Guide to the
VAXlab Laboratory
1/0 Routines

Order Number: AA-KN99C-TE

February 1990

This document describes the VAXlab Laboratory I/O routines. It provides an
overview of laboratory I/O concepts and presents detailed reference information
about the laboratory I/O routines you use to initiate, control, and terminate I/O
to and from VAXlab /O devices.

Revision/Update Information:  This is a revised document.
Operating System and Version: VMS Version 5.2
Software Version: VAXlab Software Library Version 1.4

digital equipment corporation
maynard, massachusetts




First Printing, December 1987
Revised, August 1988
Revised, February 1990

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1987, 1988, 1990

All Rights Reserved.
Printed in U.S.A.

The Reader's Comments form on the last page of this document requests the
user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC MicroVAX VAXstation
DECnet Q-bus VMS
DRB32 VAX VT

LNO3 VAXcluster

LNO03 PLUS VAXlab

Hﬂaﬂnan ’

This document was prepared with VAX DOCUMENT, Version 1.2.



Contents

PREFACE xix

CHAPTER 1 LABORATORY I/0 INTERFACES AND OPERATIONS 1-1
1.1 OVERVIEW OF LIO 1-1

1.2 SYNCHRONOUS 1/0 1-2

1.3 ASYNCHRONOUS 1/0 1-3

1.4 I/0 OPERATIONS SUPPORTED BY VAXlab 1-4

1.4.1 QIOs to a VMS Device Driver 1-6

ﬁ 1.4.2 Polled I/O 1-7
' 1.4.3 Connect-to-Interrupt I/0 1-7
1.5 ASYNCHRONOUS I/O BUFFER-HANDLING MECHANISMS 1-8

1.5.1 Buffer Dequeueing 1-9

1.5.2 Buffer Forwarding 1-10

1.5.3 Asynchronous System Traps (ASTs) 1-11

1.6 I/O DEVICE-SPECIFIC INTERFACING 1-14

1.6.1 First-In/First-Out Buffers 1-16

1.6.2 Handshaking 1-16

1.6.2.1 The DRQ3B and Handshaking ¢ 1-17
1.6.2.2 The DRV11-J and Handshaking * 1-18
1.6.2.3 The DRV11-WA and Handshaking » 1-18
1.6.3 Direct Memory Access I/0 1-19
1.6.3.1 Single-Buffer DMA ¢ 1-19
1.6.3.2 Continuous DMA ¢ 1-21
1.6.3.3 Alternate-Buffer DMA o 1-25
1.6.3.4 Double-Buffer DMA ¢ 1-26

ﬂ il




CHAPTER 2 LABORATORY I/O DEVICE SUPPORT

2.1

2.2

REAL-TIME CLOCK DEVICES

211
2.1.2
2.1.3

2.1.4
2.1.5
2.1.6

Attaching the KWV11-C or Simpact RTCO1
Setting Up the KWV11-C or Simpact RTCO1

Using the KWV11-C or Simpact RTCO1 to Time
External Events

Using the KWV11-C to Trigger a Device
Using the Simpact RTCO01 to Count External Events
Using the KWV11-C to Avoid Trigger Slivering

ANALOG /O DEVICES

2.2.1

2.2.2

2.2.3

2.2.4

AAF01 and ASF01 Support

2.2.1.1 Attaching the AAFQ1 » 2-13

2.2.1.2 Setting Up the AAF01 « 2-14

2213 Using the AAFO01 for Synchronous
Output e 2-15

2214 Using the AAFO01 for Asynchronous
Output « 2-19

AAV11-D Support

2.2.21 Attaching the AAV11-D e 2-22

2222 Setting Up the AAV11-D ¢ 2-23

2223 Using the AAV11-D for Synchronous
Output » 2-24

22.2.4 Using the AAV11-D for Asynchronous
Output » 2-26

ADF01, AMFO01, and ASF01 Support

2.2.3.1 Attaching the ADF0O1 e 2-29

2.23.2 Setting Up the ADF0O1 « 2-29

2.233 Using the ADF01 for Synchronous
Input e 2-31

2234 Using the ADFO01 for Asynchronous
Input e 2-35

ADQ32 Support

2241 Attaching the ADQ32  2-40

2242 Setting Up the ADQ32 ¢ 2-40

2243 Using the ADQ32 for Synchronous
Input e 2-42

2244 Using the ADQ32 for Asynchronous
Input e 2-43

2-22

2-27

2-38



2.3

2.25

2.2.6

2.2.7

2.2.8

ADV11-D Support

2.2.5.1
2252
2253

2254

Attaching the ADV11-D ¢ 2-44
Setting Up the ADV11-D ¢ 2-45
Using the ADV11-D for Synchronous
Input e 2-46

Using the ADV11-D for Asynchronous
Input e 2-47

AXV11-C Support

2.2.6.1
2.2.6.2
2.2.6.3

2264

Attaching the AXV11-C » 2-49
Setting Up the AXV11-C e 2-50
Using the AXV11-C for Synchronous
Input » 2-51

Using the AXV11-C for Asynchronous
Input e 2-53

DRQ11-C Support

2.2.71
2.2.7.2
22.73

22.7.4

Attaching the DRQ11-C e 2-55
Setting Up the DRQ11-C ¢ 2-55
Using the DRQ11-C for Synchronous
/10 o 2-56

Using the DRQ11-C for Asynchronous
/0 * 2-59

Preston Support

2.2.8.1
2.2.8.2
2.2.8.3

2.2.8.4

Attaching the Preston ¢ 2-62
Setting Up the Preston ¢ 2-63
Using the Preston for Synchronous
Input e 2-65

Using the Preston for Asynchronous
Input » 2-66

DIGITAL /O DEVICES
DRB32 Support

2.3.1

2.3.2

2.3.1.1
23.1.2
23.1.3
23.1.4

Attaching the DRB32 ¢ 2-68

Setting Up the DRB32 » 2-68

Using the DRB32 for Synchronous I/0 « 2-70
Using the DRB32 for Asynchronous

110 o 2-71

DRB32W Support

2.3.2.1
2.3.2.2
23.23

23.2.4

Attaching the DRB32W ¢ 2-74
Setting Up the DRB32W ¢ 2-75
Using the DRB32W for Synchronous
1O » 2-76

Using the DRB32W for Asynchronous
110 o 2-77

2-44

2-49

2-54

2-61

2-74




vi

2.4

2.3.3

2.3.4

2.3.5

DRQ3B Support

2.3.3.1
2.3.3.2
2.3.33

2334

Attaching the DRQ3B ¢ 2-78
Setting Up the DRQ3B ¢ 2-79
Using the DRQ3B for Synchronous
/O » 2-80

Using the DRQ3B for Asynchronous
110 » 2-81

DRV11-J Support

2.3.41
23.4.2

Attaching the DRV11-J » 2-83
Setting Up the DRV11-J » 2-84

DRV11-WA Support

2.3.5.1
2.3.56.2
2.3.56.3

23.5.4

Attaching the DRV11-WA « 2-87
Setting Up the DRV11-WA  2-87
Using the DRV11-WA for Synchronous
/O « 2-88

Using the DRV11-WA for Asynchronous
110 « 2-89

ISOLATED REAL-TIME 1/O DEVICES

2.4.1

2.4.2

2.4.3

IAV11-A, IAV11-AA, |IAV11-C, and IAV11-CA Support

24141
241.2
2413

2414

Attaching the IAV11-A ¢ 2-91
Setting Up the IAV11-A « 2-92
Using the IAV11-A for Synchronous
Input e 2-92

Using the IAV11-A for Asynchronous
Input e 2-94

IAV11-B Support

24.21
2422
2.4.23

2424

Attaching the IAV11-B ¢ 2-96
Setting Up the IAV11-B ¢ 2-96
Using the IAV11-B for Synchronous
Output e 2-97

Using the 1AV11-B for Asynchronous
Output » 2-98

IDV11-A Support

2.4.3.1
243.2
2433

2434

Attaching the IDV11-A ¢ 2-99
Setting Up the IDV11-A  2-99
Using the IDV11-A for Synchronous
Input * 2-100

Using the IDV11-A for Asynchronous
Input e 2-101

2-78

2-83

2-86

2-95

2-98



2.5

2.4.4

2.4.5

IDV11-B and IDV11-C Support

2441 Attaching the IDV11-B » 2-101

2442 Setting Up the IDV11-B ¢ 2-102

2443 Using the IDV11-B for Synchronous
Output * 2-103

2444 Using the IDV11-B for Asynchronous
Output » 2-103

The IDV11-D Real-Time Counter Device

24.51 Attaching the IDV11-D » 2-104

2.4.5.2 Setting Up the IDV11-D ¢ 2-105

2453 Using the IDV11-D to Count External
Events ¢ 2-105

2454 Using the IDV11-D to Measure Pulse
Duration e 2-108

2455 Using the IDV11-D to Generate Pulse
Trains e 2-112

2456 Using the IDV11-D to Generate Output
Frequencies ¢ 2-113

IEEE-488 BUS DEVICES

2.5.1
2.5.2

2.5.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
2.5.9
2.5.10
2.5.11
2.5.12

2.5.13
2.5.14
2.5.15
2.5.16

2.5.17

IEQ11 and IEZ11

I0tech Micro488A

2.5.2.1 10tech Micro488A DIP Switch
Settings * 2-116

An IEEE-488 Device as the System Controller

An IEEE-488 Device as a Controller

An IEEE-488 Device as an Instrument

I0tech Micro488A Device Modes

Attaching an IEEE-488 Device

Setting Up the IEEE-488 Device

Assigning IEEE-488 Bus Addresses

Enabling IEEE-488 Events

Detecting IEEE-488 Bus Events

Supplying AST Routines

2.5.12.1 Example ¢ 2-128

Requesting Service with an SRQ

Passing and Receiving Control

Responding to a Service Request

Sending Data and Receiving Data When the IEEE-488

Device Is Controller-In-Charge

Sending Data to Multiple IEEE-488 Devices

2-101

2-104

2-114
2-115
2-115

2-117
2-117
2-118
2-118
2-119
2-120
2-122
2-123
2-126
2-127

2-129
2-130
2-131

2-133
2-135

vii




viii

2.6

2.7

2.5.18 Sending Data and Receiving Data When the IEEE-488
Device Is Attached as an Instrument
2.5.18.1  Using Termination Characters to Terminate
Read Requests ¢ 2-139
2.5.18.2 Using EOI to Terminate Write
Requests ¢ 2-139

SERIAL LINE DEVICES

2.6.1 Attaching Serial Line Devices

2.6.2 Setting Up Serial Line Devices

2.6.3 Using Serial Line Devices for Synchronous 1/0
2.6.4 Using Serial Line Devices for Asynchronous I/0

SOFTWARE PSEUDODEVICES
2.7.1 Disk File Support
2711 Attaching a Disk File e 2-147
271.2 Setting Up the Disk File Device » 2-147
2713 Using Disk Files for Synchronous I/O e 2-148
2.71.4 Using Disk Files for Asynchronous
110 » 2-149
2.7.2 Memory Queue Support
2.7.21 Attaching the Memory Queue Device ¢ 2-151
2.7.2.2 Setting Up the Memory Queue
Device ¢ 2-151
2723 Using a Memory Queue Device to Manage
Local Memory ¢ 2-153
2724 Setting Up a Memory Queue Device for
Interprocess Communications ¢ 2-155
2.7.3 Real-Time Plotting
2.7.3.1 Real-Time Plotting Device
Parameters » 2-160
2.7.3.2 Attaching the Real-Time Plotting
Device » 2-162
2.7.3.3 Setting Up and Using the Real-Time Plotting
Device ¢ 2-162

2-137

2-140
2-140
2-140
2-143
2-144

2-146
2-146

2-150

2-160



CHAPTER 3 LABORATORY I/O ROUTINE REFERENCE DESCRIPTIONS 3-1
LIO$SATTACH 3-3
LIO$DEQUEUE 3-8
LIO$DETACH 3-13
LIO$SENQUEUE 3-15
LIO$READ 3-24
LIO$SET_I 3-29
LIO$SET_R 3-31
LIO$SET_S 3-33
LIO$SHOW 3-35
LIO$WRITE 3-37

CHAPTER 4 LIO$SET AND LIO$SHOW PARAMETER REFERENCE

DESCRIPTIONS 4-1
LIO$SK_ACK_NAK_TERMINATOR 4-12
LIO$K_AD_CHAN 4-13
LIO$K_AD_DIFFERENTIAL 4-15
LIO$K_AD_GAIN 4-17
LIO$K_ADD_AD_CHAN 4-19
LIO$K_ANA_OUT 4-21
LIO$K_AST_RTN 4-22
LIO$K_ASYNCH 4-24
LIO$K_AUX_COMMAND 4-26
LIO$K_BAUD_RATE 4-29
LIO$K_BIN_DDR 4-32
LIO$K_BITS_PER_CHAR 4-33
LIO$K_BOUNCE 4-34
LIO$K_BREAK 4-36
LIO$K_BUFF_SIZE 4-37
LIO$K_BUFF_SOURCE 4-39
LIO$K_BURST_DIV 4-a41
LIO$K_BURST_RATE 4-43
LIO$K_CANCEL 4-45
LIO$K_CC_FOUT 4-46
LIO$K_CC_SETUP 4-48
LIO$K_CHANNEL 4-50
LIO$K_CLK_BASE 4-51
LIO$K_CLK_DIV 4-53
LIO$K_CLK_RATE 4-55
LIO$K_CLK_SRC 4-58
LIO$K_CLR_LBO 4-61
LIO$K_COB 4-63




LIO$K_COMMAND
LIO$K_CONT
LIO$K_COUNTER
LIO$K_CTA
LIO$K_CTI_BUF
LIO$K_CTI_OVERHD
LIO$K_CTRL_ACTIVE
LIO$K_CTRL_AST
LIO$K_CTRL_HANDLING
LIO$K_CTRL_STANDBY
LIO$K_CURRENT_CHANNEL
LIO$K_CWT
LIO$K_DA_CHAN
LIO$K_DATA
LIO$K_DATA_PATH
LIO$K_DATA_WIDTH
LIO$K_DBL_BUF
LIO$K_DEVICE_ACK_NAK_BUFF
LIO$K_DEVICE_EF
LIO$K_DIAG_CHAN
LIO$K_DIRECTION
LIO$K_DISPLAY_ONLY
LIO$K_DRX_AST_RTN
LIO$K_DRX_STAT
LIO$K_DUPLEX
LIO$K_ECHO
LIO$K_ED_CTT
LIO$K_ED_ECE
LIO$K_ED_SBE
LIO$K_EOI
LIO$K_ERR_HANDLE
LIO$K_ERROR_ENABLE
LIO$K_EVENT_AST
LIO$K_EVENT_EF
LIO$K_EVENT_ENA
LIO$K_EVENT_WAIT
LIO$K_FILE_EXTENT
LIO$K_FILE_POS
LIO$K_FILE_REMAIN
LIO$K_FILE_SIZE
LIO$K_FLOW_CONTROL
LIO$K_FLOW_MASTER
LIO$K_FORWARD
LIO$K_FUNCTION
LIO$K_FUNCTION_BITS

C



LIO$K_GATE
LIO$K_HANDSHAKE
LIO$K_HANGUP
LIO$K_IEEE_ADDR
LIO$K_INIT_AD_CHAN
LIO$K_INPUT_TERMINATOR
LIO$K_INTERRUPT_LEVEL
LIO$K_LEAVE_IN_STATE
LIO$K_LOCK_BUFFER
LIO$K_LOOP_BACK
LIO$K_MAX_CHANNELS
LIO$K_MODEM
LIO$K_MODEM_STATUS
LIO$K_MULTIPLE_X_AXES
LIO$K_N_AD_CHAN
LIO$K_N_BUFFS
LIO$K_N_DA_CHAN
LIO$K_NAME
LIO$K_OPEN_FILE
LIO$K_OUTPUT_PREFIX
LIO$K_OUTPUT_TERMINATOR
LIO$K_PAGE_ALIGN
LIO$K_PAR_POLL
LIO$K_PAR_POLL_CONFIG
LIO$K_PAR_POLL_STATUS
LIO$K_PARITY
LIO$K_PASS_CTRL
LIO$K_PCR
LIO$K_PLOT_SIZE
LIO$K_PLOT_TYPE
LIO$K_PO_CHAN
LIO$K_POLARITY
LIO$K_POSITION
LIO$K_PROTOCOL
LIO$K_PURGE
LIO$K_READ_ONLY
LIO$K_READ_PROMPT
LIO$K_READ_STAT
LIO$K_RESET_AXF
LIO$K_RESET_DRX
LIO$K_SCHMITT_TRIGGER
LIO$K_SER_POLL
LIO$K_SER_POLL_CONFIG
LIO$K_SGL_BUF
LIO$K_SKIP_COUNT

4-153
4-156
4-158
4-159
4-161
4-162
4-163
4-164
4-166
4-168
4-169
4-170
4-172
4-174
4-176
4-177
4-179
4-180
4-182
4-183
4-184
4-185
4-186
4-188
4-191
4-193
4-195
4-196
4-198
4-199
4-201
4-202
4-204
4-206
4-209
4-210
4-211
4-212
4-214
4-215
4-217
4-219
4-221
4-223
4-225

Xi




LIO$K_SRQ

LIO$K_STO_1
LIO$K_START
LIO$K_STAT_BITS
LIO$K_STE

LIO$K_STOP
LIO$K_SWEEP_RATE
LIO$K_SYNCH
LIO$K_TERM_CHAR
LIO$K_TERM_SRQ
LIO$K_TIMEOUT
LIO$K_TIMEOUT_ENABLE
LIO$K_TITLE
LIO$K_TITLE_N
LIO$K_TRANSFER
LIO$K_TRIG
LIO$K_TYPE_AHEAD
LIO$K_UNLOCK_BUFFER
LIO$K_UNSOLICITED
LIO$K_UPDATE
LIO$K_USER_ACK_AST
LIO$K_USER_ACK_STRING
LIO$K_USER_NAK_AST
LIO$K_USER_NAK_STRING
LIO$K_USER_READ_PROTOCOL_AST
LIO$K_USER_WRITE_NAK_HANDLING
LIO$K_VLT_DDR
LIO$K_VOLTAGE
LIO$K_X_LABEL
LIO$K_X_RANGE
LIO$K_XON
LIO$K_Y_LABEL
LIO$K_Y_MAX
LIO$K_Y_MIN

4-226 u

4-228
4-230
4-233
4-234
4-235
4-237
4-239
4-241
4-243
4-245
4-247
4-248
4-250
4-252
4-253
4-264
4-266
4-267
4-268
4-269
4-270
4-271
4-272 u
4-273
4-275
4-277
4-278
4-280
4-281
4-283
4-284
4-285
4-286

CHAPTER 5 LABORATORY I/0 ERROR HANDLING

5.1 OVERVIEW

5.2 CHECKING ROUTINE CALL STATUS

Xii

5-1

5-1

5-2



! l 5.3 SETTING UP DEVICES FOR ERROR HANDLING 5-4

5.4 SYMBOLIC STATUS VALUES AND DESCRIPTIONS 5-6
CHAPTER 6 ONLINE SAMPLE PROGRAMS 6-1
6.1 PROGRAMS FOR EUROPEAN DEVICES 6-3
APPENDIX A ADQ32 TRIGGERING AND CLOCK MODES A-1
A CLOCK MODE SUMMARY A-1

A.2 DEFINITION OF TERMS USED TO DESCRIBE CLOCK MODES A-2

A.3 CHANNEL SPECIFICATION A-5

A.4 GAIN SPECIFICATION A-6

A.5 BUFFER SPECIFICATION A-6

A.5.1 Single Buffer Transfers A-6

A.5.2 Double Buffer Transfers A-7

A.6 START OF DATA ACQUISITION A-8

A7 CLOCK OVERRUN ERRORS A-8

A.8 IMPORTANT POINTS ABOUT THE CLOCK LOGIC A-9

A.9 CLOCK MODE 1, BURST A-10

A.10 CLOCK MODE 2, BURST, WITH EDGE GATE A-11




Xiv

A.11

A.12

A.20

A.21

A.22

A.23

A.24

A.25

CLOCK MODE 3, BURST, WITH DELAYED EDGE GATE

CLOCK MODE 4, BURST, ACTIVATED BY EXTERNAL TRIGGER

CLOCK MODE 5, TIMED TRIGGERS

CLOCK MODE 6, TIMED TRIGGERS, WITH EDGE GATE

CLOCK MODE 7, TIMED TRIGGERS, WITH DELAYED EDGE GATE

CLOCK MODE 8, TIMED TRIGGERS, WITH LEVEL GATE

CLOCK MODE 9, TIMED TRIGGERS, ACTIVATED BY EXTERNAL
TRIGGER

CLOCK MODE 10, BURST SWEEPS

CLOCK MODE 11, BURST SWEEPS, WITH EDGE GATE

CLOCK MODE 12, BURST SWEEPS, WITH LEVEL GATE

CLOCK MODE 13, BURST SWEEPS, ACTIVATED BY EXTERNAL
TRIGGER

CLOCK MODE 14, BURST SWEEPS, SWEEP CONTROLLED BY
EXTERNAL TRIGGER

CLOCK MODE 15, TIMED SWEEPS

CLOCK MODE 16, TIMED SWEEPS, WITH EDGE GATE

CLOCK MODE 17, TIMED SWEEPS, WITH LEVEL GATE

A-12

A-13

A-21

A-23

A-25

A-27

A-29

A-31

A-33




‘ ! A.26

CLOCK MODE 18, TIMED SWEEPS, ACTIVATED BY EXTERNAL

TRIGGER A-35
A.27 CLOCK MODE 19, TIMED SWEEPS, SWEEP CONTROLLED BY
EXTERNAL TRIGGER A-37
A.28 CLOCK MODE 20, EXTERNAL TRIGGERS A-39
A.29 CLOCK MODE 21, EXTERNAL TRIGGERS, WITH EDGE GATE A-40
A.30 CLOCK MODE 22, EXTERNAL TRIGGERS, WITH DELAYED EDGE
GATE A-42
APPENDIX B USING CTI O WITH THE AXV11-C B-1
B.1 CONNECTING THE CTI DRIVER TO THE AXV11-C B-1
| B.2 RELOADING THE QIO DRIVER B-5
B.3 RECONNECTING THE QIO DRIVER B-5
INDEX Index-1
FIGURES
1-1 Synchronous I/0 Device Model 1-3
1-2 Asynchronous /O Device Model 1-4
1-3 Double-Buffer DMA Pointer Sequence 1-26
4-1 State of the Function Bits on the DRQ3B 4-150
A-1 Clock Mode 1, Burst A-10
A-2 Clock Mode 2, Burst, with Edge Gate A-11
A-3 Clock Mode 3, Burst, with Delayed Edge Gate A-12
A-4 Clock Mode 4, Burst, Activated by External Trigger A-13

XV




a1s N

A-5 Clock Mode 5, Timed Triggers
A-6 Clock Mode 6, Timed Triggers, with Edge Gate A-15
A-7 Clock Mode 7, Timed Triggers, with Delayed Edge Gate A-16
A-8 Clock Mode 8, Timed Triggers, with Level Gate A-17
A-9 Clock Mode 9, Timed Triggers, Activated by External Trigger _ A-18
A-10 Clock Mode 10, Burst Sweeps A-19
A-11  Clock Mode 11, Burst Sweeps, with Edge Gate A-22
A-12 Clock Mode 12, Burst Sweeps, with Level Gate A-24
A-13 Clock Mode 13, Burst Sweeps, Activated by External Trigger A-26
A-14 Clock Mode 14, Burst Sweeps, Sweep Controlled by External

Trigger A-28
A-15 Clock Mode 15, Timed Sweeps A-30
A-16 Clock Mode 16, Timed Sweeps, with Edge Gate A-32
A-17 Clock Mode 17, Timed Sweeps, with Level Gate A-34
A-18 Clock Mode 18, Timed Sweeps, Activated by External Trigger _ A-36
A-19 Clock Mode 19, Timed Sweeps, Sweep Controlled by External

Trigger A-37
A-20 Clock Mode 20, External Triggers A-39
A-21 Clock Mode 21, External Triggers, with Edge Gate A-40 u
A-22 Clock Mode 22, External Triggers, with Delayed Edge Gate __  A-43

TABLES

1-1 /0 Interfaces and Operations Summary 1-5
2-1 KWV11-C and Simpact RTCO1 LIO$SET and LIO$SHOW

Parameters 2-3
2-2 AAFO01 LIO$SET and LIO$SHOW Parameters 2-14
2-3 AAV11-D LIO$SET and LIO$SHOW Parameters 2-23
2-4 ADFO1 LIO$SET and LIO$SHOW Parameters 2-29
2-5 ADQ32 LIOS$SET and LIO$SHOW Parameters 2-41
2-6 ADV11-D LIO$SET and LIO$SHOW Parameters 2-45
2-7 AXV11-C LIO$SET and LIO$SHOW Parameters 2-50
2-8 DRQ11-C LIO$SET and LIO$SHOW Parameters 2-55
2-9 Preston LIO$SET and LIO$SHOW Parameters 2-63
2-10 DRB32 LIOS$SET and LIO$SHOW Parameters 2-69
2-11 DRB32W LIO$SET and LIO$SHOW Parameters 2-75

XVi




‘ \ ’ 2-12 DRQ3B LIOS$SET and LIO$SHOW Parameters 2-79

2-13 DRV11-J LIOSSET and LIO$SHOW Parameters : 2-84
2-14 DRV11-WA LIO$SET and LIO$SHOW Parameters 2-87
2-15 1AV11-A LIOS$SET and LIO$SHOW Parameters 2-92
2-16 1AV11-B LIO$SET and LIO$SHOW Parameters 2-97
2-17 IDV11-A LIOS$SET and LIO$SHOW Parameters 2-100
2-18 IDV11-B LIOSSET and LIO$SHOW Parameters 2-102
2-19 IDV11-D LIOS$SET and LIO$SHOW Parameters 2-105
2-20 IEEE-488 Device LIO$SET and LIO$SHOW Parameters _____ = 2-120
2-21  Serial Line LIO$SET and LIO$SHOW Parameters ____ 2-141
2-22 Disk File LIO$SET and LIO$SHOW Parameters 2-147
2-23 Memory Queue LIO$SET and LIO$SHOW Parameters __  2-152
2-24 Real-Time Plotting LIOSSET and LIO$SHOW Parameters 2-160
3-1 Laboratory I/0 Routine Summary 3-2
3-2 Device Specifications and 1/0 Types 3-4
3-3 LIOSDEQUEUE Device-Specific Argument Values ______ 3-11
3-4 LIOSENQUEUE Device-Specific Argument Values ____ 3-18
3-5 LIOSREAD Device-Specific Argument Values 3-26
ﬂ 3-6 LIOSWRITE Device-Specific Argument Values 3-32
4-1 LIO$SET and LIO$SHOW Parameter Summary 4-2
4-2 IEQ11 and IE211 IEEE-488 Auxiliary Commands ____ 4-26
4-3 I0tech Micro488A IEEE-488 Auxiliary Commands ____ 4-27
4-4 Address Command Group 4-64
4-5 Universal Command Group 4-65
4-6 Listener Address Group 4-66
4-7 Talker Address Group 4-67
4-8 Secondary Command Group 4-67
4-9 Pin Numbers on the DRQ3B 4-151
4-10 AAV11-D Trigger Modes 4-253
4-11  ADQ32 Point Trigger Sources 4-255
4-12 ADQ32 Sweep Trigger Sources 4-255
4-13 ADQ32 Buffer Trigger Sources 4-256
4-14 ADV11-D Trigger Modes 4-257
4-15 AXV11-C Trigger Modes 4-258

4-16 KWV11-C/Simpact RTCO01 Trigger Modes 4-260




4-17 Preston Trigger Modes 4-260 u

5-1 Error Handling Symbolic Status Definition Files 5-2
6-1 LIO Online Sample Programs 6-4
A-1 Burst Rates A-2

xviii u



Preface

Intended Audience

The Guide to the VAXlab Laboratory I/O Routines is intended for use by sci-
entists and engineers working in a laboratory environment performing
real-time data acquisition experiments.

You can use this document initially as a training guide for learning the

ﬂ basic components of the Laboratory 1/0 (LIO) application routines.
Later, you can use it as a reference guide to look up specific information
about the LIO application routines, such as how to use an optional
parameter.

This guide assumes a basic understanding of computer concepts and
an extensive knowledge of laboratory data acquisition and experiment
control concepts.

Document Structure

The Guide to the VAXlab Laboratory I/0O Routines provides a comprehen-
sive overview of the LIO facility, and explains how to do the following
with VAXlab devices:

o Initiate I/O
e Control I/O
e Terminate I/O




XX

The document is structured in the following way:

Chapter Number

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Appendix A
Appendix B

Presents an overview of the laboratory 1/O concepts and

device capabilities you should be familiar with before you
begin writing programs using the VAXlab laboratory 1/O

routines.

Describes the 1/O devices supported by VAXlab and gives
instructions for setting up each device using the LIO
software.

Provides reference descriptions of the LIO routines,
including the routine call syntax, argument descriptions,
and device-specific considerations.

Provides reference descriptions of the parameters you use
to set up VAXlab laboratory 1/O devices and to display
device-specific characteristics.

Describes the error handling method supported by
the LIO facility and explains the error messages and
suggested recovery procedures.

Describes the online sample programs shipped with your
VAXlab system.

Explains the clock triggering modes of the ADQ32.

Explains how to connect the connect-to-interrupt driver
to the AXV11-C device. This appendix also includes
instructions for reloading and reconnecting the QIO
driver to the AXV11-C device.




Associated Documents

In addition to this guide, the VAXlab documentation set includes the
following guides:

*  Getting Started with VAXIab is your introduction to the VAXlab
system and application software. This document describes the
optional hardware you can configure in a VAXlab system, the
VAXlab software, and the related software you need to use with your
VAXlab system, such as DEC GKS and a high-level programming
language. This document also presents guidelines for developing
application programs with VAXlab and considerations specific to
programming languages, such as declaring variables and data types.

e The Guide to the VAXlab Interactive Data Acquisition Tool describes
how to communicate with VAXlab through the Interactive Data
Acquisition Tool (IDAT) to establish parameters for data acquisition
and to initiate, control, obtain, analyze, and plot real-time data.

* The Guide to the VAXlab Laboratory Graphics Package describes how
to specify plotting attributes and how to plot real-time data or data
produced by calculations in two dimensions, three dimensions, and

ﬂ two-dimensional contours from a three-dimensional view.

e The Guide to the VAXIlab Signal-Processing Routines describes how to
use the signal-processing routines to perform Fourier transforms,
correlation functions, and filtering of data.

e The Installation Guide details how to install the VAXlab software.

o The Master Index contains index entries from all the documents in
the VAXlab documentation set.

The following is a list of associated software documents to reference for
additional information about programming concepts and techniques not
covered in this guide:

e The DEC GKS Reference Manual, Volumes I and II provide detailed
information about advanced graphics programming concepts and
techniques.

e The VAX Realtime User’s Guide describes those features of VAX
systems that pertain to real-time applications in scientific and
industrial settings. If you are unfamiliar with VAX systems, read this
guide before you begin using the VAXlab system.




The following is a list of associated hardware documents to reference u
for additional information:

AAF01 User’s Manual 1

ADFO01 User’s Manuall

ADQ32 A/D Converter Module User’s Guide
ADV11-D/AAV11-D Analog Modules User’s Guide
AMFO01 User’s Manuall

ASF01 User’s Manual®

AXV11-C/KWV11-C Analog Module and Real-Time Clock Module User’s
Guide

DRB32 Technical Manual

DRQ11-C Alternate Buffer DMA Interface!

DRQ3B Parallel DMA 1/0 Module User’s Guide

DRV11-] Parallel Line Interface User’s Guide

DRV11-WA General Purpose DMA Interface User’s Guide

IEU11-A/TEQ11-A User’s Guide

IEZ11 Hardware Installation Guide

IEZ11 Software Installation Guide u
IEZ11 VMS Class Driver User’s Guide

Industrial I/O Modules for Q-Bus (IAV11-A, IAV11-AA, T1AV11-B,
IAV11-C, IAV11-CA, IDV11-A, IDV11-B, IDV11-C, IDV11-D) 2

Universal Data Interface Panel Reference Card

! This device is available only in Europe.

2 These devices are available only in Europe.

XXii



Conventions

The Guide to the VAXlab Laboratory I/O Routines uses the following docu-
mentation conventions:

Convention

Meaning

Italics

Bold

Ellipses

[Brackets]

Phrases appearing in italics reference an associated docu-
ment.

A boldface word or phrase indicates one of the following:

¢ Emphasis on an important concept or word
¢ Discussion of a routine argument in text

* Referencing of a subsection within a routine or parame-
ter reference description

Vertical ellipses indicate that portions of a display or pro-
gramming example are excluded for presentation purposes.

Square brackets generally enclose optional parameters or
arguments in routine lines. However, square brackets used
in the context of a Pascal program or program segment are
required programming syntax.

xxiii







Chapter 1

Laboratoryl/OInterfaces and

Operations

This chapter provides an overview of LIO, describes the LIO interfaces
and operations supported by VAXlab, and describes special features
specific to some of the VAXlab I/O devices.

1.1 Overview of LIO

The VAXlab Laboratory I/O routines are used to control real-time 1/O
devices. You use these routines as program modules, linking them with
your main program.

Although you can use any programming language to call these routines,
information in this guide and sample programs are written for five
languages:

Ada
BASIC

C
FORTRAN
Pascal

I/O can be done synchronously or asynchronously with the LIO rou-
tines. By default, all devices use asynchronous I/O.

You can set up a device to use synchronous I/O. However, when you
want that device to operate asynchronously again, you must set up the
device for asynchronous 1/O.

Laboratory /O Interfaces and Operations 1-1




There are only eight LIO routines. They can be grouped into four pairs:

e ATTACH/DETACH logically connect or disconnect a device. They
also build or delete all the internal queues and data structures
required. Your program calls the ATTACH routine before it makes
any other routine call to a device.

e SET/SHOW set or return the status of various device characteristics
such as the following;:
— Channel lists
— Triggering mode
— Clock rate
— Gains

— Synchronous or asynchronous transfers

Any device characteristic that can be set can also be shown. In
addition, some devices have characteristics that cannot be set but
can be shown.

e READ/WRITE transfer data to or from a device. These routines are
used only for synchronous I/0O. With synchronous /O, the program
waits for the I/O to complete before continuing execution.

e ENQUEUE/DEQUEUE put data buffers on a queue and remove
them from the queue when data transfer is complete. They permit
the continuous transfer of high speed data by simultaneously trans-
ferring data among multiple devices. These routines are used only
for asynchronous 1/O.

1.2 Synchronous /O

Synchronous I/O enables a user program to transfer data to or from a
device with one routine call. The routine call blocks the program until
the I/O operation completes. The device does not continue to transfer
data while the program is preparing for the next I/O operation.

You use the LIO$READ and LIO$WRITE routines, described in
Chapter 3, to perform synchronous I/O.

1-2 Laboratory /O Interfaces and Operations



Figure 1-1 shows the synchronous I/O process.

Figure 1-1: Synchronous I/O Device Model

User Program

LIO$READ/LIO$WRITE

Device
Driver

DEVICE
MR-1427-GE

The synchronous I/O interface is recommended for applications that ex-
amine or modify the data between /O operations, such as single-point
or slow data acquisition and closed loop control. High-speed applica-
tions requiring only one buffer of data to complete I/O operations can
also benefit from using synchronous I/O routine calls.

1.3 Asynchronous /O

Asynchronous I/O enables a user program to queue several values or
arrays of data to be transferred. A program is not blocked for I/O and
continues execution during I/O operations. This enables I/O operations
to continue on one or more devices simultaneously.

Each device that is set up to use the asynchronous I/O interface has

a device queue and a user queue. An asynchronous I/O routine call
places a buffer in the device queue to send it to the device. The device
processes the buffer and places the buffer in the user queue to return it
to the program.

Laboratory /O Interfaces and Operations 1-3




You use the LIOSENQUEUE routine and either the LIOSDEQUEUE
routine or one of the other asynchronous I/O buffer-handling mech-
anisms described in Section 1.5, Asynchronous 1/O Buffer-Handling
Mechanisms, to perform asynchronous 1/O. LIOSENQUEUE and
LIO$DEQUEUE are described in Chapter 3.

Figure 1-2 illustrates the asynchronous I/O process.

Figure 1-2: Asynchronous I/0 Device Model

User Program

I *
LIO$ENQUEUE LIO$DEQUEUE

tions are continuous.

munications, data acquisition, and open loop control where 1/O opera-
1.4 1/0 Operations Supported by VAXlab
VAXlab devices can handle /O operations in three ways:

¢  Queued I/O (QIO) to a VMS device driver
e DPolled I'O

* 1/O through a VMS connect-to-interrupt (CTI) handler

Device User
Queue Queue
‘ ’ Device

Driver

DEVICE

MR-1428-GE

The asynchronous 1/O interface is recommended for high-speed com-
1-4 Laboratory I/O Interfaces and Operations
|



Not all devices, however, can handle all three methods.

Table 1-1 lists the devices and summarizes the I/O interfaces and I/O
operations supported for each device.

The three methods are explained in the following pages.

Table 1-1: /O Interfaces and Operations Summary
Synchronous Operations Asynchronous Operations
1/O Device (Read/Write) (Enqueue/Dequeue)
AAF01'? QIO QIO
AAV11-D? Polled, QIO QIO
ADF01'2 QIO QIO
ADQ32? QIO QIO
ADV11-D? Polled, QIO QIO
AXV11-C QIO, CTI QIO
DRB32 QIO QIO
DRB32W QIO QIO
DRQ11-C!*? QIO QIO
DRQ3B? QIO QIO
DRV11-] Polled, QIO QIO
DRV11-WA? Q10 QIO
1AV11-A! QIO QIO
“ JAV11-AA! QIO QIO
IAV11-B! QIO QIO
IAV11-C! QIO QIO
IAV11-CA! QIO QIO
IDV11-A! QIO QIO
IDV11-B! QIO QIO
IDV11-C! QIO QIO
IDV11-D! QIO QIO
IEEE-488 QIO QIO
KWV11-C Polled, QIO QIO
Preston? QIO QIO
Simpact RTC01* Polled, QIO QIO
Disk files QIO QIO

I'This device is available only in Europe.

2This device uses QIOs to implement direct memory access.

3This device is capable of direct memory access only when set to use QIOs.

4The VMS SYSGEN utility refers to the Simpact RTCO01 as a KWB32.

Laboratory I/O Interfaces and Operations 1-5




Table 1-1 (Cont.):

I/0 Interfaces and Operations Summary

Synchronous Operations Asynchronous Operations
1/O Device (Read/Write) (Enqueue/Dequeue)
Memory queue Read-only® Transfer
Display-only
Real-time plotting Write-only N/A
Serial line QIO QIO

5The synchronous 1/O interface is only supported for interprocess read-only when a memory queue device
is set up to copy data buffers displayed by a memory queue device in another process.

1.4.1 QIOs to a VMS Device Driver

Most laboratory 1/O devices can be attached to perform QIOs to a VMS
device driver. (QIO is a VMS term for queued input/output using the
SYS$QIO system service routine.)

QIOs are best used to perform continuous I/O using asynchronous I/O
routine calls and multiple buffers, or to perform I/O through direct
memory access (DMA) driven devices.

Keep in mind the following restrictions when you attach a device to use
QIOs:

Certain I/O devices can use DMA to transfer data. Because of the
system overhead associated with each QIO call, QIO is best used

when moving large amounts of data in large buffers with few input
or output calls, depending on the device type (A/D or D/A) or the
device direction (input or output).

If you set up a device to perform continuous DMA, other restrictions
specific to the device may apply. See Section 1.6.3.2, Continuous
DMA, for more information.

The QIO driver must be connected to the device. This is relevant
only to AXV11-C users if you have previously used the AXV11-C
for CTI I/O and connected the CTI driver to the device. See
Section 1.4.3, Connect-to-Interrupt I/O, and Appendix B for more
information.

1-6 Laboratory /0 Interfaces and Operations

W



ﬂ 1.4.2 Polled I/O

Some laboratory I/O devices can be attached to perform polled, or
memory-mapped, I/O.

During polled /O, a synchronous routine call maps directly to the
I/O page of the system and reads from or writes to the control and
status register of the device. This provides the least software overhead
between the user program and the I/O device.

Polled 1/O is often used for control loops where the CPU is dedicated to
obtaining a sample, processing it, producing a result, obtaining another
sample, and so on. During the actual I/O (read/write) operations, the
CPU can only maintain the control loop; it cannot perform any other
processing tasks.

To prevent another program from preempting the 1/O polling loop, set
up your programs to run at real-time priority (16 or higher). (You must
have the ALTPRI privilege to increase process priorities.) Doing so,
however, has a severe impact on multiuser systems because it locks out
other programs during the 1/O call.

Hardware interrupts have a higher priority than the memory mapped

ﬂ I/O polling loop. In this case, nothing else should be happening on the
system—no file 1/O, terminal I/O, or network I/O—to ensure the fastest
response time.

The following restrictions apply when you attach a device to use
memory-mapped (polled) I/O:
*  Only the synchronous I/O interface is supported.

¢ The software cannot use a device’s direct memory access (DMA)
feature, so the maximum transfer rate is limited.

1.4.3 Connect-to-interrupt I/O

A laboratory I/O device can be attached to perform connect-to-interrupt,
or interrupt-driven, 1/O. During interrupt-driven I/O, a user program
and the LIO interrupt service routine communicate with a minimum of
operating system overhead to provide fast interrupt servicing.

m Laboratory I/O Interfaces and Operations 1-7




NOTE U

The AXV11-C is the only hardware device that supports
connect-to-interrupt I/O.

The following restrictions apply when you attach the AXV11-C to use
CTI I/O:

e The connect-to-interrupt driver, CONINTERR, must be connected
to the AXV11-C. See Appendix B for information about connecting
the driver.

¢ Only the synchronous I/O interface is supported.

e The software cannot use a device’s direct memory access (DMA)
feature.

¢ The data buffer must be allocated when the device is set up, and
must be large enough to contain the connect-to-interrupt overhead
(approximately 250 bytes) in addition to the data.

¢ The data buffer size is limited to 65,536 bytes minus the connect-to-
interrupt overhead (approximately 250 bytes).

1.5 Asynchronous I/O Buffer-Handling Mechanisms u

The LIO facility supports three mechanisms for user programs to re-
trieve completed asynchronous I/O buffers from a device:

* Using the LIOSDEQUEUE routine to return completed buffers to
the main program. See Section 1.5.1, Buffer Dequeueing.

e Forwarding completed buffers to another device in a forwarding
loop. When a buffer transaction completes, the device forwards,
or passes, the buffer to another device. See Section 1.5.2, Buffer
Forwarding.

* Supplying an asynchronous system trap (AST) routine to receive
completed buffers. When a buffer transaction completes, the device
calls the AST routine and passes the buffer to it. The AST routine
receives the buffer and performs whatever tasks it is written to
perform, such as processing the data contained in the buffer and
requeueing the buffer to the device for another transaction. An
AST routine is used instead of the LIO$DEQUEUE routine. See
Section 1.5.3, Asynchronous System Traps (ASTs).

1-8 Laboratory I/O Interfaces and Operations u



ﬂ 1.5.1

Buffer Dequeueing

A user program can determine when an asynchronous I/O buffer trans-
action is complete and a buffer is ready to be dequeued by doing one
of the following:

Polling the device. The main program makes successive calls to
the LIOSDEQUEUE routine until the buffer transaction is complete.
The LIO$SDEQUEUE routine call returns the LIO$_EMPTYQ error
until the buffer transaction completes. The LIOSDEQUEUE routine
returns a success status when the buffer transaction completes. The
buffer is available for return to the main program.

Waiting for the buffer. To wait for a buffer transaction to complete,
the main program must do both of the following:

1. Set up the device or supply the buffer with an event flag.
Supply the buffer with an event flag using the event_flag argu-
ment of the LIOSENQUEUE routine when you enqueue the
buffer to the device.

2. Specify a nonzero wait argument in the LIOSDEQUEUE routine.
When the main program makes a call to the LIOSDEQUEUE
routine, the routine waits for a buffer to become available on the
device’s user queue.

The nature of your application program determines whether polling
a device or waiting for a completed buffer is more appropriate.

The online sample program LIO_BUF_INX.FOR is a VSL applica-
tion program that uses the asynchronous I/O interface and single-
buffer DMA with buffer indexing to read analog-to-digital values
from an A/D device. In this program, the LIOSDEQUEUE routine
call includes a nonzero wait argument. The LIOSENQUEUE rou-
tine calls supply each buffer with a unique event flag so that the
LIO$DEQUEUE routine can wait for the buffers.

Laboratory /O Interfaces and Operations 1-9




1.5.2 Buffer Forwarding U

When devices are set up to use the asynchronous I/O interface, a main
program can set up these devices to forward completed buffers to
another device. When the first device in the forwarding loop completes
a buffer, it enqueues the buffer to the second device in the forwarding
loop, and so on. Typically, buffer forwarding is used by application
programs that move data from device to device. Examples are moving
data from an A/D converter to a disk file, or from a disk file to a D/A
converter.

You can use buffer forwarding to link together any number of devices.
All devices in the loop must be set up to use the asynchronous 1/0
interface. If the last device in the loop forwards buffers to the first
device in the loop, the data flow runs continuously until the forwarding
completes. A forwarding loop completes when one of the following
conditions occurs:

* A device or file reaches a stop condition, such as a full output file.

e An error, such as a data overrun on an A/D converter, occurs on a
device.

When a device is set up for buffer forwarding, it must also be set u
up with a device event flag (LIO$K_DEVICE_EF). The device sets the
device event flag when it completes a buffer.

You can also use the AST routine LIO$K_AST_RTN to receive notice of
error conditions.

When a device reaches a stop condition, it refuses to accept any more
forwarded buffers. If another device in the loop attempts to forward
(enqueue) additional buffers to the device that completed the forward-
ing loop, the LIO$ENQUEUE routine returns an error. The device
attempting to forward the buffers responds to the error by making the
buffers available on its user queue. You can use the LIOSDEQUEUE
routine to receive the buffers.

If you set up all devices in the forwarding loop with AST routines, the
buffers are passed to the AST routine instead of being placed on the
device’s user queue.

1-10 Laboratory I/O Interfaces and Operations U



ﬂ The online sample program LIO_BUF_FWD.FOR is a VSL applica-
: tion routine that uses the asynchronous I/O interface and single-buffer
DMA with buffer forwarding to read analog-to-digital values from
the ADV11-D device and forward the buffers to a disk file. The
A/D device used in this routine is set up with a device event flag
(LIO$K_DEVICE_EF) that the A/D device sets when there is a buffer
available on its user queue.

1.5.3 Asynchronous System Traps (ASTs)

An asynchronous system trap (AST) is a VAX/VMS mechanism for
providing a software interrupt when an external event occurs.

When the external event occurs, the VMS operating system interrupts
execution of the current process and calls a procedure that you supply.
This procedure is called an AST handler or an AST routine.

The interrupt mechanism is called an asynchronous system trap because
the interrupt occurs out of sequence with respect to process execution.

The AST interrupt transfers control to the AST routine that services the
event. This AST routine can call other procedures, including library

n procedures. When the AST routine finishes servicing the event, control
returns to the calling program.

Within the context of VSL application programs, an AST routine is

a normal subroutine that you supply to a device as the value of the
LIO$K_AST_RTN parameter when you set up the device in your main
program. All devices to which you supply an AST routine must be set
up to use the asynchronous I/O interface.

Typically, a main program sets up an AST routine to receive completed
buffers from a device for processing. When a device finishes a buffer,
it calls the AST routine and passes the buffer to it. Instead of waiting
for the LIO$SDEQUEUE routine call to return the buffer to the main
program, the AST routine processes the buffer.

ﬁ Laboratory /O Interfaces and Operations 1-11




An AST routine is useful when data needs to be processed as soon as
it is available and the main program cannot sit idle waiting for it. For

example:

e When more than one device must be kept running continuously.
The main program cannot call the LIOSDEQUEUE routine to wait
for the buffer on any device because one of the devices might reach
a stop condition before the others. Using AST routines to receive
buffers makes a call to the LIOSDEQUEUE routine unnecessary. All
completed buffers are passed to the AST routine. The AST routine
must use the LIOSENQUEUE routine call to enqueue the buffers to

the device again.

e When one step in a buffer-forwarding loop requires that the buffers
be processed. Instead of forwarding the buffer from one device to
the next device in the loop, you supply the first device with an AST
routine. The AST routine receives the completed buffer from the
first device, processes the buffer, and enqueues the buffer to the
next device in the forwarding loop.

¢ When a buffer needs to be checked immediately for error condi-
tions and subsequently requires time-consuming processing. The
AST routine receives the completed buffer from the device, checks
the buffer for error conditions, and enqueues the buffer to the mem-
ory queue device. The main program can then dequeue the buffer
from the memory queue device and perform the time-consuming
processing of the buffer.

The following sample FORTRAN program segment shows the argu-
ments you need to define when you set up an AST routine. These argu-
ment declarations are used by an AST routine that receives completed
buffers from the ADV11-D device.

SUBROUTINE ADV_AST(status,

device_id, buffer,

buffer_length,

1 data_length, butfer index, device_specific)

INTEGER status

INTEGER device_id !
INTEGER*2 buffer !
INTEGER buffer_length !
INTEGER data_length !
INTEGER buffer_index !
INTEGER device_specific !

! The actual buffer,
! The length of the buffer,

! The buffer index,
! Device-specific argument (not used by ADV11-D)

! Returns the status of the I/0 operation

Specifies the LIO-assigned device ID
NOT its address
in bytes
The length of the data in the buffer, in bytes
if supplied in LIOS$ENQUEUE

1-12 Laboratory I/O Interfaces and Operations

“w



Keep in mind the following when you use an AST routine:

¢ An AST routine is used instead of a call to the LIOSDEQUEUE
routine. Since the AST routine is called whenever a device

completes a buffer, neither the main program nor the AST routine
uses the LIO$DEQUEUE routine.

* If an AST routine does 1/O to other devices, use the asynchronous
/O interface to minimize its execution time. This means you
should avoid using normal terminal I/O or file 1/O for your
programming language, such as the FORTRAN READ, WRITE,
TYPE, ACCEPT, and PRINT statements; the VSL synchronous
routine calls (LIOSREAD and LIO$WRITE); and the LIO$SDEQUEUE
routine with a nonzero wait argument.

See Chapter 3 in Getting Started with VAXlab for information about

how to write an AST routine to receive completed buffers from a device
using VAX Ada, VAX BASIC, VAX C, VAX FORTRAN, and VAX Pascal.

The following online sample programs show the use of AST routines:

LIO_ADV_AST.BAS
LIO_ADV_AST.C

LIO_ADV_AST.FOR
LIO_ADV_AST.PAS

AST routines and their execution can also be tied to a particular event
such as an overflow on a real-time clock, the setting of a bit on a parallel
board, or the assertion of a service request on an IEEE-488 bus. Online
sample program LIO_KWV_AST.FOR is a VSL application routine that
uses the asynchronous 1/O interface and an event AST routine to show
the KWV11-C or Simpact RTCO01 clock module’s ability to call an AST
routine on every clock tick.

Laboratory I/O Interfaces and Operations 1-13




1.6 1/0 Device-Specific Interfacing

The LIO facility supports the following device-specific interfaces:

¢ First-in/first-out buffers (FIFOs)
¢ Handshaking
¢ Direct memory access (DMA)

FIFOs are supported for the following devices:

ADQ32
DRQ3B
Preston
Simpact RTCO01

See Section 1.6.1, First-In/First-Out Buffers, before you write VSL
application programs that use these devices.

Handshaking is supported for the following devices:

DRQ3B
DRV11.]
DRV11-WA

See Section 1.6.2, Handshaking, before you write VSL application
programs that use these devices.

The following types of direct memory access are supported:
e Single-buffer DMA
This interface is supported for the following devices:

AAF011
AAV11-D
ADF01!
ADQ32
ADV11-D
DRB32
DRQ3B
DRQ11-C!
Preston

! This device is available only in Europe.

1-14 Laboratory I/O Interfaces and Operations



‘ h ’ See Section 1.6.3.1, Single-Buffer DMA, before you write VSL
application programs that use these devices.

* Continuous DMA
This feature is supported by the following devices:

AAF01!
ADF01!
AAV11-D
| ADV11-D
| DRQ11-C!

See Section 1.6.3.2, Continuous DMA, before you write VSL

application programs that use these devices.
¢ Alternate-buffer DMA

This feature is supported by the following devices:

AAF01!
ADF01!
DRQ11-C!

See Section 1.6.3.3, Alternate-Buffer DMA, before you write VSL
n application programs that use these devices.

e Double-buffer DMA
This feature is supported by the following devices:

ADQ32
DRB32
DRQ3B

See Section 1.6.3.4, Double-Buffer DMA, before you write VSL
application programs that use these devices.

The following sections describe each of these device-specific interfaces.

! This device is available only in Europe.

‘ ' Laboratory I/O Interfaces and Operations 1-15




1.6.1 First-In/First-Out Buffers

The ADQ32, DRQ3B, Simpact RTC01, and Preston devices support
first-in/first-out (FIFO) buffers that are built into these options.

If the load on your system bus is such that the data transfer cannot

be made from the device to memory before another piece of data is
available, then you lose data. FIFOs act as on-board memory for storing
data while the device is unable to transfer data. This prevents new data
from overwriting the data not yet transferred to memory.

It is possible to fill up the FIFO if the system cannot read the data and
put it into memory quickly enough. This condition is called a FIFO
overrun. The data rate of the data coming into the FIFO is faster than
the data rate of the data being read out of the FIFO.

A similar but less common condition is called a FIFO underrun. This
occurs when the system reads data out of the FIFO faster than data is
coming into the FIFO. This condition is less likely to occur because
the system usually checks to see if there is additional data in the FIFO
before reading any data out of the FIFO.

The ADQ32 has one 512-word input FIFO. The DRQ3B has one
512-word FIFO for input and one 512-word FIFO for output. See
Section 1.6.3.4, Double-Buffer DMA, for information about double
buffering with the ADQ32 and DRQ3B.

The Simpact RTCO01 has a 512-entry longword FIFO buffer.

Preston devices can be configured with a 1K to 64K FIFO buffer. The
size of the FIFO buffer determines the time between LIO$ENQUEUE
calls that the device can tolerate and still maintain continuous
throughput. When the Preston is connected to the DRQ3B it will also
use the pair of 512-word FIFOs.

1.6.2 Handshaking

This section explains the handshaking interfaces available when you use
the DRQ3B, DRV11-J, and DRV11-WA devices.

1-16 Laboratory I/O Interfaces and Operations



1.6.2.1 The DRQ3B and Handshaking

The DRQ3B uses a two-line interlocked handshake to ensure data
transfer between an external device and the DRQ3B.

The handshake consists of signals STROBE and ACKNOWLEDGE for
input and DATA VALID and ACKNOWLEDGE for -output that are
found on the connectors for the DRQ3B. These connectors let you
attach the DRQ3B to another device, such as the Preston GMAD A/D
subsystem. See the DRQ3B Parallel DMA I/O Module User’s Guide for
more information.

For input on channel 0, STROBE is sent (assertion low) from the
external device when the external device is asserting valid data. The
ACKNOWLEDGE (ACK) signal is sent (assertion low) from the DRQ3B
after the DRQ3B has successfully read the data value.

The sequence of events for input of data is as follows:

1. When STROBE is received low from the external device, the DRQ3B
reads the data input lines and places the data value in the FIFO. The
DRQ3B then asserts the ACK signal low, indicating it has received

the data value.
Q ’ 2. When the external device sees ACK go low, it sets the STROBE
signal high and prepares to transmit the next data word.

3. The DRQ3B then releases the ACK signal letting it go high. (If the
FIFO is full, however, ACK is held low until a word is read out of
the FIFO.) ACK high indicates that the DRQ3B is ready for the next
data word.

4. The external device places valid data on the data lines and asserts
STROBE low, starting the cycle over.

For output on channel 1, the process is similar, but the roles of the
DRQ3B and external device are reversed. Two handshake signals,
DATA VALID (DAV) and ACKNOWLEDGE (ACK), are used. DAV is
sent (asserted low) from the DRQ3B to the external device and indicates
that there is currently valid data on the data lines. ACK is received
(asserted low) from the external device when the external device has
successfully read the data value.

‘ ’ Laboratory I/O Interfaces and Operations 1-17




The sequence of events for output of data is as follows: u

1. The DRQ3B places a data value from the FIFO onto the output data
lines. It then asserts the DAV signal low, indicating that valid data
is present.

2. The external device reads the data and asserts its ACK signal low.

3. When the DRQ3B receives the ACK signal, it releases the DAV line,
letting it go high.

4. When the external device sees the DAV line go high, it releases the
ACK signal, letting it go high.

5. The DRQ3B places the next data word on the output data lines and
then asserts DAV low, starting the handshake cycle over again.

1.6.2.2 The DRV11-J and Handshaking

The DRV11-] device hardware can be physically jumpered for a
two-wire handshake. The setting of Jumper W11 on the DRV11-]
board determines whether the hardware is jumpered for a two-wire
handshake. See the DRV11-] Parallel Line Interface User’s Guide for
information about how to jumper the board.

The value of the LIOSK_HANDSHAKE parameter determines whether

handshaking is software-enabled for the device. To transfer more than

one data point per buffer, the physical hardware of the DRV11-] device
must be jumpered appropriately and the LIOSHANDSHAKE parameter
must be used to software-enable the device’s handshaking feature.

When the device is set up for a two-wire handshake, only the low 12
bits of port A are available for AST routines. See Section 2.3.4, DRV11-]
Support, for more information.

1.6.2.3 The DRV11-WA and Handshaking

The DRV11-WA uses a two-wire handshake to synchronize data
transfers. In addition, the DRV11-WA option supports several different
transfer types. Because a complete description of both the two-wire
handshake and data transfer types is beyond the scope of this guide,
see the DRV11-WA General Purpose DMA Interface User’s Guide for more
information.

1-18 Laboratory I/O Interfaces and Operations u




1.6.3 Direct Memory Access I/O

The AAV11-D and ADV11-D devices transfer data using single-buffer
or continuous direct memory access (DMA) I/O. See Section 1.6.3.1,
Single-Buffer DMA, and Section 1.6.3.2, Continuous DMA, for more
information.

The AAF01!, ADF01!, and DRQll-C1 devices transfer data using
single-buffer, continuous, or alternate-buffer DMA. See Section 1.6.3.1,
Single-Buffer DMA, Section 1.6.3.2, Continuous DMA, and

Section 1.6.3.3, Alternate-Buffer DMA, for more information.

The ADQ32, DRB32, and DRQ3B devices transfer data using
single-buffer or double-buffer DMA. Double-buffer DMA means that
the device can switch from the first buffer to the second buffer with
no software intervention. See Section 1.6.3.4, Double-Buffer DMA, for
more information.

1.6.3.1 Single-Buffer DMA

When a device is performing single-buffer DMA, information about

m each buffer must be written to the device by software before each buffer
is transferred. This contrasts with double buffering, where information
about the next buffer is written to the device while the current buffer is
transferred.

Devices that perform DMA perform single-buffer DMA by default when
they are set up to use the synchronous I/O interface. When a device

is set for synchronous I/O, you use the LIO$READ and LIO$WRITE
routines to transfer data to and from the device.

The routine calls stop your program until the I/O operation completes.
The device does not continue to transfer data while the program is
preparing for the next I/O operation.

Except for the ADQ32, the buffer must be word-aligned. Most high-level
languages automatically word-align buffers on an even memory address.
However, if you are programming in VAX MACRO, or if the buffer is
not the first datum in a FORTRAN COMMON, you must word-align the
buffer from within the program context.

! This device is available only in Europe.

Laboratory I/O Interfaces and Operations 1-19




For VAX MACRO, use the .EVEN directive before the buffer. For
FORTRAN COMMON, make sure that there are an even number of
any LOGICAL*1, BYTE, or INTEGER*1 variables in front of the buffer.
CHARACTER*n variables in front of the buffer must be of an even
length.

Consider the following when you use the ADQ32 for single-buffer
DMA:

¢ The ADQ32 restarts the current triggering mode after each buffer.
Data points are lost because of the software delay in setting up
the next buffer. For example, if the A/D is set up to be externally
triggered, external triggers are ignored during the setup of the next
buffer.

Consider the following when you use an AAV11-D or ADV11-D device
for single-buffer DMA:

* When the AAV11-D and the ADV11-D are set to do single-buffer
DMA output and input, respectively, you must supply an additional
512 bytes in each buffer. The DMA does not stop cleanly at the end
of the buffer. It stops some time up to 256 D/A or A/D values later.

* When the AAV11-D is set to use asynchronous output, the u
data_length argument of the LIOSDEQUEUE routine returns the \
actual number of data values written. When the AAV11-D is set to
use synchronous output, the LIOSWRITE routine does not return
this information.

*  When the ADV11-D is set for asynchronous or synchronous input,
the data_length argument of the LIOSDEQUEUE and LIO$READ

routines returns the size of the buffer, including the additional
number of bytes read.

Consider the following when you set the AAF01,! ADF01,! or
DRQ11-C! for single-buffer DMA:

* You must supply the address of a dummy buffer for the second
buffer. You must also supply a dummy buffer length greater than
Zero.

! This device is available only in Europe.

1-20 Laboratory I/O Interfaces and Operations u



~

1.6.3.2

Continuous DMA

When the AAF01,1 AAV11-D, ADF01,1 ADV11-D, and DRQ11-C! are
set to do continuous DMA 1/O, the DMA hardware runs continuously
instead of stopping at the end of each buffer. This allows these devices
to run at top speed with no interruptions.

For the AAV11-D and the ADV11-D, the DMA can continue at top
speed with no interruptions because it is confined to a 64K-byte block
of memory that it wraps around in. This memory is divided into a
minimum of three buffers or a maximum of 16 buffers. All the software
has to do is to keep filling or emptying buffers as fast as the DMA
empties or fills them.

For the AAF01,1 ADF01," and DRQ11-C,! the DMA can continue at
top speed without interruptions because it is confined to a (maximum)
252K-byte block of memory that it wraps around in. This memory is
divided into two buffers. All the software has to do is to keep filling
or emptying buffers as fast as the DMA empties or fills them. Each of
the two buffers making up the (maximum) 252K-byte block of memory
contains a 4-byte header that is used to synchronize the user program
with the continuous DMA transfer.

LIO-Specific Details:

To do continuous DMA I/O with the AAV11-D and ADV11-D, you must
do the following;:

e Attach to the device through the LIOSATTACH routine specifying
the value of the io_type argument as LIO$SK_QIO. This sets the
device to use QIO. QIO is the default for both devices.

® Set the device to use the asynchronous user interface. This is the
default for both devices.

e Set the device to continuous DMA mode using the LIOSK_CONT
parameter.

The 64K-byte block of memory must be divided into a minimum of
three buffers. To do this you can create a two-dimensional array that
takes up 64K bytes. For example, a 64K block of 4 buffers can be
defined as a 4-by-8192 array of two-byte integers.

! This device is available only in Europe.

Laboratory I/O Interfaces and Operations 1-21




To do continuous DMA I/O with the AAF01,! ADF01,! and DRQ11-C,!
you must do the following:

* Attach to the device through the LIOSATTACH routine specifying
the value of the io_type argument as LIO$K_QIO. This sets the
device to use QIO. QIO is the default for all devices.

* Set the device to use the asynchronous user interface. This is the
default for all devices.

The 252K-byte block of memory must be divided into two buffers.
To do this you can create a two-dimensional array that takes up 252K
bytes. For example, a 252K block of two buffers can be defined as a
2-by-129024 array of two-byte integers.

Program-Specific Details:

Before continuous DMA output can start for the AAV11-D and the
ADV11-D, you must fill and then enqueue all the buffers to the
AAV11-D. Before continuous DMA input can start, you must enqueue
all the buffers to the ADV11-D. For both devices, you must enqueue
the buffers in ascending order (incrementing the array index). When all
the buffers are enqueued, you start the AAV11-D output and ADV11-D
input through the LIO$SET_I routine specifying the LIO$K_START
parameter.

You must assign each buffer a unique event flag. The first time you
enqueue a buffer, the event flag is internally associated with that buffer.
The event flag is then used for all subsequent enqueues of that buffer,
whether or not you specify the event flag.

The buffers can be refilled or emptied by using any of the following LIO
mechanisms:

* Dequeueing the buffers and enqueueing them again

* Using a buffer-completion AST routine which requeues them

* Setting the AAV11-D and the ADV11-D to forward the buffers to
another device that fills them and forwards them back

1-22 Laboratory I/O Interfaces and Operations



()

The buffers must always be enqueued in the same order. A minimum
of two buffers must be enqueued to the device at all times, or the 1/0
stops without returning a condition value. Subsequent LIO$DEQUEUE
calls do not return a buffer and do not generate a condition value.

When you stop the continuous DMA, the buffer transfer in progress
returns with a zero data_length. The LIO facility does not know how
much data was in the buffer so it returns a zero.

Before continuous DMA output can start for the AAF01,! ADF01,! and

DRQ11-C,! you must fill and enqueue both buffers to the AAF01 or
DRQ11-C device. Before continuous DMA input can start, you must
enqueue both buffers to the ADF01 or DRQ11-C device. For all three
devices, the device_specific argument of the LIOSENQUEUE routine
supplies the buffers. Thus, only one LIOSENQUEUE routine call is
necessary to enqueue both buffers and to start the continuous DMA.
The parameters passed by the device_specific argument for continuous
DMA transfer must contain the following:

* A mask specifying block mode, start the DMA conversion, and, if
desired, burst mode, for example:

LIO$M_BLOCK!LIO$M_START_CONV!LIO$M_BURST

¢ The address of the first data buffer

¢ The length of the first data buffer, excluding the 4-byte header

* The address of the second data buffer

* The length of the second data buffer, excluding the 4-byte header
* A block count of 0, indicating continuous DMA

The device continues to operate in continuous DMA mode until one of
the following occurs:

* The program terminates the transfer with an LIO$K_CANCEL
request.

e An error condition occurs.

! This device is available only in Europe.

Laboratory /O Interfaces and Operations 1-23




When transferring more than one buffer, the program must u
acknowledge completion of each buffer by clearing the buffer header.

The buffer header contains the current block count number after each

transfer. Synchronization with the driver is provided at the end of each

buffer by all of the following:

* Setting the specified event flag

* Queueing the specified AST

* Setting the “buffermark’ in the I/O status block

The buffermark is the block number (1 or 2) of the last block being
transferred. It is updated at the completion of each block.

The buffers can then be refilled or emptied and the buffer header
cleared by either:

* Waiting for the specified event flag

¢ Executing an AST routine

To stop continuous DMA data transfers, issue an LIO$K_CANCEL
request and dequeue the buffers.

VMS-Specific Details: ‘ ’

You must page-align the 64K-block of memory required to perform
continuous DMA transfers. To do this, you can place the 64K block into
a PSECT and then use a linker options file to page-align it.

If you are programming in VAX C, you can put a block of memory in
a PSECT by declaring an external array or structure of 64K-bytes, for
example:

/*
page_align.c
*

main()

{
extern buffers([4][8%1024]; )
/* this program does nothing */

}

VAX C creates a PSECT with the name of the array or structure.

1-24 Laboratory /O Interfaces and Operations u



-~

If you are programming in VAX FORTRAN, you can put a block for
memory in a PSECT by declaring an array of 64K bytes and placing the
array in a named COMMON block, for example:

PROGRAM page_align

COMMON /buffers/ibuffs 'Put the data in a PSECT
INTEGER*2 ibuffs(8%1024, 4) 'Four 8K-word buffers
c this program does nothing
STOP
END

VAX FORTRAN generates a PSECT with the name COMMON, which
the linker can page-align.

Use a linker options file to page-align the PSECT. The linker options file
must contain the following statement:

PSECT_ATTR = user_buff,PAGE

The following LINK command page-aligns the PSECT declared by

the previous sample programs. For simplicity, this example reads the
options from SYS$INPUT instead of from a separate linker options file.
$ LINK/MAP/FULL page_align,SYS$INPUT/OPT

PSECT_ATTR=buffers,PAGE
~Z

1.6.3.3 Alternate-Buffer DMA

Alternate-buffer DMA is the type of double-buffer DMA accomplished
by the AAF01,' ADF01,! and DRQ11-C! devices. For alternate-buffer
DMA, as with continuous DMA, a block of memory is allocated and
divided into two buffers. The device alternates between the two buffers,
retrieving data from the buffers, or filling the buffers with data. Each
buffer has a maximum size of 126K bytes.

The only difference between continuous DMA and alternate-buffer
DMA for these devices is that with alternate-buffer DMA, the block
count parameter, specified through the device_specific argument of
the LIOSENQUEUE routine, contains the actual number of blocks to
transfer. The device alternates between the two buffers until it exhausts
the block count. Synchronization is accomplished in the same way.

! This device is available only in Europe.

Laboratory I/O Interfaces and Operations 1-25




1.6.3.4 Double-Buffer DMA

Double buffering allows the hardware to transfer one buffer, and then
start transferring another buffer with no software intervention.

With single-buffer devices, after each buffer is filled or emptied, the
software must set up the next buffer before the device can continue.
The device does not continue to transfer data while the program is
preparing for the next I/O operation.

Devices set for double-buffer DMA transfer have registers containing
pointers to buffers, the CURRENT and NEXT pointers. See Figure 1-3
for the explanation below.

When the device completes a transfer using the CURRENT pointer to
the current buffer (buffer 1), it generates an interrupt indicating that the
transfer has completed. The device, however, does not have to wait
for the interrupt to be serviced. Instead it uses the NEXT pointer to
start the DMA transfer to or from the next buffer (buffer 2). Often the
hardware is set up to copy the NEXT pointer to the CURRENT pointer.
Then, the software sets up the NEXT pointer to point to the next transfer
(buffer 3).

Figure 1-3: Double-Buffer DMA Pointer Sequence

Current Buffer 1 Current Buffer 1
Next Buffer 2 Next Buffer 2
Buffer 3 Buffer 3

MR-1429-GE

This allows the data to be transferred continuously, without having to
wait for the time it takes the software to set up the next buffer. Of
course, the time it takes to transfer the first buffer must be greater than
the time it takes to set up for the next buffer.

1-26 Laboratory I/0 Interfaces and Operations



~

If the buffer setup time is reasonably well known, then the size of the
buffer needed for double buffering can be easily computed by the
following equation:

Buffer_Size = Software_Time * Data Transfer Rate

For example, assume that the buffer setup time is one millisecond. If
the data transfer rate is 1 MHz (one million samples per second), then
the equation becomes:

Buffer_Size = .001 sec * 1,000,000 samples/second
Buffer_Size = 1,000 samples

If each sample is one word, then you need a 1,000-word or 2,000-byte
buffer.

If one millisecond is the least amount of time (best case) it takes to set
up a buffer, but in actuality it may take up to one-tenth of a second
(worst case) to set up a buffer, enter the worst case values into the
equation, for example:!

Buffer_Size = .1 sec * 1,000,000 samples/second
Buffer_Size = 100,000 samples

Double-buffer DMA also allows you to queue multiple I/O requests
before actually starting the 1/O transfer. By queuing the I/O requests in
advance, you minimize the amount of time it takes for the next buffer to
be set up, because all the overhead associated with signaling the device
about which buffers are going to be used is already done.

The ADQ32 device driver uses single-buffer transfers by default,

but can be set for double-buffer transfers with the LIO$K_DBL_BUF
parameter. The DRQ3B device driver double-buffers I/O requests
whenever possible. Use the guidelines that follow to maximize the use
of double-buffering with these devices.

In the last example, you can see that a buffer of 100,000 samples can
accommodate the .1 second to get the next buffer ready. The ADQ32
and DRQ3B can handle a maximum buffer size of 32K words. By
queuing ten 10,000-word buffers and holding them until all are queued,
you can transfer 100,000 words and bypass the restriction of having a
maximum buffer size of 32K words.

1 //Best’’ case and ‘’worst’’ case here are strictly dependent on an application’s computational work
requirements between 1/O requests.

Laboratory I/O Interfaces and Operations 1-27




O

Note that the ADQ32 and DRQ3B device drivers take some time to set u
up the next buffer for an I/O transfer. The time it takes for this to occur

‘ varies based on system load, but should not be a problem if you use

buffers of at least 8K words.

To queue 10 buffers to the DRQ3B or the ADQ32 before actually starting
to transfer data, use the device-specific parameter LIOSM_HOLD_DMA
with LIO$ENQUEUE for the first nine buffers. Then remove this
parameter when you call LIOSENQUEUE for the tenth buffer.

When the ADQ32 is set for double-buffer DMA transfers, the A/D takes
advantage of its double-buffering capabilities and its on-board data FIFO
buffer to keep data flowing continuously to succeeding buffers.

To do this, a user program should use a minimum of three buffers and
must keep two buffers enqueued to the A/D at all times. If the A/D
finishes a buffer and there are fewer than two more buffers enqueued
to the device, the ADQ32 finishes the buffers it has and returns the last
enqueued buffer with the LIO$_OVERRUN warning.

To prevent the A/D from terminating on the first buffer, enqueue a

minimum of two buffers to the device using the LIOSENQUEUE

routine with LIO$M_HOLD_DMA as the value of the device-specific p
argument. This device-specific argument value inhibits the start u
of the DMA transfers until you enqueue a buffer without using the
LIO$M_HOLD_DMA device-specific argument value. When the user

program enqueues the last buffer in a double-buffering sequence, use

the LIO$M_DONE_DBL_BUF value of the device-specific argument of

the LIOSENQUEUE routine. This prevents the device from returning

the buffer with the LIO$_OVERRUN warning message.

1-28 Laboratory I/O Interfaces and Operations u



Chapter 2

Laboratory /O Device Support

This chapter describes the hardware devices and software pseudo-
devices supported by VAXlab. The devices are listed alphabetically

by category for ease of use. Each device support section presents an
overview of the capabilities of the device, and instructions for attaching,
setting up, and using the device.

This chapter is not intended to be read sequentially.

ﬂ 2.1 Real-Time Clock Devices

The KWV11-C and Simpact RTCO1 are real-time clock devices you can

use in the following ways:

* As a steady frequency source

* As a single-pulse source

* As a source of regular calls to an AST routine on the setting of event
flags

* To count or time external events

The KWV11-C is compatible with the Q-bus.

The Simpact RTC01 is a native-mode device compatible with the VAXBI
bus.

Laboratory I/O Device Support 2-1




The primary differences between the two devices are:

* Bits of resolution—the KWV11-C has 16, the Simpact RTC01 has 32.

* Maximum speed—1 MHz for the KWV11-C, 10 MHz for the Simpact
RTCO1.

* The KWV11-C has a single-count register, while the Simpact RTC01
has a 512-entry longword FIFO buffer to store successive counts.

For more information about the KWV11-C, see the AXV11-C/KWV11-C
Analog Module and Real-Time Clock Module User’s Guide.

For more information about the RTC01, see the documentation from
Simpact Associates, Inc.

2.1.1 Attaching the KWV11-C or Simpact RTCO1

Attaching the KWV11-C or the Simpact RTC01 means assigning a VMS
I/O channel to the device and initializing LIO data structures for, and
pointers, to the device.

You use the LIOSATTACH routine to attach the KWV11-C or Simpact
RTCO1.

status = LIO$ATTACH (clock_id, 'KZAO', LIO$K_QIO)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The clock_id argument returns the LIO-assigned device ID for the
KWV11-C or Simpact RTC01 device. The KWV11-C or RTCO01 is
referenced by this device ID in subsequent routine calls to the device in
a user program.

The device specification KZAOQ specifies a KWV11-C (KZ) device, with
controller letter A and unit number 0. (To specify an RTC01 (KB)
device, use KBAO as the device specification.) If you have only one
KWV11-C or RTC01 device configured in your system, specifying the
device type KZ or KB is sufficient.

The LIO$K_QIO constant value specifies the I/O type. The LIO facility
also supports memory-mapped I/O (LIO$SK_MAP) for the KWV11-C or
RTCO01 device.

2-2 Laboratory 1/O Device Support

W




NOTE

When you use the KWV11-C as the clock source for the
AAV11-D, ADV11-D, and AXV11-C devices, attach both the
clock and the I/O device with the same io_type argument.

2.1.2 Setting Up the KWV11-C or Simpact RTCO1

Before you can begin using the KWV11-C or the Simpact RTCO01 to
trigger data transfers or time external events, you must set up certain
device characteristics. The following table lists the LIO$SET and
LIO$SHOW parameters you can use to set up and show KWV11-C or
RTCO01 device characteristics. See Chapter 4 for reference descriptions
of the parameters listed in this table.

Table 2-1: KWV11-C and Simpact RTC01 LIO$SET and LIO$SHOW

Parameters
Parameter Function
LIO$K_AST_RTN Specifies a user-written AST routine to
receive buffers when a device finishes
processing them.
LIO$K_ASYNCH Sets the device to use asynchronous I/O.
LIO$K_CLK_RATE Takes a specified frequency and produces

the best internal crystal rate and divider
to approximate that frequency.

LIO$K_CLK_SRC Sets the source frequency and divider for
clock ticks and the source frequency for
event timing.

LIO$K_DEVICE_EF Establishes the event flag that is set when
a buffer becomes available.
LIO$K_ERR_HANDLE Specifies the way in which a device
returns error conditions.
LIO$K_EVENT_AST Assigns a user-written AST routine to be
called on clock overflows or ST2 events.
LIO$K_EVENT_EF Specifies the event flag to set on an

external event or clock overflow.

Laboratory I/O Device Support 2-3




Table 2-1 (Cont.):

KWV11-C and Simpact RTC01 LIO$SET and
LIO$SHOW Parameters

Parameter

Function

LIO$K_FORWARD
LIO$K_FUNCTION

LIO$K_START
LIO$K_STOP
LIO$K_SYNCH
LIO$K_TIMEOUT

LIO$K_TRIG

Specifies the device to which completed
buffers are forwarded.

Specifies the function the clock is to
perform.

Starts the device.
Stops the device.
Sets the device for synchronous 1/O.

Sets the length of time in seconds before
an 1/O request is aborted.

Sets the device trigger mode or source.

Simpact RTCO01 only:

LIO$K_COUNTER

LIO$K_INTERRUPT_LEVEL

LIO$K_SCHMITT_TRIGGER

Reads the count register of the Simpact
RTCO1.

Sets the level at which interrupts occur
for the Simpact RTCO1.

Sets the mode of operation for the two
Schmitt triggers on the Simpact RTCO1.

The function that the clock performs depends on how your program sets
up the clock. The following sections describe how to use the parameters

above.

u

2.1.3 Using the KWV11-C or Simpact RTCO1 to Time External
Events

This section describes how to use the KWV11-C or the Simpact RTC01
to time external events.

External events are negative (or positive) TTL transitions from a device
or switch in your application. The polarity of the transition is set by a
switch on the clock device UDIP panel. The external event to be timed
is connected to the Schmitt trigger 2 (ST2) input on the clock.

2-4 Laboratory /O Device Support u



To use the clock device to time external events, do the following:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.
Attach the clock as described in Section 2.1.1, Attaching the
KWV11-C or Simpact RTC01.

Set up the /O interface. To time external events, you can use either
the synchronous or asynchronous 1/O interface.

status = LIO$SET_I (clock_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Set up the clock function.

status = LIO$SET_I (clock_id, LIO$K_FUNCTION, 1, LIO$K_EVENT_REL)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine sets up the KWV11-C clock device to time the interval
between pulses on the ST2, resetting the count to zero on each ST2
pulse.

Note that LIO$K_EVENT_ABS could also be chosen. In this mode,
the counter continues to run and is not reset to zero on each ST2
pulse.

Specify the clock source.

status = LIO$SET_I (clock_id, LIO$K_CLK_SRC, 1, 3)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies the clock source as the KWV11-C internal 10
kHz clock crystal. No clock divider is given, because the clock is
being used to time external events.

NOTE

When using the KWV11-C or the Simpact RTCO1 to
time external events, you must use the LIO$K_CLK_SRC
parameter to specify the clock source. The event-timing
functions use only the clock source, and not the
divider, to time external events. Do not use the
LIO$K_CLK_RATE parameter because it sets both the
clock source and a divider.

Laboratory /O Device Support 2-5




7. Set up the clock trigger mode.

status = LIO$SET_I (clock_id, LIOSK_TRIG, 1, LIOSK_IMMEDIATE)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine sets up the start condition. The clock does not start
running at this time. It is started by the subsequent LIOSREAD
routine.

8. Read 10 clock pulses (20 bytes for the KWV11-C, 40 for the RTCO01).

status = LIOSREAD (clock_id, buffer, 20, data_length, )
IF(.NOT. status) CALL LIB$SIGNAL(%VAL(status))

This routine starts the clock and reads 10 KWV11-C ST2 pulses.
Each value in the buffer is the value of the clock counter when the
ST2 pulse occurred. You can obtain the relative time between ST2
pulses by multiplying the number of clock ticks read by the source
frequency selected.

The device_specific argument is not used with the KWV11-C or the
RTCO1 device.

Because this example sets the KWV11-C to use the synchronous
I/O interface in step 4 of this procedure, the LIOSREAD routine is
used here to read the clock pulses. If you set the clock to use the
asynchronous I/O interface, then you use the LIOSENQUEUE and
LIO$DEQUEUE routine calls to read the clock pulses.

9. Detach the I/O device and the clock.

status = LIO$DETACH (device_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = LIO$DETACH (clock_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The online sample program LIO_TIME_EVENT.FOR in the
LIO$EXAMPLES directory is a complete VAX FORTRAN program
that uses the KWV11-C clock to time external events.

2-6 Laboratory I/O Device Support



ﬂ 2.1.4 Using the KWV11-C to Trigger a Device

This section describes how to use the KWV11-C clock to trigger data
transfers to and from the AAV11-D, ADV11-D, and AXV11-C devices.
(You cannot use the Simpact RTCO01 clock with these devices.) To use
the KWV11-C as the clock source for these devices, the clock overflow
output must be externally wired to the device.

To set up the clock to trigger a device, do the following;:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

2. Declare the data types and variables you are using in your program.

Attach the clock as described in Section 2.1.1.

4. Attach the I/O device being clocked as described in the
device-specific support section in this chapter. Remember to attach
the I/O device and the clock with the same io_type argument.

»

5. Set up the clock function.

status = LIO$SET_I (clock_id, LIO$K_FUNCTION, 1, LIO$K_REP_COUNT)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

ﬂ This routine specifies the KWV11-C clock device as the clock source
for the device. Remember that the clock must be wired to the
device if it is to perform this function.

6. Set up the clock rate.

status = LIO$SET_R (clock_id, LIO$K_CLK_RATE, 1, 1000.0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies a clock rate of 1,000 Hertz.

(LIO$K_CLK_SRC can also be used to specify a clock source and
divider. LIO$K_CLK_SRC produces an exact known clock rate.
LIO$K_CLK_RATE produces the best approximation of the specified
rate.)

7. Set up the clock trigger mode.

status = LIO$SET_I (clock_id, LIO$K_TRIG, 1, LIO$K_IMMEDIATE)
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status))

ﬂ Laboratory /0 Device Support 2-7




10.

11.
12.

13.
14.

This routine sets up the start condition. The clock does not start
running at this time. The routine call in step 10 of this procedure
actually starts the clock.

(LIO$K_EXTERNAL can also be specified as the argument to
LIO$K_TRIG. In this mode the clock starts on an external ST2
input.)

Set up the I/O device parameters, such as the I/O interface, A/D
channels, and channel gains; and specify the 1/O device’s trigger
mode to the clock.

status = LIO$SET_I (device_id, LIO$K_TRIG, 1, LIO$K_CLK_POINT)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine sets the 1/O device to output to one channel on each
clock tick.

Enqueue a buffer to the I/O device.

Start the clock. If the clock trigger mode was specified as external,
the clock starts when the external ST2 input occurs.

status = LIO$SET_I (clock_id, LIO$K_START, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Dequeue the completed buffer from the I/O device.
Stop the clock.

status = LIO$SET_I (clock_id, LIO$K_STOP, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Process the buffer.
Detach the I/O device and the clock.

status = LIO$DETACH (device_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = LIO$DETACH (clock_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The online sample program LIO_ASYNCH_CLK_TRIG.FOR in the
LIOSEXAMPLES directory is a complete VAX FORTRAN program that
uses the KWV11-C with the AXV11-C device for clocked asynchronous
input.

2-8 Laboratory I/O Device Support

W



m 2.1.5 Using the Simpact RTC01 to Count External Events

This section describes how to use the Simpact RTCO01 to count external
events.

External events are negative (or positive) TTL transitions from a device
or switch in your application. The polarity of the transition is set by a
switch on the clock device UDIP panel. The external event to be timed
is connected to the Schmitt trigger 2 input on the clock.

To use the clock device to count external events, do the following:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

2. Declare the data types and variables you are using in your program.

3. Attach the clock as described in Section 2.1.1, Attaching the
KWV11-C or Simpact RTCO1.

4. Set up the I/O interface.

status = LIO$SET_I (clock_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

m 5. Set up the clock trigger mode.

status = LIO$SET_I (clock_id, LIO$K_TRIG, 1, LIOSK_IMMEDIATE)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine sets up the software start condition. The LIO$K_START
parameter starts the clock running.

6. Set up the clock source and rate.

status = LIO$SET_R (clock_id, LIO$K_CLK_RATE, 1, 1.0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine sets the clock rate as 1 Hz.
7. Set up the clock for repeat counting.

status = LIO$SET_I (clock_id, LIO$K_FUNCTION, 1, LIO$K_REP_COUNT)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

8. Start the clock.

status = LIO$SET_I (clock_id, LIO$K_START, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

m Laboratory /O Device Support 2-9




9. Read the counter on the clock. ‘ ’

status = LIO$SHOY (clock_id, LIO$K_COUNTER, showbuf(1), showlen)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = LIO$SHO¥ (clock_id, LIO$K_COUNTER, showbuf(2), showlen)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

These routines read the counter on the RTC01 twice in order to
measure the net overhead of reading the clock. You will need to
calculate the difference.

10. Detach the clock.

status = LIOS$DETACH (clock_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The online sample program LIO_RTC01_COUNTER.FOR in the
LIO$EXAMPLES directory is a complete VAX FORTRAN program
showing the routines given above.

2.1.6 Using the KWV11-C to Avoid Trigger Slivering

The AAV11-D, ADV11-D, and AXV11-C I/O devices cannot be

successfully started when a trigger signal is produced at approximately

the same time that the LIO software attempts to enable the device. This u
condition is called trigger slivering. LIO returns the LIO$_IOERROR
condition value when this happens, indicating that the hardware

detected an error. If this condition value is returned, check the value of

the data_length argument of the LIOSDEQUEUE or LIOSREAD routines.

If the value of the data_length argument is zero, trigger slivering is

probably occurring.

To avoid trigger slivering, use one of the following solutions:

e If the trigger signal is produced by the KWV11-C clock device, there
are two separate solutions, one for synchronous calls and one for
asynchronous calls.

— For synchronous calls, supply the clock ID as the optional
parameter value to the trigger mode (LIO$K_TRIG) set
parameter. The synchronous call (LIO$READ or LIO$WRITE) to
the I/O device starts the device, and then starts the clock.

2-10 Laboratory I/O Device Support ‘ ’



ﬂ — For asynchronous calls, you must ensure that your program
enqueues buffers to the I/O device before it starts the clock. If
the 1/O device is set for continuous DMA, the program must
start the device (LIO$K_START) before it starts the clock.

e If the trigger signal is produced by an external trigger, the first
external trigger signal must not occur before the device is enabled
through LIOSENQUEUE or LIO$READ, or LIO$SET_I when starting
continuous DMA.

If the trigger signal is produced by an external trigger, it can be gated
by the KWV11-C clock and handled according to the I/O interface
(synchronous or asynchronous) that the device is set to use.

To set up the I/O device and the clock to gate an external trigger with
the clock, do the following:

1. Attach the I/O device and the clock. If the I/O device is attached to
use QIOs, you should attach the clock to use QIOs also. Otherwise,
the overhead associated with the QIO to the device may cause the
1/0O device to start up after the clock starts up.

2. Set up the I/O device by:

ﬂ a. Specifying the I/O interface that the I/O device and the clock are
) to use.
b. Setting the I/O device trigger source (LIO$K_TRIG) to be the
clock instead of the external trigger.
3. Set up the clock by:
a. Specifying the clock rate (LIO$K_CLK_RATE) as 1 MHz.
b. Specifying the clock function (LIO$K_FUNCTION) as single
count (LIO$K_SGL_COUNT).

c. Specifying the clock trigger source (LIO$K_TRIG) as the external
trigger.

NOTE

See the individual reference descriptions of the LIO$K_TRIG,
LIO$K_CLK_RATE, and LIO$K_FUNCTION set parameters
for the appropriate parameter values you must use.

Then, enable the clock as previously described for the synchronous and
asynchronous calls.

‘ 9 Laboratory I/O Device Support 2-11




2.2 Analog /O Devices U

This section describes the analog I/O devices supported by VAXlab.

2.2.1 AAFO01 and ASFO01 Support

The AAF01! is a 16-channel, high-speed, D/A converter subsystem.
The interface is controlled by a programmable conversion rate and by a
1K-word Control Table. The conversion rate is controlled by an internal
programmable clock or by an external clock signal supplied by the user.
The internal clock rate is programmable in 100 nsec steps from 2.5
microseconds (300 kHz) to 400 microseconds (2.5 kHz).

The ASF01! is a 16-channel, simultaneous sample-and-hold (S/H)
conditioning device for the AAF01 D/A conversion subsystem. With the
ASF01, the AAF01 subsystem can perform conversions on all channels
simultaneously. The AAF01 subsystem directly controls the ASF01’s 16
sample-and-hold amplifiers.

The 1K-word Control Table determines the sequence of the data

output. The Control Table must be maintained by the user program. g
The channel address and the operation mode for each conversion is u
contained in a control word. The operation, or control word, mode can

have one of the following values:

Mode Meaning

0 Conversion and increment Control Table Address (CTA) for next
control word.

Conversion and go to control word 0.
2 Dummy cycle for current channel.

3 Same as mode 2. In addition, wait for sequence start pulse and go to
next control word (must use SEQ CONT L input signal).

! This device is available only in Europe.

2-12 Laboratory I/O Device Support u



ﬂ

Mode Meaning

4 Same as mode 2. In addition, deassert the SYSIN PROG L output
signal during this conversion.

5 Same as modes 2 and 4. In addition, the Control Table starts at
control word 0 after this conversion.

6 Same as modes 2 and 4. In addition, use the complement of the
12-bit Programmable Clock Register (PCR) as cycle time for this
conversion.

7 Same as modes 2 and 4. In addition, assert the COUT L output

signal during this conversion.

For more information about the AAF01, see the AAF01 User’s Manual.
For more information about the ASFQ1, see the ASF01 User’s Manual.

2.2.1.1 Attaching the AAF01

Attaching the AAF01 means assigning a VMS I/O channel to the device
and initializing LIO data structures for, and pointers to, the device.

Use the LIOSATTACH routine to attach the AAF01.

status = LIO$ATTACH (aaf_id, 'UUAO', LIO$K_QIO)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The aaf_id argument returns the LIO-assigned device ID for the AAF01
device. The AAFO1 is referenced by this device ID in subsequent
routine calls to the device in a user program.

The device specification UUAO specifies an AAF01 (UU) device with
controller letter A and unit number 0. If you have additional AAF01
devices, or if you have any number of ADF01 and/or DRQ11-C devices,
or both, you must attach each device with a unique controller letter.

The LIO$K_QIO value sets up the device to use QIOs. This is the only
I/O type supported for the AAF01 device.

Laboratory I/O Device Support 2-13




2.2.1.2 Setting Up the AAFO1 u

Before you can begin data transfers using the AAF01, you must set up
certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show AAF01
device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

Table 2-2: AAFO01 LIOSSET and LIO$SHOW Parameters

Parameter Function

LIO$K_ANA_OUT Outputs a voltage value to one of the
digital-to-analog channels on the AAF01 device.

LIO$K_ASYNCH Sets up a device for asynchronous 1/0.

LIO$K_CANCEL Cancels all pending 1/O requests on the specified
channel; used to stop continuous DMA.

LIO$K_CHANNEL Specifies the D/A channel to use for output.

LIO$K_CLR_LBO Clears the large buffer overflow condition on the
AAF01 device.

LIO$K_COB Reads or writes the Command Output (COUT) bit

in the Command and Status Register (CSR) of the )
AAFOQ1 device. u

LIO$K_CTA Reads or writes the Control Table Address (CTA)
register of the AAFQ1 device.

LIO$K_CWT Reads the Control Word Registers from, or writes
the Control Word Registers to, the AAF01 device.

LIO$K_DATA_PATH Selects the data path and channel number for the
AAFQ1 device.

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer

becomes available.

LIO$K_DRX_AST_RTN Specifies a user-written AST routine to receive
buffers when an AAFQ1 finishes processing them.

LIO$K_DRX_STAT Returns the contents of the hardware registers of
the DRQ11-C device.
LIO$K_ED_CTT Enables or disables the Memory Transfer (MET) bit

in the Command and Status Register (CSR) in the
AAF01 device.

2-14 Laboratory /O Device Support ‘ ’



Table 2-2 (Cont.): AAF01 LIO$SET and LIO$SHOW Parameters

Parameter Function

LIO$K_ED_ECE Enables or disables the External Clock Enable (ECE)
bit in the Command and Status Register (CSR) of
the AAFO01 device.

LIO$K_ED_SBE Enables or disables the Sequence Break Enable (SBE)
bit in the Command and Status Register (CSR) of
the AAFQ1 device.

LIO$K_ERR_HANDLE Specifies the way in which the AAF01 device
handles errors.
LIO$K_EVENT_AST Assigns a user-written AST routine to be called on

AAFO01 unsolicited interrupts.

LIO$K_FUNCTION_BITS  Enables the setting of the four function bits in the
DRQ11-C Status and Command Register (SCR).

LIO$K_PCR Specifies the number of steps in the Programmable
Clock Register (PCR) of the AAF(01 device.

LIO$K_READ_STAT Returns the status of the read-only bits in the
Command and Status Register (CSR) of the AAF01
device.

LIO$K_RESET_AXF Resets the AAF01 device.

LIO$K_RESET_DRX Resets the DRQ11-C device.

LIO$K_SYNCH Sets up the device for synchronous I/O.

LIO$K_TIMEOUT Sets the length of time in seconds before an 1/O

request is aborted.

2.2.1.3 Using the AAF01 for Synchronous Output
To set up the AAF01 device for synchronous output, do the following;:
1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.
2. Declare the data types and variables you are using in your program.

3. Attach the AAF01 device as described in Section 2.2.1.1, Attaching
the AAF01.

Laboratory /O Device Support 2-15




Set up the device to use the synchronous I/O interface.

status = LIO$SET_I (aaf_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Set up the device for direct data path.

status = LIO$SET_I (aaf_id, LIO$K_DATA_PATH, 1, LIO$K_DIRPATH)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Reset the DRQ11-C DMA interface and clear the FNCTO bit.

status = LIO$SET_I (aaf_id, LIO$K_RESET_DRX, 2, LIO$K_NO_FNCTO, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Connect to unsolicited interrupts and cancel any previous I/O
request.
status = LIO$SET_I (aaf_id, LIO$K_EVENT_AST, 3, aaf_ast_rtn,

1 aaf_ast_param, LIO$K_CANCEL)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Set up the Control Table. This example sets up the control word
mode to mode 0 for channels 0 through 14, and to mode 1 for
channel 15. The control_table(16) array is a longword array with a
dimension as large as the number of channels to sample, in this
example 16. The control_word_mode(8) is a word array of length
8. The control_word_mode(8) is initialized to contain the following
values: 0, 64, 128, 192, 256, 320, 384, and 448.

INTEGER*4 control_table(16)
INTEGER*2 control_word_mode(8)
/0,64,128,192,266,320,384,448/

DO 10 i = 1,16
channel_number

=1i-1
control_table(i) =

channel_number + control_word_mode(1)
10 CONTINUE

control_table(16) = 16 + control_word_mode(2)

2-16 Laboratory I/O Device Support

W

“



10.

11.

12.

Load the Control Word Table, beginning at position 0 and ending at
position 15. Begin loading the Control Word Table at location 0.

val(1) = LIO$K_OUTPUT

val(2) = %L0C(control_table)

val(3) =0

val(4) = 16

val(6) =0

status = LIO$SET_I (aaf_id, LIO$K_CWT, 5, val(l), val(2),

1 val(3), val(4), val(B))
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Load the Control Table Address register for the start of the
conversion.

status = LIO$SET_I (aaf_id, LIOSK_CTA, 1, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = LIO$SET_I (aaf_id, LIO$K_PCR, 1, 100)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Use the LIOSWRITE routine to start the data transfer immediately.
The device_specific argument is an array of longwords of length six

that you use to specify control information about a data transfer.
The following table shows the values of device_specific.

Set the speed by loading the Programmable Clock Register.

1 LIO$M_WORD or LIO$M_BLOCK or LIO$M_LARGE_BUF
LIO$M_START_CONV
LIO$M_BURST

Buffer address

|
Index Value
|
|
\

Buffer size, in bytes
Buffer address

Buffer or subbuffer size, in bytes

A U _ W N

Number of buffers or subbuffers to transfer

To perform single word output, the source program looks as follows:
device_specific(1) = LIO$M_WORD

status = LIO$WRITE (aaf_id, buffer, buffer_length, data_length,
1 device_specific)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Laboratory /O Device Support 2-17




To perform single buffer block output, the source program looks as u
follows:

LIO$N_BLOCK .OR. LIO$M_START_CONV
%LOC(buffer)

buffer_length

%LOC (dummy_buffer)
dummy_buffer_length

1

device_specific(1)
device_specific(2)
device_specific(3)
device_specific(4)
device_specific(6)
device_specific(6)

status = LIOSWRITE (aaf_id, buffer, buffer_length, data_length,
1 device_specific)
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status))

For word (LIO$M_WORD) output, the buffer argument is a word
that contains the data to output. The buffer_length argument
contains 2.

For block (LIO$M_BLOCK) or large-buffer (LIO$M_LARGE_BUF)
output, buffer and buffer_length are dummy arguments. The actual
required arguments are pointed to by the device_specific argument.

For single- or alternate-block 1/O, the device_specific argument

contains the:

a. Address of the first data buffer

b. Size of the first data buffer u
¢. Address of the second data buffer
d. Size of the second data buffer
e. Number of buffers to transfer

For large buffer I/O, the device_specific argument contains the:
Address of the large buffer

Size of the large buffer

Zero

Size of one subbuffer

©aon oW

. Number of subbuffers to transfer
13. Detach the device.

status = LIO$DETACH (aaf_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2-18 Laboratory I/O Device Support U



“' ’ 2.2.1.4 Using the AAF01 for Asynchronous Output
To set up the AAF01 device for asynchronous output, do the following:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.

Attach the AAF01 device as described in Section 2.2.1.1, Attaching
the AAF01.

Set up the device to use the asynchronous I/O interface.

status = LIO$SET_I (aaf_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Set up the device for direct data path.

status = LIO$SET_I (aaf_id, LIO$K_DATA_PATH, 1, LIO$K_DIRPATH)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Reset the DRQ11-C DMA interface and clear the FNCTO bit.

status = LIO$SET_I (aaf_id, LIO$K_RESET_DRX, 2, LIOS$K_NO_FNCTO, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Connect to unsolicited interrupts and cancel any previous 1/0
request.

status = LIO$SET_I (aaf_id, LIO$K_EVENT_AST, 3, drq_ast_rtn,
1 drq_ast_param, LIO$K_CANCEL)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Set up the Control Table. This example sets up the control word
mode to mode 0 for channels 0 through 14, and to mode 1 for
channel 15. The control_table(16) array is a longword array with a
dimension as large as the number of channels to sample, in this
example 16. The control_word_mode(8) is a word array of length
8. The control_word_mode(8) is initialized to contain the following
values: 0, 64, 128, 192, 256, 320, 384, and 448.

INTEGER*4 control_table(16)
INTEGER*2 control_word_mode(8)
/0,64,128,192,266,320,384, 448/

DO 10 i = 1,16
channel_number

=i-1
control_table(i) =

channel_number + control_word_mode(1)
10 CONTINUE

control_table(16) = 16 + control_word_mode(2)

Laboratory I/0O Device Support 2-19




9. Load the Control Word Table, beginning at position 0 and ending at u
position 15. Begin loading the Control Word Table at location 0.

val(1l) = LIO$K_OUTPUT

val(2) = %L0C(control_table)
val(3) =0

val(4) = 15

val(6) =0

status = LIO$SET_I (aaf_id, LIO$K_CYWT, 5, val(l), val(2),
1 val(3), val(4), val(s))
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

10. Load the Control Table Address register for the start of the
conversion.

status = LIO$SET_I (aaf_id, LIO$K_CTA, 1, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

11. Set the speed by loading the Programmable Clock Register.

status = LIOSSET_I (aaf_id, LIOS$K_PCR, 1, 100)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
12. Use the LIOSENQUEUE routine to start the write request. The
device_specific argument is an array of longwords of length six that
you use to specify control information about a data transfer. The

following table shows the values of device_specific. U
Index Value
1 LIO$M_INPUT or LIO$M_OUTPUT

LIO$SM_WORD or LIO$M_BLOCK or LIO$M_LARGE_BUF
LIO$M_START_CONV
LIO$M_BURST

Buffer address
Buffer size, in bytes
Buffer address or zero

Buffer or subbuffer size, in bytes

D T WN

Number of buffers or subbuffers to transfer

2-20 Laboratory I/O Device Support u



To perform alternate-buffer block output, the source program looks
as follows:

device_specific(l)
device_specific(2)
device_specific(3)
device_specific(4)
device_specific(5)
device_specific(8)

LIO$N_OUTPUT .OR. LIO$M_BLOCK .OR. LIO$M_START_CONV
%LOC(buffer_1)

buffer_1i_length

%LOC(buffer_2)

buffer_2_length

2

status = LIB$GET_EF (event_flag)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = SYS$CLREF(%VAL(event_flag))
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
status = LIO$ENQUEUE (aaf_id, buffer, buffer_length, ,event_flag, ,

1 device_specific)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The buffer and buffer_length arguments of the LIOSENQUEUE
routine are dummy arguments. The actual required arguments are
pointed to by the device_specific argument.

For single- or alternate-block 1/O, the device_specific argument
contains the:

Address of the first data buffer

Size of the first data buffer

Address of the second data buffer

Size of the second data buffer

® a0 o

Number of buffers to transfer

For large buffer I/O, the device_specific argument contains the:
a. Address of the large buffer

Size of the large buffer

Zero

Size of one subbuffer

°o o0 T

Number of subbuffers to transfer

Laboratory /0O Device Support 2-21




13. Dequeue the buffer or use one of the other asynchronous
I/O buffer-handling mechanisms described in Section 1.5,
Asynchronous 1/O Buffer-Handling Mechanisms.

14. Detach the device.

status = LIOSDETACH (aaf_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.2.2 AAV11-D Support

The AAV11-D is a two-channel 250-kHz D/A converter that supports
direct memory access (DMA) I/O.

The LIO facility supports mapped output (for synchronous calls only)
and QIO output. You can set four general purpose digital control lines
on each output call.

You can use the KWV11-C real-time clock device as a steady frequency
source to trigger data transfers to the AAV11-D. See Section 2.1,
Real-Time Clock Devices, for more information.

2.2.2.1 Attaching the AAV11-D

Attaching the AAV11-D means assigning a VMS I/O channel to the
device and initializing LIO data structures for, and pointers to, the
device.

Use the LIO$ATTACH routine to attach the AAV11-D.

status = LIOSATTACH (aav_id, 'AYAO', LIO$K_QIO)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The aav_id argument returns the LIO-assigned device ID for the
AAV11-D device. The AAV11-D is referenced by this device ID in
subsequent routine calls to the device in a user program.

The device specification AYAQ specifies an AAV11-D (AY) device with
controller letter A and unit number 0. If you have only one AAV11-D
device configured in your system, specifying the device type AY is
sufficient.

2-22 Laboratory I/O Device Support

W



The LIO$K_QIO value sets up the device to use QIOs. The LIO facility
also supports memory-mapped 1/O (LIO$K_MAP) for the device. If you
do not specify the I/O type when you attach the AAV11-D device, by
default it is attached to use QIOs.

2.2.2.2 Setting Up the AAVi1-D

Before you can begin data transfers using the AAV11-D, you must set

up certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show AAV11-D
device characteristics. See Chapter 4 for reference descriptions of the

parameters listed in this table.

Table 2-3: AAV11-D LIOS$SET and LIO$SHOW Parameters

Parameter

Function

LIO$K_AST_RTN

LIO$K_ASYNCH
LIO$K_CONT
LIO$K_DA_CHAN
LIO$K_DEVICE_EF

LIO$K_ERR_HANDLE

LIO$K_FORWARD

LIO$K_N_DA_CHAN
LIO$K_SGL_BUF

LIO$K_START

LIO$K_STOP

Specifies a user-written AST routine to receive
buffers when a device finishes processing them.

Sets the device for asynchronous 1/0.
Sets the device for continuous DMA mode.
Sets the AAV11-D D/A channels to use.

Establishes the event flag that is set when a buffer
becomes available.

Specifies the way in which a device returns error
conditions.

Specifies the device to which completed buffers are
forwarded.

Returns the number of device D/A channels in use.

Sets the device to stop DMA between buffers.
Output is not continuous.

Starts the device when it is set up for continuous
DMA transfers.

Stops the device when it is set up for continuous
DMA transfers.

Laboratory I/O Device Support 2-23




Table 2-3 (Cont.): AAV11-D LIO$SET and LIO$SHOW Parameters u

Parameter Function
LIO$K_SYNCH Sets up the device for synchronous 1/O.
LIO$K_TIMEOUT Sets the length of time in seconds before an I/O

request is aborted.

LIO$K_TRIG Sets the device trigger mode or source.

2.2.2.3 Using the AAV11-D for Synchronous Output
To set up the AAV11-D device for synchronous output, do the following;:

1.

2-24 Laboratory I/0 Device Support U

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.

Attach the AAV11-D device as described in Section 2.2.2.1,

Attaching the AAV11-D. When the device is attached to use QIOs
(LIO$K_QIO), it performs single-buffer DMA transfers. When the

device is attached to use mapped I/O (LIO$K_MAP), it does not

perform DMA transfers. U

When performing single-buffer DMA transfers, the data can overrun
the end of the buffer up to 256 points. (The actual number of points
varies each time.)

Be sure to declare your data buffer (in step 2 of this procedure) to
be at least 256 words longer than the buffer length your program
passes to the LIO facility. Fill the overrun area with known values.
Otherwise whatever happens to be there is output to the D/A if an
overrun occurs.

Acceptable values are zeros, copies of the last point in the buffer

if one D/A channel is used, or copies of the last two points in the
buffer if both D/A channels are used. Data overrun generally does
not occur at low clock rates or at burst rates. The overrun area is not
required when performing continuous DMA transfers.

The minimum number of data points in the buffer must be twice
the number of selected output channels. If your program needs to
output one point to each selected D/A channel, attach the AAV11-D
with memory-mapped (LIO$K_MAP) 1/O.




4. Set up the device to use the synchronous I/O interface.

status = LIO$SET_I (aav_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

5. Specify the digital-to-analog channel to use.

status = LIO$SET_I (aav_id, LIO$K_DA_CHAN, 1, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies D/A channel 0.
6. Specify the device trigger mode.

status = LIO$SET_I (aav_id, LIO$K_TRIG, 1, LIO$K_IMM_BURST)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies immediate burst mode. This means that the
data output begins as soon as the program executes the subsequent
LIOSWRITE routine call and empties the buffer as fast as possible.

7. Output the buffer to the AAV11-D device. The single-buffer DMA
transfer begins immediately on the LIOSWRITE routine call, and
empties the buffer as fast as possible.

status = LIO$WRITE (aav_id, buffer, data_length, device_specific)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

8. Detach the device.

status = LIO$DETACH (aav_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

If desired, you can use the device_specific argument of the LIO$WRITE
routine to write the four digital control lines. Before outputting the
buffer, the control lines are set with the complement of the value in
the low four bits of the device_specific argument. When the buffer
transaction completes, the bits are cleared.

The online sample program LIO_SGLBUF_DMA.FOR in the
LIOSEXAMPLES directory is a complete VAX FORTRAN program

that shows how to use the synchronous I/O interface and single-buffer
DMA to read 20 values from the ADV11-D device and then to write the
values to the AAV11-D device.

Laboratory I/O Device Support 2-25



2.2.2.4 Using the AAV11-D for Asynchronous Output

To set up the AAV11-D device for asynchronous output, do the
following:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.
Attach the AAV11-D device as described in Section 2.2.2.1,
Attaching the AAV11-D. When the device is attached to use QIOs
(LIO$K_QIO), it performs single-buffer DMA transfers by default.
To set up the device to perform continuous DMA data transfers,
specify continuous DMA mode in step 5 of this procedure.

Set up the device to use the asynchronous I/O interface.

status = LIO$SET_I (aav_id, LIO$K_ASYNCH, 0)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
Specify the DMA mode. To perform single-buffer DMA, completing
this step is optional. (The AAV11-D device performs single-buffer
DMA transfers, by default, when it is attached to use QIOs and
the asynchronous I/O interface.) To perform continuous DMA,
completing this step is required. Be sure to include the following
routine line in your program.

status = LIO$SET_I (aav_id, LIOS$K_CONT, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify the digital-to-analog channel to use.

status = LIO$SET_I (aav_id, LIO$K_DA_CHAN, 1, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies D/A channel 0.
Specify the device trigger mode.

status = LIO$SET_I (aav_id, LIO$K_TRIG, 1, LIO$K_IMM_BURST)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies immediate burst mode.

Immediate burst mode means that the data output begins as soon as
the program executes the subsequent LIOSENQUEUE routine call,
and empties the buffer as fast as possible.

2-26 Laboratory I/O Device Support



(g

8. Enqueue the output buffer to the device. The single-buffer DMA
data transfer starts immediately on the LIOSENQUEUE routine call
and empties the buffer as fast as possible.

status = LIOSENQUEVE (aav_id, buffer, buffer_length, , , ,

1 device_specific)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

You can use the device_specific argument of the LIOSENQUEUE
routine to write the four digital control lines. Before outputting the
buffer, the control lines are set with the complement of the value in
the low four bits of the device_specific argument. When the buffer
transaction completes, the bits are cleared.

See the description of the LIOSENQUEUE routine in Chapter 3 for
more information about using the device_specific argument.

9. Dequeue the buffer or use one of the other asynchronous 1/O buffer
handling mechanisms described in Section 1.5, Asynchronous I/O
Buffer-Handling Mechanisms.

10. Detach the device.

status = LIO$DETACH (aav_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.2.3 ADFO01, AMFO1, and ASFO1 Support

The ADF01! is a high-speed, multichannel analog-to-digital converter
subsystem.

The ADFO01 has 16 single-ended input channels and eight differential
input channels, and one output channel for the calibration of the input
channels.

The AMF01! is an analog input multiplexer add-on option for the
ADFO1.

The AMFO01 has 48 single-ended input channels or 24 differential
input channels. The AMFO01 option can extend the number of ADF(1
channels to 64 single-ended input channels or 32 differential input
channels.

! This device is available only in Europe.

Laboratory I/O Device Support 2-27




The AMF01 has a 23-bit software programmable sequence timer that is U
controlled by a 1-MHz clock crystal. You can use the sequence timer

for external timing of conversion sequences. The conversion rate is

controlled by an internal programmable clock or by an external clock

signal supplied by the user.

For each conversion, an entry in the ADF01 Control Table contains the
channel number and channel gain used for the conversion. This entry
also contains a code that signals which entry in the Control Table to use
for the next conversion. You can use the Control Table to set up a large,
fixed sequence of conversions.

The ASF01! is a 16-channel, simultaneous sample-and-hold (S/H)
conditioning device for the ADF01 A/D conversion subsystem.

With the ASF01, the ADF01 subsystem can perform conversions on all
channels simultaneously. The ADF(1 subsystem directly controls the
ASF01’s 16 sample-and-hold amplifiers.

The 1K-word Control Table determines the sequence of the data input.
The Control Table must be maintained by the user program. The

channel address and the channel gain for each conversion is contained
in a control word. The operation, or control word, mode can have one

of the following values: u
Mode Meaning
0 Conversion and incrementing of Control Table Address (CTA) for
next control word.
1 Conversion and go to control word 0.
2 Dummy cycle for current channel (conversion delay) and
incrementing of Control Table Address (CTA).
3 Wait for sequence start pulse and increment Control Table Address

(must use SEQ CONT L input signal).

Gain values of 1, 2, 5, 10, 20, 50, 100, and 200 can be applied to each
channel.

For more information about the ADF01, see the ADF01 User’s Manual.

! This device is available only in Europe.

2-28 Laboratory I/O Device Support u



‘ | ; For more information about the AMF01, see the AMF01 User’s Manual.
For more information about the ASF(Q1, see the ASF01 User’s Manual.

2.2.3.1 Attaching the ADF01

Attaching the ADF01 means assigning a VMS I/O channel to the device
and initializing LIO data structures for, and pointers to, the device. Use
the LIOSATTACH routine to attach the ADF01.

status = LIO$ATTACH (adf_id, 'UUAO', LIO$K_QID)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The adf_id argument returns the LIO-assigned device ID for the ADF(1
device. The ADFO01 is referenced by this device ID in subsequent
routine calls to the device in a user program.

The device specification UUAO specifies an ADF01 (UU) device with
controller letter A and unit number 0. If you have additional ADF01
devices, or if you have any number of AAF01 and/or DRQ11-C devices,
or both, you must attach each device with a unique controller letter.

The LIO$K_QIO value sets up the device to use QIOs. This is the only
ﬂ I/O type supported for the ADF01 device.

2.2.3.2 Setting Up the ADFO1

Before you can begin data transfers using the ADF01, you must set up
certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show ADF01
device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

Table 2-4: ADFO01 LIO$SET and LIO$SHOW Parameters

Parameter Function
LIO$K_ASYNCH Sets up a device for asynchronous I/O.
LIO$K_BIN_DDR Moves a complementary offset binary-coded output

voltage into the DAC Data Register (DDR) of the
ADEO01 device.

‘
[ ’ Laboratory I/O Device Support 2-29




Table 2-4 (Cont.):

ADFO01 LIO$SET and LIO$SHOW Parameters

Parameter

Function

LIO$K_CANCEL

LIO$K_CHANNEL
LIO$K_CLR_LBO

LIO$K_COB

LIO$K_CTA

LIO$K_CWT

LIO$K_DATA_PATH

LIO$K_DEVICE_EF

LIO$K_DRX_AST_RTN

LIO$K_DRX_STAT

LIO$K_ED_CTT

LIO$K_ED_ECE

LIO$K_ED_SBE

LIO$K_ERR_HANDLE

LIO$K_EVENT_AST

2-30 Laboratory /O Device Support

Cancels all pending /O requests on the specified
channel; used to stop continuous DMA.

Specifies the D/A channel to use for output.

Clears the large buffer overflow condition on the
ADFQ1 device.

Reads or writes the Command Output (COUT) bit
in the Command and Status Register (CSR) of the
ADFO01 device.

Reads or writes the Control Table Address (CTA)
register of the ADFO1 device.

Reads the Control Word Registers from, or writes
the Control Word Registers to, the ADF01 device.

Selects the data path and channel number for the
ADEO01 device.

Establishes the event flag that is set when a buffer
becomes available.

Specifies a user-written AST routine to receive
buffers when an ADFO1 finishes processing them.

Returns the contents of the hardware registers of
the DRQ11-C device.

Enables or disables the Control Table Transfer
(CTT) bit in the Command and Status Register
(CSR) in the ADF01 device.

Enables or disables the External Clock Enable (ECE)
bit in the Command and Status Register (CSR) of
the ADFO1 device.

Enables or disables the Sequence Break Enable (SBE)
bit in the Command and Status Register (CSR) of
the ADF01 device.

Specifies the way in which the ADF01 device
handles errors.

Assigns a user-written AST routine to be called on
ADEFO01 unsolicited interrupts.

W



Table 2-4 (Cont.): ADFO01 LIO$SET and LIO$SHOW Parameters

Parameter

Function

LIO$K_FUNCTION_BITS
LIO$K_PCR
LIO$K_READ_STAT
LIO$K_RESET_AXF

LIO$K_RESET_DRX
LIO$K_STE

LIO$K_STO_1
LIO$K_SYNCH
LIO$K_TIMEOUT

LIO$K_VLT_DDR

Enables the setting of the four function bits in the
DRQ11-C Status and Command Register (SCR).

Specifies the number of steps in the Programmable
Clock Register (PCR) of the ADF(1 device.

Returns the status of the read-only bits in the
Command and Status Register (CSR) of the ADF01
device.

Resets the ADF01 device.
Resets the DRQ11-C device.

Clears the Sequence Timer Enable (STE) in the
AMF01 Sequence Timer Register (ST1).

Writes to the 23-bit counter contained in the
Sequence Timer Registers STO and ST1 of the
AMFO01 device.

Sets up the device for synchronous I/O.

Sets the length of time in seconds before an 1/O
request is aborted.

Converts a voltage into its corresponding
complementary binary-coded value and moves it
to the DAC Data Register (DDR) of the ADF01
device.

2.2.3.3 Using the ADFO01 for Synchronous Input
To set up the ADF01 device for synchronous input, do the following:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

2. Declare the data types and variables you are using in your program.
3. Attach the ADFOQ1 device as described in Section 2.2.3.1, Attaching

the ADFO1.

4. Set up the device to use the synchronous I/O interface.

status = LIO$SET_I (adf_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Laboratory I/O Device Support 2-31




2-32 Laboratory I/O Device Support u

Set up the device for direct data path. u

status = LIO$SET_I (adf_id, LIO$K_DATA_PATH, 1, LIOSK_DIRPATH)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Reset the DRQ11-C DMA interface and clear the FNCTO bit.

status = LIO$SET_I (adf_id, LIO$K_RESET_DRX, 2, LIO$K_NO_FNCTO, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Connect to unsolicited interrupts and cancel any previous I/O
request.

status = LIO$SET_I (adf_id, LIO$K_EVENT_AST, 3, adf_ast_rtn,
1 adf_ast_param, LIO$K_CANCEL)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Set up the Control Table. This example sets up the control word
mode to mode 0 for channels 0 through 14, and to mode 1 for
channel 15. The channel gain is set to 0 for all channels.

The control_table(16) array is a longword array with a dimension

as large as the number of channels to sample, in this example 16.

The control_word_mode(4) array is a word array of length 4. The
control_word_mode(4) array is initialized to contain the following

values: 0, 64, 128, and 192. The gain_table(8) array is a word array (

of length 8. The gain_table(8) array is initialized to contain the u
following values: 0, 512, 1024, 1536, 2048, 2560, 3072, and 3584.

The register_sub_address argument is a word integer constant that

has a value of 12288.

INTEGER*4 control_table(16)

INTEGER*2 control_word_mode(4) /0,64,128,192/
,gain_table(8)
/0,612,1024,1636,2048,2560,3072,3684/
,register_sub_address /12288/

D0 10 i = 1,16

channel_number = i - 1
control_table(i) = channel_number + control_word_mode(1) +
1 gain_table(1) + register_sub_address

10 CONTINUE

control_table(16) = 16 + control_word_mode(2) + gain_table(1) +
1 register_sub_address




10.

11.

12.

Load the Control Word Table, beginning at position 0 and ending at
position 15. Begin loading the Control Word Table at location 0.

val(1) = LIO$K_OUTPUT

val(2) = %LOC(control_table)

val(3) = 0

val(4) = 15

val(B) = 0

status = LIO$SET_I (adf_id, LIOS$K_CWT, 5, val(l), val(2),

i val(3), val(4), val(6))
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Load the Control Table Address register for the start of the
conversion.

status = LIO$SET_I (adf_id, LIO$K_CTA, 1, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Set the speed by loading the Programmable Clock Register.

status = LIO$SET_I (adf_id, LIO$K_PCR, 1, 100)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Use the LIOSREAD routine to start the data transfer immediately.
The device_specific argument is an array of longwords of length six
that you use to specify control information about a data transfer.

The following table shows the values of device_specific.

Index Value

1 LIO$M_WORD or LIO$M_BLOCK or LIO$M_LARGE_BUF
LIO$M_START_CONV
LIO$M_BURST

Buffer address

Buffer size, in bytes
Buffer address

Buffer or subbuffer size, in bytes

S U s W N

Number of buffers or subbuffers to transfer

To perform single word output, the source program looks as follows:

device_specific(i) = LIO$M_WORD

status = LIO$READ (adf_id, buffer, buffer_length, data_length,
1 device_specific)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Laboratory /O Device Support 2-33




o

13.

To perform single-buffer block input, the source program looks as u
follows:

LIO$M_BLOCK .OR. LIO$M_START_CONV
%LoC(buffer)

buffer_length

%LOC (dummy_buffer)
dummy_buffer_length

1

device_specific(1)
device_specific(2)
device_specific(3)
device_specific(4)
device_specific(b)
device_specific(6)

W onnunn

status = LIOSREAD (adf_id, buffer, buffer_length, data_length,
1 device_specific)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

For word (LIO$M_WORD) input, the buffer argument is a word that
returns the input data. The buffer_length argument contains 2.

For block (LIO$M_BLOCK) or large-buffer (LIO$M_LARGE_BUF)
input, buffer and buffer_length are dummy arguments. The
required arguments are pointed to by the device_specific argument.

For single- or alternate-block I/O, the device_specific argument

contains the:

Address of the first data buffer

Size of the first data buffer

Address of the second data buffer u
Size of the second data buffer

LI -V W<

Number of buffers to transfer

For large buffer I/O, the device_specific argument contains the:
a. Address of the large buffer

b. Size of the large buffer

c. Zero

d. Size of one subbuffer

e. Number of subbuffers to transfer
Detach the device.

status = LIO$DETACH (adf_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

&
2-34 Laboratory I/O Device Support u



2.2.3.4 Using the ADF01 for Asynchronous Input
To set up the ADFQ1 device for asynchronous input, do the following:

1.

2.
3.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.

Attach the ADF01 device as described in Section 2.2.3.1, Attaching
the ADFO1.

Set up the device to use the asynchronous I/O interface.

status = LIO$SET_I (adf_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Set up the device for direct data path.

status = LIO$SET_I (adf_id, LIO$K_DATA_PATH, 1, LIOSK_DIRPATH)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Reset the DRQ11-C DMA interface and clear the FNCTO0 bit.

status = LIO$SET_I (adf_id, LIO$K_RESET_DRX, 2, LIO$K_NO_FNCTO, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Connect to unsolicited interrupts and cancel any previous 1/0
request.
status = LIO$SET_I (adf_id, LIO$K_EVENT_AST, 3, adf_ast_rtn,

1 adf_ast_param, LIO$K_CANCEL)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Set up the Control Table. This example sets up the control word
mode to mode 0 for channels 0 through 14, and to mode 1 for
channel 15. The channel gain is set to 0 for all channels.

The control_table(16) array is a longword array with a dimension
as large as the number of channels to sample, in this example 16.
The control_word_mode(4) array is a word array of length 4. The
control_word_mode(4) array is initialized to contain the following
values: 0, 64, 128, and 192. The gain_table(8) array is a word array
of length 8. The gain_table(8) array is initialized to contain the
following values: 0, 512, 1024, 1536, 2048, 2560, 3072, and 3584.

Laboratory I/0O Device Support 2-35




The register_sub_address argument is a word integer constant that u
has a value of 12288.

INTEGER*4 control_table(16)

INTEGER*2 control_word_mode(4) /0,64,128,192/
,gain_table(8)
/0,612,1024,1536,2048,2560,3072,3684/
,register_sub_address /12288/

DO 10 i = 1,16

channel_number = i - 1
control_table(i) = channel_number + control_word_mode(1) +
1 gain_table(1) + register_sub_address

10 CONTINUE

control_table(16) = 16 + control_word_mode(2) + gain_table(1) +
1 register_sub_address

9. Load the Control Word Table, beginning at position 0 and ending at
position 15. Begin loading the Control Word Table at location 0.

val(l) = LIO$K_OUTPUT

val(2) = %LOC(control_table)

val(3) =0

val(4) = 16

val(6) = 0

status = LIO$SET_I (adf_id, LIO$K_CWT, 5, val(1l), val(2),

1 val(3), val(4), val(b)) u

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

10. Load the Control Table Address register for the start of the
conversion.

status = LIO$SET_I (adf_id, LIO$K_CTA, 1, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

11. Set the speed by loading the Programmable Clock Register.

status = LIO$SET_I (adf_id, LIO$K_PCR, 1, 100)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

12. Use the LIO$ENQUEUE routine to start the write request. The
device_specific argument is an array of longwords of length six that
you use to specify control information about a data transfer.

2-36 Laboratory I/O Device Support u



The following table shows the values of device_specific.

Index Value

1 LIO$M_INPUT or LIO$M_OUTPUT
LIO$SM_WORD or LIO$M_BLOCK or LIO$M_LARGE_BUF
LIO$M_START_CONV
LIO$M_BURST

Buffer address
Buffer size, in bytes
Buffer address

Buffer or subbuffer size, in bytes

A U bW N

Number of buffers or subbuffers to transfer

To perform large-buffer input, the source program looks as follows:

device_specific(1) LIO$M_INPUT .OR. LIO$N_LARGE_BUF .OR. LIO$M_START_CONV

device_specific(2) = YLOC(buffer)
device_specific(3) = buffer_length
device_specific(4) = 0
device_specific(6) = subbuffer_length
device_specific(6) = 10000

status = LIB$GET_EF (event_flag)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = SYS$CLREF(%VAL(event_flag))

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = LIO$ENQUEUE (adf_id, buffer, buffer_length, ,event_flag, ,
1 device_specific)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

For block (LIO$M_BLOCK) or large-buffer (LIO$M_LARGE_BUF)
input, buffer and buffer_length are dummy arguments. The
required arguments are pointed to by the device_specific argument.

For single- or alternate-block 1/O, the device_specific argument
contains the:

a. Address of the first data buffer

Size of the first data buffer

Address of the second data buffer

Size of the second data buffer

Number of buffers to transfer

oo o

Laboratory /0O Device Support 2-37




For large buffer I/O, the device_specific argument contains the: u
a. Address of the large buffer

b. Size of the large buffer

c. Zero

d. Size of one subbuffer

e. Number of subbuffers to transfer

13. Dequeue the buffer or use one of the other asynchronous
1/O buffer-handling mechanisms described in Section 1.5,
Asynchronous I/O Buffer-Handling Mechanisms.

14. Detach the device.

status = LIO$DETACH (adf_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.2.4 ADQ32 Support

The ADQ32 device is a 200 kHz analog-to-digital (A/D) converter with

32 single-ended channels or 16 differential channels that supports direct
memory access (DMA) I/O. The device’s DMA architecture enables it to

run multibuffered at 200 kHz continuously. U

The ADQ32 device also contains five on-board counters. LIO uses
combinations of the five counters to merge them into two clocks for
actual use, the primary clock and the sweep clock.

The device supports a mixture of single-ended and differential channels,
and can be set up with different gains on each channel. A flexible
triggering scheme allows the A/D channels to be scanned in any order.

There are two basic triggering modes for the ADQ32:

e All points are triggered by the same source.

¢ Channel sweeps triggered by a source. Points within each channel
sweep are trigger by another source.

2-38 Laboratory I/0O Device Support ‘ )




“4 ’ The following variations on the basic triggering modes can be used to
achieve a triggering scheme appropriate for your application:

* Using the LIO$K_TRIG parameter, choose the source to trigger
points or sweeps.

— Sources for points are: burst at top speed of the A/D (specify
LIO$SK_BURST as the first value), the A/D clock (specify
LIO$K_AD_CLOCK as the first value), and the external trigger
input (specify LIOSK_EXTERNAL as the first value).

— Sources for sweeps are: the A/D clock (specify
LIO$K_AD_CLOCK as the second value) and the external
gateltrigger (specify LIOSK_EXTERNAL as the second value).

NOTE

The ADQ32 has two external inputs: the external
gatel/trigger input and the external frequency input.
The LIO$K_EXTERNAL value generally refers to the
external gate/trigger input. However, when you are
specifying all points triggered by the same source
(LIO$K_EXTERNAL, LIO$K_SAME, LIO$_SAME),
ﬂ and you are using the external gate/trigger input
to gate the trigger ( specified by the LIO$SK_GATE
parameter), then the LIOSK_EXTERNAL value refers
to the external frequency input.

e Using the LIO$K_TRIG parameter, wait for the external
gate/trigger to go low before starting the data collection (specify
LIO$K_EXTERNAL, instead of LIO$K_SAME as the third value).

* Using the LIO$K_GATE parameter, gate the A/D on and off using
the external gate/trigger input.

— Level gating (LIO$K_LEVEL) means that the A/D runs while the
external gate/trigger is high.

— Edge gating (LIO$K_EDGE) means that succeeding low-going
edges toggle the A/D from on to off, and from off to on.

— Delayed edge gating (LIO$K_EDGE_DELAY) is the same as
edge gating except that the acquisition is delayed one tick of
the sweep clock. The delay time is 1/(sweep rate), where the
sweep rate is set using the LIO$K_SWEEP_RATE parameter. For
example, if the frequency of the sweep clock is 5 Hz, then the
gate is delayed 1/5 of a second.

‘ ’ Laboratory I/O Device Support 2-39




See Appendix A for more information about ADQ32 trigger sources and
external gating.

See the ADQ32 A/D Converter Module User’s Guide for more information
about the ADQ32.

2.2.4.1 Attaching the ADQ32

Attaching the ADQ32 device means assigning a VMS I/O channel to
the device and initializing LIO data structures for, and pointers to, the
device.

Use the LIO$ATTACH routine to attach the ADQ32 device.

status = LIOSATTACH (adq_id, 'AWAO', LIO$K_Qi0)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
The adq_id argument returns the LIO-assigned device ID for the ADQ32
device. The ADQ32 is referenced by this device ID in subsequent
routine calls to the device in a user program.

The device specification AWAQ specifies an ADQ32 (AW) device with
controller letter A and unit number 0. If you have only one ADQ32
device configured in your system, specifying the device type AW is
sufficient.

The LIO$K_QIO value sets up the device to use QIOs.

2.2.4.2 Setting Up the ADQ32

2-40

Before you can begin data transfers with the ADQ32, you must set up
certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show ADQ32
device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

Laboratory 1/0 Device Support




Table 2-5: ADQ32 LIO$SET and LIO$SHOW Parameters

Parameter

Function

LIO$K_AD_CHAN

LIO$K_AD_DIFFERENTIAL

LIO$K_AD_GAIN
LIO$K_AST RTN

LIO$K_ASYNCH
LIO$K_BUFF_SIZE

LIO$K_CLK_RATE

LIO$K_DBL_BUF
LIO$K_DIAG_CHAN

LIO$K_ERR_HANDLE
LIO$K_FORWARD
LIO$K_GATE

LIO$K_N_AD_CHAN
LIO$K_SGL_BUF
LIO$K_SWEEP_RATE

LIO$K_SYNCH
LIO$K_TRIG

Sets the ADQ32 A/D channels.

Specifies whether to use single-ended or
differential input for each channel set up
with the LIO$K_AD_CHAN parameter.

Sets the ADQ32 A/D channel gains.

Specifies a user-written AST routine to receive
buffers when a device finishes processing
them.

Sets the device for asynchronous 1/O.

Sets the maximum size, in bytes, of the
asynchronous buffers to use.

For the primary clock, takes a specified
frequency and produces the best internal
crystal rate and divider to approximate that
frequency.

Enables double-buffer DMA data transfers.

Enables or disables the diagnostic inputs to
ADQ32 channels 0, 1, and 2.

Specifies the way in which a device returns
error conditions.

Specifies the device to which completed buffers
are forwarded.

Specifies the type of external gating used with
the ADQ32 device.

Returns the number of device A/D channels.
Enables single-buffer DMA data transfers.

For the sweep rate clock, takes an ideal
frequency and produces the best internal
crystal rate and divider to approximate that
frequency.

Sets up the device for synchronous 1/O.
Sets the device trigger mode or source.

Laboratory /O Device Support 2-41




2.2.4.3 Using the ADQ32 for Synchronous Input u
To use the ADQ32 for synchronous input, do the following:
1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.
2. Declare the data types and variables you are using in your program.

3. Attach the ADQ32 device as described in Section 2.2.4.1, Attaching
the ADQ32.

4. Set up the device to use the synchronous I/O interface.

status = LIO$SET_I (adq_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

5. Specify the A/D channels to use.

status = LIO$SET_I (adq_id, LIO$K_AD_CHAN, 3, 0, 1, 2)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

6. Specify the channel gains.

status = LIO$SET_I (adq_id, LIO$K_AD_GAIN, 3, 1, 1, 1)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

7. Set up the device trigger mode. I

status = LIO$SET_I (adq_id, LIO$K_TRIG, 3, LIO$K_BURST,
1 LIO$K_SAME, LIO$K_SANE)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies immediate burst mode. This means that the
data input begins as soon as the program executes the subsequent
LIO$READ routine call and fills the buffer as fast as possible.

8. Specify the buffer size (in bytes).

status = LIO$SET_I (adq_id, LIO$K_BUFF_SIZE, 1, 24)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies a 24-byte (12-word) buffer. The maximum
allowable value for this parameter is a 64K-byte (32768-word) buffer.

9. The ADQ32 starts the data transfer immediately on the LIOSREAD
routine call and fills the buffer as fast as possible.

status = LIOSREAD (adq_id, buffer, 24, data_length, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2-42 Laboratory I/O Device Support u



10. You can process, store, or print out the data at this step.
11. Detach the device.

status = LIO$DETACH (adq_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.2.4.4 Using the ADQ32 for Asynchronous Input
To use the ADQ32 for asynchronous input, do the following;:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.

Attach the ADQ32 device as described in Section 2.2.4.1, Attaching
the ADQ32.

Set up the device to use the asynchronous I/O interface.

status = LIO$SET_I (adq_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify the A/D channels to use.

status = LIO$SET_I (adq_id, LIOSK_AD_CHAN, 3, 0, 1, 2)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify the channel gains.

status = LIO$SET_I (adq_id, LIOSK_AD_GAIN, 3, 1, 1, 1)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Set up the device trigger mode.

status = LIO$SET_I (adq_id, LIO$K_TRIG, 3, LIO$K_BURST,
1 LIO$K_SANE, LIO$K_SAME)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies immediate burst mode. This means that the
data input begins as soon as the program executes the subsequent
LIOSENQUEUE routine call and fills the buffer as fast as possible.

Specify the buffer size (in bytes).

status = LIO$SET_I (adq_id, LIOS$K_BUFF_SIZE, 1, 24)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies a 24-byte (12-word) buffer. The maximum
allowable value for this parameter is a 64K-byte (32768-word) buffer.

Laboratory /0O Device Support 2-43




9. The ADQ32 starts the data transfer immediately on the ‘ ,
LIO$ENQUEUE routine call and fills the buffer as fast as possible.

status = LIO$ENQUEUE (adq_id, buffer, 24, data_length, , , , )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

10. Dequeue the buffer or use one of the other asynchronous
I/O buffer-handling mechanisms described in Section 1.5,
Asynchronous 1/O Buffer-Handling Mechanisms.

11. Detach the device.

status = LIO$DETACH (adq_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.2.5 ADV11-D Support

The ADV11-D is a 50-kHz analog-to-digital (A/D) converter with
programmable gain that supports direct memory access (DMA) I/O. You
can set the ADV11-D with jumpers to either 16 single-ended channels
or 8 differential channels. The LIO facility supports memory-mapped
input (for synchronous calls only) and QIO input.

You can use the KWV11-C real-time clock device as a steady frequency
source for the ADV11-D. See Section 2.1, Real-Time Clock Devices, for U
more information.

2.2.5.1 Attaching the ADV11-D

Attaching the ADV11-D means assigning a VMS I/O channel to the
device and initializing LIO data structures for, and pointers to, the
device.

Use the LIO$ATTACH routine to attach the ADV11-D.

status = LIO$ATTACH (adv_id, 'AZAO', LIOS$K_QIO)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
The adv_id argument returns the LIO-assigned device ID for the
ADV11-D device. The ADV11-D is referenced by this device ID in
subsequent routine calls to the device in a user program.

The device specification AZAQ specifies an ADV11-D (AZ) device with
controller letter A and unit number 0. If you have only one ADV11-D
device configured in your system, specifying the device type AZ is
sufficient.

2-44 Laboratory I/O Device Support ‘ ’



The LIO$K_QIO value sets up the device to use QIOs. The LIO facility
also supports memory-mapped /O (LIO$K_MAP) for the device. If you
do not specify the I/O type when you attach the ADV11-D device, by
default it is attached to use QIOs.

2.2.5.2 Setting Up the ADV11-D

Before you can begin data transfers using the ADV11-D, you must set

up certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show ADV11-D
device characteristics. See Chapter 4 for reference descriptions of the

parameters listed in this table.

Table 2-6: ADV11-D LIO$SET and LIO$SHOW Parameters

Parameter

Function

LIO$K_AD_CHAN
LIO$K_AD_GAIN
LIO$K_AST RTN

LIO$K_ASYNCH
LIO$K_CONT
LIO$K_DEVICE_EF

LIO$K_ERR_HANDLE
LIO$K_FORWARD

LIO$K_N_AD_CHAN
LIO$K_SGL_BUF
LIO$K_START
LIO$K_STOP
LIO$K_SYNCH
LIO$K_TRIG

Sets the ADV11-D A/D channels.
Sets the ADV11-D A/D channel gains.

Specifies a user-written AST routine to receive
buffers when a device finishes processing them.

Sets the device for asynchronous [/O.
Sets the device for continuous DMA mode.

Establishes the event flag that is set when a buffer
becomes available.

Specifies the way in which a device returns error
conditions.

Specifies the device to which completed buffers are
forwarded.

Returns the number of device A/D channels.
Enables single-buffer DMA data transfers.
Starts the device.

Stops the device.

Sets up the device for synchronous 1/0O.

Sets the device trigger mode or source.

Laboratory /O Device Support 2-45




2.2.5.3 Using the ADV11-D for Synchronous Input
To set up the ADV11-D device for synchronous input, do the following:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.
2. Declare the data types and variables you are using in your program.

3. Attach the ADV11-D device as described in Section 2.2.5.1,
Attaching the ADV11-D. When the device is attached to use QIOs
(LIO$K_QIO), it performs single-buffer DMA transfers by default.
When the device is attached to use mapped I/O (LIOSK_MAP), it
does not perform DMA transfers. '

NOTE

When performing single-buffer DMA transfers, the data
can overrun the end of the buffer up to 256 points. (The
actual number of points varies each time.) Be sure to
declare your data buffer (in step 2 of this procedure) to
be at least 256 words longer than the buffer length your
program passes to the LIO facility. Data overrun generally
does not occur at low clock rates or at burst rates. The
overrun area is not required when performing continuous
DMA transfers.

4. Set up the device to use synchronous I/O.

status = LIO$SET_I (adv_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

5. Specify the analog-to-digital channels to use.

status = LIO$SET_I (adv_id, LIO$K_AD_CHAN, 1, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies A/D channel 0.
6. Specify the channel gain.

status = LIO$SET_I (adv_id, LIO$K_AD_GAIN 1, 1)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies a channel gain of 1.

2-46 Laboratory I/O Device Support



(g

10.

Specify the device trigger mode.

status = LIO$SET_I (adv_id, LIOS$K_TRIG, 1, LIO$K_INM_BURST)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
This routine specifies immediate burst mode. This means that the
data input begins as soon as the program executes the subsequent
LIO$READ routine call and fills the buffer as fast as possible.

Read a buffer from the device. The single-buffer DMA data transfer
starts immediately on the LIOSREAD routine call and fills the buffer
as fast as possible.

status = LIO$READ (adv_id, buffer, data_length, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Process the buffer.
Detach the device.

status = LIO$DETACH (adv_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The online sample program LIO_SGLBUF_DMA.FOR in the
LIOSEXAMPLES directory is a complete VAX FORTRAN program

that shows how to use the synchronous I/O interface and single-buffer
DMA to read 20 values from the ADV11-D device and then to write the
values to the AAV11-D device.

2.2.5.4 Using the ADV11-D for Asynchronous Input
To set up the ADV11-D device for asynchronous input, do the following;:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.

Attach the ADV11-D device as described in Section 2.2.5.1,
Attaching the ADV11-D. When the ADV11-D is attached to use QIOs
(LIO$K_QIO), it performs single-buffer DMA transfers by default.
To set up the device to perform continuous DMA data transfers,
specify continuous DMA mode in step 5 of this procedure.

Set up the device to use asynchronous I/O.

status = LIO$SET_I (adv_id, LID$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Laboratory I/O Device Support 2-47




Specify the DMA mode. To perform single-buffer DMA, completing
this step is optional. (The ADV11-D device performs single-buffer
DMA transfers by default when it is attached to use QIOs and

the asynchronous 1/O interface.) To perform continuous DMA,
completing this step is required.

Be sure to include the following routine line in your program.

status = LIO$SET_I (adv_id, LIO$K_CONT, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify the analog-to-digital channels to use.

status = LIO$SET_I (adv_id, LIOSK_AD_CHAN, 1, 0)

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status))
This routine specifies A/D channel 0.
Specify the channel gain.

status = LIO$SET_I (adv_id, LIO$K_AD_GAIN 1, 1)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies a channel gain of 1.
Specify the device trigger mode.

status = LIO$SET_I (adv_id, LIO$K_TRIG, 1, LIO$K_IMM_BURST)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies immediate burst mode. This means that the
data input begins as soon as the program executes the subsequent
LIO$ENQUEUE routine call and fills the buffer as fast as possible.

Enqueue a buffer to the device. The single-buffer DMA data transfer
starts immediately on the LIO$ENQUEUE routine call and fills the
buffer as fast as possible.

status = LIO$ENQUEUE (adv_id, buffer, buffer_length, , , , , )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

If you are performing continuous DMA (see step 5), enqueue all
buffers to be used. Data transfer does not start in continuous DMA
until the LIO$K_START parameter executes. (If the trigger mode
was LIO$K_EXT_BURST, data collection starts when the external
trigger occurs.)

2-48 Laboratory I/O Device Support

/




)

10. Dequeue the buffer or use one of the other asynchronous
I/O buffer-handling mechanisms described in Section 1.5,
Asynchronous 1/0 Buffer-Handling Mechanisms.

11. Detach the device.

status = LIO$DETACH (adv_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The online sample program LIO_CONT_DMA.FOR in the
LIOSEXAMPLES directory is a complete VAX FORTRAN program
that shows how to use the asynchronous I/O interface and continuous
DMA to read values from the ADV11-D device.

2.2.6 AXV11-C Support

The AXV11-C is a combination device with one 16-channel
analog-to-digital (A/D) converter with programmable gain, and two
digital-to-analog (D/A) converters. You can set the AXV11-C A/D with
jumpers for 16 single-ended channels or 8 differential channels.

You can use the KWV11-C real-time clock device as a steady
frequency source. See Section 2.1, Real-Time Clock Devices, for more
information.

For more information about the AXV11-C, see the AXV11-C/KWV11-C
Analog Module and Real-Time Clock Module User’s Guide.

Attaching the AXV11-C

Attaching the AXV11-C means assigning a VMS I/O channel to the
device and initializing LIO data structures for, and pointers to, the
device.

Use the LIO$ATTACH routine to attach the AXV11-C.

status = LIO$ATTACH (axv_id, 'AXAO', LIO$K_CTI)
IF(.NOT. status) CALL LIB$SIGNAL(%VAL(status))

The axv_id argument returns the LIO-assigned device ID for the
AXV11-C device. The AXV11-C is referenced by this device ID in
subsequent routine calls to the device in a user program.

Laboratory /O Device Support 2-49




The device specification AXAQ specifies an AXV11-C (AX) device with
controller letter A and unit number 0. If you have only one AXV11-C u
device configured in your system, specifying the device type AX is

sufficient.

The LIO$K_CTI value sets up the device to use connect-to-interrupt
(CTI) /O. The AXV11-C is the only LIO device that supports CTI I/O.

NOTE

Before you can use CTI I/O with the AXV11-C, you must
connect the CTI driver to the device. See Appendix B for
instructions about connecting the CTI driver to the AXV11-C.

The LIO facility also supports QIOs (LIO$K_QIO) and memory-mapped
(LIO$K_MAP) 1/O for the device. If you do not specify the I/O type
when you attach the AXV11-C device, by default it is attached to use
QIOs.

2.2.6.2 Setting Up the AXV11-C

Before you can begin data transfers using the AXV11-C, you must set

up certain device characteristics. The following table lists the LIO$SET

and LIO$SHOW parameters you can use to set up and show AXV11-C u
device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

Table 2-7: AXV11-C LIOS$SET and LIO$SHOW Parameters

Parameter Function

LIO$K_ AD_CHAN Sets the AXV11-C A/D channels.

LIO$K_AD_GAIN Sets the AXV11-C A/D channel gains.

LIO$K_AST RTN Specifies a user-written AST routine to receive
buffers when a device finishes processing them.

LIO$K_ASYNCH Sets the device for asynchronous I/O.

LIO$K_CTI_BUF Attaches the device with connect-to-interrupt 1/O.

LIO$K_CTI_OVERHD Returns the size (in bytes) of the
connect-to-interrupt overhead.

LIO$K_DA_CHAN Sets the AXV11-C D/A channels.

2-50 Laboratory /O Device Support ' l



‘ , Table 2-7 (Cont.): AXV11-C LIO$SET and LIO$SHOW Parameters

Parameter Function

LIO$K_DEVICE _EF Establishes the event flag that is set when a buffer
becomes available.

LIO$K_FORWARD Specifies the device to which completed buffers are
forwarded.

LIO$K_N_AD_CHAN Returns the number of device A/D channels.

LIO$K_N_DA_CHAN Returns the number of device D/A channels.

LIO$K_SYNCH Sets up the device for synchronous /O when
attached for QIO only.

LIO$K_TIMEOUT Sets the length of time (in seconds) before an 1/O

request is aborted.
LIO$K_TRIG Sets the device trigger mode or source.

2.2.6.3 Using the AXV11-C for Synchronous Input

To set up the AXV11-C device for synchronous connect-to-interrupt
ﬂ input, do the following:
- 1. Include the symbolic definition file appropriate for the programming
language you are using.
2. Declare the variables and the data types of the variables you are
using in your program.
3. Attach the AXV11-C device as described in Section 2.2.6.1,
Attaching the AXV11-C.
4. Get an event flag for this process. This example uses the VMS
Run-Time Library routine LIBSGET_EF to obtain a free VMS event
flag.
status = LIB$GET_EF (event_flag)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
5. Specify the connect-to-interrupt buffer.

status = LIO$SET_I (axv_id, LIO$K_CTI_BUF, 3, buffer, buffer_length,
1 event_flag)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

" ' ‘ Laboratory /O Device Support 2-51




10.

Set up the device to use synchronous I/O.

status = LIO$SET_I (axv_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify the analog-to-digital channels to use.

status = LIO$SET_I (axv_id, LIO$K_AD_CHAN, 5, 0, 1, 2, 3, 4)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify the channel gains.

status = LIO$SET_I (axv_id, LIO$K_AD_GAIN, 5, 1, 1, 1, 1, 1)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify the device trigger mode.

status = LID$SET_I (axv_id, LIOS$K_TRIG, 1, LIO$K_INM_BURST)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
This routine specifies immediate burst mode. Immediate burst
mode means that the input begins as soon as the program executes
the subsequent LIOSWRITE routine call and fills the buffer as fast as
possible.
Read a buffer from the device. The data transfer starts immediately
on the LIOSREAD routine call and fills the buffer as fast as possible.

status = LIO$READ (axv_id, buffer, buffer_length, data_length,)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Buffer sizes must be 64K bytes or smaller for input.

The online sample program LIO_AXV_CTIL.FOR in the LIOSEXAMPLES
directory is a complete VAX FORTRAN program that shows how to
read A/D values from the AXV11-C using connect-to-interrupt I/O. See

the following online sample programs for more information about using
the AXV11-C with mapped I/O and with QIOs:

LIO_AXV_MAPPED.BAS
LIO_AXV_MAPPED.C
LIO_AXV_MAPPED.FOR
LIO_AXV_MAPPED.PAS
LIO_AXV_QIO.FOR

2-52 Laboratory I/O Device Support




ﬂ

2.2.6.4 Using the AXV11-C for Asynchronous Input
To set up the AXV11-C device for asynchronous input, do the following:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.
Declare the data types and variables you are using in your program.

Attach the AXV11-C device as described in Section 2.2.6.1,
Attaching the AXV11-C.

Set the device to use the asynchronous I/O interface.

status = LIO$SET_I (axv_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify the analog-to-digital channels to use.

status = LIO$SET_I (axv_id, LIO$K_AD_CHAN, 6, 0, 1, 2, 3, 4)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify the channel gains.

status = LIO$SET_I (axv_id, LIO$K_AD_GAIN, 5, 1, 1, 1, 1, 1)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify the device trigger mode.

status = LIO$SET_I (axv_id, LIO$K_TRIG, 1, LIO$K_CLK_POINT)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The LIO$K_CLK_POINT value sets the A/D converter to sample one
channel on each external trigger. If you specify several channels for
use, the next channel in the series is sampled on each successive
external trigger. When the A/D converter reaches the end of the
channel list, it begins sampling again at the first channel in the list.

Get an event flag for the buffer. This example uses the VMS
Run-Time Library routine LIBSGET_EF to obtain a free VMS event
flag.

status = LIB$GET_EF (event_flag)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Laboratory /O Device Support 2-53




9. Enqueue the buffer to the AXV11-C A/D.

status = LIO$ENQUEUE (axv_id, buffer, buffer_length, , event_flag, ,
1 LIO$K_INPUT)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

In this routine, the LIO$K_INPUT value of the device_specific
argument signals the AXV11-C that the buffer is an input buffer and
is to be enqueued to the A/D converter. Buffer sizes must be 64K
bytes or smaller for input.

The event_flag argument is required if the device is attached with
QIO and you want to wait for the buffer transaction to complete by
calling the LIOSDEQUEUE routine with a nonzero wait argument.
This is done in the following step.

10. Dequeue the buffer, specifying a nonzero wait argument. The
LIO$DEQUEUE routine call waits for the input buffer transaction to
complete before dequeueing the buffer.

status = LIO$DEQUEUE (axv_id, buffer, buffer_length, data_length,
1 1, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

11. Detach the device.

status = LIO$DETACH (axv_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The online sample program LIO_ASYNCH_CLK_TRIG.FOR is a
complete VAX FORTRAN program that shows how to read A/D values
from the AXV11-C device using asynchronous 1/O. This program also
shows how to use the KWV11-C real-time clock device to externally
trigger the data transfer.

2.2.7 DRQ11-C Support

The DRQ11-C! is a double-buffer DMA interface for continuous
high-speed data exchange between the Q-bus and either the user’s
external device or another Q-bus.

For more information about the DRQ11-C, see the DRQ11-C Alternate
Buffer DMA Interface.

! This device is available only in Europe.

2-54 Laboratory I/O Device Support



m

2.2.7.1 Attaching the DRQ11-C

Attaching the DRQ11-C means assigning a VMS /O channel to the
device and initializing LIO data structures for, and pointers to, the
device.

Use the LIOSATTACH routine to attach the DRQ11-C.

status = LIO$ATTACH (drc_id, 'UUAO', LIO$K_QIO)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The drc_id argument returns the LIO-assigned device ID for the

DRQ11-C device. The DRQ11-C is referenced by this device ID in
subsequent routine calls to the device in a user program.

The device specification UUAQ specifies a DRQ11-C (UU) device with
controller letter A and unit number 0. If you have additional DRQ11-C
devices, or if you have any number of AAF(01 or ADF01 devices, or
both, you must attach each device with a unique controller letter.

The LIO$K_QIO value sets up the device to use QIOs. This is the only
I/O type supported for the DRQ11-C device.

() 2272 setting Up the DRQ11-C

Before you can begin data transfers using the DRQ11-C, you must set
up certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show DRQ11-C
device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

Table 2-8: DRQ11-C LIO$SET and LIO$SHOW Parameters

Parameter Function

LIO$K_ASYNCH Sets up a device for asynchronous I/O.

LIO$K_CANCEL Cancels all pending I/O requests on the specified
channel; used to stop continuous DMA.

LIO$K_CLR_LBO Clears the large buffer overflow condition on the
DRQ11-C device.

LIO$K_DATA_PATH Selects the data path and channel number for the

DRQ11-C device.

Laboratory I/O Device Support 2-55




Table 2-8 (Cont.):

DRQ11-C LIOSSET and LIO$SHOW Parameters

Parameter

Function

LIO$K_DEVICE_EF
LIO$K_DRX_AST _RTN
LIO$K_DRX_STAT
LIO$K_ERR_HANDLE
LIO$K_EVENT_AST
LIO$K_FUNCTION_BITS
LIO$K_RESET_DRX

LIO$K_STAT _BITS

LIO$K_SYNCH
LIO$K_TIMEOUT

Establishes the event flag that is set when a buffer
becomes available.

Specifies a user-written AST routine to receive
buffers when a DRQ11-C finishes processing them.

Returns the contents of the hardware registers of
the DRQ11-C device.

Specifies the way in which the DRQ11-C device
handles errors.

Assigns a user-written AST routine to be called on
DRQ11-C unsolicited interrupts.

Enables the setting of the four function bits in the
DRQ11-C Status and Command Register (SCR).

Resets the DRQ11-C device.

Reads the status bits (STATO - STAT3) in the Status
and Command Register (SCR) of the DRQ11-C
device.

Sets up the device for synchronous 1/O.

Sets the length of time (in seconds) before an 1/0
request is aborted.

IF (.NOT.

i 2-56 Laboratory I/0 Device Support

2.2.7.3 Using the DRQ11-C for Synchronous I/O
To set up the DRQ11-C device for synchronous I/O, do the following;:
1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

2. Declare the data types and variables you are using in your program.

3. Attach the DRQ11-C device as described in Section 2.2.7.1,
Attaching the DRQ11-C.

4. Set up the device to use the synchronous I/O interface.

status = LIO$SET_I (drc_id, LIO$K_SYNCH, 0)
status)

CALL LIB$SIGHAL (%VAL(status))



Set up the device for direct data path.

status = LIO$SET_I (drc_id, LIO$K_DATA_PATH, 1, LIO$K_DIRPATH)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Reset the DRQ11-C DMA interface and clear the FNCTO bit.

status = LIO$SET_I (drc_id, LIO$K_RESET_DRX, 2, LIO$K_NO_FNCTO, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Connect to unsolicited interrupts and cancel any previous 1/0
request.

status = LIO$SET_I (drc_id, LIO$K_EVENT_AST, 3, drc_ast_rtn,
1 drc_ast_param, LIO$K_CANCEL)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Use the LIOSREAD or LIO$WRITE routine to start the data transfer
immediately. The device_specific argument is an array of longwords

of length six that you use to specify control information about a data
transfer. The following table shows the values of device_specific.

Index Value

1 LIO$M_WORD or LIO$M_BLOCK or LIO$M_LARGE_BUF
LIO$M_START_CONV
LIO$M_BURST

Buffer address

Buffer size, in bytes

Buffer address or zero

Buffer or subbuffer size, in bytes

S U b_ W N

Number of buffers or subbuffers to transfer

To perform single word input, the source program looks as follows:

device_specific(1) = LIO$M_WORD

status = LIO$READ (drc_id, buffer, buffer_length, data_length,
1 device_specific)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Laboratory /0O Device Support 2-57




To perform single-buffer block output, the source program looks as
follows:

LIO$N_BLOCK .OR. LIO$M_START_CONV
%REF (buffer)

buffer_length

%REF (dummy_buffer)
dummy_buffer_length

1

device_specific(1)
device_specific(2)
device_specific(3)
device_specific(4)
device_specific(5b)
device_specific(6)

status = LIO$WRITE (drc_id, buffer, buffer_length, data_length,
1 device_specific)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
For word (LIOSM_WORD) I/O, the buffer argument is a word that
specifies where the input data is to be stored, or that contains the
data to be output. The buffer_length argument contains 2.

For block (LIO$M_BLOCK) or large-buffer (LIO$M_LARGE_BUF)
1/O, buffer and buffer_length are dummy arguments. The actual

required arguments are pointed to by the device_specific argument.

For single- or alternate-block I/O, the device_specific argument
contains the:

a. Address of the first data buffer

b. Size of the first data buffer

c. Address of the second data buffer
d. Size of the second data buffer

e. Number of buffers to transfer

For large buffer I/O, the device_specific argument contains the:
Address of the large buffer

Size of the large buffer

Zero

Size of one sub-buffer

© o0 g

. Number of sub-buffers to transfer
Detach the device.

status = LIO$DETACH (drc_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2-58 Laboratory I/O Device Support

W



l ’ 2.2.7.4 Using the DRQ11-C for Asynchronous I/O
To set up the DRQ11-C device for asynchronous I/O, do the following:
1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.
2. Declare the data types and variables you are using in your program.

3. Attach the DRQ11-C device as described in Section 2.2.7.1,
Attaching the DRQ11-C.

4. Set up the device to use the asynchronous I/O interface.

status = LIO$SET_I (drc_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

5. Set up the device for direct data path.

status = LIO$SET_I (drc_id, LIOSK_DATA_PATH, 1, LIO$K_DIRPATH)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

6. Reset the DRQ11-C DMA interface and clear the FNCTO bit.

status = LIO$SET_I (drc_id, LIO$K_RESET_DRX, 2, LIO$K_NO_FNCTO, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

7. Connect to unsolicited interrupts and cancel any previous 1/O
m request.

status = LIO$SET_I (drc_id, LIO$K_EVENT_AST, 3, drc_ast_rtn,
1 drc_ast_param, LIO$K_CANCEL)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

8. Use the LIOSENQUEUE routine to start the read or write request.
The device_specific argument is an array of longwords of length six

that you use to specify control information about a data transfer.
The following table shows the values of device_specific.

Index Value

1 LIO$M_INPUT or LIO$M_OUTPUT
LIO$M_WORD or LIO$M_BLOCK or LIO$M_LARGE_BUF
LIO$M_START_CONV
LIO$M_BURST

Buffer address
Buffer size, in bytes

m Laboratory /O Device Support 2-59




Index Value

4 Buffer address or zero
5 Buffer or subbuffer size, in bytes
6 Number of buffers or subbuffers to transfer

To perform alternate-buffer block input, the source program looks
as follows:

LIO$M_INPUT .OR. LIO$M_BLOCK .OR. LIO$M_START_CONV
%REF (buffer_1)

buffer_1_length

%REF (buffer_2)

buffer_2_length

2

device_specific(1)
device_specific(2)
device_specific(3)
device_specific(4)
device_specific(5)
device_specific(6)

status = LIB$GET_EF (event_flag)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = SYS$CLREF(%VAL(event_flag))
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
status = LIO$ENQUEUE (drc_id, buffer, buffer_length, ,event_flag, ,

1 device_specific)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The buffer and buffer_length arguments of the LIOSENQUEUE
routine are dummy arguments. The required arguments are pointed
to by the device_specific argument.

For single- or alternate-buffer block 1/O, the device_specific
argument contains the:

Address of the first data buffer

Size of the first data buffer

Address of the second data buffer

Size of the second data buffer

© ap TP

Number of buffers to transfer

For large buffer I/O, the device_specific argument contains the:
a. Address of the large buffer

b. Size of the large buffer

c. Zero

d. Size of one subbuffer

e

Number of subbuffers to transfer

2-60 Laboratory I/O Device Support



" ) ’ 9. Dequeue the buffer or use one of the other asynchronous
I/O buffer-handling mechanisms described in Section 1.5,
Asynchronous 1/O Buffer-Handling Mechanisms.

10. Detach the device.

status = LIO$DETACH (drc_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.2.8 Preston Support

The Preston device is an analog-to-digital (A/D) converter that supports
arbitrary channel lists of up to 1024 channels with no programmable
gain.

NOTE

In this guide, “‘Preston’” refers to an A/D converter from
Preston’s GM or EM series.

The Preston contains an internal real-time clock capable of generating
sampling rates in the range of 160 Hz to 1 MHz. It also contains an
ﬂ external start input and, optionally, an external clock input.

The Preston device is interfaced to a VAXlab system through one of
three ways:

* DRQ3B parallel device
¢ DRVI11-WA parallel device
¢ DRB32W, a DR11W-compatible port for the VAXBI bus

The LIO application routines treat each Preston interface as a separate
device.

The maximum transfer rate from the Preston to memory using the
DRQ3B interface is 1 MHz.

The maximum transfer rate from the Preston to memory using the
DRV11-WA interface is 250 kHz.

For more information about the Preston, see the documentation from
Preston Scientific.

' ‘ ‘ Laboratory I/0 Device Support 2-61




2.2.8.1 Attaching the Preston

Attaching a Preston device means assigning a VMS I/O channel to the
device and initializing LIO data structures for, and pointers to, the
device.

Use the LIO$ATTACH routine to attach a Preston device.

! To attach for DRQ3B interface:
status = LIO$ATTACH (preston_id, 'PFAO', LIO$K_QIO)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

! To attach for DRV11-¥A or DRB32¥ interface:
status = LIO$ATTACH (preston_id, 'PGAO', LIO$K_QIO)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The preston_id argument returns the LIO-assigned device ID for the

device. The Preston is referenced by this device ID in subsequent
routine calls to the device in a user program.

The device specification PFAQ specifies a Preston device interfaced to
a VAXlab through the DRQ3B device, with controller letter A and unit
number 0.

The device specification PGAO specifies a Preston device interfaced to a
VAXlab through the DRV11-WA or the DRB32W device, with controller
letter A and unit number 0.

If you have only one Preston device configured in your system,
specifying the device type PF or PG is sufficient.

NOTE

The Preston (DRV11-WA) device behaves identically to the
Preston (DRB32W) device. When you attach a PG device
on a VAXBI machine, the LIO facility automatically uses the
DRB32W device as the Preston interface. You must install
the UQW device driver on your system before you attempt
to attach a Preston (DRB32W) device. The LIOSATTACH
routine fails if the device driver is not installed.

The LIO$K_QIO value specifies the I/O type. This is the only I/O type
supported for use with Preston devices.

2-62 Laboratory I/O Device Support

W/



()

2.2.8.2 Setting Up the Preston

You can use the Preston (DRQ3B) device without specifying any
LIO$SET or LIO$SHOW parameters if the default mode of operation
is sufficient for your application. The default parameters were selected
based on the simplest case of single channel data acquisition. The
default operating parameters for this device are:

e A/D channel 0

e 500 kHz sampling rate

¢ Immediate start, clocked sweep
* Synchronous /O interface

Before you begin data transfers with a Preston device, you may want to
set up certain device characteristics different from the default operating
parameters supplied.

The following table lists the LIO$SET and LIO}SHOW parameters
you can use to set up and show Preston device characteristics. See
Chapter 4 for reference descriptions of the parameters listed in this
table.

Table 2-9: Preston LIOSSET and LIO$SHOW Parameters

Parameter Function

LIO$K_AD_CHAN Specifies the Preston A/D channels to use.

LIO$K_ADD_AD_CHAN Adds a single channel to the Preston A/D converter
channel list.

LIO$K_AST_RTN Specifies a user-written AST routine to receive
buffers when a device finishes processing them.

LIO$K_ASYNCH Sets the device for asynchronous 1/0.

LIO$K_BUFF_SIZE! Sets the maximum buffer size for a data transfer, in
bytes.

LIO$K_BURST_DIV Specifies the divisor of the Preston’s internal burst
rate clock.

LIO$K_BURST_RATE Specifies the rate of the Preston’s internal burst rate
clock.

'DRQ3B interface only

Laboratory 1/0O Device Support 2-63




Table 2-9 (Cont.): Preston LIO$SET and LIO$SHOW Parameters U

Parameter

Function

LIO$K_CLK_BASE
LIO$K_CLK_DIV
LIO$K_CLK_RATE
LIO$K_CONT!
LIO$K_DEVICE_EF
LIO$K_ERR_HANDLE
LIO$K_FORWARD
LIO$K_INIT_AD_CHAN

LIO$K_N_AD_CHAN
LIO$K_SGL_BUF'

LIO$K_START!
LIO$K_STOP!

LIO$K_SYNCH
LIO$K_TIMEOUT?

LIO$K_TRIG
LIO$K_UPDATE

Specifies the base crystal frequency of the Preston’s
internal clock.

Specifies the sampling rate of the Preston’s internal
clock.

Takes an ideal frequency and produces the best
internal crystal rate and divider to approximate that
frequency.

Sets the device for continuous DMA mode.

Establishes the event flag that is set when a buffer
becomes available.

Specifies the way in which a device returns error
conditions.

Specifies the device to which completed buffers are
forwarded.

Initalizes or clears the existing Preston A/D channel
list.

Returns the number of device A/D channels. ‘ ’

Sets the device to stop DMA between buffers.
Output is not continuous.

Starts the device running when it is set for
continuous DMA mode.

Stops the device when it is running in continuous
DMA mode.

Sets up the device for synchronous 1/O.

Sets the length of time (in seconds) before an 1/O
request is aborted.

Sets the device trigger mode or source.

Updates the Preston device to the current set-up
specifications.

IDRQ3B interface only

2DRB32W and DRV11-WA interfaces only

2-64 Laboratory I/O Device Support



m

2.2.8.3 Using the Preston for Synchronous Input
To set up a Preston device for synchronous input, do the following;:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

2. Declare the data types and variables you are using in your program.

3. Attach the Preston device as described in Section 2.2.8.1, Attaching
the Preston.

4. Set up the A/D channel using the LIOSK_AD_CHAN parameter,
or the LIOSK_INIT_AD_CHAN and LIO$K_ADD_AD_CHAN
parameters.

5. Specify the A/D sampling rate using the LIOSK_CLK_RATE or
LIO$K_CLK_DIV parameter.

6. Specify the device trigger source or mode using the LIO$K_TRIG
parameter.

7. Set the device to use the synchronous I/O interface. This step is
optional but is included in this procedure for clarity.

status = LIO$SET_I (preston_id, LIO$K_SYNCH, 0)
ﬂ IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

8. 1If you are setting up a Preston (DRQ3B), specify the buffer size (in
bytes).

status = LIO$SET_I (preston_id, LIO$K_BUFF_SIZE, 1, 16384)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies an 8K-word (16,384-byte) buffer. The
maximum allowable value for this parameter is a 32K-word
(65,536-byte) buffer.

9. Update the Preston device using the LIOSK_UPDATE parameter.
The parameter values you specify for the other parameters do not
take effect until your program executes LIOSK_UPDATE.

status = LIO$SET_I (preston_id, LIO$K_UPDATE, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

10. Read buffers of data using the LIOSREAD routine.
11. Detach the device.

status = LIO$DETACH (preston_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Laboratory 1/0 Device Support 2-65




2.2.8.4 Using the Preston for Asynchronous Input’

To use the Preston device for asynchronous input, do the following;:

1.

2.
3.

10.

11.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.
Attach the Preston device as described in Section 2.2.8.1, Attaching
the Preston.

Set up the A/D channel using the LIOSK_AD_CHAN parameter,
or the LIO$K_INIT_AD_CHAN and LIO$K_ADD_AD_CHAN
parameters.

Specify the A/D sampling rate using the LIO$K_CLK_RATE or
LIO$K_CLK_DIV parameter.

Specify the device trigger source or mode using the LIO$K_TRIG
parameter.

Set the device to use the asynchronous I/O interface. This step is
optional but is included in this procedure for clarity.

status = LID$SET_I (preston_id, LIO$K_ASYNCH, 0)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status)) ‘ '
Specify an AST routine (LIO$K_AST_RTN), a device event flag
(LIO$K_DEVICE_EF), or buffer forwarding (LIO$SK_FORWARD) as a
synchronization mechanism to handle completed buffers.
If you are setting up a Preston (DRQ3B), specify the buffer size (in
bytes).
status = LID$SET_I (preston_id, LIO$K_BUFF_SIZE, 1, 16384)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
This routine specifies an 8K-word (16,384-byte) buffer. The
maximum allowable value for this parameter is a 32K-word
(65,536-byte) buffer.
Update the Preston device using the LIOSK_UPDATE parameter.
The parameter values you specify for the other parameters do not
take effect until your program executes the following routine.

status = LIO$SET_I (preston_id, LIO$K_UPDATE, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Initiate I/O requests by using the LIOSENQUEUE routine to
enqueue buffers to the device.

2-66 Laboratory I/O Device Support u



() 12. Use the LIOSDEQUEUE routine or one of the synchronization
methods specified in step 8 of this procedure to retrieve the data
buffers specified by the LIOSENQUEUE routine.

13. Detach the device.

status = LIO$DETACH (preston_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.3 Digital I/0 Devices

2.3.1 DRB32 Support

The DRB32 is a 32-bit parallel I/O port for the VAXBI bus. It operates in
one direction (input or output) at a time.

The DRB32 contains eight status lines (input) and eight control lines
(output) for sensing and controlling external hardware.

m The DRB32 data path is 32 bits (longword) wide and it can be configured
for 16-bit (word) and 8-bit (byte) transfers. It can also be configured to
generate one parity bit per byte for applications where data integrity is
critical.

This section describes the digital I/O devices supported by VAXlab.
|

The DRB32 supports half-duplex block mode DMA transfers between
VAX memory and a user device using two sets of registers for
continuous transfers.

The speed of the DRB32 depends on system activity and configuration.
The peak transfer rate is 6 MB/second, which assumes immediate
response by the VAXBI. On processors whete the BI is not the memory
bus, data rates may be slower. Using multiple DRB32 devices also
reduces the throughput of each individual device.

The DRB32 supports buffer sizes up to a maximum of 960K bytes.

The maximum number of buffers in continuous DMA mode is 16. To
maintain continuous throughput, buffers must be enqueued in pairs to
ensure double buffering. The DRB32 automatically double buffers when
two or more DMA requests are outstanding. Performance is higher
with larger buffers since the overhead of loading the DMA registers is
significantly reduced.

‘. k ’ Laboratory /O Device Support 2-67




The DRB32 performs octaword transfers. To achieve the most efficient u
operation from the device, align buffers on octaword boundaries,

specifying the size as an integral number of octawords. If buffers

are not aligned on octaword boundaries, the DRB32 generates masked
octaword instructions which are slower.

For more information about the DRB32, see the DRB32 Technical Manual.

2.3.1.1 Attaching the DRB32
Attaching the DRB32 assigns a VMS I/O channel to the device and
initializes LIO data structures for, and pointers to, the device.
Use the LIOSATTACH routine to attach the DRB32.

status = LID$ATTACH (drb_id, 'UQAO', LIO$K_QIO)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
The drb_id argument returns the LIO-assigned device ID for the DRB32
device. The DRB32 is referenced by this device ID in subsequent
routine calls to the device in a user program.

The device specification UQAO specifies a DRB32 (UQ) device, with
controller letter A and unit number 0. If you have only one DRB32 ;
configured in your system, specifying the device type UQ is sufficient. U

The LIO$K_QIO value is the I/O type. This is the only supported 1/O
type for the DRB32 device.

2.3.1.2 Setting Up the DRB32

Before you can begin data transfers with the DRB32, you must set up
certain device characteristics. The following table lists the LIO$SET and
LIO$SHOW parameters you can use to set up and show DRB32 device

characteristics. See Chapter 4 guide for reference descriptions of the
parameters listed in this table.

\

|

|

\

|

|

2-68 Laboratory /O Device Support u



Table 2-10: DRB32 LIO$SET and LIO$SHOW Parameters

Parameter

Function

LIO$K_AST _RTN

LIO$K_ASYNCH

LIO$K_CTRL_AST

LIO$K_CTRL_PORT

LIO$K_DATA

LIO$K_DATA_WIDTH
LIO$K_DEVICE_EF

LIO$K_DIRECTION

LIO$K_FORWARD

LIO$K_LOCK_BUFFER

LIO$K_LOOP_BACK
LIO$K_PARITY

LIO$K_SYNCH
LIO$K_TIMEOUT

LIO$K_UNLOCK_BUFFER

Specifies a user-written AST routine to receive
buffers when a device finishes processing
them.

Sets the device for asynchronous 1/0O.

Assigns a user-written AST routine to be called
when an external device writes data to the
DRB32’s input control port.

Sets the output control port on the DRB32
device.

Performs an output operation to the parallel
data path without using DMA.

Specifies the width of the parallel data path.

Establishes the event flag that is set when a
buffer becomes available.

Sets the direction (input or output) of the
device.

Specifies the device to which completed buffers
are forwarded.

Specifies buffers to be locked before beginning
DMA transfers.

Enables or disables loopback mode.

Enables or disables the device to accept parity
from external devices.

Sets up the device for synchronous I/O.

Sets the length of time (in seconds) before an
1/O request is aborted.

Unlocks buffers previously locked with
LIO$K_LOCK_BUFFER.

Laboratory I/O Device Support 2-69




2.3.1.3 Using the DRB32 for Synchronous I/O

Using the DRB32 for synchronous 1/O is the simplest way to use

the device. Results are optimal when continuous performance is not
required. You can still read or write data up to 960K bytes in a single
transfer at the maximum speed of the device. However, synchronous
I/O tends to make the overhead associated with each I/O operation
more significant. Your program must wait until one transfer is complete
before starting the next one. When set to use synchronous I/O, the
DRB32 does not use double buffering.

To use the DRB32 for synchronous I/O, do the following:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.
Declare the data types and variables you are using in your program.

Declare or allocate a buffer up to 960K bytes in size. Be sure to
specify the data type of the buffer in agreement with the value of
the LIO$K_DATA_WIDTH parameter (see step 6). For example, if
the data path is set to a longword (32 bits), the data buffer should
be declared as a longword array. If the data path is set to a word
(16 bits), the data buffer should be declared as a word array, and so
on.

INTEGER*2 buffer(4096)

Attach the DRB32 device as described in Section 2.3.1.1, Attaching
the DRB32.

Set the width of the data path. To specify a 16-bit or 8-bit wide data
path, you must set this parameter to the appropriate value. If this
parameter is not set, the data path width defaults to 32 bits wide.

status = LIO$SET_I (drb_id, LIO$K_DATA_WIDTH, 1, LIO$K_WORD)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The width of the data path must be in agreement with the data type
of the buffer you declared or allocated in step 3 of this procedure.

Setting the data path width is optional. However, many external
devices are only 8 or 16 bits wide. Setting the data path width
to be the same as the size of the external device is memory
efficient. This saves DMA transfers because the data buffer does
not contain unused bytes that require I/O if the data path is wider
than necessary.

2-70 Laboratory I/O Device Support



ﬁ 6. Start the data transfer. Use the LIOSREAD routine for input. Use
/ the LIOSWRITE routine for output.

ctrl_bits = b '!decimal 6 = binary 101
status = LIO$WRITE (drb_id, buffer, 4096, ctrl_bits)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Optionally, you can specify the device_specific argument to change
the state of the output control lines. This may be necessary to place
the external device in the proper mode for the data transfer. The
device_specific argument is a longword value. The low order byte
of this value contains the bit pattern you want to write to the output
control port. This byte is written to the output control port before
the data transfer begins.

See the descriptions of the LIOSREAD and LIO$WRITE routines in
Chapter 3 for specific details about using these routines.
7. Detach the device.

status = LIO$DETACH (drb_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.3.1.4 Using the DRB32 for Asynchronous I/O

ﬂ Using the DRB32 for asynchronous I/0O enables your program to issue
/ multiple I/O requests without waiting for the first request to complete.
The driver double buffers DMA requests, thus reducing the overhead

associated with reloading the DMA registers.

An asynchronous DMA request is issued by calling the LIOSENQUEUE
routine. This routine inserts an 1/O request in the device’s DMA queue.
Each request is serviced in the order in which it is queued.

The DRB32 contains two sets of DMA registers. When two or more
DMA requests are pending, the DRB32 loads both sets of DMA
registers. When the first request completes, the device simply switches
DMA registers in hardware and begins processing the next request.
This improves continuous throughput by minimizing the delay between
buffers.

To use the DRB32 for asynchronous I/O, do the following:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

2. Declare the data types and variables you are using in your program.

ﬁ Laboratory /0 Device Support 2-71




3. Declare or allocate buffers up to 960K bytes in size each. Declare u
as many buffers as you need for your application. (Declaring an \
even number of buffers helps you make the most efficient use of the
DRB32’s double buffering feature.)

For maximum performance, make sure your buffers are
quadword-aligned, and that their sizes are integral numbers of
quadwords. The DRB32 moves quadwords on the VAXBI bus.
Smaller buffer alignments cause less efficient operations.

INTEGER*4 buffer_address(4096)

4. Attach the DRB32 device as described in Section 2.3.1.1, Attaching
the DRB32.

5. Set the DRB32 to perform input or output.

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

6. Set the width of the data path. To specify a 16-bit or 8-bit wide data
path, you must set this parameter to the appropriate value. If this
parameter is not set, the data path width defaults to 32 bits.

status = LIO$SET_I (drb_id, LIO$K_DATA_WIDTH, 1, LIO$K_WORD)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Make sure the width of the data path is in agreement with the U
data type of the buffer you declared or allocated in step 3 of this
procedure.

Setting the data path width is optional. However, many external
devices are only 8 or 16 bits wide. Setting the data path width
to be the same as the size of the external device is memory
efficient. This saves DMA transfers because the data buffer does
not contain unused bytes that require I/O if the data path is wider

status = LIO$SET_I (drb_id, LIO$K_DIRECTION 1, LIO$K_INPUT)
than necessary.

2-72 Laboratory I/O Device Support ‘ ’




To perform continuous DMA with the DRB32 device, you must lock
all I/O buffers in memory prior to beginning DMA transfers.

status = LIO$SET_I (drb_id, LIO$K_LOCK_BUFFER, 2, buffer_address,
1 4096)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Use the LIO$SET_I routine call with the LIO$K_LOCK_BUFFER
parameter, specifying the buffer address and the size (in bytes)

of each buffer to lock. You can lock a maximum of 16 buffers
that contain up to 960K bytes each. If you need to lock additional
buffers, you must unlock a buffer after it completes processing and
lock a new one.

status = LIO$SET_I (drb_id, LIO$K_UNLOCK_BUFFER, 2, buffer_address,
b 40986)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Start the data transfer. Use the LIOSENQUEUE routine to pass
buffers to the DRB32 device. The program remains active and can
do other processing during the data transfers. However, you need
some method to signal your main program at the end of the buffer
transfer. The simplest way to do this is to specify an event flag to
associate with each buffer when you enqueue it. The event flag is
set when the buffer completes processing, for example:

status = LIB$GET_EF (event_flag)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = LIO$ENQUEUE (drb_id, buffer, 4096, , event_flag, ,)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The LIOSENQUEUE routine queues a buffer to the DRB32 device
and associates the value of the event_flag argument with the buffer.

Return the buffer to the main program. Use the LIO$DEQUEUE
routine to return buffers to the main program. If you specified an
event flag in the LIOSENQUEUE routine call, you can use this flag
to ensure that the data transfer on a buffer is complete before you
dequeue the buffer. Specify the value of the LIOSDEQUEUE wait
argument as a nonzero integer. The LIO$DEQUEUE routine waits
for the buffer to become available on the device’s user queue and
then dequeues it.

status = LIO$DEQUEUE (drb_id, buffer_address, buffer_length, , 1, , ,)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Laboratory I/O Device Support 2-73




Typically, you enqueue all buffers to the device before the data
transfer begins. Then, you dequeue and process each buffer, U
one at a time, as it completes. When you finish processing a

| dequeued buffer, you can enqueue it again to maintain continuous
throughput. This process can continue until your application

completes execution.

10. Detach the device.

status = LIO$DETACH (drb_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.3.2 DRB32W Support

The DRB32W is a DR11W-compatible port for the VAXBI bus. It is
designed for fast data transfers with external devices. The DRB32W
uses handshake lines to control the flow of data and uses DMA to store
the data in memory.

The DRB32W device can be set for either input or output. The direction
is controlled in two ways:

e By an external line that can be either tied high or tied low to set the

direction ‘ ’

e By an external device to change direction dynamically

The device also contains three programmable control lines and three
user-readable sense lines.

The LIO support provided for this device is identical to the device
support provided for the DRV11-WA, with the exception that you must
specify a three-letter device type for the DRB32W.

For more information about the DRB32W, see the DRB32 Technical
Manual.

2.3.2.1 Attaching the DRB32W

Attaching the DRB32W means assigning a VMS 1/O channel to the
device and initializing LIO data structures for, and pointers to, the
device.

2-74 Laboratory I/O Device Support ‘ )



‘ ’ Use the LIO$ATTACH routine to attach the DRB32W device.

status = LIO$ATTACH (drbw_id, 'UQWAO', LIO$K_QID)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The drbw_id argument returns the LIO-assigned device ID for the

device. The DRB32W is referenced by this device ID in subsequent
routine calls to the device in a user program.

The device specification UQWAO specifies a DRB32W (UQW) device
with controller letter A and unit number 0. If you have only one
DRB32W device configured in your system, specifying the three-letter
device type UQW is sufficient.

| NOTE

} The DRB32W is the only device supported by VAXlab for
which you must specify a three-letter device type. All other
devices require that you specify a two-letter device type.

The LIO$K_QIO value specifies the 1/0 type. This is the only 1/O type
supported for use with the DRB32W device.

ﬂ 2.3.2.2 Setting Up the DRB32W

Before you can begin data transfer using the DRB32W, you must set
up certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show DRB32W
device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

Table 2-11: DRB32W LIOS$SET and LIO$SHOW Parameters

Parameter Function

LIO$K_AST RTN Specifies a user-written AST routine to receive
buffers when a device finishes processing them.

LIO$K_ASYNCH Sets the device for asynchronous 1/O.

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer

becomes available.
LIO$K_DIRECTION Sets the direction (input or output) of the device.

’ s Laboratory /O Device Support 2-75




Table 2-11 (Cont.): DRB32W LIO$SET and LIOSSHOW Parameters

Parameter Function

LIO$K_ERR_HANDLE Specifies the way in which a device returns error
conditions.

LIO$K_FORWARD Specifies the device to which completed buffers are
forwarded.

LIO$K_SYNCH Sets up the device to use synchronous 1/0.

LIO$K_TIMEOUT Sets the length of time (in seconds) before an 1/O

request is aborted.

2.3.2.3 Using the DRB32W for Synchronous 1/O
To set up the DRB32W to use synchronous 1/O, do the following:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.

Declare or allocate a buffer up to 64K bytes in size.
INTEGER#2 buffer(1024)

Attach the DRB32W device as described in Section 2.3.2.1,
Attaching the DRB32W.
Set up the device to use the synchronous I/O interface.

status = LIO$SET_I (drbw_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Start the data transfer. You can use the device_specific argument
of the LIOSREAD and LIO$WRITE routines to set the state of the
output function bits.

func_bits = 6 !decimal 6 = binary 101

status = LIOS$READ (drbw_id, buffer, 2048, data_length, func_bits)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Process the data.
Detach the device.

status = LIO$DETACH (drbw_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2-76 Laboratory I/O Device Support

U



‘ ’ 2.3.2.4 Using the DRB32W for Asynchronous I/O
To set up the DRB32W to use asynchronous 1/O, do the following;:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

2. Declare the data types and variables you are using in your program.

3. Declare or allocate a buffer up to 64K bytes in size.
INTEGER#2 buffer(1024)

4. Attach the DRB32W device as described in Section 2.3.2.1,
Attaching the DRB32W.

5. Set up the device to use the asynchronous 1/O interface.

status = LIO$SET_I (drbw_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

6. Set the device for input or output.

status = LIO$SET_I (drbw_id, LIO$K_DIRECTION, 1, LIO$K_INPUT)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

7. Get a VMS event flag for synchronizing with the I/O

m status = LIB$GET_EF(event_flag)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

8. Start the data transfer. You can use the device_specific argument of
the LIOSENQUEUE routine to set the state of the output function
bits.

func_bits = 6 !decimal 6 = binary 101
status = LIO$ENQUEUE (drbw_id, buffer, 2048, event_flag, , func_bits)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

9. Dequeue the buffer, specifying a nonzero wait argument.

vait = 1

status LIO$DEQUEUE (drbw_id, buff_addr, buff_len, , wait, ,)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
10. Detach the device.

status = LIO$DETACH (drbw_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

‘ ' ~ Laboratory I/O Device Support 2-77




2.3.3 DRQ3B Support

The DRQ?3B is a high-speed, 16-bit parallel interface device that
supports Q-bus block mode direct memory access (DMA) transfers.
The device contains one input port and one output port. Each port
contains a 512-word first-in/first-out (FIFO) buffer.

The DRQ3B device driver supports double-buffer DMA operations on
the device. Double buffering is used whenever multiple I/O requests
are queued with a buffer size large enough to allow the next buffer to be
enqueued before the previous buffer completes.

The DRQ3B supports an end-of-process (EOP) bit on the input port
which is strobed into the FIFO. When the EOP bit is read out of the
FIFO, the DMA controller terminates the current buffer and starts
the next buffer in the queue. The data_length argument of both the
LIO$READ and LIO$DEQUEUE routines returns the number of bytes
actually transferred.

See Chapter 1 for more information about FIFOs and double buffering.

See the DRQ3B Parallel DMA I/O Module User’s Guide for more
information about the DRQ3B.

2.3.3.1

Attaching the DRQ3B

Attaching a DRQ3B device means assigning a VMS I/O channel to the
device and initializing LIO data structures for, and pointers to, the
device.

Use the LIO$ATTACH routine to attach the DRQ3B device.

status = LIOSATTACH (drq_id, 'HXAO', LIO$K_QIO) !Input
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The drq_id argument returns the LIO-assigned device ID for the device.

The DRQ3B is referenced by this device ID in subsequent routine calls
to the device in a user program.

The device specification HXAQ attaches a DRQ3B (HX) device for input.
The controller letter and unit number (A0) specify the input port of the
DRQ3B.

2-78 Laboratory I/O Device Support



as the value of the devspec argument.

status = LIO$ATTACH (drq_id, 'HXA1', LIO$K_QIO) !Output
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

When attaching the DRQ3B device, you must use the complete device
specification to signal LIO which port on the device to attach.

The LIO$K_QIO attaches the device to use QIOs. This is the only
supported I/O type for the DRQ3B device.

NOTE

You can use the DRQ3B device for both input and output at
the same time. However, the LIO facility treats the input and
output ports of the device as separate devices, so each must
be attached and set up as a separate device.

2.3.3.2 Setting Up the DRQ3B

Before you can begin data transfers with the DRQ3B, you must set up

certain device characteristics. The following table lists the LIO$SET

and LIO$SHOW parameters you can use to set up and show DRQ3B
m device characteristics. See Chapter 4 for reference descriptions of the

|
|
, 1
( ' " To specify the output port of the DRQ3B, attach the device using HXA1 |
|
parameters listed in this table.

Table 2-12: DRQ3B LIOS$SET and LIO$SHOW Parameters

Parameter Function
| LIO$K_AST RTN Specifies a user-written AST routine to receive
buffers when a device finishes processing them.
LIO$K_ASYNCH Sets the device for asynchronous 1/0.
| LIO$K_BUFF_SIZE Sets the maximum size, in bytes, of the
‘ asynchronous buffers to use.
| LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer
‘ becomes available.
LIO$K_ERR_HANDLE Specifies the way in which a device returns error
conditions.

ﬁ Laboratory /O Device Support 2-79




Table 2-12 (Cont.): DRQ3B LIOS$SET and LIO$SHOW Parameters

Parameter Function

LIO$K_FORWARD Specifies the device to which completed buffers are
forwarded.

LIO$K_FUNCTION_BITS Sets the function bits associated with the DRQ3B
device.

LIO$K_STOP Stops the device.

LIO$K_SYNCH Sets up the device for synchronous I/O.

2.3.3.3 Using the DRQ3B for Synchronous I/0
To use the DRQ3B device for synchronous 1/O, do the following;:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.
Declare the data types and variables you are using in your program.

Attach the DRQ3B device as described in Section 2.3.3.1, Attaching
the DRQ3B.

Set the DRQ3B to use the synchronous I/O interface.

status = LIO$SET_I (drq_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify the buffer size (in bytes).

status = LIO$SET_I (drq_id, LIO$K_BUFF_SIZE, 1, 16384)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies an 8K-word (16384-byte) buffer. The
maximum allowable value for this parameter is a 64K-byte
(32768-word) buffer.

Use the LIO$READ routine or the LIO$WRITE routine to read or to
write the data.

Detach the device.

status = LIO$DETACH (drq_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

NOTE

Using the DRQ3B in synchronous mode effectively disables
double-buffering.

2-80 Laboratory I/O Device Support

u



! 1, 2.3.3.4 Using the DRQ3B for Asynchronous 1/O
To use the DRQ3B for asynchronous 1/O, do the following:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.

Attach the DRQ3B device as described in Section 2.3.3.1, Attaching
the DRQ3B.

Set the DRQ3B to use the asynchronous I/O interface.

status = LIO$SET_I (drq_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify the buffer size (in bytes).

status = LIO$SET_I (drq_id, LIO$K_BUFF_SIZE, 1, 16384)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine specifies an 8K-word (16384-byte) buffer. The
maximum allowable value for this parameter is a 64K-byte
(32768-word) buffer.

Enqueue one or more buffers to the DRQ3B device.

status = LIOSENQUEUE (drq_id, buffer, 16384, , , ,
1 LIO$M_HX_HOLD_DNA)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
status = LIO$ENQUEVE (drq_id, buffer, 16384, , , ,
1 LIO$N_HX_HOLD_DMA)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
status = LIO$ENQUEVE (drq_id, buffer, 16384, , , ,
1 LIO$N_HX_HOLD_DNMA)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
status = LIO$ENQUEVE (drq_id, buffer, 16384,
1 LIO$M_HX_HOLD_DMA)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
status = LIO$ENQUEUE (drq_id, buffer, 16384, , , ,
1 LIO$M_HX_HOLD_DMA)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
status = LIO$ENQUEUE (drq_id, buffer, 16384, , , , )

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine segment queues six buffers to the DRQ3B device. The
LIO$M_HX_HOLD_DMA device_specific value inhibits the start of
double-buffer DMA transfers until all buffers are enqueued to the
device. The absence of the LIO$M_HX_HOLD_DMA value of the
last LIO$ENQUEUE routine call starts the double-buffer DMA.

Laboratory I/O Device Support 2-81




You can use the device_specific argument of the LIOSENQUEUE u
routine to enqueue all data buffers before starting DMA data

transfers (as shown). You can also use it to prevent the setting

of an event flag or the delivering of an AST routine until the buffer

on the output port has been output.

The value of the device_specific argument can be either of the
following:

e LIO$M_HX_HOLD_DMA

This argument value inhibits the DMA transfers from starting
until the last buffer is enqueued to the device. Use this
argument with LIOSENQUEUE when you enqueue all but the
last buffer. The absence of this argument on the last enqueue to
the device actually signals the DMA transfers to start.

e LIO$M_HX_RUN_DOWN

This argument value prevents the setting of an event flag or the
delivering of an AST routine until the buffer on the output port
has been completely transferred. This argument is valid only
when used with asynchronous writes and effectively disables
double buffering (for that buffer only).

7. Dequeue the buffers or use one of the other asynchronous ‘ ’
1/O buffer-handling mechanisms described in Section 1.5, '
Asynchronous I/O Buffer-Handling Mechanisms.

The device_specific argument of the LIOSDEQUEUE routine and
the AST routine return the contents of the status register in the high
16 bits, and the contents of the DMA status register in the low 16
bits. See the DRQ3B Parallel DMA Input/Output Module User’s Guide
for more information.

8. Detach the device.

status = LIO$DETACH (drq_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2-82 Laboratory /0 Device Support ‘ ‘



2.3.4 DRV11-J Support

The DRV11-] is a parallel interface device with four separate 16-bit ports
(A, B, C, and D).

You can set each port individually for either input or output. Each bit
of port A can be assigned a separate AST routine or an event flag. Each
AST routine is called or the event flag is set when the bit to which
either the AST routine or the event flag is assigned is cleared or set,
depending on the value of the LIOJK_POLARITY parameter.
The device can be jumpered for a two-wire handshake. If the device is

| set for a two-wire handshake, only the low 12 bits of port A are available
for AST routines. The value of the LIO$K_HANDSHAKE parameter
signals LIO whether or not the two-wire handshake is software-enabled
or disabled.

The DRV11-J must be hardware jumpered for a two-wire handshake to
transfer more than one data point per buffer. The setting of Jumper
W11 on the DRV11-] device determines whether the hardware is
jumpered for a two-wire handshake. See the DRV11-] Parallel Line
m Interface User’s Guide for information about how to jumper the device.

2.3.4.1 Attaching the DRV11-J

Attaching the DRV11-] means assigning a VMS 1/O channel to the device
and initializing LIO data structures for, and pointers to, the device. Use
the LIOSATTACH routine to attach the DRV11-].

status = LIOSATTACH (drj_id, 'DNAO', LIO$K_QIO)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The drj_id argument returns the LIO-assigned device ID for the device.
The DRV11-] is referenced by this device ID in subsequent routine calls
to the device in a user program.

The device specification DNAO specifies a DRV11-] (DN) device with
controller letter A and unit number 0. If you have only one DRV11-]
device configured in your system, specifying the device type DN is
sufficient.

The LIO$K_QIO values sets the device to use QIOs. If you do not
specify the I/O type when you attach the DRV11-J device, by default it
is attached to use QIOs.

‘L ’ ’ Laboratory /O Device Support 2-83




The LIO facility also supports memory-mapped (LIO$K_MAP) 1/O
for the device. Only the synchronous I/O interface is supported for
mapped I/O. When set to use synchronous 1/0O, the bits of port A
cannot be assigned AST routines or event flags.

2.3.4.2 Setting Up the DRV11-J

Before you can begin data transfer using the DRV11-], you must set
up certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show DRV11-]
device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

Table 2-13: DRV11-J LIOSSET and LIO$SHOW Parameters

Parameter

Function

LIO$K_AST RTN

LIO$K_ASYNCH
LIO$K_DEVICE_EF

LIO$K_DIRECTION

LIO$K_ERR_HANDLE

LIO$K_EVENT_AST

LIO$K_EVENT_EF

LIO$K_FORWARD

LIO$K_HANDSHAKE

2-84 Laboratory I/0 Device Support

Specifies a user-written AST routine to receive
buffers when a device finishes processing them.

Sets the device for asynchronous 1/O.

Establishes the event flag that is set when a buffer
becomes available.

Sets the direction (input or output) of the four
DRV11-] ports.

Specifies the way in which a device returns error
conditions.

Assigns a user-written AST routine to be called on
DRV11-J port-A bit events.

Specifies the event flag to set on an external event
or clock overflow.

Specifies the device to which completed buffers are
forwarded.

Specifies whether or not the DRV11-] is jumpered to
use a two-wire handshake for each port.

W)



Parameter Function

LIO$K_POLARITY Sets the bits of port A to call their AST routines on

either a negative-going or positive-going edge and
the polarity of the handshake, if any.

LIO$K_SYNCH Sets up the device for synchronous 1/0.
LIO$K_TIMEOUT Sets the length of time (in seconds) before an 1/O

Table 2-13 (Cont.): DRV11-J LIO$SET and LIO$SHOW Parameters
\
|
|

request is aborted.

To set up the DRV11-], do the following:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.
Attach the DRV11-] as described in Section 2.3.4.1, Attaching the
DRV11-].

Set the device to use either synchronous or asynchronous 1/O.

Set the direction of the four ports.

status = LIO$SET_I (drj_id, LIO$K_DIRECTION, 4, LIO$K_INPUT,
1 LIO$K_INPUT, LIO$K_OUTPUT, LIO$K_OUIPUT)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine segment sets the direction of ports A and B for input,
and sets the direction of ports C and D for output.

Enable or disable handshaking.

status = LIO$SET_I (drj_id, LIO$K_HANDSHAKE, 1, LIO$K_OFF)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine disables handshaking.

If the device is set to use synchronous I/O, initiate the data transfer
by using the LIOSREAD or LIOSWRITE routine. If the device is
set to use asynchronous 1/O, initiate the data transfer by using the
LIO$ENQUEUE routine.

The device_specific argument of the LIOSENQUEUE, LIO$READ,
and LIO$WRITE routines is an unsigned longword integer. The low
word selects the port, and the high word is a mask that selects the
bits of the port.

Laboratory I/O Device Support 2-85




The value of the first word can be one of the following:

Value DRV11-J Port

0 Port A
1 Port B
2 Port C
3 Port D

If any bits are set in the second word of the argument, then only
those bits are written to on output, or read from on input. On
output, bits not selected are not changed. On input, bits not
selected are returned as zeros. If the second word is zero, all
bits are written to on output, and read from on input.

If all bits are to be selected, then the device_specific argument can
be treated as a normal integer containing the port number.

8. If the device is set up asynchronous I/O, dequeue the buffer or use
one of the other asynchronous I/O buffer handling mechanisms
described in Section 1.5, Asynchronous 1/O Buffer-Handling
Mechanisms.

9. Detach the device.

status = LIO$DETACH (drj_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.3.5 DRV11-WA Support

The DRV11-WA is a 16-bit parallel /O DMA interface device. It is
designed for fast data transfers with external devices. The DRV11-WA
uses handshake lines to control the flow of data and uses DMA to store
the data in memory.

The DRV11-WA device can be set for either input or output. The
direction is controlled in two ways:

¢ By an external line that can be either tied high or tied low to set the
direction

* By an external device to change direction dynamically

The device also contains three programmable control lines and three
user-readable sense lines.

2-86 Laboratory I/0 Device Support




‘, ) See the DRV11-WA General Purpose DMA Interface User’s Guide for more
information about the DRV11-WA.

2.3.5.1 Attaching the DRV11-WA

Attaching the DRV11-WA means assigning a VMS 1/O channel to the
device and initializing LIO data structures for, and pointers to, the
device. Use the LIOSATTACH routine to attach the DRV11-WA device.

status = LIOSATTACH (drw_id, 'XAAO', LIOS$K_QIO)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The drw_id argument returns the LIO-assigned device ID for the device.
The DRV11-WA is referenced by this device ID in subsequent routine
calls to the device in a user program.

The device specification XAAO specifies a DRV11-WA (XA) device with
controller letter A and unit number 0. If you have only one DRV11-WA
device configured in your system, specifying the device type XA is
sufficient.

The LIO$K_QIO value specifies the I/O type. This is the only I/O type
m supported for use with the DRV11-WA device.

2.3.5.2 Setting Up the DRV11-WA

Before you can begin data transfer using the DRV11-WA, you must set
up certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show DRV11-WA
device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

Table 2-14: DRV11-WA LIOSSET and LIO$SHOW Parameters

Parameter Function

LIO$K_AST_RTN Specifies a user-written AST routine to receive
buffers when a device finishes processing them.

LIO$K_ASYNCH Sets the device for asynchronous 1/O.

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer
becomes available.

LIO$K_DIRECTION Sets the direction (input or output) of the device.

‘Q ‘ ’ Laboratory I/0 Device Support 2-87




Table 2-14 (Cont.): DRV11-WA LIOS$SET and LIO$SHOW U

Parameters
Parameter Function
LIO$K_ERR_HANDLE Specifies the way in which a device returns error
conditions.
LIO$K_FORWARD Specifies the device to which completed buffers are
forwarded.
LIO$K_SYNCH Sets up the device for synchronous 1/O.
LIO$K_TIMEOUT Sets the length of time (in seconds) before an 1/0

request is aborted.

2.3.5.3 Using the DRV11-WA for Synchronous I/0
To set up the DRV11-WA to use synchronous I/O, do the following;:
1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.
2. Declare the data types and variables you are using in your program.
3. Declare or allocate a buffer up to 64K bytes in size. u
INTEGER#*2 buffer (1024)

4. Attach the DRV11-WA device as described in Section 2.3.5.1,
Attaching the DRV11-WA.

5. Set up the device to use the synchronous I/O interface.

status = LIO$SET_I (drw_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
|
|

6. Start the data transfer. You can use the device_specific argument
of the LIO$READ and LIO$WRITE routines to set the state of the
output function bits.

func_bits = 6 !'decimal 5 = binary 101
status = LIOSREAD (drw_id, buffer, 2048, data_length, func_bits)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
7. Process the data.
8. Detach the device.

status = LIO$DETACH (drw_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2-88 Laboratory I/O Device Support u




2.3.5.4 Using the DRV11-WA for Asynchronous I/O

To set up the DRV11-WA to use asynchronous I/O, do the following:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

2. Declare the data types and variables you are using in your program.

3. Declare or allocate a buffer up to 64K bytes in size.

INTEGER*2 buffer(1024)

4. Attach the DRV11-WA device as described in Section 2.3.5.1,
Attaching the DRV11-WA.

5. Set up the device to use the asynchronous I/O interface.

status = LIO$SET_I (drw_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

6. Set the device for input or output.

status = LIO$SET_I (drw_id, LIO$K_DIRECTION, 1, LIO$K_INPUT)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

7. Get a VMS event flag for synchronizing with the I/O

! ’ status = LIB$GET_EF(event_flag)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

8. Start the data transfer. You can use the device_specific argument
of the LIO$READ and LIO$WRITE routines to set the state of the
output function bits.

func_bits = 5 !'decimal b = binary 101

status = LIO$ENQUEUE (drw_id, buffer, 2048, event_flag, , func_bits)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

9. Dequeue the buffer, specifying a nonzero wait argument.

wait = 1
status = LIO$DEQUEUE (drw_id, buff_addr, buff_len, , wait, ,)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
10. Detach the device.

status = LIO$DETACH (drw_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

‘\ ' ’ Laboratory I/0 Device Support 2-89




2.4 Isolated Real-Time I/0 Devices u

The following isolated real-time I/O devices are supported by VSL:

o JAV1I1-A
e JAV11-AA
e JAVI11-B
e JAV11-C
e JAV11-CA
e IDV1I1-A
e IDV11-B
e IDV11-C
e IDV11-D

These devices, also called IXV11 or IXV devices, are available only in
Europe. For more information about these devices, see the Industrial I/O
Modules for Q-Bus.

2.4.1 IAV11-A, IAV11-AA, IAV11-C, and IAV11-CA Support V

The IAV11-Al and IAV11-AA! are 16-channel analog-to-digital
converters.

The IAV11-A has 12 single-ended input channels and four differential
flying capacitator input channels. The IAV11-AA has 16 single-ended
input channels.

Both devices have the following:

* 12-bit resolution

* Unipolar and bipolar input ranges
® Programmable channel gain

* Optional external trigger input

! This device is available only in Europe.

2-90 Laboratory I/O Device Support u



f ’ The 1AV11-C! and IAV11-CA! are multiplexer devices you can use to
expand the IAV11-A and IAV11-AA A/D converters to a maximum of
128 channels.

NOTE

The 1AV11-A, IAV11-AA, IAV11-C, and IAV11-CA input
devices are all referred to as IAV11-A in subsequent sections
in this chapter.

2.4.1.1 Attaching the IAV11-A

Attaching an IAV11-A means assigning a VMS I/O channel to the device
and initializing LIO data structures for, and pointers to, the device.

Use the LIO$ATTACH routine to attach the IAV11-A.

status = LIO$ATTACH (iava_id, 'IVAO', LIOD$K_QIOD)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The iava_id argument returns the LIO-assigned device ID for the
IAV11-A device. The IAV11-A device is referenced by this device
ID in subsequent routine calls to the device in a user program.

( ’ The device specification IVAQ specifies an IAV11-A device with
controller letter A and unit number 0. Specifying the unit number is

optional. However, if you do specify a unit number, it must always be
0.

NOTE

Each IXV11 device, whether it is an analog input, an analog
output, a digital input, a digital output, or a counter device,
is represented as a unique controller. Unit numbers are not
used. For example, if you have more than one IXV11 device
configured in your system, then the first IXV11 device is
IVAO, the second IXV11 device is IVB0, and so on.

The LIO$K_QIO value sets up the device to use QIOs. This is the only
/O type supported for the IAV11-A devices.

! This device is available only in Europe.

' ’ Laboratory I/0 Device Support 2-91




2.4.1.2 Setting Up the IAV11-A

Before you can begin data transfers using the IAV11-A, you must set
up certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show IAV11-A
device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

Table 2-15: 1AV11-A LIO$SET and LIO$SHOW Parameters

Parameter

Function

LIO$K_AST RTN

LIO$K_ASYNCH
LIO$K_DEVICE_EF

LIO$K_FORWARD
LIO$K_N_AD_CHAN

LIO$K_SYNCH

Specifies a user-written AST routine to receive
buffers when a device finishes processing them.

Sets up a device for asynchronous I/O.

Establishes the event flag that is set when a buffer
becomes available.

Specifies the device to which completed buffers are
forwarded.

Returns the number of analog-to-digital channels
currently in use.

Sets up the device for synchronous 1/O.

2.4.1.3 Using the IAV11-A for Synchronous Input
To use the IAV11-A for synchronous input, do the following:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

2. Declare the data types and variables you are using in your program.
3. Attach the IAV11-A device as described in Section 2.4.1.1, Attaching

the IAV11-A.

4. Set up the device to use the synchronous 1/O interface.

status = LIO$SET_I (iava_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2-92 Laboratory I/O Device Support



™ 5. Read data from the IAV11-A device using the LIO§READ routine,
The device_specific argument is an array of longwords that you
use to specify control information about the A/D channels. Each
longword specifies information about one channel. Byte 1 specifies
the channel number. Byte 2 specifies the channel gain. Byte 3
specifies the trigger source. Byte 4 specifies the timeout in seconds.

The buffer argument is an array of longwords returning information
about the data I/O transfer. Each longword returns information
about one channel. Byte 1 returns the channel number. Byte 2
returns the channel gain. The high word returns the actual A/D
value read from the channel.

Specify the buffer_length argument as a multiple of four.

STRUCTURE /chan_val/ !Set up structure of channel list
BYTE chan !Byte to hold channel number
BYTE gain !Byte to hold channel gain
BYTE trigger !Byte to hold trigger source
BYTE timeout !Byte to hold timeout in second
END STRUCTURE 'End structure
RECORD /chan_val/ chan_list(10) !The device-specific argument
STRUCTURE /buff_val/ !Set up structure of one A/D value
BYTE chan !Byte to hold channel number
; BYIE gain !Byte to hold channel gain
INTEGER*2 value 'Word to hold actual A/D value
END STRUCTURE 'End structure
RECORD /buff_val/ buffer(10) !Buffer of 10 A/D values
DO i=1,10 'Loop to set up 10 A/D channels

!Channel number
!Channel gain
1 'External trigger
266 1266 second timeout

chan_list(i).chan =

chan_list(i).gain =

chan_list(i).trigger

chan_list(i).timeout
ENDDO

i
1

status = LIO$READ (iava_id, buffer, 10 * 4, idata_len, chan_list)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The LIO$READ routine returns when data is read from the specified
channels.

6. Detach the device.

status = LIO$DETACH (iava_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

m Laboratory I/O Device Support 2-93




2.4.1.4 Using the IAV11-A for Asynchronous Input

To use the IAV11-A for asynchronous input, do the following;:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.
Declare the data types and variables you are using in your program.

Attach the IAV11-A device as described in Section 2.4.1.1, Attaching
the IAV11-A.

Set up the device to use the asynchronous I/O interface.

status = LIO$SET_I (iava_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Enqueue a buffer to the device to start A/D conversions. The
device_specific argument is an array of longwords that you use to
specify control information about the A/D channels. Each longword
specifies information about one channel. Byte 1 specifies the
channel number. Byte 2 specifies the channel gain. Byte 3 specifies
the trigger source. Byte 4 specifies the timeout in seconds.

The buffer argument is an array of longwords that returns
information about the data 1/O transfer. Each longword returns
information about one channel. Byte 1 returns the channel number.
Byte 2 returns the channel gain. The high word returns the actual
A/D value read from the channel.

Specify the buffer_length argument as a multiple of four.

2-94 Laboratory I/O Device Support



m STRUCTURE /chan_val/ !Set up structure of channel list

BYTE chan !Byte to hold channel number
BYTE gain IByte to hold channel gain
BYTE trigger !Byte to hold trigger source
BYTE timeout !Byte to hold timeout in second
END STRUCTURE 'End structure
RECORD /chan_val/ chan_1ist(10) !The device-specific argument
STRUCTURE /buff_val/ !Set up structure of one A/D value
BYTE chan !Byte to hold channel number
BYTE gain !Byte to hold channel gain
INTEGER*2 value !¥ord to hold actual A/D value
END STRUCTURE !End structure
RECORD /buff_val/ buffer(10) 'Buffer of 10 A/D values
DD i=1,10 'Loop to set up 10 A/D channels
chan_list(i).chan = i !Channel number
chan_list(i).gain = 1 !Channel gain
chan_list(i).trigger = 1  !External trigger
chan_list(i).timeout = 266 !265 second timeout
ENDDO
status = LIO$ENQUEUE (iava_id, buffer, 10 * 4, , , , chan_list)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The LIO$ENQUEUE routine returns as soon as it enqueues a buffer
to the IAV11-A device.

6. Dequeue the buffer using the LIOSDEQUEUE routine, or use
m one of the other buffer synchronization mechanisms described
in Section 1.5, Asynchronous I/O Buffer-Handling Mechanisms.

7. Detach the device.

status = LIO$DETACH (iava_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.4.2 |AV11-B Support

The IAV11-B! is a four-channel group-isolated digital-to-analog converter
with 12-bit resolution.

! This device is available only in Europe.

" s Laboratory /O Device Support 2-95




2421

Attaching the IAV11-B

Attaching an IAV11-B means assigning a VMS 1/O channel to the device
and initializing LIO data structures for, and pointers to, the device.

Use the LIO$ATTACH routine to attach the IAV11-B.

status = LIO$ATTACH (iavb_id, 'IVAO', LIO$K_QIO)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The iavb_id argument returns the LIO-assigned device ID for the
IAV11-B device. The IAV11-B device is referenced by this device ID
in subsequent routine calls to the device in a user program.

The device specification IVAO specifies an IAV11-B device with
controller letter A and unit number 0. Specifying the unit number is
optional. However, if you do specify a unit number, it must always be
0.

NOTE

Each IXV11 device, whether it is an analog input, an analog
output, a digital input, a digital output, or a counter device,
is represented as a unique controller. Unit numbers are not
used. For example, if you have more than one IXV11 device
configured in your system, then the first IXV11 device is
IVAOQ, the second IXV11 device is IVB0, and so on.

The LIO$K_QIO value sets up the device to use QIOs. This is the only
I/O type supported for the IAV11-B counter device.

2.4.2.2 Setting Up the IAV11-B

Before you can begin data transfers using the IAV11-B, you must set
up certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show IAV11-B
device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

2-96 Laboratory I/0O Device Support

"/



Table 2-16: 1AV11-B LIOS$SET and LIO$SHOW Parameters

Parameter Function

LIO$K_AST RTN Specifies a user-written AST routine to receive
buffers when a device finishes processing them.

LIO$K_ASYNCH Sets up a device for asynchronous I/O.

LIO$K_DEVICE EF Establishes the event flag that is set when a buffer
becomes available.

LIO$K_FORWARD Specifies the device to which completed buffers are
forwarded.

LIO$K_SYNCH Sets up the device for synchronous I/O.

2.4.2.3 Using the IAV11-B for Synchronous Output
To use the IAV11-B for synchronous output, do the following:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.
Attach the IAV11-B device as described in Section 2.4.2.1, Attaching
the IAV11-B.

Set up the device to use the synchronous I/O interface.

status = LIO$SET_I (iavb_id, LIO$K_SYNCH, 0)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
Write data to the IAV11-B device using the LIOSWRITE routine. The
buffer argument of the LIO$WRITE routine is a four-element array
of longword integers. The lower 12 bits of each longword are used
to write data to an output channel. If a longword contains a —1,
then the respective output channel is not changed.

The LIO$SWRITE routine returns after data is written to all the
requested output channels.

Detach the device.

status = LIO$DETACH (iavb_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Laboratory IO Device Support 2-97




2.4.2.4 Using the IAV11-B for Asynchronous Output
To use the IAV11-B for asynchronous output, do the following;:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

2. Declare the data types and variables you are using in your program.

3. Attach the IAV11-B device as described in Section 2.4.2.1, Attaching
the IAV11-B.

4. Set up the device to use the asynchronous I/O interface.

status = LIO$SET_I (iavb_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

5. Enqueue a buffer to the device to start D/A conversions. The buffer
argument of the LIOSENQUEUE routine is a four-element array of
longword integers. The lower 12 bits of each longword are used to
write data to an output channel. If a longword contains a —1, then
the respective output channel is not changed.

6. Dequeue the buffer using the LIOSDEQUEUE routine, or use
one of the other buffer synchronization mechanisms described
in Section 1.5, Asynchronous I/O Buffer-Handling Mechanisms.

7. Detach the device.

status = LIO$DETACH (iavb_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.4.3 IDV11-A Support

The IDV11-Al is a 16-channel optically isolated digital input device.
The IDV11-A offers programmable interrupt capability on one channel,
programmable contact bounce elimination, and programmable input
voltage range selection.

! This device is available only in Europe.

2-98 Laboratory I/O Device Support



2.4.3.1 Attaching the IDV11-A

Attaching the IDV11-A means assigning a VMS I/O channel to the
device and initializing LIO data structures for, and pointers to, the
device.

Use the LIO$ATTACH routine to attach the IDV11-A.

status = LIO$ATTACH (idva_id, 'IVAO', LIO$K_QIOD)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The idva_id argument returns the LIO-assigned device ID for the
IDV11-A device. The IDV11-A device is referenced by this device
ID in subsequent routine calls to the device in a user program.

The device specification IVAQ specifies an IDV11-A device with
controller letter A and unit number 0. Specifying the unit number is
optional. However, if you do specify a unit number, it must always be
0.

NOTE

Each IXV11 device, whether it is an analog input, an analog
output, a digital input, a digital output, or a counter device,

m is represented as a unique controller. Unit numbers are not
used. For example, if you have more than one IXV11 device
configured in your system, then the first IXV11 device is
IVAQ, the second IXV11 device is IVB0, and so on.

The LIO$K_QIO value sets up the device to use QIOs. This is the only
I/O type supported for the IDV11-A devices.

2.4.3.2 Setting Up the IDV11-A

Before you can begin data transfers using the IDV11-A, you must set
up certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show IDV11-A
device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

‘ ! . Laboratory /0O Device Support 2-99




Table 2-17: IDV11-A LIOSSET and LIO$SHOW Parameters

Parameter Function

LIO$K_AST_RTN Specifies a user-written AST routine to receive
buffers when a device finishes processing them.

LIO$K_ASYNCH Sets up a device for asynchronous I/O.

LIO$K_BOUNCE Sets the contact bounce elimination response time
delay for the IDV11-A device.

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer
becomes available.

LIO$K_EVENT_AST Assigns a user-written AST routine to be called on
IDV11-A channel 15 events.

LIO$K_FORWARD Specifies the device to which completed buffers are
forwarded.

LIO$K_POLARITY Defines the interrupt to occur on either a
positive-going or negative-going edge.

LIO$K_SYNCH Sets up the device for synchronous 1/O.

LIO$K_VOLTAGE Specifies the input voltage range for the IDV11-A
device.

2.4.3.3 Using the IDV11-A for Synchronous Input
To use the IDV11-A for synchronous input, do the following:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.
Declare the data types and variables you are using in your program.

Attach the IDV11-A device as described in Section 2.4.3.1, Attaching
the IDV11-A.

Set up the device to use the synchronous I/O interface.

status = LIO$SET_I (idva_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Read data from the IDV11-A device using the LIOSREAD routine.
Detach the device.

status = LIO$DETACH (idva_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2-100 Laboratory I/O Device Support

“



()

()

2.4.3.4 Using the IDV11-A for Asynchronous Input
To use the IAV11-A for asynchronous input, do the following:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.
Attach the IDV11-A device as described in Section 2.4.3.1, Attaching
the IDV11-A.

Set up the device to use the asynchronous 1/O interface.

status = LIO$SET_I (idva_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (4VAL(status))
Enqueue a buffer to the device to start A/D conversions.

Dequeue the buffer using the LIOSDEQUEUE routine, or use
one of the other buffer synchronization mechanisms described
in Section 1.5, Asynchronous I/O Buffer-Handling Mechanisms.

Detach the device.

status = LIO$DETACH (idva_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.4.4

IDV11-B and IDV11-C Support

The IDV11-B! is an isolated digital output device that provides 16 single
optically isolated DC outputs.

The IDV11-C! is a relay output device that provides 16 latched reed
contact output channels.

2.4.4.1

Attaching the IDV11-B

Attaching an IDV11-B means assigning a VMS I/O channel to the device
and initializing LIO data structures for, and pointers to, the device.

Use the LIO$ATTACH routine to attach the IDV11-B.

status = LIO$ATTACH (idvb_id, 'IVAO', LIO$K_QID)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

! This device is available only in Europe.

Laboratory I/O Device Support 2-101




The idvb_id argument returns the LIO-assigned device ID for the u
IDV11-B device. The IDV11-B device is referenced by this device ID
in subsequent routine calls to the device in a user program.

The device specification IVAO specifies an IDV11-B device with
controller letter A and unit number 0. Specifying the unit number is
optional. However, if you do specify a unit number, it must always be
0.

NOTE

Each IXV11 device, whether it is an analog input, an analog
output, a digital input, a digital output, or a counter device,
is represented as a unique controller. Unit numbers are not
used. For example, if you have more than one IXV11 device
configured in your system, then the first IXV11 device is
IVAQ, the second IXV11 device is IVB0, and so on.

The LIO$K_QIO value sets up the device to use QIOs. This is the only
1/O type supported for the IDV11-B devices.

2.4.4.2 Setting Up the IDV11-B

Before you can begin data transfers using the IDV11-B, you must set u
up certain device characteristics. The following table lists the LIO$SET

and LIO$SHOW parameters you can use to set up and show IDV11-B

device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

Table 2-18: IDV11-B LIOS$SET and LIO$SHOW Parameters

Parameter Function

LIO$K_AST_RTN Specifies a user-written AST routine to receive
buffers when a device finishes processing them.

LIO$K_ASYNCH Sets up a device for asynchronous 1/O.

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer
becomes available.

LIO$K_FORWARD Specifies the device to which completed buffers are
forwarded.

LIO$K_SYNCH Sets up the device for synchronous I/O.

2-102 Laboratory /0 Device Support V



l' ! 2.4.4.3 Using the IDV11-B for Synchronous Output
To use the IDV11-B for synchronous output, do the following:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.
Declare the data types and variables you are using in your program.

Attach the IDV11-B device as described in Section 2.4.4.1, Attaching
the IDV11-B.

Set up the device to use the synchronous I/O interface.

status = LIO$SET_I (idvb_id, LIO$K_SYNCH, 0)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
Write data to the IDV11-B device using the LIOSWRITE routine.
The LIO$SWRITE routine returns after the data is written to all the
requested output channels.

Detach the device.

status = LIO$DETACH (idvb_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

m 2.4.4.4 Using the IDV11-B for Asynchronous Output
' To use the IDV11-B for asynchronous output, do the following:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.
Attach the IDV11-B device as described in Section 2.4.4.1, Attaching
the IDV11-B.

Set up the device to use the asynchronous I/O interface.

status = LIO$SET_I (idvb_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
Enqueue a buffer to the device to start D/A conversions.

Dequeue the buffer using the LIOSDEQUEUE routine, or use
one of the other buffer synchronization mechanisms described
in Section 1.5, Asynchronous 1/O Buffer-Handling Mechanisms.

Laboratory I/0O Device Support 2-103




7. Detach the device. ' |

status = LIO$DETACH (idvb_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.4.5 The IDV11-D Real-Time Counter Device

The IDV11-D! is a counter device consisting of five 16-bit counters,
which can be programmed to increment or decrement the count. The
count inputs can be controlled either by external signals or internally.
The counter outputs generate interrupts that can be processed by a
user-defined AST routine.

2.4.5.1 Attaching the IDV11-D

Attaching the IDV11-D means assigning a VMS I/O channel to the
device and initializing LIO data structures for, and pointers to, the
device. Use the LIOSATTACH routine to attach the IDV11-D.

status = LIO$ATTACH (idvd_id, 'IVAO', LIO$K_QIO)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
The idvd_id argument returns the LIO-assigned device ID for the

IDV11-D device. The IDV11-D is referenced by this device ID in ‘ , '
subsequent routine calls to the device in a user program.

The device specification IVAO specifies an IXV11 device with controller
letter A and unit number 0. Specifying the unit number is optional.
However, if you do specify a unit number, it must always be 0.

NOTE

Each IXV11 device, whether it is an analog input, an analog
output, a digital input, a digital output, or a counter device,
is represented as a unique controller. Unit numbers are not
used. For example, if you have more than one IXV11 device
configured in your system, then the first IXV11 device is
IVAQ, the second IXV11 device is IVB0, and so on.

The LIO$K_QIO value sets up the device to use QIOs. This is the only
I/O type supported for the IDV11-D counter device.

! This device is available only in Europe.

2-104 Laboratory I/O Device Support ‘ ’



() 2452 Setting Up the IDV11-D

Before you can begin data transfers using the IDV11-D, you must set
up certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show IDV11-D
device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

Table 2-19: IDV11-D LIO$SET and LIO$SHOW Parameters

Parameter Function

LIO$K_AST_RTN Specifies a user-written AST routine to receive
buffers when a device finishes processing them.

LIO$K_ASYNCH Sets up a device for asynchronous 1/0O.

LIO$K_CC_FOUT Sets the Frequency Output (FOUT) reference signal
for the IDV11-D device.

LIO$K_CC_SETUP Sets up the operating characteristics of one channel
on the IDV11-D real-time counter device.

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer
becomes available.

m LIO$K_FORWARD Specifies the device to which completed buffers are

forwarded.

LIO$K_START Starts one or more of the five IDV11-D counter
channels.

LIO$K_STOP Stops one or more of the five IDV11-D counter
channels.

LIO$K_SYNCH Sets up the device for synchronous 1/0.

2.4.5.3 Using the IDV11-D to Count External Events

This section describes how to write a program that uses the IDV11-D
counter to call an AST routine after the IDV11-D counts a defined
number of external pulses.

In this example, counter channel 1 generates an interrupt after 5 pulses
are counted on source 1. Counter channel 1 is initialized to count down,
counting on the positive edge of source 1 with no gating or active low
pulse. The precount is set to 5. The counter starts immediately on the
positive edge of source 1.

m Laboratory /0O Device Support 2-105




The counter counts down four pulses: 4, 3, 2, 1. With the next positive U
edge of source 1, instead of counting down to 0 (not a legal value

when counting down), the counter reloads the value of the load register
(which is 5 in this example). Then, the IDV11-D generates an interrupt

and calls your AST routine. The counter continues to run until it is

explicitly stopped using the LIO$K_STOP parameter.

To count external events using the IDV11-D counter, do the following;:

1.

Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

Declare the data types and variables you are using in your program.

Attach the IDV11-D device as described in Section 2.4.5.1, Attaching
the IDV11-D.

Set up the device to use the synchronous /O interface.

status = LIO$SET_I (idvd_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Set up the operating characteristics of counter channel 1. The
following table shows the values of a longword integer array of
length nine called cc_array. The cc_array argument contains the
operating characteristics for counter channel 1. Use cc_array as an
argument to the LIO$K_CC_SETUP parameter.

Index Value Function

1 1 Selects counter channel 1

2 5 Sets precount of 5 pulses

3 0 Sets countdown switch

4 0 Sets count on positive-edge switch
5 1 Sets immediate start

6 user_ast Enter your AST routine address

7 user_param Enter your AST routine parameter
8 1 Selects source 1

9 0 Selects no gating

2-106 Laboratory I/0O Device Support u



The following code segment sets up the operating characteristics:

INTEGER*4 cc_array(9) !Declare integer array of length 9

cc_array(1)=1 !Channel 1

cc_array(2)=6 !Precount 6 pulses

cc_array(3)=0 !Countdown

cc_array(4)=0 !Positive edge

cc_array(6)=1 !Immediate start
cc_array(6)=user_ast {Enter your AST routine name
cc_array(7)=user_param !Enter your AST routine parameter
cc_array(8)=1 !Source 1

cc_array(9)=0 'No gating

status = LIO$SET_I (idvd_id, LIO$K_CC_SETUP, 1, %LOC(cc_array))
IF (.NOT. status) CALL LIB$SIGNAL (¥VAL(status))

The counter begins counting immediately. When the counter
reaches the fifth pulse, your AST routine is called.

Stop the counter. The following table shows the values of a
longword integer array of length five called cc_stop. The cc_stop
array contains the IDV11-D counter channels to stop. Use cc_stop
as an argument value to the LIO$K_STOP parameter to stop the
counter channels.

Index Value Function

1 0 Counter channel 0 not used
2 1 Stop counter channel 1

3 0 Channel 2 is not used

4 0 Channel 3 is not used

5 0 Channel 4 is not used

Laboratory /O Device Support 2-107



The following code segment sets up the IDV11-D counter channels U
to stop and stops them.

INTEGER*4 cc_stop(b) |Declare integer array of length b
cc_stop(1)=0 !Channel O not used

ce_stop(2)=1 !Stop Channel 1

cc_stop(3)=0 !Channel 2 not used

cc_stop(4)=0 !Channel 3 not used

cc_stop(6)=0 {Channel 4 not used

status = LIO$SET_I (idvd_id, LIO$K_STOP, 1, %LOC(cc_stop))
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

7. Detach the device.

status = LIO$DETACH (idvd_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.4.5.4 Using the IDV11-D to Measure Pulse Duration
This section describes how to use the IDV11-D to measure the duration
of an external pulse.

This example uses two of the IDV11-D counters. The first counter is ,
set up to count the internal reference clock (the 5 MHz clock) and is u
gated by the active high state of the external pulse. The external pulse

is connected to gate 2. The second counter is set up to interrupt, thus

calling your AST routine, on the negative edge of the external pulse.

To measure pulse duration using the IDV11-D, do the following:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.
2. Declare the data types and variables you are using in your program.

3. Attach the IDV11-D device as described in Section 2.4.5.1, Attaching
the IDV11-D.

4. Set up the device to use the synchronous I/O interface.

status = LIO$SET_I (idvd_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2-108 Laboratory I/0O Device Support u



Set up the operating characteristics of counter channel 1. The
following table shows the values of a longword integer array of
length nine called setupl_array. The setupl_array argument contains
the operating characteristics for counter channel 1. Use setupl_array
as an argument value to the LIO$SK_CC_SETUP parameter.

Index Value Function

Selects counter channel 1

Sets precount

Sets count up switch

Sets count on positive-edge switch
Sets explicit start

No AST routine

No AST routine parameter
Selects 5 MHz clock source

Selects gate 2

—
NR,OOOORR O

O WUk WN -

The following code segment sets up the operating characteristics:

INTEGER*4 setupl_array(9) 'Declare integer array of length 9

setupl_array(1)=1 !Channel 1
setupl_array(2)=0 !Initial precount
setupl_array(3)=1 !Count up
setupl_array(4)=0 'Positive edge
setupl_array(5)=0 |Explicit start
setupl_array(6)=0 !No AST routine
setupl_array(7)=0 !No AST routine parameter
setupi_array(8)=11 16 NHz clock source

setupi_array(9)=2 !Gate 2

status = LIO$SET_I (idvd_id, LIO$K_CC_SETUP, 1, %LOC(setupi_array))
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

When the LIO$SET_I routine returns, the device is set up, but is not
started.

Laboratory I/0 Device Support 2-109




6. Set up the operating characteristics of counter channel 2. The
following table shows the values of a longword integer array of
length nine called setup2_array. The setup2_array argument contains
the operating characteristics for counter channel 2. Use setup2_array
as an argument value to the LIO$K_CC_SETUP parameter.

Index Value Function

1 2 Selects counter channel 2

2 1 Sets precount

3 0 Sets countdown switch

4 1 Sets count on negative-edge switch
5 0 Explicit start

6 0 No AST routine

7 0 No AST routine parameter

8 7 Selects Gate 2 source

9 0 No gating

The following code segment sets up the operating characteristics:

INTEGER*4 setup2_array(9)

setup2_array(1)=2
setup2_array(2)=1
setup2_array(3)=0
setup2_array(4)=1
setup2_array(6)=0
setup2_array(6)=0
setup2_array(7)=0
setup2_array(8)=7
setup2_array(9)=0

'Declare integer array of length 9

!Channel 2

!Initial precount
{Countdown

'Negative edge

'Explicit start

'No AST routine

'No AST routine parameter
!Source = Gate 2

!No gating

status = LIO$SET_I (idvd_id, LIO$K_CC_SETUP, 1, %LOC(setup2_array))
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

When the LIO$SET_I routine returns, the device is set up, but is not

started.

2-110 Laboratory I/O Device Support

u



m 7. Explicitly start both counters. The following table shows the values
for a longword integer array of length five called cc_start. The
cc_start array contains the IDV11-D counter channels to start. Use
cc_start as an argument value to the LIOSK_START parameter to |
start the counter channels. |

Index Value Function

1 0 Channel 0 not used

2 1 Starts counter channel 1
3 1 Starts counter channel 2
4 0 Channel 3 is not used

5 0 Channel 4 is not used

The following code segment sets up the IDV11-D counter channels
to start and starts them.

INTEGER*4 cc_start () 'Declare integer array of length 5
cc_start (1)=0 !Channel O not used

cc_start (2)=1 !Start channel 1

cc_start(3)=1 !Start channel 2

cc_start (4)=0 !Channel 3 not used

m cc_start (6)=0 !Channel 4 not used

status = LIO$SET_I (idvd_id, LIO$K_START, 1, %LOC(cc_start))
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

8. After counter 2 generates an interrupt and calls your AST routine,
read the contents of counter 1. Divide the value returned by 5
MHz to determine the duration of the external pulse. Use the
device_specific argument to specify which counter to read.

BYTE device_specific(4)
INTEGER#*2 chan_number
BYTE disarm, save

EQUIVALENCE (device_specific(1), chan_number)
EQUIVALENCE (device_specific(3), disarm)
EQUIVALENCE (device_specific(4), save)

chan_number = 1

disarm
save

1 ! channel will be disarmed (stopped), with
1 ! LIOSREAD content of the counter saved in
! the hold register

‘ ' ‘ Laboratory I/O Device Support 2-111




status = LIO$READ (idvd_id, buffer, buffer_length, data_length, u
1 device_specific)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

9. Detach the device.

status = LIUSDET’ACH (idvd_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.4.5.5 Using the IDV11-D to Generate Pulse Trains

This section describes how to use the IDV11-D to generate output pulses
at specified time intervals.

This example uses counter channel 3 to generate an active low output
pulse every 0.5 milliseconds. The pulse width output is defined by the
period of the counting source. This example uses the 5-MHz internal
reference frequency as the counting source.

To generate pulse trains using the IDV11-D, do the following;:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

2. Declare the data types and variables you are using in your program.

3. Attach the IDV11-D device as described in Section 2.4.5.1, Attaching u
the IDV11-D.

4. Set up the device to use the synchronous I/O interface.

status = LIO$SET_I (idvd_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

5. Set up the operating characteristics of counter channel 3. The
following table shows the values of a longword integer array of
length nine called setup3_array. The setup3_array argument contains
the operating characteristics for counter channel 3. Use setup3_array
as an argument value to the LIOSK_CC_SETUP parameter.

Index Value Function

1 3 Selects counter channel 3

2 2500 Sets precount for 2500-pulse interval
3 0 Sets countdown switch

4 0 Sets count on positive-edge switch

5 1 Sets immediate start

2-112 Laboratory I/O Device Support u



m

Index Value Function

6 0 No AST routine

7 0 No AST routine parameter
8 11 Selects 5 MHz clock source
9 0 Selects no gating

The following code segment sets up the operating characteristics:

INTEGER*4 setup3_array(9) 'Declare integer array of length 9

setup3_array(1)=3 !Channel 3

setup3_array(2)=2600 !Precount for 2600 pulse interval
setup3_array(3)=0 !Countdown

setup3_array(4)=0 'Positive edge

setup3_array(b)=1 !Immediate start
setup3_array(6)=0 !No AST routine

setup3_array(7)=0 !No AST routine parameter
setup3_array(8)=11 16-MHz clock source

setup3_array(9)=0 'No gating

status = LIO$SET_I (idvd_id, LIO$K_CC_SETUP, 1, %LOC(setup3_array))
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The counter begins to generate pulses immediately.
6. Detach the device.

status = LIO$DETACH (idvd_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.4.5.6 Using the IDV11-D to Generate Output Frequencies

This section describes how to use the IDV11-D to generate output
frequencies.

This example sets up the frequency output signal to provide a
quartz-controlled output of 5 MHz divided by 256 by using one of
the internal reference frequencies.

To generate output frequencies using the IDV11-D, do the following;:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.
2. Declare the data types and variables you are using in your program.

Laboratory /O Device Support 2-113




3. Attach the IDV11-D device as described in Section 2.4.5.1, Attaching
the IDV11-D.

4. Set up the device to use the synchronous I/O interface.

status = LIO$SET_I (idvd_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

5. Set up the parameters for the frequency output (FOUT) reference
signal. The following table shows the values of a longword integer
array of length three called cc_fout. The cc_fout argument contains
the parameters for the frequency output reference signal. Use
cc_fout as an argument value to the LIO$K_CC_FOUT parameter.

Index Value Function

1 0 Turn FOUT on switch
2 13 Source = 5 MHz/256
3 1 Divide by 1

The following code segment sets up the FOUT parameters:

INTEGER*4 cc_fout(3) !Declare integer array of length 3

cc_fout(1)=0 'Turn FOUT on
cc_fout(2)=13 !Source = 5 MHz/256

cc_fout(3)=1 !Divide by 1

status = LIO$SET_I (idvd_id, LIO$K_CC_FOUT, 1, %LOC(cc_fout))
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

6. Detach the device.

status = LIO$DETACH (idvd_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(etatus))

2.5 |EEE-488 Bus Devices

LIO provides support for an IEEE-488 device as:

* The system controller
* A controller
* An instrument

2-114 Laboratory I/O Device Support



( ’ The role of the IEEE-488 device is defined when the device is attached.

LIO provides support for two Digital IEEE-488 devices—the IEQ11 and
the IEZ11—and for the IOtech Micro488A.

2.5.1 IEQ11 and IEZ11

The IEQ11 contains two units, each of which can interface up to 14
instruments. Each unit can be attached as a separate LIO device.

The VMS and LIO device name for the IEQ11 is IX. The first unit on the
first IEQ11 device is IXAQ and the second unit is IXA1. The first unit on
the second IEQ11 device is IXB0, and so on.

The IEZ11 allows up to 14 instruments to be controlled from the external
SCSI port of a MicroVAX 3100 series or VAXstation 3100 series system.

The VMS and LIO device name for the IEZ11 is EK. On the VAXstation
3100 Model 30, the device should be attached as EKAQ or EKA1. On
the VAXstation 3100 Model 40 and the MicroVAX 3100, the device
should be attached as EKB0 or EKB1, on the “B”’ (external) SCSI
controller.

‘ ’ The IEQ11 and the IEZ11 are similar devices and have nearly identical
functionality under LIO.

For more information about the IEQ11, see the IEU11-A/IEQ11-A User’s
Guide.

For more information about the IEZ11, see the IEZ11 Software Installation
Guide, the IEZ11 Hardware Installation Guide, and the DEC IEZ11 VMS
Class Driver User’s Guide.

2.5.2 |0tech Micro488A

The IOtech Micro488A bus controller is an RS232 to IEEE-488 converter.
The Micro488A supports synchronous I/O only.

The Micro488A can be used to add IEEE-488 functionality to any
VSL-supported processor with a serial line interface.

m Laboratory /O Device Support 2-115




The LIO device name for the Micro488A is IT. This name tells LIO the u
type of device to attach, but does not specify which physical port will
be used.

The physical device name defaults to TTA2, because this is the serial
port on the VAXstation 3100. To override this assignment, you must
define the logical name IOTECH_PORT as the desired physical port.
For example, the following logical name defines the physical port as a
serial line on a DECserver.

$ DEFINE IOTECH_PORT LTAS:

The Micro488A functionality under LIO is a subset of the IEQ11
and IEZ11 functionality. The individual LIO$SET and LIO$SHOW
parameters document the differences and limitations.

NOTE

You cannot use the IOtech Micro488A to transfer raw binary
data.

For more information about the Micro488A, see the documentation
from IOtech, Inc.

2.5.2.1 10tech Micro488A DIP Switch Settings

You must set certain switches to use the Micro488A with LIO, as shown
in the following list:

Serial baud rate: SW1-1 through SW1-4. For LIO, the range is from
110 to 19200, to be determined by the user. The typical setting is
9600. You also need to ““SET TERM/PERM/SPEED = baud rate’’
from the DCL prompt.

Serial handshake selection: SW1-5 open (for XON/XOFF software
control).

Serial word length selection: SW1-6 closed (for 8 bits). You also
need to “SET PORT/PERM/EIGHT” from the DCL prompt.

Controller pass-thru selection: SW1-7. Controller pass-thru mode is
not supported for LIO, so this setting does not matter.

Serial stop bit selection: SW1-8 closed (for 1 bit).
Serial echo selection: SW2-5 closed (for echo disabled).
Serial parity selection: SW2-6 closed (for parity disabled).

2-116 Laboratory I/0O Device Support

W




Mode selection: SW2-1 and SW2-2 closed for system controller
mode; SW2-1 open and SW2-2 closed for peripheral mode. LIO
supports system controller and peripheral modes only.

IEEE address selection: SW3-1 through SW3-5. The address must
be unique.

2.5.3 An IEEE-488 Device as the System Controller

An IEEE-488 device can be attached as the IEEE-488 bus system
controller. An IEEE-488 device attached as the system controller is

the device that is the controller-in-charge of the IEEE-488 bus when your
application program first attaches the device.

NOTE

Only one device on the IEEE-488 bus can be the system
controller. If a device is already functioning as the system
controller, do not attach an IEEE-488 device as the system
controller.

The system controller can pass control (controller-in-charge status) to
any other device that is attached as a controller. The system controller
can resume control of the IEEE-488 bus by having control passed back
to it, or by sending the “interface clear”” request.

Only the controller-in-charge of the IEEE-488 bus is able to perform
certain functions:

* Respond to service requests from devices on the bus

* Send commands to devices on the bus

* Parallel poll the devices on the bus

* Serial poll the devices on the bus

2.5.4 An IEEE-488 Device as a Controller

An IEEE-488 device attached as a controller is initially not the
controller-in-charge. This means that the device cannot perform
the controller-in-charge functions described in Section 2.5.3, An
IEEE-488 Device as the System Controller, until it becomes the
controller-in-charge.

Laboratory /O Device Support 2-117




An IEEE-488 device becomes a controller-in-charge when the current
controller-in-charge passes control to it. The controller remains the
controller-in-charge until it passes control to another controller or until
the system controller resumes control with the “interface clear’” request.

2.5.5 An IEEE-488 Device as an Instrument

An instrument on the IEEE-488 bus is a slave to the controller-in-charge.
An instrument sending a message is a talker. Only one instrument on
the bus may talk at any one time. An instrument receiving a message is
a listener. Any number of instruments can listen to a message being
sent by the talker. In general, some IEEE-488 instruments can be
talkers only, listeners only, or both talkers and listeners. An application
program can use an IEEE-488 device as a talker only, as a listener only,
or as both a talker and a listener.

An instrument talks when the controller-in-charge addresses it to talk,

and it listens when the controller-in-charge addresses it to listen. The

only independent action an instrument can take is to request service

(SRQ). An IEEE-488 device on the IEEE-488 bus acts as an instrument

unless it is the controller-in-charge. u

2.5.6 10tech Micro488A Device Modes

The IOtech Micro488A supports the system controller, controller, and
instrument modes discussed above, but with one major distinction: You
enable or disable the modes by setting a DIP switch in the device to
either System Controller or Peripheral mode.

By default the System Controller mode is enabled, which means that the
Micro488A can be attached as a controller or as the system controller.
This is fine for most applications since controllers can behave as
instruments.

In some applications, however, you may want to use the Micro488A as
an instrument (as an add-on to existing IEEE-488 buses, for example). In
this case you should set the DIP switch to Peripheral mode and attach
the Micro488A as an instrument. See Section 2.5.2.1, IOtech Micro488A
DIP Switch Settings, for more information.

2-118 Laboratory I/O Device Support U



()

2.5.7 Attaching an IEEE-488 Device

Attaching an IEEE-488 device means assigning a VMS 1/O channel to
the device and initializing LIO data structures for, and pointers to, the
device. The role of the IEEE-488 device is defined when the device is
attached.

Use the LIOSATTACH routine to attach an IX (IEQ11) or EK (IEZ11)
device.

status = LIO$ATTACH (ieee_id, 'IXAO0', LIO$K_SYS_CTRL) !System controller
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = LIO$ATTACH (ieee_id, 'IXA1', LIO$K_CTRL) !Non-system Controller
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = LIOSATTACH (ieee_id, 'IXBO', LIO$K_INSTRUMENT) !Instrument
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = LIO$ATTACH (ieee_id, 'EKBO', LIO$K_SYS_CTRL) !System controller
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The ieee_id argument returns the LIO-assigned device ID for the device.
The device is referenced by this device ID in subsequent routine calls to
the device in a user program.

The device specification IXAQ specifies an IEQ11 (IX) device, with
controller letter A and unit number 0. To attach another IX device,
specify unit number 1.

The IEQ11 supports two units per device. Each device must have a
unique device specification. The devices can be attached in any order.

The device specification EKB0 specifies an IEZ11 (EK) device, with
controller letter B and unit number 0.

The IEZ11 supports one unit per device, attached as unit 0 or 1.

The I/O type LIO$SK_SYS_CTRL sets up an IEEE-488 device as

the system controller. This is the default value. The I/O type
LIO$K_CTRL sets up an IEEE-488 device as a controller. The I/O type
LIO$K_INSTRUMENT sets up an IEEE-488 device as an instrument.

The IT (IOtech Micro488A) device is attached the same way as the
IX and EK devices, but the controller and unit designation have

no meaning. To use a port other than TTA2 you must define the
logical name “IOTECH_PORT"” to be the physical device name. See

Laboratory /O Device Support 2-119




Section 2.5.2, IOtech Micro488A, for an example of defining the logical u
name.

The controller function for the IT device is selected by setting DIP
switches in the device. See Section 2.5.2.1, IOtech Micro488A DIP
Switch Settings, for more information.

See the description of the LIOSATTACH routine in Chapter 3 for more
information about supplying device specifications and 1/O types to the
LIOSATTACH routine.

2.5.8 Setting Up the IEEE-488 Device

Before you can begin using an IEEE-488 device, you must set up
certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show IEEE-488
device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

Table 2-20: |EEE-488 Device LIO$SET and LIO$SHOW Parameters

Parameter Function u

LIO$K_ASYNCH Sets up a device to use the asynchronous I[/O
interface.
(LIO$K_ASYNCH is not supported for the
10tech Micro488A.)

LIO$K_AUX_COMMAND Sends an auxiliary command to an [EEE-488
device.

LIO$K_COMMAND Sends the specified IEEE-488 commands on the
bus.

LIO$K_CTRL_ACTIVE Activates the IEEE-488 controller function.

LIO$K_CTRL_STANDBY Deactivates the IEEE-488 controller function.

LIO$K_DEVICE_EF Establishes the event flag that is set when a
buffer becomes available.

LIO$K_EOI Asserts or does not assert the end-or-identify
(EQI) line when the last byte of data is output.

LIO$K_ERR_HANDLE Specifies the way in which a device returns

error conditions.

2-120 Laboratory /0O Device Support U



Table 2-20 (Cont.): IEEE-488 Device LIO$SET and LIO$SHOW
Parameters

Parameter

Function

LIO$K_EVENT_AST

LIO$K_EVENT_ENA

LIO$K_EVENT_WAIT
LIO$K_IEEE_ADDR

LIO$K_LEAVE_IN_STATE

LIO$K_PAR_POLL
LIO$K_PAR_POLL_CONFIG
LIO$K_PAR_POLL_STATUS

LIO$K_PASS_CTRL
LIO$K_SER_POLL

LIO$K_SER_POLL_CONFIG

LIO$K_SRQ

Assigns a user-written AST routine to be called
on IEEE-488 bus events.

(LIOSK_EVENT_AST is not supported for the
10tech Micro488A.)

Enables the recognition of specified IEEE-488
bus events.

Waits for enabled IEEE-488 bus events to occur.

Sets the IEEE-488 bus address of the device,
and enables or disables the recognition of
secondary addressing.

(Note that the IEZ11 and the IOtech Micro488A

cannot be addressed as a secondary listener or
talker.)

Specifies whether or not to leave an IEQ11
device in the state required to process the
subsequent 1/O request.

(LIO$K_LEAVE _IN_STATE is not supported for
the IEZ11 or the IOtech Micro488A.)

Performs a parallel poll of IEEE-488 bus
instruments.

Sets up the list of IEEE-488 instruments for
parallel polling.

Sets up an instrument’s parallel poll status
register.

Passes control to another IEEE-488 bus device.

Serial polls a predetermined list of 1EEE-488
instruments.

Sets up the list of IEEE-488 instruments to
serial poll.

Defines an IEEE-488 device's serial poll status
byte and, optionally, sends a service request to
the controller-in-charge.

Laboratory /0 Device Support 2-121




Table 2-20 (Cont.): IEEE-488 Device LIO$SET and LIO$SHOW

Parameters
Parameter Function
LIO$K_SYNCH Sets up the device for synchronous 1/O.
LIO$K_TERM_CHAR Defines a termination character to mark the
end of a data transfer.
LIO$K_TERM_SRQ Enables or disables termination of I/O transfers

by a service request.
(LIO$K_TERM_SRQ is not supported for the
IEZ11 or the IOtech Micro488A.)

LIO$K_TIMEOUT Sets the length of time (in seconds) before an
I/O request is aborted.

2.5.9 Assigning IEEE-488 Bus Addresses

The LIO facility recognizes the location of a device on the IEEE-488 bus
by its address. Immediately after you attach an IEEE-488 device, you
must assign it a primary IEEE-488 bus address before you set up any
other device characteristics. A device does not actually exist on the
IEEE-488 bus until it is assigned a primary address.

You also have the option of enabling a device to recognize secondary
addresses.

NOTE

An IEZ11 or an IOtech Micro488A device cannot be
addressed as a secondary listener or a secondary talker.
However, an IEZ11 or a Micro488A can generate secondary
addresses when it is controller-in-charge.

Use the LIO$K_IEEE_ADDR parameter to assign the device’s IEEE-488
primary bus address, and to enable the recognition of secondary
addressing, for example:

status = LIO$SET_I (ieee_id, LIO$K_IEEE_ADDR, 2, O, LIO$K_ON)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The LIO$K_IEEE_ADDR constant is the LIO$SET_I parameter being set.

2-122 Laboratory I/0 Device Support

W)




m

The 2 tells LIO that you are specifying two parameter values for the
LIO$K_IEEE_ADDR parameter.

The 0 assigns IEEE-488 bus address zero as the primary address of this
device.

The LIO$K_ON value enables the recognition of secondary addressing.

See the description of the LIO$SET_I routine in Chapter 3 for more
information about specifying the appropriate arguments for this routine.

See the description of the LIO$K_IEEE_ADDR parameter in Chapter 4
for the acceptable values of this parameter.

NOTE

In addition to using LIO$K_IEEE_ADDR, you must also set
DIP switches on the IOtech Micro488A device to assign the
bus address. See Section 2.5.2.1, IOtech Micro488A DIP
Switch Settings, for more information.

2.5.10 Enabling IEEE-488 Events

When a device is the controller-in-charge, a service request (SRQ) is an
event.

When a device is not the controller-in-charge, IEEE-488 commands
received from the controller-in-charge are treated as events by the
device set up to respond to them.

To detect events on the IEEE-488 bus, the desired event types must be
enabled with LIO$SET_I. Use the set parameter LIO$K_EVENT_ENA
to enable specific events. The LIOSK_EVENT_ENA parameter values
specify the bus events for as shown in the following table.

Laboratory /O Device Support 2-123




Value

Meaning

LIO$K_DEADDR_EVT

LIO$K_DEV_CLR_EVT

LIO$K_DEV_TRIG_EVT

LIO$K_EXT_LNR_EVT

LIO$K_EXT_TKR_EVT

LIO$K_IFC_EVT

LIO$K_LNR_ADDR_EVT

2-124 Laboratory I/0 Device Support

The device has been deaddressed.

This event is detectable only when the device is not the
controller-in-charge.

The controller-in-charge has sent the ‘’device clear’”
command. The instrument should reset itself to its
power-up state. Remember that user-written application
programs are responsible for all instrument functions.
The instrument should return to its initial state.

This event is detectable only when the device is not the
controller-in-charge.

The controller-in-charge has sent the ‘‘device trigger’’
command. The instrument should trigger as specified in
the user-written application program.

This event is detectable only when the device is not the
controller-in-charge.

The controller-in-charge is addressing the device as an
extended (secondary) listener.

This event is detectable only when the device is not the
controller-in-charge.

(LIO$K_EXT_LNR_EVT is not supported for the IEZ11 or
the 10tech Micro488A.)

The controller-in-charge is addressing the device as an
extended (secondary) talker.

This event is detectable only when the device is not the
controller-in-charge.

(LIO$K_EXT_TKR_EVT is not supported for the IEZ11 or
the I0tech Micro488A.)

The system controller is signalling the device to clear its
bus interface. This does not generally affect the internal
state of the instrument.

(LIO$K_IFC_EVT is not supported for the IEZ11 or the
IOtech Micro488A.)

The controller-in-charge is addressing the device as a
listener.

This event is detectable only when the device is not the
controller-in-charge.



Value

Meaning

LIO$K_PAR_POLL_CONFIG_EVT

LIO$K_PAR_POLL_UNCONFIG_EVT

LIO$K_REC_CTRL_EVT

LIO$K_REM_LOCAL_EVT

LIO$K_SRQ_EVT

LIO$K_TKR_ADDR_EVT

The controller-in-charge is signalling the device to
configure itself for parallel polling.

This event is detectable only when the device is not the
controller-in-charge.

(LIO$K_PAR_POLL_CONFIG_EVT is not supported for the
1IEZ11 or the IOtech Micro488A.)

The controller-in-charge is signalling the device to
unconfigure itself for parallel polling.

This event is detectable only when the device is not the
controller-in-charge.

(LIO$K_PAR_POLL_UNCONFIG_EVT is not supported for
the IEZ11 or the IOtech Micro488A.)

The device has received control from the current
controller-in-charge.

This event is detectable only when the device is not the
controller-in-charge, and it is attached as controller or
system controller.

The device state has changed from remote to local, or
from local to remote. The current state of the device
is returned by the LIOSK_EVENT_WAIT parameter, or
by the AST routine set up by the LIOSK_EVENT_AST
parameter.

This event is detectable only when the device is not the
controller-in-charge.

(LIO$K_REM_LOCAL _EVT is not supported for the [EZ11
or the IOtech Micro488A.)

A device is requesting service.

This event is detectable only when the device is the
controller-in-charge.

The controller-in-charge is addressing the device as a
talker.

For this event to be detectable, the device must be the
controller-in-charge.

Laboratory I/0 Device Support 2-125




Multiple events can be specified in one call, for example:

status = LIO$SET_I (ieee_id, LIO$K_EVENT_ENA, 2, LIO$K_PAR_POLL_CONFIG_EVT,
1 LIO$K_TKR_ADDR_EVT)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine enables an IEEE-488 device to respond to a ““parallel poll
configure”’ event or an “‘addressed as talker”” event. This means that

the device detects that the controller-in-charge is performing a parallel
poll configuration or is addressing this device as a talker.

See the description of the LIO$SK_EVENT_ENA parameter in Chapter 4
for more information.

2.5.11 Detecting IEEE-488 Bus Events

The LIO facility supports the following two methods of detecting the
occurrence of IEEE-488 bus events. Before an event can be detected, it
must be enabled by the LIOSK_EVENT_ENA parameter.

* You can set up an IEEE-488 device with a user-written AST routine
(LIO$K_EVENT_AST) that is called when an enabled event occurs,
for example:

status = LIO$SET_I (ieee_id, LIO$K_EVENT_AST, 1, event_ast)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

In this example, the LIO facility calls the user-written AST routine,
event_ast, when an enabled event occurs. Your AST routine should
take whatever action is appropriate for the device on this event.
See Section 2.5.12, Supplying AST Routines, for information about
supplying user-written AST routines.

*  You can call the LIO$SHOW routine for an IEEE-488 device with the
LIO$K_EVENT_WAIT parameter. This routine waits for an enabled
event to occur, and then returns it, for example:

INTEGER*4 event (2)
INTEGER*4 length

LIO$SHOW (ieee_id, LIO$K_EVENT_WAIT, event, length)

2-126 Laboratory I/0O Device Support



This routine segment declares the variable event to be an integer
array of length 2, and the variable length to be an integer. The
IEEE-488 bus event and event-specific information are returned in
the elements of the event array. The length variable returns the
number of elements contained in the event array. The first element
in the event array returns the IEEE-488 event code and the second
element returns event specific information.

The nature of your application determines which method is more
appropriate.

See the descriptions of the LIO$K_EVENT_AST and
LIO$K_EVENT_WAIT parameters in Chapter 4 for more information
about setting up a device to wait for IEEE-488 bus events.

2.5.12 Supplying AST Routines

You can supply the following two types of AST routines when using
IEQ11 or IEZ11 devices:

¢ A buffer completion AST routine. A buffer completion AST routine
m is a normal user-written subroutine that the LIO facility calls to
receive completed buffers from a device, usually for processing.
When a device finishes a buffer transaction, it calls the AST routine
and passes the buffer to it.

Section 1.5.3, Asynchronous System Traps (ASTs), describes buffer
completion AST routines in more detail. Also see Chapter 3,
Program Development, in Getting Started with VAXIab for information
about writing buffer completion AST routines that is specific to
certain programming languages.

* An event AST routine. Here an event AST routine is a normal
user-written subroutine that the LIO facility calls when it detects
the occurrence of an IEEE-488 bus event. In order to detect an
event, the detection of the event must be enabled through the
LIO$K_EVENT_ENA parameter.

NOTE

You cannot use AST routines with the IOtech Micro488A
device.

Laboratory I/O Device Support 2-127




w

2.5.12.1 Example

The following VAX FORTRAN program segment shows how to set up
an AST routine for an IEQ11 or IEZ11 device to detect the occurrence of
IEEE-488 bus events.

C Supply the address of the event AST routine
status = LIO$SET_I (ieee_id, LIO$K_EVENT_AST, 1, event_ast)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The device event AST routine takes four argument values.

The first value, event_code, returns the code of the event
that was detected. The second value, event_specific, returns
information that is specific to the detected event. (For the
IEZ11, this information is always 0.) The third value, unit,
specifies the unit number of the device. The fourth value,
controller, is the controller designation.

aaoaaoaaaaa

SUBROUTINE event_ast (event_code, event_specific, unit, controller)

INTEGER*4 event_code ! IEEE-488 bus event code

INTEGER*4 event_specific !Information specific to the event

INTEGER*4 unit 'Unit number of the device that u
!detected the event

INTEGER*4 controller !Controller designation

C Body of your event AST routine goes here. Write the routine to
C perform whatever tasks are appropriate for handling the events
C that might occur.

RETURN
END

2-128 Laboratory I/0 Device Support u



The event_code argument returns the event code of the detected event.
See the description of the LIOSK_EVENT_ENA parameter for a list and
descriptions of valid IEEE-488 bus event codes.

The event_specific argument returns information specific to the detected
event according to the following general rules:

— For the IEZ11, the event_specific argument returns a 0.

— If the IEQ11 is addressed as extended listener or talker, the
event_specific argument returns the device’s secondary address.
In this case, the value of the event_code argument is either
LIO$K_LNR_ADDR_EVT or LIO$K_TKR_ADDR_EVT.

— If a remote/local change occurred, the event_specific argument
returns a 0 if the new state is local mode. The event_specific
argument returns a 1 if the new state is remote mode. In this case,
the value of the event_code argument is LIOSK_REM_LOCAL_EVT.

— If a parallel poll configure occurred, the event_specific argument
returns the PPE (parallel poll enable) byte or the PPD (parallel
poll disable) byte. In this case, the value of the event_code
argument is either LIOSK_PAR_POLL_CONFIG_EVT or

m LIO$K_PAR_POLL_UNCONFIG_EVT.

— For all other events, the event_specific argument returns a 0.

The unit argument is the number of the device that detected the event
(for example, unit = 0 for IXAO or unit = 1 for IXA1).

The controller argument is a single ASCII code containing the controller
designation (“A”” for IXAO or ““B”’ for IXB0).

2.5.13 Requesting Service with an SRQ
To request service from the controller-in-charge, use the LIO$K_SRQ
parameter, for example:

INTEGER*1 status_byte !SRQ status byte

status_byte = 64 'Bit 6 set, all other bits clear
status = LIO$SET_I (ieee_id, LIO$K_SRQ, 1, status_byte)
IF (.NOT. status) CALL LIB$SIGNAL (X%VAL(status))

Laboratory /0 Device Support 2-129




This routine segment declares variable status_byte as a one-byte integer V

and sets bit 6. When bit 6 is set in the SRQ status byte, a service request
(SRQ) is sent to the controller-in-charge. The routine call waits until the
controller-in-charge serially polls the device. If bit 6 is cleared in the
SRQ status byte, the status is saved in the device, and no SRQ is sent
to the controller-in-charge. The status is read by the controller-in-charge
if it polls the device.

See the description of the LIO$K_SRQ parameter in Chapter 4 for more
information.

2.5.14 Passing and Receiving Control

To pass control to another IEEE-488 device attached as a controller,
use the LIO$K_PASS_CTRL parameter to specify the address of the
instrument to which to pass control, for example:

status = LIO$SET_I (ieee_id, LIO$K_PASS_CTRL, 1, 6)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine passes control from the current controller-in-charge to the
device at IEEE-488 bus address 6.

To receive control from the current controller-in-charge, an IEEE-488
device must be attached as a controller and must be set up with the
receive control event (LIO$K_REC_CTRL) recognition enabled by the
LIO$K_EVENT_ENA parameter, for example:

status = LIO$SET_I (ieee_id, LIO$K_EVENT_ENA, 1, LIO$K_REC_CTRL)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Then, the device can either:

® Supply a user-written AST routine with the LIO$K_EVENT_AST
parameter to act on the received control when the event occurs.
(The advantage of this approach is that other processing can take
place while waiting for control.)

e Call LIO$SHOW with the LIO$K_EVENT_WAIT parameter to wait
until the controller-in-charge passes control to the device. (This

is acceptable if the controller does not have any other functions it
needs to perform while waiting.)

2-130 Laboratory I/0 Device Support



2.5.15 Responding to a Service Request

The controller-in-charge responds to a service request from an IEEE-488
instrument by performing a serial poll of all instruments that might be
requesting service.

To set your program to respond to service requests, do the following;:

1.

Use the LIO$K_SER_POLL_CONFIG parameter to set up a list of
instrument addresses to poll.

INTEGER addri(4) !Integer array of length 4 to hold primary addresses
INTEGER addr2(4) !Integer array of length 4 to hold secondary addresses

addri(1) = 2
addr1(2) = 4
addr1(3) = 6
addri1(4) = 8
addr2(1) = 142
addr2(2) = 144
addr2(3) = 1486
addr2(4) = 148

status = LIO$SET_I (ieee_id, LIO$K_SER_POLL_CONFIG, 2, addri, addr2)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This routine sets up the devices at IEEE-488 bus addresses 2, 4, 6,
and 8 for serial polling. If the list of devices you initially configure
for serial polling does not need to change during the execution of
your application, then you should use this setup parameter only
once.

If you need to serial poll other devices during the execution of your
application, you must use this setup parameter again, specifying the
IEEE-488 bus addresses of the other devices you need to poll.
Enable the service request (LIO$K_SRQ_EVT) event with the
LIO$K_EVENT_ENA parameter.

status = LIO$SET_I (ieee_id, LIO$K_EVENT_ENA, 1, LIO$K_SRQ_EVT)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This enables the controller-in-charge to recognize service requests
from other devices.

Laboratory I/O Device Support 2-131




3. Supply an event AST routine (LIO$K_EVENT_AST) to respond to u
the service request (LIO$K_SRQ) event.

status = LIO$SET_I (ieee_id, LIO$K_EVENT_AST 1, srq_ast)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

See the description of the LIOSK_EVENT_AST parameter in
Section 2.5.12, Supplying AST Routines, and Chapter 4 for
information about the device-specific information you must supply
when you call the AST routine from your user program.

4. When the service request event occurs, your AST routine can call
the LIO$SHOW routine with the LIO$K_SER_POLL parameter.

BYTE serial_poll_status(4)
INTEGER#4 length

LIO$SHOY (ieee_id, LIO$K_SER_POLL, serial_poll_status, length)

This routine segment declares the variable serial_poll_status to

be an integer array of length four, and the variable length to be

an integer. The status bytes from the four devices polled (as set

up with LIO$K_SER_POLL_CONFIG in step 1 of this procedure)

are returned in the elements of the serial_poll_status array. For u
example, serial_poll_status(l) returns the status byte from the

instrument at IEEE-488 bus address 2, serial_poll_status(2) returns

the status byte from the instrument at IEEE-488 bus address 4,

and so on. The length variable returns the number of status bytes
contained in the serial_poll_status array.

For each instrument whose status byte has bit 6 set (requesting
service), your AST routine should perform whatever action is
appropriate at that time for the instrument requesting service.

NOTE

The actual response to a service request depends entirely on
the instrument. The value of the other bits in the instrument’s
status byte can determine the appropriate action. See the
description of the LIO$K_SRQ parameter in Chapter 4 for
information about setting up IEEE-488 instruments to issue
service requests. The user’s manuals for IEEE-488 instruments
usually contain information about the condition that causes
these instruments to request service.

2-132 Laboratory I/O Device Support u



~

2.5.16 Sending Data and Receiving Data When the IEEE-488
Device Is Controller-In-Charge

When an IEEE-488 device is the controller-in-charge, it can send data to
or receive data from an instrument.

To set up the device that is the controller-in-charge to send and receive
data, do the following:

1.

Call the appropriate LIO routine to make a buffer available to the
controller-in-charge. (Call LIO$READ or LIO$WRITE if the device is
set for synchronous 1/0. Call LIOSENQUEUE if the device is set for
asynchronous 1/0.)

If the controller-in-charge will be sending data to an instrument,
specify “LIOSM_LNR .OR. instrument_address’’ as the
device_specific argument of the routine call, because the instrument
will be a “listener”’.

If the controller-in-charge will be receiving data from an
instrument, specify “LIO$M_TKR .OR. instrument_address’’ as the
device_specific argument of the routine call, because the instrument
will be a ““talker”’.

INTEGER*2 buffer(256)
INTEGER*4 event_flag

LIB$GET_EF (event_flag)
LIO$SET_I (ctrl_id, LIO$K_DEVICE_EF, 1, event_flag)

LIO$ENQUEUE (ctrl_id, buffer, 512, , event_flag, LIO$M_TKR .OR. 3)

This routine segment declares the variable buffer to be a word array
of length 256, or 512 bytes. The event_flag variable is an integer
and contains a system-assigned VMS event flag associated with

the buffer. LIOSM_TKR .OR. 3 is a device-specific argument that
signals the IEEE-488 instrument, at IEEE-488 bus address 3 (.OR. 3),
to ““talk’”’ to the controller-in-charge.

Laboratory I/0O Device Support 2-133




When the buffer is enqueued (LIOSENQUEUE), the IEEE-488 device U
tells the addressed instrument to “‘talk,” and places the data sent by

the addressed instrument in the enqueued buffer. The data transfer

is complete when one of the following occurs:

¢ The buffer is filled.

* The instrument asserts the EOI line when the last byte of data
is output. (See the description of the LIO$K_EOI parameter in
Chapter 4.)

¢ The termination character is received. (See Section 2.5.18.1,
Using Termination Characters to Terminate Read Requests,
and the description of the LIOSK_TERM_CHAR parameter in
Chapter 4.)

See the description of the LIOSENQUEUE routine in Chapter 3 for
more information about supplying arguments to this routine.

2. Call the LIO$DEQUEUE routine to return the buffer to the calling
program, for example:
INTEGER+4 buffer_address

INTEGER*4 buffer_length
INTEGER*4 device_specific

status = LIO$DEQUEVE (ctrl_id, buffer_address, buffer_length,
1 data_length, 1, , device_specific)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The LIO$DEQUEUE routine waits for the buffer to become available
on the device’s device queue and then returns the buffer to the
controller-in-charge.

The data_length argument returns the number of bytes in the buffer.
The value of status specifies the reason for terminating the buffer
(for example, success, encountered termination character, or any
error status code).

See the description of the LIOSDEQUEUE routine in Chapter 3 for
more information about supplying arguments to this routine.

2-134 Laboratory I/0 Device Support ~ ‘ ,




eh 2.5.17 Sending Data to Multiple IEEE-488 Devices

The IEEE-488 bus allows more than one device to listen simultaneously.
The LIOSK_COMMAND set parameter can send several listener
addresses out on the bus.

To address multiple devices to listen simultaneously, do the following:

1.

Attach the IEEE-488 device as a system controller. This ensures that
it will be controller-in-charge. (It could also have been attached as a
controller and waited to receive control.)

INTEGER*4 addri, addr2, addr3
INTEGER*4 comi, com2, com3

status = LIO$ATTACH (ieee_id, 'IXAO', LIO$K_SYS_CTRL)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Build listener addresses for IEEE-488 devices 2, 4, and 6 by ORing
the LIO$M_LNR bit to each address.

addrl = 2
comi = LIO$M_LNR .OR. addri

addr2 = 4
com2 = LIO$M_LNR .OR. addr2

addr3 = 6
com3 = LIO$N_LNR .OR. addr3

Send the listener addresses out on the bus. This causes devices 2,
4, and 6 to listen.

status = LIO$SET_I (ieee_id, LIO$K_COMMAND, 3, comi, com2, com3)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Laboratory I/O Device Support 2-135



4. Write data out on the bus. Since devices 2, 4, and 6 are enabled to
listen, they should receive this data.

status = LIOSWRITE (ieee_id, buffer, data_length)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

To send data asynchronously to multiple IEEE-488 devices, do the
following:

1. Attach the IEEE-488 device as a system controller. This ensures that
it will be controller-in-charge. (It could also have been attached as a
controller and waited to receive control.)

INTEGER*4 addri, addr2, addr3
INTEGER*4 comi, com2

status = LIO$ATTACH (ieee_id, 'IXAO', LIO$K_SYS_CTRL)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2. Build listener addresses for IEEE-488 devices 2 and 4 by ORing the
LIO$M_LNR bit to each address.

addrl = 2
comli = LIO$M_LNR .OR. addri

addr2 = 4
com2 = LIO$SM_LNR .OR. addr2

3. Send the listener addresses out on the bus. This causes devices 2
and 4 to listen.

status = LIO$SET_I (ieee_id, LIO$K_COMMAND, 2, comi, com2)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2-136 Laboratory I/0 Device Support

U

W)



Enqueue the send buffer. This example uses the listener address

of device 6 as the device-specific argument. If no device-specific

argument is given, device 0 will be addressed as the listener.
status = LIO$ENQUEUE (ieee_id, buffer, buffer_length, , event_flag,

1 , LIO$M_LNR .OR. addr3)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Dequeue the send buffer. The ‘1" specifies that LIO$DEQUEUE is
to wait for a buffer to become available.

status = LIO$DEQUEUE (ieee_id, buffer, buffer_length, , 1, , ,)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.5.18 Sending Data and Receiving Data When the IEEE-488
Device Is Attached as an Instrument

The LIO facility provides several ways in which instruments can send
data to and receive data from the controller-in-charge.

To perform data transfers between an IEEE-488 instrument and the
controller-in-charge, do the following:

1.

The simplest way is to call LIOSREAD or LIO$WRITE and wait until
the controller-in-charge addresses the instrument to talk or listen.

status = LIO$READ (ieee_id, buffer, buffer_length, data_length, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

LIO$WRITE (ieee_id, buffer, data_length, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Often it is more useful to use the LIO$ENQUEUE and/or
LIO$DEQUEUE routines, specifying input or output with the
device_specific argument.

status

status = LIO$ENQUEUE (instrument_id, buffer, buffer_length,
1 , + , LIO$MN_TKR)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

This enables the user program to continue while the instrument
waits to be addressed as a talker by the controller-in-charge.

The device-specific argument LIOSM_TKR tells LIO that this is

a read request (the instrument is a talker). If the device-specific
argument were LIOSM_LNR, this would mean a write request (the
instrument is a listener).

Laboratory /O Device Support 2-137




The IEEE-488 device processes buffers in the order in which they are
enqueued. If an output buffer is enqueued before an input buffer,
the device must be addressed first as a talker, and then as a listener.

3. If an instrument must be able to respond to both talk and
listen requests, then it can enable the LIO$K_TKR_ADDR and
LIO$K_LNR_ADDR events with the LIO$K_EVENT_ENA parameter.
status = LIO$SET_I (instrument_id, LIO$K_EVENT_ENA, 2,

1 LIO$K_TKR_ADDR_EVT, LIO$K_LNR_ADDR_EVT)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = LIO$SHOVW (instrument_id, LIO$K_EVENT_WAIT,
i event, length)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The event argument returns the IEEE-488 event that occurred. The
length argument returns the number of events contained in the
event argument.

4. The most flexible way to send and receive data is to supply
user-written AST routines to be called when the enabled
LIO$K_TKR_ADDR_EVT and LIO$K_LNR_ADDR_EVT events
occur. The AST routines can then enqueue (LIOSENQUEUE)
buffers when the instrument is addressed. This way the instrument u
can handle requests to talk or listen in any order.

NOTE

The format in which data is transferred is entirely dependent
on the instrument. However, using printable ASCII strings
for commands, such as “T"’ for trigger, and ASClII-encoded
decimal values for numbers, such as ‘5" **.””*’3"’ for 5.3,
are recommended. String values are usually terminated

by a termination character. See Section 2.5.18.1, Using
Termination Characters to Terminate Read Requests, for
more information.

2-138 Laboratory I/O Device Support u



()

2,5.18.1 Using Termination Characters to Terminate Read Requests

An IEEE-488 device can be set to terminate input on receipt of a
termination character.

Although only one termination character can be recognized at a time,
the termination character can be repeated any number of times for an
IEQ11 device. For example:

status = LIO$SET_I (instrument_id, LIO$K_TERM_CHAR, 2, 10, 2)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

specifies that a line-feed (ASCII decimal 10) character, repeated twice in
succession, signals the end of an input buffer.

The IEZ11 and the IOtech Micro488A devices do not support a repeat
count. They will terminate on receiving the termination character once.

To disable termination character recognition, specify —1 as the value of
the LIOSK_TERM_CHAR parameter, for example:

status = LIO$SET_I (instrument_id, LIO$K_TERM_CHAR, 1, -1)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Data transfers are faster when termination character recognition is
disabled, because the driver does not have to check each character that
is transferred to determine if it is a termination character.

2.5.18.2 Using EOI to Terminate Write Requests

An IEEE-488 device can signal the end of a write request by asserting an
EOI line after the last byte of an output buffer is transferred. To cause
the assertion of an EOI line, use the LIO$K_EOI parameter to enable
EQI, for example:

status = LIO$SET_I (ieee_id, LIO$K_EOI, 1, LIO$K_ON)

This routine causes subsequent write requests to assert EOI after the last
byte of a transfer.

Laboratory I/0 Device Support 2-139




2.6 Serial Line Devices U

This section describes the serial line devices supported by VAXIab.
If you are unfamiliar with serial line devices and the functions they
perform, see the VMS I/O User’s Reference Manual for more information.

See Table 3-2, Device Specifications and I/O Types, for a list of the
serial line devices supported by VAXlab Software Library.

Attaching Serial Line Devices

Attaching a serial line device means assigning a VMS 1/O channel to
the device and initializing LIO data structures for, and pointers to, the
device.

Use the LIO$ATTACH routine to attach the serial line device.

status = LIO$ATTACH (serial_id, 'TTAO', LIO$K_QIO)
IF(.NOT. status) CALL LIB$SIGNAL(%VAL(status))

The serial_id argument returns the LIO-assigned device ID for the serial
line device. The device is referenced by this device ID in subsequent
routine calls to the device in a user program. u

This example shows the device specification, TTAO, for the DZ11 serial
line device. See Table 3-2 for the appropriate device types of the serial
line devices supported by VSL.

The LIO$K_QIO value attaches the serial line device to use QIOs.
LIO$K_QIO is the only I/O type supported for use with serial line
devices.

2.6.2 Setting Up Serial Line Devices

Before you can begin data transfers using a serial line device, you
must set up certain device characteristics. The following table lists
the LIO$SET and LIO$SHOW parameters you can use to set up and
show serial line device characteristics. See Chapter 4 for reference
descriptions of the parameters listed in this table.

2-140 Laboratory I/O Device Support u



" ’ Table 2-21: Serial Line LIO$SET and LIO$SHOW Parameters

Parameter

Function

LIO$K_ACK_NAK_TERMINATOR

LIO$K_AST_RTN

LIO$K_ASYNCH
LIO$K_BAUD_RATE

LIO$K_BITS_PER_CHAR
LIO$K_BREAK

LIO$K_CTRL_AST

LIO$K_CTRL_HANDLING

LIO$K_DEVICE_ACK_NAK_BUFF

LIO$K_DEVICE_EF
LIO$K_DUPLEX
LIO$K_ECHO
LIO$K_ERR_HANDLE
LIO$K_ERROR_ENABLE
LIO$K_FLOW_CONTROL

LIO$K_FLOW_MASTER
LIO$K_FORWARD

LIO$K_HANGUP

Establishes a termination character for the
ACK/NAK string received from an external device.

Specifies a user-written AST routine to receive
buffers when a device finishes processing them.

Sets up the device for asynchronous I/O.

Sets the speed at which data is transmitted over a
serial line.

Establishes the number of data bits per character.

Generates a break condition on a terminal line for a
specified period of time.

Specifies a user-written AST routine to be called on
receipt of a specified control character.

Sets up a flag that indicates what action to take
on receipt of a control character specified using the
LIO$K_CTRL_AST parameter.

Supplies the buffer to be used when receiving an
ACK or a NAK from a device.

Establishes the event flag that is set when a buffer
becomes available.

Specifies whether read/write requests are executed
in half-duplex or full-duplex mode.

Enables or disables the echoing of characters received
on a serial line.

Specifies the way in which the serial line device
handles errors.

Enables or disables parity error handling for serial
line devices.

Establishes the method of flow control for a serial
line device.

Establishes the XON/XOFF flow control scheme.

Specifies the device to which completed buffers are
forwarded.

Disconnects a terminal that is on a dial-up line.

Laboratory I/O Device Support 2-141




Table 2-21 (Cont.): Serial Line LIO$SET and LIOSSHOW Parameters

Parameter

Function

LIO$K_INPUT_TERMINATOR

LIO$K_MODEM
LIO$K_MODEM _STATUS
LIO$K_OUTPUT_PREFIX

LIO$K_OUTPUT_TERMINATOR

LIO$K_PARITY
LIO$K_PROTOCOL

LIO$K_PURGE
LIO$K_READ_PROMPT

LIO$K_STOP
LIO$K_SYNCH
LIO$K_TIMEOUT

LIO$K_TIMEOUT_ENABLE
LIO$K_TYPE_AHEAD
LIO$K_UNSOLICITED

LIO$K_USER_ACK_AST

LIO$K_USER_ACK_STRING

LIO$K_USER_NAK_AST

2-142 Laboratory I/O Device Support

Specifies a termination character or characters on

the input side of a serial port.

Specifies that the serial line is a modem.
Sets and returns modem status information.

Specifies a prefix character string on the output side

of a serial line.

Specifies a termination character string on the

output side of a serial line.

Specifies the parity checking mode for a serial line.

Enables or disables the serial line user protocol

feature.

Purges all characters in the type-ahead buffer.

Specifies a read-prompt to prefix each input data

buffer.
Stops the device.

Sets up the device for synchronous I/O.

Sets the length of time (in seconds) before an 1/0

request is aborted.

Enables a timeout for read requests.
Enables or disables the typeahead buffer.

Returns the number of characters in the type-ahead

buffer.

Specifies the address of a user-supplied AST routine
to transmit the ACK string on successful completion

of a data transfer.

Specifies the ACK string to be sent out by an AST
routine on successful completion of a data transfer.

Specifies the address of a user-supplied AST
routine to transmit the NAK string on unsuccessful

completion of a data transfer.



Table 2-21 (Cont.): Serial Line LIO$SET and LIO$SHOW Parameters

Parameter Function

LIO$K_USER_NAK_STRING Specifies the NAK string to be sent out by an
AST routine on unsuccessful completion of a data
transfer.

LIO$K_USER_READ_PROTOCAL_AST Specifies the address of a user-supplied AST routine

to be called on receipt of either a terminator or a full
buffer of characters from a read request.

LIO$K_USER_WRITE_NAK_HANDLING Specifies whether or not a sending device attempts
to retransmit a buffer after receiving a NAK from
the intended receiving device.

LIO$K_XON Forces the sending of an XON character to reprime
the serial line.

2.6.3 Using Serial Line Devices for Synchronous I/0

To make a serial line available to a nonprivileged user, use the following
commands from a suitably privileged account:

$ SET PROCESS/PRIV=0PER
$ SET PROTECTION=V:RWLP/DEVICE dev_name:

To set up a serial line device for synchronous 1/0, do the following;:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

2. Declare the data types and variables you are using in your program.

3. Attach the serial line device as described in Section 2.6.1, Attaching
Serial Line Devices.

4. Specify the I/O interface.

status = LIO$SET_I (serial_id, LIO$K_SYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

5. Set the baud rate. The following sample routine sets the baud rate
at 1200.

status = LIO$SET_I (serial_id, LIO$K_BAUD_RATE, 1, 1200)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Laboratory /O Device Support 2-143




6. Set a device timeout. The following sample routine sets a 60 second ' ) ’
timeout.

status = LIO$SET_I (serial_id, LIO$K_TIMEOUT, 1, 60)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

7. Specify an input buffer terminator. The following sample routine
specifies the letter ““z’” as the input buffer terminator.

status = LIO$SET_S (serial_id, LIO$K_INPUT_TERMINATOR, 'z')
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

8. Specify a read prompt. The following sample routine sets up the
string “‘Enter data:’’ as the string thats prompts for data input.

status = LIO$SET_S (serial_id, LIO$K_READ_PROMPT, 'Enter data:')
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

9. Start the data transfer. The following sample routine reads and
writes 10 bytes of data synchronously.

status = LIO$READ (serial_id, buffer, 10, buffer_length, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
status = LIO$YRITE (serial_id, buffer, 10, )

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

10. Detach the device.

status = LIO$DETACH (serial_id, ) V

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2.6.4 Using Serial Line Devices for Asynchronous I/O

To set up a serial line device for asynchronous /O, do the following:

1. Include the symbolic definition files required by the VAXlab
facilities and programming language you are using.

2. Declare the data types and variables you are using in your program.

3. Attach the serial line device as described in Section 2.6.1, Attaching
Serial Line Devices.

4. Specify the I/O interface.

status = LIO$SET_I (serial_id, LIO$K_ASYNCH, 0)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

2-144 Laboratory I/0O Device Support ‘ ’



10.

11.

12,

Set the baud rate. The following sample routine sets the baud rate
at 2400.

status = LIO$SET_I (serial_id, LIO$K_BAUD_RATE, 1, 2400)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Set a device timeout. The following sample routine sets a 30 second
timeout.

status = LIO$SET_I (serial_id, LIO$K_TIMEOUT, 1, 30)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify an input buffer terminator. The following sample routine

ey

specifies the letter “’q"’ as the input buffer terminator.

status = LIO$SET_S (serial_id, LIO$K_INPUT_TERMINATOR, 'q')
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Enable the user-defined protocol feature.

status = LIO$SET_I (serial_id, LIO$K_PROTOCOL, 1, LIOS$K_ON)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify the address of the AST routine.

status = LIO$SET_I (serial_id, LIO$K_USER_READ_PROTOCOL_AST,
1 1, receive_buff)
IF (.NOT. status) CALL LIB$SICNAL (%VAL(status))

Set up the acknowledge (ACK) and negative acknowledge (NAK)
buffer. This buffer receives ACKs or NAKs from a device.
status = LIO$SET_I (serial_id, LIO$K_DEVICE_ACK_NAK_BUFF, 4,

1 buffer, buffer_size, term_char, timeout)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Specify how a device handles negative acknowledges (NAKs) from
a device.

status = LIDO$SET_I (serial_id, LIO$K_USER_WRITE_NAK_HANDLING, 1,
1 LIO$K_RESEND_LAST)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Get an event flag and clear it.

status = LIB$GET_EF (event_flag)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

status = SYS$CLREF (event_flag)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

Laboratory /0 Device Support 2-145




S

13. Enqueue the buffer and wait for the event flag to be set by the AST
routine. The AST routine will set the event flag when it receives an
ACK from the device.

status = LIO$ENQUEUVE (serial_id, buffer, buffer_length, 0, O,
1 LIO$K_OUTPUT)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

14. Wait for the event flag to be set by the AST routine. When the

event flag is set, free the event flag and the memory allocated to the
buffer.

status = SYS$WAITFR (event_flag)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))
status = LIB$FREE_EF (event_flag)

IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

15. Detach the device.

status = LIO$DETACH (serial_id, )
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The online sample program LIO_SERIAL.C in the LIOSEXAMPLES
directory is a complete VAX C program that uses the user-defined
protocol feature to transfer data. The AST routine, receive_buff,
specified in step 9 is shown in LIO_SERIAL.C.

2.7 Software Pseudodevices

This section describes the software pseudodevices supported by
VAXlab. The pseudodevices are:

e Disk file
¢ Memory queue
* Real-time plotting

2.7.1 Disk File Support

The disk file device moves data to and from disk files using QIOs. The
QIOs move data buffers directly to and from disk using block 1/O; each
file is read or written in bytes. The size of the data buffers must be a
multiple of 512 bytes, which is one VMS block.

2-146 Laboratory /O Device Support u



m

m

2711

Attaching a Disk File

Attaching a disk file means assigning a VMS I/O channel to the device
and initializing LIO data structures for, and pointers to, the device.

Use the LIO$ATTACH routine to attach the disk file device.

status = LIO$ATTACH (file_id, 'FLAO', LIO$K_QIO)
IF (.NOT. status) CALL LIB$SIGNAL (%VAL(status))

The file_id argument returns the LIO-assigned device ID of the file
device. The file is referenced by this device ID in subsequent routine
calls to the file in a user program.

The device specification FLAO specifies a file (FL) device with controller
letter A and unit number 0. If you attach only one file device, specifying
the device type FL is sufficient.

The LIO$K_QIO value attaches the file device to use QIOs. This is the
only I/O type supported for use with the disk files.

2.7.1.2 Setting Up the Disk File Device

Before you can begin transferring data to the file device, you must set
up certain device characteristics. The following table lists the LIO$SET
and LIO$SHOW parameters you can use to set up and show disk file

device characteristics. See Chapter 4 for reference descriptions of the
parameters listed in this table.

Table 2-22: D