
Guide to the
VAXIab Laboratory
Signal-Processing
Routines
Order Number: AA-KP01 B-TE

August 1988

This document describes the VAXIab laboratory signal-processing routines. It
provides an overview of laboratory signal-processing concepts and presents
detailed reference information about the procedures you use to perform Fourier
transforms, correlation functions, filtering of data, and thermocouple conversion.

Revision/Update Information: This is a revised document.

Operating System and Version: VMS Version 5.0

Software Version: VAXIab Software Library Version 1.3

digital equipment corporation
maynard, massachusetts

First Printing, December 1987
Revised, August 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1987, 1988 Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The Reader's Comments form on the last page of this document requests the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC MicroVAX
DECnet Q-bus
DRB32 VAX
LN03 VAXcluster
LN03 Plus VAX GKS
LN03R VAXIab

VAXstation
VMS
VT

d
agao

This document was prepared using VAX DOCUMENT, Version 1.0.

a

TM

Contents

PREFACE ix

CHAPTER 1 INTRODUCTION TO THE VAXIab SIGNAL-PROCESSING
ROUTINES

1.1 OVERVIEW OF SIGNAL-PROCESSING ROUTINES

1-1

1-1

1.2 DATA FORMAT TRANSLATION FOR ADCs AND DACs 1-3
1.2.1 Binary Number Representation 1-3
1.2.2 Offset Binary Number Representation 1-4
1.2.3 Two's Complement Number Representation 1-4

1.3 LANGUAGES THAT DO NOT SUPPORT COMPLEX • 8 DATA TYPES 1-5

CHAPTER 2 PERFORMING FOURIER TRANSFORMS AND CORRELATION
FUNCTIONS 2-1

2.1 DEFINITION OF THE FOURIER TRANSFORM 2-1
2.1.1 .Mathematical Definition of Continuous Fourier

Transform 2_3
2.1.2 Mathematical Definition of Discrete Fourier

Transform 2_3

2.2 DEFINITION OF FOURIER TRANSFORM IN TWO DIMENSIONS 2-5

2.3 DEFINITION OF THE CORRELATION FUNCTION 2-7

2.4 FOURIER TRANSFORM AND CORRELATION FUNCTION
REFERENCES 2-8

1~J
CHAPTER 3 DIGITAL FILTERING 3-1

3.1 DEFINITION OF DIGITAL FILTERING 3-1
3.1.1 Polynomial Filtering 3-1
3.1.2 Nonrecursive Filtering 3-3

3.2 DIGITAL FILTERING REFERENCES 3-13

CHAPTER 4 SPECTRAL WINDOW FILTERING 4-1

4.1 OVERVIEW OF SPECTRAL WINDOW FILTERING

4.2 THE PERIODOGRAM TECHNIQUE

4.3 SPECTRAL WINDOW ROUTINES AND ALGORITHMS

4.4 SPECTRAL WINDOW FILTERING REFERENCES

4-1

4-2

4-4

4-14

CHAPTER 5 THERMOCOUPLE CONVERSION 5-1

5.1 OVERVIEW OF THERMOCOUPLE CONVERSION 5-1

CHAPTERS SIGNAL-PROCESSING ROUTINE CALL REFERENCE
DESCRIPTIONS 6-1

6.1 OVERVIEW OF THE LABORATORY SIGNAL-PROCESSING
ROUTINE FORMAT 6-1

6.2 SIGNAL-PROCESSING ROUTINE CALL SUMMARY AND
DESCRIPTIONS

LSP$APPLY_WINDOW_TABLE 6-5

LSP$BUILD_WINDOW_TABLE 6-8

iv

6-2

LSP$CORRELATION

LSP$FFT_COMPLEX

LSP$FFT_COMPLEX_2D

LSP$FFT_REAL

LSP$FILTER_NONREC

LSP$FILTER_POLY

LSP$FILTER_POLY_1 ST_DERIV

LSP$FILTER_POLY_2ND_DERIV

LSP$FILTER_POLY_3RD_DERIV

LSP$FORMAT_TRANSLATE_ADC

LSP$FORMAT_TRANSLATE_DAC

LSP$HIST_F

LSP$HIST_I

LSP$PHASE_ANGLE

LSP$PHASE_ANGLE_2D

LSP$POWER SPECTRUM

LSP$SPECTRAL_WINDOWS

LSP$THERMOCOUPLE_X

6-11

6-14

6-17

6-20

6-23

6-26

6-29

6-32

6-35

6-38

6-41

6-45

6-49

6-53

6-56

6-59

6-62

6-65

CHAPTER 7 LABORATORY SIGNAL-PROCESSING ERROR HANDLING

7.1 OVERVIEW

7.2 CHECKING ROUTINE CALL STATUS

7.3 SYMBOLIC STATUS VALUES AND DESCRIPTIONS

7-1

7-1

7-2

7-3

v

CHAPTER 8 OVERVIEW OF ONLINE SAMPLE PROGRAMS 8-1

APPENDIX A MATHEMATICS AND STATISTICS ROUTINES A-1

A.1 OVERVIEW OF MATHEMATICS AND STATISTICS ROUTINES

A.2 MATHEMATICS ROUTINE CALL SUMMARY

A.3 STATISTICS ROUTINE CALL SUMMARY

A-1

A-2

A-7

APPENDIX B THE PEAK-PROCESSING ROUTINE B-1

B.1 BUILDING THE PEAK ROUTINE B-1
8.1.1 Enabling the No Filter Option B-2

B.2 OVERVIEW OF THE PEAK ROUTINE B-3

B.3 DEFINITION OF BASIC TERMS AND CONVENTIONS B-4

B.4 THE PEAK-PROCESSING ALGORITHM: PROCESSING RAW DATA B-5
B.4.1 Averaging of Input Data B-5
B.4.2 Use of th® Digital Filter B-6
B.4.3 Trend Detection -- Application of the Gate Factor _ B-7
B.4.4 Calculation of Area Under the Peak B-8
B.4.5 Algorithm Definition of the Width of a Peak B-8
B.4.6 Algorithmic Detection of the Baseline 8-10
B.4.7 Flow Charts for the PEAK Routine 8-11

B.5 HOW TO CALL THE PEAK-PROCESSING ROUTINE

B.6 USING THE PEAK-PROCESSING ROUTINE

B.7 SAMPLE PROGRAM USING THE PEAK ROUTINE

vi

B-28

B-33

B-35

~.J

INDEX

EXAMPLES

3-1 Using the LSP$FILTER_NONREC Routine 3-7

4-1 Applying a Spectral Window . . 4-9

B-1 Sample Program Using the PEAK Routine B-36

FIGURES
2-1 Forward Fourier Transform 2-2

3-1 Digital Filter Transfer Function Forms 3-3

3-2 Lowpass Nonrecursivs Filter for Varying nterms 3-5

3-3 Lowpasa Nonrecursivs Filter for Varying wiggles 3-6

4-1 The Five Spectral-Window Types 4-6

4-2 Raw, Unwindowed Data 4-7

4-3 Windowed Data 4-8

B-1 Flow of the PEAK Routine B-4

B-2 Calculation of True Peak Width B-9

B-3 Calculation of Estimated Peak Width B-10

B-4 Flow Chart for Peak Processing: Initialization, Data Averaging,
and Application of Digital Filter 8-15

B-5 Flow Chart for Peak Processing: Calculation of Peak Width and
Search for Baseline B-17

B-6 Flow Chart for Peak Processing: Area Calculation B-19

B-7 Flow Chart for Peak Processing: Determining the Baseline B-21

B-8 NEXTPT Routine —Peak Processing B-23

B-9 RITOUT Routine —Peak Processing B-24

B-10 Flow Chart of Peak Events B-25

B-11 INPTR, INLAST, and NPEAKS Point to Slots B-34

B-12 Actual Plot of the Input Data in Example C-1 8-38

vii

TABLES

2-1 Fourier Transform of aReal-Valued Dataset 2-5

3-1 Controlling Filtering Type 3-4

4-1 Spectral Window Function Symbolic Status Definition Files 4-14

5-1 Thermocouples with Conversion Routines 5-1

5-2 Thermocouple Temperature and Voltage Ranges 5-2

6-1 Signal-Processing Routine Call Summary 6-2

7-1 Error-Handling Symbolic Status Definition Files 7-2

8-1 LSP Online Sample Programs 8-2

A-1 VAXIab Mathematics Routine Call Summary A-2

A-2 VAXIab Statistics Routine Call Summary A-7

B-1 Switch Settings for Significant Events in Peak Definition B-12

B-2 Definition of Symbols B-13

B-3 Definition of Peak Events B-26

viii

Preface

Intended Audience
The Guide to Ehe VAXIab Laboratory Signal-Processing Routines is intended
for use by scientists and engineers working in a laboratory environment.
You can use this document initially as a training guide for learning the
basic components of the Laboratory Signal-Processing (LSP) application
software. Later, you can use it as a reference guide to look up specific
information about the LSP application routines, such as how to use an
optional parameter.

This guide assumes a basic understanding of computer concepts and an
extensive understanding of signal-processing concepts and techniques.

Document Structure
The Guide to VAXIab Laboratory Signal•Processing Routines describes how
to use the signal-processing routines to perform Fourier transforms,
correlation functions, filtering of data, and thermocouple conversion.

ix

The document is divided into 8 chapters and 2 appendixes:

Chapter Number Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Appendix A

Appendix B

Presents an overview of the laboratory signal-processing
routines, including information about data format trans-
lation, and binary, offset binary, and two's compliment
number representation.

Presents definitions of Fourier transform and correla-
tion functions, including mathematical definitions of
discrete and continuous Fourier transform, and Fourier
transform in two dimensions.

Presents digital filtering, including information on
polynomial filtering, and nonrecursive filtering

Presents an overview of data filtering with spectral
windows and the periodogram technique, including a
brief description of the spectral windowing routines and
the algorithms used to generate them.

Presents an overview of thermocouple conversion
including tables showing the accuracy of conversion and
thermocouple temperature and voltage ranges.

Provides detailed reference descriptions of the LSP
routines, including routine call syntax, argument defini-
tions, and error message condition values.

Explains the LSP error handling fa ' 'ty and provides
a list of all LSP error messages and suggested recovery
procedures.

Describes the online LSP sample programs shipped with
your VAXIab system.

Describes the mathematics and statistics routines,
including information about how to use the routines to
perform mathematical and statistical analysis of data.

Provides a summary of the PEAK-Processing (PEAK)
Routine, including information on how to create a
FQRTRAN program that calls the PEAK routine under
the VMS operating system.

Associated Documents
In addition to this guide, the VAXIab documentation set includes the
following Manuals:

• The VAXIab Master Index provides index entries from all documents
in the VAXIab V1.2 documentation set.

• The VAXIab Installation Guide details how to install the VAXIab
software.

• Getting Started with VAXIab is your introduction to the VAXIab
system and application software. This document describes the
optional hardware you can configure in a VAXIab system, the
VAXIab software, and the related software you need to use with your
VAXIab system, such as VAX GKS and ahigh-level programming
language.

This document also describes MANAGER, an interactive, menu-
driven utility you can use to perform routine system management
tasks. Lastly, this document presents guidelines for developing
application programs with VAXIab and programming language-
specific considerations, such as array dimensioning and declaring
variables and data types.

• The Guide to the VAXIab Laboratory I/O Routines gives an overview of
the LIO facility and describes how to initiate, control, process, and
terminate I/O to and from VAXIab I/O devices.

• The Guide to the VAXIab Interactive Data Acquisition Tool describes
how to communicate with VAXIab through the Interactive Data
Acquisition Tool (IDAT) to establish parameters for data acquisition
and to initiate, control, obtain, analyze, and plot real-time data.

• The Guide to the VAXIab Laboratory Graphics Package provides a
comprehensive overview of the LGP facility, and explains how
to specify plotting attributes and plot real-time data produced
by calculations in two-dimensions, three-dimensions, and two-
dimensional contours from athree-dimensional view.

xi

The following is a list of associated software documents to reference for
additional information about programming concepts and techniques not
covered in this guide.

• The Laboratory Interfacing Handbook presents detailed descriptions of
laboratory I/O concepts. If you are unfamiliar with laboratory data
acquistion and control techniques, such as instruments, signals, and
interfaces, or if you require additional information about computers,
I/O hardware, or applications, read this handbook before you begin
using the VAXIab system.

• The VAX GKS Reference Manual, Volume I and Volume II provide de-
tailed information about advanced graphics programming concepts
and techniques.

• The VAX Realtirne Llser's Guide describes those features of VAX
systems which pertain to real-time applications in scientific and
industrial settings.

xii

Conventions
The Guide to VAXIab Laboratory Signal-Processing Routines uses the follow-
ing documentation conventions:

Convention Meaning

Italics Words, phrases, or characters appearing in
italics indicates one of the following:

• An associated document

• A group of related LSP routines

Bold A boldface word or phrase indicates one of the
following:

• Emphasis is on an important concept or
word

• A subroutine argument in text

• A subsection within a routine or parame-
ter reference description

RETURN

CTRL/x

Ellipses

[Brackets]

UPPERCASE letters

LSP$THERMUC~UPLE x

Press the key labeled Return on the terminal
keyboard.

Press the key labeled CTRL on the terminal
keyboard while simultaneously pressing the
"x" key. Here, "x" is C, Y, or Z.

Vertical ellipses indicate that portions of
a display or programming example were
excluded for presentation purposes.

Square brackets enclose optional parameters or
arguments in routine lines.

All VAXIab routine names, VAXIab utilities
(1~~IANAGER and IDAT), and DCL com-
mands and command strings are presented in
UPPERCASE letters.

Here x designates the thermocouple type, and
is either B, E, j, K, R, S, or T. See Chapter 5.

Chapter 1

Introduction to the VAXIab
Signal-Processing Routines

This chapter provides an overview of the VAXIab Laboratory Signal-
Processing Routines (LSP), as well as additional information about data
format translation; binary, offset binary, and two's complement number
representation; and languages that do not support COMPLEX * 8 data
types.

1.1 Overview of Signal-Processing Routines

The VAXIab Laboratory Signal-Processing Routines (LSP) are a set of
subroutines designed to perform a variety of standard tasks commonly
encountered in the laboratory environment. Subroutines are provided
to perform the following:

• Data format translation

The LSP$FORMAT_TRANSLATE_ADC routine translates raw
numbers obtained from an analog-to-digital converter into floating-
point voltages. The LSP$FORMAT_TRANSLATE_DAC routine
translates floating-point voltages into raw numbers appropriate for
input to adigital-to-analog converter.

• Fast Fourier transformation

The routines LSP$FFT_COMPLEX, LSP$FFT_COMPLEX_2D, and
LSP$FFT_REAL calculate the discrete Fourier transform of complex-
valued data in one and two dimensions and of real-valued data in
one dimension. You can also perform inverse transformation using
these routines.

Introduction to the VAXIab Signal-Processing Routines 1-1

• Power spectrum

The LSP$POWER_SPECTRUM routine determines the power spec-
trum (the relationship between power and signal frequency) in a set
of Fourier coefficients.

• Phase angle

The LSP$PHASE_ANGLE and LSP$PHASE_ANGLE_2D routines
convert complex numbers to phase angles and amplitudes in one
and two dimensions, respectively.

• Digital filtering

The following routines perform general-purpose nonrecursive
filtering, filtering for smoothing, filtering with first, second, or third
derivative output, respectively, and spectral window filtering:

— LSP$FILTER_NONREC

— LSP$FILTER_POLY

— LSP$FILTER_ 1 ST_DERIV

— LSP$FILTER_2ND_DERIV

— LSP$FILTER_3RD_DERIV

— LSP$SPECTRAL_WINDOWS

— LSP$BUILD_WINDOW_TABLE

— LSP$APPLY_WINDOW TABLE

• Interval histogramming

The LSP$HIST_I and LSP$HIST_F routines count the number of
elements in a data stream that fall into one or more predefined
categories.

• Correlation function

The LSP$CORRELATION routine provides a discrete method of
calculating the correlation function.

• Thermocouple conversion routines

The LSP thermocouple conversion routines provide a method for
converting thermocouple voltages to temperatures.

Each routine is individually discussed and arranged alphabetically in
Chapter 6, Signal-Processing Routine Call Reference Descriptions.
Chapter 8, Overview of Online Sample Programs, summarizes the
online sample programs that illustrate the appropriate use of each of the
LSP routines.

1-2 Introduction to the VAXIab Signal-Processing Routines

1.2 Data Format Translation for ADCs and DACs

Continuous quantities, such as voltages, can be represented in digital
format. However, the discrete numbering systems used by analog-to-
digital converters (ADCs) and digital-to-analog converters (DACs) can be
different from the usual 16- and 32-bit integer formats. Instead, ADCs
and DACs use the following types of number representation:

• Binary

• Offset binary

• Two's complement

1.2.1 Binary Number Representation

A common data format for ADCs and DACs is the binary format. This
format uses a direct lineaz relationship between the ADC or the DAC
and the data received from (ADC or sent to (DAC) the device. This
data format is unipolar. Zero volts is the minimum. All integers are
unsigned; no bit determines whether the signal is positive or negative.

The following table gives an example of the binary number representa-
tion for both ADCs and DACs:

iZ-BIT UNIPOLAR ADC AND iZ-BIT UNIPOLAR DAC rich
BINARY CODING

ADC DAC

Full-scale Output Code
input voltage (HEX)

+9.9976 OFFF

0.0 0000

Full-scale
output voltage

+9.9978

0.0

Input Code
(HEX)

OFFF

0000

introduction to the VAXIab Signal-Processing Routines 1-3

x.2.2 Offset Binary Number Representation

The offset binary format is similar to the binary format, except that
offset binary is used with a bipolar converter. The scale is offset so
that zero volts is represented by the mid point of the scale. Zero
represents the lowest voltage, and all bits high represent the highest
voltage possible. The highest voltage possible with binary number
representation is higher than that obtainable with offset binary number
representation.

The following table gives an example of the offset binary number
representation for both ADCs and DACs:

1~-BIT BIPOLAR ADC AND i~-BIT BIPOLAR DAC with
OFFSET BINARY CODING

ADC DAC

Input Voltage Output Code Output Voltage Input Cods
(HEX) (HEX)

+9.9961 OFFF +9.9961 OFFF

0.0 0800 0.0 0800

-10.0000 0000 -10.0000 0000

1.2.3 Two's Complement Number Representation

The two's complement format uses the most significant bit (MSB) with
respect to the number of bits of resolution of the device to denote the
sign (+ or -) of the converted voltage. If the MSB is high, then the
voltage is negative. If the MSB is low, then the voltage is positive.

Integer numbers are most commonly represented in two's complement
format. The MSB is the sign bit.

1-4 Introduction to the VAXIab Signal-Processing Routines

The following table shows the two's complement number representation
for both ADCs and DACs:

1~-BIT BIPOLAR ADC AND iZ-BIT BIPOLAR DAC frith
TYO' S COMPLE1yENT CODING

ADC DAC

Input Voltage Output Code Output Voltage Input .Cod•
CxEx) CxEx)

+9.9961 07FF +9.9961 07FF

0.0 0000 0.0 0000

-10.0000 F800 -10.0000 F800

1.3 Languages That Do Not Support COMPLEX*8 Data
Types

Some high-level languages, such as Pascal, do not support the
COMPLEX*8 data type used throughout the VAXIab signal-processing
routines. If you are programming in a language that does not support
the COMPLEX*8 data type, you can declare a REAL*4 array or variable
as twice the length of a COMPLEX*8 array or variable. You need to
distinguish between the real and imaginary components of the complex
number.

The foi~owing figure shows the storage format of COMPLEX*8 variables,
and of REAL*4 variables with separation of the real and imaginary
components.

VARIABLES DEFINED AS COMPLEXxB VARIABLES DEFINED AS REAL*4

ARRAY(1)
which contains real
and imaginary parts

ARRAY(2)
which contains real
and imaginary parts

REAL part of AR RAY(1)

IMAGINARY part of ARRAY(1)

REAL part of AR RAY(2)

IMAGINARY part of ARRAY(2)

1st longword

2nd longword

3rd longword

4th Iongword

MR-1351-G E

Introduction to the VAXIab Signal-Processing Routines 1-5

Alternatively, you can set up the complex array as atwo-dimensional
(REAL*4) array so that you can access either the real or the imaginary
components with the same index. The ordering of the array is de-
pendent upon the language in which you are programming. See the
individual language manual for language-specific information about the
ordering of two-dimensional arrays.

1-6 Introduction to the VAXIab Signal-Processing Routines

Chapter 2

Performing FourierTransformsand
Correlation Functions

This chapter provides an introduction to Fourier transforms and cor-
relation functions, including mathematical definitions of discrete
and continuous Fourier transforms and the Fourier transform in two
dimensions. A reference section is also included.

2.1 Definition of the Fourier Transform

Fourier transformation decomposes a signal into component sine and
cosine representation. LSP provides three routines that perform the fast
Fourier transform (FF'1~. The FFT routines provide you with an efficient
means of numerically approximating the analytical or continuous Fourier
transform.

The forward Fourier transform is a mathematical operation that converts
numbers in the time domain to numbers in the frequency domain.
Figure 2-1 shows the effects of the forward Fourier transform.

Performing Fourier Transforms and Correlation Functions 2-1

Figure 2-1: Forward Fourier Transform

-2n

I f(t) = cos(t>

0~
i

F(t) F(f) 11F(~)

- ~t
F.T.
f► -~

- ~~.5

 ~----------f
2n -'/:~ ~ Yzn

I

~ g(t) _ .5 'SIN (2t)
1.5

0
-n

I ~•
a

t

1

F.T.
4~

'`~
_.~. _

I
i

SIN(2t)

— ̀ `~ t ►n

I G(f)

1 i
i

F.T.
M

H(f)

t
I .5

 -1-+-1 ---------f
-'/zn ~ '/:~r

~fl

H(f)

1iG(~ 25 ~ ~

-------~--~---~ ------ f
_1 ~
~ -.25

11H(fl

~ 25 I ~

. -~-- " -------f

where

f(t), g(t), and h(t) are functions of time.

F(f), G(f), and H(f) are the real components of the forward Fourier
transforms of f(t), g(t), and h(t), respectively.

jF(f), jG(f), and jH(f) are the imaginary components of the forward
Fourier transforms of f(t), g(t), and h(t), respectively.

You can also perform the inverse Fourier transform. The inverse
Fourier transform converts a function in the frequency domain to an
expression .in the time domain. Both forward and inverse transform
operations are provided in the FFT routines LSP$FFT_COMPLEX,
LSP$FFT_COMPLEX_2D, and LSP$FFT_REAL. See Chapter 6, Signal-
Processing Routine Call Reference Descriptions, for information about
using these routines.

2-2 Performing Fourier Transforms and Correlation Functions

2.1.1 Mathematical Definition of Continuous Fourier Transform

The analytical expression for the forward Fourier transform for continu-
ous functions is given as:

00

H~f) = f h(t)e~-,i2xft)dt
_~

where

H(~ is a function in the frequency (fl domain.
h(t) is a function in the time (t) domain.
j is the square root of -1.

The inverse operation is given as:

h~t) = f H~f)e~2~t}')df
-oo

Variations on the above definitions do exist. See the list of references in
Section 2.4, Fourier Transform and Correlation Function References, for
information about where to find the various definitions of the forward
and inverse Fourier transforms.

2. ~ .2 Mathematical Definition of Discrete Fourier Transform

A digital computer cannot perform the integration indicated by the
mathematical expressions for the continuous Fourier transform. A
digital computer can only deal with discrete data points. Thus, the FFT
routines must use a method known as the discrete Fourier transform to
approximate the continuous Fourier transform at discrete frequencies.

The discrete Fourier transform does not process a continuous function.
Instead, it processes discrete points that give only an approximation of
the continuous function. The mathematical expression of the discrete
Fourier transform is:

N-1

n=0

Performing Fourier Transforms and Correlation Functions 2-3

The inverse operation is given as:

N-1

h~n~ — N ~ H~k~e~92~rnk)/N

k=0

Note that the n and the k used in these two equations are indices, and
that h(n) and H(k) represent discrete functions of equispaced data in the
time and frequency domains, respectively, with length N.

Although the FFT routines use the discrete Fourier transform algorithm
as a model, they also take advantage of certain computational shortcuts
to reduce the time required to evaluate the resulting data. Because of
this computational time reduction, the shortcut method used by the
routines is known as fast Fourier transform.

Using these discrete formulas does not present an efficiency problem
when transforming small numbers of data points. However, when N
is a large number, analysis shows that the number of computational
steps required when using the discrete Fourier transform algorithm is
proportional to N2. The fast techniques enable the calculation to be
proportional to N In (N) computational steps.

The LSP$FFT_COMPLEX and LSP$FFT_REAL routines transform N
number of data points. A restriction inherent in these subroutines is

that N be a power of 2; that is, N = 2M

where

M is between 1 and 15, inclusive.

When this constraint is impractical, techniques such as zero-filling can
be used.

Because of the symmetry properties of a Fourier transform of real-
valued data, only half of the output data needs to be stored. When the
Fourier transform of areal-valued data sequence is transformed, the
following identity results from the symmetry equation:

where

h*(k) is the complex conjugate of h(k).
k = 0, 1, 2, ... N12.

2-4 Performing Fourier Transforms and Correlation Functions

This means that the resulting output array is symmetric around the
(N/2) + 1 transformed data point. There is no need to store data past the
(N/2) + 1 point since the complex conjugate is easily computed in one
simple loop. This method is referred to as reduced-symmetric storage.

Consider the Fourier transform of areal-valued dataset of length 8. The
resulting array of length 5 consists of complex numbers denoted as
A,. through E,. (real) and At through Et (imaginary). The A= imaginary
term and the E~ imaginary term are always equal to 0. Performing
a Fourier transform produces array values 1-5, and the equation,
H(N - k) = H* (1~), produces array values 6-8. Note that A,. is the

term which is independent of frequency. Table 2-1 uses these array
values.

Table 2-1: Fourier Transform of aReal-Valued Dataset
Array Location Term Term

1

2

3

4

5

6

7

8

Ar

B r

Cr

D T

E*

D r

Cf

Br

At

B;

C=

D;

Et

-Dt

- C:

--Bt

See Section 2.4, Fourier Transform and Correlation Function
References, for further information.

2.2 Definition of Fourier Transform in Two Dimensions

The one-dimensional discrete Fourier transform (DFT) results from
interpreting afinite-duration sequence as one period of a periodic
sequence and applying the discrete Fourier series. In a similar manner,
you can apply the two-dimensional Fourier series to represent atwo-
dimensional sequence that is nonzero for only a finite area in the x, y
plane. Such a sequence is referred to as a finite-area sequence, and
is the two-dimensional counterpart to afinite-duration sequence. The
resulting Fourier representation is referred to as the two-dimensional
discrete Fourier transform.

Performing Fourier Transforms and Correlation Functions 2-5

Thus, with H(kl,k2) denoting the discrete Fourier transform of h(ni,n2},
the mathematical expressions for the discrete Fourier transform pair are:

Nl-1N2-1

~(~1~ ~2~ ~ ~ ~(nl~
n2)e()2~rkln1)/N1e(-)2~rk2n2)/N2

nl =0 n2 =0

1 Nl -1 N2-1
(j2~kini)/Ni (j2~rk2n2)/Nz h(~1~ n2~ — ~ ~ ~ H(k1~ ~2~e e

Ni N2
kl =0 k2 =0

The two-dimensional discrete Fourier transform can be rewritten as
f~ilows:

Nl -1 N2-1

~(~1~ k2) — ~ ~ h(nl~
n2)e()2~rkZn2)/N2~e(-j2xkin1)/Nl

nl =0 n2 =0

The quantity in brackets, G(nl,k2), is atwo-dimensional sequence which
allows H(kl ,k2) to be rewritten as follows:

N2-1

G(ni~ ~2~ — ~ htn1~
n2)e()2~k2n2)/N2

n2 = 0

Nl -1

H(~1~ ~2~ — ~ G(n1~
~2)e()2~rnik2)/Nl

n1= 0

Each column of G is the one-dimensional discrete Fourier transform of
the corresponding column of x. Each row of H is the one-dimensional
discrete Fourier transform of the corresponding row of G. You can
compute atwo-dimensional Fourier transform by first performing a
one-dimensional tranform on the columns of h(ni,n2}, then on the row
of the resultant G(nl,k2). You can also apply a similar method to the
inverse discrete Fourier transform.

2-8 Performing Fourier Transforms and Correlation Functions

2.3 Definition of the Correlation function

You use the correlation function to produce an estimate of the de-
gree of similarity between two functions when one of the functions
is shifted either in time or by some other independent variable. You
can also use the correlation function on one function; this is known as
autocorrelation.

Mathematically, the correlation function is:

z(B) * y(B + t)dB
_~

where
R,~y (t) is the correlation function of the two functions x and y, and t is
the time shift.

B is a dummy variable of integration.

Just as the continuous Fourier transform has a discrete analog, the
correlation function also has a discrete analog, which is:

1 N-i-t

Rxv~t~ = N ~ ~~k)y~k + t)
k=0

where
k is an index.

N is the total number of data points.

The discrete autocorrelation equation is:

1 N-1-t

Rxx(t) = N ~ ~(k)z(k + t)
k=0

For large records of data, it is impractical to calculate correlation or
autocorrelation using the discrete analog equations above. Since the
correlation calculation is closely related to the Fourier transform, com-
putation time can be substantially reduced by using the fast Fourier
transform methods.

See Section 2.4, Fourier Transform and Correlation Function
References, for the further information about the correlation func-
tion. See the routine call reference description for information about
the LSP$CORRELATION routine.

Performing Fourier Transforms and Correlation Functions 2-7

2.4 Fourier Transform and Correlation Function
References

Further information about the fast Fourier transform operation and
the correlation and autocorrelation functions can be obtained in the
following references:

Blackman, R.B., and J.W. Tukey. The Measurement of Power Spectra. New
York: Dover Publications, 1958.

Bracewell, R.N. The Fourier Transform and Its Application. New York:
McGraw-Hill Book Company, 1978.

Brigham, E.O. The Fast Fourier Transform. Englewood: No Such Press,
1980.

Burrus, C.S., and T.W. Parks. DFT/FFT and Convolution Algorithms. New
York: Wiley-Interscience, 1985.

Elliot, D.F., and K.R. Rao. Fast Transforms: Algorithms, Analyses,
Applications. Orlando: Academic Press, 1982.

2-8 Performing Fourier Transforms and Correlation Functions

Chapter 3

Digital Filtering

This chapter provides an overview of digital filtering, including inf orma-
tion on polynomial filtering and nonrecursive filtering.

3.1 Definition of Digital Filtering

You use the technique of digital filtering to eliminate certain frequency
components from a signal that is corrupted by noise. The VAXIab
signal-processing routines provide two types of digital filters:

• Filters which are based on simple interpolating polynomials and
which act as lowpass filters capable of producing derivative informa-
tion.

• A nonrecursive (finite impulse response) filter which can be used as
either a lowpass, highpass, bandpass, or bandstop (notch) filter.

3.1.1 Polynomial Filtering

You can achieve simple but effective filtering by the method of least-
squares. Using this method, a group of equispaced data is presented
and the best (in aleast-squares sense) polynomial is fitted at neigh-
boring data values. This method weights the individual datum by its
neighboring data to substantially reduce noise.

Digital Filtering 3-1

Assume you have a group of equispaced data of length N. Pick a win-
dow size k that is substantially less than N. The method of polynomial
least-squares (in principle) is used to calculate the polynomial coeffi-
cients ap through a~, where j denotes the order of the interpolating basis
function for a polynomial of form:

y(x} = ap -~ alx -I- a2x2 -~- a~ x~

All k data points x = 1, 2, 3, ... k are used for this calculation. Note
that k is an odd number. The y(x) is calculated for x = (k + 1)12 (the
midpoint), and this ideal data point is used as the output value. The
next k values used are x = 2, 3, 4, ... k + 1. The least-squares function
(above) is repeated, and the ideal midpoint is used for the next output
value. This procedure is repeated until all of the data is input.

The derivative filters operate in the same manner, except that the
derivative of the above equation is calculated by rearranging the
equation to produce derivative output. The polynomial filters use
the curve-fitting approach implemented in convolution weights, so
they filter quickly. These filters are lowpass filters with good roll-off
characteristics. However, you can obtain faster roll-off by using the
nonrecursive filter (LSP$FILTER_NONREC). See Section 3.2, Digital
Filtering References, for references containing further information about
digital filtering.

In all of the filters (both polynomial and nonrecursive), certain data
points at the beginning and end of the dataset are not filtered. For
the polynomial filters (LSP$FILTER_POLY), the first (k-1)/2 and the last
(k-1)12 points are not filtered.

For the derivative filters, the first (k-1)12 and the last (k-1)12 data points
are included as zeros in the output array. See Chapter 6, Signal-
Processing Routine Call Reference Descriptions, for further information
about filtering windows.

3-2 Digital Filtering

3.1.2 Nonrecursive Filtering

Use the LSP$FILTER_NONREC routine to perform nonrecursive fil-
tering in either lowpass, highpass, bandpass, or bandstop (notch)
mode.

The transfer function of this digital filter is denoted as H(~. Putting a
sinusoidal function of frequency f into the filter results in the output
being the same as the sinusoid, except that its amplitude is multiplied
by H(~. The transfer function H(~ can take on any of the forms shown
in Figure 3-1.

Figure 3-1: Digital Filter Transfer Function Forms

1

H(f)

0

H(f)

0

Ideal lowpass filter

f1
frequency

Ideal bandpass filter

Ideal highpass filter

1

H(f)

0
fc 0 f1 fc

frequency

Ideal bandstop filter

1

H(f)

0
f1 f2 fc

frequency
0 f1 f2 fc

frequency

MR-1352-GE

where

fc refers to the Nyquist frequency: fc = 1/(2at).
at is the time between data samples.
fl, f2 refers to the frequency values where you apply filtering.

Digital Filtering 3-3

1r~
These ideal filters represent an infinitely sharp band; in practice, as
is shown below, the vertical lines are skewed. Table 3-1 shows the
flow and (high argument values you use in the LSP$FILTER_NONREC
routine to control the type Of filtering.

Table 3-1: Controlling Filtering Type
For a filter type of: Set FLOW to: Set FHIGH to:

No filtering 0 1

Lowpass filter 0 0 < FHIGH < 1

Highpass filter 0 < FLOW < 1 1

Bandpass filter 0 < FLOW < FHIGH FLOW < FHIGH < 1

Bandstop filter FHIGH < FLOW < 1 0 < FHIGH < FLOW

The filtering discussed here pertains only to nonrecursive filters of the
form:

nterms
11

k=1

where

y n is the dependent variable synthesized by the use of previous
dependent values (x).

Ak are the filter-dependent coefficients.

nterms is the number of filter coefficients (Ap is not included).

Figure 3-2 shows the transfer function of a lowpass nonrecursive filter
where wiggles 50.0, flow = 0.0, and fhigh = 0.5 for nterms 5, 10,
20, and 50.

3-4 Digital Filtering

Figure 3-2: Lowpass Nonrecursive Filter for Varying nterms

1.2

1.0

0.8

~~ f o.s -
0.4
0.2 -
0.0

-0.1

~1\
■ , 1 7 ■ ■ • T I 7 ■ ~ ■ T T

0.0 0.2 0.4 0.6 0.8 1.0
2fT

The nterms argument determines the sharpness of the filter. When
nterms is increased, the filter cutoff is sharper. Though it seems that
using the largest possible value for nterms results in a sharper filter,
nterms *2 number of data points from the original set are not filtered. If
the data set is large, the loss of data caused by the filtering process is in-
consequential. However, the loss of data can be detrimental to smaller
data sets. In addition, the computational time increases proportionally
to nterms. Try to make the value of nterms as large as possible without
losing too many end points or making the computational time too long.

Figure 3-3 shows -the transfer function of a lowpass nonrecursive filter
where flow = 0.0, fhigh = 0.5, and nterms = 10 for wiggles = 0, 30,
50, and 70.

Digital Filtering 3-5

Figure 3-3: Lowpass Nonrecursive Filter for Varying wiggles

1.2

1.0

0.8 -

H f o.6 ,
0.4 -

0.2 -

0.0

-0.2 T 1 T 7

0.0 0.2 0.4 0.6
2fT

T T , 1 T ~

0.8 1.0

The wiggles argument controls the smoothness of the filter. The wig-
gles, which are related to the size of Gibbs Phenomenon oscillations, are
most prominent when the value of the wiggles argument is 0.0. As the
value of wiggles is increased, the oscillations become less noticeable;
however, the sharpness of the filter decreases. A good compromise is
to set wiggles -= 50.0.

The size of the oscillations (in -dB units) is related to the value of the
wiggles argument:

magnitude o f oscillations = 10~--w~~9te8/20.0)

This nonrecursive filter is an adaptation of the Ip - sink filter originally
proposed by Kaiser. See Digital Filters by R.W. Hamming for a complete
mathematical description of this filter.

Example 3-1 illustrates the use of the LSP$FILTER_NQNREC routine in
lowpass mode and in highpass mode.

3-6 Digital Filtering

Example 3-1: Using the LSP$FILTER_NONREC Routine

C LSP_FILT_NONAEC.FOR
C
C Thi• sample program demonstrates use of th• LSP=FILTER_HONREC routine in
C lorpass mode and in highpass mode.
C

INCLUDE 'SYS=LIBRARY:LSPDEF.FOR'
C
C Define Variables:
C

REAL*4 PI,YAVECZ000),LOYOUT(2000),HIGHOUTCZ000),LO1tAVECZ000)
REAL*4 HIyAVECZ000),BIGAMP,SNALAMP,CONO,XOCZ000)
REAL*4 FLOY,FHIGH
AEAL*4 YIGGLES

INTEGER*4 I,N,N?ERMS,ISTAT,STATUS
C
C Great• a sine rave oT period ~ pi and superimpose on this raveiorm
C a smaller amplitude sin• crave rhfch oscillates 40 times faster.
C
C Filter in lorpass mod• to get the primary sin• Yave and put
C this oatpat fn the array LOYOUT; filter in highpass mode to
C put the higher iregaency signal into the array HIGHOUT.
C

N=2000 Number of points in array

PI=3.1416GZ664 ! The constant pi

BIGAMP=Z0.0

SMALANP=Z.O

CONO=Z.0*PI/CFLOATCN-i))

DO 10 I=1,N

XOCI)=CFLOATCI~i))*CONO

L011AVE C I) =B IGAMP*S IN CXO C I))

Peak-to-peak amplitude o? the
for ~requsncy sin• rave

Peak-to-peak amplitude of the
high frequency sine rave

A constant !or the primary
sin• rave period

Generate N values ?or PAVE

Argument for for ~requencfes

! Store for frequency component

HIIIAVECI)=SNALAMP*SINCXO(I)*40.0) ! Store high frequency component

11AVECI)=LOYAVECI)+HIrAVECI) ! Generate the rave as a sum of
! high and for frequency terms

10 CONTINUE

Example 3-1 Cont'd. on next page

Digital Filtering 3-7

Example 3-1 (Cont.): Using the LSP$FILTER_NONREC Routine

c
C Nor lorpaes filter the array PAVE:
C

FLOlt=O.O ! Set for lorpaes filter
FHIGH=0.006 ! rith roll-ofi at .006 f sub c
YIGGLES=100.0 ! oscillations set
NTERMS=60 ! rith 80 terms in the filter coeif icients

ISTAT=LSP=FILTER_NONREC(PAVE,LOYOUT,N,FLOlt,FHIGH,YIGGLES,NTERMS,STATUS)
IF (.NOT. ISTAT) CALL LIB~SIGNAL(XVALCISTAT))

C
C Nor highpass filter the array PAVE:
C

FLO11=0.03 ! Set for highpass filter
FHIGH=1.0 ! start roll-off at .OB f sub c
1(IGGLES=100.0 ! oscillations set
NTERMS=100 ! rith 100 terms in the filter cosf~icients

ISTAT=LSP~FILTER_NONREC(YAVE,HIGHOUT,N,FLOI/,FHIGH,I/IGGLES,NTERMS,STATUS)
IF (.NOT. ISTAT) CALL LIB=SIGNAL(XVAL(ISTAT))

C
C Plot the original, lorpaes, and highpass filtered raveforms:

XCONTROL(1) = 6.0
XCONTROL(~) = 0.0
XCONTROL(3) = 10.0
XCONTROL(4) _ ~.0

YCONTROL(1) = b.0
YCONTROL(~) _ -40.0
YCONTROL(3) = 80.0
YCONTROL(4) _ X0.0

Example 3-1 Cont'd. on next page

3-8 Digital Filtering

Example 3-1 (Copt.): Using the LSP$FILTER NONREC Routine

CALL LGP=PLOTCI,'EXSY',XO,YAVE,N,'RELATIVE TIME','ANPLITUDE',,,,
1 XCONTAOL,YCONTROL „ 'DATA CONTAINED IN ARRAY "PAVE"')

CALL LIB=l/A IT (10.0)
CALL LGP=TERNIINATE_PLOT (1,1)

CALL LGP~PLOT(1,'EXSY',XO,L0110U?,N,'RELATIVE TIME','AMPLITUDE',,,,
1 XCONTAOL,YCONTROL „ 'DATA CONTAINED IN ARRAY "L0110UT"')

CALL LIB=YAIT (10.0)
CALL LGP=TEAMINATE_PLOT (1,1)

CALL LGPSPLO?C1,'EXSY',XO,HIGHOU?,N,'RELATIVE TIME','AMPLITUDE',,,,
1 XCONTROL,YCONTROL „ 'DATA CONTAINED IN ARRAY "HIGHOUT"')

CALL LIB=11AIT (10.0)
CALL LGP=TERMINATE_PLOT (1,1)
STOP
END

Digital Filtering 3-9

V
Example 3-1 produces the following graphical representation of the data
contained in array VtiTAVE:

A
M

PL
IT

U
D

E

3-10 Digital Filtering

60.00

40.00

20.00

0.00

-20.00

-40.00

)ATR CO \TRI E) I R~~RY " AVE"

0.00

I I I I

2.00 4.00 6.00 8.00

RELATIVE TI v E
10.00

Example 3-1 produces the following graphical representation of the data
contained in array LOWOUT:

A
M

PL
IT

U
D

E
60.00

40.00

20.00

0.00

-20.00

-40.00

)RTA CONTAI E~ IN R3~AY "LO O~T"

0.00 2.00 4.00 6.00 8.00

RELATIVE TI E
10.00

Digital Filtering 3-11

Example 3-1 produces the following graphical representation of the data
contained in array HIGHOUT:

A
M

PL
IT

U
D

E

3-12 Digital Filtering

15.00

)R1R CO\ TAI E~ I RRRRY "HIGHCUT"

10.00 --

5.00

o.00

-5.00 -

-10.00

I~I~~IIIII~IIIIII~I 111 111~111111~~

illlllillilllllitl~l Ill IIt11111111

I

I

1

0.00

t ~ ~ ~

2.00 4.00 6.00 8.00

RELATIVE TI E
10.00

3.2 Digital Filtering References

You can obtain further information about digital filtering in the following
references:

Antoniou, A. Digital Filters: Analysis and Design. New York:McGraw-Hill,
1979.

Hamming, R.W. Digital Filters. Prentice Hall, 1977.

Horlick, G. and K.R. Betty. Analytical Chemistry, 351, vol. 49, 1977.

Madden, Hannibal H. Analytical Chemistry, 1383, vol. 50, 1978.

Oppenheim, A.V. and R.W. Shafer. Digital Signal Processing. Prentice
Hall, 1975.

Savitsky A. and M.J.E. Golay. Analytical Chemistry, 1627, vo1. 36, 1964.

Steinier J., Y. Termonia, and J. Deltour. Analytical Chemistry, 1906, vol.
44, 1972.

Digital Filtering 3-13

Chapter 4

Spectral Window Filtering

This chapter presents concepts and illustrations of spectral window
filtering and the periodogram technique.

4.1 Overview of Spectral Window Filtering

The fast Fourier transform (FFT) and power spectrum analysis of a
discretely sampled data sequence results in spectrum spreading and
leakage. Applying a spectral window filter to the data increases ac-
curacy in estimating the power spectrum and lessens leakage. The
periodogram technique further improves the data analysis process by
calculating the power spectrum more efficiently. The time savings is
particularly evident when the data sequence is long.

If results of an FFT and power spectrum analysis of a pure, single-
frequency signal display side lobes and spreading in addition to the
main frequency component, spectrum spreading or leakage is present.
Leakage results when discrete signal analysis techniques, such as FFT
and power spectrum analysis, are applied to a signal. The resulting
transform is a convolution of the spectrum of interest and the spectrum
of a square window. Spectral window filtering attempts to compensate
for the limitations of the discretely sampled portion of the signal you
are analyzing.

The Fourier transform of any large sample of data has a significantly
high frequency makeup when it is calculated using a square window
function. To compensate for the limitations of the discretely sampled
portion of the signal, apply other window functions that change more
gradually from zero to a maximum, and back to zero. Applying a.
spectral window to the data results in greater accuracy in estimating the
power spectrum and less leakage in data analysis.

Spectral Window Filtering 4-1

To apply a spectral window, multiply the sampled data by an even
function of the number of samples centered around the midpoint of the
discrete sample.

Each of the five spectral window types LSP supports reduces the main
lobe peak width and the magnitude of the side lobes (leakage} to a
slightly different degree. The compromise between these two factors
depends on the window function you select. See Section 4.3, Spectral
Window Routines and Algorithms, for algorithms of each of the window
types. See Section 4.4, Spectral Window Filtering References, for
further information.

4.2 The Periodogram Technique

The periodogram is a faster method of calculating the power spectrum
of a sequence of data. The terms periodogram and power spectrum are
often used interchangeably. In this application, the term periodogram
refers to an average of individual Fourier space spectra.

To calculate the power spectrum of a data sequence using the peri-
odogram technique, break a data sequence of length N into K segments,
each of length M. Perf orm a Fourier transform on the M data for each
of the K segments. Average the K arrays of data and square the result.

The periodogram technique provides a considerable time savings when
the original data sequence is long. Computation time using the FFT
algorithm is:

tFFT a N log N

Compare the ratio of computation time between K number of M-length
data, where M = N/K, and one N-length sequence of data (denote this
ratio as Beta):

tperiodogram _ K([M log M~) _ log K
Beta =

towers ectrum Nlo N 1 to P P g gN

4-2 Spectral Window Filtering

Evaluate the expression for Beta with the following numbers.

N K Beta
256 1 1.0

2 0.875

4 0.750

1024 1 1.0

2 0.900

4 0.800

8 0.700

10000 1 1.0

2 0.925

4 0.849

10 0.750

50000 1 1.0

2 0.936

5 0.851

20 0.723

The preceding table illustrates the time saved by calculating the power
spectrum in multiple segments rather than in one segment. For exam-
ple, processing 10000 data in 10 segments takes 0.750 of the time it
takes to process 10000 data in 1 segment. This represents a 25% time
savings .

An important aspect of the periodogram technique is that the frequency
scaling changes. As is the case for any Fourier (frequency) domain axis,
the frequency is measured as f = kl(n at), where k is a running index
such that k = 0,1,2, ... n-1, and n is the total number of data points to
be transformed. In the case of the periodogram, n is now M, so that
f = K/(Mat). When you do not use the periodogram method, if N
= 100, the range of the frequency domain with K = 1 is 0 to (99/100)f
with a resolution of (1/100)f. If K = 10, the range is 0 to (9/10)f with a
resolution of (1110)f. Note, when K is large, you lose resolution.

Spectral Window Filtering 4-3

4.3 Spectral Window Routines and Algorithms

This section describes the three LSP spectral window routines, provides
you with algorithms for each of the five. spectral window types, and
includes a sample FORTRAN program illustrating spectral window
filtering and the periodogram technique.

LSP includes three spectral window filtering routines:

• LSP$SPECTRAL_WINDOWS

The LSP$SPECTRAL_WINDOWS routine dynamically allocates a
coefficient table, applies the coefficients to the raw input data, and
stores the resulting windowed output data in a table.

• LSP$BUILD_WINDOW TABLE

The LSP$BUILD_WINDOW_TABLE routine builds an array of
window function coefficients.

Building the coefficient array separately allows you to save set-up
time in a real-time computing emnronment where you intend to use
the same window type repeatedly.

• LSP$APPLY_WINDOW TABLE

The LSP$APPLY_WINDOW TABLE routine applies the coefficient
array generated by the LSP$BUILD_WINDOW TABLE routine to
the raw input data, and stores the resulting windowed output data
in an array.

NOTE

For further information about the LSP spectral window
filtering routines and their arguments, see the appropriate
routine reference description section in Chapter 6, Signal-
Processing Routine Call Reference Descriptions.

4-4 Spectral Window Filtering

The following is a list of the five spectral-window types and the algo-
rithms used to generate them. For each window type, n ~ the number
of data points and j is the input data at points 0,1,2,...n-1.

• Blackman Window (2 parts)

x = 2~('~~ ~ 1)

w(j~ = 0.42 ~- 0.5(cos(z~~ -~ 0.08 * (cos(2x~~

• Hamming Window

w(j~ =0.54-{-0.46cos(2~~'~ ~~~
n=1

• Nanning Window

• Triangle Window

• Welch Window

2~(j — ~)
w{j~=0.5*cos(

n-1 }

Spectral Window Filtering 4-5

Figure 4-1 illustrates the five spectral window types:

figure 4-1: The Five Spectral-Window Types

WINDOWS
1.00

0.80

0.60

o.ao

0.20

o.00

TIh1E

4-6 Spectral Window Filtering

Figure 4-2 and Figure 4-3 illustrate the difference between raw, un-
windowed output data and data windowed using the triangle window
type.

Figure 4-2: Raw, Unwindowed Data

i,~4

~A /1 BATA

i.00 —

a.~~ —

o.~o —

-o.so

-1,44

TI E

Spectral Window Filtering 4-7

Figure 4-3: Windowed Data

T~IA\

TI v

GLE

E

4-8 Spectral Window Filtering

Example 4-1, Applying a Spectral Window, illustrates the use of the
periodogram technique, the LSP$BUILD_WINDOW_TABLE routine,
ar~d the LSP$APPLY_WINDOW_TABLE routine.

Example 4-1: Applying a Spectral Window

C LSP_YINDOY_1.FOA

C
C Ths folloring sample program demonstrates the use of the
C LSP=BUILD_YINDOY_TABLE rontine, the LSP=APPLT_YINDOIt_TABLE
C rontine, and the periodogram teehniqu•.
C

C
C Inclnds the symbolic-vales definition files:
C

INCLUDE 'sys=Library:LIOSET.FOR'
INCLUDE 'sys~Library:LSPDEF.FOR'
INCLUDE 'sys=Library:LSPSET.FOA'

C
C Declare variables and data types:
C

REAL*4 PI,PAVE(2048),YIND01/(~048,6),FFT(Z048),POYER(Z048)
REAL*4 RANGE(Z),YAVE~CZ048),ZCONTAOL(4),YCONTAOL(4)
INTEGER*4 I,J,L,N,NOY,NTERAIS,Z,ISTAT,STATUS,CONTROL(3)

INTEGER#Z BUFFEA(~048+~66) ! 048 cord buffer + 61~ byte overrun
INTEGER AtoD_ID !A/D device ID variable
INTEGER data_length !number of data bytes read

C
C Use LIO to acquire s rave! orm:
C

N X048 ! Number of points in array

C
C Attach to the A/D converter:
C
C Gets a device ID for the ADY and tulle LIO to use qI0 I/O .
C

status LIO~AT?ACH(AtoD_ID, 'AZAO', LIO=X_gI0) !attach to ADV
IF(.NOT.(etatus)) CALL lib~eignal(xval(status))

Example 4-1 Cont'd. on next page

Spectral Window Filtering 4-9

Example 4-1 (Cont.): Applying a Spectral Window

c
C Set up the A/D:
C
C Set synchronous I/O (LIO=READ/LIO~YRITE)
C Set A/D channel zero
C Set A/D gain of i
C Set trigger mode = start on LIO=READ and fill buffer
C as fast as possible
C

status = LIO'SET_I(AtoD_ID, LIO~K_SYNCH, 0)
IF(.NOT.(etatus)) CALL lib=signal(Xval(status))

status = LIO=SET_I(AtoD_ID, LIO=K_AD_CHAN, i, 0)
IF(.NOT.(status)) CALL lib~signal(xval(etatus))

status = LIO=SET_I(AtoD_ID, LIO=R_AD_GAIN, i, 1)
IF(.NOT.Cstatus)) CALL lib~signal(xval(etatus))

status = LIO=SET_I(AtoD_ID, LIO=K_TRIG, 1, LIO~K_IMN_BUAST)
IF(.NOT.(status)) CALL lib~signal(xval(status))

C
C Set up the CONTROL and RANGE arrays for the
C LSP=FORMAT_TRANSLATE_ADC routine:
C

CONTROL(i)=0
CONTROL(2)=12
CONTROL(3)=1

RANGE(1)= -10.0 !
RANGE(Z)= 9.9961 !

~'s complement format
number of bits in converter
gain of i

set up for voltage range
set up high voltage range

C
C Build a coefficient array for each of the five spectral
C rindor types:
C

ISTAT=LSP=BU ILD_1tIND011_ TABLE (YINDOY (i ,1) , N ,LSP=K_YELCH)
ISTAT=LSP=BUILD_11INDOY_TABLE (YINDOI/(1,~),N,LSP=K_HAI~ING)
ISTAT=LSP=BUILD_YINDOI/_TABLE(1/INDOY(1,3),N,LSP=K_HANNING)
ISTAT=LSP=BUILD_YINDOY_TABLE(YIND011(1,4),N,LSP=K_TRIANGLE)
ISTAT=LSP~BUILD_YIND011_TABLE(YINDOII(1,6),N,LSP~K_BLACKMAN)

Example 4-1 Cont'd. on next page

4-10 Spectral Window Filtering

Example 4-1 (Copt.): Applying a Spectral Window

c
C Read 2048 A/D values (40D6 bytes) into the buffer:
C
C Ths number of bytes tranef erred is returned in data_length.
C The device specif is parameter is not need, eo it is defaulted.
C

status LIOSREAD(AtoD_ID, buffer, N, data_length,)
IF(.NOT.(status)) CALL lib~signal(xval(status))

C
C Convert the A/D values to volts:
C

ISTAT LSP~FOAMA?_TRANSLATE_ADC (BUFFER,iIAVE,N,CONTAOL,AANCE)
IF (.NOT.ISTAT) CALL LIB~SICNAL (xVAL(ISTAT))

C
C Logically split the input data into 4 - 61Z rord buffers:
C
C The input data is split in order to calculate the porer
C spectrum using the periodogram technique.

NOY = 1

DO 100 I=1,4

C
C Apply the Yelch rindor function coefficient array to the segmented

C input data:
C
C Store the resulting array o~ rindored output data. Ton can apply any
C of the five rindor function coefficient arrays to the input data by

C modifying the rindor_table argument in the LSP~APPLT_YINDOII_TABLE
C routine call.
C

ISTAT=LSP=APPLT_YINDOY_TABLE.(PAVE(NOY),YAVEZ,(N/4),YINDOIt(1,1))

NOY = NOY + 61Z

C
C Calculate the fast Fourier transform for each o~ the four data segments
C in the table o~ rindored data:
C

ISTAT=LSP=FFT_AEAL(YAVEZ,FF?,(N/4),O,STATUS)

Example 4-1 Cont'd. on next page

Spectral Window Filtering 4-11

Example 4-1 (font.): Applying a Spectral Window

c
C Add the four FFT calculations together:
C

DO 76 J 1,CN/4)
P011EA(J) = PO11EA(J) + FFT(J)
76 CONTINUE

100 CONTINUE

C
C Use the pariodogram technique to calculate the porer spectrum by
C averaging th• enm of the four FFT calculations and squaring the
C result:
C

POYEI~(I) = POl/EEA(I) /4.0
POYEA(I) POYEA(I)**~

iZ6 CONTINUE

C
C Plot th• porer spectrum results:
C

CALL LCP~PLOT (i,'IXSY' „ POYEA,(N/4),'Frequency',
'AMPLITUDE dB',,,,,,,'POYER SPEC')

CALL LGP=TEAMINATE_PLOT (1,1)

C
C Detach th• A/D device:
C
C Aundorn is irrelevant. for synchronous I/0.
C

status = LIO~DETACH(AtoD_ID,)
IF(.NOT.(etatus)) CALL lib=signal(xvalCstatus))

sTOP
END

4-12 Spectral Window Filtering

Example 4-1 produces the following output:

PCWE~ SPEC
iQ000~.00

X4444.44

~aaaa, as

~aoaoa. o0

~a~o~.ao

4,44 L J

Frequencu

Spectral Window Filtering 4-13

The spectral window function symbolic status values are defined in
definition files for each of the following program languages:

Table 4-1: Spectral Window Function Symbolic Status Definition
Files

Language Symbolic Status Definition File

VAX Ada

VAX BASIC

VAX C

VAX FORTRAN

VAX MACRO

VAX PASCAL

SYS$LIBRARY: LSPSET.ADA

SYS$LIBRARY: LSPSET. BAS

SYS$LIBRARY: LSPSET. H

SYS$LIBRARY: LSPSET. FOR

SYS$LIBRARY: LSPSET. MAR

SYS$LIBRARY: LSPSET.PAS

4.4 Spectral Window Filtering References

You can obtain further information about spectral window filtering from
the following references:

Elliot, Douglas F, and Rao, K. Ramamohan. Fast Transforms Algorithms,
Analyses, Applications. Academic Press, Inc., 1982.

Oppenheim, Alan V. and Shafer, Ronald W. Digital Signal Processing.
Prentice Hall, Inc.,1975.

Stanley, William D. Digital Signal Processing. Reston Publishing Co. Inc.,
1975.

4-14 Spectral Window Filtering

Chapter 5

Thermocouple Conversion

5.1 Overview of Thermocouple Conversion

The LSP$THERMOCOUPLE_X routines convert thermocouple voltages
to temperatures. Table 5-1 shows the types of thermocouples that are
supported.

Table S-1: Thermocouples with Conversion Routines
ANSI Symbol Material Trade Name

B

E

J

K

R

S

T

Platinum-6% Rhodium
vs.
Platinum-30% Rhodium

Nickel-Chromium vs.
Copper-Nickel

Iron vs. Copper-Nickel

Nickel-Chromium vs.
Nickel-Aluminum

Platinum vs.
Platinum-13% Rhodium

Platinum vs.
Platinum-10% Rhodium

Copper vs. Copper-Nickel

Chromel-Constantan

Iron-Constantan

Chromel-Alumel

Capper-Constantan

Each thermocouple type has a unique routine associated with it. The
X in the LSP$THERMOCOUPLE_X routine is a placeholder for the
ANSI symbol that represents the thermocouple type. When you use the
LSP$THERMOCOUPI.E_X routine, you substitute in place of the X the

Thermocouple Conversion 5-1

ANSI symbol appropriate for the type of thermocouple. The following
thermocouple conversion routines are provided:

LSP$THERMOCOUPLE_B
LSP$THERMOCOUPLE_E
LSP$THERMOCOUPLE_J
LSP$THERMOCOUPLE_K
LSP$THERMOCOUPLE_R
LSP$THERMOCOUPLE_S
LSP$THERMOCOUPLE_T

To use the thermocouple conversion routines, you set up your exper-
iment with two identical thermocouples connected in series. You use
one thermocouple for the actual experiment. You immerse the other
thermocouple in an ice bath maintained at a constant temperature of 0
degrees Celsius as a reference. Alternatively, an electronic cold junction
compensator can replace the reference thermocouple.

Table 5-2 shows the temperature and voltage ranges for each of the
supported thermocouples.

Table 5-2: Thermocouple Temperature and Voltage Ranges
Thermocouple Temp. Range (Celsius) Voltage Range (Microvolts)
ANSI Symbol Min Max Min Max

B 43 1820 0.21 13814.0

E -270 1000 -9836.0 76358.0

J -210 1200 -8096.0 69537.0

K -200 1372 -5892.0 54875.0

R -50 1762 -227.0 21108.17

S -50 1768 -236.0 18698.16

T -270 400 -6258.0 20870.0

See the LSP$THERMOCOUPLE_X routine call reference section in
Chapter 6, Signal-Processing Routine Reference Descriptions, for more
information about the thermocouple conversion routines.

5-2 Thermocouple Conversion

Chapter 6

Signal-Processing Routine Call
Reference Descriptions

This chapter presents an overview and detailed reference descriptions
of the Laboratory Signal-Processing routines used to perform Fourier
transforms, correlation functions, filtering of data, and thermocouple
conversion.

6.1 Overview of the Laboratory .Signal-Processing
Routine Format

Each LSP routine is described using a structured format:

• The Routine name appears at the top of the first page of each LSP
routine reference description.

• The Routine overview explains, usually in a sentence or two, what
the routine does.

• The Format section presents the routine entry point name, or
routine name, and the routine argument list in the correct syntactical
form.

• The Returns section lists the information returned by the routine.
• The Arguments section provides detailed information about each

routine argument, such as what information the argument passes
to the routine or what information the argument returns from the
routine, and the data type, access, mechanism, and acceptable
values of the argument.

Signal-Processing Routine Cali Reference Descriptions 6-1

• The Description section contains information about the specific
actions taken by the routine. This includes interaction between
routine arguments.; interactions or dependencies between the
routine and other LSP routines; restrictions for use; and actions
specific to the routine when used with certain devices. In some
cases, information of this nature is also found in the description of a
routine argument under the Arguments heading.

• The Condition Values section contains a list of condition values a
specific routine generates and a brief description of each condition
value. See Section 7.3, Symbolic Status Values and Descriptions, for
more detailed condition value information, including an explanation
of symbolic status values generated by the routine and suggested
user action.

6.2 Signal-Processing Routine Call Summary and
Descriptions

Table 6-1 summarizes the signal-processing routines.

Table 6-1: Signal-Processing Routine Call Summary
Routine Call Function

LSP$APPLY WINDOW TABLE

LSP$BUILD_wINDOW TABLE

LSP$CORRELATION

LSP$FFT_COMPLEX

LSP$FFT_COMPLEX_2D

Applies the coefficient array created
by the LSP$BUILD_WINDOW TABLE
routine to the input data to create and
store windowed output data

Builds an array of window function
coefficients

Calculates the cross-correlation or
autocorrelation function of equispaced
data

Calculates the fast forward or inverse
Fourier transform of complex-valued
data

Calculates the fast forward or inverse
Fourier transform of complex-valued
data in two dimensions

6-2 Signal-Processing Routine Call Reference Descriptions

Table 6-1 (Cont.): Signal-Processing Routine Call Summary
Routine Call Function

LSP$FFT_REAL

LSP$FILTER_NONREC

LSP$FILTER_POLY

LSP$FILTER_POLY_1 ST_DERIV

LSP$FILTER_POLY_2ND DERIV

LSP$FILTER_POLY_3RD DERIV

LSP$FORMAT_TRANSLATE_ADC

LSP$FORMAT_TR.ANSLATE_DAC

LSP$HIST_F

LSP$HIST_I

LSP$PHASE_ANGLE

LSP$PHASE_ANGLE_2D

LSP$POWER_SPECTRUM

Calculates the fast forward or inverse
Fourier transform of real-valued data

General purpose, nonrecursive filter

Polynomial filter for smoothing

Polynomial filter with first-derivative
output

Polynomial filter with second-derivative
output

Polynomial filter with third-derivative
output

Translates raw numbers obtained from
an analog-to-digital converter into
floating-point voltages

Translates floating-point voltages into
raw numbers appropriate for input to a
digital-to-analog converter

Performs interval histogram analysis
(multichannel analysis) with floating-
point input

Performs interval histogram analysis
(multichannel analysis) with integer
input

Calculates the phase angle and modulus
spectrum for equispaced data in one
dimension

Calculates the phase angle and modulus
spectrum for equispaced data in two
dimensions

Calculates the power spectrum of
equispaced data

Signal-Processing Routine Call Reference Descriptions 6-3

Table 6-1 (Copt.): Signal-Processing Routine Caii Summary

Routine Call Function

LSP$SPECTRAL WINDOWS

LSP$THERMOCOUPLE_X

Dynamically allocates a window func-
tion coefficient array, applies the
coefficients to the input data, and
stores the resulting windowed output
data in an array

Converts voltage to temperature for
each thermocouple type

The following reference section describes the signal-processing routines
and their use.

6-4 Signal-Processing Routine Call Reference Descriptions

LSP$APPLY WINDOW TABLE

LSP$APPLY_WINDOW_TABLE

The LSP$APPLY_WINDOW TABLE routine applies the window function
coefficient array created by the LSP$BUILD_wINDOW TABLE routine
to the input data to be windowed.

Format LSP$APPLY WINDOW TABLE (in, out, n,
window table,
(status])

Returns
VMS Usage: cond_vaCue
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
In
VMS Usage: fioating_point
type: F floating
access: read only
mechanism: by reference, array reference

An array containing the input data to be windowed.

out
VMS Usage: floating_point
type: F floating
access: write only
mechanism: by reference, array reference

An array into which the output data is returned. You can specify the
same array for both the output array and the input array.

Signal-Processing Routine Call Reference Descriptions 6-5

LSP$APPLY WINDOW TABLE

n
VMS Usage:
type:
access:
mechanism:

longword signed
longword integer (signed)
read only
by reference

An argument specifying the size of the data set to be windowed. The
value of n must be greater than or equal to 1.

window table
VMS Usage: floating_point
type: F_floating
access: read only
mechanism: by reference, array reference

An array of coefficients produced by the LSP$BUILD_WINDOW_TABLE
routine.

StatUS

VMS Usage: longword unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Description
The LSP$APPLY_WINDOW_TABLE routine applies the window-
function coefficient array created by the LSP$BUILD_WINDOW_TABLE
routine to the input data contained in the in array. The
LSP$APPLY_WINDOW_TABLE routine then places the resulting win-
dowed output data into the out array.

See the LSP$BUILD_WINDOW_TABLE routine reference section for
information on building awindow-function coefficient array. Chapter 4,
Spectral Window Filtering, provides further information about spectral
windows.

6-6 Signal-Processing Routine Call Reference Descriptions

LSP$APPLY_WINDOW_TABLE

Condition Values
Symbolic Status Description

LSP$_ILL N_R.ANGE n is out of range

LSP$_MAND_ARG mandatory argument is missing

LSP$_SUCCESS success

Signal-Processing Routine Cali Reference Descriptions 6-7

LSP$BUILD WINDOW TABLE

LSP$BU ILD_WIN DOW_TABLE

The LSP$BUILD_WINDOW_TABLE routine builds an array of spectral
window-function coefficients. The spectral window-function coefficient
array built by the LSP$BUILD_WINDOW TABLE routine is used by the
LSP$APPLY_WINDOW TABLE routine.

Format LSP$BUILD WINDOW TABLE (window_table,
n, window_rype,
(status])

Returns
VMS Usage: cond value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
window table
VMS Usage: floating_point
type: F_floatin~j
access: write only
mechanism: by reference, array reference

An array of size n containing the returned spectral window-function
coefficients.

n
VMS Usage: longword signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument specifying the number of table entries contained in the
spectral window-function coefficient table.

6-8 Signal-Processing Routine Call Reference Descriptions

LSP$BUILD WINDOW_TABLE

window type
VMS Usage: longword signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument specifying the type of window function you want to use.
The following is a list of possible window_type values.

Value Window Type

LSP$K BLACKMAN Blackman

LSP$K_HAMMING Hamming

LSP$K_HANNING Harming

LSP$K_TRIANGLE Triangle

LSP$K_WELCH Welch

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Description
The LSP$BUILD_WINDOW_TABLE routine calculates then coeffi-
cients of the window function you select and places the results in the
window table array. The LSP$APPLY_WINDOW TABLE routine ap-
plies the window function coefficient array to the input data. See the
LSP$APPLY_WINDOW_TABLE routine reference section for informa-
tion on applying the window function coefficient array generated by the
LSP$BUILD_WINDOW_TABLE routine to the data.

Signal-Processing Routine Call Reference Descriptions 6-9

LSP$BUILD WINDOW_TABLE

Building the window function coefficient array and applying this co-
efficient array to the input data separately reduces set-up time in a
realtime environment where a window function is used repeatedly. If
you do not intend to use a window function repeatedly, you can use
the LSP$SPECTRAL_WINDOWS routine. For further information on
the LSP$SPECTRAL_WINDOWS routine, see the routine call reference
description for that routine.

Chapter 4, Spectral Window Filtering, provides further information
about spectral windows.

Condition Values
Symbolic Status Description

LSP$_ILL N_RANGE

LSP$_MAND_ARG

LSP$_ILL WINDOW TYPE

LSP$_SUCCESS

n is out of range

mandatory argument is missing

invalid window type specified

success

6-10 Signal-Processing Routine Call Reference Descriptions

LSP$CORRELATION

LSP$CORRELATION

The LSP$CORRELATION routine calculates the cross-correlation or
autocorrelation function of equispaced data.

Format LSP$CORRELATION (inl, in2, out n, (statusJ)

Returns
VMS Usage:
type:
access:
mechanism:

cond value
longword (unsigned)
write only
by value

Arguments
in1
VMS Usage: complex_number
type: F_floating complex
access: read only
mechanism: by reference, array reference

An array containing the input data whose correlation function you want
to estimate. The length of this array must be greater than or equal to
(nl2) + 1.

The values contained in this array are the output of the Fourier trans-
f orm routine LSP$FFT_REAL; all input arrays are given in the reduced-
symmetric form. See Section 2.1.2, Mathematical Definition of Discrete
Fourier Transform, for a description of the reduced-symmetric form.

Signal-Processing Routine Call Reference Descriptions 6-11

LSP$CORRELATION

ln2
VMS Usage: complex_number
type: F floating complex
access: read only
mechanism: by reference, array reference

An array containing the input data whose correlation function you want
to estimate. The length of this array must be greater than or equal
to (nl2) + 1. The data contained in in1 and in2 are the same when
performing the autocorrelation function.

The values contained in this array are the output of the Fourier trans-
form routine LSP$FFT_REAL; all input arrays are given in the reduced-
symmetric form.

out
VMS Usage: floating_point
type: F floating
access: write only
mechanism: by reference, array reference

An array into which the correlation function of the original time-based
input data is returned. This array must be of length n + 2.

n
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument containing the total number of data points to be placed in
the out array. This number must be a power of 2 and must range be-
tween 2 and 32, 768, inclusive. Any number outside this range generates
an error.

6-12 Signal-Processing Routine Call Reference Descriptions

LSP$CORRELATION

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Description
You use the correlation function to produce an estimate of the de-
gree of similarity between two functions when one of the functions
is shifted either in time or by some other independent variable. You
can also use the correlation function on one function; this is known as
autocorrelation.

See Section 2.3, Definition of the Correlation Function, for further
information about the correlation and autocorrelation functions.

Condition Values
Symbolic Status Description

LSP$ ILL N_NOT_2 n is not a power of 2

LSP$ ILL N_RANGE n is out of range

LSP$_MAND_ARG mandatory argument is missing

LSP$ SUCCESS success

Signal-Processing Routine Cail Reference Descriptions 6-13

LSP$FFT_COMPLEX

LSP$FFT_COMPLEX

The LSP$FFT_COMPLEX routine calculates the fast forward or inverse
Fourier transform of complex-valued data.

Format LSP$FFT COMPLEX (in, out, n, direction, ~stafusJ)

Returns
VMS Usage: cond value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
In
VMS Usage: complex_number
type: F_floating complex
access: read only
mechanism: by reference, array reference

An array containing the input data. The array is of length n.

out
VMS Usage: complex_number
type: F_floating complex
access: write only
mechanism: by reference, array reference

An array into which the transform of the input data is returned. The
array is of length n.

The output array can be the same as the input array. In this case, the
output array overwrites the input array.

6-14 Signal-Processing Routine Call Reference Descriptions

LSP$FFT COMPLEX

n
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument containing the number of data points to be transformed.
The total number of data points as input is 2"z . The value of rn must
be between 1 and 15, inclusive. The value of n must be between 2 and
32,768, inclusive.

direction
VMS Usage: longword_signed
type: ~ longword integer (signed)
access: read only
mechanism: by reference

An argument that determines whether to perform the forward or inverse
transform. If the value of direction is zero, forward transform is per-
formed. If the value of direction is nonzero, inverse transformation is
performed.

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Description
The LSP$FFT_COMPLEX routine is used to compute the forward
Fourier transformation of complex-valued data of length n = 2m, where
m is between 1 and 15, inclusive.

The time axis is considered to be equally spaced with time increment
at. The resulting frequency axis from the forward transformation is
in increments k/(n fit), where k = 0, 1, 2, 3, ... n-1 and n is the total
number of points to be transformed.

Signal-Processing Routine Call Reference Descriptions 6-15

LSP$FFT_COMPLEX

Condition Values
Symbolic Status Description

LSP$_ILL N_NOT 2 n is not a power of 2

LSP$_ILL_N_RANGE n is out of range

LSP$_MAND_ARG mandatory argument is missing

LSP$_SUCCESS success

6-16 Signal-Processing Routine Call Reference Descriptions

LSP$FFT COMPLEX 2D

LSP$FFT_COMPLEX_2D

The LSP$FFT_CQMPLEX_2D routine calculates the fast forward or
inverse Fourier transform of complex-valued data in two dimensions.

Format LSP$FFT COMPLEX 2D (in, out, n1, n2, direction,
(status)

Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
!n
VMS Usage: complex_number
type: F floating complex
access: read only
mechanism: by reference, array reference

An array containing the data to be transformed. The array is dimen-
sioned nl x n2.

out
VMS Usage: complex_number
type: F floating complex
access: write only
mechanism: by reference, array reference

An array into which the result of the transformation is returned. The
array is dimensioned n1 x n2.

Signal-Processing Routine Call Reference Descriptions 6-17

LSP$FFT COMPLEX 2D

n7
VMS Usage:
type:
access:
mechanism:

longword_signed
longword integer (signed)
read only
by reference

An argument specifying the number of data points in each row. Input
the number of data points as 2"z. The value of rn must be between
1 and 15, inclusive. The value of n1 must be between 2 and 32,768,
inclusive.

n2
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument specifying the number of data points in each column.
Input the number of data points as 2"z. The value of "z must be between
1 and 15, inclusive. The value of n2 must be between 2 and 32,768,
inclusive.

direction
VMS Usage:
type•
access:
mechanism:

longword signed
longword integer (signed)
read only
by reference

An argument that determines whether to perform the forward or inverse
transform. If ,the value of direction is 0, the forward transformation
is performed. If the value of direction is not equal to 0, the inverse
transformation is performed.

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

6-18 Signal-Processing Routine Call Reference Descriptions

LSP$F~ COMPLEX 2D

Description
Use the LSP$FFT_COMPLEX_2D routine to compute the two-
dimensional fast Fourier transform of complex-valued data. This routine
calls LSP$FFT_COMPLEX to perform the calculations. The row (nl) and
column (n2) sizes need not be the same size.

Condition Values
Symbolic Status Description

LSP$_ILL_N_NOT_2 n1 or n2 is not a power of 2

LSP$ ILL N_R.ANGE nl or n2 is out of range

LSP$_1~~IAND ARG mandatory argument is missing

LSP$_SUCCESS success

Signal-Processing Routine Call Reference Descriptions 6-19

LSP$FFT_REAL

LSP$FFT_REAL

The LSP$FFT_REAL routine calculates the fast forward or inverse
Fourier transform of real-valued data.

Format LSP$FFT_REAL (in, out n, direction, (status])

Returns
VMS Usage: cond value
type: longword (unsigned
access: write only
mechanism: by value

Arguments
in

VMS Usage: floating_point or complex_number
type: F floating or F floating complex
access: read only
mechanism: by reference, array reference

For forward transform, where direction equals zero, a real array con-
taining the data to be transformed. This array is of length n.

For the inverse transform, where direction is nonzero, a complex array
containing the data to be transformed. This array is of length (n/2) + 1
and contains the first half of the symmetric array in reduced-symmetric
form.

6-20 Signal-Processing Routine Call Reference Descriptions

LSP$FFT_REAL

out
VMS Usage: floating_point or compiex_number
type: F_floating or F floating complex
access: write only
mechanism: by reference, array reference

For the forward transform, where direction equals zero, a complex array
into which the transform of the input data is returned. This array is of
length (n/Z) + 1 and contains the first half of the symmetric array.

For inverse transform, where direction is nonzero, a real array into
which the transformed data is returned. This array is of length n.

n
VMS Usage:
type:
access:
mechanism:

longword signed
longword integer (signed)
read only
by reference

An argument containing the number of data points to be transformed.
The total number of data points as input is 2~ . The value of rn must
be between 1 and 15, inclusive. The value of n must be between 2 and
32, 768, inclusive .

For both the forward and inverse transform, the in and out arrays can
be the same array. However, the array must be dimensioned to the
larger of the two arrays.

direction
VMS Usage:
type:
access:
mechanism:

longword_signed
longword integer (signed)
read only
by reference

An argument that determines whether to perform forward or inverse
transform. If the value of direction is zero, forward transform is per-
formed. If the value of direction is nonzero, inverse transform is
performed.

Signal-Processing Routine Call Reference Descriptions 6-21

LSP$FFT_REAL

status
VMS Usage: longword_unsigned
type: longword unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Description
Use the LSP$FFT_REAL routine to compute the fast Fourier transform of
real-valued data of length ra = 2~, where rn is an integer between 1 and
15, inclusive. Because the input data is known to contain no imaginary
values, the transform is twice as fast as the LSP$FFT_COMPLEX routine.
Approximately half as many operations are required to perform the fast
Fourier transform.

As is the case with all FFT methods, the time axis is considered to be
equally spaced with time increment at. The resulting frequency axis
from the forward transformation is in increments k/(n at) where k = 0,
1, 2, 3, ... n/2 and n is the total number of points to be transformed.

Condition Values
Symbolic Status Descr~pt~on

LSP$_ILL N_NOT_2 n is not a power of 2

LSP$_ILL N_RANGE n is out of range

LSP$_MAND_ARG mandatory argument is missing

LSP$_SUCCESS success

6-22 Signal-Processing Routine Call Reference Descriptions

LSP$FILTER NONREC

LSP$FILTER_NONREC

The LSP$FILTER_NONREC routine performs filtering in lowpass,
highpass, bandpass, or bandstop (notch) mode.

Format LSP$FILTER NONREC (in, out, n, flow, fhigh,
wiggles, nterms, (status])

Returns
VMS Usage: cond value
type: longword unsigned)
access: write only
mechanism: by value

Arguments
!n
VMS Us-age: fioating_point
type: F_floating
access: read only
mechanism: by reference, array reference

An array containing the input data to be filtered.

our
VMS Usage: floating_point
type: F_floating
access: write only
mechanism: by reference, array reference

An array into which the filtered data is returned. The out array can be
the same as the in array.

Signal-Processing Routine Call Reference Descriptions 6-23

LSP$FILTER NONREC

n
VMS Usage:
type:
access:
mechanism:

longword_signed
longword integer (signed)
read only
by reference

An argument containing the number of data values to be filtered. This
value must be greater than the value of nterms*2 + 1. Any number less
than or equal to this value generates an error.

flow
VMS Usage:
type •
access:
mechanism:

floating_point
F_floating
read only
by reference

An argument representing the lower frequency of the filter. This num-
ber is given as a fraction of the Nyquist sampling frequency (11(2
at)) and must be between 0.0 -and 1.0, inclusive. See Section 3.1.2,
Nonrecursive Filtering, for more information on the flow argument.

fhfgh
VMS Usage:
type:
access:
mechanism:

floating_point
F_floating
read only
by reference

An argument representing the upper frequency of the filter. This
number is given as a fraction of the . Nyquist sampling frequency (11(2
fit)) and must be between 0.0 and 1.0, inclusive. See Section 3.1.2,
Nonrecursive Filtering, for more information on the fhigh argument.

wiggles
VMS Usage:
type:
access:
mechanism:

floating_point
F floating
read only
by reference

A number in -dB units which is proportional to the oscillation from the
Gibbs phenomenon. This number must be between 0.0 and 500.0, in-
clusive. See Section 3.1.2, Nonrecursive Filtering, for more information
on the wiggles argument.

6-24 Signal-Processing Routine Call Reference Descriptions

LSP$FILTER_NONREC

nterms
VMS Usage:
type:
access:
mechanism:

longword signed
longword integer (signed)
read only
by reference

A variable with a value between 2 and 500, inclusive. Any number
outside this range generates an error.

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Description
Use the LSP$FILTER_NONREC routine to perform nonrecursive fil-
tering in either lowpass, highpass, bandpass, or bandstop (notch)
mode.

See Section 3.1.2, Nonrecursive Filtering, for further information.

Condition Values
Symbolic Status Description

LSP$_ILL F_RANGE

LSP$_ILL_FLOW

LSP$_ILL N_NONREC

LSP$_ILL N_RANGE

LSP$_ILL NTERMS

LSP$_ILL WIGGLES

LSP$_MAND_ARG

LSP$_SUCCESS

flow or fhigh is out of range

flow is equal to fhigh

n is less than 2*nterrns + 1

n is out of range

nterms is out of range

wiggles is out of range

mandatory argument is missing

success

Signal-Processing Routine Call Reference Descriptions 6-25

LSP$FILTER_POLY

LSP$FILTER_POLY

The LSP$FILTER_PQLY routine performs polynomial filtering for
smoothing.

Format LSP$FILTER POLY (in, out, n, filtyp, (status])

Returns
VMS Usage: cond value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
In
VMS Usage: floating_point
type: F_fioating
access: read only
mechanism: by reference, array reference

An array containing the input data.

out
VMS Usage: floating_point
type: F_floating
access: write only
mechanism: by reference, array reference

An array into which the output data is returned. The out array can be
the same as the in array; then, the output array replaces the input array.

n
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument containing the number of data points to be filtered.

6-26 Signal-Processing Routine Call Reference Descriptions

LSP$FILTER_POLY

flltyp
VMS Usage:
type:
access:
mechanism:

longword_signed
longword integer (signed)
read only
by reference

An argument containing one of the following codes:

Code Description

1 smoothing: 5-point window -- +
2 smoothing: 7-point window
3 smoothing: 9-point window
4 smoothing: 11-point window
5 smoothing: 13-point window QUADRATIC-CUBIC
6 smoothing: 15-point window BASIS FUNCTION
7 smoothing: 17-point window
8 smoothing: 19-point window
9 smoothing: 21-point window

10 smoothing: 23-point window
11 smoothing: 25-point window -- +

12 smoothing: 7-point window -- +
13 smoothing: 9-point window
14 smoothing: 11-point window
15 smoothing: 13-point window
16 smoothing: 15-point window
17 smoothing: 17-point window
18 smoothing: 19-point window
19 smoothing: 21-point window
20 smoothing: 23-point window
21 smoothing: 25-point window

i

QUARTIC-QUINTIC
BASIS FUNCTION

--+

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Signal-Processing Routine Call Reference Descriptions 6-27

LSP$FILTER POLY

Description
You use the technique of digital filtering to eliminate certain frequency
components from a signal that is corrupted by noise. Polynomial filters
are based on simple interpolating polynomials which act as lowpass
filters.

See Section 3.1.1, Polynomial Filtering, for further information.

Condition Values
Symbolic Status Description

LSP$ ILL FILTYP filtyp is out of range

LSP$_ILL N_FILTER too few data points per filter window

LSP$ ILL N_R.ANGE n is out of range

LSP$_M.AND ARG mandatory argument is missing

LSP$ SUCCESS success

6-28 Signal-Processing Routine Call Reference Descriptions

LSP$FILTER POLY_1ST DERIV

LSP$FILTER_POLY_i ST_DERIV

The LSP$FILTER_POLY_1ST_DERIV routine performs polynomial
filtering with first-derivative output.

Format LSP$FILTER POLY 1ST DERIV (in, out, n, filtyp,
(status])

Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
In
VMS Usage: floating_point
type: F floating
access: read only
mechanism: by reference, array reference

An array containing the input data.

out
VMS Usage: floating_point
type: F floating
access: write only
mechanism: by reference, array reference

An array into which the output data is returned. The out array can be
the same as the in array; then, the output array replaces the input array.

Signal-Processing Routine Call Reference Descriptions 6-29

LSP$FILTER POLY_1ST DERIV

n
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument containing the number of data points to be filtered.

flltyp
VMS Usage:
type:
access:
mechanism:

longword signed
longword integer (signed)
read only
by reference

An argument containing one of the following codes:

Code Description

1 1st derivative:
2 1st derivative:
3 1st derivative:
4 1st derivative:
5 1st derivative
6 1st derivative:
7 1st derivative
8 1st derivative:
9 1st derivative

10 1st derivative
11 1st derivative

12 1st derivative
13 1st derivative:
14 1st derivative
15 1st derivative:
16 1st derivative
17 1st derivative
18 1st derivative
19 1st derivative:
20 1st derivative:
21 1st derivative:
22 1st derivative:

5-point window -- +
7-point window
9-point window

11-point window
13-point window
15-point window
17-point window
19-point window
21-point window
23-point window
25-point window

i

i

i

QUADRATIC
BASIS FUNCTION

5-point window -- +
7-point window
9-point window

11-point window
13-point window
15-point window
17-point window
19-point window
21-point window
23-point window
25-point window -- +

6-30 Signal-Processing Routine Call Reference Descriptions

i

i

i

CUBIC-QUARTIC
BASIS FUNCTION

LSP$FILTER POLY 1ST DERIV

23 1st derivative: 7-point window --+
24 1st derivative: 9-point window ~
25 1st derivative: 11-point window ~
26 1st derivative: 13-point window ~
27 1st derivative: 15-point window QUINTIC-SEXIC
28 1st derivative: 17-point window BASIS FUNCTION
29 1st derivative: 19-point window ~
30 1st derivative: 21-point window ~
31 1st derivative: 23-point window ~
32 1st derivative: 25-point window --+

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Returns the status of the operation. If the status argument is omitted
and an error occurs, the message is directed to both SYS$OUTPUT and
SYS$ERROR.

Description
You use the technique of digital filtering to eliminate certain frequency
components from a signal that is corrupted by noise. Polynomial filters
are based on simple interpolating polynomials which act as lowpass
filters capable of producing derivative information.

See Section 3.1.1, Polynomial Filtering, for further information.

Condition Values
Symbolic Status Description

LSP$_ILL FILTYP filtyp is out of range

LSP$_ILL_N_FILTER too few data points per filter window

LSP$_ILL N_RANGE n is out of range

LSP$_r~IAND_ARG mandatory argument is missing

LSP$_SUCCESS success

Signal-Processing Routine Call Reference Descriptions 6-31

LSP$FILTER_POLY 2ND DERIV

LSP$FILTER_POLY_2ND DERIV

The LSP$FILTER_POLY_2ND; DERIV routine performs polynomial
filtering with second-derivative output.

Format LSP$FILTER POLY_2ND DERIV (in, out, n, filtyp,
(status])

Returns
VMS Usage: cond value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
In
VMS Usage: floating_point
type: F_floating
access: read only
mechanism: by reference, array reference

An array containing the input data.

out
VMS Usage: floating_point
type: F floating
access: write only
mechanism: by reference, array reference

An array into which the output data is returned. The out array can be
the same as the in array; then, the output array replaces the input array.

u

6-32 Signal-Processing Routine Call Reference Descriptions

LSP$FILTER_POLY 2ND DERIV

n
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument containing the number of data points to be filtered.

flltyp
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument containing one of the following codes:

Code Description

1 2nd derivative
2 2nd derivative:
3 2nd derivative
4 Znd derivative
5 2nd derivative:
6 2nd derivative:
7 2nd derivative:
8 2nd derivative:
9 2nd derivative

10 2nd derivative:
11 2nd derivative:

12 2nd derivative:
13 2nd derivative
14 2nd derivative:
15 2nd derivative:
16 2nd derivative:
17 2nd derivative:
18 2nd derivative:
19 2nd derivative:
20 2nd derivative:
21 2nd derivative:

5-point window
7-point window
9-point window

11-point window
13-point window
15-point window
17-point window
19-point window
21-point window
23-point window
25-point window

--+

QUADRATIC-CUBIC
BASIS FUNCTION

--+

7-point window -- +
9-point window

11-point window
13-point window
15-point window
17-point window
19-point window
21-point window
23-point window
25-point window -- +

i

i

i

QUARTIC-QUINTIC
BASIS FUNCTION

Signal-Processing Routine Call Reference Descriptions 6-33

LSP$FILTER_POLY 2ND_DERIV

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Description
You use the technique of digital filtering to eliminate certain frequency
components from a signal that is corrupted by noise. Polynomial filters
are based on simple interpolating polynomials which act as lowpass
filters capable of producing derivative information.

See Section 3.1.1, Polynomial Filtering, for further information.

Condition Values
Symbolic Status Description

LSP$_ILL FILTYP filtyp is out of range

LSP$_ILL N_FILTER too few data points per filter window

LSP$_ILL_N_RANGE n is out of range

LSP$_MAND_ARG mandatory argument is missing

LSP$_SUCCESS success

6-34 Signai-Processing Routine Call Reference Descriptions

LSP$FILTER_POLY 3RD DERIV

LSP$FI LTER_POLY_3RD_DERIV

The LSP$FILTER_POLY_3RD_DERN routine performs polynomial
filtering with third-derivative output.

Format LSP$FILTER_POLY 3RD_DERIV (in, out, n, filtyp,
(statusj)

Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
In
VMS Usage: fioating_point
type: F_floating
access: read only
mechanism: by reference, array reference

An array containing the input data.

out
VMS Usage: floating_point
type: F_floating
access: write only
mechanism: by reference, array reference

An array into which the output data is returned. The out array can be
the same as the in array; then, the output array replaces the input array.

Signal-Processing Routine Call Reference Descriptions 6-35

LSP$FILTER POLY 3RD DERIV

n
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument containing the number of data points to be filtered.

fil typ
VMS Usage: longword signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument containing one of the following codes:

Code Description

1 3rd derivative:
2 3rd derivative:
3 3rd derivative:
4 3rd derivative:
5 3rd derivative:
6 3rd derivative:
7 3rd derivative:
8 3rd derivative:
9 3rd derivative:

10 3rd derivative:
11 3rd derivative:

12 3rd derivative:
13 3rd derivative
14 3rd derivative:
15 3rd derivative:
16 3rd derivative:
17 3rd derivative:
18 3rd derivative
19 3rd derivative:
20 3rd derivative:
21 3rd derivative:

5-point window
7-point window
9-point window

11-point window
13-point window
15-point window
17-point window
19-point window
21-point window
23-point window
25-point window -- +

--+

CUBIC-QUARTIC
BASIS FUNCTION

7-point window -- +
9-point window

11-point window
13-point window
15-point window
17-point window
19-point window
21-point window
23-point window
25-point window -- +

6-36 Signal-Processing Routine Call Reference Descriptions

i

i

i

QUINTIGSEXIC
BASIS FUNCTION

LSP$FILTER_POLY 3RD DERIV

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Description
You use the technique of digital filtering to eliminate certain frequency
components from a signal that is corrupted by noise. Polynomial filters
are based on simple interpolating polynomials which act as lowpass
filters capable of producing derivative information.

See Section 3.1.1, Polynomial Filtering, for further information.

Condition Values
Symbolic Status Description

LSP$_ILL FILTYP filtyp is out of range

LSP$_ILL N_FILTER too few data points per filter window

LSP$_ILL N_RANGE n is out of range

LSP$ I~~IAND_ARG mandatory argument is missing

LSP$_SUCCESS success

Signal-Processing Routine Call Reference Descriptions 6-37

LSP$FORMAT_TRANSLATE ADC

LSP$FORMAT_TRANSLATE_ADC

The LSP$FORMAT_TRANSLATE_ADC routine translates raw numbers
obtained from an analog-to-digital converter into floating-point voltages.

Format LSP$FORMAT_TRANSLATE ADC (in, out, (nj,
(control_i],

(range],

(status))

Returns
VMS Usage: cond value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
►►►
VMS Usage: word_unsigned
type: word (unsigned]
access: read only
mechanism: by reference, array reference

An array containing the data from an analog-to-digital converter. This
array is of length n.

out
VMS Usage: fioating_point
type: F floating
access: write only
mechanism: by reference, array reference

An array into which the result of the translation in units of voltage is
returned. The array is of length n.

6-38 Signal-Processing Routine Call Reference Descriptions

LSP$ FOR MAT_TRAN S LATE_ADC

n
VMS Usage: longword_signed
type: longword integer (signed}
access: read only
mechanism: by reference

An argument specifying the number of data to be translated. The
default is one datum.

control f
VMS Usage: longword_signed
type: longword integer (signed}
access: read only
mechanism: by reference, array reference

An array of length three specifying the type of number representation
used by the converter, the number of bits, and the external gain:

control_i(1)

control_i(2)

control_i(3)

The number representation. You can designate binary or
binary offset by specifying any nonzero integer. You can
specify two's complement by specifying zero.

The number of bits. Specify an integer between 6 and
16, inclusive. Any number outside the range generates an
error. Bits to be operated on are right-justified in the 16-bit
word. Bits to the left of the data bits are ignored during
this translation.

The external gain. This value is helpful when using
programmable-gain ADCs. The gain factor divides the
voltage reading to reflect the actual voltage used. For ex-
ample, asignal of one volt is applied to an ADC with a
gain of four. The output of the converter reads four volts.
The converter reading must be divided by the gain factor to
reflect the actual input voltage.

Specify an integer between 1 and 20, 000, inclusive. Any
number outside the range generates an error.

The default values are two's complement, 12 bits, and a gain of one.

Signal-Processing Routine Call Reference Descriptions 6-39

LSP$FORMAT TRANSLATE ADC

range

VMS Usage: floating_point
type: F_floating
access: read only
mechanism: by reference, array reference

An array containing two values specifying the range of data expressed
as volts. The first value specifies the lowest voltage; the second value
specifies the highest voltage. The default is -10 to 9.9951 volts.

If the two values are equal, an error occurs.

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Description
The LSP$FORMAT_TRANSLATE_ADC routine converts ADC 16-bit
word input data to a floating-point quantity in units of voltage.

See Section 1.2, Data Format Translation for ADCs and DACs, for
further information.

Condition Values
Symbolic Status Description

LSP$_ILL_CTROL 2_T 2nd control array entry is out of range

LSP$_ILL_CTROL_3_T 3rd control array entry is out of range

LSP$_ILL N_RANGE n is out of range

LSP$_ILL RANGE both entries in the range array are equal

LSP$ MAND_ARG mandatory argument is missing

LSP$_SUCCESS success

6-40 Signal-Processing Routine Call Reference Descriptions

LSP$FORMAT TRANSLATE DAC

LSP$FORMAT_TRANSLATE_DAC

The LSP$FORMAT_TRANSLATE_DAC routine translates afloating-
point voltage into raw numbers appropriate for input to a digital-to-
analog converter.

Format LSP$FORMAT TRANSLATE DAC (in, out, (n],
(control i],
(range],
(status])

Returns
VMS Usage: cond value
type: longword unsigned)
access: write only
mechanism: by value

Arguments
In
VMS Usage: floating_point
type: F_fioating
access: read only
mechanism: by reference, array reference

An array containing the data for adigital-to-analog converter (DAC) in
units of volts. This array is of length n.

out
VMS Usage: word unsigned
type: word (unsigned]
access:- write only
mechanism: by reference, array reference

An array into which the data to be passed to the DAC is returned. This
array is of length n.

Signal-Processing Routine Call Reference Descriptions 6-41

LSP$FORMAT TRANSLATE DAC

n
VMS Usage:
type:
access:
mechanism:

longword_signed
longword integer (signed)
read only
by reference

An argument specifying the number of data to be translated. The
default is one datum.

control f
VMS Usage:
type:
access:
mechanism:

longword signed
longword integer (signed)
read only
by reference

An array of length three specifying the type of number representation
used by the converter, the number of bits, and the external gain:

control i(1)

control_i(2)

control_i(2)

The number representation. You can designate binary or
binary offset by specifying any nonzero integer. You can
specify two's complement by specifying zero.

The number of bits. Specify an integer between 6 and
16, inclusive. Any number outside the range generates an
error. Bits to be operated on are right-justified in the 16-bit
word. Bits to the left of the data bits are filled with zeros
in this translation.

The external gain. This value is helpful when using pro-
grammable gain DACs. The gain factor divides into the
voltage reading to reflect the actual voltage used. For exam-
ple, asignal of one volt is requested to DAC with a gain of
four. The output of the DAC reads one volt. The voltage is
divided by the gain factor to reflect the actual input voltage.

Specify an integer between 1 and 20,000, inclusive. Any
number outside the range generates an error.

The default values are two's complement, 12 bits, and a gain of one.

6-42 Signal-Processing Routine Call Reference Descriptions

LSP$FORMAT_TRANSLATE DAC

range
VMS Usage: floating_point
type: F floating
access: write only
mechanism: by reference, array reference

An array containing two values specifying the range of data expressed
as volts. The first value specifies the lowest voltage; the second value
specifies the highest voltage. The default is -10 to 9.9951 volts.

If the two values are equal, an error occurs.

If you specify input data values greater than the maximum value or less
than the minimum value of the range array, the out array contains the
maximum or minimum values as set by the range array. For example, if
you specify -20 volts but the range array specifies -10 as the minimum
voltage, the out array contains the equivalent of -10. If you specify + 20
volts but the range array specifies 9.9951 as the maximum voltage, the
out array contains the equivalent of 9.9951 as the maximum voltage.

status
VMS Usage:
type:
access:
mechanism:

longword unsigned
longword (unsigned)
write only
by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Description
The LSP$FORMAT_TRANSLATE_DAC routine converts DAC floating-
point quantities in units of voltage to 16-bit word output format.

See Section 1.2, Data Format Translation for ADCs and DACs, for
further information.

Signal-Processing Routine Call Reference Descriptions 6-43

LSP$FORMAT TRANSLATE DAC

Condition Values
Symbolic Status Description

LSP$ ILL CTROL 2_T 2nd control array entry is out of range

LSP$_ILL CTROL 3_T 3rd control array entry is out of range

LSP$_ILL N_RANGE n is out of range

LSP$ ILL RANGE both entries in the range array are equal

LSP$_1~~IAND_ARG mandatory argument is missing

LSP$_SUCCESS success

6-44 Signal-Processing Routine Call Reference Descriptions

LSP$HIST F

LSP$HIST_F

The LSP$HIST_F routine performs interval histogram analysis with
floating-point input.

Format LSP$HIST_F (in, out, n, control, (info], (status])

Returns
VMS Usage:
type:
access:
mechanism:

cond_value
longword (unsigned)
write only
by value

Arguments
!n
VMS Usage: fioating_point
type: F_floating
access: read only
mechanism: by reference, array reference

An array of length n containing the values to be histogrammed.

out
VMS Usage: floating_point
type: F floating
access: write only
mechanism: by reference, array reference

An array into which the number of occurrences of the input data is
returned. . The third entry in the control array determines the length of
the out array.

If the input and output arrays are the same, this generates an error.

Signal-Processing Routine Call Reference Descriptions fi-4S

LSP$HIST F

n

VMS Usage: longword_signed
type: longword integer (signed}
access: read only
mechanism: by reference

An argument specifying the number of data points used as input from
the input array. This number must be greater than zero.

control

VMS Usage: floating_point
type: F_fioating
access: read only
mechanism: by reference, array reference

An array of length four specifying the following histogram analysis
parameters:

control(1)

control(2)

control(3)

control(4)

The first value specifies the lower limit of the first interval
histogram element. This is the minimum range used for
histogramming. If this value is equal to the second value in
the array, an error occurs.

The second value specifies the upper limit of the last
interval histogram element. This is the maximum range
used for histogramming. If this value is equal to the first
value in the array, an error occurs.

The third value specifies the total number of intervals. This
number must be greater than zero. This value determines
the length of the out array.

The fourth value specifies the inclusion of the input data
if the data is equal to the highest value (as specified in the
second array entry) in the histogram:

• The value 0.0 specifies omitting the input data from the
histogram calculation.

• Nonzero specifies including the input data in the
histogram calculation.

6-46 Signal-Processing Routine Call Reference Descriptions

LSP$HIST F

info
VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference, array reference

An array which produces two values specifying:

1. The number of input data less than the minimum data value in-
cluded in the histogram calculation.

2. The number of input data greater than the maximum data value
included in the histogram calculation. The fourth entry in the
control array determines this value. when the fourth entry is zero
and the input data is equal to the second entry in the control array,
then the data is considered out of range.

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Description
The LSP$HIST_F routine counts the number of floating-point data
elements that fall into one or more predefined categories or limits. This
routine can convert an array of data into a histogram representing the
frequency of occurrence of the data in a window with defined limits.

The LSP$HIST_F and LSP$HIST_I out array has the following format:

control (2~ —control (1}
dx =

control (3)

where

control(1), control(2}, and control(3) are the first, second, and third
entries in the control array.

Signal-Processing Routine Call Reference Descriptions 6-47

LSP$HIST_F

The out array has the following format:

1st entry

2nd entry

kth entry

The number of occurrences of input data greater than or
equal to control(1), and less than ax plus control(1).

The number of occurrences of input data greater than or
equal to ax plus control(1), and less than (2 * ax) plus
control(1).

If k is not equal to control(3}, then the nurnber of occur-
rences of input data greater than or equal to ((k - 1) * ax)
plus control(1), and less thank * d►x plus control(1).

If control(4) is equal to 0 and k = control(3), then the
number of occurrences of input data greater than or equal
to ((k - 1) * ax) plus control(1), and less thank * ax plus
control(1) is obtained.

However, if control(4) is not equal to 0 and k = control(3),
then the number of occurrences is determined by when the
input data is greater than or equal to ((k - 1) * ax) plus
control(1), and less than or equal to k * ax plus control(1).

Condition Values
Symbolic Status Description

LSP$_ILL ARRAY input and output arrays cannot be the
same

LSP$ ILL_CTROL_1_H entries 1 and 2 in control array are equal

LSP$_ILL_CTROL 3_H 3rd control array entry is less than 1

LSP$_ILL N_RANGE n is out of range

LSP$_I~~IAND_ARG mandatory argument is missing

LSP$_SUCCESS success

6-48 Signal-Processing Routine Call Reference Descriptions

LSP$HIST

LSP$HIST_i

The LSP$HIST_I routine performs interval histogram analysis with
integer input.

Format LSP$HIST_I (in, out, n, control i, (infoJ, ~statusJ)

Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
in
VMS Usage: word_signed
type: word signed)
access: read only
mechanism: by reference, array reference

An array of length n containing the values to be histogrammed.

out -
VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference, array reference

An array into which the number of occurrences of the input data is
returned. The third entry in the control array determines the length of
the out array.

If the in and out arrays are the same, this generates an error.

Signal-Processing Routine Call Reference Descriptions 6-49

LSP$HIST

n
VMS Usage:
type:
access:
mechanism:

An argument
the in array.

control 1
VMS Usage:
type:
access:
mechanism:

longword signed
longword integer (signed)
read only
by reference

specifying the number of data points used as input from
This number must be greater than zero.

longword signed
longword integer (signed)
read only
by reference, array reference

An array of to
parameters

control_i(1)

control_i(2)

control_i(3)

control_i(4)

ngth four specifying the following histogram analysis

The first value specifies the lower limit of the first interval
histogram element. This is the minimum range used for
histogramrning. If this value is equal to the second value in
the array, an error occurs.

The second value specifies the upper limit of the last
interval histogram element. This is the maximum range
used for histogramming. If this value is equal to the first
value in the array, an error occurs.

The third value specifies the total number of intervals. This
number must be greater than zero. This value determines
the length of the out array.

The fourth value specifies the inclusion of the input data if
the data is equal to the highest value (as specified in value
two) in the histogram:

• The value 0 specifies omitting the input data from the
histogram calculation.

• Nonzero specifies including the input data in the
histogram calculation.

6-50 Signal-Processing Routine Cali Reference Descriptions

LSP$HIST_I

info
VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference, array reference

An array containing two values specifying:

1. The number of input data less than the minimum data value in-
cluded in the histogram calculation.

2. The number of input data greater than the maximum data value
included in the histogram calculation. The fourth entry in the
control_i array determines this value. When the fourth entry is
zero and the input data is equal to the second entry in the control_i
array, then the data is considered out of range.

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Description
See the Description section under the LSP$HIST F routine for details
about the format of the LSP$HIST I routine out array.

Signal-Processing Routine Call Reference Descriptions 6-51

LSP$HIST_I

Condition Values
Symbolic Status Description

LSP$_ILL_ARRAY input and output arrays cannot be the
same

LSP$ ILL CTROL_1_H entries 1 and 2 in control array are equal

LSP$_ILL_CTROL 3_H 3rd control array entry is less than 1

LSP$_ILL: N_RA.NGE n is out of range

LSP$_MAND_A.RG mandatory argument is missing

LSP$_SUCCESS success

6-52 Signal-Processing Routine Call Reference Descriptions

LSP$PHASE ANGLE

LSP$PHASE_ANGLE

The LSP$PHASE_ANGLE routine calculates the phase angle and modu-
lus spectrum for data in one dimension.

Format LSP$PHASE ANGLE (in, phaseout, modu/us_out,
n, ~statusJ)

Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
!n
VMS Usage: complex_number
type: F_floating complex
access: read only
mechanism: by reference, array reference

An array containing the complex output values from the FFT routine.
This array is n entries long.

phaseout
VMS Usage: floating_point
type: F_floating
access: write only
mechanism: by reference, array reference

An array returning the phase angle of the input data. This array is n
entries long and can be the same as the in array.

Signal-Processing Routine Call Reference Descriptions 6-53

LSP$PHASE_ANGLE

modulus out
VMS Usage: floating_point
type: F_floating
access: write only
mechanism: by reference, array reference

An array returning the modulus of the input data. This array is n entries
long and can be the same as the in array.

The phaseout argument and the modulus_out argument can both be
the same as the in argument. If both output arguments are the same as
the input argument, the modulus appears in the array, and the phase
angle information is lost.

n
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism:

ay reference

An argument containing the number of complex input data points for
which the phase angle and modulus are to be calculated. The value of
n must be greater than or equal to 1.

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

6-54 Signal-Processing Routine Call Reference Descriptions

LSP$PHASE ANGLE

Description
The LSP$PHASE ANGLE routine returns the phase angle and the vector
resultant amplitude (modulus) of the signal whose Fourier transform h(t~
has been previously obtained. This routine performs the following
calculations:

pha~ f~) = arctan(Ii~R=)

and

where

pha(fi) is the phase angle (in radians) of a signal with Fourier compo-
nents Ri and Il.

Ri and Ii are the real and imaginary coefficients of the Fourier transform.

r(fi)is the modulus of the signal.

Note that i is an index in the above equation.

Condition Values
Symbolic Status Description

LSP$_ILL ARRAY input and output arrays cannot be the
same

LSP$_ILL N_RANGE n is out of range

LSP$_1~ZAND_ARG mandatory argument is missing

LSP$ SUCCESS success

Signal-Processing Routine Call Reference Descriptions 6-55

LSP$PHASE_ANGLE 2D

LSP$PHASE_ANGLE_2D

The LSP$PHASE_ANGLE_2D routine computes the magnitude and
phase of a complex, two-dimensional array for which the Fourier
transform has been previously obtained.

Format LSP$PHASE ANGLE 2D (in, outl, out2, nl, n2,
(status])

Returns
VMS _Usage: cond value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
In
VMS Usage: complex_number
type: F_floating
access: read only
mechanism: by reference, array reference

An array containing the data from which the phase angle and amplitude
are calculated. This array is dimensioned n1 x n2.

outl
VMS Usage: floating_point
type: F_floating
access: write only
mechanism: by reference, array reference

An array into which the phase angle of the input data is returned. This
array is dimensioned n1 x n2.

6-56 Signal-Processing Routine Call Reference Descriptions

LSP$PHASE ANGLE 2D

out2
VMS Usage: floating_point
type: F_floating
access: write only
mechanism: by reference, array reference

An array into which the magnitude is returned. This array is dimen-
sioned nl x n2.

n1
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument containing the number of points in each row. This value
must be greater than or equal to 1.

n2
VMS Usage: longword_signed
type: longword integer (signed
access: read only
mechanism: by reference

An argument containing the number of columns. This value must be
greater than or equal to 1.

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROI~.

Signal-Processing Routine Call Reference Descriptions 6-57

LSP$PHASE ANGLE_2D

Description
The LSP$PHASE_ANGLE 2D routine returns the phase angle and
the vector resultant amplitude (modulus) of the signal whose Fourier
transform h(~ has been previously obtained. This routine performs the
following calculations:

pha{ fi ,j) = arctan{I;,j ~R=,j

and

where

pha(fi,j) is the phase angle (in radians) of a signal with Fourier compo-
nents Ri, ~ and Ii, ~
Ri,j and Ii,~ are the real and imaginary coefficients of the Fourier trans-
form
r(fi,~) is the modulus of the signal

Note that i and j are indices in the above equation.

Condition Values
Symbolic Status Descr~pt~on

LSP$_ILL ARRAY input and output arrays cannot be the
same

LSP$_ILL N_RANGE n1 or n2 is out of range

LSP$_MAND_ARG mandatory argument is missing

LSP$_SUCCESS success

6-58 Signal-Processing Routine Call Reference Descriptions

LSP$POWER SPECTRUM

LSP$POWER_SPECTRUM

The LSP$PQWER_SPECTRUM routine calculates the power spectrum of
equispaced data.

Format LSP$POWER SPECTRUM (in, out, n, (status])

Returns.
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
in
VMS Usage: compiex_number
type: F_floating complex
access: read only
mechanism: by reference, array reference

An array containing the complex output values from the FFT routine.
This array is n entries long.

out
VMS Usage: floating_point
type: F floating
access: write only
mechanism: by reference, array reference

An array into which the power spectrum of the input data is returned.
This array is n entries long and can be the same array as the in array.

Signal-Processing Routine Call Reference Descriptions 6-59

LSP$POWER SPECTRUM

n
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument containing the number of complex input data points for
which the power spectrum is to be calculated. The quantity n must be
greater than or equal to 1.

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Description
The power spectrum of a record of data can be estimated from a
real-valued evenly-spaced sequence of data. The power spectrum is
commonly defined as:

P~f) = htf) * h* ~f)

where

h(f) is the Fourier transform of h(t).
h*(f) is the complex conjugate of h(f).

Separating the real and imaginary terms of both h(f) and h*(f) yields:

~'(f =) _ {R= + j * ~_} * {R~ — j * fit)

where

Ri are the real components of the Fourier transform of h(ti}.
Ii are the imaginary components of the Fourier transform of h(ti}.
j is equal to the square root of -1.

Note that i is an index in the above equation.

6-60 Signal-Processing Routine Call Reference Descriptions

LSP$POWER_SPECTRUM

Multiplying the two terms on the right side of the equation yields:

P~f~) _ ~Rt)2 + ~I+)2

The Fourier transform of areal-valued data record has a symmetry
property whereby only half of the transform needs to be stored. When
the nonstored portion of the forward real FFT is substituted into the
equation, the same result is produced. Because of this symmetry, only
the first (n/2) + 1 values need to be stored.

As is the case with all FFT methods, the time axis is considered to be
equally spaced with time increment at. The resulting frequency axis
from the forward transformation is in increments kl(n at)

where k = 0, 1, 2, 3, ... n-1, and n is the total number of points to be
transformed.

The routine LSP$POWER_SPECTRUM is called after performing a
forward FFT on the input data.

Condition Values
Symbolic Status Description

LSP$_ILL_N_RANGE n is out of range

LSP$_MAND_ARG mandatory argument is missing

LSP$_SUCCESS success

Signal-Processing Routine Call Reference Descriptions 6-61

LSP$SPECTRAL_WINDOWS

LSP$SPECTRAL_WINDOWS

The LSP$SPECTRAL_WINDOWS routine dynamically allocates a win-
dow function coefficient array, applies the coefficients to the input data,
and stores the resulting windowed output data in an array.

Format LSP$SPECTRAL_WINDOWS (in, out, n,
window_type,
(status])

Returns
VMS Usage:
type:
access:
mechanism:

cond value
longword (unsigned)
write only
by value

Arguments
In
VMS Usage: floating_point
type: F_floating
access: read only
mechanism: by reference, array reference

An array containing the input data to be windowed.

out
VMS Usage:
type:
access:
mechanism:

floating_point
F floating
write only
by reference, array reference

An array into which the windowed output data is returned. The out
array can be the same as the in array; then, the output array replaces
the input array.

6-6~ Signal-Processing Routine Call Reference Descriptions

LSP$SPECTRAL_WINDOWS

n
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument containing the number of data points to be windowed.
The value of n must be greater than or equal to 1.

window type
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

An argument specifying the type of window to be used. The following
is a list of possible window type values.

Value W~ndow_Type

LSP$K_BLACK:MAN Blackman

LSP$K_HAMMING Hamming

LSP$K_HANNING Harming

LSP$K TRIANGLE Triangle

LSP$K_WELCH Welch

status
VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Signal-Processing Routine Call Reference Descriptions 6-63

LSP$SPECTRAL_W I N DOW S

Description
The LSP$SPECTRAL_WINDOWS routine automatically allocates a
window function coefficient array, applies the coefficients to the input
data contained in the in array, and stores the resulting windowed output
data in the out array. See Chapter 4, Spectral Window Filtering, for
more information about spectral windows.

Condition Values
Symbolic Status Description

LSP$_ILL N_RANGE

LSP$_MAND_ARG

LSP$_ILL WINDOW TYPE

LSP$_SUCCESS

n is out of range

mandatory argument is missing

you specified an invalid window type

success

6-64 Signal-Processing Routine Call Reference Descriptions

LSP$THERMOCOUPLE X

LSP$THERMOCOUPLE_X

The LSP$THERMOCOUPLE_X routine converts thermocouple voltages
to temperatures.

Format LSP$THERMOCOUPLE X (volts, tempc, (n],
(status])

Returns
VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
volts
VMS Usage: floating_point
type: F_floating
access: read only
mechanism: by reference, array reference

An array containing the voltages produced from the thermocouple
device referenced to a cold junction.

tempc
VMS Usage: floating_point
type: F_floating
access: write only
mechanism: by reference, array reference

An array returning the temperatures in degrees Centigrade.

Signal-Processing Routine Call Reference Descriptions 6-65

LSP$THERMOCOUPLE X

n
VMS Usage:
type:
access:
mechanism:

longword_signed
longword integer (signed)
read only
by reference

An argument containing the number of data values to be converted.
The default is 1.

StBtUS

VMS Usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both
SYS$OUTPUT and SYS$ERROR.

Descrip#ion
Each thermocouple type has a unique routine associated with it. The
X in the LSP$THERMOCOUPLE_X routine is a placeholder for the
ANSI symbol that represents the thermocouple type. When you use
the LSP$THERMOCOUPLE_X routine, substitute the ANSI symbol
appropriate for the type of thermocouple for the X. The following
thermocouple conversion routines are provided:

LSP$THERMOCOUPLE_B
LSP$THERMOCOUPLE_E
LSP$THERMOCOUPLE_J
LSP$THERMOCOUPLE_K
LSP$THERMOCOUPLE_R
LSP$THERMOCOUPLE_S
LSP$THERMOCOUPLE_T

See Chapter 5, Thermocouple Conversion, for information about
converting thermocouple voltages to temperatures.

6-66 Signal-Processing Routine Call Reference Descriptions

LSP$THERMOCOUPLE X

Condition Values
Symbolic Status Description

LSP$_ILL N_RANGE n is out of range

LSP$_ILL_V RANGE a supplied voltage is out of range
LSP$_MAND_ARG mandatory argument is missing

LSP$_SUCCESS success

Signal-Processing Routine Call Reference Descriptions 6-67

Chapter 7

Laboratory Signal-Processing
Error Handling

This chapter describes the VAXIab Laboratory Signal-Processing (LSP)
error-handling facility and explains the error messages and suggested
recovery procedures.

7.1 Overview

The VAXIab software library provides an LSP error-message facility.
When you execute an image that results in an error, the system option-
ally locates the error message associated with the error and directs it
to the devices or files defined as SYS$ERROR and SYS$OUTPUT. The
LSP routines use the same standards as the VMS Run-Time Library and
System Services for passing back status information about routine calls.

The VMS Run-Time Library and System Services return a status value
which is passed back to the user program through a longword variable
when the routine is called as a function. A successful operation returns
an LSP success status code. An unsuccessful operation returns one of
the LSP symbolic values with bit zero clear (false).

In addition, you can use an optional argument in each routine call list to
obtain the routine status. Again, a successful operation returns bit 0 set
(true).

If you call the routine as either a function or a subroutine, when an error
condition exists and you do not include the optional status argument
in the routine call, a message is directed to both SYS$OUTPUT and
SYS$ERROR.

Laboratory Signal-Processing Error Handling 7-1

l~/
The symbolic status values are defined in definition files for each of the
following program languages:

Table 7-1: Error-Handling Symbolic Status Definition Files
Language Symbolic Status Definition File

VAX Ada

VAX BASIC

VAX C

VAX FORTRAN

VAX MACRO

VAX PASCAL

SYS$LIBRARY: LSPDEF.ADA

SYS$LIBRARY :LSPDEF. BAS

SYS$LIBRARY:LSPDEF. H

SYS$LIBRARY: LSPDEF. FOR

SYS $LIBRARY :LSPDEF .MAR

SYS $LIBR.ARY :LSPDEF. PAS

See Section 7.3, Symbolic Status Values and Descriptions, fora descrip-
tion of the symbolic status values.

7.2 Checking Routine Call Status

A user program can check the status of routine calls in the following
three ways

• By testing for status after each operation and, upon receipt of any
condition other than success, signaling the condition value to the
device or file defined as SYS$ERROR.

C Do the inverse FFT on the complex data. Include the statue argument
C in the routine call argument list:

INTERGER*4 STATUS
ISTAT = LSP~FFT_COMPLEX(AN_H_OF_K,CN_H_OF_T,8,1,STATUS)
IF(.NOT. STATUS) CALL LIB~SIGNAL(XVAL(STATUS))

• By testing status after each operation for a specific condition value.

INCLUDE 'SYS=LIBRARY:LSPDEF.FOR ! Get symbolic status definitions
INTERGER*4 STATUS

C Do the real FFT and replace the input array rith the output array.
C The LSP routine returns the status.

ISTAT = LSP~FFT_REAL(SIG,SIG,N,O,STATUS)
IF(STATUS .NE. LSP=_SUCCESS) CALL LIB;SIGNAL(XVAL(STATUS))

7-2 Laboratory Signal-Processing Error Handling

NOTE

If your program is coded to check for specific condition
values after one or more operations, you must include
the symbolic status definition file appropriate for your
programming language. The VAXIab-supplied symbolic
status definition files are listed in Table 4-1, Error-
Handling Symbolic Status Definition Files. If you do
not include the symbolic definition file, your program will
not recognize these values.

This program segment tests if status is not equal to success. If status
is not equal to success, the routine signals the status. If status equals
success, program execution continues.

• By omitting the status argument. If you omit the status argument
and an error occurs, the message is directed to both SYS$ERROR
and SYS$OUTPUT.

C Calculate the phase spectrum in the CA_PHASE array and the modulus in the
C CA_MODULUS array.

CALL LSP=PHASE_ANGLE(Y,CA_PHASE,CA_MODULUS,N,)

7.3 Symbolic Status Values and Descriptions

This section presents the LSP symbolic status values and error messages
with an explanation of each value and the appropriate user action
suggested to recover from each error condition.

If LSP displays an error message:

• Check the error message Explanation and User Action information
listed in this section.

• Check your program to make sure that all data is being passed
correctly.

Laboratory Signal-Processing Error Handling 7-3

LSP$_ILL_ARRAY, Input and output arrays cannot be the same

Explanation: You made an LSP call specifying the input array and the
output array as the same array. The input and output arrays cannot be
the same.

User Action: Specify different input and output arrays.

LSP$_ILL_CTROL_1_H, Entries 1 and 2 in control array are equal

Explanation: You made a call to one of the LSP$HIST_x routines and
specified equal values for the first and second entries of the control
array argument.

The first value specifies the lower limit of the first interval histogram
element. The second value specifies the upper limit of the last interval
histogram element. If the first value is equal to the second value, an
error occurs.

User Action: Specify different lower and upper limit values for the first
and second entries of the control array argument.

LSP$_ILL_CTROL_3_H, 3rd control array entry is less than 1

Explanation: You made a call to one of the LSP$HIST_x routines and
specified a value less than or equal to zero for the third entry of the
control array argument.

The third entry specifies the total number of histogram intervals. This
number must be greater than zero.

User Action: Replace the current entry for the third value of the control
array argument with a value greater than zero.

LSP$_ILL_CTROL_2_T, 2nd control array entry is out of range

Explanation: You made a call to one of the LSP$FORMAT_TRANSLATE_x
routines and specified a value that is out of range for the second entry
of the control_i array argument.

The second entry specifies the number of bits. This number must be
between 6 and 16, inclusive. Any number outside this range generates
an error.

User Action: Replace the current entry for the second value of the
control_i array argument with an integer between 6 and 16, inclusive.

7-4 Laboratory Signal-Processing Error Handling

LSP$_ILL_CTROL_3_T, 3rd control array entry is out of range

Explanation: You made a call to one of the LSP$FORMAT_TRANSLATE_x
routines and specified a value that is out of range for the third entry of
the control_i array argument.

The third entry specifies the external gain. This number must be an
integer between 1 and 20,000, inclusive. Any number outside of the
range generates an error.

User Action; Replace the current entry for the third value of the
control_i array argument with an integer between 1 and 20,000, inclu-
sive.

LSP$_ILL_F_RANGE, Flow or fhigh is out of range

Explanation: You made a call to the LSP$FILTER_NONREC routine and
specified a value for the flow or the fhigh argument that is out of range.

The flow argument represents the lower frequency of the filter and the
(high argument represents the upper frequency of the filter. The value
for either argument must be between 0.0 and 1.0, inclusive.

User Action: Replace the current entry for the flow argument or the
fhigh argument with a value between 0.0 and 1.0, inclusive.

LSP$_ILL_FILTYP, filtyp is out of range

Explanation; You made a call to one of the LSP$FILTER_POLY_x
routines and specified a value for the filtyp argument that is outside of
the range of supported values for this LSP function.

User Action: Replace the current entry for the filtyp argument with
a legal filtering type value. See the appropriate LSP$FILTER_POLY_x
routine call reference description for a list of available filter types.

LSP$_ILL_FLOW, flow is equal to fhigh

Explanation: You made a call to the LSP$FILTER_NONREC routine and
specified the flow argument equal to the fhigh argument.

User Action; Provide different values for the flow argument and the
fhigh argument so that flow is not equal to fhigh.

Laboratory Signal-Processing Error Handling 7-5

LSP$_ILL_N_FILTER, Too few data points per filter window

Explanation: You made a call to one of the LSP$FILTER_P~LY_X
routines and specifed an incorrect value for the n argument.

User Action: Specify a number of data points for the n argument that
is greater than the number of data points specified for the filter window
you are using.

LSP$_ILL_N_NONREC, n is less than 2*nterms + 1

Explanation: You made a call to the LSP$FILTER_NONREC routine and
specified the n argument less than or equal to the value of nterms*2 + 1.

The n argument contains the number of data values to be filtered. This
value must be greater than the value of nterms*2 + 1. Any number less
than or equal to this value generates an error.

User Action: Replace the current value of n with a value greater than
the value of nterms*2 + 1, or make the value of nterms smaller.

LSP$_ILL_N_NOT_2, n is not a power of 2

Explanation: You made a call to one of the fast Fourier transform
routines or the LSP$CORRELATION routine and specified an incorrect
value for the the n argument, the nl argument, or the n2 argument.

If you are using LSP$CORRELATION routine, LSP$FFT_COMPLEX
routine, or LSP$FFT_REAL routine, you specified an incorrect value for
the n argument.

If you are using LSP$FFT_COMPLEX_2D routine, you specified an
incorrect value for the nl argument or the n2 argument.

For LSP$CORRELATION, LSP$FFT_COMPLEX, or LSP$FFT_REAL, the
value of the n argument must be a power of 2 and range between 2 and
32,768. In this case n = 2"z, where m is between 1 and 15, inclusive.
The power of 2 restriction also applies to the LSP$FFT_COMPLEX_2D
routine.

User Action: Replace the current value of n, nl, or n2 with a power
of 2 value between 2 and 32,768, inclusive. For more information on
discrete Fourier transform and correlation functions, see Chapter 2,
Performing Fourier Transforms and Correlation Functions. You can also
refer to the routine call reference sections for each of the four routines.

7-6 Laboratory Signal-Processing Error Handling

LSP$_ILL_N_RANGE, n is out of range

Explanation: You entered an incorrect value for the n argument. The
value of n can not be less than or equal to zero.

User Action: Check the routine call reference description for the
allowed range of values for the n argument.

LSP$_ILL_NTERMS, nterms is out of range

Explanation: You made a call to the LSP$FILTER_NONREC routine
and specified an incorrect value for the nterms argument. The value of
nterms must be between 2 and 500, inclusive. Any number outside this
range generates an error.

User Action: Replace the current value of the nterms argument with a
variable between 2 and 500, inclusive.

LSP$_ILL_RANGE, Both entries in the range array are equal

Explanation: You made a call to the LSP$FORMAT_TRANSLATE_ADC
routine or the LSP$FORMAT_TRANSLATE_DAC routine and specified
the same number for both the first and second values of the range
argument.

The first value specifies the lowest voltage; the second value specifies
the highest voltage. The default range is -10 to 9.9951 volts. If the two
values are equal, an error occurs.

User Action: Adjust the first and second values of the range argument
accordingly. See the appropriate routine call reference description for
more information about the range argument.

LSP$_ILL_V_RANGE, A supplied voltage is out of range

Explanation: You made a call to one of the LSP$THERMOCOUPLE_X
routines and specified an incorrect value for the volts argument.

User Action: Replace the current value of the volts argument with a
value from Table 5-2, Thermocouple Temperature and Voltage Ranges.

Laboratory Signal-Processing Error Handling 7-7

LSP$_ILL_WIGGLES, wiggles is out of range

Explanation: You made a call to the LSP$FILTER_NONREC routine and
specified an incorrect value for the wiggles argument.

The wiggles argument is a number in -dB units which is proportional
to the oscillation from the Gibbs Phenomenon. This number must be
between 0.0 and 100.0, inclusive.

User Action: Replace the current value of the wiggles argument
with a number between 0.0 and 100.0, inclusive. See Section 3.1.2,
Nonrecursive Filtering, for more information about the wiggles argu-
ment.

LSP$_ILL_WINDOW_TYPE, invalid window type specified

Explanation: You made a call to the LSP$SPECTRAL_WINDOWS
routine or the LSP$BUILD_WINDOW_TABLE routine and specified an
incorrect value for the window_type argument.

User Action: Replace the current value of the window_type argu-
ment with one of the five window type values listed in the routine call
reference description for that routine.

LSP$_MAND_ARG, Mandatory argument is missing

Explanation: You omitted a mandatory argument in an LSP routine call.

User Action: Review your program for missing or defaulted arguments.

LSP$_SUCCESS, Success

Explanation: Your routine executed successfully.

User Action: No action required.

7-8 Laboratory Signal-Processing Error Handling

Chapter 8

Overview of Online Sample
Programs

This chapter provides an overview of sample programs showing how
to use the Laboratory Signal-Processing routines. These programs are
shipped with your VAXIab software kit and are placed on disk during
the VAXIab software installation procedure. You can find the LSP
sample programs in a directory with the logical name LSP$EXAMPLES.
The logical name of this directory is defined in LSPSTARTUP.COM
during installation.

The LSP sample program file names include:

• the facility code, LSP

• a descriptive abbreviation for the LSP routine or task the sample
program illustrates

• a file extension indicating the programming language in which each
sample program is coded

For example, the sample program LSP_FFT_RAND_DAT.FOR uses the
LSP$FFT_REAL routine, shows how to perform a fast Fourier transform
of random data stored in an array, and is written in VAX FORTRAN.

Table 8-1, LSP Online Sample Programs, lists the sample program
names, the routines each sample program uses, and a brief description
of what each sample program does. Review Table 8-1 to determine
which of the sample programs will be helpful to you in learning how to
use the LSP routines.

Qverview of Qnline Sample Programs 8-1

In order to print, edit, or read a sample program you must copy the
program to your own directory. To copy a sample program, in this
case LSP_FFT_RAND_DAT.FOR, to your directory, enter the following
command line:

=COPY LSPSEXAMPLES:LSP_FFT_AAND_DAT.FOA *.* RETURN

Table 8-1: LSP Online Sample Programs
Program Name Routines

LSP_AUTOCOR_RAND_SEQ.FOR LSP$CORRELATION
LSP$FFT_REAL
LGP$TABLE_MODIFY
LGP$PLOT
LGP$TERMINATE_PLOT

Description: Sample program LSP_AUTOCOR_RAND_SEQ.FOR demonstrates
the use of the LSP$CORRELATION routine by autocorrelating arandom
sequence.

LSP_CALC_COMP_PHA.SE_SPEC.FOR LSP$PHASE_ANGLE

Description: Sample program LSP_CALC_COMP_PHASE_SPEC.FOR demon-
strates the use of the LSP$PHASE_ANGLE routine by generating a phase
spectrum where the phase is known analytically. The program-generated phase
spectrum is then compared to the analytical function.

LSP_CALC_PHASE_SPEC.FOR LSP$PHASE_ANGLE

Description: Sample program LSP_CALC_PHASE_SPEC.FQR demonstrates the
use of the LSP$PHASE_ANGLE routine by computing the phase spectrum of a
function whose phase and amplitude are known analytically.

LSP_CROSSCOR_SINE_COSINE.FOR LSP$CORRELATION
LSP$FFT_REAL
LGP$TABLE_MODIFY
LGP$PLOT
LGP$TERMINATE_PLOT

Description: Sample program LSP_CROSSCOR_SINE_COSINE.FOR demon-
strates the use of the LSP$CORRELATION routine by cross-correlating a sine
and cosine waveform.

LSP_FFT_COMP_FORW.FQR LSP$FFT_COMPLEX

Description: Sample program LSP_FFT_COMP_FORVV.FOR demonstrates the
use of the LSP$FFT_COMPLEX routine by calculating the forward Fourier
transform of a complex function.

8-2 Overview of Online Sample Programs

Table 8-1 (Cont.): LSP Online Sample Programs
Program Name Routines

LSP_FFT_COMP_INVER.FOR LSP$COMPLEX

Description: Sample program LSP_FFT_COMP_INVER.FOR demonstrates the
use of the LSP$FFT_COMPLEX routine by calculating the inverse Fourier
transform of a complex function .

LSP_FFT_FUNC. FOR LSP$FFT_REAL

Description: Sample program LSP_FFT_FUNC.FOR demonstrates the use of
the LSP$FFT_REAL routine by calculating the fast Fourier transform of the
function: h(t) = Q**t where Q = 0.9 and t = 0, 1, 2, ... N-1.

LSP_FFT_RAND_DAT.FQR LSP$FFT_REAL

Description: Sample program LSP_FFT_RAND_DAT.FQR demonstrates the use
of the LSP$FFT_REAL routine by performing a fast Fourier transformation on
eight points stored in an array.

LSP_FILT_NONREC.FQR LSP$FILTER_NONREC
LGP$PLOT
LGP$TERMINATE_PLOT

Description: Sample program LSP_FILT_NONREC.FOR demonstrates the
use of the LSP$FILTER_NONREC routine in lowpass and highpass mode by
creating a sine wave of period 2 ~ and modulating this waveform with a smaller
amplitude sine wave which oscillates 40 times faster. The program filters in
lowpass mode to get the primary sine wave and outputs it to an array. The
program filters in highpass mode to get the higher frequency signal and outputs
it to another array. See Chapter 3, Digital Filtering, for a copy of this sample
program and the graphical output it produces. The sample program is coded in
VAX FORTRAN.

LSP_FILT_NONREC.PAS LSP$FILTER_NONREC
LGP$PLOT
LGP$TERMINATE_PLOT

Description: Sample program LSP_FILT_NONREC.PAS demonstrates the
use of the LSP$FILTER_NONREC routine in lowpass and highpass mode by
creating a sine wave of period 2 ~ and modulating this waveform with a smaller
amplitude sine wave which oscillates 40 times faster. The program filters in
Iowpass mode to get the primary sine wave and outputs it to an array. The
program filters in highpass mode to get the higher frequency signal and outputs
it to another array. The sample program is coded in VAX Pascal.

Qverview of Online Sample Programs 8-3

Table 8-1 (Cont.): LSP Online Sample Programs

Program Name Routines

LSP_FILT_POLY.FOR LSP$FILTER_POLY

Description: Sample program LSP_FILT_POLY.FOR demonstrates the use of the
LSP$FILTER_POLY routine by using this routine to smooth program-generated
data.

LSP_FILT_POLY_1ST_DERIV.FOR LSP$FILTER_POLY_1ST_DERIV

Description: Sample program LSP_FILT_POLY_1ST_DERIV,FOR demonstrates
the use of the LSP$FILTER POLY_1ST_DERIV by creating a table of a function
and its analytical first derivation. The program passes the function values
through the first derivative filter and subsequently compares the results of the
analytical first derivative to the program-generated first derivative.

LSP_FORM_TRANS ADC.FOR LSP$FORMAT_TRA.NSLATE_ADC

Description: Sample program LSP_FORM_TRANS_ADC.FQR demonstrates
the use of the LSP$FORMAT_TRA.NSLATE_ADC routine by converting two's
complement data in an input array to voltage data which is written to an
output array.

LSP_FORM_TRANS_DAC.FOR LSP$FORMAT_TRANSLATE_DAC

Description: Sample program LSP_FORM_TRANS_DAC.FOR demonstrates the
use of the LSP$FORMAT_TRANSLATE_DAC routine by converting data (in
volts) in an input array to offset binary format data which is written to an
output array.

LSP_HIST_F. FOR LSP$HIST_F
LGP$PLOT
LGP$HIST
LGP$TERMINATE_PLOT

Description: Sample program LSP_HIST_F.FOR demonstrates the use of
LSP$HIST_F by performing interval histogram analysis with program-generated
floating-point data.

LSP_HIST_I. FOR LSP$HIST_I
LGP$PLOT
LGP$HIST
LGP$TERMINATE_PLOT

Description: Sample program LSP_HIST_I.FOR demonstrates the use of the
LSP$HIST_I routine by performing interval histogram analysis with a given set
of integer data.

S-4 Overview of Online Sample Programs

Table 8-1 (Copt.): LSP Online Sample Programs

Program Name Routines

LSP_PHASE_ANG.FOR LSP$FFT_COMPLEX_2D
LSP$PHASE_ANGLE_2D
LGP$3D SIMPLE
LGP$TERMINATE_PLOT

Description: Sample program LSP_PHASE_ANG.FOR demonstrates the use of
the LSP$FFT_COMPLEX_2D routine and the LSP$PHASE_ANGLE_2D routine
by calculating the fast Fourier transform of a complex two-dimensional function
and then computing the phase angle and magnitude.

LSP_POW SPEC_SINE. C LSP$FFT_REAL
LSP$POWER_SPECTRUM

Description: Sample program LSP_POW SPEC_SINE. C demonstrates the use of
the LSP$POWER_SPECTRUM routine by computing the power spectrum of a
sine wave of one period. The sample program is coded in VAX C.

LSP_POW SPEC_SINE.FOR LSP$FFT_REAL
LSP$POwER_SPECTRUM

Description: Sample program LSP_POW SPEC_SINE.FOR demonstrates the use
of the LSP$POWER_SPECTRUM routine by computing the power spectrum of a
sine wave of one period. The sample program is coded in VAX FORTRAN.

LSP_THERMOC B.FOR LSP$THERMOCOUPLE_B

Description: Sample program LSP_THERMOC_B.FOR demonstrates the use
of the LSP$THERMOCOUPLE_B routine by converting voltage values to
temperatures.

Overview of Online Sample Programs 8-5

Table S-1 (Cont.): LSP Online Sample Programs

Program Name Routines

LSP_WINDOW 1.FOR LIO$ATTACH
LIO$DETACH
LIO$READ
LIO$SET
LIO$WRITE
LSP$APPLY_WINDOW TABLE
LSP$BUILD_WINDOW TABLE
LSP$FFT_REAL
LSP$FORMAT_TRANSLATE_ADC
LGP$PLOT
LGP$TERMINATE_PLOT

Description: Sample program LSP_WTNDOW 1.FOR demonstrates the use of
the LSP$BUILD_WINDOW_TABLE routine, the LSP$APPLY_WINDOW_TABLE
routine, and the periodogram technique of calculating the power spectrum. See
Chapter 4, Spectral Window Filtering, for a copy of this sample program and
the output it produces.

LSP_WINDOW 2.FOR LIO$ATTACH
LIO$DETACH
LIO$READ
LIO$SET
LIO$WRITE
LSP$SPECTRAL_WINDOWS
LSP$FFT_REAL
LSP$FORMAT_TRANSLATE_ADC
LSP$POWER_SPECTRUM
LGP$PLOT
LGP$TERMINATE_PLOT

Description: Sample program LSP_WINDOW 2.FOR illustrates the use of the
LSP$SPECTR.AL_WINDOWS routine by collecting data with LIO; translating the
data format from analog to digital; performing an FFT on the data; calculating
the power spectrum of the data; running the data through aloes-pass filter
and plotting the results; and running the data through ahigh-pass filter and
plotting the results. See Chapter 4, Spectral Window Filtering, for a copy of
this sample program and the output it produces

8-6 Overview of Online Sample Programs

Appendix A

Mathematics and Statistics
Routines

This chapter provides an overview and summary of the routines you use
to perform mathematical and statistical analysis of real-time and static
data. This chapter also provides information about how to print a hard
copy of the document describing how to use these routines.

NOTE

Please note, the Scientific Subroutines Package (SSP) is
included in the VAXIab Software Library at no cost to the
purchaser. DIGITAL does not provide any support for SSP.

A.1 Overview of Mathematics and Statistics Routines

To perform mathematical and statistical analysis of real-time and
static data, you use the routines provided in the Scientific Subroutines
Package (SSP). The Scientific Subroutines Programmer's Reference Manual
describes how to use the SSP routines. This document is shipped
in machine-readable form (there is no hardcopy manual) and is
put on-line during the VAXIab software installation procedure. You
need to print a hard copy of this document to use the SSP routines.
The Scientific Subroutines Programmer's Reference Manual is located in
SYS$SYSROOT: [UNSUPPORTED. SSP]SSP_GUIDE.MEM.

The following sections summarize the mathematics and statistics rou-
tines available to you.

Mathematics and Statistics Routines A-1

A.2 Mathematics Routine Call Summary

The following table summarizes the mathematics routines.

Table A-1: VAXIab Mathematics Routine Call Summary
Routine Function

ARRAY Converts a data array from single to double dimension, or
from double to single dimension.

BESI Computes the I Bessel function for a given argument and order
using series or asymptotic approximation.

BESJ Computes the j Bessel function for a given argument and order
using recurrence-relation technique.

BESK Computes the K Bessel function for a given argument and
order using series approximation and recurrence relations.

BESY Computes the Y Bessel function for a given argument and order
using recurrence relations and polynomial approximations.

CADD Adds a column of one matrix to the column of another matrix.

CCPY Copies a column of a matrix into a vector.

CCUT Partitions a matrix between specified columns to form two
resultant matrices.

CEL1 Computes the complete elliptic integral of the first kind using
Landens transformation.

CEL2 Computes the generalized complete elliptic integral of the
second kind.

CINT Interchanges two columns of a matrix.

CS Computes the Fresnel integrals using rational function approxi-
mations.

CSRT Sorts columns of a matrix.

CSUM Sums the elements of each column of a matrix to form a row
vector.

CTAB

CTIE

Adds the columns of one matrix into a new matrix in the
columns specified by a floating-point number in the respective
row of the input vector.

Adjoins two matrices with the same row dimensions to form
one resultant matrix.

A~2 Mathematics and Statistics Routines

Table A-1 (Cont.): VAXIab Mathematics Routine Call Summary

Routine Function

DCLA Sets each diagonal element of a matrix equal to a scalar.

DCPY Copies the diagonal elements of a matrix into a vector.

EIGEN Computes the eigenvalues and eigenvectors of a real symmetric
matrix.

EXPI Computes the exponential integral -EI(-X) using three different
rational approximations.

FORIF Computes the coefficient of the desired number of terms in the
Fourier Series F(X) = A(0) + SUM(A(K)COS KX + B(K)SIN KX),
where K = 1, 2, ... M, to approximate the computed values of
a given function subprogram.

FORIT Computes the coefficients of a specified number of terms in
the Fourier Series to approximate a given set of periodically
tabulated values of a function.

GAMMA Computes the GAMMA function for a given argument using
the recursion relation and polynomial approximation.

GMADD Adds two general matrices to form a resultant matrix.

GMPRD Multiplies two general matrices to form a resultant general
matrix.

GMSUB Subtracts one general matrix from another general matrix to
form a resultant general matrix.

GMTRA Transposes a general matrix.

GTPRD Premultiplies a general matrix by the transpose of another
general matrix.

LEP Computes the values of the Legendre polynomials P(N, X) for
argument value X and orders 0 to N.

LOC Computes a vector subscript for an element in a matrix of
specified storage mode.

MADD Adds two matrices to form a resultant matrix.

MATA Premultiplies a matrix by its transpose to form a symmetric
matrix.

MCPY Copies an entire matrix.

MFUN Applies a function to each element of a matrix to form a
resultant matrix.

MINV Inverts a matrix and calculates its determinant.

Mathematics and Statistics Routines A-3

Table A-1 (Cont.): VAXIab Mathematics Routine Call Summary

Routine Function

MPRD Multiples two matrices to form a resultant matrix.

MSTR Changes the storage mode of a matrix.

MSUB Subtracts one matrix from another matrix, element by element,
to form a resultant matrix.

MTRA Transposes a matrix.

PADD Adds two polynomials.

PADDM Multiples a polynomial by a constant and adds the result to
another polynomial.

PCLD Performs complete linear synthetic division (shift of origin),

PDIV Divides one polynomial by another.

PGCD Determines the greatest common divisor of two polynomials.

PILD Evaluates a polynomial and its first derivative for a given
argument.

PINT Determines the integral of a polynomial with a constant of
integration equal to zero.

PMPY Multiples two polynomials.

PN~RM Normalizes coefficient vector of a polynomial.

PQSD Performs quadratic synthetic division of a polynomial.

PSUB Subtracts one polynomial from another polynomial.

PVAL Evaluates a polynomial for a given value of the variable.

PVSUB Substitutes a polynomial for the variable of another polyno-
mial.

PQLRT Determines the real and complex roots of a real polynomial
using the Newton-Raphson iterative technique.

QATR Uses Romberg's extrapolation method to approximate the
integral of a given function by trapezoidal rule.

QSF Computes the vector of integral values for a given equi-
distant table of function values.

RADD Adds a row of one matric to the row of another matrix.

RCPY Copies a row of a matrix into a vector.

RCUT Partitions a matrix between specified rows to form two
resultant matrices.

A-4 Mathematics and Statistics Routines

Table A-1 (Cont.j: VAXiab Mathematics Routine Catl Summary
Routine Function

RECP Calculates the reciprocal of an element.

RINT Interchanges two rows of a matrix.

RK1 Integrates afirst-order differential equation up to a specified
final value.

RK2 Integrates afirst-order differential equation by Runge-Kutta
and produces a table of the integrated values.

RKGS Solves a system of first-order ordinary differential equations
with initial values by the Runge-Kutta method.

RSRT Sorts the rows of a matrix.

RSUM Sums the elements of each row of a matrix to form a column
vector.

RTAB Adds the rows of one matrix into a new matrix in the rows
specified by a floating-point number in the respective row of
the input vector.

RTIE Adjoins two matrices with the same column dimension to form
one resultant matrix.

RTMI Solves the general nonlinear equation of the form FCT(X) = 0
using Mueller's iteration method.

RTNI Solves the general nonlinear equation of the form FCN(X) = 0
using Newton's iteration method.

RTWI Solves the general nonlinear equation of the form FCT(X) = 0
using Wegstein's iteration method.

SADD Adds a scalar to each element of a matrix to form a resultant
matrix.

SCLA Sets each element of a matrix equal to a given scalar.

SCMA Multiplies a column of a matrix by a scalar and adds the
product to another column of the same matrix.

SDIV Divides each element of a matrix by a scalar to farm a resultant
matrix.

SICI Commutes the sine and cosine integrals, where
SI(x) = integral(Sin(X) I X)-PI12, and
CI(x) = integral(Cos(X)! X) .

SIMQ Solves a set of simultaneous linear equations, AX = B.

Mathematics and Statistics Routines A-5

Table A-1 (Cont.~: VAXIab Mathematics Routine Call Summary
Routine Function

SMPY Multiplies each elernent of a matrix by a scalar to form a
resultant matrix.

SRMA Multiplies a row of a matrix by a scalar and adds the product
to another row of the same matrix.

SSUB Subtracts a scalar from each element of a matrix to form a
resultant matrix.

TPRD Transposes and then postmultiplies a matrix by another matrix
to form a resultant matrix.

XCPY Copies a specified submatrix from a matrix.

A-6 Mathematics and Statistics Routines

A.3 Statistics Routine Call Summary

The following table summarizes the statistics routines.

Table A-2: VAXIab Statistics Routine Call Summary

Routine Function

ABSNT Tests for missing (or zero) values for each observation in a
general matrix.

AUTO Determines the autocovariances of a series A for lags 0 to
L-1.

AVCAL Performs the calculus of a factorial experiment using
operator sigma and operator delta. The AVCAL routine
is preceded by the AVDAT routine and succeeded by the
MEANQ routine in analyzing variance for a complete
factorial design.

AVDAT Places data for variance analysis in properly distributed
positions of storage. The AVDAT routine precedes the
AVCAL and MEANQ routines when analyzing variance for
a complete factorial design.

BOUND Selects from a set (or subset) of observations, the number
of observations under, between, and over two given bounds
for each variable.

CANOR Calculates the canonical correlations between two sets of
variables. CANOR is normally preceded by a call to the
CORRE routine.

CHISQ Computes the chi-square from a contingency table.

CORRE Computes means, standard deviations, sums of cross-
products of deviations, and correlation coefficients. This
routine is normally used in a sequence of calls to the
routines CORRE, EIGEN, TRACE, LOAD, and VARMX
when performing a factor analysis.

CROSS Determines the cross-covariances of a series A with a series
B that leads and lags A.

DISCR Computes a set of linear functions that are indices for
classifying an individual into one of several groups. This
routine is normally used when performing discriminant
analysis.

Mathematics and Statistics Routines A-~

Table A-2 (Cont.): VAXIab Statistics Routine Call Summary
Routine Function

DMATX Computes means of variables in each group and a pooled
dispersion matrix for all the groups. This routine is nor-
mally used to perform discriminant analysis.

EXSMO Determines the triple exponential smoothed series S of the
given series X.

GAUSS Computes a normally distributed random number with a
given mean and standard deviation.

GDATA Generates independent variables up to the Mth power (the
highest degree polynomial specified) and computes means,
standard deviations, and correlation coefficients. This
routine normally precedes the ORDER, MINV, and MULTR
routines when performing polynomial regression.

KRANK Tests the correlation between two variables by the Kendall
rank correlation coefficient.

LOAD Computes a factor matrix (loading) from eigenvalues and
associated eigenvectors. This routine is normally used in a
sequence of calls to the routines CORRE, EIGEN, TRACE,
LOAD, and VARMX when performing a factor analysis.

MEANQ Computes sum of squares, degrees of freedom, and mean
square using the mean square operator. This routine
normally succeeds the AVDAT and AVCAL routines when
analyzing variance for a complete factorial design.

MOMEN Determines the first four moments for grouped data on
equal class intervals.

MULTR Performs a multiple linear regression analysis fora de-
pendent variable and a set of independent variables.
This .routine is normally used to perform multiple and
polynomial regression analyses.

NROOT Computes the eigenvalues and eigenvectors of a real non-
symmetric matrix of the form B-inverse times A. This routine
is normally called by the CANOR routine when performing
a canonical correlation analysis.

ORDER Constructs a subset matrix of intercorrelations among
independent variables and a vector of intercorrelations
of independent variables with a dependent variable from
a larger matrix of correlation coefficients. This routine
is normally used to perform multiple and polynomial
regression analyses.

A-8 Mathematics and Statistics Routines

Table A-2 (Cont.): VAXIab Statistics Routine Call Summary
Routine Function

QTEST Tests whether three or more matched groups of dichoto-
mous data differ• significantly by the Cochran Q-test .

RANK Ranks a vector of values. The RANK routine assigns tied
values to the average rank.

SMO Smooths or filters series A by weights W.

SRANK Tests the correlation between two variables by the
Spearman rank correlation coefficient .

SUBMX Builds a subset matrix. Based on vector S derived from rou-
tine SUBST or ABSNT, SUBMX copies from a larger matrix
of observation data a subset matrix of those observations
which have satisfied a certain condition.

SUBST Derives a subset vector indicating which observations in a
set have satisfied certain. conditions on the variables.

TAB1 Tabulates for one variable in an observation matrix (or
a matrix subset) the frequency and percent over given
class intervals. In addition, the TAB1 routine calculates
for the same variable the total, mean, standard deviation,
minimum, and maximum.

TAB2 Performs atwo-way classification for two variables in an
observation matrix (or matrix subset) of the frequency,
percent frequency, and other statistics over given class
intervals.

TALLY Calculates the total, mean, standard deviation, minimum,
and maximum for each variable in a set (or subset) of
observations.

TIE Calculates the correction factor resulting from rank ties.

TRACE Computes the cumulative percentage of eigenvalues greater
than or equal to a specified constant. This routine is
normally used in a sequence of calls to the routines CORRE,
EIGEN, TRACE, LOAD, and VARMX when performing a
factor analysis.

TTSTT Determines certain T-statistics on the means of populations.

TWOAV Tests whether samples are from the same population by
using the Friedman two-way analysis of variance test .

Mathematics and Statistics Routines 'A-9

Table A-2 (Copt.): VAXIab Statistics Routine Call Summary
Routine Function

UTEST Determines whether two independent groups are from the
same population by using the Mann-Whitney U-test.

VARMX Performs orthogonal rotations of a factor matrix. This
routine is normally used in a sequence of calls to the
routines CORR~, EIGEN, TRACE, LOAD, and VARMX
when performing a factor analysis.

WTEST Tests the degree of association among a number of variables
by using the Kendall coefficient of concordance.

A-10 Mathematics and Statistics Routines

Appendix B

The Peak-Processing Routine

The peak-processing routine detects significant fluctuations, called
peaks, in data describing a waveform, and reports definitive characteris-
tics for each peak found. The process is known as peak analysis.

This appendix explains how to build the peak-processing (PEAK) rou-
tine, provides an overview of its functionality and use, and details how
to create a FORTRAN program that calls the PEAK routine under the
VMS operating system.

NOTE

The Peak-Processing Package (PEAK) is included in the
VAXIab Software Library at no cost to the purchaser.
DIGTTAL does not provide support for the PEAK routine.

B.1 Building the PEAK Routine

The PEAK routine is installed on your system as part of the VAXIab
installation procedure. However, before you can use the PEAK routine,
you need to build it. During the build procedure, you can enable an
option as characteristics of -the routine, or you can build the routine
without the option. See Section B .1.1, Enabling Routine Options, of this
appendix for information about the option available to you.

The Peak-Processing Routine B-1

B.1.1 Enabling the No Filter Option

This section explains the option you can use with the peak-processing
routine. If you want to use this option, you must enable it when you
build the routine from the source file using the interactive build proce-
dure.

The NOFLT$ (No Filter) option disables the software digital filter that
the routine normally uses. Enable this option if you want to average and
process data points without filtering them, or if you want to apply your
own filter to the raw data before calling the PEAK routine.

Enabling the no filter option results in quicker processing of data points
and decreases the size of the routine.

Before you begin the build procedure, the following system require-
ments must be met:

• The following files must be resident on the system device, in the
SYS$PEAK directory.

File Name Description

FPAAK. MAR

EXIFPE.FOR

PEAKMAK. COM

WRTBLD . COM

WRTVER. COM

MACRO source file for the peak-processing routine

FORTRAN source file for the test routine

Interactive build procedure

Part of the build procedure

Part of the build procedure

• The VAX FORTRAN compiler is built and resides on the system
device.

PEAKMAK. COM, the interactive build procedure for the PEAK rou-
tine, lets you assemble the routine and optionally, place it in a li-
brary which you create by supplying a library name. When you run
PEAKMAK. COM, it prompts you with questions. You enter directory
specifications for input and output after the appropriate prompt. The in-
put directory is the directory in which the above routines were installed.
The output directory should be your own directory.

B-2 The Peak-Processing Routine

You are then asked if you want to build a library. Enter Y (yes) to build
an object library. Enter N (no) to create simply an object file. Then,
answer "Yes" after the subsequent questions if you want to enable the
specified option. Answer "No" if you do not. After you answer all the
questions, PEAKMAK. COM creates three files in the output directory
you specified as follows:

File Name Description

PEAKCND .MAR

PEAKBLD. COM

PEAKVER. COM

This file sets the switches to enable the options you re-
quested.

This indirect-command procedure builds the PEAK rou-
tine. Building consists of assembling the routine with
the switches set to enable the options you chose. If
you specified a library while running PEAKMAK. COM,
PEAKBLD.COM creates that library and includes the PEAK
routine in it .

This indirect-command procedure verifies that the PEAK
routine is in good working order. It does this by running
an example program that tests the routine.

B.2 Overview of the PEAK Routine

The peak-processing routine detects significant fluctuations, called
peaks, in data describing a waveform, and reports definitive characteris-
tics for each peak found. The process is know as peak analysis.

Input to the routine is a series of discrete positive integers correspond-
ing to values of a waveform function at evenly spaced intervals. To
eliminate distortion-producing components in the data, the input is
linearly averaged and filtered before final processing. Figure B-1 shows
the peak-processing algorithm. You can change specified algorithm
parameters to enhance detectability of directional trends and baselines
for a given set of data.

The Peak-Processing Routine B-3

Figure B-1; Flow of the PEAK Routine

PEAK-Processing Algorithm

INPUT:
Averaging

Digital
Filter

Trend/Width Baseline Detection:
ArealWidth Calculation:OUTPUT

PEAK Subroutine

MR-1238-GE

Output from the routine is in the form of size and position for each
peak detected. Size is defined by area, height, and width; and position
is expressed in terms of when a peak begins, crests, and ends. The
routine further reports how each peak ends — on a baseline or at a
valley.

B.3 Definition of Basic Terms and Conventions

It is important to understand how some of the terms and conventions
describing the PEAK routine are used throughout this appendix.

• The term data (input) stream describes all values presented to the
routine for processing. Actual values processed by the algorithm
are sometimes called heights, for example, crest height, leading
minimum height.

• The duration axis of the waveform is the time axis. Time is mea-
sured as the number of raw data points processed since the start of
the input stream. Thus, the term crest time means that crest height
was observed when a number of raw data points equal to crest time
were processed.

• "Noise" is a generic term for all distortion-producing components
in the input data.

B-4 The Peak-Processing Routine

• Point-to-point changes are local changes, as contrasted with overall
changes during the course of the waveform, which are called trends.

• Changes are persistent in one direction if the number of changes in
the direction exceeds the number in the opposite direction.

B.4 The Peak-Processing Algorithm: Processing Raw
Data

The peak-processing algorithm detects increasing and decreasing trends
in a set of data. Output from the PEAK routine is directly related to
the points where we observe changes in these trends. When we see
an increasing trend, the point where the increase begins is labelled the
start of the peak, and its value the leading minimum height. The point
where a subsequent decreasing trend begins is the crest, or crest height,
of the peak. And the point where the decreasing trend stops — or a
baseline is detected — is taken as the end of the peak, or its trailing
minimum height. We can then use this information to calculate the area
and width of the peak. Under ideal conditions, this sequence defines
the total function of the algorithm.

Actual conditions are seldom ideal, however. Environmental influences
during data collection tend to distort the pure function being analyzed.
To a great degree, the algorithm and any controls that you can exercise
over the routine parameters are aimed at removing these distortions so
that only the real (dominant) trends in the data are visible.

B.4.1 Averaging of Input Data

The peak-processing algorithm first takes a linear average of input
data points; you can specify the number of points to be averaged by
means of the first variable parameter, the Original Point Density (OPD).
Thereafter, the routine deals only with averaged heights, which can
represent several raw data points. Keep in mind, however, that the
time associated with each averaged height is based upon the total
number of raw data points averaged since input began.

The Peak-Processing Routine B-5

This averaging process smooths any "rough edges" from the data. You
should give serious thought to the value you assign to the OPD. If too
many points are averaged, real information nay be lost. In an extreme
case, you might miss an entire true peak, but a more common result is
late detection of significant trend changes. By averaging too few points,
on the other hand, you could detect false trend changes.

In certain applications of the routine, you may find that peaks are
"tall and thin" at the outset of the waveform, then tend to become
"short and fat" as it progresses. The algorithm compensates for this
tendency by increasing automatically the number of points averaged
when it detects a peak width that exceeds a preset optimum.l Thus,
the algorithm makes wide, short peaks more visible and increases the
likelihood of detecting real data fluctuations that might otherwise appear
insignificant.

B.4.2 Use of the Digital Filter

The averaged data points are not processed directly by the trend-
detecting portion of the algorithm, but are first filtered by means of
a digital filter. The equation for this nonlinear center-weighted filter
involves seven averaged-data points having coefficients of a modified
least-squares fit.

Yp = (—(Y_3 + Y+3) + 4(Y_2 + Y+2) + 11(Y_1 + Y+i) + 14Y0)/42

The coefficients are tuned to prevent area distortion for small peaks in
the vicinity of large ones.

As each new averaged data point is calculated, it is placed in the filter
as the last, or Y+3, point. The new center point is calculated; after
which the points used in the filter are shifted down by one, that is,
Y_1 = Yp. Prerequisite sites for this process are:

• Seven averaged points, must be calculated before the digital filter
may be applied.

• The first point to be considered for directional-trend detection is the
center point resulting from application of the digital filter to these
original seven points.

1 when the half-irvidth-at-half-height measurement of a peak exceeds 25, the algorithm doubles the
number of points averaged.

B-6 The Peak-Processing Routine

• Each subsequent set of seven points used by the filter is chosen
using a sliding "window," that is, each new averaged point (after
the first six) is used seven times in successive applications of the
filter. There is a slight twist to the sliding window in that once
the filter has been applied three times, four of the points in the
current application of the filter are the result of averaging raw data,
while ̀ the other three (Y_3, Y_~, Y_1) are the result of previous
applications of the filter.

B.4.3 Trend Detection —Application of the Gate Factor

Although averaged and filtered data have been smoothed in earlier
processing, the resultant filtered data points may still exhibit slight
point-to-point fluctuations unrelated to the dominant trend of the
data. You may set two parameters —the gate factor and the minimum
increase — so that the algorithm eliminates much of the effect of this
fluctuation.

The gate factor (GT) specifies a valid directional trend in terms of the
number of changes in direction, either persistent or consecutive, over a
series of filtered points.

The minimum increase (I1Vl) is a standard used to test for a real increase
in filtered data from point to point.

At the outset of the input stream and at points where crests are de-
tected, neither an increasing nor a decreasing directional trend has yet
been established. The next established trend is determined at these
paints as the first direction in which the data changes "gate" times.

At intermediate points a current trend is already established. Changes
in directional trend at these paints may be established only if the
number of consecutive local changes in the new direction is equal to the
gating factor.

A local change is defined in terms of the relation between a given data
point and the local minimum or maximum. If the current height is less
than the local minimum, the change is downward. Conversely, if the
height is greater than the sum of the total maximum and the minimum
increase value (IM), the change is upward. If the height is between the
local minimum and maximum, no change is indicated (although the area
is updated).

The Peak-Processing Routine B-7

~Nhen processing is initialized, and at the crest of each peak, the local
minimum is set to a very high value, and the maximum is set to a very
low value. Between crests, the local minimum and maximum can be
k~est described by the flow diagram.

It should be stressed that the points of greatest interest on the waveform
-- essentially the points that determine the peak —are found at the
~~oints of trend change: the beginning of a peak, the peak crest, and
~;ometimes the end of a peak. This test is the heart of the algorithm.

B.4.4 Calculation of Area Under the Peak

7~ wo peak characteristics that are not entirely dependent on points of
dominant trend change are area and width. The .area under the peak,
or integral, is calculated by taking the sum of the area increments
corresponding to each filtered point and half the area increment at the
first and last points of a peak. The area increment at each filtered point
is the product of its height times the number of points currently being
averaged.

B.4.5 Algorithm Definition of the Width of a Peak

(calculation of peak width must be explained in a little more detail. The
~~eak-processing algorithm defines peak width as the difference between
the time when the crest occurs and the time when a point is reached
on the trailing side of the peak whose height is half the crest height as
measured from the height of the leading minimum (Figure B-2).

B-8 The Peak-P~•ocessing Routine

Figure B-2: Calculation of True Peak Width

Time b' c'

a =Leading Minimum Hefght
b =Crest Height
c =Point Whose Value is 1/2(a + b)

d = b-a
e =Peak Width = Time c'-Time b'
f=d/2

MR-1239-GE

It is possible that the data may establish an increasing trend on the
trailing side of a peak before the point is reached where width is
normally calculated. An increasing trend on the back of a peak is seen
as terminating the peak; the width calculation for the peak is then made
at the point where the increasing trend begins. The value calculated is
called the estimated peak width, which is half the difference between time
of crest occurrence and time at which the increasing trend is observed
(Figure B-3).

The Peak-Processing Routine B-9

f=igure B-3: Calculation of Estimated Peak Width

t
d c

4 f ~

a
L

9

a'

a =Leading Minimum Height
b =Crest Height
c =Trailing Minimum Height (Point at Which Peak

Ends Because Increasing Trend is Detected)

Time b' c'

d=b-a
e = Time c'-Time b'
f = e/2 (Estimated Width)
g = Height at Which Peak Width Would Have Been

Calculated if Decreasing Trend Had Continued

MR-1240-GE

B.4.6 Algorithmic Detection of the Baseline

~~ final and important step in peak analysis is to determine whether
clata reported for a peak have been affected by similar data observed
for another peak. The algorithm checks to see whether recorded peak
clata indicate a period of relative quiescence before a new peak begins,
car whether a new peak begins with no intervening quiescent period.
Much quiescence relative to the overall peak contour is interpreted as
a~ baseline. When a basline does not occur, the peak has ended at a
valley. The problem thus becomes one of detecting when, or if, the
k~aseline is reached.

1`Jormally, assume that when the algorithm is initiated, input starts
from a quiescent state. Therefore, you can take the point at which an
increasing trend is first observed to be the current baseline height as
well as the leading minimum height of the first peak. Because baseline

B-10 The Peak-~~rocessing Routine

detection thereafter involves a comparison of relative minimums, this
first detected minimum has a profound effect on the entire process.

Once a crest has been detected, any attempt to find a new baseline
begins only after the width has been calculated. The time past crest
detection when the baseline search begins is a function of the calculated
width. Specifically, baseline detection begins at a time equal to crest
time plus the product of the width and the baseline test factor (BTU, an
input variable parameter. The interval between crest detection and the
start of baseline detection reflects the duration of a normal peak as it
decays to a relatively quiescent state.

To detect an actual baseline height, calculate the slopes of successive
tangent lines from the current baseline point to each new filtered point.
If two successive increases in slope are observed before an increasing
trend in the filtered data is established, the second of these points is
taken as the termination of the peak, and the peak is seen as ending on
a baseline.

If an increasing trend is established before two successive increases in
slope are observed, the peak is said to end at a valley, the new peak
begins at the point where the increasing trend is first observed, and the
baseline data remains unchanged.

Note that even though two successive increases in slope indicate a
baseline, the next peak does not begin until that point where another
increasing trend is established. The leading minimum point for the next
peak is interpreted as defining the height and time of the new baseline.
The area between the trailing minimum of the last peak and the leading
minimum of the new peak is ignored.1

B.4.7 Flow Charts for the PEAK Routine

The series of flow charts presented as Figures B-4 through B-9 gives
detailed logic for the PEAK routine. Supplementary information is
presented in Tables B-1 through B-3. Table B-1 lists the combinations
of switchlindicator settings that characterize significant events during
peak detection. Table B-2 defines the symbols used in the flow charts
and accompanying explanation. Figure B-10 and Table B-3 review and
summarize the flow-charted events as they apply to three possible peak
configurations:

• A peak starting on the baseline and ending on a new baseline

1 Data taken during this period indicates that there is no peals-producing activity.

The Peak-Processing Routine B-11

• A peak starting on the baseline and ending at a valley
• A peak starting at a valley and ending on either a baseline or a

valley

Table B-1: Switch Settings for Significant Events in Peak
Definition

Significant Current Trend Indicators:
Event Switch Decreasing Increasing
BS DI II

What is Happening with
Relation to Peak Processing

0 0 0 N!A

0 0 1 On front of peak that
started on current baseline

0 1 0 Detected a baseline value;
looking for a new peak to
begin (initial condition)

0 1 1 Crest detected for peak
that started on baseline

1 0 0 NIA

1 0 1 New peak begins before
point is reached at which
width is to be calculated
(forced calculation of
width)

1 1 0 After crest, looking for
point where width is to be
calculated

1 1 1 NIA

2 0 0 N!A

2 0 1 On front side of peak that
started at a valley

2 1 0 Testing for new baseline
value after width has been
calculated

2 1 1 Crest detected for peak
that started at a valley

B-12 The Peak-Processing Routine

Table B-2: Definition of Symbols
Symbol Definition

BH Current baseline height

BHT Time of current baseline height

BS Baseline switch
0 Peak starts on baseline
1 Looking for width
2 Looking for end on baseline

BT Baseline test factors

CH Height of last crest

CHT Time of last crest2

DC Current number of persistent decreases in filtered data

DI Switch that is set (=1) if signal is decreasing

GT Number of persistent changes (gating factor) that defines an
increasingldecreasing trends

IA Accumulated area as signal increases

IC Current number of persistent increases in filtered data

II Switch that is set (=1) if signal is increasing

IM Minimum differential between filtered data points that the
algorithm interprets as signifying a real increases

IPD Switch that indicates whether an increase is needed in the
number of points averaged:
IPD = PD if number of points is to be increased
IPD = 0 if no increase is needed

LMH Leading minimum height for peak2

LMT Time of leading minimum height2

MNH Current minimum height2,3

MNT Time of current minimum height~~3

MXH Current maximum height

MXT Time of current maximum height

s Value set by user .

2Value reported by algorithm.

3Value can change during peak detection; reported values are those that are current
when the end of a peak is detected.

The Peak-Processing Routine B-13

Table B-2 (Cont.): Definition of Symbols

Symbol Definition

OMH Old minirnurn height (before increasing trend is established)

OMT Time of old minimum height

OPD Original point densityl

OS Old slope

PD Point density; number of raw data points currently needed to
obtain next average point2,s

SC Slope increase counter; baseline test

SL New or current slope

TA Accumulated total area during peak formation2,s

TM Raw point counter (current time)

WD Width of peak

XL Large number used to reset small number

Y Element of digital filter

Yo Current filtered point, that is, center point of current window

Type 0 Peak ends on valley
1 Peak ends on baseline2

1 Value set by user .

2Value reported by algorithm.

3Value can change during peak detection; reported values are those that are current
when the end of a peak is detected.

B-14 The Peak-Processing Routine

Figure B-4: Flow Chart for Peak Processing: Initialization, Data
Averaging, and Application of Digital Filter

Indcate Error
N Possible

Set Negative
PdrRersto Zero

Go to IRESUM
or
Go to ORESUM

BS=0
SC=0
OS=XL
IA=0
IPD = 0
PD = OPD
TM = PD'3

•

Get First Six
Values fa D101tal
FMter Vla Slx
Cads to NEXTPT

MNH = XC
MXH = -XL
DC=0
IC=0
DI = 1
II=0

1

Set Varl~les fa IMtlai Entry

Reset Varlabk for Next Peak:
Set Current MlMmum to Large
value
Set Current Maximum to SmaN
Vale

~Nelther Trend EstabNshed

Set Last Establbhed Trend to
Decreasing

MR-1241-GE

Figure B-4 Cont'd. on next page

The Peak-Processing Routine B-15

Figure B-4 (Cont.): Flow Chart for Peak Processing: Initialization,
Data Averaging, and Application of Digital
Filter

Get Next Point Number of Input Values May be
Doubled

Call NE?tTPT PD = PD +IPD Increment Current Time by PO
Set Y+3=
Resuhs

4- TM=TM+PD
IPD = 0

No Need ~ Increase Number of
Input values

YO=(-(Y 3+
+3 ~Y 2

+2~+11(Y j +1}t14Y d42

Shih Window
Down YI-1'YI

Center Point > laoest NAnimum~

0

Apply Digital FNter

Check for Maxknum

MR-1242-GE

B-16 The Peak-Processing Routine

Figure B-5: Flow Chart for Peak Processing: Calculation of Peak
Width and Search for Baseline

No

WD = TM-CHT
BS=2

IPD=PD +~

Found New Minimum

Look for Peak Width?

Is Y 1 Low Enough to Flnd Width?

Calculate Peak Width
Start Checking for Baseline

Width 25 Flltered Points?

Add Correction Factor to Accumulation
Area

Incn~ase Number of Input Values

MR-1243-GE

Figure B-5 Cont'd. on next page

The Peak-Processing Routine B-17

LJ
Figure B-5 (Copt.): Flow Chart for Peak Processing: Calculation

of Peak Width and Search for Baseline

MNH = Y_ ~
MNT = TM
DC = DC+1
TA = TA+(Y ~ +PD)+U4

Does Thls Decrease Occur After a
Detectbn of Baseline?

Clear Current Area Dung Increase

Number of Minimums <Gate7

Establish Decreasing Trend

IA=0

Record Current Minimum Value
Record Current Time
Bump Number of Minimums Found
Accumulated Area +Area During Increase

Has an Increasing Trend Been EstabNshed
Since Baseline Detecdon?

DI=1
IC = 0

Is This a Decrease After an Established
Increase?

DETECTED PEAK CREST CH = MXH
PHT = CHT
LMH = OMH
LMT = OMT
BS=1

No

TA=0

MXH = -XL

Disregard Area BeMben
Points at Which Baseline
Is Detected And Start of
Next Peak

Current Maximum h Very Small
Number

Record Crest Height
Record Crest Tirne
Record Leading Minimum Height
Record Tlme of Leading Minimum Height
Look Ibr Peak Wkhh

rocess Next Peak

MR -1244-GE

B-18 The Peak-Processing Routine

Figure B-6: Flow Chart for Peak Processing: Area Calculation

Update Total Accumuls0ed Area
Durktg Increase by Current Area

Current Polnt >Curtent
Maxlmurn +Minimum
incroase?

Reset Currant Maximum Height
Reset Time of Latest Maximum
Bump Currant Number of
Persistent increases in
Filtered Data

Curter[Number of Increases < Gated

MXH = Y -- ~
MXT = TM
IC = IC+1

DC=0

1

Clear Counter for Number of Minimums

MR-1245-GE

Figure B-fi Cont'd. on next page

The Peak-Processing Routine B-19

Figure B-6 (Cont.): Flow Chart for Peak Processing: Area
Calculation

No

NEW BASELINE
Reset Baseline Helght
Reset Thne of

Occurrence of
Helght

Is Current Trend increasing?

IA = IA+il2PD'MNH
11=1OMH=MNH
DI = 0 OMT = MNT

NEW PEAK STARTS
Peak Started on Baseline

BH=OMH
BHT = OMT

=0

Update Accumulated Area During Increase
Save Tlme of Last Minknum
Establksh Increasing Trend

Looking for Width

=1
WD = 1!2(MNT-CHT) Forced Estimate

of Width pEAK
ENDING
ON VALLEY

for

Type = 0

Checking
End on
Baseline

Yes

CALL RITOUT

BS = 2

TA = TA+(Y 12)
IPD = PD

This Switch Com bleed WRh
Increasing Trend Suggests
Search for Crest

Width <25 Flltered Points?

Add Area Correctlon
Increase Number of Input Values

MR-1246-GE

B-20 The Peak-Processing Routine

Figure B-7: Flow Chart for Peak Processing: Determining the
Baseline

Has Wldih Been Cakulated7

Is Trend Decreasing?

Width Test

0

Set Current Minlrnum b Current Maximum Height

BaseAne Test

0

MR-1247-GE

Figure B-7 Cont'd. on next page

The Peak-Processing Routine B-21

Figure B-7 (Cont.): Flow Chart for Peak Processing: Determining
the Baseline

Cumsnt Sbpe = ~Surrwt Pint - Current Baselin~Heiot~
Current Time -Current Baseline Time

SL = (Y ~ BH~I(TM-BHT)

Old Siape>Cunent Slope?

Increment slope lncr~ease counter

is Slope Increase counter>2?

Clear Counter
Set Old Slope Value
Cisar BaseNne Switch

sc = sc+~

Type = 1
CALL RITOUT

SC=O
OS=XL
BS=O

os=s~
sc=o

upda~e oa slope

clear slop.
increase counter

MR-1248-QE

8-22 The Peak-Processing Routine

Figure B-8: NEXTPT Routine —Peak Processing

Subnwtine NEXTPT (Not Accessible to User)

Retum to
Main Line Code

Reentryr Frorn
Main Program

Set INPTR=-1
Set Next Entry From
Main to IR ESUM
(Transparent to User}

Clear Sum
Copy PD

Prepare to Average

Increment INPTR

increment Input Pointer

Any Input LeR in INPUT Array?

Add Next Pint to
Sum: Decrement
Copy of PD

Divide Sum
by PD

i

Retum to
Algorithm with
Average Point

Get Averaged Point

MR-1249-GE

The Peak-Processing Routine B-23

Figure B-9: RITOUT Routine —Peak Processing

Retum to
Main Program

Store

TA MNH
CH MNT
CHT Type
LMH PD
LMT
WD

Subroutine RITOUT (Not Accessible to User)

Reentry From
Main Program

Set NPEAKS=-1
Set Next Entry From
Main to ORESUM
(Transparent to User)

Retum to
Algorithm

Convert to
Single-Precision
Floating Point

Add Correction
Factor to Area
TA = TA +,5*MNH*PD

Increment NPEAKS

Increment OUTPUT Array Pointer

Any Room Left in OUTPUT Array?

Cornert to
Double-Precision
Fbadng Point

MR-1250-GE

8-24 The Peak-Processing Routine

Figure B-10: Flow Chart of Peak Events

c

b' c' d' Time e' ~' 9~ h' i' j' k'

MR-1251-GE

The Peak-Processing Routine B-25

Table B-3: Definition of Peak Events
Point/Section
of Curve Description

Flow Chart
References(s)

START OF PEAK 1

a

a-b

b

b-c

c

c-d

d

d-e

e

Input begins

Decreasing trend in data after baseline
detection

Increasing trend established; leading
minimum height/time of Peak 1 detected;
"new" baseline data (height and time)
defined

Increasing trend in data; change in
established trend will indicate crest
detection

Decreasing trend established; crest height
and time detected and recorded; leading
minimum data recorded; start looking
for point where width is calculated

Decreasing trend in data after crest
detection and before width calculation

Point where width is calculated;

Decreasing trend in data after width is
calculated and before baseline is detected

Baseline detected; Peak 1 ends at this
point, which is recorded as tra' 'ng
minimum

Flowchart begins

BS=O,DI=I,II=O
DC >GT, IC< GT

OMH=b BH=b
OMT = b► BHT = b~

BS=O,DI=o,I1=1
DC < GT, IC > GT

LMH=OMH CH=c
LMT = OMT CHT = c~

BS=1, DI=1,II=0
DC > GT, IC < GT

wD = dr-c►

BS=2,DI=1,II=0
DC > GT, IC < GT

MNH = e
MNT=e~
Type =1

END OF PEAK 1

e-f Decreasing trend after baseline detection
and before start of next peak; area under
curve ignored

8-26 The Peak-Processing Routine

BS=O,DI=I,II=O
DC > GT, 1C < GT

Table B-3 (Cont.): Definition of Peak Events
Point l Section
of Curve Description

Flow Chart
References(s)

START OF PEAK 2

f Increasing trend established; leading
minimum (height and time) of Peak 2
detected; baseline data (height and time)
redefined

g Height on Peak 2 (after crest detected)
where width would be calculated if data
were to decrease to this point before
start of Peak 3;
g = (h + f)12 = (CH2-OMH)/2

f-h Increasing trend in data; change in
established trend will indicate crest
detection (see b-c)

h Decreasing trend established; crest height
and time detected and recorded; leading
minimum data recorded; start looking
for data value g

h-i Decreasing trend in data after cr. est
detection and before width calculation
(see c-d)

i Increasing trend established before width
of Peak 2 calculated; forced estimation
of width of Peak 2 as (i~-n~); Peak 2 ends
at valley with i as trailing minimum
for Peak 2; Peak 3 begins with i as lead
ing minimum; baseline data remain
unchanged

OMH=f BH=f
OMT = fi BHT = fi

No corresponding point on flow
chart

BS=O,DI=O,II=1
DC < GT, IC > GT

LMH = OMH CH = h
LMT = OMT CHT = h~

BS=1,DI=1,II=0
DC > GT, IC < GT

wD = (MNT-CHT)!2
MNH = i BH = f OMH = i
MNT = i~ BHT = f► OMT = i~
Type=O

The Peak-Processing Routine B-27

Table B-3 (Cont.): Definition of Peak Events
PointlSection
of Curve Description

Flow Chart
References(s)

END OF PEAK 2! START OF PEAK 3

1

Increasing trend in data; change in
established trend will indicate crest
detection (see b-c, f-h)

Decreasing trend established; crest height
and time detected and recorded; leading
minirnum data recorded; start looking
for point where width is to be calculated

Decreasing trend in data after crest
detection and before width calculation
(see c-d)

Point where width is calculated;

Decreasing trend in data after width is
calculated and before baseline is detected
(see d-e)

Increasing trend establish before baseline
is detected; Peak 3 ends at valley with 1
as trailing minimum; Peak 4 begins with
1 as leading minimum; baseline data
remain unchanged

BS=2,DI=O,II=1
DC < GT, IC > GT

LMH = OMH CH = j
LMT = OMT, CHT = j~

BS=1,DI=1,II=0
DC >GT, IC< GT

WD =1v-j~

BS=2,DI=1,II=0
DC >GT, IC< GT

MNH =1 BH = f OMH =1
MNT =1i BHT = f►
OMT =1~
Type = 0

END OF PEAK 3/START OF PEAK 4

Peak 4 not shown in illustration

B.5 How to Call the Peak-Processing Routine

The symbolic name for the peak-processing routine is PEAK, and the
general format for the FORTRAN call is:

CALL PEAK(ITABLE,INPUT,INLAST,INPTR,OUTPUT,IDIMO,NPEAKS)

For reference, argument names in the call to PEAK have been assigned
arbitrarily. You can supply your own argument names, but you must
state all of the arguments explicitly. There are no default values for
any of the arguments. If you omit an argument, or if you supply too

B-28 The Peak-Processing Routine

many arguments, a FORTRAN error message results, and no data is
processed. The arguments are described in the following paragraphs.

ITABLE is an integer array of length 79 used to store intermediate
results and other information required by the algorithm. You must
set the values of the following array elements to transmit variable
parameters and other information to the routine.

ITABLE(1) Number of raw input values to be averaged to determine a
point for use by the digital filter. This variable parameter
is called the original point density (OPD) in the description
of the algorithm. In general, the OPD should be chosen so
that the number of averaged data points on the first peak is
about 100.

ITABLE(2) The baseline test (BT) factor (Section B.4.6). On a peak
whose width is WD, baseline detection begins at time
WD-ITABLE(2) past crest time. In general, suggested values
can range from 3 to 5.

ITABLE(3) The number of either persistent or consecutive local changes
in one direction needed to establish a new dominant
directional trend. It is the gate parameter discussed in
Section B.4.3. In general, suggested values can range from
3 to 8.

ITABLE(4) Minimum differential (IM) between filtered data points that
the algorithm interprets as a real increase. This element,
with ITABLE(3), determines real changes in dominant
directional trends (Section B.4.3). In general, suggested
values can range from 1 to 5.

ITABLE(5) The data type of the output array:

= 0 output type is INTEGER*4
=1 output type is REAL*4
_ -1 output type is REAL*8

The Peak-Processing Routine B-29

ITABLE(6)

ITABLE(7)

Error indicator in the calling sequence or input parameters:

= 0 Indicates no error

= N Indicates ITABLE(N) is in error, for example:

ITABLE(1)<0
ITABLE(2)<0

_ -N Indicates the Nth argument is in error, for ex-
ample, INPTR > INLAST (see the following discussion).
_ -8 Indicates that the calculated area to this point
has caused an overflow. That is, it exceeds 231 -1.
When the overflow is detected, PEAK returns with
INPTR and NPEAKS set as usual. However, QUTPUT
(1, NPEAKS + 1) will contain the value of the area of
the current peak, up to and including the point of
overflow. You must take corrective action by saving
this value and returning to the PEAK routine for
further processing. PEAK calculates the remaining area
and peak characteristics. when PEAK returns again,
the peak area reported is the area of the peak from the
last point of overflow. To determine the actual area
of the peak, simply convert the overflowed value to a
positive, double-precision, real number and add it to
the remaining area of the peak.

This element must be set to zero before the initial call is
made to the routine for each new stream of data. When the
routine processes a data stream in "parts" (Section B.6), it
uses ITABLE(7) for reentry to process each subsequent part.
Thus, this element should not be altered by a user until all
parts have been processed.

B-30 The Peak-Processing Routine

ITABLE(8) This element specifies the data type of the input data as
follows:

0 Input data single-precision INTEGER*2
=1 Input data double-precision INTEGER*4

ITABLE(9) Elements used exclusively by the routine while the data
stream is being processed.

ITABLE(79)

INPUT is a single- or double-precision array containing the raw data to
be processed.

INLAST is an INTEGER*4 variable having the value of the subscript of
the last element of INPUT containing data.

INPTR is an INTEGER*4 variable having the value of the subscript
of the last element processed by PEAK. You can also think of it as
having a value one less than the subscript of the next datum in INPUT
to be processed. For example, if the first element of the array is to be
processed, INPTR should be set to zero. You must set the value of
INPTR before calling PEAK; however, PEAK changes the value before
returning.

OUTPUT is a double-subscripted array used to store the results of
applying the peak-processing algorithm. The first dimension specifies
the number of data elements to be output for each peak detected; there
are always 10. The second dimension specifies the number of sets of
peak data that can be stored by the algorithm while processing the input
data. The second dimension is defined by IDIMO.

The data type of the output array is optional and can be any of those
specified by ITABLE(5).

r"1
The Peak-Processing Routine B-31

The 10 data elements reported for each peak are:

OUTPUT(1, N)
OUTPUT(2, N)

OUTPUT(3, N)

OUTPUT(4,N)

OUTPUT(5,N)

OUTPUT(6, N)

OUTPUT(7, N)

OUTPUT(8, N)

OUTPUT(9, N)

Area of Nth peak

Height of crest, Nth peak

Time of crest, Nth peak

Height of leading minimum for Nth peak

Tirne of leading minimum for Nth peak

Width of Nth peak

Height of trailing minimum for Nth peak

Time of trailing minimum for Nth peak

Indicator of how peak ended:

= 0 ended on valley
=1 ended on baseline

OUTPUT(10, N) Current number of input data points being averaged

IDIMO is an INTEGER*4 variable that transmits to the routine the
second dimension of the output array. It defines the number of peaks
that can be reported before the output array is filled.

NPEAKS is an INTEGER*4 variable giving the number of peak data sets
stored in the output array. We can also think of it as having a value of
one less than the second subscript for the next set of output data to be
stored. For example, for the initial set of peak data to be stored, set
NPEAKS to zero.

You must set the value of this argument before calling the routine;
however, the routine can change the value before returning.

B-32 The Peak-Processing Routine

NOTE

PEAK returns (assuming there are no errors) after either of
the following events:

• A11 input data elements have been processed.

• The output array is filled, and there is another set of peak
data to report.

The arguments INPTR and NPEAKS indicate which
event caused the return and the current status of I1O
processing:

— If condition 1 occurred then, INPTR = -1 and
NPEAKS<IDIMO, that is, the routine has set
NPEAKS to the proper value for the next routine
call.

— If condition 2 occurred, NPEAKS = -1 and INPTR
equals the proper subscript value for reentry —one
less than the subscript of the next element to be
processed.

If the routine is called again with either INPTR or
NPEAKS equal to -1, fihe routine ~ interprets the value
as zero.

B.6 Using the Peak-Processing Routine

You can use several inherent features of the peak-processing routine to
process data produced in real time. Thus, you may use PEAK in con-
junction with other routines that monitor and digitize real phenomena.
The particular arguments that make possible this real-time application
are INPTR, INLAST, and NPEAKS (see Section B.5). You can visualize
the input and output arrays as a series of "pigeonholes," and INPTR
and NPEAKS as pointers to the next available data element to be pro-
cessed and the next slot for outputting the data, respectively (Figure
B-11). INLAST is a painter to the last INPUT element containing data.

The Peak-Processing Routine B~33

Figure B-11: INPTR, INLAST, and NPEAKS Point to Slots

INPl1T

t

2

3

9

10

. .

. .

T
INPTR

t
INLAST

■ ■

f
NPEAKS MR-1252-(iE

The routine returns when all data in the input buffer have been pro-
cessed, that is, INPTR =INLAST, or the output array is filled, whichever
occurs first. If all data in the input buffer have been processed, INPTR
will equal -1 and NPEAKS will point to the last slot (subscript) in the
output array that was filled. If, conversely, all slots in the output array
have been filled, NPEAKS = -1 and INPTR points to the last element
(subscript) in the input array that was processed. Neither is an error
condition, and neither is more advantageous outside the context of your
specific application.

These conditions give you great flexibility in handling routine input and
output. When you have large quantities of data to process, you need
not allocate space for all data at once because the routine is designed to
process a given data set in sequential parts. In fact, all data need not be
known before processing begins, as is true in real-time processing. Data
can be asynchronously collected into one buffer at the same time that a
previously collected buffer is processed.

Handling of output is also flexible. It might, for example, be printed
or stored after each return from the routine, or it might be further
processed only when the output buffer was filled, that is, NPEAKS =
-1. You can choose the procedure that is most convenient for you.

8-34 The Peak-Processing Routine

Further flexibility is introduced by the fact that all arguments in the
calling statement expect ITABLE can be changed between successive
calls to the routine to reflect the origin of the remaining input data and
where the output is to be stored. ITABLE must not be tampered with
during the intervals between calls for a given data stream because it
contains the current information needed to resume processing at the
point where processing was stopped on the previous call.

The routine is position-independent and reentrant. Although these
features are of interest mainly at the system level, they do result in
additional advantages at the user level. Perhaps most significant is
the possibility of processing several data streams simultaneously.
All pertinent information concerning the history of a data stream is
contained in the ITABLE array rather than in the code for the routine.
Imaginative use of the arguments in the routine call should make the
routine functionally compatible with any application that uses the
peak-processing algorithm.

B.7 Sample Program Using the PEAK Routine

The sample program presented in this section processes awaveform —
the sum of four Gaussian curves —shown in Figure B-12.

This sample program is idealized in several respects. Normally, you do
not know that the input array is empty upon return from the routine,
or .that the output array has sufficient room for all output data. You
must therefore provide for these possibilities by checking INPTR and
NPEAKS. Also, no provision is made for error checking because the
input and output are known and the program has been debugged with
respect to these types of errors. In practice, ITABLE(6) should always be
checked. This program is used to illustrate the minimal requirements
for implementation, and how the routine and its arguments affect a
given set of data.

The data are input as four 256-point parts; the routine processes each
part as it is received, placing the results in the output array. In this
case, the output array is large enough to contain the complete set of
processed data. Upon return from the routine, the input array is always
empty (INPTR = -1), and the output array is never filled (NPEAKS~-1).

The Peak-Processing Routine B-35

Example B-1: Sample Program Using the PEAK Routine

C Define array variables and their size

DIMENSION INPUT(266),OUTPUT(10,3),EMU(4),SIGMA(4),SIZE(4)
DIMENSION ITABLE(79),VTYPE(2,2)

C VTYPE is used to print a cord describing hoY the peak ended (TYPE).

DATA VTYPE/' VA','LLEY','BASE','LINE'/

C Arrays EMU, SIGMA, and SIZE are used to produce the raveform to
C be processed, which is the sum of four Gaussian curves.

DATA EMU/20.,70.,600.,1000./
DATA SIGMA/20.,10.,200.,100./
DATA SIZE/960.,400.,300.,200./

C Data statements initializing the variable input parameters to the
C algorithm CITABLE) and the arguments for the call to PEAK.

DATA ITABLE/1,2,3,1,1,63*0/
DATA INLAST,INPTR,IDIMO,NPEAKS/266,0,3,0/

C Section producing values that represent the ravef orm; as X increases,
C the next 266 values are calculated and PEAK is called. Four raveform
C segments are produced.

X=O.
DO 3 K=1,4
DO 1 I=1,266
A=O.
X=X+i

DO 2 J=1,4
2 A=A+SIZE(J)*EXP(-.6*((X-EMU(J)/SIGMA(J))**2)
1 INPUT (I) =A

C Call to the PEAK routine:

CALL PEAK (.ITABLE,INPUT,~NLAST,INPTR,OUTPUT,IDIMO,NPEAKS)

C Loop for each of four sections of Yave~orm. All elements of INPUT
C array are processed (INPTR equals -i) but OUTPUT array still has room
C (NPEAKS less than or equal to IDIMO).

3 CONTINUE

Example B-1 Cont'd~. on next page

B-36 The Peak,Processing Routine

I"1
Example B-1 (Cont.): Sample Program Using the PEAK Routine

C This section displays the results on the terminal screen:

TYPE 900
900 FORMAT (iH1,T24,'PEAK Example 1'//)

TYPE 1000
1000 FORMAT ('PEAK N0.',8X,'AAEA',4X,'P HEIGHT',BX,'P TIME',4X,

A 'L HEIGHT',BX,'L TIME',/,11X,'HALF YID?H',4X,'T HEIGHT',BX,
B 'T TIME',8X,'TYPE',8X,'RATE',//)

DO 4 L=1,NPEAKS
KK=OUTPUT(9,L)+1

4 TYPE 2000,(L,(OU?PUT(I,L),I=1,8),(VTYPE(K,KK),K=1,2),OUTPUT(10,L))
2000 FORMAT(19,6F12.0,/,9X,3F12.0,4X,2A4,F12.0)

END

This program produces the following terminal output with the digital
filter enabled:

PEAK Example 1

PEAK N0. AREA P HEIGHT P TIME L HEIGHT L TIME
HALF YIDTH T HEIGHT T TIME TYPE RATE

1 36796. 961. 19. 892. 4.
12. 346. 63. BASELINE 1.

2 11803. 461. 88. 343. 64.
7. 41. 93. BASELINE 1.

3 134998. 299. 698. 13. 108.
124. 200. 84b. VALLEY 1.

This program produces the following terminal output with the No Filter
(NOFLT$) option enabled:

PEAK Example 1

PEAK N0. AREA P HEIGHT P TIME L HEIGHT L TIME
HALF YIDTH T HEIGHT T TIME TYPE RATE

1 38147. 963. 19. 808. 1.
14. 342. b4. BASELINE 1.

~ 11836. 464. 88. 342. 64.
7. 41. 93. BASELINE 1.

3 132862. 300. 697. 14. 108.
117. 201. 831. VALLEY 1.

The Peak-Processing Routine B-37

Figure B-12; Actual Plot of the Input Data in Example C-1

MR-1253-GE

B-38 The Peak-Processing Routine

Index

A

Analog-to-digital data translation • 6-38
Autocorrelation function • 6-11

definition • 2-7
mathematical equation • 2-7
references • 2-8

C
Condition values

LSP • 7-3
Correlation function • 6-11

definition • 2-7
mathematical equation • 2-7
references • 2-8

D
Data format translation • 1-3
Data translation

analog-to-digital • 6-38
digital-to-analog • 6-41

Digital filtering
definition • 3-1
LSP$APPLY WINDOW TABLE routine • 6-5
LSP$BUILD_WINDOW TABLE routine • 6-8
LSP$SPECTRAL_WINDOWS routine • 6-62
nonrecursive filtering • 3-3
polynomials • 3-1
references • 3-13
spectral window filtering • 4-2

Digital-to-analog data translation • 6-41

Discrete Fourier transform
definition • 2-3
mathematical equation • 2-3

E
Error messages

checking routine call status • 7-2
explanation and user action • 7-3
LSP • 7-1
symbolic status definition files • 7-2

F
Fast Fourier transform

in two dimensions • 2-5
mathematical equation • 2-3
of real-valued data • 6-20
reduced-symmetric storage • 2-5
references • 2-8

Forward Fourier transform
definition • 2-1
of complex-valued data • 6-14
of complex-valued data in two dimensions •

6-17

G
Gibbs Phenomenon • 3-6

i

Interval histogram analysis
with floating-point input • 6-45

Index-1

Interval histogram analysis (cont'd.)
with integer input • 6-49

Inverse Fourier transform
definition • 2-2
mathematical equation • 2-3
of complex-valued data • 6-14
of complex-valued data in two dimensions •

6-17
of real-valued data • 6-20

L
Laboratory signal-processing routines

error messages • 7-1
LSP$APPLY_SPECTRAL_WINDOWS TABLE

routine • 6-5
LSP$BUILD_WINDOW_TABLE routine • 6-8
LSP$CORRELATION routine • 6-11
LSP$FFT_COMPLEX routine • 6-14
LSP$FFT_COMPLEX_2D routine • 6-17
LSP$FFT_REAL routine • 6-20
LSP$FILTER_NONREC routine • 6-23
LSP$FILTER_POLY routine • 6-26
LSP$FILTER_POLY_1 ST_DERIV routine • 6-29
LSP$FILTER_POLY_2ND_DERIV routine • 6-32
LSP$FILTER_POLY_3RD_DERIV routine • 6-35
LSP$FORMAT TRANSLATE ADC routine • 6-38
LSP$FORMAT TRANSLATE_DAC routine • 6-41
LSP$HIST_F routine • 6-45
LSP$HIST_I routine • 6-49
LSP$PHASE ANGLE routine • 6-53
LSP$PHASE ANGLE_2D routine • 6-56
LSP$POWER_SPECTRUM routine • 6-59
LSP$SPECTRAL_WINDOWS routine • 6-62
LSP$THERMOCOUPLE_X routine • 6-65
LSP sample programs • 8-1

N

Nonrecursive filtering • 6-23
bandpass • 3-3
bandstop • 3-3
highpass • 3-3
lowpass • 3-3
mathematical equation • 3-4
sample program • 3-6

Nyquist frequency • 3-3

2-Index

P
Periodogram

power spectrum • 4-2
Phase angle and amplitude spectra • 6-53, 6-56
Polynomial filtering

definition • 3-1
for smoothing • 6-26
with first-derivative output • 6-29
with second-derivative output • 6-32
with third-derivative output • 6-35

Power spectrum • 6-59
periodogram technique • 4-2

S
Sample programs

using LSP routines • 8-1
Signal-processing routines

LSP$APPLY_SPECTRAL_WINDOWS TABLE •
6-5

LSP$BUILD_WINDOW_TABLE • 6-8
LSP$CORRELATION • 6-11
LSP$FFT_COMPLEX • 6-14
LSP$FFT_COMPLEX_2D • 6-17
LSP$FFT_REAL • 6-20
LSP$FILTER_NONREC • 6-23
LSP$FILTER_POLY • 6-26
LSP$FILTER_POLY_1 ST_DERIV • 6-29
LSP$FILTER_POLY_2ND_DERIV • 6-32
LSP$FILTER_POLY_3RD_DERIV • 6-35
LSP$FORMAT_TRANSLATE_ADC • 6-38
LSP$FORMAT_TRANSLATE_DAC • 6-41
LSP$HIST_F • 6-45
LSP$HIST_I • 6-49
LSP$PHASE_ANGLE • 6-53
LSP$PHASE_ANGLE_2D • 6-56
LSP$POWER_SPECTRUM • 6-59
LSP$SPECTRAL_WINDOWS • 6-62
LSP$THERMOCOUPLE_X • 6-65

Spectral window
symbolic status definition files • 4-14

Spectral window filtering
applying coefficient table • 6-5
building coefficient table • 6-8
LSP$SPECTRAL WINDOWS routine • 6-62

Spectral window filtering (cont'd.)
LSP window algorithms • 4-4
LSP window routines • 4-4
periodogram technique • 4-2
sample program • 4-9
spectral window reference list • 4-14
window types illustration • 4-6

Spectral Window routine • 6-62

T

Thermocouple conversion • 5-1
LSP$THERMOCOUPLE X • 5-1
temperature and voltage ranges • 5-2

Thermocouple conversion routines • 5-1

V

VAXIab signal-processing
analog-to-digital data translation • 1-1
calculating phase angles • 1-2
calculating the correlation function • 1-2
converting thermocouple voltages to

temperatures • 1-2
determining power spectra • 1-2
digital filtering • 1-2
digital-to-analog data translation • 1-1
Gibbs Phenomenon • 3-6
interval histogram analysis • 1-2
number representations • 1-3

binary • 1-3
offset binary • 1-4
two's complement • 1-4

Nyquist frequency • 3-3
performing Fourier transform • 1-1
spectral window filtering • 1-2

Index-3

Guide to the
VAXIab Laboratory

Signal-Processing
Routines

AA-KP0IB-TE
READER'S COMMENTS

Your comments and suggestions help us to improve the quality of our publications.

For which tasks did you use this manual? (Circle your responses.)

(a) Installation
(b) Operation/use

(c) Maintenance
(d) Programming

Did the manual meet your needs? Yes No

(e) Training
(f) Other (Please specify.)

whys

Please rate the manual in the following categories. (Circle your responses.)
Excellent Good Fair Poor Unacceptable

Accuracy (product works as described) 5 4 3 2 1
Clarity (easy to understand) 5 4 3 2 1
Completeness (enough information) 5 4 3 2 1
Organization (structure of subject 5 4 3 2 1
matter)
Table of Contents, Index (ab' 'ty to 5 4 3 2 1
find topic)
Illustrations, examples (useful) 5 4 3 2 1
Overall ease of use 5 4 3 2 1
Page Layout (easy to find information) 5 4 3 2 1
Print Quality (easy to read) 5 4 3 2 1

What things did you like most about this manual?

What things did you like least about this manual?

Please list and describe any errors you found in the manual.
Page Descriptionl Location of Error

Additional comments or suggestions for improving this manual:

Name Job Title
Street Company
City Department
StatelCountry Telephone Number
Postal (ZIP) Code Date

Fold Here and Tape

Affix
Stamp
Here

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS
200 FOREST STREET MR01-2/L12
MARLBOROUGH, MA 01752-9101

Fold Here

