
VMS Networking Manual

Order Number: AA—LA48A—TE

April 1988

This book presents conceptual and usage information for VMS users who
want to manage DECnet—VAX, perform operations over the network, or
both.

Revision/Update Information: This manual supersedes the V~IX/VMS
Networking Manual, Version 4.4.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

MS-DOS is a trademark of Microsoft Corporation.
IBM is a registered trademark of International Business Machines Corporation.
MVS is a trademark of International Business Machines Corporation.
Telenet is a trademark of GTE Telenet Communication Corporation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECSYSTEM-20
DECnet
DECnet—DOS
DECnet—Rainbow
DECnet—ULTRIX
DECnet—VAXmate
DECnet/E
DECsystem-10

IAS
P/OS
PDP
RSTS
RSX
RT-11
TOPS-10
TOPS-20
ThinWire

ULTRIX
UNIBUS
VAX
VAXcluster
VMS
VT

d 8 9 0D a TM

ZK4520

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA &PUERTO RICO

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire
03061

CANADA

Digital Equipment
of Canada Ltd.
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

INTERNATIONAL

Digital Equipment Corporation
PSG Business Manager
c/o Digital's local subsidiary
or approved distributor

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SDC►, Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use ~,
DIGITAL-supported devices, such as the LN03 laser printer and PostScript -"
printers (PrintServer 40 or LN03R ScriptPrinter), to produce atypeset-quality
copy containing integrated graphics.

© PostScript is a trademark of Adobe Systems, Inc.

.. r

Contents

PREFACE xxiii

NEW AND CHANGED FEATURES xxix

PART I I NTRODUCTION TO DECNET—VAX AND
VAX PSI

CHAPTER 1 OVERVIEW OF DECNET-VAX AND VAX PSI 1-1

1.1 GENERAL DESCRIPTION OF A DECNET NETWORK 1-1

1.2 DECNET—VAX AND VAX PSI 1-2

1.2.1 DECnet Interface with the VMS Operating System 1-2

1.2.2 VAX Packetnet System Interface 1-3

1.2.3 DECnet Functions 1-3

1.3 DECNET—VAX CONFIGURATIONS 1-5

1.3.1 DECnet—VAX Ethernet Local Area Network Configuration 1-5
1.3.1.1 Ethernet Datagrams • 1-7
1.3.1.2 Transmission and Reception of Ethernet Packets • 1-7
1.3.1.3 Ethernet Routers and End Nodes • 1-8
1.3.2 DDCMP Network Configurations 1-8
1.3.2.1 DDCMP Point-to-Point and Multipoint Connections • 1-8
1.3.2.2 Synchronous DDCMP Connections • 1-9
1.3.2.3 Asynchronous DDCMP Connections • 1-9
1.3.2.4 Static Asynchronous Connections • 1-10
1.3.2.5 Dynamic Asynchronous Connections • 1-10

1.3.3 DECnet—VAX Configurations for VAXclusters 1-11

1.3.4 X.25 Network Configurations 1-13
1.3.4.1 X.25 and X.29 Recommendations • 1-13
1.3.4.2 X.25 Connections • 1-13

1.4 MANAGING THE NETWORK 1-15

1.4.1 Network Control Program 1-15

1.4.2 Network Management Responsibilities 1-15

1.4.3 DECnet—VAX Licenses and Keys 1-16

v

Contents

1.4.4 DECnet—VAX and VAX PSI Network Management
Software 1-16

1.4.5 Configuring a Network 1-18
1.4.5.1 Configuring aDECnet—VAX Node • 1-18
1.4.5.2 Configuring VAX PSI DTEs • 1-18
1.4.5.3 A Network Topology • 1-19

1.5 USER INTERFACE TO THE NETWORK 1-21
1.5.1 Performing Network Operations 1-21
1.5.1.1 Designing User Applications for Network Operations • 1-22
1.5.1.2 Choosing a Language for a Specific Network

Application • 1-23
1.5.2 Accessing the Network 1-24
1.5.2.1 Using File and Task Specifications in Network

Applications • 1-25
1.5.2.2 Using Access Control for Network Applications • 1-25
1.5.2.3 Using Logical Names in Network Applications • 1-27

CHAPTER 2 DECNET—VAX COMPONENTS AND CONCEPTS 2-1

2.1 NODES AND DTES 2-1
2.1.1 Nodes 2-2
2.1.1.1 Node Address and Name • 2-2
2.1.1.2 Node Characteristics • 2-3
2.1.1.3 Identifying a VAXcluster as a Single Node • 2-4
2.1.2 DTEs 2-5
2.1.2.1 X.25 Protocol Module • 2-5
2.1.2.2 X.25 Connector and Host Nodes • 2-6

2.2 CIRCUITS 2-6
2.2.1 Classes of DECnet—VAX Circuits 2-6
2.2.2 DDCMP Circuit Devices 2-8
2.2.3 CI Circuit Devices 2-10
2.2.4 Ethernet Circuit Device 2-11
2.2.5 Ethernet Configurator Module 2-11
2.2.6 X.25 Circuit Devices 2-12
2.2.7 X.25 DLM Circuits 2-12

2.3 LINES 2-12
2.3.1 Classes of DECnet—VAX Lines 2-13
2.3.2 DDCMP Lines 2-13
2.3.2.1 DDCMP Line Devices • 2-13
2.3.2.2 Static Asynchronous Lines • 2-15
2.3.2.3 Dynamic Asynchronous Lines • 2-16

vi

Contents

2.3.3
2.3.4
2.3.5

CI Line Device
Ethernet Line Devices
X.25 Line Devices

2-20
2-20
2-20

2.4 ROUTING 2-21
2.4.1 Routing and Nonrouting Nodes 2-21
2.4.1.1 Types of DECnet Nodes • 2-22
2.4.1.2 DECnet—VAX Phase IV Nodes • 2-23
2.4.1.3 Routing Features of DECnet—VAX License Options • 2-24
2.4.2 Area Routing 2-24
2.4.3 Level 1 and Level 2 Routers 2-25
2.4.4 Ethernet Routers and End Nodes 2-26
2.4.4.1 Ethernet Designated Routers • 2-26
2.4.4.2 Ethernet End Node Caching • 2-27
2.4.4.3 Area Routing on an Ethernet • 2-27
2.4.5 Routers and End Nodes on CI Data Links 2-27
2.4.5.1 CI End Nodes • 2-27
2.4.5.2 CI Routers • 2-2$
2.4.6 Routing Concepts and Terms 2-28
2.4.7 Routing Messages 2-30
2.4.7.1 Segmented Routing Messages • 2-30
2.4.7.2 Timing of Routing Message Transmissions • 2-30

2.5 LOGICAL LINKS 2-30

2.6 OBJECTS 2-31
2.6.1 DECnet—VAX Objects 2-32
2.6.2 Objects Using the Cluster Alias Node Identifier 2-33
2.6.3 Creating DECnet—VAX Network Server Processes 2-33
2.6.4 Potential Causes of Network Process Failures 2-34
2.6.5 VAX PSI Objects 2-35

2.7 X.25 AND X.29 SERVER MODULES 2-35
2.7.1 Destination of Calls from a Remote DTE 2-35
2.7.2 Handling Incoming Calls at the Local DTE 2-36

2.8 X.25 ACCESS MODULE 2-37

2.9 LOGGING 2-37

2.10 NETWORK ACCESS CONTROL 2-38
2.10.1 Routing Initialization Passwords 2-39

vii

Contents

2.10.2 System-Level Access Control 2-40
2.10.2.1 Setting Access Control Information for Outbound

Connects • 2-40
2.10.2.2 Sources of Access Control Information for Logical Link

Connections • 2-40
2.10.2.3 Network Security and Passwords • 2-42
2.10.2.4 Inbound Default Access Control for Objects • 2-43
2.10.3 Access Control for Remote Command Execution 2-43
2.10.4 Node- Level Access Control 2-43
2.10.5 Proxy Login Access Control 2-44
2.10.5.1 Proxy Accounts • 2-45
2.10.5.2 Controlling Proxy Login Access for Individual Accounts • 2-45
2.10.5.3 Controlling Proxy Login Access for Objects • 2-46
2.10.6 Security for DDCMP Point-to-Point Connections 2-47

PART II NETWORK SYSTEM MANAGEMENT

CHAPTER 3 MANAGING AND MONITORING THE NETWORK 3-1

3.1 THE DECNET—VAX CONFIGURATION DATABASE 3-1
3.1.1 The Volatile Database 3-2
3.1.2 The Permanent Database 3-2
3.1.3 VAX PSI Configuration Data base 3-3

3.2 THE NETWORK CONTROL PROGRAM 3-3

3.3 NODE COMMANDS 3-6
3.3.1 Executor Node Commands 3-6
3.3.1.1 SET EXECUTOR NODE Command • 3-7
3.3.1.2 TELL Prefix • 3-7
3.3.2 Node Identification 3—g
3.3.2.1 MAXIMUM ADDRESS Parameter • 3-9
3.3.2.2 Local Node Identification Parameter • 3-10
3.3.2.3 Using and Removing Node Names and Addresses • 3-71
3.3.3 Identifying Cluster Nodes 3-11
3.3.3.1 Setting an Alias Node Identifier for the Executor • 3-7 2
3.3.3.2 Enabling Aliases for Nodes in a Cluster • 3-7 2
3.3.4 Ethernet Addresses of Nodes 3-13
3.3.4.1 Format of Ethernet Addresses • 3-13
3.3.4.2 Determining the Ethernet Physical Address of a Node • 3-7 4
3.3.4.3 Ethernet Physical and Multicast Addresses • 3-15

~J

viii

Contents

3.3.4.4 Values of DIGITAL Ethernet Physical and Multicast
Addresses • 3-15

3.3.5 Node Parameters 3-16
3.3.5.1 Data Link Control • 3-20
3.3.5.2 Operational State of the Local Node • 3-22
3.3.6 Copying Node Databases 3-23
3.3.6.1 COPY Command Parameters and Qualifiers • 3-23
3.3.6.2 Clearing and Purging the Local Node Database • 3-24
3.3.6.3 Copying the Node Database from a Remote Node • 3-25
3.3.6.4 Example of Copying Remote Node Data • 3-25
3.3.6.5 Copying the Permanent Node Database Using DCL

COPY • 3-27
3.3.7 Node Counters 3-27

3.4 X.25 PROTQCOL MODULE COMMANDS 3-28
3.4.1 Network Identification 3-28
3.4.2 Local DTE Identification 3-28
3.4.2.1 Operational State of DTE • 3-29
3.4.2.2 Line Identification • 3-29
3.4.2.3 Channel Identification • 3-29
3.4.2.4 MAXIMUM CIRCUITS Parameter • 3-30
3.4.2.5 INTERFACE Parameter • 3-30
3.4.3 Data Packet Control 3-30
3.4.3.1 Packet Size • 3-30
3.4.3.2 Window Size • 3-31
3.4.4 Call Request Packet Control 3-31
3.4.5 Clear Request Packet Control 3-32
3.4.6 Reset Control 3-32
3.4.7 Restart Control 3-33
3.4.8 ISO Networks 3-33
3.4.9 Group Identification 3-33
3.4.9.1 Local DTE Identification • 3-34
3.4.9.2 Group Number • 3-34
3.4.9.3 Group Type • 3-34
3.4.10 X.25 Protocol Module Counters 3-34

3.5 CIRCUIT COMMANDS 3-34
3.5.1 Circuit Identification 3-34
3.5.1.1 DDCMP Circuit Identification • 3-35
3.5.1.2 CI Circuit Identification • 3-36
3.5.1.3 Ethernet Circuit Identification • 3-36
3.5.1.4 X.25 Circuit Identification • 3-36
3.5.2 Circuit Parameters 3-37
3.5.2.1 Operational State of the Circuit • 3-40
3.5.2.2 Circuit Timers • 3-41
3.5.3 DDCMP Circuit Parameters 3-41

ix

Contents

3.5.3.1 DDCMP Circuit Level Verification • 3-41
3.5.3.2 DDCMP Tributary Control • 3-42
3.5.4 Ethernet Circuit Parameters 3-44
3.5.5 Ethernet Configurator Module Commands 3-45
3.5.5.1 Enabling Surveillance by the Ethernet Configurator • 3-45
3.5.5.2 Obtaining a List of Systems on Ethernet Circuits • 3-46
3.5.5.3 Disabling Surveillance by the Ethernet Configurator • 3-46
3.5.6 X.25 PVC Parameters 3-47
3.5.6.1 Parameters Common to X.25 Circuits • 3-47
3.5.6.2 Permanent Virtual Circuit Parameters • 3-47
3.5.6.3 Data Packet Control • 3-48
3.5.7 DLM Circuit Parameters 3-48
3.5.7.1 DLM Circuit Owner • 3-48
3.5.7.2 Remote DTE Addresses • 3-49
3.5.7.3 Recalls for DLM Circuits • 3-49
3.5.7.4 DLM Circuit Usage • 3-50
3.5.7.5 Executor Node Subaddresses • 3-50
3.5.7.6 Setting Up a DLM Circuit • 3-51
3.5.8 Circuit Counters 3-51

3.6 LINE COMMANDS 3-52
3.6.1 Line Identification 3-52
3.6.1.1 Line Protocols • 3-53
3.6.2 Line Parameters 3-55
3.6.2.1 Operational State of Lines • 3-57
3.6.2.2 Buffer Size • 3-57
3.6.3 DDCMP Line Parameters 3-58
3.6.3.1 Line Buffers • 3-58
3.6.3.2 Duplex Mode • 3-58
3.6.3.3 Line Timers • 3-59
3.6.3.4 Satellite Transmission Control • 3-60
3.6.3.5 Asynchronous DDCMP Line Parameters • 3-61
3.6.4 Ethernet Line Parameters 3-62
3.6.5 X.25 Line Parameters 3-62
3.6.5.1 Frame Control for X.25 Lines • 3-62
3.6.5.2 Receive Buffers for X.25 Lines • 3-64
3.6.5.3 Interface of X.25 Lines • 3-64
3.6.5.4 Network for X.25 Lines • 3-64
3.6.6 Line Counters 3-64

3.7 ROUTING COMMANDS 3-65
3.7.1 Specifying the Node Type 3-65
3.7.2 Specifying the Area Number in a Node Address 3-66
3.7.3 Setting Routing Configuration Limits 3-66
3.7.3.1 Maximum Number of Ethernet Routers and End Nodes

Allowed • 3-67

x

Contents

3.7.3.2 Maximum Number of Areas Allowed • 3-67
3.7.4 Routing Control Parameters 3-68
3.7.4.1 Circuit Cost Control Parameter • 3-68
3.7.4.2 Maximum Path Control Parameters • 3-69
3.7.4.3 Route-Through Control Parameter • 3-70
3.7.4.4 Equal Cost Path Parameters • 3-70
3.7.4.5 Area Path Control Parameters • 3-71
3.7.5 Routing Message Timers 3-72
3.7.6 CI End Node Circuit Failover 3-72

3.8 LOGICAL LINK COMMANDS 3-73
3.8.1 Maximum Number of Links 3-73
3.8.2 Disconnecting Logical Links 3-74
3.8.3 Logical Link Protocol Parameters 3-74
3.8.3.1 Incoming and Outgoing Timers • 3-74
3.8.3.2 Inactivity Timer • 3-75
3.8.3.3 NSP Message Retransmission • 3-75
3.8.3.4 Pipeline Quota • 3-76

3.9 OBJECT COMMANDS 3-76
3.9.1 DECnet—VAX Objects 3-77
3.9.1.1 DECnet—VAX Object Identification • 3-77
3.9.1.2 Using the Cluster Alias Node Identifier for the Object • 3-78
3.9.1.3 Example of Using the Cluster Alias Node Identifier • 3-78
3.9.1.4 DECnet—VAX Command Procedure Identification • 3-79
3.9.2 VAX PSI Objects 3-80
3.9.2.1 VAX PSI Object Identification • 3-80
3.9.2.2 VAX PSI Command Procedure Identification • 3-80
3.9.2.3 VAX PSI Object Account Information • 3-81

3.10 X.25/X.29 SERVER MODULE COMMANDS 3-81
3.10.1 X25—SERVER and X29—SERVER Module Identification 3-81
3.10.2 Destination Identification 3-81
3.10.2.1 DTE Subaddress Range • 3-82
3.10.2.2 Group Identification • 3-82
3.10.2.3 Remote DTE Identification • 3-82
3.10.2.4 User Data Field • 3-83
3.10.2.5 Address Extension • 3—$3
3.10.2.6 Call Redirection • 3-84
3.10.2.7 Receiving DTE • 3-84
3.10.2.8 Priority • 3-84
3.10.2.9 Object Identification • 3-85
3.10.2.10 Host Node Identification • 3-85
3.10.3 Maximum Circuits 3-85
3.10.4 Operational State of Server 3-86

xi

Contents

3.11 X.25 ACCESS MODULE COMMANDS 3-86
3.11.1 Network Identification in an X.25 Access Module 3-86
3.11.2 X.25 Connector Node Identification 3-87
3.11.3 Access Control Parameters in an X.25 Access Module 3-87

3.12 LOGGING COMMANDS 3-87
3.12.1 Event Identification 3—gg
3.12.2 Identifying the Source for Events 3-90
3.12.3 Identifying the Location for Logging Events 3-90
3.7 2.4 Controlling the Operational State of Logging 3-91
3.12.5 Event Logging Example 3-91
3.12.6 Using a Logging Monitor Program 3-92

3.13 NETWORK ACCESS CONTROL COMMANDS 3-93
3.13.1 Specifying Passwords for Routing Initialization 3-93
3.13.2 System-Level Access Control Commands 3-94
3.13.2.1 Establishing Default Privileged and Nonprivileged

Accounts • 3-94
3.13.2.2 Specifying Privileges for Objects • 3-94
3.13.2.3 Setting Default Inbound Access Control Information • 3-95
3.13.2.4 Indicating Access Controls for Remote Command

Execution • 3-95
3.13.3 N-ode-Level Access Control Commands 3-95
3.13.4 Proxy Login Access Control Commands 3-96

3.14 MONITORING THE NETWORK 3-98

CHAPTER 4 DECNET—VAX HOST SERVICES 4-1

4.1 LOADING UNATTENDED SYSTEMS DOWNLINE 4-1
4.1.1 Downline System Load Operation 4-2
4.1.1.1 Target-Initiated Downline Load • 4-3
4.1.1.2 Operator-Initiated Downline Load • 4-5
4.1.1.3 Load Requirements • 4-7
4.1.2 Downline Load Parameters 4-7
4.1.2.1 TRIGGER Command • 4-8
4.1.2.2 LOAD Command • 4-10
4.1.2.3 Host Identification • 4-12
4.1.2.4 Load File Identification • 4-13
4.1.2.5 Management File Identification • 4-14
4.1.2.6 Software Type • 4-16
4.1.2.7 Load Assist Agent Identification • 4-16
4.1.2.8 Load Assist Parameter Identification • 4-16

xii

Contents

4.1.2.9
4.1.2.10
4.1.2.11
4.1.2.12
4.1.2.13

CPU and Software Identification • 4-16
Service Device Identification • 4-16
Service Circuit Identification • 4-17
Service Passwords • 4-17
Diagnostic File • 4-17

4.2 DUMPING MEMORY UPLINE FROM AN UNATTENDED
SYSTEM 4-17

4.2.1 Upline Dump Procedures 4-18
4.2.2 Upline Dump Requirements 4-19

4.3 LOADING RSX-11 S TASKS DOWN LI N E 4-20
4.3.1 Setting Up the Satellite System 4-20
4.3.2 Host Loader Mapping Table 4-22
4.3.3 H LD Operation and Error Reporting _ 4-23
4.3.3.1 HLD Error Messages • 4-23
4.3.4 Checkpointing RSX-11 S Tasks 4-24
4.3.5 Overlaying RSX-11 S Tasks 4-24

4.4 CONNECTION TO REMOTE CONSOLE 4-24

PARTIII NETWORK CONFIGURATION,
NSTALLATION, AND TESTING

CHAPTER 5 CONFIGURATION OF A NETWORK 5-1

5.1 PREREQUISITES FOR ESTABLISHING A NETWORK 5-1
5.1.1 User Accounts and Directories 5-1
5.1.2 Required Privileges 5-2

5.2 CONFIGURATION PROCEDURES 5-3
5.2.1 Using NETCONFIG.COM 5-4
5.2.1.1 Executing NETCONFIG.COM • 5-5
5.2.1.2 NETCONFIG.COM Example • 5-6
5.2.2 Tailoring the Configuration Database 5-7
5.2.2.1 Running DECnet over the CI • 5-8
5.2.2.2 Running DECnet over Terminal Lines • 5-8
5.2.2.3 Installing Static Asynchronous Lines • 5-9
5.2.2.4 Installing Dynamic Asynchronous Lines • 5-11

Contents

5.3 NETWORK CONFIGURATION EXAMPLES 5-14
5.3.1 Synchronous DDCMP Point-to-Point Network Example 5-15
5.3.2 DDCMP Multipoint Network Example 5-17
5.3.3 Static Asynchronous DDCMP Network Example 5-19
5.3.4 Dynamic Asynchronous DDCMP Network Example 5-21
5.3.5 Ethernet Network Example 5-23
5.3.6 X.25 Data Link Mapping Example 5-25
5.3.7 X.25 Native Mode Network Example 5-28
5.3.8 X.25 Multihost Mode Network Example 5-30
5.3.8.1 Building the Ethernet Network • 5-31
5.3.8.2 Configuring the X.25 Connector Node • 5-32
5.3.8.3 Configuring the Host Nodes • 5-32
5.3.9 X.25 Multinetwork Example 5-33

5.4 SYSTEM CONFIGURATION GUIDELINES 5-35
5.4.1 Normal Memory Requirements 5-36
5.4.1.1 NPAGEDYN Parameter • 5-36
5.4.1.2 IRPCOUNT Parameter • 5-37
5.4.1.3 LRPCOUNT and LRPSIZE Parameters • 5-37
5.4.2 Critical Routing Node Requirements 5-38
5.4.3 CPU Time Requirements 5-39
5.4.4 U N I BUS Adapter Map Register Considerations 5-40
5.4.5 Permanent Database Considerations in VAXclusters 5-42

CHAPTER 6 INSTALLATION OF A NETWORK 6-1

6.1 INSTALLING ADECNET—VAX KEY 6-1

6.2 BRINGING UP YOUR NETWORK NODE USING
STARTNET.COM 6-1

6.3 BRINGING UP YOUR VAX PSI DTE 6-2

6.4 TESTING THE INSTALLATION WITH UETP TEST
PROCEDURE 6-2

6.5 SHUTTING DOWN YOUR DECNET—VAX NODE 6-3

xiv

Contents

CHAPTER 7 TESTING THE NETWORK 7-1

7.1 NODE-LEVEL TESTS 7-1
7.1.1 Remote Loopback Test 7-2
7.1.2 Local and Remote Loopback Tests Using a Loop Node

Name 7-3
7.1.2.1 Local-to-Remote Testing • 7-4
7.1.2.2 Local-to-Local Testing • 7-5
7.1.3 Local Loopback Test 7-6

7.2 CIRCUIT-LEVEL TESTS 7-6
7.2.1 Software Loopback Test 7-7
7.2.2 Controller Loopback Test 7-8
7.2.3 Circuit-Level Loopback Testing 7-9
7.2.3.1 Testing with the PHYSICAL ADDRESS and NODE

Parameters • 7-9
7.2.3.2 Loopback Assistance • 7-12

7.3 X.25 LINE-LEVEL LOOPBACK TESTS 7-13

7.4 DUMPING KMS11 AND KMV11 MICROCODE 7-14

PART IV NETWORK USER OPERATIONS

CHAPTER 8 PERFORMING NETWORK USER OPERATIONS 8-7

8.1 RETRIEVING NETWORK STATUS INFORMATION 8-1

8.2 ESTABLISHING COMMUNICATION WITH A REMOTE NODE 8-2

8.3 ACCESSING FILES ON REMOTE NODES 8-4
8.3.1 Using DCL Commands and Command Procedures 8-4
8.3.2 Using Higher-Level Language Programs 8-5
8.3.3 Using RMS Services from MACRO Programs 8-6

8.4 PERFORMING TASK-TO-TASK OPERATIONS 8-7
8.4.1 Transparent and Nontransparent Task-to-Task

Communication 8-8

xv

Contents

8.4.1.1 Transparent Communication • 8-8
8.4.1.2 Nontransparent Communication • 8-8
8.4.2 Task Specification Strings in Task-to-Task Applications 8-9
8.4.3 Functions Required for Performing Task-to-Task

Operations 8-11
8.4.3.1 Initiating a Logical Link Connection • 8-12
8.4.3.2 Completing the Logical Link Connection • 8-12
8.4.3.3 Exchanging Messages • 8-14
8.4.3.4 Terminating a Logical Link Connection • 8-15

8.5 PERFORMING TRANSPARENT TASK-TO-TASK
OPERATIONS 8-16

8.5.1 Using DCL Commands and Command Procedures 8-17
8.5.2 Using Higher-Level Language Programs 8-17
8.5.3 Using RMS Service Calls in MACRO Programs 8-18
8.5.4 Using System Service Calls in MACRO Programs 8-18
8.5.4.1 Requesting a Logical Link • 8-19
8.5.4.2 Completing the Logical Link Connection • 8-20
8.5.4.3 Exchanging Messages • 8-20
8.5.4.4 Terminating the Logical Link • 8-21
8.5.4.5 Status and Error Reporting • 8-21
8.5.5 Summary of System Service Calls for Transparent

Operations 8-21
8.5.5.1 $ASSIGN • 8-21
8.5.5.2 $QIO (Sending a Message to a Target Task) • 8-23
8.5.5.3 $QIO (Receiving a Message from a Target Task) • 8-24
8.5.5.4 $DASSGN (Disconnecting a Logical Link) • 8-25

8.6 PERFORMING NONTRANSPARENT TASK-TO-TASK
OPERATIONS 8-26

8.6.1 Using System Services for Nontransparent Operations 8-26
8.6.1.1 Assigning a Channel to _NET: and Creating a Mailbox • 8-27
8.6.1.2 Mailbox Message Format • 8-28
8.6.1.3 Requesting a Logical Link Connection • 8-29
8.6.1.4 Using the Network Connect Block • 8-30
8.6.1.5 Completing the Establishment of a Logical Link • 8-31
8.6.1.6 Disconnecting or Aborting the Logical Link • 8-33
8.6.1.7 Terminating the Logical Link • 8-34
8.6.2 System Service Calls for Nontransparent Operations 8-34
8.6.2.1 $ASSIGN (I/O Channel Assignment) • 8-34
8.6.2.2 $QIO (Requesting a Logical Link Connection) • 8-35
8.6.2.3 $QIO (Accepting .Logical Link Connection Request) • 8-37
8.6.2.4 $QIO (Rejecting a Logical Link Connection Request) • 8-38
8.6.2.5 $QIO (Sending a Message to a Target Task) • 8-39
8.6.2.6 $QIO (Receiving a Message from a Target Task) • 8-39
8.6.2.7 $QIO (Sending an Interrupt Message to a Target Task) • 8-39
8.6.2.8 $QIO (Synchronously Disconnecting a Logical Link) • 8-40

xvi

Contents

8.6.2.9
8.6.2.10
8.6.2.11

$QIO (Aborting a Logical Link) • 8-41
$QIO (Declaring a Network Name or Object Number) • 8-41
$DASSGN (Terminating a Logical Link) • 8--43

8.7 DESIGNING TASKS 8-43
8.7.1 DCL Command Procedure for Task-to-Task Communication 8-43
8.7.2 FORTRAN Program for Task-to-Task Communication 8-44
8.7.3 MACRO Program for Transparent Task-to-Task

Communication 8-46
8.7.4 MACRO Program for Nontransparent Task-to-Task

Communication 8-49

CHAPTER 9 FILE OPERATIONS IN A HETEROGENEOUS NETWORK
ENVIRONMENT 9-1

9.1 GENERAL DECNET—VAX RESTRICTIONS 9-1

9.2 VMS TO IAS NETWORK OPERATION 9-2
9.2.1 File Formats and Access Modes 9-3
9.2.2 VMS RMS Interface 9-3
9.2.3 File Specifications 9-4
9.2.4 DCL Considerations 9-4
9.2.4.1 APPEND • 9-4
9.2.4.2 COPY • 9-5

9.3 VMS TO P/OS NETWORK OPERATION 9-5
9.3.1 File Formats and Access Modes 9-5
9.3.2 VMS RMS Interface 9-6
9.3.3 File Specifications 9-6
9.3.4 DCL Considerations 9-6

9.4 VMS TO RSTS/E NETWORK OPERATION 9-7
9.4.1 File Formats and Access Modes 9-7
9.4.2 VMS RMS Interface 9-7
9.4.3 File Specifications 9-8
9.4.4 DCL Considerations 9-8
9.4.4.1 APPEND • 9-9
9.4.4.2 COPY • 9-9
9.4.4.3 DELETE • 9-9
9.4.4.4 DIRECTORY • 9-9
9.4.4.5 DUMP/RECORDS and ,TYPE Commands • 9-10

xvii

Contents

9.5 VMS TO RSX NETWORK OPERATION USING RMS-BASED
FAL 910

9.5.1 File Formats and Access Modes 9-10
9.5.2 VMS RMS Interface 9-11
9.5.3 File Specifications 9-11
9.5.4 DCL Considerations 9-11
9.5.4.1 COPY • 9-11

9.6 VMS TO RSX NETWORK OPERATION USING FCS-BASED
FAL 9-12

9.6.1 File Formats and Access Modes 9-12
9.6.2 VMS RMS Interface 9-13
9.6.3 File Specifications 9-13
9.6.4 DCL Considerations 9-14
9.6.4.1 APPEND • 9-14
9.6.4.2 COPY • 9-14

9.7 VMS TO RT-11 NETWORK OPERATIONS 9-14
9.7.1 File System Constraints 9-15
9.7.1.1 File Formats and Access Modes • 9^15
9.7.1.2 VMS RMS Interface • 9-16
9.7.2 File Specifications 9-17
9.7.3 DCL Considerations 9-17
9.7.3.1 COPY • 9-17
9.7.3.2 DELETE • 9-18

9.8 VMS TO TOPS-10 NETWORK OPERATIONS 9-18
9.8.1 File System Constraints 9-18
9.8.1.1 File Formats and Access Modes • 9-18
9.8.1.2 VMS RMS Interface • 9-19
9.8.1.3 File Specifications • 9-20
9.8.2 DCL Considerations 9-20
9.8.2.1 COPY • 9-21
9.8.2.2 DIRECTORY • 9-21

9.9 VMS TO TOPS-20 NETWORK OPERATIONS 9-21
9.9.1 File System Constraints 9-21
9.9.1.1 File Formats and Access Modes • 9-22
9.9.1.2 VMS RMS Interface • 9-23
9.9.1.3 File Specifications • 9-23
9.9.2 DCL Considerations
9.9.2.1 COPY • 9-24
9.9.2.2 DIRECTORY • 9-24

9-24

`J

xv~ii

Contents

9.10 VMS TO MS—DOS NETWORK OPERATIONS 9-24
9.10.1 File System Constraints 9-25
9.10.1.1 File Formats and Access Modes • 9-25
9.10.1.2 VMS RMS Interface • 9-26
9.10.1.3 File Specifications • 9-26
9.10.2 DCL Considerations 9-27
9.10.2.1 COPY • 9-27
9.10.2.2 DIRECTORY • 9-27

9.11 VMS TO ULTRIX NETWORK OPERATIONS 9-27
9.11.1 File System Constraints 9-28
9.1 1.1.1 File Formats and Access Modes • 9-28
9.1 1.1.2 VMS RMS Interface • 9-29
9.1 1.1.3 File Specifications • 9-29
9.11.2 DCL Considerations 9-30
9.1 1.2.1 COPY • 9-30
9.1 1.2.2 DIRECTORY • 9-30

9.12 VMS TO MVS NETWORK OPERATIONS 9-30
9.12.1 File System Constraints 9-31
9.12.1.1 File Formats and Access Modes • 9-31
9.12.1.2 VMS RMS Interface • 9-32
9.12.1.3 File Specifications • 9-32
9.12.2 DCL Considerations 9-32

9.13 VMS TO VMS NETWORK OPERATIONS (VERSION 5.0 TO
PREVIOUS VERSION) 9-33

APPENDIX A AREA ROUTING CONFIGURATION A—~

A.1 AREA ROUTING CONFIGURATION GUIDELINES A-1

A.2 DESIGNING AMULTIPLE-AREA NETWORK A-3

A.3 SAMPLE MULTIPLE-AREA NETWORK CONFIGURATION A-4

A.4 CONVERTING AN EXISTING NETWORK TO A MULTIPLE-AREA
NETWORK A-8

A.5 PROBLEMS IN CONFIGURING AMULTIPLE-AREA
NETWORK A-10

xix

Contents

A.5.1 Partitioned Area Problem A-11
A.5.2 Problems in Mixed Phase III/Phase IV Networks A-11
A.5.2.1 Problem of a Phase III Node in a Phase IV Path • A-13
A.5.2.2 Area Leakage Problem • A-14

A.6 AREA ROUTING ON AN ETHERNET A-16

GLOSSARY Glossary-1

INDEX

EXAMPLES
8-1 Network Connect Block Format 8-30

8-2 FORTRAN Task-to-Task Communication 8-44

8-3 Transparent Communication Using System Services 8-46

8-4 Nontransparent Communication Using System Services _ 8-49

FIGURES
1-1 DECnet Functions and Related DNA Layers and

Protocols 1-4

1-2 Sample DECnet—VAX Phase IV Configuration 1-6

1-3 Typical DDCMP Point-to-Point and Multipoint
Connections 1-9

1-4 Typical VAXcluster Configuration with CI as a Data Link _ 1-11

1-5 X.25 Connections in a DECnet Network Configuration 1-14

1-6 DECnet—VAX and VAX PSI Software 1-17

1-7 Topology of a Single-Area DECnet Network 1-19

1-8 Topology of a Multiple-Area DECnet Network 1-20

1-9 Network Access Levels and DECnet—VAX User Interface 1-24

1-10 Remote File Access Using Access Control String
1 nformation 1-26

1-11 Remote File Access Using Default Access Control
Information 1-28

2-1 Multipoint Circuits and Associated Lines 2-9
2-2 Multipoint Lines 2-15

2-3 Dynamic Switching of Asynchronous DDCMP Lines 2-17

2-4 Routing Initialization Passwords 2-39

Contents

2-5 Access Control for Inbound Connections 2-42

3-1 Remote Command Execution 3-8

3-2 Network Circuit Costs 3-69

4-1 Target-Initiated Downline Load 4-4

4-2 Operator-Initiated Downline Load 4-6

4-3 Operator-Initiated Downline Load over DDCMP Circuit
(TRIGGER Command] 4-9

4-4 Operator-Initiated Downline Load over Ethernet Circuit
(TRIGGER Command] 4-10

4-5 Operator-Initiated Downline Load over Ethernet Circuit
(LOAD Command) 4-11

4-6 Operator-Initiated Downline Load over DDCMP Circuit
(LOAD Command] 4-15

4-7 Upline Dumping of RSX-11 S Memory 4-19

4-8 Downline Task Loading 4-21

5-1 A Synchronous DDCMP Point-to-Point Network
Configuration 5-15

5-2 A DDCMP Multipoint Network Configuration 5-17

5-3 A Static Asynchronous DDCMP Network Configuration 5-19

5-4 A Dynamic Asynchronous DDCMP Network
Configuration 5-21

5-5 An Ethernet Network Configuration 5-24

5-6 An X.25 Data Link Mapping Network Configuration 5-25

5-7 An X.25 Native-Mode Network Configuration 5-29

5-8 An X.25 Multihost Mode Network Configuration 5-30

5-9 A Multinetwork Configuration 5-34

7-1 Remote Loopback Test 7-3

7-2 Local-to-Remote Loopback Test Using a Loop Node
Name 7-4

7-3 Local-to-Local Loopback Test Using a Loop Node Name 7-5

7-4 Local Loopback Test 7-6

7-5 Software Loopback Test 7-8

7-6 Controller Loopback Testing 7-9

8-1 Mailbox Messages 8-10

8-2 Mailbox Message Format 8-28

A-1 Level 2 Router Subnetwork of a Multiple-Area Network A-4

A-2 Example of Multiple-Area Network Design A-5

A-3 Area 7 of a Multiple-Area Network A-6

A-4 Partitioned Area Problem A-12

A-5 Problem of Phase III Node In Phase IV Path A-14

A-6 Area Leakage Problem A-15

A-7 Area Routing on an Ethernet A-16

xxi

Contents

TABLES
1-1 Network Access Levels 1-22
3-1 Node Parameters and Their Functions 3-16
3-2 Types of Circuit and Applicable Circuit Parameters 3-37

3-3 Circuit Parameters and Their Functions 3-38

3-4 Types of Line and Applicable Line Parameters 3-55
3-5 Line Parameters and Their Functions 3-56

3-6 Object Parameters and Their Functions 3-76
3-7 Logging Parameters and Their Functions 3-88
4-1 Default Loader Files by Target Device Type 4-14
5-1 Required DECnet—VAX Privileges 5-2
5-2 Required VAX PSI Privileges 5-3
5-3 Driver Sizes 5-37
5-4 Permanent Configuration Database Files 5-42
6-1 Local Node States and Network Operations 6-4

8-1 System Service Calls for Transparent Communication 8-19
8-2 System Service Calls for Nontransparent Communication 8-27

8-3 System Mailbox Messages 8-29

Preface

The VMS Networking Manual presents an introduction to networking software
used on VMS operating systems. It provides a conceptual description of
DECnet-VAX software used to access the DECnet network, and VAX
Packetnet System Interface (PSI) software used to access packet switching
data networks. This manual explains how to configure and manage the
network using the VMS Network Control Program (NCP), the primary tool
for network management. It also explains how to perform user operations
over the network.

Intended Audience
The VMS Networking Manual is intended for those who perform network
management functions to control, monitor, or test DECnet-VAX and VAX PSI
software running on a VMS operating system. This manual is also intended
for VMS users who perform remote file access or task-to-task operations
using DECnet-VAX. You are assumed to be familiar with the VMS operating
system, but not necessarily experienced with DECnet operations.

Document Structure
The VMS Networking Manual is divided into four major parts:

• Part I introduces you to basic networking concepts required to understand
DECnet-VAX operations, and indicates how you can interact with the
network.

• Part II provides usage information to those responsible for DECnet-VAX
system management, and explains how to use the Network Control
Program to manage the network and perform VMS host services to
remote systems (such as downline loading and upline dumping).

• Part III specifies the procedures for configuring, installing, and testing
DECnet-VAX and VAX PSI on a VMS operating system.

• Part IV describes the techniques for carrying out user operations over
the network, including accessing remote files and performing task-to-task
communications.

Associated Documents
The networking concepts and operations described in the VMS Networking
Manual are directly related to the following four manuals:

VMS Mini-Reference

Provides aquick-reference summary of NCP command formats.

Guide to DECnet-VAX Networking

Provides a conceptual overview of networking concepts and DECnet-
VAX. Also describes procedures for asynchronous communication.

Preface

VMS Network Control Program Manual

Provides usage information for the Network Control Program (NCP)
Utility.

VMS DECnet Test Sender/DECnet Test Receiver Utility Manual

Provides usage information for the DECnet Test Sender/Receiver
(DTS/DTR) Utility.

The VMS License Management Utility Manual describes the License
Management Utility (LICENSE), which is used to enable product licenses,
including the DECnet—VAX licenses.

The information in the VMS Networking Manual is also related to these other
VMS manuals:

Overview of VMS Documentation

Describes the VMS documentation set.

VMS DCL Concepts Manual

Provides a conceptual overview of DCL, including the format of file
specifications and the use of command procedures.

VMS DCL Dictionary

Describes all DCL commands, including SET HOST and SHOW
NETWORK.

Guide to Using VMS Command Procedures

Describes the design, construction, and execution of command
procedures.

VMS System Messages and Recovery Procedures Reference Volume

Explains all VMS messages, including messages issued by DECnet—
VAX and by system services associated with network-related
operations.

VMS VAXcluster Manual

Describes procedures for setting up and managing a VAXcluster.

Guide to Setting Up a VMS System

Describes system management procedures for setting up a system,
including the procedures to create and use directories.

Guide to Maintaining a VMS System

Describes system management procedures for maintaining a system,
including the use of virtual terminals, the control of user privileges,
and the use of SYSGEN parameters.

xxiv

Preface

VMS Record Management Services Manual

Describes Record Management Services (RMS) fields and options that
are applicable to DECnet—VAX operations.

VMS 1/O User's Reference Volume

Describes input/output operations, including the procedures for
sending messages to an Ethernet multicast address.

Guide to VMS File Applications

Provides examples of MACRO programs for remote file access.

Guide to VMS Programming Resources

Provides general information about $QIO system services.

VMS Device Support Manual

Provides guidelines for elevated IPL programming.

VMS System Services Reference Manual

Describes system mailboxes, AST routines, and $QIO system
services.

VMS Run-Time Library Routines Volume

Describes VMS Run-Time Library (RTL) routines, including routines
for creating temporary mailboxes.

VMS Authorize Utility Manual

Describes how to use the Authorize Utility, including how to establish
proxy login accounts.

Guide to VMS System Security

Describes system security guidelines, including how to establish proxy
login accounts.

VMS System Generation Utility Manual

Describes SYSGEN procedures.

See also the VMS Version 5.0 Release Notes.

The Introduction to DECnet Phase IV manual, not part of the VMS
documentation set, provides an overview of DECnet software. The Routing
and Networking Overview, also not part of the VMS documentation set,
provides an overview of DECnet routing.

Preface

For information about VAX PSI, refer to the following manuals, which make
up the VAX PSI documentation set:

P.S.I. Introduction
VAX P.S.I. Installation Procedures
VAX P.S.I. X.25 Programmer's Guide
VAX P.S.I. X.29 Programmer's Guide
VAX P.S.I. Management Guide
VAX P.S.I. PAD and MAIL Utilities Manual
VAX P.S.I. Problem Solving Guide
Public Network Information

The following functional specifications define DIGITAL Network Architecture
(DNA) protocols to which all implementations of DECnet adhere:

DECnet DIGITAL Network Architecture General Description
DIGITAL Data Communications Message Protocol Functional Specification
Network Services Protocol Functional Specification
Maintenance Operation Protocol Functional Specification
Data Access Protocol Functional Specification
Routing Layer Functional Specification
DNA Session Control Functional Specification
DNA Phase IV Network Management Functional Specification
Ethernet Node Product Architecture Specification
Ethernet Data Link Functional Specification

Preface

Conventions

Convention Meaning

RET

CTRL/C

$ SHOW TIME
05-JUN-1988 1 1:55:22

$ TYPE MYFILE. DAT

input-file, . .

[logical-name]

quotation marks
apostrophes

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (') is used to refer to a single
quotation mark.

xxvi i

New and Changed Features

The VMS Version 5.0 technical changes to DECnet—VAX software can be
grouped according to new features, enhanced procedures and components,
and miscellaneous documentation changes.

The following features have been added:

• Support of the asterisk (*) and the percent sign (%) as wildcard
characters to represent component names in NCP commands.

• Support for command line recall on the NCP command line. By pressing
CTRL/B or the arrow keys you can recall multiple commands previously
entered.

• NCP executor parameters to support equal cost path load splitting. If
multiple paths to a destination node are equal in cost, a packet load can
be split for routing over the multiple paths. The executor parameter
MAXIMUM PATH SPLITS defines the number of equal cost paths among
which the packet load is to be split. The executor parameter PATH SPLIT
POLICY specifies whether a packet load is split equally over all equal cost
paths.

• NCP line parameter HOLDBACK TIMER to control the maximum time
for delay acknowledgments.

• Three new node commands that implement downline load support. The
parameters LOAD ASSIST AGENT and LOAD ASSIST PARAMETER
extend Ethernet downline load support to Local Area VAXcluster nodes.
The MANAGEMENT FILE parameter identifies a file to be loaded
downline to an adjacent node.

• Support for these circuit and line devices: the DELQA, DMB32, DEBNA,
DESVA, DHQ 11, and DZQ 11.

The following procedures and components have been modified:

• NSP software includes support for out-of-order packet caching. This
mechanism ensures delivery of packets even if they appear out of order
due to equal cost path splitting.

• Ethernet end node caching includes support for reverse path caching,
which improves routing between nodes that are not on the Ethernet, but
can be accessed by a node on the Ethernet.

• The proxy database is now kept in the file NETPROXY.DAT, rather than
in NETUAF.DAT.

• The executor parameter DEFAULT PROXY has been replaced by the
parameters INCOMING PROXY and OUTGOING PROXY. A new NCP
command, SET KNOWN PROXIES ALL, rebuilds the volatile proxy
database from the contents of the permanent database.

• The target-initiated load/dump procedure has been modified so that
NETACP will not start up the Maintenance Operation Module (MOM)
process until it confirms that it has all the required information to start up
the operation.

New and Changed Features

• The directory location of MOM load images and dump file has been
changed. Previously, the default directory for these MOM images was in
SYS$SYSTEM. The MOM load images and dump files are now located in
their own private directory, MOM$SYSTEM.

• Some of the user prompts have been changed in the network
configuration procedure, NETCONFIG.COM.

• The procedure for enabling the DECnet-VAX license has been modified.
Previously, a specific DECnet-VAX license (either an end node license
or a full function license) was enabled by installing the appropriate key
distributed separately on magnetic media. The new License Management
Utility is now used to register all keys. You must use the License
Management Utility to register aDECnet-VAX key in order to enable
the DECnet-VAX license on your system.

• The command procedure SYS$MANAGER:SYSTARTUP.COM has been
replaced by SYS$MANAGER:SYSTARTUP_VS.COM.

The following miscellaneous documentation changes have been made:

• Extensive revisions to Chapter 8, including the addition of a new
programming example for nontransparent task-to-task communication.

• Addition of descriptions of the following remote file operations:

VMS to MS-DOS
VMS to Ultrix
VMS to MVS

• Removal of MicroVMS as a distinct operating system. As of Version 5.0,
the VMS operating system running on MicroVAX machines is called VMS,
not MicroVMS.

Part I Introduction to DECnet—VAX and VAX PSI

1 Overview of DECnet—VAX and VAX PSI

This chapter presents an overview of the networking software used on VMS
systems: what the software is, how to manage it, and how to interface with it.
This chapter introduces DECnet-VAX software, which enables access to the
DECnet network, and VAX PSI software, which provides access to a packet
switching network. You use the same VMS network management tools to
manage both DECnet-VAX and VAX PSI.

The following sections introduce the network terms and concepts used
throughout this manual, identify network software, describe network
configurations, and provide a brief summary of network management
responsibilities. The chapter also defines the application user's relationship to
the network.

For details about specific topics, you should consult the pertinent chapters of
this manual, other manuals in the VMS document set, and VAX PSI manuals
(see the Preface).

1.1 General Description of a DECnet Network
Computer processes communicate with one another over a data network.
This network consists of two or more computer systems called nodes and the
logical links between them. A logical link is a connection, at the user level,
between two processes. Adjacent nodes are connected by physical lines over
which circuits operate. A circuit is a communications data path over which
all input and output (I/O) between nodes takes place. A circuit can support
many concurrent logical links.

Nodes can also be physically connected to a packet switching data network
(PSDN) to allow DECnet circuits to be mapped to PSDN virtual circuits.
Virtual circuits are logical associations between nodes for the exchange of
data; the actual circuit employed is invisible to you. Alternatively, you can
attach computers or terminals directly to a PSDN without using a DECnet
data link, or use a connector node as a gateway to communicate with remote
nodes over a PSDN.

In a network of more than two nodes, the process of directing a data message
from a source to a destination node is called routing. DECnet supports
adaptive routing, which permits messages to be routed through the network
over the most cost-effective path; messages are rerouted automatically if a
circuit becomes disabled.

Nodes can be either routing nodes (called routers) or nonrouting nodes
(known as end nodes). Both routing nodes and end nodes can send messages
to and receive messages from other nodes in the network. However, routing
nodes have the ability to forward or route messages from one node to another
when the two nodes exchanging these messages have no direct physical link
between them, except for the path that includes the node forwarding the
message. End nodes can never have more than one circuit connecting them
with the network. Any node that has two or more circuits connecting it to
the network must be a router.

1-1

Overview of DECnet—VAX and VAX PSI
1.1 General Description of a DECnet Network

Phase IV DECnet supports the configuration of very large, as well as small,
networks. In a network that is not divided into multiple areas, a maximum
of 1023 nodes is possible, but the optimum number of nodes is much less
(approximately 200 to 300 nodes, depending on the topology). Area routing
techniques permit configuration of very large networks, consisting of up to 63
areas, each containing a maximum of 1023 nodes. In a multiple-area network,
nodes are grouped into separate areas, each functioning as a subnetwork.
DECnet supports routing within each area and a second, higher level of
routing that links the areas. Nodes that perform routing within a single area
are referred to as level 1 routers; those that perform routing between areas as
well as within their own area are called level 2 routers (or area routers).

1.2 DECnet—VAX and VAX PSI
You can configure DECnet-VAX networking software on all VMS operating
systems. You can install and configure VAX PSI software on VMS operating
systems. These software products are identified and described in the
following subsections.

1.2.1 DECnet Interface with the VMS Operating System
DECnet is the collective name for the software and hardware products
that are a means for various DIGITAL operating systems to participate in
a network. DECnet-VAX is the implementation of DECnet that causes
a VMS operating system to function as a network node. As the VMS
network interface, DECnet-VAX supports both the protocols necessary
for communicating over the network and the functions necessary for
configuring, controlling, and monitoring the network. A DECnet-VAX node
can communicate with other DECnet-VAX nodes in the network or with any
other DIGITAL operating system that supports DECnet.

A DECnet multinode network is decentralized; that is, many nodes connected
to the network can communicate with each other without having to go
through a central node. As a member of a multinode network, your node can
communicate with any other network node, not merely the nodes that reside
next to you, and gain access to software facilities that may not exist on your
local node. An advantage of this type of network is that it allows different
applications running on separate nodes to share the facilities of any other
node.

Optionally, very large DECnet networks can be divided into multiple areas,
for the purpose of hierarchical (area) routing. Area routing introduces a
second, higher level of routing between areas (groups of nodes), which results
in less routing traffic throughout the network. Each node in a multiple-area
network can still communicate with all other nodes in the network.

Overview of DECnet—VAX and VAX PSI
1.2 DECnet—VAX and VAX PSI

1 2.2 VAX Packetnet System Interface
VAX Packetnet System Interface (PSI) is a software product that allows
the VMS user to communicate across PSDNs. VAX PSI implements the
CCITT X.25 and X.29 recommendations (described in Section 1.3.4), and
International Standards 7776 and 8208, providing a user interface to a PSDN.
A PSDN consists of switching nodes connected by high-speed links, to which
computers or terminals can be attached.

You can use VAX PSI to do the following:

• Link DECnet nodes across a PSDN through data link mapping (DLM).
This permits an X.25 virtual circuit to be used as a DECnet data link.

• Communicate directly across one or more PSDNs to a DIGITAL or
non-DIGITAL computer over an X.25 virtual circuit.

• Communicate directly across one or more PSDNs to a character-mode
terminal connected to a packet assembly/disassembly (PAD) device.
The PAD may be privately owned or located within the PSDN.

• Communicate by way of one or more PSDNs between terminals on a
local VAX PSI node and remote DIGITAL or non-DIGITAL computers.
VAX PSI contains ahost-based PAD that provides this capability.

• Communicate directly with another DIGITAL or non-DIGITAL computer
without an intervening PSDN, provided the other computer implements
International Standards 7776 and 8208. In this case, one computer
acts as the data terminal equipment (DTE), the other as the data
circuit-terminating equipment (DCE).

You can use an alternative version of VAX PSI, called VAX PSI Access, on
a VMS node that does not connect directly to a PSDN. VAX PSI Access
provides all the capabilities of VAX PSI. However, VAX PSI uses DECnet to
connect to a connector node, which in turn connects to a PSDN. The VAX
PSI Access node is known as a host node. The connector node may be a
VAX PSI node in multihost mode or an X25router. Each connector node can
connect to one or more PSDNs, and each host node can connect to one or
more connector nodes.

You can install and configure both VAX PSI and VAX PSI Access on the
same node, which is then known as a combination node. You may need
a combination node if you want to connect directly to a PSDN in native or
multihost mode and also want to have access to another PSDN by way of a
connector node.

1.2.3 DECnet Functions
Networking functions you can perform using DECnet-VAX are as follows.
These functions are introduced in this section and described in detail in later
chapters, as indicated.

• Network management functions

— Controlling the network (Chapters 2 through 7)

— Providing DECnet-VAX host services to other DECnet nodes
(Chapter 4)

Overview of DECnet—VAX and VAX PSI
1.2 DECnet—VAX and VAX PSI

— Performing routing configuration and control (Chapters 2 and 3)

— Establishing DECnet-VAX configurations (Chapters 2, 3, and 5)

• Applications user functions

— Accessing files across the network (Chapters 8 and 9)

— Using a heterogeneous command terminal (Chapter 8)

— Performing task-to-task communications across the network
(Chapter 8)

DECnet products are based on the layered network design specified in the
DIGITAL Network Architecture (DNA). Figure 1-1 illustrates the DECnet
functions, the various DNA layers at which they are initiated, and the DNA
protocols by which these functions are implemented. Each DNA layer is a
client of the next lower layer and does not function independently. For a
complete description of DNA, see the DNA specifications. The DECnet-VAX
configurations that use the Ethernet, DDCMP, CI, and X.25 protocols are
defined in the following section.

Figure 1-1 DECnet Functions and Related DNA Layers and
Protocols

DECnet Functions DNA Layers DNA Protocols

File Access
Comr~nand Terminals

USER User Protocols

Host Services

N
E

T
W

O
R

K
 M

A
N

A
G

E
M

E
N

T

Data Access Protocol (DAP)
Network Control NETWORK APPLICATION and others

SESSION CONTROL Session Control Protocol

Task -to-Task Communications

END COMMUNICATION Network Services Protocol (NSP)

Adaptive Routing ROUTING Routing Protocol

----------------, r T r
I I I

-
Host Services DATA LINK DDCMP I I I

I I I— — — — — Ethernet CI X.25 I I
U U

Packet Transmission/Reception PHYSICAL LINK ;, j ~ ~

~ ! Q I (I

ZK-1850-84

Overview of DECnet—VAX and VAX PSI
1.3 DECnet—VAX Configurations

1.3 DECnet—VAX Configurations
DECnet supports network connections to the following:

• An Ethernet circuit in a local area network configuration

• Anode running DECnet using the DIGITAL Data Communications
Message Protocol (DDCMP): either a synchronous point-to-point or
multipoint connection, or an asynchronous static or dynamic point-to-
point connection

• Another node running DECnet over the computer interconnect (CI)

• Anode running DECnet in a direct X.25 connection over a PSDN

Figure 1-2 illustrates a sample DECnet-VAX Phase IV configuration showing
various kinds of DECnet-VAX nodes (VMS routers and end nodes, a VMS
router in a VAXcluster, and VMS end nodes in a Local Area VAXcluster)
connected to an Ethernet, and two Ethernets connected by means of routers.
Figure 1-2 shows the use of a DDCMP synchronous line to connect a router
to additional DECnet nodes, and static (permanent) asynchronous DDCMP
lines to connect a router to VMS end nodes installed on VAXstations. It
also indicates a dialup connection between aMicroVAX-based VMS system
and a routing node in the VAXcluster, by means of a dynamic asynchronous
DDCMP line (switched on for the length of the call).

Figure 1-2 demonstrates two kinds of connections to a PSDN: a VMS node
connected directly to a PSDN by means of an X.25 circuit, and a VMS host
node that can be connected to a PSDN by means of connector nodes that
serve as gateways to the PSDN. One connector node is a VMS node running
multihost PSI and the other is an X25router.

DECnet-VAX connections are described in the following subsections. A
detailed discussion of the various types of circuits and lines used in a DECnet
network is presented in Chapter 2.

1.3.1 DECnet—VAX Ethernet Local Area Network Configuration
The Ethernet is a local area network component that provides a reliable high-
speed communications channel, optimized to connect information processing
equipment in a limited geographic area, such as an office, a building, or a
complex of buildings (for example, a campus).

Local area networks (LANs) are designed for a wide variety of technologies
and arranged in many configurations. Digital Equipment Corporation,
Intel Corporation, and Xerox Corporation collaborated in producing the
Ethernet specification to develop a variety of LAN products. DIGITAL's
implementation of the Ethernet specification that was originated by the Xerox
Corporation appears at the lowest two levels of the overall DNA specification:
the Physical layer and the Data Link layer.

At the Physical layer, the Ethernet topology is a bus, in the shape of
a branching tree, and the medium is a shielded coaxial cable that uses
Manchester-encoded, digital baseband signaling. The maximum data rate is
10 million bits per second. Maximum use of an Ethernet's data transmission
capability occurs when multiple pairs of nodes communicate simultaneously.

Overview of DECnet—VAX and VAX PSI
1.3 DECnet—VAX Configurations

S
a

m
p

le
 D

E
C

ne
t—

V
A

X
 P

ha
se

 I
V

 C
o

n
fig

u
ra

tio
n

 X
Q

X
Q

x
c

cn o
Z

~ ~
c
w

m
v

~Z ~~
c
w

M
ic

ro
V

A
X

 I
I

O
C
O
L ~
U ~
~ C
~ J

Q
C
aC

U G
'+• U cv ~
~0

~ Z
~ ~

C
W

a~
vi o
gz
> -a
w

z

Lo
ca

l A
re

a
V

A
X

cl
u
st

e
r

0 Z
w

O
Z

c
w

a~
O
Z

c
w

O

0 0 0
N
C
O .~
co +r

X
Q

O
O
O
N

X
.Q

0

C
U_

C

X
Q

._

~..

V
A

X
cl

u
st

e
r

T
hi

nW
ire

 E
th

er
ne

t

a~ «-
0

a~
cn o
~z

C
W

0
0
0
N
c
0 .~

N
X
Q

Overview of DECnet—VAX and VAX PSI
1.3 DECnet—VAX Configurations

In practice, DECnet transmission between a pair of nodes on an Ethernet
occurs at a considerably lower rate. Each Ethernet can support up to 1023
nodes; the maximum possible distance between nodes on the Ethernet is 2.8
kilometers (1.74 miles).

At the Data Link layer, network control for the Ethernet is multiaccess, fairly
distributed to all nodes. Ethernet access control is CSMA/CD (Carrier Sense,
Multiple Access with Collision Detect). The frame length allocation is from
64 to 1518 bytes (including an 18-byte envelope).

Section 2.2.4 lists the Ethernet circuit devices supported by DECnet-VAX.

1.3.1.1 Ethernet Datagrams
Message packets sent over Ethernet are called datagrams. Because there is
no guarantee that a datagram will be received by the intended destinations,
reliable connections (in the form of virtual circuits) may be provided by
a protocol being interposed between the user and the Ethernet datagram
service. In DNA, this virtual circuit is provided by the Network Services
Protocol (NSP) in the End Communication layer.

Initialization of nodes on Ethernet is based on multicast addressing and the
use of datagrams. It differs from initialization of nodes on DDCMP circuits in
that it does not involve guaranteed delivery of routing messages.

1.3.1.2 Transmission and Reception of Ethernet Packets
An Ethernet is a single shared network channel, with many nodes demanding
equal access to it. The technique used to mediate these demands is CSMA
/CD. A good analogy for this technique is the interaction of people at a social
gathering. To be polite, one does not speak while someone else is talking;
that is, one listens before speaking. On the Ethernet, listening to determine
whether the communication medium is already in use is called carrier sense.
Messages are said to be initially deferred if they are not sent on the Ethernet
because a transmission is in progress.

At a social gathering, anyone may begin to talk once he or she determines
that no one else is; the ability of any station on the Ethernet to use the
communication medium is known as multiaccess. If two or more people,
detecting silence, start to talk at about the same time, they note the fact
and stop talking (that is, each listens while talking and stops if interfering
with someone else); the noting of the fact that more than one station is
transmitting, followed by the cessation of communication, is called collision
detect.

When two or more people at a social event start talking simultaneously, they
stop talking, wait some random time, and start talking again; on an Ethernet,
this situation is known as backo f~ and retransmission, and it is expected that a
random delay before retransmission eventually clears the collision situation.

There is a further useful analogy between Ethernet and a social event. When
one is talking to a group of people, everyone can hear everything said. Some
of what is said is intended for everyone, some is intended far a subset of
the group (say, everyone over 21), and some is intended for an individual.
Stations on an Ethernet can hear every message. Some messages are intended
for all stations (broadcast address), some are intended for a subset (multicast
address), and some are intended for individual stations (physical address).

On an Ethernet, every station can listen to every message, and messages
can be addressed to their intended recipient(s). These two features greatly
increase the communications efficiency of a network that uses Ethernet over
that of a completely connected DDCMP network.

1-7

Overview of DECnet—VAX and VAX PSI
1.3 DECnet—VAX Configurations

1.3.1.3 Ethernet Routers and End Nodes
Ethernet supports connections to routers and end nodes. On an Ethernet, a
routing node selected as a designated router can perform routing services
on behalf of end nodes. In addition, routers can route packets between
Ethernet nodes and non-Ethernet nodes (such as nodes on DDCMP circuits).
An end node on an Ethernet can communicate directly with any other node
(router or end node) on the same Ethernet by sending a message directly to
the addressed node. Note that an end node on anon-Ethernet circuit can
communicate only with an adjacent node on the same circuit.

1.3.2 DDCMP Network Configurations
DDCMP provides a Toes-level communications path between systems. The
DDCMP protocol performs the basic communications function of moving
information blocks over an unreliable communication channel. (The protocol
detects any bit errors introduced by the channel and requests retransmission
of the block.) You also use DDCMP to manage the orderly transmission and
reception of blocks on channels with one or more transmitters and receivers.

The DDCMP protocol is supported on synchronous and asynchronous
communications devices. DDCMP connections can be point-to-point or
multipoint configurations. Point-to-point connections are either synchronous
or asynchronous. The two types of asynchronous connections are static
(permanent) and dynamic (switched temporary). Multipoint connections
are always synchronous. These connections are described in the following
section.

1.3.2.1 DDCMP Point-to-Point and Multipoint Connections
A point-to-point configuration consists of two systems connected by a single
communication channel. Figure 1-3 illustrates DDCMP point-to-point and
multipoint configurations.

A multipoint configuration consists of two or more systems connected by a
communications channel, with one of the systems (called the control station)
controlling the channel. All other systems on the communications channel
are known as tributaries. (Note that, if only two systems are connected
in a multipoint configuration, one is the master and one is the tributary.
However, this is not a very efficient use of the communication channel.) The
control station is responsible for telling the tributaries, in turn, when they
may use the channel; this procedure is known as polling. Tributaries are
not allowed to use the channel until they are polled. The control station,
however, may use the channel whenever it is available. Also, the tributaries
on a multipoint line are not allowed to communicate directly with each other,
but only through the master.

Point-to-point circuits and multipoint circuits perform as virtual circuits:
nodes on these circuits interact as though a specific circuit were dedicated
to them throughout the transmission; in fact, however, the actual physical
connection is allocated by the routing mechanism. Initialization of nodes
on DDCMP circuits involves guaranteed delivery of routing messages. Also,
individual nodes on DDCMP circuits must be addressed directly; no multicast
or broadcast addressing capability is available as with an Ethernet circuit.

Overview of DECnet—VAX and VAX PSI
1.3 DECnet—VAX Configurations

Figure 1-3 Typical DDCMP Point-to-Point and Multipoint
Connections

VMS
ROUTER

DDCMP
POINT-TO-POINT

DDCMP MULTIPOINT

PHASE III
END NODE

VMS
END NODE

VMS
END NODE

VMS
END NODE

ZK-1862-84

1.3.2.2 Synchronous DDCMP Connections
You use synchronous communications devices for high-speed point-to-point
or multipoint communication (for example, connecting two VAX-11/780
systems).

The synchronous DDCMP protocol can run in full- or half-duplex operation.
This allows DDCMP the flexibility of being used for local synchronous
communications, or for remote synchronous communications over a telephone
line using a modem. DDCMP has been implemented in microcode in such
devices as the DMC11 and DMR11 to run at speeds up to one megabit per
second in a point-to-point configuration. The DDCMP multipoint protocol
(point-to-point also) has been implemented in microcode in the DMP 11
device to run at speeds up to 500 kilobits per second. For the DMF32,
DDCMP has been implemented in the driver software for the synchronous
communications port.

1.3.2.3 Asynchronous DDCMP Connections
Asynchronous connections provide for low-speed, low-cost, point-to-
point communication (for example, as an inexpensive way of connecting
a MicroVAX system to a VAX-8000 series system). Asynchronous DDCMP
is implemented in software and can be run over any directly connected
terminal line that the VMS system supports. The asynchronous DDCMP
protocol provides for afull-duplex connection and can be used for remote
asynchronous communications over a telephone line using a modem.
Asynchronous connections are not supported for maintenance operations
or for controller loopback testing.

You can make two kinds of asynchronous connections over the network:

• A static connection: the asynchronous line is permanently configured as a
communications device

• A dynamic connection: aline connected to a terminal port is switched to
an asynchronous communications line for the duration of a call

Overview of DECnet—VAX and VAX PSI
1.3 DECnet—VAX Configurations

1.3.2.4 Static Asynchronous Connections
A static asynchronous DDCMP connection is a permanent DECnet connection
between two nodes physically connected by terminal lines. You convert the
terminal lines to static asynchronous DDCMP lines by issuing commands
to set the lines to support the DDCMP protocol. The user at each node
then turns the appropriate circuits and lines on for DECnet use. After the
communications link is established, it remains available until a user turns off
the circuit and line and clears the entries from the DECnet database.

Static asynchronous DDCMP configurations require the asynchronous
DDCMP driver to be connected. The asynchronous DDCMP protocol can
run in full-duplex operation on local asynchronous communication devices.
Examples of these devices are the DZ11 and the DMF32 asynchronous
communications port.

You can configure a dialup line as either a static or dynamic asynchronous
line, but may find the dynamic connection more secure and convenient to
use.

1.3.2.5 Dynamic Asynchronous Connections
A dynamic asynchronous connection is a temporary connection between two
nodes, generally over a telephone line using modems. The terminal lines
at both ends of the connection can be switched to asynchronous DDCMP
communications lines and then switched back to terminal lines.

You can use dynamic asynchronous connections to establish a DECnet link to
another computer for a limited time or to create links to different computers
at different times.

For example, as a user of a personal computer (non-VMS), you can cause a
dynamic asynchronous connection to be made for the length of the telephone
call to a VAX-8000 series system. You must first establish a process on your
system as a terminal emulator (enabling the remote connection to look like a
local connection). You dial in over a telephone line to a process on the other
system (which is established as a virtual terminal) and log in. You can then
enter a command that causes the terminal lines at each end of the connection
to be switched to DDCMP mode for DECnet use. When you hang up the
telephone or turn off the circuit, the lines are automatically switched back to
terminal lines.

Security measures provide protection against a caller at an unauthorized
node forming a dynamic asynchronous connection with another node (see
Section 2.10.6). Before a dialup node can establish a dynamic connection with
a remote node, the remote node verifies that the dialup node is authorized to
make a connection. It checks that the node is of the appropriate type (router
or end node), and, without revealing its own password, verifies the routing
initialization password sent by the dialup node. Also, for increased security,
the connection is ended automatically when the telephone is hung up.

You can establish a dynamic asynchronous connection over a hardwired
terminal line. The connection is maintained for the duration of the DECnet
session. The dynamic connection permits the system to be used as a terminal
emulator when not switched to DECnet use.

Overview of DECnet—VAX and VAX PSI
1.3 DECnet—VAX Configurations

1.3.3 DECnet—VAX Configurations for VAXclusters
A VAXcluster is an organization of VMS operating systems that communicate
over ahigh-speed communications path, the CI, and share processor resources
as well as disk storage. Figure 1-4 shows a typical VAXcluster. The CI is the
physical link between the nodes in a VAXcluster. The CI cables from the
individual nodes in the cluster are connected to a star coupler. The HSCs are
hierarchical storage controllers that enable VAXcluster nodes to share disks.

Figure 1-4 Typical VAXcluster Configuration with CI as a Data Link

VMS
ROUTER

CI
VMS

END NODE

VMS
END NODE

CI

Ci

CI

HSC50

Star Coupler

CI

VMS
ROUTER

CI HSC50

~~1

Shared Disks

ZK-1861-84

DECnet-VAX connections are required for all VMS operating systems in the
VAXcluster. Use of DECnet-VAX ensures that VAXcluster system managers
can access each node in the cluster from a single terminal, even if terminal-
switching facilities are not available. DECnet-VAX is also required by the
User Environmental Test Program (UETP).

The choices for DECnet-VAX physical links for use in the VAXcluster• are as
follows:

• Connecting each VMS node in the cluster to an Ethernet (as shown in
Figure 1-2)

• Using the CI that connects the cluster nodes as the DECnet-VAX data
link (as shown in Figure 1-4)

Connecting each VAXcluster node to an Ethernet provides distinct advantages:

• Each node in the cluster can be an end node, resulting in lower overhead
for these nodes, decreased routing traffic throughout the network, and
simpler installation procedures. Note that there must be at least one
router on the Ethernet to which the cluster end nodes are attached.

Overview of DECnet—VAX and VAX PSI
1.3 DECnet—VAX Configurations

• Ethernet provides for better performance in DECnet transmissions than
the CI, despite the higher data link bandwidth of the CI, because the
Ethernet communications protocol allows larger buffer sizes.

• Terminal servers can be used when nodes in a VAXcluster are connected
to an Ethernet. DIGITAL's terminal servers offer a number of benefits
to the VAXcluster user, such as load balancing and easier cluster
management.

If you use only one physical link to connect each cluster node to the network,
you should use the Ethernet link instead of the CI data link, because of
the better DECnet performance of the Ethernet. In this case, the CI should
perform the functions of a system bus and not be enabled as a DECnet data
link.

A VAXcluster node connected to an Ethernet may require additional DECnet
links in order to communicate with remote nodes not on the Ethernet. You
must configure a VAXcluster node connected to more than one DECnet link
as a router, not as an end node.

If the nodes in the VAXcluster are not connected to an Ethernet, the CI should
be used as the DECnet data link between the nodes. CI circuit devices are
configured as though they were multipoint devices, but each node on the CI
can talk directly to every other node and no polling is involved.

A two-node VAXcluster that uses the CI as the data link can be configured
using end nodes. If additional nodes are configured in the cluster, however,
at least one router is required. The CI does not have a broadcast capability
(such as that of the Ethernet). Thus, the router is needed so that the nodes
in the cluster can identify each other. If the router in a three-node cluster
fails, the cluster reverts to being atwo-node cluster and can consist of end
nodes only. You can use network management commands to create a circuit
between the end nodes. For a cluster of four or more nodes, more than one
router is required in order to prevent the loss of communications capability
between the remaining nodes if one router fails. Also, backup circuits can be
provided between end nodes in case of router failure.

A VAXcluster can be configured so that the whole cluster appears to other
network nodes as though it were a single node, with an address different
from that of any DECnet node within the VAXcluster. This address usually
has a node name associated with it. Thus, you can access the VAXcluster
as a whole by an alias node identifier, which can be either its node name
or its node address. All or some of the nodes in a VAXcluster can elect
to use this special node identifier as an alias, while retaining their unique
individual node names and addresses. Each node that assumes the alias node
identifier can specify whether it will accept incoming connections directed
to the alias address. It can also specify the network services for which the
cluster alias node identifier is to be used on outgoing connections and the
network services that will accept incoming calls.

At least one of the nodes in the cluster that accepts the alias node identifier
must be a router. The router informs other nodes in the network of the alias
node address for the cluster. When the router receives packets addressed
to the alias node address, it forwards them to the appropriate nodes in the
cluster. The cluster alias node identifier can be very useful in network
operations involving shareable resources. Network users outside the
VAXcluster can access cluster resources without knowing which nodes are
active in the cluster. For example, if a user on a cluster node sends a MAIL
message, it does not matter whether that particular node is active when a
reply to the message is received.

1-12

Overview of DECnet—VAX and VAX PSI
1.3 DECnet—VAX Configurations

1.3.4 X.25 Network Configurations
Packet switching data networks provide fast, dependable communications
between geographically distributed nodes. Data transmitted over a PSDN
is divided into packets, each of which has a header containing control and
destination information. The PSDN interleaves packets from many users over
shared transmission lines and delivers the packets in the correct order to the
proper destinations. The routing of packets through the PSDN is handled by
the PSDN itself and is invisible to the user.

In X.25 network terminology, your computer or terminal is called data
terminal equipment (DTE) and the PSDN interface to which it is connected
is known as data circuit-terminating equipment (DCE). The DTE can
operate in packet mode or in character mode. A character-mode terminal is
also known as an X.29 terminal.

1.3.4.1 X.25 and X.29 Recommendations
Recommendations for standard network interfaces for DTEs have been
established by the CCITT (Comite Consultatif International Telegraphique
et Telephonique). The X.25 recommendation defines the interface between
the packet-mode DTE and the DCE. ,The X.25 recommendation defines
three levels of protocols for this interface: Level 1 covers physical and
electrical characteristics; Level 2, link access procedures; and Level 3, packet
procedures.

The X.29 recommendation defines the procedures for information exchange
between apacket-mode DTE (a computer) and the packet
assembly/disassembly (PAD) facility of the PSDN or host.

Communication between a local DTE and a remote DTE is by means of a X.25
virtual circuit, a logical association between the two DTEs set up specifically
to handle the exchange of data between them. An X.25 virtual circuit can
be permanent or temporary. The permanent virtual circuit (PVC) is similar
to a leased line. The temporary or switched virtual circuit (SVC) is similar
to a dialup line and requires calls to be set up and cleared. A local DTE is
connected to the PSDN by a synchronous X.25 line, over which X.25 virtual
circuits operate. Examples of X.25 line interfaces are the DUP 11 and the
DMF32 synchronous line unit.

As well as supporting various PSDNs, VAX PSI can also support an
ISO standard 8208 network. ISO 8208 is the International Standards
Organization's definition of the CCITT X.25 recommendations.

1.3.4.2 X.25 Connections
Figure 1-5 illustrates typical X.25 connections that permit a VMS node to
communicate with a remote node over a PSDN.

Overview of DECnet—VAX and VAX PSI
1.3 DECnet—VAX Configurations

Figure 1-5 X.25 Connections in a DECnet Network Configuration

X.25 HOST NODES

VMS X.25 VMS VMS
WITH CONNECTOR WITH VAX WITH VAX

VAX PSI NODE PSI ACCESS PSI ACCESS

MULTIHOST

X.29 TERMINAL

VMS
WITH

VAX PSI

X25router

PACKET
SWITCHING

DATA
NETWORK

X.25
CONNECTOR
NODE

ETHERNET

VMS
WITH VAX
PSI ACCESS

PACKET
SWITCHING

DATA
NETWORK

ZK-1860-84

You can configure a VMS node to communicate over PSDNs in the following
ways:

• By means of a data link mapping (DLM) circuit, which is an X.25 virtual
circuit used as a DECnet data link (provided the remote node runs PSI
and DECnet-VAX or DECnet-RSX, or is an X25router)

• Through a direct connection to a PSDN over an X.25 virtual circuit (this
is called native-mode operation)

• As a host node using an X.25 connector node to access a PSDN. A
connector node may be a VMS node with VAX PSI configured in
multihost mode or it may be an Ethernet communications server, such as
the X25router.

You must have VAX PSI software installed on your DECnet-VAX node to
configure your node for VAX PSI native-mode operation or multihost mode
operation. Native-mode operation permits incoming and outgoing calls to be
made between the local node and a remote DTE. Multihost mode operation
allows the local node to be a connector node or gateway, which host nodes
can use to communicate over a PSDN with remote DTEs. Each host node
must have VAX PSI Access software installed.

Each native mode node and each connector node may support several DTEs.
The DTEs in turn may be connected to different PSDNs and provide multiple
connections to each PSDN. Each host may connect to several different
connector nodes.

Overview of DECnet—VAX and VAX PSI
1.4 Managing the Network

1.4 Managing the Network
As system manager of a VMS operating system, you can use a network
management utility program to configure the system as a DECnet-VAX
node in the network, and perform network management and maintenance
functions for your own node and other nodes in the network. The following
subsections summarize network management functions.

1.4.1 Network Control Program
To configure, control, monitor, and test the network, you use the Network
Control Program (NCP), a VMS utility program. The following types of users
employ NCP:

• Users of both DECnet-VAX and VAX PSI. These users can employ all
NCP commands.

• Users of DECnet-VAX only. DECnet-VAX users employ all NCP
commands except those that relate to X.25 modules.

• Users of VAX PSI only. PSI native-mode and multihost-mode users (who
are not using DECnet-VAX circuits) employ only NCP commands that
relate to X.25 modules, circuits, lines, objects, and logging.

The network components the system manager configures are listed in
Section 1.4.5 and described in detail in Chapter 2. Chapter 3 discusses how
to use NCP commands and parameters to perform network management.
The NCP commands and parameters and guidelines for using them, including
restrictions on the use of individual NCP parameters, are specified in the VMS
Network Control Program Manual.

1.4.2 Network Management Responsibilities
As system manager of a DECnet-VAX network, you have a number of key
responsibilities, which include the following:

• Defining network components and their parameters in a central
configuration database at the local node and, optionally, at remote
nodes. (The local node is the node at which you are physically located; a
remote node is any node other than the local node in your network.)

• Coordinating with the system managers of other nodes in the network
to ensure uniform assumptions about network parameter settings such as
circuit cost.

• Configuring your node to ensure proper network routing operation
and updating VMS SYSGEN procedures to allow enough space for the
networking software.

• Controlling and monitoring local and remote network operation.

• Testing network hardware and software operation.

• Loading systems downline to unattended remote nodes.

• Connecting to an unattended remote node to serve as its console.

Overview of DECnet—VAX and VAX PSI
1.4 Managing the Network

If your network includes VAX PSI, you have the following additional
responsibilities:

• Defining VAX PSI components and their parameters in the network
configuration database and thus configuring VAX PSI.

• Monitoring the operation of VAX PSI using PSI management utilities.

• Analyzing hardware and software operation and diagnosing problems
related to PSI operation.

The following sections outline the network-related tasks that you perform as
system manager and describes several of the facilities DECnet-VAX and VAX
PSI provide to perform those tasks.

1.4.3 DECnet—VAX Licenses and Keys
To enable your node to communicate with other nodes in the DECnet
network, you need a DECnet-VAX license and key. You must purchase either
a full function or an end node license, and enable the license by registering
the appropriate DECnet-VAX key on your system. You register DECnet-VAX
keys by using the License Management Facility (LMF). To register the key,
you use the License Management Utility (LICENSE) to enter the information
from the LMF Product Authorization Key (PAK).

The DECnet-VAX full function key allows the node on which it is enabled
to be configured as either a routing node or an end node. The end node key
permits the use of the DECnet-VAX end node capability only.

If you have purchased a DECnet-VAX end node license and now require
the additional DECnet-VAX full function capability, you may purchase a
DECnet-VAX end node to full function upgrade license and key.

Note that you do not need a DECnet-VAX license or key if you are planning
to only use VAX PSI in native mode (as long as you do not want to use data
link mapping to communicate with other DECnet nodes).

1.4.4 DECnet—VAX and VAX PSI Network Management Software
Figure 1-6 displays the DECnet-VAX and VAX PSI software that the system
manager uses to configure, control, and monitor the network.

Network management software components are as follows:

• Ethernet configurator (NICONFIG), a network image that listens to
system identification messages on Ethernet circuits, and maintains a user-
accessible database of configuration information on all systems on the
Ethernet.

• Event logger (EVL), an image that logs significant events to provide
information to the system manager for possible intervention or future
reference.

• File access listener (FAL), a network image that receives and processes
remote file access requests for files at its node on behalf of remote users.

Overview of DECnet—VAX and VAX PSI
1.4 Managing the Network

Figure 1-6 DECnet—VAX and VAX PSI Software

LES$ACP

VOLATILE
DATABASE

EVENT LOGGER

O10

NET DRIVER
O10

QIO

NETACP

VOLATILE
DATABASE

NETWORK
MANAGEMENT

LISTENER

LOOPBACK
MIRROR

LOGICAL LINK

NML

LOGICAL
LINK

HLD

NETWORK
CONTROL
PROGRAM

PERMANENT
DATABASE

FAL EVL MIRROR NICONFIG

ZK-541-81

• Host loader (HLD), an image that communicates with the DECnet-RSX
Satellite Loader (SLD) to load tasks downline to an RSX-11S node.

• Loopback mirror (MIRROR), a network image that participates in Network
Service Protocol (NSP) and Routing Layer loopback testing.

• Network ancillary control process (NETACP), a VMS ancillary control
process that controls all lines and circuits, maintains a picture of the
network topology, and creates a process to receive inbound logical link
connection requests.

• Network Control Program (NCP), an interactive utility program that
permits you to control and monitor the network.

• Network driver (NETDRIVER), a VMS pseudo-device driver that provides
logical link and routing services. It implements NSP and Routing, and
provides a user process with a Queue I/O (QIO) interface to a logical link
service.

• Network management listener (NML), an image that receives network
management commands, such as NCP commands, from the Network
Management layer through the Network Information and Control
Exchange (NICE) protocol. NML performs all local network management
functions as well as control and information functions requested by
remote nodes. NML spawns a subprocess, the maintenance operation
module (MOM), for maintenance functions such as downline load, upline
dump, and loopback testing.

• LES ancillary control process (LES$ACP), a process that supports several
LES-based communications products. It is used by VAX PSI to control all
X.25-related functions. LES$ACP has the VAX PSI volatile database.

• Permanent database, a collection of disk-resident files that define the
network as known to the Local node. If VAX PSI is configured in the
network, a subset of the permanent database is maintained as the VAX
PSI permanent database for the local DTEs.

Overview of DECnet—VAX and VAX PSI
1.4 Managing the Network

• Volatile database, maintained by NETACP, amemory-resident database
containing current network configuration parameters. If VAX PSI is
configured in the network, a subset of the volatile database is maintained
as the PSI volatile database in PSIACP for the local DTEs.

Many of these software components are user-transparent processes over
which the system manager has no control. This manual describes DECnet-
VAX and VAX PSI software only as it serves to highlight and clarify the
functions and operation of NCP. The various DNA specifications describe the
different protocols that facilitate network communication.

1.4.5 Configuring a Network
The system manager must configure each DECnet-VAX node and VAX PSI
DTE as part of the network.

1.4.5.1 Configuring aDECnet-VAX Node
At the outset, the system manager is responsible for configuring the network
from the perspective of local node network operation. This involves
supplying information at the local node about various network components
such as nodes, circuits, lines, and objects. This information constitutes what
is called the configuration database for the local node. Each node in the
network has such a database. You supply information about the configuration
database through NCP.

If you are configuring aDECnet-VAX node for the first time or want
to rebuild the configuration database for your local node, you can use
the interactive NETCONFIG.COM procedure to configure your node
automatically. To update an existing node database to contain current
information about other nodes in the network, you can copy the information
from the node database of another node to which you have access.

Chapter 3 discusses the function of the configuration database and the general
use of NCP and most NCP commands. Chapter 5 describes how to use the
NETCONFIG.COM procedure to configure your node automatically, and
presents sample configuration commands for various network configurations.
The VMS Network Control Program Manual contains a summary description of
NCP operation, command prompting, and the syntax of all NCP commands.

1.4.5.2 Configuring VAX PSI DTEs
If VAX PSI is to be run, the system manager is responsible for installing
and configuring VAX PSI for the local DTEs. Configuring VAX PSI involves
supplying information about various VAX PSI components, such as circuits,
lines, modules, and objects. The information is contained in the PSI
configuration database for the local node and, if both DECnet-VAX and VAX
PSI are configured, in the DECnet-VAX configuration database for the local
node. You use NCP commands to supply information to the configuration
database.

If your node is to serve as an X.25 multihost connector node to provide
access to PSDNs for host nodes, you must configure VAX PSI software in
multihost mode. If your node is to be a host node that uses the connector
node to access a PSDN, you need to install and configure only the VAX PSI
Access software. The procedures for configuring VAX PSI software or VAX
PSI Access software on your DECnet-VAX node are described in Chapter 5.

Overview of DECnet—VAX and VAX PSI
1.4 Managing the Network

1.4.5.3 A Network Topology
Figure 1-7 illustrates a hypothetical network topology made up of various
DIGITAL operating systems. Figure 1-8 illustrates the same topology for
a network that has been divided into multiple areas. These examples are
referred to as the "network examples" throughout this manual.

Figure 1-7 Topology of a Single-Area DECnet Network

DENVER
(1.14)
YMS

 Physical line
 Circuit

TRNTO
(1.5)
YMS

~~DMC-0

KANSAS
(1.13)
RSTS

BANGOR
(1.15)

RSX-11S

I
I

DMC-1 I

\`

DMC-4

i

~~ DMC-3

DALLAS
(1.9)

RSX-11 M

DMC 2

i

i
i

i~
 ' BOSTON

(1.11)
VMS

NYC
(1.17)

RSX-11S

PACKET
SWITCHING

DATA
NETWORK

ROBIN
(1.20)
YMS

 THRUSH
(1.21)
YMS

LARK
(1.22)
YMS

UNA-0

LONDON
(1.2)
VMS

DOVE
(1.23)
YMS

ZK-1863-84

LOON
(1.24)
VMS

Overview of DECnet—VAX and VAX PSI
1.4 Managing the Network

Figure 1-8 Topology of a Multiple-Area DECnet Network

...

 Physical line
 Circuit

.

.'

~~

ZK-2003-84

Figures 1-7 and 1-8 show some, but not all, of the network components
about which the system manager gathers and consolidates information in
the configuration database. Using NCP, you can control the following six
network components:

• Nodes. Nodes are DIGITAL operating systems using DECnet software to
communicate with other operating systems across the network.

• Modules. VAX PSI modules include the X.25 protocol module, which
performs data packet handling and multiplexing of X.25 circuits over lines
to PDSNs; and the X.25 and X.29 server modules, which handle X.25 and
X.29 calls, respectively. DECnet-VAX modules include the X.25 access
module, which permits a VMS host node to communicate over a PSDN
by means of a connector node, and the Ethernet configurator module,
which lists all nodes on the Ethernet.

Overview of DECnet—VAX and VAX PSI
1.4 Managing the Network

• Circuits. Circuits are virtual communications paths between nodes and
between DTEs. Circuits operate over physical lines and are the medium
on which all I/O occurs. DECnet processes "talk" over circuits by means
of logical links. These links carry a single stream of full-duplex traffic
between two user-level processes. There can be multiple logical links on
each DECnet circuit.

• Lines. Lines are physical data paths between nodes, or between DTEs
and DCEs (X.25 network interfaces).

• Objects. Objects are processes that receive logical link requests. They
perform specific network functions. An example is FAL, which is used for
remote file access. Objects also receive incoming X.25 calls.

• Logging. Logging is a network feature that enables the automatic
recording of useful network events that occur during network operation.

These components, the DECnet and PSI software modules and databases, and
the hardware make up the network. NCP command examples in this manual
relate to the components illustrated in the network example.

1.5 User Interface to the Network
This section describes the user interface to the DECnet—VAX network. It
includes a general description of operations that you can perform over the
network and a list of the programming languages that you can use for
designing network applications. The following sections present general
information that you need to know to access the DECnet—VAX network.

1.5.1 Performing Network Operations
You can use the DECnet—VAX software to perform a variety of operations
over the network:

• Manipulate files on remote nodes (for example, transfer, delete, or rename
files).

• Access remote files at the record level.

• Perform task-to-task communications.

DECnet—VAX allows you to access files on remote nodes as though they
were on your local node. It also allows you to design applications that
communicate with each other over the network. For detailed information
about remote file access and task-to-task communication, including examples
of each type of network application, see Chapter 8.

Throughout this document, the term task refers to an image running in the
context of a process, the term local refers to the node at which you are
located physically, and the term remote refers to the node with which you
establish a connection. Note that, in certain situations such as testing, you
can establish a logical link between two processes on the same node.

The VMS operating system and DECnet—VAX communications software are
integrated to provide a high degree of transparency for user operations. For
some applications, however, it is desirable (and sometimes necessary) to have
more direct access to network-specific information and operations. For this
purpose, DECnet—VAX provides nontransparent communication.

1-21

Overview of DECnet—VAX and VAX PSI
1.5 User Interface to the Network

The following sections describe some of the general transparent and
nontransparent features of DECnet-VAX in terms of the user interface to the
network. For more detailed information, including examples of transparent
and nontransparent DECnet-VAX applications, see Chapter 8.

In addition to remote file access and task-to-task communication, DECnet-
VAX also allows you to communicate with remote nodes through the
heterogeneous command terminal facility (SET HOST), described in
Chapter 8.

When designing user applications to perform network operations, you- can use
standard DCL commands, higher-level language I/O statements, VMS RMS
service calls, and system service calls.

1.5.1.1 Designing User Applications for Network Operations
DECnet-VAX supports several programming languages for network
applications:

• DCL commands and command procedures

• Higher-level language programs

• MACRO programs using RMS service calls or system service calls

You can use several higher-level languages to develop networking
applications, including VAX Ada, VAX FORTRAN, VAX BASIC, VAX
BLISS, VAX PASCAL, VAX C, VAX PL/I, and VAX COBOL. With any of
these languages, you can access remote files and create tasks that exchange
information across the network.

Table 1-1 summarizes the normal use of the programming languages for
specific network operations that you can perform with DECnet-VAX.

Table 1-1 Network Access Levels

User Language Network Operation Language Calls Access Level

DCL Network command DCL commands Transparent network access using
terminals DCL

Remote file
manipulation

Task-to-task
communication

Higher-level Remote file access Higher-level
languages (files and records) language

I/O statements

Task-to-task
communication

MACRO or Remote file access RMS service
higher-level (files and records) calls
languages

Task-to-task
communication

Transparent network access using
RMS

MACRO or Task-to-task System service Transparent and nontransparent
higher-level communication calls network access using QIO
languages

Overview of DECnet—VAX and VAX PSI
1.5 User Interface to the Network

1.5.1.2 Choosing a Language for a Specific Network Application
The way you access the network is directly related to the language you use
and the network operation you perform. For example, you may want to use
standard VMS RMS calls in a VAX MACRO program to access remote files,
then use system service calls to communicate between MACRO programs
in a task-to-task communication application. Figure 1-9 shows three access
levels and the corresponding network operations. The various levels of
network access provide a convenient context in which to discuss typical user
operations over the network.

The first two levels of access, DCL and RMS, are entirely transparent to the
network user. Because you use standard DCL commands and RMS service
calls to access remote files, no DECnet-specific calls are required at these
levels of access. You need only specify in your file specification the remote
node on which the file resides. Likewise, higher-level language tasks can
use a variation of the standard VMS file specification in conjunction with
standard I/O statements to access remote tasks and exchange information;
thus, this form of task-to-task communication is also transparent. As with
device-independent I/O operations, transparent network access allows you to
move data across the network with little concern for the way this operation is
performed.

The third level of access, system services, provides both a transparent and
a nontransparent user interface to the network. Transparent communication
at the system-service level provides all the basic functions necessary for
two tasks to exchange messages over the network. As with the higher-level
language I/O interface, these operations are transparent because they do
not require DECnet-specific calls. Rather, you use standard system service
calls to implement them. Nontransparent communication extends this
basic set of functions to allow a nontransparent task to receive multiple
inbound connections and to use additional network protocol features such as
optional user data and interrupt messages. As with device-dependent I/O,
nontransparent communication allows you to exploit certain network-specific
characteristics to coordinate a more controlled communication environment
for exchanging information.

Overview of DECnet—VAX and VAX PSI
1.5 User Interface to the Network

Figure 1-9 Network Access Levels and DECnet—VAX User Interface

Network User Interface

DCL Commands

Network Access Level

VMS

DCL Interpreter
and Images
Using RMS

DCL
Access
Level

Remote
File Access
Programs

Transparent
Task-to-Task
Programs

VMS RMS

DAP

~ ~

File
System

RMS
Access
Level

Transparent
Task-to-Task
Programs

Nontransparent
Task-to-Task
Programs

QIO
System
Services

DECnet-VAX
Software

System
Service
Access
Level

Communications
Device

ZK-1851-84

1.5.2 Accessing the Network
This section presents general information that you need to know to access
the network by means of DECnet—VAX software. This information covers
network file and task specifications, access control parameters, and how to
use logical names in network applications.

The format for file specifications is applicable to file-handling operations for
both the DCL and the RMS interfaces to the network. The task specification
format pertains to task-to-task communication. The information on access
control is significant because it defines the way that both local and remote
nodes grant access to their system resources.

1-24

Overview of DECnet—VAX and VAX PSI
1.5 User Interface to the Network

1.5.2.1 Using File and Task Specifications in Network Applications
DECnet-VAX uses the standard VMS file specification format for remote
file-handling applications. Anode specification string that includes a node
name must be present. You can also include an optional access control string
in the node specification to specify explicitly the user name and password of
a specific account to use on the remote system. For example:

TRNTO"SMITH JOHN"::WORK_DISK:TEST.DAT;1

This file specification contains explicit access control information and can be
used to access the file TEST.DAT, which resides in user Smith's top-level
directory on the device WORK_DISK on node TRNTO.

The following file specification, which does not contain explicit access control
information, can also be used to access the remote file TEST.DAT, provided a
proxy or default nonprivileged DECnet account exists on the target node:

TRNTO::DBA1:[SMITH]TEST.DAT;1

For more information about file specification strings, including format
examples, see the VMS DCL Concepts Manual.

Task-to-task communication requires the use of a task specification string
enclosed in quotation marks. This string identifies the target task to which
you want to connect on a remote node. For example:

BOSTON::"TASK=TEST2"

This task specification string identifies the task TEST2 by means of the TASK=
form of task specification. You can also use the 0= form to specify a task. For
example:

BOSTON"JONES KC"::"O=TEST2"

This task specification string also identifies the task TEST2. Note that, in
this case, explicit access control information is also included in the node
specification string. For more information about task specifications, see
Chapter 8.

1.5.2.2 Using Access Control for Network Applications
Access control is the control that a node exercises over inbound logical link
connections. The terms inbound and outbound refer to the direction of
the logical link connection request. Anode receives and processes inbound
requests; it processes and sends outbound requests. This distinction is useful
for discussing access control as it relates to VMS nodes in a network. If the
node to which you want to connect is not on a VMS operating system, refer
to appropriate DECnet documentation.

When DECnet-VAX software sends an outbound connection request in
response to either a remote file access or a task-to-task communication
operation, you may need certain access control information to connect
successfully to the remote node and to log in. As in logging in at your local
VMS node, you can supply specific access control information in the form of
a user name and password that the remote node recognizes. The remote node
processes inbound connection requests containing this information to verify
that you are a valid user of the system. For more information about inbound
and outbound connection requests, see Section 2.10.2. Figure 1-10 illustrates
the access control processing that takes place for a DCL command.

Overview of DECnet—VAX and VAX PSI
1.5 User Interface to the Network

Figure 1-10 Remote File Access Using Access Control String Information

$ COPY TEXT.NEW TRNTO"WHITE XYZ"::USER~DISK:TEXT.TXT J

1

Local Node

RMS
Processing

BOSTON::

DECnet-VAX
Software

Remote Node
TRNTO::

appropriate
NETSERVER

process
located?

Key:
"WHITE XYZ"

NO

YES ~ I

UAF Access
File Validity
 ~ Checking

Process is
created and

LOGINOUT.EXE
is run.

(If Access
Information
Checks Out)

NETSERVER.COM
is executed.

USER DISK

TEXT.TXT

NETSERVER.EXE
is run.

FAL.EXE is run.

NETSERVER.LOG
is produced.

i
loop until timeout

ZK-1869-84

When you do not provide explicit access control information in the connection
request, DECnet-VAX software uses the remote node name specified in
the connection request as a key to locate the appropriate record in the
local configuration database. This record contains default access control
information applicable to the remote node. Your system manager creates
this entry when establishing the configuration database. (For additional
information about the configuration database, refer to Chapter 3.)

Depending on the privileges required by the object to which you want to
connect and those of the user process (see Figure 1-11), one of three possible
sets of default access control information is sent to the remote node: default
privileged, default nonprivileged, or null. Because these defaults are node
parameters, all privileged operations requested with default access control
for a given node run under the same default account. The same is true for
nonprivileged operations requested with default access control.

Overview of DECnet—VAX and VAX PSI
1.5 User Interface to the Network

If the target node is running DECnet-VAX, it can associate incoming connect
requests with specific accounts other than the default nonprivileged DECnet
account. This type of access is known as proxy login and requires the
originator of the request to have a proxy account on the target node and
proxy login access to be enabled at that node. Proxy login is described in
Section 2.10.5. Figure 1-11 illustrates the access control processing that takes
place for the same DCL command as in the example in Figure 1-10, except
that the DCL command does not specify an access control string.

1.5.2.3 Using Logical Names in Network Applications
Using logical names for network operations allows you to refer to network
file and task specifications without using actual names that you give these
elements. Logical names serve as a kind of shorthand for specifying all or a
portion of a full file specification. By using logical names, you can pass file
specifications defined at the DCL level to an executing image at run time.
For example, logical names allow a program to access local or remote files
without changing the program. You can also use logical names to conceal
access control information from other users by embedding it in a logical name
defined in the process logical name table. Logical names provide convenient
and powerful multilevel access control specification.

The rules that govern the use of logical names for network operations are as
follows:

• Both the device name and node name in a full file specification string can
be logical names. After a node specification is encountered during file
parsing, however, a device name that follows is not translated locally.
Instead, it is passed unaltered to the remote node, where it is subject to
logical name translation.

• A logical name appearing in the device name position in a file
specification can supply any file specification string elements when
translated.

• A logical name appearing in the node name position can supply only a
node specification when translated. Therefore, its equivalence string must
end with a double colon.

• An access control string associated with a logical node name becomes the
new access control string for the node-specification of the equivalence
string, even if the node specification contained an access control string.
Thus, you can easily specify a default (or override any) access control
string defined for the node specification resulting from logical name
translation.

• After a logical node name is translated, the new node name becomes a
candidate for logical node name translation.

• A maximum of ten logical device name translations and ten logical
node name translations is permitted. If you exceed these limits, an error
message is returned.

• While logical name translation is not done on the local node, merging the
default name string (and related names) is accomplished locally.

Overview of DECnet—VAX and VAX PSI
1.5 User Interface to the Network

Figure 1-11 Remote File Access Using Default Access Control Information

COPY TEXT.NEW TRNTO:: USER___DISK:TEXT.TX~

1

Local Node
BOSTON::

Key: TRNTO::

RMS
Processing

DECnet-VAX
Software

Configuration
Database

Default
Access
Control
Info.

-̀ 7

Entry:
~, "DECNET NONPRIV"

Remote Node
TRNTO::

DECnet-VAX
Software

Proxy Database

Is
appropriate
NETSERVER

process
located?

YES

NO

Access
Validity

Checking

Process is
created and

LOGINOUT.EXE
is run.

(If Access
Information
Checks Out)

NETSERVER.COM
is executed.

USER___DISK

~ ~/
TEXT.TXT

NETSERVER.EXE
is run.

FAL.EXE is run.

NETSERVER.LOG
is produced.

i
loop until timeout

— — — — — — — —

ZK-1870-84

For more information about logical names, including examples of logical
names that can be used for network applications, see the VMS DCL Concepts
Manual.

2 DECnet—VAX Components and Concepts

This chapter presents networking concepts relevant to understanding the
operation of the DECnet network, in terms of the functions performed by
DECnet-VAX components and VAX PSI components.

To establish your VMS operating system as part of the DECnet network,
you must build and maintain a network configuration database, consisting of
records that describe the specific network components your particular system
requires. This chapter describes the DECnet-VAX components and their
characteristics: nodes, circuits, lines, routing, logical links, objects, logging,
and network access control. It also describes VAX PSI components used
in communicating over a packet switching data network (PSDN): the X.25
protocol module, X.25/X.29 server modules, and X.25 access module.

Chapter 3 discusses how you can use aDECnet-VAX utility program, the
Network Control Program (NCP), to enter in your configuration database
specific parameters for each network component your system will use.

2.1 Nodes and DTEs
A node is an operating system that uses DECnet software to communicate
with other operating systems across a network. A VMS node uses DECnet-
VAX software to communicate with other DECnet-VAX nodes and with any
other DIGITAL operating system that supports DECnet.

The X.25 equivalent of a node is the DTE (data terminal equipment). The
DTE is a computer or terminal that uses VAX PSI software to communicate
with remote nodes across PSDNs. You can configure your DECnet-VAX node
as a DTE, provided that VAX PSI software is installed on your node. Note
that a single VAX PSI system can support several DTEs. You can connect
these DTEs to any combination of one or more PSDNs.

A DECnet-VAX node can also be an X.25 connector node, serving as a
gateway that permits DECnet-VAX host nodes on an Ethernet to access one
or more PSDNs. To configure your DECnet-VAX node as a connector node,
you must have VAX PSI software in multihost mode installed. To configure
your DECnet-VAX node as an X.25 host node, you must have VAX PSI
Access software installed.

This section describes the characteristics of nodes and the kinds of parameters
you can associate with them. It also describes DTEs and indicates how you
use X.25 protocol modules to define DTEs and the parameters related to them.
Chapter 3 discusses how to use NCP commands to establish the parameters
for nodes and DTEs.

DECnet—VAX Components and Concepts
2.1 Nodes and DTEs

2.1.1 Nodes

The VMS operating system at which you are physically located is called
the local node. By issuing network management commands at your local
node, you can perform configuration, control, and monitoring functions that
affect both the local node and other nodes in the network. The node on
which network management functions are actually performed is called the
executor node. Usually, the executor node is the local node. You have the
option, however, of entering at the local node one or more commands to be
executed at a remote node. For those commands, the remote node serves as
the executor node.

2.1.1.1 Node Address and Name
To configure an operational network at the local node, you must establish
configuration database entries for the local node and for all adjacent nodes
that are connected by circuits. You should specify names and addresses for
all nodes in the network. After you have done so, you can reach any other
node by its name.

To satisfy routing requirements, each node in the network must have a unique
address. The node address is a number in the format:

area-number. node-number

where:

area-number Is the number of the area in which the node resides.

node-number Is the address of the node within that area.

Each area number must be unique within the network and each node number
unique within the area. If you do not specify the area number in a node
address, the area number of a remote node defaults to the area number of the
executor node, and the area number of the executor defaults to the number 1.

Node identification has two forms: anode address and a node name. Anode
address, a number in the format described previously, is assigned to each
node in the configuration database. Anode name is an optional alphanumeric
string. In the single-area network example in Chapter 1, the node assigned
node address 1.11 is also identified by the node name BOSTON. In the
multiple-area network example in Chapter 1, node BOSTON in area 2 has the
node address 2.11.

Because it is often easier to remember a name rather than an address, you
may prefer to associate a name with an address. You can do so at any
time. Note, however, that node names are known only to the local node
network software while node addresses are known network-wide by the
routing function. To avoid potential confusion, you should give each node a
unique name that all nodes in the network will assign to that node and use to
address it.

Nodes on Ethernet lines can also be accessed under certain circumstances
by their Ethernet addresses. All nodes connected to an Ethernet line are
equally accessible, because the Ethernet is a multiaccess, broadcast device.
Therefore, each node on an Ethernet is assigned a unique Ethernet physical
address, which is set by the software at the node. You do not normally
have to specify the Ethernet address of an individual node to configure your
network or perform normal network operations. You do need to know a
node's Ethernet physical address for service functions (such as downline load,
circuit loopback test, and configurator operations). You can send a message

2-2

DECnet—VAX Components and Concepts
2.1 Nodes and DTEs

to one, several, or all nodes on an Ethernet line simultaneously, depending
on the Ethernet address used. To send a message to more than one node,
use an Ethernet multicast address: either a multicast group address to reach
a selected group of nodes, or a broadcast address to reach alI nodes on the
Ethernet.

2.1.1.2 Node Characteristics
The configuration database for the local node must contain certain
information about the local node and may contain node information for
all nodes with which you want to communicate. For the local node, you
must specify the node address and should specify the node name and buffer
size (which determines the largest size message the node can forward).
You should also indicate or use the default value for the highest address
the local node will recognize, and for the node type (which determines the
routing capabilities of the local node). Optionally, you can specify data link
control information for the local node. For remote nodes, you should specify
names and addresses. You can also specify default information to be used
in performing downline load or upline dump operations involving remote
nodes. For any or all nodes, you can specify access control information and
node counter event logging information.

To update your configuration database with current information about remote
nodes in your network, you can copy the names and addresses of remote
nodes from the database of another node to which you have access. You can
specify the node database (volatile or permanent) to be copied, and the local
node database (either or both volatile and permanent) to which information
is to be copied. You also have the option of clearing or purging your local
node database before copying the remote node data, thus avoiding possible
conflicts between original and updated data. The executor node information
is preserved during the clear or purge operation. Being able to copy a node
database permits you to keep your network information current even if you
are part of a large network that changes frequently. Alternatively, if you
configure your node without a permanent node database, you could obtain
current information on other nodes in the network by copying it from another
node (for example, from a node on your Ethernet that serves as a master by
keeping its node database up to date).

The data link control information you can specify for the local node controls
certain characteristics of physical line operation, including the size and
number of transmit and receive buffers and the number of circuits the local
node can use. You should set these values to levels that ensure reasonable
system operation. You must set the buffers for all nodes in the network to the
same size. Otherwise, packets will be dropped when routed through nodes
with smaller buffer sizes. A procedure for changing the size of buffers on all
nodes in the network without bringing down the whole network is given in
Section 3.3.5.1.

You can control the operational state of the local node and thereby control
its active participation in the network. This control is usually a function of
whether inbound logical link connections can be established or maintained
with the local node. You can use this control to restrict the operation of the
node or to shut it down altogether.

DECnet—VAX Components and Concepts
2.1 Nodes and DTEs

2.1.1.3 Identifying a VAXcluster as a Single Node
A whole VAXcluster or some of the nodes in a VAXcluster can be represented
by a special identifier called the alias node identifier, which appears to other
nodes in the network to identify an actual node. This mechanism allows
users on DECnet nodes outside the cluster to access cluster resources without
knowing what the cluster nodes are or which are active.

Any node in the cluster can elect to assume the alias node identifier while
retaining its own unique node name and address. Use of the alias never
precludes use of the individual node name and address. Thus, a remote node
can address the cluster as a single node, and address any cluster member
individually.

You can designate that your cluster node is assuming the alias node identifier
by specifying in your configuration database either the alias node address or
the alias node name (if you have previously associated that name with the
alias address of the cluster).

You then have the option of indicating whether you want to use the alias for
incoming and selected outgoing connections. Specifically, you can indicate
whether your node will accept incoming connection requests directed to the
alias node address. By default, a node that assumes the alias is available to
receive incoming connections addressed to the alias, but a small node that
uses the alias for outgoing traffic may elect not to handle the extra incoming
traffic. You can also select which DECnet-VAX objects (software components
that provide network services) are to use the alias by specifying in the
object database that the alias address is to be used for outgoing connections
originated by those objects. In addition, you can specify which objects will
receive incoming connect requests directed to the alias node address.

MAIL is an example of a network object that can effectively treat the cluster
as a single node. Ordinarily, replies to mail messages are directed to the node
that originated the message; the reply is not delivered if that node is not
available. If the node is in a cluster and uses the cluster alias, an outgoing
mail message is identified by the alias node address rather than the individual
address of the originating node. An incoming reply directed to the alias
address is given to any active node in the cluster and is delivered to the
originator's mail file.

Objects that involve multiple incoming links (such as PHONE) should not
use the alias node address because each incoming link may be routed to a
different node that uses the same alias. Also, objects whose resources are
not accessible clusterwide should not be allowed to receive incoming connect
requests directed to the alias node address. Section 2.6 describes network
objects and discusses the type of object for which the alias node identifier is
suitable.

The alias node identifier permits you to set a proxy to a remote node for
the whole cluster rather than for each node in the cluster. The clusterwide
proxy can be useful if the alias node address is used for outgoing connections
originated by the object FAL, which accesses the file system.

You should use the alias node identifier only for fully shareable resources in
a VAXcluster. All processors in the cluster must be able to access and share
all resources (such as files and devices). Nodes that assume the alias node
identifier should have a common authorization file.

DECnet—VAX Components and Concepts
2.1 Nodes and DTEs

At least one of the cluster nodes that uses the alias node identifier must be
a router. It can be a level 1 router, because all cluster nodes sharing the
same alias node address must be in the same area. The cluster router informs
other nodes in the network of the existence of the alias node address. Other
routers in the network perceive the cluster router as the shortest path to the
cluster node address and send the router packets addressed to the cluster
node address. If the router receives a packet addressed to the alias node
address, it forwards the packet to the appropriate cluster node: if the packet
is for an existing logical link, the link identifier in the packet is sufficient to
select the node; if the packet is initiating a new logical link, the router selects
a participating node in round-robin fashion.

The network manager or cluster manager should select a suitable alias node
name and address for the cluster nodes. You can specify either the alias node
name or address as an executor parameter in your node database. If you
specify the alias node name, you must first have associated the name with the
agreed-upon alias node address. You can then assign the same parameters to
this node as to other nodes, except that routing initialization passwords are
not required. No point-to-point initialization can occur because a node cannot
set up a circuit to an alias node address. The alias node address and name
appear in the node databases of other nodes in the network.

You can optionally set a maximum value on the number of logical links that
your node can initiate using the alias node identifier (see Section 2.5).

2.1.2 DTEs

A VMS operating system with VAX PSI software installed can function as
a DTE (or DTEs) capable of sending and receiving packets over PSDNs to
which the system is connected. To configure a local DTE, you must establish
in the configuration database an X.25 protocol module entry, which identifies
a network to which your DTE is connected. This network represents a path
to a PSDN. You must also establish X.25/X.29 server database entries that
indicate the destinations of incoming X.25 and X.29 calls (see Section 2.7).

2.1.2.1 X.25 Protocol Module
The X.25 protocol module is a software component that controls the
transmission of data packets over PSDNs. The configuration database for
the X.25 protocol module identifies the networks to which your DTEs are
connected, defines the DTEs, and specifies any user group to be associated
with the DTEs.

The first step in configuring the X.25 protocol module is to identify the
particular networks with which your DTE or DTEs will connect. Note that
the term "network" as used here refers to a network you define with NCP.
In this context, network does not refer to a PSDN, but rather a route to a
PSDN. You must associate the network name with a profile that determines
the characteristics of subscription to the PSDN. When you specify a network
profile, default values for a number of parameters that affect data-packet
control are entered in the configuration database. Defaults set the size and
control the flow of data packets over switched virtual circuits, and control
call setup and clearing of these circuits; they also control the transmission of
resets and restarts over permanent and switched virtual circuits.

DECnet—VAX Components and Concepts
2.1 Nodes and DTEs

You identify your local DTE or DTEs by DTE address and network name.
Each local DTE must have a unique address for the network to which it
belongs. The DTE address format is determined by the PSDN whose profile
is specified for the network. For each DTE, you can specify the operational
state and maximum number of circuits supported, and identify the associated
line and the channels for outgoing calls.

You should also identify any user groups of which you are a member. A
user group is an optional PSDN facility to which you can subscribe: a closed
user group (CUG) permits two or more DTEs to communicate only with each
other; a bilateral closed user group (BCUG) restricts communication to a pair
of DTEs. You specify the unique name of your CUG or BCUG and associate
with it the local DTE address and group number; for a BCUG, you specify
that the group type is bilateral.

2.1.2.2 X.25 Connector and Host Nodes
A VMS node that has VAX PSI software in multihost mode installed can
serve as a connector node, a gateway that provides access to a PSDN for
host nodes. To configure your node with VAX PSI software in multihost
mode, establish in the database an X.25 protocol module entry as described in
Section 2.1.2.1, then indicate in the X.25 server database the host destinations
to which incoming calls are to be forwarded.

A VMS host node must have VAX PSI Access software installed. To configure
your node as a host node, you must establish in the database the X.25
access module (see Section 2.8) and indicate in the X.25 server database the
destination on your node for incoming calls.

2.2 Circuits
Circuits are high-level communications data paths between nodes or DTEs;
communication between nodes takes place over circuits. Circuits operate over
physical lines, which are low-level communications paths (see Section 3.6).

2.2.1 Classes of DECnet—VAX Circuits
DECnet-VAX employs four classes of circuit: DDCMP, CI, Ethernet, and
X.25.

DDCMP circuits provide the logical point-to-point or multipoint connection
between two or more nodes. There are currently three types of DDCMP
circuit: point-to-point, multipoint control, and multipoint tributary. A point-
to-point circuit operates over a corresponding synchronous or asynchronous
DDCMP point-to-point line. Asynchronous lines can be either static
(permanent) or dynamic (switched).

Multipoint control circuits operate over synchronous DDCMP control lines.
You can specify multiple circuits from the control (master) end of a control
line, but each circuit must have a unique physical tributary address. On the
tributary (slave) end, you can specify only one multipoint tributary circuit per
line.

CI circuits are available only on those nodes that are attached to a CI-750,
CI-780, CIBCA, or CIBCI interconnect. The setup of CI circuits is similar in
many ways to the setup of DDCMP multipoint circuits. CI circuits, however,
use their own protocol.

2-6

DECnet—VAX Components and Concepts
2.2 Circuits

Ethernet circuits provide for multiaccess connection between a number of
nodes on the same broadcast circuit. An Ethernet circuit differs from other
DECnet circuits in that there is not a single node at the other end. An
Ethernet circuit is a path to many nodes. Each node on a single Ethernet
circuit is considered adjacent to every other node on the circuit and equally
accessible. Every node must have a unique node identification: an Ethernet
physical address. (Ethernet node addressing is described in Section 3.3.4.)
Ethernet circuits use the Ethernet protocol.

X.25 circuits use the X.25 level 3 protocol (the packet level) and provide for
communication over PSDNs. VAX PSI provides X.25 circuits for use by PSI
user application programs (also referred to as "native X.25 user programs")
or by DECnet data link mapping (DLM). DLM permits the use of X.25 as a
DECnet data link through the mapping of data link information between the
DECnet Routing layer and the X.25 protocol module. The two types of X.25
circuit are X.25 native circuits and X.25 DLM circuits.

Each X.25 circuit is a virtual circuit connecting a local DTE and a remote DTE.
An X.25 virtual circuit can be either of the following:

• A permanent virtual circuit (PVC), providing a permanent path between
the local DTE and the remote DTE

• A switched virtual circuit (SVC), providing a temporary path between the
local DTE and the remote DTE

You need to set up all PVCs (whether used by DECnet or native X.25 user
programs) using NCP commands. Also, you must set up SVCs used by
DECnet by means of NCP commands. VAX PSI sets up X.25 native SVCs
with parameters taken from the X.25 protocol module component when calls
on these circuits are requested. You do not need to use NCP to set up X.25
native SVCs.

Just as you must specify the local node, you must also specify parameters for
all DECnet circuits connected to the local node and all X.25 virtual circuits
connected to local DTEs.

You must identify each circuit by name and specify information that directly
affects the circuit's operation. You can also specify the operational state of
circuits connected to your local node or DTE. Thus you can control circuit
traffic and perform service functions. The state of a circuit may ultimately
affect the system's ability to reach an adjacent node or DTE. The circuit state
can have a similar effect on routing.

The following sections describe the circuit component. For a discussion of
using NCP commands to specify circuits, see Chapter 3.

DECnet—VAX Components and Concepts
2.2 Circuits

2.2.2 DDCMP Circuit Devices
DDCMP circuit devices can be synchronous or asynchronous. DECnet—VAX
supports the following synchronous DDCMP circuit devices.

Device Mnemonic

DMB32 DMB

DMC1 1 DMC

DMR1 1 DMC

DMP 1 1 DMP

DMV1 1 DMP

DMF32 DMF

The DMC 11 and the DMR 11 are point-to-point circuit devices and are
considered identical. The DMP 11 can be apoint-to-point, multipoint control,
or multipoint tributary circuit device. The DMV 11 is similar to the DMP 11;
DECnet refers to both devices as the DMP 11. The DMF32 and DMB32
synchronous line units are either point-to-point or multipoint tributary circuit
devices.

DECnet—VAX supports the following asynchronous DDCMP circuit devices.

Device Mnemonic

DHQ1 1 TX

DHU11 TX

DHV1 1 TX

DMB32 TX

DMF32 TX

DMZ32 TX

DZ11 TT

DZ32 TT

DZQ1 1 TT

DZV11 TT

The asynchronous circuit devices are point-to-point circuit devices used for
static or dynamic asynchronous connections.

Note that asynchronous DDCMP circuits need not be predefined for dynamic
connections. They are established automatically during dynamic switching of
terminal lines (see Section 2.3.2.3).

Other DECnet implementations may support other DDCMP circuit devices.
If a node in your network uses a circuit device other than one of these, refer
to the appropriate DECnet documentation. This section provides a general
discussion of point-to-point and multipoint circuits. The VMS Network Control
Program Manual lists DECnet circuit and line devices by name and operational
category. lJ

DECnet—VAX Components and Concepts
2.2 Circuits

Every DDCMP circuit provides a logical point-to-point connection between
two nodes. The circuit operates over the corresponding DDCMP line (for
example, the DMC 11 circuit operates over the DMC 11 line). The DMP 11,
operating as a multipoint control circuit, also provides a logical, multipoint
connection (over one physical line) between a control station and several
tributaries (as illustrated in Figure 2-1). The DMP11 and DMF32 can also
operate as multipoint tributary circuit devices that provide a logical connection
between a tributary and a control station.

Figure 2-1 Multipoint Circuits and Associated Lines

1

CIRCUIT IDENTIFICATION =DMP-0
LINE =DMP-0
TRIBUTARY ADDRESS = 20

DMP-0

BOTH ENDS OF CIRCUIT
MUST HAVE SAME
TRIBUTARY ADDRESS

CIRCUIT IDENTIFICATION =DMP-0
--~ TRIBUTARY ADDRESS = 20

LINE

- - - CIRCUIT

l

CIRCUIT IDENTIFICATION = DMF-0
TRIBUTARY ADDRESS = 22

ZK-544-81

The following terms are used to describe the operation of multipoint circuits:

• Control Station the node at the controlling end of a multipoint circuit.
It controls the tributaries for that circuit.

DECnet—VAX Components and Concepts
2.2 Circuits

• Polling the activity that the control station performs on tributaries of a
multipoint circuit. The control station regularly sends request messages
to (that is, polls) each eligible tributary in the polling list. The request
message asks the tributary if it has anything to send (essentially giving it
permission to use the bus).

• Tributary a physical termination point on a multipoint circuit that is
not a control station.

• Tributary Address a numeric address that identifies a tributary node on
a multipoint circuit.

You can connect both a multipoint control circuit and a multipoint tributary
circuit to the same node. The node could then serve as the control station for
one multipoint circuit and as a tributary for another multipoint circuit.

The system manager must supply tributary addresses for a control station to
use when polling each tributary in a polling list.

2.2.3 CI Circuit Devices
DECnet supports the CI-750 interconnect (on VAX-11/750 processors only),
the CI-780 interconnect (on VAX-11 / 780, VAX-11 / 785, VAX 8600, VAX
8650 processors only), and the CIBCA and CIBCI (on VAX 8200, VAX 8250,
VAX 8300, VAX 8350, VAX 8500, VAX 8530, VAX 8550, VAX 8700 and
VAX 8800 processors only). All nodes connected to the same CI bus can
communicate directly with each other. Only one CI controller per node
is required. DECnet treats the CI controller as a multipoint data link and
requires a single entry in the line database and multiple entries in the circuit
database. The line database entry describes the CI controller (see Section 3.6).
Each circuit database entry describes a virtual connection to a single remote
node on the CI. CI multipoint circuits and DDCMP multipoint circuits differ
in the following ways:

• Each station on the CI can talk directly to every other station. These
stations are called tributaries and all stations are alike. There are no
"control" and "tributary" stations as with DDCMP multipoint circuits.
Only the setup of CI circuits is similar to multipoint circuits.

• There are no polling parameters on the CI.

• CI circuits use their own communication protocol.

If you plan to use a CI circuit, you must first connect the device CNAO
to the driver CNDRIVER. To connect CNAO to the CNDRIVER and load
the CNDRIVER, add the following lines to the LOADNET.COM command
procedure in SYS$MANAGER:

$ RUN SYS$SYSTEM:SYSGEN
CONNECT CNAO/NOADAPTER

2-10

DECnet—VAX Components and Concepts
2.2 Circuits

2.2.4 Ethernet Circuit Device
DECnet supports the following circuit devices, which provide for multiaccess
connections between many nodes on the same Ethernet circuit.

Device Mnemonic Bus Name

DEQNA UNA UNIBUS

DELQA UNA UNIBUS

DEQNA QNA Q—bus

DELQA QNA Q—bus

DEBNA BNA BI—bus

DESVA SVA None '

~ The VAXstation 2000 and the MicroVAX 2000 processors use the DESVA.

VMS operating systems configured with a UNIBUS may use the DEQNA or
DELQA circuit device (each of these devices is called the QNA). The DELQA
is a newer version of the DEQNA that provides higher throughput. VMS
operating systems with a Q—bus running on MicroVAXes use the DEQNA
and the DELQA (each of these devices is referred to as the QNA), which are
similar in function to the DEUNA.

VMS operating systems with a BI—bus may use the DEBNA (referred to as
the BNA). The VAXstation 2000 and the MicroVAX 2000 processors use the
DESVA (referred to as the SVA). The DWBUA device is a UNIBUS adapter
that allows a DELUA or a DEUNA to be connected to a BI system.

All these devices use the Ethernet protocol. Ethernet messages are sent
over the Ethernet as datagrams, which means messages may be lost because
of errors. DECnet provides for automatic retransmission of lost messages.
The Ethernet device allows multiple users of the device at the same time.
Therefore, other users may be using the Ethernet device with another protocol
type, while DECnet is running.

2.2.5 Ethernet configurator Module
All nodes on an Ethernet circuit are logically adjacent, because the Ethernet
is a multiaccess device. To obtain a list of all systems on an Ethernet circuit,
you can use the Ethernet configurator module. The configurator module
listens to system identification messages transmitted periodically by every
DIGITAL-supported node on the Ethernet circuit, and builds the configuration
list from the received messages.

Approximately once every 10 minutes, each node on an Ethernet circuit that
conforms to the DNA specifications transmits a system identification message
(a hello message) to a multicast address that the configurator monitors. For
a random distribution of nodes with possible loss of system identification
datagrams, the configurator would require 40 minutes to collect all node
addresses. In practice, the configurator normally requires about 12 minutes to
complete a list.

DECnet—VAX Components and Concepts
2.2 Circuits

The Ethernet configurator module requires a default nonprivileged DECnet
account. You use NCP commands to access and control the configurator
module. The configurator runs as a separate process and, once it is started,
becomes available to all users on the system. The configurator module
continues to execute and maintains and updates its database of information
on active nodes.

When you request information about the current configuration of nodes on
Ethernet circuits, the following is displayed for each system: its Ethernet
physical and hardware addresses, the device connecting it to the circuit,
maintenance functions it can perform, and the time of the last system
identification message from the system.

2.2.6 X.25 Circuit Devices
X.25 circuits differ from DDCMP circuits in that there is no direct
correspondence between circuit and line. All X.25 circuits pass through
the X.25 protocol handler module (see Section 2.1.2.1), which multiplexes
circuits to lines that it "owns." There is no direct relationship between the
name of an X.25 circuit and an X.25 line. One line is specified for each DTE.

All X.25 circuits are virtual circuits that connect a local DTE with a remote
DTE. The association between DTEs can be permanent or temporary. X.25
PVCs are analogous to leased lines between the local DTE and the remote
DTE. They are similar to DDCMP circuits in that both have predefined end
points.

X.25 SVCs are analogous to dialup lines. You set up SVCs only when there
is data to transmit; SVCs are cleared when thf~ transfer is complete. They are
temporary paths between local and remote DTEs.

2.2.7 X.25 DLM Circuits
Data link mapping (DLM) circuits extend normal DECnet capabilities to
include communication over a PSDN with other DECnet nodes connected to
the PSDN. Data link mapping permits an X.25 virtual circuit to be used as a
DECnet data link. A DLM circuit is owned by the executor node; the Routing
layer has exclusive rights to use the circuit. A DLM circuit can be either a
PVC or an SVC. A DLM SVC can be used for either incoming or outgoing
calls.

To establish a DLM SVC with a remote DTE, DECnet—VAX uses the DTE
address of the remote node. Subaddresses can be used to limit the DLM
calls accepted at the local DTE. DECnet—VAX will try to recall a number if
previous attempts to establish a DLM SVC have not succeeded. The number
and frequency of recall attempts can be regulated.

2.3 Lines
Lines provide physical communications and are the lowest level
communications path. Circuits are high-level communications paths that
operate over lines.

DECnet—VAX Components and Concepts
2.3 Lines

2.3.1 Classes of DECnet—VAX Lines
DECnet-VAX supports four classes of line: DDCMP, CI, Ethernet, and X.25.
A DDCMP line provides the physical point-to-point or multipoint connection
between two or more nodes. A CI line provides ahigh-speed connection
between two or more nodes. An Ethernet line is a multiaccess connection
between two or more nodes. An X.25 line is the physical link between your
DTE and a PSDN.

For DDCMP, CI, and Ethernet configurations, each circuit is directly related to
a corresponding line. For X.25 configurations, however, the circuits and lines
do not correspond directly. X.25 circuits are multiplexed to lines owned by
the X.25 protocol handler module (see Section 2.1.2.1).

Just as you must establish node and circuit parameters, you must also
establish parameters for all physical lines connected to the local node or
DTE. You must identify each line by name and specify information that
directly affects the line's operation. You can control the operational state of
the line, and thus control line traffic and perform service functions. The state
of a line may ultimately affect the reachability of an adjacent node or DTE,
affecting the routing.

The following sections describe the line component. For a discussion of using
NCP commands to specify line parameters, see Chapter 3.

2.3.2 DDCMP Lines
DDCMP lines can be synchronous point-to-point or multipoint lines
or asynchronous point-to-point lines. Asynchronous lines can be static
(permanent) or dynamic (temporarily switched).

2.3.2.1 DDCMP Line Devices
DDCMP line devices can be synchronous or asynchronous. (For a complete
list of DDCMP devices and their corresponding mnemonic names, refer to
Section 2.2.2.) DECnet-VAX supports the following synchronous DDCMP
line devices:

• DMB32 synchronous line unit

• DMC 11

• DMR11

• DMP 11

• DMV 11

• DMF32 synchronous line unit

The DMC11 and the DMR11 are point-to-point line devices and are
considered identical. The DMP 11 can be either apoint-to-point, multipoint
control, or multipoint tributary line device. The DMV11 is similar to the
DMP11; DECnet refers to either device as the DMP11. The DMB32 and
DMF32 synchronous line units are point-to-point or multipoint tributary line
devices.

DECnet—VAX Components and Concepts
2.3 Lines

DECnet-VAX supports the following asynchronous DDCMP line devices:

• DHQ 11

• DHU11

• DHV11

• DMB32 asynchronous line unit

• DMF32 asynchronous line unit

• DMZ32

• DZ11

• DZ32

• DZQ 11

• DZV11

The asynchronous line devices are point-to-point line devices used for static
or dynamic asynchronous connections.

Note that asynchronous DDCMP lines need not be predefined for
dynamic connections. They are established automatically when a dynamic
asynchronous DDCMP connection is made (see Section 2.3.2.3).

Every DDCMP line provides apoint-to-point connection between two nodes.
Circuits, the actual communications path, operate over the line. The DMP 11
and DMF32 also provide a multipoint connection between two or more
nodes. In Figure 2-2 a multipoint line controlled by the DMP 11 provides the
physical connection between a control node and several tributary nodes.

You can connect two multipoint lines to the same node. The node could
then serve as the control station for one multipoint line and as a tributary for
another multipoint line.

Because a heterogeneous network may have DDCMP line devices other than
one of the preceding, you should be familiar with the entire range of devices
and their impact on network management. If a node in your network uses a
line device other than these, refer to the appropriate DECnet documentation.
The VMS Network Control Program Manual lists DECnet line devices by name
and operational category.

DECnet—VAX Components and Concepts
2.3 Lines

Figure 2-2 Multipoint Lines

NODE A
(CONTROL
STATION)

DMP-0

LINE IDENTIFICATION =DMP-0
PROTOCOL =CONTROL

DMP-0

NODE X
(TRIBUTARY)

DMF-0

NODE Y
(TRIBUTARY)

LINE IDENTIFICATION =DMP-0 LINE IDENTIFICATION =DMF-0
PROTOCOL =TRIBUTARY PROTOCOL =TRIBUTARY

ZK-545-81

2.3.2.2 Static Asynchronous Lines
A static asynchronous DDCMP connection is a permanent connection
established between two nodes (such as a VMS router node and a VMS
end node). The two nodes are connected by either a modem or by a physical
line attached to a terminal port at each end (for example, port TTAO on the
end node and port TXB7 on the router). A static asynchronous connection
can also be made over a dialup line.

Before the DECnet connection is made, the terminal lines must be converted
to static asynchronous DDCMP lines. Each terminal port must have an
asynchronous DDCMP line device installed, and the system manager at
each node must load the asynchronous DDCMP driver, NODRIVER. The
system manager at each node should insert the following command in the
SYSTARTUP_VS.COM command procedure:

$ SET TERMINAL/PROTOCOL=DDCMP device-name:

where:

device-name Is the name of the appropriate terminal port.

For example, the manager of a MicroVAX running the VMS operating system
should specify the following command:

$ SET TERMINAL/PROTOCOL=DDCMP TTAO:

DECnet—VAX Components and Concepts
2.3 Lines

The manager of the VMS router should specify this command:

$ SET TERMINAL/PROTOCOL=DDCMP TXB7:

Each system manager should then specify the appropriate line and circuit
commands in the configuration database to turn on the line and circuit for
DECnet use. (The commands required to install static asynchronous lines and
the NCP commands to configure a network using static asynchronous lines
are given in Chapter 5.)

2.3.2.3 Dynamic Asynchronous Lines
A dynamic asynchronous line differs from a static asynchronous line or other
DECnet-VAX Line in that it is normally switched on for network use only for
the duration of a dialup connection between two nodes. When the telephone
is hung up, the line reverts to being a terminal line.

Figure 2-3 illustrates a typical configuration in which dynamic asynchronous
switching occurs over a dialup line. The local node in Figure 2-3 is a
standalone MicroVAX II system; the remote node is aVAX-11/780. After
the user at the local node dials in to the remote node, he or she can cause the
lines connected to terminal ports TTA 1 and TXB 1 to be switched to dynamic
asynchronous DDCMP lines for use in DECnet communications.

Dynamic switching of terminal lines to asynchronous DDCMP lines can occur
provided both nodes have DECnet installed. Assuming that both the remote
node and the local node are VMS operating systems, the system manager
at each node must have loaded the asynchronous driver NODRIVER and
installed the privileged shareable image DYNSWITCH. (If the local node
is a personal computer, there is no need to load NODRIVER and install
DYNSWITCH.) The system manager at the remote node must have enabled
the use of virtual terminals on the system. First, the system manager must
have enabled the use of the virtual terminal for the line over which you are
going to log in by issuing the CONNECT command of the SYSGEN Utility.
The system manager must also have enabled virtual terminals on the terminal
line using the DISCONNECT attribute of the SET TERMINAL command for
the terminal.

A functional explanation of the procedure for dynamic switching of lines, as
shown in Figure 2-3, is as follows:

1 You should log in to the VMS operating system running on the
MicroVAX II, causing a process to be created on your system. In
Figure 2-3, this process is identified by the sample process name
PROCESS_L.

2 You must enter the following DCL command:

$ SET HOST/DTE[/DIAL=NUMBER:number] TTA1:

This command causes a process on the local system to function as a
terminal emulator, and causes the modem to dial the number of the
remote system. The terminal emulator permits the local process to
function as though it were a terminal line: characters can be read from
one port and written to another port. In Figure 2-3, the terminal emulator
on the MicroVAX II reads characters from port TTAl and writes characters
to port TXB 1. Note that the /DIAL qualifier in the SET HOST/DTE
command is optional and works only if you have written a program to
dial your modem. The default program supplied with the VMS operating
system dials a DF03 modem.

DECnet—VAX Components and Concepts
2.3 Lines

Figure 2-3 Dynamic Switching of Asynchronous DDCMP Lines

~—~

~ SET HOST/DTE TTA1 :
USeri-~arne:
PasS~„~o raj

~ SET TEP~M I NAL -
/P(~OTDCOL = DDCMP-
/ SW I TCH DEChlET

TTAO

P
R
O
C
E
S
S
 L

D
YN

SW
IT

C
H

 Q~
W

a ~
~ p
U ~

0 Z

TERMINAL
EMULATOR

TTA1

a °' °'
rn
0
J

r ~►

~
U ~ N
~~ ~

MODEM

MODEM

TXB1

E
sc

ap
e

se
qu

en
ce

r

W

0
a

D
YN

SW
IT

C
H

LOCAL NODE
MicroVAX II

VIRTUAL REMOTE NODE
TERMINAL VAX-11/780

ZK-4159-85

DECnet—VAX Components and Concepts
2.3 Lines

3 If you do not specify the /DIAL qualifier in step 2, dial the remote
system manually. After the dialup connection is made and you receive
the remote system welcome message, you should perform the regular
procedure for logging in to your account on the remote node. In this
case, you would supply your user name and password to the remote VMS
operating system.

4 When you log in over a modem line, a process is created at the remote
node and connected to a virtual terminal as well as the physical
terminal. In Figure 2-3, this process is identified by the sample process
name PROCESS_R. The virtual terminal permits PROCESS_R to
continue running even if the physical terminal is disconnected (for
example, if you lose the carrier signal on your telephone line).

5 You can then initiate dynamic switching by specifying the following DCL
command from your account on the remote node:

$ SET TERMINAL/PROTOCOL=DDCMP/SWITCH=DECNET

Note that the SET TERMINAL command is a VMS DCL command. If
you are on a non-VMS node, you should specify the equivalent function
for your system.

6 When the SET image at the remote node recognizes the
/SWITCH=DECNET qualifier, it calls the shareable image DYNSWITCH.
DYNSWITCH verifies that the device is a virtual terminal and then sends
an escape sequence to the terminal emulator running on the MicroVAX
II. The escape sequence notifies the terminal emulator that the line
connected to the remote terminal port is becoming an asynchronous
DDCMP line.

7 When the terminal emulator at the local node receives the escape
sequence, it calls the image DYNSWITCH, which causes the line
connected to terminal port TTA 1 to be switched to an asynchronous
DDCMP line. It assigns a channel to the network and supplies the
appropriate line and circuit entries to the NCP volatile database at the
local node. (Note that the modem line is not dropped; redialing is not
required.)

8 The asynchronous DDCMP protocol on the local node sends a DDCMP
start message to DYNSWITCH on the remote node and sends the
transmit password defined in the local node database. DYNSWITCH
at the remote node disconnects the physical terminal from the virtual
terminal, and causes the line connected to the physical terminal port (in
Figure 2-3, the port TXB1) to be converted to an asynchronous DDCMP
line. DYNSWITCH assigns a channel to the network and supplies the
appropriate line and circuit parameters to the volatile database to start up
the line and circuit.

DECnet—VAX Components and Concepts
2.3 Lines

9 After DECnet is started on the local node, the terminal emulator is exited
and control is returned to the local node when the following message is
displayed:

%REM-S-END, control returned to node _local-node-name::

A prompt appears on the local terminal and you can then use DECnet to
perform operations over the network.

10 If the terminal emulator does not recognize escape sequences (if the local
node is not a VMS operating system), you must specify the /MANUAL
qualifier in the SET TERMINAL command indicated in step 5.

$ SET TERMINAL/MANUAL/PROTOCOL=DDCMP/S`~IITC;H-DECNET

The /MANUAL qualifier prevents DYNSWITCH at the remote node from
sending the escape sequence. Instead, DYNSWITCH sends the following
message to the local node:

%SET-I-SWINPRG, The line you are currently logged in
over is becoming a DECnet line

After receiving this message, if you decide not to switch the line, you can
press CTRL/C or CTRL/Y to abort the switch. If your local system is a
VAX and you want to continue the switch, you should exit the terminal
emulator and switch your terminal line to an asynchronous DDCMP line
manually by entering the following command:

$ SET TERMINAL/PROTOCOL=DDCMP TTA1:

Then, you enter NCP commands to turn on your line and circuit. For
example, enter the following commands:

NCP> SET CIRCUIT TT-Q-~1 STATE ON
NCP> SET LINE TT-0-1 STATE ON

DYNSWITCH waits 60 seconds for the DDCMP start message and the
transmit password and then times out the switch.

Note that the SET TERMINAL command is a VMS DCL command. If
you are on a non-VMS node, you should specify the equivalent function
for your system.

11 When you hang up the telephone, the line is switched back to a terminal
line. (DECnet-VAX automatically clears the line and circuit entries from
the volatile database). Alternatively, you can switch the asynchronous
line back to a terminal line by issuing an NCP command to turn off the
line or circuit.

If you specified the /NOHANGUP qualifier in the SET TERMINAL
command in step 5, the modem signal is not dropped if you specify an
NCP command to turn off the DECnet line. Therefore, you do not have
to redial the connection to the remote node when you want to convert
your line to DECnet use.

Chapter 5 provides examples of the commands required to install dynamic
asynchronous lines and the NCP commands required to configure a network
using dynamic asynchronous lines. The complete DECnet-VAX installation
procedure, including establishment of asynchronous connections, appears in
the Guide to DECnet-VAX Networking.

DECnet—VAX Components and Concepts
2.3 Lines

Chapter 3 describes the NCP command parameters required for asynchronous
connections. Section 2.10 summarizes security for dynamic asynchronous
connections.

2.3.3 CI Line Device
The CI-780, CI-750, CIBCA, and CIBCI lines are high-speed devices, each
of which provides a connection between two or more nodes. If you plan to
run DECnet over a CI, you must first connect the device CNAO to the driver
CNDRIVER. To connect CNAO to the CNDRIVER and load the CNDRIVER,
add the following lines to the LOADNET.COM command procedure in
SYS$MANAGER:

$ RUN SYS$SYSTEM:SYSGEN
CONNECT CNAO/NOADAPTER

2.3.4 Ethernet Line Devices
A VMS Ethernet node is connected to the Ethernet line by an Ethernet
communications controller, a transceiver, and a transceiver cable. The
Ethernet controllers use the Ethernet line protocol. The Ethernet circuit
operates over the Ethernet line.

A particular Ethernet node is identified by the Ethernet hardware address
of its line device; this hardware address is stored in read-only memory in
the Ethernet controller. When DECnet starts an Ethernet line, it constructs
an Ethernet physical address for the node (see Section 3.3.4). Shutting off
machine power or changing the state of the Ethernet line to OFF causes the
Ethernet controller to reset the physical address to the original hardware
address. Note that if more than one application will use a particular Ethernet
line (for example, DECnet and LAT), DECnet must be brought up first because
it resets the physical address.

For a complete list of Ethernet controllers and associated mnemonic names,
refer to Section 2.2.4.

2.3.5 X.25 Line Devices
VAX PSI supports the following line devices.

Device Mnemonic

DMF32 synchronous line unit DMF

DMB32 synchronous line unit DMB

DPV11 DPV

DST32 DST

DUP1 1—DA DUP

KMS1 1—B KMX

KMS1P KMY

KMV 1 A KMV

2-20

DECnet—VAX Components and Concepts
2.3 Lines

The DMF32 synchronous line unit is a low-speed synchronous line interface.
The DUP 11-DA is a low-speed synchronous interface. The DPV 11 is
equivalent to a DUP 11. The combination of the KMS 11-B controller
hardware and the X.25 level 2 microcode provides aloes-speed synchronous
interface called the KMX. The KMS 11-B supports eight lines, but all lines
used must be connected to the same PSDN. Similarly, the combination of
the KMS1P controller hardware and the X.25 level 2 microcode provides a
medium-speed synchronous interface called the KMY that supports one line.
The KMV 1 A is similar to the KMY. However, the KMV 1 A provides only
a Iow-speed interface. The DMB32 synchronous unit is amedium-speed,
synchronous interface.

For the most recent list of supported X.25 line devices, refer to the VAX P.S.I.
Software Product Description (SPD).

2.4 Routing
Routing is the network function that determines the path or route along
which data (called "packets" in this context) travels to its destination. The
Routing layer of DECnet handles routing functions. Because the need for
routing pervades network operation, as much as possible is done in software
to relieve you from worrying about the configuration of the network.

As system manager, however, you need to be concerned with the
configuration of the network in terms of routing. You must configure each
network node as either a routing or a nonrouting node, and you have the
option of dividing the whole network into different areas. In addition, certain
parameters in the configuration database permit a degree of indirect control
over network routing, but, for most networks, the default values of these
parameters are reasonable.

For very large networks, it may be helpful to have a network manager
oversee the operation of the network as a whole. The network manager could
ensure that all node addresses are unique and that routing control parameters
provide for efficient data flow through the network.

The following sections explain the different types of routing and nonrouting
nodes and configurations, describe the levels of routing, and summarize
special routing techniques used with Ethernet. They also introduce basic
terms and concepts involved in routing control. Chapter 3 discusses the NCP
command parameters that affect routing.

2.4.1 Routing and Nonrouting Nodes
Routing nodes (routers) are nodes that can send and receive packets and
route packets from one node to another. Routers have two or more circuits.
Routers regularly receive and maintain information about other nodes. They
perform the routing operation by associating a circuit with the destination
node for the packet and transmitting that packet over that circuit. Routers can
use DDCMP, CI, Ethernet, or X.25 circuits as their data links.

In a multiple-area network, all routers in a particular area can route packets
within the area; some of these routers can also route packets to and from
other areas. The two kinds of routers used in area routing configurations are
level 1 routers and level 2 routers.

DECnet—VAX Components and Concepts
2.4 Routing

The level 1 router performs intra-area routing within a single area of the
network. Note that if all nodes are configured in the same area, the whole
network is considered a single area, and all routers are level 1 routers. The
level 2 router performs intra-area routing within its own area and interarea
routing between its area and one or more other areas of the network.

Nonrouting nodes (end nodes) contain a subset of network software that
permits them to send packets or receive packets addressed to them, but not to
route packets to other nodes. End nodes have a single circuit connecting them
to the rest of the network. They do not send or receive information about
network configurations. If two end nodes are connected by a nonbroadcast
circuit, these nodes constitute the entire network.

On an Ethernet, if there are two or more routers, one router is elected the
designated router to provide message routing services for end nodes on the
Ethernet. If no routers are available, Ethernet end nodes can communicate
with each other directly by sending a packet out over the Ethernet and then
waiting until the timeout for a reply. However, routers are the only Ethernet
nodes that can route messages to network nodes not on the Ethernet.

2.4.1.1 Types of DECnet Nodes
DECnet supports a variety of types of nodes developed during different
phases of DNA implementation. Phase II, III, and IV nodes can all exist on a
network and can be configured adjacently, as follows:

• Phase II/Phase II

• Phase II/Phase III

• Phase III/Phase III

• Phase III/Phase IV

• Phase IV/Phase IV

Phase II nodes can communicate with each other as long as there is a physical
data link between them. They support only point-to-point connections. There
is no Phase II support for Ethernet.

Phase III DECnet introduced adaptive routing, which allows a reasonably
large number of nodes to communicate conveniently. A network composed
of Phase III nodes is limited to a practical size of approximately 100
nodes, because of the overhead of routing update messages that have to
be exchanged among routers. (The design limit for the address of a DECnet—
VAX Phase III node is 255; this limit may vary for other DECnet Phase III
systems.) Phase III introduced routers and end nodes. Phase III depends
on data links that guarantee delivery of messages in order to accomplish
initialization among routers. Therefore, there is no Phase III support for
Ethernet.

Phase IV DECnet permits the configuration of very large networks and
expands the types of data links available for use. Phase IV supports area
routing, which allows configuration of a network of up to 63 areas, each
containing up to 1023 nodes. Phase IV software supports Ethernet circuits, as
well as DDCMP, CI, and X.25 circuits.

DECnet—VAX Components and Concepts
2.4 Routing

Phase IV nodes can communicate with Phase III nodes. Certain restrictions
apply, however, in a mixed Phase III/Phase IV network:

• A Phase III node should not be included in a path between Phase IV
nodes.

• A Phase III node in a Phase IV multiple-area network should not be
linked with nodes outside its own area.

• Routing initialization passwords (described in Section 2.10.1) are required
when a Phase III node is initialized in a Phase IV network.

Section A.5 discusses restrictions on the use of Phase III nodes in Phase IV
networks.

2.4.1.2 DECnet—VAX Phase IV Nodes
DECnet-VAX Phase IV nodes are either of the following two types:

• Phase IV routers. These nodes deliver packets to and receive packets
from other nodes, and route packets from other source nodes through
to other destination nodes. They use Ethernet, DDCMP, X.25, and CI
circuits. In an area network configuration, Phase IV routers exist at two
routing levels:

— The level 1 router, which performs routing within a single area. The
node type is ROUTING IV.

— The level 2 router, which performs routing within its own area and to
and from other areas. The node type is AREA.

• Phase IV nonrouting nodes (end nodes). These nodes deliver packets
to other nodes and receive packets from other nodes, but do not route
packets through. They can be attached to an Ethernet, DDCMP, X.25, or
CI circuit. The node type is NONROUTING IV.

DECnet--VAX Phase IV nodes can also communicate with the other types of
node supported by DECnet. Area numbers are dropped when a Phase IV
node communicates with a node that is not a Phase IV node. A Phase IV
node adds its executor area number to the node address of a message that it
receives from a Phase III node. Nodes with which Phase IV DECnet-VAX
nodes can communicate include the following:

• Phase III routers. These nodes deliver packets to and receive packets from
other nodes, and route packets from other source nodes through to other
destination nodes whose addresses are less than 256. They use DDCMP,
X.25, and CI circuits, but do not support Ethernet circuits.

• Phase III nonrouting nodes (end nodes). These nodes send packets to
other nodes and receive packets from other nodes, but do not route
packets through. These nodes cannot support the Ethernet. DECnet-VAX
never provided this type of node, but can communicate with Phase III
end nodes (for example, RSX Phase III end nodes).

• Phase II nodes. These nodes can send packets to adjacent Phase III
routers or to other adjacent Phase II nodes. However, Phase II nodes can
send packets only in point-to-point configurations. In addition, a
Phase III node cannot communicate with a Phase II node through another
Phase III node.

DECnet—VAX Components and Concepts
2.4 Routing

2.4.1.3 Routing Features of DECnet—VAX License Options
The DECnet-VAX license permits you to use either of two kinds of DECnet-
VAX capability:

• Full function

• End node

The full function license permits the use of both DECnet-VAX routing and
end node capabilities. The end node license permits a node to be used only
as an end node. An upgrade from end node to full function capabilities is
available.

Both licenses permit the use of any kind of data link (DDCMP, CI, Ethernet,
X.25). Section 6.1 describes how the DECnet-VAX licenses are enabled to
turn on the appropriate capability.

A configuration consisting only of end nodes offers certain advantages:

• Less use of the central processor is required for routing.

• Data link efficiency is increased: there is no routing overhead and no
route-through traffic occurs over the circuit.

End nodes also involve the following limitations:

• The user on an end node cannot directly see the status of other nodes in
the network, because end nodes rely on routing nodes to maintain that
information. However, an end node can communicate with other nodes
in the network, including nodes outside its own area.

• At most, only one circuit is allowed to be active. If that one link to the
network fails, no alternative connection is available until the system
manager turns on a standby data link, if one exists.

2.4.2 Area Routing
Phase IV DECnet permits implementation of very large networks through
the use of area routing techniques, while still supporting configuration of
smaller networks that are not divided into areas. The network manager has
the option of partitioning a large network into areas. Each area is a group of
nodes. Nodes are grouped together in areas for hierarchical routing purposes.
Hierarchical routing involves the addition of a second level of routing to the
network. Routing within an area is referred to as level 1 routing; routing
between areas is called level 2 routing.

Area routing offers the following advantages:

• Permits configuration of very large networks of more than 1023 nodes.

• Requires less routing traffic, restricting routing overhead between areas
to the level 2 routers. Level 1 routers exchange routing information only
about nodes in their own area.

• Allows different organizations to manage their nodes separately within a
large network.

• Makes the merging of existing networks easier.

DECnet—VAX Components and Concepts
2.4 Routing

When a level 1 router receives a packet destined for a node in another area,
it uses level 1 routing to send the packet to the nearest node within its own
area that can perform level 2 routing. That router forwards the packet by
level 2 routing to a level 2 router in the destination area, which in turn sends
the packet by level 1 routing to the destination node in its area.

Note that, if two or more level 2 routers exist in the same area, each level 1
router in that area sends packets destined for other areas to the nearest
level 2 router, regardless of which level 2 router is closest to the destination
area. The level 1 router has no access to level 2 routing information.

Each area in the network is assigned an area number. Every node in the area
is uniquely identified by the addition of its area number as a prefix (followed
by a period) to its node number. For example, node 15 in area 7 is addressed
as node 7.15. The node number must be unique within the area, but may be
used again within another area. Thus, node identification within an area is
independent of node identification within other areas.

Phase IV DECnet permits configuration of a maximum of 63 areas (areas 1
through 63), each containing up to 1023 nodes. A Phase IV node address is
a 16-bit number: the most significant six bits define the area number, and
the least significant 10 bits specify the node number within the area. You
can convert the Phase IV node address to its decimal equivalent for use in
commands, such as COPY and MAIL, that do not recognize the area prefix
(the conversion procedure is given in Section 3.7.2). You can convert to its
hexadecimal equivalent for use in determining the Ethernet physical address
of the node (the conversion procedure is given in Section 3.3.4.2).

You assign the node address to your own node when you configure it. If you
do not specify the area number when addressing a remote node, that node is
assumed to be in the same area as your local node.

In a network not divided into multiple areas, each router performs level 1
routing throughout the network.

The characteristics of level 1 and level 2 routing nodes are described in the
following section. Section 2.4.4.3 presents rules for configuring hierarchical
networks using area-routing techniques. This appendix also describes the
configuration of mixed area networks, involving Phase III and Phase IV
nodes, and recommends procedures for converting a nonarea network to an
area network.

2.4.3 Level 1 and Level 2 Routers
An area can contain many level 1 routers and end nodes, and must contain at
least one level 2 router to provide the connection to other areas. A
level 1 router acts as a standard routing node. It keeps information on the
state of nodes within its own are~~~. ~~ ~~ Level 1 routing nodes and end nodes
obtain access to nodes in other areas through a level 2 router residing in their
own area.

A level 2 router keeps information on the state of nodes in its own area and
also information on the cost and hops involved in reaching other areas. (The
logical distance between adjacent level 2 nodes is one hop.) The level 2
router always routes packets over the least cost path to a destination area.
Level 2 routers have the following characteristics:

• Level 2 routers connect areas.

• Level 2 routers also act as level 1 routers within their own area.

2-25

DECnet—VAX Components and Concepts
2.4 Routing

• Each level 2 router in a network must be physically connected to at least
one other level 2 router.

• A level 2 router serves as a level 1 router when it is not physically
connected to another level 2 router.

• All level 2 routers must be connected in such a way that they_ create a
network of their own.

• Level 2 routers exchange level 2 routing messages among themselves.

• In any given area, there can be more than one level 2 router.

• Each level 2 router indicates it is the nearest level 2 router to each level 1
node in its own area, but each level 1 node decides what its level 2 router
is on the basis of cost.

2.4.4 Ethernet Routers and End Nodes
Two special concepts are involved in routing over an Ethernet circuit: the
designated router and end node caching.

2.4.4.1 Ethernet Designated Routers
If there are two or more routers on the same Ethernet, one of them
is elected as the designated router. By convention, the router with the
highest numerical priority (the router priority parameter is set as a CIRCUIT
characteristic in its database) is elected router for the circuit. In case of a tie,
the node with the highest address is elected as the designated router. The
function of the designated router is to route messages over the Ethernet on
behalf of end nodes. A designated router is elected even if there are no end
nodes currently on the Ethernet.

Ethernet end nodes can also exchange messages directly without using a
router. Routers are needed, however, when messages are to be routed to
nodes off the Ethernet.

Ethernet end nodes are informed of the identity of the designated router on
that Ethernet. End nodes transmit multicast hello messages, so that routers
know of their presence on the Ethernet. End nodes keep no information
about the network configuration, except that they are permitted to keep
a cache of nodes within their area that they may address directly on the
Ethernet, rather than going through a router (see Section 2.4.4.2). Thus, an
end node may send a packet directly to another Ethernet end node, if the
address has been cached, or it may send a packet to the designated router for
forwarding.

Note that end nodes can exist on an Ethernet without a router. When an
end node on the Ethernet wants to communicate with another end node, and
notes that no designated router exists, it always sends the packet directly to
the addressed node. If the addressed node is active, the sender receives a
reply; if the addressed node is not available, a timeout occurs.

DECnet—VAX Components and Concepts
2.4 Routing

2.4.4.2 Ethernet End Node Caching

End nodes normally send packets by means of a router. To minimize the
space and time overhead involved in the routing function on Ethernet circuits,
a caching mechanism is available that takes advantage of the fact that nodes
on an Ethernet are logically one hop away from each other (one hop is the
distance between two adjacent nodes).

An end node maintains a cache of limited size of the addresses of the target
nodes with which it has had contact. When a designated router is present and
an end node is ready to send a packet to a specific target node for the first
time, the end node sends the packet to the designated router, which in turn
forwards the packet to the target node. When there is no designated router on
the circuit, the end node sends the packet directly, because it expects that the
other node is there. By means of the acknowledgment messages it receives,
the end node builds its cache of addresses of specific nodes. If a response is
received from the target node, the end node examines the received packet for
the existence of specific bits (the bits are checked even if the first packet went
to the designated router). If the "on-Ethernet" bit is set, which indicates that
the target node is on the same Ethernet as the end node, then the next packet
can be sent directly, rather than by means of the designated router. If the
received packet has the "intra-Ethernet" bit set (which indicates that the target
node is not on the same Ethernet as the end node, but is reachable through a
routing node that is on the Ethernet), then the next packet can be sent from
the end node to the target node by means of a routing node, rather than by
means of the Ethernet's designated router.

In summary, the end node uses the acknowledgment messages it receives to
build a cache of addresses of target nodes that either are on the same Ethernet
or can be reached through a node on the Ethernet. This mechanism is called
reverse path caching.

2.4.4.3 Area Routing on an Ethernet
All nodes on an Ethernet need not be in the same area; you can configure
more than one area on a single Ethernet. The areas on the same Ethernet are
logically separate from each other. When you configure two level 1 routing
nodes on an Ethernet in different areas, the nodes do not communicate
directly with each other. Each level 1 router communicates with a level 2
router in its own area, which sends the message to a level 2 router in the
other area. The level 2 router that receives the message then transmits it to
the second level 1 router. Section A.6 illustrates area routing on an Ethernet.

2.4.5 Routers and End Nodes on CI Data Links
You can configure nodes using a CI data link in a VAXcluster as routers or as
end nodes.

2.4.5.1 CI End Nodes
You can configure atwo-node VAXcluster that uses a CI data link using
end nodes only, but at least one router is required if additional nodes are
configured in the cluster. The CI protocol does not include the multiaccess
capabilities of the Ethernet protocol.

DECnet—VAX Components and Concepts
2.4 Routing

2.4.5.2 CI Routers
One or more CI routers are necessary if a VAXcluster consists of three or more
nodes. CI circuit devices are treated as though they were multipoint devices
(like the DMP device) rather than as multiaccess devices such as the Ethernet
circuit device. Although only one router is required in a cluster of more than
two nodes, having more routers in the cluster environment increases the
overall availability of the network within the cluster.

If the VAXcluster configuration includes end nodes as well as routers, a
backup, higher-cost circuit could be provided for each end node. This backup
circuit could take over if the primary circuit connecting the end node to its
router fails (see Section 3.7.6).

Note that end nodes communicating through a router send all data through
that router even though they are connected to the same CI. You achieve the
best performance and availability by defining all VAXcluster nodes as routers
if the CI is used as the data link.

2.4.6 Routing Concepts and Terms
This section briefly explains routing concepts and defines those routing
parameters that provide some control over network routing. Chapter 3
describes how to use NCP commands to set these routing parameters. A
more detailed explanation of routing concepts and the routing algorithms for
the routing layer can be found in the Introduction to DECnet Phase IV manual.

The following terms are used to describe DECnet routing and routing
parameters:

• Hop. The logical distance between two nodes is measured in hops. The
di5rance between two adjacent nodes is one hop.

• Path. A path is the route a packet takes from source to destination.

• Path length. The path length is the number of hops along a path
between two nodes; it is the number of circuits a packet must travel
across to reach its destination. The path length never exceeds a maximum
number of hops, a value that the system manager sets relative to the size
and configuration of each network. For an area network, the network
manager should determine the maximum number of hops permitted
within an area and between areas.

• Cost. The cost is an integer value assigned to a circuit between two
adjacent nodes. It is usually proportioned to transmission delay. Each
circuit has a separate cost. In terms of the routing algorithm, packets are
routed on paths with the least cost. Nodes on either end of a circuit can
assign different costs to the same circuit.

• Path cost. The path cost is the sum of the circuit costs along a path
between two nodes. The path cost never exceeds a maximum cost value
the network manager specifies for the network. For an area network, the
network manager sets the maximum cost for a path within an area, and
for a path between areas.

• Reachable node. A reachable node is a destination node to which the
Routing layer on the local node has a usable path; that is, the path does
not exceed the values for maximum cost or hops between nodes specified
in the executor database. For an area network, a reachable area is one

DECnet—VAX Components and Concepts
2.4 Routing

to which the path does not exceed the values for maximum cost or hops
between areas set in the executor database.

• Maximum visits. The maximum number of nodes through which a
packet can be routed before arriving at the destination node is referred
to as the maximum number of visits the packet can make. If a packet
exceeds the maximum number of visits, the packet is dropped.

When configuring a network, the network manager establishes the routing
parameters for circuit cost control and route-through control. These
parameters allow you to control the path that data is likely to take when
being transmitted through the network, and also to minimize congestion at
particular nodes in the network. For most networks, the default values for
these parameters are reasonable.

The network manager must assign a circuit cost to every circuit that connects
the local node with adjacent remote nodes. These costs serve as values that
DECnet software uses to determine the path over which data is transmitted.
When the node is up and running, you can dynamically change the cost of
a circuit to a higher or lower value. Altering circuit costs can change packet
routing paths and thereby affect the use and availability of network circuits
and resources.

Along with defining circuit costs, you should also consider the path lengths
and total path cost for routing packets over the network. For routing
purposes, DECnet software identifies the least costly path to each destination
in the network. As network manager, you are responsible for defining both
the maximum cost of all circuits and the maximum hops that a packet can
take when routed to the destination node. If you are configuring an area
network, you should define the maximum cost and hops for a path between
nodes within your own area, and the maximum cost and hops for a path
between level 2 routers in the whole network.

If multiple paths to a destination node have the same path cost, the Routing
layer software, by default, splits packet loads for routing on several paths,
rather than on only one. This method of equal cost path splitting improves
network throughput. You can define the maximum number of equal cost
paths to be used for routing when a packet load is to be split.

Because equal cost path splitting implies that data packets are sent to the
destination node over different paths, the packets may be received out
of order by the destination node. The Network Services Protocol (NSP)
maintains a cache of out-of-order packets so that they can be reassembled
in order. This mechanism is called out-of-order packet caching, and is
supported by DECnet—VAX Version 4.6 and higher. When packet loads
are split and routed to a node that does not support out-of-order packet
caching, the destination node is unable to reassemble any packets received
out of order. Any packets received out of order by a node that does not
support out-of-order packet caching need to be retransmitted. This need for
retransmission hinders network performance. You can compensate for a node
that does not support out-of-order packet caching by setting the appropriate
value for the executor parameter PATH SPLIT POLICY for that node.

The Routing layer in each node of the network uses congestion-control
algorithms to maintain an efficient level of routing throughput. In addition, as
network manager, you can maintain indirect control over routing throughput
by defining the maximum visits a packet can make before being received
by the destination node. Packets that exceed this limit are discarded. This
control prevents packets from looping endlessly through the network.

2-29

DECnet—VAX Components and Concepts
2.4 Routing

2.4.7 Routing Messages
Adjacent routing nodes exchange routing update messages. A routing update
message is a packet that contains information about the cost and hops for
each node in the network. In an area network, a level 1 router sends routing
update messages about all nodes within its own area to adjacent routers in
the area. Level 2 routers send routing update messages containing cost and
hop information about all areas to adjacent level 2 routers in the network.

Whenever this routing information changes (for instance, when a circuit goes
down), new routing messages are sent automatically. For example, if someone
were to change the state of a circuit, rendering a remote node unreachable,
this change would be reflected automatically in the routing update messages
exchanged by the routing nodes.

2.4.7.1 Segmented Routing Messages
The number of nodes that Phase IV DECnet can support in a single-area
network is increased to a maximum of 1023 from the limit of 256 for Phase
III DECnet. This increase is due to changes in the routing update messages.
In Phase III, a legal network was restricted in size to the number of nodes
for which cost and hop information could be fit into a single routing update
message. Furthermore, Phase III routers had to send complete updates
containing information about all nodes, whether or not their reachability had
changed. Phase IV allows segmented routing messages to be sent, that is,
messages that contain only the information that has been changed. Phase IV
also permits routing updates to be sent in multiple messages. Therefore, the
size of the routing messages and the number of buffers required to receive
them are reduced.

2.4.7.2 Timing of Routing Message Transmissions
The network manager can set a timer for transmission of routing messages,
controlling the intervals at which nonconfiguration change routing updates
are transmitted. The routing timer controls the frequency of transmission of
these messages on non-Ethernet circuits. The broadcast routing timer controls
their frequency for Ethernet circuits. Expiration of the broadcast routing timer
causes the local node to send a multicast routing configuration message to all
routers on the Ethernet.

2.5 Logical Links
DECnet uses a mechanism called a logical link to allow communication
between processes running on either the same node or on separate nodes in
the network. A logical link carries a stream (consisting of regular data and
interrupt data) of full-duplex traffic between two user-level processes. Each
logical link is a temporary data path that exists until one of the two processes
terminates the connection.

The system manager can control various aspects of logical link operation on
the local node. The system manager can do the following:

• Define the maximum number of logical links that can be active at the
local node. If your node can also use an alias node address (which is
common to some or all nodes in a VAXcluster), you can specify the
maximum number of logical links that can use the alias for incoming and
outgoing connections. Note that the upper limit on the number of logical
links that your node can originate using the individual node address is
reduced if your node also uses an alias.

2-30

DECnet—VAX Components and Concepts
2.5 Logical Links

• Specify the number of packets that can be transmitted on a logical link
before an acknowledgment is received (the pipeline quota).

• Selectively disconnect active links on the local node while the network is
running and verify that the links have been disconnected, by displaying
information about the status of the links.

Logical link activity related to NSP is controlled by certain parameters that
regulate the duration of NSP connect sequences and inactivity intervals, and
the frequency with which NSP retransmits messages. The timers that affect
this activity include the following:

• The incoming timer, which protects the local node against the overhead
caused by a local process that does not respond to an inbound connection
request within a specified interval

• The outgoing timer, which protects the local node against the overhead
caused by a connection request to a remote node that does not complete
within a specified interval

• The inactivity timer, which protects the user against a link that may be
permanently unusable, by setting the frequency with which DECnet tests
an inactive link

You should normally use default values for the parameters that regulate
the frequency of NSP message retransmission at the local node, unless you
need to change the operating characteristics of a particular logical link. The
retransmit time is affected by the estimated delay in round-trip transmission
between the local node and the node with which it is communicating. You
use the delay weight and delay factor parameters to calculate new values for
this estimated delay. The retransmit factor parameter governs the number of
times NSP tries to retransmit on a logical link.

2.6 Objects

Objects provide known general-purpose network services. An object is
identified by object type, which is a discrete numeric identifier for either a
user task or a DECnet program such as the Network Management Listener
(NML) or the File Access Listener (FAL). The DECnet network software uses
object type numbers to enable logical link communication using NSP. The
system manager is responsible for supplying information for those objects,
both user-defined and network objects, that can be used over the network.

For VAX PSI network operations, you are responsible for identifying objects
by name, and establishing command procedures to be initiated when
incoming X.25 calls to the objects arrive.

DECnet—VAX Components and Concepts
2.6 Objects

2.6.1 DECnet—VAX Objects
When setting up the network, you must supply information for two general
kinds of DECnet-VAX object:

• Objects with a 0 object type. These objects are usually user-defined
images for special-purpose applications. They are named when a
user requests a connection. Objects in this category are defined in the
DECnet-VAX configuration database as TASK (see Section 3.9.1). The
object type number for all of these objects is 0.

• Nonzero objects. Nonzero objects are known objects that provide specific
network services such as FAL (used for file access) or NML (used for
network management). They may also be user-defined tasks; these
objects should be for user-supplied known services. Object type numbers
for all nonzero objects range from 1 to 255. The number serves as a
standard addressing mechanism across a heterogeneous network. For
a complete list of network objects, refer to the VMS Network Control
Program Manual.

The following DIGITAL-supplied objects are defined inside NETACP, by
default, in the configuration database. Note that MAIL and PHONE are
specific to the VMS operating system.

• File Access Listener (FAL) an image that provides authorized access to
the file system of a DECnet node on behalf of processes executing on
any node in the network. FAL communicates with the initiating node by
means of the Data Access Protocol (DAP).

• Network Management Listener (NML) an image that provides services
such as gathering and reporting information about network status, zeroing
line and node counters, and loading a standalone system image to a
remote node.

• Event logger (EVL) an image that logs significant events (locally or
remotely) for a given network component.

• Loopback mirror (MIRROR) an image used for particular forms of
loopback testing.

• DECnet Test Receiver (DTR) a DECnet test program used with the
DECnet Test Sender (DTS) to test logical links. The DTS/DTR Utility
is described in the VMS DECnet Test Sender/DECnet Test Receiver Utility
Manual.

• MAIL an image that provides personal mail service for VMS nodes.

• PHONE an image that allows you to have online "conversations" with
users on the VMS operating system.

• Host loader (HLD) an image that provides downline task-loading
support for RSX-11S tasks.

For every object that can be started by an inbound connection request, you
must supply a command procedure, unless either of the following conditions
exist:

• The object is one of the following DIGITAL-supplied command
procedures: FAL, HLD, NML, EVL, DTR, MAIL, PHONE, MIRROR

DECnet—VAX Components and Concepts
2.6 Objects

• The object is defined as an image, through specification of
objectname.EXE as the object file name.

Chapter 3 provides rules for establishing and identifying command files for
objects.

You can also specify privileges a user must have in order to connect to the
object, and provide default access control information to be used for inbound
connections to the object when no access control is specified by the remote
node. Additionally, you can assign default proxy login access controls for the
object. Refer to Section 2.10 for a discussion of access control information
used for logical link connections and a description of proxy login access
control.

2.6.2 Objects Using the Cluster Alias Node Identifier
If your node is in a VAXcluster that is using an alias node identifier, you have
the option of specifying how the cluster alias node address is to be used in
relation to incoming and outgoing connections for specific network objects.
By default, all objects except PHONE are able to receive connect requests
directed to the alias node identifier. For outgoing connections, the default is
that only the MAIL object is associated with the alias node address. If you
send mail from a cluster node that uses the alias, the sender's address on the
mail message is the alias node identifier.

You should not specify the alias node address for objects that require multiple
incoming links, because an incoming link identified by the alias node address
may be assigned to any of the nodes participating in the cluster alias node
address. For example, PHONE should not use the alias node address, because
it requires all incoming links to be directed to the same node in the cluster.
Nontransparent tasks that have a mailbox and can receive multiple inbound
connection requests should not be accessed using the alias node address
(see Chapter 8). Also, objects whose resources are not available clusterwide
should not be allowed to receive incoming connect requests addressed to the
alias node address.

2.6.3 Creating DECnet—VAX Network Server Processes
On the VMS operating system, all DECnet objects run as processes. Unless
a currently running process has declared itself to be a numbered network
object or a named network object (with number 0), NETACP must invoke a
process to receive the connect request. When the logical link request comes
in, a standard procedure called NETSERVER.COM is run, which in turn
causes NETSERVER.EXE to be executed. This program works in concert
with NETACP to invoke the proper program for the requested object. Then,
when the logical link is disconnected, the "object" program (such as FAL)
terminates, but the process is not deleted. Instead, control returns to the
NETSERVER.EXE program, which asks NETACP for another incoming logical
link request to process. This cycle continues until NETSERVER is deleted
after a specified time limit. The default is 5 minutes. To use a different
default time limit, specify the SYSTEM logical name NETSERVER$TIMEOUT,
using an equivalence string in the standard VMS "delta time" format:

dddd hh:mm:ss.cc

2-33

DECnet—VAX Components and Concepts
2.6 Objects

The effect of NETSERVER is to reuse network server processes for more
than one logical link request, eliminating the overhead of process creation
for an often-used node. NETACP reuses a NETSERVER process only if the
access control on the connect request matches that used to start the process
originally.

When NETACP creates a process to receive the connect request, the process
runs like a batch job. The sequence is as follows:

1 The process is logged in according to information found in the LTAF.
The key to this file is the user name, which is part of the access control
information. The process is successfully logged in only if the password
from the access control string matches the password in the UAF record.
(Refer to Section 2.10 for a discussion of DECnet access control.)

2 DECnet—VAX automatically creates a log file in
SYS$LOGIN:NETSERVER.LOG. Unlike the log file for a batch job, this
log file is neither printed nor deleted. The log file is helpful for debugging
your own network tasks. If NETSERVER.LOG cannot be created for any
reason, the network job continues running but does not produce any log
file.

3 The login command procedure indicated in the UAF for the process is
executed.

4 The process runs a command file to start the image that implements the
DECnet object. The rules for locating this command file differ depending
on whether the object has the number 0.

Because NETSERVER.LOG files are not required for network server processes,
you may explicitly inhibit all log files in your default nonprivileged DECnet
account by setting the default directory for the account to a nonexistent
directory. The effect of this action is to suppress all log files, while allowing
network jobs to be run.

2.6.4 Potential Causes of Network Process Failures
If a logical link fails and the status information displayed is 'network partner
exited;' this message indicates a problem in the remote network server
process. To determine the details of the failure, consult the NETSERVER.LOG
file at the remote node. Common reasons for failure are as follows:

• Inability to log in because of failure to access the system login procedure,
or the account login procedure or any files that it accesses.

• Protection set on network procedures and images in SYS$SYSTEM, such
as NETSERVER.COM or NETSERVER.EXE.

• Attempted execution in your LOGIN.COM file of an interactive
command that does not apply to network/batch jobs (for example, a
SET TERMINAL/VT 100 or SET TERMINAL/INQUIRE command). These
commands should not be specified in your LOGIN.COM file unless they
are preceded by IF F$MODE() .EQS. "INTERACTIVE".

For example, in your LOGIN.COM file, use the following to prevent a logical
link failure:

$ IF F$MODE() .EQS. "INTERACTIVE" THEN -
SET TERMINAL/VT100

2-34

DECnet—VAX Components and Concepts
2.6 Objects

Any failure to create NETSERVER.LOG causes a network job to continue
running, but without a log file.

2.6.5 VAX PSI Objects
The object component of VAX PSI contains records that identify the object,
specify a command procedure that is initiated when the incoming call arrives,
and specify account information for the incoming call.

You must identify each VAX PSI object by a unique name. For each object,
you must create a command procedure for starting the object that is to be
executed each time an incoming X.25 call to the object is received. Rules for
establishing and identifying the command procedures are given in Chapter 3.
For each object, you must also supply account information (consisting of
a user name, password, and, optionally, an account name) to be used by
incoming X.25 calls from remote DTEs.

2.7 X.25 and X.29 Server Modules
To handle calls coming in over a PSDN from remote DTEs and terminals, you
configure the X.25 and X.29 server modules, referred to as the X.25 and X.29
call handlers, as required. The X.25 server module handles incoming calls
that originated at a remote DTE; - the X.29 server module handles incoming
calls that originated at a remote terminal. Your local DECnet-VAX node can
receive X.25 and X.29 calls if it is configured as any of the following:

• A DTE connected directly to a PSDN (to be a DTE, a DECnet-VAX node
must have VAX PSI software installed)

• A multihost connector node that forwards calls between a PSDN and
host node (to serve as a connector node, aDECnet-VAX node must be
configured with VAX PSI software in multihost mode)

• A host node that uses a connector node to send and receive X.25 and
X.29 calls (to be a host node, aDECnet-VAX node must be configured
with VAX PSI Access software)

2.7.1 Destination of Calls from a Remote DTE
The configuration database for the server modules defines the processes that
are the destinations for calls, so that incoming calls from a PSDN can be
directed to the appropriate destination. If your node is serving as a DTE
connected directly to a PSDN or indirectly as a host node using an X.25
connector node, the destination is on the local node. If your node is serving
as an X.25 connector node, the destination may be on one of the host nodes
using the connector node.

The server database specifies the maximum number of circuits the server
module may have, that is, the maximum number of incoming and outgoing
calls that all destinations can handle.

When establishing the server configuration database, you must identify each
destination by a unique alphanumeric name. You must also name the object
activated when a particular destination accepts an incoming call, and assign
priorities to all destinations that could handle the same incoming call.

DECnet—VAX Components and Concepts
2.7 X.25 and X.29 Server Modules

Optionally, you can restrict the incoming calls a destination will handle to
any combination of the following:

• Calls to specified local DTE subaddresses

• Calls from specified user groups (BCUGs and CUGs)

• Calls from specified remote DTEs

• Calls containing user data that matches a specified call value after a mask
is applied

• Calls that have been redirected from another DTE

• Calls received from a particular network

• Calls containing particular values in the called address extension after a
mask is applied

If your local node is serving as an X.25 connector node, you must identify in
the X.25 server database the host node on which each destination is located.

Chapter 3 describes how to use NCP commands to specify call-handling
parameters in the configuration database.

2.7.2 Handling Incoming Calls at the Local DTE
This section describes the process of handling incoming calls at the local DTE
as it relates to network management. The VAX P.S.I. X.25 Programmer's Guide
describes the handling of incoming calls as it relates to programming PSI
network tasks.

Whenever a remote DTE attempts to communicate with your local DTE
(that is, attempts to set up a virtual circuit), the remote DTE, the PSDN, and
the local DTE provide information that identifies the user process that is
the destination of the call. Remote DTE information passed with the call is
optional; such information may include the remote DTE address, a local DTE
subaddress, a closed user group (CUG) or bilateral closed user group (BCUG)
name, and so on. VAX PSI at the local DTE uses this information, along with
destination information defined in the configuration database at the local DTE
for the server module and objects, to determine how to handle the incoming
call.

When an incoming call is received, VAX PSI constructs a network connect
block (NCB) using the remote DTE address and other information that may
be specified. VAX PSI then attempts to match the information in these fields
with the information specified for destinations in the configuration database.

If only one match is made, VAX PSI associates the incoming call with the
object specified in the configuration database for this destination. If more
than one match is made, VAX PSI chooses the destination with the highest
priority. Then it associates the incoming call with the object specified for this
destination (see Section 2.6.5).

The object names the task that is to run as a result of the incoming call.
(A command procedure associated with the object is activated when the
incoming call arrives; this user-written command procedure may activate
a user program or an image.) Section 2.6 discusses objects and object
parameters specified in the configuration database.

DECnet—VAX Components and Concepts
2.7 X.25 and X.29 Server Modules

VAX PSI rejects the incoming call if no match is made. To avoid this rejection,
you can specify alast-chance destination. Alast-chance destination is a
destination with an associated object that handles all incoming calls for
which a match cannot be found. The simplest last-chance destination is one
that specifies the complete range of local DTE subaddresses, handles calls
from all DTEs and all user groups, and ignores any incoming call-handling
information in the user data field. It specifies no subaddress, no CUGs, no
remote DTEs, and no user data. The last-chance destination must have the
lowest priority of all the destinations.

2.8 X.25 Access Module

The X.25 access module provides a means for user processes on VMS host
nodes to access remote nodes or terminals connected to a PSDN through
a connector node. You must configure the host node with VAX PSI Access
software. You can configure the connector node with VAX PSI software in
multihost mode; the connector node may be an Ethernet communications
server, for example, the X25router.

The PSI X.25 access module identifies the connector node to which the local
node is to be connected, the network the connector node can access, and,
optionally, access control information. The DECnet—VAX host system with
VAX PSI Access uses a DECnet link to connect to the connector node. VAX
PSI Access software uses the link to transmit X.25/X.29 messages between
the host and the connector node.

2.9 Logging

The network software logs significant events that occur during network
operation. An event is defined as a network or system-specific occurrence for
which the logging component maintains a record. Following is a partial list of
significant events:

• Circuit and node counter activity

• Changes in circuit, line, and node states

• Service requests (when a circuit or line is put in an automatic service
state)

• Passive loopback (when the executor is looping back test messages)

• Routing performance and error counters (circuit, line, node, and data
packet transmission)

• Data transmission performance and error counters (when errors in data
transmission occur)

• Lost event reporting (when some number of events are not logged)

This information can be useful for maintaining the network because it can
be recorded continuously by the event logger. The system manager is
responsible for controlling certain aspects of event logging. In particular,
you can control source-related parameters (actual events to be logged, the
source for these events, and the location at which these events will be logged)
and sink-related parameters (the name of the logging component at the local
node and its operational state).

DECnet—VAX Components and Concepts
2.9 Logging

For the most part, events are logged for the various DNA layers and for
system-specific resources. Events are defined by class and type, in the format
class.type. The class of an event identifies the layer or resource to which the
event applies, and the type is the particular form of event within the class.
For example, event 4.3 indicates oversized packet loss (type 3) for the Routing
layer (class 4). Event classes and types are summarized in the VMS Network
Control Program Manual.

The logging component is the device or process that records logging events.
There are three logging components:

• A logging console, which is generally a terminal or file that records
events in user-readable form. If you do not specify a logging console
name, the operator console (OPAO) is used.

• A logging file, in which events are recorded in binary format. You can
obtain detailed information about the format from the DNA Phase IV
Network Management Functional Specification. There is no default logging
file name.

• A logging monitor, which is a program supplied by the system or
user that receives and processes events. If you specify a logging
monitor, events formatted in user-readable form are sent to the
Operator Communication (OPCOM) facility; all network operator
terminals (terminals enabled through specification of the DCL command
REPLY/ENABLE=NETWORK) display these events. Also, if you
specify a logging monitor name, events encoded in binary format
are sent to the DECnet object specified by that name. You can obtain
detailed information about the format from the DNA Phase IV Network
Management Functional Specification.

You can use both the logging console and the logging monitor to display
events at the operator console; however, the inherent flexibility of OPCOM
and its ability to display messages at terminals being used for timesharing
may make the logging monitor a more suitable choice for many sites.

The source of an event can be an area, node, module, circuit, or line. Events
can be logged at either the local node or a remote node; this node is called
the sink node.

At the local node, you can control the operational state of the logging sink.
You must turn logging on before events can be logged to the sink, and off
before the logging parameters for the sink can be cleared from the database.
You specify the hold state to queue events for a specific logging sink.

2.10 Network Access Control
DECnet—VAX regulates access to the network on various levels, including the
following:

• Routing initialization passwords for links connecting the local node to
remote nodes

• System-level access control for inbound logical link connections that
result in a process being created

• Node-level access control for inbound and outbound logical links

• Proxy login access control for individual accounts

2-38

DECnet—VAX Components and Concepts
2.10 Network Access Control

The following sections describe these levels of control as they relate to
DECnet-VAX software operation, from the perspective of the system
manager's need to establish control parameters through NCP. Chapter 3
describes how to use specific NCP commands to accomplish access control.

2.10.1 Routing Initialization Passwords
Whenever you turn on a circuit, your local node attempts to initialize with
the DECnet software at the remote node connection for that circuit. As part
of this initialization process, the remote node may require a password to
complete the operation. The system manager can specify passwords when
setting up the configuration database.

In a Phase IV network, passwords are required when a Phase III node is
initialized (see Section A.5.2.2), but are optional when a Phase IV node is
initialized. Generally, passwords are used in initializing Phase IV nodes only
when a system has dialup telephone lines used by the network. When a
dialup node seeks a dynamic connection over a terminal line, the dialup node
must supply a password, but the node receiving the login request does not
send a password to the dialup node.

Figure 2-4 illustrates a routing initialization sequence for the network
example. When the circuit is turned on, nodes BOSTON and TRNTO
initialize. On the local node, BOSTON, DECnet-VAX software retrieves
the transmit password for remote node TRNTO and sends it to TRNTO upon
request. On node TRNTO, DECnet-VAX verifies this password with the
receive password specified for remote node BOSTON in its configuration
database. After the passwords are verified, the link is operational; that is, the
circuit state makes the transition from ON-STARTING to ON.

Figure 2--4 Routing Initialization Passwords

TRNTO

VOLATILE DATABASE

RECEIVE
PASSWORD:
VAX—NODE

NCP Command:

NCP>SET LINE DMC-0 STATE ON

BOSTON

VOLATILE DATABASE

TRANSMIT
PASSWORD:
VAX_NODE

~~
i

ZK-548-81

DECnet—VAX Components and Concepts
2.10 Network Access Control

DECnet-VAX always solicits a receive password. However, if verification on
the circuit is disabled, or if no receive password is specified in the database
for the adjacent node, DECnet-VAX accepts anything the adjacent node may
send. The adjacent node is still required to send the verification message.

2.10.2 System-Level Access Control
DECnet-VAX provides system-level access control over logical link
connections. The network user on the initiating node may explicitly supply
an access control string to control which account is used on the remote
node. If, however, the initiating node does not supply explicit access control
information, DECnet optionally provides default access control when sending
the request to the remote node. It also optionally provides default access
control for incoming logical links if the initiating node has not supplied access
control information.

2.10.2.1 Setting Access Control Information for Outbound Connects
The system manager can specify default access control information for
outbound connections. This enables the local node to send outbound logical
link requests with default access control information when that information is
not explicitly provided. The remote node stores the access control information
in its configuration database. The default access control information can
include privileged and nonprivileged names and passwords to be used in
connecting to a particular remote node.

The system manager at a node can specify a list of privileges required for
connection to a particular object, such as NML. When the local node requests
connection to an object for which privileges have been specified, it sends
the default privileged access control string to the remote node. If the system
manager does not specify privileges for an object, such as FAL, the object is
accessible to all users. When the local node requests connection to this object,
it sends the nonprivileged access control string.

2.10.2.2 Sources of Access Control Information for Logical Link Connections
Whenever a local DECnet node attempts to connect to a remote DECnet-VAX
node by means of a logical link, system-level access control information is
sent to the LOGINOUT image running in the context of a process on the
remote node. Access control information can come from a number of sources:

• The network user on the local node may explicitly supply an access
control string. If this is the case, the remote node uses the access control
information.

• If the access control string is not explicitly supplied, the local node checks
its object database against the privileges of the initiating process. If the
object does not require privileges other than TMPMBX and NETMBX, the
local node sends the default nonprivileged access control string from its
node database to the remote node.

• If the object requires privileges beyond TMPMBX and NETMBX, and the
user process has the required privileges, the local node sends the default
privileged access control string from its node database to the remote node.

• If no access control string is supplied, the local node checks to see if
proxy access is enabled for the remote node. If so, LOGINOUT at the
remote node checks the NETPROXY.DAT file to determine whether a user
should be logged in to a designated account rather than the nonprivileged
account. (Proxy login access control is described in Section 2.10.5.)

2-40

DECnet—VAX Components and Concepts
2.10 Network Access Control

• If none of these cases are valid, the local node sends a "no" access control
string.

• When the remote node sees that no access control has been specified,
it checks its object database. If the object database contains a default
inbound access control string, the remote node uses that string.

• If there is no default access control information in its object database, the
remote node checks its executor node database for nonprivileged account
information for itself. If the information is there, the remote node uses
the nonprivileged access control string.

Finally, if none of these sources supply the information, the connection fails.

Note: In DECnet-VAX usage, nonprivileged means NETMBX and TMPMBX
privileges only. NETMBX is the minimal requirement for any network
activity. Privileged means any privileges in addition to NETMBX or
TMPMBX.

Figure 2-5 illustrates the local node's access control options for inbound
connection requests.

Regardless of the source, the remote node uses this access control information
to determine whether a logical link can be established. The way this
validation process works is important for both the system manager and
network users. This section discusses access control in terms of network
management. Chapter 8 discusses access control as it relates to user-level
operations such as remote file access and task-to-task communication.

Access control information is not used where the connection is to a program
that has declared a name or object number and has started independently of
DECnet.

Access control information allows users on remote nodes to gain access to
resources on the local node. The system manager must establish access
control information in both the configuration database (for objects) and the
UAF (for default network accounts) on the local node. Chapter 1 briefly
describes the necessity for these default accounts. Chapter 5 explains how to
create a default nonprivileged DECnet account.

Whenever NETACP on the local node receives an inbound logical link
connection request, it creates a process and starts the LOGINOUT image,
which verifies the user's access rights by checking the UAF. When the VMS
operating system starts a user process as a result of an inbound connection
request, the privileges with which that process runs are determined by the
UAF record associated with the access control information passed in the
connection message. This function is almost identical to the one that occurs
whenever a local user starts a batch job; the difference is that the resulting
LOG file is neither printed nor deleted. Section 2.6 discusses this process in
detail.

DECnet—VAX Components and Concepts
2.10 Network Access Control

Figure 2-5 Access Control for Inbound Connections

Outbound Connection
(from local node)

0

Object of
the connection

requires privileges
other than TMPMBX

and NETMBX

Yes

User process
has the required

privileges

0

Yes

No

 i

DECnet-VAX sends null
access with no proxy
requested

DECnet-VAX sends
default nonprivileged
information for remote
node if this information
exists

Yes

DECnet-VAX sends
default privileged
information for remote
node if this information
exists

DECnet-VAX sends
no access information

Outgoing
proxy

enabled
for the
object

Yes

No

DECnet-VAX sends
access with proxy
requested

r r
to remote node

Inbound Connection
(from local node)

on remote node

Explicit access
control information

received

0

Proxy
for the object

requested, enabled,
and present

0

Object database
contains default
inbound access

control information

0

Default
nonprivileged
information

associated with
local node

DECnet-VAX sends
access with no
proxy requested

0

Yes

Yes

 ~.►

LOGINOUT uses
explicit access

LOGINOUT uses
proxy

Yes

LOGINOUT uses
object database
information

Yes

LOGINOUT
uses it

Connect fails

r
ZK-562-81

2.10.2.3 Network Security and Passwords
You can maintain password security in a network environment by protecting
the network configuration files from unauthorized access. The most
convenient way to do this is to require SYSPRV to access these files.
NML must have access to network configuration files. NML on the remote
node accesses these files when it sees the NCP commands that access the
permanent database (DEFINE, PURGE, LIST, and SET "component" ALL).

After you set access control (as described in the previous section), users must
have the privileges necessary to perform the following operations:

To modify the volatile database, NML users must have OPER privilege.

v

v

DECnet—VAX Components and Concepts
2.10 Network Access Control

• To specify the permanent database (using the DEFINE command) or to
update the volatile database with all parameters from the permanent
database (using the SET "component" ALL command), users must have
OPER privilege and WRITE access to all permanent database files.

• To remove specific parameters from the permanent database (using the
PURGE command) or to reset or remove all parameters from the volatile
database (using the CLEAR "component" ALL command), users must
have OPER privilege and write access to all permanent database files. To
clear counters, users must have OPER privilege.

• To start the network, users must have ACNT, CMKRNL, SYSNAM, and
DETACH privileges.

To make these safeguards operational, you should avoid assigning privileges
beyond those normally used. In particular, you should not give the default
privileged account SYSPRV. These default accounts should be in their own
group to avoid extending group access to other directories on the local
node. You can protect sensitive files and directories against world access by
requiring explicit access control to reach them.

2.10.2.4 Inbound Default Access Control for Objects
Another form of access control specific to network objects is default account
information used by inbound connects from remote nodes that send no access
control information. Because no access control information is supplied, the
default information you specify for the object is used to allow the logical link
connection to be made. One example of this is downline task loading. When
SLD connects to HLD on the host node, default access control information
specified for the HLD object is used. Refer to Chapter 4 for more information
about downline task loading.

2.10.3 Access Control for Remote Command Execution
If you request an NCP command to be executed at a remote node, you can
supply an explicit access control string or default to access control information
in the configuration database. To supply an explicit access control string, you
use either the standard VMS node specification node"user password account"::
or specify this access control information as parameters in the NCP command
to be executed at a remote node.

2.10.4 Node-Level Access Control
The system manager can regulate two forms of node-level access control
for incoming and outgoing logical links. One form involves specifying the
ACCESS parameter for a particular node in your volatile database, and the
other involves specifying the DEFAULT ACCESS parameter in your executor
database.

When an incoming or outgoing logical link connection is attempted, the
executor node first checks its volatile database for the ACCESS entry for the
target node. If the entry exists, the executor uses it.

Because it may not be feasible to include an ACCESS entry for every node in
a large network, DECnet—VAX provides the DEFAULT ACCESS alternative.
If the logical link connection is attempted and there is no ACCESS entry for
the remote node in the volatile database, the executor uses the DEFAULT
ACCESS parameter value.

2-43

DECnet—VAX Components and Concepts
2.10 Network Access Control

Both commands accept the same set of parameter values, which are as
follows:

INCOMING Allows logical link connections from the remote node, but does
not allow the local node to initiate connections to the remote
node

OUTGOING Allows the local node to initiate connections to the remote node,
but does not allow connections from the remote .node.

BOTH Allows incoming and outgoing logical link connections. This is the
default.

NONE Does not allow incoming or outgoing logical link connections to
this node.

If you specify no entry for the ACCESS or DEFAULT ACCESS parameter, the
DEFAULT ACCESS parameter defaults to BOTH.

Only those users with OPER privilege can bypass this access protection.

For each node, you can configure the privileged and nonprivileged accounts
and passwords that constitute default access control information. This default
access control information should match the system-level access control
information established for the node (see Section 2.10.2).

Another form of access control at the node level is the node checking that
is performed before a system can dial in and form a dynamic asynchronous
connection over a terminal line. For a description of security measures for
dynamic asynchronous connections, see Section 2.10.6.

2.10.5 Proxy Login Access Control
Proxy login enables a user logged in at a remote node to be logged in
automatically to a specific account at the local node, without having to
supply any access control information. Note that proxy login is not the
same as interactive login. Proxy login means that specific network access
operations can be executed. By contrast, interactive login requires a user to
supply a username and password before the user can perform any interactive
operations. In order to establish proxy login to an account on the local node
(without specifying any access control information), the remote user must
have a default proxy account on the local node that maps to a local user
account. The remote user assumes the same file access rights as the local
account and also receives the default privileges of the local account. You can
use the proxy login capability to increase security, because it minimizes the
need to specify explicit access control strings in node specifications passed
over the network or stored in command procedures.

Note that network objects can also be assigned proxy login access.

The following sections summarize the procedures for establishing proxy
accounts and for establishing proxy access to network objects.

DECnet—VAX Components and Concepts
2.10 Network Access Control

2.10.5.1 Proxy Accounts
Proxy accounts permit users on remote nodes to obtain access privileges on
other nodes without having private accounts on those nodes. The remote
user can enter commands to access data that is accessible by one or more
local accounts to which that remote user has proxy access.

A system manager can control the use of proxy accounts at the local node,
by using the Authorize Utility to create and modify the permanent proxy
database, NETPROXY.DAT. In NETPROXY.DAT, each database entry maps
a single remote user to one or more local accounts. The remote user is
identified by either a node name and a user name, or by a node name and a
remote UIC (the User Identification Code used by the Authorize Utility). The
following examples show how remote users may be identified in the proxy
database:

LARK: :KELLEY
RSTS : : [23, 55]

In the first example, the remote user is identified by the node name LARK
and user name KELLEY. The second example specifies that a UIC is to be
used instead of a user name to identify the user as member 55 in group 23.

In the permanent proxy database, each remote user may be mapped to one
default proxy account and up to 15 additional proxy accounts on the local
node. With a default proxy account, the remote user does not need to specify
a user name or password when requesting proxy login. With a nondefault
proxy account, the remote user must include a user name only.

For a summary description of proxy accounts and how to create them, see the
Guide to VMS System Security. The Authorize Utility is described in the VMS
Authorize Utility Manual.

2.10.5.2 Controlling Proxy Login Access for Individual Accounts
The permanent proxy database resides in NETPROXY.DAT. All management
and maintenance of this database is handled through the Authorize Utility.
NETPROXY.DAT is updated automatically any time you use the Authorize
Utility to make any changes to proxy logins. When DECnet is started up, the
information in NETPROXY.DAT is used to construct a volatile database in
the NETACP process. This volatile database is consulted by NETACP when
incoming proxy login requests are received at the local node.

When the local node receives a request for initiation of an inbound
connection, and if no access control string is supplied and the remote node
is enabled for outgoing proxy login access, the local system checks to see if
the object has incoming proxy enabled. If proxy access is enabled, NETACP
checks its volatile database to determine whether the user should be allowed
to log into a designated account.

By default, both incoming and outgoing proxy login access are enabled
at the local (executor) node. Consequently, incoming and outgoing proxy
login access is permitted with all remote nodes. These default values are
established by DECnet-VAX to permit proxy logins to be initiated by the
local node or by the remote node. These default values are the recommended
settings.

DECnet—VAX Components and Concepts
2.10 Network Access Control

However, you can restrict the use of proxy logins by specifying the NCP
executor parameters INCOMING PROXY and OUTGOING PROXY in the
volatile database. The possible proxy access options for the local node are as
follows:

INCOMING PROXY enabled Allows proxy login access from the remote
node to the local node.

INCOMING PROXY disabled Prevents proxy login access from the remote
node to the local node.

OUTGOING PROXY enabled Allows the local node to initiate proxy login
access to the remote node.

OUTGOING PROXY disabled Prevents outgoing proxy login access
connections from the local node.

After the network is started, the NCP command SET KNOWN PROXIES ALL
can be used to update the volatile proxy database.

2.10.5.3 Controlling Proxy Login Access for Objects
just as you can control proxy login access by individual accounts, you can
control proxy login access by network objects. You control proxy login access
to a specific network object by setting the value of the object parameter
PROXY in the configuration database. The database contains defaults for
each object. Permitting proxy login access to an object is recommended only
if the proxy access serves some useful purpose. For example, by default
MAIL is set to prevent incoming proxy login, while FAL is set to allow both
incoming and outgoing proxy login.

Note that whatever you declare for the object proxy database takes
precedence over the values declared in the executor proxy database.

The following four options are available for the PROXY parameter for a
network object:

INCOMING Allows proxy login to the object.

OUTGOING Allows the object to initiate proxy login.

BOTH Allows both incoming and outgoing proxy
login access. This is the default.

NONE Does not allow incoming or outgoing proxy
login access.

Note that there are advantages to disallowing incoming proxy access to an
object (such as MAIL) that does not require it. Whenever possible, incoming
connect requests are matched up with compatible existing NETSERVER
processes, to avoid the overhead of unnecessary process creation. If the
object disallows incoming proxy access, incoming connect requests will use
default access control, with a higher probability of being matched with an
existing NETSERVER process.

DECnet—VAX Components and Concepts
2.10 Network Access Control

2.10.6 Security for DDCMP Point-to-Point Connections
If a remote node requests a connection over a DDCMP point-to-point circuit,
the local node can avoid revealing its routing initialization password, while
requiring that the remote node supply its password. This security measure is
used to protect the password of the local node when a dialup node initiates
an asynchronous connection to the local node.

For example, a user at a system with an asynchronous terminal line (such as a
VMS operating system running on a MicroVAX) can dial in to another system
(such as a VMS operating system in a VAXcluster) and initiate a dynamic
connection. This connection causes the terminal lines to be converted to
asynchronous DDCMP communication lines for the duration of the telephone
call. To prevent attempts at access by callers at unauthorized nodes, certain
checks have been included in the dynamic configuration process. The dialup
node must be the type of node (router or end node) expected by the local
VMS node. When the dialup node attempts to initialize, it must supply a
routing initialization password to the local node, although the local node does
not send its password to the dialup node. The line will not be started unless
the password can be verified at the local node. This convention preserves the
security of the local node in case the dialup node is unauthorized. The line
will not be started unless the transmit password sent matches the local receive
password. In addition, depending on how the user set up the terminal line,
the connection can be configured to end automatically when the telephone is
hung up.

Part I I Network System Management

3 Managing and Monitoring the Network

This chapter explains how to use network management commands and
parameters to configure, manage, and monitor network software. The
management tools and components available to DECnet-VAX and VAX PSI
users fall into 13 broad categories:

• Configuration database

• Network Control Program (NCP)

• Executor node and remote nodes

• X.25 protocol modules

• Circuits

• Lines

• Routing

• Links

• Objects

• X.25 and X.29 server modules

• X.25 access modules

• Logging

• Access control

This chapter provides enough information for you to build a network
configuration database for your VMS operating system. It also explains
how to use most NCP commands at both the local node and remote nodes to
modify parameters for the running network. See Chapter 5 for examples that
use NCP commands to build databases for various network configurations.

Chapter 2 describes DECnet-VAX and VAX PSI network components and
operating concepts. The VMS Network Control Program Manual contains
reference information about the operation of the Network Control Program
(NCP) Utility and the complete syntax of NCP commands.

3.1 The DECnet—VAX Configuration Database
The DECnet-VAX configuration database contains files that provide
information about the local node, remote nodes, local physical lines, local
circuits, local logging, and local objects. Each DECnet node in the network
has a network database that supplies component and parameter information
of this kind. To ensure successful node-to-node communication, each node
has a configuration database that consists of the following databases:

• Anode database with a record for each node, including the local node

• A circuit database with a record for each circuit known to the local node

Managing and Monitoring the Network
3.1 The DECnet—VAX Configuration Database

• Aline database with a record for each physical line known to the local
node

• A logging database with a record for each sink (logged events are sent to
the sinks)

In addition, NETACP provides a default object database with a record for
each object known to the network, including objects (for example, FAL) that
are defined when you bring up the local node.

As system manager, you need to specify the nodes that can communicate
with your node, the physical lines that connect the nodes, and the circuits
associated with those lines. In some cases, this connection may include more
than one line and circuit to the remote node. You also need to establish a
variety of operational routing parameters for the local node to ensure proper
network operation.

To allow for communication between nodes, NETACP defines several network
objects including NML, FAL, and TASK.

To provide network management flexibility, the DECnet-VAX configuration
database consists of two distinct databases, one volatile and one permanent.
In addition, if VAX PSI is included in the network, a VAX PSI configuration
database, consisting of a volatile database and a permanent database, exists at
the local DTE (see Section 3.1.3).

3.1.1 The Volatile Database
The volatile copy of the DECnet-VAX configuration database is memory
resident; it allows you to control the running network without modifying
the permanent database. NCP provides commands for setting, clearing, and
showing network component parameters for the volatile database. NCP also
permits you to copy current information about remote nodes from the node
database of another node into your volatile database.

You can change parameters in the volatile database while the system is
running; these changes, however, are in effect only until you modify them
again or until the network is shut down. NETACP uses parameters specified
only in the volatile database.

3.1.2 The Permanent Database
The permanent copy of the DECnet-VAX configuration database provides the
initial values for the volatile database. You access the permanent database
whenever you use the ALL parameter with the SET command, for example,
when you bring up the network. In effect, the permanent database allows
you to load network parameters into the volatile database when you boot the
system. You can also change parameters in the permanent database.

You can use NCP commands to define, purge, and list network component
parameters in the permanent database. You can also use NCP to copy current
remote node entries into your permanent node database from the database of
another node to which you have access.

You can optionally use the NETCONFIG.COM procedure to configure
automatically the permanent database for your node (see Chapter 5).

Managing and Monitoring the Network
3.1 The DECnet—VAX Configuration Database

3.1.3 VAX PSI Configuration Database
The VAX PSI configuration database contains files that provide information
about the local DTE, local lines, virtual circuits, local modules, and local
objects. Each PSI DTE connected to a PSDN has a database that supplies
component and parameter information of this kind. For successful DTE-to-
DTE communication, each DTE has a minimum configuration database that
consists of the following databases:

• A circuit database with a record for each permanent virtual circuit (PVC),
if PVCs are in use

• An object database with a record for each object

• Aline database with a record for each physical line to a PSDN

• A module database with records for the PSDN(s), the DTE(s), groups, and
destinations.

The VAX PSI configuration is also stored in the DECnet—VAX configuration
database.

Just as with the DECnet—VAX configuration database, the VAX PSI
configuration database consists of both a volatile and a permanent database.

You can use NCP commands to configure the VAX PSI software at any time.
The STARTNET.COM command procedure sets the parameters in the volatile
database every time you load the VAX PSI software (see Chapter 6). You can
change parameters in the configuration database while VAX PSI is running.

3.2 The Network Control Program
The Network Control Program (NCP) is the vehicle for creating and
modifying component parameters in the configuration database. In addition
to the NCP command interface, DECnet—VAX users can write programs
that communicate with NML through the Network Information and Control
Exchange (NICE) protocol. For information about this interface, refer to the
DNA Phase IV Network Management Functional Specification.

Most NCP commands allow you to modify either the volatile or the
permanent database. NCP accesses either database, depending on which
command verb you use. For example, you enter the following command to
access the permanent database to create or modify the address of a remote
node:

NCP>DEFINE NODE 14 NAME DENVER

To change the parameter in the volatile database, you enter the following
command:

NCP>SET NODE 14 NAME DENVER

The following table distinguishes command verbs by function and the
database they access.

Managing and Monitoring the Network
3.2 The Network Control Program

Function Volatile Permanent

Creating/modifying parameters SET DEFINE

Clearing parameters CLEAR PURGE

Displaying parameters SHOW LIST

Because the commands to access the volatile and permanent databases are
similar, this section uses volatile database commands in all examples.

When configuring your network, you can use NCP either to build upon
previously specified information or to change that information. Thus you
do not have to delete all existing parameters and start over. For example,
assume that you have identified a remote node address as 5. You can add
node parameters for this record in the volatile database by using the SET
NODE command. If you want to change the address of this node, you need
to specify a new address only in the ADDRESS parameter of the SET NODE
command. If you decide later that you want to remove any or all parameters
for this node, then you could use the CLEAR NODE command. Commands
to remove parameters exist for all network components.

NCP commands operate on network components and their parameters.
When issuing an NCP command, you must provide the command verb, the
component name, and one or more parameters, qualifiers, or both, as shown
in the following example:

$ RUN SYS$SYSTEM:NCP

NCP>SET NODE 11 NAME BOSTON COUNTER TIMER 30
NCP>SET KNOWN LOGGING STATE ON

NCP>SET EXECUTOR

command component

STATE ON
.-~1•

parameters

Note that components consist of two types: singular (as with NODE
BOSTON) and plural (as with KNOWN LOGGING). For example, you
can display information about an individual node or all nodes (including the
local node) in the network:

NCP>SHOW NODE BOSTON COUNTERS

NCP>SHOW KNOWN NODES COUNTERS

Most NCP commands support both singular and plural component names.

NCP accepts the asterisk (*) and the percent sign (%) as wildcard characters.
You can include these wildcard characters on the NCP command line to
represent a group of component names. Using a wildcard character allows
you to refer to an NCP component by a general name, rather than by a
specific name.

Managing and Monitoring the Network
3.2 The Network Control Program

You can use wildcard characters to represent the following component names:

• Node name

• Line name

• Circuit name

• Object name

• Node address

• Events

The asterisk wildcard represents one or more characters, while the percent
sign represents a single character.

The following rules define how you can use wildcard characters with
component names.

• If the component name is a string, the wildcard character may occur at
any location in the string. For example:

NCP>LIST NODE ST%R STATUS
NCP>SHOW OBJECT M* CHARACTERISTICS

The first command requests a list of status information for all nodes with
four-letter node names beginning with "ST" and ending with "R." The
second command requests a listing of characteristics for all objects with
names beginning with "M."

• For node addresses, which are represented by the format
area-number.node-number, only the node-number portion of the node
address (the numeral on the right side of the period) can contain a
wildcard. For example, the following command sets a COUNTER TIMER
value of 45 seconds for all nodes in area 4:

NCP>SET NODE 4.* COUNTER TIMER 45

Specifying a node address such as *.5 is invalid because only the
node-number can contain a wildcard.

• In a node address, a wildcard character cannot be combined with a
numeral to represent anode-number. The node addresses 4.* and 4.%
contain valid uses of the wildcard characters, but the node addresses
4.%2 and 4.1* are invalid.

• For events, which are represented by the format class.type, only the type
portion of the event (the numeral on the right side of the period) can
contain a wildcard. For example, the following command specifies that all
class 2 events are to be logged:

NCP>SET KNOWN LOGGING EVENTS 2.*

• Except in the case of events, only component names can contain
wildcards. Parameter values cannot contain wildcards. The following
command is invalid because the circuit name UNA-* is not the component
name in the command. Rather, it is a parameter used to modify the
component named BOSTON. Only component names can be represented
by wildcard characters.

NCP>SET NODE BOSTON SERVICE CIRCUIT UNA-* !INVALID COMMAND

Managing and Monitoring the Network
3.2 The Network Control Program

The component name EVENT is used as a parameter to the LOGGING
commands, and can contain wildcard characters, as long as only the type
portion of the event number (the numeral to the right of the period)
contains the wildcard. For example, the following command clears
logging to the logging file for all class 2 events:

NCP>CLEAR LOGGING FILE EVENTS 2.*

• Unit numbers of circuit and line devices may contain wildcard characters,
but device names of circuits and lines cannot contain wildcard characters.
Circuit and line devices are typically identified by the format dev-c, where
dev is a mnemonic device name, and c is a device unit number. In the
following example, the asterisk replaces the unit number in this request
for circuit information for all DMC devices:

NCP>SHOW CIRCUIT DMC-*

However, the device-name portion of a circuit or line name cannot contain
wildcard characters. Therefore, the following commands are invalid:

NCP>SHOW CIRCUIT D* STATUS !INVALID COMMAND
NCP>SHOW LINE %NA-0 SUMMARY !INVALID COMMAND

Note that substituting a wildcard character for an entire component name is
equivalent to specifying the command component KNOWN. For example:

NCP>SHOW NODE * STATUS

This command is equivalent to the following command:

NCP>SHOW KNOWN NODES STATUS

For a detailed description of NCP operation, the syntax of NCP commands,
and examples of NCP command prompting, refer to the VMS Network Control
Program Manual.

3.3 Node Commands
To establish your VMS operating system as a node in the DECnet network,
you must build the node database entries for the DECnet-VAX configuration
database. The following sections describe identification of the executor node
and remote nodes, and the node parameters required to build an operational
network node database. They also discuss how to update your node database
by copying current information about remote nodes from another node to
which you have access.

3.3.1 Executor Node Commands
NCP allows you to manage the operation and configuration of both your local
node and remote nodes in the network. Generally, the 11~TCP commands you
enter at your local node are executed on that node. Occasionally, however,
you may want to enter commands from the local node to be executed on
adjacent or remote nodes. To this end, NCP incorporates the concept of an
executor node. The executor node is the node on which NCP functions are
actually performed, which in most cases is the local node. To perform NCP
functions on remote nodes, NCP supports two commands: SET EXECUTOR
NODE and TELL.

Managing and Monitoring the Network
3.3 Node Commands

Note: For command descriptions in this manual, the executor node on non-
Ethernet circuits is assumed to be the local node (BOSTON) unless
otherwise specified. On Ethernet circuits, the executor node is usually
ROBIN.

3.3.1.1 SET EXECUTOR NODE Command
The SET EXECUTOR NODE command sets the executor to the node at which
you want the commands to execute. One use of this feature is to display
information about the configuration database Of the remote node. Figure 3-1
illustrates this use of a remote executor node.

As shown in Figure 3-1, you set the executor node by entering the following
NCP command:

NCP> SET EXECUTOR NODE TRNTO

NCP executes commands that you enter at your local node, BOSTON, at the
remote executor node, TRNTO. The executor node interprets each command
with its own network management software, and then performs the NCP
function. Each command must be stated as if it were issued to NCP at the
executor node. In this example, any information output that results from the
execution of a command is displayed at node BOSTON. If the remote node
is not running DECnet-VAX software, refer to the appropriate documentation
for that node.

To reset the executor to the local node, use the following NCP command:

NCP> CLEAR EXECUTOR NODE

The executor is always the local node when NCP is activated. Several users
at one node can set their executor to different nodes.

When you issue a SET EXECUTOR NODE command, you can either
include specific access control information or use the default access control
information. The level of privilege allowed at the remote executor node
depends on the access control information specified. (Section 3.13 describes
the access control format.)

Note: When you clear the executor node, NCP communicates with NML as a
shared image in the same process. Hence, clearing the executor node
resets the executor's privileges to those of your current process—that is,
the process running NCP.

3.3.1.2 TELL Prefix
As an alternative to using the SET EXECUTOR NODE command, you may
want to execute only a single command at a remote node or you may want
to temporarily override the current executor. In either case you can use the
TELL prefix with an NCP command. For example, if you enter the following
command at node BOSTON, NCP displays line information for all physical
lines connected to node TRNTO:

NCP>TELL TRNTO SHOW KNOWN LINES

Remote execution in this case applies only to the one command entered
with the TELL prefix. Again, you can specify or default to access control
information.

Managing and Monitoring the Network
3.3 Node Commands

Figure 3-1 Remote Command Execution

BANGOR

TRNTO
(Executor Node)

DENVER

KANSAS

DALLAS

NCP Commands:

NYC

BOSTON
(Local Node)

NCP>SET EXECUTOR NODE TRNTO FROM BOSTON
NCP>SHOW KNOWN LINES

FROM TRNTO

NCP>CLEAR EXECUTOR NODE FROM BOSTON

TK- 1865-84

3.3.2 Node Identification
When configuring the network, you must identify in the executor
configuration database the local node and all adjacent nodes connected to
it by circuits. Identifying all nodes by name as well as address permits you
to reach any node by its name. This section describes node identification and
discusses NCP parameters relevant to identifying nodes.

3-8

Managing and Monitoring the Network
3.3 Node Commands

Either the node address or the node name can serve as a node identifier
(node-id). The node address is a decimal number assigned to the node in
the configuration database. The address must be unique within the network.
The node address may include as a prefix the area number, a decimal integer
indicating the area in which the node is grouped. In the node address, the
area number and node number are separated by a period, in the following
format:

area-number. node-number

For example, if node 3 is in area 7, its node address is 7.3. The area number
must be unique within the network and the node number must be unique
within the area. If you do not specify an area number, the area number of
the executor node is used. The default area number for the executor is area 1.
In multiple-area networks, you should always specify the area number.

A node name is an optional, unique alphanumeric string that contains up
to six characters including at least one alphabetic character. You can use
it interchangeably with the node address to identify a node. In the single-
area network example in Chapter 1, the node name BOSTON and the node
address 1.11 identify the same node.

When defining remote nodes in the volatile database, use the SET NODE
command to specify node names and node addresses. The following
command associates the node name TRNTO with the node whose address
is 1.5:

NCP>SET NODE 5 NAME TRNTO

To specify a node address for the local node, use the SET EXECUTOR
command, as in the following example:

NCP> SET EXECUTOR ADDRESS 11

Then, use the following command to specify a node name for the local node:

NCP> SET NODE 11 NAME BOSTON

By entering these commands, you have established a remote node (TRNTO)
whose address is 1.5 and the local node (BOSTON) whose address is 1.11.
You can then build upon this information to establish parameters for the
various nodes.

Before a node can be accessed by name, you must specify a node name to be
associated with a node address.

After you set the executor node's address in the volatile database, you cannot
change it unless you turn off and restart the network. However, you can
change any other node's address at any time. For example:

NCP>SET NODE TRNTO ADDRESS 6
NCP>SET NODE TRNTO ADDRESS 8

3.3.2.1 MAXIMUM ADDRESS Parameter
The MAXIMUM ADDRESS parameter sets the highest address that the
local node will recognize. Setting this parameter allows you to group node
addresses in a predefined range, which minimizes the size of internal data
structures and control mechanisms for DECnet—VAX software. For example,
the following command sets the highest remote node address at 17:

NCP>SET EXECUTOR MAXIMUM ADDRESS 17

Managing and Monitoring the Network
3.3 Node Commands

3.3.2.2 Local Node Identification Parameter
In addition to defining a node name and address for the local node, you can
also specify. a descriptive quoted string of alphanumeric characters. NCP
displays this string whenever you enter the SHOW EXECUTOR or LIST
EXECUTOR command. Use the IDENTIFICATION parameter with the SET
EXECUTOR command to specify this optional information, as follows:

NCP>SET EXECUTOR IDENTIFICATION "DECnet-VAX V5.0, VMS V5.0"

This command provides information that NCP displays whenever you use the
SHOW EXECUTOR command to display executor node information, as in the
following example:

NCP>SHOW EXECUTOR CHARACTERISTICS

Node Volatile Characteristics as of 30-DEC-1988 11:27:07

Executor node

Identification
Management version
Incoming timer
Outgoing timer
Incoming Proxy
Outgoing Proxy
NSP version
Maximum links
Delay factor
Delay weight
Inactivity timer
Retransmit factor
Routing version
Type
Routing timer
Broadcast routing timer
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum

address
circuits
cost
hops
visits
area

Max broadcast nonrouters
Max broadcast routers
Maximum path splits
Area maximum cost
Area maximum hops
Maximum buffers
Buffer size
Default access
Pipeline quota
Alias incoming
Alias maximum links
Alias Node
Path split policy

= 1.11 (BOSTON)

= DECnet-VAX V5.0, VMS V5.0
= V4.0.0
= 45
= 45
= Enabled
= Enabled
= V4.0.0
= 128
= 80
= 5
= 60
= 10
= V2.0.0
= routing IV
= 600
= 40
= 1023
= 16
= 1022
= 15
= 63
= 63
= 64
= 32
= 1

f

= 1022
= 30
= 100
= 576
= incoming and outgoing
= 1200
= Enabled
= 32
= 1.10 (CLUSTR)
= Normal

3-10

Managing and Monitoring the Network
3.3 Node Commands

3.3.2.3 Using and Removing Node Names and Addresses
After you specify a node name and address, you can use them
interchangeably whenever you need to specify anode-id. The local DECnet-
VAX software translates the node names into node addresses. In the single-
area network example, the following NCP commands perform identical
functions:

NCP>SHOW NODE 5 CHARACTERISTICS

NCP>SHOW NODE TRNTO CHARACTERISTICS

To remove a remote node name from the volatile database, use the CLEAR
NODE command. The following command removes the association between
TRNTO and node 5:

NCP>CLEAR NODE 5 NAME TRNTO

To remove a remote node address from the volatile database, you must
remove all parameters for the node. You can also remove addresses for all
known nodes other than the local node, as in the following example:

NCP>CLEAR NODE TRNTO ALL

NCP>CLEAR KNOWN NODES ALL

After all parameters for a component are removed from the volatile database,
the component is no longer recognized by the network.

Note: To change the ADDRESS or BUFFER SIZE parameter for your node, you
must first turn off the executor. For information about how to change the
local node's operational state, refer to Section 3.3.5.2 and Chapter 6.

3.3.3 Identifying Cluster Nodes
For many network operations, being able to treat nodes within a
homogeneous VAXcluster as though they were a single node in a DECnet
network is convenient. You can do this by establishing an alias node
identifier for the cluster. You can specify the alias node identifier as either
a unique node address or a corresponding node name. Any member node
can elect to use this special node identifier as an alias while retaining its own
unique node identification. Use of the cluster alias node identifier is optional.

The management of a cluster alias node involves three primary decisions:

1 Will an individual node participate in the use of a cluster alias node
identifier?

2 If a node participates, does it want to receive inbound connect requests
targeted to the cluster alias address?

Managing and Monitoring the Network
3.3 Node Commands

3 For any object defined on a participating node, should the object's logical
links appear to have originated from the cluster alias node and should the
object be able to receive incoming connect requests that are directed to
the cluster alias address?

To establish an alias node identifier for a local node, use the SET EXECUTOR
or DEFINE EXECUTOR command with the ALIAS NODE parameter,
described in Section 3.3.3.1. To enable incoming requests to the cluster alias
node address, use the ALIAS INCOMING parameter of the SET EXECUTOR
or DEFINE EXECUTOR command, as described in Section 3.3.3.2.

The SET OBJECT command allows you to associate specific objects with the
cluster alias node identifier, by means of the ALIAS OUTGOING parameter.
You can also use the ALIAS INCOMING parameter to permit specific objects
to receive incoming connect requests sent to the cluster alias address. Section
Section 3.9.1 describes how to identify DECnet—VAX objects.

3.3.3.1 Setting an Alias Node Identifier for the Executor
You establish an alias node identifier for the local node using the SET
EXECUTOR command with the ALIAS NODE parameter. When the local
node includes an alias node identifier in its database, it can be accessed by
either the cluster alias or its individual node name or node address.

The alias node identifier can be either a node address or node name. Before
you can establish a node name as a cluster alias, you must define the node
name in the database, and associate it with a node address representing the
whole VAXcluster, by means of the SET NODE or DEFINE NODE command.
For example, the following command associates the node name CLUSTR with
the address 2.13:

NCP>DEFINE NODE 2.13 NAME CLUSTR

You can then establish the name CLUSTR as the alias node identifier for the
local node by using the following command:

NCP>DEFINE EXECUTOR ALIAS NODE CLUSTR

By entering these commands, you establish a node (CLUSTR) whose address
is 2.13. This is the cluster alias node. Its address and name appear in the
database like those of all other nodes. From the viewpoint of any node in the
network outside the cluster, address 2.13, which is named CLUSTR, appears
to be a real DECnet node that can participate in two-way communication.
This cluster alias acts as a single node identifier that all participating nodes in
the cluster can use to communicate with other nodes in the DECnet network.

3.3.3.2 Enabling Aliases for Nodes in a Cluster
When you manage the cluster alias node, you must decide whether
participating nodes will accept incoming connect requests directed toward
the cluster alias node identifier. You use the executor parameter ALIAS
INCOMING to specify how incoming connect requests are to be handled.
This parameter must be either enabled or disabled. To permit the node to
accept incoming connect requests directed to the cluster alias node identifier,
specify the ENABLED option. Otherwise, specify the DISABLED option to
avoid receiving incoming connect requests directed to the cluster alias node
identifier.

The following command prevents the local node from receiving incoming
connect requests directed to the alias node identifier:

3-12

NCP>DEFINE EXECUTOR ALIAS INCOMING DISABLED

Managing and Monitoring the Network
3.3 Node Commands

By default, the ALIAS INCOMING parameter is enabled for a node if an alias
node identifier has been defined for the node.

3.3.4 Ethernet Addresses of Nodes
Nodes on Ethernet lines are identified by unique Ethernet addresses. A
message can be sent to one, several, or all nodes on an Ethernet line
simultaneously, depending on the Ethernet address used. You do not
normally have to specify the Ethernet address of an individual node in order
to configure your network; the software at the node sets its own Ethernet
address. You need to know the Ethernet address of a node for service
functions (such as downline load, circuit loopback test, and configurator
operations) but not for normal network operations.

3.3.4.1 Format of Ethernet Addresses
An Ethernet address is 48 bits in length. Ethernet addresses are represented
by six pairs of hexadecimal digits (6 bytes), separated by hyphens (for
example, AA O1 23 45 67 FF). The bytes are displayed from left to right in
the order in which they are transmitted; bits within each byte are transmitted
from right to left. In the example, byte AA is transmitted first; byte FF is
transmitted last.

Xerox Corporation assigns a block of addresses to a producer of Ethernet
interfaces upon application. Thus, every manufacturer has a unique set of
addresses to use. Normally, one address out of the assigned block of physical
addresses is permanently associated with each interface (usually in a read-
only memory). This address is known as the Ethernet hardware address of
the interface.

DIGITAL's interface to Ethernet (for example, the DEUNA, DELUA, or
DEQNA controller) can set a different address to be used by the interface; this
address is known as the Ethernet physical address.

On powerup of the node, the Ethernet physical address is set to the hardware
address. When DECnet starts an Ethernet line (for example, UNA-0), it
causes the DEUNA connected to that line to set its physical address to be in
the range of DIGITAL Ethernet addresses. As shown in the following figure,
the DEUNA constructs the Ethernet physical address by appending the 16-bit
executor node address to a constant 32-bit number (AA-00-04-00) within the
block of Ethernet addresses assigned to DIGITAL.

32 bits 1~,6 b~ts~

Constant within
Ethernet block assigned

to DIGITAL

DECnet node
address

ZK-1215-82

An example is a Phase IV routing node with DECnet address 1.182 (decimal),
which would be set to an Ethernet physical address of AA 00 04 00 B6 04.
Because the DEQNA at the node constructs its own physical address, users
normally do not need to manipulate Ethernet addresses directly.

Managing and Monitoring the Network
3.3 Node Commands

After the Ethernet physical address is set to its new value, it is reset to its
original hardware address value only under the following circumstances:

• When a reset is issued to the DEUNA (for example, when the machine
power is shut off)

• When the state of the Ethernet line is set to OFF

The Ethernet physical address of a node includes the number of the area
in which the node resides. The area number is represented by the most
significant 6 bits of the 16-bit DECnet node address, while the number of
the node within the area is indicated by the least significant 10 bits of the
node address (see Section 2.4.2). Therefore, changing the number of an area
involves changing the Ethernet physical address of each node in that area.

If an existing network is not divided into areas, the default area
number 1 is stored in the DECnet node address of each node. Conversion of
an existing network to a multiple-area network may involve modification of
the area number in the executor node address. During the conversion process
(described in Section A.4), the network is shut down, the executor node
address in the configuration database is modified to include the new area
number, and the network is turned back on. When DECnet is restarted, it
causes the DEUNA at the executor node to reset its Ethernet physical address.

However, if anon-DECnet communications application (such as a LAT
terminal server) is connected to the same Ethernet as the executor node
whose area number is being modified, you cannot change the Ethernet
address of the executor used by the application while the interface to the
application remains allocated. Thus, you should stop the application when
DECnet is shut down and restart it after you turn DECnet back on.

3.3.4.2 Determining the Ethernet Physical Address of a Node
You can determine the Ethernet physical address of a node, as follows:

1 Convert the Phase IV node address (in the format
area-number.node-number, as described in Section 3.7.2) to its decimal
equivalent, using the following conversion algorithm:

(area-number * 1024) + node-number

2 Convert the decimal node address to its hexadecimal equivalent, reversing
the order of the bytes to form the hexadecimal node address.

3 Incorporate the hexadecimal node address in the following format:

AA-00-04-00—hexnodeaddress

For example, to determine the Ethernet physical address of a node whose
node address is 63.171, calculate the following:

(63 1024) + 171 = 64683 decimal = FCAB hexadecimal

This calculation causes the Ethernet physical address of the node to be the
following:

AA-00-04-00-AB-FC

You can display the Ethernet physical address of a node by entering the
following command:

NCP>SHOW EXECUTOR STATUS

3-14

Managing and Monitoring the Network
3.3 Node Commands

The resulting display contains the Ethernet physical address of the executor,
as follows:

Physical address = AA-00-04-00-AB-FC

3.3.4.3 Ethernet Physical and Multicast Addresses
An Ethernet address can be a physical address of a single node or a multicast
address, depending on the value of the low-order bit of the first byte of
the address (this bit is transmitted first). The two types of node address are
physical and multicast addresses.

The Ethernet physical address is the unique address of a single node on
any Ethernet (as described previously). The least significant bit of the first
byte of an Ethernet physical address is 0. (For example, in physical address
AA 00 04 00 FC 00, byte AA in binary is 1010 1010 and the value of the
low-order bit is 0.)

The Ethernet multicast address is a multidestination address of one or more
nodes on a given Ethernet. The least significant bit of the first byte of a
multicast address is 1. (For example, in the multicast address
AB 22 22 22 22 22, byte AB in binary is 1010 1011 and the value of the
low-order bit is 1.) A multicast address can be either of the following:

• Multicast group address. An address assigned to any number of nodes;
you can use this address to send a message to all nodes in the group in
a single transmission. The number of different groups that you can form
equals the maximum number of multicast group addresses that you can
assign.

• Broadcast address. A single multicast address (specifically,
FF FF FF FF FF FF) that you can use to transmit a message to all nodes
on a given Ethernet. (Note that you should use the broadcast address
only for messages to be acted upon by all nodes on the Ethernet, because
all nodes must process them.)

3.3.4.4 Values of DIGITAL Ethernet Physical and Multicast Addresses
DIGITAL physical addresses are in the range AA 00 00 00 00 00 through
AA 00 04 FF FF FF. Multicast addresses assigned for use in cross-company
communications are as follows:

Value Meaning

FF FF FF FF FF FF Broadcast

CF 00 00 00 00 00 Loopback assistance

Managing and Monitoring the Network
3.3 Node Commands

DIGITAL multicast addresses assigned to be received. by other DIGITAL nodes
on the same Ethernet are as follows:

Value Meaning

AB 00 00 01 00 00

AB 00 00 02 00 00

AB 00 00 03 00 00

AB 00 00 04 00 00

AB 00 00 05 00 00
through

AB 00 03 FF FF FF

AB 00 04 00 00 00
through

AB 00 04 FF FF FF

Dump/load assistance

Remote console

All Phase IV routers

All Phase IV end nodes

Reserved for future use

For use by DIGITAL customers for their own
applications

DECnet always sets up the DEUNA at each node to receive messages sent
to any address in the preceding list of DIGITAL multicast addresses. For
information about how to send messages to Ethernet multicast addresses,
refer to the VMS 1/O User's Referefice Manual: Part 11.

3.3.5 Node Parameters
To establish information used to control various aspects of the local node's
operation within the network, you specify the SET EXECUTOR command.
You can set several parameters with the SET EXECUTOR command. You
must specify the parameter ADDRESS. You should also specify MAXIMUM
ADDRESS, BUFFER SIZE, and TYPE. (If the node is an end node, then you
can use the default node type.)

In addition, you may want to specify names, access control information, and
node counter event logging information for any or all of the remote nodes in
your network. If a remote node can be loaded downline, you can specify a
number of default parameters to be used locally to perform a downline load
or upline dump operation. Table 3-1 lists all node parameters by function
and indicates whether they apply to local or remote nodes or to both. Note
that this table refers to the local node's definition of its executor parameters
and the local node's definition of its remote nodes.

Table 3-1 Node Parameters and Their Functions

Parameters According to Function
Executor Remote
Node Node

Node identification

ADDRESS node-address
ALIAS NODE
IDENTIFICATION id-string
NAME node-name

Loop node identification

CIRCUIT circuit-id

X
X
X
X

X

X

X

3-16

Managing and Monitoring the Network
3.3 Node Commands

Table 3-1 (Cont.~ Node Parameters and Their Functions

Parameters According to Function
Executor Remote
Node Node

Counter timing for node counter logging events

COUNTER TIMER seconds X X

Local node state

STATE
ON
OFF
RESTRICTED

SHUT

Access control

ACCESS
INCOMING
OUTGOING
BOTH
NONE

X

X

DEFAULT ACCESS X
INCOMING
OUTGOING
BOTH
NONE

INCOMING PROXY X
ENABLED
DISABLED

NONPRIVILEGED X X
ACCOUNT account
PASSWORD password
USER user-id

OUTGOING PROXY X
ENABLED
DISABLED

PRIVILEGED X X
ACCOUNT account
PASSWORD password
USER user-id

Managing and Monitoring the Network
3.3 Node Commands

Table 3-1 (Cont.) Node Parameters and Their Functions

Parameters According to Function
Executor Remote
Node Node

Downline loading

CPU cpu-type X
DIAGNOSTIC FILE file-spec X
HARDWARE ADDRESS E-address X
HOST node-id X
LOAD ASSIST AGENT file-spec X
LOAD ASSIST PARAMETER item X
LOAD FILE file-spec X
MANAGEMENT FILE file-spec X
SECONDARY LOADER file-spec X
SERVICE CIRCUIT circuit-id X
SERVICE DEVICE device-type X
SERVICE PASSWORD hex-password X
SOFTWARE IDENTIFICATION software-id X
SOFTWARE TYPE type X
TERTIARY LOADER file-spec X

Upline dumping

DUMP ADDRESS number X
DUMP COUNT number X
DUMP FILE number X

Routing initialization passwords

RECEIVE PASSWORD password X
TRANSMIT PASSWORD X

DDCMP circuit connection control

INBOUND node-type X

Data link control

BUFFER SIZE number X
MAXIMUM ADDRESS number X
MAXIMUM BUFFERS number X
MAXIMUM CIRCUITS number X

Logical link control

ALIAS MAXIMUM LINKS number X
DELAY FACTOR number X
DELAY WEIGHT number X
INACTIVITY TIMER seconds X
INCOMING TIMER number X
MAXIMUM LINKS number X
OUTGOING TIMER seconds X
PIPELINE QUOTA quota X
RETRANSMIT FACTOR number X
SEGMENT BUFFER SIZE X

Managing and Monitoring the Network
3.3 Node Commands

Table 3-1 (Cont.~ Node Parameters and Their Functions

Parameters According to Function
Executor Remote
Node Node

Routing control

ALIAS INCOMING option X
AREA MAXIMUM COST number X
AREA MAXIMUM HOPS number X
BROADCAST ROUTING TIMER seconds X
MAXIMUM AREA number X
MAXIMUM BROADCAST NONROUTERS number X
MAXIMUM BROADCAST ROUTERS number X
MAXIMUM COST number X
MAXIMUM HOPS number X
MAXIMUM PATH SPLITS number X
MAXIMUM VISITS number X
PATH SPLIT POLICY policy X
ROUTING TIMER seconds X
TYPE node-type X

X

Incoming X.25 call control

SUBADDRESSES range X

You can specify parameters common to both the local node and remote nodes
in one of two ways: use either the SET EXECUTOR or SET NODE command
with the local node name or address to establish or modify parameters for the
local node, or use the SET NODE command to establish or modify parameters
for a remote node.

When using either the SET EXECUTOR or SET NODE command to establish
or modify parameters for the local node, be sure to avoid using, in the same
command, parameters listed only under the Local Node column and those
listed under both the Local Node and Remote Node columns in Table 3-1.
If you mix these parameters in a single command, you receive an "invalid
parameter grouping" message. For example, the following commands are
valid:

NCP>SET EXECUTOR ADDRESS 11

NCP>SET NODE 11 NAME BOSTON

NCP>SET NODE 15 SERVICE CIRCUIT DMC-1 -

RECEIVE PASSWORD RSXNODE

The first command specifies a node address for the local node. The second
command specifies a node name for the node whose address is 1.11, which
in this case is the local node. The third command specifies parameters for
node 1.15. Note that this command contains parameters for both remote and
adjacent nodes. The following command, however, is invalid because it mixes
parameters:

NCP>SET EXECUTOR ADDRESS 11 NAME BOSTON

%NCP-W-INVPGP, Invalid parameter grouping, Address

The CLEAR NODE command clears parameters for either the local or remote
nodes. The CLEAR EXECUTOR command clears local node parameters
common to both local and remote nodes. You cannot clear the local node
parameters BUFFER SIZE and STATE from the volatile database. You
can, however, purge them from the permanent database with the PURGE

3-19

Managing and Monitoring the Network
3.3 Node Commands

EXECUTOR command. You can use this same command to remove local
node parameters common to both local and remote nodes from the permanent
database.

After the local node's state is set to ON, you cannot change the ADDRESS or
BUFFER SIZE parameters for the local node.

3.3.5.1 Data Link Control
Several local node parameters regulate various aspects of physical lisle
operation. Specify the size of NSP receive buffers and transmit buffers
(segment buffers), the number of buffers used to transmit on all circuits,
and the number of circuits that the local node can use as DECnet—VAX
communication lines. NCP provides four parameters for this purpose:
BUFFER SIZE, SEGMENT BUFFER SIZE, MAXIMUM BUFFERS, and
MAXIMUM CIRCUITS. You should be careful to set the values for these
parameters to a reasonable level, or system performance may suffer. The
parameters all have reasonable default values.

For X.25 data links, the node parameters do not directly affect physical line
operation.

Setting Buffer Sizes

To specify the maximum size (in bytes) of NSP receive buffers, use the
BUFFER SIZE parameter. For example, the following command sets the size
of all receive buffers for the executor node to 576 bytes:

NCP>SET EXECUTOR BUFFER SIZE 576

This parameter also controls the maximum segment size of all NSP messages
that the local node can receive and forward. The buffer size value that you
select is used for all lines. You cannot use the BUFFER SIZE parameter
to select individual values for individual lines. You can, however, use the
BUFFER SIZE parameter in the SET LINE command to override the BUFFER
SIZE value set in the executor for specific logical links on a line, such as a
particular Ethernet line (see Section 3.6.2.2).

The default BUFFER SIZE value is equal to the SEGMENT BUFFER SIZE if
specified; otherwise, the default size is 576 bytes. At a minimum, the buffer
size must be 192 bytes. For more information in this area, refer to Chapter 5
and to the Network Services Protocol Functional Specification.

You should consider a number of things when selecting the buffer size value.

• These buffers require nonpaged memory pool.

• The SYSGEN parameter LRPSIZE should be set to the executor buffer
size. In addition, the parameter LRPCOUNT should be at least as large as
the total number of all receive buffers on all lines, plus twice the number
of circuits.

• Faster lines perform better with large buffers and large user messages that
reduce the processor load. (The smaller the segments, the more messages
are processed.)

• Lines that are error prone (for example, telephone lines) should use
small buffers (256 bytes) to reduce both the probability and the cost of
retransmissions.

The procedure for changing buffer sizes is described next.

3-20

Managing and Monitoring the Network
3.3 Node Commands

Note: Using the same buffer size for all nodes in your network is strongly
recommended. Otherwise, nodes with smaller buffer sizes drop packets
when you attempt to route through them.

Changing Buffer Sizes

You can change the size of the buffers on all nodes without bringing down
the entire network by performing atwo-pass conversion process involving a
second parameter, the SEGMENT BUFFER SIZE, as well as the BUFFER SIZE
parameter. The conversion process requires only that you set the local node
to the OFF state while changing the buffer size.

The maximum size of the transmit buffer is specified in the SEGMENT
BUFFER SIZE parameter. For example, the following command sets the
maximum size of a transmit buffer to 576 bytes:

NCP>SET EXECUTOR SEGMENT BUFFER SIZE 576

The maximum size of the receive buffer is specified in the BUFFER SIZE
parameter. The following command sets the maximum size of the receive
buffer to 576 bytes:

NCP>SET EXECUTOR BUFFER SIZE 576

The SEGMENT BUFFER SIZE normally has the same value as the BUFFER
SIZE, but may be set to less in order to perform the buffer size conversion
process. The default value of the SEGMENT BUFFER SIZE is equal to the
BUFFER SIZE if specified; otherwise, the default size is 5 76 bytes.

The steps in the conversion depend on whether you are increasing or
decreasing the size of the buffers. To increase the size of the buffers, perform
the following conversion:

1 Reset the value of the BUFFER SIZE parameter at each node to the larger
size, permitting each node to receive a larger message.

2 Reset the value of the SEGMENT BUFFER SIZE parameter at each node
to the larger size, permitting each node to transmit a larger message.

This two-step process ensures that all nodes are able to receive and forward
larger messages before any node is able to transmit a larger message.

To decrease the size of the buffers, perform the following conversion:

1 Reset the value of the SEGMENT BUFFER SIZE parameter at each node
to the smaller size, decreasing the size message that each node can
transmit.

2 Reset the value of the BUFFER SIZE parameter at each node to the
smaller size, decreasing the size message all nodes can receive.

This process ensures that the size of messages that can be transmitted across
the network is decreased before the size of the buffers that receive and
forward messages is decreased.

An example of the conversion process involves increasing the size of messages
that can be transmitted and received over the network from 576 bytes to 1000
bytes. First, enter the following command at each node in the network:

NCP>SET EXECUTOR BUFFER SIZE 1000

Managing and Monitoring the Network
3.3 Node Commands

Then, enter the following command at each node in the network:

NCP>SET EXECUTOR SEGMENT BUFFER SIZE 1000

Each node will first be able to receive and forward 1000-byte messages, and
then will be able to transmit them.

Maximum Number of Buffers

To specify the maximum number of buffers for the transmit buffer pool, use
the MAXIMUM BUFFERS parameter. The value you assign determines the
size of internal data structures for DECnet-VAX software. For example, the
following command sets the maximum number of buffers to 20:

NCP>SET EXECUTOR MAXIMUM BUFFERS 20

If you do not specify a value for this parameter, DECnet-VAX provides a
default value of 100. Thus, you do not have to specify a value unless you
want to limit the amount of nonpaged pool used by DECnet-VAX. For most
operations, DECnet-VAX allocates only as many buffers as it needs (even if
you specify a greater number than the amount needed), and does not allocate
more than the number of buffers you specify.

Maximum Number of Circuits

To specify the maximum number of circuits that the user can identify in
the volatile database, use the MAXIMUM CIRCUITS parameter. This value
determines the size of internal data structures for DECnet-VAX software. For
example, the following command establishes an upper limit of 3 circuits that
the local node can use:

NCP>SET EXECUTOR MAXIMUM CIRCUITS 3

The default value for this parameter is 16.

If the local node is connected to an Ethernet circuit, you cannot change the
value of the MAXIMUM CIRCUITS parameter while the executor and the
Ethernet circuit are in the ON state.

3.3.5.2 Operational State of the Local Node
Use the STATE parameter in conjunction with the SET EXECUTOR command
to exercise control of the operational state of the local node. There are four
states associated with this parameter:

OFF Allows no new logical links to be created, terminates existing
links, and stops route-through traffic. The NETACP process
exits

ON Allows new logical links to be created. The ON state is the
normal operational state allowing route-through traffic.

RESTRICTED Allows no new logical links from other nodes, yet does not
inhibit route-through.

SHUT Similar to RESTRICTED. However, after all logical links are
terminated, the local node goes to the OFF state.

Any network user with the OPER privilege can initiate or confirm a logical
link connection even though the local node is in the RESTRICTED or SHUT
state. Thus, a system manager can use NCP and NML when the network is
in either of these states.

Managing and Monitoring the Network
3.3 Node Commands

Chapter 6 discusses local node states in terms of controlling the operation of
the local node, and thus the network as a whole.

Note: You should never use the DEFINE EXECUTOR STATE OFF command for
the permanent database because this command would cause the network
to shut down immediately after being started.

3.3.6 Copying Node Databases
You can update your node database by copying current information about
remote nodes from the configuration database of any node to which you have
access. Use the NCP comrnand COPY KNOWN NODES to copy the volatile
or permanent node database entries from a remote node to either or both
the volatile and permanent node databases on your node. If you specify the
WITH CLEAR or WITH PURGE qualifier on the COPY command, the local
node database to which the information is to be copied is cleared or purged
before the information is copied. Only the executor node characteristics and
the name and address of the remote node are retained when the database is
cleared or purged before a copy operation.

The COPY KNOWN NODES command permits you to update your existing
node database to reflect current data on remote nodes without having to shut
down your node. If your network is large, the COPY command provides you
with a means of keeping up with frequent changes in the composition of the
network. For example, one node on an Ethernet may serve as the master,
keeping in its node database current information on all remote nodes that can
be accessed over the network. Then, as other nodes come up on the same
Ethernet, they can obtain the latest version of the node database by copying
it from the master node.

If you did not specify any remote node entries when you configured your
node, you can use the COPY command at any time to obtain the remote
node entries that indicate the nodes to which you have access. If you want
to copy the node database from a remote node that is not defined in your
volatile database, you can specify the node's address in the COPY command;
execution of the copy operation causes the name and address of the node to
be defined in your database.

You cannot use COPY KNOWN NODES to copy a subset of a node database.

An alternative method for copying node database information is to use the
DCL COPY command to copy the existing permanent database file located in
SYS$SYSTEM:NETNODE_REMOTE.DAT, as described in Section 3.3.6.5.

3.3.6.1 COPY Command Parameters and Qualifiers
The COPY KNOWN NODES command causes the names and addresses
of remote nodes to be copied from a remote database to the local node
database or databases you specify. The FROM node-id parameter in the
COPY command specifies the remote node from which the node database
information is to be copied.

You can include explicit access control information in the node-id field, or
default to a proxy or DECnet account on the remote node, as appropriate.
The following command copies remote node data from node BOSTON on
which user BROWN has an account with the password PASS 123:

NCP>COPY KNOWN NODES FROM BOSTON"BROWN PASS123"

Managing and Monitoring the Network
3.3 Node Commands

To indicate which node database at the remote node is to be copied, specify
the USING VOLATILE or USING PERMANENT qualifier. If you do not
specify the USING qualifier, the default value is USING VOLATILE.

You can indicate the local node database to which the information is to be
copied by specifying the TO qualifier. The local node database can be the
volatile or permanent database, or both. In the following command, the
volatile database at node BANGOR is to be copied to both the volatile and
permanent databases at the local node:

NCP>COPY KNOWN NODES FROM BANGOR USING VOLATILE TO BOTH

If you do not specify the TO qualifier, the local database defaults to
VOLATILE.

To clear or purge the local database before the copy operation is performed,
specify the WITH CLEAR or WITH PURGE qualifier in the COPY command.
The WITH CLEAR qualifier is appropriate if the local database is volatile;
the WITH PURGE qualifier is appropriate if it is permanent. Specify either
WITH CLEAR or WITH PI.JRGE if both the volatile and permanent databases
are to be cleared. (In practice, you can specify either value of the WITH
qualifier to clear or purge either or both of the local databases.) The following
command indicates that the permanent node database at the local node is to
be purged before the remote node data from node BANGOR is copied to the
local database:

NCP>COPY KNOWN NODES FROM BANGOR USING PERMANENT -
_ TO PERMANENT WITH PURGE

3.3.6.2 Clearing and Purging the Local Node Database
During a copy operation, if the volatile database is to be cleared, the entries
for the executor node and any loop nodes are not cleared. If the permanent
database is to be purged, however, the entry for the executor node is purged.
Therefore, before the purge occurs, the copy operation causes the executor
node characteristics to be saved: a LIST EXECUTOR CHARACTERISTICS
command is executed and the executor characteristics are stored. After the
purge is executed, the executor characteristics are reinserted in the local node
database.

In addition, the local node must retain the name and address of the remote
node from which it is to copy the data. Before the clear or purge operation
is performed, the name and address of the remote node are saved. This
information is reinserted in the local node database after the clear or purge
operation is completed. Thus, to purge your database without purging your
executor database, use the COPY KNOWN NODES command with the WITH
PURGE qualifier.

Note that if the executor or remote node is not defined in the local node
database, an error results.

If an error occurs during execution of the LIST EXECUTOR
CHARACTERISTICS command, the purge is aborted. After the LIST
operation is performed, purging continues even if errors are encountered.

Clearing or purging the local database as part of a copy operation is
recommended. If a clear or purge operation is not performed before the
remote node data is copied, conflicts can occur between original node entries
in the local database and node entries being copied from the remote node
database. Anode must be identified uniquely, by one name and one address.
A conflict exists when the entries being copied on an existing database would
cause one node address to be associated with two node names or two node

3-24

Managing and Monitoring the Network
3.3 Node Commands

addresses with one node name. When such a conflict occurs during the
copy operation, the original node entry is not updated and an informational
message is displayed. For example, if the local node database identified node
A with address 3.1 and node B with address 3.3, an attempt to copy an
entry that defines node A with address 3.3 would fail, and an informational
message would be issued.

3.3.6.3 Copying the Node Database from a Remote Node
Entering a COPY KNOWN NODES command accomplishes the following
tasks:

• If you indicate that the volatile node database at the remote node is to
be copied (by specifying the USING VOLATILE qualifier in the COPY
command), a SHOW KNOWN NODES command is executed at the
remote node. If you indicate that the permanent node database is to
be copied (by specifying the USING PERMANENT qualifier), a LIST
KNOWN NODES command is executed at the remote node.

• The COPY operation extracts remote node names and addresses from
data returned by the SHOW or LIST command.

• For each node name and address extracted, a SET or DEFINE NODE
command is executed on the appropriate local node database. If you
indicate in the COPY command that the information is to be copied to
the volatile database, the following command is executed for each entry:

SET NODE ADDRESS address NAME name

If you indicate that the information goes to both local node databases,
both SET NODE and DEFINE NODE commands are executed for each
remote node entry. When the COPY operation receives the name and
address of the local node, no SET or DEFINE command is performed.

When the name and address of the remote node from which the data is being
copied is returned, the entry indicates that it is the executor node. When the
remote node is defined in the local database, however, it is not listed as an
executor node. Loop node names listed in the node database at the remote
node are not defined in the local database.

After the COPY operation begins defining the remote nodes, it continues
trying to define the nodes despite any errors it may encounter. It displays
informational messages for errors in individual node entries.

3.3.6.4 Example of Copying Remote Node Data
The following examples illustrate how to use the COPY command to copy
remote node entries from the permanent node database at node ROBIN
to the permanent node database at node LARK without purging the local
node database. In this example, node LARK has not defined the executor
node or remote node ROBIN in its database; therefore, error messages are
displayed. Note that the copy operation is not performed for nodes A and C,
because of a conflict between existing and updated addresses for these nodes.
Informational messages display for the entries for nodes A and C. (In the
first example, only the node entries resulting from the LIST commands are
displayed.)

Managing and Monitoring the Network
3.3 Node Commands

To determine the node entries on the permanent node database at the local
node, enter the following command, which causes the node entries to be
displayed. Note that, in this example, the executor is not defined.

NCP>LIST KNOWN NODES

Remote node = 2.1 (C)
Remote node = 2.3 (A)

You can determine the node entries in the permanent node database at
remote node ROBIN (whose address is 2.20) by entering the following
command, which causes the node entries to be displayed. You can reach
node ROBIN by specifying its address in the NCP command, even though the
node is not listed by name in the local node database.

NCP>TELL 2.20 LIST KNOWN NODES

Executor node = 2.20 (ROBIN)
Remote node = 2.1 (A)
Remote node = 2.2 (B)
Remote node = 2.3 (C)

To perform the copy operation, enter the following COPY command:

NCP>COPY KNOWN NODES FROM 2.20 USING PERMANENT

%NCP-W-UNRCMP, Unrecognized component, Node
%NCP-W-EXEABO, Executor characteristics not defined.
%NCP-W-UNRCMP, Unrecognized component, Node
%NCP-W-REMABO, Remote node not defined.
%NCP-W-INUPVA, Invalid parameter value, Address
Remote node = 2.1 (C)

NODE 2.1 NAME A

%NCP-W-INVPVA, Invalid parameter value, Address
Remote node = 2.3 (A)

NODE 2.3 NAME C

The error messages generated during the copy operation are displayed on
your screen directly under the COPY command. Note that remote node
entries successfully copied to the local node database (such as node B) are not
displayed under the COPY command. The COPY command ignores these
error messages because they do not affect the copy operation.

To determine the final results of the copy operation, enter the LIST KNOWN
NODES command at your node to obtain the following display of node
entries:

NCP>LIST KNOWN NODES

Remote node = 2.1 (C)
Remote node = 2.2 (B)
Remote node = 2.3 (A)
Remote node = 2.20 (ROBIN)

Managing and Monitoring the Network
3.3 Node Commands

3.3.6.5 Copying the Permanent Node Database Using DCL COPY
Rather than using the NCP command COPY KNOWN NODES to copy node
database information, you can use the DCL COPY command to obtain the
contents of an existing permanent node database residing on a remote node
in the file SYS$SYSTEM:NETNODE _REMOTE.DAT. You must have the
required privileges on the remote node to access this file.

When you enter the DCL COPY command to copy from the remote node,
you must include the remote node-id in the file specification. You can include
explicit access control information in the node-id field, or default to a proxy or
DECnet account on the remote node, as appropriate. The following command
copies remote node data from node BOSTON on which the user SYSTEM has
a proxy account.

$ COPY BOSTON::SYS$SYSTEM:NETNODE_REMOTE.DAT

This COPY command copies the permanent node database from the remote
node, replacing your local database file. After you copy this permanent node
database file to your local node, you can enter the node database information
into the local NCP volatile database by entering the following SET NODE
command:

NCP>SET KNOWN NODES ALL

3.3.7 Node Counters
DECnet software automatically collects certain statistics for nodes in the
network. These statistics are known as node counters. Such information may
include the number of connects sent and received, the number of messages
sent and received, and the number of packets lost. This information may be
useful either alone or in conjunction with logging information to evaluate
the performance of a given node. The network counter summary in the VMS
Network Control Program Manual describes the complete list of node counters.
Refer to Section 2.9 for a discussion of logging.

You can use NCP to regulate how often counters are logged and when they
are zeroed. To do so, you can use the SET EXECUTOR or the SET NODE
command with the COUNTER TIMER parameter. For example, the following
command causes a node counter logging event to take place every 600
seconds for the local node:

NCP>SET EXECUTOR COUNTER TIMER 600

The counters are then zeroed. Similarly, the following command specifies
that counters for remote node TRNTO are to be logged at the local node
every 600 seconds:

NCP>SET NODE TRNTO COUNTER TIMER 600

Note that these counters are maintained on the local node. To clear the
COUNTER TIMER parameter, use the CLEAR EXECUTOR or CLEAR NODE
command along with this parameter.

You can display node counter statistics at any time while the network is
running by using the SHOW NODE COUNTERS command.

Managing and Monitoring the Network
3.3 Node Commands

In addition, at any point when the network software is running, you can
zero node counters for a given remote node, the local node, or for all known
nodes. Use any of the following commands to zero node counters:

NCP>ZERO EXECUTOR COUNTERS
NCP>ZERO NODE BOSTON COUNTERS
NCP>ZERO KNOWN NODES COUNTERS

3.4 X.25 Protocol Module Commands
The X25—PROTOCOL module implements the X.25 level 3 protocol, which
controls the transmission of data packets. This module structures control
and user data into packets, sequences these packets for transmission, and
establishes, maintains, and clears X.25 virtual circuits. This module also
associates PSDNs, local DTE addresses, and optionally group names, with
this controlling information.

Use separate SET MODULE X25—PROTOCOL commands to specify a
network, a DTE, and a group.

3.4.1 Network Identification
Use the NETWORK qualifier to identify a network (that connects to a PSDN).
The network name must be unique both on this database and any X25-
ACCESS databases.

You must specify a profile as a parameter to the NETWORK qualifier. The
profile is a file that gives maximum, minimum, and default values for PSDN
parameters. The profile also gives the facilities of the PSDN, such as FAST
SELECT.

The network profile is set up as part of the FCNS (Field Configurable
Network Software) procedure, when VAX PSI is first matched with a
particular PSDN. For further details, refer to the VAX PSI documentation
set.

The following command associates with the X25-PROTOCOL module the
network TELENETI, which has the profile TELENET:

NCP>SET MODULE X25-PROTOCOL NETWORK TELENETI PROFILE TELENET

3.4.2 Local DTE Identification
Use the DTE qualifier followed by a NETWORK parameter to identify a local
DTE and the network to which it is connected. For example:

NCP>SET MODULE X25-PROTOCOL DTE 123789456 NETWORK TELENETI . . .

This command specifies a DTE that has the address 123789456 in network
TELENETI.

Refer to the Public Network Information manual for DTE address formats.

Managing and Monitoring the Network
3.4 X.25 Protocol Module Commands

3.4.2.1 Operational State of DTE
The STATE parameter specifies one of three operational states for each DTE:

OFF Prevents use of the DTE and clears all existing virtual circuits.

ON Allows normal use of the DTE.

SHUT Prevents use of the DTE for any new activity, but allows existing virtual
circuits to complete their operation.

The following command allows normal use of the DTE:

NCP>SET MODULE X25-PROTOCOL DTE 123789456 NETWORK TELENETI STATE ON . . .

The ON state has substates. For a complete list of states, substates, and their
transitions, refer to the VMS Network Control Program Manual. The STATE
parameter is optional. If you do not specify it, the state is set to ON.

3.4.2.2 Line Identification
The LINE parameter identifies the line associated with each DTE. Each DTE
must have a unique line. Line identification takes the following format:

dev-c[-u)

where:

dev Is a device name.

c Is a decimal number designating the device's hardware controller.

u Is a decimal unit or line number included if the device is a multiple unit line
controller.

Section 3.6.1 describes line identification.

Note that the unit number is optional. The following command identifies the
line KMX-0-0 associated with DTE 123789456:

NCP>SET MODULE X25-PROTOCOL DTE 123789456 NET TELENETI -
LINE KMX-0-0 . . .

Use the SET LINE command to specify parameters for this line.

When you specify a DTE for the first time, the LINE parameter is mandatory.

3.4.2.3 Channel Identification
The CHANNELS parameter associates a set of logical channels to be used
for outgoing calls with each DTE. Outgoing calls are all calls that originate
from your DTE. Specify one or more logical channel numbers (LCNs) as a
list. Separate multiple LCNs with hyphens to indicate ranges, and commas to
indicate individual numbers. For example, the following command indicates
that 20 is the first LCN, counting down from 20 to 10, then 3, and finally 9:

NCP>SET MODULE X25-PROTOCOL DTE 123789456 -
_ CHANNELS 20-10,3,9 . . .

Specify a value in the range 1 to 4095 for each number in the range.

The values you specify are those supplied by the PSDN authorities at
subscription time.

Managing and Monitoring the Network
3.4 X.25 Protocol Module Commands

3.4.2.4 MAXIMUM CIRCUITS Parameter
The MAXIMUM CIRCUITS parameter specifies the maximum number of
circuits that each DTE can handle. For example, the following command
specifies that the DTE 123789456 can handle a maximum of 200 circuits:

NCP>SET MODULE X25-PROTOCOL DTE 123789456 -
_ MAXIMUM CIRCUITS 200.. .

The MAXIMUM CIRCUITS parameter is optional and, by default, the
maximum is 512.

When you specify a DTE for the first time, this parameter indicates the size
of the control area allocated from nonpaged pool. Thus, you cannot increase
this value while the software is running. However, you can decrease the
value and increase it again, provided that you do not specify a value larger
than the original set. If this value is larger than required, nonpaged pool will
be wasted.

3.4.2.5 INTERFACE Parameter
The INTERFACE parameter specifies whether VAX PSI operates as a DTE,
DCE, or automatically selects the correct interface (DTE or DCE).

For example, the following command specifies that VAX PSI is to operate
as a DCE:

NCP>SET MODULE X25-PROTOCOL DTE 123789456 INTERFACE DCE

This parameter is of use only with the IS08208 network profile. See also
Section 3.4.8.

3.4.3 Data Packet Control

The transmission of data packets over an X.25 virtual circuit is determined by
the size of the packet and the window.

3.4.3.1 Packet Size
The MAXIMUM DATA parameter specifies the maximum size of packets for
all X.25 virtual circuits. The following command sets the maximum packet
size to 128 bytes:

NCP>SET MODULE X25-PROTOCOL DTE . . . MAXIMUM DATA 128 . . .

The packet size must always be at least 5 bytes smaller than the maximum
size of the frame on a line (see Section 3.6.5). If the value in the
PSI$_NCB_PKTSIZE field of the network connect block (NCB) is greater
than the value you specified with the MAXIMUM DATA parameter, the
MAXIMUM DATA value is used.

The DEFAULT DATA parameter specifies a default packet size for all X.25
virtual circuits. For example, the following command sets the default packet
size to 64 bytes:

NCP>SET MODULE X25-PROTOCOL DTE . . . DEFAULT DATA 64 . . .

The default packet size must always be less than or equal to the maximum
packet size. If you do not specify the PSI$_NCB_PKTSIZE field of the NCB,
the default packet size is used. The value must be a power of 2 in the range
16 to 4096.

Managing and Monitoring the Network
3.4 X.25 Protocol Module Commands

The MAXIMUM DATA and DEFAULT DATA parameters are optional and
take the network value by default; otherwise, you must set them to the values
specified in your PSDN subscription. See the Public Network Information
manual for the network values of these parameters.

3.4.3.2 Window Size
The MAXIMUM WINDOW parameter specifies the maximum window size
for all X.25 virtual circuits. The value for this parameter is the maximum
number of packets for which outstanding acknowledgments are allowed. The
following command sets the maximum window size to 3:

NCP>SET MODULE X25-PROTOCOL DTE . . . MAXIMUM WINDOW 3 . . .

If the value in the PSI$_NCB_WINSIZE field of the NCB is greater than
the value you specified using the MAXIMUM WINDOW parameter, the
MAXIMUM WINDOW value is used.

The DEFAULT WINDOW parameter specifies a default window size for all
X.25 virtual circuits. For example, the following command sets the default
window size to 2:

NCP>SET MODULE X25-PROTOCOL DTE . . . DEFAULT WINDOW 2 . . .

The default window size must always be less than or equal to the maximum
window size. If you do not specify the PSI$_NCB_WINSIZE field of the
NCB, the default window size is used.

Specify values in the range 1 to 7 (unless extended sequence numbering is
used on the PSDN, in which case the range is 1 to 127). The values must
agree with your PSDN subscription.

The MAXIMUM WINDOW and DEFAULT WINDOW parameters are optional
and, by default, take the network value. See the Public Network Information
manual for the network values of these parameters.

Note that these parameters affect only the X.25 level 3 window size. They
are independent of the X.25 level 2 window size, which is controlled by the
line parameter MAXIMUM WINDOW (see Section 3.6.5).

3.4.4 Call Request Packet Control
Use the CALL TIMER parameter to control call setup. This timer starts to
run when a request to set up a virtual circuit is transmitted; if it expires
before a response has been received, the request is cleared. In the following
command, the request to set up a virtual circuit is cleared if no response has
been received within 10 seconds:

NCP>SET MODULE X25-PROTOCOL DTE . . . CALL TIMER 10 . .

Specify a value in the range 1 to 255.

The CALL TIMER parameter is optional and, by default, takes the network
value. See the Public Network Information manual for the network value of
this parameter.

Managing and Monitoring the Network
3.4 X.25 Protocol Module Commands

3.4.5 Clear Request Packet Control
Two parameters control transmission of clear request packets over SVCs:
CLEAR TIMER and MAXIMUM CLEARS.

Use the CLEAR TIMER parameter to control how often clear request packets
are retransmitted if not acknowledged. The following command sets the
retransmission frequency to 20 seconds:

NCP>SET MODULE X25-PROTOCOL DTE . . . CLEAR TIMER 20 . .

Specify a value in the range 1 to 255.

Use the MAXIMUM CLEARS parameter to specify the maximum number of
times a clear request packet is retransmitted over the circuit. For example,
the following command indicates that if a clear request is not acknowledged
within 20 seconds, the request is retransmitted, and that this operation is to
be performed a maximum of 8 times:

NCP>SET MODULE X25-PROTOCOL DTE . . . CLEAR TIMER 20 -
_ MAXIMUM CLEARS 8 . . .

The circuit is assumed to be cleared if the clear request is still not
acknowledged by this time.

Specify a value in the range 1 to 255.

The CLEAR TIMER and MAXIMUM CLEARS parameters are optional and
take the network value by default. See the Public Network Information manual
for the network values of these parameters.

3.4.6 Reset Control
Two parameters control transmission of reset packets over SVCs and PVCs:
RESET TIMER and MAXIMUM RESETS.

Use the RESET TIMER parameter to control how often reset packets are
retransmitted if not acknowledged. For example, the following command sets
the retransmission frequency to 10 seconds:

NCP> SET MODULE X25-PROTOCOL DTE . . . RESET TIMER 10 . .

Specify a value in the range 1 to 255.

Use the MAXIMUM RESETS parameter to specify the maximum number
of times a reset is retransmitted to the DCE. The following command
indicates that if a reset is not acknowledged within 10 seconds, the reset
is retransmitted, and that this operation is to be performed a maximum of 8
times:

NGP>SET MODULE X25-PROTOCOL DTE . . . RESET TIMER 10 -
_ MAXIMUM RESETS 8 . . .

The circuit is cleared if the reset is still not acknowledged by this time.
Specify a value in the range 1 to 255.

The RESET TIMER and MAXIMUM RESETS parameters are optional and
take the network value by default. See the Public Network Information manual
for the network values of these parameters.

Managing and Monitoring the Network
3.4 X.25 Protocol Module Commands

3.4.7 Restart Control

Two parameters control transmission of restart packets over the data link to
the DCE: RESTART TIMER and MAXIMUM RESTARTS. Use the RESTART
TIMER to control how often restart packets are retransmitted. For example,
the following command sets the retransmission frequency to 20 seconds:

NCP>SET MODULE X25-PROTOCOL DTE . . . RESTART TIMER 20 . . .

Specify a value in the range 1 to 255.

Use the MAXIMUM RESTARTS parameter to specify the maximum number of
times a restart is retransmitted to the DCE. The following command specifies
that a restart is to be retransmitted every 20 seconds, and that this operation
is to be performed a maximum number of 10 times:

NCP>SET MODULE X25-PROTOCOL DTE . . . RESTART TIMER 20 -
_ MAXIMUM RESTARTS 10 . . .

Specify a value in the range 1 to 255.

The RESTART TIMER and MAXIMUM RESTARTS parameters are optional
and take the network value by default. See the Public Network Information
manual for the network values of these parameters.

3.4.8 ISO Networks

There are two parameters provided for use with an International Standard
8208 packet switching network. (8208 is the International Standards
Organization's definition of the CCITT X.25 recommendations.)

The two parameters are INTERFACE and INTERRUPT TIMER. INTERFACE
allows you to specify that your VAX PSI system acts in one of three ways: as
a DTE, as a DCE, or automatically as either a DTE or DCE (parameter value
NEGOTIATED). Refer to Section 3.4.2.5 for an example of specifying the
INTERFACE parameter.

INTERRUPT TIMER controls how long an interrupt may remain unconfirmed.
If the interrupt is not confirmed within this time, the circuit is reset. The
following command sets the interrupt timer to 150 seconds:

NCP>SET MODULE X25-PROTOCOL DTE . . . INTERRUPT TIMER 150

3.4.9 Group Identification

If you are a member of either a closed user group (CUG) or bilateral closed
user group (BCUG), always identify the group with the GROUP qualifier.
Each group should have a unique name, which is a string 2 to 16 characters
long. The following commands show a series of group specifications:

NCP> SET MODULE X25-PROTOCOL GROUP ESECUG ..
NCP> SET MODULE X25-PROTOCOL GROUP DECCUG . . .
NCP> SET MODULE X25-PROTOCOL GROUP BASINGSTOKE . .

The local DTE, the group type, and the group number should be associated
with each group.

3-33

Managing and Monitoring the Network
3.4 X.25 Protocol Module Commands

3.4.9.1 Local DTE Identification
Use the DTE parameter to specify the address of the DTE associated with the
group name, and the NETWORK parameter to identify the network to which
the DTE belongs. For example:

NCP>SET MODULE X25-PROTOCOL GROUP ESECUG -
_ DTE 123789456 NETWORK PSS1 . . .

When you specify a group for the first time, the DTE parameter is mandatory.
Note that after you set parameters for a group, you cannot change them
except by clearing the group and setting it up again.

3.4.9.2 Group Number
Use the NUMBER parameter to specify the number that identifies your group.
These numbers are allocated by the PSDN at subscription time. For example:

NCP>SET MODULE X25-PROTOCOL GROUP ESECUG NUMBER 12 . . .

When you specify a group for the first time, the NUMBER parameter is
mandatory.

3.4.9.3 Group Type
If you are a member of a BCUG, use the TYPE BILATERAL parameter to
specify this group type. For example:

NCP>SET MODULE X25-PROTOCOL GROUP DECCUG TYPE BILATERAL . .

If the group is a CUG, omit this parameter.

3.4.10 X.25 Protocol Module Counters
VAX PSI automatically maintains certain statistics for the X25-PROTOCOL
module in the network. These statistics are known as protocol module
counters. They may include the number of bytes, data blocks, calls, and fast
selects sent and received; the number of active channels; the number of resets
sent, received, or initiated by the network; and the number of restarts. These
statistics are useful in monitoring the activity of the component. A complete
list of protocol module counters is provided in the VMS Network Control
Program Manual.

3.5 Circuit Commands
The four classes of circuit that DECnet-VAX supports are DDCMP, CI,
Ethernet, and X.25 circuits. Using NCP commands, you must identify all
DECnet circuits connected to the local node and all permanent virtual circuits
connected to local DTEs, and specify parameters that affect the operation of
the circuits. The following sections describe circuit identification and discuss
how to use NCP commands to specify circuit parameters.

3.5.1 Circuit Identification
Like nodes, circuits must also have unique identifiers. DECnet circuits and
X.25 circuits are identified differently.

Managing and Monitoring the Network
3.5 Circuit Commands

3.5.1.1 DDCMP Circuit Identification
For the VMS operating system, DDCMP circuit identification and line
identification take one of the following formats:

dev-c

dev-c-u

dev-c.t

dev-c-u.t

where:

dev Is a device name. (Refer to the VMS Network Control Program Manual for
a complete list of mnemonic device names.►

c Is a decimal number (0 or a positive integer) that designates the hardware
controller for the device.

u Is a decimal unit or circuit number (0 or a positive integer) that is included
only if there is more than one unit associated with the controller.

t Is a decimal number (0 or a positive integer) that identifies a tributary on
a multipoint circuit. This is a logical tributary number, not to be confused
with the tributary address that is used to poll the tributary.

Note: Circuit devices that are similar in operation are referred to by the same
mnemonic.

DDCMP Point-to-Point Addressing

The following command specifies a synchronous point-to-point circuit. The
command identifies the DMC (or DMR) circuit device and controller
number 0.

NCP>SET CIRCUIT DMC-0 STATE ON

The following command specifies an asynchronous point-to-point circuit. The
command identifies the DZ11 asynchronous circuit device by the mnemonic
TT, and specifies controller number 0 and unit number 0 (that is, TTAO).

NCP>SET CIRCUIT TT-0-0 STATE ON

Dynamic asynchronous DDCMP circuit names are supplied automatically
when you establish a dynamic connection. Note that you must load the
asynchronous driver NODRIVER before establishing a dynamic connection.

The VMS operating system maps network management circuit names to
system-specific circuit names (for example, DMC-4 maps to XMEO). Network
management circuit names provide network-wide circuit identification
independent of individual operating system conventions.

DDCMP Multipoint Tributary Addressing

The following command identifies the DMP circuit device, controller
number 0, and logical tributary 1:

NCP>SET CIRCUIT DMP-0.1 STATE ON

Use the SET CIRCUIT command to turn on the DMP circuit device as a
multipoint tributary device.

Managing and Monitoring the Network
3.5 Circuit Commands

DECnet-VAX software uses a form of circuit identification called a tributary
address to poll a tributary for a specified circuit. Use the SET CIRCUIT
command to establish the tributary address. For example, the following
command specifies an address of 5 to tributary 1 on DMP controller 0:

NCP>SET CIRCUIT DMP-0.1 TRIBUTARY 5

Values from 1 to 255 are valid for this parameter. The node at the controlling
end of this multipoint circuit uses this address to poll this line. You must set
a corresponding tributary address on the remote node end of the circuit that
will respond to a polling address of 5. For example:

NCP>SET CIRCUIT DMP-1.0 TRIBUTARY 5

The logical tributary number (0 in this case) is not to be confused with the
tributary address. Refer to the description of logical tributary numbers in the
circuit identification at the beginning of this section.

3.5.1.2 CI Circuit Identification
The TRIBUTARY parameter is also used to identify the CI node on the other
end of a CI circuit. In the following example, the tributary address 1 identifies
the CI node on the other end of circuit CI-0.1:

NCP>SET CIRCUIT CI-0.1 TRIBUTARY 1

The tributary node address is the CI port number of the remote CI node, not
the DECnet node address.

Note that you must load the CNDRIVER before running DECnet over a CI
(see Section 2.2.3).

3.5.1.3 Ethernet Circuit Identification
For the VMS operating system, Ethernet circuit identification takes the
following format:

dev-c

where:

dev Is a device name.

c Is a decimal number (0 or a positive integer) that designates the hardware
controller for the device.

For example, the following command identifies the circuit device UNA and
the controller number 2 for an Ethernet circuit:

NCP>SET CIRCUIT UNA-2 STATE ON

3.5.1.4 X.25 Circuit Identification
Use the SET CIRCUIT command to identify X.25 circuits. The text following
the X25- prefix in the command string identifies all PVCs and DLM SVCs.
The text is an alphanumeric string not more than 12 characters in length.
The entire string, including the prefix X25-, should not be longer than 16
characters. For example:

NCP>SET CIRCUIT X25-ANDIES . .

Managing and Monitoring the Network
3.5 Circuit Commands

Specify unique circuit identifiers for each additional X.25 circuit. For example:

NCP>SET CIRCUIT X25-PVCONE . .
NCP>SET CIRCUIT X25-PVCTWO . .

3.5.2 Circuit Parameters
The configuration database contains circuit parameters for all circuits
connected to the local node or DTE. Table 3-2 lists the types of circuit
and the circuit parameters that apply to each type. The circuit parameters
supply information used to control various aspects of a circuit's operation.
Table 3-3 lists the circuit parameters by function.

Table 3-2 Types of Circuit and Applicable Circuit Parameters

Type of Circuit Applicable Circuit Parameter

All circuits COUNTER TIMER seconds

STATE ON
SERVICE

Circuits other than COST cost
X.25 native PVCs HELLO TIMER seconds

DDCMP circuits ACTIVE BASE base
ACTIVE INCREMENT increment
BABBLE TIMER milliseconds
DEAD THRESHOLD count
DYING BASE base
DYING INCREMENT increment
DYING THRESHOLD count
INACTIVE BASE base
INACTIVE INCREMENT increment
INACTIVE THRESHOLD count
MAXIMUM BUFFERS count
MAXIMUM TRANSMITS count

ACTIVE
AUTOMATIC

POLLING STATE DEAD
DYING
INACTIVE

SERVICE ENABLED
DISABLED

TRANSMIT TIMER milliseconds
TRIBUTARY tributary-address

ENABLED
VERIFICATION DISABLED

INBOUND

DDCMP circuits and X 25
DLM circuits (PVCs or SVCs)

Ethernet circuits MAXIMUM ROUTERS number
ROUTER PRIORITY number

}

Managing and Monitoring the Network
3.5 Circuit Commands

Table 3-2 (Cont.) Types of Circuit and Applicable Circuit
Parameters

Type of Circuit Applicable Circuit Parameter

X.25 native PVCs

X.25 DLM circuits (PVCs or
SVCs)

CHANNEL number
DTE dte-address
MAXIMUM DATA count
MAXIMUM WINDOW count
NETWORK network-name
TYPE X25
USAGE PERMANENT

BLOCKING ENABLED
DISABLED

CHANNEL number
DTE dte-address
NETWORK network-name
MAXIMUM DATA count
MAXIMUM RECALLS count
MAXIMUM WINDOW count
NUMBER dte-address
OWNER EXECUTOR
RECALL TIMER seconds
TYPE X25

INCOMING
USAGE OUTGOING

PERMANENT

Table 3-3 Circuit Parameters and Their Functions

Parameter Function Parameter

Indicates owner of circuit

Identifies circuit by address

Assigns circuit cost for routing purposes

Sets counter timer for circuit counter event
logging

Sets circuit's operational state

OWNER EXECUTOR

TRIBUTARY tributary-address

COST number

COUNTER TIMER seconds

OFF
STATE ON

ERVICE

Managing and Monitoring the Network
3.5 Circuit Commands

Table 3-3 (Cont.~ Circuit Parameters and Their Functions

Parameter Function Parameter

Controls DDCMP multipoint operation

Sets timer to control Routing layer

Determines whether service operations
are allowed for circuit (initiated locally or
remotely)

Controls Routing layer initialization of
adjacent node

Limits number of routers permitted on
Ethernet circuit

Sets priority of router on Ethernet circuit for
selection of designated router

Associates logical channel number with X.25
PVC

Specifies the network to which the local DTE
belongs

Associates local DTE with X.25 PVC or SVC

Assigns remote DTE address used to
establish an outgoing DLM SVC or to
reserve an incoming DLM SVC

Defines circuit type; if circuit is not X.25,
DDCMP is assumed

Controls data packet parameters for X.25
circuits

Determines whether message blocking over
DLM circuits occurs

Controls retransmission of DLM outgoing
SVCs

ACTIVE BASE base
DYING BASE base
INACTIVE BASE base
ACTIVE INCREMENT increment
DYING INCREMENT increment
INACTIVE INCREMENT increment
DEAD THRESHOLD count
DYING THRESHOLD count
INACTIVE THRESHOLD count
BABBLE TIMER milliseconds
TRANSMIT TIMER milliseconds
MAXIMUM BUFFERS count
MAXIMUM TRANSMITS count
POLLING STATE

ACTIVE
AUTOMATIC
DEAD
DYING
INACTIVE

TRIBUTARY

HELLO TIMER seconds

SERVICE ~ ENABLED l
DISABLED I

}
DISABLED

VERIFICATION ENABLED
INBOUND

MAXIMUM ROUTERS number

ROUTER PRIORITY number

CHANNEL number

NETWORK network-name

DTE dte-address

NUMBER dte-address

TYPE X25

MAXIMUM DATA count
MAXIMUM WINDOW count

BLOCKING DISABLED
ENABLED

MAXIMUM RECALLS count
RECALL TIMER seconds

Managing and Monitoring the Network
3.5 Circuit Commands

Use the SET CIRCUIT command to set and modify the parameters in
Table 3-3. Use the CLEAR CIRCUIT command to reset them to their default
values (if any) or to remove them from the volatile database. The circuit
must be in the OFF state before you specify the ALL parameter in the CLEAR
CIRCUIT command. The circuit must also be in the OFF state if you want
to modify any parameters other than COST, COUNTER TIMER, SERVICE,
STATE, and VERIFICATION.

Note that not all circuit devices support all parameters listed in Table 3-2
and Table 3-3. If a particular device does not support a parameter, an error
message may be displayed. For information about specific circuit devices,
refer to the VMS 1 /O User's Reference Manual: Part II.

3.5.2.1 Operational State of the Circuit
Just as you can control the operational state of the local node, you can also
control the operational state of circuits connected to it. There are three circuit
states:

OFF Allows no traffic over a circuit. The circuit is unavailable for
network activity.

ON Allows traffic over the circuit. This is the normal operational
state allowing for complete route-through and downline loading
operations.

SERVICE Restricts the circuit to service operations only. Only an Ethernet
circuit allows logical link activity or route-through at the same time
as service operations. Service operations include downline system
loading, upline dumping, and loopback testing.

Use the STATE parameter to specify the operational state of a circuit. For
example, the following command allows normal traffic over circuit DMC-0:

NCP>SET CIRCUIT DMC-0 STATE ON

DECnet-VAX may automatically change the state of a DDCMP circuit for
certain functions. For example, assume that you have set a DDCMP circuit
to ON. Later, someone performs acircuit-level loopback test on that circuit
without first setting the circuit state to SERVICE. Network management
software automatically turns the circuit to the appropriate internal state (or
substate) for the test. If the circuit state were displayed at that point, it would
register as ON-LOOPING. When the circuit is in this state, it is in use for
an active circuit loop test. This test is termed active because it was initiated
on the local node. The local node enters the passive loopback state (ON-
REFLECTING) whenever a remote node initiates a loopback test_ with the
local node. When the test finishes, the circuit returns to the ON state. For a
complete list of circuit states, substates, and their transitions, refer to the VMS
Network Control Program Manual.

Several circuit substates have the prefix AUTO. These substates can occur
when an adjacent node is or is about to be in an automatic downline loading
or triggering stage. For example, if circuit DMC-2 is in the ON state and the
local node (BOSTON) receives a request for a downline load on that circuit,
the network software on the local node automatically sets the circuit to the
ON-AUTOSERVICE state.

Before performing service operations over a DDCMP circuit, you must enable
that circuit. To do so, set the SERVICE parameter, which enables or disables
service operations over a circuit. For example, the following command
permits the circuit DMC-0 to be put in the SERVICE state, allowing service
functions:

3-40

Managing and Monitoring the Network
3.5 Circuit Commands

NCP>SET CIRCUIT DMC-0 SERVICE ENABLED

To disable a DDCMP circuit, set the SERVICE parameter to DISABLED,
which allows you to restrict the operation of a circuit for network users. The
default for the SERVICE parameter is DISABLED.

3.5.2.2 Circuit Timers
Two timers exist for controlling message transmissions and checking the
status of adjacent nodes. The first is a hello timer, which defines the
frequency of Routing layer Hello ("I'm still here") messages sent to the
adjacent node on the circuit. The second is a listen timer, which controls the
maximum amount of time allowed to elapse before the Routing layer stops
waiting for either a Hello message or a user message from the adjacent node
on the circuit. You cannot set the listen timer with an NCP command; the
value of the listen timer is always twice the value of the hello timer at the
local node.

To set the hello timer, enter the following command:

NCP>SET CIRCUIT DMP-0 HELLO TIMER 15

This command sets a limit of 15 seconds between Hello messages from the
executor node to the adjacent node on circuit DMP-0. The listen interval is
30 seconds between messages from the node on circuit DMP-0 adjacent to
the executor node. For the HELLO TIMER parameter, you must specify a
value between 1 and 8191 seconds. The default value for the HELLO TIMER
parameter is 15 seconds.

The value of the HELLO TIMER parameter should be the same on all adjacent
nodes over the same circuit.

It is recommended that you accept the default value for the HELLO TIMER
parameter, particularly if your node will communicate with nodes having
versions of Network Management software lower than Version 3.0.

3.5.3 DDCMP Circuit Parameters
DDCMP circuit parameters include parameters related to verification and
control of tributaries.

3.5.3.1 DDCMP Circuit Level Verification
The VERIFICATION parameter applies to DDCMP circuits and to X.25 DLM
circuits (PVCs and SVCs).

The VERIFICATION parameter controls whether the local node checks
the Routing layer passwords (RECEIVE PASSWORD and TRANSMIT
PASSWORD) in the database entry for the remote node before it completes a
node initialization request from that node.

To turn on verification, enter the following command:

NCP>SET CIRCUIT DMP-0 VERIFICATION ENABLED

This command specifies that the Routing layer will perform initialization of
the remote node connected to circuit DMP-0. To turn verification off, enter
the following command:

NCP>SET CIRCUIT DMP-0 VERIFICATION DISABLED

Managing and Monitoring the Network
3.5 Circuit Commands

The default is DISABLED, which means that you need not specify a node in
the configuration database to complete Routing layer initialization. To include
a remote node in the configuration database, you must specify the NODE
NAME and ADDRESS parameters; you can optionally specify the RECEIVE
PASSWORD and TRANSMIT PASSWORD parameters.

When a remote node submits a node initialization request to the local node,
the following rules apply:

• Nodes not defined in the remote node database at the local node cannot
initialize over a circuit that has verification enabled.

• Nodes defined in the remote node database for which receive and
transmit passwords are not specified are allowed to initialize whether
or not verification is enabled on the circuit.

• Nodes defined in the remote node database for which receive and
transmit passwords are specified are allowed to initialize over a circuit
with verification enabled, provided the receive password in the local
database matches the transmit password sent by the remote node.

• Any node is allowed to initialize over a circuit for which verification is
disabled.

The VERIFICATION INBOUND parameter applies to any DDCMP point-to-
point circuit. When you specify VERIFICATION INBOUND, the remote node
submitting an initialization request to the local node must supply a transmit
password that matches the receive password for that node in the local node
database. The local node, however, does not send its initialization password
to the requesting node. The VERIFICATION INBOUND parameter provides
added security for the local node, which can verify the password of a node
requesting a connection without revealing its own password.

For example, to require that a remote node supply a password before it can
initialize on circuit DMP-0 when the local node does not supply a password,
enter the following command:

NCP>SET CIRCUIT DMF-0 VERIFICATION INBOUND

The VERIFICATION INBOUND parameter is supplied automatically for
a dynamic asynchronous DDCMP circuit. When a dialup node requests a
dynamic connection to the local node and the VERIFICATION INBOUND
parameter is set for the circuit, you must specify the INBOUND parameter for
the dialup node in the node database. If you do not specify VERIFICATION
INBOUND, the INBOUND parameter in the dialup node entry is ignored.

3.5.3.2 DDCMP Tributary Control
"Several circuit parameters enable you to regulate and control tributaries.
Some of these parameters apply to polling, others to timers. Note that you
specify these circuit parameters on the control station, not on the tributary
itself .

Polling Over DDCMP Circuits

To control the polling state of a tributary, use the DYING THRESHOLD,
DEAD THRESHOLD, or INACTIVE THRESHOLD parameters. There are four
polling states: ACTIVE, INACTIVE, DYING, and DEAD. These parameters
determine the number of times the control station polls the active, inactive, or
dying tributary before changing its polling state. For example, the following
command sets the polling threshold for circuit DMP-0.3:

3-42

Managing and Monitoring the Network
3.5 Circuit Commands

NCP>SET CIRCUIT DMP-0.3 DYING THRESHOLD 5

The control station attempts to poll its tributary 5 times. If it gets receive
timeouts for five consecutive polls, the control station changes the tributary's
polling state from ACTIVE or INACTIVE to DYING. Values for the DYING
THRESHOLD parameter range from 0 to 255 and the default is 2. The
following command sets the polling threshold for circuit DMP-0.1:

NCP>SET CIRCUIT DMP-0.1 INACTIVE THRESHOLD 12

The control station attempts to poll its active tributary 12 times. If it receives
only acknowledgments, but no data responses, the control station changes the
active tributary's polling state to INACTIVE. The values for the INACTIVE
THRESHOLD parameter range from 0 to 255 and the default is 8.

You can lock a tributary into one of the four states by using the POLLING
STATE parameter. Usually, the tributary's state is allowed to vary according
to the multipoint polling algorithm. This variance occurs when this parameter
is set to AUTOMATIC. Use this parameter to lock a tributary into the
ACTIVE, INACTIVE, DYING, or DEAD state. For example, the following
command locks the tributary controlled by circuit DMP-0.1 into a DEAD
state:

NCP>SET CIRCUIT DMP-0.1 POLLING STATE DEAD

The base priority of a tributary is the lowest value to which that tributary can
be set after a poll. A control station polls tributaries with high priorities first.
Note that a control station does not poll tributaries with priorities below 128.
To specify the base priority for a tributary, use the ACTIVE BASE, INACTIVE
BASE, or DYING BASE parameters. After polling the tributary, the control
station resets the base priority of the active, inactive, or dying tributary to
this value. You can set a separate base value for each of the polling states, as
shown in the following example:

NCP>SET CIRCUIT DMP-1.2 ACTIVE BASE 225

After a poll, this command resets the base priority of the tributary on circuit
DMP-1.2 to 225. The values for all BASE parameters range from 0 to 255.
The defaults are ACTIVE, 255; INACTIVE, 0; and DYING, 0.

You can also increment the priority of a tributary each time the line-
scheduling timer expires. If, for instance, the polls pass over a tributary
with a low priority, you can raise the priority of that tributary by using the
ACTIVE INCREMENT, INACTIVE INCREMENT, or DYING INCREMENT
parameter. When the scheduling timer expires on an unpolled tributary, it
increases the priority according to the value you set. You can set a separate
increment value for each polling state, as shown in the following example:

NCP>SET CIRCUIT DMP-2.2 INACTIVE INCREMENT 200

This command adds 200 to the base priority of the tributary on circuit
DMP-2.2. The increment values range from 0 to 255. The defaults are
ACTIVE, 0; INACTIVE, 64; and DYING, 16. Note that, if you seta 0
increment on a tributary with a base priority lower than 128, the tributary
will never be polled. Active tributaries usually have a high base priority and,
therefore, do not need a high increment value.

The MAXIMUM BUFFERS and MAXIMUM TRANSMITS parameters give
you further control over the tributary. MAXIMUM BUFFERS specifies the
maximum number of buffers that a tributary can use from the common buffer
pool. If you do not set this parameter explicitly, the default is 4. Values
for this parameter can be either integers ranging from 1 to 254 or the word

3-43

Managing and Monitoring the Network
3.5 Circuit Commands

UNLIMITED. For example, the following command sets an upper limit of 10
buffers that the tributary on this circuit can use from the common buffer pool:

NCP>SET CIRCUIT DMP-0.2 MAXIMUM BUFFERS 10

The MAXIMUM TRANSMITS parameter specifies the maximum number of
data messages that the tributary can transmit in a single poll interval. Values
range from 1 to 255; the default is 4. For example, the following command
sets an upper limit of two data message transmits from the tributary on circuit
DMP-0.1:

NCP>SET CIRCUIT DMP-0.1 MAXIMUM TRANSMITS 2

DDCMP Tributary Circuit Timers

Two timers exist for controlling message retransmission at the DDCMP
tributary circuit level. The babble timer controls the amount of time that a
tributary or remote half-duplex station can transmit; the transmit timer sets
the amount of time to delay between data message transmissions. To specify
these timers, enter the following commands:

NCP>SET CIRCUIT DMP-0.1 BABBLE TIMER 8000

NCP>SET CIRCUIT DMP-0.1 TRANSMIT TIMER 4000

The first command limits transmission time to 8 seconds (8000 milliseconds)
for the circuit's tributary. Values for the BABBLE TIMER parameter range
from 1 to 65,535; the default is 6000 (6 seconds).

The second command sets a delay of 4 seconds (4000 milliseconds) between
each transmission from the tributary. Values for the TRANSMIT TIMER
parameter range from 0 to 65,535; the default is 0.

3.5.4 Ethernet Circuit Parameters
Parameters that Ethernet circuits have in common with other DECnet—
VAX circuits are HELLO TIMER, COST, COUNTER TIMER and STATE.
Parameters unique to Ethernet circuits are ROUTER PRIORITY and
MAXIMUM ROUTERS, which you can specify in the SET CIRCUIT
command.

If there are two or more routers on the same Ethernet, the one with the
highest numerical priority (up to a maximum value of 12 7) is elected the
designated router. The designated router provides message routing services
for end nodes on the Ethernet (see Section 2.4.4.1). A designated router
is selected even if there are currently no end nodes on the Ethernet. Note
that routers are not required in order to route messages over the Ethernet
on behalf of end nodes; Ethernet end nodes are capable of communicating
directly. However, routers are required to route messages off of the Ethernet
over other circuits such as DDCMP circuits.

Use the SET CIRCUIT command to set the ROUTER PRIORITY value in the
applicable circuit database at the executor node. For example, the following
command assigns a router priority of 70 to the local node on circuit UNA-0:

NCP>SET CIRCUIT UNA-0 ROUTER PRIORITY 70

3--44

Managing and Monitoring the Network
3.5 Circuit Commands

Each node on Ethernet circuit UNA-0 is assigned a router priority value in
the range 0 through 127; the default value is 64. DECnet software compares
the router priority values of the nodes and elects the router with the highest
priority the designated router. If two or more nodes on the Ethernet have the
same highest router priority value, the node with the highest node address is
selected as designated router. To learn which router is the designated router,
enter a SHOW ACTIVE CIRCUITS CHARACTERISTICS command. The
following information is displayed for circuit UNA-0:

Designated router = 1.224 (ROBIN)
Router priority = 70

The recommended limit on the number of routers on an Ethernet circuit
is 10, because of the control traffic overhead (composed of routing messages
and Hello messages) involved. The maximum number of routers allowed
is 33. The MAXIMUM ROUTERS parameter specifies the maximum number
of routers (other than the executor node) that the Routing layer is to allow
on a particular Ethernet circuit. Use the SET CIRCUIT command to assign
the MAXIMUM ROUTERS value for an Ethernet circuit. For example, the
following command sets a maximum value of 4 to the number of routers (in
addition to the executor node) that are permitted on circuit UNA-0:

NCP>SET CIRCUIT UNA-0 MAXIMUM ROUTERS 4

The default value is 33.

3.5.5 Ethernet Configurator Module Commands
Use the Ethernet configurator module to obtain a list of all systems on an
Ethernet circuit or circuits. Each DIGITAL-supported node on an Ethernet
circuit periodically transmits a system identification message to a multicast
address to which the Ethernet configurator listens. The configurator uses
these messages to build the configuration list.

Use NCP commands to access and control the configurator module. The
configurator runs as a separate process, available to all users on the system.
After the configurator starts, it continues to execute, maintaining and updating
its database of information on active nodes until a user causes it to stop
listening to system identification messages.

If several users of a particular system enter SET MODULE CONFIGliRATOR
commands, they all access the same configurator module. To determine
whether the~configurator module is already running, enter the following
command:

NCP>SHOW MODULE CONFIGURATOR KNOWN CIRCUITS

3.5.5.1 Enabling Surveillance by the Ethernet Configurator
To create or modify Ethernet configurator module parameters in the
volatile database, use the SET MODULE CONFIGURATOR command.
The SURVEILLANCE ENABLED parameter in this command causes the
configurator module to begin listening to system identification messages
transmitted by all systems on the circuit or circuits specified in the command.
The configurator collects this information and constructs a list of systems and
their capabilities in the volatile database.

Managing and Monitoring the Network
3.5 Circuit Commands

3.5.5.2 Obtaining a List of Systems on Ethernet Circuits
To obtain information about the current configuration of nodes on Ethernet
circuits, use the SHOW MODULE CONFIGURATOR command. This
command permits you to access the configurator volatile database, which
contains the following information for each system:

• The Ethernet physical and hardware addresses of the system

• The device connecting the system to the Ethernet

• The maintenance version number of the system

• A list of maintenance functions that the node can perform

• The last time a system identification message was received from that
system

The SHOW MODULE CONFIGURATOR command causes the configurator to
display this information along with the amount of time surveillance has been
enabled on the circuit. For example:

NCP>SHOW MODULE CONFIGURATOR CIRCUIT UNA-0 STATUS

For circuit UNA-0, this command results in the following display

Module configurator Volatile Status as of 30-DEC-1988 09:15:25

Circuit name =UNA-0
Surveillance flag =enabled
Elapsed time = 00:32:43
Physical address = AA-00-04-00-A3-04
Time of last report = 30-DEC 9:14:8
Maintenance version = V3.0.0
Function list =Loop, Primary loader
Hardware address = AA-00-03-00-00-07
Device type =UNA

Circuit name =UNA-0
Surveillance flag =enabled
Elapsed time = 0:32:43
Physical address = AA-00-04-00-A1-04
Time of last report = 30-DEC 9:11:29
Maintenance version = V3.0.0
Function list =Loop, Primary loader
Hardware address = AA-00-03-00-00-57
Device type =UNA

3.5.5.3 Disabling Surveillance by the Ethernet configurator
To cause the configurator to stop listening to system identification messages
on specific Ethernet circuits, use the SURVEILLANCE DISABLED parameter
in the SET MODULE CONFIGURATOR command. If you specify the
KNOWN CIRCUITS parameter with this command, the configurator no
longer listens to system identification messages being broadcast on any
Ethernet circuit known to the local node. For example, the following
command causes the configurator to cease surveillance of all Ethernet circuits
known to the local node:

NCP>SET MODULE CONFIGURATOR KNOWN CIRCUITS -
_ SURVEILLANCE DISABLED

After the configurator ceases surveillance of all Ethernet circuits it has been
monitoring, the list of system information is deleted.

Managing and Monitoring the Network
3.5 Circuit Commands

3.5.6 X.25 PVC Parameters
The circuit parameters described in the following sections apply to permanent
virtual circuits (PVCs) used for X.25 native operations or for DLM. In addition,
for DLM PVCs, the parameters described in Section 3.5.7 also apply.

3.5.6.1 Parameters Common to X.25 Circuits
The TYPE X25 and USAGE parameters are common to all X.25 circuits.

Use the TYPE parameter to specify an X.25 circuit, as follows:

NCP>SET CIRCUIT X25-ANDIES . . . TYPE X25 . . .

Note that, by default, when the name of the circuit starts with "X25," for
example, X25-ANDIES, the circuit type is X.25. The TYPE parameter is
optional.

Use the USAGE parameter to specify that the circuit is a PVC, as follows:

NCP>SET CIRCUIT X25-ANDIES . . . USAGE PERMANENT . . .

USAGE PERMANENT indicates that the circuit is permanently connected to
a remote DTE and does not need to be switched dynamically. The USAGE
parameter is mandatory for PVCs and takes no default.

3.5.6.2 Permanent Virtual Circuit Parameters
When PVCs are first specified, the CHANNEL and DTE parameters are
mandatory. In addition, the NETWORK parameter is mandatory if more than
one network is set up.

Use the CHANNEL parameter to associate a logical channel number with
each PVC. This number is allocated to you by the PSDN at subscription
time and is in the range 1 to 4095. Each PVC must have a unique channel
number different from those previously specified for outgoing calls in the SET
MODULE X25-PROTOCOL command. The following command illustrates
the use of this CHANNEL parameter:

NCP>SET CIRCUIT X25-ANDIES . . . CHANNEL 3 . .

Use the DTE parameter to associate the local DTE address with each PVC.
The following command illustrates the use of the DTE parameter:

NCP>SET CIRCUIT X25-ANDIES . . . DTE 123789456 . . .

The DTE address is a decimal integer of 1 to 15 digits and must have been
specified previously in a SET MODULE X25-PROTOCOL command.

The NETWORK parameter defines the network to which the DTE connects.
For example:

NCP> SET CIRCUIT X25-ANDIES . . .NETWORK TELENETI

The network must have been defined previously with a SET MODULE
X25-PROTOCOL command.

Managing and Monitoring the Network
3.5 Circuit Commands

3.5.6.3 Data Packet Control
Two parameters control the transmission of data packets over the PVC:
MAXIMUM DATA and MAXIMUM WINDOW.

The MAXIMUM DATA parameter specifies the maximum size of the packet
for a particular circuit. For example, the following command sets the
maximum size of the packet to 128 bytes for the circuit ANDIES:

NCP>SET CIRCUIT X25-ANDIES . . . MAXIMUM DATA 128 . . .

The maximum packet size must always be at least 5 bytes smaller than the
maximum size of the frame on a line (see Section 3.6.5.1). Specify a value
that is a power of 2 in the range 16 to 4096 bytes.

The MAXIMUM DATA parameter is optional and, by default, takes the value
specified for the local DTE. See the Public Network Information manual for the
default value of this parameter.

The MAXIMUM WINDOW parameter specifies the window size for a
particular PVC. For example, the command that follows sets the window
size to 2 for the circuit X25—ANDIES:

NCP>SET CIRCUIT X25-ANDIES . . . MAXIMUM WINDOW 2 . .

Specify a value in the range 1 to 127.

The MAXIMUM WINDOW parameter is optional and, by default, takes the
value specified for the local DTE. See the Public Network Information manual
for the default value of this parameter.

Both parameters, if specified, must be set to values that agree with your
PSDN subscription.

3.5.7 DLM Circuit Parameters
A data link mapping (DLM) circuit allows an X.25 virtual circuit to be used as
a DECnet data link in communicating with other DECnet nodes over a PSDN.
Several circuit parameters are specific to the operation of DLM circuits: the
OWNER EXECUTOR parameter; the remote DTE address and the network
name used by DECnet to establish a DLM outgoing switched virtual circuit;
the USAGE parameter for a DLM circuit; and two parameters to regulate
recalls for DLM outgoing SVCs.

Parameters that DLM circuits have in common with other X.25 circuits are
CHANNEL, DTE, MAXIMUM DATA, and MAXIMUM WINDOW. The circuit
parameter VERIFICATION applies to DLM circuits and DDCMP circuits.

3.5.7.1 DLM Circuit Owner
Use the OWNER EXECUTOR parameter to indicate that the Routing layer hay
exclusive rights to use the circuit. To specify that the circuit X25—DLMOUT
should be used as a DLM circuit, enter the following command:

NCP>SET CIRCUIT X25-DLMOUT OWNER EXECUTOR

The OWNER EXECUTOR parameter is required for a DLM circuit.

Managing and Monitoring the Network
3.5 Circuit Commands

3.5.7.2 Remote DTE Addresses
To establish an SVC with a remote DTE, DECnet software requires the
address of the remote DTE. Use the NUMBER parameter in the SET CIRCUIT
command to specify the remote DTE address for incoming or outgoing DLM
SVCs.

For outgoing calls, the Routing layer uses this address (and the subaddresses
required at the remote DTE) to call on the circuit. For example:

NCP>SET CIRCUIT X25-DLMOUT NUMBER 31191234567842

Outgoing calls on circuit X25-DLMOUT use the DTE 311912345678 and a
subaddress of 42 to establish an SVC with a remote DTE associated with this
address.

For incoming calls, use the NUMBER parameter to force them to a particular
circuit on the basis of the remote DTE address. If you specify a NUMBER
parameter for each incoming DLM circuit at the local DTE, an incoming
call from a remote DTE is rejected if its address does not match the number
specified for any incoming circuit. If any incoming circuit does not have
a number specified, then the circuit can handle calls from any DTE. You
can also use the NUMBER parameter with an incoming circuit to specify
additional routing parameters for a selected DTE. For example:

NCP>SET CIRCUIT X25-INC USAGE INCOMING -
NUMBER 31191234567842 COST 15

Circuit X25-INC receives calls only from the remote DTE with the DTE
311912345678 and subaddress 42. In this example, a cost of 15 is assigned to
the DLM connection to remote DTE 311912345678 to reflect a higher routing
cost for this configuration.

Note: For an outgoing SVC, if there is more than one network available, you
must specify which network to use for the outgoing call.

3.5.7.3 Recalls for DLM Circuits
If previous attempts to establish a DLM SVC have been unsuccessful,
DECnet-VAX attempts to recall a number. You can set the frequency of
recalls and the maximum number of recalls DECnet attempts by using two
parameters. The RECALL TIMER parameter sets the interval that DECnet
should wait before attempting to place a call to establish an SVC. The
MAXIMUM RECALLS parameter specifies the maximum number of times
DECnet should attempt to place a call to establish an SVC. The following
command causes DECnet-VAX to place a call every 10 seconds for a
maximum of 10 times to establish an SVC for circuit X25-DLMOUT:

NCP>SET CIRCUIT X25-DLMOUT RECALL TIMER 10 -
_ MAXIMUM RECALLS 10

The default value for the RECALL TIMER parameter is 100 seconds. The
range of acceptable values is 1 to 255. If an attempt to make an outgoing
call causes the system to exceed the MAXIMUM RECALLS parameter, the
circuit is placed in the ON-FAILED state, and you must enter the following
command before the outgoing call can be attempted again:

NCP>SET CIRCUIT X25-DLMOUT STATE ON

Managing and Monitoring the Network
3.5 Circuit Commands

3.5.7.4 DLM Circuit Usage
DLM circuits operate according to the usage you define for them in the
volatile database. You may use DLM SVCs either for outgoing or incoming
calls. The usage of DLM PVCs is PERMANENT; that is, the circuit is
permanently connected to a remote DTE, and does not need to be switched
dynamically. The USAGE parameter specifies how DLM circuits are to be
used, as in the following example:

NCP>SET CIRCUIT X25-DLMOUT USAGE OUTGOING . .

3.5.7.5 Executor Node Subaddresses
When you are configuring the network, you can optionally define a range
of subaddresses that the DECnet Routing layer accepts as incoming DLM
calls. VAX PSI routes all incoming calls within the specified subaddress range
to the Routing layer, to be handled as DLM circuits. You are responsible
for ensuring that the subaddress specified in the outgoing DLM NUMBER
parameter (see Section 3.5.7.2) matches the range of subaddresses on the
incoming side, as specified in the EXECUTOR SUBADDRESSES parameter of
the SET EXECUTOR command.

When the Routing layer receives an incoming call from a DTE, it scans the
incoming DLM circuits to find the address of the DTE sending the call that
matches the remote DTE address specified for the circuit (in the NUMBER
parameter of the SET CIRCUIT command). If an incoming circuit does not
have the NUMBER parameter specified, that circuit is selected to accept
any incoming call that has not yet- been matched to a particular circuit. If all
incoming circuits have the NUMBER parameter specified and a call is received
from a DTE whose address does not match any circuit, that call is rejected.

Use the SUBADDRESSES parameter in the SET EXECUTOR command to
specify executor subaddresses (Section 3.3.1 describes the SET EXECUTOR
command). For example, use the SET EXECUTOR command to modify
subaddresses in the volatile database:

NCP>SET EXECUTOR SUBADDRESSES 42

This command indicates that the Routing layer is to handle only incoming
X.25 calls that specify local DTE subaddress 42. All other calls are handled
by VAX PSI. A subaddress may consist of a range. For example, the following
command indicates that the Routing layer handles all incoming X.25 calls that
specify a local DTE subaddress in the range of 42 to 50:

NCP>SET EXECUTOR SUBADDRESSES 42-50

When specifying a subaddress range, use an integer in the range of 0 to 9999.
Separate two subaddresses with a hyphen to indicate a range, and be sure the
second subaddress is always greater than the first.

3-50

Managing and. Monitoring the Network
3.5 Circuit Commands

3.5.7.6 Setting Up a DLM Circuit
The following example illustrates how to set up a DLM circuit between
DECnet node A (DTE address 123) and DECnet node B (DTE address 456),
which are to communicate over a PSDN.

On node A, enter the following command to specify the outgoing DLM circuit
in the volatile database:

NCP>SET CIRCUIT X25-OUTGOING -

TYPE X25 -
OWNER EXECUTOR -
USAGE OUTGOING -
NUMBER 4561 -

_ STATE ON

The command must specify the DTE address and subaddress of the remote
node. The value in the NUMBER parameter represents DTE 456,
subaddress 1.

On node B, the following command indicates that the DECnet Routing layer
is to accept all incoming calls to this node (DTE) that have a subaddress in
the range 1 to 20:

NCP>SET EXECUTOR SUBADDRESSES 1-20

Note that you must enter this command at node B before node B can accept
calls from node A.

You then enter the following command at node B to specify the incoming
DLM circuit in the volatile database:

NCP>SET CIRCUIT X25-INCOMING -

TYPE X25 -
OWNER EXECUTOR -
USAGE INCOMING -

_ STATE ON

3.5.8 Circuit Counters
DECnet-VAX automatically maintains certain statistics for circuits in the
network. These statistics are known as circuit counters. For all circuits,
counter information may include the number of data packets sent, received,
and lost over the circuit; timeouts; and the amount of time since the counters
were last zeroed. For DDCMP circuits, counters are maintained for timeouts
and data and buffer errors, and, for both DDCMP and Ethernet circuits, the
number of bytes and data blocks sent and received. For X.25 circuits, the
following statistics are indicated in counters: the time since the counters
were zeroed; the number of bytes, data blocks, and resets sent and received;
and the number of resets initiated by the network. Information obtained
from counters may be useful either alone or in conjunction with logging
information to measure the performance and throughput for a given circuit.
See the VMS Network Control Program Manual for a complete list of circuit
counters. Refer to Section 2.9 for a discussion of logging.

You can use NCP to regulate the frequency with which circuit counters are
logged and when they are zeroed. At any point while the network is running,
you can also display circuit counter statistics using the SHOW CIRCUIT
COUNTERS command.

Managing and Monitoring the Network
3.5 Circuit Commands

To set a timer whose expiration automatically causes the circuit counters to be
logged at the logging sink and then zeroed, use the SET CIRCUIT command
with the COUNTER TIMER parameter. The following command causes a
circuit counter logging event to take place every 600 seconds:

NCP>SET CIRCUIT DMC-0 COUNTER TIMER 600

To clear this parameter, enter the following NCP command:

NCP>CLEAR CIRCUIT DMC-0 COUNTER TIMER

At any point when the network is running, you can zero counters for a given
circuit or for all known circuits. Enter the following commands to zero circuit
counters:

NCP>ZERO CIRCUIT DMC-0 COUNTERS
NCP>ZERO KNOWN CIRCUITS COUNTERS

3.6 Line Commands
DECnet-VAX supports four classes of line: DDCMP, CI, Ethernet, and X.25.
You must use NCP commands to identify all physical lines connected to the
local node and to specify parameters that affect operation of the lines. The
following sections describe line identification and, discuss the line parameters
you can use.

3.6.1 Line Identification
As with nodes and circuits, lines must have unique identifiers. The line and
circuit names identify a logical connection. For the VMS operating system,
line identification takes one of the following formats:

dev-c

dev-c[-u]

where:

dev Is the device name. (Refer to the VMS Network Control Program Manual
for a complete list of mnemonic device names.)

c Is the decimal number (0 or a positive integer) designating the device's
hardware controller.

u Is the decimal unit or line number (0 or a positive integer) included if the
device is a multiple unit line controller. For all non-multiplexed lines, the
unit number is optional and, if specified, is always zero (o).

Note: Devices that are similar in operation are referred to by the same
mnemonic.

The VMS operating system maps network management line names to
system-specific line names (for example, DMC-4 maps to XMEO). Network
management line names provide network-wide line identification independent
of individual operating system conventions.

Commands in this section illustrate line identification.

The following command specifies a synchronous DDCMP point-to-point line,
identifying the DMC (or DMR) line device and controller number 0:

NCP>SET LINE DMC-0 STATE ON

3-52

Managing and Monitoring the Network
3.6 Line Commands

The following command specifies an asynchronous DDCMP point-to-point
line. It identifies the DMF32 asynchronous line unit by the mnemonic TX and
specifies controller number 0 and unit number 0 (that is, TXAO).

NCP>SET LINE TX-0-0 RECEIVE BUFFERS 4 STATE ON

When you turn on an asynchronous line, you are advised to set the number
of receive buffers to a value of 4 or more (see Section 3.6.3.1).

Note that dynamic asynchronous DDCMP line names are supplied
automatically when a dynamic connection is established.

The following command specifies the CI line CI-0:

NCP>SET LINE CI-0 STATE ON

The following command specifies the Ethernet line UNA-0:

NCP>SET LINE UNA-0 STATE ON

The following command specifies the X.25 line DUP-0:

NCP>SET LINE DUP-0 STATE ON

For each X.25 line, specify a unique device, for example:

DMF-0
DUP-0
KMX-0-0
KMX-0-1
KMV-0

3.6.1.1 Line Protocols
As part of the process of identifying lines, you must specify the line protocol.
To ensure that the data link protocol operates properly when information is
transferred over a line, use the SET LINE command with the PROTOCOL
parameter to specify a line protocol. The protocols are as follows:

DDCMP CONTROL

DDCMP DMC

DDCMP POINT

DDCMP TRIBUTARY

ETHERNET

Specifies the line as a multipoint control station. You
can set multiple circuits for CONTROL lines. Each circuit
must have a unique physical tributary address.

Specifies that the line is in DMC emulator mode. DMC is
similar to DDCMP POINT protocol, except that DMC uses
an older version of DDCMP (Version 3.2). This protocol
should be set for the local line when the remote line is a
DMC.

Specifies the line as one end of a point-to-point DDCMP
connection. You may specify only one circuit per POINT
line.

Specifies that the line is a multipoint tributary end of a
DDCMP multipoint group. You may specify only one
circuit per TRIBUTARY line.

Specifies that the line is a multiaccess line that uses the
Ethernet protocol.

Managing and Monitoring the Network
3.6 Line Commands

LAPB

LAPBE

Specifies that the line uses the X.25 level 2 protocol.
The line must be used by the X25—PROTOCOL module.

Specifies that the line uses the X.25 level 2 protocol
with extended sequencing. The line must be used by
the X25—PROTOCOL module.

Note that you do not specify any protocol for a CI line. The CI uses its own
private protocols for communication between nodes.

If you do not specify a line protocol, the following default values apply,
according to the device specified.

Device Default Protocol

BNA ETHERNET

CI None (not specified)

DMB DDCMP POINT

DMC/DMR DDCMP POINT

DMP/DMV DDCMP POINT

DMF DDCMP POINT

TT/TX DDCMP POINT

DUP/DPV LAPB

KMX LAPB

KMV LAPB

KMY LAPB

QNA ETHERNET

SVA ETHERNET

UNA ETHERNET

The SET LINE PROTOCOL examples that follow specify line protocols in
the configuration database at the local node and on remote nodes other than
DECnet-VAX, such as DECnet-RSX. For example, the following command
identifies line DMP-0 as a multipoint control station:

NCP>SET LINE DMP-0 PROTOCOL DDCMP CONTROL

You set this parameter in the database of the local node at the controlling end
of this line. You could specify a tributary for this line, as follows:

NCP>SET LINE DMP-1 PROTOCOL DDCMP TRIBUTARY

You set this parameter in the database of the remote node connected to the
tributary end of the control station for that line.

3-54

Managing and Monitoring the Network
3.6 Line Commands

3.6.2 Line Parameters
The configuration database should contain line parameters for all physical
lines connected to the local node or DTE. These parameters supply
information used to control various aspects of a line's operation. Table 3-4
lists the types of line and the line parameters applicable to them. Table 3-5
lists all line parameters by function.

Table 3-4 Types of Line and Applicable Line Parameters

Type of Line Applicable Line Parameter

All lines

All lines except CI

All lines except X.25 lines

All lines except Ethernet lines

DDCMP lines

DMR1 1 lines

Asynchronous DDCMP lines

X.25 lines

CONTROLLER controller-mode
COUNTER TIMER seconds
STATE ON

OFF

PROTOCOL protocol-name

BUFFER SIZE number

RETRANSMIT TIMER millisecond

CLOCK EXTERNAL
INTERNAL

DEAD TIMER milliseconds
DELAY TIMER milliseconds
DUPLEX duplex-mode
RECEIVE BUFFERS count
SCHEDULING TIMER milliseconds
SERVICE TIMER milliseconds
STREAM TIMER milliseconds

TRANSMIT PIPELINE count

HANGUP DISABLED
ENABLED

LINE SPEED number
SWITCH option

HOLDBACK TIMER milliseconds
INTERFACE DCE

DTE
MAXIMUM BLOCK count
MAXIMUM RETRANSMITS count
MAXIMUM WINDOW count
MICROCODE DUMP file-spec
NETWORK network-name
PROTOCOL LAPB

LAPBE
STATE SERVICE

Managing and Monitoring the Network
3.6 Line Commands

Table 3-5 Line Parameters and Their Functions

Parameter Function Parameter

Defines line protocol

Sets counter timer for line counter
event logging

Selects clock type

Sets line's operational state

Sets maximum receive buffer size
for logical links over specific line

Sets number of buffers in receive
queue

Establishes physical line control
parameters for DDCMP protocol

Specifies asynchronous DDCMP
line characteristics

Establishes line-level loopback
control for controller operation

Establishes frame control
parameters for X.25 line

Controls retransmission of frames
for X.25 line

Controls acknowledgment of
frames for X.25 line

Controls packet transmission over
satellite link

Defines the way in which the line
is used

DDCMP CONTROL
DDCMP POINT
DDCMP DMC

PROTOCOL DDCMP TRIBUTARY
ETHERNET
LAPB
LAPBE

COUNTER TIMER seconds

CLOCK ~ INTERNAL l
EXTERNAL I

OFF
STATE ON

SERVICE

BUFFER SIZE number

RECEIVE BUFFERS number

DUPLEX FULL
HALF

DEAD TIMER milliseconds
DELAY TIMER milliseconds
RETRANSMIT TIMER milliseconds
SCHEDULING TIMER milliseconds
SERVICE TIMER milliseconds
STREAM TIMER milliseconds

HANGUP DISABLED
ENABLED

LINE SPEED number
SWITCH DISABLED

ENABLED

CONTROLLER LOOPBACK
NORMAL }

MAXIMUM BLOCK count
MAXIMUM WINDOW count

MAXIMUM RETRANSMITS count
RETRANSMIT TIMER

HOLDBACK TIMER milliseconds

TRANSMIT PIPELINE count

INTERFACE j DTE 1
t DCE I

Use the SET LINE command to establish and modify the parameters in
Table 3-4 and Table 3-5. You must set the line to OFF if you want to modify
any parameters except COUNTER TIMER, SERVICE, SERVICE TIMER, and
STATE. STATE is a required parameter for all lines that you specify in the
configuration database. Use the CLEAR LINE command to reset parameters

Managing and Monitoring the Network
3.6 Line Commands

to their default values (if any) in the volatile database. The line must be off
before you specify the ALL parameter in the CLEAR LINE command.

Note that not all circuit devices support all parameters listed in Table 3-4
and Table 3-5. If a particular device does not support a parameter, an error
message may be displayed. For information about specific circuit devices,
refer to the VMS I/O User's Reference Manual: Part II.

Operational State of Lines
As with local node and circuit states, you can control the operational state of
lines connected to the local node or to the local DTE. There are three possible
line states:

OFF Aiiows no traffic over a line. The line is unavailable for network
activity.

ON Allows traffic over the line. The ON state is the normal operational
state, which allows complete route-through and downline loading
operations.

SERVICE Allows only restricted line service over the line. This traffic includes
loopback testing (used only for X.25 lines).

The ON and SERVICE states have substates; see the VMS Network Control
Program Manual for a complete list of line states, substates, and their
transitions.

Use the STATE parameter to specify the operational state of a line. For
example, to allow normal traffic over line DMC-0, enter the following
command:

NCP>SET LINE DMC-0 STATE ON

The following command specifies the operational state of an X.25 line,
allowing normal traffic over the DUP-0:

NCP>SET LINE DUP-0 STATE ON

The STATE parameter is optional and, by default, is set to OFF.

Buffer Size
You can increase the maximum size of receive buffers (and therefore the
size of NSP messages) that can be transmitted over a particular line by
specifying the BUFFER SIZE parameter in the SET LINE command. For
certain logical links established over the line to adjacent nodes, this BUFFER
SIZE value overrides the executor node BUFFER SIZE limit specified in the
SET EXECUTOR command (see Section 3.3.5.1).

If you specify the BUFFER SIZE parameter for a line, the adjacent node on
any new logical link initiated over that Line can optionally accept an NSP
message segment size that is based on the BUFFER SIZE value. If the remote
node accepts the segment size, the logical link to that node is then tied to
that circuit. If the circuit fails, the logical link does not automatically route
the packet through an alternate circuit; that is, the logical link becomes
nonadaptive.

For example, the following command sets the maximum size of receive
buffers for line UNA-0 to 1400 bytes, but only for logical links to adjacent
nodes that accept 1400 bytes as the NSP segment size:

NCP>SET LINE UNA-0 BUFFER SIZE 1400

Managing and Monitoring the Network
3.6 Line Commands

If the adjacent node does not accept a segment size based on the BUFFER
SIZE value, the default for any line except an Ethernet line is the executor
node's BUFFER SIZE value. The default for an Ethernet line is 1498 bytes.

You can use this feature to maximize performance over high-speed links,
such as Ethernet, by using a large value for the BUFFER SIZE parameter and
causing all logical links between adjacent nodes on the Ethernet to use that
larger message size.

3.6.3 DDCMP Line Parameters
Several parameters regulate various aspects of a DDCMP line's physical
protocol operation. You can specify the number of receive buffers, the duplex
mode, and the timers for both normal and service operations.

Parameters that apply specifically to asynchronous DDCMP lines indicate
the speed of the line, whether modem signals are dropped when a line is
shut down, and whether an asynchronous line is switched back to a terminal
line when disconnected from the network. For a dynamic asynchronous line,
DYNSWITCH supplies these parameters to NETACP automatically.

The following sections describe the DDCMP line parameters.

3.6.3.1 Line Buffers
To allocate buffers for data reception by the device driver for a particular
DDCMP line, use the RECEIVE BUFFERS parameter. The following
command sets four buffers for this line:

NCP>SET LINE DMC-1 RECEIVE BUFFERS 4

Values for this parameter range from 1 to 32. The number of buffers you
set depends on throughput requirements and available memory pool. A
value in the range of 2 to 4 is adequate for line speeds of less than 56K bits.
For asynchronous lines, a value of at least 4 is recommended. Megabit line
speeds may require 8 or more buffers, depending on the observed errors. For
LAPB lines, see the description of X.25 line parameters in Section 3.6.5.

3.6.3.2 Duplex Mode
To set the duplex mode for a DDCMP line, use the DUPLEX parameter.
For example, the following command sets the mode of the DMC11 device
controller to full duplex for line DMC-1:

NCP>SET LINE DMC-1 DUPLEX FULL

Generally, you use full-duplex mode for local lines and permanently wired
telephone lines; you usually use half-duplex mode for dialup remote
telephone lines used with half-duplex synchronous modems. If you use a
modem, consult the manufacturer's documentation for full- or half-duplex
characteristics.

Managing and Monitoring the Network
3.6 Line Commands

3.6.3.3 Line Timers
Line timers control the frequency of message retransmission at the DDCMP
level. There are six line timers:

• Service timer sets the maximum amount of time allowed to elapse
before a retransmission is necessary when service operations are under
way.

• Retransmit timer sets the maximum amount of time allowed to elapse
before a retransmission is necessary on a multipoint line. This is the
amount of time a control station will wait for a tributary to respond. For
a DMF32 tributary, it is the maximum amount of time the tributary will
hold the line before returning control to the control station. For an X.25
line, it is the maximum amount of time before a frame is retransmitted
(see Section 3.6.5.1).

• Dead timer sets the amount of time between polls of the dead
tributaries.

• Delay timer sets the amount of time to delay between polls of active
tributaries.

• Scheduling timer sets the time limit between recalculations of tributary
polling priorities.

• Stream tuner sets the amount of time that a tributary or half-duplex
remote station is allowed to hold the line.

The DMP11 automatically handles message retransmission for normal
operations. However, when a DDCMP circuit is in the SERVICE state, a
line retransmission timer is necessary because the DMP 11 does not handle
retransmission in maintenance operation protocol (MOP) mode.

You can determine the optimum value to use for the retransmit timer for a
synchronous DDCMP line. The formula involves a constant obtained from
the calculation of the time required for transmission and reception of the
contents of a single executor buffer over the line. To derive the constant,
multiply the executor buffer size (in bytes) by 8 bits/byte, divide the result
by the line speed (in bits per second), and multiply by 2 (for transmission
and reception). To this result, add a factor representing the time allotted for
transmission delay and processing overhead (for DDCMP lines, a factor of
1 /2 is used). Convert the final value to milliseconds by multiplying by 1000
ms/sec. When the constants are multiplied out, the remaining constant is
20,000, which applies to the following retransmit timer calculation:

RETRANSMIT TIMER = (20000 buffer-size number-of-buffers)/bps-of-line

In general, use this formula to calculate the best value for the retransmit timer
(in milliseconds).

The number of buffers is the value specified for the MAXIMUM TRANSMITS
parameter in the SET CIRCUIT command; it represents the maximum number
of data messages that the tributary can transmit in a single poll interval (see
Section 3.5.3.2).

Assume an example with an executor buffer size of 576, a line of 56K bits per
second (bps), and four buffers per selection interval. The formula would be
calculated as follows:

RETRANSMIT TIMER = (20000 576 4)/56000 = 820 milliseconds

Managing and Monitoring the Network
3.6 Line Commands

To set a retransmit timer for a DDCMP line, use the RETRANSMIT TIMER
parameter, as follows:

NCP>SET LINE DMP-2 RETRANSMIT TIMER 820

This command sets the retransmission frequency for line DMP-2 to 820
milliseconds. If a message is not acknowledged in 820 milliseconds, it is
retransmitted.

The preceding formula does not apply to the DMF32 tributary mode. The
value of the retransmit timer is the maximum time the tributary will hold
the line before returning control to the control station. For DMF32 tributary
mode, therefore, the more active the tributary, the higher the value to which
you should set the retransmit timer (a value of 2000 is recommended). For
inactive tributaries, set the timer value lower (a value of 500 milliseconds is
recommended).

3.6.3.4 Satellite Transmission Control
For a connection over a very long path, such as a satellite link, use the
TRANSMIT PIPELINE parameter to establish the maximum number of
DDCMP messages that may be transmitted over a DMR11 line without
waiting for a positive acknowledgment from the remote node. This parameter
is useful for satellite transmissions because of the long round-trip delay
between message transmission and acknowledgment. For example, the
following command sets a maximum of 10 DDCMP messages for the line
DMC-2:

NCP>SET LINE DMC-2 . . . TRANSMIT PIPELINE 10

The TRANSMIT PIPELINE parameter is optional and, by default, takes the
value 7.

Because of the system memory overhead involved, you should avoid
arbitrarily setting this value higher than necessary. The optimum value
for the TRANSMIT PIPELINE parameter for the DMR11 is equal to the
number of DDCMP messages that can be transmitted before the first message
in the sequence is acknowledged. You can calculate the optimum TRANSMIT
PIPELINE value using the following algorithm:

messages = (delay*rate)/(size*8)

where:

delay Is the link's round trip delay time in seconds, which is
the total time required for a message to reach the remote
receiver and for the acknowledgment to be received by
the transmitter. You can determine the delay value from
information supplied by the carrier providing the leased
circuit, or by observing the delay on suitable line-monitoring
equipment.

rate Is the line speed in bits per second.

size Is the average DDCMP message size in bytes, which can be
calculated by dividing the number of bytes transmitted by
the number of messages transmitted. Use the SHOW LINE
command with the COUNTERS parameter to determine the
number of bytes and messages transmitted. Line counters
are described in Section 3.6.6.

3-60

Managing and Monitoring the Network
3.6 Line Commands

For example, to determine the optimum TRANSMIT PIPELINE value of a
satellite link that has a round trip delay of 0.67 seconds, a line speed of 9.6K
bits per second, and an average DDCMP message size of 40 bytes, calculate
the following:

(0.67*9600) / (40*8) = 20

For this example, the optimum value for TRANSMIT PIPELINE is 20
messages.

3.6.3.5 Asynchronous DDCMP Line Parameters
The LINE SPEED, HANGUP, and SWITCH parameters apply only to
asynchronous DDCMP lines. Values for these parameters are provided
automatically when a line is switched dynamically from a terminal line to
an asynchronous DDCMP line. When you initiate a dynamic connection
between two nodes over a telephone line, these parameters are included
in the line entries NETACP supplies to the NCP database. For static
asynchronous DDCMP lines, these parameters usually assume their default
values.

The LINE SPEED parameter specifies in baud the speed of an asynchronous
DDCMP line. The parameter defaults to the current speed of the line. If two
asynchronous lines are connected, both lines must have the same line speed.
If a dynamic connection is made, this value is supplied automatically for each
line. For a static asynchronous line, the default line speed value is the value
of the /SPEED qualifier in the DCL command SET TERMINAL you specified
to cause the terminal line to be converted to an asynchronous line.

The HANGUP parameter determines whether the modem signal is dropped
when the line is shut down. When you shut down a dynamically switched
asynchronous line, the modem carrier is dropped if the value of the parameter
is HANGUP ENABLED. This value, supplied automatically, corresponds to
the /HANGUP qualifier in the SET TERMINAL command you specified to
cause the terminal line to be switched to an asynchronous line. If the value
supplied for the parameter is HANGUP DISABLED, the modem signal is
not dropped when the line is shut down. For a static asynchronous line, the
parameter defaults to HANGUP ENABLED.

The SWITCH parameter indicates whether an asynchronous DDCMP line
is to be switched back to a terminal line after it is disconnected from the
network (when the channel to the network is deassigned). The SWITCH
parameter is enabled automatically for a dynamic asynchronous Line so
that the line can be switched back to a terminal line when the dynamic
connection is broken. The parameter defaults to SWITCH DISABLED for a
static asynchronous line, which remains available as a communications line
even when not assigned a channel to the network. Generally, you do not
need to set the SWITCH parameter manually.

Managing and Monitoring the Network
3.6 Line Commands

3.6.4 Ethernet Line Parameters
Ethernet lines support no service functions. Parameters the Ethernet lines
have in common with other DECnet lines are the COUNTER TIMER,
PROTOCOL, STATE, and BUFFER SIZE parameters. You can use the BUFFER
SIZE parameter to optimize performance over ahigh-speed data link such as
an Ethernet (see Section 3.6.2.2).

The Ethernet address associated with the Ethernet line device hardware is
displayed as a read-only parameter, HARDWARE ADDRESS, in response to
the SHOW LINE command. For example:

NCP>SHOW LINE UNA-0 CHARACTERISTICS

This command results in the following information being displayed for
UNA-0:

Protocol = Ethernet
Hardware address = AA-00-03-00-00-OC

See the discussion of Ethernet physical addresses in Section 2.1.1, and the
general description of the format of Ethernet addresses in Section 3.3.4.

3.6.5 X.25 Line Parameters
All X.25 lines must specify the LAPB or LAPBE protocol. The line parameters
unique to X.25 lines include the INTERFACE, HOLDBACK TIMER,
MAXIMUM RETRANSMITS, MAXIMUM BLOCK, MAXIMUM WINDOW,
and NETWORK parameters.

3.6.5.1 Frame Control for X.25 Lines
The MAXIMUM BLOCK and MAXIMUM RETRANSMIT parameters control
the size and transmission of frames over an X.25 line; the RETRANSMIT
TIMER and MAXIMUM RETRANSMIT parameters control the retransmission
of frames. The MAXIMUM WINDOW parameter controls the number
of frames for which outstanding acknowledgments are allowed. The
HOLDBACK TIMER parameter controls the acknowledgment of frames.

Use the RETRANSMIT TIMER parameter to control the frequency of frame
retransmission at X.25 level 2 on LAPB and LAPBE lines. For example, the
following command sets the retransmission frequency to 2000 milliseconds
for the line DUP-0:

NCP>SET LINE DUP-0 . . . RETRANSMIT TIMER 2000 . . .

In other words, if a frame is not acknowledged in 2000 milliseconds, it is
retransmitted.

The value for this parameter depends on the size of the frame and the
speed of the X.25 line; refer to the Public Network Information manual
for recommended values. Specify a value in the range 1 to 65,535. The
value must not be smaller than twice the value of the HOLDBACK TIMER
parameter, if one is set.

The RETRANSMIT TIMER parameter is optional and, by default, takes
the network value. Refer to the Public Network Information manual for the
network value of this parameter.

Managing and Monitoring the Network
3.6 Line Commands

To specify the maximum number of times a frame is retransmitted over
a specified X.25 line, use the MAXIMUM RETRANSMITS parameter.
For example, the following command indicates that if a frame is not
acknowledged in 2000 milliseconds it is retransmitted and that this operation
is to be performed a maximum of 10 times:

NCP>SET LINE DUP-0 . . . RETRANSMIT TIMER 2000 -
_ MAXIMUM RETRANSMITS 10 . . .

Specify a value in the range 1 to 255.

The MAXIMUM RETRANSMITS parameter is optional and, by default, takes
the network value. Refer to the Public Network Information manual for the
network value of this parameter.

To specify the maximum size of the frame for a particular X.25 line, use the
MAXIMUM BLOCK parameter. For example, the following command sets the
size of the frame to 133 bytes for the line DUP-0:

NCP>SET LINE DUP-0 . . . MAXIMUM BLOCK 133 . .

Produce a limit for the frame size, as follows:

1 Calculate the maximum packet size and add 5 bytes.

2 If you subscribe to the LAPBE protocol, add 1 byte to this total.

3 If you subscribe to extended sequence numbering at level 3, add another
byte to the total.

4 If you subscribe to the fast select facility and the current total is less than
213 bytes, replace the current total with 213 bytes.

The maximum frame size you specify should be greater than the total you
calculated and less than or equal to 4103 bytes.

Note that some communications devices limit the frame size. This may cause
errors, even if you follow the preceding rules. For more details, refer to the
VAX PSI documentation set.

The MAXIMUM BLOCK parameter is optional and, by default, takes the
network value. Refer to the Public Network Information manual for the
network value of this parameter.

To specify the maximum number of frames for which there are outstanding
acknowledgments for a particular X.25 line, use the MAXIMUM WINDOW
parameter. For example, the following command sets the maximum to 2 for
the line DUP-0:

NCP>SET LINE DUP-0 . . . MAXIMUM WINDOW 2 . . .

The MAXIMUM WINDOW parameter is optional and, by default, takes
the network value. Refer to the Public Network Information manual for the
network value of this parameter.

To specify the maximum time to delay acknowledgments, use the
HOLDBACK TIMER parameter. For example, the following command sets
the maximum delay to 200 milliseconds for line DUP-0:

NCP>SET LINE DUP-0 . . . HOLDBACK TIMER 200 . .

The HOLDBACK TIMER parameter is optional. If you do not specify it,
acknowledgments are not delayed at a11.

Managing and Monitoring the Network
3.6 Line Commands

Specify a value for this parameter in the range 100 to 32767. The value
must not be greater than one-half the value of the RETRANSMIT TIMER
parameter.

3.6.5.E Receive Buffers for X.25 Lines
You can optionally specify the number of buffers in the receive queue of any
X.25 lines. Use the RECEIVE BUFFERS parameter, for example:

NCP>SET LINE DUP-0 . . . RECEIVE BUFFERS 4 . . .

Specify a value in the range 2 to 32. By default, the number of buffers is 3.
This value is normally adequate for DUP, DPV, and DMF lines. For KMX,
KMY, and KMV lines, a value of 8 is recommended.

3.6.5.3 Interface of X.25 Lines
The INTERFACE parameter specifies whether the line is to operate as a DCE
or as a DTE. It can take the values DTE or DCE. For example:

NCP>SET LINE DUP-0 . . . INTERFACE DCE

The default is DTE .

Note that you can use the DCE interface only in conjunction with the
IS08208 network profile.

3.6.5.4 Network for X.25 Lines
The NETWORK parameter specifies the network to which the line connects.
For example:

NCP>SET LINE DUP-0 . . . NETWORK TELENETI

If more than one network is available, this parameter is mandatory.

3.6.6 Line Counters
DECnet software automatically maintains statistics for certain lines in the
network. These statistics are known as line counters. Line counters for
DDCMP lines include the number of bytes and data blocks sent and received;
local and remote process errors; and the amount of time since the counters
were last zeroed. DECnet-VAX currently maintains these counters only
for DMP 11 and DMF32 lines. Line counters for Ethernet lines include the
number of bytes, multicast bytes, data blocks, and multicast blocks sent
and received; the number of blocks deferred or sent after collision; and the
number of send failures and discarded frames. This counter information
may be useful alone or in conjunction with logging information to measure
the performance and throughput for a given line. Refer to Section 2.9 for a
discussion of logging.

VAX PSI automatically maintains statistics for X.25 lines in the network.
These statistics are also called line counters, but are used for X.25 lines only.
Such information may include bytes and data blocks sent and received;
inbound and outbound data errors; and remote and local reply timeouts,
buffer errors, and process errors. These counters, together with component
characteristics, are useful in monitoring the activity of X.25 lines. The
counters may, for example, be employed to measure the performance and
throughput of a given X.25 line.

3-64

Managing and Monitoring the Network
3.6 Line Commands

You can use NCP to affect the frequency with which counters are logged
and when the counters are zeroed. At any point while the network is
running, you can also display line counter statistics using the SHOW LINE
COUNTERS command.

To set a timer whose expiration automatically causes the line counters to
be logged at the logging sink (location) and then zeroed, use the SET LINE
command with the COUNTER TIMER parameter. The following command
causes a line counter logging event to take place every 600 seconds:

NCP>SET LINE DMC-0 COUNTER TIMER 600

To clear this parameter, enter the following NCP command:

NCP>CLEAR LINE DMC-0 COUNTER TIMER

At any point when the network is running, you can zero line counters for a
given line or for all known lines. Enter the following commands to zero line
counters:

NCP>ZERO LINE DMC-0 COUNTERS
NCP>ZERO KNOWN LINES COUNTER

3.7 Routing Commands
As network or system manager, you can use certain NCP command
parameters to specify how the network is to be configured into routing and
nonrouting nodes and into areas. Other NCP parameters indirectly control
the path data takes through the network, and control the timing of routing
messages; these parameters have reasonable default values for most networks.
If the network is very large, having a network manager rather than individual
system managers to be responsible for controlling the flow of data through
the network may be helpful.

3.7.1 Specifying the Node Type
You specify the type of node in the TYPE parameter of the DEFINE
EXECUTOR command. DECnet-VAX supports three values for the node
type: NONROUTING IV, ROUTING IV, and AREA. The type of a Phase
IV end node is NONROUTING IV, the type of a Phase IV level 1 router
is ROUTING IV, and the type of a Phase IV level 2 router is AREA. For
example, to designate the executor as a Phase IV nonrouting node (end node),
enter the following command:

NCP>DEFINE EXECUTOR TYPE NONROUTING IV

To specify the executor as a level 2 router in an area network configuration,
enter the following command:

NCP>DEFINE EXECUTOR TYPE AREA

The default value for node-type depends on the particular type of DECnet-
VAX license key registered (see Section 2.4.1.3). If the key is for a full
function license (supporting routers and end nodes), the default value of the
TYPE parameter is ROUTING IV; if the key is for an end node license, the
default (and only value possible) is NONROUTING IV.

Managing and Monitoring the Network
3.7 Routing Commands

Note that you cannot change the executor node type while DECnet is
running. You must shut down the network, use the DEFINE command to
change the executor node type, and then restart the network.

The SHOW EXECUTOR CHARACTERISTICS command displays the node
type of the executor node. The SHOW NODE STATUS command displays the
node type of a specified adjacent node. The possible values for the node type
are AREA, ROUTING IV, NONROUTING IV, ROUTING III, NONROUTING
III, or PHASE II. A Phase IV node can be a level 2 router (AREA), a level 1
router (ROUTING IV), or an end node (NONROUTING IV). A Phase III node
can be either a router (ROUTING III) or an end node (NONROUTING III).

3.7.2 Specifying the Area Number in a Node Address
To configure a network for area routing, assign each node to a specific area
that has a unique number. The area number is a decimal number, in the
range 1 through 63, which appears as a prefix on the decimal node number of
the individual node. The node number must be unique within the area. The
maximum value for node number is 1023. The area number and the node
number are separated by a period. The format of a node address in an area
network is as follows:

area-number. node-number

For example, node 300 in area 40 has a node address of 40.300.

To set the node address for the local node in an area configuration, use the
SET EXECUTOR command with the ADDRESS parameter, as follows:

NCP>SET EXECUTOR ADDRESS 40.300

Configuration of a network requires that each node is assigned a node address
containing an appropriate area number. If you do not specify an area number
in a node address, the executor area number is used.

You can convert a Phase IV node address to a decimal equivalent for use
in DCL commands, such as COPY, and in sending messages using the Mail
Utility. The algorithm to convert the address to its decimal equivalent is as
follows:

(area-number * 1024) + node-number

You can also convert the address to its hexadecimal equivalent for
incorporation in the Ethernet physical address of the node (see Section 3.3.4).

Referring to a node by name is generally more convenient.

3.7.3 Setting Routing Configuration Limits
During configuration of the network, you can establish certain limits related
to routing over the network. You can limit the number of routers allowed
on a single Ethernet and the number of routing and end nodes permitted on
all Ethernet circuits to which the local node is attached. If the network is
grouped into areas, you can limit the number of areas allowed.

Managing and Monitoring the Network
3.7 Routing Commands

3.7.3.1 Maximum Number of Ethernet Routers and End Nodes Allowed
Certain NCP command parameters limit the number of routers and end
nodes that can be configured on Ethernet circuits. Use the SET CIRCUIT
command with the MAXIMUM ROUTERS parameter to set the maximum
number of routers permitted on a particular Ethernet circuit. The largest
number of routers allowed on an Ethernet is 33, which is the default value
of the MAXIMUM ROUTERS parameter. Note that the recommended limit
on the number of routers on a single Ethernet circuit is 10, because of the
control traffic overhead (routing messages and system identification messages)
involved. For example, the following command specifies that no more than
five routers can exist on Ethernet circuit UNA-0:

NCP>SET CIRCUIT UNA-0 MAXIMUM ROUTERS 5

Use the SET EXECUTOR command with the MAXIMUM BROADCAST
ROUTERS parameter to specify the maximum number of routing nodes that
will be permitted on all Ethernet circuits to which the local node is attached.
Each routing node can be either a level 1 router (capable of routing within its
own area, if area routing is specified) or a level 2 router (capable of routing
within its own area and outside of its area). For example, the following
command specifies that a maximum of 12 routers is allowed on Ethernet
circuits to which the executor node is connected:

NCP>SET EXECUTOR MAXIMUM BROADCAST ROUTERS 12

The default value of this parameter is 32.

Use the SET EXECUTOR command with the MAXIMUM BROADCAST
NONROUTERS parameter to set the maximum number of nonrouting nodes
(end nodes) permitted on all Ethernet circuits to which the local node is
attached. For example, the following command specifies that no more than
20 end nodes can exist on all Ethernet circuits to which the executor node is
connected:

NCP>SET EXECUTOR MAXIMUM BROADCAST NONROUTERS 20

The default value is 64.

3.7.3.2 Maximum Number of Areas Allowed
When configuring an area network, use the SET EXECUTOR command with
the MAXIMUM AREA parameter if you want to set a limit on the number
of areas that the executor node's Routing layer will recognize. For example,
if you want a maximum of 50 areas to be recognized, enter the following
command:

NCP>SET EXECUTOR MAXIMUM AREA 50

If you do not specify this parameter, the Routing layer recognizes up to 63
areas.

Managing and Monitoring the Network
3.7 Routing Commands

3.7.4 Routing Control Parameters
NCP supports routing parameters that provide for circuit cost control
(COST), control of the total path between any two nodes (MAXIMUM COST,
MAXIMUM HOPS), route-through control (MAXIMUM VISITS), and equal
cost path splitting (MAXIMUM PATH SPLITS and PATH SPLIT POLICY).
For a network divided into areas, the area routing parameters for maximum
cost and length of the paths between areas in the network (AREA MAXIMUM
COST, AREA MAXIMUM HOPS) also apply. These parameters are used to
control the path that data is likely to take when being transmitted through the
network, and to minimize congestion at particular nodes in the network. For
most networks, the default values for these parameters should be acceptable.

3.7.4.1 Circuit Cost Control Parameter
Figure 3-2 illustrates sample circuit costs attributed to the network example.
The following paragraphs discuss routing control parameters as they relate to
Figure 3-2.

The COST parameter in the SET CIRCUIT command specifies the circuit cost.
For example, the following command sets a cost for the circuit connecting
node BOSTON to node NYC:

NCP>SET CIRCUIT DMC-2 COST 1

This command sets a low cost for the circuit. Numbers in the range of 1 to 25
are valid circuit costs. The default value is 10.

Establishing a circuit cost standard that is uniform across the entire network
is recommended. The following algorithm is used to determine appropriate
circuit costs. The algorithm is based on circuit delay. Delay is based on circuit
bandwidth.

1 where the bandwidth is greater than 100K bits per second.

x where x is approximately equal to 100,000 divided by the bandwidth, and
where the bandwidth is greater than 4K bits per second but less than 100K
bits per second.

25 where the bandwidth is less than 4K bits per second or the circuit is an
X.25 circuit.

Managing and Monitoring the Network
3.7 Routing Commands

Figure 3-2 Network Circuit Costs

BANGOR

DMC.-1

TRNTO

DENVER

KANSAS

DMC-0

4

4

DALLAS

DMC-4

4

DMC-3
4

DMC-2

NYC

BOSTON

ZK t~fiFi-~i~t

3.7.4.2 Maximum Path Control Parameters
You set both the maximum cost for all circuits to the destination node
(MAXIMUM COST) and the maximum hops that a packet can make
when routed to the destination node (MAXIMUM HOPS) using the SET
EXECUTOR command. You use these parameters to ascertain whether a
destination is reachable. The value of the MAXIMUM HOPS parameter
should always be equal to or greater than the longest possible path within
the network. For the network example, a maximum hop parameter value
of 6 is sufficient. You should choose the maximum cost and hops values
carefully, with regard to the intended use of the network, the actual network
configuration, and possible failures. The default values for these parameters
are reasonable for most networks.

Managing and Monitoring the Network
3.7 Routing Commands

The following example indicates the use of the SET EXECUTOR command to
specify the maximum cost and hops allowed for network routing:

NCP>SET EXECUTOR MAXIMUM COST 100 MAXIMUM HOPS 6

Values in the range 1 to 1022 are valid for the MAXIMUM COST parameter;
the default value is 1022. Values in the range 1 to 30 are valid for the
MAXIMUM HOPS parameter; the default value is 30. The value for the
MAXIMUM HOPS parameter must be less than or equal to the value for
MAXIMUM VISITS. Use as small a number as possible in these ranges.

Figure 3-2 illustrates the relationship between circuit costs and path costs.
To send a packet from TRNTO to DALLAS, the system can route it over
one of two paths, both of which require two hops; the first path is through
BOSTON, the second through DENVER. However, because the path through
BOSTON has a cost of 8 and the path through DENVER has a cost of 5, the
system routes the packet through DENVER.

Under normal conditions, a MAXIMUM HOPS value of 3 would be sufficient
for the network in Figure 3-2. However, if the MAXIMUM HOPS value
were set to 3, a failure of the TRNTO-BOSTON circuit would render TRNTO
unreachable from NYC, KANSAS, or BANGOR, even though a physical
path still exists (the four-hop path NYC-BOSTON-DALLAS-DENVER-
TRNTO). Consideration of possible failures is also important in establishing
the MAXIMUM COST parameter.

3.7.4.3 Route-Through Control Parameter
The MAXIMUM VISITS parameter in the SET EXECUTOR command specifies
the maximum number of nodes a packet can be routed through before
arriving at the destination node. For example, the following command sets
the number of visits to 12:

NCP>SET EXECUTOR MAXIMUM VISITS 12

If the number of nodes that the data packet visits exceeds the value of
MAXIMUM VISITS, the packet is discarded. Generally, use a value that
is two or three times the value for the MAXIMUM HOPS parameter. At a
minimum, the value for the MAXIMUM VISITS parameter must be equal to
or greater than the value for the MAXIMUM HOPS parameter. The maximum
value is 63, which is also the default value.

3.7.4.4 Equal Cost Path Parameters
Circuit costs are used by DECnet to determine the optimum path over which
data is to be transmitted. DECnet selects the path with the lowest cost. If
there are multiple paths of equal cost, and that cost is the lowest cost, the
routing of individual data packets, by default, is split among these equal cost
paths. This method of equal cost path splitting improves network efficiency
by ensuring that multiple equal cost paths are not idle when there is traffic to
be routed. The MAXIMUM PATH SPLITS parameter of the SET EXECUTOR
command specifies the maximum number of equal cost paths to be used for
routing. For example, the following command sets the maximum number of
equal cost paths to 2:

NCP>SET EXECUTOR MAXIMUM PATH SPLITS 2

The default value for MAXIMUM PATH SPLITS is 1.

Managing and Monitoring the Network
3.7 Routing Commands

Equal cost path splitting operates most efficiently for nodes running VMS
Version 5.0 communicating with nodes running DECnet—VAX Version 4.6 or
higher because these versions of the operating system support out-of -order
packet caching. If some nodes in the network are running DECnet—VAX
Version 4.5 or lower, out-of-order packet caching is not supported, and any
packets received out of order are discarded. Therefore, splitting traffic over all
equal cost paths may result in poor network performance.

To control the equal cost path splitting for routing, you can set the executor
parameter PATH SPLIT POLICY. By default, PATH SPLIT POLICY is set to
NORMAL, which indicates that all traffic is to be split equally over all equal
cost paths to a destination node. To restrict the paths used for routing, you
can set PATH SPLIT POLICY to INTERIM. The INTERIM value specifies
that all traffic is to be split over all equal cost paths while forcing packets for
individual network sessions over the same paths to guarantee that packets
are received by the destination node in the correct order. For example, the
following command specifies that all traffic for all network sessions is to
choose the same paths, rather than being split for routing on all equal cost
paths:

NCP>SET EXECUTOR PATH SPLIT POLICY INTERIM

3.7.4.5 Area Path Control Parameters
When a network is divided into areas, the MAXIMUM COST and MAXIMUM
HOPS parameters described previously are used to control the path between
each pair of nodes within each area. A second set of routing parameters
(AREA MAXIMUM COST, AREA MAXIMUM HOPS) is used to control
the total cost and length of paths between level 2 routers within the whole
network. In effect, these parameters control the total possible path between
areas in the network.

The AREA MAXIMUM COST parameter in the SET EXECUTOR command
specifies the limit on the total path cost between the local level 2 router
and any level 2 router in the network. This value is the maximum cost of
circuits on the longest path between level 2 routers. The AREA MAXIMUM
HOPS parameter in the SET EXECUTOR command specifies the maximum
number of hops that a packet can make between the local level 2 router
and any other level 2 router in the network. You use the AREA MAXIMUM
COST and AREA MAXIMUM HOPS parameters to determine whether an
area is reachable. The default values for these parameters are reasonable.
You should select other values carefully, with regard for the level 2 (area)
topology of the network.

The following example illustrates the use of the SET EXECUTOR command
to specify the maximum cost and hops permitted for routing between level 2
routers in the network:

NCP>SET EXECUTOR AREA MAXIMUM COST 500 AREA MAXIMUM HOPS 10

Values in the range 1 to 1022 are valid for the AREA MAXIMUM COST
parameter; the default value is 1022. Values in the range 1 to 30 are valid for
the AREA MAXIMUM HOPS parameter; the default value is 30.

Managing and Monitoring the Network
3.7 Routing Commands

3.7.5 Routing Message Timers
Routing messages exchanged between adjacent nodes contain information
about the cost and hops to each node in the network. Routing update
messages are sent automatically whenever there is a change in the
information (for example, when a line goes down). Nodes that detect the
change (for example, nodes at each end of a line that failed) are the first
to send routing update messages. The changed routing information then
propagates as far as necessary to update all routers.

Routing updates are also sent periodically under control of the routing timers.
These periodic transmissions ensure that routing tables are kept up to date
even in the unlikely event that a routing update message is lost.

You set the timer for transmission of routing messages by using the SET
EXECUTOR command. For nodes on non-Ethernet circuits, the timer is
called the routing timer. Changing the setting of the routing timer causes
additional routing messages to be transmitted to all adjacent nodes from the
local node, at a specified interval. For example, the following command sets
the frequency of transmission of routing messages to 240 seconds:

NCP>SET EXECUTOR ROUTING TIMER 240

When this timer expires, the local node sends a routing message to all
adjacent nodes. Numbers in the range of 1 to 65,535 are valid for the
ROUTING TIMER parameter; the default value is 600. Allowing NETACP to
supply the default is recommended.

For a node on an Ethernet circuit, the timer is called the broadcast routing
timer. When the timer expires, the local node sends a multicast routing
configuration message to all nodes on the Ethernet. For example, the
following command sets the frequency of routing message transmissions
to 30 seconds:

NCP>SET EXECUTOR BROADCAST ROUTING TIMER 30

The broadcast routing timer for a node on an Ethernet circuit is set to a
much lower value (approximately 30 to 40 seconds) than the routing timer
for a node on anon-Ethernet circuit (every few minutes). Ethernet routing
messages are sent more often so that full routing messages can be exchanged
in case of datagram loss. The default value for this parameter is 40.

3.7.6 CI End Node Circuit Failover
If you configure a VAXcluster that uses the CI as its DECnet datalink to
include end nodes as well as routers, you can define a backup circuit in each
end node that takes over should the primary circuit connecting the end node
to its router fail.

An example is a three-node cluster comprised of one router (R) and two end
nodes (E1 and E2). Each end node should have a circuit defined to the router.
You can define a second circuit in each end node that connects to the other
end node. The backup circuit is defined with a higher cost than the primary
circuit, and its state is set to ON. Under normal circumstances, with all three
nodes operational, the lower cost circuit (to the router) is used. If the router
shuts down, this circuit also shuts down. The backup circuit will become
the lowest cost circuit in the ON state, and will be used. The backup circuit
allows the end nodes to communicate while the router is absent from the
cluster.

Managing and Monitoring the Network
3.7 Routing Commands

If nodes E1, E2, and R have CI port addresses 1, 2, and 3, respectively, you
could define this topology in node E 1 as follows:

NCP>DEFINE CIRCUIT CI-0.3 TRIBUTARY 3 COST 1 STATE ON
NCP>DEFINE CIRCUIT CI-0.2 TRIBUTARY 2 COST 10 STATE ON

The first circuit is the primary circuit; the second circuit is the backup circuit.

This technique can be extended to a larger cluster with two routers and
several end nodes; in each end node, two circuits of different cost are defined,
one to each router. The network could then survive the failure of one router,
but not both.

3.8 Logical Link Commands
Use the SET EXECUTOR command to set logical link parameters that define
the maximum number of active links permitted and to set the timers that
control NSP operation. Use the DISCONNECT LINK command to disconnect
links while the network is running.

3.8.1 Maximum Number of Links
When defining parameters for the local node, you may specify the maximum
number of logical links that can be active for that node. DECnet-VAX uses
this value to determine the size of internal data structures. The following
command sets the maximum number of links at 30:

NCP>SET EXECUTOR MAXIMUM LINKS 30

Note that this value includes both inbound and outbound logical links. In this
example, you can have only 15 links if both ends of all links are terminated
locally.

If an alias node identifier has been established, you may also specify the
maximum number of logical links that can be active at the local node using
the alias node identifier. For example, the following command sets the alias
maximum links at 40:

NCP>SET EXECUTOR ALIAS MAXIMUM LINKS 40

When a VAXcluster uses an alias node identifier, two kinds of link (alias node
and local node) are possible. These links are controlled by the appropriate
parameter, MAXIMUM LINKS or ALIAS MAXIMUM LINKS. When you
specify both of these parameters, the upper limit on the number of logical
links that use the individual node identifier is reduced. Refer to the VMS
Network Control Program Manual for information about logical link restrictions.

Managing and Monitoring the Network
3.8 Logical Link Commands

3.8.2 Disconnecting Logical Links
You can selectively disconnect logical links active on the local node while the
network is running. The first of the following commands disconnects link
1827; the second disconnects all links active with all remote nodes:

NCP>DISCONNECT LINK 1827

NCP>DISCONNECT KNOWN LINKS

Use the SHOW KNOWN LINKS command to obtain link status information,
including link addresses, and to verify that links have been disconnected
upon entering these commands (see Section 3.3). DECnet-VAX maintains
and uses link addresses.

Optionally, you can disconnect a single link or all known links to a particular
node. For example, the following NCP command disconnects all links to
node TRNTO:

NCP>DISCONNECT KNOWN LINKS WITH NODE TRNTO

3.8.3 Logical Link Protocol Parameters
A variety of parameters exist for controlling NSP-related logical link activity.
These parameters regulate the bounds for NSP connect sequences, inactivity
intervals, and message retransmission. Another parameter limits the amount
of nonpaged pool NSP uses for logical link transmission. You can change
these parameters at any time, without affecting existing logical links.

3.8.3.1 Incoming and Outgoing Timers
There are two timers that regulate NSP connect sequences: an incoming timer
and an outgoing timer. Use the INCOMING TIMER parameter to specify the
maximum duration between the moment a logical link connection is received
for a process on the local node and the moment the process accepts or rejects
the connection. Using a value between 30 and 60 is recommended. To allow
30 seconds for connection confirmation, enter the following command:

NCP>SET EXECUTOR INCOMING TIMER 30

Expiration of this timer signals that a timeout has occurred. In effect, this
timer protects the local node against a process that never responds to an
inbound connection request.

The OUTGOING TIMER parameter specifies a timeout value for the duration
between the time a connection is requested and the time it is acknowledged
by the destination node. Using a value between 30 and 60 is recommended.
For example, the following command allows 30 seconds to elapse before a
timeout is assumed to have occurred:

NCP>SET EXECUTOR OUTGOING TIMER 30

A typical value for this timer ranges from 10 to 90 seconds, depending on
line speed and network diameter. The network diameter is the maximum
diameter over the set of shortest paths between all pairs of nodes in the
network. In effect, this timer protects the user on the local node against a
connection request that never completes.

3-74

Managing and Monitoring the Network
3.8 Logical Link Commands

3.8.3.2 Inactivity Timer
A logical link is inactive when no data is transmitted in either direction for
a given interval of time. The inactivity timer regulates the frequency with
which local DECnet software tests the viability of an inactive link, thereby
protecting the user against a link that may be permanently unusable. Use the
INACTIVITY TIMER parameter to specify the maximum duration of inactivity
before the local node tests the viability of the link. For example, the following
command sets the inactivity interval to 60 seconds:

NCP>SET EXECUTOR INACTIVITY TIMER 60

When this timer expires, DECnet—VAX generates artificial traffic to test
the link. The timer starts after an incoming message for the link has been
processed. The timer is reset if any messages are received on the link.

3.8.3.3 NSP Message Retransmission
A third group of parameters regulates the frequency of NSP message
retransmission. These are the DELAY WEIGHT, DELAY FACTOR, and
RETRANSMIT FACTOR parameters for the local node. Using default values
for these parameters is recommended.

NSP estimates the current delay in the round-trip transmission to a node with
which it is communicating. The value of the DELAY WEIGHT parameter
is used to calculate a new value of the estimated round trip delay. The old
round trip delay is weighted by a function of this statistical factor to calculate
the new round trip delay. If the delay weight is set high, the retransmit time
changes slowly. If the weight is set low, the observed round trip time can
change quickly if the observed round trip delays vary widely, and thus the
retransmit time can change more rapidly.

The value of the DELAY FACTOR parameter is multiplied by one-sixteenth of
the estimated round trip delay time to determine the appropriate value for the
time to retransmit certain NSP messages.

You use values in the range of 1 to 255 to specify values for the DELAY
FACTOR parameter, as in the following example:

NCP>SET EXECUTOR DELAY WEIGHT 3 DELAY FACTOR 48

The default value is 80. For a complete discussion of these concepts, refer to
the Network Services Protocol Functional Specification.

The value of the RETRANSMIT FACTOR parameter regulates the number of
times NSP reattempts a transmission when its retransmission timer expires for
a logical link. This value must be a number in the range of 1 to 65,535; the
default value is 10. For example, the following command specifies that NSP
should reattempt a transmission no more than 10 times:

NCP>SET EXECUTOR RETRANSMIT FACTOR 10

If NSP tries to retransmit an eleventh time, the logical link disconnects.

In the process of logical link connect sequences, the value of the
RETRANSMIT FACTOR parameter takes precedence over the OUTGOING
TIMER value. As a result, the actual time necessary for the specified
number of retransmits may not match the setting of the OUTGOING TIMER
parameter.

Managing and Monitoring the Network
3.8 Logical Link Commands

Note: Unless you have a special need to change the operating characteristics of
a logical link, you should use the default values for DELAY WEIGHT,
DELAY FACTOR, and RETRANSMIT FACTOR. In other words, do not
define these parameters in the permanent database.

3.8.3.4 Pipeline Quota
The PIPELINE QUOTA parameter in the SET EXECUTOR command specifies
the maximum number of bytes NCP can use from nonpaged pool to buffer
logical-link transmit requests. In effect, this quota determines the number of
packets NCP transmits on a single logical link before waiting for a positive
acknowledgment from the remote end of the link. You determine the number
of packets by dividing the PIPELINE QUOTA value by the EXECUTOR
BUFFER SIZE value.

Unlike previous releases of DECnet-VAX, this PIPELINE QUOTA is not
deducted from the byte count quota of the user process. This change allows
the system manager to set the process byte count quota to sensible values
without concern for the nonpaged pool requirements of DECnet. DECnet's
nonpaged pool usage with respect to the transmission over logical links
is bounded by the product of the values of the PIPELINE QUOTA and
MAXIMUM LINKS parameters.

The following command sets a pipeline quota of 6000 bytes for the local node
that is using a satellite link:

NCP>SET EXECUTOR PIPELINE QUOTA 6000

The default value for PIPELINE QUOTA is currently 3000. If satellite
communication is being used, you may need to increase this value to 6000 or
more in order to improve DECnet performance.

Note: The SET EXECUTOR parameter PIPELINE QUOTA should not be
confused with the SET LINE parameter TRANSMIT PIPELINE. The
PIPELINE QUOTA parameter relates to transmission over logical links,
while TRANSMIT PIPELINE relates to data links. These parameters
address different levels of the Digital Network Architecture.

3.9 Object Commands

Use the SET OBJECT command to establish and modify the object parameters
listed in Table 3-6. To remove any or all object parameters from the volatile
database, use the CLEAR OBJECT command.

Table 3-6 Object Parameters and Their Functions

Parameter Function Parameter

Identifies object by number

Identifies command procedure for
starting the object

Specifies connect privileges for user-
level access control

NUMBER number

FILE file-id

PRIVILEGES privilege-list

Managing and Monitoring the Network
3.9 Object Commands

Table 3-6 (Cont.) Object Parameters and Their Functions

Parameter Function Parameter

Specifies optional default proxy login
access control for the object

Determines how the object will
respond to incoming connect requests
directed to the alias node identifier

Associates outgoing connect requests
for the object with the alias node
identifier

Specifies optional default access
control for inbound connects

INCOMING

PROXY OUTGOING
BOTH
NONE

ALIAS INCOMING ~ DISABLED 1
ENABLED I

ALIAS OUTGOING ~ DISABLED l
ENABLED I

ACCOUNT account
PASSWORD password
USER user-id

3.9.1 DECnet—VAX Objects
Use the SET OBJECT command to establish and modify certain DECnet-VAX
objects and their command procedures.

3.9.1.1 DECnet—VAX Object Identification
When defining or modifying object parameters, you must identify the name
of the object. DECnet object names are descriptive alphanumeric strings
of up to twelve characters. DECnet software also uses object numbers as
unique object identifiers. Object numbers have a range of 1 to 255. Most
user-defined images have a 0 object type. However, a user program should
have a nonzero number assigned when it provides a known service. You may
define an object name of TASK in the configuration database to objects with
a 0 object type if you provide additional required privileges or default
inbound access control to the object.

Generic objects such as FAL and NML have nonzero object numbers that are
recognized throughout the network. User-defined images may have unique
nonzero object numbers; numbers between 128 and 255 are reserved for this
purpose. (For a list of object numbers and their associated names, refer to
the VMS Network Control Program Manual.) Unlike objects with a 0 object
type, you must set each nonzero object in the configuration database. Use the
NUMBER parameter to specify a unique object number for nonzero objects.
For example:

NCP>SET OBJECT F00 NUMBER 129

Note that the object name may not be unique to the generic services specified.
Only object numbers are unique across systems. For consistency, however,
using object names as they are normally referenced throughout the network
is recommended.

When NETACP receives alogical-link connect request message from a remote
node, it translates the message into network connect block (NCB) format
and delivers it to the destination object running on the local node. (Refer to
Chapter 8 for a description of the NCB.}

Managing and Monitoring the Network
3.9 Object Commands

3.9.1.2 Using the Cluster Alias Node Identifier for the Object
Command parameters for the SET OBJECT and DEFINE OBJECT commands
specify how certain objects treat incoming and outgoing connect requests
associated with the alias node.

By specifying the ALIAS OUTGOING parameter for a particular object, you
can indicate whether the object uses the alias node address in any outgoing
connect request.

This parameter makes it possible to direct an object such as MAIL to use the
alias node address rather than the executor address for outgoing connections.
For example, to direct the object FOX to use the alias node identifier for all
outgoing connect requests, enter the following command:

NCP>SET OBJECT FOX ALIAS OUTGOING ENABLED

By default, only the object MAIL is so enabled. All other objects are disabled
unless specified as otherwise.

Objects such as PHONE, which use a protocol that depends on multiple links,
should not have the ALIAS OUTGOING parameter enabled.

Use the ALIAS INCOMING parameter to specify how certain objects are to
respond to incoming connect requests that are directed to the alias node. You
can either enable or disable specific objects from receiving these incoming
connections.

This parameter allows you to restrict incoming connections to only those
objects that are appropriate. You should not enable any object that can
receive multiple incoming links or whose resources are not available
clusterwide. For example, to disallow the object FOO from receiving incoming
connect requests directed to the alias node address, enter the following
command:

NCP> SET OBJECT F00 ALIAS INCOMING DISABLED

By default, if you establish an alias node identifier for the node, ALIAS
INCOMING is enabled for all objects except PHONE. If a user attempts to use
an alias node address to connect to an object for which ALIAS INCOMING
has been disabled, the status message NO SUCH OBJECT is returned.

3.9.1.3 Example of Using the Cluster Alias Node Identifier
The following scenario illustrates how use of an alias node identifier can
facilitate communication between a node within a cluster and a remote node.

A cluster includes nodes THRUSH and ROBIN. The network manager
establishes a node name CLUSTR in the database by entering the following
DEFINE NODE command:

NCP>DEFINE NODE 2.13 NAME CLUSTR

To establish the node name CLUSTR as the alias node identification for the
cluster, the network manager then enters the following command:

NCP>DEFINE EXECUTOR ALIAS NODE CLUSTR

Because an alias node identifier has been set, the ALIAS INCOMING
parameter is enabled by default. This means that all incoming connect
requests addressed to the alias node identifier are routed to a node that uses
the alias.

l~J

l`J

3-78

Managing and Monitoring the Network
3.9 Object Commands

The network manager also indicates that the MAIL object is to use the alias
node identifier in its outgoing connect requests by entering the following
command:

NCP>DEFINE OBJECT MAIL ALIAS OUTGOING ENABLED

After the network is started, a user with the user name JONES logs on to
node THRUSH. JONES then sends a mail message to user SMITH on node
BOSTON, which is outside the cluster. Because MAIL is enabled for outgoing
connect requests, it appears that JONES has sent mail from node CLUSTR.
An hour later, when user SMITH reads the mail from JONES, the mail is
associated with the node-identifier CLUSTR::JONES.

SMITH decides to reply to the mail from JONES. SMITH sends the mail
message to JONES using the destination node CLUSTR.

Meanwhile, the node THRUSH has been taken down for maintenance, so
JONES has logged on to node ROBIN. Because ROBIN has also been enabled
for incoming connect requests addressed to the alias node identifier, JONES
receives the mail from SMITH. The mail is addressed to CLUSTR::JONES,
and is delivered to a node that uses the alias.

3.9.1.4 DECnet—VAX Command Procedure Identification
For nonzero-numbered objects, the default name of this command file is
SYS$SYSTEM:objectname.COM. Nonzero objects are identified in the logical
link connect message only by object number. Therefore, there must be an
entry in the object volatile database that enables NETACP to locate the
object name using the object number as a key. When you install DECnet-
VAX, nonzero object network-defined command procedures are entered by
default in the SYS$SYSTEM directory, and NETACP knows about these
command procedures. The supplied command files, named objectname.COM,
include FAL, HLD, NML, EVL, DTR, MAIL, PHONE, and MIRROR. Except
for those command procedures supplied by DIGITAL, you must create a
command procedure for every object that can be started by an inbound
connection request. You should name command procedures for nonzero
objects objectname.COM and place them in SYS$SYSTEM.

For zero-numbered objects, the default name of this command file is
SYS$LOGIN:objectname.COM. Zero objects are identified in the logical link
connect message by object name. Therefore, there is no need for an entry
in the object volatile database. You can, of course, specify an entry in the
object database at any time. You are required to include a separate entry if
you want special features such as default inbound access control information.

In either case, you can override the rules for locating the command file by
explicitly specifying a command procedure file in the SET OBJECT command.
This file is associated with the object in the object volatile database, as shown
in the following example:

NCP>SET OBJECT FAL NUMBER 17 FILE SYS$MANAGER:TRIALFAL.COM

NCP>SET OBJECT USERS NUMBER 0 FILE SYS$SYSTEM:USERS.COM

This technique can be particularly useful for zero-numbered objects. The
command file would then be found in the same place, regardless of which
access control information you use. If you do not specify the FILE parameter,
copies of the command file would have to exist in the SYS$LOGIN directory
of every account in which the object may possibly run.

Managing and Monitoring the Network
3.9 Object Commands

Note: Because REMACP is started by a RUN command in RTTLOAD.COM,
there is no REMACP.COM procedure to start the object, and the software
does not create a REMACP.LOG file.

You can also invoke an image directly to serve as a network object, rather
than using a command procedure. To do this, specify the object file name as
objectname.EXE, as in the following example:

NCP> SET OBJECT FAL NUMBER 17 FILE FAL . EXE

You should place the image in SYS$SYSTEM. This approach causes the
object to be started up more quickly; it is useful in cases where no advantage
is gained by invoking the image from a command procedure. The session log
appears as part of the NETSERVER.LOG file.

3.9.2 VAX PSI Objects
Use the SET OBJECT command to identify each VAX PSI object, its command
procedure, and the account information to be used by calls coming in to the
object from remote DTEs.

3.9.2.1 VAX PSI Object Identification
Each object must have a unique name. Object names are descriptive
alphanumeric strings up to 12 characters in length, for example, OBJONE.

For VAX PSI objects, you must specify NUMBER 0 the first time you specify
the object.

Use the SET OBJECT command to identify the object. For example:

NCP>SET OBJECT OBJONE NUMBER 0 . . .

3.9.2.2 VAX PSI Command Procedure Identification
The system manager must create a command procedure far every object
that can be accessed by a destination. Command procedures are named
filename.COM.

Use the FILE parameter to specify the command procedure for an object. For
example:

NCP>SET OBJECT OBJONE . . . FILE STARTUP.COM . . .

The file name is associated with the object identification in the configuration
database. To allow connections to an object, you must first create a command
procedure in the default directory for the user account. VAX PSI automatically
creates a log file (filename.LOG) every time an incoming call causes an object's
command file to be executed. This file is created in the default directory of
the account. The log file is helpful for debugging your own network tasks
when an error occurs.

The command procedure contains at least a RUN command for an image. It
may also contain terminal assignments for debugging purposes (for example,
DBG$INPUT and DBG$OUTPUT). There are no restrictions on the type of
commands you can have in this file.

3-80

Managing and Monitoring the Network
3.9 Object Commands

3.9.2.3 VAX PSI Object Account Information
You should specify the account information that is used by incoming calls
from remote DTEs for each object.

Use the ACCOUNT, PASSWORD, and USER parameters to specify the
account information. For example:

NCP>SET OBJECT OBJONE . . . USER NET -
_ PASSWORD NET ACCOUNT PAULS.. .

The USER parameter is mandatory. The ACCOUNT and PASSWORD
parameters are optional and, by default, are not used.

3.10 X.25/X.29 Server Module Commands
The X25-SERVER and X29-SERVER module components handle incoming
X.25 and X.29 calls from a PSDN. The server components contain records that
identify destinations for incoming calls and associate, with each destination,
parameters that determine whether the destination can handle an incoming
call. The destination can be on a local DTE connected directly to a PSDN,
or on a host node to which an X.25 multihost connector node is forwarding
incoming calls. The server database also specifies the maximum number of
incoming and outgoing circuits that each module (that is, all destinations for
that particular module) can have, and specifies the state of the module.

3.10.1 X25—SERVER and X29—SERVER Module Identification
Use the SET MODULE X25-SERVER and SET MODULE X29-SERVER
commands to identify the modules that handle incoming calls. The
parameters for these two modules are the same. Use separate commands to
specify the destination qualifier (DESTINATION), and the module parameters
(MAXIMUM CIRCUITS, STATE, and COUNTER TIMER).

3.10.2 Destination Identification
Each destination must have a unique name. Destination names are
descriptive alphanumeric strings, from 1 to 16 characters in length. Use
the DESTINATION qualifier to specify the destination name. For example:

NCP>SET MODULE X25-SERVER DESTINATION JOE . .

Associate any of the following parameters with each destination:
SUBADDRESSES, GROUP, CALL MASK, CALL VALUE, CALLED
ADDRESS, INCOMING ADDRESS, RECEIVING DTE, REDIRECT REASON,
SENDING ADDRESS, NETWORK, EXTENSION MASK, EXTENSION
VALUE, PRIORITY, OBJECT, and NODE.

You use the parameters from SUBADDRESSES through EXTENSION ~IALUE
to determine whether a call is handled. (If you do not specify a parameter,
the parameter is not used.) The PRIORITY parameter sets the priority of the
destination, and the OBJECT parameter names the object activated when a
destination accepts an incoming call. The NODE parameter identifies the host
node on which the destination is located, if the call is received through a local
X.25 multihost connector node.

The parameters are described in the following sections.

3-81

Managing and Monitoring the Network
3.10 X.25/X.29 Server Module Commands

3.10.2.1 DTE Subaddress Range
Use the SUBADDRESSES parameter to specify a local DTE Subaddress or
a range of subaddresses for each destination. The destination uses this
information to decide if it can handle incoming calls.

In the following command, destination JOE will handle only incoming X.25
calls that specify local DTE subaddress 35:

NCP>SET MODULE X25-SERVER DESTINATION -

_ JOE SUBADDRESSES 35.. .

The following command, however, specifies that destination JOE will handle
all incoming X.25 calls that specify a local DTE subaddress in the range 12
to 24:

NCP>SET MODULE X25-SERVER DESTINATION JOE -
_ SUBADDRESSES 12-24.. .

A subaddress is a decimal integer in the range 0 to 9999. Separate two
subaddresses with a single hyphen to indicate a range. The second
subaddress must always be greater than the first.

The SUBADDRESSES parameter is optional, and, by default, no subaddress
range is used to determine if the destination can handle an incoming call.

3.10.2.2 Group Identification
Use the GROUP parameter to specify a closed user group (CUG) or bilateral
closed user group (BCUG) name for each destination. The destination uses
this information to decide if it can handle incoming calls. The following
command indicates that destination JOE will handle only incoming X.25 calls
that originate from a DTE that is a member of the closed user group ESECUG:

NCP>SET MODULE X25-SERVER DESTINATION JOE -
_ GROUP ESECUG . . .

The GROUP parameter is optional, and, by default, no group name is used to
determine if the destination can handle an incoming call.

3.10.2.3 Remote DTE Identification
Use the SENDING ADDRESS parameter to specify the remote DTE address
that sent the call, that is, the address contained in the calling address field in
the call packet. The DTE address consists of 1 to 15 digits. The destination
uses this information to decide if it can handle incoming calls.

As an example, the following command specifies that the destination JOE will
handle only incoming X.25 calls that come from the remote DTE with address
987321654:

NCP>SET MODULE X25-SERVER DESTINATION JOE -
_ SENDING ADDRESS 987321654.. .

The SENDING ADDRESS parameter is optional and, by default, no remote
DTE address is used to determine if the destination can handle an incoming
call.

3-82

Managing and Monitoring the Network
3.10 X.25/X.29 Server Module Commands

3.10.2.4 User Data Field
Optionally use the CALL MASK and CALL VALUE parameters to specify
a call mask (to be applied to incoming call data before it is tested) and a
call value (the string used to test incoming call data). If you specify these
parameters, VAX PSI extracts the user data from the incoming call request
and performs a logical AND operation between this data and the call mask.
VAX PSI then compares the result of this operation with the call value; if
the fields match, the destination can accept the incoming call. Note that
the call mask and the call value you specify must be the same length. For
example, the following command indicates that destination JOE will handle
only incoming X.25 calls that contain value 11 in their user data fields:

NCP>SET MODULE X25-SERVER DESTINATION JOE CALL VALUE 11 -
_ CALL MASK FF . . .

The CCITT (Comite Consultatif International Telegraphique et Telephonique)
recommends that you use a value of O1 for incoming X.29 calls. As an
example, the following command indicates that destination JIM will handle
only incoming X.29 calls that contain O1 in their user data fields:

NCP>SET MODULE X29-SERVER DESTINATION JIM CALL VALUE O1 -

_ CALL MASK FF . . .

Specify strings of 2 to 32 hexadecimal digits for the two parameters.

You can use these two parameters to further identify X.29 calls when the
terminal user first connects to the PAD (Packet Assembly/Disassembly
Facility). To do so, specify a destination for the X29-SERVER that recognizes
a value entered as call data when connecting to the PAD. For example, the
following command indicates that the destination JANE will handle incoming
X.29 calls that specify a call data value of A (41 is the hexadecimal value
for A):

NCP>SET MODULE X29-SERVER JANE CALL VALUE 0000000041 -
_ CALL MASK OOOOOOOOFF . . .

The CALL MASK and CALL VALUE parameters are optional and, by default,
no mask or value is used to determine if the destination can handle an
incoming call.

3.10.2.5 Address Extension
The address extension facility is intended to support end-to-end signaling,
as described in the VAX P.5.1. Management Guide. Two parameters are used
for address extension: EXTENSION MASK and EXTENSION VALUE. These
are used like the CALL MASK and CALL VALUE parameters. The extension
mask is applied (by VAX PSI) to the called address extension in an incoming
call and the extension value is compared with the result. For example:

NCP>SET MODULE X25-SERVER DESTINATION JOE -
EXTENSION VALUE 12340000AA EXTENSION MASK FFFFOOOOFF

Here, the destination JOE will handle only incoming calls that have a
hexadecimal address extension value of 1234, followed by any four digits,
followed by AA.

Managing and Monitoring the Network
3.10 X.25/X.29 Server Module Commands

3.10.2.6 Call Redirection
The call redirection facility allows you to receive incoming calls that have
been redirected to your DTE from another DTE connected to the same PSDN.
Four parameters are used to match redirected calls: REDIRECT REASON,
CALLED ADDRESS, INCOMING ADDRESS and SENDING ADDRESS.

The REDIRECT REASON parameter takes one of the following values:

BUSY Indicates that the called DTE is busy

OUT OF ORDER Indicates that the called DTE is of order

SYSTEMATIC Indicates that calls to the called DTE are automatically
rerouted

The CALLED ADDRESS parameter should be matched against the originally
called address. This will be found in the call redirection notification facility
field of the call packet.

The INCOMING ADDRESS parameter should be matched against the address
in the called address field of the call packet.

The SENDING ADDRESS parameter (described in Section 3.10.2.3) should be
matched against the address in the calling address field of the call packet.

For example:

NCP>SET MODULE X25-SERVER DESTINATION JOE -
_ CALLED DTE 123999456 -
_ INCOMING ADDRESS 123789456 -
SENDING ADDRESS 123888456 -

_ REDIRECT REASON BUSY

Here, the destination JOE will handle calls sent from 123888456 to 123999456
that have been redirected to 123789456, because 123999456 is busy.

3.10.2.7 Receiving DTE
Use the RECEIVING DTE parameter to specify the local DTE that has
received the call. For example:

NCP>SET MODULE X25-SERVER DESTINATION READING6 -
RECEIVING DTE 234295432 . . .

This command creates the destination READING6, which matches any calls
received on DTE 234295432.

3.10.2.8 Priority
Use the PRIORITY parameter to specify the priority of each destination. If
more than one destination can accept an incoming call, the destination with
the highest priority is used. For example, the following command assigns a
priority of 3 to destination JOE:

NCP>SET MODULE X25-SERVER DESTINATION JOE PRIORITY 3...

Specify a priority value in the range 0 to 255.

The PRIORITY parameter is mandatory if you specify more than one
destination that could handle the same incoming call. Otherwise, this
parameter defaults to 0.

3-84

Managing and Monitoring the Network
3.10 X.25/X.29 Server Module Commands

3.10.2.9 Object Identification
Use the OBJECT parameter to specify the name of the object that is activated
when an incoming call arrives and is accepted by the destination. Specify the
name as an id-string. If the object name is a string of digits, enclose the string
in quotation marks. You must specify the object itself, using the SET OBJECT
command (see Section 3.9.1).

The following command specifies the object OBJONE:

NCP>SET MODULE X25-SERVER DESTINATION JOE OBJECT OBJONE. . .

When you specify an X.25 Server destination for the first time, the OBJECT
parameter is mandatory unless a NODE parameter is specified. If the
destination includes a NODE parameter, the OBJECT parameter defaults
to 36.

3.10.2.10 Host Node Identification
Use the NODE parameter with the DESTINATION qualifier to identify a
host node on which the destination is located. You can specify the NODE
parameter only for X.25 Server destinations. A host node receives X.25 calls
that have been forwarded by an X.25 connector node connected directly to a
PSDN. If your local DECnet—VAX node is configured with VAX PSI software
in multihost mode to serve as an X.25 connector node, you must specify the
NODE parameter for each host destination. For example, if your local node is
a connector node, enter the following command to specify that incoming calls
are to be forwarded to the indicated destination on host node THRUSH on
the same Ethernet:

NCP>SET MODULE X25-SERVER DESTINATION THRUSH -

SUBADDRESSES 1-10 OBJECT 36 NODE THRUSH

Note that you must configure the host node THRUSH with VAX PSI Access
software to be associated with the X.25 connector node. You must enter the
following command at node THRUSH to specify the destination of X.25 calls
being forwarded by the X.25 connector node:

NCP>SET MODULE X25-SERVER DESTINATION JOE -
SUBADDRESSES 1-10 OBJECT OBJONE PRIORITY 1

3.10.3 Maximum Circuits

Use the MAXIMUM CIRCUITS parameter to specify the maximum number of
circuits that the module (that is, all destinations) can handle. The following
command enables the X.25 Server module (the call handler for incoming X.25
calls) to handle a maximum of 32 circuits (incoming and outgoing calls) at
any one time:

NCP>SET MODULE X25-SERVER MAXIMUM CIRCUITS 32. . .

The MAXIMUM CIRCUITS parameter is optional and, by default, the
maximum is 255.

Managing and Monitoring the Network
3.10 X.25/X.29 Server Module Commands

3.10.4 Operational State of Server
Use the STATE parameter to specify the operational state of the server
module. There are three possible states:

OFF Prevents use of the module and clears all existing virtual circuits

ON Allows normal use of the module

SHUT Prevents use of the module for any new activity, but allows existing
virtual circuits to complete their operation

The following command allows normal use of the module:

NCP>SET MODULE X25-SERVER STATE ON . . .

The STATE parameter is optional and, by default, the state is ON.

For a complete list of states and their transitions, refer to the VMS Network
Control Program Manual.

3.11 X.25 Access Module Commands
The X25-ACCESS module contains the database needed to connect the local
host node to an X.25 connector node that can access specific PSDNs on
behalf of the host nodes. Your local host node must be a DECnet-VAX node
on which VAX PSI Access software is installed. The X.25 connector node
may be a VMS node with VAX PSI software in multihost mode installed or
an X25router node. Refer to Chapter 5 for an example of how to use NCP
commands to configure the X.25 connector and host nodes.

Use the SET MODULE X25-ACCESS command to associate the name of
the X.25 network you want to access with the name of the node serving
as the connector to this network. You can optionally specify access control
information for the link between your host node and the connector node.

3.11.1 Network Identification in an X.25 Access Module
Use the NETWORK qualifier with the SET MODULE X25-ACCESS command
to identify the specific network you want to access through the X.25 connector
node. The network name you specify must be the same as the one defined in
the X.25 protocol module database, at the X.25 connector node.

The following command identifies the network PSS1 to which the local
DECnet-VAX node with VAX PSI Access software wants access:

NCP>SET MODULE X25-ACCESS NETWORK PSS1 . . .

You must specify the NETWORK qualifier and must associate with it the
NODE parameter. You can optionally specify access control information to be
used by VAX PSI Access software in connecting to the X.25 connector node.

Managing and Monitoring the Network
3.11 X.25 Access Module Commands

3.11.2 X.25 Connector Node Identification
Use the NODE parameter to identify the node that is to provide connector
or gateway services to the specified X.25 network. You must configure a
DECnet-VAX node serving as an X.25 connector node with VAX PSI software
in multihost mode. The connector node, also referred to as the target node,
is the one with which the VAX PSI Access software on your local node
establishes a DECnet link in order to transmit and receive X.25 and X.29 calls.
The following command identifies the node ROBIN as the one that is to serve
as the connector node to permit your local host node to access the network
PSS 1:

NCP>SET MODULE X25-ACCESS NETWORK PSS1 NODE ROBIN . . .

ROBIN must be connected by an X.25 line to the PSDN. ROBIN must also
contain an entry in its X.25 server module database indicating that the
destinations of specific incoming X.25 calls are located on your host node (see
Section 2.7).

3.11.3 Access Control Parameters in an X.25 Access Module
You have the option of specifying access control parameters to be used by
the VAX PSI Access software on your local host node in establishing a link
to the node serving as the X.25 connector. The access control parameters are
the standard DECnet-VAX parameters: USER, PASSWORD, and ACCOUNT.
The following command specifies the user identification PSI and password
PSI the local node can use for an inbound connect when establishing a
DECnet link with node ROBIN, the X.25 connector to the network PSS 1:

NCP>SET MODULE X25-ACCESS NETWORK PSS1 NODE ROBIN -
_ USER PSI PASSWORD PSI

Refer to the connector node documentation to determine what use, if any, is
made of these parameters.

3.12 Logging Commands
In order to log events, you must turn on logging. (The DECnet-VAX default
has all events cleared.) To do so, use the SET LOGGING command. Use
the same command to modify any of the logging parameters. To remove
any or all parameters from the volatile database, use the CLEAR LOGGING
command. You must turn the logging state to OFF before attempting to use
the CLEAR LOGGING command.

Table 3-7 lists all logging parameters by function, and groups them according
to operational categories.

Managing and Monitoring the Network
3.12 Logging Commands

Table 3-7 Logging Parameters and Their Functions

Parameter Function Source-Related Parameter Sink-Related Parameter

Identifies events

Identifies source for events

Determines location for logging
events

Assigns name to logging
component

Sets state of logging component

EVENTS event-list
KNOWN EVENTS

CIRCUIT circuit-id
LINE line-id
MODULE X25—ACCESS
MODULE X25—PROTOCOL
MODULE X25—SERVER
MODULE X29—SERVER
NODE node-id

SINK EXECUTOR
SINK NODE node-id

NAME sink-name

HOLD
STATE OFF

N

Source-related and sink-related parameters are mutually exclusive. Therefore,
you cannot use parameters from both categories in a single command. Use
the SET LOGGING EVENTS command to specify source-related events, and
the SET LOGGING STATE command to specify sink-relat~'d events.

For a summary of event class and types and information about the specific
events that the VMS operating system logs, see the VMS Network Control
Program Manual.

The logging component is defined by the device or process that records
the events released by the event logger. The logging component can be a
LOGGING CONSOLE, LOGGING FILE, or LOGGING MONITOR. The
LOGGING CONSOLE is a terminal or a file that receives events on the
sink node in a format the user can read. A LOGGING FILE is a user-
specified file on the sink node. The logging file component receives events
in the standard DNA binary format. (Refer to the DNA Phase IV Network
Management Functional Specification for a description of this format.) Instead
of specifying the console and a file, you can specify asystem- or user-supplied
LOGGING MONITOR program to receive and process DNA format-specific
events. This program could possibly receive event data and adapt user
application network activity to reflect this data.

If the logging sink is the LOGGING MONITOR, DECnet-VAX uses
the Operator Communication (OPCOM) facility to display formatted
event messages on all terminals enabled as NETWORK (using REPLY
/ENABLE=NETWORK). This generally includes the operator console (OPAO).
The format of event messages OPCOM displays is similar to that used for
console logging; however, because of restrictions in the size of messages that
OPCOM can display, some messages may be truncated slightly, and node,
circuit, and line counters are not displayed at all.

To identify the name of the logging component on the local node, use the
NAME parameter. For example, if the component is a logging console file,
the following command creates the file EVENTS.LOG into which formatted
events will be logged:

3-88

Managing and Monitoring the Network
3.12 Logging Commands

NCP>SET LOGGING CONSOLE NAME SYS$MANAGER:EVENTS.LOG

To identify a logging monitor program as the logging component, use the
NAME parameter followed by the program name. See Section 3.12.6.

Regardless of the logging component you use, parameter selection is the
same. If you want to modify parameters for all logging on the network,
then use the plural KNOWN LOGGING component when entering the SET
LOGGING command.

Note: Because console logging uses normal VMS RMS file I/O, if a terminal
is specified as a sink name, the terminal should not be used or allocated
for any other purposes. For example, if you log in using such a terminal,
events will be lost until you log out.

3.12.1 Event Identification
Events are defined by class and type. You can specify the kinds of events to
be logged by using the following event-list format:

class.type

where:

class Identifies the DNA or system-specific layer to which the event pertains.

type Identifies a particular form of event, unique within an event class.

For example, to specify an event in the Routing layer, you use event
class 4. The event types for this class range from 0 to 14. Event type 0
indicates aged packet loss, event type 1 indicates unreachable node packet
loss, and so forth. Refer to the VMS Network Control Program Manual for a
summary of events by class and type. Use the EVENTS parameter far the
SET LOGGING command to specify those events to be logged. If you want
to log all event classes and types, use the KNOWN EVENTS parameter.
When defining the logging component, you must specify events to be logged.

When providing an event list for the EVENTS parameter, you can specify
only one class for each instance of this parameter. However, several formats
can define event types for a particular class. You can specify a single event
type, a range of types, or a combination of the two. The following table
illustrates these formats.

Event List Meaning

4.4

4.5--7

4.5,7-9,1 1

Identifies event class 4, type 4

Identifies event class 4, types 5 through 7

Identifies event class 4, types 5, 7 through 9, and 1 1. Note that
types must be specified in ascending order.

The following commands illustrate invalid event lists:

NCP>SET KNOWN LOGGING EVENTS 4.4,5.1

NCP>SET KNOWN LOGGING EVENTS 4.7,3-4,1

!INVALID COMMAND

!INVALID COMMAND

The first example specifies more than one event class. The second example
specifies event types in numerically descending, rather than ascending, order.

Managing and Monitoring the Network
3.12 Logging Commands

You can use the asterisk (*)wildcard character in an event list. This character
can replace only an event type. The following example illustrates the correct
use of a wildcard character:

NCP>SET KNOWN LOGGING EVENTS 2.*

This command identifies all event types for class 2 events.

Two invalid uses of the wildcard character are as follows:

NCP>SET LOGGING FILE EVENTS *.2-5

NCP>SET LOGGING FILE EVENTS 4.2-*

!INVALID COMMAND

!INVALID COMMAND

The first command specifies specific event types for all classes, which is not
allowed. Unless you use the KNOWN EVENTS parameter, you can specify
event type information only for a single class. The second command uses
a wildcard to specify a partial range of event types, also not allowed. The
wildcard character denotes the entire range of event types for a given class.

3.12.2 Identifying the Source for Events
You can specify the particular source for which events apply, which can be
either a node, a module, a circuit, or a line. For example, to monitor network
activity for circuit DMC-0 connected to the local node, enter the following
command:

NCP>SET LOGGING CONSOLE CIRCUIT DMC-0 .

Events that pertain to activity over this circuit are logged at the console by
the event logger. You can perform the same operation for any remote node.
If you specify no source for a component, the event logger logs events for all
circuits, lines, modules, and nodes known to the local node or DTE.

Note that you can set only one source (a circuit, module, node, or line) as the
source for events in a. single command.

The command CLEAR LOGGING KNOWN EVENTS clears only events that
are not associated with any specific source. To remove an event associated
with a specific source, use the CLEAR LOGGING command that specifies that
source.

3.12.3 Identifying the Location for Logging Events
You can log events either at the local node or a remote node. Use the SINK
parameter to specify the location. For example, the following command
routes all event information to the logging monitor program running on node
DENVER:

NCP>SET LOGGING MONITOR SINK NODE DENVER .

If you do not specify a location, the local node is the default.

Managing and Monitoring the Network
3.12 Logging Commands

3.12.4 Controlling the Operational State of Logging
You can control the operational state of logging only for the local node. There
are three logging states:

HOLD Indicates that the sink is temporarily unavailable. Events destined for
that location are queued.

OFF Indicates that the sink is unavailable for receiving event information.
Events are not logged for that sink.

ON Indicates that the sink is available for receiving event information. This
is the normal operational state.

Use the STATE parameter to specify the operational state of logging on the
local node. The following command forces event information to be queued
for all instances of the logging component on the local node:

NCP>SET KNOWN LOGGING STATE HOLD

Note that this control over logging does not affect the operational state of
the node. Setting the default state to ON in the permanent database is
recommended.

Note: You must specify the event logger object (number 26, name EVL) in the
object database. If you experience difficulty with event logging, examine
the event logger's own log file, SYS$MANAGER:EVL.LOG, for possible
problems.

3.12.5 Event Logging Example
The example in this section illustrates how to use NCP event logging
commands. You may want to log events normally to OPCOM for each
node in the network. In addition, you may want each node to transmit its
events to a single node to be stored in a file. For the three nodes DENVER,
TRNTO, and BOSTON you could enter the following commands at each
node to do this.

At nodes DENVER and BOSTON:

NCP>SET LOGGING MONITOR STATE ON
NCP>SET LOGGING MONITOR KNOWN EVENTS
NCP>SET LOGGING MONITOR SINK NODE TRNTO KNOWN EVENTS

At node TRNTO:

NCP>SET LOGGING MONITOR STATE ON
NCP>SET LOGGING MONITOR KNOWN EVENTS
NGP>SET LOGGING CONSOLE NAME SYS$MANAGER:NETEVENTS.LOG
NCP>SET LOGGING CONSOLE STATE ON
NCP>SET LOGGING CI~NSOLE KNOWN EVENTS

Events from all three nodes are logged to all terminals enabled as NETWORK
(through the DCL command, REPLY/ENABLE=NETWORK) on node TRNTO.
In addition, all local events are logged locally to the file NETEVENTS.LOG
on node TRNTO. Note that the transmitting node always specifies the
destination of the event logger output and causes its locally generated events
to be sent to the receiving sink node to be logged.

Managing and Monitoring the Network
3.12 Logging Commands

3.12.6 Using a Logging Monitor Program
Instead of using a logging console or a logging file, you can specify a logging
monitor program to receive and process events. The logging monitor is
a system- or user-supplied program. The advantage of using a logging
monitor program is that it can be tailored to the specific needs of the network
manager.

You can write logging monitor programs in high-level languages and design
them to perform specific functions desired by the network manager. Thus,
the logging monitor program can be simple or complex, depending on its
design and objective.

The following logging monitor example is a BASIC program called
LOGGER.BAS. It records events released by the event logger and prints
them to a terminal. Detailed information about the format of the events can
be found in the DNA Phase IV Network Management Functional Specification.

10 ! TITLE LOGGER.BAS
i

! This is a sample logging monitor program.
20 MAP (EVENT) k

BYTE FUNCTION_CODE, ~
BYTE SINK_FLAGS, &
WORD EVENT_CODE, 8t
STRING EVENT_TIME = 12, 8t
WORD SOURCE_NODE, ~
STRING REST = 238

100 ! Record events released by the network event logger.
110 OPEN "SYS$NET" FOR INPUT AS FILE #1%, MAP EVENT
120 ON ERROR GOTO 998
200 ! Begin loop to extract events and write them to the terminal.
300 WHILE 1 = 1
400 GET #1%
410 EVENT_CLASS% = EVENT_CODE / 64%
420 EVENT_TYPE% = EVENT_CODE - 32% * (EVENT_CODE / 32%)
430 EVENT_CLASS$ = NUM1$ (EVENT_CLASS%)
440 EVENT_TYPE$ = NUM1$ (EVENT_TYPE%)
450 EVENT$ = EVENT_CLASS$ + "." + EVENT_TYPE$
460 PRINT "Event " EVENT$ "Reported"
499 NEXT
998 RESUME 999
999 END

To use a logging monitor, you must add the name of the program to the
object database. For example, the following commands add the executable
image LOGGER to the database and set LOGGER as the name of the logging
monitor program:

NCP>SET OBJECT LOGGER NUMBER 0 FILE LOGGER.EXE
NCP>SET LOGGING MONITOR KNOWN EVENTS
NCP>SET LOGGING MONITOR STATE ON
NCP>SET LOGGING MONITOR NAME LOGGER

Sample output from the logging monitor program (LOGGER.EXE) is as
follows:

Event 0.9 Reported
Event 0.9 Reported
Event 4.7 Reported
Event 4.10 Reported
Event 4.15 Reported

3-92

Managing and Monitoring the Network
3.13 Network Access Control Commands

3.13 IUetwork Access Control Commands
The system manager can specify NCP commands to provide for access control
at the routing initialization level, at the system level during inbound logical
link connections, and at the node level during inbound and outbound logical
link connections. You can also use NCP commands to control proxy login
access to individual accounts and network objects at the local node. The
following sections indicate the NCP commands and parameters that you
can specify for access control. Refer to Section 2.10 for a description of
DECnet—VAX access control techniques.

3.13.1 Specifying Passwords for Routing Initialization
You can specify in your local configuration database transmit and receive
passwords for each adjacent node. The transmit password is the one you
send to the remote node and the receive password is the one you expect to
receive from the remote node during the routing initialization sequence. Use
the SET NODE command to specify these passwords. Each password can be
one to eight alphanumeric characters in length. For example, the following
command establishes transmit and receive passwords for the circuit or circuits
connecting the local node with node TRNTO:

NCP>SET NODE TRNTO TRANSMIT PASSWORD VAX NODE -
_ RECEIVE PASSWORD VAX NODE

If the password contains one or more space characters, you must delimit it
with quotation marks.

To remove transmit and receive passwords from the volatile database, use the
CLEAR NODE command, as shown in the following example:

NCP>CLEAR NODE TRNTO RECEIVE PASSWORD TRANSMIT PASSWORD

To provide for increased security when a remote node requests a
connection over apoint-to-point circuit, you can use the circuit parameter
VERIFICATION INBOUND to prevent your node from revealing its routing
initialization password while requiring a password from the remote node.

When two nodes communicate over apoint-to-point circuit, only one of the
nodes can have the VERIFICATION INBOUND parameter set. The primary
function of this parameter is to permit the system manager to restrict the
nodes that can initialize over a particular circuit, especially over a dialup
circuit.

When a dialup node attempts to establish a dynamic connection with your
node, the dynamic asynchronous circuit entry is supplied automatically
to your configuration database. This entry includes the circuit parameter
VERIFICATION INBOUND, which prevents your node from supplying
a password to the node requesting a dynamic connection, but requires a
password from the node dialing in.

Note that if you specify VERIFICATION INBOUND for a circuit, you
must also specify the node parameter INBOUND ROUTER or INBOUND
ENDNODE, as appropriate, for the connecting node (see Section 3.13.3). This
requirement applies to both dynamic and static asynchronous connections.

3-93

Managing and Monitoring the Network
3.13 Network Access Control Commands

If, on the other hand, you are a user on a node with a terminal line (such
as a VMS operating system running on a MicroVAX) and you expect to
form a dynamic asynchronous connection with another node, you should
specify a transmit password in your node database. For example, if you are at
node WRKVAX and expect to form a dynamic connection with remote node
VCLSTI on a VAXcluster, specify the following command to establish the
transmit password for the dynamic circuit:

NCP>SET NODE VCLSTI TRANSMIT PASSWORD HOMENODEI

The remote node in a dynamic connection must specify the receive password
it expects to receive from the local node. The system manager at remote node
VCLST 1 specifies the following command to indicate the password expected
from node WRKVAX:

NCP>SET NODE WRKVAX RECEIVE PASSWORD HOMENODEI

3.13.2 System-Level Access Control Commands
You can use the SET NODE command to specify default privileged and
nonprivileged access control strings for outbound logical link requests.
Use the SET OBJECT command to specify privileges required to access
certain objects during inbound logical link requests. You can also use the
SET OBJECT command to specify a default access control string. For NCP
commands to be executed at remote nodes, you can either supply explicit
access control information in the node specification, as parameters in the
command, or by default.

3.13.2.1 Establishing Default Privileged and Nonprivileged Accounts
Use the SET NODE command to specify default access control information for
connecting to remote nodes. If you have not specified explicit access control
information in an outbound logical link request, this default information is
sent with the request. For example, the following command specifies both
privileged and nonprivileged user names and passwords for node DENVER:

NCP>SET NODE DENVER -
_ NONPRIVILEGED USER NETNONPRIV PASSWORD NONPRIV-
_ PRIVILEGED USER NETPRIV PASSWORD PRIV

You should specify default information for all remote nodes with which you
want to have the option of using default access control.

3.13.2.2 Specifying Privileges for Objects
Use the SET OBJECT command with the PRIVILEGE parameter to specify
those privileges that cause the privileged user account to be used rather
than the nonprivileged user account. The privilege list accompanying the
parameter specifies those privileges required for all inbound connections to
that object. For example, you may want to make the FAL object accessible
to any network user, whereas you want to control access to the NML object.
The following command specifies privileges for the NML object in this
instance:

NCP>SET OBJECT NML PRIVILEGES OPER

You need not specify privileges for FAL because it requires only NETMBX
and TMPMBX privileges.

Managing and Monitoring the Network
3.13 Network Access Control Commands

3.13.2.3 Setting Default Inbound Access Control Information
Use the SET OBJECT command with the USER, ACCOUNT, and
PASSWORD parameters to specify default inbound access control
information. For example, the following command specifies default
information that the local DECnet-VAX node can use for inbound connects
from SLD:

NCP>SET OBJECT HLD USER NETNONPRIV PASSWORD NONPRIV

3.13.2.4 Indicating Access Controls for Remote Command Execution
You use access control for remote NCP command execution. When you enter
the SET EXECUTOR NODE and TELL commands, you can explicitly specify
access control information, or you can default to information contained in the
configuration database.

Two formats exist to supply access control information explicitly for
these commands. You can use either a standard VMS node specification
node"user password account":: or the NCP parameter USER, ACCOUNT,
or PASSWORD. For example, the following commands perform the same
operation:

NCP>SET EXECUTOR NODE TRNTO"GRAY MARY"::

NCP>SET EXECUTOR NODE TRNTO USER GRAY PASSWORD MARY

The same formats exist for the TELL command. Use of the standard VM5
node specification format allows you to use a logical name as the node-id for
these commands. It is possible to override access control in a logical name
with explicit access control information in the command.

You can also use access control information to cause NML to run under an
account other than the default DECnet privileged account on the local node.
Enter the following command for this purpose:

NCP>SET EXECUTOR NODE TRNTO"user-id password"

3.13.3 Node-Level Access Control Commands
At the node level, you can specify access control commands that determine
what connections can be made. If your node expects to receive dialup
dynamic asynchronous connection requests, you can check the type of the
dialup node before permitting the connection.

The NCP commands SET NODE ACCESS and SET EXECUTOR DEFAULT
ACCESS, when used together, allow you to partition your network to allow
specific access for each node. For example, assume that there are 10 nodes
in your network, named A through J. The executor is node A. Because
most network traffic occurs among nodes A, B, and C, you could use the
following commands to allow unrestricted incoming and outgoing logical link
connections among those nodes:

NCP>SET NODE A ACCESS BOTH

NCP>SET NODE B ACCESS BOTH

NCP>SET NODE C ACCESS BOTH

Managing and Monitoring the Network
3.13 Network Access Control Commands

Next, assume that you want to allow local users to initiate connections
to node D, but restrict connections from that node. Enter the following
command;

NCP>SET NODE D ACCESS OUTGOING

Finally, assume that you want to allow incoming logical link connections from
all other remote nodes (E through J), but restrict outgoing connections from
the executor node. Enter the following command:

NCP>'SET EXECUTOR DEFAULT ACCESS INCOMING

Note: The executor checks for a node ACCESS entry before it checks for the
DEFAULT ACCESS entry. Remember that, if the executor's state is set to
OFF or SHUT, no logical links are allowed.

You can indicate the type of node that can connect to your node over a
point-to-point circuit by specifying the INBOUND parameter with the SET
NODE command. The INBOUND parameter enables you to check the type
of a connecting node before you form a dynamic connection with the node.
For example, if you expect the VMS node WRKVAX to initiate a dynamic
connection by dialing in to your node over a specific terminal line, you can
specify the following in your node database:

NCP>SET NODE WRKVAX INBOUND ENDNODE

If the node WRKVAX dials in as a router, rather than as an end node, the
dynamic connection is not formed. If you specify INBOUND ROUTER for
the node and it dials in as an end node, the dynamic connection is permitted.

Note that when you specify the node parameter INBOUND, you must also
set the circuit parameter VERIFICATION INBOUND for the circuit over
which the connection is to be made (see Section 3.13.1). If you do not set
VERIFICATION INBOUND for the circuit, the node parameter INBOUND is
ignored.

3.13.4 Proxy Login Access Control Commands
You can control proxy login access for accounts by modifying the executor
database. To control proxy login for network objects, modify the object
database.

Access to individual accounts on the local node by proxy login is enabled by
the INCOMING PROXY and OUTGOING PROXY settings in the executor
database. The default values for these parameters permit both incoming and
outgoing proxy access. The default setting is the recommended option. You
can, however, use the SET EXECUTOR command to modify the INCOMING
PROXY and OUTGOING PROXY values at the local node.

The default value of the INCOMING PROXY and OUTGOING PROXY
entries in the executor database are equivalent to entering the following
commands:

NCP>SET EXECUTOR INCOMING PROXY ENABLED
NCP>SET EXECUTOR OUTGOING PROXY ENABLED

Managing and Monitoring the Network
3.13 Network Access Control Commands

The system manager has the option of changing the default values for proxy
Login. The following examples establish that any proxy login to or from the
local node is prohibited:

NCP>SET EXECUTOR INCOMING PROXY DISABLED
NCP>SET EXECUTOR OUTGOING PROXY DISABLED

Note that if proxy access has been enabled for specific network objects,
the previous SET EXECUTOR commands would not prevent a user from
using a proxy account. Proxy access for network objects must also be
explicitly disabled. The proxy access characteristics established in the object
database take preference over the proxy access characteristics established in
the executor database.

To display the value of the proxy entries for your node, enter the following
command:

NCP>SHOW EXECUTOR CHARACTERISTICS

If proxy login access is enabled at your node, the resultant display includes
the following:

Incoming Proxy
Outgoing Proxy

= Enabled
= Enabled

When incoming proxy login access is enabled, the remote user can access a
file accessible to the local account to which he has default proxy access by
using the node specification NODE:: in the standard VMS file specification.
For example, a remote user can specify the following form of file specification
to access a file on an account on node TRNTO to which he has default proxy
access:

TRNTO::filename

In the following example, the remote user requests access to the local account
PROXY_N, assuming proxy access is allowed:

TRNTO" PROXY_N" ::filename

In this example, PROXY_N may be the default proxy account, or it may be
another proxy account established for the remote user.

To override proxy login, the remote user with a proxy account on a node can
specify NODE"":: in the file specification, causing the default nonprivileged
DECnet account to be used, because explicit null access control is passed to
the remote node.

The SET EXECUTOR command grants proxy login access to specific accounts.
Similarly, you can permit or deny proxy login access to specific network
objects, by using the SET OBJECT command to modify the object database.
Access to a network object through a proxy account is controlled by the
PROXY parameter in the object database. By default, DECnet-VAX has set in
the configuration database PROXY values for some network objects. These
default values are the recommended values. To specify or modify the PROXY
parameter for an object, use the SET OBJECT command with the PROXY
parameter. In the following example, the outgoing proxy access option is set
for the object FAL:

NCP>SET OBJECT FAL PROXY OUTGOING

Managing and Monitoring the Network
3.13 Network Access Control Commands

To display the setting for the PROXY parameter in the database, use the
SHOW OBJECT command with the CHARACTERISTICS parameter, as in the
following command:

NCP>SHOW KNOWN OBJECT CHARACTERISTICS

The resulting display lists the database entries for each known object,
indicating any proxy access that is enabled for the object. For object MAIL,
the display is as follows:

OBJECT =MAIL

Number = 27
User id = NETNONPRIV
Password = TREWQ
Proxy access =outgoing

System managers use the Authorize Utility to manage the permanent proxy
database, NETPROXY.DAT. Information in NETPROXY.DAT is used to
construct a volatile database in the NETACP process when DECnet is started
up. An NCP command, SET KNOWN PROXIES ALL, updates the volatile
proxy database if changes are made while the network is running. This
command clears the contents of the volatile proxy database and rebuilds it
from the permanent proxy database. SET KNOWN PROXIES ALL is executed
as part of the SYS$MANAGER:STARTNET command procedure.

While SET KNOWN PROXIES ALL updates the volatile proxy database, all
modifications of the permanent proxy database are handled by means of the
Authorize Utility. You may not modify the individual entries in the volatile
database.

3.14 Monitoring the Network
You can monitor network activity in one of two ways: by using the NCP
command SHOW or by using the event logging facility and the SET
LOGGING command. This section discusses the use of the SHOW and
LIST commands. Refer to Section 2.9 for a discussion of events and event
logging, and Section 3.12 for a description of the SET LOGGING command.

NCP provides commands to display information about network components,
whether they are defined in the volatile or permanent database. The NCP
command SHOW displays information about components for the running
network. The NCP command LIST performs a similar function, except that it
lets you display and verify information in the permanent database. In many
cases, this information is a subset of the information displayed for the volatile
database.

In general, the SHOW command allows you to monitor the operation of the
running network. For example, whenever someone changes the state of a
circuit, the configuration of the running network in terms of reachable and
unreachable nodes may be changed as well. A circuit failure could have the
same effect. NCP allows you to display the status of network circuits, lines,
modules, and nodes, and thereby to detect such conditions.

When you enter the SHOW and LIST commands, NCP allows you to select
components and display types. You can choose among several display types,
depending on the information you want. The display type determines the
format and type of information NCP displays. Display types are described in
the following table.

3-98

Managing and Monitoring the Network
3.14 Monitoring the Network

CHARACTERISTICS Includes static information that is usually specified in the
configuration database. Depending on the component,
this information may include the identification of a local
node and relevant routing parameters, the names
and numbers of known network objects, and the
identification and cost of circuits connected to the
local node. For VAX PSI, the information may include
identification of a local DTE and relevant parameters;
packet size, window size, and other network parameter
values; device identification; and timer values.

STATUS Includes dynamic information that usually reflects
network operations for the running network. Depending
on the component, this information may include the
local node and its operational state, reachable and
unreachable nodes and their operational states, and
circuits with their operational states. For VAX PSI, the
information reflects the operation of the running VAX
PSI software. Depending on the component, this may
include identification of the line with its operational state.

SUMMARY Includes only the most useful information derived from
both static and dynamic sources. This information
is usually an abbreviated list of information provided
for both the CHARACTERISTICS and STATUS display
types. For VAX PSI, it is usually an abbreviated list of
information provided for the STATUS display type.

EVENTS Includes information about events currently being
logged for the logging component. This display type
is valid only for the SHOW LOGGING and LIST LOGGING
commands.

COUNTERS Provides counter information for circuits, lines, modules,
and nodes, including the local node. Counters are
discussed in the parts of this section that describe the
circuit, line, module, and node commands.

If you do not specify a display type when entering a SHOW or LIST
command, SUMMARY is the default. Examples of these display types and
their formats are given in the VMS Network Control Program Manual.

When you display information about network components, you can use either
the singular or plural form of the component, as shown in the following
example:

NCP>SHOW NODE BOSTON CHARACTERISTICS

NCP>SHOW KNOWN NODES CHARACTERISTICS

For several components, there is a second form of the plural. This form
is the word ACTIVE. Whereas the word KNOWN displays information
for components available to the local node, the word ACTIVE displays
information for all active components that is, components whose state is
other than OFF.

Managing and Monitoring the Network
3.14 Monitoring the Network

Use the word ACTIVE with circuit, line, node, and logging components. For
example, the following command displays the characteristics for all active
nodes in the network:

NCP>SHOW ACTIVE NODES CHARACTERISTICS

The word ADJACENT is also used as a plural in the SHOW NODE command,
as in the following example:

NCP>SHOW ADJACENT NODES STATUS

All NCP display commands optionally allow you to direct the information
displayed to auser-specified output file. For example:

NCP>SHOW KNOWN LOGGING SUMMARY TO SYS$MANAGER:NET.LOG

This command creates the file SYS$MANAGER:NET.LOG containing
summary information of all known logging for the running network. The
default file type is LIS. If the specified file already exists, NCP appends
the display information to that file. If you do not specify an output file,
SYS$OUTPUT is the default.

NML must have the BYPASS privilege to display passwords for the SHOW or
LIST command; if it does not, no information appears if you use SHOW, and
the "no access rights" message appears when you use LIST.

lWJ

3-100

4 DECnet—VAX Host Services

DECnet-VAX can act as the host node in performing the following services
for unattended systems:

• Downline loading of an unattended system: transferring a copy of an
operating system file image from a VMS node to a target node.

• Downline loading of a satellite node in a Local Area VAXcluster from a
VMS node.

• Downline loading of various servers from a VMS node.

• Downline loading of an RSX-11 S task from a VMS node.

• Upline dumping of memory from an unattended system: transferring a
copy of a memory image from an unattended target node to your VMS
node.

• Connecting to a remote console: permitting a VMS terminal to act as the
console for certain unattended systems, such as the DIGITAL Ethernet
Communications Server running Router Server Software.

This chapter describes these operations. Note that host services are not
available over asynchronous lines.

4.1 Loading Unattended Systems Downline
DECnet-VAX allows you to load an unattended system using the services
provided by the Maintenance Operations Module (MOM). MOM provides
a set of maintenance operations over various types of circuit by using
the Maintenance Operations Protocol (MOP). Downline loading involves
transferring a copy of the file image of a remote node's operating system
from a VMS node to the unattended target node. For example, DECnet-VAX
permits you to load an RSX-11S operating system file image from your VMS
node downline to a target node. Downline loading can be initiated by a VMS
operator or by the target node. Both procedures are discussed in this section.

To understand downline loading, it helps to distinguish the nodes involved in
the loading sequence. In the following node descriptions, the command node
and the executor node can be the same or different nodes, but cannot be the
target node.

• Command node. An operator-initiated downline load request originates
at the command node. You use the NCP command LOAD or TRIGGER
to initiate this request.

• Executor node. The executor node actually performs a downline Load or
trigger operation.

• Target node. The target node receives the bootstrap loaders and the
system image file.

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

4.1.1 Downline System Load Operation
Downline loading is initiated in one of two ways:

• An operator initiates the operation with the NCP command LOAD or
TRIGGER. This is called the operator-initated mode.

• The target node initiates the operation by triggering its bootstrap ROM
and sending a program load request to one or more potential executor
node. This is called the target-initated mode.

The operator-initiated mode is used to service maintenance operations
generally requested by an interactive operator. The operator enters
maintenance requests using NCP, which delivers the request to the Network
Management Listener (NML), which, in turn, spawns a process to execute
the MOM image. This process then acts upon the request. With an operator-
initiated load, the local node starts the operation by sending a trigger message
to the target node. Essentially, the trigger message tells an unattended target
node to reboot. After the target node is triggered, it loads itself in whatever
manner its primary loader is programmed to operate. The target node can
request a downline load from either the executor that just triggered it or from
another adjacent node. The target node can also load itself from its own mass
storage device.

The target-initiated mode is used to service unsolicited maintenance requests.
In this mode, NETACP on the host system listens to circuits with service
enabled for any MOP request directed to the local node or to a multicast
address. When such a request arrives, NETACP creates a process to execute
the MOM image. This process reads the request and processes it.

There are some subtle differences in the two modes in which MOM can
execute. In target-initiated mode, MOM runs in a process created by
NETACP. The information that MOM has for fulfilling the unsolicited request
comes firstly from the request itself. This can be data such as the "software
identification" requested by the node and the type of communication device
that the requesting node is using to make the request. Additional information
required to fulfill the request can be obtained from the volatile database
on the local node. The information supplied in the MOP request takes
precedence over the information in the volatile database.

In operator-initiated mode, MOM runs in a subprocess spawned by NML.
Information for fulfilling a request can come from NCP parameters supplied
by the operator, or from the volatile database. Information supplied in the
command line takes precedence over information obtained from the volatile
database.

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

4.1.1.1 Target-Initiated Downline Load
In atarget-initiated downline load, the target node sends a program load
request message. This message is a request for any eligible node to perform
the load. The program load message can potentially specify a number of
fields, including a software identification, a software type, and a service
device.

If the load is target-initiated and the circuit has SERVICE enabled, NETACP
detects a packet of MOP messages coming over the circuit and sets the
circuit's substate to service mode. NETACP then verifies whether MOM can
obtain a file specification before it starts the MOM process. If a software
identification is provided in the MOP request, or if the request is for a
secondary or tertiary loader, NETACP starts the MOM process. Otherwise,
NETACP searches the node database for an entry that matches the hardware
address. If there is no entry, NETACP drops the request. If an entry is
found, NETACP starts the MOM process. NETACP creates a MOM process
named MOM circuit-id_process-number (for example, MOM_UNA-0_1) to
perform the load. The MOM process then attempts to perform the load. If
the circuit between the nodes is a point-to-point circuit, MOM searches the
node database for the information required to service the request. The node
entry is selected based on matching the service circuit parameter. (The service
circuit is the one used for loading,)

If the connecting circuit is an Ethernet, MOM determines if the request was
directed to the multicast address or to the local node. If the request was
directed to the local node, MOM follows the same process as for point-to-
point circuits. If the request was for the multicast address, MOM volunteers
to perform the load. If a software identification is provided in the request,
or if a node entry is found that matches the hardware address of the remote
node, MOM sends a message to the requesting node volunteering to perform
the load. If MOM does not get a response from the remote node, it drops the
received packet and exits. Otherwise, it services the remainder of the load.

When the MOM process has the required information to perform the load (in
the case of a volunteer, MOM has also received a response), it performs the
load operation. Figure 4-1 illustrates this loading process.

If the target node supplies a software identification along with its MOP
program load request, then this identification is the load file specification. If
no software identification is supplied, then the program type field is consulted
to determine which kind of file the target node is requesting.

There are four possible values for program type:

• Secondary loader

• Tertiary loader

• Operating system

• Management file

The secondary loader, tertiary loader, and operating system files designate
image specifications, while the management file value designates a general
data specification. You can use the management file to specify additional
information for downline loading that certain systems may need.

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

Figure 4-1 Target-Initiated Downline Load

BOSTON

(Executor Node)

O ~
MOP LOAD OPERATION ~ ~

~ 0
~ MOP PROGRAM LOAD REQUEST

1

NYC
(Target Node)

ZK-550-81

After it knows the type of file being requested, NETACP can obtain a file
specification in one of three locations. The first location searched is the
program load request message that MOM received. The second is the node
database entry for the requesting node. If the file specification is not in the
node entry or in the program request, and the request is for an operating
system or a management file, the MOM process aborts the service request and
exits. If the request is for a secondary or tertiary loader, MOM attempts to
concatenate the file specification. The components it uses for building the file
specification are SEC or TER (for secondary and tertiary), the mnemonic of
the service device on the requesting node, and a file type SYS. For example,
if the remote node has a UNA as its service device, and is requesting the
secondary loader, MOM creates the file specification SECUNA.SYS. MOM
checks for the existence of the file before volunteering to perform the load. If
the file is not available, MOM aborts the service request and exits.

The typical load sequence for atarget-initiated request is as follows. The
first program to run at the target node is the primary loader. Typically, this
program is either executed directly from the target node's bootstrap ROM,
or it is in the microcode of the load device. After the target node's primary l~J

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

loader is triggered, the target node sends a message requesting a program
load to any eligible executor node. (The executor node may be a specific
node defined by the target node, or any node on the Ethernet.) Usually, the
primary loader requests a secondary loader program, which then may request
a tertiary loader, which, in turn, may request an operating system. The final
module to be loaded is the management file. In this sequence, each program
or file requests the next one until the management file is loaded.

The secondary loader is small and is always sent as a single message. The
tertiary loader, operating system, and management file are larger and are sent
in segments. For all of these, the last segment is followed by a PARAMETER
LOAD WITH TRANSFER ADDRESS message, which supplies the start
address of the image just loaded and contains extra values for the node
identification and the host identification.

The downline load sequence varies when a request originates from a node in
a Local Area VAXcluster. Anode in a Local Area VAXcluster may need more
input parameters than are currently defined in the volatile node database.
Thus, you need to be able to dynamically configure the VMS image to be
loaded, and to transfer more parameters to the target system than those
accommodated by the Parameter Load and Transfer packet. To accommodate
this need, MOM calls on the services of a load assist agent to help fulfill a
downline load request. The load assist agent is an image that makes calls
back to MOM with data that describes the image to be loaded on the target
node.

For downline loads to nodes in Local Area VAXclusters, MOM delivers all
load requests to load assist agents. The node parameter LOAD ASSIST
AGENT identifies a specific agent by file name. Section 4.1.2.7 describes
the procedure for specifying the LOAD ASSIST AGENT file specification.
Another node parameter, LOAD ASSIST PARAMETER, passes an individual
value to a load assist agent file. Section 4.1.2.8 describes the procedure for
specifying the LOAD ASSIST PARAMETER value.

4.1.1.2 Operator-Initiated Downline Load
An operator-initiated load uses NCP to directly request MOM to perform
the load operation. The target node's primary bootstrap may or may not
have to be triggered depending on the state of the target. The target node
is triggered primarily to put it into a known state and to force it to supply
program request information. Figure 4-2 illustrates the loading process.

Use the NCP command LOAD or TRIGGER to perform an operator-initiated
downline load. The TRIGGER command allows you to directly trigger the
remote node's bootstrap ROM, which causes the target node to send its host
a request for a load operation. The programs to be loaded may come from
a local disk file on the target node, another adjacent node, or the command
node.

Note that the TRIGGER command may or may not initiate a downline load.
One of the functions of this command is to simulate the operation that occurs
when you push the BOOT button on the target node. A bootstrap operation
from the local disk may result.

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

Figure 4-2 Operator-Initiated Downline Load

NCP Commands:

TRNTO

(Command Node►

NCP

NCP>SET EXECUTOR NODE BOSTON
NCP>TRIGGER NODE NYC

~ BOSTON
~ (Executor Node)

MOP TRIGGER MESSAGE

PRIMARY
LOADER

NYC
(Target Node)

ZK-549-81

When you use the LOAD command, the executor node proceeds with the
load operation according to the options specified in the initial load request.
You obtain any required information that has been defaulted from the volatile
database. With this information, the executor is thereby able to control the
load sequence.

Section 4.1.2 describes the TRIGGER and LOAD commands, their parameters,
and examples of their use.

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

4.1.1.3 Load Requirements
Prior to attempting a downline load operation, you must ensure that nodes,
lines, and circuits meet the following requirements:

• The target node must be connected directly to the executor node. The
executor node provides the line- and circuit-level access.

• The primary loader must either be a cooperating program in the target
or in the microcode of the target's device. The downline load operation
usually involves loading a series of bootstraps, each of which requests the
next program until the operating system itself is loaded.

• The executor must have access to the load files. The location of the files
can be either specified in the load request or defaulted to in the volatile
database. Remote files are obtained through remote file access operations.
(Refer to the examples in Section 4.1.2.4.)

• The target node must be able to recognize the trigger operation or must
be triggered manually.

• The circuit involved in the load operation must be enabled to perform
service functions. It must also be in the ON or SERVICE state; a
multiaccess Ethernet circuit must be in the ON state. For example,
the following command readies circuit DMC-0 for downline loading node
BANGOR in the network example:

NCP>SET CYRCUIT DMC-0 SERVICE ENABLED STATE ON

• You must turn the line to ON and specify a service timer for the line.
This timer sets the MOP timeout constant for retransmission if necessary.
This is the method by which MOP handles error recovery. The default
for the service timer is 4000 milliseconds. In the following example, the
command sets the retransmission frequency to 5000 milliseconds and
turns on line DMC-0:

NCP>SET LINE DMC-O SERVICE TIMER 5000 STATE ON

Refer to the Maintenance Operation Protocol Functional Specification for a
complete description of MOP error recovery.

4.1.2 Downline Load Parameters
The most convenient method of downline loading involves setting default
information in the volatile database. The operator can use the NCP command
SET NODE to establish default information for the target node in the
volatile database. These default parameters are also used for target-initiated
downline loads, though the MOP program load message can override some
of the defaults. (This default method is discussed later in this chapter.)
Alternatively, you can override the default by specifying several parameters
for the NCP command TRIGGER or LOAD. The following sections describe
each parameter and illustrate their use.

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

4.1.2.1 TRIGGER Command
The TRIGGER command triggers the bootstrap mechanism of a target node,
which causes the node to request a downline load. Because the system being
booted is not necessarily a fully functional network node, the operation must
be performed over a specific circuit. To bring up the system at the target
node, use either the TRIGGER NODE or TRIGGER VIA command. If you
use the TRIGGER NODE command and do not specify a loading circuit, the
executor node obtains the circuit identification associated with the target node
from its volatile database. If you use the TRIGGER VIA command, which
indicates the loading circuit but not the node identification, the executor node
uses the default target node identification in its volatile database. To identify
the target node in the volatile database, specify the SET NODE command
with the appropriate SERVICE CIRCUIT parameter, which establishes the
circuit to be used for loading.

The following command triggers node BANGOR in the network example:

NCP>TRIGGER NODE BANGOR VIA DMC-0

Note that this command specifies a DDCMP circuit over which the operation
is to take place. Figure 4-3 also illustrates the use of the TRIGGER command
for downline loading over a DDCMP circuit in the network example.

If downline loading is to occur over an Ethernet circuit, the executor node
uses the Ethernet physical address of the target node to distinguish it from
other adjacent nodes on the same Ethernet circuit. The PHYSICAL ADDRESS
parameter for the target node is required in the TRIGGER VIA command and
optional in the TRIGGER NODE command.

If you do not specify an Ethernet physical address in the TRIGGER NODE
command, DECnet-VAX derives one from the target's node number and
attempts to trigger the node. A target node that is running DECnet software
has set its own Ethernet physical address and recognizes the address;
otherwise, the target node recognizes only the Ethernet hardware address
set by the manufacturer. If unsuccessful in triggering the node, DECnet-
VAX attempts to use the Ethernet hardware address of the target node from
the volatile database to trigger it. You can set in the volatile database the
Ethernet hardware address originally assigned to the target node's DEUNA
or DEQNA controller by specifying the HARDWARE ADDRESS parameter in
the SET NODE command. (Refer to Section 3.3.4 for a description of Ethernet
addressing.)

Figure 4-4 illustrates the use of the TRIGGER NODE command for downline
loading a target node over Ethernet circuit UNA-0.

When you use the TRIGGER command, how the system load is performed
may not always be obvious. Essentially, this command provides the trigger
message that controls the restart capability for an unattended target node.
After the target node is triggered, it loads itself in whatever manner its
primary loader is programmed to operate. The target node can request
a downline load from either the executor that just triggered it or another
adjacent node, or the target node can load itself from its own mass storage
device.

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

Figure 4-3 Operator-Initiated Downline Load over DDCMP Circuit
~TRiGGER Command)

BANGOR
(Target Node)

TRNTO
(Command Node)

DMC-1

`~ DMC-0

KANSAS

DENVER

NCP Commands:

DALLAS

NYC

BOSTON
Executor Node)

NCP> SET EXECUTOR NODE BOSTON
NCP>SET LINE DMC-1 STATE ON
NCP>SET CIRCUIT DMC-1 STATE ON
NCP>TRIGGER NODE BANGOR SERVICE PASSWORD FEFEFEFE

Z K 186 7 84

One parameter that you can specify for the TRIGGER command is SERVICE
PASSWORD. This parameter supplies a boot password, which may be
required by the target node (see Section 4.1.2.12). If you do not specify this
parameter, a default value from the volatile database is used. Use the SET
NODE command to establish a default value for this parameter in the volatile
database. If no value is set in the volatile database, the value is 0.

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

Figure 4-4 Operator-Initiated Downline Load over Ethernet Circuit
(TRIGGER Command)

UNA-0

BOSTON
(Executor Node)

NCP Commands:

TARGET
(Target Node)

NCP>SET LINE UNA-0 STATE ON
NCP>SET CIRCUIT UNA-0 STATE ON
NCP>TRIGGER NODE TARGET PHYSICAL ADDRESS AA-00-04-00-CB-04 VIA UNA-0

ZK-1213-82

4.1.2.2 LOAD Command
Use the LOAD NODE and LOAD VIA commands to load software downline
to a target node. For example, the following command loads node BANGOR:

NCP>LOAD NODE BANGOR

The LOAD NODE command requires the identification of the service circuit
over which to perform the load operation. If you do not explicitly specify
a service circuit in this command, the executor node uses the SERVICE
CIRCUIT from the volatile database entry for the target node. You must use
the SET NODE command to include the SERVICE CIRCUIT entry in the
volatile database. Alternatively, you can explicitly include the circuit in the
command LOAD NODE BANGOR VIA DMC-0.

You could also use the LOAD VIA command to specify the circuit over
which to perform a downline load. For example, to load using circuit DMC-0
connected to the executor node, enter the following command:

NCP>LOAD VIA DMC-0

The executor node obtains the rest of the necessary information from its
volatile database. The LOAD NODE and LOAD VIA commands work only
if the target node can be triggered by the executor or if the target has been
triggered locally.

If the loading circuit is a multiaccess Ethernet circuit, the executor node uses
the Ethernet physical address of the target node to differentiate the node from
other adjacent nodes on the same Ethernet. You must specify the PHYSICAL
ADDRESS parameter in the LOAD VIA command, which does not identify
the target node, but is optional in the LOAD NODE command.

4-10

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

If you do not specify the PHYSICAL ADDRESS parameter in the LOAD
NODE command, DECnet-VAX derives the Ethernet physical address from
the target node number and attempts to load the target node. A target
node running DECnet software has set its own Ethernet physical address
and recognizes this address; otherwise, the target node recognizes only the
Ethernet hardware address set by the manufacturer. If unsuccessful in loading
the node, the executor node attempts the load using the Ethernet hardware
address of the target node from the volatile database. You can set in the
volatile database the Ethernet hardware address originally assigned to the
target node's DEUNA or DEQNA controller, by specifying the HARDWARE
ADDRESS parameter in the SET NODE command. (Refer to Section 3.3.4 for
a description of Ethernet addressing.)

Figure 4-5 illustrates how to use the LOAD command for downline loading
over Ethernet circuit UNA-0.

Figure 4-5 Operator-Initiated Downline Load over Ethernet Circuit
(LOAD Command)

UNA-0

r

BOSTON TARGET
(Executor Node) (Target Node)

NCP Commands:

NCP>SET NODE TARGET SERVICE CIRCUIT UNA-0
NCP>SET LINE UNA-0 STATE ON
NCP>SET CIRCUIT UNA-0 STATE ON
NCP> LOAD NODE TARGET PHYSICAL ADDRESS AA-00-04-00-CB-04

ZK-1214-82

If you choose to override the default parameters for the LOAD commands,
you can control the following aspects of the load sequence:

• The host node that the target node is to use when the target comes up

HOST node-id

• The identification of the load file

FROM file-id

• The identification of the loader programs

SECONDARY LOADER file-id
TERTIARY LOADER file-id

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

• The software type to be loaded downline first

SOFTWARE TYPE software-type

where:

software-type can be any of the following:

SECONDARY LOADER
TERTIARY LOADER
SYSTEM
MANAGEMENT FILE

If you do not specify SOFTWARE TYPE in the first MOP program request,
the NCP command, or the volatile database, the default is SECONDARY
LOADER.

• The identification of the CPU type and the corresponding software
identification

CPU cpu-type
SOFTWARE IDENTIFICATION software-id

• The identification of the target node's line device type that is to handle
service operations

SERVICE DEVICE device-type

• The identification of the service password for triggering the target node's
bootstrap mechanism

SERVICE PASSWORD hex-password

• The identification of the VMS image that defines system software for
downline loading to a node in a Local Area VAXcluster

LOAD ASSIST AGENT file-spec

• The identification of an additional parameter to be included in a load
assist agent file

LOAD ASSIST PARAMETER item

When entering the LOAD NODE and LOAD VIA commands, you can specify
any or all of the preceding parameters. Any parameter not specified in
the command defaults to whatever information is specified in the volatile
database. Use the SET NODE command to establish default information for
the target node's parameters in the volatile database.

4.1.2.3 Host Identification
At the end of the load sequence, the target receives a message with the name
of the host and places that name in its volatile database. The target can then
use the HOST node-id for downline task loading applications. The host may
be the executor node or any other reachable node except for the target itself.
Use the SET NODE command to specify a default host node where the target
will find the files used to load tasks downline. For example, the following
command sets the host to node NYC when node BANGOR comes up as a
network node (if BANGOR has the necessary DECnet software):

NCP>SET NODE BANGOR HOST NYC

4-12

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

If you do not specify the host, the executor serves as the default host. You
can override any default information by using the HOST parameter for the
LOAD command.

4.1.2.4 Load File Identification
The load files are the files to be loaded downline to the target node. These
files include the secondary loader, the tertiary loader and the operating
system image, and the file specification for the management file. You can
specify default load file names in the volatile database with the SET NODE
command. Load file specifications default to MOM$SYSTEM:filename.SYS,
where filenariie is usually provided by the volatile database. If the files are on
another node, specify node-id:: at the beginning of the file specification.

Figure 4-6 illustrates how to use the LOAD NODE command for loading a
target node over a DDCMP circuit.

If you do not include the secondary and tertiary file names in the LOAD
command or as entries in the volatile database for the target node, the load
files are selected according to the service device type on the target system, not
by the device type on the executor. The default secondary and tertiary loader
files are listed in Table 4-1. The DECnet-11 S kit includes the files listed in
Table 4-1.

If you do not specify load file names in the target's load request, the
NCP command LOAD, or the volatile database, NML provides them by
concatenating the service device with the prefix SEC or TER. For example,
if the service device is a DMC, NML uses the file names SECDMC.SYS and
TERDMC.SYS.

If, however, you include the secondary and tertiary file names as entries in
the volatile database for the target node, they can override the default loader
files shown in Table 4-1. By using the SET NODE command, you can select
your own special load files for a particular target node. If you do not specify
the load files, you can change the service device type at the target node
without changing the target node's database entry at the executor node.

The system image file entry in the host node's volatile database serves as the
default file name for the operating system to be downline loaded. This file
name is required when the target node is to be loaded, but it can be supplied
by the LOAD command.

4-13

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

Table 4-1 Default Loader Files by Target Device Type

Device Type Secondary Loader Tertiary Loader

DA SECDA.SYS TERDA.SYS

DEBNA SECBNA.SYS TERBNA.SYS

DELQA SECLQA.SYS TERLQA.SYS

DELUA SECLUA.SYS TERLUA.SYS

DEQNA SECQNA.SYS TERQNA.SYS

DESVA SECSVA.SYS TERSVA.SYS

DL 1 1 SECDL.SYS TERDL.SYS

DMB32 SECDMB.SYS TERDMB.SYS

DMC 1 1 SECDMC.SYS TERDMC.SYS

DMP 1 1 SECDMP.SYS TERDMP.SYS

DMV 1 1 SECDMV.SYS TERDMV.SYS

DP 1 1 SECDP.SYS TERDP.SYS

DPV 1 1 SECDPV.SYS TERDPV.SYS

DQ 1 1 SECDQ.SYS TERDQ.SYS

DU 1 1 SECDU.SYS TERDU.SYS

DUP 1 1 SECDUP.SYS TERDUP.SYS

DUV 1 1 SECDUV.SYS TERDUV.SYS

QNA SECQNA.SYS TERQNA.SYS

UNA SECUNA.SYS TERUNA.SYS

4.1.2.5 Management File Identification
The management file specifies a data file containing additional management
information necessary for downline loading to a target node. You can
supply a management file by specifying the MANAGEMENT FILE parameter
with a LOAD NODE or LOAD VIA command. You can also establish the
management file value in the node database using the SET NODE command.

For example:

NCP> SET NODE BANGOR MANAGEMENT FILE MANAGE . DAT

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

Figure 4-6 Operator-Initiated Downline Load over DDCMP Circuit
(LOAD Command)

BANGOR
(Target Node)

DENVER

NCP Commands:

TRNTO
(Command Node)

KANSAS

I
I
I
I

~ DMC-1

DALLAS

I
I
I
I
I
I
I
I
I
I
I

I
I
I

BOSTON
(Executor Node)

I
I
I
I
I
I

j DMC-2

I
i
I
I

I
I

NYC

NCP>SET EXECUTOR NODE BOSTON
NCP>SET LINE DMC-1 STATE ON
NCP>SET CIRCUIT DMC-1 STATE ON
NCP>LOAD NODE BANGOR FROM NYC::MOM$LIBRARY:RSX 1 1 S.SYS

7K 1868-84

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

4.1.2.6 Software Type
Along with identifying load files, you can specify the file types to be used for
the initial load. For example, if the target node is already running a secondary
loader program, you may only want to load the tertiary loader and operating
system downline. To do this, you use the SOFTWARE TYPE parameter with
the LOAD command. For example, to load a tertiary loader file, which in
turn loads the operating system image, enter the following command:

NCP>LOAD NODE BANGOR SOFTWARE TYPE OPERATING SYSTEM

Use the SET NODE command to specify default software type information for
the target node entry in the volatile database. If no software type information
is specified in the volatile database, the default type is the secondary loader.

4.1.2.7 Load Assist Agent Identification
The load assist agent is the image that passes additional parameters to MOM
to allow for downline loading to a node in a Local Area VAXcluster. To
specify this image, use the node parameter LOAD ASSIST AGENT with a
LOAD NODE or LOAD. VIA command. You can also set the LOAD ASSIST
AGENT value in the node database with the SET NODE command. The
following command specifies a file containing a specific load assist agent:

NCP> LOAD NODE BANGOR LOAD ASSIST AGENT SYS$SHARE : N I SCS_LAA . EXE

4.1.2.8 Load Assist Parameter Identification
Load assist agents pass parameters to MOM. To add to the set of parameters
already contained in the load assist agent file, use the node parameter LOAD
ASSIST PARAMETER. You can set this parameter value using the LOAD
NODE, LOAD VIA, or SET NODE command. The following command
passes an additional parameter to the load assist agent file:

NCP>SET NODE BANGOR LOAD ASSIST PARAMETER SYS$SYSDEVICE: [SYS9.]

4.1.2.9 CPU and Software Identification
The software identification is the default program name of the operating
system to be loaded downline. Use the SOFTWARE IDENTIFICATION
parameter to specify a so f tware-id of up to 16 alphanumeric characters. For
example, in the following command the CPU parameter specifies the default
processor type to be loaded downline:

NCP>SET NODE BANGOR SOFTWARE IDENTIFICATION RSX_11S_V3.2

4.1.2.10 Service Device Identification
The service device is the controller on the target node end of a service circuit.
The service device handles downline loading in a variety of ways, depending
on the device used. In particular, this device influences the type of files
suitable for downline loading. Default load file names are selected according
to the service device for the target node.

The SERVICE DEVICE parameter identifies the default secondary and tertiary
loaders for the load operation. This parameter is required for any downline
load if the secondary and tertiary load files are not specified in the volatile
database of the target node. SERVICE DEVICE is also required if the program
load requests from the target node do not specify the secondary and tertiary
load file names. Use the SET NODE command to specify the service device
type in the volatile database. For example, the following command identifies
the service device as a DMC device controller:

4-16

NCP>SET NODE BANGOR SERVICE DEVICE DMC

DECnet—VAX Host Services
4.1 Loading Unattended Systems Downline

By using the SERVICE DEVICE parameter for the LOAD command, you can
override the service device default information.

4.1.2.11 Service Circuit Identification
In terms of the executor, the service circuit is a circuit connecting the executor
node with an adjacent target node. When you use the LOAD and TRIGGER
commands, you must specify or default to a circuit over which the load
operation is to take place. Use the VIA parameter to explicitly identify the
circuit when entering these commands. If specifying an Ethernet circuit
in the LOAD VIA command, you must include the PHYSICAL ADDRESS
parameter.

If you do not specify a circuit, this information defaults to the circuit specified
in the target node's volatile database. To set a service circuit in the volatile
database, use the SET NODE command.

4.1.2.12 Service Passwords
When defining nodes for downline loading in the local volatile database, the
system manager can specify a default service password. This password may
be required to trigger the primary bootstrap mechanism on the target node.
If you enter a LOAD or TRIGGER command without a service password,
then this default parameter is used if the target node requires one. To set a
service password in the volatile database, use the SET NODE command. This
password must be a hexadecimal number in the following ranges:

• For DMC/DMR/DMP/DMV, the range is 0 to FFFFFFFF

• For UNA/QNA, the range is 0 to FFFFFFFFFFFFFFFF

For example, to load node BANGOR on circuit DMC-1, enter the following
commands:

NCP>SET NODE BANGOR SERVICE PASSWORD FEFEFEFE
NCP>LOAD NODE BANGOR

4.1.2.13 Diagnostic File
After the target node is loaded downline, it can request diagnostics. Use the
DIAGNOSTIC FILE parameter in the SET NODE command to identify in the
volatile database the diagnostics file that the target node can read.

4.2 Dumping Memory Upline from an Unattended System
As a DECnet-VAX system manager, you can include certain SET NODE
parameters in the volatile database that allow an adjacent unattended node to
dump its memory into a file on your VMS operating system. This procedure is
referred to as Upline dumping. It is a valuable tool for crash analysis; that is,
programmers can analyze the dump file and determine why the unattended
system failed. When an unattended system that selected the appropriate
support at system generation detects an impending system failure, that
system requests an Upline dump; for example, an RSX-11S operating system
may request an Upline memory dump to a VMS operating system.

For Upline dump operations, the local VMS node is referred to as the executor
and the adjacent unattended node as the slave.

DECnet—VAX Host Services
4.2 Dumping Memory Upline from an Unattended System

4 2.1 Upline Dump Procedures
This section describes the procedures for an upline dump initiated by a
slave node. DECnet uses the maintenance operation protocol (MOP) to
perform an upline dump operation. MOP is a subset of the DIGITAL Data
Communications Message Protocol (DDCMP) that sends messages used for
circuit testing, triggering, downline loading, and upline dumping. Refer to the
Maintenance Operation Protocol Functional Specification for a more complete
discussion.

There are four steps involved in the upline dump process. The actual dump
takes place when step 3 is repeated.

1 When a slave node senses a system failure, it sends a memory dump
request to the VMS host node, or, on the Ethernet, to a dump assistance
multicast address if an Ethernet host is not available. The request is
a MOP request dump service message. This message may contain
information about the slave's memory size (DUMP COUNT) and the
upline dump device type at the slave.

2 If the message from the slave includes a DUMP COUNT value, the host
node uses it. Otherwise, the host node checks the slave node's entry in its
volatile database for the DUMP COUNT, the target address from which
to start dumping (DUMP ADDRESS), and the file where the memory
will be stored (DUMP FILE) for the slave. (If no entry exists for DUMP
ADDRESS, the value defaults to 0.) The host node, which can now be
considered the executor, sends a MOP request memory dump message to
the slave with the starting address and buffer size values.

3 Using the values it receives from the executor, the slave returns the
requested block of memory in a MOP memory dump data message.
The executor receives the block of dump data, places it in the DUMP
FILE, increments the DUMP ADDRESS by the number of locations sent,
and sends another request memory dump message to the slave. This
sequence is repeated until the amount of memory dumped matches the
DUMP COUNT value. The executor then sends a MOP Dump Complete
message to the target.

4 When the upline dump is complete, the executor node automatically
attempts to downline load the slave system. It initiates the downline load
by sending a TRIGGER message to the slave (see Section 4.1).

If the target node is on an Ethernet circuit, the target will attempt to perform
an upline dump to the node that originally loaded it downline. If that node is
not available, the target node proceeds as follows:

1 The target node sends a memory dump request to the Ethernet dump
assistance multicast address AB 00 00 O1 00 00 (described in Section
3.3.4.4). This message is a request for any node on the Ethernet to receive
an upline memory dump.

2 The nodes on the Ethernet whose circuits are enabled to perform service
functions check their own databases to determine if they can accept an
upline dump. If so, they respond to the target node. The target chooses
the node responding first to continue the dumping sequence. The target
does not send a message to any other node. The loading sequence
continues normally from there. Note, however, that you may have to
look for event 0.3 in the event logs for all nodes on the Ethernet to
determine which node received the dump. See the VMS Network Control
Program Manual for a summary of all NCP events.

4-18

DECnet—VAX Host Services
4.2 Dumping Memory Upline from an Unattended System

Figure 4-7 illustrates the upline dump procedure.

Figure 4-7 Upline Dumping of RSX-11 S Memory

BOSTON
(Host Node►

VMS

FILE.DMP MOM
f ~ ~ ` Memory Dump Request

0 ~~

~ © ~,
~ dump Address

~ ~
~ ~

© `
~

\ ~ — —~
Memory Data ~

NYC
(Slave Node)

RSX-1 1 S

ZK-554-81

4.2.2 Upline Dump Requirements
Prior to attempting an upline dump operation, you must ensure that the
nodes, lines, and circuits meet the following requirements:

• The slave node must be directly connected to the executor node by a
physical line. The executor node provides the line- and circuit-level
access.

• The slave node must be capable of requesting the upline dump when it
detects a system failure. If the dumping program does not exist on the
slave, upline dumping cannot occur.

• The circuit involved in the dump operation must be enabled to perform
service functions. It must also be in the ON state. For example, the
following command readies circuit DMC-0 for upline dumping node
BANGOR in the network example:

NCP>SET CIRCUIT DMC-0 SERVICE ENABLED STATE ON

• If the slave does not supply the DUMP COUNT value, the executor must
have this value in its volatile database.

• The executor must have a DUMP FILE entry in the volatile database. If
the file-id specifies a remote node, the executor transfers the data using
remote file access routines.

DECnet—VAX Host Services
4.2 Dumping Memory Upline from an Unattended System

• Upline dumping cannot occur unless you define a service timer for the
line. This timer sets the timeout constant for retransmission, enabling
MOP to handle error recovery. For example, to set the retransmission
frequency to 5000 milliseconds for line DMC-0, enter the following
command:

NCP>SET LINE DMC-2 SERVICE TIMER 5000

4.3 Loading RSX-11 S Tasks Downline

Downline task loading extends nonresident initial task load, checkpointing,
and overlay support to a DECnet RSX-11S node. You can load an RSX-11S
task downline by using the Satellite Loader (SLD) on the DECnet-11S node
and the host loader (HLD) on the DECnet-VAX node. SLD uses the intertask
communication facilities of RSX DECnet-11S to communicate with HLD.
Figure 4-8 illustrates one instance of this relationship.

By entering RUN TLK at the operator's console of the satellite system, SLD
requests HLD to load the task downline from a DECnet-VAX node on which
the file is located. Any request from the satellite or host node could also
initiate this operation by means of SLD and HLD.

4.3.1 Setting Up the Satellite System
You build the SLD task during the RSX-11S NETGEN procedure. (Refer
to the DECnet-RSX Network Generation and Installation Guide.) To allow
downline task loading, enter the appropriate commands to the RSX-11S
system image. Use VMR to install and fix SLD into the RSX-11S system, as
follows:

>UMR

ENTER FILENAME:RSXIIS

VMR>INS SLD

VMR>FIX LDR.. .

This sequence of commands establishes SLD as the loading task (LDR...) for
the executive.

Note: The information in this section is specific to DECnet-RSX. For more
information, refer to the related DECnet-RSX documentation.

If the RSX-11 S system is to be loaded downline, any tasks to be downline
loaded to or checkpointed from the RSX-11S system must be installed, but
not fixed, using VMR. For example:

>VMR

ENTER FILENAME:RSXIIS

VMR>INS TLK

In this example, entering RUN TLK on a terminal connected to the RSX-11 S
remote system initiates the downline task load of the file TLK.TSK.

4-20

DECnet—VAX Host Services
4.3 Loading RSX-11 S Tasks Downline

Figure 4-8 Downline Task Loading

BOSTON
(Host Node)

VMS
(HLD.DAT file containing HTASK$ TLK)

Command:

>RUN TLK

NYC
(Satellite Node)

RSX-11S

ZK-553-81

If the RSX-11S system will not be loaded downline, you must specify the
node to which SLD will connect, using the VNP command SET EXECUTOR
HOST (see the DECnet-RSX Network Management Concepts and Procedures).
For example, you could use the following command, where 11 is the number
of the node BOSTON on which HLD resides:

>VNP RSX11S

VNP>SET EXECUTOR HOST 11

DECnet—VAX Host Services
4.3 Loading RSX-11 S Tasks Downline

4.3.2 Host Loader Mapping Table

The Host Loader has a mapping table that is a special user-defined file
(HLD.DAT) that resides in the SYS$SYSTEM directory. The format of the
mapping table is as follows:

HLDTB$
HTASK$ TLK, <TRNTO::SYS$DISK:[LOW]TLK>,UNM
HTASK$ TLK,<SYS$DISK:[LOW.EXT]TLK>,MAP
HNODE$ BANGOR
HTASK$ NCP,<SYS$DISK:[LOW]NCP11S>,LUN
HTASK$. ..LOA,<SYS$DISK:[TEST]LOA>
HNODE$ NYC
HTASK$...MCR,<B:[RSXIIS.UNMAPPED]BASMCR>
.END

The following are keywords for this table.

HLDTB$ Defines the file as the HLD mapping table.

HTASK$ Defines a task entry. The arguments for HTASK$ are

taskname, <filespec> ,[opt-arg]

taskname Is the installed task name used to run the task on the
RSX-1 1 S system.

filespec Is the task file specification on the host node. You
must use angle brackets (< >) to enclose the file
specification.

opt-arg Are optional arguments MAP, UNM, LUN.

HNODE$ Defines the exclusive target node upon which the HTASK$ can
execute.

This table is almost identical in structure to a MACRO-11 source module used
by DECnet-RSX to define its downline task loading tables. Note, however,
that HLD.DAT is accessed directly as a text file and is neither assembled nor
task built. The organization of the mapping table and special features is as
follows:

• A task entry contains the name of the installed task, a file specification,
and an optional control argument. When you use the file specification in
the HTASK$ macro, you can omit the file type that defaults to TSK. A
node entry contains only the node name.

• Any task entries that precede the first node entry are called general-
purpose tasks. You can load ageneral-purpose task into any RSX-11S
node in the network. Task entries that follow a node entry can be sent
only to that particular node.

• The same task name can appear more than once in the general-purpose
task list. This allows both mapped and unmapped RSX-11S systems to
share installed task names. The control argument for ageneral-purpose
task is either MAP or UNM. The default is MAP.

• Tasks to be loaded downline must be installed in the RSX-11S system,
which initializes the task's logical unit number (LUN) assignments. LUN-
fixing is an SLD feature that reinitializes the LUNs after the task has
been loaded downline. This feature allows a single task to be loaded into
multiple RSX-11S systems that may have different systemwide device
assignments. SLD permits you to place a task in ageneral-purpose task

4-22

DECnet—VAX Host Services
4.3 Loading RSX-11 S Tasks Downline

list. You can downline load either ageneral-purpose task or a task after a
node entry.

• If you place a task in ageneral-purpose task list, you can add new nodes
to the network and can downline load general-purpose tasks to those
nodes without changing the mapping table. Nodes that are to receive
only general-purpose tasks need not be mentioned in HLD.DAT. Note,
however, that general-purpose tasks cannot be checkpointed.

4.3.3 HLD Operation and Error Reporting
When SLD attempts to connect to HLD, NETACP on the DECnet—VAX node
uses the default inbound access control information specified for the HLD
object by the system manager (see Section 3.13). You must make sure that
the files associated with the tasks to be loaded or checkpointed are accessible
from the resulting process created by this connection.

When the load operation completes, whether successfully or unsuccessfully,
the log file SYS$LOGIN:NETSERVER.LOG (described in Section 2.6.3)
contains information describing the operation, the node, and the task. This
information may consist of an error returned from RMS or certain HLD-
specific messages that indicate either errors in HLD.DAT or inconsistencies in
the file to be loaded. Messages associated with these inconsistencies are listed
in the following section.

4.3.3.1 HLD Error Messages
The following is a list of HLD error messages.

Format error in HLD.DAT

The format of the HLD mapping table is incorrect. For example, this error
could occur if HNODE$ was expected but not found in the table. Re-create
the table, using the appropriate format.

Syntax error in HLD.DAT

The syntax of an element in the HLD mapping table is incorrect. For example,
the angle brackets needed to enclose the file specification are missing. Re-
create the table.

Task name not found

The task to be loaded downline is not specified in the HLD mapping table.
Re-create the table so that it contains this task name.

No header in task file

The file was built with the /-HD switch. Therefore, it is an invalid RSX-11 S
task image. Rebuild the task.

Mapped task not on 4K boundary

The file was not built with the /MM switch. This error is for mapped
RSX-11S systems only. Rebuild the task.

4-23

DECnet—VAX Host Services
4.3 Loading RSX-11 S Tasks Downline

Unmapped partition mismatch

The TKB address does not correspond with the starting address of the
partition in the RSX-11 S system. This error is for unmapped RSX-11 S
systems only. Rebuild t~ ~e task with aPAR= statement that specifies the
correct starting address.

File too big for partition

The initial load size of the file is larger than the partition size in the RSX-11 S
system. Either make the partition larger or rebuild the file to use a smaller
partition size.

Partition too big for checkpoint space

The partition size in the RSX-11 S system is larger than the checkpoint space
inside the file. Typically, this indicates that the partition size in your PAR=
statement is smaller than the actual size of the partition in the RSX-11S
system. Although the load size of a task may be much smaller than its
partition, the entire partition is transferred during checkpoint operations.
Rebuild the task with the exact partition size from the RSX-11S system.

4.3.4 Checkpointing RSX-11 S Tasks
Checkpointing allows the execution of a task to be interrupted when a higher
priority task installed in the same partition becomes active. The software
writes the interrupted task from RSX-11S memory to a checkpoint file on
the host (Checkpoint Write) and then loads the higher priority task into the
partition and activates it. When the priority task exits, the software restores
the interrupted task into main memory (Checkpoint Read), where it continues
executing.

Note that checkpointing implies that a job is already running in the partition.
Checkpoint space must be allocated inside the task being loaded downline
(through the /AL switch during RSX-11S task build).

4.3.5 Overlaying RSX-11 S Tasks
Overlaying allows the execution of segments of a task in order to reduce the
memory or address space requirements for that task to run on an RSX-11S
system. SLD and HLD handle the reading of overlay segments by satellite
systems.

4.4 Connection to Remote Console
DECnet-VAX allows you to set up a logical connection between your VMS
node and the console interface on certain unattended nodes, in effect
permitting your terminal to act as the console for the remote system. For
example, your terminal can act as the console for the DIGITAL Ethernet
Communications Server (DECSA) hardware and its resident software, such as
the Router Server. The console carrier requester on the host connects to the
console carrier server on the server.

DECnet—VAX Host Services
4.4 Connection to Remote Console

You can set up the logical connection to the console using the remote console
facility (RCF). Both your host node and the target node (that is, the server
node) must be on the same Ethernet. You can use the RCF to force a crash if
the server node becomes unresponsive. (To determine how to force a crash,
see the appropriate documentation for the particular server product.) RCF
also permits debugging under special circumstances.

To use the RCF to connect to a DECSA, you must be sure the console carrier
server image and its loader file are present in the system directory on the host
node. (The file name of the console carrier server image is PLUTOCC.SYS
and that of the loader is PLUTOWL.SYS.) To invoke RCF, specify either the
CONNECT NODE or CONNECT VIA command. The VMS operating system
then uses the loader file to downline load the console carrier server image
into the Ethernet Communications Server hardware unit.

Use the CONNECT NODE command if the name of the target node is
known. If the target node's service password and service circuit are defined
in the host node's volatile database, you can use these default values. If the
Ethernet hardware address of the server node is not defined in the volatile
database, you must specify the PHYSICAL ADDRESS parameter in the
CONNECT NODE command. If you specify the Ethernet physical address of
the target node, DECnet-VAX attempts to use it to load the image file. If you
do not supply an Ethernet address, DECnet-VAX derives an Ethernet physical
address from the target node number, first attempting to use this address, and
then attempting to use the Ethernet hardware address.

To define default information in the volatile database for the target node,
use the NCP command SET NODE to specify the SERVICE PASSWORD,
SERVICE CIRCUIT, and HARDWARE ADDRESS parameters for the target
node. You can override the target node parameter values currently defined in
the volatile database by specifying new values in the CONNECT command.

For example, to connect your VMS terminal to the console interface on
server node RTRDEV, whose Ethernet physical address on circuit UI~TA-0 is
AA 00 04 00 38 00, enter the following command:

NCP>CONNECT NODE RTRDEV SERVICE PASSWORD FEFEFEFEFEFEFEFE -

_ VIA UNA-0 PHYSICAL ADDRESS AA-00-04-00-38-00

Use the CONNECT VIA command if the node name of the target node is not
known. In this command, you must specify the service circuit over which
the logical connection is to be made and the Ethernet physical address of the
target node.

If you have not defined the hardware address of the server node in the
volatile database and have not specified the Ethernet physical address of the
node in the CONNECT command, DECnet-VAX displays an error message
on your terminal, as follows:

Hardware address required

This message indicates that you must specify an Ethernet address for the
target node in your CONNECT command, because no hardware address is
available in the volatile database.

DECnet—VAX Host Services
4.4 Connection to Remote Console

In addition to the messages DECnet-VAX NCP or MOM may issue during
downline loading of the console carrier server code, other messages may be
issued when you attempt to connect to a remote console. For example:

Console in use

The remote console has already been reserved for another purpose. Try to
make the connection later.

Console connected (press CTRL/D when finished)

The RCF is now ready for use. CTRL/B is used to pass a break character to
the remote console. CTRL/D terminates the console session and causes the
NCP prompt to be displayed.

Target does not respond

The remote console is supposed to respond quickly to inputs but is not doing
so, or no connection can be made.

~J

Part II I Network Configuration, Installation, and
Testing

5 Configuration of a Network

This chapter explains how to set up your VMS operating system for use in
a DECnet-VAX network and provides sample configuration examples for
various types of network. The Guide to DECnet-VAX Networking provides a
summary of basic instructions for bringing up a DECnet-VAX node in the
network.

5.1 Prerequisites for Establishing a Network
Before configuring your DECnet-VAX node, you need to satisfy certain
prerequisites for DECnet-VAX operation, such as setting up user accounts and
directories, defining user privileges, and registering the key to enable your
DECnet-VAX license. (Note that you need a DECnet-VAX license only if you
are planning to run DECnet in a multinode environment.)

If you are configuring VAX PSI, you must install it and define the privileges
required for VAX PSI operation. If you are configuring VAX PSI in multihost
mode (instead of native mode), you must install the VAX PSI multihost
software on the VMS connector node that will serve as an X.25 gateway, and
the VAX PSI Access software on each host node that will use the connector
node.

5.1.1 User Accounts and Directories
In addition to creating normal user accounts in the user authorization file
(UAF), you should also create a default nonprivileged DECnet account that
can be used for activating network objects on the local node. DECnet-VAX
uses the access privileges of this account when access control information
has not been explicitly supplied by the network user. Section 3.13 discusses
access control and the use of default accounts. Refer to the Guide to Setting
Up a VMS System for a description of how to create and use directories.

The following example illustrates the commands you use to establish a default
nonprivileged DECnet account. If you use NETCONFIG.COM to configure
your node and request a default nonprivileged DECnet account, the account
is created for you automatically (see Section 5.2.1.2).

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF>ADD NETNONPRIV/PASSWORD=NONPRIV/DEVICE=DISK$USER1: -
_ /DIRECTORY=[NETUSER]/UIC=[200,200]/PRIVILEGE=(TMPMBX,NETMBX) -
_ /FLAGS=(CAPTIVE)/NOBATCH/NOINTERACTIVE.~LGICMD=NL:
UAF> EX I T
$ CREATE/DIRECTORY DISK$USERi:[NETUSER]/OWNER_UTC=[200,200]

Note that you must substitute your own device name in place of DISK$USER1
when you set up the default nonprivileged DECnet account.

Configuration of a Network
5.1 Prerequisites for Establishing a Network

If you are configuring VAX PSI, ensure that you have the necessary PSI
accounts, and the required directories associated with these PSI accounts,
which will be used for incoming calls to your local DTE. You should also
specify account information to activate objects at the local DTE for use by
VAX PSI.

5.1.2 Required Privileges
To perform any kind of network activity, a process must have the privileges
required to access the network processes involved in the activity requested.
As system manager, you define a user's privileges in the UAF. The privileges
listed in Table 5-1 are at times required by the Network Management Listener
(NML) and by those users of DECnet-VAX running NCP. The privileges
listed in Table 5-2 are required at times by both network users and system
managers for VAX PSI operations.

Table 5-1 Required DECnet—VAX Privileges

Privilege Description

ACNT Allows you to create subprocesses or detached processes in
which accounting is disabled. You need ACNT to start the
network.

BYPASS Allows you to view passwords that would not otherwise be
displayed by the NCP command SHOW or LIST.

CMKRNL Allows a process to change its access mode to kernel, execute
a specified routine, and then return to its original access mode.
Specifically, you need CMKRNL to start the network.

DETACH Allows you to create detached processes by executing the
$CREPRC system service. You need DETACH to bring up the
network.

NETMBX Allows you to assign a channel to the NET device. You need this
privilege to create a logical link or to perform any ACP control QIO
functions. NETMBX is the minimum requirement for all accounts
running network programs.

OPER Allows you to perform certain operator functions such as
modifying the configuration database. (Refer to the Guide to
Setting Up a VMS System for a detailed explanation of the
functions available under this privilege. The NML needs this
privilege to modify any network parameters in the volatile
database.

TMPMBX Allows you to create temporary mailboxes. If you have this
privilege, you can use the $CREMBX and $ASSIGN system
services to create a temporary mailbox and assign an I/O
channel for task-to-task communication. Unlike a permanent
mailbox, which must be explicitly deleted, a temporary mailbox is
automatically deleted when no more channels are assigned to it.
TMPMBX is required for the default accounts and to run both NML
and NCP.

SYSNAM Allows you to declare a name or object number in a user task (see
Chapter 8 for information about user tasks.

SYSPRV Allows you to access the permanent database.

Configuration of a Network
5.1 Prerequisites for Establishing a Network

Table 5-2 Required VAX PSI Privileges

Privilege Description

SECURITY Allows a system manager to access the VAX PSI security
databases.

DIAGNOSE Allows a system manager to use diagnostic functions. You can
use it to run online diagnostic programs. You need DIAGNOSE to
perform line loop tests.

NETMBX Allows a network user to assign a channel to the NW device.
This channel is required to set up virtual circuits or to perform
any ACP control QIO functions. Either NETMBX privilege or the
PSI$X25_USER right is required for processes running network
programs.

OPER Allows a system manager to use the NCP commands. The VMS
Network Control Program Manual provides a detailed explanation
of the NCP functions available under this privilege.

TMPMBX Allows a network user to create temporary mailboxes, that
is, to use the $ASSIGN system service to create a temporary
mailbox and assign an I/O channel for DTE-to-DTE communication.
Unlike a permanent mailbox, which must be deleted explicitly,
a temporary mailbox is deleted automatically when no more
channels are assigned to it.

SYSPRV Allows a system manager to create and display objects.

Refer to Section 3.13 for a further discussion of network user privileges and
their function in relation to overall network security.

5.2 Configuration Procedures
Before you install DECnet-VAX on your system, there are certain tasks
that you, as system manager, must complete to prepare for a networking
environment.

You must configure your DECnet-VAX permanent database. You can use
the interactive procedure NETCONFIG.COM provided by Phase IV DECnet-
VAX to do this. NETCONFIG.COM prompts you for all the information
needed to configure the permanent database and to set up an optional default
nonprivileged DECnet account on your system. If you choose not to use
NETCONFIG.COM, you must use NCP commands to build the permanent
database. Alternatively, you can use NCP commands to tailor the permanent
database created by NETCONFIG.COM to your own needs. Also, you can
use the NCP command COPY KNOWN NODES to build or update the
remote node entries in your node database. Section 5.4.5 discusses special
considerations that apply to configuration of the permanent database for a
VAXcluster node.

You may have to perform additional configuration tasks depending upon your
specific network requirements. If you plan to run DECnet-VAX over a CI,
you must install the DECnet driver CNDRIVER. If you will be using some of
your terminal lines as DECnet-VAX lines, you must install the asynchronous
DDCMP driver NODRIVER and set up the static or dynamic asynchronous
lines. Section 5.2.2 describes these tasks in detail.

Configuration of a Network
5.2 Configuration Procedures

If you are planning to run DECnet-VAX on a VAXcluster, you must
take special care when setting the SYSGEN parameters SCSNODE and
SCSSYSTEMID. You must set SCSNODE to match the executor node name.
You must set SCSSYSTEMID to match the executor address. When setting
SCSSYSTEMID, use the algorithm for converting a node address to its
decimal equivalent, as explained in Section 3.7.2. Section 5.4 provides
additional information about setting up SYSGEN parameters..

If VAX PSI is to be run, the system manager is responsible for configuring
VAX PSI for the local DTEs. This involves supplying information about
various VAX PSI components, such as circuits, lines, modules, and objects.
The information is contained in the DECnet-VAX configuration database for
the local node (if both DECnet-VAX and PSI are configured) and in the PSI
configuration database for the local DTEs. You use NCP commands to supply
information to the configuration database.

5.2.1 Using NETCONFIG.COM
The NETCONFIG.COM command procedure performs the following steps:

1 Prompts you for the name and address of your node and asks whether or
not you want a default nonprivileged DECnet account and whether you
want to operate as a router or an end node.

2 Determines which DECnet devices you have on your system.

3 Creates and displays the NCP and DCL commands required to configure
your DECnet-VAX node.

4 Executes the commands displayed, if they are accepted, setting the
appropriate parameters in the permanent configuration database at your
node. This procedure establishes all databases (executor, line, circuit,
object, logging) except for the remote node database, and purges any
existing information from the permanent database.

Use of this optional procedure is recommended when you are bringing up a
new system as a DECnet-VAX node or when you want to completely revise
the configuration database for a system that is already running DECnet-VAX.

Specifically, if you are bringing up a new system, follow these steps:

1 Execute NETCONFIG.COM, replying NO to the question about starting
the network.

2 Use NCP commands to modify or add parameters after the initial
database is configured. To make changes in or add DECnet user and
proxy accounts, use the DCL command AUTHORIZE.

3 Set up the remote node database using NCP DEFINE NODE commands.

4 Execute STARTNET.COM to bring up your DECnet-VAX node (see
Section 6.2).

If you are running DECnet-VAX on a node and want to completely revise
all permanent configuration databases except the remote node database, you
should execute NETCONFIG.COM. To make any further alterations in the
databases and DECnet user and proxy accounts, use NCP commands and the
DCL command AUTHORIZE.

Configuration of a Network
5.2 Configuration Procedures

If you are running DECnet-VAX and want to preserve the existing permanent
database, do not use NETCONFIG.COM. Use NCP commands to make any
desired changes in the database.

5.2.1.1 Executing NETCONFIG.COM
You must have system privilege (SYSPRV) to execute NETCONFIG.COM. To
invoke the command procedure, enter the following command:

$ @SYS$MANAGER:NETCONFIG.COM

The only information you must supply to the procedure is the node name
and node address of your system. The node name is a string of up to six
alphanumeric characters, containing at least one alphabetic character. The
node address is a numeric value in the format:

area-number. node-number

where:

area-number Designates the area in which the node is grouped (in the range
1 to 63►.

node-number Designates the node's unique address within the area (in the
range 1 to 1023).

If the network is not divided into two or more areas, you do not have to
provide the area number; the system supplies the default area number 1.

The procedure also asks whether you want a default nonprivileged DECnet
account to be established for you. If you indicate yes (or take the default YES
by pressing the RETURN key), the procedure displays the DCL AUTHORIZE
command that creates a default nonprivileged DECnet account with a null
password and a UIC of [376,376]. (Note that you can change this UIC value
or other account parameters by using the Authorize Utility after the node is
configured.)

NETCONFIG.COM then asks if you want the executor node to function as a
router. If you type NO (or take the default NO by pressing the RETURN key)
in response to this question, the executor node is set up as a nonrouting node.

NETCONFIG.COM automatically determines which DECnet devices exist
on your system for use in building the line and circuit permanent databases.
NETCONFIG.COM then uses the information you supply and the information
it obtains about the system to create all the commands necessary to configure
your system as a DECnet-VAX node, and displays these commands for your
approval (see Section 5.2.1.2.) The commands define the permanent database
parameters for the executor; all lines, circuits, and objects; and all logging
monitor events. The commands do not define the database for any remote
node.

Inspect the displayed commands. NETCONFIG.COM asks if you want
to configure using these commands. If you answer yes, the procedure
establishes the permanent configuration database and default nonprivileged
DECnet account (if you requested it). If you answer no, the procedure returns
a message indicating that no changes have been made.

Answer yes to the final question, which asks if you want the network started
automatically. You should have already registered the DECnet-VAX key.

Configuration of a Network
5.2 Configuration Procedures

If you have purchased a DECnet-VAX license but have not yet registered the
appropriate DECnet-VAX key for that license, do so now. You can then start
up the network manually by entering the following command:

$ @SYS$MANAGER:STARTNET

After the permanent database is established, you have the option of using
NCP commands to alter the parameters to correspond more closely to your
configuration requirements.

If you use NETCONFIG.COM to establish the configuration database for
a system that will be using asynchronous lines (for example, a MicroVAX
system with a terminal line), NETCONFIG.COM does not configure
the asynchronous circuit and line parameters automatically. Instead,
NETCONFIG.COM displays a message indicating that no circuits or lines
have been configured. You must set up the asynchronous lines separately
(see Section 5.2.2.2). Also, NETCONFIG.COM does not set up CI circuits.

To ensure that the installation is successful, you can use the User
Environment Test Package (UETP) to test DECnet. The test procedure is
described in the Guide to Setting Up a VMS System.

5.2.1.2 NETCONFIG.COM Example
The following example shows the interactive dialog that is displayed when
you execute NETCONFIG.COM to configure node CHCAGO.

DECnet-VAX network configuration procedure

This procedure will help you define the parameters needed to get
DECnet running on this machine. You will be shown the changes before
they are actually executed, in case you wish to perform them manually.

What do you want your DECnet node name to be?
What do you want your DECnet address to be?
Do you want to operate as a router? [NO (nonrouting)]:
Do you want a def ault DECnet account? [YES]

CHCAGO
2.37
RET

RET

Here are the commands necessary to set up your system.

$ RUN SYS$SYSTEM:NCP
PURGE EXECUTOR ALL
PURGE KNOWN LINES ALL
PURGE KNOWN CIRCUITS ALL
PURGE KNOWN LOGGING ALL
PURGE KNOWN OBJECTS ALL
PURGE MODULE CONFIGURATOR KNOWN CIRCUITS ALL

$ DEFINE/USER SYS$OUTPUT NL:
$ DEFINE/USER SYS$ERROR NL:
$ RUN SYS$SYSTEM:NCP

PURGE NODE 2.37 ALL
PURGE NODE CHCAGO ALL

$ RUN SYS$SYSTEM:NCP
DEFINE EXECUTOR ADDRESS 2.37 STATE ON
DEFINE EXECUTOR NAME CHCAGO
DEFINE EXECUTOR MAXIMUM ADDRESS 1023
DEFINE EXECUTOR ROUTING TYPE NONROUTING IV
DEFINE EXECUTOR NONPRIVILEGED USER DECNET

$ DEFINE/USER SYSUAF SYS$SYSTEM:SYSUAF.DAT
$ RUN SYS$SYSTEM:AUTHORIZE

ADD DECNET /OWNER="DECNET DEFAULT" -
/PASSWORD=DECNET -
/UIC=[376,376] /ACCOUNT=DECNET -

5-6

Configuration of a Network
5.2 Configuration Procedures

/DEVICE=SYS$SYSDEVICE: /DIRECTORY=[DECNET]
/PRIVILEGE=(TMPMBX,NETMBX)
/FLAGS=(CAPTIVE)/NOBATCH/NOINTERACTIVE /LGICMD=NL:
/NOBATCH /NOINTERACTIVE

$ CREATE/DIRECTORY SYS$SYSDEVICE:[DECNET] /OWNER=[376,376]
$ RUN SYS$SYSTEM:NCP

DEFINE LINE CI-0 STATE ON
DEFINE LINE UNA-0 STATE ON
DEFINE CIRCUIT UNA-0 STATE ON COST 3
DEFINE LINE DMC-0 STATE ON
DEFINE CIRCUIT DMC-0 STATE ON COST 5
DEFINE LINE DMC-1 STATE ON
DEFINE CIRCUIT DMC-1 STATE ON COST 5
DEFINE LOGGING MONITOR STATE ON
DEFINE LOGGING MONITOR EVENTS 0.0-9
DEFINE LOGGING MONITOR EVENTS 2.0-1
DEFINE LOGGING MONITOR EVENTS 4.2-13,15-16,18-19
DEFINE LOGGING MONITOR EVENTS 5.0-18
DEFINE LOGGING MONITOR EVENTS 128.0-4

Do you want to go ahead and do it? [YES]: Y
The changes have been made.

If you have not already registered the DECnet-VAX key, then do so now.

After the key has been registered, you should invoke the procedure
SYS$MANAGER:STARTNET.COM to startup DECnet-VAX with these changes.

(If the key is already registered) Do you want DECnet started? [YES]

5.2.2 Tailoring the Configuration Database
If you do not choose to use NETCONFIG.COM to build the network
configuration in the permanent database, you may instead configure the
network using individual NCP commands. Examples of various configuration
procedures are given in Section 5.3. You can also use NCP to add or delete
entries in an existing permanent database.

Following are two examples of changes made to the network configuration
that require corresponding modification of the permanent database:

• Running DECnet over the CI. The driver CNDRIVER must be loaded
on the system and all CI lines and circuits must be defined in the
configuration database.

• Running DECnet over terminal lines. The terminal driver, NODRIVER,
must be loaded on the system, terminal lines must be converted to
DDCMP lines, and all DDCMP lines and circuits must be defined in the
configuration database.

The procedures for handling these changes are described in detail in the
following sections.

Configuration of a Network
5.2 Configuration Procedures

5.2.2.1 Running DECnet over the CI
To use the CI750, CI780, or CIBCI as a DECnet device on your VMS
operating system, you must first install CNDRIVER, the DECnet driver
associated with the CI. To load CNDRIVER, add the following commands
to the SYSTARTUP_VS.COM command procedure in the SYS$MANAGER
directory:

$ RUN SYS$SYSTEM:SYSGEN
CONNECT CNAO/NOADAPTER

You are now ready to run DECnet over the CI. The following example
illustrates how to use NCP commands to define the CI line and one or more
CI circuits in the permanent database.

$ RUN SYS$SYSTEM:NCP
NCP>DEFINE LINE CI-0 STATE ON
NCP>DEFINE CIRCUIT CI-0.0 TRIBUTARY 0 STATE ON
NCP>DEFINE CIRCUIT CI-0.1 TRIBUTARY 1 STATE ON

NCP> EXIT

5.2.2.2 Running DECnet over Terminal Lines
To use lines connected to terminal ports as DECnet communications lines,
you must load the asynchronous DDCMP driver NODRIVER, set up the
terminal lines to be converted to asynchronous DDCMP lines, and specify the
appropriate lines and circuits in the NCP configuration database. The steps
in converting terminal lines to asynchronous lines depend on the type of line
you want to set up:

• A static asynchronous DDCMP line: aline permanently configured as a
DECnet line

• A dynamic asynchronous DDCMP line: aline that is switched from
terminal to DECnet use for the duration of a dialup call

Procedures for installing and shutting down each of these types of lines are
described in Section 5.2.2.3 and Section 5.2.2.4. The complete DECnet-VAX
installation procedure, including establishment of asynchronous connections,
appears in the Guide to DECnet-VAX Networking.

Because dialup lines are more prone to noise problems than dedicated
synchronous lines, you should set the executor buffer size and segment
buffer size to a value of 192 for any end node that is connected to its router
by a dialup line. Use of a relatively small buffer size reduces the effect of
buffer retransmission on overall throughput.

Configuration of a Network
5.2 Configuration Procedures

5.2.2.3 Installing Static Asynchronous Lines
You perform the following steps when setting up and shutting down static
asynchronous lines on your system.

Setting Up Static Asynchronous DDCMP Lines

The following steps are necessary to set up lines connected to terminal ports
on your system for use as static asynchronous DECnet lines. Note that the
system manager at the remote node must also perform these steps.

1 Load the asynchronous DDCMP driver NODRIVER by adding the
following commands to the SYSTARTUP_VS.COM command procedure
in the SYS$MANAGER directory or by specifying the commands after the
system is booted.

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT NOAO/NOADAPTER

2 Choose the terminal lines on your system that you will use as DECnet
lines. To convert a line to a static asynchronous DDCMP line, add the
DCL command SET TERMINAL/PROTOCOL=DDCMP device-name
to SYSTARTUP_VS.COM in your SYS$MANAGER directory for each
terminal line that will run DECnet. Insert the SET TERMINAL command
before the command ~a SYS$MANAGER:STARTNET in
SYSTARTUP_VS.COM.

For example, to convert the terminal lines connected to ports TTAO and
TXB7 on your system into DECnet lines with no modem control, add the
following commands to SYSTARTUP_V5.COM:

$ SET TERMINAL/PERMANENT/PROTOCOL=DDCMP/NOTYPE_AHEAD TTAO:

$ SET TERMINAL/PERMANENT/PROTOCOL=DDCMP/NOTYPE_AHEAD TXB7:

To convert the line connected to terminal port TXA 1 (which can be used
as a dialup line) to a DECnet line with modem control, add the following
command to SYSTARTUP_VS.COM:

$ SET TERMINAL/PERMANENT/MODEM/NOHANGUP/NOAUTOBAUD -

_$ /NOTYPE_AHEAD/PROTOCOL=DDCMP TXA1:

Note that while the terminal line is in use as a DECnet communications
line, you can change the line speed by resetting the speed and line using
NCP.

3 Use NCP commands to define all terminal lines and circuits in the
configuration permanent database, as shown in the following example:

$ RUN SYS$SYSTEM:NCP
NCP>DEFINE LINE TT-0-0 STATE ON RECEIVE BUFFERS 4

_ LINE SPEED 2400
NCP>DEFINE CIRCUIT TT-0-0 STATE ON

NCP>DEFINE LINE TX-1-7 STATE ON RECEIVE BUFFERS 4

LINE SPEEL 2400
NCP>DEFINE CIRCUIT TX-1-7 STATE ON

NCP>DEFINE LINE TX-1-1 STATE ON RECEIVE BUFFERS 4

_ LINE SPEED 2400
NCP>DEFINE CIRCUIT TX-1-1 STATE ON

NCP>EXIT

The lines are then turned on to the network.

5-9

Configuration of a Network
5.2 Configuration Procedures

Reasons for Failure of Static Asynchronous Connections

If static asynchronous DECnet lines are started but are left in the
ON-STARTING state, check the following:

• The line speeds at both ends of the connection must be set to the same
value.

• If you are using a dialup line, the modem characteristic must be set on
the terminal before the line is used for asynchronous DDCMP.

• If the network is divided into areas, the two nodes being connected must
be in the same area or must be area routers.

• Asynchronous DECnet requires the parity on the asynchronous line to be
set to NONE and the terminal line to be set up to use 8-bit characters. If
you are using anon-VMS system, you must check that the terminal line
is set to the correct parity.

If your terminal line cannot be set up as a static asynchronous DDCMP line,
check whether the following condition exists:

• If data is stored in a type-ahead buffer associated with your terminal
line, the line comes up as a terminal line even if a startup command
procedure attempts to set it up as a DDCMP line. This generally occurs
when the remote node is running and its asynchronous DDCMP line
is on. The DDCMP start messages being transmitted are stored in the
type-ahead buffer for your line. Before you can start up your terminal
line in DDCMP mode, you must terminate the process that has started
and that owns your terminal line.

To verify that the asynchronous line is connected properly, check the
following:

• For local connections, verify that the cable is a null modem cable.

• For modem connections, verify that the cable is astraight-through cable
and that if the modem is put in analog loopback, the circuit comes up
with the local node as the adjacent node.

• For both types of connections, verify that the port is operational by
resetting the port to terminal-type characteristics and plugging in a
terminal and logging in.

Shutting Down Static Asynchronous DDCMP Lines

To shut down a DECnet line and return it to a terminal line, enter the
following commands:

$ RUN SYS$SYSTEM:NCP
NCP>SET LINE TT-0-0 STATE OFF
NCP>CLEAR LINE TT-0-0 ALL
NCP>SET CIRCUIT TT-0-0 STATE OFF
NCP>CLEAR CIRCUIT TT-0-0 ALL

To switch a line for which modem control was not enabled back to a terminal
line, enter the following command:

$ SET TERMINAL/PROTOCOL=NONE TTAO:

Configuration of a Network
5.2 Configuration Procedures

To switch a line for which modem control was enabled back to a terminal
line, enter the following command:

$ SET TERMINAL/PERMANENT/MODEM/AUTOBAUD/TYPEAHEAD -
_$ /PROTOCOL=NONE TXA1:

5.2.2.4 Installing Dynamic Asynchronous Lines
To make a temporary connection to another node over an asynchronous
connection (for example, a telephone line), the terminal lines at each node
may be switched to dynamic asynchronous DDCMP lines for the duration of
the connection. The procedure for establishing a dynamic connection, reasons
why the connection might fail, and the actions that shut down the lines are
described next. Dynamic switching is described in detail in Chapter 2.

Setting Up Dynamic Asynchronous DDCMP Lines

You perform the following steps to set up a dynamic connection, and to
switch lines connected to terminal ports to dynamic asynchronous DECnet
lines. This procedure illustrates commands used if a local VMS operating
system installed on a MicroVAX (WRKVAX) is establishing a dynamic
connection with a remote VMS operating system (BIGVAX). The remote
system is the node that performs the switch.

1 The system manager at each node must load the asynchronous
DDCMP driver NODRIVER by adding the following commands to
the SYSTARTUP_VS.COM command procedure in the SYS$MANAGER
directory or by specifying the commands after the system is booted.

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT NOAO/NOADAPTER

2 The system manager at each node must install the shareable image
DYNSWITCH, as follows:

$ INSTALL:=SYSSYSTEM:INSTALL
$ INSTALL/COMMAND
INSTALL> CREATE SYS$LIBRARY:DYNSWITCH/SHARE -
_ /PROTECT/HEADER/OPEN
INSTALL> EXIT

Note that DYNSWITCH is a DECnet-VAX image only. If the image
DYNSWITCH is not installed on the remote system, dynamic switching
of lines is implicitly disabled.

3 The system manager at the remote node, BIGVAX, must enable the use of
virtual terminals with these commands:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT VTAO/NOADAPTER/DRIVER=TTDRIVER

(For further information on using virtual terminals, refer to the Guide to
Maintaining a VMS System.)

The system manager on the remote system must also enable the
disconnect option for the terminal port to be used by specifying the
following command for the terminal:

$ SET TERMINAL/PERMANENT/MODEM/DISCONNECT TTB1:

Configuration of a Network
5.2 Configuration Procedures

4 For security, the user at the local node WRKVAX must define in the node
database the transmit password to be sent to remote node BIGVAX. For
example:

$ RUN SYS$SYSTEM:NCP
NCP>DEFINE NODE BIGVAX TRANSMIT PASSWORD password

The system manager at remote node BIGVAX must define node WRKVAX
in the node database with the appropriate receive password and
INBOUND type (router or end node). For example:

$ RUN SYS$SYSTEM:NCP
NCP>DEFINE NODE WRKVAX INBOUND ENDNODE RECEIVE PASSWORD password

5 The user at the local system, WRKVAX, must perform the following
steps:

a. Log in to the local system.

b. Enter the following command to establish a system process running
a terminal emulator (TTA 1 identifies the terminal port on the local
system through which the dynamic connection will be made):

$ SET HOST/DTE TTA1:

You can optionally include the /DIAL qualifier in the SET HOST
command to cause automatic dialing of the modem to the remote
node.

c. Dial in to the remote system.

d. Log in to your account on the remote node BIGVAX.

e. If DYNSWITCH is installed on your local system, you can enter the
following command to initiate automatic dynamic switching at both
ends of the connection:

$ SET TERMINAL/PROTOCOL=DDCMP/SWITCH=DECNET

You receive the following message when DECnet is started at the
local node:

%REM-S-END, control returned to node_local-node-name::

Use the line for network operations when you see the local system
prompt ($).

f. Alternatively, you can switch the line manually. Specify the
/MANUAL qualifier in the SET TERMINAL command:

$ SET TERMINAL/PROTOCOL=DDCMP/SWITCH=DECNET/MANUAL

You receive the following message from the remote system:

%SET-I-SWINPRG, The line you are currently logged
over is becoming a DECnet line

Exit the terminal emulator by pressing the Backslash (\) key and the
CTRL key simultaneously.

$ SET TERMINAL/PROTOCOL=DDCMP TTA1:

Configuration of a Ne#work
5.2 Configuration Procedures

Enter the following NCP commands to turn on your line and circuit:

$ RUN SYS$SYSTEM:NCP
NCP>SET LINE TT-0-1 RECEIVE BUFFERS 4 STATE ON
$ RUN SYS$SYSTEM:NCP
NCP>EXIT

DECnet is now started at the local node.

Note that the SET TERMINAL command is a VMS DCL command. If
you are on a non-VMS node (for example, if you are running MS-DOS
on a personal computer), you should specify the equivalent function for
your system.

Reasons for Failure of Dynamic Asynchronous Connections

If dynamic switching is being performed and the asynchronous DECnet
connection is not made, first check that the following conditions exist:

• DECnet must be started on both nodes.

• The asynchronous DDCMP class driver (NODRIVER) must be loaded by
means of SYS$SYSTEM:SYSGEN at each node.

• The dynamic switch image (DYNSWITCH) must be installed by means of
SYS$SYSTEM:INSTALL at each VMS node.

• Virtual terminals must be enabled both on the remote node and, in
particular, for the terminal at which you are logged in. The terminal line
at the remote node must have the attribute DISCONNECT set.

• After you enter a SET TERMINAL command with the /MANUAL
qualifier, you must specify NCP commands to turn on the DECnet
line within approximately four minutes or the line returns to terminal
mode.

If the dynamic asynchronous lines are started but are left in the
ON-STARTING state, check the following:

• If the network is divided into areas, the two nodes being connected must
be in the same area or must be area routers.

• The routing initialization passwords on each node must be set correctly
(see Section 3.13.1).

• The INBOUND parameter for the local node entry must be set correctly
in the node database at the remote node (see Section 3.13.3).

• Asynchronous DECnet requires the parity on the asynchronous line to be
set to NONE and the terminal line to be set up to use 8-bit characters. If
you are using anon-VMS system, you must check that the terminal line
is set to the correct parity.

Shutting Down Dynamic Asynchronous Lines

You have two options for ending a dynamic connection:

• Break the telephone connection.

Configuration of a Network
5.2 Configuration Procedures

• Enter one of the following NCP commands (either command causes both
line and circuit entries to be cleared in the database):

NCP>SET LINE TT-0-0 STATE OFF

NCP>SET CIRCUIT TT-0-0 STATE OFF

The results of these commands vary depending on the side of the connection
from which they are entered. If the command is entered at the local
(originating) node, the port is immediately switched to the terminal driver.
On the other side (the remote node), the line remains in the ON-STARTING
state for approximately four minutes and then is switched to the terminal
port. If the line or circuit is stopped by the remote node, the line and circuit
on both sides of the connection immediately return to terminal mode.

Note that, if you specify the /NOHANGUP qualifier in the SET TERMINAL
command with which you initiate dynamic switching, the modem carrier
signal is not dropped when you shut down the DECnet line or circuit. The
carrier signal is broken when you hang up the telephone.

If you specify the SET TERMINAL command with the /MANUAL qualifier
to switch the terminal line manually, you can abort the switch by pressing
CTRL/C or CTRL/Y.

5.3 Network Configuration Examples
This section discusses how you can use NCP commands to build your
network configuration in the permanent database. The following subsections
show examples of the NCP commands you can use to obtain the following
network configurations:

• Synchronous DDCMP point-to-point configuration

• DDCMP multipoint configuration

• Static asynchronous DDCMP point-to-point configuration

• Dynamic asynchronous DDCMP point-to-point configuration

• Ethernet configuration

• X.25 DLM configuration

• X.25 native mode configuration

• X.25 multihost mode configuration

• X.25 multinetwork configuration

You should assume that these configuration examples are single-area
networks using the default area 1. For an example of the NCP commands
used to configure amultiple-area network, see Section A.3. Figure 5-1
through Figure 5-9 correspond to the examples shown in each of the,
respective sections.

Combine the appropriate NCP commands in a command file that reflects
your network configuration; then edit and run this procedure as many times
as necessary to properly build the permanent database corresponding to your
configuration and needs. After you configure the permanent database, invoke
SYS$MANAGER:STARTNET.COM to load these parameters into the volatile
database, and to bring up the network.

5-14

Configuration of a Network
5.3 Network Configuration Examples

5.3.1 Synchronous DDCMP Point-to-Point Network Example
The example in this section shows how to build a database for a network
configuration of four nodes connected by a DMC11, DMP11, or DMF32 line
and circuit. The NCP commands in this example configure the DDCMP
point-to-point network. Note that node NEWARK is a nonrouting RSX-11S
system to which node CHCAGO will perform a downline load.

Figure 5-1 A Synchronous DDCMP Point-to-Point Network
Configuration

DMC-0
CHCAGO

DMF-0

DMP-0

NEWARK

ATLNTA

TAMPA

ZK-1852-84

Define executor-specific parameters for local node CHCAGO.
The TYPE parameter for the executor node defaults to
ROUTING IV.

DEFINE EXECUTOR ADDRESS 1 -
BUFFER SIZE 576 -
MAXIMUM HOPS 6 -
MAXIMUM VISITS 12 -
STATE ON

Define common node parameters for the local node. Be sure
to add the NETNONPRIV user to your system authorization
file by using the Authorize Utility.

DEFINE EXECUTOR NAME CHCAGO -
NONPRIVILEGED -

USER NETNONPRIV -
PASSWORD NONPRIV

Configuration of a Network
5.3 Network Configuration Examples

! Define parameters for remote node NEWARK (a nonrouting
! RSX-11S system). CHCAGO will be the load host for NEWARK.

i

DEFINE NODE 2 NAME NEWARK -
HOST NODE CHCAGO -
LOAD FILE NODIIS.SYS -
NONPRIVILEGED -

USER NETNONPRIV -
PASSWORD NONPRIV -

SERVICE CIRCUIT DMC-0 -
SERVICE PASSWORD FE -
SECONDARY LOADER SECDMC.SYS
TERTIARY LOADER TERDMC.SYS

Define the remaining nodes. Note that no default outbound
access control information is specified. This assumes that
the default access control information will be supplied by
each remote node when it receives an inbound connect request.

DEFINE NODE 3
DEFINE NODE 4

NAME ATLNTA
NAME TAMPA

Define parameters for line/circuit DMC-0 to node NEWARK.

Because this node will be loaded downline, the service
parameters must be set up.

DEFINE LINE DMC-0 PROTOCOL DDCMP POINT -
SERVICE TIMER 4000 -
STATE ON

DEFINE CIRCUIT DMC-0 SERVICE ENABLED -
STATE ON

Define parameters for line/circuit DMF-0 to node ATLNTA.

(Give this line more receive buffers because it has a f aster
connection.)

DEFINE LINE DMF-0 PROTOCOL DDCMP POINT -
RECEIVE BUFFERS 8 -
STATE ON

DEFINE CIRCUIT DMF-0 STATE ON

i

! Define parameters for line/circuit DMP-0 to node TAMPA.
i

DEFINE LINE DMP-0 PROTOCOL DDCMP POINT -
STATE ON

DEFINE CIRCUIT DMP-0 STATE ON

i

! The object database does not need to be defined because it def aults
! to the standard list of objects known to the VMS operating system.

i

Configuration of a Network
5.3 Network Configuration Examples

Define transmitter-related logging parameters.

DEFINE LOGGING MONITOR KNOWN EVENTS

Define receiver-related logging parameters.

DEFINE LOGGING MONITOR STATE ON

5.3.2 DDCMP Multipoint Network Example
The example in this section shows how to build a database for a network
configuration of five nodes connected by a combination of DMC, DMF, and
DMP lines and circuits. The NCP commands in this example configure the
DDCMP multipoint network.

Figure 5-2 A DDCMP Multipoint Network Configuration

DMC-0
CNCAGO

DMF-0

DMP-0

DMP-0.0 DMP-0.1

TAMPA MIAMI

PH I LA

ATLNTA

Z K-1853-84

Define executor-specific parameters for local node CHCAGO.
The TYPE parameter for the executor node defaults to
ROUTING IV since a full function license is installed.

DEFINE EXECUTOR ADDRESS 1 -
BUFFER SIZE 576 -
MAXIMUM HOPS 6 -
MAXIMUM VISITS 12 -
STATE ON

Configuration of a Network
5.3 Network Configuration Examples

Define common node parameters for the local node. Be sure

to add the NETNONPRIV user to your system authorization

file by using the Authorize Utility.

DEFINE EXECUTOR NAME CHCAGO -
NONPRIVILEGED -

USER NETNONPRIV -
PASSWORD NONPRIV

Define the remaining nodes. Note that no def ault outbound

access control information is specified. This assumes that

the default access control information will be supplied by

each remote node when it receives an inbound connect request.

DEFINE NODE 2
DEFINE NODE 3
DEFINE NODE 4
DEFINE NODE 5

NAME PHILA
NAME ATLNTA
NAME TAMPA
NAME MIAMI

i

! Define parameters for line/circuit DMC-0 to node PHILA.
i

DEFINE LINE DMC-0 PROTOCOL DDCMP POINT -
STATE ON -

DEFINE CIRCUIT DMC-0 STATE ON

i

! Define parameters for line/circuit DMF-0 to node ATLNTA.
i

DEFINE LINE DMF-0 PROTOCOL DDCMP POINT -
STATE ON

DEFINE CIRCUIT DMF-0 STATE ON

Define parameters for line DMP-0 and circuits to nodes TAMPA

and MIAMI.

TAMPA is connected as tributary 3, DMP-0.0
MIAMI is connected as tributary 4, DMP-0.1

The DMP line runs at 56,000 bits per second. The proper
setting for the retransmit timer is

retransmit timer =
20,000 * buffer_size

bps

Thus, with a buffer size of 576, the retransmit timer should

be 210 milliseconds.

The dead timer is set to 30 seconds to avoid excessive delays
when polling dead tributaries. The timer is set when a node

goes down.

DEFINE LINE DMP-0 PROTOCOL DDCMP CONTROL -
DEAD TIMER 30000 -
RECEIVE BUFFERS 6 -
RETRANSMIT TIMER 210 -
STATE ON

5-18

Configuration of a Network
5.3 Network Configuration Examples

DEFINE CIRCUIT DMP-0.0 COST 4 -
STATE ON -
TRIBUTARY 3

DEFINE CIRCUIT DMP-0.1 COST 4 -
STATE ON -
TRIBUTARY 4

The object database does not need to be defined because it defaults
to the standard list of objects known to the VMS operating system.

Define transmitter-related logging parameters.

DEFINE LOGGING MONITOR KNOWN EVENTS

Define receiver-related logging parameters.

DEFINE LOGGING MONITOR STATE ON

5.3.3 Static Asynchronous DDCMP Network Example
The example in this section shows how to build a database for a network
configuration of four nodes connected by a DMR11 line and two terminal
lines converted to static asynchronous DECnet lines. The NCP commands
in this example configure the DDCMP point-to-point network that includes
static asynchronous lines. To establish the static asynchronous connections,
nodes YELLOW and BLUE must also specify in their configuration databases
the circuits and lines connecting them to node CHCAGO. Before entering
these commands, you should set up the terminal line with the appropriate
characteristics (see Section 5.2.2.3).

Figure 5-3 A Static Asynchronous DDCMP Network Configuration

DMR-0
CHCAGO

TT-0-0

TX-1-7

ST PAUL

YELLOW

BLUE

ZK-1854-84

Configuration of a Network
5.3 Network Configuration Examples

Define executor-specific parameters for local node
CHCAGO. The TYPE parameter for the executor node def aults to
ROUTING IV.

DEFINE EXECUTOR ADDRESS 1 -
BUFFER SIZE 576 -
MAXIMUM HOPS 6 -
MAXIMUM VISITS 12 -
STATE ON

Define common node parameters for the local node. Be
sure to add the NETNONPRIV user to your system
authorization file by using the Authorize Utility.

DEFINE EXECUTOR NAME CHCAGO -
NONPRIVILEGED -

USER NETNONPRIV -
PASSWORD NONPRIV

Define the remaining nodes. Note that no def ault
outbound access control information is specified.
This assumes that the default access control
information will be supplied by each remote node
when it receives an inbound connect request.

DEFINE NODE 2
DEFINE NODE 3
DEFINE NODE 4

NAME STPAUL
NAME YELLOW
NAME BLUE

i

! Define parameters for line/circuit DMR-0 to node
! STPAUL.

i

DEFINE LINE DMR-0 PROTOCOL DDCMP POINT -
STATE ON

DEFINE CIRCUIT DMR-0 STATE ON

i

! Define parameters for line/circuit TT-0-0 to node
! YELLOW.

i

DEFINE LINE TT-0-0 RECEIVE BUFFERS 4 -
STATE ON -
LINE SPEED 9600

DEFINE CIRCUIT TT-0-0 STATE ON

i

! Define parameters for line/circuit TX-1-7 to node
! BLUE.

i

DEFINE LINE TX-1-7 RECEIVER BUFFERS 4 -
STATE ON -
LINE SPEED 1200

DEFINE CIRCUIT TX-1-7 STATE ON

Configuration of a Network
5.3 Network Configuration Examples

The object database does not need to be defined
because it defaults to the standard list of objects
known to the VMS operating system.

Define transmitter-related logging parameters.

DEFINE LOGGING MONITOR KNOWN EVENTS

Define receiver-related logging parameters.

DEFINE LOGGING MONITOR STATE ON

5.3.4 Dynamic Asynchronous DDCMP Network Example
The examples in this section show how to configure two nodes connected by
a terminal line converted to a dynamic asynchronous DECnet line.

The first example shows the NCP commands that configure the dynamic
asynchronous DDCMP connection from node BIGVAX to node WRKVAX;
node BIGVAX is assumed to be a router.

The second example shows the NCP commands that configure the dynamic
asynchronous DDCMP connection from node WRKVAX to node BIGVAX;
node WRKVAX is assumed to be an end node, and the dynamic line is
assumed to be a slow (1200 baud) modem line.

Before entering these commands, refer to the procedure for installing dynamic
asynchronous lines in Section 5.2.2.4.

Figure 5-4 A Dynamic Asynchronous DDCMP Network
Configuration

BIGVAX WRKVAX

ZK-4186-85

Configuration of a Network
5.3 Network Configuration Examples

Node BIGVAX Database

! Define executor-specific parameters for local node
! BIGVAX.

i

DEFINE EXECUTOR ADDRESS 1 -
BUFFER SIZE 576 -
MAXIMUM HOPS 6 -
MAXIMUM VISITS 12 -
STATE ON

Define common node parameters for the local node. Be
sure to add the NETNONPRIV user to your system
authorization file by using the Authorize Utility.

DEFINE EXECUTOR NAME BIGVAX -
NONPRIVILEGED -

USER NETNONPRIV -
PASSWORD NONPRIV

Define the remote node. You must use the INBOUND
parameter to check whether dialup node WRKVAX will
operate as an end node or as a router. As an added
security feature for a node using a dynamic asynchronous
communications line, you must also specify a receive
password for node WRKVAX. This will be compared with
the transmit password supplied by WRKVAX when it
issues the connect request.

DEFINE NODE 2 NAME WRKVAX -
INBOUND ENDNODE -
RECEIVE PASSWORD 10101010

You do not need to define parameters for a
line/circuit to node WRKVAX. These parameters are
provided automatically by the system when the dynamic
connection is initiated.

The object database does not need to be defined
because it defaults to the standard list of objects
known to the VMS operating system.

Define transmitter-related logging parameters.

DEFINE LOGGING MONITOR KNOWN EVENTS

! Define receiver-related logging parameters.
i

DEFINE LOGGING MONITOR STATE ON

Configuration of a Network
5.3 Network Configuration Examples

Node WRKVAX Database

! Define executor-specific parameters for local node
! WRKVAX.

i

DEFINE EXECUTOR ADDRESS 2 -
BUFFER SIZE 192 -
SEGMENT BUFFER SIZE 192 -
STATE ON -
TYPE NONROUTING

Define common node parameters for the local node.
Be sure to add the NETNONPRIV user to your system
authorization file by using the Authorize Utility.

DEFINE EXECUTOR NAME WRKVAX -
NONPRIVILEGED -

USER NETNONPRIV -
PASSWORD NONPRIV

Define the remote node. You must specify a transmit
password which matches the receive password in the
remote node database on node BIGVAX.

DEFINE NODE 1 NAME BIGVAX -
TRANSMIT PASSWORD 10101010

You do not need to define parameters for a
line/circuit to node BIGVAX. These parameters are
provided automatically by the system when the dynamic
connection is initiated.

The object database does not need to be defined
because it def aults to the standard list of objects
known to the VMS operating system.

5.3.5 Ethernet Network Example
The example in this section shows how to build a database fora network
configuration of three nodes connected by an Ethernet UNA line and circuit.
The NCP commands in this example configure the database for node ROBIN.
Repeat the procedure to configure the databases for nodes THRUSH and
LARK.

Configuration of a Network
5.3 Network Configuration Examples

Figure 5-5 An Ethernet Network Configuration

UNA-0

ROBIN THRUSH LARK

Z K-1855-84

Define executor-specific parameters f or local node ROBIN.
Note that the TYPE parameter for the executor node defaults
to a node type that corresponds to the type of network
license (router or end node) you have installed.

DEFINE EXECUTOR ADDRESS 20 -
BUFFER SIZE 576 -
STATE ON

Define common node parameters for the local node. Be sure
to add the NETNONPRIV user to your system authorization
file by using the Authorize Utility.

DEFINE EXECUTOR NAME ROBIN -
NONPRIVILEGED -

USER NETNONPRIV -
PASSWORD NONPRIV

Define the remaining nodes. Note that no def ault outbound
access control information is specified. This assumes that
the default access control information will be supplied by
each remote node when it receives an inbound connect request.

DEFINE NODE 21
DEFINE NODE 22

NAME THRUSH
NAME LARK

Define parameters for line/circuit UNA-0.

DEFINE LINE UNA-0 STATE ON

DEFINE CIRCUIT UNA-0 STATE ON

i

! The object database does not need to be defined because it def aults
! to the standard list of objects known to the VMS operating system.

i

5-24

Configuration of a Network
5.3 Network Configuration Examples

Define transmitter-related logging parameters.

DEFINE LOGGING MONITOR KNOWN EVENTS

Define receiver-related logging parameters.

DEFINE LOGGING MONITOR STATE ON

5.3.6 X.25 Data Link Mapping Example
The examples in this section show how to build a database for a network
configuration of three nodes connected by a DMC11 line and circuit and an
X.25 packet switching data network (PSDN). The first example shows the
NCP commands that configure the database for node CHCAGO. The second
example shows the NCP commands that configure the database for node
SDIEGO.

Figure 5-6 An X.25 Data Link Mapping Network Configuration

DMC-0
CHCAGO

1
X25-OUT

DTE 31 1 1 1 1 222333

DTE 311444555666

i

X25-INC

SDIEGO

BUFFLO

ZK-1856-84

Configuration of a Network
5.3 Network Configuration Examples

Node CHCAGO Database

Set up the X.25 protocol module.

DEFINE MODULE X25-PROTOCOL -
NETWORK TELENET PROFILE TELENET

Define the line used to communicate with the X.25 network.

DEFINE LINE DUP-0 NETWORK TELENET STATE ON

Define the local DTE for node CHCAGO.

DEFINE MODULE X25-PROTOCOL -
DTE 311111222333 -
NETWORK TELENET -
CHANNELS 2018-1546 -
LINE DUP-0 -
STATE ON

Define executor specific parameters for local node CHCAGO.
The TYPE parameter for the executor node defaults to
ROUTING IV.

DEFINE EXECUTOR ADDRESS 1 -
BUFFER SIZE 576 -
MAXIMUM HOPS 6 -
MAXIMUM VISITS 12 -
STATE ON

Define common node parameters for the local node. Be sure
to add the NETNONPRIV user to your system authorization
file by using the Authorize Utility.

DEFINE EXECUTOR NAME CHCAGO -
NONPRIVILEGED -

USER NETNONPRIV -
PASSWORD NONPRIV

Define the remaining nodes. Note that no default outbound
access control information is specified. This assumes that
the default access control information will be supplied by
each remote node when it receives an inbound connect request.

DEFINE NODE 2
DEFINE NODE 3

NAME BUFFLO
NAME SDIEGO

i

! Define parameters for line/circuit DMC-0 to node BUFFLO.
i

DEFINE LINE DMC-0 PROTOCOL DDCMP POINT -
STATE ON -

DEFINE CIRCUIT DMC-0 STATE ON

Configuration of a Network
5.3 Network Configuration Examples

Define parameters for the outgoing DLM circuit X25-OUT to node
SDIEGO (node SDIEGO is addressed as DTE 311444555666 to the
X.25 network; subaddress 1 is defined on node SDIEGO to be a
DECnet DLM subaddress).

DEFINE CIRCUIT X25-OUT -
NETWORK TELENET -
NUMBER 3114445556661 -
OWNER EXECUTOR -
USAGE OUTGOING -
STATE ON

The object database does not need to be defined because it defaults
to the standard list of objects known to the VMS operating system.

Define transmitter-related logging parameter.

DEFINE LOGGING MONITOR KNOWN EVENTS

Define receiver-related logging parameters.

DEFINE LOGGING MONITOR STATE ON

Node SDIEGO Database

Set up the X.25 protocol module.

DEFINE MODULE X25-PROTOCOL -
NETWORK TELENET PROFILE TELENET

Define the line used to communicate with the X.25 network.

DEFINE LINE DUP-0 NETWORK TELENET STATE ON

Define the local DTE for node SDIEGO.

DEFINE MODULE X25-PROTOCOL -
DTE 311444555666 -
NETWORK TELENET -
CHANNELS 2490-2452 -
LINE DUP-0 -
STATE ON

Define executor-specific parameters f or local node SDIEGO.
Note that the X.25 subaddress range is given as 1 to 5 so
that this node can accept all X.25 calls with a subaddress
from 1 to 5. Because CHCAGO is sending X.25 calls and does
not intend to receive any, you need not specify the
subaddress parameter for this DTE. The system manager must
coordinate the subaddress values used to designate DECnet
data link calls among the DECnet nodes.

Configuration of a Network
5.3 Network Configuration Examples

DEFINE EXECUTOR ADDRESS 3 -
BUFFER SIZE 576 -
MAXIMUM HOPS 6 -
MAXIMUM VISITS 12 -
SUBADDRESSES 1-5 -
STATE ON

Define common node parameters for the local node. Be sure
to add the NETNONPRIV user to your system authorization
file by using the Authorize Utility.

DEFINE EXECUTOR NAME SDIEGO -
NONPRIVILEGED -

USER NETNONPRIV -
PASSWORD NONPRIV

Define the remaining nodes. Note that no def ault outbound
access control information is specified. This assumes that
the default access control information will be supplied by
each remote node when it receives an inbound connect request.

DEFINE NODE 1
DEFINE NODE 2

NAME CHCAGO
NAME BUFFLO

i

! Define parameters for the incoming DLM circuit X25-INC (to
! node CHCAGO).

i

DEFINE CIRCUIT X25-INC NETWORK TELENET OWNER EXECUTOR
USAGE INCOMING -
STATE ON

The object database does not need to be defined because it defaults
to the standard list of objects known to the VMS operating system.

Define transmitter-related logging parameters.

DEFINE LOGGING MONITOR KNOWN EVENTS

Define receiver-related logging parameters.

DEFINE LOGGING MONITOR STATE ON

5.3.7 X.25 Native Mode Network Example
The example in this section shows how to build a database fora network
configuration associating a local DTE with a packet switching data network
by a DUP line. The NCP commands in this example configure the permanent
database for the X.25 native-mode network. These commands build server
and object modules to handle incoming calls.

Configuration of a Network
5.3 Network Configuration Examples

Figure 5-7 An X.25 Native-Mode Network Configuration

DTE 234123456789

Z K-1857-84

Set up the X.25 protocol module.

DEFINE MODULE X25-PROTOCOL -
NETWORK SONNET PROFILE SONNET

i

! Define the line used to communicate with the X.25 network.
i

DEFINE LINE DUP-0 NETWORK SONNET STATE ON
i

! Define the local DTE.

DEFINE MODULE X25-PROTOCOL -
DTE 234123456789 -
NETWORK SONNET -
CHANNELS 2018-1546 -
LINE DUP-0 -
STATE ON

i

! Define the destinations.
i

DEFINE MODULE X25-SERVER -
DESTINATION JOE -
SUBADDRESS 1-10 -
OBJECT OBJONE -
PRIORITY 1

DEFINE MODULE X25-SERVER -
DESTINATION JIM -
SUBADDRESS 11-15 -
OBJECT OBJTWO -
PRIORITY 2

DEFINE MODULE X25-SERVER -
DESTINATION DEFDEST -
OBJECT DEFOBJ -
PRIORITY 0

Define the X.29 call handler.

DEFINE MODULE X29-SERVER STATE ON

Define the objects used for incoming calls.

5-29

Configuration of a Network
5.3 Network Configuration Examples

DEFINE OBJECT OBJONE -

DEFINE OBJECT OBJTWO -

DEFINE OBJECT DEFOBJ -

FILE OBJSTUP.COM -
USER PSIUSER -
PASSWORD PSIUSER

FILE OBJECTTWO.COM -
USER JIM -
PASSWORD JIM

FILE LSTCHNCE.COM -
USER NET -
PASSWORD NET

5.3.8 X.25 Multihost Mode Network Example
The examples in the following subsections illustrate the NCP commands used
to configure three VMS nodes connected by an Ethernet UNA line and circuit,
with one node set up as an X.25 multihost connector node to the PSDN called
SONNET and the other two nodes set up as host nodes to use the connector
node.

In these examples, node ROBIN, with VAX PSI multihost software installed,
is configured as the connector node, and nodes THRUSH and LARK, each
with VAX PSI Access software installed, are configured as host nodes that can
communicate with the X.25 network through node ROBIN.

Figure 5-8 An X.25 Multihost Mode Network Configuration

ROBIN

DTE 311111222333 THRUSH LARK

Z K-1858-84

Configuration of a Network
5.3 Network Configuration Examples

To configure this network, you must complete the following tasks:

1 Build the Ethernet network.

2 Build the appropriate databases on ROBIN to configure this node as the
X.25 connector node.

3 Configure THRUSH and LARK as host nodes capable of accessing the
X.25 network through the connector node ROBIN.

5.3.8.1 Building the Ethernet Network
The following NCP commands configure the database for node ROBIN.
Repeat this procedure to configure the databases for nodes THRUSH and
LARK.

Define executor-specific parameters f or local node
ROBIN. The TYPE parameter for the executor node defaults
to ROUTING IV.

DEFINE EXECUTOR ADDRESS 20 -
BUFFER SIZE 576 -
STATE ON

Define common node parameters for the local node. Be sure
to add the NETNONPRIV user to your system authorization
file by using the Authorize Utility.

DEFINE EXECUTOR NAME ROBIN -
NONPRIVILEGED -

USER NETNONPRIV -
PASSWORD NONPRIV

i

! Define the remaining nodes.
i

DEFINE NODE 21
DEFINE NODE 22

NAME THRUSH
NAME LARK

i

! Define parameters for line/circuit UNA-0.
i

DEFINE LINE UNA-0 STATE ON

DEFINE CIRCUIT UNA-0 STATE ON

The object database does not need to be defined because it
defaults to the standard list of objects known to VMS.

Define transmitter-related logging parameters.

DEFINE LOGGING MONITOR KNOWN EVENTS

Define receiver-related logging parameters.

DEFINE LOGGING MONITOR STATE ON

Configuration of a Network
5.3 Network Configuration Examples

5.3.8.2 Configuring the X.25 Connector Node
The following NCP commands build the X25-PROTOCOL and X25-SERVER
databases fora multihost PSI node. Node ROBIN is configured as the VAX
PSI multihost node connected to the PSDN named SONNET.

Set up the X.25 protocol module.

DEFINE MODULE X25-PROTOCOL NETWORK PUBLIC PROFILE SONNET

Define the line used to communicate with the X.25 network.

DEFINE LINE DUP-0 NETWORK PUBLIC STATE ON

Define the local DTE.

DEFINE MODULE X25-PROTOCOL -
DTE 311111222333 -
NETWORK PUBLIC -
CHANNELS 2018-1546 -
LINE DUP-0 -
STATE ON

i

! Define host destinations for incoming calls.
i

DEFINE MODULE X25-SERVER -
DESTINATION THRUSH -
SUBADDRESSES 1-10 -
OBJECT 36 -
NODE THRUSH

DEFINE MODULE X25-SERVER -
DESTINATION LARK -
SUBADDRESSES 11-20 -
OBJECT 36 -
NODE LARK

5.3.8.3 Configuring the Host Nodes
The following NCP commands build the X25-ACCESS and X25-SERVER
databases on nodes THRUSH and LARK to allow both host nodes to access
SONNET through connector node ROBIN.

Node THRUSH Database

! Set up the X.25 access module.
i

DEFINE MODULE X25-ACCESS -
NETWORK PUBLIC -
NODE ROBIN

i

! Define the destination on THRUSH.
i

DEFINE MODULE X25-SERVER -
DESTINATION JOE -
SUBADDRESS 1-10 -
OBJECT OBJONE

Configuration of a Network
5.3 Network Configuration Examples

Define the X.29 call handler.

DEFINE MODULE X29-SERVER STATE ON

Define the destination objects for incoming calls.

DEFINE OBJECT OBJONE -
FILE OBJSTUP.COM -
USER PSIUSER -
PASSWORD PSIUSER

Node LARK Database

! Set up the X.25 access module.
i

DEFINE MODULE X25-ACCESS -
NETWORK PUBLIC -
NODE ROBIN

i

! Define the destination on LARK.
i

DEFINE MODULE X25-SERVER -
DESTINATION JOE -
SUBADDRESS 11-20 -
OBJECT OBJTWO

Define the X.29 call handler.

DEFINE MODULE X29-SERVER STATE ON

Define the destination object for incoming calls.

DEFINE OBJECT OBJTWO -
FILE OBJTWO.COM -
USER JIM -
PASSWORD JIM

5.3.9 X.25 Multinetwork Example
The example in #his section shows how to build a database fora network
configuration where a VMS operating system is connected to a PSDN
and also to anon-DIGITAL machine that behaves like an X.25 DTE. The
non-DIGITAL connection uses the profile IS082~8. VAX PSI is running in
native mode. The NCP commends in this example configure the permanent
database for the multinetwork configuration.

Configuration of a Network
5.3 Network Configuration Examples

Figure 5-9 A Multinetwork Configuration

VMS

DM F-0 KMY-0
I

DCE

DTE 123456789012

Non-DIGITAL
computer

i

DTE 234212345678

ZK-4771-85

I

! Set up the networks. The PSDN connection will be called network PUBLIC
! and the other network will be called NONDEC (using the profile IS08208).

i

DEFINE MODULE X25-PROTOCOL -
NETWORK PUBLIC -
PROFILE SONNET

DEFINE MODULE X25-PROTOCOL -
NETWORK NONDEC -
PROFILE IS08208

Define the line used to connect to SONNET.

DEFINE LINE KMY-0 NETWORK PUBLIC STATE ON

Define the line used to connect to the non-DIGITAL machine.

DEFINE LINE DMF-0 -
NETWORK NONDEC -
INTERFACE DCE -
STATE ON

i

! Define the DTE addresses.
i

DEFINE MODULE X25-PROTOCOL -
DTE 234212345678 -
NETWORK PUBLIC -
LINE KMY-0 -
CHANNELS 1056-1024

Configuration of a Network
5.3 Network Configuration Examples

DEFINE MODULE X25-PROTOCOL -
DTE 123456789012 -
NETWORK NONDEC -
LINE DMF-0 -
CHANNELS 100-1 -
INTERFACE DCE

i

! Define the destinations. The destination, JOE, receives calls

! from PUBLIC only.
i

DEFINE MODULE X25-SERVER -
DESTINATION JOE -
SUBADDRESS 1-10 -
NETWORK PUBLIC -
OBJECT OBJONE -
PRIORITY 1

i

! The destination, JIM, receives calls from either network.
i

DEFINE MODULE X25-SERVER -
DESTINATION JIM -
SUBADDRESS 11-16 -
OBJECT OBJTWO -
PRIORITY 2

i

! The destination, DEFDEST, provides a general destination for calls

! that do not match the other destinations.
i

DEFINE MODULE X25-SERVER -
DESTINATION DEFDEST
OBJECT DEFOBJ -
PRIORITY 0

Define the X.29 call handler.

DEFINE MODULE X29-SERVER STATE ON

Define the objects used for incoming calls.

DEFINE OBJECT OBJONE
FILE OBJSTUP.COM -
USER PSIUSER -
PASSWORD PSIUSER

DEFINE OBJECT OBJTWO
FILE OBJECTTWO.COM -
USER JIM -
PASSWORD JIM

DEFINE OBJECT DEFOBJ -
FILE LSTCHNCE.COM -
USER NET -
PASSWORD NET

5.4 System Configuration Guidelines
Proper network operation, particularly in a routing environment, requires
that you properly configure the system software running on each node in the
network. Memory and processor time are two principal resources that you
need to define.

5-35

Configuration of a Network
5.4 System Configuration Guidelines

5.4.1 Normal Memory Requirements
Most of the memory required by the network software is allocated from the
VMS nonpaged dynamic memory pool. You configure this pool by setting the
SYSGEN parameters NPAGEDYN, IRPCOUNT, LRPCOUNT, and LRPSIZE.

These SYSGEN parameters are set by the AUTOGEN Facility when
the operating system is first booted and do not normally require
modification. If, however, you find that you need to modify the
SYSGEN parameters to tune the system properly, you should edit the file
SYS$SYSTEM:MODPARAMS.DAT as described in the Guide to Maintaining a
VMS System.

5.4.1.1 NPAGEDYN Parameter
To increase the nonpaged dynamic pool space, calculate the value for the
SYSGEN parameter NPAGEDYN using the following equation:

number =current value +total driver value + a + b + c + d

where:

current value Is the current byte count without any version of DECnet—
VAX installed (derived from the SYSGEN command SHOW
/MAJOR).

total driver value Is the total number of bytes required to load the driver plus
NETDRIVER (see Table 5-3 for driver sizes).

a Is the total number of bytes required for all lines used by
DECnet—VAX. Use the following formula to determine the
approximate space required:

a = (number of lines) * (number of buffers) (buffer size)

The buffer size and the number of buffers are determined
by the values you assign to the executor BUFFER SIZE and
individual line RECEIVE BUFFERS parameters.

b Is the total number of bytes required for the DECnet—VAX
data structure that handles logical links. Use the following
equation to determine the approximate space required:

c

d

b = 512 *number of links
The number of links is determined by the value you assign
to the executor MAXIMUM LINKS parameter.

Is the total number of bytes required for the DECnet data
structure that handles circuits. Use the following equation to
determine the approximate space required:

c = 60 number of circuits
The number of circuits is the number of circuits you intend
to use.

Is a multiple of the additional IRPCOUNT count. Use the
following equation to determine this value:

d = (new IRPCOUNT -current IRPCOUNT) * 200
The new IRPCOUNT is computed as in Section 5.4.1.2; the
current IRPCOUNT is the current count without any version
of DECnet—VAX installed.

Configuration of a Network
5.4 System Configuration Guidelines

Use the NCP SHOW EXECUTOR and SHOW CIRCUITS commands to
display parameter values that you have set for the local node.

Table 5-3 provides the number of bytes required to load NETDRIVER and
the individual drivers.

Table 5-3 Driver Sizes

Driver Software Number of Bytes

CNDRIVER (CI) 4,000

ESDRIVER (SVA) 21,000

ETDRIVER (BNA) 25,000

NETDRIVER 18,000

NODRIVER (asynchronous) 15,000

SLDRIVER (DMB) 19,000

XDDRIVER (DMP) 1 1,500

XEDRIVER (UNA) 21,000

XGDRIVER (DMF) 16,500

XMDRIVER (DMC) 6,000

XQDRIVER (QNA) 21,000

5.4.1.2 IRPCDUNT Parameter
With the SYSGEN command SET IRPCOUNT, increase the number of
prealiocated I/O request packets to reflect the increase of nonpaged dynamic
pool space, using the following formula:

number =current value +number of buffers +number of circuits + 2

where:

current value Is the current count without any version of DECnet—VAX
installed

number of buffers Is the number of buffers that may be used by DECnet—
VAX in peak periods (see Section 5.4.1.1).

number of circuits Is the number of circuits that you intend to use.

5.4.1.3 LRPCOUNT and LRPSIZE Parameters
Calculate the value for the SYSGEN parameter LRPCOUNT according to the
following formula:

number of buffers =number of lines +number of receive buffers

The number is the total number of receive buffers specified for all lines plus
the total number of lines.

The value for LRPSIZE should match that of the BUFFER SIZE parameter in
the executor database.

Refer to the VMS System Generation Utility Manual for a complete discussion
of the System Generation Utility (SYSGEN). Note that the new settings for
LRPCOUNT and LRPSIZE do not take effect until the next time the operating
system is booted.

Configuration of a Network
5.4 System Configuration Guidelines

5.4.2 Critical Routing Node Requirements
For some critical routing nodes in large networks, you may need to guarantee
that user processes running on the node never interfere with the memory
requirements of the network software. In this case, you may want to
configure the system for worst-case use of the nonpaged dynamic pool.

The use of nonpaged pool is controlled by the quota values that you specify
for each user when you create the user's authorization record. For worst-case
configuration, the sum of the quotas of all the simultaneously active processes
must provide the required free pool for the network software.

To configure a system for the worst case, adhere to the following four rules:

• The sum of the ASTLM (asynchronous system trap limit), BIOLM
(buffered I/O limit), DIOLM (direct I/O limit), and TQELM (timer
queue limit) quotas for each process must be added to the IRPCOUNT
parameter.

• The FILLM (file and logical link limit) quota for each process must be
doubled and added to the IRPCOUNT parameter.

• The ENQLM (enqueue limit) quota for each process must be doubled and
added to the IRPCOUNT parameter. ENQLM is the number of locks each
process can own.

• The BYTLM (buffered I/O byte count limit) quota for each process must
be added to the NPAGEDYN parameter.

Given these guidelines, the result of the following calculation should be less
than the total free pool after the network has initialized:

USERPROCESSES * (((ASTLM + BIOLM + DIOLM +TQELM + (FILLM * 2)) * 96) +BYTLM)

For example, if for a critical routing node you also want to provide for 16
users' processes, the calculation might be as follows:

16 * (((10 + 6 + 6 + 5 + (8 * 2)) * 96) + 4096) = 16 * 8224 = 131584 bytes

This calculation indicates that there should be at least 131,584 bytes
of nonpaged dynamic pool remaining after the network has initialized.
However, because all users requiring their quota of pool at the same
time is extremely unlikely, then, except for aworst-case configuration, the
quotas and pool could be configured minimally so that no one user's quota
would completely deplete the free pool. Use the SHOW MEMORY operator
command or the dynamically updated POOL display for the Monitor Utility
to configure the nonpaged dynamic memory pool for normal use.

The consequences of running almost or completely out of pool are fairly
obvious to system users: System performance will be very sluggish; processes
will continually enter the MWAIT scheduling state while they wait for an
available free pool; and the free pool SHOW MEMORY display will indicate
almost none.

If the lack of pool causes the network software on the node to be unable to
allocate a buffer fast enough to receive data from a communications line, the
line may be considered unusable by another node in the network. When
this happens, the network attempts to adaptively reconfigure itself, thereby
resulting in network traffic consisting of configuration update messages. If the
node with pool problems is close to failing, without failing completely, it may
alternate between working and not working, thereby causing the network to

5-38

Configuration of a Network
5.4 System Configuration Guidelines

repeatedly reconfigure itself. Ultimately, these reconfigurations degrade the
performance of the entire network.

5.4.3 CPU Time Requirements
Compared to the procedures for configuring memory requirements and
critical routing node requirements, proper system configuration to provide
adequate processor time for the network software is somewhat more
straightforward. Most of the procedures that control network routing are
located in NETDRIVER. Because most of NETDRIVER runs at elevated
interrupt priority level (IPL), normal user programs cannot preempt its
execution. However, user-written drivers and privileged programs running at
elevated IPL can affect the proper operation of NETDRIVER.

The VMS Device Support Manual provides guidelines for elevated IPL
execution programming. In general, a program should run at elevated IPL
only as long as necessary to synchronize correctly with other processes and
devices. In particular, running at IPL IPL$_SYNCH for more than a few
hundred milliseconds or running at any IPL at or above IPL$_MAILBOX
for more than a few hundred milliseconds may adversely affect the network
software. The effect of improper elevated IPL programming on the whole
network is the same as having insufficient free nonpaged dynamic pool.

The NETACP process contains the procedure that handles the automatic
network reconfiguration for a network node. Therefore, for proper network
operation, the NETACP process must also be assured of sufficient processor
time. It runs at a base priority of 9, which is well above the recommended
base priority of 4 for normal users. However, real-time processes running at
priorities 10 through 31 can preempt the execution of NETACP.

Just as for user-written drivers, the programming of real-time processes must
account for the needs of the network software and other system software.
A rule of thumb for real-time processes is that they should not normally
preempt the execution of NETACP for more than a few hundred milliseconds
at a time, and they should never preempt its execution for more than 5 to 10
seconds. This restriction allows NETACP sufficient processor time to run its
routing algorithms properly.

If NETACP is unable to perform all of its functions, the effects on the whole
network will be the same as having insufficient free pool or incorrect elevated
IPL programming. If the preceding guidelines cannot be met for a particular
real-time application, the application should probably not be used on a node
that is also doing network routing.

The NETACP process, like all system processes, can be swapped and paged.
However, because its base priority is 9, it is one of the last processes swapped
when it is running and swapping becomes necessary. Also, NETACP receives
high priority for paged disk I/O requests. Again, improper considerations for
the disk I/O needs of NETACP can adversely affect the network as a whole.
If the NETACP process continually enters the PFW or COMO scheduling
state, it is probably not receiving sufficient priority for paging or swapping;
other real-time or system programs should probably be modified to relieve
the problem.

Configuration of a Network
5.4 System Configuration Guidelines

5.4.4 UNIBUS Adapter Map Register Considerations
The UNIBUS adapter on VAX processors provides a mechanism called
UNIBUS map registers (UMRs) that allows UNIBUS peripherals to access
VAX main memory. These map registers are required because the UNIBUS
allows only 18 bits of address space while the VAX processors provide 24
or 30 bits (depending on processor type). The 18 bits of address space are
divided into 496 pages of 512 bytes each. Therefore, there are 496 map
registers that allow up to 496 pages of memory to be mapped for direct
memory access (DMA) by UNIBUS devices.

Because UNIBUS map registers are a limited resource needed for correct
operation of the network software, some consideration should be given to
their use.

The VMS operating system provides a service for device drivers to allocate
and deallocate map registers. Most drivers allocate map registers only for the
time it takes for the device to perform a transfer, after which they deallocate
them for use by another I/O request to the same device or by other drivers for
different devices. This type of allocation is referred to as dynamic allocation.

Other drivers, however, permanently allocate map registers all the time the
system is running. This is either because certain memory tables must be
accessible to the device (TS 11, DMC 11, and DMP 11) all the time the device
is initialized or because of certain throughput requirements of the device
(1 megabaud DMC 11 /DMR 11, DMP 11, DEUNA, and LPA 11). This type of
allocation is referred to as permanent allocation.

If a device driver process attempts to allocate UMRs and not enough are free
to satisfy the allocation, the driver process is put into a FIFO wait queue to
wait for UMRs to become available.

The UNIBUS map register requirements of the various supported UIVTIBUS
devices are as follows:

• The TS 11 driver permanently allocates a maximum of three map registers
in its command table for each TS11 on the UNIBUS when it initializes.
The TS 11 supports one DMA I/O request at a time, and because an I/O
can be up to 65,536 bytes in size, the TS11 driver requires a maximum of
128 map registers that can be allocated dynamically.

• The RL02, RK06, RK07, and RX02 disk drives support one DMA I/O
request at a time. Because the maximum I/O request size can be 65,536
bytes, these drivers require a maximum of 128 map registers that can be
allocated dynamically.

• The LPA 11-K laboratory data acquisition device driver can be configured
to permanently or dynamically allocate up to 496 map registers. The
SYSGEN parameter LAMAPREGS allows you to specify how many map
registers are to be permanently allocated; if this parameter is 0, map
registers are dynamically allocated as needed when the device is used for
I/O.

• The DMC 11 /DMR11 driver permanently allocates a maximum of three
map registers for its base table when it initializes. It also permanently
allocates enough map registers for all of its receive buffers, which you set
with the RECEIVE BUFFERS line parameter and BUFFER SIZE executor
parameter. However, if more than seven receive buffers are specified per
line, only seven sets of map registers per line are allocated.

Configuration of a Network
5.4 System Configuration Guidelines

The DMC 11 /DMR 11 driver supports one DMA transmit at a time and
because each transmit can be a maximum of 16,383 bytes in size, the
DMC11/DMR11 driver requires a maximum of 32 map registers that can
be allocated dynamically.

• The DMP 11 driver allocates map registers in the same way that the
DMC 11 /DMR 11 driver does with the exception that the DMP 11 driver,
which does not have a base table, requires three fewer map registers.

• The DEUNA device driver assigns eight receive buffers with a length of
1500 bytes per buffer. Enough map registers are permanently allocated
for all receive buffers.

The following example details how one might determine whether sufficient
map registers will be available. Assume the system consists of a VAX-11 / 780
with a single UNIBUS adapter, two RK07 disk drives on a single controller, a
TS 11 tape drive, and three DMR 11 s. The BUFFER SIZE executor parameter
is set to 5 76 and each line has its RECEIVE BUFFERS parameter set to 4.
Because each buffer can potentially cover three pages (two pages to contain
the 576-byte buffer and one page for an offset page) and because the VMS
map register allocator always allocates an extra invalid map register for
protection, each buffer will require four map registers.

Device Permanent Map Registers

TS1 1

DMR1 1(3)

Three permanent map registers would be required for the TS 1 1.

Fifty-seven map registers would be required for the three
DMR1 1 s. (Each DMR permanently allocates 19 map registers;
three UMRs for the base table and four UMRs for each of the
four receive buffers.)

Therefore, 496 minus 60, or 436 map registers are available for dynamic use
by all devices.

Because the TS11 and RK07s can each be using 128 map registers, there are
always at least 436 minus 256, or 180 map registers available to map DMR11
transmit buffers. This amount is more than sufficient because the DMR 11 s
each have only one transmit of 5 76 bytes outstanding at a time, which require
a maximum of 3 times 4, or 12 map registers.

In general, because the VMS operating system has dynamic map register
allocation and waiting when UNIBUS map registers run out, they are not a
resource problem. However, if a system has a large number of
DMC 11 /DMR 11, DMP 11, and DEUNA devices, you should calculate map
register use to ensure that the configuration works.

Configuration of a Network
5.4 System Configuration Guidelines

5.4.5 Permanent Database Considerations in VAXclusters
The permanent configuration database, usually resident on disk, consists of a
number of files. These files are listed in Table 5-4.

Table 5-4 Permanent Configuration Database Files

File Name Usage

SYS$SYSTEM : NETNODE _REMOTE .DAT

SYS$SYSTEM:NETNODE_LOCAL.DAT

SYS$SYSTEM: NETLINE. DAT

SYS$SYSTEM : NETLOGING. DAT

SYS$SYSTEM:NETOBJECT.DAT

SYS$SYSTEM: NETCIRC. DAT

SYS$SYSTEM:NETX25.DAT

SYS$SYSTEM : NETX29 . DAT

SYS$SYSTEM:NETCONF.DAT

SYS$SYSTEM: NETPROXY. DAT

Remote node

Executor and loop node

Line

Logging

Object

Circuit

X.25 module

X.29 module

Configurator module

Permanent proxy database

In a homogeneous VAXcluster, you may want to allow some of these files to
be shared by members of the VAXcluster; shared~'fil~s should be moved to
SYS$COMMON:[SYSEXE] and files that are not to be shared should reside
in SYS$SPECIFIC:[SYSEXE] (where they are normally created). Neither
NETNODE _LOCAL.DAT nor NETX25.DAT should be shared because they
contain executor information that is unique for each node in a VAXcluster.
Other files such as NETLINE.DAT and NETCIRC.DAT should not be shared
if the communications hardware configurations within the VAXcluster are not
identical on every node.

As an example, if the permanent object database is identical on every node in
a VAXcluster, you can make it shared by following these steps:

1 Rename (or move) the permanent object database on one node to the
common system root, for example:

$ RENAME SYS$SPECIFIC:[SYSEXE]NETOBJECT.DAT -
_$ SYS$COMMON:[SYSEXE]NETOBJECT.DAT

or

$ COPY SYS$SPECIFIC:[SYSEXE]NETOBJECT.DAT
_$ SYS$COMMON:[SYSEXE]NETOBJECT.DAT

2 Delete (or rename) the permanent object database from the private system
root on each node in the VAXcluster, for example:

$ DELETE SYS$SPECIFIC: [SYSEXE]NETOBJECT.DAT;*

or

$ RENAME SYS$SPECIFIC: [SYSEXE]NETOBJECT.DAT;* -
_$ SYS$SPECIFIC: [SYSEXE]NETOBJECT.OLD;*

The files SYS$SYSTEM:NETNODE.DAT and SYS$SYSTEM:NETNODE_
OLD.DAT are obsolete versions of the permanent node database that may be
deleted.

5-42

6 Installation of a Network

This chapter describes how to start DECnet-VAX and how to install and
start VAX PSI. Refer to the Guide to DECnet-VAX Networking for a summary
description of the complete DECnet-VAX installation procedure.

A network consists of two or more nodes linked together. If there is no
existing network to which you can connect your node, you can cooperate
with the managers of other systems to create a new network. Anew network
is formed when two or more systems are connected by communications lines
and each system is brought up as a network node.

The following sections describe how to register aDECnet-VAX key and how
to bring up your node on a new or existing network.

6.1 Installing a DECnet—VAX Key
If you have purchased either a full function or an end node DECnet-VAX
license and the appropriate full function or end node key, you must register
the key on your system using the License Management Utility (LICENSE).
The procedure for installing the DECnet-VAX key is described in the VMS
Version 5.0 Release Notes. Refer to the VMS License Management Litility Manual
for additional information on licensing.

If you have a DECnet-VAX full function license, registering the key allows
you to configure your node as either a routing node or an end node. If
you have an end node license, registering the key permits you to configure
your node only as an end node. If you are upgrading from end node to full
function capability, you must purchase an end node to full function license
and register the DECnet-VAX key.

6.2 Bringing Up Your Network Node Using STARTNET.COM

After you satisfy the prerequisites for establishing a network and define the
necessary parameters in the configuration database (see Chapter 5), you are
ready to bring up your DECnet-VAX node. To do so, you must first define
the local node (using the DEFINE EXECUTOR command) in the permanent
database. This is the minimum requirement for the initial control of the
operational state of the node.

After you build the permanent database using either NCP or the
NETCONFIG.COM interactive configuration procedure (see Chapter 5),
enter the following command to bring up your network:

$ @SYS$MANAGER:STARTNET.COM

This command starts NCP and NML, and configures the volatile database
with the parameters that you defined in the permanent database. This
procedure also turns on the local node and all lines and circuits connected to
it. In addition, STARTNET.COM starts the network command terminal ACP
by executing SYS$MANAGER:RTTLOAD.COM. At this point, the local node
is ready for network operations with itself and with adjacent nodes.

6-1

Installation of a Network
6.2 Bringing Up Your Network Node Using STARTNET.COM

DECnet-VAX uses OPCOM to display certain network-related messages on
the network operator's console. When you turn on the local node, OPCOM
displays the following message:

Opcom, hh:mm:ss:cc, SYSTEM Acct=
Opcom, DECnet starting

After you bring up your DECnet-VAX node, you use NCP commands to
control the operational states of network components. You can control both
local components and remote executions of NCP commands. This control
allows you to dynamically reconfigure your network to control the use of the
network and its resources. Use the NCP commands CLEAR and SET for the
volatile database to control the network.

Parameters in the permanent database define network components each time
you use the word ALL with the SET command. Typically, you use the SET
"component" ALL command if you choose not to use STARTNET.COM to
bring up the network. Section 6.5 discusses how to shut down the network.

Note that, if you are going to run VAX PSI, you must install the VAX PSI
software before invoking STARTNET.COM. This also applies to VAX PSI
Access software.

6.3 Bringing Up Your VAX PSI DTE
Bringing up VAX PSI DTE is similar to bringing up a node on the
DECnet-VAX network. First, install VAX PSI, following the procedure
described in the VAX P.S.1. Installation Procedures. Make sure you configure
VAX PSI in multihost mode (instead of native mode) if you are building a
DECnet network that .allows some or all of its nodes to access the PSDNs
connected. The multihost installation sets up the commands necessary to
bring up the connector node (the node connected to the PSDNs) as a DTE.
(Section 5.3 includes examples of both native mode and multihost mode
configurations.)

Invoking the STARTNET.COM procedure brings up both DECnet-VAX and
VAX PSI software. After VAX PSI is installed properly, you can use VAX PSI
to communicate with a remote DTE over a packet switching data network
(PSDN).

Note that if you make changes to your PSI system while it is running and you
want to include these changes in your PSI system the next time the system is
started, you must also make similar changes to the permanent database using
NCP commands (DEFINE and PURGE).

6.4 Testing the Installation with UETP Test Procedure
To ensure that the DECnet-VAX installation is successful, you can use the
User Environment Test Package (UETP) to test DECnet. The test procedure is
described in the Guide to Setting Up a VMS System.

Installation of a Network
6.5 Shutting Down Your DECnet—VAX Node

6.5 Shutting Down Your DECnet—VAX Node

Bringing down your operating system automatically brings down your
DECnet-VAX node as well. The next time you reboot the operating system,
your network comes up automatically if SYSTARTUP_V5.COM invokes
STARTNET.COM (see Section 6.2). However, if the network is running and
you want to shut down your network node in an orderly manner or otherwise
restrict its use, you can use NCP to control the operational state of the local
node. NCP offers three options for shutting down the executor node.

• To shut down your local node without destroying active logical links,
enter the following command:

NCP>SET EXECUTOR STATE SHUT

This command closes the node in an orderly fashion; new links are not
allowed, and existing links are not destroyed. When all logical links are
disconnected, this command turns off the node, and NCP logs an event
message.

When the last link terminates and is disconnected, the executor node
in the SHUT state enters the OFF state. This action occurs whether or
not the node is currently in use for route-through traffic. Consequently,
the communication path between nodes using the local node for route-
through may be broken.

• Instead of shutting down your local node, you can restrict network
operations on that node. This restriction does not affect current logical
link activity; however, no new inbound logical links can be created
unless they originate locally or unless a process with the OPER privilege
confirms them. Enter the following command to restrict local node
operations:

NCP>SET EXECUTOR STATE RESTRICTED

• To shut down the local node regardless of current logical link activity,
enter the following command:

NCP>SET EXECUTOR STATE OFF

This state allows no new logical links to be created, terminates existing
links, and stops route-through traffic.

Note: Programs that have declared names or object numbers and that are
started independently of DECnet-VAX should be programmed to
terminate when their mailboxes receive a MSG$_NETSHUT message.
This message appears when the node is shutting down.

Whenever the local node's state goes to OFF, DECnet-VAX uses the OPCOM
facility to display the following message on the console:

Opcom, hh:mm:ss:cc, SYSTEM Acct=
Opcom, DECnet shutting down

Table 6-1 summarizes local node states and basic network operation
restrictions for them. These operations include network routing, confirming
inbound connections from a remote node, and initiating outbound
connections to a remote node.

Installation of a Network
6.5 Shutting Down Your DECnet—VAX Node

If your network configuration includes VAX PSI, shutting down aDECnet-
VAX node also shuts down VAX PSI and clears the PSI volatile database.
Bringing up the DECnet-VAX node subsequently restarts VAX PSI and
re-creates the volatile database from the permanent database.

Table 6-1 Local Node States and Network Operations

State
Route-Through Connect Confirm Connect Initiate
Traffic Operations Operations

ON

RESTRICTED

SHUT

Unrestricted

Unrestricted

Unrestricted

OFF Restricted

Unrestricted

Unrestricted only if the partner node
is the local node or if the confirming
process has the OPER privilege

Unrestricted only if the confirming
process has the OPER privilege

Restricted

Unrestricted

Unrestricted

Unrestricted only if the
initiating process has the
OPER privilege

Restricted

l./

7 Testing the Network

NCP provides several kinds of tests to help you determine whether the
network is operating properly. Specifically, these tests let you exercise
network software and hardware by sending data through various network
components and then returning that data to its source. After you start
DECnet—VAX software, you may want to run some of these tests.

In general, problems that you encounter with the DECnet—VAX network
probably arise from misconfigured VMS and DECnet parameters that you
can fix using SYSGEN or NCP. DIGITAL supplies variations of these tests to
exercise separate layers of the network. User-written processes or DECnet-
supplied processes may also initiate the tests.

DECnet—VAX tests fall into two categories: node-level loopback tests and
circuit-level loopback tests. Use node-level tests to evaluate the operation
of logical links, routing, and other network-related software. Use circuit-
level tests to evaluate the operation of circuits. Using node-level tests first
is recommended; then, if necessary, use circuit-level tests. This chapter
describes these variations as they relate to DECnet loopback capabilities and
the NCP command LOOP, and provides a practical approach to their use.
Note that you cannot use LOOP commands on asynchronous lines or circuits.

VAX PSI provides various ways to analyze software and hardware operation
and to diagnose problems in PSI operations. Use line-level loopback tests
to evaluate the operation of the X.25 physical lines and communications
hardware. VAX PSI provides an additional facility for the KMS11 and KMV11
line interfaces, allowing you to dump the microcode to a specified file for
analysis. This chapter describes these VAX PSI test facilities and how to use
them. For additional details about the VAX PSI test facilities, refer to the VAX
P.S.I. Problem Solving Guide.

7.1 Node-Level Tests
Node-level loopback tests examine the logical link capabilities of a node by
exchanging test data between DECnet processes on two different nodes or
between DECnet processes on the same node. There are two types of test:

• Loopback tests for logical link operation regardless of the circuit

• Loopback tests for operation over a specified circuit

The second test sends test messages over a specified circuit associated with a
loop node name (see Section 7.1.2). This test directs test messages regardless
of the Routing layer function.

Both types of node-level loopback test allow you to test the functions of your
DECnet—VAX software. To test various aspects of this software, you may
want to perform a series of operations, as follows:

1 In the first test, loop information to a remote loopback mirror process
using a remote loopback test. This tests all local and remote network
software up to the DNA user layer on the remote node.

Testing the Network
7.1 Node-Level Tests

2 If the first test fails, use a loop node name and loop information to the
local node and to a remote node. The loop node name allows you to
direct traffic over a specified circuit, which tests local and remote Routing
layer software.

3 If the second test fails, set the circuit's line to "controller loopback" and
repeat step 2.

Regardless of the type of test you choose, use the NCP command LOOP
NODE to send test messages. This NCP function uses a cooperating process
called the Loopback Mirror to facilitate the transmission and reception of test
messages. When you use this command, you have the option of controlling
the type of binary information (MIXED, ONES, ZEROS); the number of blocks
of information, which ranges from 1 to 65,535; and the length in bytes of each
block to be looped, which also ranges from 1 to 65,535. (Using a maximum
block length of 4096 bytes to reduce the system load is recommended.) Refer
to the VMS Network Control Program Manual for the complete syntax of the
LOOP NODE command.

If your message returns with an error, the test stops and NCP prints a
message that indicates a test failure, specifies the reason for the failure, and
provides a count of the messages that were not returned. For a summary
of NCP error messages, refer to the VMS System Messages and Recovery
Procedures Reference Volume.

In the following example, the test attempts to send 10 messages, each 50
bytes long. The first two messages are sent successfully, and an error occurs
on the third.

NCP>LOOP NODE BOSTON COUNT 10

%NCP-W-LINCOM, line communication error

Messages not looped = 8

7.1.1 Remote Loopback Test
Use. the LOOP NODE command to test for a logical link connection between
two nodes. When using this command, you must identify the node to which
you want to loop test messages. Figure 7-1 illustrates a remote loopback test.

For this test, you first turn the selected remote node line and circuit to the
ON state to allow for logical link activity. Then, you use the LOOP NODE
command. For example, the following set of commands tests both local and
remote DECnet software on nodes BOSTON and TRNTO:

NCP>SET LINE DMC-0 STATE ON
NCP>SET CIRCUIT DMC-0 STATE ON
NCP>LOOP NODE TRNTO COUNT 10

Testing the Network
7.1 Node-Level Tests

Figure 7-1 Remote Loopback Test

NCP Commands:

NCP>SET LINE DMC-0 STATE ON
NCP>SET CIRCUIT DMC-0 STATE ON
NCP>LOOP NODE TRNTO COUNT 10

BOSTON (executor) TRNTO

NCP

Loopback
Mirror

NML

(logical link)

ZK-555-81

7.1.2 Local and Remote Loopback Tests Using a Loop Node Name
If the remote loopback test fails, then use the LOOP NODE command with
a loop node name to test a logical link path over a specified circuit. You
can loop test messages either over a logical link path and circuit within the
local node or between two different nodes with a loop node specified for
the circuit to be used. Use the latter method first in order to test remote
Routing layer software. In each case, use the SET NODE command with
the CIRCUIT parameter to establish a loop node name. For example, the
following command establishes circuit DMC-0 as the circuit over which loop
testing will take place:

NCP>SET NODE TESTER CIRCUIT DMC-0

No other parameters are valid for loop nodes. This circuit must be turned on
when performing these tests.

Note that you cannot assign two loop node names to the same circuit. For
example, after you establish TESTER as the loop node name for circuit
DMC-0, you must enter a CLE~,R NODE TESTER CIRCUIT command before
assigning another loop node name to DMC-0.

When a logical link connection request is made to the loop node name, all
subsequent logical link traffic is directed over the associated circuit. The
destination of the traffic is whatever node address is associated with the
loop node name. The loop node name is necessary because, under normal
operation, DECnet Routing software selects which path to use when routing
information. The loop node name overrides the routing function so that
information can be routed over a specific circuit. To remove the association
of the loop node name with a circuit, use the CLEAR NODE CIRCUIT or
CLEAR NODE ALL command, as in the following example:

NCP>CLEAR NODE TESTER CIRCUIT

A Loop node name specified with the SET NODE CIRCUIT command may
be used for any network traffic (for example, COPY requests or application
program traffic). The loopback node name appears as a valid node name in
the network for all purposes.

7-3

Testing the Network
7.1 Node-Level Tests

7.1.2.1 Local-to-Remote Testing
To test a logical link path over a circuit between the local node and a remote
node, you must specify a loop node name for the given circuit and enter the
LOOP NODE command. Figure 7-2 illustrates alcal-to-remote loopback test
using a loop node name.

Figure 7-2 Local-to-Remote Loopback Test Using a Loop Node
Name

NCP Commands:

NCP> SET LINE DMC-0 STATE ON
NCP>SET NODE TESTER CIRCUIT DMC-0
NCP>SET CIRCUIT DMC-0 STATE ON
NCP> LOOP NODE TESTER COUNT 10

BOSTON (loop node TESTER) Remote Node

NCP

NML

Loopback
Mirror

(logical fink) Remote
Routing
Software

ZK-556-81

For this test, you first turn on the line and set a loop node name for the
given circuit to the remote node. Next, turn on the circuit. Finally, enter the
LOOP NODE command using the loop node name, as shown in the following
example:

NCP>SET LINE DMC-0 STATE ON
NCP>SET NODE TESTER CIRCUIT DMC-0
NCP>SET CIRCUIT DMC-0 STATE ON
NCP>LOOP NODE TESTER COUNT 10

This set of commands tests both local and remote Routing layer software
operation. The test messages are looped over the loopback circuit. Because
the test actually tests the operation of the Routing layer on the remote node,
the message may not come back on the circuit over which it was sent.

Testing the Network
7.1 Node-Level Tests

Figure 7-3 Local-to-Local Loopback Test Using a Loop Node Name

NCP Commands:

NCP>SET LINE DMC-0 STATE OFF
NCP>SET LINE DMC-0 CONTROLLER LOOPBACK
NCP>SET LINE DMC-0 STATE ON
NCP>SET CIRCUIT DMC-0 STATE ON
NCP>SET NODE TESTER CIRCUIT DMC-0
NCP>LOOP NODE TESTER COUNT 10 LENGTH 32

BOSTON (loop node TESTER)

NCP

NML

Loopback
Mirror

(logical link) Controller
(in loopback)

ZK-557-81

7.1.2.2 Local-to-Local Testing
If the local-to-remote test fails, try a local loopback test with the local node to
test local Routing layer software exclusively. To test a logical link path over a
specified line on the local node, specify a loop node name and set the device
controller to loopback mode. Figure 7-3 illustrates alocal-to-local loopback
test using a loop node name.

For this test, you first turn off the line, set the controller to loopback mode,
and turn on the line and circuit. Finally, set a loop node name for the given
line and enter the LOOP NODE command using the loop node name. The
following set of commands tests the Routing layer software and the controller
on the local node:

NCP>SET LINE DMC-0 STATE OFF
NCP>SET LINE DMC-0 CONTROLLER LOOPBACK
NCP>SET LINE DMC-0 STATE ON
NCP>SET CIRCUIT DMC-0 STATE ON
NCP>SET NODE TESTER CIRCUIT DMC-0
NCP>LOOP NODE TESTER COUNT 10 LENGTH 32

Because the device is set to loopback mode, the test messages are looped over
the circuit and back to the local node. If this test fails, try a local loopback
test to test local DECnet software.

Note: Because of restrictions in the operation of the DMC controller, you must
use a block length of fewer than 50 bytes for controller loopback tests.

Testing the Network
7.1 Node-Level Tests

7.1.3 Local Loopback Test

If the loopback tests described in Section 7.1.2.2 fail, then use either the
LOOP NODE command with the local node-id or the LOOP EXECUTOR
command to test local DECnet software. This type of test uses DECnet-
VAX software to loop messages to the loopback mirror on the local node.
Figure 7-4 illustrates a local loopback test.

Figure 7-4 Local Loopback Test

NCP Command:

NCP> LOOP EXECUTOR COUNT 10

BOSTON (executor)

NCP

i

NML

(logical link)

Loopback
Mirror

ZK-558-81

For this test, you enter the following command at the local node:

NCP>LOOP EXECUTOR COUNT 10

This test evaluates the local DECnet software using an internal logical link
path. If this test succeeds and the other node-level tests fail, then try the
circuit-level tests. If these tests fail, the executor's default nonprivileged
DECnet account is probably set up incorrectly.

7.2 Circuit-Level Tests
Circuit-level loopback tests examine a DECnet circuit by looping test data
through a hardware loopback device on the circuit, either through a modem
(or loopback connector) or through a remote node. The tests that use a
hardware loopback device are referred to as controller loopback tests. The
tests that use a loopback connector or a modem are ref erred to as circuit
loopback tests. The tests that use the software capabilities of the system are
referred to as software loopback tests.

You may want to perform a series of operations to test various aspects of a
circuit, as follows:

1 In the first test, perform a software loopback test to another node to
determine whether the circuit is operational up to the remote circuit unit
and controller.

Testing the Network
7.2 Circuit-Level Tests

2 If the first test fails, set the controller to Loopback mode and use a
controller Loopback test to determine whether the controller works.

3 If the second test succeeds, then attach a modem (or Loopback connector)
to the controller and use a circuit Loopback test to determine whether the
unit is functional.

Regardless of the test type, you must use the NCP command LOOP CIRCUIT
to perform acircuit-level Loopback test. When you enter this command, you
have the option of controlling the type of binary information (MIXED, ONES,
ZEROS); the number of blocks of information, which ranges from 1 to 65,535;
and the length in bytes of each block to be looped, which also ranges from 1
to 65,535. (Using a maximum block length of 4096 bytes is recommended.)
For the complete syntax of the LOOP CIRCUIT command, refer to the VMS
Network Control Program Manual.

If your message returns with an error, the test stops and NCP issues a
message indicating a test failure, the reason for the failure, and a count of
the messages that were not returned. For a summary of NCP error messages,
refer to the VMS System Messages and Recovery Procedures Reference Volume.
In the following example, the test attempts to send 10 messages, each 50
bytes long. The first two messages are sent successfully, and an error occurs
on the third.

NCP>SET LINE DMC-0 CONTROLLER NORMAL STATE ON
NCP>LOOP CIRCUIT DMC-0 COUNT 10

%NCP-W-LINPRO, line protocol error

Messages not looped = 8

7.2.1 Software Loopback Test
Use the LOOP CIRCUIT command to perf orm a sof tware Loopback test of
a circuit connected to the local node. This type of test uses DECnet-VAX
software to loop through the circuit-to-circuit service software in the adjacent
node and back to the local node. Figure 7-5 illustrates a software Loopback
test that checks whether the circuit is operational up to the remote unit and
controller on the adjacent node.

In the first step of this test, you turn off the line. Next, you set the controller
to its normal operational mode and put the line and the circuit in the ON
state. Finally, you enter the LOOP CIRCUIT command, as shown in the
following example:

NCP>SET LINE DMC-0 STATE OFF
NCP>SET LINE DMC-0 CONTROLLER NORMAL
NCP>SET LINE DMC-0 STATE ON
NCP>SET CIRCUIT DMC-0 STATE ON
NCP>LOOP CIRCUIT DMC-0 COUNT 10

This set of commands tests the circuit DMC-0 up to the adjacent node. If this
test fails, try a circuit Loopback test to verify that the circuit is functional.

Testing the Network
7.2 Circuit-Level Tests

Figure 7--5 Software Loopback Test

NCP Commands:

NCP>SET LINE DMC-0 STATE OFF
NCP>SET LINE DMC-0 CONTROLLER NORMAL
NCP> SET LINE DMC-0 STATE ON
NCP>SET CIRCUIT DMC-0 STATE ON
NCP> LOOP CIRCUIT DMC-0 COUNT 10

BOSTON (executor) Remote Node

NCP

NML

(not a logical link)

Remote
Circuit Service

Software

ZK-559-81

7.2.2 Controller Loopback Test
Use the LOOP CIRCUIT command to perform a controller loopback test of a
physical line on the local node while the controller is in loopback mode. This
type of test verifies whether the circuit up to the controller and the controller
itself are functional. Figure 7-6 illustrates a controller loopback test.

For this test, you first turn off the line. Next, you set the controller to
loopback mode and put the line and circuit in the ON state. Finally, you
enter the LOOP CIRCUIT command. For example:

NCP>SET LINE DMC-0 STATE OFF
NCP>SET LINE DMC-0 CONTROLLER LOOPBACK
NCP>SET LINE DMC-0 STATE ON
NCP>SET CIRCUIT DMC-0 STATE ON
NCP>LOOP CIRCUIT DMC-0 COUNT 10 LENGTH 32

This set of commands tests the circuit up to the controller for physical line
DMC-0 connected to the local node by circuit DMC-O.

Note: Because of restrictions in the operation of the DMC controller, you must
use a block length of fewer than 50 bytes for controller loopback tests.

Testing the Network
7.2 Circuit-Level Tests

Figure 7-6 Controller Loopback Testing

NCP Commands:

NCP>SET LINE DMC-0 STATE OFF
NCP>SET LINE DMC-0 CONTROLLER LOOPBACK
NCP>SET LINE DMC-0 STATE ON
NCP>SET CIRCUIT DMC-0. STATE ON
NCP> LOOP CIRCUIT DMC-0 COUNT 10 LENGTH 32

BOSTON (executor)

NCP

NML
Controller

(in loopback)

ZK-561-81

7 2.3 Circuit-Level Loopback Testing
Circuit-level loopback testing is also supported for Ethernet circuits. One
major difference between loopback testing on point-to-point and multipoint
circuits (DMCs and DMPs) and on an Ethernet circuit is that the former
requires two separate processors (one at each end), but the latter requires only
one processor. In Ethernet circuit loopback testing, the target node's Ethernet
interface, rather than its processor, loops the messages.

In Ethernet circuit-level loopback testing (as in the case of point-to-point
circuit loopback testing), network management accesses the Data Link layer
directly, thus bypassing intermediate layers. One advantage of the Ethernet
loopback test is that it can be performed concurrently with other DECnet
operations on the circuit.

7.2.3.1 Testing with the PHYSICAL ADDRESS and NODE Parameters
To be tested, an Ethernet circuit must be in the ON state and the SERVICE
parameter must be set to ENABLED. Note that, by default, the SERVICE
parameter is set to DISABLED for Ethernet circuits. As indicated in Chapter 2,
DECnet supports the UNA, which provides for multiaccess connections
between many nodes on the same Ethernet circuit. In the following example,
the command identifies the circuit device UNA and the controller number 0
for an Ethernet circuit:

NCP>SET CIRCUIT UNA-0 STATE ON SERVICE ENABLED

Testing the Network
7.2 Circuit-Level Tests

The UNA is used to loop messages on the Ethernet circuit. If desired, it can
be used to loop messages to itself in order to test its own state. To do this,
enter the following commands:

NCP>SET LINE UPdA-0 STATE OFF
NCP>SET LINE UNA-0 CONTROLLER LOOPBACK STATE ON
NCP>SET NODE TEST CIRCUIT UNA-0
NCP>LOOP NODE TEST

In this case, you are able to test the status of the UNA in controller loopback,
but not the capacity of the node to transmit and receive messages. For more
information about the node's capacity to send and receive messages, see
Section 7.1.2.2.

More typical cases of loopback testing of Ethernet circuits involve looping
messages to remote systems over the Ethernet; this tests the capability of both
the local and the remote UNAs to send and receive messages. In those cases,
you are required to supply such information as the Ethernet physical address
or the node name or address of the circuit at the remote node that you want
to test.

Nodes on Ethernet circuits are identified by unique Ethernet addresses.
An Ethernet address is 48 bits in length and is represented by six pairs of
hexadecimal digits (6 bytes), separated by hyphens (for example,
AA O1 23 45 67 89). For more detail on Ethernet addresses, see
Section 3.3.4.

Each UNA on the Ethernet circuit has a hardware address (in read-only
memory) that has been assigned to it by the manufacturer. Typically,
DECnet sets an Ethernet physical address for the UNA, thereby replacing
the hardware address as the address to which the UNA currently responds.
The UNA's physical address continues to be the address to which it responds,
unless it is reset to the hardware address value (for example, if the Ethernet
circuit is set to OFF).

Knowing the Ethernet physical address of the UNA on the remote node
that you want to test is helpful. Because this is not always possible, you
should plan to perform loopback tests to include the hardware address of
each of the UNAs on your Ethernet circuit in the permanent database, thus
ensuring that the address is retrievable from the volatile database. You can
then use the node-id in the LOOP command. When you specify node-id,
the network management software retrieves the hardware address from the
volatile database and attempts to transmit the loop message to the remote
UNA by alternately using the hardware address and the physical address that
DECnet normally uses.

The following example contains an Ethernet physical address:

NCP>LOOP CIRCUIT UNA-0 PHYSICAL ADDRESS AA-00-04-00-FF-04

Because, in this case, you know the physical address of the remote node that
you want to test, you merely include the PHYSICAL ADDRESS parameter
with its value. If, however, that physical address had changed (for example,
if it had been reset to the hardware address value), the loopback would have
failed. You would have received the following message:

%NCP-W-LINPRO, line protocol error
Messages not looped = 8

Testing the Network
7.2 Circuit-Level Tests

If you also know the name or address of the remote node, you could test
the UNA on that node even though its Ethernet physical address may
have changed. The Ethernet hardware address of the node to be tested
must already have been entered in the database on the executor node. If
the hardware address is included in the volatile database, and you test
by supplying the node name or address, the loop test is attempted by the
network management software to both the hardware address and the DECnet
address.

An example of a loopback test that specifies the NODE parameter is the
following:

NCP>LOOP CIRCUIT UNA-0 NODE TEST

Assume that TEST's physical address, which was AA 00 04 00 F7 04, is
changed. Thus, any attempt to test TEST using the old physical address does
not succeed. If, however, TEST's hardware address (which was
AA 00 03 00 O 1 31) is included in the volatile database on the executor
node, the loopback test with the NODE parameter in its specification does
succeed.

In the preceding example, you could alternatively supply the node address
value (such as 226) for the NODE parameter. For example, if you know the
node-id but not the name of the node, you could enter the following:

NCP>LOOP CIRCUIT UNA-0 NODE 226

In this case, the node address is used to construct the DECnet physical
address, and the Ethernet hardware address (assuming that it is included
in the volatile database) is used to access the circuit on the remote node
and complete the loopback test. Thus, entering the hardware address in the
volatile database is important.

If you want to examine the Ethernet hardware address of your own UNA
(in this case UNA-0), you can use the NCP command SHOW LINE
CHARACTERISTICS. For example:

NCP>SHOW LINE UNA-0 CHARACTERISTICS

When you enter this command, you receive a display such as the following:

Line Volatile Characteristics as of 30-DEC-1988 15:33:25

Line =UNA-0

Receive buffers = 0
Controller =normal
Protocol =Ethernet
Service timer = 4000
Hardware address = AA-00-03-00-12-00
Buffer size = 1498

Testing the Network
7.2 Circuit-Level Tests

7.2.3.2 Loopback Assistance
DECnet supports the use of an assistant physical address and an assistant
node to aid you in interrogating a remote node. To use this feature, you
specify either the ASSISTANT PHYSICAL ADDRESS parameter or the
ASSISTANT NODE parameter as an additional parameter to the LOOP
CIRCUIT command.

You can use the "assistant" in three distinct ways. First, you can use it to
assist you in receiving loop messages from a remote node. Second, you can
use it in transmitting loop messages to a remote node. Third, you can use it
in both transmitting messages to and receiving messages from a remote node.

There are various reasons why you might choose one form of assistance
over another. For example, the target node to which you want to transmit a
message may be located at a point where the signals are too weak to send
a message. In this case, you could request assistance in transmitting the
message to the target node. Similarly, you may be able to transmit messages
to the target node, but not be able to receive messages from it. In such a case
you can send a message directly to the target node and request an "assistant"
to aid you in receiving a message from the target node. When you encounter
difficulties in both sending and receiving messages, you can request an
assistant node to help you to both transmit messages to and receive messages
from the target node.

The following commands illustrate how to use the ASSISTANT PHYSICAL
ADDRESS and ASSISTANT NODE parameters:

NCP>LOOP CIRCUIT UNA-0 PHYSICAL ADDRESS AA-00-04-00-18-04 -
ASSISTANT PHYSICAL ADDRESS AA-00-04-00-15-04

NCP>LOOP CIRCUIT UNA-0 NODE LOON ASSISTANT NODE THRUSH

In the first command, you are requesting the node described by the Ethernet
physical address AA 00 04 00 15 04 to assist you in testing the node
described by the Ethernet physical address AA 00 04 00 18 04. In the
second command, you are requesting the node THRUSH to assist you in
testing node LOON.

If you specify either the ASSISTANT PHYSICAL ADDRESS or ASSISTANT
NODE parameter and you do not specify the HELP parameter, you
receive FULL assistance; that is, you are assisted both in receiving and
transmitting loop messages. Note that, in the preceding examples, because
the ASSISTANT PHYSICAL ADDRESS and ASSISTANT NODE parameters
are specified without the HELP parameter, the default is FULL assistance.

If you want to use an assistant node only to receive messages from the remote
node, you could enter the following command:

NCP>LOOP CIRCUIT UNA-0 NODE LOON ASSISTANT NODE THRUSH HELP RECEIVE

In this example you are requesting the node THRUSH to assist you in
receiving messages from node LOON. When you want to be assisted only in
sending or transmitting loop messages, you could enter a command such as
the following:

NCP>LOOP CIRCUIT UNA-0 NODE LOON ASSISTANT NODE 21 HELP TRANSMIT

Note that, in this case, the ASSISTANT NODE parameter contains the node
address, rather than the name of the node as in the previous example. In
each of the last two examples, the HELP parameter is included to specify the
type of assistance desired.

Testing the Network
7.3 X.25 Line-Level Loopback Tests

7.3 X.25 Line-Level Loopback Tests
There are three types of line-level loopback tests that you can use to test an
X.25 physical line:

• External loopback tests that loop data back through the modem

• Internal lo~pback tests that loop data back through the device

• External loopback tests that loop data back through a loopback device on
the line

You may want to perform the following series of operations to test various
aspects of the physical line:

1 First, using the loop switch on the modem, perform an external loopback
test through the modem. This test checks the logic of the device
transmitter and receiver, the line driver, the modem cable, and part
of the modem. If this test is successful and you still have errors, contact
your network manager.

2 If the first test fails, perform an internal loopback to test only the logic of
the device transmitter and receiver.

3 If the second test succeeds, attach a hardware loopback device to the
modem cable. Then perform an external loopback to test the logic of the
device transmitter and receiver, the line driver, and the modem cable.

Regardless of the test type, use the NCP command SET LINE to specify the
type of loopback test and the NCP command LOOP LINE to initiate the
line-level loopback test.

Specify values for two parameters of the SET LINE command, as follows:

Internal Loopback External Loopback

STATE SERVICE STATE SERVICE

CONTROLLER LOOPBACK CONTROLLER NORMAL

Note that the line state must be set to OFF before the CONTROLLER
parameter can be changed.

To initiate a test, use the LOOP LINE command with the same line identifier
you specified with the SET LINE command. For example, the following
commands initiate an external loopback test for the line DUP-0:

NCP>SET LINE DUP-0 . . . STATE SERVICE CONTROLLER NORMAL
NCP>LOOP LINE DUP-0 . .

Associate parameters with the LOOP LINE command to control the type of
test information and the size and number of blocks sent during testing.

Use the COUNT and LENGTH parameters to specify the number of blocks
sent over the line during a test and the length (in bytes) of each block sent.
The following command sends 2000 blocks 100 bytes long over the line:

NCP>LOOP LINE DUP-0 COUNT 2000 LENGTH 100 . .

Testing the Network
7.3 X.25 Line-Level Loopback Tests

Specify decimal integers in the range 1 to 65,535 for both these parameters.
Note that this test takes approximately 5 minutes, as the following calculation
shows:

2000 * (100+4)*8
seconds = 5 minutes

5000

A DUP runs at 5000 bps when looped back.

Use the WITH parameter to specify the type of binary information sent during
loopback testing. You can specify three types of binary information:

ONES All binary 1s

ZEROES All binary Os

MIXED A random combination of 1s and Os

For example, the following command sends 2000 blocks 100 bytes long, each
containing all binary 1s, over the line:

NCP>LOOP LINE DUP-0 COUNT 2000 LENGTH 100 WITH ONES

If you omit the WITH parameter, a combination of 1 s and Os (MIXED) is sent.
If you omit the COUNT and LENGTH parameters, one block of 128 bytes
is sent. For example, the following command sends one block of 128 bytes,
containing mixed binary information, over the line:

NCP>LOOP LINE DUP-0

The VAX P.S.1. Problem Solving Guide provides further details on loopback
testing.

7.4 Dumping KMS11 and KMV11 Microcode
This section describes how to dump the KMS11 or KMVll microcode to a file
and how to analyze the dump file. The KMS11 and KMVll are synchronous
line devices that interpret the X.25 level 2 protocol. They are supported by
VAX PSI (see the table of DECnet circuit and line devices in the VMS Network
Control Program Manual).

Use the MICROCODE DUMP parameter of the NCP command SET LINE to
dump the microcode of the specified device to the file indicated. By default,
the output file takes the following format:

SYS$ERRORLOG:filename. DMP

where:

filename Is the file you specify.

For example, the following command dumps the microcode of the file
BARRY.DMP in the SYS$ERRORLOG directory:

NCP>SET LINE KMX-0-0 MICROCODE DUMP BARRY

You can use the DUMP parameter only if you believe there is an error in the
microcode of the KMX, KMY, or KMV.

You can use KMS/KMV dump analyzer to process the dump file. For a
description of the dump analyzer, refer to the VAX P.S.1. Problem Solving
Guide.

Part IV Network User Operations

8 Performing Network User Operations

DECnet-VAX allows you to perform a variety of operations over the network:

• Retrieve information about the status of the nodes in your network.

• Establish communication with a remote DECnet node through the
heterogeneous command terminal facility.

• Access files on remote nodes.

• Perform task-to-task operations.

This chapter describes each of these operations. The primary focus of this
chapter, however, is on the use of task-to-task communication in network
operations.

For VAX PSI user operations, refer to the VAX PSI documentation set.

8.1 Retrieving Network Status Information
Before you perform a specific type of operation over the network, you
may want to check the status or availability of a particular node or nodes
in your network. To retrieve such information, you can use the DCL
command SHOW NETWORK. The SHOW NETWORK command displays
the availability of the local node as a member of the network.

Note that you can use the SHOW NETWORK command to retrieve
information about other nodes in your network only if your local node is
a routing node. If your local node is a nonrouting (end) node, you do not
receive any network information; instead, you are directed to a designated
routing node. If your node is an area router, the SHOW NETWORK
command displays additional information about the area.

The SHOW NETWORK command also displays link and cost relationships
between the local node and other nodes in the network. It displays the
following characteristics about the current network:

Node

Links

Cost

Hops

Next hop to node

Identifies each available node in the network by its node
address and node name.

Shows the number of logical links between the local
node and each available remote node.

Shows the total line cost of the path to a remote node.
The system .manager assigns the cost for each line in
the network.

Shows the number of intervening nodes plus the target
node.

Shows the outgoing physical line used to reach the
remote node. (The local node is identified by the term
LOCAL.)

Performing Network User Operations
8.1 Retrieving Network Status Information

Area

Next hop to area

Identifies each available area in the network by its area
number. This characteristic is displayed only if the local
node is an area router.

Shows the outgoing physical line used to reach the
remote area. This characteristic is displayed only if the
local node is an area router. The local node is identified
by the term LOCAL. The node address and node name
of the next hop to the target area are also displayed.

When you enter the SHOW NETWORK command on a level 1 router (a
router that is not an area router), you receive a display on your terminal
similar in format to the following:

VAX/VMS Network Status for local node 2.1 NYC on 30-DEC-1988 09:18:03.07

The next hop to the nearest area router is node 2.62 ZEUS.

Node Links Cost Hops Next Hop to Node

2.1 NYC 0 0 0 Local -> 2.1 NYC
2.2 RAEL 0 8 1 UNA-0 -> 2.2 RAEL
2.3 PANGEA 0 8 1 UNA-0 -> 2.3 PANGEA
2.4 TWDEE 0 10 2 UNA-0 -> 2.63 AURORA
2.5 TWDUM 0 8 1 UNA-0 -> 2.5 TWDUM
2.11 NEONV 0 8 1 UNA-0 -> 2.11 NEONV
2.63 AURORA 0 8 1 UNA-0 -> 2.63 AURORA

Total of 7 nodes.

If your local node is an end node, and you enter the SHOW NETWORK
command, you receive the following message on your terminal:

This is a nonrouting node, and does not have any network information.
The designated router for node NYC is node 2.62 ZEUS .

If you enter the SHOW NETWORK command, but the network is unavailable
at that time, you receive the following display:

Network unavailable

For more detailed information about the DCL command SHOW NETWORK,
see its description in the VMS DCL Dictionary.

8.2 Establishing Communication with a Remote Node
DECnet-VAX supports a command terminal facility that permits users to
establish communication with a remote node and to use the facilities of that
system while physically connected to the local node. By means of this link,
you can temporarily become a local user of the remote node and thereby
perform functions that the remote node allows its local users to perform from
a terminal.

Note that, in addition to communicating with remote VMS nodes, you can
communicate with non-VMS nodes that support the DNA heterogeneous
remote command terminal protocol facility (also referred to as the network
virtual terminal facility). Consult the Software Product Description
for a description of non-VMS operating systems and their DECnet
implementations.

Performing Network User Operations
8.2 Establishing Communication with a Remote Node

If you want to use the command terminal facility to establish communication
with a remote node, enter the DCL command SET HOST in the following
format:

$ SET HOST nodename

where:

nodename Is a 1- to 6-character name or number specifying the remote node
at which you want to log in.

The SET HOST command does not recognize the area prefix in a node
number. Therefore, to specify by number a node in another area, you
must convert the node number to its decimal equivalent, as described in
Section 3.7.2.

The operating system on the remote node prompts for a user name and
password. If the information you supply is valid, you are logged in to the
remote node. To return control to your local node, type LOGOUT.

If the remote node is a VMS node, you receive the following message at your
terminal after you type LOGOUT:

%REM-S-END, control returned to node _NODENAME: :

This message indicates that control is returned to your local node.

The only special control character used for remote command terminal
operations is CTRL/Y. Except for CTRL/Y, all control characters are handled
as if they were issued at the local node.

Repeated, rapid pressing of CTRL/Y generates a prompt asking if the remote
connection should be broken. If you answer YES to the prompt, control
returns to the local node. This technique is useful if for some reason you
cannot return to the local node normally.

The following command sequence illustrates the operation of remote
command terminals for the network topology example. The name of the
local node is BOSTON.

$ SET HOST TRNTO
Username: SMITH
Password:

Welcome to VAX/VMS Version 5.0 on node TRNTO

$ LOGOUT
SMITH logged out at 30-DEC-1988 12:31:55:49

%REM-S-END, control returned to node _BOSTON::

When you are logged in at a remote node, you can use the SET HOST
command to establish communication with another node. After logging in to
node TRNTO, you could use SET HOST again to log in to another node (for
example, node DENVER).

You would again be prompted for a user name and password. If you then
supply a valid user name and password for node DENVER, you are logged
in.

8-3

Performing Network User Operations
8.2 Establishing Communication with a Remote Node

Note that when you log out of node DENVER, control is returned to node
TRNTO. You must log out of node TRNTO to return to your local node,
BOSTON.

For more detailed information about the SET HOST command, see its
description in the VMS DCL Dictionary.

8.3 Accessing Files on Remote Nodes
DECnet—VAX allows you to access files on remote nodes in your network as
though these files were on your local node. You can use the DECnet—VAX
facilities to access remote files by means of DCL commands and command
procedures, and MACRO and higher-level language programs using VMS
RMS or VMS system services directly.

8.3.1 Using DCL Commands and Command Procedures
You can use most DCL commands that perform file operations at a local
node to perform these operations on remote nodes. For example, you can
use the same DCL commands to obtain directory listings, manipulate files,
and execute command procedures on remote nodes. Generally, you need
only prefix a node name followed by two colons to the standard VMS file
specification to access the remote file. For example:

$ TYPE TRNTO: :WORK$: [DOE]LOGIN.COM

In this example, the TYPE command requests that the file LOGIN.COM in
the directory WORK$:[DOE] at the remote node TRNTO be displayed on your
local terminal.

Depending on the file protections that are established on the remote node,
you may need to supply an access control string in the DCL command when
performing the file operation. For example:

$ COPY TRNTO"DOE JOHN": :WORK$: [DOE]LOGIN.COM *.*

In this example, an access control string is supplied as part of the request
for the COPY operation. For VMS operating systems, the access control
string consists of a user name, followed by one or more spaces or tabs, and,
optionally, one password and/or one account.

As with DCL, remote file accessing by higher-level languages is accomplished
in a way that is transparent to the user. The only additional information that
you need to specify is the name of the remote node containing the file or
files that you want to access. Like DCL, higher-level language programs also
employ the VMS RMS services to perform file access operations.

Command descriptions in the VMS DCL Dictionary include restrictions that
apply to individual commands and command qualifiers used in network
operations. Unless otherwise stated, you can assume that a particular DCL
command is supported for network operations.

Performing Network User Operations
8.3 Accessing Files on Remote Nodes

8.3.2 Using Higher-Level Language Programs
You can use various higher-level languages to write programs that access
remote files using the standard I/O statements of these languages. Regardless
of the programming language used, you access remote files exactly as you
would access local files.

In the following example, assume you want to design a FORTRAN program
to transfer files from a local node to a remote node. You can identify the
source and destination files by defining the logical names SRC and DST,
respectively. You can use these DCL commands by entering the following
commands:

$ DEFINE SRC TRNTO::INVENTDISK$: [STOCKROOM.PAPER]INVENTORY.DAT
$ DEFINE DST BOSTON::ARCDISK$:[ARCHIVE]TRNTO_INVENTORY.DAT

After you make the logical name assignments, the FORTRAN program can
open the files by way of those logical names. You can use the following
FORTRAN open calls:

OPEN (UNIT=I,NAME='SRC',TYPE='OLD',ACCESS='SEQUENTIAL',
FORM='FORMATTED')

OPEN (UNIT=2,NAME='DST',TYPE='NEW',ACCESS='SEQUENTIAL',
FORM='FORMATTED')

This FORTRAN program fragment uses standard I/O statements to transfer
records from one file to another. In this example, the access mode is
sequential.

As shown in the next example, you can design a FORTRAN program to
transfer a file from the local node to a line printer on the remote node. You
can define logical names for the source and destination, as follows:

$ DEFINE SRC TRNTO::INVENTDISK$: [STOCKROOM.PAPER]INVENTORY.DAT
$ DEFINE DSTLPR BOSTON::LPAO:

After you make the logical name assignments, the FORTRAN program can
open the file and access the line printer by way of those logical names, as
follows:

OPEN (UNIT=I,NAME='SRC',TYPE='OLD',ACCESS='SEQUENTIAL',
FORM='FORMATTED')

OPEN (UNIT=2,NAME='DSTLPR',TYPE='NEW',ACCESS='SEQUENTIAL',
FORM='FORMATTED',CARRIAGECONTROL='LIST',
RECORDTYPE='VARIABLE')

This FORTRAN program fragment uses the standard I/O statements to
transfer records from the source file to the destination line printer. The access
mode of the file is sequential.

Examples of complete higher-level language programs designed to access
remote files are included in the appropriate sections of the programming
manuals for each VAX language.

Performing Network User Operations
8.3 Accessing Files on Remote Nodes

8.3.3 Using RMS Services from MACRO Programs
The VMS operating system provides a programming interface for remote file
access using higher-level languages, including VAX MACRO. The MACRO
programs can use VMS Record Management Services (RMS) calls or VMS
system service calls. This section describes how you can use RMS to access
remote files. The VMS system services, which you can also use for remote
file access, are described more completely in Section 8.5.4.

For remote file processing, RMS integrates the network software necessary to
translate standard RMS calls, which provides a transparent user interface to
the network.

Using the RMS facilities, you can perform remote file-handling operations on
entire files or access individual records, through programmed RMS service
calls in a VAX MACRO application. All you need to do is supply the name of
the remote node in your file specification.

As in the previous FORTRAN examples, you can use DCL commands to
make logical name assignments to the source and destination files that you
want to manipulate, for example:

$ DEFINE SRC TRNTO::INVENTDISK$:[STOCKROOM.PAPER]INVENTORY.DAT
$ DEFINE DST BOSTON::ARCDISK$:[ARCHIVE]TRNTO_INVENTORY.DAT

Before you can open either the source (SRC) or destination (DST) file with
the RMS $OPEN statement, however, you must allocate the appropriate file
access blocks (FABs) and record access blocks (RABs) in your program. To do
this, you can use the following RMS structures:

SRC_FAB:
$FAB FAC=GET,-

FOP=SQO,-
FNM=SRC

SRC_FAB:
$RAB FAB=SRC_FAB,-

RAC=SEQ,-

These statements define the source file FAB and RAB control blocks. You
must also define the destination file FAB and RAB control blocks, as follows:

Performing Network User Operations
8.3 Accessing Files on Remote Nodes

DST_FAB:
$FAB FAC=PUT,-

FOP=SQO,-
FNM=DST,-
ORG=SEQ,-
RFM=VAR,-
RAT=CR

DST_RAB:
$RAB FAB=DST_FAB,-

RAC=SEQ,-

After defining the source and destination FABs and RABs, you can open
the files for remote file processing. Note that, if your program accesses
files sequentially, you can specify the sequential-only (SQO) option of the
file options (FOP) field of the FAB. Specifying FOP=SQO enables RMS
and the remote File Access Listener (FAL) to enter into file-transfer mode.
In file-transfer mode there is no wait for message acknowledgment and,
consequently, there is a significant increase in file-transfer performance.

The Guide to VMS File Applications contains examples of complete MACRO
programs using RMS to access remote files. Examples in this document also
illustrate the network-specific features provided by VMS RMS.

The VMS Record Management Services Manual and the VMS System Services
Reference Manual describe the RMS fields and options that you must specify
for DECnet—VAX applications. These manuals also describe restrictions that
apply to using RMS over the network. See Chapter 9 for a list of restrictions
on VMS operations involving other systems in a heterogeneous network.

Note that DECnet—VAX does not support the use of RMS for operations on a
remote magnetic tape volume.

8.4 Performing Task-to-Task Operations
Task-to-task communicarion is a feature common to all DECnet
implementations. It allows two programs or tasks running under the same
or different operating systems to communicate with each other regardless of
the programming languages used. For example, a FORTRAN task running on
the VMS operating system at node BOSTON could exchange messages with
a MACRO task running on the RSX-11M operating system at node DALLAS.
Although these programs use different programming languages and run under
different operating systems, the DECnet software translates system-dependent
language calls into a common set of network protocol messages.

Performing Network User Operations
8.4 Performing Task-to-Task Operations

8.4.1 Transparent and Nontransparent Task-to-Task Communication
DECnet—VAX supports both transparent and nontransparent task-to-task
communication. Transparent communication provides the means for a DCL
command procedure or a user program (written in either VAX MACRO or
in a higher-level language) to communicate with other command procedures
or user programs over the network, with no knowledge of the DECnet—VAX
software. Nontransparent communication allows the programmer to use
system service options to perform network-specific functions.

There are important differences between these two forms of communication.
Transparent communication is a form of device-independent I/O in VMS
in which you move data with little concern for the way the operation is
accomplished. Likewise, transparent communication allows you to move data
across the network without necessarily knowing that you are using DECnet
software. Nontransparent communication, on the other hand, is a form of
device-dependent I/O, in that you are interested in specific characteristics of
the device that you want to access. A nontransparent task, in turn, can use
network-specific features to monitor the communication process.

Note: tiVhile it is possible for a single task to create and maintain both
transparent and nontransparent connections, each connection should
be processed separately. That is, transparent-specific RMS and system
services apply to transparent links, and nontransparent-specific system
services apply to nontransparent links.

8.4.1.1 Transparent Communication
Transparent communication provides the basic functions necessary for a
task to communicate with another task over the network. These functions
include the initiation and completion of a logical link connection, the orderly
exchange of messages between both tasks, and the controlled termination of
the communication process. To perform these functions, you can write your
cooperating tasks in any of the higher-level languages supported over the
network, in VAX MACRO (using RMS service calls or system service calls), or
by using DCL commands.

One way to view transparent communication is to look at the programming
required to develop such an application. Transparent access provides the
functions necessary to communicate over the network using standard I/O
operations. When accessing the network transparently, you may use standard
I/O statements of the higher-level language or straightforward RMS or
system service calls to access a sequential record-oriented device. System
service calls are described in Section 8.5.

8.4.1.2 Nontransparent Communication
Nontransparent communication provides the same functions as transparent
communication plus additional system service and I/O features supported
by DECnet—VAX. In particular, a nontransparent task can create and use a
VMS mailbox to receive information that is not available to a transparent
task with transparent communication. You can make use of network-
specific features such as optional user data on connects and disconnects,
and

interrupt

messages. Also, nontransparent tasks can receive and process
multiple inbound connection requests. (See the description in Section 8.6.1.5.)

Performing Network User Operations
8.4 Performing Task-to-Task Operations

Note that on a VAXcluster node, nontransparent tasks that can receive
multiple inbound connection requests should not use the cluster alias node
address for outgoing connections, and should not be enabled to receive
incoming connections directed to the cluster alias node. Incoming links
directed to a cluster alias node address can be assigned to any of the nodes
in the cluster that accept that alias node address, without knowledge of the
nodes on which a declared task may be running (see Section 2.6.2).

In general, nontransparent tasks can use a mailbox to receive information
about particular network operations. There are four types of mailbox
messages:

• Messages that result from the use of certain system service calls (including
optional user data carried on logical link creation or termination)

• Interrupt messages

• Logical link status messages

• Network system messages

Nontransparent functions that indirectly cause mailbox messages to be
placed in the receiver's mailbox include calls for initiating, completing and
terminating logical links. Figure 8-1 illustrates how nontransparent tasks use
mailboxes.

Table 8-3 provides a list of mailbox messages and their meanings.

A nontransparent task can receive network status notifications in the
mailbox. These notifications apply to physical and logical link conditions over
the network. For example, DECnet—VAX software can notify a nontransparent
task of the following conditions:

• Third-party disconnections

• Network software- and hardware-related problems

• Processes exiting before I/O completion

• Connection request timeouts

8.4.2 Task Specification Strings in Task-to-Task Applications
Whether you are performing a transparent or nontransparent task-to-task
operation, you must use a task specification string to identify the remote
task with which you want to communicate. A task specification string is a
quoted string that identifies the target task to which you attempt a logical link
connection.

Performing Network User Operations
8.4 Performing Task-to-Task Operations

Figure 8-1 Mailbox Messages

Transparent
Task

Connect
Initiate

(Network Task)

I
~~

Nontransparent
Task

Mailbox

MSG$—CONFIRM

MSG$—REJECT

MSG$—INTMSG

I

MSG$—CONNECT

I

Connect Initiate (opt. user data)

— MSG$—CONNECT

Connect Accept (opt. user data)

Nontransparent
Task

Mailbox

Connect Reject (opt. user data)
Interrupt Messages

Synchronous Disconnect (opt. user data)

Disconnect Abort (opt. user data)

Y

DECnet—VAX Software

Network Status Notifications:

MSG$—EXIT

MSG$—PATHLOST

MSG$—PROTOCOL

MSG$—TIMEOUT

MSG$—THIRDPARTY

MSG$—NETSHUT

MSG$—INTMSG

MSG$—DISCON

MSG$~►BORT

ZK-840-82

To establish a logical link connection with a target task addressed as object
type 0, use either of the following forms of task specification string:

• "TASK=taskname"

• "0=taskname"

where:

taskname Can be from 1 to 12 characters.

Note that "0" and "TASK" are equivalent. (If the remote node is not a VMS
system, the maximum length of the taskname may be different.)

If the remote node is a VMS operating system, the taskname usually represents
the file name of a command procedure to be executed at the remote node.
The taskname may also represent a specific image to be run. The command
procedure invoked at the remote node can complete the logical link itself
(using a DCL OPEN command), or it can include a DCL RUN command to
execute a program that completes the logical link.

8-10

Performing Network User Operations
8.4 Performing Task-to-Task Operations

The examples that follow illustrate two uses of the task specification string.
The first example identifies the task TEST2 by using the "TASK=" form for
specifying target tasks. The second example is the same as the first, except
that access control information is provided and the alternative "0=" form for
specifying a task is used.

BOSTON: :"TASK=TEST2"

BOSTON"SMITH JOHN": :"O=TEST2"

In this example, TEST2 refers to SYS$LOGIN:TEST2.COM for the default
DECnet account at the remote VMS node. Note that only the file name
component of the command file specification is used in the task name string
in this example. When naming the target task, you can specify a more
complete file specification. For example, you can include a device name or a
file type.

8.4.3 Functions Required for Performing Task-to-Task Operations
Several functions are necessary for performing atask-to-task operation. The
number of functions, of course, depends on whether you intend to access the
network transparently or nontransparently.

Even a transparent task-to-task application requires a minimum number
of operations to initiate and complete a logical link connection, to
exchange messages, and to terminate the logical link. These operations
are actually a subset of a larger group of functions defined for nontransparent
communication. The entire set of functions is as follows:

• Initiating a logical link connection

— Requesting a logical link to a remote task s

— Declaring a network name and processing multiple connection
requests

• Completing a logical link connection

— Rej ecting a logical link connection request

— Accepting a logical link connection requests

• Exchanging messages

— Sending and receiving data messagess

— Sending and receiving interrupt messages

• Terminating a logical link

— Synchronously disconnecting the logical link

— Aborting the logical links

Nontransparent tasks can use any or all of these functions to extend the basic
capabilities offered under transparent communication.

1 This operation represents the minimum subset for transparent task-to-task communication.

8-11

Performing Network User Operations
8.4 Performing Task-to-Task Operations

8.4.3.1 Initiating a Logical Link Connection
Whether you access the network transparently or nontransparently, you must
establish a communication link to the remote node on which the target task
runs before any message exchange can take place. You establish the link by
issuing a source task call that requests a logical link connection. (The source
task is the task that initiates a logical link connection request; the target task
is the task with which you want to communicate.)

The interaction between the source task and the target task that takes place
before the logical link is established is called a handshaking sequence. Upon
receiving a call that requests a logical link connection, the local DECnet-VAX
node initiates a handshaking sequence with the target task. The following
information is supplied in a connection request:

• An I/O channel. The I/O channel (more commonly referred to as the
channel) serves as the path over which messages are sent and received by
the source task.

• The identification of the target node. Every node in a network has
an identifier that distinguishes it from all other nodes in the network.
Transparent communication uses a task specification string to indicate
the name of the target node. Nontransparent communication requires a
user-generated data structure called the network connect block (NCB),
which also includes a task specification string.

• An object type descriptor.

• Access control information (optional).

• Optional user data. Nontransparent tasks have the option of sending up
to 16 bytes of data to the target task (see the following information about
NCBs).

You should be aware that after you issue a call that uses either a task
specification string or an NCB, you access the network and, by definition,
the DECnet-VAX software.

8.4.3.2 Completing the Logical Link Connection
As part of the handshaking sequence, the target task completes the logical
link connection in two steps. First, the DECnet software at the remote node
processes the inbound logical link connection request. Second, the target
task either accepts or rejects the link. These steps are performed differently,
depending on whether the target task uses transparent or nontransparent I/O.

When a logical link request is received, a procedure called NETSERVER.COM
is executed, which in turn invokes the image NETSERVER.EXE. This program
works in conjunction with the network ACP (NETACP) and uses DCL to
invoke the image or command procedure defined for the requested object.
(For example, the specified task is invoked for object 0 and FAL is invoked
for object 17.)

When the logical link is terminated, the "object" program (for example, FAL)
also terminates. However, the process is not deleted. Instead, control is
returned to NETSERVER.EXE, which communicates with NETACP to inquire
for another incoming logical link request. This inquiry process continues until
NETSERVER encounters a timeout condition (the default is 5 minutes).

Performing Network User Operations
8.4 Performing Task-to-Task Operations

The system manager can specify the time that NETSERVER waits for
another logical link request. The logical name NETSERVER$TIMEOUT,
when defined, determines the amount of time NETSERVER waits before
reaching the timeout condition. Note that the equivalence name must be in
the standard VMS delta time format, for example, 0:10:0, representing 10
minutes.

You may define a number of NETSERVER processes that never time out.
This is useful on systems that are the target of significant amounts of network
activity, such as mail or public file access. Two benefits may be gained:
improved response time for the user initiating the network access, because
there is no waiting for a new process to be created, and reduced overhead on
the target system by virtue of fewer process creations.

To allow for permanent servers, define the logical name
NETSERVER$SERVERS_username in the login procedure for the account
receiving the network connects. The translation of the logical name should
be the number of permanent servers you want. For example, to define two
permanent servers for the default DECnet account (user name DECNET),
enter the following command:

$ DEFINE NETSERVER$SERVERS_DECNET 2

You should put this command in the login command procedure of the default
DECnet account. You could also define it as a system logical name in the
site-dependent system startup command procedure. The account must have
write access to its SYS$LOGIN directory. Note that you gain very little by
defining only one permanent server, because a number of functions such as
wildcard file copy require multiple logical links, each of which requires its
own server.

If you use this mechanism, you should understand the interaction between
proxy access and NETSERVER processes. The proxy database is read by
LOGINOUT.EXE, after a process has been created. For this reason, any
incoming connection that may have a proxy account on the local system
will not be given to an existing NETSERVER process that was created for
a different user. Permanent servers, in general, can be used only by logical
links that are not using proxy access.

In the following discussion, the remote node is assumed to be a VMS
operating system. If the remote node on which your target task runs is
not a VMS operating system, you should refer to the DECnet documentation
for that system.

Completing the Connection Transparently

If the target task is transparent, the DECnet software at the remote node
checks the access control information supplied in the connection request call.

Before you access the remote node, the system manager must have created
the appropriate account in the UAF (refer to the information on access
control). In addition, the command procedure file (taskname.COM) starting
the remote task must exist in the default directory associated with the
account identified by the access control information. For a description of
the command procedure taskname.COM, see Section 8.7.1, which contains
examples of command procedures designed for task-to-task communication.

Performing Network User Operations
8.4 Performing Task-to-Task Operations

Command procedures for objects existing in the OBJECT database (which is
created using NCP commands) are located in the SYS$SYSTEM directory.
The DIGITAL-supplied FAL.COM procedure is an example of such a
command procedure. (Note that the object command procedure is bypassed
if the object definition specifies an EXE file.)

Completing the Connection Nontransparently

If the target task is nontransparent, then one of several things may occur.
If the task has not declared itself a network task (and is therefore eligible
to accept only one connection request at a time), then the DECnet software
at the remote node performs the access checking procedure. After it starts,
the target task retrieves the connection information by translating the logical
name SYS$NET using the $TRNLNM system service call (see Section 8.6).

If the target task declares itself as an active network task, then DECnet—
VAX software places all connection requests addressed to the task in the
mailbox associated with the channel being used. The first message in the
mailbox is the NCB from the original connection request that started the
task. This message appears in the mailbox after channel assignment and
name declaration occur. After the task declares a network name or number,
subsequent inbound connection requests are not checked by the remote node
to verify access control. (Note that if the task is started without being part of
a DECnet operation, access control is never checked.) Section 8.6 describes
in more detail the nontransparent process of completing the logical link
connection.

After examining the incoming connection request, the target task either
accepts or rejects the request, and optionally can send 1 to 16 bytes of data
back to the source task at the same time that it responds to the logical link
connection request. Furthermore, a library routine, LIB$ASN _WTH ~ViBX,
which assigns a channel and associates a unique mailbox, can be used when
accepting the connection.

8.4.3.3 Exchanging Messages
When you access the network transparently or nontransparently, DECnet—
VAX sends data messages over a logical link in response to a set of send
and receive calls issued by the source and target tasks. For higher-level
language tasks, use standard read and write statements to send and receive
data messages. (In Example 8-2, the two FORTRAN tasks use READ and
WRITE statements to exchange information. The equivalent RMS service calls
are $GET and $PUT.)

After DECnet—VAX creates a logical link, the two tasks are ready to exchange
messages. This exchange can take place only if the two tasks cooperate in the
transmission process. In other words, for each message sent by a task, the
receiving task must issue a corresponding call to receive the message. Also,
you must decide which task will disconnect the link. In addition, if the tasks
are nontransparent, they must agree on whether or not the optional data will
be passed. In the context of an established logical link, the task sending a
message is the transmitter and the task receiving it is the receiver. Because
logical links are inherently full duplex, each task may be a transmitter and a
receiver simultaneously.

DECnet—VAX distinguishes between two types of message: data messages
and mailbox messages. Data messages are the normal mode of information
exchange for both transparent and nontransparent communication. Mailbox
messages such as interrupt messages, messages resulting from some DECnet

8-14

Performing Network User Operations
8.4 Performing Task-to-Task Operations

operation (including optional user data), and network status notifications, can
be used only in nontransparent communication.

Nontransparent communication frequently involves using a mailbox to obtain
network-specific information. A task may receive three types of message in
its mailbox:

• Messages that DECnet generates when the task initiates certain network
operations. A VMS task issues system service calls to initiate these
operations. For example:

— When one task requests a logical link connection, a notification
message (and optional user data) may be placed in the mailbox of the
target task.

— When a target task accepts or rejects the logical link connection
request, a notification message (and optional user data) is placed in
the mailbox of the source task.

— When one task synchronously disconnects or aborts a logical link, a
notification message (and optional user data) is placed in the mailbox
of the task from which it is disconnecting.

• Network status notification messages that inform a task of some unusual
network occurrence (such as a third-party disconnect).

• Interrupt messages sent by the other task.

8.4.3.4 Terminating a Logical Link Connection
The termination of a logical link signals the end of the communication
between tasks.

In transparent communication using higher-level language statements, RMS
service calls, or system service calls, either task can break the link. To
terminate the link properly, the receiver, and not the transmitter, of the
final message should issue the $CLOSE service to break the link. The
link termination process is complete when the other task issues a link
termination request. In transparent communication using system service
calls, the $DASSGN system service call causes the link to be terminated.

Issuing the $CANCEL service call followed by the $DASSGN service call
causes all pending operations to abort, then closes the link and deassigns the
channel.

In nontransparent communication using system service calls, you can
terminate I/O operations over a channel in one of three ways:

• Synchronous Disconnect ($QIO) Specifies that all messages sent by the
local task are required to be received and acknowledged by the remote
End Communication Layer (ECL) before the logical link is disconnected.
You should use this type of disconnect when the user of the logical link's
services wants to ensure that the transmission of messages has completed
before taking down the logical link. Note, however, that this service
cannot guarantee the delivery of the received data to the remote task.

• Disconnect Abort ($QIO) Specifies that all messages sent by the local
task are not required to be received or acknowledged by the remote
ECL before the logical link is disconnected. You should use this type of
disconnect when the local task wants to reset the logical link to a known
state. To ensure that the transmitted messages have been received and
acknowledged by the remote ECL, the local task may issue the system
service $CANCEL on the channel before issuing the disconnect abort.

8-15

Performing Network User Operations
8.4 Performing Task-to-Task Operations

Note, however, that these services cannot guarantee the delivery of the
received data to the remote task.

• Deassign Channel and Terminate Link ($DASSGN) Specifies that
all messages sent by the local task are not required to be received or
acknowledged by the remote ECL before the logical link is disconnected.
You should use this type of disconnect when the local task wants to break
a logical link and deassign the channel to the network immediately.

Note that after either a synchronous disconnect or a disconnect abort of a
nontransparent link, you can issue a new connection request because you
did not deassign the I/O channel but merely deaccessed the link. For further
information about these system service calls, see Section 8.6.

When a connection to a nontransparent task terminates the connection, a
notification message indicating that the link is disconnected is placed in the
mailbox of the affected task. A nontransparent task can send up to 16 bytes
of optional user data, with the disconnect request. This optional user data is
placed in the mailbox of the nontransparent task on the receiving end of the
disconnect message.

Disconnect operations cannot guarantee to both partners that communication
is complete. Therefore, DIGITAL recommends that the communicating tasks
agree on a protocol for terminating communication. In general, the receiver,
not the transmitter, of the final message should disconnect the logical link.

Transparent communication allows you to create a logical link between tasks,
send and receive data messages, and terminate the logical link at the end
of the message dialog. The discussion covers general concepts implicit in
DECnet—VAX task-to-task communication and assumes familiarity with the
QIO-related material in the VMS System Services Reference Manual. The use
of higher-level language statements and RMS service calls in transparent
task-to-task communication is described in Section 8.5.

8.5 Performing Transparent Task-to-Task Operations
This section describes the system service calls and functions that you can use
to perform transparent task-to-task communication over the network. You
can perform these operations using any of the following methods:

• DCL commands and command procedures

• Higher-level language programs using appropriate language I/O
statements

• MACRO or higher-level language programs using VMS RMS calls or VMS
system service calls

See Section 8.7 for examples of transparent task-to-task operations.

Performing Network User Operations
8.5 Performing Transparent Task-to-Task Operations

8.5.1 Using DCL Commands and Command Procedures
To perform transparent task-to-task operations, you can use DCL commands
to construct and execute command procedures.

For example, to display information about another system, you can design
a command procedure that can be invoked as a remote task. Assume that a
procedure called SHOWBQ.COM is designed to return status information
about jobs entered in batch queues on the system where it executes.
Assume also that SHOWBQ.COM resides on node TRNTO. You can
use SHOWBQ.COM for task-to-task communication by entering a task
specification string in a TYPE command. For example:

$ TYPE TRNTO"BROWN JUNE": :"TASK=SHOWBQ"

See Section 8.7.1 for an example of a command procedure used for task-
to-task communication. For additional information concerning the design,
construction, and execution of command procedures, see the Guide to Using
VMS Command Procedures.

8.5.2 Using Higher-Level Language Programs
This section contains examples of higher-level language calls that you can use
for transparent task-to-task communication. Each higher-level language call
contains a task specification string as part of its statement.

Higher-level language tasks can use standard file opening statements to
request a logical link connection to a remote task. The following examples
show how to specify a target task, TEST4, running on node TRNTO, in
various languages supported on the VMS operating system.

FORTRAN OPEN (UNIT=7,NAME='TRNTO::"TASK=TEST4" ',TYPE='NEW')

BASIC OPEN 'TRNTO::"TASK=TEST4"' AS FILE #7

PL/I OPEN FILE(OUTPUT) TITLE ('TRNTO::"TASK=TEST4"');

PASCAL OPEN (PARTNER,'TRNTO::"TASK=TEST4"',NEW►;

COBOL SELECT PARTNER ASSIGN TO "TRNTO::""TASK=TEST4""". OPEN OUTPUT PARTNER.

C F 1 =OPEN ("TRNTO::\"TASK=TEST4\ "",2);

To complete the logical link, the target task performs a file opening operation
using the logical name SYS$NET to establish a communications path back to
the source task. The following examples show how to specify SYS$NET from
higher-level language calls.

FORTRAN OPEN (UNIT=2,NAME='SYS$NET',TYPE='OLD')

BASIC OPEN "SYS$NET" AS FILE #2

PL/I OPEN FILE(INPUT) TITLE ('SYS$NET');

PASCAL OPEN (PARTNER,'SYS$NET',OLD);

COBOL SELECT PARTNER ASSIGN TO "SYS$NET". OPEN INPUT PARTNER.

C F2 =OPEN ("SYS$NET",2);

Section 8.7.2 provides an example of a FORTRAN program designed for
transparent task-to-task communication.

Performing Network User Operations
8.5 Performing Transparent Task-to-Task Operations

8.5.3 Using RMS Service Calls in MACRO Programs
You can write a MACRO program or a higher-level language program to
perform transparent task-to-task communications, using RMS service calls.
This section describes how to use RMS service calls in a MACRO program.

Note that the RMS $OPEN statement is equivalent to the higher-level
language statements described in Section 8.5.2.

After you define the appropriate FAB and RAB control blocks, you can use
the $OPEN statement to specify the target task, TEST4, running on node
TRNTO. You can initiate the link by specifying the following call, in your
MACRO program:

TARGET:
$FAB FAC=<GET,PUT>,-

ORG=SEQ,-
FNM=<NODE::"TASK=TEST4">

$OPEN FAB=TARGET

To complete the logical link, the target task performs afile-opening operation
using the logical name SYS$NET to establish a communications path back to
the source task. For example:

REQUESTER:
$FAB FAC=<GET,PUT>,-

ORG=SEQ,-
FNM=<SYS$NET>

$OPEN FAB=REQUESTER

As in the case of the target task, the appropriate FABs and RABs must already
be declared, if the RMS OPEN call is to succeed. On inbound connections,
DECnet-VAX automatically makes the logical name assignment to SYS$NET.

8.5.4 Using System Service Calls in MACRO Programs
You can write MACRO programs or higher-level language programs to
perform transparent task-to-task communications, using system service calls.
This section focuses on MACRO programs using system service calls for
performing these operations.

Table 8-1 summarizes these calls and their network-related functions.
Section 8.5.5 presents the format of these calls in more detail.

8-18

Performing Network User Operations
8.5 Performing Transparent Task-to-Task Operations

Table 8-1 System Service Calls for Transparent Communication

Call Function

$ASSIGN

$DASSGN

$QIO (10$_READVBLK)

$QIO (10$_READVBLK!10$M_MULTIPLE)

$QIO (10$_WRITEVBLK)

$QIO (10$_WRITEVBLK!10$M_MULTIPLE)

Request a logical link
connection

Terminate a logical link

Receive a message

Receive a message in multiple
receive requests

Send a message

Send a message in multiple
write requests

These cells allow you to perform task-to-task communication in much the
same way as you would perform normal I/O operations. Use the $ASSIGN
call to assign a logical link I/O channel to a device, which in this case
is a task that behaves like afull-duplex record-oriented device. You can
perform read and write operations with this task either synchronously or
asynchronously. To exchange messages, use the Queue I/O (QIO) requests
supported by DECnet—VAX. When all communication completes, use the
$DASSGN system service call to deassign the channel and thereby disconnect
the logical link.

8.5.4.1 Requesting a Logical Link
To request a logical link and assign an I/O channel, use the $ASSIGN system
service. When you issue this call, you must include a task specifier for the
remote node on which the cooperating task runs. The task specifier identifies
the remote node and the target task to which you want to establish a logical
link.

For example, for the network model described in Chapter 1, you could
establish a logical link to target task TEST2 on node TRNTO to perform task-
to-task communication. To create this link, code the following VAX MACRO
statements in your source program.

TARGET: .ASCID /TRNTO::"TASK=TEST2"/
NETCHAN: .BLKW 1 Channel number returned here

$ASSIGN_S DEVNAM=TARGET,CHAN=NETCHAN

For debugging or for symmetry, you can develop and run the target task
on the local node. Use the local node name (or node number 0) plus two
colons to connect to the local node. This practice applies to DCL, higher-level
languages and RMS, as well as system services.

After you establish a logical Link, you refer to the assigned channel in any
succeeding call in the MACRO program, either to send or receive messages,
or to deassign the channel and terminate the logical link.

Until the connection operation completes, the process is in local event flag
wait (LEF) state in kernel mode. Therefore, pressing CTRL/Y does not return
the process to DCL status. The maximum amount of time that the process
will wait in this state is specified by the OUTGOING TIMER parameter of the
NCP command SET EXECUTOR. If this timer cannot be set to an acceptable

8-19

Performing Network User Operations
8.5 Performing Transparent Task-to-Task Operations

value, tasks that accept commands from the terminal should use $QIO
(IO$~CCESS) instead of the transparent $ASSIGN call to initiate logical
links.

8.5.4.2 Completing the Logical Link Connection
The target task completes the logical link by specifying the logical name
SYS$NET as the devnam argument for the $ASSIGN system service. For
example:

LOGNAM: .ASCID /SYS$NET/
NETCHAN: .BLKW 1 Channel number returned here

$ASSIGN_S DEVNAM=LOGNAM,CHAN=NETCHAN

Issue this call in the target task to complete the logical link connection. The
target task also specifies a channel to be used in subsequent system service
calls.

The remote node is assumed to be a VMS operating system. If the remote
node on which the target task runs is other than VMS, you should refer to
the related DECnet documentation.

8.5.4.3 Exchanging Messages
After DECnet-VAX software establishes a logical link with the target task,
either task can then send or receive messages. However, they must cooperate
with each other: for each message sent with the $QIO (IO$_WRITEVBLK),
the other task must issue a corresponding $QIO (IO$_READVBLK) to receive
the message.

On logical links, DECnet-VAX supports sending and receiving data messages
that are larger than the maximum size allowed by the $QIO system service.
You do this by allowing write and read requests to be fragmented across
multiple $QIO requests. To fragment writes and reads, you must include the
modifier IO$M_MULTIPLE on the write or read $QIO call.

When you supply the modifier on a write message request $QIO
(IO$_WRITEVBLK!IO$M_MULTIPLE), it indicates that more data will be
supplied for this message. To indicate the last fragment of the message being
sent, you should issue the write request without a modifier $QIO (use the
QIO called IO$_WRITEVBLK).

When you supply the modifier on a read message $ QIO
(IO$_READVBLK!IO$M_MULTIPLE), if the received data message contains
more than enough data to fill the buffer supplied with the read request,
then SS$_BUFFEROVF is returned. This is not an error status. The next
read posted receives the next fragment of the data message. If the received
message fits into the buffer posted, then SS$_NORMAL is returned. Tasks
that require fragmentation should always supply the IO$M_MULTIPLE on
read requests.

If you do not use the read multiple request to receive a data message, then
you must ensure that the tasks allocate enough buffer space for receiving the
messages. If the tasks do not, a SS$_DATAOVERUN error occurs. You must
also ensure that the end of the dialog can be determined.

One of the two tasks must disconnect the logical link. To terminate a logical
link properly, the receiver, and not the transmitter, of the final message
should break the link.

8-20

Performing Network User Operations
8.5 Performing Transparent Task-to-Task Operations

DECnet-VAX does not provide an automatic timeout of read or write requests.
If the task needs to stop a read or write request on a logical link, then it must
do so by disconnecting or aborting the logical link.

8.5.4.4 Terminating the Logical Link
Use the $DASSGN system service call to deassign the channel and break off
the logical link with the cooperating task. This call terminates all pending
calls for sending and receiving messages, aborts the link immediately, and
frees the channel associated with that logical link.

8.5.4.5 Status and Error Reporting
When a system service completes execution, a status value is returned (does
not apply to the $EXIT service). The $ASSIGN, $DASSGN, and $QIO system
services place the return status information in register 0 (RO). For the $QIO
system service, a successful return status indicates only that the request was
queued successfully. All I/O completion status information is placed in the
I/O status block (IOSB). For example, a $QIO system service read request to a
task might be successful (status return is SS$_NORMAL) yet fail because the
link was disconnected. (I/O status return is SS$_LINKABORT.) The return
status codes shown in the following sections may be returned both in RO and
in the IOSB.

When DECnet-VAX returns the status SS$_NORMAL in the I/O status block
on a write request, it means that the write was queued for transmission on
the logical link. It does not mean that the write request has been received or
acknowledged by the remote task. The logical link services of DECnet-VAX
provide the guaranteed delivery of transmitted messages to the remote node.
If a message cannot be delivered, the user is notified by the disconnection of
the logical link. The DECnet-VAX services cannot guarantee the delivery of
data received on the remote node to the remote task. It is the responsibility
of cooperating tasks to agree on a protocol to ensure that data transmitted by
the local task is received by the remote task.

The VMS System Services Reference Manual and the Guide to VMS Programming
Resources both provide more information about $QIO system services.

8.5.5 Summary of System Service Calls for Transparent Operations
The following sections describe the VMS system services you can use for
transparent task-to-task communication. Each description covers the use of
the call, its format, the arguments associated with the call, and the return
status information. The VMS System Messages and Recovery Procedures
Reference Volume lists the entire set of network system service error messages.

8.5.5.1 $ASSIGN
The $ASSIGN system service assigns a channel to refer to the logical
link. You can then use the channel returned in the than argument in any
succeeding call to send or receive a message, or to deassign the channel and
thereby terminate the logical link.

Format

$ASSIGN devnam ,chan ,[acmode]

Performing Network User Operations
8.5 Performing Transparent Task-to-Task Operations

Arguments

devnam Address of a quadword descriptor of a character string that identifies
the remote task. The string contains either of the following:

• A task specification string if the call is by the source task. Both
the string and its descriptor must be in read/write storage.

• The SYS$NET logical name if the call is by the target task.

chan Address of a word that is to receive the assigned channel number.
You use this channel number to send a message to a remote task,
receive a message from a remote task, or to abort the logical link.

acmode Access mode to be associated with this channel. The most privileged
access mode used is the access mode of the caller. You can perform
I/O operations on the channel only from equal or more privileged
access modes.

Return Status

SS$_CONNECFAIL The connection to a network object timed out or failed.

SS$_DEVOFFLINE The physical link is shutting down.

SS$_FILALRACC A logical link already exists on the channel.

SS$_INSFMEM There is not enough system dynamic memory to
complete the request.

SS$_INVLOGIN The access control information was found to be invalid
at the remote node.

SS$_IVDEVNAM The task specifier has an invalid format or content.

SS$_LINKEXIT The network partner task was started, but exited
before confirming the logical link (that is, $ASSIGN to
SYS$NET).

SS$_NOLINKS No logical links are available. The maximum number
of logical links as set for the NCP executor MAXIMUM
LINKS parameter was exceeded.

SS$_NOPRIV The issuing task does not have the required privilege to
perform network operations or to confirm the specified
logical link.

SS$_NOSUCHNODE The specified node is unknown.

SS$_NOSUCHOBJ The network object number is unknown at the remote
node; or for aTASK= connect, the named DCL
command procedure file cannot be found at the remote
node.

8-22

Performing Network User Operations
8.5 Performing Transparent Task-to-Task Operations

SS$_NOSUCHUSER The remote node could not recognize the login
information supplied with the connection request.

SS$_PROTOCOL A network protocol error occurred, most likely because
of a network software error.

SS$_REJECT The network object rejected the connection.

SS$_REMOTE The service completed successfully. (A logical link was
established with the target task.)

SS$_REMRSRC The link could not be established because system
resources at the remote node were insufficient.

SS$_SHUT The local or remote node is no longer accepting
connections.

SS$_THIRDPARTY The logical link connection was terminated by a third
party (for example, the system manager).

SS$_TOOMUCHDATA The task specified too much optional or interrupt data.

SS$_UNREACHABLE The remote node is currently unreachable.

8.5.5.2 $QIO (Sending a Message to a Target Task)
The $QIO system service with a function code of IO$_WRITEVBLK or
IO$_WRITEVBLK!IO$M~vIULTIPLE sends a message to a target task.
The $QIO call initiates an output operation by queuing a request to the
channel associated with the logical link. Alternatively, you could use the
$QIOW system service to perform the same operation but also wait for I/O
completion.

Format

$QIO jefn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,p 1 ,p2
$QIOW

Arguments

efn Number of the event flag to be set at request completion.

chan Word containing the channel number associated with the logical link.
Use the same channel number returned in the $ASSIGN call.

func IO$_WRITEVBLK or 10$_WRITEVBLK!10$M_MULTIPLE.

iosb Address of a quadword I/O status block that is to receive the
completion status.

astadr Entry point address of an asynchronous system trap (AST) routine
that executes when the I/O operation completes. If specified, the AST
routine executes at the access mode from which the $QIO service was
requested.

astprm AST parameter to be passed to the AST completion routine.

p1 Buffer address.

p2 Buffer length in bytes.

8--23

Performing Network User Operations
8.5 Performing Transparent Task-to-Task Operations

Return Status

SS$_NORMAL

SS$_ABORT

SS$_CANCEL

SS$_FILNOTACC

SS$_INSFMEM

SS$_LINKABORT

SS$_LINKDISCON

SS$_LINKEXIT

SS$_PATHLOST

SS$_PROTOCOL

SS$_THIRDPARTY

8.5.5.3

The service completed successfully.

The I/O request has been aborted by a $DASSGN or
$CANCEL call.

The I/O on this channel has been canceled.

No logical link is associated with the channel.

Enough memory to buffer the message could not be
allocated.

The network partner task aborted the logical link.

The network partner task disconnected the logical link.

The network partner task exited.

The path to the network partner task node was lost.

A network protocol error occurred. This is most likely
due to a network software error.

The logical link connection was terminated by a third
party (for example, the system manager).

$QIO (Receiving a Message from a Target Task)
The $QIO system service with a function code of IO$—READVBLK receives
a message from a target task. The $QIO call initiates an input operation
by queuing a request to the channel associated with the logical link.
Alternatively, you could use the $QIOW system service to perform the
same operation but also wait for I/O completion.

Format

$QIO [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprmJ ,p 1 ,p2
$QIOW

Arguments

efn

chan

func

iosb

astadr

astprm

p1

p2

Number of the event flag to be set at request completion.

Word containing the channel number associated with the logical link.
Use the same channel number returned in the $ASSIGN call.

10$_READVBLK or 10$_READVBLK!10$M_MULTIPLE.

Address of a quadword I/O status block that is to receive the
completion status.

Entry point address of an AST routine that executes when the I/O
operation completes. If specified, the AST routine executes at the
access mode from which the $QIO service was requested.

AST parameter to be passed to the AST completion routine.

Buffer address.

Buffer length in bytes.

8-24

Performing Network User Operations
8.5 Performing Transparent Task-to-Task Operations

Return Status

SS$_NORMAL

SS$_ABORT

SS$_CANCEL

SS$_DATAOVERUN

SS$_FILNOTACC

SS$_INSFMEM

SS$_LINKABORT

SS$_LINKDISCON

SS$_LINKEXIT

SS$_PATHLOST

SS$_PROTOCOL

SS$_THIRDPARTY

SS$_BUFFEROVF

8.5.5.4

The service completed successfully.

The I/O request has been aborted by a $DASSGN or
$CANCEL call.

The I/O on this channel has been canceled.

More bytes were sent than could be received in the
supplied buffer. This status will not be returned when
10$M_MULTIPLE is used on the read request.

No logical link is associated with- the channel.

Enough memory to buffer the message could not be
allocated.

The network partner task aborted the logical link.

The network partner task disconnected the logical link.

The network partner task exited.

The path to the network partner task node was lost.

A network protocol error occurred. This is most likely
due to a network software error.

The logical link connection was terminated by a third
party (for example, the system manager).

Data could not fit in the buffer supplied. Supply another
read request to receive the next fragment of received data
message.

$DASSGN (Disconnecting a Logical Link)
The $DASSGN system service terminates all pending operations to send and
receive data, disconnects the logical link immediately, and frees the channel
associated with that link. Either task can terminate the logical link by calling
$DASSGN.

Format

$DASSGN chap

Argument

chap Word containing the channel number to the logical link you want
disconnected. Use the same channel number returned in the $ASSIGN
call.

Return Status

SS$_NORMAL

SS$_IVCHAN

SS$_NOPRIV

The service completed successfully.

The process specified an invalid channel.

The specified channel was not assigned or was assigned from
a more privileged access mode.

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

8.~ Performing Nontransparent Task-to-Task Operations
This section describes the system service calls and functions that you use
for nontransparent task-to-task communication. In general, the principles of
nontransparent task-to-task communication are similar to those of transparent
communication.

If you want to perform nontransparent communication operations, you can
write VAX MACRO programs using VMS system services designed specifically
for DECnet-VAX. You can also write programs in one of the higher-level
languages, provided the language supports the DECnet-VAX services. These
DECnet-VAX services are described in detail throughout this section.

DECnet-VAX also provides additional services with extensions that allow you
to use network-specific features for nontransparent network operations, such
as the following:

• Creating and using mailboxes for receiving messages, including network
status notifications

• Declaring a task as a network task, thus enabling it to process multiple
inbound logical link connection requests

• Sending connection requests, optionally with user data

• Accepting or rej ecting a connection request, optionally with user data

• Communicating between a transparent and a nontransparent task

• Sending or receiving an interrupt message

• Aborting or synchronously disconnecting a logical link, optionally with
user data

The general concepts implicit in DECnet-VAX task-to-task communication
are covered in Section 8.5. You should also be familiar with the material in
the VMS System Services Reference Manual and the VMS 1/O User's Reference
Volume.

8.6.1 Using System Services for Nontransparent Operations
Nontransparent task-to-task communication over the network uses a set of
system service calls available under the VMS operating system. Table 8-2
summarizes these calls and their network-related functions. The $QIO calls
are distinguished by function code.

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

Table 8-2 System Service Calls for Nontransparent Communication

Call Function

$ASSIGN

$CANCEL

$CREMBX

$DASSGN

$GETDVI

$QIO (10$_ACCESS)

$QIO (10$_ACCESS)

$QIO (10$_ACCESS!10$M_ABORT)

$QIO (10$_ACPCONTROL)

$QIO (10$_DEACCESS! 10$M _ABORT)

$QIO (10$_DEACCESS! 10$M _SYNCH)

$QIO (10$_READVBLK)

$QIO (10$_READVBLK!10$M_MULTIPLE)

$QIO (10$_WRITEVBLK)

$QIO (10$_WRITEVBLK!10$M_MULTIPLE)

$QIO (10$_WRITEVBLK!10$M_INTERRUPT)

$TRNLNM

Assign an I/O channel

Cancel I/O on a channel

Create a mailbox

Abort the logical link connection
(deassigning an I/O channel)

Get information on device or
volume

Request a logical link connection

Accept a logical link connection
request

Reject a logical link connection
request

Assign a network name to a
task eligible to accept multiple
inbound connection requests

Abort the logical link connection

Synchronously disconnect a
logical link

Receive a message

Receive a message in multiple
receive requests

Send a message

Write a message in multiple
write requests

Send an interrupt message

Translate logical names

8.6.1.1 Assigning a Channel to _NET: and Creating a Mailbox
To prepare for nontransparent task-to-task communication, you need to assign
a channel just as you would for transparent communication. In addition, you
can create a mailbox to take advantage of optional network protocol features.

You must assign a channel to the pseudodevice _NET:; use the $ASSIGN
system service call for this purpose. This call normally contains a reference
to a mailbox, thereby associating it with the channel assigned to _NET:. If
you use a mailbox, you must create the mailbox before assigning a channel to
_NET:. It is important to note that this use of the $ASSIGN system service
differs from its use for transparent communication. Assigning a channel to
_NET: does not transmit a logical link connection request to the remote
node. Instead, the channel to STET: provides a communication path to
DECnet software. You must use a separate $QIO call (IO$._ACCESS function
using the same channel) to request a logical link to the remote task. Refer to
Section 8.6.2.1 for details about the $ASSIGN system service.

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

To take advantage of optional network protocol features, you can create a
mailbox to receive messages on behalf of logical link operations. For example,
the mailbox receives a message indicating whether the cooperating task
accepted or rejected a connection request issued by the source task. Use the
$CREMBX system service to create a mailbox for these purposes. In the event
that your application does not need the information supplied in the mailbox,
you need not create a mailbox.

For convenience, you can use the Run-Time Library routine
LIB$ASN _wTH _MBX to create a temporary mailbox, assign a channel to
it, and assign a channel to _NET:. This routine creates a unique mailbox
on each call to the routine. Multiple copies of a task using this routine, in
effect, use different mailboxes. If you were to create a mailbox with a logical
name within the task, then all copies of that task would use the same mailbox
and thereby interfere with each other's mailbox messages. For a complete
description of this routine, see the VMS Run-Time Library Routines Volume.

8.6.1.2 Mailbox Message Format
The mailbox receives information specific to nontransparent communication
with a remote task. Figure 8-2 illustrates the general format of the mailbox
message.

Figure 8-2 Mailbox Message Format

31 16 15 8~7 0

UNIT MSGTYPE

NAME

COUNT

INFO
COUNT

ZK-841-82

Notes on Figure 8-2

MSGTYPE

UNIT

COUNT NAME

COUNT INFO

Contains a code that identifies the message type.

Contains the binary unit number of the device for which the
message applies.

Contains a counted ASCII string that gives the name of the
device for which the message applies. The $ASSIGN system
service creates devices having names beginning with NET.

Contains a counted ASCII string of information, which depends
on the message type.

All system mailbox messages contain, in the first word of the message, a
constant that identifies the sender of the message. These constants have
symbolic names (defined in the $MSGDEF macro) in the following format:

MSG$_sender

8-28

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

Table 8-3 summarizes the system mailbox messages that pertain to
nontransparent task-to-task communication.

Table 8-3 System Mailbox Messages

Symbolic Name Meaning

MSG$_TRMUNSOLIC Unsolicited terminal data

MSG$_CRUNSOLIC Unsolicited card reader data

MSG$_ABORT Network partner aborted link

MSG$_CONFIRM Network connect confirm

MSG$_CONNECT Network inbound connect initiate

MSG$_DISCON Network partner disconnected; hang-up

MSG$_EXIT Network partner exited prematurely

MSG$_INTMSG Network interrupt message; unsolicited data

MSG$_PATHLOST Network path lost to partner

MSG$_PROTOCOL Network protocol error

MSG$_REJECT Network connect reject

MSG$_THIRDPARTY Network third party disconnect

MSG$_TIMEOUT Network connect timeout

MSG$_NETSHUT Network shutting down

8.6.1.3 Requesting a Logical Link Connection
After you assign the I/O channel, you can request a logical link connection
to the target task. Use the $QIO system service with a function code of
IO$~CCESS. You must identify the target task in the $QIO call. Use a
network connect block (NCB) to specify the target task identification string.
In addition, you can optionally send 1 to 16 bytes of data in the NCB. The
format of the NCB is discussed in Section 8.6.1.4.

After the source task issues the connection request, it can issue a $QIO call
with a function code of IO$_READVBLK to read its mailbox. Checking the
contents of the mailbox is one way to determine whether the target task
accepted or rejected the connection request. The mailbox can contain a
variety of information, including either the MSG$_CONFIRM or
MSG$_REJECT messages, and possibly optional data in the mailbox buffer.

If specified, the IOSB argument of the $QIO (IO$~CCESS) call will also
contain the result of the connection request operation. Section 8.6.2.2
provides a complete list of I/O status messages for this call.

Note that you must read the mailbox to inspect any optional data sent from
the target task upon accepting or rejecting the connection request.

8-29

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

8.6.1.4 Using the Network Connect Block
The network connect block (NCB) is auser-generated data structure that
contains the information necessary to request a logical link connection or
to accept or reject a logical link connection request. The NCB must be in
read/write storage.

The NCB identifies a specific task using a task specification string. This task
specification string specifies either an object name or an object number. The
following are valid task specification strings:

"TASK=TEST2
"TASK=157
"O=TEST2"

For an inbound call with an NCB, the task name portion of the task
specification string is a process ID if the remote node is a VMS operating
system; if not, then the task name portion is asystem-specific string that
identifies an executable unit (for example, job or task). The task specification
string must be enclosed in quotation marks. Note that the final quotation
mark of the task specification string follows the last item within the NCB.
Section 8.4.2 provides additional information about task specification strings.

Example 8-1 shows an NCB you could use when issuing a connection request
call. The significance of the information contained in the NCB block varies,
depending on the type of call in which it is used. If the call is an outbound
connection request with no optional data, items 2, 3, 4, and 5 of the block are
not required. If the call is a connect accept operation and no optional data is
sent, then items 4 and 5 are not required. Item 5 is meaningful only to the
receiver of a connection request.

Example 8-1 Network Connect Block Format

i. With optional data (outbound connect):
0

NCB: .ASCII ?TRNTO::"TASK=TEST2/?
.WORD OD

OPTDATA:
.ASCIC /USERINFO/
.BLKB 17-<.-OPTDATA>O
.ASCII /"/

2. Without optional data (outbound connect):

NCB: .ASCII ?TRNTO::"TASK=TEST2"?

Item Function

0 A valid task specification string.

Q The slash character (/).

© One word. This word must be 0 for a connection request operation.
For a connect accept or reject operation, this word contains an internal
DECnet link identifier.

8-30

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

O Up to 16 bytes of optional data sent as a counted string. This string
is stored in affixed-length field that is 17 bytes long. DECnet—VAX
software ignores unused bytes.

0 A destination descriptor. This descriptor indicates how the connection
was issued and is meaningful only to the task or object to which the
connection is made. This information is useful where one program
serves many functions and needs to know how it was invoked. The
maximum length for the destination descriptor is 19 bytes. The format is
as follows:

a. If byte 0 contains 0, then byte 1 is the binary value of the object
number.

b. If byte 0 contains 1, then byte 1 is the binary object number, and
bytes 2 through 18 contain a counted task name.

C. If byte 0 contains 2, then byte 1 is the binary object number; bytes 2
through 5 contain a UIC, the first two bytes of which contain a binary
group code and the second two bytes contain a binary user code;
and bytes 6 through 18 contain a counted task name.

8.6.1.5 Completing the Establishment of a Logical Link
A nontransparent target task completes the logical Link connection in one of
several ways, depending upon whether the task can process multiple inbound
connection requests or just a single request. Furthermore, a nontransparent
target task has the option of accepting or explicitly rej ecting a logical link
request.

Receiving Connection Requests

This section describes what happens when you receive single and multiple
connection requests. The remote node is assumed to be VMS. If the remote
node on which your target task runs is other than VMS, you should refer to
the related DECnet documentation.

When a remote node receives a call requesting a logical link, the DECnet-VAX
software constructs an NCB from the information contained in the call. At
this point, one of two things occurs. If a task, already running on the remote
node has declared a network name or object number which is the same as the
one identified in the constructed NCB, the software puts the NCB into that
task's mailbox. If not, DECnet-VAX must create a process to execute the task.
The DECnet-VAX software either uses a compatible netserver process (if one
exists) or creates a netserver process (if one does not already exist) to execute
NETSERVER.COM, which in turn runs NETSERVER.EXE.

If the task running on the remote node has not declared a network name
or network object, SYS$NET is equated to the NCB, and LOGIN.COM (if it
exists) is invoked, which in turn starts the taskname.COM command file. The
name of this command file is determined as follows:

• If the connection request identifies a numbered (nonzero) object, then
the appropriate record is located in the configuration database and the
name of the file is found in this record. (The file is assumed to reside in
SYS$SYSTEM.)

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

• If the connection request identifies a named object with type 0 (TASK),
then the file name is assumed to be the name of the task connected to
(with a file type of COM) and is assumed to reside in the default directory
associated with the access control information.

When executing, the target task can determine whether to accept or explicitly
reject the connection request. You can program the target task to base this
assessment on the information contained in the NCB.

A nontransparent target task can accept only one connection request at a
time, unless it declares itself as a network task. The target task may retrieve
the connection information by translating the logical name SYS$NET using
the $TRNLNM system service. After the task retrieves the logical name, it
may decide whether to accept or explicitly reject the connection request.

Note that you need to translate SYS$NET only if you require the following
information:

• The optional data in the network connect block

• The identity of the connector

• The descriptor by which the connection was made

A target task can accept multiple inbound connection requests only if it
declares itself a known network task. To make this declaration, you must
first use the $ASSIGN call to assign an I/O channel to _NET:. Then, use
the $QIO system service with the function code IO$~CPCONTROL to
assign a network name or object number to the task, making it eligible to
process multiple inbound connection requests. This system service requires
SYSNAM privilege. You must associate a mailbox with the channel if a name
or number is to be declared.

You should program tasks that have declared names or object numbers to
terminate when their mailboxes receive a MSG$_NETSHUT message. You
must restart such tasks when the network comes back up.

After you declare the target task as an active network task, DECnet places
all connection requests addressed to the task in the mailbox associated with
the channel over which the ACP control function was issued. The target task
retrieves connection requests from the mailbox by issuing the $QIO system
service call with the function code IO$_READVBLK. Note that the first
message in the mailbox is the NCB from the original connection request that
put the task into a state of execution. After the task declares a network name
or object number, subsequent inbound connection requests are not checked
for their access control information.

Note that you can start tasks that declare names or object numbers apart from
the first inbound connection (that is, by a RUN command). However, if the
network task is started separately from a DECnet operation, access control is
never checked.

Accepting or Rejecting a Connection Request

The target task can either accept or reject a connection request. To accept a
connection request, thus completing the logical link connection, use the $QIO
system service with the function code IO$~CCESS. To reject the connection
request, use the $QIO system service with the function code
IO$_ACCESS!IO$M_ABORT. When it either accepts or rejects the connection
request, the target task can also send 1 to 16 bytes of optional data within a
modified NCB back to the source task.

8-32

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

Exchanging Data Messages and Interrupt Messages

The exchange of data messages between the two cooperating tasks is
performed in the same way for both nontransparent and transparent
communication. (Refer to Section 8.5.4.3 for information about exchanging
messages on DECnet—VAX logical links.)

The exchange of interrupt messages applies only to nontransparent
communication. Either task can send a 1- to 16-byte interrupt message. You
can use this method to send a message to a target task outside the normal
flow of data messages. DECnet—VAX places the received interrupt message
in the target task's mailbox. Use the $QIO system service with the function
code IO$_WRITEVBLK!IO$M_INTERRUPT to send the interrupt message. If
the target task needs to be notified that an interrupt message has been placed
in its mailbox, then it should issue a $QIO system service read request to the
mailbox. The task may also specify an AST on the $QIO request to cause the
execution of a special routine to handle the received interrupt message. (AST
routines are described in the VMS System Services Reference Manual.)

8.6.1.6 Disconnecting or Aborting the Logical Link
A nontransparent task can terminate communication with a remote task
either by disconnecting the link (synchronous disconnect or disconnect abort)
or by deassigning the channel. In the first instance, you can issue a new
connection request on the same channel because you do not deassign it.
If you specifically use the IO$_DEACCESS, as opposed to the $DASSGN
method of terminating a link, you can send an optional message of 1 to 16
bytes of data with the $QIO call.

To disconnect a logical link synchronously, issue the $QIO system service
with the function code IO$_DEACCESS!IO$M _SYNCH. The channel is then
free for subsequent communication with either the same or a different remote
task.

A synchronous disconnect may be useful for master/slave communication, in
which one task always sends data and its partner task always receives data. If
the receiving task is notified of a synchronous disconnection, then all the data
that was sent has been received. (The sending task, on the other hand, is not
guaranteed that its partner received the data.) Because this notification is the
only guarantee provided by this operation, using this operation is discouraged
in favor of auser-defined protocol to ensure completion of communication.
In general, the receiver of the final message should break the logical link.

To abort the logical Link, issue the $QIO system service with the function
code IO$_DEACCESS!IO$M~BORT. This type of disconnect indicates that
all messages transmitted by the local transmitter may not have been received
or acknowledged by the remote ECL before the logical link was disconnected.
You should use this type of disconnect when the local task needs to reset
the logical link to a known state. If the local task needs to ensure that the
transmitted messages have been received and acknowledged by the remote
ECL, the task can issue the system service $CANCEL on the channel before
issuing the disconnect abort. Note that this does not guarantee the delivery
of the received data to the remote task. It is the responsibility of cooperating
tasks to agree on a protocol to ensure that the received data is delivered to
the remote task.

Note that after either a synchronous disconnect or a disconnect abort, you can
issue a new connection request if you did not deassign the I/O channel.

8-33

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

If you issue the $CANCEL system service to a channel over which a network
name or object has been declared, the declaration is removed from the
network database.

8.6.1.7 Terminating the Logical Link
You can issue the $DASSGN system service call to deassign the channel
and terminate the logical link immediately. You issue the call only after all
communication between the tasks is complete. The call releases the I/O
channel, disassociates the mailbox from the channel, and terminates the
logical link immediately. This operation is equivalent to using $CANCEL
followed by $QIO IO$_DEACCESS!IO$M~BORT.

The same status and error-reporting considerations apply to nontransparent
as to transparent task-to-task communication. Refer to Section 8.5.4.5 for
information about status and error reporting.

8.6.2 System Service Calls for Nontransparent Operations
The following sections describe the VMS system services you can use for
nontransparent task communication over the network. Each description
covers the use of the call, its format, the arguments associated with the call,
and the return status information. The VMS System Messages and Recovery
Procedures Reference Volume lists the entire set of network system service error
messages.

The following system services are not described in detail here, because their
use does not change in a networking context. For a description of these
system services, see the VMS System Services Reference Manual.

• $CANCEL (Cancel I/O on Channel)

• $CREMBX (Create Mailbox and Assign Channel)

• $GETDVI (Get Device/Volume Information)

Note that $GETDVI performs the same function as the Get I/O Channel
Information ($GETCHN) system service. However, DIGITAL recommends
that you use the $GETDVI system service.

After you issue a $CANCEL on a DECnet—VAX logical link, the only valid
operation is to disconnect or abort the logical link.

8.6.2.1 $ASSIGN (I/O Channel Assignment
The $ASSIGN system service assigns a channel to refer to a logical link. You
use this channel in all $QIO calls that communicate with a remote task. In
addition, you can use the $ASSIGN system service call to associate a mailbox
with the channel.

Format

$ASSIGN devnam ,chan ,[acmode] ,[mbxnamJ

8-34

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

Arguments

devnam Address of a quadword descriptor of a character string containing the
string _NET: or a logical name for _NET:.

chap Address of a word that is to receive the assigned channel number.

acmode Access mode to be associated with this channel. The most privileged
access mode used is the access mode of the caller. You can perform
I/O operations on the channel only from equal or more privileged
access modes.

mbxnam Address of a character string descriptor for the physical name
of the mailbox to be associated with the channel. This mailbox
remains associated with the channel until the channel is deassigned
($DASSGN).

Return Status

SS$_NORMAL

SS$_INSFMEM

SS$_NOPRIV

SS$_NOSUCHDEV

8.6.2.2

The service completed successfully.

There is not enough system dynamic memory to complete
the request.

The issuing task does not have the required privileges to
create the channel.

The network device driver is not loaded (for example, the
DECnet—VAX software is not running currently on the local
node) .

$QIO (Requesting a Logical Link Connection
The $QIO system service with the function code IO$~CCESS requests
a logical link connection to a target task. You can send 1 to 16 bytes of
optional data to the target task at the same time that you issue the $QIO
system service.

Format

$QIO [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,[p 1] ,p2

Arguments

efn Number of the event flag to be set at request completion.

chan Channel number associated with the logical link. Use the same channel
number returned in the $ASSIGN call.

func 10$_ACCESS.

iosb Address of a quadword I/O status block that is to receive the
completion status.

astadr Entry point address of an AST routine that executes when the I/O
operation completes. tf specified, the AST routine executes at the
access mode from which the $QIO service was requested.

astprm AST parameter to be passed to the AST completion routine.

p 1 Not used (omit the argument).

p2 Address of a quadword descriptor of the NCB (see Section 8.6.1.4).
Both the descriptor and the NCB must be in read/write storage.

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

Return Status

SS$_NORMAL

SS$_CONNECFAIL

SS$_DEVOFFLINE

SS$_FILALRACC

SS$_INSFMEM

SS$_INVLOGIN

SS$_IVDEVNAM

SS$_LINKEXIT

SS$_NOLINKS

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_NOSUCHOBJ

SS$_NOSUCHUSER

SS$_PROTOCOL

SS$_REJECT

SS$_REMRSRC

SS$_SHUT

SS$_THIRDPARTY

SS$_TOOMUCHDATA

SS$_UNREACHABLE

The service completed successfully.

The connection to a network object timed out or failed.

The physical link is shutting down.

A logical link is already accessed on the channel (that
is, a previous connection is active on the channel).

There is not enough system dynamic memory to
complete the request.

The access control information was found to be invalid
at the remote node.

The NCB has an invalid format or content.

The network partner task was started, but exited
before confirming the logical link (that is, $ASSIGN to
SYS$NET).

No logical links are available. The maximum number of
logical links as set for the executor MAXIMUM LINKS
parameter was exceeded.

The issuing task does not have the required privileges
to create a logical link to the designated target.

The specified node is unknown.

The network object number is unknown at the remote
node; or for aTASK= connect, the named DCL
command procedure file cannot be found at the remote
node.

The remote node could not recognize the login
information supplied with the connection request.

A network protocol error occurred. This error is most
likely due to a network software error.

The network object rejected the connection.

The link could not be established because system
resources at the remote node were insufficient.

The local or remote node is no longer accepting
connections.

The logical link was terminated by a third party (for
example, the system manager}.

The task specified too much optional or interrupt data.

The remote node is currently unreachable.

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

8.6.2.3 $QIO (Accepting Logical Link Connection Request)
The $QIO system service with the function code IO$~CCESS accepts a
logical link connection request from a source task. You can send 1 to 16 bytes
of optional data to the source task at the same time that you issue the $QIO
system service.

Format

$QIO [efnJ ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,[p 1] ,p2

Arguments

efn Number of the event flag to be set at request completion.

chan Channel number associated with the logical link. Use the same channel
number returned in the $ASSIGN call.

func 10$_ACCESS.

iosb Address of a quadword I/O status block that is to receive the
completion status.

astadr Entry point address of an AST routine that executes when the I/O
operation completes. If specified, the AST routine executes at the
access mode from which the $QIO service was requested.

astprm AST parameter to be passed to the AST completion routine.

p 1 Not used (omit the argument►.
p2 Address of a quadword descriptor of the NCB (see Section 8.6.1.4).

Both the descriptor and the NCB must be in read/write storage.

Return Status

SS$_NORMAL The service completed successfully.

SS$_DEVALLOC The process cannot access the logical link specified
in the NCB because that link is intended for another
process.

SS$_EXQUOTA The process does not have sufficient quota to
complete the request.

SS$_INSFMEM There is not enough system dynamic memory to
complete the request.

SS$_IVDEVNAM The NCB has an invalid format or content.

SS$_LINKABORT The network partner task aborted the logical link.

SS$_LINKDISCON The network partner task disconnected the logical link.

SS$_LINKEXIT The network partner task exited.

SS$_NOSUCHNODE The specified node is unknown.

SS$_PATHLOST The path to the network partner task node was lost.

SS$_PROTOCOL A network protocol error occurred. This error is most
likely due to a network software error.

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

SS$_THIRDPARTY The logical link connection was terminated by a third
party (for example, the system manager).

SS$_TIMEOUT The connection request did not complete within the
required time.

SS$_UNREACHABLE The remote node is currently unreachable.

8.6.2.4 $QIO (Rejecting a Logical Link Connection Request)
The $QIO system service with the function code
IO$_ACCESS!IO$M_ABORT rejects a logical link connection request. You
can send 1 to 16 bytes of optional data to the target task at the same time
that you issue the $QIO system service.

Format

$QIO [efn} ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,[p 1 J ,p2

Arguments

efn Number of the event flag to be set at request completion.

chan Channel number associated with the logical link. Use the same channel
number returned in the $ASSIGN call.

func 10$_ACCESS!10$M_ABORT.

iosb Address of a quadword I/O status block that is to receive the
completion status.

astadr Entry point address of an AST routine that executes when the I/O
operation completes. if specified, the AST routine executes at the
access mode from which the $QIO service was requested.

astprm AST parameter to be passed to the AST completion routine.

p 1 Not used (omit the argument).

p2 Address of a quadword descriptor of the NCB (see Section 8.6.1.4)
Both the descriptor and the NCB must be in read/write storage.

Return Status

SS$_NORMAL

SS$_DEVALLOC

SS$_EXQUOTA

SS$_IVDEVNAM

SS$_LINKABORT

SS$_LINKDISCON

SS$_LINKEXIT

SS$_NOSUCHNODE

SS$_TIMEOUT

SS$_PATHLOST

The service completed successfully.

The process cannot access the logical link specified
in the NCB because that link is intended for another
process.

The process does not have sufficient quota to complete
the request.

The NCB has an invalid format or content.

The network partner task aborted the logical link.

The network partner task disconnected the logical link.

The network partner task exited.

The specified node is unknown.

The connection request did not complete within the
required time.

The path to the network partner task node was lost.

8-38

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

SS$_PROTOCOL A network protocol error occurred. This error is most
likely due to a network software error.

SS$_THIRDPARTY The logical link connection was terminated by a third
party (for example, the system manager).

SS$_UNREACHABLE The remote node is currently unreachable.

8.6.2.5 $QIO Sending a Message to a Target Task)
The $QIO system service with the function code IO$_WRITEVBLK or
IO$_WRITEVBLK!IO$M_INTERRUPT or
IO$_WRITEVBLK!IO$M_MULTIPLE sends a message to a target task. Refer
to Section 8.5.5.2 for the format of this call, its arguments, and possible return
status codes.

8.6.2.6 $QIO (Receiving a Message from a Target Task)
The $QIO system service with the function code IO$~ZEADVBLK or
IO$~ZEADVBLK!IO$M_MULTIPLE receives a message from a target task.
Refer to Section 8.5.5.3 for the format of this call, its arguments, and possible
return status codes.

8.6.2.7 $QIO (Sending an Interrupt Message to a Target Task)
The $QIO system service with the function code
IO$_WRITEVBLK!IO$M_INTERRUPT sends a 1- to 16-byte interrupt
message to a target task. If the remote node is a VMS operating system,
the message is placed in the mailbox associated with the target task.

Format

$QIO [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,p 1 ,p2

Arguments

efn Number of the event flag to be set at event completion.

chan Channel number associated with the logical link. Use the same channel
number returned in the $ASSIGN call.

func 10$_WRITEVBLK!10$M_INTERRUPT.

iosb Address of a quadword I/O status block that is to receive the
completion status.

astadr Entry point address of the AST routine that executes when the I/O
operation completes. If specified, the AST routine executes at the
access mode from which the $QIO service was requested.

astprm AST parameter to be passed to the AST completion routine.

p 1 Buffer address.

p2 Buffer length (1 to 16 bytes).

Return Status

SS$_NORMAL The service completed successfully.

SS$_ABORT The I/O request has been aborted by a $DASSGN
or $CANCEL call.

SS$_FILNOTACC No logical link is associated with the channel.

8-39

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

SS$_INSFMEM

SS$_LINKABORT

SS$_LINKDISCON

SS$_LINKEXIT

SS$_NOSOLICIT

SS$_TOOMUCHDATA

SS$_PATHLOST

SS$_PROTOCOL

SS$_THIRDPARTY

8.6.2.8

Enough memory to buffer the message could not
be allocated.

The network partner task aborted the logical link.

The network partner task disconnected the logical
link.

The network partner task exited.

DECnet could not accept an interrupt message at
this time.

The task specified too much interrupt data.

The path to the network partner task node was
lost.

A network protocol error occurred. This error is
most likely due to a network software error.

The logical link connection was terminated by a
third party (for example, the system manager►.

$QIO (Synchronously Disconnecting a Logical Link)
The $QIO system service with the function code
IO$_DEACCESS!IO$M_SYNCH synchronously disconnects the logical link.
All pending messages are transmitted to the remote node before the link is
disconnected.

You can send 1 to 16 bytes of optional data to the task from which you are
disconnecting at the same time you issue this $QIO system service.

Format

$QIO [efn] ,chap ,func ,[iosb] ,[astadr] ,[astprm] ,[p 1] ,[p2]

Arguments

efn Number of the event flag to be set at event completion.

chan Channel number associated with the logical link. Use the same channel
number returned in the $ASSIGN call.

func 10$_DEACCESS!10$M_SYNCH.

iosb Address of a quadword I/O status block that is to receive the
completion status.

astadr Entry point address of the AST routine that executes when the I/O
operation completes. If specified, the AST routine executes at the
access mode from which the $QIO service was requested.

astprm AST parameter to be passed to the AST completion routine.

p 1 Not used (omit the argument►.
p2 Address of a descriptor of a counted ASCII string of optional user

data. Both the string and its descriptor must be in read/write storage.

Return Status

SS$_NORMAL

SS$_FILNOTACC

The service completed successfully.

No logical link is associated with the channel.

8-40

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

8.6.2.9 $QIO (Aborting a Logical Link)
The $QIO system service with the function code
IO$_DEACCESS!IO$~BORT terminates the logical link. Note, however,
that the DEACCESS function completes only after all pending I/O operations
complete, even if you specify IO$_ABORT. First, issue the $CANCEL system
service call to cancel I/O operations on the logical link and then issue this
call to terminate the logical link.

You can send 1 to 16 bytes of optional data to the task from which you are
disconnecting at the same time that you issue this $QIO system service call.

Format

$QIO [efn] ,chap ,func ,[iosb] ,[astadr] ,[astprm] ,[p 1] ,[p2]

Arguments

efn Number of the event flag to be set at event completion.

chan Channel number associated with the logical link. Use the same channel
number returned in the $ASSIGN call.

func 10$_DEACCESS! 10$M _ABORT.

iosb Address of a quadword I/O status block that is to receive the
completion status.

astadr Entry point address of the AST routine that executes when the I/O
operation completes. If specified, the AST routine executes at the
access mode from which the $QIO service was requested.

astprm AST parameter to be passed to the AST completion routine.

p 1 Not used (omit the argument).

p2 Address of a quadword descriptor of a counted string of optional user
data. Both the string and its descriptor must be in read/write storage.

Return Status

SS$_NORMAL The service completed successfully.

SS$_FILNOTACC No logical link is associated with the channel.

8.6.2.10 $QIO (Declaring a Network Name or Object Number)
The $QIO system service with the function code IO$~CPCONTROL assigns
a network name or object number to the task, thereby making it eligible to
process multiple inbound connection requests. You must associate a mailbox
with the I/O channel. All inbound connection requests are placed in the
mailbox associated with the channel over which this I/O function is issued.
You need the SYSNAM privilege to declare a name or object number.

MACRO programmers should be aware that, whenever a logical link is
established, you should: obtain its device unit number (for example, 18 from
~TET18:) by using the $GETDVI system service, because unit numbers and
not channel numbers appear in mailbox messages. Use this system service
call where a single mailbox is being used for many logical links. The unit
number could be used as a key into a database that keeps track of multiple
links.

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

Format

$QIO [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,p 1 ,p2

Arguments

efn Number of the event flag to be set at event completion.

chan Word containing the channel number associated with the logical link.
Use the same channel number assigned in the $ASSIGN call.

func 10$_ACPCONTROL.

iosb Address of a quadword I/O status block that is to receive the
completion status.

astadr Entry point address of the AST routine that executes when the I/O
operation completes. If specified, the AST routine executes at the
access mode from which the $QIO service was requested.

astprm AST parameter to be passed to the AST completion routine.

p1 Address of a quadword descriptor of a 5-byte block consisting of a
function type (one byte) and a longword parameter. The function type
is a symbol defined by the $NFBDEF macro in SYS$LIBRARY:LIB.MLB.
The format of the 5-byte block for declaring a name is as follows:

.BYTE NFB$C_DECLNAME

.LONG 0

The format of the 5-byte block for declaring an object number is as
follows:

.BYTE NFB$C_DECLOBJ

.LONG object-number

The object number is a number reserved for customer use in the range
of 128 to 255. This 5-byte buffer and its descriptor should be in
read/write storage.

p2 Address of a quadword descriptor of the network name (maximum of
12 characters). You should not supply this argument for the DECLOBJ
function. Both the name and its descriptor must be in read/write
storage.

Return Status

SS$_NORMAL The service completed successfully.

SS$_BADPARAM One of the QIO parameters has an invalid value.

SS$_ILLCNTRFUNC The control function is inva{id.

SS$_NOMBX A name or object number is being declared using a
channel without an associated mailbox.

SS$_NOPRIV The issuing process does not have the SYSNAM
privilege.

Performing Network User Operations
8.6 Performing Nontransparent Task-to-Task Operations

8.6.2.11 $DASSGN (Terminating a Logical Link
The $DASSGN system service terminates all pending operations to send
and receive data, aborts the logical link immediately, and frees the channel
associated with that link. Refer to Section 8.5.5.4 for the format of this call,
its arguments, and possible return status codes.

8.7 Designing Tasks
The following sections contain a command procedure and three user program
examples designed to perform task-to-task communications over the network.

The command procedure and the first two user program examples illustrate
transparent operations. The third user program example illustrates a
nontransparent operation.

8.7.1 DCL Command Procedure for Task-to-Task Communication
As described in Section 8.5, you can write command procedures in DCL
to execute transparent task-to-task operations. You can use the following
command procedure, called SHOWBQ.COM, to perform such an operation.
You can use SHOWBQ.COM for task-to-task communication by entering a
task specification string in a TYPE command. For example:

$ TYPE TRNTO"BROWN JUNE": :"TASK=SHOWBQ"

In this command procedure, SYS$OUTPUT is equated to SYS$NET in user
mode to allow the SHOW QUEUE image to communicate over the logical
link by opening SYS$OUTPUT. When the SHOW QUEUE image exits,
the temporary definition of SYS$OUTPUT is deleted. In other words, only
one DCL image can use the logical link as the communication path to the
requester at the other node.

sxowBQ.coM

$!
$! This command procedure returns status information about

$! jobs entered in batch queues on the system where it

$! executes. It may be run interactively as a command

$! procedure, submitted as a local or remote batch job, or

$! invoked as a "remote task" to display information about

$! another system. For example:

$!

$! $ @SHOWBQ
$! $SUBMIT SHOWBQ
$! $SUBMIT/REMOTE node::SHOWBQ
$! $TYPE node::"TASK=SHOWBQ"

$!

$ IF F$MODE() .EQS. "NETWORK" THEN GOTO NET

$ SHOW QUEUE/BATCH/BRIEF/ALL
$ EXIT
$NET:
$ DEFINE/USER SYS$OUTPUT SYS$NET
$ SHOW QUEUE/BATCH/BRIEF/ALL
$ EXIT

8-43

Performing Network User Operations
8.7 Designing Tasks

8.7.2 FORTRAN Program for Task-to-Task Communication
Example 8-2 shows an example of VAX FORTRAN transparent
communication. In the FORTRAN source task that initiates the logical
link request, you use a standard open statement to specify the remote task to
which you want to connect. In turn, the remote task issues an open statement
to complete the logical link connection. A coordinated set of read and write
operations enable the exchange of information over the link. To terminate
the connection, the source task executes a close statement to break the logical
link. When the remote task receives this close statement, it issues a close
statement, which completes the link termination process. The remainder of
this section discusses the statements that you would use to develop such an
application.

Example 8-2 FORTRAN Task-to-Task Communication

PROGRAM TEST3.FOR
C
C This program prompts the user for the part number of an item
C in inventory and responds with the number of units in stock.
C The information is obtained by communicating with a program
C (TEST4) on another node that has access to the inventory data.
C
C Before running this program, the logical name TASK must be
C defined to ref er to the target program. For example:
C
C $ DEFINE TASK "TRNTO::""TASK=TEST4"""
C $ RUN TEST3
C

CHARACTER PARTNO*5
INTEGER PARTCOUNT

C
100 FORMAT (/,'$Enter part number: ')
200 FORMAT (A)
300 FORMAT (I4)
400 FORMAT ('Olnventory for part number ',A,' is: ',I4)
C
C Establish a logical link with the target task.
C
O OPEN (UNIT=I,NAME='TASK',ACCESS='SEQUENTIAL',

1 FORM='FORMATTED',CARRIAGECONTROL='NONE',TYPE='NEW')
C
C Prompt the user for a part number, send it to the target task,
C read reply of quantity on hand, and finally display the answer
C f or the user. Repeat the cycle until the user enters 'EXIT' for
C a part number.
C
10 TYPE 100

ACCEPT 200, PARTNO
IF (PARTNO .EQ. 'EXIT') GOTO 20

© WRITE (1,200) PARTNO
READ (1,300) PARTCOUNT
TYPE 400, PARTNO, PARTCOUNT
GOTO 10

C
C Disconnect the logical link.
C
20 © CLOSE (UNIT=1)

Example 8-2 Cont'd. on next page

8-44

Performing Network User Operations
8.7 Designing Tasks

Example 8-2 (Cont.) FORTRAN Task-to-Task Communication

END

$!

$! TEST4.COM
$!

$! This command procedure executes the program TEST4 after
$! being started by a task-to-task connection request issued
$! by TEST3.

$!

O$ RUN SYS$LOGIN:TEST4.EXE
$ EXIT

PROGRAM TEST4.FOR
C
C Test4 is the target program that communicates with TEST3.
C For each part number received from the source task, the
C number of units in stock is determined, and this value is
C returned.
C
C To complete the logical link with its initiator, this program
C uses the logical name SYS$NET as the file specification in an
C open statement.
C

CHARACTER PARTNO*5
INTEGER PARTCOUNT

C
100 FORMAT (A)
200 FORMAT (I4)
C
C
C

Complete the logical link connection.

© OPEN (UNIT=I,NAME='SYS$NET',ACCESS='SEQUENTIAL',
1 FORM='FORMATTED',CARRIAGECONTROL='NONE',TYPE='OLD')

C
C Process requests until end-of-file is reached. (This is the
C error condition returned when the source task breaks the
C logical link connection.)
C
10 © READ (1,100,END=20) PARTNO
C
C Perform appropriate processing to obtain the part count value
C and transmit this back to the source task.
C

CALL INSTOCK (PARTNO,PARTCOUNT)
© WRITE (1,200) PARTCOUNT

GOTO 10

C
C Disconnect the logical link.
C
20 ©CLOSE (UNIT=1)

END

Notes on Example 8-2

O The source task, TEST3, requests a logical link connection to the target
task, TEST4.

© TEST3 and TEST4 send and receive data messages.

Performing Network User Operations
8.7 Designing Tasks

© TEST3 disconnects the logical link and thereby terminates the
communication process.

O When the remote node receives a connection request, the command
procedure TEST4.COM is executed. This command procedure must
reside in the default directory associated with the account being
accessed. TEST4.COM contains a RUN statement that causes the program
TEST4.EXE to be executed.

© TEST4 completes the logical link connection through SYS$NET. Note
that the unit numbers in the source and target programs need not be the
same.

Because DECnet—VAX translates system-dependent language calls into the
same set of messages that permit task-to-task communication, any task
programmed in VAX MACRO or one of the higher -level languages can
communicate with a remote task programmed in the same or a different
language. More specifically, for communication between tasks that run on
VMS nodes, the language in which you access the network has no effect on
the communication process. The VAX FORTRAN source task in Example 8-2
could just as easily communicate with a MACRO task on node TRNTO.

8.7.3 MACRO Program for Transparent Task-to-Task Communication
Example 8-3 illustrates the use of system service calls for transparent
communication. TRANA is a MACRO source task on the local node that
communicates with a target task, TRANB, on node TRNTO. The source task
sends a connection request to the remote node whereupon the target task is
started by the command file TRANB.COM. After the logical link connection
is made, the source task sends a message to the target task, which in turn
responds with a message and then waits for additional message traffic. The
source task drives the communication process. After the source task receives
a response from the target task, it disconnects the link and exits, which causes
the target task to exit also, thereby terminating the communication process.

Example 8-3 Transparent Communication Using System Services

.TITLE TRANA -SOURCE TASK USING TRANSPARENT I/O

.IDENT /V1.0/

.SBTTL WRITABLE_DATA

.PSECT TRANA$DATA SHR,NOEXE,RD,WRT,BYTE

NETCHAN:.BLKW 1
IOSBUF: .BLKQ 1
TARGET: .ASCID /TRNTO"MALIK KARL"::"TASK=TRANB"/

SENDMSG:.ASCII /SEND THIS STRING TO TRANB/
SENDMSG_SIZ=.-SENDMSG
RECVMSG:.BLKB 512
RECVMSG_SIZ=.-RECVMSG

Network channel
I/O status block
Task-spec (and descriptor)

Output buffer
Output buffer size
Input buffer
Input buffer size

Example 8-3 Cont'd. on next page

8-46

Performing Network User Operations
8.7 Designing Tasks

Example 8-3 (Copt.) Transparent Communication Using System Services

.SBTTL MAIN

.PSECT TRANA$CODE

.ENTRY START,~M<>
NOSHR,EXE,RD,NOWRT,BYTE

Entry point from exec

Request a logical link to the target task and assign an I/O channel.

$ASSIGN_S -
DEVNAM=W~TARGET,-
CHAN=W"NETCHAN

BLBC RO,EXIT

Send a message to the target task.

$QIOW_S -
EFN=#1,-
CHAN=W"NETCHAN,-
FUNC=S"#IO$_WRITEVBLK,-
IOSB=W"IOSBUF,-
P1=W"SENDMSG,-
P2=S~#SENDMSG_SIZ

BLBC RO,EXIT
MOVZWL W"IOSBUF,RO
BLBC RO,EXIT

Receive a message from the target task.

$QIOW_S -
EFN=#1,-
CHAN=W~NETCHAN,-
FUNC=S"#IO$_READVBLK,-
IOSB=W"IOSBUF,-
P1=W~RECVMSG,-
P2=#RECVMSG_SIZ

BLBC RO,EXIT
MOVZWL W"IOSBUF,RO
BLBC RO,EXIT

Abort the logical link.

$DASSGN_S -
CHAN=W"NETCHAN

Exit with status (in RO) .

EXIT: $EXIT_S RO

Assign a channel to target task
Address of device name descriptor
Address to receive channel number
Branch on failure

Issue transmit request
Use local event flag number 1
Use assigned channel
Write virtual block
Address of I/O status block
Address of output buffer
Size of output buffer
Branch on failure
Get completion status
Branch on failure

Issue receive request
Use local event flag number 1
Use assigned channel
Read virtual block
Address of I/O status block
Address of input buffer
Size of input buffer
Branch on failure
Get completion status
Branch on failure

Deassign the channel
Address of word containing channel number

Exit with status to be displayed
on error condition

.END START Image transfer address

.TITLE TRANB - TARGET TASK USING TRANSPARENT I/O

.IDENT /V1.0/

.SBTTL WRITABLE_DATA

.PSECT TRANB$DATA SHR,NOEXE,RD,WRT,BYTE

Example 8-3 Cont'd. on next page

Performing Network User Operations
8.7 Designing Tasks

Example 8-3 (Cont.) Transparent Communication Using System Services

NETCHAN:.BLKW 1
IOSBUF: .BLKQ 1
RECVMSG:.BLKB 512
RECVMSG_SIZ=.-RECVMSG
LOGNAM: .ASCID /SYS$NET/
SENDMSG:.ASCII /REPLY TO TRANA/
SENDMSG_SIZ=.-SENDMSG

.SBTTL MAINLINE

.PSECT TRANB$CODE

.ENTRY START,~M<>

Network channel
I/O status block
Input buffer
Input buffer size
Logical name and descriptor
Output buffer
Output buffer size

NOSHR,EXE,RD,NOWRT,BYTE
Entry point from exec

Complete the logical link connection

$ASSIGN_S -
DEVNAM=W~LOGNAM,-
CHAN=W~NETCHAN

BLBC RO,EXIT
LOOP:

Receive message from source task.

$QIOW_S -

Send

BLBC
MOVZWL
CMPW
BEQL
BLBC

EFN=#1,-
CHAN=W~NETCHAN,-
FUNC=S~#IO$_READVBLK,-
IOSB=W~IOSBUF,-
P1=W"RECVMSG,-
P2=#RECVMSG_SIZ
RO,EXIT
W~IOSBUF,RO
S~#SS$_ABORT,RO
DONE
RO,EXIT

message to source task.

$QIOW_S -
EFN=#1,-
CHAN=W~NETCHAN,-
FUNC=S~#IO$_WRITEVBLK,-
IOSB=W~IOSBUF,-
P1=W"SENDMSG,-
P2=S~#SENDMSG_SIZ

BLBC RO,EXIT
MOVZWL W~IOSBUF,RO
BLBC RO,EXIT
BRB LOOP

Logical link was aborted.

DONE: $DASSGN_S -
CHAN=W~NETCHAN

(that TRANA requested) .

Assign channel to SYS$NET
Descriptor of SYS$NET
Store channel number
Branch on failure

Issue receive request
Use local event flag number 1
Use assigned channel
Read virtual block
Address of I/O status block
Address of input buffer
Size of input buffer
Branch on failure
Get completion status
Was logical link aborted?
Branch if yes
Branch on failure

Issue transmit request
Use local event flag number 1
Use assigned channel
Write virtual block
Address of I/O status block
Address of output buffer
Size of output buffer
Branch on failure
Get completion status
Branch on failure
Reissue the read

Deassign the channel
Address of channel number

Example 8-3 Cont'd. on next page

8-48

Performing Network User Operations
8.7 Designing Tasks

Example 8-3 (Cont.) Transparent Communication Using System Services

Exit with status (in RO) .

EXIT: $EXIT_S RO Exit with status to be displayed
on error condition

.END START ; Image transfer address

8.7.4 MACRO Program for Nontransparent Task-to-Task Communication
Example 8-4 illustrates the use of several system service calls for
nontransparent task-to-task communication. DB~ZEQUESTER is a
nontransparent MACRO source task on the local node that communicates
with a nontransparent target task, DB—SERVER, on node BIGRED. The task
DB_SERVER executes a database inquiry at the target node using the key
information that is input at the originator node. This example is similar
to Example 8-3, except that the source task here uses a network connect
block (NCB) and performs a nontransparent assign operation to establish
communication with the target task. DB_SERVER is a nontransparent target
task that has declared a name (that is, it is eligible to receive multiple inbound
connection requests). In addition, it uses a mailbox to receive network status
notifications.

The programs shown in Example 8-4 are available on the VMS
distribution medium. To access the programs, specify the file names
SYS$EXAMPLES:DB_REQUESTER.MAR and
SYS$EXAMPLES:DB_SERVER.MAR.

Example 8-4 Nontransparent Communication Using System Services

.TITLE DB_REQUESTER - Database request program

.IDENT /V1.0/

.SBTTL DEFINITIONS

.+

This program demonstrates how to perform task-to-task communication
with the known network object, DB_SERVER. A database inquiry is
executed by the DB_SERVER process at the target node using key
information (name) input on the originating node.

.DSABL GLOBAL

•+
Include system macros for definition

$DSCDEF Descriptor definitions
$IODEF I/O function codes
$RMSDEF RMS status values
$SSDEF System status values
.+

Local definitions

Example 8-4 Cont'd. on next page

8-49

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 (Cont.) Nontransparent Communication Using System Services

MAX_MSG = 128
BUF_QUO = 128

_NET: mailbox size
Only one message

$DEFINI BUFF_DEF Buffer layout
$DEF BUFF_T_NAME .BLKB 20
$EQU BUFF_S_NAME < - BUFF_T_NAME>
$DEF BUFF_T_ACCOUNT .BLKB 11
$EQU BUFF_S_ACCOUNT < - BUFF_T_ACCOUNT>
$DEF BUFF_T_PHONE .BLKB 14
$EQU BUFF_S_PHONE < - BUFF_T_PHONE>
$DEF BUFF_T_ADDRESS .BLKB 30
$EQU BUFF_S_ADDRESS < - BUFF_T_ADDRESS>
$DEF BUFF_T_LOCATION .BLKB 30
$EQU BUFF_S_LOCATION < - BUFF_T_LOCATION>
$DEF BUFF_L_STATUS .BLKL 1
$DEF BUFF_T_SPARE .BLKB 7
$EQU BUFF_S_SPARE < - BUFF_T_SPARE>
$DEF BUFF_K_LEN

$DEFEND BUFF_DEF

.+
Declare external routines

~-

.EXTRN LIB$ASN_WTH_MBX,-
LIB$GET_INPUT,-
LIB$PUT_OUTPUT

.SBTTL RO_DATA - Read Only DATA

.PSECT RO_DATA RD,NOWRT,NOEXE

INPUT_PROMPT: .ASCID /Input name or ~Z to exit /

FAO_CTRL: .ASCID "!/!AF Account: !AF Phone: !AF!/ Address: !AF"-
" City: !AF!/"

NET_DEVICE: .ASCID /_NET:/

.SBTTL RW_DATA - Read Write DATA

.PSECT RW_DATA RD,WRT,NOEXE

IOSB: .BLKQ I/O status block

MSG_VEC: Message vector
.WORD 1 Count of vector items
.WORD 15 All options on (FAC, SEV, IDT, TXT)

CODE: .BLKL 1 Message code

FAO_PRMLST: .LONG BUFF_S_NAME Display matches FAO_CTRL
.ADDRESS BUFFER+BUFF_T_NAME
.LONG BUFF_S_ACCOUNT
.ADDRESS BUFFER+BUFF_T_ACCOUNT
.LONG BUFF_S_PHONE
.ADDRESS BUFFER+BUFF_T_PHONE
.LONG BUFF_S_ADDRESS
.ADDRESS BUFFER+BUFF_T_ADDRESS
.LONG BUFF_S_LOCATION
.ADDRESS BUFFER+BUFF_T_LOCATION

NET_CHAN:
MBX_CHAN:

.BLKW 1

.BLKW 1

Assign a channel and associate a mailbox with it
Get input from SYS$INPUT
Write output to SYS$OUTPUT

Channel to _NET: device
Channel to associated mailbox

Example 8-4 Cont'd. on next page

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 (Cont.) Nontransparent Communication Using System Services

DISP_DESC: .WORD MAX_DISPLAY
.BYTE DSC$K_DTYPE_T
.BYTE DSC$K_CLASS_S
.ADDRESS DISPLAY_BUFF

DISPLAY_BUFF: .BLKB 160
MAX_DISPLAY = < - DISPLAY_BUFF>

BUFFER: .BLKB BUFF_K_LEN

INQ_NAME:

NCB_DESC: .WORD NCB_LEN
.WORD 0
.ADDRESS NCB

NCB: .ASCII ?BIGRED::"TASK=DB_SERVER/?
.WORD 0

Length
Text
String
Pointer

Display buffer

Buffer for link communication

.WORD BUFF_S_NAME Descriptor of input name key

.WORD 0

.ADDRESS BUFFER+BUFF_T_NAME

Descriptor of network

•+

Up to 16 bytes of optional data may be sent in the connect
initiate request. It is in the form of an ASCIC string and
is placed after the zero word and before the /"/ terminator.

.ASCII /"/
NCB LEN = < - NCB>

•+

.SBTTL CODE - Start of program

.PSECT CODE RD,NOWRT,EXE

.ENTRY DB_REQUESTER ~M<>

connect

After initialization, the user's requests are processed until "Z is
entered at the name prompt. Processing is synchronous. After each
name input, a request is sent to DB_SERVER over the logical link.
The program then waits until a response is received and displayed
before requesting another name.

BSBW INITIALIZATION
BLBC R0,99$

10$: BSBW INQUIRE_NAME
BLBS R0,20$
CMPL #RMS$_EOF,RO
BNEQ 99$
MOVL #SS$_NORMAL,RO
BRB 99$

20$: BSBW ISSUE_REQUEST
BLBC R0,99$
BSBW RCV_AND_DISP_RESPONSE
BLBS R0,10$

99$: RET

INITIALIZATION:

block (NCB)

Initialize communication to DB_SERVER
If BC, error, return status
While success loop

Input a request
If BS, success, continue
End of processing?

If NEQ, unrecoverable error
Recoverable, reset status

and return
Send the request off
If BC, error, return status
Receive and display response

If BS, no error, next
We should $DASSGN channel
However, on image exit, all channels
including NET_CHAN are deassigned

Example 8-4 Cont'd. on next page

8-51

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 Cont.) Nontransparent Communication Using System Services

.+
Set up communications with the DB_SERVER process.

Requesting a logical link over DECnet using nontransparent communications

requires three steps.
1. Create a temporary mailbox (optional)
2. Assign a channel to the _NET: device and associate the temporary

mailbox with it
3. Issue a QIO with a function code of IO$_ACCESS and the P2

parameter ref erencing the address of a descriptor containing the
network connect block (NCB).

In this example steps 1 and 2 are combined by using the RTL routine
LIB$ASN_WTH_MBX.

MOVAB BUFFER , R2 Set base of buffer for later

PUSHAW MBX_CHAN Associated mailbox channel

PUSHAW NET_CHAN Net device channel

PUSHAL #BUF_QUO Buffered quota
PUSHAL #MAX_MSG .Maximum message
PUSHAQ NET_DEVICE _NET: device
CALLS #5,G"LIB$ASN_WTH_MBX Assign a channel with associated mailbox

BLBC R0,99$ If BC, error, return status
$QIOW_S - Issue connect initiate

CHAN=NET_CHAN,- Net channel
FUNC=#IO$_ACCESS,- Function
IOSB=IOSB,- I/O status block
P2=#NCB_DESC NCB descriptor

BLBC R0,99$ If BC, error, return status
MOVZWL IOSB,RO Get completion status

99$: RSB

INQUIRE_NAME:

Prompt the user for the name to query

PUSHAQ
PUSHAQ
CALLS
RSB

ISSUE_REQUEST:

INPUT_PROMPT
INQ_NAME
#2,G"LIB$GET_INPUT

Issue a write over the logical link

$QIOW_S -
CHAN=NET_CHAN,-
FUNC=#IO$_WRITEVBLK,-
IOSB=IOSB,-
P1=BUFF_T_NAME(R2),-
P2=#BUFF_S_NAME

BLBC R0,99$
MOVZWL IOSB,RO

99$: RSB

RCV_AND_DISP_RESPONSE:

Prompt user
Inquire name

Get input key name

Send a buffer over the logical link
LL channel
Write operation
I/O status block
Buffer to send
Size of name

If BC, error, return status
Get completion status

Example 8-4 Cont'd. on next page

8-52

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 (Copt.) Nontransparent Communication Using System Services

.+
This module waits on a read over the logical link to DB_SERVER for a
response. After the response is received, the buffer is formatted and
the information is displayed to the user's terminal. If the server
encountered any errors on the request, the status in the buffer will
reflect the condition.

$QIOW_S -
CHAN=NET_CHAN,-
FUNC=#IO$_READVBLK,-
IOSB=IOSB,-

P2=#BUFF_K_LEN
BLBC R0,99$
BLBS IOSB,10$
MOVZWL IOSB,RO
BRB 99$

10$: BLBS BUFF_L_STATUS(R2),20$
MOVL BUFF_L_STATUS(R2),CODE
$PUTMSG_S -

MSGVEC=MSG_VEC
BRB 99$

20$: MOVW #MAX_DISPLAY,-
DISP_DESC+DSC$W_LENGTH

$FAOL_S -
CTRSTR=FAO_CTRL,-
OUTLEN=DISP_DESC,-
OUTBUF=DISP_DESC,-
PRMLST=FAO_PRMLST

BLBC R0,99$
PUSHAQ DISP_DESC
CALLS #1,G~LIB$PUT_OUTPUT

99$: RSB

.END DB_REQUESTER

.TITLE

.IDENT

.SBTTL

Wait on response message
LL channel
Read operation
I/O status block
Buffer
Length of buffer

If BC , error , return status
If BS, completion OK, continue
Capture error

and return status

If BS, request successful
Set code for error message
Display the error message

Message vector
Return with status

Reset the
output length

Format the return information
Control string
Output length
Output string descriptor
Parameter list

If BC, error, return status
Formatted buffer

Display the information

DB_SERVER - Database server process
/V1.0/
DEFINITIONS

.+

This program demonstrates how to declare a known network object and
service and manage multiple logical links. The database USER_DB
is accessed based on the name key supplied in the request buffer.

.DSABL GLOBAL

.LIBRARY /SYS$LIBRARY:LIB.MLB/

.+

Define macros, Determine FATAL from normal DECnet error messages

Example 8--4 Cont'd. on next page

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 (Cont.) Nontransparent Communication Using System Services

.+

.MACRO BR_FATIO DEST
CMPL R0,#SS$_BUFFEROVF
BEQL DEST
CMPL R0,#SS$_FILNOTACC
BEQL DEST
CMPL R0,#SS$_INSFMEM
BEQL DEST
.ENDM BR_FATIO

.MACRO BR_FATACC DEST
CMPL R0,#SS$_DEVALLOC
BEQL DEST
CMPL R0,#SS$_INSFMEM
BEQL DEST
CMPL R0,#SS$_IVDEVNAM
BEQL DEST
.ENDM BR_FATACC

Include system macros for definitions

Fatal I/O errors

Fatal connect initiate accept errors

$DSCDEF Descriptor definitions
$DVIDEF GETDVI definitions
$IODEF I/O function definitions
$MSGDEF Message definitions (mailbox)
$NFBDEF Network function definitions
$RMSDEF RMS status values
$SSDEF System status values
.+

Local definitions

TEMP MBX = 0
MAX_BUFFS = 100
MAX_LINKS = 32
MAX_MSG = 128
BUF_QUO = 128
MAX_NCB = 110
NET_RD = 1
NET_WRT = 2
NET_CMD = 3
FREE_QUE = 0
LIVE_QUE = 1

Temporary mailbox
Maximum number of buffers
Maximum number of logical links (<= 32)
Maximum mailbox message (NETCMD)
Only one message
Maximum NCB message size
Input completion on logical link
Output completion on logical link
Input completion on net command mailbox
Free queue (idle buffers)
Live queue (messages to process)

Example 8-4 Cont'd. on next page

8-54

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 (Cont.~ Nontransparent Communication Using System Services

$DEFINI DATA_DEF Data buff er/file record layout

$DEF DATA_T_NAME .BLKB 20
$EQU DATA_S_NAME < - DATA_T_NAME>

$DEF DATA_T_ACCOUNT .BLKB 11
$EQU DATA_S_ACCOUNT < - DATA_T_ACCOUNT>
$DEF DATA_T_PHONE .BLKB 14
$EQU DATA_S_PHONE < - DATA_T_PHONE>
$DEF DATA_T_ADDRESS .BLKB 30
$EQU DATA_S_ADDRESS < - DATA_T_ADDRESS>
$DEF DATA_T_LOCATION .BLKB 30
$EQU DATA_S_LOCATION < - DATA_T_LOCATION>
$DEF DATA_L_STATUS .BLKL 1
$DEF DATA_T_SPARE .BLKB 7
$EQU DATA_S_SPARE < - DATA_T_SPARE>
$DEF DATA_K_LEN

$DEFEND DATA_DEF

$DEFINI MBX_DEF DECnet command mailbox messages

$DEF MBX_MSG .BLKW 1
$DEF MBX_UNIT .BLKW 1
$DEF MBX_NAME_INFO .BLKB MAX_NCB
$DEF MBX_K_LEN

$DEFEND MBX_DEF

$DEFINI BUFF_DEF Complete buffer layout

$DEF BUFF_L_FLINK .BLKL 1
$DEF BUFF_L_BLINK .BLKL 1
$DEF BUFF_L_ASTID .BLKL 1
$DEF BUFF_Q_IOSB .BLKQ 1
$DEF BUFF_T_DATA_MBX .BLKB DATA_K_LEN
$DEF BUFF_K_LEN

$DEFEND
ASSUME DATA_K_LEN,GE,MBX_K_LEN

$DEFINI ASTID_DEF I/O completion parameter (ASTPRM)

$DEF ASTID_B_TYPE .BLKB 1
$DEF ASTID_B_NDX .BLKB 1
$DEF ASTID_W_UNUSED .BLKW 1

$DEFEND ASTID_DEF

$DEFINI LCT_DEF Link control table entry

$DEF LCT_W_UNIT .BLKW 1
$DEF LCT_W_CHANNEL .BLKW 1
$DEF LCT_L_CUR_BUFF .BLKL 1
$DEF LCT_K_LEN

$DEFEND LCT_DEF

Example 8-4 Cont'd. on next page

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 (Cont.) Nontransparent Communication Using System Services

.+
Declare external routines and variables

.EXTRN LIB$_NOTFOU,-
LIB$_QUEWASEMP

.SBTTL RO_DATA - Read Only DATA

.PSECT RO_DATA RD,NOWRT,EXE

NET_DEVICE:
NETCMD_MBX:

QUE_HDR:
BUFFERS:

DB_FAB:

DB_RAB:

.ASCID /_NET:/

.ASCID /NETCMD_MBX/

.SBTTL RW_DATA - Read Write DATA

.PSECT RW_DATA RD,WRT,EXE,QUAD

.BLKQ 2

.BLKB <MAX_BUFFS * BUFF_K_LEN>

$FAB -
FNM=<DB_DIR:USER_DB.IDX>,-

MRS=DATA_K_LEN,-

SHR=<DEL,GET,PUT,UPD>,-
RAT=<CR>

$RAB -
FAB=DB_FAB,-

KRF=O,-
KSZ=DATA_S_NAME,-
USZ=DATA_K_LEN

OBJECT_NAME: .ASCID /DB_SERVER/

Queue headers
Buffers

Database FAB
File name
Get operations
Maximum record
Indexed
Complete sharing
Carriage return

Database RAB
Associated FAB
Key access
Key offset
Key size
Size of user buffer

Network object name

LINK_CONTROL: .BLKB <MAX_LINKS * LCT_K_LEN> Link Control Table (LCT)
LCT_ALLOC_MASK: .BLKL «<MAX_LINKS-1> / 32> + 1> Allocation bit mask

NCB_DESC:

NCB:
NFB_DESC:

.WORD MAX_NCB

.WORD 0

.ADDRESS NCB

.BLKB MAX_NCB

.WORD NFB_LEN

.WORD 0

.ADDRESS NFB

Descriptor for NCB

Maximum size of NCB
Descriptor for network function block

NFB: .BYTE NFB$C_DECLNAME Declare name function
.LONG 0 Terminator

NFB LEN = < - NFB>

Example 8-4 Cont'd. on next page

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 (Copt.) Nontransparent Communication Using System Services

GETDVI_ITM: .WORD 4
.WORD DVI$_UNIT
.ADDRESS UNIT
.LONG 0
.LONG 0

IOSB: .BLKQ 1
CUR_BUFF: .BLKL 1
NETCMD_BUFF: .BLKL 1
UNIT: .BLKL 1
MBX_CHAN: .BLKW 1
NETDCL_CHAN: .BLKW 1
INDEX: .BLKB 1
NET_SHUT: .BLKB 1

.SBTTL CODE - Start of program

.PSECT CODE RD,NOWRT,EXE

.ENTRY DB_SERVER ~M<>

GETDVI item list, length
Return unit
Unit location
Return length
Terminator

I/O status block
Current logical link buffer
Current NETCMD buffer
Temporary unit location
Channel for NETCMD mailbox
_NET: channel
LCT index
Shutdown flag

.+

After initialization, requests are processed until a NETSHUT message
is received in the network command mailbox. ASTs are used to allow
asynchronous processing, thus accommodating service of several logical
links concurrently.

BSBW INITIALIZATION
BLBC R0,99$

10$: MOVAL
MOVL
BSBW
BLBC
MOVL
MOVAB
CASEB

20$: .WORD
.WORD
.WORD
MOVL
BRB

30$: BSBW
BRB

40$: BSBW
BRB

50$: BSBW
60$: BLBC

BLBC
BRB

70$: CMPL
BNEQ
MOVL
$HIBER

CUR_BUFF,R2
#LIVE_QUE,R1
REMQUE_BUFFER
R0,70$
CUR_BUFF,R2
BUFF_L_ASTID(R2),R3
ASTID_B_TYPE(R3),-
#NET_RD,#<NET_CMD-NET_RD>
30-20
40-20
50-20
#SS$_BADPARAM,RO
99$
PROCESS_REQUEST
60$
PROCESS_RESPONSE
60$
PROCESS_NETCMD
R0,99$
NET_SHUT,10$
99$
R0,#LIB$_QUEWASEMP
99$
#SS$_NORMAL,RO
S

BLBC R0,99$
BRB 10$

99$: RET

Initialization
If LBC, error, return status
While success and !NET SHUT

Return current buffer
Remove from LIVE_QUE

Remove an entry from the queue
If LBC, error, check below
Get buffer address
Get base of ASTID

Dispatch the message type

Network command message
Logical link read
Logical link write
Invalid type, set error
and return status

Process logical link read completion
Check error and shutdown
Process logical link write completion
Check error and shutdown
Process DECnet command message
If LBC, error, return status
If LBC, no shutdown, continue
Shutdown, exit

Queue empty?
If NEQ, no, return status
Queue empty, reset status

Snooze until next request
If LBC, error, return status

Next

Example 8-4 Cont'd. on next page

8-57

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 (Cont.) Nontransparent Communication Using System Services

INITIALIZATION:
BSBW
BLBC
BSBW
BLBC
BSBW
BLBC
BSBW

99$: RSB

INITIALIZE_VARIABLES
R0,99$
DECLARE_NETWORK_OBJECT
R0,99$
OPEN_DATABASE
R0,99$
ISSUE_NETCMD_READ

INITIALIZE_VARIABLES:

MOVL
CLRB
MOVAB
MOVL
MOVAQ
CLRL

10$: INSQTI
ADDL2
AOBLSS
MOVAL
MOVL
BSBW
BLBC
MOVL

99$: RSB

#SS$_NORMAL,RO
NET_SHUT
BUFFERS,R2
#FREE_QUE,R1
QUE_HDR [R1] , R4
R3

(R2) , (R4)
#BUFF_K_LEN,R2
#MAX_BUFFS,R3,10$
NETCMD_BUFF,R2
#FREE_QUE,R1
REMQUE_BUFFER
R0,99$
NETCMD_BUFF,R2

DECLARE NETWORK OBJECT:
$CREMBX_S

PRMFLG=#TEMP_MBX,-
CHAN=MBX_CHAN,-
MAXMSG=#MAX_MSG,-
BUFQUO=#BUF_QUO,-
LOGNAM=NETCMD MBX

BLBC R0,99$
$ASSIGN_S -

DEVNAM=NET_DEVICE,-
CHAN=NETDCL_CHAN,-
MBXNAM=NETCMD_MBX

BLBC R0,99$
$QIOW_S -

CHAN=NETDCL_CHAN,-
FUNC=#IO$_ACPCONTROL,-
IOSB=IOSB,-
P1=NFB_DESC,-
P2=#OBJECT_NAME

BLBC R0,99$
MOVZWL IOSB,RO

99$: RSB

Initialize variables and queues
If LBC, error, return status
Declare ourself as network object
If LBC, error, return status
Open the database
If LBC, error, return status
Issue a read on the NETCMD mailbox

Start fresh, no errors
No NETSHUT yet
Get base of buffers
Queue to receive buffers
Get header address
For R3 = 0 to MAX BUFFS-1

Insert buffer into queue at tail
Bump to next buffer

Next R3
Remove queue buffer
Remove from FREE_QUE

Remove a buffer from queue
If LBC, error, return status
Get buffer for receive

Create mailbox to receive NETCMD messages
Temporary mailbox
Channel
Maximum message size
Message buffering quota
Mailbox name

If LBC, error, return status
Assign a channel to _NET:

_NET: device
Channel
Associate mailbox for NETCMD messages

If LBC, error, return status
Issue network declare function
Channel to _NET: device
ACP function
I/O status block
Network function block
Object to declare

If LBC, error, return status
Get completion status

Example 8-4 Cont'd. on next page

8-58

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 (Cont.) Nontransparent Communication Using System Services

OPEN DATABASE:
MOVAB DB_FAB,R6
MOVAB DB_RAB,R7
$OPEN (R6)
BLBC R0,99$
$CONNECT (R7)

99$: RSB

PROCESS_REQUEST:
BLBS BUFF_Q_IOSB(R2),10$
MOVZWL BUFF_Q_IOSB(R2),RO

•+

Set base of FAB
Set base of RAB
Open the file
If LBC, error, return status
Connect a stream to file

If LBS, I/O success, process
Get the completion status

The I/O completed with a f ailure . If the status is not a f atal
error, treat it as a network failure and recover. Cleanup will be
performed when the formal DECnet command message is delivered.

BR_FATIO 99$
MOVL #SS$_NORMAL,RO
MOVL #FREE_QUE,R1
BSBW INSQUE_BUFFER
BRB 99$

.+

Successful I/O completion

~-
10$: MOVAB BUFF_T_DATA_MBX(R2),R3 ,

BSBW READ_DATABASE ;
BLBC R0,99$;
MOVZBL BUFF_L_ASTID+ASTID_B_NDX(R2),R4 ;
BSBW ISSUE_LINK_WRITE ;

99$: RSB

PROCESS_RESPONSE:
BLBS BUFF_Q_IOSB(R2),10$
MOVZWL BUFF_Q_IOSB(R2),RO

Branch if fatal status?
Recover status
Queue to insert buffer

Insert the buffer
Return

Get address of data
Read the database
If LBC, error, return status
Get the LCT index
Return the information

If LBS, I/O success, process
Get the completion status

.+

The I/O completed with a f ailure. If the status is not a f atal
error, treat it as a network failure and recover. Cleanup will be
performed when the formal DECnet command message is delivered.

BR_FATIO 99$
MOVL #SS$_NORMAL,RO
MOVL #FREE_QUE,R1
BSBW INSQUE_BUFFER
BRB 99$

•+

Successful I/O completion

Branch if fatal I/O status
Recover status
Queue to insert buffer

Insert the buffer
Return

10$: MOVAB BUFF_T_DATA_MBX(R2),R3 Get address of data
MOVZBL BUFF_L_ASTID+ASTID_B_NDX(R2),R4 Get the LCT index
BSBW ISSUE_LINK_READ Issue a read for next request

99$: RSB

Example 8-4 Cont'd. on next page

8-59

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 Cont.) Nontransparent Communication Using System Services

.ENABL LSB
PROCESS_NETCMD

MOVZWL BUFF_Q_IOSB(RZ),RO
BLBC R0,99$
MOVAB BUFF_T_DATA_MBX(R2),R3
CASEW MBX_MSG(R3),#MSG$_ABORT,-

#<MSG$_NETSHUT-MSG$_ABORT>

10$: .WORD ABORT-10$
.WORD CONFIRM-10$
.WORD CONNECT-10$
.WORD DISCON-10$
.WORD EXIT-10$
.WORD INTMSG-10$
.WORD PATHLOST-10$
.WORD PROTOCOL-10$
.WORD REJECT-10$
.WORD THIRDPARTY-10$
.WORD TIMEOUT-10$
.WORD NETSHUT-10$

MOVL #SS$_BADPARAM,RO
BRB 99$

ABORT:
DISCON:
EXIT:
PATHLOST:
PROTOCOL:
THIRDPARTY:
TIMEOUT:

MOVZWL
BSBW
BRB

MBX_UNIT(R3),UNIT
CLEANUP_LINK
99$

CONFIRM:
INTMSG:
REJECT:

BSBW NOT_USED
BRB 99$

CONNECT:
BSBW ESTABLISH_LINK
BRB 99$

NETSHUT:
BSBW SHUTDOWN

99$: RSB

.DSABL LSB

CLEANUP LINK:
BSBW
BLBS
MOVL
BRB

FIND_LCT
R0,10$
#SS$_NORMAL,RO
20$

Enable LSB for dispatching

Get the I/O completion status
If LBC, error, return status
Get base of data portion
Dispatch to appropriate
subordinate

(MSG$_ABORT)
(MSG$_CONFIRM)
(MSG$_CONNECT)
(MSG$_DISCON)
(MSG$_EXIT)
(MSG$_INTMSG)
(MSG$_PATHLOST)
(MSG$_PROTOCOL)
(MSG$_REJECT)
(MSG$_THIRDPARTY)
(MSG$_TIMEOUT)
(MSG$_NETSHUT)

Unknown message
Return status

Link unit number to cleanup
Cleanup after failure
Return with status

Messages not used for example
Return with status

Establish link
Return with status

Shutdown processing
Return with status

Enable LSB

Locate the LCT entry
If LBS , the entry was found
Not found, reset status and
release buffer (timing problem)

Example 8-4 Cont'd. on next page

8-60

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 (Cont.y Nontransparent Communication Using System Services

10$: MULL3 #LCT_K_LEN,R4,-(SP)
MOVAB LINK_CONTROL,R3
ADDL2 (SP)+,R3
$DASSGN_S -

CHAN=LCT_W_CHANNEL(R3)
BLBC R0,99$
BSBW RELEASE_LCT
BLBC R0,99$

20$: MOVL #FREE_QUE,R1
BSBW INSQUE_BUFFER

99$: RSB

NOT_USED:

Calculate the off set
Get base of table
Add off set to base
Deassign the logical link

channel
If LBC, error, return status
Release the LCT entry
If LBC, error, return status

Insert into FREE_QUE
Insert buffer at tail

•+

Some network command messages are not used in this program. Insert
them into the FREE_QUE and dismiss the event.

MOVL #FREE_QUE,R1
BSBW INSQUE_BUFFER
RSB

ESTABLISH_LINK:
ADDL2
MOVZBL
ADDL2
MOVZBL
MOVW
MOVC3
MOVL
MOVL
BSBW
BLBS

#4,R3
(R3)+,R4
R4,R3
(R3) + , R4
R4,NCB_DESC
R4 , (R3) ,NCB
#SS$_NORMAL,RO
CUR_BUFF,R2
ALLOCATE_LCT
R0,10$

Reject the connection, no LCT

$QIOW_S -
CHAN=NETDCL_CHAN,
FUNC=#IO$_ACCESS!
IOSB=IOSB,-
P2=#NCB_DESC

BLBC R0,05$
MOVL #FREE_QUE,R1
BSBW INSQUE_BUFFER

05$: BRW 99$

10$: MOVAB LINK_CONTROL,R3
MULL3 #LCT_K_LEN,R4,-(SP)
ADDL2 (SP)+,R3
$ASSIGN_S

DEVNAM=NET_DEVICE,-
CHAN=LCT_W_CHANNEL(R3),-
MBXNAM=NETCMD_MBX

BLBC R0,05$

Insert into FREE_QUE
Insert buffer at tail

Increment past (message/unit)
Get byte count of device name
Skip over device string
Get byte count of information
Update NCB descriptor (length)
Copy NCB information into NCB
Reset status
Reset buffer address.
Allocate a link control entry
If LSB, entry available

entries are available.

IO$M_ABORT,-

Reject the request
NET: channel

Abort the request
I/O status block
NCB of request

If LBC, error, return status
Insert into FREE_QUE

Insert buffer at tail
Return with status

Get base of LCT
Calculate off set for index
Calculate address of LCT entry
Assign a channel for logical link

_NET: device
Channel
DECnet command mailbox

If LBC, error, return status

Example 8-4 Cont'd. on next page

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 (Cont.) Nontransparent Communication Using System Services

$GETDVIW_S
CHAN=LCT_W_CHANNEL(R3),-
ITMLST=GETDVI_ITM,-
IOSB=IOSB

BLBC R0,99$
MOVZWL IOSB,RO
BLBC R0,99$
MOVW UNIT, LCT_W_UPdIT(R3)

$QIOW_S

BLBC
MOVZWL
BLBS

CHAN=LCT_W_CHANNEL(R3),-
FUNC=#IO$_ACCESS,-
IOSB=IOSB,-
P2=#NCB_DESC
R0,99$
IOSB,RO
R0,20$

Request unit of logical link channel
Logical link channel
Item list (unit)
I/O status block

If LBC, error, return status
Get completion status
If LBC, error, return status
Insert unit into table

Accept the connect initiate request
Logical link channel
Accept
I/O status block
Network Connect Block (NCB)

If LBC, error, return status
Get completion status
If LBS, success, continue

.+

Check completion status and recover from network errors.

BR_FATACC 99$
MOVL #SS$_NORMAL,RO
BSBW CLEANUP_LINK
BRB 99$

20$: MOVL R2,LCT_L_CUR_BUFF(R3)
BSBW ISSUE_LINK_READ

99$: RSB

SHUTDOWN:

.+

A NETSHUT message was received.
processing loop and terminate.

~-

MOVB
MOVL
BSBW
RSB

#1,NET_SHUT
#FREE_QUE,R1
INSQUE_BUFFER

Set

Branch if fatal accept error?
Recover network error

Cleanup the link
and return status

Insert current buffer
Issue a read on link

a flag to drop through the main

ISSUE_NETCMD_READ:
MOVL #NET_CMD,BUFF_L_ASTID(R2)
$QIO_S -

CHAN=MBX_CHAN,-
FUNC=#IO$_READVBLK,-
IOSB=BUFF_Q_IOSB(R2),-
ASTADR=AST_ROUTINE,-
ASTPRM=BUFF_L_ASTID(R2),-
P1=BUFF_T_DATA_MBX(R2),-
P2=#MBX K LEN

RSB

ISSUE LINK READ:
MOVAB BUFF_L_ASTID(R2),R3
MOVB R4,ASTID_B_NDX(R3)
MOVB #NET_RD,ASTID_B_TYPE(R3)
MULL3 #LCT_K_LEN,R4,-(SP)
MOVAB LINK_CONTROL,R3
ADDL2 (SP)+,R3

Indicate shutdown
Insert into FREE_QUE

Insert buffer at tail

Set AST type
Issue asynchronous read

Network command mailbox
Read request
I/O status block
AST routine
AST parameter
Buffer area
Maximum size for receive

Return with status

Get base of ASTID
Set index of LCT
Get I/O type
Calculate offset for index
Get base of table
Calculate address of entry

Example 8-4 Cont'd. on next page

8-62

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 Cont.) Nontransparent Communication Using System Services

$QIO_S
CHAN=LCT_W_CHANNEL(R3),-
FUNC=#IO$_READVBLK,-
IOSB=BUFF_Q_IOSB(R2),-
ASTADR=AST_ROUTINE,-
ASTPRM=BUFF_L_ASTID(R2),-
P1=BUFF_T_DATA_MBX(R2),-
P2=#DATA_K_LEN

RSB

ISSUE_LINK_WRITE:
MOVAB BUFF_L_ASTID(R2),R3
MOVB R4,ASTID_B_NDX(R3)
MOVB #NET_WRT,ASTID_B_TYPE(R3)
MULL3
MOVAB
ADDL2
$QIO_S

RSB

READ_DATABASE
MOVAB
MOVAB
MOVL
$GET
MOVL
BLBS
CMPL
BNEQ
MOVL

99$: RSB

FIND_LCT:
MOVAB
CLRL

10$: BBC
CMPW
BEQL

20$: ADDL2
AOBLSS
MOVL

99$: RSB

#LCT_K_LEN , R4 , - (SP)
LINK_CONTROL,R3
(SP)+,R3

CHAN=LCT_W_CHANNEL(R3),-
FUNC=#IO$_WRITEVBLK,-
IOSB=BUFF_Q_IOSB(R2),-
ASTADR=AST_ROUTINE,-
ASTPRM=BUFF_L_ASTID(R2),-
P1=BUFF_T_DATA_MBX(R2),-
P2=#DATA_K_LEN

DB_RAB,R4
DATA_T_NAME(R3),RAB$L_KBF(R4)
R3,RAB$L_UBF(R4)
(R4)
RO,DATA_L_STATUS(R3)
R0,99$
#RMS$_RNF,RO
99$
#SS$_NORMAL,RO

LINK_CONTROL,R3
R4
R4,LCT_ALLOC_MASK,20$
LCT_W_UNIT(R3),UNIT
99$
#LCT_K_LEN,R3
#MAX_LINKS,R4,10$
#LIB$_NOTFOU,RO

ALLOCATE_LCT:
FFC #0,#MAX_LINKS,LCT_ALLOC_MASK,R4

BNEQ 10$
MOVL #LIB$_NOTFOU,RO
BRB 99$

10$: BBSS R4,LCT_ALLOC_MASK,99$

99$: RSB

Issue asynchronous read on logical link
Logical link channel
Read operation
I/O status block
AST routine
AST parameter
Data area
Maximum size of read

Get base of ASTID
Set index of LCT
Get I/O type
Calculate off set for index
Get base of table
Calculate address of entry
Issue asynchronous read on logical link
Logical link channel
Write operation
I/O status block
AST routine
AST parameter
Data area
Size of write

Get base of RAB
Key address
User buffer
Read the record
Return status to user
If LBS , the record was found
Recoverable error?

If NEQ, nonrecoverable
Recoverable reset status

Get base of table
While not found and < MAX_LINKS
If BC, entry NOT in use

In use, entry match?
If EQL , found it
No match, continue

Next
Not found, return status

Available entry?
If NEQ, available entry
Table full, set and

return status
Mark entry in use

Example 8-4 Cont'd. on next page

8-63

Performing Network User Operations
8.7 Designing Tasks

Example 8-4 (Cont.) Nontransparent Communication Using System Services

RELEASE_LCT:
BBCC

10$: MULL3
MOVAB
ADDL2
CLRW
CLRW
CLRL
RSB

REMQUE_BUFFER:
MOVAQ
REMQHI
BVC
MOVL

99$: RSB

R4,LCT_ALLOC_MASK,10$
R4,#LCT_K_LEN,-(SP)
LINK_CONTROL,R1
(SP)+,R1
LCT_W_UNIT (R1)
LCT_W_CHANNEL(R1)
LCT_L_CUR_BUFF(R1)

QUE_HDR [R1] , R3
(R3) , (R2)
99$
#LIB$_QUEWASEMP,RO

INSQUE_BUFFER:
MOVAQ QUE_HDR [R1] , R3
INSQTI (R2) , (R3)
RSB
.ENABL LSB
.ENTRY AST_ROUTINE "M<R2,R3>
MOVL #SS$_NORMAL,RO
MOVZBL 4+ASTID_B_TYPE(AP),R1
MOVZBL 4+ASTID_B_NDX(AP),R3
CASEB R1,#NET_RD,#<NET_CMD-NET_RD>

10$: .WORD QUE_BUFF-10$
.WORD QUE_BUFF-10$
.WORD QUE_AND_REISSUE-10$
MOVL #SS$_BADPARAM,RO
BRB 99$

QUE_BUFF:
MOVAB LINK_CONTROL,R2
MULL3 #LCT_K_LEN,R3,-(SP)
ADDL2 (SP)+,R2
MOVL LCT_L_CUR_BUFF(R2),R2
MOVL #LIVE_QUE,R1
BSBW INSQUE_BUFFER
BRB 90$

QUE_AND_REISSUE:
MOVL NETCMD_BUFF,R2
MOVL #LIVE_QUE,R1
BSBW INSQUE_BUFFER
MOVAL NETCMD_BUFF,R2
MOVL #FREE_QUE,R1
BSBW REMQUE_BUFFER
BLBC R0,99$
MOVL NETCMD_BUFF,R2
BSBW ISSUE_NETCMD_READ
BLBC R0,99$

90$: $WAKE_S
BLBC R0,99$
RET

99$: $EXIT_S RO
.DSABL LSB
.END DB_SERVER

Clear allocated flag
Calculate offset for index
Get base of LCT
Calculate address of entry
Clear unit
Clear channel
Clear current buffer

Get address of header
Remove a buffer
If VC, an entry was removed
Queue was empty, return status

Get address of header
Insert the buffer

Cleanup trash from AST delivery
Get the ASTID
Get the LCT index
Dispatch to

NET_RD, insert in queue in live
NET_WRT, insert in queue in live
NET_CMD, reissue

Invalid value

Get base of table
Calculate offset for index
Add off set to base
Buffer to insert
Insert into live

Insert buffer at tail
Return

Buffer to insert
Insert into live

Insert buffer at tail
Address for buffer
Remove from free

Remove buffer from head
If LBC, error, terminate
Set buffer in which to read
Issue another read
If LBC, error, terminate
Wake the main process
If LBC, error, terminate

Exit with status

8-64

9 File Operations in a Heterogeneous Network
Environment

This chapter contains material to assist you in using DECnet-VAX Version
5.0 to initiate remote file operations in a heterogeneous network environment.
This chapter discusses restrictions on using DCL commands and RMS service
calls to access files on the following types of remote systems:

VMS to IAS
VMS to P/OS
VMS to RSTS/E
VMS to RSX using RMS-based FAL
VMS to RSX using FCS-based FAL
VMS to RT-11
VMS to TOPS-10
VMS to TOPS-20
VMS to MS-DOS
VMS to Ultrix
VMS to MVS
VMS Version 5.0 to previous VMS version

The chapter is organized by operating-system type: one section for each
heterogeneous system with which your VMS operating system running
DECnet-VAX Version 5.0 may communicate. Each section describes
differences in file system operation between the two systems and constraints
on the use of VMS file processing commands. The restrictions on the remote
file operations you can perform from a VMS Version 5.0 node to a particular
heterogeneous node result from file system design differences and DECnet
implementation restrictions between the systems.

Specifically, the appropriate section for each remote system itemizes the VMS
Record Management Services (RMS) features that are supported between
DECnet-VAX Version 5.0 systems, but are not supported when accessing
files on the heterogeneous system. The chapter also discusses limitations on
the DIGITAL Command Language (DCL) commands that you can use when
communicating with the remote node. Throughout this chapter comments are
provided to help you handle the differences in file system design.

The most recent version of DECnet used by each heterogeneous system is
represented in this chapter.

9.1 General DECnet—VAX Restrictions
This section is a brief summary of VMS RMS features that are not supported
by DECnet-VAX for remote file access. The list is not complete; it is meant
only to highlight the more important differences between local and remote file
access capabilities. For more complete information on this subject, refer to the
description of the various RMS control blocks in the VMS Record Management
Services Manual.

File Operations in a Heterogeneous Network Environment
9.1 General DECnet—VAX Restrictions

• The following VMS RMS service calls are not supported for network use:

$ENTER $NXTVOL $REMOVE

• The Terminal XAB is not supported for network operations; it is ignored.

• Protection XAB fields that support access control lists are ignored for
network operations.

• Only one data stream per open file is allowed. That is, the multistream
(MSE) bit option of the file sharing (SHR) field of the FAB is not
supported for network use.

• Access to files on magnetic tapes mounted on a remote VMS operating
system is not supported. You can, however, copy files from a local
magnetic tape to disk on a remote node.

• When multiple Allocation XABs are linked to the FAB, they must be in
ascending order by area number (AID field). Similarly, when multiple
Key Definition XABs are used, they must be in ascending order by key of
reference (REF field).

• File protection information may not be completely preserved if the two
nodes do not fully support each other's protection attributes. An example
of this incompatibility occurs between RSX-11M/M-PLUS and VMS
operating systems. Although both systems represent their protection
masks as RWED, RSX-11M/M-PLUS interprets that as Read, Write,
Extend, and Delete, while the VMS operating system interprets RWED as
Read, Write, Execute, and Delete. This results in the "E" protection field
being unmappable between these two systems.

• The Journaling XABs are not supported.

• File monitoring is not supported.

9.2 VMS to IAS Network Operation
This section pertains to a VMS node communicating with an IAS node
running DECnet-IAS Version 3.0. The discussion focuses on file operations
initiated from the VMS node to access remote files by means of the FAL at
the IAS node.

The restrictions described in the following subsections are related to
incompatible features in file system design between the two operating
systems.

File Operations in a Heterogeneous Network Environment
9.2 VMS to IAS Network Operation

9.2.1 File Formats and Access Modes
The following types of file and access method are not supported by the VMS
operating system when communicating with an IAS node:

• File organizations and record formats

Sequential Stream (STM)

Stream _CR (STMCR)

Stream_LF (STMLF)

Variable with fixed control (VFC) where fixed header size is
not 2 bytes

Relative All formats

Indexed All formats

• Record attributes

Print file carriage control (PRN)

• File access modes

Random access by relative record number
Random access by key value
Random access by record file address
Block I/O

You can copy a sequential file in VFC format from a VMS node to an IAS
node, provided the file has a 2-byte fixed header with a carriage control
attribute other than print file. To transfer a file that has print file carriage
control, such as a VMS batch log file, enter the following command:

CONVERT/FDL=VAR.FDL input-file output-file

The FDL control file VAR.FDL contains the following information:

FILE
ORGANIZATION

RECORD
FORMAT
CARRIAGE_CONTROL

sequential

variable
carriage_return

The CONVERT command and associated FDL control file transforms the
input file to variable-length format with implied carriage control and copies it
to the remote node according to the output file specification.

9.2.2 VMS RMS Interface

The following VMS RMS features, supported between two VMS nodes, are
not supported between a VMS node and an IAS node:

• VMS RMS service calls

$DELETE $DISPLAY $EXTEND $FIND

$FREE $READ $RELEASE $RENAME

$REWIND $SPACE $TRUNCATE $UPDATE

$WRITE

File Operations in a Heterogeneous Network Environment
9.2 VMS to IAS Network Operation

• RMS extended attribute blocks

Allocation XAB
Key Definition XAB
Summary XAB

• Significant fields and bit options of the FAB

CBT (contiguous-best-try) bit of FOP field
DEQ (default extend quantity) field

9.2.3 File Specifications
The general format of a file specification for naming a file on a remote IAS
system is as follows:

node::device:[directory]name.type;version

The following are major differences in syntax between file specifications used
on IAS and on VMS:

• IAS does not support dollar sign ($), underscore (_) and hyphen (-)
characters in file name components.

• IAS does not recognize the percent sign (%) as a valid wildcard character.

• The directory component of an IAS file specification cannot be a named
directory list, such as [A. B. C]; it must be in UIC (user identification code)
format, such as [100,3].

• The file name component has a maximum length of nine characters and
the file type cannot exceed three characters. IAS systems return an error
if you specify a longer file name or file type.

• IAS uses octal version numbers in file specifications whereas VMS uses
decimal version numbers.

9.2.4 DCL Considerations
Of the VMS DCL commands that you can use over the network, the following
are not supported between VMS and an IAS node:

• ANALYZE/RMS_FILE

• BACKUP

• OPEN/WRITE

• RENAME

9.2.4.1 APPEN D
Using the APPEND command, you are limited to appending one local input
file to the output file residing on the IAS node.

File Operations in a Heterogeneous Network Environment
9.2 VMS to IAS Network Operation

9.2.4.2 COPY
The /EXTENSION and /PROTECTION qualifiers for the COPY command
are not supported and are ignored if specified.

File creation date and time information is not preserved on a file copy
operation to an IAS node where wildcards are used in the output file
specification. Instead, the current date and time are used as the file creation
date and time.

Because the IAS operating system uses octal version numbers in file
specifications, an attempt to copy a file with a version number containing an
8 or 9 is rejected by the remote system, as shown in the following example:

$ COPY A.DAT;9 IAS: :*.*
%COPY-E-OPENOUT, error opening _IAS: :A.DAT;9 as output
-RMS-F-FNM, error in file name

There are two ways to circumvent this problem. You can either specify an
appropriate octal version number in the output file specification, or you can
specify a null or zero version number in the output file specification to force
highest version number processing on the remote node. This latter technique
is particularly useful when several files are copied with one DCL command.
For example:

$ COPY A.DAT;9 IAS: :A.DAT;11
$ COPY B.DAT;28 IAS: :*.*;
$ COPY B.DAT;28 IAS: :*.*;0
$ COPY *.DAT IAS: : .*;0

9.3 VMS to P/OS Network Operation
This section pertains to a VMS node communicating with a P/OS node
running DECnet—PRO V2.0. The discussion focuses on file operations
initiated from the VMS node, to access remote files by means of the FAL
at the P/OS node.

The following restrictions are related to incompatible features in file system
design between the two operating systems.

9.3.1 File Formats and Access Modes
The following types of file and record attribute are not supported by VMS
when communicating with a P/OS node:

• File organizations and record formats

Sequential Stream_CR (STMCR)

Stream _LF (STMLF)

Indexed All prologue 3 formats

With 64-bit binary (BN8) key types

With 64-bit integer (IN8) key types

With collating (COL) key types

With descending key types (DSTG, DIN2, DBN2, DIN4,
DBN4, DIN8, DBN8, DPAC, DCOL)

File Operations in a Heterogeneous Network Environment
9.3 VMS to P/OS Network Operation

• Record attributes

Record attributes are compatible.

• File access modes

Modes are compatible.

9.3.2 VMS RMS Interface
The following VMS RMS features, supported between two VMS nodes, are
not supported between a VMS node and a P/OS node:

• VMS RMS service call

$RELEASE

• Significant fields and bit options of the FAB

CBT (contiguous-best-try) bit of FOP field
SCF (submit command file) bit of FOP field
SPL (spool file) bit of FOP field

9.3.3 File Specifications
The general format of a file specification for naming a file on a remote P/OS
system is as follows:

node:: device: [directory]name.type;version

The following are major differences in syntax between file specifications used
on P/OS and VMS:

• P/OS does not support dollar sign ($), underscore (_) and hyphen (-)
characters in file name components.

• The directory component in a P/OS file specification cannot be a named
directory list, such as [A.B.C]; it can be a single directory name, such
as [USERFILES], or it can be expressed in UIC (user identification code)
format, such as [15,1].

• The file name component has a maximum length of nine characters and
the file type cannot exceed three characters. P/OS systems return an
error if you specify a longer file name or file type.

9.3.4 DCL Considerations
Of the VMS DCL commands that you can use over the network, the following
are not supported between VMS and a P/OS node:

• OPEN/WRITE

• PRINT/REMOTE

• SUBMIT/REMOTE

File Operations in a Heterogeneous Network Environment
9.4 VMS to RSTS/E Network Operation

9.4 VMS to RSTS/E Network Operation
This section pertains to a VMS node communicating with a RSTS/E node
running DECnet/E Version 3.0. The discussion focuses on file operations
initiated from the VMS node, to access remote files by means of the FAL at
the RSTS/E node.

The following restrictions are related to incompatible features in file system
design between the two systems.

9.4.1 File Formats and Access Modes
The following types of file and access method are not supported by VMS
when communicating with a RSTS/E node:

• File organizations and record formats

Sequential

Indexed

Stream_CR (STMCR)

Stream_LF (STMLF)

All prologue 3 formats

With 64-bit binary (BN8) key types

With 64-bit integer (IN8) key types

With collating (COL) key types

With descending key types (DSTG, DIN2, DBN2, DIN4,
DBN4, DIN8, DBN8, DPAC, DCOL)

• Record attributes

Attributes are compatible.

• File access modes

Random access by key value
Random access by record file address

DECnet/E does not support record mode access to indexed files; it supports
only block I/O access to indexed files.

Note that an attempt to access an indexed file located on a RSTS/E node in
record mode results in an RMS-F-BUG—DAP error instead of an RMS-F-
SUPPORT error.

9.4.2 VMS RMS Interface
The following VMS RMS features, supported between two VMS nodes, are
not supported between a VMS node and aRSTS/E node:

• VMS RMS service calls

$DISPLAY $EXTEND $FREE $RELEASE

$RENAME $SPACE $TRUNCATE

File Operations in a Heterogeneous Network Environment
9.4 VMS to RSTS/E Network Operation

• RMS extended attribute blocks

Allocation XAB
Key Definition XAB
Summary XAB

• Significant fields and bit options of the FAB

CBT (contiguous-best-try) bit of FOP field
DEQ (default extend quantity) field

9.4.3 File Specifications
The general format of a file specification for naming a file on a remote
RSTS/E operating system is as follows:

node::device:[directory]name.type

The following are major differences in syntax between file specifications used
on RSTS/E and on VMS:

• RSTS/E does not support dollar sign ($), underscore (_) and hyphen
(-) characters in file name components, except for the special use of the
dollar sign at the start of a file name.

• RSTS/E does not recognize the percent sign (%) as a valid wildcard
character.

• The directory component of a RSTS/E file specification cannot be a
named directory list, such as [A.B.C]; it must be in UIC (user identification
code) format, such as [1,2]. RSTS/E operating systems, however, express
UICs in decimal radix, whereas VMS operating systems use octal
numbers. On the RSTS/E operating system, the UIC is referred to as
a PPN (project programmer number).

To access aRSTS/E file whose directory component in PPN format
contains decimal digits, use the quoted string form of the file specification..
For example:

$ TYPE RSTS : : "SY : [9 , 18] TEST , DAT"

• The file name component has a maximum length of six characters and the
file type cannot exceed three characters. If you specify a longer file name,
RSTS/E truncates the name to six characters.

• RSTS/E does not support version numbers. It accepts a file specification
containing a version number without returning an error, but ignores the
version number.

9.4.4 DCL Considerations
Of the VMS DCL commands that you can use over the network, the following
are not supported between VMS and a RSTS/E node:

• PURGE

• RENAME

File Operations in a Heterogeneous Network Environment
9.4 VMS to RSTS/E Network Operation

9.4.4.1 APPEND
In using the APPEND command, you are limited to appending one local
input file to an output file on the RSTS/E node.

9.4.4.2 COPY
The /EXTENSION and /PROTECTION qualifiers for the COPY command
are not supported and are ignored if specified.

File creation date and time information is not preserved on a file copy
operation to a RSTS/E node where wildcards are used in the output file
specification. Instead, the current date and time are used as the file creation
date and time.

Because RSTS/E does not support version numbers in file specifications
(it ignores any version number supplied), an attempt to copy a file with
an explicit version number fails if a file with the same name and type
already exists at the RSTS/E node. For example, if a file with the name
RSTS::TEST.DAT already exists on the remote node, an attempt to update
it by copying a new version of that file to the node produces the following
results:

$ COPY TEST.DAT;2 RSTS::*.~
%COPY-E-OPENOUT, error opening _RSTS::TEST.DAT;2 as output
-RMS-E-FEX, file already exists, not superseded

9.4.4.3 DELETE
If you use the DELETE command with a wildcard file specification to delete
several files from a directory on a remote RSTS/E node, the operation may
appear to complete successfully even though some of the files may remain
in the directory. This behavior is caused by a file system incompatibility in
the way VMS and RSTS/E perform wildcard file deletion operations. This
problem occurs only if the remote directory has at least 30 files cataloged.

To determine if all the files you specify have been deleted successfully, enter
a DIRECTORY command to examine the remote directory. Then repeat
the wildcard DELETE command if necessary to remove unwanted files. If
the number of files you are attempting to delete is small, using the /LOG
qualifier with the DELETE command may help you to determine if all the
files have been deleted.

9.4.4.4 DIRECTORY
When you enter aDIRECTORY/FULL command to examine aRSTS/E file,
the information displayed differs from that displayed for a VMS file, in the
following respects:

• The file owner is displayed as [O,OJ if the owner of the file is identified by
a UIC that contains decimal digits.

• The file REVISION number shown is either 0 or 1. A REVISION number
of 0 indicates the file has not been revised; a REVISION number of 1
indicates the file has been revised.

File Operations in a Heterogeneous Network Environment
9.4 VMS to RSTS/E Network Operation

• Under the attributes of an indexed file, information about the number of
keys, the number of areas, and the prologue version number of the file is
not displayed. This information is omitted because the RSTS/E FAL does
not return file attribute information stored in the prologue portion of an
indexed file.

• Under the attributes of a relative file, the maximum record number is
displayed as 0.

9.4.4.5 DUMP/RECORDS and TYPE Commands
Because RSTS/E does not support record mode access (nonblock I/O access)
to indexed files, you cannot use the DCL commands DUMP/RECORDS and
TYPE to examine indexed files located on the remote RSTS/E node.

9.5 VMS to RSX Network Operation Using RMS-Based FAL
This section pertains to a VMS node communicating with an RSX node
running either DECnet-11M Version 4.0 or DECnet-11M—PLUS Version 2.0
where the RSX File Access Listener (FAL) calls RMS-11 to perform local file
operations. The discussion focuses on file operations initiated from the VMS
node, to access remote files by means of the FAL at the RSX node.

The following restrictions are related to incompatible features in file system
design between the two systems.

9.5.1 File Formats and Access Modes
The following types of file and record attributes are not supported by VMS
when communicating with an RSX node running the RMS-based FAL:

• File organizations and record formats

Sequential

Indexed

Stream_CR (STMCR)

Stream _LF (STMLF)

All prologue 3 formats

With 64-bit binary (BN8) key types

With 64-bit integer (IN8) key types

With collating (COL) key types

With descending key types (DSTG, DIN2, DBN2, DIN4,
DBN4, DIN8, DBN8, DPAC, DCOL)

• Record attributes

Record attributes are compatible.

• File access modes

Modes are compatible.

File Operations in a Heterogeneous Network Environment
9.5 VMS to RSX Network Operation Using RMS-Based FAL

9.5.2 VMS RMS Interface
The following VMS RMS features, supported between two VMS nodes, are
not supported between a VMS node and an RMS-based RSX node:

• VMS RMS service call

$RELEASE

• Significant fields and bit options of the FAB

CBT (contiguous-best-try) bit of FOP

9.5.3 File Specifications
The general format of a file specification for naming a file on a remote
RSX-11M or RSX-IIM-PLUS system is as follows:

node::device:[directory]name.type;version

The following are major differences in syntax between file specifications used
on RSX and VMS:

• RSX operating systems do not support dollar sign ($), underscore (_)
and hyphen (-)characters in file name components.

• The directory component in an RSX file specification cannot be a named
directory list, such as [A.B.C]; it must be in UIC (user identification code)
format, such as [15,1].

• The file name component has a maximum length of nine characters and
the file type cannot exceed three characters. RSX operating systems return
an error if you specify a longer file name or file type.

• RSX operating systems use octal version numbers in file specifications
whereas the VMS operating system uses decimal version numbers.

9.5.4 DCL Considerations
Of the VMS DCL commands that you can use over the network, the following
is not supported between VMS and an RMS-based RSX node:

• OPEN/WRITE

9.5.4.1 COPY
Because RSX-11M and RSX—IIM—PLUS operating systems use octal version
numbers in file specifications, an attempt to copy a file with a version number
containing an 8 or 9 is rejected by the remote system. For example:

$ COPY A.DAT;9 RSX::*.~
%COPY-E-OPENOUT, error opening RSX::A.DAT;9 as output
-RMS-F-FNM, error in file name

File Operations in a Heterogeneous Network Environment
9.5 VMS to RSX Network Operation Using RMS-Based FAL

There are two ways to circumvent this problem. You can specify an
appropriate octal version number in the output file specification, or you
can specify a null or zero version number in the output file specification to
force highest version number processing on the remote node. This latter
technique is particularly useful when several files are copied with one DCL
command. For example:

$ COPY A.DAT;9 RSX: :A.DAT;11
$ COPY B.DAT;28 RSX: : .*;
$ COPY B.DAT;28 RSX: :*.*;0
$ COPY *.DAT RSX: :*.*;0

9.6 VMS to RSX Network Operation Using FCS-Based FAL
This section pertains to a VMS node communicating with an RSX node
running DECnet-11M Version 4.0 or DECnet-11M-PLUS V2.0 where the
RSX FAL calls the File Control Services (FCS-11) to perform file operations.
The discussion focuses on file operations initiated from the VMS node to
access remote files by means of the FAL at the RSX node.

The following restrictions are related to incompatible features in file system
design between the two systems.

9.6.1 File Formats and Access Modes
The following types of file and access method are not supported by VMS
when communicating with an RSX node running the FCS-based FAL:

• File organizations and record formats

Sequential Stream (STM)

Stream_CR (STMCR)

Stream_LF (STMLF)

Variable with fixed control (VFC) where fixed header size is
not 2 bytes

Relative All formats

Indexed All formats

• Record attributes

Print file carriage control (PRN)

• File access modes

Random access by relative record number
Random access by key value
Random access by record file address
Block I/O

You can copy a sequential file in VFC format from a VMS node to an FCS-
based RSX node, provided the file has a 2-byte fixed header with a carriage
control attribute other than print file. To transfer a file that has print file
carriage control, such as a VMS batch log file, enter the following command:

$ CONVERT/FDL=VAR.FDL input-file output--file

9-12

File Operations in a Heterogeneous Network Environment
9.6 VMS to RSX Network Operation Using FCS-Based FAL

The FDL control file VAR.FDL contains the following information:

FILE
ORGANIZATION

RECORD
FORMAT
CARRIAGE_CONTROL

sequential

variable
carriage_return

The CONVERT command and associated FDL control file transform the input
file to variable-length format with implied carriage control and then copy it to
the remote node according to the output file specification.

9.6.2 VMS RMS Interface
The following VMS RMS features, supported between two VMS nodes, are
not supported between a VMS node and an FCS-based RSX node:

• VMS RMS service calls

$DELETE $DISPLAY $EXTEND $FIND

$FREE $READ $RELEASE $RENAME

$REWIND $SPACE $TRUNCATE $UPDATE

$WRITE

• RMS extended attribute blocks

Allocation XAB
Key Definition XAB
Summary XAB

• Significant fields and bit options of the FAB

CBT (contiguous-best-try) bit of FOP field
DEQ (default extension quantity) field

9.6.3 File Specifications
The general format of a file specification for naming a file on a remote
RSX-11M or RSX-IIM-PLUS system is as follows:

node:: device: [directory]name.type;version

The following are major differences in syntax between file specifications used
on RSX and on VMS:

• RSX operating systems do not support dollar sign ($), underscore (_)
and hyphen (-)characters in file name components.

• The directory component in an RSX file specification cannot be a named
directory list, such as [A.B.C]; it must be in UIC (user identification code)
format, such as [15,1].

• The file name component has a maximum length of nine characters and
the file type cannot exceed three characters. RSX operating systems return
an error if you specify a longer file name or file type.

• RSX operating systems use octal version numbers in file specifications
whereas VMS uses decimal version numbers.

File Operations in a Heterogeneous Network Environment
9.6 VMS to RSX Network Operation Using FCS-Based FAL

9.6.4 DCL Considerations
Of the VMS DCL commands that you can use over the network, the following
are not supported between VMS and an FCS-based RSX node:

• ANALYZE/RMS_FILE

• BACKUP

• OPEN/WRITE

• RENAME

9.6.4.1 APPEND
In using the APPEND command, you are limited to appending one local
input file to an output file residing on the FCS-based RSX node.

9.6.4.2 COPY
The /EXTENSION and /PROTECTION qualifiers for the COPY command
are not supported and are ignored if specified.

File creation date and time information is not preserved on a file copy
operation to an RSX node where wildcards are used in the output file
specification. Instead, the current date and time are used as the file creation
date and time.

Because RSX-11 M and RSX-11 M-PLUS operating systems use octal version
numbers in file specifications, an attempt to copy a file with a version number
containing an 8 or 9 is rejected by the remote system, as follows:

$ COPY A.DAT;9 RSX: :*.*
%COPY-E-OPENOUT, error opening RSX: :A.DAT;9 as output
-RMS-F-FNM, error in file name

There are two ways to circumvent this problem. You can either specify an
appropriate octal version number in the output file specification, or you can
specify a null or zero version number in the output file specification to force
highest version number processing on the remote node. This latter technique
is particularly useful when several files are copied with one DCL command.
For example:

$ COPY A.DAT;9 RSX: :A.DAT;il
$ COPY B.DAT;28 RSX: :*.*;
$ COPY B.DAT;28 RSX: :*.*;0
$ COPY *.DAT RSX: :*.*;0

9.7 VMS to RT-11 Network Operations
This section pertains to a VMS node communicating with an RT-11 node
running DECnet-RT Version 2.1. The discussion focuses on file operations
initiated from the VMS node, to access remote files by means of the FAL at
the RT-11 node.

File Operations in a Heterogeneous Network Environment
9.7 VMS to RT-11 Network Operations

9.7.1 File System Constraints
The file systems used by RT-11 and VMS are dissimilar in many respects. A
fundamental difference between them involves the handling of file attribute
information. When you create a file on a VMS operating system, attribute
information about the file is stored in a header block on disk for use when
the file is subsequently opened. The implication is that the structure of an
established file cannot change. In contrast, RT-11 does not save attribute
information such as file format with a file; it expects you to provide this
information when you open the file. File attribute information, however, is
not an input to VMS RMS when you open a file.

To provide transparent access to files on a remote RT-11 operating system,
VMS RMS restricts the types of file that you can create and open on the
remote node. When you access an RT-11 file in record mode, VMS RMS
treats the file as having stream format. Block I/O access is permitted; the
remote file is viewed as having fixed length 512 byte records where virtual
block number is translated to relative record number.

9.7.1.1 File Formats and Access Modes
The following types of file and access method are not supported by VMS
when communicating with an RT-11 node:

• File organizations and record formats

Sequential Fixed length (FIX) without implied carriage control

Stream_CR (STMCR)

Stream_LF (STMLF)

Variable length (VAR) without implied carriage control

Variable with fixed control (VFC)

Relative All formats

Indexed All formats

• Record attributes

FORTRAN carriage control (FTN)
Print file carriage control (PRN)
None specified (embedded carriage control)

• Record access modes

Random access by relative record number
Random access by key value
Random access by record file address

For record mode access, the only file type in common between the two
systems is a sequential file in STM (stream) format. For convenience,
however, when you are transferring a file to an RT-11 node, VMS RMS
automatically converts a VMS sequential file with fixed or variable format and
implied carriage control to a sequential file with stream format and embedded
carriage control. This automatic conversion is performed during a file create
operation, and VMS RMS returns an alternate success code
(RMS$_CVT_STM) to indicate that the file format has been modified.

Note also that, when a stream format file is retrieved from an RT-11 node,
VAX RMS automatically changes the record attribute from embedded carriage
control to implied carriage control.

9-15

File Operations in a Heterogeneous Network Environment
9.7 VMS to RT-11 Network Operations

In general, you can copy text files created by the SOS Editor without line
numbers being saved or by the EDT Editor to an RT-11 operating system.
VMS batch log files and files created by the SOS Editor with line numbers
intact, however, are stored in VFC format and cannot be copied to an RT-11
system in that form. To transfer this type of file, enter the following DCL
command:

$ CONVERT/FDL=STM.FDL input-file output-file

The FDL control file STM.FDL contains the following information:

FILE
ORGANIZATION sequential

RECORD
FORMAT stream
CARRIAGE_CONTROL none

The CONVERT command and associated FDL control file transform the input
file to stream format with embedded carriage control and copies it to the
remote node according to the output file specification.

9.7.1.2 VMS RMS Interface
The following VMS RMS features, supported between two VMS nodes, are
not supported between a VMS node and an RT-11 node:

• VMS RMS service calls

$DELETE $DISPLAY $EXTEND $FIND

$FREE $RELEASE $RENAME $REWIND

$SPACE $TRUNCATE $UPDATE

• RMS extended attribute blocks

Key Definition XAB
Summary XAB

• Significant fields and bit options of the FAB

ALQ (allocation quantity) field
DEQ (default extend quantity) field
CBT (contiguous-best-try) bit of FOP field
CTG (contiguous) bit of FOP field
SCF (submit command file) bit of FOP field
SPL (spool file) bit of FOP field

• Significant fields and bit options of the RAB

EOF (position to end of file) bit of ROP field

File Operations in a Heterogeneous Network Environment
9.7 VMS to RT-11 Network Operations

9.7.2 File Specifications
The general format of a file specification for naming a file on a remote RT-11
operating system is as follows:

node:: device: name.type

The following are major differences in syntax between file specifications on
RT-11 and VMS:

• RT-11 does not support dollar sign ($), underscore (_) and hyphen (-)
characters in file name components.

• RT-11 does not recognize the percent sign (%) as a valid wildcard
character.

• RT-11 does not have a directory component it its file specification.

• The file name component has a maximum length of six characters and the
file t~rpe cannot exceed three characters. If you specify a longer file name
or file type, RT-11 returns an error.

• RT-11 does not support version numbers. Specification of a version
number, however, is permitted when you refer to an RT-11 file, because
VMS RMS discards any version number before sending the file specified
to the RT-11 FAL.

9.7.3 DCL Considerations
Of the VMS DCL commands that you can use over the network, the following
are not supported between VMS and an RT-11 node:

• ANALYZE/RMS_FILE

• APPEND

• BACKUP

• OPEN/WRITE

• PRINT/REMOTE

• PURGE

• RENAME

• SUBMIT/REMOTE

9.7.3.1 COPY
The /ALLOCATION, /CONTIGUOUS, /EXTENSION, and /PROTECTION
qualifiers for the COPY command are not supported and are ignored if
specified.

Using COPY to merge several files into a single output file is not supported.

RT-11 does not support version numbers in file specifications and supersedes
files by default. Therefore, if you attempt to copy a file with the same name
and type as one that already exists on the remote RT-11 node, the new file
supersedes the old one. No warning message is displayed.

File Operations in a Heterogeneous Network Environment
9.7 VMS to RT-11 Network Operations

9.7.3.2 DELETE
The DCL command DELETE requires that you specify an explicit or wildcard
version number in the file specification. However, because RT-11 does
not accept a file specification containing a version number, VMS RMS
removes the version number before sending the file specification to the
RT-11 operating system. To satisfy the requirements of both systems, specify
a null version number in the file specification, as follows:

DELETE RT::TEST.DAT;

9.8 VMS to TOPS-10 Network Operations
This section pertains to a VMS node communicating with aTOPS-10 node
running DECnet-10 Version 4.0. The discussion focuses on file operations
initiated from the VMS node, to access remote files by means of the FAL at
the TOPS-10 node.

9.8.1 File System Constraints
The file systems used by TOPS-10 and VMS are dissimilar in many respects.
A fundamental difference between them involves the handling of file attribute
information. When you create a file on a VMS operating ~ system, attribute
information about the file is stored in a header block on disk for use when
the file is subsequently opened. The implication is that the structure of an
established file cannot change. In contrast, TOPS-10 does not save attribute
information such as file format with a file; it expects you to provide this
information when you open the file. File attribute information, however, is
not an input to VMS RMS when you open a file.

To provide transparent access to files on a remote TOPS-10 system, VMS
RMS restricts the types of file that you can create and open on the remote
node. When you access aTOPS-10 file in record mode, VMS RMS treats the
file as having stream format.

9.8.1.1 File Formats and Access Modes
Because of differences in file system design, the following types of file and
access method are not supported by VMS when communicating with a
TOPS-10 node:

• File organizations and record formats

Sequential Fixed length (FIX) without implied carriage control

Stream_CR (STMCR)

Stream_LF (STMLF)

Variable length (VAR) without implied carriage control

Variable with fixed control (VFC)

Relative All formats

Indexed All formats

• Record attributes

FORTRAN carriage control (FTN)
Print file carriage control (PRN)
None specified (embedded carriage control)

9-18

File Operations in a Heterogeneous Network Environment
9.8 VMS to TOPS-10 Network Operations

• Record access modes

Random access by relative record number
Random access by key value
Random access by record file address
Block I/O

For record mode access, the only file type in common between the two
systems is a sequential file in STM (stream) format. For convenience,
however, when you are transferring a file to a TOPS-10 node, VMS RMS
automatically converts a VMS sequential file with fixed or variable format and
implied carriage control to a sequential file with stream format and embedded
carriage control. This automatic conversion is performed during a file create
operation, and VMS RMS returns an alternate success code (RMS$_CVT_
STM} to indicate that the file format has been modified.

Note also that when a stream format file is retrieved from aTOPS-10 node,
VMS RMS automatically changes the record attribute from embedded carriage
control to implied carriage control.

In general, you can copy text files created by the TPU or the EDT Editor to a
TOPS-10 operating system. VMS batch log files, however, are stored in VFC
format, and cannot be copied in that form to a TOPS-10 operating system.
To transfer this type of file, enter the following DCL command:

$ CONVERT/FDL=STM.FDL input-file output-file

The FDL control file STM.FDL contains the following information:

FILE
ORGANIZATION sequential

RECORD
FORMAT stream
CARRIAGE_CONTROL none

The CONVERT command and associated FDL control file transform the input
file to stream format with embedded carriage control and then copy them to
the remote node according to the output file specification.

9.8.1.2 VMS RMS Interface
The following VMS RMS features, supported between two VMS nodes, are
not supported between a VMS node and aTOPS-10 node:

• VMS RMS service calls

$DELETE $DISPLAY $EXTEND $FIND

$FREE $READ $RELEASE $RENAME

$REWIND $SPACE $TRUNCATE $UPDATE

$WRITE

• RMS extended attribute blocks

Allocation XAB
Key Definition XAB
Summary XAB

File Operations in a Heterogeneous Network Environment
9.8 VMS to TOPS-10 Network Operations

• Significant fields and bit options of the FAB

ALQ (allocation quantity) field
DEQ (default extend quantity) field
CBT (contiguous-best-try) bit of FOP field

9.8.1.3 File Specifications
The general format of a file specification for naming a file on a remote
TOPS-10 operating system is as follows:

node::device:[directory]name.type

The following are the major differences in syntax between file specifications
on TOPS-10 and on VMS:

• The directory component of a TOPS-10 file specification is in PPN
(project programmer number) format, such as [3655,7031], where the
two numbers are in octal radix. The directory component can also be
in extended PPN format containing up to five levels of subdirectories.
An example of a directory component in extended PPN format is
[10,20,A,B,C,D,E].

The VMS operating system cannot parse directory components in PPN
format (with numbers larger than 377 octal) or handle extended PPN
formats containing subdirectories. The DECnet-10 implementation,
however, does accept directory components using period (.)instead of
comma (,)delimiters, and converts commas to periods when returning
file specifications to VMS operating systems. Consequently, when you
enter a file specification for a remote TOPS-10 operating system, use
the VMS named directory list format for expressing TOPS-10 PPNs and
extended PPNs. For example, use [3655.7031] or [10.20.A.B.C.D.E] to
specify a directory component.

• The file name component has a maximum length of six characters and the
file type cannot exceed three characters. If you specify a longer file name,
TOPS-10 truncates the name to six characters.

• TOPS-10 does not support version numbers. It accepts a file specification
containing a version number without returning an error, but ignores the
version number.

9.8.2 DCL Considerations
Of the VMS DCL commands that you can use over the network, the following
are not supported between VMS and aTOPS-10 node:

• ANALYZE/RMS_FILE

• APPEND

• BACKUP

• OPEN/WRITE

• RENAME

File Operations in a Heterogeneous Network Environment
9.8 VMS to TOPS-10 Network Operations

9.8.2.1 COPY
The /ALLOCATION and /EXTENSION qualifiers to the COPY command are
not supported and are ignored if specified.

9.8.2.2 DIRECTORY
When you enter aDIRECTORY/FULL command to examine aTOPS-10 file,
the information displayed differs in the following respects from that displayed
for a VMS file:

• The file owner is displayed as [0,0] to indicate that this information is not
available.

• The file REVISION number is not shown and file REVISION date and
time information is not available from the TOPS-10 operating system.

• The blocks used and blocks allocated values displayed, which indicate the
size of the file, refer to 128-word pages (providing 640 bytes of storage),
not 512-byte blocks.

9.9 VMS to TOPS-20 Network Operations
This section pertains to a VMS node communicating with aTOPS-20 node
running DECnet-20 Version 3.0. The discussion focuses on file operations
initiated from the VMS node, to access remote files by means of the FAL at
the TOPS-20 node.

9.9.1 File System Constraints
The file systems used by TOPS-20 and VMS are dissimilar in many respects.
A fundamental difference between them involves the handling of file attribute
information. When you create a file on a VMS operating system, attribute
information about the file is stored in a header block on disk for use when
the file is subsequently opened. The implication is that the structure of an
established file cannot change. In contrast, TOPS-20 does not save attribute
information such as file format with a file; it expects you to provide this
information when you open the file. File attribute information, however, is
not an input to VMS RMS when a file is opened.

To provide transparent access to files on a remote TOPS-20 operating system,
VMS RMS restricts the types of file that you can create and open on the
remote node. When you access aTOPS-20 file in record mode, VMS RMS
treats the file as having stream format. Although block I/O is supported
by DECnet-20, it is not supported between VMS and TOPS-20 because the
block sizes are different.

File Operations in a Heterogeneous Network Environment
9.9 VMS to TOPS-20 Network Operations

9.9.1.1 File Formats and Access Modes
Because of differences in file system design, the following types of file and
access method are not supported by VMS when communicating with a
TOPS-20 node:

• File organizations and record formats

Sequential Fixed length (FIX) without implied carriage control

Stream_CR (STMCR)

Stream_LF (STMLF)

Variable length (VAR) without implied carriage control

Variable with fixed control (VFC)

Relative All formats

Indexed All formats

• Record attributes

FORTRAN carriage control (FTN)
Print file carriage control (PRN)
None specified (embedded carriage control)

• Record access modes

Random access by relative record number
Random access by key value
Random access by record file address
Block I/O

For record mode access, the only file type in common between the two
systems is a sequential file in STM (stream) format. For convenience,
however, when you are transferring a file to a TOPS-20 node, VMS RMS
automatically converts a VMS sequential file with fixed or variable format and
implied carriage control to a sequential file with stream format and embedded
carriage control. This automatic conversion is performed during a file create
operation, and VMS RMS returns an alternate success code (RMS$_CVT_
STM) to indicate that the file format has been modified.

Note also that when a stream format file is retrieved from aTOPS-20 node,
VMS RMS automatically changes the record attribute from embedded carriage
control to implied carriage control.

In general, you can copy text files created by the TPU or the EDT Editor to a
TOPS-20 operating system. VMS batch log files, however, are stored in VFC
format, and cannot be copied in that form to a TOPS-20 operating system.
To transfer this type of file, enter the following DCL command:

$ CONVERT/FDL=STM.FDL input-file output-file

The FDL control file STM.FDL contains the following information:

FILE
ORGANIZATION sequential

RECORD
FORMAT stream
CARRIAGE_CONTROL none

The CONVERT command and associated FDL control file transform the input
file to stream format with embedded carriage control and then copy it to the
remote node according to the output file specification.

9-22

File Operations in a Heterogeneous Network Environment
9.9 VMS to TOPS-20 Network Operations

9.9.1.2 VMS RMS Interface
The following VMS RMS features, supported between two VMS nodes, are
not supported between a VMS node and aTOPS-20 node:

• VMS RMS service calls

$DELETE $DISPLAY $EXTEND $FIND

$FREE $READ $RELEASE $RENAME

$REWIND $SPACE $TRUNCATE $UPDATE

$WRITE

• RMS extended attribute blocks

Allocation XAB
Key Definition XAB
Summary XAB

• Significant fields and bit options of the FAB

ALQ (allocation quantity) field
DEQ (default extend quantity) field
CBT (contiguous-best-try) bit of FOP field
CTG (contiguous) bit of FOP field

• Significant fields and bit options of the RAB

EOF (position to end of file) bit of ROP field

9.9.1.3 File Specifications
The general format of a file specification for naming a file on a remote
TOPS-20 system is as follows

node::device <directory> name.type.version

The following are the major differences in syntax between file specifications
on TOPS-20 and on VMS:

• TOPS-20 uses angle brackets (< >) to delimit the directory string
instead of square brackets ([]). To facilitate communication with
TOPS-20, VMS RMS recognizes angle brackets as valid directory
component delimiters.

• TOPS-20 uses the period (.) to delimit the version number instead of the
semicolon (;). However, you can specify either a period or a semicolon
because VMS RMS converts a semicolon version number delimiter to a
period before sending the file specification to the TOPS-20 FAL.

File Operations in a Heterogeneous Network Environment
9.9 VMS to TOPS-20 Network Operations

9.9.2 DCL Considerations
Of the VMS DCL commands that you can use over the network, the following
are not supported between VMS and aTOPS-20 node:

• ANALYZE/RMS_FILE

• APPEND

• BACKUP

• OPEN/WRITE

• RENAME

9.9.2.1 COPY
The /ALLOCATION, /CONTIGUOUS, /EXTENSION, and /PROTECTION
qualifiers to the COPY command are not supported and are ignored if
specified.

File creation date and time are not preserved during a file copy operation.

Using COPY to merge several files into a single output file is not supported.

9.9.2.2 DIRECTORY
When you use aDIRECTORY/FULL command to examine aTOPS-20 file,
the information displayed differs in the following respects from that displayed
for a VMS file:

• The file owner is displayed as [O,OJ to indicate that this information is not
available.

• The file REVISION number is not shown.

• The blocks used and blocks allocated values displayed, which indicate the
size of the file, refer to 128-word pages (providing 640 bytes of storage),
not 512-byte blocks.

• TOPS-20 does not have the equivalent of world protection, so this
attribute is displayed as a null string.

9.10 VMS to MS—DOS Network Operations
This section pertains to a VMS node communicating with an MS-DOS
node running DECnet-DOS Version 1.2, DECnet-Rainbow Version 1.2, ar
DECnet-VAXmate Version 1.2. The discussion focuses on file operations
initiated from the VMS node, to access remote files by means of the FAL at
the MS-DOS node.

File Operations in a Heterogeneous Network Environment
9.10 VMS to MS—DOS Network Operations

9.10.1 File System Constraints
The file systems used by MS-DOS and VMS are dissimilar in many respects.
A fundamental difference between them involves the handling of file attribute
information. When you create a file on a VMS operating system, attribute
information about the file is stored in a header block on disk for use when
the file is subsequently opened. The implication is that the structure of an
established file cannot change. In contrast, MS-DOS does not save attribute
information such as file format with a file; it expects you to provide this
information when you open the file. File attribute information, however, is
not an input to VMS RMS when a file is opened.

To provide transparent access to files on a remote MS-DOS system, VMS
RMS restricts the types of file that you can create and open on the remote
node. When you access an MS-DOS file in record mode, VMS RMS treats
the file as having stream format.

9.10.1.1 File Formats and Access Modes
Because of differences in file system design, the following types of file and
access method are not supported by VMS when communicating with an
MS-DOS node:

• File organizations and record formats

Sequential Fixed length (FIX) without implied carriage control

Stream_CR (STMCR)

Stream_LF (STMLF)

Variable length (VAR) without implied carriage control

Variable with fixed control (VFC)

Relative All formats

Indexed All formats

• Record attributes

FORTRAN carriage control (FTN)
Print file carriage control (PRN)
None specified (embedded carriage control)

• Record access modes

Random access by relative record number
Random access by key value
Random access by record file address

For record mode access, the only file type in common between the two
systems is a sequential file in STM (stream) format. For convenience,
however, when you are transferring a file to an MS-DOS node, VMS RMS
automatically converts a VMS sequential file with fixed or variable format and
implied carriage control to a sequential file with stream format and embedded
carriage control. This automatic conversion is performed during a file create
operation, and VMS RMS returns an alternate success code
(RMS$_CVT_STM) to indicate that the file format has been modified.

Note also that when a stream format file is retrieved from an MS-DOS node,
VMS RMS automatically changes the record attribute from embedded carriage
control to implied carriage control.

File Operations in a Heterogeneous Network Environment
9.10 VMS to MS—DOS Network Operations

In general, you can copy text files created by the TPU or EDT Editor to an
MS-DOS operating system. VMS batch log files, however, are stored in VFC
format, and cannot be copied in that form to an MS-DOS operating system.
To transfer this type of file, enter the following DCL command:

$ CONVERT/FDL=STM.FDL input-file output-file

The FDL control file STM.FDL contains the following information:

FILE
ORGANIZATION sequential

RECORD
FORMAT stream
CARRIAGE_CONTROL none

The CONVERT command and associated FDL control file transform the input
file to stream format with embedded carriage control and then copy it to the
remote node according to the output file specification.

9.10.1.2 VMS RMS Interface
The following VMS RMS features, supported between two VMS nodes, are
not supported between a VMS node and an MS-DOS node:

• VMS RMS service calls

$DELETE $DISPLAY $EXTEND $FIND

$FREE $RELEASE $RENAME $REWIND

$TRUNCATE $UPDATE $WRITE

• RMS extended attribute blocks

Allocation XAB
Key Definition XAB
Summary XAB

• Significant fields and bit options of the FAB

ALQ (allocation quantity) field
DEQ (default extend quantity) field
CBT (contiguous-best-try) bit of FOP field

9.10.1.3 File Specifications
The general format of a file specification for naming a file on a remote
MS-DOS operating system is as follows:

node:: "device:\directory\name"

The major difference in syntax between file specifications on MS-DOS and on
VMS is that the directory components of an MS-DOS file specification are in
an incompatible format. For example:

\directory\

As a result, you must use quoted strings when you access these MS-DOS files
from a VMS operating system.

On DECnet-RB/DOS/VM Version 1.2 systems, the FAL object accepts
incoming requests using file specifications in VMS syntax and maps those
requests to file specifications for DOS. For example:

$ DIRECTORY PC : : [REPORT]

File Operations in a Heterogeneous Network Environment
9.10 VMS to MS—DOS Network Operations

This directory specification is mapped to the following directory specification:

$ DIRECTORY PC::\report\~.*

DOS file specifications are restricted to file names of eight characters, file
extensions of three characters, and do not support version numbers.

9.10.2 DCL Considerations
Of the VMS DCL commands that you can use over the network, the following
are not supported between VMS and an MS-DOS node:

• ANALYZE/RMS_FILE

• APPEND

• BACKUP

• OPEN/WRITE

• RENAME

9.10.2.1 COPY
The /ALLOCATION and /EXTENSION qualifiers to the COPY command are
not supported and are ignored if specified.

9.10.2.2 DIRECTORY
When you enter aDIRECTORY/FULL command to examine an MS-DOS file,
the information displayed differs in the following respects from that displayed
for a VMS file:

• The file owner identifier is displayed as [0,0] to indicate that this
information is not available.

• The file ID identifier is displayed as NONE to indicate that this
information is not available.

• The file attributes version limit identifier is displayed as 0 to indicate that
this information is not available.

• The file REVISION number is not shown and file REVISION date and
time information is not available from the MS-DOS operating system.

9.11 VMS to Ultrix Network Operations
This section pertains to a VMS node communicating with an Ultrix node
running DECnet-Ultrix Version 1.0. The discussion focuses on file operations
initiated from the VMS node, to access remote files by means of the FAL at
the Ultrix node.

File Operations in a Heterogeneous Network Environment
9.11 VMS to Ultrix Network operations

9.11.1 File System Constraints
The file systems used by Ultrix and VMS are dissimilar in many respects. A
fundamental difference between them involves the handling of file attribute
information. When you create a file on a VMS operating system, attribute
information about the file is stored in a header block on disk for use when
the file is subsequently opened. The implication is that the structure of an
established file cannot change. In contrast, Ultrix does not save attribute
information such as file format with a file; it expects you to provide this
information when you open the file. File attribute information, however, is
not an input to VMS RMS when a file is opened.

To provide transparent access to files on a remote Ultrix operating system,
VMS RMS restricts the types of file that you can create and open on the
remote node. When you access an Ultrix file in record mode, VMS RMS
treats the file as having STREAM_LF (STMLF) format.

9.11.1.1 File Formats and Access Modes
Because of differences in file system design, the following types of file and
access method are not supported by VMS when communicating with an
Ultrix node:

• File organizations and record formats

Sequential Fixed length (FIX) without implied carriage control

Stream_CR (STMCR)

Stream (STM)

Variable length (VAR) without implied carriage control

Variable with fixed control (VFC)

Relative All formats

Indexed All formats

• Record attributes

FORTRAN carriage control (FTN)
Print file carriage control (PRN)
None specified (embedded carriage control)

• Record access modes

Random .access by relative record number
Random access by key value
Random access by record file address
Block I/O

For record mode access, the only file type in common between the two
systems is a sequential file in STMLF (STREAM_LF) format. For convenience,
however, when you are transferring a file to an Ultrix node, VMS RMS
automatically converts a VMS sequential file with fixed or variable format and
implied carriage control to a sequential file with stream format and embedded
carriage control. This automatic conversion is performed during a file create
operation, and VMS RMS returns an alternate success code
(RMS$_CVT_STM) to indicate that the file format has been modified.

Note also that when aSTREAM-LF format file is retrieved from an Ultrix
node, VMS RMS automatically changes the record attribute from embedded
carriage control to implied carriage control.

9-28

File Operations in a Heterogeneous Network Environment
9.11 VMS to Ultrix Network Operations

To transfer files that cannot be directly copied, enter the following DCL
command:

$ CONVERT/FDL=STMLF.FDL input-file output-file

The FDL control file STMLF.FDL contains the following information:

FILE
ORGANIZATION sequential

RECORD
FORMAT Stream_LF
CARRIAGE_CONTROL none

The CONVERT command and associated FDL control file transform the input
file to stream format with embedded carriage control and then copy it to the
remote node according to the output file specification.

9.11.1.2 VMS RMS Interface
The following VMS RMS features, supported between two VMS nodes, are
not supported between a VMS node and an Ultrix node:

• VMS RMS service calls

$DELETE $DISPLAY $EXTEND $FIND

$FREE $RELEASE $RENAME $REWIND

$TRUNCATE $UPDATE

• RMS extended attribute blocks

Allocation XAB
Key Definition XAB
Summary XAB

• Significant fields and bit options of the FAB

ALQ (allocation quantity) field
DEQ (default extend quantity) field
CBT (contiguous-best-try) bit of FOP field

9.11.1.3 Fite Specifications
The general format of a file specification for naming a file on a remote Ultrix
operating system is as follows:

node::name

The following are the major differences in syntax between file specifications
on Ultrix and on VMS:

• No explicit device names are allowed. Instead, Ultrix has a concept of
special files.

• File names on Ultrix are case sensitive (uppercase or lowercase).

Because of these differences, most accesses to an Ultrix operating system
require a foreign file specification. Without the foreign file specification
syntax, the name is converted to uppercase by VMS, and is then unlikely to
match files on the Ultrix operating system. The VMS concepts of device and
directory do not match the Ultrix concept of path, nor does Ultrix support
separate file type or version fields. Therefore, VMS-related name processing
does not work with Ultrix file names.

File Operations in a Heterogeneous Network Environment
9.11 VMS to Ultrix Network Operations

9.11.2 DCL Considerations
Of the VMS DCL commands that you can use over the network, the following
are not supported between VMS and an Ultrix node:

• ANALYZE/RMS_FILE

• BACKUP

• OPEN/WRITE

• RENAME

9.11.2.1 COPY
The /ALLOCATION and /EXTENSION qualifiers to the COPY command are
not supported and are ignored if specified.

9.11.2.2 DIRECTORY
When you enter aDIRECTORY/FULL command to examine an Ultrix file,
the information displayed differs in the following respects from that displayed
for a VMS file:

• The file owner is displayed as [0,0] to indicate that this information is not
available.

• The file REVISION number is not shown and file REVISION date and
time information is not available from the Ultrix operating system.

9.12 VMS to MVS Network Operations
This section pertains to a VMS node communicating with an IBM MVS
operating system. In order to perform file operations, the MVS and VMS
operating systems must have the following DIGITAL products installed:

• DECnet/SNA VMS Data Transfer Facility Client (VMS/DTF) on the VMS
node

or

• DECnet/SNA VMS Data Transfer Facility Server (VMS/DTF) on the VMS
node

and

• DECnet/SNA MVS Data. Transfer Facility (MVS/DTF) on the MVS node

In addition, your DECnet network must contain aDECnet/SNA Gateway
node or a VMS node running the VMS/SNA product.

The following discussion focuses on file operations initiated from the VMS
node, to access remote files by means of the FAL on the MVS operating
system. The FAL is part of the MVS/DTF product.

The following sections provide a general overview about which file operations
are possible and which are not. For a more detailed discussion, refer to the
VMS/DTF and MVS/DTF documentation sets.

File Operations in a Heterogeneous Network Environment
9.12 VMS to MVS Network Operations

9.12.1 File System Constraints
The DECnet/SNA Data Transfer Facility (DTF) software makes MVS datasets
appear to the VMS operating system as remote RMS files that you can access
using RMS calls or utilities (such as COPY) that are layered upon RMS. The
underlying differences in the file systems used by MVS and VMS impose a
number of constraints on accessing MVS datasets. (Note that files on an IBM
operating system are called datasets.)

9.12.1.1 File Formats and Access Modes
Because of differences in file system design, the following types of file and
access method are not supported by VMS when communicating with an MVS
operating system:

• File organization and record format

Sequential Stream (STM)

Stream _CR (STMCR)

Stream_LF (STMLF)

Undefined (UDF)

Variable with fixed control (VFC). When creating a dataset
on the MVS operating system, you may specify VFC format
if you also specify the record attribute PRINT CARRIAGE_
CONTROL. When this dataset is subsequently opened
by RMS, it has record format VARIABLE and a record
attribute of CARRIAGE_RETURN CARRIAGE_CONTROL.
If this dataset is copied back to a VMS operating system,
the resultant VMS file has similar attributes; that is, the
FAB$C_VFC FAB$V_PRN options are transformed to
FAB$C_VAR and FAB$V_CR.

Relative

Indexed

• Record attributes

All formats

All formats

No carriage control. You must specify either FAB$V_CR,
FAB$V_FTN or FAB$V_PRN when creating a dataset on the MVS
operating system.

• Record access modes

Random access by relative record number
Random access by key value
Random access by record file address
Block I/O

MVS sequential files that reside on disk or tape are created using the
following access methods:

• BSAM (Basic Sequential Access Method)

• QSAM (Queued Sequential Access Method)

These MVS sequential files appear to VMS as RMS sequential files.
Partitioned Dataset (PDS) members also appear to VMS as RMS sequential
files. Datasets created using the VSAM access method are not supported by
Version 1.0 of the DECnet/SNA Data Transfer Facility.

9-31

File Operations in a Heterogeneous Network Environment
9.12 VMS to MVS Network Operations

Files that you cannot copy to or from the IBM operating system using the
DCL COPY command, because of the previously mentioned constraints, can
be copied using the DCL CONVERT command and a suitable FDL control
file.

The CONVERT command and associated FDL control file transform the input
file to a format supported by the remote MVS operating system by the DTF
software.

For record mode access, the only file organization in common between the
two systems is a sequential file.

9.12.1.2 VMS RMS Interface
The following VMS RMS features, supported between two VMS nodes, are
not supported between a VMS node and an MVS node:

• VMS RMS service calls

$DELETE $ENTER $EXTEND $FIND

$FLUSH $FREE $NXTVOL $READ

$RELEASE $REMOVE $RENAME $REWIND

$SPACE $TRUNCATE $UPDATE $WRITE

• RMS extended attribute blocks

Key Definition XAB
Protection XAB
Revision Date and Time XAB
Summary XAB

9.12.1.3 File Specifications
The general format of a file specification for naming a dataset on the remote
MVS operating system is as follows:

DTF-server-node"SNADTF"::"aaa.bbb.ccc.../qual 1:val 1 /qual2:val2..."

or

DTF-server-node"SNADTF"::"aaa.bbb.ccc...(ddd)/qual1:val 1 /qual2:val2..."

9.12.2 DCL Considerations
Most of the VMS DCL file manipulation commands that can be used over the
network can be used to access datasets on an MVS operating system. Any
commands that use RMS features, detailed previously as unsupported, do not
work, for example:

• BACKUP

• LIBRARIAN

• LINK

• RENAME

File Operations in a Heterogeneous Network Environment
9.13 VMS to VMS Network Operations (Version 5.0 to Previous Version)

9.13 VMS to VMS Network Operations (Version 5.0 to Previous Version)
This section pertains to file operations initiated on a VMS Version 5.0 node
running DECnet-VAX Version 5.0 where the remote system is a VMS node
running a previous release of DECnet-VAX.

The following restriction indicates a new feature not previously supported by
DECnet-VAX.

The following type of file is not supported by VMS when communicating
with a VMS node running a previous DECnet-VAX release:

• File organization and record format

Indexed With collating (COL) key type

With descending collating (DCOL) key type

A Area Routing Configuration

Phase IV DECnet supports area routing, which permits the configuration
of networks in which the nodes are grouped into areas. This appendix
presents recommendations and guidelines for configuring networks that use
area routing. It illustrates the guidelines with an example of the design of a
multiple-area network, and indicates the NCP commands required to build
the configuration database for this network. This appendix also recommends
a procedure for converting an existing network to a multiple-area network.
Section A.5 describes problems that can occur when you are configuring an
area-based network, and includes suggestions for solving these problems.
Section A.6 discusses area routing on the Ethernet.

Area routing concepts are described in detail in Section 2.4. Area routing
techniques enable configuration of a network consisting of a number of areas;
each area is a group of nodes that forms a subnetwork. DECnet supports
routing of packets within areas and a second level of routing between areas.
The router that performs routing within an area is called a level 1 router; the
router that performs routing to and from other areas as well as within its own
area is called a level 2 router (or area router).

Each level 1 router keeps information on the state of all nodes in its area, but
not on the state of nodes outside its area. It routes all packets addressed to
nodes outside its area to the nearest level 2 router. Each level 2 router keeps
information on the least-cost path to areas throughout the network, as well as
the state of the nodes in its own area. When a level 1 router receives a packet
destined f or a node in another area, it uses level 1 routing to send the packet
to the nearest level 2 router in its own area. The level 2 router forwards the
packet along the least-cost path to the nearest level 2 router outside its area.
The packet is transmitted along a level 2 path to the level 2 router in the
destination area; this level 2 router sends the packet by level 1 routers to the
destination node.

Thus, a basic reason for dividing a network into multiple areas is to reduce
the amount of routing traffic that occurs in a single-area network.

A.1 Area Routing Configuration Guidelines
Configuration of a network that consists of multiple areas is more complex
than configuration of a network that, by default, consists of a single area.
The design of a multiple-area network introduces a second, higher level of
routing that links the areas. Designing a network for area routing involves
awareness of certain network topological restrictions unique to area routing
configurations. The following area routing configuration guidelines are based
on these restrictions. The guidelines are intended to prevent problems such
as Loss of routing path, isolation of nodes, or incorrect routing of packets.
These potential problems are discussed in Section A.S.

Area Routing Configuration
A.1 Area Routing Configuration Guidelines

When you configure amultiple-area network, you should follow these
guidelines:

• Each node must belong in only one area. This restriction applies to all
nodes in the network, Phase III nodes as well as Phase IV nodes.
Phase III nodes must be logically associated with a single area even
though they are not assigned an area number by network management,
and must not have circuits outside the area.

• Only a level 2 router can establish a circuit with a node in another area,
thus enabling communication between the areas. A level 1 router cannot
have any circuits outside its own area.

• Within a network, the level 2 routers must form a subnetwork; that is,
they must be connected in such a way that they create a network of their
own. There must be a level 2 routing path between any pair of level 2
routers across the network. Level 1 routers do not forward level 2 routing
information.

• Treat each area as though it were a separate network. Each area must
be physically intact and capable of running on its own. Within the area,
there must be a level 2 path between any pair of level 2 routers.

• Provide enough redundancy within each area and between areas to
avoid having a single point of failure in the network. For redundancy
within an area, you could include more than one level 2 router and
provide for alternate paths between nodes. This redundancy prevents
loss of the routing path within the area or isolation of any one node. For
redundancy between areas, you could provide for alternate paths between
areas so that loss of a line does not disconnect any area from the rest of
the network. Complete redundancy may not be feasible, however, for
small networks.

• Place all Phase III nodes on the periphery in each area. Do not place a
Phase III node in a path between two Phase IV nodes. A Phase III node
cannot communicate directly with nodes in other areas or with nodes in
the same area that have addresses greater than 255.

• Do not link a Phase III node in one area with a node in another area.
Such a connection could lead to area leakage, a problem described in
Section A.5.2.2.

The recommended approach to designing amultiple-area network
configuration is to begin by designing the level 2 routers, area by area, into
a level 2 subnetwork. Then, in each area, add the level 1 routers. Finally,
add the end nodes required to complete each area. This design approach is
illustrated in the following section.

Area Routing Configuration
A.2 Designing aMultiple-Area Network

A.2 Designing aMultiple-Area Network
This section demonstrates the use of the configuration guidelines for
designing amultiple-area network. The goal of the design process is to
build a robust, redundant network that is not subject to a single point of
failure.

Figure A-1 shows the level 2 routers as a subnetwork of a multiple-area
network. For purposes of illustration, DMR lines are used to connect level 2
routers within each area and DMC lines to connect level 2 routers in different
areas. In each area, the level 2 routers are configured in pairs for redundancy
and connected by enough DMR lines so that the loss of one DMR line does
not prevent the flow of level 2 routing traffic through the area. Redundancy
between different areas is achieved by the way in which the DMC lines
connect level 2 routers in the different areas. If one of the DMC lines fails,
level 2 routing traffic can still reach each area by an alternate path. In area 9,
the redundant level 2 routers that form part of a VAXcluster are connected by
a CI line.

Figure A-2 shows the next stage of the design process: adding the level 1
routers and the end nodes to each area. The figure does not include all the
nodes that may be required to make the network complete. It illustrates only
a few typical uses of level 1 routers and end nodes, indicating the way in
which you could add such nodes to the level 2 subnetwork to complete the
network design.

In Figure A-2, in area 7, an end node and a level 1 router are attached
directly to the first Ethernet. VMS end nodes are connected to the
level 1 router by means of DDCMP asynchronous Lines. Another end node
is connected to a level 2 router attached to the second Ethernet (lower left)
in area 7. Because this end node is not on a routing path between level 2
routers, it could possibly be a Phase III end node. In area 9, two level 1
routers are added to the redundant level 2 routers in a VAXcluster.

The network design shown in Figure A-2 ensures a robust network not
vulnerable to a line or node failure that could isolate or bring down an area.
A fully redundant multiple-area network, such as that in Figure A-2, may not
be practical for smaller networks, however. Redundancy is a desirable design
goal, not a requirement, in a multiple-area network.

When you complete the design of a multiple-area network, begin network
configuration by configuring each area separately, as though it were a network
by itself. The following section shows an example of the NCP commands
required to configure area 7 of the network in Figure A-2. After you configure
all areas in the network and they are running and stable, connect the areas.

Area Routing Configuration
A.3 Sample Multiple-Area Network Configuration

Figure A-1 Level 2 Router Subnetwork of a Multiple-Area Network

AREA 7

DMC

DMC DMC

AREA 9

AREA 8

L2 Level 2 router

Ethernet

ZK-1995-84

A.3 Sample Multiple-Area Network Configuration
The example in this section illustrates how you can use NCP commands
to configure amultiple-area network. It lists the NCP commands required
to build the permanent database for one area of the large multiple-area
network shown in Figure A-2, and indicates how to complete the network
configuration.

This example builds a database for a network configuration of twelve nodes
in area 7, as depicted in Figure A-3. Area 7 is connected to areas 8 and 9.
The database being built is for node A. You would enter similar commands
to create the database for each of the other nodes in area 7, and each of the
nodes in areas 8 and 9.

Area Routing Configuration
A.3 Sample Multiple-Area Network Configuration

Figure A-2 Example of Multiple-Area Network Design

AREA 7

:.~-

DMC DMC

AREA 9 ~`

N1

L1

E

Level 2 router

Level 1 router

End node

Ethernet

ZK-1996-84

~'1

Area Routing Configuration
A.3 Sample Multiple-Area Network Configuration

Figure A-3 Area 7 of a Multiple-Area Network

..

DMC

~.}/
FF

}}.
..yy}}

~•
j:• •

- :: ~{} y
]

• ' M. . .

...
..~r?4!}t

. •: •: v•. .. ., ., ., . , .., .

... . ;: ~v . . .

~~ ~ ~ AREA 9 ~~~ .

L2

L1

E

Level 2 router

Level 1 router

End node

Ethernet

(n.n) Address

Z K-1997-84

l.J

Area Routing Configuration
A.3 Sample Multiple-Area Network Configuration

Define executor-specific parameters for local node A.
Note that the TYPE parameter for the executor node
def aults to either NONROUTING IV or ROUTING IV, depending
on whether an end node or full function key has been
installed. In this example, node A needs to be a level 2
router, so the TYPE parameter is set accordingly.

DEFINE EXECUTOR ADDRESS 7.1 -
BUFFER SIZE 576 -
STATE ON -
TYPE AREA -
DEFAULT PROXY BOTH

Define common node parameters for the local node. Be
sure to add the NETNONPRIV user to your system
authorization file by using the Authorize Utility.

DEFINE EXECUTOR NAME A -
NONPRIVILEGED -

USER NETNONPRIV -
PASSWORD NONPRIV -

Define the remaining nodes. Note that no def ault outbound
access control information is specified. This assumes that
the default access control information will be supplied by
each remote node when it receives an inbound connection, or
as a result of a proxy login on the target node.

DEFINE NODE B ADDRESS 7.2
DEFINE NODE C ADDRESS 7.3
DEFINE NODE D ADDRESS 7.4
DEFINE NODE E ADDRESS 7.5
DEFINE NODE F ADDRESS 7.6
DEFINE NODE G ADDRESS 7.7
DEFINE NODE H ADDRESS 7.8
DEFINE NODE I ADDRESS 7.9
DEFINE NODE J ADDRESS 7.10
DEFINE NODE K ADDRESS 7.11
DEFINE NODE L ADDRESS 7.12

If node L is a Phase III node, it would be necessary
to specify routing initialization passwords to
initialize this node. Using the number of the area in
which the Phase III node resides as part of the password
will avoid accidental connection to another area.
Define a receive password for node L as follows

DEFINE NODE L RECEIVE PASSWORD AREA7
In this case, on node L, the transmit password would be
set to match:

DEFINE NODE A TRANSMIT PASSWORD AREA? ! (on node L)

Note that although nodes M and N reside in different
areas, no special action is needed in defining them.
Continue defining nodes in other areas in this fashion.

DEFINE NODE M ADDRESS 8.3
DEFINE NODE N ADDRESS 9.42

Area Routing Configuration
A.3 Sample Multiple-Area Network Configuration

Set up the line and circuit for the Ethernet connected
to node A.

DEFINE LINE UNA-0 STATE ON
DEFINE CIRCUIT UNA-0 STATE ON

Set up the line and circuit for each DMR connected to
node A. Note that a DMR line is treated like a DMC line.

DEFINE LINE DMC-1 STATE ON
DEFINE CIRCUIT DMC-1 STATE ON
DEFINE LINE DMC-2 STATE ON
DEFINE CIRCUIT DMC-2 STATE ON

Set up the line and circuit for the DMC connected to
node A. Because the DMC leads to another area, you
may want to leave this circuit and line in the OFF state
while you are initially configuring your area, turning
them on only after the connections within your area
have been tested.

DEFINE LINE DMC-0 STATE ON
DEFINE CIRCUIT DMC-0 STATE ON

The object database does not need to be defined, since it
defaults to the standard list of objects known to VAX/VMS.

Define the transmitter-related logging parameters.

DEFINE LOGGING MONITOR KNOWN EVENTS

Define receiver-related logging parameters.

DEFINE LOGGING MONITOR STATE ON

A.4 Converting an Existing Network to a Multiple-Area Network
Converting an existing single-area network to a multiple-area network
requires careful planning. Because the network addresses of existing nodes
change, there may be a period during which some nodes are unreachable
while the conversion is under way. The following steps provide an approach
that can keep this disruption to a minimum:

1 Plan ahead. Completely define what the entire network topology will be
with multiple areas. Make sure the topology follows the guidelines listed
in Section A.1. Decide which nodes should be level 2 routers, level 1
routers, and end nodes.

2 If the new design requires some nodes to be moved, make the required
changes before you begin converting node addresses. (For example, the
redesign may involve reconnecting a Phase III node so that it is not in a
path between two Phase IV nodes.)

3 Create new node databases. Without modifying the existing permanent
node databases, create a new copy of the node database on each node in
the network. For DECnet—VAX nodes, you can do this by following these
steps:

a. Use the logical name NETNODE_REMOTE to point to the working
copy of the remote node file you are creating and use the logical name

A-8

Area Routing Configuration
A.4 Converting an Existing Network to a Multiple-Area Network

NETNODE _LOCAL to point to the working copy of the local node
file you are creating. These logical names will be translated when
NCP is reading the permanent database, and the default versions
of NETNODE_REMOTE.DAT and NETNODE_LOCAL.DAT in
SYS$SYSTEM will remain untouched. Set up this environment as
follows:

$ COPY SYS$COMMON: [SYSEXE]NETNODE_REMOTE.DAT -

_$ SYS$MANAGER:NEWNETNODE_REMOTE.DAT

$ COPY SYS$SPECIFIC: [SYSEXE]NETNODE_LOCAL.DAT -

_$ SYS$MANAGER:NEWNETNODE_LOCAL.DAT

$ ASSIGN/USER_MODE SYS$MANAGER:NEWNETNODE_REMOTE.DAT NETNODE_REMOTE

$ ASSIGN/USER_MODE SYS$MANAGER:NEWNETNODE_LOCAL.DAT NETNODE_LOCAL

$ RUN SYS$SYSTEM:NCP

NCP>

When the NCP prompt appears, enter the changes, which will be
made to the new database.

b. In your remote node file, change the addresses of existing nodes in
the network to reflect the new topology with areas. If you are adding
new nodes to the network (for example, if two existing separate
networks are to be merged), include their new addresses in your file
now. Make sure these changes are only made to the working copies
of the files, and not to SYS$SYSTEM:NETNODE _REMOTE.DAT
or SYS$SYSTEM:NETNODE _LOCAL.DAT. For now, the database
changes need to be made on only one node in the network. Also, to
modify the executor, enter the following commands:

NCP>PURGE EXECUTOR ADDRESS
NCP>DEFINE NODE local__node__name ADDRESS . .
NCP>DEFINE EXECUTOR ADDRESS . . .

c. When SYS$MANAGER:NEWNETNODE_REMOTE.DAT and
SYS$MANAGER:NEWNETNODE _LOCAL.DAT correctly reflect
the new topology, copy SYS$MANAGER:NEWNETNODE _
REMOTE.DAT to the SYS$MANAGER directory on each node
in the network. (Note that you should do this only for nodes
that are running the same version of VMS. If you have different
versions in the network, you should follow this conversion procedure
independently for each version.)

On each VMS node on the network, define the executor parameters
in NEWNETNODE_LOCAL.DAT, as follows:

$ COPY SYS$SPECIFIC: [SYSEXE]NETNODE_LOCAL.DAT -

_$ SYS$MANAGER:NEWNETNODE_LOCAL.DAT

$ ASSIGN/USER_MODE SYS$MANAGER:NEWNETNODE_REMOTE.DAT NETNODE_REMOTE

$ ASSIGN/USER_MODE SYS$MANAGER:NEWNETNODE_LOCAL.DAT NETNODE_LOCAL

$ RUN SYS$SYSTEM:NCP
NCP>DEFINE EXECUTOR ADDRESS . .

Using the NCP command DEFINE EXECUTOR, set up each local
node with the correct area and node address, correct executor type
(nonrouting IV, routing IV, or area), and other executor parameters.

Similarly, convert the node database on each non-VMS node in your
network using the tools available for each implementation.

Area Routing Configuration
A.4 Converting an Existing Network to a Multiple-Area Network

4 Shut down the network and bring it up again with the new database.

This is the only part of the conversion process that benefits from real-
time cooperation among the nodes in your network. If this level of
coordination is not feasible, then avoid using area number 1 for any area
in the revised network. Since the area number defaults to number 1 if
none is specified, it is possible that node address duplications may occur
during the transition period.

At approximately the same time, have each node in the network shut
down DECnet. You do not need to shut down the operating system.
Enter the following command:

NCP>SET EXECUTOR STATE SHUT

When all nodes have shut down DECnet (or after an agreed-upon interval
during which all nodes should have shut down DECnet), rename the new
copy of the database and restart the network at each node:

$ RENAME SYS$MANAGER:NEWNETNODE_REMOTE.DAT -

_$ SYS$COMMON: [SYSEXE]NETNODE_REMOTE.DAT

$ RENAME SYS$MANAGER:NEWNETNODE_LOCAL.DAT -

_$ SYS$SPECIFIC: [SYSEXE]NETNODE_LOCAL.DAT

$ @SYS$MANAGER:STARTNET

Note that if your node is on an Ethernet to which applications other
than DECnet (such as LAT) are connected, these applications should also
be shut down along with DECnet, and then restarted after DECnet is
restarted. This step is necessary because DECnet will be changing the
Ethernet physical address of your node to reflect the new executor node
address (see Section 3.3.4.1).

5 Use NCP to monitor the reconfigured network.

Depending on the size of the network and the care with which the conversion
was done, there may be a period of debugging the network to ensure that
all desired connections have been made. You can simplify debugging the
conversion if you can run each area separately for a while before connecting
them. You can do this by turning the circuits between level 2 routers in
different areas to the OFF state in the new copy of the database. When you
are confident that an area is operating to your satisfaction, you can turn on
the circuits joining this area to its neighboring areas. Of course, while the
interarea circuits are off, nodes in those areas are not accessible to nodes in
other areas. This circumstance may be viewed as a tradeoff to reduce the
number of variables during the conversion.

A.5 Problems in Configuring aMultiple-Area Network
The use of area routing techniques for configuring a network can lead to
certain problems that may not be readily identifiable. The following sections
describe some problems related to violation of the area routing configuration
guidelines presented in Section A.1, and explain how to solve these problems.

A-10

Area Routing Configuration
A.5 Problems in Configuring aMultiple-Area Network

A.5.1 Partitioned Area Problem
Improper configuration of the network topology for amultiple-area network
can result in a failure condition that can cause traffic to be incorrectly routed,
lost, or both. The problem is called area partitioning; it occurs when an area
is broken into separate parts as the result of the failure of one or more lines
or nodes. As a consequence of partitioning, a node may be isolated within an
area.

Figure A-4 illustrates an improper network design, in which an area is
vulnerable to partitioning if a single line should fail. All circuit costs in
Figure A-4 are equal to 1. Node C in area 3 attempts to communicate with
node D in area 4. If either link w or x fail, no problem arises because the
remaining path into area 4 provides a route to node D. If link y or z fail, the
level 2 router in area 3 will find the path to the level 2 router in area 4 on the
basis of the least-cost algorithm; the path would be from node C to node B to
node A. Because link y or z is down, however, it is not possible to get to the
destination node D.

When the initial connection is attempted, the network turns on the "return
to sender" bit and sends a message to the sender indicating the node is
unreachable. If the two nodes have already established a link before the
connection breaks, the sender will time out, because the network will not
route back traffic when it arrives at the destination area. Thus, a node in an
area is isolated because of a line failure.

Figure A-4 illustrates another problem. If link z is down and node D wants
to create a link to node B, the path that node D chooses is to route through
area 2 and then to node B. On the return trip, however, node B will attempt
to send the reply to node A, but link z is down, and therefore the reply will
not be delivered to node D.

The solution to the problem of area partitioning is to treat each area as a
separate network when configuring amultiple-area network. Designing an
area as a straight-line configuration, as in area 4 in Figure A-4, should be
avoided. Also, all the level 2 routers in a given area should be linked in a
level 2 routing path; a level 1 router should not be included on the same
path. In the configuration in Figure A-4, installing a link between nodes A
and D would provide for an alternate path between nodes in the same area.

A.5.2 Problems in Mixed Phase III/Phase IV Networks
In a Phase IV multiple-area network, Phase III nodes can be included
provided certain rules are followed: Phase III nodes in a multiple-area
network must not be in the routing path between Phase IV nodes and must
not be linked to nodes outside their own area. These limitations are based on
the following restrictions under which Phase III nodes operate in a Phase IV
network:

r""1

• DECnet-VAX Phase III nodes cannot have a node address greater than
255, and cannot directly address a node with a node address greater than
255. They also cannot route through traffic for nodes with addresses
greater than 255. (Note that this limit may vary for other DECnet Phase
III nodes, up to a maximum possible address of 1023.)

Area Routing Configuration
A.5 Problems in Configuring aMultiple-Area Network

Figure A-4 Partitioned Area Problem

L2

L1

Level 2 router

Level 1 router

AREA 2

AREA 3

• Phase III nodes cannot recognize area numbers in node addresses. A
Phase III node cannot assume an area address, directly address a node
outside its own area, or route through traffic for nodes in other areas.

• Phase III nodes cannot be connected directly to an Ethernet.

• Phase III nodes must use routing initialization passwords when they are
initialized in a Phase IV network (see Section A.5.2.2).

The node address is represented in different ways in Phases III and IV. In
Phase III a node address is represented by a single decimal number, such
as 99. For DECnet—VAX, the maximum node address of a Phase III node is
255. In Phase IV a node address is represented by a number in the following
format:

area-number. node-number

A-12

Area Routing Configuration
A.5 Problems in Configuring aMultiple-Area Network

where:

area-number

node-number

Is a maximum of 63.

Is a maximum of 1023.

If Phase IV node number 99 is in area 33, its node address is 33.99. (If a
Phase IV network is not configured into areas, node number 99, by default,
is in area number 1 and is represented in the database by the node address
1.99.)

Whenever a Phase III node is brought up in a Phase IV multiple-area
network, the physical link is initialized with the Phase III protocol and all
references to the area number are dropped. Routing in the network is affected
in different ways, depending on the direction in which traffic is flowing:

• If traffic is going from a Phase IV node to the Phase III node, the area
number is dropped from the node address. For example, when node
address 19.201 is passed to a Phase III node, the node address becomes
201.

• If traffic is going from a Phase III node to a Phase IV node, the area
number of the Phase IV node is added to the node address. For example,
if node address 143 is sent to Phase IV node 75.5, the node address 143
becomes 75.143.

• If a packet is routed through a Phase III node, the area number is dropped
from both the source and destination node addresses in the routing
header of the packet.

A.5.2.1 Problem of a Phase III Node in a Phase IV Path
An example of the problem caused by placing a Phase III node in the
routing path between two Phase IV nodes in the same area is illustrated
in Figure A-5.

No problem occurs if the entire logical link path is within a single area and
if none of the nodes have node numbers greater than 255. For example, for
node 4.88 to send a packet to node 4.45, the packet first goes to node 22 (the
Phase III node has no area number even though it is in area 4). Node 22
discards the area number from the destination node address 4.45, making it
address 45, and from the source node address 4.88, making it address 88. The
packet is then forwarded to node 4.45, which adds its own area number to
the destination address, making it 4.45, and to the source address 88, making
it 4.88.

During the return trip from node 4.45 to 4.88, the packet (with source address
4.45 and destination address 4.88) goes through node 22 and loses the
area numbers from the source and destination node addresses in its routing
header. When the packet arrives at its destination, node 4.88 adds its own
area number to the node addresses in the routing header, making the source
address 4.45 and the destination address 4.88.

A problem occurs, however, during communication between nodes in
different areas, when the routing path in one area includes a Phase III
node between two Phase IV nodes. In Figure A-5, if node 2.72 wants to
send a packet to node 4.45, the packet goes from node 2.72 to node 4.88
and then to node 22, which drops the area number from both the source and
destination addresses in the routing header, making the source address 72 and
the destination address 45. Node 22 then sends the packet to the destination,
node 4.45, which adds its area number to the source address, making it 4.72,
and to the destination address, making it 4.45. The problem arises during the

A-13

Area Routing Configuration
A.5 Problems in Configuring aMultiple-Area Network

return trip. Node 4.45 attempts to respond by sending a packet addressed to
destination node 4.72 instead of 2.72. If a node with address 4.72 does exist,
the return packet is incorrectly delivered to that node. Node 2.72 does not
receive a reply and eventually times out.

Figure A-5 Problem of Phase III Node In Phase IV Path

AREA 4

F~~ ~:~:~~:: . . : . . ~: ~~~:: AREA 2

From Source Node Address

To Destination Node Address

Level 2 router

ZK-1998-84

A.5.2.2 Area Leakage Problem
When a Phase III node is included in a Phase IV network that has been
divided into multiple areas, the Phase III node should not be connected to
a node outside its own area (as in Figure A-6). A Phase III node drops the
area number from a node address. Permitting a Phase III node to have a
link to another area causes a problem known as "area leakage." When the
Phase III node builds its routing database, it includes the node addresses of
adjacent nodes minus their area numbers. This incorrect information is then
transmitted (or "leaked") across the area boundaries. This problem occurs
whether the Phase IV nodes are level 1 or level 2 routers.

A-14

Area Routing Configuration
A.5 Problems in Configuring aMultiple-Area Network

Figure A-6 Area Leakage Problem

AREA 14 AREA 12

In Figure A-6, node R is a Phase III node with links to nodes in areas 12 and
14. Node R will build a routing database that contains the addresses of nodes
P, Q, and S, but the area numbers will be missing from the node addresses.
Node R will send routing updates to all adjacent nodes, without recognizing
area boundaries. Thus, node R will send routing information about nodes P
and Q (minus the correct area designation) to node S. Node S will assume
that nodes P and Q are nodes in its own area that have the addresses
12.6 and 12.7, respectively, instead of the correct addresses 14.6 and 14.7.
Similarly, node R will send the address of node S (minus its area number) to
nodes P and Q; nodes P and Q will assume that node S is in their own area
and has the address 14.5 rather than the correct address 12.5.

Routing initialization passwords are required when a Phase III node is
initialized in a Phase IV network (see Section 2.10.1 for a description of the
passwords). If no password is specified during routing initialization, aspecific
event class message will be generated, indicating that a password is required
or is mismatched. If the event logger is turned on, the network manager can
read these messages to learn which Phase III nodes have not been initialized.
The network manager can use this information to prevent Phase III nodes
from linking to nodes outside their own areas, or to identify which Phase
III nodes need to have the transmit password set. To prevent accidental
connection to a node in a wrong area, the number of the area in which the
node resides should be used in the password.

Note that this technique will not locate Phase III nodes improperly linked
to nodes in other areas if the Phase III nodes were configured using
routing initialization passwords before conversion to area routing, unless
the passwords were changed as recommended during the conversion.

A-15

Area Routing Configuration
A.6 Area Routing on an Ethernet

A.6 Area Routing on an Ethernet
Phase IV DECnet supports configuration of multiple areas on an Ethernet.
This configuration results in higher message overhead because a packet must
be routed through two level 2 routers rather than be delivered directly to the
destination node. Figure A-7 shows two areas sharing the same Ethernet
cable. When a node in area 5 wants to communicate with a node in area 7,
the packet is routed through the two level 2 routers. For example, if node 5.3
sends a packet to node 7.8, the packet follows this path:

• Node 5.3 to node 5.2 (source to its nearest level 2 router)

• Node 5.2 to node 7.4 (level 2 router to level 2 router)

• Node 7.4 to node 7.8 (level 2 router to destination)

Figure A-7 Area Routing on an Ethernet

AREA 7

Glossary

access control: Validating connect, login, or file-access requests to determine whether
they can be accepted. User name and password provide the most common means of
access control.

account name: A string that identifies a particular account used to accumulate data
on a job's resource use. This name is the user's accounting charge number, not the
user's UIC.

active component: A component whose operational state is other than OFF. You can
use the word ACTIVE with the SHOW or LIST command to display information
about active lines, circuits, nodes, and logging.

adjacent node: Anode removed from the local node by a single physical line.

alias node identifier: An optional node name or address, common to some or all
nodes in a VAXcluster, that permits the VAXcluster to be treated as a single node.

area: A group of nodes in a network that can run independently as a subnetwork.

area router: A level 2 router.

area routing: A technique for grouping the nodes in a network into areas for routing
purposes. Routing in a multiple-area network is hierarchical, with one level of
routing within an area (level 1 routing) and a second, higher level of routing
between areas (level 2 routing) .

asynchronous transmission: A mode of data transmission in which the time
intervals between transmitted characters may be of unequal length. Asynchronous
transmission most commonly occurs over terminal lines.

bandwidth: The range of frequencies assigned to a channel or system (that is, the
difference expressed in Hertz between the highest and lowest frequencies of a band).

bilateral closed user group ~BCUG): An optional packet switching data network
(PSDN) facility that restricts a pair of DTEs from communicating with each other.

broadcast addressing: A special type of multicast addressing, in which all nodes are
to receive a message.

broadcast circuit: A circuit on which multiple nodes are connected and on which a
message can be transmitted to multiple receivers.

carrier sense: A signal provided by the Physical layer to indicate that one or more
stations (nodes) are currently transmitting on the Ethernet channel.

Carrier Sense, Multiple Access with Collision Detect (CSMA/CD): A link
management procedure used by the Ethernet. Allows multiple stations to access the
broadcast channel at will, avoids contention by means of carrier sense and deference,
and resolves contention by means of collision detection and retransmission.

Glossary-1

Glossary

CCITT: Comite Consultatif International Telegraphique et Telephonique. An
international consultative committee that sets international communications usage
standards.

channel: A means of transmission. For VAX PSI, a logical path between a DTE and
a DCE over which data is transmitted. Each channel is identified by a unique
reference number called a logical channel number (LCN).

characteristics: A display type for the SHOW and LIST commands. It refers to static
information about a component that is kept in either the volatile or permanent
database. Such information may include parameters defined for that component by
either the SET or DEFINE command.

circuit: Virtual communication path between nodes or DTEs. Circuits operate over
physical lines and are the medium on which all I/O occurs. X.25 circuits are virtual
circuits.

closed user group (CUG): An optional PSDN facility that restricts two or more DTEs
in the same group from communicating with each other.

collision: Multiple transmissions overlapping in the physical channel, resulting in
garbled data and necessitating retransmission.

collision detect: A signal provided by the Physical layer to the Data Link layer to
indicate that one or more stations (nodes) are contending with the local station's
transmission.

command node: The node from which an NCP command is entered.

component: An element in the network that can be controlled and monitored.
Components include lines, circuits, nodes, modules, logging, and objects.
Components form part of the NCP command syntax.

configuration database: The combination of both the permanent and the volatile
databases. It consists of information about the local node, and all nodes, modules,
circuits, lines, and objects in the network.

congestion loss: A condition in which data packets are lost when Routing is unable
to buffer them.

connector node: Anode which serves as an X.25 gateway to permit VMS host nodes
to access a packet switching data network.

control station: The node at the controlling end of a multipoint circuit. The control
station controls the tributaries for that circuit.

cost: An integer value assigned to a circuit between two adjacent nodes. According to
the routing algorithm, packets are routed on paths with the lowest cost.

counters: Performance and error statistics kept for a component, such as lines or
nodes.

data circuit-terminating equipment (DCE): A CCITT X.25 term referring to the
network equipment that establishes, maintains and terminates a connection and
handles the signal conversion and coding between the data terminal equipment and
the network. The switching exchange of the network to which DTEs are connected.
(In non-X.25 usage, the term is synonymous with modem.)

Glossary-2

Glossary

data link mapping (DLM): Capability of using an X.25 virtual circuit as a DECnet data
link.

data terminal equipment (DTE): An X.25 term referring to the user's equipment
(computer or terminal) connected to a DCE on a packet switching data network for
the purpose of sending and receiving data.

datagram: A unit of data sent over the network that is handled independently of
all other units of data as far as the network is concerned. When a route header is
added, a datagram becomes a packet.

designated router: A routing node on the Ethernet selected to perform routing
services on behalf of end nodes.

disconnect abort: A method by which nontransparent tasks can deaccess a logical
link by means of a disconnect abort operation without deassigning the channel.
This form of disconnection indicates to the receiver that not all messages sent have
necessarily been received.

downline system load: A DECnet-VAX function that allows an unattended target
node to receive an operating system file image from another node.

downline task load: A function that allows a remote target node to receive an
RSX-11S task from another node.

end node: Anode that can receive packets addressed to it and send packets to other
nodes, but cannot route packets through from other nodes. Also called a nonrouting
node.

equal cost path splitting: The process by which a packet load is split for routing over
multiple equal cost paths to a destination node.

event: A network or system-specific occurrence for which the logging component
maintains a record.

event class: A particular classification of events. Generally, this classification follows
the DNA architectural layers; some layers may contain more than one class. Class
also includes the identification of system-specific events.

event type: A particular form of event that is unique within an event class.

executor node: The node at which an NCP command actually executes.

frame: A unit delimited by flags that includes a header, and is used by the link level
to exchange packets as well as control and error information between the DTE and
the DCE on a packet switching data network.

handshaking sequence: The exchange of logical link connection information between
two tasks. This exchange takes place to enable the successful completion of a logical
link connection.

hardware address: For an Ethernet device, the unique Ethernet physical address
associated with a particular Ethernet communications controller (usually in read-only
memory) by the manufacturer.

hop: The logical distance between two nodes. One hop is the distance from one node
to an adjacent node.

Glossary-3

Glossary

host node: For DECnet, a node that provides services for another node (for example,
the host node supplies program image files for a downline load).

For VAX PSI, a node that accesses a packet switching data network by means of an
X.25 multihost connector node.

inbound connection: Refers to the fact that a task receives logical link connection
requests.

interrupt: For VAX PSI, a packet, sent through a PSDN, that bypasses normal flow
control procedures used by data packets.

interrupt message: During nontransparent task-to-task communication, auser-
generated message sent outside the normal exchange of data messages. This usage
of the term interrupt is contrary to the normal usage, which means to designate a
software or hardware interrupt mechanism.

known component: The classification for one or more of the same components. This
classification includes all active and inactive occurrences of the component type. For
example, known nodes include all active and inactive nodes in the network.

level 1 router: Anode that can send and receive packets, and route packets from one
node to another, only within a single area.

level 2 router: Anode that can send and receive packets, and route packets from one
node to another, within its own area and between areas. Also known as an area
router.

line: The network management component that provides a distinct physical data path.

Link Access Protocol (LAP): A set of procedures used for link control. X.25 defines
two sets of procedures:

• LAP The DTE/DCE interface is defined as operating in two-way simultaneous
Asynchronous Response Mode (ARM) with the DTE and DCE containing a
Primary and Secondary function.

• LAPB The DTE/DCE interface is defined as operating in two-way
Asynchronous Balanced Mode (ABM).

In addition, LAPB with extended sequence numbering (that is, frame numbering
modulo 128) is known as LAPBE.

load assist agent: An image that provides additional data required to perform a
downline system load to a node in a Local Area VAXcluster.

local node: The node at which you are physically located.

logical channel: A logical link between a DTE and its DCE. The physical
communications line between a DTE and DCE is divided into a set of logical
channels.

logical channel number (LCN): A unique reference number that identifies a logical
channel. A DTE recognizes a virtual circuit by its associated LCN.

logical link: A carrier of a single stream of full-duplex traffic between two user-level
processes.

Glossary-4

Glossary

logging: The network management component that routes event data to a logging sink
such as a console or file.

logging console: A logging sink that is to receive ahuman-readable record of events.
Typically, a logging console is a terminal or auser-specified file.

logging file: A logging sink that is to receive amachine-readable record of events for
later retrieval. The logging file is user defined.

logging monitor: A logging sink that is to receive amachine-readable record of
events for possible real-time decision making. Typically, the logging monitor is a
user-defined program.

loop node: A local node that is associated with a particular line and is treated as if it
were a remote node. All traffic to the loop node is sent over the associated line.

maximum visits: The maximum number of nodes through which a packet can be
routed before reaching its destination.

module: A network management component.

multiaccess channel: A medium (for example, Ethernet) on which many transmitters
contend for access..

multicast addressing: An addressing mode in which a given message packet is
targeted to a group of logically related nodes.

multicast group address: An address assigned to a number of nodes on an Ethernet
and used to send a message to all nodes in the group in a single transmission.

m u Iti poi nt circuit: A circuit connecting two systems, with one of the systems (the
control station) controlling the circuit, and the other system serving as a tributary.

network connect block (NCB): For DECnet, auser-generated data structure used in a
nontransparent task to identify a remote task and optionally send user data in calls
to request, accept, or rej ect a logical link connection.

For VAX PSI, a block that contains the information necessary to set up an X.25
virtual circuit or to accept or rej ect a request to set up an X.25 virtual circuit.

network status notifications: Notifications that provide information about the
state of both logical and physical links over which two tasks communicate. A
nontransparent task can use this information to take appropriate action under
conditions such as third-party disconnections and a partner's exiting before I/O
completion.

network task: A nontransparent task that is able to process multiple inbound
connection requests; that is, it has declared a network name or object number.

node: A network management component that supports DECnet software.

node address: The required, unique, numeric identification of a specific node in the
network.

node name: An optional alphanumeric identification associated with a node address
in a strict one-to-one mapping. Anode name must contain at least one alphabetic
character.

Glossary-5

Glossary

nonprivileged: In DECnet-VAX terminology, means no privileges other than NETMBX
and TMPMBX. NETMBX is the minimal requirement for any network activity.

nonrouting node: An end node.

object: A DECnet-VAX process that receives a logical link request. It performs a
specific network function (a nonzero object such as FAL or NML), or is a user-
defined image for aspecial-purpose application (a zero-numbered object).

A VAX PSI management component that contains records to specify account
information for incoming calls and to specify a command procedure that is initiated
when the incoming call arrives.

outbound connection: Refers to the fact that a task sends logical link connection
requests.

out-of-order packet caching: The mechanism by which the Network Services
Protocol (NSP) maintains a buffer of data packets received out of order so that they
can be reassembled in the correct order before being forwarded to the destination
node.

packet: A unit of data to be routed from a source node to a destination node. For
VAX PSI, the unit of data switched through a PSDN; normally a user data field
accompanied by a header carrying destination and other information.

packet assembly/disassembly (PADS device: A device at a PSDN node that allows
access from an asynchronous terminal. The terminal connects to the PAD and the
PAD puts the terminal's input data into packets (assembles) and takes the terminal's
output data out of packets (disassembles).

packet switching: A data transmission process, using addressed packets, whereby a
channel is occupied only for the duration of transmission of the packet.

packet switching data network (PSDN: A set of equipment and interconnecting
links that provides a packet switching communications service to subscribers.

Packetnet System Interface (PSI): The name for the software product that allows
DIGITAL operating systems to participate in a packet switching environment.

parameter: An entry in the volatile or permanent database for a network management
component.

path: The route a packet takes from source to destination.

path cost: The sum of the circuit costs along a path between two nodes.

path length: The number of hops along a path between two nodes; that is, the number
of circuits along which a packet must travel to reach its destination.

permanent database: A file containing information about network management
components.

permanent virtual circuit (PVC: A permanent logical association between two DTEs,
which is analogous to a leased line. Packets are routed directly by the network from
one DTE to the other.

Glossary-6

Glossary

physical address: The unique address value associated with a given system on an
Ethernet circuit. An Ethernet physical address is defined to be distinct from all other
physical addresses on an Ethernet.

point-to-point circuit: A circuit that connects two nodes, operating over a single line.

polling: The activity that the control station performs with a multipoint circuit's
tributaries to grant the tributaries permission to transmit.

privileged: In DECnet-VAX terminology, means any user privileges in addition to
NETMBX and TMPMBX.

protocol: An agreed set of rules governing the operation of a communications link.

proxy login: The procedure that permits a remote user to access a specific account at
the local node, without supplying the user name and password.

reachable node: Anode to which the local node has a usable communications path.

remote DTE: Any DTE in a network other than the one at which the user is located.

remote node: To any one node in the network, any other network node.

router: Anode that can send and receive packets, and route packets from one node to
another.

routing: The network function that determines the path along which data travels to its
destination.

routing node: A router.

sink node: Anode where logging sink types, such as a file or console, are actually
located.

source task: The task that initiates a logical link connection request in a task-to-task
communication environment.

state: The functions that are currently valid for a given component. States include
line, circuit, local node, module, DTE, and logging.

status: A display type for the SHOW and LIST commands. Status refers to dynamic
information about a component that is kept in either the volatile or permanent
database.

substate: An intermediate circuit state that is displayed for a circuit state display by
means of the SHOW or LIST command.

summary: The default display type for the SHOW and LIST commands. A summary
includes the most useful information for a component, selected from the status and
characteristics information.

switched virtual circuit (SVC): A temporary logical association between two DTEs
connected to a PSDN, which is analogous to connection by a dialup line. An SVC is
set up only when there is data to transmit and is cleared when the data transfer is
complete.

Glossary-7

Glossary

synchronous disconnect: The disconnect that occurs when a nontransparent task
issues a call to terminate I/O operations over a logical link without deassigning the
channel. Thus, the task can use the channel for subsequent I/O operations with the
same or a different remote task.

synchronous transmission: A mode of data transmission in which the time of
occurrence of each signal representing a bit is related to a fixed time frame.

target node: The node that receives a memory image during a downline load; a node
that loops back a test message.

target task: The task that receives and processes a logical link connection request in a
task-to-task communication environment.

task: In this manual, refers to an image running in the context of a process.

task specifier: Information provided to DECnet-VAX software so that it can complete
a logical link connection to a remote task. This information includes the name of the
remote node on which the target task runs and the name of the task itself.

terminal emulator: A program that acts as a transparent interface between two ports,
making it appear as though a terminal on the local processor is directly connected to
a remote processor.

tributary: A physical termination on a multipoint circuit that is not a control station.

tributary address: A numeric address that the control station uses to poll a tributary.

upline dump: A DECnet-VAX function that allows an adjacent unattended node to
dump its memory to a file on a VMS operating system.

virtual circuit: An association between two nodes (or two DTEs connected to a PSDN)
whereby the two nodes (or DTEs) are able to interact as if a specific circuit were
dedicated to them throughout the transmission. When a virtual circuit is established,
a logical connection is established, with the actual physical circuits being allocated
according to route availability, overload conditions, and other factors.

vi rtua I term i na I : A pseudodevice that connects a process to a physical terminal device.
The virtual terminal can be disconnected from the physical terminal and reconnected
later.

volatile database: A memory image that contains information about network
management components.

window: A range of packets authorized for transmission across an X.25 DTE/DCE
interface. The lowest sequence number in the window is referred to as the lower
window edge (0 when the virtual circuit is just established). The packet send
sequence number of the first data packet not authorized to cross the interface is the
value of the upper window edge (that is, the lower window edge plus the window
size).

X.3: A CCITT recommendation that specifies the packet assembly/disassembly (PAD)
facility in a public data network.

X.25: A CCITT recommendation that specifies the interface between data terminal
equipment and data circuit-terminating equipment for equipment operating in the
packet mode on public data networks.

Glossary-8

Glossary

X.28: A CCITT recommendation that specifies the DTE/DCE interface for astart-stop
mode DTE accessing the packet assembly/disassembly (PAD) facility in a public
data network situated in the same country.

X.29: A CCITT recommendation that specifies procedures for the exchange of control
information and user data between apacket-mode DTE and a packet assembly
/disassembly (PAD) facility.

X.29 terminal: A terminal connected to a packet assembly/disassembly (PAD) facility.

Glossary-9

Index

A
Access

network • 1-24
remote file • 1-21, 8-1
remote task • 1-23

Access control • 8-12, 8-13
commands • 3-93
default • 2-40
default for inbound connection • 2-43
default nonprivileged • 1-26
default nonprivileged DECnet account• 2-41
default privileged • 1-26
for a network • 2-38
for an object• 2-33
for inbound connections• 2-41
for logical links• 2-40
for network applications• 1-25
for outbound connections• 2-40
for remote command execution • 2-43, 3-95
for remote file access • 1-24
for task-to-task communication • 1-24
for VAX PSI Access software • 3-87
LOGINOUT image • 2-40, 8-13
NML, privileges for•3-94
node level • 2-43, 3-95
nonprivileged string • 2-40
privileged string • 2-40
proxy login • 1-26, 2-39, 2-44, 3-96
routing initialization • 2-38
setting default information • 3-94
system level • 2-40, 3-94
use of NONPRIVILEGED parameter • 3-94
use of PRIVILEGE parameter • 3-94
user authorization file (UAF) • 8-13

Access module
See X.25

ACCESS parameter
for SET NODE command • 2-43, 3-95

Account
default nonprivileged DECnet • 1-26, 2-41
PSI.3-81

ACNT privilege • 5-2
ACP (ancillary control process) • 5-2, 6-1
ACTIVE

plural form of component name• 3-99

ACTIVE BASE parameter • 3-43
Active component • 3-99
ACTIVE INCREMENT parameter • 3-43
Address

area number • 2-2, 3-9, 3-14, 3-66
broadcast• 1-7
conversion of node address• 2-25, 3-66
DTE • 2-6
Ethernet hardware • 2-20, 3-13
Ethernet node • 3-13
Ethernet physical • 1-7, 2-20, 3-13
multicast• 1-7
node • 2-2, 2-25
Phase III node • A-12
Phase IV node • A-12

Address extension facility• 3-83
ADDRESS parameter • 3-4

for SET EXECUTOR command • 3-9, 3-66
for SET NODE command • 3-9

Adjacent node• 1-1
on Ethernet • 2-7

ALIAS MAXIMUM LINKS parameter • 3-73
Alias node

See Alias node identifier
Alias node address • 1-12, 2-4, 2-33, 3-1 1, 8-9
Alias node identifier • 1-12, 2-4, 2-33,

3-1 1 to 3-13, 8-9
enabling • 3-12
restrictions • 2-4, 8-9
setting • 3-12
specifying maximum logical links • 3-73
use with objects • 2-33, 3-78

Alias node name • 1-12, 2-4, 2-33, 3-1 1
ALL

word in component name • 3-2, 6-2
Ancillary control process

See ACP
Applications user

function • 1-3
Area • 1-2

default number • 2-2, 3-9
definition • 2-24
leakage • A-14
number • 2-2, 2-23, 2-25, 3-9, 3-66
number in Ethernet address • 3-14
partitioning • A-1 1
path control parameters • 3-71

Index-1

Index

Area leakage problem • A-14
AREA MAXIMUM COST parameter•3-71
AREA MAXIMUM HOPS parameter • 3-71
Area router

See Level 2 router
Area routing • 1-2, 2-22

advantages • 2-24
alternate paths • A-3
avoiding problems • A-10
concepts• 2-24
configuration guidelines • A-2
converting to multiple areas•A-8
design considerations • A-1
design redundancy • A-2
dropping area number • A-13
example of configuration procedure • A-4
leakage problem • A-2, A-14
limiting number of areas•3-67
on Ethernet • A-16
partitioned area problem • A-1 1
Phase III node problem • A-1 1
techniques • A-1

ASSISTANT PHYSICAL ADDRESS parameter •
7-12

ASTLM quota • 5-38
Asynchronous circuit

See Circuit
See DDCMP

Asynchronous connection
DDCMP • 1-9
dynamic • 1-5, 1-8, 1-9
dynamic line installation • 2-16, 5-1 1
line installation•5-8
line parameters•3-61
static • 1-5, 1-8, 1-9
static line installation • 2-15, 5-9

Asynchronous line
See DDCMP
See Line

Asynchronous terminal

See X.29 terminal
AUTHORIZE command•5-4
AUTOGEN facility• 5-36
AUTO prefix • 3-40

B
Babble timer•3-44
Base priority of circuit • 3-43

BCUG (bilateral closed user groups • 2-6, 3-33,
3-82

Bilateral closed user group

See BCUG
BIOLM quota • 5-38
Bootstrap

primary • 4-5, 4-17
ROM • 4-5

Broadcast address • 1-7, 3-15
Broadcast routing timer• 2-30
BROADCAST ROUTING TIMER parameter • 3-72
Buffer size

changing for executor• 3-21
decreasing • 3-21
for executor• 2-3
for line • 3-20, 3-57
increasing•3-21
requirements • 3-20
setting for executor • 3-9, 3-20

BUFFER SIZE parameter
for executor• 3-9, 3-20
for line•3-57

BYPASS privilege• 5-2
BYTLM quota•5-38

C
Call

destination of X.25 call•2-35
DLM incoming and outgoing•3-49
outgoing from DTE • 3-29

Call handler
server module • 2-35

CALL MASK parameter
for incoming X.25 calls•3-83

Call redirection facility • 3-84
CALL TIMER parameter•3-31
CALL VALUE parameter

for incoming X.25 calls • 3-83
Carrier Sense Multiple Access with Collision Detect

See CSMA/CD
Carrier sense on Ethernet• 1-7
CCITT recommendation • 1-3, 1-13
Central processing unit

See CPU
Channel • 1-5, 1-8, 8-12

assigning for logical link • 8-12, 8-21, 8-34
deassignment of • 8-15, 8-21
_NET: • 8-27

Index-2

Index

CHANNEL parameter
for PVC • 3-47

CHANNELS parameter
for DTE • 3-29

CHARACTERISTICS display type•3-99
Checkpointing RSX-1 1 S tasks • 4-24
CI (computer interconnect)

as DECnet line• 5-7
as VAXcluster connector • 1-1 1
as VAXcluster data link • 1-1 1, 2-27
cable • 1-1 1
circuit • 2-6
circuit device • 2-10
configuration • 1-5
controller • 2-10
driver • 2-10
end node•2-27
end node backup circuit• 2-28, 3-72
line • 2-13
line device• 2-20
node addressing • 3-36
router • 2-27

CI-750 device • 2-10, 2-13
CI-780 device • 2-10, 2-13
CIBCA device • 2-10
CIBCI device • 2-10
Circuit • 1-1, 1-20

asynchronous DDCMP devices • 2-8, 5-8
CI.2-6
commands• 3-34
cost • 2-29, 3-68
counters • 3-51
database • 3-1
DDCMP • 1-8, 2-6, 3-37
definition • 2-6
determining cost•3-68
device name • 3-35
DLM • 1-1, 2-12, 3-37, 3-48
dynamic asynchronous • 2-8
Ethernet • 1-7, 2-6, 3-36, 3-37
identification • 3-34, 3-36
loopback test• 7-6
multiaccess• 2-6
multipoint control • 2-6
multipoint tributary • 2-6
name• 2-7
parameters • 3-37
point-to-point • 2-6
polling • 3-42
service • 4-2
service operations • 3-40

Circuit (cont'd.)

setting base priority • 3-43
state • 2-7, 3-40
static asynchronous • 1-10
synchronous DDCMP devices • 2-8
timers • 3-41
types • 3-37
verification • 3-41
virtual • 1-1, 1-3, 1-7, 1-8
X.25.2-6, 2-12, 3-37, 3-47

Circuit-level loopback test • 7-1
Ethernet • 7-9

CLEAR EXECUTOR command • 3-19
CLEAR NODE command • 3-19, 7-3
CLEAR TIMER parameter•3-32
Closed user group

See CUG
Cluster alias node identifier

See Alias node identifier
CMKRNL privilege • 5-2
CNDRIVER• 5-3, 5-7
Code

system service status return • 8-21, 8-34
Collision detect

Ethernet• 1-7
Command

NCP command verbs • 3-3
NCP functions•3-3
remote execution of • 3-7
syntax • 3-4

Command node • 4-1
Command procedure

See also DCL command procedure
for object•3-79
identification • 3-79

Communication
task-to-task • 1-3, 1-21, 8-1

Component name
plural forms• 3-99

Components • 3-1
Computer interconnect

See CI
Configuration

automatic • 1-18
CI. 1-5
database

See Configuration database
end node • 2-24
Ethernet • 1-5
for area routing • A-1
guidelines for area routing • A-2

Index-3

Index

Configuration (cont'd.)

guidelines for system•5-35 to 5-42
multipoint • 1-5, 1-8
NETCONFIG.COM • 1-18, 5-4 to 5-7
network • 1-5, 5-1
of a DDCMP dynamic asynchronous network •

5-21
of a DDCMP multipoint network • 5-17
of a DDCMP point-to-point network • 5-15
of a DDCMP static asynchronous network •

5-19
of a DECnet—VAX node • 1-18
of a DLM (data link mapping) network• 5-25
of a multiple-area network • 1-2, A-3
of an Ethernet network • 5-23
of an X.25 multihost mode network • 5-30
of an X.25 multinetwork connection • 5-33
of an X.25 native mode network • 5-28
of a PSI DTE • 1-16, 1-18, 2-5
of a single-area network • 1-2
point-to-point • 1-5, 1-8
prerequisites • 5-1
procedure examples • 5-14 to 5-33
procedure for automatic • 5-4 to 5-7
required privileges • 5-2
routing considerations•2-21
sample Phase IV DECnet—VAX • 1-5
typical VAXcluster • 1-1 1
VAX PSI. 1-5, 5-1, 5-2

Configuration database • 2-1, 3-1, 5-4, 5-14
circuit entry•2-7
DECnet—VAX • 1-18, 3-1
line entry • 2-13
logging entry• 2-38
node entry•2-2, 3-6
VAX PSI. 1-18, 3-3
X.25 access module entry• 2-6
X.25 protocol module entry• 2-5
X.25 server module entry • 2-35

Configurator module
disabling surveillance•3-46
enabling surveillance•3-45
Ethernet • 1-20, 2-1 1, 3-45
NICONFIG • 1-16

CONNECT NODE command • 4-25
PHYSICAL ADDRESS parameter•4-25
SERVICE PASSWORD parameter•4-25
VIA parameter • 4-25

Connector node
See X.25

CONNECT VIA command•4-25

Control
of line traffic•3-57
of logical link activity• 2-31, 3-74
of tributaries • 3-42
station • 1-8, 2-9

Controller loopback test• 7-6, 7-8
Copying node database • 1-18, 2-3, 3-23, 3-27
COPY KNOWN NODES command • 3-23

FROM parameter • 3-23
TO qualifier • 3-24
USING qualifier•3-24
WITH CLEAR qualifier•3-24
WITH PURGE qualifier • 3-24

Cost
circuit•3-68
control for circuit•2-29
determining for circuit • 3-68
equal cost path splitting • 2-29, 3-70
for routing • 2-28

COST parameter
for circuit • 3-68

Counters
circuit • 3-51
line • 3-64
logging • 3-27
node • 3-27
X.25 protocol module • 3-34
zeroing • 3-27

COUNTERS display type • 3-99
Counter timer • 3-27
COUNTER TIMER parameter

for circuit•3-51
for executor • 3-27
for node • 3-27

CPU (central processing unit)
identification for downline load • 4-16
time requirements• 5-39

CSMA/CD • 1-7
CUG (closed user group) • 2-6, 3-33, 3-82

D
Database

circuit • 3-1
clearing or purging before copying node entries •

3-24
configuration

See Configuration database
copying node • 1-18, 2-3, 3-23, 3-27

Index-4

Index

Database (cont'd.)

DECnet-VAX • 1-18
line • 3-1
logging • 3-1
module • 3-1, 3-3
node • 3-1
object• 3-2, 3-3
permanent • 1-16, 3-2, 5-42
VAX PSI. 1-16, 3-3
volatile • 1-16, 3-2

Data circuit-terminating equipment
See DCE

Datagrams
Ethernet• 1-7

Data link control • 2-3, 3-20
Data link mapping

See DLM
Data network • 1-1
Data terminal equipment

See DTE
DCE (data circuit-terminating equipment) • 1-13
DCL command procedure • 8-4, 8-43

example for task-to-task operations • 8-43
for starting object• 8-43

DCL commands • 1-22
DDCMP (DIGITAL Data Communications Message

Protocol) • 1-5
asynchronous • 1-5, 1-8, 2-8, 2-14, 3-35,

5-8
asynchronous line • 1-5, 3-53
circuit • 2-6, 3-35, 3-37
configuration • 1-8
CONTROL line•3-53
DMC line• 3-53
dynamic asynchronous network configuration •

5-21
formula for determining maximum number of

messages • 3-60
line • 2-13, 3-55
MOP•4-18
multipoint • 1-8
multipoint network configuration • 5-17
multipoint tributary addressing • 3-35
POINT line • 3-53
point-to-point • 1-8
point-to-point addressing • 3-35
protocol • 1-8
static asynchronous network configuration •

5-19
synchronous • 1-5, 1-8, 2-8, 2-13
synchronous devices • 1-9

DDCMP (DIGITAL Data Communications Message
Protocol) (cont'd.)

synchronous line• 1-5
synchronous point-to-point network

configuration • 5-15
TRIBUTARY line•3-53

DEAD THRESHOLD parameter• 3-42
Dead timer•3-59
DEBNA communications controller • 2-20
DECnet Test Receiver

See DTR
DECnet Test Sender

See DTS
DECnet-VAX

configuration database • 1-15
configuration on a VMS operating system • 1-2
configuration prerequisites • 5-1
functions • 1-3
host services • 1-3, 1-15
over terminal lines• 5-7
over the CI.5-7
software • 1-16

DECnet-VAX license • 1-16, 2-24
end node kit • 1-16, 6-1
full function kit • 1-16, 6-1
registering the key • 1-16, 5-6, 6-1

DECSA (DIGITAL Ethernet Communications Server)
connection to remote console•4-24

DEFAULT ACCESS parameter• 2-43, 3-95
DEFAULT DATA parameter

for X.25 circuit • 3-30
Default DECnet account

See Default nonprivileged DECnet account
Default nonprivileged DECnet account

creation by NETCONFIG.COM • 5-1, 5-5
example • 5-1
use in access control • 2-41, 3-94

DEFAULT WINDOW parameter
for X.25 circuit•3-31

DEFINE NODE command•5-4
Delay timer• 3-59
DELUA

See UNA
DELUA communications controller • 2-20, 3-13
DEQNA

See QNA
DEQNA communications controller • 1-7, 2-20,

3-13
Designated router

See Ethernet
Destination

of X.25 call•2-35

Index-5

Index

DESTINATION qualifier• 3-81
DESVA communications controller • 2-20
DETACH privilege• 5-2
DEUNA

See UNA
DEUNA communications controller • 1-7, 2-20,

3-13
Device

CI circuit • 2-10
DDCMP circuit• 2-8
DDCMP line • 2-13
DMC1 1 • 1-9
DMF32. 1-9
DMP1 1 • 1-9
DMR11.1-9
DZ11.1-9
Ethernet circuit • 2-1 1
Ethernet line•2-20
X.25 line•2-20

DHQ 1 1 asynchronous device • 2-14
DHU 1 1 asynchronous device • 2-8, 2-14
DHV 1 1 asynchronous device • 2-8, 2-14
DIAGNOSE privilege• 5-2
Dialup line• 5-8
DIGITAL Data Communications Message Protocol

See DDCMP
DIGITAL Ethernet Communications Server

See DECSA
DIGITAL Network Architecture

See DNA
DIOLM quota • 5-38
Disconnect • 8-15

abort • 8-15, 8-33
synchronous • 8-15

DISCONNECT LINK command • 3-74
Display type

CHARACTERISTICS • 3-98
COUNTERS • 3-99
EVENTS • 3-99
STATUS • 3-99
SUMMARY • 3-99

DLM (data link mapping) • 1-1, 1-3, 1-13
circuit • 1-1, 2-7, 2-12, 3-37
incoming and outgoing calls•3-49
network configuration • 5-25
setting up a circuit for•3-51
use of CIRCUIT parameters•3-48
use of OWNER EXECUTOR circuit parameter •

3-48
use of subaddresses• 3-50

DMB32 asynchronous device • 2-13, 2-14, 2-20

DMC1 1 device• 1-9, 2-8, 2-13
DMF32 asynchronous device • 2-8, 2-14
DMF32 device • 1-9, 2-8, 2-13, 2-20
DMP1 1 device• 1-9, 2-8, 2-13
DMR1 1 device• 1-9, 2-8, 2-13
DMV 1 1 device • 2-8
DMZ32 asynchronous device • 2-8, 2-14
DNA (DIGITAL Network Architecture)

layers • 1-4
protocols • 1-4

Downline system load
default loader files • 4-16
definition • 4-1
load requirements • 4-7
load sequence•4-3
network example • 5-15
operator-initiated • 4-1, 4-7
over DDCMP circuit • 4-8
over Ethernet • 4-8
target-initiated • 4-2
unattended systems • 4-1

Downline task load • 4-20
DPV 1 1 device • 2-20
DST32 device • 2-20
DTE (data terminal equipment) • 1-13, 2-5

address • 2-6
bringing up•6-2
configuration • 1-16, 1-18, 2-6, 6-2
definition • 2-1
handling incoming calls•2-36
handling outgoing calls•3-29
subaddress•3-82

DTE parameter
for GROUP•3-34
for PVC•3-47

DTE qualifier
CHANNELS parameter • 3-29
LINE parameter•3-29
MAXIMUM CIRCUITS parameter • 3-30
SET MODULE X25-PROTOCOL command •

3-28
STATE parameter• 3-29

DTR (DECnet Test Receiver) • 2-32
DTS (DECnet Test Sender) • 2-32
DUMP ADDRESS parameter • 4-18
Dump assistance multicast address • 4-18
DUMP COUNT parameter • 4-18
DUMP FILE parameter • 4-18
Dumping unattended system memory • 4-17
DUP 1 1-DA device • 2-20
Duplex mode• 3-58

Index-6

Index

DUPLEX parameter • 3-58
DWBUA

Ethernet circuit device • 2-1 1
DYING BASE parameter • 3-43
DYING INCREMENT parameter • 3-43
DYING THRESHOLD parameter • 3-42
Dynamic allocation of map registers and device

drivers • 5-40
Dynamic asynchronous circuit• 2-8

use of VERIFICATION INBOUND parameter •
3-42, 3-93

Dynamic asynchronous connection • 1-5, 1-8
network configuration • 5-21
password • 2-39
reasons for failure • 5-13

Dynamic asynchronous line • 1-10, 2-16, 5-8
installing • 5-1 1
shutting down • 5-13
use of HANGUP parameter•3-61
use of LINE SPEED parameter • 3-61
use of SWITCH parameter•3-61

Dynamic switching
manual switching of line • 2-19
procedure for line • 2-16
setting up lines • 5-1 1

DYNSWITCH image • 2-18
installing • 5-1 1

DZ 1 1 asynchronous device • 2-8, 2-14
DZ 1 1 device • 1-9
DZ32 asynchronous device • 2-8, 2-14
DZQ 1 1 asynchronous device • 2-14
DZV 1 1 asynchronous device • 2-8, 2-14

E
End node • 1-1, 1-16

caching on Ethernet• 2-27
configuration • 2-24
DECnet-VAX license kit • 1-16, 6-1
definition • 2-22
Ethernet• 1-8, 2-26
non-Ethernet• 1-8
on VAXcluster • 1-12
Phase IV • 2-23
reverse path caching • 2-27

ENQLM quota • 5-38
Equal cost path splitting • 2-29, 3-70
Error messages

HLD • 4-23

Error messages (cont'd.)

loopback testing • 7-7
Error reporting • 8-21, 8-34

system service status • 8-21, 8-34
Ethernet• 1-5

address conversion • 3-66
address format • 3-13
adjacent node • 2-7
area number in address • 3-14
area routing on • A-16
broadcast address• 1-7, 2-3
broadcast routing timer • 3-72
cable • 1-7
carrier sense• 1-7
characteristics • 1-7
circuit • 1-5, 1-7, 2-6, 3-37
circuit device • 2-1 1
circuit identification • 3-36
circuit parameters • 3-44
configuration • 1-5
configurator module • 1-16, 1-20, 2-1 1, 3-45
datagrams • 1-7
data link for VAXcluster • 1-1 1
data rate • 1-7
designated router• 1-8, 2-22, 2-26, 3-44
determining physical address • 3-14
displaying physical address • 3-14
downline system load • 4-8
dump assistance multicast address • 4-18
end node • 1-8, 2-26, 3-44
end node caching • 2-27
hardware address • 2-20, 3-13, 3-62, 7-10
limiting end nodes• 3-67
limiting routers•3-67
line • 2-13
line device • 2-20
line parameters•3-62
line protocol • 3-54
multiaccess• 1-7
multicast address• 1-7, 2-3
multicast address definition • 3-15
multicast address values•3-15
network configuration • 5-23
node • 1-7
node address • 2-2, 3-13
node number in address • 3-14
non-DECnet application • A-10
packets • 1-7
physical address • 1-7, 2-2, 2-7, 2-20, 3-13,

4-8, 7-10
physical address definition • 3-15

Index-7

Index

Ethernet (cont'd.)

physical address values • 3-15
protocol • 1-5, 2-7
resetting physical address • 3-13
router• 1-8, 2-26, 3-44
service operations•3-40
specification • 1-5
topology • 1-7
upline memory dump • 4-18

Ethernet loopback test • 7-9
to remote system • 7-10
using UNA device • 7-10

Event
class• 3-89
definition • 2-37
identification of• 3-89
identifying location of • 3-90
identifying source for•3-90
list • 2-37
sink-related • 2-37
source-related • 2-37
type • 3-89

Event logger

See EVL
Event logging example•3-91
EVENTS display type•3-99
EVL (event logger) • 1-16, 2-32, 2-37
Executor node • 2-2, 4-1

commands•3-6

F
FAL (file access listener) • 1-16, 2-32
File

default access control • 1-25
logical name in specification • 1-27
manipulation over the network • 1-21
specification • 1-23
specification access control string • 1-25
specification over the network• 1-25

File access
over network • 1-3
remote • 1-21

File access listener
See FAL • 1-16

FILE parameter
for DECnet—VAX command procedure• 3-79

FILLM quota • 5-38
Frame control

X.25 lines•3-62

FROM parameter
COPY KNOWN NODES command • 3-23

G
Gateway node

See X.25
GROUP parameter

for X25-SERVER module•3-82
GROUP qualifier

for X25-PROTOCOL module • 3-34
use with DTE parameter• 3-34
use with NUMBER parameter•3-34
use with TYPE parameter•3-34

Guidelines
for system configuration • 5-35 to 5-42

H
HANGUP parameter • 3-61
Hardware address

Ethernet • 3-13
HARDWARE ADDRESS parameter • 4-1 1
Hardware loopback device• 7-6
Hello timer• 3-41
HELP parameter

use with LOOP CIRCUIT command • 7-12
Heterogeneous command terminal • 1-3, 1-22,

8-1
Heterogeneous network

remote file operations • 9-1
Higher-level language statements • 1-22
HLD (host loader) • 1-16, 2-32, 4-20

mapping table • 4-22
HLDTB$ • 4-22
HNODE$•4-22
HOLDBACK TIMER parameter•3-62
Hop• 2-28
Host identification

for downline task load • 4-12
Host loader

See HLD
Host node

for X.25 connection • 1-3, 3-85, 3-86
Host services

DECnet—VAX • 1-3, 1-15, 4-1
on Ethernet • 2-3

HTASK$ • 4-22

Index-8

Index

KMV 1 A interface • 2-20
KMY interface • 2-20
KNOWN

plural form of component name•3-99
IAS node • 9-2
Identification

of circuits • 3-34
of events • 3-89
of lines • 3-52
of network • 3-28
of node address • 2-2, 3-8
of node name • 2-2, 3-8
of objects • 3-77
of X.25 connector node • 3-87

IDENTIFICATION parameter
for local node • 3-10

INACTIVE BASE parameter • 3-43
INACTIVE INCREMENT parameter • 3-43
INACTIVE THRESHOLD parameter • 3-42
INACTIVITY TIMER parameter • 3-75
Inbound logical link connection • 1-25
INBOUND parameter • 3-96
Incoming calls to a DTE • 2-36
INCOMING PROXY parameter • 2-45, 3-96
INCOMING TIMER parameter • 3-74
Initialization

of DDCMP node • 1-8
of Ethernet node • 1-7
of Phase III node • 2-39, A-15

Installation
of network • 6-1
of VAX PSI.6-2

IRPCOUNT parameter • 5-36
ISO networks • 3-33

K
Key

DECnet—VAX license • 1-16, 2-24
KMS1 1

dumping microcode • 7-14
KMS1 1—B device • 2-20
KMS 1 P device • 2-20
KMS/KMV DUMP Analyzer

See PSIKDA
KMV1 1

dumping microcode • 7-14

L
LAN (local area network)

Ethernet • 1-5
LAPBE line

See X.25 line
LAPB line

See X.25 line
LCN (logical channel number) • 3-29
LEF (local event flag► state • 8-19
LES$ACP (LES ancillary control process) • 1-16
LES ancillary control process

See LES$ACP
Level 1 router • 1-2, 2-21, 2-23, A-1
Level 2 router • 1-2, 2-21, 2-23, A-1

subnetwork • A-3
LIB$ASN_WTH_MBX library routine • 8-14,

8-28
License

See DECnet—VAX license
Line • 1-1

asynchronous DDCMP devices • 2-14
buffers for DDCMP line• 3-58
buffer size • 3-57
CI.2-13
commands• 3-52
counters • 3-64
database • 3-1
DDCMP • 2-13
definition • 2-12
device name• 3-52
dialup• 5-8
dynamic asynchronous • 1-10, 2-16, 5-8
dynamic switching • 2-16
Ethernet • 2-13, 3-62
identification • 3-52
installing dynamic asynchronous • 5-1 1
installing static asynchronous • 5-9
LAPB • 3-54
LAPBE • 3-54
multipoint • 2-14
name • 2-13
operational state• 3-57
parameters • 3-55

Index-9

Index

Line (cont'd.)

point-to-point • 2-14
protocol • 3-53
state • 2-13
static asynchronous • 1-10, 2-15, 5-8
synchronous DDCMP devices • 2-13
terminal • 1-10
timers•3-58
types • 3-55
X.25.2-13

LINE parameter
for DTE • 3-29

LINE SPEED parameter • 3-61
Link

See Logical link
LIST command • 3-98
Load assist agent • 4-16
LOAD ASSIST AGENT parameter • 4-16
LOAD ASSIST PARAMETER parameter • 4-16
Load file identification

for downline load • 4-13
LOAD NODE command • 4-2, 4-10

HOST parameter • 4-13
LOAD ASSIST AGENT parameter • 4-16
LOAD ASSIST PARAMETER parameter • 4-16
MANAGEMENT FILE parameter • 4-14
overriding default parameters • 4-1 1
SECONDARY LOADER parameter • 4-16
SERVICE DEVICE parameter • 4-16
SERVICE PASSWORD parameter • 4-17
SOFTWARE IDENTIFICATION parameter • 4-16
SOFTWARE TYPE parameter • 4-16
TERTIARY LOADER parameter • 4-16

LOAD VIA command • 4-10
LOAD ASSIST AGENT parameter • 4-16
LOAD ASSIST PARAMETER parameter • 4-16
MANAGEMENT FILE parameter • 4-14
PHYSICAL ADDRESS parameter • 4-10, 4-17
SERVICE DEVICE parameter • 4-16

Local area network
See LAN

Local Area VAXcluster
downline load sequence originating from • 4-5

Local event flag state
See LEF state • 8-19

Local loopback test • 7-6
Local node • 1-15, 1-21, 2-2, 3-6

operational state • 3-22
restrictions• 6-3
setting address • 3-9
states • 6-3

Local-to-local loopback test • 7-5
Local-to-remote loopback test • 7-4
Logging • 1-20, 2-37

commands• 3-87
console • 2-38, 3-88
database • 3-1
file • 2-38, 3-88
monitor • 2-38, 3-88, 3-92
parameters • 3-87
sink• 2-38, 3-88
state • 3-91

Logical channel number

See LCN
Logical link • 1-1, 1-20, 8-8, 8-1 1, 8-12,

8-15, 8-19
aborting • 8-1 1, 8-33
access control information • 1-25
assigning channel for • 8-19, 8-34
commands• 3-73
completing connection of • 8-12, 8-19, 8-31,

8-37
control • 2-30
controlling activity • 3-74
default access control information • 1-26
definition • 2-30
disconnecting • 2-30, 3-74, 8-1 1, 8-15,

8-33, 8-40
handshaking sequence • 8-12
inactivity timer• 2-31
inbound • 1-25, 3-73
incoming timer • 2-31
maximum number • 2-30, 3-73
outbound • 1-25, 3-73
outgoing timer• 2-31
parameters • 2-30
protocol operation • 2-31
protocol parameters • 3-74
rejecting a request• 8-38
requests • 8-8, 8-12, 8-13, 8-19, 8-29,

8-31, 8-35
retransmission delay• 2-31
retransmission time • 2-31
SYS$NET • 8-13
terminating • 8-1 1, 8-15, 8-21, 8-25, 8-34
timers• 3-74

Logical name
as device name • 1-27
as node name • 1-27
in process logical name table • 1-27
translation • 1-27
use in network application • 1-27

Index-10

Index

LOGINOUT image • 2-40, 2-41, 8-13, 8-31
Loopback

assistance • 7-12
connector• 7-6

Loopback mirror
See MIRROR

Loopback test
circuit• 7-6
circuit-level • 7-1
controller• 7-6, 7-8
local node• 7-6
local-to-local • 7-5
local-to-remote • 7-4
node-level • 7-1
over Ethernet circuit• 7-9
software • 7-6, 7-7
to a remote node • 7-2
using a loop node name • 7-3
X.25 line-level • 7-13

LOOP CIRCUIT command • 7-7
ASSISTANT NODE parameter • 7-12
ASSISTANT PHYSICAL ADDRESS parameter•

7-12
HELP parameter • 7-12
NODE parameter • 7-1 1
PHYSICAL ADDRESS parameter • 7-10

LOOP EXECUTOR command • 7-6
LOOP LINE command

COUNT parameter • 7-13
LENGTH parameter • 7-13
WITH parameter• 7-14

LOOP NODE command • 7-2
CIRCUIT parameter • 7-3

Loop node name• 7-3
LRPCOUNT parameter• 5-36
LRPSIZE parameter• 5-36

M
MACRO programs

in network application • 1-22
Mailbox • 8-9, 8-27, 8-28

creation of using SYS$CREMBX • 8-28
message format• 8-28
system mailbox messages• 8-29

MAIL object • 2-4, 2-32, 2-33, 3-78
Maintenance operation module process

See MOM process

Maintenance operation protocol
See MOP

Maintenance operations over the network • 4-1
Management file•4-3
MANAGEMENT FILE parameter • 4-14
MAXIMUM ADDRESS parameter • 3-9
MAXIMUM AREA parameter • 3-67
MAXIMUM BLOCK parameter

for X.25 line • 3-63
MAXIMUM BROADCAST NONROUTERS

parameter
for Ethernet circuits • 3-67

MAXIMUM BROADCAST ROUTERS parameter
for Ethernet circuits • 3-67

Maximum buffers
for executor• 3-22

MAXIMUM BUFFERS parameter•3-22, 3-43
MAXIMUM CIRCUITS parameter

for DTE • 3-30
for executor node • 3-22
for X.25 server module • 3-85

MAXIMUM CLEARS parameter • 3-32
MAXIMUM COST parameter • 3-70
MAXIMUM DATA parameter

for PVC • 3-48
for X.25 lines•3-62
for X.25 virtual circuit•3-30

MAXIMUM HOPS parameter • 3-70
MAXIMUM LINKS parameter • 3-73
MAXIMUM PATH SPLITS parameter • 3-70
MAXIMUM RECALLS parameter•3-49
MAXIMUM RESETS parameter • 3-32
MAXIMUM RESTARTS parameter•3-33
MAXIMUM RETRANSMITS parameter • 3-62
MAXIMUM ROUTERS parameter•3-45

for an Ethernet circuit•3-67
MAXIMUM TRANSMITS parameter • 3-44
Maximum visits • 2-29
MAXIMUM VISITS parameter • 3-70
MAXIMUM WINDOW parameter

for PVC • 3-48
for SVC • 3-31
for X.25 line•3-63

Memory pool • 5-36
Memory requirements

normal • 5-36
worst-case • 5-38

Message • 8-8, 8-9, 8-14, 8-23, 8-24
data • 8-14
exchanging • 8-14, 8-20, 8-33
interrupt • 8-8, 8-9, 8-33

Index-11

Index

Message (cont'd.)

mailbox • 8-9, 8-14
network status • 8-9
optional user data • 8-8, 8-9, 8-12, 8-25

Microcode • 1-9
dumping KMS 1 1 •7-14
dumping KMV 1 1 •7-14

MICROCODE DUMP parameter • 7-14
MIRROR (loopback mirror) • 1-16, 2-32, 7-2
Mixed Phase III/Phase IV network • A-1 1
Modem • 5-9, 7-6
Module • 1-20

database • 3-1
Ethernet configurator • 1-20, 2-1 1, 3-45
X.25 access • 1-20, 2-37, 3-86
X.25 protocol • 1-20, 3-28
X.25 server • 1-20, 2-35, 3-81
X.25 trace • 1-20
X.29 server • 1-20, 2-35, 3-81

MOM (maintenance operation module) process •
4-1, 4-2

Monitor Utility (MONITOR) • 5-38
MOP (maintenance operation protocol) • 4-1,

4-18
error recovery • 4-7
request memory dump message • 4-18

MS-DOS node • 9-24
Multiaccess

circuit • 2-6
Ethernet • 1-7

Multicast address• 1-7
broadcast • 3-15
dump assistance • 4-18
Ethernet • 3-15
group • 3-15

Multihost connector node
See X.25

Multinetwork configuration • 5-33
Multiple-area network • 1-2

conversion to • A-8
design of• A-3
example of configuration • A-4
example of design • A-3

Multiple inbound connects• 8-8, 8-32, 8-41
Multipoint

circuit • 2-9
configuration • 1-5, 1-8, 5-17
control circuit• 2-6
control station • 2-9
line • 2-14
polling • 2-9
tributary • 2-9

Multipoint (cont'd.)

tributary address•2-9, 3-35
tributary circuit• 2-6

MVS node• 9-30

N
NAME parameter

identifying logging device• 3-88
SET NODE command • 3-9

NCB (network connect block) • 3-77, 8-12, 8-29
destination descriptor• 8-31
for incoming X.25 call • 2-36

NCP (Network Control Program) • 1-16
command functions • 3-3
commands • 1-15
command syntax•3-4
command words•3-3
definition • 3-3
invalid grouping error message • 3-19
LIST command • 3-98
SHOW command • 3-98
specifying plural components • 3-4, 3-99
tailoring the configuration database• 5-7
TELL prefix • 3-7
users • 1-15
using commands • 3-1

_NET: • 8-27, 8-34
NETACP (network ancillary control program) •

1-16, 4-2, 5-39
NETCONFIG.COM • 1-18, 3-2, 5-4 to 5-7

creation of default nonprivileged DECnet
account • 5-1

supplying node address • 5-5
NETDRIVER (network driver) • 1-16, 5-39
NETMBX privilege • 2-41, 5-2
NETNODE_LOCAL.DAT • A-8
NETNODE _REMOTE. DAT • A-8
NETPROXY.DAT • 2-45
NETSERVER$TIMEOUT • 2-33, 8-12
NETSERVER (network server process) • 2-33,

8-12
timeouts • 2-33, 8-12

NETSERVER.LOG • 4-23
NETUAF.DAT • 2-40
Network

access control • 2-38
access levels • 1-22
bringing up • 6-1
configuration • 1-5, 5-1

Index-12

Index

Network (cont'd.)

conversion to multiple-area network • A-8
CPU time requirements• 5-39
decentralized • 1-2
displaying • 8-1
example • 1-19
identification • 3-28, 3-64
ISO.3-33
limiting number of areas•3-67
monitoring • 3-98
multinetwork • 5-33
multinode• 1-2
multiple-area • 1-2
multiple-area configuration • A-3
normal memory requirements• 5-36
object • 3-2
passwords • 2-42
restrictions on mixed • 2-23, A-1 1
security • 2-42
shutting down • 6-3
terminal • 3-88
testing • 7-1
topology • 1-19
user interface to • 1-21
user operations• 1-21, 8-1
worst-case memory requirements • 5-38

Network ancillary control program
See NETACP

Network configuration procedure • 5-14 to 5-33
Network connect block

See NCB
Network Control Program

See NCP
Network driver

See NETDRIVER
Network Information and Control Exchange

See NICE
Network interface

on VMS operating system • 1-2
Network management

functions • 1-3
responsibilities • 1-15

Network management listener
See NML

Network name
declaring • 8-31, 8-41

Network process failures
potential causes • 2-34

NETWORK qualifier
for X.25 access module•3-86

Network server process
See NETSERVER

Network Services Protocol
See NSP

Network task
declaring • 8-8, 8-14, 8-31

NICE (Network Information and Control Exchange) •
3-3

NICONFIG (Ethernet Configurator) • 1-16
NML (network management listener) • 1-16,

2-32, 4-2, 6-1
access control • 3-94

Node • 1-1, 1-20, 3-7
address • 2-2, 2-25, 3-8, 3-66, A-12
address conversion • 3-66
addressing CI.3-36
adjacent• 1-1, 2-22
alias node identifier

See Alias node identifier
area number • 2-2
automatic configuration • 5-4
bringing up DECnet-VAX node • 6-1
changing local address • 3-1 1
checking type • 1-10, 2-47, 3-96
clearing or purging database before copying •

3-24
commands• 3-6
configuring for DECnet-VAX • 1-18
conversion of Phase IV address• 2-25
copying database • 1-18, 2-3, 3-23
copying database using DCL COPY command •

3-27
counters • 3-27
database • 3-1
default access account • 1-26
definition • 2-1
displaying network • 8-1
display of type• 3-66
end node • 1-1, 2-22
Ethernet address • 2-2, 3-13
executor• 2-2, 3-6
identification • 2-2, 2-25, 3-8
initialization request • 3-42
local node • 1-15, 1-21, 2-2, 3-6
logical name in file specification • 1-27
name • 2-2, 3-8
non-Ethernet • 1-8
nonrouting • 2-22
number • 2-2, 2-25, 3-9
number in Ethernet address • 3-14
parameters • 2-3, 3-16

Index-13

Index

Node (cont'd.)

phases• 2-22
reachable•2-28
remote node • 1-15, 1-21, 2-2, 3-6, 3-42
removing remote name and address • 3-1 1
routing • 1-1, 2-21, 2-22
shutting down DECnet-VAX•6-3
specification access control string • 1-25
specification string for • 1-25
state • 2-3, 3-22
type • 2-22, 3-65
X.25 connector • 1-3
X.25 host • 1-3

Node database
copying • 1-18, 2-3, 3-27

Node-level access control • 2-43
Node-level loopback test • 7-1

logical link operation • 7-1
over specific circuit • 7-1

NODE parameter• 7-9
for X.25 host node•3-85
identifying X.25 connector • 3-87

NODRIVER • 2-15, 2-16, 5-3, 5-7
Nonpaged dynamic memory pool • 5-36
Nonprivileged access control string • 2-40
Nonrouting node

See End node
Nontransparent

communication • 1-23
user network operations • 1-21

Nonzero object• 2-32
NPAGEDYN parameter• 5-36
NSP (Network Services Protocol) • 2-29, 2-31

message retransmission • 2-31, 3-75
receive buffers • 3-20

NUMBER parameter
for DECnet objects • 3-77
for DLM circuit • 3-49
for GROUP•3-34

0
Object• 1-20

access control • 2-33
addressing • 2-32
command procedure for DECnet-VAX • 2-32,

3-79
command procedure for PSI.2-35
commands•3-76
database • 3-2

Object (cont'd.)

DECnet-VAX • 2-32
definition • 2-31
identification • 3-77, 3-80
name • 2-31, 3-7 7
network • 2-31, 3-2
nonzero • 2-32, 3-77
number • 8-31, 8-41
parameters• 3-76
proxy login access • 2-46
PSI account information • 2-35
TASK•2-32, 3-77
type • 2-31, 8-12
type number • 2-32, 3-77
user-defined • 2-31
use with alias node identifier• 2-33, 3-78
VAX PSI.2-31, 2-35, 3-80
zero-numbered • 2-32, 3-77

OBJECT parameter • 3-85
OPCOM (Operator Communication Facility) • 2-38,

3-88, 6-3
Operational state

of circuit • 3-40
of lines • 3-57

Operator Communication Facility
See OPCOM

Operator-initiated downline load • 4-1, 4-7
OPER privilege • 5-2
Outbound logical link connection • 1-25
Outgoing call

from DTE • 3-29
OUTGOING PROXY parameter • 2-45, 3-96
OUTGOING TIMER parameter•3-74
Overlaying RSX-1 1 S tasks • 4-24
OWNER EXECUTOR parameter

for DLM circuit• 3-48

P
Packet assembly/disassembly facility

See PAD
Packet size parameters • 3-30
Packet switching data network

See PSDN
PAD (packet assembly/disassembly facility) • 1-3,

3-83
Partitioned area problem • A-1 1

example of • A-1 1

Index-14

Index

Password
for dynamic connection • 2-39, 2-47
receive • 2-39, 3-93
routing initialization • 1-10, 2-23, 2-39, 3-93,

A-15
transmit • 2-39, 3-93

Path • 2-28
Path control parameters • 3-69

for areas • 3-71
PATH SPLIT POLICY parameter • 3-71
Permanent database • 1-16, 3-2, 5-42

considerations• 5-42
copying node entries • 3-24
copying using DCL COPY command • 3-27

Permanent virtual circuit
See PVC

Phase III node • 2-22
in Phase IV network • A-1 1
restrictions • A-1 1

Phase II node • 2-22
Phase IV

end node • 2-23
node • 2-22
node address• 2-25
router • 2-23

PHONE object• 2-4, 2-32, 2-33, 3-78
Physical address

Ethernet • 1-7, 3-13, 3-15
PHYSICAL ADDRESS parameter

for LOOP CIRCUIT command • 7-9
for TRIGGER command • 4-8

Pipeline quota • 2-30, 3-76
PIPELINE QUOTA parameter• 3-76
Point-to-point

circuit • 2-6
configuration • 1-5, 1-8, 5-15
DDCMP addressing • 3-35
line • 2-14
security for connection • 2-47, 3-93

Polling • 1-8, 2-9
POLLING STATE parameter • 3-43
P/OS node • 9-5
Primary loader•4-2
PRIORITY parameter•3-84
Privilege

ACNT• 5-2
BYPASS• 5-2
CMKRNL• 5-2
DETACH • 5-2
DIAGNOSE•5-2
for access control • 2-40

Privilege (cont'd.)

for network operations• 5-2
NETMBX • 2-41, 5-2
OPER• 5-2
required for NCP commands • 2-42
SECURITY • 5-2
SYSNAM • 5-2
SYSPRV • 5-2
TMPMBX• 2-41, 5-2
to configure network • 5-2
to issue CLEAR ALL or PURGE command • 2-42
to issue SET ALL or DEFINE command • 2-42
to modify permanent database • 2-42
to modify volatile database • 2-42
to start the network • 2-42

Program load request • 4-2
over Ethernet • 4-3

Programming language
in network application • 1-22
selecting for network operation • 1-23

Protocol module
See X.25

PROTOCOL parameter • 3-53
Protocols • 1-4
Proxy

access • 2-44
access display for executor • 3-97
access display for object• 3-98
access file specification • 3-97
account• 2-44
login • 2-44

Proxy login
access control • 1-26, 2-44
access control commands • 3-96
account • 2-44
control • 2-45
enabling access • 2-45
INCOMING PROXY parameter• 2-45
NETPROXY.DAT • 2-45
OUTGOING PROXY parameter • 2-45
PROXY parameter • 2-46

PROXY parameter
for SET OBJECT command • 2-46, 3-97

PSDN (packet switching data network) • 1-1, 1-3,
1-5, 1-13, 2-5

identification • 3-86
installation • 6-2

PSIKDA (KMS/KMV Dump Analyzer) • 7-14
PURGE EXECUTOR command • 3-19
PVC (permanent virtual circuit) • 1-13, 2-7, 2-12

parameters • 3-47

Index-15

Index

Q
QNA

Ethernet line device • 2-20
Quota

pipeline • 2-30, 3-76

R
RCF (remote console facility)

error messages•4-25
invoking • 4-25

Reachable node• 2-28
RECALL TIMER parameter • 3-49
Receive buffers • 3-20
RECEIVE BUFFERS parameter

for DDCMP line • 3-58
for X.25 line•3-64

Receive password • 2-39
Remote command execution • 3-7
Remote console connection •4-24
Remote console facility

See RCF
Remote file access • 1-21, 8-1
Remote file operations

general DECnet—VAX restrictions • 9-1
heterogeneous network • 9-1
VMS to RT-11 •9-14
VMS to IAS•9-2
VMS to MS—DOS • 9-24
VMS to MVS • 9-30
VMS to P/OS • 9-5
VMS to RSTS/E • 9-7
VMS to RSX (using FCS-based FAL) • 9-12
VMS to RSX (using RMS-based FAL) • 9-10
VMS to TOPS-10.9-18
VMS to TOPS-20.9-21
VMS to Ultrix • 9-27
VMS to VMS

Version 5.0 to previous version • 9-33
Remote node • 1-15, 1-21, 2-2, 3-6

copying database • 2-3, 3-23
loopback test • 7-2
setting name and address • 3-9

RESET TIMER parameter • 3-32
Responsibilities of system manager • 1-15
RESTART TIMER parameter•3-33
Retransmit timer • 3-59

Retransmit timer (cont'd.)

formula for• 3-59
Reverse path caching • 2-27
RMS calls• 1-22
Router• 1-1, 1-16, 3-44, 6-1

area • 1-2, 2-23
definition • 2-21
designated • 1-8, 2-22, 2-26
Ethernet • 1-8, 2-26
level 1. 1-2, 2-21, 2-23, A-1
level 2. 1-2, 2-21, 2-23, A-1
on VAXcluster • 1-12
Phase IV • 2-23
redundant level 2 routers • A-3

ROUTER PRIORITY parameter • 3-44
Route-through control • 3-70
Routing • 2-21

area • 1-2
broadcast message timer• 2-30
commands•3-65
concepts • 2-28
configuration considerations • 2-21
control parameters • 3-68
cost • 2-28
definition • 1-1
equal cost path splitting • 2-29, 3-70
hop • 2-28
initialization passwords• 2-23, 2-39, 2-47,

3-93, A-15
maximum visits • 2-29
message • 2-30, 3-72
message timer• 2-30
parameters • 2-28
path • 2-28
path control parameters • 3-69
path cost • 2-28
path length • 2-28
reachable node • 2-28
route-through control parameters • 3-70
segmented message• 2-30
setting configuration limits• 3-66
timer • 3-72
timing of messages • 2-30
verification • 3-41

Routing initialization password • 1-10
Routing node • 2-21

See Router
Routing timer• 2-30
RSTS/E node• 9-7
RSX-1 1 S

checkpointing tasks•4-24

Index-16

Index

RSX-1 1 S (cont'd.)

downline load of system • 4-1
NETGEN procedure • 4-20
overlaying tasks • 4-24
task load • 4-20

RSX node • 9-10, 9-12
RT-1 1 node • 9-14

S
Satellite Loader

See SLD
Satellite transmission control • 3-60
Scheduling timer•3-59
Secondary loader • 4-5, 4-12, 4-13
SECONDARY LOADER parameter • 4-16
Security

for dynamic asynchronous connection • 1-10
for point-to-point connection • 2-47, 3-93
protecting network configuration files • 2-42

SECURITY privilege• 5-2
SEGMENT BUFFER SIZE parameter

for executor• 3-21
SENDING ADDRESS parameter

for DTE • 3-82
Server module

See X25-SERVER module and X29-SERVER
module

Service
circuit identification for downline load • 4-17
device identification for downline load • 4-16
operations for circuit•3-40
password for downline load • 4-17

SERVICE CIRCUIT parameter • 4-8
SERVICE DEVICE parameter• 4-16
Service timer• 3-59
SET CIRCUIT command

CHANNEL parameter•3-47
COST parameter • 3-68
COUNTER TIMER parameter • 3-51
DTE parameter• 3-47
MAXIMUM BUFFERS parameter • 3-43
MAXIMUM DATA parameter • 3-48
MAXIMUM RECALLS parameter • 3-49
MAXIMUM ROUTERS parameter • 3-45, 3-67
MAXIMUM TRANSMITS parameter•3-44
MAXIMUM WINDOW parameter•3-48
NUMBER parameter•3-49
OWNER EXECUTOR parameter • 3-48
polling control parameters • 3-42

SET CIRCUIT command (cont'd.)

POLLING STATE parameter• 3-43
RECALL TIMER parameter • 3-49
ROUTER PRIORITY parameter• 3-44
SERVICE parameter • 3-40, 4-7, 4-19
STATE parameter • 3-40, 4-19
TRIBUTARY parameter • 3-36
TYPE parameter • 3-47
USAGE parameter• 3-47, 3-50
VERIFICATION INBOUND parameter•3-42,

3-93
VERIFICATION parameter • 3-41

SET EXECUTOR command
ADDRESS parameter • 3-9, 3-66
ALIAS INCOMING parameter • 3-12
ALIAS MAXIMUM LINKS parameter • 3-73
ALIAS NODE parameter • 3-12
AREA MAXIMUM COST parameter•3-71
AREA MAXIMUM HOPS parameter • 3-71
BROADCAST ROUTING TIMER parameter •

3-72
BUFFER SIZE parameter• 3-9, 3-20
COUNTER TIMER parameter•3-27
DEFAULT ACCESS parameter • 2-43, 3-95
DELAY FACTOR parameter • 3-75
DELAY WEIGHT parameter • 3-75
IDENTIFICATION parameter • 3-10
INACTIVITY TIMER parameter • 3-75
INCOMING PROXY parameter• 2-45, 3-96
INCOMING TIMER parameter•3-74
local node address • 3-9
MAXIMUM ADDRESS parameter • 3-9
MAXIMUM AREA parameter • 3-67
MAXIMUM BROADCAST NONROUTERS

parameter • 3-67
MAXIMUM BROADCAST ROUTERS parameter •

3-67
MAXIMUM BUFFERS parameter • 3-22
MAXIMUM CIRCUITS parameter • 3-22
MAXIMUM COST parameter• 3-70
MAXIMUM HOPS parameter • 3-70
MAXIMUM LINKS parameter • 3-73
MAXIMUM PATH SPLITS parameter • 3-70
MAXIMUM VISITS parameter • 3-70
OUTGOING PROXY parameter• 2-45, 3-96
OUTGOING TIMER parameter • 3-74
PATH SPLIT POLICY parameter • 3-71
PIPELINE QUOTA parameter • 3-76
RETRANSMIT FACTOR parameter• 3-75
ROUTING TIMER parameter • 3-72
SEGMENT BUFFER SIZE parameter • 3-21
STATE parameter • 3-22, 6-3

Index-17

Index

SET EXECUTOR command (cont'd.)

SUBADDRESSES parameter•3-50
SET EXECUTOR NODE command • 3-7

access control information • 3-95
SET HOST command

heterogeneous command terminal • 1-22, 8-2
SET KNOWN PROXIES ALL command•2-46,

3-98
SET LINE command

BUFFER SIZE parameter • 3-20, 3-57
CONTROLLER parameter • 7-13
DUPLEX parameter • 3-58
HOLDBACK TIMER parameter • 3-62
INTERFACE parameter • 3-64
MAXIMUM BLOCK parameter•3-63
MAXIMUM DATA parameter• 3-62
MAXIMUM RETRANSMIT parameter • 3-62
MAXIMUM WINDOW parameter • 3-63
MICROCODE DUMP parameter • 7-14
PROTOCOL parameter • 3-53, 3-54
RECEIVE BUFFERS parameter • 3-58
SERVICE TIMER parameter • 4-7, 4-19
STATE parameter • 3-57, 7-13
TRANSMIT PIPELINE parameter • 3-60, 3-76

SET LOGGING command • 3-98
EVENTS parameter•3-89, 3-91
NAME parameter•3-88
STATE parameter• 3-91

SET LOGGING EVENTS command • 3-88
SET LOGGING MONITOR command

SINK parameter • 3-90
SET LOGGING STATE command • 3-88
SET MODULE CONFIGURATOR command

KNOWN CIRCUITS parameter • 3-46
STATUS display• 3-46
SURVEILLANCE DISABLED parameter • 3-46
SURVEILLANCE ENABLED parameter • 3-45

SET MODULE X25-ACCESS command
ACCOUNT parameter • 3-87
NETWORK qualifier•3-86
NODE parameter • 3-87
PASSWORD parameter • 3-87
USER parameter • 3-87

SET MODULE X25-PROTOCOL command • 3-28
CALL TIMER parameter • 3-31
CLEAR TIMER parameter • 3-32
DEFAULT DATA parameter•3-30
DEFAULT WINDOW parameter • 3-31
DTE qualifier • 3-28
GROUP qualifier• 3-33
MAXIMUM CLEARS parameter • 3-32

SET MODULE X25-PROTOCOL command (cont'd.)

MAXIMUM DATA parameter • 3-30
MAXIMUM RESETS parameter•3-32
MAXIMUM RESTARTS parameter•3-33
MAXIMUM WINDOW parameter • 3-31
RESET TIMER parameter•3-32
RESTART TIMER parameter• 3-33

SET MODULE X25-SERVER command
CALLED ADDRESS parameter • 3-84
CALLED DTE parameter • 3-84
CALL MASK parameter • 3-83
CALL VALUE parameter•3-83
DESTINATION qualifier•3-81
EXTENSION MASK parameter•3-83
EXTENSION VALUE parameter • 3-83
GROUP parameter • 3-82
INCOMING ADDRESS parameter • 3-84
MAXIMUM CIRCUITS parameter•3-85
NODE parameter • 3-85
OBJECT parameter•3-85
PRIORITY parameter • 3-84
RECEIVING DTE parameter•3-84
REDIRECT REASON parameter•3-84
SENDING ADDRESS parameter•3-82, 3-84
STATE parameter • 3-86
SUBADDRESSES parameter•3-82

SET NODE command • 7-3
ACCESS parameter • 2-43, 3-95
ADDRESS parameter• 3-4, 3-9
COUNTER TIMER parameter • 3-27
DIAGNOSTIC FILE parameter • 4-17
HARDWARE ADDRESS parameter • 4-8, 4-1 1
INBOUND parameter • 3-96
LOAD ASSIST AGENT parameter • 4-16
LOAD ASSIST PARAMETER parameter • 4-16
MANAGEMENT FILE parameter • 4-14
NAME parameter • 3-9
NONPRIVILEGED parameter • 3-94
PRIVILEGED parameter • 3-94
RECEIVE PASSWORD parameter • 3-93
remote node name and address•3-9
SERVICE CIRCUIT parameter • 4-10
SERVICE DEVICE parameter • 4-16
SERVICE PASSWORD parameter • 4-17
SOFTWARE IDENTIFICATION parameter • 4-16
SOFTWARE TYPE parameter • 4-16
TRANSMIT PASSWORD parameter•3-93

SET OBJECT command
ACCOUNT parameter • 3-81
ALIAS INCOMING parameter • 3-12, 3-78
ALIAS OUTGOING parameter • 3-12, 3-78

Index-18

Index

SET OBJECT command (cont'd.)

FILE parameter • 3-79, 3-80
NUMBER parameter • 3-77
PASSWORD parameter•3-81, 3-95
PRIVILEGE parameter • 3-94
PROXY parameter • 2-46, 3-97
USER parameter• 3-81, 3-95

SHOW command•3-98
SHOW EXECUTOR CHARACTERISTICS command

display of proxy access • 3-97
SHOW EXECUTOR command

CHARACTERISTICS display • 3-10
display of Ethernet address • 3-14
display of executor type • 3-66

SHOW LINE command
Ethernet hardware address • 3-62, 7-1 1

SHOW MODULE CONFIGURATOR command•
3-45, 3-46

SHOW NETWORK command • 8-1, 8-2
display of network status • 8-1

SHOW NODE command
COUNTERS parameter•3-27
display of node type•3-66

Sink•2-37
logging • 2-38, 3-88
name•2-38
node • 2-38
related event • 2-37
state • 2-38

SINK parameter•3-90
Slave node • 4-18
SLD (Satellite Loader) • 4-20

building • 4-20
SOFTWARE IDENTIFICATION parameter • 4-16
Software loopback test • 7-6, 7-7
Source-related event • 2-37
Source task • 8-12
STARTNET.COM • 3-98, 5-4, 5-14, 6-2
State

logging • 3-91
of circuit• 2-7
of line • 2-13
of local node • 2-3

STATE parameter
for circuit•3-40
for DTE • 3-29
for executor node • 3-22
for line • 3-57
for X25-SERVER module•3-86

Static asynchronous connection • 1-5, 1-8, 1-10
network configuration • 5-19
reasons for failure • 5-10

Static asynchronous line • 1-10, 2-15, 5-8
installing•5-9
shutting down • 5-10

STATUS display type• 3-99
Stream timer • 3-59
SUBADDRESSES parameter

for SET EXECUTOR command • 3-50
for X25-SERVER module•3-82

SUMMARY display type•3-99
SVC (switched virtual circuit) • 1-13, 2-7, 2-12

for DLM use • 2-7, 2-12
for X.25 native use • 2-7

Switched virtual circuit
See SVC

SWITCH parameter•3-61
Synchronous connection • 1-5
Synchronous disconnect • 8-1 1, 8-15, 8-33,

8-40
SYS$ASSIGN • 5-2, 8-19

format • 8-21, 8-34
_NET: • 8-34
nontransparent use of• 8-27
transparent use of • 8-19

SYS$CANCEL • 8-33
SYS$CREMBX • 5-2, 8-28
SYS$CREPRC• 5-2
SYS$DASSGN • 8-15, 8-21, 8-25, 8-43

format • 8-25
SYS$GETDVI.8-34
SYS$LOGIN:NETSERVER.LOG • 2-34, 4-23
SYS$LOGIN:objectname.COM • 3-79
SYS$MANAGER:EVL.LOG • 3-91
SYS$MANAGER:NET.LOG • 3-100
SYS$MANAGER:NETCONFIG.COM • 5-5
SYS$MANAGER:RTTLOAD.COM • 6-1
SYS$MANAGER:STARTNET.COM • 5-6, 5-14,

6-1
SYS$NET • 8-13, 8-20, 8-31
SYS$QIO

format • 8-35, 8-37, 8-38, 8-39, 8-40,
8-41

10$_ACCESS • 8-29, 8-32, 8-35, 8-37
10$_ACCESS! 10$M _ABORT • 8-32, 8-38
10$_ACPCONTROL • 8-32, 8-41
10$_DEACCESS!10$M_ABORT • 8-33, 8-34,

8-41
10$_DEACCESS! 10$M _SYNCH • 8-40
10$_READVBLK•8-39
10$_WRITEVBLK•8-39
10$_WRITEVBLK!10$M_INTERRUPT • 8-33,

8-39

Index-19

Index

SYS$QIO(10$_ACCESS!10$M_ABORT) • 8-32
format • 8-38

SYS$QIO(10$_ACCESS) • 8-29, 8-32
format • 8-35, 8-37

SYS$QIO(10$_ACPCONTROL► • 8-32
format • 8-41

SYS$QIO(10$_DEACCESS!10$M_ABORT) • 8-33,
8-34

format • 8-41
SYS$QIO(10$_DEACCESS! 10$M _SYNCH)

format • 8-40
SYS$QIO(10$_READVBLK) • 8-39

format • 8-24
SYS$QIO(10$_WRITEVBLK! 10$M _INTERRUPT)

format • 8-39
SYS$QIO(10$_WRITEVBLK) • 8-39

format • 8-23
SYS$SYSTEM:objectname.COM • 3-79
SYS$SYSTEM:SYSGEN

See SYSGEN
SYS$TRNLOG system service call • 8-14
SYSGEN

IRPCOUNT parameter • 5-36
LRPCOUNT parameter• 5-36
LRPSIZE parameter • 5-36
NPAGEDYN parameter• 5-36
running•5-36
updating parameters for DECnet• 5-36

SYSNAM privilege• 5-2, 8-32
SYSPRV privilege • 5-2, 5-5
System configuration guidelines• 5-35 to 5-42
System-level access control • 2-40
System management

responsibilities • 1-15
VAX PSI. 1-15, 5-4

System service call • 1-22, 8-15, 8-16, 8-25
summary for nontransparent use• 8-26, 8-34
summary for transparent use • 8-18, 8-21

T
Tailoring the configuration database• 5-7
Target-initiated downline load•4-2
Target node • 4-1
Target task • 8-12
Task

declaring for network• 8-8
definition • 1-21
downline load•4-20

Task (cont'd.)
general purpose•4-22
identifier in specification • 1-25
installation • 4-22
source • 8-14
specification • 1-24
specification for task • 1-25
specification over the network • 1-25
specification string • 1-25, 8-9, 8-17, 8-30
target • 8-14, 8-23

Task-to-task communication • 1-3, 1-21, 8-1,
8-16, 8-25

nontransparent•8-7, 8-8, 8-25
nontransparent MACRO example • 8-49
transparent • 8-1, 8-16
transparent FORTRAN example•8-44
transparent MACRO example • 8-46

TELL prefix
description • 3-7

Terminal connection
to remote console • 4-24

Terminal emulator • 1-10, 2-16
Terminal line

conversion to DECnet line • 1-10, 2-15, 5-7
Terminal server

on Ethernet • 1-12
on LAT • A-10

Tertiary loader • 4-3, 4-13
Test

circuit loopback test• 7-6, 7-9
controller loopback test• 7-8
Ethernet loopback test• 7-9
local loopback test• 7-6
local-to-remote test • 7-4
node-level test • 7-1
remote loopback test• 7-2
software loopback test • 7-7
X.25 test • 7-13

Testing the network • 7-1
Timer

babble • 3-44
broadcast routing • 3-72
call • 3-31
clear• 3-32
counter • 3-27
dead • 3-59
delay•3-59
hello • 3-41
inactivity • 2-31, 3-75
incoming • 2-31, 3-74
line•3-58

Index-20

Index

Timer (cont'd.)
logical link•2-31
outgoing • 2-31, 3-74
recall • 3-49
reset • 3-32
restart • 3-33
retransmit • 3-59, 3-62
routing • 2-30, 3-72
scheduling • 3-59
service • 3-59
stream • 3-59
transmit•3-44

TLK image • 4-20
TMPMBX privilege• 2-41
Topology

of a multiple-area network • 1-19
of a single-area network • 1-19

TOPS-10 node • 9-18
TOPS-20 node • 9-21
TO qualifier

for COPY KNOWN NODES command • 3-24
TQELM quota • 5-38
Transmit password•2-39
TRANSMIT PIPELINE parameter • 3-60
Transmit timer • 3-44
Transparent

communication • 1-23, 8-1
user network operations • 1-21

Tributary • 1-8, 2-9
address • 2-9
circuit timers• 3-44
control • 3-42, 3-43

TRIBUTARY parameter•3-35
TRIGGER command•4-2, 4-8

PHYSICAL ADDRESS parameter • 4-8
SERVICE PASSWORD parameter • 4-9

Trigger message•4-2
Trigger operation

bootstrap ROM • 4-5
primary bootstrap•4-5
primary loader•4-2
TRIGGER command • 4-8

TRIGGER VIA command • 4-17
TYPE parameter

for executor node • 3-65
for GROUP•3-34
for PVC• 3-47

u

UAF (user authorization file) • 8-13
creation of default nonprivileged DECnet

account • 5-1
UETP (User Environment Test Package) • 5-6,

6-2
Ultrix node • 9-27
UNA

Ethernet circuit device • 2-11
Ethernet line device • 2-20
loopback test • 7-9

Unattended system
memory dump • 4-17
slave • 4-17

UNIBUS
devices • 5-40
map registers • 5-40

Upline memory dump
definition • 4-17
over Ethernet • 4-18
procedures • 4-17
requirements • 4-19
RSX-1 1 S operating system • 4-17

USAGE parameter
for DLM circuit • 3-50
for PVC • 3-47

User
interface to network • 1-21
network operations • 8-1
transparent network operations • 1-21

User authorization file
See UAF

User-defined object • 2-31
User Environment Test Package

See UETP
User group

See BCUG, CUG, and X.25
USING qualifier

for COPY KNOWN NODES command • 3-24

V
VAXcluster

configuration • 1-1 1
end node• 1-12, 2-27
router • 1-12, 2-27

Index-21

Index

VAXcluster (cont'd.)

use of an alias node identifier • 1-12, 2-4,
2-33, 3-1 1, 8-9

use of CI data link • 1-1 1
use of DECnet-VAX data link • 1-1 1

VAX Packetnet System Interface
See VAX PSI

VAX PSI (VAX Packetnet System Interface) • 1-3
bringing up a DTE • 6-2
command procedure for object• 2-35
configuration • 1-5, 1-18, 5-1, 5-30, 5-33
connector node• 6-2
database • 1-16, 3-3
dumping KMS 1 1 microcode • 7-1, 7-14
dumping KMV 1 1 microcode • 7-1, 7-14
line-level loopback test • 7-1, 7-13
multihost installation • 6-2
multihost mode • 1-3, 1-15, 5-1
multinetwork configuration • 5-33
native mode • 1-3, 1-15
native user programs• 2-7
object • 2-35, 3-80
software • 1-16, 2-1
system management • 1-15, 5-4
test facilities • 7-1
users • 1-15

VAX PSI Access software • 1-13, 2-1, 2-6,
2-37, 5-1, 6-2

VERIFICATION INBOUND parameter • 3-42, 3-93
VERIFICATION parameter • 3-41
Virtual circuit • 1-7, 1-8

See also X.25 virtual circuit
Virtual terminal • 1-10, 2-18

enabling • 5-1 1
VMR utility • 4-20
VMS node • 2-1
VMS operating system

network interface • 1-2
nonpaged dynamic memory pool • 5-36

VMS to RT-1 1 network operation • 9-14
VMS to IAS network operation • 9-2
VMS to MS-DOS network operation • 9-24
VMS to MVS network operation • 9-30
VMS to P/OS network operation • 9-5
VMS to RSTS/E network operation • 9-7
VMS to RSX (using FCS-based FAL) network

operation • 9-12
VMS to RSX (using RMS-based FAL) network

operation • 9-10
VMS to TOPS-10 network operation • 9-18
VMS to TOPS-20 network operation • 9-21

VMS to Ultrix network operation • 9-27
VMS to VMS network operation

Version 5.0 to previous version • 9-33
Volatile database • 1-16, 3-2

copying node entries • 3-24
display information • 3-98
use of • 3-2

W
Wildcard character

for events • 3-90
for NCP component names • 3-4

Window size parameter • 3-31
WITH qualifier

for COPY KNOWN NODES command • 3-24

X
X.25. 1-3, 2-5

access module • 1-20, 2-6, 2-37
access module commands • 3-86
BCUG • 2-6, 3-33, 3-82
call destination • 2-35
CCITT recommendation • 1-3, 1-13
circuit • 2-6, 3-37
circuit devices • 2-12
circuit identification • 3-36
circuit parameters • 3-47
combination node• 1-3
connector node • 1-1, 1-3, 1-5, 1-13, 1-18,

2-1, 2-6, 2-35, 2-37, 3-85, 3-86,
5-1, 6-2

connector node configuration • 5-30
CUG • 2-6, 3-33, 3-82
data packet control • 3-30, 3-48
gateway node • 1-3, 5-1
handling incoming calls•3-81
host node • 1-3, 1-13, 1-18, 2-1, 2-6,

2-35, 2-37, 3-85, 3-86, 5-1
host node configuration • 5-30
LAPBE line protocol • 3-54
LAPB line protocol • 3-54
line • 2-12, 2-13, 3-55
line device • 2-20
line-level loopback test • 7-13
line parameters• 3-62
line receive buffers• 3-64

Index-22

Index

X.25 (cont'd.)

multihost installation • 6-2
multihost mode • 1-13, 2-6, 5-1
multihost mode network configuration • 5-30
multinetwork configuration • 5-33
native mode • 1-13
native-mode network configuration • 5-28
protocol module • 1-20, 2-1, 2-5, 3-28
PSDN • 1-1
PVC • 2-7, 2-12, 3-36
server module • 1-20, 2-5, 2-6, 2-35
server module commands•3-81
SVC • 2-7, 2-12, 3-36
trace module • 1-20
user group• 2-6, 3-33, 3-82
virtual circuit • 1-1, 1-3, 1-13, 2-7, 2-12

X.29
CCITT recommendation • 1-3, 1-13
incoming calls•3-83
server module • 1-20, 2-5, 2-35

server module commands•3-81
terminal • 1-13

X25-PROTOCOL module
commands•3-28
counters • 3-34
parameters • 3-28

X25-SERVER module
identification • 3-81
parameters • 3-81

X29-SERVER module
See X25-SERVER module

Z
ZERO CIRCUITS command•3-52
ZERO EXECUTOR command • 3-27
Zeroing

line counters• 3-65
node counters • 3-27

ZERO LINE command•3-65
ZERO NODE command•3-27
Zero-numbered object • 2-32

Index-23

Reader's Comments VMS Networking Manual
AA—LA48A—TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ❑ ❑ ❑

Completeness (enough information) ❑ ❑ ❑ ❑

Clarity (easy to understand) ❑ ❑ ❑ ❑

Organization (structure of subject matter) ❑ ❑ ❑ ❑

Figures (useful) ❑ ❑ ❑ ❑

Examples (useful) ❑ ❑ ❑ ❑

Index (ability to find topic) ❑ ❑ ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.

Company Date

Mailing Address

Phone

- — Do Not Tear -Fold Here and Tape

d Bg80 a
TM

- — Do Not Tear -Fold Here

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

III~~~~~II~II~~~~II~~~~I~II~I~~I~I~~I~~I~I~~~I~II~~I

C
u

t
A

lo
n
g
 D

o
tt
e
d
 L

in
e

r1 Reader's Comments VMS Networking Manual
AA—LA48A—TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ❑ ❑ ❑

Completeness (enough information) ❑ ❑ ❑ ❑

Clarity (easy to understand) ❑ ❑ ❑ ❑

Organization (structure of subject matter) ❑ ❑ ❑ ❑

Figures (useful) D D ❑ ❑

Examples (useful) ❑ ❑ ❑ ❑

Index (ability to find topic) ❑ ❑ ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.

Company Date

Mailing Address

 Phone

— — Do Not Tear -Fold Here and Tape

d a9ao a
TM

— — Do Not Tear -Fold Here

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID 6Y ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

III~~~~~II~II~~~~II~~~~I~II~I~~I~I~~I~~I~I~~~I~II~~I

C
u

t
A

lo
n

g
 D

o
tt
e
d
 L

in
e

