
VMS Analyze/Disk_
Structure Utility Manual

Order Number: AA—LA39A—TE

April 1988

This document describes how to use the Analyze/Disk_Structure Utility
on VMS operating systems. The Analyze/Disk_Structure Utility was
formerly called the Verify Utility.

Revision/Update Information: This document supersedes the
VAX/VMS Verify Utility Reference
Manual, Version 4.0.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter

DIBOL
EduSystem
IAS
MASSBUS
PDP
PDT
RSTS
RSX

UNIBUS
VAX
VAXcluster
VMS
VT

d
a

9 BD a TM

ZK4561

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA &PUERTO RICO*

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire
03061

CANADA

Digital Equipment
of Canada Ltd.
100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

INTERNATIONAL

Digital Equipment Corporation
PSG Business Manager
c/o Digital local subsidiary
or approved distributor

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575►.

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can ® e
DIGITAL-supported devices, such as the LN03 laser printer and PostScript
printers (PrintServer 40 or LN03R ScriptPrinter), to produce atypeset-quality
copy containing integrated graphics.

PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE vii

NEW AND CHANGED FEATURES ix

ANALYZE/DISK_STRUCTURE Description ADSK-1

1 ERROR REPORTING AND REPAIR ADSK-1
1.1 Recovering Lost Files ADSK-2
1.2 ANALYZE/DISK_STRUCTURE Output ADSK-3

ANALYZE/DISK_STRUCTURE Usage Summary ADSK-4

ANALYZE/DISK_STRUCTURE Qualifiers ADSK-5
/[NO]CONFIRM ADSK-6
/[NO]LIST[=F1 LESPEC] ADSK-7
/[NO]READ_CHECK ADSK-8
/[NO]REPAIR ADSK-9
/USAGE[=FILESPEC] ADSK-10

APPENDIX A SUPPLEMENTAL INFORMATION—FILES-11 DIRECTORY
STRUCTURE A-7

A.1 FILE IDENTIFICATION (FI D~ A-1

A.2 DIRECTORY HIERARCHY A-1

APPENDIX B SUPPLEMENTAL INFORMATION—RESERVED
FILES B-1

B.1 INDEXF.SYS B-1
B.1.1 File Headers B-2

B.2 MASTER FILE DIRECTORY B-3

B.3 BITMAP.SYS B-3

v

Contents

B.4 VOLSET.SYS B-3

B.5 QUOTA.SYS B-3

APPENDIX C SUPPLEMENTAL INFORMATION-STAGE CHECKS C-1

C.1 STAGE CHECKS C-1

C.2 ANNOTATED EXAMPLE C-4

APPENDIX D SUPPLEMENTAL INFORMATION-USAGE FILE D-1

D.1 THE ANALYZE/DISK_STRUCTURE USAGE FILE D-1

INDEX

EXAMPLES
C-1 ANALYZE/DISK_STRUCTURE—Annotated Example C-5

TABLES
C-1 Stage 3 Maps C-2
D-1 Identification Record Format

(Length USG$K_I DENT_LEN) D-1
D-2 File Record Format (Length USG$K_FI LE_LEN) D-2

vi

Preface

Intended Audience
This document is intended for system managers who need to check the
readability and validity of Files-11 disk volumes. System managers can
use the information in this document to detect and repair errors and
inconsistencies.

Document Structure
This document consists of the following four sections:

• Description—Provides a description of the Analyze/Disk_Structure
Utility (ANALYZE/DISK_STRUCTURE).

• Usage Summary—Outlines the following ANALYZE/DISK_STRUCTURE
information:

-Invoking the utility
-Exiting from the utility
-Directing output
-Restrictions or privileges required

• Qualifiers Describes ANALYZE/DISK_STRUCTURE qualifiers,
including format, parameters, and examples.

• Appendixes Provides supplemental information.

Associated Documents
The VMS System Messages and Recovery Procedures Reference Manual provides
a complete description of each message generated during an ANALYZE
/DISK_STRUCTURE session and describes the appropriate responses to
those messages.

The Guide to Maintaining a VMS System provides additional information about
the Analyze/Disk_Structure Utility.

vii

Preface

Conventions
Convention Meaning

RET

CTRL/C

$ SHOW TIME
05-JUN-1988 1 1:55:22

$ TYPE MYFILE.DAT

input-file, . .

[logical-name]

quotation marks
apostrophes

In examples, a key name (usually abbreviated)
shown within a box indicates that you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box .

In examples, system output (what the system
displays► is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (') is used to refer to a single
quotation mark.

f"1

New and Changed Features

For VMS Version 5.0, ANALYZE/DISK_STRUCTURE does the following:

• Performs a more thorough search of the directory hierarchy to locate and
repair damaged files.

• Distinguishes between deleted files and invalid file headers.

• Correctly processes files cataloged in more than one directory.

• Sorts listings by logical block number. Listings organized in this manner
allow you to easily identify all blocks allocated to multiple files.

• Provides you the option of changing the name of a directory file whose
extension and version are not ".DIR;1" (ODS-2 volumes only).

• Verifies the contents of reserved file VOLSET.SYS for a volume set. This
verification confirms that all members of a volume set are accurately
reflected.

• Allows you to save the extension headers of files when their primary
headers cannot be found.

• Includes the file specification from the primary header of a file in all
messages. This enhancement ensures that the correct name of the file is
displayed.

• Allows the following options for defective directory files:

— If the contents of the directory are invalid, you can discard the
defective portion of the directory block.

— If the header attributes are invalid, you can now either clear the
directory flag or delete the directory file.

ix

ANALYZE/DISK_STRUCTURE Description
Use the Analyze/Disk_Structure Utility on a regular basis to check disks
for inconsistencies and errors, and to recover lost files. ANALYZE/DISK_
STRUCTURE detects problems on On-Disk Structure (ODS) Level 1 or 2
Files-11 disks that were caused by hardware errors, system errors, and user
errors.

By using ANALYZE/DISK_STRUCTURE to identify and delete lost files and
files marked for deletion, you can reclaim disk space.

ANALYZE/DISK_STRUCTURE performs the verification of a volume or
volume set in eight distinct stages. During these stages, ANALYZE/DISK_
STRUCTURE collects information used in reporting errors or performing
repairs. However, ANALYZE/DISK_STRUCTURE repairs volumes only
when you specify the /REPAIR qualifier. For a complete description of each
of the eight stages, and an annotated example of an ANALYZE/DISK_
STRUCTURE session, refer to Appendix C.

1 Error Reporting and Repair
You can invoke the utility to operate in any of the following three modes:

• Error reporting with no repairs

• Error reporting with repairs

• User-controlled selective repairs

By default, ANALYZE/DISK_STRUCTURE reports errors, but does not make
repairs. For example, use the following command to report all errors on
device DBA1:

$ ANALYZE/DISK_STRUCTURE DBA1:

When you issue this command, ANALYZE/DISK_STRUCTURE runs through
eight stages of data collection, then, by default, prints a list of all errors and
lost files to your terminal. One type of problem that ANALYZE/DISK _
STRUCTURE locates is an invalid directory backlink; a backlink is a pointer
to the directory in which a file resides. If your disk has a file with an invalid
directory backlink, ANALYZE/DISK_STRUCTURE displays the following
message and the file specification to which the error applies:

%VERIFY-I-BACKLINK, incorrect directory back link [SYSEXE]SYSBOOT.EXE;1

To instruct ANALYZE/DISK_STRUCTURE to repair the errors that it detects,
use the /REPAIR qualifier. For example, the following command reports and
repairs all errors on the DBA1 device:

$ ANALYZE/DISK_STRUCTURE DBA1:/REPAYR

If you want to select which errors ANALYZE/DISK_STRUCTURE repairs,
use both the /REPAIR and /CONFIRM qualifiers:

$ ANALYZE/DISK_STRUCTURE DBA1:/REPA:IR/CONFIRM

ADSK-1

ANALYZE/DISK_STRUCTURE Description

When you issue this command, ANALYZE/DISK_STRUCTURE displays a
description of each error and prompts you for confirmation before making
a repair. For example, the previous command might produce the following
messages and prompts:

%VERIFY-I-BACKLINK, incorrect directory back link [SYSO]SYSMAINT.DIR;1

Repair this error? (Y or N): Y

%VERIFY-I-BACKLINK, incorrect directory back link
[SYSEXE] SYSBOOT . EXE ;1]

Repair this error? (Y or N): N

Consider running ANALYZE/DISK_STRUCTURE twice for each volume.
First, invoke the utility to report all errors. Evaluate the errors and decide
on an appropriate action. Then invoke the utility again with the /REPAIR
qualifier to repair all errors, or with the /REPAIR and /CONFIRM qualifiers
to repair selected errors.

For complete descriptions of all errors and recommended actions, refer to the
VMS System Messages and Recovery Procedures Reference Manual.

1.1 Recovering Lost Files
A lost file is a file that is not linked to a directory. Under normal
circumstances, files should not become lost. However, files occasionally
become lost because of disk corruption, hardware problems, or user error. For
example, in cleaning up files and directories, you might inadvertently delete
directories that still point to files. When you delete a directory file (a file with
the file type DIR) without first deleting its subordinate files, the files referred
to by that directory become lost files. Though lost, these files remain on the
disk and consume space.

When you run ANALYZE/DISK_STRUCTURE specifying the /REPAIR
qualifier, the utility places lost files in SYSLOST.DIR.

For example, to report and repair all errors and lost files found on the device
DDAO, issue the following command:

$ ANALYZE/DISK_STRUCTURE/REPAIR/CONFIRM DDAO:

If it discovers lost files on your disk, ANALYZE/DISK_STRUCTURE issues
messages similar to those that follow:

ADSK-2

ANALYZE/DISK_STRUCTURE Description

%VERIFY-W-LOSTHEADER, file (16,1,1) [] X . X;1
not found in a directory

%VERIFY-W-LOSTHEADER, file (17 ,1,1) [] Y . Y;1
not found in a directory

%VERIFY-W-LOSTHEADER , file (18 ,1,1) [] Z . Z ;1
not found in a directory

%VERIFY-W-LOSTHEADER, file (19,1,1) [] X . X; 2
not found in a directory

%VERIFY-W-LOSTHEADER, file (20,1,1) [] Y . Y; 2
not found in a directory

%VERIFY-W-LOSTHEADER, file (21,1,1) [] Z . ;1
not found in a directory

%VERIFY-W-LOSTHEADER , file (22 ,1,1) [] Z . ; 2
not found in a directory

%VERIFY-W-LOSTHEADER, file (23,1,1) LOGIN . COM;163
not found in a directory

%VERIFY-W-LOSTHEADER , f i 1 e (24 ,1,1) MANYACL . COM ; i
not found in a directory

All lost files in this example are automatically moved to SYSLOST.DIR.

1.2 ANALYZE/DISK_STRUCTURE Output
By default, the Analyze/Disk_Structure Utility directs all output to your
terminal. If you prefer, you can use the /LIST qualifier to generate a file
containing the following information for each file on the disk:

• File identification (FID)

• File name

• Owner

• Errors associated with the file

To generate a disk usage accounting file, use the /USAGE qualifier. The first
record of the file, called the identification record, contains a summary of disk
and volume characteristics. The identification record is followed by a series of
summary records; one summary record is created for each file on the disk. A
summary record contains the owner, size, and name of the file.

For more information on the disk usage accounting file, see Appendix D.

ADSK-3

ANALYZE/DISK_STRUCTURE Usage Summary

The Analyze/Disk_Structure Utility checks the readability and validity of
Files-1 1 Structure Level 1 and Structure Level 2 disk volumes, and reports
errors and inconsistencies.

You can detect most classes of errors by invoking the utility once and
using its defaults.

FORMAT ANALYZE/DISK_STRUCTURE device-name:(/qualifier)

PARAMETER device-name
Specifies the disk volume or volume set to be verified. If you specify a
volume set, all volumes of the volume set must be mounted as Files-11
volumes. (For information on the Mount Utility, refer to the VMS Mount
Utility Manual.)

usage summary Use the following command to invoke the utility:

$ ANALYZE/DISK_STRUCTURE device-name: /qualifiers

You can terminate an ANALYZE/DISK_STRUCTURE session by entering
CTRL/C or CTRL/Y while the utility executes. You cannot resume operation
by using the DCL command CONTINUE.

By default, ANALYZE/DISK_STRUCTURE directs all output to your
terminal. Use the /USAGE or /LIST qualifiers to direct output to a file.

To invoke the Analyze/Disk_Structure Utility, you must have BYPASS
privilege.

Do not use ANALYZE JDISK _STRUCTURE on a disk that is currently
being used for other file operations. This can produce error messages that
incorrectly indicate severe ale damage.

ADS K-4

ANALYZE/DISK_STRUCTURE
ANALYZE/DISK_STRUCTURE Qualifiers

ANALYZE/DISK_STR UCTURE
QUALIFIERS

ADSK-5

ANALYZE/DISK_STRUCTURE
/[NO]CONFIRM

/[NO]CONFIRM

Determines whether the Analyze/Disk_Structure Utility prompts you to
confirm each repair. If you respond with Y or YES, the utility performs the
repair. Otherwise, the repair is not performed.

FORMAT /[NO]CONFIRM

DESCRIPTION
You can only use the /CONFIRM qualifier with the /REPAIR qualifier. The
default is /NOCONFIRM.

EXAMPLE

$ ANALYZE/DISK_STRUCTURE BBAO:/REPAIR/CONFIRM
%VERIFY-I-BACKLINK, incorrect directory back link [SYSO]SYSMAINT.DIR;1
Repair this error? (Y or N): Y
%VERIFY-I-BACKLINK, incorrect directory back link [SYSEXE]SYSBOOT.EXE;1
Repair this error? (Y or N): N

The command in this example causes the Analyze/Disk_Structure Utility to
prompt you for confirmation before performing the indicated repair operation.

ADSK-6

ANALYZE/DISK_STRUCTURE
/[NO]UST[=filespec]

/[NO]LIST[=filespec]

Determines whether the Analyze/Disk_Structure Utility produces a listing
of the index file.

FORMAT /LIST(—filespec]
/NOLIST

DESCRIPTION If you specify /LIST, the utility produces a file that contains a listing of
all FIDs, file names, and file owners. If you omit the file specification, the
default is SYS$OUTPUT. If you include a file specification without a file
type, the default type is LIS. You cannot use wildcard characters in the file
specification.

The default is /NOLIST.

EXAMPLE

$ ANALYZE/DISK_STRUCTURE DLA2:/LIST=INDEX
$ TYPE INDEX
Listing of index f i 1 e on DLA2
31-DEC-1988 20:54:42.22

(00000001,00001,001) INDEXF.SYS;1
[1,1]

(00000002,00002,001) BITMAP.SYS;1
C1,1J

(00000003,00003,001) BADBLK.SYS;1
[1,1]

(00000004,00004,001) OOOOOO.DIR;1
C1,1]

(00000005,00005,001) CORIMG.SYS;1
[1,1]

In this example, ANALYZE/DISK_STRUCTURE did not find errors on the
device DLA2. Since the file INDEX was specified without a file type, the
system assumes a default file type of LIS. The subsequent TYPE command
displays the contents of the file INDEX.LIS.

ADSK-7

ANALYZE/DISK_STRUCTURE
/[NO]READ_CHECK

/[NO]READ_CHECK

Determines whether the Analyze/Disk_Structure Utility performs a read
check of all allocated blocks on the specified disk. When the Analyze
/Disk_Structure Utility performs a read check, it reads the disk twice; this
ensures that it reads the disk correctly. The default is /NOREAD_CHECK.

FORMAT /[NO]READ_CHECK

EXAMPLE

$ ANALYZE/DISK_STRUCTURE DMAl:/READ_CHECK

The command in this example directs ANALYZE/DISK_STRUCTURE to
perform a read check on all allocated blocks on the device DMAl.

ADSK-8

ANALYZE/DISK_STRUCTURE
/[NO]REPAIR

/[NO]REPAIR

Determines whether the Analyze/Disk_Structure Utility repairs errors that
are detected in the file structure of the specified device.

FORMAT /[NO]REPAIR

DESCRIPTION The Analyze/Disk_Structure Utility does not perform any repair operation
unless you specify the /REPAIR qualifier. The file structure is software
write-locked during a repair operation. The default is /NOREPAIR.

EXAMPLE

$ ANALYZE/DISK_STRUCTURE DBAl:/REPAIR

The command in this example causes ANALYZE/DISK_STRUCTURE to
perform a repair on all errors found in the file structure of device DBAl.

ADSK-9

ANALYZE/DISK_STRUCTURE
/USAGE[=filespec]

/USAGE[=filespec]

Specifies that a disk usage accounting file should be produced, in addition
to the other specified functions of the Analyze/Disk_Structure Utility.

FORMAT /USAGE(=filespec]

DESCRIPTION If all or part of the file specification is omitted, ANALYZE/DISK_
STRUCTURE assumes a default file specification of USAGE.DAT. The file
is placed in the default directory [ACCOUNT].

EXAMPLE

$ ANALYZE/DISK_S':~RUCTURE DBA1:/USAGE

$ DIRECTORY USAGF~

Directory DISK$DEFAULT:[ACCOUNT]

USAGE.DAT;3

Total of i f i l e.

The first command in this example causes ANALYZE/DISK_STRUCTURE
to produce a disk usage accounting file. Since a file specification was not
provided in the command line, ANALYZE/DISK_STRUCTURE uses both the
default file name and directory [ACCOUNT]USAGE.DAT. The DIRECTORY
command instructs the system to display all default information.

ADSK-10

A Supplemental Information—Files-11 Directory
Structure

A.1 File Identification (FIDE
Each file on a Files-11 disk is identified by a unique, system-assigned file
identification (FID) and auser-assigned alphanumeric name. The primary
function of a Files-11 directory is to associate the user-assigned alphanumeric
name of each file with the unique FID of the file. This association ensures
that files present on a volume are retrievable by name.

The FID of a file consists of a set of three numbers. The first is the file
number (num). The file system uses this number as an offset into the index
file (reserved file INDEXF.SYS), which stores information for all files on a
volume.

The second part of the FID is the file sequence number (seq), which
represents the number of times a particular file number has been used.
File numbers are allocated and deallocated as files are created and deleted.
As a result, the file number alone cannot uniquely identify the file. By
incrementing the sequence number each time a file number is used, the file
system ensures that each file has a unique identification in INDEXF.SYS.

The third number in the FID is the relative volume number (RVN). This
number indicates the volume (of a volume set) on which the file resides
(ODS-2 only). If the volume set consists of a single volume, the RVN of all
files on that volume is 1.

A.2 Directory Hierarchy
The Files-11 ODS-1 structure supports atwo-level directory hierarchy. Each
user identification code (UIC) is associated with a user file directory (UFD).
Each UFD is included in the master file directory (MFD) of the volume.

The VMS implementation of the Files-11 ODS-2 structure is a multilevel
directory hierarchy. The top level of the directory structure is the master file
directory (MFD). The MFD of a volume is always named [000000]. The MFD
contains pointers to all top-level directories, including itself. The first level
below the MFD is the user file directory (UFD). Levels below the UFD are
called sub-directories.

Since directories are files, directories can contain files that are also directories.
By nesting directories, users can construct directory hierarchies of up to eight
levels deep (including the master file directory).

In a volume set, the MFD for all of the user directories on the volume set
is located on relative volume 1. The entries of this MFD point to directories
located on any volume in the set. These directories in turn point to files and
subdirectories on any volume in the set. The MFD of any remaining volume
in the set includes only the names of the reserved files for that volume.

6 Supplemental Information-Reserved Files

The Files-11 structure incorporates a set of nondeletable reserved files that
are created when a volume or volume set is initialized. These files control the
organization of a Files-11 disk.

ANALYZE/DISK_STRUCTURE rebuilds specific Files-11 reserved files and
compares these files with their old versions. The utility reports and repairs
(if you specified the /REPAIR qualifier) any discrepancies found during these
comparisons.

Because ANALYZE/DISK_STRUCTURE uses reserved files, you may find
it helpful to become acquainted with the names and functions of these files.
The following sections discuss the reserved files that ANALYZE/DISK_
STRUCTURE uses.

B.1 INDEXF.SYS
INDEXF.SYS is a large extendable file made up of several sections. These
sections provide the operating system with the information necessary to
identify aFiles-11 volume, initially access that volume, and locate all the files
on that volume (including INDEXF.SYS itself).

ANALYZE/DISK_STRUCTURE is primarily concerned with the following
three sections of INDEXF.SYS:

Home Block

Index File Bitmap

File Headers

The home block identifies the volume as Files-1 1,
establishes the characteristics of the volume, and
serves as the entry point into the file structure of the
volume. The total number of files that can be stored
on a volume at any given time and the size of the
bitmap of INDEXF.SYS are determined by fields in the
home block.

The index file bitmap is a bit string that controls
the allocation of file headers. The index file bitmap
contains one bit for each header. If the bit is set, then
that file number header) is in use; if the bit is clear, the
header is not in use and may be assigned to a newly
created file or extension header.

The majority of INDEXF.SYS consists of file headers.
The file header is affixed-length block of fields that
provide all the information required to identify and
locate the contents and extents of a particular file.
Note that a file header can also be an extension
header.

Supplemental Information Reserved Files
B.1 INDEXF.SYS

B.1.1 File Headers
Because they represent the current state of file storage on a volume, file
headers are of particular interest to ANALYZE/DISK_STRUCTURE. Each
file on a Files-11 disk (INDEXF.SYS included) is identified and located by a
primary header (and extension headers, if required) in INDEXF.SYS.

Each fixed-length header contains both constant and variable-length data.
This data is stored in one of the following six areas:

Header

(dent

Map

Access Control List

Reserved

End Checksum

This area contains the header identification, the file
number and its sequence number, the protection code for
the file, and offsets to the other file header areas.

This area contains the identification and accounting data
for the file for example, the name of the file, its creation
date and time, and backup date and time).

This area contains a list of retrieval pointers that map
the virtual blocks of the file to the logical blocks of
the volume. Each pointer describes one group of
consecutively numbered logical blocks that is allocated to
the file. Retrieval pointers are arranged in the order of the
virtual blocks they represent.

An optional area that contains ACL-related information.

This area is reserved for use by special applications.

The last two bytes of the file header contain a 16-bit
additive checksum of the preceding 255 words of the file
header. The checksum helps verify that the block is a
valid file header.

A set of contiguous clusters is known as an extent. The size of an extent
varies according to the number of contiguous clusters. For example, assume
a file requires 1000 blocks of storage, and the file system finds a set of 800
contiguous blocks and a set of 200 contiguous blocks. The file would then be
stored in two extents: one consisting of 800 blocks, the other of 200.

The primary header of a file points to the first extent of that file and to
as many extents as can be stored in the map area of the primary header.
When the number of extents required to contain a file exceeds the map area
available in the primary header, or the ACL is too large to fit in the primary
header, the file is allocated an extension header. Extension headers contain
all the constant data of the primary header as well as the variable data (in
the header map area and access control list) that specifies the locations of the
extents to which the extension header points.

ANALYZE/DISK_STRUCTURE confirms the validity of a file by working its
way down the list of primary and extension headers of the file. During this
process, ANALYZE/DISK checks the validity of the file header, the chain of
pointers to all extension headers, the retrieval pointers in all headers, and the
attributes of the file.

Supplemental Information Reserved Files
B.2 Master File Directory

B.2 Master File Directory
As previously mentioned, the master file directory (MFD) is the root of
the directory structure of the volume. It contains all reserved files, and all
top-level user file directories. The file name for the MFD is OOOOOO.DIR;1.

ANALYZE/DISK~TRUCTURE verifies all files contained in the directory
structure by making comparisons to INDEXF.SYS. Any file found in
INDEXF.SYS that is not traceable through the directory structure is termed
lost. ANALYZE/DISK_STRUCTURE places lost files in the directory
SYSLOST.DIR if you specified /REPAIR in the command.

6.3 BITMAP.SYS
The storage bitmap file is a contiguous file that the file system uses to keep
track of the available space on a volume. It consists of a storage control block
(SCB) and the bitmap itself.

The SCB contains summary information about the volume (cluster factor,
volume size, blocking factor, and so forth). Each bit in the bitmap represents
an allocatable cluster on the volume. If a bit is set, the corresponding cluster
is available for use. If a bit is clear, the cluster is not available.

During normal operation, the operating system moves portions of the bitmap
in and out of cache memory. The state of each bit in memory is altered as
clusters are allocated and deallocated. BITMAP.SYS is updated when the
portion of the bitmap in cache is swapped back to disk. Since there is always
a portion of the bitmap in cache, BITMAP.SYS never reflects the current state
of allocated clusters on a disk (unless the disk is dismounted or write-locked).

One of the functions of ANALYZE/DISK_STRUCTURE is to build a current
version of BITMAP.SYS from data extracted from INDEXF.SYS, so that
BITMAP.SYS accurately reflects the status of free clusters on the disk.

B.4 VOLSET.SYS
VOLSET.SYS is a reserved file that contains the name of the volume set, a
list of labels for all the volumes in the set, and the attributes of each volume.
ANALYZE/DISK_STRUCTURE uses this file to locate each volume in the set
and confirm the attributes of each volume. Since all volume set information is
stored in VOLSET.SYS on relative volume 1, ANALYZE/DISK_STRUCTURE
ignores VOLSET.SYS on all other volumes.

6.5 QUOTA.SYS
QUOTA.SYS is a reserved file that is used by the file system to keep track
of the disk usage of each UIC on a volume. If you have enabled disk quota
checking for a volume, the records of the file QUOTA.SYS contain all the
UICs on the volume. The system constantly updates QUOTA.SYS to reflect
the current disk usage, the maximum allowed disk usage, and the permitted
overdraft for each UIC .

Supplemental Information Reserved Files
B.5 QUOTA.SYS

During the course of its operations, ANALYZE/DISK—STRUCTURE creates
a version of QUOTA.SYS in memory that reflects the actual disk usage
for each UIC. This version is eventually compared to the disk version of
QUOTA.SYS. If ANALYZE/DISK_STRUCTURE detects any disparities in
disk usage, ANALYZE/DISK_STRUCTURE notifies you. If you invoked
ANALYZE/DISK_STRUCTURE with the /REPAIR qualifier, the disk version
of QUOTA.SYS is updated.

B-4

~; Supplementallnformation-StageChecks

C.1 Stage Checks
ANALYZE/DISK_STRUCTURE performs the verification of a volume or
volume set in eight distinct stages. During these stages, ANALYZE/DISK_
STRUCTURE compiles information that is used in reporting errors and
performing repairs.

Before ANALYZE/DISK_STRUCTURE can proceed with each stage, it must
perform the following four initialization functions:

• Read the device name, validate access to the device, and save the device
name

• Read the user-specified file names for the /LIST and /USAGE qualifiers,
if specified, and open the files

• Assign all appropriate channels to the device being checked

• Write-lock the volume set to prevent simultaneous updates

The following sections describe the eight stages that ANALYZE/DISK_
STRUCTURE goes through while verifying a disk. These descriptions
assume that you specified the /REPAIR qualifier in the command. An
annotated ANALYZE/DISK_STRUCTURE listing is included at the end of
this appendix.

Stage 1

In Stage 1, ANALYZE/DISK_STRUCTURE gathers various volume
information (such as cluster size, volume labels, and the number of volumes
in the set) from several reserved files, verifies the information for accuracy,
reports all discrepancies, and corrects problems discovered during this stage.

ANALYZE/DISK_STRUCTURE identifies the volume and all the
characteristics of that volume by using the parameters of the home block
in INDEXF.SYS. When ANALYZE/DISK confirms this information, it builds a
current version of VOLSET.SYS in memory and reads and verifies the status
control block (SCB) of BITMAP.SYS.

ANALYZE/DISK_STRUCTURE then compares the volume-set attributes for
the version of VOLSET.SYS in memory to the attributes listed in the version
of VOLSET.SYS resident on the volume, reports discrepancies, and corrects
errors.

Stage 2

In Stage 2, ANALYZE/DISK_STRUCTURE copies the current version of
QUOTA.SYS into working memory, and establishes the structure on which
another QUOTA.SYS file is built during subsequent stages. In Stage 7, these
copies are compared to each other, and inconsistencies are reported.

Supplemental Information Stage Checks
C.1 Stage Checks

Stage 3

Stage 3 checks consist of ANALYZE/DISK_STRUCTURE operations that
use the reserved file INDEXF.SYS. During Stage 3, ANALYZE/DISK_
STRUCTURE opens INDEXF.SYS, reads each file header, and completes
the following steps:

• Validates each file's FID, and confirms that all files can be retrieved
through the FID

• Validates the header and the revision date of each file

• Validates any extension headers of each file

• Confirms that each segment number reflects the proper sequence of
extension headers

ANALYZE/DISK_STRUCTURE also does the following during Stage 3:

• Collects multiple references to one extension header and builds a map of
all such references

• Determines the high block (HIBLK) and end-of-file block (EFBLK)
record attributes and compares these values with the recorded values
in INDEXF.SYS

• Checks the high-water mark (HIWATERMARK).

While performing these checks, ANALYZE/DISK_STRUCTURE builds
several maps that it uses in subsequent stages. Table C-1 briefly describes
each map built in Stage 3.

Table C-1 Stage 3 Maps

Bitmap Function

Valid file numbers

Lost file numbers

Directory files

Extension linkages

Multiply-allocated clusters

Allocated clusters

System map

Valid file backlink

Invalid backlink

The current state of the bitmap for
INDEXF.SYS

All the valid file numbers not yet found in a
directory

List of all directory files

List of all FIDs referenced by extension
linkages

List of all clusters that are referenced by
more than one header

All allocated clusters on the volume (or
volume set)

The new storage bitmap

A map of all valid file backlinks

A map of all invalid backlinks

Stage 4

In Stage 4, ANALYZE/DISK_STRUCTURE builds a current version of
BITMAP.SYS using the maps built during Stage 3. In addition, ANALYZE
/DISK_STRUCTURE resolves all multiple references to extension headers

Supplemental Information Stage Checks
C.1 Stage Checks

and corrects any discrepancies in the map sections of headers. In Stage 4,
ANALYZE/DISK_STRUCTURE does the following:

• Copies BITMAP.SYS into working memory

• Compares the version of BITMAP.SYS built in Stage 3 with the copy of
BITMAP.SYS just read into memory and corrects discrepancies

• Compares the corrected version of BITMAP.SYS with a map built from
INDEXF.SYS

• Writes a corrected version of BITMAP.SYS to disk

• Resolves multiply-allocated clusters

• Rewrites header maps to reflect adjustments to multiply-allocated clusters

Stage 5

In this stage, ANALYZE/DISK_STRUCTURE completes a pass of all entries
in the invalid backlink map. ANALYZE/DISK_STRUCTURE searches
the directory hierarchy of the volume to confirm that all files included in
INDEXF.SYS are retrievable through the directory structure. In addition,
ANALYZE/DISK_STRUCTURE identifies lost directories and attempts to
reestablish valid backlinks to those directories.

In Stage 5, ANALYZE/DISK_STRUCTURE does the following:

• Confirms the locations of all directories listed in the directory map
(compiled in Stage 3) and the subsequent files in those directories

• Enters all directories indicated as lost and locates a valid parent (if any)

• Places lost files in SYSLOST.DIR if you specified /REPAIR.

Stage 6

Stage 6 is essentially a cleanup operation for lost file headers. Following
Stage 5, ANALYZE/DISK_STRUCTURE is left with a list of files that are
truly lost files that have backlinks to nonexistent directories. These files
were not traceable through the directory structure.

During Stage 3, ANALYZE/DISK_STRUCTURE compiled a map of backlinks
for all files. As each file is validated, the corresponding flag bit in the map
is cleared. As a result, all backlinks with set bits are invalid. During Stage
3, ANALYZE/DISK also compiled a list of lost files. ANALYZE/DISK_
STRUCTURE uses both these lists in Stage 6. During this stage, ANALYZE
/DISK_STRUCTURE does the following:

• Checks the backlink map to locate all files with invalid backlinks, then
repairs backlinks

• Checks the lost file bitmap for lost files

• If you specified the /USAGE qualifier, creates a file that lists files

Supplemental Information Stage Checks
C.1 Stage Checks

Stage 7

In this stage, ANALYZE/DISK_STRUCTURE compares the values stored
in the quota file built during Stage 2 with those stored in the reserved
file QUOTA.SYS. During Stage 7, ANALYZE/DISK_STRUCTURE opens
QUOTA.SYS and performs the following operations:

• Compares the block usage for each UIC listed in QUOTA.SYS to parallel
statistics listed in the copy of QUOTA.SYS built in Stage 2.

• Modifies QUOTA.SYS such that values in QUOTA.SYS match values in
the copy built in Stage 2.

• Closes QUOTA.SYS

Stage 8

Throughout the first seven stages, ANALYZE/DISK_STRUCTURE places
operations that cannot be performed during a particular stage on a deferred
list. The list includes FIDs sorted by operation. In Stage 8, ANALYZE
/DISK_STRUCTURE performs ,all operations stored on the deferred list. In
Stage 8, ANALYZE/DISK_STRUCTURE does the following:

• Removes an FID from the deferred list, renames the file, and adds the file
to SYSLOST.DIR or to auser-specified directory

• Updates QUOTA.SYS to reflect all additional blocks used by the UIC that
received the lost file

• Updates VOLSET.SYS to correct inconsistencies discovered during
previous ANALYZE/DISK_STRUCTURE stages

C.2 Annotated Example
The following is an annotated example of an ANALYZE/DISK_STRUCTURE
session. The command used to generate this example did not include the
/REPAIR qualifier.

C-4

Supplemental Information Stage Checks
C.2 Annotated Example

Example C-1 ANALYZE/DISK_STRUCTURE Annotated Example

'/VERIFY-I-BADHEADER,
invalid file

'/°VERIFY-I-BADHEADER,
invalid file

%VERIFY-I-BADHEADER,
invalid file

%VERIFY-I-BADHEADER,
invalid file

'/°VERIFY-I-BADHEADER,
invalid file

'/°VERIFY-I-BADHEADER,
invalid file

'/°VERIFY-I-BADHEADER,
invalid file

'/.VERIFY-I-BADHEADER,
invalid file

%VERIFY-I-BADHEADER,
invalid file

'/.VERIFY-I-BADHEADER,
invalid file

%VERIFY-I-BADHEADER,
invalid file

'/.VERIFY-I-BADHEADER,
invalid file

'/°VERIFY-I-BADHEADER,
invalid file

'/.VERIFY-I-BADHEADER,
invalid file

'/.VERIFY-I-BADHEADER,
invalid file

'/.VERIFY-I-BADHEADER,
invalid file

'/VERIFY-I-BADHEADER,
invalid file

%VERIFY-I-BADHEADER,
invalid file

'/.VERIFY-I-BADHEADER,
invalid file

'/.VERIFY-I-BADHEADER,
invalid file

'/,VERIFY-I-BADHEADER,
invalid file

'/°VERIFY-I-BADHEADER,
invalid file

%VERIFY-I-BADHEADER,
invalid file

'/.VERIFY-I-BADHEADER,
invalid file

'/VERIFY-I-BADHEADER,
invalid file

'/.VERIFY-I-BADHEADER,
invalid file

'/.VERIFY-I-BADHEADER,
invalid file

'/.VERIFY-I-BADHEADER,
invalid file

%VERIFY-I-BADHEADER,
invalid file

file (487,173,1) MAIL$0004008EEAEE0572.MAI;1 0
header
file (531,112,1) MAIL$0004008EEFBB198B.MAI;1
header
file (589,104,1) MAIL$0004008EEAF199B9.MAI;1
header
file (604,157,1) MAIL$0004008EF12C3B28.MAI;1
header
file (674,247,1) MAIL$0004008EF6053C9B.MAI;1
header
file (688,41,1) MAIL$0004008EF608AFF4.MAI;1
header
file (689,135,1) MAIL$0004008EEE445A31.MAI;1
header
file (750,71,1) MAIL$0004008EEED19ADF.MAI;1
header
file (753,217,1) MAIL$0004008EE7C4A017.MAI;1
header
file (780,236,1) MAIL$0004008EF777ACA8.MAI;1
header
file (852,57,1) MAIL$0004008EF06C15F6.MAI;1
header
file (856,44,1) MAIL$0004008EE7D2520D.MAI;1
header
file (1059,42,1) MAIL$0004008EEB045608.MAI;1
header
file (1134,76,1) MAIL$0004008EE9EC806D.MAI;1
header
file (1316,147,1) MAIL$0004008EEEDA734F.MAI;1
header
file (1350,74,1) MAIL$0004008EE89BA8BO.MAI;1
header
file (1351,64,1) MAIL$0004008EEB09B036.MAI;1
header
file (1490,104,1) MAIL$0004008EE8B448BO.MAI;1
header
file (1493,106,1) LASTNOTIC.NIL;1
header
file (1548,204,1) MAIL$0004008EF7B4DiB8.MAI;1
header
file (1613,61,1) MAIL$0004008EECEE4BA5.MAI;1
header
file (1812,81,1) MAIL$0004008EE7DF05EC.MAI;1
header
file (1848,26,1) MAIL$0004008EF78659B9.MAI;1
header
file (1983,34119,1) MAIL$0004008EE7E49C13.MAI;1
header
file (1987,33907,1) REMIND.CAL;9
header
file (2196,123,1) MAIL$0004008EE6FA2DC9.MAI;1
header
file (2372,125,1) MAIL$0004008EF06339F9.MAI;1
header
file (2569,67,1) MAIL$0004008EF2BFOC15.MAI;1
header
file (2605,72,1) MAIL$0004008EE856FC73.MAI;1
header

Example C-1 Cont'd. on next page

Supplemental Information Stage Checks
C.2 Annotated Example

Example C-1 (Copt.) ANALYZE/DISK_STRUCTURE Annotated Example

'/.VERIFY-I-BADHEADER, file (2616,70,1) MAIL$0004008EF063C04F.MAI;1
invalid file header

'/.VERIFY-I-BADHEADER, file (2774,29818,1) LASTNOTIC.NIL;1
invalid file header

'/.VERIFY-I-ALLOCCLR, blocks incorrectly marked allocated
LBN 442398 to 445538, RVN 1

'/.VERIFY-I-BADHEADER, file (487,0,1) MAIL$0004008EEAEE0572.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (487,0,1)
lost extension file header

%VERIFY-I-BADHEADER, file (531,0,1) MAIL$0004008EEFBB198B.MAI;1
invalid file header

%VERIFY-I-LOSTEXTHDR, file (531,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (589,0,1) MAIL$0004008EEAF199B9.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (589,0,1)
lost extension file header

%VERIFY-I-BADHEADER, file (604,0,1) MAIL$0004008EF12C3B28.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (604,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (674,0,1) MAIL$0004008EF6053C9B.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (674,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (688,0,1) MAIL$0004008EF608AFF4.MAI;1
invalid file header

'/,VERIFY-I-LOSTEXTHDR, file (688,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (689,0,1) MAIL$0004008EEE445A31.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (689,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (750,0,1) MAIL$0004008EEED19ADF.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (750, 0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (753,0,1) MAIL$0004008EE7C4A017.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (753,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (780,0,1) MAIL$0004008EF777ACA8.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (780,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (852,0,1) MAIL$0004008EF06C15F6.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (852,0,1)
lost extension file header

%VERIFY-I-BADHEADER, file (856,0,1) MAIL$0004008EE7D2520D.MAI;1
invalid file header

%VERIFY-I-LOSTEXTHDR, file (856,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (1059,0,1) MAIL$0004008EEB045608.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (1059,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (1134,0,1) MAIL$0004008EE9EC806D.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (1134,0,1)
lost extension file header

Example C-1 Cont'd. on next page

Supplemental Information Stage Checks
C.2 Annotated Example

Example C-1 (font.) ANALYZE/DISK_STRUCTURE Annotated Example

'/.VERIFY-I-BADHEADER, file (1316,0,1) MAIL$0004008EEEDA734F.MAI;1
invalid file header

'/,VERIFY-I-LOSTEXTHDR, file (1316,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (1350,0,1) MAIL$0004008EE89BA8BO.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (1350,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (1351,0,1) MAIL$0004008EEB09B036.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (1351,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (1490,0,1) MAIL$0004008EE8B448BO.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (1490,0,1)
lost extension file header

'/,VERIFY-I-BADHEADER, file (1493,0,1) LASTNOTIC.NIL;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (1493,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (1548,0,1) MAIL$0004008EF7B4D1B8.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (1548,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (1613,0,1) MAIL$0004008EECEE4BA5.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (1613,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (1812,0,1) MAIL$0004008EE7DF05EC.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (1812,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (1848,0,1) MAIL$0004008EF78659B9.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (1848,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (1983,0,1) MAIL$0004008EE7E49C13.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (1983,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (1987,0,1) REMIND.CAL;9
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (1987,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (2196,0,1) MAIL$0004008EE6FA2DC9.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (2196,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (2372,0,1) MAIL$0004008EF06339F9.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (2372,0,1)
lost extension file header

Example C-1 Cont'd. on next page

Supplemental Information Stage Checks
C.2 Annotated Example

Example C-1 (Cont.) ANALYZE/DISK_STRUCTURE Annotated Example

'/.VERIFY-I-BADHEADER, file (2569,0,1) MAIL$0004008EF2BFOC15.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (2569,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (2605,0,1) MAIL$0004008EE856FC73.MAI;1
invalid file header

'/.VERIFY-I-LOSTEXTHDR, file (2605,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (2616,0,1) MAIL$0004008EF063C04F.MAI;1
invalid file header

%VERIFY-I-LOSTEXTHDR, file (2616,0,1)
lost extension file header

'/.VERIFY-I-BADHEADER, file (2774,0,1) LASTNOTIC NIL;1
invalid file header

%VERIFY-I-LOSTEXTHDR, file (2774,0,1)
lost extension file header

'/.VERIFY-I-BADDIRENT, invalid file identification in directory entry
'/.VERIFY-I-BADDIRENT, invalid file identification in directory entry
'/.VERIFY-I-BADDIRENT, invalid file identification in directory entry
'/.VERIFY-I-BADDIRENT, invalid file identification in directory entry
'/.VERIFY-I-BADDIRENT, invalid file identification in directory entry
'/.VERIFY-I-BADDIRENT, invalid file identification in directory entry
'/,VERIFY-I-BADDIRENT, invalid file identification in directory entry
'/.VERIFY-I-BADDIRENT, invalid file identification in directory entry
'/.VERIFY-I-BADDIRENT, invalid file identification in directory entry
'/.VERIFY-I-BADDIRENT, invalid file identification in directory entry
'/.VERIFY-I-BADDIRENT, invalid file identification in directory entry
'/.VERIFY-I-BADDIRENT, invalid file identification in directory entry
'/.VERIFY-I-BACKLINK,
'/.VERIFY-I-BADDIRENT,
'/,VERIFY-I-BACKLINK,
'/.VERIFY-I-BACKLINK,
'/.VERIFY-I-BACKLINK,

[ALLWAY] NOTES .LOG ; 25 O
[BLAIN.BOOTS]LOADER.OBJ;1
[BLAIN.BOOTS]SYSGEN.OBJ;1
[BLAIN]MAIL_20600841.TMP;1
[BLAIN]NETSERVER.LOG;181
[BLAIN]NETSERVER.LOG;180
[BLAIN]NETSERVER.LOG;179
[BLAIN]NETSERVER.LOG;178
(BLAIN]NETSERVER.LOG;170
[BOEMUS.MAIL]MAIL$0004008EF94A72AO.MAI;1
[BOEMUS]NETSERVER.LOG;10
[BOEMUS]UPDATE.LOG;1

incorrect directory back link [CALGON.GER]OBJ.DIR;1
invalid file identification in directory entry [CALGON]T.TMP;1

incorrect directory back link [CLABIN.BACKUP.TMPSRC]BACKDEF.SDL;1
incorrect directory back link [CLABIN.BACKUP.TMPSRC]COMMON.REQ;1
incorrect directory back link [CLABIN.BACKUP.TMPSRC]DUMMY.MSG;1

'/.VERIFY-I-BADDIRENT, invalid
'/.VERIFY-I-BADDIRENT, invalid
'/.VERIFY-I-BADDIRENT, invalid
'/.VERIFY-I-BADDIRENT, invalid
'/.VERIFY-I-BADDIRENT, invalid
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/,VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,

file identification in directory entry
file identification in directory entry
file identification in directory entry
file identification in directory entry
file identification in directory entry

invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry
invalid file identification in directory entry

[CLABIN.NMAIL]NMAIL.LOG;77
(CLABIN.NMAIL]NMAIL.LOG;76
[DESIN.8800]2840HT86.GNC;1
[DESIN.8800]2840TP86.GNC;1
[DOWNE.MAIL]MAIL$0004008EF94A79B3.MAI;1
[DOWNE.PRO]MORT.OBJ;15
[DOWNE.PRO]OUTPUT.LOG;36
[DOWNE.PRO]OUTPUT.LOG;35
[DOWNE.PRO]OUTPUT.LOG;34
[DOWNE.PRO]OUTPUT.LOG;33
[DOWNE.PRO]OUTPUT.LOG;32
[DOWNE.PRO]OUTPUT.LOG;31
[DOWNE.PRO]OUTPUT.LOG;30
[GAMBLE]CONFLICTS.LIS;1
[GAMBLE . DOC] SMP .LOCK ; 6
[GAMBLE]NETSERVER.LOG;S
[GAMBLE.NMAIL]NMAIL.LOG;22
[GAMBLE.NMAIL]NMAIL.LOG;21
[GILLEY.MAIL]MAIL$0004008EF94A7B70.MAI;1
[GILLEY]NETSERVER.LOG;657
[GILLEY]NETSERVER.LOG;656

Example C-1 Cont'd. on next page

Supplemental Information Stage Checks
C.2 Annotated Example

Example C-1 (Cont.) ANALYZE/DISK_STRUCTURE—Annotated Example

%VERIFY-I-BADDIRENT,
%VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
%VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/,VERIFY-I-BADDIRENT,
%VERIFY-I-BADDIRENT,
%VERIFY-I-BADDIRENT,
%VERIFY-I-BADDIR, di
'/.VERIFY-I-BADDIRENT,
%VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT,
'/.VERIFY-I-BADDIRENT
%VERIFY-I-BADDIRENT
%VERIFY-I-BADDIRENT

'/.VERIFY- I-LOSTSCAN ,

%VERIFY-I-INCQUOTA,
'/°VERIFY-I-INCQUOTA,
'/.VERIFY-I-INCQUOTA,

invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid
invalid

file identification in directory entry

file identification in directory entry

file identification in directory entry

file identification in directory entry

file identification in directory entry

file identification in directory entry

file identification in directory entry

file identification in directory entry

file identification in directory entry

file identification in directory entry

file identification in directory entry

file identification in directory entry

file identification in directory entry

file identification in directory entry

rectory [SYSLOST.BOOTS] has invalid format
invalid file identification in directory entry

invalid file identification in directory entry

invalid file identification in directory entry

invalid file identification in directory entry

invalid file identification in directory entry

invalid file identification in directory entry

due to directory errors, lost files will not be

QUOTA.SYS
QUOTA.SYS
QUOTA.SYS

[HALL] 2 . LOG; 33
[HALL] 2 . LOG ; 32
[HALL] 2 . LOG ; 31
[HALL] 2 . LOG ; 30
[HALL] 2 . LOG ; 29
[HALL] 2 . LOG ; 28
[HALL] 2 . LOG ; 27
[HALL] 2 . LOG ; 26
[HALL] 2 . LOG ; 25
[HALL] 2 . LOG ; 24
[NAMOLLY]NETSERVER.LOG;2
[NAMOLLY]NETSERVER.LOG;1
[RUSS]082654.LOG;1
[SCHROEDER.LOGIN]NETSERVER.LOG;17

[THOEN]NETSERVER.LOG;374
[THOEN]NETSERVER.LOG;373
[THOEN]NETSERVER.LOG;367
[THOMAS.MAIL]MAIL$0004008EF94D75EB.MAI;1
[THOMAS.MAIL]MAIL$0004008EF955DDF3.MAI;1
[THOMAS.MAIL]MAIL$0004008EFD118B44.MAI;1

entered

indicates 69663 blocks used, actual use is 69740 blocks for [11,402]
indicates 1764 blocks used, actual use is 1770 blocks for [12,12]
indicates 0 blocks used, actual use is 31 blocks for [11,720]

O ANALYZE/DISK_STRUCTURE has completed the first two stages, and is
beginning Stage 3. Stage 1 involves collection and verification of various
volume information. ANALYZE/DISK_STRUCTURE found no problems
with volume information. In Stage 2, ANALYZE/DISK_STRUCTURE
copies the current version of QUOTA. SYS to working memory, and builds
the structure on which a new copy is built during subsequent stages. The
first error message is produced by Stage 3. Stage 3 uses the reserved file
INDEXF.SYS to locate a variety of file problems. Here, Stage 3 detects a
number of invalid file headers. Note that the error message includes the
FID and the file name.

This error message is produced during Stage 4, during which ANALYZE
/DISK_STRUCTURE builds a current version of BITMAP.SYS, resolves
multiple references to extension headers, and corrects discrepancies in
the map sections of headers. Here, ANALYZE/DISK_STRUCTURE has
found that the specified logical blocks on the specified relative volume
were marked allocated in the storage bit map, but were not allocated to a
file.

© This message marks the beginning of Stage 5. Here, messages stating
"lost extension file header" and "invalid file header" indicate that
ANALYZE/DISK_STRUCTURE is performing a pass of all entries placed
on the invalid backlink map. This map was created in Stage 3.

This message marks the beginning of the second phase of Stage 5,
in which ANALYZE/DISK_STRUCTURE confirms that all files in
INDEX.SYS are retrievable through the directory structure. Here,
the series of "invalid file identification . . . "messages indicates those
directory entries that did not contain a valid file identification.

© This message is produced by Stage 6, which is essentially a cleanup
phase for lost files. This message indicates that ANALYZE/DISK_
STRUCTURE encountered errors during the directory scan that were
reported in previous messages. As a result, the file is not entered in
directory [SYSLOST].

O

Example C-1 Cont'd. on next page

C-9

Supplemental Information Stage Checks
C.2 Annotated Example

Example C-1 (Cont.) ANALYZE/DISK_STRUCTURE—Annotated Example

© Here, ANALYZE/DISK_STRUCTURE begins Stage 7, in which it
compares values stored in the quota file built during Stage 2 with values
in the reserved file QUOTA.SYS. The last three messages here indicate
discrepancies between the two files.

Note that no messages were produced during Stage 8. During Stage 8,
ANALYZE/DISK_STRUCTURE executes all operations placed on the
deferred list, and if you specified /REPAIR, updates QUOTA.SYS and
VOLSET.SYS as necessary.

Supplemental Information-Usage File

D.1 The ANALYZE/DISK_STRUCTURE Usage File
When you specify the /USAGE qualifier, ANALYZE/DISK_STRUCTURE
creates a disk usage accounting file. The first record of this file, the
identification record, contains a summary of the disk and volume
characteristics. The identification record is followed by many file summary
records, one record for each file on the disk. Each file summary record
contains the owner, size, and name of a file.

The identification record is characterized by the type code USG$K~DENT in
the USG$B_TYPE Meld of the record. Table D-1 contains a description of all
the fields in this record.

Table D-1 Identification Record Format
(Length USG$K_I DENT_LEN)

Field Meaning

USG$L_SERIALNUM

USG$T_STRUCNAM

USG$T_VOLNAME

USG$T_
OWNERNAME

USG$T_FORMAT

USG$Q_TIME

Serial number of the volume. This is an octal longword
value.

Volume set name (if the volume is part of a volume
set). For aFiles-11 Structure Level 1 volume, this field
contains binary zeros; for aFiles-1 1 Structure Level
2 volume that is not part of a volume set, this field
contains spaces. The length of this field is USG$S_
STRUCNAME.

Volume name of relative volume 1. The length of this
field is USG$S_VOLNAME.

Volume owner name. The length of this field is
USG$S_OWNERNAME.

Volume format type. For aFiles-1 1 Structure Level
1 volume, this field contains "DECFILE 1 1 A"; for a
Files-11 Structure Level 2 volume, this field contains
"DECFILE 1 1 B". The length of this field is
USG$S_FORMAT.

Quadword system time when this usage file was
created. The length of this field is USG$S_TIME.

Each file summary record is characterized by the type code USG$K~ILE in
the USG$B_TYPE field of the record. Table D-2 contains a description of all
the fields in these records.

Supplemental Information-Usage File

Table D-2 File Record Format (Length USG$K_FI LE_LEN)

Field Meaning

USG$L _FILEOWNER

USG$W_UICMEMBER

USG$W_UICGROUP

USG$L _ALLOCATED

USG$L _USED

USG$W_DIR_LEN

USG$W_SPEC_LEN

USG$T_FILESPEC

File owner UIC. This can be considered as a single
longword value or as two word values
(USG$W_UICMEMBER and USG$W_UICGROUP).

The member field of the file owner UIC. This is an octal
word value

The group field of the file owner UIC. This is an octal
word value.

Number of blocks allocated to the file, including file
headers. This is a decimal longword value.

Number of blocks used, up to and including the end-of-
file block. This is a decimal longword value.

Length of the directory string portion of
USG$T_FILESPEC, including the brackets. This is a
decimal word value.

Length of the complete file specification in
USG$T_FILESPEC. This is a decimal word value.

File specification, in the following format:

[dir]nam.typ;ver

This field is of variable length. A file that has more
than one directory entry is listed under the first file
specification found. A lost file has an empty directory
string "[]" and the file name is taken from the file header.
In some cases this information does not exist; you must
take this into consideration when you write application
programs to process the usage file. The length of this
field is USG$S_FILESPEC.

The symbolic names referenced in both the identification and the file
summary records are defined in the system definition macro $USGDEF.
The length of the identification record is USG$K~DENT_LEN. The length of
a file summary record is USG$K—FILE _LEN.

Index

Q

ANALYZE/DISK_STRUCTURE stages • C-1
Analyze/Disk_Structure Utility (ANALYZE/DISK_

STRUCTURE)
output •ADSK-3, ADSK-4
parameters• ADSK-4
qualifiers •ADSK-5 to ADSK-10

B
Backlink

definition •ADSK-1
BITMAP.SYS reserved file • B-3
Block cluster• B-2

C
Cluster size• B-2
/CONFIRM qualifier •ADSK-6

D
Directing output• ADSK-4
Directory backlink

definition •ADSK-1
Disk usage accounting file • D-1
Disk volume

repairing errors• ADSK-9
verification •ADSK-1

E
Errors

repair •ADSK-1
reporting •ADSK-1

Examples
annotated • C-4 to C-10

Examples (cont'd.)

creating a disk usage accounting file •ADSK-10
repairing errors on a disk volume•ADSK-9

Extents • B-2

F
File header•B-2

extension • B-2
primary • B-2

File identification (FID) • A-1
Files-1 1 directory structure • A-1

i

INDEXF.SYS reserved file • B-1
Initialization procedures • C-1
Invoking• ADSK-4

L
/LIST qualifier •ADSK-7
Lost file

recovering •ADSK-2

M
Master file directory (MFD) • A-1, B-3
Modes of operation •ADSK-1

0
ODS-1 directory hierarchy • A-1
ODS-2 directory structure • A-1
Output •ADSK-3, ADSK-4

Index-1

Index

Q V
QUOTA.SYS reserved file • B-3

R
/READ_CHECK qualifier• ADSK-8
Recovering lost files •ADSK-2
Repairing errors •ADSK-1
/REPAIR qualifier •ADSK-9
Reporting errors •ADSK-1
Reserved files • B-1

BITMAP.SYS • B-3
INDEXF.SYS • B-1
Master file directory • B-3
QUOTA . SYS • B-3
VOLSET.SYS • B-3

S
SCB (storage control block) • B-3
Session

terminating •ADSK-4
Stage checks • C-1
SYSLOST.DIR •ADSK-2

T
Terminating a session •ADSK-4

U
/USAGE qualifier •ADSK-10
User file directory (UFD) • A-1

Verification
of disk volumes •ADSK-1

VOLSET.SYS reserved file • B-3
Volume

repairing errors on a disk volume•ADSK-9

Index-2

Reader's Comments VMS Analyze/Disk_
Structure Utility Manual

AA—LA39A—TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ❑ ❑ ❑

Completeness (enough information) ❑ ❑ ❑ ❑

Clarity (easy to understand) ❑ ❑ ❑ ❑

Organization (structure of subject matter) ❑ ❑ ❑ ❑

Figures (useful) ❑ ❑ ❑ ❑

Examples (useful) ❑ ❑ ❑ ❑

Index (ability to find topic) ❑ ❑ ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.

Company Date

Mailing Address

 Phone

-- Do Not Tear -Fold Here and Tape

d a9ao a
TM

— — Do Not Tear -Fold Here

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

III~~~~~II~II~~~~II~~~~I~II~I~~I~I~~I~~I~I~~~I~II~~I

C
u

t
A

lo
n
g
 D

o
tt
e
d
 L

in
e

l~J

f1

<""1

n

Reader's Comments VMS Analyze/Disk_
Structure Utility Manual

AA—LA39A—TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ❑ ❑ ❑

Completeness (enough information) ❑ ❑ ❑ ❑

Clarity (easy to understand) ❑ ❑ ❑ ❑

Organization (structure of subject matter) ❑ ❑ ❑ ❑

Figures (useful) ❑ ❑ ❑ ❑

Examples (useful) ❑ ❑ ❑ ❑

Index (ability to find topic) ❑ ❑ ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.

Company Date

Mailing Address

 Phone

- — Do Not Tear -Fold Here and Tape

d a9ao a
TM

- — Do Not Tear -Fold Here

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

III~~~~~II~II~~~~II~~~~I~II~I~TI~I~~I~~I~I~~~I~II~~I

C
u
t
A

lo
n

g
 D

o
tt

e
d

 L
in

e

