
Guide to the 
VAXIab Laboratory 
I/O Routines 
Order Number: AA-KN99C-TE 

February 1990 

This document describes the VAXIab Laboratory UO routines. It provides an 
overview of laboratory I/O concepts and presents detailed reference information 
about the laboratory I/O routines you use to initiate, control, and terminate I/O 
to and from VAXIab I/O devices. 

Revision/Update Information: This is a revised document. 

Operating System and Version: VMS Version 5.2 

Software Version: VAXIab Software Library Version 1.4 

digital equipment corporation 
maynard, massachusetts 



First Printing, December 1987 
Revised, August 1988 
Revised, February 1990 

The information in this document is subject to change without notice and 
should not be construed as a commitment by Digital Equipment Corporation. 
Digital Equipment Corporation assumes no responsibility for any errors that may 
appear in this document. 

The software described in this document is furnished under a license and may 
be used or copied only in accordance with the terms of such license. 

No responsibility is assumed for the use or reliability of software on equipment 
that is not supplied by Digital Equipment Corporation or its affiliated companies. 

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is 
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in 
Technical Data and Computer Software clause at DEARS 252.227-7013. 

© Digital Equipment Corporation 1987, 1988, 1990 

All Rights Reserved. 
Printed in U.S.A. 

The Reader's Comments form on the last page of this document requests the 
user's critical evaluation to assist in preparing future documentation. 

The following are trademarks of Digital Equipment Corporation: 

DEC MicroVAX 
DECnet Q-bus 
DRB32 VAX 
LN03 VAXcluster 
LN03 PLUS VAXIab 

VAXstation 
VMS 
VT 

d 

This document was prepared with VAX DOCUMENT, Version 1.2. 

a 

TM 



Contents 

PREFACE xix 

CHAPTER 1 LABORATORY 1/O INTERFACES AND OPERATIONS ~ -1 

1.1 OVERVIEW OF L10 ~ _~ 

1.2 SYNCHRONOUS 1/O 1 _2 

1.3 ASYNCHRONOUS I/O 1 _3 

1.4 I/O OPERATIONS SUPPORTED BY VAXIab 1-4 
1.4.1 QIOs to a VMS Device Driver 1-6 
1.4.2 Polled 1/O ~ _7 
1.4.3 Connect-to-Interrupt I10 1-7 

1.5 ASYNCHRONOUS I/O BUFFER-HANDLING MECHANISMS 1-8 
1.5.1 Buffer Dequeueing 1 _g 
1.5.2 Buffer Forwarding 1-10 
1.5.3 Asynchronous System Traps ~ASTs) 1-11 

1.6 I/O DEVICE-SPECIFIC INTERFACING 1-14 
1.6.1 First-In/First-Out Buffers 1-16 
1.6.2 Handshaking 1-16 

1.6.2.1 The DRQ3B and Handshaking 1-17 
1.6.2.2 The DRV11-J and Handshaking 1-18 
1.6.2.3 The DRV11-WA and Handshaking 1-18 

1.6.3 Direct Memory Access 110 1-19 
1.6.3.1 Single-Buffer DMA • 1-19 
1.6.3.2 Continuous DMA • 1-21 
1.6.3.3 Alternate-Buffer DMA • 1-25 
1.6.3.4 Double-Buffer DMA • 1-26 

iii 



CHAPTER 2 LABORATORY IIO DEVICE SUPPORT 2-1 

2.1 REAL-TIME CLOCK DEVICES 2-1 
2.1.1 Attaching the KWV11-C or Simpact RTC01 2-2 
2.1.2 Setting Up the KWV11-C or Simpact RTC01 2-3 

2.1.3 Using the KWV11-C or Simpact RTC01 to Time 
External Events 2-4 

2.1.4 Using the KWV11-C to Trigger a Device 2-7 

2.1.5 Using the Simpact RTC01 to Count External Events 2-9 
2.1.6 Using the KWV11-C to Avoid Trigger Slivering 2-10 

2.2 ANALOG 1/O DEVICES 2-12 
2.2.1 AAF01 and ASF01 Support 2-12 

2.2.1.1 Attaching the AAF01 • 2-13 
2.2.1.2 Setting Up the AAF01 2-14 
2.2.1.3 Using the AAF01 for Synchronous 

Output 2-15 
2.2.1.4 Using the AAF01 for Asynchronous 

Output 2-19 
2.2.2 AAV11-D Support 2-22 

2.2.2.1 Attaching the AAV11-D 2-22 
2.2.2.2 Setting Up the AAV11-D 2-23 
2.2.2.3 Using the AAV11-D for Synchronous 

Output • 2-24 
2.2.2.4 Using the AAV11-D for Asynchronous 

Output • 2-26 
2.2.3 ADF01, AMF01, and ASF01 Support 2-27 

2.2.3.1 Attaching the ADF01 • 2-29 
2.2.3.2 Setting Up the ADF01 2-29 
2.2.3.3 Using the ADF01 for Synchronous 

Input 2-31 
2.2.3.4 Using the ADF01 for Asynchronous 

Input 2-35 
2.2.4 ADQ32 Support 2-38 

2.2.4.1 Attaching the ADQ32 2-40 
2.2.4.2 Setting Up the ADQ32 2-40 
2.2.4.3 Using the ADQ32 for Synchronous 

Input 2-42 
2.2.4.4 Using the ADQ32 for Asynchronous 

Input 2-43 

iv 



2.2.5 

2.2.6 

2.2.7 

2.2.8 

ADV11-D Support 
2.2.5.1 Attaching the ADV11-D • 2-44 
2.2.5.2 Setting Up the ADV11-D • 2-45 
2.2.5.3 Using the ADV11-D for Synchronous 

Input • 2-46 
2.2.5.4 Using the ADV11-D for Asynchronous 

Input 2-47 
AXV11-C Support 
2.2.6.1 Attaching the AXV11-C 2-49 
2.2.6.2 Setting Up the AXV11-C • 2-50 
2.2.6.3 Using the AXV11-C for Synchronous 

Input • 2-51 
2.2.6.4 Using the AXV11-C for Asynchronous 

Input • 2-53 
DRQ11-C Support 
2.2.7.1 Attaching the DRQ11-C • 2-55 
2.2.7.2 Setting Up the DRQ11-C • 2-55 
2.2.7.3 Using the DRQ11-C for Synchronous 

I/O • 2-56 
2.2.7.4 Using the DRQ11-C for Asynchronous 

I/O • 2-59 
Preston Support 
2.2.8.1 Attaching the Preston 2-62 
2.2.8.2 Setting Up the Preston 2-63 
2.2.8.3 Using the Preston for Synchronous 

Input • 2-65 
2.2.8.4 Using the Preston for Asynchronous 

Input • 2-66 

2-44 

2-49 

2-54 

2-61 

2.3 DIGITAL 1/O DEVICES 2-67 
2.3.1 DRB32 Support 2-67 

2.3.1.1 Attaching the DRB32 2-68 
2.3.1.2 Setting Up the DRB32 2-68 
2.3.1.3 Using the DRB32 for Synchronous I/Q 2-70 
2.3.1.4 Using the DRB32 for Asynchronous 

I/O 2-71 
2.3.2 DRB32W Support 2-74 

2.3.2.1 Attaching the DRB32W • 2-74 
2.3.2.2 Setting Up the DRB32W 2-75 
2.3.2.3 Using the DRB32W for Synchronous 

I/O • 2-76 
2.3.2.4 Using the DRB32W for Asynchronous 

I/o • 2-77 



2.3.3 DRQ3B Support 2-78 
2.3.3.1 Attaching the DRQ3B • 2-78 
2.3.3.2 Setting Up the DRQ3B 2-79 
2.3.3.3 Using the DRQ3B for Synchronous 

uo 

• 2-80 
2.3.3.4 Using_ the DRQ3B for Asynchronous 

I/O • 2-81 
2.3.4 DRV11-J Support 2-83 

2.3.4.1 Attaching the DRV11-J 2-83 
2.3.4.2 Setting Up the DRV11-J • 2-84 

2.3.5 DRV11-WA Support 2-86 
2.3.5.1 Attaching the DRV11-WA • 2-87 
2.3.5.2 Setting Up the DRV11-WA • 2-87 
2.3.5.3 Using the DRV11-WA for Synchronous 

I/O 2-88 
2.3.5.4 Using the DRV11-WA for Asynchronous 

I/O • 2-89 

2.4 ISOLATED REAL-TIME 1/O DEVICES 2-90 

2.4.1 IAV11-A, IAV11-AA, IAV11-C, and IAV11-CA Support 2-90 
2.4.1.1 Attaching the IAV11-A • 2-91 
2.4.1.2 Setting Up the IAV11-A • 2-92 
2.4.1.3 Using the IAV11-A for Synchronous 

Input • 2-92 
2.4.1.4 Using the IAV11-A for Asynchronous 

Input 2-94 
2.4.2 IAV11-B Support 2-95 

2.4.2.1 Attaching the IAV11-B • 2-96 
2.4.2.2 Setting Up the IAV11-B 2-96 
2.4.2.3 Using the IAV11-B for Synchronous 

Output • 2-97 
2.4.2.4 Using the IAV11-B for Asynchronous 

Output • 2-98 
2.4.3 IDV11-A Support 2-98 

2.4.3.1 Attaching the IDV11-A • 2-99 
2.4.3.2 Setting Up the IDV11-A • 2-99 
2.4.3.3 Using the IDV11-A for Synchronous 

Input • 2-100 
2.4.3.4 Using the IDV11-A for Asynchronous 

Input • 2-101 

vi 



2.4.4 

2.4.5 

IDV11-B and IDV11-C Support 
2.4.4.1 Attaching the IDV11-B • 2-101 
2.4.4.2 Setting Up the IDV11-B • 2-102 
2.4.4.3 Using the IDV11-B for Synchronous 

Output • 2-103 
2.4.4.4 Using the IDV11-B for Asynchronous 

Output • 2-103 
The IDV11-D Real-Time Counter Device 
2.4.5.1 Attaching the IDV11-D 2-104 
2.4.5.2 Setting Up the IDV11-D 2-105 
2.4.5.3 Using the IDV11-D to Count External 

Events 2-105 
2.4.5.4 Using the IDV11-D to Measure Pulse 

Duration 2-108 
2.4.5.5 Using the IDV11-D to Generate Pulse 

Trains • 2-112 
2.4.5.6 Using the IDV11-D to Generate Output 

Frequencies 2-113 

2-101 

2-104 

2.5 IEEE-488 BUS DEVICES 2-114 
2.5.1 IEQ11 and IEZ11 2-115 
2.5.2 IOtech Micro488A 2-115 

2.5.2.1 IOtech Micro488A DIP Switch 
Settings • 2-116 

2.5.3 An IEEE-488 Device as the System Controller 2-117 
2.5.4 An IEEE-488 Device as a Controller 2-117 
2.5.5 An IEEE-488 Device as an Instrument 2-118 
2.5.6 IOtech Micro488A Device Modes 2-118 
2.5.7 Attaching an IEEE-488 Device 2-119 
2.5.8 Setting Up the IEEE-488 Device 2-120 
2.5.9 Assigning IEEE-488 Bus Addresses 2-122 
2.5.10 Enabling IEEE-488 Events 2-123 
2.5.11 Detecting IEEE-488 Bus Events 2-126 
2.5.12 Supplying AST Routines 2-127 

2.5.12.1 Example 2-128 
2.5.13 Requesting Service with an SRQ 2-129 
2.5.14 Passing and Receiving Control 2-130 
2.5.15 Responding to a Service Request 2-131 
2.5.16 Sending Data and Receiving Data When the IEEE-488 

Device Is Controller-In-Charge 2-133 
2.5.17 Sending Data to Multiple IEEE-488 Devices 2-135 

vii 



2.5.18 Sending Data and Receiving Data When the IEEE-488 
Device Is Attached as an Instrument 
2.5.18.1 Using Termination Characters to Terminate 

Read Requests 2-139 
2.5.18.2 Using EQI to Terminate Write 

Requests • 2-139 

2-137 

2.6 SERIAL LINE DEVICES 2-140 
2.6.1 Attaching Serial Line Devices 2-140 
2.6.2 Setting Up Serial Line Devices 2-140 
2.6.3 Using Serial Line Devices for Synchronous IIO 2-143 
2.6.4 Using Serial Line Devices for Asynchronous I/O 2-144 

2.7 SOFTWARE PSEUDODEVICES 2-146 
2.7.1 Disk File Support 2-146 

2.7.1.1 Attaching a Disk File • 2-147 
2.7.1.2 Setting Up the Disk File Device 2-147 
2.7.1.3 Using Disk Files for Synchronous I/Q 2-148 
2.7.1.4 Using Disk Files for Asynchronous 

I/Q • 2-149 
2.7.2 Memory Queue Support 2-150 

2.7.2.1 Attaching the Memory Queue Device • 2-151 __ 
2.7.2.2 Setting Up the Memory Queue 

Device • 2-151 
2.7.2.3 Using a Memory Queue Device to Manage 

Local Memory • 2-153 
2.7.2.4 Setting Up a Memory Queue Device for 

Interprocess Communications 2-155 
2.7.3 Real-Time Plotting 2-160 

2.7.3.1 Real-Time Plotting Device 
Parameters 2-160 

2.7.3.2 Attaching the Real-Time Plotting 
Device 2-162 

2.7.3.3 Setting Up and Using the Real-Time Plotting 
Device 2-162 

viii 



P1 
CHAPTER 3 LABORATORY I/O ROUTINE REFERENCE DESCRIPTIONS 3-1 

LIO$ATTACH 3-3 
LIO$DEQUEUE 3-8 
LIO$DETACH 3-13 
LIO$ENQUEUE 3-15 
LIO$READ 3-24 
LIO$SET_I 3-29 
LIO$SET_R 3-31 
LIO$SET_S 3-33 
LIO$SHOW 3-35 
LIO$WRITE 3-37 

CHAPTER 4 LIO$SET AND LIO$SHOW PARAMETER REFERENCE 
DESCRIPTIONS 4-1 

LIO$K_ACK_NAK_TERMINATOR 4-12 
LIO$K_AD_CHAN 4-13 
LIO$K_AD_DIFFERENTIAL 4-15 
LIO$K_AD_GAIN 4-17 
LIO$K_ADD_AD_CHAN 4-19 
LIO$K_ANA_OUT 4-21 
LIO$K_AST_RTN 4-22 
LIO$K_ASYNCH 4-24 
LIO$K_AUX_COMMAND 4-26 
LIO$K_BAUD_RATE 4-29 
LIO$K_BIN_DDR 4-32 
LIO$K_BITS_PER_CHAR 4-33 
LIO$K_BOUNCE 4-34 
LIO$K_BREAK 4-36 
LIO$K_BUFF_SIZE 4-37 
LIO$K_BUFF_SOURCE 4-39 
LIO$K_BURST_DIV 4-41 
LIO$K_BURST_RATE 4-43 
LIO$K_CANCEL 4-45 
LIO$K_CC_FOUT 4-46 
LIO$K_CC_SETUP 4-48 
LIO$K_CHANNEL 4-50 
LIO$K_CLK_BASE 4-51 
LIO$K_CLK_DIV 4-53 
LIO$K_CLK_RATE 4-55 
LIO$K_CLK_SRC 4-58 
LIO$K_CLR_LBO 4-61 
LIO$K_COB 4-63 

ix 



LIO$K_COMMAND 4-64 
LIO$K_CONT 4-70 
LIO$K_COUNTER 4-72 
LIO$K_CTA 4-74 
LIO$K_CTI_BUF 4-75 
L10$K_CTi_OVERHD 4-78 
LIO$K_CTRL_ACTIVE 4-79 
LIO$K_CTR LAST 4-81 
LIO$K_CTRL_HANDLING 4-83 
LIO$K_CTRL_STANDBY 4-85 
LIO$K_CURRENT_CHANNEL 4-86 
LIO$K_CWT 4-87 
LIO$K_DA_CHAN 4-89 
LIO$K_DATA 4-91 
LIO$K_DATA_PATH 4-92 
LIO$K_DATA_WIDTH 4-94 
LIO$K_DBL_BUF 4-95 
LIO$K_DEVICE_ACK_NAK_BUFF 4-96 
LIO$K_DEVICE_EF 4-97 
LIO$K_DIAG_CHAN 4-99 
LIO$K_DIRECTION 4-101 
LIO$K_DISPLAY_ONLY 4-103 
LIO$K_DRX_AST_RTN 4-104 
LIO$K_DRX_STAT 4-106 
LIO$K_DUPLEX 4-108 
Li0$K_ECHO 4-110 
LIO$K_ED_CTT 4-112 
LIO$K_ED_ECE 4-114 
LIO$K_ED_SBE 4-115 
LIO$K_EOI 4-116 
LIO$K_ERR_HANDLE 4-118 
LIO$K_ERROR_ENABLE 4-120 
LIO$K_EVENT_AST 4-121 
LIO$K_EVENT_EF 4-125 
LIO$K_EVENT_ENA 4-127 
LIO$K_EVENT_WAIT 4-131 
LIO$K_FiLE_EXTENT 4-133 
LIO$K_FILE_POS 4-135 
LIO$K_FILE_REMAIN 4-136 
LIO$K_FILE_SIZE 4-138 
LIO$K_FLOW_CONTROL 4-139 
LIO$K_FLOW_MASTER 4-141 
LIO$K_FORWARD 4-143 
LIO$K_FUNCTION 4-145 
LIO$K_FUNCTION_BITS 4-14$ 

x 



LIO$K_GATE 4-153 
LIO$K_HANDSHAKE 4-156 
LIO$K_HANGUP 4-158 
LIO$K_IEEE_ADDR 4-159 
LIO$K_INIT_AD_CHAN 4-161 
LIO$K_INPUT_TERMINATOR 4-162 
LIO$K_INTERRUPT_LEVEL 4-163 
LIO$K_LEAVE_IN_STATE 4-164 
LIO$K_LOCK_BUFFER 4-166 
LIO$K_LOOP_BACK 4-168 
LIO$K_MAX_CHANNELS 4-169 
LIO$K_MODEM 4-170 
LIO$K_MODEM_STATUS 4-172 
LIO$K_MULTIPLE_X_AXES 4-174 
LIO$K_N_AD_CHAN 4-176 
LIO$K_N_BUFFS 4-177 
LIO$K_N_DA_CHAN 4-179 
LIO$K_NAME 4-180 
LIO$K_OPEN_FILE 4-182 
LIO$K_OUTPUT_PREFIX 4-183 
LIO$K_OUTPUT_TERMINATOR 4-184 
LIO$K_PAGE_ALIGN 4-185 
LIO$K_PAR_POLL 4-186 
LIO$K_PAR_POLL_CONFIG 4-188 
LIO$K_PAR_POLL_STATUS 4-191 
LIO$K_PARITY 4-193 
Li0$K_PASS_CTRL 4-195 
LIO$K_PCR 4-196 
LIO$K_PLOT_SIZE 4-198 
LIO$K_PLOT_TYPE 4-199 
L10$K_PO_CHAN 4-201 
LIO$K_POLARITY 4-202 
LIO$K_POSITION 4-204 
LIO$K_PROTOCOL 4-206 
LIO$K_PURGE 4-209 
LIO$K_READ_ONLY 4-210 
LIO$K_READ_PROMPT 4-211 
LIO$K_R EAD_STAT 4-212 
LIO$K_RESET_AXF 4-214 
LIO$K_RESET_DRX 4-215 
LIO$K_SCHMITT_TRIGGER 4-217 
LIO$K_SER_POLL 4-219 
LIO$K_SER_POLL_CONFIG 4-221 
LIO$K_SGL_BUF 4-223 
LIO$K_SKIP_COUNT 4-225 

xi 



LIO$K_SRQ 4-226 
LIO$K_STO_1 4-228 
LIO$K_START 4-230 
LIO$K_STAT_BITS 4-233 
LIO$K_STE 4-234 
LIO$K_STOP 4-235 
LIO$K_SWEEP_RATE 4-237 
LIO$K_SYNCH 4-239 
LIO$K_TERM_CHAR 4-241 
LIO$K_TERM_SRQ 4-243 
LIO$K_TIMEOUT 4-245 
LIO$K_TIMEOUT_ENABLE 4-247 
LIO$K_TITLE 4-248 
LIO$K_TITLE_N 4-250 
LIO$K_TRANSFER 4-252 
LIO$K_TRIG 4-253 
LIO$K_TYPE_AHEAD 4-264 
LIO$K_UNLOCK_BUFFER 4-266 
LIO$K_UNSOLICITED 4-267 
LIO$K_UPDATE 4-268 
LIO$K_USER_ACK_AST 4-269 
LIO$K_USER_ACK_STRING 4-2713 
LIO$K_USER_NAK_AST 4-271 
LIO$K_USER_NAK_STRING 4-272 
L10$K_USER_READ_PROTOCOL_AST 4-273 
LIO$K_USER_WRITE_NAK_HANDLING 4-275 
LIO$K_VLT_DDR 4-277 
LIO$K_VOLTAGE 4-278 
LIO$K_X_LABEL 4-280 
LIO$K_X_RANGE 4-281 
LIO$K_XON 4-283 
LIO$K_Y_LABEL 4-284 
LIO$K_Y_MAX 4-285 
LIO$K_Y_MIN 4-286 

CHAPTER 5 LABORATORY i/O ERROR HANDLING 

5.1 OVERVIEW 

5.2 CHECKING ROUTINE CALL STATUS 

xii 

5-1 

5-1 

5-2 



5.3 SETTING UP DEVICES FOR ERROR HANDLING 5-4 

5.4 SYMBOLIC STATUS VALUES AND DESCRIPTIONS 5-6 

CHAPTER fi ONLINE SAMPLE PROGRAMS 6-1 

6.1 PROGRAMS FOR EUROPEAN DEVICES 6-3 

APPENDIX A ADQ32 TRIGGERING AND CLOCfC MODES A-1 

A.1 CLOCK MODE SUMMARY A-1 

A.2 DEFINITION OF TERMS USED TO DESCRIBE CLOCK MODES A-2 

A.3 CHANNEL SPECIFICATION A-5 

A.4 GAIN SPECIFICATION A-6 

A.5 BUFFER SPECIFICATION A-6 
A.5.1 Single Buffer Transfers A-6 
A.5.2 Double Buffer Transfers A-7 

A.6 START OF DATA ACQUISITION 

A.7 CLOCK OVERRUN ERRORS 

A.8 IMPORTANT POINTS ABOUT THE CLOCK LOGIC 

A.9 CLOCK MODE 1, BURST 

A-8 

A-8 

A-9 

A-10 

A.10 CLOCK MODE 2, BURST, WITH EDGE GATE A-11 



A.11 CLOCK MODE 3, BURST, WITH DELAYED EDGE GATE A-12 

A.12 CLOCK MODE 4, BURST, ACTIVATED BY EXTERNAL TRIGGER A-13 

A.13 CLOCK MODE 5, TIMED TRIGGERS A-14 

A.14 CLOCK MODE 6, TIMED TRIGGERS, WITH EDGE GATE A-15 

A.15 CLOCK MODE 7, TIMED TRIGGERS, WITH DELAYED EDGE GATE A-16 

A.16 CLOCK MODE 8, TIMED TRIGGERS, WITH LEVEL GATE A-17 

A.17 CLOCK MODE 9, TIMED TRIGGERS, ACTIVATED BY EXTERNAL 
TRIGGER A-18 

A.18 CLOCK MODE 10, BURST SWEEPS A-19 

A.19 CLOCK MODE 11, BURST SWEEPS, WITH EDGE GATE A-21 

A.20 CLOCK MODE 12, BURST SWEEPS, WITH LEVEL GATE A-23 

A.21 CLOCK MODE 13, BURST SWEEPS, ACTIVATED BY EXTERNAL 
TRIGGER A-25 

A.22 CLOCK MODE 14, BURST SWEEPS, SWEEP CONTROLLED BY 
EXTERNAL TRIGGER A-27 

A.23 CLOCK MODE 15, TIMED SWEEPS A-29 

A.24 CLOCK MODE 16, TIMED SWEEPS, WITH EDGE GATE A-31 

A.25 CLOCK MODE 17, TIMED SWEEPS, WITH LEVEL GATE A-33 

xiv 

1J 



A.26 CLOCK MODE 18, TIMED SWEEPS, ACTIVATED BY EXTERNAL 
TRIGGER 

A.27 CLOCK MODE 19, TIMED SWEEPS, SWEEP CONTROLLED BY 
EXTERNAL TRIGGER 

A.28 CLOCK MODE 20, EXTERNAL TRIGGERS 

A.29 CLOCK MODE 21, EXTERNAL TRIGGERS, WITH EDGE GATE 

A.30 CLOCK MODE 22, EXTERNAL TRIGGERS, WITH DELAYED EDGE 
GATE 

A-35 

A-37 

A-39 

A-40 

A-42 

APPENDIX B USING CTI I/O WITH THE AXV11-C B-~ 

B.1 CONNECTING THE CTI DRIVER TO THE AXV11-C 

B.2 RELOADING THE Q1O DRIVER 

B.3 RECONNECTING THE Q1O DRIVER 

B-1 

B-5 

B-5 

INDEX Index-1 

FIGURES 
1-1 Synchronous I1O Device Model   1-3 

1-2 Asynchronous 110 Device Model   1-4 

1-3 Double-Buffer DMA Pointer Sequence   1-26 

4-1 State of the Function Bits on the DRQ3B   4-150 

A-1 Clock Mode 1, Burst   A-10 

A-2 Clock Mode 2, Burst, with Edge Gate   A-11 

A-3 Clock Mode 3, Burst, with Delayed Edge Gate   A-12 

A-4 Clock Mode 4, Burst, Activated by External Trigger   A-13 

xv 



A-5 Clock Mode 5, Timed Triggers   A-14 

A-6 Clock Mode 6, Timed Triggers, with Edge Gate   A-15 
A-7 Clock Mode 7, Timed Triggers, with Delayed Edge Gate   A-16 
A-8 Clock Mode .8, Timed Triggers, with Level Gate   A-17 

A-9 Clock Mode 9, Timed Triggers, Activated by External Trigger _ A-18 
A-10 Clock Mode 10, Burst Sweeps   A-19 

A-11 Clock Mode 11, Burst Sweeps, with Edge Gate   A-22 

A-12 Clock Mode 12, Burst Sweeps, with Level Gate   A-24 

A-13 Clock Mode 13, Burst Sweeps, Activated by External Trigger _ A-26 

A-14 Clock Mode 14, Burst Sweeps, Sweep Controlled by External 
Trigger   A-28 

A-15 Clock Mode 15, Timed Sweeps   A-30 
A-16 Clock Mode 16, Timed Sweeps, with Edge Gate   A-32 
A-17 Clock Mode 17, Timed Sweeps, with Level Gate   A-34 

A-18 Clock Mode 18, Timed Sweeps, Activated by External Trigger _ A-36 

A-19 Clock Mode 19, Timed Sweeps, Sweep Controlled by External 
Trigger   A-37 

A-20 Clock Mode 20, External Triggers   A-39 
A-21 Clock Mode 21, External Triggers, with Edge Gate   A-40 
A-22 Clock Mode 22, External Triggers, with Delayed Edge Gate   A-43 

TABLES 
1-1 I/O Interfaces and Operations Summary   1-5 
2-1 KWV11-C and Simpact RTC01 LIO$SET and LIO$SHOW 

Parameters   2-3 

2-2 AAF01 LIO$SET and LIO$SHOW Parameters   2-14 
2-3 AAV11-D LIO$SET and LIO$SHOW Parameters   2-23 
2-4 ADF01 LIO$SET and LIO$SHOW Parameters   2-29 
2-5 ADQ32 LIO$SET and LIO$SHOW Parameters   2-41 
2-6 ADV11-D LIO$SET and LIO$SHOW Parameters   2-45 
2-7 AXV11-C LIO$SET and LIO$SHOW Parameters   2-50 
2-8 DRQ11-C L10$SET and LIO$SHOW Parameters   2-55 
2-9 Preston LIO$SET and LIO$SHOW Parameters   2-63 
2-10 DRB32 LIO$SET and LIO$SHOW Parameters   2-69 
2-11 DRB32W LIO$SET and LIO$SHOW Parameters   2-75 

xvi 



2-12 DRQ3B LIO$SET and LIO$SHOW Parameters   2-79 

2-13 DRV11-J LIO$SET and LIO$SHOW Parameters   2-84 

2-14 DRV11-WA L1O$SET and LIO$SHOW Parameters   2-87 

2-15 IAV11-A L1O$SET and LIO$SHOW Parameters   2-92 

2-16 IAV11-B L1O$SET and LIO$SHOW Parameters   2-97 

2-17 IDV11-A LIO$SET and LIO$SHOW Parameters   2-100 

2-18 IDV11-B LIO$SET and LIO$SHOW Parameters   2-102 

2-19 IDV11-D LIO$SET and LIO$SHOW Parameters   2-105 

2-20 IEEE-488 Device LIO$SET and LIO$SHOW Parameters   2-120 

2-21 Serial Line LIO$SET and LIO$SHOW Parameters   2-141 

2-22 Disk File LIO$SET and LIO$SHOW Parameters   2-147 

2-23 Memory Queue LIO$SET and LIO$SHOW Parameters   2-152 

2-24 Real-Time Plotting L1O$SET and LIO$SHOW Parameters   2-160 

3-1 Laboratory I/O Routine Summary   3-2 

3-2 Device Specifications and I/O Types   3-4 

3-3 LIO$DEQUEUE Device-Specific Argument Values   3-11 

3-4 L1O$ENQUEUE Device-Specific Argument Values   3-18 

3-5 LIO$READ Device-Specific Argument Values   3-26 

3-6 L1O$WRITE Device-Specific Argument Values   3-33 

4-1 LIO$SET and LIO$SHOW Parameter Summary   4-2 

4-2 IEQ11 and IEZ11 IEEE-488 Auxiliary Commands   4-26 

4-3 IOtech Micro488A IEEE-488 Auxiliary Commands   4-27 

4-4 Address Command Group   4-64 

4-5 Universal Command Group   4-65 

4-6 Listener Address Group   4-66 

4-7 Talker Address Group   4-67 

4-8 Secondary Command Group   4-67 

4-9 Pin Numbers on the DRQ3B   4-151 

4-10 AAV11-D Trigger Modes   4-253 

4-11 ADQ32 Point Trigger Sources   4-255 

4-12 ADQ32 Sweep Trigger Sources   4-255 

4-13 ADQ32 Buffer Trigger Sources   4-256 

4-14 ADV11-D Trigger Modes   4-257 

4-15 AXV11-C Trigger Modes   4-258 

4-16 KWV11-C/Simpact RTC01 Trigger Modes   4-260 

xvi i 



4-17 Preston Trigger Modes   4-260 

5-1 Error Handling Symbolic Status Definition Files   5-2 

6-1 LIO Online Sample Programs   6-4 

A-1 Burst Rates   A-2 

xviii 



Preface 

Intended Audience 
The Guide to the VAXIab Labo~~atory IlO Routines is intended for use by sci-
entists and engineers working in a laboratory environment performing 
real-tune data acquisition experiments. 

You can use this document initially as a training guide for learning the 
basic components of the Laboratory I/O (LIO) application routines. 
Later, you can use it as a reference guide to look up specific information 
about the LIO application routines, such as how to use an optional 
parameter. 

This guide assumes a basic understanding of computer concepts and 
an extensive knowledge of laboratory data acquisition and experiment 
control concepts. 

Document Structure 
The Guide to the VAXInb Laboratory 1/O Routines provides a comprehen-
sive overview of the LIO facility, and explains how to do the following 
with VAXIab devices: 

• Initiate I10 

• ControlIlO 

• Terminate I/O 

xix 



The document is structured in the following way: 

Chapter Number Contents 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Appendix A 

Appendix B 

Presents an overview of t11e laboratory I10 concepts and 
device capabilities you should be familiar with before you 
begin writing programs using the VAXlab laboratory I10 
routines. 

Describes the IIO devices supported by VAXIab and. gives 
instructions for setting up each device using the LIO 
software. 

Provides reference descriptions of the LIO routines, 
including the routine call syntax, argument descriptions, 
and device-specific considerations. 

Provides reference descriptions of the parameters you use 
to set up VAXIab laboratory I/O devices al~d to display 
device-specific characteristics. 

Describes the error handling method supported by 
the LIO facility and explains the error messages and 
suggested recovery procedures. 

Describes the online sample programs shipped with your 
VAXIab system. 

Explains the clock triggering modes of the ADQ32. 

Explains how to connect the connect-to-interrupt driver 
to the AXV11-C device. This appendix also includes 
instructions .for reloading and reconnecting the QIO 
driver to the AXV11-C device. 

xx 



Associated Documents 
In addition to this guide, the VAXIab documentation set includes the 
following guides: 

• Getting Started zvith VAXIab is your introduction to the VAXIab 
system and application software. This document describes t11e 
optional hardware you can configure in a VAXIab system, the 
VAXIab software, and the related software you need to use with your 
VAXIab system, suc11 as DEC GKS and ahigh-level programming 
language. This document also presents guidelines for developing 
application programs with VAXIab and considerations specific to 
programming languages, such as declaring varXables and data types. 

• The Guide to the VAXIab I~iteractive Data Acquisition Tooi describes 
how to communicate with VAXIab through the Interactive Data 
Acquisition Tool (IDAT) to establish parameters for data acquisition 
and to initiate, control, obtain, analyze, and plot real-time data. 

• The Guide to the VAXIab Laboratory Graphics Package describes how 
to specify plotting attributes and how to plot real-time data or data 
produced by calculations in two dimensions, three dimensions, and 
two-dimensional contours from athree-dimensional view. 

• The Guide to the VAXIab Sig~ial-Processi~zg Roicti~ies describes how to 
use the signal-processing routines to perform Fourier transforms, 
correlation functions, and filtering of data. 

• The Instaltatio~~ Gi.cide details how to install the VAXIab software. 

• The Masfer Index contains index entries from all the documents in 
the VAXIab documentation set. 

The following is a list of associated software documents to reference for 
additional information about programming concepts and techniques not 
covered in this guide: 

• The DEC GKS Reference Manual, Volumes I a~~d II provide detailed 
information about advanced graphics prograinining concepts and 
techniques. 

• The VAX Realti»1e User's Gicide describes those features of VAX 
systems that pertain to real-time applications in scientific and 
industrial settings. If you are unfamiliar with VAX systems, read this 
guide before you begin using the VAXIab system. 

xxi 



The following is a list of associated hardware documents to reference 
for additional information: 

• AAF01 User's Manual s 

• ADF01 User's Manuals

• ADQ32 A/D Converter Module User's Guide 

• ADV11-D/AAV11-D Analog Modicles User's Guide 

• AMF01 User's Manicals 

• ASF01 User's Manuals

• AXV11-C/KWV11-C Analog Modicle and Real-Time Clock Modicle User's 
Guide 

• DRB32 Technical Manual 

• DRQ11-C Alternate Btcf fer DMA Interfaces

• DRQ3B Parallel DMA I/Q Module User's Gt.cide 

• DRVII-J Parallel Line Interface User's Gicide 

• DRV11-WA Ge~~eral Purpose DMA Interface User's Guide 

• IELI11-A/IEQ11-A User's Guide 

• IEZ11 Hardware Installation Guide 

• IEZ11 Software I~istallatio~z Guide 

• IEZ11 VMS Class Driver Llser's Guide 

• Itldustl'lal I/O Modules for Q-Bus (IAV11-A, IAV11-AA, IAV11-B, 
IAV11-C, IAV11-CA, IDV11-A, IDV11-B, IDV11-C, IDV11-D) 2

• Universal Data I~iterface Panel Reference Card 

1 This device is available only in Europe. 

2 These devices are available only in Europe. 



Conventions 
The Guide to the VAXIab Laboratory I/O Routines uses the following docu-
mentation conventions: 

Convention Meaning 

Italics Phrases appearing in italics reference an associated docu-
ment . 

Bold A boldface word or phrase indicates one of the following: 

• Emphasis on an important concept or word 
• Discussion of a routine argument in text 
• Referencing of a subsection within a routine or parame-

ter reference description 

Ellipses Vertical ellipses indicate that portions of a display or pro-
gramming example are excluded for presentation purposes. 

[Brackets] Square brackets generally enclose optional para~~neters or 
arguments in routine lines. However, square brackets used 
in the context of a Pascal program or program segment are 
required programming syntax. 





Chapter 1 

Laboratory I/O Interfaces and 
Operations 

This chapter provides an overview of LIO, describes the LIO interfaces 
and operations supported by VAXIab, and describes special features 
specific to some of the VAXIab I/O devices. 

1.1 Overview of LIO 

The VAXIab Laboratory I10 routines are used to control real-time I10 
devices. You use these routines as program modules, linking them with 
your main program. 

Although you can use any programming language to call these routines, 
information in this guide and sample programs are written for five 
languages: 

• Ada 

• BASIC 

• C 
• FORTRAN 
• Pascal 

I/O can be done synchronously or asynchronously with the LIO rou-
tines. By default, all devices use asynchronous IIO. 

You can set up a device to use synchronous I/0. However, when you 
want that device to operate asynchronously again, you must set up the 
device for asynchronous I/O. 

Laboratory I10 Interfaces and Operations 1-1 



There are only eight LIO routines. They can be grouped into four pairs: 

• ATTACH/DETACH logically connect or disconnect a device. They 
also build or delete all the internal queues and data structures 
required. Your program calls the ATTACH routine before it makes 
any other routine call to a device. 

• SETlSHOW set or return the status of various device characteristics 
such as the following: 

— Channel lists 

— Triggering mode 

— Clock rate 

— Gains 

— Synchronous or asynchronous transfers 

Any device characteristic that can be set can also be shown. In 
addition, some devices have characteristics that cannot be set but 
can be shown. 

• READ/WRITE transfer data to or from a device. T11ese routines are 
used only for synchronous IIO. With synchronous I/O, t11e prograYn 
waits for the I/O to complete before continuing execution. 

• ENQUEUE/DEQUEUE put data buffers on a queue and remove 
them from the queue when data transfer is complete. They permit 
the continuous transfer of high speed data by simultaneously trans-
ferring data among multiple devices. These routines are used only 
for asynchronous I/O. 

1.2 Synchronous I/O 

Synchronous I/O enables a user program to transfer data to or from a 
device with one routine call. The routine call blocks the program until 
the I/O operation completes. The device does not continue to transfer 
data while the program is preparing for the next I10 operation. 

You use the LIO$READ and LIO$WRITE routines, described in 
Chapter 3, to perform synchronous I/0. 

1-2 Laboratory I/O Interfaces and Operations 



Figure 1-1 shows the synchronous I/O process. 

Figure 1-1: Synchronous IIO Device Model 

User Program 

i t 
LIO$READ/LIO$WRITE 

Device 
Driver 

DEVICE 
MR-1427-GE 

The synchronous I/O interface is recommended for applications that ex-
amine or modify the data between I/O operations, such as single-point 
or slow data acquisition and closed loop control. Hig11-speed applica-
tions requiring only one buffer of data to complete I/O operations can 
also benefit from using synchronous I/O routine calls. 

1.3 Asynchronous I/O 

Asynchronous IIO enables a user program to queue several values or 
arrays of data to be transferred. A program is not blocked for If0 and 
continues execution during I/O operations. This enables I/O operations 
to continue on one or more devices simultaneously. 

Each device that is set up to use the asynchronous IIO interface has 
a device queue and a user queue. An asynchronous I/O routine call 
places a buffer in the device queue to send it to the device. The device 
processes the buffer and places the buffer in t11e user queue to return it 
to the program. 

Laboratory I/O Interfaces and Operations 1-3 



You use the LIO$ENQUEUE routine and either the LIO$DEQUEUE 
routine or one of the other asynchronous I!O buffer-handling mech-
anisms described in Section 1.5, Asynchronous I/O Buffer-Handling 
Mechanisms, to perform asynchronous I/O. LIO$ENQUEUE and 
LIO$DEQUEUE are described in C1lapter 3. 

Figure 1-2 illustrates the asynchronous IIO process. 

Figure 1-2: Asynchronous I/O Device Model 

User Program 

LIO$ENQUEUE LIO$DEQUEUE 

Device 
Queue 

User 
Queue 

Device 
Driver 

DEVICE 
MR-1428-GE 

The asynchronous I10 interface is recommended for high-speed com-
munications, data acquisition, and open loop control where IIO opera-
tions are continuous. 

1.4 I/O Operations Supported by VAXIab 

VAXIab devices can handle I10 operations in three ways: 

• Queued I/O (QIO) to a VMS device driver 
• Polled I/O 

• I/O through a VMS connect-to-interrupt (CTI) handler 

1-4 Laboratory I10 Interfaces and Operations 



Not all devices, however, can handle all three methods. 

Table 1-1 lists t11e devices and summarizes the I/O interfaces and I/O 
operations supported for each device. 

The three methods are explained in the following pages. 

Table 1-1: I/O Interfaces and Operations Summary 

I!O Device 
Synchronous Operations Asynchronous Operations 
(ReadlWrite) (EnqueueiDequeue) 

AAF011 •Z QIO QIO 
AAV1.1-D3 Polled, QIO QIO 
ADF011 ~~ QIO QIO 
ADQ32~ QIO Q10 
ADV11-D3 Polled, QIO QIO 
AXV11-C QIO, CTI QIO 
DRB32 QIO QIO 
DRB32W QIO QIO 
DRQ1.1-C1~2 QIO QIO 
DRQ3BZ Q10 QIO 
DRV11-J Polled, QIO QIO 
DRV1.1-WA2 Q10 QIO 
1AV11-A' QIO QIO 
IAV11-AA1 QIO QIO 
IAV11-Bl QIO QIO 
IAV11-C1 QIO QIO 
IAV11-CA' QIO QIO 
IDV11-A1 QIO QIO 
IDV11-B1 QIO QIO 
1DV11-C1 QIO QIO 
IDV11-Dl QIO QIO 
IEEE-488 QIO QIO 
KWV11.-C Polled, QIO QIO 
Preston QIO QIO 
Simpact RTC014 Polled, QIO QIO 
Disk files QIO Q10 

1 This device is availaUle only in Europe.

This device uses QIOs to implement direct memory access. 

3This device is capaUle of direct memory access only when set to use Q1C)s. 

4The VMS SYSGEN utility refers to the Simpact RTC01 as a KWB32. 

Laboratory IIO Interfaces and Operations 1-5 



Table 1-1 (Cont.): I/O Interfaces and Operations Summary 

I10 Device 
Synchronous Operations Asynchronous Operations 
(ReadlWrite) (EnqueuelDequeue) 

Memory queue Read-onlys Transfer 
Display-only 

Real-time plotting Write-only N/A 
Serial line QIO QIO 

5The synchronous 1!O interface is only supported for interprocess read-only when a memory queue device 
is set up to copy data buffers displayed by a memory queue device in another process. 

1.4.1 QIOs to a VMS Device Driver 

Most laboratory I10 devices can be attached to perform QIOs to a VMS 
device driver. (QIO is a VMS term for queued inputloutput using the 
SYS$QIO system service routine.) 

QIOs are best used to perform continuous I/O using asynchronous I10 
routine calls and multiple buffers, or to perform I/O through direct 
memory access (DMA) driven devices. 

Keep in mind the following restrictions when you attach a device to use 
QIOs: 

• Certain I/O devices can use DMA to transfer data. Because of the 
system overhead associated with each QIO call, QIO is best used 
when moving large amounts of data in large buffers with few input 
or output calls, depending on the device type (AID or DIA) or the 
device direction (input or output). 

If you set up a device to perform continuous DMA, other restrictions 
specific to the device may apply. See Section 1.6.3.2, Continuous 
DMA, for more information . 

• The QIO driver must be connected to the device. This is relevant 
only to AXV11-C users if you have previously used the AXV11-C 
for CTI IIO and connected the CTI driver to the device. See 
Section 1.4.3, Connect-to-Interrupt IIO, and Appendix B for more 
information. 

1-6 Laboratory I/O Interfaces and Operations 



1.4.2 Polled I/4 

Some laboratory I/O devices can be attached to perform polled, or 
memory-mapped, I/O. 

During polled IIO, a synchronous routine call maps directly to the 
I/O page of the system and reads from or writes to the control- and 
status register of the device. This provides the least software overhead 
between the user program and the I/O device. 

Polled I/O is often used for control loops where the CPU is dedicated to 
obtaining a sample, processing it, producing a result, obtaining another 
sample, and so on. During the actual I/O (readlwrite) operations, the 
CPU can only maintain the control loop; it cannot perform any other 
processing tasks. 

To prevent another program from preempting the I/O polling loop, set 
up your programs to run at real-time priority (16 or higher). (You must 
have the ALTPRI privilege to increase process priorities.) Doing so, 
however, has a severe impact on multiuser systems because it locks out 
other programs during the I/O call. 

Hardware interrupts have a higher priority than the memory mapped 
I/O polling loop. In this case, nothing else should be happening on the 
system—no file IIO, terminal I10, or network I10—to ensure the fastest 
response time. 

The following restrictions apply when you attach a device to use 
memory-mapped (polled) I/O: 

• Only the synchronous I/O interface is supported. 

• The software cannot use a device's direct memory access (DMA) 
feature, so the maximum transfer rate is limited. 

1.4.3 Connect-to-Interrupt Ii0 

A laboratory IIO device can be attached to perform connect-to-interrupt, 
or interrupt-driven, I/O. During interrupt-driven I/O, a user program 
and the LIO interrupt service routine communicate with a minimum of 
operating system overhead to provide fast interrupt servicing. 

Laboratory I/O Interfaces and Operations 1-7 



NOTE 

The AXV11-C is the only hardware device that supports 
connect-to-interrupt IIO. 

The following restrictions apply when you attach the AXV11-C to use 
CTI I/O: 

• The connect-to-interrupt driver, CONINTERR, must be connected 
to the AXV11-C. See Appendix B for information about connecting 
the driver. 

• Only the synchronous I/O interface is supported. 

• The software cannot use a device's direct memory access (DMA) 
feature. 

• The data buffer must be allocated when the device is set up, and 
must be large enough to contain the connect-to-interrupt overhead 
(approximately 250 bytes) in addition to the data. 

• The data buffer size is limited to 65,536 bytes minus t11e connect-to-
interrupt overhead (approximately 250 bytes). 

1.5 Asynchronous I/O Buffer-Handling Mechanisms 

T11e LIO facility supports three mechanisms for user programs to re-
trieve completed asynchronous I/O buffers from a device: 

• Using the LIO$DEQUEUE routine to return completed buffers to 
the main program. See Section 1.5.1, Buffer Dequeueing. 

• Forwarding completed buffers to another device in a forwarding 
loop. When a buffer transaction completes, the device forwards, 
or passes, the buffer to another device. See Section 1.5.2, Buffer 
Forwarding. 

• Supplying an asynchronous system trap (AST) routine to receive 
completed buffers. When a buffer transaction completes, the device 
calls the AST routine and passes the buffer to it. The AST routine 
receives the buffer and performs whatever tasks it is written to 
perform, such as processing the data contained in the buffer and 
requeueing the buffer to the device for another transaction. An 
AST routine is used instead of the LIO$DEQUEUE routine. See 
Section 1.5.3, Asynchronous System Traps (ASTs). 

1-8 Laboratory I/O Interfaces and Operations 



Buffer Dequeueing 

A user program can determine when an asynchronous I/O buffer trans-
action is complete and a buffer is ready to be dequeued by doing one 
of the following: 

• Polling the device. The main program makes successive calls to 
the LIO$DEQUEUE routine until the buffer transaction is complete. 
The LIO$DEQUEUE routine call returns the LIO$_EMPTYQ error 
until the buffer transaction completes. The LIO$DEQUEUE routine 
returns a success status when the buffer transaction completes. The 
buffer is available for return to the main program. 

• Waiting for the buffer. To wait f or a buff er transaction to complete, 
the main program must do both of the following: 

1. Set up the device or supply the buffer with an event flag. 
Supply the buffer with an event flag using the event flag argu-
ment of the LIO$ENQUEUE routine when you enqueue the 
buffer to the device. 

2. Specify a nonzero wait argument in the LIO$DEQUEUE routine. 
When the main program makes a call to the LIO$DEQUEUE 
routine, the routine waits for a buffer to become available on the 
device's user queue. 

The nature of your application program determines whether polling 
a device or waiting for a completed buffer is more appropriate. 

The online sample program LIO_BUF_INX.FOR is a VSL applica-
tion program that uses the asynchronous I/O interface and single-
buffer DMA with buffer indexing to read analog-to-digital values 
from an A/D device. In this program, the LIO$DEQUEUE routine 
call includes a nonzero wait argument. The LIO$ENQUEUE rou-
tine calls supply each buffer with a unique event flag so that the 
LIO$DEQUEUE routine can wait for the buffers . 

Laboratory i/O Interfaces and Operations 1-9 



x.5.2 Buffer Forwarding 

When devices are set up to use the asynchronous I10 interface, a main 
program can set up these devices to forward completed buffers to 
another device. When the first device in the forwarding loop completes 
a buffer, it enqueues the buffer• to the second device in the forwarding 
loop, and so on. Typically, buffer forwarding is used by application 
programs :hat move data from device to device. Examples are moving 
data from an AID converter to a disk file, or from a disk file to a D/A 
converter. 

You can use buffer forwarding t0 link together any number of devices. 
All devices in the loop must be set up to use the asynchronous I/O 
interface. If the last device in the loop forwards buffers to the first 
device in the loop, the data flow runs continuously until the forwarding 
completes. A forwarding loop completes when one of the following 
conditions occurs: 

• A device or file reaches a stop condition, such as a full output file. 

• An error, such as a data overrun on an AID converter, occurs on a 
device. 

When a device is set up for buffer forwarding, it must also be set 
up with a device event flag (LIO$K_DEVICE_EF). T11e device sets the 
device event flag when it completes a buffer. 

You can also use the AST routine LIO$K_A5T_RTN to receive notice of 
error conditions. 

When a device reaches a stop condition, it refuses to accept any more 
forwarded buffers. If another device in the loop attempts to forward 
(enqueue) additional buffers to the device that completed the forward-
ing loop, the LIO$ENQUEUE routine returns an error. The device 
attempting to forward the buffers responds to the error by making the 
buffers available on its user queue. You can use the LIO$DEQUEUE 
routine to receive the buffers. 

If you set up all devices in the forwarding loop with AST routines, the 
buffers are passed to the AST routine instead of being placed on the 
device's user queue. 

1-10 Laboratory I/O Interfaces and Operations 



Tl1e online sample program LIO_BUF_FWD.FOR is a VSL applica-
tion routine that uses the asynchronous I/O interface and single-buffer 
DMA with buffer forwarding to read analog-to-digital values from 
the ADV11-D device and forward the buffers to a disk file. The 
A/D device used in this routine is set up with a device event flag 
(LIO$K_DEVICE_EF) that the AID device sets when there is a buffer 
available on its user queue. 

1.5.3 Asynchronous System Traps (ASTs) 

An asynchronous system trap (AST) is a VAXIVMS mechanism for 
providing a software interrupt when an external event occurs. 

When the external event occurs, the VMS operating system interrupts 
execution of the current process and calls a procedure that you supply. 
This procedure is called an AST handler or an AST routine. 

The interrupt mechanism is called an asynchronous system trap because 
the interrupt occurs out of sequence with respect to process execution. 

The AST interrupt transfers control to the AST routine that services the 
event. This AST routine can call other procedures, including library 
procedures. When the AST routine finishes servicing the event, control 
returns to the calling program. 

Within the context of VSL application programs, an AST routine is 
a normal subroutine that you supply to a device as the value of the 
LIO$K_AST_RTN parameter when you set up the device in your main 
program. All devices to which you supply an AST routine must be set 
up to use the asynchronous I10 interface. 

Typically, a main program sets up an AST routine to receive completed 
buffers from a device for processing. When a device finishes a buffer, 
it calls the AST routine and passes the buffer to it. Instead of waiting 
for the LIO$DEQUEUE routine call to return the buffer to the main 
program, the AST routine processes the buffer. 

Laboratory I/D Interfaces and Operations 1-11 



An AST routine is useful w11en data needs to be processed as soon as 
it is available and the main program cannot sit idle waiting for it. For 
example: 

• When more than one device must be kept running continuously. 
The main program cannot call the LIO$DEQUEUE routine to wait 
for the buffer on any device because one of the devices might reach 
a stop condition before the others. Using AST routines to receive 
buffers makes a call to the LIO$DEQUEUE routine unnecessary. All 
completed buffers are passed to the AST routine. The AST routine 
must use the LIO$ENQUEUE routine call to enqueue the buffers to 
the device again. 

• When one step in abuffer-forwarding loop requires that the buffers 
be processed. Instead of forwarding the buffer from one device to 
the next device in the loop, you supply the first device with an AST 
routine. The AST routine receives the completed buffer from the 
first device, processes the buffer, and enqueues the buffer to the 
next device in the forwarding loop. 

• When a buffer needs to be checked immediately for error condi-
tions and subsequently requires time-consuming processing. The 
AST routine receives the completed buffer from the device, checks 
the buffer for error conditions, and enqueues the buffer to the mem-
ory queue device. The main program can then dequeue the buffer 
from the memory queue device and perform the time-consuming 
processing of the buffer. 

The following sample FORTRAN program segment shows the argu-
ments you need to define when you set up an AST routine. These argu-
ment declarations are used by an AST routine that receives completed 
buffers from the ADV11-D device. 

SUBROUTINE ADV_AST (statue , device_id , buffer, buff er_length , 

1 data_length , 
INTEGER status 
INTEGER device_id 
INTEGER*2 buffer 
INTEGER buff er_length 
INTEGER data_length 
INTEGER buffer_index 
INTEGER device_specific 

buff er_index, device_specif ic) 
! Returns the status of the I/O operation 
! Specifies the LIO-assigned device ID 

! The actual buffer, NOT its address 
! The length of the buffer , in bytes 
! The length of the data in the buffer, in bytes 
! The buffer index, if supplied in LIO$ENgUEUE 
! Device-specific argument (not used by ADV11-D) 

1-12 Laboratory i/O Interfaces and Operations 



Keep in mind the following when you use an AST routine: 

• An AST routine is used instead of a call to the LIC)$DEQUEUE 
routine. Since the AST routine is called whenever a device 
completes a buffer, neither the main program nor the AST routine 
uses the LIO$DEQUEUE routine. 

• If an AST routine does IIO to other devices, use the asynchronous 
I!O interface to minimize its execution time. This means you 
should avoid using normal terminal I/O or file I/O for your 
programming language, such as the FORTRAN READ, WRITE, 
TYPE, ACCEPT, and PRINT statements; the VSL synchronous 
routine calls (LIO$READ and LIO$WRITE}; and the LIO$DEQUEUE 
routine with a nonzero wait argument. 

See Chapter 3 in Getting Sta~~ted with VAXIab for information about 
how to write an AST routine to receive completed buffers from a device 
using VAX Ada, VAX BASIC, VAX C, VAX FORTRAN, and VAX Pascal. 

The following online sample programs show the use of AST routines: 

LIO ADV AST.BAS 
LIO ADV AST.0 
LIO_ADV_AST.FOR 
LIO ADV AST.PAS 

AST routines and their execution can also be tied to a particular event 
such as an overflow on a real-time clock, the setting of a bit on a parallel 
board, or the assertion of a service request on an IEEE-488 bus. Online 
sample program LIO_KVW_AST.FOR is a VSL application routine that 
uses the asynchronous I10 interface and an event AST routine to show 
the KWV11-C o1• Simpact RTCO1 clock module's ability to call an AST 
routine on every clock tick. 

Laboratory I/O Interfaces and Operations 1-13 



1.6 I/O Device-Specific Interfacing 

The LIO facility supports t11e following device-specific interfaces: 

• First-in/first-out buffers (FIFOs) 

• Handshaking 

• Direct memory access (DMA) 

FIFOs are supported for the following devices: 

ADQ32 
DRQ3B 
Preston 
Simpact RTC01 

See Section 1.6.1, First-In/First-Out Buffers, before you write VSL 
application programs that use these devices. 

Handshaking is supported for the following devices: 

DRQ3B 
DRV11-J 
DRV11-VVA 

See Section 1.6.2, Handshaking, before you write VSL application 
programs that use these devices. 

The following types of direct memory access are supported: 

• Single-buffer DMA 

This interface is supported for the following devices: 

AAF011
AAV11-D 
ADF011
ADQ32 
ADV11-D 
DRB32 
DRQ3B 
DRQ11-C1
Preston 

1 This device is available only in Europe. 

1-14 Laboratory I/O Interfaces and Operations 



See Section 1.6.3.1, Single-Buffer DMA, before you write VSL 
application programs that use these devices. 

• Continuous DMA 

This feature is supported by the following devices: 

AAF011
ADFO11
AAV 11-D 
ADV11-D 
DRQ11-C1

See Section 1.6.3.2, Continuous DMA, before you write VSL 
application programs that use these devices. 

• Alternate-buffer DMA 

This feature is supported by the following devices: 

AAF011
ADF011
DRQ11-C1

See Section 1.6.3.3, Alternate-Buffer DMA, before you write VSL 
application programs that use these devices. 

• Double-buffer DMA 

This feature is supported by the following devices: 

ADQ32 
DRB32 
DRQ3B 

See Section 1.6.3.4, Double-Buffer DMA, before you write VSL 
application programs that use these devices. 

The following sections describe each of these device-specific interfaces. 

1 This device is availaUle only in Europe. 

Laboratory I/O Interfaces and Operations 1-15 



1.6.1 First-In/First-Out Buffers 

The ADQ32, DRQ3B, Simpact RTC01, and Preston devices support 
first-in/first-out (FIFO) buffers that are built into these options. 

If the load on your system bus is such that the data transfer cannot 
be made from the device to memory befo~•e another piece of data is 
available, then you lose data. FIFOs act as on-board memory for storing 
data while the device is unable to transfer data. This prevents new data 
from overwriting the data not yet transferred to memory. 

It is possible to fill up the FIFO if the system cannot read the data and 
put it into memory quickly enough. This condition is called a FIFA 
overrun. The data rate of the data coming into the FIFO is faster than 
the data rate of the data being read out of the FIFO. 

A similar but less common condition is called a FIFO underrun. This 
occurs when the system reads data out of the FIFO faster than data is 
coming into the FIFO. This condition is less likely to occur because 
the system usually checks to see if there is additional data in the FIFO 
before reading any data out of the FIFO. 

The ADQ32 leas one 512-word input FIFO. The DRQ3B has one 
512-word FIFO for input and one 512-word FIFO for output. See 
Section 1.6.3.4, Double-Buffer DMA, for information about double 
buffering wit11 the ADQ32 and DRQ3B . 

The Simpact RTC01 11as a 512-entry longword FIFO buffer. 

Preston devices can be configured with a 1K to 64K FIFO buffer. The 
size of the FIFO buffer determines the tune between LIO$ENQUEUE 
calls t11at the device can tolerate and still maintain continuous 
throughput. When the Preston is connected to the DRQ3B it will also 
use the pair of 512-word FIFOs. 

1.6.2 Handshaking 

This section explains the handshaking interfaces available when you use 
the DRQ3B, DRV11-J, and DRV11-WA devices. 

1-16 Laboratory I/O Interfaces and Operations 



1.6.2.1 The DRQ3B and Handshaking 

The DRQ3B uses atwo-line interlocked handshake to ensure data 
transfer between an external device and the DRQ3B. 

The handshake consists of signals STROBE and ACKNOWLEDGE for 
input and DATA VALID and ACKNOWLEDGE for -output that are 
found on the connectors for the DRQ3B. These connectors let you 
attach t11e DRQ3B to another device, such as the Preston GMAD AID 
subsystem. See t11e DRQ3B Parallel DMA I/O Module User's Guide for 
more information. 

For input on channel 0, STROBE is sent (assertion low) from the 
external device when the external device is asserting valid data. The 
ACKNOWLEDGE (ACK) signal is sent (assertion low) from the DRQ3B 
after the DRQ3B has successfully read the data value. 

The sequence of events for input of data is as follows: 

1. When STROBE is received low from the external device, the DRQ3B 
reads the data input lines and places the data value in the FIFO. The 
DRQ3B then asserts the ACK signal low, indicating it has received 
the data value. 

2. When the external device sees ACK go low, it sets the STROBE 
signal high and prepares to transmit the next data word. 

3. The DRQ3B then releases the ACK signal letting it go high. (If the 
FIFO is full, however, ACK is held low until a word is read out of 
the FIFO.) ACK high indicates that the DRQ3B is ready for the next 
data word. 

4. The external device places valid data on the data lines and asserts 
STROBE low, starting the cycle over. 

For output on channel 1, the process is similar, but the roles of the 
DRQ3B and external device are reversed. Two 1andshake signals, 
DATA VALID (DAV) and ACKNOWLEDGE (ACK), are used. DAV is 
sent (asserted low) from the DRQ3B to the external device and indicates 
that there is currently valid data on the data lines. ACK is received 
(asserted low) from the external device when the external device has 
successfully read the data value. 

Laboratory I/O Interfaces and operations 1-17 



The sequence of events for output of data is as follows: 

1. The DRQ3B places a data value from the FIFO onto the output data 
lines. It then asserts the DAV signal low, indicating that valid data 
is present. 

2. The external device reads the data and asserts its ACK signal low. 

3. When the DRQ3B receives the ACK signal, it releases the DAV line, 
letting it go high. 

4. When the external device sees the DAV line go high, it releases the 
ACK signal, letting it go high. 

5. The DRQ3B places t11e next data word on the output data lines and 
then asserts DAV low, starting the handshake cycle over again. 

1.6.2.2 The DRV11-J and Handshaking 

The DRV11-J device hardware can be physically jumpered for a 
two-wire handshake. The setting of Jumper W11 on the DRV11-J 
board determines whether the hardware is jumpered for atwo-wire 
handshake. See the DRV11-j Parallel Line Interface User's Giride for 
information about how to jumper the board. 

The value of the LIO$K_HANDSHAKE parameter determines whether 
handshaking is software-enabled for the device. To transfer more than 
one data point per buffer, the physical hardware of the DRV11-J device 
must be jumpered appropriately and the LIO$HANDSHAKE parameter 
must be used to software-enable the device's handshaking feature. 

When the device is set up for atwo-wire handshake, only the low 12 
bits of port A are available for AST routines. See Section 2.3.4, DRV11-J 
Support, for more information. 

1.6.2.3 The DRV11-WA and Handshaking 

The DRV11-WA uses atwo-wire handshake to synchronize data 
transfers. In addition, the DRV11-WA option supports several different 
transfer types. Because a complete description of both the two-wire 
handshake and data transfer types is beyond the scope of this guide, 
see the DRV11-WA General Purpose DMA I~~terface User's Guide for more 
information. 

1-18 Laboratory I/O Interfaces and Operations 



1.6.3 Direct Memory Access I/O 

The AAV11-D and ADV11-D devices transfer data using single-buffer 
or continuous direct memory access (DMA) I1O. See Section 1.6.3.1, 
Single-Buffer DMA, and Section 1.6.3.2, Continuous DMA, for more 
information. 

The AAF011, ADF011, and DRQ11-C1 devices transfer data using 
single-buffer, continuous, or alternate-buffer DMA. See Section 1.6.3.1, 
Single-Buffer DMA, Section 1.6.3.2, Continuous DMA, and 
Section 1.6.3.3, Alternate-Buffer DMA, for more information. 

The ADQ32, DRB32, and DRQ3B devices transfer data using 
single-buffer or double-buffer DMA. Double-buffer DMA means that 
the device can switch from the first buffer to the second buffer with 
no software intervention. See Section 1.6.3.4, Double-Buffer DMA, for 
more information. 

1.6.3.1 Single-Buffer DMA 

When a device is performing single-buffer DMA, information about 
each buffer must be written to the device by software before each buffer 
is transferred. This contrasts with double buffering, where information 
about the next buffer is written to the device while the current buffer is 
transferred. 

Devices that perform DMA perform single-buffer DMA by default w11en 
they are set up to use the synchronous I1O interface. When a device 
is set for synchronous I/O, you use the LIO$READ and LIO$WRITE 
routines to transfer data to and from the device. 

The routine calls stop your program until the I1O operation completes. 
The device does not continue to transfer data while the program is 
preparing for the next I1O operation. 

Except for the ADQ32, the buffer must be word-aligned. Most high-level 
languages automatically word-align buffers on an even memory address. 
However, if you are programming in VAX MACRO, or if the buffer is 
not the first datum in a FORTRAN COMMON, you must word-align the 
buffer from within the program context. 

1 This device is availaUle only in Europe. 

~"1 Laboratory I/O Interfaces and Operations 1-19 



For VAX MACRO, use the .EVEN directive before the buffer. For 
FORTRAN COMMON, make sure that there are an even number of 
any LOGICAL*1, BYTE, or INTEGER*1 variables in front of the buffer. 
CHARACTER*n variables in front of the buffer must be of an even 
length. 

Consider the following when you use the ADQ32 for single-buffer 
DMA: 

• The ADQ32 restarts the current triggering mode after each buffer. 
Data points are lost because of the software delay in setting up 
the next buffer. For example, if the A/D is set up to be externally 
triggered, external triggers are ignored during the setup of the next 
buffer. 

Consider the following when you use an AAV11-D or ADV11-D device 
for single-buffer DMA: 

• When the AAV11-D and the ADV11-D are set to do single-buffer 
DMA output and input, respectively, you must supply an additional 
512 bytes in each buffer. The DMA does not stop cleanly at the end 
of the buffer. It stops some time up to 256 D/A or A/D values later. 

• When the AAV11-D is set to use asynchronous output, the 
data_length argument of the LIO$DEQUEUE routine returns the 
actual number of data values written. When the AAV11-D is set to 
use synchronous output, the LIO$WRITE routine does not return 
this information . 

• When the ADV11-D is set for asynchronous or synchronous input, 
the data_length argument of the LIO$DEQUEUE and LIO$READ 
routines returns the size of the buffer, including the additional 
number of bytes read. 

Consider the following when you set the AAF01,1 ADF01,1 or 
DRQ11-C1 for single-buffer DMA: 

• You must supply the address of a dummy buffer for the second 
buffer. You must also supply a dummy buffer length greater than 
zero. 

1 This device is availaUle only in Europe. 

1-20 Laboratory I/O Interfaces and Operations 



1.5.3.2 Continuous DMA 

When the AAF01,1 AAV11-D, ADF01,1 ADV11-D, and DRQ11-C1 are 
set to do continuous DMA I10, the DMA hardware runs continuously 
instead of stopping at the end of each buffer. This allows these devices 
to run at top speed with no interruptions. 

For the AAV11-D and the ADV11-D, the DMA can continue at top 
speed with no interruptions because it is confined to a 64K-byte block 
of memory that it wraps around in. This memory is divided into a 
minimum of three buffers or a maximum of 16 buffers. All the software 
has to do is to keep filling or emptying buffers as fast as the DMA 
empties or fills their. 

For the AAF01, ~- ADF01, ~ and DRQ11-C,1 the DMA can continue at 
top speed without interruptions because it is confined to a (maximum) 
252K-byte block of memory that it wraps around in. This memory is 
divided into two buffers. All the software has to do is to keep filling 
or emptying buffers as fast as the DMA empties or fills them. Each of 
the two buffers making up the (maximum) 252K-byte block of memory 
contains a 4-byte header that is used to synchronize the user program 
with the continuous DMA transfer. 

LIO-Specific Details: 

To do continuous DMA I10 with the AAV11-D and ADV11-D, you must 
do the following: 

• Attach to the device through the LIO$ATTACH routine specifying 
the value of the io_type argument as LIO$K_QIO. T11is sets the 
device to use QIO. QIO is the default for both devices. 

• Set t11e device to use the asynchronous user interface. This is the 
default for both devices. 

• Set the device to continuous DMA mode using t11e LIO$K_CONT 
parameter. 

The 64K-byte block of memory must be divided into a minimum of 
three buffers. To do this you can create atwo-dimensional array that 
takes up 64K bytes. For example, a 64K block of 4 buffers can be 
defined as a 4-by-8192 array of two-byte integers. 

1 This device is available only in Europe. 

Laboratory I/O Interfaces and Operations 1-21 



To do continuous DMA I/O with the AAF01,1 ADF01,1 and DRQ11-C,1
you must do the following: 

• Attach to the device through the LIO$ATTACH routine specifying 
the value of the io_type argument as LIO$K_QIO. This sets t11e 
device to use QIO. QIO is the default for all devices. 

• Set the device to use the asynchronous user interface. This is the 
default for all devices. 

The 252K-byte block of memory must be divided into two buffers. 
To do this you can create atwo-dimensional array that takes up 252K 
bytes. For example, a 252K block of two buffers can be defined as a 
2-by-129024 array of two-byte integers. 

Program-Specific Details: 

Before continuous DMA output can start for the AAV11-D and the 
ADV11-D, you must fill and then enqueue all the buffers to the 
AAV11-D. Before continuous DMA input can start, you must enqueue 
all the buffers to the ADV11-D. For both devices, you must enqueue 
the buffers in ascending order (incrementing the array index). When all 
the buffers are enqueued, you start the AAV11-D output and ADV11-D 
input through the LIO$SET_I routine specifying the LIO$K_START 
parameter. 

You must assign eac11 buffer a unique event flag. The first time you 
enqueue a buffer, the event flag is internally associated with that buffer. 
The event flag is then used for all subsequent enqueues of that buffer, 
whether or not you specify the event flag. 

The buffers can be refilled or emptied by using any of the following LIO 
mechanisms: 

• Dequeueing the buffers and enqueueing them again 
• Using abuffer-completion AST routine which requeues them 
• Setting the AAV11-D and the ADV11-D to forward the buffers to 

another device that fills t11em and forwards them back 

1-22 Laboratory I/O Interfaces and Operations 



The buffers must always be enqueued in the same order. A minimum 
of two buffers must be enqueued to the device at all times, or the I10 
stops without returning a condition value. Subsequent LIO$DEQUEUE 
calls do not return a buf f er and do not generate a condition value . 

When you stop the continuous DMA, the buffer transfer in progress 
returns with a zero data_length. The LIO facility does not know how 
much data was in the buffer so it returns a zero. 

Before continuous DMA output can start for the AAF01,1 ADF01,1 and 
DRQ11-C,1 you must fill and enqueue both buffers to the AAFO1 or 
DRQ11-C device. Before continuous DMA input can start, you must 
enqueue both buffers to the ADF01 or DRQ11-C device. For all three 
devices, the device_specific argument of the LIO$ENQUEUE routine 
supplies the buffers. Thus, only one LIO$ENQUEUE routine call is 
necessary to enqueue both buffers and to start the continuous DMA. 
The parameters passed by the device_specific argument for continuous 
DMA transfer must contain the following: 

• A mask specifying block mode, start the DMA conversion, and, if 
desired, burst mode, for example: 

LIO~M_BLOCK!LIOSM_START_CONV!LIO$M_BURST 

• The address of the first data buffer 

• The length of the first data buffer, excluding the 4-byte header 

• The address of the second data buffer 

• The length of the second data buffer, excluding the 4-byte header 

• A block count of 0, indicating continuous DMA 

The device continues to operate in continuous DMA mode until one of 
the following occurs: 

• The program terminates the transfer with an LIO$K_CANCEL 
request. 

• An error condition occurs. 

~ This device is available only in Europe. 

Laboratory i/O Interfaces and Operations 1-23 



When transferring more than one buffer, the program must 
acknowledge completion of each buffer by clearing the buffer header. 
The buffer header contains the current block count number after each 
transfer. Synchronization with the driver is provided at the end of each 
buffer by all of the following: 

• Setting the specified event flag 

• Queueing the specified AST 

• Setting the "buffermark" in the I/O status block 

The buffermark is the block number (1 or 2) of the last block being 
transferred. It is updated at the completion of each block. 

The buffers can then be refilled or emptied and the buffer header 
cleared by either: 

• Waiting for the specified event flag 

• Executing an AST routine 

To stop continuous DMA data transfers, issue an LIO$K_CANCEL 
request and dequeue the buffers. 

VMS-Specific Details: 

You must page-align the 64K-block of memory required to perform 
continuous DMA transfers. To do this, you can place the 64K block into 
a PSECT and then use a linker options file to page-align it. 

If you are programming in VAX C, you can put a block of memory in 
a PSECT by declaring an external array or structure of 64K-bytes, for 
example: 

/* 
page_align.c 
~/ 

main () 
{ 
extern buffers [4] [8*1024] ; 

/* this program does nothing */ 
} 

VAX C creates a PSECT with the name of the array or structure. 

1-24 Laboratory I/O Interfaces and Operations 

u 



If you are programming in VAX FORTRAN, you can put a block for 
memory in a PSECT by declaring an array of 64K bytes and placing the 
array in a named COMMON block, for example: 

PROGRAM page_align 
COMMON /buffers/ibuffs !Put the data in a PSECT 
INTEGER*2 ibuff s (8*1024 , 4) !Four 8K-~rord buffers 

C this program does nothing 
STOP 
END 

VAX FORTRAN generates a PSECT with the name COMMON, which 
the linker can page-align. 

Use a linker options file to page-align the PSECT. The linker options file 
must contain the following statement: 

PSECT_ATTR = user_buff,PAGE 

The following LINK command page-aligns the PSECT declared by 
the previous sample programs. For simplicity, this example reads the 
options from SYS$INPUT instead of from a separate linker options file. 

$ LINK/MAP/FULL page_align,SYS$INPUT/OPT 
PSECT_ATTR=buffers ,PAGE 
A 

1.5.3.3 Alternate-Buffer DMA 

Alternate-buffer DMA is the type of double-buffer DMA accomplished 
by the AAF01,1 ADF01,1 and DRQ11-C1 devices. For alternate-buffer 
DMA, as with continuous DMA, a block of memory is allocated and 
divided into two buffers. The device alternates between the two buffers, 
retrieving data from the buffers, or filling the buffers with data. Each 
buffer has a maximum size of 126K bytes. 

The only difference between continuous DMA and alternate-buffer 
DMA for these devices is that with alternate-buffer DMA, the block 
count parameter, specified through the device_specific argument of 
the LIO$ENQUEUE routine, contains the actual number of blocks to 
transfer. The device alternates between the two buffers until it exhausts 
the block count. Synchronization is accomplished in the same way. 

1 This device is availaUle only in Europe. 

Laboratory I10 Interfaces and Operations 1-25 



1.6.3.4 Double-Buffer DMA 

Double buffering allows the 1ardware to transfer one buffer, and then 
start transferring another buffer with no software intervention. 

With single-buffer devices, after each buffer is filled or emptied, the 
software must set up the next buffer before the device can continue. 
The device does not continue to transfer data while the program is 
preparing for the next I/O operation. 

Devices set for double-buffer DMA transfer have registers containing 
pointers to buffers, the CURRENT and NEXT pointers. See Figure 1-3 
for the explanation below. 

When the device completes a transfer using the CURRENT pointer to 
the current buffer (buffer 1), it generates an interrupt indicating that the 
transfer has completed. The device, however, does not have to wait 
for the interrupt to be serviced. Instead it uses the NEXT pointer to 
start the DMA transfer to or from the next buffer (buffer 2). Often the 
hardware is set up to copy the NEXT pointer to the CURRENT pointer. 
Then, the software sets up the NEXT pointer to point to the next transfer 
(buffer 3). 

Figure 1-3: Double-Buffer DMA Pointer Sequence 

Current 

Next 

Buffer 1 

Buffer 2 

Buffer 3 

Current 

Next 

Buffer 1 

Buffer 2 

Buffer 3 

MR-1429-GE 

This allows the data to be transferred continuously, without having to 
wait for the time it takes the software to set up the next buffer. Of 
course, the time it takes to transfer the first buffer must be greater than 
the time it takes to set up for the next buffer. 

1-26 Laboratory I/O Interfaces and Operations 



If the buffer setup time is reasonably well known, then the size of the 
buffer needed for double buffering can be easily computed by the 
following equation: 

Buffer Size =Software Time *Data Transfer Rate 

For example, assume that the buffer setup time is one millisecond. If 
the data transfer rate is 1 MHz (one million samples per second), then 
the equation becomes: 

Buffer_Size = .001 sec * 1,000,000 sampleslsecond 
Buffer_Size = 1,000 samples 

If each sample is one word, then you need a 1, 000-word or 2, 000-byte 
buffer. 

If one millisecond is the least amount of time (best case) ~it takes to set 
up a buffer, but in actuality it may take up to one-tenth of a second 
(worst case) to set up a buffer, enter the worst case values into the 
equation, for example:l

Buffer_Size = .1 sec * 1,000,000 sampleslsecond 
Buffer_Size = 100,000 samples 

Double-buffer DMA also allows you to queue multiple I10 requests 
before actually starting the I/O transfer. By queuing the I/O requests in 
advance, you minimize the amount of time it takes for the next buffer to 
be set up, because all the overhead associated with signaling the device 
about which buffers are going to be used is already done. 

The ADQ32 device driver uses single-buffer transfers by default, 
but can be set for double-buffer transfers with the LIO$K_DBL_BUF 
parameter. The DRQ3B device driver double-buffers IIO requests 
whenever possible. Use the guidelines that follow to maximize the use 
of double-buffering with these devices. 

In the last example, you can see t11at a buffer of 100,000 samples can 
accommodate the .1 second to get the next buffer ready. The ADQ32 
and DRQ3B can handle a maximum buffer size of 32K words. By 
queuing ten 10, 000-word buffers and holding them until all are queued, 
you can transfer 100, 000 words and bypass the restriction of having a 
maximum buffer size of 32K words. 

1 "Best" case and ' `worst" case here are strictly dependent on an application's computational work 

requirements between I/O requests. 

Laboratory I/O Interfaces and Operations 1-27 



Note that the ADQ32 and DRQ3B device drivers take some time to set 
up t11e next buffer for an I10 transfer. The time it takes for this to occur 
varies based on system load, but should not be a problem if you use 
buffers of at least 8K words. 

To queue 10 buffers to the DRQ3B or the ADQ32 before actually starting 
to transfer data, use the device-specific parameter LIO$M_HOLD_DMA 
with LIO$ENQUEUE for the first nine buffers. Then remove t11is 
parameter when you call LIO$ENQUEUE for the tenth buffer. 

When the ADQ32 is set for double-buffer DMA transfers, the AID takes 
advantage of its double-buffering capabilities and its on-board data FIFO 
buffer to keep data flowing continuously to succeeding buffers. 

To do this, a user program should use a minimum of three buffers and 
must keep two buffers enqueued to the AID at all times. If the A/D 
finishes a buffer and there are fewer than two more buffers enqueued 
to the device, the ADQ32 finishes the buffers it has and returns the last 
enqueued buffer with the LIO$_OVERRUN warning. 

To prevent the A/D from terminating on the first buffer, enqueue a 
minimum of two buffers to the device using the LIO$ENQUEUE 
routine with LIO$M_HOLD_DMA as the value of the device-specific 
argument. This device-specific argument value inhibits the start 
of the DMA transfers until you enqueue a buffer without using the 
LIO$M_HOLD_DMA device-specific argument value. When the user 
program enqueues the last buffer in adouble-buffering sequence, use 
the LIO$M_DONE_DBL_BUF value of the device-specific argument of 
the LIO$ENQUEUE routine. This prevents the device from returning 
the buffer with the LIO$_OVERRUN warning message. 

1-28 Laboratory I/O Interfaces and Operations 



Chapter 2 

Laboratory I/O Device Support 

This chapter describes the hardware devices and software pseudo-
devices supported by VAXIab. The devices are listed alphabetically 
by category for ease of use. Each device support section presents an 
overview of the capabilities of t11e device, and instructions for attaching, 
setting up, and using the device. 

This chapter is not intended to be read sequentially. 

2.1 Real-Time Clock Devices 

The KVW11-C and Simpact RTC01 are real-time clock devices you can 
use in the following ways 

• As a steady frequency source 

• As a single-pulse source 

• As a source of regular calls to an AST routine on the setting of event 
flags 

• To count or time external events 

T11e KWV11-C is compatible with the Q-bus. 

The Simpact RTC01 is a native-mode device compatible with the VAXBI 
bus. 

Laboratory i/Q Device Support 2-1 



The primary differences between the two devices are: 

• Bits of resolution—the KWV11-C has 16, the Simpact RTC01 has 32. 

• Maximum speed-1 MHz for the KWV11-C, 10 MHz for the Simpact 
RTC01. 

• The KWV11-C has asingle-count register, while the Simpact RTC01 
has a 512-entry longword FIFO buffer to store successive counts. 

For more information about the KV11V11-C, see the AXV11-C/KWV11-C 
Analog Module and Real-Ti»te Clock Modicle User's Guide. 

For more information about the RTC01, see the documentation from 
Simpact Associates, Inc. 

2.1.E Attaching the KV1/V11-C or Simpact RTCO~ 

Attaching the KWV11-C or the Simpact RTC01 means assigning a VMS 
IIO channel to the device and initializing LIO data structures for, and 
pointers, to the device. 

You use the LIO$ATTACH routine to attach the KWV11-C or Simpact 
RTC01. 

statue = LIO$ATTACH (clock_id, 'KZAO', LIO$K_gI0) 
IF (.NOT . status) CALL LIB$SIGNAL (y.VAL (status) ) 

The clock_id argument returns the LIO-assigned device ID for the 
KVW11-C or Simpact RTC01 device. The KWV11-C or RTC01 is 
referenced by this device ID in subsequent routine calls to the device in 
a user program. 

The device specification KZAO specifies a KWV11-C (KZ) device, with 
controller letter A and unit number 0. (To specify an RTC01 (KB) 
device, use KBAO as the device specification.) If you have only one 
KwV11-C or RTC01 device configured in your system, specifying the 
device type KZ or KB is sufficient. 

The LIO$K_QIO constant value specifies the I/O type. The LIO facility 
also supports memory-mapped IIO (LIO$K_MAP) for the KVW11-C or 
RTCO1 device. 

2-2 Laboratory I/Q Device Support 



NOTE 

When you use the KWV11-C as the clock source for the 
AAV11-D, ADV11-D, and AXV11-C devices, attach both the 
clock and the I/O device with the same io_type argument. 

2.x.2 Setting Up the KWV11-C or Simpact RTC01 

Before you can begin using the KVW11-C or the Simpact RTC01 to 
trigger data transfers or time external events, you must set up certain 
device characteristics. The following table lists the LIO$SET and 
LIO$SHOW parameters you can use to set up and show KVW11-C or 
RTC01 device characteristics. See Chapter 4 for reference descriptions 
of the parameters listed in this table. 

Table 2-1: KWV11-C and Simpact RTC01 LIO$SET and LIO$SHOW 
Parameters 

Parameter Function 

LIO$K_AST_RTN Specifies auser-written AST routine to 
receive buffers when a device finishes 
processing them. 

LIO$K_ASYNCH Sets the device to use asynchronous I10. 

LIO$K_CLK_RATE Takes a specified frequency and. produces 
the best internal crystal rate and divider 
to approximate that frequency. 

LIO$K_CLK_SRC Sets the source frequency and divider for 
clock ticks and the source frequency for 
event timing. 

LIO$K_DEVICE_EF Establishes the event flag that is set when 
a buffer becomes available. 

LIO$K_ERR_HANDLE Specifies the way in which a device 
returns error conditions. 

LIO$K_EVENT_AST Assigns auser-written AST routine to be 
called on clock overflows or ST2 events. 

LIO$K_EVENT_EF Specifies the event flag to set on an 
external event or clock overflow. 

Laboratory I/O Device Support 2-3 



Table 2-1 (Cont.): KWV11-C and Simpact RTC01 LIO$SET and 
LIO$SHOW Parameters 

Parameter Function 

LIO$K_FORWARD 

LIO$K_FUNCTION 

LIO$K_START 

LIO$K_STOP 

LIO$K_SYNCH 

LIO$K_TIMEOUT 

LIO$K_TRIG 

Specifies the device to which. completed 
buffers are forwarded. 

Specifies the function the clock is to 
perform. 

Starts the device. 

Stops the device. 

Sets the device for synchronous IIO. 

Sets the length of time in seconds before 
an 1/0 request is aborted. 

Sets the device trigger mode or source. 

Simpact RTCOl only: 

LIO$K_COUNTER 

Ll0$K_INTERRUPT_LEVEL 

LI O $K_S CHMITT_TRI G G ER 

Reads the count register of the Simpact 
RTC01. 

Sets the level at which interrupts occur 
for the Simpact RTC01. 

Sets the mode of ope~•ation for the two 
Schmitt triggers on the Simpact RTC01. 

The function that the clock performs depends on how your program sets 
up the clock. The following sections describe how to use the parameters 
above . 

2.x.3 Using the KWV~ ~-C or Simpact RTC01 to Time External 
Events 

This section describes how to use the KWV11-C or the Simpact RTC01 
to time external events . 

External events are negative (or positive) TTL transitions from a device 
or switch in your application. The polarity of the transition is set by a 
switch on the clock device UDIP panel. The external event to be timed 
is connected to the Schmitt trigger 2 (ST2) input on the clock. 

2-4 Laboratory I/Q Device Support 



To use the clock device to time external events, do the following: 

1. Include the symbolic definition files required by t11e VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the clock as described in Section 2.1.1, Attaching the 
KWV11-C or Simpact RTC01. 

4. Set up the I/O interface. To time external events, you can use either 
the synchronous or asynchronous IIO interface. 

status = LIO$SET_I (clock_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(etatus)) 

5. Set up the clock function. 

status = LIOSSET_I (clock_id, LIO$K_FUNCTION, 1, LIO$K_EVENT_REL) 
IF (.NOT. statue) CALL LIB$SIGNAL (xVAL(status)) 

This routine sets up the KWV11-C clock device to time the interval 
between pulses on the ST2, resetting the count to zero on each ST2 
pulse. 

Note that LIO$K_EVENT_ABS could also be chosen. In this mode, 
the counter continues to run and is not reset to zero on each ST2 
pulse. 

6. Specify the clock source. 

status = LIO$SET_I (clock_id, LIO$K_CLK_SRC, 1, 3) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

This routine specifies the clock source as the KWV11-C internal 10 
kHz clock crystal. No clock divider is given, because t11e clock is 
being used to time external events. 

NOTE 

When using the KWV11-C or the Simpact RTC01 to 
tiYne external events, you must use the LIO$K_CLK_SRC 
parameter to~ specify the clock source. The event-timing 
functions use only the clock source, and not the 
divider, to tune external events. Do not use the 
LIO$K_CLK_RATE parameter because it sets both the 
clock source and a divider. 

Laboratory I/O Device Support 2-5 



7. Set up the clock trigger mode. 

status = LIOsSET_I (clock_id, LIOsK_TRIG, 1, LIOSK_IMMEDIATE) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

This routine sets up t11e start condition. T11e clock does not start 
running at this time. It is started by the subsequent LIO$READ 
routine. 

8. Read 10 clock pulses (20 bytes for the KwV11-C, 40 for the RTC01). 

status = LIO~READ (clock_id, buffer, 20, data_length, ) 
IF(.NOT. status) CALL LIB$SIGNAL(XVAL(status)) 

This routine starts the clock and reads 10 KWV11-C ST2 pulses. 
Each value in the buffer is the value of the clock counter when the 
ST2 pulse occurred. You can obtain the relative time between ST2 
pulses by multiplying the number of clock ticks read by the source 
frequency selected. 

The device_specific argument is not used with the KWV11-C or the 
RTC01 device. 

Because this example sets the KWV11-C to use the synchronous 
I/O interface in step 4 of this procedure, the LIO$READ routine is 
used here to read the clock pulses. If you set t11e clock to use the 
asynchronous I/O interface, then you use the LIO$ENQUEUE and 
LIO$DEQUEUE routine calls to read the clock pulses. 

9. Detach the I1O device and the clock. 

status = LIO$DETACH (device_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

status = LIOSDETACH (clock_id, ) 
IF (.NOT. status) CALL LIB$SIGPIAL (XVAL(status)) 

The online sample program LIO_TIME_EVENT.FOR in the 
LIO$EXAMPLES directory is a complete VAX FORTRAN program 
that uses the KWV11-C clock to time external events. 

2-6 Laboratory I/Q Device Support 



2.1.4 Using the KWV11-C to Trigger a Device 

This section describes how to use the KWV11-C clock to trigger data 
transfers to and from the AAV11-D, ADV11-D, and AXV11-C devices. 
(You cannot use the Simpact RTCO1 clock with these devices.) To use 
the KWV11-C as the clock source for these devices, the clock overflow 
output must be externally wired to the device. 

To set up the clock to trigger a device, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the clock as described in Section 2.1.1. 

4. Attach the I/O device being clocked as described in the 
device-specific support section in this chapter. Remember to attach 
the I1O device and the clock with the same io_type argument. 

5. Set up the clock function. 

status = LIO~SET_I (clock_id, LIO$K_FUNCTION, 1, LIO$K_REP_COUNT) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

This routine specifies the KWV11-C clock device as the clock source 
for the device. Remember that the clock must be wired to the 
device if it is to perform this function. 

6. Set up the clock rate. 

status = LIO~SET_R (clock_id, LIO~K_CLK_RATE, 1, 1000.0) 
IF (.NOT. status) CALL LIB$SIGNAL (y.VAL(status)) 

This routine specifies a clock rate of 1,000 Hertz. 

(LIO$K_CLK_SRC can also be used to specify a clock source and 
divider. LIO$K_CLK_SRC produces an exact known clock rate. 
LIO$K_CLK_RATE produces the best approximation of the specified 
rate.) 

7. Set up the clock trigger mode. 

status = LIO$SET_I (clock_id, LIOSK_TRIG, 1, LIO$K_IMMEDIATE) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

Laboratory I/O Device Support 2-7 



This routine sets up the start condition. The clock does not start 
running at this time. The routine call in step 10 of t11is procedure 
actually starts the clock. 

(LIO$K_EXTERNAL can also be specified as the argument to 
LIO$K_TRIG. In this mode the clock starts on an external ST2 
input.) 

8. Set up the IIO device parameters, such as the I1O interface, AID 
channels, and channel gains; and specify the I1O device's trigger-
mode to the clock. 

status = LIOSSET_I (device_id, LIO$K_TRIG, 1, LIOsK_CLK_POINT) 

IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

This routine sets the I1O device to output to one channel on each 
clock tick. 

9. Enqueue a buffer to the IIO device. 

10. Start the clock. If the clock trigger mode was specified as external, 
the clock starts when the external ST2 input occurs. 

status = LIO~SET_I (clock_id, LIO$K_START, 0) 
IF (.NOT. status) CALL LIB3SIGNAL (XVAL(statuB)) 

11. Dequeue the completed buffer• from the I1O device. 

12. Stop the clock. 

status = LIO$SET_I (clock_id, LIO$K_STOP, 0) 
IF (.NOT. status) CALL LIB3SIGNAL (XVAL(Btatus)) 

13. Process the buffer. 

14. Detach the I/O device and the clock. 

status = LIO~DETACH (device_id, ) 
IF (.NOT. status) CALL LIB$SICNAL (xVAL(status)) 

status = LIOSDETACH (clock_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The online sample program LIO_ASYNCH_CLK_TRIG.FOR in the 
LIO$EXAMPLES directory is a complete VAX FORTRAN program that 
uses the KWV11-C with the AXV11-C device for clocked asynchronous 
input. 

2-8 Laboratory I/O Device Support 



2.1.5 Using the Simpact RTC01 to Count External Events 

This section describes how to use the Simpact RTC01 to count external 
events. 

External events are negative (or positive) TTL transitions from a device 
or switch in your application. The polarity of the transition is set by a 
switch on the clock device UDIP panel. The external event to be timed 
is connected to the Schmitt trigger 2 input on the clock. 

To use the clock device to count external events, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 
3. Attach the clock as described in Section 2.1.1, Attaching the 

KV1TV11-C or Simpact RTC01. 

4. Set up the I/Q interface. 

status = LIO$SET_I (clock_id, LIO$K_ASYNCH, 0) 
IF (.NOT. status) CALL LIB$SICNAL (XVAL(status)) 

5. Set up the clock trigger mode. 

status = LIO$SET_I (clock_id, LIO$K_TRIG, 1, LIOsK_IMMEDIATE) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

This routine sets up the software start condition. The LI~$K_START 
parameter starts the clock running. 

6. Set up the clock source and rate. 

status = LIO$SET_R (clock_id, LIO$K_CLK_RATE, 1, 1.0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

This routine sets the clock rate as 1 Hz. 

7. Set up the clock foi• repeat counting. 

status = LIO$SET_I (clock_id, LIOZK_FUNCTION, 1, LIO$K_REP_COUNT) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

8. Start the clock. 

status = LIO$SET_I (clock_id, LIO$K_START, 0) 
IF (.NOT. status) CALL LIB~SIGIJAL (y~VAL(status)) 

Laboratory I/O Device Support 2-9 



9. Read the counter on the clock. 

status = LIO~SHOY (clock_id , LIO$K_COUNTER, shorrbuf (i) , sho~rlen) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

status = LIO~SHOY (clock_id , LIO$K_COUNTER, shorbuf (2) , shorrlen) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

These routines read the counter on the RTC01 twice in order to 
measure the net overhead of reading the clock. You will need to 
calculate the difference. 

10. Detach the clock. 

status = LIO=DETACH (clock_id, ) 

IF (.NOT. status) CALL LIBSSIGNAL ('OVAL(status)) 

The online sample program LIO_RTC01_COUNTER.FOR in the 
LIO$EXAMPLES directory is a complete VAX FORTRAN program 
showing the routines given above. 

2.1.6 Using the KWV1 ~-C to Avoid Trigger Slivering 

The AAV11-D, ADV11-D, and AXV11-C IIO devices cannot be 
successfully started when a trigger signal is produced at approximately 
the same time that the LIO software attempts to enable t11e device. This 
condition is called trigger slivering. LIO returns the LIO$_IOERROR 
condition value when this happens, indicating that the hardware 
detected an error. If this condition value is returned, check the value of 
the data_length argument of the LIO$DEQUEUE or LIO$READ routines. 
If the value of the data_length argument is zero, trigger slivering is 
probably occurring. 

To avoid trigger slivering, use one of the following solutions: 

• If the trigger signal is produced by the KWV11-C clock device, there 
are two separate solutions, one for synchronous calls and one for 
asynchronous calls . 

— For synchronous calls, supply t11e clock ID as the optional 
parameter value to the trigger mode (LIO$K_TRIG) set 
parameter. The synchronous call (LIO$READ or LIO$WRITE) to 
the I/O device starts the device, and then starts the clock. 

2-10 Laboratory I/O Device Support 



— For asynchronous calls, you must ensure that your program 
enqueues buffers to the I/O device before it starts the clock. If 
the IJO device is set for continuous DMA, the program must 
start the device (LIO$K_START) before it starts the clock. 

• If the trigger signal is produced by an external trigger, the first 
external trigger signal must not occur before the device is enabled 
through LIO$ENQUEUE or LIO$READ, or LIO$SET_I when starting 
continuous DMA. 

If the trigger signal is produced by an external trigger, it can be gated 
by the KwV11-C clock and handled according to the I/O interface 
(synchronous or asynchronous) that the device is set to use. 

To set up the I/O device and the clock to gate an external trigger with 
the clock, do the following: 

1. Attach the I10 device and the clock. If the I/O device is attached to 
use QIOs, you should attach the clock to use QIOs also. Otherwise, 
the overhead associated with the QIO to the device may cause the 
I/O device to start up after the clock starts up. 

2. Set up the I/O device by: 

a. Specifying the I10 interface that the I/O device and the clock are 
to use. 

b. Setting the I/O device trigger source (LIO$K_TRIG) to be the 
clock instead of the external trigger. 

3. Set up the clock by: 

a. Specifying the clock rate (LIO$K_CLK_RATE) as 1 MHz. 

b. Specifying the clock function (LIO$K_FUNCTION) as single 
count (LIO$K_SGL_COUNT). 

c. Specifying the clock trigger source (LIO$K_TRIG) as the external 
trigger. 

NQTE 

See the individual reference descriptions of the LIO$K_TRIG, 
LIO$K_CLK_RATE, and LIO$K_FUNCTION set parameters 
for the appropriate parameter values you must use. 

Then, enable the clock as previously described for the synchronous and 
asynchronous calls . 

Laboratory I/O Device Support 2-11 



2.2 Analog I/O Devices 

This section describes the analog I/O devices supported by VAXIab. 

2.2.1 AAF01 and ASFo1 Support 

The AAFO11 is a 16-channel, high-speed, DIA converter subsystem. 
The interface is controlled by a programmable conversion rate and by a 
1K-word Control Table. The conversion rate is controlled by an internal 
programmable clock or by an external clock signal supplied by the user. 
The internal clock rate is programmable in 100 nsec steps from 2.5 
microseconds (300 kHz) to 400 microseconds (2.5 kHz). 

The ASF011 is a 16-channel, simultaneous sample-and-hold (SIH) 
conditioning device for the AAF01 D/A conversion subsystem. With the 
ASF01, the AAF01 subsystem can perform conversions on all channels 
simultaneously. T11e AAF01 subsystem directly controls the ASF01's 16 
sample-and-hold amplifiers. 

The 1K-word Control Table determines the sequence of the data 
output. The Control Table must be maintained by the user program. 
The channel address and the operation mode for each conversion is 
contained in a control word. The operation, or control word, mode can 
have one of the following values: 

Mode Meaning 

0 

1 

2 

3 

Conversion and increment Control Table Address (CTA) for next 
control word. 

Conversion and go to control word 0. 

Dummy cycle for current channel. 

Same as mode 2. In addition, wait for sequence start pulse and go to 
next control word (must use SEQ CONT L input signal). 

1 This device is available only in Europe. 

2-12 Laboratory I/Q Device Support 



Mode Meaning 

4 

5 

6 

Same as mode 2. In addition, deassert the SYSIN PROG L output 
signal during this conversion. 

Same as modes 2 and 4. In addition, the Control Table starts at 
control word 0 after this conversion. 

Same as modes 2 and 4. In addition, use the complement of the 
12-bit Programmable Clock Register (PCR) as cycle time for this 
conversion . 

7 Same as modes 2 and 4. In addition, assert the LOUT L output 
signal during this conversion. 

For more information about the AAFO1, see the AAF01 Use~•'s Manual. 

For more information about the ASF01, see the ASFO1 User's Manual. 

2.2.1.1 Attaching the AAF01 

Attaching the AAF01 means assigning a VMS I/O channel to the device 
and initializing LIO data structures for, and pointers to, the device. 

Use the LIO$ATTACH routine to attach the AAF01. 

status = LIO$ATTACH (aaf_id, 'UUAO', LIO$K_gI0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The aaf_id argument returns the LIO-assigned device ID for the AAF01 
device. The AAF01 is referenced by this device ID in subsequent 
routine calls to the device in a user program. 

The device specification UUAO specifies an AAFO1 (UU) device with 
controller letter A and unit number 0. If you have additional AAF01 
devices, or if you have any number of ADFO1 and/or DRQ11-C devices, 
or both, you must attach each device with a unique controller letter. 

The LIO$K_QIO value sets up t11e device to use QIOs. T11is is the only 
I10 type supported for the AAF01 device. 

Laboratory I/O Device Support 2-13 



2.2.1.2 Setting Up the AAF01 

Before you can begin data transfers using the AAF01, you must set up 
certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and show AAF01 
device characteristics. See Chapter 4 for reference descriptions of the 
parameters listed in this table. 

Table 2-2: AAF01 LIO$SET and LIO$SHOW Parameters 

Parameter Function 

LIO$K_ANA_OUT Outputs a voltage value to one of the 
digital-to-analog channels on the AAF01 device. 

LIO$K_ASYNCH Sets up a device for asynchronous IIO. 

LIO$K_CANCEL Cancels all pending I10 requests on the specified 
channel; used to stop continuous DMA. 

LIO$K_CHANNEL Specifies the DIA channel to use for output. 

LIO$K_CLR_LBO Clears the large buffer overflow condition on the 
AAF01 device. 

LIO$K_COB Reads or. writes the Command Output (GOUT) bit 
in the Command and Status Register (CSR) of the 
AAF01 device. 

LIO$K_CTA Reads or writes the Control Table Address (CTA) 
register of the AAF01 device. 

LIO$K_CWT Reads the Control Word Registers from, or writes 
the Control Word Registers to, the AAFO1 device. 

LIO$K_DATA_PATH Selects the data path and channel number .for the 
AAF01 device. 

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer 
becomes available. 

LIO$K_DRX_AST_RTN Specifies auser-written AST routine to receive 
buffers when an AAF01 finishes processing their. 

LIO$K_DRX_STAT Returns the contents of the hardware registers of 
the DRQ11-C device. 

LIO$K_ED_CTT Enables or disables the Memory Transfer (MET) bit 
in the Command and Status Register (CSR) in the 
AAF01 device. 

2-14 Laboratory I/O Device Support 



Table 2-2 (Cont.~: AAF01 LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_ED_ECE Enables or disables the External Clock Enable (ECE) 
bit in the Command and Status Register (CSR) of 
the AAF01 device. 

LIO$K_ED_SBE Enables or disables the Sequence Break Enable (SBE) 
bit in the Command and Status Register (CSR) of 
the AAFO1 device . 

LIO$K_ERR_HANDLE Specifies the way in which the AAFO1 device 
handles errors. 

LIO$K_EVENT_AST Assigns auser-written AST routine to be called on 
AAFO1 unsolicited interrupts. 

LIQ$K_FUNCTION_BITS Enables the setting of the four function bits in the 
DRQ11-C Status and Command Register (SCR). 

LIO$K_PCR Specifies the number of steps in the Programmable 
Clock Register (PCR) of the AAF01 device. 

LIO$K_READ_STAT Returns the status of the read-only bits in the 
Command and Status Register (CSR) of the AAF01 
device. 

LIO$K_RESET_AXF Resets the AAF01 device. 

LIO$K_RESET_DRX Resets the DRQ11-C device. 

LIO$K_SYNCH Sets up the device for synchronous I10. 

LIO$K_TIMEOUT Sets the length of time in seconds before an I10 
request is aborted. 

2.2.1.3 Using the AAF01 for Synchronous Output 

To set up the AAFO1 device for synchronous output, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the AAF01 device as described in Section 2.2.1.1, Attaching 
the AAF01. 

Laboratory Il0 Device Support 2-15 



4. Set up the device to use the synchronous I10 interface. 

status = LIO$SET_I (aaf_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Set up the device for direct data path. 

status = LIO$SET_I (aaf_id, LIO$K_DATA_PATH, 1, LIO$K_DIRPATH) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

6. Reset the DRQ11-C DMA interface and clear the FNCTO bit. 

status = LIO~SET_I (aaf_id, LIO$K_RESET_DRX, 2, LIO$K_NO_FNCTO, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (y,VAL(status)) 

7. Connect to unsolicited interrupts and cancel any previous I/O 
request. 

status = LIO$SET_I (aaf _id, LIO$K_EVENT_AST, 3, aaf_aet_rtn, 
1 aaf_ast_param, LIO$K_CANCEL) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

8. Set up the Control Table. This example sets up the control word 
mode to mode 0 foi• channels 0 through 14, and to mode 1 for 
channel 15. T11e control_table(16) array is a longword array with a 
dimension as large as the number of channels to sample, in this 
example 16. The control_word_mode(8) is a word array of length 
8. The control_word_mode(8) is initialized to contain the following 
values: 0, 64, 128, 192, 256, 320, 384, and 448. 

INTEGER*4 control_table(16) 
INTEGER*2 control_rord_mode(8) 
/0,64,128,192,266,320,384,448/ 

DO 10 i = 1,16 
channel_number = i - i 
control_table(i) = channel_number + control_rrord_mode(1) 

10 CONTINUE 

control_table(16) = 16 + control_~rord mode (2) 

2-16 Laboratory I/O Device Support 



9. Load the Control Word Table, beginning at position 0 and ending at 
position 15. Begin loading the Control Word Table at location 0. 

val(1) = LIO$K_OUTPUT 
val(2) = xLOC(control_table) 
val(3) = 0 
val(4) = 16 
val(6) = 0 

status = LIO$SET_I (aaf_id, LIOSK_C1/T, 6, val(1) , val(2) , 
1 val (3) , val (4) , val (6) ) 

IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

10. Load the Control Table Address register for the start of the 
conversion. 

status = LIO~SET_I (aaf_id, LIO$K_CTA, 1, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

11. Set the speed by loading the Programmable Clock Register. 

status = LIO$SET_I (aaf_id, LIO$K_PCR, 1, 100) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

12. Use the LIO$WRITE routine to start the data transfer immediately. 
The device_specific argument is an array of longwords of length six 
that you use to specify control information about a data transfer. 
The following table shows the values of device_specific. 

Index Value 

1 LIO$M_WORD or LIO$M_BLOCK or LIO$M_LARGE_BUF 
LIO$M_START_CONV 
LIO$M_BURST 

2 Buffer address 

3 Buffer size, in bytes 

4 Buffer address 

5 Buffer or subbuffer size, in bytes 

6 Number. of buffers or subbuffers to transfer 

To perform single word output, the source program looks as follows: 

device_specific(i) = LIOSM_1(ORD 

status = LIO~itRITE (aaf_id, buffer, buffer_length, data_length, 
1 device_specific) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

Laboratory I/O Device Support 2-17 



To perform single buffer block output, the source program looks as 
follows: 

device_epecific(i) = LIO$M_BLOCK .OR. LIO~M_START_CONV 

device_specific(2) = XLOC(buffer) 
device_specific(3) =buffer_length 
device_specif is (4) = XLOC (dutmay_buff er) 
device_specific(6) = dunmiy_buffer_length 
device_specif is (6) = i 

status = LIO~i1RITE (aaf_id, buffer, buffer_length, data_length, 
1 device_specif ic) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

For word (LIO$M_WORD) output, the buffer argument is a word 
that contains the data to output. The buffer_length argument 
contains 2. 

For block (LIO$M_BLOCK) or large-buffer (LIO$M_LARGE_BUF) 
output, buffer and buffer_length are dummy arguments. The actual 
required arguments are pointed to by the device_specific argument. 

For single- or alternate-block I/O, the device_specific argument 
contains the: 

a. Address of the first data buffer 

b. Size of the first data buffer 

c. Address of the second data buffer 

d. Size of the second data buffer 

e. Number of buffers to transfer 

For large buffer I/O, the device_specific argument contains the: 

a. Address of the large buffer 

b. Size of the large buffer 

c. Zero 

d. Size of one subbuffer 

e. Number of subbuffers to transfer 

13. Detach the device. 

status = LIOsDETACH (aaf_id, ) 
IF (.NOT. status) CALL LIBsSIGNAL (XVAL(status)) 

2-18 Laboratory I/O Device Support 

u 



2.2.1.4 Using the AAF01 for Asynchronous Output 

To set up the AAFO1 device for asynchronous output, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the AAF01 device as described in Section 2.2.1.1, Attaching 
the AAF01. 

4. Set up the device to use the asynchronous I10 interface. 

status = LIOSSET_I (aaf_id, LIO$K_ASYPJCH, 0) 
IF (.NOT. statue) CALL LIBsSIGNAL (XVAL(status)) 

5. Set up the device for direct data path. 

status = LIO$SET_I (aaf_id, LIOSK_DATA_PATH, 1, LIO=K_DIRPATH) 
IF (.NOT. statue) CALL LIB~SIGNAL (xVAL(etatus)) 

6. Reset the DRQ11-C DMA interface and clear the FNCTO bit. 

status = LIO~SET_I (aaf_id, LIO$K_RESET_DRX, 2, LIO~K_NO_FNCTO, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(etatus)) 

7. Connect to unsolicited interrupts and cancel any previous I10 
request. 

status = LIO$SET_I (aaf_id, LIO$K_EVEPJT_AST, 3, drq_ast_rtn, 
1 drq_aet_param, LIO$K_CANCEL) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(statue)) 

8. Set up the Control Table. This example sets up the control word 
anode to mode 0 for channels 0 through 14, and to mode 1 for 
channel 15. The control_table(16) array is a longword array with a 
dimension as large as the number of channels to sample, in this 
example 16. The control_word_mode(8) is a word array of length 
8. The control_word_mode(8) is initialized to contain the following 
values: 0, 64, 128, 192, 256, 320, 384, and 448. 

INTEGER*4 control_table(16) 
INTEGER*2 control_vord mode(8) 
/0,64,128,192,266,320,384,448/ 

DO 10 i = 1,16 
channel_number = i - i 
control_table(i) = channel_number + control_rord_mode(1) 

10 CONTINUE 

control_table(16) = 16 + control_~rord_mode(2) 

Laboratory I10 Device Support 2-19 



9. Load t11e Control Word Table, beginning at position 0 and ending at 
position 15. Begin loading the Control Word Table at location 0. 

val(1) = LIO$K_OUTPUT 
val(2) = XLOC(control_table) 
val(3) = 0 
val(4) = ib 
val(b) = 0 

status = LIO$SET_I (aaf_id, LIO$K_CVT, b, val(1) , val(2) , 
1 val(3), val(4), val(6)) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

10. Load the Control Table Address register for the start of the 
conversion. 

status = LIO~SET_I (aaf_id, LIO$K_CTA, 1, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

11. Set the speed by lcading the Programmable Clock Register. 

status = LIO$SET_I (aaf_id, LIO$K_PCR, 1, 100) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

12. Use the LIO$ENQUEUE routine to start the write request. The 
device_specific argument is an array of longwords of length six that 
you use to specify control information about a data transfer. The 
following table shows the values of device_specific. 

Index Value 

1 LIO$M_INPUT or LIQ$M_QUTPUT 
L10$M_WORD or LIO$M_BLOCK or LIO$M_LARGE_BUF 
L10$M_START_CONV 
LIO$M_BURST 

2 Buffer address 

3 Buffer size, in bytes 

4 Buffer address or zero 

5 Buffer or subbuffer size, in bytes 

6 Number of buffers or subbuffe~•s to transfer 

2-20 Laboratory I/O Device Support 



To perform alternate-buffer block output, the source program looks 
as follows 

device_specific(1) = LIO$M_OUTPUT .OR. LIO$M_BLOCK .OR. LIOSM_START_CONV 
device_specific(2) = XLOC(buffer_1) 
device_specific(3) =buffer_1_length 
device_epecif is (4) = XLOC (buff er_2) 
device_specific(6) =buffer_2_length 
device_specific(6) = 2 

status = LIB$GET_EF (event_f lag) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(etatus)) 

status = SYS$CLREF (XVAL (event_f lag) ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

status = LIO$ENQUEUE (aaf_id , buffer, buff er_length , , event_f lag, 
1 device_specif ic) 

IF (.NOT. statue) CALL LIB$SIGNAL (XVAL(statue)) 

The buffer and buffer_length arguments of the LI~$ENQUEUE 
routine are dummy arguments. The actual required arguments are 
pointed to by the device_specific argument. 

For single- or alternate-block I10, the device_specific argument 
contains the: 

a. Address of the first data buffer 

b. Size of the first data buffer 

c. Address of t11e second data buffer 

d. Size of the second data buffer 

e. Number of buffers to transfer 

For large buffer I10, the device specific argument contains the: 

a. Address of the large buffer 

b. Size of the large buffer 

c. Zero 

d. Size of one subbuffer 

e . Number of subbuff ers to transfer 

Laboratory I1O Device Support 2-21 



13. Dequeue the buffer or use one of the other asynchronous 
I/O buffer-handling mechanisms described in Section 1.5, 
Asynchronous IIO Buffer-Handling Mechanisms. 

14. Detach the device.. 

status = LIO~DETACH (aaf_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2.2.2 AAV11-D Support 

The AAV11-D is atwo-channel 250-kHz D/A converter that supports 
direct memory access (DMA) I/O. 

The LIO facility supports mapped output (for synchronous calls only) 
and QIO output. You can set four general purpose digital control lines 
on each output call. 

You can use the KWV11-C real-time clock device as a steady f~•equency 
source to trigger data transfers to the AAV11-D. See Section 2.1, 
Real-Time Clock Devices, for more information. 

2.2.2.1 Attaching the AAV11-D 

Attaching the AAV11-D means assigning a VMS I/O channel to the 
device and initializing LIO data structures for, and pointers to, the 
device. 

Use the LIO$ATTACH routine to attach the AAV11-D. 

status = LIO~ATTACH (aav_id, 'AYAO', LIO$K_QIO) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

The aav_id argument returns the LIO-assigned device ID for the 
AAV11-D device. The AAV11-D is referenced by this device ID in 
subsequent routine calls to the device in a user program. 

The device specification AYAO specifies an AAV11-D (AY) device with 
controller letter A and unit number 0. If you have only one AAV11-D 
device configured in your system, specifying the device type AY is 
sufficient. 

2-22 Laboratory I/O Device Support 



The LIO$K_QIO value sets up the device to use QIOs. The LIO facility 
also supports memory-mapped I/O (LIO$K_MAP) for the device. If you 
do not specify the I/O type when you attach the AAV11-D device, by 
default it is attached to use QIOs. 

2.2.2.2 Setting Up the AAV11-D 

Before you can begin data transfers using the AAV11-D, you must set 
up certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and show AAV11-D 
device characteristics. See Chapter 4 for reference descriptions of the 
parameters listed in this table. 

Table 2-3: AAV11-D LIO$SET and LIO$SHOW Parameters 
Parameter Function 

Ll0 $K_AST_RTN 

LIO$K_ASYNCH 

LIO$K_CONT 

LIO$K_DA_CHAN 

LIO$K_DEVICE_EF 

LIO$K_ERR_HANDLE 

LIO$K_FORWARD 

LIO$K_N_DA_CHAN 

LIO$K_SGL BUF 

LIO$K_START 

LIO$K_STOP 

Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

Sets the device for asynchronous I10. 

Sets the device for continuous DMA mode. 

Sets the AAV11-D DIA channels to use. 

Establishes the event flag that is set when a buffer 
becomes available. 

Specifies the way in which a device returns error 
conditions. 

Specifies the device to which completed buffers are 
forwarded. 

Returns the number of device DIA channels in use. 

Sets the device to stop DMA between buffers. 
Output is not continuous. 

Starts the device when it is set up for continuous 
DMA transfers. 

Stops the device when it is set up for continuous 
DMA transfers. 

Laboratory I/~ Device Support 2-23 



Table 2-3 (Cont.): AAV11-D LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_SYNCH 

LIO$K_TIMEOUT 

Ll0$K_TR[G 

Sets up the device for synchronous IIQ. 

Sets the length of time in seconds before an IIO 
request is aborted. 

Sets the device trigger mode or source. 

2.2.2.3 Using the AAV11-D for Synchronous Output 

To set up the AAV11-D device for synchronous output, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 
3. Attach the AAV11-D device as described in Section 2.2.2.1, 

Attaching the AAV11-D. When the device is attached to use QIOs 
(LIO$K_QIO), it perforYns single-buffet• DMA transfers. When the 
device is attached to use mapped IIO (LIO$K_MAP), it does not 
perform DMA transfers . 

When performing single-buffer DMA transfers, the data can overrun 
the end of the buffer up to 256 points. (The actual number of points 
varies each time.) 

Be sure to declare your data buffer (in step 2 of this procedure) to 
be at least 256 words longer than the buffer length your program 
passes to the LIO facility. Fill the overrun area with known values. 
Otherwise whatever happens to be there is output to the DIA if an 
overrun occurs. 

Acceptable values are zeros, copies of the last point in the buffer 
if one DIA channel is used, or copies of the last two points in the 
buffer if both DIA channels are used. Data overrun generally does 
not occur at low clock rates or at burst rates. The overrun area is not 
required when performing continuous DMA transfers. 

The minimum number of data points in the buffer must be twice 
the number of selected output channels. If your program needs to 
output one point to each selected DIA channel, attach the AAV11-D 
wit11 memory-mapped (LIO$K_MAP) I10. 

2-24 Laboratory I/O Device Support 



4. Set up the device to use the synchronous I10 interface. 

status = LIO$SET_I (aav_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Specify the digital-to-analog channel to use. 

status = LIO~SET_I (aav_id, LIO$K_DA_CHAN, i, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

This routine specifies DIA channel 0. 

6. Specify the device trigger mode. 

status = LIO$SET_I (nav_id, LIO$K_TRIG, 1, LIO$K_IMM_BURST) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

This routine specifies immediate burst mode. This means that the 
data output begins as soon as the program executes the subsequent 
LIO$WRITE routine call and empties the buffer as fast as possible. 

7. Output the buffer to the AAV11-D device. The single-buffer DMA 
transfer begins immediately on the LIO$WRITE routine call, and 
empties the buffer as fast as possible. 

status = LIO$~RITE (aav_id, buffer, data_length, device_specific) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

8. Detach the device. 

status = LIO$DETACH (aav_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

If desired, you can use the device_specific argument of the LIO$WRITE 
routine to write the four digital control lines. Before outputting the 
buffer, the control lines are set with the complement of the value in 
the low four bits of the device_specific argument. When the buffer 
transaction completes, the bits are cleared. 

The online sample program LIO_SGLBUF_DMA.FOR in the 
LIO$EXAMPLES directory is a complete VAX FORTRAN program 
that shows how to use the synchronous I/O interface and single-buffer 
DMA to read 20 values from the ADV11-D device and then to write the 
values to t11e AAV11-D device. 

Laboratory I/Q Device Support 2-25 



2.2.2.4 Using the AAV11-D for Asynchronous Output 

To set up the AAV11-D device for asynchronous output, do the 
following: 

1. Include the symbolic definition files required by the VAX1ab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the AAV11-D device as described in Section 2.2.2.1, 
Attaching the AAV11-D. When the device is attached to use QIOs 
(LIO$K_QIO), it performs single-buffer DMA transfers by default. 
To set up the device to perform continuous DMA data transfers, 
specify continuous DMA mode in step 5 of this procedure. 

4. Set up the device to use the asynchronous I/O interface. 

statue = LIO~SET_I (aav_id, LIO$K_ASYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Specify the DMA mode. To perform single-buffer DMA, completing 
this step is optional. (The AAV11-D device performs single-buffer 
DMA transfers, by default, when it is attached to use QIOs and 
the asynchronous I!O interface.) To perform continuous DMA, 
completing this step is required. Be sure to include the following 
routine line in your program. 

status = LIO~SET_I (aav_id, LIOSK_CONT, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

6. Specify the digital-to-analog channel to use. 

status = LIO~SET_I (aav_id, LIO$K_DA_CHAN, 1, 0) 
IF (.NOT. status) CALL LIB~SIGAIAL (XVAL(status)) 

This routine specifies D/A channel 0. 
7. Specify the device trigger mode. 

status = LIOSSET_I (aav_id, LIO~K_TRIG, 1, LIOSK_IMM_BURST) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

This routine specifies immediate burst mode. 

Immediate burst mode means that the data output begins as soon as 
the program executes the subsequent LIO$ENQUEUE routine call, 
and empties the buffer as fast as possible. 

2-26 Laboratory I/O Device Support 



8. Enqueue the output buffer to the device. The single-buffer DMA 
data transfer starts immediately on the LIO$ENQUEUE routine call 
and empties the buffer as fast as possible. 

status = LIO~ENQUEUE (aav_id , buffer , buff er_length , , 
1 device_specific) 

IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

You can use the device_specific argument of the LIO$ENQUEUE 
routine to write the four digital control lines. Before outputting the 
buffer, the control lines are set with the complement of the value in 
the low four bits of the device specific argument. When the buffer 
transaction completes, the bits are cleared. 

See the description of the LIO$ENQUEUE routine in Chapter 3 for 
more information about using the device_specific argument. 

9. Dequeue the buffer or use one of the other asynchronous I10 buffer 
handling mechanisms described in Section 1.5, Asynchronous I10 
Buffer-Handling Mechanisms. 

10. Detach the device. 

status = LIO=DETACH (aav_id, ) 
IF (.NOT. status) CALL LIB~SIGNAL (xVAL(status)) 

2.2.3 ADF01, AMF01, and ASF01 Support 

The ADF011 is ahigh-speed, multichannel analog-to-digital converter 
subsystem. 

The ADF01 has 16 single-ended input channels and eight differential 
input channels, and one output channel for the calibration of the input 
channels. 

The AMF011 is an analog input multiplexer add-on option for the 
ADF01. 

The AMF01 has 48 single-ended input channels or 24 differential 
input channels. The AMF01 option can extend the number of ADFO1 
channels to 64 single-ended input channels or 32 differential input 
channels . 

1 This device is availaUle only in Europe. 

Laboratory I/O Device Support 2-27 



The AMF01 has a 23-bit software programmable sequence timer that is 
controlled by a 1-MHz clock crystal. You can use the sequence timer 
for external timing of conversion sequences. The conversion rate is 
controlled by an internal programmable clock or by an external clock 
signal supplied by the user. 

For each conversion, an entry in the ADF01 Control Table contains the 
channel number and channel gain used for the conversion. This entry 
also contains a code that signals which entry in the Control Table to use 
for the next conversion. You can use the Control Table to set up a large, 
fixed sequence of conversions. 

T11e ASF011 is a 16-channel, simultaneous sample-and-hold (S/H) 
conditioning device for the ADF01 A/D conversion subsystem. 

~Nith the ASF01, the ADF01 subsystem can perform conversions on all 
channels simultaneously. The ADF01 subsystem directly controls the 
ASF01's 16 sample-and-hold amplifiers. 

The 1K-word Control Table determines the sequence of the data input. 
The Control Table must be maintained by the user program. The 
channel address and the channel gain for each conversion is contained 
in a control word. The operation, or control word, mode can have one 
of the following values: 

Mode Meaning 

0 Conversion and incrementing of Control Table Address (CTA) for 
next cont~•ol word. 

1 Conversion and go to control word 0. 

2 

3 

Dummy cycle for. current channel (conversion delay) and 
incrementing of Control Table Address (CTA). 

Wait for sequence start pulse and increment Control Table Address 
(must use SEQ CONT L input signal). 

Gain values of 1, 2, 5, 10, 20, 50, 100, and 200 can be applied to each 
channel. 

For more information about the ADFO1, see the ADF01 Ltser's Ma~ztral. 

1 This device is availaUle only in Europe. 

2-28 Laboratory I/Q Device Support 



For more information about the AMFO1, see the AMF01 User's Ma~lual. 

For more information about the ASF01, see the ASF01 User's Mcz~zual. 

2.2.3.1 Attaching the ADF01 

Attaching the ADF01 means assigning a VMS IIO channel to the device 
and initializing LIO data structures for, and pointers to, the device. Use 
the LIO$ATTACH routine to attach the ADF01. 

status = LIO~ATTACH (adf_id~ 'UUAO' ~ LIO$K_gI0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The adf id argument returns the LIO-assigned device ID for the ADF01 
device. The ADF01 is referenced by this device ID in subsequent 
routine calls to the device in a user program. 

The device specification UUAO specifies an ADF01 (UU) device with 
controller letter A and unit number 0. If you have additional ADF01 
devices, or if you have any number of AAFO1 and/or DRQ11-C devices, 
or both, you must attach each device with a unique controller letter. 

The LIO$K_QIO value sets up the device to use QIOs. Tl1is is the only 
I/O type supported for the ADF01 device. 

2.2.3.2 Setting Up the ADF01 

Before you can begin data transfers using the ADF01, you must set up 
certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and show ADF01 
device characteristics. See Chapter 4 for reference descriptions of the 
parameters listed in this table. 

Table 2-4: ADF01 LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_ASYNCH 

LIO$K_BIN_DDR 

Sets up a device for asynchronous I10. 

Moves a complementary offset binary-coded output 
voltage into the DAC Data Register (DDR) of the 
ADF01 device. 

Laboratory I/O Device Support 2-29 



Table 2-4 (Cont.): ADF01 LIO$SET and LIO$SHOW Parameters 

Parameter Function 

LIO$K_CANCEL Cancels all pending I/O requests on the specified 
channel; used to stop continuous DMA. 

LIO$K_CHANNEL Specifies the DIA channel to use for output. 

Ll0$K_CLR_LBO Clears the large buffer overflow condition. on the 
ADFO1 device. 

LIO$K_COB Reads or writes the Command Output (GOUT) bit 
in the Command and Status Register (CSR) of the 
ADFO1 device. 

LIO$K_CTA Reads or writes the Control Table Address (CTA) 
register of the ADF01 device. 

LIO$K_CWT Reads the Control Word Registers from, or writes 
t11e Control Word Registers to, the ADF01 device. 

LIO$K_DATA_PATH Selects the data path and channel number for the 
ADF01 device. 

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer_ 
becomes available. 

LIO$K_DRX_AST_RTN Specifies auser-written AST routine to receive 
buffers when an ADF01 finishes processing them. 

LIO$K_DRX_STAT Returns the contents of the hardware registers of 
the DRQ11-C device. 

LIO$K_ED_CTT Enables or disables the Control Table Transfer 
(CTT) bit in the Command and. Status Register 
(CSR) in the ADF01 device. 

LIO$K_ED_ECE Enables or disables the External Clock Enable (ECE) 
bit in the Command and Status Register (CSR) of 
the ADFO1 device. 

LIO$K_ED_SBE Enables or disables the Sequence Break Enable (SBE) 
bit in the Command and Status Register (CSR) of 
the ADF01 device. 

LIO$K_ERR_HANDLE Specifies the way in which the ADFO1 device 
handles errors. 

LIO$K_EVENT_AST Assigns auser-written AST routine to be called on 
ADFO1 unsolicited interrupts. 

2-30 Laboratory I/O Device Support 



Table 2-4 (Cont.): ADF01 LIO$SET and LIO$SHOW Parameters 

Parameter Function 

LIO$K_FUNCTION_BITS 

LIO$K_PCR 

LIO$K_READ_STAT 

LIO$K_RESET_AXF 

LIO$K_RESET_DRX 

LIO$K_STE 

LIO$K_STO_1 

LIO$K_SYNCH 

LIO$K_TIMEOUT 

LIO$K_VLT_DDR 

Enables the setting of the four function bits in the 
DRQ11-C Status and Command Register (SCR). 

Specifies the number of steps in the Programmable 
Clock Register (PCR) of the ADF01 device. 

Returns the status of the read-only bits in the 
Command and Status Register (CSR) of the ADFO1 
device . 

Resets the ADF01 device. 

Resets the DRQ11-C device. 

Clears the Sequence Timer Enable (STE) in the 
AMF01 Sequence Timer Register (ST1). 

Writes to the 23-bit counter contained. in the 
Sequence Timer Registers STO and. ST1 of the 
AMFO1 device. 

Sets up the device for synchronous I/0. 

Sets the length of time in seconds before an I10 
request is aborted. 

Converts a voltage into its corresponding 
complementary binary-coded value and. moves it 
to the DAC Data Register (DDR) of the ADF01 
device . 

2.2.3.3 Using the ADF01 for Synchronous Input 

To set up the ADFO1 device for synchronous input, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the ADF01 device as described in Section 2.2.3.1, Attaching 
the ADF01. 

4. Set up the device to use the synchronous I10 interface. 

status = LIO$SET_I (adf_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIB3SIGNAL (XVAL(status)) 

Laboratory I/O Device Support 2-31 



5. Set up the device for direct data path. 

status = LIO$SET_I (adf_id, LIO$K_DATA_PATH, 1, LIO$K_DIRPATH) 
IF (.NOT. status) CALL LIB$SIGNAL (y~VAL(status)) 

6. Reset the DRQ11-C DMA interface and clear the FNCTO bit. 

status = LIO$SET_I (adf_id, LIO$K_RESET_DRX, 2, LIO$K_NO_FNCTO, 0) 
IF (.NOT. status) CALL LIB$SIGNAL ('/OVAL(status)) 

7. Connect to unsolicited interrupts and cancel any previous I10 
request. 

status = LIO$SET_I (adf_id, LIO$K_EVEAIT_AST, 3, adf_ast_rtn, 
1 adf _ast_param, LIO$K_CANCEL) 

IF (.NOT. status) CALL LIB$SIGNAL (y~VAL(status)) 

8. Set up the Control Table. This example sets up the control word 
mode to mode 0 for channels 0 through 14, and to mode 1 for 
channel 15. The channel gain is set to 0 for all channels. 

The control_table(16) array is a longword array with a dimension 
as large as the number of channels to sample, in this example 16. 
The control_word_mode(4) array is a word array of length 4. The 
control_word_mode(4) array is initialized to contain the following 
values: 0, 64, 128, and 192. The gain_table(8) array is a word array 
of length 8. The gain_table(8) array is initialized to contain the 
following values: 0, 512, 1024, 1536, 2048, 2560, 3072, and 3584. 
The register_sub_address argument is a word integer constant that 
has a value of 12288. 

INTEGER*4 control_table(16) 
INTEGER*2 control_~rord_mode(4) /0,64,128,192/ 

,gain_table(8) 
/0,612,1024,1536,2048,2560,3072,3584/ 
,register_sub_address /12288/ 

DO 10 i = l , ib 
channel_number = i - 1 
control_table(i) = channel_number + control_~rord_mode(1) + 

1 gain_table(i) + register_sub_address 

10 CONTINUE 

control_table(16) = 15 + control_rrord_mode(2) + gain_table(1) + 
1 register_sub_address 

2-32 Laboratory I/O Device Support 



9. Load the Control Word Table, beginning at position 0 and ending at 
position 15. Begin loading the Control Word Table at location 0. 

val(i) = LIO$K_OUTPUT 
val(2) = XLOC(control_table) 
val(3) = 0 
val(4) = ib 
val(b) = 0 

status = LIO$SET_I (adf_id, LIO$K_CYT, 6, val(1) , val(2) , 
1 val (3) , val (4) , val (6) ) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

10. Load the Control Table Address register for the start of the 
conversion. 

status = LIO$SET_I (adf_id, LIO$K_CTA, 1, 0) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

11. Set the speed by loading the Programmable Clock Register. 

status = LIO$SET_I (adf_id, LIO$K_PCR, i, 100) 
IF (.NOT. status) CALL LIBsSIGNAL (XVAL(status)) 

12. Use the LIO$READ routine to start the data transfer immediately. 
The device_specific argument is an array of longwords of length six 
that you use to specify control information about a data transfer. 

The following table shows the values of device_specific. 

Index Value 

1 LIO$M_WORD or LIO$M_BLOCK or LIO$M_LARGE_BUF 
LIO$M_START_CONV 
Ll0$M_BURST 

2 Buffer address 

3 

4 

5 

6 

Buffer size, in bytes 

Buffer address 

Buffer or subbuffer size, in bytes 

Number of buffers or subbuffers to transfer 

To perform single word output, the source program looks as follows: 

device_specific(1) = LIOsM_YORD 

status = LIO$READ (adf_id, buffer, buffer_length, data_length, 
i device_specific) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

Laboratory I/O Device Support 2-33 



To perform single-buffer block input, the source program looks as 
follows: 

device_epecific(1) 
device_epecific(2) 
device_epecific(3) 
device_epecific(4) 
device_Bpecific(6) 
device_specif ic(6) 

= LIO$M_BLOCK .OR. LIO~M_START_CONV 

= buffer_length 
= XLOC (duimny_buf f er) 
= duamty_buf f er_length 
= 1 

statue = LIO=READ (adf_id, buffer, buffer_length, data_length, 
1 device_specific) 

IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

For word (LIO$M_WORD) input, the buffer argument is a word that 
returns the input data. The buffer_length argument contains 2. 

For block (LIO$M_BLOCK) or large-buffer (LIO$M_LARGE_BLJF) 
input, buffer and buffer_length are dummy arguments. The 
required arguments are pointed to by the device_specific argument. 

Foi• single- or alternate-block I/O, the device specific argument 
contains the: 

a. 

b. 

c. 

d. 

e. 

Address of the first data buffer 

Size of the first data buffer 

Address of t11e second data buffer 

Size of the second data buffer 

Number of buffers to transfer 

For large buffer IIO, the device_specific argument contains the: 

a. 

b. 

c. 

d. 

e. 

Address of the large buffer 

Size of the large buffer 

Zero 

Size of one subbuffer 

Number of subbuffers to transfer 

13. Detach the device. 

status = LIOSDETACH (adf_id, ) 
IF (.NOT. status) CALL LIBsSIGNAL (xVAL(status)) 

2-34 Laboratory I/Q Device Support 



2.2.3.4 Using the ADF01 for Asynchronous Input 

To set up the ADF01 device for asynchronous input, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the ADF01 device as described in Section 2.2.3.1, Attaching 
the ADF01. 

4. Set up the device to use the asynchronous I/O interface. 

statue = LIO~SET_I (adf_id, LIO$K_ASYNCH, 0) 
IF (.NOT. status) CALL LIBsSIGNAL (XVAL(statue)) 

5. Set up the device for direct data path. 

status = LIO~SET_I (adf_id, LIO$K_DATA_PATH, 1, LIOsK_DIRPATH) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

6. Reset the DRQ11-C DMA interface and clear the FNCTO bit. 

status = LIO~SET_I (adf_id, LIO$K_RESET_DRX, 2, LIO~K_NO_FNCTO, 0) 

IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

7. Connect to unsolicited interrupts and cancel any previous I/O 
request. 

status = LIO$SET_I (adf_id, LIO$K_EVENT_AST, 3, adf_ast_rtn, 
i adf_ast_param, LIO$K_CANCEL) 

IF (.NOT. status) CALL LIBSSIGNAL (xVAL(status)) 

8. Set up the Control Table. This example sets up the control word 
mode to mode 0 for channels 0 through 14, and to mode 1 for 
channel 15. The channel gain is set to 0 for all channels. 

The control_table(16) array is a longword array with a dimension 
as large as the number of channels to sample, in this example 16. 
The control_word_mode(4) array is a word array of length 4. The 
control_word_mode(4) array is initialized to contain the following 
values: 0, 64, 128, and 192. The gain_table(8) array is a word array 
of length 8. The gain_table(8) array is initialized to contain the 
following values: 0, 512, 1024, 1536, 2048, 2560, 3072, and 3584. 

Laboratory I/O Device Support 2-35 



The register_sub_address argument is a word integer constant that 
has a value of 12288. 

INTEGER*4 control_table(16) 
INTEGER*2 control_urord_mode(4) /0,64,128,192/ 

,gain_table(8) 
/0,612,1024,1636,2048,2660,3072,3684/ 
,register_sub_address /12288/ 

DO 10 i = 1,16 
channel_number = i - 1 
control_table(i) = channel_number + control_~►ord_mode(i) + 

1 gain_table(1) + register_Bub_addrees 

10 CONTINUE 

control_table(16) = ib + control_~rord_mode(2) + gain_table(1) + 
i register_eub_addrese 

9. Load the Control Word Table, beginning at position 0 and ending at 
position 15. Begin loading the Control Word Table at location 0. 

val(i) = LIO$K_OUTPUT 
val(2) = XLOC(control_table) 
val(3) = 0 
val (4) = 16 
val(6) = 0 

Status = LIO$SET_I (adf_id, LIO$K_Ci~T, b, val(1) , val(2) , 
1 val(3), val(4), val(6)) 

IF (.NOT. status) CkLL LIB3SIGNAL (XVAL(status)) 

10. Load the Control Table Address register for the start of the 
conversion. 

status = LIO$SET_I (adf _id, LI03K_CTA, 1, 0) 
IF (.NOT. status) CALL LIB$SIGIVAL (XVAL(status)) 

11. Set the speed by loading the Programmable Clock Register. 

status = LIOSSET_I (adf_id, LIO$K_PCR, 1, 100) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

12. Use the LIO$ENQUEUE routine to start the write request. Tile 
device_specific argument is an array of longwords of length six that 
you use to specify control information about a data transfer. 

2-36 Laboratory I/O Device Support 



The following table shows the values of device_specific. 

Index Value 

1 LIO$M_INPUT or LIO$M_OUTPUT 
LIO$M_WORD or L[O$M_BLOCK or LIO$M_LARGE_BUF 
LIO$M_START_CONV 
LIO$M_BURST 

2 Buffer address 

3 Buffer size, in bytes 

4 Buffer address 

5 Buffer or subbuffer size, in bytes 

6 Number of buffers or subbuffers to transfer 

To perform large-buffer input, the source program looks as follows: 

device_specific(i) = LIO$M_INPUT .OR. LIO$M_LARGE_BUF .OR. LIOsM_START_CONV 
device_specific(2) = y~LOC(buffer) 
device_specific(3) =buffer_length 
device_specific(4) = 0 
device_specif i c (b) = subbuff er_length 
device_specific(6) = 10000 

status = LIB$GET_EF (event_f lag) 
IF (.NOT. status) CALL LIB$SIGNAL (y.VAL(status)) 

status = SYS$CLREF ('/,VAL (event_f lag) ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

status = LIO$ENgUEUE (adf _id , buffer, buff er_length , , event_f lag, 
1 device_specific) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

For block (LIO$M_BLOCK) or large-buffer (LIO$M_LARGE_BUF) 
input, buffer and buffer_length are dummy arguments. The 
required arguments are pointed to by the device_specific argument. 

For single- or alternate-block I10, the device_specific argument 
contains the: 

a. Address of the first data buffer 

b. Size of the first data buffer 

c. Address of the second data buffer 

d. Size of the second data buffer 

e. Number of buffers to transfer 

Laboratory I/O Device Support 2-37 



For large buffer IIO, the device_specific argument contains the: 

a. Address of the large buffer 

b. Size of the large buffer 

c . Zero 

d. Size of one subbuffer 

e . Number of subbuff ers to transfer 

13. Dequeue the buffer or use one of the other asynchronous 
I/O buffer-handling mechanisms described in Section 1.5, 
Asynchronous I/O Buffer-Handling Mechanisms. 

14. Detach the device. 

status = LIO$DETACH (adf_id~ ) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

2.2.4 ADQ32 Support 

The ADQ32 device is a 200 kHz analog-to-digital (AID) converter with 
32 single-ended channels or 16 differential channels that supports direct 
memory access (DMA) I/O. The device's DMA architecture enables it to 
run multibuffered at 200 kHz continuously. 

T11e ADQ32 device also contains five on-board counters. LIO uses 
combinations of the five counters to merge them into two clocks for 
actual use, the primary clock and the sweep clock. 

The device supports a mixture of single-ended and differential channels, 
and can be set up with different gains on each channel. A flexible 
triggering scheme allows the A/D channels to be scanned in any order. 

There are two basic triggering modes for the ADQ32: 

• All points are triggered by the same source. 

• C1lannel sweeps triggered by a source. Points within each channel 
sweep are trigger by another source. 

2-38 Laboratory I/O Device Support 



The following variations on the basic triggering modes can be used to 
achieve a triggering scheme appropriate for your application: 

• Using the LIO$K_TRIG parameter, choose the source to trigger 
points or sweeps. 

— Sources for points are: burst at top speed of the A/D (specify 
LIO$K_BURST as the first value), the AID clock (specify 
LIO$K_AD_CLOCK as the first value), and the external trigger 
input (specify LIO$K_EXTERNAL as the first value). 

— Sources for sweeps are: the AID clock (specify 
LIO$K_AD_CLOCK as the second value) and the external 
gate/trigger (specify LIO$K_EXTERNAL as the second value). 

NOTE 

The ADQ32 has two external inputs: the external 
gateltrigger input and t11e external frequency input. 
The LIO$K_EXTERNAL value generally refers to the 
external gateltrigger input. However, when you are 
specifying all points triggered by the same source 
(LIO$K_EXTERNAL, LIO$K_SAME, LIO$_SAME), 
and you are using the external gate/trigger input 
to gate the trigger (specified by the LIO$K_GATE 
parameter), then the LIO$K_EXTERNAL value refers 
to the external frequency input. 

• Using the LIO$K_TRIG parameter, wait for the external 
gateltrigger to go low before starting the data collection (specify 
LIO$K_EXTERNAL, instead of LIO$K_SAME as the third value). 

• Using the LIO$K_GATE parameter, gate the AID on and off using 
the external gateltrigger input. 

— Level gating (LIO$K_LEVEL) means that the AID runs while the 
external gate/trigger is high. 

— Edge gating (LIO$K_EDGE) means t11at succeeding low-going 
edges toggle the A/D from on to off, and from off to on. 

— Delayed edge gating (LIO$K_EDGE_DELAY) is the saYne as 
edge gating except t11at the acquisition is delayed one tick of 
the sweep clock. The delay time is 1l(sweep rate), where the 
sweep rate is set using the LIO$K_SWEEP_RATE parameter. For 
example, if the frequency of t11e sweep clock is 5 Hz, then the 
gate is delayed 1/5 of a second. 

Laboratory I/O Device Support 2-39 



See Appendix A for more information about ADQ32 trigger sources and 
external gating. 

See the ADQ32 A/D Converter Module User's Guide for more information 
about the ADQ32. 

2.2.4.1 Attaching the ADQ32 

Attaching the ADQ32 device means assigning a VMS I10 channel to 
the device and initializing LIO data structures for, and pointers to, the 
device. 

Use the LIO$ATTACH routine to attach the ADQ32 device. 

status = LIO$ATTACH (adq_id, 'AYAO' , LIO$K_gI0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The adq_id argument returns the LIO-assigned device ID for the ADQ32 
device. The ADQ32 is referenced by t11is device ID in subsequent 
routine calls to the device in a user program. 

The device specification AWAO specifies an ADQ32 (AW) device with 
controller letter A and unit number 0. If you Have only one ADQ32 
device configured in your system, specifying the device type AW is 
sufficient. 

The LIO$K_QIO value sets up the device to use QIOs. 

2.2.4.2 Setting Up the ADQ32 

Before you can begin data transfers wit11 the ADQ32, you must set up 
certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and show ADQ32 
device characteristics. See Chapter 4 for reference descriptions of t11e 
parameters listed in this table. 

2-40 Laboratory I/O Device Support 



Table 2-5: ADQ32 LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_AD_CHAN Sets the ADQ32 AID channels. 

LIO$K_AD_DIFFERENTIAL Specifies whether to use single-ended or 
differential input for each channel set up 
with the LIO$K_AD_CHAN parameter. 

LIO$K_AD_GAIN Sets the ADQ32 AID channel gains. 

LIO$K_AST_RTN Specifies auser-written AST routine to receive 
buffers when a device finishes processing 
them . 

LIO$K_ASYNCH Sets the device for asynchronous I10. 

Ll0$K_BUFF_S1ZE Sets the maximum size, in bytes, of the 
asynchronous buffers to use. 

LIO$K_CLK_RATE For the primary clock, takes a specified 
frequency and produces the best internal 
crystal rate and divider to approximate that 
frequency. 

Enables double-buffer DMA data transfers. LIO$K_DBL_BUF 

L10$K_DIAG_CHAN Enables or disables the diagnostic inputs to 
ADQ32 channels 0, 1, and 2. 

LIO$K_ERR_HANDLE Specifies the way in which a device returns 
error conditions. 

LIO$K_FORWARD Specifies the device to which completed buffers 
are forwarded. 

LIO$K_GATE Specifies the type of external gating used with 
the ADQ32 device. 

LIO$K_N_AD_CHAN Returns the number of device AID channels. 

LIO$K_SGL_BUF Enables single-buffer DMA data transfers. 

LIO$K_SWEEP_RATE For the sweep rate clock, takes an ideal. 
frequency and produces the best internal 
crystal rate and divider to approximate that 
frequency. 

LIO$K_SYNCH Sets up the device for synchronous I10. 

LIO$K_TRIG Sets the device trigger mode or source. 

Laboratory I/O Device Support 2-41 



2.2.4.3 Using the ADQ32 for Synchronous Input 

To use the ADQ32 for synchronous input, do the following: 

1. Include the symbolic definition files required by the VAX1ab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the ADQ32 device as described in Section 2.2.4.1, Attaching 
the ADQ32. 

4. Set up the device to use the synchronous I/O interface 

status = LIO~SET_I (adq_id, LIO$K_SYNCH, 0) 

IF (.NOT. status) CALL LIBSSIGNAL (xVAL(status)) 

5. Specify the A/D channels to use. 

statue = LIO$SET_I (adq_id, LIO$K_AD_CHAN, 3, 0, i, 2) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

6. Specify the channel gains. 

status = LIO~SET_I (adq_id, LIO$K_AD_GAIN, 3, 1, 1, 1) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(Btatus)) 

7. Set up the device trigger mode. 

status = LIO~SET_I (adq_id, LIO~K_TRIG, 3, LIO$K_BURST, 

1 LIO~K_SAME, LIO$K_SAME) 

IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

This routine specifies immediate burst mode. This means that the 
data input begins as soon as the program executes the subsequent 
LIO$READ routine call and fills the buffer as fast as possible. 

8. Specify the buffer size (in bytes). 

status = LIO~SET_I (adq_id, LIO$K_BUFF_SIZE, i, 24) 

IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

T11is routine specifies a 24-byte (12-word) buffer. The maximum 
allowable value for this parameter is a 64K-byte (32768-word) buffer. 

9. The ADQ32 starts the data transfer immediately on the LIO$READ 
routine call and fills the buffer as fast as possible. 

status = LIOSREAD (adq_id, buffer, 24, data_length, ) 

IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

2-42 Laboratory I/Q Device Support 



10. You can process, store, or print out t11e data at this step. 
11. Detach the device. 

status = LIO$DETACH (adq_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2.2.4.4 Using the ADQ32 for Asynchronous Input 

To use the ADQ32 for asynchronous input, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 
3. Attach the ADQ32 device as described in Section 2.2.4.1, Attaching 

the ADQ32. 

4. Set up the device to use the asynchronous I/O interface. 

status = LIO$SET_I (adq_id, LIO~K_ASYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Specify the A/D channels to use. 

status = LIO~SET_I (adq_id, LIO$K_AD_CHAN, 3, 0, 1, 2) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

6. Specify the channel gains. 

status = LIO$SET_I (adq_id, LIO$K_AD_GAIN, 3, 1, 1, i) 
IF (.NOT. statue) CALL LIB$SIGNAL (XVAL(statue)) 

7. Set up the device trigger mode. 

status = LIO$SET_I (adq_id, LIOsK_TRIG, 3, LIO=K_BURST, 
1 LIOSK_SAME, LIO~K_SAME) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

This routine specifies immediate burst mode. This means that the 
data input begins as soon as the program executes the subsequent 
LIO$ENQUEUE routine call and fills the buffer as fast as possible. 

8. Specify the buffer size (in bytes). 

status = LIO$SET_I (adq_id, LIO$K_BUFF_SIZE, i, 24) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

This routine specifies a 24-byte (12-word) buffer. The maximum 
allowable value for this parameter is a 64K-byte (32768-word) buffer. 

Laboratory I/O Device Support 2-43 



9. The ADQ32 starts the data transfer immediately on the 
LIO$ENQUEUE routine call and fills the buffer as fast as possible. 

status = LIO$ENQUEUE (adq_id, buffer, 24, data_length, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

10. Dequeue the buffer or use one of the other asynchronous 
I1O buffer-handling mechanisms described in Section 1.5, 
Asynchronous I1O Buffer-Handling Mechanisms. 

11. Detach the device. 

status = LIO$DETACH (adq_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(Btatus)) 

2.2.5 ADV11-D Support 

The ADV11-D is a 50-kHz analog-to-digital (AID) converter with 
programmable gain that supports direct memory access (DMA) I1O. You 
can set the ADV11-D with jumpers to either• 16 single-ended channels 
or 8 differential channels. The LIO facility supports memory-mapped 
input (for synchronous calls only) and QIO input. 

You can use the KwV11-C real-time clock device as a steady frequency 
source for the ADV11-D. See Section 2.1, Real-Tune Clock Devices, for 
more information. 

2.2.5.1 Attaching the ADV11-D 

Attaching the ADV11-D means assigning a VMS I1O channel to the 
device and initializing LIO data structures for, and pointers to, the 
device. 

Use the LIO$ATTACH routine to attach the ADV11-D. 

status = LIO$ATTACH (adv_id, 'AZAO' , LI03K_gI0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The adv_id argument returns the LIO-assigned device ID for the 
ADV11-D device. The ADV11-D is referenced by this device ID in 
subsequent routine calls to the device in a user program. 

The device specification AZAO specifies an ADV11-D (AZ) device with 
controller letter A and unit number 0. If you have only one ADV11-D 
device configured in your system, specifying the device type AZ is 
sufficient. 

2-44 Laboratory I/O Device Support 



The LIO$K_QIO value sets up the device to use QIOs. T11e LIO facility 
also supports memory-mapped IIO (LIO$K_MAP) for the device. If you 
do not specify the I/O type when you attach the ADV11-D device, by 
default it is attached to use QIOs. 

2.2.5.2 Setting Up the ADV11-D 

Before you can begin data transfers using the ADV11-D, you must set 
up certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and show ADV11-D 
device characteristics. See Chapter 4 for reference descriptions of the 
parameters listed in this table. 

Table 2—S: ADV11-D LIO$SET and LIO$SHOW Parameters 
Parameter Function 

Ll0$K_AD_CHAN 

LIO$K_AD_GAIN 

LIO$K_AST_RTN 

LIO$K_ASYNCH 

LIO$K_CONT 

LIO$K_DEVICE_EF 

LIO$K_ERR_HANDLE 

LIO$K_FORWARD 

LIO$K_N_AD_CHAN 

LIO$K_SGL_BUF 

LIO$K_START 

LIO$K_STOP 

LIO$K_SYNCH 

LIO$K_TRIG 

Sets the ADV11-D A/D channels. 

Sets the ADV11-D AID channel gains. 

Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

Sets the device for asynchronous I10. 

Sets the device for continuous DMA mode. 

Establishes the event flag that is set when a buffer 
becomes available. 

Specifies the way in which a device returns error 
conditions. 

Specifies the device to which completed buffers are 
forwarded. 

Returns the number of device AID channels. 

Enables single-buffer DMA data transfers. 

Starts the device. 

Stops the device. 

Sets up the device for synchronous I10. 

Sets the device trigger mode or source. 

Laboratory I/O Device Support 2-45 



2.2.5.3 Using the ADV11-D for Synchronous Input 

To set up the ADV11-D device for synchronous input, do the following: 

1. Include the symbolic definition files required by t11e VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the ADV11-D device as described in Section 2.2.5.1, 
Attaching the ADV11-D. When the device is attached to use QIOs 
(LIO$K_QIO), it performs single-buffer DMA transfers by default. 
When the device is attached to use snapped I/O (LIO$K_MAP), it 
does not perform DMA transfers. 

NOTE 

When performing single-buffer DMA transfers, the data 
can overrun the end of the buffer up to 256 points. (The 
actual number of points varies each time.) Be su1•e to 
declare your data buffer (in step 2 of this procedure) to 
be at least 256 words longer t11an the buffer length your 
program passes to t11e LIO facility. Data overrun generally 
does not occur at low clock rates or at burst rates. The 
overrun area is not requited when performing continuous 
DMA transfers . 

4. Set up the device to use synchronous IIO. 

status = LIO~SET_I (adv_id, LI03K_SYNCH, 0) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Specify the analog-to-digital channels to use. 

status = LIO$SET_I (adv_id, LIO$K_AD_CHAN, i,. 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(statuB)) 

This routine specifies AID channel 0. 

6. Specify the channel gain. 

status = LIO$SET_I (adv_id, LIO$K_AD_GAIN 1, i) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

This routine specifies a channel gain of 1. 

2-46 Laboratory I/Q Device Support 



7. Specify the device trigger mode. 

status = LIO$SET_I (adv_id, LIO$K_TRIG, i, LIO$K_IMM_BURST) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

This routine specifies immediate burst mode. This means that the 
data input begins as soon as the program executes the subsequent 
LIO$READ routine call and fills the buffer as fast as possible. 

8. Read a buffer from the device. The single-buffer DMA data transfer 
starts immediately on the LIO$READ routine call and fills the buffer 
as fast as possible. 

status = LIO~READ (adv_id , buffer , data_length , ) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

9. Process the buffer. 

10. Detach the device. 

status = LIO$DETACH (adv_id, ) 
IF (.NOT. status) CALL LIBsSIGNAL (XVAL(status)) 

The online sample program LIO_SGLBUF_DMA.FOR in the 
LIO$EXAMPLES directory is a complete VAX FORTRAN program 
t11at shows how to use the synchronous I/O interface and single-buffer 
DMA to read 20 values from the ADV11-D device and then to write the 
values to the AAV11-D device. 

2.2.5.4 Using the ADV11-D for Asynchronous Input 

To set up the ADV11-D device for asynchronous input, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the ADV11-D device as described in Section 2.2.5.1, 
Attaching the ADV11-D. When the ADV11-D is attached to use QIOs 
(LIO$K_QIO), it performs single-buffer DMA transfers by default. 
To set up the device to perform continuous DMA data transfers, 
specify continuous DMA mode in step 5 of this procedu~•e. 

4. Set up the device to use asynchronous I/0. 

status = LIOSSET_I (adv_id, LIOsK_ASYNCH, 0) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

Laboratory I/O Device Support 2-47 



5. Specify the DMA mode. To perform single-buffer DMA, completing 
this step is optional. (T11e ADV11-D device performs single-buffer 
DMA transfers by default when it is attached to use QIOs and 
the asynchronous I1O interface.) To perform continuous DMA, 
completing this step is required. 

Be sure to include the following routine line in your prograYn. 

status = LIO$SET_I (adv_id, LIO$K_CONT, 0) 
IF (.NOT. status) CALL LIB$SIGIJAL (yVAL(status)) 

6. Specify the analog-to-digital channels to use. 

status = LIO$SET_I (adv_id, LIO$K_AD_CHAN, 1, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVALCstatus)) 

This routine specifies AID channel 0. 

7. Specify the channel gain. 

status = LIO~SET_I (adv_id, LIO$K_AD_GAIN 1, 1) 
IF (.IdOT. status) CALL LIB$SIGNAL (yLVAL(status)) 

This routine specifies a channel gain of 1. 

8. Specify the device trigger mode. 

status = LIO$SET_I (adv_id, LIO$K_TRIG, 1, LIO$K_IMM_BURST) 
IF (.NOT. status) CALL LIBsSIGNAL (XVAL(status)) 

This routine specifies immediate but•st mode. T11is means that the 
data input begins as soon as the program executes the subsequent 
LIO$ENQUEUE routine call and fills the buffer as fast as possible. 

9. Enqueue a buff er to t11e device . The single-buffer DMA data transfer 
starts immediately on the LIO$ENQUEUE routine call and fills the 
buffer as fast as possible. 

status = LIO$ENQUEUE (adv_id, buffer, buffer_length, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

If you aY•e performing continuous DMA (see step 5), enqueue all 
buffers to be used. Data transfer does not start in continuous DMA 
until the LIO$K_START parameter executes. (If the trigger mode 
was LIO$K_EXT_BURST, data collection starts when the external 
trigger occurs.) 

2-48 Laboratory I/O Device Support 

l.J 



10. Dequeue the buffer or use one of the other asynchronous 
IIO buffer-handling mechanisms described in Section 1.5, 
Asynchronous I/O Buffer-Handling Mechanisms. 

11. Detach the device. 

status = LIO~DETACH (adv_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

The online sample program LIO_CONT_DMA.FOR in the 
LIO$EXAMPLES directory is a complete VAX FORTRAN program 
that shows how to use the asynchronous I/O interface and continuous 
DMA to read values from the ADV11-D device. 

2.2.6 AXV11-C Support 

The AXV11-C is a combination device with one 16-channel 
analog-to-digital (AID) conve~•ter with programmable gain, and two 
digital-to-analog {DIA) converters. You can set the AXV11-C AID with 
jumpers for 16 single-ended channels or 8 differential channels. 

You can use the KWV11-C real-time clock device as a steady 
frequency source. See Section 2.1, Real-Time Clock Devices, foi• more 
information. 

For more information about the AXV11-C, see the AXVIl-C/KWV11-C 
A~lalog Moc~tc~e anc~ Real-Ti»1e Clock Mocltcle User's Gzci~e. 

2.2.6.1 Attaching the AXV11-C 

Attaching the AXV11-C means assigning a VMS I/O channel to the 
device and initializing LIO data structures for, and pointers to, the 
device. 

Use the LIO$ATTACH routine to attach the AXV11-C. 

status = LIOSATTACH (axv_id, 'AXAO', LIO$K_CTI) 
IF(.NOT. status) CALL LIBsSIGNAL(XVAL(status)) 

The axv_id argument returns the LIO-assigned device ID for the 
AXV11-C device. The AXV11-C is referenced by this device ID in 
subsequent routine calls to the device in a user program. 

Laboratory I/O Device Support 2-49 



The device specification AXAO specifies an AXV11-C (AX) device with 
controller letter A and unit number 0. If you have only one AXV11-C 
device configured in your system, specifying the device type AX is 
sufficient. 

The LIO$K_CTI value sets up the device to use connect-to-interrupt 
(CTI) I10. The AXV11-C is the only LIO device that supports CTI I10. 

NOTE 

Before you can use CTI I/O with the AXV11-C, you must 
connect the CTI driver to the device. See Appendix B for 
instructions about connecting the CTI driver to the AXV11-C. 

The LIO facility also supports QIOs (LIO$K_QIO) and memory-mapped 
(LIO$K_MAP) I/O for the device. If you do not specify the I/O type 
when you attach the AXV11-C device, by default it is attached to use 
QIOs. 

2.2.6.2 Setting Up the AXV11-C 

Before you can begin data transfers using the AXV11-C, you must set 
up certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and show AXV11-C 
device characteristics. See C1lapter 4 for reference descriptions of t11e 
parameters listed in this table. 

Table 2-7: AXV11-C LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_AD_CHAN 

LIO$K_AD_GAIN 

LIO$K_AST_RTN 

LIO$K_ASYNCH 

LIO$K_CTI_BUF 

LIO$K_CTI_OVERHD 

LIO$K_DA_CHAN 

2-50 Laboratory I/O Device Support 

Sets the AXV11-C A/D channels. 

Sets the AXV11-C AID channel gains. 

Specifies auser-written AST routine to receive 
buffers when a device finishes processing them.. 

Sets the device for asynchronous I10. 

Attaches the device with connect-to-interrupt I10. 

Returns the size (in bytes) of the 
connect-to-interrupt overhead. 

Sets the AXV11-C DIA channels. 



Table 2-7 (Cont.}: AXV11-C LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_DEVICE_EF 

LIO$K_FORWARD 

LIO$K_N_AD_CHAN 

LIO$K_N_DA_CHAN 

LIO$K_SYNCH 

Ll0$K_TIMEOUT 

LIO$K_TRIG 

Establishes the event flag that is set when a buffer 
becomes available. 

Specifies the device to which completed buffers are 
forwarded. 

Returns the number of device AID channels. 

Returns the number of device DIA channels. 

Sets up the device for synchronous I10 when 
attached for QIO only. 

Sets the length of time (in seconds) before an 110 
request is aborted. 

I 
Sets the device trigger mode or source. ~ 

2.2.6.3 Using the AXV11-C for Synchronous Input 

To set up the AXV11-C device for synchronous connect-to-interrupt 
input, do the following: 

1. Include the symbolic definition file appropriate for the programming 
language you are using. 

2. Declare the variables and the data types of the variables you are 
using in your program. 

3. Attach the AXV11-C device as described in Section 2.2.6.1, 
Attaching the AXV11-C. 

4. Get an event flag for t11is process. This example uses the VMS 
Run-Time Library routine LIB$GET_EF to obtain a free VMS event 
flag. 

status = LIBSGET_EF (event_flag) 
IF (.NOT. status) CALL LIB$SIGNAL ('/,VAL(status)) 

5. Specify the connect-to-interrupt buffer. 

status = LIO$SET_I (axv_id, LIO$K_CTI_BUF, 3, buffer, buffer_length, 
1 event_f lag) 

IF (.NOT. status) CALL LIBsSIGNAL (xVAL(status)) 

Laboratory I/O Device Support 2-51 



6. Set up the device to use synchronous I10. 

status = LIO$SET_I (axv_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

7. Specify the analog-to-digital channels to use. 

status = LIO$SET_I (axv_id, LIO$K_AD_CHAN, b, 0, 1, 2, 3, 4) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

8. Specify the channel gains. 

status = LIO$SET_I (axv_id, LIO$K_AD_GAIN, 6, 1, 1, 1, 1, 1) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

g. Specify the device trigger mode. 

status = LIOsSET_I (axv_id, LIO$K_TRIG, 1, LI03K_IMM_BURST) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

This routine specifies immediate burst mode. Immediate burst 
mode means that the input begins as soon as the program executes 
the subsequent LIO$WRITE routine call and fills the buffer as fast 

as 

possible. 

10. Read a buffer from the device. The data transfer starts immediately 
on the LIO$READ routine call and fills the buffer as fast as possible. 

status = LIO$READ (axv_id , buffer, buff er_length , data_length , ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

Buffer sizes must be 64K bytes or smaller for input. 

The online sample program LIO_AXV_CTI.FOR in the LIO$EXAMPLES 
directory is a complete VAX FORTRAN program that shows how to 
read A/D values from the AXV11-C using connect-to-interrupt I10. See 
the following online sample programs for more information about using 
the AXV11-C with mapped I/O and with QIOs: 

• LIO AXV MAPPED . B A S 

• LIO AXV MAPPED . C 

• LIO AXV MAPPED .FOR 

• LIO AXV MAPPED.PAS 

• LIO_AXV_QIO.FOR 

2-52 Laboratory I/O Device Support 



2.2.6.4 Using the AXV11-C for Asynchronous Input 

To set up the AXV11-C device for asynchronous input, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the AXV11-C device as described in Section 2.2.6.1, 
Attaching the AXV11-C. 

4. Set the device to use the asynchronous I/O interface. 

status = LIO$SET_I (axv_id, LIO$K_ASYNCH, 0) 

IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

5. Specify the analog-to-digital channels to use. 

status = LIO$SET_I (axv_id, LIO$K_AD_CHAN, 6, 0, 1, 2, 3, 4) 

IF (.NOT. status) CALL LIB$SIGIdAL ('/.VAL(status) ) 

6. Specify the channel gains. 

status = LIO$SET_I (axv_id, LIO$K_AD_GAIr1, 5, i, 1, 1, 1, 1) 

IF (.NOT. status) CALL LIB$SIGNAL (y~VAL(status)) 

7. Specify the device trigger mode. 

status = LIO$SET_I (axv_id, LIO$K_TRIG, 1, LIO$K_CLK_POINT) 

IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

The LIO$K_CLK_POINT value sets the AID converter to sample one 
channel on each external trigger. If you specify several channels for 

use, the next channel in the series is sampled on each successive 
external trigger. When the AID converter reaches the end of t11e 
channel list, it begins sampling again at the first channel in the list. 

S. Get an event flag for the buffer. This example uses the VMS 
Run-Time Library routine LIB$GET_EF to obtain a free VMS event 
flag. 

status = LIB$GET_EF (event_f lag) 
IF (.NOT. status) CALL LIB$SIGPJAL (XVAL(status)) 

Laboratory I/O Device Support 2-53 



9. Enqueue the buffer to the AXV11-C AID. 

status = LIO~ENgUEUE (axv_id , buffer , buff er_length , event_f lag , , 
1 LIO~K_INPUT) 

IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

In this routine, the LIO$K_INPUT value of the device specific 
argument signals the AXV11-C that the buffer is an input buffer and 
is to be enqueued to the AID converter. Buffer sizes must be 64K 
bytes or smaller for input. 

The event_flag argument is required if the device is attached with 
QIO and you want to wait for the buffer transaction to complete by 
calling the LIO$DEQUEUE routine with a nonzero wait argument. 
This is done in the following step. 

10. Dequeue the buffer, specifying a nonzero wait argument. The 
LIO$DEQUEUE routine call waits for the input buffer transaction to 
complete before dequeueing the buffer. 

status = LIOSDEgUEUE (axv_id, buffer, buffer_length, data_length, 
1 1, ) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

11. Detach the device. 

status = LIOsDETACH (axv_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

The online sample program LIO_ASYNCH_CLK_TRIG.FOR is a 
complete VAX FORTRAN program that shows how to read AID values 
from the AXV11-C device using asynchronous I/O. This program also 
shows how to use the KwV11-C real-time clock device to externally 
trigger the data transfer. 

2.2.7 DRQ11-C Support 

The DRQ11-C1 is adouble-buffer DMA interface for continuous 
high-speed data exchange between the Q-bus and either the user's 
external device or another Q-bus. 

For more information about the DRQ11-C, see the DRQll-C Alternate 
Buffer DMA Intel fnee. 

~ This device is availaUle only in Europe. 

2-54 Laboratory I/O Device Support 



2.2.7.1 Attaching the DRQ11-C 

Attaching the DRQ11-C means assigning a VMS I10 channel to the 
device and initializing LIO data structures for, and pointers to, the 
device. 

Use the LIO$ATTACH routine to attach the DRQ11-C. 

Status = LIO$ATTACH (dre_id, ' WAO' , LIO$K_QIO) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

The dre_id argument returns the LIO-assigned device ID for the 
DRQ11-C device. The DRQ11-C is referenced by this device ID in 
subsequent routine calls to the device in a user program. 

The device specification UUAO specifies a DRQ11-C (UU) device with 
controller letter A and unit number 0. If you have additional DRQ11-C 
devices, or if you have any number of AAFO1 or ADF01 devices, or 
both, you must attach each device with a unique controller letter. 

The LIO$K_QIO value sets up the device to use QIOs. This is the only 
I/O type supported for the DRQ11-C device. 

2.2.7.2 Setting Up the DRQ11-C 

Before you can begin data transfers using the DRQ11-C, you must set 
up certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and show DRQ11-C 
device characteristics. See Chapter 4 for reference descriptions of the 
parameters listed in this table. 

Table 2-8: DRQ11-C LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_ASYNCH Sets up a device for asynchronous I/O. 

Ll0$K_CANCEL Cancels all pending IIO requests on the specified 
channel; used to stop continuous DMA. 

LIO$K_CLR_LBO Clears the large buffer overflow condition on the 
DRQ11-C device. 

Ll0$K_DATA_PATH Selects the data path and channel number for the 
DRQ11-C device. 

Laboratory I/Q Device Support 2-55 



Table 2-8 (Cont.~: DRQ11-C LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_DEVICE_EF 

LIO$K_DRX_AST_RTN 

LIO$K_DRX_STAT 

LIO$K_ERR_HANDLE 

LIO$K_EVENT_AST 

LIO$K_FUNCTION_BITS 

LIO$K_RESET_DRX 

LIO$K_STAT_BITS 

LIO$K_SYNCH 

LIO$K_TIMEOUT 

Establishes the event flag that is set when a buffer 
becomes available. 

Specifies auser-written AST routine to receive 
buffers when a DRQ11-C finishes processing them. 

Returns the contents of the hardware registers of 
the DRQ1:1-C device. 

Specifies the way in which the DRQ11-C device 
handles errors. 

Assigns auser-written AST routine to be called. on 
DRQ1.1_-C unsolicited interrupts. 

Enables the setting of the four function bits in the 
DRQ11-C Status and Command Register (SCR). 

Resets the DRQ1.1-C device. 

Reads the status bits (STATO - STAT3) in the Status 
and Command Register (SCR) of the DRQ11-C 
device. 

Sets up the device for synchronous I10. 

Sets the length of time (in seconds) before an 110 
request is aborted. 

2.2.7.3 Using the DRQ11-C for Synchronous 1/O 

To set up the DRQ11-C device for synchronous I/O, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare t11e data types and variables you are using in your program. 

3. Attach the DRQ11-C device as described in Section 2.2.7.1, 
Attaching the DRQ11-C. 

4. Set up the device to use the synchronous IICJ interface. 

status = LIO$SET_I (dre_id, LIO$K_SYr1CH, 4) 
IF (.A10T. status) CALL LIB$SIGt1AL (y~VAL(status)) 

2-56 Laboratory I/O Device Support 



5. Set. up the device for direct data path. 

status = LIO$SET_I (dre_id, LIO$K_DATA_PATH, 1, LIO$K_DIRPATH) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

6. Reset the DRQ11-C DMA interface and clear the FNCTO bit. 

status = LIO$SET_I (dre_id, LIO$K_RESET_DRX, 2, LIO$K_NO_FNCTO, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

7. Connect to unsolicited interrupts and cancel any previous I10 
request. 

status = LIO$SET_I (dre_id, LIO$K_EVENT_AST, 3, dre_ast_rtn, 
1 dre_ast_param, LIO$K_CANCEL) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

8. Use the LIO$READ or LIO$WRITE routine to start the data transfer 
immediately. The device_specific argument is an array of longwords 
of length six that you use to specify control information about a data 
transfer. The following table shows the values of device_specific. 

Index Value 

1 LIO$M_WORD or LIO$M_BLOCK or LIO$M_LARGE_BUF 
LIO$M_START_CONV 
LIO$M_BURST 

2 Buffer address 

3 

4 

5 

6 

Buffer size, in bytes 

Buffer_ address or zero 

Buffer or subbuffer size, in bytes 

Number of buffers or subbuffers to transfer 

To perform single word input, the source program looks as follows: 

device_specific(1) = LIO$M_~ORD 

status = LIO$READ (dre_id, buffer, buffer_length, data_length, 
1 device_specific) 

IF (.NOT. status) CALL LIB$SIGNAL (y~VAL(status)) 

Laboratory I/O Device Support 2-57 



To perform single-buffer block output, the source program looks as 
follows: 

device_specific(1) 
device_epecific(2) 
device_specific(3) 

device_specif i c (4) 
device_specif ic(b) 

device_specific(6) 

= LIO$M_BLOCK .OR. LIO$M_START_CONV 
= XREF (buffer) 
= buff er_length 
= XREF (duimny_buf f er) 
= duamiy_buff er_length 
= i 

status = LIO$11AITE (dre_id , buffer, buff er_length , data_length, 
i device_specific) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

For word (LIO$M_WORD) I1O, the buffer argument is a word that 
specifies where the input data is to be stored, or that contains the 
data to be output. The buffer_length argument contains 2. 

For block (LIO$M_BLOCK~ or large-buffer (LIO$M_LARGE_BUF) 
I/O, buffer and buffer_length are dummy arguments. The actual 
required arguments are pointed to by the device_specific argument. 

For single- or alternate-block IIO, the device_specific argument 
contains the: 

a. 

b. 

c. 

d. 

e. 

Address of the first data buffer 

Size of the first data buffer 

Address of the second data buffer 

Size of the second data buffer 

Number of buffers to transfer 

For large buffer I1O, the device_specific argument contains the: 

a. Address of the large buffer 

b. Size of t11e large buffer 

c. Zero 

d. Size of one sub-buffer 

e. Number of sub-buffers to transfer 

9. Detach the device. 

status = LIO$DETACH (dre_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2-58 Laboratory I/O Device Support 



2.2.7.4 Using the DRQ11-C for Asynchronous I/O 

To set up the DRQ11-C device for asynchronous IIO, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 
3. Attach the DRQ11-C device as described in Section 2.2.7.1, 

Attaching the DRQ11-C. 

4. Set up the device to use the asynchronous I/O interface. 

status = LIO~SET_I (dre_id, LIO$K_ASYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Set up the device for direct data path. 

status = LIOSSET_I (dre_id, LIOSK_DATA_PATH, 1, LIO$K_DIRPATH) 
IF (.NOT. status) CALL LIBsSIGNAL (XVAL(status)) 

6. Reset the DRQ11-C DMA interface and clear the FNCTO bit. 

status = LIOsSET_I (dre_id, LIO$K_RESET_DRX, 2, LIOsK_NO_FNCTO, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

7. Connect to unsolicited interrupts and cancel any previous IIO 
request. 

status = LIO$SET_I (dre_id, LIO$K_EVEr1T_AST, 3, dre_ast_rtn, 
1 dre_ast_param, LIO$K_CArtCEL) 

IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

8. Use the LIO$ENQUEUE routine to start the read or write request. 
The device specific argument is an array of longwords of length six 
that you use to specify control information about a data transfer. 
The following table shows the values of device_specific. 

Index Value 

1 L10$M_INPUT or LIO$M_OUTPUT 
LIO$M_WORD or Ll0$M_BLOCK or LIO$M_LARGE_BUF 
LIO$M_START_CONV 
LIO$M_BURST 

2 Buffer address 

3 Buffer size, in bytes 

Laboratory I/O Device Support 2-59 



Index Value 

4 

5 

6 

Buffer address or zero 

Buffer or subbuffer size, in bytes 

Number of buffers or subbuffers to transfer 

To perform alternate-buffer block input, the source program looks 
as follows: 

device_specific(1) 
device_specific(2) 
device_specif i c (3) 
device_specific(4) 
device_specific(b) 
device_specific(6) 

= LIO$M_INPUT .OR. LIO$M_BLOCK .OR. LIO$M_START_CONV 

= XREF(buffer_1) 
= buffer_1_length 
= XREF (buff er_2) 
= buff er_2_length 
= 2 

statue = LIB$GET_I;F (event_f lag) 
IF (.NOT. statue) CALL LIB$SIGNAL (XVAL(status)) 

status = SYS~CLREF (y,VAL (event_f lag) ) 
IF (.NOT. status) CALL LIB$SIGNAL (y.VAL(status)) 

status = LIO$ENQUEUE (dre_id , buffer, buff er_length , , event_f lag, , 
i device_specific) 

IF (.NOT. status) CALL LIB$SIGNAL (y,VAL(status)) 

The buffer and buffer_length arguments of the LIQ$ENQUEUE 
routine are dummy arguments. The required arguments are pointed 
to by the device_specific argument. 

For single- or alternate-buffer block I10, the device_specific 
argument contains the: 

a. 

b. 

c. 

d. 

e. 

Address of the first data buffer 

Size of the first data buffer 

Address of the second data buffer 

Size of the second data buffer 

Number of buffers to transfer 

For large buffer I10, the device_specific argument contains the: 

a. 

b. 

c. 

d. 

e. 

Address of the large buffer 

Size of t11e large buffer 

Zero 

Size of one subbuffer 

Number of subbuffers to transfer 

2-60 Laboratory I/O Device Support 



9. Dequeue the buffer or use one of the other asynchronous 
I/O buffer-handling mechanisms described in Section 1.5, 
Asynchronous I1O Buffer-Handling Mechanisms. 

10. Detach the device. 

status = LIO$DETACH (dre_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (y,VAL(status)) 

2.2.8 Preston Support 

The Preston device is an analog-to-digital (AID) converter that supports 
arbitrary channel lists of up to 1024 channels with no programmable 
gain. 

MOTE 

In this guide, "Preston" refers to an AID converter from 
Preston's GM or EM series. 

The Preston contains an internal real-time clock capable of generating 
sampling rates in the range of 160 Hz to 1 MHz. It also contains an 
external start input and, optionally, an external clock input. 

The Preston device is interfaced to a VAXIab system through one of 
three ways: 

• DRQ3B parallel device 

• DRV11-WA parallel device 

• DRB32W, a DR11W-compatible port for the VAXBI bus 

The LIO application routines treat each Preston interface as a separate 
device. 

The maximum transfer rate from the Preston to memory using the 
DRQ3B interface is 1 MHz. 

The maximum transfer rate from the Preston to memory using the 
DRV11-WA interface is 250 kHz. 

For more information about the Preston, see the documentation from 
Preston Scientific. 

Laboratory I/~ Device Support 2-61 



2.2.8.1 Attaching the Preston 

Attaching a Preston device means assigning a VMS I/O channel to the 
device and initializing LIO data structures for, and pointers to, the 
device. 

Use the LIO$ATTACH routine to attach a Preston device. 

! To attach for DRQ3B interface 
status = LIO$ATTACH (preston_id, 'PFAO', LIO$K_QIO) 

IF (.NOT . status) CALL LIB$SIGNAL (y,VAL (status) ) 

! To attach for DRV11-YA or DRB32~/ interface 
status = LIO$ATTACH (preston_id, 'PGAO', LIO$K_QIO) 

IF (.NOT. status) CALL LIB3SIGNAL (xVAL(status)) 

The preston_id argument returns the LIO-assigned device ID for the 
device. The Preston is referenced by this device ID in subsequent 
routine calls to the device in a user program. 

T11e device specification PFAO specifies a Preston device interfaced to 
a VAXIab through the DRQ3B device, with controller letter A and unit 
number 0. 

The device specification PGAO specifies a Preston device interfaced to a 
VAXIab through the DRV11-WA or the DRB32W device, with controller 
letter A and unit number 0. 

If you have only one Preston device configured in your system, 
specifying the device type PF or PG is sufficient. 

NOTE 

The Preston (DRV11-WA) device behaves identically to the 
Preston (DRB32W) device. W11en you attach a PG device 
on a VAXBI machine, the LIO facility automatically uses the 
DRB32W device as the Preston interface. You must install 
the UQW device driver on your system before you atteirpt 
to attach a Preston (DRB32W) device. The LIO$ATTACH 
routine fails if the device driver is not installed. 

The LIO$K_QIO value specifies t11e I/O type. This is the only I1O type 
supported for use with Preston devices. 

2-62 Laboratory I/Q Device Support 



2.2.8.2 Setting Up the Preston 

You can use the Preston (DRQ3B) device without specifying any 
LIO$SET or LIO$SHOW parameters if the default mode of operation 
is sufficient for your application. The default parameters were selected 
based on the simplest case of single channel data acquisition. The 
default operating parameters for this device are: 

• AID channel 0 

• 500 kHz sampling rate 

• Immediate start, clocked sweep 

• Synchronous I/O interface 

Before you begin data transfers with a Preston device, you may want to 
set up certain device characteristics different from the default operating 
parameters supplied. 

The following table lists the LIO$SET and LIO$SHOW parameters 
you can use to set up and show Preston device characteristics. See 
Chapter 4 fog• reference descriptions of the parameters listed in this 
table. 

Table 2-9: Preston LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_AD_CHAN 

LIO$K_ADD_AD_CHAN 

LIO$K_AST_RTN 

LIO$K_ASYNCH 

LIO$K_BUFF_SIZE1

LIO$K_BURST_DIV 

LIO$K_BURST_RATE 

Specifies the Preston A1D channels to use. 

Adds a single channel to the Preston AID converter 
channel list. 

Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

Sets the device for asynchronous I10. 

Sets the maximum buffer size for a data transfer, in 
bytes. 

Specifies the divisor of the Preston's internal burst 
rate clock. 

Specifies the rate of the Preston's internal burst rate 
clock. 

1 DRQ3B interface only 

Laboratory IIO Device Support 2-63 



Table 2-9 (Cont.): Preston LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_CLK_BASE 

LIO$K_CLK_DIV 

LIO$K_CLK_RATE 

LIO$K_CONT1

LIO$K_DEVICE_EF 

LIO$K_ERR_HANDLE 

LIO$K_FORWARD 

LIO$K_INIT_AD_CHAN 

LIO$K_N_AD_CHAN 

LIO$K_SGL_BUF~ 

LIO$K_STARTt

LIO$K_STOP1

LIO$K_SYNCH 

L10$K_TIMEOUT~ 

LIO$K_TRIG 

LIO$K_UPDATE 

Specifies the base crystal frequency of the Preston's 
internal clock. 

Specifies the sampling rate of the Preston's :internal 
clock. 

Takes an ideal frequency and produces the best 
internal crystal rate and divider to approximate that 
frequency. 

Sets the device for continuous DMA mode. 

Establishes the event flag that is set when. a buffer 
becomes available. 

Specifies the way in which a device returns error 
conditions. 

Specifies the device to which. completed.. buffers are 
forwarded. 

Initalizes or clears the existing Preston AID channel. 
list. 

Returns the nt«nber o.f device Al D channels. 

Sets the device to stop DMA between buffers. 
Output is not continuous. 

Starts the device running when it is set for 
continuous DMA mode. 

Stops tl~e device when it is running in continuous 
DMA mode. 

Sets up the device for synchronous I10. 

Sets the length of time (in seconds) before an 1.10 
request is aborted. 

Sets the device trigger mode or source. 

Updates the Preston device to the current set-tip 
specifications. 

iDRQ3B interface only 

ZDRB32W and. DRV11-WA interfaces only 

2-64 Laboratory I/O Device Support 



2.2.8.3 Using the Preston for Synchronous Input 

To set up a Preston device for synchronous input, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the Preston device as described in Section 2.2.8.1, Attaching 
the Preston. 

4. Set up the AID channel using the LIO$K_AD_CHAN parameter, 
or the LIO$K_INIT_AD_CHAN and LIO$K_ADD_AD_CHAN 
parameters . 

5. Specify the AID sampling rate using the LIO$K_CLK_RATE or 
LIO$K_CLK_DIV parameter. 

6. Specify the device trigger source or mode using the LIO$K_TRIG 
parameter. 

7. Set the device to use the synchronous I/O interface. This step is 
optional but is included in this procedure for clarity. 

status = LIO$SET_I (preston_id, LIO~K_SYPICH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (yVAL(status)) 

8. If you are setting up a Preston (DRQ3B), specify t11e buffer size (in 

bytes). 

status = LIOsSET_I (preston_id, LIO$K_BUFF_SIZE, 1, 16384) 
IF (.NOT. status) CALL LIB$SIGNAL (Y,VAL(status)) 

This routine specifies an 8K-word (16,3$4-byte} buffer. The 
maximum allowable value for t11is parameter is a 32K-word 
{65, 536-byte) buffer. 

9. Update the Preston device using the LIO$I<_UPDATE parameter. 
The parameter values you specify for the other parameters do not 
take effect until your program executes LIO$K_UPDATE. 

status = LIO$SET_I (preston_id, LIO$K_UPDATE, 0) 
IF (.NOT . status) CALL LIB$SIGNAL ('/,VAL (status) ) 

10. Read buffers of data using the LIO$READ routine. 

11. Detach the device . 

status = LIO$DETACH (preston_id, ) 
IF (.PLOT. status) CALL LIB$SIGPIAL (xVAL(status)) 

Laboratory I/O Device Support 2-65 



2.2.8.4 Using the Preston for Asynchronous Input 

To use the Preston device for asynchronous input, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the Preston device as described in Section 2.2.8.1, Attaching 
the Preston. 

4. Set up the A/D channel using the LIO$K_AD_CHAN parameter, 
or the LIO$K_INIT_AD_CHAN and LIO$K_ADD_AD_CHAN 
parameters. 

5. Specify the AID sampling rate using the LIO$K_CLK_RATE or 
LIO$K_CLK_DIV parameter. 

6. Specify the device trigger source or mode using the LIO$K_TRIG 
parameter. 

7. Set the device to use the asynchronous I1O interface. This step is 
optional but is included in this procedure for clarity. 

status = LIO$SET_I (preston_id, LIO$K_ASYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

8. Specify an AST routine (LIO$K_AST_RTN), adevice event flag 
(LIO$K_DEVICE_EF), or buffer forwarding (LIO$K_FORWARD) as a 
synchronization mechanism to handle completed buffers. 

9. If you are setting up a Preston (DRQ3B), specify the buffer size (in 
bytes). 

status = LIO$SET_I (preston_id, LIO$K_BUFF_SIZE, 1, 16384) 
IF (.NOT . status) CALL LIB$SIGNAL (y~VAL(status) ) 

This routine specifies an 8K-word (16,384-byte) buffer. The 
maximum allowable value for this parameter is a 32K-word 
(65,536-byte) buffer. 

10. Update the Preston device using the LIO$K_UPDATE parameter. 
The parameter values you specify for the other parameters do not 
take effect until your program executes the following routine. 

status = LIO$SET_I (preston_id, LIOSK_UPDATE, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

11. Initiate I/O requests by using the LIO$ENQUEUE routine to 
enqueue buffers to the device. 

2-66 Laboratory I/Q Device Support 



12. Use the LIO$DEQUEUE routine or one of the synchronization 
methods specified in step 8 of this procedure to retrieve the data 
buffers specified by the LIO$ENQUEUE routine. 

13. Detach the device. 

status = LIOSDETACH (preston_id, ) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

2.3 Digital I/O Devices 

This section describes the digital I/O devices supported by VAXIab. 

2.3.1 DRB32 Support 

The DRB32 is a 32-bit parallel I/O port for the VAXBI bus. It operates in 
one direction (input or output) at a time. 

The DRB32 contains eight status lines (input) and eight control lines 
(output) for sensing and controlling external hardware. 

The DRB32 data pat11 is 32 bits (longword) wide and it can be configured 
for 16-bit (word} and 8-bit (byte) transfers. It can also be configured to 
generate one parity bit per byte for applications where data integrity is 
critical. 

The DRB32 supports half-duplex block mode DMA transfers between 
VAX memory and a user device using two sets of registers for 
continuous transfers. 

The speed of the DRB32 depends on system activity and configuration. 
The peak transfer rate is 6 MBlsecond, which assumes immediate 
response by the VAXBI. On processors where the BI is not the memory 
bus, data rates may be slower. Using multiple DRB32 devices also 
reduces t11e throughput of each individual device. 

The DRB32 supports buffer sizes up to a maximum of 960K bytes. 
The maximum number of buffers in continuous DMA mode is 16. To 
maintain continuous throughput, buffers must be enqueued in pairs to 
ensure double buffering. The DRB32 automatically double buffers when 
two or more DMA requests are outstanding. Performance is higher 
with larger buffers since the overhead of loading the DMA registers is 
significantly reduced. 

Laboratory I/O Device Support 2-67 



The DRB32 performs octaword transfers. To achieve the most efficient 
operation from the device, align buffers on octaword boundaries, 
specifying the size as an integral number of octawords. If buffers 
are not aligned on octaword boundaries, the DRB32 generates masked 
octaword instructions which are slower. 

For more information about the DRB32, see the DRB32 Tech~iical Ma~lical. 

2.3.1.1 Attaching the DRB32 

Attaching the DRB32 assigns a VMS I10 channel to the device and 
initializes LIO data structures for, and pointers to, the device. 

Use the LIO$ATTACH routine to attach the DRB32. 

status = LIO~ATTACH (drb_id, 'UgAO', LIO$K_QIO) 
IF (.NOT . status) CALL LIB$SIGIdAL (y.VAL (status) ) 

The drb_id argument returns the LIO-assigned device ID for the DRB32 
device. T11e DRB32 is referenced by this device ID in subsequent 
~•outine calls to the device in a user program. 

The device specification UQAO specifies a DRB32 (UQ) device, with 
controller letter A and unit number 0. If you have only one DRB32 
configured in your system, specifying the device type UQ is sufficient. 

The LIO$K_QIO value is the I/O type. This is the only supported I/O 
type for the DRB32 device. 

2.3.1.2 Setting Up the DRB32 

Before you can begin data transfers wit11 the DRB32, you must set up 
certain device characteristics. The following table lists the LIO$SET and 
LIO$SHOw parameters you can use to set up and show DRB32 device 
characteristics. See Chapter 4 guide for reference descriptions of the 
parameters listed in this table. 

2-68 Laboratory I/O Device Support_ 



Table 2-10: DRB32 LIO$SET and L10$SHOW Parameters 

Parameter Function 

LIO$K_AST_RTN 

LIO$K_ASYNCH 

LIO$K_CTRL_AST 

Ll0$K_CTRL_PORT 

LIO$K_DATA 

LIO$K_DATA_WIDTH 

LIO$K_DEVICE_EF 

LIO$K_DIRECTION 

LIO$K_FORWARD 

LIO$K_LOCK_BUFFER 

LIO$K_LOOP_BACK 

LIO$K_PARITY 

LIO$K_SYNCH 

LIO$K_TIMEOUT 

LIO$K_UNLOCK_BUFFER 

Specifies auser-written AST routine to receive 
buffers when a device finishes processing 
them . 

Sets the device for asynchronous I/O. 

Assigns auser-written AST routine to be called 
when an external device writes data to the 
DRB32's input control port. 

Sets the output control port on the DRB32 
device. 

Performs an output operation to t11e parallel 
data path without using DMA. 

Specifies the width of the parallel data path. 

Establishes the event flag that is set when. a 
buffer becomes available. 

Sets the direction (input or_ output) of the 
device. 

Specifies the device to which completed buffers 
are forwarded. 

Specifies buffers to be locked before beginning 
DMA transfers. 

Enables or disables loopback mode. 

Enables or disables the device to accept parity 
from external devices. 

Sets up the device for synchronous I/O. 

Sets the length of time (in seconds) before an 
1/ O request is aborted. 

Unlocks buffers previously locked with 
LIO$K_LOCK_BUFFER. 

Laboratory I/O Device Support 2-69 



2.3.1.3 Using the DRB32 for Synchronous I/O 

Using the DRB32 for synchronous I10 is the simplest way to use 
the device. Results are optimal when continuous performance is not 
required. You can still read or write data up to 960K bytes in a single 
transfer at the maximum speed of the device. However, synchronous 
IIO tends to make t11e overhead associated with each I10 operation 
more significant. Your program must wait until one transfer is complete 
before starting the next one. When set to use synchronous IIO, the 
DRB32 does not use double buffering. 

To use the DRB32 for synchronous I/O, do t11e following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Declare or allocate a buffer up to 960K bytes in size. Be sure to 
specify the data type of the buffer in agreement with the value of 
the LIO$K_DATA_WIDTH parameter (see step 6). For example, if 
the data path is set to a longword (32 bits), the data buffer should 
be declared as a longword array. If the data path is set to a word 
(16 bits), the data buffer should be declared as a word array, and so 
on. 

INTEGER*2 buffer (4096) 

4. Attach the DRB32 device as described in Section 2.3.1.1, Attaching 
the DRB32. 

5. Set the width of the data path. To specify a 16-bit or 8-bit wide data 
path, you must set this parameter to the appropriate value. If this 
parameter is not set, the data path width defaults to 32 bits wide. 

status = LIO$SET_I (drb_id, LIO$K_DATA_1/IDTH, 1, LIO~K_1~ORD) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The width of the data path must be in agreement with the data type 
of the buffer you declared or allocated in step 3 of this procedure. 

Setting the data path width is optional. However, many external 
devices are only 8 or 16 bits wide. Setting the data path width 
to be the same as the size of the external device is memory 
efficient. This saves DMA transfers because the data buffer does 
not contain unused bytes t11at require I/O if the data path is wider 
than necessary. 

2-70 Laboratory I/O Device Support 



6. Start the data transfer. Use the LIO$READ routine for input. Use 
the LIO$WRITE routine for output. 

ctrl_bits = 6 !decimal 6 =binary 101 
statue = LIO$1~RITE (drb_id ~ buff er ~ 4096 ~ ctrl_bits) 

IF (.NOT. statue) CALL LIB$SIGNAL (XVAL(status)) 

Optionally, you. can specify the device_specific argument to change 
the state of the output control lines. This may be necessary to place 
the external device in the proper mode for the data transfer. The 
device_specific argument is a longword value. The low order byte 
of this value contains the bit pattern you want to write to the output 
control port. This byte is written to the output control port before 
the data transfer begins . 

See the descriptions of the LIO$READ and LIO$WRITE routines in 
Chapter 3 for specific details about using these routines. 

7. Detach the device. 

status = LIO$DETACH (drb_id~ ) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(etatus)) 

2.3.1.4 Using the DRB32 for Asynchronous 1/0 

Using the DRB32 for asynchronous I/O enables your program to issue 
multiple I/O requests without waiting for the first request to complete. 
The driver double buffers DMA requests, thus reducing the overhead 
associated with reloading the DMA registers. 

An asynchronous DMA request is issued by calling the LIO$ENQUEUE 
routine. This routine inserts an I1O request in the device's DMA queue. 
Each request is serviced in the order in which it is queued. 

The DRB32 contains two sets of DMA registers. When two or inoi•e 
DMA requests are pending, the DRB32 loads bot11 sets of DMA 
registers. When the first request completes, the device simply switches 
DMA registers in hardware and begins processing the next request. 
This improves continuous throughput by minimizing the delay between 
buffers. 

To use the DRB32 for asynchronous I1O, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

Laboratory i/O Device Support 2-71 



3. Declare or allocate buffers up to 960K bytes in size each. Declare 
as many buffers as you need for your application. (Declaring an 
even number of buffers helps you make the most efficient use of the 
DRB32's double buffering feature .) 

For maximum performance, make sure your buffers are 
quadword-aligned, and that their sizes are integral numbers of 
quadwords. The DRB32 moves quadwords on the VAXBI bus. 
Smaller buffer alignments cause less efficient operations. 

INTEGER*4 buff er_address (4096) 

4. Attach the DRB32 device as described in Section 2.3.1.1, Attaching 
the DRB32. 

5. Set the DRB32 to perform input or output. 

status = LIO$SET_I (drb_id, LIO$K_DIRECTION 1, LIOSK_INPUT) 
IF (.NOT. status) CALL LIBSSIGNAL (y,VAL(status)) 

6. Set the width of the data path. To specify a 16-bit or 8-bit wide data 
path, you must set this parameter to the appropriate value. If this 
parameter is not set, the data path width defaults to 32 bits. 

status = LIO$SET_I (drb_id, LIO$K_DATA_YIDTH, 1, LIO$K_YORD) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

Make sure the width of the data path is in agreement with the 
data type of the buffer you declared or allocated in step 3 of this 
procedure. 

Setting the .data pat11 width is optional. However, many external 
devices are only 8 or 16 bits wide. Setting the data path width 
to be the same as the size of t11e external device is memory 
efficient. This saves DMA transfers because the data buffer does 
not contain unused bytes that require I/O if the data path is wider 
than necessary. 

2-72 Laboratory i/O Device Support 



7. To perform continuous DMA with the DRB32 device, you must lock 
all I/O buffers in memory prior to beginning DMA transfers. 

status = LIO$SET_I (drb_id, LIO$K_LOCK_BUFFER, 2, buffer_addrees, 
1 4096) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

Use the LIO$SET_I routine call with the LIO$K_LOCK_BUFFER 
parameter, specifying the buffer address and the size (in bytes) 
of each buffer to lock. You can lock a maximum of 16 buffers 
that contain up to 960K bytes each. If you need to lock additional 
buffers, you must unlock a buffer after it completes processing and 
lock a new one. 

status = LIO$SET_I (drb_id, LI03K_UNLOCK_BUFFER, 2, buffer_address, 
1 4096) 

IF (.NOT. status) CALL LIB$SIGNAL (XVALCstatus)) 

8. Start the data transfer. Use the LIO$ENQUEUE routine to pass 
buffers to the DRB32 device. The program remains active and can 
do other processing during the data transfers. However, you need 
some method to signal your main program at the end of the buffer 
transfer. The simplest way to do this is to specify an event flag to 
associate with each buffer when you enqueue it. The event flag is 
set when the buffer completes processing, for example: 

status = LIB$GET_EF (event_flag) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

status = LIO$Er1QUEUE (drb_id, buffer , 4096, event_f lag, , ) 
IF (.NOT. status) CALL LIB$SIGNAL ('/,VAL(status)) 

The LIO$ENQUEUE routine queues a buffer to the DRB32 device 
and associates the value of the event_flag argument with the buffer. 

9. Return the buffer to the main program. Use the LIO$DEQUEUE 
routine to return buffers to the main program. If you specified an 
event flag in the LIO$ENQUEUE routine call, you can use this flag 
to ensure that the data transfer on a buffer is complete before you 
dequeue the buffer. Specify the value of the LIO$DEQUEUE wait 
argument as a nonzero integer. The LIO$DEQUEUE routine waits 
for the buffer to become available on the device's user queue and 
then dequeues it. 

status = LIO$DEQUEUE (drb_id, buff er_address , buff er_length , i , , ) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

Laboratory IIQ Device Support 2-73 



Typically, you enqueue all buffers to the device before the data 
transfer begins. Then, you dequeue and process each buffer, 
one at a time, as it completes. When you finish processing a 
dequeued buffer, you can enqueue it again to maintain continuous 
throughput. This process can continue until your application 
completes execution. 

10. Detach the device. 

status = LIO$DETACH (drb_id, ) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2.3.2 DRB32W Support 

The DRB32W is a DR11W-compatible port for the VAXBI bus. It is 
designed for fast data transfers with external devices. The DRB32W 
uses handshake lines to control the flow of data and uses DMA to store 
the data in memory. 

The DRB32W device can be set for either input or output. The direction 

is controlled in two ways: 

• By an external line that can be either tied High or tied low to set the 
direction 

• By an external device to change direction dynannically 

The device also contains three programmable control lines and three 
user-readable sense lines. 

The LIO support provided for this device is identical to the device 
support provided for the DRV11-WA, with the exception that you must 
specify athree-letter device type for the DRB32W. 

For more information about the DRB32W, see the DRB32 Technical 
Ma~lual. 

2.3.2.1 Attaching the DRB32W 

Attaching the DRB32W means assigning a VMS I/O channel to the 
device and initializing LIO data structures for, and pointers to, the 
device. 

2-74 Laboratory IIO Device Support 



Use the LIO$ATTACH routine to attach the DRB32W device. 

status = LIO$ATTACH (drb~r_id, 'UQYAO', LIO$K_QIO) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The drbw_id argument returns the LIO-assigned device ID for the 
device. The DRB32W is referenced by this device ID in subsequent 
routine calls to the device in a user program. 

The device specification UQWAO specifies a DRB32W (UQW) device 
with controller letter A and unit number 0. If you have only one 
DRB32W device configured in your system, specifying the three-letter 
device type UQW is sufficient. 

NOTE 

The DRB32W is the only device supported by VAXIab for 
which you must specify athree-letter device type. All other 
devices require that you specify atwo-letter device type. 

The LIO$K_QIO value specifies the I/O type. This is the only IIO type 
supported for use with the DRB32W device. 

2.3.2.2 Setting Up the DRB32W 

Before you can begin data transfer using the DRB32W, you must set 
up certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and show DRB32W 
device characteristics. See Chapter 4 for reference descriptions of the 
parameters listed in this table. 

Table 2-11: DRB32W LIO$SET and LIO$SHOW Parameters 
Parameter Function 

L10$K_AST_RTN Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

LIO$K_ASYNCH Sets the device for asynchronous 110. 

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer 
becomes available. 

LIO$K_DIRECTION Sets the direction (input or output) of the device. 

Laboratory I/Q Device Support 2-75 



Table 2-11 (Cont.): DRB32W LIO$SET and LIO$SHOW Parameters 

Parameter Function 

LIO$K_ERR_HANDLE Specifies the way in which a device returns error_ 

conditions. 

LIO$K_FORWARD Specifies the device to which completed buffers are 
forwarded. 

LIO$K_SYNCH Sets up the device to use synchronous I10. 

LIO$K_TIMEOUT Sets the length of time (in seconds) before an I10 
request is aborted. 

2.3.2.3 Using the DRB32W for Synchronous IIO 

To set up the DRB32W to use synchronous I1O, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Declare or allocate a buffer up to 64K bytes in size. 

INTEGER*2 buffer(1024) 

4. Attach the DRB32W device as described in Section 2.3.2.1, 
Attaching the DRB32W. 

5. Set up the device to use the synchronous I1O interface. 

status = LIO$SET_I (drbur_id , LIO$K_SYAICH, 0) 
IF (.NOT . status) CALL LIB$SIGPIAL (xVAL (status) ) 

6. Start the data transfer. You can use the device_specific argument 
of the LIO$READ and LIO$WRITE routines to set the state of the 
output function bits. 

func_bits = b !decimal 5 =binary 101 
status = LIO$READ (drb~r_id, buffer, 2048, data_length, func_bits) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

7. Process the data. 

S. Detach the device. 

status = LIO$DETACH (drb~r_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2-76 Laboratory IIO Device Support 



2.3.2.4 Using the DRB32W for Asynchronous 1lO 

To set up the DRB32W to use asynchronous I10, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Declare or allocate a buffer up to 64K bytes in size. 

INTEGER*Z buffer(lOZ4) 

4. Attach the DRB32W device as described in Section 2.3.2.1, 
Attaching the DRB32W. 

5. Set up the device to use the asynchronous I10 interface. 

statue = LIO~SET_I (drbr_id, LIO$K_ASYPICH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

6. Set the device for input or output. 

status = LIO~SET_I (drb~r_id, LIO$K_DIRECTION, 1, LIO$K_IPJPUT) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

7. Get a VMS event flag for synchronizing with the I/O 

status = LIB$GET_EF(event_f lag) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

8. Start the data transfer. You can use the device_specific argument of 
t11e LIO$ENQUEUE routine to set the state of the output function 
bits . 

func_bits = 6 !decimal b =binary 101 
status = LIO$ENQUEUE (drb~r_id, buffer, 2048, event_flag, func_bits) 

IF (.NOT . status) CALL LIB$SIGNAL ('/.VAL (status) ) 

9. Dequeue the buffer, specifying a nonzero wait argument. 

gait = 1 
status = LIO$DEQUEUE (drbur_id , buff _addr, buff _len , gait , , ) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

10. Detach the device. 

status = LIO$DETACH (drb~r_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

Laboratory I/O Device Support 2-77 



2.3.3 DRQ3B Support 

The DRQ3B is ahigh-speed, 16-bit parallel interface device that 
supports Q-bus block mode direct memory access (DMA) transfers. 
The device contains one input port and one output port. Each port 
contains a 512-word first-inlfirst-out (FIFO) buffer. 

The DRQ3B device driver supports double-buffer DMA operations on 
the device. Double buffering is used whenever multiple I1O requests 
are queued with a buffer size large enough to allow the next buffer to be 
enqueued before the previous buffer completes. 

The DRQ3B supports an end-of-process (EOP) bit on the input port 
which is strobed into the FIFO. When the EOP bit is read out of the 
FIFO, the DMA controller terminates the current buffer and starts 
the next buffer in the queue. The data_length argument of both the 
LIO$READ and LIO$DEQUEUE routines returns the number of bytes 
actually transferred. 

See Chapter 1 for more information about FIFOs and double buffering. 

See the DRQ3B Pa~~allel DMA I/O Module User's Guicle for more 
information about the DRQ3B . 

2.3.3.1 Attaching the DRQ3B 

Attaching a DRQ3B device means assigning a VMS I/O channel to the 
device and initializing LIO data structures for, and pointers to, the 
device. 

Use the LIO$ATTACH routine to attach the DRQ3B device. 

status = LIOSATTACH (drq_id, 'HXAO', LIOSK_QIO) !Input 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The drq_id argument returns the LIO-assigned device ID for the device. 
The DRQ3B is referenced by this device ID in subsequent routine calls 
to t11e device in a user program. 

The device specification HXAO attaches a DRQ3B (HX) device for input. 
The controller letter and unit number (AO) specify the input port of the 
DRQ3B . 

2-78 Laboratory i/O Device Support 



To specify the output port of the DRQ3B, attach the device using HXA1 
as the value of the devspec argument. 

statue = LIO~ATTACH (drq_id, 'HXA1', LIOSK_gI0) !Output 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

When attaching the DRQ3B device, you must use the complete device 
specification to signal LIO which port on the device to attach. 

The LIO$K_QIO attaches the device to use QIOs. This is the only 
supported I/O type for the DRQ3B device. 

NOTE 

You can use the DRQ3B device for both input and output at 
the same time. However, the LIO facility treats the input and 
output ports of the device as separate devices, so each must 
be attached and set up as a separate device. 

2.3.3.2 Setting Up the DRQ3B 

Before you can begin data transfers with the DRQ3B, you must set up 
certain device characteristics. The following. table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and show DRQ3B 
device characteristics. See Chapter 4 for reference descriptions of the 
parameters listed in this table. 

Table 2-12: DRQ3B LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_AST_RTN Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

LIO$K_ASYNCH Sets the device for asynchronous I/O. 

LIO$K_BUFF_SIZE Sets the maximum size, in bytes, of the 
asynchronous buffers to use. 

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer 
becomes available. 

L[O$K_ERR_HANDLE Specifies the way in which a device returns error 
conditions. 

Laboratory I/O Device Support 2-79 



Table 2-12 (Cont.): DRQ3B LIO$SET and LIO$SHOW Parameters 

Parameter Function 

LIO$K_FORWARD 

LIO$K_FUNCTION_BITS 

LIO$K_STOP 

LIO$K_SYNCH 

Specifies the device to which completed buffers are 
forwarded. 

Sets the function bits associated with the DRQ3B 
device . 

Stops the device. 

Sets up the device for synchronous I10. 

2.3.3.3 Using the DRQ3B for Synchronous I/O 

To use the DRQ3B device for synchronous I/O, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the DRQ3B device as described in Section 2.3.3.1, Attaching 
the DRQ3B . 

4. Set the DRQ3B to use the synchronous I10 interface. 

status = LIO$SET_I (drq_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGPJAL ('/OVAL(status)) 

5. Specify the buffer size (in bytes). 

status = LIO$SET_I (drq_id, LIO$K_BUFF_SIZE, 1, 16384) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

This routine specifies an SK-word (16384-byte) buffer. The 
maximum allowable value for this parameter is a 64K-byte 
(32768-word) buffer. 

6. Use the LIO$READ routine or the LIO$WRITE routine to read or to 
write the data. 

7. Detach t11e device. 

status = LIO$DETACH (drq_id, ) 
IF (.NOT. status) CALL LIB$SIGTJAL (XVAL(status)) 

(VOTE 

Using the DRQ3B in synchronous mode effectively disables 
double-buffering. 

2-80 Laboratory I/O Device Support 

V 



2.3.3.4 Using the DRQ3B for Asynchronous I/4 

To use the DRQ3B for asynchronous IIO, do the following: 

1. Include the symbolic definition files required by t11e VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the DRQ3B device as described in Section 2.3.3.1, Attaching 
the DRQ3B . 

4. Set the DRQ3B to use the asynchronous I1O interface. 

statue = LIO$SET_I (drq_id, LIO$K_ASYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Specify the buffer size (in bytes). 

status = LIO$SET_I (drq_id, LIO$K_BUFF_SIZE, 1, 16384) 
IF (.NOT. status) CALL LIB$SIGNAL (y.VAL(status)) 

This routine specifies an 8K-word (16384-byte) buffer. The 
maximum allowable value for this parameter is a 64K-byte 
(32768-word) buffer. 

6. Enqueue one or snore buffers to the DRQ3B device. 

status = LIO$ENQUEUE (drq_id , buffer , 16384, , 
i LIO$M_HX_HOLD_DMA) 

IF (.NOT. status) CALL LIB$SIGNAL (y~VAL(status)) 
status = LIO$ENQUEUE (drq_id, buffer, 16384, , 
1 LIOSM_HX_HOLD_DMA) 

IF (.NOT . status) CALL LIB$SIGNAL (y.VAL (status) ) 
status = LIO$ENQUEUE (drq_id, buffer, 16384, , 
1 LIO$M_HX_HOLD_DMA) 

IF (.NOT . status) CALL LIB$SIGPJAL (y~VAL(status) ) 
status = LIO$ENQUEUE (drq_id, buffer, 16384, , 
i LIO$M_HX_HOLD_DMA) 

IF (.A10T. status) CALL LIB$SIGr1AL (xVAL(status)) 
status = LIO$ENQUEUE (drq_id, buffer, 16384, , 
1 LIO$M_HX_HOLD_DMA) 

IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 
status = LIO$ErdQUEUE (drq_id, buffer, 16384, ) 

IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

This routine segment queues six buffers to the DRQ3B device. The 
LIO$M_HX_HOLD_DMA device_specific value inhibits the start of 
double-buffer DMA transfers until all buffers are enqueued to the 
device. The absence of the LIO$M_HX_HOLD_DMA value of the 
last LIO$ENQUEUE routine call starts t11e double-buffer DMA. 

Laboratory I/O Device Support 2-81 



You can use the device specific argument of the LIO$ENQUEUE 
routine to enqueue all data buffers before starting DMA data 
transfers (as shown). You can also use it to prevent the setting 
of an event flag or the delivering of an AST routine until the buffer 
on the output port has been output. 

The value of the device_specific argument can be either of the 
following: 

• LIO$M_HX_HOLD_DMA 

This argument value inhibits the DMA transfers from starting 
until the last buffer is enqueued to the device. Use this 
argument with LIO$ENQUEUE when you enqueue all but the 
last buffer. The absence of this argument on the last enqueue to 
the device actually signals the DMA transfers to start. 

• LIO$M_HX_RUN_DOWN 

This argument value prevents the setting of an event flag or the 
delivering of an AST routine until the buffer on the output port 
has been completely transferred. This argument is valid only 
when used with asynchronous writes and effectively disables 
double buffering (for that buffer only) . 

7. Dequeue the buffers or use one of the other asynchronous 
IIO buffer-handling mechanisms described in Section 1.5, 
Asynchronous I/O Buffer-Handling Mechanisms. 

The device_specific argument of the LIO$DEQUEUE routine and 
the AST routine return the contents of the status register in the high 
16 bits, and the contents of the DMA status register in the low 16 
bits. See the DRQ3B Parallel DMA Input/Outpi-ct Modtcle User's Gicide 
for more information. 

8. Detach the device. 

status = LIO~DETACH (drq_id, ) 

IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

2-82 Laboratory I/O Device Support 

V 



2.3.4 DRV11-J Support 

The DRV11-J is a parallel interface device with four separate 16-bit ports 
(A, B, C, and D) . 

You can set each port individually for either input or output. Each bit 
of port A can be assigned a separate AST routine or an event flag. Each 
AST routine is called or the event flag is set when the bit to which 
either the AST routine or the event flag is assigned is cleared or set, 
depending on the value of the LIO$K_POLARITY parameter. 

The device can be jumpered for atwo-wire handshake. If the device is 
set for atwo-wire handshake, only the low 12 bits of port A are available 
for AST routines. The value of the LIO$K_HANDSHAKE parameter 
signals LIO whether or not t11e two-wire handshake is software-enabled 
or disabled. 

The DRV11-J must be hardware jumpered for atwo-wire handshake to 
transfer more than one data point per buffer. The setting of Jumper 
W11 on the DRV11-J device determines whether the hardware is 
jumpered for atwo-wire handshake. See the DRVll-J Parallel Line 
I~zterface Z,tser's Gzcicle for information about how to jumper the device. 

2.3.4.1 Attaching the DRV11-J 

Attaching the DRV11-J means assigning a VMS I1O channel to the device 
and initializing LIO data structures for, and pointers to, the device. Use 
the LIO$ATTACH routine to attach the DRV11-J. 

status = LIOSATTACH (drj_id, 'DNAO', LIO$K_QIO) 
IF (.NOT . status) CALL LIB$SIGNAL (XVAL (status) ) 

The drj_id argument returns the LIO-assigned device ID for the device. 
The DRV11-J is referenced by this device ID in subsequent routine calls 
to the device in a user program. 

The device specification DNAO specifies a DRV11-J (DN) device with 
controller letter A and unit number 0. If you have only one DRV11-J 
device configured in your system, specifying the device type DN is 
sufficient. 

The LIO$K_QIO values sets the device to use QIOs. If you do not 
specify the I/O type when you attach the DRV11-J device, by default it 
is attached to use QIOs. 

/~1 Laboratory I/O Device Support 2-83 



The LIO facility also supports memory-mapped (LIO$K_MAP) I/O 
for the device. Only the synchronous I10 interface is supported for 
mapped I/O. When set to use synchronous I/O, the bits of port A 
cannot be assigned AST routines or event flags. 

2.3.4.2 Setting Up the DRV11-J 

Before you can begin data transfer using the DRV11-J, you must set 
up certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and s11ow DRV11-J 
device characteristics. See Chapter 4 for reference descriptions of t11e 
parameters listed in this table. 

Table 2-13: DRV11-J LIO$SET and L10$SHOW Parameters 
Parameter Function 

LIO$K_AST_RTN Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

LIO$K_ASYNCH Sets the device for asynchronous I10. 

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer 
becomes available. 

LIO$K_DIRECTION Sets the direction (.input or output) of the four 
DRV11-J ports. 

LIO$K_ERR_HANDLE Specifies the way in which a device returns error 
conditions. 

LIO$K_EVENT_AST Assigns auser-written AST routine to be called on 
DRV11-J port-A bit events. 

LIO$K_EVENT_EF Specifies the event flag to set on an external event 
or clock overflow. 

LIO$K_FORWARD Specifies the device to which. completed buffers are 
forwarded. 

LIO$K_HANDSHAKE Specifies whether or not the DRV11-J is jumpered to 
use atwo-wire handshake for each. port . 

2-84 Laboratory I/O Device Support 



Table 2-13 (Cont.): DRV11-J LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_POLARITY 

LIO$K_SYNCH 

LIO$K_TIMEOUT 

Sets the bits of port A to call their AST routines on 
either anegative-going or positive-going edge and 
the polarity of the handshake, if any. 

Sets tip the device for synchronous I10. 

Sets the length of time (in seconds) before an I10 
request is aborted. 

To set up the DRV11-J, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 
3. Attach the DRV11-J as described in Section 2.3.4.1, Attaching the 

DRV11-J. 

4. Set the device to use either synchronous or asynchronous I/0. 
5. Set the direction of the four po1•ts. 

status = LIO$SET_I (drj_id, LIO$K_DIRECTIOr1, 4, LIO$K_INPUT, 
i LIO$K_INPUT, LIO$K_OUTPUT, LIO$K_OUTPUT) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

This routine segment sets the direction of ports A and B for input, 
and sets the direction of ports C and D for output. 

6. Enable or disable handshaking. 

status = LIO$SET_I (drj_id, LIO$K_HANDSHAKE, 1, LIO$K_OFF) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

This routine disables handshaking. 
7. If the device is set to use synchronous I10, initiate the data transfer 

by using the LIO$READ or LIO$WRITE routine. If the device is 
set to use asynchronous I/O, initiate the data transfer by using the 
LIO$ENQUEUE routine. 

The device_specific argument of the LIO$ENQUEUE, LIO$READ, 
and LIO$WRITE routines is an unsigned longword integer. The low 
word selects the port, and the high word is a mask that selects the 
bits of the port. 

Laboratory I/O Device Support 2-85 



The value of the first word can be one of the following: 

Value DRVll-J Port 

0 
1 
2 
3 

Port A 
Port B 
Port C 
Port D 

If any bits are set in the second word of the argument, then only 
those bits are written to on output, or read from on input. On 
output, bits not selected are not changed. On input, bits not 
selected are returned as zeros. If t11e second word is zero, all 
bits are written to on output, and read from on input. 

If all bits are to be selected, then the device_specific argument can 
be treated as a normal integer containing the port number. 

8. If the device is set up asynchronous I/O, dequeue the buffer or use 
one of the other asynchronous I/O buffer handling mechanisms 
described in Section 1.5, Asynchronous I/O Buffer-Handling 
Mechanisms. 

9. Detach the device. 

status = LIO~DETACH (drj_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2.3.5 DRV1 y -WA Support 

The DRV11-WA is a 16-bit parallel I/O DMA interface device. It is 
designed for fast data transfers with external devices. The DRV11-WA 
uses handshake lines to control the flow of data and uses DMA to store 
the data in memory. 

The DRV11-WA device can be set for either input or output. The 
direction is controlled in two ways: 

• By an external line that can be either tied high or tied low to set t11e 
direction 

• By an external device to change direction dynamically 

The device also contains three programmable control lines and three 
user-readable sense lines. 

2-86 Laboratory I/O Device Support 



See the DRV11-WA General Purpose DMA Interface User's Guide for more 
information about the DRV11-WA. 

2.3.5.1 Attaching the DRV11-WA 

Attaching the DRV11-WA means assigning a VMS I/O channel to the 
device and initializing LIO data st*-uctures for, and pointers to, the 
device. Use the LIO$ATTACH routine to attach the DRV11-WA device. 

status = LIO=ATTACH (drrr_id, 'XAAO' , LIO$K_QIO) 
IF (.NOT. statue) CALL LIB$SIGNAL (XVAL(status)) 

The drw_id argument returns the LIO-assigned device ID for t11e device. 
The DRV11-WA is referenced by this device ID in subsequent routine 
calls to the device in a user program. 

The device specification XAAO specifies a DRV11-WA (XA) device with 
controller letter A and unit number 0. If you have only one DRV11-WA 
device configured in your system, specifying the device type XA is 
sufficient. 

The LIO$K_QIO value specifies the I/O type. This is the only I10 type 
supported for use with the DRV11-WA device. 

2.3.5.2 Setting Up the DRV11-WA 

Before you can begin data transfer using the DRV11-WA, you must set 
up certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and show DRV11-WA 
device characteristics. See Chapter 4 for reference descriptions of the 
parameters listed in this table. 

Table 2-14: DRV11-WA LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_AST_RTN Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

LIO$K_ASYNCH Sets the device for asynchronous I10. 

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer 
becomes available. 

LIO$K_DIRECTION Sets the direction (input or output) of the device. 

Laboratory I/Q Device Support 2-87 



Table 2-14 (Cont.): DRV11-WA LIO$SET and LIO$SHOW 
Parameters 

Parameter Function 

LIO$K_ERR_HANDLE Specifies the way in which a device returns error 
conditions. 

LIO$K_FORWARD Specifies the device to which completed buffers are 
forwarded. 

LLO$K_SYNCH Sets up the device for synchronous 110. 

LIO$K_TIMEOUT Sets the length of time (in seconds) before an IIO 
request is aborted. 

2.3.5.3 Using the DRV11-WA for Synchronous 1/O 

To set up the DRV11-WA to use synchronous I/0, do the following: 

1. Include t11e symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Declare or allocate a buffer up to 64K bytes in size. 

INTEGER*2 buffer(1024) 

4. Attach the DRV11-WA device as described in Section 2.3.5.1, 
Attaching the DRV11-WA. 

5. Set up the device to use the synchronous I/O interface. 

status = LIO$SET_I (dr~r_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (y.VAL(status)) 

6. Start the data transfer. You can use the device_specific argument 
of the LIO$READ and LIO$WRITE routines to set the state of the 
output function bits. 

func_bits = 6 !decimal b =binary 101 
status = LIO$READ (dr~r_id, buffer, 2048, data_length, func_bits) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

7. Process the data. 

8. Detach the device. 

status = LIO$DETACH (dr~r_id , ) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

2-88 Laboratory I/O Device Support 



2.3.5.4 Using the DRV11-WA for Asynchronous I/O 

To set up the DRV11-WA to use asynchronous I/O, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 
3. Declare or allocate a buffer up to 64K bytes in size. 

INTEGER*2 buffer (1024) 

4. Attach the DRV11-WA device as described in Section 2.3.5.1, 
Attaching the DRV11-WA. 

5. Set up the device to use the asynchronous I1O interface. 

status = LIO$SET_I (drrr_id, LIO$K_ASYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

6. Set the device for input or output. 

status = LIO$SET_I (drr_id, LIO$K_DIRECTIOPI, 1, LIO$K_INPUT) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

7. Get a VMS event flag for synchronizing with the I1O 

status = LIB$GET_EF(event_f lag) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

8. Start the data transfer. You can use the device_specific argument 
of the LIO$READ and LIO$WRITE routines to set the state of the 
output function bits. 

func_bits = 5 !decimal b =binary 101 
status = LIO$ENQUEUE (dr~r_id , buffer , 2048 , event_f lag , f unc_bit s ) 

IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

9. Dequeue the buffer, specifying a nonzero wait argument. 

gait = 1 
status = LIO$DEQUEUE (drrr_id, buff_addr, buff_len, Tait, ,) 

IF (.NOT. status) CALL LIB$SIGPIAL (XVAL(status)) 

10. Detach the device. 

status = LIO$DETACH (dr~r_id , ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

Laboratory I/O Device Support 2-89 



2.4 Isolated Real-Time I/O Devices 

The following isolated real-time I/O devices are supported by VSL: 

• IAV11-A 

• IAV11-AA 

• IAV11-B 

• IAV11-C 

• IAV11-CA 

• IDV11-A 

• IDV11-B 

• IDV11-C 

• IDV11-D 

These devices, also called IXV11 or IXV devices, are available only in 
Europe. For more information about these d_ evices, see the I~zdustrial I/O 
Modules for Q-Bus. 

2.4.1 IAV11-A, IAV11-AA, IAV11-C, and IAV11-CA Support 

The IAV11-A1 and IAV11-AA1 are 16-channel analog-to-digital 
converters. 

The IAV11-A has 12 single-ended input channels and four differential 
flying capacitator input channels. The IAV11-AA has 16 single-ended 
input channels . 

Both devices have the following: 

• 12-bit resolution 

• Unipolar and bipolar input ranges 
• Programmable channel gain 

• Optional external trigger input 

1 This device is available only in Europe. 

2-90 Laboratory I/o Device Support 



The IAV11-C1 and IAV11-CA1 are multiplexer devices you can use to 
expand the IAV11-A and IAV11-AA AID converters to a maximum of 
128 channels. 

NOTE 

The IAV11-A, IAV11-AA, IAV11-C, and IAV11-CA input 
devices are all referred to as IAV11-A in subsequent sections 
in this chapter. 

2.4.1.1 Attaching the IAV11-A 

Attaching an IAV11-A means assigning a VMS I1O channel to the device 
and initializing LIO data structures for, and pointers to, the device. 

Use the LIO$ATTACH routine to attach the IAV11-A. 

status = LIO~ATTACH (iava_id, 'IVAO', LIOSK_QIO) 

IF (.NOT. status) CALL LIBsSIGNAL (XVAL(status)) 

The iava_id argument returns the LIO-assigned device ID for the 
IAV11-A device. The IAV11-A device is referenced by this device 
ID in subsequent routine calls to the device in a user program. 

The device specification IVAO specifies an IAV11-A device with 
controller letter A and unit number 0. Specifying the unit number is 
optional. However, if you do specify a unit number, it must always be 
0. 

NOTE 

Each IXV11 device, whether it is an analog input, an analog 
output, a digital input, a digital output, or a counter device, 
is represented as a unique controller. Unit numbers are not 
used. For example, if you have more than one IXV11 device 
configured in your system, then the first IXV11 device is 
IVAO, the second IXV11 device is IVBO, and so on. 

The LIO$K_QIO value sets up the device to use QIOs . This is the only 
IIO type supported for the IAV11-A devices. 

1 This device is av~ilaUle only in Europe. 

Laboratory I/O Device Support 2-91 



2.4.1.2 Setting Up the IAV11-A 

Before you can begin data transfers using the IAV11-A, you must set 
up certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and show IAV11-A 
device characteristics. See Chapter 4 for reference descriptions of the 
parameters listed in this table. 

Table 2-15: IAV11-A LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_AST_RTN Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

LIO$K_ASYNCH Sets up a device for asynchronous I10. 

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer 
becomes available. 

LIO$K_FORWARD Specifies the device to which completed buffers are 
forwarded. 

LIO$K_N_AD_CHAN Returns the number of analog-to-digital channels 
currently in use. 

LIO$K_SYNCH Sets up the device for synchronous I10. 

2.4.1.3 Using the IAV11-A for Synchronous Input 

To use the IAV11-A for synchronous input, do the following: 

1. Include the symbolic definition files required by the VAX1ab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 
3. Attach the IAV11-A device as described in Section 2.4.1.1, Attaching 

the IAV11-A. 

4. Set up the device to use the synchronous I/O interface. 

status = LIO~SET_I (iava_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

2-92 Laboratory IIO Device Support 



5. Read data from the IAV11-A device using the LIO$READ routine. 
The device_specific argument is an array of longwords that you 
use to specify control information about the AlD channels. Each 
longword specifies information about one channel. Byte 1 specifies 
the channel number. Byte 2 specifies the channel gain. Byte 3 
specifies the trigger source. Byte 4 specifies the timeout in seconds. 

The buffer argument is an array of longwords returning information 
about the data I/O transfer. Each longword returns information 
about one channel. Byte 1 returns the channel number. Byte 2 
returns the channel gain. The high word returns the actual A!D 
value read from the channel. 

Specify the buffer_length argument as a multiple of four. 

STRUCTURE /chan_val/ 
BYTE chap 
BYTE gain 
BYTE trigger 
BYTE timeout 

END STRUCTURE 
RECORD /chan_val/ chan_list(10) 

STRUCTURE /buff _val/ 
BYTE chan 
BYTE gain 
INTEGER*2 value 

END STRUCTURE 
RECORD /buff_val/ buffer (10) 

DO i=1,10 
chan_list(i).chan = i 
chan_list(i).gain = 1 
chan_list(i).trigger = 
chan_list(i).timeout = 

ENDDO 

!Set up structure of channel list 
!Byte to hold channel number 
!Byte to hold channel gain 
!Byte to hold trigger source 
!Byte to hold timeout in second 
!End structure 
!The device-specific argument 

!Set up structure of one A/D value 
!Byte to hold channel number 
!Byte to hold channel gain 
! 1/ord to hold actual A/D value 
!End structure 
! Buffer of 10 A/D values 

!Loop to set up 10 A/D channels 
!Channel number 
! Channel gain 

1 !External trigger 
2b6 !266 second timeout 

status = LIO$READ (iava_id, buffer, 10 * 4, idata_len, chan_list) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The LIO$READ routine returns when data is read from the specified 
channels. 

6. Detach the device. 

status = LIO$DETACH (iava_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

Laboratory I/O Device Support 2-93 



2.4.1.4 Using the IAV11-A for Asynchronous Input 

To use the IAV11-A for asynchronous input, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 
3. Attach the IAV11-A device as described in Section 2.4.1.1, Attaching 

the IAV11-A. 

4. Set up the device to use the asynchronous I/~ interface. 

status = LIO$SET_I (iava_id, LIO$K_ASYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Enqueue a buffer to the device to start AID conversions. The 
device_specific argument is an array of longwords that you use to 
specify control information about the A/D channels. Eac11 longword 
specifies information about one channel. Byte 1 specifies the 
channel number. Byte 2 specifies the channel gain. Byte 3 specifies 
the trigger source. Byte 4 specifies the timeout in seconds. 

The buffer argument is an array of longwords that returns 
information about the data I10 transfer. Each longword returns 
information about one channel. Byte 1 returns the channel number. 
Byte 2 Y•eturns the channel gain. The high word returns the actual 
AID value read from the channel. 

Specify the buffer_length argument as a multiple of four. 

2-94 Laboratory IIO Device Support 



STRUCTURE /chan_val/ 
BYTE chan 
BYTE gain 
BYTE trigger 
BYTE timeout 

END STRUCTURE 
RECORD /chan_val/ chan_list(10) 

STRUCTURE /buff _val/ 
BYTE chan 
BYTE gain 
INTEGER*2 value 

END STRUCTURE 
RECORD /buff_val/ buffer(10) 

DO i=1,10 
chan_list(i).chan = i 
chan_list(i).gain = i 
chan_list(i).trigger = i 
chan_list(i).timeout = 2b6 

ENDDO 

!Set up structure of channel list 
!Byte to hold channel number 
!Byte to hold channel gain 
!Byte to hold trigger source 
!Byte to hold timeout in second 
!End structure 
!The device-specific argument 

!Set up structure of one A/D value 
!Byte to hold channel number 
!Byte to hold channel gain 
!Yord to hold actual A/D value 
!End structure 
!Buffer of 10 A/D values 

!Loop to set up 10 A/D channels 
!Channel number 
!Channel gain 
!External trigger 
!26b second timeout 

status = LIO$ENQUEUE (iava_id, buffer, 10 * 4, chan list) 
IF (.NOT. status) CALL LIB~SIGNAL (yiVAL(status)) 

The LIO$ENQUEUE routine returns as soon as it enqueues a buffer 
to the IAV11-A device. 

6. Dequeue the buffer using the LIO$DEQUEUE routine, or use 
one of the other• buffer synchl•onization mechanisms described 
in Section 1.5, Asynchronous I/O Buffer-Handling Mechanisms. 

7. Detach the device. 

status = LIO$DETACH (iava_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2.4.2 IAV11-B Support 

The IAV11-B1 is afour-channel group-isolated digital-to-analog converter 
with 12-bit resolution. 

1 This device is availaUle only in Europe. 

Laboratory I/O Device Support 2-95 



2.4.2.1 Attaching the IAV11-B 

Attaching an IAV11-B means assigning a VMS IIO channel to the device 
and initializing LIO data structures for, and pointers to, the device. 

Use the LIO$ATTACH routine to attach the IAV11-B. 

status = LIOSATTACH (iavb_id, 'IVAO' , LIO$K_gI0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The iavb_id argument returns the LIO-assigned device ID for the 
IAV11-B device. The IAV11-B device is referenced by this device ID 
in subsequent routine calls to the device in a user program. 

The device specification IVAO specifies an IAV11-B device with 
controller letter A and unit number 0. Specifying the unit number is 
optional. However, if you do specify a unit number, it must always be 
0. 

NOTE 

Each IXV11 device, whether it is an analog input, an analog 
output, a digital input, a digital output, or a counter device, 
is represented as a unique controller. Unit numbers are not 
used. For example, if you have more t11an one IXV11 device 
configured in your system, then the first IXV11 device is 
IVAO, the second IXV11 device is IVBO, and so on. 

The LIO$K_QIO value sets up the device to use QIOs. This is the only 
I1O type supported for the IAV11-B counter device. 

2.4.2.2 Setting Up the IAV11-B 

Before you can begin data transfers using the IAV11-B, you must set 
up certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOw parameters you can use to set up and s11ow IAV11-B 
device characteristics. See Chapter 4 for reference descriptions of the 
parameters listed in this table. 

2-96 Laboratory I/O Device Support 



Table 2-16: IAV11-B LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_AST_RTN Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

LIO$K_ASYNCH Sets tip a device for asynchronous I10. 

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer. 
becomes available. 

LIO$K_FORWARD Specifies the device to which completed. buffers are 
forwarded. 

LIO$K_SYNCH Sets up the device for synchronous IIO. 

2.4.2.3 Using the IAV11-B for Synchronous Output 

To use the IAV11-B for synchronous output, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the IAV11-B device as described in Section 2.4.2.1, Attaching 
the IAV11-B . 

4. Set up the device to use the synchronous I10 interface. 

statue = LIO$SET_I (iavb_id, LIO~K_SYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Write data to the IAV11-B device using the LIO$WRITE routine. The 
buffer argument of the LIO$WRITE routine is afour-element array 
of longword integers. The lower 12 bits of each longword are used 
to write data to an output channel. If a longword contains a -1, 
then the respective output channel is not changed. 

The LIO$WRITE routine returns after data is written to all the 
requested output channels. 

6. Detach the device. 

status = LIO$DETACH (iavb_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

Laboratory I/O Device Support 2-97 



2.4.2.4 Using the IAV11-B for Asynchronous Output 

To use the IAV11-B for asynchronous output, do the following: 

1. Include t11e symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the IAV11-B device as described in Section 2.4.2.1, Attaching 
the IAV11-B. 

4. Set up the device to use the asynchronous I1O interface. 

status = LIO$SET_I (iavb_id, LIO$K_ASYrICH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Enqueue a buffer to the device to start D/A conversions. T11e buffer 
argument of the LIO$ENQUEUE routine is a four-element array of 
longword integers. The lower 12 bits of each longword are used to 
write data to an output channel. If a longword contains a —1, then 
the respective output channel is not changed. 

6. Dequeue the buffer using the LIO$DEQUEUE routine, or use 
one of the other buffer synchronization mechanisms described 
in Section 1.5, Asynchronous IIO Buffer-Handling Mecllanis~ns. 

7. Detach the device. 

status = LIO$DETACH (iavb_id, ) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

2.4.3 IDV11-A Support 

The IDV11-A1 is a 16-channel optically isolated digital input device. 
The IDV11-A offers programmable interrupt capability on one channel, 
programmable contact bounce elimination, and programmable input 
voltage range selection. 

1 This device is availaUle only in Europe. 

2-98 Laboratory I/O Device Support 



2.4.3.1 Attaching the IDV11-A 

Attaching the IDV11-A means assigning a VMS I/O channel to the 
device and initializing LIO data structures for, and pointers to, the 
device. 

Use the LIO$ATTACH routine to attach the IDV11-A. 

status =~LIO$ATTACH (idva_id, 'IVAO', LIO$K_QIO) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The idva_id argument returns the LIO-assigned device ID for the 
IDV11-A device. The IDV11-A device is referenced by this device 
ID in subsequent routine calls to the device in a user program. 

The device specification IVAO specifies an IDV11-A device with 
controller letter A and unit number 0. Specifying the unit number is 
optional. However, if you do specify a unit number, it must always be 
0. 

NOTE 

Each IXV11 device, whether it is an analog input, an analog 
output, a digital input, a digital output, or a counter device, 
is represented as a unique controller. Unit numbers are not 
used. For exaYnple, if you have more than one IXV11 device 
configured in your system, then the first IXV11 device is 
IVAO, the second IXV11 device is IVBO, and so on. 

T11e LIO$K_QIO value sets up the device to use QIOs. This is the only 

IIO type supported for the IDV11-A devices. 

2.4.3.2 Setting Up the IDV11-A 

Before you can begin data transfers using the IDV11-A, you must set 
up certain device characteristics. The following table lists the LIO$SET 

and LIO$SHOW parameters you can use to set up and show IDV11-A 
device characteristics. See Chapter 4 for reference descriptions of the 
parameters listed in this table. 

Laboratory I/O Device Support 2-99 



Table 2-17: IDV11-A LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_AST_RTN Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

LIO$K_ASYNCH Sets up a device for asynchronous I10. 

LIO$K_BOUNCE Sets the contact bounce elimination response time 
delay for the IDV11-A device. 

LIO$K_DEVICE_EF Establishes the event flag that is set when. a buffer 
becomes available. 

LIO$K_EVENT_AST Assigns auser-written AST routine to be called on 
IDV11-A channel 15 events. 

LIO$K_FORWARD Specifies the device to which completed buffers are 
forwarded. 

LIO$K_POLARITY Defines the interrupt to occur on either. a 
positive-going or negative-going edge. 

LIO$K_SYNCH Sets up the device for synchronous I10. 

LIO$K_VOLTAGE Specifies the input voltage range for the 1DV11_-A 
device. 

2.4.3.3 Using the IDV11-A for Synchronous Input 

To use the IDV11-A for synchronous input, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 
3. Attach the IDV11-A device as described in Section 2.4.3.1, Attaching 

the IDV11-A. 

4. Set up the device to use the synchronous I/O interface. 

status = LIO$SET_I (idva_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

5. Read data from the IDV11-A device using the LIQ$READ routine. 

6. Detach the device. 

status = LIO$DETAC~H (idva_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

2-100 Laboratory I/O Device Support 



2.4.3.4 Using the IDV11-A for Asynchronous Input 

To use the IAV11-A for asynchronous input, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the IDV11-A device as described in Section 2.4.3.1, Attaching 
the IDV11-A. 

4. Set up the device to use the asynchronous IIO interface. 

status = LI03SET_I (idva_id, LI03K_ASYNCH, 0) 
IF (.NOT. statue) CALL LIB$SIGNAL (XVAL(status)) 

5. Enqueue a buffer to the device to start A/D conversions. 

6. Dequeue the buffex• using the LIO$DEQUEUE routine, or use 
one of the other buffer synchronization mechanisms described 
in Section 1.5, Asynchronous I10 Buffer-Handling Mechanisms. 

7. Detach the device. 

status = LIO$DETACH (idva_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2.4.4 IDV11-B and IDV11-C Support 

T11e IDV11-B1 is an isolated digital output device that provides 16 single 
optically isolated DC outputs. 

The IDV11-C1 is a relay output device that provides 16 latched reed 
contact output channels. 

2.4.4.1 Attaching the IDV11-B 

Attaching an IDV11-B means assigning a VMS I10 channel to the device 
and initializing LIO data structures for, and pointers to, the device. 

Use the LIO$ATTACH routine to attach the IDV11-B . 

status = LIO$ATTACH (idvb_id, 'IVAO' , LIO$K_gI0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

1 This device is availaUle only in Europe. 

Laboratory I/O Device Support 2-101 



The idvb_id argument returns the LIO-assigned device ID for the 
IDV11-B device. The IDV11-B device is referenced by this device ID 
in subsequent routine calls to the device in a user program. 

The device specification IVAO specifies an IDV11-B device with 
controller letter A and unit number 0. Specifying the unit number is 
optional. However, if you do specify a unit number, it must always be 
0. 

NOTE 

Each IXV11 device, whether it is an analog input, an analog 
output, a digital input, a digital output, or a counter device, 
is represented as a unique controller. Unit numbers are not 
used. For example, if you have more than one IXV11 device 
configured in your system, then t11e first IXV11 device is 
IVAO, the second IXV11 device is IVBO, and so on. 

The LIO$K_QIO value sets up the device to use QIOs. This is the only 
IIO type supported for the IDV11-B devices. 

2.4.4.2 Setting Up the IDV11-B 

Before you can begin data transfers using the IDV11-B, you must set 
up certain device characteristics. The following table lists the LIO$SET 
and LIO$SHQW parameters you can use to set up and show IDV11-B 
device characteristics. See Chapter 4 for reference descriptions of the 
parameters listed in this table . 

Table 2-18: IDV11-B LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_AST_RTN Specifies auser-written AST routine to receive 
buffers when a device finishes processing them.. 

LIO$K_ASYNCH Sets up a device foi• asynchronous I10. 

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer 
becomes available. 

LIO$K_FORWARD Specifies the device to which completed buffex•s are 
forwarded. 

LIO$K_SYNCH Sets tip the device for synchronous IIO. 

2-102 Laboratory I/O Device Support 

U 



2.4.4.3 Using the IDV11-B for Synchronous Output 

To use the IDV11-B for synchronous output, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the IDV11-B device as described in Section 2.4.4.1, Attaching 
t11e IDV11-B. 

4. Set up the device to use the synchronous I/O interface. 

statue = LIO$SET_I (idvb_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Write data to the IDV11-B device using the LIO$WRITE routine. 
The LIO$WRITE routine returns after the data is written to all the 
requested output channels. 

6. Detach the device. 

statue = LIO$DETACH (idvb_id, ) 
IF (.NOT. status) CALL LIB~SIGAtAL (XVAL(status)) 

2.4.4.4 Using the IDV11-B for Asynchronous Output 

To use the IDV11-B for asynchronous output, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the IDV11-B device as described in Section 2.4.4.1, Attaching 
the IDV11-B . 

4. Set up the device to use the asynchronous IIO interface. 

status = LIO$SET_I (idvb_id, LIO$K_ASYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Enqueue a buffer to the device to start D/A conversions. 

6. Dequeue the buffer using the LIO$DEQUEUE routine, or use 
one of t11e other buffer synchronization mechanisms described 
in Section 1.5, Asynchronous IIO Buffer-Handling Mechanisms. 

Laboratory I/Q Device Support 2-103 



7. Detach the device. 

status = LIO$DETACH (idvb_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2.4.5 The IDV11-D Real-Time Counter Device 

The IDV11-D1 is a counter device consisting of five 16-bit counters, 
which can be programmed to increment or decrement t11e count. The 
count inputs can be controlled either by external signals or internally. 
The counter outputs generate interrupts that can be processed by a 
user-defined AST routine. 

2.4.5.1 Attaching the IDV11-D 

Attaching the IDV11-D means assigning a VMS I1O channel to t11e 
device and initializing LIO data structures for, and pointers to, the 
device. Use the LIO$ATTACH routine to attach the IDV11-D. 

status = LIO$ATTACH (idvd_id, 'IVAO' , LIO$K_QIO) 
IF (.NOT. status) CALL LIB$SIGNAL ('/OVAL(status)) 

The idvd_id argument returns the LIO-assigned device ID for the 
IDV11-D device. The IDV11-D is referenced by this device ID in 
subsequent routine calls to the device in a user program. 

The device specification IVAO specifies an IXV11 device wit11 controller 
letter A and unit number 0. Specifying the unit number is optional. 
However, if you do specify a unit number, it nnust always be 0. 

NOTE 

Each IXV11 device, w11et11er it is an analog input, an analog 
output, a digital input, a digital output, or a counter device, 
is represented as a unique controller. Unit numbers are not 
used. For example, if you have more t11an one IXV11 device 
configured in your system, then t11e first IXV11 device is 
IVAO, the second IXV11 device is IVBO, and so on. 

The LIO$K_QIO value sets up the device to use QIOs. This is the only 
I/O type supported for the IDV11-D counter device. 

1 This device is available only in Europe. 

2-104 Laboratory I/O Device Support 



2.4.5.2 Setting Up the IDV11-D 

Before you can begin data transfers using the IDV11-D, you must set 
up certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and show IDV11-D 
device characteristics. See Chapter 4 fir reference descriptions of the 
parameters listed in this table. 

Table 2-19: IDV11-D LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_AST_RTN Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

LIO$K_ASYNCH Sets up a device for asynchronous 110. 

LIO$K_CC_FOUT Sets the Frequency Output (FOUT) reference signal 
for the IDV11-D device. 

LIO$K_CC_SETUP Sets up the operating characteristics of one channel 
on the IDV11-D real-time counter device. 

LIO$K_DEVICE_EF Establishes the event flag that is set when a buffer 
becomes available. 

LIO$K_FORWARD Specifies the device to which completed buffers are 
forwarded. 

L10$K_START Starts one or more of the five IDV11-D counter 
channels. 

LIO$K_STOP Stops one or more of the five IDV11-D counter 
channels. 

LIO$K_SYNCH Sets up the device for synchronous I/O. 

2.4.5.3 Using the IDV11-D to Count External Events 

This section describes how to write a program that uses the IDV11-D 
counter to call an AST routine after the IDV11-D counts a defined 
number of external pulses. 

In this example, counter channel 1 generates an interrupt after 5 pulses 
are counted on source 1. Counter channel 1 is initialized to count down, 
counting on the positive edge of source 1 with no gating or active low 
pulse. The precount is set to 5. The counter starts immediately on the 
positive edge of source 1. 

Laboratory I/O Device Support 2-105 



The counter counts down four pulses: 4, 3, 2, 1. With the next positive 
edge of source 1, instead of counting down to 0 (not a legal value 
when counting down), the counter reloads the value of the load register 
(which is 5 in this example). Then, the IDV11-D generates an interrupt 
and calls your AST routine. The counter continues to run until it is 
explicitly stopped using the LIO$K_STOP parameter. 

To count external events using the IDV11-D counter, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the IDV11-D device as described in Section 2.4.5.1, Attaching 
the IDV11-D. 

4. Set up the device to use the synchronous I/O interface. 

status = LIO$SET_I (idvd_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGZ~IAL (XVAL(status)) 

5. Set up the operating characteristics of counter channel 1. The 
following table shows the values of a longword integer array of 
length nine called cc_array. The cc_array argument contains the 
operating characteristics for counter channel 1. Use cc_array as an 
argument to the LIO$K_CC_SETUP parameter. 

Index Value Function 

1 1 Selects counter channel 1 
2 5 Sets precount of 5 pulses 
3 0 Sets countdown switch 
4 0 Sets count on positive-edge switch 
5 1 Sets immediate start 
6 user_ast Enter your AST routine address 
7 user param Enter your AST routine parameter 
8 1 Selects source 1 
9 0 Selects no gating 

2-106 Laboratory I/O Device Support 

`J 

lJ 



The following code segment sets up the operating characteristics: 

INTEGER*4 cc_array(9) 

cc_array(1)=1 
cc_array(2)=b 
cc_array (3) =0 
cc_array (4) =0 
cc_array(b)=1 
cc_array(6)=user_ast 
cc_array(7)=user_param 
cc_array(8)=1 
cc_array (9) =0 

!Declare integer array of length 9 

!Channel 1 
!Precount b pulses 
! Countdo~rn 
!Positive edge 
! Iirnnediate start 
!Enter your AST routine name 
!Enter your AST routine parameter 
!Source 1 
!No gating 

status = LIO$SET_I (idvd_id, LIO$K_CC_SETUP, 1, XLOC(cc_array)) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

The counter begins counting immediately. When the counter 
reaches the fifth pulse, your AST routine is called. 

6. Stop the counter. The following table shows the values of a 
longword integer array of length five called cc_stop. The cc_stop 
array contains the IDV11-D counter channels to stop. Use cc_stop 
as an argument value to the LIO$K_STOP parameter to stop the 
counter channels. 

Index Value Function 

1 
2 
3 
4 
5 

0 
1 
0 

0 

Counter channel 0 not used 
Stop counter channel 1 
Channel 2 is not used 
Channel 3 is not used 
Channel 4 is not used. 

Laboratory I/O Device Support 2-107 



The following code segment sets up the IDV11-D counter channels 
to stop and stops them. 

INTEGER*4 cc_stop(6) !Declare integer array of length 6 

cc_stop(1)=0 !Channel 0 not used 
cc_stop(2)=1 !Stop Channel 1 
cc_stop(3)=0 !Channel 2 not used 
cc_stop(4)=0 !Channel 3 not used 
cc_stop(6)=0 !Channel 4 not used 

status = LIO$SET_I (idvd_id, LIO$K_STOP, 1, xLOC(cc_stop)) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

7. Detach the device. 

status = LIO$DETACH (idvd_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2.4.5.4 Using the IDV11-D to Measure Pulse Duration 

This section describes how to use the IDV11-D to measure the duration 
of an external pulse. 

This example uses two of the IDV11-D counters. The first counter is 
set up to count t11e internal reference clock (the 5 MHz clock) and is 
gated by the active high state of the external pulse. The external pulse 
is connected to gate 2. The second counter is set up to interrupt, thus 
calling your AST routine, on the negative edge of the external pulse. 

To measure pulse duration using the IDV11-D, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the IDV11-D device as described in Section 2.4.5.1, Attaching 
the IDV11-D. 

4. Set up the device to use the synchronous IIO interface. 

status = LIO$SET_I (idvd_id , LIO$K_SYrICH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2-108 Laboratory I/O Device Support 



5. Set up the operating characteristics of counter channel 1. The 
following table shows the values of a longword integer array of 
length nine called setupl_array. The setupl_array argument contains 
the operating characteristics for counter channel 1. Use setupl_array 
as an argument value to the LIQ$K_CC_SETUP parameter. 

Index Value Function 

1 1 Selects counter channel 1 
2 0 Sets precount 
3 1 Sets count up switch 
4 0 Sets count on positive-edge switch. 
5 0 Sets explicit start 
6 0 No AST routine 
7 0 No AST routine parameter 
8 11 Selects 5 MHz clock source 
9 2 Selects gate 2 

The following code segment sets up the operating characteristics: 

INTEGER*4 setupi_array(9) !Declare integer array of length 9 

setupl_array(1)=1 
setupi_array(2)=0 
setupl_array(3)=1 
setupi_array(4)=0 
setupi_array(b)=0 
setupi_array(6)=0 
setupi_array(7)=0 
setupi_array(8)=11 
setupi_array(9)=2 

!Channel 1 
!Initial precount 
!Count up 
!Positive edge 
!Explicit start 
!No AST routine 
! Pdo AST routine parameter 
15 MHz clock source 
!Gate 2 

status = LIO$SET_I (idvd_id, LIO$K_CC_SETUP, 1, '/~LOC(setupl_array)) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

When the LIQ$SET_I routine returns, the device is set up, but is not 
started. 

Laboratory I/Q Device Support 2-109 



6. Set up the operating characteristics of counter channel 2. The 
following table shows the values of a longword integer array of 
length nine called setup2_array. The setup2_array argument contains 
the operating characteristics for counter channel 2. Use setup2_array 
as an argument value to the LIO$K_CC_SETUP parameter. 

Index Value Function 

1 2 
2 1 
3 0 
4 1 
5 0 
6 0 
7 0 
8 7 
9 0 

Selects counter channel 2 
Sets precount 
Sets countdown switch 
Sets count on negative-edge switch 
Explicit start 
No AST routine 
No AST routine parameter 
Selects Gate 2 source 
No gating 

The following code segment sets up the operating characteristics: 

INTEGER*4 setup2_array(9) !Declare integer array of length 9 

setup2_array(1)=2 !Channel 2 
setup2_array(2)=1 !Initial precount 
setup2_array(3) =0 ! Countdourn 
setup2_array(4)=1 !Negative edge 
setup2_array(6)=0 !Explicit start 
setup2_array(6)=0 !No AST routine 
setup2_array(7)=0 !No AST routine parameter 
setup2_array(8)=7 !Source =Gate 2 
setup2_array(9)=0 !No gating 

status = LIO$SET_I (idvd_id, LIO$K_CC_SETUP, 1, XLOC(setup2_array)) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(Btatus)) 

When the LIO$SET_I routine returns, the device is set up, but is not 
started. 

2-110 Laboratory I/O Device Support 



7. Explicitly start both counters. The following table shows t11e values 
for a longword integer array of length five called cc_start. The 
cc_start array contains the IDV11-D counter channels to start. Use 
cc_start as an argument value to the LIQ$K_START parameter to 
start the counter channels. 

Index Value Function 

1 0 Channel 0 not used 
2 1 Starts counter channel 1 
3 1 Starts counter channel 2 
4 0 Channel 3 is not used 
5 0 Channel 4 is not used 

The following code segment sets up the IDV11-D counter channels 
to start and starts them. 

INTEGER*4 cc_start(b) !Declare integer array of length b 

cc_start (1)=0 
cc_start (2)=1 
cc_start (3) =1 
cc_start (4) =0 
cc_start (6) =0 

!Channel 0 not used 
!Start channel 1 
!Start channel 2 
!Channel 3 not used 
!Channel 4 not used 

status = LIO$SET_I (idvd_id, LIO$K_START, i, XLOC(cc_start)) 
IF (.PLOT. status) CALL LIB$SIGNAL (XVAL(status)) 

8. After counter 2 generates an interrupt and calls your AST routine, 
read the contents of counter 1. Divide t11e value returned by 5 
MHz to determine the duration of the external pulse. Use the 
device_specific argument to specify which counter to read. 

BYTE device_specific(4) 
INTEGER*2 chan_number 
BYTE disarm, save 

EQUIVALENCE (device_specific(1) , chan_number) 
EQUIVALENCE (device_specific(3), disarm) 
EQUIVALENCE (device_specific(4), save) 

chan_number = 1 

disarm = 1 ! channel gill be disarmed (stopped), With 
save = 1 ! LIO~READ content of the counter saved in 

! the hold register 

Laboratory I/Q Device Support 2-111 



status = LIO$READ (idvd_id , buffer, buff er_length , data_length, 
1 device_specific) 

IF (.NOT. status) CALL LIB$SIGNAL (Y~VAL(status)) 

9. Detach the device. 

status = LIO$DETACH (idvd_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (y~VAL(status)) 

2.4.5.5 Using the IDV11-D to Generate Pulse Trains 

This section describes how to use the IDV11-D to generate output pulses 
at specified time intervals. 

This example uses counter channel 3 to generate an active low output 
pulse every 0.5 milliseconds. The pulse width output is defined by t11e 
period of the counting source. This example uses the 5-MHz internal 
reference frequency as the counting source. 

To generate pulse trains using the IDV11-D, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your progiain. 

3. Attach the IDV11-D device as described in Section 2.4.5.1, Attaching 
the IDV11-D. 

4. Set up the device to use t11e synchronous I/O interface. 

status = LIO$SET_I (idvd_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Set up the operating characteristics of counter channel 3. The 
following table shows t11e values of a longword integer array of 
length nine called setup3_array. T11e setup3_array argument contains 
the operating characteristics for counter channel 3. Use setup3_array 
as an argument value to the LIO$K_CC_SETUP parameter. 

Index Value Function 

1 3 Selects counter.• channel 3 
2 2500 Sets precount for 2500-pulse interval 
3 0 Sets countdown switch 
4 0 Sets count on positive-edge switch 
5 1 Sets immediate star. t 

2-112 Laboratory I/O Device Support 



Index Value Function 

6 
7 
8 
9 

0 No AST routine 
0 No AST routine parameter 

11 Selects 5 MHz clock source 
0 Selects no gating 

The following code segment sets up the operating characteristics: 

INTEGER*4 setup3_array(9) !Declare integer array of length 9 

setup3_array(1)=3 !Channel 3 
setup3_nrray(2)=2600 !Precount for 2600 pulse interval 
setup3_array(3)=0 !Countdown 
setup3_array(4)=0 !Positive edge 
setup3_array(b)=1 !Immediate start 
setup3_array(6)=0 !No AST routine 
setup3_array(7)=0 !No AST routine parameter 
setup3_array(8)=11 !6-MHz clock source 
setup3_array(9)=0 !No gating 

status = LIO$SET_I (idvd_id, LIO$K_CC_SETUP, 1, xLOC(setup3_array)) 
IF (.NOT. status) CALL LIB$SIGNAL (y~VAL(status)) 

The counter begins to generate pulses iYnmediately. 

6. Detach the device. 

status = LIOsDETACH (idvd_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (y,VAL(status)) 

2.4.5.6 Using the IDV11-D to Generate Output Frequencies 

This section describes how to use the IDV11-D to generate output 
frequencies. 

This example sets up t11e frequency output signal to provide a 
quartz-controlled output of 5 MHz divided by 256 by using one of 
the internal reference frequencies. 

To generate output frequencies using the IDV11-D, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

Laboratory I/O Device Support 2-113 



3. Attach the IDV11-D device as described in Section 2.4.5.1, Attaching 
the IDV11-D. 

4. Set up the device to use the synchronous I10 interface. 

status = LIO$SET_I (idvd_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

5. Set up the parameters for the frequency output (FOUT) reference 
signal. The following table shows the values of a longword integer 
array of length three called cc_fout. The cc_fout argument contains 
the parameters for the frequency output reference signal. Use 
cc_fout as an argument value to the LIO$K_CC_FOUT parameter. 

Index Value Function 

1 0 Turn FOUT on switch 
2 13 Source = 5 MHz1256 
3 1 Divide by 1 

The following code segrnent sets up t11e FOUT parameters: 

INTEGER*4 cc_fout (3) !Declare integer array of length 3 

cc_fout (1) =0 
cc_fout(2)=13 
cc_fout (3)=1 

!Turn FOUT on 
!Source = 5 MHz/256 
!Divide by 1 

status = LIO~SET_I (idvd_id, LIO$K_CC_FOUT, i, XLOC(cc_fout)) 
IF (.NOT. status) CALL LIB$SIGrIAL (XVAL(status)) 

6. Detach the device. 

status = LIOSDETACH (idvd_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL ('/,VAL(status)) 

2.5 IEEE-488 Bus Devices 

LIO provides support for an IEEE-488 device as: 

• The system controller 

• A controller 

• An instrument 

2-114 Laboratory I/Q Device Support 



The role of the IEEE-488 device is defined when the device is attached. 

LIO provides support for two Digital IEEE-488 devices—the IEQ11 and 
the IEZ11—and for the IOtech Micro488A. 

2.5. ~ IEQ1 ~ and IEZ11 

The IEQ11 contains two units, each of which can interface up to 14 
instruments. Each unit can be attached as a separate LIO device. 

The VMS and LIO device name for the IEQ11 is IX. The first unit on the 
first IEQ11 device is IXAO and the second unit is IXA1. The first unit on 
the second IEQ11 device is IXBO, and so on. 

The IEZ11 allows up to 14 instruments to be controlled from the external 
SCSI port of a MicroVAX 3100 series or VAXstation 3100 series system. 

The VMS and LIO device name for the IEZ11 is EK. On t11e VAXstation 
3100 Model 30, the device should be attached as EKAO or EKA1. On 
the VAXstation 3100 Model 40 and the MicroVAX 3100, the device 
should be attached as EKBO or EKB1, on the "B" (external) SCSI 
controller. 

The IEQ11 and the IEZ11 are similar devices and have nearly identical 
functionality under LIO. 

For more information about t11e IEQ11, see the IEU11-A/IEQI1-A User's 
Guide. 

For more information about the IEZ11, see the IEZ11 Software I~~stallatior~ 
Guide, the IEZ11 Hardware Irtstallatio~~ Guide, and the DEC IEZ11 VMS 
Class Driver User's Guide. 

2.5.2 IOtech Micro488A 

The IOtech Micro488A bus controller is an RS232 to IEEE-488 converter. 
The Micro488A supports synchronous I/O only. 

The Micro488A can be used to add IEEE-488 functionality to any 
VSL-supported processor with a serial line interface. 

Laboratory I/O device Support 2-115 



The LIO device name for the Micro488A is IT. This name tells LIO the 
type of device to attach, but does not specify which physical port will 
be used. 

The physical device name defaults to TTA2, because this is the se1•ial 
port on the VAXstation 3100. To override this assignment, you must 
define the logical name IOTECH_PORT as the desired physical port. 
For example, the following logical name defines the physical port as a 
serial line on a DECserver. 

$ DEFINE IOTECH_PORT LTAb: 

The Micro488A functionality under LIO is a subset of the IEQ11 
and IEZ11 functionality. The individual LIO$SET and LIO$SHOW 
parameters document the differences and limitations. 

NOTE 

You cannot use the IOtech Micro488A to transfer raw binary 
data. 

For more information about the Micro488A, see the documentation 
from IOtech, Inc. 

2.5.2.1 IOtech Micro488A DIP Switch Settings 

You must set certain switches to use the Micro488A with LIO, as shown 
in the following list: 

• Serial baud rate: SW1-1 through SW1-4. For LIO, the range is from 
110 to 19200, to be determined by the user. The typical setting is 
9600. You also need to "SET TERM/PERM/SPEED =baud rate" 
from the DCL prompt. 

• Serial handshake selection: SW1-5 open (for XONIXOFF software 
control). 

• Serial word length selection: SW1-6 closed (for 8 bits). You also 
need to "SET PORTIPERM/EIGHT" from the DCL prompt. 

• Controller pass-thru selection: SW1-7. Controller pass-tliru mode is 
not supported for LIO, so this setting does not matter. 

• Serial stop bit selection: SW1-8 closed (for 1 bit). 
• Serial echo selection: SW2-5 closed (for echo disabled). 
• Serial parity selection: SW2-6 closed (for parity disabled). 

2-116 Laboratory I/Q Device Support 



• Mode selection: SW2-1 and SWZ-2 closed for system controller 
mode; SW2-1 open and SW2-2 closed for peripheral mode. LIO 
supports system controller and peripheral modes only. 

• IEEE address selection: SW3-1 through SW3-5. The address must 
be unique. 

2.5.3 An IEEE-488 Device as the System Controller 

An IEEE-488 device can be attached as the IEEE-488 bus system 
controller. An IEEE-488 device attached as the system controller is 
the device that is the controller-in-charge of the IEEE-488 bus when your 
application program first attaches the device. 

NOTE 

Only one device on the IEEE-488 bus can be the system 
controller. If a device is already functioning as the system 
controller, do not attach an IEEE-488 device as the system 
controller. 

The system controller can pass control (controller-in-charge status) to 
any other device that is attached as a controller. The system controller 
can resume control of the IEEE-488 bus by having control passed back 
to it, or by sending the "interface clear" request. 

Only the controller-in-charge of the IEEE-488 bus is able to perform 
certain functions: 

• Respond to sei~rice requests from devices on the bus 

• Send commands to devices on the bus 

• Parallel poll the devices on the bus 

• Serial poll the devices on the bus 

2.5.4 An IEEE-488 Device as a Controller 

An IEEE-488 device attached as a controller is initially not the 
controller-in-charge. This means that the device cannot perform 
the controller-in-charge functions described in Section 2.5.3, An 
IEEE-488 Device as the System Controller, until it becomes the 
c ontroller-in-charge . 

Laboratory I/O Device Support 2-117 



An IEEE-48$ device becomes acontroller-in-charge when the current 
controller-in-charge passes control to it. The controller remains the 
controller-in-charge until it passes control to another controller or until 
the system controller resumes control with the "interface clear" request. 

2.5.5 An IEEE-488 Device as an Instrument 

An instrument on the IEEE-488 bus is a slave to the controller-in-charge. 
An instrument sending a message is a talker. Only one instrument on 
the bus may talk at any one time. An instrument receiving a message is 
a listener. Any number of instruments can listen to a message being 
sent by the talker. In general, some IEEE-488 instruments can be 
talkers only, listeners only, or both talkers and listeners. An application 
program can use an IEEE-488 device as a talker only, as a listener only, 
or as both a talker and a listener. 

An instrument talks when the controller-in-charge addresses it to talk, 
and it listens when the controller-in-charge addresses it to listen. The 
only independent action an instrument can take is to request service 
(SRQ). An IEEE-488 device on the IEEE-488 bus acts as an instrument 
unless it is the controller-in-charge. 

2.5.6 IOtech Micro488A Device Modes 

The IOtech Micro488A supports the system controller, controller, and 
instrument modes discussed above, but with one major distinction: You 
enable or disable the modes by setting a DIP switch in the device to 
either System Controller or Peripheral mode. 

By default the System Controller mode is enabled, which means that the 
Micro488A can be attached as a controller or as the system controller. 
This is fine for most applications since controllers can behave as 
instruments. 

In some applications, however, you may want to use the Micro488A as 
an instrument (as an add-on to existing IEEE-488 buses, for example). In 
this case you should set the DIP switch to Peripheral mode and attach 
the Micro488A as an instrument. See Section 2.5.2.1, IOtec11 Micro488A 
DIP Switch Settings, for more information. 

2-118 Laboratory I/O Device Support 



2.5.7 Attaching an IEEE-488 Device 

Attaching an IEEE-488 device means assigning a VMS I/O channel to 
the device and initializing LIO data structures for, and pointers to, the 
device. The role of the IEEE-488 device is defined when the device is 
attached. 

Use the LIO$ATTACH routine to attach an IX (IEQ11) or EK (IEZ11) 
device. 

statue = LIO~ATTACH (ieee_id, 'IXAO', LIO$K_SYS_CTRL) !System controller 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

status = LIOSATTACH (ieee_id, 'IXA1', LIO$K_CTRL) !rJon-system Controller 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

status = LIO~ATTACH (ieee_id, 'IXBO', LIO$K_INSTRUMENT) !Instrument 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

status = LIO$ATTACH (ieee_id, 'EKBO', LIOSK_SYS_CTRL) !System controller 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

The ieee_id argument returns the LIO-assigned device ID for the device. 
The device is referenced by this device ID in subsequent routine calls to 
the device in a user program. 

The device specification IXAO specifies an IEQ11 (IX) device, with 
controller letter A and unit number 0. To attach another IX device, 
specify unit number 1. 

The IEQ11 supports two units per device. Each device must have a 
unique device specification. The devices can be attached in any order. 

The device specification EKBO specifies an IEZ11 (EK) device, with 
controller letter B and unit number 0. 

T11e IEZ11 supports one unit per device, attached as unit 0 or 1. 

The I1O type LIO$K_SYS_CTRL sets up an IEEE-488 device as 
the system controller. This is the default value. The I1O type 
LIO$K_CTRL sets up an IEEE-488 device as a controller. The I1O type 
LIO$K_INSTRUMENT sets up an IEEE-488 device as an instrument. 

The IT (IOtech Micro488A) device is attached the same way as the 
IX and EK devices, but the controller and unit designation have 
no meaning. To use a port other than TTA2 you must define the 
logical name "IOTECH_PORT" to be the physical device name. See 

Laboratory I/O Device Support 2-119 



Section 2.5.2, IOtech Micro488A, for an example of defining t11e logical 
name . 

The controller function for the IT device is selected by setting DIP 
switches in the device. See Section 2.5.2.1, IOtech Micro488A DIP 
Switch Settings, for more infoiination. 

See the description of the LIO$ATTACH routine in Chapter 3 for more 
information about supplying device specifications and IIO types to the 
LIO$ATTACH routine . 

2.5.8 Setting Up the IEEE-488 Device 

Before you can begin using an IEEE-488 device, you must set up 
certain device characteristics. Thy following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and show IEEE-488 
device characteristics. See Chapter 4 fox reference descriptions of the 
parameters listed in this table. 

Table 2-20: IEEE-488 Device LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_ASYNCH 

LIO$K_AUX_COMMAND 

LIO$K_COMMAND 

LIO$K_CTRL_ACTIVE 

L10$K_CTRL_STANDBY 

LIO$K_DEVICE_EF 

LIO$K_EOI 

LIO$K_ERR_HANDLE 

2-120 Laboratory 1/O Device Support 

Sets up a device to use the asynchronous I10 
interface. 

(LIO$K_ASYNCH is not supported for the 
IOtech Micro488A. ) 

Sends an auxiliary command. to an IEEE-488 
device. 

Sends the specified IEEE-488 commands on the 
bus. 

Activates the IEEE-488 controller function. 

Deactivates the IEEE-488 controller function. 

Establishes the event flag that is set when a 
buffer becomes available. 

Asserts or does not asse~•t the end-or-identify 
(EOI) line when the last byte of data is output. 

Specifies the way in which a device returns 
err. or conditions. 



Table 2-20 (Copt.): IEEE-488 Device LIO$SET and LIO$SHOW 
Parameters 

Parameter Function 

LIO$K_EVENT_AST 

LIO$K_EVENT_ENA 

LIO$K_EVENT_WAIT 

LIO$K_IEEE_ADDR 

LIO $K_LEAVE_IN_STATE 

L10$K_PAR_POLL 

LIO$K_PAR_POLL_CONFIG 

LIO$K_PAR_POLL_STATUS 

LIO$K_PASS_CTRL 

LIO$K_SER_POLL 

LIO$K_SER_POLL_CONFIG 

LIO$K_SRQ 

Assigns auser-written AST routine to be called 
on IEEE-488 bus events. 

(LIO$K_EVENT_AST is not supported for the 
IOtech Micro488A.) 

Enables the recognition of specified IEEE-488 
bus events. 

Waits for enabled IEEE-488 bus events to occur. 

Sets the IEEE-488 bus address of the device, 
and. enables or disables the recognition of 
secondary addressing. 

(Note that the IEZ11 and. the IOtech Micro488A 
cannot be addressed as a secondary listener or 
talker.) 

Specifies whether or not to leave an IEQ11 
device in the state required to process the 
subsequent I! O request . 

(LIO$K_LEAVE_IN_STATE is not supported for 
the IEZ11 or the IOtech Micro488A. ) 

Performs a parallel poll of IEEE-488 bus 
instruments. 

Sets up the list of IEEE-488 instruments for 
parallel polling. 

Sets up an instrument's parallel poll status 
register. 

Passes control to another IEEE-488 bus device. 

Serial polls a pred_eter.mined list of IEEE-488 
instruments. 

Sets up the list of IEEE-488 instruments to 
serial poll. 

Defines an IEEE-488 device's serial poll status 
byte and, optionally, sends a service request to 
the controller-in-charge. 

Laboratory I/O Device Support 2-121 



Table 2-20 (Copt.): IEEE-488 Device LIO$SET and LIQ$SHOW 
Parameters 

Parameter Function 

LIO$K_SYNCH Sets up the device for synchronous I10. 

LIO$K_TERM_CHAR Defines a termination character to mark the 
end of a data transfer. 

LIO$K_TERM_SRQ Enables or disables termination of I10 transfers 
by a service request . 

(LIO$K_TERM_SRQ is not supported for the 
IEZ11 or the IOtech Micro488A.) 

LIO$K_TIMEOUT Sets the length of time (in seconds) before an 
I10 request is aborted. 

2.5.9 Assigning IEEE-488 Bus Addresses 

The LIO facility recognizes the location of a device on the IEEE-488 bus 
by its address. Immediately after you attach an IEEE-488 device, you 
must assign it a primary IEEE-488 bus address before you set up any 
other device characteristics. A device does not actually exist on the 
IEEE-488 bus until it is assigned a primary address. 

You also have the option of enabling a device to recognize secondary 
addresses. 

NOTE 

An IEZ11 or an IOtech Micr-o488A device cannot be 
addressed as a secondary listener or a secondary talker. 
However, an IEZ11 or a Micro488A can generate secondary 
addresses when it is controller-in-charge. 

Use the LIO$K_IEEE_ADDR parameter to assign the device's IEEE-488 
primary bus address, and to enable the recognition of secondary 
addressing, for example: 

status = LIO~SET_I (ieee_id, LIO$K_IEEE_ADDR, 2, 0, LIOSK_ON) 
IF (.NOT. status) CALL LIBSSIGNAL CXVALCstatus)) 

The LIO$K_IEEE_ADDR constant is the LIO$SET_I parameter being set. 

2-122 Laboratory I/Q Device Support 



The 2 tells LIO that you are specifying two parameter values for the 
LIO$K_IEEE_ADDR parameter. 

The 0 assigns IEEE-488 bus address zero as the primary address of this 
device. 

The LIO$K_ON value enables the recognition of secondary addressing. 

See the description of the LIO$SET_I routine in Chapter 3 for more 
information about specifying the appropriate arguments for this routine. 

See the description of the LIO$K IEEE_ADDR parameter in Chapter 4 
for the acceptable values of this parameter. 

NOTE 

In addition to using LIO$K_IEEE_ADDR, you must also set 
DIP switches on the IOtech Micro488A device to assign the 
bus address. See Section 2.5.2.1, IOtech Micro488A DIP 
Switch Settings, for more information. 

2.5.10 Enabling IEEE-488 Events 

When a device is the controller-in-charge, a service request (SRQ) is an 
event. 

When a device is not the controller-in-charge, IEEE-488 commands 
received from the controller-in-charge are treated as events by the 
device set up to respond to them. 

To detect events on the IEEE-488 bus, the desired event types must be 
enabled with LIO$SET_I. Use the set parameter LIO$K_EVENT_ENA 
to enable specific events. The LIO$K_EVENT_ENA parameter values 
specify the bus events for as shown in the following table. 

Laboratory I/O Device Support 2-123 



Value Meaning 

LIO$K_DEADDR_EVT The device has been deaddressed. 

This event is detectable only when the device is not the 
controller-in-charge. 

LIO$K_DEV_CLR_EVT The controller-in-charge has sent the "devise clear. " 
command. The instrument should reset itself to its 
power-up state. Remember that user-written application 
programs are responsible for all instrument functions. 
The instrument should return to its initial state. 

LIO$K_DEV_TRIG_EVT 

LIO$K_EXT_LNR_EVT 

LIO$K_EXT_TKR_EVT 

LIO$K_IFC_EVT 

LIO$K_LNR_ADDR_EVT 

2-124 Laboratory I/O Device Support 

This event is detectable only when the device is not the 
controller-in-charge. 

The controller-in-charge 11as sent the "device trigger" 
command_. The instrument should trigger as specified in 
the user-written application program. 

This event is detectable only when the device is not the 
controller-in-charge . 

The controller-in-charge is addressing the device as an 
extended (secondary) listener. 

This event is detectable only when the device is not the 
controller-in-charge. 

(LIO$K_EXT_LNR_EVT is not supported for the IEZ11 or 
the lOtech Micro488A.) 

The controller-in-charge is addressing the device as an 
extended (secondary) talker. 

This event is detectable only when the device is not the 
controller-in-charge . 

(LIO$K_EXT_TKR_EVT is not supported. for the IEZ1.1 or 
the IOtech Micro488A. ) 

The system controller is signalling the device to clear its 
bus interface. This does not generally affect the internal 
state of the instrument. 

(LIO$K_IFC_EVT is not supported for the IEZ11 or the 
IOtech Micro488A.) 

The controller-in-charge is addressing the device as a 
listener. 

This event is detectable only when the device is not the 
controller-in-charge. 



Value Meaning 

LIO$K_PAR_POLL_CONFIG_EVT The controller-in-charge is signalling the device to 
configure itself for parallel polling. 

This event is detectable only when the device is not the 
controller-in-charge. 

(LIO$K_PAR_POLL_CONFIG_EVT is not supported for the 
IEZ11 or the IOtech Micro488A.) 

LIO$K_PAR_POLL_UNCONFIG_EVT The controller-in-charge is signalling the device to 
unconfigure itself for. parallel polling. 

This event is detectable only when the device is not the 
controller-in-charge. 

(LIO$K_PAR_POLL_UNCONFIG_EVT is not supported for 
the IEZ11 or the IOtech Micro488A.) 

LIO$K_REC_CTRL_EVT The device has received control from the current 
controller-in-charge. 

This event is detectable only when the device is not the 
controller-in-charge, and it is attached as controller or 
system controller. 

LIO$K_REM_LOCAL_EVT The device state has changed from remote to local, or 
from local to remote. The current state of the device 
is returned by the LIO$K_EVENT_WAIT parameter, or 
by the AST routine set up by the LIO$K_EVENT_AST 
parameter. 

This event is detectable only when the device is not the 
con t rolle r-i n-charge . 

(LIO$K_REM_LOCAL_EVT is not supported for the IEZ11 
or the IOtech Micro488A.) 

Ll0$K_SRQ_EVT A device is requesting service. 

This event is detectable only when the device is the 
con troller-in-charge . 

LIO$K_TKR_ADDR_EVT The controller-in-charge is addressing the device as a 
talker. 

For this event to be detectable, the device must be the 
controller-in-charge. 

Laboratory I/O Device Support 2-125 



Multiple events can be specified in one call, for example: 

status.= LIO~SET_I (ieee_id, LIO~K_EVENT_ENA, 2, LIOSK_PAR_POLL_CONFIG_EVT, 

1 LIO~K_TKR_ADDR_EVT) 

IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

This routine enables an IEEE-488 device to respond to a "parallel poll 
configure" event or an "addressed as talker" event. This means that 
the device detects that the controller-in-charge is performing a parallel 
poll configuration or is addressing this device as a talker. 

See the description of the LIO$K_EVENT_ENA parameter in Chapter 4 
for more information. 

2.5.11 Detecting IEEE-488 Bus Events 

The LIO facility supports the following two methods of detecting t11e 
occurrence of IEEE-488 bus events. Before an event can be detected, it 
must be enabled by the LIO$K_EVENT_ENA parameter. 

• You can set up an IEEE-488 device with auser-written AST routine 
(LIO$K_EVENT_AST) that is called when an enabled event occurs, 
for example: 

status = LIOSSE?_I (ieee_id, LIO$K_EVEriT_AST, 1, event_ast) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

In this example, the LIO facility calls the user-written AST routine, 
event_ast, when an enabled event occurs. Your AST routine should 
take whatever action is appropriate for t11e device on this event. 
See Section 2.5.12, Supplying AST Routines, for information about 
supplying user-written AST routines. 

• You can call the LIO$SHOW routine for an IEEE-488 device with the 
LIO$K_EVENT_VITAIT parameter. This routine waits for an enabled 
event to occur, and then returns it, for example: 

INTEGER*4 event (2) 
INTEGER*4 length 

LIO$SHOY (ieee_id, LIOSK_EVETtT_YAIT, event, length) 

2-126 Laboratory I/O Device Support 



This routine segment declares the variable event to be an integer 
array of length 2, and the variable length to be an integer. The 
IEEE-488 bus event and event-specific information are returned in 
the elements of the event array. The length variable returns the 
number of elements contained in the event array. The first element 
in the event array returns the IEEE-488 event code and the second 
element returns event specific information. 

The nature of your application determines which method is more 
appropriate. 

See the descriptions of the LIO$K_EVENT_AST and 
LIO$K_EVENT_WAIT parameters in Chapter 4 for snore information 
about setting up a device to wait for IEEE-488 bus events. 

2.5. ~ 2 Supplying AST Routines 

You can supply the following two types of AST routines when using 
IEQ11 or IEZ11 devices: 

• A buffer completion AST routine. A buffer completion AST routine 
is a normal user-written subroutine that the LIO facility calls to 
receive completed buffers from a device, usually for processing. 
When a device finishes a buffer transaction, it calls the AST routine 
and passes the buffer to it. 

Section 1.5.3, Asynchronous System Traps (ASTs), describes buffer 
completion AST routines in more detail. Also see Chapter 3, 
Program Development, in Getting Started zvith VAXIab for information 
about writing buffer completion AST routines that is specific to 
certain programming languages. 

• An event AST routine. Here an event AST routine is a normal 
user-written subroutine that the LIO facility calls when it detects 
the occurrence of an IEEE-488 bus event. In order to detect an 
event, the detection of the event must be enabled through the 
LIO$K_EVENT_ENA parameter. 

NOTE 

You cannot use AST routines with the IOtech Micro488A 
device. 

Laboratory I10 Device Support 2-127 



2.5.12.1 Example 

The following VAX FORTRAN program segment shows 11ow to set up 
an AST routine for an IEQ11 or IEZ11 device to detect the occurrence of 
IEEE-488 bus events. 

C Supply the address of the event AST routine 
status = LIOSSET_I (ieee_id, LIO$K_EVENT_AST, 1, event_ast) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

C The device event AST routine takes four argument values. 
C The first value, event_code, returns the code of the event 
C that tray detected. ?he second value, event_specific, returns 
C inf ormation that is specific to the detected event. (For the 
C IEZ11, this information is alurays 0.) The third value, unit, 
C specifies the unit number of the device. The fourth value, 
C controller, is the controller designation. 

SUBROUTINE event_ast (event_code, event_specific, unit, controller) 

INTEGER*4 event_code !IEEE-488 bus event code 
INTEGER*4 event_specific !Inf ormation specific to the event 
INTEGER*4 unit !Unit number of the device that 

!detected the event 
INTEGER*4 controller !Controller designation 

C Body of your event AST routine goes here. Yrite the routine to 
C perform trhntever tasks are appropriate for handling the events 
C that might occur. 

RETURN 

END 

2-128 Laboratory I/O Device Support 



The event_code argument returns the event code of the detected event. 
See the description of the LIO$K_EVENT_ENA parameter for a list and 
descriptions of valid IEEE-488 bus event codes. 

The event specific argument returns information specific to the detected 
event according to the following general rules: 

— For the IEZ11, the event_specific argument returns a 0. 
— If the IEQ11 is addressed as extended listener or talker, the 

event specific argument returns the device's secondary address. 
In this case, the value of the event_code argument is either 
LIO$K_LNR_ADDR_EVT or LIO$K_TKR_ADDR_EVT. 

— If a remote/local change occurred, the event_specific argument 
returns a 0 if the new state is local Ynode. The event specific 
argument returns a 1 if the new state is remote mode. In this case, 
the value of the event_code argument is LIO$K_REM_LOCAL_EVT. 

— If a parallel poll configure occurred, the event_specific argument 
returns the PPE (parallel poll enable) byte or the PPD {parallel 
poll disable) byte. In this case, the value of the event_code 
argument is either LIO$K_PAR_POLL_CONFIG_EVT or 
LIO$K_PAR_POLL_UNCONFIG_EVT. 

— For all other events, the event_specific argument returns a 0. 

The unit argument is the number of the device that detected the event 
(for example, unit = 0 for IXAO or unit = 1 for IXA1). 

The controller argument is a single ASCII code containing the controller 
designation ("A" for IXAO or "B" for IXBO). 

2.5. ~ 3 Requesting Service with an SRQ 

To request service from the controller-in-charge, use the LIO$K_SRQ 
parameter, for example: 

INTEGER*1 statue_byte !SRQ status byte 

status_byte = 64 !Bit 6 set, all other bits clear 
status = LIO$SET_I (ieee_id, LIO$K_SRq, i, status_byte) 

IF (.NOT . status) CALL LIB$SIGNAL (xVAL (status) ) 

Laboratory i/~ Device Support 2-129 



This routine segment declares variable status_byte as a one-byte integer 
and sets 'bit 6. When bit 6 is set in the SRQ status byte, a service request 
(SRQ) is sent to the controller-in-charge. The routine call waits until the 
controller-in-charge serially polls the device. If bit 6 is cleared in the 
SRQ status byte, the status is saved in the device, and no SRQ is sent 
to the controller-in-charge. The status is read by the controller-in-charge 
if it polls the device. 

See the description of the LIO$K_SRQ parameter in Chapter 4 for more 
information. 

2.5.14 Passing and Receiving Control 

To pass control to another IEEE-488 device attached as a controller, 
use the LIO$K_PASS_CTRL parameter to specify the address of t11e 
instrument to which to pass control, for example: 

status = LIO$SET_I (ieee_id, LIO$K_PASS_CTRL, 1, 6) 
IF (.NOT . statue) CALL LIB$SIGNAL (y~VAL (status) ) 

This routine passes control from the current controller-in-charge to the 
device at IEEE-488 bus address 6. 

To receive control from the current controller-in-charge, an IEEE-488 
device must be attached as a controller and must be set up with the 
receive control event (LIO$K_REC_CTRL) recognition enabled by the 
LIO$K_EVENT_ENA parameter, for example: 

status = LIO$SET_I (ieee_id, LIO$K_EVEr1T_ENA, 1, LIOSK_REC_CTRL) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

Then, the device can either: 

• Supply auser-written AST routine with the LIO$K_EVENT_AST 
parameter to act on the received control when the event occurs. 
(The advantage of this approach is that other processing can take 
place while waiting for control.) 

• Call LIO$SHOW with the LIQ$K_EVENT_WAIT parameter to wait 
until the controller-in-charge passes control to the device. (This 
is acceptable if the controller does not have any other functions it 
needs to perform while waiting.) 

2-130 Laboratory I/Q Device Support 



2.5. 5 Responding to a Service Request 

T11e controller-in-charge responds to a service request from an IEEE-488 
instrument by performing a serial poll of all instruments that might be 
requesting service. 

To set your program to respond to service requests, do the following: 

1. Use the LIO$K_SER_POLL_CONFIG parameter to set up a list of 
instrument addresses to poll. 

INTEGER addri(4) !Integer array of length 4 to hold primary addresses 
IN?EGER addr2(4) !Integer array of length 4 to hold secondary addresses 

addri(1) = 2 
addri(2) = 4 
addri(3) = 6 
addri(4) = 8 

addrZ(1) = 142 
addr2(2) = 144 
addr2(3) = 146 
addr2(4) = 148 

status = LIO~SET_I (ieee_id, LIO$K_SER_POLL_CONFIG, 2, addri, addrZ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

This routine sets up the devices at IEEE-488 bus addresses 2, 4, 6, 
and 8 for serial polling. If the list of devices you initially configure 
for serial polling does not need to change during the execution of 
your application, then you should use this setup parai-neter only 
once. 

If you need to serial poll other devices during the execution of your 
application, you must use this setup parameter again, specifying the 
IEEE-488 bus addresses of the other devices you need to poll. 

2. Enable the service request (LIO$K_SRQ_EVT) event with the 
LIO$K_EVENT_ENA parameter. 

status = LIO~SET_I (ieee_id , LIO$K_EVErJT_ErJA, 1, LIO$K_SRQ_EVT) 
IF (.NOT. status) CALL LIBZSIGNAL (xVAL(status)) 

This enables the controller-in-charge to recognize service requests 
from other devices. 

Laboratory I/O Device Support 2-131 



3. Supply an event AST routine (LIO$K_EVENT_AST) to respond to 
the service request (LIO$K_SRQ) event. 

status = LIO$SET_I (ieee_id, LIO$K_EVENT_AST 1, srq_ast) 
IF (.NOT. status) CALL LIB$SIGIJAL (XVAL(status)) 

See the description of the LIO$K_EVENT_AST parameter in 
Section 2.5.12, Supplying AST Routines, and Chapter 4 for 
information about the device-specific information you must supply 
when you call the AST routine from your user program. 

4. When the service request event occurs, your AST routine can call 
the LIO$SHOW routine with the LIO$K_SER_POLL parameter. 

BYTE serial_poll_status(4) 
INTEGER*4 length 

LIO$SH011 (ieee_id, LIO$K_SER_POLL, serial_poll_status, length) 

This routine segment declares the variable serial_poll_status to 
be an integer array of length four, and the variable length to be 
an integer. The status bytes from the four devices polled (as set 
up with LIO$K_SER_POLL_CONFIG in step 1 of this procedure} 
are returned in the elements of the serial_poll_status array. For 
example, serial_poll_status(1) returns the status byte from the 
instrument at IEEE-488 bus address 2, serial_poll_status(2) returns 
the status byte from the instrument at IEEE-488 bus address 4, 
and so on. The length variable returns the number of status bytes 
contained in the serial_poll_status array. 

For each instrument whose status byte has bit 6 set (requesting 
service), your AST routine should perform whatever action is 
appropriate at that time for the instrument requesting service. 

NQTE 

The actual response to a service request depends entirely on 
the instrument. The value of the other bits in the instrument's 
status byte can determine the appropriate action. See the 
description of the LIO$K_SRQ parameter in Chapter 4 for 
information about setting up IEEE-488 instruments to issue 
service requests. The user's manuals for IEEE-488 instruments 
usually contain information about the condition that causes 
these instruments to request service. 

2-132 Laboratory I/Q Device Support 

U 



2.5.16 Sending Data and Receiving Data When the IEEE-488 
Device Is Controller-In-Charge 

When an IEEE-488 device is the controller-in-charge, it can send data to 
or receive data from an instrument. 

To set up the device that is the controller-in-charge to send and receive 
data, do the following: 

1. Call the appropriate LIO routine to make a buffer available to the 
controller-in-charge. (Call LIO$READ or LIO$WRITE if the device is 
set for synchronous I/O. Call LIO$ENQUEUE if the device is set for 
asynchronous I10.) 

If the controller-in-charge will be sending data to an instrument, 
specify "LIO$M_LNR .OR. instrument_address" as the 
device_specific argument of the routine call, because the instrument 
will be a "listener" . 

If the controller-in-charge will be receiving data from an 
instrument, specify "LIO$M_TKR .OR. instrument_address" as the 
device_specific argument of the routine call, because the instrument 
will be a "talker" . 

INTEGER*2 buffer (256) 
INTEGER*4 event_f lag 

LIB$GET_EF (event_f lag) 
LIO$SET_I (ctrl_id, LIO$K_DEVICE_EF, 1, event_flag) 

LIO$ENQUEUE (ctrl_id, buffer, 512, event_flag, LIO~M_TKR .OR. 3) 

This routine segment declares the variable buffer to be a word array 
of length 256, or 512 bytes. The event flag variable is an integer 
and contains asystem-assigned VMS event flag associated with 
the buffer. LIO$M_TKR .OR. 3 is adevice-specific argument that 
signals the IEEE-488 instrument, at IEEE-488 bus address 3 (.OR. 3), 
to "talk" to t11e controller-in-charge . 

Laboratory I/O Device Support 2-133 



When the buffer is enqueued (LIO$ENQUEUE), the IEEE-488 device 
tells the addressed instrument to "talk," and places the data sent by 
the addressed instrument in the enqueued buffer. The data transfer 
is complete when one of the following occurs: 

• The buffer is filled. 

• The instrument asserts the EOI line when the last byte of data 
is output. (See the description of the LIO$K_EOI parameter in 
Chapter 4.) 

• The termination character is received. (See Section 2.5.18.1, 
Using Termination C1laracters to Terminate Read Requests, 
and the description of the LIO$K_TERM_CHAR parameter in 
Chapter 4. ) 

See the description of the LIO$ENQUEUE routine in Chapter 3 for 
more information about supplying arguments to this routine. 

2. Call the LIO$DEQUEUE routine to return the buffer to the calling 
program, for example: 

INTEGER*4 buff er_address 
INTEGER*4 buffer_length 
INTEGER*4 device_specific 

status = LIO~DEQUEUE (ctrl_id, buff er_address , buff er_length , 
1 data_length, 1, device_specific) 

IF (.NOT . status) CALL LIB$SIGNAL ('/.VAL(status) ) 

The LIO$DEQUEUE routine waits for the buffer to become available 
on the device's device queue and then returns the buffer to the 
controller-in-charge . 

The data_length arguYnent returns t11e number of bytes in the buffer. 
The value of status specifies t11e reason for terminating the buffer 
(for example, success, encountered termination character, or any 
error status code). 

See the description of the LIO$DEQUEUE routine in Chapter 3 for 
more information about supplying arguments to this routine. 

2-134 Laboratory I/Q Device Support 



2.5. ~ 7 Sending Data to Multiple IEEE-488 Devices 

The IEEE-488 bus allows more than one device to listen simultaneously. 
The LIO$K_COMMAND set parameter can send several listener 
addresses out on the bus. 

To address multiple devices to listen simultaneously, do the following: 

1. Attach the IEEE-488 device as a system controller. This ensures that 
it will be controller-in-charge. (It could also have been attached as a 
controller and waited to receive control.) 

INTEGER*4 addri, addr2, addr3 
INTEGER*4 coma, com2, coma 

status = LIO$ATTACH (ieee_id, 'IXAO', LIO~K_SYS_CTRL) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2. Build listener addresses for IEEE-488 devices 2, 4, and 6 by ORing 
the LIO$M_LNR bit to each address . 

addri = 2 
coma = LIO$M_LNR .OR. addri 

addr2 = 4 
com2 = LIO$M_LNR .OR. addr2 

addr3 = 6 
coma = LIO$M_LNR .OR. addr3 

3. Send the listener addresses out on the bus. This causes devices 2, 
4, and 6 to listen. 

status = LIO$SET_I (ieee_id, LIO$K_COMMAND, 3, comi, com2, coma) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

Laboratory I/O Device Support 2-135 



4. Write data out on the bus. Since devices 2, 4, and 6 are enabled to 
listen, they should receive t11is data. 

Status = LIO~YRITE (ieee_id , buffer, data_length) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(Btatus)) 

To send data asynchronously to multiple IEEE-488 devices, do the 
following: 

1. Attach the IEEE-488 device as a system controller. This ensures that 
it will be controller-in-charge. (it could also have been attached as a 
controller and waited to receive control.) 

INTEGER*4 addri, addr2, addri 
INTEGER*4 coma, com2 

status = LIO$ATTACH (ieee_id, 'IXAO', LIO$K_SYS_CTRL) 
IF (.NOT. status) CALL LIB$SIGNAL (y,VAL(status)) 

2. Build listener addresses for IEEE-488 devices 2 and 4 by ORing the 
LIO$M_LNR bit to each address. 

addr 1 = 2 
coma = LIO$M_LNR .OR. addri 

addr2 = 4 
com2 = LIOsM_LPJR .OR. addr2 

3. Send the listener addresses out on t11e bus. This causes devices 2 
and 4 to listen. 

status = LIO$SET_I (ieee_id, LIO$K_COMMAIJD, 2, coma, com2) 
IF (.NOT. status) CALL LIB$SIGPJAL (y~VAL(status)) 

2-136 Laboratory I/O Device Support 



4. Enqueue the send buffer. This example uses the listener address 
of device 6 as the device-specific argument. If no device-specific 
argument is given, device 0 will be addressed as the listener. 

status = LIO$ENQUEUE (ieee_id , buffer, buff er_length , event_f lag, 
1 LIO~M_LNR .OR. addr3) 

IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

5. Dequeue the send buffer. The "1" specifies that LIO$DEQUEUE is 
to wait for a buffer to become available. 

status = LIO$DEQUEUE (ieee_id, buffer, buffer_length, 1, ,) 
IF (.NOT. status) CALL LIB$SIGNAL (XVALCstatus)) 

2.5.18 Sending Data and Receiving Data When the IEEE-488 
Device Is Attached as an Instrument 

The LIO facility provides several ways in which instruments can send 
data to and receive data from the controller-in-charge. 

To perform data transfers between an IEEE-488 instrument and the 
controller-in-charge, do the following: 

1. The simplest way is to call LIO$READ or LIO$WRITE and wait until 
the controller-in-charge addl•esses the instrument to talk or listen. 

status = LIO~READ (ieee_id, buffer, buffer_length, data_length, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

status = LIO$YRITE (ieee_id, buffer, data_length, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2. Often it is snore useful to use the LIO$ENQUEUE andlor 
LIO$DEQUEUE routines, specifying input or output with the 
device specific argument. 

status = LIO$ENQUEUE (instrument_id , buffer, buff er_length , 
1 LIO$M_TKR) 

IF (.NOT. status) CALL LIB$SIGPdAL (XVALCstatus)) 

This enables the user program to continue while the instrument 
waits to be addressed as a talker by the controller-in-charge. 

The device-specific argument LIO$M_TKR tells LIO that this is 
a read request (the instrument is a talker). If the device-specific 
argument were LIO$M_LNR, t11is would mean a write request (the 
instrument is a listener). 

Laboratory I/O Device Support 2-137 



The IEEE-488 device processes buffers in the order in which they are 
enqueued. If an output buffer is enqueued before an input buffer, 
the device must be addressed first as a talker, and then as a listener. 

3. If an instrument must be able to respond to both talk and 
listen requests, then it can enable the LIO$K_TKR_ADDR and 
LIO$K_LNR_ADDR events with the LIO$K_EVENT_ENA parameter. 

statue = LIOSSET_I (instrument_id, LIO$K_EVENT_EIdA, 2, 
1 LIOSK_TKR_ADDR_EVT, LIO$K_LNR_ADDR_EVT) 

IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

status = LIO$SHOY ~instrument_id, LIOsK_EVENT_YAIT, 
1 event, length) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The event argument returns the IEEE-488 event that occurred. The 
length argument returns the number of events contained in the 
event argument. 

4. The most flexible way to send and receive data is to supply 
user-written AST routines to be called when the enabled 
LIO$K_TKR_ADDR_EVT and LIO$K_LNR_ADDR_EVT events 
occur. The AST routines can then enqueue (LIO$ENQUEUE) 
buffers when the instrument is addressed. This way the instrument 
can handle requests to talk or listen in any order. 

NOTE 

The format in which data is transferred is entirely dependent 
on the instrument. However, using printable ASCII strings 
for commands, such as "T" for trigger, and ASCII-encoded 
decimal values for numbers, such as "5" ". ""3" for 5.3, 
are recommended. String values are usually terminated 
by a termination character. See Section 2.5.18.1, Using 
Termination Characters to Terminate Read Requests, for 
more information. 

2-138 Laboratory I/O Device Support 

u 



2.5.18.1 Using Termination Characters to Terminate Read Requests 

An IEEE-488 device can be set to terminate input on receipt of a 
termination character. 

Although only one termination character can be recognized at a time, 
the termination character can be repeated any number of times for an 
IEQ11 device. Foi• example: 

status = LIO~SET_I (instrument_id, LIO~K_TERM_CHAR, Z, 10, 2) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

specifies that aline-feed (ASCII decimal 10) .character, repeated twice in 
succession, signals the end of an input buffer. 

The IEZ11 and the IOtech Micro488A devices do not support a repeat 
count. They will terminate on receiving the termination character once. 

To disable termination character recognition, specify —1 as the value of 
the LIO$K_TERM_CHAR parameter, for example: 

status = LIO~SET_I (instrument_id, LIO$K_TERM_CHAR, 1, -i) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

Data transfers are faster when termination character recognition is 
disabled, because the driver does not have to check each character that 
is transferred to determine if it is a termination character. 

2.5.18.2 Using EOI to Terminate Write Requests 

An IEEE-488 device can signal the end of a write request by asserting an 
EOI line after the last byte of an output buffer is transferred. To cause 
the assertion of an EOI line, use the LIO$K_EOI parameter to enable 
EOI, for example 

status = LIO$SET_I (ieee_id, LIO=K_EOI, 1, LIO$K_ON) 

This routine causes subsequent write requests to assert EOI after the last 
byte of a transfer. 

Laboratory I/O Device Support 2-139 



2.6 Serial Line Devices 

This section describes the serial line devices supported by VAX1ab. 
If you are unfamiliar with serial line devices and the functions they 
perform, see the VMS I/O Use~~'s Reference Ma~zual for more information. 

See Table 3-2, Device Specifications and I1O Types, for a list of the 
serial line devices supported by VAXIab Software Library. 

2.6.1 Attaching Serial Line Devices 

Attaching a serial line device means assigning a VMS I1O channel to 
the device and initializing LIO data structures for, and pointers to, the 
device. 

Use the LIO$ATTACH routine to attach the serial line device. 

status = LIO$ATTACH (serial_id, 'TTAO', LIO$K_QIO) 
IF(.NOT. status) CALL LIB$SIGNAL('~.VAL(status)) 

The serial_id argument returns the LIO-assigned device ID for the serial 
line device. The device is referenced by this device ID in subsequent 
routine calls to the device in a user program. 

This example shows the device specification, TTAO, for the DZ11 serial 
line device. See Table 3-2 for the appropriate device types of the serial 
line devices supported by VSL. 

The LIO$K_QIO value attaches the serial line device to use QIOs. 
LIO$K_QIO is the only I/O type supported for use with serial line 
devices. 

2.6.2 Setting Up Serial Line Devices 

Before you can begin data transfers using a serial line device, you 
must set up certain device characteristics. The following table lists 
the LIO$SET and LIO$SHOW parameters you can use to set up and 
show serial line device characteristics. See Chapter 4 for reference 
descriptions of the parameters listed in this table. 

2-140 Laboratory I/Q Device Support 



Table 2-21: Serial Line LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LI O $K_ACK_NAK_TERMINATOR 

LIO$K_AST_RTN 

LIO$K_ASYNCH 

LIO$K_BAUD_RATE 

LIO$K_BITS_PER_CHAR 

LIO$K_BREAK 

LIO$K_CTRL_AST 

LIO$K_CTRL_HANDLING 

LIO$K_DEVICE_ACK_NAK_BUFF 

L10$K_DEVICE_EF 

LIO$K_DUPLEX 

LIO$K_ECHO 

LIO$K_ERR_HANDLE 

LIO$K_ERROR_ENABLE 

LIO$K_FLOW CONTROL 

LIO$K_FLOW_MASTER 

LIO$K_FORWARD 

LIO$K_HANGUP 

Establishes a termination character for the 
ACKINAK string received from an external device. 

Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

Sets up the device for asynchronous I/O. 

Sets the speed at which data is transmitted over a 
serial line . 

Establishes the number of data bits per character. 

Generates a break condition on a terminal line for a 
specified period of time. 

Specifies auser-written AST routine to be called on 
receipt of a specified control character. 

Sets up a flag that indicates what action to take 
on receipt of a control character specified using the 
LIO$K_CTRL_AST parameter. 

Supplies the buffer to be used when receiving an 
ACK or a NAK from a device. 

Establishes the event flag that is set when a buffer 
becomes available. 

Specifies whether readiwrite requests are executed 
in half-duplex or full-duplex mode. 

Enables or disables the echoing of characters received 
on a serial line. 

Specifies the way in which the serial line device 
handles errors. 

Enables or disables parity error handling for serial 
line devices. 

Establishes the method of flow control for a serial 
line device. 

Establishes the XON/XOFF flow control scheme. 

Specifies the device to which completed buffers are 
forwarded. 

Disconnects a terminal that is on a dial-up line. 

Laboratory I/O Device Support 2-141 



Table 2-21 (Cont.): Serial Line LIO$SET and LIO$SHOW Parameters 

Parameter Function 

LIO$K_INPUT_TERMINATOR 

LIO$K_MODEM 

LIO$K_MODEM_STATUS 

LIO$K_OUTPUT_PREFIX 

LIO$K_OUTPUT_TERMINATOR 

LIO$K_PARITY 

LIO$K_PROTOCOL 

LIG$K_PURGE 

Ll0$K_READ_PROMPT 

LIO$K_STOP 

LIO$K_SYNCH 

LIO$K_TIMEOUT 

LI O$K_TIMEOUT_ENABLE 

LIO$K_TYPE_AHEAD 

LIO$K_UNSOLICITED 

LIO$K_USER_ACK_AST 

LIO$K_USER_ACK_STRING 

LIO$K_USER_NAK_AST 

2-142 Laboratory I/~ Device Support 

Specifies a termination character or characters on 
the input side of a serial port . 

Specifies that the serial line is a modem. 

Sets and returns modern status information . 

Specifies a prefix character string on the output side 
of a serial line. 

Specifies a termination character string on the 
output side of a serial line. 

Specifies the parity checking mode for a serial line. 

Enables or disables the serial line user protocol 
feature. 

Purges all characters in the type-ahead buffer. 

Specifies aread-prompt to prefix each input data 
buffer. 

Stops the device. 

Sets up the device for synchronous I10. 

Sets the length of tune (in seconds] before an I10 
request is aborted. 

Enables a timeout for read requests. 

Enables or disables the typeahead buffer. 

Returns the number of characters in the type-ahead 
buffer. 

Specifies the address of auser-supplied AST routine 
to transmit the ACK string on successful completion 
of a data transfer. 

Specifies the ACK string to be sent out by an AST 
routine on successful completion of a data transfer. 

Specifies the address of auser-supplied AST 
routine to transmit the NAK string on unsuccessful 
completion of a data transfer. 

lJ 



Table 2-21 (Cont.): Serial Line LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_USER_NAK_STRING Specifies the NAK string to be sent out by an 
AST routine on unsuccessful completion of a data 
transfer. 

LIO$K_USER_READ_PROTOCAL_AST Specifies the address of auser-supplied AST routine 
to be called on receipt of either a terminator or a full 
buffer of characters from a read request. 

LIO$K_USER_WRITE_NAK_HANDLING Specifies whether or not a sending device attempts 
to retransmit a buffer after receiving a NAK from 
the intended receiving device. 

LIO$K_XON Forces the sending of an XON character to reprirne 
the serial line. 

2.6.3 Using Seria! Line Devices for Synchronous t/O 

To make a serial line available to a nonprivileged user, use the following 
commands from a suitably privileged account: 

$ SET PROCESS/PRIV=OPER 
$ SET PROTECTION=Y:RI~LP/DEVICE dev_name: 

To set up a serial line device for synchronous I/0, do the following: 

1. Include the symbolic definition files required by the vAXlab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

~. Attach the serial line device as described in Section 2.6.1, Attaching 
Serial Line Devices. 

4. Specify the I10 interface. 

status = LIO$SET_I (serial_id, LIO~K_SYNCH, 0) 
IF (.NOT. status) CALL LIBsSIGNAL (j~VAL(status)) 

5 . Set the baud rate . The following sample routine sets the baud rate 
at 1200. 

status = LIO$SET_I (serial_id, LIO~K_BAUD_RATE, 1, 1200) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

Laboratory I/O Device Support 2-143 



6. Set a device timeout. T11e following sample routine sets a 60 second 
timeout. 

status = LIO$SET_I (serial_id, LIO$K_TIMEOUT, 1, 60) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

7. Specify an input buffer terminator. The following sample routine 
specifies the letter "z" as the input buffer terminator. 

status = LIO$SET_S (serial_id, LIO$K_INPUT_TERMINATOR, 'z') 

IF (.NOT. status) CALL LIB$SIGNAL (y.VAL(status)) 

8. Specify a read prompt. The following sample routine sets up the 
string "Enter data:" as the string thats prompts for data input. 

status = LIO$SET_S (serial_id, LIO$K_READ_PRON[PT, 'Enter data:') 

IF (.PJOT. status) CALL LIB$SIGNAL (XVAL(status)) 

9. Start the data transfer. T11e following sample routine reads and 
writes 10 bytes of data synchronously. 

status = LIO$READ (serial_id, buffer, 10, buffer_length, ) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

status = LIO$11RITE (serial_id, buffer, 10, ) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

10. Detach the device. 

status = LIO$DETACH (serial_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2.6.4 Using Serial Line Devices for Asynchronous I/O 

To set up a serial line device for asynchronous I10, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the serial line device as described in Section 2.6.1, Attaching 
Serial Line Devices. 

4. Specify the I/O interface. 

status = LIO$SET_I (serial_id, LIO$K_ASYAICH, 0) 

IF (.NOT. status) CALL LIB$SIGNAL (y~VAL(status)) 

2-144 Laboratory I10 Device Support 



5. Set the baud rate. The following sample routine sets the baud rate 
at 2400. 

status = LIO$SET_I (serial_id, LIO$K_BAUD_RATE, 1, 2400) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(statuS)) 

6. Seta device timeout. The following sample routine sets a 30 second 
timeout. 

status = LIO$SET_I (serial_id, LIO$K_TIMEOUT, 1, 30) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

7. Specify an input buffer terminator. The following sample routine 
specifies the letter "q" as the input buffer terminator. 

status = LIO$SET_S (serial_id, LIO$K_ItdPUT_TERMINATOR, 'q') 
IF (.NOT. status) CALL LIB$SIGNAL (~.VAL(status)) 

8. Enable the user-defined protocol feature. 

status = LIO$SET_I (serial_id, LIO$K_PROTOCOL, 1, LIO$K_ON) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

9. Specify the address of the AST routine. 

status = LIO$SET_I (serial_id, LIO$K_USER_READ_PROTOCOL_AST, 
1 1, receive_buff) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

10. Set up the acknowledge (ACK) and negative acknowledge (NAK) 
buffer. This buffer receives ACKs or NAKs from a device. 

status = LIO$SET_I (serial_id, LIO$K_DEVICE_ACK_NAK_BUFF, 4, 
1 buffer, buffer_size, term_char, timeout) 

IF (.NOT. .status) CALL LIB$SIGNAL (XVAL(status)) 

11. Specify how a device 1landles negative acknowledges (NAKs) from 
a device. 

status = LIO$SET_I (serial_id, LIO$K_USER_1tRITE_NAK_HANDLING, 1, 
1 LIO$K_RESEND_LAST) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

12. Get an event flag and clear it. 

status = LIB$GET_EF (event_f lag) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

status = SYS$CLREF (event_f lag) 
IF (.NOT. Status) CALL LIB$SIGNAL (xVAL(Status)) 

Laboratory I/O Device Support 2-145 



13. Enqueue the buffer and wait for the event flag to be set by the AST 
routine. The AST routine will set the event flag when it receives an 
ACK from the device. 

statue = LIO~ENQUEUE (serial_id, buffer, buffer_length, 0, 0, 
1 LIO$K_OUTPUT) 

IF (.NOT. Statue) CALL LIB$SIGNAL (XVAL(status)) 

14. Wait for the event flag to be set by the AST routine. When t11e 
event flag is set, free the event flag and the memory allocated to the 
buffer. 

status = SYS$YAITFR (event_flag) 
IF (.NOT. status) CALL LIB$SIGNAL ('OVAL(status)) 

status = LIBSFREE_EF (event_f lag) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

15. Detach the device. 

status = LIO$DETACH (serial_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The online sample program LIO_SERIAL. C in the LIO$EXAMPLES 
directory is a complete VAX C program that uses the user-defined 
protocol feature to transfer data. T11e AST routine, receive_buff, 
specified in step 9 is shown in LIO_SERIAL.C. 

2.7 Software Pseudodevices 

This section describes the software pseudodevices supported by 
VAXIab. The pseudodevices are: 

• Disk file 

• Memory queue 

• Real-time plotting 

2.7.1 Disk File Support 

The disk file device moves data to and from disk files using QIOs. The 
QIOs move data buffers directly to and from disk using block I1O; each 
file is read or written in bytes. The size of the data buffers must be a 
multiple of 512 bytes, which is one VMS block. 

2-146 Laboratory I/O Device Support 



2.7.1.1 Attaching a Disk File 

Attaching a disk file means assigning a VMS I/O channel to the device 
and initializing LIO data structures for, and pointers to, t11e device. 

Use the LIO$ATTACH routine to attach the disk file device. 

status = LIO~ATTACH (file_id, 'FLAO', LIO$K_QIO) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

The file_id argument returns the LIO-assigned device ID of the file 
device. The file is referenced by this device ID in subsequent routine 
calls to the file in a user program. 

The device specification FLAG specifies a file (FL) device with controller 
letter A and unit number 0. If you attach only one file device, specifying 
the device type FL is sufficient. 

The LIO$K_QIO value attaches the file device to use QIOs. This is the 
only I/O type supported for use with the disk files. 

2.7.1.2 Setting Up the Disk File Device 

Before you can begin transferring data to the file device, you must set 
up certain device characteristics. The following table lists the LIO$SET 
and LIO$SHOW parameters you can use to set up and s11ow disk file 
device characteristics. See Chapter 4 for reference descriptions of the 
parameters listed in this table. 

Table 2-22: Disk File LIO$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_AST_RTN 

LIO$K_ASYNCH 

Ll0$K_DEVICE_EF 

LIO$K_DIRECTION 

LIO$K_ERR_HANDLE 

Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

Sets the device for asynchronous I10. 

Establishes the event flag that is set when a buffer 
becomes available. 

Sets the direction (input or output) of the file. 

Specifies the way ~in which a device returns error 
conditions. 

Laboratory I/O Device Support 2-147 



Table 2-22 (Cont.~: Disk File LIO$SET and LIO$SHOW Parameters 

Parameter Function 

LIO$K_FILE_EXTENT Extends an output file by the specified number of 
blocks. 

LIO$K_FILE_POS Repositions the current block pointer in an output 
file . 

LIO$K_FILE_REMAIN Returns the number of blocks remaining to be 
written in an output file. 

LIQ$K_FILE_SIZE Sets the size (in blocks) of the output file. 

LIO$K_FORWARD Specifies the device to which completed. bti.ffer. s are 
forwarded. 

LIO$K_NAME Specifies the file name. 

LIO$K_OPEN_FILE Opens a file. 

LIO$K_SYNCH Sets up the device for synchronous I10. 

2.7.1.3 Using Disk Files for Synchronous I!O 

To set up the disk file device for synchronous I10, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the file device as described in Section 2.7.1.1, Attaching a 
Disk File . 

4. Specify the I10 interface. 

status = LIO$SET_I (f ile_id , LIO$K_SYPICH, 0) 
IF (.NOT. status) CALL LIB$SICNAL (xVAL(status)) 

5. Specify whether the file is an input or output device. 

status = LIO~SET_I (file_id, LIO$K_DIRECTION, 1, LIO$K_OUTPUT) 
IF (.NOT. status) CALL LIB$SIGNAL (y,VAL(status)) 

6. Specify the file size. 

status = LIO$SET_I (file_id, LIO$K_FILE_SIZE, 1, 10) !10-block file 
IF (.NOT. status) CALL LIB$SIGNAL (Y.VAL(status)) 

2-148 Laboratory IIQ Device Support 

l.J 



7. Specify the file name. 

status = LIO$SET_S (file_id, LIO$K_NAME, 'AD_DATA') 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

8. Open the file. 

status = LIO$SET_I (file_id, LIO$K_OPEN_FILE, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

9 . Write data to the file . 

status = LIO$11RITE (f ile_id , buffer, data_length , ) 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

10. Detach the device. 

status = LI03DETACH (file_id, ) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

2.7.1.4 Using Disk Files for Asynchronous I/O 

To set up the disk file device for asynchronous I1O, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

Z. Declare the data types and variables you are using in your program. 

3. Attach the file device as described in Section 2.7.1.1, Attaching a 
Disk File . 

4. Specify the I1O interface. 

status = LIO$SET_I (file_id, LIO$K_ASYNCH, 0) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

5. Specify whether the file is an input or output device. 

status = LIO$SET_I (file_id, LIO$K_DIRECTION, 1, LIO~K_OUTPUT) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

6. Specify the file size. 

status = LIO$SET_I (file_id, LIO$K_FILE_SIZE, 1, 10) !10-block file 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(statuB)) 

7. Specify the file name. 

status = LIO~SET_S (file_id, LIO$K_t1AME, 'AD_DATA') 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

Laboratory I/O Device Support 2-149 



8. Open the file. 

status = LIOSSET_I (file_id, LIO$K_OPEN_FILE, 0) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

9. Get a free VMS event flag to associate with the buffer and enqueue 
the output buffer to the device. 

status = LIB$GET_EF (e_flag) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

status = LIO~ENQUEUE (f ile_id, buffer , buff er_length, data_length , 

1 e_f lag , ) 
IF (.NOT. status) CALL LIB3SIGNAL (xVAL(status)) 

10. Dequeue the buffer from the device. 

status = LIO$DEQUEUE (f ile_id , buffer, buff er_length , 1, 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

11. Detach the device. 

status = LIO$DETACH (file_id, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

The online sample program LIO_BUF_FWD.FOR in the 
LIO$EXAMPLES directory is a complete VAX FORTRAN program 
that shows how to use the synchronous I10 interface and single-buffer 
DMA with buffer forwarding to read AID values froYn the ADV11-D 
device and forward the data buffers to a disk file. 

2.7.2 Memory Queue Support 

The LIO facility provides the memory queue pseudodevice as a 
convenient way to manage buffers. You can use the memory queue 
device to manage buffers in a global section shared by several 
processes. You can also use the memory queue device locally to 
manage buffers used by asynchronous parts of a program, and to 
allocate buffers dynamically from virtual memory. 

2-150 Laboratory I/O Device Support 



2.7.2.1 Attaching the Memory Queue Device 

Attaching a memory queue device means assigning a VMS I1O channel 
to the device and initializing LIO data structures for, and pointers to, 
the device. 

Use the LIO$ATTACH routine to attach the memory queue device. 

To attach a memory queue device to manage memory local to a user's 
process, use the following routine: 

status = LIO~ATTACH (memory_id, 'APAO', LIO$K_LOCAL) !Local memory 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

To attach a memory queue device to manage an interprocess global 
section, use the following routine: 

status = LIO$ATTACH (memory_id, 'APAO', LIO$K_INTER_PROC) !Global section 

IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

The memory_id argument in each routine returns the LIO-assigned 
device ID for the memory queue device. Each device is referenced 
by the device ID in subsequent routine calls to the device in a user 
program. 

The device specification APAO in each routine specifies a memory 
queue (AP) device with controller letter A and unit number 0. 

The value of the io_type argument determines which function a memory 
queue device is attached to perform. The value LIO$K_LOCAL attaches 
the device to manage memory local to a user's process. The value 
LIO$K_INTER_PROC attaches the device to manage an interprocess 
global section. 

2.7.2.2 Setting Up the Memory Queue Device 

Before you can begin data transfers with the memory queue device, 
you must set up the device characteristics. The following table lists 
the LIO$SET and LIO$SHOw parameters you can use to set up and 
show memory queue device characteristics. See Chapter 4 for reference 
descriptions of the parameters listed in this table. 

Laboratory I/O Device Support 2-151 



Table 2-23: Memory Queue L10$SET and LIO$SHOW Parameters 
Parameter Function 

LIO$K_AST_RTN 

LIO$K_ASYNCH 

LIO$K_BUFF_SIZE 

LIO$K_BUFF_SOURCE 

LIO$K_DEVICE_EF 

LIO$K_DISPLAY_ONLY 

LIO$K_ERR_HANDLE 

LIO$K_FORWARD 

LIO$K_N_BUFFS 

LI O $K_NAME 

LIO$K_PAGE_ALIGN 

LIO$K_READ_ONLY 

LIO$K_SYNCH 

LIO$K_TRANSFER 

Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

Sets the device for asynchronous I10. 

Sets the size, in bytes, of the asynchronous buffers 
to allocate for the device. 

Specifies the sources from which memory allocation. 
is to occur. 

Establishes the event flag that is set when a buffer 
becomes available. 

Sets an interprocess memory queue to display data. 
buffers to a second process. 

Specifies the way in which a device returns error 
conditions. 

Specifies the device to which completed buffers are 
forwarded. 

Sets the number of channels in the data buffer. 

Specifies the name of a global section. 

Page-aligns buffers allocated for use with the 
memory queue. 

Establishes read-only access to a global section. 

Sets up the device for synchronous I10 when 
attached for QIO only. 

Sets an interprocess memory queue to transfer data 
buffers between processes. 

Some of these parameters, such as LIO$K_BUFF_SOURCE, are 
appropriate for setting up the memory queue device for both managing 
local memory and managing a global section. Others, such as 
LIO$K_READ_ONLY and LIO$K_DISPLAY_ONLY, are appropriate 
only when a memory queue device is attached to manage memory in a 
global section. 

2-152 Laboratory I/Q Device Support 



r"1 
2.7.2.3 Using a Memory Queue Device to Manage Local Memory 

When a Ynemory queue device is attached locally to a process, the 
device can be used in the following two ways: 

• To communicate between asynchronous parts of a program. For 
example, the memory queue can be used to pass buffers between 
an AST routine and the main program. The AST routine performs 
time-critical processing on the buffers, such as verifying out-of-range 
conditions, and then queues the buffers to the memory device. The 
main program dequeues the buffers from the memory device, and 
performs further processing of the data. 

To set up the memory queue device to perform this task, do the 
following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your 
pY•ogram. 

3. Attach the memory queue device as described in Section 2.7.2.1, 
Attaching the Memory Queue Device. 

4. Specify the buffer source as auser-supplied buffer. 

status = LIO$SET_I (memory_id, LIO$K_BUFF_SOURCE, 1, LIO$K_USER) 
IF (.NOT. status) CALL LIB~SIGtJAL (y,VAL(status)) 

NOTE 

When specifying auser-supplied buffer as the buffer 
source for the memory queue device, it is not necessary 
to use LIO$K_N_BUFFS, LIO$K_BUFF_SIZE, or 
LIO$K_PAGE_ALIGN to set up buffer characteristics. 

• To allocate buffers dynamically from virtual memory. This 
preallocates a specified number of buffers of a specified size. 

To set up the memory queue device to allocate buffers dynamically 
from virtual memory, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your 
program. 

Laboratory I/O Device Support 2-153 



3. Attach the memory queue device as described in Section 2.7.2.1, 
Attaching the Memory Queue Device. 

4. Specify the number of buffers to allocate. This sample routine 
allocates five buffers. 

status = LIO#SET_I (memory_id, LIO#K_N_BUFFS, 1, 6) 

IF (.NOT. status) CALL LIB#SIGNAL (XVAL(status)) 

You must set up this parameter before the memory allocation 
occurs. 

5. Specify the size (in bytes) of each buffer. This sample routine 
specifies 200-byte buffers. 

status = LIO#SET_I (memory_id, LIO#K_BUFF_SIZE, 1, 200) 

IF (.NOT. status) CALL LIB#SIGNAL (XVAL(status)) 

You must set up this parameter before the memory allocation 
occurs. 

6. The first buffer allocated is longword-aligned. You can use 
the LIO$K_PAGE_ALIGN parameter to page-align the buffers. 
Page-aligning the buffers ensures that the first buffer begins on a 
page boundary (the address is a multiple of 512 bytes). 

status = LIO#SET_I (memory_id, LIO#K_PAGE_ALIGN, 0) 

IF (.NOT. status) CALL LIB#SIGNAL (XVAL(status)) 

You must set up this parameter before the memory allocation 
occurs. 

7. Specify the buffer source as virtual memory. 

status = LIO#SET_I (memory_id, LIO#K_BUFF_SOURCE, 1, 

1 LIO#K_VIRTUAL_MEM) 
IF (.NOT. status) CALL LIB#SIGNAL (XVAL(status)) 

This routine actually allocates the buffers from virtual memory. 

The other LIO devices have two queues: the device queue, to which 
the main program enqueues buffers, and the user queue, from 
which auser-written AST routine or the main program dequeues 
buffers. The memory queue device provides a third queue, called 
the free queue. W11en virtual memory allocation occurs, t11e buffers 
are placed on the device's free queue. 

2-154 Laboratory IlQ Device Support 



Use the LIO$DEQUEUE routine, supplying LIO$K_FREE_Q as the 
value of the device_specific argument, to dequeue a buffer from the 
free queue. For example: 

status = LIO~DEQUEUE (memory_id, buffer_address, buffer_length, 
i LIO=K_FAEE_q) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

Buffers are initially dequeued from the free queue in ascending 
order. If you supply the buffer_index argument in the 
LIO$DEQUEUE routine call, the variable returns the number of 
the buffer, beginning with buffer number one. If you subsequently 
enqueue the buffers back to the free queue out of order, they remain 
out of order. 

when no buffers are left on the free queue, the LIO$DEQUEUE 
routine tries to get a buffer from the user queue. If there are no 
buffers on the user queue, the LIO$DEQUEUE routine returns the 
LIO$EMPTYQ condition value. 

Buffers allocated from virtual memory can be enqueued to the 
memory queue device using the LIO$ENQUEUE routine. when t11e 
device_specific argument is defaulted, a buffer is enqueued to the 
memory queue. when the value of the device specific argument is 
LIO$K_FREE_Q, a buffer is placed on the free queue. In this case, 
information about the buffer, such as the values of t11e data length 
and buffer_index arguments, are initialized to default values. 

2.7.2.4 Setting Up a Memory Queue Device for Interprocess Communications 
when a memory queue is attached for interprocess communications, it 
can be used in the following two ways: 

• To transfer data. The memory queue can be set up to act as a door 
between processes. The processes can then transfer data buffers 
back and forth through a shared global section of memory managed 
by the memory queue device . 

To set up the memory queue device to transfer• data, do the 
following: The memory queue device in each process must be 
set up identically. 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

Laboratory I/O Device Support 2-155 



2. Declare the data types and variables you are using in your 
program. 

3. Attach the memory queue device as described in Section 2.7.2.1, 
Attaching the Memory Queue Device. 

4. Specify the number of buffers to allocate. This sample routine 
allocates five buffers. 

status = LIO$SET_I (memory_id, LIO$K_N_BUFFS, 1, 6) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

You must set up this parameter before the memory allocation 
occurs. 

5. Specify the size (in bytes) of each buffer. This sample routine 
specifies 200-byte buffers. 

status = LIO$SET_I (memory_id, LIO$K_BUFF_SIZE, 1, 200) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

You must set up this parameter before the memory allocation 
occurs. 

6. Specify the global section name. 

status = LIO$SET_S (memory_id, LIO$K_NAME, 'XFER_DATA') 
IF (.NOT. status) CALL LIB$SIGNAL (xVAL(status)) 

You must set up this parameter before the memory allocation 
occurs. 

7. Set up the memory queues to transfer data between processes. 

status = LIO$SET_I (memory_id, LIO$K_TRANSFER, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

You must set up this parameter before the memory allocation 
occurs. 

8. Specify the buffer source. To perform this task, the buffer 
source can be either virtual memory or an array. If the buffer 
source is an array, the array must be page-aligned. The array 
must also be large enough to contain the buffer overhead. See 
the description of the LIO$K_BUFF_SOURCE parameter in 
Chapter 4 for more information. 

status = LIO$SET_I (memory_id, LIO$K_BUFF_SOURCE, 1, 
i LIO$K_VIRTUAL_MEM) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

2-156 Laboratory I/O Device Support 



When the main program in each process sets up the buffer source 
(LIO$K_BUFF_SOURCE), the memory queue device maps to the 
global section. Then, the two processes can pass data back and 
forth through the memory queue. 

To each process, the interprocess memory queue device looks the 
same as the virtual memory queue described in Section 2.7.2.3, 
Using a Memory Queue Device to Manage Local Memory. The 
buffers all begin on the free queue. You can dequeue buffers from 
the free queue by specifying LIO$K_FREE_Q as the value of the 
device_specific argument. You can enqueue buffers to the memory 
queue by defaulting the device_specific argument. 

The online sample program LIO_MQ_XFER.FOR in the 
LIO$EXAMPLES directory is a complete VAX FORTRAN program 
that shows how to use the interprocess memory queue's transfer 
function to transfer data buffers from one memory queue device to 
a second memory queue device running in a second process. 

• To display and copy data. The memory queue device can also be 
set up to act as a window between processes. The first process 
uses the memory queue device for temporary storage of data, such 
as data on its way from an AID to a disk file. The second process 
makes a copy of the data as it passes by the window. 

To set up the memory queue device to display and copy data, do 
the following: 

1. Include the symbolic definition files required by the VAX1ab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your 
programs. 

3. Attach the memory queue device as described in Section 2.7.2.1, 
Attaching the Memory Queue Device. 

4. Specify the number of buffers to allocate. This sample routine 
allocates five buffers. 

status = LIO$SET_I (memory_id, LIO$K_N_BUFFS, 1, 6) 
IF (.PJOT. status) CALL LIB$SIGNAL (XVAL(status)) 

You must set up this parameter before the memory allocation 
occurs. 

Laboratory I/O Device Support 2-157 



5. Specify the size (in bytes) of each buffer. This sample routine 
specifies 200-byte buffers. 

status = LIO$SET_I (memory_id, LIO$K_BUFF_SIZE, 1, 200) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

You must set up this parameter before the memory allocation 
occurs. 

6. Specify the global section name. 

status = LIO~SET_S (memory_id, LIO~K_NAME, 'GET_DATA') 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

7. When you set up the memory queue device in the first process, 
perform steps a through c. Then, skip step 8 and perform step 
9. 

a. Set up the device to display the data as it passes by the 
window. 

status = LIO$SET_I (memory_id, LIO~K_DISPLAY_OIdLY, 0) 
IF (.NOT. status) CALL LIB$SIGNAL ('OVAL(status)) 

The first process is typically running at a hig11 priority 
handling critical IIO functions, such as moving data froYn 
an I1O device to a disk file. 

b. Set up the device to use asynchronous I/O. 

status = LIO$SET_I (memory_id, LIO$K_ASYNCH, 0) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

T11is process uses the LIO$ENQUEUE routine to enqueue 
buffers to the memory queue device. 

c. Set up the device with a device event flag. This event flag 
is supplied as the value of the device_specific argument to 
dequeue a buffer from the device's free queue. 

status = LIO$SET_I (memory_id, LIO$K_DEVICE_EF, 1, i) 
IF (.NOT. status) CALL LIB$SIGNAL (y~VAL(status)) 

The LIO$DEQUEUE routine gets a buffer from the device's 
free queue. 

2-158 Laboratory i/O Device Support 



8. when you set up the memory queue device in the second 
process, perform steps a and b. 

a. Set up the device to read the data as it passes by the 
window. 

status = LIO~SET_I (memory_id, LIO$K_READ_ONLY, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

This second process is monitoring the data transfer, and 
perhaps plotting an occasional buffer to a graphics terminal. 
This process is running at a low priority and is not able to 
interrupt the flow of data buffers past the window. It misses 
buffers if the I1O process is using most of the CPU. 

b. Set up the device to use synchronous I/O. 

status = LIO$SET_I (memory_id, LIO$K_SYNCH, 0) 
IF (.NOT. status) CALL LIB~SIGNAL (XVAL(status)) 

This second process must use LIO$READ to read from 
the queue. The buffer supplied to the LIO$READ routine 
must not be from the global section. The data read from 
the global section is copied into the buffer supplied in the 
LIO$READ routine. 

9. Specify the buffer source. To perform this task, the buffer 
source can be either virtual memory or an array. If the buffer 
source is an array, the array must be page-aligned. 

status = LIO$SET_I (memory_id, LIO~K_BUFF_SOURCE, 1, 
1 LIO$K_VIRTUAL_MEM) 

IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

The online sample program LIO_MQ_DISPLAY.FOR in the 
LIO$EXAMPLES directory is a complete VAX FORTRAN program 
that shows how to use the interprocess memory queue's display-only 
function to display data buffers to a read-only memory queue device. 

The online sample program LIO_MQ_READONLY.FOR in the 
LIO$EXAMPLES directory is a complete VAX FORTRAN program that 
shows how to use the interprocess memory queue's read-only function 
to read data buffers acquired by a display-only memory queue device. 

Laboratory I/O Device Support 2-159 



2.7.3 Real-Time Plotting 

The LIO facility supports the real-time plotting pseudodevice for 
UIS-based (`JWS-based) devices as a method of monitoring real-time 
I/0. For example, as data is collected ~ by an A/D converter, it can be 
plotted on your terminal screen. The data is plotted in strip chart form 
that scrolls from left-to-right across the terminal screen, or in the form 
of oscilloscope-type output. 

The real-time plotting device works only with floating-point data. 

NOTE 

The real-time plotting device is supported only on 
VAXstation-based VAXIab systems running VWS. Attempting 
to attach the real-time plotting device on MicroVAX-based 
systems returns t11e unknown device, LIO$_UNKDEV, 
condition value. 

2.7.3.1 Real-Time Plotting Device Parameters 

Before you can begin data transfers to the real-time plotting device, you 
must set up certain device characteristics. The following table lists the 
LIO$SET and LIO$SHOW parameters you can use to set up and show 
real-time plotting device characteristics. See Chapter 4 for reference 
descriptions of the parameters listed in t11is table. 

Table 2-24: Real-Time Plotting LIO$SET and LIO$SHOW 
Parameters 

Parameter Function 

LIO$K_CURRENT_CHANNEL 

LLO$K_ERR_HANDLE 

LIO$K_MAX_CHANNELS 

2-160 Laboratory I/O Device Support 

Specifies which channel is affected. by 
channel-specific set calls. 

Specifies the way in which a device returns 
error conditions. 

Sets the maximum number of channels that 
can be plotted using the real-time plotting 
device. 



Table 2-24 (Cont.): Real-Time Plotting LIO$SET and LIO$SHOW 
Parameters 

Parameter Function 

LIO$K_MULTIPLE_X_AXES 

LIO$K_N_BUFFS 

LIO$K_PLOT_SIZE 

LIO$K_PLOT_TYPE 

LIO$K_PO_CHAN 

LIO$K_POSITION 

LIO$K_SKIP_COUNT 

LIO$K_START 

LIO$K_TITLE 

LIO$K_TITLE_n 

LIO$K_X_LABEL 

LIO$K_X_RANGE 

LIO$K_Y_LABEL 

LI O $K_Y_MA X 

LIO$K_Y_MIN 

Specifies the x-axis representation for the 
plotting window. 

Sets the number of channels in the data buffer. 

Sets the size of the plotting window. 

Specifies the type of plotting. 

Specifies the channel numbers of the channels 
plotted. 

Establishes the position of the plotting window 
on the display screen.. 

Specifies how many points are skipped and not 
plotted. 

Starts the device. 

Specifies the title for the graph of the current 
channel. 

Specifies the title for the graph of each channel 
plotted. 

Specifies the label on the x-axis of the current 
channel. 

Specifies the number of points to display, and 
the number of points to shift, along the x axis. 

Specifies the label on the y-axis of the current 
channel. 

Sets the maximum y-axis value for each 
channel plotted. 

Sets the minimum y-axis value for each 
channel plotted. 

Laboratory IIQ Device Support 2-161 



2.7.3.2 Attaching the Real-Time Plotting Device 

Attaching the real-time plotting device means assigning a VMS I/O 
channel to the device and initializing LIO data structures for, and 
pointers to, the device. 

Use the LIO$ATTAGH routine to attach the real-time plotting device. 

status = LIOSATTACH (graphics_id, 'POAO' , ) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

The graphics_id argument returns the LIO-assigned device ID for the 
real-time plotting device. The real-time plotting device is referenced 
by this device ID in subsequent routine calls to the device in a user 
program. 

The device specification POAO specifies areal-time plotting (PO) device 
with controller letter A and unit number 0. 

When attaching areal-time plotting device, you do not need to specify 
an io_type argument. 

2.7.3.3 Setting Up and Using the Real-Time Plotting Device 

To set up and to use the real-time plotting device, do the following: 

1. Include the symbolic definition files required by the VAXIab 
facilities and programming language you are using. 

2. Declare the data types and variables you are using in your program. 

3. Attach the device as described in Section 2.7.3.2, Attaching the 
Real-Time Plotting Device. 

4. Set up the device to use synchronous I/O. 

status = LIO$SET_I (graphics_id, LIOsK_SYNCH, 0) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

Performing this step is optional. It is included in this procedure for 
clarity. The real-time plotting device supports only synchronous 
write-only operations. 

5. Specify the maximum number of channels that can be plotted. This 
example specifies that four channels can be plotted. 

status = LIOSSET_I (graphics_id, LIOSK_MAX_CHANNELS, 1, 4) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

2-162 Laboratory I/O Device Support 



6. Specify the channel numbers of the channels to plot. This example 
sets up two channels: channel 0 and channel 1. 

statue = LIO$SET_I (graphics_id, LIO$K_PO_CHAN, 2, 0, 1) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

7. Specify the type of plotting-either oscilloscope-type output or 
scrolling output. This example sets up scrolling output. 

status = LIO$SET_I (graphics_id, LIO$K_PLOT_TYPE, i, LIO$K_STRIPCHART) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

8. Specify t11e number of points to display along the x-axis, and t11e 
number of points to shift along the x-axis. This example sets up 360 
to display, 45 to shift along the x-axis. 

status = LIO$SET_R (graphics_id, LIO$K_X_RANGE, 2, 360.0, 46.0) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

9. Specify how many points are to be skipped and not plotted. T11is 
example skips every nine points, which means that every tenth 
point is plotted. 

status = LIO$SET_I (graphics_id, LIO$K_SKIP_COUNT, 1, 9) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

10. Specify the minimum y-axis value for both channels. 

status = LIO$SET_R (graphics_id, LIO$K_Y_MIN, 2, -3.0, -3.0) 
IF (.NOT. status) CALL LIBSSIGNAL (xVAL(status)) 

11. Specify the maximum y-axis value for both channels. 

status = LIO$SET_R (graphics_id, LI03K_Y_MAX, 2, 3.0, 3.0) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

12. Specify the graph title of each channel plotted. 

status = LIOSSET_I (graphics_id, LIO$K_CURRErdT_CHANNEL, 1, 0) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

status = LIO$SET_S (graphics_id, LIO$K_TITLE, 'Channel 0') 
IF (.r~OT. status) CALL LIBSSIGNAL (XVAL(status)) 

status = LIOSSET_I (graphics_id, LIO$K_CURRENT_CHANNEL, i, i) 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

status = LIOSSET_S (graphics_id, LIO$K_TITLE, 'Channel 1') 
IF (.NOT. status) CALL LIBSSIGNAL (XVAL(status)) 

LIO$K_CURRENT_CHANNEL sets each channel in turn to the 
current channel, and the graph of each channel is then given a title. 

Laboratory I/O Device Support 2-163 



13. Specify the number of channels in each data buffer. 

status = LIOSSET_I (graphics_id, LIO$K_N_BUFFS, 1, 2) 
IF (.NOT. status) CALL LIB~SIGNAL (xVAL(status)) 

14. Start the plotting. 

status = LIO$SET_I (graphics_id, LIO$K_START, 0) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

15. Write a buffer to the graphics device. 

status = LIO$11RITE (graphics_id, graph_buffer, graph_size, ) 
IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

16. Detach the device. 

The online sample program LIO_AXV_RTPLOT.FOR in the 
LIO$EXAMPLES directory is a complete VAX FORTRAN program that 
uses the synchronous I1O interface and QIOs to read AID values from 
the AXV11-C. This program then plots the values on the terminal screen 
using the real-time plotting device in a continuous real-tune display. 

2-164 Laboratory I/O Device Support 



Chapter 3 

Laboratory I/O Routine Reference 
Descriptions 

This chapter presents an overview and detailed reference descriptions 
of the Laboratory I/O (LIO) routines. You use these ~•outines to set up, 
initiate, and control I10 to and from laboratory IIO devices. 

The LIO routines are presented in alphabetical order, with a brief 
description of what the routine does. The routines are described using 
the following format: 

• Format gives the routine entry point name and the argument list in 
the correct syntactical form. 

• Returns lists the information returned by the routine. 

• Arguments provides the following information: what each argument 
passes to or returns from the routine, and the data type, access, 
mechanism, and acceptable values of the argument. 

• Description contains information about the specific actions taken by 
the routine, such as: 

— Interaction between routine arguments 

— Interactions and dependencies between the routine and other 
LIO routines 

— Restrictions for use 

— Actions specific to the routine when used with certain devices 

Laboratory IIO Routine Reference Descriptions 3-1 



The following table summarizes the LIO routines. 

Table 3-1: Laboratory I/O Routine Summary 
Routine Call Function 

LIO$ATTACH Assigns a VMS I10 channel to the specified device, 
initializes LIO data structures for and pointers to the 
device, and returns an LIO-assigned device ID for the 
device. 

LIO$DEQUEUE Dequeues a buffer from a device set up to use the 
asynchronous I10 interface, and returns the buffer to 
the user program. 

LIO$DETACH Detaches the specified device, returns any associated.. 
storage to the system, and closes and deallocates 
associated VMS devices. 

LIO$ENQUEUE Queues a buffer to a device that is set up to use the 
asynchronous 110 interface. 

LIO$READ Reads a buffer from an input device that is set up to use 
the synchronous IIO interface. 

LIO$SET_I Sets up a device according to a parameter code and any 
number of integer values. 

LIO$SET_R Sets up a device according to a parameter• code and any 
number of real values. 

LIO$SET_S Sets up a device according to a par. ameter code and a 
character-string value. 

LIO$SHOW Returns the current values of a specified. parameter.. 

LIO$WRITE Writes a buffer. to an output device that is set up to use 
the synchronous I10 interface. 

3-2 Laboratory I/O Routine Reference Descriptions 



LIO$ATTACH 

~ LIO$ATTACH 

This routine does the following: 

• Assigns a VMS IIO channel to the specified device 

• Initializes LIO data structures for and pointers to the device 

• Returns the LIO-assigned device ID for the device 

The LIO$ATTACH routine must be called before any other routine call 
to a device. 

Format LIO$ATTACH (device_id, devspeq (io_typeJ) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
device id 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: write only 
mechanism: by reference 
Returns the LIO-assigned device ID. The device_id argument is the 
address of a signed longword integer into which the LIO facility writes 
the device ID. The device is then referenced by this device ID in 
subsequent routine calls to the device in a user program. 

Laboratory I/~ Routine Reference Descriptions 3-3 



LIO$ATTACH 

devspec 
VMS Usage: device_name 
type: character string 
access: read only 
mechanism: by descriptor 
Contains a character string with a maximum of 131 characters in length 
specifying the device or a VMS logical name that translates to a device 
specification. The devspec argument is the address of a descriptor 
that points to this device specification. See Table 3-2 foi• a list of the 
argument values. 

io_type 
VMS Usage: longword_signed 
type: longword integer signed) 
access: read only 
mechanism: by reference 
Specifies the type of I10 to use. The io_type argument is the address of 
a signed longword integer containing the I10 type. 

Description 
Table 3-2 shows the I/O types supported for each device. 

Table 3-2: Device Specifications and I/O Types 

Device Specification I1O Type 

AAF011 UUcu LIO$K_QIO 

AAV11-D AYcu LIO$K_MAP 
LIO$K_QIO 

ADF01~ UUcu LIO$K_QIO 

ADQ32 AWcu LIO$K_QIO 

ADV11-D AZcu LIO$K_MAP 
LIO$K_QIO 

AXV1.1-C AXcu LIO$K_MAP 
LIO$K_CTI 
LIO$K_QIO 

1 This device is ~vailaUle only in Europe. 

3-4 Laboratory I/O Routine Reference Descriptions 



LIO$ATTACH 

Table 3-2 (Cont.): Device Specifications and I/O Types 
Device Specification I1 O Type 

DRB32 UQcu LIO$K_QIO 

DRB32W UQWcu LIO$K_QIO 

DRQ11-C1 UUcu LIO$K_QIO 

DRQ3B HXcO (input port) LIO$K_Q10 
HXc1_ (output port) LIO$K_QIO 

DRV11-J DNcu LIO$K_MAP 
LIO$K_QIO 

DRV11-WA XAcu LIO$K_QIO 

IAV11-A1 IVcu LIO$K_QIO 

IAV11-AAl IVcu LIO$K_QIO 

IAV11-B1 IVcu LIO$K_QIO 

IAV11-C1 IVcu LIO$K_Q10 

IAV11-CA1 IVcu LIO$K_QIO 

IDV11-Al IVcu LIO$K_QIO 

1DV11-B1 IVcu LIO$K_QIO 

IDV11-C1 IVcu LIO$K_QIO 

IDV11-D1 IVcu LIO$K_QIO 

IEQ11~ IXcu LIO$K_CTRL 
LIO$K_INSTRUMENT 
LIO$K_SYS_CTRL 

IEZ11~ EKcu LIO$K_CTRL 
L10$K_INSTRUMENT 
LIO$K_SYS_CTRL 

IOtech Micro488A~ ITcu LIO$K_CTRL 
LIO$K_INSTRUMENT 
LIO$K_SYS_CTRL 

KWV11-C KZcu LIO$K_MAP 
LIO$K_Q10 

Preston (DRB32W) PGcu LIO$K_QIO 

iThis device is available only in Europe. 

2The io_type argument is used here to attach the device either as a controller, as an 
instrument, or as the system controller. 

Laboratory I/O Routine Reference Descriptions 3-5 



LIO$ATTACH 

Table 3-2 (Cont.): Device Specifications and I/O Types 

Device Specification I10 Type 

Preston (DRQ3B) PFcu LIO$K_QIO 

Preston (DRV11-WA) PGcu LIO$K_QIO 

Sirnpact RTC01 KBcu LIO$K_MAP 
LIO$K_QIO 

Disk files FLcu Not applicable 

Memory queue3 APcu LIO$K_LOCAL 
LIO$K_1NTER_PROC 

Real-time plotting PGcu Not applicable 

Serial line devices: 
DH- TXcu LIO$K_QIO 
DM- TXcu LIO$K_QIO 
DZ- TTcu LIO$K_QIO 
LAT LTcu LIO$K_QIO. 
MicroVAX2000 TTcu LIO$K_Q10 
MicroVAX3100 TTcu LIO$K_QIO 
VAXstation 2000 TTcu LIO$K_QIO 
VAXstation 3100 TTcu LIO$K_QIO 

3The io_type argument is used here to attach the device to manage memory local to a 
user's process, or to manage an interprocess global section. 

Note that all devices configured in your system are prefixed wit11 a two-
or three-letter device type, such as AX or UQW, followed by a variable 
controller letter (A, B, C ...) and the unit number, which is usually 0. 

The controller number specifies which device is addressed when more 
t11an one device is installed. The first device is assigned a controller 
letter A, the second B, and so forth. 

Soiree devices provide multiple functionality on a single board. For 
example, a single serial line board might have multiple serial ports. 
Each port is assigned a unit number, starting with 0. 

If you have only one of any of the devices configured in your• system, 
specifying only the two- or three-letter device type is sufficient. 

3-6 Laboratory I/Q Routine Reference Descriptions 



LIO$ATTACH 

When using the DRQ3B device, the devspec HXAO is used to specify 
the input port of the device. The devspec HXA1 is used to specify 
the output port of t11e device. Foi• this device, you must supply the 
complete device specification. 

When you attach a device to use QIOs, the following restrictions apply: 

• If the device is capable of direct memory access (DMA), attaching 
it with LIO$K_QIO is the only way to use the DMA feature, wllicll 
allows the fastest transfer rate. Because of the system overhead 
associated with each QIO call, QIO is best used when moving large 
amounts of data in large buffers . 

• With devices set for buffer forwarding, the LIO$ENQUEUE and 
LIO$DEQUEUE routines are only available when each device is 
attached with LIO$K_QIO and set to use the asynchronous I10 
interface. 

• User and external event AST routines can only be used when 
devices are attached with LIO$K_QIO. 

• When a device is attached with QIO, the maximum size of an 
individual data buffer is 65, 534 bytes . 

Wl1en you attach a device to use polled, or memory-mapped, I/0, the 
following restrictions apply: 

• Only the synchronous I/Q interface is available. 
• The software cannot use the direct memory access (DMA) feature of 

the hardware, so the maximum transfer rate is limited. 

W11en you attach a device to use connect-to-interrupt IIO, the following 
restrictlollS apply: 

• Only the synchronous I10 interface is available. 
• The software cannot use the direct memory access (DMA) feature of 

the hardware, so the maximum transfer rate is limited. 

Laboratory I/O Routine Reference Descriptions 3-7 



LIO$DEQUEUE 

LIO$DEQUEUE 

This routine does the following: 

• Dequeues a buffer from a device set up to use the asynchronous I/O 
interface 

• Returns the buffer to the main program 

Format LIO$DEQUEUE (device_id, buffer, buffer length, 
~data_IengthJ, ~waitJ, buffer index], 
~device_specific]) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
device_id 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies the device ID of the device from which t11e LIO$DEQUEUE 
routine dequeues the buffer. The device_id argument is the address of 
a signed longword integer that contains this device ID. 

3-8 Laboratory I/O Routine Reference Descriptions 



LIO$DEQUEUE 

buffer 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 
Returns the address of the oldest data buffer. The buffer argument is 
the address of an unsigned longword into which the LIO facility writes 
the starting virtual address of this data buffer. 

buffer length 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: write only 
mechanism: by reference 
Returns the length of the data buffer in bytes. The buffer_length 
argument is the address of a signed longword integer into which the 
LIO facility writes the length of buffer in bytes. 

data_length 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: write only 
mechanism: by reference 
Returns the length of the data in the buffer in bytes . The data_length 
argument is the address of a signed longword integer into which the 
LIO facility writes the length of the data in buffer in bytes. 

wait 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies whether or not the LIO$DEQUEUE routine is to wait for a 
buffer to become available. If the value of this argument is nonzero, the 
routine waits for a buffer to become available. 

You must set up an event flag for the device or specify an event 
flag through t11e LIO$ENQUEUE call, or this argument is ignored. 
If the value of this argument is zero and no buffer is available, the 
LIO$_EMPTYQ condition value is returned. The wait argument is the 
address of a signed longword integer containing a zero or nonzero 
integer. 

Laboratory IIO Routine Reference Descriptions 3-9 



LIO$DEQUEUE 

buffer index 
VMS Usage: longword_signed 
type: longword integer (signed 
access: write only 
mechanism: by reference 
Returns the buffer index of the buffer previously assigned using the 
buffer_index argument of the LIO$ENQUEUE routine when the buffer 
was enqueued. The buffer_index argument is the address of a signed 
longword integer into which the LIO facility writes the buffer index 
number. 

T11is value is not used by the LIO facility. It is included in the 
LIO$ENQUEUE routine call argument list as a way for a user program 
to identify buffers by assigning unique numbers to them. If a buffer 
index number is supplied, it is returned by the LIO$DEQUEUE routine 
when the buffer is dequeued. 

device_specific 
VMS Usage: longword unsigned 
type: longword integer (unsigned) 
access: device-dependent 
mechanism: by reference 
Specifies or returns device-specific information about the buffer. When 
used with certain devices, the device_specific argument is the address 
of an unsigned longword integer containing information required by 
the device to perform the data transfer. W11en used with other devices, 
the device specific argument is t11e address of an unsigned longword 
integer to which the LIO facility writes information about the data 
transfer. 

The following table lists the devices that support the use of this 
argument with the LIO$DEQUEUE routine, the LIO-supplied values 
of this argument, if any, and the information that is being supplied or 
returned about the data transfer. 

3-10 Laboratory I/O Routine Reference Descriptions 



LIO$DEQUEUE 

Table 3-3: LIO$DEQUEUE Device-Specific Argument Values 
Argument Values Description 

AAFOl,1 ADFOl,1 DRQ11-Cl 

User-supplied Here you use the device_specific argument 
II ~ status block to specify the address of auser-supplied I10 

status block. The user-supplied IlO status 
block returns additional information about the 
completed I/O transfer. 

AXVll-C 

User-supplied Here you use the device_specific argument to 
output variable return the source of the buffer. This means 

whether it is an input buffer from the ADC or 
an output buffer from the DACs. 

DRQ3B 

User-supplied If the device_specific argument is supplied, it 
output variable returns the contents of the status register in 

the high 16 bits, and the contents of the DMA 
status register in the low 16 bits. 

DRV11-V1~A 

User-supplied If t11e device_specific argument is supplied, it 
output variable returns the state of the three control lines in 

bits 0, 1, and 2, and the status of the three 
sense lines in bits 9, 10, and 11. 

1 This device is available only in Europe. 

Laboratory UO Routine Reference Descriptions 3-11 



LIO$DEQUEUE 

Table 3-3 (Cont.): LIO$DEQUEUE Device-Specific Argument Values 

Argument Values Description 

Memory queue 

LIO$K_FREE_Q 
LIO$K_USER_Q 

Here you use the device_specific argument to 
signal whether a buffer is to be dequeued. from 
the device's user queue or. from the free queue. 
Specifying a LIO$K_FREE_Q signals the device 
to dequeue a buffer from the free queue. If 
the free queue is empty, the routine attempts 
to dequeue a buffer from the user queue. If 
the routine obtains a buffer from the user 
queue, this argument returns LIO$K_USER_Q. 
Specifying LIO$K_USER_Q signals the device to 
dequeue a buffer from the user queue. Check 
the value of this argument if the source of the 
buffer is important. 

Serial line 

LIO$K_INPUT 
LIO$K_OUTPUT 

Here you use the device_specific argument 
to specify whether the serial line device is to 
dequeue an input request or an output request. 

Description 
Use the LIO$DEQUEUE routine to return previously enqueued 
(LIO$ENQUEUE) buffers to a user program. If no buffers are available 
and the wait argument is nonzero, the routine call does not return until 
an enqueued buffer becomes available. You can use this routine to 
return an enqueued buffer or to wait for afor-warding loop to complete. 

You use this routine call with the memory queue device to obtain buffers 
allocated from virtual memory from the device's free queue. You must 
dequeue a buffer from the free queue before you can begin using the 
buffer for data transfers. 

3-12 Laboratory I/O Routine Reference Descriptions 



LIO$DETACH 

~ LIO$DETACH 

This routine does the following: 

• Detaches the specified device 

• Returns any associated storage to the system 

• Closes and deallocates associated VMS devices 

Format LIO$DETACH (device_id, (rundown]) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

~1 Arguments 
device_id 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies the device ID of the device the LIO$DETACH routine is to 
detach. The device_id argument is the address of a signed longword 
integer containing this device ID. 

rundown 
VMS Usage: longword_signed 
type: longword integer (signed 
access: read only 
mechanism: by reference 
Specifies when to detach the device. If the value of this argument is 
nonzero, the device is not detached until all outstanding I10 requests 
are complete. If the value of this argument is zero, the device is 
detached immediately. All outstanding IIO requests are cancelled. 

Laboratory I/O Routine Reference Descriptions 3-13 



LIO$DETACH 

This argument is only valid when the device is set to use the 
asynchronous Ilo interface. The rundown argument is the address 
of a signed longword integer that contains the detach condition. 

Description 
See the Arguments for details. 

3-14 Laboratory I/O Routine Reference Descriptions 



LIO$ENQUEUE 

~ LIO$ENQUEUE 

This routine queues a buffer to a device set up to use the asynchronous 
I/O interface. 

Format LIO$ENQUEUE (device_id, buffer, buffer length, 
(data_lengthJ, event flag], 
buffer index], (device_specificJ) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
device id 
VMS Usage: longword_signed 
type: longword integer (signed] 
access: read only 
mechanism: by reference 
Specifies the device ID of the device to which the LIO$ENQUEUE 
routine enqueues the buffer. Tl1e device_id argument is the address of 
a signed longword integer containing this device ID. 

buffer 
VMS Usage: array 
type: array 
access: read or write or read/write 
mechanism: by reference 
Specifies the address of the data buffer. The buffer argument is the 
address of t11e array which is the data buffer. The user defines the type 
of array, but it should be a type acceptable to the device. 

Laboratory I/O Routine Reference Descriptions 3-15 



LIO$ENQUEUE 

For the IAVll-A1 devices, this argument returns information about the 
data transfer. This argument is an array of longwords. Each longword 
returns information about one A1D channel. Byte 1 returns the channel 
number. Byte 2 returns the channel gain. The high word (bytes 3 and 4) 
returns the actual AID value. 

buffer length 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies the length of the data buffer in bytes. The buffer_length 
argument is t11e address of a signed longword integer containing the 
length of the data buffer. 

For IAV11-A1 devices, specify buffer_length as a multiple of four. 

cfata_length 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
For input devices, specifies the maximum number of bytes to read 
into the buffer. For output devices, specifies the amount of data in the 
buffer, in bytes. The data_length argument is the address of a signed 
longword integer that contains this information. If the data_length 
argument is omitted, it defaults to the value of the buffer_length 
argument. 

event flag 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies a VMS event flag to be associated with the buffer. The 
event_flag argument is the address of a signed longword integer that 
contains this event flag. Specify a unique VMS event flag for each 
buffer. 

1 This device is availaUle only in Europe. 

3-16 Laboratory I/o Routine Reference Descriptions 



LIO$ENQUEUE 

You can use the VMS Run-Time Library Routine LIB$GET_EF to obtain 
a free VMS event flag. This routine allocates one local event flag from 
a process-wide pool and returns the number of the allocated flag to the 
calling program. 

You can also specify a value 1 through 23, or 32 through 127 that is 
unique to the process. Event flags 24 through 31 are reserved for use by 
DIGITAL. Event flags 1 through 23 and 32 through 63 are local to the 
process. Event flags 64 through 127 are in global event flag clusters that 
inay or may not currently be associated with the process. The default 
value is zero. 

This argument is required if the device is attached wit11 LIO$K_QIO 
and the LIO$DEQUEUE routine is to wait for the buffer transaction to 
complete . 

buffer index 
VMS Usage: longword signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies an index number for the buffer. The buffer index argument is 
t11e address of a signed longword integer that contains the buffer index 
number. The buffer index number is returned by the LIO$DEQUEUE 
call, and can be used by a user program to identify the buffer. 

This value is not used by the LIO facility. It is included in t11e 
LIO$ENQUEUE routine call argument list as a way for a user program 
to identify buffers by assigning unique numbers to them. If a buffer 
index number is supplied, it is returned by the LIO$DEQUEUE routine 
when the buffer is dequeued. 

device_specific 
VMS Usage: longword_unsigned 
type: longword integer (unsigned) 
access: device-dependent 
mechanism: by reference 
Specifies or returns device-specific information about the buffer. When 
used with certain devices, the device_specific argument is the address 
of an unsigned longword integer that contains information required by 
t11e device to perform the data transfer. Wl1en used with other devices, 
the device_specific argument is the address of an unsigned longword 

Laboratory I/O Routine Reference Descriptions 3-17 



LIO$ENQUEUE 

integer to which the LIO facility writes information about the data 
transfer. 

The following table lists the devices that support the use of this 
argument with the LIO$ENQUEUE routine, the LIO-supplied values 
of this argument, if any, and the information that is being supplied or 
returned about the data transfer. 

Table 3-4: LIO$ENQUEUE Device-Specific Argument Values 
Argument Values Description 

AAF01,1 ADF01,1 DRQ11-C1

User-supplied Here you use the device specific argument to 
parameter block specify the address of auser-supplied parameter 

block. The user-supplied parameter block is an 
integer array of length six supplying information. 
required for the data transfer, such as buffer 
address and buffer length. 

See the AAF01., ADF01, or. DRQ1.1-C 
device-specific section in Chapter 2 for 
information about using the device_specific 
argument to supply the parameter block. 

AAVll-D 

User-supplied Here you t~se the device_specific argument to write 
input variable the four digital control lines. Before outputting 

a buffer, the control lines are set with the 
complement of the value in the low four bits 
of the argument. When the buffer transaction is 
co~rplete, the bits are cleared. 

iThis device is available only in Europe. 

3-18 Laboratory I/O Routine Reference Descriptions 



Li0$ENQUEUE 

Table 3-4 (Cont.): LIO$ENQUEUE Device-Specific Argument Values 
Argument Values Description 

ADQ32 

LIO$M_HOLD_DMA 
LIO$M_DONE_DBL_BUF 

When using the ADQ32 device to 
perform double-buffer DMA transfers, the 
LIO$M_HOLD_DMA value is included in all 
Li0$ENQUEUE routine calls to the device to 
inhibit the start of DMA transfers until all buffers 
are enqueued. Omitting the LIO$M_HOLD_DMA 
value on the last LIO$ENQUEUE routine call to 
the device causes the DMA transfers to begin as. 
soon as the last buffer is enqueued. 

The LIO$M_DONE_DBL_BUF value signals Ll0 
that you are done double buffering. Include 
this device-specific value when you enqueue the 
last buffer in adouble-buffering sequence. See 
Section 1.6.3.4, Double-Buffer DMA, for more 
information. 

AXVll-C 

LIO$K_1NPUT 
LIO$K_OUTPUT 

Here you use the device_specific argument to signal 
whether a program is to read (L10$K_INPUT) 
from the ADC or to write (LIO$K_OUTPUT) to 
the DACs. 

DRB32 

User-supplied Specifying the device_specific argument may 
input variable be necessary to place the external device in the 

proper mode for the data transfer. Here you 
specify the address of a longword whose low-order 
byte contains the bit pattern you want to write to 
the output control port. This byte is written to the 
output control port before the data transfer starts. 

Laboratory I/O Routine Reference Descriptions 3-19 



LIO$ENQUEUE 

Table 3-4 ~Cont.1: LIO$ENQUEUE Device-Specific Argument Values 
Argument Values Description 

DRQ3B 

LIO$M_HOLD_DMA 
LIO$M_RUN_DOWN 

When using the DRQ3B device to 
perform double-buffer DMA transfers, the 
LIO$M_HOLD_DMA value is included in all 
LIO$ENQUEUE routine calls to the device to 
inhibit the start of DMA transfers until all buffers 
are enqueued. Omitting the L10$M_HOLD_DMA 
value on the last L1O$ENQUEUE routine call to 
the device causes the DMA transfers to begin as 
soon as the last buffer is enqueued. 

The LIO$M_RUN_DOWN value prevents the 
setting of an event flag or the delivering of an .AST 
routine until the buffer on the output port has 
been output. This value effectively disables double 
buffering. 

DRV11-J 

User-supplied An unsigned longword integer. The low word 
input variable selects the port, where 0 specifies port A, 7. 

specifies port B, 2 specifies port C, and 3 specifies 
port D. The high word is a mask that selects t11e 
bits of the port. If any bits are set in the High 
word of the argument, then only those bits are 
written to output or read from on input. 

On output, bits not selected are not changed.. On 
input, bits not selected are returned. as ze~•os. If 
the second word is zero, all bits are written to on 
output and read from. on input. If all bits are to 
be selected, then this argument can be treated as a 
normal integer specifying only the port number. 

3-20 Laboratory I/O Routine Reference Descriptions 



LIO$EN~UEUE 

Table 3-4 (Cont.): LIO$ENQUEUE Device-Specific Argument Values 

Argument Values Description 

DRVll-WA 

User-supplied The low three bits of the integer are written to the 
output variable control lines when the buffer is input (if the board 

is jumpered for input) or output (if the board is 
jumpered for output). The actual direction of the 
device is set by an external control line that can be 
tied either high or low, or can be controlled by an 
external instrument control. 

IAV11-A', IAV11-AAl

User-supplied The device_specific argument is an ar. ray of 
input variable longwords you use to specify information about 

the AID channels. See Section 2.4.1.4, Using the 
IAV11-A for Asynchronous Input, for information 
about using the device_specific argument to read 
AID values from the IAV11-A devices. 

IDV11-D~ 

User-supplied The device_specific argument is a structure 
input variable with three arguments. The first argument is 

a word that contains the channel number. 
The second argument is a byte containing the 
"disarm" parameter. The third_ argument is a 
byte containing the "save" parameter. 

1This device is available only in Europe. 

Laboratory I/O Routine Reference Descriptions 3-21 



LIO$ENQUEUE 

Table 3-4 (Cont.): LIO$ENQUEUE Device-Specific Argument Values 
Argument Values Description 

IEQ11, IEZ11, IOtech Micro488A 

LIO$M_LNR 
LIO$M_TKR 

Use the device_specific argument to specify the 
direction of an I10 transfer. If the IEEE-488 device 
is attached as acontroller-in-charge, the 
device_specific argument can also specify the 
IEEE-488 address of the destination or source 
device. This is a required argument. 

When an IEEE-488 device is attached as an 
instrument, the device_specific argument only 
specifies the direction of the data transfer. 
LIO$M_TKR causes LIO to perform an 
asynchronous input. LIO$M_LNR causes LIO 
to perform an asynchronous output . 

When an IEEE-488 device is the 
controller-in-charge, the device_specific argument 
contains the source or destination address as well 
as the direction of the data transfer. LIO$M_TKR 
ORed with a device addr. ess causes LIO to read 
data from the specified device (the device becomes 
a talker). LIO$M_LNR ORed with a device address 
causes LIO to write data to the specified device 
(the device becomes a listener). For example: 

dev_addr = 3 

dev_spec = LIO$M_LNR .OR. dev_addr 

3-22 Laboratory I/O Routine Reference Descriptions 



LIO$ENQUEUE 

Table 3-4 (Cont.): LIO$ENQUEUE Device-Specific Argument Values 
Argument Values Description 

Serial line 

LIO$K_INPUT 
LIO $K_O UTPUT 
LIO$K_BREAKOUT 

Here you use the device_specific argument to 
signal the serial line device to enqueue an input 
request, to enqueue an output request, or to force 
a write request over the current read request . 

During normal operation, an active read r. equest 
means that an input buffer has been sent to the 
serial line device driver and is set up to receive 
any incoming bytes of data from the serial line. 
Using the device_specific argument forces the 
write request to execute ahead of an active read 
request. The read request resumes execution on 
completion of the forced write request. 

Description 
You can use this routine only when the specified device is set for 
asynchronous I/O. 

If an event flag is supplied, it is set when the buffer transaction 
completes. The event flag is required by the memory queue device. 
It defaults to zero for all other devices using QIOs. 

To ensure continuous data transfers, several LIO$ENQUEUE calls can 
be made to queue several buffers ahead. 

When a device is attached with QIO, the maximum size of an individual 
data buffer is 65, 534 bytes . 

Laboratory I/O Routine Reference Descriptions 3-23 



LIO$READ 

LIO$READ 

This routine reads a buffer from an input device set up to use the 
synchronous I/O interface. 

Format LIO$READ (device_id, buffer, buffer length, 
data_length, ~device_specific]) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned 
access: write only 
mechanism: by value 

Arguments 
device fd 
VMS Usage: longword_signed 
type: longword integer signed) 
access: read only 
mechanism: by reference 
Specifies the device ID of the device from which the LIO$READ routine 
reads the buffer. The device_id argument is the address of a signed 
longword integer that contains this device ID. 

buffer 
VMS Usage: array 
type: array 
access: write only 
mechanism: by reference 
Specifies the address of the data buffer. The buffer argument is the 
address of the array which is the data buffer. The user defines the type 
of array, but it should be a type acceptable to the device. 

3-24 Laboratory I/O Routine Reference Descriptions 



LIO$READ 

For t11e IAV11-A1 devices, t11is argument returns information about the 
data transfer. Tl1is argument is an array of longwords. Each longword 
returns information about one A/D channel. Byte 1 returns the channel 
number. Byte 2 returns the channel gain. The high word (bytes 3 and 4) 
returns the actual AID value. 

buffer length 
VMS Usage: longword_signed 
type: longword integer (signed} 
access: read only 
mechanism: by reference 
Specifies the length of the data buffet• in bytes. The buffer_length 
argument is the address of a signed longword integer that contains the 
length of the data buffer. 

For IAV11-A1 devices, specify buffer_length as a multiple of four. 

data_length 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: write only 
mechanism: by reference 
Returns the length of the data buffer in bytes. The data length argument 
is the address of a signed longword integer into which the LIO facility 
writes the length of the data buffer. 

devices peclfic 
VMS Usage: longword_unsigned 
type: longword integer (unsigned) 
access: device-dependent 
mechanism: by reference 
Specifies or returns device-specific information about the buffer. When 
used with certain devices, the device_specific argument is the address 
of an unsigned longword integer containing information required by 
the device to perform the data transfer. When used with other devices, 
the device_specific argument is the address of an unsigned longword 
integer to which the LIO facility writes information about the data 
transfer. 

1 This device is available only in Europe. 

Laboratory I/O Routine Reference Descriptions 3-25 



LIO$READ 

The following table lists the devices that support the use of this 
argument with the LIO$READ routine, the LIO-supplied values of 
this argument, if any, and the information that is being supplied or 
returned about the data transfer. 

Table 3-5: LIO$READ Device-Specific Argument Values 
Argument Values Description 

AAFOl,1 ADF01,1 DRQ11-Cl

User-supplied 
parameter block 

Here you use the device_specific argument to 
specify the address of auser-supplied parameter 
block. The user-supplied parameter block is an 
integer array of length six supplying information 
required for the data transfer, such as buffer 
address and buffer length. 

See the AAF01, ADF01, or DRQ11-C 
device-specific section in Chapter 2 for 
information about using the device_specific 
argument to supply the parameter block. 

DRB32 

User-supplied Specifying the device_specific argument may 
input variable be necessary to place the external device in the 

proper mode for the data transfer. Here you 
specify the address of a longword whose low-order 
byte contains the bit pattern you want to write to 
the output control port. This byte is written to the 
output control port before the data transfer starts. 

1This device is available only in Europe. 

3-26 Laboratory UO Routine Reference Descriptions 



LIO$READ 

Table 3-5 ~Cont.): LIO$READ Device-Specific Argument Values 
Argument Values Description 

DRV11-j 

User-supplied An unsigned longword integer. The low word 
input variable selects the port, where 0 specifies port A, 1 

specifies port B, 2 specifies port C, and 3 specifies 
port D. The high word is a mask that selects the 
bits of the port. If any bits are set in the high 
word of the argument, then only those bits are 
written to output or read from on input. 

On output, bits not selected are not changed. On 
input, bits not selected are returned as zeros. If 
the second word is zero, all bits are written to on 
output and read from on input. If all bits are to 
be selected, then this argument cam be treated as a 
normal integer specifying only the port number. 

DRVll-WA 

User-supplied The low three bits of the integer are written to the 
output variable control lines when the buffer is transferred. The 

argument returns the state of the three control 
lines in bits 0, 1, 2, and the state of the three 
sense lines in bits 9, 10, and 11. 

IAV11-A, l IAV11-AAl

User-supplied The device_specific argument is an array of 
input variable longwords you use to specify information about 

the AID channels. See Section 2.4.1.3, Using the 
IAV11-A for Synchronous Input, for complete 
information about using the device_specific 
argument to read AID values from the IAV11-A 
devices. 

iThis device is available only in Europe. 

Laboratory I/Q Routine Reference Descriptions 3-27 



LIO$READ 

Table 3-5 (Cont.): LIO$READ Device-Specific Argument Values 
Argument Values Description 

IDV11-D1

User-supplied The device_specific argument is a structure 
input variable with three arguments. The first argument is 

a word that contains the channel number. 
The second argument is a byte containing the 
"disarm" parameter. The third argument is a byte 
containing the "save" parameter. 

IEQ11, IEZll, IOtech Micro488A 

Talker address If an IEEE-488 device is the controller-in-charge, 
you can use .this argument to specify a valid 
IEEE-488 talker address. This causes LIO to 
addr. ess the specified device as a talker befor. e 
starting the transfer. 

1 This device is available only in Europe . 

Description 
You can use this routine only when the specified device is set for 
synchronous I/0. This routine call does not return until the buffer is 
complete. 

When a device is attached with QIO, t11e maximum size of an individual 
data buffer is 65, 534 bytes . 

3-28 Laboratory I/O Routine Reference Descriptions 



LIO$SET 

LIO$SET_I 

This routine sets up a device according to a parameter code and any 
number of integer values. 

Format LIO$SET_I (device_id, param_code, n_values, 
~param_values]) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
device id 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies the device ID of the device the LIO$SET_I routine is to set up. 
The device_id argument is the address of a signed longword integer that 
contains this device ID. 

param_code 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies the parameter code being set. The param_code argument 
is the address of a signed longword integer containing the parameter 
code. 

Laboratory I/O Routine Reference Descriptions 3-29 



ll0$SET 1 

n_values 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Contains the number of parameter code values being set. The n values 
argument is the address of a signed longword integer containing t11is 
number. 

param_values 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Contains zero or more values that are the parameter code values to set. 
The values are separated by commas. The param values argument is 
the address of a signed longword integer that contains these values. 

Description 
See Chapter 2 for listings of the valid parameters for each device. 

See Chapter 4 for information about valid parameter codes and 
parameter-code values. 

3-30 Laboratory I/~ Routine Reference Descriptions 



LIO$SET R 

LIO$SET_R 

This routine sets up a device according to a parameter code and any 
number of real values. 

Format LIO$SET_R (device_id, param_code, n_values, 
~param_values]) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
device_fd 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies the device ID of the device the LIO$SET_R routine is to set 
up. The device_id argument is t11e address of a signed longword integer 
that contains this device ID. 

param_code 
VMS Usage: longword_signed 
type: longword integer signed) 
access: read only 
mechanism: by reference 
Specifies the parameter code being set. Tl1e param_code argument is 
the address of a signed longword integer that contains the parameter 
code. 

Laboratory I/O Routine Reference Descriptions 3-31 



LIO$SET_R 

n_values 

VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies the number of parameter code values being set. The n values 
argument is the address of a signed longword integer that contains this 
number. 

param_values 

VMS Usage: floating point 
type: F_floating 
access: read only 
mechanism: by reference 
Contains zero or more values that are the parameter code values to set. 
The values are separated by commas. The param values argument is 
the address of a signed longword integer that contains these values. 

Description 
See Chapter 2 for listings of the valid parameters for each device. 

See Chapter 4 for information about valid parameter codes and 
parameter-code values. 

3-32 Laboratory I/o Routine Reference Descriptions 



LIO$SET_S 

LIO$SET_S 

This routine sets up a device according to a parameter code and a 
character-string value. 

Format LIO$SET_S (device_id, param_code, string) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
device fd 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies the device ID of the device the LIO$SET_S routine is to set 
up. The device_id argument is the address of a signed longword integer 
that contains this device ID. 

param_code 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies the parameter code being set. The param_code argument 
is the address of a signed longword integer containing the parameter 
code. 

Laboratory I/Q Routine Reference Descriptions 3-33 



LIO$SET S 

string 
VMS Usage: char_string 
type: character string 
access: read only 
mechanism: by descriptor 
The character string value being set. The char_string argument is the 
address of a string descriptor pointing to the character string. 

Description 
See Chapter 2 for listings of the valid parameters for each device. 

See Chapter 4 for information about valid parameter codes and 
parameter-code values. 

3-34 Laboratory I/Q Routine Reference Descriptions 



LIO$SHOW 

~ LIO$SHOW 

This routine returns the current values of a specified parameter. 

Format LIO$SHOW (device_id, param_code, value_list, 
list length) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
device id 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies the device ID of the device about which the LIO$SHOW 
routine is to show information. The device_id argument is the address 
of a signed longword integer that contains this device ID. 

param_code 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies the parameter code whose values you want the LIO$SHOW 
routine to return. The param_code argument is the address of a signed 
longword integer that contains the parameter code. 

Laboratory I/O Routine Reference Descriptions 3-35 



LIO$SHOW 

value_llst 
VMS Usage: varying_arg 
type: unspecified 
access: write only 
mechanism: by reference 
Returns the values of the parameter you want shown. The value_list 
argument is the address of a floating-point variable, a string, or a 
longword in which the LIO facility writes the current values of the 
parameter. The data type of value list must be appropriate for the 
expected data. For example, specify an integer if an integer is expected; 
specify a string if a string is expected. 

tlst_length 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: write only 
mechanism: by reference 
Returns the number of elements iri value_list. The list_length argument 
is the address of a signed longword integer into which the LIO facility 
writes the number. This can be the number of longwords, the number 
of single-precision, floating-point values, the length of the string, or (for 
a serial poll in IEEE-488 devices) the number of bytes. 

Description 
For any device, any parameter value that can be set can also be shown. 

In addition, some devices have parameter values that cannot be set 
but can be shown, such as the state of an external sense line. Use the 
LIO$SHOW routine to return any parameter value appropriate for use 
wit11 a device. 

3-36 Laboratory I/O Routine Reference Descriptions 



LIO$WRITE 

LIO$WRITE 

This routine writes a buffer to an output device set up to use the 
synchronous I/O interface. 

Format LIO$WRITE (device_id, buffer, data_length, 
(device_specificJ) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
device id 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies the device ID of the device to which the LIO$WRITE routine 
is to write the buffer. The device_id argument is the address of a signed 
longword integer that contains this device ID. 

buffer 
VMS Usage: array 
type: array 
access: read only 
mechanism: by reference 
Specifies the address of the data buffer. The buffer argument is the 
address of the array which is the data buffer. The user defines the type 
of array, but it should be a type acceptable to the device. 

Laboratory I/O Routine Reference Descriptions 3-37 



LIO$WRITE 

data_length 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 
Specifies the length of the data buffer in bytes. The data_length 
argument is the address of a signed longword integer that contains the 
length of the data buffer. 

devlce_speciflc 
VMS Usage: longword_unsigned 
type: longword integer (unsigned) 
access: device-dependent 
mechanism: by reference 
Specifies or returns device-specific information about the buffer. 

When used with certain devices, the device_specific argument is the 
address of an unsigned longword integer that contains information 
required by the device to perform the data transfer. 

When used with other devices, the device specific argument is the 
address of an unsigned longword integer to which the LIO facility writes 
information about the data transfer. 

The following table lists the devices that support the use of this 
argument with the LIO$WRITE routine, the LIO-supplied values of 
this argument, if any, and the information that is being supplied or 
returned about the data transfer. 

3-38 Laboratory I/O Routine Reference Descriptions 

lJ 



LIO$WRITE 

Table 3-6: LIO$WRITE Device-Specific Argument Values 
Argument Values Description 

AAF01,1 ADF01,1 DRQll-11

User-supplied 
parameter block 

Here you use the device_specific argument to 
specify the address of auser-supplied parameter 
block. The user-supplied parameter black is an 
integer array of length six supplying information 
required for the data transfer, such as buffer 
address and buffer length. 

See the AAF01, ADFO1, or DRQ11-C 
device-specific section in Chapter 2 for 
information about using the device_specific 
argument to supply the parameter block. 

AAVll-D 

User-supplied Here you use the device_specific argument to write 
input variable the four digital control lines. Before outputting 

a buffer, the control lines are set with the value 
in the low four bits of the argument. When the 
buffet• transaction is complete, the bits are cleared. 

DRB32 

User-supplied Here you specify the address of a longword whose 
input variable low order byte contains the bit pattern you want 

to write to the output control port. This byte 
is written to the output control port before the 
data transfer starts. Specifying the device_specific 
argument may be necessary to place the exter. nal 
device in the proper mode for the data transfer. 

iThis device is available only in Europe. 

Laboratory I/O Routine Reference Descriptions 3-39 



LIO$WRITE 

Table 3-fi ~Cont.): LI~$WRITE Device-Specific Argument Values 

Argument Values Description 

DRV11-j 

User-supplied An unsigned longword integer. The low woad 
input variable selects the port, and the high word is a mask that 

selects the bits of the port. If any bits ar.e set in 
the high word of the argument, then only those 
bits are written to on output. The bits not selected 
are not changed. If the second word is zero, all 
bits are written to on output. If all bits are to be 
selected, then this argument can be treated as a 
normal integer containing only the port number. 

DRV11-WA 

User-supplied The low three bits of the integer are written to the 
output variable control lines when the buffer is transferred. T11e 

argument returns the state of the th~•ee control. 
lines in bits 0, 1, 2, and the state of the three 
sense lines in bits 9, 10, and 11. 

IEQ11, IEZll, IOtech Micro488A 

Listener address If an IEEE-488 device is the controller-in-charge, 
you can. use this argument to specify a valid 
IEEE-488 address. This causes LIO to address the 
specified device as a listener before starting the 
transfer. 

Description 
You can use this routine only when the specified device is set for 
synchronous I/0. This routine call does not return until the buffer is 
empty. 

When a device is attached with QIO, the maximum size of an individual 
data buffer is 65,534 bytes. 

3-40 Laboratory I/O Routine Reference Descriptions 



Chapter 4 

LIO$SET and LIO$SHOW 
Parameter Reference Descriptions 

This chapter presents an overview and detailed reference descriptions 
of the LIO$SET and LIO$SHOW parameters you use to set up and 
display I10 device parameters. 

The LIO parameters are presented in alphabetical order and described 
using the following format: 

• Supported Devices lists the LIO devices with which the parameter 
can be used. 

• Parameter Values describes t11e data type and number of values the 
parameter accepts. 

• Description contains information about the specific actions taken 
by the parameter. T11is information includes interactions or 
dependencies between t11e parameter and other LIO parameters, 
and actions specific to the parameter when used with certain 
devices. 

• Restrictions lists those things you should consider when you set up 
a device using t11e parameter. Restrictions include the limitations 
imposed on the device by setting it up using the parameter, 
and other parameters that must be used in conjunction with this 
parameter to set up the device properly. 

• Example contains one or more programming examples to illustrate 
the use of the parameter. An explanation follows each example. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-1 



NOTE 

All programming examples in this chapter are presented 
in VAX FORTRAN (except where noted). 

The following table summarizes the LIO$SET and LIO$SHOW 
parameters. 

Table 4-1: LIO$SET and LIO$SHOW Parameter Summary 

Parameter Function 

LI O$K_ACK_NAK_TERMINATOR 

LIO$K_AD_CHAN 

LIO$K_AD_DIFFERENTIAL 

Ll0$K_AD_GAIN 

LIO$K_ADD_AD_CHAN 

LIO$K_ANA_OUT 

LIO$K_AST_RTN 

LIO$K_ASYNCH 

LIO$K_AUX_COMMAND 

LI O$K_BAUD_RATE 

LIO$K_BIN_DDR 

LIO$K_BITS_PER_CHAR 

LIO$K_BOUNCE 

Establishes a termination character for the 
ACKINAK string received from an external device. 

Specifies the A! D channels to use for input . 

Specifies whether the AID channels set up wit11 the 
LIO$K_AD_CHAN parameter use single-ended or 
differential input. 

Specifies the amount of amplification or gain applied 
to each Al D channel specified for use. 

Specifies that an additional AID channel be added to 
the Preston device's current AID channel list. 

Outputs a voltage value to one of the D!A channels 
on the AAF01.' device. 

Specifies auser-written AST routine to receive 
buffers when a device finishes processing them. 

Sets up a device for asynchronous 1!O 

Sends an auxiliary command to an IEEE- 4.88 device. 

Sets the speed at which data. is transmitted over a 
serial line. 

Moves a complementary offset binary-coded output 
voltage into the DAC Data Register (DDR) of the 
ADF01' device. 

Establishes the number of data bits per character for 
serial line devices. 

Sets the contact bounce elimination response time 
delay for the IDV11-A' device. 

This device is available only in Europe. 

4-2 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



Table 4-1 (Cont.): LIO$SET and LIO$SHOW Parameter Summary 
Parameter Function 

LIO$K_BREAK Generates a break (spacing) condition on a terminal 
line for a specified amount of time. 

LIO$K_BUFF_SIZE For the ADQ32, DRQ3B, and Preston, sets the 
maximum allowable buffer size. For the memory 
queue device, sets the size of the buffers to allocate. 

LIO$K_BUFF_SOURCE Specifies the source from which memory allocation 
is to occur. 

LIO$K_BURST_DIV Establishes the divisor for the internal burst rate 
clock of the Preston device. 

LIO$K_BURST_RATE Specifies the rate of the internal burst rate clock of 
the Preston device. 

LIO$K_CANCEL Cancels all pending I/O requests on the specified 
channel and stops continuous DMA for the AAF01,' 
ADF01,1 and DRQ11-Cl devices. 

LIO$K_CC_FOUT Sets the Frequency Output (FOUT) reference signal 
for the IDV11-D' counter. 

LIO$K_CC_SETUP Sets up the operating characteristics of a channel on 
the IDV11-D' counter. 

LIO$K_CHANNEL For the AAFO1,1 specifies the channel to be used for 
output. For the ADF01,' specifies the channel to be 
use for input. 

LIO$K_CLK_BASE Sets up the base crystal frequency of the Preston 
internal clock. 

LIO$K_CLK_DIV Specifies the sampling rate for the Preston internal 
clock. 

LIO$K_CLK_RATE Takes an ideal frequency and produces the best 
internal crystal rate and divider to approximate t11at 
frequency. 

LIO$K_CLK_SRC Specifies the source frequency and divider .for clock 
ticks. 

Ll0$K_CLR_LBO Clears the large buffer overflow condition on the 
AAFO1,1 ADF01,' and DRQ11-C' devices. 

1 This device is available only in Europe . 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-3 



Table 4-1 (Cont.): LIO$SET and LIO$SHOW Parameter Summary 

Parameter Function 

LIO$K_COB 

LIO$K_COMMAND 

LIO$K_CONT 

LIO$K_COUNTER 

LIO$K_CTA 

LIO$K_CTI_BUF 

LIO$K_CTI_OVERHD 

LIO$K_CTRL_ACTIVE 

LIO$K_CTRL_AST 

LIO$K_CTRL_HANDLING 

LIO$K_CTRL_STANDBY 

Ll0$K_CU RRENT_CHANNEL 

LIO$K_CWT 

LIO$K_DA_CHAN 

LIO$K_DATA 

Reads or writes the Command Output (GOUT) bit 
in the Command and Status Register (CSR) of the 
AAF011 and ADF011 devices. 

Sends the specified IEEE-488 commands on the bus. 

Sets up the device to perform continuous direct 
memory access data transfers. 

Reads the count register of the Simpact RTCO1, of 
the KWV11.-C does. not allow reading of the count 
register while the clock is operating. 

Reads or writes the Control Table Address (CTA) 
register of the AAF011 and ADF011 devices. 

Specifies the buffer and event flag for an AXV11-C 
device that is attached to use connect-to-interrupt 
I10. 

Returns the size in bytes of the connect-to-interrupt 
overhead. 

Activates the IEEE-488 device controller function. 

Assigns auser-written AST routine to be called_ 
when an external device writes data to the input 
control port of the DRB32, or on receipt of a 
specified coutr. of character for serial line devices. 

Sets up a flag that indicates what action to take 
on receipt of a control character specified_ by the 
LIO$K_CTRL_AST parameter for serial line devices. 

Deactivates the IEEE-488 bus controller_ function. 

Specifies which channel is to be affected by 
channel-specific set calls. 

Reads the Control Word Registers from, o~- wr.ites 
the Control Word Registers to, the AAF01 ~ anal. 
ADF011 devices. 

Specifies the DIA channels to use for. output. 

Performs a data transfer to the parallel data. path of 
the DRB32 without using direct memory access. 

1 This device is available only in Europe. 

4-4 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



Table 4-1 (Cont.): LIO$SET and LIO$SHOW Parameter Summary 
Parameter Function 

LIO$K_DATA_PATH 

LIO$K_DATA_WIDTH 

LIO$K_DBL_BUF 

LIO$K_DEVICE_ACK_NAK_BUFF 

LIO$K_DEVICE_EF 

Ll0$K_DIAG_CHAN 

LIO$K DIRECTION 

LIO$K_DISPLAY_ONLY 

LIO$K_DRX_AST_RTN 

LIO$K_DRX_STAT 

LIO$K_DUPLEX 

LIO$K_ECHO 

L10$K_ED_CTT 

LIO$K_ED_ECE 

Selects the data path and channel number for the 
AAFO1,1 ADFO1,1 and DRQ11-C1 devices. 

Sets the width of the data path for DRB32 devices. 

.Enables double-buffer DMA data transfers for the 
ADQ32 device. 

Supplies the buffer to be used when receiving an 
ACK or a NAK from a device. 

Sets the event flag for output buffer available. 

Enables or disables diagnostic inputs to ADQ32 
channels 0, 1, and 2. 

Sets the direction (input or output) of the four 
DRV11-J ports, signals to the LIO .facility the 
direction (input or output) in which the DRV11-WA 
hardware is set, sets the direction of the DRB32 data 
path, or sets the direction of disk file devices. 

Sets an interprocess memory queue to display data 
buffers to a second process. 

Specifies auser-written AST routine to receive 
buffers when an AAFO1,' ADF01,' or DRQ11-C' 
finishes processing them. 

Returns the status of t11e DRQ11-C' device. 

Specifies whether serial line read/write requests are 
executed in half-duplex or full-duplex mode. 

Enables or disables the echoing of characters received 
on a serial line. 

For the A.AFO~,' enables or disables the Memory 
Transfer (MET) bit in the Command and. Status 
Register (CSR). For the ADF01, ~ enables or. disables 
the Control Table Transfer (CTT) bit in the 
Command and Status Register (CSR). 

Enables ot• disables the External Clock Enable (ECE) 
bit in the Command and Status Register (CSR) of 
the AAF01' and ADFO1~ devices. 

~ This device is available only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-5 



Table 4-1 (Cont.): LIO$SET and LIO$SHOW Parameter Summary 
Parameter Function 

LIO$K_ED_SBE 

LIO$K_EOI 

LIO$K_ERR_HANDLE 

LIO$K_ERROR_ENABLE 

LIO$K_EVENT_AST 

L10$K_EVENT_EF 

LIO$K_EVENT_ENA 

L10$K_EVENT_WAIT 

LIO$K_FILE_EXTENT 

LIO$K_FILE_POS 

LIO$K_FILE_REMAIN 

LIO$K_FILE_SIZE 

L10$K_FLOW_CONTROL 

LIO$K_FLOW MASTER 

Ll0$K_FORWARD 

Enables or disables the Sequence Break Enable (SBE) 
bit in the Command and Status Register (CSR) of 
the AAFO11 and ADF011 devices. 

Enables or disables the assertion of the 
end-or-identify (EOI) line after the last byte of 
data is output. 

Specifies the way in which a device returns error 
conditions. 

Enables or disables parity error handling for serial 
line devices. 

Assigns auser-written AST routine to be called 
on AAF01,1 ADFO1,1 and DRQ11-C1 unsolicited 
interrupts, DRV11-J port A bit events, IDV11-Al
channel 15 events, IEEE-488 bus events, and 
KWV11-C or Simpact RTC01 clock overflows or 
ST2 events. 

Specifies the event .flag to set on an external event 
or clock overflow. 

Enables the recognition of IEEE-488 bus events. 

Waits for an IEEE-488 bus event to occur. 

Sets the size, in blocks, by which an output file can 
be extended if necessary. 

Repositions the current block pointer in a file. 

Returns the number of blocks remaining to be 
written in an output file. 

Establishes the size in blocks of the output file. 

Establishes the method of flow control for a serial 
line device. 

Specifies how LIO uses XONIXOFF flow control. 

Specifies the device to which completed buffers are 
forwarded. 

1 This device is availaUle only in Europe. 

4-6 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



Table 4-1 (Copt.): LIO$SET and LIO$SHOW Parameter Summary 
Parameter Function 

r'1 

LIO$K_FUNCTION 

LIO$K_FUNCTION_BITS 

LIO$K_GATE 

LIO$K_HANDSHAKE 

LIO$K_HANGUP 

LIO$K_IEEE_ADDR 

LIO$K_INIT_AD_CHAN 

L[O$K_INPUT_TERMINATOR 

LIO$K_INTERRUPT_LEVEL 

LI O $K_LEAVE_IN_STATE 

LIO$K_LOCK_BUFFER 

LIO$K_LOOP_BACK 

LlO$K_MAX_CHANNELS 

LIO$K_MODEM 

LIO$K_MODEM_STATUS 

LI O $K_M U LTIPLE_X_AXES 

LIO$K_N_AD_CHAN 

Specifies the function the KWV11-C or Simpact 
RTC01 clock device is to perform. 

Sets the function bits associated with the AAFO1,1
ADF01,1 DRQ11-C,1 DRB32, and DRQ3B devices. 

Specifies the type of external gating used with the 
ADQ32 device. 

Specifies whether or not the DRV11-J is jumpered to 
use atwo-wire handshake for each port . 

Disconnects a terminal that is on a dial-up line. 

Sets the IEEE-488 bus address of an IEEE-488 device. 

initializes or clears the existing Preston AID channel 
list. 

Specifies a termination character or characters on 
the input side of a serial port . 

Sets the level at which interrupts occur for the 
Simpact RTC01. 

Specifies whether or not to leave an IEQ11 device 
in the state required to process the subsequent LIO 
request. 

Locks buffers before beginning direct memory access 
transfers with the DRB32 device. 

Enables or disables loopback mode. 

Specifies the maximum number of channels that can 
be plotted using the real-time plotting device. 

Specifies that the serial line is a modem. 

Sets and returns modem status. 

Specifies the x-axis representation for the plotting 
window. 

Returns the number of AID channels currently in 
use. 

1 This device is available only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-7 



Table 4-1 (Cont.): LIO$SET and LIO$SHOW Parameter Summary 
Parameter Function 

LIO$K_N_BUFFS 

LIO$K_N_DA_CHAN 

LIO$K_NAME 

LIO$K_OPEN_FILE 

Ll0$K_OUTPUT_PREFIX 

LI O $K_O UTPUT_TERMINATOR 

LIO$K_PAGE_ALIGN 

LIO$K_PAR_POLL 

LIO$K_PAR_POLL_CONFIG 

LIO$K_PAR_POLL_STATUS 

LIO $K_PARITY 

LIO$K_PASS_CTRL 

L10$K_PCR 

L10$K_PLOT_SIZE 

LIO$K_PLOT_TYPE 

LIO$K_PO_CHAN 

LIO$K_POLARITY 

LIO$K_POSITION 

Sets the number of buffers to allocate for the 
memory queue device, and specifies the number 
of channels in the data buffer for the real-time 
plotting device. 

Returns the number of D!A channels currently in 
use. 

Specifies the name of a file or a global section. 

Opens a file. 

Specifies a prefix character string on the output side 
of a serial line. 

Specifies a suffix character string on the output side 
of a serial line. 

Page-aligns buffers allocated for use with the 
memory queue device. 

Performs a parallel poll of IEEE-488 bus instruments. 

Sets up the list of IEEE-488 instruments for. parallel 
polling. 

Sets up a parallel poll status register for an IEEE-488 
instrument. 

Specifies the parity checking type for a serial line. 

Passes control to another IEEE-488 bus device. 

Specifies the number of steps in the Programmable 
Clock Register (PCR) of the AAF011 and ADFO1 ~ 
devices. 

Establishes the size of the plotting window. 

Specifies the style of plotting. 

Specifies the channel numbers to be plotted. 

Sets the bits of port A to call their AST routines on 
either anegative-going or positive-going edge and the 
polarity of the handshake, if any. 

Establishes the position of the plotting window on 
the display surface. 

1 This device is available only in Europe. 

4-8 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



Table 4-'1 (Copt.): LIO$SET and LIO$SHOW Parameter Summary 
Parameter Function 

LIO$K_PROTOCOL 

LIO$K_PURGE 

LIO$K_READ_ONLY 

LIO$K_READ_PROMPT 

LIO$K_READ_STAT 

LIQ$K_RESET_AXF 

LIO$K_RESET_DRX 

LIO $K_S CHMITT_TRIG G ER 

LIO$K_SER_POLL 

LIO$K_SEIZ_POLL_CONFIG 

LIO$K_SGL_BUF 

LIO$K_SKIP_COUNT 

LIO$K_SRQ 

LIO$K_STO_1 

LIO$K_START 

LIO$K_STAT_BITS 

Enables or disables the serial line user-defined 
protocol feature. 

Purges all characters in the type-ahead buffer. 

Establishes read-only access to a global section. 

Specifies a read prompt to prefix each input data 
byte. 

Returns the status of the read-only bits in the 
Command and Status Register (CSR) of the AAF011
and ADF011 devices. 

Resets the AAF01' and ADFO11 devices. 

Resets the DRQ11-C1 direct memory access (DMA) 
interface. 

Sets the mode of operation for the two Schmitt 
triggers on the Sirnpact RTCO1. 

Serial polls a predetermined list of IEEE-488 
instruments. 

Sets up the list of IEEE-488 instruments to serial 
poll . 

Sets the device to stop direct memory access 
between buffers. Transfer is not continuous. 

Specifies how many points are to be skipped and not 
plotted. 

Defines a serial poll status byte for an IEEE-488 
device and, optionally, sends a service request to the 
controller-in-charge. 

Writes to the 23-bit counter. contained. in the 
Sequence Timer Registers STO and ST1 of the 
AMF011 device. 

Starts the device. 

Returns status information about the DRQ1.1-C1
device. 

1 This device is available only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Desc~ iptions 4-9 



Table 4-1 (Cont.~: LIO$SET and LIO$SHOW Parameter Summary 
Parameter Function 

LIO$K_STE 

LIO$K_STOP 

LIO$K_SWEEP_RATE 

Ll0$K_SYNCH 

L10$K_TERM_CHAR 

LIO$K_TERM_SRQ 

LIO$K_TIMEOUT 

LIO$K_TIMEOUT_ENABLE 

LIO$K_T1TLE 

L10$K_TITLE_n 

L10$K_TRAN SFER 

LIO$K_TRIG 

L10$K_TYPE_AHEAD 

LIO$K_UNLOCK_BUFFER 

LIO$K_UNSOLICITED 

LIO$K_UPDATE 

LIO$K_USER_ACK_AST 

LIO$K_USER_ACK_STRING 

Clear. s the Sequence Timer. Enable (STE) in the 
AMF011 Sequence Timer Register (ST1). 

Stops the device. 

For the ADQ32 sweep rate clock, takes an ideal 
frequency and produces the best internal crystal rate 
and_ divider to approximate that frequency. 

Sets up a device for synchronous IIO. 

Defines a termination character to mark tl~e end. of 
data received. 

Enables or disables terminations of I10 transfers by 
a service request . 

Sets the length of time (in seconds) before an I10 
request is aborted. 

Enables or disables the timeout for read requests. 

Specifies the graph title for the current channel. 

Specifies the title fog• the graph of each channel. 
plotted. 

Sets an interprocess rnernory queue to transfer data 
buffers between processes. 

Sets the device trigger mode or source. 

Enables or disable a serial line type-ahead buffer. 

Unlocks buffers previously locked with the 
LIO$K_LOCK_BUFFER parameter. 

Rett~r. ns the number of characters in the type-ahead_ 
buffer. 

Updates the Preston device to the current set-up 
specifications. 

Specifies the address of auser-supplied AST routine 
that transmits an ACK message on successful 
completion of a data transfer. 

Supplies the ACK string to be sent out by an AST 
-routine on successful completion of a data transfer. 

1 This device is available only in Europe. 

4-10 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



f"~ 
Table 4-1 (Cont.): LIO$SET and LIO$SHOW Parameter Summary 
Parameter Function 

LIO$K_USER_NAK_AST Specifies the address of auser-supplied AST 
routine to transmit the NAK string on unsuccessful 
completion of a data transfer. 

LIO$K_USER_NAK_STRING Supplies the NAK string to be sent out by an 
AST routine on unsuccessful completion of a data 
transfer. 

LIO$K_USER_READ_PROTOCOL_AST Specifies the address of auser-supplied AST routine 
to be called on receipt of either a terminator or a full 
buffer of characters from a read request . 

LIO$K_USER_WRITE_NAK_HANDLING Specifies whether or not a sending device attempts 
to retransmit a buffer after receiving a NAK from 
the intended receiving device. 

LIO$K_VOLTAGE Specifies the input voltage range for the IDV11-A1
device. 

LIO$K_VLT_DDR Converts a voltage into its corresponding 
complementary binary-coded value and moves it 
to the DAC Data Register (DDR) of the ADF011
device. 

LIO$K_X_LABEL Specifies the label. to be placed on the x-axis of the 
channel specified by LIO$K_CURRENT_CHANNEL. 

LIO$K_X_RANGE Specifies the number of points to display along 
the x-axis, and the increment at which points are 
plotted. 

LIO$K_XON Forces the sending of an XON character to reprime 
the serial line. 

LIO$K_Y_LABEL Specifies the label to be placed on the y-axis of the 
channel specified by LIO$K_CURRENT_CHANNEL. 

LIO$K_Y_MAX Sets the maximum y-axis value for each channel to 
be plotted. 

LIO$K_Y_M1N Sets the minimum y-axis value for. each channel to 
be plotted. 

1 This device is available only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-11 



LIO$K_ACK NAK TERMINATOR 

LIO$K_ACK_NAK_TERMINATOR 

This parameter establishes a termination character for the ACK/NAK 
string received from an external device. This parameter is used only for 
the user-defined protocol for serial line devices. 

Supported Devices 
Serial line (when used with user-defined protocol) 

Parameter Values 
A character string specifying the valid termination character. 

This value is passed by descriptor. 

Description 
This parameter defines the termination character for an ACKINAK 
string received from an external device after a write operation. 

See the description of LIO$K_PROTOCOL for more information. 

Restrictions 
You can specify only one termination character for use at any given 
time. If you change the termination character, the new termination 
character supersedes any previously specified termination character. 
This parameter is only used with user-defined protocols for serial line 
devices. 

Example 

status = LIO=SET_S (serial_id, LIO~K_ACK_NAK_TERMINATOR, 'A') 

This routine specifies the letter A us the valid termination character for 
ACKINAK strings. 

4-12 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K AD CHAN 

LIO$K_AD_CHAN 

This parameter specifies the AID channels to use for input. 

Supported Devices 
ADQ32 
ADV11-D 
AXVll-C A!D 
Preston 

Parameter Values 
One or more longword integers specifying the A/D channels to use. 

Description 
When the ADQ32 is set for differential input (using the 
LIO$K_AD_DIFFERENTIAL parameter), only channels 0 through 15 
are available. Channel numbers can be specified in any order. The 
channels are sampled in the order specified. See Appendix A for more 
information. 

When the ADV11-D is attached for mapped I/0, you can specify up 
to 16 channels in any order. The channels can repeat. When the 
ADV11-D is attached for QIOs, you must specify either one channel 
or all channels in ascending order. When the device is jumpered for 
single-ended input, channels 0 to 15 are available for use. When the 
device is jumpered for differential input, channels 0 through 7 are 
available for use. 

When the AXV11-C is attached for snapped I10, you can specify up to 
16 channels in any order. The channels can repeat. When the AXV11-C 
is attached for QIOs, you can specify up to 16 channels in ascending 
order. When the device is jumpered for single-ended input, channels 0 
to 15 are available for use. When the device is jumpered for differential 
input, channels 0 through 7 are available for use . 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-13 



LIO$K_AD_CHAN 

Restrictions 
The following restrictions apply only to the ADV11-D and the AXV11-C: 

• Wl1en the device is attached for QIOs, you must specify the 
channels in ascending order (see t11e Description). 

• No buffers can be currently enqueued to the device when you set 
up the device using this parameter. 

The following restriction applies only to Preston devices: 

• Use this parameter to set up Preston AID channels only when you 
do not intend to use either or both the LIO$K_INIT_AD_CHAN 
and LIO$K_ADD_AD_CHAN parameters. The use of the 
LIO$K_AD_CHAN parameter with these Preston-specific 
parameters is mutually exclusive . 

Example 

status = LIO$SET_I (device_id, LIOsK_AD_CHAN, b, 0, 1, 2, 3, 4) 

This routine specifies five AID channels, channels 0 through 4 on the 
device, for use. 

4-14 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_AD DIFFERENTIAL 

LIO$K_AD_DIFFERENTIAL 

This parameter specifies whether the AID channels set up with the 
LIO$K_AD_CHAN parameter use single-ended or differential input. 

Supported Devices 
ADQ32 

Parameter Values 
One or more longword integer constants that enable single-ended 
or differential input for each AID channel set up with the 
LIO$K_AD_CHAN parameter. 

The values can be one of the following: 

Constant Value Meaning 

LIO$K_OFF1
LIO$K_ON 

The channel is single-ended. 
The channel is differential. 

~ The default value. 

Description 
If all of your analog inputs are connected in single-ended mode, you do 
not need to use this parameter. 

Each ADQ32 channel can be individually set for single-ended or 
differential input. Only channels 0 through 15 can be set for differential 
input. 

When a channel is set for single-ended input, the difference in voltage 
between the signal line and analog ground is measured as data. 
Connect the analog ground for the device on that channel to the analog 
ground input. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-15 



LIO$K AD DIFFERENTIAL 

When a channel is set for differential input, the signal is returned as the 
difference between two lines. The first line is connected to the channel 
input (only channels 0 through 15 are legal for differential input). The 
second line is connected to a channel number equal to the first channel 
plus 16. For example, if channel 3 is set for differential input, then 
the first line is connected to channel 3; the second line is connected to 
channel 19 (3 + 16) . 

Restrictions 
• Only channels 0 through 15 can be set for differential input. 

• When a channel is set for differential input, that channel number 
plus 16 must be used as the other channel of the differential pair. 

Examples 

1. status = LIOSSET_I Cadq_id, LIO$K_AD_CHAN, 6, 0, 1, 2, 20, 21) 

This routine specifies five AID channels, channels 0 through 2 and 
channels 20 and 21 for input. 

2, status = LIOsSET_I (adq_id, LIO$K_AD_DIFFEAENTIAL, 6, LIO$K_ON, 
1 LIO$K_ON, LIO$K_ON, LIO~K_OFF, LIOsK_OFF) 

This routine sets channels 0, 1, and 2 for differential input, and 
channels 20 and 21 for single-ended input. Channels 0, 1, and 2 
use channels 16, 17, 18, respectively, as the second input channel of 
the differential pair. Channels 20 and 21 use analog ground as the 
signal return. 

4-16 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_AD GAIN 

LIO$K_AD_GAIN 

This parameter specifies the amount of amplification or gain applied to 
each AID channel specified for use. 

Supported Devices 
ADQ32 
ADV11-D 
AXVll-C AID 

Parameter Values 
One or more longword integers specifying the AID channel gains to use. 
Each gain can be 1, 2, 4, or 8, representing the amount of amplification 
applied to the input signal before conversion. 

The default value is 1. 

Description 
See the Parameter Values. 

Restrictions 
The following restrictions apply to the ADQ32: 

• You must specify the channels to use through the 
LIO$K_AD_CHAN parameter before you specify the channel gains 
to use. 

• You must specify one gain per channel. 

• No buffers can be queued to the device when you specify the 
channel gain. 

LIQ$SET and LIQ$SHOW Parameter Reference Descriptions 4-17 



LIO$K_AD_GAIN 

The following restrictions apply to bot11 the ADV11-D and the AXV11-C 
A/D: 

• You must specify the channels to use through the 
LIO$K_AD_CHAN parameter before you specify the channel gains 
to use. 

• You must specify one gain per channel. 

• When the device is attached with QIO, only the first gain is used. 

Example 

status = LIO$SET_I (device_id, LIOsK_AD_GAIN, 6, 1, 1, 1, 1, 1) 

This routine specifies a gain of one for each AlD channel specified 
for use in the Example presented in the reference description of the 
LIO$K_AD_CHAN parameter. 

4-18 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_ADD AD CHAN 

~ LIO$K_ADD_AD_CHAN 

This parameter specifies one additional AlD channel to be added to the 
current AID channel list of the Preston device. 

Supported Devices 
Preston 

Parameter Values 
A longword integer specifying the AID channel to add to the channel 
list. 

Description 
T11is parameter enables you to add A/D channels to the Preston device 
channel list one at a time. This capability is desirable when you are 
creating an interactive application where the entire channel list is 
unknown at the beginning of your program. You can also use this 
parameter to add channels to the end of a channel list you previously 
specified through the LIO$K_AD_CHAN parameter. 

Restrictions 
• Use this parameter only after you have either: 

— Initialized a channel list using the. LIO$K_INIT_AD_CHAN 
parameter 

— Created a channel list using the LIO$K_AD_CHAN parameter 

• You can add only one channel per LIO$SET_I routine call. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-19 



LIO$K_ADD_AD_CHAN 

Example 

status = LIO$SET_I (device_id, LIO$K_ADD_AD_CHAN, 1, 1) 

This routine adds an AID channel, channel 1 on the device, to an 
initialized or existing channel list for a Preston device. 

4-20 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_ANA_OUT 

~ LIO$K_ANA_OUT 

This parameter outputs a voltage value to a specified D/A channel. 

Supported Devices 
AAF011

Parameter Values 
The first value is asingle-precision floating-point real value specifying 
the volts to be output. 

The second value is a longword integer specifying the D/A channel to 
which you want the volts output. This value can be between 0 and 15, 
inclusive . 

~"1 

f1 

Description 
Use this parameter to write a voltage value to a single channel. 

Restrictions 
None. 

Example 
REAL*4 real_values(2) 

real_values (1) = volt_value 
real_values(2) = channel_number 

status = LIOSSET_R (aaf_id, LIO$K_AIJA_OUT, 2, real_values (1) , 
1 real_values(2)) 

This routine sends the voltage value specified by volt_value to the 
AAF01 channel specified by channel_number. 

1 This device is available only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-21 



LIO$K_AST_RTN 

LIO$K_AST_RTN 

This parameter specifies auser-written AST routine to receive buffers 
when a device finishes processing them. The completed buffers are 
passed to the AST routine instead of being placed on the device's user 
queue. 

Supported Devices 
AAV11-D 

ADQ32 

ADV11-D 

AXV11-C AID 
DRB32 
DRB32W 
DRQ3B 
DRV11-J 
DRVll-WA 
IAV111 devices 
IDVlll devices 
IEQ11 
IEZ11 
KWV11-C 
Preston 
Simpact RTCOl 
Disk file 
Memory queue 
Serial line 

Parameter Values 
A longword integer specifying the address of the AST routine. 

1 These devices are available only in Europe. 

4-22 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



Lt0$K_AST_RTN 

Description 
See Chapter 3 in Getti~ig Started zvith VAXIab and Section 1.5.3, 
Asynchronous System Traps (ASTs), in this guide for more information 
about using AST routines. 

Restrictions 
• The device must be set for asynchronous IIO. 

• When using FORTRAN, t11e subroutine must be declared 
EXTERNAL. See the Example. 

Examples 

f1 

1. EXTERNAL user_ast 

This line declares the user-written AST routine to be external. See 
the Restrictions. 

2 statue = LIO$SET_I (device_id, LIO$K_ASYNCH, 0) 

This routine sets up the device to use asynchronous IIO. 

3 status = LIO~SET_I (device_id, LIO$K_AST_RTN, 1, user_ast) 

T11is routine specifies auser-written AST routine, user_ast, to receive 
completed buffers. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-23 



LIO$K ASYNCH 

LIO$K_ASYNCH 

This parameter sets up a device to use the asynchronous I/O interface. 

Supported Devices 
AAF011
AAV11-D 
ADF011
ADQ32 
ADVll-D 
AXV11-C 
DRB32 
DRB32W 
DRQ11-Cl 
DRQ3B 
DRV11-J 
DRVll-WA 
IAV112 devices 
IDVll-A2 devices 
IEQ11 
IEZ11 
KWV11-C 
Preston 
Simpact RTCOl 
Disk file 
Memory queue 
Serial line 

Parameter Values 
None. 

1 This device is availaUle only in Europe. 

2 These devices are availaUle only in Europe. 

4-24 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K ASYNCH 

Description 
Use this parameter when you have already attached a device with the 
synchronous IIO interface, and you want to use the asynchronous If0 
interface. 

By default, all devices are set to use the asynchronous I/O interface 
when you attach them with the LIO$ATTACH routine specifying 
LIO$K_QIO as the value of the io_type argument. If the device is 
already set to use the asynchronous IIO interface, using this LIO$SET_I 
parameter has no effect. 

When you attach both a memory queue device and a disk file, you 
use the io_type argument to specify the function these devices are to 
perform within the context of the program. By default, these devices 
use the asynchronous I/O interface. So, while this parameter is valid 
for use with these devices, neither device needs to be explicitly set up 
using this parameter. 

Restrictions 
None. 

Example 
status = LIO$SET_I (device_id~ LI03K_ASYNCH~ 0) 

This routine sets up the device to use asynchronous I10. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-25 



LIO$K AUX_COMMAND 

LIO$K_AUX_COMMAND 

This parameter sends a specified auxiliary command to an IEEE-488 
device. 

Supported Devices 
IEQ11 
IEZ11 
IOtech Micro488A 

Parameter Values 
A longword containing a valid IEEE-488 auxiliary command. 

For the IEQ11 and the IEZ11, the auxiliary command can be one of the 
following: 

Table 4-2: IEQ11 and IEZ11 IEEE-488 Auxiliary Commands 
Auxiliary Command Function 

LIO$K_DACR_ON 
LIO$K_DACR_OFF 
LIO$K_DAI_ON 
LIO$K_DAI_OFF 
LIO$K_FEOI 
LIO$K_FGET_ON 
Ll0$K_FGET_OFF 
L10$K_GTS 
LIO$K_HDFA_ON 
LIO$K_HDFA_OFF 
LIO$K_HDFE_ON 
LIO$K_HDFE_OFF 
LIO$K_LON_ON 
LIO$K_LON_OFF 
LIO$K_NBAF 
LIO$K_PTS 
LIO$K_RHDF 
LIO$K_RLC 

Release ACDS holdof f 
Disable release ACDS holdoff 
Disable all interrupts 
Enable all interrupts 
Send EOI with next byte 
Force group execute trigger 
Disable force group execute trigger 
Go to standby 
Holdoff on all data 
Disable holdoff on all data 
Holdoff on EOI only 
Disable holdoff on EOI only 
Listen only 
Disable listen only 
Set new byte available false 
Pass through next secondary 
Release RFD holdoff 
Release control 

4-26 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_AUX_COMMAND 

Table 4-2 (Cont.): IEQ11 and IEZ11 IEEE-488 Auxiliary Commands 

Auxiliary Command Function 

LIO$K_RPP_ON 
LIO$K_RPP_OFF 
LIO$K_RQC 
LIO$K_RSV2_ON 
LIO$K_RSV2_OFF 
LIO$K_RTL ON 
LIO$K_RTL_OFF 
LIO$K_SHDW ON 
LIO$K_SHDW OFF 
LIO$K_SIC_ON 
LIO$K_SIC_OFF 
LIO$K_SRE_ON 
LIO$K_SRE_OFF 
LIO$K_STDW ON 
LIO$K_STDW_OFF 
LIO$K_SWSRST_ON 
LiO$K_SWSRST_OFF 
LIO$K_TCA 
LIO$K_TCS 
LIO$K_TON_ON 
LIO$K_TON_OFF 
LIO$K_VSTD1_ON 
L[O$K_VSTD1_OEF 

Request parallel poll 
Disable request parallel poll 
Request control 
Request service bit 2 
Disable request service bit 2 
Return to local 
Disable return to local 
Shadow handshake 
Disable shadow handshake 
Send interface clear 
Disable send interface clear 
Send remote enable 
Disable send remote enable 
Short T1 settling time 
Disable short T1 settling time 
Chip r. eset 
Disable chip reset 
Take control asynchronously 
Take control synchronously 
Talk only 
Disable talk only 
Very short T1 delay 
Disable very short T1 delay 

For the IOtech Micro488A, the auxiliary command can be one of the 
following: 

Table 4-3: IOtech Micro488A IEEE-488 Auxiliary Commands 
Auxiliary Command Function 

LIO$K_FGET_ON 
LIO$K_SIC_ON 
LIO$K_SRE_ON 
LIO$K_SRE_OFF 
LIO$K_SWSRST_ON 

Force group execute trigger 
Assert interface clear for 500 microseconds 
Assert remote enable 
Return to local 
Hardware reset 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-27 



LIO$K AUX COMMAND 

Description 
Use this parameter to send one auxiliary command to an IEEE-488 
device. See the IEU11-A/IEQ11-A User's Gicic~e for information about 
IEEE-488 auxiliary commands. 

Note that with the IOtech Micro488A, the functionality of the auxiliary 
commands is slightly different from the IEQ11 and IEZ11 functionality. 

Restrictions 
• The device sending the auxiliary command must be the 

controller-in-charge. 

• You can send only one auxiliary command per routine call. 

Examples 

1. statue = LIO$SET_I (ieee_id, LIO$K_AUX_COMMAND, 1, LIO$K_SRE_OId) 

This routine asserts remote enable on an IEEE-488 bus. 

2 status = LIO$SET_I (ieee_id, LIO$K_AUX_COMMAND, 1, LIO$K_SRE_OFF) 

This routine deasserts remote enable on an IEEE-488 bus. 

4-28 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



L10$K BAUD_RATE 

LIO$K_BAUD_RATE 

This parameter sets the speed at which data is transmitted over a serial 
line. 

Supported Devices 
Serial line 

Parameter Values 
One or two longword integers specifying the baud rate for a serial line 
device. 

If you specify one value, this value is used for both the transmit and 
receive speeds. 

If you specify two values, the first value is used as the receive speed 
and the second value is used as the transmit speed. The values can 
be 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 
7200, 9600, or 19200 depending on the type of serial line device you are 
using. 

The default value is 9600. 

Not all serial line device drivers support all the baud rates listed. See 
the Description for the legal values for the type of serial line device you 
are using. 

Description 
The term baud rate usually refers to the number of data bits per 
second (bps) that are transmitted over a serial line. However, when 
transmitting a continuous stream of data, you should consider the 
overhead associated with the start and stop bits that prefix and suffix 
each character transmitted.1

1 The numUer of stop Uits is set Uy the device driver, and is Uased on the Uaud rate of the line. There is 
no way for the user to control this setting. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-29 



LIO$K BAUD_RATE 

To determine the actual number of characters per second (cps) that can 
be transmitted, use the following formula: 

rate (cps) =baud rate / (start bits +bitslcharacter +stop bits) 
rate (bps) =rate (cps) *bitslcharacter 

For example, assume that the baud rate is set at 9600 (using the 
LIQ$K_BAUD_RATE parameter}, the number of bits per character is 
set at eight (using the LI~$K_BITS_PER_CHAR parameter), with one 
start bit and one stop bit. The number of characters per second (cps) 
and the number of bits per second (bps) that can be transmitted are 
determined as follows: 

rate (cps) = 9600 / (1 + 8 + 1) 
rate (cps) = 9600110 
rate (cps) = 960 
rate (bps) = 960 * 8 
rate (bps) = 7680 

The following table lists the serial line devices and the maximum speed, 
or baud rate, for each device supported by VSL. 

Device Maximum Speed 

DH11 9600 
DHV11 9600 
DMF32 19200 
DS100 19200 
DS200 19200 
DZ11 9600 
DZQ11 9600 
DZV11 9600 
µVAX2000 9600 

You can specify any baud rate listed in the Parameter Values up to and 
including the maximum speed listed in this table. 

4-30 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_BAUD RATE 

Restrictions 
The specified baud rates must be listed in the Parameter Values, but 
cannot exceed the maximum baud rate for the device. 

Example 
status = LIO~SET_I (device_id, LIO$K_BAUD_AATE, i, 2400) 

This routine sets the send and receive baud rates at 2400. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-31 



LIO$K BIN DDR 

LIO$K_BIN_DDR 

This parameter moves a complementary offset binary coded output 
voltage into the DAC Data Register (DDR). 

Supported Devices 
ADF011

Parameter Values 
A longword integer containing the binary code corresponding to the 
output voltage in complementary offset binary coding. 

Description 
See the Parameter Values. 

Restrictions 
None. 

Example 
status = LIO$SET_I (adf_id, LIOsK_BIN_DDR, 1, binary_code) 

This routine moves the corresponding value of binary_code into the 
DAC Data Register (DDR). The binary code argument contains the 
binary code of the desired output voltage. 

1 This device is available only in Europe. 

4-32 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_BITS PER CHAR 

LIO$K_BITS_PER_CHAR 

This parameter establishes the number of data bits per character. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer specifying the number of bits per character. The 
value can be 5, 6, 7, or 8. 

The default value is 8. 

Description 
See the Parameter Values. 

Restrictions 
None. 

Example 
status = LIO$SET_I (device_id, LIO~K_BITS_PER_CHAR, 1, 7) 

This routine specifies 7 bits per character. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-33 



LIO$K_BOUNCE 

LIO$K_BOUNCE 

This parameter sets the contact bounce elimination response time delay. 

Supported Devices 
IDV11-Al 

Parameter Values 
A longword integer specifying the input response time for the contact 
bounce eliminator circuits for all 16 input channels. 

The value can be one of the following: 

Value Response Time 

1 0.5 ms 
21 5.0 ms 
3 10.0 ms 

iThe default value. 

Description 
The contact bounce eliminator circuit takes an input signal from a 
bouncing contact and generates a clean digital signal four clock periods 
after the input stabilizes. The Parameter Values lists the bounce 
response time delays for which you can program the device. 

~ This device is availaUle only in Europe. 

4-34 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K BOUNCE 

Restrictions 
None. 

Example 
status = LIO~SET_I (idva_id, LIOSK_BOUNCE, 1, 2) 

This routine sets the bounce elimination to 5 milliseconds. 

L1O$SET and LfO$SHOW Parameter Reference Descriptions 4-35 



LIO$K BREAK 

LIO$K_BREAK 

This parameter generates a break (spacing) condition on a terminal line 
for the specified amount of time. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer constant specifying the length of the break 
condition. 

The value can be one of the following: 

Constant Value Break Length 

LIO$K_SHORT_BREAK 
LIO$K_LONG_BREAK 

0.4 seconds 
1.5 seconds 

Description 
A spacing condition (a series of null characters) is sent to the serial 
line for the specified length of tune. A receiver can detect a break by 
checking for a framing error. 

Restrictions 
None. 

Example 

status = LIO$SET_I (device_id, LIO$K_BREAK, 1, LIO~K_LONG_BREAK) 

This routine generates a long (1.5 second) break in a data transfer. 

4-36 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K BUFF_SIZE 

LIO$K_BUFF_SIZE 

This parameter sets the following: 

• Maximum buffer size, in bytes, for the ADQ32, DRQ3B, and Preston 
devices 

• Size, in bytes, of the asynchronous buffers to allocate for the 
memory queue device 

Supported Devices 
ADQ32 
DRQ3B 
Memory queue 
Preston 

Parameter Values 
A longword integer specifying the buffer size in bytes. 

Description 
The maximum allowable buffer size for the ADQ32, the DRQ3B, and 
the Preston is 65,534 bytes. 

Using this parameter forces a reset of the DMA on the ADQ32 and the 
DRQ3B. 

The default value for the Preston is an 8K-word (16,384-byte) buffer. 

The default value for the DRQ3B is a 0-length buffer, so you must use 
this parameter. 

Continuous data transfer using double buffering may be affected by the 
size of the buffer you choose. See Section 1.6.3.4, Double-Buffer DMA, 
for more information. For the DRQ3B, buffer sizes of 8K words or more 
usually ensure continuous data transfer. 

LIO$SET and LIQ$SHOW Parameter Reference Descriptions 4-37 



LIO$K BUFF SIZE 

When you set up the memory device with the value of the 
LIO$K_BUFF_SOURCE parameter as LIO$K_ARRAY or 
LIO$K_VIRTUAL_MEM, you must set up the device using the 
LIO$K_BUFF_SIZE parameter before you specify the buffer source 
(LIO$K_BUFF_SOURCE). The LIO facility does not supply a default 
value if you omit this parameter. If you set up the memory device with 
t11e value of the LIO$K_BUFF_SOURCE parameter as 
LIO$K_USER, then LIO ignores this parameter. 

Restrictions 
With the memory queue device, you must use this parameter before 
you set up the buffer source (LIO$K_BUFF_SOURCE). 

Example 
status = LIO~SET_I (device_id, LIO$K_BUFF_SIZE, 1, 200) 

This routine specifies the buffer size as 200 bytes or 100 words. 

4-38 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K BUFF_SOURCE 

LIO$K_BUFF_SOURCE 

This parameter specifies the source from which to allocate buffers. 

Supported Devices 
Memory queue 

Parameter Values 
A longword integer constant specifying the buffer source. 

The value can be one of the following: 

Constant Value Meaning 

LIO$K_ARRAY 
LIO$K_VIRTUAL_MEM 
LIO$K_USER 

Preallocates buffers from a user array 
Preallocates buffers from VMS virtual rnemory 
Uses buffers supplied by the user 

Description 
When you set up the memory queue device, you must use the 
LIO$K_BUFF_SOURCE parameter to specify where the LIO facility 
is to obtain the buffer. 

If the value of this parameter is LIO$K_ARRAY, the user buffer 
must be large enough to hold the buffers allocated through the 
LIO$K_BUFF_SIZE and LIO$K_N_BUFFS parameters and allow for 
buffer overhead. You can use the following formula to determine the 
number of bytes of overhead to add to the array. 

F + (B * N_BUFFS) 

where 

F is the fixed overhead 
B is the overhead per buffer 
N_BUFFS is the number of buffers supplied to LIO$K_N_BUFFS 

Li0$SET and LIO$SH01N Parameter Reference Descriptions 4-39 



LIO$K_BUFF_SOURCE 

If the memory queue is attached local to the process (LIO$K_LOCAL 
as the value of the io_type argument), use 8 as the value of F and 16 
as the value of B. If the memory queue is attached for interprocess I10 
(LIO$K_INTER_PROC as the value of the io_type argument), use 72 as 
the value of F and 24 as the value of B . 

Restrictions 
• You must specify all other parameters associated with setting up 

the memory queue device before you use this parameter to allocate 
memory. Once you use this parameter, the memory is allocated 
immediately. 

• If io_type is LIO$K_INTER_PROC and the value of 
LIO$K_BUFF_SOURCE is LIO$K_ARRAY, then the array must 
be page-aligned. See Section 1.6.3.2, Continuous DMA, for more 
information about page-aligning buffers. 

Example 

status = LIO$SET_I (device_id, LIO$K_BUFF_SOURCE, 1, LIO$K_VIRTUAL_MEM) 

This routine specifies that the buffer is to be allocated from virtual 
memory. 

4-40 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K BURST_DIV 

LIO$K_BURST_DIV 

This parameter establishes the sampling rate of the internal burst rate 
clock of the Preston device. 

Supported Devices 
Preston 

Parameter Values 
A longword integer specifying the desired frequency divisor. This value 
is used as the divisor for the internal clock 5 MHz crystal frequency of 
the Preston device. 

The default value is 10. 

Description 
This parameter specifies the timing between channels in all channel 
sweep trigger modes. For example, if the sampling rate is set to 100 
kHz (using the LIO$K_CLK_RATE parameter), the channel burst rate 
divisor is set to 5, and the AID is set for multiple channels,, then the 
AID begins one channel sweep every 10 microseconds. 

Use this parameter as an alternative to using a burst clock rate 
(LIO$K_BURST_RATE). 

See the reference description of the LIO$K_TRIG parameter in this 
chapter for more information about trigger modes. 

Restrictions 
• This parameter is only useful when using the Preston internal clock 

or external clock input. 

• The valid range for parameter values is 3 to 65, 534 . 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-41 



LIO$K BURST DIV 

Examples 
This example shows how to set up multiple AID channels for 
sampling, and how to set up the AID sampling rate and the channel 
burst divisor. When you set up the Preston using the parameters 
and parameter values specified, the Preston A/D begins one channel 
sweep every 10 microseconds. 

1. Status = LIOSSET_I (device_id, LIO$K_AD_CHAN, b, 0, 1, 2, 3, 4) 

This routine specifies 5 A/D channels for sampling. 

2, status = LIO$SET_R (device_id, LIO$K_CLK_RATE, 1, 100000.0) 

This routine sets the A/D sampling rate to 100 kHz. 

3, status = LIOSSET_I (device_id, LIO$K_BURST_DIV, 1, 6) 

This routine sets the Preston burst rate divisor to 5. 

4-42 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_BURST_RATE 

LIO$K_BURST_RATE 

This parameter specifies the rate of the internal burst rate clock of the 
Preston device. 

Supported Devices 
Preston 

Parameter Values 
A single-precision, floating-point real value specifying the desired 
frequency. 

The default value is 1 MHz. 

Description 
This parameter specifies the timing between channels in all channel 
sweep trigger modes. For example, if the sampling rate is set to 100 
kHz (using LIO$K_CLK_RATE), the channel burst rate is set to 1 MHz, 
the A/D is set for multiple channels, and the channels within the sweep 
are sampled each microsecond, then the AID begins one channel sweep 
each 10 microseconds. 

Use this parameter as an alternative to selecting a burst clock divisor 
(LIO$K_BURST_DI~. The Preston device internal clock has a fixed 
base crystal frequency of 5 MHz, thus the granularity of the clock rate is 
.2 microseconds. 

See the reference description of the LIO$K_TRIG parameter in this 
chapter for more information about trigger modes. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-43 



LIO$K BURST_RATE 

Restrictions 
• This parameter is useful only when using the Preston internal clock. 

• The valid range of parameter values is limited to 106 Hz to 1 MHz. 

Example 

status = LIOSSET_R (device_id, LIO$K_BURST_RATE, 1, 600000.0) 

This routine specifies 500 kHz as the rate between channels in a channel 
sweep. 

4-44 LIO$SET and LIQ$SHOW Parameter Reference Descriptions 



LIO$K_CANCEL 

LIO$K_CANCEL 

This parameter cancels outstanding I!O on the specified channel, It is 
used to stop continuous DMA transfers. 

Supported Devices 
AAF011 
ADF011
DRQ11-Cl

Parameter Values 
None. 

Description 
Once a continuous DMA transfer has been started for the AAF01, 
ADF01, or DRQ11-C, it can be stopped only by issuing a CANCEL 
request. 

Restrictions 
None. 

Example 
status = LIO$SET_I (adf_id, LIO$K_CANCEL) 

This routine causes all outstanding I10 on the channel assigned to 
adf_id to be stopped. 

~ This device is availaUle only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-45 



LIO$K_CC FOOT 

LIO$K_CC_FOUT 

This parameter sets the Frequency Output (FOU'1~ reference signal. 

Supported Devices 
IDV11-Dl 

Parameter Values 
A longword integer array of length three. 

The array index values can be the following: 

Index Values Function 

1 0...1 Turns FOUT ON (0) or OFF (1 j 
2 0...15 Selects the FOOT source 
3 0...15 Selects the FOUT divider 

Description 
Use this parameter to control the FOUT reference signal which is 
provided to the user cable for external timing control. 

Restrictions 
None. 

1 This device is avail~Ule only in Europe. 

4-46 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K CC_FOUT 

Example 
INTEGER,*4 i_f out (3) !Declare integer array of length 3 
i_fout(1) = 1 !Frequency output reference signal off snitch 
i_f out (2) = 0 ! No source 
i_f out (3) = 0 ! No divider 

status = LIO~SET_I (idvd_id, LIOsK_CC_FOUT, 1, XLOC(i_fout)) 

This routine turns off the frequency output reference signal. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-47 



LIO$K_CC_SETUP 

LIO$K_CC_SETUP 

This parameter sets up t11e operating characteristics of a channel. 

Supported Devices 
IDV11-Dl

Parameter Values 
A longword integer array of length nine. 

The array index values can be the following: 

Index Values Function 

1 0...4 Selects counter channel 

2 0...65534 Specifies precount 

3 0 Counts down 
1 Counts up 

4 0 
1 

Counts on positive edge 
Counts on negative edge 

5 0 Explicit start 
1 Immediate start 

6 User supplied AST address 

7 0...65535 AST parameter 

8 0...15 Selects source signal 

9 0...5 Selects gating signal 

Description 
Use this parameter to program the five-channel IDV11-D counter. You 
program each of the five counters with separate LIO$SET_I routine calls. 

1 This device is availaUle only in Europe. 

4-48 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K CC SETUP 

P1 Restrictions 
• You must use this parameter with the LIO$SET_I routine call to 

program each channel of the IDV11-D counter individually. 

• If you use this parameter with the LIO$SHOW routine, the first 
entry in the value_list argument must specify the IDV11-D counter 
for which you want the operating characteristics returned. 

Example 
INTEGER*4 cc_array(9) 
cc_array(1) = 4 
cc_array(2) = 2600 
cc_array(3) = 0 
cc_array(4) = 0 
cc_array(6) = 1 
cc_array(6) = 0 
cc_array(7) = 0 
cc_array(8) = 1 
cc_array(9) = 0 

!Declare integer array of length 9 
!Counter channel 3 
!Pulse internal precount 
! Countdo~rn s~ritch 
!Count on positive-edge 
! Inunediate start 
!AST routine not used 
!AST routine parameter not used 
!Source = 6 MHz clock 
! Ido gating 

status = LIO$SET_I (idvd_id, LIO$K_CC_SETUP, 1, y.LOC(cc_array)) 

This routine sets up the IDV11-D counter channel 3 to generate output 
pulses every 500 microseconds. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-49 



LIO$K_CHANNEL 

LIO$K_CHANNEL 

This parameter sets the AID or DIA channel to be used in subsequent 
I10 routine calls. 

Supported Devices 
AAF011
ADF011

Parameter Values 
A longword integer containing the device channel number. 

Description 
See the Parameter Values. 

Restrictions 
The channel selected must have been initialized with the 
LIO$K_DATA_PATH parameter. 

Example 

status = LIOsSET_I (adf _id , LIO$K_CHANPIEL , 1, 1) 

This routine sets channel number 1 as the channel for use by 
subsequent VSL routine calls. 

t This device is available only in Europe. 

4-50 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



L10$K_CLK_BASE 

f1  
LIO$K_CLK_BASE 

This parameter specifies the base frequency of the Preston internal 
clock. 

Supported Devices 
Preston 

Parameter Values 
A single-precision, floating-point real value specifying the base 
frequency. 

The acceptable values are 4, 000, 000.0 or 5, 000, 000.0. 

The default value is 5, 000, 000.0. 

~"1 Description 
This parameter is useful because older Preston units contain a 5 MHz 
clock, while newer models contain a 4 MHz clock. 

Using this parameter with the LIO$SHOW routine returns the base 
crystal frequency. 

This is an optional parameter. 

Restrictions 
• You can use this parameter only with the Preston internal clock. 

• The only acceptable values are 4 MHz or 5 MHz. 

• If you use this parameter with LIO$K_CLK_RATE or 
LIO$K_BURST_RATE, you must set up this parameter first. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-51 



LIO$K_CLK BASE 

Example 
status = LIO~SET_R (device_id, LIO$K_CLK_BASE~ i~ 4000000.0) 

This routine tells LIO that your Preston device contains a 4 MHz clock. 

4-52 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K CLK DIV 

LIO$K_CLK_DIV 

This parameter specifies the divider to be used for selecting the clock 
frequency you want. 

Supported Devices 
Preston 

Parameter Values 
A longword integer specifying the clock divider. This value is used as 
the divider for the base frequency of the Preston internal clock. 

The default value is 10, which provides a clock rate of 500 kHz for 
Prestons with 5 MHz base frequency, and a clock rate of 400 kHz for 
Prestons with 4 MHz base frequency. 

Description 
T11is parameter specifies the divider to be used for selecting a clock rate 
for the Preston (with base frequency either 4 MHz or 5 MHz, depending 
on the model). The divider specifies the number of base frequency 
clock ticks to be counted before a sampling pulse is issued. The clock 
sampling rate is determined by t11e formula 

base frequency 
rate = 

divider 

In the point sampling modes, the divider specifies the rate at which 
the AID converts successive samples. In the sweep trigger modes, the 
divider specifies the rate at which channel sweeps are initiated. 

Use this parameter as an alternative to selecting the clock rate using 
LIO$K_CLK_RATE. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-53 



LIO$K_CLK_DIV 

With the LIO$K_CLK_BASE and LIO$K_CLK_DIV parameters, the rate 
actually used is determined by t11e sampling rate formula. With the 
LIO$K_CLK_RATE parameter, the rate actually used may be different 
from what you specify. For more information, see the description of the 
LIO$K_CLK_RATE parameter. 

For the Preston internal clock with a 5 MHz base frequency, the 
granularity of the clock rate is .2 microseconds. 

Restrictions 
• This parameter is only useful when using the Preston internal clock 

or external clock input. 
• The valid range for parameter values is 3 to 65,535. 

Example 

statue = LIOSSET_I (device_id, LIO$K_CLK_DIV, i, 100) 

This routine specifies a divider of 100, which provides a clock rate of 50 
kHz (if your Preston 11as a 5 MHz clock) or 40 kHz (if your Preston has a 
4 MHz clock). 

4-54 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_CLK_RATE 

LIO$K_CLK_RATE 

This parameter takes an ideal frequency and selects the internal base 
frequency and divider to best approximate that frequency. 

Supported Devices 
ADQ32 
KWV11-C 
Preston 
Simpact RTC01 

Parameter Values 
A single-precision floating-point real value specifying the desired 
frequency. Using this parameter with LIO$SHOW returns the actual 
frequency. 

When you set up the ADQ32, the KWV11-C, or the Simpact RTC01 
without using this parameter, LIO uses a default value of 100.0 Hz. 

When you set up the Preston without using this parameter, LIO uses a 
default value of 500.0 kHz. 

Description 
When used with the KWV11-C or the Simpact RTC01, this parameter 
is an alternative to selecting a source frequency and divider with 
LIO$K_CLK_SRC. 

The KWV11-C can produce rates from 1 MHz to .001526 Hz—from 
one tick every millionth of a second to approximately one tick every 11 
minutes. 

The Simpact RTC01 can produce rates from 10 MHz to 2.3 x 10- ~ 
Hz—from one tick every 10 millionths of a second to one tick every 497 
days . 

Any rates you specify outside of the range of the clock are trimmed to 
the maximum and minimum rates of which the clock is capable. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-55 



LIO$K_CLK_RATE 

LIO uses the following algorithm to approximate some clock rates: The 
"ideal" divider is first rounded and then converted to an integer value. 
(A remainder greater than or equal to .5 is rounded up to 1; less than .5 
is rounded down.) 

Suppose you want a clock rate of 1500 Hz. To select a clock rate you 
use the following formula: 

base frequency 
rate = -

divider 

If your base frequency is 5 MHz, according to the formula you would 
use a divider of 3333.33. However, a divider must be an integer, so you 
cannot obtain an exact rate of 1500 Hz. 

In this case, LIO uses a divider of 3333. The actual clock rate produced 
is 1500.15 Hz, which is the closest you can get to 1500 Hz. 

This parameter returns no warning if the clock is not set to the exact 
rate you request. You must use this parameter with LIO$SHOW to see 
the actual rate. 

When used with a Preston device, this parameter specifies the sampling 
rate for the A/D. In the point sampling modes, it specifies the rate 
at which the AID converts successive channels. In the sweep trigger 
modes, it describes the rate at which channel sweeps are initiated. 

When used with the ADQ32 device, this parameter sets the rate for the 
primary clock on the device. See Appendix A for more information. 

Restrictions 
The following restrictions apply to a Preston device: 

• This parameter is useful only when using the Preston internal clock. 

• The valid range of parameter values is 106 Hz to 1 MHz. 

The following restriction applies to the KVW11-C and the Siinpact 
RTC01: 

• This parameter is useful only for single-count and repeat-count 
functions because the event-timing functions use only the base 
crystal rate, not the divider. 

4-56 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K CLK_RATE 

Example 

status = LIO$SET_R (device_id, LIO$K_CLK_RATE, i, 2.0) 

This routine sets the clock at 2 Hz (two ticks per second). 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-57 



LIO$K CLK SRC 

LIO$K_CLK_SRC 

This parameter sets the source frequency and the divider for clock ticks. 
The source frequency and divider together specify the clock rate. T11is 
parameter also sets the source frequency for event timing. 

LIO$K_CLK_SRC is an alternative to LIO$K_CLK_RATE. 

Supported Devices 
KVWll-C 
Simpact RTCOl 

Parameter Values 
A longword integer value or array of length two. 

The first value, which is required, specifies the clock source frequency. 

Tl1e clock source can be one of the following: 

Value Clock Source 

1 Internal 1 MHz clock 

2 Internal 100 kHz clock 

3 Internal 10 kHz clock 

4 Internal 1_ kHz clock 

5 Internal 100 Hz clock 

6 Schmitt trigger 1 

7 For the KWV11-C, line frequency-50 Hz or 60 Hz, depending on 
country' 

7 For the Simpact RTC01, 10 MHz 

1 Line frequency is obtained by accessing the BEVNT line of the Q-bus. On many 
systems, including the MicroVAX II and the MicroVAX 300 series, the BEVNT line is 
not enabled. Therefore, line frequency is not available on these systems. 

4-58 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_CLK_SRC 

The second value, which is optional, specifies the divider. The divider 
can be any value between 1 and 65,536 inclusive. 

The default divider value is 1. 

Description 
The KVW11-C and the Simpact RTC01 can be used for single-count 
or repeat-count functions or for event-timing functions. You select the 
function with the LIQ$K_FUNCTION parameter. The LIO$K_CLK_SRC 
parameter is used differently for each function. 

For single-count or repeat-count functions, you can use the 
LIO$K_CLK_SRC parameter to select a clock rate by specifying the 
source frequency and the divider. 

For event-timing functions, only the clock source frequency is used. The 
divider is not used. Event timing can be done in absolute or relative 
time. For more information, see the description of LIO$K_FUNCTION. 

The clock rate is specified using the following formula: 

source frequency 
rate = 

divider 

The choices for the source frequency are the following: 

• Internal KWV11-C or Simpact RTC01 clock crystal (one of five 
frequencies) 

• Power line frequency1

• Schmitt trigger 1 (ST1) 

When ST1 is selected as the clock source, the clock's counters count 
each external event on the ST1. (An external event is an input voltage; 
the threshold level is selected by potentiometers and the positive or 
negative slope by switches on the UDIP.) 

When the number of external events equals the number specified by 
the divider, the clock generates a pulse. Note that if the ST1 input is a 
regularly timed frequency, the input can be used as a source frequency 
for more specific clock rates. 

1 Line frequency is oUtained Uy accessing the BEVNT line of the Q-l~us. On many systems, including the 
MicroVAX II and the MicroVAX 3000 series, the BEVNT line is not enaUled. Therefore, line frequency 
is not availaUle on these systems. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-59 



LIO$K CLK SRC 

Restrictions 
For single-count or repeat-count functions, you must specify a divider 
(or use the default value of 1). For event-timing functions, no divider is 
used. 

Examples 

1 statue = LIO$SET_I (clock_id, LI03K_CLK_SRC, Z, 6, 1) 

This routine specifies ST1 as t11e clock source with a divider of 1. 
The KWV11-C and the Simpact RTC01 issue a clock pulse every 
time the Schmitt trigger fires. 

2 status = LIO$SET_I (clock_id, LIO$K_CLK_SRC, 2, 1, ib0) 

This routine selects a clock rate of 6666.67 Hz by specifying a source 
frequency of 1 MHz and a divider of 150. 

3, status = LIO$SET_I (clock_id, LIO$K_CLK_SRC, 1, b) 

This routine selects the 100 Hz source frequency to be used for 
event timing. 

4-60 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K CLR LBO 

LIO$K_CLR_LBO 

This parameter clears the large buffer overflow (LBO) condition. 

Supported Devices 
AAF011
ADF011
DRQ11-Cl 

Parameter Values 
None. 

Description 
W11en you want to transfer a large buffer more than once, use this 
parameter to clear the large buffer overflow condition. This parameter 
allows a large buffer transfer to wrap to the beginning of the large 
buffer. If the large buffer is to be transferred more than once, a user 
program must perform the following steps: 

1. Issue an LIO$K_CLR_LBO immediately after starting the large buffer 
transfer. 

2. Clear the device event flag each time one sub-buffer is processed. 

3. Count the sub-buffers. 

4. Issue an LIO$K_CLR_LBO each time nsub-buffers are transferred, 
where nsub-buffers is one large buffer. 

Restrictions 
None. 

~ This device is availaUle only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-61 



LIO$K CLR LBO 

Example 
status = LIO~SET_I (aaf_id ~ LIO$K_CL8_LBO ~ 0) 

Tl1is routine clears the large buffer overflow condition. 

4-62 LI~$SET and LIQ$SH~W Parameter Reference Descriptions 



LIO$K COB 

f~ LIO$K_COB 

This parameter sets the Command Output (GOUT) bit in the Command 
and Status Register (CSR). 

Supported Devices 
AAF011
ADF011

Parameter Values 
None. 

Description 
Use this parameter to set the Command Output (GOUT) bit in the 
Command and Status Register (CSR). 

Restrictions 
None. 

Example 

status = LIOsSET_I (device_id, LIO$K_COB, 0) 

This routine sets the Command Output (GOUT) bit in the Command 
and Status Register (CSR). 

~ This device is available only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-63 



LIO$K COMMAND 

LIO$K_COMMAND 

This parameter sends one or more IEEE-488 commands on the bus. 

Supported Devices 
IEQ11 
IEZ11 
IOtech Micro488A 

Parameter Values 
One or more longword integer values specifying IEEE-488 commands. 
Valid command values are in the following octal ranges: 

Octal Value Command Type 

0..17 
20..37 
40..77 
100..137 
140..177 

Addressed commands 
Universal commands 
Listener cornrnands 
Talker commands 
Secondary commands 

The following addressed commands are effective only in devices that 
have been addressed as a listener or a talker. 

Table 4-4: Address Command Group 
Octal Function Command Description 

001 Listener Go To Local Causes addressed listeners to 
go from remote mode to .local 
mode. When local is true, a 
device is controlled by its front 
or back panel controls. 

004 Listeners Selected Device Causes the addressed listeners 
Clear to be reset (initialization). 

4-64 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_COMMAND 

Table 4-4 (Cont.): Address Command Group 
Octal Function Command Description 

005 Listener 

010 Listener 

Parallel Poll 
Configuration 

Group Execute 
Trigger 

011 Talker Take Control 

Causes the addressed listeners 
to enter the parallel poll 
configuration mode so that 
the addressed listeners can 
participate in a parallel. poll. 
The next command must be 
Parallel Poll Enable from the 
Secondary Command Group to 
allow the listener to respond to 
ATN or ED1 becoming true. 

Causes the addressed .listeners 
to start basic operation of the 
device of which the listener is 
a part . 

Causes a device that has been 
addressed as the talker to 
enable its controller to become 
the controller-in-charge after 
the current controller-in-charge 
unasserts ATN. 

The following universal commands affect all devices that are able to 
respond without having to be previously addressed. 

Table 4-5: Universal Command Group 
Octal Command Description 

021 Local Lockout Causes all devices to ignore their. local message 
RTL (Return To Local) . 

024 Device Clear Causes all devices to be reset (initialization). 

025 Parallel Poll Causes all parallel poll configurations to become 
Unconfigure unconfigured. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-65 



LIO$K_COMMAND 

Table 4-5 (Copt.): Universal Command Group 

Octal Command Description 

030 Serial Poll Causes all talkers to enter the serial poll mode 
Enable to allow a talker to send a status byte after 

being addressed by the controller-in-charge. 

031 Serial Poll Causes all talkers to exit the serial poll mode 
Disable and return to the normal data anode. 

The following listener commands are used to address one or more 
listeners or to address all listeners at once. Addressed listeners become 
active when the controller-in-charge unasserts ATN. These commands 
can be followed by a secondary address command (see Table 4-8) to 
address an extended listener. 

Table 4-fi: Listener Address Group 
Octal Address Description 

040 

041 

076 

My Listen 
Address 0 

My Listen 
Address 1. 

My Listen 
Address 30 

Any listener that recognizes its own address 
becomes an addressed listener and is able to 
receive data bytes from a talker as soon as the 
controller-in-charge unasserts ATN. 

077 Unlisten Causes all listeners to become unaddressed. 

4-66 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K COMMAND 

The following talker commands are used to address or unaddress 
one talker. An addressed talker becomes active when t11e 
controller-in-charge unasserts ATN. These commands can be followed 
by a secondary address command (see Table 4-8) to address an 
extended tallcer. 

Table 4-7: Talker Address Group 
Octal Address Description 

100 My Talk Address 0 A talker that recognizes its own address 
becomes an addressed talker, whereas 
all other talkers become unaddressed. 
Only one talker is able to send data on the 
IEEE-488 bus. 

101 My Talk Address 1 

136 My Talk Address 30 

137 Untalk Causes the addressed talker to become 
unaddressed. 

The meaning of the following secondary commands is defined by 
the preceding primary commands of the primary command group 
(addressed, universal, listener, or talker). 

Table 4-8: Secondary Command Group 
Octal Command Description 

140 Parallel Poll Each Parallel Poll Enable command must follow 
Enable 1 a Parallel Poll Configuration command, which 

forces currently addressed listeners into their 
parallel poll configuration state. Each Parallel 
Poll Enable command tells a device how to 
respond to a parallel poll request from the 
controller-in-charge. A device responds by 
sending one status bit on one of the eight data 
I/O lines. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-67 



LIO$K COMMAND 

Table 4-8 (Cont.): Secondary Command Group 
Octal Command Description 

141 Parallel Poll 
Enable 2 

146 Parallel Pall 
Enable 7 

1.47 Parallel Poll 
Enable 8 

150 Parallel Poll 
Enable 11 

151 Parallel ['oll 
Enable 12 

156 Parallel Poll 
Enable 17 

157 Parallel Poll 
Enable 18 

~, 

160 Parallel Poll This command must follow its associated 
Disable Parallel Poll Configuration command- and 

inhibits devices from responding to the parallel 
poll request . 

140 My Secondary This command must follow a talker or. 
Address 0 listener address. Devices that use extended 

addressing do not become addressed as long as 
the associated secondary address follows the 
primary address. 

141 My Secondary 
Address 1 

175 My Secondary 
Address 29 

176 My Secondary 
Address 30 

4-68 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_COMMAND 

Description 
Use this parameter to send one or more IEEE-488 bus commands. See 
the IEU11-A/IEQ11-A User's Guicle for more information about IEEE-488 
commands. 

Restrictions 
The IEEE-488 device must be controller-in-charge of the bus. 

Example 
instr_addr = 1 
command = inst_addr .OR. LIO$M_LNR 
status = LIOsSET_I (ieee_id, LIO$K_COMMAND, 1, command) 

This routine sets the device at IEEE-488 bus address 1 to be a listener. 
T11is is an alternative to specifying its address in the device_specific 
argument of LIO$WRITE. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-69 



LIO$K_CONT 

LIO$K_CONT 

This parameter sets the device to continuous direct memory access 
(DMA) mode. 

Supported Devices 
AAV11-D 
ADV11-D 
Preston devices (DRQ3B interface only) 

Parameter Values 
None. 

Description 
The AAV11-D, ADV11-D, and Preston devices perform single-buffer 
DMA, by default, when attached to use QIOs (LIO$K_QIO). 

Use the LIO$K_CONT parameter to signal LIO that you want a device 
to use its DMA mode for subsequent data transfers. Continuous DMA 
mode provides the greatest speed from the hardware by sending buffers 
of data continuously with no stops between buffers. 

See Section 1.6.3.2, Continuous DMA, for more information about 
using continuous DMA for high-speed data transfers. 

Restrictions 
The following restrictions apply to both the AAVll-D and the ADV11-D: 

• The device must be set for asynchronous I/O. 

• No buffer can currently be enqueued to the device. 

4-70 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K CONT 

Example 

status = LIO=SET_I (device_id, LIO$K_CONT, 0) 

This routine sets the device for continuous DMA mode. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-71 



LIO$K COUNTER 

LIO$K_COUNTER 

This parameter reads the count register of the Simpact RTC01 clock 
device. 

Supported Devices 
Simpact RTCOl 

Parameter Values 
A single longword integer. 

Description 
LIO$K_COUNTER used with LIO$SHOW reads and returns the current 
contents of the Simpact RTC01 counter. 

For example, if the clock is requested to generate a 100 KHz pulse train, 
the clock would be set to operate at 10 MHz and the count register 
would be loaded with the two's complement of the value 100. Each 
time the count register counts down from —100 to zero, a pulse is 
generated. Executing LIO$SHOW with the LIO$K_COUNTER argument 
allows the count register to be read while t11e clock is operating. 

Restrictions 
• You can use this parameter only with the Simpact RTC01 clock 

device. (The design of the KWV11-C does not allow reading of t11e 
count register while the clock is operating.) 

• T11is is an LIO$SHOW parameter only. 

4-72 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K COUNTER 

Example 

status = LIO$SHOY (device_id, LIO$K_COUNTER, value_list, list_len) 

This routine reads the count register of the Simpact RTC01. The 
value_list argument returns the Simpact RTC01 count register contents. 
The list_len argument returns 1. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-73 



LIO$K CTA 

LIO$K_CTA 

This parameter loads the Control Table Address (CTA) register. 

Supported Devices 
AAF011
ADF011

Parameter Values 
A longword integer specifying the position in the 1K-word Control 
Table. 

The value can be between 0 and 1023, inclusive. 

Description 
See the Parameter Values. 

Restrictions 
None. 

Example 

status = LIO$SET_ I (axf _id , LIO$K_CTA , 1, control_table_pos) 

This routine loads the position within the Control Table specified by 
control_table_pos into the Control Table Address (CTA) register. 

~ This device is available only in Europe. 

4-74 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K CTI_BUF 

LIO$K_CTI_BUF 

This parameter sets the buffer and event flag for devices set for 
connect-to-interrupt (CTI) IIO. 

Supported Devices 
AX~711-C AID 

Parameter Values 
A maximum of three longword integers specifying the buffer address 
(optional), the buffer size in bytes, and the device event flag. 

If you do not supply the buffer address, the LIO facility allocates one 
from dynamic virtual memory. 

The buffer size should be the size of the desired user buffer not 
including the overhead. Note that the actual array must be declared 
to be approximately 300 bytes larger than the buffer size you specify 
through the LIO$K_CTI_BUF parameter value. The CTI handler uses 
the extra space at the high end of the buffer for the interrupt service 
routine. 

The LIO$K_CTI_OVERHD parameter of the LIO$SET routine returns 
the exact amount of CTI handler overhead (in bytes). 

Description 
The AXV11-C is the only device that currently supports CTI I10. Use 
this parameter to supply the AXV11-C with a buffer for the CTI. 

The connect-to-interrupt driver requires less overhead for each I10 
call than the QIO driver, but more overhead for each I10 call than 
memory-mapped I10. 

Because the interrupt service routine performs the I10, a user program 
does not need to run at high priority. Also, the I10 does not preempt 
all other processes running on the system. 

LIQ$SET and LI~$SHQW Parameter Reference Descriptions 4-75 



LIO$K_CTI BUF 

Restrictions 
• The AXV11-C must be attached to use CTI I10 using LIO$K_CTI. 

• The data buffer must be large enough to contain the 
connect-to-interrupt overhead in addition to the data itself. 

• The data buffer size cannot be more than 65, 536 minus the CTI 
overhead (in bytes). 

Examples 
This example shows 11ow to attach the AXV11-C device to use CTI 
I10, and how to set up the connect-to-interrupt buffer and an event 
flag. Variable declarations are included to make this example easier 
to understand. 

1, INTEGER*2 buffer (20 + 1b0) 

This line allocates a 20-word buffer, plus a 150-word (300-byte) 
buffer overhead area. 

2. INTEGER buff er_length 
INTEGER event_flag 

These two lines declare the variables buffer length and event flag, 
and the data type. 

3. statue = LIO$ATTACH (device_id, 'AXAO', LIO$K_CTI) 

This routine attaches the AXV11-C to use CTI IIO. The device ID of 
the AXV11-C is returned in the device_id parameter and is used in 
the subsequent routine lines to identify this AXV11-C device. 

!~, status = LIB$GET_EF(event_f lag) 

This routine uses the VMS Run-Time Library Routine, LIB$GET_EF, 
to allocate one local event flag from aprocess-wide pool. The 
allocated event flag is returned as the value of event flag. 

4-76 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_CTI_BUF 

5, buff er_length = 40 

This line specifies 40 bytes as the length of the data portion of the 
buffer argument. 

6 status = LIO$SET_I (device_id, LIO$K_CTI_BUF, 3, buffer, buffer_length, 
1 event_f lag) 

This routine specifies the CTI buffer address, the length of the CTI 
buffer (in bytes), and the device event flag. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-77 



LIO$K_CTI OVERHD 

LIO$K_CTI_OVERHD 

This parameter returns the size of the connect-to-interrupt (CTI) handler 
overhead in bytes. 

Supported Devices 
AXV11-C AID 

Parameter Values 
This parameter returns one longword integer. 

Description 
Use this LIO$SHOW parameter to determine the size of the CTI 
handler overhead you must allocate at the end of the buffer passed 
to LIO$K_CTI_BUF. 

Restrictions 
The AXV11-C device must be attached to use CTI I/O using LIO$K_CTI. 

Example 

status = LIOSSHOY (device_id, LIO$K_CTI_OVERHD, buffer, buffer_eize) 

The routine line returns a longword integer containing the size of the 
CTI handler overhead in bytes. The buffer argument returns the size 
of the CTI handler, the buffer size argument returns the number of 
integers returned in the buffer argument. 

4-78 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_CTRL ACTIVE 

LIO$K_CTRL_ACTIVE 

This parameter signals an IEEE-488 device to activate its controller 
function. 

Supported Devices 
IEQ11 
IEZ11 
IOtech Micro488A 

Parameter Values 
None. 

Description 
Using this parameter reactivates the controller-in-charge function of an 
IEEE-488 device. This is the default for the device. 

You need to set this parameter only if you have deactivated the 
controller-in-charge function by setting the LIO$K_CTRL_STANDBY 
parameter. Using this parameter in conjunction with 
LIO$K_CTRL_STANDBY improves the performance of successive 
data transfers . 

The controller function must be active for the IEEE-488 device to 
perform any of the functions of the controller-in-charge. When the 
controller is active and the IEEE-488 device prepares to send or receive 
data, the device must first put the controller function on standby 
(LIO$K_CTRL_STANDBY). The device then transfers the data and 
reactivates the controller function. 

Deactivating and reactivating the controller function adds overhead to 
each send or receive operation. If an application requires a series of 
data transfers, you can improve the rate of the transfers by setting the 
controller function on standby for the duration of the data exchange. 
Then, your application should reactivate the controller function when all 
data transfers complete. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-79 



LIO$K CTRL_ACTIVE 

Restrictions 
The IEEE-488 device must be the controller-in-charge. 

Example 
status = LIOSSET_I (ieee_id, LIO$K_CTRL_ACTIVE~, 0) 

This routine reactivates the controller function of an IEEE-488 device. 

4-80 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K CTRL_AST 

f"1 
LIO$K_CTRL_AST 

This parameter supplies auser-written AST routine to be called in the 
following situations: 

• When an external device writes data to the input control port of t11e 
DRB32 

• On receipt of a specified control character• by serial line devices 

Supported Devices 
DRB32 
Serial line 

Parameter Values 
A longword integer specifying the address of the AST routine. Setting 
this parameter without supplying a parameter value cancels the AST 
routine. 

Description 
This can be a mechanism for synchronizing with state changes in the 
external device. 

Restrictions 
When using FORTRAN, the subroutine must be declared EXTERNAL. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-81 



LIO$K CTRL AST 

Examples 

1. status = LIO$SET_I (device_id, LIO$K_CTRL_AST, i, ueer_ast) 

This routine specifies auser-supplied AST routine called user_ast. 

2, status = LIO$SET_I (device_id, LIO$K_CTRL_AST, 0) 

This routine cancels the delivery of a previously specified AST 
routine. 

4-82 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K CTRL_HANDLING 

LIO$K_CTRL_HANDLING 

This parameter specifies a flag that indicates what action to take on 
receipt of a control character specified by LIO$K_CTRL_AST for serial 
line devices. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer constant specifying the action to take on receipt of 
the control character. 

The value can be one of the following: 

Constant Value Action Taken 

LIO$K_CTRL_ABORT 

LIO$K_CTRL_INCLUDE 

LIO$K_CTRL_INC_ABORT 

Aborts the current operation on receipt 
of the control character. The status value 
SS$_CONTROLC is returned. 

Includes the control character in the buffer 
returned to the user program. 

Aborts the current operation and includes the 
control character in the buffer returned to the 
user program. 

Description 
Use this parameter in conjunction with the LIO$K_CTRL_AST 
parameter to specify what action to take on receipt of the control 
character specified by the LIO$K_CTRL_AST parameter. The Parameter 
Values lists the valid action you can specify. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-83 



LIO$K_CTRL_HANDLING 

Restrictions 
None. 

Example 
status = LIO$SET_I (serial_id, LIO$K_CTRL_HANDLING, 1, 
1 LIO$K_CTRL_INCLUDE) 

This routine specifies that the LIO facility include the control character 
in the buffer returned to the user program. 

4-84 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_CTRL STANDBY 

LIO$K_CTRL_STANDBY 

This parameter deactivates the controller function of an IEEE-488 device. 

Supported Devices 
IEQ11 
IEZ11 
IOtech Micro488A 

Parameter Values 
None. 

Description 
You must place the controller-in-charge in controller standby mode 
when two other devices on the IEEE-488 bus are going to transfer data 
between each other. Use the LIO$K_CTRL_STANDBY parameter 
to place the controller-in-charge in standby mode only when the 
controller-in-charge is not participating in the data transfer. 

This parameter can also be used in conjunction with the 
LIO$K_CTRL_ACTIVE parameter to improve the performance of 
successive data transfers if t11e controller-in-charge is going to issue 
several LIO$READ routines or LIO$ENQUEUE routines to read a large 
buffer of data . 

Restrictions 
The IEEE-488 device must be the controller-in-charge. 

Example 

status = LIO$SET_I (device_id, LIO$K_CTRL_STANDBY, 0) 

This routine deactivates the controller function of an IEEE-488 device. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-85 



LIO$K_CURRENT_CHANNEL 

LIO$K_CURRENT_CHANNEL 

This parameter specifies which channel is to be affected by 
channel-specific set calls (LIO$K_TITLE, LIO$K_X_LABEL, and 
$LIO$K_Y_LABEL). 

Supported Devices 
Real-time plotting 

Parameter Values 
A longword integer specifying the channel to be changed by future set 
calls. 

The default channel is 0. 

Description 
You can select any channel up to the maximum number of channels as 
the current channel. All future channel-specific set calls will modify the 
selected channel. 

Restrictions 
• The current channel must be within the maximum number of 

channels . 
• The real-time plotting device is supported only on VAXstation-based 

VAXIab systems running VWS. 

Example 
statue = LIO$SET_I (graphice_id, LIO$K_CURRENT_CHAIJNEL, 1, 3) 

This routine selects channel 3 as the current channel to be changed by 
future set calls. 

4-86 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_CWT 

LIO$K_CWT 

This parameter reads the Control Word Registers from, or writes the 
Control Word Registers to, the Control Table Memory of the AAF01 
and ADF01 devices. 

Supported Devices 
AAF011
ADF011

Parameter Values 
Five longword integer values. 

The first value specifies the direction of the operation (read or write). 

This value can be one of the following: 

Constant Value Meaning 

LIO$K_INPUT Reads from the Control Table 
LIO$K_OUTPUT Writes to the Control Table 

The second value specifies the address of an integer array from which 
to read the Control Table, or to which to write the Control Table. The 
data type of the buffer itself must be a word (2-byte) array. 

The third value specifies t11e position in t11e Control Table at which you 
want the transfer to begin. 

The fourth value specifies the position in the Control Table at which 
you want t11e transfer to end. 

For LIO$K_INPUT (read), the fifth value specifies the length of t11e 
integer array in bytes. For LIO$K_OUTPUT (write), the fifth value 
specifies the first position in the Control Table at which loading begins. 

1 This device is availaUle only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-87 



LIO$K_CWT 

Description 
See the Examples. 

Restrictions 
None. 

Examples 

1. status = LIO$SET_I (axf_id, LIO$K_Cl/T, b, LIO$K_Ir1PUT, 
1 XLOC(control_table), start_pos, end_pos, table_length) 

When reading from the Control Word Table, the contents of the 
table, beginning at start_pos and ending at end_pos, are loaded into 
the control_table buffer•. The table_length argument specifies the 
length of the control_table buffer. When the routine call returns, the 
start_pos argument contains the position within the Control Table at 
which the transfer• ended. 

2, status = LIO$SET_I (axf_id, LIO$K_CVT, b, LIO$K_OUTPUT, 
1 XLOC(control_table), start_pos, end_pos, table_pos) 

When writing to the Control Word Table, the contents of the 
control_table buffer, beginning at start_pos and ending at end_pos, 
are loaded into the Control Table beginning at table_pos. When the 
routine call returns, the end_pos argument contains the position + 
1 within the Control Table at which the transfer ended. 

4-88 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K DA CHAN 

n  LIO$K_DA_CHAN 

This parameter specifies the DIA channels to use for output. 

Supported Devices 
AAV11-D 
AXV11-C D/A 

Parameter Values 
One or two longword integers specifying the DIA channels to use. 

The values can be one or both of the following: 

Value Meaning 

0 Specifies channel X 
1 Specifies channel Y 

When you set up either of these two devices without using the 
LIO$K_DA_CHAN parameter to specify the DIA channels, LIO defaults 
to 0. 

Description 
If you specify both channels, the first output value in the buffer is 
always sent to channel X; the second output value is sent to channel Y; 
the third output value is sent to channel X; and so on, until all of the 
values in the buffer are output. 

Restrictions 
• For the AAV11-D, no buffers can be currently enqueued to the 

device when you set up the AAV11-D using this parameter. 
• For the AAV11-D and AXV11-C DIA devices, you can specify each 

channel only once. 

LIO$SET and LIO$SNOW Parameter Reference Descriptions 4-89 



LIO$K DA CHAN 

Example 

status = LIOSSET_I (device_id, LIO$K_DA_CHAN, 2, 0, 1) 

This routine specifies two DIA channels, channel X and channel Y, for 
output . 

4-90 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_DATA 

LIO$K_DATA 

This parameter enables you to perform data transfers to and from the 
DRB32 parallel data path without using DMA. 

Supported Devices 
DRB32 

Parameter Values 
Two longword integer values. 

The first value specifies the number of Uytes to transfer. A maximum of 
four bytes is allowed for each transfer. 

The second value specifies the address of the buffer to transfer. 

Description 
To perform an output operation, use the LIO$SET_I routine. To perform 
an input operation, use the LIO$SHOW routine. 

Restrictions 
The data transfer is limited to four bytes in length in either direction. 

Examples 

1. status = LIO$SET_I (drb_id, LIO$K_DATA, 2, 4, buffer_address) 

This routine outputs afour-byte buffer. 

2, status = LIO$SHO~t (drb_id , LIO$K_DATA, buff er_address , buff er_length) 

This routine inputs the array at starting virtual address 
buffer_address of length buffer_length. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-91 



LIO$K_DATA_PATH 

LIO$K_DATA PATH 

This parameter selects the data path and channel number. 

Supported Devices 
AAF011
ADF011
DRQ11-Cl

Parameter Values 
Two longword integer values. 

The first value specifies either a direct or a Uuffered data path. 

This value can be one of the following: 

Constant Value Meaning 

L[O$K_BUF1'ATH Buffered data path 
LIO$K_DIRPATH Direct data path 

T11e second value, which is optional, specifies a device channel number. 
This value can be between 1 and 8, inclusive. 

Description 
If you are programming the AAF01 DigitallAnalog Conversion 
Subsystem or the ADF01 Data Acquisition Subsystem and you want 
to access multiple devices, you must specify a device channel number. 
Use the LIO$K_SET_CHAN parameter to specify the current channel 
number for use in subsequent routine calls to the device. 

~ This device is available only in Europe. 

4-92 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_DATA_PATH 

Restrictions 
The value LIO$K_BUFPATH is provided for compatibility reasons only. 
You must specify LIO$K_DIRPATH for use with all VAXIab devices. 

Example 

status = LIO$SET_I (adf_id, LIO$K_DATA_PATH, 1, LIO$K_DIA.PATH) 

This routine specifies a direct data path. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-93 



L10$K_DATA WIDTH 

LIO$K_DATA WIDTH 

This parameter specifies the width of the DRB32 parallel data path. 

Supported Devices 
DRB32 

Parameter Values 
A longword integer constant specifying the width of the parallel data 
path. 

The value can be one of the following: 

Constant Value Meaning 

LIO$K_BYTE 
LIO$K_WORD 
LIO$K_LONG1

The data path width is a byte 
The data path width is a word 
The data path width is a longword 

1 The default value. 

Description 
See the Parameter Values. 

Restrictions 
Specifying any value other than those listed in the Parameter Values 
generates an error. 

Example 
status = LIOSSET_I (device_id, LIO~K_DATA_YIDTH, 1, LIO$K_BYTE) 

This routine sets the parallel path width to a byte. 

4-94 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_DBL BUF 

LIO$K_DBL_BUF 

This parameter enables double-buffer DMA data transfers for t11e 
ADQ32 device. 

Supported Devices 
ADQ32 

Parameter Values 
None. 

Description 
Use this parameter to enable double-buffer DMA data transfers for 
the ADQ32 device. Buffers must be larger than 8K words and queued 
continuously to be double-buffered. 

See Section 1.6.3.4, Double-Buffer DMA, for more information. Also 
see Appendix A for details on how external triggers function differently 
in single-buffer and double-buffer mode. 

Restrictions 
None. 

Example 

status = LIO$SET_I (adq_id, LIO$K_DBL_BUF, 0) 

This routine enables double-buffer DMA data transfers for the ADQ32 
device. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-95 



LIO$K_DEVICE ACK_NAK BUFF 

LIO$K_DEVICE_ACK_NAK_BU FF 

This parameter supplies t11e buffer to be used when receiving an ACK 
or a NAK from a serial device. 

Supported Devices 
Serial line 

Parameter Values 
Three longword integer values. 

The first value specifies the address of the buffer. 

The second value specifies the length of the buffer, in bytes. 

The third value specifies the timeout period, in seconds. 

Description 
Use the LIO$K_DEVICE_ACK_NAK_BUFF parameter to supply the 
buffer into which LIO returns ACKs and NAKs from a serial device. 

See the description of LIO$K_PROTOCOL for more information. 

Restrictions 
None. 

Example 

status = LIO$SET_I (serial_id, LIO$K_DEVICE_ACK_NAK_BUFF, 4, 

1 ack_nak_buff , 40, 60) 

This routine supplies a buffer called ack_nak_buff, 40 bytes in length, 
with a 60 second timeout period. 

4-96 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_DEVICE EF 

LIO$K_DEVICE_EF 

This parameter supplies the device with an event flag to set when it 
completes a buffer. This parameter is valid only for devices set for 
buffer forwarding. 

Supported Devices 
AAV11-D 
ADQ32 
ADV11-D 
AXV11-C AID 
DRB32 
DRB32W 
DRQ3B 
DRV11-J 
DRV11-WA 
IAV111 devices 
IDV111 devices 
IEQ11 
IEZ11 
IOtech Micro488A 
KWV11-C 
Preston 
Simpact RTCOl 
Disk file 
Memory queue 
Serial line 

1 These devices are available only in Europe . 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-97 



LIO$K_DEVICE EF 

Parameter Values 
A longword integer specifying an event flag. 

The integer value can be any legal event flag-1 through 23, or 32 
through 127—that is unique to the process. Event flags 24 through 
31 are reserved for use by DIGITAL. Event flags 1 through 23 and 32 
through 63 are local to the process. Event flags 64 through 127 are in 
global event flag clusters that may or may not currently be associated 
with the process. 

You can also use the VMS Run-Time Library routine, LIB$GET EF, to 
get a free VMS event flag to use as the value of this parameter. See the 
Example. 

Description 
You can use this parameter in addition to any optional event flag 
associated with each buffer. 

Restrictions 
• The device must be set for asynchronous I/O. 

• The device must be set up using the LIO$K_FORWARD parameter 
to forward completed buffers to another device. 

• The event flag should be unique to the process. 

• Do not specify event flag zero. This is the VMS default event flag 
w11en no other event flag is specified. 

Examples 

1. status = LIBSGET_EF(event_f lag) 

This routine gets a free VMS event flag number. 

2, status = LIO$SET_I (device_id , LIO$K_DEVICE_EF, 1, event_f lag) 

This routine sets up the device with the VMS event flag number 
obtained through the LIB$GET_EF routine. 

4-98 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_DIAG_CHAN 

LIO$K_DIAG_CHAN 

This parameter enables or disables diagnostic inputs to ADQ32 
channels 0, 1, and 2. 

Supported Devices 
ADQ32 

Parameter Values 
A longword integer constant enabling or disabling the diagnostic 
channels. 

The value can be one of the following: 

Constant Value Function 

LIO$K_ON 
LIQ$K_OFF1

Enables the diagnostic channels 
Disables the diagnostic channels 

1 The default value. 

Description 
When the diagnostic channels are turned on, a precision voltage chip 
is connected to channels 0, 1, 2, and 3. The voltages used are shown 
below. 

Channel Voltage 
Voltage in 
Bipolar Setting 

Voltage in 
Unipolar Setting 

0 

1 

Analog ground 

Negative full scale 
plus 112 LSB 

0.0000 

-9.9975 

0.0000 

+ 0.0012 

LIO$SET and LIQ$SHOW Parameter Reference Descriptions 4-99 



LIO$K_DIAG_CHAN 

Voltage in Voltage in 
Channel Voltage Bipolar Setting Unipolar Setting 

2 Positive full scale + 9.9925 + 9.9963 
minus 1.5 LSB 

3 +5 +5 +5 

Enabling the ADQ32 diagnostic channels is useful when you want to 
ensure that your software is working properly without having to connect 
the A1D inputs to known values. 

Restrictions 
None. 

Example 

status = LIOsSET_I (adq_id, LIO$K_DIAG_CHAN, 1, LIO$K_ON) 

This routine enables the ADQ32 diagnostic channels. 

4-100 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K DIRECTION 

~ LIO$K_DIRECTION 

This parameter sets the direction (input or output) of a device. 

Supported Devices 
DRB32 
DRB32W 
DRV11-J 
DRVll-WA 
Disk file 

Parameter Values 
For the DRV11-J, four longword integer constants specifying the 
direction (input or output) of ports A, B, C, and D. 

For the DRB32, DRB32W, DRV11-WA, and disk files, one longword 
integer constant specifying the direction (input or output) of the device. 

The value can be one of the following: 

Constant Value Meaning 

LIO$K_INPUTI Sets the device or port to input or read 
LIO$K_OUTPUT Sets the device or port to output or write 

1The default value. 

Description 
For the DRB32 and DRB32W, this parameter sets the direction of data 
transfer when the device is set to use asynchronous I/0. If the device 
is set to use synchronous I/O, this parameter need not be set, and is 
ignored if it is set. 

For the DRV11-J, this parameter sets the direction of all four ports. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-101 



LIO$K_DIRECTION 

For the DRV11-WA, this parameter signals the LIQ facility in which 
direction the device hardware is set. 

For disk files, this parameter specifies whether a file is an input (read) 
or an output (write) file. 

Restrictions 
• Each of the supported devices or ports operates in one direction at 

a time and cannot be set to perform simultaneous input and output 
t1•ansf ers . 

• You should explicitly set up the device or port direction before you 
use it. 

Examples 

1. status = LIO$SET_I (drj_id, LIO~K_DIRECTION, 4, LIO$K_INPUT, 

i LIO$K_INPUT, LIO$K_OUTPUT, LIO$K_OUTPUT) 

This routine specifies the direction of the four ports of the DRV11-J 
device. Ports A and B are set for input; ports C and D are set for 
output. 

2, status = LIO$SET_I (dr~r_id, LIO$K_DIRECTION, i, LIO$K_INPUT) 

This routine signals the LIO facility that the DRV11-WA device is 
jumpered for input. 

4-102 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_DISPLAY ONLY 

~ LIO$K_DISPLAY_ONLY 

This parameter sets up an interprocess memory queue to display data 
buffers from a global section to the second process. 

Supported Devices 
Memory queue 

Parameter Values 
None. 

Description 
This parameter sets the memory queue device to display data from 
a global section to a second process. See Chapter 2 for complete 
information about interprocess memory IIO. 

Restrictions 
• The memory queue must be set up to use the asynchronous 

(LIO$K_ASYNCH) I/O interface. 

• The memory queue must be attached for interprocess I/O 
(LIO$K_INTER_PROC as the value of the io_type argument). 

• The process that reads the data must set up its memory queue to be 
read-only using the LIO$K_READ_ONLY parameter. 

Example 

status = LIO$SET_I (device_id, LIO$K_DISPLAY_ONLY, 0) 

This routine sets up the memory queue device in the first process in the 
main program to display data to the second process as it passes by the 
window. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-103 



LIO$K DRX_AST RTN 

LIO$K_DRX_AST_RTN 

This parameter specifies auser-written AST routine to receive buffers 
when a device finishes processing them. The completed buffers are 
passed to the AST routine instead of being placed on the device's user 
queue. 

Supported Devices 
AAFO11
ADF011
DRQ11-Cl

Parameter Values 
A longword integer specifying the address of the AST routine. 

Description 
See Chapter 3 in Getting Started with VAXInb and Section 1.5.3, 
Asynchronous System Traps (ASTs), in this guide for more information 
about using AST routines. 

Restrictions 
• The device must be set for asynchronous IIO. 

• When using FORTRAN, the subroutine must be declared 
EXTERNAL. See the Examples. 

1 This device is availaUle only in Europe. 

4-104 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_DRX AST RTN 

Examples 

1. EXTERNAL user_aBt 

This line declares the user-written AST routine to be external. See 
the Restrictions. 

2, status = LIO$SET_I (device_id, LIO$K_ASYNCH, 0) 

This routine sets up the device to use asynchronous IIO. 

3 statue = LIO$SET_I (device_id, LIO$K_DRX_AST_RTN, 1, user_ast) 

This routine specifies auser-written AST routine, user_ast, to receive 
completed buffets. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-105 



LIO$K DRX STAT 

LIO$K_DRX_STAT 

This parameter returns the contents of the hardware registers on the 
DRQ11-C device. 

Supported Devices 
DRQ11-Cl

Parameter Values 
A word array of length 10 returning the contents of the hardware 
registers on t11e DRQ11-C device. Each array index returns the contents 
of a different hardware register. 

Index Returns the contents of : 

1 Command and Status Register (SCR) 
2 Control Register (COR) 
3 Bus Address Register 1 (BAR1) 
4 Word Count Register 1 (WCR1) 
5 Bus Address Register 2 (BAR2) 
6 Word Count Register 2 (WCR2) 
7 Current Word Counter (WCO) 
8 Current Address Counter (ACO) 
9 Extended Address Register (XA22) 

Description 
See the Parameter Values. 

Restrictions 
This is an LIO$SHOW parameter only. 

1 This device is availaUle only in Europe. 

4-106 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K DRX_STAT 

Example 
INTEGER*2 drx_value_list(10) 
status = LIO~SET_I (drq_id, 
1 list_length) 

IF (.NOT. status) 

SCR 
COR 
BART 
i1CR 1 
BAR2 
YCR2 
YCO 
ACO 
XA22 

= drx_value_list(1) 
= drx_value_liat(2) 
= drx_value_list(3) 
= drx_value_list(4) 
= drx_value_list(5) 
= drx_value_list(6) 
= drx_value_list(7) 
= drx_value_list(8) 
= drx_value_list(9) 

LIO$K_DRX_STAT, drx_value_list, 

CALL LIB$SIGNAL (XVAL(status)) 

!Status and Conmiand Register 
!Control Register 
!Bus Address Register 1 
! Yord Count Register 1 
!Bus Address Register 2 
!Hord Count Register 2 
!Current Hord Counter 
!Current Address Counter 
!Extended Address Register 

This routine returns the contents of the DRQ11-C hardware registers. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-107 



LIO$K_DUPLEX 

LIO$K_DUPLEX 

This parameter specifies whether serial line read/write requests are 
executed in half-duplex or full-duplex mode. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer constant specifying the duplex mode. 

The value can be one of the following: 

Constant Value Duplex Mode 

LIO$K_HALF1
LIO$K_FULL 

Half -duplex mode 
Full-duplex mode 

~ The default value. 

Description 
In half-duplex anode, a single queue of read/write requests is 
maintained. Requests are executed sequentially in the order in which 
t11ey are issued. In full-duplex mode, two queues are maintained, and 
requests are not retired sequentially. Write requests normally have 
priority. Once a read request Uecomes active, all write requests are 
queued until the read completes. 

Restrictions 
None. 

4-108 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_DUPLEX 

Example 
status = LIO~SET_I (device_id, LIO$K_DUPLEX, 1, LIOSK_FULL) 

This routine sets a serial line device to operate in full-duplex mode. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-109 



LIO$K_ECHO 

LIO$K_ECHO 

This parameter enables or disables the echoing of characters received 
on the serial line. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer constant enabling or disabling echoing. The value 
can be one of the following: 

Constant Value Meaning 

LIO$K_OFF1
LIO$K_ON 

Disables echoing 
Enables echoing 

iThe default value. 

Description 
This parameter enables or disables the echoing of characters received 
on the serial line. This parameter is typically of little use in a serial 
line data acquisition environment, but may be helpful while debugging 
application programs using serial line devices. 

Restrictions 
None. 

4-110 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K ECHO 

Example 
status = LIO~SET_I (device_id, LIOSK_ECHO, 1, LIOsK_ON) 

This routine enables the echoing of characters received on the serial 
line. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-111 



LIO$K_ED_CTT 

LIO$K_ED_CTT 

For the AAF01, this parameter enables or disables the Memory Transfer 
(MET) bit in the Command and Status Register (CSR). 

For the ADF01, this parameter enables or disables the Control Table 
Transfer (CTT) bit in the Command and Status Register (CSR). 

Supported Devices 
AAF011
ADF011

Parameter Values 
A longword integer constant specifying whether to enaUle or disable the 
bit. 

The value can be one of the following: 

Constant Value Function 

LIO$K_ENABLE 
LIO$K_DISABLE 

Enables the bit 
Disables the bit 

Description 
The DMA cycle contains the 12-bit contents of the control word that 
belong to the following conversion. T11is affects the conversion data rate 
by requiring another DMA cycle. 

1 This device is available only in Europe. 

4-112 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K ED CTT 

Restrictions 
None. 

Example 

statue = LIO$SET_I (device_id, LIO$K_ED_CTT, 1, LIO$K_ENABLE) 

This routine either enables the MET bit in the CSR of the AAF01 device 
or enables the CTT bit in the CSR of the ADF01 device. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-113 



LIO$K_ED ECE 

LIO$K_ED_ECE 

This parameter enables or disables the External Clock Enable (ECE} bit 
in the Command and Status Register (CSR). 

Supported Devices 
AAF011
ADF011

Parameter Values 
A longword integer constant specifying whether to enable or disable the 
bit. 

The value can be one of the following: 

Constant Value Function 

LIO$K_ENABLE 
LIO$K_DISABLE 

Enables the bi t 
Disables the bit 

Description 
See the Parameter Values. 

Restrictions 
None. 

Example 
status = LIOsSET_I (device_id, LIOsK_ED_ECE, 1, LIO$K_ENABLE) 

This routine enables the ECE bit in the CSR of the AAF01 and ADF01 
devices. 

~ This device is availaUle only in Europe. 

4-114 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K ED_SBE 

~ LIO$K_ED_SBE 

This parameter enables or disables the Sequence Break Enable (SBE) bit 
in the Command and Status Register (CSR). 

Supported Devices 
AAF011 
ADF011 

Parameter Values 
A longword integer constant specifying whether to enable or disable the 
bit. 

The value can be one of the following: 

Constant Value Function 

LIO$K_ENABLE 
L[O$K_DISABLE 

Enables the bit 
Disables the bit 

Description 
See the Parameter Values. 

Restrictions 
None. 

Example 
status = LIOSSET_I (device_id, LIO$K_ED_SBE, 1, LIO$K_ENABLE) 

This routine enables the SBE bit in the CSR of the AAF01 and ADF01 
device. 

1 This device is availaUle only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-115 



LIO$K_EOI 

LIO$K_EOI 

This parameter enables or disables the assertion of the end-or-identify 
(EOI) line after the last byte of data is output. 

Supported Devices 
IEQ11 
IEZ11 
IOtech Micro488A 

Parameter Values 
A longword integer constant enaUling or disabling the assertion of the 
EOI line. 

The value can be one of the following: 

Constant Value Function 

LIO$K_OFF~ 
LIO$K_ON 

Disables the assertion of the EOI line 
Enables the assertion of the EOI line 

~ The default value. 

Description 
This parameter performs the same function as the LIO$_TERM_CHAR 
parameter. If you enable LIO$K_EOI, LIO asserts the EOI line after the 
last byte of data is output. 

Restrictions 
None. 

4-116 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K EOI 

Example 
status = LIO~SET_I (ieee_id, LIOsK_EOI, 1, LIOSK_ON) 

This routine enables the assertion of the EOI line. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-117 



LIO$K ERR HANDLE 

LIO$K_ERR_HANDLE 

T11is parameter specifies t11e way in which a device returns error 
conditions. 

Supported Devices 
All 

Parameter Values 
A longword integer constant specifying the error handling method. 

The value can be one of the following: 

Constant Value Meaning 

LIO$K_FATAL Prints the error message to both SYS$OUT['UT and 
SYS$ERROR. On fatal errors, the program stops 
execution. 

LIO$K_MESSAGE Prints the error message to both SYS$OUTPUT and 
SYS$ERROR, and returns the symbolic status as the 
value of the routine call. 

LIO$K_STATUS1 Returns the symbolic status as the value of the 
routine call. 

1 The default value. 

Description 
LIO$K_FATAL simplifies program execution because the program need 
not check the status after each LIO routine call. 

LIO$K_MESSAGE simplifies the debugging of a program that handles 
error• conditions. 

LIO$K_STATUS enables a program to 1landle error recovery. Typically, 
this is useful during an interactive program execution because the 
program can prompt the user to correct error conditions. 

4-118 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_ERR_HANDLE 

Restrictions 
If an LIO$_INTERR internal software error is generated, it is always 
fatal. This condition value indicates the existence of some error from 
which LIO cannot recover. 

Example 

status = LIOSSET_I (device_id, LIO$K_ERR_HANDLE, 1, LIO$K_FATAL) 

This routine sets up a device to terminate program execution on fatal 
errors . 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-119 



LIO$K ERROR_ENABLE 

LIO$K_ERROR_ENABLE 

This parameter enables or disables parity error handling for serial line 
devices. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer constant enabling the type of parity error checking 
selected using the LIO$K_PARITY parameter. 

Description 
Use this parameter to enaUle the parity error checking for a serial 
device. 

Restrictions 
You must select the parity checking type using the LIO$K_PARITY 
parameter. 

Examples 
1. status = LIO$SET_I (serial_id, LIO$K_PARITY, 1 LIO$K_EVEN) 

This routine selects even parity checking for a serial line device. 

2 status = LIO~SET_I (serial_id, LIO$K_ERROR_EPIABLE, 1, LIO$K_PARITY) 

This routine enables the even parity checking selected by the 
LIO$K_PARITY parameter in the previous routine line. 

4-120 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



ll0$K EVENT_AST 

LIO$K_EVENT_AST 

This parameter assigns auser-written AST routine to be called on the 
following conditions: 

• AAF01,1 ADF01,1 and DRQ11-C1 unsolicited interrupts 
• DRV11-J port A bit events 
• IDV11-A1 channel 15 events 
• IEEE-488 bus events 

• KVW11-C or Simpact RTC01 clock overflows or Schmitt trigger 2 
events 

Supported Devices 
AAF011
ADFO11
DRQ11-Cl 
DRV11-J 
IDV11-Al 
IEQ11 
IEZ11 
KWV11-C 
Simpact RTC01 

Parameter Values 
For the AAF01, ADF01, and DRQ11-C, three longword integer values. 

The first value specifies the address of the user-supplied AST routine. If 
this value is zero, a disconnect from unsolicited interrupt is performed. 
This disables the delivery of further attention AST's. 

The second value specifies the address of a 16-bit parameter passed to 
the AST routine. On entry to the AST routine, this parameter contains 
the Status and Command Register (SCR) of the DRQ11-C at the time of 
the interrupt. 

1 This device is available only in Europe. 

LIO$SET and LIO$SHQW Parameter Reference Descriptions 4-121 



LIO$K_EVENT_AST 

The third value, which is optional, may contain the integer constant 
LIO$K_CANCEL. This value clears any previously set interrupt 
condition. 

ASTs are immediately disabled after the delivery of one AST to the 
user program. The user must specify another attention AST to reenable 
notification. 

For the DRV11-J, two longword integer values. The first value specifies 
the address of the user-supplied AST routine. The second value 
specifies the number of the bit to which you are assigning the AST 
routine (0 is t11e lowest bit, 15 is the highest bit). 

For the IDV11-A, two longword integer values. The first value specifies 
the address of the user-supplied AST routine. The second value 
specifies a 16-bit parameter to be passed to the AST routine. 

For the IEQ11, the IEZ11, the KWV11-C, and the Simpact RTC01, a 
longword integer value specifying the address of the user-supplied AST 
routine . 

Description 
For the DRV11-J, an event is a transition on one of the bits of port A. 
Whether an event is a positive-going transition or a negative-going 
transition is determined by the value of the LIO$K_POLARITY 
parameter. 

For the IDV11-A, an event is a transition on channel 15 of the device. 
Whether an event is a positive-going transition or a negative-going 
transition is determined by the value of the LIO$K_POLARITY 
parameter. 

For the IEQ11 and the IEZ11, an event is an IEEE-488 bus event enabled 
by the LIO$K_EVENT_ENA parameter. 

For t11e KWV11-C and the Simpact RTC01, an event is either a clock 
overflow or a pulse on Schmitt trigger 2, depending on the value of the 
LIO$K_FUNCTION parameter. 

4-122 LIO$SET and LIO$SHOW Parameter Reference Descriptions 

`.) 



LIO$K_EVENT_AST 

Restrictions 
The following restrictions apply to the DRV11-J: 

• The DRV11-J must be attached through the LIO$ATTACH routine 
with LIO$K_QIO as the value of the io_type argument. 

• The AST routine is called when the specified bit is cleared or set, 
depending on the value of t11e LIO$K_POLARITY parameter. 

• The AST routine must have one parameter which is the device ID of 
the DRV11-J that interrupted. 

• Bits 12 through 15 are not available if the device is jumpered for 
handshaking. 

The following restriction applies to the IDV11-A: 

• You must set up the IDV11-A using the LIO$K_POLARITY 
parameter before you supply an event AST routine using the 
LIO$K_EVENT_AST parameter. 

The following restriction applies to the IEQ11 and the IEZ11: 

• If you declare an event AST using t11is parameter, you cannot use 
the LIO$K_EVENT_WAIT parameter. 

The following restriction applies to the KWV11-C and the Siinpact 
RTC01: 

• The KWV11-C and the Simpact RTC01 must be attached through 
the LIO$ATTACH routine with LIO$K_QIO as the value of the 
io_type argument. 

LIO$SET and LIO$SHQW Parameter Reference Descriptions 4-123 



LIO$K EVENT AST 

Examples 
An AST routine is a normal user-written subroutine that can require 
one or more arguments, depending on the LIO device with which 
it is used. The first argument of every AST routine specifies the 
device ID of the device that detects the event. 

1. EXTERNAL drv_ast(drj_id) 

This line associates an AST routine, drv_ast, with the DRV11-J 
device referred to by the drj_id argument. When used with the 
DRV11-J devices, you must also specify drj_id. 

2, status = LIO$SET_I (drj_id, LIO$K_EVENT_AST, 2, drv_ast, 0) 

T11is routine sets up the DRV11-J device to call the AST routine, 
drv_ast, on an event when bit 0 is either set or cleared. 

3, EXTERNAL ieee_ast(event_code, event specific, unit, controller) 

This line associates an AST routine, ieee_ast, with t11e IEQ11 or t11e 
IEZ11 device referred to by the ieee_id argument. You also need to 
include the event_code and event_specific arguments to return the 
event that occurred, and event-specific information associated wit11 
the event, if any. (For the IEZ11, the event-specific information is 
always 0 . ) 

4 status = LIO$SET_I (ieee_id, LIO$K_EVEI~~T_AST, 1, ieee_ast) 

This routine sets up the IEEE-488 device to call the AST routine, 
ieee_ast, when an event (enabled by LIO$K_EVENT_ENA) occurs. 

5, EXTERNAL clock_ast(clock_id) 

T11is line associates an AST routine, clock_ast, with the KWV11-C 
or the Simpact RTC01 device referred to by the clock_id argument. 
W11en used with the KWV11-C and the Simpact RTC01 devices, you 
only need to specify clock_id. 

(j status = LIO$SET_I (clock_id, LIO$K_EVEPIT_AST, 1, clock_ast) 

This routine sets up the KVW11-C or the Simpact RTC01 device to 
call the AST routine, clock_ast, on an event. 

4-124 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_EVENT_EF 

L10$K_EVENT_EF 

This parameter specifies an event flag to be set on an external event or 
clock overflow. 

Supported Devices 
DRV11-J 
KWV11-C 
Simpact RTC01 

Parameter Values 
For the DRV11-J, two longword integer values specifying the event flag 
number and the number of the port A bit to which you are assigning the 
event flag (0 is the lowest bit, 15 is the highest bit). 

For the KWV11-C and the Simpact RTCO1, a longword integer 
specifying the event flag number. 

For all three devices, the event flag number can be any legal event 
flag-1 through 23, or 32 through 127—that is unique to the process. 
Event flags 24 through 31 are reserved for use by DIGITAL. 

Event flags 1 through 23 and 32 through 63 are local to the process. 
Event flags 64 through 127 are in global event flag clusters that may or 
may not currently be associated with the process. 

You can also use the VMS Run-Time Library routine, LIB$GET_EF, to 
get a free VMS event flag to use as the value of this parameter. See the 
Example . 

Description 
See the Parameter Values. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-125 



LIO$K_EVENT_EF 

Restrictions 
The following restrictions apply to the DRV11-J: 

• The DRV11-J must be attached through the LIO$ATTACH routine 
wit11 the LIO$K_QIO parameter. 

• The event flag is set when the specified bit is cleared or set, 
depending on the value of the LIO$K_POLARITY parameter. 

• Bits 12 through 15 are not available if the device is jumpered for 
handshaking. 

• The bit interrupt capability in the DRV11-J works only on port A. 

The following restrictions apply to the KWV11-C and the Simpact 
RTC01: 

• The KWV11-C and the Simpact RTC01 must be attached through 
the LIO$ATTACH routine with LIO$K_QIO as the value of the 
io_type argument. 

• The clock rate must be slow enough to allow the event flag to be set 
between clock overflows. 

Examples 

1. status = LIB$GET_EF (event_f lag) 

This routine gets a free VMS event flag number. 

2, status = LIO$SET_I (device_id , LIO$K_EVENT_EF , 1, event_f lag) 

This routine sets up the device with the VMS event flag number 
obtained through the LIB$GET_EF routine. 

4-126 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K EVENT_ENA 

LIO$K_EVENT_ENA 

This parameter enables recognition of specified IEEE-488 bus events. 
When the specified event occurs, the device (the IEQ11, IEZ11, ot- 
IOtech Micro488A) can then recognize the event and respond if 
appropriate. 

Supported Devices 
IEQ11 
IEZ11 
IOtech Micro488A 

Parameter Values 
One or more longword integer constants specifying the bus events for 
the IEEE-488 bus to recognize. 

The values can be any of the following: 

Constant Value Event Meaning 

LIO$K_DEADDR_EVT The device has been deaddressed. 

This event is detectable only when the device is not the 
controller-in-charge. 

LIO$K_DEV_CLR_EVT The controller-in-charge has sent the "device clear" 
command. The instrument should reset itself to its 
power-up state. Remember that user-written application 
programs are responsible for all instrument functions. 
The instrument should. return to its initial state. 

This event is detectable only when the device is not the 
con troller-in-charge. 

LIO$K_DEV_TRIG_EVT The controller-in-charge has sent the "devise trigger" 
command. The instrument should trigger as specified in 
the user-written application program. 

This event is detectable only when the device is not the 
controller-in-charge. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-127 



LIO$K_EVENT_ENA 

Constant Value Event Meaning 

Ll0$K_EXT_LNR_EVT The controller-in-charge is addressing the device as an 
extended (secondary) listener. 

This event is detectable only when the device is not the 
con troller-in-charge . 

(LIO$K_EXT_LNR_EVT is not supported for t11e IEZ11 or 
the IOtech Micro488A.) 

LIO$K_EXT_TKR_EVT The controller-in-charge is addressing the device as an 
extended (secondary) talker. 

This event is detectable only when the device is not the 
controller-in-charge. 

(LIO$K_EXT_TKR_EVT is not supported for the IEZ11 or 
the IOtech Micro488A.) 

LIO$K_IFC_EVT The system controller is signalling the device to clear• its 
bus interface. This does not generally affect the internal 
state of the instrument. 

(LIO$K_IFC_EVT is not supported for the IEZ11 or the 
IOtech Micro488A. ) 

LIO$K_LNR_ADDR_EVT The controller-in-charge is addressing the device as a 
listener. 

This event is detectable only when the device is not the 
controller-in-charge. 

LIO$K_PAR_POLL_CONFIG_EVT T11e controller-in-charge is signalling the device to 
configure itself for parallel polling. 

This event is detectable only when the device is not the 
con troller-in-charge . 

(LIO$K_PAR_POLL_CONFIG_EVT is not supported for the 
IOtech Micro488A.) 

L10$K_PAR_POLL_UNCONFIG_EVT The controller-in-charge is signalling the device to 
unconfigure itself for parallel polling. 

This event is detectable only when the device is not the 
controller-in-charge. 

(LIO$K_PAR_POLL_UNCONFIG_EVT is not supported for 
the IOtech Micro488A. ) 

4-128 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



L10$K_EVENT ENA 

Constant Value Event Meaning 

L10$K_REC_CTRL EVT 

LIO$K_REM_LOCAL_EVT 

LIO$K_SRQ_EVT 

LIO$K_TKR_ADDR_EVT 

The device has received control from the current 
controller-in-charge. 

This event is detectable only when the device is not the 
controller-in-charge, and it is attached as controller or 
system controller. 

The device state has changed from remote to local, or 
from local to remote. The current state of the device 
is returned by the LIO$K_EVENT_WAIT parameter, or 
by the AST routine set up by the LIO$K_EVENT_AST 
parameter. 

This event is detectable only when the device is not the 
controller-in-charge . 

(LIO$K_REM_LOCAL_EVT is not supported for the IEZ11 
or the IOtech Micro488A.) 

A device is requesting service. 

This event is detectable only when the device is the 
con troller•-in-charge . 

The controller-in-charge is addressing the device as a 
talker. 

FoY• this event to be detectable, the device must be the 
controller-in=charge. 

Description 
The parameter enables the detection of the events listed in the 
Parameter Values. All events must be enabled using this parameter 
before they can be detected with either the LIO$K_EVENT_WAIT or the 
LIO$K_EVENT_AST parameters. 

LIQ$SET and LIO$SHOW Parameter Reference Descriptions 4-129 



LIO$K EVENT ENA 

Restrictions 
• Some events are only detectable when the device is in a specific 

state, such as controller-in-charge; however, they can be selected in 
any state . 

• If either the LIO$K_DEV_CLEAR_EVT or LIO$K_DEV_TRIG_EVT 
events are enabled in conjunction with either the 
LIO$K_LNR_ADDR_EVT or the LIO$K_TKR_ADDR_EVT events, 
then a false listener or a false talker AST is delivered before the 
"device clear" or the "device trigger" AST. 

Example 

statue = LIOSSET_I (ieee_id, LIO$K_EVENT_ENA, 1, LIO$K_TKR_ADDR_EVT) 

This routine enables an IEEE-488 device to recognize and respond when 
the controller-in-charge addresses the device as a talker. 

4-130 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K EVENT WAIT 

LIO$K_EVENT_WAIT 

This parameter waits for any enabled IEEE-488 bus event to occur, and 
then returns it. 

Supported Devices 
IEQ11 
IEZl l 
IOtech Micro488A 

Parameter Values 
A longword integer array of length hvo. 

The first value returns the event that has occurred. (See the reference 
description of the LIO$K_EVENT_ENA parameter for information about 
the event values returned.) 

The second value returns event-specific information associated with the 
event, if any. 

The following list describes which events return event-specific 
information, and what the information means. 

• The events LIO$K_LNR_ADDR EVT and LIO$K_TKR_ADDR_EVT 
return the secondary address, if secondary addressing is enabled by 
the LIO$K_IEEE_ADDR parameter. 

• The event LIO$K_REM_LOCAL_EVT returns the current state of the 
device: zero for local, one for remote. 

• The LIO$K_PAR_POLL_CONFIG_EVT event returns either parallel 
poll disable byte or parallel poll enable byte: zero for disabled, one 
for enabled. 

• All other events return a zero. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-131 



LIO$K_EVENT WAIT 

Description 
This parameter waits for an enabled event to occur, and their returns 
the event and any event-specific information associated wit11 it. 

Restrictions 
• This is an LIO$SHOW parameter only. 

• You must first enable the recognition of one or more events using 
the LIO$K_EVENT_ENA parameter. 

• You cannot use this parameter if an event AST is declared by the 
LIO$K_EVENT_AST parameter. 

Examples 

1. INTEGER*4 event (2) 

This line declares the variable event to be an integer array of length 
two. The event and any event-specific information are returned in 
event(1) and event(2), respectively. 

2, INTEGER*4 length 

This line declares the variable length to be an integer. The length 
argument returns the number of bytes in the event argument. 

3, status = LIO~SHOY (ieee_id, LIO$K_EVENT_YAIT, event, length) 

This routine waits for an IEEE-488 bus event to occur and then 
returns the event and event-specific information in event. The 
length argument returns the number of bytes in the event argument. 

L~, IF (event(1) .EQ. LIO$K_SQR_EVT) 

This line checks for a service request and then process flow 
continues. 

4-132 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K FILE_EXTENT 

LIO$K_FILE_EXTENT 

This parameter enables the extension of the output file beyond the size 
(in blocks) set through the LIO$K_FILE_SIZE parameter. 

Supported Devices 
Disk file 

Parameter Values 
A longword integer specifying the number of blocks Uy which to extend 
the file. 

Description 
Normally, outputting a buffer to a file too small to contain the buffer 
generates an error. Through this parameter, you can specify a file 
extension size. If you output a buffer to a file that has too few remaining 
blocks to contain the buffer, the software extends the file by the number 
of blocks you specified through LIO$K_FILE_EXTENT, and continues 
writing the buffer. LIO extends the output file only once per write 
operation. However, if successive writes overrun the extent area, the 
file is extended again. 

Extents are allocated with best try at contiguous disk space. 

Allocating a file extension takes time. When using time-critical 
applications, try to allocate enough file space tllrougll the 
LIO$K_FILE_SIZE parameter. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-133 



LIO$K FILE EXTENT 

Restrictions 
• This parameter is valid only for output files. 

• You must use this parameter in your program before you open the 
output file. 

• The file extension fails if the size of the buffer being written to the 
file overruns the file after it has been extended. The file can be 
extended only once for each buffer or write operation. 

Example 

status = LIO$SET_I (device_id, LIO$K_FILE_EXTENT, 1, 1) 

This routine specifies the file extension size as one VMS block. 

4-134 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K FILE POS 

LIO$K_FILE_POS 

This parameter repositions the current block pointer in a file. 

Supported Devices 
Disk file 

Parameter Values 
A longword integer specifying the block number where the pointer 
should be positioned. 

Description 
You can use this parameter to move to a different part of a disk file. 
The pointer moves to the beginning of the block you specify. 

Restrictions 
None. 

Example 
status = LIOSSET_I (device_id, LIO~K_FILE_POS, 1, 20) 

This routine sends the file pointer to the beginning of block 20 of the 
file. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-135 



LIO$K FILE REMAIN 

LIO$K_FILE_REMAIN 

This parameter returns the number of remaining blocks available in an 
output file. 

Supported Devices 
Disk file 

Parameter Values 
A longword integer returning the number of remaining blocks available 
in the output file. 

Description 
You can use this parameter with disk files to determine the number of 
blocks remaining in an output file. 

Restrictions 
• You must open the file using the LIO$K_OPEN_FILE parameter 

before you can determine the number of remaining blocks. 
• This is an LIO$SHOW parameter only. 

4-136 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K FILE REMAIN 

Examples 

1. INTEGER*4 number 

This line declares the variable number to be an integer. The number 
of blocks remaining in an output file is returned in this variable. 

Z INTEGER*4 length 

This line declares the variable length to be an integer. The length 
argument returns the number of bytes in t11e number argument. 

3 status = LIO~SHOY (device_id, LIO$K_FILE_REMAIN, number, length) 

This routine returns the number of blocks remaining to be written 
in an output file. The number argument returns the number of 
remaining blocks. The length argument returns the number of bytes 
in the number argument. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-137 



LIO$K_FILE_SIZE 

LIO$K_FILE_SIZE 

This parameter specifies the size of an output file in blocks. 

Supported Devices 
Disk file 

Parameter Values 
A longword integer specifying the file size in number of blocks. A VMS 
block is 512 Uytes or 256 words (INTEGER*2) in size. 

Description 
Use this parameter to specify the size of an output file in blocks. 

This parameter allocates the file as a single, logically contiguous piece 
of disk space. If sufficient logically contiguous disk space is not 
available, the file creation will fail. To correct this p1•oblein, allocate 
a small file and then extend it, or backup and restore your disk to 
reduce fragmentation. Subsequent extents are allocated wit11 best try at 
contiguous disk space. 

Restrictions 
• This parameter is valid only for output files. 

• You must specify the output file size before opening the file using 
the LIO$K_OPEN_FILE parameter. 

Example 
status = LIO$SET_I (device_id, LIO=K_FILE_SIZE, 1, 10) 

This routine allocates an output file 10 blocks in size. 

4-138 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_FLOW_CONTROL 

LIO$K_FLOW_CONTROL 

This parameter establishes the method of flow control for serial line 
devices. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer constant that establishes the flow control. 

The value can be one of the following: 

Constant Value Flow Control 

LIO$K_XOFF_XONI XOFF/XON 
LIO$K_DSR_DTR~ DSRI DTR 
LIO$K_NO_FLOW No flow control 
LIO$K_RTS_CTS~ RTSICTS 

~ The default value. 

Supported on DECserver 200-based lines only. 

Description 
Flow control is a method of temporarily suspending the data flow to or 
from a device when there are not enough buffers available to meet the 
demands of the device. 

Restrictions 
None. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-139 



LIO$K FLOW CONTROL 

Example 
status = LIO~SET_I (serial_id, LIOsK_FLOY_CONTBOL, 1, LIO$K_XOFF_XON) 

This routine establishes XOFFIXON flow control for a serial line device. 

4-140 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_FLOW_MASTER 

LIO$K_FLOW_MASTER 

This parameter specifies how XOFFlXON flow control is used for serial 
line devices. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer constant. 

The value can be one of the following: 

Constant Value Function 

LIO$K_DEVICE 

LIO$K_HOST1

LIO$K_BOTH 

LIO$K_READ 

The device sends XOFFIXON to the host to signal 
when to start or stop a data transfer. 

The hosts sends XOFFIXON to the device to signal 
when to start or stop a data transfer. 

Enables both LIO$K_DEVICE and LIO$K_HOST. 

The host explicitly solicits all read. operations with 
XON and terminates each operation with XOFF. 

iThe default value. 

Description 
See the Parameter Values. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-141 



LIO$K_FLOW_MASTER 

Restrictions 
You must use the LIO$K_FLOW_CONTROL parameter to enable the 
flow control type as LIO$K_XOFF_XON before you use this parameter 
to specify how the flow control is used. 

Example 
status = LIO$SET_I (serial_id~ LIO~K_FLOY_MASTEA~ 1. LIO~K_DEVICE) 

This routine sets up the serial device to send XOFF/XON to the host to 
signal when to start or stop a data transfer. 

4-142 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_FORWARD 

LIO$K_FORWARD 

This parameter specifies the device to forward buffers to when t11is 
device completes a buffer. 

Supported Devices 
AAV11-D 
ADQ32 
ADVll-D 
AXVll-C AID 
DRB32 
DRB32W 
DRQ3B 
DRV11-j 
DRV11-WA 
IAVlll devices 
IDVll-A1 devices 
IEQ11 
IEZ11 
KWV11-C 
Preston 
Simpact RTCOl 
Disk file 
Memory queue 
Serial line 

Parameter Values 
A longword integer specifying the device ID of the device to which you 
want the current device to forward buffers. 

1 These devices are available only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-143 



LIO$K FORWARD 

Description 
Use this parameter to designate another device to receive buffers from 
the current device when the buffers are complete. The buffers are 
automatically enqueued to the specified receiving device instead of 
being placed on the user queue of the current device. 

Restrictions 
• Both the forwarding and receiving devices must be set to use the 

asynchronous I/O interface. 

• The forwarding device must be set up with a device event flag 
(LIO$K_DEVICE_EF). 

Example 
status = LIOSSET_I (f~rd_device_id, LIO$K_FORI/ARD, i, rec_device_id) 

This routine sets up the device referred to in this example as 
fwd device id to forward buffers to the device referred to in this 
example as rec_device_id. 

4-144 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_FUNCTION 

LIO$K_FUNCTION 

This parameter sets up the function the clock is to perform. 

Supported Devices 
KVW11-C 
Simpact RTC01 

Parameter Values 
A longword integer constant specifying the function the clock is to 
perform. The function can be one of the following: 

Constant Value Clock Function 

LIO$K_SGL_COUNT Single count. 

The clock counts one clock tick (clock source r. ate 
divided by the divider), then produces a pulse and 
stops. 

The rate of the clock can be specified using 
LIO$K_CLK_SRC or LIO$K_CLK_RATE. 

If the device is set for QIO and you specified 
an AST routine through the LIO$K_EVENT_AST 
parameter, then the AST routine is called. If the 
LIO$K_EVENT_EF parameter was also used to set up 
the device, then the event flag is set . 

Using the Schmitt trigger 1 (ST1) as the clock 
source provides a way to produce a pulse after a 
fixed number of external events (pulses on the ST1 
input). 

LIO$K_REP_COUNT Repeat count. 

The clock runs continuously, producing pulses at the 
base rate divided by the divider. 

The rate of the clock can be specified using 
LIO$K_CLK_SRC or LIO$K_CLK_RATE. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-145 



LIO$K FUNCTION 

Constant Value Clock Function 

LI O $K_EVENT_AB S 

If the clock output of the KWV11-C or the Simpact 
RTC01 is wired to another device, such as the 
AAV11-D, ADVll-D, or AXV11-C, it can then serve 
as the clock source for that device. 

If the clock is set for QIO and an AST routine 
is specified through the LIO$K_EVENT_AST 
parameter, then the AST routine is called every 
time the clock ticks. 

If Schmitt trigger 1 is specified as the source, the 
divider represents the number of ST1 pulses that 
must occur before the KWV11-C or the Simpact 
RTC01 produces a clock tick. 

Event timer. 

In this mode, the clock begins counting 
either immediately (when the LIO$READ or 
LIO$ENQUEUE statement executes) or at the 
first ST1 trigger. (See LIO$K_TRIG for more 
information . ) 

On each ST1 trigger (including the first if 
LIO$K_TRIG selects ST1 start), the current value 
of the clock's counter is written to the buffer. The 
value is in ticks of the clock source specified in the 
LIO$K_CLK_SRC parameter. Time is determined by 
multiplying the number of ticks by the frequency of 
the clock source. The clock continues to increment 
after each ST2 event. 

If the clock is set for QIO and an AST routine 
is specified through the LIO$K_EVENT_AST 
parameter, then the AST routine is called when 
each Schmitt trigger 2 pulse is received. 

For the KWV11-C, the time is 16 bits wide. When 
it reaches 65,535 (216 —1) and increments, it wraps 
to zero. For the Simpact RTCOl, the time is 32 bits 
wide. When it reaches 232 —1 and increments, it 
wraps to zero. if the counter overflows between 
ST2 pulses, the input buffer is terminated. 

4-146 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K FUNCTION 

Constant Value Clock Function 

LIO$K_EVENT_REL 

If the clock source (set by LIO$K_CLK_SRC) is the 
internal crystal frequency or the line frequency, 
then -the time interval can be calculated from the 
base rate. This is useful for timing Schmitt trigger 2 
pulses. 

If the clock source is the Schmitt trigger 1, then the 
interval is in ticks of the external source. You can 
use this to count the number of ST1 pulses that 
occur in a known interval (when Schmitt trigger 2 
is connected to a known frequency source). 

Event timer, relative time. 

This parameter value operates exactly the same way 
as the event timer with absolute time, except the 
counter is reset to zero on each Schmitt trigger 2 
pulse. 

Description 
See the Parameter Values. 

Restrictions 
• For the LIO$K_EVENT_ABS and LIO$K_EVENT_REL functions, if 

the counter overflows twice between ST2 pulses, the input buffer is 
terminated. 

• Timeout values only apply to the LIO$K_EVENT_AB S and 
LIO$K_EVENT_REL functions. 

Example 
status = LIO$SET_I (clock_id, LIO$K_FUNCTION, 1, LIO$K_R.EP_COUNT) 

This routine specifies the repeat count function. The clock 
runs continuously, producing pulses ~at the rate specified by the 
LIO$K_CLK_RATE parameter. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-147 



LIO$K_FUNCTION BITS 

LIO$K_FUNCTION_BITS 

This parameter sets the function bits associated with the device. 

Supported Devices 
AAF011
ADF011
DRB32 
DRQ11-Cl
DRQ3B 

Parameter Values 
For the AAFO1, ADFO1, and DRQ11-C, a word integer value specifying 
the function bits to be placed in the SCR register. 

The following table lists the valid parameter values and the effect each 
value has on the state of the function bits. 

Value 
Function Bits 
4 3 2 1 

0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 7 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 

10 1 0 1 0 
11 1 1 0 0 
12 1 1 0 1 
13 1 7. 1 1 

l This device is available only in Europe. 

4-148 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K FUNCTION BITS 

For the DRB32, a longword integer value whose least significant byte 
contains a value to write to the output control port. When used with 
the LIO$SHOW routine, this parameter returns a value whose least 
significant byte contains the value of the input status port. 

For the DRQ3B, a longword integer value that sets the state of the 3 
function bits on either the input port or the . output port, depending on 
whether you attach the device as HXAO (input port) or HXA1 (output 
port). 

The following table lists the valid parameter values and the effect each 
value has on the state of the function bits . 

Value 
Function Bits 

3 2 1 

0 0 0 0 
1 0 0 1 
2 0 1 0 
3 0 1 1 
4 1 0 0 
5 1 0 1 
6 1 1 0 
7 1 1 1 

You do not specify a parameter value when you use this parameter with 
the LIO$SHOW routine. 

Description 
The DRQ3B has six input and six output general purpose bits. Three 
input pins and three output pins are located on each port's connector. 
The number of each pin corresponds to the bit in the function registers. 

These pins are completely independent of the operation of the port, 
and are available for customized use. 

Examples of such use might be remote power-on of external devices, 
or additional information transfer, such as monitoring the status of an 
external device. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-149 



LIO$K FUNCTION BITS 

The types of uses possible with the output function bits depend on 
the signals present on the external device. Data written to an output 
function register is latched into the output function bits, that is, the 
output function bits continually assert the signals written to the output 
function register until new data is written to the register. 

An input function register allows your program to read data present 
on the input function bits. This register is not latched and continually 
reflects the signals present on the input functions bits. 

When used with the LIO$SET_I routine, this parameter sets function 
bits 1-3 on the input or output port, depending on which port you attach 
using the LIO$ATTACH routine. 

When used with the LIO$SHOW routine, the high word of the longword 
is unused. The low word contains the state of all the function bits on 
the DRQ3B (both input and output ports). 

Figure 4-1 shows how to read what is returned by the LIO$SHOW 
routine. 

Figure 4-1: State of the Function Bits on the DRQ3B 

1 15 14 ~ 13 12 11 ! 10 U9 OS 07 06 ~ 05 04 03 ' 02 01 00 I 

~ J

Unit 0 Read 
Unit 1 Read 
Unused 
Unit 0 Write 
Unit 1 Write 
Unused 

MR-1430-GE 

4-150 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K FUNCTION_BITS 

Table 4-9 shows the correspondence between this word and t11e actual 
pins on the DRQ3B connectors. 

Table 4-9: Pin Numbers on the DRQ3B 

Unit 
Blt 
Number Function Bit Pin Number 

Unit 0 Read 00 FUNCT IN 0 
01 FUNCT IN 1 
02 FUNCT IN 2 

Unit 1 Read 03 FUNCT IN 3 
04 FUNCT IN 4 
05 FUNCT IN 5 

Unused 06 

Unused 07 

Unit 0 Write 08 FUNCT OUT 0 
09 FUNCT OUT 1 
10 FUNCT OUT 2 

Unit 1 Write 11 FUNCT OUT 3 
12 FUNCT OUT 4 
13 FUNCT OUT 5 

Unused 14 

Unused 15 

The DRB32 has eight output function bits called the output control 
_port, and eight input function bits called the input status port. The 
LIO$SET_I routine passes a parameter whose least significant byte 
contains the value to write to the output control port. The LIO$SHOW 
routine returns a longword value whose least significant byte contains 
the value read from the input status port. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-151 



LIO$K FUNCTION_BITS 

Restrictions 
None. 

Example 

status = LIO$SET_I (drq_id, LIO$K_FUNCTION_BITS, 1, 7) 

This routine sets the three DRQ3B function bits on the input port or the 
output port, depending on which port you attached. 

4-152 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_GATE 

~ LIO$K_GATE 

This parameter sets up the external gating used with the ADQ32 device. 

Supported Devices 
ADQ32 

Parameter Values 
A longword integer constant specifying how external gating is used with 
the ADQ32 device. 

The value can be one of the following: 

Constant Value Meaning 

LIO$K_EDGE The AID converter begins taking data when the 
external gate input goes low, and stops taking data 
when the external gate input goes low again. 

LIO~K_EDGE_DELAY T.he same as LIO$K_EDGE except that the gate is 
delayed one tick of the sweep clock before it takes 
effect . The delay time is 1l (sweep rate), where the 
sweep rate is set using the LIO$K_SWEEP_RATE 
parameter. 

LIO$K_LEVEL The AlD converter begins taking data when the 
external gate input is high, and stops taking data 
when the external gate goes low. 

LIO$K_OFF1 No gating. 

i The default value. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-153 



LIO$K GATE 

Description 
Use the LIO$K_GATE parameter to control when the AID takes data. 
When the external gate opens, the AID takes data until the external gate 
closes. Starting and stopping the data acquisition continues as long as 
there are buffers to fill. 

When level gating or edge gating the ADQ32 with the sweep trigger 
source different from the point trigger source, the gate controls t11e 
sweep trigger source, but not the point trigger source. For example, 
when using level gating, the gate may go low after the sweep starts but 
before the sweep completes. The current sweep still completes, but no 
further sweeps can start until the gate goes high again. 

See Appendix A for more information. 

Restrictions 
• Gating is not possible when the external gate/trigger input is used to 

trigger sweeps or to trigger the buffer. 

• Level gating is not available in burst point mode (LIO$K_TRIG 
values LIO$K_BURST, LIO$K_SAME, LIO$K_SAME), or 
external trigger mode (LIO$K_TRIG values LIO$K_EXTERNAL, 
LIO$K_SAME, LIO$K_SAME). 

• Delayed gating is not available in sweep modes. 

4-154 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_GATE 

Examples 
This example shows how to set up the ADQ32 trigger mode, the 
primary clock rate, the sweep clock rate, and external gating with a 
delay. 

1. status = LIO$SET_I (device_id, LIO$K_TRIG, 3, LIO~K_AD_CLOCK, 
1 LIOsK_SAME, LIO$K_SAME) 

This routine specifies the primary clock of the ADQ32 as the trigger 
source for the device, and defaults the sweep trigger and the buffer 
trigger values. 

2, status = LIO$SET_R (device_id, LIOSK_CLK_RATE, 1, 1000.0) 

This routine specifies the rate for the primary clock as 1 kHz. 

3 status = LIO$SET_R (device_id, LIO$K_S1/EEP_RATE, 1, 10.0) 

This routine specifies the rate for the sweep clock as 10 Hz. This 
sets a delay time of 1/10 of a second. 

4 status = LIO$SET_I (device_id, LIOSK_GATE, 1, LIO$K_EDGE_DELAY) 

This routine specifies external gating on an edge with a delay. The 
length of the delay (1/10 of a second) is specified by the value of 
the LIO$K_SWEEP_RATE parameter. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-155 



LIO$K HANDSHAKE 

LIO$K_HANDSHAKE 

This parameter specifies whether or not the DRV11-J is jumpered to use 
a two-wire handshake for each port. This affects all four ports. 

Supported Devices 
DRV11-J 

Parameter Values 
A longword integer constant specifying whether or not the DRV11-J is 
jumpered to use atwo-wire handshake. 

The value can be one of the following: 

Constant Value Function 

LIO$K_OFF1
LIO$K_ON 

Disables handshake 
Enables handshake 

1 The default value. 

Description 
If the DRV11-J is used to transfer data to or from an external device, 
using atwo-wire handshake controls the flow and prevents data from 
being lost. If the DRV11-J is used to sense or set individual control 
lines, you should not use handshaking. 

The DRV11-J hardware must be physically jumpered to 
perform two-wire handshaking by inserting jumper W11. T11e 
LIO$K_HANDSHAKE parameter is used to enable oi• disable 
handshaking in the software context. If jumper W11 is inserted 
to enable the hardware for two-wire handshaking, but the value of 
LIO$K_HANDSHAKE is set to LIO$K_OFF, then handshaking is not 
used. 

4-156 LIO$SET and LIO$SHQW Parameter Reference Descriptions 



LIO$K HANDSHAKE 

Restrictions 
• The DRV11-J must be jumpered for atwo-wire handshake to transfer 

more than one data point for eac11 buffer. 
• If handshaking is enabled, only the low 12 bits of port A can be set 

to call AST routines . 

• The value of the LIO$K_POLARITY parameter also affects the 
polarity of the handshake. 

Example 

statue = LIOsSET_I (device_id, LIO$K_HANDSHAKE, 1, LIOZK_ON) 

This routine enables the two-wire handshaking feature of the DRV11-J 
when jumper W11 is inserted. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-157 



LIO$K HANGUP 

LIO$K_HANGUP 

This parameter disconnects or "hangs up" a modem line. 

Supported Devices 
Serial line 

Parameter Values 
None. 

Description 
Use this parameter to disconnect a serial line device connected as a 
modem. 

Restrictions 
None. 

Example 
status = LIO$SET_I (device_id, LIO$K_HANGUP, 0) 

This routine disconnects a serial line device connected as a modem. 

4-158 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_IEEE_ADDR 

LIO$K_IEEE_ADDR 

This parameter sets up the IEEE-488 bus address of the device. 

Supported Devices 
IEQ11 
IEZ11 
IOtech Micro488A 

Parameter Values 
Two longword values. 

The first value specifies the primary address of the device on the 
IEEE-488 bus. This value can be between 0 and 30, inclusive. 

The second value, which is optional, enables or disables the recognition 
of the secondary addressing. 

This value can be one of the following: 

Constant Value Function 

Ll0$K_OFF' 
LIO$K_ON 

Disables secondary addressing 
Enables secondary addressing 

1The default value. 

Description 
This parameter must be set immediately after the device is attached 
using the LIO$ATTACH routine. Until a primary bus address is 
assigned to the device, it does not exist on the IEEE-488 bus. No 
further LIO routine or LIO$SET calls can be made to the device until it 
exists on the IEEE-488 bus. 

An IEEE extended address is a primary address followed by a secondary 
address. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-159 



LIO$K IEEE ADDR 

When extended addressing is enabled, the device can detect being 
addressed as a secondary listener or as a secondary talker. The 
LIO$K_EVENT_ENABLE set parameter enables detection of these 
events. 

The secondary address is passed as the event specific argument if an 
event AST is used. If the show parameter LIO$K_EVENT_WAIT is 
used, the secondary address is returned in the second element of the 
LIO$SHOW array. The action taken based on a secondary address 
depends on your application. 

NOTE 

In addition to using this parameter to set up the IEEE-bus 
address for the IOtech Micro488A, you must also set 
DIP switches on the device. See Section 2.5.2.1, IOtech 
Micro488A DIP Switch Settings, for more information. 

Restrictions 
• You must use this parameter to set the primary address of the 

device on the IEEE-488 bus before you set up any other device 
parameters . 

• An IEZ11 or an IOtech Micro488A device cannot be addressed as 
a secondary listener or a secondary talker. However, an IEZ11 
or a Micro488A can generate secondary addresses when it is 
controller-in-charge . 

Example 
statue = LIO~SET_I (ieee_id, LIO$K_IEEE_ADDR, 2, 3, LIO$K_ON) 

This routine sets the primary address of t11e device on the 
IEEE-488 bus and enables secondary addressing. Once the primary 
address is set, the device exists on the IEEE-488 bus and device setup 
can continue. 

4-160 LIQ$SET and Llo$SHQW Parameter Reference Descriptions 



LIO$K INIT_AD_CHAN 

LIO$K_INIT_AD_CHAN 

This parameter initializes a Preston A/D channel list and clears any 
existing channel list. 

Supported Devices 
Preston 

Parameter Values 
None. 

Description 
This parameter initializes the channel list for subsequent use with the 
LIO$K_ADD_AD_CHAN parameter. This parameter also clears any 
existing channels and sets the channel count to zero. 

Restrictions 
Any previously set channel list is lost. 

Example 
status = LIO$SET_I (device_id, LIO$K_INIT_AD_CHAN, 0) 

This routine initializes a Preston AID channel list. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-161 



LIO$K INPUT TERMINATOR 

LI O$K_I N PUTTER M I NATOR 

T11is parameter establishes a termination character on the input side of 
a serial line. 

Supported Devices 
Serial line 

Parameter Values 
A character string specifying the valid termination character. 

This value is passed by descriptor. 

To disable a previously set-up input termination character, specify 0. 

Description 
Data is input into a user buffer until the user-specified termination 
character is encountered in the input stream. When the termination 
character is encountered, the user buffer is completed. A termination 
character is always the last character in a buffer. 

Restrictions 
You can specify only one termination character for use at any given 
time. If you change the termination character, the new termination 
character supersedes any previously specified termination character. 

Example 

Status = LIOSSET_S (serial_id, LIOsK_INPUT_TERMIPiATOR, 'A') 

This routine specifies the letter A as the valid input buffer termination 
characters. Data is input into a buffer until an A is encountered. 

4-162 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_INTERRUPT_LEVEL 

~ LIO$K_INTERRUPT_LEVEL 

This parameter sets the level at which interrupts occur for the Simpact 
RTC01 clock device. 

Supported Devices 
Simpact RTCOl 

Parameter Values 
A longword integer constant specifying the interrupt level. 

The value can be 4, 5, 6, or 7. (These values are equivalent to the VAX 
interrupt priority levels 20, 21, 22, and 23.) 

The default value is 4. 

Description 
Use this parameter• to set the interrupt level for requesting interrupts to 
the host when internal or external events occur. 

Restrictions 
None. ~~

Example 
status = LIO=SET_I (device_id, LIO$K_INTERRUPT_LEVEL, i, 4) 

This routine sets the interrupt level to 4. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-163 



LIO$K_LEAVE IN STATE 

LI O$ K_LEAV E_I N_STAT E 

This parameter specifies whether oi• not to leave the IEEE-488 device in 
the controller-standby state after data I/O. 

Supported Devices 
IEQ11 

Parameter Values 
A longword integer constant specifying whether or not to leave 
the IEEE-488 device in the operating state required to process the 
subsequent IIO request. 

The value can be one of the following: 

Constant Value Function 

L~O$K_OFF1
LIO$K_ON 

Changes the operating state 
Leaves the device in the current operating state 

1 The default value. 

Description 
When the IEQ11 device is controller-in-charge, it automatically changes 
its operating state to process an I/O request. 

For increased efficiency, specify the parameter value as LIO$K_ON 
to prevent the device from automatically changing state. The device 
changes to the appropriate state to perform the next I10 request, and 
then remains in that state for all subsequent requests until the feature is 
disabled. 

When the I10 transfers complete, you disaUle this feature by setting this 
parameter specifying LIO$K_OFF. 

4-164 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_LEAVEIN STATE 

Restrictions 
• The IEEE-488 device must be the controller-in-charge. 
• This parameter is valid only for LIO$READ, LIO$WRITE, and 

LIO$ENQUEUE calls. 

Example 
statue = LIO~SET_I (ieee_id, LIO$K_LEAVE_IN_STATE, 1, LIO~K_ON) 

This routine causes the IEEE-488 device to remain in its current 
operating state during subsequent I/O transfers. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-165 



LIO$K_LOCK_BUFFER 

LIO$K_LOCK_BUFFER 

This parameter locks buffers before beginning DMA data transfers with 
the DRB32 device. 

Supported Devices 
DRB32 

Parameter Values 
Two longword integer values. 

The first value specifies the buffer size in bytes. 

The second value specifies the buffer to lock. 

Description 
This parameter signals the device driver that a buffer is locked and that 
paging it into memory is not necessary. Using LIO$K_LOCK_BUFFER 
saves the overhead of locking buffers while the I10 is in progress. 

Using this parameter with the LIO$SHOW routine returns the address 
and size of the buffer in bytes. 

You can unlock buffers using the LIO$K_UNLOCK_BUFFER parameter. 

Restrictions 
• You must lock buffers before performing DMA data transfers. 

• You can lock a maximum of 16 buffers, each with a maximum size 
of 960K bytes. 

4-166 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K LOCK_BUFFER 

Example 

status = LIO$SET_I (device_id, LIO$K_LOCK_BUFFER, 2, buffer_address, 4096) 

This routine locks one 4096-byte buffer at address buffer_address. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-167 



LIO$K_LOOP_BACK 

LIO$K_LOOP_BACK 

This parameter enables and disables the loopback mode of the DRB32. 

Supported Devices 
DRB32 

Parameter Values 
A longword integer enabling or disabling the loopback mode. 
Specifying a nonzero value enables loopback. Specifying zero disables 
loopback. 

Description 
This parameter places the DRB32 into internal loopback mode for 
testing. 

Restrictions 
The DRB32 device must be idle, that is, no data transfers in progress or 
pending when this parameter is set. 

Examples 

1. statue = LIO~SET_I (device_id, LIO$K_LOOP_BACK, 1, 1) 

This routine enables loopback mode. 

2, status = LIOSSET_I (device_id, LIO$K_LOOP_BACK, 1, 0) 

This routine disables loopback mode. 

4-168 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_MAX_CHANNELS 

LIO$K_MAX_CHANNELS 

This parameter specifies the maximum number of channels that can be 
plotted. 

Supported Devices 
Real-time plotting 

Parameter Values 
A longword integer specifying the maximum number of channels that 
can be plotted. The default value is 8. 

Description 
Use this parameter to specify the maximum number of channels to be 
plotted. 

Restrictions 
• The number of channels is limited by the amount of available 

memory and the size of the workstation screen. 

• The real-time plotting device is supported only on VAXstation-based 
VAXIab systems running VWS. 

Example 
status = LIO$SET_I (graphics_id, LIO~K_MAX_CHANNELS, 1, 6) 

This routine specifies that five channels can be plotted. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-169 



LIO$K_MODEM 

LIO$K_MODEM 

This parameter enables a serial line device as a modem. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer constant that enables or disables a serial line as a 
modem. 

The value can be one of the following: 

Constant Value Function 

LIO$K_OFF1
LIO$K_ON 

Disables a serial line as a modem 
Enables a serial line as a modem 

1 The default value. 

Description 
If a serial line device is not enabled as a modem (LIO$K_OFF), then 
a user program can manipulate the modem control signals. If a serial 
line device is enabled as a modem (LIO$K_ON), then VMS handles the 
modem control signals. 

Restrictions 
None. 

4-170 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K MODEM 

Example 

status = LIO$SET_I (serial_id, LIO$K_MODEM, 1, LIO$K_OFF) 

This routine sets up a serial line device so that a user program can 
manipulate the modem control signals. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-171 



LIO$K MODEM STATUS 

LIO$K_MODEM_STATUS 

This parameter sets and returns the status of a serial line device set up 
as a modem. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer constant setting or returning modem line status. 

The value can be one of the following: 

Constant Value Meaning 

LIO$M_DTR1
LIO$M_RTS 
LIO$M_CD~ 
L10$M_CTS~ 
LIO$M_DSR~ 
LIO$M_RI~ 

Data terminal ready 
Request to send 
Carrier detect 
Clear to send 
Data set ready 
Ring indicator 

~ The default value. 

2An LIO$SHOW parameter. value only. 

Description 
You can use this parameter to set up the data terminal ready (DTR) and 
request to send (RTS) signals. 

You can also use this parameter with the LIO$SHOW routine to display 
the status of all the signals listed in the table in the Parame#er Values. 

4-172 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_MODEM STATUS 

Calling LIO$SHOW with LIO$K_MODEM_STATUS returns an array 
of six values, shown in the table below. If t~.1e signal is detected, t11e 
symbolic value is returned in the corresponding position in the array. If 
the signal is not detected, a 0 is placed in the array. 

Array 
Position Signal Symbolic Value 

1 DTR LIO$1V1_DTR 
2 RTS LIO$M_RTS 
3 CARRIER LIO$M_CD 
4 DSR LIO$M_DSR 
5 RING LIO$M_RI 
6 CTS L10$M_CTS 

Restrictions 
• You must enable the serial line as a modem line (using the 

LIO$K_MODEM parameter) before you set up the 
LIO$K_MODEM_STATUS parameter. 

• Only the DTR and RTS signals can be set up by the user. 

Example 
status = LIO$SET_I (serial_id, LIO$K_MODEM_STATUS, 1, LIO$M_DTR) 

T11is routine sets the status of a serial modem to data terminal ready 
(DTR). 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-173 



LIO$K MULTIPLE X AXES 

LI O$K_M U LTI P~E_X_AXES 

This parameter specifies the x-axis format for the plotting window. 

Supported Devices 
Real-time plotting 

Parameter Values 
A longword integer constant. 

The value can be one of the following: 

Constant Value Meaning 

LIO$K_OFF 
LIO$K_ON1

Specifies a single x,y axis for the entire window 
Specifies an x,y axis for each channel 

1The default value. „.... 

Description 
Use this parameter to specify whether you want a single x-axis for a 
window or a separate x-axis for each channel. 

If you specify a single x-axis for the entire window (LIO$K_OFF), all 
channels are moved simultaneously and then updated one at a time. 

If you specify an x-axis for each channel (LIO$K_ON), one channel gets 
moved and updated, followed by the next channel, and so on. The 
x-axes are positioned one on top of the other. The y-axis is the same 
axis for each channel, but each channel has a separate y-axis plot line. 

4-174 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K MULTIPLE X AXES 

Restrictions 
The real-time plotting device is supported only on VAXstation-based 
VAXIab systems running VWS. 

Example 

statue = LIO~SET_I (graphics_id, LIO=K_MULTIPLE_X_AXES, 1, LIO~K_ON) 

This routine specifies that eac11 channel has a separate x,y axis. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-175 



LIO$K N AD CHAN 

LIO$K_N_AD_CHAN 

This parameter returns the number of AID channels currently in use. 

Supported Devices 
ADQ32 
ADVll-D 
AXV11-C AID 
IAV11-Al
IAVll-AAl 
IAV11-Cl 
IAV11-CAl 
Preston 

Parameter Values 
A longword integer array returning the number of AID channels the 
device is using for input. 

Description 
See the Parameter Values. 

Restrictions 
This is an LIO$SHOW parameter only. 

Example 
statue = LIO$SHO1/ (device_id, LIO$K_N_AD_CHAN, ad_array, length) 

This routine call returns the number of AID channels currently in use 
in the ad_array argument. The length argument returns the number of 
bytes in the ad_array argument. 

1 This device is available only in Europe. 

4-176 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K N_BUFFS 

LIO$K_N_BUFFS 

This parameter specifies either of the following: 

• Number of buffers to allocate for the memory queue device 
• Number of channels in the data buffer for the real-time plotting 

device 

Supported Devices 
Memory queue 
Real-time plotting 

:Parameter Values 
A longword integer specifying either the number of buffers to allocate 
for the memory queue device or the number of channels in the data 
buffer for the real-time plotting device. 

Description 
When you set up the memory device with the value of 
the LIO$K_BUFF_SOURCE parameter as LIO$K_ARRAY or 
LIO$K_VIRTUAL_MEM, you must also set up the device using the 
LIO$K_N_BUFFS parameter. The LIO facility does not supply a default 
value if you omit this parameter. 

If you set up the memory device with the value of the 
LIO$K_BUFF_SOURCE parameter as LIO$K_USER, then LIO ignores 
this parameter. 

With the real-time plotting device, use this parameter to specify the 
number of AID channels contained in each data buffer output to the 
real-time plotting device. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-177 



LIO$K_N BUFFS 

Restrictions 
• For the memory queue device, you must specify the number of 

buffers to be allocated before the memory allocation occurs through 
the LIO$K_BUFF_SOURCE parameter. 

• The real-time plotting device is supported only on VAXstation-based 
VAXIab systems running VWS. 

Examples 

1. status = LIO=SET_I (memory_id, LIO$K_N_BUFF, 1, 6) 

This routine specifies the allocation of five buffers for the memory 
queue device to use. 

2, status = LIO=SET_I (graphics_id, LIO~K_N_BUFF, 1, 2) 

This routine specifies that there is data from two AID channels in 
each buffer output to the real-time plotting device. 

4-178 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_N_DA CHAN 

LIO$K_N_DA CHAN 

This parameter returns the number of D/A channels in use. 

Supported Devices 
AAV11-D 
AXV11-C DIA 

Parameter Values 
A longword variable returning the number of DIA channels a device is 
currently using for output. 

Description 
See the Parameter Values. 

Restrictions 
This is an LIO$SHOW parameter only. 

Example 

status = LIOSSH011 (device_id, LIOsK_N_DA_CHAN, da_array, length) 

This routine returns the number of D/A channels currently in use in the 
da_array argument. The length argument returns the number of bytes in 
the da_array argument. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-179 



LIO$K_NAME 

LIO$K_NAME 

This parameter sets the name of a file or a global section. 

Supported Devices 
Disk file 
Memory queue 

Parameter Values 
A character string specifying a legal VMS file name or global section 
name, or a VMS logical name that translates to a legal VMS file name or 
global section name. 

This value is passed by descriptor. 

Description 
Use this parameter to specify input and output file names and global 
section names. 

W11en you set up disk file and memory queue devices, you must use 
the LIO$K_NAME parameter to supply a file name or global section 
name. The LIO facility does not supply a default name if you omit t11is 
parameter. 

Restrictions 
• For disk files, you must specify the file name before opening the 

file. The LIO facility does not supply a default file extension if you 
omit a file extension from the file name specification. 

• FoY• memory queue devices, if the global section already exists and if 
two memory queue devices are already mapped to it, then read-only 
access is available. 

4-180 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K NAME 

n 
Examples 

1. statue = LIO$SET_S (file_id~ LIOSK_NAME~ 'AD_FILE.DAT') 

This routine specifies a disk file name as AD_FILE.DAT. 

2, statue = LIO$SET_S (memory_id~ LIO$K_NAME~ 'XFER_DAT') 

This routine specifies a global section name as XFER_DAT. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-181 



LIO$K OPEN_FILE 

LIO$K_OPEN_FILE 

This parameter opens input and output files. 

Supported Devices 
Disk file 

Parameter Values 
None. 

Description 
File space is allocated with best try at contiguous disk space. 

Restrictions 
• For all disk files, you must specify the direction of the file (input or 

output) through the LIO$K_DIRECTION parameter before you open 
the file. 

• For all disk files, you must set the file name through the 
LIO$K_NAME parameter before you open the file. 

• For output files, you must set the size through the LIO$K_FILE_SIZE 
parameter before you open the file. 

Example 
status = LIOSSET_I (device_id, LIO~K_OPEN_FILE, 0) 

This routine opens a disk file device. 

4-182 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_OUTPUT PREFIX 

LIO$K_OUTPUT_PREFIX 

This parameter establishes a prefix character string on the output side 
of a serial line. 

Supported Devices 
Serial line 

Parameter Values 
A character string specifying the string to be sent out the serial line 
before the buffer is output. 

This value is passed by descriptor. 

To disable a previously set-up output prefix, specify 0. 

Description 
The output prefix string set up by this parameter is output on the serial 
line before each output buffer. 

Restrictions 
None. 

Examples 

1. status = LIO~SET_S (serial_id , LIO~K_OUTPUT_PREFIX , 'Transfer beginning' ) 

T11is routine specifies an output buffer prefix. This prefix signals the 
start of an output buffer transfer. 

2, status = LIOSSET_S (serial_id, LIO$K_OUTPUT_PREFIX, 0) 

This routine disables the output prefix. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-183 



LIO$K OUTPUT TERMINATOR 

LIO$K_OUTPUT_TERMINATOR 

This parameter establishes a suffix character string on the output side of 
a serial line. 

Supported Devices 
Serial line 

Parameter Values 
A character string specifying the string to be sent out the serial line after 
each buffer has been output. 

This value is passed by descriptor. 

To disable a previously set-up output suffix, specify 0. 

Description 
This string is appended to each output buffer. 

Restrictions 
None. 

Examples 

1. status = LIO$SET_S (serial_id , LIO$K_OUTPUT_TERMINATOR, 'Transfer ended' ) 

This routine sets up a serial line device to output the phrase 
"Transfer ended" after each buffer has been output. 

2, status = LIO$SET_S (serial_id, LIO~K_OUTPUT_TERMINATOR, 0) 

This routine disables the output suffix. 

4-184 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K PAGE ALIGN 

LIO$K_PAGE_ALIGN 

This parameter page-aligns the first buffer allocated from virtual 
memory. 

Supported Devices 
Memory queue 

Parameter Values 
None. 

Description 
Page-aligning the buffer ensures that the first buffer begins on a page 
boundary. The address is a multiple of 512 bytes. 

Restrictions 
• The memory queue device must be attached to manage memory 

local to a process. 

• You must set up the LIO$K_PAGE_ALIGN parameter before the 
memory allocation occurs. 

• The memory allocation must be from virtual memory. 

Example 
status = LIO~SET_I (memory_id, LIO$K_PAGE_ALIGt~1, 0) 

This routine page-aligns the buffers. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-185 



LIO$K_PAR_POLL 

LIO$K_PAR_POLL 

This parameter enables the controller-in-charge to parallel poll a 
maximum of eight instruments on the IEEE-488 bus and return a status 
bit from each device that is able to respond. 

Supported Devices 
IEQ11 
IEZl l 
IOtech Micro488A 

Parameter Values 
A longword integer returning the status byte read from the IEEE-488 
bus. The interpretation of this information is up to the application 
program. 

Description 
A parallel poll is significantly faster than a serial poll because all devices 
able to respond do so simultaneously. 

The usefulness of a parallel poll is limited by two factors: 

• A single bit is supplied for each instrument 

• Many devices are unable to respond to a parallel poll 

See the reference descriptions of the LIO$K_PAR_POLL_CONFIG and 
the LIO$K_PAR_POLL_STATUS parameters for information about how 
to configure the devices to be polled and how to specify the bit mask of 
each device's status register. 

4-186 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K PAR POLL 

Restrictions 
• This is an LIO$SHOW parameter only. 

• The device must be the controller-in-charge. 
• The responding devices must be configured by the 

LIO$K_PAR_POLL_CONFIG parameter before they can respond to 
a parallel poll. 

Example 

status = LIO$SH011 (ieee_id, LIO$K_PAR_POLL, stat_array, length) 

This routine parallel polls the devices on the IEEE-488 bus and returns 
the status bit from each device in the stat_array argument. The length 
argument returns the number of bytes in stat_array. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-187 



LIO$K PAR POLL CONFIG 

LIO$K_PAR_POLL_CON FZG 

This parameter configures a maximum of eight IEEE-488 bus instruments 
to respond to a parallel poll by the controller-in-charge. 

Supported Devices 
IEQ11 
IEZ11 
IOtech Micro488A 

Parameter Values 
Four values or arrays of values. 

The first value is a longword integer specifying the number of IEEE-488 
instruments to configure. This value can be 0 through 8, inclusive. 

The second value is a longword integer array of up to eight values 
specifying the IEEE-488 bus addresses of the devices to configuY•e. 

The third value is a longword integer array of up to eight values 
specifying the number of the bit each device should use. 

The fourth value is a longword integer array of up to eight values 
specifying the values to which each associated device should set its 
assigned status bit. Specify a 1 if the device should set its bit to indicate 
a true condition. Specify a 0 if the device should clear its Uit to indicate 
a true condition. 

Description 
Before you set up this parameter, you must use the LIO$K_PAR_POLL 
parameter to enable IEEE-488 Uus instruments to recognize and respond 
to a parallel poll configuration event from the controller-in-charge. Note 
that some IEEE-488 devices do not support parallel polling. 

4-188 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K PAR_POLL CONFIG 

Restrictions 
The device must Ue the controller-in-charge to issue a parallel poll 
configuration event. 

Examples 

1. 

2, 

INTEGER number 
number = 2 

This routine segment declares the variable number as an integer 
and assigns it a value of 2. This variable contains the number of 
instruments to configure. 

INTEGER*4 address (2) 
address(1) = 3 
address (2) = 4 

These lines declare address as an integer array of length two and 
assign bus addresses to each element in the array. The address 
array contains the IEEE-488 bus addresses of the instrument to 
configure. 

3, INTEGER*4 bits (2) 
bits(1) = 6 
bits (2) = 7 

These lines declare bits as an integer array of length two and assign 
individual status bits to each element of the array. The bits array 
contains the number of the bit each device should use. 

4, INTEGER*4 condition (2) 
condition(1) = 1 
condition (2) = 1 

These lines declare condition as an integer array of length two and 
assign 1 as the bit value on a true condition. The condition array 
specifies t11e value each device sets its associated bits to on a true 
condition. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-189 



LIO$K_PAR_POLL CONFIG 

5, status = LIO~SET_I (ieee_id, LIO$K_PAR_POLL_CONFIG, 4, number, 
1 address, bits, condition) 

This routine configures two devices, at IEEE-488 bus addresses 3 
and 4, respectively, to set bits 6 and 7, respectively, to a value of 1 
on a true condition. 

4-190 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K PAR POLL_STATUS 

LIO$K_PAR_POLL_STATUS 

This parameter sets up the parallel poll status register of an IX device. 

Supported Devices 
IEQ11 
IEZ11 
IOtech Micro488A 

Parameter Values 
A longword integer between 1 and 255 specifying the bit mask of the 
status to return to the controller-in-charge when the device is parallel 
polled. Only bits 0 through 7 are used, and only one bit is set. 

Which bit is set is determined by the LIO$K PAR POLL_CONFIG 
parameter when the current controller-in-charge issues a parallel 
poll configuration event. See the reference description of the 
LIO$K_PAR_POLL_CONFIG parameter for information about specifying 
the status bit. 

Description 
This parameter sets up parallel poll status register of an IX device. This 
value is read by the current controller-in-charge when the device is 
parallel polled. 

The current controller-in-charge, using the LIO$K_PAR_POLL_CONFIG 
parameter, signals an IX device which bit in the status register it is 
to use to return status information to the controller-in-charge. The 
LIO$K_PAR_POLL_STATUS parameter sets up the bit mask for this 
status bit. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-191 



LIO$K_PAR POLL STATUS 

Restrictions 
An IEEE-488 device can be parallel polled only when it is not the 
controller-in-charge. 

Example 

status = LIO$SET_I (ieee_id, LIOsK_PAR_POLL_STATUS, 1, 2bb) 

This routine sets up bit 7 (bit mask 255) as the status bit of an IEEE-488 
device. On a TRUE condition, the device sets bit 7 to 1. On a FALSE 
condition (error), the device clears bit 7. 

Note that a user's program must determine when a device condition 
changes from TRUE to FALSE, or from FALSE to TRUE. When a user's 
program detects a change, it must t11en call LIO$K_PAR_POLL_STATUS 
to change the device's parallel poll status byte. 

4-192 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K PARITY 

LIO$K_PARITY 

This parameter enables or disables the DRB32 to accept parity from 
an external device. This parameter also establishes the type of parity 
checking used by serial line devices. 

Supported Devices 
DRB32 
Serial line 

Parameter Values 
For the DRB32, a longword integer enabling or disabling whether the 
DRB32 interprets the parity bit of an external device. Specifying a 
nonzero value causes the DRB32 to interpret the parity bit of an external 
device. Specifying zero effectively disables parity checking. 

For serial line devices, a longword integer constant specifying the type 
of parity checking for the serial line. 

The value can be one of the following: 

Constant Value Meaning 

LIO$K_EVEN The number of "1" bits in a character sun to an 
even number. 

LIO$K_ODD The number of "1" bits in a character sum to an 
odd number . 

LIO$K_NONE1 Disables parity checking. 

1 The default value. 

Description 
See the Parameter Values. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-193 



LIO$K_PARITY 

Restrictions 
You cannot use this parameter to set the parity for LAT devices. To 
change parity for LAT devices, set the port's permanent characteristics. 

Examples 

1. statue = LIOSSET_I (drb_id, LIO$K_PARITY, i, i) 

This routine enables the DRB32 to interpret the parity bit of an 
external device. 

2, status = LIO~SET_I (serial_id, LIO$K_PARITY, 1, LIO~K_NONE) 

This routine disables checking parity for a serial line device. 

4-194 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K PASS CTRL 

LIO$K_PASS_CTRL 

This parameter signals the current controller-in-charge to pass control to 
another device specified by its IEEE-488 bus address. 

Supported Devices 
IEQl l 
IEZ11 
IOtech Micro488A 

Parameter Values 
A longword integer specifying the IEEE-488 bus address of the device to 
which to pass control. 

Description 
This parameter passes control to the specified device. Once confrol is 
passed, this device acts as an instrument (not a controller) until control 
is passed back to this device. 

Restrictions 
• The device passing control must be the controller-in-charge. 
• If the device receiving control is an IEQ11, an IEZ11, or an IOtech 

Micro488A device, then it must be attached as a controller and must 
be set up with receive control event (LIO$K_REC_CTRL) recognition 
enabled through the LIO$K_EVENT_ENA parameter. 

Example 
status = LIO$SET_I (ieee_id, LIO$K_PASS_CTRL, 1, 3) 

This routine passes control to the device at IEEE-488 bus address 3. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-195 



LIO$K PCR 

LIO$K_PCR 

This parameter specifies the number of steps in the Programmable 
Clock Register (PCR). 

Supported Devices 
AAF011
ADFOl l 

Parameter Values 
A longword integer specifying the number of steps in the PCR in 
multiples of 100 nanoseconds. 

The value can be between 25 and 4095, inclusive. 

Description 
The contents of the PCR are received in a 12-bit counter that is clocked 
by a quartz generator of 10 MHz . 

The counter and the clock are only enabled when the conversion starts 
and if the current Control Word Mode is not mode 3. The clock is 
also available as an output signal when enabled by the LIO$K_ED_ECE 
parameter. 

Restrictions 
None. 

~ This device is available only in Europe. 

4-196 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_PCR 

Example 

status = LIO$SET_I (axf_id, LIOsK_PCB, 1, steps) 

This routine writes the number of steps, specified as a multiple of 100 
nanosecond steps, to the PCR. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-197 



LIO$K PLOT SIZE 

LIO$K_PLOT_SIZE 

This parameter specifies the size of the plotting window. 

Supported Devices 
Real-time plotting 

Parameter Values 
Two single-precision, floating-point real values specifying the size of the 
plotting window in centimeters. 

The first value specifies the vertical size of the window. The default 
value is 10.0 centimeters. 

The second value specifies the horizontal size of the window. The 
default value is 20.0 centimeters. 

Description 
See the Parameter Values. 

Restrictions 
• The values are limited to the size of the display screen. 

• The real-time plotting device is supported only on VAXstation-based 
VAXIab systems running VWS. 

Example 
status = LIO$SET_R (device_id, LIO$K_PLOT_SIZE, 2, ib.0, 30.0) 

This routine specifies the size of the plotting window as 15.0 centimeters 
vertically and 30.0 centimeters horizontally. 

4-198 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K PLOT TYPE 

n  LIO$K_PLOT_TYPE 

This parameter specifies the style of plotting used by the real-time 
plotting device. 

Supported Devices 
Real-time plotting 

Parameter Values 
A longword integer constant specifying the plotting style. 

The value can be one of the following: 

Constant Value Style 

LIO$K_SCOPE Oscilloscope-type output of data 
LIO$K_STRIPCHART~ Scrolling output of data 

1The default value. 

Description 
This parameter allows you to specify either scrolling or oscilloscope-type 
output of data. The oscilloscope-type output is similar to the output of 
the LGP$PLOTC routine in LGP, which updates a plot dynamically by 
erasing old data and displaying new data. 

Restrictions 
The real-time plotting device is supported only on VAXstation-based 
VAXIab systems running VWS. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-199 



LIO$K_PLOT TYPE 

Example 
status = LIOSSET_I (graphics_id, LIO~K_PLOT_TYPE, 1, LIO;K_SCOPE) 

This routine specifies that the output will be oscilloscope-type output. 

4-200 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_PO CHAN 

LIO$K_PO_CHAN 

This parameter specifies the channel or channels to be plotted on the 
display screen using the real-time plotting device. 

Supported Devices 
Real-time plotting 

Parameter Values 
One or more longword integer values specifying the channel or channels 
in the data buffer to be plotted. 

The default value is channel 0. 

Description 
You can specify up to the number of channels specified by 
LIO$K_MAX_CHANNELS (a maximum of eight channels) to be plotted 
in any order. The channels can repeat. 

Restrictions 
• You can specify a maximum of eight channels. 

• The real-time plotting device is supported only on VAXstation-based 
VAXIab systems running VWS. 

Example 
status = LIO$SET_I (graphics_id, LIO$K_PO_CHAN, 2, 4, 2) 

This routine specifies that data from channels 4 and 2 be plotted. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-201 



LIO$K_POLARITY 

LIO$K_POLARITY 

This parameter determines whether anegative-going or positive-going 
edge on the input bits causes an AST routine to execute or an event flag 
to be set. 

This parameter also sets the polarity of the DRV11-J handshake signals. 

Supported Devices 
DRVll-J 
IDV11-Al

Parameter Values 
For the DRV11-J, a longword integer constant specifying whether 
the bits of port A call event AST routines or set event flags on a 
negative-going or positive-going edge. 

The default value for the DRV11-J is a negative-going edge. 

For the IDV11-A, a longword integer constant specifying whether the 
device calls an event AST routine on a negative-going or positive-going 
edge received on the interrupt line (line 15). 

There is no default value for the IDV11-A. (Both negative-going and 
positive-going edge are disabled unless you use this parameter.) 

The value can be one of the following: 

Constant Value Function 

LIO$K_NEGATIVE 

LIO$K_POSITIVE 

Bits call AST routines, set event flags, or handshake 
on a negative-going edge. 

Bits call AST routines, set event flags, or handshake 
on a positive-going edge. 

~ This device is available only in Europe. 

4-202 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K POLARITY 

Description 
For the DR~T11-J, the value of this parameter affects all the bits of port 
A. If the constant value is LIO$K_POSITIVE, all t11e bits in port A wait 
for apositive-going edge. 

For example, when the voltage on the pin assigned to a particular bit 
goes from low (0 volts) to high (5 volts), this represents apositive-going 
edge. If an AST routine is assigned to the bit, that AST routine is called. 
If an event flag is assigned to the bit, that event flag is set. 

For the IDV11-A, the value of t11is parameter affects input line 15 
(counting from 0). If an AST routine is assigned, then it is called 
on the respective edge event. Note that line 15 can be set for both 
positive-going and negative-going edge. 

Restrictions 
• The DRV11-J must be attached to use QIOs. 

• If the DRV11-J hardware is jumpered to use atwo-wire 
handshake, and if handshaking is software-enabled by the 
LIO$K_HANDSHAKE parameter, changing the value of this 
parameter changes the polarity of the handshake. 

• If the bits of port A are to call AST routines, you must set up an 
AST routine with the LIO$K_EVENT_AST parameter. 

• If the bits of port A are to set event flags, you must specify event 
flags with the LIO$K_EVENT_EF parameter. 

Example 
status = LIO~SET_I (device_id, LIO$K_POLARITY, 1, LIO~K_POSITIVE) 

This routine sets up the bits to respond to a positive-going edge. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-203 



LIO$K_POSITION 

LIO$K_POSITION 

This parameter specifies the position of the real-time plotting window 
on the display screen. 

Supported Devices 
Real-time plotting 

Parameter 

Values 

Two single-precision, floating-point real values specifying the position 
of the real-time plotting window on the .display screen in centimeters. 

The first value specifies the x-axis offset from the lower lefthand corner 
of the display screen. The default value is 0.0 centimeters. 

The second value specifies the y-axis offset from the lower lefthand 
corner of the display screen. The default value is 0.0 centimeters. 

Description 
Adjusting the x-axis offset moves the plotting window horizontally on 
the display screen. 

Adjusting the y-axis offset moves the plotting window vertically on the 
display screen. 

If the default values are used, the plotting window is displayed at the 
lower lefthand corner of the display screen. 

Restrictions 

• The offset values are limited to the size of the display screen. 

• The real-time plotting device is supported only on VAXstation-based 
VAXIab systems running VWS. 

4-204 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_POSITION 

Example 
status = LIO~SET_R (graphics_id, LIO~K_POSITION, 2, 1.0, 1.0) 

This routine positions the real-time plotting window 1.0 centimeter, 
both horizontally and vertically, from the lower lefthand corner of the 
display screen. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-205 



LIO$K PROTOCOL 

LIO$K_PROTOCOL 

This parameter enables or disables the use of auser-defined protocol 
for serial line data transfers. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer constant enabling or disabling the user protocol 
feature. 

The value can be one of the following: 

Constant Value Function 

LIO$K_OFF1
LIO$K_ON 

Disables user-defined protocol 
Enables user-defined protocol 

1The default value. 

Description 
You define a protocol to interface to laboratory equipment that requires 
some sort of software handshaking to occur over the serial line. 
Specify the protocol to conform to the specific requirements of certain 
laboratory instruments. 

Restrictions 
None. 

4-206 LIQ$SET and LIQ$SH~W Parameter Reference Descriptions 



LIO$K PROTOCOL 

Example 
param_code = LIOsK_PROTOCOL; 
param_value = LIOsK_ON; 
param_n_val = 1; 
sys_stat = LIO~SET_I(Adev_id,Aparam_code,Aparam_n_val,Aparam_value); 

if (!(sys_stat A STS$M_SUCCESS)) lib signal (sys_stat); 

param_code = LIOSK_USER_READ_PROTOCOL_AST; 
param_value = receive_buff; 

param_n_val = 1; 
sys_stat = LIO$SET_I(Adev_id,Aparam_code,Aparam_n_val,param_value); 

if (!(sys_stat A STS$M_SUCCESS)) lib signal (sys_stat); 

param_code = LIO$K_DEVICE_ACK_NAK_BUFF; 
param_value = sizeof(ack_buff); 
param_n_val = 3; 
sys_stat = LIO~SET_I(Adev_id,Aparam_code,Aparam_n_val,ack_buff, 

Aparam_value,Atimeout); 

if (!(sys_stat ~ STSsM_SUCCESS)) lib signal (sys_stat); 

param_code = LIO$K_ACK_NAK_TERMINATOR; 
sys_stat = LIO~SET_S(Adev_id,Aparam_code,Aterm_char); 
if (!(sys_etat ~ STS=M_SUCCESS)) lib signal (sys_stat); 

param_code = LIO~K_USER_i/RITE_NAK_HANDLIAIG; 
paran~,value = LIO~K_RESEND_LAST; 

param_n_val = 1; 
sys_stat = LIOsSET_I(Adev_id,Aparam_code,Aparam_n_val,Aparam_value); 

if (!(sys_stat A STSSM_SUCCESS)) lib signal (sys_stat); 

This VAX C program section is an example of using a user-defined 
protocol to output to a serial device. 

This program does the following: 

• Enables a user-defined protocol 

• Defines an AST routine to 1landle ACKINAK reception 

• Sets a buffer to receive the ACKINAK string 

• Defines a terminator to the ACKINAK string 

• Sets up the action to be taken on receipt of a NAK string 

The ACK string sent by an external device on successful receipt of a 
buffer must be known. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-207 



LIO$K_PROTOCOL 

The AST routine, called receive_buff, is shown in the program segment 
below taken from the example program LIO_SERIAL.C. 

/* 

int receive_buff (status_ptr,device_id_ptr,buff er,buff er_length_ptr, 
data_length_ptr,buff er_index_ptr,device_specific_ptr) 

int 
int 
char 
int 
int 
int 
int 

{ 

*status_ptr; 
*device_id_ptr; 
buffer[] ; 
*buff er_length_ptr; 
*data_length_ptr; 
*buff er_index_ptr ; 
*device_epecif ic_ptr; 

/* returns the status of the i/o operation 
/* specifies the LIO assigned device id 
/* the buffer of received data 
/* the length of the buffer 
/* the length of the data in the buffer 
/* buffer index, NOT USED 
/* device specific, NOT USED 

*/ 
~/ 
*/ 
*/ 
*/ 
*/ 
*/ 

if (buffer [0] __ ' A' ) /* The device ACKED, return DEVICE ACKED to LIO */ 
{ 
return(LIO$K_DEVICE_ACKED); 

} 

else /* The device NAKED; return DEVICE NAKED to LIO */ 
/* Packet gill be retransmitted to serial device */ 

return(LIO$K_DEVICE_NAKED); 

} 

*/ 

The AST routine compares the string actually received and placed in the 
buffer (called buffer in t11is example) against the known ACK string (the 
character Ain this example). 

If the received string matches the ACK string, the AST routine returns 
the constant LIO$K_DEVICE_ACKED. If it does not match, the AST 
routine returns the constant LIO$K_DEVICE_NAKED. It is evoked w11en 
the external device sends a string in response to your write operation. 

4-208 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



L10$K_PURGE 

LIO$K_PURGE 

This parameter purges the contents of the type-ahead buffer. 

Supported Devices 
Serial line 

Parameter Values 
None. 

Description 
Use this parameter to ensure that the type-ahead buffer is empty for 
starting a data transfer. 

Restrictions 
None. 

Example 
status = LIO$SET_I (serial_id~ LIO$K_PURGE 0) 

This routine purges the contents of the type-ahead buffer. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-209 



LIO$K_READ ONLY 

LIO$K_R EAD_O N LY 

This parameter sets a memory queue device or global section to be 
read-only. 

Supported Devices 
Memory queue 

Parameter Values 
None. 

Description 
This parameter sets the memory queue device to copy data from 
the global section into the buffer supplied in the LIO$READ routine 
call. See Section 2.7.2.4, Setting Up a Memory Queue Device for 
Interprocess Communications, for information about interprocess 
memory IJO. 

Restrictions 
• The memory queue must be attached for interprocess I/O. 
• The memory queue must be set to use the synchronous I/O 

interface. 
• The memory queue device running in the other process must be set 

up to display data buffers . 

Example 

status = LIO$SET_I (memory_id, LIOSK_READ_ONLY, 0) 

This routine sets the memory queue device to read data buffers as they 
are passed by the window by the display-only memory queue. 

4-210 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K READ_PROMPT 

LIO$K_READ_PROMPT 

This parameter establishes a read prompt to prefix each input data 
buffer. 

Supported Devices 
Serial line 

Parameter Values 
A character string specifying the string to be sent out the serial line 
before a read request. 

This value is passed by descriptor. 

To disable a previously set-up read prompt, specify 0. 

Description 
You can use the read prompt string to prompt a device for data. 

Restrictions 
None. 

Examples 

1. statue = LIO$SET_S (serial_id, LIO$K_READ_PROMPT, 'Enter String: ') 

This routine sets up "Enter string: " as the read prompt. 

2, statue = LIO$SET_S (serial_id, LIO$K_READ_PROMPT, 0) 

This routine disables a read prompt that was previously set up. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-211 



LIO$K READ STAT 

LIO$K_READ STAT 

This parameter returns the status of the read-only bits in the Command 
and Status Register (CSR). 

Supported Devices 
AAF011
ADF011

Parameter Values 
A longword integer array of length five returning the status of the 
read-only bits in the CSR. The following list explains the return order of 
each bit within the array and what the contents of each bit indicates. 

• The first array index returns the contents of the Unipolar Operation 
bit. A zero indicates a bipolar operation (OV to + 10V). A one 
indicates a unipolar operation (-10V to + 10V). 

• T11e second array index returns: 

— For the AAF01, the contents of the Comparator Input bit. A 
one indicates that the COMP IN line is more negative than the 
output of channel 0. 

— For t11e ADFO1, the contents of the Single-Ended Input bit. A 
zero indicates differential input. A one indicates single-ended 
input. 

• The third array index returns: 

— For the AAF01, the contents of the End of Conversion Sequence 
bit. A zero indicates a normal end of conversion. A one 
indicates an abnormal end of conversion sequence. 

— For the ADF01, the contents of the Attention bit . A zero 
indicates that the bit is not set. A one indicates that the bit is 
set. 

~ This device is availaUle only in Europe. 

4-212 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_READ STAT 

• The fourth array index returns 

— For the AAFO1, the contents of the Data Buffer Empty bit. A 
zero indicates that the data buffer was not empty during the 
conversion sequence. A one indicates that the data buffer was 
empty during the conversion sequence. 

— For the ADF01, the contents of the Data Buffer Full bit. A zero 
indicates that the data buffer is not full. A one indicates that the 
data buffer is full. 

• The fifth array index returns the Sequence Break bit. A zero means 
that the sequence break is not set. A one means that the sequence 
break is set. 

Description 
See the Parameter Values. 

Restrictions 
This is an LIO$SHOW parameter only. 

Example 

INTEGER*4 axf_value_list(b) 
status = LIO$SET_I (axf_id, LIO$K_READ_STAT, axf_value_list, list_length) 

IF (.NOT. status) CALL LIB$SIGNAL (XVAL(status)) 

UNI = axf_value_list(1) 
SIP1G = axf_value_list(2) 
CMP = axf_value_list(2) 
ATT = axf_value_list(3) 
EOC = axf_value_list(3) 
DBF = axf_value_list(4) 
DBE = axf_value_list(4) 
SBE = axf_value_list (b) 

!Unipolar operation bit (both) 
!Single-ended input bit (ADF01) 
!Comparator bit (AAFO1) 
!Attention bit (ADF01) 
!End of conversion sequence bit (AAF01) 
!Data buffer full bit (ADF01) 
!Data buffer empty bit (AAF01) 
!Sequence break enable bit (both) 

This routine returns the read-only bits in the Command and Status 
Register of the AAFO1 and ADF01 devies. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-213 



LIO$K_RESET AXF 

LIO$K_RESET_AXF 

This parameter resets a device. 

Supported Devices 
AAF011
ADF011

Parameter Values 
None. 

Description 
Use this parameter to reset the AAFO1 and ADFO1 devices to their 
default operating characteristics. 

For ,the AAFO1, this parameter resets the ACS (AAF01 Command and 
Status Register), PCR (Programmable Clock Register), DBF (Data Buffer 
Register), and all the analog output channels. 

For the ADF01, t11is parameter resets the ACS (ADF01 Command and 
Status Register), PCR (Programmable Clock Register), DBS (Data Buffer 
Silo), and DDC (DAC Data Register). 

Restrictions 
None. 

Example 
Status = LIO$SET_I (device_id, LIO~K_RESET_AXF, 0) 

This routine resets the AAFO1 or ADFO1 subsystem. 

1 This device is available only in Europe. 

4-214 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K RESET DRX 

LIO$K_RESET_DRX 

This parameter resets the direct memory access (DMA) interface. 

Supported Devices 
DRQll-Cl 

Parameter Values 
Two longword integer values. 

The first value specifies whether or not to set the FNCTO bit. 

This value can be one of the following: 

Constant Value Function 

LIO$K_FNCTO Sets the FNCTO bit 
LIO$K_NO_FNCTO Clears the FNCTO bit 

The second value is a mask to be placed into the Data Buffer Register 
(DBR). A mask value of 0 does not affect the DBR. 

Description 
This parameter resets the DMA interface. The LIO$K_FNCTO value 
resets the interface with the FNCTO bit. The LIO$K_NO_FNCTO value 
resets the interface without the FNCTO bit. The specified mask value 
is written to the Data Buffer Register (DBR). A mask value of zero does 
not affect the DBR. 

1 This device is available only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-215 



LIO$K RESET DRX 

Restrictions 
None. 

Example 

status = LIO$SET_I (drq_id, LIO$K_RESET_DRX, 2, LIO$K_NO_FNCTO, 0) 

This routine resets the DMA interface without t11e FNCTO bit. The 0 
mask value does not affect the DBR register. 

4-216 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K SCHMIn TRIGGER 

LIO$K_SCHMITT_TRIGGER 

This parameter sets the mode of operation for the two Schmitt triggers 
on the Simpact RTC01 clock device. 

Supported Devices 
Simpact RTC01 

Parameter Values 
Two longword integer constants. 

The first value specifies the Schmitt trigger number. 

Constant Value Meaning 

1 Schmitt trigger 1 
2 Schmitt trigger 2 

The second value specifies the Schmitt trigger mode. 

Constant Value Meaning 

LIO$K_ANALOG Sets the trigger mode to analog 
LIO$K_TTL Sets the trigger mode to TTL 

Description 
The Schmitt trigger• circuitry for the Simpact RTC01 accepts either 
TTL-compatible input or analog input. This parameter lets you set the 
Schmitt triggers to receive either kind of input. 

For both TTL and analog mode, the polarity of the trigger is set with 
switches on t11e UDIP. If you do not have a UDIP, set pins 5 and 6 on 
the D25 connector. 

When set for analog mode, the threshold level for triggering is set using 
the potentiometers on the UDIP. If you do not have, a UDIP, set pins 3 
and 4 on the D25 connector. 

LIO$SET and LIO$SHOIN Parameter Reference Descriptions 4-217 



LIO$K_SCHMIn TRIGGER 

Restrictions 
None. 

Examples 

1. status = LIO$SET_I (device_id, LIO$K_SCHMITT_TRIGGER, 2, i, LIO~K_TTL) 

This routine sets the Schmitt trigger 1 to TTL mode. 

2, status = LIOSSET_I (device_id, LIOsK_SCHMITT_TRIGGER, 2, 2, LIO$K_ANALOG) 

This routine sets the Schmitt trigger 2 to analog mode. 

4-218 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K SER POLL 

~ LIO$K_SER_POLL 

This parameter perf orms a serial poll of the instruments on the IEEE-488 
bus and returns the status from each device. 

Supported Devices 
IEQ11 
IEZ11 
IOtech Micro488A 

Parameter Values 
A byte array and a longword integer value. 

The array returns the status values from each instrument on the 
IEEE-488 bus configured for serial polling. 

The integer value represents the length of the array, which 
defends on the number of primary addresses set up by the 
LIO$K_SER_POLL_CONFIG parameter. 

Description 
This parameter enables the controller-in-charge to obtain status 
information from each device on the IEEE-488 bus configured for 
serial polling. 

If the device is requesting service, then the SRQ bit (bit 6) is set in the 
status byte of the device. Polling a device clears its SRQ bit and stops it 
from requesting service. 

You can perform a serial poll only after a service request event has 
occurred. 

See the description of the LIO$K_SER_POLL_CONFIG parameter for 
information about how to configure the devices to be polled. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-219 



LIO$K SER POLL 

Restrictions 
• This is an LIO$SHOW parameter only. 

• The IEEE-488 device must be the controller-in-charge. 

• The responding devices must be configured for serial polling by the 
LIO$K_SER_POLL_CONFIG parameter. 

Example 
status = LI03SH0~1 (ieee_id, LIO$K_SER_POLL, stat_array~ length) 

This routine serially polls the devices on the IEEE-488 bus. The array 
scat_array returns the status of the devices. The length argument returns 
t11e number of bytes (addresses) in stat_array. 

4-220 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K SER POLL_CONFIG 

LIO$K_SER_POLL_CONFIG 

This parameter configures an IEEE-488 device that is controller-in-charge 
to perform a serial poll. 

Supported Devices 
IEQ11 
IEZ11 
IOtech Micro488A 

Parameter Values 
A longword integer value and a longword integer array. 

The integer value specifies the length of the array. 

The array specifies the addresses of the instruments to be serially 
polled. 

Description 
Use this parameter to signal IEEE-488 devices to configure themselves 
for serial polling by the controller-in-charge. 

You can mix primary and secondary addresses in the list of addresses. 

If you want to specify the secondary address of a device, you must 
enable recognition of secondary addressing when you assign the 
primary address of the device using the LIO$K_IEEE_ADDR parameter. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-221 



LIO$K_SER_POLL CONFIG 

Restrictions 
• This is an LIO$SET_I parameter only. 

• The device must be t11e controller-in-charge to issue a serial poll 
configuration event. 

• You must enable IEEE-488 bus instruments to recognize 
and respond to a serial poll configuration event from the 
controller-in-charge before you set up this parameter. 

Example 
status = LIO~SET_I (ieee_id, LIO$K_SER._POLL_CONFIG, 2, list_size, 
1 serial_list) 

This routine sets up the list of instruments to be polled. 

4-222 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K SGL BUF 

LIO$K_SGL_BUF 

This parameter sets the device for single-buffer DMA. This means that 
the device stops between DMA buffers so the input or output is not 
continuous. 

Supported Devices 
AAV11-D 
ADQ32 
ADV11-D 
Preston (DRQ3B interface only) 

Parameter Values 
None. 

Description 
Use single-buffer DMA when you want to examine the data before 
continuing data acquisition. 

Single-buffer DMA is less restrictive vn buffer sizes and alignments t11an 
continuous DMA. 

Use this parameter to stop continuous DMA for t11e AAV11-D, the 
ADV11-D, and the Preston (DRQ3B interface). 

Since single buffering is the default for the ADQ32, you need to use this 
parameter for the ADQ32 only if you want to stop double buffering. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-223 



LIO$K SGL_BUF 

Restrictions 
The following restrictions apply to both t11e AAV11-D and the ADV11-D: 

• The buffers must be word-aligned. 

• There must be 512 bytes remaining at the end of the buffer to serve 
as an overrun area. 

• See Section 1.6.3.1, Single-Buffer DMA, for more information. 

Example 

status = LIOSSET_I (device_id, LIO$K_SGL_BUF, 0) 

This routine enables single-buffer DMA_ data transfers for the device. 

4-224 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K SKIP_COUNT 

LIO$K_SKIP_COUNT 

This parameter specifies how many points are to be skipped and not 
plotted. 

Supported Devices 
Real-time plotting 

Parameter Values 
A longword integer specifying the numUer of points to skip. 

Description 
This parameter allows every n + 1th point to be plotted, resulting in 
faster plotting speeds. 

The first point is plotted, and then n points are skipped. 

Restrictions 
• The skip rate must be greater than or equal to 0. 
• The real-time plotting device is supported only on VAXstation-based 

VAXIab systems running VWS . 

Example 

status = LIO$SET_I (graphics_id, LIO$K_SKIP_COUNT, 1, 4) 

This routine specifies that four points are to be skipped, which means 
that every fifth point will be plotted. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-225 



LIO$K SRQ 

LIO$K_SRQ 

This parameter defines the serial poll status byte of an IEEE-488 device 
and, optionally, sends a service request to the controller-in-charge. 

Supported Devices 
IEQ11 
IEZ11 
IOtech Micro488A 

Parameter Values 
Two longword integer values. 

The first value specifies the serial poll status byte. 

The second value specifies the secondary address of the device. If 
you specify the secondary address of the device, you must enable the 
recognition of secondary addressing when you assign the primary 
address of the device using the LIO$K_IEEE_ADDR parameter. 
Specifying the secondary address is optional. 

Description 
Use this parameter to specify the serial poll status byte of an IEQ11, an 
IEZ11, or an IOtec11 Micro488A device. 

If bit 6 in the status byte of the device is set (requesting service), then 
the SRQ is sent to the controller-in-charge. The LIO$SET_I call hangs 
until the device is serially polled. 

If bit 6 in the status byte of the device is cleared (not requesting 
service), then the status is saved in the device and is read by the 
controller-in-charge if it serially polls the device. 

4-226 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K SRQ 

The meaning of the other bits in the status byte of the device is defined 
by the user program (instrument). 

For example, a user program can be written so that the SRQ status byte 
also displays the current state of the instrument. The current state of an 
instrument might be idle (status byte is 0), running (status byte is 1), or 
data available (status byte is 2) and bit 6 set to signal an SRQ. 

Restrictions 
• The device responding to the serial poll event cannot be the 

controller-in-charge . 

• If the secondary address of t11e device is specified, then the device 
only responds to a serial poll of that secondary address. 

Example 

status = LIO$SET_I (ieee_id, LIO$K_SRQ, 2, statue byte, 140) 

This routine sets up status_byte as the status byte for the IEEE-488 
device with secondary address 140. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-227 



LIO$K_STO 1 

LIO$K STO_1 

This parameter loads the specified number of steps into the 23-bit 
counter contained in the Sequence Timer Registers STO and ST1. 

Supported Devices 
ADFOI/AMF011

Parameter Values 
Two longword integer values. 

The first value specifies the number of steps in multiples of 1 
microsecond. This value can be between 2 and 8,388,607, inclusive. 

The second value enables or disables the sequence time•. 

This value can be one of the following: 

Constant Value Function 

LIO$K_ENABLE Enables sequence timer 
LIO$K_DISABLE Disables sequence timer 

1 This device is availaUle only in Europe. 

4-228 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



L10$K_STO_1 

Description 
T11e counter contained in the Sequence Timer Registers STO and ST1 is 
clocked by a quartz generator of 1 MHz. 

You can enable the sequence timer in two ways: 

• By using the Sequence Timer Enable (STE) bit 

• By an external sequence timer enable input signal connected to the 
(ST EN EXT) pin of any one of the three AMFO1 user connectors J3, 
J4, or J5 

See the AMF01 48 channel Analogue Inpict Multiplexer for the ADF01 Data 
Acquisition Subsystem for more information. 

Restrictions 
None. 

Example 
status = LIO$SET_I (adf_id, LIO$K_STO_1, 2, steps, LIO$K_ENABLE) 

This routine loads the number of steps specified as a multiple of 1 
microsecond into STO and ST1, and enables t11e Sequence Timer Enable 
bit. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-229 



LIO$K START 

LIO$K_START 

This parameter starts the following: 

• Continuous DMA I/O 

• IDV11-D counter channels 

• KWV11-C or the Simpact RTC01 clock 

• Continuous real-time plotting 

Supported Devices 
AAV11-D 
ADV11-D 
IDVll-Dl 
KVW11-C 
Preston (DRQ3B interface only) 
Real-time plotting 
Simpact RTC01 

Parameter Values 
For the IDV11-D, a longword integer array of length five specifying 
which of the five IDV11-D channels to start. For each array index 
containing a one, t11e respective counter is started. 

For the other devices, there is no parameter value. 

Description 
See the Restrictions. 

1 This device is availaUle only in Europe. 

4-230 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_START 

r"1 Restrictions 
The following restrictions apply to both the AAV11-D and the ADV11-D: 

• This parameter is required to start continuous DMA I/O for the 
AAV11-D when it is set for continuous DMA output, and for the 
ADV11-D when it is set for continuous DMA input. 

• The devices must already be set for continuous DMA I/O through 
the LIO$K_CONT parameter. 

• 64K bytes of buffers must be enqueued to the device. 

The following restriction applies to the KWV11-C and the Simpact 
RTC01: 

• The clock must not already be running. 

• LIO$K_START is necessary only when the clocks are set for 
asynchronous transfer and the trigger mode is LIO$K_IMMEDIATE. 

The following restriction applies to the real-time plotting device: 

• The real-time plotting device is supported only on VAXstation-based 
VAXIab systems running VWS. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-231 



LIO$K_START 

Examples 

1. status = LIO~SET_I (device_id, LIO$K_START, 0) 

This routine does one of the following: 

• Starts continuous DMA I/O on the AAV11-D, ADV11-D, or 
Preston devices 

• Starts the KWV11-C or the Simpact RTC01 clock 

• Starts continuous real-time plotting 

Which function the parameter performs depends on the device for 
which you are using it. 

2, INTEGER*4 counter_start(b) 
counter_start(1) = 0 !Channel 0 not used 
counter_start(2) = 1 !Start channel 1 
counter_start(3) = 1 !Start channel 2 
counter_start(4) = 0 !Channel 3 not used 
counter_start(5) = 0 !Channel 4 not used 

status = LIO$SET_I (idvd_id, LIO$K_START, 1, XLOC(counter_start)) 

This routine starts counter channels 1 and 2 of the IDV11-D device. 

4-232 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_STAT BITS 

LIO$K_STAT_BITS 

This parameter returns status information about the device. 

Supported Devices 
DRQ11-Cl

Parameter Values 
A longword integer returning the second word of the I/O Status Block 
(IOSB), which contains the status bits STATO through STAT3. 

Description 
See the Parameter Values. 

Restrictions 
This is an LIO$SHOW parameter only. 

Example 
status = LIO$SHO1/ (dre_id, LIO$K_STAT_BITS, status_bite, length) 

This routine returns the contents of STATO through STAT3 in bits 0 
through 3 of the status_bits argument. 

1 This device is available only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-233 



LIO$K STE 

LIO$K_STE 

This parameter clears the Sequence Timer Enable (STE} bit in the 
Sequence Timer Register (ST1). 

Supported Devices 
ADFO1/AMF011

Parameter Values 
None. 

Description 
You can use this parameter with an ADF01 Data Acquisition Subsystem 
that has the AMF01 multiplexer expansion option. 

Restrictions 
None. 

Example 
statue = LIO$SET_ I (adf_id , LIO$K_STE, 0) 

This routine clears the Sequence Timer Enable (STE) bit in the AMF01 
Sequential Timer Register (ST1). 

~ This device is available only in Europe. 

4-234 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K STOP 

LIO$K_STOP 

This parameter stops continuous DMA I10, stops the IDV11-D1 counter, 
and stops the KWV11-C and the Simpact RTC01 clock. 

Supported Devices 
AAV11-D 
ADV11-D 
DRQ3B 
IDV11-Dl 
KWV11-C 
Preston (DRQ3B interface only) 
Simpact RTC01 
Serial line 

Parameter Values 
For the IDV11-D, a longword integer array of length five specifying 
which of the five IDV11-D channels to stop. For each array index 
containing a one, the respective counter is stopped. 

For the other devices, there is no parameter value. 

Description 
Although the preferred way to stop continuous DMA I10 is not to 
enqueue any new buffers, you can also stop continuous DMA by using 
this parameter. 

When used with the DRQ3B, this parameter cancels any outstanding 
DMA I/O requests. 

If you stop continuous DMA in midstream, the filled buffers continue 
to dequeue. The data length that LIO$DEQUEUE returns on the buffer 
that was being filled when continuous DMA was stopped is not valid. 

1 This device is av~ilaUle only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-235 



LIO$K STOP 

Restrictions 
• For the AAV11-D and ADV11-D, continuous DMA I/O must already 

have been started using the LIO$K_START parameter before you 
stop it. 

• For the IDV11-D, the counter channels must already have been 
started using the LIO$K_START parameter before you stop them. 

Examples 

1. status = LIO$SET_I (device_id, LIO$K_STOP, 0) 

This routine stops continuous DMA IIO, or stops the KVW11-C or 
the Simpact RTC01 clock. Which function the parameter performs 
depends on the device for which you are using it. 

~ INTEGER*4 counter_stop (6) 
counter_stop(i) = 0 !Channel 0 not used 
counter_stop(2) = i !Stop channel 1 
counter_stop(3) = 1 !Stop channel 2 
counter_stop(4) = 0 !Channel 3 not used 
counter_stop(b) = 0 !Channel 4 not used 

status = LIO$SET_I (idvd_id, LIO$K_STOP, 1, XLOC(counter_stop)) 

This routine segment stops counter channels 1 and 2 of the IDV11-D 
device. 

4-236 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K SWEEP RATE 

f1 

I^1 

LIO$K_SWEEP_RATE 

This parameter sets the rate for the sweep clock of the ADQ32 device. 
The sweep clock controls sweep and, for delayed edge gate modes, 
specifies the delay time. 

Supported Devices 
ADQ32 

Parameter Values 
A single-precision, floating-point real value specifying the desired rate. 
The maximum value is 200 kHz. 

The default value is 1 kHz. 

Description 
LIO supplies the closest approximation of the specified rate it can 
obtain with the sweep clock. A sweep of the channels specified in 
LIO$K_AD_CHAN is then made at every tick of the sweep clock. 

When used in a sweep mode with an external gate signal, the gate 
controls the sweep clock rate. When the external gate closes, the sweep 
clock is turned off. If the gate closes in the middle of a sweep, all of 
the remaining channels in the sweep are sampled, and then the primary 
clock is turned off also. 

For delayed edge gate modes, this parameter specifies the delay time. 
The delay is one tick of the clock rate you specify. 

This parameter returns no warning if the clock is not set to the exact rate 
you request. 

Using this parameter with LIO$SHOW returns the actual rate. 

See Appendix A for more information. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-237 



LIO$K SWEEP RATE 

Restrictions 
The sweep rate must be fast enough to trigger all the channels (selected 
using LIO$K_AD_CHAN) before the next sweep starts. If sweeps are 
started by the A/D clock (LIO$K_AD_CLOCK), then the rate set with 
LIO$K_SWEEP_RATE must be at least the number of channels times the 
rate set using the LIO$K_CLK_RATE parameter. 

Example 
status = LIO~SET_R (device_id, LIO$K_S11EEP_RATE, 1, 1000.0) 

This routine sets the sweep clock rate at 1 kHz. 

4-238 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K SYNCH 

LIO$K_SYNCH 

This parameter sets up a device to use the synchronous I/O interface. 

Supported Devices 
AAF011 
AAV11-D 
ADF011
ADQ32 
ADV11-D 
AXVll-C 
DRB32 
DRB32W 
DRQ11-Cl 
DRQ3B 
DRVll-J 
DRV11-WA 
IAV112 devices 
IDV11-Al
IEQ11 
IEZl l 
KVW 11-C 
Preston 
Simpact RTC01 
Disk file 
Memory queue 
Serial line 

Parameter Values 
None. 

1 This device is available only in Europe. 

2 These devices are available only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-239 



LIO$K_SYNCH 

Description 
See the Restrictions. 

Restrictions 
No buffers can currently be on the user queue or device queue of the 
device. 

Example 
status = LIO$SET_I (device_id, LIO$K_SYNCH, 0) 

This routine sets up the device to use the synchronous I/O interface. 

4-240 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K TERM CHAR 

LIO$K_TERM_CHAR 

This parameter defines a termination character to signal the end of an 
input data transfer for an IEEE-488 device . 

Supported Devices 
IEQl l 
IEZ11 
IOtech Micro488A 

Parameter Values 
Two longword integer values. 

The first value specifies the ASCII value of the termination character. 
Specifying -1 disables the termination character. 

The second value, which can be used with the IEQ11 only, specifies 
the number of times the character must be repeated to be treated as a 
terminator. The default value is 1. Specifying this value is optional. 

Description 
This parameter defines a character that signals the termination of input 
data. 

The termination character can be repeated any number of tunes for 
an IEQ11 device. The IEZ11 and the IOtech Micro488A, however, do 
not support a repeat count, and will terminate input on receiving the 
termination character once . 

For the IOtech Micro488A, you can use LIO$K_EOI in place of t11e 
termination character to enable termination on assertion of the EOI line. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-241 



LIO$K TERM CHAR 

Restrictions 
None. 

Examples 

1. status = LIO$SET_I (ieee_id, LIO$K_TERM_CHAR, 2, 10, 2) 

This routine specifies that two line-feed (ASCII decimal 10) 
characters in succession signal the end of an input buffer for the 
IEQ11 device. 

2, status = LIO$SET_I (ieee_id, LIOsK_TERM_CHAR, 1, 10) 

This routine specifies that one line-feed (ASCII decimal 10) 
character signals the end of an input buffer for the IEZ11 or the 
IOtech Micro488A device. 

3, status = LIO~SET_I (ieee_id, LIO~K_TERM_CHAR, 1, LIO$K_EOI) 

This routine specifies that input data transfer will terminate on 
assertion of the EOI line for the IOtech Micro488A device. 

4-242 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K TERM SRQ 

LIO$K_TERM_SRQ 

This parameter enables or disables terminations of IIO transfers by a 
service request. 

Supported Devices 
IEQ11 

Parameter Values 
A longword integer constant enabling or disabling terminations of I/O 
transfers by a service request. 

The value can be one of the following: 

Constant Value Meaning 

LIO$K_OFF1
LIO$K_ON 

I/O transfers are not terminated by a service request 
IIO transfers are terminated by a se~•vice request 

1 The default value . 

Description 
When enabled (LIO$K_ON), a service request results in the termination 
of the IIO transfer in progress. 

Restrictions 
None. 

LIQ$SET and LIO$SHOW Parameter Reference Descriptions 4-243 



LIO$K TERM_SRQ 

Example 

status = LIOSSET_I (ieee_id~ LIOSK_TERM_SRQ~ 1. LIO$K_ON) 

This routine enables the termination of I/O transfers by a service 
request. 

4-244 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_TIMEOUT 

LIO$K_TIMEOUT 

This parameter sets the I10 operation timeout for any device attached 
with QIO and for the disk file device. 

Supported Devices 
AAF011
AAVl1-D 
ADFOl l
ADV11-D 
AXVll-C 
DRB32 
DRB32W 
DRQ11-Cl 
DRVll-J 
DRV11-WA 
IEQ11 
IEZ11 
IOtech Micro488A 
KWVll-C 
Preston (DRB32W and DRV11-WA interfaces only) 
Simpact RTC01 
Serial line 

Parameter Values 
A longword integer indicating the number of seconds before timeout. 

The value can be between 2 and 65,636, inclusive. 

For all devices except the IEQ11 and the IEZ11, the default value is 10 
seconds. 

For the IEQ11, the default value is 20 seconds. 

For the IEZ11, the default value is 30 seconds. 

~ This device is available only in Europe. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-245 



LIO$K_TIMEOUT 

Description 
Use this parameter to specify a data transfer timeout. 

If a data transfer does not finish within the specified number of 
seconds, the buffer is terminated. The status %SYSTEM-F-TIMEOUT is 
returned by the LIO$READ, LIO$WRITE, and LIO$DEQUEUE routines. 
The status %SYSTEM-F-TIMEOUT is also returned to the user's AST 
routine. 

Restrictions 
If you use this parameter with a serial line device, you 
must first enable the serial device for timeouts using the 
LIO$K_TIMEOUT_ENABLE parameter. 

• The KWV11-C and the Simpact RTC01 clocks use the timeout value 
only when the event timing functions LIO$K_EVENT_AB S and 
LIO$K_EVENT_REL are set. The functions LIO$K_SGL_COUNT 
and LIO$K_REP_COUNT always use a timeout of 65,535 seconds. 

Example 
status = LIO$SET_I (device_id, LIO$K_TIMEOUT, 1, 15) 

This routine specifies a 15-second timeout period for a data transfer. 

4-246 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_TIMEOUT_ENABLE 

P1 
LIO$K_TIMEOUT_ENABLE 

This parameter enables or disables timeouts for serial line read requests. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer constant. 

The value can be one of the following: 

Constant Value Function 

LIO$K_OFF 
LIO$K_ON1

Disables timeouts 
Enables timeouts 

~ The default value. 

Description 
This parameter affects read requests only. 

Restrictions 
If you use this parameter to enable timeouts, you must specify the 
length of the timeout in seconds using the LIO$K_TIMEOUT parameter. 

Example 

status = LIO$SET_I (serial_id, LIO~K_TIMEOUT_ENABLE, 1, LIOSK_ON) 

This routine enables a serial line device for timeouts. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-247 



LIO$K TITLE 

LIO$K_TITLE 

This parameter specifies the title placed on the graph of the channel 
specified by LIO$K_CURRENT_CHANNEL. 

Supported Devices 
Real-time plotting 

Parameter Values 
A character string less than or equal to 72 characters in length specifying 
the title. 

This value is passed by descriptor. 

Description 
The title is placed over the graph of the current channel. 

If a single x-axis is being used for the plotting window, use 
LIO$K_CURRENT_CHANNEL to set channel 0 as the current channel 
so that the title will be placed over the entire screen. 

Use LIO$K_X_LABEL and LIO$K_Y_LABEL to place labels on the x-axis 
and y-axis . 

Restrictions 
• The title is limited to 72 characters. 

• The real-time plotting device is supported only on VAXstation-based 
VAXIab systems running VWS. 

4-248 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_TITLE 

Example 

status = LIOSSET_S (graphics_id, LIO$K_TITLE, 'Channel 2') 

This routine specifies "Channel 2" as the title of the current channel. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-249 



LIO$K TITLE n 

LIO$K_TITLE_n 

This parameter specifies the graph title and the position of the channel 
to be plotted in the LIO$K_PO_CHAN list for the real-time plotting 
device. 

NOTE 

The preferred method of specifying titles of graphs is to use 
LIO$K_CURRENT_CHANNEL followed by LIO$K_TITLE. 
Using LIO$K_TITLE_n is the non-preferred method. 

Supported Devices 
Real-time plotting 

Parameter Values 
A character string less than or equal to 72 characters in length specifying 
the title of the graph of the data from a channel. 

This value is passed by descriptor. 

Description 
Use this parameter to specify titles for the graphs depicting the data 
plotted from the channels specified in the LIO$K_PO_CHAN list. The 
"n" in LIO$K_TITLE_n is a placeholder used to specify the position of 
the channel in the LIO$K_PO_CHAN list. 

LIO$K_TITLE_0 is used to specify the title of the graph of the first 
channel specified in the LIO$K_PO_CHAN list. LIO$K_TITLE_1 is used 
to specify the title of the graph of the second channel specified in the 
LIO$K_PO_CHAN list, and so forth. 

4-250 LIQ$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K TITLE n 

For example, if channels 4 and 2 are specified (in that order) in the 
LIO$K_PO_CHAN list, then you use LIO$K_TITLE_0 to specify the title 
for the graph of channel 4 and LIO$K_TITLE_1 to specify the title for 
the graph of channel 2. 

A maximum of eight graphs, one graph for each channel listed in the 
LIO$K_PO_CHAN list, can be plotted in one window. 

Restrictions 
• Each character string (graph title) can be a maximum of 72 characters 

in length. 

• You can specify only one graph title at a time. 

• The real-time plotting device is supported only on VAXstation-based 
VAXIab systems running VWS. 

Examples 

1. status = LIOsSET_I (graphics_id, LIO$K_PO_CHAN, 2, 4, 2,) 

T11is routine specifies that channels 4 and 2 Ue plotted, in that order, 
by the real-time plotting device. 

2, statue = LIO$SET_S (graphice_id, LIO$K_TITLE_0, 'Channel 4') 

This routine specifies the title of the graph of channel 4, the first 
channel specified in the LIO$K_PO_CHAN list, as "ClZannel 4" . 

3, status = LIO$SET_S (graphics_id, LIOSK_TITLE_1, 'Channel 2') 

This routine specifies the title of the graph of channel 2, the second 
channel specified in the LIO$K_PO_CHAN list, as "Channel 2" . 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-251 



LIO$K TRANSFER 

LIO$K_TRANSFER 

This parameter sets up an interprocess memory queue device to transfer 
data buffers between processes. 

Supported Devices 
Memory queue 

Parameter Values 
None. 

Description 
This parameter sets up a memory queue device to pass buffers to and 
receive buffers from another process. 

Restrictions 
The memory queue device in the other process must be attached and 
set up identically to the memory queue device in this process. 

Example 
status = LIO$SET_I (device_id, LIO$K_TRANSFER, 0) 

This routine sets up the interprocess memory queue to transfer data 
buffers between processes. 

4-252 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_TRIG 

~ LIO$K_TRIG 

This parameter sets the device trigger mode or source. 

Supported Devices 
AAVl l -D 
ADQ32 
ADV11-D 
AXV11-C 
KWV11-C 
Preston 
Simpact RTCOl 

Parameter Values 
For the AAV11-D, one or two longword integer constants. 

The first value specifies the trigger mode value. 

This value can be one of the following: 

Table 4-10: AAV11-D Trigger Modes 
Constant Value Device Trigger Mode 

LIO$K_IMM_BURST Immediate start burst mode. 

This starts immediately on the LIO$WRITE or the 
LIO$ENQUEUE routine call, or on the L10$SET_I 
call with. the LIO$K_START parameter. if the 
AAV11-D is set for continuous DMA mode. In 
continuous DMA mode, the DIA continues to send 
data from the successive buffers until stopped, or 
until the software stops enqueuing buffers. 

Because of Q-bus latency, a consistent rate cannot 
be guaranteed. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-253 



LIO$K TRIG 

Table 4-10 (Cont.): AAV11-D Trigger Modes 

Constant Value Device Trigger Mode 

LIO$K_EXT_BURST Triggered burst mode. 
LIO$K_CLK_BURST 

LIO$K_EXT_SWEEP 
LIO$K_CLK_SWEEP 

LIO$K_EXT_POINT 
L10$K_CLK_PO1NT 

On each (clock or external) trigger, this mode sends 
buffers as fast as the DMA can move buffers. When 
set for continuous DMA, the trigger starts the 
output . Then, the hardware moves the data as 
fast as possible. To use this trigger option. with the 
AAV11-D, you must specify both DIA channels for 
use through the LIO$K_DA_CHAN parameter. 

Because of Q-bus latency, a consistent rate cannot 
be guaranteed. 

See the Description for additional information about 
supplying the clock device ID. 

Triggered sweep mode. 

This mode sweeps all selected channels on each 
trigger . 

See the Description for additional information about 
supplying the clock device ID. 

Triggered nonburst mode. 

This mode outputs to one channel on each external 
trigger or clock tick. If the AAV71-D is attached 
to use QIOS, using the L10$K_CLK_POINT and 
LIO$K_EXT_POINT trigger modes are legal only 
when you select to output to one DIA channel. if 
you select to output to both DIA channels, the Ll0 
facility returns an error. 

See the Description for additional information 
supplying the clock device ID . 

The second value, which is optional, specifies the device ID of the 
clock. Specifying the clock device ID is valid for the external trigger 
modes only when the device is set to use the synchronous IIO interface. 

4-254 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_TRIG 

For the ADQ32, a maximum of three longword integer constants. 

The first value specifies the point trigger source. 

This value can be one of the following: 

Table 4-11: ADQ32 Point Trigger Sources 
Constant Value Trigger Source 

LIO$K_EXTERNAL1

LIO$K_BURST 

LIO$K_AD_CLOCK 

A data point is taken each time the external clock 
input goes low. If you specify this value, the 
sweep trigger and buffer trigger values must be 
LIO$K_SAME. 

Data points are taken at the top speed of the AID. 

This value specifies the primary Al D clock as the 
trigger source for the ADQ32 device. The rate 
for the clock is set through the LIO$K_CLK_RATE 
parameter. 

1 The ADQ32 has two external inputs: the external gateltrigger input and the external 
frequency input. The LIO$K_EXTERNAL value generally refers to the external 
gateltrigger input. However, when you are specifying all points triggered by the 
same source (LIO$K_EXTERNAL, LIO$K_SAME, LIO$_SAME), and you are using the 
external gateltrigger input to gate the trigger (specified by the LIO$K_GATE parameter), 
then the LIO$K_EXTERNAL value refers to the external frequency input. 

The second value specifies the sweep trigger source. This is the trigger 
to take the first point in a channel sweep. 

This value can be one of the following: 

Table 4-12: ADQ32 Sweep Trigger Sources 
Constant Value Trigger Source 

LIO$K_EXTERNAL1 Sweeps through the specified channels are 
controlled by negative transitions on the external 
gate/trigger input. If you specify this value, the 
buffer trigger value must be LIO$K_SAME. 

1 This trigger source cannot Ue used in conjunction with a gating mode specified using 
the LIO$K_GATE parameter because both require the use of the external gateltrigger 
input. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-255 



LIO$K_TRIG 

Table 4-12 (Cont.): ADQ32 Sweep Trigger Sources 
Constant Value Trigger Source 

LIO$K_SAME 

LIO$K_SWEEP_CLOCK 

The AlD does not differentiate between the first 
point in the channel sweep and the rest of the 
points in the channel sweep. 

The LIO$K_SWEEP_RATE parameter sets the rate 
of the sweep Al D clock. If the point trigger source 
is specified as LIO$K_AD_CLOCK, then the point 
clock rate (set by the LIO$K_CLK_RATE parameter) 
must be high enough for data from all channels in 
the channel list to be acquired before another sweep 
clock tick. 

The third value specifies the buffer trigger source. This is the trigger to 
take the first point in the buffer. 

This value can be one of the following: 

Table 4-13: ADQ32 Buffer Trigger Sources 
Constant Value Trigger Source 

LIO$K_EXTERNAL1

LIO$K_SAME 

The A/D waits for the external clock input to go low 
before it starts to take data. 

The A/D does not differentiate between the first 
point in the buffer and the first point of any other 
sweep. 

1 This trigger source cannot Ue used in conjunction with a gating mode specified using 
the LIO$K_GATE parameter Uecause Uoth require the use of the external gate/trigger 
input . 

See Appendix A for more information on ADQ32 trigger modes. 

For the ADV11-D, one or two longword integer constants. The first 
value specifies the trigger mode value. 

4-256 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K TRIG 

This value can be one of the following: 

Table 4-14: ADV11-D Trigger Modes 
Constant Value Trigger Mode 

LIO$K_EXT_SWEEP Triggered sweep mode. 
LIO$K_CLK_SWEEP 

LIO$K_IMM_BURST 

LIO$K_EXT_BURST 

LIO$K_EXT_POINT 
LIO$K_CLK_POINT 

This mode sweeps all selected channels on each 
trigger. This trigger mode is valid only when the 
ADV11-D is attached with mapped I10. 

See the Description for additional information about 
supplying the clock device 1D . 

Immediate start burst mode. 

This sta~•ts immediately on the LIO$READ or the 
LIO$ENQUEUE routine call, or on the LIO$SET_I 
call with the LIO$K_START parameter specifying 
continuous DMA mode. In continuous DMA mode, 
the AID continues to accept data into the successive 
buffers until stopped, or until the software stops 
enqueuing buffers. 

When the ADV11-D is attached to use QIOs, be 
sure that the channel list you set up using the 
LIO$K_AD_CHAN parameter specifies one AID 
channel or all AID channels. If you use all AID 
channels, the buffer size must be greater than 32 
bytes (one sweep of all 16 channels). The number of 
samples read from the device is the largest multiple 
of 16 (2-byte) samples that fit in the buffer. 

Because of Q-bus latency, a consistent rate cannot 
be guaranteed. 

Triggered burst mode. 

Triggered nonburst mode. 

This mode inputs to one channel on each clock tick. 
When the ADV11-D is attached with LIO$K_QIO, 
the parameter value of the LIO$K_AD_CHAN 
parameter must specify either one channel only or 
all channels in ascending order. 

See the Description for information about supplying 
the clock device ID. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-257 



LIO$K TRIG 

The burst modes of triggering run as fast as the hardware can. For 
QIOs, this is 50 kHz. For mapped I/O, this is as fast as the polling loop 
can read from the AID. 

The second value, which is optional, specifies the device ID of the 
clock. Specifying the clock device ID is valid for external trigger modes 
only when the device is set for the synchronous I/O interface. 

For the AXV11-C, one or two longvvord integer constants. 

The first value specifies the trigger mode. The trigger mode applies 
only to the AXV11-C AID converter. The D/A converter always outputs 
data immediately and does not use trigger modes. 

This value can be one of the following: 

Table 4-15: AXV11-C Trigger Modes 

Constant Value Trigger Mode 

LIO$K_IMM_BURST Immediate start burst mode. 

This starts immediately on the LIO$READ or 
LIO$ENQUEUE routine call. 

Externally triggered burst mode. 

On each external trigger, this mode sends a buffer 
as fast as the AID can move data. when the 
AXV11-C is attached to use QIOs, be sure that the 
channel list you set up using the LIO$K_AD_CHAN 
parameter specifies one A!D channel or all AlD 
channels. If you use all AID channels, the buffer 
size must be greater than 32 bytes (one sweep of all 
16 channels). The number of samples read from the 
device is the largest multiple of 16 (2-byte) samples 
that fit in the buffer. 

LIO$K_EXT_BURST 
Ll0$K_CLK_BURST 

See the Description for additional information. 

4-258 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_TRIG 

Table 4-15 (Cont.): AXV1'I-C Trigger Modes 
Constant Value Trigger Mode 

LIO$K_EXT_SWEEP Externally triggered sweep mode. 
LIO$K_CLK_SWEEP This mode sweeps all selected channels on each 

trigger. The buffer size must be greater than a 
single sweep of the selected channels. The number 
of samples read from the device is the largest 
multiple of the number of channels that fit in the 
buffer. 

See the Description for additional information. 

LIO$K_EXT_POINT Externally triggered point mode. 
LIO$K_CLK_POINT This mode sets the AID converter to sample one 

channel on each external trigger, if you specify 
several channels for use, the next channel in the 
list is sampled on each successive external trigger. 
When the A1D converter reaches the end of the 
channel list, it begins sampling again at the first 
channel in the list . 

The second value, which is optional, specifies the clock device ID. 
Specifying the clock device ID is valid for the triggered burst and 
triggered point modes. 

The device can be set to use the asynchronous I/O or the synchronous 
I10 interface. 

For the KWV11-C or the Simpact RTC01, a longword integer constant 
specifying t11e trigger mode. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-259 



LIO$K_TRIG 

The value can be one of the following: 

Table 4-16: KWV11-C/Simpact RTC01 Trigger Modes 
Constant Value Trigger Mode 

LIO$K_IMMEDIATE Software start. 

Start the clock after the appropriate conditions are 
met. See the Restrictions for these conditions. 

LIO$K_EXTERNAL External trigger ST2. 

Start the clock on the first Schmitt trigger 2 after 
one of the appropriate conditions is met . See the 
Restrictions for these conditions. 

See the Restrictions for appropriate KWV11-C and Simpact RTC01 start 
conditions . 

For the Preston, a longword integer constant specifying the trigger 
mode. 

The value can be one of the following: 

Table 4-17: Preston Trigger Modes 
Constant Value Trigger Mode 

L[O$K_IMM_START_CLK_POINT Immediate start one point per clock pulse. 

This mode starts the AID immediately on the L10$READ 
or LIO$ENQUEUE routine call and reads one data point 
for each Preston internal clock pulse. 

LIO$K_IMM_START_CLK_SWEEP Immediate start one channel sweep for each clock pulse. 

This mode starts the AID immediately after the 
LIO$READ or LIO$ENQUEUE routine and. reads one 
channel sweep for each Preston internal clock pulse. 

LIO$K_IMM_START_EXT_POINT Immediate start one point per external clock pulse. 

This mode starts the AID immediately after the 
LIO$READ or LIO$ENQUEUE routine, and reads one 
data point for each external clock pulse. 

4-260 LIO$SET and LIQ$SHOW Parameter Reference Descriptions 



LIO$K TRIG 

Table 4-17 (Cont.): Preston Trigger Modes 
Constant Value Trigger Mode 

LIO$K_EXT_START_CLK_POINT External start one point per internal clock pulse. 

This mode starts the AID on the first external trigger 
pulse after the LIO$READ or LIO$ENQUEUE routine, and 
reads one data point for each internal clock pulse. 

LIO$K_EXT_START_CLK_SWEEP External start one channel sweep per internal clock pulse. 

This mode starts the A/D on the first external pulse after 
the LIO$READ or LIO$ENQUEUE routine, and reads one 
channel sweep for each internal clock pulse. 

LIO$K_EXT_START_EXT_POINT External start one point per external clock pulse. 

This mode starts the AID on the first external trigger 
pulse after the LIQ$READ or LIQ$ENQUEUE routine, and 
reads one data point for each external clock pulse. 

LIO$K_EXT_START_EXT_SWEEP External start one channel sweep per external clock pulse. 

This mode starts the AID on the first external trigger 
pulse after the LIO$READ or LIO$ENQUEUE routine, and 
reads one channel sweep for each external clock pulse. 

Description 
The clock input is (usually) wired to the clock device. If you specify 
the device ID of the clock as the second value of this parameter, then 
the input calls start and stop the clock. This prevents hardware errors 
resulting from clock pulses occurring before the A/D converter is ready 
to accept them. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-261 



LIO$K TRIG 

Restrictions 
• The restrictions for the AAV11-D, ADV11-D, and AXV11-C device-

specific trigger modes are described in the Parameter Values. 
• The clock must not already be running. 

4-262 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K TRIG 

• The KWV11-C and Simpact RTC01 begin operating under different 
conditions depending on which trigger mode is selected and 
whether the transfer is synchronous or asynchronous, as explained 
below: 

— If the clock is set for synchronous reads, and the trigger mode 
is LIO$K_IMMEDIATE, the clock begins when the LIO$READ 
statement executes. 

— If the clock is set for synchronous reads, and the trigger mode 
is LIO$K_EXTERNAL, the clock begins when the external ST1 
event occurs. 

— If the clock is set for asynchronous enqueues, and the trigger 
mode is LIO$K_IMMEDIATE, the clock begins when the 
LIO$K_START statement executes. (See LIO$K_START.) 

— If the clock is set for asynchronous enqueues, and the trigger 
mode is LIO$K_EXTERNAL, the clock begins when t11e external 
ST1 event occurs. 

• The Simpact RTC01 does not use the trigger mode until the clock is 
started using LIO$SET_I with the LIO$K_START parameter. 

Examples 

1. status = LIO$SET_I (adq_id, LIO$K_TRIG, 3, LIOSK_BURST, LIO$K_SAME, 

1 LIOSK_SAME) 

This routine sets up the ADQ32 to take data at the burst rate of the 
AID. 

2, status = LIO$SET_I (adv_id, LIO$K_TRIG, 1, LIO$K_IMM_BUR.ST) 

This routine sets up the ADV11-D to begin taking data as soon as 
the program executes an LIO$READ or LIO$ENQUEUE routine. 
The ADV11-D fills the data buffer as fast as possible. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-263 



LIO$K_TYPE_AHEAD 

LIO$K_TYPE_AHEAD 

This parameter enables or disables a serial line type-ahead buffer. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer constant. 

The value can be one of the following: 

Constant Value Function 

LIO$K_OFF 

LIO$K_ON1

Disables the type-ahead buffer. (Data is lost if there 
is no read request pending. ) 

Enables the type-ahead buffer•. (Data is maintained 
in the typeahead buffer if no read request is pending 
and unsolicited data is received. ) 

1The default value. 

Description 
Enabling the type-ahead buffer allows the buffering of unsolicited 
data. The buffered data is returned during a read request. Use the 
LIO$K_UNSOLICITED parameter to return the number of characters in 
the type-ahead buffer, in bytes. 

Restrictions 
None. 

4-264 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_TYPE_AHEAD 

Example 
status = LIO~SET_I (serial_id, LIO$K_TYPE_AHEAD, 1, LIO$K_ON) 

This routine enables the type-ahead buffer. 

LIO$SET and LIO$SHOVi! Parameter Reference Descriptions 4-265 



LIO$K UNLOCK_BUFFER 

LIO$K_UNLOCK_BUFFER 

This parameter unlocks a buffer previously locked with the 
LIO$K_LOCK_BUFFER parameter. 

Supported Devices 
DRB32 

Parameter Values 
Two longword integer values. 

The first value specifies the buffer to unlock. 

The second value specifies the size of the buffer in bytes. 

Description 
Unlocking buffers is necessary when you have locked the maximum 
number of buffers (16) and you need to lock another buffer not 
previously locked. 

Restrictions 
This parameter only unlocks buffers t11at have Veen previously locked 
with t11e LIO$K_LOCK_BUFFER parameter. This paranleter cannot 
unlock buffers that are locked Uy standard VMS mechanisms. 

Example 
status = LIOSSET_I (device_id, LIO$K_UNLOCK_BUFFER, 2, buffer_addrees, 
1 4098) 

This routine unlocks one 4096-byte buffer at address buffer_address. 

4-266 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_UNSOLICITED 

LIO$K_UNSOLICITED 

This parameter returns the number of characters in the type-ahead 
buffer. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer. 

Description 
The number of characters in the type-ahead buffer is useful to help 
determine if your instrument is outputting data (unsolicited input) 
before you issue a read request. Any data output by the device between 
the time you attach the device and the time you actually issue a read 
request is returned in the integer you supply. 

Restrictions 
This is an LIO$SHOW parameter only. 

Example 
INTEGER*4 number_char 
status = LIO=SET_I (serial_id, LIO$K_UNSOLICITED, 1, number_char) 

This routine returns the number of characters in the type-ahead buffer 
in the argument number_char. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-267 



LIO$K_UPDATE 

LIO$K_UPDATE 

This parameter causes t11e set-up information to be sent to the Preston 
device through the parallel port. 

Supported Devices 
Preston 

Parameter Values 
None. 

Description 
This parameter physically updates the Preston device to the currently 
specified set-up parameters. 

Restrictions 
• T11is must be the last parameter to be set, with the exception 

of the LIO$K_START and LIO$K_STOP parameters when using 
continuous DMA, before the first LIO$READ and LIO$ENQUEUE 
to the device . 

• This is not a valid LIO$SHOW parameter. 

• This is a required parameter. 

Example 
status = LIO$SET_I (device_id, LIO$K_UPDATE, 0) 

This routine updates, or sets up, the Preston device with the set-up 
characteristics specified in previous LIO$SET routine calls in the user 
program. 

4-268 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_USER ACK_AST 

LIO$K_USER_ACK_AST 

This parameter• specifies t11e address of auser-supplied AST routine that 

transmits an ACK message on successful completion of a data transfer. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer. 

Description 
Use an AST routine to transmit ACK messages that consist of more 
than a fixed ACK string. 

See the description of LIO$K_PROTOCOL for more information. 

Restrictions 
None. 

Example 
status = LIO$SET_I (serial_id, LIO$K_USER_ACK_AST, 1, ack_ast) 

T11is routine supplies the address of an AST routine called ack_ast. 

LIO$SET and LIO$SHOW Pay a~~neter Reference Descriptions 4-269 



LIO$K USER ACK STRING 

LIO$K_USER_ACK_STRING 

This parameter supplies an ACK string to be sent out on successful 
completion of a data transfer. 

Supported Devices 
Serial line 

Parameter Values 
A character string specifying what to transmit on successful completion 
of a data transfer. 

This value is passed by descriptor. 

Description 
Use an ACK string to signal an acknowledge of successful completion 
to a serial device. 

See the description of LIO$K_PROTOCOL for more information. 

Restrictions 
None. 

Example 
status = LIO~SET_S (serial_id, LIO$K_USER_ACK_STRIIJG, 'Confirmed') 

This routine specifies that the string "Confirmed" be transmitted to a 
serial device to signal an acknowledge. 

4-270 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_USER NAK_AST 

LIO$K_USER_NAK_AST 

T11is parameter specifies the address of auser-supplied AST routine 
to transmit the NAK message on unsuccessful completion of a data 
transfer. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer. 

Description 
Use an AST routine to transmit NAK messages that consist of more 
than a fixed NAK string. 

See the description of LIO$K_PROTOCOL for more information. 

Restrictions 
None. 

Example 

status = LIO$SET_I (serial_id, LIO$K_USER_NAK_AST, i, nak_aet) 

This 1•outine supplies the address of an AST routine called nak_ast. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-271 



LIO$K_USER NAK STRING 

LIO$K_USER_NAK_STRING 

This parameter supplies the NAK string to be sent out on unsuccessful 
completion of a data transfer. 

Supported Devices 
Serial line 

Parameter Values 
A character string specifying what to transmit on unsuccessful 
completion of a data transfer. 

This value is passed by descriptor. 

Description 
Use a NAK string to signal a negative acknowledge to a serial device. 

See the description of LIO$K_PROTQCOL for more information. 

Restrictions 
None. 

Example 
status = LIO$SET_S (serial_id, LIO$K_USER_P1AK_STRING, '?lot received') 

T111s routine Specifies tllat the String "Not received" be transmitted to a 
serial device to signal a negative acknowledge. 

4-272 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K USER READ PROTOCOL AST 

LIO$K_USER_READ_PROTOCOL_AST 

This parameter sets up the protocol AST routine to specify what action 
to take on receipt of a terminator or full buffer of characters from a read 
request. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer specifying the address of an AST routine to be 
called on receipt of either an input terminator or a full buffer of 
characters from a read request. 

Description 
This parameter enables users to define a protocol for t11e serial line. A 
user program can examine a buffer and determine if an acknowledge or 
a negative acknowledge is to be sent out on the serial line. 

The status returned by the buffer determines what action is appropriate. 
The buffer can return one of the following status values: 

Status Value Action 

L10$K_ABORT 

LIO$K_ACK_STRING 

LIO$K_NAK_STRING 

LIO$K_ACK_ROUTINE 

Abort . 

Send the string defined by the 
LIO$K_USER_ACK_STRING parameter as the 
acknowledge to the device. 

Send the string defined by the 
LIO$K_USER_NAK_STRING parameter as the 
negative acknowledge to the device. 

Call the AST routine defined by 
LIO$K_USER_ACK_AST to enable the user to build 
an acknowledge string to send to the device. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-273 



LIO$K_USER READ_PROTOCOL_AST 

Status Value Action 

LIO$K_NAK_ROUTINE Ca11 the AST routine defined by 
LIO$K_USER_NAK_AST to enable the user to build 
a negative acknowledge string to send to the device. 

LIO$K_DEVICE_ACKED Call the AST routine defined by 
LIO$K_DEVICE_ACK_AST to take appropriate action 
on a successful write. 

LIO$K_DEVICE_NAKED Call the AST routine defined by 
LIO$K_DEVICE_NAK_AST to take appropriate action 
on an unsuccessful write. 

LIO$K_NO_ACTION Take no action. 

See the description of LIO$K_PROTOCOL for more information. 

Restrictions 
None. 

Example 

status = LIO$SET_I (serial_id, LIO$K_USER_READ_PROTOCOL_AST, 1, 
1 LIO$K_ACK_STRING) 

This routine signals the sending of the string defined by the 
LIO$K_USER_ACK_STRING parameter as the acknowledge to the 
device. 

4-274 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K USER WRITE NAK HANDLING 

r"1 
LIO$K_USER_W RITE_NAK_HAN D LI NG 

This parameter specifies whether or not a sending device attempts to 
retransmit a buffer after receiving a NAK from the intended receiving 
device. 

Supported Devices 
Serial line 

Parameter Values 
A longword integer constant. 

The value can be one of the following: 

Constant Value Function 

LIO$K_RESEND_LAST Retransmits the buffer to the device. 
L1O$K_NO_RESEND1 Does not retransmit the buffer. 

1 The default value. 

Description 
This parameter determines the action that is taken on receiving a NAK 
from a serial line device. 

See the description of LIO$K_PROTOCOL for more information. 

Restrictions 
This parameter is used with user-defined protocols for serial line 
devices. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-275 



LIO$K_USER_WRITE_NAK_HANDLING 

Example 
status = LIO$SET_I (serial_id, LIO$K_USER_1~RITE_NAK_HANDLING, 1, 
1 LIO$K_RESEND_LAST) 

This routine retransmits the buffer after receiving a NAI< from the 
intended receiving device. 

4-276 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_VLT_DDR 

LIO$K_VLT_DDR 

This parameter converts a voltage into its corresponding complementary 
binary-coded value and moves it to the DAC Data Register (DDR). 

Supported Devices 
ADF011 

Parameter Values 
A single-precision, floating-point real value specifying the DAC voltage 
in the range —10.0000 to +9.9951. 

Description 
See the Parameter Values. 

Restrictions 
None. 

Example 
status = LIO$SET_R (adf_id, LIO$K_VLT_DDR, 1, real_value) 

This routine moves t11e corresponding value of real_value in 
complementary offset binary code into the DDR. The real value 
argument contains t11e DAC voltage value in the range —10.0000 to 
+ 9.9951. 

~ This device is availaUle only in Europe. 

n LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-277 



LIO$K VOLTAGE 

LIO$ K_VOLTAG E 

This parameter specifies the input voltage range. 

Supported Devices 
IDV11-Al 

Parameter Values 
A longword integer constant. 

The value can be one of the following: 

Value Meaning 

01 Standard input range 
1 Low-level input range 

1The default value. 

Description 
The standard input range for all 16-digital inputs is 24 to 48V DC. 

The low-level range allows low voltage and low power signal sources, 
such as transistor-to-transistor logic (TTL) at 0 to 5V, and metal oxide 
semiconductor (MOS) at 0 to 3V. 

Restrictions 
None. 

1 This device is available only in Europe. 

4-278 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K_VOLTAGE 

Example 

states = LIO=SET_I (idva_id, LIO=K_VOLTAGE, i, i) 

This routine sets the IDV11-A for low-level voltage input. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-279 



LIO$K X LABEL 

LIO$K_X_LABEL 

This parameter specifies the label placed on the x-axis of the channel 
specified by LIO$K_CURRENT_CHANNEL. 

Supported Devices 
Real-time plotting 

Parameter Values 
A character string less than or equal to 72 characters in length specifying 
the label. 

This value is passed by descriptor. 

Description 
The label is placed under the x-axis of t11e current channel. 

If a single x-axis is being used for the plotting window, use 
LIO$K_CURRENT_CHANNEL to set channel 0 as the current channel 
so that the x-axis label is placed for the entire screen. 

Use LIO$K_Y_LABEL to set the y-axis label. 

Restrictions 
• The label is limited to 72 characters. 
• The real-time plotting device is supported only on VAXstation-based 

VAXIab systems running VWS. 

Example 

status = LIO$SET_S (graphics_id, LIO$K_X_LABEL, 'Degrees') 

This routine specifies "Degrees" as the x-axis label for the current 
channel. 

4-280 L10$SET and LIO$SHOW Parameter Reference Descriptions 

lJ 

u 



LIO$K_X_RANGE 

LIO$K_X_RANGE 

This parameter specifies the number of points to plot along the x axis, 
and the increment at which points are plotted. 

Supported Devices 
Real-time plotting 

Parameter Values 
Two longword integer values. 

The first value specifies the number of data points to be plotted along 
the x-axis. The default value is 100. 

The second value specifies the increment at which points are to be 
plotted. The default value is 10. 

Description 
The number of points plotted on the x axis determines how many data 
points are visible at one time. The increment at which points are plotted 
determines how many data points are plotted from a single channel at 
one time. 

Restrictions 
• The increment must be no more than one half of the number of 

points displayed along the x axis. 

• The real-time plotting device is supported only on VAXstation-based 
VAXIab systems running VWS. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-281 



LIO$K_X RANGE 

Example 
status = LIO~SET_I (graphics_id, LIO~K_X_RAAIGE, 2, 200, 20) 

This routine sets up the real-time plotting device to plot 200 data points, 
with an increment of 20. 

4-282 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K XON 

LIO$K_XON 

This parameter forces the sending of an XON character to reprime the 
serial line. 

Supported Devices 
Serial line 

Parameter Values 
None. 

Description 
XONIXOFF signals control the data flow along the serial line. Sending 
an XON signal tells the device to start sending data. 

Restrictions 
None. 

Example 
statue = LIOSSET_I (device_id, LIO~K_XON, 0) 

This routine sends an XON signal along the serial line. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-283 



LIO$K Y LABEL 

LIO$K_Y_LABEL 

This parameter specifies the label placed on the y-axis of the channel 
specified by LIQ$K_CURRENT_CHANNEL. 

Supported Devices 
Real-time plotting 

Parameter Values 
A character string less than or equal to 72 characters in length specifying 
the label. 

This value is passed by descriptor. 

Description 
The label is placed parallel to the y-axis of the current channel. 

Restrictions 
• The label is limited to 72 characters. 

• The real-time plotting device is supported only on VAXstation-based 
VAXIab systems running VWS. 

Example 
status = LIOSSET_S (graphics_id, LIO~K_Y_LABEL, 'Amplitude') 

This routine specifies "Amplitude" as the y-axis label for the current 
channel. 

4-284 LIO$SET and LIO$SHOW Parameter Reference Descriptions 



LIO$K Y MAX 

LIO$K_Y_MAX 

This parameter specifies the maximum y value for each channel to be 
plotted. 

Supported Devices 
Real-time plotting 

Parameter Values 
A single-precision, floating-point real value or values specifying the 
maximum y value for each channel to be plotted. 

The default value is 10.0. 

You can specify up to eight maximum y values, one for each channel 
specified in the LIO$K_PO_CHAN list. 

Description 
See the Parameter Values. 

Restrictions 
• You must specify one maximum y value for each channel specified 

in the LIO$K_PO_CHAN list. 

• The real-time plotting device is supported only on VAXstation-based 
VAXIab systems running VWS. 

Example 
statue = LIO~SET_R (graphice_id, LIOsK_Y_MAX, 2, 4.0, 4.0) 

This routine specifies a maximum y value of 4.0 for each of two 
channels specified in the LIO$K_PO_CHAN list. 

LIO$SET and LIO$SHOW Parameter Reference Descriptions 4-285 



LIO$K Y_MIN 

LIO$K_Y_MIN 

This parameter specifies the minimum y value for each channel to be 
plotted. 

Supported Devices 
Real-time plotting 

Parameter Values 
A single-precision, floating-point real value or values specifying the 
minimum y value for each channel to be plotted. 

The default value is —10.0. 

You can specify up to eight minimum y values, one for each channel 
specified in the LIO$K_PO_CHAN list. 

Description 
See the Parameter Values. 

Restrictions 
• You must specify one minimum y value for each channel specified 

in the LIO$K_PO_CHAN list. 
• The real-time plotting device is supported only on VAXstation-based 

VAXIab systems running VWS. 

Example 
status = LIO=SET_R (graphics_id, LIO~K_Y_MIN, 2, -2.0, -2.0) 

This routine specifies a minimum y value of —2.0 for each of two 
channels specified in the LIO$K_PO_CHAN list. 

4-286 LIO$SET and LIO$SHOW Parameter Reference Descriptions 

l.J 



Chapter 5 

Laboratory I/O Error Handling 

This chapter describes Laboratory IIO (LIO) error handling, explains the 
error messages, and provides recovery procedures. 

5.1 Overview 

When you execute an image that results in an LIO error, the system 
locates the error message associated with the error and directs it to the 
devices or files defined as SYS$ERROR and SYS$OUTPUT. 

The system also generates messages when routine calls in an application 
program execute successfully. The LIO routines use the same standards 
as the VMS Run-Time Library and System Services for returning status 
information about routine calls. 

The VMS Run-Time Library and System Services return a status value 
which is passed back to the user program through a longword variable 
when the routine is called as a function. 

Laboratory I/O Error Handling 5-1 



A successful operation returns an LIO success status value with bit zero 
set (true). An unsuccessful operation returns one of the LIO symbolic 
status values with bit zero clear (false). The symbols for the status 
values are defined in definition files for each of the programming 
languages listed in the following table: 

Table 5-1: Error Handling Symbolic Status Definition Files 
Language Symbolic Status Definition File 

VAX Ada 
VAX BASIC 
VAX C 
VAX FORTRAN 
VAX MACRO 
VAX Pascal 

SYS$LIBRARY : LIOERRS .ADA 
SYS $LIBRARY : LI O ERR S .BAS 
SYS $LIBRARY : LIOERRS . H 
SYS$LIBRARY: LIOERRS .FOR 
SYS $LIBRARY : LI O E R R S .MAR 
SYS$LIBRARY: LIOERRS .PAS 

See Section 5.4, Symbolic Status Values and Descriptions, for a 
description of the symbolic status values. 

5.2 Checking Routine Call Status 

A user program can check the status of routine calls in the following two 
ways: 

• By testing status for success after each operation and by signaling 
the condition value to the device or file defined as SYS$ERROR and 
SYS$OUTPUT if the operation is not successful. 

status = LIO$DEgUEUE (device_id, buff_ptr, buff_len, 
1 data_len, 0, ,) 

IF (.NOT. status) CALL LIB$SIGNAL(XVAL(STATUS)) 

5-2 Laboratory I/O Error Handling 



• By testing status after each operation for a specific condition value. 

INCLUDE 'SYS$LIBRARY:LIOERRS.FOR' !Symbolic status definitions 

. Declare variables, attach device, set up device 

C Poll for a completed buffer. If a buffer is not available, 
C print out the message. If a buff er is available, process it. 

6 CONTINUE 

C Poll for a complet ed buffer 
status = LIO$DEQUEUE (device_id, buff_ptr, buff_len, 
1 data_len, 0, ,) 

IF (status .EQ. LIO~_EMPTYQ) THEN !Queue is empty 

TYPE *, 'No buffers on user queue' 
GOTO 6 

ELSE IF (.NOT. status) !Check statue 
CALL LIB$SIGNAL (XVAL(STATUS)) !Signal error, if any 

ELSE 

ENDIF 

Buffer processing may occur here 

This program segment tests if status equals the LIO$_EMPTYQ 
condition value. If status is equal to LIO$_EMPTYQ, then the 
program types out the "No buffers on -user queue" message and 
attempts to dequeue the buffer again. T11e program continues to call 
LIO$DEQUEUE until it successfully dequeues the buffer. W11en this 
occurs, status is no longer equal to LIO$K_EMPTYQ. The new value 
of status is directed to the device or file defined as SYS$ERROR, 
and the program continues execution. 

NOTE 

If your program is coded to check for specific condition 
values after one or more operations, you must include 
the symbolic value definition file appropriate for your 
programming language. T11e symbolic definition files 
supplied by VAXIab are listed in Table 5-1, Error Handling 
Symbolic Status Definition Files. If you do not include the 
symbolic definition file, LIO does not recognize these values. 

Laboratory I/O Error Handling 5-3 



5.3 Setting Up Devices for Error Handling 

You can set up an IIO device wit11 the LIO$K_ERR_HANDLE parameter 
to specify the way the device returns errors. The LIO facility supports 
the following error-handling methods for all devices: 

• The device returns the symbolic status as the value of the routine 
call. 

status = LIOSSET_I (device_id, LIO$K_ERR_HANDLE, 1, LIOSK_STATUS) 
IF(.NOT. status) CALL LIBsSIGNAL(XVAL(STATUS)) 

This error-handling method enables the user program to handle 
error recovery. This is the default for all devices. If you do 
not explicitly set up a device using the LIO$K_ERR_HANDLE 
parameter, the device's error-handling method defaults to 
LIO$K_STATUS. 

• The device directs the status value to both SYS$OUTPUT and 
SYS$ERROR, and returns the symbolic status as the value of the 
routine call. This method does not terminate program execution on 
fatal errors. Code the program to handle error recovery. 

status = LIO=SET_I (device_id, LIO$K_ERR_HANDLE, 1, LIOsK_MESSAGE) 
IF(.NOT. status) CALL LIB$SIGNAL(XVAL(STATUS)) 

This error-handling method simplifies the debugging of a program 
that handles error conditions. 

The device directs all status values to both SYS$OUTPUT and 
SYS$ERROR. On fatal errors, the program stops execution. 

C Check status of LIOSSET_I call because LIO$K_FATAL is not 
C set up yet. 

status = LIO$SET_I (device_id, LIOSK_ERR_HANDLE, 1, LIO~K_FATAL) 
IF(.NOT. status) CALL LIBSSIGNAL(XVAL(STATUS)) 

C LIO~K_FATAL error handling method is set up nor 

C No need to check status of routine call 

CALL LIOSDEQUEUE (device_id, buff_ptr, buff_len, 
1 data_len, 1„) 

5-4 Laboratory IIO Error Handling 



tVOTE 

In this case, your program can call the LIO routines as 
subroutines instead of functions because the program 
does not have to check the returned status. However, 
you still need to check the status of any routine calls you 
make before you set up the device with LIO$K_FATAL. 
The device uses LIO$K_STATUS (the default) until you 
specify another method. 

If you set up an IX device with LIO$K_FATAL, you still need to 
check the status of LIO$DEQUEUE calls to determine the reason for 
buffer completion. In this case, you are testing status for a specific 
condition value. Thus, you also need to include the symbolic status 
definition file appropriate for your programming language. 

INCLUDE 'SYSSLIBRARY:LIOERRS.FOR' !Get symbolic status definitions 

. Declare variables, attach device, set up device, etc. 

C Check status of LIO;SET_I call because LIOSK_FATAL is not 
C set up yet. 

status = LIO$SET_I (ix_id, LIO$K_ERR_HANDLE, 1, LIOsK_FATAL) 
IF (.NOT. status) CALL LIB$SIGNAL(XVAL(STATUS) 

C LIOSK_FATAL error handling method is set up nor 

C No need to check status of routine call 
CALL LIO$ENQUEUE (ix_id, buff_ptr, buff_len, 

6 CONTINUE 

C Check status of routine call 
status = LIOSDEQUEUE (ix_id, buff_ptr, buff_len, 
1 data_len , 1, , ) 

IF (status .EQ. LIO$_BUFFER_FULL) THEN 
GOTO b !There is more data to read 

ENDIF 

This program segment checks the status of the LIO$DEQUEUE 
routine to determine if the buffer completes because it is full. If 
the buffer is full; then there is still more data to dequeue, so the 
program dequeues another buffer. This operation continues until an 
end condition other than LIO$K_BUFFER_FULL occurs. 

Laboratory I/O Error Handling 5-5 



5.4 Symbolic Status Values and Descriptions 

This section presents the LIO symbolic status values and error messages 
alphabetically, with an explanation of each value and the appropriate 
action you should take to recover from each error condition. 

LIO$_ACCVIO, Cannot access CTRL_AST or buffer invalid 

Explanation: An address specified is not a valid virtual memory 
location. 

User Action: Edit your program to ensure that you specify a valid 
address. 

LIO$_ADDR_NOT_SET, IEEE-488 address not set for this unit 

Explanation: An IEEE-488 device address has not been set up prior to 
the beginning of data transfers. 

User Action: Use the LIO$K_IEEE_ADDR parameter to set up an 
IEEE-488 bus address for the device. 

LIO$_ALREADY_ATTACHED, Device already attached 

Explanation: The device is already attached, either by this program or 
by another program. 

User Action: Your program may have tried to attach the device more 
than once. If this is t11e case, edit your program to reYnove the 
redundant LIO$ATTACH call. If the device is currently attached by 
another program, wait until the other program detaches the device. 

LIO$_ARGREQ, Cannot default required argument 

Explanation: You have omitted a required argument in the routine call 
argument list. The LIO facility does not supply a default value for the 
missing argument. 

User Action: Check the reference description of the routine call for 
which this status value is returned to determine which argument was 
omitted. Edit your program to include t11e required argument in the 
argument list. If the argument requires a variable declaration, be sure to 
declare the variable and its appropriate data type. 

5-6 Laboratory I/O Error Handling 



LIO$_ATTACH_FAILED, Cannot attach device 

Explanation: The LIO facility is unable to attach the device. 

User Action: None. 

LIO$_BUFF_OVERLAP, Specified buffer overlaps prelock buffer 

Explanation: Your program attempted to perform an operation on a 
buffer that partially overlaps a prelocked buffer. 

User Action: Ensure that all buffers, prelocked or otherwise, do not 
overlap each other. 

LIO$_BUFFSIZE, Wrong buffer size for operation 

Explanation: The size of the buffer declared is inappropriate for t11e 
operation. If this status value is returned after an LIO$ENQUEUE, 
LIO$READ, or LIO$WRITE routine call to a device, this indicates that 
the buffer is too small to contain a single data value. 

If this status value is returned after an LIO$ENQUEUE routine call to a 
memory queue device, the buffer is larger than the buffers preallocated 
for the device. This applies to memory queues attached for local 
memory management and interprocess memory management. 

This status value can also be returned if the buffer is too large for 
operation. If the device is the AXV11-C, buffer sizes must be 64K bytes 
or smaller for input operations. 

User Action: For all devices, you must specify the buffer_length or 
data_length in numbers of bytes. For example, if you have a buffer 
that contains one data value that is a word (two bytes), then the 
buffer_length or the data_length must be specified as 2, which indicates 
one data value, two bytes in size. 

For memory queue devices, preallocate larger buffers. 

The AXV11-C can only input 64K bytes. Check to see that you did not 
exceed this number. 

Laboratory I/Q Error Handling 5-7 



LIO$_BUFORDER, Continuous DMA buffers enqueued out of order 

Explanation: Continuous DMA buffers are enqueued out of order. 
When a program enqueues continuous DMA buffers, they must be 
enqueued in ascending order beginning with the first buffer and 
incrementing the buffer array index with each successive buffer 
enqueued. 

User Action: Check your program to be sure that the index value 
is included in your buffer argument in the LIO$ENQUEUE routine 
call, and that your program enqueues the buffers in ascending order, 
beginning with index value one. 

See Section 1.6.3.2, Continuous DMA, for information about performing 
continuous DMA with VAXIab I/O devices. 

LIO$_BUS_ERR, A bus error has occurred 

Explanation: A VAXBI bus error was generated during a transaction. 

User Action: If the condition persists, call your local Field Service 
office. 

LIO$_CIC, Unit is controller-in-charge 

Explanation: The requested operation cannot be performed while the 
IEEE-488 device is currently the controller-in-charge. 

User Action: Use the LIO$K_PASS_CTRL parameter to specify another 
IEEE-488 device as the controller-in-charge. Or, use the 
LIO$K_CTRL_STANDBY parameter to place the current device's 
controller function on standby while the operation is performed. 

LIO$_CLKOVERUN, Clock overrun 

Explanation: The ADQ32 device is being triggered faster than it can 
take data. 

User Action: Be sure that the device clock rates are set at values that 
are appropriate for the physical limitations of the device. 

5-8 Laboratory I/O Error Handling 

l~ 



LIO$_CTGCDMA, Continuous DMA buffers are not contiguous 

Explanation: The continuous DMA buffers do not form a contiguous 
64K-byte block of memory. 

User Action: To ensure that continuous DMA buffers form a contiguous 
64K-byte block of memory, allocate the buffers as sections of a 64K-byte 
array. Also, check your program to ensure that you have used the 
correct array index and that you have supplied the correct number of 
bytes to the buffer_length argument. 

LIO$_DETACH_FAILED, Cannot detach device 

Explanation: The LIO facility is unable to detach the device. 

User Action: None. 

LIO$_DEVACTIVE, Device must be idle when changing parameters 

Explanation: You attempted to change a DRB32 operating parameter 
while a data transfer is in progress. 

User Action: Wait for all I10 requests to complete before issuing an 
LIO$SET_X call to change an operating parameter. 

LIO$_DEV_ERR, IIO hardware detected an error 

Explanation: The I10 hardware set its error bit. When using ADCs 
or DACs, the clock rate may be set too fast, or a condition known as 
"trigger slivering" has occurred. 

User Action: Check your program to ensure t11at you have set up the 
clock rate and trigger sources appropriately for the device. Also, see 
Section 2.1.6, Using the KWV11-C to Avoid Trigger Slivering, to ensure 
that you have set up your device to avoid trigger slivering. This applies 
to AAV11-D, ADV11-D, and AXV11-C devices. 

LIO$_DEVSPREQ, Device-specific argument required 

Explanation: You have omitted the device_specific argument from a 
routine call argument list. This can occur in the following instances: 

• On an LIO$ENQUEUE routine call to the AXV11-C, the 
device_specific argument is used to specify whether the buffer 
is sent to the ADC or a DAC on the device. 

Laboratory I/O Error Handling 5-9 



• On an LIO$ENQUEUE, LIO$READ, or LIOWRITE routine call to 
the DRV11-J, the device_specific argument is used to specify which 
of the four ports of the device is to be read from or written to by the 
routine call. 

User Action: See the device support sections for the AXV11-C and 
DRV11-J devices in Chapter 2 for more information about specifying the 
device_specific argument and the acceptable values for this argument. 
Check your program to ensure that you have specified a device_specific 
argument appropriate for your device. 

LIO$_EMPTYQ, No buffers on queue 

Explanation: The LIO$DEQUEUE routine has attempted to dequeue a 
buffer from the device's user and found no buffers available. 

User Action: Specify a nonzero value for the wait argument of the 
LIO$DEQUEUE routine to signal the routine to wait for a buffer to 
become available. Or, continue to attempt to dequeue the buffer until 
the operation is successful. The nature of your application determines 
which method is appropriate. 

LIO$_FIL_OPEN, File is open 

Explanation: Your program attempted to set up a file device that your 
program has already opened. 

User Action: Check your program to ensure that you have set up 
all characteristics of the file device before you open the file. The 
LIO$K_OPEN_FILE parameter must be t11e last parameter you set. This 
parameter actually opens the file device with the characteristics you set 
up previously in t11e same program. 

LIO$_FLAGREQD, An event flag is required 

Explanation: When enqueueing buffers to the AAV11-D and the 
ADV11-D for continuous DMA, you must supply an event flag in the 
LIO$ENQUEUE routine call argument list. An event flag is required to 
signal the completion of the operation andlor the start of a subsequent 
operation. See Section 1.6.3.2, Continuous DMA, for more information. 

User Action: Check your program to ensure that you have included 
a unique event flag for each buffer in every LIO$ENQUEUE routine 
argument. 

5-10 Laboratory I/~ Error Handling 

~„J 



LIO$_GBLACCESS, Access mode conflicts with global section 

Explanation: The memory queue devices in both processes are set up 
with conflicting parameters. This can occur when the memory queue 
device in one process is set up for transfer (LIO$K_TRANSFER), but the 
memory queue device in a second process is not set up for transfer. 

User Action: Check your programs to ensure that either the memory 
queue device in each process is set to transfer data, or that one memory 
queue device is set up to display data and the second memory queue 
device is set up to copy data. See Section 2.7.2.4, Setting Up a Memory 
Queue Device for Interprocess Communications, for more information. 

LIO$_ILLBUFF, Illegal buffer address 

Explanation: One of the following occurred: 

• When using the AXV11-C device attached with LIO$K_CTI, you 
supplied a buffer not previously set up with the LIO$K_CTI_BUF 
parameter. 

• When using the DRQ3B or the Preston/DRQ3B devices, you 
supplied a buffer larger than the LIO$K_BUFF_SIZE parameter. 

• When using memory queue devices, you supplied a buffer not 
previously set up (preallocated) with the LIO$K_BUFF_SOURCE 
parameter. 

User Action: Check your progY•am to ensure that you have set up the 
device appropriately for the operations you intend to perform. 

LIO$_ILLCHAN, A/D or DlA channel number out of range 

Explanation: The LIO$K_AD_CHAN or LIO$K_DA_CHAN parameter 
values are inappropriate or out of range for the device. 

User Action: Check your program to ensure that the values of the 
LIO$K_AD_CHAN or LIO$K_DA_CHAN parameter are appropriate 
for t11e device. See the reference descriptions of these parameters in 
Chapter 4 for the acceptable values of these parameters for each device. 

Laboratory i/O Error Handling 5-11 



LIO$_ILLDEVSPEC, Invalid device-specific argument 

Explanation: The value contained in the device_specific argument is 
inappropriate for use with the operation. 

User Action: See the device support description in Chapter 2 to 
verify the appropriate use and acceptable values of the device_specific 
argument. 

LIO$_ILLFUNC, Device set up conflicts with I/O operation 

Explanation: This status value is returned on the first LIO$ENQUEUE 
or LIO$READ routine call when the KVW11-C or Simpact RTC01 clock 
module is not set up for event tuning. 

User Action: Edit your program to set up the KWV11-C or Simpact 
RTC01 clock module for event timing. Use the LIO$K_FUNCTION 
parameter, specifying either LIO$K_EVENT_ABS or LIO$K_EVENT_REL 
as the parameter value. 

LIO$_ILLGAIN, Gain number out of range 

Explanation: A channel gain value you specified with t11e 
LIO$K_AD_GAIN parameter is out of range. 

User Action: See the reference description of the LIO$K_AD_GAIN 
parameter for acceptable values of this parameter and the restrictions 
that apply. 

LIO$_ILLID, Illegal device ID 

Explanation: The device_id argument was not returned by the 
LIO$ATTACH routine . 

User Action: Check your program to ensure that you attach a device 
using the LIO$ATTACH routine before you attempt to set up device 
characteristics. You must have an LIO-assigned device ID for a device 
before you can use the device. 

If the LIO$ATTACH routine is the first routine call you make to the 
device, then check for spelling errors in the routine line. If you are 
programming in VAX C, ensure that all routine arguments are passed 
by reference. 

5-12 Laboratory I/Q Error Handling 



LIO$_ILLSETUP, Device not set properly for I10 operation 

Explanation: You used an illegal combination of set parameters. 

User Action: See the reference description of the set routines and t11e 
set parameters to verify the acceptable values. 

LIO$_ILLTRIG, Unknown trigger value 

Explanation: A trigger value you specified with the LIO$K_TRIG 
parameter is unknown or not supported for the device. 

User Action: See the reference description of t11e LIO$K_TRIG 
parameter to verify the acceptable values of this parameter for the 
device. Check your prograYn to be sure you have included the 
LIOSET.ext file that defines the set parameter symbols for your 
programming language. Check your program to be sure the trigger 
value is entered correctly. 

LIO$_ILLVAL, Illegal parameter values 

Explanation: A parameter value you specified is unknown or not 
supported for the device. 

User Action: See the reference description of the parameter to verify 
the acceptable values. Check your program to be sure you have 
included the LIOSET.ext file that defines the set parameter symbols 
for your programming language. Check your program to ensure that the 
parameter values are entered correctly. 

LIO$_INSBUFHDR, Internal error, ran out of buffer header 

Explanation: The LIO software detected an unrecoverable, inconsistent 
condition. 

User Action: Submit a Software Performance Report (SPR) that 
describes the conditions leading to the error. 

LIO$_INSFWS, Insufficient working set to lock user buffer 

Explanation: The working set is too small to lock the specified buffer. 

User Action: You should increase your working set by the size of the 
buffer. This may require assistance from the System Manager. 

Laboratory I/O Error Handling 5-13 



LIO$_INTERR, Internal software error 

Explanation: The LIO software detected an unrecoverable, inconsistent 
condition. 

User Action: Submit a Software Performance Report (SPR) that 
describes t11e conditions leading to the error. 

LIO$_INV_ADDR, Invalid IEEE-488 address 

Explanation: An IEEE-488 bus address either is out of range or does not 
match the address of any device currently on the IEEE-488 bus. 

User Action: Check the IEEE-488 addresses of all devices currently on 
the IEEE-488 bus. Some of these can only be set manually. 

LIO$_IOERROR, Error occurred during I/O 

Explanation: The IIO hardware set its error bit. When using ADCs 
or DACs, the clock rate may be set too fast, or a condition known as 
"trigger slivering" has occurred. 

User Action: Check your• program to ensure that you have set up the 
clock rate and trigger sources appropriately for the device. Also, see 
Section 2.1.6, Using the KWV11-C to Avoid Trigger Slivering, to ensure 
that you have set up your device to avoid trigger slivering. This applies 
to AAV11-D, ADV11-D, and AXV11-C devices. 

LIO$_MALFAIL, Unable to allocate memory 

Explanation: A user account is not allowed to allocate as much memory 
as the LIO facility requires for internal data structures. 

User Action: See your System Manager and ask about increasing your 
working set size. 

LIO$_NAMTOOLONG, Device name too long 

Explanation: A file or global section name is more than 131 or 43 
characters in length, respectively. 

User Action: Edit your program to shorten the file or global section 
name . If you are programming in FORTRAN, the CHARACTER * n 
declaration must have "n" no greater than 131 for disk files, and no 
greater than 43 for global sections. 

5-14 Laboratory I/Q Error Handling 



LIO$_NIMP, Feature not implemented 

Explanation: A feature, such as CTI support, was originally planned but 
is not yet implemented for t11e device. 

User Action: See the device support section in Chapter 2 for 
information about the VAXIab-specific features supported for the device. 

LIO$_NOASYNCH, Device not set for asynchronous I1O 

Explanation: The current device is set for synchronous I1O, but your 
program is calling asynchronous (LIO$ENQUEUE and LIO$DEQUEUE) 
I/O routines. 

User Action: Use the LIO$K_ASYNCH parameter to set the device for 
asynchronous I/O. 

LIO$_NOCTI, Device not attached with CTI I1O 

Explanation: Your program attempted to set up the CTI buffer without 
having been attached to use CTI IIO. 

User Action: Edit the LIO$ATTACH routine call in your program to 
attach the device with CTI I1O. 

LIO$_NODP, Data path has not been selected 

Explanation: The data path for block mode transfers using the AAF01,1

ADF01,1 or DRQ11-C~~ device is not set up. 

User Action: Use the LIO$K_DATA_PATH parameter to specify a direct 
data path using parameter value LIO$K_DIRPATH. A direct data path is 
the only valid data path f or a MicroVAX II. 

LIO$_NODRIVER, Driver not loaded 

Explanation: T11e driver for a device is not connected to the device. 
This absence of the driver indicates that the device hardware is not 
installed at all, is not installed properly, or is not functioning properly. 

1 This device is available only in Europe. 

Laboratory I/O Error Handling 5-15 



User Action: If you are attempting to attach an ADQ32, a DRQ11-C,1
an IAV11,1 an IDV11,1 or an IEQ11, be sure that the appropriate load 
command file has been executed. If you have purchased a service 
contract with your VAXIab system, reread it to determine your next 
course of action. If you have a Field Service Contract, call your local 
Field Service Office for assistance. 

LIO$_NOENTRY, Buffer does not match a prelocked buffer 

Explanation: A program attempted to unlock a buffer 
(LIO$K_UNLOCK_BUFFER) that was not previously locked 
(LIO $K_ LO CK_B UFFER) . 

User Action: Check your program to ensure that there are no syntax 
or spelling errors. Be sure that the buffer you attempt to unlock was 
previously locked using the LIO$K_LOCK_BUFFER parameter. 

LIO$_NOEVENT, No events enabled on this unit 

Explanation: You called an LIO$K_EVENT_WAIT or 
LIO$K_EVENT_AST without first enabling specific events through 
the LIO$K_EVENT_ENA parameter. 

User Action: Use the LIO$K_EVENT_ENA parameter to enable 
the recognition of specific events by the IEEE-488 device before 
attempting to wait for an event to occur (LIO$SHOW with the 
LIQ$K_EVENT_WAIT parameter), or before specifying an AST routine 
to be called when an event occurs (LIO$SET_I with the 
LIO$K_EVENT_AST parameter). 

LIO$_NOINPUT, Device not set for input 

Explanation: A program attempted to read from an output device. If 
the device is a disk file or one of the parallel I/O devices, it is currently 
set for output. 

User Action: If the device is a disk file or a parallel I/O device, use 
the LIO$K_DIRECTION parameter to set the device direction to input 
(LIO$K_INPUT). 

1 This device is availaUle only in Europe. 

5-16 Laboratory I/O Error Handling 



If the device is an output-only device, such as a DIA converter, use 
the LIO$WRITE routine or the LIO$ENQUEUE routine to write to the 
device. If the device is the AXV11-C set for asynchronous I/O, you must 
specify the device-specific argument of the LIO$ENQUEUE routine as 
LIO$K_OUTPUT to signal that data is to be written to the DIA converter. 

LIO$_NOINTERP, Device not set for interprocess IIO 

Explanation: A memory queue device is not attached for interprocess 
I/O. 

User Action: Specify the value of the io_type argument as 
LIO$K_INTER_PROC when you attach the memory queue device in 
each process. See Section 2.7.2.4, Setting Up a Memory Queue Device 
for Interprocess Communications, for information about setting up a 
memory queue device for interprocess communications. 

LIO$_NOLB, No large buffer transaction in progress 

Explanation: An attempt to clear a large buffer overflow condition for 

an AAF01,1 ADFO1,1 or DRQ11-C1 device proved that no large buffer 
transfer was in progress at the time. 

User Action: Do one of the following: Correct the data transfer 
to indicate that a large buffer transfer is to take place by using the 
LIO$K_LARGEBUF value as part of the user-supplied parameter block 
in the device_specific argument for the LIO$ENQUEUE, LIO$READ, 
or LIO$WRITE routine. Or, remove the routine call that uses the 
LIO$K_CLR_LBO parameter to clear the large buffer overflow condition. 
It is not necessary for other types of data transfers. 

LIO$_NOLOCAL, Device not set for local I10 

Explanation: A memory queue device is not attached to manage local 
memory. 

User Ac#ion: Specify the value of the io_type argument as 
LIO$K_LOCAL when you attach the memory queue device. See 
Section 2.7.2.3, Using a Memory Queue Device to Manage Local 
Memory, for complete information about setting up a memory queue 
device to manage memory local to a user's process. 

~ This device is available only in Europe. 

Laboratory I/O Error Handling 5-17 



LIO$_NOMAP, Device not attached with mapped I/O 

Explanation: Your program attempted to set up a device using a 
parameter that is valid only when the device is attached to use mapped 
IIO. 

User Action: Edit your program to attach the device with another I/O 
type. Or, edit your program to set up the device using a parameter that 
is valid for the current I/O type. The nature of your application program 
determines which action is appropriate. 

LIO$_NOMIX, Cannot mix LIO$K_EVENT_WAIT and LIO$K_EVENT_AST 

Explanation: You set an event AST to be called on IEEE-488 device 
events, using the LIO$K_EVENT_AST parameter, and then called 
LIO$SHOW with the LIO$K_EVENT_WAIT parameter. This is an 
invalid combination of modes. 

User Action: Reread the reference descriptions of the 
LIO$K_EVENT_AST and LIO$K_EVENT_WAIT parameters. These 
parameters perform different functions. The nature of your application 
program determines which function is appropriate. Be sure to use only 
one of these methods for detecting the occurrence of events. 

LIO$_NOOUTPUT, Device not set for output 

Explanation: A program attempted to write to an input device. If the 
device is a disk file or one of the parallel I/O devices, it is currently set 
for input. 

User Action: If the device is a disk file or a parallel I/O device, use 
the LIO$K_DIRECTION parameter to set t11e device direction to output 
(LIO$K_OUTPUT). 

If the device is an input-only device, such as an AID converter, use 
the LIO$READ routine or the LIO$ENQUEUE routine to read from the 
device. If the device is the AXV11-C set for asynchronous I10, you must 
specify the device-specific argument of the LIO$ENQUEUE routine as 
LIO$K_INPUT to signal that data is to be read (input) from the AID 
converter. 

5-18 Laboratory I/O Error Handling 



LIO$_NOQIO, Device not attached with QIO 

Explanation: Certain features, such as asynchronous I1O and buffer 
forwarding, are only available when a device is attached with QIOs 

User Action: Check your program to ensure that the set-up parameters 
are compatible for use with the io_type argument in the LIO$ATTACH 
routine and subsequent I/O routine calls. 

LIO$_NORESET, Device has not been reset 

Explanation: You did not reset the AAF01,1 ADF01,1 or DRQ11-C1
device before a read or a write operation. 

User Action: Use the LIO$K_RESET_DRX parameter to reset the device 
before issuing a read or a write request. 

LIO$_NOROOM, Not enough room in file for operation 

Explanation: A disk file set for output is not set up for extension and 
there is not sufficient space left in the file for a buffer. Or, the extension 
was not set large enough to accomodate the last write request. 

User Action: Use the LIO$K_FILE_EXTENT parameter to set up the 
file for extension, .and to specify the file ext-erasion size. Or, use the 
LIO$K_FILE_SIZE parameter to specify a larger file size. 

LIO$_NOSHARE, Device is already owned by another process 

Explanation: You attempted to attach a DRB32 device that is currently 
attached by another process. 

User Action: Wait for the other process to detach the DRB32 device 
before you attempt to attach it again. 

LIO$_NOSLOT, All prelocked buffer slots are currently in use 

Explanation: A user attempted to lock more than 16 buffers using the 
LIO$K_BUFFER_LOCK parameter. 

User Action: Use the LIO$K_UNLOCK_BUFFER parameter to unlock 
a locked buffer, thus freeing a slot for a new buffer. Or, reuse a 
previously locked buffer. 

1 This device is available only in Europe. 

Laboratory i/O Error Handling 5-19 



LIO$_NOSYNCH, Device not set for synchronous I/O 

Explanation: Thy current device is set for asynchronous I/O, but your 
program is calling synclronous (LIO$READ and LIO$WRITE) I/O 
routines. 

User Action: Use the LIO$K_SYNCH parameter to set the device for 
synchronous I/O. 

LIO$_NOT_CIC, Unit is not controller-in-charge 

Explanation: The requested operation cannot be performed because the 
IEEE-488 device is not currently the controller-in-charge. 

User Action: Use LIO$ATTACH with LIO$K_SYS_CTRL when you 
initially attach the device. This gives the device both system controller 
and controller-in-charge status. 

LIO$_NOTOPEN, Device not open 

Explanation: Your program attempted to read from or write to a disk 
file that is not open. 

User Action: Use the LIO$K_OPEN_FILE parameter to open the disk 
file 

LIO$_NO_TRANS, No translation for logical name 

Explanation: A logical device name cannot be translated into a real 
device name. 

User Action: Check your program to ensure that you have specified 
the correct logical name as the value of the devspec argument in the 
LIO$ATTACH routine call argument list. Check that the logical name 
is correctly assigned, and that there are no misspellings in either the 
logical name or the device name assignment. 

LIO$_NOTREADY, Device in self test sequence or USER RDY line not 
deasserted 

Explanation: (1) The DRB32 device is currently performing aself-test 
(which takes approximately 10 seconds to complete) or (2) the DRV11-J 
USER RDY line is not deasserted. 

5-20 Laboratory I/O Error Handling 



User Action: For the DRB32, retry the operation after 10 seconds. If 
this error is returned again, there may be a hardware problem. 

For the DRV11-J, deassert USER RDY in the user device to indicate that 
the device is ready to send data to or receive data from the DRV11-J. 

LIO$_NOTSETCDMA, Device not set up for continuous DMA 

Explanation: The device is not set up to perform continuous DMA. 

User Action: Use the LIO$K_CONT parameter to enable continuous 
DMA mode for the device. 

LIO$_NOT_SETUP, Device not set up 

Explanation: A device is not set up sufficiently to perform a specified 
I/O operation. 

User Action: See the device support section in Chapter 2 for 
information about setting up the device. You may have omitted 
a required set parameter when you set up the device, such as not 
specifying file size (LIO$K_FILE_SIZE) when you set up a disk file. 

LIO$_ONFREEQ, Buffer is on free queue 

Explanation: A program attempted to enqueue a buffer to the memory 
queue device before the buffer has been dequeued from the free queue. 

User Action: Use the LIO$DEQUEUE routine to dequeue the buffer 
from the free queue. Then, use the LIO$ENQUEUE routine to enqueue 
the buffer to the memory queue device. 

LIO$_ONQ, Buffer is on user queue 

Explanation: Your program attempted to enqueue a buffer that is 
currently on the device's user queue. 

User Action: Use the LIO$DEQUEUE routine to dequeue the buffer 
from the device's user queue. Perform whatever processing may be 
required for the buffer. Then, enqueue the buffer again to the device's 
device queue. 

Laboratory I/Q Error Handling 5-21 



LIO$_OVERRUN, Data overrun 

Explanation: The user program is not supplying buffers to the device 
faster enough to keep up with the data flow. 

User Action: See Section 1.6.3.4, Double-Buffer DMA, for information 
about supplying buffers to the ADQ32 device for double-buffer DMA 
data transfers. 

LIO$_PAGEALIGN, Buffer must be page-aligned 

Explanation: One of the following has occurred: 

• The 64K-bytes block of memory allocated for continuous DMA is 
not page-aligned. 

• The user array supplied for interprocess memory queue is not 
page-aligned. 

User Action: You can page-align the 64K-byte block of memory by 
placing the block in a PSECT, and then using a linker options file 
to page-align it. See the language-specific reference manual for the 
programming language you are using for more information. 

LIO$_POLL_STAT, Invalid parallel poll status byte specified for this unit 

Explanation: Auser-specified parallel poll status byte is out of range. 
This value range is 1 through 255. 

User Action: Check your program to ensure that the value of the status 
byte is in the valid range. 

LIO$_QIOCHAN, Must have A/D channels set up in ascending order 

Explanation: T11e AID channels are not set up sequentially in ascending 
order. 

User Action: For ADV11-D and AXV11-C devices attached wit11 
LIO$K_QIO, the AID channels must be specified sequentially in 
ascending order. Check the LIO$K_AD_CHAN parameter in your 
program and correct the channel specifications as necessary. 

5-22 Laboratory I/O Error Handling 

u 



LIO$_QNEMP, Buffers on device or user queue 

Explanation: Your program attempted to switch from using one I/O 
interface to using the other I10 interface while there are still buffers 
enqueued to a device. 

User Action: Use the LIO$DEQUEUE routine to dequeue all buffers 
from the device and return them to the main progY•am. Then, use the 
appropriate set parameter (LIO$K_ASYNCH or LIO$K_SYNCH) to 
change the I10 interface. 

LIO$_REMOTE_DEV, Cannot access device on remote node 

Explanation: Your program attempted to attach a device that is 
installed in a remote node. This occurs if you include a node name 
(NODE::devspec) in the devspec argument of the LIO$ATTACH 
routine. You can only attach devices installed on your local node. 

User Action: Edit your program to remove the node name from the 
devspec argument. Or, copy your program to the remote node and 
execute it locally there. 

LIO$_REQ64K, Buffers must sum to 64K bytes 

Explanation: The total number of bytes in the declared buffers for 
continuous DMA does not equal 64K bytes. 

User Action: Declare atwo-dimensional array 64K bytes in size. For 
example, in FORTRAN a 64K-byte block of four buffers can be defined 
as an 8192 X 4 array of word (2-byte) integers. 

LIO$_RUNNING, Illegal operation when device is running 

Explanation: A program attempted to set up a device characteristic that 
cannot be set up while the device is running. 

User Action: Edit the program to set up the device characteristic before 
the device starts running. Or, use the LIO$K_STOP parameter to stop 
the device, then set up the characteristic, and restart the device using 
the LIO$K_START parameter. The nature of your application and the 
characteristic you want to set up determine which action is appropriate. 

Laboratory i/O Error Handling 5-23 



LIO$_SS_INTERR, LIO systein service internal error 

Explanation: The LIO software detected an unrecoverable, inconsistent 
condition. 

User Action: Submit a Software Performance Report (SPR) that 
describes the conditions leading to the error. 

LIO$_SUCCESS, Success 

Explanation: The operation was successful. 

User Action: None. 

LIO$_TERM_CHAR, Buffer terminated due to match character detection 

Explanation: A buffer transfer to or from an IEEE-488 bus device was 
terminated on receipt of a ternnination character or a count previously 
set up by the user program. 

User Action: This is an informational message only. No user action is 
required. 

LIO$_TERM_EOI, Buffer terminated due to EOI assertion 

Explanation: An IEEE-488 device sending a data buffer terminated the 
data transfer by asserting the EOI (end-or-identify} line. 

User Action:- This is an informational message only. No user action is 
required. 

LIO$_TERM_ERR, Buffer terminated due to an IFC or ERR interrupt 

Explanation: The IEEE-488 system controller issued an interface clear 
(IFC) command, or an error interrupt occurred on the IEEE-488 bus 
during a data transfer. 

User Action: Design your program to reissue the I/O request to obtain 
the rest of the data. Or, set t11e device so that it does not terminate data 
transfer on receipt of an IFC or ERR interrupt. 

5-24 Laboratory I/O Error Handling 



LIO$_TERM_SRQ, Buffer terminated due to SRQ 

Explanation: Another IEEE-488 bus device issued a service request 
(SRQ) on t11e bus while a data transfer was in progress. 

User Action: Design your program to reissue t11e I/O request to obtain 
the rest of the data. Or, set the device so that it does not terminate 
data transfer on receipt of an SRQ. See the reference description 
of the LIO$K_AUX_COMMAND parameter in Chapter 4 for more 
information. 

LIO$_TOOFEWARGS, Insufficient arguments 

Explanation: Too few arguments were included in a routine call 
argument list. Most of the LIO routine calls contain optional arguments 
in the argument list. If you omit an optional argument from a routine 
call argument list, you must use the convention specific to your 
programming language to account for the argument. 

User Action: Check your program to ensure that all arguments in 
the routine call argument list are either specifically included, or are 
defaulted appropriately. See Chapter 3 in Getting Stnrted with VAXInb for 
information about how to default routine call arguments. 

LIO$_TOOFEVWALS, Too few set values 

Explanation: Your program did not specify the required number of 
parameter values for an LIO$SET_x parameter. 

User Action: See the reference description of the parameter in 
Chapter 4 for information about the required number of parameter 
values. 

LIO$_TOOMANYPROCS, Too many processes mapped to t11e global 
section 

Explanation: A memory queue device attached far interprocess data 
transactions supports only two processes mapped to the global section. 

User Action: Both memory queue devices can be set up for interprocess 
data transfers (LIO$K_TRANSFER). Or, one memory queue device can 
be set up to display data (LIO$K_DISPLAY) to the other memory queue 
device that is set up to read the data (LIO$K_READ_ONLY). 

Laboratory I/O Error Handling 5-25 



LIO$_TOOMANYVALS, Too many set values 

Explanation: Your program specified greater than the maximum 
allowable number of parameter values for an LIO$SET_x parameter. 

User Action: See the reference description of the parameter in 
Chapter 4 for information about the required number of parameter 
values. 

LIO$_UNKDEV, Unknown device 

Explanation: The LIO$ATTACH routine did not recognize a devspec 
value. 

User Action: See the reference description of the LIO$ATTACH 
routine, and check your program to be sure you used the appropriate 
value for the devspec argument. You can also use the SHOW DEVICES 
command to see if the device to which you are trying to attach is 
installed in your VAXIab system. 

LIO$_UNKPARAM, Unknown set or show parameter 

Explanation: Your program attempted to set up a device with a 
parameter that is unrecognized by the system, or that is not supported 
for use with the device. 

User Action: See the device support description in Chapter 2 for the 
parameters appropriate for use with the device. Also, make sure you 
have entered the parameter name correctly. 

LIO$_VALTOOBIG, Set parameter value too large 

Explanation: A specified parameter value is greater than t11e maximum 
allowable value for the parameter. 

User Action: See the reference description of the parameter in 
Chapter 4 for the acceptable values for this parameter. 

LIO$_VALTOOSMALL, Set parameter value too small 

Explanation: A specified parameter value is less than the minimum 
allowable value for the parameter. 

User Action: See the reference description of the parameter in 
Chapter 4 for the acceptable values for this parameter. 

5-26 Laboratory I/Q Error Handling 



LIO$_WORDALIGN, Buffer must be word-aligned 

Explanation: Data buffers are not word-aligned. When using the 
AAV11-D, the ADV1 ~.-D, the DRQ3B, and the Preston IIO subsystem 
interfaced through the DRQ3B, data buffers must be word-aligned. 

User Action: Declare data buffers as word (INTEGER*2) arrays. 

SYSTEM-F-EXQUOTA, exceeded quota 

Explanation: An image could not continue executing because the 
process exceeded one of its resource quotas or limits. This system 
condition is signalled during an LIO$ENQUEUE, LIO$READ, or 
LIO$WRITE routine call to a non-DMA device attached with LIO$K_QIO 
if the requested buffer is larger than the the user process's quota or is 
larger than the maximum size f or a buff eyed I10 transfer (MAXBUF) of 
the system. 

User Action: Run the AUTHORIZE utility and SHOW USERNAME to 
determine the byte limit (BYTLM) quota. 

Laboratory I/O Error Handling 5-27 





Chapter 6 

Online Sample Programs 

This chapter provides an overview of sample VSL application programs 
showing how to use the Laboratory IIO routines. These programs are 
shipped with your VAXIab software kit and are put on-line during the 
VAXIab software installation procedure in a directory with the logical 
name LIO$EXAMPLES. The logical name of this directory is defined at 
installation time by a command in one of the VAXIab startup command 
files. 

The sample program source file names incorporate the facility code, 
LIO, and in~ most cases, an abbreviation of the device the program uses 
and a keyword describing the function the program performs. The 
sample program source file name extensions indicate the programming 
language in which each sample program is written. For example, the 
program LIO_AXV_MAPPED.BAS uses the AXV11-C device to perform 
memory-mapped I10, and is written in VAX BASIC. 

Table 6-1, LIO Online Sample Programs, does the following: 

• Lists the sample program names 

• Lists the devices used in each program 

• Lists the LIO set parameters used to set up the devices 

• Describes briefly what each program does 

Online Sample Programs 6-1 



The table does not list t11e LIO routines each program uses because the 
LIO facility is designed with the following general rules for using the 
routines: 

• All application programs using the LIO routines must use the 
LIO$ATTACH and LIO$DETACH routines to attach and detach 
devices supported by LIO. 

• To set up LIO devices, you use the LIO parameters in conjunction 
with the LIO$SET_I, LIO$SET_R, and LIO$SET_S routines. The data 
type of a parameter determines which of the LIO$SET_X routines 
you use to set up that parameter. 

• LIO devices set up to use the synchronous I1O interface must 
use the LIO$READ and/or LIO$WRITE routines to perform data 
transfers . 

• LIO devices set up to use the asynchronous I/O interface must 
use the LIO$ENQUEUE and one or more of the asynchronous 
synchronization methods, such as an AST routine, buffer 
forwarding, or the LIO$DEQUEUE routine, to receive completed 
buffers . 

Study Table 6-1 to determine which of the sample programs will be 
helpful to you in learning how to use the LIO routines. Then, copy the 
programs to your own directory. 

To copy a sample program, in this case LIO_AXV_MAPPED.BAS, to 
your directory, enter the following command line: 

~ COPY LIOSEXAMPLES:LIO_AXV_MAPPED.BAS *.* Return 

Once a sample program is successfully copied to your• directory, you 
can read it, print it, or edit it for your own purposes. 

6-2 Qnline Sample Programs 



Programs for European Devices 

Online sample programs LIO_AAFBIG.C, LIO_AAF_SINGLE.C, 
LIO_AAF_DOUBLE. C, and LIO_AAF_SEL_OUT. C require the use 
of a special include file. This include file, AAFDEF.H, is located in 
SYS$EXAMPLES. Be sure to copy AAFDEF.H to your directory before 
you run any of the programs listed above. 

The online sample program LIO_AAF_RW_ACS.0 requires the use 
of a special include file. This include file, AXFOFF.H, is located in 
SYS$EXAMPLES. Be sure to copy AXFOFF.H to your directory before 
you run LIO_AAF_RW_ACS.C. 

To determine the exact logical device names of the devices configured 
in your system, see your system manager. You can assign, or define, 
these logical names interactively before you begin to run LIO_ADF 
sample programs or LIO_AAF sample programs, for example: 

~ DEFINE UA UUAO: 
~ DEFINE UB UUBO: 

Or, you can include these command lines in your LOGIN.COM 
file. Then, each tune you log in to the system, these logical name 
assignments are made automatically. Once you assign these logical 
names, you are ready to execute the sample programs. 

Online Sample Programs 6-3 



Table fi-1: LIO Online Sample Programs 
Devices Parameters Description 

LIO AAFBIG. C2

AAF01.1 LIO$K_ASYNCH Uses the asynchronous I10 interface and 
DRQ11-C' LIO$K_CLR_LBO QIOs to test the large buffer transfer 

LIO$K_DATA_PATH capability of the AAF01 DIA device. 
LIO$K_DEVICE_EF 
LIO$K_ED_CTT 
LIO$K_RESET_AXF 
L.[O$K_RESET_DRX 
LIO$K_RW CWT 
LIO$K_TIMEOUT 
LIO$K_WRITE_CTA 
LIO$K_WRITE_PCR 

LIO_AAF_CALIB. C 

AAF011 LIO$K_ANA_OUT Uses the synchronous IIO interface and 
DRQ11-C1 LIO$K_DATA_PATH QIOs to test the self-calibration feature 

LIO $K_DATA_PATH of the AAFO1 DIA device . 
LIO$K_DEVICE_EF 
LIO$K_DRX_STAT 
LIO$K_READ_STAT 
LIO$K_RESET_AXF 
LIO$K_RESET_DRX 
LIO$K_SYNCH 
LIO$K_TIMEOUT 

1 This device is available only in Europe. 

ZThis sample program requires include file A.AFDEF.H, which contains the highllow limit definitions for 
the AAFU1 device. 

6-4 Online Sample Programs 



Table 6-1 (Cont.): LIO Online Sample Programs 

I^1 

Devices Parameters Description 

LIO$K_AAF_DOUBLE. C2

AAF011 LIO$K_ASYNCH Uses the asynchronous I1O interface and 
DRQ11-C1 LIO$K_CAL_CC QIOs to test the alternate buffer transfer 

LIO$K_DATA_PATH capability of the AAF01 DIA device. 
LIO$K_DEVICE_EF 
LIO$K_DRX_STAT 
LIO$K_EVENT_AST 
LIO$K_READ_STAT 
LIO$K_RESET_DRX 
LIO$K_RW_CWT' 
LIO$K_TIMEOUT 
LIO$K_WRITE_CTA. 
LIO$K_WRITE_PCR 

LIO AAF RW ACS. C~ 

AAFO~' LIO$K_DATA_PATH 
DRQ11-C' L[O$K_DEVICE_EF 

LIO$K_DRX_STAT 
LIO$K_FUNCTION_BITS 
LIO$K_RESET_AXF 
LIO$K_RESET_DRX 
LIO$K_SYNCH 
LIO$K_TIMEOUT 

Uses the synchronous I1O interface and 
QIOs to perform an ACS read l wri to test 
using the AAF01 DIA device. 

1 This device is availaUle only in Europe. 

2This sample program requires include file AAFDEF.H, which contains the highllow limit definitions for 

the AAFU1 device. 

3This sample program requires include file AXFOFF.H, which contains the offset definitions for AXFO1 

devices. 

Online Sample Programs 6-5 



Table 6-1 (Cont.): LIO Online Sample Programs 
Devices Parameters Description 

LIO AAF SEL OUT. C2

AAF01' LIO$K_ASYNCH Uses the asynchronous IIO interface and 
DRQ11-C1 LIO$K_CAL_CC QIOs to perform selectable output using 

LIO$K_DATA_PATH AAF01 D!A device. 
LIO$K_DEVICE_EF 
L10$K_DRX_STAT 
LIO$K_EVENT_AST 
LIO$K_READ_STAT 
LIO$K_RESET_AXF 
LIO$K_RESET_DRX 
LIO$K_RW CWT 
LIO$K_TIMEOUT 
LIO$K_WRITE_CTA 
LIO$K_WRITE_PCR 

LIO AAF SINGLE. C2

AAF011 LIO$K_ASYNCH Uses the asynchronous I/O interface and 
DRQ11-C1 LIO$K_CAL_CC QIOs to test the single buffer transfer 

LIO$K_DATA_PATH capability of the AAF01 D!A device. 
LIO$K_DEVICE_EF 
LIO$K_DRX_STAT 
LIO$K_EVENT_AST 
LIO$K_READ_STAT 
LIO$K_RESET_DRX 
LIO$K_RW_CWT 
LIO$K_TIMEOUT 
LIO$K_WRITE_CTA 
LIO$K_WRITE_PCR 

1 This device is availaUle only in Europe. 

ZThis sample program requires include file AAFDEF.H, which contains the highllow limit definitions for 
the AAFU1 device. 

6-6 Online Sample Programs 



Table 6-1 (Cont.): LIO Online Sample Programs 

Devices Parameters Description 

LIO_ADFBIG. C 

ADF011 LIO$K_ASYNCH Uses the asynchronous I10 interface and 
DRQ11-Cl LIO$K_CLR_LBO QIOs to test the .large buffer transfer 

LIO$K_DATA_PATH capability of the ADF01 Al D device. 
LIO$K_DEVICE_EF 
LIO$K_ED_CTT 
LIO$K_RESET_AXF 
LIO$K_RESET_DRX 
LIO$K_READ_STAT 
LIO$K_RW_CWT 
LIO$K_SET_DAC 
LIO$K_TIMEOUT 
LIO$K_WRITE_CTA 
LIO$K_WR1TE_PCR 

LIO_ADF_CALIB. C 

ADF01.1 LIO$K_ASYNCH Uses the asynchr. onous 110 interface 
DRQ11-Cl LIO$K_DATA_PATH and QIOs to perform an ADF01 DAC 

LIO$K_DEVICE_EF calibration. 
LIO $K_REA_AD C 
LIO$K_READ_STAT 
Ll0$K_RESET_AXF 
LIO$K_RESET_DRX 
LIO$K_RW_CWT 
LIO$K_SET_DAC 
L[O$K_TIMEOUT 
LIO$K_WRITE_CTA 
LIO$K_WRITE_PCR 

1 This device is availaUle only in Europe. 

Online Sample Programs 6-7 



Table 6-1 (Copt.): LIO Online Sample Programs 

Devices Parameters Description 

LIO_ADF_DAC_CALIB. C 

ADF01' LIO$K_ASYNCH Uses the asynchronous I10 interface 
DRQ11-C' LIO$K_DATA_PATH and QIOs to perform an ADF01 DAC 

LIO$K_DEVICE_EF calibration. 
LIO$K_REA_ADC 
LIO$K_READ_STAT 
LIO$K_RESET_AXF 
LIO$K_RESET_DRX 
Ll0$K_RW_CWT 
LIO$K_SET_DAC 
L[O$K_TIMEOUT 
LIO$K_WRITE_CTA 
LIO$K_WRITE_PCR 

LIO$K_ADF_DOUBLE. C 

ADF011 LIO$K_AST_RTN 
DRQ11-C1 LIO$K_ASYNCH 

LIO$K_DATA_PATH 
LIO$K_DEVICE_EF 
LIO$K_ED_CTT 
LIO$K_READ_STAT 
LIO$K_RESET_AXF 
LIO$K_RESET_DRX 
LIO$K_RW_CWT 
LIO$K_SET_DAC 
LIO$K_TIMEOUT 
LIO$K_WRITE_CTA 
LIO$K_WRITE_I'CR 

Uses the asynchronous IIO interface and 
QIOs to test the alternate buffer transfer 
capability of the ADF01 AID device. 

~ This device is available only in Europe. 

6-8 Online Sample Programs 



Table 6-1 (Copt.): LIO Online Sample Programs 

Devices Parameters Description 

LIO_ADF_DOUBLE_AST. C 

ADF011 LIO$K ASYNC 
DRQ11-C1 LIO$K_DATA_PATH 

LIO$K_DRX_AST_RTN 
LIO$K ED_CTT 
LIO$K_READ_STAT 
LIO$K_RESET_AXF 
LIO$K_RESET_DRX 
LIO$K_RW CWT 
LIO$K_SET_DAC 
LIO$K_TIMEOUT 
LIO$K_WRITE_CTA 
LIO$K_WRITE_PCR 

Performs an alternate buffer transfer 
using a DRX AST routine. 

LIO_ADF_DOUBLE_SAST. C 

ADFO11 LIO$K_AST_RTN 
DRQ11-C1 LIO$K_ASYNC 

LIO$K_DATA_PATH 
LIO$K_ED_CTT 
LIO$K_READ_STAT 
LIO$K_RESET_AXF 
LIO$K_RESET_DRX 
LIO$K_RW CWT 
LIO$K_SET_DAC 
LIO$K_TIMEOUT 
LIO$K_WRITE_CTA 
LlO$K_WRITE_PCR 

Performs an alternate buffer transfer 
using a standard AST routine. 

l This device is available only in Europe. 

Online Sample Programs 6-9 



Table 6-1 (Copt.): LIO Online Sample Programs 
Devices Parameters Description 

LIO_ADF_LOOPBACK. C 

ADF011 LIO$K_ASYNCH Uses the asynchronous IIO interface and 
DRQ11-C1 LIO$K_DATA_PATH QIOs to perform an ADFO1 DACIADC 

LIO$K_DEVICE_EF loop test. 
LIO$K_READ_STAT 
LIO$K_RESET_AXF 
LIO$K_RESET_DRX 
LIO$K_RW_CWT 
LIO$K_SET_BAC 
LIO$K_TIMEOUT 
LIO$K_WRITE_CTA 
LIO$K_WRITE_PCR 

LIO$K_ADF_SINGLE. C 

ADF011 LIO$K_ASYNCH Uses the asynchronous 110 interface and 
DRQ11-C' LIO$K_DATA_PATH QIOs to test the single buffer transfer 

LIO$K_DEVICE_EF capability of the ADF01 AID device. 
LIO$K_ED_CTT 
LIO$K_EVENT_AST 
LIO$K_READ_STAT 
LIO$K_RESET_AXF 
LIO$K_RESET_DRX 
LIO$K_RW_CWT 
LIO$K_SET_DAC 
LIO$K_TIMEOUT 
LIO$K_WRITE_CTA 
LIO$K_WRITE_PCR 

1 This device is availaUle only in Europe. 

6-10 Online Sample Programs 



Table 6-1 (Cont.): LIO Online Sample Programs 
Devices Parameters Description 

LIO_ADF_TEST_SEQ. C 

ADF011 LIO$K_ASYNCH Uses the asynchronous IIO i1.lterface and 
DRQ11-C' LIO$K_DATA_PATH QIOs to perform an ADF01 sequence 

LIO$K_DEVICE_EF timer test. 
Ll0$K_DIS_STE 
LIO$K_RESET_AXF 
LIO$K_RESET_DRX 
LIO$K_TIMEOUT 
LIO$K_WRITE_STO_1 

LIO_ADQ_ASYNCH.FOR 

ADQ32 LIO$K_AD_CHAN Uses the asynchronous IIO interface and_ 
LIO$K_AD_GAIN double buffering to read 1.0 buffers of 
Ll0$K_ASYNCH data from the ADQ32 device. 
LIO$K_BUFF_SIZE 
LIO$K_CLK_RATE 
LIO$K_DBL_BUF 
LIO$K_DIAG_CHAN 
L10$K_TRIG 

LIO_ADQ_SYNCH.FOR 

ADQ32 L10$K_AD_CHAN Uses the synch~~onous I10 interface to 
LI O$K_AD_GAIN read 12 Al D values (24 bytes) from the 
LIO$K_BUFF_SIZE ADQ32 device. 
LIO$K_DIAG_CHAN 
LIO$K_SYNCH 
LIO$K_TRIG 

~ This device is available only in Europe. 

Online Sample Programs 6-11 



Table 6-1 (Cont.): LIO Online Sample Programs 
Devices Parameters Description 

LIO ADV_AST. BAS, LIO_ADV_AST. C, LIO_ADV_AST. FOR, LIO_ADV_AST. PAS 

ADV11-D LIO$K_AD_CHAN 
LIO$K_AD_GAIN 
LIO$K_AST_RTN 
LIO$K_ASYNCH 
LIO$K_SGL_BUF 
LIO$K_TRIG 

Shows how to use the asynchronous 
I10 interface and single-buffer DMA 
using an AST routine, instead of the 
LIO$DEQUEUE routine, to receive and 
process cornpleted buffers from the 
ADV11-D device. 

LIO_ASYNCH_CLK_TRIG.FQR 

AXV11-C LIO$K_AD_CHAN 
KWV11-C LIO$K_AD_GAIN 

LIO$K_ASYNCH 
LIO$K_CLK_RATE 
LIO$K_FUNCTION 
LIO$K_TRIG 

Shows how to use the asynchronous 110 
interface to control the start and stop 
of the KWV11-C clock device to :prevent 
trigger slivering. The program engt~eues 
a data buffer to the AXV11-C device and 
starts the clock. Then, the program waits 
for the buffer to complete, dequeues it 
from the device, and stops the clock. 

LIO AXV CTI. FOR 

AXV11-C LIO$K_AD_CHAN 
LIO$K_AD_GAIN 
LIO$K_CT[_BUF 
LIO$K_SYNCH 
L10$K_TRIG 

6-12 Online Sample Programs 

Shows how to use the synchronous I10 
interface and connect-to-interrupt I10 to 
read 20 analog-to-digital values from the 
AXV11-C device. 



Table 6-1 (Cont.): LIO Online Sample Programs 
Devices Parameters Description 

LIO AXV DIRECTION. FOR 

AXV11-C LIO$K_AD_CHAN 
LI O$K_AD_GAIN 
LIO$K_ASYNCH 
LIO$K_DA_CHAN 
LIO$K_TRIG 

Shows how to use the asynchronous 
1/O interface to read 20 analog-to-digital 
values from the AXV11-C AID and 
write them to the AXV11-C DIA. 
Specifically, this program shows the 
use of the device_specific argument of 
the L10$ENQUEUE routine to specify the 
direction of asynchronous routine calls to 
the AXV11-C. 

LIO_AXV_MAPPED.BRS, LIO_AXV_MAPPED. C, 
LIO_AXV_MAPPED.FOR, LIO AXV_MAPPED.PAS 

AXV11-C LIO$K_AD_CHAN 
LIO$K_AD_GAIN 
LIO$K_SYNCH 
LIO$K_TRIG 

Shows how to use the synchronous 110 
interface and memory mapped (polled) 
I10 to read 20 analog-to-digital values 
from the AXV11-C device. 

LIO_AXV_QIO. FOR 

AXV11-C Ll0$K_AD_CHAN 
LIO$K_AD_GAIN 
LIO$K_SYNCH 
LIO$K_TRIG 

Shows how to use the synchronous 
I10 interface and. QIOs to read 20 
analog-to-digital values from the 
AXV11-C device. 

LIO AXV RTPLOT. FOR 

AXV11-C LIO$K_AD_CHAN Uses the synchronous I10 interface 
RIT LIO$K_AD_GAIN and QIOs to read 360 analog-to-digital 
plotting LIO$K_N_BUFFS values from each of the two AXV1 ~ -C 

LIO$K_PO_CHAN AID channels and plots them on the 
LIO$K_START terminal. screen using the L10 plotting 
LIO$K_SYNCH device in a continuous real-time display. 
LIO$K_TITLE_N This sample program only runs on a 
Ll0$K_X_RANGE VAXstation-based VAXIab system. 
LIO$K_Y_MAX 
L10$K_Y_MIN 

Online Sample Programs 6-13 



Table 6-1 (Cont.): LIO Online Sample Programs 
Devices Parameters Description 

LIO BUF_FWD.FOR 

ADV11-D LIO$K_AD_CHAN 
Disk file LIO$K_AD_GAIN 

LIO$K_ASYNCH 
LIO$K_DEVICE_EF 
LIO$K_DIRECTION 
LIO$K_FILE_SIZE 
LIO$K_FORWARD 
LIO$K_NAME 
LIO$K_OPEN_FILE 
LIO$K_SGL_BUF 
LIO$K_TRIG 

Shows how to use the asynchronous 
I10 interface and single-buffer DMA 
with buffer forwarding to read 
analog-to-digital values from the 
ADV11-D device and forward. the data 
buffers to a disk file. 

LIO BUF INX. FOR 

ADV11-D LIO$K_AD_CHAN 
LIO$K_AD_GAIN 
LIO$K_ASYNCH 
LIO$K_SGL_BUF 
LIO$K_TRIG 

Shows how to use the asynchronous I10 
interface anal single-buffer DMA with 
buffer indexing to read analog-to-digital 
values from the ADV11-D device. 

LIO CONT DMA.FOR 

ADV11-D LIO$K_AD_CHAN 
LIO$K_AD_GAIN 
LIO$K_ASYNCH 
LIO$K_CONT 
LIO$K_TRIG 

Shows how to use the asynchronous I/O 
interface and continuous DMA to read 
data values from the ADV11-D device. 

LIO_DRJ_SETUP. FOR 

DRV11-J LIO$K_DIRECTION 
LIO$K_HANDSHAKE 
LIO$K_POLARITY 

6-14 Online Sample Programs 

Shows how to set up the DRV11-J device. 
Specifically, this program sets ports 
A and B for input, ports C and D for 
output, and disables handshaking. Then, 
the p~•ogram shows the values of the set 
parameters and the polarity of the device 
for which the default value is used. 



Table 6-1 (Cont.): LIO Online Sample Programs 
Devices Parameters Description 

LIO_DRQ3B_LOOP.FQR 

DRQ3B LIO$K_ASYNCH Demonstrates how to use the DRQ3B 
LIO$K_BUFF_SIZE with the asynchronous IIO interface. 
LIO$K_ERR_HANDLE Using a loopback cable, the program 

transfers 1024 words of data from HXA1 
to HXAO. 

LIO_DRV_LOOP. PAS, LIO DRVllJ_LOOP. FOR 

DRV11-J LIO$K_DIRECTION 
LIO$K_HANDSHAKE 
LIO$K_SYNCH 

Uses the synchronous I10 interface to 
perform a loopback test. Ports A and. B 
are set fog• input and ports C and D a~•e 
set for output. Handshaking is disabled. 

LIO_FILE_POS. FOR 

Disk file LIO$K_DIRECTION 
L10$K_FILE_POS 
LIO$K_FILE_SIZE 
LIO$K_NAME 
LIO$K_OPEN_FILE 
LIO$K_SYNCH 

Uses LIO$K_FILE_POS to set a file pointer 
to a given block within the file. 

LIO FILTER EVENT. FOR 

AXV11-C LIO$K_AD_CHAN 
KWV11-C LIO$K_AD_GAIN 

LIO$K_CLK_SRC 
LIO$K_FUNCTION 
LIO$K_SYNCH 
LIO$K_TRIG 

Shows how to use the synchronous Il0 
interface and the KWV11-C clock device 
to filter external events. Specifically, the 
KVW11-C clock device is used to enable 
and disable external events to protect the 
AXV11-C AID from trigger slivering. 

Online Sample Programs 6-15 



Table 6-1 (Cont.): LIO Online Sample Programs 
Devices Parameters Description 

LIO HX EXAMPLE. C 

DRQ3B LIO$K_AST_RTN 
LIO$K_BUFF_SIZE 
LIO$K_STOP 

Shows how to do continuous DMA using 
the DRQ3B. 

LIO IEEE LOOP. FOR 

IEQ11 LIO$K_ASYNCH 
LIO$K_EOI 
LIO$K_IEEE_ADDR 
LIO$K_SYNCH 

Attaches IXAO as system controller at 
IEEE-488 bus address 0, and IXA1 as 
an instrument at IEEE-488 bus address 
1. The system controller addresses the 
instrument as a listener and outputs 
a string of characters to it. The IX 
instrument reads the characters and 
displays them on the screen. This 
program requires a loopback cable 
between IXAO and IXAl. 

LIO IEX ASYNC.0 

IEQ11 LIO$K_AST_RTN 
Ll0$K_ASYNCH 
Ll0$K_AUX_COMMAND 
LIO$K_COMMAND 
LIO$K_IEEE_ADDR 
LIO$K_SYNCH 
LIO$K_TERM_CHAR 
LIO$K_TIMEOUT 

Attaches an IEQ11 device as the system 
controller and uses the asynch~•onous I/O 
interface to read data from t11e HP 3455A. 
Digital Voltmeter. 

LIO IEX SYNC. C 

IEQ11 LIO$K_AUX_COMMAND 
LIO$K_COMMAND 
LIO$K_IEEE_ADDR 
L10$K_SYNCH 
LIO$K_TERM_CHAR 
LIO$K_TIMEOUT 

6-16 Online Sample Programs 

Attaches an IEQ1.1 device as the system 
controller and uses the synchronous ll0 
interface to read data from the HP 3455A 
Digital Voltmeter. 



Table 6-1 (Copt.): LIO Online Sample Programs 
Devices Parameters Description 

LIO_IEZ_SYNC. C 

IEZ11 LIO$K_AUX_COMMAND 
LIO$K_COMMAND 
LIO$K_IEEE_ADDR 
LIO$K_SYNCH 
LIO$K_TERM_CHAR 
LIO$K_TIMEOUT 

Attaches an IEZ11 device as the system 
controller and uses the synchronous I10 
interface to read data from the HP 3455A 
Digital Voltmeter•. 

LIO_KWV_AST. FOR 

KWV11-C LIO$K_ASYNCH 
LIO$K_CLK_RATE 
LIO$K_EVENT_AST 
LIO$K_FUNCTION 
LIO$K_TRIG 

Shows how to use the asynchronous 
IIO interface and an event AST routine 
to illustrate the ability of the KVW11.-C 
clock device to call an AST routine on 
every clock tick. 

LIO_MQ_DISPLAY.FOR 

Memory 
queue 

LIO$K_BUFF_SIZE 
LIO$K_BUFF_SOURCE 
LIO$K_DEVICE_EF 
LIO$K_DISPLAY_ONLY 
LIO$K_NAME 
LIO$K_N_BUFFS 

Shows how to use the display function of 
the interprocess memory queue to display 
data buffers acquired by one memory 
queue device to a memory queue device 
running in a second process that is set up 
to read the displayed buffers. 

LIO_MQ READONLY.FOR 

Memory 
queue 

LIO$K_BUFF_SIZE 
LIO$K_BUFF_SOURCE 
LIO$K_DEVICE_EF 
LIO$K_NAME 
LIO$K_N_BUFFS 
Ll0$K_READ_ONLY 
LIO$K_SYNCH 

Shows how to use the read-only function 
of the interprocess memory queue to read 
data buffers acquired by a display-only 
memory queue device. 

Online Sample Programs 6-17 



Table 6-1 (Cont.): LIO Online Sample Programs 
Devices Parameters Description 

LIO_MQ_XFER. FOR 

Memory LIO$K_BUFF_SIZE Shows how to use the transfer function 
queue LIO$K_BUFF_SOURCE of the interprocess memory queue to 

LIO$K_DEVICE_EF transfer data buffers from one memory 
LIO$K_NAME queue device to a second memory queue 
LIO$K_N_BUFFS device running in a second process. 

LIO_PRESTON_AST_PLOT. C 

Preston LIO$K_AST_RTN Uses the asynchronous I/O interface 
(DRQ3B) LIO$K_CLK_RATE to read buffers from the Preston AID. 

LIO$K_UPDATE The program includes a n AST routine 
that receives completed buffers from the 
device and plots them in a continuous 
real-time display using several of the 
Laboratory Graphics Package routines. 

LIO_PRESTON_READ. C 

Preston LIO$K_AD_CHAN Shows how to set up and_ then 
LIO$K_BURST_RATE display Preston device characteristics. 
LIO$K_CLK_BASE Specifically, this program sets up 
LIO$K_CLK_RATE and then displays the number of A/D 
LIO$K_N_AD_CHAN channels, the clock rate, t11e clock base 
LIO$K_UPDATE frequency, and the burst rate. 

LIO RTC01 COUNTER. FOR 

Simpact LIO$K_ASYNCH Shows how to use the Simpact RTC01 
RTCO1 LIO$K_CLK_RATE clock device as a counter and how to 

LIO$K_COUNTER read the clock registe~~ while the clock 
LIO$K_FUNCTION is running. The program uses the 
L10$K_START asynchronous I10 interface, the repeat 
LIO$K_TRIG count function, and a software start. 

6-18 Online Sample Programs 



Table 6-1 (Copt.): LIO Online Sample Programs 

Devices Parameters Description 

LIO_RTC01_SET. FOR 

Simpact LIO$K_INTERRUPT_LEVEL 
RTC01 LIO$K_SCHMITT_TRIGGER 

Shows how to set the Schmitt trigger 
mode and interrupt level for the Simpact 
RTC01 clock device. 

LIO_SERIAL. C 

Serial. line LLO$K_DEVICE_ACK_NAK_BUFF 
LIO$K_PROTOCOL 
LI O$K_USER_READ_PROTOCOL_AST 
LIO$K_USER_WRITE_NAK_HANDLING 

Demonstrates the user-defined_ protocol 
feature of LIO serial devices. The 
program enables the protocol feature 
and sends a buffer to a serial line device. 
The program ends execution when the 
receiving device acknowledges (ACKs) 
receipt of the buffer. 

LIO_SGLBUF_DMA.FOR 

AAV11-D 
ADV11-D 

LIO$K_AD_CHAN 
LIO$K_AD_GAIN 
LIO$K_DA_CHAN 
LIO$K_SYNCH 
LIO$K_TRIG 

Shows how to use the synchronous 
I10 interface and single-buffer DMA to 
read 20 analog-to-digital values from the 
ADV11-D device using QIOs, and. then 
write the values to the digital-to-analog 
converter on the AAV11-D device using 
QIOs. This example also shows the use 
of the buffer overrun area required by 
single-buffer DMA on both the AAV11-D 
and ADV11-D devices. 

LIO SYNCH CLK TRIG.FOR 

AXV11-C 
KWV11-C 

LIO$K_AD_CHAN 
LIO$K_AD_GAIN 
LIO$K_CLK_RATE 
LIO$K_FUNCTION 
LIO$K_SYNCH 
LIO$K_TRIG 

Shows how to use the synchronous I10 
interface to control the start and stop 
of the KWV11-C clock device to prevent 
trigger slivering. The analog-to-digital 
converter on the AXV11-C device reads 
one channel on each KWV11-C clock 
tick and continues cycling through the 
channels until the buffer is full. 

Online Sample Programs 6-19 



Table 6-1 (Cont.): LIO Online Sample Programs 

Devices Parameters Description 

LIO_TIME_EVENT.FQR 

KVW11-C LIO$K_CLK_SRC 
LIO$K_FUNCTION 
LIO$K_SYNCH 
LIO$K_TRIG 

Shows how to use the synchronous I10 
interface and the KWV11-C clock device 
to time external events. 

LIO_UQ_LOOP. C 

DRB32 LIO$K_INPUT Uses the asynchronous I10 interface to 
LIO$K_OUTPUT transfer data between two DRB32 devices 
LIO$K_DATA_WIDTH connected in loopback. 

6-20 Qnline Sample Programs 



Appendix A 

ADQ32 Triggering and Clock Modes 

This appendix describes the clock modes available for use on the 
ADQ32. 

A.1 Clock Mode Summary 

The ADQ32 supports the following clock modes: 

1. Burst 

2. Burst with edge gate 

3. Burst with delayed edge gate 

4. Burst, activated by external trigger 

5. Timed triggers 

6. Timed triggers with edge gate 

7. Timed triggers with delayed edge gate 

8. Timed triggers with level gate 

9. Tithed trigger activated by external trigger 

10. Burst sweep 

11. Burst sweep, with edge gate 

12. Burst sweep, with level gate 

13. Burst sweep, activated by external trigger 

14. Burst sweep, sweep controlled by external trigger 

15. Timed sweep 

16. Timed sweep, with edge gate 

17. Timed sweep, with level gate 

ADQ32 Triggering and Clock Modes A-1 



18. Timed sweep, activated by external trigger 

19. Timed sweep, sweep controlled by external trigger 

20. External trigger 

21. External trigger, with edge gate 

22. External trigger, with delayed edge gate 

A.2 Definition of Terms Used to Describe Clock Modes 

The term "ADC" refers to the analog-to-digital converter on the 
ADQ32. For a complete description of how the ADQ32 converts a 
voltage into a digital value, refer to the ADQ32 A/D Coriverte~• Module 
Llser's Guide. 

The term "burst" refers to the rate used by the ADQ32 state machine. 
The timing is actually done by the state machine, not the clock 
chip. The clock chip is still used, in some anodes, to provide gating, 
triggering, and sweep functions, but each sample is triggered at a rate 
determined by the state machine. The actual rates used depend upon 
the gain selected, and whether the gain is changed between samples. 
Table A-1 shows the rates that are actually used. 

Table A-1: Burst Rates 
Gain Throughput 

1 16b KHz 
2 115 KHz 
4 135 KHz 
8 135 KHz 
Changing Gains 1.00 KHz 

The term "timed triggering" refers to the pulses generated by the clock 
and routed to the ADC to serve as triggers. The clock rate used is 
selected with the LIO$K_CLK_RATE parameter. This clock is called 
the "primary clock." The primary clock rate is always shown in the 
following diagrams as t1. When each pulse from the clock output 
occurs, the ADC acquires the signal and converts it. 

T11e term "sweep" refers to modes in which two timing sources are 
used. 

A-2 ADQ32 Triggering and Clock Modes 



The first timing source controls the rate at which individual samples are 
acquired. This primary clock rate is selected with the 
LIO$K_CLK_RATE parameter. 

A second timing source controls the rate at which one pass through the 
specified number of channels is made. This clock rate is selected using 
the LIO$K_SWEEP_RATE parameter. This clock is called the "sweep 
clock." The sweep clock rate is always shown in the following diagrams 
as t2. 

The term "burst sweep" refers to clock modes where each sample 
in a sweep is acquired at the burst rate of the ADQ32 state machine. 
Each pass of the sweep is controlled either by the sweep clock or by 
an external trigger. This discussion uses the term "burst sweep, sweep 
controlled by external trigger" for the latter case. 

The term "timed sweep" refers to clock modes where each sample in a 
sweep is acquired at a rate specified to the primary clock. Each pass of 
the sweep is controlled either by a second rate specified to the sweep 
clock or by an external trigger. This discussion uses the term "timed 
sweep, sweep controlled by external trigger" for the latter case. 

The burst sweep modes are essentially the same as the timed sweeps, 
except that for timed sweeps, you must specify the rate at which 
samples within a sweep are taken. 

The term "gate" refers to an external signal used to control the ADQ32 
clock in some way. The gate signal is always connected to the external 
gateltrigger input. 

An "edge gate" refers to a signal which acts as an ONIOFF switch for 
the trigger mode. A negative transition pulse on an edge gate signal 
turns on the clock mode. A subsequent negative transition turns off the 
clock mode. 

A "level gate" also acts as an ONIOFF switch. With a level gate, the 
clock mode begins whenever the signal on the external gateltrigger input 
is HIGH. (TTL convention is used. HIGH is a signal greater than 2.0 
volts. LOW is a signal lower than 0.5 volts.) This means that if the gate 
input is HIGH when the clock mode is programmed, data collection 
starts immediately. The clock mode continues until the signal falls 
to the LOW state . The gate input can remain HIGH for as long as is 
desired. 

ADQ32 Triggering and Clock Modes A-3 



The term "delayed edge gate" is essentially the same as the edge gate, 
except that the ON or OFF function does not occur immediately when 
the negative transition is detected. The clock mode is turned ON or 
OFF after a short delay time. The delay time is one clock tick of the 
sweep clock. 

You select a clock rate and specify it using the 
LIO$K_SWEEP_RATE parameter. One clock tick of this rate is used as 
the delay time. Delayed edge gates are not available in sweep modes. 

The term "external trigger" refers to an external signal used to notify 
the ADQ32 to take samples. In some clock modes the triggering signal 
is connected to the external gate/trigger input. In modes where a 
gating signal is used with an external trigger, the external trigger signal 
is connected to the external frequency input and the gate signal is 
connected to the external gate/trigger input. 

In the simplest case, a negative transition on the external trigger input 
causes a sample to be acquired. The external trigger can also be gated 
by an edge gate or a delayed edge gate. In this mode, however, the 
actual triggering signal is connected to the external frequency input and 
the gating signal is connected to the external gateltrigger input. The gate 
then controls when the external frequency input is routed to the ADC. 

In sweep modes, the term "activated by external trigger" refers to 
a signal which has aone-time-only ON function. The clock mode 
does not begin until a negative transition is detected on the external 
gateltrigger input. In other words, the mode is similar to an edge gate 
signal, except that subsequent pulses on the external gateltrigger input 
generate a clock overrun error (modes 4 and 9) or are ignored (modes 
13 and 18). 

The "activated by external trigger" modes perform slightly differently 
depending on whether the ADQ32 is attached for single-buffer DMA 
or double-buffer DMA. In single buffer DMA, each external trigger 
starts data acquisition and transfer of a single buffer's worth of DMA. 
When the buffer completes, the next buffer is not started until the next 
external trigger occurs. In double-buffer DMA, each external trigger 
starts data acquisition and transfer. This continues as long the ADQ32 
remains double-buffered. In other words, transitions from one DMA 
buffer to the next do not affect the ADQ32 ADC. The ADQ32 continues 
to acquire data and place it in the data FIFO. 

A-4 ADQ32 Triggering and Clock Modes 



In sweep modes, the term "sweep controlled by external trigger" refers 
to modes in which each pass through a sweep of the specified channels 
is controlled by an external signal connected to the external gateltrigger 
input. A negative transition on this input causes the ADQ32 to acquire 
the number of specified samples at the rate specified (if a timed sweep) 
or as fast as possible (if a burst sweep). The next negative transition 
causes another pass through the specified channels. However, if a 
subsequent negative pulse occurs on the external gateltrigger input 
before the ADQ32 has acquired the specified number of channels, a 
clock overrun error occurs. 

NOTE 

There is no requirement that any external trigger be a 
regularly timed pulse. 

The term "clock tick" refers to pulses issued by the clock logic to 
control either data acquisition or sweeps through a specified number of 
conversions. The number of clock ticks in a second is usually given as 
the clock "rate'' or clock "frequency." A clock rate of 50 Hz provides 
50 clock ticks per second, or one clock tick every 20 milliseconds. 

A.3 Channel Specification 

The channels to be sampled are specified with the LIO$K_AD_CHAN 
set parameter. For the ADQ32, channels can be sampled in any order. 
For example, 

status = LIO=SET_I (adq_id, LIO=K_AD_CHAN, 3, b, 2, 9) 

specifies channels 5, 2, and 9. They are sampled in that order. 

Channels can be specified more than once. For example, 

status = LIO~SET_I (adq_id, LIOSK_AD_CHAN, 6, i, i, 1, 1, 1) 

specifies channel 1 five times. This might be useful in a sweep mode 
where you want to take several samples on a channel and do this at 
specified time intervals. For example, if you want to take 50 samples 
on channel 1 at the burst rate, and do this every second, you can select 
the burst sweep mode (mode 10) and specify channel 1 50 times in the 
LIO$K_AD_CHAN set parameter. The flexibility of the 
LIO$K_AD_CHAN parameter allows it to be used in scenarios other 
than the straightforward multiple channel scenario. 

ADQ32 Triggering and Clock Modes A-5 



The maximum specifiable channel is 64. 

A.4 Gain Specification 

Every sample in the ADQ32 can be acquired at a specified gain. 
Amplification gains of 1, 2, 4, and 8 are available. The gain is specified 
the LIO$K_GAIN set parameter. The order of gain specifications in this 
call must parallel the channel specifications in the 
LIO$K_AD_CHAN set parameter. For example, 

status = LIO$SET_I (adq_id, LIO$K_AD_CHAN, 4, 0, 3, b, 7) 
status = LIOSSET_I (adq_id, LIOSK_GAIN, 4, 1, 1, 2, 8) 

sets unity gain on channels 0 and 3, a gain of 2 on channel 5, and a gain 
of 8 on channel 7. 

A.5 Buffer Specification 

Data from the ADQ32 is transferred into your user buffer. The buffer 
address and size is specified in the LIO$ENQUEUE or LIO$READ call. 

The ADQ32 uses single buffer DMA transfers by default. Double 
buffering can be selected by specifying LIO$K_DBL_BUF in an LIO$SET 
call. 

A.5.1 Single Buffer Transfers 

In single buffer transfers, the ADQ32 collects data until t11e buffer 
is filled. The event flag or AST routine then is set or executes. T11e 
ADQ32 ADC becomes disabled and the ADC FIFO is cleared. T11e 
clock is restarted in its current mode for subsequent buffers. 

For example in single buffer mode, clock modes t11at are "activated 
by an external trigger" begin data acquisition when the external trigger 
occurs. Data acquistion stops when the buffer is filled. The FIFO is 
cleared, the ADC is disabled, and the clock stops. V1~hen the next 
external trigger occurs, the clock is restarted, the ADC is enabled, and 
data collection begins filling the next buffer. 

A-6 ADQ32 Triggering and Clock Modes 



I"1  
A.5.2 Double Buffer Transfers 

In double buffer mode, the ADQ32 continues to acquire and convert 
samples without regard to buffer transitions. Some thought should be 
given to the buffer sizes selected. It is possible for the first part of a 
sweep's data to be in the end of one buffer and the rest of the sweep to 
be at the beginning of the next buffer. It is your responsibility to keep 
track of what data values are in which buffer. 

In double buffered mode, external triggers activate buffers differently 
than in single buffer mode. In single buffer mode, clock modes that 
are "activated by an external trigger" begin data acquisition when the 
external trigger occurs. Data acquistion stops when the buffer is filled. 
In double buffer mode, the external trigger starts data acquisition, but 
when the first buffer is filled, the ADQ32 starts filling the second buffer. 
The event flag or AST routine signaling the filling of the first buffer does 
occur, but the ADC is not disabled, nor is the ADC FIFO cleared. The 
ADQ32 just continues to fill all subsequent buffers. 

If the ADQ32 becomes non-double buffered when set for double 
buffered mode, data acquisition stops. The ADQ32 could become 
non-double buffered if buffer sizes are small and the clock rate is fast. 
If the time it takes to set up for the third buffer is greater than the entire 
time to transfer the second buffer, the ADQ32 will lose double buffered 
status. See Section 1.6.3.4, Double-Buffer DMA. 

when enqueuing multiple buffers for double buffering, enqueue the 
buffers in the desired order of filling. Each buffer except the last should 
be enqueue with the LIO$M_HOLD_DMA argument. Enqueue the last 
buffer with the LIO$M_DONE_DBL_BUF argument. The ADQ32 then 
starts data collection when the last buffer is enqueued (if a timed or 
burst clock mode is enqueued; if a clock mode started by an external 
trigger event was selected, the ADQ32 waits for the external trigger 
event). 

ADQ32 Triggering and Clock Modes A-7 



A.6 Start of Data Acquisition 

For modes which do not use an external trigger or gate (modes 1, 5, 10, 
and 15), data acqusition starts when the LIO$READ or LIO$ENQUEUE 
routines are called. Data acquisition does not start when the triggering 
mode is set up with the LIO$SET parameter calls. 

In double buffered mode, when buffers are enqueued with the 
LIO$ENQUEUE call using the LIO$M_HOLD_DMA qualifier, data 
acquisition does not start until the last buffer is queued without the 
LIO$M_HOLD_DMA qualifier and with the LIO$M_DONE_DBL_BUF 
qualifier. See Section 1.6.3.4, Double-Buffer DMA, for more 
information on the LIO$K_HOLD_DMA qualifier. See also 
LIO$ENQUEUE in Chapter 3. 

For modes using external triggers or gates, data acquisition starts when 
the external gate or trigger event occurs, assuming that the LIO$READ 
or LIO$ENQUEUE call has previously executed. In double buffered 
mode, all buffers must have been enqueued (that is, the last buffer must 
have been queued without the LIO$M_HOLD_DMA qualifier) before 
the external trigger or gate occurs. 

A.7 Clock Overrun Errors 

The term clock overrun error is used in four situations: 

• A trigger signal occurs while the ADC is currently converting a 
sample . 

• A second sweep trigger signal occurs before all of the specified 
channels in a sweep have been converted. 

• A trigger signal occurs but the ADC is currently disabled. 
• In modes 4 and 9, an external trigger occurred, but the ADQ32 is 

still filling the current buffer. 

In all of these situations, a trigger signal is whatever current signal is 
being used to trigger the ADC. This could be a pulse from the clock 
chip, an external trigger signal, or a gated external frequency signal. 

A-8 ADQ32 Triggering and Clock Modes 



When the clock overrun error occurs, the ADC is disabled. This ensures 
that only valid data is written to the FIFO. The DMA machine however, 
does not stop and continues transferring any data that is in the FIFO. 
This is data that was acquired before the overrun error occurred. 

A.8 Important Points About the Clock Logic 

In all of the following diagrams and discussions, tl is used to designate 
the rate at which samples are acquired. This rate is specified using -the 
LIO$K_CLK_RATE parameter and is referred to as the primary clock. 

The rate at which sweeps are taken is designated as t2. This rate is 
specified using the LIO$K_SWEEP_RATE parameter and is called the 
sweep clock. Because of modes such as burst sweep, where you specify 
only the rate at which sweeps are taken, t2 is sometimes specified even 
though tl is not used. 

The clock rate you select should be at least twice the frequency of the 
highest component sine wave of the signal you are acquiring. This is 
called the Nyquist frequency. 

All signals can be defined as the product of any number of sine waves. 
If you can identify the frequency of the highest component sine wave 
you are interested in, your sampling rate should be at least twice that 
frequency. For example, if you know that your signal contains no 
frequency higher than 20 KHz, a sampling rate of 40 KHz is sufficient to 
capture the signal data without aliasing. 

Aperture delay is the time between the occurrence of an ADC triggering 
pulse and the acquisition of t11e sample voltage by the track-and-hold 
circuit. Effective aperture delay is the complete time difference between 
the occurrence of an external pulse and the acquisition of the sample 
voltage by the track-and-hold circuit. This includes the multiplexer and 
preamplifier settling times, and the clock offset referred to previously. 

For applications that require the minimum effective aperture delay time, 
the external trigger mode is recommended. In this mode, the amount of 
time that elapses between the occurrence of the external trigger and the 
actual acquisition of the sample is as small as can be for the ADQ32. 

ADQ32 Triggering and Clock Modes A-9 



A.9 Clock Mode 1, Burst 

The burst clock mode provides data acquisition at a rate controlled by 
the ADQ32 state machine. The rate selected is the fastest possible rate 
that can be used and still guarantee data precision within 1/2 LSB. The 
actual rates used are shown in Table A-1. Figure A-1 illustrates the 
clock output in this mode. Each upward spike in this drawing indicates 
one ADC sample taken. 

Data acquisition starts as soon as the LIO$READ or LIO$ENQUEUE 
call executes. See Section A.6, Start of Data Acquisition, foi• more 
information. 

Figure A-1: Clock Mode 1, Burst 

ADC 
MR -1492-GE 

You select clock mode 1 by using the following LIO routine calls: 

statue = LIOSSET_I (adq_id, LIO$K_TRIG, 3, LIO$K_BURST, LIO$K_SAME, 
1 LIO$K_SAME) 

status = LIOSSET_I (adq_id, LIO$K_GATE, i, LIO$K_OFF) 

The GATE set parameter is not needed unless you previously enabled 
gating and are now switching to a new clock anode. 

A-10 ADQ32 Triggering and Clock Modes 



I1 
A.10 Clock Mode 2, Burst, with Edge Gate 

In this mode, the ADQ32 acquires data at the burst rate, but data 
collection is controlled by an external gate signal. Negative transitions 
on the external gate toggle the ADQ32 in and out of burst mode. 
The first negative transition on the external gate input starts data 
acquisition. The second negative transition on the external gate stops 
data acquisition. 

The burst clock mode provides data acquisition at a rate controlled by 
the ADQ32 state machine. The rate selected is the fastest possible rate 
that can be used and still guarantee data precision within 112 LSB . The 
actual rates used are shown in Table A-1. Figure A-2 illustrates the 
clock output in this mode. 

Figure A-2: Clock Mode 2, Burst, with Edge Gate 

External 
Gate 

ADC 

ON OFF 

MR-1493-GE 

You select clock mode 2 by using the following LIO routine calls: 

status = LIO$SET_I (adq_id, LIO$K_TRIG, 3, LIO$K_BURST, LIO$K_SAME, 
1 LIO$K_SAME) 

status = LIO$SET_I (adq_id, LIOsK_GATE, 1, LIO$K_EDGE) 

ADQ32 Triggering and Clock Modes A=11 



A.11 Clock Mode 3, Burst, with Delayed Edge Gate 

In this mode, the ADQ32 acquires data at the burst rate, but data 
collection is controlled by an external gate signal. In addition, data 
collection is delayed from the occurrence of the external gate signal by 
a specified time delay. You specify the time delay by selecting a clock 
rate with the LIO$K_SWEEP_RATE parameter. The time delay is one 
clock tick of the rate you select. 

Negative transitions on the external gate toggle the ADQ32 in and out 
of burst mode. The first negative transition on the external gate input 
causes the delay counters to begin. After the delay time elapses, the 
ADQ32 starts data acquisition. The second negative transition on the 
external gate stops data acquisition, after the delay time elapses. 

The burst clock mode provides data acquisition at a rate controlled by 
the ADQ32 state machine. The rate selected is the fastest possible rate 
that can be used and still guarantee data precision within 1l2 LSB. The 
actual rates used are shown in Table A-1. 

Figure A-3 illustrates the clock output in this mode. 

Figure A-3: Clock Mode 3, Burst, with Delayed Edge Gate 

External 
Gate  

ADC 

delay 

 i 
delay 

MR -1494-G E 

You select clock mode 3 by using the following LIO routine calls: 

status = LIO=SET_I (adq_id, LIOSK_TRIG, 3, LIOsK_BURST, LIO=K_SAME, 

1 LIO~K_SAME) 

status = LIO~SET_I (adq_id, LIO~K_GATE, i, LIO;K_EDGE_DELAY) 

status = LIO~SET_I (adq_id, LIO~K_SYEEP_RATE, i, desired_rate_for_delay) 

A-12 ADQ32 Triggering and Clock Modes 



A.12 Clock Mode 4, Burst, Activated by External Trigger 

In this mode, the ADQ32 acquires data at the burst rate, but data 
collection is started by an external trigger signal. The first negative 
transitions on the external gateltrigger input puts the ADQ32 into burst 
mode. 

If the ADQ32 is attached for single buffer DMA, each external trigger 
causes one buffer of data to be acquired and transferred. If the ADQ32 
is attached for doubled buffered DMA, each external trigger causes 
all queued buffers to be acquired and transferred. In both cases, if 
a subsequent external trigger occurs while a buffer is currently being 
filled, the subsequent external trigger causes a clock overrun error. 

The burst clock mode provides data acquisition at a rate controlled by 
the ADQ32 state machine. The rate selected is the fastest possible rate 
that can be used and still guarantee data precision within 112 LSB . The 
actual rates used are shown in Table A-1. Figure A-4 illustrates the 
clock output in this mode. 

r"1 
Figure A-4: Clock Mode 4, Burst, Activated by External Trigger 

External 
Trigger 

ADC 

"START" OVERRUN ERROR 

MR -1506-G E 

You select clock mode 4 by using the following LIO routine calls: 

status = LIO~SET_I (adq_id, LIO$K_TRIG, 3, LIO$K_BURST, LIOSK_SAME, 

1 LIOsK_EXTERNAL) 

status = LIOsSET_I (adq_id, LIO$K_GATE, 1, LIOSK_OFF) 

The GATE set parameter is not needed unless you previously enabled 
gating and are now switching to a new clock mode. 

ADQ32 Triggering and Clock Modes A-13 



A.13 Clock Mode 5, Timed Triggers 

In this mode, the ADQ32 acquires data at a specified clock rate. The 
clock rate is selected with the LIO$K_CLK_RATE parameter. 

Data acquisition starts as soon as the LIO$READ or LIO$ENQUEUE 
call executes. See Section A.6, Start of Data Acquisition, for more 
information. 

Figure A-5 illustrates the clock output in this mode. 

Figure A-5: Clock Mode 5, Timed Triggers 

ADC 

t 1—►I 

MR -1496-GE 

You select clock mode 5 by using the following LIO routine calls: 

status = LIOSSET_I (adq_id, LIO$K_TRIG, 3, LIO$K_AD_CLOCK, LIO$K_SAME, 
1 LIO$K_SAME) 

status = LIO~SET_I (adq_id, LIO$K_GATE, i, LIO$K_OFF) 

status = LIO$SET_I (adq_id, LIO$K_CLK_RATE, 1, desired_trigger_rate) 

The GATE set parameter is not needed unless you previously enabled 
gating and are now switching to a new clock mode. 

A-14 ADQ32 Triggering and Clock Modes 



A.14 Clock Mode 6, Timed Triggers, with Edge Gate 

In this mode, the ADQ32 acquires data at the clock rate specified by 
you. The clock rate is selected with the LIO$K_CLK_RATE parameter. 

Data collection at the specified clock rate is controlled by an external 
gate signal. Negative transitions on the external gate turn the clock logic 
on and off. The first negative transition on the external gate input starts 
the clock counters. The second negative transition on the external gate 
stops data acquisition. 

Figure A-6 illustrates the clock output in this mode. 

Figure A-6: Clock Mode 6, Timed Triggers, with Edge Gate 

External 
Gate 

ADC 

 ON OFF ON OFF 

U ~ U U 

i r T i r t r r r i 
1 =Sample 

* The first sample occurs slightly after the gate ON signal. 

** Subsequent first samples occur between 0 and t1 time after the 
gate edge. (0 < sample< t1). 

MR-3573-GE 

You select clock mode 6 by using the following LIO routine calls: 

status = LIOSSET_I (adq_id, LIO$K_TRIG, 3, LIO$K_AD_CLOCK, LIO$K_SAME, 

1 LIO$K_SAME) 

status = LIO~SET_I (adq_id, LIO$K_GATE, 1, LIO$K_EDGE) 

status = LIOsSET_I (adq_id, LIO$K_CLK_RATE, i, desired_trigger_rate) 

ADQ32 Triggering and Clock Modes A-15 



A.15 Clock Mode 7, Timed Triggers, with Delayed Edge 
Gate 

In this mode, the ADQ32 acquires data at the clock rate specified by 
you. The clock rate is selected with the LIO$K_CLK_RATE parameter. 

Data collection at the specified clock rate is controlled by an external 
gate signal. In addition, data collection is delayed from the occurrence 
of the external gate signal by a specified time delay. You specify 
the time delay with the sweep clock, using the LIO$K_SWEEP_RATE 
parameter. The tune delay is one clock tick of the rate you select. 

Negative transitions on the external gate turn the clock logic on and off. 
The first negative transition on the external gate input causes the delay 
counters to begin. After the delay time elapses, the clock counters for 
the timed triggers begin. The second negative transition on the external 
gate stops data acquisition, after the delay time elapses. 

Figure A-7 illustrates the clock output in this mode. 

Figure A-7: Clock Mode 7, Timed Triggers, with Delayed Edge Gate 

External ON OFF 
Gate 

ADC 

~~ delay ~,~ ~` ~ '~ 

"The first sample occurs between 0 and t1 time after the delay ends, 
{0 < sample <t1). 

U 
delay 

MR-3574-GE 

You select clock mode 7 by using the following LIO routine calls: 

status = LIO$SET_I (adq_id, LIO$K_TRIG, 3, LIO$K_AD_CLOCK, LIO$K_SAME, 
1 LIO$K_SAME) 

status = LIO$SET_I (adq_id, LIO$K_GATE, 1, LIO$K_EDGE_DELAY) 

status = LIO$SET_I (adq_id, LIO$K_CLK_RATE, 1, desired_trigger_rate) 

status = LIO$SET_I (adq_id, LIO$K_SYEEP_RATE, 1, desired_rate_for_delay) 

A-16 ADQ32 Triggering and Clock Modes 

~, 



A.16 Clock Mode 8, Timed Triggers, with Level Gate 

In this mode, the ADQ32 acquires data at the clock rate specified by 
you. The clock rate is selected with the LIO$K_CLK_RATE paraYneter. 

Data collection at t11e specified clock rate is controlled by an external 
gate signal. The level of the signal controls when data collection occurs. 
Data collection at the specified rate occurs whenever the external gate 
input is HIGH. Data collection stops when the external gate input is 
LOW. Note that this means data collection starts immediately if the 
external gate input is HIGH when the data buffers are enqueued. 

Figure A-8 illustrates the clock output in this mode. 

Figure A-8: Clock Mode 8, Timed Triggers, with Level Gate 

External 
ON 

Gate 

t'--t 1 

ADC 

OFF ON 

** 

* The first sample occurs slightly after the external gate ON signal. 

** Subsequent first samples occur between 0 and t1 time after the 
gate signal. (0< sample< t~). 

MR-3575-GE 

You select clock mode 8 by using the following LIO routine calls: 

status = LIO~SET_I (adq_id, LIO$K_TRIG, 3, LIOSK_AD_CLOCK, LIO~K_SAME, 

1 LIOSK_SAME) 

status = LIO~SET_I (adq_id, LIO~K_GATE, 1, LIO$K_LEVEL) 

status = LIOSSET_I (adq_id, LIO$K_CLK_AATE, 1, desired_trigger_rate) 

ADQ32 Triggering and Clock Modes A-17 



A.17 Clock Mode 9, Timed Triggers, Activated by External 
Trigger 

In this mode, the ADQ32 acquires data at the clock rate specified by 
you, but data collection is controlled by an external trigger signal. The 
clock rate is selected with the LIO$K_CLK_RATE parameter. 

The first negative transitions on the external gateltrigger input starts 
data collection at the specified rate. If the ADQ32 is attached for 
single buffer DMA, each external trigger causes one buffer of data to 
be acquired and transferred. If the ADQ32 is attached for doubled 
buffered DMA, each external trigger causes all queued buffers to be 
acquired and transferred. In both cases, if a subsequent external trigger 
occurs while a buffer is currently being filled, the subsequent external 
trigger causes a clock overrun error. 

Figure A-9 illustrates the clock output in t11is mode. 

Figure A-9: Clock Mode 9, Timed Triggers, Activated by External Trigger 

External 
Trigger "'START" OVERRUN ERROR 

u u ~--~,~ 
ADC 

* The first sample occurs slightly after the external trigger. 

MR-3579-GE 

You select clock mode 9 by using the following LIO routine calls: 

status = LIO~SET_I (adq_id, LIO$K_TRIG, 3, LIO$K_AD_CLOCK, LIO$K_SAME, 
1 LIO~K_EXTERNAL) 

status = LIO~SET_I (adq_id, LIO$K_GATE, 1, LIO~K_OFF) 

status = LIO~SET_I (adq_id, LIO$K_CLK_RATE, 1, desired_trigger_rate) 

The GATE set parameter is not needed unless you previously enabled 
gating . 

A-18 ADQ32 Triggering and Clock Modes 



A.18 Clock Mode 10, Burst Sweeps 

In this mode, the ADQ32 makes each pass through the channels 
specified in the LIO$K_AD_CHAN parameter at the burst rate. Each 
pass through the specified channels is controlled by the sweep clock 
rate, t2, which you specify using the LIO$K_SWEEP_RATE parameter. 

IV OTE 

The sweep rate, t2, must be greater than t11e product of the 
burst rate times the number of conversions. If it is not, a 
clock over~•un error occurs. 

Data acquisition starts as soon as the LIO$READ or LIO$ENQUEUE 
call executes. See Section A.6, Start of Data Acquisition, for more 
information. 

The burst clock mode provides data acquisition at a rate controlled by 
the ADQ32 state machine. The rate selected is the fastest possible rate 
that can be used and still guarantee data precision within 112 LSB . The 
actual rates used are shown in Table A-1. 

Figure A-10 illustrates the clock output in this mode. 

Figure A-10: Clock Mode 10, Burst Sweeps 

t 
2 

Sweep 
Control 

ADC 

Number of Conversions = 5 
MR-1500-GE 

ADQ32 Triggering and Clock Modes A-19 



You select clock mode 10 by using the following LIO routine calls: 

statue = LIO=SET_I (adq_id, LIO=K_?AIG, 3, LIO=K_BUBST, 
1 LIO~K_SYEEP_CLOCK, LIOSK_SAME) 

status = LIO=SET_I (adq_id, LIO$K_GATE, 1, LIO=K_OFF) 

status = LIO~SET_R (adq_id, LIOSK_SYEEP_RATE, 1, desired_ereep_rate) 

A-20 ADQ32 Triggering and Clock Modes 



A.19 Clock Mode 11, Burst Sweeps, with Edge Gate 

In this mode, the ADQ32 makes each pass through the channels 
specified in the LIO$K_AD_CHAN parameter at t11e burst rate. 
Each pass through the specified channels is controlled by a clock 
rate, t2. You select this clock rate with the sweep clock, using the 
LIO$K_SWEEP_RATE parameter. 

The entire clock mode is controlled by an external gate signal. A 
negative transition on the external gate starts the clock counters for t2. 

When the first clock tick for this clock rate occurs, the ADQ32 samples 
all of the specified channels at the burst rate. 

The second negative transition on the external gate stops data 
acquisition. Note, however, that t11e external gate controls only the 
sweep timing signal, t2. If a second negative transition occurs before a 
specified sweep has finished, that sweep of the specified channels is 
allowed to finish. The sweep control timing is shut off by the gate. 

The burst clock mode provides data acquisition at a rate controlled by 
the ADQ32 state machine. The rate selected is the fastest possible rate 
that can be used and still guarantee data precision within 112 LSB . The 
actual rates used are shown in Table A-1. 

NOTE 

The sweep rate, t2, must be greater than the product of the 
burst rate times the number of conversions. If it is not, a 
clock overrun error occurs. 

ADQ32 Triggering and Clock Modes A-21 



Figure A-11 illustrates the clock output in this mode. 

Figure A-11: Clock Mode 11, Burst Sweeps, with Edge Gate 

External 
Gate 

Sweep 
Control 

ADC 

ON OFF ON 

t 2 -'~a-+~

Number ofconversions = 5 

* The first sweep control signal occurs slightly after the external gate ON, 
External gate OFF stops the ~ counters and a subsequent gate ON 
restarts the t2 counters so that a + b = ~, 

MR-3721-GE 

You select clock mode 11 by using the following LIO routine calls: 

status = LIOSSET_I (adq_id, LIOSK_TRIG, 3, LIO$K_BURST, 
1 LIO$K_SVEEP_CLOCK, LIO$K_SAME) 

Status = LIO$SET_I (adq_id, LIO$K_GATE, 1, LIO$K_EDGE) 

status = LIO$SET_I (adq_id, LIO$K_SVEEP_RATE, 1, desired_s~reep_rate) 

A-22 ADQ32 Triggering and Clock Modes 



A.20 Clock Mode 12, Burst Sweeps, with Level Gate 

In this mode, the ADQ32 makes each pass through the channels 
specified in the LIO$K_AD_CHAN parameter at the burst rate. Each 
pass through the specified channels is controlled by the sweep clock 
rate, t2, which you specify using the LIO$K_SWEEP_RATE parameter. 

The entire clock mode is controlled by an external gate signal. The level 
of the signal controls when data collection occurs. The sweep control 
timing signal runs at the specified rate whenever the external gate input 
is HIGH. The sweep control timing signal stops when the external gate 
input is LOW. 

A HIGH signal on the external gate starts the sweep clock counters 
for t2. When the first clock tick for this clock rate occurs, the ADQ32 
samples all of the specified channels at the burst rate. 

The LOW signal on the external gate stops the sweep clock counters. It 
is important to note, however, that the external gate controls only the 
sweep timing signal, t2. If the external gate signal goes LOW before a 
specified sweep has finished, that sweep of the specified channels is 
allowed to finish. The sweep control timing is shut off by the gate. 

Note that this clock mode starts immediately if the external gate input is 
HIGH when the buffers are enqueued. 

The burst clock mode provides data acquisition at a rate controlled by 
the ADQ32 state machine. The rate selected is the fastest possible rate 
that can be used and still guarantee data precision within 1/2 LSB. The 
actual rates used are shown in Table A-1. 

NOTE 

The sweep rate, t2, must be greater than the product of the 
burst rate times the number of conversions. If it is not, a 
clock overrun error occurs. 

ADQ32 Triggering and Clock Modes A-23 



Figure A-12 illustrates the clock output in this mode. 

Figure A-12: Clock Mode 12, Burst Sweeps, with Level Gate 

External 
Gate 

sweep 
Control 

ADC 

ON OFF

t z a~ 

Number of conversions = 5 

ON 

~~ 

*The first sweep control signal occurs slightly after the external gate ON. 
External gate OFF stops the ~ counters and a subsequent gate ON 
restarts the t2 counters so that a + b = 

MR -3722-G E 

You select clock mode 12 by using the following LIO routine calls: 

status = LIO~SET_I (adq_id, LIOsK_TRIG, 3, LIO~K_BURST, 
1 LIO$K_SYEEP_CLOCK, LIO$K_SAME) 

status = LIOSSET_I (adq_id, LIOSK_GATE, 1, LIO$K_LEVEL) 

statue = LIO~SET_I (adq_id, LIO$K_SYEEP_RATE, 1, desired_sreep_rate) 

A-24 ADQ32 Triggering and Clock Modes 



A.21 Clock Mode 13, Burst Sweeps, Activated by External 
T ri 9 ge r 

In this mode, the ADQ32 makes each pass through the channels 
specified in the LIO$K_AD_CHAN parameter at the burst rate. Eac11~ 
pass through the specified channels is controlled by the sweep clock 
rate, t2, which you specify using the LIO$K_SWEEP_RATE parameter. 

The clock mode is activated by an external trigger. The clock counters 
that control the sweep timing are not started until a negative transition 
occurs on the external trigger input. Wl1en the first clock tick for this 
clock rate occurs, the ADQ32 samples all of the specified channels at 
the burst rate. 

The burst clock mode provides data acquisition at a rate controlled by 
the ADQ32 state machine. The rate selected is the fastest possible rate 
that can be used and still guarantee data precision within 112 LSB . The 
actual rates used are shown in Table A-1. 

NOTE 

The sweep rate, t2, must be greater than the product of the 
burst rate times the number of conversions. If it is not, a 
clock overrun error occurs. 

If the ADQ32 is attached for single buffer DMA, each external trigger 
causes one buffer of data to be acquired and transferred. If the ADQ32 
is attached for doubled buffered DMA, each external trigger causes 
all queued buffers to be acquired and transferred. In bot11 cases, if 
a subsequent external trigger occurs while a buffer is currently being 
filled, the subsequent external trigger is ignored. 

ADQ32 Triggering and Clock Modes A-25 



Figure A-13 illustrates the clock output in this mode. 

Figure A-13: Clock Mode 13, Burst Sweeps, Activated by External Trigger 

External 
Trigger 

Sweep 
Control 

ADC 

"'START" 

* The first sweep control signal occurs slightly after the external trigger. 

MR-3723-GE 

You select clock mode 13 by using the following LIO routine calls: 

status = LIO$SET_I (adq_id, LIO$K_TRIG, 3, LIOSK_BURST, 
1 LIO$K_SYEEP_CLOCK, LIO$K_EXTERNAL) 

status = LIO$SET_I (adq_id, LIO$K_GATE, 1, LIOSK_OFF) 

status = LIO~SET_I (adq_id, LIO$K_S1~EEP_RATE, 1, desired_swreep_rate) 

The GATE set parameter is not needed unless you previously enabled 
gating. 

A-26 ADQ32 Triggering and Clock Modes 



l'1 
A.22 Clock Mode 14, Burst Sweeps, Sweep Controlled by 

External Trigger 

In this mode, the ADQ32 makes each pass through the channels 
specified in the LIO$K_AD_CHAN parameter at the burst rate. Eac11 
pass through the specified channels is controlled by a an external 
trigger signal connected to the external trigger input. When a negative 
transition on the external trigger input occurs, the ADQ32 makes one 
sweep at the burst rate of the specified channels. 

NOTE 

The sweep through the specified channels must finish before 
the next external trigger occurs. If the next trigger occurs 
during a sweep, a clock overrun error occurs. 

The burst clock mode provides data acquisition at a rate controlled by 
the ADQ32 state machine. The rate selected is the fastest possible rate 
that can be used and still guarantee data precision within 112 LSB . The 
actual rates used are shown in Table A-1. 

ADQ32 Triggering and Clock Modes A-27 



Figure A-14 illustrates the clock output in this mode. 

Figure A-14: Clock Mode 14, Burst Sweeps, Sweep Controlled by 
External Trigger 

External 
Trigger 
(Sweep Control 

ADC 

Number of Conversions = 5 
MR-1510-GE 

NOTE 

All of the samples in a sweep must finish before the 
occurrence of the next external trigger. If this is not true, 
a clock overrun error occurs. 

You select clock mode 14 by using the following LIO routine calls: 

Status = LIO$SET_I (adq_id, LIO$K_TRIG, 3, LIO$K_BURST, 
1 LIO$K_EXTERNAL, LIOsK_SAME) 

status = LIOSSET_I (adq_id, LIO~K_GATE, 1, LIO$K_OFF) 

The GATE set parameter is not needed unless you previously enabled 
gating. 

A-28 ADQ32 Triggering and Clock Modes 



A.23 Clock Mode 15, Timed Sweeps 

In this mode, the ADQ32 makes each pass through the channels 
specified in the LIO$K_AD_CHAN parameter using two specified 
rates. The primary clock rate, tl, controls the rate at which each sample 
in the sweep is converted. This clock rate is specified using the 
LIO$K_CLK_RATE parameter. Each pass through the specified 
channels is controlled by the sweep clock rate, t2, which you specify 
using the LIO$K_SWEEP_RATE parameter. 

NOTE 

The sweep rate, t2, must be greater than the product of tl
times the number of conversions. If it is not, a clock overrun 
error occurs. 

Data acquisition starts as soon as the LIO$READ or LIO$ENQUEUE 
call executes. See Section A.6, Start of Data Acquisition, for more 
information. 

ADQ32 Triggering and Clock Modes A-29 



Figure A-15 illustrates the clock output in this mode. 

Figure A-15: Clock Mode 15, Timed Sweeps 

Sweep 
Control 

ADC 

H t 
2 

n, rt._n ~ n n n n ._ 
~t 1~ ~t 1~ 

~t 1~ 

* The first sample occurs t~ time after the sweep control signal. 

MR-3576-GE 

You select clock mode 15 by using the following LIO routine calls: 

status = LIO$SET_I (adq_id, LIO$K_TRIG, 3, LIO$K_AD_CLOCK, 
1 LIO$K_SYEEP_CLOCK, LIO$K_SAME) 

status = LIO$SET_I (adq_id, LIO$K_GATE, 1, LIO$K_OFF) 

status = LIOsSET_I (adq_id, LIO$K_CLK_RATE, 1, desired_conversion_rate) 

status = LIO$SET_I (adq_id, LIO$K_S1~EEP_RATE, 1, desired_s~reep_rate) 

The GATE set parameter is not needed unless you previously enabled 
gating. 

A-30 ADC~32 Triggering and Clock Modes 



A.24 Clock Mode 16, Timed Sweeps, with Edge Gate 

In this mode, the ADQ32 makes each pass through the channels 
specified in the LIQ$K_AD_CHAN parameter using two specified 
rates. The primary clock rate, t~_, controls the rate at which each sample 
in the sweep is converted. This clock rate is specified using the 
LIO$K_CLK_RATE parameter. Each pass through the specified 
channels is controlled by the sweep clock rate, t2, which you specify 
using the LIO$K_SWEEP_RATE parameter. 

The entire clock mode is controlled by an external gate signal. A 
negative transition on the external gate starts the clock counters for t2. 
When the first clock tick for this clock rate occurs, the ADQ32 samples 
all of the specified channels at the primary clock rate. 

The second negative transition on the external gate stops data 
acquisition. It is important to note, however, that the external gate 
controls only the sweep timing signal, t2. If a second negative transition 
occurs before a specified sweep has finished, that sweep of the 
specified channels is allowed to finish. The sweep control timing is shut 
off by the gate. The primary clock stops after the sweep completes. 

NOTE 

T11e sweep rate, t2, must be greater than the product of the t~ 
times the number of conversions. If it is not, a clock overrun 
error occurs. 

ADQ32 Triggering and Clock Modes A-31 



Figure A-16 illustrates the clock output in this mode. 

Figure A-16: Clock Mode 1 fi, Timed Sweeps, with Edge Gate 

External ON 
Gate ~1 I 

OFF ON 

Sweep ~" 
Control _J 

ADC 

t 2 a -►~ 

~~ ~ ~t~~ 
** 

~-~ 

Number of conversions per sweep = 4 

The first sweep control signal occurs slightly after the external gate ON. 
External gate OFF stops the ~ counters and a subsequent gate ON 
restarts the t2counters so that a + b = ~. 

**The first signal in each sweep is t time after the sweep control signal. 

MR-35n-GE 

You select clock mode 16 by using the following LIO routine calls: 

status = LIO~SET_I (adq_id, LIO$K_TRIG, 3, LIO$K_AD_CLOCK, 
1 LIO$K_SI/EEP_CLOCK, LIOsK_SAME) 

status = LIO~SET_I (adq_id, LIOSK_GATE, i, LIOSK_EDGE) 

status = LIO$SET_I (adq_id, LIO$K_CLK_RATE, 1, desired_conversion_rate) 

status = LIOSSET_I (adq_id, ~LIO~K_SYEEP_RATE, 1, desired_s~reep_rate) 

A-32 ADQ32 Triggering and Clock Modes 



A.25 Clock Mode 17, Timed Sweeps, with Level Gate 

In this mode, the ADQ32 makes each pass through the channels 
specified in the LIO$K_AD_CHAN parameter using two specified 
rates. The primary clock rate, tl, controls the rate at which each sample 
in the sweep is converted. This clock rate is specified using the 
LIO$K_CLK_RATE parameter. Each pass through the specified 
channels is controlled by the sweep clock rate, t2, which you specify 
using the LIO$K_SWEEP_RATE parameter. 

The entire clock mode is controlled by an external gate signal. The level 
of the signal controls when data collection occurs. The sweep control 
timing signal runs at the specified rate whenever the external gate input 
is HIGH. The sweep control timing signal stops when the external gate 
input is LOW . 

A HIGH signal on the external gate starts the clock counters for t2. 

When the first clock tick for this clock rate occurs, the ADQ32 samples 
all of the specified channels at the sweep clock rate. 

The LOW signal on the external gate stops the clock counters. It is 
important to note, however, that the external gate controls only the 
sweep timing signal, t2. If the external gate signal goes LOW before a 
specified sweep has finished, that sweep of the specified channels is 
allowed to finish. The sweep control timing is shut off by the gate. The 
primary clock stops after the sweep completes. 

Note that this clock mode starts immediately if the external gate input is 
HIGH when the clock mode is programmed. 

NOTE 

The sweep rate, t2, must be greater than the product of t1 

times the number of conversions. If it is not, a clock overrun 
error occurs. 

ADQ32 Triggering and Clock Modes A-33 



Figure A-17 illustrates the clock output in this mode. 

Figure A-17: Clock Mode 17, Timed Sweeps, with Level Gate 

ON OFF 
External 
Gate 

t 2 ~--►~— a —~ 
Sweep 
Control 

AD C 

~~ ~ ~~~ 
*# 

ON 

~'~ 

Number of conversions per sweep = 4 

*The first sweep control signal occurs slightly after the external gate ON. 
External gate OFF stops the ~ counters and a subsequent gate ON 
restarts the t2counters so that a + b = t2. 

** The first signal in each sweep is { time after the sweep control signal. 

MR-3578-GE 

You select clock mode 17 by using the following LIO routine calls: 

status = LIOSSET_I (adq_id, LIO$K_TRIG, 3, LIO$K_AD_CLOCK, 
1 LIO$K_SYEEP_CLOCK, LIO$K_SAME) 

status = LIO$SET_I (adq_id, LIO$K_GATE, 1, LIO$K_LEVEL) 

status = LIO~SET_I (adq_id, LIO$K_CLK_RATE, 1, desired_conversion_rate) 

status = LIO$SET_I (adq_id, LIO$K_SYEEP_RATE, 1, desired_s~reep_rate) 

A-34 ADQ32 Triggering and Clock Modes 



A.26 Clock Mode 18, Timed Sweeps, Activated by 
External Trigger 

In this mode, the ADQ32 makes each pass through the channels 
specified in, the LIO$K_AD_CHAN parameter using two specified 
rates. The primary clock rate, tl, controls the rate at which each sample 
in the sweep is converted. This clock rate is specified using the 
LIO$K_CLK_RATE parameter. Each pass through the specified 
channels is controlled by the sweep clock rate, t2, which you specify 
using the LIO$K_SWEEP_RATE parameter. 

The clock mode is activated by an external trigger. The clock counters 
that control the sweep timing are not started until a negative transition 
occurs on the external trigger input. When the first clock tick for this 
clock rate occurs, the ADQ32 samples all of the specified channels at 
the primary clock rate. 

NOTE 

The sweep rate, t2, must be greater than the product of t1 
times the number of conversions. If it is not, a clock overrun 
error occurs. 

If the ADQ32 is attached for single buffer DMA, each external trigger 
causes one buffer of data to be acquired and transferred. If the ADQ32 
is attached for doubled buffered DMA, each external trigger causes 
all queued buffers to be acquired and transferred. In both cases, if 
a subsequent external trigger occurs while a buffer is currently being 
filled, the subsequent external trigger is ignored. 

ADQ32 Triggering and Clock Modes A-35 



Figure A-18 illustrates the clock output in this mode. 

Figure A-18: Clock Mode 18, Timed Sweeps, Activated by External Trigger 

External •'START" 
Trigger  

t 
Sweep 
Control 

ADC 

2 

~t ~t ~ 
1 1 

~t ~t ~ 
1 1 

* The first sweep control signal occurs slightly after the external trigger. 

MR-3724-GE 

You select clock mode 18 by using the following LIO routine calls: 

status = LIOSSET_I (adq_id, LIOsK_TRIG, 3, LIO$K_AD_CLOCK, 
1 LIOsK_SYEEP_CLOCK, LIO$K_EXTERNAL) 

status = LIOSSET_I (adq_id, LIO$K_GATE, 1, LIOsK_OFF) 

status = LIOSSET_I (adq_id, LIO$K_CLK_RATE, i, desired_conversion_rate) 

status = LIO~SET_I (adq_id, LIOsK_S1/EEP_RATE, 1, desired_s~reep_rate) 

The GATE set parameter is not needed unless you previously enabled 
gating. 

A-36 ADQ32 Triggering and Clock Modes 



A.27 Clock Mode 19, Timed Sweeps, Sweep Controlled by 
External Trigger 

In this mode, the ADQ32 samples within a sweep at a specified clock 
rate. The primary clock rate, tl, controls the rate at which each sample 
in the sweep is converted and is specified using the LIO$K_CLK_RATE 
parameter. 

Each pass through the channels specified in the LIO$K_AD_CHAN 
parameter is controlled by a an external trigger signal connected to the 
external gateltrigger input. When a negative transition on the external 
gate/trigger input occurs, the ADQ32 makes one sweep at the specified 
clock rate of the specified channels. 

NOTE 

The sweep through all of the specified channels must finish 
before the next external trigger occurs. If the next trigger 
occurs during a sweep, a clock overrun error occurs. 

Figure A-19 illustrates the clock output in this mode. 

Figure A-19: Clock Mode 19, Timed Sweeps, Sweep Controlled by External 
Trigger 

External 
Trigger 
(Sweep Control) 

ADC 

Number of conversions = 4 

* The first sample in each sweep occurs t~ time after the sweep control 
signal. 

MR-3580-GE 

ADQ32 Triggering and Clock Modes A-37 



You select clock mode 19 by using the following LIO routine calls: 

status = LIOSSET_~I (adq_id, LIO$K_TRIG, 3, LIO$K_AD_CLOCK, 
1 LI03K_EXTERNAL, LIOSK_SAME) 

status = LIO$SET_I (adq_id, LIO$K_GATE, 1, LIOsK_OFF) 

status = LIOSSET_I (adq_id, LIO$K_CLK_RATE, i, desired_conversion_rate) 

The GATE set parameter is not needed unless you previously enabled 
gating. 

A-38 ADQ32 Triggering and Clock Modes 



( ' A.28 Clock Mode 20, External Triggers 

In this mode, the external triggering signal is connected to t11e external 
gate/trigger input. A single conversion is taken each time a negative 
transition occurs on this input. This mode provides the minimum 
effective aperture delay for the ADQ32. In other words, the offset time 
between the occurrence of the triggering signal and the acquisition of 
the sample voltage is as small as is possible. 

Figure A-20 illustrates the clock output in this mode. 

Figure A-20: Clock Mode 20, External Triggers 

External 
Trigger 

i r r r r 
= Sample 

MR -1512-GE 

You select clock mode 20 by using the following LIO routine calls: 

status = LIOZSET_I (adq_id, LIO$K_TRIG, 3, LIO~K_EXTERNAL, 
1 LIO$K_SAME, LIO$K_SAME) 

status = LIO$SET_I (adq_id, LIOSK_GATE, 1, LIO$K_OFF) 

The GATE set parameter is not needed unless you previously enabled 
gating. 

ADQ32 Triggering and Clock Modes A-39 



A.29 Clock Mode 21, External Triggers, with Edge Gate 

In this mode, an external triggering signal controls when each sample 
is converted. In addition, an external gating signal controls when the 
external trigger signals are routed to the ADC. 

Negative transitions on the external gate input (labelled gate/trigger 
input) control when t11e triggering signal is routed to the ADC. The 
first negative transition on the external gate input causes the triggering 
signals (connected to the external frequency input) to be routed to the 
ADC. when the triggering signals are routed to the ADC, a single 
conversion is taken each time a negative transition occurs on the 
external frequency input. The second negative transition on the external 
gate input causes the triggering signals to be ignored. 

NOTE 

The external triggering signal is connected to the external 
frequency input and the gating signal is connected to the 
external gateltrigger input. 

Figure A-21 illustrates the clock output in this .mode. 

Figure A-21: Clock Mode 21, External Triggers, with Edge Gate 

ON OFF 
External 
GatelTrigger 

External -
Frequency 

= Sample 

r r r r r ri r 
MR-1513-GE 

A-40 ADC~32 Triggering and Clock Modes 



You select clock mode 21 by using the following LIO routine calls: 

status = LIO=SET_I (adq_id, LIO=K_TRIG, 3, LIO~K_EXTEBNAL, 
1 LIO~K_SAME, LIOSK_SAME) 

status = LIOSSET_I (adq_id, LIO=K_GATE, i, LIO~K_EDGE) 

ADQ32 Triggering and Clock Modes A-41 



A.30 Clock Mode 22, External Triggers, with Delayed 
Edge Gate 

In this mode, an external triggering signal controls when each sample is 
converted. An external gating signal controls when the external trigger 
signals are routed to the ADC. In addition, a delay time is specified 
using the clock, which delays the action of the gating signal. 

You specify the time delay with the sweep clock, using the 
LIQ$K_SWEEP_RATE parameter. The time delay is one clock tick of the 
rate you select. 

Negative transitions on the external gate input (labelled gate/trigger 
input) control when the triggering signal is routed to the ADC. The first 
negative transition on the external gate input causes the delay counters 
to begin. After the delay time elapses, negative transitions on the 
external frequency input (the triggering signals) are routed to the ADC. 
W11en the triggering signals are routed to the ADC, a single conversion 
is taken each time a negative transition occurs on the external frequency 
input. The second negative transition on the external gate causes the 
delay counters to run again. After the delay time elapses, signals on the 
external triggering input are ignored. 

NOTE 

The external triggering signal is connected to t11e external 
frequency input and the gating signal is connected to the 
external gate/trigger input. 

A-42 ADQ32 Triggering and Clock Modes 



Figure A-22 illustrates the clock output in this mode. 

Figure A-22: Clock Mode 22, External Triggers, with Delayed Edge Gate 

ON OFF 
External 
Gate/Trigger 

External 
Frequency 

= Sample 

~dela delay 

i r i t i i r r 
MR-1514-GE 

You select clock mode 22 by using the following LIO routine calls: 

status = LIOSSET_I (adq_id, LIOSK_TRIG, 3, LIOSK_EXTERNAL, 
1 LIO$K_SAME, LIO$K_SAME) 

status = LIO$SET_I (adq_id, LIO$K_GATE, i, LIO$K_EDGE_DELAY) 

status = LIO~SET_I( adq_id, LIO~K_S11EEP_RATE, i, desired_rate_for_delay) 

ADQ32 Triggering and Clock Modes A-43 





Appendix B 

Using CTI I/O with the AXV11-C 

This appendix contains the procedure you need to follow to use 
connect-to-interrupt I/O with the AXV11-C. Also included are 
procedures for reloading and reconnecting the QIO driver to the 
AXV11-C or to another AXV11-C device, if you have more than one 
AXV11-C configured in your VAXIab system. 

B.1 Connecting the CTI Driver to the AXV11-C 

During the VAXIab Software Library installation procedure, the QIO 
driver, AXDRIVER.EXE, is installed and connected to the AXVll-C. To 
use CTI IIO with the LIO routines, you need to connect the CTI driver 
to the AXV11-C. 

Do the following to connect the CTI driver to the AXV11-C: 

1. Log in to the SYSTEM account. 
2. Run the SYSGEN utility and enter the SHOWICONFIGURATION 

command to obtain the CSR and vectorl addresses of the AXV11-C, 
for example: 

$ RUN SYSSSYSTEM:SYSGEN 
SYSGEN>SHOY/CONFIGURATION 

System CSR and Vectors on 23-NOV-1989 13:49:26.86 

Using CTI I/O with the AXV11-C B-1 



Name: AXA Units: 1 Nexus: 0 (UBA) CSR: 776400 Vectorl: 140 Vector2: 0 

SYSGEN>EXIT 

All AXV11-C devices configured in your system are prefixed with 
a device type of AX, followed by a variable controller letter 
(A, B, C ...) and the unit number 0. 

If more than one AXV11-C is configured in your system, be aware 
of the controller letter of the AXV11-C to which you want to connect 
the CTI driver. See the description of the LIO$ATTACH routine in 
Chapter 4 for more information about the LIO-supported devices 
and their corresponding device types. 

Make a note of the CSR and vectorl addresses. You need this 
information in step 6 of this procedure. 

3. Set default to the directory where the drivers are located and 
rename the QIO driver AXDRIVER.EXE. For example: 

S SET DEFAULT SYSSCON(MON: [SYS$LDR} 
~ RENAME AXDRIVER.EXE AXDRIVER.QIO 

4. Reboot the system by entering the following command: 

S REBOOT 

An orderly shutdown of tl~e system begins. Several informational 
messages are displayed on your terminal as the shutdown proceeds. 
After shutdown completes, the system is rebooted. This procedure 
takes several minutes to complete. 

When you reboot the system, the QIO driver is disabled. That is, 
the driver is not connected to any device. If you have more than 
one AXV11-C configured in your system you must do one or both 
of the following: 

• Connect the CTI driver to those AXV11-Cs configured in your 
system for which you want CTI support. To do this, follow the 
procedure outlined in t11is section. 

• Reload the QIO driver and connect it to those AXV11-Cs 
configured in your system for which you want QIO support. See 
Section B.2, Reloading the QIO Driver, for more information. 

B-2 Using CTI I/O with the AXV11-C 

l~J 



5. Log back in to the SYSTEM account. 

6. Run SYSGEN again and enter the following command line, 
specifying the CSR and Vectorl addresses that are specific to your 
system. (You obtained this information in step 2 of this procedure.) 

~ RUN SYSSSYSTEM:SYSGEN 
SYSGEN>CO1'tNECT AXAO:/ADAPTER=O/CSR=X0776400/DRIVER=CONINTERR - 
SYSGEN>/NUMVEC=2/VEC=x0140 
SYSGEN>EXIT 

where 

AXAO is the AXV11-C device. If more than one AXV11-C 
is configured in your system, make sure you use 
the correct device mnemonic and that you obtained 
the appropriate CSR and vectorl addresses for that 
particular device in step 2 of this procedure. 

ADAPTER is the bus adapter to which the device is attached. Note 
that there is no bus adapter on a MicroVAX, so you 
specify ADA = 0. 

CSR is the address of the first addressable location on the 
controller (usually the status register) for the device. 
Enter the CSR address you obtained in step 2 of this 
procedure. The CSR address must be prefixed by %O 
(percent sign and the letter O) to signal the system that 
it is an octal number. 

DRIVER is the name of the driver. 

CONINTERR is the name of the CTI driver. 

NUMVEC is the number of interrupt vectors for the device. 

VEC is the value of the interrupt vector for the device, or 
the lowest vector, if there is more than one. Enter the 
Vectorl address you obtained in step 2. This address 
must be prefixed by %O (percent sign and the letter O) 
to signal the system that it is an octal number. 

Using CTI I/O with the AXV11-C B-3 



The CTI driver is now connected to the AXV11-C. If you have more 
than one AXV11-C configured i n your system and you want to connect 
t11e CTI driver to them, you must repeat the above procedure for each 
AXV11-C. 

You must also repeat the procedure each time the system is 
rebooted. Or, you can create a command procedure, called from 
SYSCONFIG. COM, to reconnect the CTI driver each time the system is 
rebooted. For example: 

= EDIT AXALOAD.CON[ 
~ RUN SYS~SYSTEM:SYSGEN 
CONNECT AXAO:/ADAPTER=O/CSR=X0776400/DRIVER=CONINTERR/NUMVEC=2/VEC=X0140 
EXIT 
$EXIT 

This sample command procedure is called AXALOAD.COM. To call 
this procedure from SYSCONFIG.COM to reconnect the CTI driver to 
the AXV11-C on system reboot, edit SYSCONFIG.COM to contain the 
following command line: 

~ EDIT SYSCONFIG.COM 

~ oAXALOAD 

SEXIT 

B-4 Using CTI I/O with the AXV11-C 

lrJ 



B.2 Reloading the QIO Driver 

If you have more than one AXV11-C configured in your system, you can 
reload the QIO driver and connect it to another AXV11-C, if you choose 
to connect the CTI driver to only one AXV11-C device. 

Do the following to reload the QIO driver and connect it to an AXV11-C 
device: 

1. Log into the SYSTEM account. 

2. Run the SYSGEN utility. Enter t11e SHOWICONFIGURATION 
command (discussed in step 2 in Section B.1 to obtain the CSR 
and vectorl addresses of the appropriate AXV11-C. Then, reload 
and connect the QIO driver. Be sure to use the same naive for the 
driver as you did when you renamed it in step 3 of the previous 
procedure. For example: 

SYSGEN>RELOAD SYSSCOMMON:[SYS=LDR]AXDRIVER.qIO 
SYSGEN>CONNECT AXBO:/ADAPTER=O/CSR=X0776430/DRIVER=AXDRIVER 
SYSGEN>/NUMVEC=2/VEC=X0170 
SYSGEN>EXIT 

3. Reboot the system. 

The QIO driver is now reloaded and connected to a second AXV11-C 
device, which in this example is the device AXBO. 

B.3 Reconnecting the QIO Driver 

If, at any time, you want to reconnect the QIO driver to an AXV11-C 
that you previously connected to the CTI driver, do the following: 

1. Rename AXDRIVER.QIO to AXDRIVER.EXE. 

2. Edit SYSCONFIG.COM to remove the command line ~a AXALOAD. 

3. Reboot the system. 

The QIO driver is now reconnected to the AXV11-C. 

Using CTI i/O with the AXV11-C B-5 





Index 

A 

AID channels 
adding • 4-19 
specifying • 4-13, 4-15 
specifying gains • 4-17 

AID converters 
ADF01 • 2-27 to 2-38 
ADQ32 • 2-38 to 2-44 
ADV 11-D • 2-44 to 2-49 
AXV 11-C • 2-49 to 2-54 
IAV 11-A • 2-90 to 2-95 
IAV 11-AA • 2-90 
Preston • 2-61 to 2-67 

AAF01 • 2-12 to 2-22 
alternate-buffer DMA • 1-25 
AST routines • 4-104 
asynchronous output • 4-24 
attaching • 2-13 
buffered data path • 4-92 
clearing large buffer overflow • 4-61 
continuous DMA • 1-21 
Control Table Address (CTA) register • 4-74 
Control Word Registers • 4-87 
direct data path • 4-92 
event ASTs • 4-121 
external clock enable bit • 4-1 14 
function bits • 4-148 
memory transfer bit • 4-1 12 
outputting a voltage value • 4-21 
parameters valid for • 2-14 
Programmable Clock Register • 4-196 
read-only bits status • 4-212 
resetting • 4-214 

AAF01 (Copt.) 
sequence break enable bit • 4-115 
setting channel • 4-50 
setting Command Output (GOUT) bit • 4-63 
setting up • 2-14 
single-buffer DMA • 1-20 
stopping continuous DMA • 4-45 
synchronous output • 4-239 
timeout • 4-245 

AAV11-D • 2-22 to 2-27 
AST routines • 4-22 
asynchronous output • 4-24 
attaching • 2-22 
buffer forwarding • 4-143 
continuous DMA • 1-21, 4-70 
D/A channels • 4-89, 4-179 
device event flag • 4-97 
parameters valid for • 2-23 
setting up • 2-23 
single-buffer DMA • 1-20, 4-223 
starting continuous DMA • 4-230 
stopping continuous DMA • 4-235 
synchronous output • 4-239 
timeout • 4-245 
trigger modes • 4-253 

ADF01 • 2-27 to 2-38 
alternate-buffer DMA • 1-25 
AST routines • 4-104 
asynchronous input • 4-24 
buffered data path • 4-92 
clearing large buffer overflow • 4-61 
clearing sequence timer enable bit • 4-234 
continuous DMA • 1-21 
Control Table Address {CTA) register • 4-74 
control table transfer bit • 4-112 

Index-1 



ADF01 (font.) 
converting voltage • 4-277 
DAC Data Register • 4-277 
direct data path • 4-92 
event ASTs • 4-121 
external clock enable bit • 4-114 
function bits • 4-148 
output voltage • 4-32 
parameters valid for • 2-29 
Programmable Clock Register • 4-196 
resetting • 4-214 
sequence break enable bit • 4-115 
sequence timer • 4-228 
setting channel • 4-50 
setting up • 2-29 
single-buffer DMA • 1-20 
stopping continuous DMA • 4-45 
synchronous input • 4-239 
timeout • 4-245 

ADQ32 • 2-38 to 2-44 
AID channel gains • 4-17 
A/D channels • 4-13, 4-176 
AST routines • 4-22 
asynchronous input • 4-24 
attaching • 2-40 
buffer forwarding • 4-143 
buffer size • 4-37 
buffer specification • A-6 
channel specification • A-5 
clock logic • A-9 
clock modes • A-10 to A-43 

summary of • A-1 
clock overrun errors • A-8 
clock rate and divider • 4-55 
device event flag • 4-97 
diagnostic inputs • 4-99 
differential input • 4-15 
double-buffer DMA • 1-27 
double buffer transfers • A-7 
enabling double-buffer DMA • 4-95 
external frequency input • 2-39 
external gate/trigger input • 2-39 
external gating • 4-153 
FIFO buffers • 1-16 
gain specification • A-6 
parameters valid for • 2-41 
setting up • 2-40 
single-buffer DMA • 1-20, 4-223 

2-Index 

ADQ32 (font.) 
single buffer transfers • A-6 
single-ended input • 4-15 
starting data acquisition • A-8 
sweep clock rate • 4-237 
synchronous input • 4-239 
trigger modes • 4-253 

ADV 11-D • 2-44 to 2-49 
A/D channel gains • 4-17 
A/D channels • 4-13, 4-176 
AST routines • 4-22 
asynchronous input • 4-24 
attaching • 2-44 
buffer forwarding • 4-143 
continuous DMA • 1-21, 4-70 
device event flag • 4-97 
parameters valid for • 2-45 
setting up • 2-45 
single-buffer DMA • 1-20, 4-223 
starting continuous DMA • 4-230 
stopping continuous DMA • 4-235 
synchronous input • 4-239 
timeout • 4-245 
trigger modes • 4-253 

Alternate-buffer DMA • 1-25 
AMF01 • 2-27 
AMF01 option 

clearing sequence timer enable bit • 4-234 
sequence timer • 4-228 

Analog I/O devices • 2-12 to 2-67 
AAF01 • 2-12 to 2-22 
AAV 11-D • 2-22 to 2-27 
ADF01 • 2-27 to 2-38 
ADQ32 • 2-38 to 2-44 
ADV 11-D • 2-44 to 2-49 
AMF01 • 2-27 
ASF01 • 2-12, 2-28 
AXV 11-C • 2-49 to 2-54 
DRQ 1 1-C • 2-54 to 2-61 
IAV 11-A • 2-90 to 2-95 
IAV 11-AA • 2-90 
IAV 1 1-B • 2-95 to 2-98 
Preston • 2-61 to 2-67 

Analog-to-digital converters 
See A/D converters 

ASF01 • 2-12, 2-28 
AST routines • 1-11 to 1-13, 4-81 



AST routines (Copt.} 
buffer completion • 2-127 
event ASTs • 1-13, 2- i 27, 4-121 to 4-124 
restrictions for use • 1-13 
setting up to receive buffers • 4-104 

Asynchronous I/O • 1-3 
application uses • 1-4 
buffer-handling mechanisms • 1-8 to 1-13 
device queue • 1-3 
LIO$DEQUEUE routine • 1-4 
LIO$ENQUEUE routine • 1-4 
LIO$K_ASYNCH parameter • 4-24 
user queue • 1-3 
using disk files • 2-149 
using serial line devices • 2-144 
using the DRB32 • 2-71 
using the DRB32W • 2-77 
using the DRQ 11-C • 2-59 
using the DRQ3B • 2-81 
using the DRV 11-WA • 2-89 

Asynchronous input 
using the ADF01 • 2-35 
using the ADQ32 • 2-43 
using the ADV 11-D • 2-47 
using the AXV 11-C • 2-53 
using the IAV11-A • 2-94 
using the IDV i 1-A • 2-101 
using the Preston • 2-66 

Asynchronous output 
using the AAF01 • 2-19 
using the AAV 11-D • 2-26 
using the IAV 11-B • 2-98 
using the IDV 11-B • 2-103 

Asynchronous System Traps (ASTs) • 1-11 to 
1-13 

Attaching I/O devices 
AAF01 • 2-13 
AAV 11-D • 2-22 
ADQ32 • 2-40 
ADV1 1-D • 2-44 
AXV 11-C • 2-49 
disk files • 2-147 
DRB32 • 2-68 
DRB32W • 2-74 
DRQ 11-C • 2-55 
DRQ3B • 2-78 
DRV11-,1 • 2-83 
DRV 11-WA • 2-87 

Attaching I/O devices (Cont.) 
IAV 11-A • 2-91 
fAV 11-AA • 2-91 
IAV11-B • 2-96 
IAV 11-C • 2-91 
IAV 1 i -CA • 2-91 
IDV 11-A • 2-99 
IDV 11-B • 2-101 
IDV 11-D • 2-104 
IEQ11 • 2-119 
I EZ 11 • 2-119 
IOtech Micro488A • 2-120 
KWV 11-C • 2-2 
memory queue • 2-151 
Preston • 2-62 
real-time plotting • 2-162 
serial line • 2- i 40 
Simpact RTC01 • 2-2 
using connect-to-interrupt I/O • 3-7 
using polled IIO • 3-7 
using QIOs • 3-7 

Audience of manual • xix 
Auxiliary command • 4-26 
AXV 11-C • 2-49 to 2-54 

AID channel gains • 4-17 
A/D channels • 4-13, 4-176 
AST routines • 4-22 
asynchronous input • 4-24 
attaching • 2-49 
buffer forwarding • 4-143 
connecting the CTI driver • B-1 
connect-to-interrupt I/O • B-1 to B-5 
CTI buffer and event flag • 4-75 
CTI handler overhead • 4-78 
D/A channels • 4-89, 4-179 
device event flag • 4-97 
parameters valid for • 2-50 
reconnecting the QIO driver • B-5 
reloading the QIO driver • B-5 
setting up • 2-50 
synchronous input • 4-239 
timeout • 4-245 
trigger modes • 4-253 

Index-3 



B 

Baud rate 
setting • 4-29 

Break condition • 4-36 
Buffer dequeueing • 1-9 
Buffer forwarding • 1-10, 4-143 
Buffer-handling mechanisms 

AST routines • 1-11 to 1-13 
buffer forwarding • 1-10 
dequeueing • 1-9 

Buffers 
allocating dynamically • 2-153 
page-aligning • 4-185 

Buffer size 
setting • 4-37 

Buffer source 
specifying • 4-39 

Burst rate 
specifying for Preston • 4-43 

C 
CARRIER signal • 4-173 
Checking routine call status • 5-2 
Clock 

ADQ32 • 2-38 
divider 

specifying • 4-55, 4-58 
specifying for the Preston • 4-53 

IDV 1 1-D • 2-104 
KWV 1 1-C • 2-1 
rate 

specifying • 4-55 
setting up function • 4-145 
Simpact RTC01 • 2-1 
source 

specifying • 4-58 
Command Output (GOUT) bit • 4-63 
Connect-to-interrupt (CTI) I/O 

handler overhead • 4-78 
setting up • 4-75 

Connect-to-interrupt I/O • 1-7 
Contact bounce elimination • 4-34 
Continuous DMA • 1-21 to 1-25, 4-70 

stopping • 4-45 

4-Index 

Control Table Address (CTA) register 
loading • 4-74 

Conventions 
documentation • xxiii 

Copying data 
using the memory queue • 2-157 

Counting external events 
using the IDV 1 1-D • 2-105 
using the Simpact RTC01 • 2-9 

Count register 
reading • 4-72 

GOUT bit • 4-63 
CTA register 

loading • 4-74 
CTS signal • 4-173 

D 
D/A converters 

AAF01 • 2-12 to 2-22 
AAV 1 1-D • 2-22 to 2-27 
AXV 11-C • 2-49 to 2-54 
IAV 1 1-B • 2-95 to 2-98 

DAC Data Register • 4-32 
Data bits 

establishing • 4-33 
DDR 

See DAC Data Register 
Deallocating devices • 3-13 
Dequeueing buffers 

from the free queue • 3-12 
from the user queue • 3-12 

Detaching devices • 3-13 
Device queue • 1-3 
Devices 

analog I/O • 2-12 to 2-67 
digital I/O • 2-67 to 2-104 

Device specifications 
listing of • 3-4 

Digital I/O devices • 2-67 to 2-104 
DRB32 • 2-67 to 2-74 
DRB32W • 2-74 to 2-77 
DRQ3B • 2-78 to 2-82 
DRV 1 1-J • 2-83 to 2-86 
DRV 1 1-WA • 2-86 to 2-89 
IDV1 1-A • 2-98 to 2-101 
IDV 1 1-B • 2-101 to 2-104 



Digital 110 devices (Copt.) 
IDV1 1-C • 2-101 

Digital input devices 
IDV 11-A • 2-98 to 2-101 

Digital output devices 
IDV 11-B • 2-101 to 2-104 
IDV11-C • 2-101 

Digital-to-analog converters 
See D/A converters 

Direct memory access • 1-19 to 1-28 
alternate-buffer DMA • 1-25 
continuous • 1-21 
continuous DMA • 4-70 

starting • 4-230 
stopping • 4-235 

double-buffer DMA • 1-26 
enabling • 4-95 

page-aligning buffers • 1-24 
single-buffer DMA • 1-19, 4-223 
with QIOs • 1-6 
word-aligning buffers • 1-19 

Disk file device • 2-146 to 2-150 
AST routines • 4-22 
asynchronous I/O • 4-24 
attaching • 2-147 
buffer forwarding • 4-143 
device event flag • 4-97 
extending output file size • 4-133 
file name • 4-180 
I/O direction • 4-101 
opening • 4-182 
output file size • 4-138 
parameters valid for • 2-147 
remaining blocks in an output file • 4-136 
repositioning block pointer • 4-135 
setting up • 2-147 
synchronous I/O • 4-239 

Displaying data 
using the memory queue • 2-157 

DMA 
See Direct memory access 

Documents 
associated hardware • xxii 
associated software •xxi 
associated VAXIab •xxi 

Double-buffer DMA • 1-26 to 1-28 
pointer sequence • 1-26 

DRB32 • 2-67 to 2-74 

DRB32 (Cont.) 
AST routines • 4-22, 4-81 
asynchronous I/O • 4-24 
attaching • 2-68 
buffer forwarding • 4-143 
buffer locking • 4-166 
data transfers without DMA • 4-91 
device event flag • 4-97 
function bits • 4-148 
I/O direction • 4-101 
locking buffers • 4-166 
loopback mode • 4-168 
parallel data path width • 4-94 
parameters valid for • 2-68 
parity • 4-193 
setting up • 2-68 
synchronous I/O • 4-239 
timeout • 4-245 
unlock buffers • 4-266 

DRB32W • 2-74 to 2-77 
AST routines • 4-22 
asynchronous I/O • 4-24 
attaching • 2-74 
buffer forwarding • 4-143 
device event flag • 4-97 
I/O direction • 4-101 
parameters valid for • 2-75 
setting up • 2-75 
synchronous I/O • 4-239 
timeout • 4-245 

DRQ 1 1-C • 2-54 to 2-61 
alternate-buffer DMA • 1-25 
AST routines • 4-104 
asynchronous I/O • 4-24 
attaching • 2-55 
buffered data path • 4-92 
clearing large buffer overflow • 4-61 
continuous DMA • 1-21 
direct data path • 4-92 
event ASTs • 4-121 
function bits • 4-148 
parameters valid for • 2-55 
resetting DMA interface • 4-215 
returning hardware register contents • 4-106 
returning status information • 4-233 
setting up • 2-55 
single-buffer DMA • 1-20 
stopping continuous DMA • 4-45 

Index-5 



DRQ 11-C (Cont.) 
synchronous I/O • 4-239 
timeout • 4-245 

DRQ3B • 2-78 to 2-82 
AST routines • 4-22 
asynchronous 110 • 4-24 
attaching • 2-78 
buffer forwarding • 4-143 
buffer size • 4-37 
device event flag • 4-97 
double-buffer DMA • 1-27 
FIFO buffers • 1-16 
function bits • 4-148 
handshaking • 1-17 
parameters valid for • 2-79 
setting u p • 2-79 
stopping continuous DMA • 4-235 
synchronous I/O • 4-239 

DRV1 1-J • 2-83 to 2-86 
AST routines • 4-22 
asynchronous I/O • 4-24 
attaching • 2-83 
buffer forwarding • 4-143 
device event flag • 4-97 
event ASTs • 4-121 
external event flags • 4-125 
handshaking • 1-18, 4-156 
I/O direction • 4-101 
parameters valid for • 2-84 
polarity • 4-202 
setting up • 2-84 
synchronous I/O • 4-239 
timeout • 4-245 

DRV 11-WA • 2-86 to 2-89 
AST routines • 4-22 
asynchronous I/O • 4-24 
attaching • 2-87 
buffer forwarding • 4-143 
device event flag • 4-97 
handshaking • 1-18 
I/O direction • 4-101 
parameters valid for • 2-87 

.setting u p • 2-87 
synchronous I/O • 4-239 
timeout • 4-245 

DSR/DTR • 4-139 
DSR signal • 4-173 
DTR signal • 4-173 

6-Index 

E 

EK device 
See IEZ11 

end-or-identify (EOI) line • 4-116 
Enqueueing buffers • 3-15 
EOI 

using to terminate write requests • 2-139 
EOI line • 4-116 
Error handling • 5-1 

parity 
for serial line devices • 4-120 

symbolic status definition files 
list of • 5-2 

Error messages • 5-6 to 5-27 
Event ASTs • 4-121 to 4-124 
Event flag 

setting on external event • 4-125 
Event timing 

setting source frequency • 4-58 
Example programs 

See Online sample programs 
External gating 

setting up • 4-153 

F 

FIFOs • 1-16 
First-in/first-out buffers • 1-16 
Flow control 

for serial line device • 4-139, 4-141 
FNCTO bit • 4-215 
POUT 

See Frequency Output (POUT) 
Frequency Output (POUT) • 4-46 
Function bits 

setting • 4-148 

G 

Generating output frequencies 
using the IDV11-D • 2-113 

Generating output pulses 
using the IDV11-D • 2-112 



H 

Handshaking • 1-16 to 1-18 

i 

I/O devices 
See Devices 

I/O interfaces 
asynchronous • 1-3 
device-specific • 1-14 to 1-28 
DMA • 1-19 
FIFOs • 1-16 
handshaking • 1-16 
summary of devices • 1-5 
synchronous • 1-2 

I/O operations 
connect-to-interrupt • 1-7 
interrupt-driven I/O • 1-7 
memory-mapped I/O • 1-7 
polled I/O • 1-7 
QIOs to a device driver • 1-6 

I/O routines 
LIO$ATTACH • 3-3 to 3-7 
LIO$DEQUEUE • 3-8 to 3-12 
LIO$DETACH • 3-13 to 3-14 
LIO$ENQUEUE • 3-15 to 3-23 
LIO$READ • 3-24 to 3-28 
LIO$SET I • 3-29 to 3-30 
LIO$SET R • 3-31 to 3-32 
LIO$SET_S • 3-33 to 3-34 
LIO$SHOW • 3-35 to 3-36 
LIO$WRITE • 3-37 to 3-40 

I/O types 
listing of • 3-4 

IAV 11-A • 2-90 to 2-95 
A!D channels • 4-176 
AST routines • 4-22 
asynchronous input • 4-24 
attaching • 2-91 
buffer forwarding • 4-143 
device event flag • 4-97 
parameters valid for • 2-92 
setting up • 2-92 
synchronous input • 4-239 

IAV 11-AA • 2-90 

IAV 11-AA (Cont.) 
AID channels • 4-176 
AST routines • 4-22 
asynchronous input • 4-24 
attaching • 2-91 
buffer forwarding • 4-143 
device event flag • 4-97 
synchronous input • 4-239 

IAV 11-B • 2-95 to 2-98 
AST routines • 4-22 
asynchronous output • 4-24 
attaching • 2=96 
buffer forwarding • 4-143 
device event flag • 4-97 
parameters valid for • 2-96 
setting up • 2-96 
synchronous output • 4-239 

IAV 11-C • 2-91 
A/D channels • 4-176 
AST routines • 4-22 
asynchronous input • 4-24 
attaching • 2-91 
buffer forwarding • 4-143 
device event flag • 4-97 
synchronous input • 4-239 

IAV 11-CA • 2-91 
AID channels • 4-176 
AST routines • 4-22 
asynchronous input • 4-24 
attaching • 2-91 
buffer forwarding • 4-143 
device event flag • 4-97 
synchronous input • 4-239 

IDV 11-A • 2-98 to 2-101 
AST routines • 4-22 
asynchronous input • 4-24 
attaching • 2-99 
buffer forwarding • 4-143 
contact bounce elimination response 

4-34 
device event flag • 4-97 
event ASTs • 4-121 
parameters valid for • 2-99 
polarity • 4-202 
setting up • 2-99 
synchronous input • 4-239 
voltage range • 4-278 

IDV 1 1-B • 2-101 to 2-104 

time 

Index-7 



IDV 11-B (Cont.j 
AST routines • 4-22 
asynchronous output • 4-24 
attaching • 2-101 
buffer forwarding • 4-143 
device event flag • 4-97 
parameters valid for • 2-102 
setting up • 2-102 
synchronous output • 4-239 

IDV11-C • 2-101 
AST routines • 4-22 
asynchronous output • 4-24 
buffer forwarding • 4-143 
device event flag • 4-97 
synchronous output • 4-239 

IDV11-D 
AST routines • 4-22 
asynchronous I/O • 4-24 
attaching • 2-104 
buffer forwarding • 4-143 
counter channel setup • 4-48 
device event flag • 4-97 
frequency output reference signal • 4-46 
parameters valid for • 2-105 
setting up • 2-105 
starting counter channels • 4-230 
stopping counter channels • 4-235 
synchronous I/O • 4-239 

IDV11-D real-time counter • 2-104 to 2-114 
IEEE-488 

auxiliary commands • 4-26 
bus address 

setting up • 4-159 
commands • 4-64 to 4-69 
termination characters • 2-139 

IEEE-488 bus 
recognizing events • 4-127 

IEEE-488 bus event 
waiting for • 4-131 

IEEE-488 bus instruments 
parallel polling • 4-188 

IEEE-488 device 
parameters valid for • 2-120 

IEEE-488 devices • 2-114 to 2-139 
IEQ 1 1 • 2-1 15 

activating controller function • 4-79 
AST routines • 4-22 
asynchronous I/O • 4-24 

8-Index 

IEQ11 (Cont.) 
attaching • 2-119 
auxiliary commands • 4-26 
buffer forwarding • 4-143 
configuring for parallel polling • 4-188 
configuring for serial polling • 4-221 
controller-standby state • 4-164 
deactivating controller function • 4-85 
device event flag • 4-97 
EOI line assertion • 4-116 
event ASTs • 4-121 
IEEE-488 commands • 4-64 
parallel polling • 4-188 
parallel poll status register • 4-191 
passing control • 4-195 
primary address • 4-159 
recognizing IEEE-488 bus events • 4-127 
returning IEEE-488 bus events • 4-131 
returning instrument status • 4-186, 4-219 
secondary address • 4-159 
serial polling • 4-219 
serial poll status byte • 4-226 
service requests • 4-243 
setting up • 2-120 
synchronous I/O • 4-239 
terminating I/O with a service request • 4-243 
termination character • 4-241 
timeout • 4-245 
waiting for IEEE-488 bus events • 4-131 

IEZ11 • 2-115 
activating controller function • 4-79 
AST routines • 4-22 
asynchronous I/O • 4-24 
attaching • 2-1 19 
auxiliary commands • 4-26 
buffer forwarding • 4-143 
configuring for parallel polling • 4-188 
configuring for serial polling • 4-221 
deactivating controller function • 4-85 
device event flag • 4-97 
EOI line assertion • 4-116 
event ASTs • 4-121 
IEEE-488 commands • 4-64 
parallel polling • 4-188 
parallel poll status register • 4-191 
passing control • 4-195 
primary address • 4-159 
recognizing IEEE-488 bus events • 4-127 



/'1 IEZ11 (Cont.) 
returning IEEE-488 bus events • 4-131 
returning instrument status • 4-186, 4-219 
secondary address • 4-159 
serial polling • 4-219 
serial poll status byte • 4-226 
setting up • 2-120 
synchronous I/O • 4-239 
termination character • 4-241 
timeout • 4-245 
waiting for IEEE-488 bus events • 4-131 

Include file • 6-3 
Include files 

error handling symbolic status • 5-2 
Instrument status 

polling • 4-186 
Interprocess communications 

using the memory queue • 2-155 
Interrupt-driven I!O • 1-7 
IOtech Micro488A • 2-115 

activating controller function • 4-79 
attaching • 2-120 
auxiliary commands • 4-26 
configuring for parallel polling • 4-188 
configuring for serial polling • 4-221 
deactivating controller function • 4-85 
device event flag • 4-97 
device modes • 2-118 
DIP switch • 2-1 18 
EOI line assertion • 4-116 
IEEE-488 commands • 4-64 
parallel polling • 4-188 
parallel poll status register • 4-191 
passing control • 4-195 
primary address • 4-159 
recognizing IEEE-488 bus events • 4-127 
returning IEEE-488 bus events • 4-131 
returning instrument status • 4-186, 4-219 
secondary address • 4-160 
serial polling • 4-219 
serial poll status byte • 4-226 
setting up • 2-120 
termination character • 4-241 
timeout • 4-245 
waiting for IEEE-488 bus events • 4-131 

Isolated real-time devices • 2-90 to 2-1 14 
IT device 

See IOtech Micro488A 

IX device 
See IEQ11 

IXV 11 devices • 2-90 to 2-114 
IXV devices 

See IXV 1 1 devices 

K 

KWV 1 1-C • 2-1 to 2-11 
AST routines • 4-22 
asynchronous I/O • 4-24 
attaching • 2-2 
buffer forwarding • 4-143 
clock function • 4-145 
clock rate and divider • 4-55 
clock source and divider • 4-58 
device event flag • 4=97 
event ASTs • 4-121 
external event flags • 4-125 
parameters valid for • 2-3 
setting up • 2-3 
starting the clock • 4-230 
stopping the clock • 4-235 
synchronous I!O • 4-239 
timeout • 4-245 
trigger modes • 4-253 

L 

Laboratory I/O 
overview • 1-1 

Languages supported • 1-1 
Large buffer overflow (LBO) • 4-61 
LBO 

See Large buffer overflow (LBO) 
LIO$ATTACH • 3-3 to 3-7 

device specifications • 3-4 
I/O types • 3-4 

LIO$DEQUEUE • 3-8 to 3-12 
device-specific argument values • 3-1 1 

LIO$DETACH • 3-13 to 3-14 
LIO$ENQUEUE • 3-15 to 3-23 

device-specific argument values • 3-18 
LIO$EXAMPLES • 6-1 
LIO$K_AAF_DOUBLE.0 sample program • 6-5 
LIO$K_ACK_NAK_TERMINATOR • 4-12 
LIO$K_ADD_AD_CHAN • 4-19 to 4-20 

Index-9 



LIO$K_ADF_DOUBLE.0 sample program • 6-8 
LIO$K_ADF_SINGLE.0 sample program • 6-10 
LIO$K AD CHAN • 4-13 to 4-14 
LIO$K AD_CLOCK • 4-255 
LIO$K AD DIFFERENTIAL • 4-15 to 4-16 
LIO$K AD GAIN • 4-17 to 4-18 
LIO$K ANALOG • 4-217 
LIO$K ANA OUT • 4-21 
LIO$K AST RTN • 4-22 to 4-23 
LIO$K_ASYNCH • 4-24 to 4-25 
LIO$K_AUX_COMMAND • 4-26 to 4-28 
LIO$K BAUD RATE • 4-29 to 4-31 
LIO$K BIN DDR • 4-32 
LIO$K_BITS PER CHAR • 4-33 
LIO$K BOTH • 4-141 
LIO$K BOUNCE • 4-34 to 4-35 
LIO$K BREAK • 4-36 
LIO$K BUFF SIZE • 4-37 to 4-38 
LIO$K BUFF SOURCE • 4-39 to 4-40 
LIO$K BUFPATH • 4-92 
LIO$K BURST • 4-255 
LIO$K_BURST_DIV • 4-41 to 4-42 
LIO$K_BURST_RATE • 4-43 to 4-44 
LIO$K_CANCEL • 4-45 
LIO$K CC FOUT • 4-46 to 4-47 
LIO$K_CC_SETUP • 4-48 to 4-49 
LIO$K CHANNEL • 4-50 
LIO$K_CLK_BASE • 4-51 to 4-52 
LIO$K_CLK_BURST • 4-254, 4-258 
LIO$K_CLK_DIV • 4-53 to 4-54 
LIO$K_CLK_POINT • 4-254, 4-259 
LIO$K CLK RATE • 4-55 to 4-57 
LIO$K CLK SRC • 4-58 to 4-60 
LIO$K_CLK_SWEEP • 4-254, 4-257 
LIO$K_CLR_LBO • 4-61 to 4-62 
LIO$K_COB • 4-63 
LIO$K_COMMAND • 4-64 to 4-69 
LIO$K CONT • 4-70 to 4-71 
LIO$K_COUNTER • 4-72 to 4-73 
LIO$K CTA • 4-74 
LIO$K CTI BUF • 4-75 to 4-77 
LIO$K_CTI_OVERHD • 4-78 
LIO$K_CTRL_ACTIVE • 4-79 to 4-80 
LIO$K_CTRL_AST • 4-81 
LIO$K_CTRL_HANDLING • 4-83 to 4-84 
LIO$K_CTRL_STANDBY • 4-85 
LIO$K_CURRENT_CHANNEL • 4-86 

10-Index 

LIO$K_CWT • 4-87 to 4-88 
LIO$K_DATA • 4-91 
LIO$K DATA PATH • 4-92 to 4-93 
LIO$K DATA WIDTH • 4-94 
LIO$K DA CHAN • 4-89 to 4-90 
LIO$K_DBi,__BUF • 4-95 
LIO$K_DEADDR_EVT • 2-124, 4-127 
LIO$K DEVICE • 4-141 
LIO$K DEVICE ACK NAK BUFF • 4-96 
LIO$K_DEVICE_EF • 4-97 to 4-98 
LIO$K_DEV_CLR_EVT • 2-124, 4-127 
LIO$K_DEV_TRIG_EVT • 2-124, 4-127 
LIO$K DIAG CHAN • 4-99 to 4-100 
LIO$K DIRECTION • 4-101 to 4-102 
LIO$K DIRPATH • 4-92 
LIO$K DISABLE 

with LIO$K ED CTT • 4-1 12 
with LIO$K ED ECE • 4-114 
with LIO$K ED SBE • 4-115 
with LIO$K STO 1 • 4-228 

LIO$K DISPLAY ONLY • 4-103 
LIO$K DRX AST RTN • 4-104 to 4-105 
LIO$K DRX STAT • 4-106 to 4-107 
LIO$K DUPLEX • 4-108 to 4-109 
LIO$K ECHO • 4-1 10 to 4-1 1 1 
LIO$K EDGE • 4-153 
LIO$K EDGE DELAY • 4-153 
LIO$K_ED_CTT • 4-1 12 to 4-1 13 
LIO$K_ED_ECE • 4-1 14 
LIO$K ED SBE • 4-1 15 
LIO$K ENABLE 

with LIO$K ED CTT • 4-1 12 
with LIO$K ED_ECE • 4-1 14 
with LIO$K ED SBE • 4-1 15 
with LIO$K STO 1 • 4-228 

LIO$K EOI • ~4-1 16 to 4-1 17 
LIO$K_ERROR_ENABLE • 4-120 
LIO$K_ERR_HANDLE • 4-1 18 to 4-1 19 
LIO$K EVEN 

with LIO$K PARITY • 4-193 
LIO$K_EVENT_ABS • 4-146 
LIO$K EVENT AST • 4-121 to 4-124 
LIO$K_EVENT_EF • 4-125 to 4-126 
LIO$K_EVENT_ENA • 4-127 to 4-130 
LIO$K EVENT REL • 4-147 
LIO$K_EVENT_WAIT • 4-131 to 4-132 
LIO$K_EXTERNAL • 4-255, 4-256, 4-260 



P1 LIO$K_EXT_BURST • 4-254, 4-257, 4-258 
LIO$K_EXT_LNR_EVT • 2-124, 4-128 
LIO$K_EXT_POINT • 4-254, 4-257, 4-259 
LIO$K EXT START • 4-261 
LIO$K EXT START CLK SWEEP • 4-261 
LIO$K_EXT_START_EXT_POINT • 4-261 
LIO$K_EXT_START_EXT_SWEEP • 4-261 
LIO$K_EXT_SWEEP • 4-254, 4-257, 4-259 
LIO$K_EXT_TKR_EVT • 2-124, 4-128 
LIO$K FATAL • 4-118 
LIO$K FILE EXTENT • 4-133 to 4-134 
LIO$K_FILE_POS • 4-135 
LIO$K_FILE_REMAIN • 4-136 to 4-137 
LIO$K_FILE_SIZE • 4-138 
LIO$K FLOW CONTROL • 4-139 to 4-140 
LIO$K_FLOW_MASTER • 4-141 to 4-142 
LIO$K FNCTO • 4-215 
LIO$K- FORWARD • 4-143 to 4-144 
LIO$K FUNCTION • 4-145 to 4-147 
LIO$K_FUNCTION_BITS • 4-148 to 4-152 
LIO$K GATE • 4-153 to 4-155 
LIO$K HANDSHAKE • 4-156 to 4-157 
LIO$K HANGUP • 4-158 
LIO$K HOST • 4-141 
LIO$K_IEEE_ADDR • 4-159 to 4-160 
LIO$K_IFC_EVT • 2-124, 4-128 
LIO$K IMMEDIATE • 4-260 
LIO$K_IMM_BURST • 4-253, 4-257, 4-258 
LIO$K IMM_START CLK POINT • 4-260 
LIO$K IMM START CLK SWEEP • 4-260 
LIO$K IMM START EXT POINT • 4-260 
LIO$K INIT AD CHAN • 4-161 
LIQ$K INPUT TERMINATOR • 4-162 
LIO$K_INTERRUPT_LEVEL • 4-163 
LIO$K LEAVE IN STATE • 4-164 to 4-165 
LIO$K LEVEL • 4-153 
LIO$K_LNR_ADDR_EVT • 2-124, 4-128 
LIO$K LOCK BUFFER • 4-166 to 4-167 
LIO$K LOOP BACK • 4-168 
LIO$K_MAX_CHANNELS • 4-169 
LIO$K MESSAGE • 4-118 
LIO$K MODEM • 4-170 to 4-171 
LIO$K_MODEM_STATUS • 4-172 to 4-173 
LIO$K_MULTIPLE~X_AXES • 4-174 
LIO$K NAME • 4-180 to 4-181 
LIO$K NEGATIVE • 4-202 

LIO$K NONE 
with LIO$K PARITY • 4-193 

LIO$K NO FNCTO • 4-215 
LIO$K N AD CHAN • 4-176 
LIO$K N BUFFS • 4-177 to 4-178 
LIO$K N DA_CHAN • 4-179 
LIO$K ODD 

with LIO$K_PARITY • 4-193 
LIO$K OFF 

with LIO$K AD DIFFERENTIAL • 4-15 
with LIO$K DIAG CHAN • 4-99 
with LIO$K ECHO • 4-110 
with LIO$K EOI • 4-1 16 
with LIO$K GATE • 4-153 
with LIO$K HANDSHAKE • 4-156 
with LIO$K IEEE ADDR • 4-159 
with LIO$K LEAVE IN STATE • 4-164 
with L10$K MODEM • 4-170 
with LIO$K MULTIPLE X AXES • 4-174 
with LIO$K_PROTOCOL • 4-206 
with LIO$K TERM SRQ • 4-243 
with LIO$K_TIMEOUT_ENABLE • 4-247 
with LIO$K TYPE AHEAD • 4-264 

LIO$K_ON 
with LIO$K AD DIFFERENTIAL • 4-15 
with LIO$K DIAG CHAN • 4-99 
with LIO$K ECHO • 4-1 10 
with LIO$K EOI • 4-116 
with LIO$K HANDSHAKE • 4-156 
with LIO$K_IEEE_ADDR • 4-159 
with LIO$K LEAVE IN STATE • 4-164 
with LIO$K_MODEM • 4-170 
with LIO$K_MULTIPLE_X_AXES • 4-174 
with LIO$K_PROTOCOL • 4-206 
with LIO$K TERM SRQ • 4-243 
with LIO$K TIMEOUT ENABLE • 4-247 
with LIO$K TYPE AHEAD • 4-264 

LIO$K OPEN FILE • 4-182 
LIO$K OUTPUT PREFIX • 4-183 
LIO$K_OUTPUT_TERMINATOR • 4-184 
LIO$K PAGE ALIGN • 4-185 
LIO$K_PARITY • 4-193 to 4-194 
LIO$K PAR POLL • 4-186 to 4-187 
LIO$K_PAR_POLL_CONFIG • 4-188 to 4-190 
LIO$K_PAR_POLL_CONFIG_EVT • 2-125, 4-128 
LIO$K_PAR_POLL_STATUS • 4-191 to 4-192 
LIO$K_PAR_POLL_UNCONFIG_EVT • 2-125, 

4-128 

Index-11 



LIO$K PASS CTRL • 4-195 
LIO$K PCR • 4-196 
LIO$K PLOT SIZE • 4-198 
LIO$K PLOT TYPE • 4-199 to 4-200 
LIO$K POLARITY • 4-202 to 4-203 
LIO$K POSITION • 4-204 to 4-205 
LIO$K POSITIVE • 4-202 
LIO$K PO CHAN • 4-201 
LIO$K PROTOCOL • 4-206 to 4-208 
LIO$K PURGE • 4-209 
LIO$K READ • 4-141 
LIO$K READ_ONLY • 4-210 
LIO$K READ PROMPT • 4-21 1 
LIO$K READ STAT • 4-212 to 4-213 
LIO$K_REC_CTRL_EVT • 2-125, 4-129 
LIO$K_REM_LOCAL_EVT • 2-125, 4-129 
LIO$K REP COUNT • 4-145 
LIO$K RESET AXF • 4-214 
LIO$K_RESET DRX • 4-215 to 4-216 
LIO$K SAME • 4-256 
LIO$K_SCHMITT TRIGGER • 4-217 to 4-218 
LIO$K SCOPE • 4-199 
LIO$K SER POLL • 4-219 to 4-220 
LIO$K SER POLL CONFIG • 4-221 to 4-222 
LIO$K SGL BUF • 4-223 to 4-224 
LIO$K SGL- COUNT • 4-145 
LIO$K SKIP COUNT • 4-225 
LIO$K SRQ • 4-226 to 4-227 
LIO$K_SRQ_EVT • 2-125, 4-129 
LIO$K STO 1 • 4-228 to 4-229 
LIO$K START • 4-230 to 4-232 
LIO$K STATUS • 4-1 18 
LIO$K_STAT_BITS • 4-233 
LIO$K STE • 4-234 
LIO$K STOP • 4-235 to 4-236 
LIO$K_STRIPCHART • 4-199 
LIO$K_SWEEP_CLOCK • 4-256 
LIO$K_SWEEP_RATE • 4-237 to 4-238 
LIO$K_SYNCH • 4-239 to 4-240 
LIO$K_SYNCH sample program • 6-16 
LIO$K TERM CHAR • 4-241 
LIO$K_TERM_SRQ • 4-243 to 4-244 
LIO$K_TIMEOUT • 4-245 to 4-246 
LIO$K TIMEOUT ENABLE • 4-247 
LIO$K_TITLE • 4-248 to 4-249 
LIO$K_TITLE_n • 4-250 to 4-251 
LIO$K_TKR_ADDR_EVT • 2-125, 4-129 

12-Index 

LIO$K TRANSFER • 4-252 
LIO$K TRIG • 4-253 to 4-263 
LIO$K TTL • 4-217 
LIO$K TYPE AHEAD • 4-264 to 4-265 
LIO$K UNLOCK BUFFER • 4-266 
LIO$K UNSOLICITED • 4-267 
LIO$K UPDATE • 4-268 
LIO$K USER ACK AST • 4-269 
LIO$K USER ACK STRING • 4-270 
LIO$K USER_NAK AST • 4-271 
LIO$K USER NAK STRING • 4-272 
LIO$K USER READ PROTOCOL AST • 4-273 

to 4-274 
LIO$K USER WRITE NAK HANDLING • 4-275 

to 4-276 
LIO$K_VLT_DDR • 4-277 
LIO$K VOLTAGE • 4-278 
LIO$K- XON • 4-283 
LIO$K X LABEL • 4-280 
LIO$K X RANGE • 4-281 
LIO$K Y LABEL • 4-284 
LIO$K Y MAX • 4-285 
LIO$K_Y_MAX parameter • 4-285 
LIO$K Y MIN • 4-286 
LIO$M CD 

with LIO$K MODEM_STATUS • 4-172 
LIO$M CTS 

with LIO$K MODEM_STATUS • 4-172 
LIO$M DSR 

with LIO$M DSR • 4-172 
LIO$M DTR 

with LIO$K MODEM_STATUS • 4-172 
LIO$M RI 

with LIO$K MODEM STATUS • 4-172 
LIO$M RTS 

with LIO$K MODEM STATUS • 4-172 
LIO$READ • 3-24 to 3-28 

device-specific argument values • 3-26 
LIO$SET l • 3-29 to 3-30 
LIO$SET_R • 3-31 to 3-32 
LIO$SET S • 3-33 to 3-34 
LIO$SHOW • 3-35 to 3-36 
LIO$WRITE • 3-37 to 3-40 

device-specific argument values • 3-39 
LIO$_ACCVIO error message • 5-6 
LIO$_ADDR_NOT_SET error message • 5-6 
LIO$_ALREADY_ATTACHED error message • 5-6 



f"1 
LIO$ ARGREQ error message • 5-6 
LIO$_ATTACH_FAILED error message • 5-7 
LIO$_BUFFSIZE error message • 5-7 
LIO$_BUFF_OVERLAP error message • 5-7 
LIO$_BUFORDER error message • 5-8 
LIO$_BUS_ERR error message • 5-8 
LIO$_CIC error message • 5-8 
LIO$_CLKOVERUN error message • 5-8 
LIO$_CTGCDMA error message • 5-9 
LIO$_DETACH_FAILED error message • 5-9 
LIO$_DEVACTIVE error message • 5-9 
LIO$_DEVSPREQ error message • 5-9 
LIO$_DEV_ERR error message • 5-9 
LIO$_EMPTYQ error message • 5-10 
LIO$_FIL_OPEN error message • 5-10 
LIO$_FLAGREQD error message • 5-10 
LIO$_GBLACCESS error message • 5-1 1 
LIO$_ILLBUFF error message • 5-11 
LIO$_ILLCHAN error message • 5-1 1 
LIO$_ILLDEVSPEC error message • 5-12 
LIO$_ILLFUNC error message • 5-12 
LIO$_ILLGAIN error message • 5-12 
LIO$_ILLID error message • 5-12 
LIO$_ILLSETUP error message • 5-13 
LIO$_ILLTRIG error message • 5-13 
LIO$_ILLVAL error message • 5-13 
LIO$_INSBUFHDR error message • 5-13 
LIO$_INSFWS error message • 5-13 
LIO$_INTERR error message • 5-14 
LIO$_INV_ADDR error message • 5-14 
LIO$_IOERROR error message • 5-14 
LIO$_MALFAIL error message • 5-14 
LIO$_NAMTOOLONG error message • 5-14 
LIO$_NIMP error message • 5-15 
LIO$_NOASYNCH error message • 5-15 
LIO$_NOCTI error message • 5-15 
LIO$_NODP error message • 5-15 
LIO$_NODRIVER error message • 5-15 
LIO$_NOENTRY error message • 5-16 
LIO$_NOEVENT error message • 5-16 
LIO$_NOINPUT error message • 5-16 
LIO$_NOINTERP error message • 5-17 
LIO$_NOLB error message • 5-17 
LIO$_NOLOCAL error message • 5-17 
LIO$_NOMAP error message • 5-18 
LIO$_NOMIX error message • 5-18 
LIO$_NOOUTPUT error message • 5-18 

LIO$_NOQIO error message • 5-19 
LIO$_NORESET error message • 5-19 
LIO$_NOROOM error message • 5-19 
LIO$_NOSHARE error message • 5-19 
LIO$_NOSLOT error message • 5-19 
LIO$_NOSYNCH error message • 5-20 
LIO$_NOTOPEN error message • 5-20 
LIO$_NOTREADY error message • 5-20 
LIO$_NOTSETCDMA error message • 5-21 
LIO$_NOT_CIC error message • 5-20 
LIO$_NOT_SETUP error message • 5-21 
LIO$_NO_TRANS error message • 5-20 
LIO$_ONFREEQ error message • 5-21 
LIO$_ONQ error message • 5-21 
LIO$_OVERRUN error message • 5-22 
LIO$_PAGEALIGN error message • 5-22 
LIO$_POLL_STAT error message • 5-22 
LIO$_QIOCHAN error message • 5-22 
LIO$_QNEMP error message • 5-23 
LIO$_REMOTE_DEV error message • 5-23 
LIO$_REQ64K error message • 5-23 
LIO$_RUNNING error message • 5-23 
LIO$_SS_INTERR error message • 5-24 
LIO$_SUCCESS error message • 5-24 
LIO$_TERM-EOI error message • 5-24 
LIO$_TERM_CHAR error message • 5-24 
LIO$_TERM_SRQ error message • 5-25 
LIO$_TOOFEWARGS error message • 5-25 
LIO$_TOOFEWVALS error message • 5-25 
LIO$_TOOMANYPROCS error message • 5-25 
LIO$_TOOMANYVALS error message • 5-26 
LIO$_UNKDEV error message • 5-26 
LIO$_UNKPARAM error message • 5-26 
LIO$_VALTOOBIG error message • 5-26 
LIO$_VALTOOSMALL error message • 5-26 
LIO$_WORDALIGN error message • 5-27 
LIO routines 

format of • 3-1 
summary of • 3-2 

LIO_AAFBIG.0 sample program • 6-4 
LIO_AAF_CALIB.0 sample program • 6-4 
LIO_AAF_RW_ACS.0 sample program • 6-5 
LIO_AAF_SEL_OUT.0 sample program • 6-6 
LIO_AAF_SINGLE.0 sample program • 6-6 
LIO_ADFBIG.0 sample program • 6-7 
LIO_ADF_CALIB.0 sample program • 6-7 
LIO_ADF_DAC_CALIB.0 sample program • 6-8 

Index-13 



LIO_ADF_DOUBLE_AST.0 sample program • 6-9 
LIO_ADF_DOUBLE_SAST.0 sample program • 

6-9 
LIO_ADF_LOOPBACK.0 sample program • 6-10 
LIO_ADF_TEST_SEQ.0 sample program • 6-11 
LIO_ADQ_ASYNCH.FOR sample program • 6-1 1 
LIO_ADQ_SYNCH.FOR sample program • 6-1 1 
LIO_ADV_AST.BAS sample program • 6-12 
LIO_ASYNCH_CLK_TRIG.FOR sample program • 

6-12 
LIO_AXV_CTI.FOR sample program • 6-12 
LIO_AXV_DIRECTION.FOR sample program • 

6-13 
LIO_AXV_MAPPED.BAS sample program • 6-13 
LIO_AXV_QIO.FOR sample program • 6-13 
LIO_AXV_RTPLOT.FOR sample program • 6-13 
LIO_BUF_FWD.FOR sample program • 6-14 
LIO_BUF_INX.FOR sample program • 6-14 
LIO_CONT_DMA.FOR sample program • 6-14 
LIO_DRJ_SETUP.FOR sample program • 6-14 
LIO_DRQ3B_LOOP.FOR sample program • 6-15 
LIO_DRV11J_LOOP.FOR sample program • 6-15 
LIO_DRV_LOOP.PAS sample program • 6-15 
LIO_FILE_POS.FOR sample program • 6-15 
LIO_FILTER_EVENT.FOR sample program • 6-15 
LIO_HX_EXAMPLE.0 sample program • 6-16 
LIO_IEEE_LOOP.FOR sample program • 6-16 
LIO_IEX_ASYNCH.0 sample program • 6-16 
LIO_IEX_SYNCH.0 sample program • 6-16 
LIQ_IEZ_SYNCH.0 sample program • 6-17 
LIO_KWV_AST.FOR sample program • 6-17 
LIO_MQ_DISPLAY.FOR sample program • 6-17 
LIO_MQ_READONLY.FOR sample program • 

6-17 
LIO_MQ_XFER.FOR sample program • 6-18 
LIO_PRESTON_AST_PLOT.0 sample program • 

6-18 
LIO_PRESTON_READ.0 sample program • 6-18 
LIO_RTC01_COUNTER.FOR sample program • 

6-18 
LIO_RTCO1_SET.FOR sample program • 6-19 
LIO_SERIAL.0 sample program • 6-19 
LIO_SGLBUF_DMA.FOR sample program • 6-19 
LIO_SYNCH_CLK_TRIG.FOR sample program • 

6-19 
LIO_TIME_EVENT.FOR sample program • 6-20 
LIO_UQ_LOOP.0 sample program • 6-20 

14-index 

LOI$_TERM_ERR error message • 5-24 

M 
Memory-mapped I/O • 1-7 
Memory queue device • 2-150 to 2-159 

AST routines • 4-22 
asynchronous I/O • 4-24 
attaching • 2-151 
buffer forwarding • 4-143 
buffer size • 4-37 
buffer source • 4-39 
buffer transfer • 4-252 
device event flag • 4-97 
global section name • 4-180 
interprocess display-only • 4-103 
number of buffers • 4-177 
page-aligning buffers • 4-185 
parameters valid for • 2-151 
read-only device • 4-210 
read-only global section • 4-210 
setting up • 2-151 
synchronous I/O • 4-239 
transferring data buffers • 4-252 

Micro488A 
See IOtech Micro488A 

Multiplexers 
IAV 1 1-C • 2-91 
IAV 1 1-CA • 2-91 

0 
Obtaining device IDs • 3-3 
Online programs 

See Online sample programs 
Online sample programs 

listing • 6-3 to 6-20 
Output frequencies 

generating using the IDV 1 1-D • 2-1 13 



P 

Page-aligning buffers • 1-24 
Parallel I1O devices 

DRB32 • 2-67 to 2-74 
DRB32W • 2-74 to 2-77 
DRQ3B • 2-78 to 2-82 
DRV11-J • 2-83 to 2-86 
DRV 11-WA • 2-86 to 2-89 

Parallel polling 
configuring for • 4-188 
enabling • 4-186 
status register • 4-191 

Parameters 
list of • 4-2 to 4-1 1 

PCR (Programmable Clock Register) • 4-196 
Plotting device • 2-160 to 2-164 

attaching • 2-162 
channels to plot • 4-201 
current channel title • 4-248 
current channel x-axis label • 4-280 
current channel y-axis label • 4-284 
graph title • 4-248, 4-250 
maximum number of channels • 4-169 
maximum y value • 4-285 
minimum y value • 4-286 
number of channels in buffer • 4-177 
parameters • 2-160 
parameters valid for • 2-160 
plotting style • 4-199 
plotting window position • 4-204 
plotting window size • 4-198 
setting up • 2-160, 2-162 
skipping points • 4-225 
specifying current channel • 4-86 
starting continuous plotting • 4-230 
x-axis format • 4-174 
x-axis range • 4-281 

Polled I/O • 1-7 
Preston • 2-61 to 2-67 

A/D channels • 4-13, 4-176 
adding an A/D channel • 4-19 
AST routines • 4-22 
asynchronous input • 4-24 
attaching • 2-62 
buffer forwarding • 4-143 

Preston (Cont.) 
burst rate divisor • 4-41 
channel burst rate • 4-43 
clock rate and divider • 4-55 
continuous DMA • 4-70 
device event flag • 4-97 
FIFO buffers • 1-16 
initialize channel list • 4-161 
internal clock base frequency • 4-51 
internal clock divider • 4-53 
parameters valid for • 2-63 
Preston buffer size • 4-37 
setting up • 2-63 
single-buffer DMA • 4-223 
starting continuous DMA • 4-230 
stopping continuous DMA • 4-235 
synchronous input • 4-239 
timeout • 4-245 
trigger modes • 4-253 
updating set-up information • 4-268 

Protocol 
user-defined • 4-12 

Pseudodevices • 2-146 to 2-164 
disk fife • 2-146 to 2-150 
memory queue • 2-150 to 2-159 
real-time plotting • 2-160 to 2-164 

Pulse duration 
measuring using the IDV 11-D • 2-108 

Pulse trains 
generating using the IDV 1 1-D • 2-1 12 

Q 
QIOs • 1-6 
Queueing buffers • 3-15 
Queues 

device • 1-3 
user • 1-3 

R 
Reading a buffer from a device • 3-24 
Real-time clocks 

See Clock 
Real-time plotting device 

See Plotting device 
Returning device IDs • 3-3 

Index-15 



Returning parameter values • 3-35 
RING signal • 4-173 
RTC01 

See Simpact RTC01 
RTS/CTS • 4-139 
RTS signal • 4-173 

S 
Sample programs 

See Online sample programs 
Sampling rate 

establishing for Preston • 4-41 
Serial line device • 2-140 to 2-146 

ACK/NAK buffer • 4-96 
ACK AST routine • 4-269 
ACK string • 4-270 
AST routines • 4-22, 4-81 
asynchronous I/O • 4-24 
attaching • 2-140 
baud rate • 4-29 to 4-31 
break (spacing) condition • 4-36 
buffer forwarding • 4-143 
buffer terminator • 4-162 
canceling pending I/O requests • 4-235 
characters in type-ahead buffer • 4-267 
control character handling • 4-83 
data bits per character • 4-33 
device event flag • 4-97 
duplex mode • 4-108 
echoing • 4-110 
flow control • 4-139 
full-duplex mode • 4-108 
half-duplex mode • 4-108 
input terminator • 4-162 
modem disconnect • 4-158 
modem status • 4-172 
modem use • 4-170 
NAK AST routine • 4-271 
NAK string • 4-272 
output prefix • 4-183 
output terminator • 4-184 
parameters valid for • 2-140 
parity checking • 4-193 
parity error handling • 4-120 
protocol AST routine • 4-273 
purging type-ahead buffer • 4-209 

16-Index 

Serial line device (font.) 
read prompt • 4-211 
repriming the serial line • 4-283 
setting up • 2-140 
synchronous I/O • 4-239 
timeout • 4-245 
timeout e~~able • 4-247 
type-ahead buffer • 4-264 
user-defined protocol • 4-12, 4-206, 4-275 
XOFF/XON flow control • 4-141 

Serial polling • 4-219 
configuring for • 4-221 

Setting channels • 4-50 
Setting up I/O devices 

AID channel gains • 4-17 
AID channels • 4-13 
AAF01 • 2-14 
AAV 11-D • 2-23 
ACK/NAK buffer • 4-96 
ADF01 • 2-29 
ADQ32 • 2-40 
ADQ32 diagnostic inputs • 4-99 
ADV 11-D • 2-45 
AST routines • 4-22, 4-104 
asynchronous I/O • 4-24 
AXV 1 1-C • 2-50 
baud rate • 4-29 
break (spacing) condition • 4-36 
buffer size • 4-37 
buffer source • 4-39 
burst rate divisor • 4-41 
canceling outstanding I/O • 4-45 
channel burst rate • 4-43 
character echoing • 4-1 10 
clearing large buffer overflow • 4-61 
clearing sequence timer enable bit • 4-234 
clock rate and divider • 4-55 
clock source and divider • 4-58 
Command Output (GOUT) bit • 4-63 
connect-to-interrupt handler overhead • 4-78 
connect-to-interrupt I/O • 4-75 
continuous DMA • 4-70 
D/A channels • 4-89 
data bits per character • 4-33 
deactivating controller function • 4-85 
device event flag • 4-97 
differential input • 4-15 
disabling character echoing • 4-110 



Setting up I/O devices (font.) 
disk file • 2-147 
DRB32 • 2-68 
DRB32 parallel data path • 4-91 
DRB32 parallel data path width • 4-94 
DRB32W • 2-75 
DRQ 11-C • 2-55 
DRQ3B • 2-79 
DRV 11-J • 2-84 
DRV 11-WA • 2-87 
enabling character echoing • 4-110 
error handling • 5-4 
frequency output reference signal • 4-46 
I/O direction • 4-101 
IAV11-A • 2-92 
IAV11-B • 2-96 
IDV 1 1-A • 2-99 
IDV1 1-B • 2-102 
IDV1 1-D • 2-105, 4-48 
IEEE-488 commands • 4-64 

auxiliary • 4-26 
IEQ11 • 2-120 
I EZ 11 • 2-120 
IOtech Micro488A • 2-120 
KWV 11-C • 2-3 
loading Control Table Address (CTA) register • 

4-74 
memory queue • 2-151 
memory queue display-only process • 4-103 
moving output voltage to DDR • 4-32 
moving voltage to DAC Data Register • 4-277 
outputting a voltage value • 4-21 
Preston • 2-63 
Preston base frequency • 4-51 
Preston divider • 4-53 
Programmable Clock Register • 4-196 
reading Control Word Registers • 4-87 
real-time plotting • 2-160 
sequence timer • 4-228 
serial line • 2-140 
serial line character echoing • 4-110 
serial line duplex mode • 4-108 
setting AID or D/A channel • 4-50 
Simpact RTC01 • 2-3 
single-ended input • 4-15 
sizing the plotting window • 4-198 
specifying device trigger mode • 4-253 
specifying error handling method • 4-118 

Setting up I/O devices (font.) 
stopping continuous DMA • 4-45 
using LIO$SET_I • 3-29 
using LIO$SET_R • 3-31 
using LIO$SET_S • 3-33 
writing Control Word Registers • 4-87 
x-axis range • 4-281 

Simpact RTC01 • 2-1 to 2-11 
AST routines • 4-22 
asynchronous 1I0 • 4-24, 4-55 
attaching • 2-2 
buffer forwarding • 4-143 
clock function • 4-145 
clock source and divider • 4-58 
device event flag • 4-97 
event ASTs • 4-121 
external event flags • 4-125 
FIFO buffers • 1-16 
interrupt level 

setting • 4-163 
parameters valid for • 2-3 
reading the count register • 4-72 
Schmitt trigger operation • 4-217 
setting u p • 2-3 
starting the clock • 4-230 
stopping the clock • 4-235 
synchronous I/O • 4-239 
timeout • 4-245 
trigger modes • 4-253 

Single-buffer DMA • 1-19 to 1-20, 4-223 
Software pseudodevices • 2-146 to 2-164 
Spacing condition • 4-36 
Structure of document • xix 
Synchronous IIO • 1-2 

application uses • 1-3 
LIO$READ routine • 1-2 
LIO$WRITE routine • 1-2 
using disk files • 2-148 
using serial line devices • 2-143 
using the DRB32 • 2-70 
using the DRB32W • 2-76 
using the DRQ 1 1-C • 2-56 
using the DRQ3B • 2-80 
using the DRV 1 1-WA • 2-88 

Synchronous input 
using the ADF01 • 2-31 
using the ADQ32 • 2-42 
using the AXV 1 1-C • 2-51 

Index-17 



Synchronous input (Cont.) 
using the IAV 11-A • 2-92 
using the IDV 11-A • 2-100 
using the Preston • 2-65 

Synchronous output 
using the AAF01 • 2-15 
using the AAV 11-D • 2-24 
using the IAV11-B • 2-97 

Synchronous Output 
using the IDV 11-B • 2-103 

T 

Termination characters • 2-139 
Timing external events 

using the KWV 1 1-C • 2-4 
using the Simpact RTC01 • 2-4 

Transferring data 
using the memory queue • 2-155 

Triggering data transfers 
using the KWV 1 1-C • 2-7 

18-Index 

Trigger slivering • 2-10 

u 

User queue • 1-3 

V 

Voltage value 
outputting • 4-21 

W 

Word-aligning buffers • 1-19 
Writing an output buffer to a device • 3-37 

X 

XOFF/XON • 4-139, 4-141 



n 

Reader's Comments Quide to the 
VAXIab Laboratory 

I/O Routines 
AA-KN99C-TE 

Your comments and suggestions will help us improve the quality of our future documenta-
tion. Please note that this form is for comments on documentation only. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (product works as described) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ D ❑ 

Organization (structure of subject matter) ❑ ❑ D ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ D 
Index (ab' 'ty to find topic) ❑ D ❑ ❑ 

Page layout (easy to find information) ❑ D ❑ ❑ 

What I like best about this manual: 

What I like least about this manual: 

My additional comments or suggestions for improving this manual: 

I found the following errors in this manual: 
Page Description 

Please indicate the type of userlreader that you most nearly represent: 

❑ Administrative Support 
❑ Computer Operator 
❑ EducatorlTrainer 
❑ Program~nerlAnalyst 
❑ Sales 

❑ ScientistlEngineer 
❑ Software Support 
❑ System Manager 
❑ Other (please specify) 

Name/Title   Dept.  

Company   Date  

Ma' ' ng Address  

Phone  

lo~s~ 



Fold Here and Tape 

d 9 9 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications 
P.O. BOX 1001 
MARLBOROUGH, MA 01752-9840 

Fold Here 

Please 
Affix Stamp 

Here 

C
ut

 ~
la

n~
 a~

at
tfe

d 
~i

n~
 


