
Guide to VAX C
Order Number: AA—L370D—TE

February 1989

This document describes VAX C constructs in context with both the history of the
C programming language and that of the VMS environment. It contains information
on VAX C program development in the VMS environment, the VAX C programming
language, and cross-system portability concerns.

Revision/Update Information: This revised manual supersedes the Guide to VAX C
(Order No. AA—L370C—TE).

Operating System and Version: VMS Version 5.0 or higher

Software Version: VAX C Version 3.0

digital equipment corporation
maynard, massachusetts

First Printing, May 1982
Revised, Apri 1 1985
Revised, March 1987
Revised, January 1989

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1982, 1985, 1987, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
DEC/CMS EduSystem
DEC/MMS IAS
DECnet MASSBUS
DECsystem-10 PDP
DECSYSTEM-10 PDT
DECUS RSTS
DECwriter RSX

UNIBUS
VAX
VAXcluster
VMS
VT

d

ZK4565

Contents

Preface xxi

New and Changed Features xxv

Developing VAX C Programs on VMS Systems

Chapter 1 Developing VAX C Programs at the DCL Command Level

1.1 DCL Commands for Program Development 1-1

1.2 Creating a VAX C Program 1-4
1.2.1 Using VAXTPU 1-~4

1.2.1.1 The EVE Interface 1-4

1.3 Compiling a VAX C Program 1-5
1.3.1 The CC Command 1-5
1.3.2 The CC Command Qualifiers 1-7

1.3.2.1 Using the /DEFINE and /UNDEFINE Qualifiers . . 1-18
1.3.3 Compiler Error Messages 1-20

1.4 Linking a VAX C Program 1-22
1.4.1 The LINK Command 1-22
1.4.2 LINK Command Qualifiers 1-23
1.4.3 Linker Input Files 1-24
1.4.4 Linker Output Files 1-25

iii

1.4.5 Linking Against Object Module Libraries and Shareable
Images 1-26
1.4.5.1 Object Module Libraries 1-26
1.4.5.2 Linking Against the RTL Object Libraries 1-27
1.4.5.3 Linking Against the RTL Shareable Images 1-29

1.4.6 Linker Error Messages 1-30

1.5 Running a VAX C Program 1-31

Chapter 2 Using the VMS Debugger

2.1 Overview 2-1

2.2 Features of the Debugger 2-3

2.3 Getting Started with the Debugger 2-4
2.3.1 Compiling and Linking a Program to Prepare for Debugging 2-4
2.3.2 Starting and Terminating a Debugging Session 2-5
2.3.3 Aborting Program Execution or Debugger Commands 2-6
2.3.4 Entering Debugger Commands 2-7
2.3.5 Viewing Your Source Code 2-10

2.3.5.1 Noscreen Mode 2-10
2.3.5.2 Screen Mode 2-11

2.3.6 Controlling and Monitoring Program Execution 2-12
2.3.6.1 Starting and Resuming Program Execution 2-12
2.3.6.2 Determining Where Execution Is Suspended—SHOW

CALLS 2-14
2.3.6.3 Suspending Program Execution 2-15
2.3.6.4 Tracing Program Execution 2-17
2.3.6.5 Monitoring Changes in Variables 2-18

2.3.7 Examining and Manipulating Data 2-19
2.3.7.1 Displaying the Values of Variables 2-20
2.3.7.2 Changing the Values of Variables 2-21
2.3.7.3 Evaluating Expressions 2-21

2.4 Notes on Debugger Support for VAX C 2-23
2.4.1 Debugger Command-Line Options 2-23
2.4.2 Accessing Scalar Variables 2-23
2.4.3 Accessing Arrays 2-25
2.4.4 Accessing Character Strings 2-27
2.4.5 Accessing Structures and Unions 2-28

2.5 Controlling Symbol References 2-34
2.5.1 Module Setting 2-34

iv

2.5.2 Resolving Multiply Defined Symbols 2-35

2.6 Sample Debugging Session 2-36

Chapter 3 VAX C Support for Parallel Processing

3.1 Overview of Parallel Processing 3-1

3.2 Preparing Programs for Parallel Processing 3-6

3.3 Conditions That Inhibit Parallel Processing 3-9

3.4 Data-Dependency Analysis 3-11
3.4.1 Array Variable References 3-11
3.4.2 Function Calls 3-13

3.4.2.1 math.h Function Calls 3-14
3.4.3 Pointer Variable References 3-15
3.4.4 Scalar Variable References 3-16

3.5 Rewriting Code to Resolve Dependencies 3-17
3.5.1 Loop Alignment 3-18
3.5.2 Code Replication 3-20
3.5.3 Loop Distribution 3-21

3.6 Storage Classes and Parallel Processing 3-22

3.7 Decomposition Pragmas 3-23
3.7.1 The ignore dependency Decomposition Pragma 3-25
3.7.2 The safe call Decomposition Pragma 3-26
3.7.3 The sequential_loop Decomposition Pragma 3-28

3.8 Memory-Management Functions 3-29

3.9 Tuning Issues Related to Parallel Processing 3-30
3.9.1 Customizing the Parallel-Processing Run-Time Environment 3-30

3.9.1.1 Controlling the Number of Processes
(FOR$PROCESSES) 3-31

3.9.1.2 Controlling Internal Spin Waits
(FOR$SPIN WAIT) 3-32

3.9.1.3 Controlling the State of a Process
(FOR$STALL WAIT) 3-33

v

3.9.2 System Parameters Set with the SYSGEN Utility 3-33
3.9.2.1 Global Section Descriptor Count

(GBLSECTIONS) 3-34
3.9.2.2 Global Page Table Entry Count (GBLPAGES) 3-35
3.9.2.3 Global Page File Limit (GBLPAGFIL) 3-35

3.9.3 User Parameters Set with the AUTHORIZE Utility 3-36
3.9.4 Other Tuning Considerations 3-37

VAX C Programming Concepts

Chapter 4 VAX C Tutorial

4.1 C Programming Language Overview 4-1

4.2 VAX C Programming Language Overview 4-3

4.3 Writing a Program 4-4

4.4 Producing Input/output (I/O) 4-6

4.5 Conditional Execution of Code 4-10
4.5.1 The if Statement 4^10
4.52 The switch Statement 4-12
4.5.3 Loops 4-14

4.6 Values, Addresses, and Pointers 4-17

4.7 Aggregates 4-21
4.7.1 Arrays and Character Strings 4-21
4.7.2 Structures and Unions 4-22

Chapter 5 Program Structure

5.1 Function Definitions 5-1
5.1.1 Main Function and Function Identifiers 5-3
5.1.2 Parameter List Declarations 5~4
5.1.3 Function Return Data Types 5-5
5.1.4 Variable-Length Parameter Lists 5-6

5.2 Function Declarations 5-7

vi

5.3 Function Prototypes 5-9
5.3.1 Using Function Prototypes 5-11

5.4 Using Parameters and Arguments 5-12
5.4.1 Function and Array Identifiers as Arguments 5-13
5.4.2 Passing Arguments to the main Function 5-15

5.5 Identifiers 5-17

5.6 Language Keywords 5-18

5.7 Blocks 5-21

5.8 Comments 5-22

5.9 LINT-Like Functionality 5-22

Chapter 6 Statements

6.1 Control Flow Statements 6-1
6.1.1 The null Statement 6-1
6.1.2 The goto Statement 6-2
6.1.3 The label Statement 6-2

6.2 Expressions and Blocks as Statements 6-3
6.2.1 The expression Statement 6-3
6.2.2 The compound Statement 6-3

6.3 Conditional Statements 6-4
6.3.1 The if Statement 6-4
6.3.2 The switch Statement 6-5

6.3.2.1 Declarations Within a switch Statement 6-7

6.4 Looping Statements 6-7
6.4.1 The for Statement 6-8
6.4.2 The while Statement 6-9
6.4.3 The do Statement 6-9

6.5 Interrupting Statements 6-10
6.5.1 The break Statement 6-10
6.5.2 The continue Statement 6-10
6.5.3 The return Statement 6-11

vii

Chapter 7 Expressions and Operators

7.1 (values and rvalues 7-2

7.2 Primary Expressions and Operators 7-3
7.2.1 Parenthetical Expressions 7-3
7.2.2 Function Calls 7-3
7.2.3 Array References 7-5
7.2.4 Structure and Union References 7-6

7.3 Overview of the VAX C Operators 7--6

7.4 Unary Expressions and Operators 7-10
7.4.1 Negating Arithmetic and Logical Expressions 7-10
7.4.2 Incrementing and Decrementing Variables 7-10
7.4.3 Computing Addresses and Dereferencing Pointers 7-11
7.4.4 Calculating a One's Complement 7-12
7.4.5 Forcing Conversions to a Specific Type 7-13
7.4.6 Calculating Sizes of Variables and Data Types 7-14

7.5 Binary Expressions and Operators 7-14
7.5.1 Additive Operators 7-15
7.5.2 Multiplication Operators 7-15
7.5.3 Equality Operators 7-16
7.5.4 Relational Operators 7-16
7.5.5 Bitwise Operators 7-17
7.5.6 Logical Operators 7-17
7.5.7 Shift Operators 7-19

7.6 Conditional Operator 7-19

7.7 Assignment Expressions and Operators 7-20

7.8 Comma Expression and Operator 7-22

7.9 Data-Type Conversions 7-22
7.9.1 Converting Operands 7-23
7.9.2 Converting Function Arguments 7-24

viii

Chapter 8 Data Types and Declarations

8.1 Constants 8-1

8.2 Variables 8-2
8.2.1 Classification of Variables 8-2

8.2.1.1 Data-Type Keywords 8-3
8.2.1.2 Format of a Variable Declaration 8-3

8.3 Integers (int, long, short, char, and unsigned) 8-4
8.3.1 Integer Constants 8-5
8.3.2 Character Constants 8-6
8.3.3 Escape Sequences 8-7

8.4 Floating-Point Numbers (float and double) 8-9
8.4.1 Floating-Point Constants 8-10

8.5 Pointers 8-11
8.5.1 void Pointers 8-13

8.6 Enumerated Types (enum) 8-13

8.7 Arrays ([]) 8-15
8.7.1 Initializing Arrays 8-18

8.8 Character-String Variables (char *and char []) 8-19
8.8.1 Character-String Constants 8-20

8.9 Structures and Unions (struct and union) 8-20
8.9.1 Declaring a Structure or Union 8-22
8.9.2 Referencing Members of Structures or Unions 8-24
8.9.3 Initializing Structures and Unions &-26
8.9.4 Variant Structures and Unions 8-28
8.9.5 Bit Fields 8-30

8.i 0 The void Keyword 8-32

8.11 The typedef Keyword 8-32

8.12 Interpreting Declarations 8-33

ix

Chapter 9 Storage Glasses and Allocation

9.1 The Scope of an Identifier 9-1
9.1.1 The Compilation and Linking Process 9-2
9.1.2 Position of the Declaration 9-2
9.1.3 Lexical Scope and Link-Time Scope 9-4
9.1.4 Program Example 9-6

9.2 Storage Allocation 9-8

9.3 Internal Storage Classes 9-9
9.3.1 The auto Specifier 9-10
9.3.2 The register Specifier 9-11

9.4 Static Storage Class 9-12

9.5 External Storage Class 9-13

9.6 Global Storage Classes 9-15
9.6.1 The globaldef and globalref Specifiers 9-15

9.6.1.1 Comparing the Global and the External Storage
Classes 9-17

9.6.2 The globalvalue Specifier 9-19
9.6.3 Global Enumerated Types 9-20

9.7 Data-Type Modifiers 9-21
9.7.1 The const Modifier 9-21
9.7.2 The volatile Modifier 9--23

9.8 Storage-Class Modifiers 9--23
9.8.1 The noshare Modifier 9-24
9.8.2 The readonly Modifier 9-25
9.8.3 The align Modifier 9-25

Chapter 10 Preprocessor Directives

10.1 Macro Definitions (#define and #undef) 10-2
10.1.1 Constant Identifiers 10-4
10.1.2 Canceling Definitions (#undef) 10-4
10.1.3 Macro Parameters 10-4
10.1.4 Listing Substituted Lines 10-8

10.2 Common Data Dictionary Extraction (#dictionary) 10-8

x

10.2.1 Using the #dictionary Directive 10-9
10.2.2 Support for CDD Data Types 10-11

10.3 Conditional Compilation (#if, #ifdef, #ifndef, #else, #elif, and
#endif) 10-13
10.3.1 The defined Operator 10-15

10.4 File Inclusion (#include) 10-16
10.4.1 Inclusion Using Angle Brackets 10-17
10,4.2 Inclusion Using Quotation Marks (~~ ~~) 10-18
10.4.3 Inclusion of Teyt Modules 10-19
10.4.4 Macro Substitu~ion in #include Directives 10-20

10.5 Specifying Line Numbers (#line and #) 10-21

10.6 Specifying the Module Name and Identification (#module) 10-21

7 0.7 Implementation-Specific Preprocessor Directive (#pragma) 10-22
10.7.1 #pragma [no]builtins Directive 10-23
10.7.2 #pragma ignore dependency Directive 10-23
10.7.3 #pragma [no]inline 10-24

10.7.3.1 Restrictions on Inline Expansion 10-25
10.7.4 #pragma [no]member alignment 10-25
10.7.5 #pragma safe tail Directive 10-26
10.7.6 #pragma sequential loop Directive 10-27
10.7.7 #pragma [no]standard Directive 10-28

Chapter 11 Predefined Macros and Built-In Functions

11.1 Predefined Macros 11-1
11.1.1- CC$gfloat (G_Floating Identification Macro) 11-1
11.1.2 CC$parallel (Parallel-Processing Identification Macro) 11-2
11.1.3 The DATE Macro 11-3
11.1.4 The FILE Macro 11-3
11.1.5 The LINE Macro 11-3
11.1.6 The TIME Macro 11-3
11.1.7 vax, vms, vaxc, and vax11 c (System-Identification Macros) 11-4

11.2 Built-In Functions 11-4
11.2.1 Add Aligned Word Interlocked ~ADAWI) 11-5
11.2.2 Branch on Bit Clear-Clear Interlocked ~BBCCI) 11-6
11.2.3 Branch on Bit Set-Set Interlocked ~BBSSI) 11--6
11.2.4 Find First Clear Bit LFFC) 11-7

xi

11.2.5 Find First Set Bit (_FFS} 11-8
11.2.6 Halt SHALT) 11-8
11.2.7 Insert Entry into Queue at Head Interlocked ~INSQHI) 11-9
11.2.8 Insert Entry into Queue at Tail Interlocked ~INSQTI) 11-9
11.2.9 Insert Entry in Queue ~INSQUE) 11-10
11.2.10 Load Process Context (_LDPCTX) 11-10
11.2.11 Locate Character LLOCC) 11-10
11.2.12 Move from Processor Register LMFPR) 11-11
11.2.13 Move Character 3 Operand ~MOVC3) 11-11
11.2.14 Move Character 5 Operand ~MOVCS) 11-12
11.2.15 Move from Processor Status Longword LMOVPSL) 11-13
11.2.16 Move to Processor Register ~MTPR) 11-14
11.2.17 Probe Read Accessibility PROBER) 11-14
11.2.18 Probe Write Accessibility LPROBEW) 11-15
11.2.19 Read General-Purpose Register ~READ_GPR) 11-15
11.2.20 Remove Entry from Queue at Head Interlocked ~REMQHI) 11-16
11.2.21 Remove Entry from Queue at Tail Interlocked ~REMQTI) 11-16
11.2.22 Remove Entry from Queue ~REMQUE) 11-17
11.2.23 Scan Characters LSCANC) 11-17
11.2.24 Simple Read LSIMPLE_READ) 11-18
11.2.25 Simple Write SIMPLE WRITE) 11-19
11.2.26 Skip Character ~SKPC) 11-19
11.2.27 Span Characters (—SPANC) 11-20
11.2.28 Save Process Context ~SVPCTX) 11-21
11.2.29 Write General-Purpose Register ~WRITE_GPR) 11-21

Using VAX C Features on VMS Systems

Chapter ~2 Using VAX Record Management Services

12.1 RMS File Organization 12-2
12.1.1 Sequential File Organization 12-2
12.1.2 Relative File Organization 12-3
12.1.3 Indexed File Organization 12-3

12.2 Record Access Modes 12-4

12.3 RMS Record Formats 12-5

12.4 RMS Functions 12-5

xii

12.5 Writing VAX C Programs Using RMS 12-7
12.5.1 Initializing File Access Blocks 12-9
12.5.2 Initializing Record Access Blocks 12-10
12.5.3 Initializing Extended Attribute Blocks 12-11
12.5.4 initializing Name Blocks 12-12

12.6 RMS Example Program 12-13

Chapter 13 Using VAX C in the Common Language Environment

13.1 The VAX Procedure Calling and Condition Handling Standard 13-2
13.1.1 Register and Stack Usage 13-3
13.1.2 Return of the Function Value 13-5
13.1.3 The Argument List 13-5

13.2 Specifying Parameter-Passing Mechanisms 13-6
13.2.1 Passing Arguments by Immediate Value 13-8
13.2.2 Passing Arguments by Reference 13-11
13.2.3 Passing Arguments by Descriptor 13-14
13.2.4 VAX C Default Parameter-Passing Mechanisms 13-19

13.3 Interlanguage Calling 13-19
13.3.1 Calling VAX FORTRAN 13-20
13.3.2 Calling VAX MACRO 13-25
13.3.3 Calling VAX BASIC 13-29
13.3.4 Calling VAX Pascal 13-32

13.4 Sharing Global Data 13-37
13.4.1 Sharing Program Sections with FORTRAN Common Blocks 13-37
13.4.2 Sharing Program Sections with PUI Externals 13-39
13.4.3 Sharing Program Sections with MACRO Programs 13-41

13.5 VMS Run-Time Library Routines 13-42

13.6 VMS System Services Routines 13-43

13.7 Calling Routines 13--44
13.7.1 Determining the Type of Call 13-44
13.7.2 Declaring an External Routine and Its Arguments 13-45
13.7.3 Calling the External Routine 13--45
13.7.4 System Routine Arguments 13-45
13.7.5 Symbol Definitions 13-49
13.7.6 Condition Values 13-50

13.7.7 Checking System Service Return Values 13-50

13.8 Variable-Length Argument Lists in System Services 13-52

13.9 Return Status Values 13-54
13.9.1 Format of Return Status Values 13-54
13.9.2 Manipulating Return Status Values 13-56
13.9.3 Testing for Success or Failure 13-58
13.9.4 Testing for Specific Return Status Values 13-59

13.1 ~ Examples of Calling System Routines 13-61

Chapter 14 VAX C Implementation Notes

14.1 Program Sections 14-1
14.1.1 Attributes of Program Sections (Psects) 14-1
14.1.2 Program Sections Created by VAX C 14-2

Appendix A VAX C Definition Modules

Appendix B VAX C Compiler Messages

Appendix C Optional Programming/ Productivity Tools

C.1 Using VAX LSE with VAX C C-1
C.1.1 Entering Source Code Using Tokens and Placeholders C-2
C.1.2 Compiling Source Code C--4

C.1.2.1 Pragma Insertions and Decomposition C-5
C.1.3 Examples C-6

C.1.3.1 Preprocessor Lines C--7
C.1.3.2 External Definition C-7
C.1.3.3 Function Definition C-8
C.1.3.4 Block Declaration C-11
C.1.3.5 Statements and Expressions C-17

C.2 Using the VAX Source Code Analyzer C-20
C.2.1 Multimodular Development C-21

xiv

C.2.2 Setting Up an SCA Environment C--23
C.2.2.1 Creating an SCA Library C-23
C.2.2.2 Generating the Data Analysis Files C-24
C.2.2.3 Selecting an SCA Library C-24
C.2.2.4 Loading Data Analysis Flies into a Local Library C-24

C.2.3 Using SCA for Cross-Referencing C-25

Appendix D Language Summary

D.1 The CC Command D-1

D.2 The LINK Command D-3

D.3 Data-Type Keywords D-4

D.4 Precedence of Operators D-5

D.5 Statements D-6

D.6 Conversion Rutes D-7

D.7 Escape Sequences D-8

D.8 Preprocessor Directives D-8

D.9 Record Management Services (RMS) D-9

Appendix E Working with the Multiprocess Debugging Configuration

E.1 Getting Started E-1
E.1.1 Establishing a Multiprocess Debugging Configuration E-2
E.1.2 Invoking the Debugger E-~2
E.1.3 The Visible Process and Process-Specific Commands E-3
E.1.4 Obtaining Information About Processes E-3
E.1.5 Bringing a Spawned Process Under Debugger Control E-5
E.1.6 Broadcasting Commands to Selected Processes E-6
E.1.7 Controlling Execution E-7

E.1.7.1 Controlling Execution with SET MODE
NOINTERRUPT E-8

E.1.7.2 Putting Selected Processes on Hold E-8
E.1.8 Changing the Visible Process E-9

xv

E.1.9 Dynamic Process Setting E-10
E.1.10 Monitoring the Termination of Images E-11
E.1.11 Terminating the Debugging Session E-11
E.1.12 Releasing Selected Processes from Debugger Control E-11
E.1.13 Aborting Debugger Commands and Interrupting Program

Execution E-12

E.2 Supplemental lnformation E-13
E.2.1 Specifying Processes in Debugger Commands E-13
E.2.2 Monitoring Process Activation and Termination E-15
E.2.3 Interrupting the Execution of an Image to Connect It to the

Debugger E-15
E.2.3.1 Using the CTRUY DEBUG Sequence to Invoke the

Debugger E-16
E.2.3.2 Using the CONNECT Command to Interrupt an

Image E-17
E.2.4 Screen Mode Features for Multiprocess Debugging E-17
E.2.5 Setting Watchpoints in Global Sections E-19
E.2.6 Compatibility of Multiprocess Commands with the Default

Configuration E-20

E.3 Sample Multiprocess Debugging Session E-21

E.4 Considerations for Multiprocess Debugging E-25
E.4.1 User Quotas E-25
E.4.2 System Resources E-26

VAX C Glossary

Index

Examples
1-1 Symbol Cross-References in a Compiler Listing 1-9
2-1 Debugging Sample Program SCALARS.0 2-24

2-2 Debugging Sample Program ARRAY.0 2-26

2-3 Debugging Sample Program STRING.0 2-27

2-4 Debugging Sample Program STRUCT.0 2-30

2-5 Debugging Sample Program ARSTRUCT.0 2-32

2--6 Debugging Sample Program POWER.0 2-37

xvi

2-7 A Sample Debugging Session 2-37

3-1 Using the #pragma ignore dependency Directive 3-25

3-2 Using the #pragma ignore dependency Directive 3-26

3-3 Using the #pragma safe call Directive 3--27

3-4 Using the #pragma sequential- loop Directive 3-29

4-1 Simple Addition in VAX C 4-4

4-2 Output of Information 4-8
4-3 Output Using the Newline Character 4-9
4-4 Conditional Execution Using the if Statement 4-11
4 5 Conditional Execution Using the switch Statement 4-12
4-6 Looping Using the do Statement 4-14

4-7 Looping Using the for Statement 4-16
4-8 Character-String Constants and Arrays 4-22

4-9 Single Storage Allocation of Unions 4-24

4-10 Structures 4-25
5-1 Case Conversion Program 5-2

5-2 Declaring Functions 5-7

5~ Declaring Functions Passed as Arguments 5-14

5-4 Echo Program Using Command-Line Arguments 5-i 6
5-5 Scope of Variable Declarations in Nested Blocks 5-21

6-1 Using switch to Count Blanks, Tabs, and Newlines 6-6
8-1 Rules for Initialization of Structures 8-27

9-1 Scope and Externally Defined Variables 9-6

9-2 Reinitializing Two auto Variables 9-11

9-3 Using Global Variables 9-16

9-4 Using the globalvalue Specifier 9-20

10-1 Nested Substitution Directives 10 3

12-1 External Data Declarations and Definitions 12-14

12 2 Main Program Section 12-16

12-3 Function Initializing RMS Data Structures 12-18

12-4 Internal Functions 12 20

12-5 Utility Function: Adding Records 12-22

i 2-6 Utility Function: Deleting Records 12-24

12-7 Utility Function: Typing the Fiie 12-25

12--8 Utility Function: Printing the File 12-27

12 9 Utility Function: Updating the File 12 29

13-1 Passing Floating-Point Arguments by immediate Value 13-11

13-2 Passing Arguments by Reference 13-13

xvii

13-3 Passing Arguments by Descriptor 13-17

13-4 Passing Compile-Time String Descriptors 13-18

13-5 VAX C Function Caning a VAX FORTRAN Subprogram 13-21

13-6 VAX FORTRAN Subprogram Calling a VAX C Function 13-23

13-7 VAX C Function Emulating a VAX FORTRAN CHARACTER*(*~
Function 13-24

13-8 VAX MACRO Program Calling a VAX C Function 13-26

13-9 VAX C Program Calling a VAX MACRO Program 13-28

13-10 VAX C Function Calling a VAX BASIC Function 13-30

13--11 VAX BASIC Program Ca{ling a VAX C Function 13-31

13-12 VAX C Function Calling a VAX Pascal Routine 13-32

13-13 VAX Pascal Program Calling a VAX C Function 13-35

13-14 Sharing Data with a FORTRAN Program in Named Program Sections 13-38

13-15 Sharing Data with a FORTRAN Program in a VAX C Structure 13-39

13-16 Sharing Data with a PUI Program in Named Program Sections 13-40

13-17 Sharing Data with a PUI Program in a VAX C Structure 13-41

13-18 Sharing Data with a MACRO Program in a VAX C Structure 13-42

13-19 Checking System Service Return Values 13-51

13-20 Using Variable-Length Argument Lists 13-53

13-21 Testing for Success 13-58

13-22 Testing for Specific Return Status Values 13-60

13-23 Passing Arguments to System Services 13-62

13-24 Determining $QIO Completion 13-63

13-25 Using Time Routines 13-64

E-1 VAX C Program Used for Multiprocess Debugging Session E-21

E=2 Sample Multiprocess Debugging Session E-24

Figures
1-1 DCL Commands for Developing Programs 1-2
2-1 Debugger Keypad Key Functions 2-9
3-1 Sequential and Parallel Loop Execution Across Time 3-3
3-2 Program Cycle Using Decomposition 3-8
4--1 rvalues, Ivalues, and Assigning Pointers 4-19
4-2 The Indirection Operator in Assignments 4-20
7-1 Boolean Algebra and the Bitwise Operators 7-18
8-1 Alignment ofi Structure Members 8-31
13-1 The Call Stack 13-4

xviii

13-2 Structure of a VAX Argument List 13-5

13-3 Example of a VAX Argument List 13-6

13-4 Passing Arguments by Immediate Value 13-10

13-5 Bit Fields Within a Return Status Value 13-55

13-6 Internal Representation of a Status Value 13-57

C-1 Use of SCA for Multimodular Development C-22

Tables
1-1 Debugger Compilation Options 1-9

1-2 /MACHINE_CODE Qualifier Options 1-13
1 3 /[NOIOPTIMIZE Qualifier Options 1-14
1-4 /SHOW Qualifier Options 1-16
1-5 /WARNINGS Qualifier Options 1-18

1-6 VMS Linker Default File Types for Input Files 1-25

2-1 Supported Operators 2-22

2-2 Unsupported Operators 2-22

3-1 VAX CParallel-Processing Support Mechanisms 3-5

3 2 VAX C Decomposition Pragmas 3-23

3-3 Logical Names Used for Run-Time Tuning 3-31

3-4 Sysgen Parameters Requiring Changes for Parallel Processing 3-34

5-1 VAX C Keywords 5-19

5-2 VAX C Features Similar to the LINT Utility 5-23

7-1 VAX C Operators 7-7

7-2 Precedence of VAX C Operators 7-9

8-1 VAX CData-Type Keywords 8-3

8-2 Size and Range of VAX C Integers 8-5

8-3 VAX C Escape Sequences 8-8

9-1 VAX C Storage Classes and Storage-Class Specifiers 9-4

9-2 Scope and the Storage-Class Specifiers 9-5

9-3 The Variables in Example 9-1 and Their Storage Classes 9-7

9-4 Location, Lifetime, and the Storage-Class Keywords 9-9

9-5 Predefined Alignment Constants 9-26

10-1 Mapping between CDD and VAX C Data Types 10-12

12-1 Common RMS Run-Time Processing Functions 12-6

12-2 VAX C RMS #include Modules 12-,8

12-3 RMS Prototype Data Structures 12-9

13-1 VAX Register Usage 13-~

xix

13-2 Status Values of SYS$SETEF 13-9

13-3 Status Values of SYS$READEF 13-12

13-4 Valid Class Codes 13-15

13-5 Atomic Data Types 13-16

13-6 Valid Parameter-Passing Mechanisms in VAX C 13-19

13-7 Default Passing Mechanisms 13-20

13-8 Run-Time Library Facilities 13-43

13-9 System Services 13-44

13-10 VAX C Implementation 13-46

13-11 Possible Severity Values 13-56

13-12 Facility Codes 13-59

14-1 Program Section Attributes 14-2
14-2 Combinations of Storage-Class Specifiers and Modifiers 14-3

14-3 Combination Attributes 14-4

A-1 VAX C Definition Modules A-1

C-1 LSE Placeholders C-2

C-2 Commands to Manipulate Tokens and Placeholders C-3
C-3 LSE Commands to Review and Examine Source Code C-5
C-4 SCA Commands to Use Within LSE C-26
D-1 Precedence of Operators D-5
D-2 Escape Sequences D-8
D-3 RMS Module Names D-9
D-4 RMS Templates D-10
E-1 Debugging States E-4
E-2 Process Specifications E-13
E-3 Changed and New Keypad Key Functions E-19

xx

Preface

This guide combines reference information on the VAX C programming
language with information necessary for developing and debugging VAX C
programs on the VMS operating system. The guide also includes information
about porting C programs to and from VMS and other operating systems,
as well as the differences between VAX C and other implementations of the
language. For more information about porting programs to and from other
operating systems, see the VAX CRun-Time Library Reference Manual.

Intended Audience

This guide is intended for experienced programmers who need to learn VAX
C, for users who need to know the difference between VAX C and other
implementations, or for experienced VAX C users who need to reference
information. You should be familiar with one high-level language and should
have some familiarity with the DIGITAL Command Language (DCL). If
you are not familiar with or need to reference information about DCL, see
Chapter 1.

Document Structure

This manual has 14 chapters and 5 appendixes. These chapters are grouped
into three parts as follows:

xxi

Developing VAX C Programs on VMS Systems

• Chapter 1 explains how to create, compile, link, and run a VAX C
program.

• Chapter 2 explains how to use the VMS Debugger.
• Chapter 3 explains how to decompose VAX C loops.

VAX C Programming Concepts

• Chapter 4 presents a brief VAX C tutorial.
• Chapter 5 explains program structure.
• Chapter 6 describes VAX C statements.
• Chapter 7 discusses the types of expressions and the operators used in

VAX C.
• Chapter 8 explains data types and declarations.
• Chapter 9 describes storage classes and allocation.
• Chapter 10 explains preprocessor directives.
• Chapter 11 describes the predefined macros and the built-in functions.

Using VAX C Features on VMS Systems

• Chapter 12 explains VAX Record Management Services (RMS).
• Chapter 13 describes VMS System Services and VMS Run-Time Library

routines.
• Chapter 14 explains program sections (psects) and VAX C storage

classes.

Appendixes

• Appendix A describes VAX C definition modules.
• Appendix B lists VAX C compiler messages.
• Appendix C provides an overview of the VAX Language-Sensitive Editor

(LSE) and information on the VAX Source Code Analyzer (SCA).
• Appendix D provides a summary of all VAX C language features.
• Appendix E explains how to debug a program that takes advantage of

parallel-processing features.
• The VAX C Glossary provides an alphabetical listing of key terms.

Associated Documents

You may find the following documents useful when programming in VAX C:

• VAX C Installation Guide For system programmers who install the
VAX C software.

• VAX CRun-~me Library Reference Manual—For programmers who
wish to use the VAX CRun-Time Library functions and who need
more information about porting programs to and from other operating
systems.

• The C Programming Languages For those who need a more intensive
tutorial than that provided in Chapter 4. This book describes draft-
proposed ANSI C. VAX C contains features and enhancements to the C
language as described in The C Programming Language. Therefore, use
the Guide to VAX C as the reference book for the full description of
VAX C.

Conventions

I"1

Convention Meaning

I RETURN

CTRUX

$RUN CPROG

float x;

x=5;

RETURN

The symbol ~ RETuaN ~ represents a single
stroke of the RETURN key on a terminal.

The symbol ~ cTaux ~ where letter X rep-
resents aterminal control character, is
generated by holding down the CTRL key
while pressing the key of the specified
terminal character.

In interactive examples, the user's re-
sponse to a prompt is printed in red; system
prompts are printed in black.

A vertical ellipsis indicates that not all of
the text of a program or program output is
illustrated. Only relevant material is shown
in the example.

1 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Second Edition (Englewood
Cliffs, New Jersey: Prentice Hall, 1988).

...
xxiii

Convention Meaning

option, . . . A horizontal ellipsis indicates that addi-
tional parameters, options, or values can be
entered. A comma that precedes the ellipsis
indicates that successive items must be
separated by commas.

[output-source, . . .] Square brackets, in function synopses and a
few other contexts, indicate that a syntactic
element is optional. Square brackets are
not optional, however, when used to delimit
a directory name in a VMS file specification
or when used to delimit the dimensions of
an array in VAX C source code.

sc-specifier ::= In syntax definitions, items appearing
auto on separate lines are mutually exclusive
static alternatives.
[eztern]
register

{a I b} Braces surrounding two or more items
separated by a vertical bar (I) indicate
a choice; you must choose one of the two
syntactic elements.

d A delta symbol is used in some contexts to
indicate a single ASCII space character.

switch statement In syntax definitions, items appearing in
fprintf function boldface type identify language keywords
auto storage class and the names of VMS and VAX CRun-

~me Library functions.

xxiv

New and Changed Features

The following list documents the features that distinguish VAX C Version
3.0 from previous versions:

• You can decompose loops for parallel processing by specifying the
/PARALLEL qualifier on the CC command line (see Chapter 1}. For
more information about parallel-processing programming, see Chapter 3.
For more information on parallel-processing debugging, see Appendix E.

• You can improve program performance with automatic inline expansion
of function code. For more information, see Chapter 10.

• VAX C now allows you to create separate preprocessor output with the
/PREPROCESS_ONLY qualifier. For more information, see Chapter 1.

• VAX C now supports new versions of the memory-management functions
malloc, calloc, free, cfree, and realloc. For information about the
linking procedure needed to use these functions, see Chapter 1. For
information about the functions themselves, see the VAX CRun-1~me
Library Reference Manual.

• You can now specify up to 255 characters for identifier names.

• When you use /STANDARD=PORTABLE, the compiler no longer issues
portability messages against the inclusion of the .h include files provided
by VAX C.

• VAX C supports built-in functions that allow more direct access to VAX
instructions. For more information, see Chapter 11.

• VAX C offers an additional predefined macro, CC$parallel, for use with
parallel-processing applications. For more information, see Chapter 11.

• VAX C now supports the VMS License Management Facility. For more
information, see the VAX C Installation Guide.

xxv

The following chapters of this manual are new:

• Chapter 3 (describes parallel-processing features)
• Chapter 4 (the tutorial is now a separate chapter)
• Chapter 11 (all predefined macros and built-in functions are now in a

separate chapter)
• Appendix E (describes parallel-processing debugging)

xxvi

Developing VAX C Programs on VMS Systems

Chapter 1

Developing VAX C Programs at the DCL
Command Level

This chapter describes the following information about program development
on a VMS system:

• Overview of Digital Command Language (DCL) commands used for
program development (Section 1.1)

• Creating VAX C programs (Section 1.2)

• Compiling VAX C programs (Section 1.3)
• Compilation qualifiers (Section 1.3.2)

• Linking VAX C programs (Section 1.4)

• Linking against object libraries (Section 1.4.5.2)

• Linking against shareable images (Section 1.4.5.3)

• Object module libraries (Section 1.4.5.1)

• Running VAX C programs (Section 1.5)

1.1 DCL Commands for Program Development

This section provides a brief overview of the DCL commands used for
program development. The following sections provide more detailed
information about these topics.

Figure 1-1 shows the basic steps in VAX C program development.

Developing VAX C Programs at the DCL Command Level 1-1

Figure 1-1: DCL Commands for Developing Programs

COMMANDS

$ •EDIT AVERAGE.0
Use the file type of C to
indicate that the file
contains a VAX C program

$ CC AVERAGE
The CC Command
assumes that the file type
of an input file is C

(If you use the /UST
qualifier the compiler
creates a listing file)

$ LINK AVERAGE
The L/NKoommand assumes
that the file type of an input
file is OBJ

(If you use the /MAPqual'rfier
the linker creates a map file)

$ RUN AVERAGE
The RUN command assumes
that the file type of an image
is EXE

ACTION

Create a
source program

Compile the
source program

Link the
object module

Run the
executable

image

INPUT/OUTPUT FILES

AVERAGE.0

AVERAGE.OBJ
(AVERAGE.LIS)

libraries

AVERAGE.EXE
(AVERAGE MAP)

ZK-5167-G E

1-2 Developing VAX C Programs at the DCL Command Level

The following example shows each of the commands shown in Figure 1-1
executed in sequence:

$ EDIT/TPU AVERAGE.0

$ CC AVERAGE

$ LINK AVERAGE

$ RUN AVERAGE

To create a VAX C source program at DCL level, you must invoke a text
editor. In the previous example, the VAX Text Processing Utility (VAXTPU)
editor is invoked to create the source program AVERAGE.C. You can use
another editor, such as VAX EDT or the VAX Language-Sensitive Editor
(LSE). (LSE is a product that must be purchased separately; see Appendix C
for more information.) Cis used as the file type to indicate that you are
creating a VAX C source program. Cis the conventional file type for all VAX
C source programs.

When you compile your program with the CC command, you do not have to
specify the file type; by default, VAX C searches for files encling with C.

If your source program compiles successfully, the VAX C compiler creates an
object file with the file type OBJ.

However, if the VAX C compiler detects errors in your source program,
the system displays each error on your screen and then displays the DCL
prompt. You can then reinvoke your text editor to correct each error.

You can include command qualifiers with the CC command. Command
qualifiers cause the VAX C compiler to perform additional actions. In the
following example, the /LIST qualifier causes the VAX C compiler to produce
the listing file AVERAGE.LIS:

$ CC/LIST AVERAGE

For a complete list and explanation of all the command qualifiers available
with the CC command, see Section 1.3.2.

After your program has compiled successfully, invoke the VMS Linker to
create an executable image file. The linker uses the object file produced
by VAX C as input to produce an executable image file as output. (The
executable image is a file containing program code that can be run on the
system.)

You can specify command qualifiers with the DCL command LINK. For a
complete list and explanation of all the command qualifiers available with
the LINK command, see Section 1.4.2.

After producing the executable image file, use the RUN command to execute
your program.

Developing VAX C Programs at the DCL Command Level 1~

1.2 Creatir~g a VAX C Program

To create and modify a VAX C program, you must invoke a text editor. The
VMS system provides you with two text editors: VAX EDT (EDT) and the
VAX Text Processing Utility (VAXTPU). The following section discusses
VAXTPU. See the VAX EDT Reference Manual for more information on EDT.

1.2.1 Using VAXTPU

The VAX Text Processing Utility (VAXTPU) is ahigh-performance, pro-
grammable utility. VAXTPU provides two editing interfaces: the Extensible
VAX Editor (EVE) and the VAXTPU EDT Keypad Emulator. You can also
create your own interfaces.

Like VAX EDT, VAXTPU provides you with an online HELP facility that you
can access during your editing session. When you invoke VAXTPU to create
a file, a journal file is automatically created. You can use this journal file to
recover your edits if the system fails during an editing session. To recover
your edits, type the EVE/RECOVER command.

Unlike EDT, VAXTPU provides multiple windows. This feature allows you
to view two files on your screen at the same time. VAXTPU also provides
you with other advanced features, such as two editing interfaces.

The following sections describe how to use the EVE interface and the EDT
Keypad Emulator interface.

1.2.1.1 The EVE Interface

EVE is an interactive text editor that allows you to execute common editing
functions using the EVE keypad or to execute more advanced functions by
typing commands on the EVE command line. The following command line
invokes the EVE editor and creates the file PROG 1.C:

$ EDIT/TPU PROG 1.0

You can define a global symbol for the EDIT/TPU command by placing a
symbol definition in your LOGIN.COM file. For example:

$ EVE __ "EDIT/TPU"

After this command line is executed, you can type EVE at the DCL prompt
followed by the name of the file you want to modify or create.

For more information on using the advanced features of EVE, see the Guide
to VMS Text Processing.

1-4 Developing VAX C Programs at the DCL Command Level

1.3 Compiling a VAX C Program

The VAX C compiler performs the following functions:

• Detects errors in your source program

• Displays each error on your screen or writes the errors to a file

• Generates machine language instructions from the source
statements

• Groups these language instructions into an object module for the linker

The following sections discuss the CC command and its qualifiers.

1.3.1 The CC Command

To invoke the VAX C compiler, use the CC command. The CC command has
the following .format:

CC[/qualifier...][file-spec [/qualifier...]],...

/qualifier
Specifies an action to be performed by the compiler on all files or specific
files listed. When a qualifier appears directly after the CC command, it
affects all the files listed. However, when a qualifier appears after a file
specification, it affects only the file that immediately precedes it. However,
when files are concatenated, these -rules do not apply.

file-spec
Specifies an input source file that contains the program or module to be
compiled. You are not required to specify a file type if you give your file a . C
file extension; the VAX C compiler adopts the default file type C.

You can include more than one file specification on the same command line
by separating the file specifications with either a comma (,) or a plus sign
(+). If you separate the file specifications with commas, you can control
which source files are affected by each qualifier. In the following example,
the VAX C compiler creates an object file for each source file but creates only
a listing file for the source files PROG_1 and PROG_3:

$ CC /LIST PROG_1, PROG_2/NOLIST, PROG_3

Developing \SAX C Programs at the DCL Command Level 1-5

If you separate file specifications with plus signs, the VAX C compiler
concatenates each of the specified source files and creates one object file
and one listing file. In the following example, only one object file is created,
PROG 1.OBJ, and only one listing file is created, PROG 1.LIS. Both of
these files are named after the first source file in the list, but contain all
three modules.

$ CC PROG_1 + PROG_2/LIST + PROG_3

Any qualifiers specified for a single file within a list of files separated with
plus signs affect all the files in the list.

You can specify the name of a text library on the CC command line to com-
pile asource program. A text library is a file that contains text organized
into modules indexed by a table. Teact libraries have a .TLB default file
extension. The modules in the text library have a .TXT file extension, by
default.

If it cannot find #include modules in libraries specified in the CC command
or in the default library defined by the logical name C$LIBftAftY, the VAX C
compiler searches the library identified by the following name:

SYS$LIBRARY:VAXCD EF.TLB

The library VAXCDEF.TLB consists of #include modules supplied with
VAX C as an option at installation time. In addition, this library contains
declarations of values returned by the VMS system services.

Including text modules from the VAXCDEF.TLB library is preferable to
including the files in SYS$LIBRARY with the .H extensions. For example,
you can include the Standard UO definitions in a program with the following
#include line, which includes the file SYS$LIBRARY:STDIO.H:

#include <stdio.h>

You can also use the following line, which includes the text module stdio
from SYS$LIBRARY VAXCDEF.TLB. This method is more efficient.
Including the stdio text module is usually quicker than including the
STDIO.H file from the SYS$LIBRARY library directory due to the library
indexing system. However, this method is not portable.

#include stdio

See Section 10.4 for more information on include. See Appendix A for
information on definition modules that you can include in your file. See the
YAX C Run-~me Library Reference Manual for information on the include
files that are required to use certain VAX C RTL functions and macros.

1-6 Developing VAX C Programs at the DCL Command Level

1.3.2 The CC Command Qualifiers

The following list shows all the command qualifiers and their defaults
available with the CC command. A description of each qualifier follows the
list.

Command Qualifiers Default
/[NO]ANALYSIS_DATA[=file-spec] /NOANALYSIS_DATA
/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/[NO]DEBUG[=(option, . . .)] /DEBUG=(TRACEBACK,NOINLINE)
/[NO]DEFINE=(identifier[=definition][, . . .]) /NODEFINE
/[NO]DIAGNOSTICS[=file-spec] /NODIAGNOSTICS
/[NO]G_FLOAT /NOG_FLOAT
/[NO]INCLUDE_DIRECTORY=(pathname [, . . .]) /NOINCLUDE_DIRECTORY
/LIBRARY See text.
/[NO]LIST[=file-spec] /NOLIST (interactive mode)

/LIST (batch mode)
/[NO]MACHINE_CODE[=option] /NOMACHINE_CODE
/[NO]OBJECT[=file-spec] /OBJECT
/[NO]OPTIMIZE[=option, . . .] /OPTIMIZE
/[NO]PARALLEL /NOPARALLEL
/[NO]PRECISION={SINGLE,DOUBLE} /PRECISION=DOUBLE
/[NO]PREPROCESS_ONLY[=filename] /NOPREPROCESS
/SHOW[=(option, . . .)] /SHOW=(NOBRIEF,

NODECOMPOSITION,
NODICTIONARY,
NOEXPANSION,
NOINCLUDE,
NOINTERMEDIATE,
NOSTATISTICS,
NOSYMBOLS,
NOTRANSLATION,
SOURCE,
TERMINAL)

/[NO]STANDARD[=(option, . . .) /NOSTANDARD
/[NOJUNDEFINE=(identifier[, . . .]) /NOUNDEFINE
/[NO]WARNINGS[=(option, . . .)] /WARNINGS

You can place command qualifiers either on the CC command line itself or on
individual file specifications (with the exception of the /LIBRARY qualifier).
If placed on a file specification, the qualifier affects only the compilation of

Developing VAX C Programs at the DCL Command Level 1-7

the specified source file and all subsequent source files in the compilation
unit. If placed on the CC command line, the qualifier affects all source files
in all compilation units unless it is overridden by a qualifier on an individual
file specification.

The rest of this section describes the CC command qualifiers.

/[NO]ANALYSIS DATA[=file-spec]
Controls whether the compiler generates a file of source-code analysis
information. The default file name is the file name of the primary source
file; the default file type is .ANA. The .ANA file is reserved for use with
DIGITAL layered products. For more information, see Appendix C.

/[NO]CROSS_REFERENCE
Directs the compiler to generate cross-references for variable names.
The cross-reference lists each line number in the listing file on which
each variable is referenced. This qualifier has no effect unless /LIST and
/SHOW=symbols are specified.

The default is /NOCROSS REFERENCE.

Example 1-1 shows a sample of the type of information placed in the com-
piler listing when you use /LIST/SHOW=symbols/CROSS_REFERENCE.

1-8 Developing VAX C Programs at the DCL Command Level

Example 1-1: Symbol Cross-References in a Compiler Listing

+ +
Storage Map ~

+ +

Identifier
Name Line Size Class Type and References

main

timeb

37

27 10 bytes

Extern Function returning
def. long int

- No references

Structure tag
- Referenced at

line 40

/[NO]DEBUG[-(option, . . .)]
Requests information to be included in the object module for use by the
debugger. Table 1-1 describes the debugger options.

Table 1-1: Debugger Compilation Options

Option Usage

ALL Includes symbol table records and traceback records. This is
equivalent to /DEBUG=INLINE.

INLINE Generates debug information to cause a STEP command to
STEP/INTO an inlined function call.

NOINLINE Generates debug information to cause a STEP command to
STEP/OVER the inlined function call.

NONE Does not include any debugging information. This is equiva-
lent to /NODEBUG.

(continued on next page)

Developing VAX C Programs at the DCL Command Level 1-9

Table 1-1 (Cont.): Debugger Compilation Options

Option Usage

NOTR,ACEBACK

NOSYMBOLS

SYMBOLS

TRACEBACK

Does not include traceback records. This option is used to
exclude all extraneous information from thoroughly debugged
program modules. This option is equivalent to /NODEBUG.

Includes only traceback records. This is the default if the
/DEBUG qualifier is not present on the command line.

Includes symbol table records, but not the traceback records.

Includes only traceback records. This is the default if the
/DEBUG qualifier is not present on the command line.

The default is /DEBUG=(TRACEBACK,NOINLINE).

/[NO]DEFINE-(identifier[=definition][, . . .])
/[NO]UNDEFINE=(identifier[, . . .])
Performs the same functions as the #define and #undefine preprocessor
directives. The /DEFINE qualifier defines a macro to be substituted for
every occurrence of a given identifier in the compilation unit or units;
/UNDEFINE cancels a previous definition (but not subsequent ones). When
both /DEFINE and /UNDEFINE are present in a compilation unit or on the
CC command line, !DEFINE is evaluated before /UNDEFINE.

Since the CC command line must be compatible with DCL, the syntax
of the /DEFINE and /UNDEFINE qualifiers differs from the syntax of
the #define and #undefine preprocessor directives. The following are
differences between the two syntax requirements:

• DCL converts all input to uppercase unless it is enclosed in quotation
marks.

• When more than one /DEFINE is present on the CC command line or in
a single compilation unit, only the last /DEFINE is used. Similarly, only
the last /UNDEFINE is used on the CC command line or the compilation
unit.

• DCL accepts only one equal sign as a delimiter, and a space terminates
the definition.

• You must use quotation marks to define macro definitions. Within the
quotation marks, a delimiter can be either a space or one equal sign,
whichever comes first.

The simplest form of a /DEFINE definition is as follows:

/DEFINE=true

1-10 Developing VAX C Programs at the DCL Command Level

This results in a definition like the one that follows:

#define TRUE 1

The following example uses the /UNDEFINE qualifier:

$ CC/UNDEFINE="TRUE"

Since /DEFINE and /UNDEFINE are not part of the source file, they are
not associated with a listing line number or source line number. Therefore,
when an error occurs in a command-line definition, the message- displayed
at the terminal does not indicate a line number. In the listing file, these
diagnostic messages are placed before the source listing in the order that
they were encountered. When the expansion of a definition causes an
error at a specific source line in the program, the diagnostics both at the
terminal and in the listing file—are associated with that source line.

A command line containing the /DEFINE and the /1UNDEFINE qualifiers
can be long. Continuation characters cannot appear within quotes or they
will be included in the macro stream. The length of a CC command line
cannot exceed the maximum length allowed by DCL.

The /NODEFINE and /NOUNDEFINE qualifiers are provided for compatibil-
ity with other DCL qualifiers. You may wish to use these qualifiers to cancel
/DEFINE or /IUNDEFINE qualifiers that you have specified in a symbol that
you use to compile VAX C programs.

The defaults are /NODEFINE and /NOUNDEFINE.

For additional information on the use of these qualifiers, see Section 1.3.2.1.

/[NO] DIAGNOSTICS[-file-spec]
Creates a file containing compiler messages and diagnostic information.
The extension .DIA is the default file extension for a diagnostics file. The
.DIA file is reserved for use with DIGITAL layered products. For more
information, see Appendix C.

The default is /NODIAGNOSTICS.

/[NO]G_FLOAT
Controls the format of floating-point variables. If you do not specify
/G_FLOAT on the CC command line, double variables are represented in D_
floating format. If /G_FLOAT is specified, all variables declared as double
are represented in G floating format. (See Section 8.4 for more information
on the G_floating format.)

Developing VAX C Programs at the DCL Command Level 1-11

A program compiled with /G_FLOAT must also be linked with either the
object library VAXCRTLG.OLB or the shareable image VAXCRTLG.EXE.
If you are linking against object-module libraries, see Section 1.4.5.2 for
information about which libraries to link against and in what order you
need to specify these libraries. If you are linking against shareable images,
see Section 1.4.5.3.

The default is lNOG FLOAT.

/[NO]INCLUDE_DIRECTORY-(pathname [, ...])
Provides an additional level of search for user-defined include files. Each
path-name argument can be either a logical name or a legal directory
specification, in quoted form.

The /INCLUDE_DIRECTORY qualifier provides the functionality of the -i
qualifier in CC on ULTRIX. This qualifier allows you to specify additional
directories to search for include files. The forms of inclusion affected are the
#include "file-spec" and #include <file-spec> forms. For the quoted form,
the order of search is as follows:

1. The directory containing the top-level source file
2. The directories specified in the /INCLUDE_DIRECTORY qualifier (if

any)
3. The directory or search list of directories specified in the logical name

C$INCLUDE (if any)

For the bracketed form, the order of search is as follows:

1. The directories specified in the /INCLUDE_DIRECTORY qualifier (if
any)

2. The directory or search list of directories specified in the logical name
VAXC$INCLUDE (if any)

3. If VAXC$INCLUDE is not defined, then the directory or search list of
directories specified by SYS$LIBR.ARY

The default is lNOINCLUDE DIRECTORY.

/LIBRARY
Indicates that the associated input file is a library containing modules
of VAX C source text. If the library specification does not include a file
extension, the CC command line assumes the .TLB default type. You must
join the /LIBRARY qualifier with a file specification iri a compilation unit
using a plus sign (+); you cannot place the qualifier on the CC command
line. No matter where you place the /LIBRARY qualifier in a compilation
unit, all files in the unit may make reference to modules within that library.
Consider the following example:

1-12 Developing VAX C Programs at the DCL Command Level

$ CC ONE + TWO + THREE/LIBRARY J RETURN

Files ONE.0 and TWO.0 can contain references to modules in THREE.TLB.
Consider the following example:

$ CC ONE + TWO + THREE/LIBRARY, FOUR RETURN

The file FOUR.0 cannot contain references to modules in THREE.TLB since
FOUR. C is located in a separate compilation unit separated by a comma.
The placement of the library file specification does not matter. The following
command lines are equivalent:

$ CC THREE/LIBRARY + ONE + TWO RETURN
$ CC ONE + THREE/LIBRARY + TWO RETURN
$ CC ONE + TWO + THREE/LIBRARY RETURN j

/[NO] LIST[=file-spec]
Directs the compiler to produce a listing file containing, by default, a source
program listing, a storage map, and a compilation summary. You must
specify this qualifier to get any type of listing output. None of the other
qualifiers use /LIST by default.

By default, /LIST causes the compiler to create a listing file with the same
name as the source file and with the .LIS file extension. If you include a file
specification with the /LIST qualifier, the compiler uses that specification to
name the listing file.

In interactive mode, the default is lNOLIST. In batch mode, the default is
/LIST. See also the descriptions of the qualifiers /[NO)CROSS_REFERENCE,
/[NO]MACHINE_CODE, and /SHOW.

/[NO]MACHINE_CODE[-option]
Directs the compiler to list the generated machine code in the listing file.
However, the compiler cannot produce any kind of listing file unless you
specify /LIST as well.

Several formats exist to list machine code. Table 1-2 shows the options for
/MACHINE CODE.

Table 1-2: /MACHINE CODE Qualifier Options

Option Usage

AFTER Causes the Lines of machine code produced during compila-
tion to print after all the source code in the listing.

(continued on next page)

Developing VAX C Programs at the DCL Command Level 1-13

Table 1-2 (Copt.): /MACHINE_CODE Qualifier Options

Option Usage

BEFORE Causes lines of machine code produced during compilation to
print before any source code in the listing.

INTERSPERSED Produces a listing consisting of lines of source code followed
by the corresponding lines of machine code. This is the
default option.

The default is /NOMACHINE CODE.

/[N O] O B J E CT[.f i l e-spec]
Directs the compiler to produce an object module. By default, /OBJECT
creates an object module file with the same name as that of the first source
file of a compilation unit and with the .OBJ file extension. If you include a
file specification with /OBJECT, the compiler uses that specification instead.
See Section 1.3.1 for more information about file specifications.

The compiler executes faster if it does not have to produce an object module.
Use the /NOOBJECT qualifier when you need only a listing of a program or
when you want the compiler to check a file of source text for errors.

The default is /OBJECT.

/OPTIMIZE[-option, . . .]
The /[NO]OPTIMIZE qualifier determines whether VAX C eliminates ineffi-
cient code. Table 1-3 presents the /[NO]OPTIMIZE qualifier options.

Table 1-3: /[NO]OPTIMIZE Qualifier Options

Option Usage

[NO]DISJOINT Directs the compiler to optimize the generated machine code.
For example, the compiler eliminates common subexpres-
sions, removes invariant expressions from loops, collapses
arithmetic operations into 3-operand instructions, and places
local variables in registers.

When debugging VAX C programs, use the
/OPTIMIZE=NODISJOINT option if you need minimal opti-
mization; if optimization during debugging is not important,
use the /NOOPTIMIZE qualifier.

(continued on next pagey

1-14 Developing VAX C Programs at the DCL Command Level

Table 1-3 (Cont.): /[NO]OPTIMIZE qualifier Options

Option Usage

[NO]INLINE Provides automatic inline expansion of functions that yield
optimized code when they are expanded. Whether or not
a function is a candidate for inline expansion is based on
its size, the number of times it is called, and whether it
conforms to the rules specified in Section 10.7.3.1.

The default is /OPTIMIZE, which is the same as
/OPTIMIZE=(DISJOINT,INLINE). The /NOOPTIMIZE qualifier turns off the
/P~~RALLEL qualifier.

/[NO]PARALLEL
Specifies whether the compiler should perform dependency analysis on for
loops in the program and generate optimized code to run on a multiprocessor
system.

If you specify /PA►RALLEL and if you plan on using the memory-
management functions malloc, calloc, free, or cfree, then you should
include the file stddef.h in your program and you should link against
the proper object library (VAXCPAR.OLB) or shareable image. See
Section 1.4.5.2 for information on linking against object-module libraries
and Section 1.4.5.3 for information on linking against a shareable image.

The default is /NOPARALLEL. The /NOOPTIMIZE qualifier turns off
!PA►RALLEL.

/[NO]PRECISION- SINGLE
DOUBLE

Directs the compiler to generate code to perform floating-point operations on
$oat variables in single or double precision.

Your code may execute faster if it contains float variables and is compiled
with /PRECISION=SINGLE. However, the results of your floating-point
operations will be less precise. See Chapter 8 for more information on
floating-point variables.

The default is /PRECISION=DOUBLE.

/[NO]PREPROCESS ONLY[=filename]
Gives the same functionality as the -E qualifier on UNIX C compilers.
When it is specified, it causes the compiler to perform only the actions of
the preprocessor phase and writes the resulting processed text to a file.
No semantic or syntax processing is done. Furthermore, no object file,
diagnostic file, listing file, or analysis data file is produced.

Developing VAX C Programs at the DCL Command Level 1-15

If you do not specify a file name for the preprocessor output, the name of the
output file defaults to the file name of the input file with a .I file type.

The default is /NOPREPROCESS ONLY.

/SHOW-[(option, ...)]
Sets or cancels listing options. You must use the /LIST qualifier with the
/SHOW qualifier to use any of the /SHOW options. Table 1-4 presents the
/SHOW options.

Table 1-4: /SHOW Qualifier Options

Option Usage

ALL Prints all listing information.

[NO]BRIEF Creates the same listing as the option SYMBOLS
except that BRIEF eliminates from the list any
identifiers that are not referenced in the program
and are not members of a structure or union that is
referenced in the program.

The /NOBRIEF option is the default.

[NO]DECOMPOSITION Places a summary of the loops that were decom-
posed in the listing file. In addition to the /LIST,
/OPTIMIZE, and /PA►RALLEL qualifiers, must be
specified for /SHOW=DECOMPOSITION to take
effect.
The [NO]DECOMPOSITION option is the default.

[NO]DICTIONARY Places the Common Data Dictionary (CDD)
definitions--included in the program with the
#d.ictionary preprocessor directive—into the listing
file. These data definitions are marked in the listing
file with an uppercase letter D in the listing margin.
The NODICTIONARY option is the default.

[NO)EXPANSION Places final macro expansions in the program
listing. When you specify this option, the number
of substitutions performed on the line prints next to
each line.
The NOEXPANSION option is the default.

(continued on next page)

1-16 Developing VAX C Programs at the DCL Command Level

Table 1-4 (Cont.): /SHOW Qualifier Options

Option Usage

[NO]INCLUDE Places the contents of #include files and modules in
the program listing.

The NOINCLUDE option is the default.

[NO]INTERMEDIATE Places all intermediate and final macro expansions
in the program listing.

The NOINTERMEDIATE option is the default.

NONE Creates an empty listing file, with only the header.
If you specify this option on a CC command line that
contains /LIST and /MACHINE_CODE, the compiler
places machine code in the listing file.

[NO]SOURCE Places the source program statements in the pro-
gram listing.

The SOURCE option is the default.

[NO]STATISTICS Places compiler performance statistics in the , pro-
gram listing.

The NOSTATISTICS option is the default.

[NO]SYMBOLS Places the symbol table of the compiled program in
the program listing. The symbol table includes a
list of all functions, the sizes and attributes of all
variables referenced in the program, and a program
section summary and function definition map.

The NOSYMBOLS option is the default.

[NO]TERMINAL Displays compiler messages to the terminal.

The TERMINAL option is the default.

[NO]TR~ANSLATION Places into the listing file all UNIX system file
specifications that the compiler translates to VMS
file specifications using DEC/Shell functions. See
the VAX CRun-~me Library Reference Manual for
more information on file translation.

The NOTRANSLATION option is the default.

/[NO]STANDARD[=(option, ...)]
Directs the compiler to flag certain VAX C specific constructs and VAX C
relaxations of conventional C language constructs and rules. For example,
the conversions from pointer to integer and back again are subject to more
stringent tests when you specify /STANDARD=PORTABLE. If you specify
/STANDARD without an option, the default is /STANDARD=PORTABLE. In
summary, /STANDAR,D=PORTABLE causes the compiler to issue warning

Developing VAX C Programs at the DCL Command Level 1-17

messages against coding practices that may not be portable between VAX C
and other implementations.

The default is INOSTANDARD.

/[NO]UNDEFINE-(identifier[, . . .))
See /[NO]DEFINE in this section.

/[NO]WARNINGS[-(option, .. .)j
Controls whether the compiler prints warning diagnostic messages, in-
formational diagnostic messages, neither, or both. The default qualifier,
/WARNINGS, causes the compiler to print all diagnostic messages. The
/NOWARNINGS qualifier suppresses both the informational and the warn-
ing messages.

Table 1-5 presents the two /WARNING qualifier options.

Table 1-5: /WARNINGS Qualifier Options

Option Usage

NOINFORMATIONALS

NOWARNINGS

Causes the compiler to suppress informational
messages.

Causes the compiler to suppress all warning
messages.

The informational message, SIJMnIIARY, cannot be suppressed with
/NOWARNINGS or /WARNINGS=NOINFORMATIONALS.

The default is /WARNINGS.

1.3.2.1 Using the /DEFINE and IUNDEFINE Qualifiers

This section describes using the !DEFINE and lUNDEFINE qualifiers. Since
these qualifiers must follow Digital Command Language (DCL) conventions,
their use differs from the use of the #define and #undef ne preprocessor
control directives.

You must enclose macro definitions in quotation marks. DCL issues a
warning message if it encounters a definition of the foll~~wing form:

/DEFINE=funct (a) = a+sin (a)

The correct definition is written without spaces, as follr~ws:

/DEFINE="funct (a) =a+sin (a) "

1-18 Developing VAX C Programs at the DCL Command Level

This definition produces the same results, as follows:

#define funct (a) a +sin (a)

Within a definition and inside quotes, a delimiter can be either a space or
one equal sign, whichever comes first. Consider the following example:

$ CC/DEFINE="true=l"

This is equivalent to the following:

#define true 1

Consider the following definition:

$ CC/DEFINE="TRUE =1"

This definition is equivalent to the following:

#define TRUE =1

Within the definition and outside quotes, the only allowed delimiter is
one equal sign; a space terminates the definition. Consider the following
example:

$ CC/DEFINE= (maybe=2, "funct (a) =a+sin (a) ")

These definitions are equivalent to the following:

define MAYBE 2
#define funct (a) a + sin (a)

However, the following definitions are not recognized by DCL:

$ CC/DEFINE= TRUE

$ CC/DEFINE=(FALSE 0)

In the first example, DCL interprets TRUE as a file specification; in the
second, DCL flags an invalid value specification.

One equal sign can be passed to the compiler within a single line in one of
the following ways:

$ CC/DEFINE=(EQU==,"equ =","equal==")

In the first definition, two equal signs are required: the first is removed by
DCL as the delimiter; the other is passed to the compiler. In the second
example, the space is recognized as a delimiter because the definition is
inside quotes. Therefore, only one equal sign is required. In the third
definition, the equal sign is used as the delimiter. The compiler removes the
first equal sign.

Developing VAX C Programs at the DCL Command Level 1-19

You can pass quotation marks in one of the following ways:

$ CC/DEFINE= (QUOTES="""", "funct (b) =printf (") ")

In both examples, DCL removes the first and last quotation marks before
passing the definition to the compiler.

The IUNDEFINE qualifier is useful for undefining the predefined VAX C
preprocessor constants. For example, if you use a preprocessor constant
(such as vaxc, VAXC, VAX11c, or vms) to conditionally compile segments of
VAX C specific code, you can undefine that constant to see how the portable
sections of your program execute. Consider the following program:

main ()
{
#if vaxc
printf("I'm being compiled with VAX C.");
#else
printf("I'm being compiled on some other compiler.")
#endif
}

Output from the program is as follows:

$ CC EXAMPLE.0
$ LINK EXAMPLE.OBJ(RETURN
$ RUN EXAMPLE .EXE RETURN
I'm being compiled with VAX C.

RETURN

CC/UNDEFINE="vaxc" EXAMPLE

$ LINK EXAMPLE.OBJ 1 RETURN

RETURN

~ RUN EXAMPLE . EXE ~ RETURN 1
I'm being compiled~on some other compiler.

'~ .3.3 Compiler Error Messages

If there are errors in your source file when you compile your program, the
VAX C compiler signals these errors and displays diagnostic messages.
Reference the diagnostic message, locate the error, and, if necessary, correct
the error. Diagnostic messages displayed by VAX C have the following
format:

%CC-s-ident, message-text
Listing line, number m
At line number n in name

1-2o Developing VAX C Programs at the DCL Command Level

%CC
Is the facility or program name of the VAX C compiler. This portion indicates
that the message is being issued by VAX C.

s
Is the severity of the error, represented as follows:

F Fatal error. The compiler stops executing when a fatal error occurs and does
not produce an object module. You must correct the error before you can
compile the program.

E Error. The compiler continues, but does not produce an object module. You
must correct the error before you can successfully compile the program.

W V~arning. The compiler produces an object module. It attempts to correct the
error in the statement, but you should verify that the compiler's action is
acceptable. Otherwise, your program may produce unexpected results.

I Information. This message usually appears with other messages to inform
you of specific actions taken by the compiler. No action is necessary on your
part.

ident
Is the message identification. This is a descriptive abbreviation (mnemonic)
of the message text.

message-text
Is the compiler's message. In many cases, it consists of more than one line
of output. A message generally provides you with enough information to
determine the cause of the error so that you can correct it.

Listing line number m
Is the integer m, which gives you the line number in the listing file where
the error occurs. This information is given when you svecify the command
qualifier /LIST.

At tine n!amber n in name
Is the integer n, which gives you the number of the line where the error
occurs. The number is relative to the beginning of the file or text library
module specified by name. You can use the #line directive to change both
the line number and name that appear in the message.

Appendix B lists the messages produced by the VAX C compiler.

Developing VAX C Programs at the DCL Command Level 1-21

1.4 Linking a VAX C Program

After you compile a VAX C source program or module, use the DCL
command LINK to combine your object modules into one executable image,
which can then be executed by the VMS system. A source program or
module cannot run on the VMS system until it is linked.

When you execute the LINK command, the linker performs the following
functions:

• Resolves local and global symbolic references in the abject code

• Assigns values to the global symbolic references

• Signals an error message for any unresolved symbolic reference

• Allocates virtual memory space for the executable image

When using the LINK command on development systems, use the /DEBUG
qualifier to link your program module. The /DEBUG qualifier appends to
the image all the symbol and line number information appended to the
object modules plus information on global symbols, and causes the image to
run under debugger control when it is executed.

The LINK command produces an executable image by default. _However,
you can also use the LINK command_ to obtain shareable images and
system images. The /SHAREABLE qualifier directs the linker to produce
a shareable image; the /SYSTEM qualifier directs the linker to produce a
system image. See Section 1.4.2. for a complete description of these and
other LINK- command qualifiers.

For a complete discussion of the VMS _Linker, see the VMS Linker utility
Manual.

1.4.1 The LINK Command

The LINK command has the following format:

LINK[/command-qualifier]... {file-spec[/file-qualifier...]},...

/command-qualifier...
Specifies output file options.

file-$pec
Specifies the input files to be linked.

1-22 Developing ~/AX C Programs at the DCL Command Level

/file-qualifier...
Specifies input file options.

If you specify more than one input file, you must separate the input file
specifications with a plus sign (+) or a comma (,).

By default, the linker creates an output file with the name of the first input
file specified and the file type EXE. If you link more than one file, it is good
practice to list the file containing the main program first. Then, the name of
your output file will have the same name as your main program module.

The following command line links the object files MAINPROG.OBJ,
SUBPROGI.OBJ, and SUBPROG2.OBJ to produce one executable image
called MAINPROG.EXE:

$ LINK MAINPROG.OBJ, SUBPROGI.OBJ, SUBPROG2.OBJ

1.4.2 LINK Command Qualifiers

You can use the LINK command qualifiers to modify the linker's output,
as well as to invoke the debugging and traceback facilities. Linker output
consists of an image file and an optional map file.

The following list summarizes some of the most commonly used LINK
command qualifiers. A brief description of each qualifier follows this list.
For a complete list of LINK qualifiers, see the VMS Linker Utility Manual.

Command Qualifiers
/BRIEF
/[NO]CROSS_REFERENCE
/[NO]DEBUG
/[NO]EXECUTABLE=[file-spec]
/FULL
/[NOJMAP
/[NO]SHAREABLE(=file-spec]
/[NO]TRACEBACK

Default
See text.
/NOCROSS REFERENCE
/NODEBUG
/EXECUTABLE=name.EXE
See text.
/NOMAP (interactive) /MAP (batch)
/NOSHAREABLE
~TRACEBACK

/BRIEF
Causes the linker to produce a summary of the image's characteristics and a
list of contributing modules.

/[NO]CROSS_REFERENCE
Causes the linker to produce cross-reference information for global symbols;
/NOCROSS_REFERENCE causes the linker to suppress cross-reference
information.

Developing VAX C Programs at the DCL Command Level 1-23

The default is /NOCROSS REFERENCE.

/[NO]DEBUG
Causes the linker to include the VMS Debugger in the executable image and
generates a symbol table; /NODEBUG causes the linker to prevent debugger
control of the program.

The default is /NODEBUG.

/[NO]EXECUTABLE [=file-spec]
Causes the linker to produce an executable image. /NOEXECUTABLE
suppresses production of an image file.

The default is /EXECUTABLE.

IFULL
Causes the linker to produce a summary of the image's characteristics, alist
of contributing modules, listings of global symbols by name and by value,
and a summary of characteristics of image sections in the linked image.

/[NO]MAP
Causes the linker to generate a map file; JNOMAP suppresses the map.

The default is /MAP in batch mode and /NOMAP in interactive mode.

/[NO]SHAREABLE[-file-spec]
Causes the linker to create a shareable image. /NOSHAREABLE generates
an executable image.

The default is ~NOSHAREABLE.

/[NO]TRACEBACK
Causes the linker to generate symbolic traceback information when error
messages are produced; NOTRACEBACK suppresses traceback information.

The default is /TRACEBACK.

1.4.3 Linker Input Files

You can specify the object modules to be included in an executable image in
any of the following ways:

• Specify input file specifications for the object modules.
If no file type is specified, the linker searches for an object file with the
file type OBJ.

• Specify one or more object module library files.

1-24 Developing VAX C Programs at the DCL Command Level

You can specify either the name of an object module library with the
/LIBR,ARY qualifier or the names of the object modules contained in
an object module library with the /INCLUDE qualifier. Section 1.4.5.1
describes the uses of object module libraries.

• Specify an options file.
An options file can contain additional file specifications for the LINK
command, as well as special linker options. You must use the /OPTIONS
qualifier to specify an options file. For more information on options files,
see the VMS Linker Utility Manual.

Table 1-6 shows the default input file types for the linker.

Table 1--6: VMS Linker Default File Types for Input Files

File ~yp►e File

OBJ Object module

OLB Library

OPT Options file

1.4.4 Linker Output Files

When you enter the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default, the
resulting image file has the same file name as that of the first object module
specified with a file type of EXE.

In a batch job, the linker creates both an executable image file and storage
map file by default. The default file type for map files is MAP.

To specify an alternative name for a map file or image file or to specify an
alternative output directory or device, you can include a file specification on
the /MAP or /EXECUTABLE qualifier. In the following example, the LINK
command creates the image file [PROJECT.EXE]UPDATE.EXE and the map
file [PROJECT.MAP]UPDATE.MAP:

$ LINK UPDATE/EXECUTABLE=[PROJECT.EXE]/MAP=[PROJECT.MAP]

Developing VAX C Programs at the DCL Command Level 1-25

1.4.5 Linking Against Object Module Libraries and Shareable Images

Linking against object modules (stored in object module libraries) or
against shareable images are ways of allowing your program to access data
and routines outside of your compilation units. Either the object module
libraries and the shareable images can be created by you or they could be
ones provided by DIGITAL. To access data in object modules and shareable
images, you can use LINK command qualifiers, VMS logical names, and
options files.

Also, the VAX CRun-Time Library (RTL) provides two formats for you to
choose from: object module libraries or shareable images. Depending on
which type of RTL you want to use and on which type of functions you plan
on calling from your programs, you need to supply information to the linker
that specifies which versions of the functions to access.

When you use the VAX C RTL and its corresponding definition modules (see
Appendix A), remember that the VAX C RTL ships with the VMS operating
system and the definition modules ship with the VAX C compiler. Since the
releases of the compiler and of the operating system are not synchronized,
there may be compatibility issues that you need to consider to use the VAX
C RTL properly. See the release notes (by typing HELP CC RELEASE_
NOTES on the DCL command line) for information that may pertain to this
issue.

The following sections discuss these topics in further detail:

• Object module libraries (Section 1.4.5.1)
• Linking against the RTL object libraries (Section 1.4.5.2)
• Linking against the RTL shareable images (Section 1.4.5.3)

1.4.5.1 Object Module Libraries

You can make program modules accessible to other users by storing them
in an object module library. To link modules contained in an object module
library, use the /INCLUDE qualifier and specify the modules you want to
link. In the following example, the LINK command directs the linker to link
the subprogram modules EGGPLANT, TOMATO, BROCCOLI, and ONION
with the main program module GARDEN:

$ LINK GARDEN, VEGGIES/INCLUDE=(EGGPLANT, TOMATO, BROCCOLI, ONION)

1-26 Developing VAX C Programs at the DCL Command Level

An object module library can also contain a symbol table with the names
of each global symbol in the library, and the name of the module in which
they are defined. You specify the name of the object module library con-
taining symbol definitions with the /LIBR.AR,Y qualifier. When you use
the /LIBRARY qualifier during a linking operation, the linker searches the
specified library for all unresolved references found in the included modules
during compilation.

In the following example, the linker uses the library RACQUETS to resolve
undefined symbols in BADMINTON, TENNIS, and RACQUETBALL:

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library to be your default library by using
the DCL command DEFINE LNK$LIBRARY. The linker searches default
user libraries for unresolved references after it searches modules and li-
braries specified in the LINK command. For more information about the
DEFINE command, see the VMS DCL Dictionary.

For more information about object module libraries, see the VMS Linker
Utility Manual.

1.4.5.2 Linking Against the RTL Object Libraries

Using the object code of the VAX CRun-Time Library (RTL) functions is
one of two options (see Section 1.4.5.3 for information on the RTL shareable
images). When you choose to use the VAX C RTL as object code, the linker
attempts to resolve all references to VAX RTL functions by searching any
object module libraries specified on the LINK command line. If the linker
locates the function code, it places a copy of the code in the program's local
program section (psect). If the linker does not locate the function code,
it translates the logical name LNK$LIBRARY n to the name of an object
library and then searches that library for the code.

If you choose to link against object module libraries and if you want to
use any of the VAX C RTL functions, you have to link against the file
SYS$LIBRARY:VAXCRTL.OLB. Depending on what other VAX C RTL
functions you want to use or on other linking requirements, you may have
to link against other files in strict order. To use these VAX C RTL functions,
define the logicals LNK$LIBR,ARY n as libraries in the following order,
omitting any that you do not need to run your programs:

1. SYS$LIBRARY:VAXCCURSE.OLB
Link against this file if you used the Curses Screen Management pack-
age of VAX C RTL functions and macros in your compiled program. If
you do not need Curses, then do not link against this file.

Developing VAX C Programs at the DGL Command Level 1-27

2. SYS$LIBRARY:VAXCRTLG.OLB
Link against this file if you used the /G_FLOAT qualifier on the C C
command line. If you do not specify IG_FLOAT, then do not link against
this file.

3. SYS$LIBRARY:VAXCPAR.OLB
Link against this file either to access the parallel-processing versions
of the VAX C RTL functions malloc, calloc, free, cfree, and real-
loc or to fulfill another linking requirement for parallel processing.
(See Section 3.3 for information on linking requirements for parallel
processing.)

4. SYS$LIBRARY:VAXCRTL.OLB
Link against this file to access the VAX C RTL. If you do not use any
VAX C RTL functions and if you do not have a VAX C main program,
then do not link against this file (or any of the previous files}.

If you want to use the regular versions of the VAX C RTL functions (without
Curses}, then you should define the following logical:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCRTL.OLB LRETURN
If you need to access all types of VAX C RTL functions and macros, you
should define the logical names in the following order:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCCURSE.OLB
$ DEFINE LNK$LIBRARY_1 SYS$LIBRARY:VAXCRTLG.OLB
$ DEFINE LNK$LIBRARY_2 SYS$LIBRARY:VAXCPAR.OLB
$ DEFINE LNK$LIBRARY 3 SYS$LIBRARY:VAXCRTL.OLB

RETURN
RETURN

1RETURN
RETURN j

If you only need to use Curses, then you should define the logical names in
the following order:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCCURSE.OLB
$ DEFINE LNK$LIBRARY 1 SYS$LIBRARY:VAXCRTL.OLB

RETURN
RETURN

If you need to use Curses and G floating precision in your program, then
you should define the logical names in the following order:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCCURSE.OLB
$ DEFINE LNK$LIBRARY_1 SYS$LIBRARY:VAXCRTLG.OLB
$ DEFINE LNK$LIBRARY 2 SYS$LIBRARY:VAXCRTL.OLB

RETURN j
RETURN

RETURN
The order of the specified libraries determines which versions of the VAX
C RTL functions are found by the linker first. If the linker does not find
the function code, or if LNK$LIBR,ARY n is undefined, it assumes that
the function is not a VAX C RTL function, and checks the VMS Common
Run-Time Procedure Library. These references can be explicit references
in your code, or they could be references g®nerated by the compiler to

1-28 Developing VAX C Programs at the DCL Command Level

perform common operations such as input and output, calls to mathematical
functions, and so forth.

If the linker cannot resolve the reference by checking the VMS Common
Run-Time Procedure Library, it assumes that an error has been made. For
more information about Curses, see the VAX CRun-Time Library Reference
Manual. For more information about the G_floating representation of
double variables, see Section 8.4. For more information on VAX C support
for parallel processing, see Chapter 3.

NOTE

Do not use search lists to define the equivalence names for
LNK$LIBRARY n. The linker will not resolve external references
to the VAX C R.TL functions in the proper manner.

1.4.5.3 Linking Against the RTL Shareable Images
Using the object code of the VAX CRun-Time Library {RTL) functions is one
of two options (see Section 1.4.5.2 for more information). You can also use
the VAX C RTL as a shareable image to reduce the space the image takes on
the disk and to increase the program execution rate.

When you use the VAX C RTL as a shareable image, you do not receive a
copy of the object code in your program's local psect; control is passed, using
pointers, from your program to libraries containing the VAX C RTL images
where the designated function executes. After execution, control returns to
your program. This process has a number of advantages. You significantly
reduce the size of a program's executable image, the program's image takes
up less disk space, and the program swaps in and out of memory faster due
to decreased size.

If you do not use the /G FLOAT qualifier, then create an options file,
OPTIONS_FILE.OPT, containing the following line:

SYS$SHARE:VAXCRTL.EXE/SHARE

If you do use the /G FLOAT qualifier, then create an options file containing
the following line:

SYS$SHARE:VAXCRTLG.EXE/SHARE

You cannot include the libraries SYS$SHARE:VAXCRTL.EXE and
SYS$SHARE:VAXCRTLG.EXE in the same options file.

Developing VAX C Programs at the DCL Command Level 1-29

If you have linking requirements for parallel processing (see Section 3.3 for
information on compiling and linking requirements), then you also need to
link against the VAXCPAR.OLB object module library. To do this, define the
following logical name:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCPAR.OLB RETURN

After you define the logical name LNK$LIBR,ARY, you can create the options
file (described previously) that suits your application.

After you create the appropriate options file, named OPTIONS_FILE.OPT,
you can compile and link the program with the following commands:

$ CC PROGRAM.0

$ LINK PROGRAM.OBJ, OPTIONS_FILE/OPT

,RETURN

RETURN

1.4.6 Linker Error Messages

If the linker detects any errors while linking object modules, it displays
messages indicating the cause and severity of the error. If any error or fatal
error conditions occur (that is, errors with severities of E or F), the linker
does not produce an image file.

The messages produced by the linker are descriptive, and you do not usually
need additional information to determine the specific error. Some common
errors that occur during linking are as follows:

• An object module has compilation errors.
This occurs when you try to link a module that produced warning or
error messages during compilation. You can usually link compiled
modules for which the compiler generated messages, but verify that the
modules will produce the output you expect.

• The input file has a file type other than OBJ and no file type was
specified on the command line.
If you do not specify a file type, the linker searches for a file that has
a file type of OBJ by default. If the file is not an object file and you do
not identify it with the appropriate file type, the linker signals an error
message and does not produce an image file.

• You tried to link a nonexistent module.
The linker signals an error message if you misspell a module name on
the command line or if the compilation contains fatal diagnostics.

• A reference to a symbol name remains unresolved.

1-~0 Developing VAX C Programs at the DCL Command Level

An error occurs when you omit required module or library names
from the command line and the linker cannot locate the definition
for a specified global symbol reference. In the following example, a
main program module, OCEAN.OBJ, calls the subprogram modules
REEF.OBJ, SHELLS.OBJ, and SEAWEED.OBJ, and the following LINK
command is executed:

$ LINK OCEAN, REEF, SHELLS

Because SEAWEED is not linked, the linker signals the following error
messages:

oLINK-W-NUDFSYMS, 1 undefined symbol

oLINK-I-UDFSYMS, SEAWEED

%LINK-W-USEUNDEF, module "OCEAN" references undefined symbol "SEAWEED"

oLINK-W-DIAGISUED, completed but with diagnostics

If an error occurs when you link modules, you can often correct the error
by reentering the command string and specifying the correct modules or
libraries. If an error indicates that a program module cannot be located, you
may be linking the program with the wrong VAX C RTL.

For a complete list of linker messages, see the VMS System Messages and
Recovery Procedures Reference Volume.

1.5 Running a VAX C Program

After you link your program, you can use the DCL RUN command to execute
it. The RUN command has the following format:

RUN [/[NO]DEBUG] file-spec [/[NO]DEBUG]

/[NO]DEBUG
Is an optional qualiiier. Specify the /DEBUG qualifier to invoke the
debugger if the image was not linked with it. You cannot use /DEBUG on
images linked with the /NOTRACEBACK qualifier. If the image was linked
with the /DEBUG qualifier and you do not want the debugger to prompt
you, use the /NODEBUG qualifier. The default action depends on whether
the file was linked with the /DEBUG qualifier.

file-spec
Specifies the file you want to run.

The following example executes the image SAMPLE.EXE without invoking
the debugger:

$ RUN SAMPLE/NODEBUG

Developing VAX C Programs at the DCL Command Level 1-31

For more information on debugging programs, see Chapter 2.

During execution, an image can generate a fatal error called an exception
condition. When an exception condition occurs, the system displays an error
message. Run-time errors can also be issued by the operating system or by
certain utilities, such as the VMS Sort Utility (SORT).

When an error occurs during the execution of a program, the program is
terminated and the VMS condition handler displays one or more messages
on the currently defined SYS$ERROR device.

A message is followed by a traceback. For each module in the image that
has traceback information, the condition handler lists the modules that were
active when the error occurred, showing the sequence in which the modules
were called.

For example, if an integer divide-by-zero condition occurs, arun-time
message like the following appears:

$SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero
at PC=OOOOOFC3, PSL=03C00002

This message is followed by a traceback message similar to the following:

oTRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line rel PC abs PC
A C 8 00000007 OOOOOFC3
B main 1408 000002F7 OOOOOBI7

The information in the traceback message is as follows:

module name
Is the name or names of an image module that was active when the error
occurred.

The first module name is that of the module in which the error occurred.
Each subsequent line gives the name of the caller of the module named on
the previous line. In this example, the modules are A and B; main called C.

routine name
Is the name of the function in the calling sequence.

line
Is the compiler-generated line number of the statement in the source
program where the error occurred, or at which the call or reference to the
next procedure was made. Line numbers in these messages match those in
the listing file.

1-32 Developing VAX C Programs at the DCL Command Level

rel PC
Is the value of the PC (program counter). This value represents the location
in the program image at which the error occurred or at which a procedure
was called. The location is relative to the virtual memory address that
the linker assigned to the code program section of the module indicated by
module name.

abs PC
Is the value of the PC in absolute terms; that is, the actual address in
virtual memory representing the location at which the error occurred.

Traceback information is available at run time only for modules compiled
and linked with the traceback option in effect. The traceback option is
in effect by default for both the CC and LINK commands. You may use
the CC command qualifier /NODEBUG and the LINK command qualifier
/NOTRACEBACK to exclude traceback information. However, traceback
information should be excluded only from thoroughly debugged program
modules.

Developing VAX C Programs at the DCL Command Level 1~3

Chapter 2

Using the VMS Debugger

This chapter is an introduction to using the VMS Debugger (debugger) with
SAX C programs and provides the following information:

An overview of the debugger (Section 2.1)
• Features of the debugger (Section 2.2)
• Information to get you started using the debugger (Section 2.3)
• Debugger support for VAX C (Section 2.4)
• Controlling symbolic references (Section 2.5)
• A sample terminal session that demonstrates using the debugger

(Section 2.6)

For complete reference information on the VMS Debugger, see the VMS
Debugger Manual. Online HELP is available during debugging sessions.

This chapter describes how to debug programs that run in only one process.
See Appendix E for more information on debugging programs that take
advantage of multiprocess programs.

2.1 Overview

A debugger is a tool that helps you locate run-time errors quickly It is used
with a program. that has been compiled and linked successfully, but does
not run _correctly. For example, the output may be obviously wrong, or the
program goes into an infinite loop or terminates prematurely. The debugger
enables you to observe and manipulate. the program's execution interactively
so you can locate the point at which the program stopped working correctly.

Using the VMS Debugger 2-1

The VMS Debugger is a symbolic debugger, which means that you can refer
to program locations by the symbols (names) you used for those locations in
your program the names of variables, routines, labels, and so on. You do
not need to use virtual addresses to refer to memory locations.

The debugger recognizes the syntax, expressions, data typing, and other
constructs of VAX C, as well as the following VAX-supported languages:

Ada
BASIC
BLISS
COBOL
DIBOL
FORTRAN
MACRO-32
Pascal
PL/I
RPG II
SCAN

If your program is written in more than one language, you can change from
one language to another during a debugging session. The, current source
language determines the format used for entering and displaying data, as
well as other features that have language-specific settings °;I'or a sample,
comment characters, operators and operator precedence, and case sensitivity
or insensitivity).

By entering debugger commands at your terminal, you can perform the
following operations:

• Start, stop, and resume the program's execution
• Trace the execution path of the program
• Monitor selected locations, variables, or events

Examine and modify the contents of variables, or force events to occur
• Test the effect of some program modifications without having to edit,

recompile, and relink the program

These techniques allow you to isolate an error in your code much faster than
you could without the debugger.

After you find the error in your program, you can edit the source code and
compile, link, and run the corrected version.

2-2 Using the VMS Debugger

2.2 Features of the Debugger

The VMS Debugger provides the following features to help you debug your
programs:

• Online HELP
Online HELP is available during a debugging session and contains
information on all the debugger commands and some selected topics.

• Source Code Display
You can display lines of source code during a debugging session.

• Screen Mode
You can capture and display various kinds of information in scrol-
lable windows, which can be moved around the screen and resized.
Automatically updated source, instruction, and register displays are
available. You can selectively direct debugger input, output, and
diagnostic messages to displays.

• Keypad Mode
When you invoke the debugger, several commonly used debugger
command sequences are assigned by default to the keys of the numeric
keypad (if you have a VT100, VT52, or LK201 keyboard).

• Source Editing
As you find errors during a debugging session, you can use the EDIT
command to invoke any editor available on your system. (You first
specify the editor you want with the SET EDITOR debugger command).

• Command Procedures
The debugger allows you to execute a command procedure to recreate a
debugging session, to continue a previous session, or to avoid typing the
same debugger commands many times during a debugging session.

• Symbol Definitions
You can define your own symbols to represent lengthy commands,
address expressions, or values.

• Initialization Files
You can create an initialization file containing commands to set your
default debugging modes, screen display definitions, keypad key
definitions, symbol definitions, and so on. In addition, you may want to
have special initialization files for debugging specific programs.

Using the VMS Debugger 2-3

• Log Files
You can record the commands you enter during a debugging session and
the debugger's responses to those commands in a log file. You can use
log files to keep track of your debugging efforts, or you can use them as
command procedures in subsequent debugging sessions.

2.3 Getting Started with the Debugger

The following sections explain how to use the debugger with VAX C
programs. These sections focus on basic debugger functions to get you
started quickly. They also provide any debugger information that is specific
to VAX C. For more detailed information that is not specific to a particular
language, see the VMS Debugger Manual.

2.3.1 Compiling and Linking a Program to Prepare for Debugging

Before using the debugger, you must compile and link your program as
explained in this section. The following example shows how to compile
and link a VAX C program (consisting of a single compilation unit named
INVENTORY) prior to using the debugger:

$ CC/DEBUG/NOOPTIMIZE INVENTORY
$ LINK/DEBUG INVENTORY

The /DEBUG qualifier on the CC command line causes the compiler to
write the debug symbol records associated with IrTVENTORY into the
object module, INVENTORY.OBJ. These records allow you to use the
names of variables and other symbols declared in IrTVENTORY in debugger
commands. (If your program has several compilation units, you must
compile each unit that you want to debug with the /DEBUG qualifier.)

Use the /NOOPTIMIZE qualifier when you compile a program in preparation
for debugging. Otherwise, if the object code is optimized (to reduce the size
of the program and make it run faster), the contents of some program
locations may be inconsistent with what you might expect from viewing
the source code. (After debugging the program, recompile it without tree
/NOOPTIMIZE qualifier.)

The /DEBUG qualifier on the LINK command line causes the linker to
include all symbol information that is contained in Ir~TENTORY.OBJ in the
executable image. This qualifier also causes the VMS image activator to
start the debugger at run time. (If your program has several object modules,
you may need to specify the other modules in the LINK command.)

2-4 Using the VMS Debugger

2.3.2 Starting and Terminating a Debugging Session

You can invoke the debugger in either the default or multiprocess config-
uration to debug programs that run in either one or several processes,
respectively. The configuration depends on the current value of the logical
name DBG$PROCESS. Thus, before invoking the debugger, enter the DCL
command SHOW LOGICAL DBG$PROCESS.

This chapter covers programs that run in only one process. For such
programs, DBG$PROCESS either should be undefined, as in the following
example, or should have the value DEFAULT:

$ SHOW LOGICAL DBG$PROCESS
$SHOW-S-NOTRAN, no translation for logical name DBG$PROCESS

If DBG$PROCESS has the value MULTIPROCESS, enter the following
commands to debug programs that run in only one process (see Appendix E
for details on multiprocess debugging):

$ DEFINE DBG$PROCESS DEFAULT

You can now invoke the debugger by entering the DCL RUN command. The
following messages then appear on your screen:

$ RUN INVENTORY

VAX DEBUG Version 5.0

oDEBUG-I-INITIAL, language is C, module set to 'INVENTORY'

DBG>

The INITIAL message indicates that the debugging session is initialized
for a VAX C program and that the name of the main program unit is
INVENTORY. The DBG> prompt indicates that you can now type debugger
commands. At this point, if you type the GO command, program execution
begins and continues until the program is forced to pause or stop (for
example, if the program prompts you for input, or an error occurs).

If you have amixed-language program that includes an Ada package or a
program compiled with the !PARALLEL qualifier, the following message
will appear on your screen instead of the previous one when you invoke the
debugger:

$ RUN INVENTORY

VAX DEBUG Version 5.0

DEBUG-I-INITIAL, language is C, module set to 'INVENTORY'

$DEBUG-I-NOTATMAIN, type GO to get to start of main program

DBG>

Using the VMS Debugger 2-5

The INITIAL message indicates that the debugging session is initialized
for a VAX C program and that the name of the main program unit is
INVENTORY. The NOTATMAIN message indicates that execution is
suspended before the start of the main program, so that you can execute
initialization code under debugger control. Typing the GO command places
you at the start of the main program. At that point, type the GO command
again to start program execution. Execution continues until it is forced to
pause or stop (for example, if the program prompts you for input, or an error
occurs).

To end a debugging session and return to DCL level, type EXIT or press
CTRL/Z:

DBv> EXIT

The following message indicates that your program has completed execution
successfully:

oDEBUG-I--EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completion'
DBG>

If you want to continue debugging after seeing this message, type EXIT and
start a new debugging session with the DCL RUN command.

2.3.3 Aborting Program Execution or Debugger Commands

If your program loops during a debugging session so that the debugger
prompt does not reappear, press CTRL/C. This interrupts program execution
and returns you to the prompt. For example:

DBG> GO

(infinite loop)
CTRUC

Interrupt
oDEBUG-W-ABORTED, command aborted by user request
DBG>

Do not press CTRIJY from within a debugging session. Pressing CTftIJY
aborts the session and returns you to the DCL prompt ($)rather than the
debugger prompt.

You can also press CTRI✓C to abort the execution of a debugger command.
This is useful if a command takes a long time to complete. For example:

2-6 Using the VMS Debugger

DBG> EXAMINE/BYTE 1000:101000
1000: 0
1004: 0
1008: 0
1012: 0
1016: 0)

CTRUC ! Should have typed 1000:1010
$DEBUG-W-ABORTED, command aborted by user request
DBG>

If your program has a CTRL/C AST service routine enabled, use the
debugger command SET ABORT_KEY to assign the debugger's abort
function to another CTRL-key sequence. For example:

DBG> SET ABORT_KEY = CTRL_P
DBG> GO

CTRVP
%DEBUG-W-ABORTED, command aborted by user request
DBG>

Note, however, that many CTRL-key sequences have VMS predefined
functions, and the SET ABORT KEY command enables you to override
such definitions within the debugging session (see the VMS DCL Concepts
Manual). Some of the CTRL-key characters not used by the VMS operating
system are G, K, N, and P. r

2.3.4 Entering Debugger Commands

You can enter debugger commands any time you see the debugger prompt
(DBG>). Type the command at the keyboard and press the RETURN key.
You can enter several commands on a line by separating the command
strings with semicolons (;). As with DCL commands, you can continue a
command string on a new line by ending the previous line with a hyphen
(-).

You can also use the numeric keypad to enter certain commands. Figure 2-1
shows the predefined key functions. You can also redefine key functions with
the DEFINEl~:~EY command.

Most keypad keys have three predefined functions DEFAULT, GOLD, and
BLUE. (The PF 1 key is known as the GOLD key; the PF4 key is known
as the BLUE key.) To obtain a key's DEFAULT function, press the key. To
obtain its GOLD function, first press the PF1 (GOLD) key, and then the key.
To obtain its BLUE function, first press the PF4 (BLUE) key, and then the
key.

Using the VMS Debugger 2-7

In Figure 2-1, the DEFAULT, GOLD, and BLUE functions are listed within
each key's outline, from top to bottom, respectively. For example, pressing
keypad key 0 enters the STEP command; pressing key PF1 and then key 0
enters the STEP/INTO command; pressing key PF4 and then key 0 enters
the STEP/OVER command.

Type the command HELP KEYPAD to get help on the keypad key defini-
tions.

2-8 Using the VMS Debugger

Figure 2-1: Debugger Keypad Key Functions

F17

DEFAULT
(SCROLL)

F18

MOVE

F19

EXPAND
(EXPAND ~)

F20

CONTRACT
(EXPAND -)

PF1

GOLD
GOLD
GOLD

PF2

HELP DEFAULT
HELP GOLD
HELP BLUE

7 /8

DISP SRC,INST,OUT SCROLLNP
DISP INST,REG,OUT SCROLUTOP

scROLLn~P...

4

SCROLL/LEFT
SCROLULEFT255
SCROLL/LEFT...

PF3

SET MODE SCREEN
SET MODE NOSCR
DISP/GENERATE

PF4

BLUE
BLUE
BLUE

9

DISPLAY next

5 /6

DISP next at FS

DISP SRC, OUT

EX/SOU .0\goPC SCROLURIGHT GO
SHOW CALLS SCROLL/RIGHT255
SHOW CALLS 3 SCROIURIGHT... SEL/INST next

r2 3

EXAMINE
EXAM"(prev)

0

SCROLL/DOWN SEUSCROLL next
SCROLUBOTTOM SEUOUTPUT next
SCROIt.JDO1NN... SEVSOURCE next

STEP
STEPANTO
STEP~OVER

RESET
RESET
RESET

ENTER

ENTER

LK201 Keyboard:

Press Keys 2,4,6,8
F17 SCROLL
F18 MOVE
F19 EXPAND
F20 CONTRACT

'MOVE'

4

8

MOVENP
MOVE/UP:999
MOVE/UP:5

1 ~s

MOVE/LEFT
MOVE/LEFT:999
MOVE/LEFT:10

2

MOVE/DOWN
MOVE/DOWN:999
MOVE/DOWN:S

MOVE/RIGHT
MOVE/RIGHT:999
MOVE/RIGHT:10

'EXPAND' C
1

EXPANDNP
EXPAND/UP:999
EXPANDNP:5

EXPAND/IEFT.. EXPAND/RIGHT
EXPAND/LEFT:999 EXPAND/RIGHT:999
EXPANOVLEFT:10 EXPAND/RIGHT:10

2

EXPAND/DOWN
EXPAND/DOWN:999
EXPANDIDO'WN:S

 J

'CONTRACT'

4

EX
EX

EXPAND/LEFT: 1
VT-100 Keyboard: PAND/LEFT:-999

Keys 2,4,6,8 PANDILEFT: 10

SET KEY/STATE~EFAULT SCROLL
SET KEY/STATE.MOVE MOVE
SET KEY/STATEiEXPAND EXPAND
SET KEY/STATE•UONTRFICT CONTRACT

8

EXPANDNP:-1
EXPANDNP:-999
EXPANDNP:-5

' 2

EXPAND/DOWN:-1
EXPAND/DOWN:-999
EXPAND/DOWN:-5

6

EXPAND/RIGHT:-1
EXPAND/RIGHT:-9
EXPAND/RIGHT:-10

ZK-4774-GE

Using the VMS Debugger 2-9

2.3.5 Viewing Your Source Code

The debugger provides two modes for displaying information: noscreen mode
and screen mode. By default, when you invoke the debugger, you are in
noscreen mode, but you may find that it is easier to view your source code in
screen mode. Both modes are briefly described in the following sections.

2.3.5.1 Noscreen Mode

Noscreen mode is the default, line-oriented mode of displaying input and
output. To invoke noscreen mode from screen mode, press the keypad key
sequence GOIfD-PF3. See the sample debugging session in Section 2.6 for a
demonstration of noscreen mode.

In noscreen mode, you can use the TYPE command to display one or more
source lines. For example, the following command displays line 3 of the
module whose code is currently executing:

DBG> TYPE 3
module MAIN

3: J = 4;
DBG>

The display of source lines is independent of program execution. To display
source code from a module other than the one whose code is currently
executing, use the TYPE command with a path name to specify the module.
For example, the following command displays lines 16 through 21 of module
TEST:

DBG> TYPE TEST\16:21

You can also use the Ex:AMINE/SOURCE command to display the source
line for a routine or any other program location that is associated with an
instruction.

Note that the debugger also displays source lines automatically when it
suspends execution at a breakpoint or watchpoint or after a STEP command,
or when a tracepoint is triggered (see Section 2.3.6).

If the debugger cannot locate source lines for display, it enters a diagnostic
message. Source lines may not be available for a variety of reasons. For
example:

• The module was compiled or linked without the /DEBUG command
qualifier.

• Execution is currently suspended within a system or shareable image
routine for which no source code is available.

2-10 Using the VMS Debugger

• The module may need to be set with the SET MODULE command.
(Section 2.5.1 explains module setting).

• The source file was moved to a different directory after it was compiled
(the location of source files is embedded in the object modules). In this
case, use the SET SOURCE command to specify the new location.

2.3.5.2 Screen Mode

To invoke screen mode, press keypad key PF3. In screen mode, the debugger
splits the screen into three displays named SRC, OUT, and PROMPT, by
default. The following example shows how your screen will appear in screen
mode:

--SRC: module SCOPE---source-scroll
2: * To be used with F2.0 so as to demonstrate the
3: * control of modules and setting of scope.
4:
S : main ()

--> 6• {

7: static int i;

8: static double f;
9: double function2();

10: i = 400;
- OUT -output

- PROMPT -error-program-prompt
DBG>

The SRC display, at the top of the screen, shows the source code of the
module (compilation unit) where code execution is currently suspended.
An arrow in the left column points to the next line to be executed, which
corresponds to the current value of the program counter, PC (the PC is
a VAX register that contains the address of the next instruction to be
executed). The line numbers, which are assigned by the compiler, match
those in the listing file.

The OUT display, in the middle of the screen, captures the debugger's output
in response to the commands that you enter.

The PROMPT display, at the bottom of the screen, shows the debugger
prompt (DBG>), your input, debugger diagnostic messages, and program
output.

Using the VMS Debugger 2-11

The SRC and OUT displays can be scrolled to display information beyond
the window's edge. Press keypad key 8 to scroll up and keypad key 2 to
scroll down. Use keypad key 3 to change the display to be scrolled (by
default, the SRC display is scrolled). Scrolling a display does not affect
program execution.

In screen mode, if the debugger cannot locate source lines for the program
unit where execution is currently suspended, it tries to display source
lines in the next routine down on the call stack for which source lines are
available. If this is possible, the debugger also enters the following message:

%DEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC.
Displaying source in a caller of the current routine.

In such cases, the arrow in the SRC display identifies the call statement in
the calling routine.

2.3.6 Controlling and Monitoring Program Execution

This section discusses the following topics:

• Starting and resuming program execution with the GO command
• Stepping through the program's code, with the STEP command
• Determining where execution is currently suspended with the SHOW

CALLS command

• Suspending program execution with breakpoints
• Tracing program execution with tracepoints
• Monitoring changes in variables with watchpoints

2.3.6.1 Starting and Resuming Program Execution

There are two debugger commands for starting or resuming program ex-
ecution: GO and STEP. The GO command starts execution. The STEP
command executes a specified number of source lines or instructions.

The GO Command

The GO command starts program execution, which continues until forced to
stop. The GO command is used most often in conjunction with breakpoints,
tracepoints, and watchpoints (described in Sections 2.3.6.3, 2.3.6.4, and
2.3.6.5). If you set a breakpoint in the path of execution and then enter
the GO command, execution is suspended at that breakpoint. If you set a
tracepoint, the path of execution through that tracepoint is monitored. If

2-12 Using the VMS Debugger

you set a watchpoint, execution is suspended when the value of the watched
variable changes.

You can also use the GO command to test for an exception condition or an
infinite loop. If an exception condition that is not handled by your program
occurs, the debugger takes control and displays the DBG> prompt so that
you can enter commands. If you are using screen mode, the pointer in the
source display indicates where execution stopped. You can use the SHOW
CALLS command (see Section 2.3.6.2) to identify the currently active routine
calls (the call stack).

If an infinite loop occurs, the program does not terminate, so the debugger
prompt does not reappear. To obtain the prompt, interrupt execution by
pressing CTRL/C (see Section 2.3.3). You can then look at the source display
and a SHOW CALLS display to find where execution is suspended.

The STEP Command

The debugger command STEP allows you to execute a specified number of
source lines or instructions, or to execute the program to the next instruction
of a particular kind, for example, to the next CALL instruction.

By default, the STEP command executes a single source line at a time. In
the following example, the STEP command executes one line, reports the
action ("stepped to . . . "), and displays the line number (27) and source code
of the next line to be executed:

DBG> STEP

stepped to TEST\COUNT\$LINE 27

27: x++ ;

DBG>

Execution is now suspended at the first machine code instruction for line
27 of the module TEST; line 27 is in COUNT, a routine within the module
TEST. TEST\ COUNT\ %LINE 27 is a path name. The debugger uses path
names to refer to symbols. (You do not need to use a path name in referring
to a symbol, however, unless the symbol is not unique. If the symbol is not
unique, the debugger enters an error message. See Section 2.5.2 for more
information on resolving multiply defined symbols.)

The STEP command can execute a number of lines at a time. In the follow-
ing example, the STEP command executes three lines:

DBG> STEP 3

Note that only those source lines for which code i~.structions were generated
by the compiler are recognized as executable lines by the debugger. The
debugger skips over any other lines for example, comment lines.

Using. the VMS Debugger 2-13

If a line contains more than one statement, the debugger executes all the
statements on that line as part of the single step.

You can specify different stepping modes, such as stepping by instruction
rather than by line (SET STEP INSTRUCTION). Also, by default, the
debugger steps over called routines; execution is not suspended within a
called routine, but the routine is executed. Entering the SET STEP INTO
command causes the debugger to suspend execution within called routines,
as well as within the routine that is currently executing.

2.3.6.2 Determining Where Execution Is Suspended—SHOW CALLS

The debugger command SHOW CALLS is useful when you are unsure where
execution is suspended during a debugging session (for example, after a
CTRL/C interruption).

The SHOW CALLS command displays a traceback that lists the sequence
of calls leading to the routine where execution is currently suspended. For
each routine (beginning with the one where execution is suspended), the
debugger displays the following information:

• The name of the module that contains the routine
• The name of the routine
• The line number at which the call was made (or at which execution is

suspended, in the case of the current routine)
• The corresponding PC addresses (the relative PC address from the start

of the routine, and the absolute PC address of the program)

For example:

DBG> SHOW CALLS
module name routine name line rel PC abs PC

*TEST PRODUCT 18 00000009 0000063C
*TEST COUNT 47 00000009 00000647
*MY PROG MY_PROG 21 OOOOOOOD 00000653
DBG>

This example indicates that execution is currently at line 18 of routine
PRODUCT (in module TEST), which was called from line 47 of routine
COUNT (in module TEST), which was called from line 21 of routine
MY PROG (in module MY PROG).

2-14 Using the VMS Debugger

f~
2.3.6.3 Suspending Program Execution

The debugger command SET BREAK lets you select breakpoints, which
are locations at which program execution is suspended. When you reach a
breakpoint, you can enter commands to check the call stack, examine the
current values of variables, and so on.

In the following example, the SET BREAK command sets a breakpoint on
the procedure COUNT. The GO command then starts execution. When the
procedure COUNT is encountered, execution is suspended. The debugger
reports that the breakpoint at COUNT has been reached ("break at . . . "),
displays the source line (54) where execution is suspended, and prompts you
for another command. At this breakpoint, you can step through the proce-
dure COUNT, using the STEP command, and use the debugger command
EXAMINE (see Section 2.3.7.1) to check on the current values of X and Y.

DBG> SET BREAK COUNT

DBG> GO

break at PROG2\COUNT
54: {

DBG>

When using the SET BREAK command, you can specify program locations
using various kinds of address expressions (for example, line numbers,
routine names, instructions, virtual memory addresses, or byte offsets).
With high-level languages, you typically use routine names, labels, or line
numbers, possibly with path names, to ensure uniqueness.

Specify routine names and labels as they appear in the source code. Line
numbers may be derived from either a source code display or a listing file.
When specifying a line number, use the prefix %LINE or the debugger will
interpret the line number as a memory location. For example, the following
command sets a breakpoint at line 41 of the module whose code is currently
executing; the debugger suspends execution when the PC value is at the
start of line 41:

DBG> SET BREAK oLINE 41

You can only set breakpoints on lines that result in machine code instruc-
tions. The debugger warns you if you try to do otherwise (for example, if
you try to set a breakpoint on a comment line). To set a breakpoint on a line
number in a module other than the one whose code is currently executing,
specify the module's name in a path name as in the following example:

DBG> SET BREAK SCREEN IO\%LINE 58

Using the VMS Debugger 2-15

You do not need to specify a particular program location, such as line 58
or COUNT, to set a breakpoint. You can set breakpoints on events, such
as exceptions. You can also use the SET BREAK command with the /LINE
qualifier (but no parameter) to break on every line, or with the /CALL
qualifier to break on every CALL instruction, and so on. For example:

DBG> SET BREAK/LINE

DBG> SET BREAK/CALL

You can conditionalize a breakpoint (with a WHEN clause) or specify that
a list of commands be executed at the breakpoint (with a DO clause). For
example, the next command sets a breakpoint on the label loop3. The DO
(E~'.AMINE TEMP) clause causes the value of the variable TEMP to be
displayed whenever the breakpoint is triggered.

DBG> SET BREAK loop3 DO (EXAMINE TEMP)

DBG> GO

break at COUNTER\loop3
37: loop3: for(i = 1; i < 10; i ++)

COUNTER\TEMP: 284.19
DBG>

To display the currently active breakpoints, enter the SHOW BREAK
command as follows:

DBG> SHOW BREAK

Breakpoint at SCREEN_IO\$LINE 58
Breakpoint at COUNTER\loop3

do (EXAMINE TEMP)

DBG>

If any portion of your program was written in Ada, two breakpoints that are
associated with Ada tasking exception events are automatically established
when you invoke the debugger. When you enter a SHOW BREAK command
under these conditions, the following breakpoints are displayed:

DBG> SHOW BREAK

Breakpoint on ADA event "DEPENDENTS EXCEPTION" for any value
Breakpoint on ADA event "EXCEPTION_TERMINATED" for any value

These breakpoints are equivalent to entering the following commands:

DBG> SET BREAK/EVENT=DEPENDENTS_EXCEPTION

DBG> SET BREAK/EVENT=EXCEPTION TERMINATED

To cancel a breakpoint, enter the CANCEL BREAK command, specifying the
program location or event exactly as you did when setting the breakpoint.
The CANCEL BREAK/A.LL command cancels all breakpoints.

2-16 Using the VMS Debugger

f'~I
2.3.6.4 Tracing Program Execution

The debugger command SET TRACE lets you select tracepoints, which are
locations for tracing the execution of your program without stopping its
execution. After setting a tracepoint, you can start execution with the GO
command and then monitor the path of execution, checking for unexpected
behavior. By setting a tracepoint on a routine, you can also monitor the
number of times the routine is called.

As with breakpoints, every time a tracepoint is reached, the debugger
enters a message and displays the source line. However, at tracepoints, the
program continues executing, and the debugger prompt is not displayed. For
example:

DBG> SET TRACE COUNT

DBG> GO

trace at PROG2\COUNT

54. {

when using the SET TRACE command, specify address expressions, quali-
fiers, and optional clauses exactly as with the SET BREAK command.

The !LINE qualifier causes the SET TRACE command to trace every line
and is a convenient means of checking the execution path. By default, lines
are traced within all called routines, and the currently executing routine.
If you do not want to trace through system routines or through routines
in shareable images, use the /NOSYSTEM or /NOSHARE qualifiers. For
example:

DBG> SET TRACE/LINE/NOSYSTEM/NOSHARE

The /SILENT qualifier suppresses the trace message and the display of
source code. This is useful when you want to use the SET TRACE command
to execute a debugger command at the tracepoint. For example:

DBG> SET TRACE/SILENT oLINE 83 DO (EXAMINE STATUS)

DBG> GO

SCREEN IO\CLEAR\STATUS: 0

Using the VMS Debugger 2-17

2.3.6.5 Monitoring Changes in Variables

The debugger command SET WATCH lets you set watchpoints that will
be monitored continuously as your program executes. With high-level
languages, you typically set watchpoints on variables that are declared
in your program (you can set watchpoints on arbitrary program locations,
however). If the program modifies the value of a watched variable, the
debugger suspends execution and displays the old and new values.

To set a watchpoint on a variable, specify the variable's name with the SET
WATCH command. For example, the following command sets a watchpoint
on the variable total:

DBG> SET WATCH total

Subsequently, every time the program modifies the value of total, the
watchpoint is triggered.

The following example shows the effect on program execution when your
program modifies the contents of a watched variable:

DBG> SET WATCH total
DBG> GO

watch of SCREEN_IO\total at SCREEN IO\oLINE 13
13: total ++;

old value: 16
new value: 17

break at SCREEN_IO.oLINE 14
14 : pop (total) ;

DBG>

In this example, a watchpoint is set on the variable total, and the GO
command is entered to start execution. When the value of total changes,
execution is suspended. The debugger reports the event ("watch of . . . ")
and identifies where total changed (line 13) and the associated source line.
The debugger then displays the old and new values and reports that exe-
cution has been suspended at the start of the next line (14). (The debugger
reports "break at . . . ", but this is not a breakpoint; it is the effect of the
watchpoint.) Finally, the debugger prompts for another command.

When a change in a variable occurs at a point other than at the start of a
source line, the debugger gives the line number plus the byte offset from the
start of the line.

2-18 Using the VMS Debugger

Note that this general technique for setting watchpoints applies to "static"
variables. A static variable is associated with the same virtual memory
location throughout program execution. In VAX C, variables of the following
storage class are statically allocated: static, globaldef, globalref, and
extern.

A variable that is allocated on the stack or in a register (a "nonstatic"
variable) exists only when its defining routine is active (on the call stack).
In VAX C nonstatic variables include variables of the storage classes auto
and register. If you try to set a watchpoint on a nonstatic variable when its
defining routine is not active, the debugger enters a warning as follows:

DBG> SET WATCH Y
%DEBUG-W-SYMNOTACT, nonstatic variable 'Y' is not active

A convenient technique for setting a watchpoint on a nonstatic variable
is to set a breakpoint on the defining routine, and to specify a DO clause
to set the watchpoint whenever execution reaches the breakpoint. In the
following example, a watchpoint is set on the nonstatic variable Y in routine
COUNTER:

DBG> SET BREAK COUNTER DO (SET WATCH Y)
DBG> GO

break at routine MOD4\COUNTER
$DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every instruction
DBG> SHOW WATCH

watchpoint of MOD4~COUNTER~Y [tracing every instruction]

DBG>

The debugger monitors nonstatic watchpoints by tracing every instruc-
tion. Because this slows execution speed compared to monitoring static
watchpoints, the debugger lets you know when it is monitoring nonstatic
watchpoints.

When execution eventually returns to the calling routine, the nonstatic
variable is no longer active, so the debugger automatically cancels the
watchpoint and enters a message to that effect.

2.3.7 Examining and Manipulating Data

The following sections explain how to use the debugger commands
E~►AMINE, DEPOSIT, and EVALUATE to display and modify the con-
tents of variables and to evaluate expressions. It also notes restrictions on
the use of these commands with VAX C programs.

Using the VMS Debugger 2-19

Before you can examine or deposit into a nonstatic variable (see
Section 2.3.6.5), its defining routine must be active (on the call stack).

2.3.7.1 Displaying the Values of Variables

To display the current value of a variable, use the debugger command
E~'.AMINE. The E~'.AMINE command has the following form:

EXAMINE variable-name

The debugger recognizes the compiler-generated data type of the specified
variable and retrieves and formats the data accordingly. The following
examples show some uses of the E~;AMINE command:

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA
SIZE\WIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Examine atwo-dimensional array of integers:

DBG> EXAMINE INTEGER ARRAY
PROG2\INTEGER ARRAY

[0, 0) : 27
[0, 1] : 31
[0, 2) : 12
[l, 0] : 15
[1, 1] : 22
[1, 2] : 18

DBG>

Examine element 4 of aone-dimensional array of characters:

DBG> EXAMINE/ASCII CHAR_ARRAY[4]

PROG2 \ CHAR_ARRAY [4] : ' m'
DBG>

You can use the E~:AMINE command with any kind of address expression,
not just a variable name, to display the contents of a program location. The
debugger associates certain default data types with untyped locations. You
can override the defaults for typed and untyped locations if you want the
data to be interpreted and displayed in some other data format.

See Section 2.3.7.3 for a comparison of the E~'.AMINE and EVALUATE
commands.

2-20 Using the VMS Debugger

2.3.7.2 Changing the Values of Variables

To change the value of a variable, use the debugger command DEPOSIT.
The DEPOSIT command has the following form:

DEPOSIT variable-name =value

The DEPOSIT command is like an assignment statement in VAX C.

In the following examples, the DEPOSIT command assigns new values to
different variables. The debugger checks that the value assigned, which can
be a language expression, is consistent with the data type and dimensional
constraints of the variable.

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENTWIDTH + 10

Deposit element 12 of an array of characters (you cannot deposit an entire
array aggregate with a single DEPOSIT command, only an element):

DBG> DEPOSIT C ARRAY [12] _ ' K'

As with the EXAMINE command, the DEPOSIT command lets you specify
any kind of address expression, not just a variable name. You can override
the defaults for typed and untyped locations if you want to interpret the
data in some other data format.

2.3.7.3 Evaluating Expressions
To evaluate a language expression, use the debugger command EVALUATE.
The EVALUATE command has the following form:

EVALUATE language-expression

The debugger recognizes the operators and expression syntax of the cur-
rently set language. In the following example, the value 45 is assigned to
the integer variable WIDTH; the EVALUATE command then obtains the
sum of the current value of WIDTH plus 7:

DBG> DEPOSIT WIDTH = 45

DBG> EVALUATE WIDTH + 7

52
DBG>

Not all VAX C operators can be supported by the debugger, since some can
produce side effects that adversely affect debugging. Table 2--1 lists the VAX
C operators that are supported in language expressions. Table 2-2 lists the
VAX C operators that are not supported by the debugger.

Using the VMS Debugger 2-21

Table 2-1: Supported Operators

Operators) Category

- Unary arithmetic

+ — * / % Binary arithmetic

_ _ !_ > < >_ <= Relational

&& I I ! Logical

& I ^ ? ~ Bitwise logical

« » Shift

sizeof Compute the size of a scalar

& Address of

* Dereference

Table 2-2: Unsupported Operators

Operators) Category

++

%_ { _ &_ ^_

?: Conditional

(type) Cast

Pre/post increment/decrement

Assignment

The following example shows the similarity between the EVALUATE and
Ex;AMINE commands. When the expression following the command is a
variable name, the value reported by the debugger is the same for either
command.

DBG> DEPOSIT WIDTH = 45

DBG> EVALUATE WIDTH

45

DBG> EXAMINE WIDTH

SIZE~WIDTH: 45

The following example shows an important difference between the
EVALUATE and E~:AMINE commands:

DBG> EVP.LUATE WIDTH + 7

52

DBG> EXAMINE WIDTH + 7

SIZE~WIDTH: 131584

With the EVALUATE command, WIDTH + 7 is interpreted as a language
expression, which evaluates to 45 + 7, or 52. With the E~;AMINE command,

2-22 Using the VMS Debugger

WIDTH + 7 is interpreted as an address expression: 7 bytes are added to
the address of WIDTH, and whatever value is in the resulting address is
reported (in this instance, 131584).

2.4 Notes on Debugger Support for VAX C

In general, the debugger supports the data types and operators of VAX C
and the other debugger-supported languages. However, there are certain
language-specific Limitations or other differences. (For information on the
supported data types and operators of any of the languages, type HELP
LANGUAGE at the DBG> prompt.)

The following sections present VAX C specific debugging examples. These
examples show you how to work with VAX C data types and expressions.

2.4.1 Debugger Command-Line Options

VAX C provides a set of debugger options that you can specify to the
!DEBUG qualifier to the CC command. These options alter the types of
information that the compiler places in the object module for use by the
VMS Debugger. The debugger options include using traceback records,
using the symbol table, and enabling the debugger to step into inline
functions. For information about these options, see the description of the CC
command-line qualifiers in Section 1.3.2.

2.4.2 Accessing Scalar Variables

The E~'.AMINE command displays the scalar variables of any VAX C data
type. You reference scalar variables in the case tha_ t you declare them, using
the VAX C syntax for such references.

Example 2-1 presents the VAX C program SCA►LARS.0 to use in the next
sample debugging session.

Using the VMS Debugger 2-23

Example 2-1: Debugging Sample Program SCALARS.0

/* SCALARS.0 This program defines a large number of
* variables to demonstrate the effect

* of the various STEP debugger commands.

main ()
{

static float light speed; /* Define the variables

static double speed~ower;

static unsigned ui;
static long li;
static char ch;
static enum primary { red, yellow, blue } color;

static int *ptr;

light speed = 3.Oe10;
speed~ower = 3.1234567890123456789e10;
ui = -438394;
li = 790374270;
ch = ' A' ;
color = blue;
ptr = &li;

}

The following debugging session executes SCA►LARS.EXE and shows the
commands used to access variables of scalar data type:

DBG> show symbol/type color

data SCALARS\main\color
enumeration type (primary, 3 elements), size: 4 bytes

'phis command uses the debugger command SHOW SYMBOLJ'TYZ'E to
display the data type of one variable.

The next commands in this sample debugging session are as follows:

DBG> set break oline 22

DBG> go
break at SCALARS\main\$LINE 22

22: }

The commands in the example seta breakpoint before the end of the pro-
gram and enter a GO command to execute the program up to the breakpoint.
These commands allow the variables declared in main to be initialized by
the program.

The next command in this sample debugging session is as follows:

2 24 Using the VMS Debugger

DBG> examine li, ui, light_speed, speed~ower, ch, color, *ptr

SCALARS\main\li: 790374270
SCALARS\main\ui: 4294528902
SCALARS\main\light speed: 3.0000001E+10
SCALARS\main\speed~ower: 31234567890.12346
SCALARS\main\ch: 65
SCALARS\main\color: blue
*SCALARS\main\ptr: 790374270

The Ex:AMINE command directs the debugger to display the contents of the
variables listed. The char variables are interpreted by the debugger as byte
integers, not ASCII characters.

The next command in this sample debugging session is as follows:

DBG> examine/ascii ch

SCALARS\main\ch: "A"

To display the contents of ch as a charactE~r, you must use the /ASCII
qualifier.

The next command in this sample debugging session is as follovv~~

DBG> deposit/ascii ch = 'z'

DBG> examine/ascii ch

SCALARS\main\ch: "z"
DBG>

The DEPOSIT command loads the value ' z' in the variable ch; the
EXAMINE command shows that ~ z' has replaced the previous contents
of the variable ch. Again, use the /ASCII qualifier to translate the byte
integer into its ASCII equivalent.

2.4.3 Accessing Arrays

With the EXAMINE command, you can look at the values in arrays using
VAX C syntax for array references. You can examine an entire array by
giving the array identifier. You can examine individual elements of the
array using the array operators ([]). Array elements can have any data
type. Remember the differences between pointer arithmetic in VAX C and
pointer arithmetic in other languages (see Chapter 8 for more information).
Consider the following declaration:

int *p;

Expression p+1 is equivalent to the address of p[1]; it increments the
array by the length specified by 1 multiplied by the length of the data type
int. Expression p+1 does not add value 1 to the value of variable p. The
following debugger commands are equivalent:

Using the VMS Debugger 2-25

EVALUATE * (p+1)

EVALUATE p [1]

Example 2-2 shows the VAx C program AR,RAY.0 to use in the next sample
debugging session.

Example 2-2: Debugging Sample Program ARRAY.0

/* ARRAY.0 This program increments an array to
* demonstrate the access of arrays in VAX C.

main ()
{

int i;
static int arr[10];
for (i=0; i<10; i++)

arr [i]=i;
}

The following debugging session executes ARR,AY.EXE and shows the com-
mands used to access variable arrays:

DBG> set br oline 10
DBG> go
break at ARRAY\main\%LINE 10

10• }

The commands in Example 2-2 set a breakpoint at the last line in the
program and execute the program to that point.

The next command in this sample debugging session is as follows:

DBG> examine arr
ARRAY\ maim arr

[0] : 0
[1] : 1
[2] : 2
[3] : 3
[4] : 4
[5] : 5
[6] : 6
[7] : 7
[8] : 8
[9] : 9

By specifying the variable identifier, you can look at the entire array.

2-26 Using the VMS Debugger

The next command in this sample debugging session is as follows:

DBG> examine arr[5]

ARRAY\ main\ arr [5] 5
DBG> examine RETURN

ARRAY\ main\ arr [6] : 6
DBG> examine "

ARRAY \main \arr [5] : 5

Individual elements of the array are examined when you use the bracket
operator to specify the subscript of the element. Using the debugger's
address reference operator (specified by pressing RETURN) in an E~'.AMINE
command returns the next element of the array. Using the up-arrow address
reference operator (^)returns the previous member of the array.

2.4.4 Accessing Character Strings

Character strings are implemented in VAX C as null-terminated ASCII
strings (ASCIIZ strings). To examine and deposit data in an entire string,
use the /ASCIIZ qualifier (abbreviated /AZ) so that the debugger can
interpret the end of the string properly. You can examine and deposit
individual characters in the string using the VAX C array subscripting
operators ([]). When you examine and deposit individual characters, use
the /ASCII qualifier.

Example 2-3 presents the VAX C program STRING.0 to use in the next
sample debugging session.

Example 2-3: Debugging Sample Program STRING.0

/* STRING.0 This program establishes a string to
* demonstrate the access of strings in VAX C.

main ()
{

static char *s = "vaxie";
static char **t = &s;

}

Using the VMS Debugger 2-27

The following debugging session executes STRING.EXE and shows the
commands used to manip~alate VAX C strings:

DBG> step
stepped to STRING\main\oLINE 8

g• }

DBG> examine/az *s
*STRING\main\s: "vaxie"
DBG> examine/az **t
**STRING\main\t:

The E~:AMINE/AZ command displays the contents of the character string
pointed to by *s and **t.

The next command in this sample debugging session is as follows:

DBG> deposit/az *s = "VAX C"
DBG> examine/az *s, **t
*STRING\main\s: "VAX C"

**STRING\main\t: "VAX C"

The DEPOSIT/AZ command deposits a new ASCIIZ string in the variable
pointed to by *s. The E~;.AMINE/AZ command displays the new contents of
the string.

The next command in this sample debugging session is as follows:

DBG> examine/ascii s [3]
~ 3 ~ : ~~ ~~

DBG> deposit/ascii s [3] _ "-"
DBG> examine/az *s,. **t
*STRING\main\s: "VAX-C"
**STRING\main\t: "VAX-C"

Using array subscripting, you can examine individual characters in the
string and deposit new ASCII values at specific locations within the strir.~g.
When accessing individual members of a string, use the /ASCII qualifier. A
subsequent Ex:AMINE/AZ command shows the entire string containing t:he
deposited value.

2.4.5 Accessing Structures and Unions

You can examine structures in their entirety or on a member-by-member
basis. You can deposit data into structures one member at a time.

You can make references to members of a structure or union by using this
usual VAX C syntax for such references. That is, if variable p is a pointer
to a structure, you can reference member y of that structure with the
expression p —>y. If variable x refers to the base of the storage allocated
for a structure, you can refer to a member of that structure with the x.y
expression.

2-28 Using the VMS Debugger

To reference members of a structure or union, the debugger follows the VAX
C type-checking rules, which follow. For example, in the case of x.y, y need
not be a member of x; it is treated as an offset with a type. When such
a reference is ambiguous when there is more than one structure with a
member y the debugger attempts to resolve the reference in the following
manner. The same rules for resolving the ambiguity of a reference to a
member of a structure or union apply to both x.y and p—>y.

• If only one of the members, y, belongs in the structure or union, x, that
is the one that is referenced.

• If only one of the members, y, is in the same scope as x, then that is the
one that is referenced.

You can always give a path name with the reference to x to narrow the scope
that is used and to resolve the ambiguity. The same path name is used to
look up both x and y.

Example 2-4 shows the VAX C program STRUCT.0 to use in the next
sample debugging session.

The following debugging session executes STRUCT.EXE and shows the
commands used to access structures and unions:

DBG> show symbol * in main
routine STRUCT\main
data STRUCT\main\uv
record component STRUCT\main\<generated_name_0002>.im
record component STRUCT\main\<generated_name_0002>.fm
record component STRUCT\main\<generated_name_0002>.cm
type STRUCT\main\<generated_name_0002>
data STRUCT\main\p
data STRUCT\main\sv
record component STRUCT\main\<generated_name_0001>.im
record component STRUCT\main\<generated_name_0001>.fm
record component STRUCT\main\<generated_name 0001>.cm
record component STRUCT\main\<generated name_0001>.bf
type STRUCT\main\<generated_name_0001>

The SHOW SYMBOL command shows the variables contained in the user-
defined function main.

The next commands in this sample debugging session are as follows:

DBG> set break oline 29
DBG> go
break at STRUCT\main\%LINE 29

Using the VMS Debugger 2-29

Example 2-4: Debugging Sample Program STRUCT.0

/* STRUCT.0 This program defines a structure and union
* to demonstrate the access of structures and
* unions in VAX C.

main ()
{

static struct
{

}

union
{

}

int im;
float fm;
char cm;
unsigned bf 3;
sv, *p;

int im;
float fm;
char cm;
uv;

sv.im =
sv.fm =
sv.cm =
sv.bf =

p = & sv;

-24;
3.Oe10;
'a';
7; /* Binary: 111 */

uv.im = -24;
uv. fm = 3.Oe10;
uv.cm = 'a';

}

Setting a breakpoint at line 29 and entering a GO command allows the
program to initialize the variables declared in the structure sv.

The next command in this sample debugging session is as follows:

DBG> examine sv
STRUCT\main\sv

im: -24
fm: 3.0000001E+10
cm: 97
bf: 7

An E~;AMINE command that gives the name of the structure causes the
debugger to display all members of the structure. Note that sv.cm has the
char data type, which is interpreted by the debugger as a byte integer. The
debugger also displays the value of bit fields in decimal.

2-30 Using the VMS Debugger

The next commands in this sample debugging session are as follows:

DBG> examine/ascii sv.cm

STRUCT\main\sv.cm: "a"
DBG> examine/binary sv.bf

STRUCT\main\sv.bf: 111

To display the ASCII representation of a char data type, you must use the
/ASCII qualifier. To display bit fields in their binary representation, ,you
must use the BINARY qualifier.

The next commands in this sample debugging session are as follows:

DBG> deposit sv.im = 99

DBG> deposit sv.fm = 3.14

DBG> deposit/ascii sv.cm = 'z'

DBG> deposit sv.bf = oBIN 010

DBG> examine sv

STRUCT\main\sv
im: 99
fm: 3.140000
cm: 122
bf: 2

You deposit data into a structure one member at a time. To deposit data into
a member of type char, you can use the /ASCII qualifier and enclose the
character in either single or double quotes. To deposit a new binary value in
a bit field, use the %BIN keyword.

The next commands in this sample debugging session are as follows:

DBG> examine *p

*STRUCT\main\p
im: 99
fm: 3.140000
cm: 122
bf: 2

DBG> examine/binary p ->bf

STRUCT\ main\ p -->bf : 010

Members of structures (and unions) can also be accessed by pointer, as
shown in *p and p -->bf in the previous example.

The next commands in this sample debugging session are as follows:

DBG> step

stepped to STRUCT\main\%LINE 30
30: uv.fm = 3.Oe10;

DBG> examine uv

STRUCT\main\uv
im: -24
fm: -1.5485505E+38
cm: -24

Using the VMS Debugger 2-~1

A union contains only one member at a time, so the value for uv.im is the
only valid value returned by the EX:AIVIINE command; the other values are
meaningless.

The next commands in this sample debugging session are as follows:

DBG> step
stepped to STRUCT\main\$LINE 31

DBG> examine uv.fm
STRUCT\main\uv.fm: 3.0000001E+10
DBG> step
stepped to STRUCT\main\~SLINE 32

33: }
DBG> examine~ascii uv.cm
STRUCT\main\uv.cm: "a"

This series of STEP and EXAMINE commands shows the content of the
union as the different members are assigned values.

Example 2-5 shows the VAX C program ARSTRUCT.0 to use in the next
sample debugging session.

Example 2-5: Debugging Sample Program ARSTRUCT.0

/* ARSTRUCT.0 This program contains a structure definition

* and a for loop so as to demonstrate the
* debugger's support for VAX C operators. */

main ()
{

int count, i = 1;
char c = 'A';

struct
{

int digit;
char alpha;

}

for (count = 0; count <= 2 6; count++)
{

tbl[count].digit = i++;
tbl [count] .alpha = c++;

}
}

2-32 Using the VMS Debugger

The following debugging session executes ARSTRUCT.EXE and shows the
use of VAX C expressions on the debugger command line:

DBG> set break °line 20 when (count == 2)

DBG> go
break at ARSTRUCT\main\%LINE 20

20: }

Relational operators can be used in expressions (such as count == 2 in the
preceding example) in a WHEN clause to set a conditional breakpoint.

The next commands in this sample debugging session are as follows:

DBG> evaluate &tbl

2146736881

DBG> ?valuate/address tbl

2146736881

The first EVALUATE command uses VAX C syntax to refer to the address
of a variable. It is equivalent to the second command, which uses the
/ADDRESS qualifier to obtain the address of the variable. The addresses of
these variables may not be the same every time you execute the program if
you relink the program.

The next command in this sample debugging session is as follows:

DBG> evaluate tbl[2~ .digit

3

Individual members of an aggregate can be evaluated; the debugger returns
the value of the member.

The next commands in this sample debugging session are as follows:

DBG> ~evaluate tbl +4

%DEBUG-I-SCALEADD, pointer addition: scale factor of 5 applied to

right argument
2146736901
DBG> examine 2146736901

ARSTRUCT\ main\ tbl [4] .digit : 5

When you perform pointer arithmetic, the debugger displays a message
indicating the scale factor that has been applied. It then returns the address
resulting from the arithmetic operation. A subsequent E~;AMINE command
at that address returns the value of the variable.

The next command in this sample debugging session is as follows:

DBG> evaluate tbl[4].digit * 2

10

The EVALUATE command can perform arithmetic operations on program
variables.

Using the VMS Debugger 2-~3

The next command in this sample debugging session is as follows:

DBG> evaluate 7 % 3
1

The EVALUATE command can also perform arithmetic calculations that
may or may not be related to your program. In effect, it can be used as a
calculator that uses VAX C syntax for arithmetic expressions.

The next command in this sample debugging session is as follows:

DBG> evaluate count++

%DEBUG-W-SIDEFFECT, operators with side effects not supported (++,

The debugger enters a message when you use an unsupported operator.

2.5 Controlling Symbol References

In most cases, the way the debugger handles symbols (variable names, and
so on) is transparent to you. However, the following two areas may require
action on your part:

• Module setting

Multiply defined symbols

The following sections describe these two areas.

2.5.1 Module Setting

To facilitate symbol searches, the debugger loads symbol records from the
executable image into arun-time symbol table (RST), where they can be
accessed efficiently. Unless a symbol record is in the RST, the debugger
cannot recognize or properly interpret that symbol.

Because the RST uses memory, the debugger loads it dynamically, antici-
pating what symbols you might want to reference during execution. The
loading process is called module setting, because all of the symbol records of
a given module are loaded into the RST at one time.

At debugger startup, only the module containing the image transfer address
is set. As your program executes, whenever the debugger interrupts
execution, it sets the module where execution is suspended. This lets you
reference the symbols that should be visible at that location.

2~4 Using the VMS Debugger

If you try to reference a symbol in a module that has not been set, the
debugger enters a warning. For example:

DBG> EXAMINE K

oDEBUG-W-NOSYMBOL, symbol 'K' is not in symbol table

DBG>

You must then ease the debugger command SET MODULE to manually set
the module containing that symbol as follows:

DBG> SET MODULE MODS

DBG> EXAMINE K

MODS\ROUT2\K: 26

DBG>

The debugger command SHOW MODULE lists the modules of your program
and identifies the modules that have been set.

The dynamic module setting may slow down the debugger as more modules
are set. If performance becomes a problem, use the debugger command
CANCEL MODULE to reduce the number of set modules, or disable
dynamic module setting by entering the debugger command SET MODE
NODYNAMIC. (The SET MODE DYNAMIC command enables dynamic
module setting.)

2.5.2 Resolving Multiply Defined Symbols

The debugger finds the symbols that you reference in commands according
to the following conventions. First, it looks in the PC scope (also known
as scope 0), according to the scope and visibility rules of the currently set
language. This means that the debugger first searches for a symbol within
the routine surrounding the current PC value (where execution is currently
suspended). If the symbol is not found, the debugger searches the nesting
program unit, then its nesting unit, and so on. (The precise order of search
depends on the current language and guarantees that the proper declaration
of a multiply defined symbol is selected.)

The debugger allows you to reference symbols throughout your program,
not just those that are visible at the current PC value, so that you can
set breakpoints in arbitrary areas, examine arbitrary variables, and so on.
Therefore, if the symbol is not visible in the PC scope, the debugger also
searches the scope of the calling routine (if any), then its caller, and so on,
until the symbol is found. Symbolically, this search list is denoted 0, 1,
2, . . . , n, where scope 0 is the PC scope and n is the number of calls in the
call stack. Within each scope, the debugger uses the visibility rules of the
currently set language to locate symbols.

Using the VMS Debugger 2-35

If the debugger cannot resolve a symbol ambiguity, it enters a warning. For
example:

DBG> EXAMINE Y
oDEBUG-W-NOUNIQUE, symbol 'Y' is not unique

DBG>

You can use apath-name prefix to uniquely specify a declaration of the given
symbol. First, use the SHOW SYMBOL command to identify all path names
associated with the given symbol; then use the desired path name when
referencing the symbol. For example:

DBG> SHOW SYMBOL Y
data MOD7\ROUTS\BLOCKI\Y
data MOD4\ROUT2\Y

DBG> EXAMINE MOD4\ROUT2\Y
MOD4\ROUT2\Y: 12

DBG>

If you need to refer to a particular declaration of Y repeatedly, use the
SET SCOPE command to establish a new default scope for symbol lookup.
References to Y without a path-name prefix will then specify the declaration
of Y that is visible in the new scope region. For example:

DBG> SET SCOPE MOD4\ROUT2
DBG> EXAMINE Y
MOD4\ROUT2\Y: 12

DBG>

To display the current scope for symbol lookup, use the SHOW SCOPE
command. To restore the default scope, use the debugger command CANCEL
SCOPE.

2.6 Sample Debugging Session

Example 2-6 shows the VAX C program POWER. C, which is to be used in a
debugging session. To learn about a larger number of debugger commands,
reexecute this program and use a different set of debugger commands.

2-36 Using the VMS Debugger

Example 2—G: Debugging Sample Program POWER.0

/* POWER.0 This program contains two functions: "main"
* "power." The main function passes a number
* "power", which returns that number raised to
* second power.

main ()
{

static int i,
int power();

i=2•
~ = power (i) ;

}
power (j)
int j;
{

}

7%

return (j * j);

and *

to *

the *
*/

Example 2-7 shows some of the debugger commands used to evaluate the
execution of POWER.C.

Example 2-7: A Sample Debugging Session

0 $ CC/DEBUG/OPTIMIZE=NODISJOINT POWER

$ LINK/DEBUG POWER

$ RUN POWER

VAX DEBUG Version 5.n

(continued on next page)

Using the VMS Debugger 2-37

Example 2-7 (Cont.): A Sample Debugging Session

%DEBUG-I-INITIAL, language is C, module set to 'POWER'

DBG> set break %LINE 13
' DBG> go

© break at POWER\main\%LINE 13

0 13 : j =power (i) ;

DBG> step/into

stepped to routine POWER\power
16: int j;

DBG> step
stepped to POWER\power\%LINE 18

18 : return (j * j)

DBG> examine J
~ %DEBUG-W-NOSYMBOL, symbol 'J' is not in the symbol table

DBG> examine j

POWER\ power\ j :
DBG> step
stepped to POWER\main\%LINE 13+9

13 : j =power (i) ;
DBG> step
stepped to POWER\main\%LINE 14

14: }

DBG> examine j

® POWER\ main\ j : 4
DBG> go

® $DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful

completion'

DBG> exit

Key to Example 2-7:

O To execute a program with the debugger, you must compile and link
the program with the /DEBUG qualifier. The VAX C compiler compiles
the source file with the /DEBUG=TRACEBACK qualifier by default.
However, unless you compile your program with the /DEBUG qualifier,
you cannot access all of the program's variables. Use the /NOOPTIMIZE
qualifier to turn off compiler optimization that may interfere with debug-
ging. If you desire a minimal amount of optimization that will not in-
terfere with your debugging session, use the /OPTIMIZE=NODISJOINT
qualifier.

© The VMS Image Activator passes control to the debugger on execution
of the image. The debugger tells you the current programming language
and the name of the object module that contains the main function, or
the first function to be executed. Remember that the linker converts the
names of object modules to uppercase letters.

2~8 Using the VMS Debugger

© You enter debugger commands at the following prompt:

DBG>

0

The debugger command SET BREAK defines a point in the program
where the debugger must suspend execution. In this example, the SET
BREAK command tells the debugger to stop execution before execution
of line number 13. After the debugger processes the SET BREAK
command, it responds with the debugger prompt.

The debugger command GO begins execution of the image.
© The debugger tells you that it suspended execution of the image at

function main in module power. The debugger specifies sections of the
program by telling you the object module it is working in, delimited by
a backslash character (\), followed by the name of the VAX C function.
The linker converted the name of the object module to uppercase letters
but the debugger specifies the name of the function exactly as it is found
in the source text.

O The debugger displays the line of source text where it suspended ex-
ecution. Refer to the source code listing in Example 2-6 to follow the
debugger as it steps through the lines of the program in this interactive
debugging example.

O The debugger command STEP/INTO executes the first executable line
in a function. The command STEP tells the debugger to execute the
next line of code, but if the next line of code is a function call, the
debugger will not step through the function code unless you use the
/INTO qualifier. Use STEP/INTO to step through auser-defined or VAX
C RTL function.

When stepping through a function, the debugger specifies line numbers
by listing the object module, the VAX C function, a percent sign (%), the
identifier LINE, and the line number in the source text. Once again, the
debugger delimits all items in the specification with backslash characters

O
\).

The debugger command E~;A,MINE displays the contents of a variable.

The debugger does not recognize the variable, J, as existing in the scope
of the current module.

~ The debugger supports the case sensitivity of VAX C variables; variable
j exists but variable J does not. Refer to Example 2-6 to review the
program variables.
The debugger responds to the EXAMINE command and tells you that
the value of the variable is 2.

Using the VMS Debugger 2-~9

® The value of variable j in function main is different from the separate
variable j in function power. Function power executes properly; it
returns the number 2 raised to the second power (4).

® Upon completion of execution of the image, the debugger states the
status of the execution. In this example, execution is successful.

m

To enter the DCL RUN command to execute the program again, or to
do other work outside of the debugger environment, use the debugger
command EXIT to end the debugging session and to go back to DCL.

2-40 Using the VMS Debugger

Chapter 3

VAX C Support for Parallel Processing

This chapter describes how to create and to modify programs that run using
the VAX Cparallel-processing features. Thzs chapter discusses the following
topics:

• Overview of parallel processing (Section 3.1)
• Preparing programs for parallel processing (Section 32)

• Conditions that inhibit parallel processing (Section 3.3)
• Data-dependency analysis (Section 3.4)

• Rewriting code to resolve dependencies (Section 3.5)

• Storage classes and parallel processing (Section 3.6)

• Decomposition pragmas (Section 3.7)

• Memory-management functions (Section 3.8)

• mining issues related to parallel processing (Section 3.9)

See Appendix E for information on debugging programs that use parallel
processing.

3.1 Overview of Parallel Processing

Parallel processing involves executing segments of a program concurrently
on two or more processors in a multiprocessing system (for example, a
VAX 8300 or a VAX 8800; do not confuse these systems with a VAX cluster
system). Running programs in parallel on multiple processors, instead
of serially on a single processor, can reduce the amount of elapsed time
required to run the program. Running programs in parallel, however,
consumes more system resources (CPU time and memory) than running
serially. Trading off reduced system throughput for reduced elapsed time

VAX C Support for Parallel Processing 3-1

is a decision that depends on the application being executed and the
environment in which it is being executed.

Not all programs are suitable for parallel execution; some programs are
inherently sequential. To achieve maximum benefit, only compute-intensive
code sequences should be considered for running in parallel. For example,
program segments dealing with arithmetic operations performed on arrays
(matrix arithmetic) are generally good candidates for parallel processing.
You can identify other compute-intensive code segments using the VAX
Performance and Coverage Analyzer (PCA) software product, which can be
purchased separately. After isolating code sequences that are candidates for
parallel processing, you can then analyze the sequences in detail and make
any coding changes that are necessary.

VAX C supports the parallel processing of for and while loops. (VAX C
does not support the parallel processing of do loops.) Processing a loop in
parallel means that iterations in the loop are divided among processors and
are executed concurrently.

Decomposition is the process by which VAX C divides each parallel loop
into groups of loop iterations that can be executed concurrently. Figure 3-1
shows parallel and sequential execution of loop iterations over a period of
time.

NOTE

Throughout this chapter, loops to be processed in parallel are
referred to as parallel loops.

3-2 VAX C Support for Parallel Processing

Figure 3-1: Sequential and Parallel Loop Execution Across Time

Time

Multiple
Processes

i i i i i i i i

Iterations

Time

Sequential

Iterations

ZK-6740—GE

When you use the /PARALLEL qualifier on the CC command line to compile
a program for parallel processing, a VMS Run-Time Library routine sets up
the parallel-processing environment. VAX C then tries to decompose each
for and while loop. After compilation, each successfully decomposed loop
consists of the following machine code segments:

• Code segment 1 determines the total amount of work to be performed in
the loop and sets up global data structures.

• Code segment 2 divides the work into chunks and allocates them to the
various processes.

• Code segment 3 is the body of the loop.

• Code segment 4 resets the environment from parallel to sequential
processing at the end of each parallel loop.

Each decomposed loop executes in two or more subprocesses, wi~~h each sub-
process executing a segment of the iterations in the loop. The subprocesses
are created during the initialization phase of the program. They are not
activated, however, until a parallel for or a parallel while loop is encoun-
tered. When they complete the execution of their portion of the iterations in
a parallel loop, they are placed in a wait state until the next parallel loop is
encountered.

VAX C Support for Parallel Processing 3-3

VAX C does not decompose all for and while loops. By default, VAX C
tries to decompose all for loops and tries to decompose while loops whose
iteration mechanism and number of iterations indicate that the loop is a
good candidate for parallel processing. If in a for or while loop VAX C
discovers a possible data dependency, the compiler does not decompose the
loop; the compiler executes each iteration of the loop sequentially.

A data dependency is a situation that occurs when two or more iterations of
the loop depend on a single piece of data. A loop that is a good candidate for
parallel processing executes properly and predictably when groups of loop
iterations are executed, possibly out of sequence, on separate processors.
If a loop iteration depends on the data from a previous or subsequent loop
iteration, then the results of the program execution after parallel processing
are erroneous or unpredictable.

The following types of data dependencies exist in many parallel-processing
applications, although VAX C only checks for loop-carried dependencies:

• Loop-carried dependency A data dependency that occurs when a
memory location is both accessed and modified within the same loop.
(VAX C checks programs compiled with lPA,R,ALLEL for loop-carried
dependencies.)

• Loop-independent dependency A data dependency that occurs due
to the relative positions of two statements in a program. (VAX C does
not check programs compiled with /PARALLEL for loop-independent
dependencies.)

• Control dependency A data dependency introduced by the flow of
control in a program. (VAX C does not check programs compiled with
/PARALLEL for control dependencies.)

VAX C uses algorithms to determine whether data dependencies exist in a
loop. VAX C examines loops and their iterations for the following:

• Presence of pointer variables (Section 3.4.3)
• Presence of function calls (Section 3.4.2)

• Existence of two or more iterations making references to the same array
element (Section 3.4.1)

• Assigning scalar values and using those values (Section 3.4.4)

VAX C provides mechanisms to use parallel processing and also to suppress
the default actions of the compiler during parallel processing. Table 3-1
presents a summary of the VAX Cparallel-processing support mechanisms.

3-~4 VAX C Support for Parallel Processing

Table 3-1: VAX CParallel-Processing Support Mechanisms

Feature Description

CC Command-Line Qualifier

/[NO]PAR,ALLEL Specifies that a compilation unit is part of a
program to be run in parallel. The use of the
qualifier determines whether the compiler gener-
ates coding structures that are needed to support
decomposition of for and while loops.

Decomposition Pragmas

#pragma ignore_dependency Specifies to the compiler that a variable that
appears to be in conflict is safe to decompose. By
default, VAX C does not decompose loops that have
two iterations that access the same element. (See
Section 3.7.1 for more information about #pragma
ignore_dependency.)

#pragma safe_call Specifies to the compiler that a loop contai W_ing a
call to the specified function is safe to decompose.
By default, VAX C does not decompose loops
with function calls. (See Section 3.7.2 for more
information on #pragma safe_call.)

#pragma sequential loop Specifies to the compiler that the iterations of
a for or while loop are to be executed sequen-
tially. By default, VAX C tries to decompose for
and while loops for parallel processing. (See
Section 3.7.3 for more information on #pragma
sequential loop.)

(continued on next page)

VAX C Support for Para!!el Processing 3-6

Table 3-1 (Cont.): VAX CParallel-Processing Support Mechanisms

Feature Description

Parallel Object Library

VAXCPAR.OLB Contains parallel versions of some VAX CRun-
Time Library (RTL) functions. You must link
against this object module library if your program's
main function is written in VAX C, or if your
program calls one of the memory-management
functions malloc, calloc, free, cfree, or realloc.
See Section 3.8 for more information on the
memory-management functions. See Section 3.3
for more information on restrictions placed on
programs running in parallel. See Section 1.4.5.2
for more information on linking against object
module libraries.

Run-Time Environment Logical Names

FOR$PROCESSES Contain values that adjust some aspects of the
FOR$SPIN_WAIT run-time environment in which you execute your
FOR$STALL_WAIT program. (See Section 3.9.1 for more information.)

3.2 Preparing Programs for Parallel Processing

To process a VAX C program for parallel execution, do the following:

1. Use the /PARALLEL qualifier on the CC command line for the compila-
tion unit that contains the main function or that contains loops that you
want to run in parallel.

2. Examine the compiler messages to determine which loops the compiler
decomposed and which it did not. Insert an appropriate decomposition
pragma (see Section 10.7) to alter the loop-decomposition decisions
made by the compiler (if appropriate to your application). If the VAX
Language-Sensitive Editor (LSE) is available on your system, you may
use its VAX C decomposition support to add decomposition pragmas. See
Appendix C for more information about LSE, which is a product that
must be purchased separately.

3. If you inserted decomposition pragmas into the program, then recompile
it using the /PARALLEL qualifier.

4. Link the program. (See Section 3.3 for information about linking
restrictions and requirements.)

3-6 VAX C Support for Parallel Processing

5. Optionally, define the logical FOR$PROCESSES to indicate how many
subprocesses are created to run your decomposed program. For example,
to create four subprocesses to execute your parallel program, enter the
following command:

$ DEFINE/JOB FGR$PRGCESSES 4

If you do not specify a value for FOR$PROCESSES, it defaults to the
number of processors in the multiprocessor VAX you are using.

6. Execute the program normally If you did not define the logical
FOR$PROCESSES, the compiler generates a message when you run
your decomposed program.

7. If the program contains run-time errors, use the multiprocessor debugger
to debug it. Define the logical DBG$PROCESS to set up the debugger,
as follows:

$ DEFINE/JOB DBG$PRGCESS MULTIPRGCESS

See Appendix E for information about debugging decomposed programs.

Figure 3-2 shows a program cycle using decomposition.

VAX C Support for Parallel Processing 3-7

Figure 3-2: Program Cycle Using Decomposition

EDIT

1
CC/PARALLEL PROG

Review Diagnostics

Insert
Decomposition

Pragmas

Yes ►Nondecom sable
Revise

ZK-6739-G E

3-8 VAX C Support for Parallel Processing

3.3 Conditions That Inhibit Parallel Processing

You must do the following if you want your program to execute properly in
parallel:

• If you want to run some of your VAX C compilation units in parallel, you
must use /PARALLEL to compile the compilation unit containing the
main function, even if the main routine is written in another language.
You can use /PARALLEL on the other compilation units depending on
the needs of your application. If you do not use /PARALLEL on the
compilation unit containing the main routine, the compiler generates a
message.
If you write the main routine of your program in a language that does
not support the /PARALLEL qualifier, you need to write a shell for the
program in a language that does support parallel processing. Then, you
must call the main routine from the shell.
See Section 1.3 for more information on compilation units. See
Chapter 13 for more information on mixed-language programming.

• If you use !PARALLEL when compiling a VAX C compilation unit
containing the main function, you must link the program against the
VAXCPAR.OLB object module library. If you do not use the /PA►RALLEL
qualifier on the compilation unit containing the main function or if your
main routine runs in parallel but is written in another language, you do
not need to link against VAXCPAR.OLB.
See Section 1.4.5.2 for information on object module libraries, linking
order, and the VAX CRun-Time Library (RTL). See Section 3.8 for
information on additional restrictions involving the use of the parallel
memory-management functions in the VAX C RTL. See Chapter 13 for
more information on mixed-language programming.

VAX C does not decompose loops properly if any of the following conditions
exist:

• The loop is a while loop and the compiler cannot determine the number
of iterations in the loop

• There is a function call in the loop (Section 3.4.2)
• There are pointers used in the loop (Section 3.4.3)
• There exist two or more iterations making references to the same array

element (Section 3.4.1)
• There exists a scalar variable that is defined in one loop iteration and

referenced in another iteration (Section 3.4.4)

• A return or goto statement is contained within the loop.

VAX C Support for Parallel Processing 3-9

• A label is contained within the loop.

• There are more than 32 variables used within the function containing
the loop.

• A static or globaldef array is referenced or modified within the loop.
(See Section 3.6 for more information about storage classes and parallel
processing.)

• A static or globaldef scalar is referenced within the loop. (See
Section 3.6 for more information about storage classes and parallel
processing.)

• The loop is a do loop.

• The loop control variable is not an [auto] variable. (See Section 3.6 for
more information about storage classes and parallel processing.)

• The loop control variable is a float or double.

• There is a function call in a loop termination condition.

• The loop is a multiple index loop. You can rewrite this sort of loop as a
nested loop to allow decomposition analysis.

• The loop is a nested loop. If a loop contains other loops (nested loops)
and all the loops are eligible for decomposition, VAX C only decomposes
the outermost loop. Similarly, if your program has a decomposed loop
that contains a function call and the function contains a decomposed
loop, the loop inside the function does not run in parallel. However, if
the function is called from sequential code, the loop inside the function
executes in parallel.

• A call to the VAX C RTL function long;jmp.

• Input or output operations, since they involve function calls.
• Exception or signal handling, since they involve function calls.
• Running your programs from the DEC/Shell. (You must use the DCL

command-language interpreter to compile, link, and run parallel
programs.)

If you set
errno

in a loop to be decomposed, you must check its value within
the decomposed loop. If the program calls a function that sets errno from
within a decomposed loop and, if it then checks the value of

errno

outside
the loop, the value of

errno at that point reflects the error status of the
program code outside the loop, not the error status of the code inside of the
loop. Since each subprocess receives its own copy of

errno, you need to check
the value of

errno periodically inside of the loop.

See Section 3.8 for information about programming restrictions involving
the use of the parallel-processing versions of the VAX C RTL memory-
management functions malloc, calloc, free, cfree, and realloc.

3-10 VAX C Support for Parallel Processing

3.4 Data-Dependency Analysis

If a data dependency is carried by a for or a while loop, the result of
running it in parallel often varies from sequential execution and varies from
one parallel execution to another parallel execution. This unpredictability
occurs because loop iterations can be executed out of order when a loop is
run in parallel and a loop with aloop-carried data dependency only works
correctly when the loop iterations are executed in order.

This section discusses how VAX C analyzes the following calls and references
inside each loop body to determine if a loop contains dependencies:

• Array variable references (Section 3.4.1)
• Function calls (Section 3.4.2)

• Pointer variable references (Section 3.4.3)
• Scalar variable references (Section 3.4.4)

3.4.1 Array Variable References

VAX C analyzes all references to arrays in a loop; each array reference
is considered in turn. If no element of the array can be modified during
execution of the loop, then the values of the array elements are constant in
the loop. In this case, the array does not introduce any data dependencies
into the loop .

If any array element can be modified within the loop, VAX C must perform
further analysis of the loop's references to this array to ensure that no two
iterations of the loop reference the same element of the array. In particular,
VAX C tries to establish that at least one index of every reference to the
array in the loop is distinct in every iteration.

VAX C determines that a simple expression containing the loop's index
variable is distinct in each iteration if the expression satisfies the following
conditions:

• The index variable appears only once (and is not multiplied by a factor
of zero).

• All index-expression values are invariant (unchanging) in the loop.

• All indexed references to the same dimension of the array are identical,
except for the constant part.

VAX C Support for Parallel Processing 3-11

If an array reference has a constant part, then the compiler computes the
distance. If distance MOD stepsize = 0 (where step size is the amount
of the increment), then a dependency exists and the compiler does not
decompose the loop. Otherwise, the compiler decomposes the loop.

Consider the following example:

for (i = 0; i < 100; i++)
{

for (j = 0; j < 100; j++)
{

for (k = 0; k < 100; k++)
{

abc[j] [j + k] = abc[j + 1] [j + k] + i * bcd[i] [i];
}

}

}

VAX C does not decompose the loop on i because no index expression of
the abc array refers to the loop-index variable i. The abc array is the only
variable considered in loop analysis here, because it is the only one modified
in the loop.

VAX C does not decompose the loop on j, either. While j is used in both
index expressions of abc, the index expression for the first dimension is not
identical in all references to abc, and the index expression for the second
dimension contains a reference to the variable k. The variable k is not
constant during execution of the j loop, and this prevents decomposition.

Even though the first two loops are not decomposed, the loop on k can be
decomposed. The second index of every reference to array abc is identical
(j + k) and contains the loop index variable k. The remainder of the
expression (j) is invariant within the k loop. The reference to bcd[i] does not
prevent decomposition on the k loop because it is also an invariant value in
the k loop.

When loop decomposition is inhibited by an array dependency, VAX C issues
a message for each line of code in the loop that references the array. For
example, consider the following listing fragment:

12 1
13 1
14 2
15 2

for (i = 0; i < 10; i++)
{

Lines 14 and 15 generate messages that indicates that the loop-control
variable i is contained in an expression that is not invariant. However, the
compiler decomposes the following loop without generating messages:

3-12 VAX C Support for Parallel Processing

12 1 for (i = 0; i < 10; i += 2)
13 1 {

14 2 x[i) = x[i - 1] * pi;
15 2 y [i] = y [i + 1] * pi;

VAX C requires that the arrays referenced in a loop be [extern] or [auto]
arrays for the loop to decompose. Arrays that have the static, globaldef,
or globaldef storage-class specifiers cannot have their storage accessed by
multiple processes. If you use an array with one of these storage classes
within a loop, you receive a message and loop decomposition is inhibited.

NOTE

In this chapter, the notation [extern] refers to any variable
declared outside of a function that does not have a static,
globaldef, or globaldef storage-class specifier. when declaring
such a variable, the key word extern is optional, and hence, the
[extern] notation.

Similarly, any variable declared inside a function that is not a function
parameter and that has an auto or register storage-class specifier is an
[auto] variable. If the variable has no storage-class specifier, [auto] is the
default.

See Chapter 9 for more information about the [extern] and [auto] storage-
class specifiers.

3.4.2 Function Catls

By default, VAX C does not decompose loops containing function calls.
Functions that are called inside a loop can introduce unpredictable behavior
in a decomposed loop in the following ways:

• If the function called from within the loop is not reentrant, the par-
allel execution of several iterations of the function may introduce
unpredictable behavior.
A nonreentrant function is any function that cannot have several
instances active at once. For example, if a function reads and updates a
counter in a static variable, it is not reentrant. In general, any function
that uses static data is not reentrant.

• If the function has side effects that introduce data dependencies into the
loop, the function may behave unpredictably. For instance, if a function
updates a global array that is accessed in the decomposed loop from
which it is called, you must examine the function carefully to make
certain that no dependencies are introduced by the function call. That

VAX C Support for Parallel Processing 3-13

is, the function must not read any memory written by other iterations of
the loop, or write any memory read by other iterations of the loop.

• If the Toop does not have a predictable flow of control, that is, it does not
return normally, decomposition cannot proceed properly. For example, if
the function calls the VAX CRun-Time Library (RTL} routine long jmp,
the function cannot be decomposed.

If you determine that the function contains none of the previous restrictions,
you can use the safe_call pragma to tell the compiler that it is safe
to execute the function in parallel for a given loop. See Section 3.7 for
information about the safe_call pragma and other decomposition pragmas.

If the safe_call pragma does not appear before a loop containing a function
call, the compiler issues a message and that loop is not decomposed.
However, the compiler may still perform the inline optimization on the
function in the loop.

The following section describes the use of math.h functions in decomposed
loops.

3.4.2.1 math.h Function Calls

By default, the compiler does not decompose loops containing function calls.
However, VAX C places global #pragma safe_call directives in the math.h
include file. This allows you to use most of the math functions in the VAX
C Run-Time Library (RTL) without inhibiting loop decomposition or without
requiring you to use #pragma safe_call in your program.

Not all of the math functions are safe to call in your programs. By default,
using the following math functions inhibits loop decomposition:

• frexp

• modf

These math functions introduce possible data dependencies by accepting
pointer arguments and by returning additional information by using these
arguments. You should not use these functions in loops that you want VAX
C to decompose.

If you want to check the value of
errno as possibly set by one of the math

functions, you need to place that check inside the loop to be decomposed.
(See Section 3.3 for more information.)

NOTE

If you place the #include math directive inside of a function
definition, the effect of the #pragma safe_call directives is only

3-14 VAX C Support for Parallel Processing

local to that function. If you call the math functions in other
function definitions, VAX C does not decompose loops in that
function. To keep the effect of the math.h safe call pragmas
global, place the #include directive outside function definitions.

See the VAX CRun-Time Library Reference Manual for more information on
the math functions in the VAX C ftTL. See Section 3.7 for more information
on the #pragma safe call directive. See Section 10.4 for more information
on file inclusion.

3.4.3 Pointer Variable References

Using pointer variables inside a loop can make it difficult to determine
whether a data dependency exists within the loop. For instance, in the
following example, it is impossible to determine whether the access through
the pointer variable p introduces a data dependency unless it is known
whether p points to an element of vector:

for (i = 0; i < 127; i++)
{

vector [i] _ *p * pi / sin (x) ;
}

The possible data dependency is clear if an arbitrary element of vector is
substituted for *p in the previous expression:

for (i = 0; i < 127; i++)
{

vector [i] =vector [42] * pi / sin (x) ;
}

If multiple arrays are used in the loop, there is the possibility of a data
dependency between p and every array used in the loop.

VAX C analyzes references to pointers; if the pointer is initialized so that
VAX C can determine the identity of an underlying array, using the pointer
in the loop may not prevent decomposition (if it does not introduce data
dependencies).

If you are working with arrays, you should use the bracket operators to ref-
erence array elements. If you use pointer notation to access array elements,
the compiler does not decompose the loop. The compiler decomposes a loop
containing the following references to array members:

for (i = 0; i < n; i++)

p [i] = q[i] ;

VAX C Support for Parallel Processing 3-15

The compiler does not decompose a loop containing the following references
to array members, even though this method is functionally equivalent to the
one in the last example:

for (i = 0; i < n; i++)

If VAX C cannot determine whether a pointer dereference introduces a data
dependency, the compiler generates a message and does not decompose the
loop. The compiler generates a message for every dereference of the pointer
in the loop. If you can determine that using the pointer does not introduce
a data dependency, you can use the ignore_dependency decomposition
pragma to inform the compiler of this. See Section 3.7 for information about
decomposition pragmas.

3.4.4 Scalar Variable References

To determine if a loop can be decomposed, VAX C analyzes references to
scalar variables within the loop. If a scalar variable in a loop introduces
a data dependency, the loop is not decomposed. A scalar can introduce a
loop-carried data dependency only if the value of the scalar is defined in one
iteration of the loop, and used in another. Since iterations of a decomposed
loop have no guaranteed execution order, the iteration that is executed last
might vary, which causes the value of the scalar to vary at loop termination.

If a scalar variable is not modified during the execution of a loop, its value
can be shared by all iterations of the loop; such scalar references do not
prevent decomposition. However, if a scalar variable is modified in the loop,
it introduces aloop-carried data dependency when either of the following
conditions occur:

• If the value of the scalar variable is defined outside the loop and it is
used before it is defined inside the loop.

• If the value of a scalar variable is defined inside the loop and it is used
outside the loop.

If either of these two conditions exists, the loop is not decomposed and VAX
C generates a message.

Consider the following example:

3-16 VAX C Support for Parallel Processing

a = b = 1;
c=d=0;

for (i = 0; i < N; i++)
{

if (b < 0)
{

d = -b;
c = c + d;

}

}

printf (" od\ n", d) ;

VAX C does not decompose this loop for two reasons. First, scalar variable
c is initialized outside the loop, then used in a loop iteration before it is
defined inside the loop. Second, the final value of d from the last iteration
is used outside the loop. The references to variables a and b are not factors
preventing decomposition, because a is not modified in the loop, and b is
defined before it is used in the loop, and b is not used after the loop.

VAX C also requires that loop index variables and other scalars modified or
used in a loop have the [auto] storage class in order for decomposition to
proceed. Scalars used in a decomposed loop are placed in registers, to ensure
that each process executing an iteration has its own private copy. VAX C
only places [auto] variables in registers. If you modify a scalar that is not
an [auto] variable in a loop which VAX C is analyzing for decomposition,
you receive a compiler message. Scalars that are read but not modified in
the loop must have either the [auto] or the [extern] storage class, or you
receive a compiler message and loop decomposition is inhibited.

Even if the scalars in a loop do not cause a data dependency, they can
prevent VAX C from decomposing a loop if there are too many of them.
Because VAX C tries to place scalars that are modified within loops in
registers, if there are more modified scalars in a Loop than there are
registers available, the loop is not decomposed. when this occurs, a compiler
message is issued.

3.5 Rewriting Code to Resolve Dependencies

The following sections describe three coding techniques that you can use to
eliminate data-dependency problems that remove a loop from consideration
for parallel processing. The three coding techniques are as follows:

• Loop alignment (Section 3.5.1)

VAX C Support for Parallel Processing 3-17

• Code replication (Section 3.5.2)
• Loop distribution (Section 3.5.3)

3.5.1 Loop Alignment

Loop alignment changes loop-carried dependencies to loop-independent
dependencies. This method works by changing subscripts so that all
references to a given array element occur in the same iteration.

The code in the following for loop demonstrates an alignment problem:

for (i = 2; i < n; i++) ;
{

a [i] = b [i] ;

}

The first loop iteration accesses the value in memory location a[i + 1] and
the next iteration stores another value into that location, referencing it as
location a[i].

When the code is executed sequentially, the value in memory location a[i + 1]
is used before another value is stored into that memory location. This is
not true if the code is executed in parallel. For example, if loop iterations 4
and 5 execute in separate processes and iteration 5 executes before iteration
4, the value that iteration 4 accesses from the memory location associated
with a[i + 1] is the value established by iteration 5 in the memory location
associated with a[i].

The way to remedy this dependency is to bring into alignment the two
references to the memory location in array a, that is, the references to a[i]
and a[i + 1]. You can do this by changing the second assignment statement,
as follows:

Original Statement

Revised Statement

The revised statement eliminates the data-dependency problem associated
with the previous references to memory locations in array a. However, to
compensate for the change to the array reference, you may have to adjust
the loop control values and add appropriate if constructs to achieve the same
effect as the original loop.

3-18 VAX C Support for Parallel Processing

It is also important to maintain the order in which memory locations are
accessed. In this case, memory location a[i + 1] in the original for loop is
used in one iteration and then redefined in the next iteration (as memory
location a[i]). By aligning the references, each iteration operates on only
one memory location and, in the original order of the operations, array a's
memory locations are defined before they are used. So, in the revised for
loop being prepared for parallel processing, the statement performing the
use operation must be moved ahead of the statement performing the store
operation in order to preserve the original order of these operations.

In the following example, additional changes have to be made to the loop, as
follows

Original for Loop
for (i = 2; i < n; i++)

{

a [i] = b [i] ;

}

Revised for Loop

for (i = 2; i < n + 1; i++)
{

if (i > 2)

if (i <= n)
a [i] = b [i] ;

}

Alternatively, you can compensate for the change to the array reference by
distributing certain statements outside the loop, as follows:

Original for Loop

for (i=2; i < n; i++)
{

a [i] = b [i] ;

}

Revised for Loop
if (n >= 2)

a [2] = b[2]:
for (i = 3; i < n; i++)

{

a [i] = b [i] ;
}

if (n >= 2)

VAX C Support for Parallel Processing 3-19

If statements are distributed outside the loop, tests must be made to control
when those statements are executed. Otherwise, they are always executed
and that behavior causes an error when the loop has no iterations.

In addition, when using the loop alignment technique to resolve a data
dependency, check to ensure that the coding changes that you make to bring
one reference into alignment do not cause previously aligned references to
become unaligned.

3.5.2 Code Replication

Code replication entails duplicating certain operations to eliminate a
data-dependency problem.

The following example shows adata-dependency problem that can be
resolved by code replication:

for (i = 2; i <= 100; i++)
{

}

This example contains aloop-carried dependency between memory locations
a[i] and a[i - 1]. The value at memory location a[i - 1] is not predictable
because, in some instances, it is not defined in one loop iteration before
another loop iteration tries to use it. For example, if iterations 2 through
50 are executing in the main process and iterations 51 through 100 are
executing in a separate process, loop iteration 51 may try to use memory
location a[i - 1] before loop iteration 50 has stored a value in that memory
location, referencing it as memory location a[i].

To eliminate this problem, establish the value of a[i - 1] in a new memory
location and then eliminate the reference to the old memory location,
substituting a reference to the duplicated memory location. For example,
you can revise the for loop, as follows:

Original for Loop
for (i = 2; i <= 100; i++)

{

}

3-20 VAX C Support for Parallel Processing

Revised for Loop

for (i = 3; i <= 100; i++)
{

to = b[i - 1] + c[i - 1];

}

In this situation, you compute the value of memory location a[i - 1], store
it into temporary variable ta, and replace the reference to a[i - 1] with a
reference to variable ta.

Some of the calculations are pulled out of the loop and the iteration count
is modified. This is necessary because the reference to a[i] in the original
loop used the original value of a[i], not one computed by b[i] + c[i]. Using
the code replication technique generally requires this type of modification to
bring references back into alignment.

3.5.3 Loop Distribution

Loop distribution involves breaking down a loop with data-dependency
problems into several loops, one or more of which can be run in parallel. For
example, consider the following for loop:

for (i = 1; i <= 100; i++)
{

}

This loop contains a data dependency and VAX C cannot run it in parallel
without producing unpredictable results. As mentioned in the previous
section, if loop iterations 1 through 50 are executing on one processor and
loop iterations 51 through 100 are executing on another processor, it is likely
that loop iteration 51 will try to access a value in memory location a[i - 1]
before iteration 50 has executed (and stored the necessary value at that
location).

To eliminate this problem, you can distribute the for loop. For example, you
can revise the for loop, as follows:

VAX C Support for Parallel Processing 3-21

Original for Loop
for (i = l; i <= 100; i++)
{

}

Revised for Loop
for (i = l; i <= 100; i++)

for (i = 1; i <= 100; i++)

Given these changes, the second loop can now be executed in parallel.

3.6 Storage Classes and Parallel Processing

Only variables that are mapped to shared memory can be accessed by
multiple processes. Variables that are not mapped to shared memory
can inhibit loop decomposition. VAX C automatically maps the following
variables to shared memory:

• Any variable that is allocated on the stack, such as an automatic scalar
or array variable

• Any scalar variable with the [extern] storage-class modifier
• Any variable whose address is passed to a function

Variables that have the globaldef or static attributes are not mapped to
shared memory.

Any memory allocated with the malloc function is not shared unless you
follow certain requirements for using parallel versions of the memory-
managment functions of the VAX C RTL. See Section 3.8 for more
information.

VAX C automatically aligns [extern] variables modified within a decom-
posed loop on a page boundary. This is necessary in order to place them in
shared memory.

However, this page alignment can sometimes cause a linker warning to
be generated. If a variable is automatically page aligned in one module
because it is accessed in a decomposed loop, but it~ is not page aligned in
other modules, you get a linker warning. This can be safely ignored; if you
prefer, you can change the alignment of the variable to be page aligned in
all modules by using the _align declaration modifier.

3-22 VAX ~ Support for Parallel Processing

3.7 Decomposition Pragmas

In addition to rewriting your code to resolve dependencies, you can place
decomposition pragma directives into your programs to override the default
actions taken by the compiler. Table 3-2 presents the VAX C decomposition
Pragmas.

Table 3-2: VAX C Decomposition Pragmas

Prag'ma Description

#pramma ignore_ Specifies to the compiler that a variable that appears
dependency to be in conflict is safe to decompose. By default, VAX

C does not decompose loops that have two iterations
that access the same element.

#pragma safe_call Specifies to the compiler that a loop that contains
a call to the specified function is safe to decompose.
By default, VAX C does not decompose loops with
function calls.

#pragma sequential_loop Specifies to the compiler that the iterations of a for
or while loop should be executed sequentially. By
default, VAX C tries to decompose all for and while
loops for parallel processing.

For the ignore_dependency and sequential loop Pragmas, a placement
of the pragma affects only the next for or while loop encountered (re-
gardless if the loop contains a reference to any specified pointer or array
variable).

For the safe_call pragma, the placement of the pragma determines the
scope of the pragma's effect. If you place a safe_call pragma outside of all
function definitions, the pragma affects all for and while loops from the
position of the pragma to the end of the compilation unit. In this case, the
effect of the pragma is global.

If you place the safe_call pragma inside a function definition, the pragma
affects only the next for or while loop encountered within that function
(regardless if the loop contains a call to the specified function). In this
case, the effect of the safe_call pragma is local to the enclosing function
definition.

VAX C Support for Parallel Processing 3-23

If you specify the ignore_dependency or sequential_loop pragmas or if
you specify the safe_call pragma inside of a function, remember that the
pragma does not affect any loops nested within the next for or while loop
encountered. In this case, you must use a pragma preceding each loop you
want VAX C to decompose, including nested loops. If you use the safe_call
pragma outside of all function definitions, this pragma affects all for and
while loops including those that are nested from the occurrence of the
pragma to the end of the compilation unit.

The #pragma ignore_dependency and #pragma safe_call directives
require that you specify one or more identifiers to the directives. If you have
more than one specifier, you must separate each identifier with a comma
and can optionally enclose the identifiers in one set of parentheses. If you
do not use parentheses, you must place one space between the pragma
keyword and the identifier list; if you do use parentheses, you do not need
this space. For example, the following pragma tells VAX C to decompose a
loop containing calls to the functions funcl and func2:

#pragma safe call (funcl, func2)

For the three pragmas that require identifiers, you must make sure that the
pragma appears after the declaration of the identifiers (array, pointer, or
function names). In this way, the compiler can check to make sure that you
are passing identifiers of the correct kind to the three pragmas. Consider
the following example:

int foo () ;

#pragma safe call (foo)

main ()
{

}

foo ()
{

}

Once you declare the function foo, you can specify foo to the safe_call
pragma. (Once you declare a pointer or array variable, you can specify the
identifier to the ignore_dependency pragma.) In the previous example,
it is safe to call foo—in any for or while loop—from the occurrence of the
pragma to the end of the compilation unit.

See Section 10.7 to review the syntax lines for each of the decomposition
pragmas. The following sections discuss the use of VAX C decomposition
pragmas, as follows:

• #pragma ignore_dependency (Section 3.7.1)

3-24 VAX C Support for Parallel Processing

• #Pragma safe_call (Section 3.7.2)

• #Pragma sequential_loop (Section 3.7.3)

3.7.1 The ignore_dependency Decomposition Pragma

When a loop contains a variable that appears to access the same memory lo-
cation after two or more iterations, use the #Pragma ignore_dependency
directive. This tells VAX C that the loop is safe to decompose despite its
appearance. The ignore_dependency Pragma must be located after the
declarations of any variables that you specify to the Pragma. The occur-
rence of this Pragma affects only the next for or while loop encountered
(regardless if the loop contains a reference to the specified array or arrays),
excluding any nested loops in this loop.

Example 3-1 is an example of the #Pragma ignore_dependency directive
with a variable that is of type array.

Example 3-1: Using the #Pragma ignore_dependency Directive

int array[50];
main ()
{

int i;

/* this loop will get inconsistent results */

array [0] = 1;
#Pragma ignore_dependency(array)

for (i = l; i < 50; i++)
{

array [i] =array [i-1] + i;

}

#Pragma sequential loop
for (i = 0; i < 50; i++)

printf (" od ~ n",array [i]) ;
}

VAX C Support for Parallel Processing 3-25

In Example 3-2, the value of the pointed-to object does not change through-
out the execution of the program. Therefore, the order in which the loop
iterations execute does not matter. It is safe to decompose the loop that
contains the pointer variable ~`aa.

Example 3-2: Using the #pragma ignore dependency Directive

double a [100] , x;
double *aa;

main ()
{

int i;

init () ;

/* This initializes the contents of the array to 1.0. */
#pragma ignore dependency aa)
for (i = 0; i < 100; i++)

#pragma sequential loop
for (i = 0; i < 50; ++i)

printf ("of \n", a[i]);

x = 1.0;
as = &x;

}

If you have a loop that contains a variable that is part of an address compu-
tation, you must insert the ignore_dependency pragma in order for VAX C
to decompose the loop.

3.7.2 The safe call Decomposition Pragma

To inform VAX C that it is safe to decompose a loop containing calls to one
or more functions, use the #pragma safe_call directive. (See Section 3.4.2
for information about function calls and data dependency.) The safe_call
pragma must be located after the declarations of any functions that you
specify to the pragma. If you specify the #pragma safe_call directive at
the top of your compilation unit and outside of all function definitions, the
compiler recognizes that all loops in the compilation unit containing calls to
the specified functions are to be decomposed (as long as the loops contain no
other data dependencies).

3-26 VAX C Support for Parallel Processing

Do not specify a function in a safe_call pragma if the following conditions
are true about the function:

• It is not reentrant.

• It has side effects that introduce dependencies.

• It uses the VAX CRun-Time Library (RTL) routine long~mp, or
otherwise modifies the normal flow of control.

• It changes the process in some way.

• It takes an address as an argument, and the address points to memory
that is not shared.

In Example 3-3, the first #pragma safe_call directive is over the block
of the i loop, which contains the j and k loops. However, only the i loop
is affected by the pragma. The second pragma covers the j loop, and the
third pragma covers the k loop. (Using the safe_call outside of the function
definition in this example would affect all loops from the occurrence of the
pragma to the end of the compilation unit.)

Example 3-3: Using the #pragma safe call Directive

#define pi 3.14259
float a[100] [100] [100], b[50] [50] [50];

main ()
{

int i, j, k;

#pragma safe_call(func_a) /* Only affects i loop. */
for (i = 1; i < 100; i++)
{

/* Next line gets a message on.func_b and func_c. */
a [i] [i] [i] = func b (pi) * func_a (pi) / func_c (pi) ;

#pragma safe_call(func_b)
for (j = i; j < 100; ++j)
{

/* Next line gets a message on func_a and func_c. */
a [i] [j] [i] = func b (pi) * func_a (pi) / func_c (pi) ;

(continued on next page)

VAX C Support for Parallel Processing 3-27

Example 3-3 (Cont.): Using the #pragma safe call Directive

#pragma safe_call(func_a,func_b,func_c)
/* This loop will be decomposed, since it is the
only one that contains all safe calls. */
for (k = j; k < 100; k = k + 1)

{

a [i] [j] [k] = func_b (pi) * func_a (pi) / func_c (pi) ;
}

}

}

}

In Example 3-3, VAX C decomposes the k loop, but the compiler issues
messages against the statement in the k loop. However, these messages
apply only to the analysis of the i and j loops, not the k loop. Using the last
specified safe_call pragma outside of the function definition in this example
causes all three loops to be candidates for decomposition.

3.7.3 The sequential_loop Decomposition Pragma

To inform VAX C that the iterations of a for or while loop are to execute
sequentially, use the #pragma sequential_loop directive. (By default, VAX
C tries to decompose all for and while loops.) This pragma shuts off all
decomposition analysis and prevents most decomposition diagnostics from
being generated for the loop. The occurrence of this pragma affects only the
next for or while loop encountered, excluding any nested loops in this loop.

Example 3-4 presents an example of using the #pragma sequential_loop
directive to tell the compiler that the next encountered for loop requires
sequential execution.

A loop using an UO function and whose algorithm requires that iterations
execute in a given order is a good candidate for the sequential loop
pragma.

3-28 VAX C Support for Parallel Processing

Example 3-4: Using the #pragma sequential_loop Directive

main ()
{

printf("This program counts from 1 to 100:\n");

#pragma sequential loop

for (i = 0; i <= 100; i++)
printf (" o-d\n", i) ;

}

3.8 Memory-Management Functions

There is an additional VAX CRun-Time Library (RTL) that you can use if
you wish to use memory-management functions in programs that run in
parallel. The VAX C RTL contains versions of. the following functions that
allow memory access between subprocesses during parallel processing:

• malloc
• calloc
• free
• cfree
• realloc

To use the new versions of these routines, you perform the following tasks:

1. Write the main function of a parallel program in VAX C.
2. Declare the memory-management functions by including stddefh in your

program.
3. Compile your program using the /PEIRALLEL qualifier.
4. Link against the object library VAXCPAR.OLB.

The main function of your program must be named main or it must be
declared using the main program option. Otherwise, memory allocated by
malloc cannot be accessed across subprocesses.

To avoid errors, the parallel-processing versions of the functions have
different names from those of the normal memory-management functions.
The stddefh file contains macro definitions that make the correct versions
of the functions available, depending on the current value of the predefined
macro CC$parallel; VAX C defines this macro according to the presence or

VAX C Support for Parallel Processing 3-29

absence of the /PARALLEL qualifier on the command line (see Section 11.1.2
for more information). If you do not use stddefh to declare the memory-
management functions, a potential mismatch of versions may occur,
causing unpredictable results in your program. See Section 10.4 for more
information on including files into your program.

If you want to use the parallel-processing versions of the memory-
managment functions, you must follow the VAX C procedures for linking
aginst object module libraries or for linking against shareable images. (See
Section 1.4.5.2 for more information about linking against object module
libraries; see Section 1.4.5.3 for more information about linking against
shareable images).

The effect of using these versions of the functions is slightly different from
that of using the normal versions. The free function does not return a
value, and the malloc function does not set errno.

See the VAX CRun-~me Library Reference Manual for more information on
these memory-allocation functions.

3.9 Tuning Issues Related to Parallel Processing

Parallel-processing programs may fail to execute because of insufficient
system resources. You may have to adjust some resource-utilization
parameters both for the entire system and for individual user accounts. You
may also want to adjust some parameters to achieve better performance for
programs executing in parallel. These considerations are addressed in the
following sections.

You may also find it advisable to adjust system resources to accommodate
the needs of the multiprocessing configuration of the VMS Debugger.

3.9.1 Customizing the Parallel-Processing Run-Time Environment

To tune the parallel-processing run-time environment in which a program is
executed, you can use the logical names shown in Table 3-3.

3-30 VAX C Support for Parallel Processing

Table 3-3: Logical Names Used for Run-Time Tuning

Logical Name Use

FOR$PROCESSES

FOR$SPIN_WAIT
FOR$STALL_WAIT

Controls the number of processes used to execute a
program in parallel (32 maximum)

Control CPU usage when waiting, for work or synchro-
nization, in a program executing in parallel

You can define your own values for the logical names using the DCL
commands DEFINE or ASSIGN. For example:

$ DEFINE FOR$PROCESSES 4

The values defined when a program starts parallel execution remain in
effect until execution is completed.

The following sections describe the logical names, as follows:

• FOR$PROCESSES (Section 3.9.1.1)

• FOR$SPIN_WAIT (Section 3.9.1.2)

• FOR$ STALL_WAIT (Section 3.9.1.3)

3.9.1.1 Controlling the Number of Processes (FOR$PROCESSES)

The logical name FOR$PROCESSES defines the number of processes to be
used when executing a program in parallel. To define FOR$PROCESSES,
you must specify a nonzero, positive number. The maximum number is 32.
If you do not define a value for FOR$PROCESSES, a default value equal to
the number of processors that are currently active on the system is used.

Being able to adjust the number of processes can be helpful for a variety of
reasons, as follows:

• It enables you to execute your parallel program in a single process. This
allows you to debug the logic within your parallel for or while loops
as they execute in a serial, nonparallel fashion. (Note that running a
program with parallel loops serially and in one process does not reduce
the initialization overhead associated with the parallel loops.)

• It enables you to compare the performance impact of executing a parallel
program with a varying number of processes.

• It enables you to gauge the tradeoffs between increasing system over-
head and increasing execution time. For example, in atime-sharing en-
vironment, you may find it advisable to reduce the number of processes
in order to minimize contention for system resources.

VAX C Support for Parallel Processing 3-31

• It is useful when you are executing a program in parallel on a multipro-
cessor with more than two processors and you do not want to contend for
the use of all the available processors.

3.9.1.2 Controlling Internal Spin Waits (FOR$SPIN WAIF

The logical name FOR$SPIN_WAIT allows you to tune the synchronization
method used when a program runs in parallel.

The synchronization methods used by a program running in parallel in a
multitasking environment must deal with two conflicting goals, as follows:

• To respond as quickly as possible to a synchronization flag. The common
way to accomplish this is to repeatedly test for an appropriate flag in a
shared storage location. Doing this test in a tight loop ensures a quick
response when the flag is reset. This solution, however, conflicts with
the second goal.

• To avoid wasting valuable CPU cycles that might be used by another
program.

Because of this conflict, a tradeoff must be made between the fastest re-
sponse to the synchronization flags and fairness to other programs.

VAX C allows you to affect this tradeoff by defining a value for FOR$SPIN_
WAIT. You can define it to be any nonnegative integer. This value specifies
how many iterations of the spin-wait loop execute before the executing
process gives up the processor and allows the VMS system to schedule
another process.

Defined values for FOR$SPIN_WAIT can be the following:

• A value of 0 is a special case that tells the run-time support to use the
fastest synchronization at the expense of wasted CPU cycles. This value
is appropriate for running a program in parallel on a system that is
dedicated to running that single program.

• Other positive values tell the run-time support to use more or fewer
spin-wait iterations, with higher values indicating more iterations. A
value of 1 ensures the least wasted cycles at the cost of the slowest
synchronization response.

It is usually not necessary to define this logical name. The default value
(1000) established by the run-time system should be adequate for most
programs.

3^32 VAX C Support for Parallel Processing

3.9.1.3 Controlling the State of a Process (FOR$STALL WAIT)

When a subprocess is waiting to work on a parallel loop, it can be either in
an active state on the system or in an inactive state. When a subprocess is
inactive, it becomes less responsive because it has to become active again
before it can respond to the parallel loop.

As a second level of control over the internal spin waits in the parallel-
processing environment, the logical name FOR$STALL_WAIT allows you
to control the time that a subprocess stays active on the system. To con-

, trol how long it remains active, you define a value for the logical name
FOR$STALL_WAIT. This nonnegative value specifies the number of times
that the subprocess will give up the CPU before becoming inactive.

Defined values for FOR$STALL_WAIT can be the following:

• A value of 0 tells the run-time support to maintain the subprocess as
active, so that the subprocess is more responsive when a parallel loop
becomes available. A value of 0 is appropriate for programs that contain
mostly parallel loops.

• Other positive values tell the run-time support to stay active for a longer
or shorter interval, with higher values directing it to stay active longer.
A value of 1 ensures that a subprocess waiting for a parallel loop will
stay active for the shortest time interval. A value of 1 is appropriate
when the program has large segments of code before, after, or between
parallel loops.

It is usually not necessary to define this logical name. The default value
(10 times the number of subprocesses) established by the run-time system
should be adequate for most programs.

3.9.2 System Parameters Set with the SYSG EN Uti I ity

When a parallel application is executed, much of the local memory and many
external variables of the application are mapped to global sections (the VMS
operating system's way of sharing data between processes). You must ensure
that the number of global sections, global pages, and global page file sections
required by a parallel application are available. To allow enough space for
this global data, some of the system's sysgen parameters may need to be
increased.

VAX C Support for Parallel Processing 3-33

The most important sysgen parameters are GBLPAGFIL, GBLPAGES, and
GBLSECTIONS. These parameters are not dynamic; your system must be
restarted for any modifications to them to take effect. Adjust the parameters
one at a time to avoid modifying some of them unnecessarily. Table 3-4 lists
suggested values for the three sysgen parameters.

Your system manager should use the SYS$UPDATE:AUTOGEN. COM
command procedure to modify these sysgen parameters. Using
AUTOGEN.COM, parameters related to those you are modifying are
automatically changed for you. For details on how to use this procedure, see
the installation guide for the operating system software installed on your
system.

Table 3-4: Sysgen Parameters Requiring Changes for Parallel Processing

Parameter Suggested
Name Value1 Default Minimum Maximum Unit Dynamic

GBLSECTIONS 512 128 20 4095 Sections No

GBLPAGES 32768 4096 512 -1 Pages No

GBLPAGFIL 7000 1024 128 -1 Pages No

1 Tlie values listed under this heading are typical values.

The following sections provide more detail about the following parameters:

• GBLSECTIONS (Section 3.9.2.1)

• GBLPAGES (Section 3.9.2.2)

• GBLPAGFIL (Section 3.9.2.3)

3.9.2.1 Global Section Descriptor Count (GBLSECTIONS)
The GBLSECTIONS parameter sets the number of global section descriptors
established in permanent resident memory at startup time. Each global
section must have a descriptor. The number of global section descriptors
determines the ma~umum number of global sections that can exist on the
system at one time.

Each descriptor requires 32 bytes of permanent resident memory. To avoid
wasting permanent resident memory, try to minimize the value you give to
the GBLSECTIONS parameter.

If the count is not high enough, a diagnostic message is issued.

3-34 VAX C Support for Parallel Processing

3.9.2.2 Global Page Table Entry Count (GBLPAGES)

The GBLPAGES parameter establishes the size of the global page table and
the maximum number of global pages that can be created. For ever, 128
entries in the global page table, 4 bytes are added to permanent resident
memory in the form of a system page table entry. (When you increase
GBLPAGES beyond the default setting, you may want to increase the
SYSMWCNT by 1 for each multiple of 128 entries that you add to the
default setting.)

One way to calculate the number of global pages required to run an applica-
tion using the VAX Cparallel-processing support is to obtain a link map and
add up the size of the psects that will be shared.

To get a link map, specify the lMAPlFULL qualifiers on your LINK command
line. To calculate the approximate number of global pages required for
your application, go through the link map and add up the decimal sizes
of the psects for external variables and the $LOCAL psect. (The link map
gives you the size of the psects, in bytes.) In additio~l, the VAX Cparallel-
processing run-time support requires approximately 3 global pages for its
own use; so add 1536 bytes to the number of bytes required for the psects.
Then, to determine the number of global pages required for the application,
divide the total number of bytes by 512.

If the count is not high enough, a diagnostic message is issued.

The GBLPAGFIL and GBLPAGES parameters must both be at least as large
as the number of global pages required for your application.

3.9.2.3 Global Page File Limit (GBLPAGFIL)

The GBLPAGFIL parameter establishes the maximum number of global
pages with page file backing store that can be created. Space for global page
file sections is allocated from the paging file at startup time. When you
increase this parameter you may want to increase the size of the paging files
as well. You can check the current size of the paging files by using the DCL
command SHOW MEMORY. For example:

$ SHOW MEMORY

[other memory information removed]

Paging File Usage (pages): Free Reservable Total

DISK$PAGE:[PAGE]SWAPFILE2.SYS;1 68280 68280 79992

DISK$PAGE:[PAGE]PAGEFILE2.SYS;1 73490 60190 79992

If the limit is not high enough, a diagnostic message is issued.

VAX C Support for Parallel Processing 3-35

3.9.3 User Parameters Set with the AUTHORIZE Utility

You may need to adjust the PRCLM and PGFLQUO authorization quotas for
any account that runs parallel applications. Adjust them using the following
guidelines:

• The PRCLM quota determines the number of subprocesses that your
process can create. For applications involving parallel for loops, it must
be at least equal to the number you specify for the FOR$PROCESSES
logical name. (During debugging operations, one additional process must
be available for the debugger.)

• The PGFLQUO quota is a pooled quota. It restricts the total pages
that your processes can use in the system paging file. It is shared by
all processes in a job so it may require an adjustment to allow for the
additional processes used in parallel processing. It may need to be as
high as the value that results from multiplying the total number of
writable pages (shown in the Image Section Synopsis in the image map
produced by the linker) times the number of processes.

If either of these quotas is not high enough, a diagnostic message is issued.

These quotas are adjusted using the Authorize Utility and are established
only at login time. This implies that any current user of the account must
log off and log back on before the quotas change for that user. The following
user listing shows example settings for the PRCLM and PGFLQUO quotas:

Username: USER_J Owner: Joe User
Account: NONE UIC: [360,100] ([USER J])
CLI: DCL Tables: DCLTABLES
Default : USRD$: [USER J]

[other user information removed from this listing display]

Prclm: 10 DIOlm: 18 WSdef: 300
Prio: 4 ASTlm: 30 WSquo: 500
Queprio: 0 TQElm: 20 WSextent: 2048
CPU: (none) Enqlm: 200 Pgflquo: 20000

[other user information removed from this listing display]

Use the Authorize Utility's MODIFY command to change these quotas. For
example:

UAF> MODIFY USER J/PGFLQUOTA=23921

3-36 VAX C Support for Parallel Processing

3.9.4 Other Tuning Considerations

Parallel-processing applications typically use large amounts of memory.
To get better performance for an application, you may want to make
adjustments to the working set size parameters (WSMAX, WSQUOTA, and
WSEXTENT) both for the system and for user accounts. See the Guide to
VMS Performance Management for information on how to adjust working set
size.

VAX C Support for Parallel Processing 3-37

VAX C Programming Concepts

Chapter 4

VAX C Tutorial

This chapter is a VAX C tutorial for the experienced programmer. The topics
covered in this chapter are as follows:

• C language overview (Section 4.1)

• VAX C language overview (Section 4.2)

• Writing a program (Section 4.3)

• Producing input and output (I/O) (Section 4.4)

• Conditional execution of code (Section 4.5)

• Values, addresses, and pointers (Section 4.6)

• Aggregate data structures (Section 4.7)

The text provides detailed examples and short tutorials, as well as pointers
to other chapters in this guide. If you need detailed language information,
see the more detailed chapters in this part of the guide.

4.1 C Programming Language Overview

The C language is ageneral-purpose programming language that is
manageable due to its small size, flexible due to its ample supply of
operators, and powerful due to its utilization of modern control flow and
data structures. The C language was originally designed and implemented
on a UNIX® system with the PDP-11. The designers of the language spoke
of its functionality as follows:

"The [C] language . . . is not tied to any one operating system or
machine; and although it has been called a ~ system programming

® UNIX is a registered trademark of American Telephone and Telegraph Company in the U.S. and other
countries.

VAX C Tutorial 4-1

language ~ because it is useful for writing operating systems, it has
been used equally well to write major numerical, text-processing, and
database programs."1

Like assembly language, C was not designed to accommodate the needs of
any particular application. C manipulates and stores data with regard to
the similarities of modern machine architecture. Despite their similarities,
C is not as complex as assembler language and is not machine dependent.
C is highly portable, which means that you can compile and run C source
programs using different compilers on different machines.

There is no ANSI or other industry-wide standard for the C programming
language at the time of publication (although the ANSI C committee is in
the late stages of developing such a standard). Also, there is a consistency
of functionality between implementations. There must be consistency if C is
to be portable across systems, and this is one of the most desirable features
of the language. So, not only must C source programs be portable, the
language features themselves must produce the same effects on all systems
when you compile and run programs.

The C language was developed in a~ UNIX system environment, and
eventually was used to rewrite most of that operating system, so many
standard methods of operation in C are related to UNIX. For instance,
UNIX systems access files by a numeric file descriptor, so C implementations
should provide functions to access files by file descriptor. In a UNIX system
environment, you can expect a concise command structure, an ability to
redirect output from one program or command to the input of another
program or command, an ability to create asynchronous and synchronous
subprocesses, and an ability to manipulate the operating system features
without many restrictions and system safeguards.

Some standard C constructs include preprocessor directives and a run-
time library of functions and macros. In a UNIX system environment, a
preprocessor completes the tasks designated in the preprocessor directives
located in the source code before the compiler takes any action.

Since the C language has no means to input and output information, a run-
time library usually provides this service. If a run-time function produces
side effects other than those produced in the UNIX system environment,
the function's portability is questionable. For a complete discussion of
portability, see the VAX CRun-~me Library Reference Manual.

1 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Languacge (Englewood Cliffs, New Jersey:
Prentice Hall, 1978), p. 1.

4--2 VAX C Tutorial

4.2 VAX C Programming Language Overview

The VAX C programming language incorporates the features that are
fundamental to the C language and that exist in most C compilers.
However, VAX C also provides features, unique to VAX C, that work
directly and efficiently with the VMS operating system environment. You
must decide which set of features of VAX C are most important to your
programming needs: portability across systems or efficient use of the VMS
operating system features. Choosing one set of features over the other has
its benefits as well as disadvantages.

If you choose to program in VAX C so that your source programs are highly
portable across systems, you sacrifice efficiency to some degree. For the
VAX CRun-Time Library (RTL) to emulate UNIX system features, which it
must do to maintain a satisfactory degree of portability, VMS features may
have to be manipulated, causing a loss of efficiency. For example, a UNIX
system accesses a file using a structure called a file descriptor, but VAX
Record Management Services (RMS) access files using a variety of control
structures. In VAX C, UO functions appear to access files in the same
manner as UNIX systems, but the run-time library actually manipulates
RMS structures, making it appear as though you are working in a UNIX
system environment. Most of the VMS manipulation is transparent to you,
but can slow the execution of a program in some instances.

Most of the differences between VAX C and other implementations
differences that hinder the portability of source code—evolved due to the
differences between VMS and UNIX systems. For example, it is difficult for
VAX C to create an environment that gives you a great amount of control, as
in a UNIX system environment, when a VMS system environment will not
grant you such control; UO redirection is not a part of the VMS command
line syntax; creating subprocesses on VMS systems is not as efficient as
it is on UNIX systems; and, VMS high-level languages do not implement
preprocessors in the same manner as languages on a UNIX system. In this
guide, differences between VAX C and other implementations are flagged in
the text so that you can use nonportable VAX C constructs efficiently.

If you choose to program in VAX C so that your program works with the
VMS system in an efficient manner, you sacrifice, to some degree, the option
of being able to port your programs to and from other systems. For example,
you can call the VMS Run-Time Library (RTL) routines within VAX C
programs.

VAX C Tutorial 4-3

However, you can have portability and efficiently access the powerful VMS
environment. You can use special constructs of VAX C and the DIGITAL
Command Language (DCL} (such as the VAX C preprocessor substitutions
and the DCL command-line qualifier /STANDARD=PORTABLE). These
constructs allow you to execute some segments of code only when running
on a VMS system, and to execute other segments of code when running
on systems other than a VMS system. For more information about the
preprocessor directives, see Section 11.1.7. For information about the VAX C
compilation qualifiers, see Section 1.3.2.

4.3 Writing a Program

In an effort to keep the examples in this tutorial simple so that you can
concentrate on the concepts, the first program presented here adds two
numbers and stores the total in a variable. Example 4-1 shows how to code
such a program.

Example 4-1: Simple Addition in VAX C

0 /* This program adds two numbers and places the sum in
* the variable total.

© main
{

© int total;

0 total = 2 + 2;
}

/* The function name "main" */
/* Begins function body */
/* Variable of type "int" */
/* Blank lines are allowed */
/* Answer placed in "total" */
/* Ends the function body */

Key to Example 4-1:

Q The text bordered by the characters (/*)and (*/) are comments. You
cannot place comments within comments (that is, they cannot be nested),
but you can place comments anywhere white space is allowed. White
space is an area within the source code where blank spaces or blank
lines separate code. In later chapters, permitted white space is defined
for VAX C constructs.

© VAX C programs are comprised of user-defined external functions that
cannot be nested. Here, a function named main i.s defined. In VAX C,
execution of a program begins at either a function named main or at
a function defined using the main_program option, or both. If a user-
specified main function does not exist, the first function in the program
stream at the time external references are resolved is the default main

4-4 VAX C Tutorial

function. The main_program option is VAX C specific and is not portable.
For more information about the syntax and usage of the main_program
option, see Section 5.1.1.
VAX C functions have methods of exchanging information using param-
eters and arguments. In the function definition of main, the lack of
parameters is designated by the empty parentheses. In Example 4-1,
the function main cannot receive information using parameters.
Zb specify parameters in a function definition, list the parameter iden-
tifiers within the parentheses and separate them with a comma (, }.
You must declare the parameters before the beginning of the body of
the function. If you call a function from within function main (you
normally do not call the main function from another part of your pro-
gram), the function name is followed by a list of arguments delimited by
parentheses and separated by commas. The number of arguments must
correspond with the number of parameters in the function declaration.
In Example 4-1, there are no function calls.
The function performs its task as determined by the statements found in
the body, and may or may not return a value to the calling expression.
The body of the function main is delimited by braces ({ }). They are
similar to the DO-END of PL/I, or the BEGIN-END of Pascal. The body
usually contains one or more return statements. A return statement
specifies what, if anything, is returned to the expression that called
the function. Depending on the set-up of the function, you can omit
the return statement, and its return value will remain undefined. If a
function does not return a value, you can declare the function to be of
data type void. For more information about functions, see Section 5.1.1.
For more information about function parameters, see Section 5.1.2.

® In the example, the variable total is declared and defined within the
function main. You usually declare all variables before referencing
them within the program. Declarations end with a semicolon (;). If
you declare a variable, you specify its data type. Data types specify
the amount of storage required and how to interpret the stored object.
For example, variable total is of the data type int (integer), the object
of which requires 32 bits (4 bytes or 1 longword) of memory. VAX C
interprets variables of type int as integers having a positive or negative
sign (or zero).
When you define a variable, you specify its storage class, which affects
its location, lifetime, and scope. Variables declared within a function
have a default storage class of auto (automatic). Variables of this
storage class receive storage space when the function is activated and
storage is freed when control of the calling function resumes. Not all
storage classes are implemented by default. You can specify all VAX C

VAX C Tutorial 4-5

storage classes and may place the storage-class keyword either before or
after the data-type keyword in the variable declaration.
Data types and storage classes are very important when determining
the scope of a variable. For more information about data types, see
Chapter 8. For more information about storage classes, see Chapter 9.
Keywords are the reserved words used to identify data types (such as
int, double), storage classes (such as auto, globalvalue), statements
(such as if, goto), and operators (such as sizeof). Keywords are prede-
fined and cannot be redeclared. You cannot use these words to identify
variables and functions in your programs. You must express keywords
in lowercase letters. For a list of the VAX C keywords, see Section 5.6.
VAX C is acase-sensitive language. You can declare variables such
as total in any mixture of upper- or lowercase letters. If you reference
variable total in your program, the reference also must be lowercase. For
example, if you attempt to reference variable Total, an error occurs; the
compiler does not recognize the variable name due to the initial capital
letter.

(,~ The sum of 2 ~- 2 is stored in variable total. This is accomplished
using a valid VAX C statement. You can use any valid expression as a
statement by ending it with a semicolon (;). Identifier total is a declared
variable; the equal sign (_)and the plus sign (+) are valid VAX C
operators; and the numbers being added are valid constants. For more
information about the various VAX C statements, see Chapter 6. For
more information about the VAX C operators, see Chapter 7.

4.4 Producing InpuUOutput (I/O)

The C language includes no facilities to administer input or output (UO).
However, all implementations must have methods that allow the programs
and users to communicate. The lack of communication in Example 4--1 is
inconvenient; there is no way to know if the program assigns the correct
value of 4 to variable total. You can use aVAX CRun-Time Library (RTL)
function to output the value of variable total to the terminal.

All C compilers are accompanied by a run-time library of functions and
macros in order to perform input, output, and various tasks related to
specific operating environments. The VAX C RTL provides many of the
functions and macros that are included with other implementations of the C
language. In addition, there are functions that work directly and efficiently
with the VMS environment.

4-6 VAX C Tutorial

Before you can execute any of the example programs in this manual, you
have one of two options. You can link against the VAX C RTL in an object
code library or in a shareable image. Both methods require instructions to
be passed to the linker so that the linker knows the location of the correct
versions of the functions or macros you wish to use.

If you want to use the VAX C RTL as an object library, you must de-
fine, in the correct order, the libraries the linker must search to resolve
references to VAX C RTL functions. All the VAX C RTL object code
modules are located in the libraries SYS$LIBRARY:VAXCCURSE.OLB,
SYS$LIBRARY:VAXCRTLG.OLB, SYS$LIBR,ARY:VAXCRTL.OLB. and
SYS$LIBRARY:VAXCPAR.OLB. To determine in which order to define these
libraries, see Section 1.4.5.2. For general information about libraries, see
Section 1.4.5.1.

If you prefer to use the VAX C RTL as a shareable image, see Section 1.4.5.3
for more information. VAX C RTL macro references within program source
code look just like function references. However, the compiler replaces macro
references with VAX C source code at an early stage in the execution process.
The compiler locates VAX C RTL macro source code in the . H definition files
provided with VAX C. If your system manager extracted these .H files during
installation, you can access the files in the directory SYS$LIBRARY. For
example, you can type the STDIO. H file at your terminal with the following
command:

$ TYPE SYS$LIBRARY:STDIO.H (RETURNI

If this command causes an error, see your system manager about the
extraction of the .H files during installation. It is a good idea to type or
print all of the .H files to see the macros and definitions provided with
VAX C.

You can also locate the .H definition files in text library VAXCDEF.TLB
located in directory SYS$LIBRARY. This guide refers to the .H files as
definition modules since they can be accessed as modules in this text library.

For more information about macros, see Section 10.1.3. For more informa-
tion on the various methods of accessing VAX C RTL functions, see the VAX
C Run-~me Library Reference Manual.

Example 4-2 shows that by using the VAX C RTL function printf, a VAX C
program can print a message to the terminal.

VAX C Tuto ri at 4-7

Example 4-2: Output of Information

/* This program adds two numbers, assigns the value 4 to
* variable total, and then prints the answer on the
* terminal screen. */

0 #include stdio /* Good programming practice when
* using I/O functions. */

main ()
{

int total;
total = 2 + 2;

/* Print intro string

© printf("Here is the answer: ");
printf (" o-d. ", total) ; /* Print the answer

}

*/

*/

Key to Example 4-2:

D When you are using any of the I/O functions, it is good programming
practice to include the definition module that is appropriate for that
function (see the SAX C Run-Time Library Reference Manual}. In the
case of printf, you should include the stdio module, which is located in
the text library SYS$LIBRARY:VAXCDEF.TLB. This module contains
function prototypes and macro definitions that are used by many I/O
functions.

Q The VAX C RTL function printf writes to the standard output file (the
terminal screen). The first call to the VAX C RTL function printf passes
a string as the argument. The second call to printf passes a string with
special formatting characters and a variable as arguments. Within the
formatting string, the percentage sign (%) is replaced by the value of
total, the minus sign (—)left justifies the output, and the letter d forces
the value of the argument to be expressed as a decimal number. The
period (.)prints immediately after the value of total.

The output for Example 4-2 is as follows:

Here is the answer: 4.

If you want to print the value of total on a separate line, then the newline
character (\ n) must be added to the string. Example 4-3 shows how to
output on two lines.

4--8 VAX C Tutorial

Example 4-3: Output Using the Newline Character

/* This program adds two numbers, stores the sum in the
* variable total, and then prints the answer on two
* separate lines on the terminal screen.

#include stdio

main ()
{

int total;
total = 2 + 2;

/* Print intro string
printf ("Here is the answer \ n") ;

/* Print the answer
printf ("%-d. ", total) ;

}

*

*~

*~

Output from this program is as follows:

Here is the answer .
4.

Now that a program producing output has been presented, it is necessary
to compile, link, and execute the program using DCL to see the results.
Compiling a program translates the source code to~ object code; linking a
program organizes storage and resolves external references (for example,
references to VAX C RTL functions); and running a program executes the
image.

In the VMS environment, a file is distinguished by a file name and a file
extension. Choose the file name so that the file is easily identifiable to the
user. Choose the file extension to reflect the functionality of the file. For
example, the file name ADDITION. C is a good name for a VAX C source
program. The file extension . C is the default file extension for the VAX C
compiler. If the file name ADDITION is given to the VAX C compiler, the
compiler will look for the file ADDITION. C.

After you create and name your program, the program can be compiled,
linked, and executed as follows:

$ DEFINE LNK$LIBRARY
$ CC ADDITION.0
$ LINK ADDITION.OBJ
$ RUN ADDITION.EXE
Here is the answer .

RETURN
SYS$LIBRARY:VAXCRTL.OLB

RETURN

4.

RETURN

RETURN

The .OBJ and .EXE extensions are the default file extensions assigned to the
object file and the image file, respectively.

VAX C Tutorial 4-9

You may have to define more libraries to the linker or use shareable images
in order to use VAX C RTL functions in your program. The definition in
Example 4-3 is sufficient to execute all example programs in this chapter,
if you have the object libraries installed on your system. After you define
the libraries, you do not have to define them again for the remainder of the
terminal session (until you log out). For more information on the compilation
process, see Section 1.3. For more information on accessing the VAX C RTL
in an object library, see Section 1.4.5.2. For information on using the VAX C
RTL as a shareable image, see Section 1.4.5.3.

4.5 Conditional Execution of Cade

There will be occasions when you must execute one or more VAX C
statements given a certain condition. There will be other occasions when
you must execute one or more VAX C statements repeatedly, within the body
of a loop, until you meet a certain condition. There are several statements in
VAX C that accomplish these tasks. These statements are the if statement,
the switch statement, the do statement, and the for statement. For
information about the while statement, another statement that loops until
meeting a condition, see Section 6.4.2.

4.5.1 The if Statement

When executing one or more VAX C statements given a certain condition,
you can use the if statement. Example 4-4 shows a program using the if
statement.

4-10 VAX C Tutorial

Example 4-4: Conditional Execution Using the if Statement

/* This program asks the user to guess a letter. The
* program tells whether the answer's correct or
* incorrect. The program is hard coded to accept 'a' or
* 'A' as the correct letter. */

#include stdio

main ()
{

char ch; /* Declare a character
/* Ask the user to guess

printf ("Guess which letter I' m thinking of ! \ n") ;

0 ch = getchar(); /* Get the character

/* Correct = "a" or "A"

Q i f (ch =_ ' a' I I ch =_ ' A')
/* If correct guess

printf("You're right!");
else /* If incorrect guess

{

}

}

printf ("You're wrong. \ n") ;
printf("You'll have to try again!");

Key to Example 4-4:

0 The VAX C RTL function getchar retrieves a character from the stan-
dard output device (the terminal). The program pauses, waiting for the
user to type a character and to press the RETURN key. The function
getchar retrieves one character and ignores any others that are typed
in.

© If the letter that the user types is either ' a' or ' A' , then a message
stating that the choice is correct is displayed. If any other letter is
typed, then a message stating that the choice is incorrect prints. The
equality operator (__)compares the variable ch with the constants
' a' and ' A' .The logical OR operator (I I) presents the condition to
test. If there is more than one statement to be executed upon condition,
then you must enclose the statements within braces ({ }). A statement
or statements enclosed within braces is called a block or compound
statement. The concept of blocks is important when determining the
scope of variables. For more information about blocks, see Section 5.7.

VAX C Tutorial 4-11

The output for Example 4-4 is as follows:

$ RUN EXAMPLE4 RETURN

Guess which letter I'm thinking of!
B RETURN

You're wrong.
You'll have to try again!

4.5.2 The switch Statement

The switch statement can perform the same task as the if statement does
in Example 4-4, but switch is useful when many conditions must be tested.
Example 4-5 uses the switch statement.

Example 4-5: Conditional Execution Using the switch Statement

/* This program plays the same guessing game as the
* previous example except that it uses the switch
* statement.

#include stdio

0 #include ctype /* Include proper module

main ()
{

char ch;

printf("Guess what letter I'm thinking of!\n");
ch = getchar () ;

© ch = _tolower(ch); /* Convert "ch": lowercase */
switch(ch) /* Examine "ch"

{ /* Body of switch statement

}
}

case ' a'
printf ("You're right ! ") ;
return;

default /* Any other answer
printf ("You're wrong . \ n") ;
printf("You'll have to try again!");

*/

Key to Example 4--5:

~ When using the macro _tolower, you must include the definition module
ctype in the compilation process. The module ctype is located in the
text library SYS$LIBRARY:VAXCDEF.TLB, and defines macros and
constructs used for character processing and classification.

4-12 VAX C Tutorial

In VAX C, the preprocessor directives are processed by an early phase
of the compiler, not by a separate program as the name preprocessor
implies. Directives, unlike other VAX C lines of source code, begin with
a pound sigm (#). The pound sign must appear in column 1 the far
left margin of your source file. Do not end preprocessor directives with a
semicolon.
The module ctype is not the only module that contains macros and
definitions used by the VAX C RTL functions; there are several ways to
include definitions in the program stream. For more information about
the VAX C RTL and the definition modules, see the VAX CRun-7~me
Library Reference Manual.

© The compiler replaces the reference to the tolower macro with a line of
VAX C source code that, when the program is run, translates the value
of the variable ch to a lowercase letter. To see the macro definition of
_tolower, print the file SYS$LIBRARY:C'TYPE.H if it is available on
your system. For more information about the possible side effects of
macros, see Section 10.1.3.

The output for Example 4-5 is as follows:

$ RUN EXAMPLES

Guess which letter I'm thinking of!
A

You're right!

RETURN

RETURN

The switch statement executes one or more of a series of cases based on
the value of the expression in parentheses. If the value of variable ch is
' a ~ ,then the statements following the label case ~ a ~ :are executed. In
Example 4-5, the _tolower macro translates all alphabetic answers to
lowercase letters, so there is no need to test for uppercase letter ~ A~ .

When a case label is matched with the value of expression ch, all the
statements following the remaining case labels are executed until the
compiler encounters a break statement (which terminates the immediately
enclosing statement), a return statement (which terminates the enclosing
function), or the end of the switch statement. The statements following the
default label are executed if the value of the expression does not match any
of the other case labels. For more information about switch statements, see
Section 6.3.2.

VAX C Tutorial 4-13

4.5.3 Loops

In the previous examples, you could only guess once during the execution of
the program. To guess another letter, you had to execute the program again.
If you want to execute a segment of code repeatedly until a condition is met,
you may use a loop. Some loops execute a block of statements, known as
the loop body, a specified number of times. Some loops test for a condition
first and then execute the body of the loop if the condition is true. Some
loops execute the loop body and then test for a condition, which guarantees
at least one execution of the body. In VAX C, this last loop is called the do
statement. Example 4-6 shows that you can use the do statement to alter
the letter-guessing program.

Example 4-6: Looping Using the do Statement

/* This program plays the same guessing game as the
* other examples except that the user must guess until

* the answer is correct. This is accomplished using a
* do statement. */

#include stdio
#include ctype

main ()
{

char ch;

printf("Guess what letter I'm thinking of!\n");
printf("Keep guessing till you get it!\n");

do
{

/* Do the following
/* Beginning of loop body

ch = getchar();
ch = _tolower(ch);
switch(ch)

{

case ' a'
printf("You're right!");
return;

case ' \ n'
break;

/* Ignore RETURN (newline) ch */

(continued on next page)

4-14 VAX C Tutorial

Example 4-6 (Cont.): Looping Using the do Statement

}

}

}

default
printf ("You're wrong. \ n") ;
printf("You'll have to try again!\n");

/* End of switch statement */
/* End of do loop body */
/* Condition to be tested */

Key to Example 4-6:

0 In this example, the case label tests to see if the value of the character
is a newline character (\ n). The newline character is entered when you
press the RETURN key. If it is the newline character, the character is
ignored and a new character is taken from the terminal.

© The while expression at the end of the do statement uses the not equal
to operator (!_)and translates as follows: "while the variable ch is not
equal to ' a' AND ch is not equal to ' A' ."

The output for Example 4-6 is as follows:

$ RUN EXAMPLE6
Guess which letter
Keep guessing till
B
You're wrong.
You'll have to try
A
You're right!

RETURN

RETURN

RETURN

I' m thinking of !
you get it!

again!

You can use the for statement to specify the number of times to execute the
loop body; in regard to the previous examples, it can be used to limit the
number of guesses that the user may attempt. Example 4-7 shows how to
use the for statement.

VAX C Tutorial 4-15

Example 4-7: Looping Using the for Statement

/* This program plays the same guessing game as the
* previous examples except that the user is limited to
* three guesses. This is accomplished using a for
* statement.

$include stdio
$include ctype

main ()
{

char
int

ch;
i;

printf ("Guess what
printf ("You have

/* An incrementor for loop

I' m thinking of ! \ n") ;
three guesses. Make them count!\ n");

/* Do the following 3 times

letter

Q for (i = l; i <= 3; i++)
{ /* Beginning of loop body

ch = getchar();
ch = _tolower(ch);
switch(ch)

{

}

}

case ' a'
printf("You're right!");
return;

case ' \ n'

--i;
break;

*/

*/

*/

default
printf("You're wrong.\ n");
if (i != 3)

printf("You'll have to try again!\ n");
/* End of switch statement */

} /* End of for loop body */
printf("Sorry, you ran out of guesses!");

Key to Example 4-7:

D In the example, the for statement controls how many times the body
of the loop is executed. The first expression inside the parentheses
following the keyword for initializes loop incrementor i to the value 1.
The second expression establishes an upper bound; the value of variable
i is not to exceed 3. The third expression establishes the increment
or decrement value of the variable that will be executed after every
execution of the loop body. The double plus signs (++) are the increment
operator; they increase the value of a variable by the integer 1. The loop
body is executed, and the value of variable i increases by 1 each time,
until the value of i is greater than 3.

416 VAX C Tutorial

© The double minus signs (— —) are the decrement operator. The decre-
ment operator is used in this example to subtract 1 from the value of
variable i so that newline characters are not counted as the guess of a
letter.

A sample output for Example 4-7 is as follows:

$ RUN EXAMPLE?
Guess which letter I'm thinking of!
You have three guesses. Make them count!

RETURN

B
You're
You' 11

C
You're
You' 11

U
You' re
Sorry,

I RETURN
wrong.
have to try again!

(RETURN
wrong.
have to try again!

RETURN
wrong.
you ran out of guesses!

4.6 Values, Addresses, and Pointers

In VAX C, every variable has two types of values: a memory location and a
stored object. In VAX C, an lvalue is the variable's address in memory, and
an rvalue is the stored object. Consider the following example:

put_it_here = take_this_object;

This assignment statement is not very different from statements in other
programming languages, but think about the differences between locations
in memory and objects stored in memory. This assignment takes take_this_
object's rvalue and places it in memory at put_it here's lvalue.

Consider the following VAX C assignment statement:

int x = 2, y;

/* put_it_here = take_this_object;

Y x;

*/

The two distinct variables have different memory locations (lvalues), but,
after the assignment statement, they contain objects of the equivalent
value 2.

A variable's rvalue can be an integer, a real number, a character string, or
a data structure. The rvalue can also be the address of another variable.
In other words, a variable's rvalue can be another variable's lvalue. In this
case, one variable points to another variable.

VAX C Tutorial 4-17

A declaration of a variable whose rvalue is a pointer to another variable is
as follows:

int *pointr;

The indirection operator (*)specifies that the variable is a pointer, which in
this example points to an object of data type int. Pointers are declared as
pointing to an object of a particular data type.

You can assign the address of a variable to the pointer as follows:

static int *pointr;
static int x = 10, y = 0;

pointr = &x;

/* Declarations */

/* Assignment */

The rvalue of the variable pointr is the lvalue of variable x. In other
example assignment statements, the rvalue of the variable on the right side
of the equal sign (_)was taken. In this example, the ampersand (&), which
is the address of operator, translates to the following: "take the lvalue of
this variable instead of its rvalue."

The static keyword specifies the static storage class. For general informa-
tion about storage classes and the scope of variables, see Section 9.1. For
information about the static storage class, see Section 9.4.

Figure 4-1 shows the difference between rvalues and lvalues.

4-18 VAX C Tutorial

Figure 4-1: rvalues, Ivalues, and Assigning Pointers

Values
(addresses)

1400

141 F -

14F2

nralues Variable
(objects) Identifiers

10

0

x

po i ntr

Y

ZK-3019-GE

The value of the variable pointr contains the address of variable x.
Remember that the location of variables in memory and the order in which
the compiler processes them is unpredictable and left to the discretion of the
compiler.

After you assign an address to the pointer, you will want to use it. For
example, if you want to assign x's rvalue to a variable y, you can use the
pointer in a VAX C statement as follows:

y = *pointr;

VAX C Tutorial 4-19

The asterisk (~`) is the VAX C indirection operator; the object of the variable
being pointed to by pointr is assigned to y. The indirection operator trans-
lates as follows: "the rvalue of this variable points to some other variable,
so go to that location and access the stored object." Figure 4-2 shows the
status of the Variables after you execute the last code example.

Figure 4-2: The Indirection Operator in Assignments

(values rvalues Variable
(addresses) (objects) Identifiers

1400

141 F

14F2

10

1400

0

x

pointr

Y

ZK-3020—G E

4-20 VAX C Tutorial

For detailed information about lvalues and rvalues, see Section 7.1. For
more information about pointers, see Section 8.5.

4.7 Aggregates

The variables used in the previous examples were either pointers or single
objects that could be manipulated, in their entirety, in an arithmetic
expression. These types of variables are called scalar variables. The VAX
C data structures arrays, structures, and unions are called aggregates.
Aggregates are comprised of segments called members. Members are
sections of the structure that you can declare to be of a scalar or an
aggregate data type.

The following sections discuss arrays, character strings, structures, and
unions.

4.7.1 Arrays and Character Strings

An array is a data structure whose members are of the same type. Members
of arrays can be any of the scalar or aggregate data types.

In VAX C, character strings are represented internally as arrays of type
char. You may declare and initialize a character string as acharacter-string
variable using the indirection operator (*), as an array of a specified number
of members, or as an array of an unspecified number of members, as follows:

char *str = "Hello";
char string[6] _ "Hello";
char string[] _ "Hello";

In VAX C, all character strings end with the NUL character (~ \ 0 ~). In
the previous example, the NUL character is appended to Hello making the
string six characters in length. when assigning strings to character-string
and array variables within the executable portion of the program, you must
use the string-handling VAX C RTL functions. For more information about
the string-handling functions, see the VAX CRun-~me Library Reference
Manual. Example 4-8 shows the use of character strings and arrays.

VAX C Tutorial 4-21

Example 4-8: Character-String Constants and Arrays

/* This program plays the same guessing games as the
* previous examples except that it uses character-
* string constants and arrays.

#include stdio

main ()
{

char ch; /* Declare a character
/* Initialize messages

char *greeting = "Guess which letter I'm thinking of!";
char *messagel = "You're right!";
char *messagel = "You're wrong.";
char *message3 = "You'll have to try again!";
char correct [2] ;
correct [0] _ ' a' ; / * Store correct letters * /
correct [1] _ ' A' ;

printf("%s\n", greeting); /* %s =char string
ch = getchar () ;

if (ch == correct [0) I I ch == correct[1])
printf ("%s", messagel) ;

else
{

printf("%s\n", messagel);
printf ("%s", message3) ;

}

}

*/

The output for Example 4-8 is as follows:

$.RUN EXAMPLE8 RETURN

Guess which letter I'm thinking of!
B RETURN

You're wrong.
You'll have to try again!

For more information about arrays, see Section 8.7. For more information
about character strings, see Section 8.8.

4.7.2 Structures and Unions

Structures and unions are aggregates whose members can be of different
types. Structures and unions are declared using the keywords struct and
union, an optional tag name, and a list of member declarations delimited
by braces ({ }). A member of a structure or a union is a declared segment
of the data structure. The syntax for declaring a member is the same as for
declaring any variable. The structure or union tag is a name that can be
used when declaring structure or union variables of the same type elsewhere

4-22 VAX C Tutorial

in the program. Members of structures and unions may be referenced as
follows

main ()
{

struct optional tag /* Tag = optional tag */
{

}

char letter_1;

char letter 2;
int number;

characters = {'a', 'b', 59}; /* Variable =characters */

characters.letter 1 = characters.letter 2;
}

You may reference members using the structure or union variable name,
directly followed by a period (.), directly followed by the member name. As
in the previous example, structures are initialized using a variable name
and an assignment operator (_)immediately following the declaration of the
members. The values of the members are delimited by braces and separated
by commas (,). The address of the first member of a structure begins, in
memory, at the base of the data structure, which is referred to as offset zero.

Unions are declared in the same way as structures, but all members in a
union begin at offset zero. Unlike structures, unions cannot be initialized.
The size of the union in memory is as large as its largest member. When
the single storage space allocated to the union contains a smaller member,
the extra space between the end of the smaller member and the end of the
allocated memory remains unaltered. Example 4-9 shows the nature of
unions.

VAX C Tutorial 4-23

Example 4-9: Single Storage Allocation of Unions

/* This example shows the storage maintenance of
* unions with different size members.

#include stdio

main ()
{

union
{

char lastname [8] ;
char firstinit;

} overlap;

/* Declare the union

/* Array for a last name
/* Char. for first initial

/* Copy and print members
strcpy(overlap.lastname, "Jackson");

printf("%s\n", overlap.lastname);
overlap.firstinit = 'M';
printf (" oc\ n", overlap. firstinit) ;
printf (" os\ n", overlap. lastname) ;

}

*/

*/
*/

*/

The output for Example 4-9 is as follows:

$ RUN EXAMPLE9.EXE
Jackson
M
Mackson

RETURNI

The VAX C RTL function strcpy copies the second string argument into the
first array argument. When assigning values to smaller union members,
the compiler does not fill the remaining space with NUL characters (' \ 0');
whatever was in memory at the time remains. For more information about
structures and unions, see Section 8.9.

Example 4-10 shows a structure definition and its usage.

4-24 VAX C Tutorial

Example 4-10: Structures

/* This program plays the same guessing game as the
* previous examples except that it uses a structure. */

#include stdio

main ()
{

0

char ch;
char *greetingl = "Guess which letter I'm thinking of!";
char *greetingl = "You've 3 guesses. Make them count!";
char *messagel = "You're right!";
char *messagel = "You're wrong.";
char *message3 = "You'll have to try again!";
char *message4 = "Sorry, you ran out of guesses!";
int i;

struct storage
{

char small_a;
char capital_a;
char newline_ch;
int num guesses;

};

/* Store information */

/* Structure tag = storage */

/* One correct letter */

/* Another correct letter */

/* newline character */

/* Number of guesses */

/* Declare "letter" *

* using tag "storage" */

struct storage letter = {' a' , ' A' , ' \ n' } ;

letter.num guesses = 3;
printf ("%s\n", greetingl) ;
printf("os\n", greetingl);

for (i = 1; i <= letter.num guesses; i++)
{

ch = getchar () ;
if (ch == letter.small_a 1 1 ch == letter.capital_a)

{
printf("~s", messagel);
return;

}
else

if (ch == letter.newline ch)
--i;

else
{

printf ("~s\ n", messagel) ;
if (i != 3)

printf("$s\n", message3);
}

(continued on next page)

VAX C Tutorial 4^25

You've
B

You' re
You' 11
C

You' re
You' 11
U

You're
Sorry,

Example 4-10 (Cont.): Structures

} /* End of for loop body
printf (" as", message4) ;

}

*/

Key to Example 4-10:

i1 In the example, the structure declaration with the tag storage has four
members. The first three members are of type char. fihe last member is
of type int.

© The variable letter is declared using the tag storage and individual
members of the structure are initialized. The equal sign initializes the
members of the structure variable with constants. The constants are
separated by a comma and are delimited by braces. The number of
initializing constants cannot exceed the number of members. However,
as in this example, you may omit constants; the compiler pads the
uninitialized member (in the example, member num~uesses) with zeros.
However, you cannot initialize a member in the middle of any aggregate
without initializing the previous members.

The output for Example 4-10 is as follows:

$ RUN EXAMPLEIO

Guess which letter
3 guesses.

RETURN

wrong.
have to

RETURN

RETURN

I'm thinking of!
Make them count!

try again!

wrong.
 have to try again!

RETURN

wrong.
you ran out of guesses!

After executing these program examples, you are well on your way to
programming in VAX C.

4-26 VAX C Tutorial

Chapter 5

Program Structure

A VAX C program is a group of user-defined functions that cannot be nested
(you cannot define functions within other function definitions). This chapter
describes the following components of program structure:

• Function definitions (Section 5.1)

• Function declarations .(Section 5.2)

• Using function prototypes (Section 5.3)

• Using function parameters and arguments (Section 5.4)

• Identifiers (Section 5.5)

• Keywords (Section 5.6)

• Blocks (Section 5.7)

• Comments (Section 5.8)

• LINT like functionality (Section 5.9)

5.1 Function Definitions

You may declare or define functions you wish to call or use in a VAX C
program. You may or may not have to declare user-defined functions before
you call them. This depends on what type of value the function returns, and
the position of the function definition within the program. The following
sections explain the rules for defining functions.

In a function definition, you specify the VAX C statements that execute
whenever you call the function. You also specify the parameters (if any)
of the function. The parameters of a function provide a means to pass
data to the function. See Section 5.4 for a detailed discussion about using
parameters and arguments.

Program Structure 5-1

Example 5-1 presents an example of two function definitions.

Example 5-1: Case Conversion Program

/* This program converts its input to lowercase. The
* first function passes control to the second function
* to convert a letter. Comments are located to the
* right of the code.

#include stdio /* To use I/O definitions
main ()

0 {
FILE *infile, *outfile; /* Declare files
int i, c, c out;

/* Open "infile" for input
infile = fopen("ex113.in", "r");

/* Open "outfile" for output */

}

/*
*
*

outfile = fopen("ex113.out", ~~ w ~~);

/* While not end of file .
/* Get a char from the file

while ((c = getc(infile)) != EOF)
{

c_out = lower(c); /* Send char to "lower"
/* Output the char to file

putc(c_out, outfile);
}

return;

*/

*/
*/

/* Optional return statement */

Beginning of the next function definition:

/* Function and parameter
* name

© 1 owe r (c up)

© int c_up; /* Declare parameter type
{ /* Beginning function body

/* If capital, convert
if (c_up >_ 'A' && c_up <_ 'Z')

return c_up - ' A'
else

return c_up;

}

+ ' a' ;
/* Else, return as is */

/* End of function body */
/* End function definition */

*/

Key to Example 5-1:

O Program execution begins with function main. A left brace ({) signifies
the beginning of the function body; a right brace (}) signifies the end
of the body. The function body is any set of valid VAX C statements or

5-2 Program Structure

declarations. Usually, the body includes one or more return statements,
as shown here. A return statement can specify an expression whose
value is returned to the calling function. If the expression is omitted,
the returned value is undefined in the calling function. If the return
statement is not included, the function terminates when the right brace
is encountered, and its return value is undefined.

© The identifier lower begins a new function definition; function lower has
the single parameter c_up. Although function main has no parameters,
the parentheses must be present.

© The next statement, int c_up, declares the parameter's data type; in
this case, int (integer). The declaration is omitted if the function has
no parameters; furthermore, declarations at this place in the program
should specify only the names of parameters, not the names of other
variables used in the function body. For more information about data
types and declarations, see Section 8.2.

For more information about the VAX C operators used in the previous
example, see Section 7.3.

5.1.1 Main Function and Function Identifiers

The execution of a program begins at the function whose identifier is main,
or, if there is no function with this identifier, at the first function seen by
the VMS Linker. In Example 5-1, the main function physically precedes the
function lower, but the two function definitions can appear in the reverse
order. The word main is not a language keyword, so it may be used for other
purposes in the program.

Function names have compile-time scope rules that are different from those
that apply to other identifiers. Any valid function identifier followed by
a left parenthesis is declared implicitly as the name of a function whose
storage class is external and whose return value is of the data type int. For
more information about scope and storage classes, see Section 9.1.

Between the definition of a function's identifier and the declaration of its
parameters, you can write the following option:

main~rogram

The main_program option identifies the function as the main function in
the program. It is not a keyword, and it can be expressed in either upper-
or lowercase. Use the main_program option when the program does not
contain a function named main and when you do not want the program's
execution to begin at the first function linked. For example, the following

Program Structure 5-3

definition establishes function lower as the main function; execution begins
there, regardless of the order in which the function is linked:

char lower (c_up)
MAIN_PROGRAM
int c_up;
{

}

NOTE

The main_program option is VAX C specific and is not portable.

5.1.2 Parameter List Declarations

Example 5-1 shows only one of two methods to declare function parameters.
The first method is as follows:

lower (c_up)
int c_up;
{

To make your code concise, you may list the data types of the function
parameters within the parameter list. If you use this method, your function
definition also serves as a function prototype. See Section 5.3 for more
information about the effect of function prototypes.

The second method of declaring parameter data types is shown in the
following code example:

lower (int c_up)
{

For instance, if you need to declare parameters of different data types, your
function definition may appear as follows:

function name(int lower, int upper, int temp, char x, float y)
{

5-~ Program Structure

If you are using the function prototype format in a function definition,
you must supply both an identifier and adata-type specification for each
parameter. If you do not, the action generates an error message.

In a function definition, you have the following two options when specifying
an empty parameter list:

• You can specify empty parentheses.
• You can use the keyword void to specify an empty parameter list.

The following example shows the use of the void keyword:

char function_name (void)
{ return ' a' ; }

5.1.3 Function Return Data Types

By default, all VAX C functions return objects of data type int. In
Example 5-1, function lower returns an integer to the main function
using the return statement.

If you define a function that returns anything other than an integer, you
need to specify the function return data type in the function definition. The
following example shows the definition of a function returning a character:

char letter(int paraml, char param2, int *param3)
{

return param2;
}

If a function does not return a value, or if you do not call the function within
an expression that requires a value, you can define the function as type
void. Using the void keyword in a function declaration generates an error
under the following conditions:

• If the function returns a value
• If you call the void function in an expression that requires a return

value
• If you use the cast operator to cast anything other than a function to the

void type

Program Structure 5-b

The following example shows how to use the void keyword to specify a
function without a return value and to specify a null parameter list:

void message (void)
{

printf("Stop making sense!");
return;

}

5.1.4 Variable-Length Parameter Lists

If you decide to define a function with avariable-length parameter list, you
can use ellipses (. . .) in a function prototype declaration to designate the
variable-length portion of the parameter list, as follows:

function name (int lower, int upper, char x, float y,) I,
{

}

Within the function body, use the stdarg functions and macros to access
the argument list passed to the function. The stdarg functions and macros
provide a portable means of accessing variable-length argument lists. For
more information about variable-length argument lists, see the stdarg
information in the VAX CRun-~me Library Reference Manual.

When using ellipses for variable-length argument lists, you must have at
least one argument preceding the ellipses. The following definition is legal:

function_name (double lower,)
{
. .
}

The following definition is not legal:

function_name
{

}

If you are not using function prototypes, you can use the stdarg header
and declaration within the parameter list and before the function body, as
opposed to using the ellipsis notation. The following example shows such a
construct:

5--6 Program Structure

function name (lower, upper, x, y, va_alist)
int lower, upper;
char x;
float y;
va_dcl

{

NOTE

If you are using function prototypes, use ellipses (. . .)within
parameter lists so that the compiler does not compare varargs
declarations (va_alist, va_dcl) with prototype data declarations.
See Section 5.3 for more information about function prototypes.

5.2 Function Declarations

As in Example 5-1, you may call a function without declaring it if the
function's return value is an integer. If the return value is anything else,
the function may have to be declared. Example 5-2 shows when you need to
declare a function.

Example 5-2: Declaring Functions

main ()
{

0 char lower(); /* The function declaration */

while ((c = getc(infile)) != EOF)
{

/* The function call */
c_out = lower (c) ;
putt (c_out, outfile) ;

}

}

(continued on next page)

Program Structure 5-7

Example 5-2 (Copt.): Declaring Functions

char lower (c_up)
int c_up;

{

}

/* The function definition */

Key to Example 5-2:

O Since the location of the function definition is after the main function in
the source code, and since function lower has a return type of char, you
have to declare the function before calling it.

If the function definition of lower was located before the main function in
the source code, you would not have to declare function lower before calling
the function.

In a function declaration, you can use the void keyword to specify an empty
argument list, as follows:

main ()
{

char function name (void) ;

}

char function name(void)
{ }

If the function does not return a value, you can use the void keyword in the
declaration and definition, as follows:

main ()
{

void function name () ;

}

void function name ()
{

}

5-8 Program Structure

If you specify argument data types or void in the parameter list of a func-
tion declaration, as shown in the following example, VAX C treats the
function declaration as a function prototype for the scope of the declaration:

main ()
{

char function name (int x, chary) ;

}

Since the declaration is within the scope of function main, VAX C uses the
function declaration as a function prototype only within function main. See
Section 5.3 for more information about function prototypes.

5.3 Function Prototypes

A function prototype is a function declaration that specifies the data types
of its arguments in the identifier list. VAX C uses the prototype to ensure
that all function definitions, declarations, and calls within the scope of the
prototype contain the correct number of arguments or parameters, and that
each argument or parameter is of the correct data type.

Function prototypes provide argument checking found in the LINT ut' 'ty
provided with other implementations of C. See Section 5.9 for more
information.

When using function prototypes, you can first define the following function:

char function name (int lower, int *upper, char (*func) () , double y)
{ }

You can also use the following code:

char function name { lower, upper, func, y)
int lower; i
int *upper;
char { *func) () ;
double y;

{ }

This function's identifier list includes an integer, a pointer to an integer, a
pointer to a function returning a character, and a double floating-point Value.
The type specifications are identical to the ones used in a parameter list
located before the function body. For more information about interpreting
complex declarations, see Section 8.12.

Program Structure 5-9

In each compilation unit in your program, determine where to place the
corresponding function prototype. The position of the prototype determines
the prototype's scope; the scope of the function prototype is the same as the
scope of any function declaration. VAX C checks all function definitions,
declarations, and calls from the position of the prototype to the end of
its scope. If you misplace the prototype so that a function definition,
declaration, or call occurs outside the scope of the prototype, the results are
undefined.

Corresponding function prototype declarations are identical to the header
of a function definition that specifies data types in the identifier list. Since
prototypes are function declarations, you end the prototype code with a
semicolon (;). The following code example is a prototype that corresponds
with either of the previous function definitions:

char function name (int lower, int *upper, char (*func) () , double y) ;

When declaring nondefinition function prototypes, you do not need to use the
same parameter identifiers as in the function definition. If you choose, you
do not need to specify any identifiers in the prototype declaration. The scope
of the identifiers within function prototypes exists only within the identifier
list; you are free to use those identifiers outside the prototype.

For example, you can use any of the following prototype declarations for the
function definition presented:

char function name (int lower, int *upper, char (*func) () , double y) ;
char function_name (int a, int *b, char (* c) () , double d) ;
char function_name (int, int *b, char (*c) () , double) ;
char function name (int, int *, char (*) () , double) ;

You can specify variable-length argument lists in function prototypes by
using ellipses. You must have at least one argument in the list preceding the
ellipses. The following example shows the specification of avariable-length
argument list:

char function name (int lower,) ;

You cannot omit data-type specifications in a function prototype. Also, you
cannot have avariable-length argument list that is not preceded by at
least one argument. The following prototypes are not legal and their use
generates error messages:

char function name (lower, *upper, char (*func) () , float y) ;
char function name (, char (*func) () , float y) ;
char function name();

5-10 Program Structure

5.3.1 Using Function Prototypes

Using function prototype ensures that all corresponding function definitions,
declarations, and calls within the scope of the prototype conform to the
number and type of parameters specified in the prototype. A function
prototype is considered in scope only if a function prototype declaration is
specified within a block enclosing the function call or at the outermost level
of the source file. If a prototype is in scope, the automatic widening of boat
arguments to double is not performed. However, the automatic widening
of char and short int arguments to int is performed. If the number of
arguments in a function definition, declaration, or call does not match the
prototype, the statement generates the appropriate message.

If the data type of an argument in a function call does not match the
prototype, VAX C attempts to perform conversions. If the mismatched
argument is assignment compatible with the prototype parameter, VAX C
converts the argument to the data type specified in the prototype, according
to the parameter and argument conversion rules (see Section 5.4).

If the mismatched argument is not assignment compatible with the proto-
type parameter, the action generates the appropriate error message and the
results are undefined.

The syntax of the function prototype is designed so that you can extract the
first line of each of your function definitions, add a semicolon (;) to the end
of each line, place the prototypes in a .H definitions file, and include that file
at the top of each compilation unit in your program. In this way, you declare
the function prototypes to be external, so that the scope of the prototype
extends throughout the entire compilation unit. To use prototype checking
for VAX CRun-Time Library (RTL) function calls, include the module or
modules appropriate for the VAX C RTL functions used in your program.
You place the include preprocessor directives at the top of any applicable
compilation units.

For basic descriptions of the VAX C RTL prototype include modules,
see Appendix A. For more information about the #include preprocessor
directives, see Section 10.4. For more information about compilation units
and scope, see Section 9.1.

Program Structure 5-11

5.4 Using Parameters and Arguments

VAX C functions can exchange information by means of parameters and
arguments. (In this guide, the term parameter denotes the variable within
parentheses named in a function definition; the term argument denotes an
expression that is part of a function call.) In Example 5-1, function lower
has the single parameter c_up. When this function is called from the main
function, argument c is evaluated and passed to function lower.

The following rules apply to parameters and arguments of VAX C functions:

• The number of arguments in a function call must be the same as the
number of parameters in the function definition. This number may be
zero.

• In VAX C, the maximum number of arguments (and corresponding
parameters) is 253 for a single function. The maximum length of an
argument list is 2551ongwords.

• Arguments are separated by commas. However, the comma is not an
operator in this context, and the arguments may be evaluated by the
compiler in any order. Do not expect function calls or other complicated
expressions in the argument list to be evaluated in any particular order.

• In VAX C, arguments are passed by value; that is, when a function is
called, the parameter receives a copy of the argument's value, not its
address. This rule applies to all scalar variables, structures, and unions
passed as arguments. Function and array names used as arguments
undergo conversions that are described later in this list.

• A function cannot modify the values of its arguments. However, since
arguments can be addresses or pointers, a function can use addresses to
modify the values of variables defined in the calling function.

NOTE

When passing arguments between programs written in VAX C
and programs written in other VMS programming languages,
remember the restrictions of the VAX Procedure and Condition
Handling Standard (sometimes called the VAX Calling
Standard). For more information about the VAX Calling
Standard and passing arguments in VAX C, see Section 13.1.

• The types of evaluated arguments must match the types of their cor-
responding parameters. When a function is called, unless a function
prototype is in scope, VAX C does not compare the types of the ar-
guments with those of the corresponding parameters; so it does not
generally convert the arguments to the types of the parameters. Instead,

5-12 Program Structure

all the expressions in the argument list are converted according to the
following conventions:
— Any arguments of type float are converted to double.

— Any arguments of type char or short are converted to int.

— Any arguments of type unsigned char or unsigned short are
converted to unsigned int.

— Any function name appearing as an argument is converted to the
address of the named function. You must declare the corresponding
parameter as a pointer to a function, which evaluates to a value of
the same data type as the function.

— Any array name appearing as an argument is converted to the
address of the first element of the array. You must declare the
corresponding parameter either as an array of the given type or as
a pointer to the given type. Since character-string constants are
declared implicitly as arrays of characters, this rule also applies to
the use of string constants as arguments.

No other default conversions are performed on arguments. If you know
that a particular argument must be converted to match the type of the
corresponding parameter, use the cast operator. For more information
about the cast operator, see Section 7.4.5.

• If you declare variables in the parameter declaration section that do not
exist in the parameter list, these variables are treated as if they were
declared in the function body. However, this is not good programming
practice and, if used, your programs may not be portable.

• If you do not declare parameters, they are implicitly declared to be of
data type int.

The following sections discuss the fallowing topics:

• Function and array identifiers as arguments

• Passing arguments to the main function

5.4.1 Function and Array Identifiers as Arguments

You can use a function identifier without parentheses and arguments. In
this case, the function identifier evaluates to the address of the function.
This method of referencing is useful when passing a function identifier in an
argument list. You can pass the address of one function to another as one of
the arguments.

Program Structure 5-13

If you wish to pass the address of a function in an argument list, the
function must either be declared or defined, even if the return value of
the function is an integer. Example 5--3 shows when you must declare
user-defined functions and how to pass functions as arguments.

Example 5-3: Declaring Functions Passed as Arguments

0 x () { return 25; }
/* Defined before it is
* used

int z[10];

main ()
{

© int y () ; /* Function declaration

0 funct (x, y, z) ; /* Passed as addresses

}

*/

*/

y() { return 30; } /* Function definition */

funct (fl, f2, a)

int *a;

{

}

/* Function definition
/* Declare arguments as
* pointers to functions
* returning an integer

(*fl)(); /* A call to a function *~

Key to Example 5--3:

O You can pass function x in an argument list, since its definition is located
before the main function.

Q You must declare function y before you pass the function in an argument
list, since its function definition is located after the main function.

© When you pass functions as arguments, do not include the parentheses.
Similarly, when you specify arrays, do not include subscripts.

5-14 Program Structure

Q When declaring parameters that represent functions, declare them as
pointers to functions. when declaring arrays, declare the parameter
as a pointer to the type of the array. For convenience, declarations of
parameters, which are functions or arrays, can be declared as ordinary
function or array declarators; the compiler automatically converts them
to pointers.

5.4.2 Passing Arguments to the main Function

The main function in a VAX C program can accept arguments from the
command line from which it was invoked. The synt~ for a main function is
as follows:

int main argc, argv, envp)

int argc;
char *argv[],*envp[];

argc
Is the number of arguments present in the command line that invoked the
program.

argv
Is acharacter-string array of the arguments.

envp
Is the environment array. This array contains process information, such
as the user name and controlling terminal. It has no bearing on passing
command-line arguments. Its primary use in VAX C programs is during
exec and getenv function calls. (See the VAX CRun-~me Library Reference
Manual for more information).

In the main function definition, the parameters are optional. However, you
can access only the parameters that you define. You can define function
main in any of the following ways:

main ()
main (argc)
main (argc, argv)
main (argc, argv, envp)

To pass arguments to the main function, you must install the program as a
DCL foreign command. When a program is installed and run as a foreign
command, the parameter argc is greater than or equal to 1, and argv[o]
contains the name of the image file.

Program Structure 5-15

The procedure for installing a foreign command involves using a DCL
assignment statement to assign the name of the image file to a symbol that
is later used to invoke the image. For example:

$ ECHO =_ "$ DSK$:COMMARG.EXE" RETURN

The symbol ECHO is installed as a foreign command that invokes the image
in COMMARG.EXE. The definition of ECHO must begin with a dollar sign
($)and include a device name, as shown.

For more information about the procedure for installing a foreign command,
see the VMS DCL Dictionary.

Example 5-4 shows a program called COMI~ZA,RG.C, which displays the
command-line arguments that were used to invoke it.

Example 5-4: Echo Program Using Command-Line Arguments

/* This program echoes the command-line arguments.

#include stdio

main (argc, argv)
int argc;
char *argv [] ;
{

int i;
/* argv[0] is program name

printf ("program: ~s\n",argv[0]);

for (i = 1; i < argc; i++)
printf ("argument ~d: $s\ n", i, argv [i]) ;

}

*/

*/

You can compile and link the program using the following DCL
command lines:

$ CC COMMARG
$ DEFINE LNK$LIBRARY

$ LINK COMMARG

5-16 Program Structure

RETURN ,

RETURN

SYS$LIBRARY:VAXCRTL.OLB RETURN

A sample output for Example 5-4 is as follows:

$ ECHO Long "Day's" "Journey into Night"

program: db7 : [oneill .plays] commarg . exe; 1
argument 1: long

argument 2 : Day' s
argument 3: Journey into Night

DCL converts most arguments on the command line to uppercase letters.
However, VAX C internally parses and modifies the altered command line
to make VAX C argument access compatible with C programs developed on
other systems.

All alphabetic arguments in the command line are delimited by spaces
or tabs. Arguments with embedded spaces or tabs must be enclosed in
quotation marks (~~ "). Uppercase characters in arguments are converted to
lowercase, but arguments within quotation marks are left unchanged.

RETURN

5.5 Identifiers

Identifiers can consist of letters, digits, dollar signs ($), and the underscore
character (_). Do not create identifiers with a length of more than 255
characters. If you do, the compiler ignores all characters after the two
hundred and fifty-fifth character. If the identifier will be seen by the linker,
as in a declaration with [extern] or #module, do not use more than
31 characters.

The first character must not be a digit and, to avoid conflict with names used
by VAX C, should not be an underscore character. VAX C uses a preceding
underscore to identify implementation-specific macros and keywords,
and uses two preceding underscores to identify implementation-specific
constants.

Upper- and lowercase letters specify different variable identifiers; that is,
the compiler interprets abc and ABC as different variable names.

Use the dollar sign only within identifiers for VMS global symbols.
Identifiers that contain dollar signs may not be portable.

DIGITAL recommends the following conventions if practical:

• Avoid using underscores as the first character of your identifiers.

• Type identifiers in uppercase if they are constants that are given values
by the #define directive.

Program Structure 5-17

• Type all instances of a global name in the same case. All names that
become part of the VMS Linker's global symbol table are represented
there in uppercase. Consider these examples:

int globalvalue ss$ accvio = 0;

globalvalue SS$ ACCVIO;

The compiler will consider these to denote different global names;
however, uppercase forms for both are passed to the linker, potentially
causing errors when the program is linked or executed. For more
information about globalvalue, see Section 9.6.2.

• Type all other identifiers and keywords in lowercase.

5.6 Language Keywords

The VAX C keywords are predefined identifiers. They cannot be redeclared.
They identify data types, storage classes, and certain statements in VAX C.
Note that many conventional words in VAX C programs are not keywords
and can be redeclared. The notable examples are the names of functions,
including main and the functions found in libraries that accompany the VAX
C compiler.

Keywords must be expressed in lowercase letters.

Table 5-1 lists the VAX C keywords and their meaning.

5-18 Program Structure

Table 5--1: VAX C Keywords

Keyword Meaning

Type specifiers:

int
long
unsigned
short
char
float
double
struct
union
typedef
enum
void
variant struct
variant union

Data-type modifiers:

coast
volatile

Storage-class specifiers:

auto
static
register
extern
globaldef
globalref
globalvalue
readonly
noshare
_align

Integer (On VAX systems, 32 bits)
32-bit integer
Unsigned integer
16-bit integer
8-bit integer
Single-precision, floating-point number
Double-precision, floating-point number
Structure (aggregate of other types)
Union (aggregate of other types)
Tagged set of type specifiers
Enumerated scalar type
Function return type
Variant structure
Variant union

Definition of constant data
Definition of volatile data

Allocated at every block activation
Allocated at compile time
Allocated at every block activation
Allocated by an external data definition (at compile time)
Definition of a global variable
Reference to a global variable
Definition or declaration of a global value
Allocated in read-only program section
Assigned NOSHR program section attribute
Aligns data on specific storage boundaries

(continued on next page)

Program Structure 5-19

Table 5-1 (Cont.): VAX C Keywords

Keyword Meaning

Statements

goto Transfers control unconditionally
return Terminates a function and optionally returns a value to

the caller
continue Causes next iteration of a containing loop
break Terminates its corresponding switch or loop
if Executes the following statement conditionally
else Provides an alternative for the if statement
for Iterates the next statement (zero or more times) under

control of three expressions
do Iterates the next statement (one or more times) until a

given condition is false
while Iterates the next statement (zero or more times) while a

given expression is true
switch Executes one or more of the specified cases (multiway

branch)
case Begins one case for switch
default Provides default case for switch

Operator:

sizeof Computes the size of an operand, in bytes

Although they are not true keywords, the VAX C compiler defines substitu-
tions for the following identifiers; you should avoid redefining them:

vms VMS
vax VAX

vaxc VAXC

vaxllc VAX11C
vms version VMS VERSION

CC$gfloat
CC$parallel

For more information about these identifiers, see Section 11.1.7.

5-20 Program Structure

5.7 Blocks

A block is a compound statement surrounded by braces ({ }). You can use
a block when the grammar of VAX C requires a single statement. The
common cases are the bodies of functions and if, for, do, switch, and
while statements. Note that this definition of a block may conflict with its
definition in other languages. In VAX C, the terms block and compound
statement are equivalent.

A block may also contain declarations. If it does, any declarations of auto,
register, or static variables declare names that are local to the block.
Example 5-5 presents nested blocks and the differences in the scope of
declared variables.

Example 5-5: Scope of Variable Declarations in Nested Blocks

/* This program shows how variables with the same
* identifier can be of different data types if located
* in different blocks.

main ()
{

0 int i;
i = 1;

if (i == 1)
{

float i;

}

}

i = 3e10;

/* Outer block of "main"

*/

*/

/* An inner block */

Key to Example 5-5:

D In all blocks of the program, except the block in the if statement,
variable i is an integer. The default storage class for this variable
is auto.

Program Structure 5-21

© Within the block in the if statement, variable i is asingle-precision,
floating-point value. Since it is also of the storage class auto, a new
floating-point version of variable i is allocated each time the inner block
i s activated.

If initialization is specified for any auto or register variables in a block,
it is performed each time control reaches the block normally; that is, such
initializations are not performed if a goto statement transfers control into
the middle of the block or if the block is the body of a switch statement. For
more information about data types, see Chapter 8. For more information
about scope and storage classes, see Chapter 9.

5.8 Comments

Comments, delimited by the character pairs (/*)and (*/), can be placed
anywhere that white space can appear. The text of a comment can contain
any characters except the close-comment delimiter (*/). Comments cannot
be nested.

5.9 LINT-Like Functionality

. Same implementations of C provide a utility called LINT. LINT provides
a way to check source code for improper definitions and declarations,
for parameter and argument mismatching, and for inefficient coding
practices. VAX C provides the following features shown in Table 5-2 that, in
combination, offer much of the functionality of LINT.

5-22 Program Structure

Table 5-2: VAX C Features Similar to the LINT Utility

Feature Description

/STANDARD=PORTABLE When you compile your source code, add this
qualifier to CC. The compiler hags constructs that
may not be supported by other implementations of
the C language.

Function prototypes The use of function prototypes allows VAX C
to check the number and the data types of all
arguments passed to functions. See Section 5.3 for
complete information.

SCA support The VAX Source Code Analyzer (SCA) is a source
code cross-reference and static analysis tool that
you can use with VAX C source code. SCA's query
and reporting facilities allow you to query a
library for the presence of specific symbol, file,
or module information, and to discern such things
as declarations of program symbols, references to
the symbols, and references to the source files.

Program Structure 5-23

Chapter 6

Statements

This chapter describes the statements in the VAX C programming language.
Statements are executed in the sequence in which they appear in a program,
except as indicated. The VAX C statements are grouped as follows:

• Control flow statements (Section 6.1)

• Expressions and blocks as statements (Section 6.2)

• Conditional statements (Section 6.3)

• Looping statements (Section 6.4)

• Interrupting statements (Section 6.5)

6.1 Control Flow Statements

You can use some VAX C statements either to maintain or modify the control
of the program. The following sections describe the control flow statements.

6.1.1 The null Statement

Use null statements to provide null operations in situations where the
grammar of the language requires a statement, but the program requires no
work to be done.

The syntax of the null statement is as follows:

Statements 6-1

You may need to use the null statement with the if, while, do, and for
statements in cases where the grammar requires a statement body but the
program requires no functional operation. The most common use of this
statement is in loop operations, where all the loop activity is performed by
the test portion of the loop. For example, the following statement finds the
first element of an array known to have a value of zero:

for (i=0; array (i] ! = 0; i++)

See Section 6.2 and Section 6.4 for more information about the statements
mentioned here.

6.1.2 The goto Statement

The goto statement transfers control unconditionally to a label statement,
where the label identifier must be located in the scope of the function
containing the goto statement.

The syntax of the goto statement is as follows:

goto identifier;

Take care when branching into a block or function body using the goto
statement. The compiler allocates storage for automatic variables declared
within a block when the block is activated. When a goto statement branches
into a block, automatic variables declared in the block cannot exist in
storage. Attempts to access such variables can cause arun-time error.

6.1.3 The label Statement

Labels are identifiers used to flag a location in a program, and to be the
target of a goto statement.

The syntax of a label is as follows:

identifier:

Any statement can be preceded by a label. The scope of the label is the
current function body. Variables can have the same name as the label in the
function because the label name is independent of the scope rules applied to
variables. Labels are used only as the targets of goto statements.

6-2 Statements

6.2 Expressions and Blocks as Statements

The statements in the following sections are expressions or groups of other
statements that you can use when the grammar calls for a single statement.

6.2.1 The expression Statement

You can use any valid expression as a statement by terminating it with a
semicolon. The following example is an expression used as a statement:

1++;

This statement increments the value of the variable i. Note that i++ is a
valid VAX C expression that can appear in more complex VAX C statements.
For more information about the valid VAX C expressions, see Section 7.2.

6.2.2 The compound Statement

A compound statement in VAX C is often called a block. It allows more
than one statement to appear where a single statement is required by the
language. The following code is an example of a compound statement:

{

int x = 5;

Z = Z;
if (y < x)

funct (y,
else

funct (x,
}

z);

Z) ;

The compound statement contains optional declarations followed by a list of
statements, all enclosed in braces. If you include declarations, the variables
they declare are local to the block, and, for the rest of the block, they
supersede any previous declaration of variables of the same name. Inside
blocks, you can initialize variables whose declarations include the auto,
register, static, or globaldef storage-class specifiers.

A block is entered "normally" when control flows into it, or when a goto
statement transfers control to a label on the block itself. The compiler-
generated code allocates storage for auto or register variables each time
the block is entered normally; the storage allocations do not occur if a
goto statement refers to a label inside the block or if the block is the body
of a switch statement. For more information about storage classes, see
Chapter 9.

Statements 6-3

All function definitions are compound statements. The compound statement
following the parameter declarations in a function definition is called the
function body.

6.3 Conditional Statements

The statements in the following sections execute only if a tested condition
is true.

6.3.1 The if Statement

An if statement executes a statement depending on the evaluation of an
expression, and may or may not be written with an else clause.

The syntax of the if statement is as follows:

if (expression)
statement

else
statement

An example of the if statement is as follows:

if (i < 1)
funct (i) ;

else
{

i = x++;
funct (i) ;

}

If the evaluated expression within parentheses is true (in the example,
if variable i is less than 1), then the statement following the evaluated
expression executes; the statement following the keyword else does not
execute. If the evaluated expression is false, then the statement following
the keyword else executes.

All logical operators define a true result to be nonzero. Therefore, the
expression in any conditional statement can be a logical expression with
predictable results (true or false; nonzero or zero).

When if statements are nested within else clauses, an else clause matches
the most recent if statement that does not have an else clause.

6-~4 Statements

6.3.2 The switch Statement

The switch statement executes one or more of a series of cases, based on
the value of the expression.

The syntax of the switch statement is as follows:

switch (expression)
statement

The usual arithmetic conversions are performed on the expression, but the
result must be type int. For more information about data type conver-
sion, see Section 7.9. The statement is typically a compound statement,
within which one or more case labels prefix statements that execute if the
expression matches the case.

The syntax for a case label and expression follows:

case constant-expression
statement[,statement, . . .]

The constant expression must also be of type int. No two case labels can
specify the same value. The value of a constant expression can be any
integral value.

Only one statement in the compound statement can have the following label:

default

The case and default labels can occur in any order. Note that each
case flows into the next unless explicit action is taken, such as a break
statement. When the switch statement is executed, the following sequence
takes place:

1. The switch expression is evaluated and compared with the constant
expressions in the case labels.

2. If the expression's value matches a case label, the statements following
that label are executed. If the list of statements ends with the break
statement, the break terminates the switch statement; otherwise, the
next case encountered is executed. (See Example 6-1.) The switch
statement can also be terminated by a return or goto statement; if the
switch is inside a loop, it can be terminated by a continue statement.
For more information about interrupting statements, see Section 6.5.

3. If the expression's value does not match any case label but there is a
default case, the default case is executed. It need not be the last case
listed. If a break statement does not end the default case and it is not
the last case, the next case encountered is executed.

Statements 6-5

4. If the expression's value does not match any case label and there is no
default, the body of the switch statement is not executed.

In general, the break statement must be used to ensure that a switch
statement executes as expected. Example 6-1 uses the switch statement to
count blanks, tabs, and newlines entered from the terminal.

Example 6-1: Using switch to Count Blanks, Tabs, and Newlines

/* This program counts blanks, tabs, and newlines in text
* entered from the keyboard. */

#include stdio
main ()
{

int number_tabs = 0, number_lines = 0, number_blanks = 0;
int ch;
while ((ch = getchar()) != EOF)

switch (ch)
{

0 case ' \ t' : ++number tabs;

break;
case '\n': ++number lines;

break;
case ' ++number blanks;

break;
}

printf("Blanks\tTabs\tNewlines\n");
printf ("%6d\ t o 6d\ t o 6d\ n", number_blanks,

number tabs, number lines);
}

Key to Example 6-1:

O A series of case labels is used to increment the counters.
© The break statement causes control to go back to the while loop every

time a counter increments. The program automatically passes control to
the while loop if none of the counters is incremented.

The program in Example 6-1 responds to the following input:

$ RUN EXAMPLE.EXE
Every good boy.
The quick brown
Line with 2
^Z

6-6 Statements

RETURN
RETURN
fox ., RETURN

abs .~ RETURN

Example 6-1 produces the following output:

Blanks Tabs Newlines
7 2 3

If you omit the break statements, the program prints the following:

Blanks Tabs Newlines
12 2 5

Without the break statements, each case drops through to the next case.
The number shown for tabs happens to be right, because the tabs case is
first in the switch statement and is executed only if ch = _ ' \ t' . Notice
that the number shown for newlines is the correct number plus the number
of tabs, and the number shown for blanks is the total of all three cases.

6.3.2.1 Declarations Within a switch Statement

If variable declarations appear in the compound statement within a switch
statement, any initializations of auto or register variables are ineffective.
However, if you initialize variables within the statements following a case
label, the initialization is effective. Consider the following example:

switch (ch)
{

int x = 1;
printf (" od", x) ;
case ' a'

{ int x = 5;
printf (" od", x) ;
break; }

case ' b'

}

/* Improper initialization */
/* This first printf won't be executed */

/* Proper initialization */

In the previous example, if the variable ch equals ~ a' , then the program
prints the value 5. If the variable equals any other letter, the program prints
nothing because the initialization outside of the case label is ineffective.

6.4 Looping Statements

The statements in the following sections execute repeatedly (loop} until an
expression evaluates to false. Some loops execute a block of statements,
known as the loop body, a specified number of times (in VAX C, the for
statement); some loops evaluate an expression and then execute the body of
the loop (in VAX C, the while statement); some loops execute the loop body
and then evaluate the expression, which guarantee at least one execution of

Statements 6-7

the body (in VAX C, the do statement). The following sections discuss the
for, while, and do statements.

6.4.E The for Statement

The for statement evaluates three expressions and executes a statement
(the loop body) until the second expression evaluates to false. The for
statement is useful for executing a loop body a specified number of times.

The syntax for the for statement is as follows:

for (expression-1 ;expression-2 ;expression-3)

statement;

The for statement executes the loop body zero or more times. It uses three
control expressions as shown. Semicolons (;)are used to separate the
expressions; notice that a semicolon does not follow the last expression. A
for statement executes the following steps:

1. Expression-1 is evaluated only once before the first iteration of the loop.
It usually specifies the initial values for variables.

2. Expression-2 is a relational or logical expression that determines
whether or not to terminate the loop. Expression-2 is evaluated before
each iteration. If the expression evaluates to false, execution of the for
loop body terminates. If the expression evaluates to nonzero, the body of
the loop is executed.

3. Expression-3 is evaluated after each iteration. It usually specifies
increments for the variables initialized by expression-1.

4. Iterations of the for statement continue until expression-2 produces a
false (zero) value, or until some statement such as break or goto—
interrupts.

The for statement is equivalent to the following code:

expression-1;
while (expression-2)

{

statement
expression-3;

}

The VAX C compiler optimizes certain for statements for simple loops such
as the following example:

for (i=0; i<15; i++)
printf (" od\n", i) ;

6-8 Statements

When the incrementation is as simple as in the previous example, the
compiler generates less macro code so efficiency increases. When possible,
use for statements as opposed to while statements when the increment
is small.

Any of the three expressions in a loop can be omitted. If expression-2 is
omitted, the test condition is true; that is, the while in the expansion
becomes while(x), where x is not equal to zero. If either expression-1 or
expression-3 is omitted from the for statement, that expression is effectively
dropped from the expansion.

The following syntax shows an infinite loop:

for (;;) statement

Terminate infinite loops with a break, return, or goto statement.

6.4.2 The while Statement

The while statement evaluates an expression and executes a statement (the
loop body) zero or more times, until the expression evaluates to false.

The syntax of a while statement is as follows:

while (expression)
statement

An example of the while loop is as follows:

while (x < 10)
{

array [x] = x;
x++;

}

This statement tests the value of the variable x; if variable x is less than 10,
it assigns x to the xth element of the array and then increments the
variable x. If the expression in parentheses evaluates to false, the loop body
never executes.

6.4.3 The do Statement

The do statement executes a statement (the loop body) one or more times,
until the expression in the while clause evaluates to false.

Statements 6-9

The syntax for the do statement is as follows:

do
statement

while (expression) ;

The statement is executed at least once, and the expression is evaluated
after each subsequent execution of the loop body. If the expression is true,
the statement is executed again.

6.5 Interrupting Statements

You can use the statements in the following sections to interrupt the
execution of another statement. These statements are primarily used to
interrupt switch statements and loops.

6.5.1 The break Statement

The break statement terminates the immediately enclosing while, do, for,
or switch statement. Control passes to the statement following the loop
body.

The syntax for the break statement is as follows:

break;

6.5.2 The continue Statement

The continue statement passes control to the end of the immediately
enclosing while, do, or for statement.

The syntax for the continue statement is as follows:

continue;

The continue statement is equivalent to the goto label statement, shown
here, for each of the looping statements in the syntax examples that follow:

6-10 Statements

while () do

{

{

{

goto label;

for

goto label; goto label;

label: label: label:

}

}

}

while () ;

;

,

In the preceding syntax examples, a continue statement passes control to
label. The continue statement is intended only for loops, not for switch
statements. A continue inside a switch statement that is inside a loop
causes continued execution of the enclosing loop after exiting from the body
of the switch statement.

6.5.3 The return Statement

The return statement causes a return from a function, with or without a
return value.

The syntax of the return statement is as follows:

return [expression];

The compiler evaluates the expression (if you specify one) and returns the
value to the calling function. If necessary, the compiler converts the value
to the declared type of the containing function's return value. If there is no
specified return value, the value is undefined.

You can declare a function without a return statement to be of type void.
For more information about the void data type and function return values,
see Section 5.2.

Statements 6-11

Chapter 7

Expressions and Operators

An expression is any series of symbols that VAX C uses to produce a value.
The simplest expressions are constants and variable names, which yield a
value directly. Other expressions combine operators and subexpressions to
produce values.

In some instances, the compiler makes conversions so that the data types
of the operands are compatible. This chapter refers to these rules as the
arithmetic conversion rules. See Section 7.9.1 for more information about
these rules.

This chapter discusses the following topics:

• lvalues and rvalues (Section 7.1)
• Primary expressions and operators (Section 7.2)
• An overview of the VAX C operators (Section 7.3)
• Unary expressions and operators (Section 7.4)
• Binary expressions and operators (Section 7.5)
• The conditional expression and operator (Section 7.6)
• Assignment expressions and operators (Section 7.7)
• The comma expression and operator (Section 7.8)
• Data-type conversions (Section 7.9)

Expressions and Operators 7-1

7.1 Ivalues and rvalues

A variable identifier is one of the primary VAX C expressions. (See
Section 7.2 for more information about primary expressions.) This type of
expression yields a single value. However, when using the variable identifies
with other operators, the expression evaluates to the variable's location in
memory. The address of the variable is the variable's lvalue. The object
stored at that address is the variable's rvalue. For example, VAX C uses
both the lvalue and the rvalue of variables in the evaluation of an expression
as follows:

x=y;

The contents of variable y are taken and assigned to variable x. The
expression on the right side evaluates to the variable's rvalue while
the expression on the left side evaluates to the variable's lvalue when
performing an assignment.

The following syntax defines those VAX C expressions that either have or
produce lvalues:

lvalue :._
identifier
primary [expression
lvalue . identifier
primary -> identifier

expression
(lvalue)

These expressions represent, respectively:

• Identifiers of scalar variables, structures, and unions
• References to scalar array elements
• References to structure and union members, except for references to

fields that are not lvalues
• Indirect references to structure and union members, except for refer-

ences to fields that are not lvalues
• References to pointers (also called dereferenced pointers; an asterisk (*)

followed by an address-valued expression)
• Any of the previous expressions, enclosed in parentheses

All lvalue expressions represent a single location in a computer's memory.

7-2 Expressions and Operators

7.2 Primary Expressions and Operators

Simple expressions are called primary expressions; they denote values.
Primary expressions include previously declared identifiers, constants
(including strings), array references, function calls, and structure or
union references.

The syntax descriptions of the primary expressions are as follows:

primary :._
identifier
constant
string
(expression)
primary (expression-list)
primary [expression]
Ivalue . identifier
primary -> identifier

The simplest forms are identifiers such as variable names and string
or arithmetic constants. Other forms are expressions (delimited by
parentheses), function calls, array references, lvalues and rvalues, and
structure and union references.

The following sections describe the primary expressions and operators.

7.2.1 Parenthetical Expressions

An expression within parentheses has the same type and value as the same
expression without parentheses. As in declarations, any expression can be
delimited by parentheses to change the grouping, or associative precedence,
of the operators in a larger expression.

7.2.2 Function Calls

A function call is a primary expression followed by parentheses. The
parentheses may contain a list of arguments (separated by commas) or may
be empty. An undeclared function is assumed to be a function returning
int. If you declare an identifier as a "function returning . . . ", but use the
identifier in a context other than a function call, it converts to "the address
of function returning . . . ". When you pass an argument that is an array
or function, specify the identifier in the argument list. The compiler passes
the address of the array or function to the called routine. This means that

Expressions and Operators 7-~

the corresponding parameters in the called function must be declared as
pointers. For example:

int f 1 () ;

fl();

Consider the following declaration:

double atof();

The previous example declares a function returning double. You can then
use the identifier atof in a function call, as follows:

result = atof(c);

You can use the identifier atof in other contexts without the parentheses.
For example:

dispatch(atof);

The identifier atof converts to the address of that function, and the address
is passed to the function dispatch.

Functions can also be called using a pointer to a function. Consider the
following pointer declaration and asssignment:

double (*pfd) () ;

pfd = atof;

To call the function, you can specify the following form:

result = (*pfd) (c) ;

VAX C also accepts a pointer to a function, as shown in the following farm:

result =pfd (c) ;

While the first call to the function is valid, the second call to the function is
simpler and requires fewer keystrokes.

7-~4 Expressions and Operators

7.2.3 Array References

Use bracket operators ([]) to refer to elements of arrays. In an array
defined as having three dimensions, you can refer to a specific element
within the array, as in the following example:

int sample array [10] [5] [2] ;
int i = 10;
sample array [9] [4] [1] = i;

/* Array declaration */

/* Assign value to element */

This example assigns a value of 10 to element sample_array[9][4][1].

In addition, if an array reference is not fully qualified, it refers to the
address of the first element in the dimension that is not specified. Consider
the following statement in which the third dimension of the array is not
specified:

sample array [9] [4] = 10;

This statement assigns a value of 10 to the element sample_array[9][4][0].
Consider the following statement in which none of the array dimensions are
specified:

sample array = 10;

This statement assigns a value of 10 to the element sample_array[0] [0] [0].
~i reference to an array name with no bracket operator is often used to pass
the array's address to a function, as in the following statement:

funct(array);

You can also use bracket operators to perform general pointer arithmetic as
follows

addr [intexp]

Here, addr is the address of some previously declared object (pointer-
valued) and the variable, intexp, is an integer-valued expression. The
result. of the expression is scaled, or multiplied, by the size, in bytes, of the
addressed object. If intexp is a positive integer, the result is the address of
a subsequent object of this size; if intexp is zero, the result is the address
of the same object; if intexp is negative, the result is the address of a
previous object. The expressions *(addr + intexp) and addr[intexp] are
equivalent because both expressions reference the same memory location;
*(addr + intexp) points to the same element as addr[intexp].

Expressions and Operators 7-5

7.2.4 Structure and Union References

A member of a structure or union can be referenced with either of two
operators: the period (.) or the right arrow (->).

A primary expression followed by a period followed by an identifier refers
to a member of a structure or union and is itself a primary expression.
The identifier must name a member of that structure or union. The result
is a reference (if the member is a scalar) to the named member of the
structure or union. The name of the desired member must be preceded by
a period-separated list of the names of all higher-level members. For more
information about structures and unions, see Section 8.9.

The form for a pointer to a structure and union uses the right-arrow
operator. A primary expression followed by an arrow (specified with a
hyphen (—) and a greater-than symbol (>)) followed by an identifier refers
to a member of a structure or union. The identifier following the arrow
operator must name a declared member of that structure or union. The
result is a reference to the named member.

Tl~e primary expression in both cases can be either a pointer or an integer.
If it is a pointer, VAX C assumes that it points to a structure where the
name on the right is a member. If it is an integer, VAX C assumes that
it is the absolute address of the appropriate structure in machine storage
units. If you specify something other than a pointer to a structure or union,
VAX C signals the QUALNOTSTRUCT informational message. If you point
to a different structure or union type, VAX C signals the NONSEQUITUR
informational message.

7.3 Overview of the VAX C Operators

You can use the simpler variable identifiers and constants in conjunction
with VAX C operators to create more complex expressions. Table 7-1
presents the set of VAX C operators.

7-6 Expressions and Operators

Table 7-1: VAX C Operators

Operator Example Result

— [unary] —a Negative of a
* [unary] *a Reference to object at address a
& [unary] &a Address of a

~a One's complement of a
++ [prefix] ++a The value of a after increment
++ [postfix] a++ The value of a before increment
— — [prefix] — — a The value of a after decrement
— — [postfix] a — — The value of a before decrement
sizeof sizeof(tl) Size in bytes of type tl

sizeof a Size in bytes of expression e
(type-name) (t1)e Expression e, converted to type tl

+ a+b aplusb
— [binary] a — b a minus b
* [binary] a * b a times b
/ a / b a divided by b
% a % b Remainder of a/b (a modulo b)

» a» b a, right-shifted b bits
« a « b a, left-shifted b bits

< a< b 1 if a< b; 0 otherwise
> a> b 1 if a> b; 0 otherwise
<= a <= b 1 if a <= b; 0 otherwise
>= a >= b 1 if a >= b; 0 otherwise
_ = a = = b 1 if a equal to b; 0 otherwise
!= a != b 1 if a not equal to b; 0 otherwise

& [binary] a & b Bitwise AND of a and b
I a i b Bitwise OR of a and b
^ a ^ b Bitwise XOR (exclusive OR) of a and b

&& a && b Logical AND of a and b (yields 0 or 1)
I I a l l b Logical OR of a and b (yields 0 or 1)
! ! a Logical NOT of a (yields 0 or 1)

?: a ? e 1 : e2 Expression e 1 if a is nonzero;
Expression e2 if a is zero

(continued on next page)

Expressions and Operators 7-7

Table 7-1 (Cont.): VAX C Operators

Operator Example Result

= a = b b (assigned to a)
+= a += b a plus b (assigned to a)
—= a —= b a minus b (assigned to a)
*= a *= b a times b (assigned to a)
!= a /= b a divided by b (assigned to a)
%= a %= b Remainder of a/b (assigned to a)
»= a »= b a, right-shifted b bits (assigned to a)
«= a «= b a, left-shifted b bits (assigned to a)
&= a &= b a AND b (assigned to a)
I= a l= b a OR b (assigned to a)
^= a ^= b a XOR b (assigned to a)

el,e2 e2 (el evaluated first)

These VAX C operators fall into the following categories:

• Unary operators, which take a single operand.

• Binary operators, which take two operands and perform a variety of
arithmetic and logical operations.

• The ternary operator, which is the conditional operator, takes three
operands and evaluates either the second or third expression, depending
on the evaluation of the first expression.

• Assignment operators, which assign a value to a variable, optionally
performing an additional operation before the assignment takes place.

• The comma operator, which guarantees left-to-right evaluation of
comma-separated expressions.

• Primary operators, which usually modify or qualify identifiers (see
Section 7.2 for more information).

Table 7--2 presents the precedence by which the compiler evaluates
operations. Operators with the highest precedence appear at the top of
the table; those with the lowest appear at the bottom. Operators of equal
precedence appear in the same row.

7-8 Expressions and Operators

Table 7-2: Precedence of VAX C Operators

Category Operator Associativity

Primary () [] —> . Left to right

Unary ! ~ ++ — — (type) * & Right to left
sizeof

Binary (mult.) ~` / % Left to right

Binary (add.) + — Left to right

Binary (shift) « » Left to right

Binary (relat.) < <_ > >= Left to right

Binary (equal.) _ _ ! = Left to right

Binary (bitand) & Left to right

Binary (bitxor) ^ Left to right

Binary (bitor) I Left to right

Binary (AND) && Left to right

Binary (OR) I I Left to right

Conditional ?: Right to left

Assignment = +_ —_ *_ /_ %_ »= Right to left
«_&_^= I=

Comma Left to right

Consider the following expression:

A*B+C

The identifiers A and B are multiplied first because the multiplication
operator (~`) has a higher precedence than the addition operator (+). The
associative rule applies to each row of operators. Consider the following
expression:

A/B/C

This expression is evaluated as follows because the division operator
evaluates from left to right:

(A/B) /C

Expressions and Operators 7-9

7.4 Unary Expressions and Operators

You form unary expressions by combining a unary operator with a single
operand. All unary operators are of equal precedence and group from right
to left. They perform the following operations:

• Negate a variable arithmetically (--) or logically (!) (Section 7.4.1)

• Increment (++)and decrement (— —)variables (Section 7.4.2)

• Find addresses (&)and dereference pointers (*) (Section 7.4.3)

• Calculate a one's complement (~) (Section 7.4.4)

• Force the conversion of data from one type to another (the cast operator)
(Section 7.4.5)

• Calculate the sizes of specific variables or of types (sizeot~ (Section 7.4.6)

7.4.1 Negating Arithmetic and Logical Expressions

Consider the syntax of the following expression:

- expression

This is the arithmetic negative of expression. The compiler performs the
arithmetic conversions. The negative of an unsigned quantity is computed
by subtracting its value from 232. There is no unary plus operator in VAX C.

Consider the following expression:

! expression

The result is the logical (Boolean) negative of the expression. If the result of
the expression is 0, the negated result is 1; if the result of the expression is
not 0, the negated result is 0. The type of the result is int. The expression
can be a pointer (or other address-valued expression) or an expression of any
arithmetic type.

7.4.2 Incrementing and Decrementing Variables

Consider the syntax of the following expression:

++lvalue

The object to which the lvalue refers to in the expression is incremented
before its value is used. After evaluating this expression, the result is
the incremented rvalue, not the corresponding lvalue. For this reason,
expressions that use the increment and decrement operators in this manner

7-10 Expressions and Operators

cannot appear by themselves on the left side of an assignment expression
where an lvalue is needed.

Consider the syntax of the following expression:

lvalue++

The object to which the lvalue refers to in the expression increments after
its value is used. The expression evaluates to the value of the object before
the increment, not the incremented variable's lvalue.

If the operand is a pointer, the address is incremented by the length of the
addressed object, not by the integer value 1. If declared as an integer, the ~.
variable increases or decreases by the value~~ 1~

The objects of the following lvalues point to other variables:

--lvalue
lvalue--

These pointers decrement not by the integer value 1, but by the size of the
addressed object. The data type of the variable determines the amount of the
increment or decrement. If declared as a pointer, the variable increments or
decrements by the size of the addressed object's data type. For example, if
declared as a pointer to an integer, the variable increments or decrements
by the value 4. For example:

int *ip;
char *cp;
ip--•
--cp-

/* Decremented by 4 */
/* Decremented by 1 */

when using the increment and decrement operators, do not depend on
the order of evaluation of expressions. Consider the following ambiguous
expression:

Is the value of variable j in x[j] evaluated before or after the increment
occurs? Do not assume which expressions the compiler will evaluate first.
To avoid ambiguity, increment the variable in a separate statement.

7.4.3 Computing Addresses and Dereferencing Pointers

Consider the syntax of the following expression:

& identifier

Expressions and Operators 7-11

The expression results in the lvalue (address) of the identifier. The amper-
sand operator (&)may not be applied to register variables or to bit fields
in structures or unions.

NOTE

In VAX C, the compiler changes any register variable to which
the ampersand operator applies to an auto variable. If you do not
use /STANDARD=PORTABLE, the compiler issues no warning
message; if you do use /STANDARD=PORTABLE, the compiler
issues an appropriate message.

In the special context of argument lists, you may apply the ampersand
operator to constants. This use of the ampersand operator passes constants
to user-defined functions that expect arguments to be passed by reference.
This is a VAX C extension and is not portable. For more information about
manipulating argument lists, see Section 5.1.2. For more information
about the VAX Procedure Calling and Condition-Handling Standard, see
Section 13.1.

Because function identifiers and unqualified array identifiers are lval-
ues, you cannot apply the ampersand operator to these identifiers. If you
apply the address of an operator to function identifiers or to unqualified
array identifiers, VAX C considers this to be a redundant use of the am-
persand operator and generates the appropriate error message when the
/STANDARD=PORTABLE qualifier is specified.

When an expression evaluates to an address, as in the following example,
the address is used to indirectly access the object to which the address
refers

* pointer

An expression using the indirection operator (*)evaluates to the object
pointed to by a pointer or by an address-valued expression.

7.4.4 Calculating a One's Complement

Consider the syntax of the following expression:

N expression

The result is the one's complement of the evaluated expression; it converts
each 1-bit into a 0-bit and vice versa. The expression must be integral
(an integer or character). The compiler performs necessary arithmetic
conversions.

7-12 Expressions and Operators

7.4.5 Forcing Conversions to a Specific Type

The cast operator forces the conversion of its operand to a specified scalar
data type. Structures and unions may not appear as a cast operator. The
operator consists of a data-type name, in parentheses, which precedes the
operand expression, as follows:

(type-name) expression

The resulting value of the expression converts to the named data type, just
as if the expression were assigned to a variable of that type. If the operand
is a variable, its value converts to the named type. The variable's contents
do not change. The type name has the following formal syntax:

type-name :._

type-specifier abstract-declarator

In simple cases, type-specifier is the keyword for a data type, such as char
or double. The type-specifier may also be a structure specifier, union
specifier, an enum specifier, or a typedef name.

An abstract-declarator in a parameter declaration is a declaration without
an identifier or data-type keyword, as shown in the following form:

abstract-declarator ::_

empty

(abstract-declarator)

* abstract-declarator

abstract-declarator ()

abstract-declarator [constant-expression

Consider the following form of the abstract-declarator:

abstract-declarator()

To avoid confusion with the previous form, the abstract-declarator may not
be empty in the following form:

(abstract-declarator)

Abstract declarators may include the brackets and parentheses that indicate
arrays and function calls. However, cast operations may not force the
conversion of any expression to an array, function, structure, or union.
The brackets and parentheses are used in operations such as the following
example, which casts identifier P1 to "pointer to array of int:"

lint (*) []) P1

This kind of cast operation does not change the contents of P1; it only causes
the compiler to treat the value of P1 as a pointer to such an array. For

Expressions and Operators 7-13

example, casting pointers this way can change the scaling that occurs when
you add an integer to a pointer. For example:

int *ip;
((char*)ip)++; /* Increments by 1 not by 4 */

7.4.6 Calculating Sizes of Variables and Data Types

Consider the syntax of the following expressions:

sizeof expression
sizeof (type-name)

The result is the size, in bytes, of the operand. In the first case, the result
of sizeof is the size determined by the type of the expression. In the second
case, the result is the size, in bytes, of an object of the named type. The
syntax of type-name is the same as that for the cast operator. For example:

int x;
x = sizeof (char *);

See Section 7.4.5 for more information about the cast operator.

7.5 Binary Expressions and Operators

The binary operators are categorized as follows:

• Additive operators: addition (+)and subtraction (—) (Section 7.5.1)
• Multiplication operators: multiplication (*), mod (%), and

division (/) (Section 7.5.2)
• Equality operators: equality (__)and inequality (!_) (Section 7.5.3)
• Relational operators: less than (<), less than or equal to (<_), greater

than (>), and greater than or equal to (>_) (Section 7.5.4)
• Bitwise operators: AND (&), OR (I), and XOR (^) (Section 7.5.5)
• Logical operators: AND (&&)and OR (I I) (Section 7.5.6)
• Shift operators: left shift («) and right shift (») (Section 7.5.7)

The following sections describe these binary expressions and operators.

7-14 Expressions and Operators

7.5.1 Additive Operators

The additive operators (+)and (—)perform addition and subtraction. Their
operands are converted, if necessary, following the arithmetic conversion
rules. For more information, see Section 7.9.1.

You can increment an array pointer by adding an integral variable to the
address of an array element. The compiler calculates the size of one array
element, multiplies that by the integer to obtain the offset value, and then
adds the offset value to the address of the designated element. For example:

int arr [10] ;
int *p = arr;
p = p + 1; /* Increments by 4 */

You may subtract a value of any integral type from a pointer or address; in
that case, the same conversions apply as for addition.

When you add or subtract two enum constants or variables, the type of the
result i s int.

If you subtract two addresses of objects of the same type, the result converts
(divides by the length of the object) to an int representing the number of
objects separating the addressed objects. The result of this conversion is
unpredictable unless the two objects are in the same array.

7.5.2 Multiplication Operators

The multiplication operators (*), (/), and (%)perform arithmetic conver-
sions, if necessary. The binary operator (*)performs multiplication. The
binary operator (/)performs division. When integers are divided, truncation
is toward zero.

The binary mod operator (%)divides the first operand by the second and
yields the remainder. Both operands must be integral. The sign of the result
is the same as the sign of the quotient. If variable b is not zero, then the
following statement is true:

Expressions and Operators 7-15

7.5.3 Equality Operators

The equality operators equal-to (__)and not-equal-to (!_)perform the
necessary arithmetic conversions on their two operands. These operators
produce a result of type int, so that in the following statement the result is
the value 1, if both relational expressions have the same truth value, and
the value 0 if they do not:

a<b == c<d

Two pointers or addresses are equal if they identify the same storage
location. You can compare a pointer or address with an integer, but the
result is not portable unless the integer is zero; a null pointer is considered
equal to zero.

Although different symbols are used for assignment and equality, (_)and
(__)respectively, VAX C allows either operator in some contexts, so you
must be careful not to confuse them. Consider the following example:

if (x=1) statement-1;
else statement-2;

In the previous example, statement-1 always executes, since the result of
assignment x=1 delimited by parentheses is equivalent to the value of x,
which is equal to 1 (or true).

NOTE

The following example shows a coding practice useful to avoid this
common error when doing comparisons. By placing the constant
first, the compiler diagnoses the incorrect use of the equality
operator (_).

int x;
if (1==x); /* This syntax does the comparison */
if (1=x); /* This syntax causes a compiler error */

7.5.4 Relatic~nalOperators

The relational operators compare two operands and produce a result of type
int. The result is the value 0 if the relation is false, and 1 if it is true.
The operators are less-than (<), greater-than (>), less-than or equal-to
(<_), and greater-than or equal-to (>_). The compiler performs necessary
arithmetic conversions.

7-16 Expressions and Operators

If you compare two pointers or addresses, the result depends on the relative
locations of the two addressed objects. Pointers to objects at lower addresses
are less than pointers to objects at higher addresses. If two addresses
indicate elements in the same array, the address of an element with a lower
subscript is less than the address of an element with a higher subscript.

The operators group from left to right. However, note that the following
statement compares the variable c with 0 or 1 (possible results of a<b); it
does not mean "if b is between a and c . . . ":

i f (a<b<c)

In order to check that b is between a and c, you should use the following
code:

if (a<b && b<c)

7.5.5 Bitwise Operators

The Bitwise operators may be used only with integral operands: with
variables of types char and with int of all sizes. The compiler performs the
necessary arithmetic conversions. The result of the expression is the Bitwise
AND (&), XOR exclusive OR (^), or OR (I) of the two operands. The
compiler evaluates all operands. Figure 7-1 shows the effects of Boolean
algebra when using the Bitwise operators.

In Boolean algebra, VAX C evaluates values bit by bit. If you are using the
Bitwise AND on a bit value 1 and on a bit value 0, the result is 0. When
using the Bitwise AND, both bits must be 1, as shown in Figure 7—1, for the
result to be 1. when using the Bitwise OR, either bit value can be 1 for the
result to be 1. When using the Bitwise EXCLUSIVE-OR, either value, but
not both, can be 1 for the result to be 1.

7.5.6 Logical Operators

The logical operators are AND (&&)and OR (I I). These operators
guarantee left-to-right evaluation. The result of the expression (of type int)
is either 0 (false) or 1 (true). If the compiler can make an evaluation by
examining only the left operand, it does not evaluate the right operand.
Consider the following expression:

Expressions and Operators 7-17

Figure 7-1: Boolean Algebra and the Bitwise Operators

Boolean Algebra

AND (&) OR (~)
1 0 1 0

1~0 1
0 0 0 0

~~
0 0

EXCLUSIVE—OR (^)
1 0

1
0
0
0

OPERATOR BITWISE OPERATION DECIMAL VALUE

AND (&) 1 0 1 1 1 1 1 95

1 1 0 0 0 0 1 97

1 1 0 0 0 0 1 65

OR (~) 1 0 1 1 1 1 1 95

1 1 0 0 0 0 1 97

1 1 1 1 1 1 1 127

X—OR (^) 1 0 1 1 1 1 1 95

1 1 0 0 0 0 1 97

0 1 1 1 1 1 0 62

ZK-3071—GE

E1 && E2

The result is 1 if both its operands are nonzero, or 0 if one operand is 0. If
expression E 1 is 0, expression E2 is not evaluated. Similarly, the following
expression is 1 if either operand is nonzero, and 0 otherwise. If expression
E 1 is nonzero, expression E2 is not evaluated.

E1 ~) E2

The operands of logical operators need not have the same type, but each
must be one of the fundamental types or must be a pointer or other address-
valued expression.

7-18 Expressions and Operators

7.5.7 Shift Operators

The shift operators («) and (»)take two operands, both of which must be
integral. The compiler performs necessary arithmetic conversions on both
operands if they are not integers. The right operand is then converted to
int, and the type of the result is the type of the left operand. Consider the
result of the following expression:

E1 « E2

The result is the value of expression E 1 shifted to the left by E2 bits. The
compiler clears vacated bits. Consider the following expression:

E1 » E2

The result is the value of expression E 1 shifted to the right by E2 bits. The
compiler clears vacated bits if E 1 is unsigned; otherwise, the bits are filled
with a copy of E 1's sign bit.

The result of the shift operation is undefined if the right operand (E2 in the
previous example) is negative or if the value of E2 is greater than 32.

7.6 Conditional Operator

The conditional operator (?:)takes three operands. It tests the result of the
first operand and then evaluates one of the other two operands based on the
result of the first. Consider the following example:

E1 ? E2 E3

If expression E1 is nonzero (true), then E2 is evaluated. If E1 is 0 (false), E3
is evaluated. Conditional expressions group from right to left. The compiler
makes conversions in the following order:

1. If possible, the arithmetic conversions are performed on expressions E2
and E3, so that they will result in the same type.

2. If expressions E2 and E3 are address expressions indicating objects of
the same type, the result has that type.

3. One of the E2 and E3 operands must be an address expression, and the
other, the constant 0. The result has the type of the addressed object.

Expressions and Operators 7-19

7.7 Assignment Expressions and Operators

VAX C has several assignment operators. An assignment is not only an
operation but is also an expression. Assignments result in the value of the
target variable after the assignment. They can be used as subexpressions in
larger expressions.

The set of assignment operators consists of the equal sign (_)alone and
in combination with binary operators. An assignment expression has two
operands (an lvalue and an expression separated by one of these operators).
Consider the following assignment expression:

E1 += E2;

This is equivalent to the following expression:

E1 = E1 + E2;

The expression E 1 is evaluated once and must result in an lvalue. The type
of the assignment expression is the type of E 1, and the result is the value of
E1 after the completion of the operation. You must delimit some expressions
in parentheses if the expressions may contain other operators of a lower
precedence. Consider the following expression:

a *= b + 1;

This is the same as the following expression:

However, the previous expression is not the same as the following
expression:

In the following assignment expression, the value of expression E2 replaces
the previous object of E 1:

E1 = E2

The following expre~csion adds 100 to the contents of a_number[1]:

a number [1] += 100;

The result of this expression is the result of the addition and has the same
type as a_number[1].

If both assignment operands are arithmetic, the right operand is converted
to the type of the left before the assignment (see Section 7.9.1).

7-20 Expressions and Operators

You can use the assignment operator (_) to assign values to structure and
union members. You can assign one structure value to another as long as
you define the structures to be the same size. With all other assignment
operators, all right operands and all left operands must be either pointers
or evaluate to arithmetic values. If the operator is (—_) or (+_), the left
operand may be a pointer, and the right operand (which must be integral) is
converted in the same manner as the right operand in the binary plus (+)
and minus (—)operations.

You can assign an address to an integer, an integer to a pointer, and
the address of an object of one type to a pointer of another type. Such
assignments are simple copy operations, with no conversions. This usage
may cause addressing exceptions when you use the resulting pointers.
However, if the constant 0 is assigned to a pointer, the result is a null
pointer. The equality operators distinguish a null pointer from a pointer
that points to any object.

For compatibility with some other C implementations, VAX C allows certain
deviations from the spellings of the compound assignment operators shown
in Table 7-2. The deviations are as follows:

• When the operators are written in the order shown in Table 7-2, the two
characters can be separated by blank spaces. For example, the following
expressions are identical:

E1 += E2;
El + = E2;

• The operators can also be written with the characters in reverse order,
as in the following expression:

E1 =+ E2;

The second form generates an informational message. Avoid this form for
the following reasons:

• The syntax allowed by VAX C is more restrictive in this case.
Specifically, the characters (~`, —, and &) must be immediately adj a-
cent to the equal sign (_)character because they also appear in unary
operators. For example, this placement avoids ambiguities such as
that shown in the following example, which multiplies the result of
expression E 1 by the value of p

E1 =*p;

Expressions and Operators 7-21

• Even with usage that follows the guidelines, it is possible to introduce
ambiguities, as in the following expression:

E1 =/*part of a comment .

7.8 Comma Expression and Operator

When two expressions are separated by the comma operator, they evaluate
from left to right, and the compiler discards the result of the left expression.
If you separate many expressions with commas, the compiler discards all but
the result of the rightmost expression. For example, the following expression
assigns the value 1 to variable R and the value 2 to variable T:

The type and value of the result of a comma expression are the type and
value of the rightmost operand. The operator evaluates operands from left
to right.

You must delimit comma expressions with parentheses if they appear where
commas have some other meaning, as in argument and initializing lists.
Consider the following expression:

This example calls the function, f, with the arguments a, 5, and c. In
addition, variable t is assigned the value 3.

7.9 Data-Type Conversions

VAX C performs data-type conversions in the following four situations:

• When two or more operands of different types appear in an expression
(including an assignment).

• When arguments other than long integers, addresses, or double-
precision, floating-point numbers are passed to a function.

• When arguments that do not conform exactly to the parameters declared
in a function prototype are passed to a function.

• When the data type of an operand is deliberately converted by the cast
operator. See Section 7.4.5 for more information on the cast operator.

The following sections describe how to convert operands and function
arguments.

7-22 Expressions and Operators

7.9.1 Converting Operands

The following rules referred to as the arithmetic conversion rules govern
the conversion of operands in arithmetic expressions. Although they do not
specify explicit conversions at the machine-language level, the rules govern
in the following order:

1. Any operands of type char or short (signed or unsigned) convert to their
32-bit equivalents (int or unsigned int). Any operands of type float
convert to double unless /PRECISION=SINGLE is specified.

2. If either operand is double, the other converts to double, and that is
the type of the result.

3. If either operand is unsigned, the other converts to unsigned, and that
is the type of the result.

4. Both operands must be int, and that is the type of the result.

The arithmetic conversions are performed on all arithmetic operands. Some
operators, such as the shift operators (»)and («), require integers as
operands. If one operand is of type float or double, you cannot meet this
requirement.

In previous versions of VAX C, floating-point arithmetic was carried out in
double precision. Since the proposed ANSI C standard no longer requires
this conversion, VAX C attempts to perform arithmetic in single precision
if /PRECISION=SINGLE is specified on the compilation. If an operand of
type float appears in an expression, it is treated as asingle-precision object
unless the expression also involves an object of type double, in which case
the usual arithmetic conversion applies.

When an operand of type double is converted to float, (for example, by an
assignment) the compiler rounds the operand before truncating it to float.

The compiler may convert a float or double value operand to an integer by
assignment to an integral variable. In VAX C, the truncation of the float or
double value is always toward zero.

Conversions also take place between the various kinds of integers. In VAX
C, variables of type char are bytes treated as signed integers. When a
longer integer is converted to a shorter integer or to char, it is truncated on
the left; excess bits are discarded. For example:

Expressions and Operators 7-23

int i;
char c;

i = OxFFFFFF41;

c = i;

This code assigns hex 41 (~ A~) to variable c. The compiler converts shorter
signed integers to longer ones by sign extension.

Whenever the compiler combines an unsigned integer and a signed integer,
the signed integer converts to unsigned and the result is unsigned. All
conversions from signed to unsigned perform an intermediate conversion
to int. For example, the compiler converts a char or short operand to an
unsigned version by first converting it to a signed int and then by truncating
it to form the unsigned version. All conversions from unsigned to signed
(such as conversions done with the cast operator) involve an intermediate
conversion to unsigned int.

You can also add integers to pointers, in which case the integer is scaled
(multiplied) by a factor that depends on the type of the object to which the
pointer points. See Section 7.5.1 for more information about
scaling pointers.

7.9.2 Converting Function Arguments

The data types of function arguments are assumed to match the types of the
formal parameters unless a function prototype declaration is present. In the
presence of a function prototype, all arguments in the function invocation
are compared for assignment compatibility to all parameters declared in the
function prototype declaration. If the type of the argument does not match
the type of the parameter but is assignment compatible, VAX C converts the
argument to the type of the parameter (see Section 7.9.1). If an argument
in the function invocation is not assignment compatible to a parameter
declared in the function prototype declaration, VAX C generates an
error message.

Unless a function prototype is present, all arguments of type boat convert
to double, all variables of type char and short convert to int, all variables
of type unsigned char and unsigned short convert to unsigned int, and
an array or function name converts to the address of the named array or
function. The compiler performs no other conversions automatically, and any
mismatches after these conversions are programming errors.

7-24 Expressions and Operators

Use the cast operator to pass arguments to parameters of different types.
See Section 7.4.5 for more information on the cast operator. For more
information about manipulating argument lists, see Section 5.1.2. For
more information about the VAX Procedure Calling and Condition-Handling
Standard, see Section 13.1.

Expressions and Operators 7-25

Chapter 8

Data Types and Declarations

The values of both constants and variables have data types. Data types
specify the amount of storage required and how to interpret the data object
in that storage space. This chapter discusses the following topics in respect
to data types:

• Constants (Section 8.1)
• Variables (Section 82)

• Integers (Section 8.3)

• Character constants (Section 8.3.2)
• Floating-point numbers (Section 8.4)

• Pointers (Section 8.5)

• Enumerated types (Section 8.6)
• Arrays (Section 8.7)
• Character-string variables (Section 8.8)
• Structures and unions (Section 8.9)
• The void keyword (Section 8.10)
• The typedef keyword (Section 8.11)

• Interpreting declarations (Section 8.12)

8.1 Constants

You can represent data in VAX C using constants. A constant is a primary
expression with a defined value that does not change. You may represent
a constant in a literal form, which contains the explicit numbers, letters,
and operators that comprise the constant, or, you may define a symbol
to represent the constant value. (For more information about symbolic
representation of constants, see Section 10.1.) Constants, like all data in

Data Types and Declarations 8-1

VAX C, have data types. The data type determines the amount of storage
needed and determines how to interpret the stored object or constant value.
The compiler determines the data type of constants by the way in which
their values are represented in the source code.

8.2 Variables

You can also represent data in VAX C using variables, whose values can
change throughout the execution of the program. All variables used in a
program must be declared. When you declare a variable, you specify the
data type of the stored object. An object, in VAX C, is a value requiring
storage. Declarations determine the size of a storage allocation; definitions
initiate the allocation of storage. See Section 8.2.1 for more information
about the data types of variables.

Unlike constants, variables can be declared and defined. Most variable
declarations are also definitions because storage is allocated at that point
in the program. To declare a variable, specify the data type. To define a
variable, assign the variable the proper storage class and place the variable
declaration within the program structure. Also, if you can initialize a
variable in the declaration, the variable is defined. For more information
about variable definitions, scope, and storage allocation, see Chapter 9.

8.2.1 Classification of Variables

There are two kinds of variables: scalar and aggregate. Scalar variables
have objects that can be manipulated arithmetically in their entirety. These
objects are single characters, individual numbers, and pointers. Aggregate
variables are data structures (arrays, structures, and unions) that are
comprised of distinct elements (members) that you can declare to be of
either a scalar or aggregate data type.

VAX C has defined data-type keywords for your use in declaring program
variables. The following sections describe the VAX Cdata-type keywords
and the format for a VAX C variable declaration.

8-2 Data Types and Declarations

f "')
8.2.1.1 Data-Type Keywords

To declare or define variables, you need to know the VAX C keywords asso-
ciated with each data type. Table 8-1 lists the VAX Cdata-type keywords
according to classification.

Table 8-1: VAX CData-Type Keywords

Aggregate
Scalar Keywords Keywords Other hype Keywords

int struct

long union

unsigned variant_struct

short variant union

char

float

double

enum

voi d

In the sections that follow, the keywords and operators used to declare
variables of given data types are listed in the section header for ease of
reference.

VAX C also supports the type modifiers const and volatile. For information
about these type modifiers, see Section 9.7.

8.2.1.2 Format of a Variable Declaration

A variable declaration can be composed of the following items:

• Data-type specifiers such as a data type or data-type modifier keyword,
one structure, union, or enum tag, and if necessary, a typedef name

Any of these give the data type of the declared object.

• An optional storage-class keyword
A storage-class keyword affects the scope of a variable and determines
how it is stored. If you omit the storage-class keyword, there is a default
storage class that depends upon the physical location of the declaration
in the program. The positions of the storage-class keywords and the
data-type keywords are interchangeable.

Data Types and Declarations 8-~

• Declarators, which list the identifiers of the declared objects and which
may contain operators that declare a pointer, function, or array of objects
of the declared type

• Initializers for each declared object or aggregate element giving the ini-
tial value of a scalar variable or the initial values of structure members
or array elements
An initializer consists of an equal sign (_)followed by either a single
expression or a comma-list of one or more expressions in braces.

Consider the following example:

int var number = 10;

This declaration both declares and defines the integer variable, var number,
that has an initial value of 10. The keyword int specifies the amount of
storage needed on a VAX system for an integer. The identifier var number
follows. The equality operator (_)initializes the variable with the literal
constant 10; for the initialization to take place, storage is allocated and the
variable is defined. Declarations must end in a semicolon (;).

The variable declaration in the previous example is not difficult to interpret,
but even experienced VAX C programmers have difficulty interpreting
complex variable declarations. See Section 8.12 for more information about
interpreting VAX C variable declarations.

8.3 Integers (int, long, short, char, and unsigned)

Integer variables are declared with the keywords int, long, short, char,
and unsigned. The following is an example of an integer declaration:

int x;

Character variables are declared with the keyword char. An example of a
character declaration with the initialization of a character variable is
as follows:

char ch = ' a' ;

Table 8-2 specifies the sizes and ranges of integers.

8-4 Data Types and Declarations

Table 8-2: Size and Range of VAX C Integers

Keyword Size Range

int, 32 bits -2,147,483,648 to
long, and 2,147,483,647
long int

unsigned and 32 bits 0 to 4,294,967,295
unsigned int

short and 16 bits -32,768 to 32,767
short int

unsigned short 16 bits 0 to 65,535

char 8 bits -128 to 127

unsigned char 8 bits 0 to 255

The following sections describe the constants that you can assign to the
integer variables.

8.3.1 Integer Constants

There are three types of integer constants: decimal, hexadecimal, and octal;
these constants can be signed or unsigned. Integer constants can consist
of the characters 0 to 9, a to f (for hexadecimal integers), A to F (also for
hexadecimal integers), and, optionally, the characters x, X, 1, L, u and U,
in either upper- or lowercase letters. Use the characters x and X to specify
hexadecimal numbers. The characters 1 and L specify that the constant is to
be considered as a long integer (4 bytes, 1 longword). The characters u and
U specify that the integer constant is unsigned rather than signed. On other
implementations of the C language, values of the int data type may require
only 16 bits of storage. On a machine with the VAX architecture, values of
the int data type require 32 bits of storage. Therefore, note that values of
the int and long data types require identical storage on a machine with the
VAX architecture. VAX C supports the L suffix only for the sake of program
portability.

You can specify integer constants in decimal, octal, and hexadecimal radixes.
An integer constant is assumed to be decimal unless it begins with 0 or Ox; if
it begins with 0, it is assumed to be octal; if it begins with Ox, it is assumed
to be hexadecimal.

Data Types and Declarations 8-5

In octal constants, the digits 8 and 9 have the octal values 010 and 011,
respectively. For instance, the octal number 039 is equal to 3 * 8 -~- 9, or
decimal value 33; the octal number 080 is equal to 8 * 8 -~ 0, or decimal
value 64.

Even though VAX C supports the digits 8 and 9 in octal constants, you
should avoid using these octal constants so as not to conflict with other
implementations of the C language.

Integer constants must not include a decimal point; constants with a
decimal point are of type double. Integer constants that exceed a longword
are treated as programming errors.

Character constants such as ' a' and ' $' are also valid integer constants.
Their integer values in VAX C are the values of the corresponding ASCII
codes.

Some examples of valid integer constants are as follows:

133E
Ox17A
056
4294967295u1
077u
' a'

$~

/* Long decimal integer
/* Hexadecimal integer
/* Octal integer
/* Unsigned long integer
/* Unsigned octal integer
/* Decimal 97
/* Decimal 36

Some examples of invalid integer constants are as follows:

143. /* Includes a decimal point
3333333333 /* Out of range for int
+33333 /* '+' is an invalid character
77af /* Hexadecimal constants must be

* prefixed with "Ox"

8.3.2 Character Constants

A character constant is a value, requiring at least 8 bits (1 byte) or at most
32 bits (1 longword) of memory, that is enclosed in apostrophes. Character
constants can be a single ASCII character, as in the following example:

char ch = 'a'; /* Lowercase letter 'a' is a constant
* assigned to ch.

*
*/

The character constant ' a' has the ASCII value of 97. If the value of a
character constant is not large enough to fill 32 bits of memory, the compiler
stores the character or characters in the low-order bytes) and pads the
remaining bytes with NUL characters (' \ 0 ~).

8-6 Data Types and Declarations

Character constants do not have to be single characters, as shown in the
following example (please note that this is VAX C specific and not portable):

int 1 word = 'a:cd' /* This constant contains 4 characters

printf (" oc\n", 1_word) ;
printf("o.4s", &1_word); /* String with maximum 4 characters

Sample output from this program is as follows:

$ RUN EXAMPLE
a
a:cd

*/

*/

If you print variable 1_word as a character, the printf function prints only
the character located in the low-order byte of the integer allocation. To print
all of the characters in the longword allocated to the variable, you have to
print the variable as a string and pass the address of the integer variable as
an argument. If you print the integer variable as a string, be sure to specify
a precision of at most 4, since you can never be sure if the next byte in the
string is a terminating NULL character.

The apostrophe (')and quotation mark (~~) are significantly different
punctuation marks in VAX C, indicating a character constant and a string
constant, respectively. One context in which the difference is important is in
an argument list. If you specify a function argument as a string, and wish
to pass a character constant, you must enclose the character in quotation
marks, not apostrophes, even if the string is only one to four characters
in length. See Section 8.8.1 for more information about character-string
constants.

8.3.3 Escape Sequences

In VAX C, escape sequences are character strings that represent a single
printing or nonprinting character. The term "escape sequences" does not
designate a string beginning with the ASCII character ESC, as in VT100
escape sequences.

Table 8-3 presents the escape sequences that specify the nonprinting
characters, the apostrophe, and the backslash (\).

Data Types and Declarations 8-7

Table 8-3: VAX C Escape Sequences

Character Mnemonic Escape Sequence

newline NL \ n

horizontal tab HT \ t

vertical tab VT \ v

backspace BS \b

carriage return CR \ r

form feed FF \ f

backslash \ \ \

apostrophe \ '

quotes \ ~~

bit pattern ddd \ddd or \xddd

An escape sequence, such as ' \ n' , denotes a single character.

The form ' \ddd' is used to specify any byte value (usually an ASCII
code), where the digits ddd are one to three octal digits. The octal digits
are limited to 0 through 7. A common use is to specify the ASCII NUL
character, as follows:

' \ o'

Similarly, the form ' \xddd' is used to specify any byte value (usually
an ASCII code), where the digits ddd are used to specify one to three
hexadecimal digits.

The following are examples of valid escape sequences of the form ' \ddd'
and ' \xddd' . Both of these escape sequences are used to specify an
a-umlaut (a) on a VT200-series terminal in octal and hexadecimal digits,
respectively.

' \ 344'
' \ xe 4'

If the character following the backslash in an escape sequence is illegal, the
backslash is ignored; that is, the character constant's value is the same as if
the backslash were not present.

8-8 Data Types and Declarations

8.4 Floating-Point Numbers (float and double)

When declaring floating-point variables, you determine the amount of
precision needed for the stored object. In VAX C, you can have either
single-precision or double-precision variables. If you choose double precision,
you have the choice of using either the D_floating or G floating formats.

The sizes and ranges of VAX Cfloating-point numbers are as follows:

• float
Float is a 32-bit keyword with a range of:

0.29 * 10 38 to 1.? * 1038

These values are precise to 7 decimal digits.

• double D_floating
Double D_floating is a 64-bit keyword with a range of:

0.29 * 10-38 to 1.7 * 1038

These values are precise to 16 decimal digits.

• double G_floating
Double G_floating is a 64-bit keyword with a range of:

0.56 * 10-308 to 0.899 * 10308

These values are precise to 15 decimal digits.

You use the keyword float to declare asingle-precision, floating-point
variable, represented internally in the VAX F floating-point, binary format.

The keyword double declares adouble-precision, floating-point variable.
You can use the keywords double and long float interchangeably. However,
long float should not be used so as to avoid conflict with other implemen-
tations of the C language. There are two representations of the VAX C data
type double: D_floating and G_floating.

The G floating precision, approximately 15 digits, is less than that of
variables represented in D_floating format. The fractional portion of the
variable may contain one more digit, but the integral portion of the variable
must contain one less digit.

Data Types and Declarations 8-9

The default representation of the data type double is D_floating. The
G_floating representation is chosen by compiling the program with the
/G_FLOAT qualifier on the DCL command line. For more information about
the compilation command line, see Section 1.3.1. Modules compiled with the
D_floating representation should not be linked with modules compiled with
the G_floating representation. Since there are no functions in the VAX C
Run-Time Library (RTL) that will perform type conversions on files, use the
VMS Run-Time Library (RTL) functions MTHCVT_D_G, MTHCVT_G_D,
MTH$CVT_DA_GA, and MTH$CVT_GA DA if you do not wish to recompile
the program. For more information about using the VMS RTL, see the VMS
Run-Time Library Routines Volume

NOTE

Modules must be linked to the approriate run-time library. For
more information about linking against object libraries, see
Section 1.4.5.2. For more information about linking against
shareable images, see Section 1.4.5.3.

8.4.1 Floating-Point Constants

A floating-point constant has an integral part, a decimal point, a fractional
part, the letter a or E, and an optionally signed integer exponent. The
integral and fractional parts consist of decimal digits; you may omit either
the integral or fractional part. You may omit either the decimal point with
the following digits or the exponent(e,E), but not both.

All floating-point constants are of type double.

The following are examples of floating-point constants:

3.Oe10
3.0E-10
3.Oe+10
3E10
3.0
.120e2
.120

8-10 D''ata Types and Declarations

8.5 Pointers

Pointers in VAX C are variables that contain 32-bit addresses of other
objects. They are declared with the asterisk operator and the data type of
the object to which it points, as in the following example:

int *px;

Identifier px is declared as a pointer to a variable of type int; the construct
*px is treated as a variable of type int. An expression such as ~`px yields the
object to which px points.

The unary asterisk (*) is also the indirection operator in VAX C. The unary
asterisk operates as follows:

X = * ~JX;

This statement assigns the value of the object pointed to by px to
variable x. Since the asterisk can be used in any sort of declarator, you can
have pointers to scalars, to functions, to other pointers, to structures, and so
forth.

The following operations are legal using pointer variables:

• Assigning pointers of the same type to each other

• Adding or subtracting a pointer and an integer

• Subtracting or comparing two pointers to members of the same array

• Assigning or comparing to zero

• Assigning a pointer of any type to a void pointer (see Section 8.5.1)

• Assigning void pointers to a pointer of any type (aee Section 8.5.1)

All other pointer arithmetic is illegal.

Static and extern pointers are null unless initialized. A null pointer is a
pointer variable that has been assigned the integer constant 0. An auto
pointer that is not initialized contains an unknown value.

If you try to access data by means of a null pointer, the VMS system returns
the hardware error, ACCVIO. The address space between value 0 and 511
(decimal value, 1 page) is not accessible because it is not mapped into the
program's virtual address space. This is true for all VAX C programs.

If you include either of the files stdio.h or stddef.h in your program, you can
compare the value of a pointer variable to the predefined macro NULL to
see if it is a null pointer. For more information about these include files, see
the VAX CRun-1~me Library Reference Manual. For more information on
how to include files into your program, see Section 10.4.

Data Types and Declarations 8-11

When used in certain arithmetic expressions, the compiler uses the size of
the object of the pointer. For example, if px is a pointer to an integer, px + 1
evaluates to the next integer address, 4 bytes after px. If px is a pointer to
char, px + 1 yields the next character address, 1 byte after px. The compiler
uses the type of the pointer's object to scale the arithmetic.

A different result occurs with an expression such as the following:

*px + 1

This expression evaluates to the value of the object to which px points added
to 1.

Some contexts may require a pointer of a particular type. This is necessary,
for example, if a function requires that an argument be passed by reference.

The ampersand (& }operator is used to take the address. Consider the
following example

px = &x;

This statement assigns the address of variable x to pointer px. After an
assignment such as this, a reference to *px yields the value of x.

You should not apply the ampersand operator to constants, to register
variables, to function identifiers, or to array identifiers. VAX C allows the
application of the ampersand operator to constants so that you can pass
constants, as arguments, to system service routines. For more information
about instances where you would apply the ampersand operator to a
constant, see Section 13.2.

The compiler stores constant values in a read-only program section (psect),
so attempts to change the value by applying the ampersand operator will
result in an error. For more information about psects, see Chapter 14. For
information about the relationship between VAX C storage classes and
psects, see Section 9.2.

If you do apply the ampersand to register variables, the compiler
changes the variable's storage class from register to auto. If you use
the /STANDARD=PORTABLE qualifier, the compiler generates an informa-
tional message; if you do not use this qualifier, the compiler changes the
storage class without notification.

If you apply the ampersand operator to function or array identifiers, VAX C
~I issues a message, since asking for the address of an expression returning an

address is redundant.

8-12 Data Types and Declarations

8.5.1 void Pointers

The void pointer is a pointer that does not have a specified data type to
describe the object to which it points. In effect, this is a generic pointer. (In
the past, VAX C programmers have used char * to define generic pointers;
this practice is now discouraged for portability reasons.)

You can assign a pointer of any type to a void pointer without a cast (see
Section 7.4.5 for more information on the cast operation). For example, you
can use this type of pointer in function calls, in function arguments, or in
function prototypes when the parameter or return value is a pointer of an
unkown type. Consider the following example:

main ()
{

void *generic~ointer;

/* If the function return value can be a pointer to many types .
generic~ointer = func_r~~turning~ointer (argl, arg2, arg3) ;

}

The following statements are also valid:

main ()
{
float *float pointer;
void *void~ointer;

f loat~ointer = void~ointer;
/* Or */
void~ointer = float~ointer;

*/

See Section 5.1.2 for information about using void in function definitions.

8.6 Enumerated Types (enum)

An enumerated type is auser-defined data type that is not derived from
other fundamental types. Each listed enumerator is associated with an
incremented integer constant starting with zero. The following example
shows the declaration of a variable and an enumeration type, or tag:

Data Types and Declarations 8-13

enum shades
{

out, verydim, dim, prettybright, bright
} light;

This declaration defines the variable light to be of an enumerated type
shades. The variable can assume any of the enumerated values.

The tag shades becomes the enumeration tag of the new type; out, very-
dim, . . . ,bright are the enumerators with values 0 through 4. These
enumerators are the constant values of the type shades and can be used
wherever integer constants are valid.

If the tag has been declared, you can use the tag as a reference to that
enumerated type, as in the following declaration:

enum shades lightl;

The variable lightl is an object of the enumerated data type, shades.

An enum tag can have the same spelling as other identifiers in the same
program, including variable identifiers and member names in structures and
unions, because the meanings are distinguished by context. However, enum
constant names must be spelled uniquely. VAX C allows forward referencing
to enum tags that have not been declared yet in the source code, but are
declared further on in the program.

Internally, each enumerator is associated with an integer constant; the
compiler gives the first enumerator the value 0 by default, and the
remaining enumerators are incremented by the value 1, as they are read
from left to right. Any enumerator can be set to a specific integer constant
value. The enumerators to the right of such a construct (unless they are
also set to specific values) then receive values that are 1 greater than the
previous value. Consider the following example:

enum spectrum
{

red, yellow=4, green, blue, indigo, violet
} color2;

This declaration gives red, yellow, green, blue, . . . ,the values 0, 4, 5,
6,

Examining the value of a variable like color2 displays an integer, not a
string such as red or yellow. Although they are stored internally as integers,
regard enumerated data types as distinct from the fundamental types.

Type mismatches between the enumerated and fundamental types, or
between different enumerated types, are errors. The enum types in the
following example are not valid:

8-14 Data Types and Declarations

enum
{

red, orange, yellow, green, blue, indigo, violet
} colorl;

enum ilium
{

out, verydim, dim, prettybright, bright
} light;

light = red;

The enumerators red and light have different enumerated types.

The enum type in the following example is also not valid:

enum ilium
{

out, verydim, dim, prettybright, bright
} light;

light = 1;

Value 1 is not an enumerated value for variable light.

To perform valid mixed-type operations, use the cast operator. Consider the
following example:

/ * Both evaluate to verydim (1) */

light = (enum ilium) (out + (enum ilium) red) ;
light = (enum ilium) 1;

Here, the cast operation (enum ilium) causes the compiler to treat enum
constant red and integer constant 1 as values of enumerated type ilium.

Variables and enumerators of enumerated types take on various storage
classifications when used with the globaldef and globalref storage-class
keywords. For more information about the use of these storage-class
keywords with enumerated types, see Section 9.6.3.

8.7 Arrays ([])

Arrays are declared with the square bracket operator ([]), as in the
following declaration of a 10-element array of integers called table one:

int table one[10];

The type specifier int gives the data type of the elements. The elements
of an array can be of any scalar or aggregate data type. The identifier
table one specifies the name of the array. The constant expression gives the
number of elements in a single dimension. Array subscripts in VAX C begin
with the integer 0 (not 1); they must be integral. In the previous example,

Data Types and Declarations 8-15

the first element is table_one[0] and the last element is table_one[9].
Unpredictable results may occur if you specify a subscript larger than or
equal to the declared dimension bound; you would then be accessing objects
outside of the memory allocated to the array. The use of array subscripts in
the following example is not recommended:

int table one[10];

table_one [10] = 69;
table one [5] = table one [11] ;

VAX C supports multidimensional arrays: arrays declared as an array of
arrays. Consider the following example:

int table one [10] [2] ;

Here, variable table_one is atwo-dimensional array containing 20 integers.
You can use VAX C operators to form expressions with specific elements of
an array, as follows:

++table one [0] [0] ; / * Increment first element */

In VAX C, arrays are stored in row-major order. The element table_one[0] [O]
immediately precedes table_one[0][1], which in turn immediately precedes
table_one[0][2].

When you declare an array, either single- or multidimensional, the integer
constant is optional in the first pair of brackets. Omitting the constant
expression is useful in the following cases:

• If the array is external, its storage is allocated by a remote definition.
Therefore, the constant expression can be omitted for convenience when
the array name is declared, as in the following example:

extern int arrayl[];
first_function()

{

}

/* In a separate compilation unit:

int arrayl[10];
second_function()

{

}

*/

For more information about external data declarations, see Section 9.5.

8-16 Data Types and Declarations

• If the declaration of the array includes initializers, the size of the array
can be omitted. Consider the following example:

char array one[] _ "Shemps"
char array two [] _ { ' S' , ' h' , ' e' , P },

The two definitions initialize variables with identical elements. These
arrays have seven elements: six characters and the null character
(' \ 0'), which terminates all character strings. VAX C determines
the size of the array from the number of characters in the initializing
character-string constant or initialization list.

• If the array is used as a function parameter, it is defined in the calling
function. The declaration of the parameter in the called function can
omit the constant expression. The address of the beginning of the array
is passed and subscripted references in the called function can modify
elements of the array.
The following example shows how an array is used in this manner:

main ()
{

/* Initialize array
static char arg_str [] _ "Thomas";
int sum;
sum = adder(arg_str); /* Pass address of array

}

/* Function adds ASCII values of letters in array

adder (param string)
char param string[];

{

int i, sum=0; /* Incrementer and sum
/* Loop until NUL char

for (i=0; param string [i] ! _ ' \ 0' ; i++)

sum += param string[i];
return sum;

}

*/

*/

*/

*/
*/

When the function adder is called, parameter param_string receives the
address of the first character of argument arg str, which can then be
manipulated in adder. The declaration of param string serves only to
give the type of the parameter, not to reserve storage for it.

Data Types and Declarations 8-17

8.7.1 Initializing Arrays

When initializing array elements, separate the values with a comma
and delimit the comma-list with braces ({ }). The rules for specifying a
comma-list are as follows:

• If the initializer for an array begins with a left brace ({), then the
following comma-list provides initial values for the array elements. The
list of initializers can end with a comma, which is ignored. The number
of initializers cannot be greater than the number of elements.

• If the initializer does not begin with a left brace, then only enough
elements are taken from the initializer list to supply values to the
array's elements. In this case, there can be more initializers than there
are elements, and any remaining values in the list are left to initialize
the next aggregate.

Initialize asingle-dimension array as follows:

int ex_array [5] _ { 1, 22, 333, 4444, 55555 };

Initialize a multidimensional array as follows:

int ex array [2] [5] _
{

{ 1, 22, 333, 4444, 55555 },
{ 5, 4, 3, 2, 1 }

};

The element ex_array[o][o] has a value of 1, ex_array[o][1] has a value of
22, . . . , ex_array[1] [o] has a value of 5, ex_array[1] [1] has a value of ~, . . . ,
and so forth.

Another method of initializing the same array is as follows:

int ex_array [2] [5] _ { 1, 22, 333, 4444, 55555, 5, 4, 3, 2, 1 } ;

VAX C initializes the elements in row-major order. The leftmost brace
determines the row number of a multidimensional array. Elements in row 0
are initialized before elements in row 1.

You may omit elements in an initialization, as follows:

int ex_array [2] [5] _
{

{ 1, 22, 333, 4444 }
};

8-18 Data Types and Declarations

The element ex_array[0][0] has the value 1, ex_array[0][1] has the value 22,
ex_array[0][2] has the value 333, and ex_array[O][3] has the value 4444. The
last element in row 0, since ex_array was declared to have a storage class
of static, is initialized with zero. All the elements in the second row that
were not specified in the initialization are initialized with zero. For more
information about the static storage class, see Section 9.4.

NOTE

You cannot initialize array elements without initializing all
preceding elements. The following initialization is not valid:

example [3] _ { 1 3 } ;

In the previous example, you have to initialize the first and second
element before initializing the third.

8.8 Character-String Variables (char *and char [])

VAX C treats character strings as arrays; they are treated as the address
in memory of the first character in the string. There are several ways to
declare character-string variables. You can declare a character string by
designating a pointer to the first character of that string, as in the following
example:

char *ex string = "thomasina";

This expression copies an address, not a string, to variable ex_string. The
object to which ex_string points, acharacter-string constant, ends with the
NUL character (~ l 0 ~).

You can declare character-string variables as you would declare an array.
For example:

char string one[] _ "thomasina";
char string_2 [10] _ "thomasina";

To copy one string to another, you must use the strcpy or the strncpy VAX
C Run-Time Library (RTL) functions, as follows:

Data Types and Declarations 8-19

main ()
{

char ex_string[26];
/* Copy string into array

strcpy(ex_string, "Character-string constant");
printf ("°ss\ n", ex_string) ;

}

*~

For more information about the string copying VAX C RTL functions, see the
VAS C Run-~me Library Reference Manual.

8.8.1 Character-String Constants

A character-string constant is a series of characters enclosed in quotation
marks (" "). Consider the following example:

"This is a string constant *** "

This data type of the construct is array of char. The string is initialized
with the given characters. The compiler terminates the string with a NUL
character (~ \ 0 ~). There is no formal limit to the length of a string constant.
The actual limit to a string constant's length in VAX C is 65,535 characters.
All strings, even when written identically, are distinct objects.

The apostrophe (~) and quotation mark (")are significantly different
punctuation marks in VAX C. See Section 8.3.2 for more information.

The following rules apply to the characters used in character-string
constants:

• All characters, including the escape sequences, can be used in strings.

• A quotation mark within a string must be preceded by a backslash (\).

• A backslash followed immediately by a newline is ignored, allowing long
strings to be continued in the first column of the next line.

8.9 Structures and Unions (struct and union)

Structures and unions are aggregates whose members can be of different
types. Structures and unions are declared using the keywords struct and
union, an optional tag name, and a list of member declarations delimited
by braces ({ }). A member of a structure or a union is a declared segment
of the data structure. The syntax for declaring a member is the same as
that of any variable declaration. The structure or union tag is a name that

8-20 Data Types and Declarations

can be used when declaring structure or union variables of the same type
elsewhere in the program.

The offset of members of the structure corresponds to the order of the
member in the structure declaration. By default, the first member of a
structure begins in memory at the base of the data structure, which is
referred to as offset 0. Each successive nonbit-field member begins at the
next byte boundary; there is no implicit type alignment. (For information
about the different alignment of bit fields, see Section 8.9.5.) This alignment
of structure members is a VAX C convention and is also followed by all other
VAX languages. Other C implementations may align members differently.
You can initialize structures at the time of declaration. (See Section 10.7.4
for information on altering default member alignment with #pragma
member_aligrnment.)

Unions are declared in the same way as structures, but all members in a
union begin at offset 0. Unlike structures, unions cannot be initialized.
The size of the union in memory is as large as its largest member. When
the single storage space allocated to the union contains a smaller member,
the extra space between the end of the smaller member and the end of the
allocated memory remains unaltered.

Structures and unions share the following characteristics:

• Their members can be variables of any type, including other structures
and unions or arrays. A member can also consist of a specified number
of bits, called a field.

• The only valid operators used with structures and unions are the
assignment (_)and sizeof operators. In particular, structures and
unions may not appear as operands of the equality (__), inequality
(! _), or cast operator.

• They can be assigned to other structures and unions with the assign-
ment operator (_). The two structures or unions in the assignment
must have the same length.

• They can be passed to and returned by functions. The argument must
have the same length as the function parameter. A structure or union is
passed by value, just like a scalar variable; that is, the entire structure
or union is copied into the corresponding parameter.

NOTE

When you pass structures as arguments, they may or may
not terminate on a longword boundary. If they do not, VAX C
aligns the following argument on the next longword boundary.
For more information about passing arguments between

Data Types and Declarations 8-21

programs written in different VMS programming languages,
see Section 13.2.

The following sections discuss structures and unions in more detail.

8.9.1 Declaring a Structure or Union

Structures and unions are declared with the struct or union keywords. You
can follow the struct or union keywords by a tag, which gives a name to
the structure or union type in much the same way that an enum tag gives
a name to the enumerated type. You can then use the tag with the struct
or union keywords to declare variables of that type without specifying
individual member declarations again.

Two structure (or two union) types cannot have the same tag, but the tags
can be the same as the identifiers used for variables and function names.
Tags can also have the same spellings as member names. The compiler
distinguishes them by context. The scope of a tag is the same as the scope
of the declaration in which
it appears.

The tag is followed by braces ({ })that enclose a list of member declarations.
Each declaration in the list gives the data type and name of one or more
members. The names of structure or union members can be the same as
other variables, function names, or members in other structures or unions.
The compiler distinguishes them by context. In addition, the scope of
the member name is the same as the scope of the declaration in which it
appears.

The list of member declarations can be followed by declarators, which name
and reserve storage for (define) structure or union objects.

Structure or union declarations can take one of five forms, as follows:

1. If a declaration includes only a tag and a list of member declarations,
then the list of member declarations defines the tag to be a data type by
which other objects can be declared. For example:

struct person
{

char first [20] ;
char middle [3] ;
char last [30] ;

};

8-22 Data Types and Declarations

2. When a declaration includes a tag, a list of member declarations, and a
list of identifiers, the identifiers become objects of the structure type and
the tag is considered to be a shorthand notation, or mnemonic, for the
structure type. Consider the following example:

struct person
{

}

char first [20] ;
char middle[3];
char last[30];
george, mary ;

3. If the tag is omitted, the structure or union definition applies only to the
variable identifiers that follow in the declaration. Consider the following
example:

struct
{

}

char first [20] ;
char middle [3] ;
char last[30] ;
george, mary;

4. The fourth form uses the tag to see a structure or union type defined
in another declaration. The definition is then applied to the variable
identifiers that follow the tag name in the declaration.

struct person george, mary;

5. The fifth form uses only the struct or union keyword and the tag
to override other identical tags in scope, and to reserve the tag for a
later definition within a new scope. A definition within a new scope
overrides any previous tag definition appearing in an outer scope. This
use of declaring tags is called vacuous structure tag declaration. The
declaration does not require the size of the structure as determined by
the structure member list. Using such declarations, you can eliminate
ambiguity when forward referencing tag identifiers. The following
example shows such a case:

struct ambiguous { } ;

{

struct ambiguous; /* Vacuous structure tag declaration. */
/* Ignore previous tag currently in scope. */

struct inner
{

};

struct ambiguous *pointer; /* Declare a structure pointer by */

/* forward referencing. */

Data Types and Declarations 8-23

struct ambiguous /* Previous vacuous declaration refers to */
{. }; /* this structure definition, not to the */

} /* first one declared. */

In this example, the pointer to the structure defined using tag am-
biguous points to the second declaration of ambiguous, not to the
first.

Structures and unions can contain other structures and unions.
For example:

struct person
{

char first [20] ;
char middle[3];
char last[30];
struct

{

}

int day;
int month;
int year;

} birth date;
george, mary;

8.9.2 Referencing Members of Structures or Unions

A reference to a member of a structure must be a fully qualified or a
pointer-qualified reference. For example, the fully qualified references to
the members last and year from the example in the previous section are as
follows:

strcpy(george.last, "Harrison");
george.birth_date.year = 1944;

A member name denotes the member's data type and its offset from the base
of the structure. There are no restrictions on the reuse (as a member name)
or redeclaration of a particular name except that the same name cannot be
used for more than one member in the same structure.

In VAX C, and in other recent compilers, a structure or union reference
must be completely qualified; that is, you must prefix a member name in
a reference either with a pointer qualifier (pointer-name —>) or with the
name of the structure or union and the names of all intervening members.
Consider the following structure declaration:

8-24 Data Types and Declarations

main ()
{

struct
{

struct { int al, a2, a3; } mema;
struct { int al, a2, a3; } memb;

} *pointer, structure;
pointer = &structure;

structure.mema.al = 1; /* Unambiguous
pointer->memb.al = 2;

structure. al = 3; /* Ambiguous: which "al"?
pointer->al = 4;

}

*/

*/

Member a 1 must be uniquely qualified as being a member of structure mema
or structure memb. Structure members that are themselves structures must
be given variable identifiers (mema and memb) to make it possible to
construct fully qualified references.

A member name is unique if it conforms to either of the following
requirements:

• It is used only once.

• If it is used more than once (in different structures), every use denotes
a member of the same data type and at the same offset from the base of
its structure.

If you use member names that refer to different structures from those in
which they were declared, a programming practice not recommended, the
compiler issues diagnostic messages. The following checks apply to the use
of member names for reference to structures and unions in which they are
not declared:

• If a member name is unique, you can use it in a reference to a structure
of which it is not a member, since the address and size of the referenced
data can be determined without ambiguity. However, the compiler issues
a nonfatal warning message. This usage is maintained for compatibility
with other C implementations.

• If a member name is not unique (ambiguous), its use in such a reference
causes a fatal error message.

Data Types and Declarations 8-25

8.9.3 Initializing Structures and Unions

You can initialize structures at the time of declaration. You cannot
initialize unions.

In structure declarations, initializers follow the structure variables, not the
members. Separate initializing values with commas; delimit them with
braces ({ }). See Section 8.7.1 for more information about comma-lists.

An example of the initialization of two structure variables is as follows:

struct
{

int i;
float c;

} a = { 1, 3.Oe10 }, b = { 2, 1.5e5 };

The compiler assigns structure initializers in increasing member order. If
there are fewer initializers than members for a static, external, or glob-
aldef structure, the structure is padded with zeros. For more information
about storage classes, see Chapter 9.

NOTE

There is no way to specify iterations of an initializer or to initialize
a member in the middle of a structure without also initializing the
previous members.

Example 8-1 shows these initialization rules applied to an array of
structures.

8-26 Data Types and Declarations

Example 8-1: Rules for Initialization of Structures

main ()
{

int 1, m;
static struct

{

}

char ch;
int i;
float c;
ar[2] [3] _

{

{ ' a' , 1, 3e10 } ,
{ 'b' , 2, 4e10 },
{ ' c' , 3, 5e10 } ,

printf ("row/col\ t ch\ t i\ t c\ n") ;
printf (" \ n") ;
for (1 = 0; 1 < 2; l++)

for (m = 0; m < 3; m++)
{

}

}

printf (" [od] [ad] : ", 1, m) ;
printf ("\ t oc \ t od \ t oe \ n",

ar [1] [m] . ch, ar [1] [m] . i, ar [1] [m] . c) ;

Key to Example 8-1:

O You must delimit the initialization of each of the array rows with braces.
© You must delimit a structure initialization with braces.

© You must delimit an array initialization with braces.

This program writes the following output to stdout:

row/col ch i c

[0] [0] : a 1 3.000OOOe+10
[0] [1] : b 2 4.000OOOe+10
[0] [2] : c 3 5.000OOOe+10

Data Types and Declarations 8-27

8.9.4 Variant Structures and Unions

Variant structure and union declarations allow you to reference members
of nested aggregates without having to reference intermediate structure
or union identifiers. When you nest a variant structure or union declara-
tion within another structure or union declaration, the enclosed variant
aggregate ceases to exist as a separate aggregate, and VAX C propagates its
members to the enclosing aggregate.

You declare variant structures and unions using the keywords variant_
struct and variant_union. The format of these declarations is the same as
that of regular structures or unions with the following exceptions:

• Variant aggregates must be nested within other valid structure or union
declarations.

• You cannot use a tag in a variant aggregate declaration.
• You must provide a variable identifier in the variant aggregate

declaration.

Note that variant aggregates follow the same initialization rules as struc-
tures and unions. You can initialize both variant structures and variant
unions.

To show the use of variant aggregates, consider the following code example
that does not use variant aggregates:

/* The numbers to the right of the code represent the byte offset
* from the enclosing structure or union declaration.

struct TAG_1
{

int a; /* 0-byte
char *b; /* 4-byte
union TAG_2 /* 8-byte

{

enclosing struct offset */

enclosing struct offset */

enclosing struct offset */

int c; /* 0-byte nested_union offset */
struct TAG_3 /* 0-byte nested_union offset */

{

int d; /* 0-byte nested_struct offset */
int e; /* 4-byte nested_struct offset */

} nested struct;
} nested_union;

} enclosing struct;

If you want to access nested member d, then you need to specify all the
intermediate aggregate identifiers, as follows:

enclosing_struct.nested_union.nested_struct.d

8-28 Data Types and Declarations

If you try to access member d without specifying the intermediate identifiers,
then you would access the incorrect offset from the incorrect structure.
Consider the following example:

enclosing struct.d

VAX C uses the address of the original structure (enclosing struct), and
adds to it the assigned o~'set value for member d (0 bytes), even though
VAX C calculated the offset value ford according to the nested structure
(nested_struct). Consequently, VAX C accesses member a (0-byte offset from
enclosing_struct) instead of member d.

The following code example shows the same code using variant aggregates:

/* The numbers to the right of
* from enclosing_struct.
struct TAG 1
{

the code present the byte offset
*/

int a; /* 0-byte enclosing struct offset */
char *b; /* 4-byte enclosing_struct offset */
variant_union
{

int c; /* 8-byte enclosing struct offset */

variant_struct
{

int d; /* 8-byte enclosing struct offset */
int e; /* 12-byte enclosing struct offset */

} nested struct;
} nested_union;

} enclosing struct;

The members of variant aggregates nested union and nested struct are
propagated to the immediately enclosing aggregate (enclosing struct). The
variant aggregates cease to exist as individual aggregates.

Since variant aggregates nested_union and nested_struct do not exist as
individual aggregates, you cannot use tags in their declarations and you
cannot use their identifiers (nested union, nested_struct) in any reference
to their members. However, you are free to use the identifiers in other
declarations and definitions within your program.

If you need to access member d, use the following notation:

enclosing_struct.d

Using the following notation causes unpredictable results:

enclosing_struct.nested_union.nested_struct.d

Data Types and Declarations 8-29

If you use regular structure or union declarations within a variant aggregate
declaration, VAX C propagates the structure or union to the enclosing
aggregate, but the members remain a part of the nested aggregate. For
instance, if the nested structure in the last example was of type struct, the
following offsets would be in effect:

struct TAG_1
{

}

int a;
char *b;
variant_union
{

}

/* 0-byte enclosing struct offset */
/* 4-byte enclosing struct offset */

int c; /* 8-byte enclosing_struct offset */
struct TAG_2 /* 8-byte enclosing-struct offset */
{

int d; /* 0-byte nested_struct offset */
int e; /* 4-byte nested struct offset */

} nested_struct;
nested union;

enclosing_struct;

NOTE

Variant structures and unions are VAX ~ C extensions and are
not portable.

8.9.5 Bit Fields

A structure member may consist of a specified number of bits; called a field,
which may be named or unnamed. A colon is used to separate the member's
name (if any) from aconstant-expression that gives the field width in bits.
No field may be longer than 32 bits (1 longword) in VAX C.

If no field name precedes the field-width expression, it indicates an unnamed
field of the specified width. Since, by default, nonfield structure members
are aligned on byte boundaries, this form can create unnamed gaps in the
structure's storage. As a special case, an unnamed field of width 0 causes
the next member (generally another field) to be aligned on a byte boundary.
(See Section 10.7.4 for information on altering default member alignment
with #pragma member alignment.)

Bit fields must be of data types unsigned or int. The use of other data
types is an error. Signed bit fields of the type int are recognized by VAX C.
There are no restrictions on the use of fields except as follows:

• You cannot declare arrays of fields.
• The address-of operator (&)cannot be applied to fields, and conse-

quently there cannot be pointers to fields.

8-30 Data Types and Declarations

Constructs of all data types except fields are aligned on the next byte
boundary. Sequences of bit fields are packed as tightly as possible. In VAX
C, fields are assigned from right to left.

For example, Figure 8-1 shows the alignments resulting from the
following code:

static struct
{

}

char c;
short int i;
unsigned fldl 3;
unsigned fld2 4;

unsigned 0;

unsigned fld3 4;

a = { 'A' , 1024, 06, 012, 014 }

Figure 8-1: Alignment of Structure Members

unused

31 0

1010110 00000100 00000000 01000001

~-y—~ ~-r < J ~, ,~f
Y

a.fld2 a.fld 1 a.i a.c

35 32

1100

~- ~r- ~ ~-~r- ~
unused a.fld3

ZK-0286-G E

Data Types and Declarations 8-31

In Figure 8-1, member a.i is aligned on the second byte (at bit 8), because
scalar, nonfield members are aligned on byte boundaries. Notice that fields
a.fldl and a.fld2 are packed as tightly as possible in the high-order byte of
the first longword. The unnamed, zero-length field preceding member a.fld3
causes that field to be aligned on the next byte boundary (bit 32, the second
longword).

8.10 The void Keyword

The void keyword is a special data-type specifier that you use in function
definitions and declarations for the following purposes:

• To specify a function that does not return a value.

• To specify a function prototype with no arguments.

• To specify a pointer variable to an unspecified or unknown data type.
(See Section 8.5.1 for more information.)

For instance, the following example shows how to use void to specify a
function that does not return a value:

void message()
{

printf("Stop making sense!");
return;

}

The following example shows how to use void to specify a function prototype
definition that takes no arguments:

char function_name(void)
{ return ' a' ; }

For more information about the void data type and function prototypes, see
Sections 5.2 and 5.3.

8.11 The typedef Keyword

The typedef keyword is used to define an abbreviated name, or synonym,
for a lengthy type definition. In such a declaration, the identifiers name
types instead of variables. For example:

typedef char CH, *CP, STRING [10] , CF () ;

8-~2 Data Types and Declarations

In the scope of this declaration, CH is a synonym for character, CP is a
synonym for pointer to character, STRING is a synonym fora 10-element
array of characters, and CF is a synonym for a function returning a
character. Each of the type definitions can be used in that scope to declare
variables, as follows:

CF c;
STRING s;

/* "c": Function returning a character */
/* "s": 10-character string */

8.12 Interpreting Declarations

The VAX C programming language syntax for declaring objects is unlike
the declaration syntax of other languages. Since the exact meaning of a
complicated VAX C declaration is not immediately apparent, even to an
experienced C programmer, this section gives you guidelines for interpreting
and constructing VAX C declarations.

One way to interpret a complex declaration is to compile your program using
the /LIST/SHOW=SYMBOLS qualifiers. The generated symbol map contains
an English description of the type of each variable.

VAX C uses the same set of operators and symbols for declarators as for
identifiers in an expression. For example, the follov~ing example declares
integer x and pointer px:

int x;
int *px;

Declarator *px has the same form as that used to yield an integer in an
expression. For example:

x = *px;

In the case of simple declarators, this symmetry makes it easy to determine
the type of an expression or the meaning of a declarator. Expression *px
results in the integer object to which px points.

Complicated declarators can be difficult to interpret without some additional
guidelines. The important one to remember is that the symbols used in
declarators are VAX C operators, subject to the usual rules of precedence
and grouping (associative nature). In order of precedence, the operators
used in declarators are as follows:

1. The primary-expression operators (())for "function returning . . . "and
([])for "array of . . . ", where the ellipsis indicates the type specified in
the declaration.
These operators group from left to right.

Data Types and Declarations 8-33

2. The unary asterisk (~`), for indirection or "pointer to . . . ", which groups
from right to left.

Consider the following example:

int *x[];

Even this brief declaration may be confusing. Does it declare an array of
pointers to integers, or a pointer to an array of integers? Since the brackets
are of higher precedence, it follows that:

1. *x[] is an integer

2. x[] is a pointer to an integer

3. xis an array of pointers to integers

Most complicated declarators and expressions can be interpreted quickly by
such a sequential breakdown. Note that the asterisk was removed before
the brackets because it is of lower precedence.

Also note that this interpretation process has the desirable property of
enumerating all the possible usage constructs involving a declarator and
giving the semantic interpretation.

When constructing or interpreting declarations or expressions, use the
following schemer for translating operators to English and vice versa:

• "*" __ "pointer to"

• "()" __ "function returning"

• "[]" _ _ "array off'

Consider the following example:

char *x () [] ;

The breakdown is as follows:

1. *x()[] is char

2. x()[] is (pointer to) char

3. x() is (array of) (pointer to) char

4. xis (function returning) (array of) (pointer to) char

In step 3, the brackets operator is removed first because primary-expression
operators are of equal precedence and group from left to right. That is,
"()[]" means "function returning array of', not "array of function
returning . . . ".

1 Bruce Anderson, "'I~pe Syntax in the Language C: An Object Lesson in Syntactic Innovation," SIGPLAN
Notices 15, No. 2 (March 1980).

8-34 Data Types and Declarations

As a general rule, when breaking down a declaration this way, remove the
operators with the lowest precedence first. Then, if operators are of equal
precedence and group from left to right, remove the rightmost operator first;
if they group from right to left, remove the leftmost operator first.

The declaration shown is semantically invalid; VAX C allows functions
returning addresses of arrays, but not functions returning arrays. Perhaps
the intention of the programmer was a function returning the address
of an array of pointers to characters. The declaration can be made valid
by starting at the bottom of a breakdown and working back to a valid
declaration as follows:

1. xis (function returning) (pointer to) (array of) (pointer to) char
2. x() is (pointer to) (array of) (pointer to) char
3. *x() is (array of) (pointer to) char

4. (*x())[] is (pointer to) char
5. *(*x())[] is char

6. char *(*x())[];

In the final declaration, the first asterisk (since it groups right to left)
applies to char.

Parentheses, in addition to the function parameter-list operator (()), are
used in declarations to change the binding of operators. For example, the
outer parentheses introduced in step 4 of the previous example prevent the
brackets from binding to the inner set of parentheses.

Consider the following example:

char (* (*x()) []) ();

The breakdown is as follows:

1. (* (*x()) []) () is char

2. * (*x()) [] is (function returning) char

3. (*x()) [] is (pointer to) (function returning) char
4. *x() is (array of) (pointer to) (function returning) char
5. x() is (pointer to) (array of) (pointer to) (function returning) char

6. The identifier x is a function returning a pointer to an array of pointers
to functions returning characters

Spaces were used in the example to separate the declarator into its
component parts. Since spaces, tabs, and newlines are ignored by the
parser, use them in declarations for clarity.

Data Types and Declarations 8-35

Chapter 9

Storage Classes and Allocation

The VAX C language defines a number of storage-class keywords that
specify the scope of an identifier, the location of storage, and the lifetime of
the storage allocation. Storage-class modifiers are keywords that you can
use with the storage-class and data-type keywords that restrict access to
variables. The order of the storage-class keyword, the storage-class modifier,
the data-type modifier, and the data-type keyword within the variable
declaration does not matter. Each declaration, by virtue of its position in the
program source code, has a default storage class, but you may override the
default by specifying astorage-class specifier or a storage-class modifier.

This chapter discusses the following topics:

• Scope of an identifier (Section 9.1)
• Storage allocation (Section 9.2)
• Internal storage classes (Section 9.3)
• Static storage class (Section 9.4)
• External storage class (Section 9.5)
• Global storage classes (Section 9.6)
• Data-type modifiers (Section 9.7)
• Storage-class modifiers (Section 9.8)

9.1 The Scope of an Identifier

The scope of an identifier is the portion of the program in which the
identifier has meaning. An identifier has meaning if it is recognized by the
compiler, or by the VMS Linker. The following sections explain the rules
to follow so that your program identifiers will have meaning, to both the
compiler and the linker, in all desired portions of your program.

Storage Classes and Allocation 9-1

All tags are subject to the same scope rules as other identifiers. A member
of a structure or union may have the same name as a member of another
structure or union; the scope of the member names can exist concurrently.
However, when referencing one of the members in a section of the program
where the scopes of both members are concurrent, take care to specify to
which structure or union the member belongs. For more information, see
Chapter 8.

9.1.1 The Compilation and Linking Process

To understand scope, you must understand the VMS definitions of function,
compilation unit, object file, object module, and program.

When you write VAX C source programs, you can use several methods to
compile a program. You can compile a single source file, or a group of source
files, into a single object file. The group of source files) compiled to create
a single object file is called the compilation unit. When documentation to
other implementations refers to the source file, the VMS equivalent is the
compilation unit, not necessarily a single source file. The single, resultant
object file has a file extension of .OBJ, by default.

The linker accepts the object file as input and then resolves all external
references, such as references to VAX CRun-Time Library (RTL) functions.
Internally, segments of object code, such as the object file and the VAX C
RTL object code, are known to the linker as object modules. The object
module has the same name (without an extension) as the object file, by
default. For information on how to override the default module name, see
Section 10.6.

Another way to compile programs is to compile several compilation units
into separate object files. The linker can take more than one object file as
input. In this case, the linker resolves references between modules specified
on the command line and to external references in your program. For more
information about compiling and compilation units, see Section 1.3. For
more information about linking, see Section 1.4.

9.1.2 Position of the Declaration

To determine the scope of a function or variable identifier, you must consider
the position of a declaration within the program. A declaration often
determines the size of a storage allocation, but a definition initiates the
allocation of storage. Since declarations often are definitions, this section
refers to definitions and declarations as declarations. You may wish to
review Chapter 8 before reading the rest of this section.

9-2 Storage Classes and Allocation

The location of a declaration establishes the scope of an identifier. If a
declaration is located inside a block that is delimited by braces ({ }), the
compiler recognizes the identifier from the point of the declaration to the end
of the block. If a declaration is located outside of all functions, the compiler
recognizes the identifier from the point of the declaration to the end of the
compilation unit.

You can specify astorage-class specifier or modifier within an identifier's
declaration. A storage-class specifier indicates a storage class, but a modifier
modifies access to that storage. The order of the storage-class specifier,
storage-class modifier, and the data-type keyword within the declaration
does not matter. Consider the following example:

auto int x; /* And, equivalently

int auto x;

*/

You can declare identifiers that are one of the internal storage classes; the
compiler recognizes these identifiers from the point of the declaration to the
end of the enclosing block or function body. You can declare identifiers that
are static; if the declaration is outside of all function bodies, the compiler
recognizes these identifiers from the point of the declaration to the end of
the compilation unit.

You can also declare identifiers that are of the external storage classes or of
the global storage classes. If the declaration is outside of all function bodies,
the compiler recognizes these identifiers from the point of the declaration
to the end of the compilation unit. The external and global storage classes
differ from the static storage class in that the linker can possibly recognize a
global or external variable from the point of the declaration to the end of the
program. The external and global storage classes establish a scope that can
possibly span object modules. The external and global storage classes are
also different from each other. See Section 9.6.1.1 for a comparison between
the global and external storage classes.

Table 9-1 presents the list of storage classes followed by the storage-class
specifiers used to establish scope.

Storage Classes and Allocation 9-3

Table 9-1: VAX C Storage Classes and Storage-Class Specifiers

Storage
Class Specifiers

Internal auto, register,
absence of specifier inside a block or functions

Static static

External extern,
absence of specifier outside of all functions

Global globaldef, globalref, globalvalue

sFunctions declared without astorage-class specifier are of the external storage class,
by default.

For more information about the internal storage classes, see Section 9.3. For
more information about the static storage class, see Section 9.4. For more
information about the external storage classes, see Section 9.5. For more
information about the global storage classes, see Section 9.6.

You can use the data-type modifiers (const and volatile) or the VAX C
specific storage-class modifiers (readonly and noshare) to restrict access to
data or to specify storage requirements. See Section 9.7 for more information
about the data-type modifiers. See Section 9.8 for more information about
the storage-class modifiers.

9.1.3 Lexical Scope and Link-Time Scope

In using the storage-class specifiers and modifiers, as well as positioning the
definitions and declarations of your identifiers, keep the following two goals
in mind:

• Compile the program so that the compiler recognizes all identifiers in
the compilation unit, thus avoiding error messages.

• Link the program so that the VMS Linker resolves all references to
external data definitions, thus avoiding error messages.

You must make a distinction between the following types of scope:

Lexical scope

9-~4 Storage Classes and Allocation

The region of a compilation unit within which an identifier
is known to the compiler. When this guide uses the term
scope, lexical scope is implied.

Link-time scope The regions of an entire program within which an exter-
nal or global identifier is known to the linker. Only the
identifiers in the external and global storage classes have a
significant link-time scope.

Table 9-2 lists the VAX Cstorage-class specifiers and shows both the link-
time scope and lexical scope implied by each specifier when used inside and
outside of functions.

Table 9-2: Scope and the Storage-Class Specifiers

Storage
Class

Inside a Function
Lexical Link-time
Scope Scope

Outside a Function
Lexical Link-time
Scope Scope

[auto]

register

static

[extern]

globaldef

globalref

globalvalue

(null)

function

function

function

function

function

function

function

function

N/A

N/A

function

program

program

program

program

N/A

illegal

illegal

CU1

CUl

CU1

CU1

CU1

CU1

illegal

illegal

module

program

program

program

program

program

1 Compilation Unit

Identifier (null) signifies the absence of a storage-class specifier from the
declaration. The compiler treats a (null) inside a function or block as an
identifier declared with the auto keyword. The compiler treats a (null)
outside all functions as an external definition, the identifier being of the
external storage class.

In Table 9-2, the notation [auto] specifies identifiers of the automatic
storage class. If you do not include astorage-class specifier on a definition
inside of a function definition, the object is auto by default. This notation
is used throughout this manual to represent the automatic storage class,
regardless of the presence of the auto specifier in the definition.

Also in Table 9-2, the notation [extern] signifies identifiers of the external
storage class. A single definition exists without the use of a storage-class
specifier; other declarations, which use the extern specifier, may exist that
reference that definition. This notation is used throughout this manual
to represent the external storage class, regardless of the presence of the

Storage Classes and Allocation 9-5

extern specifier in the declaration or definition. See Section 9.5 for more
information about the external storage class.

9.1.4 Program Example

Determining the scope of static, external, and global symbols can be very
difficult. Consider Example 9-1.

Example 9-1: Scope and Externally Defined Variables

Compilation Unit 1 Compilation Unit 2

globaldef int GLOBAL_1;
int EXT_2;

static int STAT;
int EXT 1;

fl () f3 ()
{

{

globaldef int GLOBAL 2; extern int EXT 2;

}

}

extern int EXT_1; globalref int GLOBAL_2;

f2() f4()
{

{

globalref int GLOBAL 1;

}

}

f5()
{

}

static int STAT;

9-6 Storage Classes and Allocation

Table 9-3 specifies the variable identifiers in Example 9-1, and in which
functions they can be accessed without compile-time errors.

Table 9-3: The Variables in Example 9-1 and Their Storage Classes

Identifier Scope

GLOBAL_1

GLO BAL_2

EXT 1

EXT_2

This variable is defined outside of aII functions in Compilation Unit
1, so you can access GLOBAL_1 in the functions fl and fZ (from
the point of the declaration to the end of the compilation unit).

In Compilation Unit 2, the declaration of this variable is located
inside of function f4; the scope of the variable, in this compilation
unit, only extends from the declaration of GLOBAL_1 to the end of
function f4.

This variable is defined inside the function fl. In Compilation Unit
1, the scope of GLOBAL_2 only extends from the declaration of
GLOBAL 2 to the end of function fl.

In Compilation Unit 2, the declaration of this variable is outside of
all functions but is located after the function f3; you can access the
variable in the functions f4 and f5 (from the point of the declaration
to the end of the compilation unit).

This variable is declared outside of all functions. This declaration
is a reference to the definition of the same variable in the other
compilation unit. In Compilation Unit 1, you can access EXT_1 in
the function f~ (from the point of the declaration to the end of the
compilation unit).

In Compilation Unit 2, the definition of this variable is outside of
all functions; you can access EXT_1 in the functions f3, f4, and
f5 (from the point of the declaration to the end of the compilation
unit).

This variable is defined outside of all functions. In Compilation
Unit 1, you can access EXT_2 in the functions fl and I`2 (from the
point of the declaration to the end of the compilation unit).

In Compilation Unit 2, the declaration of this variable is located
inside of the function f3; you can access EXT_2 from the location of
this declaration to the end of function f3.

(continued on next page)

Storage Classes and Allocation 9-7

Table 9-3 (Cont.): The Variables in Example 9-1 and Their Storage
Classes

Identifier Scope

STAT There are two variables with the same name but with different
permanent storage locations. In essence, these axe two different
variables .

In Compilation Unit 1, the variable is defined outside of all func-
tions. You can access STAT, in Compilation Unit 1, in the functions
fl and f2 (from the point of the declaration to the end of the
compilation unit).

In Compilation Unit 2, the separate variable is defined inside of
the function fb; you can access STAT from this declaration to the
end of the function fb.

Another way to look at the determination of scope is to see the placement of
the declaration as a matter of privacy. In Compilation Unit 2 in Table 9-3,
identifier EXT_2 is made private to function f3 by placing the declaration in-
side the function body. If you want to keep a variable private to Compilation
Unit 1, use a declaration using the storage-class specifier static; there is
no way to access a variable declared with static in another compilation
unit. Using the storage-class specifiers auto and register ensures privacy
to the function, since these specifiers cannot be used outside a function body
and storage is deallocated at the end of execution of the containing function
body. Similarly, there is no way to access a variable declared with auto or
regYster in another function or compilation unit.

9.2 Storage Allocation

When you define a variable, the storage class determines not only its scope
but also its location and lifetime. The lifetime of a variable is the length of
time for which storage is allocated. Storage for a variable can be allocated
in the following locations:

• On the run-time stack
• In a machine register
• In a program section (psect)

9-8 Storage Classes and Allocation

Variables that are placed on the stack or in a register are temporary. For
example, the variables of storage class auto and register are temporary.
Their lifetimes are limited to the execution of a single block or function. All
declarations of the internal storage class are also definitions; the compiler
generates code to establish storage at this point in the program.

Program sections, or psects, are used for permanent variables; the identi-
fier's lifetimes extend through the course of the entire program. A psect
represents an area of virtual memory that has a name, a size, and a series
of attributes that describe the intended or permitted usage of that portion of
memory. For example, the compiler places variables of the static, external,
and global storage classes in psects; you have some control as to which
psects contain which identifiers. All declarations of the static storage class
are also definitions; the compiler creates the psect at that point in the
program. In VAX C, the first declaration of the external storage class is also
a definition; the linker initializes the psect at that point in the program.

Table 9-4 shows the location and lifetime of a variable when you use each of
the storage-class keywords.

Table 9-4: Location, Lifetime, and the Storage-Class Keywords

Storage Class Location Lifetime

(Internal null) Stack or register Temporary

[auto] Stack or register Temporary

register Stack or register Temporary

static Psect Permanent

[extern] Psect Permanent

globaldef Psect Permanent

globalref Psect Permanent

globalvalue No storage allocated Permanent

For detailed information about psects, see Chapter 14. For information
about the functional differences between the extern psects and the
globaldef and globalref psects, see Section 9.6.1.1.

9.3 Internal Storage Gasses

You can assign an internal storage class to identifiers using the auto and
register storage-class specifiers. The following sections describe these
specifiers.

Storage Classes and Allocation 9-9

9.3.1 The auto Specifier

Use the auto storage-class specifier to define a variable whose storage
is automatically allocated upon entry into a function or block, and is
automatically deallocated upon exit from a function or block. The code
generated by the compiler contains instructions to allocate and deallocate
the storage by using machine registers and the run-time stack. Since new
storage allocation occurs upon entering a block or function, you can have
more than one auto variable with the same name as long as you declare
them in separate blocks or functions. You cannot use auto outside of a
function.

If you explicitly initialize an auto variable, the program code initializes the
variable to that value each time the declaring block or function is activated
normally. This initialization cannot occur if control passes into a block by
some other means, such as a goto statement or if the block is the body
of a switch statement. For more information about the switch and goto
statements, see Chapter 6.

Within a function, auto is the default storage class. That is, any variable
(other than a function name) declared within a function without astorage-
class specifier is given the auto storage class. Functions are of the external
storage class by default.

NOTE

The compiler assigns auto variables to machine registers, if
/OPTIMIZE is in effect and if possible. Otherwise, they are placed
on the run-time stack.

Example 9-2 shows how to reinitialize two auto variables with the same
name.

9-10 Storage Classes and Allocation

Example 9-2: Reinitializing Two auto Variables

/* This example prints the values of two distinct auto
* variables that have the same identifier.

main ()
{

0 int i, x = 2;
printf ("main : ad\ n", x) ;

for (i = 0; i < 1; i++)
{

© int x = 3;
printf ("for loop: ~d\ n", x) ;

}

printf ("main : %d\ n" , x) ;
}

Key to Example 9-2:

Q This definition of variable x extends through the entire function.

© This definition of variable x is limited to the for statement and super-
sedes the value of variable x in the surrounding function.

The output for Example 9-2 is as follows:

$ RUN EXAMPLE.EXE

main: 2
for loop: 3
main: 2

RETURN

In this program, the variable x is defined twice within the main function,
but the two variables do not conflict. While the for loop is executing, the
variable x declared inside the block supersedes the variable x declared
outside the block.

9.3.2 The register Specifier

Variables declared with the register storage class are similar to auto
variables. You can only use the register internal storage class inside
functions and blocks.

NOTE

The register storage-class specifier is the only specifier that you
can use in a parameter declaration.

Storage Classes and Allocation 9-11

A register variable differs from a variable of storage class auto in the
way that compiler-generated program code allocates storage. The register
storage-class keyword suggests that the compiler flag the variable for
placement in a machine register. This does not guarantee that the program
code will place the variable in a register. The compiler checks the following
conditions to determine whether or not a variable is flagged to be placed in
a register:

• If the variable is not used, the optimizer may remove it entirely.

• If the program is compiled with the /NOOPTIMIZATION command
qualifier, no variables are assigned to registers. The optimization phase
of the compiler determines whether a variable is a valid candidate for
a register.

• If the program contains too many register candidates, not all of them are
assigned to registers.

• If the compiler detects any use of the variable that may make it
inappropriate for assignment to a register, the variable is not flagged.
For example, if the compiler detects the application of the address-of
operator (&) to a variable that was declared with the register specifier,
the variable is not placed in a register.

9.4 Static Storage Class

The static storage class allows you to create permanent storage for a
variable using the static storage-class specifier in the variable declaration.
If declared inside a function, its scope begins at the declaration and spans
the body of the function. If declared outside of all functions, its scope is
limited to the compilation unit; you cannot access a variable of the static
storage class from another compilation unit.

If no initialization is present in the declaration of a variable of the
static storage class, the linker initializes the variable to zero. However,
unlike auto variables, the compiler-generated program code does not
reallocate storage for a static variable every time control reenters a
function containing the definition of a static variable. That is, if when
exiting a function a static integer variable has the value of 4, the variable
retains that value even if control reenters the defining function. If a static
identifier with the same name is declared in another module, the linker
knows nothing of the other variable; the other variable has a separate
psect allocation.

9-12 Storage Classes and Allocation

A function can also be defined with the static storage-class specifier. A
static function is not known to the linker and can be referenced only from
within its defining module.

For more information about the possible combinations of specifiers and
modifiers, and the effects of the storage-class modifiers on program section
attributes, see Chapter 14.

9.5 External Storage Ciass

You can declare identifiers of the external storage class in the following
manner:

• A definition not using another storage-class keyword, located outside of
all function bodies, establishes an external variable whose scope extends
from the point of the definition to the end of the compilation unit.

• A declaration using the extern keyword, usually located in another
compilation unit, is a reference to the original definition. This declara-
tion extends the link-time scope of the variable into the second object
module. If this declaration is inside a function, it extends the link-time
scope from the point of the declaration to the end of the function. If this
declaration is outside a function, it extends the link-time scope from the
point of the declaration to the end of the object module.

• You do not always have to use external variable declarations (with the
extern keyword) to refer to the definition of an external variable. You
can also use more than one extern declaration to reference the external
definition.

Use the following rules when deciding whether or not to use the extern
specifier:

• If the variable is defined before it is referenced and the definition is in
the same compilation unit, you do not need to declare the variable with
the extern specifier.

• If the variable is defined after it is referenced, you need to first declare
it with the extern specifier.

• If the variable is defined in a separate compilation unit, you must
declare it with the extern specifier.

Storage Classes and Allocation 9-13

Consider the following example:

double D = 2.37;

main ()
{

extern int A;

printf ("a: \ t od\ n", A) ;
printf ("d : \ t %g\ n" , D) ;

}

int A = 5;

The main function in this program references two external variables, A and
D. Since the variable D is defined before it is referenced, it does not have to
be declared in the main function. Since the variable A is referenced before it
is defined, it must be declared with the extern storage-class specifier.

In many implementations of the C language, you cannot use the extern
specifier in a declaration that does not refer to an external definition
elsewhere in the program. Whenever the compiler encounters the first
declaration of an identifier of the external storage class in a VAX C program,
it creates and initializes a psect. Therefore, in VAX C, you can use the
extern specifier in a declaration that does not refer to an external definition
elsewhere in the program. This is not good programming practice and, if
used, your programs may not be portable to other systems.

NOTE

In VAX C, you cannot initialize an identifier declared with the
extern specifier.

External variables occupy storage in psects of the same name as the variable
identifier. When the linker manages the psects of the external variables,
the identifiers, no matter how they appear in the source code, appear in
uppercase to the linker. It is good programming practice to express all
external variables (and global variables as well) in uppercase letters. This
practice aids the debugging of your programs.

You can specify the noshare modifier with external variables to create a
psect with the NOSHR attribute. Similarly, you can specify the readonly
or const modifier to create a NOWRT psect. For more information about
the possible combinations of specifiers and modifiers, and the effects of the
storage-class modifiers on program section attributes, see Chapter 14.

9-14 Storage Classes and Allocation

9.6 Global Storage Classes

You can assign the global storage class to identifiers using the globaldef,
globalref, or globalvalue storage-class specifiers. The following sections
describe these specifiers.

9.6.1 The globaldef and globalref Specifiers

Use the globaldef specifier in the definition of a global variable; use the
globalref specifier in reference to a global variable defined elsewhere in
the program. The globaldef and globalref specifiers are used in much
the same way as with the external storage class. Use globalref to refer to
storage allocated elsewhere by a globaldef declaration.

When defining a global symbol using the globaldef specifier, place the
symbol in one of three program sections: the $DATA psect (globaldef
alone), the $CODE psect (globaldef with readonly or const), or a user-
named psect. You can create auser-named psect by specifying the psect
name as a string constant in braces immediately following the globaldef
keyword, as shown in the following definition:

globaldef{'~psect name"} int x = 2;

This definition creates a program section called psect_name and allocates the
variable x in that psect. You can add any number of global variables to this
psect by specifying the same psect name in other globaldef declarations.
In addition, you can specify the noshare modifier to create the psect
with the NOSHR attribute. Similarly, you can specify the readonly or
const modifier to create the psect with the NOWRT attribute. For more
information about the possible combinations of specifiers and modifiers, and
the effects of the storage-class modifiers on program section attributes, see
Chapter 14.

Variables declared with globaldef may be initialized; variables declared
with globalref may not, since these declarations refer to variables defined,
and possibly initialized, elsewhere in the program. Initialization is possible
only when storage is allocated for an object. This distinction is especially
important when the readonly or const modifier is used; unless the global
variable is initialized when the variable is defined, its permanent value is 0.

NOTE

In the VAX MACRO programming language, it is possible to give a
global variable more than one name. However, in VAX C, only one
global name can be used for a particular variable. VAX C assumes

Storage Classes and Allocation 9-15

that distinct global variable names denote distinct objects; the
storage associated with different names must not overlap.

Example 9-3 shows the use of global variables.

Example 9-3: Using Global Variables

/* This example shows how global variables are used
* in VAX C programs.

0 int ex_counter = 0;

© globaldef double velocity = 3.Oe10;

© globaldef {"distance"} long miles = 100;

main ()
{

printf(" *** FIRST COMP UNIT ***\n");
printf ("counter : \ t od\ n" , ex_counter) ;
printf ("velocity: \tog\ n", velocity) ;
printf ("miles : \ t\ t od\ n\ n", miles) ;
fn();
printf(" *** FIRST COMP UNIT ***\n");
printf ("counter: \ t od\ n", ex counter) ;

0 printf ("velocity : \tog\ n", velocity) ;
printf ("miles : \ t\ t od\ n\ n", miles) ;

}

/*
* The following code is contained in a separate
* compilation unit.
*

static ex_counter;

© global ref double velocity;
globalref long miles;

fn()
{

++ex counter;
printf(" *** SECOND COMP UNIT ***\n");
if (miles > 50)

velocity =miles * 3.1 / 200 ;
printf ("counter : \ t od\ n", ex_counter) ;
printf ("velocity : \tog\ n" , velocity) ;
printf ("miles : \ t\ t od\ n", miles) ;

}

Key to Example 9-3:

D The integer variable ex_counter is a variable of storage class extern
in the first compilation unit. In the second compilation unit, a variable
ex_counter is of storage class static. Even though they have the same

9-16 Storage Classes and Allocation

identifier, the two ex_counter variables are different variables repre-
sented by two separate memory locations. The link-time scope of the
second ex counter is the module created from the second compilation
unit. when control returns to the main function, the external variable
ex_counter retains its original value.

© The variable velocity is a variable of storage class globaldef and is
stored in the psect $DATA.

© The variable miles is also a variable of storage class globaldef but is
stored in the user-specified psect "distance".

Q When the variable velocity prints after the function fn executes, the
value will have changed. Global variables have only one storage location.

© When you reference global variables in another module, you must
declare those variables in that module. In the second module, the global
variables are declared with the globaldef keyword.

Sample output from Example 9-3 is as follows:

$ RUN EXAMPLE.EXE
*** FIRST COMP UNIT ***

counter: 0
velocity: 3.000OOOe+10
miles: 100

*** SECOND COMP UNIT ***
counter: 1
velocity: 1.55
miles: 100

*** FIRST COMP UNIT ***
counter: 0
velocity: 1.55
miles: 100

RETURN

9.6.1.1 Comparing the Global and the External Storage Classes

The global storage-class specifiers define and declare objects that differ from
external variables both in their storage allocation and in their correspon-
dence to elements of other languages. Global variables provide a convenient
and efficient way for a VAX C function to communicate with assembly lan-
guage programs, with VMS system services and data structures, and with
other high-level languages that support global symbol definition, such as
VAX PIJI. For more information about multilanguage programming, see
Chapter 13.

VAX C imposes no limit on the number of external variables in a single
program.

NOTE

The global storage classes are VAX C specific and are not portable.

Storage Classes and Allocation 9-17

There are other functional differences between the external and global
variables. For example:

• If you have a limited amount of storage available, you may use the
globalvalue specifier (see Section 9.6.2) since it does not occupy storage
in your program if expressed in 32 or fewer bits; the external variables
create program sections.

• You can declare a global variable, using globaldef, inside a function
or block, and by using a globaldef specifier, access the identifier from
another compilation unit. With external variables, you must define the
variable outside all functions and blocks, and then access that variable
in other compilation units by using extern declarations.

• The global variables correspond to global symbols declared in assembly
language programs but external variables (extern) correspond with
FORTRAN common blocks.

• A globaldef declaration causes the linker to load the module containing
the corresponding globaldef into the image. An extern declaration
does not cause the linker to do so. An extern declaration causes an
overlaying of a psect (see Chapter 14 for details about psects).
In programming environments other than the VMS system, C program-
mers may be accustomed to extern declarations causing the loading
of a module into the program's executable image. If transportability is
an issue, you can define the following symbols at the compilation-unit
level, outside of all functions to allocate storage differently depending
on the system you are using:

#ifdef VAXC
#define EXPORT globaldef
#define IMPORT globalref
#else
#define EXPORT
#define IMPORT extern
#endif

IMPORT int foo;
EXPORT int foo = 53;

One similarity between the external and global storage classes is in the way
the linker recognizes these variables internally. No matter how the external
and global identifiers appear in the source code, the linker converts these
identifiers to uppercase letters. For ease in debugging programs, express all
global and external variable identifiers in uppercase letters.

9-18 Storage Classes and Allocation

Another similarity between the external and global storage classes is that
you can place the external variables (by default) and the global variables
(optionally) in psects with auser-defined name and, to some degree, user-
defined attributes. The compiler places external variables in psects of the
same name as the variable identifier, viewed by the linker in uppercase
letters. The compiler places globaldef{"name"} variables in psects with
names specified in quotation marks, delimited by braces, and located directly
after the globaldef specifier in a declaration. Again, the linker considers
the psect name to be uppercase letters.

The compiler places a variable declared using only the globaldef specifier
and adata-type keyword into the $DATA psect. For more information about
the possible combinations of specifiers and modifiers, and the effects of the
storage-class modifiers on program section attributes, see Chapter 14.

9.6.2 The globalvalue Specifier

A global value is an integral value whose identifier is a global symbol.
Global values are useful because they allow many programmers in the
same environment to refer to values by identifier, without regard to the
actual value associated with the identifier. The actual values can change, as
dictated by general system requirements, without requiring changes in all
the programs that refer to them. If you make changes to the global value,
you only have to recompile the defining compilation unit (unless it is defined
in an object library), not all of the compilation units in the program that
refer to those definitions.

NOTE

You can use the globalvalue specifier only with variables of type
enum, int, or with pointer variables.

A variable declared with globalvalue does not require storage. Instead,
the linker resolves all references to the value. If an initializer appears with
globalvalue, the name defines a global symbol for the given initial value. If
no initializer appears, the globalvalue construct is considered a reference
to some previously defined global value.

Predefined global values serve many purposes in VMS system programming,
such as defining status values. It is customary in VMS system programming
to avoid explicit references to such values as those returned by system
services, and to use instead the global names for those values. Example 9-4
shows the use of the globalvalue storage-class specifier.

Storage Classes and Allocation 9-19

Example 9-4: Using the globalvalue Specifier

/* This program shows references to previously defined
* globalvalue symbols.

globalvalue FAILURE = 0, EOF = -1;

main ()
{

char c;
/* Get a char from stdin

while ((c = getchar()) != EOF)
test (c) ;

}

/*
* The following code is contained in a separate compilation
* unit.

*

#include ctype /* Include proper module
globalvalue FAILURE, EOF; /* Declare global symbols

test (param_c)
char param c;

{

}

/* Declare parameter

*/

/* Test to see if number is valid */
if ((isalnum(param_c)) != FAILURE)

printf ("
oc\

n", param c) ;
return;

In Example 9-4, FAILURE and EOF are defined in the first module: the
values are placed into the program stream. In the second module, FAILURE
and EOF are declared so that their values may be accessed. Like the
external and global variables, the linker recognizes the global symbols as
uppercase letters. Express these symbols in uppercase.

9.6.3 Global Enumerated Types

When you use the globaldef storage-class keyword with an enum defi-
nition, the enumerated constants in the definition are of the storage class
globalvalue, initialized as the program requires to form a properly or-
dered list of the values. Enumerated type variables are of the storage class
globaldef.

When you use globaldef with the enum keyword, all enumerated variables
are of the storage class globaldef, and the enumerated constants refer to
global values of the same names as shown in the following example.

9-20 Storage Classes and Allocation

The first compilation unit is as follows:

globaldef enum light { dim, medium=3, bright } light_val;

main ()

{

light_val = dim;
fnlv();

}

The second compilation unit is as follows:

globalref enum light { dim, medium, bright } light_val;

fnly ()
{

if (light_val < bright) printf("T00 DIM\n");
}

In the first compilation unit, the enum definition establishes light_val as a
globaldef of the enumerated type light. It also establishes the ordered list
of enumerated global values dim, medium, and bright.

The globalref declaration in the second compilation unit allows the enu-
merated constants to be used as global values. That is, the constants can be
referenced, but not initialized.

For more information about the enumerated data type, see Section 8.6.

9.7 Data-Type Modifiers

Data-type modifiers affect the allocation or access of data storage. The
data-type modifiers are as follows:

• coast

• volatile

The following sections describe the data-type modifiers in detail.

9.7.1 The coast Modifier

The coast data-type modifier restricts access to stored data. If you declare
an object to be of type coast, you cannot modify that object.

The following rules apply to the use of the coast data-type modifier:

• You can specify coast with any of the other data-type keywords in a
declaration.

Storage Classes and Allocation 9-21

• If you specify const when declaring an aggregate, all the aggregate
members are treated as objects of type const.

• You can specify const with volatile, or any of the storage-class specifiers
or modifiers.

• If you attempt to access a const object using a pointer to that object not
declared const, the result is undefined.

• The address of a non-const object can be assigned to a pointer to a
const object to a const pointer, but you cannot use that pointer to alter
the value of the object. The result is undefined.

The following example declares the variable x to be a constant integer:

int const x;

When declaring pointers, depending upon the placement of the const
modifier in the declaration, VAX C interprets either the pointer or the object
to which it points as the constant variable. For instance, the following
example declares the variable y to be a constant pointer to an integer
because the const modifier appears after the asterisk:

int * const y;

In the following example, the variable z is declared as a pointer to a constant
integer because the asterisk appears after the const modifier:

int const * z;

When you specify the const modifier in association with a globaldef
specifier that identifies a psect, be aware that all variables declared have
their storage allocated in the psect and that an inconsistent use of the
const modifier can alter the psect attribute and lead to diagnostic messages.
For detailed information about psects and the VAX C storage classes, see
Chapter 14. For instance, the following examples are valid uses of the const
modifiers. Specifically, in Example 1 the variable x becomes a nonconstant
pointer to a constant integer that assigns the WRT attribute to the psect.
In Example 2, the variable y becomes a constant pointer to an integer and
assigns the NOWRT attribute to the psect. In Example 3, the variable
z becomes a constant variable contained in the psect and assigns it the
NOWRT attribute.

Example 1

globaldef {"psect"} const int * x;

Example 2

globaldef {~~psect"} int * const y;

9-22 Storage Classes and Allocation

Example 3

globaldef {"psect"} const int z;

VAX C generates a warning message when there is an inconsistent usage of
the const modifier, as shown in the following example:

globaldef {'~psect" } const int test, * bar;

In this example, the variable test is declared as a constant variable that is
allocated in the psect and assigns it the NOWRT attribute. The variable
bar is a pointer that is not itself constant, but that points to a constant
integer. In this case, VAX C automatically causes the pointer to become
constant. DIGITAL recommends that you not mix constant and nonconstant
variables in a globaldef declaration that names a psect, as your program
may generate unpredictable results.

9.7.2 The volatile Modifier

The volatile data-type modifier prevents an object from being stored in
a machine register, forcing it to be allocated in memory. This data-type
modifier is useful for declaring data that is to be accessed asynchronously. A
device driver application often uses volatile data storage.

The following rules apply to the use of the volatile modifier:

• You can specify volatile with any of the other data-type keywords in
a declaration.

• If you specify volatile when declaring an aggregate, all the aggregate
members are treated as objects of type volatile.

• You can specify volatile with const, or any of the storage-class specifiers
or modifiers except the storage class register.

• The address of an object of some other type can be assigned to a volatile
pointer, but the rules of the volatile data-type modifier must be followed
if you refer to the object using that pointer.

9.8 Storage-Class Modifiers

The VAX C compiler can accept astorage-class specifier and astorage-class
modifier in any order; usually, the modifier is placed after the specifier in
the source code. For example:

Storage Classes and Allocation 9-23

extern noshare int x;

/* Or, equivalently .

int noshare extern x;

*/

The following sections describe each of the VAX C specific storage-class
modifiers in detail.

9.8.1 The noshare Modifier

The noshare storage-class modifier assigns the attribute NOSHR to the
program section of the variable. Use this modifier to allow other programs,
as shareable images, to have a copy of the variable's psect without the
shareable image changing the variable's value in the original psect.

When a variable is declared with the noshare modifier and a shared image
that has been linked to your program refers to that variable, a copy is made
of the variable's original psect to a new psect in the other image. The other
program may alter the value of that variable within the local psect without
changing the value still stored in the psect of the original program.

For example, if you need to establish a set of data that will be used by
several programs to initialize local data sets, then a VAX C program can
do this by declaring the external variables using the noshare specifier.
Each program receives a copy of the original data set to manipulate, but
the original data set remains for the next program to use. If you define the
data as [extern) without the noshare modifier, a copy of the psect of that
variable is not made; each program would be allowed access to the original
data set and the initial values would be lost. If the data is declared as const
or readonly, each program is able to access the original data set, but none
of the programs can then change the values.

You can use the noshare modifier with the storage-class specifiers static,
[extern], globaldef, and globaldef{"name"}. For more information about
the possible combinations of specifiers and modifiers, and the effects of the
storage-class modifiers on program section attributes, see Chapter 14.

You can use noshare alone, which implies an external definition of storage
class [extern]. Also, when declaring variables using the [extern] and
globaldef{"name"} storage-class specifiers, you can use noshare, const,
and readonly, together, in the declaration. If you declare variables using
the static or the globaldef specifiers, and you use both of the modifiers
in the declaration, the compiler ignores noshare and accepts const or
readonly.

9-24 Storage Classes and A~location

9.8.2 The readonly Modifier

The readonly storage-class modifier, like the data-type modifier coast,
assigns the NOWRT attribute to the variable's program section; if used with
the static or globaldef specifier, the variable is stored in the psect $CODE,
which has the NOWR,T attribute by default.

You can use both the readonly and coast modifiers with the storage-class
specifiers static, [extern], globaldef, and globaldef {"psect"} .

In addition, both the readonly modifier and the coast modifier can be used
alone. When you specify these modifiers alone, an external definition of
storage class [extern] is implied.

The coast modifier restricts access to data in the same manner as the
readonly modifier. However, in the declaration of a pointer, the readonly
modifier cannot appear between the asterisk and the pointer variable to
which it applies.

The following example shows the similarity between the coast and read-
only modifiers. In both instances, the variable point represents a constant
pointer to a nonconstant integer.

readonly int * point;

int * coast point;

NQTE

For new program development, DIGITAL recommends that you
use the coast modifier.

9.8.3 The _align Modifier

The _align storage-class modifier allows you to align objects of any of the
VAX C data types on a specified storage boundary. Use the align modifier
in a data declaration or definition.

For example, if you want to align an integer on the next quadword boundary,
you can use any of the following declarations:

int _align(QUADWORD) data;
int _align (quadword) data;
int _align (3) data;

Storage Classes and Allocation 9-25

When specifying the boundary of the data alignment, you can either use a
predefined constant or you can specify an integer value that is a power of 2.
The power of 2 tells VAX C the number of bytes to pad in order to align the
data. In the previous example, integer 3 specifies an alignment of 23 bytes,
which is 8 bytes a quadword of memory.

Table 9-5 presents all the predefined alignment constants, their equivalent
power of 2, and their equivalent number of bytes.

Table 9-5: Predefined Alignment Constants

Constant
Power of Number of
2 Bytes

BYTE or 0 0
byte

WORD or 1 2
word

LONGWORD or 2 4
longword

QUADWORD or 3 8
quadword

OCTAWORD or 4 16
octaword

PAGE or 9 512
page

9-26 Storage Classes and Allocation

Chapter 10

Preprocessor Directives

Preprocessor directives are lines in the source file that direct the compiler
to alter its normal processing of VAX C source code. Preprocessor directives
are not defined formally by the C language, so their implementation may
vary from one compiler to another. For example, in most implementations of
C running on UNIX systems, the preprocessor is a separate program that
operates before the compiler, as the name preprocessor implies. In VAX C,
these directives are executed in an early phase of the compiler.

If you plan to port programs to and from other C implementations, take
care in choosing which preprocessor directives to use within your programs.
See Section 10.3 for more information about conditional compilation. For a
complete discussion of portability concerns, see the VAX CRun-7~me Library
Reference Manual.

This chapter discusses the following preprocessor directives:

• #define and #undef Defines macro substitutions and replacements.
(See Section 10.1.)

• #dictionary Extracts Common Data Dictionary (CDD) data definitions
and includes them in the source file. (See Section 10.2.)

• #if, #ifdef, #ifndef, #else, #elif, #endif, and the defined operator
Controls under which conditions segments of code are to be compiled or
not. (See Section 10.3.)

• #include Includes source text from an external file or library. (See
Section 10.4.)

• #line Specifies a new line number and file name at the terminal, not in
the listing file. (See Section 10.5.)

• #module—Specifies a module name to the VMS Linker. (See
Section 10.6.)

Preprocessor Directives 10-1

• #pragma Performs an implementation-specific task. (See
Section 10.7.)

Preprocessor directives are independent of the usual scope rules; they
remain in effect from their occurrence until the end of the compilation unit.
For more information about the compilation unit, see Chapter 1.

10.1 Macro Definitions (#define and #undef)

The #define directive specifies a macro identifier and a token string. The
token string is substituted for every subsequent occurrence of that identifier
in the program text, unless it occurs inside a char constant, a comment, or
a quoted string. You use the #undef directive to cancel a definition for
a macro.

NOTE

Previous versions of this guide refer to these macros as tokens.

The syntax of the #define directive is as follows:

#define identifier token-string
#define identifier identifier, . . .)token-string

If you omit the token-string, the identifier is deleted from the text to be
processed by the compiler.

After a token string is substituted in the source file, the compiler rescans the
source line from the beginning of the substituted text to determine whether
the previously inserted text contains identifiers defined by other #define
directives. If so, the identifiers are replaced by their currently specified
token strings. Example 10-1 shows nested #define directives.

NOTE

/DEFINE and /UNDEFINE perform almost the same func-
tions from the command line as #define and #undefine. See
Section 1.3.2 for more information.

10-2 Preprocessor Directives

Example 10-1: Nested Substitution Directives

/* Show multiple substitutions and listing format.

#define AUTHOR james + LAST

main ()
{

int writer, james, michener, joyce;

#define LAST michener
writer = AUTHOR;

#define LAST joyce
writer = AUTHOR;

}

*/

Compile Example 10-1 with the following command:

$ CC/LIST/SHOW=INTERMEDIATE EXAMPLE

The following listing results:

RETURN

1

2

/* Show multiple substitutions and
listing format. */

3 #define AUTHOR james + LAST
4
5 main ()
6 {

7 1 int writer, james, michener, joyce;
8 1
9 1 #define LAST michener

10 1 writer = AUTHOR;
1 writer = james + LAST;
2 writer = james + michener;

11 1
12 1 #define LAST joyce
13 1 writer = AUTHOR;

1 writer = james + LAST;
2 writer = james + joyce;

14 1 }

On the first pass, the compiler replaces the identifier AUTHOR with the
token string james + LAST. On the second pass, the compiler replaces the
identifier LAST with its currently defined token string value. At line 9,
the token string value for LAST is the identifier michener, so michener
is substituted at line 10. At line 12, the token string value for LAST is
redefined to be the identifier joyce, so joyce is substituted at line 13. The
following line is the final text that the compiler processes:

writer = james + joyce;

Preprocessor Directives 10-3

The #define directive may be continued onto subsequent lines if necessary.
To do this you must end each line to be continued with a backslash (\)
immediately followed by a newline character. The backslash and newline do
not become part of the definition. The first character in the next line is logi-
cally adjacent to the character that immediately precedes the backslash. The
backslash/newline as a continuation sequence is valid anywhere. Comments
within the definition line can be continued without the backslash/newline.

10.1.1 Constant Identifiers

The first form of the #define directive defines a simple substitution, usually
of a constant for a frequently used identifier. The identifier can be 255
characters long and include the continuation character (\). A common use
of the directive is to define the end-of--file (EOF) indicator as follows:

#define EOF (-1)

The substitution text for this example is delimited with parentheses to avoid
lexical ambiguities when the text is substituted in the program.
For example:

i=EOF;

If the token string —1 is substituted for the identifier EOF, then the contigu-
ous characters (_--)may be mistaken for an operator.

10.1.2 Canceling Definitions (#undef)

The syntax for the #undef directive is as follows:

#undef identifier

This directive cancels a previous definition of the identifier by #define.

10.1.3 Macro Parameters

Some macros include a list of parameters. These macro substitutions look
like function calls. If you call a function, control passes from the program to
the function object code (or, optionally, the function's shareable image) at run
time; if you reference a macro, source code is inserted into the program at
compile time. The parameters are replaced by the corresponding arguments
and the text is inserted into the program stream. The syntax of a macro
definition is as follows:

#define name([parml [,parm2, . . .]J) [token-string]

10-4 Preprocessor Directives

The name, parm 1, parm2, and so forth are identifiers, and the token-string
is arbitrary text.

After the macro definition, all macro references in the source code with
the following form are replaced by the token string from the directive and
any formal parameters that appear in the token string are replaced by the
corresponding arguments from the reference. For example, argument argl
replaces parameter parml, and so forth.

name([argl [,arg2, . . .]])

As shown in the syntax of the macro definition, the token string is optional.
If the token string is omitted from the macro definition, the entire macro
reference disappears from the source text.

The token string in the macro definition, as well as arguments in a macro
reference, may contain other macro references. Substitution occurs, but such
nested references are limited to a depth of 64. The maximum number of
parameters or arguments is also 64.

The VAX C RTL macro _toupper is a good example of macro substitution.
This macro is defined in the ctype definition module in the following manner:

#define toupper (c) ((c) >_ ' a' && (c) <_ ' z' ? (c) & OX5F (c))

When you reference the macro _toupper, the compiler replaces the macro
keyword and its parameter with the token string from the directive. The
token string of VAX C source code looks cryptic but can be translated in
the following manner: if parameter c is a lowercase letter (between ~ a'
and ' z'), the expression evaluates to an uppercase letter ((c) & OX5F);
otherwise, it evaluates to the character as given. This token string uses
the if-then-else conditional operator (?:). For more information about the
conditional operator, see Section 7.6. For more information about the bitwise
operators, see Section 7.5.5.

Preprocessor directives and the macro references have syntax that is
independent of the VAX C language. The following list gives the rules for
specifying macro definitions:

• The macro name and the formal parameters are identifiers and are
specified according to the rules for identifiers in the VAX C l~.nguage.

• Spaces, tabs, and comments may be used freely within a #define
directive. In particular, they may appear anywhere that the delta
symbol (D) appears in the following example:

#Q define Q name (~ parmld , ~ parm2d) Q \

~ macro-string

Preprocessor Directives 10-5

• White space cannot appear between the name and the left parenthesis
that introduces the parameter list. white space may appear inside the
token string. Also, at least one space, tab, or comment must separate
name from define. Comments may appear within the token string, but
they do not become part of the macro definition.

The following list gives the rules for specifying macro references:

• Comments and white space characters (spaces, horizontal and vertical
tabs, carriage returns, newlines, and form feeds) may be used freely
within a macro reference. In particular, they may appear anywhere that
the delta symbol (d) appears in the following example:

Q named (~ argl Q , Q arg2 ~)

• Arguments consist of arbitrary text. Syntactically, they are not restricted
to VAX C expressions. They may contain embedded comments and white
space. Comments are ignored, but the white space is preserved during
the substitution.

• The number of arguments in the reference must match the number of
parameters in the macro definition, but individual arguments may
be null.

• Commas separate arguments except where they occur inside string
or character constants, comments, or parentheses. You must balance
parentheses within arguments.

Take care when specifying the token string. Since the token string consists
of arbitrary text, the replacement of parameters with arguments occurs
even if a parameter appears inside a character or string constant within
the token string. To be recognized, you should delimit a parameter from
the surrounding text by white space or punctuation characters, such as
parentheses.

You must be careful when specifying macro arguments that use the incre-
ment (++), decrement (— —), and assignment (such as +_) operators or other
arguments that may cause side effects. Function calls are another source of
possible side effects. For example, do not pass the following argument to the
_toupper macro:

_toupper (p++)

When the argument p++ is substituted in the macro definition, the effect
within the program stream is as follows:

((p++) >_ ' a' && (p++) <_ ' z' ? (p++) & OXSF (p++))

10-6 Preprocessor Directives

At run time, these expressions may not be evaluated in left-to-right order.
For this reason, specifying macro arguments that may cause side effects
is not good programming practice. Even if you are aware of possible side
effects, the token strings within macro definitions may be changed, which
changes the side effects without warning.

NOTE

If Version 3.4 or earlier of the VAX Common Data Dictionary
is installed on your system, references in this manual to the
"VAX Common Data Dictionary," "Common Data Dictionary," or
"CDD" refer to the VAX common Data Dictionary installed on your
system.
If the VAX CDD/Plus Version 3.4 is installed on your system,
references in this manual to the "VAX Common Data Dictionary,"
"Common Data Dictionary," or "CDD" refer to the DMU format
dictionary. CDD/Plus supports dictionary definitions in two
distinct formats:

• DMU format dictionary definitions that can be created and
manipulated with the DMU, CDDL, and CDDV utilities,
and other products that do not support the new features of
CDD/Plus.

• CDO format dictionary definitions that can be created and
manipulated with the CDO utility, the CDD/Plus call interface,
and other supporting products.

Definitions that you intend to use in VAX C programs can be
created and manipulated in the DMU format .dictionary using
DMU, CDDL, CDDV, and other products that support DMU
dictionary definitions.
Your site may have other products that support the new features
of CDD/Plus. If so, you may benefit by using CDO, the CDD/Plus
call interface, or other supporting products to create definitions in
the CDO format dictionary. The CDO dictionary definitions you
create can be used by both your VAX C programs and the products
that support the new features of CDD/Plus.
For more information on the DMU format dictionary, CDO format
dictionaries, and CDD/Plus in general, see the VAX CDD /Plus
User's Guide.

Preprocessor Directives 1 ~7

10.1.4 Listing Substituted Lines

The /SHOW command-line qualifier has two optional values that enable
the listing of all lines modified by macro substitutions. The values are
EXPANSION and INTERMEDIATE.

Consider the following qualifiers:

/LIST/SHOW=EXPANSION

The listing produced by the compiler with these qualifiers shows both the
original line and the final form of the substituted line. Substituted lines
are flagged in the margin with numbers designating the nesting level of
substitution.

Consider the following qualifiers:

/LIST/SHOW=INTERMEDIATE

The compiler lists all intermediate substitutions with one substitution per
line.

Without one of these two qualifiers or /SHOW=ALL, the compiler only lists
the original form of a line.

Example 10-1 shows the effect of the /SHOW=INTERMEDIATE qualifier.
For more information about the format of VAX C compiler listings, see
Chapter 1.

10.2 Common Data Dictionary Extraction (#dictionary)

The Common Data Dictionary (CDD) is an optional VMS software product,
available under a separate license, that maintains a set of data structure
definitions that many programs on a system can access. These data
definitions are written in alanguage-independent form and are translated
into the target language when they are included in the program stream.

CDD data definitions are contained in dictionaries that are organized
hierarchically in the same way files are organized in directories and
subdirectories. For example, a dictionary for defining personnel data might
have separate directories for each employee type. A directory for salespeople
might have subdirectories for records such as salary and commission history
or personnel history.

The CDD features the following advantages:

• Record declarations are language-independent and can be shared across
VAX languages that support the CDD.

10-8 Preprocessor Directives

• Data definitions are centrally located, which helps reduce the amount of
duplicated effort in a programming project.

• A single declaration helps guarantee the accuracy and reliability of data.

For detailed information about the CDD, see the VAX Common Data
Dictionary Reference Manual, the VAX Common Data Dictionary Utilities
Manual, and the VAX Common Data Dictionary Language Reference
Manual.

10.2.1 Using the #dictionary Directive

The #dictionary preprocessor directive is VAX C specific, and allows you to
extract CDD data definitions and include these definitions in your program.
The format of the #dictionary directive is as follows:

#dictionary cdd~ath

The cdd_path is a character string that gives the path name of a CDD
record, or a macro that expands to the path name of the record. For
example:

#dictionary "CDD$TOP.personnel. service.salary_record"

This path name describes all subdirectories leading to the salary_record
data definition, beginning with the root directory (CDD$TOP}.

You can use the logical name CDD$DEFAULT to define a default path name
for a dictionary directory. This logical name can specify part of the path
name for the dictionary object. For example, you can define CDD$DEFAULT
as follows:

$ DEFINE CDD$DEFAULT CDD$TOP.PERSONNEL

When this definition is in effect, the #dictionary directive can contain the
following:

#dictionary "service.salary_record"

CDD definitions are written in the Common Data Dictionary Language
(CDDL), and are included in a dictionary with the CDDL command. For
example, you can write a definition for a structure containing someone's first
and last name as follows:

Preprocessor Directives 10-9

define record cdd$top.doc.cname_record.
cname structure.

first datatype is text
size is 20 characters.

last datatype is text
size is 20 characters.

end cname structure.
end cname record record.

If this definition is found in a source file named CNAME.DDL, it can be
included in the CDD subdirectory named doc by entering the following
command:

After executing this command, a VAX C program can reference this defi-
nition with the #dictionary directive. If the #dictionary directive is not
embedded in a VAX C structure declaration, then the resulting structure
is declared with a tag name corresponding to the name of the CDD record.
Consider the following example:

#dictionary "cdd$top.doc.cname_record"

This line of VAX C code results in the following declarations:

struct cname
{

char first [20] ;
char last [20];

};

You can embed the #dictionary directive in another VAX C structure
declaration as follows:

struct
{

int id;

#dictionary "cname record"

} customer;

These lines result in the following declaration, which uses cname as an
identifier for the embedded structure:

struct
{

int id;
struct

{

char first [20] ;
char last [20] ;

} cname;
} customer;

10-10 Preprocessor Directives

If you specify /LIST and either /SHOW=DICTIONARY or /SHOW=ALL in
the compilation command line, then the translation into VAX C of the CDD
record description is included in the listing file and marked with the letter D
in the margin.

10.2.2 Support for CDD Data Types

The CDD supports all VMS data types. VAX C can translate all the VMS
data types when they are declared in CDD records. Data types that do not
occur naturally in the VAX C language are handled as follows:

• VAX C never attempts to approximate a data type that is not supported
by the C language.

• Instead of approximating a data type, VAX C uses its own structure data
type to represent all types not supported by the VAX C language (except
for excessively long bit strings); specifically, VAX C creates structures
of arrays of type char that are Large enough to represent the data
structure.

• Bit strings (aligned or unaligned) may be up to 32 bits Long, as defined
by the VAX C language. Bit strings longer than 32 bits are broken into
increments of 32-bit strings or smaller so that the structure is correct
with respect to size. However, the long bit string cannot be accessed as
one unit.

• All row-major arrays are represented as zero-origin arrays of the
appropriate size. An informational message is issued if the record
description specifies nonzero-origin dimension bounds. The compiler
adjusts the upper bound appropriately to maintain the correct number
of elements relative to a lower bound of zero. Column-major arrays are
converted to one-dimensional arrays containing the same total number
of elements.

The compiler applies various consistency checks to the record attributes
extracted from the CDD, particularly the field data-type attributes. An error
message is issued when a record description does not pass the consistency
checks. An informational message is issued when VAX C is confronted with
facility-independent attributes that are not supported. An error message is
issued when an attribute that is required by VAX C is not present, even if
the attribute is optional in the CDD record protocol.

The compiler synthesizes names for unnamed and filler fields. If the CDD
does not specify a name and a name is required by the syntax of the VAX
C language, the compiler synthesizes the name cc_cdd$ unnamed_nnnnn.
When the CDD specifies a filler or a name that VAX C does not support, the

Preprocessor Directives 10-11

compiler synthesizes the name cc_cdd$_filler_#nnnnn, which includes the
pound sign character (#). The string nnnnn represents a unique integer.
The # is not a valid character in an identifier, so you cannot reference these
fields.

Unsupported data types are mapped into VAX C as structures of character
arrays of the appropriate size. The declaration of these data types uses the
following format:

struct {char Cname [s]; }CDDname;

The CDDname is the name of the member in the CDD record. Cname is
an identifier of the form cc_cdd_$_unsupported_#nnnnn, where nnnnn is a
unique integer, and s is the size of the data item, in bytes.

VAX C generates variant_struct or variant_union declarations for unnamed
CDD structures and unions, so you do not have to specify these references.

Table 10--1 summarizes the mapping between CDD data types and VAX C
data types.

Table 10-1: Mapping Between CDD and VAX C Data Types

CDD Data hype C Data ape

Unspecified Unsupported
Unsigned byte unsigned char
Unsigned word unsigned short
Unsigned longword unsigned int
Unsigned quadword Unsupported
Unsigned octaword Unsupported

Signed byte char
Signed word short
Signed longword int
Signed quadword Unsupported
Signed octaword Unsupported

(continued on next page)

10-12 Preprocessor Directives

v

u

Table 10-1 (Cont.): Mapping Between CDD and VAX C Data Types

CDD Data ape C Data ape

F_floating float
D_floating doubler
G_floating doubler
H_floating Unsupported

F_floating complex Unsupported
D_floating complex Unsupported
G_floating complex Unsupported
H_floating complex Unsupported

Text char [n]
Varying text2 Unsupported

Numeric string:
Unsigned Unsupported
Left separate Unsupported
Left overpunch Unsupported
Right separate Unsupported
Right overpunch Unsupported
Zoned sign Unsupported

Packed decimal string Unsupported

Bit Bit field3
Bit unaligned Bit field3

Date and time ~ Unsupported

Date Unsupported
Virtual fi~1.d Ignored
Varying string2 Unsupported

rA message may be issued depending upon the specification of the /G_FLOAT qualifier. If
the data type of the CDD record member is D_floating and the /G_FLOAT command qualifier
was specified, or if the data type of the record member is G floating and the /NOG_FLOAT
command qualifier was specified, an informational message is issued and the member is
represented as struct {char [8J} instead of double.
2For these data types, the length of the structure is two bytes longer than the string to allow
for the length field.
3A message is issued if the bit string length is greater than 32.

10.3 Conditional Compilation (#if, #ifdef, #ifndef, #else, #elif,
and #endif)

Six directives are available to control conditional compilation. They delimit
blocks of statements that are compiled if a certain condition is true. You can

f"1 Preprocessor Directives 10-13

nest these directives. The beginning of the block of statements is marked
by one of three directives: #if, #ifdef, or #ifndef. Optionally, an alternative
block of statements can be set aside with the #else or the #elif directives.
The end of the block is marked by an #endif directive.

If the condition checked by #if, #ifdef, or #ifndef is true, then VAX C
ignores all lines between an #else (or #elif) and an #endif directive.

If the condition is false, then the lines between the, #if, #ifdef, or #ifndef
and an #else, (or #elif) or #endif directive are ignored. The compiler flags
ignored lines with the letter X in the compiler listing margin.

The #if directive has the following form:

#if constant-expression

This directive checks whether the constant expression is nonzero (true). The
operands must be constants. The increment (++), decrement (— —), sizeof,
pointer (*), address (&), and cast operators are not allowed in the constant
expression.

The constant expression -in an #if directive is subject to text replacement and
can contain references to identifiers defined in previous #define directives.
The replacement occurs before the expression is evaluated.

If an identifier used in the expression is not currently defined, the compiler
treats the identifier as though it were the constant zero. The compiler issues
a diagnostic message for this if /STANDARD=PORTABLE is specified on the
compilation.

The #ifdef directive has the following form:

#ifdef identifier

This directive checks whether the identifier was previously defined by a
#define directive.

The #ifndef directive has the following form:

#ifndef identifier

This directive checks to see if the identifier is not defined or if it has been
undefined by the #undef directive.

The #else directive has the following form:

#else

This directive delimits alternative source lines to be compiled if the condition
tested for in the corresponding #if, #ifdef, or #ifndef directive is false. An
#else directive is optional.

1 a-14 Preprocessor Directives

The #elif directive has the following form:

#elif constant-expression

The #elif directive performs a task similar to the combined use of the else-if
statements ir_ VAX C. This directive delimits alternative source lines to
be compiled if the constant expression in the corresponding #if, #ifdef, or
#ifndef directive is false and if the additional constant expression presented
in the #elif line is true. An #elif directive is optional.

The #endif directive has the following form:

#endif

This directive ends the scope of the directives.

The number of #endif directives necessary changes according to whether
the # elif or #else directive is used. Consider the following equivalent
examples:

#if true

#elif false

#endif

#if true
#else
#if

#endif
#endif

10.3.1 The defined Operator

If you need to check to see if many macros are defined, you may use the
special defined operator in a single use of the #if directive. In this way,
you can check for macro definitions in one concise line without having to use
many #ifdef or #ifndef directives.

Far example, suppose you want to check the following macros:

Preprocessor Directives 1 Q-15

#ifdef macrol
printf ("Oh, Mary ! \ n"
#endif

#ifndef macrol
printf ("Oh, Mary ! \ n"
#endif

#ifdef macro3
printf("Oh, Mary!\n"
#endif

You can use the defined operator in a single use of the #if preprocessor
directive, as follows:

#if defined (macrol) ~ ~ !defined (macrol) ~ ~ defined (macro3)
printf ("Oh, Mary ! \ n")
#endif

You can use defined like any other operator. However, you can only use
defined in the evaluated expression of an #if or #elif preprocessor directive.

10.4 File Inclusion (#include)

The #include directive inserts external text into the macro stream delivered
to the compiler. Often, global definitions for use with VAX C functions and
macros are included in the program stream with the #include directive.
The #include directives may be nested to a depth determined by the FILLM
process quota and by virtual memory restrictions. The VAX C compiler
imposes no inherent limitation on the nesting level of inclusion.

In VAX C source programs, the inclusion of both VMS and most
DEC/Shell file specifications are legal. An example of a valid DEC/Shell file
specification is as follows:

BEATLE!/DBAO/MCCARTNEY/SONGS.LIS.3

The exclamation point (!)separates the node name from the rest of the
specification; slash characters (/) separate devices and directories; periods
(.)separate file extensions and file versions. Since one character is used
to separate two segments of the file specification, ambiguity can occur. For
more information on including DEC/Shell file specifications, see the VAX C
Run-~me Library Reference Manual.

The following sections describe the forms of the #include directive.

1 ~~ 6 Preprocessor Directives

10.4.1 Inclusion Using Angle Brackets

The first form of the directive is as follows:

#include <file-spec>

The identifier file-spec is a valid file specification or a logical name. A file
specification may be up to 255 characters long. The compiler first translates
the specified file name to see if it is a valid VMS specification. If it is not,
the compiler then checks to see if it is a valid DEC/Shell specification; if
it is, it translates the specification to a valid VMS specification using VAX
C RTL functions. If the specification is not valid for either VMS or the
DEC/Shell specification, an error occurs. Valid DEC/Shell file specifications
are a subset of valid UNIX file specifications. For more information about
valid DEC/Shell file specifications, see Chapter 1.

When specifying the names of files to be included in your source program,
avoid directory specifications of the following form:

DBAO:[.dir-name . . .]

Depending on the location of your program source file, and your current
RMS default directory, this form of directory specification may or may
not translate to the intended directory. When specifying files and their
directories, use complete directory specifications.

This form of file inclusion delimits the file specification with angle brackets
(<>). If VAX C encounters this form of file inclusion, the compiler searches
directories in the following order:

1. The directories specified in the /INCLUDE_DIRECTORY qualifier, if
/INCLUDE_DIRECTORY was used (see Section 1.3.2)

2. The directory or search list of directories specified in the logical name
VAXC$INCLUDE, if VAXC$INCLUDE is defined

3. If VAXC$INCLUDE is not defined, then the directory or search list of
directories specified by SYS$LIBRAR,Y

You can define VAXC$INCLUDE to be a valid directory specification or a
search list of valid directory specifications. Before each compilation of your
program, you have the flexibility of redefining VAXC$INCLUDE to be any
valid directory or list of directories you choose.

You cannot define VAXC$INCLUDE to be a rooted directory or subdirectory
of the following form:

DBAO:[dir-name.]

When defining VAXC$INCLUDE, use complete directory specifications.

Preprocessor Directives 10-17

If VAXC$INCLUDE translates to a directory or a search list of directories,
and if the compiler cannot locate the specified file, the compiler generates an
error message. If VAXC$INCLUDE is undefined, the compiler then searches
the directory SYS$LIBRAR,Y for the specified file; if the file cannot be found,
the compiler generates an error message. For more information about search
lists, see the DCL command DEFINE in the VMS DCL Dictionary.

When porting programs to the VMS environment, your programs may
contain #include directives of the following form:

#include <sys/file.h>

The VAX C compiler translates this line, common in programs that run on
UNIX systems, to the following DEC/Shell path name:

/sys/file.h

The compiler then translates the DEC/Shell path name to the VMS file
specification as follows:

SYS:FILE.H

If you port programs containing such directives, define the logical SYS to be
the proper name of the VMS directory containing the files to be included.

10.4.2 Inclusion Using Quotation Marks (~~ ~~

The second form of the #include preprocessor directive is as follows:

#include "file-spec"

The identifier file-spec is a valid VMS or DEC/Shell file specification.

This form of file inclusion delimits the file specification with quotation marks
(~~ ~~). The compiler searches directories in the following order:

1. The directory containing the top-level source file
2. The directories specified in the /INCLUDE_DIRECTORY qualifier, if

/INCLUDE_DIRECTORY was specified
3. The directory or search list of directories specified in the logical name

C$INCLUDE, if C$INCLUDE is defined

The top-level, source-file directory contains the compiled source file for the
included file and is not necessarily the current RMS default directory. For
VAX C on VMS systems, the directory containing the source file (.0 file) is
the top-level source directory. On some other operating systems, the source
directory is determined by the immediately nesting file, whether the nesting
file is an include file or a . C file.

10-18 Preprocessor Directives

For example, given the current directory, DBAO: [CURRENT], and the
following CC command line, the compiler searches DBAO:[OTHERDIR] for
any included files delimited by quotation marks, even though the current
RMS default is the directory, DBAO:[CURRENT]:

$ CC DBAO : [OTHERDIR] EXAMPLE . C RETURN

If the compiler cannot locate the specified file, it searches any directories
specified by the /INCLUDE_DIRECTORY qualifier.

If the compiler still cannot locate the specified file, it translates the logical
name C$INCLUDE. If C$INCLUDE translates to a valid directory specifi-
cation or a search list of directories, the compiler searches that directory or
directories for the specified file. Before each compilation of your program,
you have the flexibility of redefining C$INCLUDE to be any valid directory
or list of directories you choose.

As with VAXC$INCLUDE, do not define C$INCLUDE to be a rooted
directory or subdirectory. Use complete directory specifications when
defining C$INCLUDE.

If you defined C$INCLUDE, and the compiler cannot locate the specified
file in that directory or search list of directories, the compiler generates an
error. If C$INCLUDE is undefined, the search for the specified file ends
in the directory containing the source file; the compiler searches no other
directories. For more information about search lists, see the DCL command
DEFINE in the VMS DCL Dictionary.

NOTE

If you include a file from SYS$LIBRAR,Y by using the angle brack-
ets, and if the included file contains a second #include line that
delimits the file specification with quotation marks, the compiler
searches the directory containing the source file for the specified
file, not SYS$LIBRARY. When nesting #include directives as
previously described, the file specification in quotation marks
must contain complete device and directory information.

10.4.3 Inclusion of Text Modules

The third form of the #include preprocessor directive is as follows:

#include module-name

Preprocessor Directives 10-19

The identifier module-name is the name of a module in a text library. This
method of inclusion is the most efficient on VMS, because modules within a
text library are indexed and easier to manipulate than files in a directory.
However, this format is VAX C specific and is not portable.

VAX C text libraries are specified and searched as follows:

• A text library can be created with the LIBRARY command and specified
with the /LIBRARY qualifier on the CC command line.

• If you compile more than one compilation unit using a single CC
command, you must specify the library within each of the compilation
units, if needed. Consider the following example:

$ CC sourcea+mylib/LIBRARY, sourceb+mylib/LIBRARY

• If you specify more than one library to the VAX C compiler, and if the
#include directives are not nested (see the note in the previous section},
then the libraries are searched in the specified order each time an
#include directive is encountered. Consider the following example:

$ CC sourcea+mylib/LIBRARY+yourlib/LIBRARY

In this example, the compiler searches for modules referenced in
#include directives first in MYLIB.TLB and then in YOURLIB.TLB.

• If no library is specified on the CC command line, or if the specified
module cannot be found in any of the specified libraries, the following
actions are taken:

— If you defined an equivalence name for C$LIBRARY that names a
text library, that library is searched.

— The compiler searches for any remaining unresolved module names
in SYS$LIBRARY:VAXCDEF.TLB.

10.4.4 Macro Substitution in #include Directives

VAX C allows macro substitution within the #include preprocessor directive.

For instance, if you want to include a file name, you can use the following
two directives:

#define macrol "file.ext"

#include macrol

10-20 Preprocessor Directives

If you use defined macros in #include directives, the macros must evaluate
to one of the three following acceptable #include file specifications or the
use generates an error message:

<file-spec>
"file-spec"
module-name

10.5 Specifying Line Numbers (#line and #)

The VAX C compiler keeps track of information about relative line numbers
in each file .involved in the compilation, and uses the number when it
delivers diagnostic messages to the terminal. The compiler increments the
subsequent lines from the line number specified by the #line directive. The
directive can also specify a new file specification for the program source file.
The #line directive does not change the line numbers in your compilation
listing, only the line numbers given in diagnostic messages sent to the
terminal screen. This directive is useful for locating errors in text that is
included using the #include preprocessor directive.

The formats of the #line directive are as follows:

#line constant identifier
#line constant string
constant identifier
constant string

The compiler gives the line following a #line directive the number specified
by the parameter constant. The second parameter can be specified as either
a VAX C identifier or acharacter-string constant. It supplies the valid VMS
file specifications. The character string must not exceed 255 characters.

10.6 Specifying the Module Name and Identification
(#module)

When you compile source files to create an object file, the compiler assigns
to that file the first file name of those specified in the compilation unit.
The compiler adds the .OBJ file extension to the object file. Internally,
the VMS system (the debugger and the librarian) recognizes the object
module by the file name; the compiler also gives the module a Version 1.0
version identification. For example, given the object file E~:AMPLE. OBJ,
the debugger recognizes the E~;AMPLE object module. To change the

Preprocessor Directives 10-21

system-recognized module name and version number, use the #module
directive.

You can find the module name and the module version number listed in the
compiler listing file and the linker load map.

The syntax of the #module directive is as follows:

#module identifier identifier
#module identifier string

The first parameter must be a valid VAX C identifier. It specifies the module
name to be used by the linker. The second parameter specifies the optional
identification that appears on listings and in the object file. It must be
either a valid VAX C identifier of 31 characters or less, or acharacter-string
constant of 31 characters or less.

Only one #module line can be processed per compilation unit, and that line
must appear before any VAX C language text; it can follow other directives,
such as #define, but it must precede any function definitions or external
data definitions.

The parameters in a #module line are subject to text replacement and
can, therefore, contain references to identifiers defined in previous #define
directives. The replacement occurs before the parameters are processed.

The #module directive is WAX C specific and is not portable.

10.7 Implementation-Specific Preprocessor Directive
(#pragma)

This section describes the implementation-specific preprocessor directives, or
pragmas, that are available in the VAX C compiler. The #pragma directive
is a standard method for implementing features that vary from one compiler
to the next.

Note that #pragma directives are subject to macro expansion. A macro
reference can occur anywhere after the keyword pragma. The following
example demonstrates this feature using the #prag`ma inline directive:

#define opt inline
#define f func
#pragma opt (f

The #pragma directive becomes #pragma inline (func) after both macros are
expanded.

The following sections describe the #pragma directives.

10-22 Preprocessor Directives

10.7.1 #pragma [no]builtins Directive

The #pragma [no]builtins directive disables or provides access to the VAX
C predefined functions. These functions do not result in a reference to a
function in the run-time library or in your program. Instead, the compiler
generates the machine instructions necessary to carry out the function
directly at the call site. (For information on available built-in functions, see
Section 11.2.)

The #pragma [no]builtins directive has the following format:

#pragma builtins
#pragma nobuiltins

10.7.2 #pragma ignore dependency Directive

The #pragma ignore dependency directive tells the compiler that the
specified variables within the next encountered for or while loop should not
inhibit the decomposition of that loop. This pragma affects only the next for
or while loop encountered and does not affect nested loops.

The #pragma ignore_dependency directive has the following format:

#pragma ingore_dependence(id, . . .)

id
Is a pointer variable identifier that must be previously declared. If you
specify only one identifier, you can omit the parentheses.

The ignore_dependency pragma must be placed after the declarations
of all the variables specified to the pragma. In this way, VAX C checks to
make sure that only variable names are specified to #pragma ignore_
dependency.

When using this pragma, the generated code produces different results
running in parallel than it does running sequentially (and also produces
different results each time the code executes in parallel). However, some
algorithms depend on convergence. For loops that use this algorithm, this
pragma may be useful.

For more information about using decomposition pragmas, see Section 3.7.

Preprocessor Directives 1 a-23

10.7.3 #pragma [no]inline

The preprocessor directive #pragnna inline suggests to the compiler that
it provide inline expansion of the specified functions. Inline expansion of
functions reduces execution time by replacing the function call with code
that performs the actions of the original function code.

By default, VAX C attempts to provide inline expansion for all functions.
The compiler also uses the following function characteristics to determine if
it can provide inline expansion:

• Size

• Number of times the function is called

• Absence of the restrictions described in Section 10.7.3.1

The #pragma inline directive requests that the compiler attempt to provide
inline code regardless of the size or number of times the specified functions
are called. Functions that contain one of the restrictions described in
Section 10.7.3.1 are never expanded inline, regardless of the use of the
#pragma inline.

The #pragma inline directive has the following format:

#pragma inline (id, . . .)

id
Is a C function identifier.

For instance, the following example specifies that the functions push and
pop be expanded inline throughout the module in which the #pragma
inline appears:

void push(int);
int pop (void) ;

#pragma inline(push, pop)

int stack [100] ;
int *stackp = &stack;

void push (int x)
{

if (stackp =_ &stack)
*stackp = x;

else
*stackp++ = x;

}

int pop ()
{

return *stackp--;
}

1 Q-24 Preprocessor Directives

main ()
{

push (1) ;
printf ("The top of stack is now od \ n",pop ()) ;

}

The /OPTIMIZE=NOINLINE and the /NOOPTIMIZE qualifiers disable all
#pragma inline directives that appear in your source code.

The #pragma noline can be used selectively to identify functions that are
not to be expanded inline, even when the /OPTIMIZE=INLINE qualifier is
used on the CC command line. The #pragma noinline directive has the
following format:

#pragma noinline (id, . . .)

id
Is a C function identifier.

10.7.3.1 Restrictions on Inline Expansion

If a function is to be expanded inline, you must place the function definition
in the same module as the function call. The definition can appear either
before or after the function call.

Functions cannot be expanded inline if they perform the following tasks:

• Take the address of an argument.
• Use an index expression that is not acompile-time constant in an array

that is a field of a struct argument. An argument that is a pointer to a
struct is not restricted.

• Use the varargs or stdarg package to access the function's arguments
because they require arguments to be in adjacent memory locations, and
inline expansion may violate that requirement.

• Declare an exception handler.

10.7.4 #pragma [no]member_alignment

By default, VAX C does not align structure members; they are stored on byte
boundaries (with the exception of bit field members). However, you can use
#pragma member alignment to explicitly specify member alignment.

The #pragma member_alignment directive has the following format:

#pragma member alignment

Preprocessor Directives 10-25

When #pragma member alignment is used, the compiler aligns structure
members on the next boundary appropriate to the type of the member,
rather than on the next byte. For instance, a long variable is aligned on
the next longword boundary; a short variable is aligned on the next word
boundary.

Consider the following example:

#pragma nomember_alignment

struct x {

char c;
int b;
};

#pragma member alignment

struct y {
char c;
int b;
};

main ()

{

}

/*3 bytes of filler follow c */

printf("The sizeof y is: od\n", sizeof (struct y));
printf ("The sizeof x is: od\n", sizeof (struct x)) ;

When this example is executed, it shows the difference between
#pragma member_alignment and the directive #pragma nomem-
ber_alignment. The difference can also be seen by compiling with the
CC/LIS/SHOW=SYMBOLS command and comparing the listed information
for the two structures.

Once used, the member_alignment pragma remains in effect until the
nomember_alignment pragma is encountered.

10.7.5 #pragma safe call Directive

The #pragma safe_call directive tells the compiler that the specified
function call or calls do not introduce data dependencies that prevent
decomposition of a for or while loop during parallel processing. If you
specify this directive outside of a function body, the functions named in the
directive are globally safe in all for or while loops from the occurrence of
the directive to the end of the compilation unit. If you specify this directive
inside a function body, the functions named are safe only for the next for or
while loop encountered in the enclosing function, and the pragma does not
affect any for or while loops nested in the encountered loop.

10-26 Preprocessor Directives

The #pragma safe_call directive has the following format:

#pragma safe_call (id, . . .)

id
Is a function or pointer to a function that must be previously declared. If
you specify only one identifier, you can omit the parentheses.

The safe_call pragma must be placed after the declarations of all functions
specified to the pragma. In this way, VAX C checks to make sure that only
function names are specified to #pragma safe call.

Do not specify a function in a safe_call pragma if the function does the
following:

• It has side effects that introduce data dependencies

• It is not reentrant

• It uses the VAX CRun-Time Library (RTL) routine long jmp, or
otherwise modifies the normal flow of control

• It changes the process in some way

• It takes an address as an argument, and the address points to memory
that is not shared

For more information about using decomposition pragmas, see Section 3.7.

10.7.6 #pragma sequential loop Directive

The #pragma sequential loop directive suppresses all decomposition
analysis and prevents most decomposition diagnostics from being generated
for the next for or while loop encountered in the program. This pragma
affects only the next encountered for or while loop, and the pragma does
not affect any nested for or while loops in the encountered loop.

The #pragma sequential loop directive has the following format:

#pragma sequential loop

For more information about using decomposition pragmas, see Section 3.7.

Preprocessor Directives 10-27

10.7.7 #pragma [no]standard Directive

Use #pragma nostandard to tell VAX C to ignore the current setting of the
CC command-line qualifier /STANDARD=PORTABLE until further notice.
It has no effect if the qualifier is not specified.

The #pragma nostandard directive has the following format:

#pragma nostandard

Use #pragma standard to tell VAX C to reinstate the setting of the
/STANDARD=PORTABLE qualifier, but only if that qualifier is specified
on the CC command line. It does not turn on portability checking if the
/STANDARD=PORTABLE qualifier is not specified.

The #pragma standard directive has the following format:

#pragma standard

The nostandard and standard pragmas are together to define regions
of source code where portability diagnostics are never to be issued. The
following example demonstrates the use of these pragmas:

#pragma nostandard
extern noshare FILE *stdin, *stdout, *stderr;
#pragma standard

In this example, nostandard prevents the NONPORTCLASS diagnostic
from being issued against the noshare storage-class modifier, which is VAX
C specific.

10-28 Preprocessor Directives

Chapter 11

Predefined Macros and Built-In Functions

This chapter describes the following topics:

• Predefined macros (Section 11.1)

• Built-in functions (Section 11.2)

VAX C predefines these macros and functions for your programming
convenience. The macros assist in transporting code and performing simple
tasks that are common to many programs. The built-in functions access
VAX instructions very efficiently.

11.1 Predefined Macros

The following sections describe the VAX C predefined macros for use in
your programs.

11.1.1 CC$gfloat (G_Floating Identification Macro)

VAX C automatically defines a macro that can be used to identify whether
you are compiling your program using the G_floating option. This macro can
assist in writing code that executes conditionally, depending on whether the
program is running using D_floating or G_floating precision.

If you used the /G_FLOAT qualifier, this symbol is defined as if the following
were included before every compilation source group:

#define CC$gfloat 1 `

If you did not use the /G_FLOAT qualifier, this symbol is defined as if the
following were included before every compilation source group:

#define CC$gfloat 0

Predefined Macros and Built-In Functions 11-1

You can conditionally assign values to variables of type double without
causing an error and without being certain of how much storage was
allocated for the variable. For example, external variables may be assigned
values as follows:

#if CC$gfloat
double x = 0.12e308;
#else
double x = 0.12e38;
#endif

/* Range to 10 to the 308th power */

/* Range to 10 to the 38th power */

The VAX C compiler determines whether or not to substitute the value 1 for
every occurrence of the predefined identifiers in a program; these identifiers
are reserved by DIGITAL. The effect of these definitions may be removed
by explicitly undefining the conflicting name. See Section 10.1.2 for more
information about undefining. For more information about the G_floating
representation of the double data type, see Chapter 8.

11.1.2 CC$parallel (Parallel-Processing Identification Macro)

The VAX C compiler defines a macro that can be used to identify whether
you are compiling your program using the /PARALLEL qualifier. This macro
can assist in writing code that executes conditionally, depending on whether
the program is running with or without parallel processing.

If you use the /PAR.ALLEL qualifier, VAX C predefines CC$parallel as if the
following line appeared at the top of the compilation unit:

#define CC$parallel 1

If you did not use the /PA►RALLEL qualifier, VAX C predefines CC$parallel
as if the .following line appeared at the top of the compilation unit:

#define CC$parallel 0

You can use this macro to take advantage conditionally of either parallel-
processing features or features that would disable the decomposition of a
loop. The following example shows how you can place a function call inside
a loop on the condition that parallel processing is not taking place:

for (i = 0; i < 1000; ++i)
{

#if !CC$parallel
/* Avoid doing optional function call that would
* inhibit loop decomposition.
*/
printf (" o6.2f\n", a[i]) ;

#endif
}

11-2 Predefined Macros and Built-In Functions

11.1.3 The DATE Macro

The _ _DATE_ _macro evaluates to a string specifying the date on which the
compilation started. The string presents the date in the following format:

Mmm-dd-yyyy

The first d is a space if dd is less than 10.

The following is an example of the _ _DATE_ _ macro:

printf (" os",_ _DATE_ _) ;

11.1.4 The FILE Macro

The __FILE__ macro evaluates to a string specifying the file specification of
the current source file. The following is an example of the __FILE__ macro:

printf ("file %s" _ _FILE_ _) ;

11.1.5 The LINE Macro

The _ _LINE_ _ macro evaluates to an integer specifying the number of the
line in the source file containing the macro reference. The following is an
example of the _ _LINE_ _ macro:

printf ("At line od in file os", _ _LINE_ _, _ _FILE_ _) ;

11.1.6 The TIME Macro

The _ TIME__ macro evaluates to a string specifying when the compilation
started. The string presents the time in the following format:

hh:mm:ss

The following is an example of the _ TIME_ _ macro:

printf (" os", _ _TIME_ _) ;

Predefined Macros and Built-In Functions 11--~

11.1.7 vax, vms, vaxc, and vaxllc (System-Identification Macros)

VAX C automatically defines macros that can be used to identify the system
on which the program is running. These macros can assist in writing code
that executes conditionally, depending on whether the program is running
on a DIGITAL system or some other system. These symbols are defined as
if the following text fragment were included by the compiler before every
compilation source group:

#define vax 1
#define VAX 1
#define vms 1
#define VMS 1
#define vaxc 1
#define VAXC 1
#define vaxllc 1
#define VAX11C 1

You can use these definitions to separate portable and nonportable code in
any of your VAX C programs.

You can use the symbols to conditionally compile VAX C programs used
on more than one operating system to take advantage of system-specific
features. See Section 10.3 for more information about using the preprocessor
conditional-compilation directives.

Consider the following example:

#if VAXC
#include rms
#endi f

/* Include RMS definitions *~

11.2 Built-In Functions

The following sections describe the built-in functions that allow you to
directly access the VAX hardware and machine instructions to perform
operations that are cumbersome, slow, or impossible in pure C.

These functions are very efficient because they are built into the VAX C
compiler. This means that a call to one of these functions does not result
in a reference to a function in the VAX CRun-Time Library (RTL) or to
a function in your program. Instead, the compiler generates the machine
instructions necessary to carry out the function directly at the call site.
Because most of these built-in functions closely correspond to single VAX
machine instructions, the result is small, fast code.

11-4 Predefined Macros and Built-In Functions

Some of these built-in functions (such as those that operate on strings or
bits) are of general interest. Others (such as the functions dealing with
process context) are of interest if you are writing device drivers or other
privileged software. Some of the functions discussed in the following sections
are privileged and unavailable to user mode programs.

You must place the following pragma in your source file before using one or
more built-in functions:

#pragma builtins

Some of the built-in functions have optional arguments or allow a particular
argument to have one of many different types. To describe the different legal
combinations of arguments, the description of each built-in function may list
several different prototypes for the function. As long as a call to a built-in
function matches one of the prototypes listed, the call is legal. Furthermore,
any legal call to a built-in function acts as if the corresponding prototype
were in scope. Thus, the compiler performs the argument checking and
argument conversions specified by that prototype.

The majority of the built-in functions are named after the VAX instruction
that they generate. The built-in functions provide direct and unencumbered
access to those VAX instructions. Any inherent limitations to those
instructions are limitations to the built-in functions as well. For instance,
the MOVC3 instruction and the MOVC3 built-in function can move at most
65,535 characters.

For more information on these built-ins, see the documentation on the
corresponding machine instruction in the VAX MACRO and Instruction Set
Reference Manual. In particular, see that book for the structure of queue
entries manipulated by the built-in queue functions.

11.2.1 Add Aligned Word Interlocked LADAWI)

The ADAWI function adds its source operand to the destination. This
function is interlocked against similar operations by other processors or
devices in the system.

The ADAWI function has the following formats:

int _ADAWI(short src, short *dest);
int ADAWI(short src, unsigned short *dest);

Predefined Macros and Built-In Functions 11-5

src
Is the value to be added to the destination.

dest
Is a pointer to the destination. The destination must be aligned on a word
boundary. (One way to achieve alignment is to use _align.)

There are three possible return values, as follows:

• -1, if the sum when considered to be a signed number is negative

• 0, if the sum is zero

• 1, if the sum is positive

11.2.2 Branch on Bit Clear-Clear Interlocked LBBCCI)

The _BBCCI function performs the following functions in interlocked
fashion:

• Returns the complement of the bit specified by the two arguments
• .Clears the bit specified by the two arguments

The _BBCCI function has the following format:

int _BBCCI(int position, void "address);

position
Is the position of the bit within the field.

address
Is the base address of the field.

The return value is 0 or 1, which is the complement of the value of the
specified bit before being cleared.

11.2.3 Branch on Bit Set-Set Interlocked LBBSSI)

The _BBSSI function performs the following functions in interlocked fashion:

• Returns the status of the bit specified by the two arguments
• Sets the bit specified by the two arguments

The _BBSSI function has the following format:

int _BBSSI(int position, void *address);

11-6 Predefined Macros and Built-In Functions

position
Is the position of the bit within the field.

address
Is the base address of the field.

The return value is 0 or 1, which is the value of the specified bit before
being set.

11.2.4 Find First Clear Bit LFFC)

The _FFC function finds the position of the first clear bit in a field. The bits
are tested for clear status starting at bit 0 and extending to the highest bit
in the field.

The _FFC function has the following format:

int _FFC(int start, char size, const void *base, int "position);

start
Is the start position of the field.

size
Is the size of the field, in bits. The size must be a value from 0 to 32 bits.

base
Is the address of the field.

position
Is the address of an integer to receive the position of the clear bit. If no bit
is clear, the integer is set to the position of the first bit to the left of the last
bit tested.

There are two possible return values, as follows:

• 0, if all bits in the field are set

• 1, if a bit with value 0 is found

Predefined Macros and Built-In Functions 11-7

11.2.5 Find First Set Bit LFFS)

The _FFS function finds the position of the first set bit in a field. The bits
are tested for set status starting at bit 0 and extending to the highest bit in
the field.

The _FFS function has the following format:

int _FFS(int start, char size, const void *base, int *position);

start
Is the start position of the field.

size
Is the size of the field, in bits. The size must be a value from 0 to 32 bits.

base
Is the address of the field.

position
Is the address of an int to receive the position of the set bit. If no bit is
set, the integer is set to the position of the first bit to the left of the last bit
tested.

There are two possible return values, as follows:

• 0, if all bits in the field are clear
• 1, if a bit with value 1 is found

11.2.6 Halt (_HALT)

The _HALT function halts the processor when executed by a process running
in kernel mode. This is a privileged function.

The _HALT function has the following format:

void _HALT(void);

11-8 Predefined Macros and Built-In Functions

11.2.7 Insert Entry into Queue at Head Interlocked LINSQHI)

The _INSQHI function inserts an entry into the front of a queue in an
indivisible manner. This operation is interlocked against similar operations
by other processors or devices in the system.

The _INSQHI function has the following format:

int _INSQHI void *new_entry, void `head);

new entry
Is a pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary. (One way to achieve alignment is to use _align.)

head
Is a pointer to the queue header. The header must be aligned on a quadword
boundary. (One way to achieve alignment is to use _align.)

There are three possible return values, as follows:

• 0, if the entry was inserted, but it was not the only entry in the list
• 1, if the entry was not inserted because the secondary interlock failed
• 2, if the entry was inserted and it was the only entry in the list

11.2.8 Insert Entry into Queue at Tail Interlocked LINSQTI)

The _INSQTI function inserts an entry at the end of a queue in an indi-
visible manner. This operation is interlocked against similar operations by
other processors or devices in the system.

The _INSQTI function has the following format:

int _INSQTI void *new entry, void *head);

new entry
Is a pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary. (One way to achieve alignment is to use _align.)

head
Is a pointer to the queue header. The header must be aligned on a quadword
boundary. (One way to achieve alignment is to use _align.)

There are three possible return values, as follows:

• 0, if the entry was inserted, but it was not the only entry in the list

• 1, if the entry was not inserted because the secondary interlock failed

Predefined Macros and Built-In Functions 11-9

• 2, if the entry was inserted and it was the only entry in the list

11.2.9 Insert Entry in Queue LINSQUE)

The _INSQUE function inserts a new entry into a queue following an
existing entry.

The _INSQUE function has the following format:

int _INSQUE void *new_entry, void *predecessor);

new entry
Is a pointer to the new entry to be inserted.

predecessor
Is a pointer to an existing entry in the queue.

There are two possible return values, as follows:

• 0, if the entry was the only entry in the queue

• 1, if the entry was not the only entry in the queue

11.2.10 Load Process Context LLDPCTX)

The _LDPCTX function restores the register and memory-management
context. This is a privileged function.

The _LDPCTX function has the following format:

void _LDPCTX(void);

11.2.11 Locate Character (_LOCC)

The _LOCO function locates the first character in a string matching the
target character.

The _LOCC function has the following formats:

int _LOCC(char target, unsigned short length,
const char *string);

int _LOCC(char target, unsigned short length,
const char *string, char **position);

11-10 Predefined Macros and Buiit-In Functions

target
Is the character being searched.

length
Is the length of the searched string. The length must be a value from 0 to
65,535.

string
Is a pointer to the searched string.

position
Is a pointer to a pointer to a character. If the searched character is found,
the pointer pointed to by position is updated to point to the character found.
If the character is not found, the pointer pointed to by position is set to the
address one byte beyond the string. This is an optional argument.

If the target character is found, the return value is the number of bytes
remaining in the string; otherwise, the return value is 0.

11.2.12 Move from Processor Register LMFPR)

The MFPR function returns the contents of a processor register. This is a
privileged function.

The MFPR function has the following formats:

void _MFPR(int register num, int *destination);

void _MFPR(int register num, unsigned int *destination);

register num
Is the number of the privileged register to be read.

destination
Is a pointer to the location receiving the value from the register. This
location may be a signed or unsigned int.

1y.2.13 Move Character 3 Operand LMOVC3)

The MOVC3 function copies a block of memory. It is the preferred way to
copy a block of memory to a new location.

The MOVC3 function has the following formats:

void _MOVC3(unsigned short length, const char *src, char *dest);

Predefined Macros and Built-In Functions 11-11

void _MOVC3(unsigned short length, const char "`src, char *dest,
char **endsrc);

void _MOVC3(unsigned short length, const char *src, char *dest,
char **endsrc, char **enddest);

length
Is the length of the source string, in bytes. The length must be a value from
0 to 65,535.

src
Is a pointer to the source string.

Best
Is a pointer to the destination memory.

endsrc
Is a pointer to a pointer. The _MOVC3 function sets the pointer that is
pointed to by endsrc pointing to the address of the byte beyond the source
string. It is optional if the enddest argument is not given.

enddest
Is a pointer to a pointer. The _MOVC3 function sets the pointer pointed to
by endsrc to the address of the byte beyond the destination string. This is
an optional argument.

11.2.14 Move Character 5 Operand LMOVCS)

The _MOVCS function allows the source string specified by the pointer and
length pair to be moved to the destination string specified by the other
pointer and length pair. If the source string is smaller than the destination
string, the destination string is padded with the specified character.

The _MOVCS function has the following formats:

void _MOVC5(unsigned short srclen, const char *src, char fill,
unsigned short destlen, char *dest);

void _MOVCS(unsigned short srclen, const char *src, char fill,
unsigned short destlen, char *dest,

unsigned short *unmoved src);

void _MOVCS(unsigned short srclen, const char *src, char fill,
unsigned short destlen, char *dest,

unsigned short *unmoved src, char **endsrc);

11-12 Predefined Macros and Bui{t-In Functions

void _MOVC5(unsigned short srclen, const char *src, char fill,
unsigned short destlen, char *dest,

unsigned short *unmoved src, char **endsrc,
char **enddest);

srclen
Is the length of the source string, in bytes. The length must be a value from
0 to 65,535.

src
Is a pointer to the source string.

fill
Is the fill character to be used if the source string is smaller than the
destination string.

destlen
Is the length of the destination string, in bytes. The length must be a value
from 0 to 65,535.

dest
Is a pointer to the destination string.

unmoved_src
Is a pointer to a short integer that the _MOVC5 function sets to the number
of unmoved bytes remaining in the source string.

endsrc
Is a pointer to a pointer. The _MOVC5 function sets the pointer pointed to
by endsrc pointing to the address of the byte beyond the source string. It is
optional if the enddest argument is not given.

enddest
Is a pointer to a pointer. The _MOVC5 function sets the pointer pointed to
by endsrc to the address of the byte beyond the destination string. This is
an optional argument.

11.2.15 Move from Processor Status Longword LMOVPSL)

The MOVPSL function stores the value of the Processor Status
Longword (PSL).

Predefined Macros and Built-In Functions 11-13

The _MOVPSL function has the following formats:

void _MOVPSL(int *psl);
void _MOVPSL(unsigned int *psl);

psl
Is the address of the location for storing the value of the Processor Status
Longword.

11.2.16 Move to Processor Register LMTPR)

The _MTPR function loads a value into one of the special processor registers.
It is a privileged function.

The _MTPR function has the following format:

int _MTPR(int src, int register num);

src
Is the value to store into the processor register.

register num
Is the number of a privileged register to be updated.

The return value is the V condition flag from the Processor Status
Longword (PSL).

11.2.17 Probe Read Accessibility PROBER)

The _PR,OBER function checks to see if yo-a can read the first and last byte
of the given address and length pair.

The _PROBER function has the following format:

int _PROBER char mode, unsigned short length, const void "address);

mode
Is the processor mode used for checking the access.

length
Is the length of the memory segment, in bytes. The length must be a value
from 0 to 65,535.

address
Is the pointer to the memory segment to be tested for read access.

11-14 Predefined Macros and Built-In Functions

There are two possible return values, as follows:

• 0, if both bytes are not accessible

• 1, if both bytes are accessible

11.2.18 Probe Write Accessibility LPROBEW)

The _PROBEW function checks the write accessibility of the first and last
byte of the given address and length pair.

The _PROBEW function has the following format:

int _PROBEW(char mode, unsigned short length, const void *address);

mode
Is the processor mode used for checking the access.

length
Is the length of the memory segment, in bytes. The length must be a value
from 0 to 65,535.

address
Is the pointer to the memory segment to be tested for write access.

There are two possible return values, as follows:

• 0, if both bytes are not accessible
• 1, if both bytes are accessible

11.2.19 Read General-Purpose Register LREAD_GPR)

The _READ_GPR function returns the value of ageneral-purpose register.

The _READ_GPR function has the following format:

int _READ_GPR(int register_num);

register num
Is an integer constant expression giving the number of the general-purpose
register to be read.

The return value is the value of the general-purpose register.

Predefined Macros and Built-In Functions 11--15

11.2.20 Remove Entry from Queue at Head Interlocked LREMQHI)

The _REMQHI function removes the first entry from the queue in an
indivisible manner. This operation is interlocked against similar operations
by other processors or devices in the system.

The _REMQHI function has the following format:

int _REMQHI(void *head, void **removed entry);

head
Is a pointer to the queue header. The header must be aligned on a quadword
boundary. (One way to achieve alignment is to use _align.)

removed_entry
Is a pointer to a pointer that _REMQHI sets to point to the removed entry.

There are four possible return values, as follows:

• 0, if the entry was removed and the queue has remaining entries
• 1, if the entry could not be removed because the secondary interlock

failed

• 2, if the entry was removed and the queue is now empty

• 3, if the queue was empty

11.2.21 Remove Entry from Queue at Tail Interlocked LREMQTI)

The _REMQTI function removes the last entry from the queue in an
indivisible manner. This operation is interlocked against similar operations
by other processors or devices in the system.

The _REMQTI function has the following format:

int _REMQTI(void *head, void '*removed entry);

head
Is a pointer to the queue header. The header must be aligned on a quadword
boundary. (One way to achieve alignment is to use _align.)

removed_entry
Is a pointer to a pointer that _REMQTI sets to point to the removed entry.

There are four possible return values, as follows:

• 0, if the entry was removed and the queue has remaining entries

11-16 Predefined Macros and Built-In Functions

• 1, if the entry could not be removed because the secondary interlock
failed

• 2, if the entry was removed and the queue is now empty

• 3, if the queue was empty

11.2.22 Remove Entry from Queue REMQUE)

The _REMQUE function removes an entry from a queue.

The _REMQUE function has the following format:

int _REMQUE void *entry, void **removed entry);

entry
Is a pointer to the queue entry to be removed.

removed_entry
Is a pointer to a pointer that _REMQUE sets to the address of the entry
removed from the queue.

There are three possible return values, as follows:

• 0, if the entry was removed and the queue has remaining entries
• 1, if the entry was removed and the queue is now empty
• 2, if the queue was empty

11.2.23 Scan Characters ~SCANC)

The _SCANC function locates the first character in a string with the desired
attributes. The attributes are specified through a table and a mask.

The _SCANC function has the following formats:

int _SCANC(unsigned short length, const char *string,
const char 'table, char mask);

int _SCANC(unsigned short length, const char *string,
const char *table, char mask, char **match);

Predefined Macros and Built-In Functions 11-17

length
Is the length of the string to scan, in bytes. The length must be a value from
0 to 65,535.

string
Is a pointer to the string to scan.

table
Is a pointer to the table.

mask
Is the mask.

match
Is a pointer to a pointer that the _SCANC function sets to the address of the
byte that matched. (If no match occurs, it is set to the address of the byte
following the string.) This is an optional argument.

The return value is the number of bytes remaining in the string if a match
was found; otherwise, the return value is 0.

11.2.24 Simple Read LSIMPLE_READ)

The _SIMPLE_READ function reads UO registers or shared memory. It
causes a MOVB, MOVw, or MOVL instruction to be generated that cannot
be moved or modified during optimization.

The _SIMPLE_READ function has the following formats:

char _SIMPLE_READ(const char *source);
short _SIMPLE_READ(const short *source);
int _SIMPLE_READ(const int 'source);
long _SIMPLE_READ(const long *source);

source
Is a pointer to the source to be read. The object being pointed to must be a
signed integer. The type of the object pointed to determines the type of the
function result.

The return value is the value of the specified source.

11-18 Predefined Macros and Built-In Functions

11.2.25 Simple Write LSIMPLE WRITE)

The _SIMPLE_WRITE function writes to UO registers or shared memory. It
causes a MOVB, MOVW, or MOVL instruction to be generated that cannot
be moved or modified during optimization.

The _SIMPLE_WRITE function has the following formats:

void _SIMPLE_WRITE(char value, char *dest);
void _SIMPLE_WRITE(short value, short *dest);
void _SIMPLE_WRITE(int value, int *dest);
void _SIMPLE WRITE(long value, long *dest);

value
Is the value to be stored. The type of the destination argument determines
the type of this argument.

Best
Is a pointer to the destination. The type of the object pointed to by dest
must be a signed integer type. The type of this object determines the type of
the first argument to this function.

11.2.26 Skip Character LSKPC)

The _SKPC function locates the first character in a string that does not
match the target character.

The _SKPC function has the following formats:

int _SKPC(char target, unsigned short length, const char *string);

int _SKPC(char target, unsigned short length, const char *string,
char **position);

target
Is the target character.

length
Is the length of the string, in bytes. The length must be a value from
0 to 65,535.

string
Is a pointer to the string to scan.

Predefined Macros and Built-In Functions 11-19

position
Is a pointer to a pointer. The _SKPC function sets the pointer pointed to by
position to the address of the nonmatching character. (If all the characters
match, it is set to the address of the first byte beyond the string.) This is an
optional argument.

The return value is the number of bytes remaining in the string if an
unequal byte was located; otherwise, the return value is 0.

11.2.27 Span Characters (_SPANC)

The _SPANC function locates the first character in a string without certain
attributes. The attributes are specified through a table and a mask.

The _SPANC function has the following formats:

int _SPANC(unsigned short length, const char *string,
const char *table, char mask);

int _SPANC(unsigned short length, const char *string,
const char *table, char mask, char "'*position);

length
Is the length of the string, in bytes. The length must be a value from 0 to
65,535.

string
Is a pointer. It points to the string to be scanned.

table
Is a pointer to the table.

mask
Is the mask.

position
Is a pointer to a pointer. The _SPANC function sets the pointer pointed to
by position to the address of the byte that does not match the attributes. (If
all the characters in the string match, this pointer is set to the address of
the first byte beyond the string.) This is an optional argument.

The return value is the number of bytes remaining in the string if a match
was found; otherwise, the return value is 0.

11-20 Predefined Macros and Built-In Functions

11.2.28 Save Process Context ~SVPCTX)

The _SVPCTX function saves the context of a process. The general-purpose
registers are saved in the process control block, which is later used to
resume a process. This function is privileged.

The _SVPCTX function has the following format:

void _SVPCTX(void);

11.2.29 Write General-Purpose Register LWRITE GPR)

The _WRITE_GPR function loads a value into a specified general-purpose
register.

The _WRITE_GPR function has the following format:

void _WRITE_GPR(int value, int register_num);

value
Is the value to load into the register.

register num
Is an integer constant expression giving the number of the general-purpose
register to be loaded. The register number must be a value from 0 to 15.

Predefined Macros and Built-In Functions 11-21

Using VAX C Features on VMS Systems

Chapter 12

Using VAX Record Management Services

VAX C provides a set of run-time library functions and macros to perform
UO. Some of these functions perform in the same manner as UO functions
found on C implementations running on UNIX systems. Other VAX C
functions take full advantage of the functionality of the VMS file-handling
system. You can also access the VMS file-handling system from your VAX
C program without using the VAX CRun-Time Library (RTL) functions. In
any case, the system that ultimately accesses files on VMS systems is VAX
Record Management Services (RMS).

This chapter introduces you to the following RMS topics:

• RMS file organization (Section 12.1)
• Sequential file organization (Section 12.1.1)
• Relative file organization (Section 12.1.2)
• Indexed file organization (Section 12.1.3)
• Record access modes (Section 12.2)
• RMS record formats (Section 12.3)
• RMS functions (Section 12.4)
• Writing VAX C programs using RMS (Section 12.5)
• RMS example program (Section 12.6)

The file-handling capabilities of VAX C fall into two distinct catQgories:

• The VAX C RTL functions which, with little or no modification, are
portable to other C implementations

• The RMS functions, which are not portable to other C implementations
but do provide more methods of file organization and more record access
modes

Using VAX Record Management Services 12-1

This chapter briefly reviews the basic concepts and facilities of VAX RMS
and shows examples of their application in VAX C programming. Because
this is an overview, the chapter does not explain all RMS concepts and
features. For language-independent information about RMS, see the
following manuals in the VMS document set:

• Guide to VMS File Applications
This guide contains a general description of the record management
services of the VMS operating system, and the file creation and run-time
options available.

• VMS Record Management Services Manual

This manual describes the user interface to RMS. It includes
introductory information on RMS programming and detailed definitions
of all RMS control block structures and macro instructions.

12.1 RMS File Organization

VAX RMS supports three types of file organization:

• Sequential

• Relative

• Indexed

The following sections describe these types of file organization.

The organization of a file determines how a file is stored on the media
and, consequently, the possible operations on records. You specify the file's
organization when you create the file; it cannot be changed.

However, you can use the File Definition Language Editor (FDL) and the
CO1~lVERT or COI~TVERT/RECLAIM utilities to define the characteristics
of a new file, and then fill the new file with the contents of the old file of
a different format. For more information, see the VMS Utility Routines
Manual.

12.1.1 Sequential File Organization

Sequential files have consecutive records. There are no empty records
separating records that contain data. This organization allows the following
operations on the file:

• Positioning the file at a particular record, generally by sequentially
moving from one record to the next.

12-2 Using VAX Record Management Services

Direct access is also possible, either by key {relative record number) or
by the record file address (RFA). However, although allowed for any file
o~•ganization, access by RFA is limited to files on disk devices, and access
by key is limited to disk files that also have fixed-length records. These
access modes are unusual because most application programs do not
keep track of record positions in sequential files.

• Reading data from any record.

• Writing data by adding records at the end of the file.

Sequential organization is the only kind permitted for magnetic tape files
and other nondisk devices.

12.1.2 Relative File Organization

Relative files have records that occupy numbered, fixed-length cells. The
records themselves need not have the same length. Cells can be empty or
can contain records so the following operations are permitted:

• Positioning the file at a particular record, usually by direct access.
In direct access, RMS uses the relative record number the number
of a cell as a key to locate the cell and its record; there is no need
to reference other cells. RMS can also access the records sequentially,
ignoring empty cells, or RMS can access the file directly with the record
file address (RFA); RMS returns the RFA in a parameter block whenever
it writes a record, and you can access and use the RFA to locate the
appropriate record. You can access any file organization with the RFA.

• Reading a record from any cell.

• Deleting a record from any cell.

• Writing a record into any cell.

Relative file organization is possible only on disk devices.

12.1.3 Indexed File Organization

Indexed files have records that contain, in addition to data and carriage-
control information, one or more keys. Keys can be character strings, packed
decimal numbers, and 16-bit, 32-bit, or 64-bit signed or unsigned integers.
Every record has at least one key, the primary key, whose value in each
record cannot be changed. Optionally, each record can have one or more
alternate keys, whose key values can be changed.

Using VAX Record Management Services 12-3

Unlike relative record numbers used in relative files, key values in indexed
files are not necessarily unique. When you create a file, you can specify that
a particular key have the same value in different records (these keys are
called duplicate keys). Keys are defined for the entire file, in terms of their
position within a record and their length.

In addition to maintaining its records, RMS builds and maintains indexes
for each of the defined keys. As records are written to the file, their key
values are inserted in order of ascending value in the appropriate indexes.
This organization allows the following operations:

• Positioning the file at a particular record, by direct access. In direct
access reads, you use either a primary or alternate key, plus a specified
key value, to locate the record. In direct access writes (given a record
that contains key values in the predefined positions), RMS automatically
adds the record to the file and adds the primary and alternate key values
to the appropriate indexes. Records can also be accessed sequentially,
where the sequence is defined by the index for a specified key. Finally,
records can be accessed directly by RFA; RMS returns the RFA in a
parameter block whenever it writes a record, and you can access and
use the RFA to locate the appropriate record. You can access any file
organization with the RFA.

• Reading any record, including sequential reads controlled by a key's
index.

• Deleting any record.
• Updating an alternate key's value, if the key's definition permits its

value to change.
• Writing records selectively, based on the value of a key and, when

allowed in the key's definition, based on duplicate values. If duplicate
values are permitted, you can write records containing key values that
are present in the key's index. If duplicate values are not permitted,
such write operations are rejected.

Indexed organization is possible only on disk devices.

12.2 Record Access Modes

The record access modes are sequential, direct by key, and direct by record
file address. Again, the direct access modes are possible only with files that
reside on disks.

12-4 Using VAX Record Management Services

Unlike a file's organization, the record access mode is not a permanent
attribute of the file. During the processing of a file, you can switch from one
access mode to any other permitted for that file organization. For example,
indexed files are often processed by locating a record directly by key, and
then using that key's index to sequentially read all the indexed records in
ascending order of their key values; this method is sometimes called the
indexed-sequential access method (ISAM).

12.3 RMS Record Formats

Records in RMS files can have the following formats:

• Fixed-length format, where the length of every record is defined at
the time of the file's creation. This format is permitted with any file
organization.

• Variable-length format, where the maximum length of every record is
defined at the time of the file's creation. This format is permitted with
any file organization.

• Variable-length format with afixed-length control area (VFC), where
every record is prefixed by afixed-length field. This format is permitted
only with sequential and relative files.

• Stream format, where records are delimited by special characters called
terminators. Terminators are part of the record they delimit. The three
types of stream formatting are as follows:

— Stream variation, where records can be delimited with any special
character.

— Stream_cr, where records are delimited with the carriage-return
character.

— Stream_lf, where records are delimited with the line-feed character.
This format variation is the default format when you create files
using the Standard UO functions.

12.4 RMS Functions

RMS provides a number of functions that create and manipulate files. These
functions use RMS data structures to define the characteristics of a file and
its records. The data structures thus are used as indirect arguments to the
function call.

Using VAX Record Management Services 12-5

The RMS data structures are grouped into four main categories, as follows:

• File Access Block (FAB)
Defines the file's characteristics, such as file organization and record
format.

• Record Access Block (RAB)
Defines the way in which records are processed, such as the record
access mode.

• Extended Attribute Block (~;AB)
Various kinds of extended attribute blocks contain additional file
characteristics, such as the definition of keys in an indexed file.
Extended attribute blocks are optional.

• Name Block (NAM)

Defines all or part of a file specification to be used when an incomplete
file specification is given in an OPEN or CREATE operation. Name
blocks are optional.

RMS uses these data structures to perform file and record operations.
Table 12-1 lists some of the common functions.

Table 12-1: Common RMS Run-Time Processing Functions

Category Function Description

File sys$create Creates and opens a new file of any organization.
Processing

sys$open Opens an existing file and initiates file process-
ing.

sys$close Terminates file processing and closes the file.

sys$erase Deletes a file.

Record sys$connect Associates a file access block with a record access
Processing block to establish a record access stream; a call

to this function is required before any other
record-processing function can be used.

sys$get Retrieves a record from a file.

sys$put Writes a new record to a file.

sys$update Rewrites an existing record to a file.

sys$delete Deletes a record from a file.

(continued on next page)

12-6 Using VAX Record Management Services

Table 12-1 (Cont.): Common RMS Run-Time Processing Functions

Category Function Description

sys$rewind Positions the record pointer to the first record in
the file.

sys$disconnect Disconnects a record access stream.

All RMS functions are directly accessible from VAX C programs. The syntax
for any RMS function has the following form:

int sys$name(pointer)

struct rms_structure *pointer;

In this syntax, name corresponds to the name of the RMS function (such as
OPEN or CREATE); rms_structure corresponds to the name of the structure
being used by the function.

The file-processing functions require a pointer to a file access block as an
argument; the record-processing functions require a pointer to a record
access block as an argument. Since sys$create is afile-processing function,
its syntax is as follows:

int sys$create(fab)
struct struct FAB *fab;

These syntax descriptions do not show all the options available when you
invoke an RMS function. For a complete description of the RMS calling
sequence, see the VMS Record Management Services Manual.

Finally, all the RMS functions return an integer status value. The format
of RMS status values follows the standard format described in Chapter 13.
Since they return a 32-bit integer, you do not need to declare the type of an
RMS function return before you use it.

12.5 Writing VAX C Programs Using RMS

VAX C supplies a number of #include modules that describe the RMS data
structures and status codes. Table 12-2 lists these modules.

Using VAX Record Management Services 12-7

Table 12-2: VAX C RMS #include Modules

Module Structure
Name Tags) Description

fab FAB Defines the file access block structure.

rab RAB Defines the record access block structure.

nam NAM Defines the name block structure.

xab XAB Defines all the extended attribute block structures.

rmsdef Defines the completion status codes that RMS returns
after every file- or record-processing operation. '

rms all tags Includes all the previous modules.

Most VAX C programmers include the rms module, which includes all the
other modules.

These #include modules define all the data structures as structure
tag names. However, they perform no allocation or initialization of the
structures; these modules describe only a template for the structures. To
use the structures, you must create storage for them and initialize all the
structure members as required by RMS. Note that these include files are
part of VAX C. RMS is part of VMS and may contain other include files not
described here.

To assist in the initialization process, VAX C provides initialized RMS data
structure prototypes. You can copy these readonly prototypes to your
uninitialized structure definitions with a structure assignment. You can
choose to take the default values for each of the structure members (as
initialized by the prototypes), or you can tailor the contents of the structures
to fit your requirements. In either case, you must use the templates to
allocate storage for the structure and to define the members of the structure.

The initialized prototypes supply the RMS default values for each member
in the structure; they specify none of the optional parameters. To determine
what default values are supplied by the prototypes, see the VMS Record
Management Services Manual.

Table 12-3 lists the prototype data structures and the structures that they
initialize.

12-8 Using VAX Record Management Services

Table 12-3: RMS Prototype Data Structures

Structure
Prototype Tag Initialize Structure

cc$rms_fab FAB File access block

cc$rms_rab RAB Record access block

cc$rms_nam NAM Name block

cc$rms_xaball XABALL Allocation extended attribute block

cc$rms_xabdat XABDAT Date and time extended attribute block

cc$rms_xabfhc XABFHC File header characteristics extended attribute
block

cc$rms_xabkey XABKEY Indexed file key extended attribute block

cc$rms_xabpro XABPRO Protection extended attribute block

cc$rms_xabrdt XABRDT Revision date and time extended attribute block

cc$rms_xabsum XABSUM Summary extended attribute block

The declarations of these structures are contained in the appropriate
#include module.

The names of the structure members conform to the following RMS naming
convention:

typ$s fld

The identifier typ is the abbreviation for the structure, the letter s is the
size of the member (such as 1 for longword or b for byte), and the identifier
fld is the member name, such as sts for the completion status code. The
dollar sign ($) is a character used in VMS system logical names. See the
VMS Record Management Services Manual for a description of the members
in each structure.

12.5.1 Initializing File Access Blocks

The file access block defines the attributes of the file. To initialize a file
access block, assign the values in the initialized data structure cc$rms_fab
to the address of the file access block defined in your program. Consider the
following example:

Using VAX Record Management Services 12-9

/* This example shows how to initialize a file access block.

#include rms /* Declare all RMS data structs

struct FAB fblock; /* Define a file access block

main ()
{

fblock = cc$rms fab;

}

/* Initialize the structure

Any of these RMS structures may be dynamically allocated. For example,
another way to allocate a file access block is as follows:

/* This program shows how to dynamically allocate RMS structures. */

#include rms /* Declare all RMS data structs */

main ()
{

/* Allocate dynamic storage */
struct FAB *fptr = malloc(sizeof (struct FAB));
fptr = cc$rms fab; / Initialize the structure */

}

Frequently, you will want to change the default values supplied by the proto- __
type. If so, you must reinitialize the members of the structure individually.
You initialize a member by giving the offset of the member and assigning a
value to it. Consider the following example:

fblock.fab$1_xab = &primary_key;

This statement assigns the address of the extended attribute block named
primary key to the fab$1_xab member of the file access block named fblock.

12.5.2 Initializing Record Access Blocks

The record access block specifies how records are processed. You initialize a
record access block in the same manner as you initialize a file access block.
For example:

/* This example shows how to initialize a file access block.

#include rms
struct FAB fblock;

*/

struct RAB rblock; /* Define a record access block */

12-10 Using VAX Record Management Services

main ()
{

fblock = cc$rms_fab;
rblock = cc$rms rab;

}

/* Initialize the structure */

/* Initialize the FAB member */
rblock.rab$1 fab = &fblock;

12.5.3 Initializing Extended Attribute Blocks

There is only one extended attribute block structure (:KAB), but there are
seven ways to initialize it. The extended attribute blocks define additional
file attributes that are not defined elsewhere. For example, the key extended
attribute block is used to define the keys of an indexed file.

A11 extended attribute blocks are "chained" off a file access block in the
following manner:

1. In a file access block, you initialize the fab$1_xab field with the address
of the first extended attribute block.

2. You designate the next extended attribute block in the chain in the
xab$1_nxt field of any subsequent extended attribute blocks. You
chain each subsequent extended attribute block in order by the key of
reference (first the primary key, then the first alternate key, then the
second alternate key, and so forth).

3. You initialize the xab$1_nxt member of the last extended attribute block
in the chain with the value 0 (the default), to indicate the end of the
chain.

You go through the same steps to declare extended attribute blocks as you
would to declare the other RMS data structures:

1. You define the structures with #include modules.

2. You assign a specific prototype to the structure in your program.

3. You initialize the members of the structure with the desired values.

In the following example, two extended attribute block structures are
declared. They are initialized as key extended attribute blocks with the
cc$rms_xabkey prototype. The xab$1_nxt member of the primary key is
initialized with the address of the alternate_key extended attribute block.

Using VAX Record Management Services 12-11

/* This example shows how to initialize the extended
* attribute block.

#include rms
struct XABKEY primary_key,alternate_key;

main ()
{

primary key = cc$rms_xabkey;
alternate key = cc$rms_xabkey;
primary_key.xab$1_nxt = &alternate key;

}

12.5.4 Initializing Name Blocks

The name block contains default file name values, such as the directory or
device specification, file name, or file type. If you do not specify one of the
parts of the file specification when you open the file, RMS uses the values in
the name block to complete the file specification and places the complete file
specification in an array.

You create and initialize name blocks in the same manner used to initialize
the other RMS data structures. Consider the following example:

/* This example shows how to initialize a name block. */

#include rms

struct NAM nam;
struct FAB fab;

main ()
{

fab = cc$rms_fab;
nam = cc$rms nam;

/* Define an array for the
* expanded file specification */

char expanded name[NAM$C MAXRSS];

/* Initialize the appropriate
* members

fab .fab $ l nam = &nam;
nam.nam$1_esa = &expanded name;
nam.nam$b_ess = sizeof expanded name;

}

12-12 Using VAX Record Management Services

12.6 RMS Example Program

The example program in this section uses RMS functions to maintain
a simple employee file. The file is an indexed file with two keys: social
security number and last name. The fields in the record are character
strings defined in a structure with the tag record.

The records have the carriage-return attribute. Individual fields in each
record are padded with blanks for two reasons. First, those fields that are
key fields must be padded in some way; RMS does not understand VAX C
strings with the trailing NUL character. Second, the choice of blank padding
as opposed to NUL padding allows the file to be printed or typed without
conversion.

The program does not perform range or bounds checking. Only the error
checking that shows the mapping of VAX C to RMS is performed. Any other
errors are considered fatal.

The program is divided into the following sections:

• External data declarations and definitions

• Main program section

• Function to initialize the RMS data structures ~~

• Internal functions to open the file, display HELP information, pad the
records, and process fatal errors

• Utility functions

— ADD

— DELETE

— TYPE

— PRINT

— UPDATE

To run this program, perform the following steps:

1. Create a source file. The name of the source file in this example is
RMSEXP. C. For more information about creating source files, see
Chapter 1.

2. Compile the source file with the following command:

$ CC RMSEXP RETURN

For more information about the compiling process, see Chapter 1.

Using VAX Record Management Services 12-13

3. Link the program with the following command:

$ LINK RMSEXP, SYS$LIBRARY:VAXCRTL/LIB RETURN

For more information about the linking process, see Chapter 1.

4. Because the program expects command line arguments, it must be
defined as a foreign command. You can do this with the following
command line:

$ RMSEXP :__ $device:[directory)RMSEXP RETURN

The identifier device is the logical or physical name of the device
containing your directory; the identifier directory is the name of your
directory. The device name must be preceded by the dollar sign ($) to be
recognized as a foreign command by the DCL interpreter.
For more information about foreign commands, see Chapter 1.

5. Run the program using the following foreign command:

$ RMSEXP filename RETURN

The complete listing (by section) of the example program follows. Notes on
each section are keyed to the numbers in the listing.

Example 12-1 shows the external data declarations and definitions.

Example 12-1: External Data Declarations and Definitions

/* This segment of RMSEXP.0 contains external data
* definitions.

Q #include rms
#include stdio
#include ssdef

® define DEFAULT FILE NAME ".dat"

#define RECORD SIZE (sizeof record)
define SIZE_SSN 15
define SIZE_LNAME 25

#define SIZE_FNAME 25
define SIZE_COMMENTS 15

#define KEY_SIZE ~
(SIZE SSN > SIZE LNAME ? SIZE SSN: SIZE LNAME)

© struct FAB fab;
struct RAB rab;
struct XABKEY primary_key,alternate_key;

(continued on next page)

12-14 Using VAX Record Management Services

Example 12-1 (Cont.): External Data Declarations and Definitions

struct
{

char ssn[SIZE_SSN], last_name[SIZE_LNAME];
char first_name[SIZE_FNAME],

comments [SIZE COMMENTS] ;
} record;

© char response[BUFSIZ],*filename;

int rms status;

Key to Example 12-1:

0 The rms module defines the RMS data structures. The stdio module
contains the Standard UO definitions. The ssdef module contains the
system services definitions.

© Preprocessor variables and macros are defined. A default file extension
.DAT is defined.
The sizes of the fields in the record are also defined. Some (such as the
social security number field) are given a constant length. Others (such as
the record size) are defined as macros; the size of the field is determined
with the sizeof operator. VAX C evaluates constant expressions, such
as KEY SIZE, at compile time. No special code is necessary to calculate
this value.

© Static storage for the RMS data structures is declared. The file access
block, record access block, and extended attribute block types are defined
by the RMS module. One extended attribute block is defined for the
primary key and one is defined for the alternate key.

~ The records in the file are defined using a structure with four fields of
character arrays.

© The BUFSIZ constant is used to define the size of the array that will be
used to buffer input from the terminal. The file-name variable is defined
as a pointer to char.

O The variable rms_status is used to receive RMS return status informa-
tion. After each function call, RMS returns status information as an
integer. This return status is used to check for specific errors, end-of--file,
or successful program execution.

Using VAX Record Management Services 12-15

The main function, shown in Example 12-2, controls the general flow of the
program.

Example 12-2: Main Program Section

/* This segment of RMSEXP.0 contains the main function
* and controls the flow of the program.

0 main(argc,argv)
int argc;
char **argv;
{

© if (argc < 1 1 1 argc > 2)
printf("RMSEXP - incorrect number of arguments");

else
{

printf("RMSEXP - Personnel Database \
Manipulation Example\n");

filename = (argc == 2 ? *++argv "personnel.dat");

initialize(filename);

open file () ;

for(;;)
{

0

0

? for help : ") ;
printf ("\ nEnter option (A, D, P, T, U) or

gets response);
if (feof (stdin))

break;
printf ("\ n\ n") ;

switch (response [0])
{

case ' a' : case ' A' : add employee () ;
break;

case ' d' : case ' D' : delete -employee () ;
break;

case ' P' case ~p~ print employees();
break;

case ' t' : case ' T' : type employees () ;
break;

case 'u': case 'U': update employee();
break;

default: printf("RMSEXP - \
Unknown Operation.\n");

(continued on next page)

12-16 Using VAX Record Management Services

Example 12-2 (Cont.): Main Program Section

case ' ?' : case ' \ 0'
type options();

}
}

rms status = sys$close(&fab);

if (rms status != RMS$ NORMAL)
error exit("$CLOSE");

}

}

Key to Example 12-2:

Q The main function is entered with two parameters. The first is the
number of arguments used to call the program; the second is a pointer to
the first argument (file name).

© This statement checks that you used the correct number of arguments
when invoking the program.

© If a file name is included in the command line to execute the pro-
gram, that file name is used. If a file extension is not given, .DAT is
the file extension. If no file name is specified, then the file name is
PERSONNEL.DAT.

~ The file access block, record access block, and extended attribute blocks
are initialized.

© The file is opened using the RMS sys$open function.

0 The program displays a menu and checks for end-of--file (the character
CTRL/Z).

~ A switch statement and a set of case statements control the function to
be called, determined by the response from the terminal.

The program ends when CTRL/Z is entered in response to the menu. At
that time, the RMS sys$close function closes the employee file.

O The rms_status variable is checked for a return status of RMS$_
NORMAL. If the file is not closed successfully, then the error-handling
function terminates the program.

Example 12-3 shows the function that initializes the RMS data structures.
See the RMS documentation for more information about the file access block,
record access block, and extended attribute block structure members.

Using VAX Record Management Services 12-17

Example 12-3: Function Initializing RMS Data Structures

/* This segment of RMSEXP.0 contains the function that
* initializes the RMS data structures.

initialize(char *fn);
{

Q fab = cc$rms fab;

0

fab. fab$b bks~= 4;
fab.fab$1_dna = DEFAULT_FILE_NAME;

fab.fab$b_dns = sizeof DEFAULT_FILE_NAME -1;

fab.fab$b_fac = FAB$M_DEL ~ FAB$M_GET ~
FAB$M_PUT ~ FAB$M_UPD;

fab. fab$1_fna = fn;
fab. fab$b fns = strlen (fn) ;

fab. fab$1_fop = FAB$M_CIF;
fab.fab$w_mrs = RECORD_SIZE;

fab.fab$b_org = FAB$C_IDX;

fab. fab$b_rat = FAB$M_CR;
fab.fab$b_rfm = FAB$C_FIX;
fab.fab$b_shr = FAB$M_NIL;
fab.fab$1_xab = &primary key;

/* Initialize FAB

rab = cc$rms rab; /*

rab.rab$1 fab = &fab;

primary key = cc$rms_xabkey; /*
*

primary_key.xab$b_dtp
primary_key.xab$b_flg

primary_key.xab$w_pos0

primary_key.xab$b_ref
primary_key.xab$b_siz0
primary_key.xab$1_nxt
primary_key.xab$1_knm

Number

}

~.

= XAB$C STG;
= 0;

_ (char *) &record.ssn -
(char *)

= 0;
= SIZE_SSN;

_ &alternate key;
_ "Employee Social Security \

Initialize RAB */

Initialize Primary *

Key XAB */

&record;

alternate key = cc$rms_xabkey; /* Initialize Alternate
* Key XAB

alternate_key.xab$b_dtp = XAB$C_STG;

alternate_key.xab$b_flg = XAB$M_DUP ~ XAB$M_CHG;
alternate_key.xab$w~os0 = (char *) &record.last_name

(char *) & record;
alternate_key.xab$b_ref = 1;
alternate_key.xab$b_siz0 = SIZE_LNAME;

alternate_key.xab$1_knm = "Employee Last Name \

Key to Example 12-3:

Q The prototype cc$rms fab initializes the file access block with default
values. Some members have no default values; they must be initialized.

12-18 Using VAX Record Management Services

Such members include the file-name string address and size. Other
members can be initialized to override the default values.

© This statement initializes the file-processing options member with the
create-if option. A file is created if one does not exist.

© This statement initializes the record attributes member with the
carriage-return control attribute. Records are terminated with a car-
riage return/line feed when they are printed on the printer or displayed
at the terminal.

Q The prototype cc$rms_rab initializes the record access block with the
default values. In this case, the only member that must be initialized is
the rab$1_fab member, which associates a file access block with a record
access block.

Q The prototype cc$rms_xabkey initializes an extended attribute block for
one key of an indexed file.

O The position of the key is specified by subtracting the offset of the
member from the base of the structure.

O A separate extended attribute block is initialized for the alternate key.

This statement specifies that more than one alternate key can contain
the same value (XAB$M_DUP), and that the value of the alternate key
can be changed (XAB$M_CHG).

O The key-name member is padded with blanks because it is afined-length,
32-character field.

Example 12-4 shows the internal functions for the program.

Using VAX Record Management Services 12-19

Example 12-4: Internal Functions

/* This segment of RMSEXP.0 contains the functions that

* control the data manipulation of the program.

open file ()
{

0 rms_status = sys$create(&fab);

if (rms status != RMS$ NORMAL &&

rms_status != RMS$ CREATED)

error exit ("$OPEN") ;

if (rms status == RMS$ CREATED)
printf (" [Created new data file.] \n") ;

rms_status = sys$connect(&rab);
if (rms status != RMS$ NORMAL)

error exit ("$CONNECT") ;
}

© type options()
{

printf("Enter one of the following:\n\n");
printf ("A Add an employee . \ n") ;
printf("D Delete an employee specified by SSN.\n");
printf("P Print employee (s) by ascending SSN on \

line printer.\n");

printf("T Type employee (s) by ascending last name \
on terminal.\n");

printf("U Update employee specified by SSN.\n\n");
printf("? Type this text.\n");
printf("^Z Exit this program.\n\n");

}

0 pad record()
{

int i;

for(i = strlen(record.ssn); i < SIZE_SSN; i++)
record.ssn[i] _ ';

for(i = strlen(record.last name); i < SIZE LNAME; i++)

record. last_name [i] _ ' +' ;
for(i = strlen(record.first_name); i < SIZE FNAME; i++)

record.first_name[i] _ ';
for (i = strlen (record. comments) ; i < SIZE_COMMENTS; i++)

record .comments [i] _ '
}

/* This subroutine is the fatal error-handling routine.

*

*~

*

(continued on next page)

12-20 Using VAX Record Management Services

Example 12-4 (Copt.): Internal Functions

© error exit (operation)
char *operation;
{

printf ("RMSEXP - file os failed (%s) \n",
operation, filename);

exit(rms status);
}

Key to Example 12-4:

O The open_file function uses the RMS sys$create function to create the
file, giving the address of the file access block as an argument. The
function returns status information to the rms status variable.

© The RMS sys$connect function associates the record access block with
the file access block.

© The type_options function, called from the main function, prints help
information. Once the help information is displayed, control returns to
the main function, which processes the response that is typed at the
terminal.

~ For each field in the record, the pad_record function fills the remaining
bytes in the field with blanks.

© This function handles fatal errors. It prints the function that caused the
error, returns a VMS error code (if appropriate}, and exits the program.

Example 12-5 shows the function that adds a record to the file. This func-
tion is called when ~ a~ or ~ A~ is entered in response to the menu.

Using VAX Record Management Services 12-21

Example 12-5: Utility Function: Adding Records

/* This segment of RMSEXP.0 contains the function that
* adds a record to the file.

add_employee()
{

do
{

printf (" (ADD) Enter Social Security Number \ ") ;

gets(&response);
}

while (strlen (response) _= 0) ;

strncpy(record.ssn,response,SIZE_SSN);

do
{

printf (" (ADD)

gets response);

Enter Last Name \");

}
while (strlen (response) _= 0) ;

strncpy(record.last_name,response,SIZE_LNAME);

do
{

printf("(ADD) Enter First Name \");

gets response);
}

while (strlen (response) _= 0) ;

strncpy(record.first_name,response,SIZE_FNAME);

do
{

printf (" (ADD) Enter Comments \ ") ;

gets response);
}

while (strlen (response) _= 0) ;

strncpy (record. comments, response, SIZE_COMMENTS) ;

pad record();

rab.rab$b_rac = RAB$C KEY;
rab.rab$1_rbf = &record;
rab.rab$w rsz = RECORD SIZE;

(continued on next page)

12-22 Using VAX Record Management Services

Example 12-5 (Cont.): Utility Function: Adding Records

rms_status = sys$put(&rab);

if (rms status != RMS$ NORMAL && rms_status !_

RMS$ DUP && rms_status != RMS$ OK DUP)

error_exit("$PUT");
else

if (rms status == RMS$ NORMAL ~ ~ rms_status =_
RMS$ OK DUP)

printf("[Record added successfully.]\n");

else
printf("RMSEXP - Existing employee with same SSN, \

not added . \ n") ;
}

Key to Example 12-5:

O A series of do loops controls the input of information. For each field in
the record, a prompt is displayed. The response is buffered and the field
is copied to the structure.

© When all fields have been entered, the pad_record function pads each
field with blanks.

® Three members in the record access block are initialized before writing
the record. The record access member (rab$b_rac) is initialized for keyed
access. The record buffer and size members (rab$1_rbf and rab$w_rsz)
are initialized with the address and size of the record to be written.

D The RMS sys$put function writes the record to the file.

© The rms_status variable is checked. If the return status is normal, or
if the record has a duplicate key value and duplicates are allowed, the
function prints a message stating that the record was added to the file
Any other return value is treated as a fatal error causing error_exit to
be called.

Example 12-6 shows the function that deletes records. This function is
called when ~ d~ or ~ D ~ is entered in response to the menu.

Using VAX Record Management Services 12-23

Example 12-6: Utility Function: Deleting Records

/* This segment of RMSEXP.0 contains the function that
* deletes a record from the file.

delete_employee()
{

int i;

O do
{

printf("(DELETE) Enter Social Security Number
gets response);
i = strlen(response);

}

while (i == 0) ;

© while(i < SIZE_SSN)

response [i++~ _ '

© rab.rab$b_krf = 0;
rab.rab$1_kbf = &response;
rab.rab$b_ksz = SIZE_SSN;
rab.rab$b rac = RAB$C KEY;

0 rms status = sys$find(&rab);

© if (rms status != RMS$ NORMAL && rms_status != RMS$ RNF)
error_exit ("$FIND") ;

else
if (rms status == RMS$ RNF)

printf("RMSEXP - specified employee does not \
exist . \ n") ;

else
{

}
}

rms_status = sys$delete(&rab);
if (rms status != RMS$ NORMAL)

error exit ("$DELETE") ;

Key to Example 12--6:

O Ado loop prompts you to type asocial security number at the terminal
and places the response in the response buffer.

© The social security number is padded with blanks.

© Some members in the record access block must be initialized before the
program can locate the record. Here, the key of reference (0 specifies
the primary key), the location and size of the search string (this is the
address of the response buffer and its size), and the type of record access
(in this case, keyed access) are given.

12-24 Using VAX Record Management Services

O The RMS sys$find function locates the record specified by the social
security number entered from the terminal.

Q The program checks the rms_status variable for the values RMS$_
NORMAL and RMS$_RNF (record not found). A message is displayed if
the record cannot be found. Any other error is a fatal error.

O The RMS sys$delete function deletes the record. The return status is
checked only for success.

The type_employees function in Example 12-7 displays the employee file at
the terminal. This function is called from the main function when ~ t ~ or ~ T
is entered in response to the menu.

Example 12-7: Utility Function: Typing the File

/* This segment of RMSEXP.0 contains the function that
* displays a single record at the terminal.

type employees()
{

0 int number employees;

© rab.rab$b krf = 1;

© rms_status = sys$rewind(&rab);
if (rms_status != RMS$ NGRMAL)

error exit("$REWIND");

Q printf ("\ n\ nEmployees (Sorted by Last Name) \ n\ n") ;
printf("Last Name First Name SSN \

Comments \ n") ;

printf (" \
 \n\n"):

© rab.rab$b_rac = RAB$C SEQ;

rab.rab$1_ubf = &record;
rab.rab$w usz = RECORD SIZE;

Q for (number employees = 0; number employees++)

{

rms_status = sys$get(&rab);
if (rms_status != RMS$ NORMAL && rms_status !_

RMS$ EOF)

error_exit("$GET");
else

if (rms_status == RMS$ EOF)

break;

(continued on next page)

Using VAX Record Management Services 12-25

Example 12-7 (Cont.): Utility Function: Typing the File

printf (" o . *s o . *s% . *s o . *s\ n",
SIZE_LNAME, record.last_name,
SIZE_FNAME, record.first_name,
SIZE_SSN, record.ssn,
SIZE COMMENTS, record. comments);

}

© if (number employees)
printf("\nTotal number of employees = %d.\n",

number employees);
else

printf (" [Data file is empty.] \n") ;
}

Key to Example 12-7:

O A running total of the number of records in the file is kept in the
number_employees variable.

Q The key of reference is changed to the alternate key so that the employ-
ees are displayed in alphabetical order by last name.

© The file is positioned to the beginning of the first record according to the
new key of reference, and the return status of the sys$rewind function is
checked for success.

Q A heading is displayed.

© Sequential record access is specified, and the location and size of the
record is given.

Q A for loop controls the following operations:

• Incrementing the number employees counter

• Locating a record and placing it in the record structure, using the
RMS sys$get function

• Checking the return status of the RMS sys$get function

• Displaying the record at the terminal

© This if statement checks for records in the file. The result is a display of
the number of records or a message indicating that the file is empty.

Example 12--8 shows the function that prints the file on the printer. This
function is called by the main function when ~ p ~ or ~ P ~ is entered in
response to the menu.

12-26 Using VAX Record Management Services

Example 12-8: Utility Function: Printing the File

/* This segment of RMSEXP.0 contains the function that
* prints the file.

print employees()
{

int number employees;
FILE. *fp;

0

0

0

r"1

fp = fopen("personnel.lis",

i f (fp == NULL)
{

file") ;

}

~~ w ~~ "rat=cr",
"rfm=var", "fop=spl") ;

perror("RMSEXP - failed opening listing \

exit (SS$ NORMAL) ;

rab. r.ab$b krf = 0;

rms_status = sys$rewind(&rab);
if (rms status != RMS$ NORMAL)

error exit("$REWIND");

fprintf (fp, "\ n\ nEmployees (Sorted by SSN) \ n\ n") ;
fprintf(fp,"Last Name First Name SSN \

Comments \ n") ;

fprintf (fp, " \
 \n\n") ;

rab.rab$b_rac = RAB$C SEQ;

rab.rab$1_ubf = &record;
rab.rab$w usz = RECORD SIZE;

for (number employees = 0; number employees++)
{

rms_status = sys$get(&rab);
if (rms status != RMS$ NORMAL &&

rms_status != RMS$rEOF)
error_exit("$GET");

else
if (rms status == RMS$ EOF

break;

(continued on next page)

Using VAX Record Management Services 12-27

Example 12-8 (Cont.): Utility Function: Printing the File

(°

fprintf fp, "o.*so.*so.*so.*s",
SIZE_LNAME,record.last_name,
SIZE_FNAME,record.first_name,
SIZE_SSN,record.ssn,
SIZE COMMENTS, record. comments);

}

© if (number employees)

fprintf (fp, "Total number of employees = od. \n",
number employees);

else
fprintf (fp, " [Data file is empty.] \n") ;

fclose (fp) ;
printf("[Listing file\"personnel.lis\"spooled to \

SYS$PRINT.]\n");
}

Key to Example 12-8:

Q This function creates a sequential file with carriage-return-control,
variable-length records. It spools the file to the printer when the file
is closed. The file is created using the Standard UO Run-Time Library
function fopen, which associates the file with the file pointer, fp.

© The key of reference for the indexed file is the primary key.

© The RMS sys$rewind function positions the file at the first record. The
return status is checked for success.

Q A heading is written to the sequential file using the Standard UO
function fprintf.

© The record access, user buffer address, and user buffer size members
of the record access block are initialized for keyed access to the record
located in the record structure.

O A for loop controls the following operations:
• Initializing the running total and then incrementing the total at

each iteration of the loop
• Locating the records and placing them in the record structure with

the RMS sys$get function, one record at a time
• Checking the rms_status information for success and end-of--file
• Writing the record to the sequential file

O The number employees counter is checked. If it is 0, a message is
printed indicating that the file is empty. If it is not 0, the total is printed
at the bottom of the listing.

12-28 Using VAX Record Management Services

The sequential file is closed. Since it has the spl record attribute, the file
is automatically spooled to the printer. The function displays a message
at the terminal stating that the file was successfully spooled.

Example 12-9 shows the function that updates the file. This function is
called by the main function when ~ u ~ or ~ U ~ is entered in response to the
menu.

Example 12-9: Utility Function: Updating the File

/* This segment of RMSEXP.0 contains the function that
* updates the file.

update employee ()
{

int i;

do
{

printf("(UPDATE) Enter Social Security Number\

gets response);
i = strlen(response);

}

while (i == 0) ;

while(i < SIZE_SSN)
response [i++] _ ~

rab.rab$b_krf = 0;
rab.rab$1_kbf = &response;
rab.rab$b_ksz = SIZE_SSN;

rab.rab$b_rac = RAB$C KEY;

rab.rab$1_ubf = &record;
rab.rab$w usz = RECORD SIZE;

rms_status = sys$get(&rab);

if (rms status != RMS$ NORMAL && rms_status != RMS$ RNF)

error_exit("$GET");
else

if (rms status == RMS$ RNF)
printf("RMSEXP - specified employee does not \

exist.\n");

else
{

printf("Enter the new data or RETURN to leave \
data unmodified. \ n\ n") ;

(continued on next page)

Using VAX Record Management Services 12-29

Example 12-9 (Copt.): Utility Function: Upda#ing the File

printf ("Last Name: ") ;
gets (response) ;
if (strlen (response))

strncpy(record.last_name, response,
SIZE LNAME);

printf ("First Name: ") ;
gets (response);
if (strlen (response))

strncpy(record.first_name, response,
SIZE FNAME);

printf ("Comments : ") ;
gets (response) ;
if (strlen (response))

strncpy (record. comments, response,
SIZE COMMENTS);

pad record();

rms_status = sys$update(&rab);
if (rms status != RMS$ NORMAL)

error exit ("$UPDATE") ;

printf("[Record has been successfully \
updated .] \ n") ;

}
}

Key to Example 12-9:

i1 Ado loop prompts for the social security number and places the response
in the response buffer.

© The response is padded with blanks so that it will correspond to the field
in the file.

© Some of the members in the record access block are initialized for the
operation. The primary key is specified as the key of reference, the
location and size of the key value are given, keyed access is specified,
and the location and size of the record are given.

~ The RMS sys$get function locates the record and places it in the
record structure. The function checks the rms_status value for RMS$_
NORMAL and RMS$_RNF (record not found). If the record is not found,
a message is displayed. If the record is found, the program prints
instructions for updating the record.

12-30 Using VAX Record Management Services

© For each field (except the social security number, which cannot be
changed), the program displays the current value for that field. If you
press the RETURN key, the record is placed in the record structure
unchanged. If you make a change to the record, the new information is
placed in the record structure.

O The fields in the record are padded with blanks.
The RMS sys$update function rewrites the record. The program then
checks that the update operation was successful. Any error causes the
program to call the fatal error-handling routine.

Using VAX Record Management Services 12-31

Chapter 13

Using VAX C in the Common Language
Environment

The VAX C compiler is part of the VMS common language environment.
This environment defines certain calling procedures and guidelines
that allow you to call routines written in different languages from VAX
C programs, to call VAX C functions from programs written in other
languages, or to call prewritten system routines from VAX C programs. You
can call any one of the following routine types from VAX C:

• Routines written in other VAX languages

• VMS RTL routines

• VMS system services

• VMS utility routines

The terms routine, procedure, and function are used throughout this
chapter. A routine is a closed, ordered set of instructions that performs one
or more specific tasks. Every routine has an entry point (the routine name),
and optionally an argument list. Procedures and functions are specific types
of routines: a procedure is a routine that does not return a value; a function
is a routine that returns a value by assigning that value to the function's
identifier.

System routines are prewritten VMS routines that perform common tasks,
such as finding the square root of a number or allocating virtual memory.
You can call any system routine from your program, provided that VAX
C supports the data structures required to call the routine. The system
routines used most often are VMS RTL routines and system services.
System routines, which are discussed later in this chapter, are documented
in detail in the VMS Run-Time Library Routines Volume and the VMS
System Services Reference Manual.

Using VAX C in the Common Language Environment 13-1

This chapter discusses the following topics:

• The VAX Procedure Calling and Condition Handling Standard
(Section 13.1)

• Specifying parameter-passing mechanisms (Section 13.2)

• VAX C default parameter-passing mechanisms (Section 13.2.4)

• Interlanguage calling (Section 13.3}
• VMS RTL routines (Section 13.5)

• VMS system services routines (Section 13.6)

• Calling routines (Section 13.7)

• Variable-length argument lists in system services (Section 13.8)

• Return status values (Section 13.9)
• Examples of calling system routines (Section 13.10)

13.1 The VAX Procedure Calling and Condition Handling
Standard

The VAX Procedure Calling and Condition Handling Standard describes
the concepts used by all VAX languages to invoke routines and pass data
between them. The following attributes are specified by the VAX Procedure
Calling and Condition Handling Standard:

• Register usage
• Stack usage
• Function return value
• Argument list

The following sections discuss these attributes in more detail. The VAX
Procedure Calling and Condition Handling Standard also defines such
attributes as the calling sequence, the argument data types and descriptor
formats, condition handling, and stack unwinding. These attributes are
discussed in detail in the Introduction to VMS System Routines.

13-2 Using VAX C in the Common Language Environment

13.1.1 Register and Stack Usage

The VAX Procedure Calling and Condition Handling Standard defines
several registers and their uses, as listed in Table 13-1.

Table 13-1: VAX Register Usage

Register Use

PC Program counter

SP Stack pointer

FP Current stack frame pointer

AP Argument pointer

R1 Environment value (when necessary)

R0, R 1 Function return value registers

By definition, any called routine can use registers R2 through R11 for
computation, and the AP register as a temporary register.

In the VAX Procedure Calling and Condition Handling Standard, a stack is
defined as a last-in/first-out (LIFO temporary storage area that the system
allocates for every user process. The system keeps information about each
routine call in the current image on the call stack. Then, each time you
call a routine, the system creates a structure on this call stack, known as
the call frame. The call frame for each active process contains the following
data:

• A pointer to the call frame of the previous routine call. This pointer
corresponds to the frame pointer (FP).

• The argument pointer (AP) of the previous routine call.

• The storage address of the point at which the routine was called; that is,
the address of the instruction following the call to the current routine.
This address is called the program counter (PC).

• The contents of other general registers. Based on a mask specified in
the control information, the system restores the saved contents of these
registers to the calling routine when control returns to it.

When a routine completes execution, the system uses, the frame pointer
in the call frame of the current routine to locate the frame of the previous
routine. The system then removes the call frame of the current routine from
the stack.

Using VAX C in the Common Language Environment 13-3

Figure 13-1 shows the call stack and several call frames. Function A calls
function B, which calls function C. When a function reaches a return
statement or when control reaches the end of the function, the system uses
the frame pointer in the call frame of the current function to locate the
frame of the previous function. It then removes the call frame of the current
function from the stack.

Figure 13-1: The Call Stack

 A

1 1

31

0

Mask PSW

AP

FP

PC

R2

R11

0 -initial zero value (set by
hardware): set to non-
zero if routine either
has exception handler
or can generate a
predefined exception

AP - copy of argument pointer
for function A

FP -pointer to A's call frame
PC -memory location in A at

which B was invoked
R2 -contents of A's general
• registers R2 through R 11

R11

ZK-0090—G E

13-4 Using VAX C in the Common Language Environment

13.1.2 Return of the Function Value

A function is a routine that returns a single value to the calling routine.
The function value represents the value of the expression in the return
statement. According to the VAX Procedure Calling and Condition Handling
Standard, a function value may be returned as either an actual value or a
condition value that indicates success or failure.

13.1.3 The Argument List

The VAX Procedure Calling and Condition Handling Standard also defines a
data structure called the argument list. An argument list is a collection of
longwords in memory that represents a routine parameter list and possibly
includes a function value. You use an argument list to pass information to
a routine and receive results. Figure 13-2 shows the structure of a typical
argument list.

Figure 13-2: Structure of a VAX Argument List

0 n

arg 1

arg2

argn

ZK-5503-G E

The first longword must be present; this longword stores the number of
arguments (the argument count: n) as an unsigned integer value in the low
byte of the longword with a maximum of 255 arguments. The remaining 24
bits of the first longword are reserved for use by DIGITAL and should be 0.

Using VAX C in the Common Language Environment 13-5

The longwords labeled argl through argn are the actual parameters, which
can be any of the following addresses or value:

• An uninterpreted 32-bit value that is passed by value

• An address that is passed by reference

• An address of a descriptor that is passed by descriptor

The argument list contains the parameters that are passed to the routine.
Depending on the passing mechanisms for these parameters, the forms of
the arguments contained in the argument list vary. For example, if you
pass three arguments, the first by value, the second by reference, and the
third by descriptor, the argument list would contain the value of the first
argument, the address of the second, and the address of the descriptor of the
third. Figure 13-3 shows this argument list.

Figure 13-3: Example of a VAX Argument List

0 3

value of the first parameter

address of the second parameter

address of descriptor of the third parameter

ZK-5504—G E

For additional information on the VAX Procedure Calling and Condition
Handling Standard, see the Introduction to VMS System Routines.

13.2 Specifying Parameter-Passing Mechanisms

When you pass data between routines that are not written in the same VAX
language, you have to specify how you want that data to be represented and
interpreted. You do this by specifying a parameter passing mechanism.

The calling standard defines three ways to pass data in an argument list.
When you code a reference to a non-VAX C procedure, you must know how
to pass each argument and write the function reference accordingly.

13-6 Using VAX C in the Common Language Environment

The following list describes the three argument-passing mechanisms:

• By immediate value
When an argument is passed by immediate value, the actual value
of the argument is present in the argument list. This is the default
argument-passing mechanism for all function references written in
VAX C.

• By reference
When an argument is passed by reference, the address of the argument
is present in the argument list. Use the VAX C ampersand operator (&)
to pass the address of an argument, or pass a pointer to the argument
by value.

• By descriptor
When an argument is passed by descriptor, the address of a data
structure describing the argument is present in the argument list. From
a VAX C program, you pass a descriptor first by creating a structure
(struct) that meets the descriptor requirements of the called procedure
and then by passing the structure's address with the ampersand
operator or by passing a pointer to that structure by value.

NOTE

In the C programming language environment, you can take
the address of an argument and use that address to access
the values of subsequent arguments in that argument list,
operating on the assumption that the compiler did not
propagate any of the arguments to registers. This is possible
using the current implementation of VAX C.
However, accessing an argument list is not an advisable
practice in the VMS environment under the VAX Calling
Standard. Also, accessing argument lists in this manner is
not portable and may not be possible in future releases of
VAX C. For an alternate method of accessing variable-length
argument lists in the VMS environment, see LIB$CALLG in
the VMS Run-Time Library Routines Volume.

The following sections outline each of these parameter-passing mechanisms
in more detail.

Using VAX C in the Common Language Environment 13-7

13.2.1 Passing Arguments by Immediate Value

By default, all values or expressions in a VAX C function's argument list are
passed by immediate value. The expressions are evaluated and the results
placed directly in the argument list of the CALL machine instruction.

The following statement declares the entry point of the Set Event Flag
SYS$SETEF system service, which is used to set a specific event flag to 1:

/* Declare the function as a function returning type int.

int SYS$SETEF();

*/

The Set Event Flag system service call requires one argument the number
of the event flag to be set to be passed by immediate value. VAX C converts
linker-resolved variable names (such as the entry-point names of system
service calls) to uppercase. You do not have to declare them in uppercase in
your program. However, linker-resolved variable names must be declared
and used with identical cases in each module. The documentation uses
uppercase as a convention for referring to system service calls to highlight
them in the text and examples.

Like all system services, SYS$SETEF returns an integer value (the return
status of the service) in register 0. Most system services return an integer
completion status; therefore, the system service does not always have to
be declared before it is used. The examples in this chapter declare system
services for completeness.

VAX C does not require you to declare a function or to specify the number
or types of the function's arguments. However, if you call a function without
declaring it or without providing argument information in the declaration,
VAX C does not check the types of the arguments in a call to that function.
If you declare a function prototype, the compiler does check the arguments
in a call to make sure that they have the same type. (See Section 5.3 for
more information on function prototypes.)

In the VMS System Services Volume, you can find the specification of
each service's arguments. SYS$SETEF, for example, takes one argument,
an event flag number. It returns one of four status values, which are
represented by the fsymbolic constants shown in Table 13-2.

13-8 Using VAX C in the Common Language Environment

Table 13-2: Status Values of SYS$SETEF

Returned Status Description

SS$_WASCLR Success Flag was previously clear

SS$_WASSET Success Flag was previously set

SS$_ILLEFC Failure Illegal event flag number

SS$_UNASEFC Failure Event flag not in associated cluster

The system services manual also defines event flags as integers in the range
0 to 127, grouped in clusters of 32. Clusters 0 and 1, comprising flags 0 to
31 and 32 to 63, respectively, are local clusters available to any process, with
the restriction that flags 24 to 31 are reserved for use by the VMS system.
There are many ways of passing valid event flag numbers from your VAX
C program to SYS$SETEF. One way is to use enum to define a subset of
integers, as follows:

enum cluster0 {completion, breakdown, beginning} event;

After the flag numbers are defined, call the SYS$SETEF service with the
following code:

int status;

event = completion;

status = SYS$SETEF(event); /* Set event flag */

Figure 13-4 shows an argument being passed by immediate value; in this
case, the event flag number passed to SYS$SETEF.

Using VAX C in the Common Language Environment 13-9

Figure 13--4: Passing Arguments by Immediate Value

main()

SYS$SETEF (4) ;

Argument pointer (AP)

number of arguments:

first argument:

1

4

ZK-0092-G E

Since argument lists consist of longwords, the calling standard dictates that
immediate-value arguments be expressed in 32 bits. Asingle-precision,
floating-point (F_floating) value is only 32 bits long, but all arguments of
type float are promoted by VAX C to double (64 bits on a VAX) unless a
function prototype declaration is used for the called function. This double-
precision value is passed as two immediate values (two longwords).

NOTE

The passing of double-precision immediate values is a violation of
the VAX Calling Standard, but is an allowed exception for VAX C.

On rare occasions, the float-to-double promotion requires some additional
programming. For instance, the function OTS$POWRJ, in the VAX Common
Run-Time Procedure Library, computes the value of a floating-point number
raised to the power of a signed longword (in VAX C terms, a float to the
power of an int). This function (and others like it) is called implicitly by
high-level VAX languages that have an exponentiation operator as part of
the language. It requires that both its arguments be passed as immediate
values, and it returns asingle-precision (float) result. To pass afloating-
point base to the procedure, you must use some method to avoid promoting
float arguments. The recommended method is to declare the procedure
using a function prototype declaration, as shown in Example 13-1.

13-10 Using VAX C in the Common Language Environment

Example 13-1: Passing Floating-Point Arguments by Immediate Value

/* This program shows how to pass a floating-point value,
* using prototypes to avoid promoting floating
* arguments to arguments of type double. */

#include stdio

/* This declared function returns a value of type float. It
* should be called as follows: OTS$POWRJ(base, power),
* where base is of type float and power is of type int. */

float OTS$POWRJ(float, int);

main ()
{

/* To hold result of
* OTS$POWRJ

float result;
int power; /* Power argument

float base;

base = 3.145;
power = 2;
result = OTS$POWRJ(base, power);

print f ("Result= o f ~ n" , result) ;
}

/* Assign constant to base

*
*/

*/

*/

Most run-time functions that operate on floating-point values take their
arguments by reference, so a prototype is not usually necessary. In addition,
the example does not show the methods for handling arithmetic errors
that result from the operation performed. For more information on error
handling in this context, and on the run-time library in general, see the
VMS Run-~me Library Routines Volume.

When you pass a parameter by value, you pass a copy of the parameter
value to the routine instead of passing its address. Because the actual value
of the parameter is passed, the routine does not have access to the storage
location of the parameter; therefore, any changes that you make to the
parameter value in the routine do not affect the value of that parameter in
the calling routine.

13.2.2 Passing Arguments by Reference

Some system services and run-time library procedures expect arguments
passed by reference. This means that the argument list contains the address
of the argument rather than its value. This mechanism is also used by
default by some programming languages, such as PL/I, and is available as
an option in others, such as Pascal.

Using VAX C in the Common Language Environment 13-11

In VAX C, you can use the ampersand operator (&) to pass an argument by
reference; that is, the ampersand operator causes the argument's address to
be passed. Note that an array name without brackets or a function name
without parentheses in an argument list always results in passing the
address of the array or function; the ampersand is unnecessary. You can
also pass a pointer by value, which is the same as passing the item it points
to by reference.

In the special case of argument lists, VAX C allows the ampersand operator
to be used on constants as well. You should limit this use of the ampersand
solely to calls to VMS system functions to ensure portability of your VAX C
programs to other C compilers.

For example, the Read Event Flags (SYS$READEF) system service requires
that its first argument be passed by immediate value and its second
argument be passed by reference. SYS$READEF returns the status of all
the event flags in a particular cluster. (Event flags are numbered from 0 to
127 and arranged in clusters of 32, such that flags 0 to 31 comprise cluster
0, flags 32 to 63, cluster 1, and so forth.)

The first SYS$READEF argument is any event flag number in the cluster
of interest. The second argument is the address of a longword that receives
the status of all 32 event flags in that cluster. In addition to the event-flag
status value, the system service returns one of the status values shown in
Table 13-3 expressed as a global symbol.

Table 13-3: Status Values of SYS$READEF

Returned Status Description

SS$_WASCLR Success Specified event flag was clear

SS$_WASSET Success Specified event flag was set

SS$_ACCVIO Failure Could not write to status longword

SS$_ILLEFC Failure Event flag number was illegal

SS$_UNASEFC Failure Cluster of interest not accessible

Example 13-2 shows a call to the SYS$READEF system service from a
VAX C program.

13-12 Using VAX C in the Common Language Environment

Example 13-2: Passing Arguments by Reference

/* This program shows how to call system service SYS$READEF.

#include ssdef

#include stdio

int SYS$READEF();

main ()
{

unsigned cluster status;

int return status;

enum cluster0
{

*/

/* Longword that receives

* the status of the

* event flag cluster */

/* Status: SYS$READEF */

/* Argument values for

* SYS$READEF */

completion, breakdown, beginning

} event;

event = completion; /* Event flag in cluster 0 */

/* Obtain status of

* cluster 0. Pass value

* of event and address

* of cluster status. */

return status = SYS$READEF(event, &cluster status);

/* Check for successful

* call */

if (return status != SS$WASCLR && return status != SS$WASSSET)
{

}

else
{

}

}

/* Handle the error here.

/* Check bits of interest in cluster status here.

*/

*/

Using VAX C in the Common Language Environment 13-13

~i 3.2.3 Passing Arguments by Descriptor

A descriptor is a structure that describes the data type, size, and address of
a data structure. According to the VAX Calling Standard, you must pass a
descriptor by placing its address in the argument list. To pass an argument
by descriptor from a VAX C program, perform the following steps:

1. Write a structure declaration that models the required descriptor. This
involves including the descrip text-library module to define struct tags
for all the forms of descriptors.

2. Assign appropriate values to the structure members.

3. Use the structure name, with an ampersand operator (&) in the function
reference, to put the structure's address in the argument list.

VAX C never passes arguments by descriptor by default; you must take
explicit action to pass an argument by descriptor. Also, if you write structure
or union names in a function's argument list without the ampersand
operator, the structure or union is passed by immediate value to the called
function. You pass arguments by descriptor only when the called function is
written in another language and explicitly requires this mechanism.

NOTE

The passing of structures as immediate values can be a violation
of the VAX Calling Standard if the entire structure is larger than
one longword of memory. This type of argument passing is an
allowed exception for VAX C.

There are several classes of descriptor. Each class requires that certain bits
be set in the first longword of the descriptor. For more information about the
descriptors and their formats, see the Introduction to VMS System Routines.
You can model descriptors in VAX C as follows:

struct dsc$descriptor
{

unsigned short dsc$w_length; /*
char dsc$b_dtype /*
char dsc$b class /*

char *dsc$a~ointer

};

Length of data
Data type code
Descriptor class

* code
/* Has address of first
* byte

13-14 Using VAX C in the Common Language Environment

*/
*/
*
*/
*
*/

In this model, the variable dsc$w_length is a 16-bit word containing the
length of the entire data; the unit (for example, bit or byte) in which the
length is measured depends on the descriptor class. The member dsc$b_
dtype is a byte containing a numeric code; the code denotes the data type
of the data. The class member dsc$b_class is another byte code giving the
descriptor class. Table 13-4 shows the valid class codes.

Table 13-4: Valid Class Codes

Class Code Symbolic Name Descriptor Class

1 DSC$K CLASS_S Scalar, string

2 DSC$K CLASS_D Dynamic string descriptor

3 — Reserved by DIGITAL

4 DSC$K CLASS_A Array

5 DSC$K CLASS_P Procedure

6 DSC$K CLASS_PI Procedure incarnation

7 DSC$K CLASS J Label

8 DSK$K CLASS JI Label incarnation

9 DSC$K CLASS_SD Decimal scalar string

10 DSC$K CLASS_NCA Noncontiguous array

11 DSC$K CLASS_VS Varying string

12 DSC$K CLASS_VSA Varying string array

13 DSC$K CLASS_UBS Unaligned bit string

14 DSC$K CLASS_UBA Unaligned bit array

15 DSC$K CLASS_SB String with bounds
descriptor

16 DSC$K CLASS_UBSB Unaligned bit string with bounds
descriptor

17-190 — Reserved by DIGITAL

191 DSC$K CLASS_BFA Basic file array

192-255 Reserved for customer applications

The atomic data types shown in Table 13-5 are supported by VAx C; all
others are not directly supported by the language. See the Introduction to
VMS System Routines manual for a complete list of atomic class codes.

Using VAS C in the Common Language Environment 13-15

Table 13-5: Atomic Data Types

Class Code Symbolic Name Descriptor Class

2 DSC$K DTYPE_BU Byte (unsigned)

3 DSC$K DTYPE_WU Word (unsigned)

4 DSC$K DTYPE_LU Longword (unsigned)

6 DSC$K DTYPE_B Byte integer (signed)

7 DSC$K DTYPE_W Word integer (signed)

8 DSC$K DTYPE_L Longword integer (signed)

10 DSC$K DTYPE_F F_floating

11 DSC$K DTYPE_D D_floating

27 DSC$K DTYPE_G G_floating

The last member of the structure model, dsc$a_pointer, points to the first
byte of the data.

To pass an argument by descriptor, you define and assign values to the
data following normal VAX C programming practices. You must define a
dsc$descriptor structure and assign the data's address to the dsc$a_pointer
member. You must also assign appropriate values to the members dsc$w_
length, dsc$b_dtype, and dsc$b_class. For the specific requirements of each
descriptor class, see the Introduction to VMS System Routines.

For example, the Set Process Name (SYS$SETPRN) system service, which
enables a process to establish or change its process name, accepts a process
name as afixed-length character string passed by descriptor. The character
string can have from 1 to 15 characters. The system service returns the
status values denoted by the global names SS$_NORI~ZAL, SS$_ACCVIO,
S~S$_DUPLNAM, and SS$_IVLOGNAM (for normal completion, inaccessible
descriptor, duplicate process name, and invalid length, respectively).
Example 13-3 shows a call to this system service from a VAX C program.

13-16 Using VAX C in the Common Language Environment

Example 13-3: Passing Arguments by Descriptor

/* This program shows a call to system service SYS$SETPRN.

#include ssdef
#include stdio

#include descrip

int SYS$SETPRN();

main ()
{

int ret;

}

/* Define structures for
* descriptors

/* Define return status of
* SYS$SETPRN

/* Name the descriptor
struct dsc$descriptor_s name_desc;

char *name = "NEWPROC"; /* Define new process name

/* Length of name WITHOUT
* null terminator

name_desc.dsc$w_length = strlen(name);

/* Put address of
* shortened string in

* descriptor
name_desc.dsc$a_pointer = name;

*/

*

*/

*

*/

*/

*/

*

*/

*

*

*/

/* String descriptor class */

name desc.dsc$b class = DSC$K CLASS S;

/* Data type: ASCII string */
name_desc.dsc$b_dtype = DSC$K_DTYPE_T;

ret = SYS$SETPRN(&name desc);

if (ret != SS$_NORMAL) /* Test return status
fprintf(stderr, "Failed to set process name\n"),

exit(ret);

*/

In Example 13-3, the call to SYS$SETPRN must use the ampersand opera-
tor; otherwise, name_desc, rather than its address, is passed.

Using VAX C in the Common Language Environment 13-17

Although this example explicitly sets individual fields in its name_desc
string descriptor, in practice, the run-time initialization of compile-time
constant string descriptors is not performed in this manner. Instead, the
fields of compile-time constant descriptors are usually initialized with
initialized structures of storage class static.

For the purpose of string descriptor initialization, VAX C provides a simple
preprocessor macro in the descrip text-library module. This macro is named
$DESCRIPTOR. It takes two arguments, which it uses in a standard
VAX C structure declaration. The first argument is an identifier specifying
the name of the descriptor to be declared and initialized. The second argu-
ment is a pointer to the data byte to be used as the value of the descriptor.
Since acharacter-string constant is interpreted as an initialized pointer to
char, you may specify the second argument as a simple string constant.
You may use the $DESCRIPTOR macro in any context where a declaration
may be used. The scope of the declared string descriptor identifier name
is identical to the scope of a simple struct definition as expanded by the
macro.

Example 13-4 shows a variant of the program in Example 13-3. Here, the
$DESCRIPTOR macro is used to create acompile-time string descriptor and
to pass it to the SYS$SETPBN system service routine. In Example 13-4,
the program returns the status value returned by SYS$SETPftN to DCL for
interpretation.

Example 13-4: Passing Compile-Time String Descriptors

/* This program returns the status value returned by
* SYS$SETPRN.

#include descrip /* Define $DESCRIPTOR

* macro
int SYS$SETPRN () ;

main ()
{

/* Initialize structure
* name desc as string
* descriptor

static $DESCRIPTOR (name desc,"NEWPROC");

return SYS$SETPRN(&name desc);
}

*

*/

*

*/

The $DESCRIPTOR macro is used in further examples in this chapter.

13-18 Using VAX C in the Common Language Environment

13.2.4 VAX C Default Parameter-Passing Mechanisms

There are default parameter-passing mechanisms established for every data
type you can use with VAX C. Table 13-6 lists the VAX C data types you can
use with each parameter-passing mechanism. Asterisks appear next to the
default parameter-passing mechanism for that particular data type.

Table 13-6: Valid Parameter-Passing Mechanisms in VAX C

Data ape By Reference By Descriptor By Value

Numeric data:

Variables Yes Yes Yes*

Constants Yes Yes Yes*

Expressions No No Yes*

Array elements Yes Yes Yes*

Entire array Yes* Yes No

String constants Yes* Yes No

Structures and Yes Yes Yes*
unions

Functions Yes* Yes No

You must use the appropriate parameter-passing mechanisms whenever
you call a routine written in some other VAX language or some prewritten
system routine.

13.3 Interlanguage Calling

In VAX C, you can call external routines written in other languages or
VAX C routines from routines written in other languages as either functions
or subroutines. When you call an external routine as a function, a single
value is returned. When you call an external routine as a subroutine (a
Void function), values are returned in the argument list.

By default, VAX C passes all arguments by immediate Value with the
exception of arrays and functions; these are passed by reference. Table 13-7
lists the default passing mechanisms for other VAX-native languages.

Using VAX C in the Common Language Environment 13-19

Table 13-7: Default Passing Mechanisms

Numeric
Language Arrays Data Character Data

MACRO No default No default No default

Pascal Reference Reference Reference

BASIC Descriptor Reference Descriptor

COBOL N/A Reference Reference

FORTRAN Reference Reference Descriptor

The following sections describe the methods involved in using VAX C with
routines written in other VAX-native languages.

13.3.1 Calling VAX FORTRAN

When calling VAX FORTRAN from VAX C or vice versa, note these con-
siderations. VAX FORTRAN argument lists and argument descriptors are
usually allocated statically. When it is possible, and to optimize space and
time, the VAX FORTRAN compiler pools the argument lists and initializes
them at compile time. Sometimes several calls may use the same argument
list.

In VAX C, you often use arguments as local variables, modifying them at
will. If a VAX C routine that modifies an argument is called from a VAX
FORTRAN routine, unintended and incorrect side effects may occur.

The following example shows a VAX C routine that is invalid when called
from VAX FORTRAN:

void f (x)
int *x;

{

}

/* A FORTRAN INTEGER passed by reference */

/* The next assignment is OK. It is permitted to modify what a
* FORTRAN argument list entry points to. */

x = 0; / ok */

/* The next assignment is invalid. It is not permitted to modify
* a FORTRAN argument list entry itself. */

x = x + 1; /* Invalid */

Another problem is the semantic mismatch between strings in VAX C and
strings in VAX FORTRAN. Strings in VAX C vary in length and end in a
NUL character. Strings in VAX FORTRAN do not end in a NUL character
and are padded with spaces to some fixed length. In general, this mismatch
means that strings may not be passed between VAX C and VAX FORTRAN

13-20 Using VAX C in the Common Language Environment

unless you do additional work. You may make a VAX FORTRAN routine add
a NUL character to a CHARACTER string before calling a VAX C function.
You may also write code that explicitly gets the length of a VAX FORTRAN
string from its descriptor and carefully pads the string with spaces after
modifying it. An example later in this section shows a C function that
carefully produces a proper string for VAX FORTRAN.

Example 13-5 shows a VAX C function calling a VAX FORTRAN subprogram
with a variety of data types. For most scalar types, VAX FORTRAN expects
arguments to be passed by reference but character data is passed by
descriptor.

Example 13-5: VAX C Function Calling a VAX FORTRAN Subprogram

/*
* Beginning of VAX C function:
*/

#include <stdio.h>
#include <descrip.h> /* Get layout of descriptors */

extern int fort(); /* Declare FORTRAN function */

main (}
{

}

int i = 508;

float f = 649.0;
double d = 91.50;
s t ru,:t {

short s;

float f;
} s = { -2, -3.14 } ;

auto $DESCRIPTOR stringl, "Hello, FORTRAN");

strut dsc$descriptor s string2;

/* "stringl" is a FORTRAN-style string declared and initialized using the

* $DESCRIPTOR macro. "string2" is also a FORTRAN-style string, but we are

* declaring and initializing it by hand. */

string2.dsc$b_dtype = DSC$K_DTYPE_T; /* type is CHARACTER */

string2.dsc$b_class = DSC$K_CLASS_S; /* string descriptor */

string2.dsc$w_length = 3; /* three characters in string */

strizg2.dsc$a pointer = "bye"; /* pointer to string value */

printf ("FORTRAN result is od\n", fort (&i, &f, &d, &s, &stringl, string2)) ;

/* End of VAX C function */

(continued on next page)

Using VAX C in the Common Language Environment '13--21

Example 13-5 (Cont.): VAX C Function Calling a VAX FORTRAN Subprogram

c
C Beginning of VAX FORTRAN subprogram:

INTEGER FUNCTION FORT(I, F, D, S, STRINGI, STRING2)
INTEGER I
REAL F
DOUBLE PRECISION D
STRUCTURE /STRUCT/
INTEGER*2 SHORT
REAL FLOAT
END STRUCTURE

RECORD /STRUCT/ S
C You can tell FORTRAN to use the length in the descriptor
C as done here for STRINGI, or you can tell FORTRAN to ignore the
C descriptor and assume the string has a particular length as done
C .for STRING2. This choice is up to you.

CHARACTER* (*) STRINGI
CHARACTER*3 STRING2

WRITE (5, 10) I, F, D, S .SHORT, S .FLOAT, STRINGI, STRING2
10 FORMAT(1X, I3, F8.1, D10.2, I7, F10.3, 1X, A, 2X, A)

FORT = -15
RETURN
END

C End of VAX FORTRAN subprogram

Output from Example 13-5 is as follows:

508 649.0 0.92D+02 -2 -3.140 Hello, FORTRAN bye
FORTRAN result is -15

Example 13-6 shows a VAX FORTI~'AN subprogram calling a VAX C func-
tion. Since the VAX C function is called from FORTl~'AN as a subroutine
and not as a function, the VAX C function is declared to have a return value
of void.

13-22 Using VAX C in the Common Language Environment

Example 13-6: VAX FORTRAN Subprogram Calling a VAX C Function

c
C Beginning of VAX FORTRAN subprogram:
C

INTEGER I
REAL F (3)
CHARACTER*10 STRING

C Since this program does not have a C main program and you want
C to use VAX C RTL functions from the C subroutine, you must call
C VAXC$CRTL_INIT to initialize the VAX C RTL.

CALL VAXC$CRTL INIT

I = -617
F(1) = 3.1
F (2) = 0.04
F(3) = 0.0016
STRING = ' HELLO'

CALL CSUBR (I, F, STRING)
END

C End of VAX FORTRAN subprogram

/*
* Beginning of VAX C function:
*/

#include <stdio.h>
#include <descrip.h>

void csubr (i, f, string)
int *i;
float f[3];
struct dsc$descriptor_s *string;

{

int j;

printf ("i = od\n", *i) ;

for (j = 0; j < 3; ++j)
printf ("f [od] = of\n", j, f[j]);

/* Get layout of descriptors */

/* FORTRAN integer, by reference */
/* FORTRAN array, by reference */
/* FORTRAN character, by descriptor */

/* Since FORTRAN character data is not NUL-terminated, you must use
* a counted loop to print the string.
*/

printf ("string = \ "") ;
for (j = 0; j < string->dsc$w_length; ++j)

putchar (string->dsc$a~ointer [j]) ;
printf ("\ "\ n")

} /* End of VAX C function */

Using VAX C in the Common Language Environment 13-23

Output from Example 13-6 is as follows:

i~ _ -617
f [0] = 3.100000
f [1] = 0.040000
f [2 J = 0.001600
string = "HELLO

Example 13-7 shows a C function that acts like a CHARACTER*(*)function
in VAX FORTRAN.

Example 13-7: VAX C Function Emulating a VAX FORTRAN CHARACTER*(*) Function

c
C
C

C
C

10

C

Beginning of VAX FORTRAN program:

CHARACTER*9 STARS, C

Call a C function to produce a string of three
in a nine-character field.
C = STARS(3)

WRITE (5, 10) C
FORMAT (1X, ' "' , A, ' "')
END
End of VAX FORTRAN program

~~*n left-justified

/*
* Beginning of VAX C function:
*/

#include <descrip.h> /* Get layout of descriptors

/* Routine "stars" is equivalent to a FORTRAN function declared as
* follows:
*

* CHARACTER* (*) FUNCTION STARS (NUM)
* INTEGER NUM
*

* Note that a FORTRAN CHARACTER function has an extra entry added to
* the argument list to represent the return value of the CHARACTER
* function. This entry, which appears first in the argument list,
* is the address of a completely filled-in character descriptor. Since
* the C version of a FORTRAN character function explicitly uses this
* extra argument list entry, the C version of the function is void!
*

* This example function returns a string that contains the specified
* number of asterisks (or "stars").
*
*/

*/

(continued on next page)

13-24 Using VAX C in the Common Language Environment

Example 13-7 (Cont.): VAX C Function Emulating a VAX FORTRAN CHARACTER*(*)
Function

void stars(return_value, num_stars)
struct dsc$descriptor_s *return value;

/* FORTRAN return value */
int *num stars; /* Number of "stars" to create */

{

int i, limit;

/* A FORTRAN string is truncated if it is too large for the memory area
* allocated, and it is padded with spaces if it is too short. Set limit
* to the number of stars to put in the string given the size of the area
* used to store it. */
if (*num stars < return value->dsc$w_length)

limit = *num stars;
else

limit = return value->dsc$w_length;

/* Create a string of stars of the specified length up to the limit of the
* string size. */

for (i = 0; i < limit; ++i)
return_value->dsc$a~ointer [i] _ ' *' ;

/* Pad rest of string with spaces, if necessary.
for (; i < return value->dsc$w_length; ++i)

return value->dsc$a~ointer[i] _ ';
} /* End of VAX C Function */

*/

Output from Example 13-7 is as follows:

13.3.2 Calling VAX MACRO

You can easily call a VAX MACRO routine from VAX C, or vice versa.
However, like all interlanguage calls, it is necessary to take care in making
sure that the actual arguments correspond to the expected formal parameter
types. Also, it is necessary to remember that C strings are NUL-terminated
and to take special action in either the MACRO routine or the C routine to
allow for this.

Example 13-8 shows a macro routine that calls a C routine with three
arguments, passing one by value, one by reference, and one by descriptor. It
is followed by the source for the called C routine.

Using VAX C in the Common Language Environment 13-25

Example 13-8: VAX MACRO Program Calling a VAX C Function

Beginning of MACRO program

.extrn dbroutine The C routine

Local Data

.psect data

ft$$t part_num:
ft$$t_query_mode:
ft$$s_query_mode =
ft$$l~rotocol_buff
ft$$kd~art_num_dsc:

.word 12

.word 0

.address ft$$t~art_num

rd, nowrt, noexe

ascii /WidgitGadget/
.ascii /I/
<. - ft$$t_query_mode>
.blkl 1

Entry Point

.psect ft_code rd,nowrt,exe
. -entry dbtest ^m<r2, r3, r4, r5, r6, r7, r8>

;+
call C routine for data base lookup

.-

99$:

movl
pushal
pushal
pushl
calls

ret

.end dbtest

#1, r3
ft$$kd~art_num_dsc
ft$$t_query_mode
#1
#3, dbroutine

Descriptor for part number
Mode to call
status
Check the data base

End of MACRO program

/*
* Beginning of VAX C code for dbroutine:
*/

#include <stdio.h>
#include <descrip.h>

(continued on next page)

13-26 Using VAX C in the Common Language Environment

Example 13-8 (Cont.): VAX MACRO Program Calling a VAX C Function

/* Structure pn_desc is the format of the descriptor

passed by the macro routine. */
extern struct

mydescript {
short pn_len;
short pn_zero;
char *pn_addr;
};

int dbroutine (status, action, name_dsc)
int status; /* Passed by value */
char *action; /* Passed by reference */

struct mydescript *name_dsc; /* Passed by descriptor */
{

char *part name;

/* Allocate space to put the null-padded name string. */

part name = malloc(name_dsc->pn_len + 1);
memcpy(part_name,name_dsc -> pn_addr ,name_dsc -> pn_len);

}

/* Remember that C array bounds start at 0 */
part name [name_dsc -> pn_len] _ ' \ 0' ;

printf (" Status is %d\n", status) ;
printf (" Length is %d\n",name_dsc -> pn_len);

printf (" Part name is %s\ n",part name);
printf (" Request is %c\n",*action);
status = 1;
return (status) ;

/* End of VAX C code for dbroutine */

Output from Example 13-8 is as follows:

Status is 1
Length is 12
Part name is WidgitGadget
Request is I

Example 13-9 shows a VAX C program that calls a VAX MACRO program.

Using VAX C in the Common Language Environment 13-27

Example 13-9: VAX C Program Calling a VAX MACRO Program

/*
* Beginning of VAX C function
*~

#include <stdio.h>
#include <descrip.h>

int zapit(int status, int *action, struct dsc$descriptor_s *descript);

main ()
{

int status=255, argh = 99;
int *action = &argh;
$DESCRIPTOR(name_dsc,"SuperEconomySize");

printf(" Before calling ZAPIT: \n");
printf(" Status was %d \n",status);
printf(" Action contained %d and *action contained %d \n" ,action, *action);
printf(" And the thing described by the descriptor was %s\n",

name_dsc.dsc$a~ointer);

if (zapit (status, action, &name_dsc) & & 1)
{

printf(" Ack, the world has been zapped! \n");
printf(" Status is %d \n",status);
printf(" Action contains %d and *action contains %d \n" ,action, *action);
printf(" And the address of the thing described by the descriptor is %d\n",

name_dsc.dsc$a_pointer);

}
} /* End of VAX C function

Beginning of VAX MACRO source code for zapit

Entry Point

.psect ft code rd, nowrt, exe
. entry zapit ^m<r2, r3, r4, r5, r6, r7, r8>

;+
Maliciously change parameters passed by the C routine.

The first parameter is passed by value, the second by
reference, and the third by descriptor.

movl 4(ap), @8(ap) ;Change the by-reference parameter
;to the first parameter's value.

movl 12(ap), r2
movl #0,4(r2) ;Zap address of string in descriptor

(continued on next page)

13-28 Using VAX C in the Common Language Environment

Example 13-9 (Cont.): VAX C Program Calling a VAX MACRO Program

Return -1 to signal successful destruction
movl
ret

.end

- 1, r0

End of VAX MACRO source code for zapit

Output from Example 13-9 is as follows:

Before calling ZAPIT:
Status was 255
Action contained 2146269556 and *action contained 99
And the thing described by the descriptor was SuperEconomySize
Ack, the world has been zapped!
Status is 255
Action contains 2146269556 and *action contains 255
And the address of the thing described by the descriptor is 0

X3.3.3 Calling VAX BASIC

Calling routines written in VAX BASIC from VAX C programs, or vice versa,
is straightforward. By default, VAX BASIC passes arguments by reference,
except for arrays and strings, which are passed by descriptor. In some
cases, these defaults may be overridden by explicitly specifying the desired
parameter-passing mechanisms in the VAX BASIC program. However, if an
argument is a constant or an expression, the actual argument passed refers
to a local copy of the specified argument's value.

Strings in VAX BASIC are not terminated by a NUL character, which is
done by VAX C. As a result, passing strings between VAX BASIC and
VAX C routines requires you to do additional work. You may choose to add
an exp~icit NUL character to a VAX BASIC string before passing it to a VAX
C routine, or you may prefer to code the VAX C routine to obtain the string's
length from its descriptor.

Example 13-10 shows a VAX C program that calls a VAX BASIC function
with a variety of argument data types.

Using VAX C in the Common Language Environment 13-29

Example 13-10: VAX C Function Calling a VAX BASIC Function

/*
* Beginning of VAX C function:
*/

#include <stdio.h>
#include <descrip.h>

extern

main ()
{

}

int basfunc (1;

int i = 508;
float f = 649.0;
double d = 91.50;
struct

{

short s;
float f;

} s = { -2, -3.14 };

$DESCRIPTOR (stringl, "A C string");

printf ("BASIC returned $d\n",

basfunc (&i, &f, &d, &s, &stringl, "bye"));
/* End of VAX C function */

REM Beginning of the VAX BASIC program
FUNCTION INTEGER basfunc (INTEGER i, REAL f, DOUBLE d, x s, &

STRING stringl,

STRING stringl = 3 BY REF)

RECORD
WORD s
REAL f

END RECORD x

X

PRINT 'i = '; i
PRINT ' f = ' ; f
PRINT ' d = ' ; d
PRINT 's::s = '; s::s
PRINT ' s :: f = ' ; s :: f
PRINT 'stringl = '; stringl
PRINT 'stringl = '; stringl

END FUNCTION -15
REM End of the VAX BASIC program

Output from Example 13-10 is as follows:

i = 508
f = 649
d = 91.5
s::s = -2
s::f = -3.14
stringl = A C string
stringl = bye
BASIC returned -15

13-30 Using VAX C in the Common Language Environment

Example 13-11 shows a VAX BASIC program that calls a VAX C function.

Example 13-11: VAX BASIC Program Calling a VAX C Function

REM Beginning of the VAX BASIC program:
PROGRAM example

EXTERNAL STRING FUNCTION cfunc (INTEGER BY VALUE, &
INTEGER BY VALUE, &
STRING BY DESC)

s$ = cfunc (5, 3, "abcdefghi")
PRINT "substring is "; s$

END PROGRAM
REM End of the VAX BASIC program

/*
* Beginning of VAX C function:
*/

#include <descrip.h>

/*
* This routine simulates a VAX BASIC function whose return
* value is a STRING. It returns the substring that is `length'
* characters long, starting f rom the offset `offset' (0-based)
* in the input string described by the descriptor pointed to

*/

void

{

cfunc (struct dsc$descriptor_s *out_str,
int offset,
int length,
struct dsc$descriptor_s *in_str)

/* Declare a string descriptor for the substring. */
struct dsc$descriptor temp;

/* Check that the desired substring is wholly
within the input string. */

if (offset + length > in_str -> dsc$w_length)
return;

/* Fill in the substring descriptor. */
temp.dsc$w_length = length;
temp.dsc$a~ointer = in_str -> dsc$a~ointer + offset;
temp.dsc$b_dtype = DSC$K_DTYPE_T;
temp.dsc$b_class = DSC$K_CLASS_S;

/* Copy the substring to the return string */
str$copy_dx (out str, & temp);

} /* End of VAX C function */

Output from Example 13-11 is as follows:

substring is fgh

Using VAX C in the Common Language Environment 13-31

13.3.4 Calling VAX Pascal

Like VAX FORTRAN and VAX BASIC, there are certain considerations
that you must take into account when calling VAX Pascal from VAX C and
vice versa. When calling VAX Pascal from VAX C, VAX Pascal expects all
parameters to be passed by reference. In VAX Pascal, there are two different
types of semantics: value and variable. The value semantics in VAX Pascal
are different from passing by value in VAX C. Because they are different,
you must specify the address of the C parameter.

VAX Pascal also expects all strings to be passed by descriptor. If you use the
CLASS_S descriptor, the string is passed by using VAX Pascal semantics. If
the content of the string is changed, it is not reflected back to the caller.

Example 13-12 is an example of how to calla VAX Pascal routine from
VAX C.

Example 13-12: VAX C Function Calling a VAX Pascal Routine

~*
* Beginning of VAX C function:
*~

#include descrip

/* This program demonstrates how to call a Pascal routine
from a C function. */

/* A Pascal routine called by a C function */
extern void Pascal Routine ();

main ()
{

s~truct dsc$descriptor_s to_Pascal_by_desc;
char *Message = "The Max Num";
int to_Pascal_by_value =x100,
to_Pascal_by_ref = 50;

/* Construct the descriptor. */
to_Pascal_by_desc.dsc$a_pointer = Message;
to_Pascal_by_desc.dsc$w_length = strlen (Message);
to_Pascal_by_desc.dsc$b_class = DSC$K_CLASS_S;
to_Pascal_by_desc.dsc$b_dtype = DSC$K_DTYPE_T;

/* Pascal expects a calling routine to pass parameters by reference. */

Pascal_Routine(&to_Pascal_by_value, &to_Pascal_by_ref, &to_Pascal_by_desc);

(continued on next page)

13-32 Using VAX C in the Common Language Environment

Example 13-12 (Cont.): VAX C Function Calling a VAX Pascal Routine

printf ("\nWhen returned from Pascal:\nto_Pascal_by_value is still \

od\nBut to_Pascal_by_ref is od\nand Message is still os\n",
to_Pascal_by_value, to_Pascal_by_ref,
to_Pascal_by_desc.dsc$a_pointer);

} /* End of VAX C function */
{

Beginning of VAX Pascal routine
}

MODULE C PASCAL(OUTPUT);

r"1

{ This Pascal routine calls the Pascal MAX function

to determine the maximum value between

' f rom_c_by_value ̀ and ' f rom_c_by_re f ̀, and then

assigns the result back to 'from c_by_ref`.

It also tries to demonstrate the results of passing

a by-descriptor mechanism.

It is called from a C main function.
}

[GLOBAL]PROCEDURE Pascal_Routine
(from_c_by_value :INTEGER;

VAR from_c_by_ref :INTEGER;

from_c_by_desc [CLASS_S] PACKED ARRAY [11..u1:INTEGER] OF CHAR

):

VAR

today_is PACKED ARRAY [1..11] OF CHAR;

BEGIN

{ Display the contents of formal parameters. }

WRITELN;
WRITELN ('•Parameters passed from C function: ') ;

WRITELN ('from_c_by_value: ', from c_by_value:4);

WRITELN (' f rom_c_by_re f : ' , f rom_c_by_re f : 4) ;

WRITELN ('from c_by_desc: ', from c_by_desc);

{ Assign the maximum value into 'from_c_by_ref` }

from c_by_ref := MAX (from c_by_value, from_c_by_ref);

{ Change the content of 'from Pascal_by_value`

to show that the value did not get

reflected back to the caller.
}

from c_by_value := 20;

(continued on next page)

Using VAX C in the Common Language Environment 13-33

Example 13-12 (Cont.): VAX C Function Calling a VAX Pascal Routine

{ Put the results of DATE into 'from c_by_desc`
to show that the CLASS_S is only valid with
comformant strings passed by value.
}

DATE (t oday_i s) ;
from c_by_desc := today_is;
WRITELN (~***********************~);
WRITELN ('from c_by_desc is changed to today 's date: "',

from_c by_desc, "") ;
WRITELN ('BUT, this will not reflect back to the caller.');

END;
END.
{

End of VAX Pascal routine
}

Output from Example 13-12 is as follows:

from c_by_value: 100
from_c_by_ref: 50
from c_by_desc: The_Max Num

from_c_by_desc is changed to today's date "26-MAY-1988"
BUT, this will not reflect back to the caller.

When returned from Pascal:
to_Pascal_by_value is still 100
to_Pascal_by_ref is 100
and Message is still The_Max_Num

There are also some considerations when calling VAX C from VAX Pascal.
For example, you can use mechanism specifiers such as %IMMED, %REF,
and %STDESCR in VAX Pascal. When you use the %IMMED mechanism
specifier, the compiler passes a copy of a value rather than an address.
When you use the %REF mechanism specifier, the address of the actual pa-
rameter is passed to the called routine, which is then allowed to change the
value of the corresponding actual parameter. When you use the %STDESCR
mechanism specifier, the compiler generates afixed-length descriptor of a
character-string variable and passes its address to the called routine. For
more information on these mechanism specifiers and others, see the VAX
Pascal documentation.

Another consideration is that VAX Pascal does not NUL pad strings.
Therefore, you must add a NUL character to make the string a VAX C
string. Also, when passing a string from VAX Pascal to VAX C, you can
declare a structure declaration in VAX C that corresponds to the VAX Pascal
VARYING TYPE declaration.

13-34 Using VAX C in the Common Language Environment

Example 13-13 shows an example of how to call VAX C from VAX Pascal.

Example 13-13: VAX Pascal Program Calling a VAX C Function

{

Beginning of VAX Pascal function:
}

PROGRAM PASCAL C (OUTPUT);

CONST

STRING LENGTH = 80;

TYPE

STRING = VARYING [STRING LENGTH] OF CHAR;

VAR

by_value INTEGER;

by_ref STRING;

by desc: PACKED ARRAY [1..10] OF CHAR;

[EXTERNAL]

PROCEDURE VAXC$CRTL INIT; EXTERN;

[EXTERNAL]

PROCEDURE c_function

(dimmed to_c_by_value INTEGER;
oref to_c_by_ref STRING ;
ostdescr to_c_by desc: PACKED ARRAY [11..u1:INTEGER] OF CHAR

); EXTERN;

BEGIN

{ Establish appropiate VAX C RTL environment for
calling VAX C RTL from Pascal.

}

VAXC$CRTL INIT;

by value := 1;

{

}

NOTE

Pascal does not NUL pad a string.

Therefore, the LENGTH built-in function counts

the NUL pad character while the C RTL strlen function

does not include the terminating NUL character.

by_ref : _ ' TO_C_BY_REF' (0) ' ' ;
by desc : _ ' TERM' (0) " ;

{ Call a C function by passing parameters

using foreign semantics.
}

c_function (by_value, by_ref, by_desc);

(continued on next page)

Using VAX C in the Common Language Environment 13-35

Example 13-13 (Cont.): VAX Pascal Program Calling a VAX C Function

WRITELN;
WRITELN;
WRITELN (~*************************~):
WRITELN ('After calling C_FUNCTION: ');
WRITELN;
WRITELN ('to_c_by_value is still ',by_value:3);
WRITELN ('however, to_c_by_ref contains ',by_ref,

' (aka Your Terminal Type)');
WRITELN ('and, to_c_by_desc still contains ',by_desc);

END.
{

End of VAX Pascal program
}

/*
* Beginning of VAX C function:
*
*

* A C function called from the Pascal routine.
* The parameters are passed to a C function
* by value, by reference, and by descriptor,
* respectively.
*/

#include descrip

/* A Pascal style of VARYING data type. */
struct Pascal VARYING
{

unsigned short
char

};

length;
string [80] ;

/* This C function calls the C RTL function getenv() and puts
* your terminal type in 'from_Pascal_by_ref`.
* It is called from a Pascal program.
*/

void c_function (unsigned char from Pascal_by value,

{

char *term;

struct Pascal VARYING *from Pascal_by_ref,
struct dsc$descriptor_s *from Pascal by_desc

/* Display the contents of formal parameters. */
printf ("\ nParameters passed from Pascal : \ n") ;
printf ("from Pascal_by_value: od\nfrom Pascal_by_ref: $s\n\

from Pascal_by_desc: os\n", from Pascal_by_value,
from_Pascal_by_ref -> string, _
from Pascal_by_desc -> dsc$a~ointer);

(continued on next page)

13-36 Using VAX C in the Common Language Environment

Example 13-13 (Cont.): VAX Pascal Program Calling a VAX C Function

if ((term = getenv(from Pascal_by_desc -> dsc$a~ointer)) != 0)
{

/* Fill 'from_Pascal by_ref` with new value. */
strcpy (from Pascal_by_ref -> string, term);
from Pascal_by_ref -> length = strlen (term);

/* Change the contents of 'from Pascal by_value`
* to demonstrate that the value did not get
* reflected back to the calling routine.
*/

from_Pascal by value = from Pascal by_desc -> dsc$w_length
+ from Pascal_by_ref -> length;

}

else

}

printf ("\ngetenv\ (\ "TERM\ "\) is undefined. ") ;

/* End of VAX C function */

Output from Example 13-13 is as follows:

Parameters passed from Pascal:
from Pascal by value: 1
from_Pascal by_ref: TO_C_BY_REF
from Pascal by_desc: TERM

After calling C_FUNCTION:

to_c_by_value is still 1
however, to_c_by_ref contains vt200-80 (aka Your Terminal Type)
and, to_c_by_desc still contains TERM

13.4 Sharing Global Data

The following sections describe the methods involved in sharing VAX C
program sections with data declared in other VAX-native languages.

13.4.1 Sharing Program Sections with FORTRAN Common Blocks

In a FORTl~'AN program, separately compiled procedures can share data in
declared common blocks, which specify the names of one or more variables
to be placed in them. Each named common block represents a separate
program section. Each procedure that declares the common block with the
same name can access the same variable.

Using VAX C in the Common Language Environment i 3-37

Example 13-14 shows a VAX C extern variable that corresponds to a
FORTRAN common block with the same name.

The FORTRAN program PRSTRING.FOR contains the following lines of
code:

SUBROUTINE PRSTRING

CHARACTER*20 STRING
COMMON /XYZ/ STRING

TYPE 20, STRING

20 FORMAT (' ',A20)
RETURN

END

Example 13-14: Sharing Data with a FORTRAN Program in Named
Program Sections

/* VAX C program STRING.0 contains the following lines of

* code:

main ()
{

extern char xyz[20];

strncpy(xyz,"This is a string sizeof xyz);

prstring () ;
}

In Example 13-14, the VAX C extern variable xyz corresponds to the
FORTRAN common block named XYZ. The FORTRAN procedure displays
the data in the block. When sharing program sections, both programs should
declare corresponding variables to be of the same type.

To share data in more than one variable in a program section with a
FORTRAN program, the VAX C variables must be declared within a struc-
ture, as shown in Example 13-15.

13-38 Using VAX C in the Common Language Environment

Example 13-15: Sharing Data with a FORTRAN Program in a VAX C
Structure

/* VAX C program NUMBERS.0 contains the following lines of
* code:
struct xs

{

int first;
int second;
int third;

};

main ()
{

extern struct xs numbers;

numbers.first = 1;
numbers.second = 2;
numbers.third = 3;
fnum() ;

}

The FORTRAN program FNLTM.FOR contains the following lines of code:

SUBROUTINE FNUM

INTEGER*4 INUM,JNUM,KNUM
COMMON /NUMBERS / INUM, JNUM, KNUM

TYPE 10, (INUM, JNUM, KNUM)
10 FORMAT (318)

RETURN

END

In Example 13-15, the int variables declared in the VAX C structure num-
bers correspond to the FORTRAN INTEGER*4 variables in the COMMON
of the same name.

13.4.2 Sharing Program Sections with PL/I Externals

A VAX PL/I variable with the EXTERNAL attribute corresponds to a
FORTRAN common block and to a VAX C extern variable. Example 13-16
and Example 13-17 show how a program section is shared between VAX C
and VAX PL/I.

A PL/I EXTERNAL CHARACTER attribute corresponds to a VAX C ex-
tern char variable, but PL/I character strings are not necessarily NUL-
terminated. In Example 13-16, VAX C and VAX PL/I use the same variable
to manipulate the character string that resides in a program section
named XYZ.

Using VAX C in the Common Language Environment 13-39

Example 13-16: Sharing Data with a PL/I Program in Named Program
Sections

/* VAX C program STRING.0 contains the following lines of
* code:

main ()
{

extern char xyz[20];

strncpy(xyz,"This is a string
prstring();

}

sizeof xyz) ;

The PL/I program PRSTRING.PLI contains the following lines of code:

PRSTRING: PROCEDURE;

DECLARE XYZ EXTERNAL CHARACTER(20);

PUT SKIP LIST (XYZ);
RETURN;

END PRSTRING;

The PL/I procedure PRSTRING writes out the contents of the external
Variable XYZ.

PL/I also has a structure type similar (in its internal representation) to
the struct keyword in VAX C. Moreover, VAX PLlI can output aggregates,
such as structures and arrays, in fairly simple stream-output statements;
consider Example 13-17.

The PL/I program FNITM. PLI contains the following lines of code:

FNUM: PROCEDURE;
/* EXTERNAL STRUCTURE CONTAINING THREE INTEGERS */
DECLARE 1 NUMBERS EXTERNAL,

2 FIRST FIXED (31) ,
2 SECOND FIXED (31) ,
2 THIRD FIXED(31);

PUT SKIP LIST ('Contents of structure:',NUMBERS);
RETURN;

END FNUM;

The PL✓I procedure FNUM writes out the complete contents of the external
structure NUMBERS; the structure members are written out in the order of
their storage in memory, which is the same as for a VAX C structure.

13-40 Using VAX C in the Common Language Environment

Example 13-17: Sharing Data with a PL/I Program in a VAX C Structure

/* VAX C program NUMBERS.0 contains the following lines of

* code:

struct xs
{

int first;
int second;
int third;

};

main ()
{

extern struct xs numbers;

numbers.first = 1;
numbers.second = 2;
numbers.third = 3;
f num () ;

}

13.4.3 Sharing Program Sections with MACRO Programs

In a MACRO program, the .PSECT directive sets up a separate program
section that can store data or MACRO instructions. The attributes in the
.PSECT directive describe the contents of the program section.

Example 13-18 shows how to set up a psect in a MACRO program that
allows data to be shared with a VAX C program.

The MACRO source code file SET VALUE.MAR is as follows:

.entry set value,^M<>

movl #l,first
movl #2,second
movl #3,third
ret

. psect example pic, usr, ovr, rel, gbl, shr, -
noexe, rd, wrt, novec,long

first: .blkl
second: .blkl
third: .blkl

.end

Using VAX C in the Common Language Environment 13-41

Example 13-18: Sharing Data with a MACRO Program in a VAX C
Structure

/* VAX C program NUMBERS.0 contains the following lines of
* code:
struct xs

{

int first;
int second;
int third;

} example;

main ()
{

set value () ;

printf("example.first = od\n", example.first);
printf("example. second = od\n", example. second);
printf("example.third = od\n", example.third);

}

The MACRO program initializes the locations first, second, and third in the
psect named example and passes these values to the VAX C program. The
locations are referenced in the VAX C program as members of the external
structure named example.

13.5 VMS Run-Time Library Routines

The VMS RTL is a library of prewritten, commonly-used routines that
perform a wide variety of functions. These routines are grouped according to
the types of tasks they perform, and each group has a prefix that identifies
those routines as members of a particular VMS RTL facility. Table 13-8
lists all the language-independent, run-time library facility prefixes and the
types of tasks each facility performs.

13-42 Using VAX C in the Common Language Environment

Table 13-8: Run-Time Library Facilities

Facility Prefix Types of Tasks Performed

DTK$ DECtalk routines that are used to control the DIGITAL DECtalk
device.

LIB$ Library routines that obtain records from devices, manipulate
strings, convert data types for UO, allocate resources, obtain
system information, signal exceptions, establish condition han-
dlers, enable detection of hardware exceptions, and process
cross-reference data.

MTH$ Mathematics routines that perform arithmetic, algebraic, and
trigonometric calculations.

OTS$ General-purpose routines that perform tasks such as data type
conversions as part of a compiler's generated code.

SMG$ Screen management routines that are used in designing, compos-
ing, and keeping track of complex images on a video screen.

STR$ String manipulation routines that perform such tasks as search-
ing for substrings, concatenating strings, and prefixing and
appending strings.

13.6 VMS System Services Routines

System services are prewritten system routines that perform a variety of
tasks, such as controlling processes, communicating among processes, and
coordinating UO.

Unlike the VMS RTL routines, which are divided into groups by facility,
all system services share the same facility prefix (SYS$). However, these
services are logically divided into groups that perform similar tasks.
Table 13-9 describes these groups.

Using VAX C in the Common Language Environment 13-43

Table 13-9: System Services

Group Types of Tasks Performed

AST

Change Mode

Condition Handling

Event Flag

Information

Input/output

Lock Management

Logical Names

Memory Management

Process Control

Security

Time and Timing

Allows processes to control the handling of ASTs.

Changes the access mode of particular routines.

Designates condition handlers for special purposes.

Clears, sets, reads, and waits for event flags, and associates
with event flag clusters.

Returns information about the system, queues, jobs, pro-
cesses, locks, and devices.

Performs UO directly, without going through VAX RMS.

Enables processes to coordinate access to shareable system
resources.

Provides methods of accessing and maintaining pairs of
character-string logical names and equivalence names.

Increases or decreases available virtual memory, controls
paging and swapping, and creates and accesses shareable
files of code or data.

Creates, deletes, and controls execution of processes.

Enhances the security of VMS systems.

Schedules events, and obtains and formats binary time
values.

13.7 Calling Routines

The basic steps for calling routines are the same whether you are calling a
routine written in VAX C, a routine written in some other VAX language, a
system service, or a VMS RTL routine. The following sections outline the
procedures for calling non-VAX C routines.

13.7.1 Determining the Type of Call

Before calling an external routine, you must first determine whether the call
should be a procedure call or a function call. Call a routine as a procedure if
it does not return a value. Call a routine as a function if it returns any type
of value.

13-44 Using VAX C in the Common Language Environment

13.7.2 Declaring an External Routine and Its Arguments

To call an external routine or system routine, you need to declare it as
an external function and to declare the names, data types, and passing
mechanisms of its arguments. Arguments can be either required or optional.

Include the following information in a routine declaration:

• The name of the external routine
• The data types of all the routine parameters (optional)
• The data type of the return value if it is a function
• The void keyword if it is a procedure

The following example shows how to declare an external routine and its
arguments:

char func_name (int x, char y) ;

13.7.3 Calling the External Routine

After declaring an external routine, you can invoke it. To invoke a function,
you must specify the name of the routine being invoked and all arguments
required for that routine. Make sure the data types for the actual arguments
you are passing coincide with those of the parameters you declared earlier,
and with those declared in the routine. The following example shows how to
invoke the function declared in Section 13.7.2:

ret status = func name (1, ' a') ;

If you do not want to specify a value for a required parameter, pass a null
argument by inserting a 0 as a placeholder in the argument list.

13.7.4 System Routine Arguments

All system routine arguments are described in terms of the following
information:

• VMS usage
• Data type
• Type of access allowed
• Passing mechanism

Using VAX C in the Common Language Environment 13-45

VMS usages are data structures that are layered on the standard VMS data
types. For example, the VMS usage mask_longword signifies an unsigned
longword integer that is used as a bit mask, and the VMS usage floating
point represents any VMS floating-point data type. Table 13-101ists all the
VMS usages and the VAX C types you need to implement them.

Table 13-10: VAX C Implementation

VMS Data ape VAX C Declaration

access bit names user-definedl

access_mode unsigned char

address int *pointer2,4

address_range int *array [2]23,4

arg list user-definedl

ast_procedure pointer to a function2

Boolean unsigned long int

byte_signed char

byte_unsigned unsigned char

channel unsigned short int

char_string char array[n]3,5

complex number user-definedl

cond_value unsigned long int

context unsigned long int

date_time user-definedl

device_name char array[n]3,5

of cluster_name char array[n]3,s

of number unsigned long int

exit_handler_block user-definedl

1The declaration of auser-defined data structure depends on how the data will be used. Such
data structures can be declared in a variety of ways, each of which is more suitable to specific
applications.
2The term pointer refers to several declarations involving pointers. Pointers are declared with
special syntax and are associated with the data type of the object being pointed to. This object
is often user-defined.
3The term array denotes the syntax of a VAX C array declaration.
4The data type specified can be changed to any valid VAX C data type.
5The size of the array must be substituted for n.

(continued on next page)

13-46 Using VAX C in the Common Language Environment

Table 13-10 (Cont.): VAX C Implementation

VMS Data ape VAX C Declaration

fab struct FAB
#include fab from text library

file_protection unsigned short int, or user-definedl

floating_point float or double

function_code unsigned long int or user-definedl

identifier int ~`pointer2,4

io status block user-definedl

item list 2 user-definedl

item list 3 user-definedl

item_list_pair user-definedl

item_quota_list user-definedl

lock_id unsigned long int

lock status block user-definedl

lock value block user-definedl

logical_name char ar.r,ay[n]s,s

longword_signed long int

longword_unsigned unsigned long int

mask byte unsigned char

mask_longword unsigned long int

mask_quadword user-definedl

mask_word unsigned short int

null_arg unsigned long int

octaword_signed user-definedl

octaword_unsigned user-definedl

1The declaration of auser-defined data structure depends on how the data will be used. Such
data structures can be declared in a variety of ways, each of which is more suitable to specific
applications.
2The term pointer refers to several declarations involving pointers. Pointers are declared with
special syntax and are associated with the data type of the object being pointed to. This object
is often user-defined.
3The term array denotes the syntax of a VAX C array declaration.
4The data type specified can be changed to any valid VAX C data type.
5The size of the array must be substituted for n.

(continued on next page)

Using VAX C in the Common Language Environment 13-47

Table 13-10 (Cont.): VAX C Implementation

VMS Data Type VAX C Declaration

page_protection

procedure

process_id

process_name

quadword_signed

quadword_unsigned

rights_holder

rights_id

rab

section id

section_name

system_access_id

time_name

uic

user_arg

varying arg

vector_byte_signed

vector_byte_unsigned

vector_longword_signed

vector_longword_unsigned

vector_quadword_signe d

vector_quadword_unsigned

vector_word_signed

vector_word_unsigned

unsigned long int

pointer to function2

unsigned long int

char arr,ay[n]$,5

user-definedl

user-definedl

user-definedl

unsigned long int

#include rab
struct RAB

user-definedl

char arY,ay[n]s,5

user-definedl

char arY,ay[n]a,5

unsigned long int

user-definedl

user-definedl

char arY,ay[n]s,5

unsigned char array[n]s,s

long int arY,ay[n]s,5

unsigned long int array[n]3 ~~

user-definedl

user-definedl

short int arr,ay[n]s,5

unsigned short int arY,ay[n]s,5

1 The declaration of auser-defined data structure depends on how the data will be used. Such
data structures can be declared in a variety of ways, each of which is more suitable to specific
applications.
2The term pointer refers to several declarations involving pointers. Pointers are declared with
special syntax and are associated with the data type of the object being pointed to. This object
is often user-defined.
3The term array denotes the syntax of a VAX C array declaration.
SThe size of the array must be substituted for n.

(continued on next page)

13-48 Using VAX C in the Common Language Environment

Table 13-10 (Copt.): VAX C Implementation

VMS Data Type VAX C Declaration

word_signed

word_unsigned

short int

unsigned short int

If a system routine argument is optional, it will be indicated in the format
section of the routine description in one of two ways, as follows:

• [,optional-argument]

• , [optional-argument]

If the comma appears outside the brackets (, [optional-argument]), you must
pass a 0 by value to indicate the place of the omitted argument. If the
comma appears inside the brackets ([,optional-argument]), you can omit the
argument if it is the last argument in the list.

13.7.5 Symbol Definitions

Many system routines depend on values that are defined in separate symbol
definition files. VMS RTL routines require you to include symbol definitions
when you are calling a Screen Management facility routine or a routine that
is a j acket to a system service. A jacket routine provides an interface to the
corresponding system service. For example, the routine LIB$SYS_ASCTIM
is a j acket routine for the $ASCTIM system service.

If you are calling a system service, you must include the file SSDEF to check
the status. Many system services require other symbol definitions as well.
To determine whether you need to include other symbol definitions for the
system service you want to use, see the documentation for that particular
system service. If the documentation states that values are defined in a
macro, you must include those symbol definitions in your program.

For example, the description for the flags parameter in the SYS$MGBLSC
(Map Global Section) system service states that "Symbolic names for the
flag bits are defined by the $SECDEF macro." Therefore, when you call
SYS$MGBLSC you must include the definitions provided in the $SECDEF
macro.

In VAX C, a definition file is included as follows:

#include stdlib

For a list of all VAX C definition modules, see Appendix A.

Using VAX C in the Common Language Environment 13-49

13.7.6 Condition Values

Many system routines return a condition value that indicates success or
failure; this value can be either returned or signaled. If a condition value is
returned, then you must check the returned value to determine whether the
call to the system routine was successful. Otherwise, the condition value is
signaled to your program instead of being written to a storage location.

Condition values indicating success appear first in the list of condition
values for a particular routine, and success codes have odd values. A
success code that is corrimon to many system routines is the condition value
SS$_NORMAL, which indicates that the routine completed normally and
successfully. If the condition value is returned, then you can test for
SS$_NORMAL as follows:

if (ret status != SS$_NORMAL)

LIB$STOP () ;

Because all success codes have odd values, you can check a return status
for any success code. For example, you can cause execution to continue only
if a success code is returned by including the following statements in your
program:

if ((ret status & 1) != 0)

LIB$STOP (ret status);

In general, you can check a return status for a particular success or failure
code or you can test the condition value returned against all success codes or
all failure codes.

13.7.7 Checking System Service Return Values

It is customary in VMS programming to compare the return status of a
system service with a global symbol, not with the literal value associated
with a particular return status. Consequently, ahigh-level language
program should define the possible return status values for a service as
symbolic constants. In VAX C, you can do this by including the ssdef
definition module; Example 13-19 shows how this is done.

The system service return status values (SS$_WASSET and SS$_WASCLR)
in Example 13-19 are defined by the ssdef definition module.

13-50 Using VAX C in the Common Language Environment

Example 13-19: Checking System Service Return Values

/* This program shows how to compare the status of a system

* service with a global symbol.

/* Define system service
* status values

#include ssdef
#include stdio

/* Declaration of the
* service (not required) */

int SYS$SETEF();

main ()
{

/* To hold the status of
* SYS$SETEF

int efstatus;
/* Argument values for

* SYS$SETEF

enum cluster0
{

}

completion, breakdown, beginning

event;

event = completion;

efstatus = SYS$SETEF(event);
/* Set the event flag

/* Test the return status

if (efstatus == SS$_WASSET)

fprintf (stderr,"Flag was already set\n");

else
if (efstatus == SS$_WASCLR)

fprintf (stderr, "Flag was previously clear\n");

else
fprintf (stderr,

"Could not set completion event flag.\n \
Possible programming error.\n");

exit (efstatus) ;
}

*/

*/

Error handling in Example 13-19 is typical of programs running on VMS
systems. Using the following statements, the example program attempts
to provide a program-specific error message and then passes the offending
error status to the caller:

Using VAX C in the Common Language Environment 13-51

else
fprintf (stderr,

"Could not set completion event flag.\n \
Possible programming error . \ n") ;

exit (efstatus) ;

If you execute the program with DCL, it interprets any status value the
program returns. DCL prints a standard error message on the terminal
to provide you with more information about the failure. For example, if
the program encounters the SS$_ILLEFC return status, DCL displays the
following messages:

Could not set completion event flag.
Possible prograrnn~ing error.
$SYSTEM-F-ILLEFC, illegal event flag cluster.

13.8 Variable-Length Argument Lists in System Services

Most system services and other external procedures require a specific
number of arguments, but some accept a variable number of optional
arguments. Because VAX C function declarations do not show the number
of parameters expected by external functions unless a function prototype is
used, the way you call an external function from a VAX C ,program depends
on the semantics of the called function. You must supply the number of
arguments that the external function expects. The rules are as follows:

• When optional arguments occur between required arguments, they
cannot be omitted. If omitting such an argument is necessary for
example, to select a default action the argument must be written as a
zero.

• When optional arguments occur at the end of an argument list, the
format of the function reference depends on the action of the called
function as follows:
— If the called function checks the number of arguments passed, you

can omit optional trailing arguments from the function reference.
System services generally do not check the length of the argument
list.

— If the called function does not check the number of arguments
passed, all arguments must be present in the function reference.

For example, the function STR$CONCAT, in the Common Run-Time Library,
concatenates from 2 to 254 strings into a single string. Its call format is as
follows:

ret = STR$CONCAT(dst, src1, src2[, src3, . . . src254]);

13-52 Using VAX C in the Common Language Environment

For more information about the STR$CONCAT function, see the VMS
Run-~me Library Routines Volume.

The identifier dst is the destination for the concatenated string, and srcl,
src2, . . . src254 are the source strings. All arguments are passed by
descriptor. All but the first two source strings are optional. The function
checks to see how many arguments are present in the call; if fewer than
three (the destination and two sources) are present, the function returns
an error status value. Example 13-20 shows a call to the STR$CONCAT
function from VAX C.

Example 13-20: Using Variable-Length Argument Lists

/* This example shows a call to STR$CONCAT.

#include stdio
#include descrip
#include ssdef

int STR$CONCAT();

main ()
{

int ret;

char dest [21] ;

/* Return status of
* STR$CONCAT

/* Destination array of
* concatenated strings

/* Create compile-time
* descriptors:

static $DESCRIPTOR(dst, dest);
static $DESCRIPTOR(srcl, "abcdefghij");
static $DESCRIPTOR src2, "klmnopgrst");

/* Concatenate strings
ret = STR$CONCAT(&dst, &src, &src2);

/* Test return status value

if (ret != SS$_NORMAL)
fprintf(stderr,"Failed to concatenate strings.\n"),

exit(ret);

/* Process string
else

printf ("Resultant string: os\ n", dest) ;
}

*/

*
*/

*
*/

*

Using VAX C in the Common Language Environment 13-53

13.9 Return Status Values

The status values from VMS system service procedures are returned in
general register R0. This return status value indicates the success or failure
of the operation performed by the called procedure. In VAX C, passing a
return status value in RO is equivalent to a function returning int.

To obtain a return status value from any system procedure, declare the
procedure as a function, as shown in the following example:

int SYS $ SETEF () ;

After declaring a procedure in this way, you can invoke the procedure as a
function and obtain a return status value. In VAX C, such a declaration is
needed only as program documentation; SYS$SETEF can be called without
explicit declaration and will be interpreted by default as a function
returning int.

This section describes the following topics:

• The format of a return status value, that is, the meaning of particular
bits within the value

• The way to manipulate return status values

• The recommended techniques for testing a return status value for
success or failure or for a specific condition

13.9.1 Format of Return Status Values

All VMS system procedures and programs use a longword value to commu-
nicate return status information. When a VAX C main function executing
under the control of the DCL interpreter executes a return statement to
ret1~rn control to the command level, the command interpreter uses the
return status value to conditionally display a message on the current
out put device.

To provide a unique means of identifying every return condition in the
system, bit fields within the value are defined as shown in the bit fields of
Figure 13-5.

13-54 Using VAX C in the Common Language Environment

Figure 13-5: Bit Fields Within a Return Status Value

control bits
~~~ 
31 28 27 

condition identification 

severity 
~~~ 

3 2 0

l J

27 16 15 3

facility message
number number

ZK-0283—G E

The following list describes the division of the bit field:

control bits (31-28)
Define special actions) to be taken. At present, only bit 28 is used. When
set, it inhibits the printing of the message associated with the return status
value at image exit. Bits 29 through 31 are reserved for future use by
DIGITAL and must be 0.

facility number (27-y 6)
Is a unique value assigned to the system component, or facility, that is re-
turning the status value. Within this field, bit 27 has a special significance.
If bit 27 is clear, the facility is a DIGITAL facility: the remaining value in
the facility number field is a number assigned by the operating system. If
bit 27 is set, the number indicates acustomer-defined facility.

message number (15-3)
Is an identification number that specifically describes the return status or
condition. Within this field, bit 15 has a special significance. If bit 15 is set,
the message number is unique to the facility issuing the message. If bit 15
is clear, the message is issued by more than one system facility.

severity (2-0)
Is a numeric value indicating the severity of the return status. The possible
values in these three bits, and their meanings, are shown in Table 13-11.

Using VAX C in the Common Language Environment 13-55

Table 13-11: Possible Severity Values

Value Meaning

0 Warning

1 Success

2 Error

3 Informational

4 Severe error, FATAL

5-7 Reserved

Odd values indicate success (an informational condition is considered a
successful status) and even values indicate failures (a warning is considered
an unsuccessful status).

The following names are associated with these fields:

control bits CONTROLINHIB_MSG
bit 28 (inhibit message)

facility number FAC_NOCUST_DEF
bit 27 (customer facility)

message number MSG_NOFAC_SP
bit 15 (facility specific)

severity SEVERITYSUCCESS
bit 0 (success)

When testing return values in a VAX C program, either you can test only for
successful completion of a procedure or you can test for specific return status
values.

13.9.2 Manipulating Return Status Values

You can construct a structure or union that describes a return status
value, but in practice this method of manipulating return status values
is not recommended. A status value is usually constructed or checked
using bitwise operators. VAX C provides the #include module stsde f,
which contains preprocessor definitions to make this job easier. All of the
preprocessor symbols are named according to the VMS naming convention,
as follows:

STS$type_name

13-56 Using VAX C in the Common Language Environment

STS
Identifies standard return status values.

type
Is one of the following characters denoting the type of the constant:

K Represents a constant value

M Represents a bit mask

S Represents the bit size of a field

V Defines the bit offset to the field

name
Is an abbreviation for the field name.

For example, the following constants are defined in stsdef for the facility
number field, FAC_NO, which spans bits 16 through 27:

/* Size of field in bits */

#define STS$S FAC NO 12

/* Bit offset to the
* beginning of the field */

#define STS$V FAC NO 16

/* Bit mask of the field */

#define STS$M FAC NO OxFFF0000

Figure 13-6 shows how the status value is represented internally.

Figure 13-6: Internal Representation of a Status Value

STS$S FAC NO STS$V FAC_NO

31 27 16~ ►0

00001111 11111111 00000000 00000000

Y
STS$M_FAC_NO

ZK-0528-G E

Using VAX C in the Common Language Environment 13-57

Use the following expression to extract the facility number from a particular
status value contained in the variable named status:

(status & STS$M FAC NO) » STS$V FAC NO

In the previous example, the parentheses are required for the expression to
be evaluated properly; the relative precedence of the bitwise AND operator
(&) is lower than the precedence of the binary shift operator (»).

13.9.3 Testing for Success or Failure

To test a return status value for success or failure, you need only test the
success bit. A value of true in this bit indicates that the return value is a
successful value.

Example 13-21 shows a program that checks the success bit.

Example 13-21: Testing for Success

/* This program shows how to test the success bit. */

#include stdio
#include descrip
#include stsdef

main ()
{

int status;
$DESCRIPTOR (name, ~~ student");

status = SYS$SETPRN(&name);

if (status & STS$M SUCCESS)

else

/* Success code
fprintf(stderr, "Successful completion");

/* Failure code
fprintf(stderr, "Failed to set process name.~n"),
exit (status);

}

The failure code in Example 13-21 causes the printing of aprogram-specific
message indicating the condition that caused the program to terminate. The
error status is passed to the DCL by the exit function, which then interprets
the status value.

13-58 Using VAX C in the Common Language Environment

13.9.4 Testing for Specific Return Status Values

P'1 Each numeric return status value defined by the system has a symbolic
name associated with it. The names of these values are defined as system
global symbols, and you can access their values by referring to their symbolic
names.

The global symbol names for VMS return status values have the
following format:

facility$_code

facility
Is an abbreviation or acronym for the system facility that defined the
global symbol.

code
Is a mnemonic for the specific status value.

Table 13-12 shows some examples of facility codes used in global
symbol names.

Table 13-12: Facility Codes

Facility Description

SS

RMS

SOR

System services; these status codes are listed in the VMS System
Services Volume.

File system procedures; these status codes are listed in the VMS
Record Management Services Manual.

SORT procedures; these status codes are listed in the VMS
Sort /Merge Utility Manual.

The definitions of the global symbol names for the facilities listed are located
in the default VAX C object module libraries, so they are automatically
located when you link a VAX C program that references them.

When you write a VAX C program that calls system procedures and you
want to test for specific return status values using the symbol names, you
must perform the following tasks:

1. Determine, from the documentation of the procedure, the status values
that can be returned, and choose the values for which you want to
provide specific tests.

Using VAX C in the Common Language Environment 13-59

2. Declare the symbolic name for each value of interest. The ssdef and
rmsdef #include modules define the system service and RMS return
status values, respectively. If you are checking return status values from
other facilities, such as the SORT utility, you must explicitly declare the
return values as globalvalue int. Consider the following example:

globalvalue int SOR$ OPENIN;

3. Reference the symbols in your program.

Example 13-22 shows a program that checks for specific return status
values defined in the ssdef module.

Example 13-22: Testing for Specific Return Status Values

/* This program checks for specific return status values. */

#include ssdef
#include stdio
#include descrip

$DESCRIPTOR (message,"\07**Lunch time**\07");

main ()
{

int status = SYS$BRDCST(&message, 0);

if (status != SS$ NORMAL)
{

if (status == SS$_NOPRIV)
fprintf(stderr, "Can't broadcast; requires OPER \

privilege.");

else
fprintf(stderr, "Can't broadcast; some fatal \

error.");

exit (status) ;
}

}

13-60 Using VAX C in the Common Language Environment

13.10 Examples of Calling System Routines

This section provides complete examples of calling system routines from
VAX C. Example 13-23 shows the three mechanisms for passing arguments
to system services and also shows how to test for status return codes.
Example 13-24 shows various ways of testing for successful $QIO com-
pletion. Example 13-25 shows how to use time conversion and set timer
routines.

In addition to the examples provided here, the VMS Run-Time Library
Routines Volume and the VMS System Services Reference Manual also
provide examples for selected routines. See these manuals for help on using
a specific system routine.

Using VAX C in the Common Language Environment 13-61

Example 13-23: Passing Arguments to System Services

/* GETMSG.0
This program is an example snowing the three mechanisms
for passing arguments to system services. It also
shows how to test for specific status return

codes from a system service call. */

#include stdio

#include descrip

#include ssdef

main ()
{

int message_id;
short message_len;
char text [133] ;
$DESCRIPTOR(message_text, text);
register status;

while (printf("\nEnter a message number <CTRL/Z to quit>:
scanf (" ad", &message_id) ! = EOF)

{

/* Retrieve message associated with the number.
status = SYS$GETMSG(message_id, &message_len,

&message text, 15, 0) ;

/* Check for status conditions. */
if (status == SS$_NORMAL)

printf ("\ n o . *s\ n", message_len, text) ;
else if (status == SS$_BUFFEROVF)

printf("\nBUFFER OVERFLOW -- Text is: o.*s\n",
message_len, text);

else if (status == SS$_MSGNOTFND)
printf("\nMESSAGE NOT FOUND.\n");

else
{

printf("\nUnexpected error in $GETMSG call.\n");
LIB$STOP (status) ;

}

}

}

*/

13-62 Using VAX C in the Common Language Environment

Example 13-24: Determining $QIO Completion

/* ASYNCH.0
This program shows various ways to determine

$QIO completion. It also shows the use of an
IOSB to obtain information about the I/O operation.

#include iodef
#include ssdef
#include descrip

typedef struct
{

short cond_value;
short count;
int info;
} io statblk;

main ()
{

char text_string[] _ "This was written by the $QIO.";

register status;
short Chan;
io_statblk status_block;

int AST_PROC () ;
$DESCRIPTOR (terminal, "SYS$COMMAND");

*/

/* Assign I/O channel. */
if (((status = SYS$ASSIGN (&terminal, &chan, 0, 0)) & 1) ! = 1)

LIB$STOP (status);

/* Queue the I/0. */
if (((status = SYS$QIO (1, chan, IO$ WRITEVBLK, &status block,

AST_PROC, &status block, text_string,

strlen (text string) , 0, 32, 0, 0)) & 1) ! = 1)

LIB$STOP (status);

/* Wait for the I/O operation to complete. */

if (((status = SYS$SYNCH (1, & status block)) & 1) ! = 1)

LIB$STOP (status);

if ((status block.cond value &1) != 1)

LIB$STOP(status block.cond value);

printf ("\nThe I/O operation and AST procedure are done.");

}

ASS' PROC (write status)

io statblk *write status;

/* This function is called as an AST procedure. It uses

the AST parameter passed to it by $QIO to determine

how many characters were written to the terminal. */

(continued on next page)

Using VAX C in the Common Language Environment 13-63

Example 13-24 (Cont.): Determining $QIO Completion

{
printf("\nNumber of characters output is od", write_status->count);
printf("\nI/0 completion status is %d", write_status->cond value);
}

Example 13-25: Using Time Routines

/* ALARM.0
This program shows the use of time conversion
and set timer routines. */

#include stdio
#include descrip
#include ssdef

main ()

t
#define event flag 2
#define timer id 3

typedef int quadword[2];

quadword delay_int;
$DESCRIPTOR offset, "0 ::15.00");
char cur_time[24];
$DESCRIPTOR cur time desc, cur_time);
int i;

unsigned state;
register status;

/* Convert offset from ASCII to binary format. */
if (((status=SYS$BINTIM(&offset, delay_int)) &1) != 1)

LIB$STOP (status) ;

/* Output current time. */
if (((status=LIB$DATE_TIME(&cur_time_desc)) &1) != 1)

LIB$STOP (status) ;
cu r_t ime [2 3) _ ' \ 0' ;
printf("The current time is ~s\n", cur time);

/* Set the timer to expire in 15 seconds. */
if (((status=SYS$SETIMR(event_flag, &delay_int,

0, timer_id)) &1) != 1)
LIB$STOP (status) ;

(continued on next page)

13-64 Using VAX C in the Common Language Environment

Example 13-25 (Copt.): Using Time Routines

/* Count to 1000000. */
printf ("beginning count . \ n") ;
for (i=0; i<=1000000; i++)

/* Check if the timer expired. */
switch (status = SYS$READEF(event_flag, &state))

{

case SS$_WASCLR /* Cancel timer */
if (((status=SYS$CANTIM(timer_id, 0)) &1) != 1)

LIB$STOP (status) ;
printf("Count completed before timer expired.\n");
printf ("Timer canceled. \ n") ;
break;

case SS$_WASSET printf("Timer expired before count completed.\n");
break;

default LIB$STOP(status);
break;

Using VAX C in the Common Language Environment 13-65

Chapter 14

VAX C Implementation Notes

This chapter discusses VAX C program sections.

14.1 Program Sections

The following sections describe program section attributes and program
sections created by VAX C.

14.1.1 Attributes of Program Sections (Psects)

As the VAX C compiler creates an object module, it groups data into
contiguous program sections, or psects. The grouping depends on the
attributes of the data and on whether the psects contain executable code or
readlwrite variables.

The compiler also writes into each object module information about the
program sections contained in it. The linker uses this information when
it binds object modules into an executable image. As the linker allocates
virtual memory for the image, it groups together program sections that have
similar attributes.

Table 14-1 lists the attributes that can be applied to program sections.

VAX C Implementation Notes 14-1

Table 14-1: Program Section Attributes

Attribute Meaning

PIC or NOPIC

CON or OVR

REL or ABS

GBL or LCL

EXE or NOEXE

WRT or NOWRT

RD or NORD

SHR or NOSHR

USR or LIB

VEC or NOVEC

The program section or the data these attributes refers to
does not depend on any specific virtual memory location
(PIC), or else the program section depends on one or more
virtual memory locations (NOPIC).1

Concatenates the program section with other program
sections with the same name (CON) or overlays it on the
same memory locations (OVR).

The data in the program section can be relocated within
virtual memory (REL) or is not considered in the allocation
of virtual memory (ABS).

The program section is part of one cluster, is referenced by
the same program section name in different clusters (GBL),
or is local to each cluster in which its name appears (LCL).

The program section contains executable code (EXE) or does
not contain executable code (NOEXE).

The program section contains data that can be modified
(WRT) or data that cannot be modified (NOWRT).

These attributes are reserved for future use.

The program section can be shared in memory (SHR) or
cannot be shared in memory (NOSHR).

These attributes are reserved for future use.

The program section contains privileged change mode
vectors (VEC) or does not contain those vectors (NOVEL).

1 VAX C programs can be bound into PIC or NOPIC shareable images. NOPIC occurs if
declarations such as the following are used: "char *x = &y;". This statement relies on the
address of variable y to determine the value of the pointer, x.

14.1.2 Program Sections Created by VAX C

If necessary, VAX C creates the following program sections:

• $CODE Contains all executable code and constant data (including
variables defined with the readonly modifier).

• $DATA Contains all static variables, as well as global variables defined
without the readonly modifier.

14-2 VAX C Implementation Notes

• $CHAR_STRING_CONSTANTS—Contains VAX Ccharacter-string
constants (strings of characters delimited by quotation marks (~"')) used
in the program, such as the following:

char *y = "This is a character-string constant *****"

/* or */

printf ("The answer is od\ n", x) ;

• VAX C also creates additional program sections for external variables,
and for global variables when you specify a program section name in the
global declaration.

All program sections created by VAX C have the attributes PIC, REL, RD,
USR, and NOVEL. The $CODE psect is aligned on byte boundaries while
all other program sections generated by VAX C are aligned on longword
boundaries. The $CHAR_STRING_CONSTANTS psect has the same
attributes as $DATA.

Table 14-2 and Table 14-3 summarize the differences in the psects created
by VAX C. Table 14-2 assigns a number to all the possible combinations of
storage-class specifiers and modifiers. Table 14-3 presents the psect name
and the psect attributes for each combination.

Table 14-2: Combinations of Storage-Class Specifiers and Modifiers

Storage
Class
Code Storage-Class Keyword Combination

1

2

3

4

5

6

5

5

6

5

[extern]

[extern] coast readonly

[extern] noshare

[extern] coast readonly noshare

static

static coast readonly

static noshare

globaldef

globaldef coast readonly

globaldef noshare

(continued on next page)

VAX C Implementation Notes 14-3

Table 14-2 (Cont.): Combinations of Storage-Class Specifiers and
Modifiers

Storage
Class
Code Storage-Class Keyword Combination

7 globaldef{"name"}

8 globaldef{"name"} const readonly

9 globaldef{"nam.e"} noshare

10 globaldef{"name"} const readonly noshare

The numbers in Table 14-2 correspond to the numbers in Table 14-3. In
Table 14-3, the [extern]

name psect is the same name of the identifier
in the declaration, but the globaldef "name" psect can be any name you
specify in the {"name"} portion of the declaration.

Table 14-3: Combination Attributes

Storage Program
Class Section
Code Name Program Attributes

1 name OVR, GBL, SHR, NOEXE, WRT

2 name OVR, GBL, SHR, NOEXE, NOWRT

3 name OVR,, GBL, NOSHR, NOEXE, WRT

4 name OVR,, GBL, NOSHR, NOEXE, NOWRT

5 $DATA CON, LCL, NOSHR, NOEXE, WRT

6 $CODE CON, LCL, SHR, EXE, NOWRT

7 "name" CON, GBL, SHR, NOEXE, WRT

8 "name" CON, GBL, SHR, NOEXE, NOWRT

9 "name" CON, GBL, NOSHR, NOEXE, WRT

10 "name" CON, GBL, NOSHR, NOEXE, NOWRT

NOTE

VAX C creates psects with different attributes for global and
external storage classes. See Section 9.6.1.1 for information on
the differences between these two storage classes.

14-4 VAX C Implementation Notes

The combined use of the readonly and noshare modifiers is illegal in the
following declarations:

readonly noshare static int x;

readonly noshare globaldef int x;

When it encounters a situation as shown in the previous example, the
compiler ignores the noshare modifier and accepts readonly. The order
of the storage-class specifier, the storage-class modifier, and the data-type
keyword within a declaration is not significant.

The VAX C compiler does static (global) initialization of pointers by using
the .ADDRESS directive. By using this mechanism, the compiler efficiently
generates position-independent code. The linker makes image sections that
contain such initialization nonshareable.

VAX C Implementation Notes 14-5

Appendix A

VAX C Definition Modules

This appendix lists the library definition modules contained in the text
library named SYS$LIBRARY:VAXCDEF.TLB.

You can examine the contents of these modules in the appropriate definition
file. All definition files have the file extension .H and are contained in the
directory SYS$LIBRARY. You can print or type individual files, or you can
issue the following command to print all the files with their file names
appearing at the top of each page:

$ PRINT SYS$LIBRARY:*.H/HEADER

Table A-1 describes each of the definition modules.

Table A-1: VAX C Definition Modules

Module Description

accde f Accounting file record definitions.

acede f Access control list entry structure definitions.

acldef Access control list definitions.

acrde f Accounting record definitions.

argde f Argument descriptors definitions.

armdef Access rights definitions.

assert Assert macro definition.

a trde f File attribute definitions .

basdef Message definitions for BASIC.

(continued on next page)

VAX C Definition Modules A-1

Table A-1 (Cont.): VAX C Definition Modules

Module Description

brkdef Breakthrough system service definitions.

ch fde f Structure definitions for condition handlers.

chkpntdef Flags for calls to create checkpointable processes.

chpdef Definitions for the $CHKPRO (check protection) service.

clidef Command-language interface definitions.

climsgdef Command-language interpreter error code definitions.

cliservdef CLI service request codes.

cliverbdef CLI generic codes for verbs.

clsde f Security classification mask block definitions.

cobdef Message definitions for COBOL.

cqualdef Qualifier definitions.

crdef Card reader status bits definitions.

credef Create options table definitions.

crfde f CRF$INSRTREF argument list definitions.

crfmsg Return status codes for cross-reference program.

ctype Character type and macro definitions for character classification
functions.

curses Curses Screen Management-related definitions.

dcdef Device class and type code definitions.

descrip Descriptor structure and constant definitions.

devdef Device characteristics definitions.

dibdef Device information block definitions.

dmpde f Layout of the header block of the system dump file.

dmtdef $DISMOU (dismount) system service definitions.

dstdef Debug Symbol Table definitions.

dtk$routines DECtalk routine definitions.

dtkdef Definitions for RTL DECtalk Management.

dtkmsg Message definitions for DECtalk.

dvidef $GETDVI system service request code definitions.

(continued on next page)

A-2 VAX C Definition Modules

Table A-1 (font.): VAX C Definition Modules

Module Description

envdef Define/reference environment definitions.

eomdef End-of-module record (EOM) definition.

eomwdef End-of-module record with word of psect (EOMW) definition.

epmdef GSD entry -Entry point definition, normal symbols.

epmmdef GSD entry -Entry point definition, version mask symbols.

epmvdef GSD entry -Entry point definition, vectored symbols.

epmwdef GSD entry -Entry point definition with word of psect value.

eradef Erase type codes definitions.

errno Error number definitions.

errnodef VAX C error message constants.

fab File access block definitions.

falde f Message definitions for the FAL (DECnet File Access Listener).

fchdef File characteristics definitions.

fdldef FDL call interface definitions.

fibdef File information block definitions.

fiddef FID (File ID) structure definitions.

file Symbol definitions for the open function.

float Macro definitions that provide implementation-specific, floating-
point restrictions.

fmldef Formal arguments structure definitions.

fordef Message definitions for FORTRAN.

fscndef SYS$FILESCAN descriptor codes.

gpsde f GSD entry - Psect definition.

gsdef Global symbol definition record (GSD) definitions.

gsyde f GSD entry -Symbol definition.

hlpdef Definitions for help processing.

iacdef Image activation control flags definitions.

idcdef Random entity ident consistency check definitions.

iodef UO function code definitions.

(continued on next page)

VAX C Definition Modules A-3

Table A-1 (Cont.): VAX C Definition Modules

Module Description

jbcrosgdef Message definitions for Job Controller.

jpidef $GETJPI system service request code definitions.

kgbde f Key Grant Block definitions for rights data base.

ladef LPA-11 characteristics definitions.

latde f Message definitions for the LAT facility.

lbrctltbl Library control table use by Librarian.

lbrdef Librarian argument definitions.

lckdef Lock manager definitions.

lepmdef GSD entry -Module local entry point definition.

lhide f Library header information array offsets.

lib routines Library (LIB$) routine definitions.

libclidef Definitions for LIB$ CLI callback procedures.

libdcfdef Definitions for LIB$DECODE_FAULT.

libdef Definitions of LIB$ return codes.

libdtdef Interface definitions for LIB$DT (date/time) package.

libvmdef Interface definitions for LIB$VM package.

limits Macro definitions that provide implementation-specific
constraints.

lkidef Lock information data identifier information.

lm fde f License Management Facility definitions.

lnkdef Linker Options Record (LNK).

lnmdef Logical name flag definitions.

1pde f Line printer characteristics definitions.

1prodef GSD entry -Module Local Procedure definition.

lsdfdef Module-local Symbol definition.

lsrfdef Module-local Symbol reference.

lsydef LSY -Module-local symbol definition.

mailde f Definitions needed for callable mail.

math Math function definitions.

(continued on next page)

A-4 VAX C Definition Modules

Table A-1 (Cont.): VAX C Definition Modules

Module Description

mhddef Object module header definitions.

mhdef Module header record (MHD).

mntdef Flag bits for the $MOUNT system service.

msgdef System mailbox message type definitions.

mt2def Extended magtape characteristics definitions.

mtadef Magtape accessibility routine code definitions.

mtdef Magtape status definitions.

mthdef Message definitions for the math library.

nam Name block definitions.

ncs$routines Definitions for routines for working with national character sets.

ncsde f Message definitions for the NCS facility.

nfbdef DECnet file access definitions.

nsarecdef Security Auditing record definitions.

objrecdef Object file record definitions.

opcdef OPCOM request code definitions.

opde f Instruction opcode definitions.

oprdef Operator communications message types and values.

ots$routines Common object library routine definitions.

otsdef Message definitions for common object library.

pccde f Printer/terminal carriage-control specifiers.

perror PERROR function-related definitions.

plvdef Privileged library vector definition.

ppl$def Definitions for the RTL Parallel Processing Facility.

ppl$routines Routine definitions for the Parallel Processing Facility.

ppldef Message definitions for the Parallel Processing Facility.

pgldef Process quota code definitions.

prcdef Create process (SYS$CREPRC) system service status flags.

prdef Processor register definitions.

processes Prototype definitions for subprocess functions.

(continued on next page)

f'1
VAX C Definition Modules A-5

Table A-1 (Cont.): VAX C Definition Modules

Module Description

prodef GSD entry -Procedure definition, normal symbols.

promdef GSD entry -Procedure definition, version mask symbols.

provdef GSD entry -Procedure definition, vectored symbols.

prowdef GSD entry -Procedure definition with word of psect value.

prtdef Protection field definitions.

prvdef Privilege mask bit definitions.

psldef Processor Status Longword definitions.

psmmsgdef Message definitions for print symbiont.

pswdef Processor Status Word definitions.

quidef Get Queue Information Service ($GETQUI) definitions.

rab Record access block definitions.

rmedef RMS escape definitions.

rms All RMS structures and return status value definitions.

rmsdef RMS return status value definitions.

sbkdef Statistics block definitions.

scrdef Screen package request types.

sdfdef Object symbol definitions.

sdfmdef Object symbol definition for version mask symbols.

sdfvdef Object symbol definition for vectored symbols.

sd fwde f Object symbol definition with word of psect value.

secde f Image section flag bit and match constant definitions.

setjmp State buffer definition for the setjmp and longjmp
functions .

sfdef Stack call frame definitions.

sgpsdef GSD entry - Psect definition in a shareable image.

shrdef Definition file for shared messages.

signal Signal value definitions.

sjcdef Send to Job Controller Service ($SNDJBC) definitions.

smg$routines Curses Screen Management facility routine definitions.

(continued on next page)

A-6 VAX C Definition Modules

Table A-1 (Cont.): VAX C Definition Modules

Module Description

smgdef Curses Screen Management interface definitions.

smgmsg Message definitions for Curses Screen Management Facility.

smgtrmptr Terminal Capability Pointers for RTL SMG$ facility.

smrdef Symbiont manager request codes definitions.

sorbroutines Sort/Merge routine definitions.

sordef Message definitions for Sort/Merge.

srfdef Object symbol reference.

srmdef Hardware symbol definitions.

ssdef System service return status value definitions.

starlet System routine definitions.

stat STAT and FSTAT function-related definitions.

stdarg Variable argument list access definitions.

stdde f Common useful definitions.

stdio Standard I/O definitions.

stdlib Definitions of miscellaneous C functions.

str~routines Routine definitions for dealing with strings.

strdef Message definitions for VMS string functions.

string C string function definitions.

stsdef System service status code format definitions.

syidef Definitions for the Get System-Wide Information (SYS$GETSYI)
system service.

time Definitions for the localtime function.

timeb Definitions for the Rime function.

tirdef Object file text, information and relocation record (TIR).

tpadef TPARSE control block definitions.

trmdef Define symbols for the item list QIO format.

tt2def Terminal definitions.

ttdef Terminal definitions.

types Type definitions.

(continued on next page)

VAX C Definition Modules A-7

Table A-1 (Cont.): VAX C Definition Modules

Module Description

uaidef Get User Authorization Information Data Identifier definitions.

uicdef Format of UIC -user identification code.

unixio UNIX UO functions.

unixio UNIX UO emulation functions.

unixlib Miscellaneous UNIX emulation functions.

unixlib UNIX emulation functions.

usgdef Disk usage accounting file produced by ANALYZE/DISK
STRUCTURE utility.

usride f User image bit definitions.

varargs Variable argument list access definitions.

xab Extended attribute block definitions.

xwdef System definitions for DECnet DDCMP.

A^8 VAX C Definition Modules

Appendix B

VAX C Compiler Messages

This appendix lists the. VAX C compiler diagnostic messages. For
each message, the appendix gives the mnemonic, the message text, an
explanation of the message, and suggested actions to be taken to avoid the
message. For more information about the format of the error messages, see
Chapter 1.

You can also obtain the compiler diagnostic messages online. To do so, type
the following command:

$ HELP CC ERROR mnemonic RETURN

To receive a list of all the mnemonics, type the following command:

$ HELP CC ERROR RETURN

Some messages substitute information from the program in the message
text. In this appendix, the portion of the text to be substituted is shown as

~~ **** ~~ or ****. If quotes appear around the asterisks, quotes appear in
the substituted message.

You can suppress the warning and informational messages with the
/[NO]WARNINGS qualifier on the CC command line. You may want to do
this so that the compiler broadcasts only the most severe messages to the
terminal. For more information about the /[NO]WARNINGS qualifier, see
Chapter 1.

VAX C Compiler Messages B-1

ADDRDEPENDENCE, Potential dependence created by use of variable
~~ **** ~~ within the expression which inhibited
decomposition at loop control variable ~~ **** ~~ .

Informational: Avariable is used in an address dereferencing
expression, which can cause aloop-carried dependency. Loop
decompositior~ is inhibited. This message is issued if you specified
the /PARALLEL qualifier on the CC command line.

User Action: If you are sure that the target memory accessed
conflicts with no other memory accessed during loop execution, use
the #pragma ignore_dependency to specify loop decomposition.

AGGREGATEDEPEND, Variable ~~ *** ~~ has subscript expressions which
are not the same, which inhibited loop decomposi-
tion at loop control variable ~~ *** ~~ .

Informational: A variable's subscripts are not the same across
two references to the variable, indicating a potential dependency.
This message is issued if you specified the /PARALLEL qualifier on
the CC command line.

User Action: If the loop must be decomposed, then rework your
algorithm or use the ignore_dependency pragma to disregard
the dependency.

ANACHRONISM, The ~~ **** ~~ operator is an obsolete form, and may not be
portable.

Informational: You used an old-style assignment operator such as
_+ or =*.

User Action: For the program to be portable, reverse the order of
the operator parts. For example, change =+ to += and =* to *_. The
old-style operators are currently supported by VAX C, but they may
not be supported by other C compilers, and they are not guaranteed
to be supported in future releases of VAX C.

ARGINVSTRPTR, The *** argument of ~~ *** ~~ built-in function is not a
pointer to structure or union with size: 1, 2, or 4 bytes.

Error: Abuilt-in function that takes a struct argument was not
passed a struct of the appropriate size.

User Action: Correct the call to the built-iri function to pass the
correct number and type of arguments.

B-2 VAX C Compiler Messages

ARGLISTOOLONG, Function reference specifies an argument list whose
length exceeds the VAX architecture limit.

Error: The size of your argument list in the function call exceeded
255 longwords.

User Action: Rewrite the function definition and function call
with a list whose members) take less space; for example, by
passing floating-point and structure arguments by reference rather
than by value. Recall that floating-point arguments occupy two
longwords, unless a function prototype is specified using $oat, and
that structures passed by value occupy as many longwords as are
necessary to contain the whole structure.

ARGNOFLOAT, The *** argument of ~~ *** ~~ builtin function may not be
floating point. The argument has been converted to an
integer.

Warning: An argument to a built-in function has afloating-point
type when it should have an integer type.

User Action: Correct the call to the built-in function to pass the
correct number and type of arguments. If you wish to pass a float
argument, use an explicit cast.

ARGNOTINTPTR, The *** argument of ~~ *** ~~ builtin function is not a
pointer to integer.

Error: An argument to a built-in function does not have the
required type of pointer to some type of integer.

User Action: Correct the call to the built-in function to pass the
correct number and type of arguments. Check the arguments for
missing address-of operators (&).

ARGNOTLVALUE, The *** argument of ~~ *** ~~ builtin function is not an
lvalue.

Error: An argument that is required to be an lvalue is anon-lvalue
expression.

User Action: Correct the call to the built-in function to pass the
correct number and type of arguments. Make sure the appropriate
arguments are lvalues.

VAX C Compiler Messages B-3

ARGNOTPTRVAL, The *** argument of ~~ *** ~~ builtin function is not a
pointer.

Error: An argument that is required to be some type of pointer
does not have a pointer type.

User Action: Correct the call to the built-in function to pass the
correct number and type of arguments. Check the arguments for
missing "address of operators (&).

ARGOVERFLOW, Length of the argument list for macro ~~ **** ~~ exceeds
buffer capacity; overflowing arguments) considered to
be null.

Warning: The total length of the arguments in a macro reference
exceeded the compiler's capacity to store the arguments prior to
substitution.

User Action: Shorten or eliminate one or more arguments.

ARGREADONLY, The *** argument of ~~ *** builtin function is read-only.

Error: An argument that is used by the function to modify memory
is a pointer to const or read-only memory.

User Action: Correct the call to the built-in function to pass the
correct number and type of arguments. Make sure that arguments
that the function uses ~to change memory point to writeable memory.

ARGSTOOFEW, Argument list for builtin function ~~ *** ~~ contains too few
arguments; the builtin function is being ignored.

Error: Not all of the required arguments were specified.

User Action: Correct the call to the built-in function to pass the
correct number and type of arguments.

ARGSTOO Argument list for builtin function ~~ *** ~~ contains too
many arguments; excess arguments ignored.

Warning: A function was called with extra arguments.

User Action: Correct the call to the built-in function to pass the
correct number and type of arguments.

B-,4 VAX C Compiler Messages

ARR,AYDEPENDENCE, Variable ~~ *** ~~ has subscript expressions which
are not the same, which inhibited loop decomposi-
tion at loop control variable ~~ *** ~~ .

Informational: You have an array that contains aloop-carried
dependency due to your use of array subscripts. This message
is issued if you specified the /PA►R,ALLEL qualifier on the CC
command line.

User Action: If the loop must be decomposed, use code transfor-
mations as described in Section 3.5 to eliminate the dependency or
use the ignore_dependency pragma to disregard the dependency.

BADCODE, Invalid code generation sequence.

Fatal: An internal compiler error occurred.

User Action: Gather as much information as you can about the
conditions in effect when the error occurred, and submit an SPR
(see the V.AX C Installation Guide).

BADPSECT, The program section (psect) specified by this statement has
conflicting ~~ nowrite ~~ attributes with another definition of the
same program section.

Warning: You specified two or more references to the same pro-
gram section, and the attributes of the references do not correspond.

For example, this message appears when two globaldef definitions
exist for the same name, but only one specifies the storage class
readonly.

User Action: Make all references to a program section consistent.

BITARR,AY, The CDD description for ~~ **** ~~ specifies that it is an array of
bit-fields; it has been converted to a scalar bit-field.

Informational: The compiler generated a declaration of a bit-field
whose size is the same as the total size of the original CDD item.
(VAX C does not support arrays of bit fields.)

User Action: If the generated declaration is acceptable, no action
is required; otherwise, change the CDD description as appropriate.

VAX C Compiler Messages B-5

BITFIELDSIZE, The CDD description for bit-field ~~ **** ~~ specifies a size
greater than 32; the excess is declared separately.

Informational: VAX C generated a series of bit-field declarations
whose total size is the same as that of the original CDD item. (VAX
C does not support individual bit fields larger than 32 bits.)

User Action: If the generated declarations are acceptable, no
action is required; otherwise, change the CDD description as
appropriate.

BOUNDADJUSTED, The CDD description for ~~ **** ~~ specifies non-zero-
origin dimension bound(s); adjusted to zero-origin.

Informational: VAX C generated a declaration whose bounds)
have been adjusted to start at zero. The generated array had the
same number of elements as the original CDD item. (VAX C does
not support dimension bounds that do not start at zero.)

User Action: Make sure that subscript expressions in references
to this array are offset by the appropriate amounts.

BUGCHECK, Compiler bug check during ****. Submit an SPR with a
problem description.

Fatal: An internal error occurred during the specified phase of
compilation.

User Action: Gather as much information as possible about the
conditions under which the error occurred, including the phase of
compilation, and submit an SPR (see the VAX C Installation Guide).

BUILTARGCONV, The *** argument of ~~ *** ~~ builtin function has been
converted from pointer to arithmetic type.

Warning: An argument that should have an integer or floating-
point type had a pointer type.

User Action: Correct the call to the built-in function to pass the
correct number and type of arguments. If you want to pass a
pointer argument to an arithmetic argument, use an explicit cast.

B-6 VAX C Compiler Messages

CANTINLINECALL, Can't inline this call to ~~ **** ~~ as requested because
not enough actual parameters are supplied in the
call.

Informational: The number of parameters supplied in a call to the
function is fewer than the number of formal parameters declared
and used in the function. Function calls that do not supply enough
parameters will not be expanded inline.

User Action: Change the call so that all necessary parameters
are supplied, or eliminate unneeded formal parameters from the
function.

CANTINLINECALL, Can't inline this call to ~~ **** ~~ as requested because
an offset into a by value parameter exceeds size of
actual.

Informational: The actual value of a parameter provided in a call
was smaller in size than the corresponding formal parameter of the
function. Use of the formal parameter requires the full amount of
storage. This indicates that the type of the formal parameter does
not match the type of the actual value provided in the call.

User Action: Change either the formal parameter or the actual
value provided in the call so that the type of the formal parameter
matches the type of the actual value.

CANTINLINEPROC, Can't inline ~~ **** ~~ as requested because a variable
offset into a by value parameter is used.

Informational: A formal parameter is referenced with arun-time
variable subscript. This is usually a parameter of type struct
containing a field that is an array. Functions that use formal
parameters in this way will not be expanded inline.

User Action: Pass a pointer to the struct instead of the struct
itself, or remove the pragma that requests that the function be
expanded inline.

CANTINLINEPROC, Can't inline ~~ **** ~~ as requested because it declares
an exception handler.

Informational: It was requested that a function be expanded
inline. However, that function declares an exception handler.

VAX C Compiler Messages B-7

Since the function would not have a call frame, it cannot have an
exception handler if it is to be expanded inline.

User Action: Eliminate the exception handler, or remove the
pragma that requests that the function be expanded inline.

CANTINLINEPROC, Can't inline ~~ **** ~~ as requested because it takes the
address of a passed by value parameter.

Informational: The function uses operators such as & to take
the address of a formal parameter, or uses the varargs package.
These practices prevent inline expansion of the function because
it may store parameters in registers (which have no address) after
inline expansion, and because you may have been relying upon the
parameters being adjacent to each other in memory, which will not
be true after inline expansion.

User Action: If possible, code the function without using the
address of the parameter, or if an address is needed, then change
the formal parameter to be a pointer to the value. If the varargs
package is used, then remove the pragma requesting that the
function be expanded inline.

CASECONSTANT, Case label value is not a constant expression.

Error: You specified a value in a case label that was not a
constant.

User Action: Replace the case value with a valid constant
expression.

CDDATTRIGNORED, The CDD description for ~~ **** ~~ specifies the ~~ **** ~~
attribute, which is being ignored.

Informational: The CDD record description specifies an attribute
for the indicated item that is not supported by VAX C. The compiler
ignores the indicated attribute.

User Action: None.

CDDNAMETOOLONG, The CDD identifier name exceeds 31 characters;
"name" truncated to "name".

Warning: You specified an identifier name that exceeded 31
characters.

User Action: Shorten or change the identifier name.

B-8 VAX C Compiler Messages

CDDTOODEEP, The attributes for the Common Data Dictionary record
description ~~ **** ~~ exceed the implementation's limit for
record complexity.

Error: The indicated record description was too complex for VAX C
to generate declarations that could be used.

User Action: Simplify the record description in the CDD.

CMPLXINIT, ~~ **** ~~ is too complex to initialize.

Warning: The depth of the indicated aggregate variable exceeded
the limit of 32 levels.

User Action: Simplify or correct the initializer list or declaration,
or initialize the variable within an assignment statement.

COLMA~TOR, The CDD description for ~~ **** ~~ specifies that it is a column-
major array; it has been converted to aone-dimensional
array.

Informational: VAX C generated a declaration for this item with
a single dimension. (VAX C supports only row-major arrays.}

The number of elements in the array is the same as the total
number of elements in the original array.

User Action: Make sure that you properly compute references to
this array.

COMPILERR, Previous errors prevent continued compilation. Please
correct reported errors and recompile.

Fatal: The compiler detected too many errors to continue.

User Action: Correct the errors reported in the previous compiler
messages.

COMPLEXINITEXPR, Loop decomposition inhibited due to complex loop
initialization expression.

Informational: A loop initialization expression was a function call
or other complex expression. This message is issued if you specified
the /PA►RALLEL qualifier on the CC command line.

User Action: If the loop must be decomposed, rewrite the initial-
ization section in the loop.

VAX C Compiler Messages B-9

COMPLEXSTEPEXPR, Loop decomposition inhibited due to complex loop
step expression.

Informational: A loop step expression was a function call or other
complex expression. This message is issued if you specified the
/PARALLEL qualifier on the CC command line.

User Action: If the loop must be decomposed, rewrite the loop
expression.

COMPLEXTERMEXPR, Loop decomposition inhibited due to complex loop
termination expression.

Informational: A loop termination expression was a function call
or other complex expression. This message is issued if you specified
the PARALLEL qualifier on the CC command line.

User Action: If the loop must be decomposed, rewrite the termina-
tion condition in the loop.

CONBUILTARG, Constant expression required for "****" argument of
" * * * * " builtin function.

Error: Some built-in functions require that certain arguments be
constants or expressions that the compiler can evaluate at compile
time to produce a constant. If a nonconstant expression is used for
any such argument, this error message is issued.

User Action: Replace the offending argument expression with a
constant. If the structure of the program requires that the built-in
function be called with different values that can only be calculated
at run time, consider using a switch statement to call the built-in
function with different (constant) arguments on the basis of the
run-time expression.

CONFLICTDECL, This declaration of '~ ****" conflicts with a previous
declaration of the same name.

Warning: The compiler determined that both declarations refer to
the same object, yet the two declarations conflict in data-type or
storage-class organization.

In addition, for external variables and global symbols, the compiler
may detect conflicting storage-class specifiers or identifiers that are
spelled the same but consist of letters that are in different cases
(the linker converts all external and global names to uppercase
letters). If the compiler issues an error message for this reason,

B-10 VAX C Compiler Messages

the program may be correct; issuing a message in this instance is a
warning against possible programming errors.

User Action: If the declarations refer to the same object,
make sure that they specify the same types and organizations.
Otherwise, either rename one of the. identifiers, or separate the
scopes of the declarations.

CONTROLDEPEND, Loop ~~ *~`~~` ~~ has control dependence which inhibited
loop decomposition.

Informational: You have a loop that contains a goto, exit, or
return statement. This message is issued if you specified the
!PARALLEL qualifier on the CC command line.

User Action: If the loop must be decomposed, rework your
algorithm.

CRXCONDITION, Common Data Dictionary description extraction
condition.

Informational: An anomaly occurred during the extraction of
a CDD record description. The specific condition is described in
an accompanying message. The severity of this message may be
increased to warning or error depending on the specific condition.

User Action: If necessary, correct the indicated condition in the
CDD record description.

DEFTOOLONG, Text in #define preprocessor directive is too long; directive
ignored.

Warning: The length of the macro string in the #define directive
exceeded the implementation's limit.

User Action: Simplify the directive.

DIVIDEZERO, Constant expression includes divide by zero; the result has
been replaced with 0.

Warning: A division by zero was encountered in a constant expres-
sion. The expression was replaced by 0.

User Action: Make sure that no divisors in the expression can
evaluate to 0.

VAX C Compiler Messages B-11

DUPCASE, Duplicate case label value ~~ **** ~~ .

Error: You specified more than one case for the indicated value in
a switch statement. (The cases must be unique.)

User Action: Change the case labels and combine the cases or
both, as appropriate.

DUPDEFAULT, Duplicate default label.

Error: You specified more than one default case in the same
switch statement.

User Action: Combine the cases or make other changes necessary
to eliminate the duplicate(s).

DUTPDEFINITION, Duplicate definition of ~~ **** ~~.

Warning: The named definition appeared more than once in the
program.

The two definitions are essentially the same. Both definitions
specify the same data types and organizations, but there may be
differences in the values, initializers, or array bounds. If the name
is a function, there may be a difference in the number or types of
parameters, or in the contents of the function body.

User Action: The purpose of this message is to call a possible
programming error to your attention.

DUPINLINEFUNC, Duplicate [no]line function ~~ **** ~~ .

Warning: You duplicated a function name in one or more pragma
declarations.

User Action: Change the name of the function declaration.

DUPLABEL, Duplicate label ~~ **** ~~ .

Error: You specified duplicates of the indicated label in the same
function. (Label identifiers must be unique within a function
definition.)

User Action: Rewrite the labels (and goto statements that refer
to them) to eliminate the duplicates.

B-12 VAX C Compiler Messages

DUPLISTITEM, Duplicate list item "****" ignored.

Warning: You specified the same name more than once in a list of
arguments to a #pragma directive. For example, in the following
#pragma, the second appearance of variable a is redundant and is
ignored:

#pragma noinline (a, b, a)

Similarly, the second occurrence of variable y in the following ex-
ample is redundant, as argument lists for some #pragma directives
are concatenated:

#pragma noinline (x, y)

#pragma noinline (y, z)

User Action: Remove the duplicate argument if it is redundant;
otherwise, check for misspellings.

DUPMAINFUNC, Duplicate main function. .

Warning: You defined two or more main functions in a single
compilation unit.

A main function is either a function with the name main or a
function with the main program option. If the compilation unit
contains more than one main function, the compiler recognizes only
the first as the main function.

User Action: Make sure that there is only one main function
defined in the compilation unit.

DUPMEMBER, Duplicate declaration of member ~~ **** ~~ .

Warning: You declared two members with the same name in the
same structure.

User Action: Rename one of the members or remove one of the
member declarations.

DUPP ETER, Duplicate parameter ~~ **** ~~ ignored.

Warning: The stated function parameter occurred more than once
in the function's formal parameter list. For example:

VAX C Compiler Messages B-13

All occurrences of the parameter after the first are ignored.

User Action: Remove or change the duplicate parameter identifier.

ENUMCLASH, Mismatched enum type in ~~****~~ operation.

Warning: The indicated operation combined an enum variable or
value with a value of a nonmatching type. The compiler issued this
message if you used the /STANDARD=PORTABLE qualifier on the
CC command line.

User Action: Use a cast operation to cast either the enum value
or the other value to a matching type.

ENUMOP, ~~ **** ~~ is an undefined operation for enum values; enum
operands) converted to int.

Warning: You used an enum variable or constant with an arith-
metic or bitwise operator. These operators are undefined for use
with enum types. The operation is performed; however, the com-
piler treats the enum object as an integer.

User Action: Cast the enum object to int.

EXTERNNAMETOOLONG, The external identifier name exceeds 31
characters; "name" truncated to "name".

Warning: You specified an external identifier name that exceeded
31 characters.

User Action: Shorten or change the external identifier name.

EXTRACOMMA, Extraneous comma in ~~ **** ~~ ignored.

Warning: You have coded an extra comma in the indicated context;
the comma was ignored by the compiler.

User Action: Make sure that any required item was not accidently
omitted; otherwise, remove the extra comma.

EXTRAFORMALS, Extraneous formal parameters) ignored in declaration

Warning: You included a function's formal parameters in a func-
tion declaration or definition.

For example, the following function declaration is not allowed
because it names the function's parameters:

int funct (a, b, c) ;

B-14 VAX C Compiler Messages

The parameters a, b, and c are ignored.

Similarly, the following example defines a function returning a
pointer to a function returning an integer. The names of the
parameters of the function returning an integer are not allowed.

(*f (pl,p2)) (gl,g2)
int pl, p2;

{

}

The compiler ignores the parameters ql and q2.

User Action: Check the syntax of the function declaration and, if
appropriate, remove the extra identifier(s).

EXTRAMODULE, Redundant #module preprocessor directive ignored.

Warning: You specified more than one #module directive in a
single compilation; the excess directive or directives were ignored.

User Action: Make sure that only one #module directive exists in
the source file, and that it is placed before any VAX C source code.

EXTRATEXT, Extraneous text in preprocessor directive ignored.

Informational: Extra text appeared in the directive. For example:

#endif ABC

The compiler issues this message if you specify the
/STANDARD=PORTABLE qualifier on the CC command line.

User Action: Either remove the extra text or enclose it in
a comment.

FATALSYNTAX, Fatal syntax error.

Fatal: The compiler could not continue due to syntax errors.

User Action: Correct the error on the indicated line and errors, or
both, reported in previous compiler messages.

FILENOTFOUND, Include file could not be opened.

Fatal: The compiler could not find the include file in any of the
valid text libraries or directories.

User Action: Check to see if the file exists, and then check that
the include method you used for this file searches for the file in the
place where you expected it to search.

VAX C Compiler Messages B-15

FLOATCONFLICT, The CDD description for ~~ **** ~~ specifies the
D_floating data type; the data cannot be represented when compil-
ing with /G FLOAT.

FLOATCONFLICT, The CDD description for ~~ **** ~~ specifies the
G floating data type; the data cannot be represented when compil-
ing with /NOG_FLOAT.

Warning: The data type of the indicated CDD item conflicted with
the indicated command-line qualifier.

Only one of the two double-precision, floating-point data formats
may be used in a compilation, as specified by the command-line
qualifier (the default qualifier is lNOG FLOAT). VAX C generates a
declaration of an 8-byte structure for the item.

User Action: Specify the appropriate, command-line qualifier, or
change the description of the item in the CDD.

FLOATOVERFLOW, Overflow during evaluation of floating-point constant
expression.

Error: Overflow occurred during the evaluation of a constant
expression containing floating-point operands.

User Action: Make sure that the expression value is in the range
0.29 * 10-38 to 1.7 * 1038.

FUNCNOTDEF, Static function ~~ **** ~~ is not defined in this compilation;
assumed to be external.

Warning: The indicated static function declaration did not refer
to an existing definition. The compiler treated the function as
external.

User Action: Remove the storage-class specifier static in the
function declaration or use the specifier in the appropriate function
definition.

GLOBALENUM, Enumerators may not be initialized when declared with
~~ globalref~~ .

Warning: You tried to specify the values of enumeration constants
in a declaration of an enum variable with the globalref storage-
class specifier.

B-16 VAX C Compiler Messages

You must define these values elsewhere, in a globaldef declaration,
and you must not initialize them in the globalref declaration.

User Action: Remove all initializing values from the globalref
declaration.

IFEVALERROR, **** while evaluating #if or #elif expression; "true"
expression assumed.

Warning: The substitute text is ~~ Stack overflow ~~ or ~~ Divide by
zero ~~ .

User Action: For stack overflow, reduce the complexity of the
expression. For divide by zero, make sure that no divisors are zero.

IFSYNTAX, Syntax error in #if or #elif expression; true expression
assumed.

Warning: The #if or #elif expression on the indicated line cannot
be evaluated because of syntax errors; it was assumed to be true.

User Action: Correct the line.

IGNORED, Unexpected **** ignored.

Warning: The compiler encountered an unexpected macro in the
source program, and has ignored it. (This may be a syntax error.)

User Action: Make sure that the macro and surrounding text is
syntactically correct.

INCBUILTAR,G, Incorrect type for *** argument of ~~ *** ~~ builtin function.

Error: An argument to a built-in function has the wrong type.

User Action: Correct the call to the built-in function to pass the
correct number and type of arguments.

INLINCONF, Previous inline or noinline pragma for ~~ **** ~~ conflicts with
this pragma.

Warning: You used both an inline pragma and a noinline pragma
specifying conflicting inline specifications for one particular
function.

User Action: Determine whether you want the function to be
expanded inline, and remove the conflicting pragma.

VAX C Compiler Messages 8-17

INSBEFORE, Inserted **** before ****.

Warning: The compiler tried to recover from a syntax error by
inserting a macro into the source.

User Action: Correct the syntax.

INSMATCH, Inserted **** to match **** on line ****.

INSMATCH, Inserted **** to match **** inserted earlier.

Warning: The compiler tried to recover from a syntax error by
inserting a macro to match a previous macro in the source code.
The previous macro may or may not have been inserted by the
compiler.

User Action: Make sure that you match all parentheses, brackets,
and braces.

INTERNALLIMIT, Loop decomposition inhibited due to compiler's internal
limitations.

Informational: You have too many loops within a single function
for decomposition to proceed. This message is issued if you specified
the !PARALLEL qualifier on the CC command line.

User Action: If the loop must be decomposed, create two functions
in place of the existing function or create nested loops in place of
the single loops.

INTVALERROR, Integer value not used where required.

Error: You used a noninteger value as an initializer for an enum
constant, or to specify the size of a bit field. You must specify these
values as integer constants.

User Action: Specify an integer constant.

INTVALREQ, Noninteger value used incorrectly in a **** ;converted to
integer.

Warning: You used a noninteger value in a switch statement or a
case label. The value has been converted to integer.

User Action: Specify switch expressions and case label values
as integer values, or use a cast operator to make the conversion
explicit.

B-18 VAX C Compiler Messages

INVAGGASSIGN, Invalid aggregate assignment.

Error: You tried to assign an array to another array or to assign
structures or unions of different sizes.

User Action: Correct the assignment.

INVALIDIF, ~~ **** ~~ is not a valid constant or operator in a #if or #elif
expression; "true" expression assumed.

Warning: You used an invalid construction in an #if or #elif
expression, which is assumed to be true.

User Action: Correct the expression.

INVALIGNSPEC, Invalid alignment specification ignored.

Warning: You specified an alignment option that was not in the
range allowed. The compiler ignored the specified option.

User Action: Correct the alignment specification.

INVALINIT, The initialization of ~~ **** ~~ is not valid.

Warning: The indicated object cannot be initialized as specified.
Some objects may not be initialized at all, such as functions, unions,
and extern or globalref objects. In other cases, the initializes
may not be appropriate; for example, a static pointer cannot be
initialized with the address of an automatic variable. This and any
subsequent initializers for the same object have been ignored.

User Action: Eliminate or correct the initializes, or correct the
type or storage class of the target object, or initialize the object
with an explicit assignment.

INVANAFILE, The compiler has generated an invalid ANA file. Please
submit an SPR with the sources which generate this error.

Warning: The compiler has generated some invalid data in the
ANALYSIS_DATA file.

User Action: Correct all other errors. If the error persists, please
submit an SPR.

VAX C Compiler Messages B-19

INVARRAYBOUND, The declaration of ~~ **** ~~ specifies a missing or
invalid array bound.

Error: In a declaration of an array, you omitted a required dimen-
sion bound value or specified an invalid value for a bound.

For multidimensional arrays, you must specify bounds for dimen-
sions other than the first. You must also specify a bound for the
first (or only) dimension if this declaration is a definition. Valid
bound values are integer constant expressions greater than zero.

User Action: Make sure that all required bounds are present
and valid.

INVARRAYDECL, ~~ **** ~~ is an improperly declared array.

Error: You improperly declared an array, such as an array of
functions.

User Action: Make sure that the syntax of the declarator correctly
describes the object. (The declared object may not be what you
want.) You may find the output from the /SHOW=SYMBOLS
qualifier to be helpful in diagnosing this error.

INVASSIGNTARG, Invalid target for assignment.

Error: You specified, as the left operand of an assignment operator,
an expression that was not valid for assignment. For example, you
may have tried to assign something to an array, to a function, to a
constant, or to a variable declared with the readonly storage-class
modifier.

User Action: Make sure that the target is appropriate for
assignments.

INVBREAK, Invalid use of the ~~ break ~~ statement.

Error: You used break outside the body of a for, a while, a do, or
a switch statement.

User Action: Remove the break statement, or check that any
braces in recent loops or switch statements are properly balanced.

8-20 VAX C Compiler Messages

INVBUILTIN, The ~~ *** ~~ builtin function call is being ignored; it has
invalid argument(s).

Error: A call to a built-in function contains errors. This message
usually follows other error messages describing errors in the
argument expressions.

User Action: Correct any errors listed before this one. Make sure
that the function is called with the correct number and types of
arguments.

INVCMDVAL, ~~ **** ~~ is an invalid command qualifier value.

Fatal: The indicated CC command qualifier value was acceptable
to the VMS command language interpreter (CLI), but it is mean-
ingless to VAX C; for example, LIST_OPTS is an invalid value for
/SHOW, but it is accepted by the CLI.

User Action: Correct the qualifier value.

INVCONDEXPR, The second and third operands of a conditional expres-
sion cannot be converted to a common type.

Error: You specified an invalid combination of operands in a
conditional expression.

This can occur if the operands are pointers to objects of a different
size of type, or if the operands are different structures.

User Action: Make sure that both operands are of compatible
sizes and data types.

INVCONST, ~~ **** ~~ is an invalid numeric constant.

Warning: The indicated constant contained illegal characters or
was otherwise invalid.

User Action: Correct the constant.

INVCONTINUF, Invalid use of the ~~ continue ~~ statement.

Error: You used the continue statement outside the body of a for,
while, or do statement.

User Action: Remove the continue statement, or check that any
braces in recent loops are properly balanced.

VAX C Compiler Messages 8-21

INVCONVERT, The source or target of a conversion is noncomputational.

Error: One of the operands in an expression could not be converted
as specified. For example, you tried to cast some object to
a structure.

User Action: Correct the expression or cast.

INVDATATYPE, ~~ **** ~~ has an invalid data type for use in this #pragma
preprocessor directive; directive ignored.

Warning: The indicated identifier was not declared with the data
type required by the directive in which it appears. The entire
directive was ignored by the compiler. The following example
requires that p and q be variables:

#pragma ignore_dependency(p,q)

The next example requires that f and pf be either functions or
pointers to functions:

#pragma safe call (f, pf)

User Action: Make sure that only appropriately declared identi-
fiers appear in these directives.

INVDEFNAME, Missing or invalid name in **** preprocessor directive;
directive ignored.

Warning: The indicated directive was missing a required name.
For example:

#define

The entire directive was ignored.

User Action: Correct or remove the directive.

INVDICTPATH, Missing or invalid path name in #dictionary preprocessor
directive; directive ignored.

Warning: The indicated directive was missing a required name.
For example:

#dictionary

The compiler ignores the entire directive.

User Action: Correct or remove the directive.

B-22 VAX C Compiler Messages

INVFIELDSIZE, The declaration of ~~ **** ~~ specifies an invalid field size;
size of 32 bits assumed.

Warning: The indicated field declaration was invalid because it
specified too large a size.

User Action: Correct the declaration to specify either a single,
smaller field or several contiguous fields.

INVFIELDTYPE, The declaration of ~~ **** ~~ specifies an invalid data type;
type "unsigned" assumed.

Warning: You declared a field with an invalid data type. Fields
must be declared (and manipulated) as integers or enumerated
types.

User Action: Correct the declaration to specify a valid data type.

INVFILESPEC, Missing or invalid file specification in #include preproces-
sor directive; directive ignored.

Warning: The #include directive either was missing a file or
module name or specified one that is syntactically invalid. The
directive was ignored.

User Action: Correct the directive.

INVFLTNCDECL, ~~ **** ~~ is an improperly declared function.

Error: You improperly declared a function. For example, you
may have omitted the parameter list or a semicolon between the
function and a previous declaration.

User Action: Correct the syntax of the declaration.

INVFUNCOPTION, Invalid function definition option ~~ **** ~~ ignored.

Warning: The indicated function definition was not supported.
(The only valid option is the main_program option.)

User Action: Check the spelling of the option, or the syntax of the
function definition.

ITJ~VHEXCHAR, Invalid hexadecimal character value; high-order bits
truncated.

Warning: An escape character specified in hexadecimal exceeded
the limit of a 1-byte character.

User Action: Correct the hexadecimal constant to represent a
valid escape character.

VAX C Compiler Messages B-23

INVHEXCON, Hexadecimal constant contains an invalid character.

Error: You specified an invalid hexadecimal constant, such as OxG.

User Action: Correct the constant.

INVIFNAME, Missing or invalid name in #ifdef or #ifndef preprocessor
directive; ~~ true ~~ assumed.

Warning: You specified no name, or a syntactically invalid one, in
the directive; the result of the test is assumed to be true.

User Action: Correct the directive.

INVINAGGASN, Invalid ~~ *** ~~ built-in function call; structure or union
arguments are not of same size.

Error: Abuilt-in function that requires two or more arguments be
of the same size was called with arguments of different sizes.

User Action: Correct the call to the built-in function to pass the
correct number and type of arguments.

INVLINEFILE, Invalid file specification in #line preprocessor directive;
directive ignored.

Warning: The file specification was syntactically invalid, and the
directive was ignored.

User Action: Correct the directive.

INVLINELINE, Missing or invalid line number in #line preprocessor
directive; directive ignored.

Warning: The line number was missing or was syntactically
invalid, and the directive was ignored.

User Action: Correct the directive.

INVMAINRETVAL, Return value of main function is not an integer type.

Warning: You have declared a main function with a return value
that is not an integer type.

User Action: Check for an omitted semicolon at the end of any
declaration immediately preceding the declaration of the main
function, or change the return value specification to one of the
integer types.

B-24 VAX C Compiler Messages

INVMODIDENT, Invalid ident specification in #module preprocessor
directive; directive ignored.

Warning: The ident specification in the directive either was not a
valid identifier or was not a valid character-string constant.

User Action: Correct the directive.

INVMODIFIER, ~~ **** ~~ is an invalid data type modifier in this declaration.

Warning: You specified adata-type modifier other than const or
volatile as in the following example:

char * int ptr;

The data-type modifier int will be ignored.

User Action: Remove or change the data-type modifier.

IN~IMODTITLE, Missing or invalid title specification in #module prepro-
cessor directive; directive ignored.

Warning: The required title in the directive either was missing or
was not a valid identifier.

User Action: Correct the directive.

INVOCTALCHAR, Invalid octal character value; high-order bits truncated.

Warning: The octal value in an escape sequence was too large, as
in ~ \ 477 ~ . Its high-order bits were truncated.

User Action: Correct the value.

INVOPERAND, Invalid **** operand of a ~~ **** ~~ operator.

Error: You specified an invalid operand for the indicated operator.

This message is issued for arithmetic and bitwise operators if
the operand is noncomputational (such as a structure). For other
operators (such as the increment operator), the compiler issues the
message if the operand is not an lvalue. For binary operators, the
substituted text indicates which operand, left or right, is invalid.

User Action: Make sure that the operand is the proper type for
the operator, and that it is an lvalue.

VAX C Compiler Messages B-25

II~IVPPKEYWORD, Missing or invalid keyword in preprocessor directive;
directive ignored.

Warning: You wrote a directive with no keyword. For example:

ABC

The directive was ignored.

User Action: Correct or remove the directive.

INVPROTODEF, The parameter list for a function prototype definition
must associate an identifier with each type.

Error: The function definition uses the prototype format but does
not contain an identifier for each type in the parameter list.

User Action: Place an identifier name in the appropriate type
declaration.

INVPTRMATH, Invalid pointer arithmetic.

Error: You tried to perform an invalid arithmetic operation on a
pointer or pointers. The only valid arithmetic operations allowed
with pointers are addition and subtraction.

For addition, the only forms allowed are as follows:

pointer + integer
pointer += integer

For subtraction, the only forms allowed are as follows:

pointer - integer
pointer -= integer
pointer - pointer

In the last form, both pointers must point to objects of the same
size.

User Action: Make sure that the expression conforms to one of the
previous forms listed. If necessary, cast one or both operands to a
compatible type.

INVSTORCLASS, ~~ **** ~~ is an invalid storage class in this declaration.

B-26 VAX C Compiler Messages

INVSTORCLASS, The ~~ **** ~~ storage class is invalid for the declaration of
~~** ,~

Warning: You made one of the following programming errors:

• You specified a storage class that is invalid in the context in
which the declaration appears; for example, you specified auto
in a declaration located outside of a function.

• You specified a storage class that is incompatible with another
storage-class specifier; for example, you specified both static
and extern.

• You specified a storage class that is incompatible with the data
type of the indicated declarator; for example, you specified
globalvalue for an array.

In all cases, the compiler ignores the storage-class specifier.

User Action: Correct the declaration.

INVSUBUSE, Invalid use of subscripting.

Error: You specified a subscript in reference to a bit field.

User Action: Correct the syntax. If the structure containing the
bit field is an array, you must specify the subscript,(s) with the
qualifier instead of the member name.

INVSUBVALUE, Invalid subscript value.

Error: You specified a subscript value that is not of an
integer type.

User Action: Change or cast the value to an integer type.

I1~lVTAGUSE, Invalid use of tag ~~ **** ~~ .

Error: You used a previously defined tag name in a declaration of
a different type. For example:

enum color {red, green, blue } ;
struct color *cp;

You may only use a given tag with one of the types enum, struct,
or union. Any identifiers declared with the mismatched type will
be undefined.

User Action: Either make sure that each use of the tag name
specifies the same type, or use different tag names with each type.

I1~tVVARIANT, Invalid declaration of variant aggregate.

VAX C Compiler Messages B-27

Il~f~WARIANT, Invalid declaration of variant aggregate ~~ **** ~~ .

Error: You specified a missing or invalid declarator in the decla-
ration of a *variant_struct* or *variant_union*. For example, you
have specified a list of declaratory, a declarator of array, a function,
or a pointer type.

User Action: Either declare the aggregate as an ordinary * struct*
or *union* or specify a single, simple identifier as the declarator.

IrfWOIDUSE, "void" is only valid in a parameter list when it appears
alone. Its use is ignored.

Warning: void has been used in a function prototype parameter
list but is not the only item in the list.

User Action: Either eliminate void or eliminate the extra param-
eter types in the parameter list.

LIBERROR, Error while reading library ~~ **** ~~ .

Fatal: The compiler could not read the indicated library. Either it
was not a text library, or its format had been corrupted.

User Action: Verify the spelling of the library's name, and verify
that it is a valid VMS text library.

LIBLOOKUP, ~~ **** ~~ was not found in any of the specified libraries.

Fatal: The compiler failed to locate the indicated #include module
in any of the specified or default libraries.

User Action: Check the CC command line to verify that the
library containing the module was specified and that the module
name, if specified, was spelled correctly. If the library was a default
library, verify (with SHOW TRANSLATION C$LIBRARY) that its
name is the equivalent for C$LIBRARY.

LISTTOOLONG, List in #pragma preprocessor directive is too long; direc-
tive ignored.

Warning: You have specified more than 128 items in the list. The
entire directive was ignored by the compiler.

User Action: Split the list into separate directives.

B-28 VAX G Compiler Messages

LIVEOUTSIDELOOP, Variable ~~ *** ~~ is in use outside the loop, which
inhibited loop decomposition at control variable
~~***~~

Informational: You have a scalar variable that has recurrence in
a loop or has a lifetime outside of the loop. This message is issued
if you specified the /PARALLEL qualifier on the CC command line.

User Action: If the loop must be decomposed, use one of the
code-replication techniques described in Section 3.5.2 or use the se-
quential loop decomposition pragma to specify no decomposition
for the loop.

MACDEFINREF, A macro cannot be **** during the scan of a reference to
the macro; directive ignored.

Warning: You tried to redefine or undefine a macro within a
reference to it. The compiler ignores the preprocessor directive.

User Action: Move the directive to a position outside the macro
reference.

MACNONTERMCHAR, Nonterminated character constant in macro argu-
ment; apostrophe added at end of line.

Warning: You omitted the closing apostrophe in a character con-
stant appearing in an argument in a macro reference.

User Action: Correct the constant.

MACREQARGS, Macro reference requires an argument list; ~~ **** ~~ not
substituted.

Error: You wrote a macro reference without an argument list. The
reference was deleted from the source file.

User Action: Correct the reference, specifying the same number of
arguments as in the definition of the macro.

MACSYNTAX, Syntax error in macro definition; directive ignored.

Warning: The syntax of the parameter list in a macro definition
was invalid. (You must enclose the parameter list in parentheses
and delimit individual parameters with commas.)

User Action: Correct the syntax.

VAX C Compiler Messages 8-29

MACUNEXPEOF, Unexpected end-of--file encountered in a macro reference;
~~ **** ~~ not substituted.

Error: The end-of--file was encountered during a macro reference;
the reference was deleted.

User Action: See if you misplaced the closing parenthesis in the
macro argument list.

ACNEST, Maximum text replacement nesting level exceeded; ~~ **** ~~
not substituted.

Error: You specified a macro reference that is recursive or oth-
erwise causes repeated substitutions to a depth greater than the
implementation maximum of 64.

User Action: Correct the recursion or simplify the definitions.

MERGED, Merged **** and **** to form ****.

Warning: The compiler merged two separate source macros into a
single macro.

For example, two plus signs separated by a space may be merged to
form the increment operator (++).

User Action: If the compiler's action is correct, remove the space
between the macros. Otherwise, check for a missing macro between
those merged.

MISARGNUMBER, The number of arguments passed to the function does
not match the number declared in a previous function
prototype.

Warning: The function call contains too few or extra arguments.

User Action: Correct the number of arguments passed to the
function. If the prototype is incorrect, correct the prototype.

MISP NUMBER, The number of parameters declared does not match
the number declared in a previous function
prototype.

Warning: A function prototype for this function, which appeared
earlier in the source file, contains a different number of parameters
than this declaration.

User Action: Determine which declarator is correct and modify
the other declarator to match it.

B-30 VAX C Compiler Messages

~„J

MISPARAMTYPE, The type of parameter ~~ **** ~~ does not match the type
declared in a previous function prototype.

Warning: The type of a parameter in a function definition does
not match the type specified for that parameter in the previous
prototype.

User Action: Determine which type is correct for that parameter
and correct either the function definition or the prototype.

MISPARENS, Mismatched parentheses in #if or #elif expression; "true"
expression assumed.

Warning: The expression in a #if or #elif preprocessor directive
contained unbalanced parentheses.

User Action: Make sure that you balanced the parentheses in
the expression.

MISPRAGMASTAND, Mismatched #pragma standard preprocessor
directives)

Informational: The compiler detected more occurrences of the
nostandard pragma than it did the standard pragma.

User Action: Check that each nostandard pragma has a match-
ing standard pragma, both in the main source file and in any
included files.

MISSENDIF, Missing #endif preprocessor directive(s).

Error: The compiler did not encounter an #endif line for the most
recent #if, #ifdef, or #ifndef.

~.Tser Action: Be sure that all directives are properly structured,
and, if appropriate, add the missing #endif preprocessor
directive(s).

MISSEXP, Missing or invalid exponent in float constant; zero exponent
(~ e0 ~) assumed.

Warning: You wrote afloating-point constant with the letter ~ e
or ~ E ~ but with no exponent or an invalid exponent. The exponent
was assumed to be zero.

User Action: Correct the constant.

VAX C Compiler Messages 8-31

MISSPELLED, Replaced ~`~`~`~ with ~~`*~`.

Warning: You misspelled a reserved word.

User Action: Correct the spelling.

MISWIDETYPE, The prototype for this function does not specify the
default widened type for the parameter.

Error: A prototype was declared with a parameter having a type
that is, by default, widened with old-style function definitions.
For example, a float is, by default, sized to a double for old-style
function definitions. If a prototype is in scope with a size of float,
then the argument will not have the size that the function expects.

User Action: Correct the declaration in the prototype to specify
the larger, widened type. If the type is a float, then specify double.

MODULENAMELONG, Identifier name in #module exceeds 31 characters;
"name" truncated to "name".

Warning: You specified an identifier name that exceeded
31 characters.

User Action: Shorten or change the identifier name.

MODZERO, Constant expression includes mod 0; the result has been
replaced with 0.

Warning: The constant expression had an invalid mod expression,
such as 5 % 0. The result was 0.

User Action: Correct the expression (but note that its operands
must not be floating point).

NAMETOOLONG, Identifier name exceeds 255 characters; truncated to
~~~~ 

Warning: VAX C identifiers are limited to a length of 255 recog-
nized characters. 

User Action: Shorten the indicated identifier. 

8-32 VAX C Compiler Messages 



NESTEDCOMMENT, Nested comment encountered. 

Informational: The compiler detected an opening comment de-
limiter (/*)within another comment. (VAX C does not support 
the nesting of comments; the first ending comment delimiter (*/ ) 
encountered ends the comment. ) 

User Action: Check that you have not misplaced a comment 
delimiter and accidently ~~ commented out ~~ necessary code. 

NOBJECT, No object file produced. 

Informational: The compiler did not produce an object file, due to 
conditions reported in previous messages. 

User Action: Make the corrections suggested by the other 
message(s). 

NOFLOATOP, The **** operand of a ~~ **** ~~ operator has been converted 
from floating-point to integer. 

Warning: The compiler converted the operand to an integer. 

The left or right operand of the indicated binary operator, or the 
operand of the indicated unary operator, cannot be of type float 
or double. 

User Action: Change or cast the operand to an integral type. 

NOLIFETIME, Variable ~~ *** ~~ has no lifetime information, which inhibited 
loop decomposition. 

Warning: You have a loop that contains too many scalar variables. 
This message is issued if you specified the /PA►R,ALLEL qualifier on 
the CC command line. 

User Action: If the loop must be decomposed, reorder the declara-
tions of your scalar variables so that the variables most important 
for decomposition are listed first. 

NOLISTING, No listing file produced. 

Informational: The compiler did not create a listing file (usually 
due to previously reported errors). 

User Action: None. 

VAX C Compiler Messages B-33 



NOMIXNMATCH, The parameter list of a function can either contain all 
identifiers or all types, but not both. 

Error: The parameter list of a function contains some type speci-
fiers and some identifiers that do not have type specifiers. 

User Action: Either eliminate the type specifiers or add type 
specifiers to the identifiers that are missing them to create a valid 
function prototype. 

NONAUTOMATIC, Variable ~~ *** ~~ is not declared automatic, which in-
hibited loop decomposition at loop control variable 
~~ *** ~~ 

Informational: You have a loop control variable that does not 
have the [auto] storage class. Only [auto] variables can be placed 
in registers and placing scalars in registers is required for de-
composition to occur. This message is issued if you specified the 
/PA,RALLEL qualifier on the CC command line. 

User Action: If the loop must be decomposed, declare the loop 
control variable to be [auto] . 

NONEXTERN, Variable ~~ *** ~~ is not declared external, which inhibited 
loop decomposition at loop control variable ~~ *** ~~ . 

Informational: You have a scalar variable in a loop that has the 
globaldef or static storage class. This message is issued if you 
specified the /PA►RALLEL qualifier on the CC command line. 

User Action: If the loop must be decomposed, change the declara-
tion of the scalar variable to [auto] or [extern] . 

NONOCTALDIGIT, Octal escape sequence in a character or string constant 
terminated by a nonoctal digit. 

Warning: There was an 8 or 9 in the second or third position of 
an octal escape sequence. In this case, the digits preceding the 
nonoctal digit were evaluated, and the 8 or 9 was considered a 
separate character. The compiler issued this message if you used 
the /STANDARD=PORTABLE qualifier on the CC command line. 

User Action: Make sure that the escape sequence contains only 
octal digits. If the 8 or 9 is separate from the escape sequence, but 
must immediately follow it, then pad the escape sequence to three 
digits using leading zeros. 

B-34 VAX C Compiler Messages 



NONOCTALESC, Escape sequence in a character or string constant starts 
with a nonoctal digit. 

Warning: The first of three digits of an escape sequence was an 
8 or 9. In this case, the backslash is ignored, and the 8 or 9 was 
treated as a character. The compiler issued this message if you 
used the /STANDARD=PORTABLE qualifier on the CC command 
line . 

User Action: Make sure that the compiler correctly resolved the 
am iguity. 

NONPORTADDR, Taking the address of a constant may not be portable. 

Informational: You used an ampersand operator with a constant 
in the argument list of a function call. (VAX C permits this special 
case, but other compilers may not. ) 

User Action: If you do not require portability, no action is neces-
sary. Otherwise, correct the line. 

NONPORTARG, Passing a structure by value may not be portable. 

Informational: You passed a structure by value in a function call 
or declared a function parameter as a structure. This message is 
issued if you used the /STANDARD=PORTABLE option on the CC 
command line. 

User Action: If the program must be portable, pass the structure 
by reference. 

NONPORTCLASS, Storage class ~~ **** ~~ is not portable. 

Informational: This message was issued against the use of 
the globalref, globaldef, globalvalue, readonly, or noshare 
storage-class specifiers. This message is issued if you specified the 
/STANDARD=PORTABLE qualifier on the CC command line. 

User Action: No action is necessary if you do not require compati-
bility with other C compilers. Otherwise, correct the line. 

NONPORTCOMP, Comparisons between pointers and integers may not be 
portable. 

VAX C Compiler Messages 8-35 j 



NONPORTCOMP, Comparisons between pointers to different types may 
not be portable. 

Informational: You compared the value of a pointer or an address 
expression with either an integer expression, a nonzero integer 
constant, or a pointer or address expression of a different type. 
Such usage may not be portable and is not recommended. The only 
portable pointer comparisons are between a pointer and the integer 
constant 0, or between pointers to objects of the same type. This 
message is issued only if you specified /STANDARD=PORTABLE 
on the CC command line. 

User Action: Cast one of the operands to be the same type as 
the other. 

NONPORTCONST, Character constant **** may not be portable. 

Warning: VAX C allows up to four characters to be specified in 
a character constant, but other compilers may not. The compiler 
issues this message if you use the /STANDARD=PORTABLE 
qualifier on the CC command line. 

User Action: If you do not require portability, no action is 
necessary. 

NONPORTCVT, Conversions between pointers and integers may not be 
portable. 

NONPORTCVT, Conversions between pointers to different types may not 
be portable. 

Informational: You converted a pointer or an address expres-
sion to an integer type or to a different pointer type, or an integer 
expression or a nonzero integer constant to a pointer type. Such us-
age may not be portable and is not recommended. The only portable 
assignments are between pointers to objects of the same type or 
conversion of the integer constant 0 to any pointer type. This mes-
sage is issued only if you specified /STANDARD=PORTABLE on the 
CC command line. 

User Action: Use an explicit cast to perform the conversion. 

8-36 VAX C Compiler Messages 



NONPORTINCLUDE, #include of a library module is not portable. 

Informational: The specification of a library module name 
in an #include preprocessor directive is VAX C specific and 
is not portable. This message is issued if you specified the 
/STANDARD=PORTABLE qualifier on the CC command line. 

User Action: No action is necessary if you do not require compati-
bility with other C compilers. 

NONPORTINIT, Automatic initialization for ~~ **** ~~ may not be portable. 

Informational: You initialized an array or structure of 
storage class auto. This message is issued if you specified 
/STAANDARD=PORTABLE on the CC command line. 

User Action: If you require portability, use separate assignment 
statements) to set the initial value(s). 

NONPORTOPTION, The ~~ **** ~~ function definition option is not portable. 

Informational: The VAX C function definition options are VAX C 
specific and are not portable. The compiler issued this message if 
you used /STANDARD=PORTABLE on the CC command line. 

User Action: No action is necessary if you do not require compati-
bility with other C compilers. 

NONPORTPPDIRX, The **** preprocessor directive is not portable. 

Informational: You used the #dictionary or #module preproces-
sor directive. 

These directives are VAX C specific and may not be recognized by 
other compilers. The compiler issues this message if you specified 
/STANDARD=PORTABLE on the CC command line. 

User Action: No action is necessary if you do not require program 
portability. 

NONPORTPTR, The use of an integer value as a pointer qualifier for 
~~ **** ~~ may not be portable. 

Informational: In a reference to a structure or union member 
accessed by the ~~—>~~ operator, the qualifying expression to the 
left of the ~~—> ~~ should have a pointer value. VAX C allows the 
use of integer values as well, but such usage is not portable. This 

VAX C Compiler Messages B-37 



message is issued if you specify /STANDARD=PORTABLE on the 
CC command line. 

User Action: Either use a true pointer expression as the qualifier 
or cast the integer expression as an appropriate structure or union 
pointer. 

NONPORTTYPE, Data type ~~ **** ~~ is not portable. 

Informational: You used either of the data types variant_struct 
or variant_union, which are VAX C specific. This message is 
issued if you specify /STANDARD=PORTABLE on the CC command 
line . 

User Action: No action is necessary if you do not require program 
portability. 

NONSEQUITUR, ~~ **** ~~ is not a merriber of the specified structure or 
union. 

Informational: In a reference to the indicated member name, you 
specified a qualifier that does not represent the structure or union 
to which the member belonged. 

The reference is valid, because the member name is unique and the 
offset can be resolved unambiguously. This use of member names is 
maintained only for compatibility with older programs. 

User Action: If the qualifier is a pointer, cast it as a pointer to the 
appropriate structure or union. 

NONTERMCHAR, Nonterminated character constant; **** assumed. 

Warning: The compiler encountered the end of the source line 
before the end of a character constant. The compiler assumed the 
indicated value. 

User Action: Correct the constant. 

NONTERMNULCHAR, Nonterminated character constant contains no 
characters; ~ \ 0 ~ assumed. 

Warning: The compiler detected a single apostrophe (~) at the end 
of the source line. 

User Action: Check to see if there is an extra apostrophe; other-
wise, correct the constant. 

B-38 VAX C Compiler Messages 



NONTERMSTRING, Nonterminated string constant; quotes added at end 
of line. 

Warning: The compiler encountered the end of the source line 
before the end of a character string. The compiler inserted a 
quotation mark (~~) at the end of the line. 

User Action: Check to see if the string should be continued on the 
following line; if so, insert a backslash (\) at the end of the line. 
Otherwise, check for the missing quotation mark. 

NOOPTIMIZATION, Complex control flow caused optimization to be 
suppressed for procedure or function ~~ **** ~~ . 

Informational: Optimization was not performed for the indicated 
function. 

User Action: To take advantage of optimization, simplify the 
control flow within the indicated function. 

NOSUBSTITUTION, Macro substitution cannot be performed during the 
scan of a macro reference; ~~ **** ~~ not substituted; 
directive ignored. 

NOSUBSTITUTION, Macro substitution cannot be performed during the 
scan of a macro reference; ~~ **** ~~ not substituted; 
true expression assumed. 

Warning: You wrote a complex macro reference that contained 
a preprocessor directive, which in turn contained another macro 
reference. For example: 

macrefl ( argl, 
#include MACREF2 

argn 

The substitution of MACREF2 was not performed and the directive 
containing it was ignored. If the directive was #if or #elif, the 
expression would be assumed to be ~~true. ~~ 

User Action: Restructure your code so that the directive is not 
contained within the macro reference. 

VAX C Compiler Messages B-39 



NOTFUNCTION, Function-valued expression not found. 

Error: You used an expression in the context of a function call, but 
the expression does not evaluate to a function. 

User Action: Make sure that the expression properly evaluates 
to a function; also make sure that you properly dereference any 
pointer to a function. 

NOTPARAMETER, ~~ **** ~~ is not listed in the function's formal parameter 
list; treated as if declared internally. 

Warning: You declared the specified identifier as a function param-
eter, but the identifier does not appear in the parameter list. For 
example: 

The identifier b does not appear in function f's formal parameter 
list. Its declaration is not portable, and is probably a coding error. 
The compiler treats b as if it were declared inside the function 
definition; in this case, b becomes an automatic variable. 

User Action: Correct the declaration or the parameter list. 

NOTPOINTER, Address-valued expression not found. 

Error: You used an expression in a context requiring a pointer 
value, but the expression did not evaluate to an address. 

User Action: Make sure that the expression evaluates to a pointer 
value. 

NOTSAFECALL, Function ~~ *** ~~ inhibited loop decomposition at loop 
control variable ~~ *** ~~ 

Informational: You have a function that inhibited loop decom-
position at a loop control variable. This message is issued if you 
specified the /PAR,ALLEL qualifier on the CC command line. 

User Action: If the loop must be decomposed and if the function 
does not introduce a dependency, insert a safe_call pragma. 

NOTSWITCH, Default labels and case labels are valid only in ~~ switch" 
statements. 

Error: You used case or default as a label outside the body of a 
switch statement. 

User Action: Check for unmatched braces that may have prema-
turely terminated the most recent switch statement. 

B~40 VAX C Compiler Messages 



NOTUNIQUE, ~~ **** ~~ is not a unique member name in this context. 

Error: You used the same member name in more than one struc-
ture or union definition, and then used that member name as an 
offset from some other structure or union. Since the compiler had 
no way of knowing which member definition to use as an offset, a 
message was generated. 

User Action: To avoid ambiguities, try to make all member names 
unique. 

NULCHARCON, Character constant contains no characters; ~ \ 0 
assumed. 

Warning: You used ~ ~ for an ASCII NUL character instead 
of~\0~. 

User Action: Use ~ \ 0 ~ . 

NULHEXCON, Hexadecimal constant contains no digits; OXO assumed. 

Warning: You specified a constant such as OX or Ox. 

User Action: Be sure that 0 is a valid value in this context; if so, 
change the constant to 0x0. 

OVERDRAFT, **** has gone into DISK QUOTA overdraft. 

Informational: Your disk UO quota was exceeded while writing to 
a file. 

User Action: Purge your directories to create more space or 
increase your disk UO quota. 

P NOTUSED, Macro parameter ~~ **** ~~ is not referenced in the 
definition. 

Informational: A macro definition had more parameters than 
appeared in its substitution. For example: 

#define m (a, b, c) a*b 

User Action: Specify the extra parameter in the substitution or, 
if it is superfluous, delete it from the parameter list. (This is a 
possible programming error.) 

VAX C Compiler Messages B-41 



PARAMREDECL, This declaration of ~~ **** ~~ overrides a formal parameter. 

Warning: Your source program contained a redeclaration of one of 
the function's formal parameters. For example: 

You cannot reference the parameter from within the function. 

User Action: If the declaration is misplaced, move it to a position 
between the function header and the left brace at the beginning of 
the function body. Otherwise, rename one of the identifiers. 

PARSTKOVRFLW, Parse stack overflow. 

Fatal: The source code in your program was too complex, contain-
ing statements nested too deeply. 

User Action: Simplify the program. 

PPUNEXPEOF, Unexpected end-of--file encountered in preprocessor direc-
tive; directive ignored. 

Warning: The compiler detected the end of the source file while 
trying to read a continuation of a preprocessor directive. 

User Action: Check for nonterminated comments, character 
strings, and other constructs that can span several lines of code. 

PRAGMASYNTAX, Syntax error in #pragma preprocessor directive; direc-
tive ignored. 

Warning: You have incorrectly coded the directive. 

User Action: Correct the error. Check for misspellings or punctu-
ation errors. 

PTRDEPENDENCE, Pointer ~~ *** ~~ inhibited loop decomposition at loop 
control variable ~~ *** ~~ 

Informational: You have a pointer that inhibited loop decom-
position at a loop control variable. This message is issued if you 
specified the /PA,R,ALLEL qualifier on the CC command line. 

User Action: If the loop must be decomposed and if the pointer 
does not introduce a dependency, use the ignore_dependency 
decomposition pragma. 

B-~42 VAX C Compiler Messages 



PTRFLOATCVT, Operand of pointer addition or subtraction converted from 
floating-point to integer. 

Warning: You combined a pointer operand with afloating-point 
value. For example: 

i~1t i, *ip; 

i = ip + 2.; 

User Action: Make sure that pointers are used only with other 
pointers or with integers. In the previous example and in similar 
situations, remove the decimal point from the literal constant. 

QUA►LNOTLVALUE, The qualifier for ~~ **** ~~ is not a valid vvalue. 

Error: In a reference to a structure or union member accessed by 
the period operator (. ), the qualifying expression to the left of the 
period must be an lvalue. 

User Action: Correct the qualifying expression. 

QUALNOTSTRUCT, The qualifier for ~~ **** ~~ is not a structure or union. 

Informational: In a reference to a structure or union member, 
the qualifying expression to the left of the period operator (.) or 
right-arrow operator (—>) did not represent a structure or union. 

User Action: Check for possible spelling errors. 

REDEFPROTO, This prototype conflicts with either the function definition 
or with a function prototype which appears earlier in the 
file. 

Warning: The prototype conflicts with a previous declaration of 
this function, either in number, type of arguments, or in the return 
type of the function. 

User Action: Determine what attribute does not match and what 
the correct attribute should be. Correct the invalid definition. 

VAX C Compiler Messages B-43 



REDUNDANT, The operand of the ~~ & ~~ operator is already an address. 
The ~~ & ~~ is ignored. 

Informational: You specified & in front of an array or function 
name. The message is issued if you specified 
/STANDARD=PORTABLE on the CC command line. 

User Action: Make sure that you intend to pass the address of the 
array or function. If you require portability, remove the 
redundant &. 

REGADDR, Taking the address of register variable ~~ **** ~~ is not portable 
and causes its storage class to be changed to auto. 

Informational: You used the unary ampersand operator (&) to 
take the address of a register variable. VAX C changes the storage 
class of the variable from register to auto. This allows the address 
of the variable to be taken. The message is used if you specified the 
/STANDARD=PORTABLE qualifier on the CC command line. 

User Action: No user action is needed if you do not require com-
patibility with other C compilers. If you do require compatibility, 
change the storage class of the variable from register to auto. 

REPABBREV, Replaced abbreviation **** with ****. 

Warning: You abbreviated a reserved word. 

User Action: Complete the spelling of all reserved words. 

REPLACED, Replaced **** with ****. 

Warning: The compiler replaced an invalid macro with a different 
macro. (Programs that contain syntax errors usually generate this 
message.) 

User Action: Check for incorrect syntax. 

REPOVERFLOW, Length of replacement text exceeds maximum buffer 
capacity; ~~ **** ~~ not substituted. 

Error: The length of the replacement text for a macro reference 
or the length of the text plus the rest of the line exceeded the 
implementation's limit. 

User Action: Shorten the replacement text or use multiple substi-
tutions to achieve the desired result. 

B-44 VAX C Compiler Messages 



RESERVED, ~~ *~`** ~~ is a reserved identifier; directive ignored. 

Warning: You have specified a reserved identifier name in a 
#define or #undef preprocessor directive. The following reserved 
names may not be redefined or undefined: 

• DATE 

• FILE 

• defined 

• TIME 

• LINE 

User Action: Choose a different spelling for the identifier. 

SCALEFACTOR, The CDD description for ~~ **** ~~ specifies a scale factor of 
**** ;the scale factor is being ignored. 

Informational: VAX C does 'not support scaled arithmetic. 

User Action: Make sure that you appropriately scale computations 
involving this item. 

SEMICOLONADDED, Semicolon added at the end of the previous source 
line. 

Warning: A missing semicolon was added to the line prior to the 
line numbered in this message. 

User Action: Check the previous line carefully and add the semi-
colon in the appropriate place. 

SUMMARY, Completed with **** errors, **** suppressed warning(s), and 
**** informational messages. 

SUMMARY, Completed with * * * * errors, * * * * warnings, and * * * * inform a-
tion messages 

Informational: This message indicates the number of compiler 
messages (errors, warnings, and informationals) issued during the 
compilation process. You can suppress informational and warning 
messages using the /[NO]WARNINGS CC command-line qualifier 
(see Chapter 1). 

User Action: Consider the individual messages and recompile if 
necessary. 

VAX C Compiler Messages 8-45 



SYMTABOVFL, The total number of symbol table pages exceeds the 
implementation's limit. 

Fatal: The program was too complex. 

User Action: Simplify the program by reducing the number and 
size of variables and other names, constants, and so forth. 

SYNTA►XERROR, **** Found **** when expecting ****. 

Error: The syntax error shown prevented the generation of an 
object file. 

User Action: Correct the errors shown. 

TBLOVR,FLW, Internal table overflow, too many procedures, external 
symbols (psects), or the program is too complex. 

Fatal: Either the source file contains too many functions or expres-
sions, or the compiler has overflowed its virtual address space. 

User Action: Reduce the size of the source file by dividing it into 
smaller, separate files, or change the logic of the program to reduce 
the number of complicated expressions. 

TOOFEV'~MACARGS, Argument list for macro ~~ **** ~~ contains too few 
arguments; missing arguments assumed to be null. 

Warning: You wrote a reference to the indicated macro with fewer 
arguments than were specified in its definition. 

User Action: Make sure that the number of arguments in the 
macro reference is the same as the number of parameters in the 
definition. 

TOOFEWPRAGIDS, At least two identifiers must be specified in this 
#pragma preprocessor directive; directive ignored. 

Warning: You have coded only one identifier in the list of identi-
fiers in this directive; at least two are required. The directive was 
ignored by the compiler. 

User Action: Remove the directive or add the missing identifiers, 
as appropriate. 

8-46 VAX C Compiler Messages 



TOOMA►NYCHAR, Character constant contains too many characters; 
truncated to ****. 

Warning: The length of a character constant exceeded the imple-
mentation limit (four characters). The constant was truncated to 
the indicated value. 

User Action: Reduce the length of the indicated character con-
stant to four or fewer characters. 

TOOM~~TVYERR, The total_ number of errors exceeds the limit of 100. 

Fatal: The compiler reported more than 100 error messages in this 
compilation. The compilation ended at this point. 

User Action: Correct the errors reported in previous compiler 
messages and recompile the program. 

TOOMASJYFUNARGS, Function reference specifies too many arguments; 
excess arguments ignored. 

Warning: You called a function with more than 253 arguments. 
The compiler passed only the first 253 arguments; the compiler 
ignored the remainder. 

User Action: Shorten the argument list. 

TOOMA►NYINITS, The initializer list for ~~ **** ~~ specifies too many initial-
izers; excess initializers ignored. 

Warxling: You specified too many initializers for the indicated 
variable. (If the indicated item is an array or structure, it may be 
only partially initialized. ) 

User Action: Make sure that all braces near the initializer sublists 
are balanced; if the item being initialized is or contains an array, 
make sure that you account for all dimensions. 

TOO CARGS, Argument list for macro ~~ **** ~~ contains too many 
arguments; excess arguments ignored. 

Warning: You wrote a reference to the indicated macro with more 
arguments than were specified in its definition. 

User Action: Make sure that the number of arguments in the 
macro reference is the same as the number of parameters in the 
definition. 

VAX C Compiler Messages 8-47 



TOOM~►NYIVIACPARM, Parameter list for macro ~~ **** ~~ contains too many 
parameters; excess parameters ignored. 

Warning: The number of macro parameters in a #define prepro-
cessor directive exceeded the implementation limit of 64. 

User Action: Rewrite the macro definition so that it uses 64 or 
fewer parameters. 

TOOMA►NYSTR, String constant contains too many characters; truncated. 

Warning: You wrote acharacter-string constant whose length 
exceeded the implementation's limit of 65,535 characters. 

User Action: Shorten the string. 

TRUNCFLOAT, Double-precision floating-point constant cannot be con-
verted to single precision; 0.0 assumed. 

Warning: You specified adouble-precision constant in an expres-
sion involving a conversion to single precision, but the constant's 
value was too small to be represented in single precision. 

User Action: Ensure that 0 is a valid value in this context; if 
necessary, redeclare the conversion target as double. 

TRUNCSTRINIT, String initializer for ~~ **** ~~ contains too many characters 
to fit; truncated. 

Warning: If the variable was a simple one-dimensional array, the 
initializer was truncated (so that the length of the initializer was 
array-1) and the null byte was added to the end of the array. If the 
array is a multidimensional array or an array within a structure, 
the initializer was truncated to the length of the array and a null 
byte was not added. 

User Action: Treat arrays of characters as strings allowing for 
the null byte at the end of the array. The special case of multi-
dimensional arrays and arrays within structures should be taken 
into account, especially when you do not want the null byte to be 
truncated. 

B-48 VAX C Compiler Messages 



TYPECONFLICT, ~~ **** ~~ conflicts with a previous data type in this decla-
ration; previous data type ignored. 

Warning: You specified more than one data-type specifier in this 
declaration, and the indicated specifier conflicted with a previous 
one. 

User Action: Check for a missing semicolon in the previous 
declaration; otherwise, make sure that all specifiers are compatible. 

TYPEINLIST, The type of ~~ **** ~~ was specified in the parameter list. This 
declaration is ignored. 

Warning: The function definition uses the prototype format but 
still contains a declaration of this parameter in the parameter 
declaration section. 

User Action: Eliminate the redundant declaration. 

UABORT, Compilation terminated by user. 

Fatal: The compilation was terminated by a DCL CTRL/C 
command. 

User Action: None. 

UNDECLARED, ~~ **** ~~ is not declared within the scope of this usage. 

Error: You referred to an undeclared variable. (You must declare 
variables before you use them.) 

User Action: Check the spelling of the identifier, or add a declara-
tion for it, if appropriate. 

UNDECLARED, ~~ **** ~~ is not declared prior to this #pragma preprocessor 
directive; directive ignored. 

Warning: This directive lists an identifier that has not yet been 
declared. The entire directive has been ignored by the compiler. 

User Action: Check the spelling of the identifier or add a declara-
tion for it, if appropriate. 

VAX C Compiler Messages B~9 



UNDEFIFMAC, ~~ ***'~` ~~ is not a currently defined macro; constant zero 
assumed. 

Informational: The identifier in a constant expression in an 
#if cr #elif preprocessor directive was not currently defined as a 
macro. The expression was evaluated as if the identifier were a 
constant zero. This message is only generated if you compile with 
/STANDARD=PORTABLE. 

User Action: Define the identifier as a macro or remove the 
reference to it. 

UNDEFLABEL, Label ~~ **** ~~ is undefined in this function. 

Error: You wrote ~~ goto label-name ~~ for an undefined label. The 
scope of a label name is restricted to the function in which it is 
used as a label; goto statements cannot branch to labels inside 
other functions. 

User Action: Check the spelling of the label name or make other 
corrections as appropriate. 

UNDEFMACRO, ~~ **** ~~ is already undefined; directive ignored. 

Warning: The specified identifier (in an #undef directive) was 
either never defined or else occurred in a previous #undef. 

User Action: Remove the #undef, or, if applicable, add the correct 
definition of the identifier. 

UNDEFSTRUCT, ~~ **** ~~ is a structure or union type that is not fully 
defined at this point in the compilation. 

Error: You used a name in the context of a structure or union tag, 
but the name is either undefined or is not yet fully defined as a tag. 

User Action: Check the spelling of the name, and make sure that 
it is fully defined as a tag before using it. 

UNEXPEND, Unexpected end-of-**** encountered in ~~ **** ~~ preprocessor 
directive; directive ignored. 

Warning: The end of the directive or end of the source file was 
encountered before the directive was completely processed. 

User Action: Check for an incomplete comment within the defini-
tion, or check for a missing continuation of the directive. 

B-50 VAX C Compiler Messages 



UNEXPEOF, Unexpected end-of--file encountered in a ****. 

Error: The compiler encountered the end of the source file while 
scanning for the end of a string constant or a comment. 

User Action: Make sure that string constants and comments are 
properly terminated. 

UNEXPPDIRX, Unexpected **** preprocessor directive encountered; 
directive ignored. 

Warning: The specified directive occurred out of place and was 
ignored. 

User Action: Check the logic of all directives in the program to be 
sure that it is valid. 

UNKSIZEOF, Operand of sizeof has an unknown size; 0 assumed. 

Warning: The operand of a sizeof operator was an array whose 
size was unknown at compile time. A size of 0 was assumed. 

User Action: Change the declaration of the array to specify the 
appropriate dimension bound. 

UNRECCHAR, Unrecognized character ignored. 

Warning: The line contained either an entirely meaningless char-
acter or one that appears out of its proper context; for example, a 
number sign (#)that was not the first character on a line. 

User Action: Move or remove the character. 

UNRECPRAGMA, Unrecognized #pragma preprocessor directive ignored. 

Informational: You have specified a #pragma preprocessor 
directive that is not recognized by VAX C. 

User Action: Correct the syntactic or semantic error that rendered 
the directive unrecognizable. Common errors include misspelled 
parameters. 

UNSUPPORTEDLCV, Loop decomposition inhibited due to unsupported 
loop control variable. 

Informational: A function was expanded inline and its formal 
parameter was used as aloop-control variable. 

User Action: Declare the loop-control variable to be the automatic 
storage class. 

VAX C Compiler Messages 8-51 



UNSUPPORTEDOP, Variable ~~ *** ~~ has an unsupported type which in-
hibited loop decomposition at loop control variable 
*** ., 

Informational: A variable that is modified in the loop is of a type 
not currently supported by VAX C decomposition processing. This 
message is issued if you specified the /PARALLEL qualifier on the 
CC command line. 

User Action: No action. 

UNSUPPTYPE, The CDD description for ~~ **** ~~ specifies a data type not 
supported in C. 

Informational: The compiler could not represent the indicated 
item iri a VAX C construct. The compiler generated a declaration 
of a structure whose length was the same as the length of the 
unsupported data type. 

User Action: Change the CDD description to specify a supported 
data type, if you require a precise representation in VAX C. 

VARNOTMEMBER, A variant aggregate must be a member of a struct 
or union. 

Error: You tried to specify a variant_struct or a variant_union 
outside of an aggregate declaration. 

User Action: If you intend to use the structure or union as de-
clared, and if the structure or union is the outermost aggregate in 
a group of nested aggregates, replace the variant keywords with 
struct or union. If you intend to use the structure or union as a 
variant aggregate, and if the structure or union is otherwise prop-
erly declared, nest the declaration within a valid structure or union 
declaration. If you use the variant_struct or variant_union key-
words in declarations other than structure or union declarations, 
remove the variant keywords. 

VOIDCALL, A ~~void~~ function cannot be invoked in a context where a 
value is expected. 

Error: You coded a call to a function declared as void, but the call 
appeared in a context where a return value was expected. 

User Action: Move the function call to a different context, or if the 
function does return a value, declare it to be void. 

B-52 VAX C Compiler Messages 



VOIDEXPR, A ~~void~~ expression cannot be used in a context where a value 
is expected. 

Error: You cast an expression to be void, but the expression was 
used in a context where its value was required. 

User Action: Remove the cast, or move the expression to a context 
that requires no return value. 

VOIDNOTFUNC, ~~ **** ~~ is not declared to be a function; only functions 
may be declared ~~ void ~~ . 

Error: You declared an object other than a function to be void. 

User Action: Check the syntax of the declarator. You may find 
the output produced by the /SHOW=SYMBOLS CC command-line 
qualifier to be helpful in diagnosing this problem. 

VOIDRETURN, A ~~ return ~~ statement in a ~~ void ~~ function may not specify 
a value; expression ignored. 

Warning: You specified a value in a return statement within a 
function declared as void. 

User Action: Either remove the return value or redefine the 
function as returning the appropriate data type. 

VAX C Compiler Messages B-53 





Appendix C 

Optional Programming/ Productivity Tools 

This appendix provides an overview of optional programming productivity 
tools. These tools are not included with the VAX C software; they must be 
purchased separately. Using these tools can increase your productivity as a 
VAX C programmer. Contact your DIGITAL sales representative for more 
information about these tools. 

This appendix discusses the following optional productivity products: 

• The VAX Language-Sensitive Editor LSE (Section C.1) 

• The VAX Source Code Analyzer SCA (Section C.2) 

C.1 Using VAX LSE with VAX C 

The VAX Language-Sensitive Editor (LSE) is a powerful and flexible text 
editor designed specifically for software development. LSE has important 
features that help you produce syntactically correct code in VAX C. 

To invoke LSE, specify the LSEDIT command followed by a file name with a 
C file type at the DCL prompt. For example: 

$ LSEDIT USER.0 

The following sections describe some of the key features of LSE. 
Section C.1.1 discusses how to enter source code using LSE. Section C.1.2 
describes LSE's compiler interface features. Section C.1.3 gives examples of 
how to generate VAX C source code with LSE. 

For more details on the advanced features of LSE and SCA, see the Guide to 
VAX Language-Sensitive Editor and VAX Source Code Analyzer. 

optional Programming/ Productivity Tools ~1 



C.1.1 Entering Source Code Using Tokens and Placeholders 

LSE's language-sensitive features simplify the tasks of developing and 
maintaining software systems. These features include language-specific 
placeholders and tokens, aliases, comment and indentation control, and 
templates for subroutine libraries, 

You can use LSE as a traditional text editor. In addition, you can use 
the power of LSE's tokens and placeholders to step through each program 
construct and supply text for those constructs that need it. 

Placeholders are markers in the source code indicating where you can 
provide program text. These placeholders help you to supply the appropriate 
syntax in a given context. You do not need to type placeholders; they are 
inserted for you by LSE. Placeholders are surrounded by brackets or braces 
and at (@)signs. 

Table C-1 describes the types of LSE placeholders. 

Table C-1: LSE Placeholders 

ape of Placeholder Description 

Terminal Provides text strings that describe valid replacements for 
the placeholder. 

Nonterminal Expands into additional language constructs. 

Menu Provides a list of options corresponding to the placeholder. 

Placeholders are either optional or required. Required placeholders, indi-
cated by braces ({} ), represent places in the source code where you must 
provide program text. Optional placeholders, indicated by brackets ([ ] ), 
represent places in the source code where you can either provide additional 
constructs or erase the placeholder. 

You can move forward or backward from placeholder to placeholder. In 
addition, you can delete or expand placeholders as needed. 

Tokens typically represent keywords in VAX C. When expanded, tokens 
provide additional language constructs. You can type tokens directly into 
the buffer. You use tokens in situations, such as mo 'ng an existing 
program, where you want to add additional language constructs and there 
are no placeholders. For example, typing IF and entering the EXPAND 
command causes a template for an IF construct to appear on your screen. 
You can also use tokens to bypass long menus in situations where expanding 
a placeholder, such as {@statement@}, will result in a lengthy menu. 

C-2 Optional Programming/ Productivity Tools 



You can use tokens to insert text when editing an existing file by typing the 
name for a function or keyword and entering the EXPAND command. 

LSE provides commands that allow you to manipulate tokens and place-
holders. Table C-2 shows these commands and their default key bindings. 

Table C-2: Commands to Manipulate Tokens and Placeholders 

Command Key Binding Function 

EXPAND CTRL/E Expands a place-
holder. 

UNEXPAND PF 1-CTRL/E Reverses the 
effect of the most 
recent placeholder 
expansion. 

GOTO PLACEHOLDERJFORWARD CTRL/N Moves the cursor 
forward to the next 
placeholder. 

GOTO PLACEHOLDERlR,EVERSE CTRL/P Moves the cursor 
backward to the 
next placeholder. 

ERASE PLACEHOLDER/FORWARD CTRL/K Erases a place-
holder. 

UNERASE PLACEHOLDER 

T 

(ENTER 

RETURN 

PF1-CTRL/K Restores the most 
recently erased 
placeholder. 

Down-arrow Moves the indicator 
downward through 
a screen menu. 

Up-arrow 

J ENTER 1 
l RETURN I 

Moves the indicator 
upward through a 
screen menu. 

Selects a menu 
option. 

To display a list of all the defined tokens provided by VAX C, enter the LSE 
command SHOW TOKEN as follows: 

LSE> SHOW TOKEN 

To display a list of all the defined placeholders provided by VAX C, enter the 
LSE command SHOW PLACEHOLDER as follows: 

Optional Programming/ Productivity Tools C~3 



LSE> SHOW PLACEHOLDER 

To put either list into a separate file, first enter the appropriate SHOW 
command to put the list into the $SHOW buffer. Then enter the following 
commands: 

LSE> GOTO BUFFER $SHOW 

LSE> WRITE filename 

To obtain a hard copy of the list, use the PRINT command at DCL level to 
print the file you created. 

To obtain information about a particular token or placeholder, you can also 
specify a token name or placeholder name after the SHOW TOKEN or 
SHOW PLACEHOLDER command. 

C.1.2 Compiling Source Code 

To compile your source code and to review compilation errors without leaving 
the editing session, use the LSE commands COMPILE and REVIEW. The 
COMPILE command issues a DCL command in a subprocess to invoke 
the VAX C compiler. The compiler then generates a file of compile-time 
diagnostic information that LSE can use to review compilation errors. The 
diagnostic information is generated with the /DIAGNOSTICS qualifier that 
LSE appends to the compilation command. 

For example, if you enter the COMPILE command while in the buffer 
USER.C, the resulting DCL command is as follows: 

$ CC USER.C/DIAGNOSTICS=USER.DIA 

LSE supports all the VAX C compiler's command qualifiers as well as user-
supplied command procedures. You can specify DCL qualifiers, such as the 
!LIBRARY qualifier, when invoking the compiler from LSE. 

The REVIEW command displays any diagnostic messages that result from 
a compilation. LSE displays the compilation errors in one window and the 
corresponding source code in a second window. This multiwindow capability 
allows you to review your errors while examining the associated source code. 
This capability eliminates tedious steps in the error-correction process, and 
helps ensure that all errors are fixed before you compile your program again. 

LSE provides several commands to help you review errors and examine your 
source code. Table C-3 lists these commands and their default key bindings 
where applicable. 

C-4 Optional Programming/ Productivity Tools 



Table C-3: LSE Commands to Review and Examine Source Code 

Command Key Binding Function 

COMPILE None Compiles the contents of the source 
buffer. 

COMPILE/REVIEW None Compiles the contents of the source 
buffer, puts LSE into REVIEW 
mode, and displays any errors 
resulting from the compilation. 

REVIEW None Performs the same function as 
the /REVIEW qualifier on the 
COMPILE command: puts LSE 
into REVIEW mode, and displays 
any errors resulting from the last 
compilation. 

END REVIEW None Removes the buffer $REVIEW from 
the screen; returns the cursor to a 
single window containing the source 
buffer. 

GOTO SOURCE CTRL/G Moves the cursor to the source 
buffer that contains the error. 

NEXT STEP CTRL/F Moves the cursor to the next error 
in the buffer $REVIEW. 

PREVIOUS STEP CTRLB Moves the cursor to the previous 
error in the buffer $REVIEW. 

Moves the cursor within a buffer. 
T 

{ 

Down arrow 
Up arrow } 

C.1.2.1 Pragma Insertions and Decomposition 

LSE can aid in the creation of programs that use the parallel-processing 
capability of VAX C. If you use both the !PA►RALLEL and /DIAGNOSTICS 
compilation qualifiers, LSE provides informational messages during the 
REVIEW period about the ability of the compiler to decompose loops. 

During the REVIEW period, you can place one of the following pragmas into 
your code that alters how the compiler decomposes certain loops and can 
eliminate diagnostic messages: 

• #pragma ignore_dependency 
• #pragma safe_call 
• #pragma sequential loop 

Optional Programming/ Productivity Tools G-5 



See Section 3.7 for more information on using these directives. 

C.1.3 Examples 

This section describes the special features of VAX C available through LSE 
and provides examples of VAX C code written with LSE. 

The following examples show the expansions of some common VAX C 
tokens and placeholders. The examples are expanded to show the formats 
and guidelines LSE provides; however, not all of the examples are fully 
expanded. 

The examples show expansions for the following VAX C features: 

• Preprocessor lines 

• External definitions 

• Function definitions 

• Block declarations 

• Statements and expressions 

Instructions and explanations precede each example, and an arrow (--~ ) 
indicates where in the code an action occurred. 

To invoke LSE and the VAX C language, use the following syntax: 

LSEDIT [/qualifier . . . ] filename.0 

Table C-2 lists the commands that manipulate tokens and placeholders. 

When you use the editor to create a new VAX C program, the initial string 
{C~compilation_unitG} appears at the top of the screen. Expanding the initial 
string produces the following: 

_~ [@#module@] 
[ @module level comments@ ] 
[@include files@] 
[@macro definitions@] 

[ @preprocessor line@ ] 
[ @comment @ ] 

[@external definition@] . 

[@function definition@] . 

C-6 Optional Programming/ Productivity Tools 



C.1.3.1 Preprocessor Lines 

Erase the [@#module@], [@module level comments@], [C~include_files@], and 
[@macro_definitions@]. The cursor is then positioned on [@preprocessor_ 
line@]. Expand [@preprocessor line@] to duplicate it and display a menu. 
Select the option #include as follows: 

_~ #include 
[@preprocessor line@] 

[ @comment @ ] 

[@external definition@] 

[@function definition@] . 

After selecting the #include option, another menu appears that lists the 
types of #include statements. Select the option #include {@include_module_ 
name@} . 

_> #include {@include module name@} 
[ @preprocessor line@ ] 

[ @comment @ ] 

[@external definition@] . 

[ @function definition@ ] 

Type the value stdio over the placeholder {@include_module_name@}. 

C.1.3.2 External Definition 
[ @preprocessor line@ ] 

[ @comment @ ] 

[@external definition@] . 

[@function definition@] 

Erase the placeholders [@preprocessor line@] and [@comment@]. Expand 
the placeholder [@external_definition@] to display a menu and select the 
option static as follows: 

-> static [ @readonly@ ] [ @data modifiers@ ] . [ @data_type@ ] { @init_declarator@ } . ; 
[ @external definition@ ] 

[@function definition@] . 

Erase the placeholder [@readonly@] and [@data_modifiers@] and type the 
value double over the placeholder [@data_type@] as follows: 

-> static double {@init declarator@} ; 
[@external definition@] 

[@function definition@] . 

Optional Programming/ Productivity Tools ~7 



Expand {@init_declarator@} to produce the following: 

-> static double {@declarator@} [@= initializer@], [@init declarator@] ; 
[@external definition@] 

[ @function definition@ ] 

Erase the duplicated list placeholder [@init declarator@] . . . (the separator 
text ;will appear immediately after the inserted text). Expand the place-
holder {@declarator@} to display a menu and select the option {@identifier@}; 
type the value number over {@identifier@} as follows: 

-> static double number [@= initializer@]; 
[@external definition@] 

[ @function definition@ ] 

Expand the placeholder [@= initializer@] to display a menu and select the 
option = {@init constant_expression@} as follows: 

-> static double number = {@init_constant_expression@}; 
[ @external definition@ ] 

[@function definition@] 

Type the value 30.0 over {Qinit_constant expression~~ as follows: 

-> static double number = 30.0; 
[@external definition@] . 

[ @function definition@ ] 

C.1.3.3 Function Definition 
[ @external definition@ ] 

[ @function definition@ ] 

Erase the placeholders [@preprocessor line@], [C~comment@], and [@exter-
nal_definition@]. Expand [@function definition@] to display a menu and 
select the option {@function def@} as follows: 

_> 
[@function level comments@] 
[@static@] [@data type@] {@function name@} ([@parameter@] ) 
[ @param decl@ ] 
{ 

[ @block decl@ ] 

{ @statement@ } 
} 
[ @function definition@ ] 

Because [@function definition@] is a list placeholder, a copy of it is placed 
after the body of {@function def@} . Since [@function definition@] is optional, 
for purposes of this example erase it. 

C-8 Optional Programming/ Productivity Tools 



Erase the placeholders [@function_level_comments@] and [@static@]. 
Expand [@data_type@] to display a menu and select the option 
[@unsigned@]#int as follows: 

_~ [@unsigned@] int 
[ @param decl@ ] 
{ 

[ @block decl @ ] 

} 
{@statement@} . 

{@function name@} ([@parameter@] ) 

Erase [@unsigned@] and type the value get_string over {@function name@} . 
Expand the placeholder [@parameter@] to produce the following: 

_~ int get string ({@identifier@}, [@parameter@] . 
[@param decl@] 
{ 

[ @block decl@ ] 

} 
{ @statement@ } 

7`ype the value string over {@identifier@}, and expand [@parameter@] again 
to produce the following: 

_~ int get string (string, {@identifier@}, 

[ @param decl@ ] 
{ 

[ @block decl@ ] 

} 
{ @statement@ } 

[ @parameter@ ] ) 

ape the value limit over {@identifier@} and erase [@parameter@] . . . as 
follows: 

_~ int get string (string, limit ) 
[@param_decl@] 
{ 

} 

[ @block decl@ ] 

{ @statement@ } 

Expand the placeholder [@param_decl@] as follows: 

int get_string (string, limit) 
[ @register@ ] [ @data modifiers@ ] [ @data type@ ] { @declarator@ } ; 

[ @param decl@ ] 
{ 

[ @block decl@ ] 

{ @statement@ } 
} 

Optional Programming/ Productivity Tools ~9 



Expand the placeholder [@register@] to produce the value register. Erase the 
placeholder [@data modifiers@]. Z`ype the value char over the placeholder 
[@data_type@] as follows:. 

_~ 
int get string (string, limit) 
register char {@declarator@} ; 

[ @param decl@ ] 
{ 

[ @block decl @ ] 

} 
{ @statement@ } 

Expand {@declarator@} to display a menu and select the array format 
{@declarator@} [[@constant expression@]]. Erase the duplicated list place-
holder {@declarator@} to produce the following: 

_~ 
int get string (string, limit ) 
register char {@declarator@} [[@constant_expression@]]; 
[ @param decl@ ] 
{ 

[ @block decl @ ] 

} 
{@statement@} . 

ape the value string over {@declarator@} and erase [@constant_expression@] 
as follows: 

int get string (string, limit) 
register char string []; 
[ @param decl@ ] 
{ 

[@block decl@] . 

{ @statement@ } . 
} 

Expand [@param_decl@] again and erase the placeholders [@register@] and 
[@data_modifiers@] as follows: 

_~ 

int get string (string, limit ) 
register char string []; 
[ @data type@ ] { @declarator@ } ; 
[ @param decl@ ] 
{ 

} 

[@block decl@] . 

{ @statement@ } 

ape the value int over [@data_type@] and expand {@declarator@} to display 
a menu. Select the option {@identifier@} as follows: 

C-10 Optional Programming/ Productivity Tools 



_> 

int get_string (string, limit) 
register char string []; 
int { @identifier@ } , [ @declarator@ ] ; 
[ @param decl@ ] 
{ 

} 

[@block decl@] 

{ @statement@ } 

Type the value limit over {@identifierC~3} and erase [~declaratorQ] . . .and 
[C~?param_dec10] . . . as follows: 

int get string (string, limit ) 
register char string []; 

-> int limit; 
{ 

[ @block decl@ ] 

{ @statement@ } 
} 

C.1.3.4 Block Declaration 
[ @function definition@ ] 

Expand the placeholder [Qfunction_definitionC~] to display a menu and select 
the option main_function_def as follows: 

_> [ @function level comments@ ] 
{@main () OR main function that accepts arguments from the command line@} 
{ 

[ @block decl@ ] 
{ @statement@ } 

} 
[@function definition@] 

Erase the placeholder [C~3function_level_comments~] and the duplicated list 
placeholder [C«~function_definitionC~]. Expand {C«~main () OR main function 
that accepts arguments from the command lineC~} to display a menu and 
select the option main () as follows: 

-> main ( ) 
{ 

[ @block decl @ ] 

{ @statement@ } 
} 

Expand the placeholder [C~block_dec1C~] to display a menu and select the 
option [C~data_modifiersQ] [C«3data_typeC~] [@init_declaratorC~] as follows: 

Optional Programming/ Productivity Tools X11 



_~ 

main ( ) 
{ 

[@data modifiers@] [@data type@] [@init_declarator@] ; 
[ @block decl@ ] 

} 
{ @statement@ } 

Erase the placeholder [@data_modifiers@] and expand [@data_type@] to 
display a menu. Expand option struct automatically expands to a menu, 
from which you select the option {@struct struct_decl@} as follows: 

_~ 

main ( ) 
{ 

{@struct struct_decl@} 
[ @block_decl@ ] 

} 
{ @statement@ } 

[ @init declarator@ ] 

Expand {@struct struct_decl@} to produce the following: 

_~ 

main ( ) 
{ 

} 

struct 
{ 
{ @member decl@ } . 
} [ @init declarator@ ] 

[ @block decl@ ] 

{ @statement@ } 

Expand {@member_decl@} to display a menu and select the option [@data_ 
type@) {@declarator@} . . . ; as follows: 

_~ 

main ( ) 
{ 

} 

struct 
{ 
[ @data type@ ] { @declarator@ } ; 
[ @member decl@ ] 
} [ @init declarator@ ] ; 

[ @block decl@ ] 

{ @statement@ } 

ape the value char over [@data_type@]. Expand {@declarator@} to display a 
menu and select the option {@declarator@} [[@constant_expression@]]. Erase 
the duplicated list placeholder [@declarator@] as follows: 

x-12 Optional Programming/ Productivity Tools 



main ( ) 
{ 

_~ 

_~ 

} 

struct 
{ 
char {@declarator@} [[@constant expression@]]; 

[ @member decl@ ] 
} [ @init declarator@ ] ; 

[ @block decl@ ] 

{ @statement@ } 

Type the value city over {@declaratory?} and the value 20 over [@constant_ 
expressionQ] as follows: 

_~ 

main ( ) 
{ 

} 

struct 
{ 
char city [20]; 
[ @member decl@ ] 
} [ @init declarator@ ] ; 

[ @block decl@ ] 

{@statement@} . 

Expand the placeholder [C~member_dec1C~] again to [C~data_typeC~3] {Qdeclara-
torQ} . . . ;. ape the value int over [C~data_type~] and the value population 
over {C~declaratorCa3} . Erase the placeholder {Qdeclarator@} . . . as follows: 

_~ 

main ( ) 
{ 

} 

struct 
{ 
char city [20]; 
int population; 
[ @member decl@ ] 
} [@init declarator@] ; 

[ @block decl@ ] 

{@statement@} . 

Erase the list placeholder [~member_dec1C3] and expand [@init declarator] 
as follows 

main ( ) 
{ 

} 

struct 
{ 
char city [ 2 0 ] ; 
int population; 
} {@declarator@} [@= initializer@], [@init_declarator@] ; 

[ @block decl@ ] 

{ @statement@ } 

Optional Programming/ Productivity Tools C-13 



Expand {@declarator@} to display a menu and select the option {@declara-
tor@} [[@constant_expression@]] as follows: 

main ( ) 
{ 

_~ 

_~ 

} 

struct 
{ 

char city [ 2 0 ] ; 
int population; 
} {@declarator@} [[@constant expression@]] [@= initializer@], 

[@init declarator@] ; 
[ @block decl@ ] 

{ @statement@ } 

Type the value data over {@declaratorC~3) and the value 2 over [~3constant_ 
expressionQ] as follows: 

_~ 

main ( ) 
{ 

} 

struct 
{ 

char city [ 2 0 ] ; 
int population; 
} data [2] [@= initializer@], 

[ @init declarator@ ] ; 
[ @block decl@ ] 

{ @statement@ } 

Expand the placeholder [@= initializer@] to display a menu and select the 
option = {@init_multiple_line_form@} as follows: 

main ( ) 
{ 

} 

struct 
{ 

char city [ 2 0 ] ; 
int population; 
} data [2] _ {@init_multiple_line_form@}, 

[ @init declarator@ ] ; 
[@block decl@] 

{ @statement@ } 

C-14 Optional Programming/ Productivity Tools 



Expand {@init_multiple line_formC~} to produce the following: 

main ( ) 
{ 

struct 
{ 
char city [20] ; 
int population; 
} data [ 2 ] _ { 

_~ 

} 

{@init item@} 
},[@init_declarator@] 

[ @block decl@ ] 

{@statement@} . 

.. 

Expand {C~init_itemC~} to display a menu and select the option { { 't_ 
itemQ} . . . } as follows: 

main ( ) 
{ 

} 

struct 
{ 
char city [ 2 0 ] ; 
int population; 
} data [ 2 ] _ { 

{ { @init item@ } } , [ @ init item@ ] 
} , [ @ init declarator@ ] ; 

[ @block decl@ ] 

{ @statement@ } 

ape the value "Boston" over {C~init_itemC~} as follows: 

_~ 

main ( ) 
{ 

} 

struct 
{ 
char city [ 2 0 ] ; 
int population; 
} data [ 2 ] _ { 

{ "Boston", [ @init item@ ] } , 
[ @init item@ ] 

}, 
[ @init declarator@ ] ; 

[ @block decl@ ] 

{ @statement@ } . 

Expand the optional placeholder [~init itemC~~ to display a menu and select 
the option {@init constant expressionC~} as follows: 

Optional Programming/ Productivity Tools C-15 



main ( ) 
{ 

struct 
{ 

char city [20]; 
int population; 
} data [ 2 ] _ { 

-> { "Boston", {@init_constant_expression@}, [@init_item@] }, 
[ @init item@ ] 

}, 

[ @init declarator@ ] ; 
[@block decl@] 

{@statement@} . 
} 

ape the value 250000 over {C~3init_constant_expression~} and erase the 
immediately following [@init itemC~] placeholder as follows: 

main ( ) 
{ 

struct 
{ 
char city [ 2 0 ] ; 
int population; 
} data [2] _ { 

_~ 

} 

{ "Boston", 250000 }, 
[ @init item@ ] 

}, 
[ @init declarator@ ] ; 

[@block decl@] 

{ @statement@ } 

Expand the list placeholder [Qinit_itemC~] in the same manner to produce 
the following: 

_~ 

main ( ) 
{ 

} 

struct 
{ 
char city [ 2 0 ] ; 
int population; 
} data [2] _ { 

{ "Boston", 250000 }, 
{ "Manchester", 25000 } 

}, 
[@init declarator@] ; 

[ @block decl@ ] 

{ @statement@ } . 

C-16 Optional Programming/ Productivity Tools 



C.1.3.5 Statements and Expressions 
-> [@function definition@] . 

Expand the placeholder [C~3function_definitionQ] to display a menu and select 
the option {main_function_def} as follows: 

-> [@function level comments@] 
{@main () OR main function that accepts arguments from the command line@} 
{ 

[ @block decl@ ] 
{@statement@} . 

} 

[ @function definition@ ] 

Erase the placeholder [C~function_level_commentsC«~] and the duplicated list 
placeholder [C~function definitionC~]. Expand {main () OR main function 
that accepts arguments from the command lineC~3} to display a menu and 
select the option main () as follows: 

_> main ( ) 
{ 

} 

[ @block decl@ ] 

{ @statement@ } 

Expand the placeholder {C~statementC~} to display a menu and select the 
option if as follows: 

_> 

main ( ) 
{ 

} 

[ @block decl @) 

if ({ @expression@ } ) 
{@statement@} 

[@else if (expression) statement@] 
[@else statement@] 
[@statement@] 

Erase the optional placeholders [@else if (expression) statementC~] and [C«3else 
statementC~]. Expand the placeholder ~{C~expressionC~3} to display a menu and 
select the option {C~3binary_expressionC~} as follows: 

_> 

main ( ) 
{ 

} 

[ @block decl @ ] 

if ({@binary expression@}) 
{@statement@} 

[ @statement@ ] 

Optional Programming/ Productivity Tools C-17 



Another menu is automatically displayed; select the option {C~expressionC~} 
{~ {<,>, <_,>_, __, !_} C~} {QexpressionC~3} as follows: 

main ( ) 
{ 

_> 

} 

[ @block decl @ ] 

if ({@expression@} {@ {<,>, 
{@statement@} 

[@statement@] 

<_, >_, __, ! _} @ } { @expression@ } ) 

hype the value count over {QexpressionC~3}. Expand the placeholder {~ {<,>, 
<_,>_, __, !_} Q} to display a menu and select the option < as follows: 

_> 

main ( ) 
{ 

} 

[@block decl@] 

if (count < {@expression@}) 
{@statement@} 

[@statement@] 

Type the value 10 over {8expressionC~3} as follows: 

_> 

main ( ) 
{ 

} 

[ @block decl@ ] 

if (count < 10) 
{@statement@} 

[@statement@] 

Expand {~statementC~} to display a menu and select the option {C~expres-
sionC~3}; as follows: 

_~ 

main ( ) 
{ 

} 

[@block decl@] 

if (count < 10) 
{@expression@}; 

[ @statement @ ] 

Expand {C~expressionC~} to display a menu and select the option primary. 
Another menu .is automatically displayed. Select the option function_call to 
produce the following: 

X18 optional Programming/ Productivity Tools 



main ( ) 
{ 

_~ 

} 

[ @block decl@ ] . 

if (count < 10) 
{@primary@} ([@actual argument@] ); 

[@statement@] 

Type the value printf over (~primaryQ}, and expand {~actual_argumentQ} 
as follows: 

_~ 

main ( ) 
{ 

} 

[ @block decl @ ] 

if (count < 10) 
printf ({@expression@}, [@actual argument@] ); 

[ @statement@ ] 

Expand {C~expressionC~} to display a menu and select the option primary 
again as follows: 

_~ 

main ( ) 
{ 

} 

[@block decl@] 

if (count < 10) 
printf ({@primary@}, [@actual argument@] ); 

[ @statement@ ] 

Another menu is automatically displayed; select the option {Qstring textC~} 
as follows: 

-> 

main ( ) 
{ 

[ @block decl @ ] 

if (count < 10) 
printf ("{@string_text@}", 

[ @statement @ ] 
[@actual argument@] ); 

} 

ape the string "less than %d test cases\ n" over {~strin~textC~3} as follows: 

main ( ) 
{ 

} 

[ @block decl@ ] 

if (count < 10 ) 
printf ("less than $d test cases\n", [@actual_argument@] ); 

[ @statement@ ] 

Optional Programming/ Productivity Tools X19 



Type the value count over [@actual_argument@] . . .and erase the dupli-
cated placeholder [@actual argument@] . . . as follows: 

main ( ) 
{ 

_~ 

} 

(@block decl @ ] 

if (count < 10) 
printf ("less than od test cases\n", count); 

(@statement@] 

C.2 Using the VAX Source Code Analyzer 

The VAX Source Code Analyzer (SCA) is an interactive source code cross-
reference and static analysis tool that works with most VAX programming 
languages. SCA helps developers keep track of the details of complex, 
large-scale software systems by displaying source information in response to 
your queries. SCA uses data generated by the VAX C compiler to supply the 
requested source information. That information is stored in the SCA library. 
The data in an SCA library consists of the names of, and information about, 
all the symbols, modules, and files encountered during a specific compilation 
of the source. 

SCA has both cross-reference and static analysis query features. Cross-
referencing supplies information about program symbols and source files. 
Cross-referencing includes the following features: 

• Locating names and occurrences (uses) of these names 

• Querying a specified set of names or partial names (you can use 
wildcards) 

• Limiting a query to specific characteristics (such as routine names, 
variable names, or source files) 

• Limiting a query to specific occurrences (such as the primary declaration 
of a symbol, read or write occurrences of a symbol, or occurrences of a 
file) 

The static analysis query features of SCA provide structural information on 
the interrelation of routines, symbols, and files. Static analysis includes the 
following features: 

• Displaying routine calls to and from a specified routine 

• Analyzing routine calls for consistency as to the numbers and data types 
of arguments passed, and the types of values returned 

C-20 Optional Programming/ Productivity Tools 



SCA is fully integrated with LSE to provide extended features. By using 
SCA with LSE, you can view any portion of an entire system and edit 
related source files. 

The following sections provide a general overview of SCA and discuss some 
of the commands that are available to you while using SCA within LSE. 
For detailed information on SCA and its use with various programming 
languages, see the Guide to VAX Language-Sensitive Editor and VAX Source 
Code Analyzer. 

C.2.1 Multimodular Development 

The cross-referencing and static analysis features of SCA can be useful 
during the implementation and maintenance phases of a project that 
involves many programming modules. For example, Figure C-1 shows a 
project team work area that contains a set of source modules. To keep track 
of these modules in their various development stages, the team can use a 
code management tool, such as VAX DEC/Code Management System (CMS), 
which is represented in the figure by the CMS Library. 

Optional Programming/ Productivity Tools C-21 



Figure C-1: Use of SCA for Multimodular Development 

Project Work Area 

Debugger, 
Source, 
Or 

Reference 
Copy 
Area 

Individual Developer Work Area 

Compile
I ~i► 

Modu 

Some 
Source 
Code 

Modules 
i 
L~ 

Pointers to Source 
for LSE 

.ANA 
Files 

Load 

Compile Load 
'~ ~ 

.ANA 
Files 

Individual I
SCA 

` Library ~ I 

  .J 

Pointers to SCA 
Information for LSE 

ZK-5850-G E 

When the team compiles the source code, an IANALYSIS_DATA qualifier 
to the COMPILE command instructs the VAX C compiler to generate SCA-
required source information (.ANA data files) from the sources. The team 
then instructs SCA to load the .ANA files into a previously established SCA 
library. 

G-22 Optional Programming/ Productivity Tools 



When a team member wants to do additional development work on specific 
modules, that member sets up an individual work area. Such individual 
work areas might consist of the following: 

• Copies of source and object modules from the project libraries 
• Local SCA libraries that contain copies of the module information 

required to complete assigned tasks 

To make the module-viewing capabilities of SCA and LSE integration 
available, the project team member must inform LSE of the locations of 
the latest sources, and the related source information. The team member 
provides pointers to these locations by supplying a search list for LSE. 

The search list first points to source modules in individual team member's 
default directories, and then points to the remaining modules in the project 
source directory. With such an arrangement, each member can effectively 
"see" through the local work area to the project-wide area. If an individual 
work area contains only new modules, and all the work can be done with 
local resources, the team member need not specify the pointers to the 
project-wide area. 

C.2.2 Setting Up an SCA Environment 

To set up an SCA environment, you must take the following steps: 

1. Create an SCA library in a subdirectory. 
2. Select the library. 
3. Use the VAX C com filer to enerate the data anal sis (.ANA) files for P g Y 

each source module in your system. 
4. Load these data anal sis files into our local SCA libra Y Y Y`Y 

You can now use SCA to conduct source information queries. 

C.2.2.1 Creating an SCA Library 

To use SCA, you must have an SCA library to store the detailed source 
analysis data that the VAX C compiler collects. Source analysis data is 
information about all of the symbols, files, and modules contained in the 
source. 

To create an SCA library, you first create a subdirectory at the DCL level. 
For example: 

$ CREATE/DIRECTORY PROJ:[USER.LIB1] 

Optional Programming/ Productivity Tools C-23 



This command creates a subdirectory LIB1 for a local SCA library. 

To initialize a new SCA library, specify the CREATE LIBRARY command. 
This command has the following form: 

CREATE LIBRARY [/qualifiers . . . ] directory-spec[, . . . ] 

For example: 

$ SCA CREATE LIBRARY [.LIB1] 

This command initializes and activates library LIB1. 

C.2.2.2 Generating the Data Analysis Files 
SCA uses detailed source data that is generated by the VAX C compiler. 
When you specify the /ANALYSIS_DATA qualifier on the CC command 
line, the generated data is output to a file with the default type .ANA. For 
example: 

$ CC/LIST/DIAGNOSTICS/ANALYSIS DATA PG1,PG2,PG3 

This command line compiles the input files PG1.C, PG2.0 and PG3.C, 
and generates four corresponding output files for each input file. The 
compiler puts these files in your current default directory unless you specify 
otherwise. 

C.2.2.3 Selecting an SCA Library 
To select an existing SCA library to use with your current SCA session, use 
the SET LIBRARY command. This command has the following form: 

SET LIBRARY [/qualifiers . . . ] directory-spec[, . . . ] 

A message appears in the message buffer, at the bottom of your screen, 
indicating whether your SCA library selection was successful or not. 

C.2.2.4 Loading Data Analysis Files into a Local Library 
Before you can examine the information in the compiler-generated source 
analysis (.ANA) files, you must load the files into an SCA library using the 
LOAD command. This command has the following form: 

~, LOAD [/qualifiers . . . ] file-spec[, . . . ] 

For example: 

LSE> LOAD PG1,PG2,PG3 

C-24 Optional Programming/ Productivity Tools 



This command loads your library with the modules contained in the data 
analysis files PG1, PG2, and PG3. 

C.2.3 Using SCA for Cross-Referencing 

With an SCA library in place, you can ask for symbol or file information by 
using the SCA command FIND. This command has the following form: 

FIND [/qualifier . . . ] [name-expression[ . . ]] 

The name-expression is the name of a symbol or file. It can be explicit (such 
as ABC), it can include wildcards (such as ABC* or AB%), and it can include 
more than one name by specifying a list of name expressions separated by 
commas. For example: 

LSE> FIND ABC,XYo 

VAX C reports symbols to SCA in all uppercase. Therefore, the variables abc 
and ABC will both be found by the previous command. 

You can query SCA library information for the following data that exist 
within a source program: 

Name A series of characters that uniquely identify a symbol or a file. 

Item An appearance of a symbol (such as a variable, constant, label, or 
procedure) or a file. 

Occurrence The use of a symbol or a file. 

To limit the information resulting from a query, use qualifiers on the FIND 
command, such as the /DECLARATIONS and /REFERENCE qualifiers. For 
example: 

LSE> FIND/REFERENCES=CALL BUILD TABLE 

This command causes SCA to report only references in the source code 
where the routine BUILD TABLE is called. 

When you first enter a FIND command within LSE, you initiate a query 
session. Within this context, the integration of LSE and SCA provides the 
commands listed in Table C-4, which can only be used within LSE. 

Optional Programming/ Productivity Tools C-25 



Table C-4: SCA Commands to Use Within LSE 

Command Description 
NAME 

j NEXT 
l  ITEM 

l PREVIOUS J OCCURRENCE 
QUERY 
STEP 

GOTO SOURCE 

GOTO DECLARATION 

Closely associated commands that let you 
step through one or more query buffer 
displays within LSE. 

Displays the source corresponding to the 
current query item. 

Positions the cursor on a symbol decla-
ration in one window, and displays the 
source code that contains the symbol 
declaration in another window. 

C-26 Optional Programming/ Productivity Tools 



Appendix D 

Language Summary 

This appendix briefly describes the CC and LINK commands of the DIGITAL 
Command Language (DCL) and the qualifiers used with both commands. 
This appendix also briefly describes C language features. 

This appendix presents the following syntax summaries: 

• The CC command (Section D.1) 

• The LINK command (Section D.2) 

• Data-type keywords (Section D.3) 
• Precedence of operators (Section D.4) 

• Statements (Section D.5) 

• Conversion rules (Section D.6) 

• Escape sequences (Section D.7) 

• Preprocessor directives (Section D.8) 

• Record Management Services—RMS (Section D.9) 

D.1 The CC Command 

The DCL command CC compiles one or more VAX C source files into one or 
more object files. The source file or files compiled into an object module is 
called the compilation unit. 

Syntax: 

CC[/qualifier . . . ] file-spec-list 

Language Summary D-1 



File Specification Syntax: 

file-spec[/qualifier . . . ] 
file-spec-list, file-spec[/qualifier . . . ] 
file-spec-list + file-spec[/qualifier . . . 

Command Qualifiers 
/[NO]ANALYSIS_DATA[=file-spec] 
/[NO]CROSS_REFERENCE 
/[NOJDEBUG[=option] 
/[NO]DEFINE[=(definition list)] 
/[NOJDIAGNOSTICS[=file-spec) 
/G FLOAT 
/[NO]INCLUDE_DIRECTORY=(pathname [, . . . ]) 
/LIBRARY 
/[NO] LIST[=file-spec] 

/[NO]MACHINE_CODE[=option] 
/[NO]O BJ ECT[=file-spec] 
/[NO]OPTIMIZE[=option] 
/[NOjPARALLEL 
/[NO]PRECISION={SINGLE,DOUBLE} 
/[NO]PREPROCESS_ONLY[=filename] 
/SHOW[=(option, . . . )] 

/[NOJSTANDARD=OPTION 
/[NO]UNDEFINE[=(undefine list)] 
/[NO] WARNI NGS[=(option-list)] 

NOTE 

Defaults 
/NOANALYSIS_DATA 
/NOCROSS REFERENCE 
/DEBUG=TRACEBACK 
/NODEFINE 
/NODIAGNOSTICS 
/NOG_FLOAT 
/NOINCLUDE DIRECTORY 
None 
/NOLIST (interactive mode) 
/LIST (batch mode) 
/NOMACHINE CODE 
/OBJECT 
/OPTIMIZE 
/NOPARALLEL 
/PRECISION=DOUBLE 
/NOPREPROCESS 
/SHOW=(NOBRIEF, 
NODECOMPOSITION, 
NODICTIONARY, 
NOEXPANSION, 
NOINCLUDE, 
NOINTERMEDIATE, 
NOSTATISTICS, 
NOSYMBOLS, 
NOTRANSLATION, 
SOURCE, 
TERMINAL) 
/STANDARD 
/NOUNDEFINE 
/WARNINGS 

The only qualifier that must be used with a file specification is 
the /LIBRARY qualifier. You cannot place this qualifier on the CC 
command line. 

D-2 Language Summary 



D.2 The LINK Command 

~'1 The DCL LINK command combines one or more object modules into one 
image file. 

Syntax: 

LINK[/qualifier . . . ] file-spec[/qualifier . . . J, . . . 

Command Qualifiers 
/BRIEF 
/[NOjCONTIGUOUS 
/[NO]CROSS_REFERENCE 
/(NO]DEBUG[=file_spec] 
/[NO]EXECUTABLE[=file_spec] 
/FULL 
/HEADER 
/[NO]MAP[=file spec] 
/POIMAGE 
/PROTECT 
/[NO]SHAREABLE[=file_spec] 
/[NOjSYMBOL_TABLE[=file_spec] 
/[NO]SYSLIB 
/[NO]SYSSHR 
/[NO]SYSTEM[=base_address] 
/[NO]TRACEBACK 
/[NO]USERLIBRARY[=table[, . . . ]] 
/INCLUDE=(module name[, . . . ]) 
/LIBRARY 
/OPTIONS 
/SELECTIVE SEARCH 

Defaults 
None 
/NOCONTIGUOUS 
/NOCROSS_REFERENCE 
/NODEBUG 
/EXECUTABLE 
None 
None 
/NOMAP 
None 
None 
/NOSHAREABLE 
/NOSYMBOL TABLE 
/SYSLI B 
/SYSSHR 
/NOSYSTEM 
/TRACEBACK 
None 
None 
None 
None 
None 

NOTE 

The only qualifiers that must be used with a file specification 
are the /INCLUDE, /LIBRARY, /OPTIONS, and /SELECTIVE_ 
SEARCH qualifiers. You cannot place these qualifiers on the 
LINK command. 

Language Summary D-3 



D.3 Data-Type Keywords 

Type Specifiers: 

32-bit signed or unsigned: 

int 
long 
long int 
unsigned int 
unsigned long 
unsigned long int 

16-bit signed or unsigned: 

short 
short int 
unsigned short 
unsigned short int 

8-bit signed or unsigned: 

char 
unsigned char 

F_floating format: 

float 

D_floating or G_floating format: 

double 
long float 

Aggregate types: 

struct 
union 
variant struct 
variant union 

Enumerated type: 

enum 

Type of function return value: 

void 

Type declaration: 

typedef 

D-4 Language Summary 



Storage-class specifiers: 

auto 
register 
static 
extern 
globaldef 
globalref 
globalvalue 

Data-type modifiers: 

const 
volatile 

Storage-class modifiers: 

readonly 
noshare 
align 

D.4 Precedence of Operators 

Table D-1 lists the operators from highest precedence to lowest. In 
the binary operator category, operators appear in descending order of 
precedence, line by line. 

Table D-1: Precedence of Operators 

Category Association Operator 

Primary Left to right () [ ] —> 

Unary Right to left ! ~ ++ — — (type) —
sizeof 

(continued on next page) 

Language Summary D-5 



Table D-1 (Cont.): Precedence of Operators 

Category Association Operator 

Binary Left to right * / % 
+ -

« » 

< <_ > >_ 

__ !_ 

n 

I 
&& 
I I 

Conditional Right to left ?: 

Assignment Right to left = +_ —_ 
< <_ &_ 

Comma Left to right 

^= I = 

D.5 Statements 

Syntax: 

[expression] ; 

identifier : statement 

{ [declaration-lisp [statement-lisp } 

case constant-expression default: statement-list 

if expression) statement [else statement 

while expression) statement 

do statement while (expression) 

for ([expression] ; [expression] ; [expression]) 
statement 

switch (expression) statement 

break ; 

continue ; 

return [expression] ; 

goto identifier ; 

D-6 Language Summary 



D.6 Conversion Rules 

Arithmetic Conversion 

Any operand of type: 

char 
short 
unsigned char 
unsigned short 
float 

If operand type is: 

double 
unsigned 

Otherwise, both operands are: 

int 

Function Argument Conversion 

Any argument of type: 

float 
char 
short 
unsigned char 
unsigned short 

array 

function 

Is converted to: 

int 
int 
unsigned int 
unsigned int 
double 

The result and the other operands are: 

double 
unsigned 

And the result is: 

int 

Is converted to type: 

doubler
int 
int 
unsigned int 
unsigned int 

pointer to array 

pointer to function 

rIf the compiler encounters a $oat in an argument to a function declared with a function 
prototype, then the argument remains a $oat. 

Language Summary D-7 



D.7 Escape Sequences 

Table D-2: Escape Sequences 

Character Mnemonic Escape Sequence 

newline NL \ n 

horizontal tab HT \ t 

vertical tab VT \ v 

backspace BS \ b 

carriage return CR \ r 

form feed FF \ f 

backslash \ \ \ 

apostrophe \ 

quotes \ " 

bit pattern ddd \ddd or \xddd 

Use the form "\ddd" to specify any byte value (usually an ASCII code), 
where the digits ddd are one to three octal digits. The octal digits are 
limited to 0 through 7. 

Similarly, use the form "\xddd" to specify any byte value (usually an ASCII 
code), where the digits are used to specify one to three hexadecimal digits. 

D.8 Preprocessor Directives 

Syntax: 

#define identifier[((paraml, . . . param2J)J token-string 

#undef identifier 

#dictionary cdd--path 

#elif constant-expression 

#include <file-spec> 
#include "file-spec" 
#include module-name 

#if constant-expression 

#ifdef identifier 

D-8 Language Summary 



#ifndef identifier 

#else 

#endif 

#[line] constant string 
#[line] constant identifier 

#module identifier identifier 
#module identifier string 

#pragma [(identifier[, . . . ])] 

D.9 Record Management Services (RMS) 

The RMS functions can be expressed in terms of the following general 
descriptions: 

Syntax: 

#include (rms-module ) 
Ent sys$name(pointer, [error function], 

[success function]) 

struct rms structure *pointer; 
int (*error function)(), (*success function)(); 

rms-module 
Is the name of one of the modules in Table D-3. 

Table D-3: RMS Module Names 

Module Description Structure Tag 

fab File access block FAB 

rab Record access block RAB 

nam Name block NAM 

xaball Allocation XAB XABALL 

xabdat Date and time XAB XABDAT 

xabfhc File header characteristics XAB XABFHC 

(continued on next page) 

Language Summary D-9 



Table D-3 (Cont.): RMS Module Names 

Module Description Structure Tag 

xabkey Indexed file key XAB XABKEY 

xabpro Protection XAB XABPRO 

xabrdt Revision date and time XAB XABRDT 

xabsum Summary XAB XABSUM 

xabtrm Terminal control XAB XABTRM 

rmsdef Completion status codes —

rms All RMS modules All tags 

sys$name 
Is the name of the RMS function being called. 

pointer 
Is a pointer to an RMS structure that (optionally) has been initialized by the 
templates in Table D-4. 

Table D-4: RMS Templates 

Template Description 

cc$rms_fab 

cc$rms_rab 

cc$rms_nam 

cc$rms_xaball 

cc$rms_xabdat 

cc$rms_xabfhc 

cc$rms_xabkey 

cc$rms_xabpro 

cc$rms_xabrdt 

cc$rms_xabsum 

cc$rms_xabtrm 

Initializes the file access block (FAB) 

Initializes the record access block (RAB) 

Initializes the name block (NAM) 

Initializes the allocation XAB (XABALL) 

Initializes the date and time XAB (XABDAT) 

Initializes the file header characteristics XAB (XABFHC) 

Initializes the indexed file key XAB (XABKEY) 

Initializes the protection XAB (XABPRO) 

Initializes the revision date and time XAB (XABRDT) 

Initializes the summary XAB (XABSUM) 

Initializes the terminal control XAB (XABTRM) 

error_function 
Is the name of asignal-handling function to call if an error occurs (optional). 

success_function 
Is the name of a function to call if the RMS function is successful (optional). 

D-10 Language Summary 



rms 

structure 

Is the type of structure being pointed to by pointer. 

The RMS functions return an integer status value. 

Language Summary D-11 





Appendix E 

Working with the Multiprocess Debugging 
Configuration 

This appendix assumes that you are familiar with the configuration of 
the VMS Debugger that supports single-process debugging (referred to 
in this appendix as the default debugging configuration). It covers only 
the extensions that are provided to support multiprocess debugging. (See 
Chapter 2 far information about how to use the debugger for single-process 
debugging. ) 

This appendix provides information in the following areas: 

• Basic information that you need to perform multiprocess debugging 
(Section E.1) 

• Supplemental information on more advanced concepts and usage than 
those described in Section E.1 (Section E.2) 

• A sample multiprocess debugging session (Section E.3) 
• System management considerations associated with multiprocess 

debugging (Section E.4) 

The information in this appendix is oriented toward multiprocess debugging 
in general, not toward VAx Cparallel-processing debugging. For more 
detailed information about the parallel-processing debugging commands, see 
the debugger HELP utility or the VMS Debugger Manual. 

E.1 Getting Started 

This section gives a quick overview of the multiprocess debugging environ-
ment, by running through the basic steps and commands. Later sections 
are referenced for additional details. See the debugger's online HELP for 
complete details on commands. 

Working with the Multiprocess Debugging Configuration E-1 



E.1.1 Establishing a Multiprocess Debugging Configuration 

Before invoking the debugger, enter the following command to establish a 
multiprocess configuration: 

$ DEFINE/JOB DBG$PROCESS MULTIPROCESS 

This command establishes a multiprocess configuration for the job tree in 
which the command was issued. As a result, once a debugging session is 
started, any image that can be debugged running in the same job tree can be 
controlled from that one session. (An image can be debugged if it has been 
compiled and linked with the /DEBUG qualifier. ) 

E.1.2 Invoking the Debugger 

This section explains how to start a multiprocess debugging session. See 
Section E.2.3 for additional techniques for invoking the debugger (for 
example, using the CONNECT command or a CTRL/Y DEBUG sequence). 

You typically initiate the execution of a multiprocess program by running the 
main image in the main (master) process. Once the main image is running 
in the main process, the program will spawn one or more subprocesses to 
run additional images by issuing a LIB$SPAWN run-time library call or 
a $CREPRC system service call. (VAX C performs this step during the 
initialization phase. ) 

If the main image can be debugged, the debugger is invoked when you run 
the image. For example: 

$ RUN MAIN_PROG 

VAX DEBUG Version X5.0-3 MP 

$DEBUG-I-INITIAL, language is C, module set to MAIN_PROG 
DEBUG-I-NOTATMAIN, type GO to get to start of main program 
predefined trace on activation at routine MAIN PROG in PROCESS NUMBER 1 
DBG 1> 

As with aone-process program, the debugger displays its banner and prompt 
just prior to executing the main image. However, note two differences the 
"predefined trace on . . . "message and the debugger prompt. 

In a multiprocess configuration, the debugger traces each new process that 
is brought under control. In this case, the debugger traces the first process, 
which runs the main image of the program. (%PROCESS_NUMBER is a 
built-in symbol that identifies a process number, just as %LINE identifies a 
line number. ) 

The significance of the prompt suffix (_1) is explained in the next section. 

E-2 Working with the Multiprocess Debugging Configuration 



E.1.3 The Visible Process and Process-Specific Commands 

n The previous example shows that the debugger prompt in a multipro-
cess debugging configuration is different from that found in the default 
configuration. 

In a multiprocess configuration, "dynamic prompt setting" is enabled (SET 
PROMPT/SUFFIX=PROCESS_NUMBER) by default. Therefore, the prompt 
has aprocess-specific suffix that indicates the process number of the visible 
process. The debugger assigns a process number sequentially, starting with 
process 1, to each process that comes under the control of a given debugging 
session. 

The visible process is the process that is the default context for issuing 
process-specific commands. Process-specific commands are those that start 
execution (STEP, GO, and so on) and those used for looking up symbols, 
setting breakpoints, looking at the call stack and registers, and so on. 
Commands that are not process specific are those that do not depend on 
the mapping of virtual memory but, rather, affect the entire debugging 
environment (for example, keypad mode and screen mode commands). 

Unless dynamic prompt setting is disabled (using the SET PROMPTINOSUFFIX 
command), the debugger prompt suffix identifies the visible process (for ex-
ample, DBG_1>). The SET PROMPT command provides several options for 
tailoring the prefix and suffix of the prompt string to your needs. 

E.1.4 Obtaining Information About Processes 

Use the SHOW PROCESS command to obtain information about processes 
that are currently under control of your debugging session. By default, 
SHOW PROCESS displays one line of information about the visible process. 
The following example shows the kind of information displayed immediately 
after you invoke the debugger: 

DBG_1> SHOW PROCESS 
Number Name Hold State Current PC 

* 1 JONES activated MAIN PROG\%LINE 2 
DBG 1> 

A one-line SHOW PROCESS display provides the following information 
about each process specified: 

• The process number assigned by the debugger. In this case, the process 
number is 1 because this is the first process known to the debugger. The 
asterisk in the leftmost column (*)marks the visible process. 

• The VMS process name. In this case, the VMS process name is JONES. 

Working with the Multiprocess Debugging Configuration E-3 



• Whether the process has been placed on hold with a SET PROCESS/HOLD 
command (see Section E.1.7.2). In this case, the process has not been 
placed on hold. 

• The current debugging state for that process. A process is in the 
activated state when it is first brought under debugger control (that is, 
before it has executed any part of the program under debugger control). 
Table E-1 summarizes the possible debugging states that may appear in 
the state column. 

• The location (symbolized, if possible) where execution of the image 
is suspended in that process. In this case, the image has not started 
execution. 

Table E-1: Debugging States 

Activated The image and its process have just been brought under 
debugger control, either through a DCL RUN/DEBUG 
command, a debugger CONNECT command, a CTRL/Y 
DEBUG sequence, or by the program signaling SS$DEBUG 
while it was not under debugger control. 

Breaks A breakpoint was triggered. 

Interrupted Execution was interrupted in that process, either because 
execution was suspended in some other process or because 
the user interrupted program execution with the abort-key 
sequence (CTRL/C, by default). 

Steps A STEP command has completed. 

Terminated The image has terminated execution but the process is 
still under debugger control. Therefore, you can obtain 
information about the image and its process. 

Trace 1 A tracepoint was triggered. 

Unhandled exception An unhandled exception was encountered. 

Watch of A watchpoint was triggered. 

1 See the SHOW PROCESS command in the DCL command dictionary for a list of 
additional states. 

The SHOW PROCESS/ALL command provides information about all 
processes that are currently under debugger control. In the case of the 
previous example, a SHOW PROCESS/ALL command would show only 
process 1. The SHOW PROCESS/FULL command provides additional 
details about processes. 

E—~4 Working with the Multiprocess Debugging Configuration 



E.1.5 Bringing a Spawned Process Under Debugger Control 

This section describes, in general, how the debugger interacts with 
spawned processes. 

NOTE 

Most of the information in this section is not pertinent to the 
debugging of parallel loops. The connect operations described 
in this section are automatically performed for you during the 
initialization phase. 

To show the interaction, assume that you are entering a few STEP com-
mands and, in the middle of a step, MAIN_PROG spawns a process to run 
an image that can be debugged called TEST. 

Because DBG$PROCESS has the value MULTIPROCESS, the spawned 
process is now requesting to connect to the current debugging session, and 
image TEST is suspended at the start of execution. 

While the spawned process is waiting to be connected, it is not yet known to 
the debugger and cannot be identified in a SHOW PROCESS/ALL display. 
You can bring the process under debugger control using either of the 
following methods: 

• Enter a command, such as STEP, that starts execution. 

• Enter the CONNECT command without specifying a parameter. The 
CONNECT command is preferable in those cases when you do not want 
the program to execute any further. 

The following example shows how to use the CONNECT command: 

DBG_1> STEP 

stepped to MAIN PROG\$LINE 18 in oPROCESS NUMBER 1 
18: LIB$SPAWN("RUN/DEBUG TEST"); 

DBG_1> STEP 

stepped to MAIN PROG\oLINE 21 in oPROCESS NUMBER 1 
21 : X =~7 ; 
DBG_1> CONNECT 

predefined trace on activation at routine TEST in oPROCESS NUMBER 2 
DBG 1> 

In this example, the second STEP command takes you past the LIB$SPAWN 
call that spawns the p~~ocess. The CONNECT command brings the waiting 
process under debugger control. After entering the CONNECT command, 
you may need to wait a moment for the process to connect. The "predefined 
trace on . . . "message, as explained in Section E.1.2, indicates that the 
debugger has taken control of a new process and identifies that process as 
process 2, the second process known to the debugger in this session. 

Working with the Multiprocess Debugging Configuration E-5 



A SHOW PROCESS/ALL command, entered at this point, identifies the 
debugging state for each process and the location at which execution is 
suspended: 

DBG_1> SHOW PROCESS/ALL 
Number Name Hold State Current PC 

* 1 JONES step MAIN PROG\$LINE 21 
2 JONES_1 activated TEST\LINE 1+2 

DBG 1> 

Note that the CONNECT command brings any processes that are waiting 
to be connected to the debugger under debugger control. If no processes 
are waiting, you can press CTRL/C to abort the CONNECT command and 
display the debugger prompt. 

E.1.6 Broadcasting Commands to Selected Processes 

By default, process-specific commands are executed in the context of the 
visible process. The DO command enables you to execute commands in the 
context of one or more processes that are currently under debugger control. 
This capability is referred to as broadcasting commands to processes. 

Use the DO command without a qualifier to execute commands in the 
context of all of the processes. For example, the following command executes 
the SHOW CALLS command for all processes that are currently under 
debugger control (processes 1 and 2, in this case): 

DBG_1> DO (SHOW CALLS ) 
For oPROCESS NUMBER 1 

module name routine name line rel PC abs PC 
*MAIN PROG MAIN PROG 21 0000001E 0000041E 

For oPROCESS NUMBER 2 
module name routine name line rel PC abs PC 
TEST TEST 1+2 00000008 0000040E 

Use the DO command with the /PROCESS qualifier to execute commands 
in the context of selected processes. For example, the following command 
executes the commands SET MODULE START and EXAMINE X in the 
context of process 2 (see Section E2.1 for information on how to specify 
processes in debugger commands): 

DBG_1> DO/PROCESS=(oPROC 2) (SET MODULE START; EXAMINE X) 

E-6 Working with the Multiprocess Debugging Configuration 



E.1.7 Controlling Execution 

Program execution in a multiprocess debugging environment follows 
these conventions: 

• When you enter a command that starts program execution, such as 
STEP or GO, the command is executed in the context of the visible 
process. However, images in any other upheld processes (processes that 
have not been placed on hold with a SET PROCESS/HOLD command) 
are also allowed to execute. Similarly, if you use the DO command to 
broadcast a command to start execution in one or more processes, the 
command is executed in the context of each specified upheld process, 
but images in any other upheld processes are also allowed to execute. 
In all cases, a hold condition is ignored in the visible process. (See 
Section E.1.7.2 for additional information about the behavior of processes 
when on hold.) 

• Once execution is started, the way in which it continues depends on 
whether the command SET MODE [NO]INTERRUPT was entered. 
By default (SET MODE INTERRUPT), execution continues until it is 
suspended in any process. At that point, execution is interrupted in any 
other processes that were executing images, and the debugger prompts 
for input. 

These concepts are shown by continuing with the example in Section E.1.5, 
which shows the two STEP commands. 

In that example, the "stepped to . . . "messages indicate that both com-
mands are executed in the context of process 1, the visible process. The 
second STEP command spawns process 2. The SHOW PROCESS/ALL 
example of Section E.1.5 indicates that execution in processes 1 and 2 is 
suspended at MAIN_PROG\ %LINE 21 and TEST\ %LINE 1+2, respectively. 

At this point, entering another STEP command followed by SHOW 
PROCESS/ALL results in the following display: 

DBG_1> STEP 

stepped to MAIN_PROG\%LINE 23 in oPROCESS NUMBER 1 

23 : Y = 15; 
DBG_1> SHOW PROCESS/ALL 

Number Name Hold State Current PC 

* 1 JONES step MAIN PROG\°LINE 23 

2 JONES_1 interrupted TEST\oLINE 3+1 

DBG 1> 

Working with the Multiprocess Debugging Configuration E-7 



The STEP command is executed in the context of process 1, the visible 
process. After the STEP, execution in process 1 is suspended at MAIN_ 
PROG\ %LINE 23. However, the STEP command also causes execution to 
start in process 2. The completion of the STEP in process 1 causes execution 
in process 2 to be interrupted at TEST\ %LINE 3+1. 

Section E.1.7.1 describes another mode of execution, which is provided by 
the SET MODE NOINTERRUPT command. 

E.1.7.1 Controlling Execution with SET MODE NOINTERRUPT 

The SET MODE NOINTERRUPT command allows execution to continue 
without interruption in other processes when it is suspended in some pro-
cess. This is especially useful if, for example, you want to broadcast a STEP 
command to several processes with the DO command and complete execution 
of the STEP in all these processes. For example: 

DBG_1> SET MODE NOINTERRUPT 

DBG 1> DO (STEP) 

In this example, the DO command executes the STEP command in the 
context of all processes. The visible process and any other upheld processes 
start execution. Because the command SET MODE NOINTERRUPT was 
entered, the prompt is displayed only after the STEP has completed (or 
execution has been otherwise suspended at a breakpoint or watchpoint) in 
all processes that were executing. 

When SET MODE NOINTERRUPT is in effect, as long as execution contin-
ues in any process, the debugger does not prompt for input. In such cases, 
use CTRL/C to interrupt all processes and display the prompt. 

E.1.7.2 Putting Selected Processes on Hold 

As indicated in the previous sections, a command that starts execution is 
executed in the context of the visible process; but it also causes execution 
to start in other processes. If you want to inhibit execution in a process, 
put it on hold. For example, the following SET PROCESS/HOLD command 
puts process 2 on hold. The subsequent STEP command is executed in the 
context of process 1, the visible process. Execution also starts in any other 
processes that are not on hold, but not in process 2. 

DBG_1> SET PROCESS/HOLD $PROC 2 
DBG 1> STEP 

E-8 Working with the Multiprocess Debugging Configuration 



A SHOW PROCESS display indicates whether a process is on hold. For 
example: 

DBG_1> SHOW PROCESS/ALL 

Number Name Hold State Current PC 
* 1 JONES step MAIN PROG\%LINE 24 

2 JONES_1 HOLD interrupted TEST\oLINE 3+1 
DBG_1> 

To uphold a process, enter the SET PROCESS/NOHOLD command, specify-
ing the process that you want to release from the hold condition. 

A hold condition is ignored in the visible process. Therefore, the command 
SET PROCESS/HOLD/ALL is a convenient way to confine execution to the 
visible process. In the following example, execution starts only in the visible 
process: 

DBG_1> SET PROCESS/HOLD/ALL 

DBG 1> STEP 

This feature is useful if, for example, you want to use the CALL command 
to execute a dump routine that is not part of the execution stream of your 
program. 

The preceding discussions also apply if you use the DO command to broad-
cast a GO, STEP, or CALL command to several processes. The GO, STEP 
or CALL command is executed in the context of each specified upheld pro-
cess, and execution also starts in any other upheld process. The following 
example shows the execution behavior when all processes are placed on hold 
and commands are broadcast to all processes. Execution starts only in the 
visible process (process 1, in this example). 

DBG_1> SET PROCESS/HOLD/ALL 

DBG 1> DO (EXAMINE X; STEP ) 

For %PROCESS NUMBER 1 

MAIN PROG\X: 78 
For aPROCESS NUMBER 2 

TEST\X: 29 
stepped to MAIN PROG\oLINE 26 in oPROCESS NUMBER 1 
26: K = K + 1; 
DBG 1> 

E.1.8 Changing the Visible Process 

Use the SET PROCESS command (with the default /VISIBLE qualifier) to 
establish another process as the visible process. For example, the following 
command makes process 2 the visible process: 

DBG_1> SET PROCESS %PROC 2 

DBG 2> 

Working with the Multiprocess Debugging Configuration E-9 



In this example, because dynamic prompt setting is enabled by default, the 
SET PROCESS command has also caused the prompt string suffix to change. 
It now indicates that process 2 is the visible process. All process-specific 
commands are now executed in the context of process 2. For example, a 
SHOW CALLS command would display the call stack for the image running 
in process 2. 

E.1.9 Dynamic Process Setting 

By default, dynamic process setting is enabled (using the SET 
PROCESS/DYNAMIC command). As a result, whenever the debugger 
suspends program execution, the process in which execution is suspended 
automatically becomes the visible process. Dynamic process setting occurs 
in the following situations: when a breakpoint or watchpoint is triggered, at 
an exception condition, on the completion of a STEP command, or when the 
last process performs an image exit. 

When dynamic process setting is disabled (using the /NODYNAMIC qual-
ifier), the visible process remains unchanged until you specify another 
process with the SET PROCESS/VISIBLE command. 

Dynamic process setting is shown in the following example, which also 
shows dynamic prompt setting: 

DBG_1> SHOW PROCESS/ALL 

Number Name Hold State Current PC 
* 1 JOKES step MAIN PROG\$LINE 22 

2 JONES 1 interrupted TEST\$LINE 4 
DBG_1> DO/PROCESS=(oPROC 2) (SET BREAK oLINE 11) 

DBG 1> GO 

break at TEST\$LINE 11 in $PROCESS NUMBER 2 
DBG_2> SHOW PROCESS/ALL 

Number Name Hold State 
1 JONES interrupted 

* 2 JONES 1 break 

Current PC 
MAIN PROG\$LINE 28 
TEST\$LINE 11 

DBG_2> 

In this example, process 1 is initially the visible process, as indicated by 
the prompt and the SHOW PROCESS display. The DO command sets a 
breakpoint in the context of process 2. Execution is resumed with the GO 
command and is suspended at the breakpoint in process 2. Process 2 is now 
the visible process, as indicated by the prompt and the SHOW PROCESS 
display. 

E-10 Working with the Multiprocess Debugging Configuration 



If you entered the SET MODE NOINTERRUPT command and then started 
execution in several processes with the DO command, the prompt would 
not be displayed until after execution was suspended in all processes. In 
this case, the visible process remains unchanged, unless the last process 
performs an image exit (and then becomes the visible process). 

E.1.10 Monitoring the Termination of Images 

`J~hen the main image of a process runs to completion, the process goes into 
the terminated debugging state. This condition is traced by default, as if 
you had entered the SET TRACE/TERMINATING command. 

When a process is in the terminated state, it is still known to the debugger 
and appears in a SHOW PROCESS/ALL display. You can enter commands 
to examine variables, and so on. 

When the last image of the program exits, the debugger gains control and 
displays its prompt. 

E.1.11 Terminating the Debugging Session 

To terminate the entire debugging session, use the EXIT or QUIT command 
without specifying any parameters. If you do not specify parameters, the 
behavior of the EXIT and QUIT commands is similar to their behavior 
for the default debugging configuration. (QUIT does not execute any 
user-declared eat handlers.) 

E.1.12 Releasing Selected Processes from Debugger Control 

To release selected processes from debugger control without terminating the 
debugging session, use the EXIT or QUIT command, specifying one or more 
process specifications as parameters. For example, the following command 
terminates the image running in process 2, and releases the process from 
debugger control: 

DBG_3> EXIT oPROC 2 
DBG 3> 

Subsequently, process 2 does not appear in a SHOW PROCESS display. See 
the DCL command dictionary for complete details on the EXIT and QUIT 
commands. 

Working with the Multiprocess Debugging Configuration E-11 



E.1.13 Aborting Debugger Commands and Interrupting Program 
Execution 

Use CTRL/C (not CTRL/Y) to abort the execution of a debugger command 
or to interrupt program execution. This is useful if a command takes along 
time to complete or your program loops. Control is returned to the debugger 
rather than to the DCL command interpreter. For example: 

DBG 1> Go 

CTRUC 

%DEBUG-W-ABORTED, command aborted by user request 
DBG l> EXAMINE/BYTE 1000:101000 !should have typed 1000:1010 
1000: 0 
1004: 0 

1008: 0 
1012: 0 

1016: 0 
CTRUC 

oDEBUG-W-ABORTED, command aborted by user request 
DBG 1 

Pressing CTRL/C interrupts execution in every process that is currently 
running an image. This is indicated as an interrupted state in a SHOW 
PROCESS display. Pressing CTRL/C also interrupts any debugger command 
that is currently executing. 

If your program has a CTRL/C AST service routine enabled, use the SET 
ABORT_KEY command to assign the debugger's abort function to another 
CTRL-key sequence. For example: 

DBG_1> SET ABORT_KEY = CTRL_P 

DBG 1> GO 

CTRVP 

oDEBUG-W-ABORTED, command aborted by user request 
DBG_1> EXAMINE/BYTE 1000:101000 !should have typed 1000:1010 
1000: 0 

1004: 0 
1008: 0 

1012: 0 

1016: 0 
CTRVP 

oDEBUG-W-ABORTED, command aborted by user request 
DBG_1> 

E-12 Working with the Multiprocess Debugging Configuration 



Many CTRL-key sequences have VMS predefined functions, and the SET 
ABORT_KEY command enables you to override such definitions within 
the debugging session (see the VMS DCL Concepts Manual ). Some of the 
CTRL-key characters not used by the VMS operating system are G, K, N, 
and P. 

E.2 Supplemental lnformation 

This section provides details on advanced concepts and usages that relate to 
multiprocess debugging. 

E.2.1 Specifying Processes in Debugger Commands 

When specifying processes in debugger commands, you can use any of 
the forms listed in Table E-2, except when specifying processes with the 
CONNECT command. 

The CONNECT command is used to bring a process that is not yet known 
to the debugger under debugger control. Therefore, when specifying a 
process with CONNECT, you can use only its VMS process name or VMS 
process identification number (PID). You cannot use its debugger-assigned 
process number or any of the process built-in symbols (for example, %NEXT_ 
PROCESS). (As noted earlier in this appendix, the CONNECT command is 
not used in the debugging of VAX C parallel loops.) 

Table E-2: Process Specifications 

[%PROCESS_NAME] process-name 

[%PROCESS_NAME] "process-name" 

%PROCESS_PID process_id 

The VMS process name, if that name con-
tains no spaces or lowercase characters.l

The VMS process name, if that name 
contains spaces or lowercase characters. 
You can also use apostrophes (' )instead 
of quotation marks (" ). 

The VMS process identification number 
(PID), which is a hexadecimal number. 

1The process name can include the wildcard character (* ). 

(continued on next page) 

Working with the Multiprocess Debugging Configuration E-13 



Table E-2 (Cont.): Process Specifications 

%PROCESS_NUMBER process-number The number assigned to a process when 
(or %PROC process-number) it comes under debugger control. Anew 

number is assigned sequentially, starting 
with 1, to each process. If a process is 
released from debugger control (with the 
EXIT or QUIT command), the number is 
not reused during the debugging session. 
Process numbers appear in a SHOW 
PROCESS display. Processes are ordered 
in a circular list so they can be indexed 
with the built-in symbols %PREVIOUS_ 
PROCESS and %NEXT_PROCESS. 

process-group-name A symbol defined with the 
DEFINE/PROCESS_GROUP command to 
represent a group of processes. 

%NEXT_PROCESS The next process after the visible process 
in the debugger's circular process list. 

%PREVIOUS_PROCESS The process previous to the visible process 
in the debugger's circular process list. 

%VISIBLE_PROCESS The process whose stack, register set, and 
images are the current context for looking 
up symbols, register values, routine calls, 
breakpoints, and so on. 

You can omit the %PROCESS_NAME built-in symbol when entering 
commands. For example: 

DBG 2> SHOW PROCESS oPROC 2, JONES 3 

You can define a symbol to represent a group of processes (using the 
DEFINE/PROCESS_GROUP command). This enables you to enter com-
mands in abbreviated form. For example: 

DBG_1> DEFINE/PROCESS_GROUP SERVERS=FILE_SERVER, NETWORK_SERVER 
DBG_1> SHOW PROCESS SERVERS 
Number Name Hold State Current PC 

* 1 FILE_SERVER step FS_PROG\%LINE 37 
2 NETWORK_SERVER break NET_PROG\%LINE 24 

DBG 1> 

The built-in symbols %VISIBLE_PROCESS, %NEXT_PROCESS, and 
%PREVIOUS_PROCESS are useful in control structures (IF, WHILE, 
REPEAT, and so on) and in command procedures. 

E-14 Working with the Multiprocess Debugging Configuration 



E.2.2 Monitoring Process Activation and Termination 

By default, a tracepoint is triggered when a process comes under de-
bugger control and when it performs an image exit. These predefined 
tracepoints are equivalent to those resulting from entering the SET 
TRACE/ACTIVATING and SET TRACE/TERMINATING commands, re-
spectively. You can set breakpoints on these events by using the SET 
BREAK/ACTIVATING and SET BREAK/TERMINATING commands. 

To cancel the predefined tracepoints, use the CANCEL TRACE/PREDEFINED 
command with the /ACTIVATING and /TERMINATING qualifiers. To cancel 
any user-defined activation and termination breakpoints, use the CANCEL 
BREAK command with the /ACTIVATING and /TERMINATING qualifiers 
(the /USER qualifier is assumed by default when canceling breakpoints or 
tracepoints). 

The debugger prompt is displayed when the first process comes under 
debugger control. This enables you to enter commands before the main 
image has started execution, just as with cone-process program. 

Also, the debugger prompt is displayed when the last process performs an 
image exit. This enables you to enter commands after the program has 
completed execution, just as with aone-process program. 

E.2.3 Interrupting the Execution of an Image to Connect It to the 
Debugger 

You can interrupt an image that can be debugged by running it without 
debugger control in a process and connect it to the debugger. 

There are two general scenarios, as follows: 

• To start a new debugging session, use the CTRL/Y DEBUG sequence 
from DCL level. 

• To interrupt the image and connect it to an existing debugging session, 
use the CONNECT command. 

Working with the Multiprocess Debugging Configuration E-15 



E.2.3.1 Using the CTRL/Y-DEBUG Sequence to Invoke the Debugger 

Use the CTRL/Y DEBUG sequence with the multiprocess debugging config-
uration exactly as with the default configuration. That is, run the image 
from DCL level with the RUN/NODEBUG command, then press CTRL/Y to 
interrupt the image. The DEBUG command invokes the debugger. 

The following example shows how you might start a new debugging session: 

$ D~FTr~E/JC~'3 nBG$PR~GESS 1`~!ULTZPRnCESS 
$ Rr?~?/~C~B'BUG ~'RCG2 

(CTRUY 
Interrupt 

~F'BTTf; 

VAX DEBUG Version X5.0-3 MP 

oDEBUG-I-INITIAL, language is C, module set to SUB4 

trace on activation at SUB4\%LINE 12 in oPROCESS NUMBER 1 
DBG 1> 

In this example, the DEFINE/JOB command establishes a multiprocess de-
bugging configuration. The RUNlNODEBUG command starts the execution 
of image PROG2 without debugger control. The CTRLJY DEBUG sequence 
interrupts execution and invokes the debugger. 

The VAX DEBUG banner indicates that a new debugging session has been 
started. The process-specific prompt (DBG 1>) indicates that this is a 
multiprocess configuration and that execution is suspended in process 1, 
which is running image PROG2. 

The activation tracepoint identifies the location at which execution was 
interrupted (and, at which point, the debugger took control of the process). 
You can also use the SHOW CALLS command to display the call stack at 
that location. 

After invoking the debugger, you can use the CONNECT command to bring 
other processes under debugger control. In the previous example, you could 
use the CONNECT command to bring processes under debugger control 
that were created by PROG2 before you interrupted its execution (see 
Section E.2.3.2). 

When using the CTRL/Y DEBUG sequence, if a multiprocess debugging 
session already exists in the same job tree as the image that is interrupted, 
the image connects to that particular session. In this case, because a new 
session is not started, the VAX DEBUG banner is not displayed when the 
debugger takes control. This situation could occur if, for example, you 
entered a SPAWN/NOWAIT command from the session, started execution 

E-16 Working with the Multiprocess Debugging Configuration 



with a RUN/NODEBUG command, and then entered a CTRL/Y DEBUG 
sequence. 

E.2.3.2 Using the CONNECT Command to Interrupt an Image 

The CONNECT command, used without a parameter, was introduced in 
Section E.1.5. (As noted in that section, the CONNECT command is not 
used to debug VAX C parallel loops.) 

When used with a parameter, the CONNECT command enables you to 
interrupt an image that can be debugged that is running without debugger 
control and bring it under control of your current debugging session. 

The image may have been activated as follows: 

• By your program issuing a LIB$SPAWN run-time library call or a 
$CREPRC system service call to spawn a process and run an image 
without debugger control 

• By starting execution with a RUN/NODEBUG command entered at 
DCL level 

In the following example, the CONNECT command causes the image run-
ning in process JONES_3 to be interrupted and to come under control of the 
current debugging session. Process JONES_3 must be in the same job tree 
as the session. 

DBG 1> CONNECT JONES 3 

A process is not identified by a debugger process number until it is connected 
to a debugging session. Therefore, when specifying a process with the 
CONNECT command, you can use only its VMS process name or VMS 
process identification number (PID). 

The effect of the CONNECT command is equivalent to attaching to a process 
from a debugging session and then entering the sequence CTRL/ DEBUG 
to interrupt the running image and invoke the debugger. However, the 
CONNECT command is simpler for you to enter and also enables you to 
interrupt a process to which you cannot attach. 

E.2.4 Screen Mode Features for Multiprocess Debugging 

Screen mode displays, whether predefined or user defined, are associated 
with the visible process, by default. For example, SRC shows the source 
code where execution is suspended in the visible process, OUT shows the 
output of commands executed in the context of the visible process, and so on. 

Working with the Multiprocess Debugging Configuration E-17 



By using the /PROCESS qualifier with the SET DISPLAY and DISPLAY 
commands, you can create process-specific displays or make existing displays 
process-specific, respectively. The contents of aprocess-specific display are 
generated and modified in the context of that process. You can make any 
display process specific except for the PROMPT display. For example, the 
following command creates the automatically updated source display SRC_3, 
which shows the source code where execution is suspended in process 3: 

DBG_2> SET DISPLAY/PROCESS=(oPROC 3) SRC_3 -

DBG 2> AT RS23 SOURCE (EXAM/SOURCE oSOURCE SCOPE\oPC) 

You assign attributes to process-specific displays in the same way you assign 
them to displays that are not process specific. For example, the following 
command makes display SRC_3 the current scrolling and source display 
that is, it causes the output of SCROLL, TYPE, and E~;AMINE/SOURCE 
commands to be directed at SRC 3: 

DBG 2> SELECT/SCROLL/SOURCE SRC 3 

If you enter aDISPLAY/PROCESS or SET DISPLAY/PROCESS command 
without specifying a process, the specified display is then specific to the 
process that was the visible process when you entered the command. For 
example, the following command makes OUT_X specific to process 2: 

DBG 2> DISPLAY/PROCESS OUT X 

The /SUFFIX qualifier appends aprocess-identifying suffix that denotes 
the visible process to a display name. This qualifier can be used directly 
after a display name in any command that specifies a display (for example, 
SET DISPLAY, EXTRACT, SAVE). It is especially useful within command 
procedures, in conjunction with display definitions or with key definitions 
that are bound to display definitions. 

In a multiprocess configuration, the predefined tracepoint on process 
activation automatically creates a new source display and a new instruction 
display for each new process that comes under debugger control. The 
displays have the names SRC n and INST_n, respectively, where n is the 
process number. These processes are initially marked as removed. They are 
automatically canceled by the predefined tracepoint on process termination. 

Several predefined keypad key sequences enable you to configure your 
screen with the process-specific source and instruction displays that are 
automatically created when a process is activated. Table E-3 identifies the 
keypad keys and describes their general effects. The table also describes any 
changes to the keypad keys from previous versions of the debugger. Use the 
SHOW KEY command to determine the exact commands issued by these 
key combinations. 

E-18 Working with the Multiprocess Debugging Configuration 



Table E-3: Changed and New Keypad Key Functions 

Key State Command Invoked or Function 

COMMA GOLD SELECT/SOURCE %NEXT_SOURCE. Selects the next 
source display in the display list as the current source 
display. This function was previously assigned to KP3 in 
the BLUE state. 

KP9 GOLD SET PROCESS/VISIBLE %NEXT_PROCESS. Makes the 
next process in the process list the visible process. 

KP9 BLUE Displays two predefined process-specific source displays, 
SRC_n. These are located at Q1 and Q2, respectively, for 
the visible process and for the next process on the process 
list. 

KP? BLUE Displays two sets of predefined process-specific source and 
instruction displays, SRC_n and INST_n . These consist 
of source and instruction displays for the visible process 
at Q 1 and RQ 1, respectively, and source and instruction 
displays for the next process on the process list at Q2 and 
RQ2, respectively. 

KP3 BLUE Displays three predefined process-specific source displays, 
SRC_n. These are located at S1, S2, and S3, respectively, 
for the previous, current (visible), and next process on the 
process list. 

KP1 BLUE Displays three sets of predefined process-specific source 
and instruction displays, SRC n and INST_n. These 
consist of source and instruction displays for the visible 
process at S2 and RS2, respectively; source and instruc-
tion displays for the previous process on the process list 
at S 1 and RS 1, respectively; and source and instruction 
displays for the next process on the process list at S3 and 
RS3, respectively. 

E.2.5 Setting Watchpoints in Global Sections 

You can set watchpoints in global sections. A global section is a region 
of virtual memory that is shared among all processes of a multiprocess 
program. A watchpoint that is set on a location in a global section a global 
section watchpoint triggers when any process modifies the contents of that 
location. 

Note that, when setting watchpoints on arrays or structures, performance is 
improved if you specify individual elements rather than the entire structure 
with the SET WATCH command. 

Working with the Multiprocess Debugging Configuration E-19 



If you seta watchpoint on a location that is not yet mapped to a global 
section, the watchpoint is treated as a conventional static watchpoint. For 
example: 

DBG_1> SET WATCH ARR[1] 
DBG_1> SHOW WATCH 
watchpoint of PPL3 \ARR [ 1 ] 

When ARR is subsequently mapped to a global section, the watchpoint is 
automatically treated as a global section watchpoint and an informational 
message is issued. For example: 

DBG_1> GO 
oDEBUG-I-WATVARNOWGBL, watched variable PPL3\ARR[1] has been remapped 

to a global section 
predefined trace on activation at routine PPL3 in oPROCESS NUMBER 2 

1 : main ( ) 
predefined trace on activation at routine PPL3 in oPROCESS NUMBER 3 

1 : main ( ) 
watch of PPL3\ARR[1] at PPL3\oLINE 93 in oPROCESS NUMBER 2 

93: arr [1] = index; 
old value: 0 
new value: 1 

break at PPL3\oLINE 94 in oPROCESS NUMBER 2 
94 : arr [i] = i; 

Once the watched location is mapped to a global section, the watchpoint is 
visible from each process. For example: 

DBG_2> DO (SHOW WATCH) 
For oPROCESS NUMBER 1 

watchpoint of PPL3\ARR [1] 
For oPROCESS NUMBER 2 

watchpoint of PPL3\ARR[1] 
For $PROCESS NUMBER 3 

watchpointrof PPL3\ARR[1] 

[global-section 

[global-section 

[global-section 

watchpoint] 

watchpoint] 

watchpoint] 

E.2.6 Compatibility of Multiprocess Commands with the Default 
Configuration 

All the commands, qualifiers, and built-in symbols that are provided for 
multiprocess debugging are also understood in the default debugging 
configuration and have similar behaviors (where applicable). For example: 

• The EXIT command without a specified parameter terminates a debug-
ging session in both configurations. 

• A DO command without the /PROCESS qualifier executes the commands 
specified in all processes. 

E-20 Working with the Multiprocess Debugging Configuration 



• In the default configuration, the visible process is the process that runs 
the entire program. It is identified as process 1 in a SHOW PROCESS 
display. 

• Built-in symbols such as %PROCESS_NUMBER and %VISIBLE_ 
PROCESS are interpreted correctly in the default configuration. 

This compatibility is especially useful because it allows command procedures 
used for multiprocess debugging to also be used for debugging programs that 
run in only one process. 

E.3 Sample Multiprocess Debugging Session 

You can introduce a data dependency in a decomposed VAX C program 
by not correctly gauging the effect of introducing decomposition pragmas. 
Consider Example E-1, which has a bug in it. 

Example E-1: VAX C Program Used for Multiprocess Debugging Session 

/* This program demonstrates that a * i = a, where a is 
a matrix and i is the identity matrix. */ 

#define N 4 

double x [N] [t1] , y [N] [N] , z [N] [N] ; 
void count () ; 

main ( ) 
{ 

int i, j, k, temp; 
double m, n; 

for (j = 0; j < N; j++) 

for (i = 0; i < N; i++) 
{ 

} 

for (j = 0; j < N; j++) 

for (i = 0; i < N; i++) 

if (i == j) 

Y[i] [j] = 1% 
else y[i] [j] = 0; 

(continued on next page) 

Working with the Multiprocess Debugging Configuration E-21 



Example E-1 (Cont.): VAX C Program Used for Multiprocess Debugging 
Session 

for (j = 0; j < N; j++) 
for (i = 0; i < N; i++) 

{ 

#pragma safe call count 
for (k = 0; k < N; k++) 

{ 

count (x[i] [k] * y[k] [j], i, j); 
} 

} 

#pragma sequential loop 
for (j = 0; j < N; j++) 

#pragma sequential loop 
for (i = 0; i < N; i++) 

printf (" x [ %d] [ %d] _ %f z [ %d] [ %d] _ %f \ n", 

j.i,x[j] [i], j,i,z[jJ [i] ): 

} 

void count ( double x, int i, int j ) 
{ 

int k; 
double result; 

result = z [ i ] [ j ] + x; 

/* The following loop is inserted to change the timing 
to make the bug obvious. Otherwise, the program only 
fails sometimes. */ 

#pragma sequential loop 
for (k = 1; k < 100; k++) 

{ 

z [ i ] [ j ] = result; 
} 

} 

The error in this program is that the count function is not safe to use if the k 
loop is decomposed, because it introduces a dependency into the decomposed 
loop. If the k loop is decomposed, multiple iterations can write to the same 
element of z at once. You could use the #pragma safe call directive to 
instruct VAX C to decompose the loop; however, considering the algorithm in 
this example, the results would be unpredictable. 

A loop was added to the count function in this example, to make the error 
more obvious. Without the loop to slow down the count function, the timing 
of the execution of this program often generates the correct results by 
accident. This timing problem is one of the attributes of a multiprocess 

E-22 Working with the Multiprocess Debugging Configuration 



program that makes debugging difficult. An error may not be apparent 
during parallel execution if the results are only tested once or twice. 

Here is the output from Example E-1 on one particular test run: 

x [o] [o] = lo. o0000o 
x [ 0 ] [ 1 ] = 11.000000 
x [0] [2] = 12.000000 
x [0] [3] = 13.000000 
x [1] [0] = 20.000000 

z [o] [o] = lo. 000000 
z [ 0 ] [ 1 ] = 11.000000 
z [0] [2] = 0.000000 
z [0] [3] = 13.000000 
z [1] [0] = 0.000000 

x [ 1 ] [ 1 ] = 22.000000 z [ 1 ] [ 1 ] = 22.000000 
x [ 1 ] [ 2 ] = 24.000000 z [ 1 ] [ 2 ] = 0.000000 
x[1] [3] = 26.000000 z[1] [3] = 26.000000 
x [2] [0] = 30.000000 z [2] [0] = 0.000000 
x [2 ] [ 1 ] = 33.000000 z [2 ] [ 1 ] = 33.000000 
x [2] [2] = 36.000000 z [2] [2] = 0.000000 
x [2] [3] = 39.000000 z [2] [3] = 39.000000 
x [3] [0] = 40.000000 z [3] [0] = 0.000000 
x[3] [1] = 44.000000 z[3] [1] = 44.000000 
x [3] [2] = 48.000000 z [3] [2] = 0.000000 
x [3] [3] = 52.000000 z [3] [3] = 0.000000 

The numbers in the two columns should match if the program is running 
correctly. 

Since there are errors in the test data, you must debug this program. To 
debug a multiprocess program, first set up a logical name for the multipro-
cessor debugger. Enter the following command at the DCL ($)prompt: 

$ DEFINE/JOB DBG$PROCESS MULTIPROCESS 

When you start a multiprocessor debugging session, as shown in 
Example E-2, enter the GO command. This takes you past the initial-
ization of the detached processes that are used to run the decomposed loops 
in parallel. Since the elements of z are incorrect, set a breakpoint at line 
66, the line in which z is set. Using the DO command to set a breakpoint 
causes the debugger to stop execution when any one of the parallel processes 
executes line 66. 

Working with the Multiprocess Debugging Configuration E-23 



Example E-2: Sample Multiprocess Debugging Session 

VAX DEBUG Version V5.0-00 MP 

%DEBUG-I-INITIAL, language is C, module set to DEBUGERR 

0 %DEBUG-I-NOTATMAIN, type GO to get to start of main program 
© predefined trace on activation at FOR$INIT—PARALLEL+36 in %PROCESS NUMBER 1 

DBG_1> GO 

break at routine DEBUGERR\main in %PROCESS NUMBER i 
26: { 

—

© DBG 1> STEP 

predefined trace on activation at FOR$INIT_PARALLEL+36 in %PROCESS NUMBER 3 
predefined trace on activation at FOR$INIT_PARALLEL+36 in %PROCESS NUMBER 2 

predefined trace on activation at FOR$INIT_PARALLEL+36 in %PROCESS NUMBER 4 

stepped to DEBUGERR\main\mainl\%LINE 35+11 in %PROCESS_NUMBER 1 

35: } 

O DBG_1> SHOW PROCESS/ALL 
Number Name Hold State Current PC 

* 1 Beth step DEBUGERR\main\mainl\%LINE 35+11 
2 FOR$4E401520—01 interrupted SHARE$DBGSSISHR+9910 
3 FOR$4E401520_02 interrupted SHARE$DBGSSISHR+8074 
4 FOR$4E401520_03 interrupted SHARE$DBGSSISHR+8074 

© DBG_1> DO ( SET BREAK %LINE 6 6 ) 

Q DBG_1> GO 
break at DEBUGERR\count\counts\%LINE 66 in %PROCESS NUMBER 2 

66 : result = z [i] [ j ] + x; 
break at DEBUGERR\count\counts\%LINE 66 in %PROCESS NUMBER 1 

6 6 : result = z [ i ] [ j ] + x; 

O DBG_1> SET PROCESS %PROC 2 
DBG_2> EX I,J 

DEBUGERR\count\i: 0 
DEBUGERR\count\j: 0 

DBG_2> SST PROCESS %PROC 1 

DBG_1> EX I , J 

DEBUGERR\count\i: 0 
DEBUGERR\count\j: 0 

0 You must enter the GO command to set up the parallel-processing 
environment before entering other debugger commands. 
The debugger automatically traces the activation of FOR$INiT_ 
PARALLEL, the procedure that is executed when the parallel processing 
environment is enabled. 
Entering the STEP command shows that four processes have been 
initialized to handle the decomposition of loops. 
The SHOW PROCESS/ALL command verifies that the four processes 
exist. 

E-24 Working with the Multiprocess Debugging Configuration 



© Setting a break at line 66 causes the debugger to stop at line 66 so 
that you can examine the problem variables in function count. The 
DO command is used for setting a breakpoint across all the processes 
running in the DEBUG session. 

Q After entering the GO command, the debugger stops at line 66, which is 
being executed by processes 1 and 2 at the same time. 

~ We set the current process to 2 and examine the variables i and j, both 
of which contain 0. 

We set the current process to 1 and examine the same variables, which 
contain 0. 

This example shows that processes 1 and 2 are updating the same element 
of array z while processing loop k inside function count. The program 
incorrectly uses the #pragma safe call directive in this example, because 
function count contains aloop-carried data dependency. 

E.4 Considerations for Multiprocess Debugging 

Several users debugging programs that occupy several processes can place 
a significant load on a system. This section describes the resources used by 
the multiprocess debugger and how to tune your system accordingly. 

The following discussion covers only the resources used by the debugger. 
You may also have to tune your system to support the execution of the 
multiprocess programs themselves (see Section 3.9). 

E.4.1 User Quotas 

Each user needs sufficient PRCLM quota to create an additional subprocess 
for the debugger, beyond the number of processes needed for the multipro-
cessing program. This quota may need to be increased to account for the 
debugger subprocess. 

BYTLM, ENQLM, FILLM, and PGFLQUO are pooled quotas. These quotas 
may need to be increased to account for the debugger subprocess, as follows: 

• Each user's ENQLM quota should be increased by at least the number 
of processes being debugged. 

• Each user's PGFLQUO quota may need to be increased. If a user has 
insufficient PGFLQUO, the debugger may fail to activate, or produce 
"virtual memory exceeded" errors during execution. 

Working with the Multiprocess Debugging Configuration E-25 



• Each user's FILLM and BYTLM quotas may need to be increased. 
The debugger requires enough FILLM and BYTLM quotas to open 
each image file being debugged, the corresponding source files, and the 
DEBUG input, output, and log files. The DEBUG SET n/IAX_SOURCE_ 
FILES command can be used to limit the number of source files kept 
open by the debugger at any one time. 

E.4.2 System Resources 

The kernel and main debugger communicate through global sections. The 
main debugger communicates with up to 8 kernel debuggers through a 
65-page global section. Therefore, the SYSGEN parameters GBLPAGES 
and GBLSECTIONS may need to be increased. For example, if 10 users 
are using the debugger simultaneously, 10 global sections (GBLSECTIONS), 
using a total of 650 global pages (GBLPAGES), are required by the debugger. 

E-26 Working with the Multiprocess Debugging Configuration 



VAX C Glossary 

additive operator 
An operator that performs addition (+) or subtraction (— ). These 
operators perform arithmetic conversion on each of the operands, if 
necessary. See also arithmetic conversion rules. 

aggregate 
A data structure (array, structure, or union) composed of segments called 
members. You declare the members to be of either a scalar or aggregate 
data type. Members of an array are called elements and must be of 
the same data type. A structure has named members that can be of 
different data types. A union is a structure that is as long as its longest 
declared member and that contains the value of only one member at .. 
a time. 

ampersand (& 
As a unary operator, computes the address of its operand. As a binary 
operator, performs a bitwise AND on two operands; both must be of 
integral type. As an assignment operator (&_ ), performs a bitwise AND 
on two expressions and assigns the result to the left object. The double 
ampersand (&& ), a binary operator, performs a logical AND on two 
operands. See also binary operator, bitwise operator, logical operator, 
and unary operator. 

argument 
An expression that appears within the parentheses of a function 
call. The expression is evaluated and the result is copied into the 
corresponding parameter of the called function. See also argument 
passing and parameter. 

Glossary-1 



argument passing 
The mechanism by which the value of the argument in a function 
call is copied to a parameter in the called function. In VAX C, all 
arguments are passed by value; that is, the parameter receives a copy 
of the argument's value. Therefore, a function called in VAX C cannot 
modify the value of an argument except by using its address. In general, 
addresses are passed using the ampersand operator (see ampersand 
(&~) in the function call or by passing a pointer variable. In addition, 
using an array or function name (an array with no brackets or function 
identifier with no parentheses) as an argument results in the passing of 
the address of the array or function. 

arithmetic conversion rules 
The set of rules that govern the changing of a value of an operand 
from one data type to another in arithmetic expressions. Conversions 
take place in assignments by changing the type of the right operand's 
result to that of the object referred to by the left operand; the resultant 
type also applies to the assignment expression. Conversions are also 
performed when arguments are passed to functions. 

arithmetic operator 
A VAX C operator that performs a mathematical operation. In an 
expression, certain operations take precedence (are performed first) over 
other operations. The unary minus operator (—) is at the highest level of 
precedence. At the next level are the binary operators for multiplication 
('~ ), division (/ ), and mod (% ). At the next level are addition (+ ) 
and subtraction (— ). There is no unary plus operator, and there is no 
exponentiation operator. If necessary, all the binary operators perform 
the arithmetic conversions on their operands. See also arithmetic 
conversion rules. 

arithmetic type 
One of the integral data types, enumerated types, float, or double. 

array 
An aggregate data type consisting of subscripted members, called 
elements, all of the same type. Elements of an array can be one of the 
fundamental types or can be structures, unions, or other arrays (to form 
multidimensional arrays). 

Glossary-2 



assignment expression 
An expression that has the following form: 

E1 asgnop E2 

Expression E 1 must evaluate to an lvalue, the operator asgnop is 
an assignment operator, and E2 is an expression. The type of an 
assignment expression is that of its left operand. The value of an 
assignment expression is that of the left operand after the assignment 
takes place. If the operator is of the form op=, then the operation E 1 op 
(E2) is performed, and the result is assigned to the object referred to by 
E 1; E 1 is evaluated once. 

assignment operator 
The combination of an arithmetic or bitwise operator with the 
assignment symbol (_ }; also, the assignment symbol by itself. See also 
assignment expression. 

asterisk (* 
As a unary operator, treats its operand as an address and results in 
the contents of that address. As a binary operator, multiplies two 
operands, performing the arithmetic conversions, if necessary. As an 
assignment operator (*_ ), multiplies an expression by the value of the 
object referred to by the left operand, and assigns the product to that 
object. See also unary operator and binary operator. 

binary operator 
An operator that is placed between two operands. The binary operators 
include arithmetic operators, shift operators, relational operators, 
equality operators, bitwise operators (AND, OR, and XOR), logical 
connectives, and the comma operator, in that order of precedence. All 
binary operators group from left to right. VAX C has no exponentiation 
operator. The VAX C RTL function exp must be used instead. 

bitwise operator 
An operator that performs Boolean algebra on the binary values of 
two operands, which must be integral. If necessary, the operators 
perform the arithmetic conversions. Both operands are evaluated. All 
bitwise operators are associative, and expressions using them may be 
rearranged. The operators include, in order of precedence, the single 
ampersand (&) (bitwise AND), the circumflex (^) (bitwise exclusive 
OR), and the single bar ( I ) (bitwise inclusive OR). 

block 
See compound statement. 

Glossary-3 



block activation 
The run-time activation of a block or function, in which local auto 
and register variables are allocated storage and, if they are declared 
with initializers, given initial values. Variables of storage class static, 
extern, globaldef, and globalvalue are allocated and initialized at 
link time. The block activation precedes the execution of any executable 
statements in the function or block. Functions are activated when they 
are called. Internal blocks (compound statements) are activated when 
the program control flows into them. Internal blocks are not activated 
if they are entered by a goto statement, unless the goto target is the 
label of the block rather than the label of some statement within the 
block. If a block is entered by a goto statement, references to auto 
and register variables declared in the block are still valid references, 
but the variables may not be properly initialized. Blocks that make up 
the body of a switch statement are not activated; auto or register 
variables declared in the block are not initialized. 

built-in functions 
The function definitions that are part of the compiler. A call to one of 
these functions does not call a function in a run-time libarary or in 
your program. Most of the built-in functions access the VAX hardware 
instructions to perform operations quickly that are cumbersome, slow, or 
impossible in the VAX C language. 

cast 
An expression preceded by a cast operator of the form (type_name). The 
cast operator forces the conversion of the evaluated expression to the 
given type. The expression is assigned to a variable of the specified type, 
which is then used in place of the whole construction. The cast operator 
has the same precedence as the other unary operators. 

character 

• A member of the ASCII character set. 

• An object of the VAX C data type char, which is stored in a single 
byte of memory. An object of type char always represents a single 
character, not a string. 

• A constant of type char, consisting of up to four ASCII characters 
enclosed in apostrophes (~ ~) not quotation marks (~~ ~~ ). 

See also string. 

Glossary~4 



comma operator 
A VAX C operator used to separate two expressions as follows: 

E1, E2 

The expressions E1 and E2 are evaluated left to right, and the value of 
E 1 is discarded. The type and value of the comma expression are those 
of E2. 

comment 
A sequence of characters introduced by the pair (/*)and terminated by 
( */ ). Comments are ignored during compilation. They may not 
be nested. 

Common Data Dictionary (CDD) 
An optional VMS software product, available under a separate license, 
that maintains a set of data structure definitions that many programs 
on a system, written in many languages, can access. The language-
independent definitions are translated into the target language when 
they are included in the program stream. You can include the CDD 
records in VAX C programs using the #dictionary preprocessor 
directive. The #dictionary directive is VAX C specific and is not 
portable. 

compilation unit 
All the source files compiled to form a single object module. In 
other C documentation, the term source file is synonymous with the 
VMS compilation unit, which is not necessarily a single source file. 
Declarations and definitions within a compilation unit determine the 
lexical scope of functions and variables. 

compound statement 
Valid VAX C statements enclosed in braces ({ } ). Compound statements 
can also include declarations. The scope of these variables is local to the 
compound statement. A compound statement, when it is not the body of 
a function, is called a block. 

conditional operator 
The VAX C operator (?: ), which is used in conditional expressions of the 
following form: 

E1 ? E2 : E3 

E 1, E2, and E3 are valid VAX C expressions. E 1 is evaluated, and if it is 
nonzero, the result is the value of E2; otherwise, the result is the value 
of E3. Either E2 or E3 is evaluated, but not both. 

Glossary-5 



constant 

A primary expression whose value does not change. A constant may be 
literal or symbolic. 

control dependency 
A type of data dependency that inhibits parallel processing of a 
program. A control dependency is an inhibiting factor that involves 
the flow of control in a program (for instance, by using the goto 
statement). VAX C does not check programs that are compiled with 
the !PARALLEL qualifier for control dependencies, since the compiler's 
parallel-processing support only includes loop decomposition. See also 
data dependency. 

constant expression 
An expression involving only constants. Constant expressions are 
evaluated at compile time so they may be used wherever a constant is 
valid. 

conversion 
The changing of a value from one data type to another. Conversions 
take place in assignments by changing the type of the right operand's 
result to that of the object referred to by the left operand; the resultant 
type also applies to the assignment expression. Conversions are also 
performed when arguments are passed to functions: char and short 
become int; unsigned char and unsigned short become unsigned int 
if no function prototype is in scope; float becomes double. Conversions 
can also be forced by means of a cast. Conversions are performed on 
operands in arithmetic expressions by the arithmetic conversions. 

conversion characters 
A character used with the VAX C RTL Standard UO functions that is 
preceded by a percent sign (%)and specifies an input or output format. 
For example, letter d instructs the function to input/output the value in 
a decimal format. 

Curses 
A screen management package comprised of VAX C RTL functions 
and macros that create and modify defined sections of the terminal 
screen, and optimize cursor movement. Curses defines rectangular 
regions on the terminal display that you may write upon, rearrange, 
move to new positions on the screen, and delete from the screen. These 
rectangular regions are called windows. To use any of the Curses 
functions or macros, you must include the curses definition module with 
the #include preprocessor directive. 

Glossary-6 



data definition 
The syntax that both declares the data type of an object and reserves 
its storage. For variables that are internal to a function, the data 
definition is the same as the declaration. For external variables, the 
data definition is external to any function (an external data definition). 

data-type modifier 
Keywords that affect the allocation or access of data storage. The two 
data-type modifiers are coast and volatile. 

data dependency 
Lines of code that depend on sequential execution for correct and 
predictable memory access. If a program contains data dependencies, 
it is not a good candidate for parallel processing. By default (when the 
/PARALLEL qualifier is used on the CC command line), VAX C checks 
all for and some while loops for occurrences of function calls, pointer 
references, array elements that are modified and accessed by two or 
more iterations of the loop, and references to scalar variables. If the loop 
contains such an occurrence, VAX C does not run the loop in parallel due 
to possible data dependencies. See also parallel processing. 

declaration 
A statement that gives the data type and possibly the storage class of 
one or more variables. 

decomposition 
A division of a loop into groups of iterations that execute in separate 
subprocesses on separate processors. The order of the execution of loop 
iterations is not guaranteed. See also parallel processing. 

DEC/Shell 
An optional VMS software product available under a separate license 
that is acommand-language interpreter based on the UNIX 
Version 7.0 Bourne Shell with commands for interactive program 
development, device and data file manipulation, and interactive and 
batch execution. DEC/Shell RTL functions were added to the VAX C 
RTL so that valid DEC/Shell file specifications could be used in VAX C 
source programs. See also file specification. 

dictionaries 
A hierarchical organization, similar to the organization of directories 
and subdirectories, of data structure definitions in the Common Data 
Dictionary (CDD ). See also Common Data Dictionary ~CDD). 

Glossary--7 



directives 
See preprocessor directives. 

elements 
Members of an array. See also aggregate. 

enumerated type 
A type defined (with the enum keyword) to have an ordered set 
of integer values. The integer values are associated with constant 
identifiers named in the declaration. Although enum variables are 
stored internally as integers, use them in programs as if they have a 
distinct data type named in the enum declaration. 

equality operator 
One of the operators equal to (__) or not equal to (!_ ). They are 
similar to the relational operators, but at the next lower level 
of precedence. 

exponentiation operator 
The VAX C language does not have an exponentiation operator. Use the 
VAX C RTL egp function. 

expression 
A series of characters that the compiler can use to produce a value. 
Expressions have one or more operands and, usually, one or more 
operators. An identifier with no operator is an expression that yields a 
value directly. Operands are either identifiers (such as variable names) 
or other expressions, which are sometimes called subexpressions. See 
also operator and macros. 

external storage class 
A storage class that permits identifiers to have alink-time scope that 
can possibly span object modules. Identifiers of this storage class are 
defined outside of functions using no storage-class specifier, and are 
declared, optionally, throughout the program using the extern specifier. 
External variables provide a means other than argument passing for 
exchanging data between the functions that comprise a VAX C program. 
See also link-time scope. 

file descriptor 
In the UNIX environment, the integer that identifies a file. The VMS 
equivalent is a file pointer. 

Glossary-8 



file specification 
An identifier that specifies an existing file. There are two types of 
valid file specifications in VAX C: VMS specifications and DEC/Shell 
specifications. DEC/Shell specifications are a subset of UNIX 
specifications. 

floating type 
One of the data types float or double, representing asingle- or 
double-precision, floating-point number. There are two implementations 
of the data type double: D_floating and G floating. The range of values 
for the D floating variables is the same as that for float variables, but 
the precision is 16 decimal digits, as opposed to 7. Programs that use 
G_floating variables must use the /G_FLOAT command-line qualifier. 
A G_floating variable has considerably greater range, but has less 
precision. 

function 
The primary unit from which VAX C programs are constructed. A 
function definition begins with a name and parameter list, followed by 
the declarations of the parameters (if any) and the body of the function 
enclosed in braces ({ } ). The function body consists of the declarations 
of any local variables and the set of statements that perform its action. 
Functions do not have to return a value to the caller. All VAX C 
functions are external; that is, a function may not contain another 
function. See also function call. 

function call 
A primary expression, usually a function identifier followed by 
parentheses, that is used to invoke the function. The parentheses 
contain a (possibly empty) comma-separated list of expressions that are 
the arguments to the function. Any previously undeclared identifier 
followed immediately by parentheses is declared as a function returning 
int. Any function may call itself recursively. 

function inline expansion 
A replacement of a function call with code that performs the actions 
of the defined function. This process reduces execution time. By 
default, VAX C attempts to expand inline all functions. You can use the 
#pragma inline directive to provide inline expansion for functions that 
VAX C does not expand inline by default. See also pragma. 

function unrolling 
See function inline expansion. 

Glossary-9 



fundamental type 
The set of arithmetic data types plus pointers. In general, the 
fundamental types comprise those data types that can be represented 
naturally on a VAX; usually, this means integers and floating-point 
numbers of various machine-dependent sizes, and machine addresses. 

global storage class 
A storage class that permits identifiers to have alink-time scope that 
can possibly span object modules. Identifiers of this storage class are 
defined using the globaldef storage-class specifier, and are declared, 
optionally, throughout the program using the globalref specifier. You 
can use the globalvalue specifier to define a global symbol, or constant. 
Global variables provide a means other than argument passing for 
exchanging data between the functions that comprise a VAX C program. 
See also link-time scope. 

identifier 
A sequence of letters and digits, the first 255 of which must be unique. 
The underscore (_) and dollar sign ($)are letters in this context. The 
.first character of an identifier must be a letter. Upper- and lowercase 
letters specify different identifiers in VAX C. However, all external 
names are converted to uppercase to be consistent with the VMS 
environment and are only 31 characters in length. 

initializer 
The part of a declaration that gives the initial values) for the preceding 
declarator. An initializer consists of an equal sign (_)followed by either 
a single expression or acomma-separated list of one or more expressions 
in braces. 

inline expansion 
See function inline expansion. 

integral type 
One of the data types char or int (all sizes, signed or unsigned). 

internal storage class 
A storage class that permits identifiers declared inside of a function body 
to be recognized only from the declaration to the end of the immediately 
enclosing block. Identifiers of the internal storage class are declared 
using the auto and register storage-class specifiers. See also scope. 

Glossary-10 



keyword 
A character string that is reserved by the VAX C language and cannot 
be used as an identifier. Keywords identify statements, storage classes, 
data types, and the like. VAX C RTL function names are not VAX C 
keywords; you may redefine function names. 

lexical scope 
The area in which the compiler recognizes a declared identifier within a 
given compilation unit. See also scope. 

License Management Facility (LMF) 
A process by which you register and use some DIGITAL software 
products. See the VAX C Installation Guide for more information. 

lifetime 
The length of time for which storage for a variable is allocated. See also 
program section (psect), internal storage class, and external 
storage class. 

link libraries 
The libraries searched by the VMS Linker to resolve external references. 
Depending on the needs of your program, you have to specify certain 
libraries in a specific order so that your program links properly. For 
more information, see Chapter 1. 

link-time scope 
The area in which the VMS Linker recognizes an identifier within a 
given program. See also scope. 

I iteral 
A constant whose value is written explicitly in the program. Literal 
values have type int or double, depending on their forms. Character 
constants have type int. Floating constants have type double. 
Character-string constants have type array of char. 

local variable 
A variable declared inside a function body. See also internal 
storage class . 

Glossary-11 



logical expression 
An expression made up of two or more operands separated by a logical 
operator. Each operand must be a fundamental type or must be a 
pointer or other address expression. Operands do not have to be the 
same type. Logical expressions always return 1 or 0 (type int) to 
indicate a true or false value, respectively. Logical expressions are 
always evaluated from left to right, and the evaluation stops as soon as 
the result is known. 

logical operator 
One of the binary operators logical AND (&&)and logical OR ( I I ). 

loop 
A construct that executes a single statement or a block repeatedly until 
a given expression evaluates to false. The single statement or block is 
called the loop body. VAX C has three types of loops: one that evaluates 
the expression before executing the loop body (the while statement), 
one that evaluates the expression after executing the loop body (the do 
statement), and one that executes the loop body a specified number of 
times (the for statement). 

loop decomposition 
See decomposition. 

loop-carried dependency 
A type of data dependency that inhibits parallel processing of a program. 
A loop-carried dependency is an inhibiting factor that involves function 
calls, array access, pointer references, and scalar references inside of a 
loop that is being considered for decomposition. VAX C checks programs 
for loop-carried dependencies. See also data dependency. 

loop-independent dependency 
A type of data dependency that inhibits parallel processing of a program. 
A loop-independent dependency is an inhibiting factor that involves 
the relative position of two statements in the program that are outside 
of all loops. VAX C does not check programs for loop-independent 
dependencies, since the compiler's parallel-processing support only 
includes loop decomposition. See also data dependency. 

Glossary-12 



Ivalue 
The address in memory that is the location of an object whose contents 
can be assigned or modified. In this guide, the term describes a category. 
in VAX C grammar. An expression evaluating to an Ivalue is required 
on the left side of an assignment operator (hence its name) and as 
the operand of certain other operators, such as the increment (++ ) 
and decrement ( — —)operators. A variable name is an example of an 
expression evaluating to an Ivalue, since its address can be taken 
(with &), and values can be assigned to it. A constant is an example of 
an expression that is not an Ivalue. See also rvalue. 

macro 
A text substitution that is defined with the #define preprocessor 
directive and can include a list of parameters. The parameters in the 
#define directive are replaced at compile time with the corresponding 
arguments from a macro reference encountered in the source text. 

main~rogram option 
A tag that can be placed on a separate line between the function 
parameter list and the rest of a function definition to tell the VMS image 
activator to begin program execution with this function. You can use the 
identifier main_program when there is no function named main; it is not 
a keyword; it can be spelled in upper- or lowercase; and it is 
VAX C specific. 

members 
Segments of the aggregate data structures (arrays, structures, or unions) 
that are declared to be of either scalar or aggregate data type. See 
also aggregate. 

module 

• The object code produced and placed into a file with a .OBJ 
extension after a compilation unit has been compiled. The object file 
is the file name with the .OBJ extension; the object module is the 
system-recognized name (usually the same as the object-file name 
without an extension). 

• A segment of object code located in an object library. 

Glossary-13 



multiplication operator 
An operator that performs multiplication (* ), divisian (/ ), or modular 
arithmetic (% ). If necessary, it performs the arithmetic conversions on 
its operands. The mod operator (%)yields the remainder of the first 
operand divided by the second. 

null pointer 
A pointer variable that has not been assigned an lvalue and whose value 
has been initialized to zero. If you use a null pointer in an expression 
that needs a value, VAX C will let you try to access memory location 
zero, which will cause the ACCVIO hardware error. 

NUL character 
The escape sequence (~ 0) that VAX C uses to terminate all character 
strings. 

object 
Data stored at a location in memory represented by an identifier. 
Objects are one of the basic elements that the language can manipulate; 
that is, the elements to which operators can be applied. In VAX C, 
objects include data (such as integers, real numbers, or characters), data 
structures (arrays, structures, or unions), and functions. 

occlude 
In the Curses Screen Management package, when the area of one 
defined window overlaps the area of another defined window on the 
terminal screen. See also Curses. 

operator 
A character that performs an operation on one or more operands. 
In order of precedence (high to low), operators are classified as the 
primary-expression operators, unary operators, binary operators, the 
conditional operator, assignment operators, and the comma operator. 

parallel processing 
A process by which a program's lines of code are divided into groups that 
are run concurrently on several processes (each processor runs separate 
subprocesses). See also decomposition. 

Glossary-14 



parameter 
A variable listed in the parentheses and declared between the function 
identifier and body in the function definition. The parameter receives 
a copy of the value of an associated argument when the function is 
called. The items in parentheses in a macro definition are also called 
parameters, but the semantics are different from VAX C function calls. 

pointer 
A variable that contains the address (lvalue) of another variable or 
function. A pointer is declared with the unary asterisk operator (* ). 

portability 
The ability to compile an unaltered C source program. on several 
operating systems and machines; in this guide particularly, between 
UNIX and VMS systems. 

pragma 
A preprocessor directive that produces implementation-specific results. 
Certain pragmas may not be portable, but other compilers may support 
pragmas that are supported by VAX C. See also preprocessor directives. 

precedence of operators 
The order in which operations are performed. If an expression contains 
several operators, the operations are executed in the following order: 
primary expression operators, unary operators, binary operators, the 
conditional operator, assignment operators, and the comma operator. 

preprocessor directives 
Lines of text in a VAX C source file that change the order or manner 
of subsequent compilation. The directives are #define, for macro 
substitution and other replacements; #undef, to cancel a previous 
#define; #include, to include an external source text; #line, to specify 
a line number to the compiler; #module, to specify a module name to 
the linker; #dictionary, to extract data structures from the Common 
Data Dictionary; #pragma to give the compiler implementation-specific 
information; and #if, #ifdef, #ifndef, #else, #elif, #endif, to place 
conditions on the compilation of sections of a program. In VAX C, these 
directives are processed by an early phase of the compiler, not by a 
separate program. 

Glossary-15 



primary expression 
An expression that contains only aprimary-expression operator, or no 
operator. Primary expressions include previously declared identifiers, 
constants, strings, function calls, subscripted expressions, and references 
to structure or union members. 

primary-expression operator 
A VAX C operator that qualifies a primary expression. The set of such 
operators consists of paired brackets ([ ]) to enclose a single subscript; 
paired parentheses (()) to enclose an argument list or to change the 
associative precedence of operators; a period (.) to qualify a structure or 
union name with the name of a member; and an arrow (—>) to qualify 
a structure or union member with a pointer or other address-valued 
expression. 

program section (psect) 
An area of virtual memory that has a name, a size, and a series 
of attributes that describe the intended or permitted usage of that 
permanent variable. Variables of type static, and of all external and 
global types are placed in psects. See also lifetime. 

refresh 
A Curses Screen Management term describing the updating of the 
terminal screen so that the latest contents of defined windows are placed 
on the screen. No edits made to any window can appear on the terminal 
screen until you refresh the window on the screen using refresh, 
wrefresh, or touchwin. See also Curses. 

relational operator 
One of the operators less than (< ), greater than (> ), less than or 
equal to (<_ ), or greater than or equal to (>_ ). The result (which is 
of type int) is 1 or 0, indicating a true or false relation, respectively. 
If necessary, the arithmetic conversions are performed on the two 
operands. Relational operators group from left to right. 

run-time library 
In VAX C, the group of common functions and macros that accompany 
the compiler that may be called to perform UO tasks, character-string 
manipulation, math tasks, system calls, and various other tasks. The C 
language includes no facilities to administer UO, so compilers include 
run-time libraries to provide this service. The VAX C RTL is shipped 
with the VMS operating system. You can access the VAX C RTL by 
receiving a copy of the function module in your program's image, or by 
sharing the function image with your program so that control is passed 

Glossary-16 



to the function image and then back to your program. See also 
shareable image. 

rvalue 
The object stored at a location in memory represented by an identifier. 
The rvalue of a variable is the variable's object. See also lvalue 
and object. 

scalar 
Single objects, including pointers, that can be manipulated in their 
entirety, in an arithmetic expression. See also object and aggregate. 

scope 
The portion of a program in which a particular name has meaning. 
The link-time scope of names declared in external definitions possibly 
extends from the point of the definition's occurrence to the end of the 
program. The scope of the names of function parameters is the function 
itself. The scope of names declared in any block (that is, after the 
brace beginning any compound statement) is restricted to that block. 
Names declared in a block supersede any other declaration of the name, 
including external definitions, for the extent of that block. Tags within 
struct, union, typedef, and enum declarations are identifiers that 
are subject to the same scope rules as any identifiers. Member names 
in structure or union references are not subject to the same scope rules 
(see uniqueness). The scope of a label is the entire function containing 
the label. 

shareable image 
A VMS image that passes control to another image that passes control 
back to the original program. You can access the VAX C RTL as a 
shared image; control is passed to the VAX C RTL and then back to your 
program instead of a copy of the function's object module being copied 
into your program's image. 

shift operator 
One of the binary operators («) or (» ). Both operands must have 
integral types. The value of the expression E1« E2 is the result of 
expression E 1 (interpreted as a bit pattern) left-shifted by E2 bits. The 
value of E 1 »E2 is E 1 right-shifted by E2 bits. 

Glossary-17 



statement 
The language elements that perform the action of a function. Statements 
include expression statements (an expression followed by a semicolon), 
null statements (the semicolon by itself), compound statements (blocks), 
and an assortment of statements identified by keywords (such as 
return, switch, and do). 

static storage class 
A storage class that permits identifiers to be recognized possibly from 
the point of the declaration to the end of the compilation unit. Identifiers 
of the static storage class are declared using the static storage-class 
specifier. See also scope. 

stderr 
The predefined file pointer associated with the terminal to report 
run-time errors. The pointed file is equivalent to the VMS logical 
SYS$ERROR and the file descriptor 2. To use this definition, include 
the stdio definition module in your source code using the #include 
preprocessor directive. 

stdin 
The predefined file pointer associated with the terminal to perform 
input. The pointed file is equivalent to the VMS logical SYS$INPUT 
and the file descriptor 0. For example, if you specify stdin as the pointer 
to the file to read from in the getc macro, the macro reads from the 
terminal. To use this definition, include the stdio definition module in 
your source code using the #include preprocessor directive. 

stdout 
The predefined file pointer associated with the terminal to perform 
output. The pointed file is equivalent to the VMS logical SYS$OUTPUT 
and the file descriptor 1. For example, if you specify stdout as the 
pointer to the file to write to in the putc macro, the macro writes to the 
terminal. To use this definition, include the definition module stdio in 
your source code using the #include preprocessor directive. 

storage class 
The attribute that, with its type, determines the location, lifetime, and 
scope of an identifier's storage. Examples are static, external, and 
auto. 

Glossary-18 



storage-class modifier 
Keywords used with the storage-class and data-type keywords to change 
program section attributes of variables, which restricts access to them. 
The two storage-class modifiers are noshare and readonly. 

string 

• An array of type char. 

• A constant consisting of a series of ASCII characters enclosed in 
quotation marks. Such a constant is declared implicitly as an array 
of char, initialized with the given characters, and terminated by a 
NUL character (ASCII 0, VAX C escape sequence \ 0). 

structure 
An aggregate type consisting of a sequence of named members. Each 
member may have either a scalar or an aggregate type. A structure 
member may also consist of a specified number of bits, called a field. 

symbolic constant 
An identifier assigned a constant value by a #define directive. You may 
use a symbolic constant wherever a literal is valid. 

tags 
Identifiers that represent a declaration of the data types struct, union, 
or enum. You may use tags in declarations from that point onward in 
the program to declare other variables of the same type without having 
to key in the lengthy declaration again. 

tokens 
The fundamental elements making up the text of a VAX C program. 
~bkens are identifiers, keywords, constants, strings, operators, and other 
separators. White space (such as spaces, tabs, newlines, and comments) 
is ignored except where it is necessary to separate tokens. 

type 
The attribute that, with its storage class, determines the meaning of the 
values found in the identifier's storage. Types include the integral and 
floating types, pointers, enumerated types, the void data type, and the 
derived types array, function, structure, and union. 

Glossary-19 



type 

name 

The declaration of an object of a given type that omits the object 
identifier. A type name is used as the operand of the cast and 
sizeof operators. 

unary 

operator 

An operator that takes a single operand. In VAX C, some unary 
operators can be either prefixed or placed after the operand. The set 
includes the asterisk (indirection), ampersand (address of), minus 
(arithmetic unary minus), exclamation (logical negation), tilde (one's 
complement), double plus (increment), double minus (decrement), cast 
(force type conversion), and sizeof (yields the size, in bytes, of its 
operand) operators. 

union 
A union is an aggregate type that can be considered a structure, all 
of whose members begin at offset 0 from the base, and whose size is 
sufficient to contain any of its members. A union can only contain the 
value of one member at a time. 

uniqueness 

A property of the names used for certain structure and union members. 
A name is unique if either of the following conditions is true: 

• The name is used only once 
• The name is used in two or more different structures (or unions), but 

each use denotes a member at the same offset from the base and of 
the same data type 

The significance of uniqueness is that a unique member name can 
possibly be used to refer to a structure in which the member name was 
not declared (although a warning message is issued). 

variable 
An identifier used as the name of an object. 

value 

The result of an expression. For example, when a variable on the right 
side of an assignment expression is evaluated, the value obtained is the 
object (rvalue) of the variable; when a variable on the left side of an 
assignment expression is evaluated, the value obtained is the address 
(lvalue) of the variable. 

Giossary-20 



white space 
Spaces, tabs, newlines, and comments. VAX C defines where you can 
and cannot place these characters. 

windows 
In the Curses Screen Management package, the defined rectangular 
regions on the terminal screen that you can write upon, rearrange, move 
to new positions on the screen, and delete from the screen. You define 
windows by specifying the upper left corner coordinate, the number of 
lines, and the number of columns comprising the window. To see the 
results after editing a window, you must refresh the window on the 
terminal screen. See also refresh. 

Glossary-21 





Index 

!(logical expression), 7-10 
!_ (inequality operator), 7-16 

(modulus operator), 7-15 
& (address operator), 7-11 
& (bitwise AND operator), 7-17 
&& (logical AND operator), 7-17 
() (parenthetical expressions), 7-3 
() (cast operator), 7-13 
* (indirection operator), 7-11 
* (multiplication operator), 7-15 
+ (addition operator), 7-15 
++ (increment operator), 7-10 

(comma operator), 7-22 
. (structure and union operator), 7-6 
/ (division operator), 7-15 
\0 (NUL character), 8-8 
_ _ (equality operator), 7-16 
[ ] (bracket operators), 7-5 
< (less-than operator), 7-16 
« (left shift operator), 7-19 
<_ (less-than or equal-to operator), 7-16 
_ (assignment operator), 7-20 
+_ (assignment operator), 7-20 
- = (assignment operator), 7-20 
*_ (assignment operator), 7-20 
-> (structure or union pointer operator), 
> (greater-than operator), 7-16 
>_ (greater-than or equal-to operator), 
» (right shift operator), 7-19 
?: (conditional operator), 7-19 
- (subtraction operator), 7-10 
- - (decrement operator), 7-10 
^ (bitwise XOR operator), 7-17 
~ (bitwise OR operator), 7-17 
( ( (logical OR operator), 7-17 

A 
Abort function, 2-6 
Access mode 

record, 12-4 
ACCVIO 

hardware error, 8-11 
/ACTIVATING qualifier (DEBUG MP) 

SET TRACE command, E-15 
Activation (DEBUG MP) 

predefined tracepoint, multiprocess program, E-15 
ADAWI built-in function, 11-5 

Additive operators, 7-15 
Address expression (DEBUG) 

with DEPOSIT command, 2-21 
with EVALUATE command, 2-21 
with EXAMINE command, 2-20 
with SET BREAK command, 2-15 
with SET TRACE command, 2-17 
with SET WATCH command, 2-18 

Address-of operator (&), 7-11 
restrictions, 8-30 
tutorial information, 4-18 
used with pointers, 8-12 

Aggregates, 8-15 to 8-32 
arrays, 8-15 

7-6 See also, Bracket operators ([ ]) 
debugger access to, 2-28 

7-16 defined, 8-2, 8-15 
struct, 8-20 
structures, 8-15 
tutorial information, 4-21 
unions, 8-15, 8-20 
variant, 8-28 

align storage-class modifier, 9-25 
/ANALYSIS_DATA CC qualifier, 1-8 

Index-1 



AND bitwise operator (&), 7-17 
ANSI standard, 4-2 
argc main function argument, 5-15 
Arguments, 5-12 to 5-13 

Command-line (DCL), 5-15 
conversion of func#ion arguments, 5-13, 7-3 
function and array identifiers as, 5-13 
function prototypes, 5-9 
functions used as, 5-14 
in #define preprocessor macros, 10-4 
list of 

variable-length, 13-52 
null in a system routine, 13-45 
optional for system routines, 13-49 
passing 

by descriptor, 13-7, 13-14 
by immediate value, 13-7, 13-8 

floating-point values, 13-10 
by reference, 13-7, 13-11 
by value, to a VAX C function, 5-12 

passing mechanisms in mixed-language 
programming, 13-6 

rules governing, 5-12 
specified to the main function, 5-15 
to a function 

conversion of, 7-24 
tutorial information, 4-5 

argv main function argument, 5-15 
Arithmetic conversion, 7-22 

summary of, D-7 
Arrays, 8-15 

as expressions, 7-5 
data dependencies introduced during parallel 

processing, 3-11 
debugger access to, 2-25 
declaration of, 8-15 
initializing, 8-18 
references to, 7-5 
tutorial information, 4-21 

/ASCII qualifier, 2-27 
ASCII 

byte values, 8-8 
NUL character, 8-8 

in character constants, 8-6 
Assignment operators, 7-8 to 7-9 

precedence of, 7-8 
Asterisk operator (* ), 8-11 
AUTHORIZE Utility 

tuning for parallel processing, 3-36 
[auto] keyword, 9-10 to 9-11 

affect on parallel processing, 3-13 

Index-2 

[auto] keyword (cont'd.) 
scope of, 9-5 
used in declarations inside of blocks, 6-3 
with scalar variables during parallel processing, 

3-17 

B 
\b (backspace), 8-7 
_BBCCI built-in function, 11-6 
_BBSSI built-in function, 11-6 
Binary operators 

additive, 7-15 
bitwise, 7-17 
equality, 7-16 
logical, 7-17 
multiplication, 7-15 
precedence of, 7-8 
relational, 7-16 
shift, 7-19 

Bit fields, 8-30 to 8-32 
Bitwise operators, 7-17 
Blocks, 5-21 to 5-22, 6-3 to 6-4 
Boolean algebra, 7-17 
Braces ({ } ) 

in compound statements, 5-21 
in initializer lists, 8-18 

Bracket operator ([ ]), 7-5 
Breakpoint (DEBUG), 2-15 
Breakpoint (DEBUG MP) 

on activation (multiprocess program), E-15 
on termination (image exit), E-15 

break statement, 6-6, 6-10 
tutorial information (example), 4-12 

Built-In functions, 11-4 to 11-21 
_ADAWI, 11-5 
_BBCCI, 11-6 
_BBSSI, 11-6 
_FFC, 11-7 
_FFS, 11-8 
_HALT, 11-8 
_INSQHI, 11-9 
_INSQTI, 11-9 
_INSQUE, 11-10 
_LDPCTX, 11-10 
_LOCO, 11-10 
_MFPR, 11-11 
_MOVC3, 11-11 
_MOVCS, 11-12 
_MOVPSL, 11-13 
_MTP R, 11-14 



Built-In functions (cont'd.) 
_PROBER, 11-14 
_PROBEW, 11-15 
_READ_GPR, 11-15 
_REMQHI, 11-16 
_REMQTI, 11-16 
_REMQUE, 11-17 
_SCANC, 11-17 
_SIMPLE_READ, 11-18 
_SIMPLE_WRITE, 11-19 
_SKPC, 11-19 
_SPANC, 11-20 
_SVPCTX, 11-21 
_WRITE_GPR, 11-21 

builtins pragma, 10-23 
Byte values, 8-8 
BYTLM quota 

DEBUG MP requirements, E-26 

C 
C language 

See also VAX C language 
tutorial information, 4-1 to 4-2 

%c 
tutorial example using printf, 4-24 

C$INCLUDE logical, 10-19 
C$LIBRARY logical, 10-20 
CALL command (DEBUG MP), E-9 
calloc function 

use in parallel processing, 3-29 
Call stack, 2-14 
CANCEL MODULE command (DEBUG), 2-35 
CANCEL SCOPE command (DEBUG), 2-36 
case label, 6-5 
Case sensitivity, 5-17 

tutorial information, 4^6 
Cast operator, 7-13 
CC$gfloat predefined macro, 11-1 
CC$parallel predefined macro, 11-2 
cc$rms fab 

initialized RMS data structure, 12-8 
cc$rms_nam 

initialized RMS data structure, 12-8 
cc$rms_rab 

initialized RMS data structure, 12-8 
cc$rms_xaball 

initialized RMS data structure, 12-8 
cc$rms_xabdat 

initialized RMS data structure, 12-8 

cc$rms_xabfhc 
initialized RMS data structure, 12-8 

cc$rms_xabkey 
initialized RMS data structure, 12-8 

cc$rms_xabpro 
initialized RMS data structure, 12-8 

cc$rms_xabrdt 
initialized RMS data structure, 12-8 

cc$rms_xabsum 
initialized RMS data structure, 12-8 

CC DCL command, 1-5 
/ANALYSIS_DATA qualifier, 1-8 
compilation errors, 1-20 
/CROSS_REFERENCE qualifier, 1-8 
/DEBUG qualifier, 1-9, 2-4 
/DEFINE qualifier, 1-10 to 1-11, 1-18 
/DIAGNOSTICS qualifier, 1-11 
/G_FLOAT qualifier, 1-11 
/INCLUDE_DIRECTORY qualifier, 1-12 
/LIBRARY qualifier, 1-12 
/LIST qualifier, 1-13 
/MACHINE_CODE qualifier, 1-13 
/NOOPTIMIZE qualifier, 2-4 
/OBJECT qualifier, 1-14 
/OPTIMIZE qualifier, 1-14 
//PARALLEL qualifier, 1-15 
/PRECISION qualifier, 1-15 
/PREPROCESS_ONLY qualifier, 1-15 
qualifiers for, 1-7 to 1-18 
/SHOW qualifier, 1-16 
/STANDARD=PORTABLE qualifier, 1-17 
summary of, D-1 
/UNDEFINE qualifier, 1-10 to 1-11, 1-18 
/WARNINGS qualifier, 1-18 

CDD 
See Common Data Dictionary 

cfree function 
use in parallel processing, 3-29 

Character 
constants, 8-6 
NUL character, 8-8 
strings, 8-15, 8-20 

See also, Arrays 
debugger access to, 2-27 
tutorial information, 4-21 

variable declarations, 8-4 
Character-string variables, 8-19 

tutorial information, 4-21 
char data type, 8-4 
CHAR_STRING_CONSTANTS psect, 14-2 to 14-5 
$CLOSE RMS function, 12-6 

Index-~3 



$CODE psect, 14-2 to 14-5 
Code replication, 3-20 to 3-21 

See also, Data dependencies 
Command-line (DCL) arguments 

conversion of, 5-17 
to the VAX C main function, 5-15 

Command qualifiers 
See CC DCL command 

Comma operator (,), 7-22 
precedence of, 7-8 

Comments, 5-22 
Common Data Dictionary (CDD), 10-8 to 10-12 

support for data types, 10-11 
Compilation process, 1-5 to 1-21 
Compilation unit 

in determining scope, 9-2 
Compile DCL command 

See CC DCL command 
Compiler messages, B-1 to B-53 
Compound statements, 5-21, 6-3 

tutorial information, 4-11 
Conditional compilation, 10-13 to 10-15 
Conditional operator (?:), 7-19 

precedence of, 7-8 
Conditional statements, 6-4 to 6-7 
CONNECT command (DEBUG MP), E-5, E-17 
$CONNECT RMS function, 12-6 
Constants, 8-1 

character, 8-6 
escape sequence, 8-7 
hexadecimal escape sequence, 8-8 

character strings, 8-20 
floating-point, 8-10 
identifiers in #define macros, 10-4 
integer, 8-5 
values of, 8-2 

const modifier, 9-21 
continue statement, 6-10 
Control dependency, 3-4 

See also, Data dependencies 
Control flow statements, 6-1 to 6-2 
Conversions, 7-22 to 7-25 

arithmetic, 7-22, 7-23 
of data types, 7-22 
of function arguments, 7-3, 7-24 
summary of rules, D-7 
with cast operator, 7-13 

$CREATE RMS function, 12-6 
/CROSS_REFERENCE CC qualifier, 1-8 

Index-4 

C Run-Time Library (RTL) 
See VAX CRun-Time Library (RTL) 

CTRUC, 2-6 
use in MPDEBUG, E-6 
use in multiprocess debugger, E-12 

CTRUY, 2-6 
use in multiprocess debugger, E-12, E-16 

D 
D_floating representation, 8-9 
Data-class modifiers 

description of, 9-21 
Data definitions and scope, 9-17 

see also, Scope 
Data dependencies 

algorithms to determine, 3-4 
array variable references (example), 3-12 
debugging example, E-21 
definition of, 3-4 
detecting existence of, 3-11 to 3-17 
involving array variable references, 3-11 
involving function calls, 3-13 to 3-14 
involving pointer references, 3-15 to 3-16 
involving scalar references, 3-16 to 3-17 
Loop-carried, 3-4 
Loop-independent, 3-4 
pointer references (example), 3-15 
recoiling possible dependencies, 3-17 to 3-22 

code replication, 3-20 
loop alignment, 3-18 
loop distribution, 3-21 

related to program control flow, 3-,4 
scalar references (example), 3-16 

$DATA psect, 14-2 to 14-5 
Data structures, 8-15 

See also, Aggregates 
RMS, 12-6 

definition modules, 12-7 
initialized prototypes, 12-7 

Data-type keywords 
summary of, D-4 

Data-type modifiers 
summary of, D-5 

Data types, 8-1 to 8-33 
argument-conversion rules, 5-13 
conversion of, 7-22 
function prototypes, 5-9 to 5-11 
modifiers, 9-21 
tutorial information, 4-5 

__DATE__ predefined macro, 11-3 



DBG$PROCESS logical, E-2 
defining, E-23 

DBG$PROCESS logical name 
program cycle for parallel processing, 3-7 

DBG> prompt, 2-5 
DCL commands 

overview of program development, 1-1 
summary of, D-1 

/DEBUG CC qualifier, 1-9, 2-4 
DEBUG command (DEBUG MP), E-16 
Debugger 

access to program variables 
arrays, 2-25 
character strings, 2-27 
scalars, 2-23 
structures, 2-28 
unions, 2-28 

ASCII representation, 2-31 
defined, 2-1 
entering commands, 2-7 
features of, 2-3 
getting started with, 2-4 
invoking, 2-5 
invoking in multiprocess debugging session, 
keypad functions (figure), 2-8 
multiprocess debugging example, E-21 
prompt in multiprocessing session, E-3 
sample session, 2-36 to 2-40 
SHOW SYMBOL command, 2-29 
system tuning for the multiprocess debugger, 

E-25 
Debugging configuration (DEBUG MP), E-2 
DEC/Shell, 10-16 

inhibiting parallel processing, 3-10 
Declarations, 8-1 to 8-4 

aggregate 
arrays, 8-15 
structures, 8-20 
unions, 8-20 
variant struct, 8-28 
variant union, 8-28 

determining scope, 9-2 to 9-4 
format of, 8-3 
function prototypes, 5-9 to 5-11 
inside of blocks, 6-3 
interpreting, 8-33 to 8-35 
of VAX C functions, 5-7 
parameters, 5-13 
scalar 

character constant, 8-6 
character variable, 8-4 

Declarations 
scalar (cont'd.) 

enumerated, 8-13 
integer, 8--4 
pointer, 8-11 

scope of, 5-9 
vacuous tag declarations, 8-23 
VAX C RTL prototypes, 5-11 
void functions, 8-32 

Declarators, 8-3 
Decomposition 

conditions that inhibit, 3-9 to 3-10 
definition of, 3-2 
pragmas, 3-23 to 3-28 

summary of (table), 3-5 
syntax of, 10-22 to 10-28 

Decrement operator (— —), 7-10 
side effects within macros, 10-6 
tutorial information, 4-16 

default label, 6-5 
DEFINE/PROCESS_GROUP command (DEBUG MP), 

E-14 
IDEFiNE CC qualifier, 1-10 

E-2 examples and usage, 1-18 
#define directive, 10-2, 10-4 
defined operator, 10-15 
Definition modules 

descriptions of, A-1 to A-8 
for RMS structures, 12-7 
table of, A-1 

Definitions 
See also, Declarations 
affect on scope, 9-2 
of constants, 8-1 
of functions, 5-1 
of void functions, 5-5, 8-32 

$DELETE RMS function, 12-6 
Dependencies 

See Data dependencies 
DEPOSIT command (DEBUG), 2-21 
Dereferencing pointers, 7-11 

See also Pointers 
descrip text-library module, 13-14 
$DESCRIPTOR preprocessor macro, 13-18 
Descriptors 

defined, 13-7 
in mixed-language programming, 13-14 

/DIAGNOSTICS CC qualifier, 1-11 
#dictionary directive, 10-8, 10-9, 10-12 
Direct access modes (RMS), 12-4 

Index-5 



Directives 
#define, 10-2 
#dictionary, 10-8 
#elif, 10-13 
#else, 10-13 
#endif, 10-13 
#if, 10-13 
#ifdef, 10-13 
#ifndef, 10-13 
#include, 10-16 
#line, 10-21 
#module, 10-21 
#pragma, 10-22 
#undef, 10-4 

$DISCONNECT RMS function, 12-6 
Display (DEBUG) 

source code, 2-10 
Display {DEBUG MP) 

process specific, E-17 
Division operator (~, 7-15 
DO command (DEBUG MP), E-6, E-8 
do statement, 6-9 

tutorial information, 4-14 
double data type, 8-9 
Dynamic module setting in the debugger, 2-35 
Dynamic process setting (DEBUG MP), E-10 
Dynamic prompt setting (DEBUG MP), E-3 

E 
ECHO DCL command, 5-16 
Editing 

LSE, C-1 to C-26 
TPU, 1-4 

EVE interface, 1-4 
#elif preprocessor directive, 10-13, 10-14 
Ellipses, 5-6 
#else preprocessor directive, 10-13 
#endif preprocessor directive, 10-13 
ENQLM quota 

DEBUG MP requirements, E-25 
Enumerated data type, 8-13 to 8-15 

declaration of, 8-13 
enum type, 8-13 
envp main function argument, 5-15 
Equality operators, 7-16 
Equal-to operator (-), 7-16 
$ERASE RMS function, 12-6 
errno 

checking during parallel processing, 3-10 
parallel malloc behavior, 3-30 

Index-6 

Errors 
See also, CC DCL command 
See also, LINK DCL command 
compiler messages and descriptions, 6-1 to 

B-53 
during compilation, 1-20 to 1-21 
link-time, 1-30 
run-time, 1-32 

Escape sequences, 8-7 
hexadecimal values, 8-8 
summary of, D-8 

EVALUATE command (DEBUG), 2-21 
Evaluating expressions 

See Expressions 
Evaluation order 

in argument lists, 5-12 
EVE 

See Editing 
EXAMINE command (DEBUG), 2-20 
Exception handling 

inhibiting parallel processing, 3-10 
Execution 

start/resume in debugger, 2-12 
start/resume in DEBUG MP, E-7 
suspending with watchpoint (DEBUG MP), E-19 

EXIT command (DEBUG MP), E-11 
exponentiation operator, Glossary-8 
Expressions, 6-3 to 6-4, 7-1 to 7-25 

See also, Address expression 
See also, Language expression 
assignment, 7-20 
as statements, 6-3 
binary 

additive, 7-15 
bitwise, 7-17 
equality, 7-16 
logical, 7-17 
multiplication, 7-15 
relational, 7-16 
shift, 7-19 

comma, 7-22 
conditional, 7-19 
evaluation order 

ambiguity of, 7-11 
primary, 7-3 to 7-6 

array reference, 7-5 
function call, 7-3 
Ivalues, 7-2 
parentheses, 7-3 
vvauues, 7-2 



Expressions 
primary (cont'd.) 

structure reference, 7-6 
syntax of, 7-3 
union reference, 7-6 

unary 
addressed, 7-11 
cast, 7-13 
increment and decrement, 7-10 
negation, 7-10 
one's complement, 7-12 
sizeof, 7-14 

Extended attribute block—XAB (RMS) 
initialization of, 12-11 

Extensible VAX Editor (EVE) 
See Editing 

External storage class 
compared to global, 9-17 to 9-19 
data definitions, 9-17 
[extern], 9-13 

[extern] keyword, 9-13 to 9-14 
affect on parallel processing, 3-13, 3-22 
aligning, 3-22 
overlaying psects, 9-18 

table of psect attributes, 14-3 
scope of, 9-5 

F 
\f (form feed), 8-7 
F floating representation, 8-9 
fab definition module, 12-7 
FAB RMS data structure, 12-6 

initialization of, 12-9 
_FFC built-in function, 11-7 
_FFS built-in function, 11-8 
__FILE_~redefined macro, 11-3 
Files (RMS) 

indexed organization, 12-3 
organization, 12-2 to 12-4 
relative organization, 12-3 
sequential orgar►.ization, 12-2 

FILLM quota 
DEBUG MP requirements, E-26 

float data type, 8-9 
Floating-point 

constants, 8-10 
data type 

declaration of, 8-9 
double, 8-9 
D floating, 8-9 

Floating-point 
data type (cont'd.) 

F floating, 8-9 
G floating, 8-9 
long, 8-9 
precision of, 8-9 

passed by immediate value, 13-10 
sizes and ranges of, 8-9 

fopen function 
example of, 5-2 

FOR$PROCESSES logical name 
See also, Parallel processing 
preparing programs for parallel processing, 3-7 
use of, 3-31 

FOR$SPIN WAIT logical name 
See also, Parallel processing 
use of, 3-32 

FOR$STALL_WAIT logical name 
See also, Parallel processing 
use of, 3-33 

Foreign command, 12-14 
for passing command-line arguments, 5-15 

for keyword 
loop decomposition in parallel processing, 3-2 

for statement, 6-8 
tutorial example of, 4-15 
tutorial information, 4-15 

FORTRAN common block 
sharing program sections with, 13-37 

Forward referencing 
function declarations (example), 5-7 
structures, 8-23 

free function 
use in parallel processing, 3-29 

frexp function 
inhibiting parallel processing, 3-14 

Function 
address of, 5-14, 7-4 
argument-conversion rules, 5-13 
as arguments, 5-14 
built-in, 11-4 to 11-21 
calls between programs of different languages, 

13-19 
calls to, 7-3 

within macros, 10-6 
data dependencies introduced during parallel 

processing, 3-13 
declaring VAX C functions, 5-7 
definitions of, 5-1 to 5-13 

argument conversion, 7-3 
arguments, 5-2, 5-12 

Index-7 



Function 
definitions of (cont'd.) 

body, 5-2 
main function, 5-3 
main~rogram option, 5-3 
names of, 5-3 
parameters, 5-2, 5-12 

identifiers, 7-4 
implicit declaration of, 5-3 
parallel-processing memory-management 

restrictions, 3-29 
parameter-passing mechanisms, 13-6 
prototypes, 5-9 to 5-11 
return values of, 5-7 
RMS, 12-5 
scope of, 5-3 
tutorial information, 4-4 
undeclared, 7-3 
VAX C RTL prototypes, 5-11 
void, 8-32 

Function arguments 
conversion of, 7-24, D-7 

Function prototypes 
See also, Function 
scope rules, 5-11 
widening rules, 5--11 

G 
/G_FLOAT CC qualifier, 1-11 
G floating representation, 8-9 
GBLPAGES parameter 

DEBUG MP requirements, E-26 
GBLPAGES parameter (VMS) 

tuning for parallel processing, 3-35 
GBLPAGFIL parameter (VMS) 

tuning for parallel processing, 3-35 
GBLSECTIONS parameter (VMS) 

DEBUG MP requirements, E-26 
tuning for parallel processing, 3-34 

getchar 
tutorial information (example), 4--10 

$GET RMS function, 12-6 
globaldef keyword 

used in declarations inside of blocks, 6-3 
globaldef specifier, 9-15, 9-17 

loading modules with global definitions, 
with enumerated values, 9-20 

Global pages 
use by DEBUG MP, E-26 

globalref specifier, 9-15, 9-17 

Index-8 

globalref specifier (cont'd.) 
See also, Storage classes 
loading modules with global definitions, 9-18 
with enumerated values, 9-20 

Global sections 
use by DEBUG MP, E-26 

Global section watchpoint (DEBUG MP), E-19 
Global storage class, 9-15 to 9-20 

compared to extern, 9-17 to 9-19 
variable initialization, 9-15 

Global symbol (VMS) 
to test status values, 13-59 

globalvalue specifier, 9-19 
GO command (DEBUG), 2-12 
GO command (DEBUG MP), E-7 
goto statement, 6-2 
Greater-than operator (>), 7-16 
Greater-than or equal-to operator(>=), 7-16 

H 
_HALT built-in function, 11-8 
HELP (DEBUG) 

online, 2-3 
Hexadecimal 

byte values, 8-8 
/HOLD qualifier (DEBUG MP) 

SET PROCESS command, E-4, E-8 

i 
Identifiers, 5-17 to 5-18 
#ifdef preprocessor directive, 10-13 
#ifndef preprocessor directive, 10-13 
#if preprocessor directive, 10-13 

using the defined operator, 10-15 
if statement, 6-4 

tutorial information, 4^10 
ignore_dependency decomposition pragma 

syntax of, 10-23 
use of, 3-25 

ignores dependency pragma 
use of, 3-16 

#include preprocessor directive, 10-16, 10-20 
default text libraries, 1-6 
descrip module, 13-14 

9-1 g RMS data-structure inclusion, 12-7 
/INCLUDE_DIRECTORY CC qualifier, 1-12 
Including files, 10-16 to 10-20 

VAX C RTL prototypes, 5-11 
Increment operator (++), 7-10 



Increment operator (++) (cont'd.) 
side effects within macros, 10-6 
tutorial information, 4-16 

Indexed file organization (RMS), 12-3 
Indirection operator (*), 7-11, 8-11 

tutorial information, 4-18 
Initialization 

arrays, 8-16 
characters, 8-4 
character-string variables, 8-19 
debugger, 2-5 
-integers, 8-4 
of global variables, 9-15 
of RMS data structures 

extended attribute block (XAB), 12-11 
file access block (FAB), 12-9 
name block (NAM), 12-12 
record access block (RAB), 12-10 

structures, 8-26 
unions, 8-26 

Initialized RMS data structure 
cc$rms_fab, 12-8 
cc$rms_nam, 12-8 
cc$rms_rab, 12-8 
cc$rms_xaball, 12-8 
cc$rms_xabdat, 12-8 
cc$rms_xabfhc, 12-8 
cc$rms_xabkey, 12-8 
cc$rms xabpro, 12-8 
cc$rms_xabrdt, 12-8 
cc$rms_xabsum, 12-8 

inline pragma, 10-24 
Input/output (I/O) 

during parallel processing, 3-10 
RMS, 12-1 
tutorial information, 4-6 

_INSQHI built-in function, 11-9 
_INSQTI built-in function, 11-9 
_INSQUE built-in function, 11-10 
int data type, 8-4 

tutorial information, 4-5 
Integer constants, 8-5 

invalid, 8-6 
Integer data types, 8-4 
Internal storage class, 9-9 to 9-12 
Interrupt (DEBUG) 

execution of command, 2-6 
execution of program, 2-6 

Interrupting statements, 6-10 to 6-11 
ISAM (RMS) 

indexed-sequential access method, 12-5 

K 
Keypad key definitions 

multiprocess debugger predefined, E-18 
Keywords 

auto, 9-10 
break statement, 6-10 
case statement, 6-5 
char, 8-4 
const, 9-21 
continue statement, 6-10 
default label, 6-5 
description of (table), 5-18 
description of data types (table), 8-3 
do statement, 6-9 
double, 8-9 
else statement, 6-4 
enum, 8-13 
extern, 9-13 
float, 8-9 
for statement, 6-8 
globaldef, 9-15 
globalref, 9-15 
globalvalue, 9-19 
goto statement, 6-2 
if statement, 6-4 
int, 8-4 
noshare, 9-24 
readonly, 9-25 
register, 9-11 
return statement, 6-11 
short, 8-4 
sizeof, 7-14 
static, 9-12 
struct, 8-20 
switch statement, 6-5 
tutorial information, 4-6 
typedef, 8-32 
union, 8-20 
variant struct, 8-28 
variant union, 8-28 
void, 8-13, 8-32 
volatile, 9-23 
while statement, 6-9 

L 
Label statements, 6-2 
Language expression 

with DEPQSIT command (DEBUG), 2-21 
with EVALUATE command (DEBUG), 2-21 

Index-9 



Language-Sensitive Editor (LSE) 
See Editing 

_LDPCTX built-in function, 11-10 
Less-than operator (<), 7-16 
Less-than or equal-to operator (<_), 7-16 
Lexical scope, 9-4 to 9-6 
Libraries 

default object-module file types, 1-26 
default text-module file types, 1-6 
inclusion of text modules, 10-19 
VAX C RTL object-module linking order, 

/LIBRARY CC qualifier, 1-12 
Lifetime of stored objects, 9-8 
Limit of nested #include lines, 10-16 
__LINE__ predefined macro, 11-3 
Line number 

SET BREAK command (DEBUG), 2-15 
SET TRACE command (DEBUG), 2-17 
source display (DEBUG), 2-11 

#line preprocessor directives, 10-21 
/LINE qualifier 

to the debugger SET TRACE command, 2-17 
LINK command 

tutorial information (example), 4-9 
LINK DCL command, 1-22 

/DEBUG qualifier, 2-4 
link-time errors, 1-30 to 1-31 
qualifiers, 1-23 
summary of, D-3 
VA.X C RTL object-module linking order, 
VAX C RTL shareable images, 1-29 

Link-time scope, 9-4 to 9-6 
LINT, 5-22 

function prototypes, 5-9 
/LIST CC qualifier, 1-13 
LNK$LIBRARY logical, 1-27 
_LOCO built-in function, 11-10 
Logical arithmetic 

negation operator, 7-10 
operators, 7-17 

Logical OR operator 
tutorial information, 4-21 

long data type, 8-4, 8-9 
longjmp function 

inhibiting loop decomposition, 3-10 
Loop alignment, 3-18 

See also, Data dependencies 
Loop-carried dependencies, 3-4 

See also, Data dependencies 

Index-10 

Loop decomposition 
See Decomposition 

Loop distribution, 3-21 to 3-22 
See also, Data dependencies 

Loop-independent dependencies, 3-4 
See also, Data dependencies 

Looping statements, 6-7 to 6-10 
See also, Statements 
code replication, 3-20 to 3-21 
data dependencies (definition of), 3-11 

1-27 decomposition (definition), 3-2 
detecting data dependencies, 3-17 
loop distribution, 3-21 to 3-22 
realigning possible data dependencies, 3-18 
tutorial information, 4-14 

LSE 
See Editing 

(values, 7-2 
tutorial information, 417 

M 
/MACHINE_CODE CC qualifier, 1-13 
MACRO program 

sharing program sections with, 13-41 
Macros 

definitions, 10-2 
canceling, 10-4 
listing substituted lines, 10-8 

1-27 naming parameters in, 10-6 
parameters within definitions, 10-4 
possible side effects, 10-6 

predefined 
_align boundaries, 9-25 
CC$gfloat, 11-1 

. CC$parallel, 11-2 
__DATE__, 11-3 
__FILE__, 11-3 
__LINE__, 11-3 
_ TIME__, 11-3 
vax, 11-4 
vax11 c, 11-4 
vaxc, 11-4 
vms, 11-4 

substitution within #include directives, 10-20 
tutorial information, 4-7 

Main function, 5-3 to 5-4 
main~rogram option, 5-3 
passing arguments to, 5-15 
syntax of, 5-15 

main~rogram option, 5-3 



malloc function 
use in parallel processing, 3-29 

math.h function calls 
parallel processing support, 3-14 

Members 
defined, 8-2 
variant aggregates, 8-28 

member alignment pragma, 10-25 
Memory-management functions 

parallel-processing versions, 3-29 
Messages 

See also, Errors 
compiler, B-1 to B-53 
format of (compiler), 1-20 to 1-21 

_MFPR built-in function, 11-11 
Mixed-language programming, 5-12 

argument passing 
by descriptor, 13-14 
by immediate value, 13-8 

floating-point numbers, 13-10 
by reference, 13-11 

return status values, 13-54 
format, 13-54 
manipulating, 13-56 
system service, 13-50 
testing, 13-58 

variable-length argument lists, 13-52 
VAX Calling Standard, 13-2 

affect on VAX C functions, 5-12 
modf function 

inhibiting parallel processing, 3-14 
Modifiers 

storage class, 9-23 
#module preprocessor directive, 10-21 
Modules 

changing the default name, 10-21 
default object-library file types, 1-26 
VAX C RTL object linking order, 1-27 

Module setting (DEBUG), 2-35 
Modulo operator (%), 7-15 
_MOVC3 built-in function, 11-11 
_MOVC5 built-in function, 11-12 
_MOVPSL built-in function, 11-13 
_MTPR built-in function, 11-14 
Multiplication operators (*), 7-15 

N 

NAM RMS data structure, 12-6 
initialization of, 12-12 

Negation 
arithmetic and logical, 7-10 

Nesting of #include lines, 10-16 
%NEXT PROCESS logical (DEBUG MP), E-13 
noinline pragma, 10-24 
nomember_alignment pragma, 10-25 
/NOOPTIMIZE qualifier 

effect on debugging, 2-4 
Noscreen mode (DEBUG), 2-10 
noshare modifier, 9-24 
nostandard pragma, 10-28 
Not-equal-to operator (!_), 7-16 

tutorial information (example), 4-15 
NUL character, 8-8 
Null pointer, 8-11 

used with the equality operator, 7-21 
NULL predefined macro, 8-11 
Null statement, 6-1 
NUL-terminated strings, 8-20 

O 
/OBJECT CC qualifier, 1-14 
Object module 

default library file types, 1-26 
in determining scope, 9-2 
names provided after run-time errors, 1-32 
VAX C RTL linking order, 1-27 

Objects of variables, S-2 
Octal constants, 8-5 
One's complement operator (~), 7-12 
$OPEN RMS function, 12-6 
Operand conversion, 7-23 
Operators, 7-6 to 7-22 

assignment, 7-20 to 7-22 
ambiguity of, 7-21 

binary, 7-14 to 7-19 
additive, 7-15 
bitwise, 7-17 
equality, 716 
logical, 7-17 
multiplication, 7-15 
relational, 7-16 
shift, 7-19 

bracket, 7-5 
categories of, 7-8 
comma, 7-22 
conditional, 7-19 
defined, 10-15 
exponentiation, Glossary-8 
indirection, 8-11 

Index-11 



Operators (cont'd.) 
list of, 7-6 
precedence of, 7-8, D-5 
unary, 7-8, 7-10 to 7-14 

address of, 7-11 
cast, 7-13 
increment and decrement, 7-10 
indirection, 7-11 
negation, 7-10 
one's complement, 7-12 

/OPTIMIZE CC qualifier, 1-14 
/OPTIMIZE qualifier 

to the CC DCL command, 2-38 
OR bitwise operator (~ ), 7-17 

P 
Parallel processing, 3-1 to 3-37 

See also, Decomposition 
across time (figure), 3-2 
checking errno values, 3-10 
data dependency analysis, 3-6 
debugging example, E-21 
decomposition pragmas, 3-23 to 3-28 

summary of (table), 3-5 
syntax of, 10-22 to 10-28 

description of subprocess creation, 3-3 
FOR$PROCESSES logical, 3-31 
FOR$SPIN_WAIT logical, 3-32 
FOR$STALL_WAIT logical, 3-33 
inhibiting behavior, 3-9 to 3-10 

DEC/Shell, 3-10 
of exception handling, 3-10 
of I/O operations, 3-10 
of signal handling, 3-10 

linking against VAXCPAR.OLB library, 1-27, 3-29 
memory-management functions, 3-29 to 3-30 
overview, 3-1 to 3-6 
preparing programs for (compiling), 3-6 to 3-8 

summary (figure), 3-7 
rewriting possible dependencies, 3-17 

code replication, 3-20 to 3-21 
loop alignment, 3-18 to 3-20 
loop distribution, 3-21 to 3-22 

run-time logical names, 3-30 to 3-33 
FOR$PROCESSES, 3-31 
FOR$SPIN_WAIT, 3-32 
FOR$STALL_WAIT, 3-33 
summary of(table), 3-6 

setting up the environment, 3-3 
storage classes effect on, 3-22 

Index-12 

Parallel processing (cont'd.) 
suitable applications for, 3-2 
support for math.h functions, 3-14 
tuning, 3-30 to 3-37 

with the AUTHORIZE utility, 3-36 
with the GBLPAGES parameter, 3-35 
with the GBLPAGFIL parameter, 3-35 
with the GBLSECTIONS parameter, 3-34 
with the SYSGEN Utility, 3-33 
with the working set size, 3-37 

VAX C support mechanisms(table), 3-5 
/PARALLEL qualifier 

preparing programs for parallel processing, 3-6 
Parameters, 5-12 to 5-13 

declaration of, 5-2, 5-13 
function prototypes, 5-9 
in #define preprocessor macros, 10-4 
main function, 5-15 
passing 

by descriptor, 13-7 
by immediate value, 13-7 
by reference, 13-7 

passing mechanisms in mixed-language 
programming, 13-6 

rules governing, 5-12 
tutorial information, 4-5 

Parenthetical expressions, 7-3 
Path name 

in debugging, 2-10, 2-13, 2-15, 2-36 
PC 

and source display, 2-11 
PC (DEBUG} 

and SHOW CALLS display, 2-14 
and STEP command, 2-13 
breakpoint, 2-15 

Period operator (.), 7-6 
PGFLQUO quota 

DEBUG MP requirements, E-25 
tuning for parallel processing, 3-36 

PL/I externals 
sharing program sections with, 13-39 

Pointers 
arithmetic, 8-11 
data dependencies introduced during parallel 

processing, 3-15 
declaration of, 8-11 
legal operations, 8-11 
null, 8-11 
tutorial information, 4-17 
unary operator, 7-11 
using the increment operator (++), 7-10 



Pointers (cont'd.) 
void, 8-13 

Portability concerns 
See also, C language 
accessing argument lists, 13-7 
char * generic-pointer notation, 8-13 
character-string constants, 8-7 
character-string length, 8-20 
comparing pointers and integers, 7-16 
conversion of command-line arguments, 5-17 
defined, 4-3 
deviations of assignment operators, 7-21 
#dictionary directive, 10-9 
direction of bit field packing, 8-30 
global storage classes, 9-17 
global system status values, 9-19 
#include using angle brackets, 10-18 
int values on a VAX, 8-5 
length of argument list, 5-12 
length of bit fields, 8-30 
length of identifiers, 5-17 
lexical scope and compilation units, 9-2 
long float keywords, 8-9 
main~rogram option, 5-3 
#module directive, 10-21 
modules with extern definitions, 9-18 
nested #include files, 10-18 
octal constants, 8-5 
parameter declarations, 5-13 
passing constants by reference, 13-12 
predefined symbols, 5-20 
predefined system-definition macros, 11-1 
preprocessor implementations, 10-1 
referencing aggregate members, 8-25 
structure-member alignment, 8-21 
text modules in the #include line, 10-19 
tutorial information, 4-2 to 4-4 
UNIX file specifications, 10-16 
variant structures and unions, 8-30 

#pragma preprocessor directive, 10-22 
Pragmas 

builtins, 10-23, 11-5 
decomposition, 3-23 to 3-28 

ignore_dependency syntax, 10-23 
placement rules, 3-23 
safe_call syntax, 1 C-26 
sequential loop syntax, 10-27 
summary of Pragmas (table), 3-5 
using ignore dependency, 3-25 
using safe call, 3-14, 3-26, 3-28 

inline, 10-24 

Pragmas (cont'd.) 

member alignment, 10-25 
standard, 10-28 

PRCLM quota 
DEBUG MP requirements, E-25 

Precedence of operators, 7-8 
in interpreting declarations, 8-33 

/PRECISION CC qualifier, 1-15 
Predefined macros, 11-1 to 11-4 

NULL macro, 8-11 
Predefined symbols, 5-20 
Preprocessor directives, 10-1 to 10-28 

#define, 10-2 
#dictionary, 10-8 
#elif, 10-13 
#else, 10-13 
#endif, 10--13 
#if, 10-13 
#ifdef, 10--13 
#ifndef, 10-13 
#include, 10-16 

macro substitution, 10-20 
#line, 10-21 
#module, 10-21 
#pragma, 10-22 
summary of, D-8 
#undef, 10-4 

/PREPROCESS_ONLY CC qualifier, 1-15 
%PREVIOUS_PROCESS logical (DEBUG MP), E-13 
Primary expressions, 7-3 to 7-6 

See also, Expressions 
array reference, 7-5 
function call, 7-3 
Ivalues, 7-2 
parentheses, 7-3 
structure reference, 7--6 
union reference, 7-6 

Primary operators 
precedence of, 7-8 

printf function 
tutorial information (example), 4-7 
tutorial information on using %c (example), 4-24 
tutorial information on using %s (example), 4-21 

Privacy of data 
See Scope 

_PROBER built-in function, 11-14 
_PROBEW built-in function, 11-15 
Processes (DEBUG MP) 

activation tracepoint, predefined, E-15 
connecting debugger to, E-17 
connecting to, E-5 

Index-13 



Processes (DEBUG MP) (cont'd.) 
multiprocess debugging, E-1 
termination tracepoint, predefined, E-15 

/PROCESS qualifier (DEBUG MP) 
DO command, E-6 
SET DISPLAY and DISPLAY commands, E-18 

/PROCESS_GROUP qualifier (DEBUG MP) 
DEFINE command, E-14 

%PROCESS_NAME logical (DEBUG MP), E-13 
%PROCESS_NUMBER logical (DEBUG MP), E-13 
%PROCESS_PID logical (DEBUG MP), E-13 
Program counter (PC) 

See PC 
Program section (psect) 

attributes of, 14-1 to 14-5 
attributes of (table), 14-3 
comparing global and exernal classes, 9-17 
created by VAX C, 14-2 
for global symbols, 9-15 
sharing 

with FORTRAN common blocks, 13-37 
with MACRO programs, 13-41 
with PVI externals, 13-39 

Program structure, 5-1 to 5-23 
Promotion of data types, 7-22 
Prototypes, 5-9 

for VAX C RTL functions, 5-11 
Psect 

See Program Section 
PSL, 11-14 
$PUT RMS function, 12-6 

Q 
Qualifiers 

CC command, 1-7 
LINK command, 1-23 
position of, 1-5 
summary of CC command, D-2 
summary of LINK command, D-3 

QUIT command (DEBUG MP), E-11 
Quotas 

See User quotas 

R 
\ r (carriage return), 8-7 
RAB RMS data structure, 12-6 

initialization of, 12-10 
Random access mode (RMS), 12-4 
_READ_GPR built-in function, 11-15 

Index-14 

readonly modifier, 9-25 
realloc function 

use in parallel processing, 3-29 
Record file address (RMS) 

access mode, 12-4 
Record Management Services (RMS), 12-1 to 

12-31 
data structures, 12-6 
example program, 12-13 
extended attribute blocks, 12-6 
file access blocks, 12-6 
file organization, 12-2 to 12-4 
functions, 12-5 

summary of, D-9 
indexed organization, 12-3 
name blocks, 12-6 
random access mode, 12-4 
record access blocks, 12-6 
record access modes, 12-4 
record formats, 12-5 
relative organization, 12-3 
return status values, 12-7 
sequential organization, 12-2 

register keyword 
restrictions, 8-12 
used in declarations inside of blocks, 6-3 
used with the address of operator (&), 7-12 

register storage class, 9-11 
Relational operators, 7-16 
Relative RMS file organization, 12-3 
_REMQHI built-in function, 11-16 
_REMQTI built-in function, 11-16 
_REMQUE built-in function, 11-17 
Reserved words, 5-18 
return keyword 

example of, 5-2 
in function definitions, 5-2 
statement syntax, 6-11 

return statement 
tutorial information, 4~5 

Return status (VMS) 
severity codes, 13-55 
value 

format of, 13-54 
manipulating, 13-56 
RMS, 12-7 
system service, 13-50 
testing for specific value, 13-59 
testing for success or failure, 13-58 

$REWIND RMS function, 12-6 
Right arrow operator (—>), 7-6 



RMS 
See Record Management Services (RMS) 

rmsdef definition module, 12-7 
rms definition module, 12-7 
RST (run-time symbol table) 

as used by the debugger, 2-34 
RTL 

See VAX CRun-Time Library (RTL) 
See VMS Run-Time Library (RTL) 

RUN DCL command, 1-31 
invoking and terminating the debugger, 2-5 
run-time errors, 1-32 

Run-time errors, 1-32 
See also, Errors 

Run-TimE Library (RTL) 
See VAX CRun-Time Library (RTL) 
See VMS Run-Time Library (RTL) 

rvalues, 7-2 
tutorial information, 4-17 

S 
safe call pragma 

syntax of, 10-26 
used in math.h, 3-14 
use of, 3-14, 3-26, 3-28 

SCA, C-20 to C-26 
Scalar data types, 8-4 to 8-15 

data dependencies introduced during parallel 
processing, 3-16 

debugger access to, 2-23 
declarations, 8-4 

character, 8-4 
enumerated, 8-13 
floating-point, 8-9 
integer, 8-4 
pointers, 8-11 

defined, 8-2 
tutorial information, 421 

_SCANC built-in function, 11-17 
Scope, 9-1 to 9-8 

auto variables, 5-21 
in a compilation unit, 9-2 
in an object module, 9-2 
in a program, 9-2 
lexical scope, 9-4 
link-time scope, 9-4 
of external data, 9-17 
of functions, 5-3 
position of declarations, 9-2 to 9-4 

Screen mode 
debugger, 2-11 
multiprocess debugger, E-17 

Sequential access mode (RMS), 12-4 
Sequential file organization (RMS), 12-2 
Sequential program execution, 3-2 

See also, Parallel processing 
sequential_loop pragma 

syntax of, 10-27 
SET ABORT KEY command, 2-7 
SET ABORT KEY command (DEBUG MP), E-12 
SET BREAK command (DEBUG), 2-15 
SET MODE [NO]DYNAMIC command (DEBUG), 

2-35 
SET MODE [NO]INTERRUPT command (DEBUG MP), 

E-7 
SET MODULE command (DEBUG), 2-10, 2-35 
SET PROCESS command (DEBUG MP), E-8, E-9 
SET SCOPE command (DEBUG), 2-36 
SET SOURCE command (DEBUG), 2-11 
SET TRACE command (DEBUG), 2-17 
SET WATCH command (DEBUG), 2-18 
Shareable images 

linking against the VAX C RTL, 1-29 
/SHARE LINK qualifier, 1-29 
/SHARE qualifier 

to the debugger SET TRACE command, 2-17 
Shift operators, 7-19 
Shift operators (« and »), 7-19 
short data type, 8-4 
SHOW CALLS command (DEBUG), 2-14 
/SHOW CC qualifier, 1-16 
SHOW MODULE command (DEBUG), 2-35 
SHOW SCOPE command (DEBUG), 2-36 
SHOW SYMBOL command (DEBUG), 2-29, 2-36 
Signal handling 

inhibiting parallel processing, 3-10 
/SILENT qualifier 

to the debugger SET TRACE command, 2-17 
_SIMPLE_READ built-in function, 11-18 
_SIMPLE_WRITE built-in function, 11-19 
sizeof keyword, 7-14 
_SKPC built-in function, 11-19 
Source Code Analyzer 

See SCA 
Source code display (DEBUG MP), E-17 
Source display (DEBUG), 2-10, 2-11 

TYPE command (DEBUG), 2-10 
Source lines (DEBUG) 

not available, 2-10, 2-12 
_SPANC built-in function, 11-20 

Index-15 



SS$_NORMAL 
condition value, 13-50 

/STANDARD=PORTABLE CC qualifier, 1-17 
standard pragma, 10-28 
Statements, 6-1 to 6-11 

break, 6-5, 6-10 
case, 6-5 
compound, 6-3 
conditional, 6-4 to 6-7 
continue, 6-10 
control flow, 6-1 to 6-2 
default, 6-5 
do, 6-7, 6-9 
expressions as, 6-3 
for, 6-7, 6-8 
goto, 6-2 
if, 6-4 
interrupting, 6-10 to 6-11 
labels, 6-2 
i ke, 6-7 

looping, 6-7 to 6-10 
null, 6-1 
return, 6-11 
summary of, D-6 
switch, 6-5 
while, 6-9 

static keyword 
used in declarations inside of blocks, 6-3 

static storage class, 9-12 
stddef module 

parallel-processing version, 3-29 
STEP command (DEBUG), 2-13 
STEP command (DEBUG MP), E-7 
Storage allocation, 9-8 to 9-9 

for program sections, 9-8 
attributes of, 14-1 

lifetime of variables, 9-8 
location of, 9-9 
registers, 9-8 
run-time stack, 9-8 

Storage classes, 9-1 to 9-26 
affect on parallel processing, 3-22 
defined, 9-1 
external, 9-13 to 9-14 

definitions and declarations, 9-13 
global, 9-15 
in determining scope, 9-1 
internal, 9-9 

[auto], 9-10 
register, 9-11 

list of classes and specifiers (table), 9-3 

Index-16 

Storage classes (cont'd.) 
list of specifiers and their scope (table), 9-5 
modifiers, 9-23 to 9-26 

concept defined, 9-4 
const, 9-21 
noshare, 9-24 
readonly, 9-25 
volatile, 9-23 

order of keywords in declarations, 9-3 
psect attributes (table), 14-3 
specifiers 

auto, 9-10 
[auto], 9-5 
[extern], 9-5 
globaldef, 9-7 
globalref, 9-15 
globalvalue, 9-19 
(null), 9-5 
register, 9-11 
static, 9-7 

static, 9-12 
tutorial information, 4-5 

Storage-class modifiers 
description of, 9-23 
summary of, D-5 

Storage-class specifiers 
description of, 9-1 
summary of, D-5 

strcpy function 
copying character strings (example), 8-19 
tutorial information (example), 4-23, 4-24 

String data type 
See also, Arrays 
copying, 8-19 
declaration of, 8-19 
NUL-terminated strings, 8-20 

strncpy function 
copying character strings (example), 8-19 

struct keyword, 8-20 
Structures, 8-15 

bit fields, 8-30 
debugger access to, 2-28 
declaration of, 8-20, 8-22 to 8-24 
forward referencing, 8-23 
initialization 

tutorial example of, 4-23 
initialization of, 8-26 
legal and illegal operations on, 8-21 
members of 

references to, 7-6, 8-24 to 8-25 
passed by descriptor, 13-14 



Structures (cont'd.) 
tutorial information, 4-22 
variant aggregates, 8-28 

Substitution 
macro, 10-4, 10-5 
within #include directives, 10-20 

Subtraction operator (—), 7-10 
/SUFFIX qualifier (DEBUG MP), E-18 
_SVPCTX built-in function, 11-21 
switch keyword 

declarations inside of, 6-7 
switch statement, 6-5, 6-7 

tutorial example of, 4-12 
tutorial information, 4-12 

Symbol 
module setting, 2-35 
record, 2-4 
relation to path name, 2-13 

Symbolic constants, 8-1 
sys$close RMS function, 12-6 
sys$connect RMS function, 12-6 
sys$create RMS function, 12-6 
sys$delete RMS function, 12-6 
sys$disconnect RMS function, 12-6 
sys$erase RMS function, 12-6 
sys$get RMS function, 12-6 
SYS$LIBRARY logical, 10-19 
sys$open RMS function, 12-6 
sys$put RMS function, 12-6 
sys$rewind RMS function, 12-6 
sys$update RMS function, 12-6 
SYSGEN U?ility 

tuning fc~r parallel processing, 3-33 to 3-35 
System par~.~meters 

tuning for parallel processing, 3-33 to 3-35 
/SYSTEM qualifier 

to the debugger SET TRACE command, 2-17 
System resources 

DEBUG MP requirements, E-25 to E-26 
VAX C requirements, 3-33 

T 
\t (horizontal tab), 8-7 
Tags of structures and unions, 8-22 

See also, Structures 
See also, Unions 
vacuous declarations, 8-23 

/TERMINATING qualifier (DEBUG MP) 
SET TRr10E command, E-15 

Termination (DEBUG MP), E-11, E-15 

Text libraries, 1-6 
default module file types, 1-6 
VAXCDEF.TLB 

tutorial information, 4-7 
_ TIME__ predefined macro, 11-3 
Token replacement, 10-2 
tolower macro 

tutorial information (example), 4-12 
_toupper macro, 10-4, 10-6 
TPU 

See Editing 
Traceback 

See also, Debugger 
See also, Errors 
run-time errors, 1-32 

Traceback (DEBUG) 
SHOW CALLS command (DEBUG), 2-14 

Tracepoint (DEBUG), 2-17 
Tracepoint (DEBUG MP) 

on activation (multiprocess program), E-15 
on termination (image exit), E-15 
predefined, E-15 

Tuning 
parallel processing environment, 3-30 to 3-37 

Tutorial 
See VAX C tutorial 

TYPE command (DEBUG), 2-10 
Type conversions, 7-13 
typedef keyword, 8-32 
Type specifiers 

discussion of, 8-3 
summary of, D-4 

u 
Unary expressions 

address of, 7-11 
cast, 7-13 
increment and decrement, 7-10 
indirection, 7-11 
negation, 7-10 
one's complement, 7-12 
sizeof, 7-14 

Unary operators 
precedence of, 7-8 

/UNDEFINE CC qualifier, 1-10 
examples and usage, 1-18 

#undef preprocessor directive, 10-4 
union keyword, 8-20 
Unions, 8-15 

debugger access to, 2-28 

Index-17 



Unions (cont'd.) 
declaration of, 8-20, 8-22 
initialization of, 8-26 
members of 

references to, 7-6 
tutorial information, 4-22 
variant aggregates, 8-28 

UNIX system environment, 4-2 
$UPDATE RMS function, 12-6 
User account parameters 

tuning for parallel processing, 3-36 
User-defined functions 

See functions 
User-named psects, 14-2 to 14-5 
User quotas 

DEBUG MP requirements, E-25 to E-26 
VAX C requirements, 3-36 

Utilities 
LINT, 5-22 

V 
\v (vertical tab), 8-7 
Vacuous tag declarations, 8-23 
Values 

defined, 8-2 
of constants, 8-2 
of variables, 8-2 
tutorial information, 4-17 

varargs functions and macros, 5-6 
Variables 

as address expression for SET WATCH command 
(DEBUG), 2-18 

character, 8-4 
declarations 

format of, 8-3 
in overlapping blocks, 5-21 
tutorial information, 4-5 

DEPOSIT command (DEBUG), 2-21 
EVALUATE command (DEBUG), 2-21 
EXAMINE command (DEBUG), 2-20 
global section (DEBUG MP), E-19 
identifiers, 5-17 
nonstatic 

while debugging, 2-18, 2-20 
objects of, 8-2 
values of, 8-2 
watchpoint (DEBUG MP), E-19 

variant struct keyword, 8-28 
variant union keyword, 8-28 
vax11 c predefined macro, 11-4 

Index-18 

VAXC$INCLUDE logical, 10-17 
VAX Calling Standard 

double parameters, 5-12 
parameter lists for VAX C functions, 5-12 
parameter-passing mechanisms, 13-6 
structures as parameters, 5-12, 8-21 
structure sizes exemption for VAX C, 13-14 

VAXCDEF.TLB, 1-6, 10-20 
tutorial information, 4-7 

VAX C language 
See also, Portability concerns 
See also, VAX CRun-Time Library (RTL) 
keywords, 5-18 
list of operators, 7-6 
parallel-processing support, 3-1 to 3-37 
program structure, 5-1 
tutorial information, 4-3 to 4-26 

VAXCPAR.OLB, 3-29 
vaxc predefined macro, 11-4 
VAX CRun-Time Library (RTL) 

definition modules, A-1 
linking against object modules, 1-27 
linking against shareable images, 1-29 
linking options explained, 1-26 
portability concerns, 10-16 
prototypes, 5-11 
tutorial information, 4-6 

VAX C tutorial, 4-4 to 4-26 
addresses, 4-17 
aggregates, 4-21 to 4-26 
AND operator, 4-15 
arguments, 4-5 
arrays, 421 
blocks, 4-11 
break statement, 4-13 
case sensitivity, 4-6 
character strings, 4-21 
comments, 4-4 
compiling and linking, 4-9 
compound statements, 4-11 
conditional execution, 4-10 to 4-15 
data types, 4-5 
definition modules, 4-7 
DIGITAL Command Language (DCL), 4-9 
do statement, 4-14 
equality operator (_ _), 4-11 
executing a program, 4-9 
for statement, 4-15 
function body, 4-5 
functions, 4-4 
getchar, 4-10 



VAX C tutorial (cont'd.) 
if statement, 4-10 
#include preprocessor directive, 4-12 
input/output (I/O), 4-6 
language keywords, 4-6 
linking against RTL libraries, 4-6 
linking against RTL shareable images, 4'-6 
linking a program, 4-9 
loop incrementing, 4^-16 
loops, 4-14 
Ivalue, 4-17 
macros, 4-12 
newline character, 4-8 
OR operator, 4-11 
parameters, 4-5 
pointers, 4-17 to 4-21 
return statement, 4-5 
rvalue, 4-17 
scalars, 4-21 to 4-26 
storage classes, 4-5 
structures and unions, 4-22 to 4-26 
switch statement, 4-12, 4-13 
values, 4-17 
variable declarations, 4-5 
VAX C RTL, 4-6 
VMS, 4-9 
VMS file extensions, 4-9 
VMS file names, 4-9 
void functions, 4-5 
white space, 4-4 

vax predefined macro, 11-4 
VAX Text Processing Utility 

See Editing 
VAXTPU 

See Editing 
Visible process (DEBUG MP), E-3, E-9 
%VISIBLE_PROCESS logical (DEBUG MP), E-13 
VMS operating system 

See also, Record Management Services (RMS) 
RMS, 12-1 
tuning for parallel processing, 3-30 

vms predefined macro, 11-4 
VMS Run-Time Library (RTL), 13-1 
void keyword 

as a function parameter, 5-5 
as a function return type, 5-5 
functions, 8-32 
pointers, 8-13 
tutorial information, 4-5 

void pointers, 8-13 
volatile modifier, 9-23 

W 
/V1IARNINGS CC qualifier, 1-18 
Watchpoint (DEBUG), 2-18 

nonstatic variable, 2-18 
Watchpoints (DEBUG MP), E-19 

global section, E-19 
while keyword 

loop decomposition in paralle! processing, 3-2 
while statement, 6-9 
White space, 5-22 
Widening conventions 

argument-conversion rules, 5-13 
Working set size 

tuning for parallel processing, 3-37 
WRITE GPR built-in function, 11-21 

X 
XAB RMS data structure, 12-6 
XOR bitwise operator (^), 7-17 

Index-19 





How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-343-4040 
before placing your electronic, telephone, or direct mail order. 

Electronic Orders 
Zb place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using 
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store, 
call 800-DIGITAL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location 

Continental USA, 
Alaska, or Hawaii 

Call 

800-DIGITAL 

Puerto Rico 809-754-7575 

Canada 800-267-6215 

International 

Internals

Contact 

Digital Equipment Corporation 
P.O. BOX CS2008 
Nashua, New Hampshire 03061 

Local DIGITAL subsidiary 

Digital Equipment of Canada 
Attn: DECdirect Operations KA02/2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

Local DIGITAL subsidiary or 
approved distributor 

SDC Order Processing - WMO/E 15 
or 
Software Distribution Center 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

sFor internal orders, you must submit an Internal Software Order Form (EN-01740-07). 





Reader's Comments Guide to VAX C 
AA—L370 D—T E 

Please use this postage-paid form to comment on this manual. If you require a written 
reply to a software problem and are eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less 

What I like best about this manual is  

What I like least about this manual is  

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version  of the software this manual describes. 
Name/'I`itle   Dept.  

Company   Date  

Mailing Address  

Phone  



— Do Not Tear -Fold Here and Tape 

d a9ao a 
TM 

— Do Not Tear -Fold Here 

No Postage 
Necessary 
if Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARO MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

ill~~~~~ll~ll~~~~ll~~~~l~ll~l~~l~l~~l~~l~l~~~l~ll~~l 



Reader's Comments Guide to VAX C 
AA—L370D—TE 

Please use this postage-paid form to comment on this manual. If you require a written 
reply to a software problem and are eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less 

What I like best about this manual is  

What I like least about this manual is  

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version  of the software this manual describes. 
Name/'I`itle   Dept.  

Company   Date  

Mailing Address  

Phone  



Do Not Tear -Fold Here and Tape 

d 9 9 

— Do Not Tear •Fold Here 

fill-0 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

No Postage 
Necessary 
if Mailed 

in the 
United States 






