the previously accessed records to remain in memory for subsequent 
access. 

In random with spatial locality processing (adjacent records), records are 
processed randomly, but the next or previous record has a good chance of 
being accessed. You should use a large buffer and bucket size to improve the 
probability that the next record to be processed is in the same bucket as the 
record most recently processed. One or two buffers should be sufficient. 

If you process your data file with a combination of these patterns, you should 
compromise between the processing strategies. An application illustrating 
both temporal and spatial access uses the first record in the file as a pointer 
to the last record accessed. The program reads the first record to find the 
location of the next record to be processed, processes the record, and updates 
the pointer in the first record. Because the application accesses the first record 
frequently, the access pattern exhibits temporal locality, but because it adds 
records sequentially to the end of the .file, the access pattern also exhibits 
spatial locality. 

When you add records to a relative file, you might consider choosing the 
deferred write option (FDL attribute FILE DEFERRED_WRITE, FAB$L _FOP 
field FAB$V_DFW). With this option, the contents of the write buffer are 
not transferred from memory to disk until the buffer is needed for another 
purpose or until the file is closed. Note however, that the possibility of losing 
data during a system crash increases when you use the deferred write option. 

To see. what the current default buffer count is, give the DCL command 
SHOW RMS_DEFAULT. To set the default buffer count, use the DCL 
command SET RMS_DEFAULT/RELATIVE/BUFFER_COUNT=n, where 
n is the number of buffers. 

3.4.3 Global Buffer Option 
If several processes share a relative file, you may want to specify that the 
file use the global buffer option. A global 

buffer is an I/O buffer that two or 
more processes can access. If two or more processes simultaneously request 
the same information from a file, each process can use the global duffers 
instead of allocating its own dedicated buffers. Only one copy of the buffers 
resides at any time in memory, although the buffers are charged against each 
process's working set size. 

Using the global buffer option to form a memory cache may not reduce 
the number of I/O operations necessary to process the file, in all cases. 
Regardless of how many global buffers you allocate, VMS RMS always 



Performance Considerations 
3.4 Tuning a Relative File 

allocates one I/O buffer per process, which provides efficient buffering 
capacity. 

If your application has several processes sharing the file and accessing the 
same records in a transaction sequence, then you may benefit from allocating 
enough global buffers to cache these shared records. 

'x.4.4 Deferred-Write Option 
The deferred-write option is a run-time option that can improve performance. 
It is the default operation for some languages and can be specified by clauses 
in other languages. If there is no language support, you can use a VAX 
MACRO subroutine to set the FAB$V_DFW bit in the FAB$L _FOP field 
before opening the file. 

When you select the deferred-write option, VMS RMS delays writing a 
modified bucket to disk until the buffer is needed for another purpose or until 
another process needs to use the bucket. This delay improves performance 
because it reduces the number of disk I/O operations. You achieve the largest 
performance gains using the deferred-write option with sequential access file 
operations. 

For example, in a relative file with 100-byte records and 2-block buckets, 10 
records fit in one bucket. Without the deferred-write option, writing records 
1 through 10 in order results in eleven I/O operations one for the initial file 
access and one for each of the records. 

With the deferred-write option, you need only two I/O operations one for 
the initial file access and one to write the bucket. 

A larger cache might be useful in situations in which the accesses are not 
strictly sequential but follow some local pattern. 

3.5 Tuning an Indexed File 
This section discusses the structure of indexed files and ways to optimize their 
performance. 

3.5.1 File Structure 
An indexed file consists of a file header, a prolog, and one or more index 
structures. The primary index structure contains the data records. If the file 
has alternate keys, it has an alternate index structure for each alternate key. 
The alternate index structures contain secondary index data records (SIDRs) 
that provide pointers to the data records in the primary index structure. The 
index structures also contain the values of the keys by which VMS RMS 
accesses the records in the indexed file. 



Performance Considerations 
3.5 Tuning an Indexed File 

3.5.1.1 Prologs 
VMS RMS places information concerning file attributes, key descriptors, and 
area descriptors in the prolog. You can examine the prolog with the 
Analyze/RMS_File Utility described in Chapter 10. 

There are three types of prologs Prolog 1, Prolog 2, and Prolog 3. 

Prolog 1 and Prolog 2 

Any indexed file created with a version of the VMS operating system lower 
than Version 3.0 is either a Prolog 1 file or a Prolog 2 file. Prolog 1 files and 
Prolog 2 files operate identically. 

If an indexed file uses only string data type keys, the file is a Prolog 1 file. If 
an indexed file uses numeric type keys, it is a Prolog 2 file. 

You cannot use the Convert/Reclaim Utility on a Prolog 1 file or a Prolog 
2 file to reclaim empty buckets. If your file undergoes a large number of 
deletions, resulting in empty, unusable buckets, you must use the Convert 
Utility (CONVERT) to reorganize the file. (Note that CONVERT establishes 
new RFAs for the records.) 

The compression allowed with Prolog 3 files is not possible with Prolog 1 or 
Prolog 2 files. 

Prolog 3 

Prolog 3 files can accept multiple (or alternate) keys and all data types 
(including the nonstring 8-byte BIN8 and INT8 types). They also give you 
the option of saving space by compressing your data, indexes, and keys. 

Key compression compresses the key values stored in the data buckets. 
Likewise, index compression compresses the key values stored in index 
buckets, and data compression compresses the data portion of the records in 
the data buckets. 

Note: You cannot use key compression or index compression with the collated 
key data type. 

When keys are compressed in index or data records, repeating leading 
and trailing characters are compressed. With front key compression, any 
characters that are identical to the characters at the front of the previous 
key are compressed. For example, the keys JOHN, JOHNS, JOHNSON, and 
JONES appear as JOHN, S, ON, and NES. 

With rear key compression, any repeating characters at the end of the key 
are compressed to a single character. For instance, the key JOHNSON00000 
appears as JOHNSONO. 

With data compression, instances of five or more repeated characters in a row 
are compressed to a single character. 

Compression has a direct effect on CPU time and disk space. Compression 
increases CPU time, but the keys are smaller, so your application can scan 
more quickly through the data and index buckets. 

The disk space saved by using Prolog 3 indexed files can significantly improve 
performance. With compression, each I/O buffer can hold more information 
to improve buffer space efficiency. Compression can also decrease the 
number of index levels, which decreases the number of I/O operations 
per random access. 

3-16 



Performance Considerations 
3.5 Tuning an Indexed File 

Prolog 3 files can have segmented primary keys, but the segments cannot 
overlap. If you want to use a Prolog 3 file in this case, consider defining the 
overlapping segmented key as an alternate key and choosing a diff Brent key 
to be the primary key. If you want to use overlapping primary key segments, 
you must use a Prolog 2 file. 

If record deletions result in empty buckets in Prolog 3 files, you can use 
the Convert/Reclaim Utility to make the buckets usable again. Because 
CONVERT/RECLAIM does not create a new file, RFAs remain the same. 

Note that RMS-11 does not support Prolog 3 files. To use a Prolog 3 file with 
RMS-11 you must first use the Convert Utility to transform the file into a 
Prolog 1 file or into a Prolog 2 file. 

3.5.1.2 Primary Index Structure 
The primary index structure consists of the file's data records and a key 
pathway based on the primary key (key 0). The base of a primary index 
structure is the data records themselves, arranged sequentially according 
to the primary key value. The data records are called level 0 of the index 
structure. 

The data records are grouped into buckets, which is the I/O unit for indexed 
files. Because the records are arranged according to their primary key values, 
no other record in the bucket has a higher key value than the last record in 
that bucket. This high key value, along with a pointer to the data bucket, is 
copied to an index record on the next level of the index structure, known as 
level 1. 

The index records are also placed in buckets. The last index record in a 
bucket itself has the high key value for its bucket; this high key value is then 
copied to an index record on the next higher level. This process continues 
until all of the index records on a level fit into one bucket. This level is then 
known as the root level for that index structure. 

Figure 3-1 is a diagram of an index structure. 

Figure 3-2 illustrates a primary index structure. (For simplicity, the records 
are assumed to be uncompressed, and the contents of the data records are not 
shown.) The records are 132 bytes long (including overhead), with a primary 
key field of 6 bytes. Bucket size is one block, which means that each bucket 
on Level 0 can contain three records. You calculate the number of records per 
bucket in this case as follows: 

512 bytes - 15 bytes of overhead = 497 bytes 
497 / 132 = 3.77 

Note that you must round the remainder to the lowest integer, which is 3. 

Because the key size is small and the database in this example consists of 
only 27 records, the index records can all fit in one bucket on level 1. The 
index records in this example are 6 bytes long. Each index record has one 
byte of control information. In this example, the size of the pointers is 2 bytes 
per index record, for a total index record size of 9 bytes. You calculate the 
number of records per bucket in this case as follows: 

512 bytes - 15 bytes of overhead = 497 bytes 
497 / 9 = 55.2 

Again, you must round the remainder to the lowest integer, 55. 



Performance Considerations 
3.5 Tuning an Indexed File 

N 

J 
W 

W 
J 

V
M
S
 R
M
S
 I
nd

ex
 S
tr

uc
tu

re
 

r 

J 
W 

W 
J 



Performance Considerations 
3.5 Tuning an Indexed File 

To read the record with the primary key 14, VMS RMS begins by scanning 
the root level bucket, looking for the first index record with a key value 
greater than or equal to 14. This record is the index record with key 15. The 
index record contains a pointer to the level 0 data bucket that contains the 
records with the keys 13, 14, and 15. Scanning that bucket, VMS RMS finds 
the record (see Figure 3-3). 

3.5.1.3 Alternate Index Structure 
Alternate indexes (also referred to as secondary indexes) provide your 
program with alternate record processing. If you have one or more alternate 
indexes, you can process data records using any of the alternate keys in 
addition processing data with the primary key. Note that a file with alternate 
indexes does require additional disk space. 

The alternate index structure is similar to the primary index structure. except 
that instead of containing data records, alternate indexes contain secondary 
index data records (SIDRs). An SIDR includes an alternate key value from 
a data record stored in the primary index and one or more pointers to data 
records in the primary index. (SIDRs have pointers to more than one record 
only if you allow duplicate keys and there are duplicate key values in the 
database.) You do not need an SIDR for every data record in the database. If 
a variable-length record is not long enough to contain a given alternate key, 
an SIDR is not created. For example, if you define an alternate key field to be 
bytes 10 through 20 and you insert a 15-byte record, no SIDR is created in 
that alternate index structure. 

When you create a file, you can use null key values to improve performance 
when your program uses alternate keys. When a secondary index has 
relatively few entries, VMS RMS performance may diminish because it 
tries to treat the null entries (typically blank keys) as duplicates. The resultant 
duplicate-key processing is unnecessary and can be avoided by assigning a 
null key value for the index. By using a null key value, you minimize the 
list of duplicates and this can improve performance when you insert records 
because the null key entries do not get processed as index entries. Note that 
when you sequentially access a records in a file that uses null key processing, 
VMS RMS does not process records that have null values for the key. 

If you use the string data type, VMS RMS uses the ASCII null character as the 
default null key value. However, you can specify any character as the null 
value. If you use numeric keys, VMS RMS uses zero (0) as the null value. 

3.5.1.4 Records 
Records in an indexed file can be fixed-length records or variable-length 
records. Fixed-length records begin with a record header. Variable-length 
records include a record header followed by 2 bytes of record length 
overhead. Unlike variable-length records in relative files, each variable-
length record in an indexed file requires only enough space for the record. 
See Table 2-2 for more information on record overhead. 

Records cannot span bucket boundaries. 

3-19 



Performance Considerations 
3.5 Tuning an Indexed File 

J 
W 

O 
W 
J 

J 
Q W ~ 

~ Q W ~ 
J 

N 

cD 
N 

l!') 
N 

L
E

V
E

L
 1

 (
R

O
O

T
 L

E
V

E
L

) 

N 

N 

tI7 
r 

N 
r 

Cp 

M 

A
 P
ri

ma
ry

 I
nd
ex
 S
tr
uc
tu
re
 

N 
I 
M 

N 

M 
N 

N 
N 

N 

O 
N 

CO 
r 

C7 

N 
r 

r 

O 

CD 

N 



Performance Considerations 
3.5 Tuning an Indexed File 

~ ~ ~ 

Y cC O 
_ L r

N 
~ 

~ L 

w ~ 3
Q 

~ ~ L 
LL p1 O 

O 

Fi
nd
in
g 
t
h
e
 R
e
c
o
r
d
 w
it

h 
K
e
y
 1
4
 

M 
I 
M 

N 

N 

N 

r 

T 

N 
r ... 

O O 
.+ Y 

U 
O 
C7 ~ 

'p O 
C_ ^U^ ` 

i 

i 

(O 
N 

N 

M 
N 

N 
N 

N 

lf') 
T 

M 

N 
r 

T 

r 

O 
T 

N 

r 

N 

(O 
M 
r 

Y 
N 



Performance Considerations 
3.5 Tuning an Indexed File 

For Prolog 3 files, the maximum record size is 32,224 bytes. For Prolog 1 and 
Prolog 2 files, the maximum length for afixed-length record is 32,234 bytes; 
the maximum length for avariable-length record is 32,232 bytes. Note that 
when you specify a record length for a Prolog 3 file that is greater than the 
maximum record length, VMS RMS automatically converts the file to a Prolog 
1 or Prolog 2 file. 

Record length should reflect application requirements. There is no advantage 
to using a record length that is based on the number of bytes in a bucket. 

The value of the primary key must be contained within the records. The 
records can contain either a valid key field value for the alternate keys or, if 
you specify that null keys are allowed, a field of null characters. 

3.5.1.5 Keys 
A key is a record field that identifies the record to help you retrieve the 
record. There are two types of keys primary keys and alternate keys. Data 
records are stored in the file in the order of their primary key. The most 
tune-efficient value for primary keys is a unique value that begins at byte 0 of 
the record. You can allow duplicate keys in the primary index, but duplicate 
keys may slow performance. 

The primary key and alternate keys can be character strings or numerical 
values. Key type is specified by the FDL attribute KEY TYPE. 

If it is not possible to put the records into the file in order of their primary 
key, you should specify that the buckets not be filled completely when the 
file is loaded. If you attempt to write a record to a full bucket, a bucket split 
occurs. VMS RMS keeps half of the records in the original bucket and moves 
the other records to the newly created bucket. Each time a record moves to 
a new bucket, it leaves behind a forwarding pointer called a record reference 
vector (RRV). You should avoid bucket splits because they use additional disk 
space and CPU time. An extra I/O operation is required to access a record in 
a split bucket when the program accesses a record by an alternate key or by 
RFA. 

Alternate keys have a direct impact on I/O operations, CPU time, and disk 
space. The number of I/O operations and the CPU time required for Put, 
Update, and Delete operations are directly proportional to the number of 
keys. For example, inserting a record with a primary key and three alternate 
keys takes approximately four times longer than inserting a record with only 
a primary key. 

To update the value of an alternate key, you have to traverse the alternate 
index structure twice, and bucket splits are more likely to occur. Randomly 
accessing an alternate key generally requires an extra I/O operation over a 
comparable access by the primary key, and extra disk space is required to 
store each alternate index structure. 

Alternate keys are more likely than primary keys to have duplicate values. 
For example, the zip code is a common alternate key. However, allowing 
many duplicate values can have a performance cost. Duplicate values can 
cause clustered record or pointer insertions in data buckets, long sequential 
searches, a large number of I/O operations, and loss of physical contiguity 
due to continuation buckets (especially for the primary key). 

Where possible, you should validate record keys before inserting the record, 
especially when you have primary and alternate keys. 



Performance Considerations 
3.5 Tuning an Indexed File 

In general, as the number of keys increases, so does the time it takes to add 
and delete records from your file. If CPU time is a critical resource on your 
system, you should define as few keys as possible. 

If you are reading records in your file, the number of keys has relatively little 
impact on performance. 

3.5.1.6 Areas 
An area is a portion of an indexed file that VMS RMS treats as a separate 
entity. You can divide an indexed file into separate areas where each area has 
its own bucket size, initial allocation, extension size, and volume positioning, 
just as if each area were a separate file. 

Using multiple areas has distinct advantages. However, if each area has a 
different bucket size, all buffers are as large as the largest bucket. If you use 
multiple areas, the file itself is probably not be contiguous; however, you can 
make each area within the file contiguous by specifying the FDL attribute 
AREA CONTIGUOUS. To ensure that the area is created without error, use 
the AREA BEST_TRY_CONTIGUOUS attribute. 

When you separate key and data areas, you tend to keep related buckets close 
together, thereby decreasing disk seek time. You also minimize the number 
of disk-head movements for a series of operations. For example, if you have 
a dedicated multidisk volume set, you could place the data level of a file in 
an area on one disk and the index levels of the file in an area on a separate 
disk. Then there is little or no competition for the disk head on the disk that 
contains the index structures. 

One strategy is to allocate a separate area for level 0 of a primary index (the 
data level). These buckets are the only ones referenced when you access the 
records sequentially by their primary key, so keeping them in a separate area 
optimizes that type of operation. 

Do not allocate separate areas for level 1 of an index and the other index 
levels if the index has just one level. In such a case, you force VMS RMS to 
create an additional level in the index structure. 

In most cases, you should allocate at least one area for each alternate index 
structure. By default, EDIT/FDL creates two areas in an indexed file for each 
index structure one for the data level and one for all of the index levels. 
You can allocate up to 255 areas, so with most applications you can set up 
enough areas to handle all alternate index structures. 

It is possible to set up a separate area for each of the following: 

• Primary index level 0 (the data records) 

• Primary index level 1 (the lowest index level) 

• Primary index levels 2+ (the rest of the index levels) 

• Alternate index level 0 (the secondary index data records) 

• Alternate index level 1 (the lowest index level) 

• Alternate index levels 2+ (the rest of the index levels) 

Be sure to allocate sufficient space for each area and to specify area contiguity, 
because extending an area generally creates a noncontiguous area extent. The 
resulting noncontiguous extent may be anywhere on the disk, and you may 
lose the benefits of multiple areas. 

3-23 



Performance Considerations 
3.5 Tuning an Indexed File 

If you are using a single area for the file, you should allocate enough 
contiguous space at creation time for the entire file. If you plan to add 
data to the file later, you should allocate extra space. The FDL attribute FILE 
ALLOCATION sets this value. To make sure the allocation is contiguous, set 
the FDL attribute FILE CONTIGUOUS to YES. 

If you are using multiple areas, you should allocate each one by specifying a 
value for the FDL attribute AREA ALLOCATION. 

If the file is relatively small or if you know that it needs to be extended, you 
do not have to use multiple areas. In such cases, it is more important to 
calculate the proper extension size. 

To specify multiple areas using an FDL file, you assign each area its own 
AREA primary attribute. The AREA primary attribute takes as an argument a 
number whose value identifies the area. 

Use the KEY primary attribute with its secondary attributes DATA_AREA, 
LEVEL 1_INDEX _AREA, and INDEX AREA to match each area specified 
with its index level. Key 0 is known as the primary key. Therefore, in the 
primary index structure, the primary attribute KEY must take the value 0. 
Then, within the KEY 0 section, you assign to the DATA AREA secondary 
attribute the number that you used to define the area where you want the 
data records to appear. 

You then match the KEY LEVELI_INDEX_AREA secondary attribute with 
an AREA primary attribute by assigning the appropriate area number to the 
LEVELI_INDEX_AREA secondary attribute. You also assign the number 
of an area to the INDEX AREA secondary attribute for the other index 
levels in the primary index structure. For each alternate index structure, you 
use the same secondary attributes (DATA~REA, LEVELI_INDEX_AREA, 
INDEX _AREA) in another KEY primary attribute. In KEY sections that define 
alternate keys, the DATA~REA is where VMS RMS puts the SIDRs. 

3.5.2 Optimizing File Performance 
This section discusses adjustments in file design that can improve a file's 
performance. 

3.5.2.1 Bucket Size 
For indexed files, the bucket size controls the number of levels in the index 
structure, which has the greatest impact on performance for most applications. 
You can specify the bucket size with the FDL attribute FILE BUCKET_SIZE or 
the VMS RMS control block fields FAB$B_BKS and XAB$B_BKZ. When you 
sequentially access files, large buckets are generally beneficial. 

For keyed access to index files, set the bucket size so that the the number 
of index levels does not exceed four. In general, the smaller the bucket size, 
the deeper the tree structure. If you find that a small increase in bucket size 
eliminates one level, use a larger bucket size. At some point, however, the 
benefit of having fewer levels is offset by the cost of scanning through the 
larger buckets. 

As a rule, you should never increase bucket size unless the increase reduces 
the number of levels. For example, you may find that a bucket size of 4 or 
more yields an index with four levels, and a bucket size of 10 or more yields 
an index with three levels. In this case, you never want to specify a bucket 
size of 9 because that reduces the number of levels, and performance does 
not improve. In fact, such a specification could hurt performance because 

3-24 



Performance Considerations 
3.5 Tuning an Indexed File 

each I/O operation takes longer, yet the number of accesses remains the 
same. However, larger bucket sizes always improve performance if you are 
accessing the records sequentially by primary key because more records fit in 
a bucket. 

Conversely, with smaller buckets you have to search fewer keys. So if you 
can cache your whole structure (except for level 0), you can save a lot of time. 
Also, performance in this case is comparable to flat file design although add 
operations may take a little longer. 

You can decrease the depth of your index structure in two ways. First, you 
can increase the number of records per bucket by increasing the bucket size, 
increasing the fill factor, using compression, or decreasing the size of keys 
and records. 

Note: You cannot use key compression or index compression with the collated 
key data type. 

However, changing the bucket size also has disadvantages. Larger buckets 
use more buffer space in memory. And the number of records per bucket 
determines bucket search time, which directly affects CPU time. A larger fill 
factor decreases the room for growth in the file, so bucket splits may occur. 
Compression increases the record search time. 

Alternatively, you can reduce the index depth by decreasing the number of 
records in the file. 

If you are using multiple areas, you can set a different bucket size for each 
area. You should use different bucket sizes if you are performing random 
accesses of records in no predictable pattern and if the data records are large. 
Using different bucket sizes allows you to specify a smaller size for the index 
structures and SIDRs than for the primary data level. 

You can use the Edit/FDL Utility to determine the optimum bucket size. 

Use the same bucket size for all areas if the data records are small or if the 
record accesses follow a clustered pattern, that is, if the records that you 
access have keys that are close in value. 

In general, decreasing the bucket size increases other resources: 

• Levels in the tree structure 

• Buckets needed to maintain the tree structure 

• Buffers needed for cache 

Conversely, decreasing the bucket size decreases the pages per bucket and the 
average number of keys searched while traversing the tree. 



Performance Considerations 
3.5 Tuning an Indexed File 

3.5.2.2 Fill Factor 
If you know that the application makes random insertions into the database, 
you should reserve some space in the buckets when records are first loaded 
into the file. You can specify a fill factor from 50% to 100%. For example, a 
fill factor of 50% means that VMS RMS writes records in only half of each 
bucket when the records are first loaded, leaving the remainder of the bucket 
empty for future write operations. This fill factor minimizes the number of 
bucket splits. 

The fill factor is set with the FDL attributes KEY DATA_FILL and KEY 
INDEX _FILL. The value assigned to both attributes should be the same. 

When you specify a fill factor, consider the following: 

• If the inserted records are distributed unevenly (highly skewed) by their 
primary key value, then specifying a fill factor of less than 100% does not 
reduce the number of bucket splits. 

• If the records have key values that are close or if they are added at 
one end of the file, many bucket splits occur anyway, and the partially 
filled buckets in the database just waste space. If this is the case, you 
should either specify a fill factor of 100% and use the Convert Utility to 
reorganize the file after the insertions are made, or you should choose a 
different primary key. 

• If the inserted records are distributed fairly evenly or by their primary 
key, then specifying a fill factor of less than 100% could significantly 
reduce bucket splits. However, the trade-off is initially wasted disk space. 

3.5.2.3 Number Of Buffers 
At run time, you can specify the number of buffers with the FDL attribute 
CONNECT MULTIBUFFER_COUNT or the VMS RMS control block field 
RAB$B_MBF. The number of buffers each application needs depends on the 
type of record access your application performs. 

The minimum number of buffers for indexed files is two. If the application 
performs sequential access on your database, two buffers are sufficient. More 
than two buffers for sequential access could actually degrade performance. 
During a sequential access, a given bucket is accessed as many times in a row 
as there are records in the bucket. After VMS RMS has read the records in 
that bucket, the bucket is not referenced again. Therefore, it is unnecessary to 
cache extra buckets when accessing records sequentially. 

When you access indexed files randomly, VMS RMS must read the index 
portion of the file to locate the record you want to process. VMS RMS tries 
to keep the higher-level buckets of the index in memory; the buffers for the 
actual data buckets and the lower level index buckets tend to be reused first 
when other buckets need to be cached. Therefore, you should use as many 
buffers as your process working set can support so you can cache as many 
buckets as possible. 

When you access records sequentially, even after you have located the first 
record randomly, you should use a large bucket size. A small multibuffer 
count, such as the default of two buffers, is sufficient. 

If you process your data file with a combination of the above access modes, 
you should compromise on the recommended bucket sizes and number of 
buffers. 



Performance Considerations 
3.5 Tuning an Indexed File 

When you add records to an indexed file, consider choosing the deferred-
write option (FDL attribute FILE DEFERRED_WRITE; FAB$L _FOP field 
FAB$V_DFW). With this option, the buffer into which the records have been 
moved is not written to disk until the buffer is needed for other purposes, the 
Flush service is used, or until the file is closed. The deferred-write option, 
however, may cause records to be lost if a system crashes before VMS RMS 
transfers the records to the disk. 

In general, you must consider several trade-offs when you set the number of 
buffers your application needs: 

• CPU time 

• Availability of memory and number of page faults 

• I/O operations 

With indexed files, buckets (not blocks) are the units of transfer between 
the disk and memory. You specify the bucket size when you create the file, 
although you can change the bucket size of an existing file with the Convert 
Utility (see Chapter 10). 

3.5.2.4 Global Buffers 
If several processes share the indexed file concurrently, you may want to 
specify that the file use global buffers. A global bu f}'er is an I/O buffer that 
two or more processes can access. If two or more processes request the same 
information from a file, each process can use the global buffers instead of 
allocating its own. 

Only one copy of the buffers resides at any one time in memory although the 
buffers are charged against each process's working set size. 

The guideline for using global buffers is the same as the guideline for using 
local process I/O buffers. Global buffers only provide significant benefits 
if more than one process refers to the same bucket in the global cache. If 
bucket contention is high, I/O transfers can be minimized and performance 
improved. However, global buffers do not always improve performance. 
For example, multiple processes independently reading records and using 
sequential access are most apt to refer to separate buckets. In that case, 
bucket contention is low and the number of I/O transfers is not reduced, so 
global buffers do not improve performance. 

3.5.2.5 Using the Deferred-Write Option 
Thy deferred-write option is a run-time option that can improve performance. 
It is the default operation for some languages and can be specified by clauses 
in other languages. If there is no language support, you can call a VAX 
MACRO subroutine that sets the FAB$L _FOP field, the FAB$V_DFW option. 

When you select the deferred-write option, VMS RMS delays writing a 
modified bucket to the disk until the buffer is needed to read another bucket 
into the cache, or until another process needs to reference the modified 
bucket. If a subsequent operation references the bucket before it is flushed 
out to disk, then one I/O operation has been eliminated. Typically, the 
largest performance gains come from using the deferred-write option with 
sequential access, because random accesses of the file usually result in several 
I/O operations to bring in the single records. 



Performance Considerations 
3.5 Tuning an Indexed File 

Not all operations on indexed files can be deferred. Any operation that 
causes a bucket split forces the writeback of the modified buckets to disk. 
(This forced writeback decreases the chances of lost information should a 
system failure occur.) 

Using the deferred-write option improves performance if you are performing 
multiple I/O operations on a bucket. Consider the following example. The 
indexed file has a single key and its records are 100 bytes long. The bucket 
size is 3 blocks with a fill factor of 67%. Thus, there is an average of 10 
records in each bucket. A batch program reads each record and updates part 
of it, beginning at the first record in the file and moving through the records 
sequentially. Without the deferred-write option, 11 disk I/O operations occur 
for every 10 records one to read the bucket and one to write the bucket for 
each record. With the deferred-write option, only two disk I/O operations 
occur for every 10 records one to read the bucket and one to write the 
bucket after the record operations are completed. 

3.6 Processing in a VAXcluster 
This section discusses designing file applications for a multiple node 
VAXcluster-and the performance you can reasonably expect from the 
VAXduster environment. 

Processing in a VAXcluster environment offers many advantages: 

• Performance In general, the performance of each node in a VAXcluster 
is similar to that of a single-node system that has the same processing 
load, assuming the aggregate I/O per disk drive is reasonable. 

• Availability With the appropriate configuration, a node that leaves the 
VAXcluster does not stop the VAXcluster. 

• Flexibility You can process shared applications on more than one node. 

• Accessibility Shared resources are very easy to use in a VAXcluster. 
The synchronized access to the data provides data integrity with no 
redundancy. 

For more information about VAXclusters, see the VMS VAXcluster Manual. 

3.6.1 VAXcluster Shared Access 
Shared access is one of the chief advantages of processing in a VAXcluster 
environment. Many applications that run on a single-node system can run on 
a multiple-node VAXcluster with no changes. 

However, applications that access shared files in a VAXcluster incur some 
additional overhead for the VAXcluster synchronization; the amount of 
additional overhead depends on the locking requirements of your application. 



Performance Considerations 
3.6 Processing in a VAXcluster 

3.6.1.1 Locking Considerations 
The distributed lock manager allows several users to share files concurrently 
in an organized manner. VMS RMS uses the lock manager to control file 
access. 

The lock-mastering node controls the record and bucket locking for a given 
file for users on every node of the VAXcluster. Initially, it is the first node 
from which the file is opened. However, another node may become the 
lock-mastering node when a node either joins or leaves the VAXcluster. 

The lock-mastering node may also change every time the file is opened. 
When another process opens the file (provided that the file was closed), the 
node on which that process resides becomes the new lock-mastering node for 
that file. 

Lock requests issued by processes on the lock-mastering node incur less cost 
than lock requests issued from other nodes. Conversely, the lock-mastering 
node has the additional work of processing lock requests for that file for all 
other nodes. 

The lock-requesting node is any node in the VAXcluster other than the lock-
mastering node for a given file. 

VMS RMS locks buckets and records during record operations only if the 
file is open for shared writing. Conversely, VMS RMS does no locking 
during record operations if the file is open for shared read-only access or for 
exclusive access. 

Lock requests for root locks (top-level or parent locks) in a VAXcluster may 
be slightly slower than on a single-node system. However, these locks are 
used when you open and close files, so the time for lock operations is only a 
fraction of the total time needed to open and close files. 

There is no performance difference between asingle-node system and a 
VAXcluster if the file sharing takes place on a single node of the VAXcluster. 
Only when sharing spans across the VAXcluster nodes does distributed 
locking occur. 

As a result, the record locking itself may take a little longer, but since you 
have multiple CPUs in the VAXcluster, your application benefits from the 
added processing power. 

Sharing files in a VAXcluster also requires enough memory for nonpaged 
pool to store additional lock data structures. This requirement, however, is 
dependent upon your processing load. 

3.6.1.2 I/O Considerations 
Sharing files in a VAXcluster environment also means sharing resources, 
such as disks and other pieces of I/O hardware. When applications on many 
nodes share data on one disk, VAXcluster performance may degrade due to 
excessive I/O operations. 

3-29 



Performance Considerations 
3.6 Processing in a VAXcluster 

3.6.2 Performance Recommendations 
Four general recommendations about performance in a VAXcluster 
environment are described in the following list: 

• Estimate the I/O needs of your application. In a VAXcluster, and 
particularly with a shared file, multiple nodes can generate many I/O 
requests to a single disk. The capacity of the disk to handle I/O traffic 
can affect VAXcluster performance if you allow your applications to 
become I/O bound. The Monitor Utility is a good tool for estimating 
how many I/O requests your application generates. For more information 
about the Monitor Utility, see the VMS Monitor Utility Manual. 

• Process files with exclusive access to obtain better performance than 
processing files with shared-write access. Opening files for unnecessary 
shared-write access incurs needless locking cost (even on a single node 
system). 

• If possible, confine your application to a single CPU. If sufficient CPU 
resources and I/O capacity are available, your application performs faster 
than if it was spread over many nodes. 

• Provide for sufficient memory because the space overhead for the lock 
database and other system software can be significant. 

3-30 



4 Creating and Populating Files 

After you have designed your file, you need to create it. First you must 
specify the file characteristics you selected during the design phase. Then 
you need to create the actual file with those characteristics and to protect it 
(decide who has access to the file). Last, you need to put records in the file, 
or "populate" it. 

This chapter describes the process of creating and populating files. Section 4.1 
tells how to select and specify file-creation characteristics. Section 4.2 
describes how to create a file. Section 4.3 explains how to define file 
protection, and Section 4.4 describes how to populate the file. A summary of 
the options related to file creation is provided in Section 4.5. 

4.1 File Creation Characteristics 
You can specify the characteristics you need to create a file in two ways. If 
you use VAX MACRO or BLISS-32, you can specify file characteristics by 
including VMS RMS control blocks in your application program. 

If you use ahigh-level language, you can use the File Definition Language 
(FDL), aspecial-purpose language that is used to write specifications for data 
files. Of course, you also have the option of using FDL with MACRO or 
BLISS-32. 

The following sections describe how you can specify file-creation 
characteristics by using VMS RMS control blocks or by creating FDL files. 

4.1.1 Using VMS RMS Control Blocks 
You can establish characteristics for the file you create by using a VMS RMS 
file access block (FAB) and VMS RMS extended attribute control blocks 
(XABs). These control blocks allow you to take the defaults that VMS RMS 
provides or to override the defaults and define the characteristics that suit 
your particular application. 

4.1.1.1 File Access Block 
The FAB is made up of fields that describe various file characteristics and 
contain the following file-related information: 

• The addresses of the file name string and the default name string 

• The file organization 

• The record format 

• Information about disk storage space 

The FAB lets you use both the creation-time characteristics and the run-time 
characteristics of VMS RMS. You must define one FAB for each file your 
program opens or creates. 



Creating and Populating Files 
4.1 File Creation Characteristics 

For more information about the FAB, see the VMS Record Management Services 
Manual. 

4.1.1.2 Extended Attribute Blocks 
Extended attribute blocks (XABs) are optional user control blocks that contain 
supplementary file-attribute information. The following is a partial list of 
XABs that can be used to declare supporting file information: 

• Initial size and extent information (XABALL) 

• File protection (XABPRO) 

• Key definition (XABKEY) 

• Date and time information (XABDAT) 

Like the FAB, the XABs allow you to use both the creation-time characteristics 
and the run-time characteristics of VMS RMS. 

With the XABs, you can define various file attributes beyond those specified 
in the FAB. 

For more information about the extended attribute blocks, see the VMS Record 
Management Services Manual. 

4.1.2 Using File Definition Language 
FDL provides a way to create data files using special text files, generally called 
FDL files. FDL files are written in a file definition language, which permits 
you to specify appropriate attributes and values for the file. 

You create and modify FDL files using the Edit/FDL Utility (EDIT/FDL). 
EDIT/FDL contains built-in design algorithms to help you optimize data 
file design. EDIT/FDL recognizes correct FDL syntax and informs you 
immediately of syntax errors. (You can use a text editor or the DCL command 
CREATE to create an FDL file, but you must then follow the validity rules 
listed in the VMS File Definition Language Facility Manual.) 

You can also use the Analyze/RMS—File Utility to create FDL files from 
existing data files. FDL files created in this manner contain special analysis 
sections that you can use with EDIT/FDL to tune your data files. 

You can use the Create/FDL Utility and the Convert Utility to create data 
files from the specifications in the FDL files. 

By using an FDL file to create a data file from ahigher-level language, you 
can specify most of the VMS RMS creation-time characteristics that are 
available with VMS RMS control blocks (FABs and XABs). However, to use 
all of the VMS RMS connect-time features, including wildcard characters, you 
must use the VMS RMS control blocks. 



Creating and Populating Files 
4.1 File Creation Characteristics 

4.1.2.1 Using EDIT/FDL 
You can use EDIT/FDL in two ways: with a terminal dialog (interactively) or 
without one (noninteractively). 

If you use EDIT/FDL noninteractively, you can execute only the OPTIMIZE 
script. The OPTIMIZE script lets you optimize an existing FDL file without an 
interactive session. For more information, see Section 10.3. 

Alternatively, if you use EDIT/FDL interactively, you can use all the scripts, 
each of wh}ch has a series of menus. When you invoke EDIT/FDL, it displays 
a main menu. To select a menu item, you only need to enter the first letter of 
the item because each selection has a unique first letter. 

Table 4-1 summarizes the EDIT/FDL commands. 

Table 4-~1 Summary of EDIT/FDL Commands 

Command Function 

ADD Inserts one or more lines into the FDL definition. If the line 
already exists, you can replace it with your new line. Once you 
have inserted a line, you can continue to add lines until you 
are satisfied with that particular primary section. If no primary 
section exists to hold the secondary attribute being added, 
EDIT/FDL creates one. 

DELETE Removes one or more lines from the FDL definition. If you 
delete all of the secondary attributes in a primary section, you 
effectively remove the primary attribute. Once you have removed 
a line, you can continue to delete lines under that particular 
primary section. 

EXIT Creates the output FDL file, stores the current FDL definition 
in it, and terminates the EDIT/FDL session. EDIT/FDL leaves 
unchanged any FDL file that it used as input. The FDL file that 
is created is, by default, a sequential file with variable-length 
records and carriage-return record attributes, and has your 
process`s default VMS RMS protection and ownership. To 
change these default settings, see Section 4.1.2.3. 

HELP Displays the top level help text for EDIT/FDL and then continues 
to prompt for more keywords. Pressing the RETURN key in 
response to the "Topic?" prompt or pressing CTRL/Z will return 
you to the main function prompt. 

INVOKE Prompts you for your choice of scripts and starts a series of 
logically ordered questions that help you create new FDL files or 
modify existing ones. 

MODIFY Allows you to change the value of one or more lines in the FDL 
definition. Once you have changed a line, you can continue to 
modify lines under that particular primary section. 

QUIT Aborts the session without creating an output FDL file. You can 
also press CTRL/C or CTRL/Y to abort the session. 

SET Allows you to establish defaults or to select any of the FDL 
editor characteristics you forgot to specify on the command line. 



Creating and Populating Files 
4.1 File Creation Characteristics 

_Table 4-1 (Cont.~ Summary of EDIT/FDL Commands 

Command Function 

VIEW Displays the current FDL definition, which is what is put into the 
output FDL file if you gave the EXIT command. 

Causes the utility to display more information about that 
question. You can enter the question mark character in response 
to any question asked by EDIT/FDL. In all cases, it will result 
in repetition of the question. Note too, that the utility responds 
to an invalid response in the same manner that it responds to a 
question mark. 

CTRL/Z is equivalent to the EXIT command if you use it at the main menu 
level. If you use it from any other level, CTRL/Z returns you to the main 
menu level. 

In most cases, a command from the main menu brings up a second level 
menu. For instance, typing the ADD command displays the following menu: 

Legal Primary Attributes 

ACCESS attributes set the run-time access mode of the file 
AREA x attributes define the characteristics of file area x 
CONNECT attributes set various VMS RMS run-time options 
DATE attributes set the date parameters of the file 
FILE attributes affect the entire VMS RMS data file 
KEY y attributes define the characteristics of key y 
NETWORK attributes set run-time network access parameters 
RECORD attributes set the non-key aspects of each record 
SHARING attributes set the run-time sharing mode of the file 
SYSTEM attributes document operating system-specific items 
TITLE is the header line for the FDL file 

Enter desired primary (Keyword)[FILE] 

One of the most important features of EDIT/FDL is that it helps you create 
FDL files that define indexed, relative, and sequential data files. To do this, 
EDIT/FDL provides seven scripts that guide you through an interactive 
session. You can choose one of these scripts at the start of a session, or you 
can instruct EDIT/FDL to automatically invoke a particular script each time 
that you enter the EDIT/FDL command. 

Table 4-2 lists the seven scripts. 

Table 4-2 EDIT/FDL scripts 

Script Function 

ADD_KEY Allows you to model or add to the attributes of a new index. 

DELETE_KEY Allows you to remove attributes from the highest-level index of 
your file. 

INDEXED Begins a dialog in which you are prompted for information 
about the indexed data file you want to create from the FDL 
file. EDIT/FDL supplies values for certain attributes. 



Creating and Populating Files 
4.1 File Creation Characteristics 

Table 4-2 (Cont.) EDIT/FDL scripts 

Script Function 

OPTIMIZE Helps you redesign an FDL file using an analysis file from the 
Analyze/RMS_File Utility (ANALYZE/RMS_FILE/FDL. The FDL 
file itself is one of the inputs to EDIT/FDL. In effect, this script 
allows you to tune the parameters of your indexes using the 
file statistics from the FDL ANALYSIS sections produced by 
ANALYZE/RMS_FILE. 

RELATIVE Begins a dialog in which you are prompted for information 
about the relative data file to be created from the FDL file. 
EDIT/FDL supplies values for certain attributes. 

SEQUENTIAL Begins a dialog in which you are prompted for information 
about the sequential data file to be created from the FDL file. 
EDIT/FDL supplies values for certain attributes. 

~~OUCHUP Begins a dialog in which you are prompted for information 
about how you want to change an existing index. 

An interactive session is controlled by these EDIT/FDL scripts. You can 
invoke a script in two ways: 

• You can select the INVOKE command from the main menu and then 
choose your script. When you answer the script questions, EDIT/FDL 
displays a list of FDL attributes and their assigned values. At this point, 
you can use EDIT/FDL commands to further modify the attribute values 
or to end the editing session. 

• You can begin a script by entering the a DCL command in the following 
form: 

EDIT/FDL/SCRIPT=script-name 

This command bypasses the main menu to directly display the menu for 
the selected script. 

Example 4-1 below shows a sample session with the FDL Editor. 



Creating and Populating Files 
4.1 File Creation Characteristics 

Example 4-1 Sample FDL Edit Session 

VAX-11 FDL Editor 

Add to insert one or more lines into the FDL definition 
Delete to delete one or more lines from the FDL definition 
Exit to leave the FDL Editor after creating the FDL file 
Help to obtain information about the FDL Editor 

0 Invoke to initiate a script of related questions 
Modify to change existing lines) in the FDL definition 
Quit to abort the FDL Editor with no FDL file creation 
Set to specify FDL Editor characteristics 
View to display the current FDL Definition 

© Main Editor Function (Keyword)[Help] INVOKE 

Script Title Selection 

Add_Key modeling and addition of a new index's parameters 
Delete_Key removal of the highest index's parameters 
Indexed modeling of parameters for an entire Indexed file 

© Optimize tuning of all indexes' parameters using file statistics 
Relative selection of parameters for a Relative file 
Sequential selection of parameters for a Sequential file 
Touchup remodeling of parameters for a particular index 

Q Editing Script Title (Keyword)[-] INDEXED 

© Target disk volume Cluster Size (1-iGiga)[3] 3 
Q Number of Keys to Define (1-255) [1] 1 

Line Bucket Size vs Index Depth as a 2 dimensional plot 
Fill Bucket Size vs Load Fill Percent vs Index Depth 

0 Key Bucket Size vs Key Length vs Index Depth 
Record Bucket Size vs Record Size vs Index Depth 
Init Bucket Size vs Initial Load Record Count vs Index Depth 
Add Bucket Size vs Additional Record Count vs Index Depth 
Graph type to display (Keyword)[Line] LINE 

~ Number of Records that will be Initially Loaded 
into the File (0-1Giga)[-] 100000 

m (Fast_Convert NoFast_Convert RMS_Puts) 
Initial File Load Method (Keyword)[Fast] FAST 

~ Number of Additional Records to be Added After 
the Initial File Load (0-1Giga)[0] 

® Key 0 Load Fill Percent 
® (Fixed Variable) 

Record Format 
~ Mean Record Size 
® Maximum Record Size 

(50-100) [ 100] 

(Keyword) [Var] 
(1-32229) [-] 
(0 , 80-32229) (0] 

0 

100 

VARIABLE 
80 
0 

~ (Bin2 Bin4 Bin8 Intl Into Int8 Decimal String Collated 
Dbin2 Dbin4 Dbin8 Dint2 Dint4 Dint8 Ddecimal Dstring Dcollated) 

Key 0 Data Type (Keyword)[Str] STRING 
~ Key 0 Segmentation desired (Yes/No)[No] : NO 

Key 0 Length (1-255) [-] 9 
~ Key 0 Position (0-32220) [0] 0 
m Key 0 Duplicates allowed (Yes/No) [No] NO 
® File Prolog Version (0-3) [3] 3 
® Data Key Compression desired (Yes/No)[Yes] YES 
® Data Record Compression desired (Yes/No)[Yes] YES 

Example 4-1 Cont'd. on next page 



Creating and Populating Files 
4.1 File Creation Characteristics 

Example 4-1 (Cont.) Sample FDL Edit Session 

m Index Compression desired (Yes/No)[Yes] YES 

*I 
91 
81 

Index 71 
61 

Depth 51 
41 
31 3 3 
2I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 
- - - + - - 

1 5 10 15 20 25 30 32 
Bucket Size (number of blocks) 

PV-Prolog Version 3 KT-Key 0 Type String EM-Emphasis Flatter ( 3) 
DK-Dup Key 0 Values No KL-Key 0 Length 9 KP-Key 0 Position 0 
RC-Data Record Comp 0% KC-Data Key Comp 0% IC-Index Record Comp 0% 
BF-Bucket Fill 100% RF-Record Format Variable RS-Mean Record Size 80 
LM-Load Method Fast_Conv IL-Initial Load 100000 AR-Added Records 0 

(Type "FD" to Finish Design) 
m Which File Parameter (Mnemonic) [refresh] FD 
® Text for FDL Title Section (1-126 chars)[null] 

: FDL_SESSION_EXAMPLE 

Data File file -spec (1-126 chars) [null] 
EXAMPLE.DAT 

m (Carriage_Return FORTRAN None Print) 
Carriage Control (Keyword)[Carr] CARRIAGE_RETURN 

Emphasis Used In Def fining Def ault : ( Flatter_f Iles 
Suggested Bucket Sizes: ( 3 3 27 

Q~Number of Levels in Index: ( 2 2 1 
Number of Buckets in Index: ( 72 72 1 
Pages Required to Cache Index: ( 216 216 27 
Processing Used to Search Index: ( 168 168 766 

® Key 0 Bucket Size (1-63)[3] 3 
® Key 0 Name (1-32 chars) [null) 

SSNUM 
® Global Buffers desired (Yes/No) [No] NO 
m The Depth of Key 0 is Estimated to be No Greater 

than 2 Index levels, which is 3 Total levels. 
® Press RETURN to continue ("Z for Main Menu) 

VAX-11 FDL Editor 

Add to insert one or more lines into the FDL definition 
Delete to delete one or more lines from the FDL definition 
Exit to leave the FDL Editor after creating the FDL file 

m Help to obtain information about the FDL Editor 
Invoke to initiate a script of related questions 
Modify to change existing lines) in the FDL definition 
Quit to abort the FDL Editor with no FDL file creation 
Set to specify FDL Editor characteristics 
View to display the current FDL Definition 

® Main Editor Function (Keyword)[Help] EXIT 

DISK$:[FOX.RMS]FDL_SESSION_EXAMPLE.FDL;1 40 lines 



Creating and Populating Files 
4.1 File Creation Characteristics 

O The Main Editor Function menu displays the EDIT/FDL commands. 

© The INVOKE command displays the Script Title Selection menu. Note 
that HELP is the default command so if you want online help, just press 
the RETURN key. 

© The Script Title Selection menu shows the seven scripts you can choose 
to help you design your file. There is no default so you must explicitly 
select one of the scripts. 

O Choose the INDEXED script to design an indexed data file. 

© Choose a disk volume cluster size of three. 

O Define only one key the primary key. 

O This menu provides a selection of graphic display types. 

Select a line plot display. 

O Select 100,000 records to be loaded initially. 

m Select the CONVERT/FAST_LOAD method of loading records into the 
data file. 

m Opt for no additional records after the initial load. 

® Elect a fill level of 100 percent for the primary index buckets. 

® Choose the variable-length record format. 

m Select an average record size of 80 characters. 

® Select an unlimited maximum record size. 

m Select the string data type for the primary key. 

m Opt to disallow segmentation in the primary key. 

Set the length of the primary key to 9 bytes. 

m Define the initial position of the primary key at column 0. 

m Opt to disallow duplicates of the primary key. 

® Choose the Prolog 3 version. 

® Select data key compression. 

® Select data record compression. 

m Select index compression. 

® This is a line plot showing bucket size against index depth. 

m Type "FD" to finish the design session. 

m Enter the title of your FDL file specification. 

Enter the file specification of your data file. 

m Select the CARRIAGE _RETURN carriage control. 

m This display shows the tuning emphasis you chose to design your file. 
It also shows suggested bucket sizes for various index level depths and 
other tuning information. 



Creating and Populating Files 
4.1 File Creation Characteristics 

® Select the default bucket size for the primary key. 

® Enter the name of the primary key. 

® Choose whether you want global buffers. 

m This message shows the depth of the primary key index and gives the 
total number of levels. 

® Press the RETURN key to display the main menu. 

m This is the main menu. 

® Use the EXIT command to exit the editor and to create the FDL file. 

This message shows the resulting FDL file specification and the number 
of lines it contains. 

Note that the example uses most of the suggested defaults. There are three 
ways to accept defaults: 

• Press the RETURN key without entering a value. 

• Use the /RESPONSES=AUTOMATIC qualifier when you invoke 
EDIT/FDL. 

• Use the following sequence: 

1 Select the SET command from the main menu. 

2 Select RESPONSES from the SET menu. 

3 Accept the default (AUTO) when EDIT/FDL prompts for "Default 
responses in script." 

Key compression and index compression are not acceptable options when you 
select a collated key data type. 

When EDIT/FDL creates an FDL file, it groups the attributes into major 
sections. The section headings are called primary attributes, and the attributes 
within a primary section are called secondary attributes. Certain secondary 
attributes contain a third level of attributes called qualifiers. 

The objective of using EDIT/FDL is to create an FDL file with optimum 
values for the various attributes. An FDL file contains a list of the primary 
and attributes with related qualifiers. If a primary or secondary attribute does 
not appear in the FDL file, it is assigned its default value. 

Example 4-2 shows an FDL file. IDENT, SYSTEM, FILE, RECORD, AREA n, 
and KEY n are primary attributes; the others are secondary attributes. 



Creating and Populating Files 
4.1 File Creation Characteristics 

Example 4-2 Sample FDL File 

IDENT 1-MAR-1985 14:07:46 VAX-11 FDL Editor" 

SYSTEM 
SOURCE VMS 

FILE 
GLOBAL_BUFFER_COUNT 0 
NAME DISK$RMS:[RMSTEST]INDEXED.DAT;3 
ORGANIZATION indexed 
OWNER [RMSI,TEST] 
PROTECTION (system:RWED, owner:RWED, group:RE, world:) 

RECORD 
BLOCK_SPAN yes 
CARRIAGE_CONTROL none 
FORMAT variable 
SIZE 2048 

AREA 0 
ALLOCATION 233 
BEST_TRY_CONTIGUOUS yes 
BUCKET_SIZE 5 
EXTENSION 60 

AREA 1 
ALLOCATION 5 
BEST_TRY_CONTIGUOUS yes 
BUCKET_SIZE 5 
EXTENSION 5 

AREA 2 
ALLOCATION 18 
BEST_TRY_CONTIGUOUS yes 
BUCKET_SIZE 3 
EXTENSION 6 

KEY 0 
CHANGES no 
DATA_AREA 0 
DATA_FILL 100 
DATA_KEY_COMPRESSION no 
DATA_RECORD_COMPRESSION no 
DUPLICATES no 
INDEX_AREA 1 
INDEX_COMPRESSION no 
INDEX_FILL 100 
LEVELI_INDEX_AREA 1 
NAME "NUM" 
NULL_KEY no 
PROLOG 3 
SEGO_LENGTH 8 
SEGO_POSITION 0 
TYPE bin8 

Example 4-2 Cont'd. on next page 



Creating and Populating Files 
4.1 File Creation Characteristics 

Example 4-2 (Cont.~ Sample FDL File 

KEY 1 
CHANGES yes 
DATA_AREA 2 
DATA_FILL 100 
DATA_KEY_COMPRESSION yes 
DUPLICATES yes 
INDEX_AREA 2 
INDEX_COMPRESSION yes 
INDEX_FILL 100 
LEVELI_INDEX_AREA 2 
NAME "NAME" 
NULL_KEY yes 
NULL_VALUE 0 
SEGO_LENGTH 39 
SEGO_POSITION 9 
TYPE string 

4.1.2.2 Designing an FDL File 
When you want to create an FDL file, you invoke EDIT/FDL with a DCL 
command in the following form: 

EDIT/FDL/CREATE fdl-filespec 

The /CREATE qualifier specifies that you want to create an FDL file with 
the name entered in the fdl-filespec parameter. When EDIT/FDL displays 
the main menu, select the INVOKE command. In response to the INVOKE 
command, EDIT/FDL prompts you for a script. The only appropriate scripts 
for creating a file are INDEXED, RELATIVE, and SEQUENTIAL. 

As discussed previously, you can enter a script directly by specifying the 
/SCRIPT qualifier on the DCL command line. For example, enter the 
following command to create an indexed FDL file: 

$ EDIT/FDL/CREATE/SCRIPT=INDEXED MY_FDL_FILE 

When you select the script, EDIT/FDL prompts you for information about 
the data file. Each prompt consists of a short question, a range of acceptable 
values (for example, 50-100) or the value type (for example, Keyword, 
YES/NO, and so forth) in parentheses, and the default answer in brackets. 
One of the questions in the INDEXED script is shown as follows: 

Number of Keys to Define (1-255)[ 1 ] 

In this example, EDIT/FDL prompts you for the number of keys you want 
to define for an indexed data file. EDIT/FDL accepts any number from 1 to 
255. If you do not specify a value, it assumes that you want to define one 
key only, the primary key. To accept the default value, press the RETURN 
key. 

If EDIT/FDL requires that you enter a value (that is, no default value is 
specified for the response), it includes a dash within brackets [-]. 

When you specify the SEQUENTIAL script or the RELATIVE script, 
EDIT/FDL returns you to the main menu level after finishing the dialog. 
When you specify the INDEXED script, one of the prompts requests your 
choice of a design graphics display: a Line_Plot graph or a Surface_Plot 
graph. After finishing the dialog, EDIT/FDL displays the selected graph to 
help you make your final design choice. 

4-11 



Creating and Populating Files 
4.1 File Creation Characteristics 

The Line_Plot graph plots bucket size against index depth. All things equal, 
the size of the buckets determines the number of levels in the index, and 
the number of levels has a direct effect on the run-time performance of 
an indexed file. Fewer levels generally reduce the average number of keys 
searched when the index tree is traversed. However, fewer levels imply 
more records per data bucket and may cause longer data bucket search times. 
Thus, the Line_Plot graph helps you decide on the best bucket size for your 
application. Figure 4-1 shows a Line_Plot graph. 

Figure 4-1 A Line_Plot Graph 

~~ 
91 
~I 

I n~F:: ? I 
~I 

Iie~th 51 
41 4 
31 3 3 3 3 3 

11 

1 5 10 1` ?0 25 30 32 
I~~~ck.et ~~i~e (r~~.~rt~~+er of ~lock.$) 

ZK-980-82 

As shown in Figure 4-1, a bucket size of 1 block results in an index with five 
levels. Increasing the bucket size to 2 blocks reduces the number of index 
levels to four, but an increase to 5 blocks does not reduce the number of 
index levels at all. A bucket size of 7 blocks, however, reduces the number of 
index levels to three. 

When you choose the bucket size, remember that the graphs do not display 
the data level. For example, if you want three levels in the file, then you 
must limit the number of index levels to two. 

The Surface_Plot graphics mode lets you choose a range of values to see their 
effects. EDIT/FDL prompts you to enter a lower and upper bound for one of 
the following values: 

• Load fill percent 

• Key length 

• Record size 

• Initial load record count 

• Additional record count 

The selected range is displayed along the graph's vertical axis. 

The variable on the graph's horizontal axis is bucket size. The numbers in 
the field portion of the graph show the number of levels at each bucket size 
for each of the other values. 

Figure 4-2 is a Surface_Plot graph that shows a range of values for initial fill 
factors ranging from 100% to 40%. 



Creating and Populating Files 
4.1 File Creation Characteristics 

Figure 4-2 A Surface_Plot Graph 

I r~ i t i a l I ~ ~i 3\~ 7 ~ ~ 7 ~ ~ ~ ~ ~\ ~ ~~ ~~ ~~ ~ ~~ -r ~ -~ ~ -s -~ ~ ~~ ~ 

801 ~ ;~ ~\~ -, I ~ I ~ _~ •: L:.\~ I ~ ~ I ~ ~ I ~ ~ _~ ~ ~ ~ ~ 
Load I ~! 3 3\~ ~~ ~ ~ ~ -~ ~ ~\~ ~~~ ~ ~ ~ ~ ~ ;~ ~ ~ ~ ~ .~. 

701 4 ~ 3 3\~ 2 ~ ~ ~ ~ ~ ~ ~\~ ~ ~ ~ 2 ~ ~ ~ ~ ~ ~ ~ ? ~ ~ ~ 2 

601 Q 3 3 3\~ ~ ~ ~ ~ ~ M ~\~ ~ ~ 7 ~ ~ ~ ~ ~ ~ ~ -~ ~ ~ ~ ~ ~ ~ 

501 ~! Q 3 3 3\~ ~ 2 ~~~~ ry ~\;, ~~~ ~~~ ~ 2 r'. 
~ ~ ~~ ~ -~ ~~ ~ 

w. ti. 

401 5 4 3 3 3 3 3\~ ? ~ ? ~ '? ~\~ ~ ? ~ ? ? ? ~ ~ ~ ~ '~ '' ~ ? ~ 

1 5 10 15 20 ~5~ ~0 ~~ 
FtUr..N.c~"t Sipe (r~umbnr nP hlo~_k.$) 

ZK-949-82 

The area on the graph within the slash marks represents combinations that 
VMS RMS finds acceptable. In Figure 4-2, a fill factor of 70% and a bucket 
size of 10 blocks is the optimum combination. A fill factor of 70 % and a 
bucket size of 15 blocks is a relatively poor combination because it falls 
outside of the slash boundaries. 

If you are sure the information you supplied to EDIT/FDL is valid, the best 
values are those that lie along the left-hand boundary next to the slash marks. 
If you are not sure that your information is valid, you should choose a value 
that lies more to the right of the slash boundary. 

When you complete the dialog and EDIT/FDL presents the graph, you can 
make changes to certain attributes of the proposed data file. The design is not 
complete until you specify "FD" for "Finish Design," at which point 
EDIT/FDL asks a few more questions. You then have the opportunity to 
return to the main menu to view the file attributes that EDIT/FDL has 
created. 

Figure 4-3 shows the attributes that you can alter when EDIT/FDL displays 
the graph. Note that each attribute has a 2-letter mnemonic. To alter an 
attribute, you specify the corresponding mnemonic. To refresh the display, 
press the RETURN key. To begin the final design phase, enter "FD." 



Creating and Populating Files 
4.1 File Creation Characteristics 

Figure 4-3 Design Mnemonics 

F'V-F'ralo~~_iP V~+r~>a.~r~ 3 hT-Ke~.r 0 T~~f~p S~.r~.r~~# FTi-F~ r~~tzl. Liesi~r~ F't'~rz~,e 
UK-T.i~~r~ Kc~~~ 0 V<; 1. ~~p> No KI.. -hF,,.r 0 L~r~~th 1.0 hF'-Kr., ~:s 0 F'~~ f i t, i are 0 
FiC-•Data RPcar~ Comp• 0% KC' -Tea#. Kees Camr1 0% TG-Tr,rir•,;: F;ecorrj Cc:~mr~ (1% 
f~F-Rcar.. a rd Fri rm;~t V<; r i. .:~L~ l e kS-M~~::rn keco raj S i ~e ?gib 
I_M-l.a~:~i ~iethad Fast_Cc~r~v Tl.-Tr,i •t~ir~l l.aa~3 `0000 AR-•F1cir:cF~ri Fr~c~c•~r!i~-> `000 

Which File F'~ rt;rnpter (Mr~Pmor~ic•) f rE~rfirNs.h:l 2 

ZK-950-82 

During the final design phase, EDIT/FDL gives you an opportunity to supply 
values for such attributes as TITLE, an optional primary that allows you to 
label the FDL file. (Most of these questions are also applicable to designing 
sequential and relative files.) When you have answered the questions, 
EDIT/FDL assigns the values to the FDL attributes and returns you to the 
main menu level to display the resulting FDL file. 

At the main menu, you can select the ADD command to assign values to any 
attribute the script omitted. Remember that if an attribute does not appear 
in the FDL file, it assumes the default value. (For a list of the default values 
for each attribute, see the VMS File Definition Language Facility Manual.) To 
modify an attribute, use the MODIFY command, and to delete an attribute, 
use the DELETE command. 

To create the displayed FDL file, select the EXIT command. To abort the 
session without creating an FDL file, select the QUIT command. 

4.1.2.3 Setting Characteristics For FDL Files 
The FDL file that you use to create data files has certain characteristics of its 
own. For instance, by default FDL files have variable-length records, and the 
default carriage control for FDL files is a carriage return. Other values such as 
protection come from the VAX RMS system and process defaults. 

You can create an FDL file with characteristics other than the defaults by 
first creating an FDL file to specify the characteristics you want to apply 
to the other FDL files. Then, use DCL to assign this FDL file the logical 
name EDF$MAKE _FDL. EDIT/FDL uses this file to determine the file 
characteristics for any FDL files it subsequently creates. 

Note that the contents of the FDL files are still determined by the attribute 
values assigned during the EDIT/FDL session; only the external characteristics 
of the FDL files are affected by the EDF$MAKE _FDL file. 

For example, use the following procedure to customize the protection for your 
FDL files. 

1 Create the FDL file OUTSPEC.FDL containing only the following 
attributes: 

FILE 
PROTECTION (SYSTEM=RWED,OWNER=RWED,GROUP=R) 

2 Assign this file the logical name EDF$MAKE _FDL with the following 
DCL command: 

$ ASSIGN OUTSPEC.FDL EDF$MAKE_FDL 

From this point on, FDL files created by EDIT/FDL allow READ, WRITE, 
EXECUTE, and DELETE access to SYSTEM and to OWNER, allow READ 
access only to GROUP members, and deny access to WORLD. 

4-14 



Creating and Populating Files 
4.1 File Creation Characteristics 

4.1.3 Using the FDL Routines 
You can also define file-creation characteristics with the FDL utility routines. 
The FDL routines provide you with the functions of the File Definition 
Language, and they allow you to set file creation characteristics from within 
your application. 

There are four FDL routines: 

FDL$CREATE Creates a file from an FDL specification and then closes the 
file. See Section 4.2.4 for more information. 

FDL$GENERATE Produces an FDL specification by interpreting a set of VMS 
RMS control blocks. It then writes the FDL specification either 
to an FDL file or to a character string. 

FDL$PARSE Parses an FDL specification, allocates control blocks, and then 
fills in the relevant fields. 

FDL$RELEASE Deallocates the virtual memory used by the VMS RMS control 
blocks created by FDL$PARSE. You must use FDL$PARSE to 
fill in Ito populate) the control blocks if you plan to release the 
memory with FDL$RELEASE later. 

Because the FDL$GENERATE, FDL$PARSE, and FDL$RELEASE routines 
allow you to use the run-time, as well as the creation-time, features of VMS 
RMS, you must call them from a language that can access the VAX RMS 
control block fields that specify the CONNECT options. This may be difficult 
from ahigh-level language. 

Example 4-3 shows how to call the FDL$PARSE and FDL$GENERATE 
routines from a Pascal program. 

Example 4-3 Using FDL Routines in a Pascal Program 

[INHERIT ('SYS$LIBRARY:STARLET')] 
PROGRAM example2 (input,output,order_master); 

(* This program fills in its own FAB, RAB, and *) 
(* XABs by calling FDL$PARSE and then generates *) 
(* an FDL specification by calling FDL$GENERATE.*) 
(* It requires an existing input FDL file *) 
(* (TESTING .FDL) for FDL$PARSE to parse . *) 

TYPE 
(*+ *) 
(* FDL CALL INTERFACE CONTROL FLAGS *) 
(*- *) 

$BIT1 = [BIT (1) ,UNSAFE] BOOLEAN ; 

Example 4-3 Cont'd. on next page 



Creating and Populating Files 
4.1 File Creation Characteristics 

Example 4-3 (Cont.) Using FDL Routines in a Pascal Program 

FDL2$TYPE = RECORD CASE INTEGER OF 
1: (FDL$_FDLDEF_BITS [BYTE(1)] RECORD END; 

); 
2: (FDL$V_SIGNAL [POS(0)] $BIT1; 

(* Signal errors; don't return 
FDL$V_FDL_STRING [POS(1)] $BIT1; 

(* Main FDL spec is a char string 
FDL$V_DEFAULT_STRING [POS(2)] $BIT1; 

(* Default FDL spec is a char string 
FDL$V_FULL_OUTPUT [POS(3)] $BIT1; 

(* Produce a complete FDL spec 

END; 

mail_order = RECORD 
order_num [KEY(0)] INTEGER; 
name PACKED ARRAY [1..20] OF CHAR; 
address PACKED ARRAY[1..20] OF CHAR; 
city PACKED ARRAY [1..19] OF CHAR; 
state PACKED ARRAY[1..2] OF CHAR; 
zip_code [KEY (1) ] PACKED ARRAY [1.. 5] 

OF CHAR; 
item_num [KEY(2)] INTEGER; 
shipping REAL; 
END; 

order_file = [UNSAFE] FILE OF mail_order; 
ptr_to_FAB = "FAB$TYPE; 
ptr_to_RAB = "RAB$TYPE; 
byte = 0..255; 

VAR 
order_master order file; 
flags FDL2$TYPE; 
order_rec mail order; 
temp_FAB ptr_to_FAB; 
temp_RAB ptr_to_RAB; 
status integer; 

FUNCTION FDL$PARSE 
(%STDESCR FDL_FILE PACKED ARRAY [LL.:INTEGER] 

OF CHAR; 
VAR FAB_PTR PTR_TO_FAB; 
VAR RAB_PTR PTR_TO_RAB) INTEGER; EXTERN; 

FUNCTION FDL$GENERATE 
(%REF FLAGS FDL2$TYPE; 
FAB_PTR PTR_TO_FAB; 
RAB_PTR PTR_TO_RAB; 
%STDESCR FDL_FILE_DST PACKED ARRAY [LL.:INTEGER] 

OF CHAR) INTEGER; 
EXTERN; 

BEGIN 

status := FDL$PARSE ('TESTING',TEMP_FAB,TEMP_RAB); 
f lags::byte := 0; 
status := FDL$GENERATE (flags, 

temp_FAB, 
temp_RAB, 
'SYS$OUTPUT:'); 

*) 

*) 

*) 

*) 

Example 4-3 Cont'd. on next page 

4-16 



Creating and Populating Files 
4.1 File Creation Characteristics 

Example 4--3 (Cont.) Using FDL Routines in a Pascal Program 

END. 

For more information about FDL routines, see the VMS Utility Routines 
Manual. 

4.2 Creating a File 
After you select the creation characteristics for your file, you use the selected 
characteristics to create the file. You can create the file using one of the 
following: 

• VMS RMS Create service 

• Create/FDL Utility 

• Convert Utility 

• FDL$CREATE routine 

4.2.1 Using the VMS RMS Create Service 
The VMS RMS Create service creates a new data file assigning it the attributes 
you specify in the FAB and any applicable XABs. Note that where there is a 
conflict, the XAB fields override the FAB fields. 

When you use the Create service to create a file, the file remains open until 
you explicitly close it. 

If you set the create-if (CIF) bit in the FOP (file-processing options) field of 
the FAB, you can open an existing file with the VMS RMS Create service. If 
the file you try to create has the same name as an existing file, the Create 
service opens the existing file instead of creating the new file. 

The Create service allows you to set file-creation characteristics and to create 
the file directly from your application program. 

For more information about the Create service, see the VMS Record 
Management Services Manual. 

4.2.2 Using the Create/FDL Utility 
Unlike the Create service, using FDL to create a file is a two-step process. 
You must first create the FDL file using EDIT/FDL, and then use another 
VMS RMS utility or your application program to create the data file. 

One of the utilities you can use to create a file is the Create/FDL Utility 
(CREATE/FDL). CREATE/FDL creates an empty data file from the 
specifications in an existing FDL file. This feature allows you to use 
EDIT/FDL to create standard FDL files that describe commonly needed data 
files and then to use CREATE/FDL to create the data files as they are needed. 

For example, to create an empty data file called CUSTRECS.DAT from the 
specifications in an FDL file called INDEXED.FDL, enter the following DCL 
command: 

$ CREATE/FDL=INDEXED.FDL CUSTRECS.DAT 

4-17 



Creating and Populating Files 
4.2 Creating a File 

4.2.3 Using the Convert Utility 
Another VMS RMS utility that creates an output data file from the 
specifications in an FDL file is the Convert Utility (CONVERT). However, 
instead of being empty, the new output file generally contains data records 
from the input file unless the input file was also empty. 

If you want to use CONVERT to change the characteristics of a particular file, 
you can use a DCL command of the following form: 

CONVERT JFDL=fdl-file input-file output-file 

The CONVERT/FDL command creates a new file named by the output-file 
parameter and assigns the new file the characteristics specified in the FDL file. 

For more information about populating data files with CONVERT, see 
Section 4.4. 

4.2.4 Using the FDL$CREATE Routine 
You can also create data files according to your specifications with the 
FDL$CREATE routine. FDL$CREATE is the FDL routine most likely to be 
called from ahigh-level language. . It creates a file from an FDL specification 
and then closes the file. 

The FDL$CREATE routine performs the same function as the Create/FDL 
Utility, but it allows you to create data files from your application. However, 
it allows you to use only the creation-time features of VMS RMS. 

Example 4-4 shows how to call the FDL$CREATE routine from a FORTRAN 
program. 

Example 4-4 Using the FDL$CREATE Routine in a FORTRAN 
Progra m 

* This program calls the FDL$CREATE routine. It 
* creates an indexed output file named NEW_MASTER.DAT 
* from the specifications in the FDL file named 
* INDEXED.FDL. You can also supply a default file name 
* and a result name (which receives the name of the created 
* file). The program also returns all statistics. 

IMPLICIT INTEGER*4 (A - Z) 
EXTERNAL LIB$GET_LUN, FDL$CREATE 
CHARACTER IN_FILE*11 /'INDEXED.FDL'/, 
1 OUT_FILE*14 /'NEW_MASTER.DAT'/, 
1 DEF_FILE*11 /'DEFAULT.FDL'/, 
1 RES FILE*50 
INTEGER*2 FIDBLK(3) /0,0,0/ 
I = 1 
STATUS =FDL$CREATE (IN_FILE,OUT_FILE, 

DEF_FILE,RES_FILE,FIDBLK „) 
IF (.NOT . STATUS) CALL LIB$STOP (°j°VAL (STATUS) ) 

STATUS=LIB$GET_LUN(LOG_UNIT) 
OPEN (UNIT=LOG_UNIT,FILE=RES_FILE,STATUS='OLD') 
CLOSE (UNIT=LOG_UNIT, STATUS='KEEP') 

Example 4-4 Cont'd. on next page 

4-18 



Creating and Populating Files 
4.2 Creating a File 

Example 4--4 (Cont.) Using the FDL$CREATE Routine in a 
FORTRAN Program 

WRITE (6,1000) (RES_FILE) 
WRITE (6, 2000) (FIDBLK (I) , I=1, 3) 

1000 FORMAT (iX, 'The result filename is: ',A50) 

2000 FORMAT (/1X,'FID-NUM: ',I5/, 
1 1X,'FID-SEQ: ',I5/, 
1 1X,'FID-RVN: ',I5) 

END 

Example 4-5 shows how to call the FDL$CREATE routine from a COBOL 
program. 

Example 4-5 Using the FDL$CREATE Routine from a COBOL 
Program 

* FDLCR.COB 

* This program calls the FDL$CREATE routine. It creates 
* an indexed output file named NEW_MASTER.DAT from the 
* specifications in the FDL file named INDEXED.DAT. You 
* can also supply a default file name and a result name 
* (that receives the name of the created file) . The 
* program also returns the FDL$CREATE statistics. 

* DATA NAMES: 

* OUT-REC defines the output record 
* STATVALUE receives the status value from the routine 
* call 
* NORMAL receives the value from SS$_NORMAL 
* FIDBLOCK receives the FDL$CREATE statistics. There 
* are three: 
* (1) file identification number (FID-NUM) 
* (2) file sequence number (FID-SEQ) 
* (3) relative volume number (RUN) 
* RESNAME receives the name of the file that is created 
* (the result file name) 

IDENTIFICATION DIVISION. 
PROGRAM-ID. FDL-CREATE-EXAMPLE. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. VAX-780. 
OBJECT-COMPUTER. VAX-780. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT OUT-FILE ASSIGN TO 'NEWMASTER.DAT'. 

DATA DIVISION. 
FILE SECTION. 
FD OUT-FILE 

DATA RECORD IS OUT-REC. 

Example 4-5 Cont'd. on next page 



Creating and Populating Files 
4.2 Creating a File 

Example 4-5 (Cont.) Using the FDL$CREATE Routine from a 
COBOL Program 

O1 OUT-REC. 
02 OUT-NUM PIC X(4). 
02 OUT-NAME PIC X(20). 
02 OUT-COLOR PIC X(4). 
02 OUT-WEIGHT PIC X(4). 
02 SUPL-NAME PIC X(20) 
02 FILLER PIC X(28) . 

WORKING-STORAGE SECTION. 
O1 MORE-DATA-FLAGS PIC XXX VALUE 'YES'. 

88 THERE-IS-DATA VALUE 'YES'. 
88 THERE-IS-NO-DATA VALUE 'NO '. 

O1 STATVALUE PIC S9(9) COMP. 

O1 FIDBLOCK USAGE IS COMP. 

O1 

02 NUM PIC S9(9) VALUE 0. 
02 SEQ PIC S9 (9) VALUE 0 . 
02 RVN PIC S9(9) VALUE 0. 

RESNAME PIC X(50). 

PROCEDURE DIVISION. 
MAIN. 

PERFORM CREATE-FILE THRU DISPLAY-STATS. 
STOP RUN. 

CREATE-FILE. 
CALL 'FDL$CREATE' USING BY DESCRIPTOR 'INDEXED.FDL' 

BY DESCRIPTOR 'NEWMASTER.DAT' 
BY DESCRIPTOR 'DEFAULT.DAT' 
BY DESCRIPTOR RESNAME 
BY REFERENCE FIDBLOCK 
BY VALUE 0 
BY VALUE 0 
BY VALUE 0 
BY VALUE 0 
BY VALUE 0 

GIVING STATVALUE. 

IF STATVALUE IS FAILURE 
CALL 'LIB$STOP' USING BY VALUE STATVALUE. 

DISPLAY-STATS. 
DISPLAY 'The result filename is: ',RESNAME CONVERSION. 
DISPLAY 'FID number: ',NUM CONVERSION. 
DISPLAY 'FID sequence: ',SEQ CONVERSION. 
DISPLAY 'Volume number: ',RVN CONVERSION. 

4.3 Defining File Protection 

After you have created a file, you want to protect it against accidental or 
unauthorized access. You can protect a disk file in two ways: 

• User identification codes (UICs) 

• Access control lists (ACLs) 

Magnetic tape files can be protected only with UICs. 

4-20 



Creating and Populating Files 
4.3 Defining File Protection 

4.3.1 UIC-Based Protection 
You can protect both disk and magnetic tape files with UICs. This type of 
protection is made up of two parts: an owner UIC and a protection code. 

The owner UIC is normally the UIC of the person who created the file. The 
protection code indicates who is allowed access and what type of access they 
are permitted. 

When you try to open a file, your UIC is compared to the owner UIC of the 
file. Depending on the relationship of the UICs, you may be classified under 
one or more of the following categories: 

• SYSTEM 

• OWNER 

• GROUP 

• WORLD 

Depending on your classification, you may be allowed or denied the following 
types of access: 

READ Can examine, print, or copy a disk or tape file 

WRITE Can modify or write to a disk or tape file 

EXECUTE Can execute a disk file that contains executable program images 

DELETE Can delete a disk file 

You can specify the UIC-based protection value you need when the file is 
created if you use either an FDL specification or VMS RMS directly. 

After you create a file, you can change its UIC-based protection with the 
DCL command SET PROTECTION. For more information about the SET 
PROTECTION command, see the VMS DCL Dictionary. 

The previous list omits CONTROL access because it is never specified in the 
standard UIC-based protection code. However, CONTROL access can be 
specified in an ACL and is automatically granted to certain user categories 
when UIC-based protection is evaluated. 

CONTROL access grants the accessor all the privileges of the object's actual 
owner. For more information, see the Guide to VMS System Security. 

4.3.2 ACL-Based Protection 
You can also protect disk files with access control lists (ACLs). (ACLs cannot 
be used with files stored on magnetic tape.) 

An ACL is a list of people or groups who are allowed to access a particular 
file. ACLs offer more scope than UICs in determining what action you want 
taken when someone tries to access your file. You can provide an ACL on 
any file to permit as much or as little access as you want. 

You can specify the ACL for a file when you create it if you use VMS RMS 
directly. You cannot specify an ACL in an FDL specification, and ACLs are 
not supported over DECnet. 



Creating and Populating Files 
4.3 Defining File Protection 

After a file is created, you can define the access control list for it with the 
ACL Editor. You can invoke this editor with either of the following DCL 
commands: 

• EDIT/ACL 

• SET FILE/ACL 

For more information about how to invoke, modify, and display ACLs, see 
the VMS Access Control List Editor Manual. For additional information about 
VMS security features, see your system or security manager, or consult the 
Guide to VMS System Security. 

4.4 Populating a File 
The next two sections explain how to use the Convert Utility to populate a 
file. 

4.4.1 Using the Convert Utility 
The Convert Utility allows you to create and populate a file. 

To create a file, you need an input data file and an FDL file that describes the 
output file you want to create. You issue a DCL command in the following 
form: 

CONVERT/CREATE/FDL=fdl-file input-file output-file 

As with the CREATE/FDL command, the CONVERT/CREATE/FDL 
command creates a file named by the output-file parameter and having 
characteristics specified in your FDL file. Unlike the CREATE/FDL command, 
CONVERT populates the output file with the records from the input file. 

For example, to create the file CUST.IDX from the specifications in the FDL 
file STDINDEX.FDL and copy the records from the input file CUST.SEQ into 
CUST.IDX, you enter the following command: 

$ CONVERT/CREATE/FDL=STDINDEX.FDL CUST.SEQ CUST.IDX 

VMS RMS assigns the records in CUST.IDX the characteristics specified in the 
file STDINDEX.FDL. 

4-22 



Creating and Populating Files 
4.4 Populating a File 

4.4.2 Using the Convert Routines 

You can invoke the functions of the Convert Utility from your application 
program by calling the following series of convert routines: 

CONV$PASS_FILES 

CONV$PASS_OPTIONS 

CONV$CONVERT 

Names the files to be converted. You can also specify 
an FDL file. 

Indicates the CONVERT qualifiers that you want to use. 
You may specify any legal CONVERT option, or you 
may accept the defaults. 

Copies records from one or more source data files 
to an output data file. The output file is not required 
to have the same file organization and format as the 
source files. 

The routines must be called in this order. 

Example 4-6 shows how to call the CONVERT routines from a FORTRAN 
program. 

Example 4-7 shows how to call the CONVERT routines from a COBOL 
program. 



Creating and Populating Files 
4.4 Populating a File 

Example 4-6 Using the CONVERT Routines in a FORTRAN Program 

* This program calls the routines that perform the 
* functions of the Convert Utility. It creates an 
* indexed output file named CUSTDATA.DAT from the 
* specifications in an FDL file named INDEXED.FDL. 
* The program then loads CUSTDATA.DAT with records 
* from the sequential file SEQ.DAT. No exception 
* file is created. This program also returns all 
* CONVERT statistics. 
* Program declarations 

IMPLICIT INTEGER*4 (A - Z) 

* Set up parameter list: number of options, CREATE, 
* NOSHARE, FAST_LOAD, MERGE, APPEND, SORT, WORK_FILES, 
* KEY=O, NOPAD, PAD CHARACTER, NOTRUNCATE, 
* NOEXIT, NOFIXED_CONTROL, FILL_BUCKETS, NOREAD_CHECK, 
* NOWRITE_CHECK, FDL, and NOEXCEPTION. 

INTEGER*4 OPTIONS(19), 
1 /18,1,0,1,0,0,1,2,0,0,0,0,0,0,0,0,0,1,0/ 

* Set up statistics list as an array with the 
* number of statistics that requested. There are 
* four: number of files, number of records, exception 
* records, and good records, in that order. 

INTEGER*4 STATSBLK(5) /4,0,0,0,0/ 

* Declare the file names 

CHARACTER IN_FILE*7 /'SEQ.DAT'/, 
1 OUT_FILE*12 /'CUSTDATA.DAT'/, 
1 FDL_FILE*11 /'INDEXED.FDL'/ 

* Call the routines in their required order. 

STATUS = CONV$PASS_FILES (IN_FILE, OUT_FILE, FDL_FILE) 
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS)) 

STATUS = CONV$PASS_OPTIONS (OPTIONS) 
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS)) 

STATUS = CONV$CONVERT (STATSBLK) 
IF ( .NOT . STATUS) CALL LIB$STOP (%VAL (STATUS) ) 

* Display the statistics information. 

WRITE (6,1000) (STATSBLK(I),I=2,5) 
1000 FORMAT (1X,'Number of files processed: ',I5/, 

1 1X,'Number of records: ',I5/, 
1 1X,'Number of exception records: ',I5/, 
1 iX,'Number of valid records: ',I5) 

END 



Creating and Populating Files 
4.4 Populating a File 

Example 4-7 Using the CONVERT Routines in a COBOL Program 

* CONV.COB 

* This program calls the routines that perform the 
* functions of the Convert Utility. It creates an 
* indexed output file named CUSTDATA.DAT from the 
* specifications in an FDL file named INDEXED.FDL. 
* The program then loads CUSTDATA.DAT with records 
* from the sequential file SEQ.DAT. No exception 
* file is created. This program also returns all 
* of the CONVERT statistics. 

* DATA NAMES: 

* IN-REC defines the input record 
* OUT-REC defines the output record 
* STATVALUE receives the status value from the 
* routine call 
* NORMAL receives the value from SS$_NORMAL 
* OPTIONS defines the CONVERT parameter list 
* STATSBLK receives the CONVERT statistics. The 
* first data field (NUM-STATS) contains 
* the total number of statistics requested. 
* There are four 

number of files processed (NUM-STATS) 
number of records processed (NUM-FILES) 
number of exception records (NUM-RECS) 
number of valid records (NUM-VALRECS) 

IDENTIFICATION DIVISION. 
PROGRAM-ID. PARTS. 

* (1) 
* (2) 
* (3) 
* (4) 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. VAX-780. 
OBJECT-COMPUTER. VAX-780. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT IN-FILE ASSIGN TO SEQ. 
SELECT OUT-FILE ASSIGN TO CUSTDATA. 

DATA DIVISION. 
FILE SECTION. 
FD IN-FILE 

DATA RECORD IS IN-REC. 

O1 IN-REC. 
02 IN-NUM PIC X(4). 
02 IN-NAME PIC X(20). 
02 IN-COLOR, PIC X(4). 
02 IN-WEIGHT PIC X(4). 
02 SUPL-NAME PIC X(20). 
02 FILLER PIC X(28). 

FD OUT-FILE 
DATA RECORD IS OUT-REC. 

Example 4-7 Cont'd. on next page 



Creating and Populating Files 
4.4 Populating a File 

Example 4-7 (Copt.) Using the CONVERT Routines in a COBOL Program 

O1 OUT-REC. 
02 
02 
02 
02 
02 

OUT-NUM 
OUT-NAME 
OUT-GOER 
OUT-WGHT 
SUPL-NAME 

PIC X(4) . 
PIC X(20). 
PIC X (4) . 
PIC X (4) . 
PIC X(20) . 

WORKING-STORAGE SECTION. 
O1 MORE-DATA-FLAGS PIC X(3) 

88 THERE-IS-DATA 
88 THERE-IS-NO-DATA 

O1 STATVALUE 

O1 OPTIONS 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 

O1 STATSBLK 
02 NUM-STAYS 
02 NUM-FILES 
02 NUM-RECS 
02 NUM-EXCS 
02 NUM-VALRECS 

PROCEDURE DIVISION. 
MAIN. 

NUM-OPTS 
CREATE 
NOSHARE 
FASTLOAD 
NOMERGE 
NOPPEND 
XSORT 
XWORKFILES 
KEYS 
NOPAD 
PADCHAR 
NOTRUNCATE 
NOEXIT 
NOFIXEDCTRL 
NOFILLBUCKETS 
NOREADCHECK 
NOWRITECHECK 
FDL 
NOEXCEPTION 

VALUE 
VALUE 
VALUE 

PIC S9 (9) COMP . 

USAGE IS COMP 
PIC S9 (9) 
PIC S9 (9) 
PIC S9 (9) 
PIC S9 (9) 
PIC S9(9) 
PIC S9(9) 
PIC S9 (9) 
PIC S9 (9) 
PIC S9 (9) 
PIC S9 (9) 
PIC S9(9) 
PIC S9 (9) 
PIC S9 (9) 
PIC S9 (9) 
PIC S9 (9) 
PIC S9(9) 
PIC S9 (9) 
PIC S9 (9) 
PIC S9 (9) 
USAGE IS COMP 
PIC S9 (9) 
PIC S9 (9) 
PIC S9 (9) 
PIC S9 (9) 
PIC S9 (9) 

VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 
VALUE 

'YES'. 
'YES'. 
'NO '. 

18. 
1. 
0. 
1. 
0. 
0. 
1. 
2. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
1. 
0. 

VALUE 4. 
VALUE 0. 
VALUE 0. 
VALUE 0. 
VALUE 0. 

PERFORM CONVERT-FILE THRU DISPLAY-STAYS. 
OPEN INPUT IN-FILE. 
READ IN-FILE 

AT END MOVE 'NO TO MORE-DATA-FLAGS. 
CLOSE IN-FILE. 
STOP RUN. 

CONVERT-FILE. 
CALL 'CONV$PASS_FILES' USING BY DESCRIPTOR 

BY DESCRIPTOR 
BY DESCRIPTOR 

GIVING STATVALUE. 
IF STATVALUE IS FAILURE 
CALL 'LIB$STOP' USING BY VALUE STATVALUE. 

'SEQ.DAT' 
'CUSTDATA.DAT' 
'INDEXED.FDL' 

Example 4-7 Cont'd. on next page 



Creating and Populating Files 
4.4 Populating a File 

Example 4-7 (Cont.~ Using the CONVERT Routines in a COBOL Program 

CALL 'CONV$PASS_OPTIONS' USING BY CONTENT OPTIONS 
GIVING STATVALUE. 

IF STATVALUE IS FAILURE 
CALL 'LIB$STOP' USING BY VALUE STATVALUE. 

CALL 'CONV$CONVERT' USING BY REFERENCE STA~TSBLK 
GIVING STATVALUE. 

IF STATVALUE IS FAILURE 
CALL 'LIB$STOP' USING BY VALUE STATVALUE. 

DISPLAY-STATS. 
DISPLAY 'Number of files processed: ',NUM-FILES CONVERSION. 
DISPLAY 'Number of records: ',NUM-RECS CONVERSION. 
DISPLAY 'Number of exception records: ',NUM-EXCS CONVERSION. 
DISPLAY 'Number of valid records: ',NUM-VALRECS CONVERSION. 

For more information about calling the Convert routines, see the VMS Utility 
Routines Manual. 

4.5 Summary of File-Creation Options 
This section summarizes the file-creation options that are available using VMS 
RMS. File-creation options may be available as qualifiers or keywords to the 
OPEN statement and include various aspects of file creation, including file 
disposition, file characteristics, file allocation, and file positioning. 

Note that the run-time options for opening files in conjunction with creating 
files are not included here, but they are described in Chapter 9. 

4.5.1 File-Creation Options 
The following chart lists the creation-time options that apply to specifying 
how an application uses a file. 

Name of Option Function 

Create-if 

Maximize version 

Supersede version 

Creates the file only if the directory does not contain a 
file with the same name. If a file with the same name 
exists in the directory, VMS RMS opens the existing file 
instead of creating a new file. 
FDL: FILE CREATE_IF 
VMS RMS: FAB$L _FOP FAB$V_CIF 

Creates the file with the specified version number or a 
version number one greater than a file of the same name 
in that directory. 
FDL: FILE MAXIMIZE_VERSION 
VMS RMS: FAB$L _FOP FAB$V_MXV 

Supersedes the file with the same name, type, and 
version number in the current directory. 

FDL: FILE SUPERSEDE 
VMS RMS: FAB$L _FOP FAB$V_SUP 



Creating and Populating Files 
4.5 Summary of File-Creation Options 

Name of Option Function 

Temporary 

Temporary, delete 

Creates a temporary file (which has no directory entry) 
that is retained when the file is closed. The file can 
only be accessed if its internal file identifier is known 
(requires the use of a name block). Name blocks provide 
additional fields for extended file specifications. 
-FDL: FILE DIRECTORY_ENTRY 
VMS RMS: FAB$L _FOP FAB$V_TMP 

Creates a temporary file (which has no directory entry) 
marked for deletion. The file is deleted automatically 
when the file is closed. 
FDL: FILE TEMPORARY 
VMS RMS: FAB$L _FOP FAB$V_TMD 

4.5.2 File Characteristics 
The creation-time options that define file characteristics are described in the 
following chart: 

Name of Option Function 

Block size 

Bucket size 

Date information 

File organization 

File protection 

Defines the number of bytes to be used in each block 
(unit of I/0) throughout the life of this file. This file 
characteristic applies only to magnetic tape files. 
FDL: FILE MT_BLOCK_SIZE 
VMS RMS: FAB$W_BLS 

Defines the number of blocks to be used in each 
bucket (unit of I/O) throughout the life of this file. 
This file characteristic applies only to relative and 
indexed files. 
FDL: FILE BUCKET_SIZE 
VMS RMS: FAB$B_BKS or XAB$B_BKZ 

Specifies the date and time values for file backup, file 
creation, file expiration, and file revision. Can also set 
the number of file revisions. 
FDL: DATE attributes and FILE REVISION 

VMS RMS: Date and Time XAB fields 

Defines the file organization: sequential, relative, or 
indexed. 
FDL: FILE ORGANIZATION 
VMS RMS: FAB$B_ORG 

Defines the file protection for the file being created. 
FDL: FILE OWNER, 

FILE PROTECTION, 
FILE MT_PROTECTION 

VMS RMS: Protection XAB fields 



Creating and Populating Files 
4.5 Summary of File-Creation Options 

Name of Option Function 

Fixed-length control field Defines the number of bytes in the fixed-length 
size control field of a VFC record. 

FDL: FILE CONTROL_FIELD_SIZE 
VMS RMS: FAB$B_FSZ 

Key characteristics Defines the characteristics of a key in an indexed file, 
including key size, starting position, key type, bucket 
fill size, and key options. 
FDL: KEY attributes 
VMS RMS: Key Definition XAB fields 

Maximum record number Defines the maximum number of records for the file. 
Applies only to relative files. 
FDL: FILE MAX _RECORD_NUMBER 
VMS RMS: FAB$L_MRN 

Maximum record size Defines the maximum record size for all records in 
the file. Maximum record size refers to the size of 
all records in a file with fixed-length records, the size 
of the largest record with variable-length records, or 
the size of the variable-length portion of VFC records. 
A value of 0 with variable-length records means 
that there is no limit on the record size, except for 
magnetic tape files, for which a value of 0 sets an 
effective maximum record size equal to the block size 
minus 4. Variable-length records and VFC records 
must conform to certain physical limitations (see the 
VMS Record Management Services Manual). 
FDL: RECORD SIZE 
VMS RMS: FAB$L _MRS 

Record attributes Defines the type of record control information 
associated with each record. Records can be 
prevented from crossing block boundaries (FDL 
attribute RECORD BLOCK_SPAN) and can use one of 
the following carriage control conventions: 

• Each record is preceded by a line feed and 
terminated by a carriage return. 

• Each record contains a FORTRAN carriage return. 

• Each record is in print format where the two-byte 
fixed-length control field (VFC record format) of 
each record contains the carriage return. 

FDL: RECORD BLOCK_SPAN 
or RECORD 
CARRIAGE_CONTROL 

VMS RMS: FAB$B_RAT 

4-29 



Creating and Populating Files 
4.5 Summary of File-Creation Options 

Name of Option Function 

Record format Defines the record format: 

• Fixed-length record format 

• Variable-length record format 

• VFC record format 

• Stream record format 

• Undefined record format (sequential files only) 

FDL: RECORD FORMAT 
VMS RMS: FAB$B_RFM 

4.5.3 File Allocation and Positioning 
You can specify file-allocation and positioning options with either the FAB 
control block or an allocation XAB (XABALL) control block. Note that any 
value specified in the XABALL control block overrides the corresponding 
value in the FAB. The creation-time options described below apply to file 
allocation and positioning. 

Name of Option Function 

Allocation quantity 

Areas 

Contiguous 

Allocates the file or area using the number of 
blocks specified by this value, rounded up to the 
nearest even multiple of the volume's cluster size. 
FDL: FILE ALLOCATION or 

AREA ALLOCATION 

VMS RMS: FAB$L _ALQ or 
XAB$L _ALQ 

Allocates the file using single or multiple areas. 
Applies only to indexed files; sequential and 
relative files are always contained in a single area. 
Indexed files can be placed in specific areas, for 
example, to separate the data area from the index 
area. 
FDL: AREA number 
VMS RMS: XAB$B_AID 

Allocates the file or area using a single extent. 
If the disk's unallocated space does not permit 
the file to be allocated contiguously, an error is 
returned. 
FDL: FILE CONTIGUOUS or 

AREA CONTIGUOUS 

VMS RMS: FAB$L_FOP FAB$V_CTG or 
XAB$L _AOP XAB$V_CTG 

4-30 



Creating and Populating Files 
4.5 Summary of File-Creation Options 

Name of Option Function 

Contiguous best try Attempts to allocate the file or area using a 
minimum number of extents. If the file cannot be 
allocated contiguously, an error is not returned. 
FDL: FILE BEST_TRY_CONTIGUOUS or 

AREA BEST_TRY_CONTIGUOUS 

VMS RMS: FAB$L _FOP FAB$V_CBT or 
XAB$L _AOP XAB$V_CBT 

Cylinder boundary Allocates the file or area at the beginning of a 
cylinder boundary. 
FDL: AREA POSITION 

ANY_CYLINDER 

VMS RMS: XAB$B_AOP XAB$V_ONC 

Cylinder position Positions the file or area at the beginning of the 
specified cylinder number. 
FDL: AREA POSITION CYLINDER 

VMS RMS: XAB$B_ALN XAB$V_CYL and 
XAB$L _LOC 

Default extension Defines the minimum number of blocks for a file 
extension (extent) when additional disk space is 
needed. For EDIT/FDL file extension sizes, see 
Appendix A. 
FDL: FILE EXTENSION 
VMS RMS: FAB$W_DEQ or 

XAB$W_DEQ 

Hard positioning Directs VMS RMS to return an error if the 
requested file or area positioning or alignment 
cannot be performed. 
FDL: AREA EXACT_POSITIONING 

VMS RMS: XAB$B_AOP XAB$V_HRD 

Logical block Positions the file or area at the beginning of the 
position specified logical block. 

FDL: AREA POSITION LOGICAL 

VMS RMS: XAB$B_ALN XAB$V_LBN and 
XAB$L _LOC 

Related file Positions the file or area as close as possible to a 
position related file, at the specified virtual block. 

FDL: AREA POSITION FILE_ID or 
AREA POSITON FILENAME 

VMS RMS: XAB$B_ALN XAB$V_RFI and 
XAB$L _LOC 

Virtual block Positions the file or area at the beginning of the 
position specified virtual block. 

FDL: AREA POSITION VIRTUAL 

VMS RMS: XAB$B_ALN XAB$V_VBN and 
XAB$L _LOC 



Creating and Populating Files 
4.5 Summary of File-Creation Options 

Name of Option Function 

Truncate end of file 

Volume number 

Truncates a nonshared sequential file at its logical 
end to release the space between the logical end 
of the file (end of file data) and the physical end of 
the file (allocated file space) for other use. 
FDL: FILE_TRUNCATE_ON_CLOSE 
VMS RMS: FAB$V_TEF 

Indicates the volume set where the file or area is 
placed when it is created. 
FDL: AREA VOLUME 
VMS RMS: XAB$W_VOL 

For the list of the run-time options that are common to creating and opening 
a file, see Chapter 9. 

For more information about the options listed above, see Chapter 2. For more 
detailed information about the programming aspects of these options, refer to 
the VMS Record Management Services Manual. 

11 



5 Locating and Naming Files 

When creating or opening a file, your program must provide the appropriate 
file specification. Typically, VAX languages require a file specification 
argument for an OPEN statement that names a file being created or locates a 
file being opened. 

There are several ways to locate a file using a VMS file specification. The 
most direct way is to provide the complete file specification, which is often 
used when creating a new file. Another way to locate a file is to have 
the program supply the defaults so that the user enters only the file name 
component of a file specification to access the file. 

Unlike small computer systems, which might have only one mass storage 
device, a VAX system may have many disk and magnetic tape devices. To 
eliminate having to always specify the device and directory in specifying a 
file, VMS RMS uses as defaults the process default device and directory. 

5.1 Understanding File Specifications 
A file specification on a VMS operating system consists of up to seven 
components, several of which assume a default value when they are not 
specified. To allow VMS RMS to identify the boundaries of each component, 
certain characters separate the components in a file specification. These 
characters mark the beginning or the end of a file specification component 
and must be supplied if a subsequent component is present. A complete file 
specification takes the following form: 

node:: device: [root. ][directory-name~filename.type;version 

The following table lists the characters that separate (begin or end) each 
component of a file specification. 

Component Separator Characters) 

Node Double colon (::) ends a node name. 

Device Single colon (:) ends a device name. 

Root Square brackets ([]) or angle brackets (<>) delimit the root 
name. Note that a period (.)must terminate the root name. 

Directory Square brackets ([ ]) or angle brackets (< >) delimit the 
directory name. Within the directory component, a period (. ) 
separates each directory and subdirectory name. 

Filename Period (.)begins the type component and ends the file name. 

Type Period (.)begins the type component and a semicolon (;) or a 
period (.)ends the type component. 

Version Period (.) or semicolon (;)following the the type component 
begins the version component. 

Some examples of valid file specifications follow: 

5-1 



Locating and Naming Files 
5.1 Understanding File Specifications 

DISK1: [MYROOT . ] [MYDIR] FILE .DAT 
DISK1: [MYDIR] FILE .DAT 
[MYD I R] F I LE .DAT 
FILE.DAT;10 
NODE: :DISKS: [REMOTE.ACCESS]FILE.DAT 

The maximum length of a file specification string is 255 characters, including 
all separator characters. The following table lists the length limits for each of 
the component parts of a file specification. Note that although the collective 
limit exceeds 255 characters, the overriding limitation is on the length of the 
file specification. For example, if you use the maximum number of characters 
allowed for a logical device name (255 characters), you cannot specify any 
other file specification component because the length of the file specification 
string exceeds the 255-character limit. 

VMS RMS supports up to eight directory levels each for the root component 
and the directory component in the file specification. 

Component Number of Characters 

Node Up to 59 characters including an access control string 
(physical node names are up to 6 characters; logical node 
names are up to 15 characters) 

Device Up to 15 characters for a physical device name; up to 
255 characters for a logical device name 

Root Up to 39 characters for each root name 

Directory Up to 39 characters for each directory and subdirectory 
name 

Filename Up to 39 characters 

Type Up to 39 characters 

Version Up to 5 digits, which optionally may be preceded by a 
hyphen (-) 

Be careful when naming files that will be copied or accessed by remote 
systems. File name restrictions are generally determined by the file naming 
capabilities of the remote systems that require access to them. These 
restrictions must be considered part of the overall application design when 
network access is required. 

5.1.1 File Specification Formats 
Selecting a file specification format depends in part on whether you confine 
file activity to the local node or you conduct file activity on remote nodes. 
For example, to locate a file on the local node or VAXcluster, you do not have 
to include the node name in the file specification. Conversely, to locate a file 
on a remote node, the name of the remote node must be present either as 
the physical node name or as a logical name whose translation contains the 
physical node name. A logical node name can also contain access control 
information used to log in to the remote system. 

The device can be identified with either a physical name or a logical name. 
You can terminate a physical device name or a logical device name with a 
colon and place one or more file specification components (directory name, 
file name, file type, and version) after it. 



Locating and Naming Files 
5.1 Understanding File Specifications 

A logical device name may translate to another logical name, a physical 
device name, or a physical device name with additional file specification 
components. The logical name can be a search list, which specifies multiple 
file locations where the file can be found (see Section 5.2.3). 

You only have to include the device name when specifying arecord-oriented 
device, such as a terminal. However, if you choose to include other file 
specification components, you must follow the naming conventions described 
previously. 

A logical name can be the file name component if it is the only component 
specified in the file specification. Refer to the VMS DCL Concepts Manual for 
additional information on defining logical names. 

File specification formats for locating lo;~al and remote files are described in 
the remainder of this section. 

5.1.1.1 Local Node 
The following file specification format does not include a node name: 

device: [root. ][directory-name]filename.type;version 

This is the general format of a file specification used to locate a file on the 
local node or VAXcluster. 

The following file specification format is used only for ANSI-formatted 
magnetic tape volumes: 

device:[directory-name]"quoted-ascii-a-string".;nn 

Note that a null node name of the form "::" specifies the local node; this form 
overrides any default node names. 

5.1.1.2 Remote Node 
The following file specification formats are used for accessing files on remote 
nodes: 

node::filespec 

node"access-control-string" ::filespec 

The second file specification format includes an access control string. If an 
access control string is specified or if the process seeking to gain access to 
a remote file has a proxy login account on the remote node, the specified 
remote process uses its access rights to locate the file. If an access control 
string is not specified and a proxy account does not exist on the remote 
system, the local process may use the default DECnet account to locate the 
file. 

The following file specification format is used to locate files on remote nodes: 

node:: "foreign-filespec" 

The only action VMS RMS takes with the foreign file specification is to 
translate the logical node name, if applicable. This format is especially 
useful when the remote system is not a VMS operating system and the file 
specification does not conform to VMS file specification syntax conventions. 
Refer to the VMS Networking Manual for more information. 

The following file specification format does not specify a file directly. Instead, 
it specifies a task on the remote system. 

node:: "task-spec-string" 

5-3 



Locating and Naming Files 
5.1 Understanding File Specifications 

For more information about specifying a logical node name or using any 
of the file specification formats and their associated syntax rules, refer to 
the VMS DCL Concepts Manual. The VMS DCL Concepts Manual also lists 
the characters from the DEC Multinational character set and the ASCII "a" 
characters that can be used in a quoted string for naming ANSI-labeled 
magnetic tape files. 

5.1.2 Using File Specification Defaults 
When you omit file specification components (except for the node name and 
root name), VMS RMS supplies default values for the missing components. 
The file specification to which defaults are applied is called the primary file 
specification. Your program can supply default values for all primary file 
specification components using either the default file specification or the related 
file specification. The process executing the program can supply specific 
default values for device and directory components. 

Where applicable, VMS RMS substitutes the translated logical name to the 
primary file specification before it applies default values. After translating 
the primary file specification, VMS RMS first applies the defaults from 
the default file specification, then it applies the defaults from the related 
file specification, if relevant. VMS RMS then applies the process default 
values, where applicable, for the device and directory to obtain the full file 
specification it uses to locate the file. 

VMS RMS applies process defaults to the device and directory components 
when a file specification does not include these components. Therefore, 
you must explicitly specify the device and directory if you want to access 
a file outside of your process-specified device and directory. At login, the 
process device and directory is set to the value established by the system-
defined logical name SYS$LOGIN. VMS RMS obtains the current device by 
translating the logical name SYS$DISK, and it maintains the current directory 
in your process context. 

For more information about the application of defaults, refer to Section 6.1. 

5.2 Logical Names and Parsing 
VMS RMS translates any logical name present in a file specification at run 
time. The use of logical names can be desirable for several reasons, including 
program simplification, device independence, file independence, and ease of 
use. 

You can specify the file specification at compile (or assembly) time, or the 
program can prompt for it at run time. By specifying a logical name when 
you compile a program, you eliminate having to program a terminal input 
request, and you preserve the flexibility of being able to specify the input file 
before run time. 

Device independence is more readily attainable if a logical name is used for 
the device name component. By using a logical name rather than explicitly 
specifying a physical device, an alternate device (usually containing a recent 
backup copy of the device) can be substituted by changing the definition of 
the logical name. Typically, device independence can reduce or eliminate the 
downtime caused by media failure or scheduled preventive maintenance. 

5-4 



Locating and Naming Files 
5.2 Logical Names and Parsing 

Similarly, when you use a logical name and the current copy of a file is not 
available, an alternate file can be used. To locate several files in a defined 
search order, you can use a search list, which is a form of logical name. 
Alternatively, you can use wildcard characters to locate several files using one 
file specification; however, wildcard characters do not allow you to specify a 
search order. 

Using a logical name to represent a complex file specification or a file 
specification component reduces keystrokes to save time and reduces the 
chance of error. For example, you could define a logical node name that 
translates to an actual node name and access control string for use when 
locating remote files. To keep the password a secret when you use this 
technique, the logical name should be defined interactively rather than in a 
command procedure. 

5.2.1 Image Activation Using Logical Names 
When VMS activates an image, it uses VMS RMS to open the image file. If 
the program specifies the image file with a logical name, VMS RMS uses the 
equivalence name to look up the image in the known file list, unless the file 
specification includes a version number delimiter (a semicolon (;) or a period 
(. )). Known files are files that are installed using the Install Utility, and the 
known file list provides a listing of these files by name and by number. 

If VMS RMS finds the file in the known file list, it uses the file number to 
access the file directly on disk and bring it into memory for execution. If the 
specified image file is not in the known file list, VMS RMS must go through 
the time-consuming process of looking through the disk directories to find the 
file. 

If you create a new version of an image but do not install it as a known image 
and do not remove the old version of the image from the known file list, the 
new image will not run. 

Similarly, when you use a search list to specify the image, the known file 
lookup takes precedence. Until a lookup is successful or until the search list 
is exhausted, VMS RMS executes a known file lookup for each element on 
the search list that does not include a file version delimiter. If it exhausts the 
search list, VMS RMS uses the search list again, this time trying to locate and 
open the image file on disk. 

If an older version of the image is included in the search list and if VMS RMS 
finds the older version first, it will execute the older version and never look 
for the new version. Be sure to consider this when using search lists. 

5.2.2 .Example Use of Logical Names 
Regardless of the programming language, you can use a logical name to 
provide components of a file specification. The following program example 
shows how to access a remote file. You access a remote file in the same way 
that you access a local file, except that the remote file specification includes a 
node name. 

Example 5-1 is a simple FORTRAN program that transfers a remote file on 
node TRNTO to the line printer on node BOSTON, using the logical names 
SRC and DST. You must define the logical name for the process before you 
run the program, using the following sequence of commands: 

5-5 



Locating and Naming Files 
5.2 Logical Names and Parsing 

$ DEFINE SRC TRNTO::USER: [STOCKROOM.PAPER]INVENTGRY.DAT 
$ DEFINE DST BOSTON::LPAO: 
$ RUN TRANSFER 

In Example 5-1, standard I/O calls transfer the file's records from one device 
to another. Note the use of the VMS file specification format with a remote 
node name. (If the remote node is other than VMS, the format of the file 
specification may differ.) 

After opening the files and copying all the records, the program closes the 
channels, thereby terminating network operations. These operations are 
similar for applications in the other high-level VAX languages. 

Example 5-1 Using Logical Names for Remote File Access 

PROGRAM TRANSFER 
C 
C This program creates a sequential file with variable-length 
C records from a sequential input file. The input and output 
C files are identified by the logical names SRC and DST, 
C respectively. 
C 

CHARACTER BUFFER*132 
C 
100 FORMAT (Q,A) 
200 FORMAT (A) 
C 
C Open the input and output files. 
C 

OPEN (UNIT=I,NAME='SRC',TYPE='OLD',ACCESS='SEQUENTIAL', 
1 FORM='FORMATTED') 

OPEN (UNIT=2,NAME='DST',TYPE='NEW',ACCESS='SEQUENTIAL', 
1 FORM='FORMATTED',GARRIAGECONTROL='LIST', 
2 RECORDTYPE='VARIABLE') 

C 
C Transfer records until end-of-file or other error condition. 
C 
10 READ (1,100,END=20,ERR=20) NCHAR,BUFFER(:NCHAR) 

WRITE (2,200) BUFFER(:NCHAR) 
GOTO 10 

C 
C Close the input and output files. 
C 
20 CLOSE (UNIT=2) 

CLOSE (UNIT=1) 
END 

5.2.3 Types of Logical Names 
When a logical name is defined, you can assign it various translation attributes 
including the concealed attribute and the terminal attribute. By default, a 
logical name is neither concealed nor terminal. 

To specify a logical name as either concealed or terminal, use the 
/TRANSLATION~TTRIBUTES qualifier for the DCL commands DEFINE or 
ASSIGN. 

The terminal attribute indicates to VMS RMS that the related logical name is 
the final name in the translation process. That is, no further translation is to 
be performed. 

5-6 



Locating and Naming Files 
5.2 Logical Names and Parsing 

The concealed attribute ensures that VMS RMS uses the device logical name 
when communicating with the application program. If the device logical 
name does not have the concealed attribute, any file specification information 
returned to the application program includes the device's physical name 
rather than its logical name. To illustrate, enter the following command 
sequence: 

$ DEFINE/SYSTEM USERDISK DUA5: 
$ SET DEFAULT USERDISK: [JONES] 
$ DIRECTORY 

The system responds with the following display, which identifies the device 
by its physical name (DUA5): 

DIRECTORY DUA5: [JONES] 

FILE.TXT;1 FILE.TXT;2 

Total of 2 f Iles . 

Now enter the following command sequence: 

$ DEFINE/SYSTEM/TRANSLATE=CONCEALED USERDISK DUA5: 
$ DIRECTORY 

The system responds with the following display, which identifies the device 
by its logical name (USERDISK): 

DIRECTORY USERDISK: [JONES] 

FILE.TXT;1 FILE.TXT;2 

Total of 2 f files . 

A search list is a logical name that contains more than one file specification. 
Typically a search list is used to search multiple file locations looking for a 
file. VMS RMS attempts to locate the file by using the first file specification in 
the search list, then the next, and so forth until the file is found or the search 
list is exhausted. Like other logical names, a search list is usually defined 
using the ASSIGN or DEFINE commands; however, in a search list logical 
name, the multiple file specifications (equivalence names) must be separated 
by commas. 

Any of the equivalence names in the search list may be specified individually 
as being terminal or being concealed. Section 6.2 describes the use of search 
lists and wildcard characters for multiple file processing and parsing. For 
general information about using logical names, refer to the VMS DCL Concepts 
Manual. 

5.2.4 Introduction to File Parsing 
VMS RMS allows an application program to specify defaults for the device 
and directory components of a file specification as well as other components 
of a file specification. The method VMS RMS uses to apply defaults and 
translate any logical names present is called file parsing. In effect, VMS RMS 
merges the various default strings (after translating any logical names) to 
generate the file specification used to locate the file. 

One of the functions of file parsing is to determine when a logical name is 
present and whether the file specification describes a file on the local node. If 
a node name is not present in the file specification (the file is located on the 



Locating and Naming Files 
5.2 Logical Names and Parsing 

local system), VMS RMS first transla ces any logical names, applies defaults to 
any missing components, and then attempts to locate the file. 

If a node name is present, VMS RMS does not process the file specification 
on the local node. Instead, it merges any program-specified defaults without 
translation and passes the defaulted, untranslated file specification to the file 
access listener (FAL) at the remote node; the operating system on the remote 
node interprets it. 

With advanced file parsing, a single file specification can be used to locate a 
single file or multiple files. To locate a single file, multiple file locations or 
file names can be searched to ensure that the file is found. The multiple file 
locations or file names can be located in the same or in different directories, 
on different devices, on different nodes, or a combination thereof. Using 
wildcard characters and search lists, you can locate multiple files with a single 
file specification. 

When a wildcard character or a search list is included in a file specification, 
the application program may need to preprocess the file specification before 
attempting to locate the file. A VMS RMS file service that operates on an 
unopened file (such as the Create service and the Open service) performs the 
following file-parsing tasks: 

• Examines a file specification for validity 

• Translates any logical names present 

• Applies defaults 

• Attempts to locate the file 

If a name block is present, the service may also do the following file-parsing 
tasks: 

• Returns the actual complete file specification used to access the file and 
its associated file identifier 

• Returns the length of each component of a file specification as well as 
other information about the file specification 

Some file services, including the Open and Create services, cannot process 
a file specification that contains wildcard characters. If a file specification 
contains wildcard characters, you must use the Search service to resolve the 
wildcard characters before you invoke the Open service or the Create service. 

The Parse service determines whether wildcard characters or search lists are 
present, and it initializes control block fields that are necessary to search for 
multiple files using the Search service. To use the Search service, a NAM 
(name) block must be present when the Parse service is invoked. 

Alternatively, you can use the SYS$FILESCAN system service (scan string 
for file specification) to scan a file specification for validity and optionally 
return the lengths of the individual file specification components without 
translating logical names or applying defaults. Two Run-Time Library 
routines, LIB$FIND_FILE and LIB$FILE _SCAN, perform functions that 
are similar to the Parse service and the 5YS$FILESCAN system service. 

For more information about how VMS RMS parses a file specification, see 
Section 6.1. For additional information about using directory specifications, 
including directory syntax conventions, see Section 6.3. 



Locating and Naming Files 
5.3 Using One File Specification to Locate Many Files 

5.3 Using One File Specification to Locate Many Files 
Five services can translate and apply defaults to a file specification to produce 
a fully parsed file specification: the Create, Open, Erase, Parse, and Rename 
services. Other file services must be preceded by one of these services to 
parse the file specification and, in some cases, to open the file. 

If a file specification contains one or more wildcard characters, it must be 
preprocessed using the Parse and Search services before the file can be 
located. The Parse service sets bit values in the name block file name status 
bits field (NAM$L _FNB). This field can be tested to determine whether 
a wildcard character or a search list logical name is present. The Search 
service locates a file and specifies its name (without wildcard characters). 
If ._wildcard characters are present, you must first invoke the Search service 
before processing (opening or creating) the file; if wildcard characters are not 
present, the file can be processed without invoking the Search service. 

To process a single file, you need to invoke the Search service only once; 
to process many files, invoke the Search service as many times as needed 
to return the next full file specification. When no more files match the 
file. specification, the Search service returns a no-more-files-found message 

In summary, the Parse and Search services work together to provide a fully 
qualified file specification that the Search service uses to locate the file. 

Your program can process a single file without using the Search service if 
neither the file specification nor the search list contain wildcard characters. 
If any of the file specifications in a search list contain wildcard characters, 
the Search service must be invoked before processing the file to prevent an 
invalid wildcard completion status error. If a wildcard character is present in 
the second or subsequent file specifications in a search list, VMS RMS does 
not set the wildcard bit in the file name status bits field. 

If the Parse and Search services precede an Open service, an open-by-name-
block operation should be performed by specifying the address of the name 
block in the name block address (FAB$L _NAM) field and setting the file-
processing options (FAB$L _FOP) open-by-name-block (FAB$V_NAM) bit 
option. 

Wildcard characters cannot be present in the file specification when the 
Create service is invoked. Sometimes the Parse service and the Search service 
precede a Create service. 

When the create-if option bit (FAB$V_CIF) or the supersede option bit 
(FAB$V_SUP) is set in the file-processing options (FAB$L _FOP) field, the 
program may invoke the Parse service to check for wildcard characters or 
search lists in the file specification. If a search list or wildcard characters 
are found, the program must invoke the Search service before invoking the 
Create service. 

The create-if option tries to open any file found in the search list. If the 
file is not found in the search list, VMS RMS creates it using the first file 
specification in the search list. If these options are specified and a wildcard 
character is present when the Create service is invoked, the file specification 
is invalid; if a search list is present, the file is created using the first file 
specification from the search list. 



Locating and Naming Files 
5.3 Using One File Specification to Locate Many Files 

You can either call these services directly from a VAX MACRO procedure (or 
as part of a USEROPEN or USER~CTION routine in a high-level language) 
or execute the calls from VAX language subroutines or functions that call the 
VMS RMS services. The Parse and Search services require that a name block 
be present. Unless your language supports a means of setting values in a 
name block (and other control blocks) and invoking VMS RMS services, you 
should use a VAX MACRO procedure. FDL does not support the use of a 
name block. 

In addition to a name block, you usually need a file access block (FAB) and 
a record access block (RAB). To perform file services, a FAB (and, if needed, 
extended attribute blocks (XABs)) must be present; to perform record services, 
a RAB must be present. 

The following program shows how to use the LIB$FIND_FILE routine to 
locate the desired file, which the interactive user enters. Because 
LIB$FIND_FILE is used with the supplied arguments, the file specification 
may contain wildcard characters, a search list, and a search list that assumes 
the program will allow the use of "sticky" defaults, as in DCL command 
line parsing. The routine is called by the following VAX BASIC program 
USEROPEN option for the BASIC OPEN statement. 

100 MAP (REC . 1) SURNAME$ = 20% , REST$ = 60% 
110 OPEN " "FOR OUTPUT AS FILE #1%, ORGANIZATION RELATIVE, & 

MAP REC.1, USEROPEN LOCATE 
120 CLOSE #1% 
130 END 

The BASIC program allocates the control blocks before control is given 
to the USEROPEN routine; it also passes the address of the FAB as the 
first argument and the address of the RAB as the second argument. These 
arguments enable the VAX MACRO routine to obtain the control block 
addresses because the argument pointer points to the longword count of 
arguments, followed by the longword-length arguments. Because the VAX 
MACRO macros $FAB and $NAM are not used, access to the symbolic offset 
values defined for these control blocks are not available; thus, the $FABDEF, 
$NAMDEF and $RABDEF macros define these symbols for the USEROPEN 
routine. 

In addition to locating the file using any valid file specification, the called 
routine also connects to the file requesting 15 global buffers (or as many 
global buffers as system resources permit). This routine is linked with the 
BASIC program to form the executable image. Example 5-2 shows the 
routine. 



Locating and Naming Files 
5.3 Using One File Specification to Locate Many Files 

Example 5-2 Selecting the USEROPEN Option to Calla Routine 

.TITLE LOCATE 

.PSECT DATA,WRT,NOEXE 

.EXTERNAL LIB$SIGNAL,LIB$STOP,LIB$GET_INPUT,LIB$PUT_OUTPUT 

.EXTERNAL STR$GET1_DX 
$FABDEF Define FAB symbols 
$RABDEF 

IFILE: .BLKB 
IFILED: .LONG 

.LONG 

OFILED: .WORD 
.BYTE 
.BYTE 

OFILE: .LONG 

DFILED: .ASCID 

PROMPT: .ASCID 
LOC_P: .ASCID 
NULL_P: .ASCID 

ARGS: .LONG 
.ADDRESS 
.ADDRESS 
.ADDRESS 
.ADDRESS 
.ADDRESS 
.ADDRESS 
.ADDRESS 

CTEXT: .LONG 
NULL: .LONG 
STV_L: .BLKL 
UFLAGS: .BLKL 
LEN: .BLKB 

80 
80 
IFILE 

255 
DSC$K_DTYPE_T 
DSC$K_CLASS_D 
0 

/.DAT/ 

/Enter the 
/*** NOTE: 
/ / 

7 
IFILED 
OFILED 
CTEXT 
DFILED 
NULL 
STV_L 
UFLAGS 
0 
0 
1 
1 
255 

filespec: / 
Global buffers 

.PSECT CODE,NOWRT,EXE 

.ENTRY LOCATE,~M<> 

MOVL 4 (AP) , R6 
MOVL 8 (AP) , R7 
BISL2 #2,UFLAGS 

TERR: PUSHAL IFILED 
PUSHAL PROMPT 
PUSHAL IFILED 
CALLS #3, G~LIB$GET_INPUT 
BLBC RO,TERR 
PUSHAL OFILED 
PUSHAL LEN 
CALLS #2, G~STR$GET1_DX 
BLBC RO,ERR 
CALLG ARGS, G~LIB$FIND_FILE 
BLBC RO,ERR 
BRW OPEN 

ERR: PUSHL STV_L 
PUSHL RO 
CALLS #2, G~LIB$SIGNAL 
BRW TERR 

Define RAB symbols 

Input filespec 
Filespec descriptor 

Filespec descriptor 
Specify character text 
Specify descriptor class 
Address set by STR$GET1_DX 

Def ault filespec descriptor 

User prompt 
unavailable ***/ ; 

Blank line prompt 

7 arguments 
Input filespec 
Output filespec 
Context 
Default filespec 
No related filespec 
STV field 
User flags 
Context work area 
No related filespec 
STV status return area 
User flags 

Move FAB address into R6 
Move RAB address into R7 
Set flag for sticky defaults 
Get input length 
Prompt for input 
Input descriptor 
Get input 
Retry on error 
Push descriptor address 
And length 
Allocate dynamic string 
Branch on error 
Call RTL Find File Routine 
Branch on error 
Skip on success 
Signal error status 
codes 
Display error 
Reenter filespec on error 

Example 5-2 Cont'd. on next page 

5-11 



Locating and Naming Files 
5.3 Using One File Specification to Locate Many Files 

Example 5-2 (Cont.) Selecting the USEROPEN Option to Calla Routine 

OPEN: 
PUSHAL OFILED 
CALLS #1, G~LIB$PUT_OUTPUT 
MOVL OFILE,R10 
$FAB_STORE FAB=R6,FNA=(R10),FAC=GET,-
FNS=OFILED,SHR=<GET,MSE> 

$OPEN FAB=R6 
BLBS RO,CONNECT 
PUSHL FAB$L_STV(R6) 
PUSHL FAB$L_STS(R6) 
CALLS #2, G~LIB$STOP 

Display filespec 
on screen 
Move filespec address to R10 

Set read-sharing global buffer 
Open the file 
Branch on success 
Push STV and STS in reverse 
order on stack to 
Signal error and stop 

This block of code attempts to Connect with global buffers if possible 
and uses local buffers if global buffer resources are not available. 
Because the global buffer value is set between the Open and Connect, 
all defaults are overwritten. 

CONNECT: 
MOVL #15,R9 
BRB RETRY 

LOCAL: MOVL #O,R9 
$RAB_STORE~RAB=R7,MBF=#6 
PUSHAL LOC_P 
CALLS #1, G~LIB$PUT_OUTPUT 

RETRY: $FAB_STORE FAB=R6,GBC=R9 
$CONNECT RAB=R7 
BLBC RO,RERR 
BRW DONE 

RERR: CMPL 
BNEQ 
CMPL 
BLSS 
SUBL2 
BRW 

CERR: 
PUSHL 
PUSHL 
CALLS 

DONE: RET 
.END 

R0,#RMS$_CRMP 
CERR 
#4,R9 
LOCAL 
#3,R9 
RETRY 

RAB$L_STV(R7) 
RAB$L_STS(R7) 
#2, G~LIB$STOP 

R9 contains global buffer count 
Skip local buffer handing 
Turn of f global buffers 
Request 6 local buffers 
Inform user 
No global buffers 
Override default global buffer 
Connect the record stream 
Branch on error 
On success, return 

Test if too many global buffers 
Quit if other error 
Test if too few global buffers 
Use local buffers 
Decrement R9 by 3 
Attempt Connect again 

Push STV and STS in reverse 
order on stack to 
Signal and end on error 
Return to main program 

Example 5-2 also shows the proper way to signal errors. The RAB$L _STS 
(completion status) field and the RAB$L _STV (additional status values) field 
of the FAB or RAB are used so that secondary completion information is 
displayed, if appropriate, by the LIB$SIGNAL or LIB$STOP routines. The 
VAX MACRO program shown in Example 5-3 invokes the Parse service, 
determines whether a wildcard character or search list is present, and 
conditionally branches to a sequence of instructions that invoke the Search 
service followed by the Open service. The resultant string is displayed after 
the file is opened. 

For more information about the LIB$ routines shown here and other routines 
in the VMS Run-Time Library, see the VMS Run-Time Library Routines 
Volume. 



Locating and Naming Files 
5.3 Using One File Specification to Locate Many Files 

Example 5-3 Using the Parse, Search, and Open Services 

.TITLE WILDFILE 

BEGIN DATA PROGRAM SECTION * * * * * * * 

.PSECT 
MY_NAM: $NAM 

MY_FAB: $FAB 

EXP_STR: 

RES_STR: 

DATA,NOEXE,WRT 
RSA=RES_STR,-
RSS=NAM$C_MAXRSS,-
ESA=EXP_STR,-
ESS=NAM$C_MAXRSS,-
FOP=NAM,-
NAM=MY_NAM,-
FNA=INP_STR 

.BLKB NAM$C_MAXRSS 

.BLKB NAM$C_MAXRSS 
RES_STR_D: 

.BLKL 1 

.LONG RES_STR 
INP_STR: 

.BLKB NAM$C_MAXRSS 
INP_STR_D: 

.LONG NAM$C_MAXRSS 

.LONG INP_STR 
INP_STR_LEN: 

.BLKL 1 
PROMPT_D: 

.ASCID /Please enter the file 

Result buffer address 
Result buffer size 
Expanded buffer address 
Expanded buffer size 
Use NAM block option 
Pointer to NAM block 
Address of file name string 
Expanded string buffer 

Resultant string buffer 

Resultant string descriptor 

Input string buffer 

Input string descriptor 

Input string length 

User prompt string 
specification : / 

BEGIN CODE PROGRAM SECTION * * * 

.PSECT 

.ENTRY 
PUSHAB 
PUSHAB 
PUSHAB 
CALLS 
BLBS 
BRW 

CODE,EXE,NARRATE 
WILDFILE, "M<> 
INP_STR_LEN 
PROMPT_D 
INP_STR_D 
#3,G"LIB$GET_INPUT 
RO,MOVE 
EXIT 

Save no registers 
Address for string length 
Prompt string descriptor 
String buffer descriptor 
Get input string value 
Branch on success 
Quit on error 

Store user input string and perform parse 

MOVE: MOVB INP_STR_LEN, -
MY_FAB+FAB$B_FNS 

Set string size 

Example 5-3 Cont'd. on next page 



Locating and Naming Files 
5.3 Using One File Specification to Locate Many Files 

Example 5-3 (Cont.) Using the Parse, Search, and Open Services 

PAR: $PARSE FAB=MY_FAB 
BLBC RO,F_ERR 
BBS #NAM$V_WILDCARD,-

NAM$L_FNB+MY_NAM,WILD 
BBS #NAM$V_SEARCH_LIST,-

NAM$L_FNB+MY_NAM,WILD 
BRB OPEN 

WILD: $SEARCH FAB=MY_FAB 
BLBC RO,F_ERR 

OPEN: $OPEN FAB=MY_FAB 
BLBC RO,F_ERR 
MOVZBL MY_NAM+NAM$B_RSL,-

RES_STR_D 
PUSHAB RES_STR_D 
CALLS #1,G~LIB$PUT_OUTPUT 

$CLOSE FAB=MY_FAB 
BLBS RO,EXIT 

F_ERR: PUSHL MY_FAB+FAB$L_STV 
PUSHL MY_FAB+FAB$L_STS 
CALLS #2, G"LIB$SIGNAL 

EXIT: RET 
.END WILDFILE 

Parse filespec in MY_FAB 
Branch on error 

Branch on bit set 

Branch on bit set 
OK to open file 
Search for next file 
Branch on error 
Open file 
Branch on error 
Move resultant string 
length to descriptor 
String buffer descriptor 
Display resultant filespec 
Connect and process file 

... and 
Close file 
Branch on success 

Push STV and STS on stack 
in reverse order 
Signal error 
Exit with RO 

Example 5-3 uses the VAX MACRO macros $FAB and $NAM that define the 
control blocks and specify the arguments for the Parse, Search, Open and 
Close services. It shows how to preprocess a file specification using the Parse 
and Search services. To process many files, you could add an unconditional 
branch instruction just before the symbolic address F_ERR to branch to the 
$SEARCH macro at the symbolic address WILD. 

Refer to the VMS Record Management Services Manual and the VAX MACRO 
and Instruction Set Reference Manual for more VAX MACRO RMS examples 
and information about using VAX MACRO. 

An application may also need to process either one file or many files, 
depending on the file specification that the terminal user enters or the 
logical name that is provided (if the program uses a logical name in its 
file specification). Each of these cases is discussed in the following sections. 

5.3.1 Processing One File 
When only a single file needs to be processed, but more than one location for 
the file may need to be searched, you can usually find the file by specifying a 
file specification that contains a search list. 

For example, consider the case of a directory that contains the file PAY.DAT 
and a backup copy of the file named PAY_BUP.DAT. You could specify a file 
name of PAY*.DAT in the file specification and invoke the Parse service once 
and the Search service once to locate either of the two files; this method will 
locate PAY.DAT before PAY_BUP.DAT. 



Locating and Naming Files 
5.3 Using One File Specification to Locate Many Files 

A potential problem arises if the file PAY.DAT has been deleted or renamed. 
In this case, unless the program determines that the file specification is one 
of several that are acceptable, any file named PAY that has the file type 
DAT could be accessed: for example, PAY_ACC.DAT. You can avoid such 
problems by defining a search list logical name that specifies that VMS RMS 
search for PAY.DAT and PAY_BUP.DAT. A search list named SEARCH could 
be defined as follows for the directory [SMITH]: 

$ DEFINE SEARCH [SMITH] PAY .DAT , [SMITH] PAY_BUP .DAT 

To locate the file, specify SEARCH as the primary file specification. 

When the file locations to be searched reside in different directories of a 
directory tree, you can use the ellipsis wildcard character in the directory 
field to search all subdirectories. Alternatively, you could define a search list 
that searches for the file PAY.DAT in one directory, the same file name in 
a subdirectory, and PAY_BUP.DAT in any directory in the directory tree by 
using the following DEFINE command: 

$ DEFINE SEARCH [SMITH] PAY , [SMITH .PAY] PAY , [SMITH . . . ] PAY_BUP 

You use the file specification SEARCH:.DAT to locate the desired file. In this 
example, note that one of the search list file specifications contains wildcard 
characters. Wildcard characters can be used in a search list if .they are needed, 
just as with any other logical names and file specifications. However, the 
Parse and Search services must be used to locate the correct file. 

When you need to locate files in different directory trees (or top-level 
directories), include complete directory specifications in your search 
list definition. For example, to locate the file TEST_DATA.DAT in the 
device/directory combinations of DISKl:[SMITH], DISK2:[STATS], or 
DISK2:[SMITH] you could use the following command to define the search 
list TST: 

$ DEFINE TST DISK1: [SMITH] ,DISK2: [STAYS] ,DISK2: [SMITH] 

You can also use search lists to locate files on different devices. To locate this 
file, you specify TST:TEST_DATA.DAT. 

To find the same directory and the same file name on different devices, you 
could use the following command to define TST: 

$ DEFINE TST DISKI:,DISK2:,DISK3: 

When you define the search list TST in this manner, you can locate the file 
by using the search list to specify the device name. In this way, you can use 
a single search list to locate files that would otherwise require multiple file 
specifications, even if wildcard characters were used. 

5.3.2 Processing Many Files 
To process many files using a single file specification, you always need to use 
the Parse and Search services to locate the files. 

The application requirements and the directory location of the files generally 
determine whether one or more search lists, wildcard characters, or search 
lists containing wildcard characters are used in the file specification. When 
files must be accessed in nonalphabetical order, use a search list. 



Locating and Naming Files 
5.3 Using One File Specification to Locate Many Files 

To process multiple files using a single file specification, invoke the Parse 
service (or its equivalent) once to interpret the file specification and to create 
the file specification pattern to be searched. After the file specification is 
parsed, you can invoke the Search service to locate each file that matches the 
original file specification. In some cases, you can examine (or display) the 
resultant file specification string returned by the Search service to determine if 
you (or the interactive user) want to process (open) the file. 

If you want to list all file specifications that match a particular file specifcation 
and let the terminal user choose each file to be processed, wildcard characters 
can be used safely, possibly in a search list that contains wildcard characters 
in one or more of its file specifications. To reduce the number of files that the 
user might choose to process, use a search list without wildcard characters or 
rely less on wildcard characters. For example, to locate all files in a directory 
tree on different devices with a file type of DAT, you could define the search 
list TREE as follows: 

$ DEFINE TREE DISK1 : [MYDIR . . . ] , DISK2 : [MYDIR . . . ] 

The primary file specification that would be used for the Parse service would 
be TREE:*.DAT. A great number of files might match this. 

For applications that will need to locate certain files, search lists with limited 
use of wildcard characters might be needed. Consider a file that contains 
a prefix of RESULTS followed by the date for which the data applies. You 
could use the file name RESULTS*JUN*.DAT to locate a record that was 
entered in the month of June by executing a Search service followed by an 
Open service for each file, reading all records until the correct one is found, 
and invoking the Close service after processing each file. 

A search list should be used when a predefined group of files is processed 
by a program that is not intended to be interactive. Using a search list is 
particularly desirable if the files have unrelated file names or if they are 
located on different directories or devices. A search list also minimizes 
processing time by searching for a definite group of files. 

5.3.3 Processing One or Many Files 
For general-purpose applications, when the user enters a file specification 
that may indicate one file or many files, there is a means of testing whether 
one file or many files are to be processed, or to explicitly disallow the use 
of wildcard characters for applications where only a single file should be 
processed. To test for wildcard characters or search lists, or both, invoke the 
Parse service and test the appropriate bits in the NAM$L _FNB field. 

The presence of a wildcard character usually indicates that many files should 
be processed, depending on program conventions. If a search list is present, 
it may or may not indicate that only one file should be processed and a 
convention is needed for users of that program. Thus, by testing whether a 
wildcard is present, the program can either invoke the Parse service once and 
the Search service repeatedly for each file to be opened, or it can disallow 
wildcard characters and request that the file specification be reentered. In 
some cases, the program may need to disallow the use of a search list or allow 
one or many files to be accessed, depending upon application conventions. 

If you want to disallow wildcard characters, invoke the Open service. The 
Open service fails when it encounters a wildcard character. 



6 Advanced Use of File Specifications 

This chapter is intended for readers who want to better understand how 
VMS RMS internally applies defaults, parses file specifications, and handles 
directory specifications. This chapter also describes the use of rooted-directory 
syntax and process-permanent files. 

6.1 How VMS RMS Applies Defaults 
This section describes how VMS RMS applies defaults when it tries to locate 
a file specified by your program. 

The program-supplied file specifications are the primary file specification, the 
default file specification, and one or more related file specifications. Of these, 
the primary file specification is usually specified. 

The default file specification contains a default for the type component 
(typically DAT to specify a data file, TXT to specify a text file, and so forth) 
or it supplies defaults for other file specification components. The related 
file specification is used when two files are involved in an operation, such as 
copying or merging files, in which the input file specification is the related file 
specification for the output file. 

A final default mechanism ensures that if the device or directory components, 
or both, are missing, process defaults are used. Table 6-1 describes the 
defaults that VMS RMS uses to produce a complete file specification when file 
specification components are omitted. 

Table 6-1 File Specification Defaults 

File 
Specification Description 

Primary 

Default 

If the device field is a logical name, VMS RMS translates 
the logical device name to its component parts. The 
resulting device name may be a physical device name, a 
process-permanent file name, or another logical name. 

If the device field is a logical name, VMS RMS translates 
it before defaults are applied. If any of the fields in the 
file specification from the previous step are missing, they 
are supplied from the corresponding fields in the translated 
default file specification, where applicable. 



Advanced Use of File Specifications 
6.1 How VMS RMS Applies Defaults 

Table 6-1 (Cont.) File Specification Defaults 

File 
Specification Description 

Related If the device field is a logical name, VMS RMS translates it 
and applies the default values before it uses the related 
file specification to add missing component fields. If 
fields contain wildcard characters, the wildcard characters 
remain in the fields. When VMS RMS uses the related file 
specification to specify an output file, the file name field 
and the file type field are replaced by the corresponding 
related file specification fields, where applicable. For 
more information, including the use of multiple related 
file specifications, see Section 6.2.3. 

Device and If the device name is omitted, the device field and, 
Directory optionally, the directory field accept the system logical name 

SYS$DISK. If VMS RMS cannot translate the logical name 
SYS$DISK to a physical device name, an error occurs. If the 
directory field does not accept the logical name SYS$DISK, 
it accepts the name of the current process default directory. 

Primary, default, and related file specifications can use logical names. VMS 
RMS translates the primary file specification before it applies defaults and 
missing components. VMS RMS also translates the default file specification 
before using the default values. Finally, VMS RMS translates the related file 
specification before it uses missing components supplied by the related file 
specification. If the file specification is still missing the device or directory 
name components, the process executing the program supplies default device 
and directory values. 

The algorithm used in determining the appropriate translation is as follows: 

if node name present 
then translate node name 

else if device name present 
then translate device name 

else if only file name present 
then translate file name 

For the remainder of this description, the component parts of the file 
specification are referred to as strings. For example, the device component is 
referred to as the device string; the name component is the name string, and 
so forth. Furthermore, as components are added to a file specification, the 
expanded file specification is referred to as the expanded string. Finally, the 
resultant file specification is called the resultant string. 

Table 6-2 shows the sequence in which defaults are applied to a file 
specification (primary file specification string) and the resulting file 
specification (resultant string). In Table 6-2, the program specifies the 
primary file specification string FILE, omitting all other components of the 
file specification. The default file specification string .DAT provides the 
file type component. The related file specification string does not provide 
any component strings, but the default device string (logically SYS$DISK) 
provides the device string DISK1: and the directory string, [INV_C], is 
provided by the default directory string. Finally, because the resultant string 
is used to specify a new file, VMS RMS applies the version number 1 to 
complete the new file specification. 

6-2 



Advanced Use of File Specifications 
6.1 How VMS RMS Applies Defaults 

Table 6-2 Example of Applying Defaults 

String Name String Applied Expanded String 

Primary file specification 

Default file specification 

Related file specification 

Default device (SYS$DISK~ 

Default directory 

Resultant string 

FILE 

. DAT 

None . 

DISK1: 

[INV_C] 

FILE 

FILE.DAT; 

FILE.DAT; 

DISK 1:FILE.DAT; 

DISK 1:[INV_C]FILE.DAT; 

DISK 1:[INV_C]FILE.DAT;1 

VMS RMS appends the version number to the expanded string to convert it 
into the resultant string. The resultant string is the resultant file specification 
that VMS RMS uses to locate the file. 

When coding the file specification information in a program, you can use the 
language keyword for the OPEN (or CREATE) statement. Then you use the 
FDL Editor to enter the file specification characteristics. Finally, you call the 
FDL$CREATE routine to create a file, or you call the FDL$PARSE routine and 
the FDL$RELEASE routine to open a file. 

Alternatively, you can set the appropriate control block fields and call the 
VMS RMS services directly, perhaps as part of a USEROPEN routine or a 
USER~CTION routine. 

Consider a program that does not explicitly specify the device and directory 
in any of the file specifications and does not have a related file specification. 
VMS RMS adds the current process default device and the current process 
default directory to the expanded string after it applies components provided 
by the default file specification. However, if the program looks for a data 
file that is not in the current process default device and directory, it does not 
find the file. In this case, the solution is to specify the data file's device and 
directory either in the primary file specification, the default file specification, 
or the related file specification. 

The program-supplied file specifications can be specified using the methods 
summarized in the following chart: 



Advanced Use of File Specifications 
6.1 How VMS RMS Applies Defaults 

File 
Specification How You Can Specify It 

Primary 

Default 

Related 

Use the FDL attribute FILENAME; use the file name or 
the name following the FILE, FILE_ID, or FILENAME 
keywords in the OPEN statement in certain VAX 
languages; or use the string pointed to by the FAB 
field FAB$L_DNA. 

Use the FDL attribute FILE DEFAULT_NAME; use the 
default file specification or the name following the 
DEFAULTNAME or DEFAULT_FILE_ID keyword in the 
OPEN statement in certain VAX languages; or use the 
string pointed to by the FAB field FAB$L_DNA. 

Use the name block (NAM) pointed to by the 
NAM$L _RLF field; the related name block must specify 
the location of a file specification, which must be pointed 
to by the NAM field NAM$L_RSA. 

Specifying all components in the primary file specification explicitly decreases 
the chance of error. However, defaults are provided and can be very useful, 
especially for general-purpose applications and for applications in which the 
file specification is entered by the interactive user. Another option to consider 
is the use of logical names. 

See the appropriate languages documentation for information about language 
statements and their keywords. Consult the VMS File De fi'nition Language 
Facility Manual for information about the FDL Editor, and refer to the 
VMS Utility Routines Manual for information about the FDL$PARSE and 
FDL$RELEASE routines. For detailed information about VMS RMS control 
blocks and services, see the VMS Record Management Services Manual. 

6.2 Understanding VMS RMS Parsing 
In the following text, the term expanded string refers to the user-allocated 
string pointed to by the name block expanded string address (NAM$L~SA) 
field; the term equivalence string refers to the internal area VMS RMS uses to 
store the result of a logical name translation. 

As it processes each program-supplied file specification, VMS RMS translates 
the file specification into its component parts. Any component present in the 
primary, default, or related file specifications is used to form the resultant 
file specification, which VMS RMS uses to locate the file. If a name block is 
present and the address and size of the expanded string are specified, the file 
specification is copied into the expanded string, which is used to store the 
various intermediate forms of the file specification. 

Note that the Parse service operates differently from other services with 
regard to the expanded string. With the Parse service, the expanded string 
contains all wildcard characters present in the file specification. VMS RMS 
does not generate the resultant string until the program invokes a related 
service, which uses the expanded string from the Parse service as input. 
When you use a search list, the expanded string contains the first location to 
be searched. VMS RMS stores internally the information that specifies the 
remaining search list equivalence strings. Note that the equivalence string 
from a $PARSE is not guaranteed to point to an actual file. 



Advanced Use of File Specifications 
6.2 Understanding VMS RMS Parsing 

As different file locations are examined, VMS RMS updates the expanded 
string to reflect the current location, and the resultant string contains the 
actual file specification of the file. 

With the Create, Display, Erase, Open, and Search services, defaults are 
applied to the expanded string to select the actual file used. The resultant 
string can be used by the program to indicate which file was located. When 
the file is located, the version number found (or created) is appended to the 
resultant file specification string (not the expanded file specification string). 
When a search list is used, the resultant string contains the file specification 
where the file was actually found. 

The following sections describe the steps that VMS RMS uses to create a 
complete file specification. 

6.2.1 Checking for Open-By-Name Block 
If the open-by-name-block option is specified (FAB$V_NAM), VMS RMS 
examines the name block for a valid device identification 
(NAM$T_DVI field), directory identification (NAM$W_DID field), and file 
identification (NAM$W_FID field). If these fields are present, VMS RMS uses 
them to locate the file; all other components are ignored because they are not 
needed. If the open-by-name block succeeds, no expanded or resultant string 
is produced. 

If these fields are not present in the name block or if an open-by-name 
block is not specified (for example, an Open service not preceded by a Parse 
service), VMS RMS performs the translation and application of defaults (see 
below). A file can also be created using the name block device and directory 
identification fields, but VMS RMS does not use the file identification. 

If an open-by-name block is requested for remote DECnet file access between 
two VMS systems, VMS RMS does not check the device identification, 
directory identification or file identification to determine whether the 
requested open-by-name block operation can be performed. Instead, VMS 
RMS checks to see if a qualified resultant string is present. If a qualified 
resultant string is not present, VMS RMS translates logical names and applies 
defaults as if an open-by-name block operation was not requested (see 
Section 6.2.2). 

6.2.2 File Specification Formats and Translating Logical Names 
To form the file specification, VMS RMS examines and attempts to translate 
each program-supplied file specification, beginning with the primary file 
specification string indicated by the contents of the FAB$L _FNA and 
FAB$B_FNS fields. 

A file specification may have one of three formats: 

• The first file specification is in the following format: 

node:: "foreign-filespec" 

node:: "task-spec-string" 



Advanced Use of File Specifications 
6.2 Understanding VMS RMS Parsing 

VMS RMS attempts to translate the node name to determine if a logical 
node name is present; only a logical or physical node name (including an 
access control string, if present) is allowed if the translation is successful. 
If a logical node name is found, the translation is repeated. When 
translation cannot be performed, the file specification is copied directly 
into the expanded string. The quoted string is not parsed except to 
determine if it refers to a file or a task on the remote system. For 
additional information about these formats, see the VMS Networking 
Manual. 

• If the file specification contains only a name (without a terminating period 
or colon), VMS RMS attempts to translate it as a logical name. If the file 
name field is translated successfully, the entire translation operation 
restarts, using the equivalence string as input. If the file name field is not 
translated successfully, VMS RMS uses it as the file Warne component. 

• If the file specification is not in either of the formats described previously, 
VMS RMS assumes it to be in the following file specification format: 

node:: device: [root. ][directory]filename.type;version 

Note that brackets do not imply optional file specification components. 
The only optional components are the node component and the root 
component. 

VMS RMS isolates the components, checks them for proper syntax, and 
copies them to the expanded string. If a node name is present, VMS RMS 
attempts to translate it as a logical node name as described previously. If 
a name in the device component is present and the node name is omitted, 
VMS RMS attempts to translate the device name as a logical name. 

After translating a logical name, VMS RMS determines whether the 
translation contains a duplicate component. If VMS RMS finds a duplicate 
component in the primary file specification translation, it signals an error. 
Conversely, if VMS RMS finds a duplicated component in the default 
string file specification translation or in the related string file specification 
translation, it ignores (discards) the duplicate component. 

If the node name is omitted and the device component does not translate 
successfully, VMS RMS treats the name in the device component as a 
device name. 

If the logical name translates successfully, VMS RMS performs one of the 
following actions: 

— Checks the equivalence string to determine whether it refers to 
a process-permanent file. If aprocess-permanent file is being 
referenced, VMS RMS copies the logical name to the expanded 
string and terminates processing the file specification (defaults are not 
needed). Process-permanent files are discussed in Section 6.4. 

— Checks the equivalence string to determine if the logical name is a 
concealed-device logical name. If the logical name is concealed, and if 
no concealed-device logical names have been encountered previously 
in the device file specification, the source string is used as the device 
name. 

— Restarts the translation operation using the equivalence string as 
input, if the equivalence string does not contain aprocess-permanent 
file and does not have the terminal attribute. 



Advanced Use of File Specifications 
6.2 Understanding VMS RMS Parsing 

If a node name is present, VMS RMS passes the entire file specification 
(without the node name) to the remote node for interpretation, using the 
DECnet data access protocol (DAP) to communicate with the DECnet file 
access listener (FAL) at the remote node. 

The logical name translation procedure reveals two conventions. First, if the 
file specification has been parsed previously by a VMS RMS file service, use 
the open-by-name-block option to save processing time. Second, a logical 
device name must be placed at the beginning of a file specification, unless it 
is preceded by a node name that indicates the node where the logical name 
should be translated. 

6.2.3 Special Parsing Conventions 
Additional parsing conventions for advanced file specifications include search 
lists, related file specifications, and the way VMS RMS handles directory 
specifications. 

6.2.3.1 Parsing Conventions for a Search List 
VMS RMS uses several conventions when processing a search list logical 
name. 

• When VMS RMS encounters a search list, it searches internally for the file 
using search list file specifications previously specified. VMS RMS treats 
each file specification in the search list as a new file specification. That is, 
VMS RMS does not use components of one file specification element in 
the search list as the default for subsequent elements in the search list. 

• When it uses search lists, VMS RMS ignores the following errors: 

Invalid device name (RMS$_DEV) 
Device not ready or not mounted (RMS$_DNR) 
Directory not found (RMS$_DNF) 
File not found (RMS$_FNF) 
Privilege violation (RMS$_PRV) 

All other errors terminate search list processing. 

• When a search list is embedded (nested) in another search list, all file 
specifications of the nested search list are processed before the file 
specifications in the next-higher search list level. Therefore, VMS RMS 
permits iterative substitution in nested search lists as it does with other 
logical names. For example, consider the following search lists, X and Y: 

$ DEFINE X DISK1 : [RED] , DISK2 : [WHITE] 
$ DEF I NE Y X ,DISK 1 : [BLUE] 

The following search order is derived from search list Y: is 

1 DISK 1: [RED] 

2 DISK2:[WHITE] 

3 DISK 1: [BLUE] 

• When opening a file, VMS RMS tries all search list possibilities before it 
signals an error completion status. If VMS RMS cannot find the file, it 
displays, where applicable, the final search list file specification and the 
error message. 



Advanced Use of File Specifications 
6.2 Understanding VMS RMS Parsing 

• When VMS RMS tries to locate a file using multiple search lists, it uses 
all combinations of the elements in the search lists. First it combines 
the first entry in the first list with the first entry in the second list. Then 
it combines the first entry in the first list with the second entry in the 
second list. After trying all combinations of the first entry in the first list 
with all entries in the second list, VMS RMS repeats the exercise using 
the entries in the second list with the second entry in the first list. This 
continues until VMS RMS locates the file or until it tries all combinations 
of all lists. 

For example, assume the program is looking for FILE.DAT, which may 
be in one of two directories, [BIG] or [BEST], on one of two disks, DISK1: 
or DISK2:. First, the program defines two search lists, a disk search list 
(PRIM) and a directory search list (DEF): 

$ DEFINE PRIM DISKI,DISK2 
$ DEFINE DEF [BIG] , [BEST] 

Next, the program provides VMS RMS with a primary file specification 
that includes the search list (PRIM) for the disk together with the file 
name component: 

PRIM:FILE 

Finally, the program must give VMS RMS the default specification that 
includes the search list (DEF) for the directory together with the file type 
component: 

DEF:. DAT 

Given this information, VMS RMS looks for FILE.DAT using the file 
specification data in the following order: 

Primary File Default File 
Specification Specification Expanded String 

DISK 1 [BIG] DISK 1:[BIG)TEST.DAT; 

DISK2 [BIG] DISK2:[B1G]TEST.DAT; 

DISK1 [BEST] DISK1:[BEST]TEST.DAT; 

DISK2 [BEST] DISK2:[BEST]TEST.DAT; 

Now, assume the program provides a related file specification with a 
search list for FILE.DAT. 

1 VMS RMS uses all combinations of the search list elements in the 
primary and default file specifications with the first component 
(device) of the related file specification. 

2 VMS RMS uses all combinations of the search list elements in the 
primary and default file specifications with the second component 
(directory) of the related file specification. 

3 VMS RMS repeats Steps 1 and 2 with each search list element in the 
related file specification. 



Advanced Use of File Specifications 
6.2 Understanding VMS RMS Parsing 

6.2.3.2 Special Processing for a Related File Specification 
This section describes the special processing needed to implement sticky 
defaults when a search list is used in a related file specification for an input 
file parse. The term sticky default means that file specification components 
from the first file specification are applied as defaults to the next file 
specification component, eliminating the need, for instance, to specify the 
device specification for each file specification when all the files are located on 
the same device. 

The related file specification provides defaults when a related file name block 
is present. To use the related file specification, the file access block must 
specify the address of the primary file's name block (in the FAB$L _NAM 
field), and that name block must specify the address of the related file's name 
block (in the NAM$L _RLF field). The related file's name block must specify 
the address of a valid file specification in the resultant string (NAM$L _RSA 
and NAM$B_RSS) fields. Typically, a VMS RMS file service (other than 
Parse) places the file specification in the resultant string. 

You can specify whether the related file is used as an input file specification 
or an output file specification by setting (output file specification parsing) or 
resetting (input file specification parsing) the output-file parse (FAB$V_OFP) 
bit in the file-processing options (FAB$L _FOP) field . 

When an input file specification is being parsed, you can have multiple related 
name blocks by specifying the second related file's name block address in the 
NAM$L _RLF field of the first related name block, the address of the third 
related name block in the NAM$L _RLF field of the second name block, and 
so forth. The use of multiple related name blocks is especially useful for 
search lists; one related name block might contain a file type that can be used 
by any file specification in a search list, another might contain the full file 
specification that was produced by the first search list file specification, and 
another might contain the full file specification produced by the second search 
list file specification. This method allows the file specifications in a search list 
to provide sticky defaults, a characteristic associated with DCL command lines 
that contain multiple file specifications. 

For a search list to be applied as a related file specification, the related file 
specification_ must not be a resultant string but must include the search list 
logical name. The related file specification in this case must describe the 
original primary file specification. For example, consider the following search 
list definition: 

$ DEFINE WORK DISK1 : [MINE] , DISK2 : [GROUP] 

To process lists of input files such as WORK:A,B,C, your program 
must supply the string WORK:A as the related file specification, not 
DISK2:[GROUP]A.DAT. The routines LIB$FIND_FILE and LIB$FILE_SCAN 
are provided to perform this special processing; consult the VMS Run -Tim e 
Library Routines Volume for additional information; also refer to Example 5-2, 
which shows how to call the LIB$FIND_FILE routine. 



Advanced Use of File Specifications 
6.2 Understanding VMS RMS Parsing 

6.2.3.3 Input File Specification Parsing 
When the output-file parsing bit (FAB$V_OFP) is reset and the node name 
is omitted, VMS RMS processes the related file specification as an input 
file specification. This is shown in the following table. Note that the only 
Wildcard character allowed is a single asterisk. 

File Specification 
Component 

Null Field 
Specification 

Wildcard (~) Field 
Specification 

Node Use related file Illegal 
specification 

Device Use related file Illegal 
specification 

Directory Use related file Remains wild 
specification 

Filename Use related file Remains wild 
specification 

Type Use related file Remains wild 
specification 

Version Remains null Remains wild 

When the FAB$V_OFP bit is reset and a node name is present, VMS RMS 
processes the related file specification as an input file specification as shown 
in the following table: 

File Specification 
Component 

Null Field 
Specification 

Wildcard (*) Field 
Specification 

Device Remains null Illegal 

Directory Remains null Remains wild 

Filename Use related file Remains wild 
specification 

Type Use related file Remains wild 
specification 

Version Remains null Remains wild 

6.2.3.4 Output File Specification Parsing 
When the FAB$V_OFP bit is set and a node name is not present, VMS RMS 
processes the related file specification as an output file specification as shown 
in the following table: 

6-10 



Advanced Use of File Specifications 
6.2 Understanding VMS RMS Parsing 

File Specification 
Component 

Null Field 
Specification 

Wildcard (*) Field 
Specification 

Node Remains null Illegal 

Device Remains null Illegal 

Directory Remains null Substitute from related file 
specification with 
restrictions 

Filename Use related file Substitute from related 
specification file specification 

Type Use related file Substitute from related 
specification file specification 

Version Remains null Substitute from related 
file specification 

When the FAB$V_OFP bit is set and a node name is present, VMS RMS 
processes the related file specification as an output file specification, as shown 
in the following table: 

File Specification 
Component 

Null Field 
Specification 

Wildcard (•) Field 
Specification 

Device Remains null Illegal 

Directory Remains null Substitute from related file 
specification with 
restrictions 

Filename Use related file Substitute from related 
specification file specification 

Type Use related file Substitute from related 
specification file specification 

Version Remains null Substitute from related 
file specification 

As shown in the previous table, a wildcard character in an output directory 
specification is subject to the following syntax restrictions: 

• Only the asterisk and the ellipsis are permitted in the output directory 
specification. In the case of a related file specification, you may choose 
either the asterisk or the ellipsis (but not both) in the output directory 
specification unless you use the following form: 

[* 
• A subdirectory specification that contains wildcard characters cannot be 

followed by a subdirectory specification that does not contain wildcard 
characters. 

• Specifications in the UIC directory format may receive defaults only from 
directories in the UIC directory format. 

• Specifications in the non-UIC directory format may receive defaults only 
from directories in the non-UIC directory format. 



Advanced Use of File Specifications 
6.2 Understanding VMS RMS Parsing 

• Specifications in the non-UIC directory format that consist entirely of 
wildcard characters may receive related file specification defaults from 
directories in UIC or non-UIC format. 

VMS RMS processes wildcard characters in an output directory specification 
as follows: 

• If you specify an output directory using a specification that consists 
entirely of wildcard characters ([*] and [*...] only are allowed), VMS 
RMS accepts the complete directory component from the related 
file specification. This permits you to duplicate an entire directory 
specification. 

If you specify an output directory with a trailing asterisk (for example, 
[A.B.*]), VMS RMS substitutes the first "wild" subdirectory from the 
related file specification. This substitution permits you to move files from 
one directory tree to another directory tree that is not as deep as the first 
one. 

• If you specify an output directory with a trailing ellipsis (for example, 
[A.B...]), VMS RMS substitutes the entire "wild" subdirectory from the 
related file specification. This substitution permits you to move entire 
subdirectory trees. 

• The related name block must have the appropriate file name status bits 
set in the NAM$L _FNB field set according to the resultant string to allow 
VMS RMS to identify the "wild" portion of the resultant string. 

6.3 Directory Syntax Conventions and Directory Concatenation 
One of the components of a file specification is the directory specification. 
VMS RMS supports two conventions or types of directory specifications, one 
of which is used more often than the other. 

When VMS RMS applies defaults to a directory specification in a file 
specification, the rules differ depending on what type of a directory 
specification is present. Two directory syntax conventions are available to 
access directories: normal and rooted. The default directory access is normal 
syntax. That is, you can specify the directory desired using the directory 
syntax described in the VMS DCL Dictionary. 

6.3.1 Using Normal Directory Syntax 
There is a master file directory (MFD) on each disk volume. Within each 
MFD, top-level directories are cataloged using the DCL command 
CREATE/DIRECTORY (or equivalent VMS RMS services). Beneath each 
top-level directory, you can create subdirectories referenced from the top-level 
directory. 

Once the subdirectories are created, you can create subdirectories referenced 
from each subdirectory. You can create a maximum of seven levels of 
subdirectories beneath atop-level directory. The subdirectories created 
beneath a directory and the subdirectories within the subdirectories (and so 
forth) are called collectively a directory tree. 



Advanced Use of File Specifications 
6.3 Directory Syntax Conventions and Directory Concatenation 

The base point for normal directory syntax access can be relative to the 
current position in the directory tree or an absolute reference that explicitly 
or by default states any higher-level directories or subdirectories needed 
to identify the appropriate directory or subdirectory. An absolute directory 
reference begins with a directory name; a relative directory reference begins 
with a hyphen (-) or a period (. ). An absolute reference might include the 
name of the top-level directory and one or more subdirectories. A relative 
directory reference relies on the use of the process-default directory and 
device, which are set using the DCL command SET DEFAULT. Refer to the 
VMS DCL Dictionary for additional information and examples. 

A relative directory reference can be in one of several forms. Assume the 
current directory position (process-default directory) is [SMITH.JONES]. 

• You can specify a lower level in the directory tree with a period (.) to 
indicate that the current directory position ([SMITH.JONES]) is prefixed to 
the specified directory as shown in the following command: 

$ SET DEFAULT [ .DATA] 

This directory specification is combined with the current directory position 
to form [SMITH.JONES.DATA]. 

• You can specify higher levels in the directory tree by beginning the 
directory specification with a hyphen (-) to indicate that the directory 
specification is the next level up from the current directory level. If 
you are at currently at directory level [SMITH.JONES], the following 
command directs VMS RMS to use the directory SMITH: 

$ SET DEFAULT [ - 

If you include more than one hyphen, VMS RMS ascends the directory 
tree by a corresponding number of levels. For example, if you use the 
following command from directory level [RED.WHITE.BLUE], VMS RMS 
moves up the tree to level [RED]: 

$ SET DEFAULT [ - - 

• You can use combinations of hyphens and periods to traverse a directory 
tree. For example, assume the following directory tree structure: 

ONE 

TWO THREE 

/ ~ 
FOUR FIVE 

SIX SEVEN 

Assume that your process is in directory [ONE.TWO.FOUR.SIX] and you 
want to access a file in [ONE.THREE.FIVE]. You can do this with the 
following DCL command: 

$ SET DEFAULT [---.THREE.FIVE] 

• You can refer to the default directory explicitly by specifying an empty 
directory specification at the DCL prompt. This feature is useful when 
you to use a single DCL command to perform directory operations in 
your default directory and one other directory. 



Advanced Use of File Specifications 
6.3 Directory Syntax Conventions and Directory Concatenation 

For example, assume you have a directory on device USERDISK 
named [CUSTOMERS.LOCAL] that contains three files: 
ABERCROMBIE, FITCH, and GOULD. Another directory named 
[CUSTOMERS.INTERNATIONAL] also contains three files: MERRILL, 
LYNCH, and PIERCE. Assume that your default directory is 
[CUSTOMERS.LOCAL] but you need a directory listing that contains 
the sizes of all customer files. You can list both directories using the 
following command line: 

$ DIRECTORY/SIZE [CUSTOMERS.INTERNATIONAL] , [) 

DCL responds to this command with the following display: 

Directory USERDISK: [CUSTOMERS.INTERNATIONAL] 

MERRILL 1100 
LYNCH 155 
PIERCE 645 

Directory USERDISK: [CUSTOMERS.LOCAL] 

ABERCROMBIE 230 
FITCH 100 
GOULD 355 

Total of 6 f files , 2585 blocks 

A directory name at the leftmost end of a directory specification is interpreted 
as a top-level directory, or an absolute directory reference. The syntax shown 
for the following specification refers to a top-level directory named GREEN, 
regardless of the current default directory: 

[GREEN] 

Conversely, a period or a hyphen before a directory name is always associated 
with a relative directory reference. 

Note that because only one directory can be directly above any other 
directory, you can use a hyphen without explicitly naming the next higher 
directory. But, because many directories can be directly beneath the current 
directory, you must explicitly specify the directory at the next lower level by 
following the period with the name of the selected directory. 

If the program omits either the device or the directory component in a file 
specification, VMS RMS accepts the value of the current device and directory 
from the logical translation of SYS$DISK. Therefore, any directory fields 
yielded by translation of SYS$DISK override the process default directory. 
If translation of SYS$DISK does not yield the directory element, VMS RMS 
uses the process default directory. Note that you can change the process 
default directory with the SET DEFAULT command or by invoking the 
SYS$SETDDIR system service. 



Advanced Use of File Specifications 
6.3 Directory Syntax Conventions and Directory Concatenation 

6.3.2 Rooted-Directory Syntax Applications 
Rooted-directory syntax allows you to refer to directory trees as logical devices 
and top-level directories. A reference to a top-level directory actually accesses 
existing subdirectories without program modification; thus, rooted-directory 
syntax extends the flexibility associated with logical names. Similarly, rooted-
directory syntax can reduce the number of top-level directories needed for a 
disk volume. Rooted-directory syntax allows multiple VMS system directory 
trees to exist on a single system volume. 

You specify rooted-directory syntax using a logical name in a program-
specified file specification or in the device and directory for a SET 
DEFAULT command. If a program specifies a logical device name in the 
file specification, the logical device name can be redefined to specify arooted-
directory logical name. Redefining the logical device name to specify a rooted 
directory changes the directory (and the file or files) accessed by the program 
without modifying the program. 

If a program does not specify a logical device name in the file specification, 
the user (or a command procedure) can issue DEFINE commands and the 
SET DEFAULT command before running the program to indicate the use of 
rooted-directory syntax and to specify the process-default device/directory. 
Using the SET DEFAULT command changes the directory accessed by the 
program without requiring that you modify the program. When the program 
finishes, use the SET DEFAULT command again to specify the new process-
default device/directory and to resume the use of normal directory syntax (if 
desired). 

Using rooted-directory syntax as illustrated in the preceding text provides 
several advantages. Because you did not modify the program, you avoided 
having to recompile (or reassemble), relink, or retest it. Another advantage 
is that because you were able to run the program from its resident directory, 
you eliminated the overhead of having to move the file several times. 

6.3.3 Using Rooted-Directory Syntax 
Rooted-directory syntax provides a way of making a directory or subdirectory 
appear to the user as the master file directory (MFD) for the logical disk 
volume. Subdirectories of the rooted directory appear as top-level directories 
(user file directories) for the logical disk volume. 

The directory specified during logical name definition serves as a base from 
which directories beneath it can be accessed and is called the root directory. 
Root directories must be specified using alphanumeric UICs; octal numbering 
for group and member designations is not allowed. 

A concealed-device logical name that defines a hidden root directory is called 
a rooted-device logical name. 

When you define the rooted-device logical name for use in a program 
or in a SET DEFAULT command, you specify that the logical name 
is aconcealed-device logical name by using the 
/TRANSLATION~TTRIBUTES=CONCEALED qualifier with the DCL 
command DEFINE or ASSIGN. To define the concealed-device logical name 
as arooted-device logical name, the root directory must contain a trailing 
period (. ), such as DUA22:[ROOT.]. When specifying a directory, you can 
only use a trailing period for the root directory. 



Advanced Use of File Specifications 
6.3 Directory Syntax Conventions and Directory Concatenation 

When you define a root directory, all directory references refer to the specified 
root directory or directories beneath it in the directory tree. A reference to 
a top-level directory refers to a subdirectory of the specified root directory 
when using rooted-directory syntax. This is consistent with the fact that the 
root directory appears as the MFD because a reference to directory [000000 
refers to the root directory. When you execute the SHOW DEFAULT and 
other direct commands, the system displays the root directory as [000000]. 
Note that the directory specification form [0,0] for the MFD is not valid when 
using rooted-directory syntax. 

For example, assume the top-level directory [ROOT1] on disk DUA7 contains 
a subdirectory [ROOTI.SUB]. The directory [ROOT1] is defined as the root 
directory associated with the logical name BASE as follows: 

$ DEFINE BASE DUA7:[ROOT1.] 

When you associate the root directory with the logical name base, you 
can refer to the logical top level directory [ROOTI.SUBJ using the syntax 
BASE:[SUB]. The following chart provides a summary of the actual directory 
accessed and the equivalent rooted-directory syntax that applies to this 
example: 

Actual Directory Rooted Syntax Comments 

DUA7:[ROOT 1 ] BASE:[000000] [ROOT 1 ] appears as the MFD 

DUA7:[ROOT 1.SUB] BASE:[SUB] [ROOT 1 SUB] appears as a top-
level directory 

The next example shows how to define the root logical name described 
in the previous chart and how to access a subdirectory of the specified 
root directory. Note that the trailing period [ROOT1.] indicates that a root 
directory is present. 

$ DEFINE/TRANSLATION_ATTR=CONCEALED BASE DUA7:[ROOT1.] 

$ SET DEFAULT BASE : [SUB] 

$ DIRECTORY * .DIR, [-] * .DIR 

The system responds with the following display: 

BASE . [SUB] 

SUBSUB.DIR 

BASE • [000000] 

SUB DIR 

In the preceding example, the SET DEFAULT command defines the process-
default directory as [ROOTI.SUB] using the rooted-device logical name BASE. 
The DIRECTORY command looks for directory files in the current directory 
([ROOTI.SUB]) and then in the directory directly above it ([ROOT1]). The 
directory [ROOTI.SUB] is listed (by the DIRECTORY command) as a top-level 
directory (BASE:[SUB]) and the root directory is listed using the syntax of the 
MFD, BASE:[OOOOOOJ. 



Advanced Use of File Specifications 
6.3 Directory Syntax Conventions and Directory Concatenation 

6.3.4 Concatenating Rooted-Directory Specifications 
When it concatenates specifications for rooted directories, VMS RMS uses 
different syntax rules than it uses when it concatenates directory specifications 
for normal directory syntax. 

One difference between the two conventions is associated with the trailing 
period in the root directory definition. For example, consider how atop-
level directory reference is handled. With rooted-directory syntax, the root 
directory's trailing period is implied as a leading period in subsequent rooted-
directory references. 

Directory concatenation within the same file specification occurs only with 
a rooted-device logical name. Normal directory concatenation occurs only 
through the application of defaults. Rooted-directory concatenation can occur 
within the same file specification and through the application of defaults. 
Rooted-device logical names specify a device name and a root directory. 
VMS RMS translates arooted-device logical name into the device and root 
directory before it merges any other parts of a file specification (if present) 
into the equivalence file specification. 

When you use arooted-device logical name together with a directory 
specification, the following rules apply: 

• You can refer to the root directory itself. The syntax of [000000] and 
relative directory references refer to the root directory. 

You can never refer to a directory above the specified root directory 
because the root directory is the logical MFD whenever a directory 
specification is used. When the process-default directory is the root 
directory, a reference to [-] results in an error, as shown in the following 
example: 

$ DEFINE/TRANSLATION_ATTR=CONCEALED BASE DUA7:[ROOT1.] 

$ SET DEFAULT BASE: [000000] 
$ DIRECTORY *.DIR 

The system responds to this command sequence with the following 
display: 

BASE : [000000] 

No files found 

The user then tries to check the contents of the next higher directory with 
the following command: 

$ DIRECTORY [-] * .DIR 

The system responds with the following messages: 

%DIRECT-E-OPENING, error opening [-]*.DIR as input 
-RMS-E-DIR, error in directory name 

• You can refer to a specific subdirectory of the root directory in the same 
way that you refer to a top-level directory using normal directory syntax, 
as shown in the following example: 

$ DEFINE BASE DUA7:[ROOT1.] 

$ SET DEFAULT BASE:[SUBDIR] 



Advanced Use of File Specifications 
6.3 Directory Syntax Conventions and Directory Concatenation 

• You can refer to any subdirectory beneath the root directory using 
wildcard characters to vertically traverse the directory tree. You can 
refer to all directories below the root directory [*...], all directories one 
level below the root directory [*], all directories two levels below the 
root directory [*.*], and other reference combinations, as shown in the 
following example: 

$ DEFINE/TRANSLATION_ATTR=CONCEALED BASE DUA7:[ROOTI.J 
$ DIR BASE : [* . . . ] * .DIR 

The system responds with the following display: 

BASE : [SUBDIR] 

SUBSUBDIR.DIR 

BASE: [SUBDIR.SUBSUBDIRJ 

SUBSUBSUBDIR.DIR 

BASE : [OTHERSUB] 

OTHERSUBSUB.DIR 

Another difference between the conventions VMS RMS uses for rooted-
directory syntax and standard directory syntax is the number of permissible 
nested directory levels. With rooted-directory logical names you can "hide" 
eight additional levels in the rooted-directory logical name and effectively 
nest 16 levels of directories. 

Note that you must access these files using the rooted-directory logical name 
and that the system rejects any attempt to access these files using normal 
directory syntax. For example, you can legally define the rooted-directory 
logical name MYROOT to be DUAO:[D1.D2.D3.D4.D5.D6 .] and nest six 
subdirectories beneath it using the the following directory syntax: 

MYROOT:[D7.D8.D9.D 10.D 1 1.D 12]name.type 

But if you try to access this file using the following directory syntax, VMS 
RMS returns a status code indicating the file specification is illegal: 

DUAO:[D 1.D2.D3.D4.D5.D6.D7.D8.D9.D 10.D 1 1.D 12]name.type 

Another problem occurs when you try to back up the directory tree using 
conventional directory syntax, because the Backup Utility only backs up the 
first eight levels of the directory tree. 

Note: This problem does not occur when you back up an entire disk at one time, 
that is, if you are using the BACKUP/IMAGE command or the BACKUP 
/PHYSICAL command. 

With rooted-directory snytax, VMS RMS uses the process-default device 
and directory indirectly as defaults. This occurs because VMS RMS uses 
the expanded rooted-device logical name device and root directory before 
applying the process-default device and directory. 

With rooted-directory snytax, you can use relative directory syntax, such as 
the hyphen (-) and leading period (.name). When a directory component 
is missing, VMS RMS attempts to obtain the missing components from the 
process-default directory. 

Consider the rooted-device logical name X defined as shown in the following 
DCL command: 

~.J 

U 
$ DEFINE X DJB3 : [SMITH . ] 

6-18 



Advanced Use of File Specifications 
6.3 Directory Syntax Conventions and Directory Concatenation 

Now assume you set the default directory to JONES: 

$ SET DEFAULT [JONES] 

When the rooted-device logical name X is used with a directory specification, 
all directory references are relative to the root directory [SMITH.]. Most 
wildcard characters that apply to normal directory syntax also apply to 
rooted-directory syntax. 

The following table lists the file specifications involving the rooted-device 
logical name X and the directory that is accessed with each specification: 

File Specification Directories Accessed 

X: [SMITH.JONES] 

X:[000000] Root directory, [SMITH.] 

X:[ ] [SMITH.JONES] 

X:[-] Root directory [SMITH.], listed as X:[000000] 

X:[- -] Invalid (error) 

X:[name] [SMITH.name] 

X:[.name] [SMITH.JONES.name] 

X:[name.*...] All directories in all directory trees below 
[SMITH.name] 

X:[*] All directories one level below [SMITH.] 

X:[*...] All directories in all directory trees below [SMITH.] 

X:[...] All directories in all directory trees below 
[SMITH.JONES] 

Note that VMS RMS uses the default directory with relative directory 
references when the specified directory name contains a leading period or 
a hyphen, or if no directory name is specified. 

6.3.5 An Example of Using a Rooted Directory 
Consider an application made up of several programs that refer to the same 
file using a file specification IN:[INVENTORY]FILE.DAT. Assume that all of 
the programs invoke the following command procedure to define the logical 
name IN as device DUA29: 

$ ON CONTROL_Y THEN GOTO ENDIT 
$ DEFINE IN DUA29: 
$ RUN XYZPROG 
$ ENDIT: 
$ EXIT 

The programs show the current inventory level and the stockroom used for 
a particular item and are dispersed among many users in the company. As 
the business grows, the number of items in the inventory grows and the 
number of inventory records makes the file extremely large and difficult 
to access. Because the items can be classified as belonging to one of four 
groups, the data management department decides to split the file into four 
parts. Aspecial-purpose program reads each record in the master file, 
determines the record type, and routes the record to the appropriate file 
group, each on a separate device. All output files are named FILE.DAT, but 

6-19 



Advanced Use of File Specifications 
6.3 Directory Syntax Conventions and Directory Concatenation 

each is distinguished by putting it in a top-level directory associated with 
the appropriate group category. For example, computer supplies files are 
cataloged in the directory [COMPUTER.INVENTORY]. 

This is done by modifying the command procedure to conditionally define the 
value of IN to be arooted-device logical name with four subdirectories. The 
modified command procedure is shown in Example 6-1. 

Example 6-1 Example of Rooted-Directory Syntax 

$ ON CONTROL_Y THEN GOTO END 
$ GOTO ASK 
$ RETRY: 
$ WRITE SYS$OUTPUT 
$ ASK: 
$ WRITE SYS$OUTPUT 

"Select Parts Group: 
$ INQUIRE ANS 
$ IF ANS .GT. 5 
$ IF ANS .EQ. 5 
$ IF ANS .EQ. 1 
$ IF ANS .EQ. 2 
$ IF ANS .EQ. 3 
$ IF ANS .EQ. 4 
$ RUN XYZPROG 
$ END: 
$ EXIT 

"Enter a number from 1 to 4 f or the type of part" 

1-COMPUTER 2-TYPEWRITER 3-DESK 4-OTHER 5-END" 

.OR. ANS .LT. 1 THEN GOTO RETRY 
THEN EXIT 
THEN DEFINE/TRANS=CONCEAL IN DUA29:[COMPUTER.] 
THEN DEFINE/TRANS=CONCEAL IN DUA29:[TYPEWRITER.) 
THEN DEFINE/TRANS=CONCEAL IN DUA29:[DESK.] 
THEN DEFINE/TRANS=CONCEAL IN DUA29:[OTHER.] 

With the enhanced command procedure, none of the programs has to be 
modified, recompiled (or reassembled), relinked, or copied to a different 
directory. 

6.4 Using Process-Permanent Files 
A 

process

-permanent file is a file that VMS RMS opens or creates in supervisor 
or executive mode code. This is initiated by setting the process-permanent file 
bit (FAB$V_PPF) in the file-processing options field (FAB$L _FOP). When the 
bit is set, VMS RMS-maintained internal data structures are allocated in the 
process control region of memory for the life of the process. Thus, process-
permanent files can remain open across image activations. SYS$COMMAND, 
SYS$INPUT, SYS$OUTPUT, and SYS$ERROR are all opened in this manner 
by the LOGINOUT command image. 

The DCL command OPEN also opens files in this manner. With uses• mode 
code, you can only access process-permanent files indirectly. VMS RMS 
provides a subset of the total available operations to the indirect accessor. 

Indirect accessors gain access to process-permanent files through the logical 
name mechanism, as follows: 

1 The LOGINOUT command image, or at a later point the command 
interpreter, opens or creates a file corresponding to the process's 
command, input, output, and error message streams. Logical names 
are created in the process logical name table for SYS$COMMAND, 
SYS$INPUT, SYS$OUTPUT, and SYS$ERROR, respectively. The 
equivalence string for the logical name has a special format that indicates V 



Advanced Use of File Specifications 
6.4 Using Process-Permanent Files 

the correspondence between the logical name and the related process-
permanent file. For more detail concerning the equivalence-string format 
for logical names, see the discussion of logical name services in the VMS 
System Services Reference Manual. For example, for an interactive user, 
these single process-permanent files are opened for the terminal. 

2 When an indirect accessor opens or creates a file specifying a logical 
name that has one of these special equivalence strings, VMS RMS 
recognizes this and therefore does not open or create a new file. Instead, 
the returned value for the internal file identifier (and later the value for 
the internal stream identifier from a Connect service) is set to indicate that 
access to the associated process-permanent file is with the indirect subset 
of allowable functions. 

The implications for the indirect accessor are described in the following list: 

• A Create service for aprocess-permanent file becomes an Open service; 
the fields of the FAB are output according to the description of the Open 
service, not the Create service. 

• The Open and Create services require no I/O operations. 

• Any number of indirect Open and Create operations are allowed. 

• There is only one position context for the file; each sequence of the Open 
or Create service accesses the same record stream, not an independent 
stream. 

• If the process-permanent file was initially opened with the sequential-
processing-only (FAB$V_SQO) bit set in the FAB$L _FOP field, neither 
random access nor the Rewind service is permitted. This is the case for 
SYS$COMMAND, SYS$INPUT, SYS$OUTPUT, and SYS$ERROR. 

• Certain options to various services produce errors. For example, you 
cannot set the non-file-structured (FAB$V_NFS), process-permanent file 
(FAB$V_PPF), and user-file-open (FAB$V_UFO) bits of the FAB$L _FOP 
field for the Open and Create services. Other options are ignored, such as 
the spool (FAB$V_SPL), submit-command-file (FAB$V_SCF), and delete 
(FAB$V_DLT) bits of the FAB$L _FOP field for the Close service, the 
asynchronous (RAB$V_ASY) bit of the RAB$L _ROP field, and both the 
multiblock count and multibuffer count fields (RAB$B_MBC and 
RAB$B_MBF). 

• If a name block is used and either an expanded or resultant file 
specification string is returned, the string consists solely of the process 
logical name followed by a colon (such as SYS$INPUT:). 

• The file access (FAB$B_FAC) field is ignored by the Open service; instead, 
operations are checked against the FAB$B_FAC field specified for the 
original Open or Create service. 

• Information from the record attributes field is saved on each Open service 
and subsequent Connect service in the values returned in the internal 
file identifier and internal stream identifier fields. If the output file is a 
print file (VFC record format and the FAB$V~'RN bit set in the record 
attributes field), mapping is performed for each Put service from the user-
specified carriage control to the print file carriage control format. Thus, 
different carriage control types from different indirect Open services all 
work correctly. 

• You cannot use the Erase service. 

6-21 



Advanced Use of File Specifications 
6.4 Using Process-Permanent Files 

• Checking is performed for $DECK, $EOD, and other dollar-sign ($ ) 
records on the SYS$INPUT stream if the SYS$INPUT stream is from a 
file. Checking is not done if SYS$INPUT comes from arecord-oriented 
device, such as a terminal or a mailbox. (See the VMS DCL Dictionary.) 

• At image exit time, the VMS RMS run-down control routine ensures that 
the indirect I/O on process-permanent files terminates; however, these 
files are not closed. 

• All file organizations may be opened directly as process-permanent files 
(for example, through the DCL command OPEN), but only those files 
with a sequential organization may be indirectly accessed. 



7 File Sharing and Buffering 

This chapter discusses the run-time options that are available when opening, 
connecting, and closing a shared file. These options are also implicit in 
creating a shared file because the Create service includes an implied file open, 
which uses the run-time options either explicitly or by default. 

File sharing includes file accessing, record locking, and local and shared 
buffering. Figure 7-1 shows a typical shared file situation. 

Figure 7-1 Shared File Access 

Program 1 Program 2 Program 3 

ZK-757-82 

See the VMS Record Management Services Manual for more information about 
accessing and sharing files. 

7.1 File Accessing 
VMS RMS file sharing allows multiple users to access a single file. Timely 
access to files sometimes requires that more than one active program 
be allowed to read, write, and modify records within the same file 
simultaneously. 

Whether or not a file can be shared depends on the type of device it resides 
on and the explicit file-sharing information specified by the processes that 
access the file. Magnetic tape files cannot be shared because magnetic tape 
drives are sequentially-operated devices. However, disk files can be shared 
by any combination of readers and writers without restriction. Your program 
provides the information that enables file sharing. You control the degree 
of sharing by providing VMS RMS with an explicit file-sharing specification 
when your program opens or creates a file. This specification indicates the 
types of file operations that are permitted for application programs that share 
the file. 



File Sharing and Buffering 
7.1 File Accessing 

When a program creates or opens a disk file, it gives VMS RMS two pieces of 
information needed to determine if and how the file may be shared. First, it 
states the types of operations it intends to perform on the file, such as read, 
write, or update. VMS RMS later checks this information to protect against 
unauthorized file access. 

Second, the program specifies the types of operations other concurrently 
active programs can perform on the file. When the sharing specification of 
one program is compatible with the sharing specification of another, both 
programs can gain access to the file simultaneously. To ensure that multiple 
programs can access the file simultaneously, you may have to do some 
schedule planning. 

7.1.1 Types of File Sharing and Record Streams 
A single process can access the same file using multiple record streams. A 
record stream is the access environment in which file records may be read, 
written, deleted, or updated. Important elements of the access environment 
are the current record position (if any), the access mode established for the 
current record, the sequential next record position, and the state of locks on 
other records in the file. 

The Connect service creates a record stream and associates it with a file 
previously opened or created by the appropriate VMS RMS service. The 
connection between a record stream and a file is explicitly terminated by 
the Disconnect service or is implicitly terminated by closing the file. Record 
streams are connected to a file in one of three ways: 

• Within one process or across several processes, multiple FABs can be 
connected to a shared file. One or more record streams may then be 
connected to each FAB. This form of sharing is known as interlocked 
interprocess file sharing and is associated with reading or writing records, 
not blocks. 

• Within one process, multiple record streams can be associated with one 
FAB to read and write records, not blocks. This form of sharing is known 
as multistreaming. 

• Within one process or across several processes, multiple FABs can be 
connected to a file. One record stream (RAB) is connected to each FAB, 
and users provide their own synchronization outside of VMS RMS. This 
form of file sharing is known as user-interlocked interprocess file sharing. 
(User-interlocked interprocess file sharing usually applies only to block 
I/O processing and to record processing for nonshared sequential files 
residing on disk devices.) 

Two options that are especially important for shared files are the file-access 
and file-sharing options. These options specify the type of record access that 
the sharing processes can perform. They are specified by the FDL attributes 
ACCESS and SHARING and the VMS RMS FAB fields identified by the 
symbolic offsets FAB$B_FAC and FAB$B_SHR. When creating or opening a 
file, VMS RMS compares the values of these fields to determine whether or 
not the requesting process may have access to the file. 

In this manual, the term accessor refers either to a process that accesses a file 
or a record stream that a accesses a record. The first process to access a file 
determines which operations other accessors can perform on the file, which 
in practice determines whether or not subsequent users are allowed to access 
the file. For example, if your process requests a certain type of access that 

7-2 



File Sharing and Buffering 
7.1 File Accessing 

the first accessor (since the file was last closed) has disallowed, your process 
cannot access the file. 

When choosing the access other processes may have to the file, you can 
specify the type of file sharing to be used and indicate whether or not other 
processors can access the file simultaneously. In a VAXcluster environment, 
processes can access shared files on the same or different nodes of the same 
VAXcluster (see Section 3.6). 

A single file can be accessed by both interlocked interprocess file sharing 
and multistreaming. DIGITAL does not recommend the simultaneous use 
of interlocked interprocess file sharing and user-interlocked interprocess 
file sharing on the same file if the process that requests user-interlocked 
interprocess file sharing intends to modify the file. The reason is that record 
Locking is not done or checked for the processes using user-interlocked 
interprocess file sharing. 

You must define your process access based on planned record operations. The 
record operations with associated FDL and VMS RMS options are summarized 
in Table 7-1. 

Table 7-1 File Access Record Operations 

Function (VMS RMS service) FDL and VMS RMS Options 

Read records (Get) 

Locate records (Find) 

Delete records (Delete) 

Add new records (Put) 

Truncate file (Truncate) 

Modify records (Update) 

Access blocks (see text) 

ACCESS GET specified or FAB$B_FAC field 
FAB$V_GET set 

ACCESS GET specified or FAB$B_FAC field 
FAB$V_GET set 

ACCESS DELETE specified or FAB$B_FAC 
field FAB$V_DEL set 

ACCESS PUT specified or FAB$B_FAC field 
FAB$V_PUT set 

ACCESS TRUNCATE specified or FAB$B_ 
FAC field FAB$V_TRN set 

ACCESS UPDATE specified or FAB$B_FAC 
field FAB$V_UPD set 

ACCESS BLOCK_10 specified or FAB$B_ 
FAC field FAB$V_Bi0 set; under certain 
conditions, ACCESS RECORD_10 or FAB$B_ 
FAC FAB$V_BRO 

The record-access functions you .request are compared with the protection on 
the specified file. If your process is limited to reading and locating records, 
it should have read access to the file. If your process is deleting, adding, 
truncating, or updating records, it must have write access to the file. VMS 
RMS permits any process that may delete, add, truncate, or modify records 
to also locate and read records because write access to a file also implies read 
access. 

With VMS RMS, you can perform block I/O operations using the Read, 
Space, and Write services. Block I/O is usually only used by applications 
written in VAX MACRO or other low-level languages. Note that when 
ACCESS BLOCK_IO is specified, the application program must also specify 
either SHARING USER_INTERLOCK or SHARING PROHIBIT. 



File Sharing and Buffering 
7.1 File Accessing 

Different types of record operations can be specified to define the type of 
access to be allowed for other processes, as shown in Table 7-2. 

Table 7-2 File Sharing Record Operations 

Function (VMS RMS Service) FDL and VMS RMS Options 

Read records (Get) 

Locate records (Find) 

Delete records (Delete) 

Add new records (Put) 

Modify records (Update) 

No access 

User interlocking 

Multistreaming 

SHARING GET specified or FAB$B_SHR field 
FAB$V_SHRGET set 

SHARING GET specified or FAB$B_SHR field 
FAB$V_SHRGET set 

SHARING DELETE specified or FAB$B_SHR 
field FAB$V_SHRDEL set 

SHARING PUT specified or FAB$B_SHR field 
FAB$V_SHRPUT set 

SHARING UPDATE specified or FAB$B_FAC 
field FAB$V_SHRUPD set 

SHARING PROHIBIT or FAB$B_SHR field 
FAB$V_NIL set 

SHARING USER_INTERLOCK or FAB$B_SHR 
field FAB$V_UPI set 

SHARING MULTISTREAM or FAB$B_SHR 
field FAB$V_MSE set 

If other processes are limited to reading and locating records, they are unable 
to modify or add records, and record-lock checking is not performed. If other 
processes are allowed to delete, add, or modify records, they are also able 
to read records; however, record-lock checking occurs. All record-access 
functions use interlocked interprocess file sharing. 

No access denies access to all accessors except the accessor who specifies this 
option. The no-access option might be used when a file is shared infrequently 
or to perform a major file update. When using this option, close the file 
promptly if other users may need to access the file. Choose this option 
or the user-interlocking option when using block access; to use the Queue 
I/O Request system service, specify the FILE USER_FILE_OPEN attribute 
(FAB$L _FOP field FAB$V_UFO set). The no-access option does not allow 
file sharing and requires that your process have write file protection access. 

User interlocking permits the user, not VMS RMS, to maintain interlocking 
protection (including maintaining the end-of-file mark). For any other form 
of file sharing, VMS RMS controls the reading and writing of I/O buffers 
to ensure the integrity of file and record structures. ~ This option is useful for 
nonshared sequential files and for block I/O access using VMS RMS or the 
Queue I/O Request system service. 

Multistreaming allows your process to access the same file using more than 
one record stream and allows other users to access the file using interlocked 
interprocess file sharing (unless SHARING PROHIBIT is also specified). 
When you select this option, select the appropriate SHARING record 
operations, such as SHARING GET. When multiple streams are connected, 
the buffers allocated for each stream become part of a buffer cache for the 
entire process. (A buffer cache is a common shared buffer pool intended to 
minimize I/O.) A record operation on one stream may use cached buffers 



File Sharing and Buffering 
7.1 File Accessing 

from a previous record operation on a different stream that referenced the 
same buckets. 

When you open or create a file, you must specify the file access and file 
sharing you want for it. When using FDL or VMS RMS, the default is to read 
records from the file (ACCESS GET) and to allow others accessors to read 
records from the file (SHARING GET). Typically, an application program 
may want to read records (ACCESS GET) while allowing other accessors to 
add records (SHARING PUT). You might want to modify records (ACCESS 
UPDATE) while allowing other accessors to add new records to the file 
(SHARING PUT). 

When you create a file, the default for FDL and VMS RMS to add records to 
the file (ACCESS PUT) and to not allow others to access the file (SHARING 
NONE). When you create a file with the create-if option, it is especially 
important to specify the access and sharing values. In this instance, you have 
denied yourself access if the file already exists because you have specified 
SHARING NONE and you are not the initial accessor. One way to avoid 
this when you create a file is to allow most operations for other users (such 
as SHARING GET, SHARING PUT, SHARING UPDATE, and SHARING 
DELETE). 

Combinations of file access and file sharing that specify a mixture of 
interlocked interprocess file access and user-interlocked interprocess file 
sharing allow the application program to access the file without record 
locking protection. Such combinations are not recommended for general use; 
they should be used only for application programs that require read-only 
access to a file. Other combinations may cause an error, such as requesting 
ACCESS BLOCK_IO without specifying SHARING NONE or SHARING 
USER_INTERLOCK. 

7.1.2 Interlocked Interprocess File Sharing 
Interlocked interprocess is the most common form of file sharing. This 
method allows the connection of one or more record streams (RABs) to one 
or more processes (FABs), either within a single process or across several 
processes. When using this form of file sharing, the values specified for file 
sharing and file access by the initial accessor determine the type of access 
permitted for subsequent processes. 

The initial accessor must consider the restrictions that result from the values 
specified for file sharing and file access. Typically, the initial accessor denies 
all write access to subsequent processes. Such a restriction occurs when the 
initial accessor specifies some type of write access for file access without 
specifying write access for file sharing. 

If the initial accessor specifies read-only file access and file sharing, 
subsequent accessors can only read the file. If the appropriate type of 
write access is not specified, then subsequent accessors cannot perform 
the corresponding write operations to the file. 

If the initial accessor specifies one or more values for file sharing, subsequent 
processes can access the file only if they specify compatible file access values. 
For example, if the initial accessor specifies SHARING GET and SHARING 
PUT, subsequent accessors must specify ACCESS GET to read the file, and 
and ACCESS PUT to write new records to the file (read access is implied by 
all four types of write access). 



File Sharing and Buffering 
7.1 File Accessing 

Table 7-3 presents the values that the initial accessor of a file can specify for 
file sharing to permit access to subsequent accessors. 

Table 7-3 Initial File Sharing and Subsequent File Access 

Initial Accessor Sharing Subsequent Accessor Access 

SHARING PROHIBIT 

SHARING GET' 

SHARING DELETE 

SHARING PUT 

.SHARING UPDATE 

No access allowed 

ACCESS GET' 

ACCESS DELETE 

ACCESS PUT 

ACCESS UPDATE 

~ Implied related operation 

Because the initial accessor can specify multiple SHARING values, a 
subsequent accessor whose ACCESS values match one, some, or all of 
the initial accessor's SHARING values is allowed access; however, when the 
subsequent accessor specifies an ACCESS value that the initial accessor did 
not specify as a SHARING value (an exception is SHARING GET, which is 
implied), access is denied to the subsequent accessor. 

In addition to comparing the file access values that subsequent accessors 
specify with the file-sharing values specified by the initial accessor, the values 
that subsequent accessors specify must be compatible with values specified by 
the initial accessor. Table 7-4 shows the file-sharing values that subsequent 
accessors must specify to access the file. 

Table 7-4 Initial File Access and Subsequent File Sharing 

Initial Accessor Access Subsequent Accessor Sharing 

ACCESS GET' 

ACCESS DELETE 

ACCESS PUT 

ACCESS UPDATE 

SHARING GET' 

SHARING DELETE 

SHARING PUT 

SHARING UPDATE 

~ May be implied a related operation 

Because the initial accessor can specify multiple ACCESS values, a subsequent 
accessor whose SHARING values match all of the initial accessor's ACCESS 
values is allowed access; however, when the subsequent accessor specifies a 
SHARING value that the initial accessor did not specify as an ACCESS value 
(an exception is ACCESS GET, which is implied), access is denied. 



File Sharing and Buffering 
7.1 File Accessing 

7.1.3 User-Interlocked Interprocess File Sharing 
User-interlocked interprocess file sharing allows one or more application 
programs to write records to a sequential file residing on a disk device or to 
a file on a disk device that is open for block I/O processing. It cannot be 
used with relative and indexed files currently opened for record access. (For 
record access to relative and indexed files, VMS RMS transparently controls 
the reading and writing of buffers to the file and always maintains current 
end-of-file information.) 

All sequential files that reside on disk devices may be write shared with 
user-provided interlocks. To use this feature, you must specify SHARING 
USER_INTERLOCK (set the FAB$B_SHR field FAB$V_UPI bit). Note that 
when this option is specified, VMS RMS does not attempt to control the 
reading and writing of I/O buffers across processes, nor does it maintain 
end-of-file information. Thus, you must use the Flush service (or VAX 
language equivalent, if any) to force the writing of modified I/O buffers and 
to rewrite the record attributes (including end-of-file information) in the file 
header. Processes that open the file after that point obtain the new end-of-file 
information. Note also that record attributes are rewritten whenever a file is 
closed. The last write accessor to close the file must also be the last accessor 
to have extended the file. If not, end-of-file information is written by another 
write accessor. Read accessors of a shared sequential file can update their 
internal end-of-file context by closing and reopening the file. 

No form of record locking is supported for this type of file sharing. Although 
record locking is not checked using user-interlocked interprocess file sharing, 
file locking is checked. For instance, if you or another user specify SHARING 
NONE, it is likely that one of you will be denied access to the file. 

If a process tries to implement the truncate service when closing a sequential 
file, it must have sole write access to the file. If other processes have write 
access to the file, VMS RMS does not close it and it remains accessible to 
other processes. If other processes have the file open for read access, VMS 
RMS defers the truncation until the final process having read access closes the 
file. 

Similarly, if a process tries to implement the truncate-on-put option when 
inserting a record into a sequential file, it must have sole access to the file. If 
other processes have access to the file, VMS RMS does not insert the record. 

7.2 Record Locking 
Synchronized access to records is required in a shared file environment where 
record streams may compete for access to records. The VMS operating system 
implements synchronized access using record locking. That is, record access 
conflicts are resolved by locking the record until the final competing record 
stream processes the record. This ensures that a program may add, delete, 
or modify records without interference and that when a record operation is 
finished, the data is consistent. 

Note: VMS RMS record locking differs from RMS Journaling record locking. 
If your application program uses Recovery Unit Journaling, see the VAX 
RMS Journaling Manual for details. 

The VMS operating system allows you to determine whether the application 
program provides record locking or whether VMS RMS provides record 
locking. Processes accessing the file make this choice by specifying 

7-7 



File Sharing and Buffering 
7.2 Record Locking 

appropriate sharing attributes and access attributes in the FAB as described 
in Section 7.1. In general, VMS RMS enables record locking when record 
modifications are permitted in a shared file environment. 

VMS RMS provides record locking for all file organizations and uses the 
VMS lock manager to keep conflicting record streams from updating a record 
simultaneously. The rest of Section 7.2 describes VMS RMS record locking. 

7.2.1 Default Record Locking 
You can specify various record locking options in the RAB when you access 
a record by way of a record stream. If you do not explicitly specify any 
record locking options when you access a record, VMS RMS uses default 
record locking to automatically and transparently lock and unlock shared 
records. Default record locking does not require special handling of locks in 
the application program. 

In a typical record locking scenario, an application program calls a VMS RMS 
service to access and lock a record. The application program then processes 
the locked record. When it finishes processing the record, the application 
program calls the appropriate VMS RMS service to finish processing and 
unlock the record. 

The following scenario illustrates processing an existing record: 

1 The application program invokes the Get service to access the record, lock 
the record for exclusive access, and return the record to the application 
program. 

2 The application program modifies the locked record. Other record streams 
that try to access the record using default record locking get arecord-
locked error. This prevents the locked record from being accessed and 
modified before the application program finishes modifying it. 

3 The application program invokes the Update service to store the modified 
record in the file and remove the lock on the modified record, thereby 
making the record available to other record streams. 

When VMS RMS provides record locking, the Get, Find and Put services 
apply locks. The Get service and the Find service normally return with a 
record locked, but the Put service returns with the record unlocked unless 
you specify the manual-unlocking option. 

When the application program uses default record locking, VMS RMS 
automatically unlocks the locked record when one of the following events 
occurs: 

• Another record is accessed (Get service and Find service). 

• The current record is updated (Update service). 

• The current record is deleted (Delete service). 

• The record stream is disconnected (Disconnect service). 

• The file is closed (Close service). 

• The record stream is positioned to the beginning of the file (Rewind 
service). 

• Anew record is added to the file (Put service). 

7--8 



File Sharing and Buffering 
7.2 Record Locking 

• The record lock is explicitly removed (Release service or Free service). 

• An error occurs during a record operation. 

Note that a sequential Get service immediately following a Find service does 
not unlock the record because it accesses the same record. 

7.2.2 Record Locking Options 
VMS RMS record locking options can be divided into three groups: 

• Options that specify the access allowed by other record streams 

• Options that control record conflicts between record streams 

• Miscellaneous options 

All record locking options are specified by RAB input to the accessing service. 
All record locking options apply to the Get service and the Find service, 
and most record locking options apply to the Put service. You can specify a 
different set of record locking options each time the record stream accesses a 
record. 

This section describe the types of record access allowed by each record 
locking option. It also provides some examples of when an application 
program might select a particular record locking option. The following four 
record locking options control record access by other record streams: 

• Exclusive locking 

• Write locking 

• Read locking 

• No locking 

To update or delete a record, a record stream must have an exclusive lock or 
a write lock on the record. 

7.2.2.1 Exclusive Locking 
By default, VMS RMS performs exclusive-locking. With exclusive locking, 
only the initial record stream is permitted to access the record for reading or 
writing until the lock is released. Any other record stream that tries to read 
or write the record by applying a lock is denied access. When a record stream 
is denied access because of a locked record, the requesting service returns a 
locked-record status (RMS$—RLK). 

The only way a record stream can read an exclusively locked record is by 
using the read-regardless option (see Section 7.2.3.3). 

Most application programs use exclusive locking because it requires minimal 
programming and provides maximum protection when modifying and reading 
records. Note, however, that contention is apt to be greatest when a record 
stream uses the exclusive-locking option. 

See Section 7.2.1 for an example of how VMS RMS uses exclusive locking for 
an application program that is modifying a record. 



File Sharing and Buffering 
7.2 Record Locking 

7.2.2.2 Write Locking 
The write-locking option allows the record stream that locks a record to 
modify the record. This option explicitly prohibits other record streams from 
having write-lock access or exclusive lock access, both of which imply an 
intent to modify the record. The write-locking option also denies read-lock 
access to other record streams because aread-lock access is incompatible with 
a record stream that is modifying the record. 

Contending record streams can read the record using the no-locking option 
or the read-regardless option (see Section 7.2.3.3). When a contending record 
stream successfully reads awrite-locked record using the no-locking option, 
the accessing service returns a success status. 

Typically, an application program uses the write-locking option when it 
wants the record to remain in a consistent state while the application program 
is modifying the record. 

7.2.2.3 Read Locking 
The read-locking option permits other record streams to access the record for 
reading but denies access to any record stream that attempts to access the 
record for making modifications. 

No record stream is allowed to access aread-locked record for making 
modifications to the record until all record streams that have a read lock 
release the record. Any record stream that attempts to access aread-locked 
record using either the exclusive-locking option or the write-locking option 
are denied access. The requesting service returns a completion status record 
to the application program indicating that the record was locked (RMS$_RLK) 
and the requesting record stream was denied access. 

Contending record streams can read the record using the read-locking option, 
the no-locking option or the read-regardless option (see Section 7.2.3.3). 
When a contending record stream successfully accesses aread-locked record 
using the read-locking option or the no-locking option, the accessing service 
returns a success status. 

Typically, an application program uses the read-locking option when it wants 
the record to remain in a consistent state while reading the record but does 
not intend to modify the record. 

7.2.2.4 No Locking 
The no-locking option specifies that the requesting record stream does not 
want to lock the record. This is the most compatible locking option because 
it permits the requesting record stream to have access to all locked records 
except for records that are locked for exclusive access. It also permits other 
record streams to apply any type of lock to the record. Using this option 
minimizes contention and may improve application program performance. 

By implication, a record stream that uses the no-locking option can only 
access the record for reading. When a record stream uses the no-locking 
option to access a record, the invoked service returns with the record 
unlocked. 

Note that when a record stream selects the no-locking option, vMS RMS 
momentarily locks the record to determine whether or not the record is 
already locked by another record stream. This is required in order to 
determine if access is allowed. If the record is not locked, the requesting 
service returns a completion status indicating a successful access. If the record 
has an exclusive lock, the access is denied and the requesting service returns 

7-10 



File Sharing and Buffering 
7.2 Record Locking 

a completion status indicating the record is locked (RMS$_RLK). If the record 
has a write lock or a read lock, the requesting service reads the record and 
returns a completion status indicating that the record was locked but a read 
was permitted (RMS$_OK_RLK). 

If you specify the no-locking option together with the manual-unlocking 
option, the no-locking options takes precedence. That is, if you specify both 
options to the service that accesses the record, the service returns control to 
the application program with the record unlocked. See Section 7.2.4.1 for a 
description of the manual-unlocking option. 

7.2.2.5 Put Service Considerations 
Since the Put service adds a new record, the application program does not 
have to access an existing record. However, because adding a record is a 
multistep process, the record that is being added must be locked until the 
entire process is finished. 

The scenario for adding a record to a file begins with the application program 
moving a record into its buffer. Next, the application program calls the Put 
service, which locks the record while it moves it from the application program 
buffer to the file. When the record is in the file, the Put service typically 
unlocks the record, making it available to other record streams. The locking 
process is transparent at the program level unless the application program 
selects the manual-unlocking option. 

If a record stream tries to add a record using the no-locking option, the Put 
service ignores the option and adds the record. 

7.2.2.6 Summary 
This section provides two tables to summarize the information described in 
Section 7.2.2.1 through Section 7.2.2.5. 

The record locking options that control record access exhibit varying degrees 
of compatibility. Table 7-5 summarizes access control locking compatibility 
by comparing the type of access being requested by a record stream with 
the current lock held by another record stream. The table does not take into 
account miscellaneous record locking options, notably the read-regardless 
option. 

Table 7-5 Compatibility of Record locking options 

Requested 
Access 

Current Lock Held by Another Record Stream 

EXCLUSIVE WRITE READ None 

EXCLUSIVE NO NO NO YES 

WRITE NO NO NO YES 

READ NO NO YES YES 

NO LOCK NO YES' YES' YES 

~ RMS$_OK_RLK is returned. 

The next table lists record locking options that control record access and how 
you select each option through the FDL and VMS RMS interfaces. 



File Sharing and Buffering 
7.2 Record Locking 

Option How to select 

Exclusive locking FDL: This is the default when you do not 
VMS RMS: select write locking, read locking or 

no locking. 

Write locking FDL: CONNECT LOCK_ON_WRITE 
VMS RMS: RAB$L_ROP RAB$V_RLK 

Read locking FDL: CONNECT LOCK_ON_READ 
VMS RMS: RAB$L_ROP RAB$V_REA 

No locking FDL: CONNECT NOLOCK 
VMS RMS: RAB$L _ROP RAB$V_NLK 

7.2.3 Handling Record Locking Conflicts 
Application programs that use shared files must be able to handle record 
locking conflicts that may occur when two or more record streams try to 
access the same record. VMS RMS provides three options for handling record 
locking conflicts: 

• You can have the application program handle the record-locked error 
status (RMS$_RLK) returned by VMS RMS when a record stream is 
denied access to a record. 

• You can have the requesting service wait for access (wait-if-locked 
option). 

• You can have the requesting service ignore the lock (read-regardless 
option). 

The following table lists the options for having VMS RMS handle record 
locking conflicts and how you select each option through the FDL and VMS 
RMS interfaces. 

Option How to select 

Wait if locked FDL: CONNECT WAIT_FOR_RECORD 
VMS RMS: RAB$L_ROP RAB$V_WAT 

Wait timeout FDL: CONNECT TIMEOUT_ENABLE and 
period CONNECT TIMEOUT_PERIOD 

VMS RMS: RAB$L _ROP RAB$V_TMO and 
RAB$B_TMO 

Read regardless FDL: CONNECT READ_REGARDLESS 
VMS RMS: RAB$L_ROP RAB$V_RRL 

The following sections describe each of these options. 



File Sharing and Buffering 
7.2 Record Locking 

Example 7-1 Designing a Pause between Attempts to Access a 
Record 

10$: $GET RAB=INRAB 
BLBS RO,GOT_RECORD 
CMPL R0,#RMS$_RLK 
BNEQ ERROR 
PUSHL #~F1.0 
CALLS #1,G~LIB$WAIT 
BLBC RO,ERROR 
BRB 10$ 

Get the record 
Branch on success 
Record-locked error? 
Quit on other errors 
Pause for 
one second 
Quit on error 
Try again for record 

7.2.3.1 Handling the Record-Locked Error 
When a VMS RMS service is denied record access because of a record conflict, 
it returns arecord-locked error status (RMS$_RLK) that indicates the access 
attempt failed because the record was locked. One option is to have the 
application program pause briefly, and then try again to access the record. 

Example 7-1 contains a program fragment written in VAX MACRO that 
demonstrates one method of implementing a short pause between attempts to 
access a locked record. 

For more information about process control techniques, see the VMS System 
Services Reference Manual. 

7.2.3.2 Waiting for Locked Records 
Another option for handling record locking conflicts is to use the wait-if-
Iocked option to wait for the locked record to be released. When you take 
this option, the accessing service does not return until the record is released 
or until a specified wait period expires. 

The optional wait period is established using the wait-timeout-period option 
in conjunction with the wait-if-locked option. If the specified wait period 
expires before the requesting service obtains access to the locked record, 
the requesting service discards the request. The requesting service returns a 
completion status indicating that it waited for the locked record but was not 
granted access within the specified time period (RMS$_TMO). 

If you select the wait-if-locked option and the requesting service must wait 
to access the record, it returns an alternate success status that indicates that it 
had to wait (RMS$_OK_WAT). 



File Sharing and Buffering 
7.2 Record Locking 

7.2.3.3 Reading Regardless of Lock 
The third choice available to you for handling record locking conflicts involves 
using the read-regardless (of lock) option. This option allows the accessing 
service to ignore a lock that would normally prohibit read access. If a lock 
is granted under the specified record locking option, access is granted and 
the service returns with the specified lock. If the lock is denied, the read-
regardless option allows the accessing service, Get or Find, to read the 
record, regardless of the lock. The service returns without a lock and with an 
alternate success status RMS$_OK_RRL. 

An application program might use the read-regardless option to avoid record 
locking conflicts when a coordinated view of a record is not necessary. This 
option can also be used to continue sequential reads through a locked record. 

Note that when you use the read-regardless option with the wait-if-locked 
option and a wait timeout period, VMS RMS acts on the read-regardless 
option only after the wait timeout expires. 

7.2.4 Miscellaneous Record Locking Options 
This section describes two miscellaneous record locking options—the manual-
unlocking option and the lock-nonexistent-record option in a relative file. 

7.2.4.1 Manual-Unlocking Option 
The manual-unlocking option gives the application program explicit control 
over releasing a record lock established by the Get service, the Find service or 
the Put service as described in Section 7.2.1. 

Even if you select the manual-unlocking option, VMS RMS unlocks affected 
records when a record stream is disconnected (Disconnect service), or when 
a file is closed (Close service). Other record operations, including operations 
that result in errors, do not unlock the record. 

To manually release record locks, the application program can invoke the 
Free service to unlock all record locks currently held by a record stream, or 
it can invoke the Release service to selectively release record locks, using the 
record's RFA. 

Manual unlocking is useful when you have to modify multiple records as part 
of a single transaction. For example, assume the application program must 
modify two related but separate records. Assume, too, that the modified first 
record must not be accessed by another record stream until modifications to 
the second record are completed. 

While the program modifies the first record, it uses the manual-unlocking 
option to hold the lock on the modified first record. It then proceeds to 
modify the second record while still maintaining a lock on the first record. 
By using manual unlocking, the application program can restore the original 
contents of the first record if the update to the second record fails, thereby 
maintaining data integrity. 



File Sharing and Buffering 
7.2 Record Locking 

7.2.4.2 Lock- Nonexistent- Record Option 
The lock-nonexistent-record option applies only to random accessing of 
relative files. Relative files have a static physical structure made up of record 
cells in contrast to sequential files and indexed files, which have a dynamic 
structure. The record cells may or may not contain records. A record may 
have been deleted from a cell, or the cell may be empty (that is, it never 
contained a record). In either case, the records cells are accessible to the 
application program. 

Typically, if a record stream tries to access and lock an empty cell in a relative 
file using random access, the accessing service returns arecord-not-found 
error status (RMS$_RNF). However, if the lock-nonexistent-record option is 
selected, the accessing service returns an alternative success status (RMS$_ 
OK_RNF) indicating that the record stream successfully accessed a cell that 
never contained a record. If the cell contains a deleted record, VMS RMS 
returns the deleted record with an alternate success status (RMS$_OK_DEL) 
to indicate that a deleted record was accessed. 

The lock-nonexistent-record option prevents other record streams from 
putting a record into an empty cell until the locking record stream puts a 
record in it or releases the record lock. Any other record stream that tries to 
access the cell to put data into it receives arecord-locked status (RMS$_RLK). 
If the record stream that has the lock puts a record into the cell, VMS RMS 
returns an alternate success status (RMS$_OK_ALK) indicating that the cell 
was already locked. In general, the RMS$_OK_ALK status is returned when 
a VMS RMS service tries to lock a record that the current record stream has 
already locked. This also applies to the Put service, which locks and unlocks 
the record in one record operation. 

The next table lists miscellaneous record locking options and how you select 
each option through the FDL and VMS RMS interfaces. 

Option How to select 

Manual unlocking 

Lock nonexistent 
record 

FDL: CONNECT MANUAL _UNLOCKING 
VMS RMS: RAB$L_ROP RAB$V_ULK 

FDL: CONNECT NONEXISTENT_RECORD 
VMS RMS: RAB$L_ROP RAB$V_NXR 

7.2.5 Record Locking Deadlocks 
A deadlock occurs when there is a set of processes, and each process is 
waiting to access a record that is locked by another process in the set. The 
program stalls because none of the processes can acquire the record that it 
needs to complete its task and release its locks. 

The VMS lock manager resolves the deadlock by arbitrarily denying one of 
the lock requests. When this occurs with a record lock, VMS RMS returns an 
RMS$_DEADLOCK status. The RMS$_DEADLOCK status is only returned 
if the wait-if -locked option is selected. If your application program does its 
own wait and retry handling, the deadlock will occur, but the lock manager 
will not be able to detect it. 



File Sharing and Buffering 
7.2 Record Locking 

The amount of time that lapses before VMS RMS takes action on the deadlock 
depends on the value specified in the DEADLOCK_WAIT system parameter. 
The default value for this system parameter is 10 seconds. For further details 
about how this parameter is set, see the Guide to Setting Up a VMS System. 

For more information about the VMS lock manager, see the VMS System 
Services Volume. 

7.3 Local and Shared Buffering Techniques 
One of the key performance factors is record buffering, that is, the transfer 
of records between a storage device and an area of memory accessible to the 
application program. Between the storage device and the record buffer in 
the appliction program, however, is an intermediate buffer area that VMS 
RMS maintains. An intermediate buffer area is usually associated with each 
process; you can also specify a shared buffer area for a shared file. 

7.3.1 Record Transfer Modes 
For synchronous and asynchronous record operations, VMS RMS provides 
two record transfer modes: move mode and locate mode. 

In move mode, VMS RMS copies a record from an I/O buffer into a buffer 
that you specify. For input operations, data is first read into the I/O buffer 
from a peripheral device (such as a disk), then moved to your application 
program buffer for processing. For output operations, you first build the 
record in your application program buffer; then VMS RMS moves the record 
to the I/O buffer that is used to transfer the record to disk. 

In locate mode, VMS RMS allows the application program to access records 
directly in a VMS RMS I/O buffer by providing the address of the returned 
record as the internal VMS RMS buffer location instead of an application 
program buffer location (field RAB$L _RBF). Usually, this reduces program 
overhead because records can be processed directly within the I/O buffer. 
Locate mode is only available for input operations. Because it may not 
always be possible to use locate mode, you must supply an application 
program buffer for cases in which move mode must be used, even though 
you specify locate mode (see the VMS Record Management Services Manual). 

Other VMS RMS facilities allow programs to control I/O buffer space 
allocation or to simply leave all space management to VMS RMS. The 
following sections briefly describe buffering. 

7.3.2 Understanding Buffering 
Record processing in VMS RMS appears to your program as the movement of 
records directly between a file and the program itself. In fact, VMS RMS uses 
internal memory areas called I/O buffers to read or write blocks or buckets 
of data. Transparent to your program, VMS RMS transfers blocks or buckets 
of a file into or from an I/O buffer. Records within the I/O buffer are then 
made available to the program when VMS RMS transfers the records between 
the I/O buffer and the application program's record buffer. 



File Sharing and Buffering 
7.3 Local and Shared Buffering Techniques 

The unit of data transfer between a file and the I/O buffers depends on the 
file organization. For the sequential organization, VMS RMS reads and writes 
a block or series of blocks. For relative and indexed organizations, VMS RMS 
reads and writes buckets. 

The relationship between the application program and the I/O buffers that 
VMS RMS maintains is shown in Figure 7-2. As illustrated, the application 
program resides in the PO region of process address space. The VMS 
RMS-maintained buffer area, together with VMS RMS-maintained control 
information, resides in the P1 region. 

Note that VMS RMS normally overflows into PO space and that the linker 
provides options for controlling the overflow. Note, too, that linker options 
are available for allocating additional buffer space in the PO region, if needed. 
See the VMS Linker Utility Manual for details. 

Figure 7-2 VMS RMS Buffers and the Application Program 

PROCESS VIRTUAL MEMORY 

RECORDS 

BLOCKS OR 
BUCKETS 

USER PROGRAM IMAGE 
- - - 

- - 

- - 

USER RECORD BUFFER 

VMS RMS BUFFER 
AREA 

SYSTEM CONTROL INFORMATION 

PO SPACE 
(Program Region) 

P1 SPACE 
(Control Region) 

Z K-1993-84 

The specified record buffer contains the record to be read or written, and VMS 
RMS maintains the rest of the block in application program process space in a 
VMS RMS-controlled area of the program. 

For optimum performance, consider the number of buffers carefully. The 
defaults calculated by VMS RMS are few and may be adequate for access 
to small files. For example, it is not unusual to specify many buffers when 
processing a large indexed file, yet the default number of buffers VMS RMS 
provides is only two. 

The CONNECT secondary attribute MULTIBUFFER_COUNT (VMS RMS 
field RAB$B_MBF) establishes the number of buffers, but the FILE secondary 
attribute GLOBAL _BUFFER_COUNT (VMS RMS field FAB$w_GBC) 
specifies the number of global bu f}'ers as described in Section 7.3.6. 



File Sharing and Buffering 
7.3 Local and Shared Buffering Techniques 

Often the best way to achieve optimum buffering for a particular application 
program is to use combinations of buffer sizes and numbers of buffers. 
One approach is to time each combination and measure the number of I/O 
operations. Then consider the amount of memory used before you choose the 
one that improved application program performance the most. 

With buffering, the goal is to use a buffer size and number of buffers that 
improves application program performance without exhausting the virtual 
memory resources of your process or system. Keep in mind the trade-offs 
between file I/O performance and exhausting memory resources. The buffers 
used by a process are charged against the process's working set. You should 
avoid allocating so many buffers that the CPU spends excessive processing 
time paging and swapping. For performance-critical application programs, 
consider increasing the size of the process working set a.nd adding additional 
memory. 

The system manager should monitor the paging and swapping activity of the 
application program's process and selected other processes to avoid improving 
the performance of the target application program at the expense of other 
application programs. Have your system manager consult the Guide to VMS 
Performance Management for system tuning information. For information 
about the resources needed for file applications, refer to Section 1.5. 

When records are likely to be accessed sequentially, a large buffer (or buffers) 
should be used. Contiguous records in a file are read into memory in one or 
more blocks for sequential files or in buckets (multiblock units) for relative 
and indexed files. After the blocks or buckets are read into the buffer area 
provided by VMS RMS, later access to adjacent records would access records 
in the same block or bucket in the buffer. This eliminates additional I/O and 
improves performance. When a record is needed that is not in the current 
buffer cache, one of the buffers is replaced by the blocks or the bucket that 
contains the new record. 

When records in the file are repeatedly accessed, using more than one buffer 
can hold the previously accessed records in memory longer and eliminate an 
I/O operation when the program accesses the records again. 

The buffers that the application program requests VMS RMS to allocate for its 
use are referred to as a bu f f er cache and can be thought of as a buffer pool for 
your process that VMS RMS uses to locate records first before attempting I/O 
to the target device. When many processes share a file, the program can use 
a shared global buffer cache (see Section 7.3.6.) 

7.3.3 Buffering for Sequential Files 
With sequential files, the number of buffers and the size of the buffers can 
be specified at run time. You specify the number of buffers with the FDL 
attribute CONNECT MULTIBUFFER_COUNT (VMS RMS control block 
field RAB$B_MBF) and you specify the buffer size with the FDL attribute 
CONNECT MULTIBLOCK_COUNT (VMS RMS control block field 
RAB$B_MBC). 

Sequential files provide an option that alternately uses two buffers. One 
buffer holds records to be read from the disk or written to the disk. The 
other buffer awaits I/O completion. This is called read-ahead and write-behind 
processing and should be considered for sequential access to sequential files. 
The number of buffers (CONNECT MULTIBUFFER_COUNT) should be 
specified as 2. The length of the buffers used for sequential files is determined 

7-18 



File Sharing and Buffering 
7.3 Local and Shared Buffering Techniques 

by the specified multiblock count (CONNECT MULTIBLOCK_COUNT). For 
sequential access to a sequential file, the optimum number of blocks per buffer 
depends on the record size, but a value such as 16 is usually appropriate. 

To see the default buffer count for the current process, use the DCL command 
SHOW RMS_DEFAULT. To set the default buffer count for the current 
process, use the DCL command SET RMS_DEFAULT/SEQUENTIAL 
/BUFFER_COUNT=n, where n is the number of buffers. 

7.3.4 Buffering for Relative Files 
With relative files, buckets, not blocks, are the unit of transfer between the 
disk and memory. The bucket size is specified when the file is created, 
although the bucket size of an existing file can be changed by converting the 
file (see Chapter 10). 

The bucket size is specified by the FDL attribute FILE BUCKEL SIZE (VMS 
RMS control block field FAB$B_BKS or XAB$B_BKZ). When choosing 
this value, you should consider whether or not the file is usually accessed 
randomly (small bucket size), sequentially (large bucket size), or both 
(medium bucket size), as described in Chapter 2. 

The number of buffers (CONNECT MULTIBUFFER_COUNT, RAB$B_MBF) 
is specified at run time. The type of record access to be performed determines 
the best use of buffers. The two extremes of record access are that records are 
processed completely randomly or completely sequentially. Also, there are 
cases in which records are accessed randomly but may be reaccessed (random 
with temporal locality) and cases in which records are accessed randomly but 
adjacent records are likely to be accessed (random with spatial locality). 

For completely random or sequential access, a single buffer should be 
specified. In a processing environment in which the program processes 
records randomly and sometimes reaccess records, use multiple buffers to 
keep the reaccessed records in the buffer cache. 

When records are accessed randomly and adjacent records are apt to be 
accessed, you should specify a single buffer. However, if your program is 
processing a file with small bucket sizes, you should consider specifying more 
buffers. When the file is likely to be accessed by several methods, you should 
consider a compromise of the number of buffers and bucket sizes. 

When adding records to a relative file, consider choosing the deferred-write 
option (FDL attribute FILE DEFERRED_WRITE; FAB$L _FOP field 
FAB$V_DFW). With this option, the buffer (memory-resident bucket) into 
which the records have been moved is not written to disk until the buffer is 
needed for other purposes or until the file is closed. Note that if you use the 
deferred-write option, there is a risk that data may be lost if a system crash 
occurs before the records are written to disk. 

To see the current process-default buffer count, use the DCL command 
SHOW RMS_DEFAULT. To set the process-default buffer count, use the DCL 
command SET RMS_DEFAULT/RELATIVE/BUFFER_COUNT=n, where n is 
the number of buffers. 



File Sharing and Buffering 
7.3 Local and Shared Buffering Techniques 

7.3.5 Buffering for Indexed Files 
With indexed files, buckets (not blocks) are the units of transfer between 
the disk and memory. The bucket size is specified when the file is created, 
although the bucket size of an existing file can be changed by converting the 
file (see Chapter 10). 

The bucket size is specified by the FDL attribute FILE BUCKET_SIZE (VMS 
RMS control block field FAB$B_BKS or XAB$B_BKZ), as described in Chapter 
2. 

When accessing indexed files, it is important to remember that the index 
portion of the file must be read by VMS RMS to locate the desired record. 
The algorithm used by VMS RMS places a higher priority for the higher-level 
buckets of the index in the buffer cache. Thus, the highest levels of the index 
remain in the buffer cache, while the buffers that may have contained the 
actual data buckets and the lower-level index buckets are reused to contain 
other buckets. That is, the buffers that are reused first contain either data or 
lower-level index buckets, which are the first to be discarded from the buffer 
cache. 

When accessing indexed files, the number of buffers (CONNECT 
MULTIBUFFER_COUNT, RAB$B_MBF) is specified at run time and 
recommended values can vary greatly for different application programs. 
When records are processed randomly, use as many buffers as your process 
working set can support to cache additional index buckets. When records 
are accessed sequentially, even after locating the first record randomly, use a 
small multibuffer count, such as the default of 2 buffers. 

Many application programs access files using a mixture of completely random 
and completely sequential processing. For such application programs, a 
compromise of the above number of buffers is recommended. 

When adding records to an indexed file, consider choosing the deferred-write 
option (FDL attribute FILE DEFERRED_WRITE; FAB$L _FOP field FAB$V_ 
DFW). With the deferred-write option, the buffer into which the records 
have been moved is not written to disk until the buffer is needed for other 
purposes or until the file is closed. This option, however, may cause records 
to be lost if a system crash should occur before the records are written to disk. 

To see the current process-default buffer count, use the DCL command 
SHOW RMS_DEFAULT. To set the process-default buffer count, use the DCL 
command SET RMS_DEFAULT/INDEXED/BUFFER_COUNT=n, where n is 
the number of buffers. 

7.3.6 Using Global Buffers for Shared Files 
Two types of buffer caches are available using VMS RMS: local and global. 
Local buffers reside within process (program) memory space and are not 
shared among processes, even if several processes access the same file and 
read the same records. Global buffers, which are designed for application 
programs that access the same files and perhaps the same records, do not 
reside in process memory space. 



File Sharing and Buffering 
7.3 Local and Shared Buffering Techniques 

If several processes share a file, you should specify that the file uses global 
buffers. A global buffer is an I/O buffer that two or more processes can 
access in conjunction with file sharing. If two or more processes request the 
same information from a file, each process can use the global buffers instead 
of allocating its own process-local buffers. Figure 7-3 illustrates the use of 
global buffers. 

Figure 7-3 Using Global Buffers for a Shared File 

SYSTEM VIRTUAL MEMORY 

PROCESS 
A 

PROCESS 
B 

GLOBAL BUFFER CACHE 

A 

r 
BLOCKS OR 

BUCKETS 

PROCESS 
C 

PROCESS 
D 

ZK-1994-84 

Unlike local buffers, global buffers can be accessed by multiple processes 
accessing the same file. When a record requested by one process is located in 
a global buffer, the record can be transferred directly from the global buffer 
to the program, eliminating an I/O read operation. Note that if the previous 
accessor modified the record, VMS RMS writes the buffer to disk before 
returning the record to the new accessor. This ensures that the modified 
bucket in memory matches its counterpart on the disk. 

There are two situations in which global buffers cannot be used for shared 
files. When a process permanent file is being accessed, VMS RMS does not 
use global buffers (no error is returned). When an image is linked using the 
LINK option keyword IOSEGMENT=NOPOBUFS (rarely used), VMS RMS 
does not use global buffers. 

Even if global buffers are used, a minimal number of local buffers should be 
requested, because, under certain circumstances, VMS RMS may need to use 
local buffers. When attempting to access a record, VMS RMS looks first in 
the global buffer cache for the record before looking in the local buffers; if the 
record is still not found, an I/O operation occurs. When using the deferred-
write option with global buffering enabled, the number of buckets that can be 



File Sharing and Buffering 
7.3 Local and Shared Buffering Techniques 

buffered without I/O is equal to the number of local buffers; thus, the use of 
more than the minimum number of local buffers should be considered. 

You can specify the number of global buffers two ways: by using a preset file 
default or by having the first process that accesses the file specify the value 
at run time. To set the file default (maintained in the file header), use the 
DCL command SET FILE/GLOBAL _BUFFERS=n where n is the number of 
buffers. 

To set the global buffer value at run time, the first process to connect to the 
file with the FILE GLOBAL _BUFFER_COUNT attribute (VMS RMS control 
block field FAB$W_GBC) greater than 0 can set this value. The default value 
returned in the FAB$W_GBC field following an Open (or Create) service 
may be altered if unacceptable before invoking the Connect service. When 
a previous or subsequent application program attempts to open and connect 
to the file, the global buffer count determines whether or not that process 
uses global buffers. If the value is 0, that process uses only local buffers; if 
the value is greater than 0, that process uses global buffers along with other 
processes. Refer to the VMS Record Management Services Manual for additional 
information on the use of the FAB$W_GBC field and Connect service. An 
example of a routine that sets the global buffer count after opening a file is 
provided in Example 5-2. 

To request that the global buffer cache be read-only, specify SHARING GET 
and SHARING MULTISTREAMING attributes (FAB$B_SHR field 
FAB$V_SHRGET and FAB$V_MSE). 

When modifying an application program to use global buffers, consider using 
more global buffers and slightly larger bucket sizes if records are processed 
randomly. For application programs with many users, consider allocating a 
number of global buffers equal to the number of local buffers used previously, 
multiplied by number of users (if resources permit): 

No. Global Buffers = No. Local Buffers x Average No. Users 

When using an indexed file, if the index structure is small and the number 
of users is many, consider allocating enough global buffers to keep the entire 
index structure in memory. l.+ 



8 Record Processing 

This chapter describes record processing to help you use the run-time record 
operations described in Chapter 9. This chapter provides information about 
the following subjects: 

• Record operations appropriate to high-level languages 

• Accessing records for file organizations 

• Record environment as it relates to record positioning 

• Synchronous versus asynchronous record operations 

8.1 Record Operations 
Record operations are performed by VMS RMS services, which are classified 
as primary or secondary services. Primary services have functional 
equivalents in high-level language record operations, whereas secondary 
services are specific to VMS RMS functions. 

Section 8.2 describes the five primary services. For a brief description of the 
secondary services, refer to Section 8.3, and for more detailed descriptions of 
the secondary services, refer to the VMS Record Management Services Manual. 

8.2 Primary VMS RMS Services 
This section describes the five VMS RMS services that are functionally similar 
to related high-level language operations. The following list provides a brief 
description of each of these services and cites the similarities to high-level 
languages. 

Find The Find service locates an existing record in the file. It does not 
return the record to your program; instead it establishes the record's 
location as the current-record position in the record stream. The Find 
service, when applied to a disk or magnetic tape file, corresponds to 
the FIND statement in BASIC and FORTRAN, the START statement 
in COBOL, the FIND or LOCATE statements in Pascal, and the READ 
statement with the SET keyword for PL/I. 

Get The Get service returns the selected record to your program. The Get 
service, when applied to a disk or magnetic tape file, corresponds 
to (is used by) the GET statement in BASIC; the READ statement in 
COBOL, FORTRAN, and PL/I; and the GET statement (and others► in 
Pascal 

Put The Put service inserts a new record in the file. The Put service, when 
applied to a disk or magnetic tape file, corresponds to the PUT and 
PRINT statements in BASIC; the WRITE statement (and others) in 
COBOL; the WRITE statement in FORTRAN and PL/I; and the PUT and 
WRITELN statements in Pascal. 



Record Processing 
8.2 Primary VMS RMS Services 

Update The Update service modifies an existing disk file record. The Update 
service corresponds to the UPDATE statement in BASIC and Pascal 
and to the REWRITE statement in COBOL, FORTRAN, and PL/I. 

Delete The Delete service erases records from relative disk files and indexed 
disk files. The Delete service corresponds to the DELETE statement in 
BASIC, COBOL, FORTRAN, Pascal, and PL/I. 

A single statement in a VAX language may correspond to one or several VMS 
RMS record-processing service calls. For example, the COBOL statement 
DELETE uses the VMS RMS Delete service during sequential record access, 
but it uses the Find and Delete services during random record access. 

File organization in part determines the types of record operations that a 
program can perform. Table 8-1 shows the major record operations that VMS 
RMS permits for each file organization. 

Table 8-1 Record Operations and File Organizations 

File 
Record Operation Organization 

Permitted Sequential Relative Indexed 

Get Yes Yes Yes 

Put Yes' Yes Yes 

Find Yes Yes Yes 

Delete No Yes Yes 

Update Yes2 Yes Yes 

~ In a sequential file, VMS RMS allows records to be added at the end of the file only. 
(Records can be written to other points in the file by using a Put service with the update-if 
option.) 

ZWhen performing an Update service to a sequential file containing fixed-length records, 
you cannot change the length of the record. The Update service is only allowed on disk 
devices. 

The remainder of this section briefly describes the record retrieval (Find 
and Get) services, the record insertion (Put) service, the record modification 
(Update) service, and the record deletion (Delete) service. Note that all 
references to VMS RMS services imply applicability to similar functional 
capabilities found in high-level languages. 

8.2.1 Locating and Retrieving Records 
You can use the Find and Get services to locate and retrieve a record. The 
Find service locates a record and establish its location as the current-record 
position in a record stream but does not return the record to a buffer. The 
Get service locates the record, establishes its location as the current-record 
position in the record stream, and returns it to the buffer area you specify. 

If you use the Get service, you must allocate a buffer area in the data portion 
of your program to store the retrieved record by defining an appropriate 
variable or multivariable record structure in the program. 



Record Processing 
8.2 Primary VMS RMS Services 

Note: When you invoke the Get service, VMS RMS takes control of the record 
buffer and may modify it. VMS RMS returns the record size but it can 
only guarantee record integrity from the access point to the end of the 
record. 

In addition to retrieving the record, VMS RMS returns to your program the 
length of the record (in control block field RAB$W_RSZ, record size) and the 
file address of the record (in control block field RAB$L _RBF, record buffer). 
If you direct VMS RMS only to locate the record, it does not write the record 
into your buffer. Instead, it sets the RAB$W_RSZ and RAB$L _RBF fields to 
point to an internal buffer where the record is located. 

When using indexed files, you may need to allocate a buffer for the desired 
key and to specify its length. When using high-level VAX languages, the 
language's compiler may automatically handle the allocation and size 
specification of the record buffer and the key buffer. 

In some applications, you can minimize record I/O and improve performance 
by using the Find service instead of the Get service. For example, a process 
does not have to retrieve a record when it is preparing to invoke the Update, 
Delete, Release, or Truncate service. If a process intends to update a 
record that is accessible to other processes, it should lock the record until 
it completes the update. 

For interactive applications where the user verifies that the appropriate record 
is being accessed before deleting it or updating it, the program should use the 
Get service instead of the Find service. 

In some situations, a process may use two services and two types of record 
access to retrieve a set of records. For example, the process might use the 
Find service and random access mode to locate the first record in the set, then 
switch to the Get service for sequentially retrieving the records in the set. 

An efficient use of the Find service is to create a table of RFAs (record file 
addresses) to be used for rapidly accessing the records in the same file. 

Record retrieval operations are typically used to repetitively read and process 
a set of records. As part of this type of operation, your program should check 
for an end-of-file condition after each Find or Get service. 

For more information about the Find and Get services, refer to the VMS 
Record Management Services Manual. 

8.2.2 Inserting Records 

The Put service adds a record to the file. Within the data portion of your 
program, you must provide a buffer for the record that is to be added. The 
program must also supply the length of each record to be written when 
calling VMS RMS directly. This is a constant value with fixed-length records 
but varies from record to record when adding variable-length or VFC records. 
When using high-level VAX languages, however, the language's compiler 
may automatically handle record buffer size specification or supply a means 
to simplify its specification. 

The current-record position is especially important when adding records to a 
sequential file. VMS RMS establishes the current-record position at the end 
of file for any record stream associated with a file opened for adding records. 
To add records to a relative file or to an indexed file, use random access (by 
key or record number), unless the program adds records sequentially by a 
specified ordering of primary keys or by relative record number. 

8-3 



Record Processing 
8.2 Primary VMS RMS Services 

4./ 
The update-if option replaces an existing record using the Put service when 
you choose random access mode. When superseding existing records, 
consider using this option to add records to a relative or indexed file. A 
program can use the update-if option to update a record in a sequential file 
that is being accessed randomly by relative record number. 

Be careful with automatic record locking when you use this option for a 
shared file because the Put service briefly releases record locks applied by the 
Get or Find service before the Update operation begins. This could permit 
another record stream to delete or update the record between the time that 
the program invokes the Put service and the beginning of the Update service. 

Consider using the Update service instead of the Put service with the update-
if option to update an existing record in a shared file. 

When a file contains alternate keys with characteristics that prohibit duplicate 
values, the application must be prepared to handle duplicate-alternate-key 
errors. 

For more information about the Put service, refer to the VMS Record 
Management Services Manual. 

8.2.3 Updating Records 
The Update service modifies an existing record in a file. Your program must 
first locate the appropriate record and optionally retrieve the record itself, by 
either calling the Find service or the Get service. As with the Put service, 
your program must provide a buffer within the data portion of the program 
to hold the record that is to be updated. 

The program must also supply the length of each record to be written when 
calling VMS RMS directly. This is a constant value when updating fixed-
length records but varies from record to record when updating variable-length 
records or VFC records. Note that some high-level VAX language compilers 
may automatically handle record buffer allocation and size specification or 
may supply a means to simplify its specification. 

Your program must establish the current-record position before it updates a 
record. If the file is shared, the service that establishes the record position 
should also lock the record. 

When you update indexed file records, take care not to alter the value of any 
key field that has been specified as unchangeable, for example, the primary 
key. To change the value of a record's primary key, you must replace the 
existing record with a new record having the desired primary key value. 
You can do this using the Put and Delete services respectively; or, where 
applicable, you may use the Put service with the update-if 
(RAB$L _ROP RAB$V_UIF) option. 

When updating records in an indexed file, a key of reference does not need to 
be specified. 

For more information about the Update service and record-processing options, 
refer to the VMS Record Management Services Manual. 

8-4 



Record Processing 
8.2 Primary VMS RMS Services 

8.2.4 Deleting Records 
The Delete service removes a record from the file. You cannot delete 
individual records from sequential files, but you can truncate sequential files 
using the Truncate service. As with the Update service, the Delete service 
must be preceded by a Find or Get service to establish the current-record 
position. 

When deleting records from an indexed file with alternate indexes, you can 
specify the fast-delete option to reduce the amount of time needed to delete 
a record. When you invoke the Delete service and specify the fast-delete 
option, VMS RMS does not attempt to remove any of the pointers from 
alternative indexes to the deleted record. 

You improve performance by postponing the processing needed to eliminate 
the pointers from alternative indexes to the record. However, there are 
disadvantages to using the fast-delete option. First, the unused pointers from 
the alternate indexes result in a corresponding waste of space. Second, if the 
program later tries to access the deleted record from an alternate index, VMS 
RMS must traverse the pointer linkage, find that the record no longer exists, 
and then perform the processing that was avoided originally with the Delete 
service. 

You should consider the fast-delete option only if the immediate improvement 
in performance is worth the added space and overhead. Typically, you 
consider the fast-delete option for indexed files that implement alternate keys 
and require frequent maintenance. 

Conversely, you should avoid the fast-delete option for most read-only 
indexed files and for indexed files that are infrequently updated. 

For more information about the Delete service, refer to the VMS Record 
Management Services Manual. 

8.3 Secondary VMS RMS Services 
This section provides very brief descriptions of the VMS RMS secondary 
services. Note that each of the services performs a specialized function with 
few options. 

Connect 

Disconnect 

Flush 

Free 

Next Volume 

Release 

Allows you to connect to a single record stream or to multiple 
record streams. 

Allows you to disconnect a record stream. This is done 
implicitly when a file is closed, but when using multiple record 
streams, you may want to disconnect one record stream but 
not others. 

Writes modified I/O buffers and file attribute information 
maintained in memory to the file. 

Releases all record locks established by the current record 
stream. 

Continues the next volume of a magnetic tape volume set. 
This service applies only to sequential files. 

Releases the record lock on the current record. 



Record Processing 
8.3 Secondary VMS RMS Services 

Rewind Positions the record stream context to the first record of the 
file 

Truncate 

Wait 

Truncates a file beginning with the current record, effectively 
deleting it and all remaining records. This service applies only 
to sequential files. 

Awaits the completion of an asynchronous record operation 
(or Connect service) . 

In addition to the record processing services, a variety of file-processing 
services is also available. For more information about both types of 
processing services and the options that apply to each, see the VMS Record 
Management Services Manual. 

8.4 Record Access for the Various File Organizations 
To retrieve or insert a file record for a particular record stream, your program 
must specify either sequential or random access. 

Sequential access can be used with all file organizations. For sequential files, 
sequential access implies that records are accessed according to their physical 
position in the file. For relative files, sequential access implies that records 
are accessed according to the ascending order of relative record numbers. In 
indexed files, sequential access implies that records are accessed according to 
a specified ordering of values for a particular key or keys. 

Random access is defined as one of the following: 

• Random access by key for indexed files implies that VMS RMS uses 
the specified key value (contained within the record itsel fl to locate the 
desired record. 

• Random access by relative record number for relative files and for 
sequential files having fixed-length records implies that the specified 
relative record number is used to locate the desired record. The relative 
record number does not necessarily reside in the record. 

• Random access by RFA implies that the specified RFA is used to locate 
the desired record. This access mode is supported for all three file 
organizations and is normally available only to programs written in VAX 
MACRO or similar low-level VAX languages. 

Record access is specified using language statements or by establishing the 
appropriate control block field values (not offset values) in the RAB. 

Note: No FDL attributes are provided for specifying record access. 

The appropriate RAB values in the access mode specification field, identified 
by the symbolic offset RAB$B_RAC, are listed below. 

• You specify sequential access by inserting the value RAB$C_SEQ in the 
RAB$B_RAC field. 

• You specify either random access by key or random access by relative 
record number by inserting the value RAB$C_KEY in the RAB$B_RAC 
field. This access mode is used to randomly access records in indexed files 
using a specified key value. It is also used to randomly access records by 
record number in relative files and in sequential files having fixed-length 
records. 

8-6 



Record Processing 
8.4 Record Access for the Various File Organizations 

• You specify random access by RFA for all file organizations by inserting 
the value RAB$C_RFA in the RAB$B_RAC field. 

Your program may also need to specify the key or other record identifier 
needed to access the records. For indexed files, there are additional key-
related options. 

The record access mode can be changed without reopening the file or 
reconnecting the record stream. For example, you can use random access 
by key to establish the current-record position in an indexed file and then 
retrieve records sequentially by a specified sort order. Note, however, that 
changing modes in this manner requires program access to the RAB$B_RAC 
control block field at run time. 

The record access mode, in conjunction with the file organization, is what 
determines the manner in which a record is selected. In the following 
sections, the sequential and random access modes are discussed in the context 
of the applicable file organizations. Random access by RFA is discussed 
separately because it applies to disk files, regardless of file organization. 

The following discussion of record-access modes is directed primarily toward 
services that insert records and services that retrieve records. For additional 
details about these services, see the VMS Record Management Services Manual. 

8.4.1 Processing Sequential Files 
A program can read sequential files on both tape and disk devices using the 
sequential record-access mode. If the file resides on disk, the random access 
by RFA mode can be used to read records; and if the file uses the fixed-
length record format, the random access by relative record number mode is 
permitted. 

You can add records only to the end of a sequential file. 

All record access modes permit you to establish a new current-record position 
in a sequential file using the Find service. With sequential access, the Find 
service permits you to skip over records. With either random access by 
relative record number or random access by RFA, the Find service establishes 
a starting point for sequential Get services. 

You cannot randomly delete records from a sequential file. However, you can 
randomly update records in a sequential file if the file is on disk and if the 
update does not change the record size. 

The following sections discuss the use of sequential and random access modes 
with sequential files. 



Record Processing 
8.4 Record Access for the Various File Organizations 

8.4.1.1 Sequential Access 
The sequential access mode is supported for sequential files on all devices. It 
is the only record access mode that is supported for nondisk devices, such as 
terminals, mailboxes, and magnetic tapes. 

With sequential access, VMS RMS returns records from sequential files in 
the order in which they were stored. When a program has retrieved all of 
the records from a sequential file, any further attempt to sequentially access 
records in the file causes VMS RMS to return an end-of-file (no more data) 
condition code. 

In sequential access mode, you can add records only to the end of a sequential 
file, that is, the file location immediately following the current-record position. 

8.4.1.2 Random Access 
You can use the relative record number to randomly retrieve and insert 
records in sequential files having fixed-length records. Records are numbered 
in ascending order, starting with number 1. 

In a sequential file, records are usually inserted at the end of the file. To 
insert records randomly within the current boundaries of the file at a relative 
record number less than or equal to the highest record number, set the 
update-if option (FDL attribute CONNECT UPDATE _IF; RAB$L _ROP bit 
RAB$V_UIF) to overwrite existing records. 

When accessing a sequential file randomly by relative record number, your 
program must provide the record number at symbolic offset RAB$L _KBF and 
must specify a key length of 4 at symbolic offset RAB$B_KSZ, in the RAB. 

8.4.2 Processing Relative Files 
The relative file organization permits greater program flexibility in performing 
record operations than the sequential organization. A program can read 
existing records from the file using sequential, random access by relative 
record number mode, or random access by RFA mode. You can write new 
records either sequentially or randomly, as long as the intended record 
location (cell) does not already contain a record. You can also delete records. 

All record access modes for relative files allow you to establish the current-
record position using the Find or Get service. After finding the record, VMS 
RMS permits you to delete the record from the relative file. After deleting 
the record, the empty cell becomes available for a new record. In addition, 
your program can update records anywhere in the file. For variable-length 
records, the Update service can modify the record length up to the maximum 
size specified when the file was created. 

When you insert a record into a relative file, the record is placed in a fixed 
cell within the file. A cell within a relative file can contain a record, can be 
vacant (never have contained a record), or can contain a deleted record. 

The following sections discuss the sequential and random access modes for 
relative files. 



Record Processing 
8.4 Record Access for the Various File Organizations 

8.4.2.1 Sequential Access 
For relative files, the sequential access mode can be used to retrieve successive 
records in ascending record number. Vacant cells and cells that contain 
deleted records are skipped over automatically. 

8.4.2.2 Random Access 
You can directly read a record within a relative file by specifying the 
appropriate relative record number. If you attempt to read from a nonexistent 
cell that is, a vacant cell or a cell containing a deleted record VMS RMS 
returns an error message. 

To position the record stream at a particular cell, regardless of whether or 
not it contains a record, use the nonexistent-record option (FDL attribute 
CONNECT NONEXISTENT_RECORD) or set the RAB$V_NXR bit in the 
RAB$L _ROP field. 

You can use two key record-processing options to directly access records in 
relative files: the equal-or-next key option and the next-key option. 

The equal-or-next-key option (FDL attribute CONNECT KEY_GREATER_ 
EQUAL) directs VMS RMS to return a record having a record number equal to 
or greater than the specified record number. For example, when you specify 
record number 48, VMS RMS returns record number 48. If VMS RMS does 
not find record number 48, it returns the first record it encounters having a 
number greater than 4 8. 

The next-key option (FDL attribute CONNECT KEY_GREATER_THAN) 
directs VMS RMS to return the record that has the next greater record 
number. For example, when you specify record number 48, VMS RMS 
returns record number 49, if record 49 exists. 

You can also use random access mode to insert records into relative files. You 
can even overwrite cells that contain records by selecting the update-if option 
(FDL attribute CONNECT UPDATE ~F) or by directly setting the 
RAB$V_UIF bit in the RAB$L _ROP field. 

To access a relative file randomly by record number, your program must 
specify the relative record number in the RAB at symbolic offset RAB$L _KBF 
and a key length value of 4 at symbolic offset RAB$B_KSZ. 

8.4.3 Processing Indexed Files 
Indexed files provide the most record-processing flexibility. Your program 
can read existing records from the file in sequential, random access by RFA, 
or random access by key modes. VMS RMS also allows you to write any 
number of new records into an indexed file if you do not violate a specified 
key characteristic, such as not allowing duplicate key values. 

In random access by key mode, you can direct VMS RMS to use one of the 
key options in conjunction with one of four match options. 

There are two key options: 

• The equal-or-next-key option (FDL attribute CONNECT KEY_ 
GREATER_EQUAL) returns a record with a key value that equals 
the specified key value. If VMS RMS cannot find a record with the 
specified key value, it returns a record with a key value that meets the 
requirements of the specified sort order. 

8-9 



Record Processing 
8.4 Record Access for the Various File Organizations 

For example, assume an indexed file has four records having keys G, K, 
R and V, respectively. If the program wants to retrieve a record with key 
M and has specified ascending sort order, VMS RMS returns the record 
with key value R. Conversely, with descending sort order specified in this 
situation, VMS RMS returns the record with key value K. 

• The next-key option (FDL attribute CONNECT KEY_GREATER_THAN) 
returns a record having a key value that is not equal to the specified 
specified key value but meets the requirements of the specified sort order. 

For example, assume an indexed file has five records having keys G, K, 
M, R and V, respectively. If the program specifies the next-key option 
with key value M and ascending sort order, VMS RMS returns the record 
with key value R. Conversely, with descending sort order specified in this 
situation, VMS RMS returns the record with key value K. In both cases, 
VMS RMS does not return the record with key value M. 

You can use the Find service (similar to the Get service), in sequential 
access mode, random access by RFA mode, or random access by key access 
mode. When finding records in random access by key access mode, your 
program can specify any one of the four types of key matches (exact, generic, 
approximate, generic/approximate) described in Sections 2.1.1.2 and 8.4.3.2. 

In addition to reading, writing, and finding a record, your program can delete 
or update any record in an indexed file if the operation does not violate 
specified key characteristics. For example, if the program specifies that key 
values cannot be changed, any update that attempts to change a key value is 
rejected. 

The next section describes how indexed files are used with the sequential and 
random access by key modes. 

8.4.3.1 Sequential Access 
You can use sequential record access mode to retrieve successive records 
in an indexed file. VMS RMS retrieves the records in successive order by 
the specified sort order for a key of reference. The key of reference (for 
example, primary key, first alternate key, second alternate key, and so forth) 
is established through one of the following services: 

• The Connect service 

• The Rewind service 

• The Find service or the Get service using random access (Note that a Get 
or Put service specifying random access by RFA always establishes the 
key of reference as the primary key.) 

When the sequential access mode is used with the Put service to insert records 
into an indexed file, successive records must be in the specified sort order by 
primary key. 

8-10 



Record Processing 
8.4 Record Access for the Various File Organizations 

8.4.3.2 Random Access 
One of the most useful features of indexed files is that you can randomly 
retrieve records by the record's key value. A key value and a key of reference 
(such as a primary key, first alternate key, and so forth) can be specified as 
input to the record-processing service. VMS RMS searches the specified index 
to locate the record with the specified key value. 

When reading records in random access by key mode, your program may 
specify one of four types of key matches: 

• Exact key match 

• Approximate key match 

• Generic key match 

• Approximate and generic key match 

Exact match requires that the record's key value precisely match the key value 
specified by the program's Get service. 

Approximate key match allows the program to select one of the following 
options: 

• Equal-or-next-key option 

• Next-key option 

The advantage of using an approximate key match is that your program can 
retrieve a record without knowing its precise key value. VMS RMS uses 
the approximations in your program to return the record with the key value 
nearest the specified value. 

If you elect to use a generic key match, your program need provide only 
a specified number of leading characters in the key, for example, the first 
5 bytes (characters) of a 10-byte string data-type key. VMS RMS uses this 
information to return the first record with a key value that begins with these 
characters and meets the specified sorting order requirement. This is useful 
when attempting to locate a record when only part of the key is known or 
for applications in which a series of records must be retrieved when only 
the initial portions of their key values are identical. Generic key match is 
available for string keys only. 

For example, if the program specifies the next-key option with a generic 
match on the three characters RAM using ascending sort order, VMS RMS 
returns records with key values RAMA, RAMBO and RAMP in that order. 
A record with key value RAM is not returned. If descending sort order is 
specified, VMS RMS returns records with key values RAMP, RAMBO and 
RAMA in that order. 

When a generic key match is used with various approximate key match 
options, the results can vary, as shown in the following example. Consider 
using a key value of ABB to access records having key values of ABA, ABB 
and ABC, respectively. 

• If the program elects to use the equal-or-next-key option with ascending 
sort order and a 3-character generic match, VMS RMS returns the record 
containing the key ABB. 

• If the program uses the next-key option with ascending sort order and a 
3-character generic match, VMS RMS returns the record with key value 
ABC. 

8-11 



Record Processing 
8.4 Record Access for the Various File Organizations 

• If the program uses the equal-or-next-key option with ascending sort 
order and a 2-character generic match, VMS RMS returns the record with 
key value ABA. 

Now observe the effects of varying the key search option and the length of 
the generic string. 

• If the program elects to use the equal-or-next-key option with ascending 
sort order and a 2-character generic match (AB), VMS RMS returns the 
record containing the key ABA. 

• If the program uses the next-key option with descending sort order and a 
3-character generic match, VMS RMS again returns the record with key 
value ABA. 

• If the program uses the next-key option with descending sort order and 
a 2-character generic match (AB), VMS RMS returns arecord-not-found 
condition because none of the records has a key that begins with the 
letters AA. 

Now consider an example of how to return all the records in a file with key 
values that match the generic string AB. 

1 Specify the generic string value of AB (2-byte key) in random access by 
key mode. 

2 Use the Get service (or the Find services) to access the first record. 

3 Change the record access mode to sequential. 

4 Access the next record. 

5 Compare the first two characters of the returned record's key with the 
first two characters of the specified key. 

6 If the two key values are the same, process the record and return to step 
4. If the two keys differ, do not process the record; instead, proceed to 
the next task (may require changing back to random access by key). 

This procedure can be used to return all records that match a specified 
duplicate key for a key that allows duplicates. An alternative to checking the 
characters is to specify an ending key value and set the key-limit option when 
the record access mode is changed to sequential. 

When accessing an indexed file randomly by key, the key value must reside 
in the area of memory identified by the control block offset RAB$L _KBF. 
When using string keys, you should specify the key length in the location 
identified by control block offset RAB$B_KSZ. 

8.4.4 Access by Record File Address (RFA) 
Random access by RFA is supported for all disk files. Whenever VMS RMS 
successfully accesses a record, an internal representation of the record's 
location is returned in the 6-byte RAB field RAB$W~FA. When a program 
wants to retrieve the record using random access by RFA, VMS RMS uses this 
internal data to retrieve the record. 



Record Processing 
8.4 Record Access for the Various File Organizations 

One way to use RFA access is to establish a record position for later sequential 
accesses. Consider a sequential file with variable-length records that can only 
be accessed randomly using RFA access. Assume the file consists of a list of 
transactions, sorted previously by account value. Because each account may 
have multiple transactions, each account value may have multiple records for 
it in the file. Instead of reading the entire file until it finds the first record 
for the desired account number, it uses a previously saved RFA value and 
random access by RFA to set the current-record position using a Find service 
at the first record of the desired account number. It can then switch to 
sequential record access and read all successive records for that account, until 
the account number changes or the end of the file is reached. Figure 8-1 
shows how the file is accessed for account C. 

Figure 8-1 Using RFA Access to Establish Record Position 

User Program 
VMS RMS 

Read first record in 
account C by RFA, 
switch access mode to 
sequential, read 
remaining C records. 

A A A A B B B C C C C 

ZK-753-82 

8.5 Block Input/Output 
Block input/output (I/O) lets you bypass the VMS RMS record-processing 
capabilities entirely. In this manner, your program can process a file as a 
virtually contiguous set of blocks. 

Block I/O operations provide an intermediate step between VMS RMS 
operations and direct use of the Queue I/O Request system service. Using 
block I/O gives your program full control of the data in the individual blocks 
of a file while being able to take advantage of the VMS RMS capabilities for 
opening, closing, and extending a file. 

In block I/O, a program reads or writes one or more blocks by specifying 
a starting virtual block number in the file and the length of the transfer. 
Regardless of the organization of the file, VMS RMS accesses the identified 
block or blocks. 

Because VMS RMS files contain internal information meaningful only to VMS 
RMS itself, DIGITAL does not recommend that you modify an existing file 
using block I/O if the file is also to be accessed by VMS RMS record-level 
operations. (Block I/O does not update any internal record information.) 
The block I/O facility, however, does allow you to create your own file 
organizations. This file structure must be maintained through specialized 



Record Processing 
8.5 Block Input/Output 

user-written programs and procedures; VMS RMS cannot access these 
structures with its record access modes. 

For more information about using block I/O, see the VMS Record Management 
Services Manual. 

8.6 Current Record Context 
For each RAB connected to a FAB, VMS RMS maintains current context 
information about the record stream including the current-record position and 
the next-record position. Furthermore, the current context is different for the 
various VMS RMS services as shown in Table 8-2. 

The current record context is internal to VMS RMS; you have no direct 
contact with it. However, you should know the context for each service in 
order to properly access records when you invoke a service. 

Table 8-2 Record Access Stream Context 

Service Access Mode Current Next 

Connect N/A None First record 

Connect with RAB$L _ROP N/A None End of file 
RAB$V_EOF bit set 

Get, when last service Sequential Old next New current 
was not a Find record record+1 

Get, when last service Sequential Unchanged Current 
was a Find record+1 

Get Random New New current 
record+ 1 

Put, sequential file Sequential None End of file 

Put, relative file Sequential None Next record 
position 

Put, indexed file Sequential None Undefined 

Put Random None Unchanged 

Find Sequential Old next New current 
record record+1 

Find Random New Unchanged 

Update N/A None Unchanged 

Delete N/A None Unchanged 

Truncate N/A None End of file 

Rewind N/A Unchanged First record 

Free N/A None Unchanged 

Release N/A None Unchanged 

Notes to Table 8-2: 

1 Except for the Truncate service, VMS RMS establishes the current-record 
position before establishing the next-record position. 

~.J 

~.J 



. Record Processing 
8.6 Current Record Context 

2 The notation "+1" indicates the next sequential record as determined by 
the file organization. For indexed files, the current key of reference is part 
of this determination. 

3 The Connect service on an indexed file establishes the next record to 
be the first record in the index represented by the RAB key of reference 
(RAB$B_KRF) field. 

4 The Connect service leaves the next record as the end of file for a 
magnetic tape file opened for Put services (unless the FAB$V_NEF 
option in the FAB$L _FOP is set). 

8.6.1 Current-Record Position 
For the Update, Delete, Release, and Truncate services, the current-record 
position reflects the location of the target record. The current-record position 
also facilitates sequential processing on disk devices for a stream. 

The following list describes situations where the current-record position is 
undefined: 

• When a RAB is first connected to a FAB 

• When a record operation is unsuccessful 

• Following the successful execution of a VMS RMS service other than a 
Get service or Find service. 

When the current-record position is undefined, VMS RMS rejects the Update, 
Delete, Release, or Truncate services. 

A Get service using sequential record access mode and immediately preceded 
by the Find service operates on the record specified by the current-record 
position. If the Find service does not lock the record (for relative and indexed 
files) and the current record is deleted, the Get service accesses the record at 
the next-record position. 

Following successful execution of the Get service or the Find service, the 
current-record position is set to the target record's RFA. VMS RMS also places 
the target record's address in the RFA field of the related RAB. The results are 
as follows: 

• After initialization, the current-record position reflects the RFA of the 
record that was the object of the most recent successful Get service or 
Find service (unless a failure occurs on a different VMS RMS service). 

• Unless it is modified, the RAB$W_RFA field always contains the address 
of the target current record. (If the operation fails, the RFA is undefined.) 

Table 8-2 summarizes the effect that each successful record operation has on 
the context of the current record. 



Record Processing 
8.6 Current Record Context 

8.6.2 Next-Record Position 
VMS RMS uses the next-record position for doing sequential record access. 
For sequential record processing, the next-record position is the location of 
the target record for the next Find service (Get service where appropriate) or 
Put service. In a relative file, the target record is the record that occupies the 
next non-vacant cell. 

The ability to look ahead significantly decreases access time for sequential 
processing. VMS RMS uses its internal knowledge of file organization and 
structures to determine the next-record position for each record service. 

The Connect service initializes the next-record position to one of the following 
locations: 

• The first record in a sequential file, or the first cell in a relative file. 

• The first record in the collated sequence of the specified key of reference 
in an indexed file 

• The end of a file on disk, if the RAB$L _ROP field RAB$V_EOF option is 
set 

• The end of awrite-accessed ANSI magnetic tape file, unless the 
FAB$V_NEF option is set in the FAB$L _FOP field 

In any record access mode, the Get service establishes the next-record position 
as either the next record or the next record cell in the file. This is also true for 
the Find service in sequential access mode. 

The Truncate service establishes the end of the file at the current-record 
position (effectively deleting the record at that location and all records 
following it) so you need only use Put services to extend the file. Note that 
you can only truncate sequential files. 

In random access mode, the Find (or Get) service and the Put service do 
not affect the next-record position, unless these services are used to add a 
record with a primary key value or a record number that lies between the 
corresponding values of the current record and the next record. When this 
occurs, the current-record position is changed to reflect the location of the 
added record; that is, records are added after the current record, not before the 
next record. 

In sequential access mode, the Put service initializes the next-record position 
to the end of the file in a sequential file. In a relative file, the Put service 
initializes the next-record position to the next record or record cell. For 
sequential accesses to an indexed file, the Put service does not define the 
next-record position. 

Regardless of access mode, the Delete, Update, Free, and Release services 
have no effect on the next-record position. For sequential and relative files, 
the Rewind service establishes the next-record position as the first record or 
record cell in the file, regardless of the access mode. For indexed files, the 
Rewind service always establishes the next-record position as the location of 
the first record for the current key of reference. 

Any unsuccessful record operation has no effect on the next record. 



Record Processing 
8.7 Synchronous and Asynchronous Operations 

8.7 Synchronous and Asynchronous Operations 
Your program can handle record operations on a file in one of two ways: 
synchronously or asynchronously. When operating synchronously, the 
program issuing the record-operation request regains control only when 
the request is completely satisfied. Most high-level languages support 
synchronous operation only. In asynchronous operations, the program 
can regain control before the request is completely satisfied. You can 
specify record operations and file operations to be either synchronous or 
asynchronous for each record stream. 

For instance, when reading a record from a file synchronously, the program 
regains control only after the record is passed to the program. In other 
words, the program waits until the record returns; no other processing for 
this program takes place during this read-and-return cycle. On the other 
hand, when reading a record asynchronously, the program might be able to 
regain control before the record is passed to the program. The program can 
thus use the time normally required for the record transfer between the file 
and memory to perform some other computations. Another record operation 
cannot be started on the same stream until the previous record operation is 
complete. However, record operations on other streams can be initiated. 

Whether the program regains control before the record operation finishes 
depends on several factors. For example, the required record may already 
reside in the I/O buffer, or the operating system may schedule another 
process, thus possibly allowing a necessary I/O operation to be completed 
before the original program is rescheduled. 

One factor to consider in the use of asynchronous record operations is that 
you must include a separate completion routine or a VMS RMS wait request 
in the issuing program. This routine (or wait request) is required to determine 
when the record operation is completed because the results of the operation 
are not available, and the next record operation for that stream cannot be 
initiated until the previous operation is concluded. 

8.7.1 Using Synchronous Operations 
To declare a synchronous operation, you must clear the RAB$V_ASY option 
in the RAB$L _ROP field. Normally, you do not have to clear this option 
because it is already cleared (by default). However, if the RAB$V—ASY option 
had been set previously, then you must explicitly clear it. 

Normally, you do not use success and error routines with synchronous 
operations. Instead, you test the completion status code for an error and 
change the flow of the program accordingly. However, if you use these 
routines, they are executed as asynchronous system traps (ASTs) before the 
VMS RMS service returns to your program (unless ASTs are disabled). 

User-mode AST routines may be executed before the completion of a 
synchronous record operation (see the VMS Record Management Services 
Manual). If an AST routine attempts to perform operations on a record stream 
that is being called from anon-AST level, it must be prepared to handle 
stream-activity errors (RMS$_RSA or RMS$_BUSY). 



Record Processing 
8.7 Synchronous and Asynchronous Operations 

8.7.2 Using Asynchronous Operations 
To declare an asynchronous record operation, you must set the asynchronous 
(RAB$V—ASY) option in the RAB$L_ROP field. You can switch between 
synchronous and asynchronous operations during processing of a record 
stream by setting or clearing the RAB$V~SY option on aper-operation 
basis. 

You can specify completion routines to be executed as ASTs if success or error 
conditions occur. Within such routines, you can issue additional operations, 
but they should also be asynchronous. If they are not, all other asynchronous 
requests currently active in your program cannot have their completion 
routines executed until the synchronous operation completes. 

If an asynchronous operation is not completed at the time of return from a 
call to a VMS RMS service, the completion status field of the RAB is 0, and a 
success status code of RMS$_PENDING is returned in Register 0. This status 
code indicates that the operation was initiated but is not yet complete. 

Note: Never modify the contents of a VMS RMS control block when an 
operation is in progress because the results are unpredictable. 

If you issue a second record operation request for the same stream before a 
previous request is completed, you receive an RMS$_RSA or RMS$_BUSY 
error status code, indicating that the record stream is still active. This can 
also occur when an AST-level routine attempts to use an active record stream; 
the original I/O request may be synchronous or asynchronous. An additional 
error (RMS$_BUSY) can be encountered by attempting an operation using the 
same record stream (RAB) from an error or success routine, when the main 
program is awaiting completion of the initial operation. In all cases, it is your 
responsibility to recognize this possibility and prevent the problem. Most 
problems can be prevented by using a Wait service. When the Wait service 
concludes, it returns control to your program. 

Note that the Connect operation may be performed asynchronously. If the 
RAB$V_ASY option is set, a Wait service should follow the Connect service to 
synchronize with the completion of the Connect service. Another technique 
is to use the Connect service synchronously and set the RAB$V~4SY option 
at run time, after the Connect service. 



9 Run-Time Options 

This chapter describes the way you specify run-time options and it 
summarizes the run-time options available to you when opening files, 
connecting record streams, processing records, and closing files. The run-
time options that apply to record processing and to opening and closing a file 
can usually be preset by file-open and record stream connection values. Some 
options can be selected after you open a file and connect a record stream. 

Note that run-time options discussed in previous sections are only 
summarized in this chapter. Most of the material in this chapter relates 
to options not previously described in this document. 

9.1 Specifying Run-Time Options 
This section describes the way you use the FDL Editor to specify run-time 
options that are available to your program through the FDL$PARSE and 
FDL$RELEASE routines. It also describes the use of language statements and 
VMS RMS to specify control block values. 

You select VMS RMS options by setting appropriate values in VMS RMS 
control blocks within the data portion of your program. In many cases, 
you can select these values by using keywords available to you in the VAX 
language OPEN statement for your application, or by taking suitable default 
values. The values may be selected using keywords in your record and file 
description statements or they may be selected directly within the OPEN 
statement. 

If your application is written in a VAX language that does not provide 
keywords for the various features, you can usually select the options using 
the File Definition Language (FDL). 

Predefined FDL attributes can be supplied to your program at run time using 
the FDL$PARSE routine. This routine also returns the address of the record 
access block (RAB) to Iet your program subsequently change RAB values. 
Some RAB options are not available in FDL and can be set only by directly 
accessing RAB fields and subfields at run time. To invoke options after 
record stream connection, your program must have direct access to VMS RMS 
control block fields using the address of the RAB and symbolic offsets into it. 

9.1.1 Using the FDL Editor 
You can use the FDL Editor to specify run-time attributes, such as adding 
a CONNECT attribute that is used to set a control block value when the 
FDL$PARSE and FDL$RELEASE routines are called by your program. These 
attributes preset the values available for opening a file and connecting a 
record stream. The following illustration is an original FDL file created with 
the FDL Editor: 



Run-Time Options 
9.1 Specifying Run-Time Options 

IDENT "19-JUL-1984 14:57:37 VAX-11 FDL Editor" 

SYSTEM 
SOURCE VMS 

FILE 
ORGANIZATION indexed 

RECORD 
CARRIAGE_CONTROL carriage_return 
FORMAT variable 
SIZE 0 

AREA 0 
ALLOCATION 8283 
BEST_TRY_CONTIGUOUS yes 
BUCKET_SIZE 18 
EXTENSION 2070 

AREA 1 
ALLOCATION 18 
BEST_TRY_CONTIGUOUS yes 
BUCKET_SIZE 18 
EXTENSION 18 

KEY 0 
CHANGES no 
DATA_AREA 0 
DATA_FILL 100 
DATA_KEY_COMPRESSION yes 
DATA_RECORD_COMPRESSION yes 
DUPLICATES no 
INDEX_AREA 1 
INDEX_COMPRESSION yes 
INDEX_FILL 100 
LEVELI_INDEX_AREA 1 
PROLOG 3 
SEGO_LENGTH 9 
SEGO_POSITION 0 
TYPE string 

Because the FDL Editor does not include run-time attributes, you must add 
them to the FDL definition. You can specify run-time attributes by specifying 
the ACCESS, CONNECT and SHARING attributes. For example, if you want 
to add the CONNECT secondary attribute LOCK_ON_WRITE, you use the 
EDIT/FDL ADD command. This is illustrated in Example 9-1. 



Run-Time Options 
9.1 Specifying Run-Time Options 

Example 9-1 Specifying Run-Time Attributes 

VAX-li FDL Editor 

Add 
Delete 
Exit 
Help 

to insert one or more lines into the FDL definition 
to remove one or more lines from the FDL definition 
to leave the FDL Editor after creating the FDL file 
to obtain information about the FDL Editor 

0 Invoke to initiate a script of related questions 
Modif y to change existing line (s) in the FDL definition 
Quit to abort the FDL Editor with no FDL file creation 
Set to specify FDL Editor characteristics 
View to display the current FDL Definition 

© Main Editor Function (Keyword) [Help] ADD 

Legal Primary Attributes 

ACCESS attributes set the run-time access mode of the file 
AREA x attributes define the characteristics of file area x 
CONNECT attributes set various VMS RMS run-time options 
DATE attributes set the data parameters of the file 
FILE attributes affect the entire VMS RMS data file 

© JOURNAL attributes set the journaling parameters of the file 
KEY y attributes define the characteristics of key y 
RECORD attributes set the non-key aspects of each record 
SHARING attributes set the run-time sharing mode of the file 
SYSTEM attributes document operating system-specific items 
TITLE is the header line for the FDL file 

0 Enter Desired Primary (Keyword)[FILE] CONNECT 

Legal CONNECT Secondary Attributes 

ASYNCHRONOUS 
BLOCK_IO 
BUCKET_CODE 
CONTEXT 
END_OF_FILE 
FAST_DELETE 
FILL BUCKETS 
KEY_GREATER_EQUAL 

© KEY_GREATER_THAN 
KEY_LIMIT 
KEY_OF_REFERENCE 
LOCATE_MODE 
LOCK_ON_READ 
LOCK_ON_WRITE 
MANUAL_UNLOCKING 
MULTIBLOCK_COUNT 
MULTIBUFFER_COUNT 

yes/no 
yes/no 
number 
number 
yes/no 
yes/no 
yes/no 
yes/no 
yes/no 
yes/no 
number 
yes/no 
yes/no 
yes/no 
yes/no 
number 
number 

NOLOCK 
NONEXISTENT_RECORD 
READ_AHEAD 
READ_REGARDLESS 
TIMEOUT_ENABLE 
TIMEOUT_PERIOD 
TRUNCATE_ON_PUT 
TT_CANCEL_CONTROL_0 
TT_PROMPT 
TT_PURGE_TYPE_AHEAD 
TT_READ_NOECHO 
TT_READ_NOFILTER 
TT_UPCASE_INPUT 
UPDATE_IF 
WAIT_FOR_RECORD 
WRITE_BEHIND 

yes/no 
yes/no 
yes/no 
yes/no 
yes/no 
number 
yes/no 
yes/no 
yes/no 
yes/no 
yes/no 
yes/no 
yes/no 
yes/no 
yes/no 
yes/no 

Example 9-1 Cont'd. on next page 



Run-Time Options 
9.1 Specifying Run-Time Options 

Example 9-1 (Cont.) Specifying Run-Time Attributes 

O Enter CONNECT Attribute (Keyword)[-] LOCK_ON_WRITE 

O CONNECT 
LOCK_ON_WRITE 

Enter value for this Secondary (Yes/No) [-] YES 

Resulting Primary Section 

O CONNECT 
LOCK_ON_WRITE yes 

m Press RETURN to continue ("Z for Main Menu) 

O This menu is the Main Editor Function menu. It displays the EDIT/FDL 
commands you can use. 

© The ADD command displays the Legal Primary Attributes menu. 

© The Legal Primary Attributes menu shows the primary attributes. You 
can either add a new primary attribute or add a secondary attribute to 
an existing primary attribute. Initially, the FILE primary attribute is the 
default. 

O The selection of the CONNECT primary attribute displays the Legal 
CONNECT Secondary Attributes. You could similarly select the ACCESS, 
FILE, or SHARING options instead of the CONNECT primary attribute to 
display the Legal Secondary Attributes for the selected primary attribute. 

© This menu shows all the CONNECT secondary attributes you can add to 
your FDL file. 

O Select the proper CONNECT secondary attribute (in this case, 
LOCK_ON_WRITE). 

O EDIT/FDL verifies that you have selected the secondary attribute. 

= Enter the value that you want the secondary attribute to have (for 
instance, yes). 

O EDIT/FDL verifies the value for the secondary attribute you have chosen. 

m Return to the main menu. If you choose to add another secondary 
attribute, you will notice that CONNECT is now the default. 

The FDL file containing the CONNECT primary attribute with the WRITE _ 
BEHIND secondary attribute is shown in the following example: 

IDENT "19-JUL-1984 14:57:37 VAX-11 FDL Editor" 

SYSTEM 

FILE 

SOURCE VMS 

ORGANIZATION indexed 

RECORD 
CARRIAGE_CONTROL carriage_return 
FORMAT variable 
SIZE 0 



Run-Time Options 
9.1 Specifying Run-Time Options 

CONNECT 
WRITE_BEHIND yes 

AREA 0 
ALLOCATION 8283 
BEST_TRY_CONTIGUOUS yes 
BUCKET_SIZE 18 
EXTENSION 2070 

AREA 1 
ALLOCATION 18 
BEST_TRY_CONTIGUOUS yes 
BUCKET_SIZE 18 
EXTENSION 18 

KEY 0 
CHANGES no 
DATA_AREA 0 
DATA_FILL 100 
DATA_KEY_COMPRESSION yes 
DATA_RECORD_COMPRESSION yes 
DUPLICATES no 
INDEX_AREA 1 
INDEX_COMPRESSION yes 
INDEX_FILL 100 
LEVELI_INDEX_AREA 1 
PROLOG 3 
SEGO_LENGTH 9 
SEGO_POSITION 0 
TYPE string 

9.1.2 Using Language Statements and VMS RMS 
Language statements such as OPEN may contain keywords, clauses, or other 
modifiers that correspond to the run-time attributes that are appropriate for 
opening files, connecting record streams, processing records, and closing 
files. Some languages use system-defined procedures in place of keywords 
and clauses. Some languages allow you to call auser-supplied routine 
(USEROPEN or USERACTION) to set control block values before opening 
the file. For example, a user routine could be coded in VAX MACRO to 
take advantage of control block store macros (for an example of a VAX 
BASIC USEROPEN routine, see the Example 5-2). Consult the corresponding 
language documentation for additional information. 

With VAX MACRO, VMS RMS control block macros allow you to establish 
control block values at assembly time and at run time using the same control 
block. (The assembly-time macros are placed in a data section of the program; 
the run-time macros are placed in a code section of the program.) Using VAX 
MACRO, control blocks are allocated within the program space at assembly 
time, and it may not be necessary to use the run-time macros because the 
program can move values to the control block fields using the VAX instruction 
set. Other languages, however, may not allocate the control blocks within 
program storage. 

If your program has access to the starting location of the control block (a 
record access block, for instance), the VAX MACRO assembly-time control 
block macro or the corresponding symbol definition (DEF) macro provides 
your program with certain symbolic offsets (symbols) that can be used 
to locate and identify the various fields in the control block. Some VAX 
languages provide a means of making these symbols available to your 
program. 

9-5 



Run-Time Options 
9.1 Specifying Run-Time Options 

For additional information about using the control block macros and control 
block fields, refer to the VMS Record Management Services Manual. 

9.2 Options Related to Opening and Closing Files 
Before your program can access the records in a file, it must open the file and 
connect a record stream. When it finishes processing records and no longer 
requires access to that file, your program should close the file. 

The options available for opening files, connecting record streams, and closing 
files include file access and file sharing options, file specification options, 
performance options, record access options, and options for: 

• Adding records 

• Acting on the file after it is closed (file disposition) 

• Using indexed files 

• Using magnetic tapes 

• Performing nonstandard record processing 

• Maintaining data reliability 

9.2.1 File Access and Sharing Options 
As described in Chapter 7, the program must declare the desired file-access 
and file-sharing values before opening an existing file or creating a new file 
and must specify record-locking and buffering strategies when the file is 
opened. These options are summarized in the following chart. 

Option Description 

File access 

File sharing 

Specifies the record operations that the current process 
performs: reading records, locating records, deleting 
records, adding new records, updating records, accessing 
blocks, and truncating the file. (For additional information, 
see Section 7.1.) You specify the file access values 
using the FDL ACCESS primary attribute or the VMS RMS 
FAB$B_FAC field. 

Specifies the types of record operations that the current 
process allows other file accessors to perform: reading 
records, locating records, deleting records, adding new 
records, and updating records. You can also use file 
sharing to enable the current process to use multiple record 
streams (or ensure aread-only global buffer cache), operate 
on the file without record interlocking, or disallow all other 
accessors from accessing the file. You specify file sharing 
values using the SHARING primary attribute or the VMS 
RMS FAB$B_SHR field. 



Run-Time Options 
9.2 Options Related to Opening and Closing Files 

Option Description 

Record locking Allows you to provide record locking for a shared file 
under user control. By default, VMS RMS automatically 
locks records, depending on the file access and file 
sharing values specified. (For additional information, see 
Section 7.2.) You specify the record locking values using 
the CONNECT primary attribute or using the VMS RMS 
record-processing options (RAB$L _ROP) field ~ . 

~ Indicates an option that can be specified for each record-processing operation. For more 
information, see Section 9.3. 

9.2.2 File Specifications 
As described in Chapters 4 and 6, the program should specify the specification 
for the file being opened (or created) and can also specify default file 
specifications. The file specifications are summarized in the following table: 

File Specification Description 

Primary 

Default 

Related 

Specifies the file specification to be used to locate the 
desired file(s). If any components of a file specification 
are omitted, VMS RMS applies defaults but you should 
specify the primary file specification. 

FDL: FILE NAME 
VMS RMS: FAB$L _FNA and FAB$B_FNS 

Specifies the default file specification to be used to fill 
any missing components not provided by the primary 
file specification. After applying these defaults, if any 
components are still missing, additional defaults are 
applied. 
FDL: FILE DEFAULT_NAME 
VMS RMS: FAB$L _DNA and FAB$B_DNS 

Specifies a related file specification that is used to 
provide additional defaults when a related file is 
used. If the device or directory components are 
missing, VMS RMS provides default values from the 
process-default device (SYS$DISK) and the current 
process-default directory. 
FDL: None. 
VMS RMS: FAB$L _NAM and NAM$L _RLF 

9.2.3 File Performance Options 
A number of run-time options that open files and connect record streams 
can collectively improve application performance. Such options include the 
buffering options discussed in Chapter 7. 

Two run-time performance options not discussed previously are particularly 
important when adding records to a file: extension size and window size. 



Run-Time Options 
9.2 Options Related to Opening and Closing Files 

9.2.3.1 Extension Size 
If you intend to add records to the file, specify a reasonable default extension 
size to reduce the number of times the file is extended. 

Use the Edit/FDL Utility to calculate the correct extension size. EDIT/FDL 
uses your responses to assign an optimum value for the FDL attribute FILE 
EXTENSION. With multiple area files, EDIT/FDL assigns optimum values to 
the AREA EXTENSION attributes. 

If you do not specify an extension size, VMS RMS computes the size; 
however, this size may not be optimum. 

If you decide to create an FDL file for defining an indexed file without using 
EDIT/FDL, you can approximate the value of the EXTENSION attributes. 
You do this by multiplying number of records per bucket by the number of 
records that you intend to add to the file during a given period of time. 

To see the current default extension size, use the DCL command SHOW 
RMS_DEFAULT. To set the default buffer count, use the DCL command SET 
RMS_DEFAULT/EXTEND_QUANTITY=n, where n is the number of blocks 
per extension. The corresponding VMS RMS field is FAB$B_DEQ. 

9.2.3.2 Window Size 
If the file is extended repeatedly, the extensions may be scattered on the disk. 
Each extension is called an extent a pointer to each extent resides in the 
file header. For retrieval purposes, the pointers are gathered together in a 
structure called a window. The default window size is 7 pointers, but you can 
establish the window size to contain as many as 127 pointers. You can also 
set the window size to -1, which makes a window that is just large enough 
to map the entire file. 

When you access an extent whose pointer is not in the current window, the 
system has to read the file header and fetch the appropriate window. This is 
called a window turn, and it requires an I/O operation. 

Window size is a run-time option. Many high-level languages include a 
clause that sets window size when a file is opened. You can set the window 
size (FAB$B_RTV field) at run time with a VAX MACRO subroutine or with 
the FDL attribute FILE WINDOW_SIZE. 

You can increase the default window size for a specific disk volume by using 
the DCL commands MOUNT and INITIALIZE. However, using additional 
window pointers increases system overhead. The window size is charged to 
your buffered I/O byte count quota, and indiscriminate use of large windows 
may result in exceeding the buffered I/O byte count quota or may exhaust 
the system's nonpaged dynamic memory. 

You can use the Backup Utility (BACKUP) to avoid having too many extents. 
When you restore a file, BACKUP tries to write the file in one section of the 
disk. Although BACKUP does not necessarily create a contiguous copy of the 
file, it does reduce the number of extents. If you are regularly backing up 
the file, the number of extents is probably reasonable. For more information 
about BACKUP, see the VMS Backup Utility Manual. 

Where disk space is available, you can reduce the number of extents by 
creating a new, contiguous version of the file using either the Convert Utility 
(CONVERT) or the DCL command COPY/CONTIGUOUS. If neither of these 
conditions apply, a larger window size is the only option to use. For file 
maintenance information, see Chapter 10. 



Run-Time Options 
9.2 Options Related to Opening and Closing Files 

9.2.3.3 Summary of Performance Options 
The following list summarizes the run-time open and connect options that 
may affect performance. 

Option Description 

Asynchronous record Specifies that record I/O for this record stream is 
processing' done asynchronously. See Section 8.7. 

FDL: CONNECT ASYNCHRONOUS 
VMS RMS: RAB$L _ROP RAB$V_ASY 

Deferred-write' Allows records to be accumulated in a buffer and 
written only when the buffer is needed or when 
the file is closed. For use by all except non-shared 
sequential files. See Chapter 3. 
FDL: FILE DEFERRED_WRITE 
VMS RMS: FAB$L _FOP FAB$V_DFW 

Default extension Specifies the number of blocks to be allocated to a 
quantity file when more space is needed. 

FDL: FILE EXTENSION 
VMS RMS: FAB$W_DEQ 

Fast delete' Postpones certain internal operations associated 
with deleting indexed file records until the record is 
accessed again. This allows records to be deleted 
rapidly but may affect the performance of subsequent 
accessors reading the file. 
FDL: CONNECT FAST_DELETE 
VMS RMS: RAB$L _ROP RAB$V_FDL 

Global buffer Specifies whether global buffers are used and the 
count number to be used if the record stream is the first to 

connect to the file. See Section 7.3. 
FDL: CONNECT GLOBAL_BUFFER_COUNT 
VMS RMS: FAB$W_GBC 

Locate mode' Allows .the use of locate mode, not move mode, 
when reading records. See Section 7.3. 
FDL: CONNECT LOCATE_MODE 
VMS RMS: RAB$L _ROP RAB$V_LOC 

Multiblock count Allows multiple blocks to be transferred into memory 
during a single I/O operation (for sequential files only). 
See Chapter 3 and Section 7.3. 
FDL: CONNECT MULTIBLOCK_COUNT 
VMS RMS: RAB$B_MBC 

Number of buffers Enables the use of multiple buffers for the buffer 
cache when used with indexed and relative files; 
when used with sequential files, enables the use of 
multiple buffers for the read-ahead and write-behind 
options. See Section 7.3. 
FDL: CONNECT MULTIBUFFER_COUNT 
VMS RMS: RAB$B_MBF 

~ Indicates an option that can be specified for each record-processing operation. For more 
information, see Section 9.3. 



Run-Time Options 
9.2 Options Related to Opening and Closing Files 

Option Description 

Read-ahead ~ 

Retrieval window 
size 

Sequential access 
only 

Write-behind' 

Alternates buffer use between two buffers when 
reading sequential files. See Chapter 2. 
FDL: CONNECT READ_AHEAD 
VMS RMS: RAB$L _ROP RAB$V_RAH 

Specifies the number of entries in memory for 
retrieval windows, which corresponds to the number 
of extents for a file. 
FDL: FILE WINDOW_SIZE 
VMS RMS: FAB$B_RTV 

Indicates that a sequential file may only be accessed 
sequentially. 
FDL: FILE SEQUENTIAL_ONLY 
VMS RMS: FAB$L _FOP FAB$V_SQO 

Alternates buffer use between two buffers when 
writing to sequential files See Chapter 2. 
FDL: CONNECT WRITE_BEHIND 
VMS RMS: RAB$L _ROP RAB$V_WBH 

~ Indicates an option that can be specified for each record-processing operation. For more 
information, see Section 9.3. 

9.2.4 Record Access Options 
You can specify the record access for a record stream as sequential, random 
by key or record number, or random by RFA. (See Section 8.1.) The selected 
record access can be changed for each record processing operation. These 
options can be set using the VMS RMS RAB$B_RAC field, values 
RAB$C_SEQ, RAB$C_KEY, and RAB$C_RFA. 

9.2.5 Options for Adding Records 
When adding records to a file, consider the open and connection options in 
the following list: 

Option Description 

Default extension See Section 9.2.3 
quantity ~ 

Deferred-write ~ See Section 9.2.3 

End-of-file After the record stream is connected, the record 
context is positioned to the end of the file. 
FDL: CONNECT END_OF_FILE 
VMS RMS: RAB$L _ROP RAB$V_EOF 

Retrieval window See Section 9.2.3 
size 

~ Indicates an option that can be specified for each record-processing operation. For more 
information, see Section 9.3. 



Run-Time Options 
9.2 Options Related to Opening and Closing Files 

Option Description 

Revision data 

Truncate on Put' 

The revision date and time and the revision number 
can be specified to be a value other than the actual 
revision date and time and revision number when the 
file is closed. These options must be set while the file 
is open and thus cannot be set using FDL. 
FDL: Does not apply. 
VMS RMS: Revision Date and Time XAB 

When using sequential record access for sequential 
files only, the record to be written is the last record in 
the file, and VMS RMS truncates the file just beyond 
that record. 
FDL: CONNECT TRUNCATE _ON _PUT 
VMS RMS: RAB$L _ROP RAB$V_TPT 

Update-if' If you set this option and your program tries to replace 
an existing record while adding records randomly to 
a file, VAX RMS modifies the existing record instead 
of replacing it. When using this option for indexed 
files, note that the file must not allow duplicates for the 
primary key. Use this option carefully with a shared file 
(see Section 8.1) . 
FDL: CONNECT UPDATE_IF 
VMS RMS: RAB$L _ROP RAB$V_UIF 

Write-behind' See Section 9.2.3 

~ Indicates an option that can be specified for each record-processing operation. For more 
information, see Section 9.3. 

9.2.6 Options for Data Reliability 
The following table lists the run-time file open options that apply to data 
reliability. 

Option Description 

Read-check 

Write-check 

Specifies that transfers from disk volumes are to be checked 
by aread-compare operation, which effectively doubles the 
amount of disk I/O performed. This option is not available for 
all devices (see the VMS Record Management Services 
Manuan . 
FDL: FILE READ_CHECK 
VMS RMS: FAB$L _FOP FAB$V_RCK 

Specifies that transfers to disk volumes are to be checked 
by aread-compare operation, which effectively doubles the 
amount of disk I/O performed. This option is not available for 
all devices (see the VMS Record Management Services 
Manual) . 
FDL: FILE WRITE_CHECK 
VMS RMS: FAB$L_FOP FAB$V_WCK 



Run-Time Options 
9.2 Options Related to Opening and Closing Files 

9.2.7 Options for File Disposition 
The run-time file open options that apply to file disposition are listed in the 
following table. These options can only be selected while the file is open. 

Option Description 

Delete on close Deletes the file when it is closed. 
FDL: CONNECT DELETE_ON_CLOSE 
VMS RMS: FAB$L _FOP FAB$V_DLT 

Submit command file 

Spool on close 

Submits a sequential file as a batch command 
procedure to SYS$BATCH when you close the 
file. 
FDL: FILE SUBMIT_ON_CLOSE 
VMS RMS: FAB$L _FOP FAB$V_SCF 

Prints a sequential file on SYS$PRINT you close the 
file. 
FDL: FILE PRINT_ON_CLOSE 
VMS RMS: FAB$L _FOP FAB$V_SPL 

9.2.8 Options for Indexed Files 
The following table lists the run-time options that apply to indexed file 
processing For more information about processing indexed 61es, refer to 
Section 8.4.3. 

Option Description 

Fast delete' 

Key equal or next' 

This option lets you postpone certain internal 
operations associated with deleting indexed fife 
records until the record is next accessed. This allows 
records to be deleted rapidly, but it may degrade the 
performance of processes that read the file later. 

FDL: CONNECT FAST_DELETE 
VMS RMS: RAB$L _ROP RAB$V_FDL 

If you select this option when locating or reading 
records, VMS RMS returns the first record with a key 
value equal to the specified key. If VMS RMS does 
not find a record with an equal key value, it returns 
the record with the next higher key value when 
ascending sort order is specified. When descending 
sort order is specified, VMS RMS returns the next 
record with the next lower key value. 
FDL: CONNECT KEY GREATER_EQUAL 
VMS RMS: RAB$L_ROP RAB$V_EQNXT 

~ Indicates an option that can be specified for each record-processing operation. For more 
information, see Section 9.3. 



Run-Time Options 
9.2 Options Related to Opening and Closing Files 

Option Description 

Next key' 

Key of reference 

Key buffer' 

Key size' 

Limit key' 

Load buckets' 

If you select this option when locating or reading 
records, VMS RMS returns the record with the next 
higher key value when you specify ascending sort 
order. When you specify descending sort order, VAX 
RMS returns the next record with the next lower key 
value. If you do not specify either this option or the 
equal-or-next-key option, VMS RMS tries for a key 
match. 
FDL: CONNECT KEY_GREATER_THAN 
VMS RMS: RAB$L _ROP RAB$V_NXT 

When you process an indexed file with multiple keys, 
this option permits you specify which key to use for 
the current record stream. 
FDL: CONNECT KEY_OF_REFERENCE 
VMS RMS: RAB$B_KRF 

If you select this option when locating or reading 
records randomly, the specified key buffer must 
contain the selected record's key. 
FDL: None. 
VMS RMS: RAB$L_KBF 

If you select this option when locating or reading 
records with a string key type, you can specify 
that only a portion of the key be used to locate the 
selected record. 
FDL: None. 
VMS RMS: RAB$B_KSZ 

This option directs VMS RMS, when locating or 
reading records sequentially, to return an alternate 
success status if the record key exceeds the specified 
key 

FDL: CONNECT KEY_LIMIT 
VMS RMS: RAB$L _ROP RAB$V_LIM 

If you select this option when adding records to an 
index file, VMS RMS uses the fill factor specified 
when the file was created. By default, VMS RMS fills 
buckets completely. 
FDL: CONNECT FILL _BUCKETS 
VMS RMS: RAB$L _ROP RAB$V_LOA 

~ Indicates an option that can be specified for each record-processing operation. For more 
information, see Section 9.3. 

9.2.9 Options for Magnetic Tape Processing 
The run-time file open and close options that apply to magnetic tape 
processing are listed in the following table: 



Run-Time Options 
9.2 Options Related to Opening and Closing Files 

Option Description 

Not end-of-file 

Current position 

Rewind on Open 

Rewind on Close 

Use this option when you want to add a record to a 
location other than at the end of the file. 
FDL: FILE MT_NOT_EOF 
VMS RMS: FAB$L _FOP FAB$V_NEF 

If you select this option when creating a file, the tape 
is positioned to the location immediately following the 
most recently closed file. 
FDL: FILE MT_CURRENT_POSITION 
VMS RMS: FAB$L _FOP FAB$V_POS 

If you select this option, the VMS RMS directs that the 
tape volume be rewound before it opens or creates 
the file. The rewind-on-open option overrides the 
current-position option. 
FDL: FILE MT_OPEN_REWIND 
VMS RMS: FAB$L _FOP FAB$V_RWO 

If you select this option, VMS RMS directs that the tape 
volume be rewound before it closes the file. 
FDL: FILE MT_CLOSE_REWIND 
VMS RMS: FAB$L _FOP FAB$V_RWC 

9.2.10 Options for Nonstandard File Processing 
The following table lists the run-time file open options that apply to 
nonstandard file processing. 

Option Description 

Non-file-structured 

User file open 

Use this option when you want to process data 
from volumes created on non-DIGITAL systems. 
FDL: FILE NON_FILE_STRUCTURED 
VMS RMS: FAB$L _FOP FAB$V_NFS 

Use this option if you want to use VMS RMS only to 
open the file and you intend to access the contents 
of the file using Queue I/O Request system service 
calls. The system returns the I/O channel number in 
the FAB$L_STV field. 
FDL: FILE USER_FILE_OPEN 
VMS RMS: FAB$L_FOP FAB$V_UFO 

9.3 Summary of Record Operation Options 
This section briefly describes the options associated with the record retrieval 
services (Find and Get), the record insertion service (Put), the record 
modification service (Update), and the record deletion service (Delete}. 



Run-Time Options 
9.3 Summary of Record Operation Options 

9.3.1 Record Retrieval Options 

The Find and Get services (or the equivalent VAX language statements) can 
be used to locate and retrieve a record. 

The options associated with the Find and Get services are summarized in 
the following table. These options can be set for each Find or Get service if 
the program can access the appropriate RAB control block fields. The RAB 
control block fields are preset by connect-time values or defaults and as a 
result of previous VMS RMS service calls. 

Option Description 

Asynchronous record 
processing 

Do not lock record 

Key buffer 

Key equal or next 

Next key 

Key of reference 

Key size 

Specifies that record I/O for this record stream is 
done asynchronously. 
FDL: CONNECT ASYNCHRONOUS 
VMS RMS: RAB$L _ROP RAB$V_ASY 

Directs VMS RMS not to lock the record for 
ensuing operations. 
FDL: CONNECT NOLOCK 
VMS RMS: RAB$L_ROP RAB$V_NLK 

When locating/reading records randomly, the 
specified key buffer must contain the desired 
record's key. 
FDL: None. 
VMS RMS: RAB$L _KBF 

When locating or reading records, VMS RMS 
returns the first record with a key value equal 
to the specified key. If VMS RMS does not find 
a record with an equal key value, it returns the 
record with the next higher key value when you 
specify ascending sort order. When you specify 
descending sort order, VMS RMS returns the 
record with the next lower key value. 
FDL: CONNECT KEY_GREATER_EQUAL 
VMS RMS: RAB$L _ROP RAB$V_EQNXT 

When locating or reading records, VMS RMS 
returns the record with the next higher key value 
when you specify ascending sort order. When you 
specify descending sort order, VMS RMS returns 
the record with the next lower key value. 
FDL: CONNECT KEY_GREATER_THAN 
VMS RMS: RAB$L_ROP RAB$V_NXT 

For indexed files with multiple keys, the key of 
reference specifies which key is used for current 
record stream. 
FDL: CONNECT KEY_OF_REFERENCE 
VMS RMS: RAB$B_KRF 

When using a string key to locate or read records, 
you can specify that all or part of the key be used. 
FDL: None. 
VMS RMS: RAB$B_KSZ 



Run-Time Options 
9.3 Summary of Record Operation Options 

Option Description 

Limit key 

Locate mode 

Lock nonexistent 
record 

Lock for read 

Lock for write 

Manual locking 

Read ahead 

Read regardless 

Record access 

This option directs VMS RMS, when locating or 
reading records sequentially, to return an alternate 
success status if the record key exceeds the 
specified key. 
FDL: CONNECT KEY_LIMIT 
VMS RMS: RAB$L _ROP RAB$V_LIM 

Specifies the locate mode, instead of the move 
mode. Applies to the Get service only. 

FDL: CONNECT LOCATE_MODE 
VMS RMS: RAB$L _ROP RAB$V_LOC 

Indicates that VMS RMS is to lock the record 
position at the location of the following record 
operation, regardless of whether a record exists at 
that location. Applies only to relative files. 

FDL: CONNECT NONEXISTENT_ 
RECORD 

VMS RMS: RAB$L_ROP RAB$V_NXR 

Locks record for reading and allow other readers 
(but no writers). 
FDL: CONNECT LOCK_ON_READ 
VMS RMS: RAB$L _ROP RAB$V_REA 

Locks record for writing and allows other readers 
(but no writers). 
FDL: CONNECT LOCK_ON_WRITE 
VMS RMS: RAB$L _ROP RAB$V_RLK 

Allows you to control record locking and unlocking 
manually. 
FDL: CONNECT MANUAL _LOCKING 
VMS RMS: RAB$L _ROP RAB$V_ULK 

Improves performance at the expense of additional 
memory for I/O buffers. For sequential access to 
sequential files only. 

FDL: CONNECT READ_AHEAD 
VMS RMS: RAB$L _ROP RAB$V_RAH 

Reads the specified record regardless of whether it 
is locked by another user. 
FDL: CONNECT READ_REGARDLESS 
VMS RMS: RAB$L _ROP RAB$V_RRL 

Specifies the way records are accessed, 
sequentially, randomly by key (indexed files), 
by record number (relative files), or randomly by 
RFA. 
FDL: None. 

VMS RMS: RAB$B_RAC values 
RAB$C_SEQ, RAB$C_KEY, 
RAB$C_RFA 



Run-Time Options 
9.3 Summary of Record Operation Options 

Option Description 

RFA 

Record header buffer 

Timeout period 

User buffer address 

User buffer size 

Wait if locked 

Specifies the address of the desired record when 
records are accessed randomly by RFA ~RAB$B_ 
RAC contains RAB$C_RFA). This value is also 
returned by Find and Get services regardless of the 
type record access used. 
FDL: None. 
VMS RMS: RAB$W_RFA 

Contains the symbolic address of the record 
header buffer that contains the fixed portion of a 
VFC record. Applies to the Get service only. 
FDL: None. 
VMS RMS: RAB$L _RHB 

If the wait-if-locked option is specified, this option 
may be specified to specify a timeout period after 
which an error is returned. The number of seconds 
is specified by the CONNECT TIMEOUT_PERIOD 
or RAB$B_TMO field to eliminate a potential 
deadlock. 
FDL: CONNECT TIMEOUT_PERIOD 

VMS RMS: RAB$L _ROP RAB$V_TMO and 
RAB$B_TMO 

Specifies the address of the user buffer that 
receives the record. Applies to the Get service 
only. 
FDL: None. 
VMS RMS: RAB$L _UBF 

Specifies the maximum length of the user record 
buffer. Applies to the Get service only. 
FDL: None. 
VMS RMS: RAB$L _USZ 

Specifies that if the record is locked, VMS RMS 
must wait until it is available; also allows use of 
the wait-timeout-period option. 
FDL: CONNECT WAIT_FOR_RECORD 
VMS RMS: RAB$L_ROP RAB$V_WAT 

9.3.2 Put Service Options 
The Put service (or equivalent VAX language statement) adds a record to the 
file. 

The options associated with the Put service are summarized in the following 
table. These options can be set for each Put service if the program can access 
the appropriate RAB control block fields. The RAB control block fields are 



Run-Time Options 
9.3 Summary of Record Operation Options 

preset by connect-time values or defaults and as a result of previous VMS 
RMS service calls. 

Option Description 

Asynchronous record Specifies that record I/O for this record stream is 
processing done asynchronously. 

FDL: CONNECT ASYNCHRONOUS 
VMS RMS: RAB$L _ROP RAB$V_ASY 

Key buffer When adding records randomly to a relative file, 
the specified key buffer must contain the desired 
record's relative record number. 
FDL: None. 
VMS RMS: RAB$L _KBF 

Key size When adding records to a relative file using 
random record access, this field must specify a 
value of 4 (the default value provided by VMS 
RMS). 
FDL: None. 
VMS RMS: RAB$B_KSZ 

Load buckets When adding records, the buckets fill to the level 
specified when the file is created. The default is 
that buckets fill completely before a bucket split 
occurs. 
FDL: CONNECT FILL _BUCKETS 
VMS RMS: RAB$L _ROP RAB$V_LOA 

Read allowed Allows the locked record being written to be read. 
FDL: CONNECT LOCK_ON_WRITE 
VMS RMS: RAB$L _ROP RAB$V_RLK 

Record access Specifies the way records are added, sequentially 
according to ascending key value or relative record 
number, randomly by key (indexed files) or by 
record number (relative files), or randomly by RFA. 

FDL: None. 

VMS RMS: RAB$B_RAC values 
RAB$C_SEQ, RAB$C_KEY, 
RAB$C_RFA 

Record header buffer Contains the symbolic address of the record 
header buffer that contains the fixed portion of a 
VFC record. Applies to the Get service only. 
FDL: None. 
VMS RMS: RAB$L _RHB 

Record buffer Specifies the address of the record buffer that 
address contains the record to be written. 

FDL: None. 
VMS RMS: RAB$L _RBF 

Record buffer size Specifies the size of the record contained in the 
record buffer to be written. 
FDL: None. 
VMS RMS: RAB$L _RBZ 



Run-Time Options 
9.3 Summary of Record Operation Options 

Option Description 

Timeout period 

Truncate on Put 

Update-if 

Write-behind 

This option is used with the wait-if-locked option 
to specify a timeout period after which an error is 
returned. The number of seconds is specified by 
the CONNECT TIMEOUT_PERIOD or the RAB$B_ 
TMO field to eliminate a potential deadlock. 
FDL: CONNECT TIMEOUT_PERIOD 

VMS RMS: RAB$L _ROP RAB$V_TMO and 
RAB$B_TMO 

Specifies that the file is truncated at the record 
being added. Requires sequential record access 
and only applies to sequential files. 
FDL: CONNECT TRUNCATE _ON _PUT 
VMS RMS: RAB$L _ROP RAB$V_TPT 

Turns the Put service into an update operation if 
the record already exists in the file. Care must be 
taken when using this option with shared files and 
automatic record locking (see Section 8.1). When 
using this option with indexed files, note that the 
file must not allow duplicates for the primary key. 
This option can only be used when random record 
access has been specified. 
FDL: CONNECT UPDATE_IF 
VMS RMS: RAB$L _ROP RAB$V_UIF 

Improves performance at the expense of additional 
memory for I/O buffers. Requires sequential record 
access and only applies to sequential files. 
FDL: CONNECT WRITE_BEHIND 
VMS RMS: RAB$L _ROP RAB$V_WBH 

9.3.3 Record Update Options 
The Update service (or equivalent VAX language statement) modifies an 
existing record in a file. Your program must first locate the appropriate record 
position and optionally retrieve the record itself by calling the Find or Get 
service (or equivalent VAX language statement). 

The options associated with the Update service are summarized in the 
following table. These options can be set for each Update service if the 
program can access the appropriate RAB control block fields. The RAB 
control block fields are preset by connect-time values or defaults and as a 
result of previous VMS RMS service calls. 

Option Description 

Asynchronous record 
processing 

Specifies that record I/O for this record stream is 
done asynchronously. 
FDL: CONNECT ASYNCHRONOUS 
VMS RMS: RAB$L _ROP RAB$V_ASY 



Run-Time Options 
9.3 Summary of Record Operation Options 

Option Description 

Record header buffer 

Record buffer 
address 

Record buffer size 

Contains the symbolic address of the record 
header buffer that contains the fixed portion of a 
VFC record. Applies to the Get service only. 
FDL: None. 
VMS RMS: RAB$L _RHB 

Specifies the address of the record buffer that 
contains the record to be written. 
FDL: None. 
VMS RMS: RAB$L _RBF 

Specifies the size of the records contained in the 
record buffer to be written. 
FDL: None. 
VMS RMS: RAB$W_RSZ 

9.3.4 Record Deletion Options 
The Delete service (or equivalent VAX language statement) removes a record 
from the file. You cannot use this service for sequential files; however, a 
sequential file can be truncated using the Truncate service. Like the Update 
service, the Delete service must be preceded by a Find or Get service to 
establish the current record position. 

The options associated with the Delete service are summarized in the 
following table. These options can be set for each Delete service if the 
program can access the appropriate RAB control block fields. The RAB 
control block fields are preset by connect-time values or defaults and as a 
result of previous VMS RMS service calls. 

Option Description 

Asynchronous record 
processing 

Fast delete 

Specifies that record I/O for 
FDL: CONNECT ASYNCHRONOUS 
VMS RMS: RAB$L _ROP RAB$V_ASY 

Specifies that the record to be deleted is flagged 
as deleted, but parts of any alternate index key 
path are not completely erased until a subsequent 
access using the alternate key occurs. This makes 
deleting the record occur more quickly, but it 
requires additional access time for a subsequent 
Find or Get service. 
FDL: CONNECT FAST_DELETE 
VMS RMS: RAB$L _ROP RAB$V_FDL 

9.4 Run-Time Example 
Example 9-2 shows how to invoke the FDL$PARSE and FDL$RELEASE 
routines to use the predefined control block values set by an EDIT/FDL 
editing session. 



Run-Time Options 
9.4 Run-Time Example 

Example 9-2 Using the FDL$PARSE and FDL$RELEASE Routines 

This program calls the FDL utility routines FDL$PARSE and 
FDL$RELEASE. First, FDL$PARSE parses the FDL specification 
PART.FDL. Then the data file named in PART.FDL is accessed 
using the primary key. Last, the control blocks allocated 
by FDL$PARSE are released by FDL$RELEASE. 

.TITLE FDLEXAM 

.PSECT DATA,WRT,NOEXE 

MY_FAB: 
MY_RAB: 
FDL_FILE: 
REC_SIZE=80 
LF=10 
REC_RESULT: 

REC_BUFFER: 
HEADING: 

.LONG 0 

.LONG 0 

.ASCID /PART.FDL/ 

.LONG REC_SIZE 

.ADDRESS REC_BUFFER 

.BLKB REC_SIZE 

.ASCID /ID PART SUPPLIER 

.PSECT CODE 

Declare the external routines 

.EXTRN 

.ENTRY 

KEYO: 

FDL$PARSE, -
FDL$RELEASE 

FDLEXAM,~M<> 
PUSHAL MY_RAB 
PUSHAL MY_FAB 
PUSHAL FDL_FILE 
CALLS #3,G"FDL$PARSE 
BLBS RO,KEYO 
BRW ERROR 

MOVL MY_FAB,R10 
MOVL MY_RAB,R9 
MOVL #REC_SIZE,RAB$W_USZ(R9) 
MOVAB REC_BUFFER,RAB$L_UBF(R9) 
$OPEN FAB=(R10) Open the file 
BLBC RO,F_ERROR 
$CONNECT RAB=(R9) ; 
BLBC RO,R_ERROR 
PUSHAQ HEADING Display the heading 
CALLS #1,G~LIB$PUT_OUTPUT 
BLBC RO,ERROR 
BRB GET_REC Skip error handling 

Declare FDL file 

COLOR / LF 

Set up entry mask 
Get set up for call with 
addresses to receive the 
FAB and RAB allocated by 
FDL$PARSE 
Branch on success 
Signal error 

Move address of FAB to R10 
Move address of RAB to R9 

Connect to the RAB 

Example 9-2 Cont'd. on next page 



Run-Time Options 
9.4 Run-Time Example 

Example 9-2 (Copt.) Using the FDL$PARSE and FDL$RELEASE Routines 

F._ERROR 
R_ERROR: 

GET_REC: 

CLEAN: 

FAB ERROR: 

ERROR: 

RAB ERROR: 

RMS ERR: 

FINI: 

BRW FAB_ERROR 
BRW RAB_ERROR 

$GET 
CMPL 
BEQLU 
BLBC 
MOVZWL 
PUSHAL 
CALLS 
BLBC 
BRB 

$CLOSE 
BLBC 
PUSHAL 
PUSHAL 
CALLS 
BLBC 
BRB 

RAB=(R9) Get a record 
#RMS$_EOF , RO If not end of file , 
CLEAN continue 
RO,R_ERROR 
RAB$W_RSZ(R9),REC_RESULT 
REC_RESULT 
#1,G~LIB$PUT_OUTPUT 
RO,ERROR 
GET_REC ; 

FAB=(R10) 
RO,FAB_ERROR 
MY_RAB 
MY_FAB 
#2,G"FDL$RELEASE 
RO,ERROR 
FINI 

PUSHL FAB$L_STV(R10) 
PUSHL FAB$L_STS(R10) 
BRB RMS_ERR 

PUSHL RO 
CALLS #1,G~LIB$SIGNAL 
$CLOSE FAB=(R10) 
BRW FINI 

PUSHL RAB$L_STV(R9) 
PUSHL RAB$L_STS(R9) 

CALLS #2,G~LIB$SIGNAL 

RET 
.END FDLEXAM 

Move a record into 
the buffer 
Display the record 

Get another record 

Close the FAB 

Push RAB address on stack 
Push FAB address on stack 
Release the control blocks 

Successful completion 

Signal file error 

Signal error 

End program 

Signal record error 



Q Maintaining Files 

Designing and creating your files and defining their records are only the first 
steps in the life cycle of your file. You must also consider maintaining the 
file. 

This chapter describes file maintenance with the emphasis on file tuning. 

Section 10.1 describes how you can use the Analyze/RMS_File Utility to 
view the characteristics of a file. Section 10.2 describes how you can create 
an FDL file from a data file using the Analyze/RMS_File Utility. Section 10.3 
explains how to use the Edit/FDL Utility, particularly with Analyze/RMS_ 
File, to optimize and redesign file characteristics. Section 10.4 describes how 
to make a file contiguous. Section 10.5 explains how to reorganize a file, and 
Section 10.6 describes how to make archive copies of a file. 

10.1 Viewing File Characteristics 
The Analyze/RMS_File Utility (ANALYZE/RMS~'ILE) allows you to inspect 
and analyze the internal structure of a VMS RMS file. 

ANALYZE/RMS—FILE can check a file's structure for errors and can generate 
a statistical or summary report. A summary report is identical to a statistical 
report except that no checking is done. For more information on producing a 
summary report, see the description of the Analyze/RMS_File Utility in the 
VMS Analyze/RMS~'ile Utility Manual. 

You can also inspect and analyze your file using the Analyze/RMS_File 
Utility interactively. The analysis can show whether or not the file is properly 
designed for its application and can point out ways to improve the file design. 

In addition, you can use ANALYZE/RMS~ILE to FDL files from data files. 
You can then use these FDL files with the Create/FDL Utility (CREATE/FDL), 
the Convert Utility (CONVERT), and the Edit/FDL Utility, (EDIT/FDL). FDL 
files created with ANALYZE/RMS~ILE contain special analysis sections for 
each area and key, which are called ANALYSIS_OF~,REA and ANALYSIS_ 
OF_KEY. The Edit/FDL Utility uses these sections in the Optimize script to 
tune the file's structure. 

10.1.1 Performing an Error Check 
To check a file's structure for errors, use the following command syntax: 

ANALYZE/RMS_FILE/CHECK filespec 

By default with a command of this format, the Check report is displayed on 
the terminal (SYS$OUTPUT). 

If you receive any error messages, the file has been corrupted by a serious 
error. If you have had a hardware problem such as a power failure or a disk 
head failure, then the hardware probably caused the corruption. If you have 
not had any hardware problems, then a software error may have caused the 

10-1 



Maintaining Files 
10.1 Viewing File Characteristics 

corruption. Note that the /CHECK qualifier does not find all types of file 
corruption, however. 

In either case, you can try using the Convert Utility to fix the problem 
by using the file specification as both the input-filespec and the output-
filespec. This operation will reorganize the file; if it does not work, use the 
Backup Utility (BACKUP) to bring in the backup copy of the file. For more 
information on both CONVERT and BACKUP, see Sections 10.4.2, 10.5, and 
10.6. 

Note: If you believe that the software caused the error, submit a Software 
Performance Report (SPR). Always include the ANALYZE/RMS~ILE 
check report, a copy of the data ale, and a description of what was done 
with the data file. If possible, also supply aversion of the hle prior to 
the corruption and the program or procedure which led to the corruption; 
being able to reproduce the problem is of tremendous value. 

Example 10-1 is a sample Check report of a file with the file specification 
DISK$:[HERBERJCUSTDATA.DAT;2. 

Example 10-1 Using ANALYZE/RMS_FILE to Create a Check Report 

Check RMS File Integrity 14-JUN-1985 21:51:47.38 Page 1 
DISK$: [HERBER]CUSTDATA.DAT;2 

FILE HEADER 

File Spec: DISK$: [HERBER]CUSTDATA.DAT;2 
File ID: (10044,39,1) 
Owner UIC: [011,310] 
Protection: System: RWED, Owner: RWED, Group: RWE, World: RWE 
Creation Date: 9-JUN-1985 22:30:24.78 
Revision Date: 9-JUN-1985 22:30:30.86, Number: 4 
Expiration Date: none specified 
Backup Date: none posted 
Contiguity Options: none 
Performance Options : none 
Reliability Options: none 
Journaling Enabled: none 

RMS FILE ATTRIBUTES 

File Organization: indexed 
Record Format: variable 
Record Attributes: carriage-return 
Maximum Record Size: 80 
Blocks Allocated: 30, Default Extend Size: 2 
Bucket Size: 1 
Global Buffer Count: 0 

FIXED PROLOG 

Number of Areas: 8, VBN of First Descriptor: 3 
Prolog Version: 3 

AREA DESCRIPTOR #0 (VBN 3, off set %X'0000') 

Example 10-1 Cont'd. on next page 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-1 (Cont.) Using ANALYZE/RMS_FILE to Create a Check Report 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 1, Blocks: 9, Used: 4, Next: 5 
Default Extend Quantity: 2 
Total Allocation: 9 

AREA DESCRIPTOR #1 (VBN 3, off set %X'0040') 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 10, Blocks: 3, Used: 1, Next: li 
Default Extend Quantity: 1 
Total Allocation: 3 

AREA DESCRIPTOR #2 (VBN 3, off set %X'0080') 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 13, Blocks: 3, Used: 1, Next: 14 
Default Extend Quantity: 1 
Total Allocation: 3 

AREA DESCRIPTOR #3 (VBN 3, off set %X'OOCO') 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 16, Blocks: 3, Used: 1, Next: 17 
Default Extend Quantity: 1 
Total Allocation: 3 

AREA DESCRIPTOR #4 (VBN 3, off set %X'0100') 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 19, Blocks: 3, Used: 1, Next: 20 
Default Extend Quantity : 1 
Total Allocation: 3 

AREA DESCRIPTOR #5 (VBN 3, off set %X'0140') 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 22, Blocks: 3, Used: 1, Next: 23 
Def ault Extend Quantity : 1 
Total Allocation: 3 

AREA DESCRIPTOR #6 (VBN 3, off set %X'0180') 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 25, Blocks: 3, Used: 1, Next: 26 
Default Extend Quantity : 1 
Total Allocation: 3 

AREA DESCRIPTOR #7 (VBN 3, off set %X'O1C0') 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 28, Blocks: 3, Used: 1, Next: 29 
Default Extend Quantity : 1 
Total Allocation: 3 

Example 10-1 Cont'd. on next page 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-1 (Cont.) Using ANALYZE/RMS_FILE to Create a Check Report 

KEY DESCRIPTOR #0 (VBN 1, off set %X'0000') 

Next Key Descriptor VBN: 2, Off set: %X'0000' 
Index Area: 1, Level 1 Index Area: 1, Data Area: 0 
Root Level: 1 
Index Bucket Size: 1, Data Bucket Size: 1 
Root VBN: 10 
Key Flags: 

(0) KEY$V_DUPKEYS 0 
(3) KEY$V_IDX_COMPR 0 
(4) KEY$V_INITIDX 0 
(6) KEY$V_KEY_COMPR 0 
(7) KEY$V_REC_COMPR 1 

Key Segments: 1 
Key Size: 4 
Minimum Record Size: 4 
Index Fill Quantity: 512, Data Fill Quantity: 512 
Segment Positions: 0 
Segment Sizes: 4 
Data Type: string 
Name: "PART_NUM" 
First Data Bucket VBN: 4 

KEY DESCRIPTOR #1 (VBN 2, off set %X'0000') 

Next Key Descriptor VBN: 2, Off set: %X'0066' 
Index Area: 3, Level 1 Index Area: 3, Data Area: 2 
Root Level: 1 
Index Bucket Size: 1, Data Bucket Size: 1 
Root VBN: 16 
Key Flags: 

(0) KEY$V_DUPKEYS 1 
(1) KEY$V_CHGKEYS 0 
(2) KEY$V_NULKEYS 0 
(3) KEY$V_IDX_COMPR 0 
(4) KEY$V_INITIDX 0 
(6) KEY$V_KEY_COMPR 0 

Key Segments: 1 
Key Size: 5 
Minimum Record Size: 9 
Index Fill Quantity: 512, Data Fill Quantity: 512 
Segment Positions: 4 
Segment Sizes: 5 
Data Type: string 
Name: "PART_NAME" 
First Data Bucket VBN: 13 

Example 10-1 Cont'd. on next page 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-1 (Copt.) Using ANALYZE/RMS_FILE to Create a Check Report 

KEY DESCRIPTOR #2 (VBN 2 , offset %X' 0066' ) 

Next Key Descriptor VBN: 2, Off set: %X'OOCC' 
Index Area: 5, Level 1 Index Area: 5, Data Area: 4 

Root Level: 1 
Index Bucket Size: 1, Data Bucket Size: 1 

Root VBN: 22 
Key Flags: 

(0) KEY$V_DUPKEYS 1 
(1) KEY$V_CHGKEYS 0 
(2) KEY$V_NULKEYS 0 
(3) KEY$V_IDX_COMPR 1 
(4) KEY$V_INITIDX 0 
(6) KEY$V_KEY_COMPR 1 

Key Segments: 1 
Key Size: 10 
Minimum Record Size: 19 
Index Fill Quantity: 512, Data Fill Quantity: 512 
Segment Positions: 9 
Segment Sizes: 10 
Data Type: string 
Name: "SUPPLIER_NAME" 
First Data Bucket VBN: 19 

KEY DESCRIPTOR #3 (VBN 2 , offset %X' OOCC' ) 

Index Area: 7, Level 1 Index Area: 7, Data Area: 6 

Root Level: 1 
Index Bucket Size: 1, Data Bucket Size: 1 
Root VBN: 28 
Key Flags: 

(0) KEY$V_DUPKEYS 1 
(1) KEY$V_CHGKEYS 0 
(2) KEY$V_NULKEYS 0 
(3) KEY$V_IDX_COMPR 1 
(4) KEY$V_INITIDX 0 
(6) KEY$V_KEY_COMPR 1 

Key Segments: 1 
Key Size: 10 
Minimum Record Size: 29 
Index Fill Quantity: 512, Data Fill Quantity: 512 

Segment Positions: 19 
Segment Sizes: 10 
Data Type: string 
Name: "COLOR" 
First Data Bucket VBN: 25 

The analysis uncovered NO errors. 

ANALYZE/RMS_FILE/OUTPUT=CUSTDATA.ANL CUSTDATA.DAT 

To place the Check report in a file, use a command of the form 

ANALYZE/RMS_FILE/CHECK/OUTPUT=output-filespec input-filespec 

The Check report will be placed in the file you named with the output-
filespec parameter. This file will receive the file type ANL by default. For 
example, the following command will perform an error check on PRLG2.IDX 
and place the Check report in the file ERROR.ANL: 

$ ANALYZE/RMS_FILE/CHECK/OUTPUT=ERROR PRLG2.IDX 

10-5 



Maintaining Files 
10.1 Viewing File Characteristics 

10.1.2 Generating a Statistics Report 
For indexed files, the Statistics report consists of the Check report plus 
additional information about the areas and keys in the file. (A Statistics 
report on a sequential or relative file is thus the same as a Check report.) 

To generate a Statistics report with ANALYZE/RMS_FILE, enter a DCL 
command of the form 

ANALYZE/RMS_FILE/STATISTICS filespec 

Example 10-2 is an example of a Statistics report. 

Example 10-2 Using ANALYZE/RMS_FILE to Create a Statistics Report 

RMS File Statistics 18-APR-1985 11:22:27.14 Page 1 
DISK$: [TEST.PROGRAM]INDEX.DAT;1 

FILE HEADER 

File Spec: DISK$: [TEST.PROGRAM]INDEX.DAT;1 
File ID: (15960,8,0) 
Owner UIC: [011,310] 
Protection: System: RWED, Owner: RWED, Group: RWED, World: RWE 
Creation Date: 19-APR-1985 22:15:55.70 
Revision Date: 19-APR-1985 22:16:01.74, Number: 4 
Expiration Date: none specified 
Backup Date: 18-APR-1985 00:57:54.24 
Contiguity Options: contiguous-best-try 
Performance Options: none 
Reliability Options: none 
Journaling Enabled: none 

RMS FILE ATTRIBUTES 

File Organization: indexed 
Record Format: variable 
Record Attributes: carriage-return 
Maximum Record Size: 80 
Blocks Allocated: 30, Def ault Extend Size: 2 
Bucket Size: 1 
Global Buffer Count: 0 

FIXED PROLOG 

Number of Areas: 8, VBN of First Descriptor: 3 
Prolog Version: 3 

AREA DESCRIPTOR #0 (VBN 3, off set %X'0000') 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 1, Blocks: 9, Used: 4, Next: 5 
Default Extend Quantity: 2 
Total Allocation: 9 

STATISTICS FOR AREA #0 

Count of Reclaimed Blocks: 

AREA DESCRIPTOR #1 (VBN 3, off set %X'0040') 

0 

Example 10-2 Cont'd. on next page 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-2 Cont.) Using ANALYZE/RMS_FILE to Create a Statistics Report 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 10, Blocks: 3, Used: 1, Next: 11 
Default Extend Quantity: 1 
Total Allocation: 3 

STATISTICS FOR AREA #1 

Count of Reclaimed Blocks: 

AREA DESCRIPTOR #2 (VBN 3, off set %X'0080') 

0 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 13, Blocks: 3, Used: 1, Next: 14 
Default Extend Quantity: 1 
Total Allocation: 3 

STATISTICS FOR AREA #2 

Count of Reclaimed Blocks: 0 
AREA DESCRIPTOR #3 (VBN 3, off set %X'OOCO') 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 16, Blocks: 3, Used: 1, Next: 17 
Default Extend Quantity : i 
Total Allocation: 3 

STATISTICS FOR AREA #3 

Count of Reclaimed Blocks: 

AREA DESCRIPTOR #4 (VBN 3, off set %X'0100') 

0 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 19, Blocks: 3, Used: 1, Next: 20 
Default Extend Quantity: 1 
Total Allocation: 3 

STATISTICS FOR AREA #4 

Count of Reclaimed Blocks: 

AREA DESCRIPTOR #5 (VBN 3, off set %X'0140') 

0 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 22, Blocks: 3, Used: 1, Next: 23 
Default Extend Quantity: 1 
Total Allocation: 3 

Example 10-2 Cont'd. on next page 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-2 (Copt.) Using ANALYZE/RMS_FILE to Create a Statistics Report 

STATISTICS FOR AREA #5 

Count of Reclaimed Blocks: 

AREA DESCRIPTOR #6 (VBN 3, off set %X'0180') 

0 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 25, Blocks: 3, Used: 1, Next: 26 
Default Extend Quantity: 1 
Total Allocation: 3 

STATISTICS FOR AREA #6 

Count of Reclaimed Blocks: 

AREA DESCRIPTOR #7 (VBN 3, off set %X'O1C0') 

0 

Bucket Size: 1 
Reclaimed Bucket VBN: 0 
Current Extent Start: 28, Blocks: 3, Used: 1, Next: 29 
Default Extend Quantity: 1 
Total Allocation: 3 

STATISTICS FOR AREA #7 

Count of Reclaimed Blocks: 0 

KEY DESCRIPTOR #0 (VBN 1, off set %X'0000') 

Next Key Descriptor VBN: 2, Off set: %X'0000' 
Index Area: 1, Level 1 Index Area: 1, Data Area: 0 
Root Level: 1 
Index Bucket Size: 1, Data Bucket Size: 1 
Root VBN: 10 
Key Flags: 

(0) KEY$V_DUPKEYS 0 
(3) KEY$V_IDX_COMPR 0 
(4) KEY$V_INITIDX 0 
(6) KEY$V_KEY_COMPR 0 
(7) KEY$V_REC_COMPR 1 

Key Segments: 1 
Key Size: 4 
Minimum Record Size: 4 
Index Fill Quantity: 512, Data Fill Quantity: 512 
Segment Positions: 0 
Segment Sizes: 4 
Data Type: string 
Name: "ID_NUM" 
First Data Bucket VBN: 4 

STATISTICS FOR KEY #0 

Number of Index Levels: 1 
Count of Level 1 Records: 1 
Mean Length of Index Entry: 6 
Count of Index Blocks: 1 
Mean Index Bucket Fill: 4% 
Mean Index Entry Compression: 0% 

Example 10-2 Cont'd. on next page 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-2 (Cont.) Using ANALYZE/RMS_FILE to Create a Statistics Report 

Count of Data Records: 10 
Mean Length of Data Record: 33 
Count of Data Blocks : 1 
Mean Data Bucket Fill: 90% 
Mean Data Key Compression: 0% 
Mean Data Record Compression: -2% 

Overall Space Efficiency: 2% 
KEY DESCRIPTOR #1 (VBN 2, off set %X'0000') 

Next Key Descriptor VBN: 2, Off set: %X'0066' 
Index Area: 3, Level 1 Index Area: 3, Data Area: 2 
Root Level: i 
Index Bucket Size: 1, Data Bucket Size: 1 
Root VBN: 16 
Key Flags: 

(0) KEY$V_DUPKEYS 1 
(1) KEY$V_CHGKEYS 0 
(2) KEY$V_NULKEYS 0 
(3) KEY$V_IDX_COMPR 0 
(4) KEY$V_INITIDX 0 
(6) KEY$V_KEY_COMPR 0 

Key Segments: 1 
Key Size: 5 
Minimum Record Size: 9 
Index Fill Quantity: 512, Data Fill Quantity: 512 
Segment Positions: 4 
Segment Sizes: 5 
Data Type: string 
Name: "ID_NAME" 
First Data Bucket VBN: 13 

STATISTICS FOR KEY #1 

Number of Index Levels: 1 
Count of Level 1 Records: 1 
Mean Length of Index Entry : 7 
Count of Index Blocks: 1 
Mean Index Bucket Fill: 4% 
Mean Index Entry Compression: 0'/°

Count of Data Records: 6 
Mean Duplicates per Data Record: 0 
Mean Length of Data Record : 19 
Count of Data Blocks: 1 
Mean Data Bucket Fill: 24% 
Mean Data Key Compression : 0% 

Example 10-2 Cont'd. on next page 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-2 (Cont.~ Using ANALYZE/RMS_FILE to Create a Statistics Report 

KEY DESCRIPTOR #2 (VBN 2, offset %X'0066') 

Next Key Descriptor VBN: 2, Off set: %X'OOCC' 
Index Area: 5, Level 1 Index Area: 5, Data Area: 4 
Root Level: 1 
Index Bucket Size: 1, Data Bucket Size: 1 
Root VBN: 22 
Key Flags: 

(0) KEY$V_DUPKEYS 1 
(i) KEY$V_CHGKEYS 0 
(2) KEY$V_NULKEYS 0 
(3) KEY$V_IDX_COMPR 1 
(4) KEY$V_INITIDX 0 
(6) KEY$V_KEY_COMPR 1 

Key Segments: 1 
Key Size: 10 
Minimum Record Size: 19 
Index Fill Quantity: 512, Data Fill Quantity: 512 
Segment Positions: 9 
Segment Sizes: 10 
Data Type: string 
Name: "ADDRESS" 
First Data Bucket VBN: 19 

STATISTICS FOR KEY #2 

Number of Index Levels: 1 
Count of Level 1 Records: 1 
Mean Length of Index Entry : 12 
Count of Index Blocks: 1 
Mean Index Bucket Fill: 4% 
Mean Index Entry Compression: 58% 

Count of Data Records: 7 
Mean Duplicates per Data Record: 0 
Mean Length of Data Record: 20 
Count of Data Blocks: 1 
Mean Data Bucket Fill: 30% 
Mean Data Key Compression: 21% 

Example 10-2 Cont'd. on next page 

10-10 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-2 Cont.) Using ANALYZE/RMS_FILE to Create a Statistics Report 

KEY DESCRIPTOR #3 (VBN 2, off set %X'OOCC') 

Index Area: ?, Level 1 Index Area: 7, Data Area: 6 
Root Level: 1 
Index Bucket Size: 1, Data Bucket Size: 1 
Root VBN: 28 
Key Flags: 

(0) KEY$V_DUPKEYS 1 
(1) KEY$V_CHGKEYS 0 
(2) KEY$V_NULKEYS 0 
(3) KEY$V_IDX_COMPR 1 
(4) KEY$V_INITIDX 0 
(6) KEY$V_KEY_COMPR 1 

Key Segments: 1 
Key Size: 10 
Minimum Record Size: 29 
Index Fill Quantity: 512, Data Fill Quantity: 512 
Segment Positions: 19 
Segment Sizes: 10 
Data Type: string 
Name: "CHARGES" 
First Data Bucket VBN: 25 

STATISTICS FOR KEY #3 

Number of Index Levels: 1 
Count of Level 1 Records: 1 
Mean Length of Index Entry: 12 
Count of Index Blocks: 1 
Mean Index Bucket Fill: 4% 
Mean Index Entry Compression: 58% 

Count of Data Records: 5 
Mean Duplicates per Data Record: 1 
Mean Length of Data Record: 23 
Count of Data Blocks : 1 
Mean Data Bucket Fill: 25% 
Mean Data Key Compression: 34% 

The analysis uncovered NO errors. 

ANALYZE/RMS_FILE/OUTPUT=INDEX/STATISTICS INDEX.DAT 

10.1.3 Using Interactive Mode 

The /INTERACTIVE qualifier begins an interactive session in which you can 
examine the structure of a VMS RMS file. 

ANALYZE/RMS_FILE imposes a hierarchical tree structure on the internal 
VMS RMS file structure. Each data structure in the file is a node, with a 
branch for each pointer in the data structure. The file header is always the 
root node. Each of the three file organizations (sequential, relative, and 
indexed) has its own tree structure. 

To examine a file, you enter commands that move the current position to 
particular structures within the tree. The utility displays the current structure 
on the screen. 

10--11 



Maintaining Files 
10.1 Viewing File Characteristics 

Table 10-1 summarizes the ANALYZE/RMS_FILE commands. 

Table 10-1 ANALYZE/RMS_FILE Command Summary 

Command Function 

AGAIN 

DOWN [branch) 

Displays the current structure again. 

Moves the structure pointer down to the next level. 
If the current node has more than one branch, the 
branch keyword must be specified. 

If a branch keyword is required but not specified, the 
utility will display a list of possibilities to prompt you. 
You can also display the list by specifying "DOWN ?." 

DUMP n Displays a hexadecimal dump of the specified block. 

EXIT Ends the interactive session. 

FIRST Moves the structure pointer to the first structure on 
the current level. The structure is displayed. For 
example, if you are examining data buckets and want 
to examine the first bucket, this command will put 
you there and display the first bucket's header. 

HELP [keyword ...] Displays help messages about the interactive 
commands. 

NEXT Moves the structure pointer to the next structure on 
the current level. The structure is displayed. 

Pressing the RETURN key is equivalent to a NEXT 
command. 

REST Moves the structure pointer along the rest of the 
structures on the current level, and each is displayed 
in turn. 

TOP Moves the structure pointer up to the file header. The 
file header is displayed. 

UP Moves the structure pointer up to the next level. The 
structure at that level is displayed. 

10.1.4 Examining a Sequential File 
Figure 10-1 shows the tree structure of a sequential file. 

The FILE HEADER structure is always the first structure displayed. From the 
FILE HEADER structure, the DOWN command moves the current position 
to the FILE ATTRIBUTES structure. The DOWN command from the FILE 
ATTRIBUTES structure moves the current position to the first record in the 
file. From the first record, the REST command will move the current position 
through the records in the file, displaying each one in turn. A series of NEXT 
commands will also accomplish this same operation. 

10-12 



Maintaining Files 
10.1 Viewing File Characteristics 

Figure 10-1 Tree Structure for Sequential Files 

FILE HEADER 

FILE 
ATTRIBUTES 

FIRST RECORD SECOND RECORD • • • LAST RECORD 

ZK-327-81 

Figure 10-2 shows the layout and contents of the records in a sequential file 
SEQ.DAT. Example 10-3 is an interactive examination of SEQ.DAT, showing 
the contents of three records in the file. 



Maintaining Files 
10.1 Viewing File Characteristics 

O 

'\ v 

O 

~o N 

O 

O 
 .

O

~o 

v 

W 
ti 

e

O O~ 

Q 
V 

a O 

~o 

v Q 

J D 
O

a 
h Z 
oa v 
r Q Q 
h 
h 
.. 

n 
h 
h 

h 

Q 
O 

W 
W 

h 

a h 

W 
W 

ti 

h 
0 
0 

a W 
W 0 h 

a ti h W 
a 

a 

a 

H 

h 
O 

h 

Q

M Q 

a
o.~ 

M ~~ 

M 

a 

M O 

~n 

Q 
a 
n 

O 

O 

V 

W 

ti
W Z V 

h 

W 

0 
ti 

O 

V 

h 
O. Q 

m 
t

'h Q 

W V 
~1 

V 

e 
r 

0 O 
a 
00 

D 
~o O Q 
h 0 

0 0 

0 

h 

v 

0 
0 
0 
0 

0 
0 
0 
0 

v 

m 

0 
0 
0 
0 

N 

r 

N 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-3 Examining a Sequential File 

$ ANALYZE/RMS_FILE/INTERACTIVE SEQ.DAT 

FILE HEADER 
File Spec: DISK$DELPHIWORK:[RMS32]SEQ.DAT;3 
File ID: (1170,2,2) 
Owner UIC : [730 , 465] 
Protection: System: RWED, Owner: RWED, Group: RWED, World: 

Creation Date: 7-MAY-1985 16:51:30.92 
Revision Date: 8-MAY-1985 14:02:17.15, Number: 3 
Expiration Date: none specified 
Backup Date: none posted 
Contiguity Options: none 
Performance Options: none 
Reliability Options: none 

ANALYZE> DOWN 

RMS FILE ATTRIBUTES 
File Organization: sequential 
Record Format: variable 
Record Attributes: carriage-return 
Maximum Record Size: 0 
Longest Record: 73 
Blocks Allocated: 3, Default Extend Size: 0 
End-of -File VBN : 1, Off set : %X' OOE4' 

ANALYZE> DOWN 

DATA BYTES (VBN 1, offset %X' 0000') 
7 6 5 4 3 2 1 0 01234567 

31 30 30 30 30 30 00 49 
20 4C 41 54 49 47 49 44 
4E 45 4D 50 49 55 51 45 
52 4F 50 52 4F 43 20 54 
31 31 20 4E 4F 49 54 41 
42 20 54 49 50 53 20 30 
41 4F 52 20 4B 4F 4F 52 
41 55 48 53 41 4E 20 44 
33 30 48 4E 20 20 20 20 

00 31 36 30 

ANALYZE> NEXT 

DATA BYTES (VBN 1, offset %X' 004C') 
7 6 5 4 3 2 1 0 

32 30 30 30 30 30 00 49 
49 46 46 4F 20 42 44 41 
4C 50 50 55 53 20 45 43 
20 20 20 20 20 53 45 49 
32 34 20 20 20 20 20 20 
4F 4D 45 53 4F 52 20 30 
45 52 54 53 20 54 4E 55 
49 44 20 4E 41 53 54 45 
32 39 41 43 20 4F 47 45 

00 30 31 31 

0000 
0008 
0010 
0018 
0020 
0028 
0030 
0038 
0040 
0048 

0000 
0008 
0010 
0018 
0020 
0028 
0030 
0038 
0040 
0048 

I.000001 
DIGITAL 
EQUIPMEN 
T CORPOR 
ATION 11 
0 SPIT B 
ROOK ROA 
D NASHUA 

NH03 
061. 

01234567 

I.000002 
ADB OFFI 
CE SUPPL 
IES 

42 
0 ROSEMO 
UNT STRE 
ETSAN DI 
EGO CA92 
110. 

Example 10-3 Cont'd. on next page 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-3 (Cont.) Examining a Sequential File 

ANALYZE> NEXT 
DATA BYTES (VBN i , offset %X' 0098') 

7 6 5 4 3 2 1 0 

33 30 30 30 30 30 00 49 
52 50 20 52 4F 4C 4F 43 
4C 20 47 4E 49 54 4E 49 
52 4F 54 41 52 4F 42 41 
34 39 20 20 20 53 45 49 
35 20 54 53 41 45 20 39 
45 45 52 54 53 20 48 54 
4F 59 20 57 45 4E 20 54 
30 31 59 4E 20 20 4B 52 

00 33 30 30 
ANALYZE> EXIT 

01234567 

0000 I.000003 
0008 COLOR PR 
0010 INTING L 
0018 ABORATOR 
0020 IES 94 
0028 9 EAST 5 
0030 TH STREE 
0038 T NEW YO 
0040 RK NY10 
0048 003. 

10.1.5 Examining a Relative File 

Figure 10-3 shows the tree structure of relative files. 

The tree structure of relative files also begins with the FILE HEADER and 
FILE ATTRIBUTES structures. From the FILE ATTRIBUTES structure, the next 
structure down is the PROLOG. The first structure down from the PROLOG 
is the FIRST DATA BUCKET. The data bucket structures can be examined 
with the REST command or one at a time with the NEXT command. The 
only information at the data bucket level is the number of the data bucket's 
virtual block. 

The next structure down is the FIRST RECORD CELL IN FIRST BUCKET. 
You can examine the records in each cell by specifying either the REST 
command or a series of NEXT commands. 

Example 10-4 shows an interactive examination of a relative file. 



Maintaining Files 
10.1 Viewing File Characteristics 

Figure 10-3 Tree Structure of Relative Files 

FILE HEADER 

FILE 
ATTRIBUTES 

PROLOG 

FIRST DATA 
BUCKET 

SECOND 
DATA BUCKET 

FIRST RECORD LAST RECORD 
• • 

• CELL IN CELL IN 
FIRST BUCKET FIRST BUCKET 

• 

• • 

FIRST RECORD 
CELL IN 

SECOND BUCKET 
• 

• 

• 

ZK-328-81 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-4 Examining a Relative File 

FILE HEADER 
File Spec: DISK$NEWWORK:[RMS32]REL.DAT;1 
File ID: (9573,7,2) 
Owner UIC : [ 181, 065] 
Protection: System: RWED, Owner: RWED, Group: RE, World: 
Creation Date: 22-MAY-1982 10:42:04.95 
Revision Date: 22-MAY-1982 10:42:05.81, Number: 1 
Expiration Date: none specified 
Backup Date: none posted 
Contiguity Options: contiguous-best-try 
Performance Options: none 
Reliability Options: none 

ANALYZE> DOWN 
RMS FILE ATTRIBUTES 

File Organization: relative 
Record Format: variable 
Record Attributes: carriage-return 
Maximum Record Size: 75 
Blocks Allocated: 9, Default Extend Size: 0 
Bucket Size: 3 
Global Buffer Count: 0 

ANALYZE> DOWN 
FIXED PROLOG 

Prolog Flags: 
(0) PLG$V_NOEXTEND 0 

First Data Bucket VBN: 2 
Maximum Record Number: 2147483647 
End-of-File VBN: 10 
Prolog Version: 1 

ANALYZE> DOWN 
DATA BUCKET (VBN 2) 

ANALYZE> DOWN 
RECORD CELL (VBN 2, off set %X'0000'): 

Cell Control Flags: 
(2) DLC$V_DELETED 0 
(3) DCL$V_REC 1 

Record Bytes: 
7 6 5 4 3 2 1 0 01234567 

31 30 30 30 30 30 00 49 
20 4C 41 54 49 47 49 44 
4E 45 4D 50 49 55 51 45 
52 4F 50 52 4F 43 20 54 
31 31 20 4E 4F 49 54 41 
42 20 54 49 50 53 20 30 
41 4F 52 20 4B 4F 4F 52 
41 55 48 53 41 4E 20 44 
33 30 48 4E 20 20 20 20 

31 36 30 

0000 I.000001 
0008 DIGITAL 
0010 EQUIPMEN 
0018 T CORPOR 
0020 ATION 11 
0028 0 SPIT B 
0030 ROOK ROA 
0038 D NASHUA 
0040 NH03 
0048 061 

If you use the REST command at the CELL AND RECORD level, the utility 
will display all the cells and records in the file, not just the cells and records 
in the current bucket. 

10-18 



Maintaining Files 
10.1 Viewing File Characteristics 

10.1.6 Examining an Indexed File 
The structure of an indexed file also begins with the FILE HEADER, FILE 
ATTRIBUTES, and PROLOG structures. From the PROLOG structure, the file 
structure branches to the area descriptors and the key descriptors. To branch 
to the area descriptor path, specify the command DOWN AREA. To branch 
to the key descriptor path, specify DOWN KEY. 

The area descriptor path contains structures that show information about the 
various areas in the file. The key descriptor path contains the primary key 
structures (and data records) and any secondary key structures. 

Figure 10-4 shows the structure following the area descriptor path. 

Figure 10-4 An Area Descriptor Path 

FILE HEADER 

FILE 
ATTRIBUTES 

PROLOG 

/  

\ 

(key descriptors) 
AREA 

DESCRIPTOR 

RECLAIMED 
BUCKET 

• 

• 

• 

• • 

• 

ZK-329-81 

Example 10-5 is an example of an examination of an area descriptor path 
from the PROLOG level. 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-5 Examining an Area Descriptor Path 

ANALYZE> DOWN AREA 
AREA DESCRIPTOR #0 (VBN 3 , offset %X' 0000' } 

Bucket Size: 1 
Alignment: AREA$C_NONE 
Alignment Flags: 

(0) AREA$V_HARD 0 
(1) AREA$V_ONC 0 
(5) AREA$V_CBT 0 
(7) AREA$V_CTG 0 

Current Extent Start: 1, Blocks: 9, Used: 7, Next: 8 
Default Extend Quantity: 0 

Figure 10-5 shows the structure following the key descriptor path. 

As shown in Figure 10-5, you can branch directly to the DATA BUCKET, or 
you can branch to the INDEX ROOT BUCKET to begin examination of the 
index structure, eventually reaching the DATA BUCKET structure. Depending 
on whether you are examining the primary index structure or one of the 
alternate index structures, there is a difference in the contents of the record 
structure. 

The PRIMARY RECORD structure contains the actual data records; the 
ALTERNATE RECORD structures contain secondary index data records 
(SIDRs). 

Figure 10-6 displays the structure of the primary records. 



Maintaining Files 
10.1 Viewing File Characteristics 

Figure 10-5 A Key Descriptor Path 

FILE HEADER 

FILE 
ATTRIBUTES 

PROLOG 

/  \ 
(area 
descriptors) KEY 

DESCRIPTOR 
~ • • 

INDEX 
ROOT BUCKET 

INDEX RECORD 

DATA 
BUCKET 

PRIMARY OR 
ALTERNATE 

RECORD 

• ~ • 

ZK-330-81 

• • • 



Maintaining Files 
10.1 Viewing File Characteristics 

As shown in Figure 10-6, the branch from the primary record structure allows 
you to either examine the actual bytes of data within the record or to follow 
the RRV. 

Figure 10-6 Structure of Primary Records 

PRIMARY 
RECORD 

/ \ 

ACTUAL BYTES 
OF DATA 

BUCKET 
REFERENCED 

BY RRV 

ZK-332-81 

Example 10-6 shows an examination of a primary record. 

Figure 10-7 displays the structure of the alternate records. 

Figure 10-7 Structure of Alternate Records 

ALTERNATE 
RECORD (SIDR) 

SIDR 
POINTER 

• 

• • 

• 

• 

• 

ZK-333-81 

10-22 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-6 Examining a Primary Record 

PRIMARY DATA RECORD (VBN 4, off set %X'OOOE') 
Record Control Flags: 

(2) IRC$V_DELETED 0 
(3) IRC$V_RRV 0 
(4) IRC$V_NOPTRSZ 0 

Record ID: 1 
RRV ID: 1, 4-Byte Bucket Pointer: 4 
Key: 

7 6 5 4 3 2 1 0 01234567 

31 30 30 30 30 301 0000 1000001 I 
ANALYZE> DOWN BYTES 

7 6 5 4 3 2 1 0 01234567 

31 30 30 30 30 30 00_49 
20 4C 41 54 49 47 49 44 
4E 45 4D 50 49 55 51 45 
52 4F 50 52 4F 43 20 54 
31 31 20 4E 4F 49 54 41 
42 20 54 49 50 53 20 30 
41 4F 52 20 4B 4F 4F 52 
41 55 48 53 41 4E 20 44 
33 30 48 4E 20 20 20 20 

31 36 30 

0000 
0008 
0010 
0018 
0020 
0028 
0030 
0038 
0040 
0048 

I.000001 
DIGITAL 
EQUIPMEN 
T CORPOR 
ATION li 
0 SPIT B 
ROOK ROA 
D NASHUA 

NH03 
061 

ANALYZE> UP 
PRIMARY DATA RECORD (VBN 4, off set %X'OOOE') 

Record Control Flags: 
(2) IRC$V_DELETED 0 
(3) IRC$V_RRV 0 
(4) IRC$V_NOPTRSZ 0 

Record ID: 1 
RRV ID: 1, 4-Byte Bucket Pointer: 4 
Key: 

7 6 5 4 3 2 1 0 01234567 

31 30 30 30 30 301 0000 1000001 I 
ANALYZE> DOWN RRV 
BUCKET HEADER (VBN 4) 

Check Character: %X'00' 
Area Number: 0 
VBN Sample: 4 
Free Space Off set : %X' 0104' 
Free Record ID Range: 4 - 255 
Next Bucket VBN: 4 
Level: 0 
Bucket Header Flags: 

(0) BKT$V_LASTBKT 1 
(1) BKT$V_ROOTBKT 0 



Maintaining Files 
10.1 Viewing File Characteristics 

Example 10-7 shows an examination of an alternate record. 

Example 10-7 Examining an Alternate Record 

ANALYZE> DOWN 
SIDR RECORD (VBN 6 , offset %X' OOOE' ) 

Control Flags: 
(4) IRC$V_NOPTRSZ 0 

Record ID: 1 
Key: 

7 6 5 4 3 2 1 0 01234567 

31 36 30 33 301 0000 103061 I 

ANALYZE> DOWN 
sidr pointer control flags 

(2) IRC$V_DELETED 0 
(5) IRC$V_KEYDELETE 0 

sidr pointer record id: 1, 4-byte record VBN: 4 

10.2 Generating an FDL File from a Data File 
You can use the Analyze/RMS_File Utility to create an FDL file generally 
called an analysis file. FDL files created by ANALYZE/RMS_FILE contain 
statistics about each area and key in the primary sections named 
ANALYSIS_OF~REA and ANALYSIS_OF_KEY. 

These analysis sections are then used by the Edit/FDL Utility in its Optimize 
script. You can compare the statistics in these sections with your assumptions 
about the file's use; you may find some places in the file's structure where 
additional tuning will be possible. 

To generate an FDL file from a data file, use the following command syntax: 

ANALYZE/RMS_FILE/FDL filespec 

With a command of this type, the FDL file obtains its file name from the input 
file specification; to assign a different file name, use the /OUTPUT qualifier. 
For example, the following command would generate an FDL file named 
INDEXDEF.FDL from the data file CUSTFILE.DAT: 

$ ANALYZE/RMS_FILE/FDL/OUTPUT=INDEXDEF CUSTFILE.DAT 

Example 10-8 illustrates an FDL file showing the KEY and 
ANALYSIS_OF_KEY sections for an indexed file with two keys. 

10-24 



Maintaining Files 
10.2 Generating an FDL File from a Data File 

Example 10-8 KEY and ANALYSIS_OF_KEY Sections in an FDL File 

IDENT 2-JUN-1985 16:15:35 VMS ANALYZE/RMS_FILE Utility 

SYSTEM 
SOURCE VMS 

FILE 
ALLOCATION 9 
BEST_TRY_CONTIGUOUS no 
BUCKET_SIZE 1 
CONTIGUOUS no 
EXTENSION 0 
GLOBAL_BUFFER_COUNT 0 
NAME DISK$USERWORK:[WORK.RMS32]CUSTDATA.DAT;4 
ORGANIZATION indexed 
OWNER [520, 50] 
PROTECTION (system:RWED, owner:RWED, group:RWED, world:) 
READ_CHECK no 
WRITE_CHECK no 

RECORD 
BLOCK_SPAN yes 
CARRIAGE_CONTROL carriage_return 
FORMAT variable 
SIZE 0 

AREA 0 
ALLOCATION 9 
BEST_TRY_CONTIGUOUS no 
BUCKET_SIZE 1 
CONTIGUOUS no 
EXTENSION 0 

KEY 0 
CHANGES no 
DATA_AREA 0 
DATA_FILL 100 
DUPLICATES no 
INDEX_AREA 0 
INDEX_FILL 100 
LEVELI_INDEX_AREA 0 
NULL_KEY no 
PROLOG 1 
SEGO_LENGTH 6 
SEGO_POSITION 0 
TYPE string 

Example 10-8 Cont'd. on next page 



Maintaining Files 
10.2 Generating an FDL File from a Data File 

Example 10-8 (Cont.) KEY and ANALYSIS_OF_KEY Sections in an FDL File 

KEY 1 
CHANGES no 
DATA_AREA 0 
DATA_FILL 100 
DUPLICATES yes 
INDEX_AREA 0 
INDEX_FILL 100 
LEVELI_INDEX_AREA 0 
NULL_KEY no 
SEGO_LENGTH 5 
SEGO_POSITION 68 
TYPE string 

ANALYSIS_OF_AREA 0 
RECLAIMED_SPACE 0 

ANALYSIS_OF_KEY 0 
DATA_FILL 50 
DATA_RECORD_COUNT 3 
DATA_SPACE_OCCUPIED 1 
DEPTH 1 
INDEX_FILL 4 
INDEX_SPACE_OCCUPIED 1 
MEAN_DATA_LENGTH 73 
MEAN_INDEX_LENGTH 9 

ANALYSIS_OF_KEY 1 
DATA_FILL 14 
DATA_RECORD_COUNT 3 
DATA_SPACE_OCCUPIED 1 
DEPTH 1 
DUPLICATES_PER_SIDR 1 
INDEX_FILL 4 
INDEX_SPACE_OCCUPIED 1 
MEAN_DATA_LENGTH 19 
MEAN_INDEX_LENGTH 8 

10.3 Optimizing and Redesigning File Characteristics 
To maintain your files properly, you must occasionally tune them. Tuning 
involves adjusting and readjusting the characteristics of the file, generally to 
make the file run faster or more efficiently, and then reorganizing the file to 
reflect those changes. 

There are two ways to tune files. You can redesign your FDL file to change 
file characteristics or parameters. You can change these characteristics either 
interactively with EDIT/FDL (the preferred method) or by using a text editor. 
With the redesigned FDL file, then, you can create a new data file. 

You can also optimize your data file by using ANALYZE/RMS~'ILE with the 
/FDL qualifier. This method, rather than actually redesigning your FDL file, 
produces an FDL file containing certain statistics about the file's use that you 
can then use to tune your existing data file. 

Figure 10-8 shows how to use the VMS RMS utilities to perform the tuning 
cycle. 

:~ 

~/ 

10-2 6 



Maintaining Files 
10.3 Optimizing and Redesigning File Characteristics 

Figure 10-8 The VMS RMS Tuning Cycle 

Indexed 
Data File 

ANALYZE/RMS—FILE 

FDL File 
(with ANALYSIS 

Sections) 

Original 
FDL File 

ZK-952-82 

Section 10.3.1 describes how to redesign an FDL file, and Section 10.3.2 
explains how to optimize the run-time performance of a data file. 



Maintaining Files 
10.3 Optimizing and Redesigning File Characteristics 

10.3.1 Redesigning an FDL File 
There are many ways to redesign an FDL file. If you want to make small 
changes, you can use the ADD, DELETE, and MODIFY commands at the 
main menu (main editor) level. 

Command Function 

ADD Allows you to add one or more new lines to the FDL file. When you 
give the ADD command at the main menu level, EDIT/FDL prompts 
you with a menu displaying all legal primary attributes; your FDL 
file does not necessarily have to contain all these attributes. You 
can add a new primary attribute to your file, or you can add a new 
secondary attribute to an existing primary attribute. 

When you type in a primary attribute, EDIT/FDL displays all the legal 
secondary attributes for that primary attribute with their possible 
values. You can then select the secondary attribute that you want 
to add to your FDL file and supply the appropriate value for the 
secondary attribute. 

DELETE Allows you to delete one or more lines from the FDL file. When 
you give the DELETE command at the main menu level, EDIT/FDL 
prompts you with a menu displaying the current primary attributes of 
your FDL file. 

When you select the primary attribute that has the secondary 
attribute you want to remove from your current FDL definition, 
EDIT/FDL displays all the existing secondary attributes of your 
FDL file with their current values. When you select the secondary 
attribute, EDIT/FDL removes it from the FDL definition. Also, 
when you delete the last secondary attribute of a particular primary 
attribute, 
EDIT/FDL also removes the primary attribute from the current 
definition. 

MODIFY Allows you to change an existing line in the FDL definition. When 
you issue the MODIFY command at the main menu level, EDIT/FDL 
prompts you with a menu displaying the current primary attributes of 
your FDL file. 

When you type in a primary attribute, EDIT/FDL displays all the 
existing secondary attributes for that primary attribute with their 
current values. You can then select the secondary attribute of which 
you want to change the value and the supply the appropriate value 
for the secondary attribute. 

However, if you want to make substantial changes to an FDL file, you should 
invoke the Touch-up script. Because sequential and relative_ files are simple in 
design, the Touch-up script works only with FDL files that describe indexed 
files. If you want to redesign sequential and relative files, you can use the 
command listed above (ADD, DELETE, or MODIFY), or you can go through 
the design phase again, using the scripts for those organizations. 

To completely redesign an existing FDL file that describes an indexed 
sequential file, use the following command syntax: 

EDIT/FDL/SCRIPT=TOUCHUP fdl-filespec 

10-28 



Maintaining Files 
10.3 Optimizing and Redesigning File Characteristics 

10.3.2 Optimizing a Data File 
You can optimize the run-time performance of an existing data file either 
interactively or noninteractively. In either case, however, the first step is to 
create an FDL file from the data file by using the Analyze/RMS_File Utility. 
This analysis produces an FDL file that includes the ANALYSIS_OF~REA 
and ANALYSIS_OF_KEY sections. 

If you then want to optimize your data file interactively by going through the 
Optimize script, use the following command syntax: 

EDIT/FDL/ANALYZE=fdl-filespec/SCRIPT=OPTIMIZE original-fdl-filespec 

The fdl-filespec parameter represents the file specification of the FDL file 
created with ANALYZE/RMS_FILE. The original-fdl-filespec parameter 
represents an optimized version of the original FDL file. 

The rest of the script is similar to an Indexed, Relative, or Sequential script. 

If you want to optimize an existing FDL file but do not wish to go through an 
interactive session, use the following command syntax: 

EDIT/FDL/ANALYZE=fdl-filespec/NOINTERACTIVE original-fdl-filespec 

The final stage of optimization is to use the Convert Utility with the old data 
file and the new FDL file to create a new, optimal data file using the following 
syntax: 

CONVERT/FDL=new-fdl-file old-file new-file 

10.4 Making a File Contiguous 
If your file has been used for some time or if it is extremely volatile, the 
numerous deletions and insertions of records may have caused the optimal 
design of the file to deteriorate. For example, numerous extensions will 
degrade performance by causing window-turn operations. In indexed files, 
deletions can cause empty but unusable buckets to accumulate. 

If additions or insertions to a file cause too many extensions, the file's 
performance will also deteriorate. To improve performance, you could 
increase the file's window size, but this uses an expensive system resource 
and at some point may itself hurt performance. Abetter method is to make 
the file contiguous again. 

This section presents techniques for cleaning up your files. These techniques 
include using the Copy Utility, the Convert Utility, and the Convert/Reclaim 
Utility. 

10.4.1 Using the Copy Utility 
You can use the COPY command with the /CONTIGUOUS qualifier to copy 
the file, creating a new contiguous version. The /CONTIGUOUS qualifier 
can be used only on an output file. 

To use the COPY command with the /CONTIGUOUS qualifier, use the 
following command syntax: 

COPY input-filespec output-filespec/CONTIGUOUS 

10-29 



Maintaining Files 
10.4 Making a File Contiguous 

If you do not want to rename the file, use the same name for input-filespec 
and output-filespec. 

By default, if the input file is contiguous, COPY likewise tries to create a 
contiguous output file. By using the /CONTIGUOUS qualifier, you ensure 
that the output file is copied to consecutive physical disk blocks. 

The /CONTIGUOUS qualifier can only be used when you copy disk files; it 
does not apply to tape files. For more information, see the COPY command 
in the VMS DCL Dictionary. 

10.4.2 Using the Convert Utility 
The Convert Utility can also make a file contiguous if contiguity is an original 
attribute of the file. 

To use the Convert Utility to make a file contiguous, use the following 
command syntax: 

CONVERT input-filespec output-filespec 

If you do not want to rename the file, use the same name for input-filespec 
and output-filespec. 

10.4.3 Reclaiming Buckets in Prolog 3 Files 
If you delete a number of records from a Prolog 3 indexed file, it is possible 
that you deleted all of the data entries in a particular bucket. VMS RMS 
generally cannot use such empty buckets to write new records. 

With Prolog 3 indexed files, you can reclaim such buckets by using the 
Convert/Reclaim Utility. This utility allows you to reclaim the buckets 
without incurring the overhead of reorganizing the file with CONVERT. 

As the data buckets are reclaimed, the pointers to them in the index buckets 
are deleted. If as a result any of the index buckets become empty, they too 
are reclaimed. 

Note that RFA access is retained after bucket reclamation. The only effect that 
CONVERT/RECLAIM has on a Prolog 3 indexed file is that empty buckets 
are reclaimed. 

To use CONVERT/RECLAIM, use the following command syntax, in which 
filespec specifies a Prolog 3 indexed file: 

CONVERT/RECLAIM filespec 

Please note that the file cannot be open for shared access at the time that you 
give the CONVERT/RECLAIM command. 

10-30 



Maintaining Files 
10.5 Reorganizing a File 

10.5 Reorganizing a File 

Using the Convert Utility is the easiest way to reorganize a file. In addition, 
CONVERT cleans up split buckets in indexed files. Also, because the file 
is completely reorganized, buckets in which all the records were deleted 
will disappear. (Note that this is not the same as bucket reclamation. With 
CONVERT, the file becomes a new file and records receive new RFAs.) 

To use the Convert Utility to reorganize a file, use the following command 
syntax: 

CONVERT input-filespec output-filespec 

If you do not want to rename the file, use the same name for input-filespec 
and output-filespec. 

10.6 Making Archive Copies 
Another part of maintaining files is making sure that the you protect the data 
in them. You should keep duplicates of your files in another place in case 
something happens to the originals. In other words, you need to back up your 
files. Then, if something does happen to your original data, you can restore 
the duplicate files. 

The Backup Utility (BACKUP) allows you to create backup copies of files and 
directories and to restore them, as well. These backup copies are called save 
sets, and they can reside on either disk or magnetic tape. Save sets are also 
written in BACKUP format; only BACKUP can interpret the data. 

Unlike the DCL command COPY, which makes new copies of file (updating 
the revision dates and assigning protection from the defaults that apply), 
BACKUP makes copies that are identical in all respects to the originals, 
including dates and protection. 

To use the Backup Utility to create a save set of your file, use the following 
command syntax: 

BACKUP input-filespec output-filespec[/SAVE_SET] 

You have to use the /SAVE_SET qualifier only if the output file will be 
backed up to disk. You can omit the qualifier for magnetic tape. 

For more information about BACKUP, see the description of the Backup 
Utility in the VMS Backup Utility Manual. 

10-31 





A EDIT/FDLOptimization Algorithms 

This appendix lists the algorithms used by the Edit/FDL Utility to determine 
the optimum values for file attributes. 

A.1 Allocation 
For sequential files with block spanning, EDIT/FDL allocates enough blocks 
to hold the specified number of records of mean size. If you do not allow 
block spanning, EDIT/FDL factors in the potential wasted space at the end of 
each block. 

For relative files, EDIT/FDL calculates the total number of buckets in the file 
and then allocates enough blocks to hold the required number of buckets and 
associated overhead. EDIT/FDL calculates the total number of buckets by 
dividing the total number of records in the file by the bucket record capacity. 
The overhead consists of the prolog which is equal to one cluster. 

For indexed files, EDIT/FDL calculates the depth to determine the actual 
bucket size and number of buckets at each level of the index. It then allocates 
enough blocks to hold the required number of buckets. Areas for the data 
level (Level 0) have separate allocations from the areas for the index levels of 
each key. 

In all cases, allocations are rounded up to a multiple of bucket size. 

A.2 Extension Size 
For sequential files, EDIT/FDL sets the extension size to one-tenth of the 
allocation size and truncates any fraction. For relative files and indexed files, 
EDIT/FDL extends the file by 25 percent rounded up to the next multiple of 
the bucket size. 

A.3 Bucket Size 
Because most records that EDIT/FDL accesses are close to each other, it 
makes the buckets large enough to hold 16 records or the total record capacity 
of the file, whichever is smaller. The maximum bucket size is 63 blocks. 

For indexed files, EDIT/FDL permits you to decide the bucket size for any 
particular index. The data and index levels get the same bucket size but you 
can use the MODIFY command to change these values. 

EDIT/FDL calculates the default bucket size by first finding the most common 
index depth produced by the various bucket sizes. If you specify smaller 
buffers rather than fewer levels, EDIT/FDL establishes the default bucket 
size as _the smallest size needed to produce the most common depth. On 
Surface_Plot graphs, these values are shown on the leftmost edge of each 
bucket size. 



EDIT/FDL Optimization Algorithms 
A.3 Bucket Size 

Note: If you specify a separate bucket size for the Level 1 index, it should match 
the bucket size assigned to the rest of the index. 

The bucket size is always a multiple of disk cluster size. The 
ANALYZE/RMS_FILE primary attribute ANALYSIS_OF_KEY now has a 
new secondary attribute called LEVELI_RECORD_COUNT that represents 
the index level immediately above the data. It makes the tuning algorithm 
more accurate when duplicate key values are specified. 

A.4 Global Buffers 
The global buffer count is the number of I/O buffers that two or more 
processes can access. This algorithm tries to cache or "map" the whole Key 
0 index (at least up to a point) into memory for quicker and more efficient 
access. 

A.5 Index Depth 
The indexed design routines simulate the loading of data buckets with records 
based on your data regarding key sizes, key positions, record sizes (mean and 
maximum), compression values, load method, and fill factors. 

When EDIT/FDL finds the number of required data buckets, it can determine 
the actual number of index records in the next level up (each of which points 
to a data bucket). The process is repeated until all the required index records 
for a level can fit in one bucket, the root bucket. When a file exceeds 32 
levels, EDIT/FDL issues an error message. 

With a line plot, the design calculations are performed up to 63 times 
once for each legal bucket size. With a surface plot, each line of the plot is 
equivalent to a line plot with a different value for the variable on the Y-axis. 

v 



GLOSSARY 

accessor: A process that accesses a file or a record stream that accesses a record. 

alternate key: An optional key within the data records in an indexed file; used by VMS 
RMS to build an alternate index. See also key (indexed files) and primary key. 

area: Areas are VMS RMS-maintained regions of an indexed file. They allow you to 
specify placement or specific bucket sizes, or both, for particular portions of a file. 
An area consists of any number of buckets, and there may be from 1 to 255 areas in 
a file. 

asynchronous record operation: An operation in which your program may possibly 
regain control before the completion of a record retrieval or storage request. 
Completion ASTs and the Wait service are the mechanisms provided by VMS 
RMS for programs to synchronize with asynchronous record operations. See also 
synchronous record operation. 

bits per inch: The recording density of a magnetic tape. Indicates how many characters 
can fit on one inch of the recording surface. See also density. 

block: The smallest number of consecutive bytes that VMS RMS transfers during read 
and write operations. A block is 512 8-bit bytes on a Files-11 On-Disk Structure 
disk; on magnetic tape, a block may be anywhere from 8 to 8192 bytes. 

block I/O: The set of VMS RMS procedures that allow you direct access to the blocks of 
a file regardless of file organization. 

block spanning: In a sequential file, the option for records to cross block boundaries. 

bootstrap block: A block in the index file of a system disk. Can contain a program that 
loads the operating system into memory. 

bpi: See also bits per inch. 

bucket: A storage structure, consisting of 1 to 32 blocks, used for building and 
processing relative and indexed files. A bucket contains one or more records or 
record cells. Buckets are the units of contiguous transfer between VMS RMS buffers 
and the disk. 

bucket split: The result of inserting records into a full bucket. To minimize bucket 
splits, VMS RMS attempts to keep half of the records in the original bucket and 
transfer the remaining records to a newly created bucket. 

buffer: A memory area used to temporarily store data. Buffers are generally categorized 
as being either user buffers or I/O buffers. 

cluster: The basic unit of space allocation on a Files-11 On-Disk Structure volume. 
Consists of one or more contiguous blocks, with the number being specified when 
the volume is initialized. 

contiguous area: A group of physically adjacent blocks. 

Glossary-1 



GLOSSARY 

count field: A field prefixed to avariable-length record that specifies the number bytes 
in the record. 

cylinder: The tracks at the same radius on all recording surfaces of a disk. 

density: The number of bits per inch (bpi) of magnetic tape. Typical values are 800 bpi 
and 1600 bpi. See also bits per inch. 

directory: A file used to locate files on a volume. A directory file contains a list of files 
and their unique internal identifications. 

directory tree: The subdirectories created beneath a directory and the subdirectories 
within the subdirectories (and so forth). 

extent: One or more adjacent clusters allocated to a file or to a portion of a file. 

FDL: See File Definition Language 

file: An organized collection of related items (records) maintained in an accessible 
storage area, such as disk or tape. 

File Definition Language: Aspecial-purpose language used to write file creation and 
run-time specifications for data files. These specifications are written in text files 
called FDL files; they are then used by the VMS RMS utilities and library routines to 
create the actual data files. 

file header: A block in the index file describing a file on a Files-11 On-Disk Structure 
disk, including the location of the file's extents. There is at least one file header for 
every file on the disk. 

file organization: The physical arrangement of data in the file. You select the specific 
organization from those offered by VMS RMS, based on your individual needs for 
efficient data storage and retrieval. See also indexed file organization, relative file 
organization, and sequential file organization. 

Files-11 On-Disk Structure: The standard physical disk structure used by VMS RMS. 

fixed-length control field: Affixed-size area, prefixed to a VFC record, containing 
additional information that can be processed separately and that may have no 
direct relationship to the other contents of the record. For example, the fixed-length 
control field might contain line sequence numbers for use in editing operations. 

fixed-length record format: Property of a file in which all records are the same length. 
This format provides simplicity in determining the exact location of a record in the 
file and eliminates the need to prefix a record size field to each record. 

global buffer: A buffer that many processes share. 

home block: A block in the index file, normally next to the bootstrap block, that 
identifies the volume as a Files-11 On-Disk Structure volume and provides specific 
information about the volume, such as volume label and protection. 

index: The structure that allows retrieval of records in an indexed file by key value. See 
also key (indexed files). 

Glossary—Z 



GLOSSARY 

index file: A file on each Files-11 On-Disk Structure volume that provides the means 
for identification and initial access to the volume. Contains the access information 
for all files (including itself) on the volume: bootstrap block, home block, file 
headers. 

indexed file organization: A file organization that allows random retrieval of records 
by key value and sequential retrieval of records in sorted order by key value. See 
also key (indexed files). 

interrecord gap (I RG~: An interval of blank space between data records on the 
recording surface of a magnetic tape. The IRG enables the tape unit to decelerate, 
stop if necessary, and accelerate between record operations. 

I/O buffer: A buffer used for performing input/output operations. 

IRG: See interrecord gap. 

key (indexed file): A character string, a packed decimal number, a 2- or 4-byte 
unsigned binary number, or a 2- or 4-byte signed integer within each data record in 
an indexed file. You define the length and location within the records; VMS RMS 
uses the key to build an index. See also primary key, alternate key, and random access 
by key value. 

key (relative file: The relative record number of each data record cell in a data file; 
VMS RMS uses the relative record numbers to identify and access data records in a 
relative file in random access mode. See also relative record number. 

local buffer: A buffer that is dedicated to one process. 

locate mode: Technique used for a record input operation in which the data records are 
not copied from the VMS RMS I/O buffer, but a pointer is returned to the record in 
the VMS RMS I/O buffer. See also move mode. 

move mode: Technique used for a record transfer in which the data records are copied 
between the I/O buffer and your program buffer for calculations or operations on 
the record. See also locate mode. 

multiblock: An I/O unit that includes up to 127 blocks. Use is restricted to sequential 
files. 

multiple-extent file: A disk file having two or more extents. 

native mode: The processor's primary execution mode in which the programmed 
instructions are interpreted as byte-aligned, variable-length instructions that operate 
on the following data types: byte, word, longword, and quadword integers; floating 
and double floating character strings; packed decimals; and variable-length bit fields. 
The other instruction execution mode is compatibility mode. 

primary key: The mandatory key within the data records of an indexed file; used by 
VMS RMS to determine the placement of records within the file and to build the 
primary index. See also key (indexed files) and alternate key. 

random access by key (indexed file: Retrieval of a data record in an indexed file by 
either a primary or alternate key within the data record. See also key (indexed fi'les). 

random access by key (relative file): Retrieval of a data record in a relative file by 
the relative record number of the record. See also key (relative files). 

Glossary-3 



GLOSSARY 

random access by record file address (RFA: Retrieval of a record by the record's 
unique address, which VMS RMS returns to you. This record access mode is the 
only means of randomly accessing a sequential file containing variable-length 
records. 

random access by relative record number: Retrieval of a record by its relative 
record number. For relative files and sequential files (on disk devices) that contain 
fixed-length records, random access by relative record number is synonymous with 
random access by key. See also random access by key (relative files only) and relative 
record number. 

read-ahead processing: A software option used for sequentially accessing sequential 
files using two buffers. One buffer holds records to be read from the disk. The other 
buffer awaits I/O completion. 

record: A set of related data that your program treats as a unit. 

record access mode: The manner in which VMS RMS retrieves or stores records in 
a file. Available record access modes are determined by the file organization and 
specified by your program. 

record access mode switching: Term applied to the switching from one type of 
record access mode to another while processing a file. 

record blocking: The technique of grouping multiple records into a single block. On 
magnetic tape, an IRG is placed after the block rather than after each record. This 
technique reduces the number of I/O transfers required to read or write the data, 
and, in addition (for magnetic tape), it increases the amount of usable storage area. 
Record blocking also applies to disk files. 

record cell: Affixed-length area in a relative file that can contain a record. Fixed-length 
record cells permit VMS RMS to directly calculate the record's actual position in the 
file. 

record file address (RFA): The unique address VMS RMS returns to your program 
whenever it accesses a record. Using the RFA, your program can access disk records 
randomly regardless of file organization. The RFA is valid only for the life of the 
file, and when an indexed file is reorganized, each record's RFA will typically 
change. 

record format: The way a record physically appears on the recording surface of the 
storage medium. The record format defines the method for determining record 
length. 

record length: The size of a record in bytes. 

record locking: A facility that prevents access to a record by more than one record 
stream or process until the initiating record stream or process releases the record. 

Record Management Services: See VMS RMS (Record Management Services) 

record stream: The access environment for reading, writing, deleting and updating 
records. 

Glossary-4 



GLOSSARY 

relative file organization: The arrangement of records in a file in which each record 
occupies a cell of equal length within a bucket. Each cell is assigned a successive 
number, called a relative record number, which represents the cell's position relative 
to the beginning of the file. 

relative record number: An identification number used to specify the position of a 
record cell relative to the beginning of the file; used as the key during random 
access by key mode to relative files. 

reorganization: Arecord-by-record copy of an indexed file to another indexed file with 
the same key attributes as the input file. 

RFA: See record file address. 

RMS: See VMS RMS 

RMS-11: A set of routines that are linked with compatibilty mode and PDP-11 
programs and provide similar features for VMS RMS. The file organizations and 
record formats used by RMS-11 are very similar to those of VMS RMS; one 
exception is that RMS-11 does not support Prolog 3 indexed files, which are 
supported by VMS RMS. 

root bucket: The primary routing bucket for an index; geometrically, the top of the 
index tree. When a key search begins, VMS RMS goes first to the index root bucket 
to determine which bucket, at the next Lower level, is the next link in the bucket 
chain. 

sequential file organization: The arrangement of records in a file in one-after-the-
other fashion. Records appear in the order in which they were written. 

sequential record access mode: Record storage or retrieval that starts at a designated 
point in the file and continues in one-after-the-other fashion through the file. That 
is, records are accessed in the order in which they physically appear in the file. 

shared access: A file management technique that allows more than one user to 
simultaneously access a file or a group of files. 

stream: An access window to a file associated with a record access control block (RAB) 
supporting record operation requests. 

stream record format: Property of a file specifying that the data in the file is 
interpreted as a continuous sequence of bytes, without control information, except 
for terminators that are recognized as record separators. Stream record format 
applies to sequential files only. 

synchronous record operation: An operation in which your program does not regain 
control until after the completion of a record retrieval or storage request. See also 
asynchronous record operation. 

terminator: Special characters or character sequences used to delimit the records in files 
using the stream record format. 

track: A collection of blocks at a single radius on one recording surface of a disk. 

tuning: The process of designing your files to achieve better processing performance. 

user buffer: A buffer within an application program. 

Glossary-5 



GLOSSARY 

variable-length record format: Property of a file in which record length may vary. :, 

variable-length with fixed-length control field (VFC) record format: Property of 
a file in which records of variable-length contain an additional fixed-length control 
field capable of storing data that may have no connection with the other contents of 
the record. VFC record format is not applicable to indexed files. 

VFC record format: See variable-length with fixed-length control field NFC) record format 

VMS RMS (VMS Record Management Services): The file and record access 
subsystem of the VMS operating system. VMS RMS helps your application program 
process records within files, thereby allowing interaction between your application 
program and the data. 

volume (disk): An ordered set of 512-byte blocks. The medium that carries Files-11 
On-Disk Structure files. 

volume (magnetic tape): A reel of magnetic tape, which may contain a part of a file, a 
complete file, or more than one file. 

volume set: A collection of related volumes. 

write-behind processing: A software option used for sequentially accessing sequential 
files using two buffers. One buffer holds records to be written to the disk. The other 
buffer awaits I/O completion. 

Glossary-6 



Index 

A 
Access 

See also Random access 
modes• 1-2 
random • 1-2, 3-13 
sequential • 1-2, 3-13 
shared • 10-30 

in a VAXcluster • 3-28 
to process-permanent files • 6-20 

Access category • 4-21 
Access control list 

See ACL 
Access mode 

See Record access mode 
ACCESS primary 

secondary attributes • 7-3 
ACL (access control list) 

as protection basis•4-21 
compared with UIC protection • 1-10 

ADD command • 10-28 
AGAIN command • 10-12 
Allocation • 3-23, 4-30, A-1 
Allocation-quantity option•4-30 
ALLOCATION secondary attribute • 3-24, 4-30 
Alternate index • 3-19 
Alternate key • 3-15, 3-16 
Alternate record structure • 10-22 
Analysis section • 4-4, 10-1, 10-29 
ANALYSIS_OF_AREA primary attribute • 10-1, 

10-25 
ANALYSIS_OF_KEY primary attribute • 10-1, 

10-2 5 
/ANALYZE qualifier • 10-29 
Analyze/RMS_File Utility (ANALYZE/RMS_FILE) • 

1-12 , 10-1, 10-2 9 
examining prolog • 3-16 
file optimizing • 4-4 
with FDL files•4-2 

ANL file type• 10-5 
ANY_CYLINDER option•4-31 
Application design • 2-1, 2-24 

shared access consideration • 3-3 
space consideration • 3-2 
speed consideration • 3-1 

Approximate key match • 8-1 1 

Area • 3-23 
multiple • 3-6, 3-23, 3-25 

defining in an FDL file•3-24 
on a volume set • 3-23 

AREA DESCRIPTOR structure • 10-19 
AREA primary attribute • 3-23 

BEST_TRY_CONTIGUOUS secondary attribute • 
4-31 

EXACT_POSITIONING secondary attribute • 
4-31 

POSITION secondary attribute • 4-31 
VOLUME secondary attribute • 4-32 

Areas option • 4-30 
ASSIGN command • 4-14 

/TRANSLATION_ATTRIBUTES qualifier • 5-7 
Asynchronous operation • 8-17, 8-18 

performance • 9-9 
Attribute • 4-2, 4-9 

B 
Backup Utility (BACKUP) • 10-2 

eliminating extents • 9-8 
making archive copies • 10-31 

BEST_TRY_CONTIGUOUS secondary attribute• 
3-23, 4-31 

Bits per inch (bpi) • 1-8 
Block • 1-4, 3-6 

I/O.8-13 to 8-14 
Block-size option • 4-28 
Block spanning option • 3-10 
BLOCK_IO secondary attribute • 7-3 
BLOCK_SPAN attribute • 3-10 
BLOCK_SPAN secondary attribute • 4-29 
Bucket• 3-6, 3-17 

boundary • 3-19 
defined • 2-1 
reclaiming • 3-17, 10-30 
size • A-1 

considering performance•3-25 
for indexed files• 7-20 
for relative files • 7-19 
option • 4-28 
relative to index depth • 3-24 
with multiple areas•3-23 

Bucket size • A-1 

Index-1 



1 ndex 

Bucket split • 3-6, 3-22, 9-13, 10-31 
minimizing•3-26 

BUCKET_SIZE secondary attribute • 4-28, 7-19, 
7-20 

Buffer 
See also Global buffer 
I/O.7-16 

size • 3-2 
key • 9-13, 9-15, 9-18 
local • 3-9, 3-27, 7-20 
multiple•3-7 
number of • 3-1 1, 3-26, 3-27 
record header • 9-17, 9-18, 9-20 
selecting for optimum performance• 

7-17 to 7-18 
user• 9-17 
VMS RMS space allocation • 7-17 

Buffer area 
requirement for Get service • 8-2 

Buffer cache • 7-5, 7-18 
for storing index levels • 7-20 
types • 7-20 
using with muitistreaming • 7-4 

Buffered I/O byte count quota • 9-8 
Buffering technique • 7-16 to 7-22 
/BUFFER_COUNT qualifier • 7-19, 7-20 
Byte • 1-1 

C 
Cache 

buffer • 7-4 
for file sharing • 9-6 
global • 7-21 
specifying as read-only• 7-22 
with multiple buffers • 9-9 

memory • 3-12, 3-15, 3-26 
for file sharing • 3-14 
for random processing • 3-14 
for storing index•3-25 
process local • 3-9 
relative to bucket size•3-25 

CARRIAGE_CONTROL secondary attribute • 4-29 
Cell 

fixed-length • 3-12 
CELL AND RECORD structure • 10-16 
/CHECK qualifier • 10-1 
Check report • 10-1, 10-5 
Cluster 

See VAXcluster 

Command 
for Analyze/RMS_File Utility • 10-1 1 
for EDIT/FDL•4-3 

Completion status value field • 5-12 
CONNECT primary attribute 

ASYNCHRONOUS secondary attribute • 9-9, 
9-15, 9-18, 9-19, 9-20 

DELETE _ON _CLOSE secondary attribute • 9-12 
END_OF_FILE secondary attribute • 9-10 
FAST_DELETE secondary attribute • 9-9, 

9-12, 9-20 
FILL _BUCKETS secondary attribute • 9-13, 

9-18 
GLOBAL _BUFFER_COUNT secondary attribute 

• 9-9 
KEY_GREATER_EQUAL attribute • 8-9 
KEY_GREATER_EQUAL secondary attribute• 

9-12, 9-15 
KEY_GREATER_THAN attribute • 8-9, 8-10 
KEY_GREATER_THAN secondary attribute • 

9-13, 9-15 
KEY_LIMIT secondary attribute • 9-13, 9-16 
KEY_OF_REFERENCE secondary attribute• 

9-13, 9-15 
LOCATE_MODE secondary attribute • 9-9, 

9-16 
LOCK_ON_READ secondary attribute • 7-1 1, 

9-16 
LOCK_ON_WRITE secondary attribute • 7-11, 

9-16, 9-18 
MANUAL _LOCKING secondary attribute • 9-16 
MANUAL _UNLOCKING secondary attribute • 

7-15 
MULTIBLOCK_COUNT secondary attribute • 

3-1 1, 7-18, 9-9 
MULTIBUFFER_COUNT secondary attribute • 

3-1 1, 3-13, 3-26, 7-17, 7-18, 7--19, 
7-20, 9-9 

NOLOCK secondary attribute • 7-1 1, 9-15 
NONEXISTENT_RECORD attribute • 8-9 
NONEXISTENT_RECORD secondary attribute • 

7-15, 9-16 
READ_AHEAD secondary attribute • 9-9, 9-16 
READ_REGARDLESS secondary attribute • 

7-12, 9-16 
TIMEOUT_PERIOD secondary attribute • 7-12, 

9-17, 9-19 
TRUNCATE_ON_PUT secondary attribute • 

9-1 1, 9-19 
UPDATE_IF attribute • 8-8 
UPDATE _IF secondary attribute • 9-1 1, 9-19 
WAiT_FOR_RECORD secondary attribute • 

7-12, 9-17 

Index-2 



Index 

CONNECT primary attribute (cont'd.) 

WRITE_BEHIND secondary attribute•9-10, 
9-19 

Connect service • 8-5 
and asynchronous operations • 8-18 
and next record • 8-15, 8-16 
effect on next-record position • 8-16 

Contiguity• 10-29 
Contiguous-best-try option • 4-30 
Contiguous option • 4-30 
CONTIGUOUS secondary attribute • 3-23, 4-30 
CONTROL _FIELD_SIZE secondary attribute • 4-29 
Convert/Reclaim Utility (CONVERT/RECLAIM) • 

1-14, 3-16 
with Prolog 3 files • 3-17, 10-30 

Convert Utility (CONVERT) • 1-13, 9-8 
creating data files • 4-17, 4-18 
making a file contiguous• 10-30 
optimizing data files• 10-29 
populating a file • 4-22 
reorganizing files • 10-31 
reorganizing noncontiguous files• 3-26, 10-30 
with corrupted files • 10-1, 10-2 
with FDL files•4-2 
with Prolog 1 and 2 files • 3-16 
with Prolog 3 files • 3-17 

COPY command 
/CONTIGUOUS qualifier • 9-8, 10-29 

Create/FDL Utility (CREATE/FDL) • 1-14, 4-2, 
4-17, 10-1 

Create-if option • 4-17, 4-27, 5-9 
/CREATE qualifier • 4-1 1 
Create service • 4-17, 5-9 

for process-permanent files• 6-21 
CREATE_IF secondary attribute • 4-27 
Creation-time option • 3-9, 4-1, 4-2, 4-17, 

4-27, 4-28 
CTRL/Z • 4-4 
Current context 

.current-record position •8-15 
listed for VMS RMS services • 8-14 
next-record position • 8-16 

Current-record context • 8-14 
Current-record position • 8-3, 8-4 
Cylinder • 1-5 

boundary • 3-13 
options•4-31 

D 
DATA BUCKET structure • 10-16, 10-20 
Data compression • 3-16 
Data file 

creating • 4-17 
creating with FDL$CREATE routine • 4-15, 

4-18 
reorganizing • 10-29 

Data reliability • 9-11 
Data storage 

and file organization • 3-2 
Data type • 3-16 
DATA _AREA secondary attribute • 3-24 
Date-information option • 4-28 
DATE primary•4-28 
Default-extension option • 4-31 
Default file specification • 5-4, 6-1 to 6-4, 9-7 
Deferred-write processing • 9-9 
DEFERRED_WRITE secondary attribute • 7-19, 

7-20 
DEFINE command • 4-14, 6-15 

/TRANSLATION_ATTRIBUTES qualifier • 5-7 
DELETE command • 10-28 
DELETE secondary attribute • 7-3 
Delete service • 8-2, 8-5 

high-level language equivalents • 8-2 
run-time options• 9-20 

Design graphics mode • 4-1 1 
Design mnemonic • 4-14 
Directory • 6-12 
Directory specification 

normal • 6-12 to 6— i 4 
rooted • 6-15 to 6-20 

Directory tree • 6-12 
DIRECTORY_ENTRY secondary attribute • 4-28 
Disconnect service • 8-5 
Disk block • 3-6 
Disk cylinder• 3-6 
Disk quota • 3-5 
Disk volume•3-6 
DOWN command • 10-12 
DUMP command • 10-12 
Duplicate key 

null key processing • 3-19 

Index-3 



Index 

E 
EDF$MAKE_FDL logical name • 4-14 
EDIT/ACL command•4-22 
EDIT/FDL 

commands•4-3 
creating FDL files•4-5 
default value • 4-1 1 
invoking a script•4-5 
prompt • 4-1 1 

Edit/FDL Utility (EDIT/FDL) • 1-14 
calculating bucket size • 3-13, 3-25 
calculating extension size • 3-5, 9-8 
contiguous files • 3-4 
creating areas for index structures•3-23 
creating FDL files•4-2 
optimization algorithms • A-1 
Optimize script • 10-1, 10-25 
specifying run-time options • 9-1 to 9-5 

Equal-or-next key option • 8-9 
Equivalence string• 6-4 
Erase service• 5-9 
Error check • 10-1 
Exact key match • 8-1 1 
EXACT_POSITIONING secondary attribute•4-31 
EXIT command • 10-12 
Expanded string • 6-4, 6-5 
Extended attribute block 

See XAB 
/EXTEND_QUANTITY qualifier • 9-8 
EXTENSION secondary attribute•4-31 
Extension size • A-1 

calculating • 9-8 
performance • 9-8, 9-9 

Extent • 1-4, 9-8 

F 
FAB$B_BKS field • 3-24, 4-28, 7-19, 7-20 
FAB$B_BLS field•4-28 
FAB$B_DEQ field • 9-8 
FAB$B_DNS field•9-7 
FAB$B_FAC field • 9-6 

list of options• 7-3 
FAB$B_FNS field • 6-5, 9-7 
FAB$B_FSZ field•4-29 
FAB$B_ORG field • 4-28 
FAB$B_RAT field•4-29 

FAB$B_RFM field •4-30 
FAB$B_RTV field • 9-8, 9-10 
FAB$B_SHR field•9-6 

FAB$V_MSE option• 7-22 
FAB$V_SHRGET option• 7-22 
FAB$V_UPI option • 7-7 
list of options • 7-4 

FAB$L _ALQ field • 4-30 
FAB$L _DNA field • 6-4, 9-7 
FAB$L _FNA field • 6-4, 6-5, 9-7 
FAB$L _FOP field • 4-27 

FAB$V_CBT option • 4-31 
FAB$V_CTG option•4-30 
FAB$V_DFW option • 3-14, 3-15, 3-27, 

7-19, 7-20, 9-9 
FAB$V_MXV option•4-27 
FAB$V_NAM option • 6-5 
FAB$V_NEF option • 8-15, 8-16 
FAB$V_OFP option • 6-9, 6-10 
FAB$V_PPF option • 6-20 
FAB$V_RCK option • 9-1 1 
FAB$V_SQO option • 9-10 
FAB$V_TMP option • 4-28 
FAB$V_UFO option • 7-4, 9-14 
FAB$V_WCK option • 9-11 
list of options for • 9-14 

FAB$L _MRN field • 4-29 
FAB$L_MRS field •4-29 
FAB$L _NAM field • 6-9, 9-7 
FAB$L _STV field • 9-14 
FAB$W_DEQ field • 4-31, 9-9 
FAB$W_GBC field • 7-17, 7-22, 9-9 
FAB (file access block) • 1-1 1, 4-1 
$FABDEF • 5-10 
Fast-delete, option • 8-5, 9-9 
FDL$PARSE routine • 9-1 
FDL (File Definition Language) • 1-1 1, 3-13, 4-2 

attributes • 4-2 
scripts • 4-2 
syntax • 4-2 

FDL attribute 
predefined 

using FDL$PARSE routine • 9-1 
FDL Editor 

See Edit/FDL Utility (EDIT/FDL) 
FDL file 

creating • 4-2 
creating data files • 4-17 
creating with FDL$GENERATE routine • 4-15 
designing • 4-1 1 
examining with ANALYZE/RMS_FILE • 10-1 

Index-4 



Index 

FDL file (cont'd.► 
generating from a data file• 10-24 

/FDL qualifier• 10-24 
FDL routine 

FDL$CREATE routine • 4-15, 4-18, 6-3 
FDL$GENERATE routine • 4-15 
FDL$PARSE routine • 4-15, 6-3, 9-1 

example • 9-20 to 9-22 
FDL$RELEASE routine • 4-15, 6-3, 9-1 

example • 9-20 to 9-22 
Field • 1-1 
File • 1-1 

See also File characteristic 
See also File protection 
See also File sharing 
See also File structure 
access in a VAXcluster • 3-29 
aligning • 3-13 
contiguity • 3-4, 3-24 
corruption • 10-1 
extension • 3-23 
extension size • 3-5 
FDL • 4-2, 4-17, 10-1, 10-24 
header • 3-9, 3-12, 3-15, 10-1 1 
indexed • 10-28, 10-30 
initial allocation • 3-4 
internal structure • 10-1 
locking in a VAXcluster•3-29 
magnetic tape• 1-9 
specifying one or many • 5-16 

File access 
category summary • 4-21 
defaults • 7-5 
options•4-21 

File access block 
See FAB 

FILE ATTRIBUTES structure • 10-12, 10-16, 
10-19 

File characteristic • 4-14, 4-27, 4-28 
File Definition Language 

See FDL 
File design 

attributes • 3-4 
File disposition • 9-12 
File header • 1-7 
FILE HEADER structure • 10-12, 10-16, 10-19 
File opening option 

See also Creation-time options 
adding records • 9-10 to 9-1 1 
data reliability • 9-1 1 
file access and sharing • 9-6 to 9-7 

File opening option (cont'd.) 

file disposition • 9-12 
file performance • 9-7 to 9-10 
file specification • 9-7 
for indexed files • 9-12 to 9-13 
for magnetic tape processing • 9-13 to 9-14 
for nonstandard file processing • 9-14 
record access • 9-10 

File organization • 1-2, 2-13 
See Indexed file 
See Relative file 
See Sequential file 
selecting • 2-1 

File organization option •4-28 
File positioning •4-30 
FILE primary attribute 

ALLOCATION secondary attribute • 3-4, 3-24, 
4-30 

BEST_TRY_CONTIGUOUS secondary attribute• 
3-4, 4-31 

BUCKET_SIZE secondary attribute • 3-13, 
3-24, 4-28, 7-19, 7-20 

CONTIGUOUS secondary attribute • 3-4, 3-24, 
4-30 

CONTROL _FIELD_SIZE secondary attribute • 
4-29 

CREATE_IF secondary attribute • 4-27 
DEFAULT_NAME secondary attribute•6-4, 

9-7 
DEFERRED_WRITE secondary attribute • 3-14, 

3-27, 7-19, 7-20, 9-9 
DIRECTORY_ENTRY secondary attribute • 4-28 
EXTENSION secondary attribute • 3-5, 4-31, 

9-8, 9-9 
GLOBAL_BUFFER_COUNT secondary attribute 

• 3-9, 7-17, 7-22 
MAXIMIZE_VERSION secondary attribute • 

4-27 
MAX _RECORD_NUMBER secondary attribute • 

4-29 
MT_BLOCK_SIZE secondary attribute • 4-28 
MT_CLOSE_REWIND secondary attribute • 

9-14 
MT_CURRENT_POSITION secondary attribute • 

9-14 
MT_NOT_EOF secondary attribute • 9-14 
MT_OPEN_REWIND secondary attribute • 9-14 
MT_PROTECTION secondary attribute • 4-28 
NAME secondary attribute•6-4, 9-7 
NON_FILE_STRUCTURED secondary attribute • 

9-14 
ORGANIZATION secondary attribute • 4-28 

Index-5 i 



Index 

FILE primary attribute (cont'd.) 
OWNER secondary attribute • 4-28 
PRINT_ON_CLOSE secondary attribute • 9-12 
PROTECTION secondary attribute•4-28 
READ_CHECK secondary attribute • 9-1 1 
REVISION secondary attribute • 4-28 
SEQUENTIAL _ONLY secondary attribute • 9-10 
SUBMIT_ON_CLOSE secondary attribute • 9-12 
SUPERSEDE secondary attribute•4-27 
TEMPORARY secondary attribute • 4-27 
USER_FILE_OPEN secondary attribute • 7-4, 

9-14 
WINDOW_SIZE secondary attribute • 9-8, 

9-10 
WRITE_CHECK secondary attribute•9-1 1 

File processing 
many files • 5-15 to 5-16 
nonstandard file • 9-14 
single file • 5-14 to 5-15 

File protection •4-28 
Files-1 1 On-Disk Structure • 1-3 

file headers • 1-7 
home block • 1-7 
index file • 1-7 

File sharing • 3-8, 9-6 
compatibility with subsequent record access • 

7-5 to 7-6 
defaults • 7-5 
interlocked interprocess • 7-2, 7-5 to 7-6 
multistreaming• 7-2, 7-4 
no-access function • 7-4 
options • 7-4 
user-interlocked interprocess • 7-2, 7-4, 7-7 

File specification • 6-3 
See also Default file specification 
applicable services and routines • 5-8 to 5-14 
components • 5-1 to 5-2 
default 

See also Default file specification 
directory • 6-12 to 6-20 
format • 5-1 to 5-4, 6-5 to 6-7 
for remote file access • 5-2 to 5-4, 5-8 
input • 6-10 
maximum length • 5-2 
output • 6-10 
preprocessing • 5-8 
primary • 5-4, 6-1 to 6-4, 9-7 
process default • 5-4 
program supplied • 5-4, 6-1 to 6-4 
related • 5-4, 6-1 to 6-4, 6-9, 9-7 
using • 5-1 

File specification (cont'd.) 
using logical name•6-5 to 6-7 
using name block• 5-8 
using search lists • 5-8 to 5-16, 6-7 to 6-8 
using SYS$DISK • 6-2 
using wildcard characters • 5-8 to 5-16 

File specification parsing • 5-7 to 5-8, 
6-4 to 6-12 

conventions used by VMS RMS • 6-4 to 6-12 
for input file • 6-10 
for output file • 6-10 
for related file • 6-9 
logical name • 6-5 to 6-7 
search list • 6-7 to 6-8 

File structure • 10-1 1 
File tuning 

See Tuning 
File type 

ANL• 10-5 
FILE_ID option • 4-31 
FILENAME option • 4-31 
Fill factor• 3-26 
Find service • 8-1, 8-2 to 8-3 

and key matches • 8-10 
compared with Get service • 8-2 
effect on next-record position • 8-16 
high-level language equivalents • 8-1 
improved performance • 8-3 
requirement for end-of-file test•8-3 
run-time options • 9-14 to 9-17 

FIRST command • 10-12 
Fixed-length cell • 3-12 
Fixed-length control field • 3-12 

size option • 4-28 
Flush service• 7-7, 8-5 
FORMAT secondary attribute • 4-30 
Free service • 8-5 

G 
GBLPAGES system parameter • 1-16 
GBLPAGFIL system parameter • 1-16 
GBLSECTIONS system parameter • 1-16 
Generic key match • 8-1 1 
GET secondary attribute • 7-4, 7-22 
Get service• 8-1, 8-2 

and current-record • 8-15 
compared with Find service • 8-2 
effect on next-record position • 8-16 

Index-6 



Index 

Get service (cont'd.) 

high-level language equivalents • 8-1 
requirement for end-of-file test • 8-3 
run-time options • 9-14 to 9-17 

Global buffer• 1-16, 3-8, 3-27 
number • 7-17 
performance•9-9 
restricted use • 7-21 
with deferred-write option • 3-9 
with indexed file• 7-21 
with relative file• 7-21 
with shared file • 7-20 to 7-22 
with shared sequential file • 3-12 

Global buffer count 
example of run-time specification • 

5-10 to 5-12 
Global page-file section • 1-16 
Global page table • 1-16 
Global section • 1-16 
/GLOBAL _BUFFERS qualifier • 7-22 
GLOBAL_BUFFER_COUNT secondary attribute • 

7-17, 7-22 
Glossary information •Glossary-1 

H 
Hard-positioning option • 4-31 
Hardware error • 10-1 
HELP command • 10-12 
Home block • 1-7 

i 

I/O and performance • 3-1 
I/O unit• 3-6, 3-7, 3-1 1 
Image Activation • 5-5 
Image specification 

effect of version number delimiter on overhead • 
5-5 

INDEX BUCKET structure • 10-20 
Index compression 

prohibition against using • 3-3, 3-16, 3-25, 
4-9 

Index depth • A-2 
Indexed file • 2-18, 3-15 

advantages and disadvantages of using • 2-24 
allocating • A-1 
alternate key • 2-19 

Indexed file (cont'd.) 

bucket size • 3-6, 3-24, 7-20, A-1 
buffering • 7-20 
compression of • 3-16, 3-25 
deferred-write option with • 3-8 
designing • 3-15 to 3-28 
examining • 10-19 
fill factor • 3-6 
global buffers • 7-21 
key type • 2-19 
making contiguous• 10-30 
optimizing performance • 3-15 to 3-28 
primary key • 2-19 
Prolog 1 and Prolog 2 type • 3-16 
reclaiming buckets in • 10-30 
record access • 8-9 to 8-12, 8-12 to 8-13 
redesigning • 10-28 
run-time options • 9-12 to 9-13 
tuning • 3-15 to 3-28 
with global buffers • 3-27 

Indexed file compression•3-3 
Indexed file organization • 1-2 

reorganizing • 10-31 
/INDEXED qualifier • 7-20 
Index structure • 3-15, 3-24 

Level 0.3-17 
Level 1 •3-17 
primary • 3-17 

INDEX _AREA secondary attribute • 3-24 
INITIALIZE command 

and window size•9-8 
/INTERACTIVE qualifier • 10-1 1 
Internal buffer• 8-3 
Interrecord gap 

See IRG 
INVOKE command•4-5 
IRG • 1-8 

K 
Key 

alternate 
duplicate values • 3-22 
performance of•3-22 

duplicate values • 2-20 
for Prolog 1 and 2 files • 3-16 
null value• 2-20 
number of • 3-23 
primary • 3-16, 3-22 

Index-7 



Index 

Key (cont' d . ) 

segmented • 3-16 
size • 9-13, 9-15, 9-18 
use of to store indexed records sequentially• 

2-5 
Key 0.3-17 
Key buffer • 8-3, 9-13, 9-18 
Key-characteristics option • 4-29 
Key compression 

front • 3-16 
prohibition against using • 3-3, 3-16, 3-25, 

4-9 
rear • 3-16 

KEY DESCRIPTOR structure • 10-19 
Key-greater-than option 

See Next key option 
Key-greater-than-or-equal option 

See Equal-or-next key option 
Key match 

approximate • 8-1 1 
exact • 8-1 1 
generic • 8-1 1 
generic and approximate • 8-12 

Key of reference • 2-5 
KEY primary attribute•4-29 

DATA_AREA secondary attribute • 3-24 
DATA_FILL secondary attribute • 3-26 
INDEX_AREA secondary attribute • 3-24 
INDEX _FILL secondary attribute • 3-26 
LEVEL 1 _INDEX _AREA secondary attribute • 

3-24 
TYPE secondary attribute • 3-22 

KEY_GREATER_EQUAL secondary attribute • 8-9 
KEY_GREATER_THAN secondary attribute • 8-9, 

8-10 
Known file list 

image look up•5-5 

L 
Level 

number of • A-2 
LEVEL 1 _INDEX _AREA secondary attribute • 3-24 
LIB$FIND_FILE routine • 5-8 to 5-12 
LIB$STOP routine • 5-12 
Line_Plot graph • 4-12, A-2 
Locate mode 

and record retrieval • 8-2 
Lock 

root • 3-29 

LOCK_ON_READ secondary attribute • 7-1 1 
LOCK_ON_WRITE secondary attribute • 7-1 1 
Logical-block-position option •4-31 
Logical name 

advantages • 5-4 
concealed attribute • 5-7 
concealed-device • 6-15 
example program • 5-5 to 5-6 
parsing • 5-7 
rooted-device • 6-15 
search list • 5-7, 6-7 to 6-8 
translation of • 5-7, 6-5 to 6-7 
types of • 5-6 to 5-7 

LOGICAL option•4-31 

M 
Magnetic tape processing 

run-time options • 9-13 to 9-14 
MANUAL _UNLOCKING secondary attribute • 7-15 
Master file directory (MFD) • 6-12 
Maximize-version option • 4-27 
MAXIMIZE_VERSION secondary attribute • 4-27 
Maximum record number option •4-29 
Maximum record size 

indexed file • 3-22 
Maximum-record-size option •4-29 
MAX _RECORD_NUMBER secondary attribute • 

4-29 
Memory 

nonpaged system dynamic•9-8 
releasing with the FDL$RELEASE routine • 4-15 

Memory cache • 3-12, 3-14 
MFD 

See Master file directory 
Mode 

interactive • 10-1 1 
locate 

performance• 9-9 
MODIFY command • 10-28 

Edit/FDL Utility • A-1 
MOUNT command 

and window size • 9-8 
MT_BLOCK_SIZE secondary attribute • 4-28 
MT_PROTECTION secondary attribute • 4-28 
Multiblock • 3-1 1 

defined • 2-1, 3-6 
restriction for use • 3-6 

MULTIBLOCK_COUNT secondary attribute• 7-18 

1 ndex-8 



Index 

Multibuffer count • 3-1 1, 3-13, 3-26, 3-27 
MULTIBUFFER_COUNT secondary attribute • 

7-17, 7-19 
and record access type • 7-20 
for sequential file• 7-18 

Multiple area 

See Area 
Multiple service 

for retrieving records • 8-3 
MULTISTREAM secondary attribute• 7-4 

N 
NAM$B_RSS field • 6-9 
NAM$L _ESA field • 6-4 
NAM$L _RLF field • 6-4, 6-9, 9-7 
NAM$L _RSA field • 6-4, 6-9 
NAM$T_DVI field • 6-5 
NAM$W_DID field • 6-5 
NAM$W_FID field • 6-5 
NAM (name► block 

address field • 5-9 
and resulting file specification • 5-8 
and Search service• 5-8 
presence of a search list• 5-9 
presence of a wildcard character• 5-9 
support by FDL • 5-10 
support by languages • 5-10 
using • 5-12 to 5-14 

$NAMDEF • 5-10 
NEXT command • 10-12, 10-16 
Next key option • 8-9, 8-10 
Next-record position • 8-16 

use with sequential access • 8-16 
Next volume service • 8-5 
Node 

lock-mastering • 3-29 
lock-requesting • 3-29 

/NOINTERACTIVE qualifier • 10-29 
NOLOCK secondary attribute • 7-1 1 
NONEXISTENT_RECORD secondary attribute• 

7-15, 8-9 
Nonstandard file processing 

run-time options • 9-14 
Normal directory syntax • 6-12 to 6-14 
Null key 

for improving performance • 3-19 

0 
Open-by-name-block option • 5-9, 6-5 

and performance • 6-7 
Open service • 5-9 

for process-permanent files•6-21 
Optimization 

Edit/FDL Utility • A-1 
of indexed file • 10-29 

Organization 
See File organization 

ORGANIZATION secondary attribute•4-28 
OWNER secondary attribute • 4-28 

P 
PO region 

used for VMS RMS buffers • 7-17 
Parity bit • 1-8 
Parse service • 5-8 to 5-12 
Parsing 

See File specification parsing 
Parsing file specification 

See File specification parsing 
Performance • 3-1, 9-7 to 9-10 

and asynchronous processing • 9-9 
and extension size• 9-8 
and fast-delete option • 9-9 
and global buffer count• 9-9 
and locate mode • 9-9 
and window size • 9-8 
buffers • 9-9 
deferred-write option • 3-28, 9-9 
effect of compression • 3-16 
extension size • 9-9 
I/O in VAXcluster • 3-29 
improving with null keys • 3-19 
in a VAXcluster • 3-28 
multiblock ~ count • 9-9 
read-ahead option • 9-9 
recommendations for a VAXcluster• 3-30 
sequential access • 9-10 
using Prolog 3.3-16 
window size • 9-10 
write-behind option • 9-10 

Pointer 
retrieval • 9-8 

Index-9 



Index 

POSITION attribute • 4-31 
Primary attribute • 4-9 
Primary record structure • 10-20 
Process 

resource limits • 1-16 
types of resources • 1-15 

asynchronous system trap limit (ASTLM) • 
1-17 

buffered I/O limit (BIOLM) • 1-17 
I/O limit (DIOLM) • 1-17 

Process default • 4-14 
Process I/O segment• 1-16 
Processing 

deferred-write option • 3-15, 3-27 
options for improving file performance•3-7 
read-ahead option • 3-1 1, 3-12 
write-behind option • 3-1 1, 3-12 

Process-permanent file • 1-16, 6-20 
access to • 6-20 
implications for indirect access• 6-21 

PROHIBIT secondary attribute • 7-4 
Prolog • 3-12, 3-15, 3-16, 3-19 
Prolog 1 •3-16 
Prolog 2.3-16 
Prolog 3.3-16, 10-30 
PROLOG structure • 10-16, 10-19 
Protection 

access category • 4-21 
ACL-based • 1-10, 4-21 
disk and tape volumes • 1-10 
UIC-based • 1-10, 4-21 

PROTECTION secondary attribute•4-28 
PUT secondary attribute • 7-3, 7-4 
Put service • 8-1, 8-3 to 8-4 

and next record • 8-16 
effect on next-record position • 8-16 
high-level language equivalents • 8-1 
run-time options • 9-17 to 9-19 

Q 
Queue I/O Request system service • 7-4, 9-14 

R 
RAB$B_KRF field • 9-13, 9-15 
RAB$B_KSZ field • 8-8, 8-9, 8-12, 9-13, 9-15, 

9-18 

RAB$B_MBC field • 3-1 1, 7-18, 9-9 
RAB$B_MBF field • 3-1 1, 3-26, 7-17, 7-19, 

7-20, 9-9 
RAB$B_RAC field 

RAB$C_KEY option • 8-6, 9-10, 9-16, 9-18 
RAB$C_RFA option • 8-6, 9-10, 9-16, 9-18 
RAB$C_SEQ option • 8-6, 9-10, 9-16, 9-18 

RAB$B_TMO field • 7-12, 7-13, 9-17 
RAB$L _KBF field • 8-8, 8-9, 8-12, 9-13, 9-15, 

9-18 
RAB$L _RBF field • 9-18, 9-20 
RAB$L _RBZ field • 9-18 
RAB$L _RHB field • 9-17, 9-18, 9-20 
RAB$L _ROP field • 9-7 

RAB$V_ASY option • 8-17, 8-18, 9-9, 9-15, 
9-18, 9-19, 9-20 

RAB$V_EOF option • 8-14, 8-16, 9-10 
RAB$V_EQNXT option • 9-12, 9-15 
RAB$V_FDL option • 9-9, 9-12, 9-20 
RAB$V_KGE option • 8-9, 8-10 
RAB$V_KGT option • 8-9, 8-10 
RAB$V_LIM option • 9-13, 9-16 
RAB$V_LOA option • 9-13, 9-18 
RAB$V_LOC option • 9-9, 9-16 
RAB$V_NLK option • 7-12, 9-15 
RAB$V_NXR option • 7-15, 8-9, 9-16 
RAB$V_NXT option • 9-13, 9-15 
RAB$V_RAH option • 3-12, 9-9, 9-16 
RAB$V_REA option • 7-12, 9-16 
RAB$V_RLK option • 7-12, 9-16, 9-18 
RAB$V_RRL option • 7-12, 9-16 
RAB$V_TMO option • 7-12, 7-13, 9-17, 9-19 
RAB$V_TPT option • 9-1 1, 9-19 
RAB$V_UIF option • 8-4, 8-8, 9-1 1, 9-19 
RAB$V_ULK option • 7-15, 9-16 
RAB$V_WAT option • 7-12, 9-17 
RAB$V_WBH option • 3-12, 9-10, 9-19 

RAB$L _UBF field • 9-17 
RAB$L _USZ field • 9-17 
RAB$W_RBF • 8-3 
RAB$W_RFA field • 8-12, 8-15, 9-17 
RAB$W_RSZ • 8-3 
RAB$W_RSZ field • 9-20 
RAB (record access block) • 1-1 1 
$RABDEF • 5-10 
Random access 

by key value • 2-5 to 2-7, 8-6, 
8-11 to 8-12 

by relative record number • 2-5 to 2-7, 8-6, 
8-8, 8-9 

by RFA (record file address) • 2-7, 8-6, 
8-12 to 8-13 

Index-10 



Index 

Random access (cont'd.) 

to indexed files • 2-6, 8-1 1 to 8-12, 
8-12 to 8-13 

to relative files • 2-6, 8-9, 8-12 to 8-13 
to sequential files • 2-6, 8-8, 8-12 to 8-13 
with multibuffer count• 3-26 

Random access mode• 1-2 
READ_REGARDLESS secondary attribute • 7-12 
Record • 1-1 

adding • 9-10 to 9-1 1 
blocking • 1-8 
contents • 2-1 
deleting • 8-5, 9-20 
fixed-length format • 1-2, 2-8, 2-9, 3-9, 3-12 
format • 2-7 
inserting • 8-3 to 8-4, 9-17 to 9-19 
locating • 8-2 to 8-3 
retrieving • 8-2 to 8-3, 9-14 to 9-17 
stream format • 1-2, 3-9 
undefined format • 3-9, 3-10 
updating • 8-4, 9-19 to 9-20 
variable format• 1-2 
variable length format • 2-9, 3-9, 3-10, 3-12 
variable-length with fixed-length control field 

(VFC) format • 1-2, 3-12 
Record access • 9-6, 9-10 

in stream context • 8-14 
options• 7-3 

Record access block 
See RAB 

Record access mode• 1-2, 2-2 
for indexed files • 8-9 to 8-12 
for relative files • 8-8 to 8-9 
for sequential files • 8-7 to 8-8 
sequential • 2-2, 8-6, 8-9, 8-10 
specifying • 8-6 to 8-7, 9-10, 9-16, 9-18 

Record-attributes option • 4-29 
Record buffer • 9-18, 9-20 

size • 9-18, 9-20 
Record buffering 

See Buffering techniques 
Record file address 

See RFA 
Record format • 1-1, 1-2, 3-12 

fixed-length • 3-19 
selecting • 2-1 
variable-length • 3-19 

Record-format option • 4-30 
Record header buffer • 9-17, 9-18, 9-20 
Record locking • 9-6 

deadlock • 7-16 

Record locking (cont'd.) 

use with update operation • 8-3 
Record Management Service(RMS) 

Image activation • 5-5 
Record operation • 8-1 to 8-6 
RECORD primary attribute 

BLOCK_SPAN secondary attribute • 3-10, 
4-29 

CARRIAGE_CONTROL secondary attribute • 
4-29 

FORMAT secondary attribute•4-30 
SIZE secondary attribute • 4-29 

Record processing run-time option 
deleting • 9-20 
inserting • 9-17 to 9-19 
retrieving • 9-14 to 9-17 
updating • 9-19 to 9-20 

Record-processing services 
list of • 8-5 

Record reference vector 
See RRV 

Record stream 
connecting to a file• 7-2 
defined • 7-2 

Record stream connection option 

See File opening options 
Record transfer mode 

locate • 7-16 
move • 7-16 

RECORD_1O secondary attribute • 7-3 
Related-file-position option • 4-31 
Relative file • 2-16, 3-12 

advantages and disadvantages of using • 2-18 
allocating • A-1 
bucket size • 3-6, 3-13, 7-19, A-1 
buffering • 7-19 
deferred-write option with • 3-8 
designing • 3-12 to 3-15 
examining • 10-16 
maximum record size • 3-12 
optimizing performance • 3-12 to 3-15 
record access • 8-8 to 8-9, 8-12 to 8-13 
tuning • 3-12 to 3-15 
with global buffers • 3-14 

Relative file organization • 1-2 
/RELATIVE qualifier • 7-19 
Relative record number • 1-2, 3-12 
Release service • 8-5 
Remote file access 

See also File specification 
FORTRAN program example • 5-6 

Rename service• 5-9 

Index-11 



Index 

Repeating characters 
in compression • 3-16 

REST command • 10-12, 10-16 
Retrieval pointer • 9-8 
RETURN key 

interactive mode • 10-12 
Revision data • 9-10 
REVISION secondary attribute•4-28 
Rewind service • 8-5 

effect on next-record position • 8-16 
RFA • 1-2, 8-12 to 8-13, 9-17, 10-31 

access • 10-30 
created by CONVERT • 3-16 
use of table for rapid access • 8-3 

RMS 
See VMS RMS (Record Management Services) 

RMS_GBLBUFQUO system parameter • 1-16 
Rooted-device logical name • 6-15 
Rooted-directory logical name 

for additional nesting • 6-18 
Rooted-directory specification 

concatenated • 6-17 to 6-19 
syntax • 6-15 to 6-20 

Root level • 3-17 
Rotational latency• 1-5 
RRV (record reference vector) • 3-6, 3-22 
Run-time option 

example • 9-20 to 9-22 
specifying • 9-1 to 9-6 

S 
Save set • 10-31 
Script 

I i st of • 4-4 
Optimize • 10-1 
Touch-up • 10-28 

/SCRIPT=OPTIMIZE qualifier • 10-29 
/SCRIPT qualifier• 10-28 
Search list 

See also File specification 
and multiple file locations• 5-7, 5-8 
defined • 5-7 
example • 5-15 
translation•6-7 to 6-8 

Search service • 5-8 to 5-12 
Secondary attribute • 4-9 
Secondary completion status value field • 5-12 

Secondary index 

See Alternate index 
Secondary index data record 

See SIDR 
Secondary service 

effect on next-record position • 8-16 
Sector• 1-5 
Seek time • 1-5 
Sequential access• 8-6 

mode • 1-2 
to indexed files • 2-4, 8-10 
to relative files• 2-4, 8-9 
to sequential files• 2-3 
use with sequential files • 8-7 
with multibuffer count • 3-26 

Sequential file • 2-14 
advantages and disadvantages of using • 2-15 
allocating • A-1 
buffering • 7-18 to 7-19 
designing • 3-9 to 3-12 
examining • 10-12, 10-13 
maximum record size • 3-10 
optimizing performance • 3-9 to 3-12 
organization • 1-2 
read-ahead and write-behind • 3-9 
record access • 8-7 to 8-8, 8-12 to 8-13 
tuning • 3-9 to 3-12 

/SEQUENTIAL qualifier • 7-19 
SET DEFAULT command • 6-14, 6-15 

/TRANSLATION _ATTRIBUTES qualifier • 6-15 
SET FILE command 

/ACL qualifier • 4-22 
/EXTENSION qualifier • 3-5 
/GLOBAL _BUFFERS qualifier • 3-9, 7-22 

SET PROTECTION command•4-21 
SET RMS_DEFAULT command 

/BUFFER_COUNT qualifier • 3-8, 3-1 1, 3-13, 
7-19, 7-20 

/EXTEND_QUANTITY qualifier • 3-5, 9-8 
/INDEXED qualifier • 7-20 
/RELATIVE/BUFFER_COUNT qualifier • 3-14 
/RELATIVE qualifier • 7-19 
/SEQUENTIAL qualifier • 7-19 

Shared access• 3-3 
Shared file 

see File sharing 
SHARING primary attribute 

secondary attributes • 7-4, 7-7, 7-22 
SHOW RMS_DEFAULT command • 3-8, 3-14 

current default extension size • 9-8 
current process-default buffer count • 

7-19 to 7-20 

Index-12 



Index 

SIDR (secondary index data record) • 3-15, 3-19, 
10-22 

Signaling errors 
example in a VAX MACRO program • 5-12 

SIZE secondary attribute•4-29 
Software error • 10-1 
Speed 

See Performance 
Spool on close option • 9-12 
SPR (Software Performance Report) • 10-2 
/STATISTICS qualifier• 10-6 
Statistics report • 10-6, 10-1 1 
Sticky default 

defined • 6-9 
STR$GET1_DX routine • 5-10 
Stream record format • 2-12 
Supersede option • 4-27, 5-9 
SUPERSEDE secondary attribute • 4-27 
Surface_Plot graph • 4-12, A-2 
Symbol definition 

$FABDEF 
for defining symbols to USEROPEN routine • 

5-10 
$NAMDEF 

for defining symbols to USEROPEN routine • 
5-10 

$RABDEF 
for defining symbols to USEROPEN routine• 

5-10 
Synchronous operation • 8-17 
SYS$DISK 

applied to file specification • 6-2 
SYS$FILESCAN•5-8 
SYS$OUTPUT 

for check report • 10-1 
SYS$SETDDIR service • 6-14 
System 

default • 4-14 
resources• 1-15 

System management• 3-8 
image activation • 5-5 

System parameter • 1-16 

T 
Tape processing 

run-time options • 9-13 to 9-14 
Temporary option • 4-27 

delete option • 4-27 

TEMPORARY secondary attribute • 4-27 
Terminator variations • 3-10 
TIMEOUT_PERIOD secondary attribute • 7-12 
TOP command • 10-12 
Track• 1-5 

size • 3-13 
/TRANSLATION—ATTRIBUTES qualifier • 5-7, 

6-15 
Tree structure • 10-1 1 

of indexed file • 10-19 
of relative file• 10-16 
of sequential file• 10-12 

Truncate-on-put option 
access requirement • 7-7 

TRUNCATE secondary attribute• 7-3 
Truncate service • 8-5 

effect on next-record position • 8-16 
Tuning•3-3, 10-26 

indexed files • 3-15 
relative files • 3-12 
sequential files • 3-9, 3-10 

U 
UIC (user identification code) • 1-10 
UIC-based protection • 4-21 
UP command • 10-12 
Update-if option • 8-4 
Update operation • 3-9 
UPDATE secondary attribute • 7-3, 7-4 
Update service • 8-1, 8-4 

high-level language equivalents • 8-1 
run-time options • 9-19 to 9-20 

UPDATE_IF secondary attribute • 8-8 
Use of key 

See Key 
User buffer 

address • 9-17 
size • 9-17 

User identification code 
See UIC 

USER_FILE_OPEN secondary attribute • 7-4 
USER_INTERLOCK secondary attribute • 7-4, 7-7 

Index-13 



Index 

v 

Variable-length record 
with D format• 2-9 
with V format • 2-9 

Variable with fixed-length control field 

See VFC 
VAX BASIC 

USEROPEN routine • 5-10, 9-5 
VAXcluster • 3-28 

locking considerations • 3-29 
VAX MACRO.3-12, 3-15, 3-27, 4-2 

and VMS RMS•9-5 
VFC • 2-1 1, 3-9, 3-10 
VFC record format • 1-2 
Virtual-block-position option•4-31 
VIRTUAL option•4-31 
VMS RMS 

connect-time options•4-2 
control blocks • 4-15 
creation-time options • 4-2, 4-17 
overflow into PO.7-17 

VMS RMS (Record Management Services) • 1-10 
allocating buffers • 3-12, 3-14 
bucket splits•3-23 
calculating extension size • 3-10 
calculating file extension size• 3-5 
control blocks • 1-1 1 
data structures • 1-1 1 
deferred-write operation • 3-15, 3-27 
in indexed files • 3-15 
MACRO parameter • 3-12 
placing file information in prolog • 3-15 
use of multiblocks • 3-1 1 
using with languages • 1-10 
with Prolog 3 files• 10-30 

VMS RMS (Record Management Services) utilities 
ANALYZE/RMS_FILE • 1-12 
CONVERT • 1-14 
CONVERT/RECLAIM • 1-14 
CREATE/FDL • 1-14 
EDIT/FDL • 1-14 

VMS RMS option 
selection • 9-1 

Volume • 1-4 
multidisk • 3-23 
positioning • 3-23 

Volume-number option•4-32 

VOLUME secondary attribute • 4-32 
Volume set • 1-5 

for improving performance • 3-6 
to minimize disk head competition • 3-23 

W 
Wait service • 8-5 

and asynchronous operations • 8-18 
WAIT_FOR_RECORD secondary attribute • 7-12 
Wildcard character 

See also File specification 
and multiple file locations • 5-8 
program preprocessing • 5-8 to 5-14 

Window • 9-8 to 9-10 
Window size • 10-29 
Working set • 1-16 

X 
XAB$B_AID field • 4-30 
XAB$B_ALN field 

options•4-31 
XAB$B_AOP field 

options•4-30 
XAB$B_BKZ field • 3-24, 4-28, 7-19, 7-20 
XAB$L _ALQ field • 4-30 
XAB$L _LOC field • 4-31 
XAB$W_DEQ field • 4-31 
XAB$W_VOL field•4-32 
XAB (extended attribute block► • 1-1 1, 4-2 

date and time fields•4-28 
key definition fields•4-29 
protection fields•4-28 

Index-14 



Reader's Comments Guide to VMS File 
Applications 

AA—LA78A—TE 

Please use this postage-paid form to comment on this manual. If you require a written reply to a software 
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your 
comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ D 
Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less  

What I like best about this manual is  

What I like least about this manual is  

I found the following errors in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version   of the software this manual describes. 

Name/Title   Dept.  

Company 

Mailing Address  

Phone  

Date 



— — — Do Not Tear -Fold Here and Tape 

d 8980 a 
TM 

— — — Do Not Tear -Fold Here 

No Postage 
Necessary 
if Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications—Spit Brook 
ZK01-3/J35 110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

III~~~~~II~II~~~~II~~~~I~II~I~~I~I~~I~~I~I~~~I~II~~I 

C
u

t 
A

lo
n
g
 D

o
tt
e
d
 L

in
e

 



Reader's Comments Guide to VMS File 
Applications 

AA—LA78A—TE 

Please use this postage-paid form to comment on this manual. If you require a written reply to a software 
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your 
comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 
Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less  

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version   of the software this manual describes. 

Name/Title   Dept.  

Company   Date  

Mailing Address  

  Phone  



- — — Do Not Tear -Fold Here and Tape 

d a 
TM 

— — Do Not Tear -Fold Here 

No Postage 
Necessary 
if Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications—Spit Brook 
ZK01-3/J35 110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

III~~~~~II~II~~~~II~~~~I~II~I~~I~I~~I~~I~I~~~I~II~~I 

C
u

t 
A

lo
n
g
 D

o
tt
e
d
 L

in
e

 


