
DEC GKS Reference Manual
Volume II
Order Number: AA—HW44C—TE

April 1989

This document is an encyclopedic reference to the DEC GKS level 2c run-time
functions. This volume contains information on the DEC GKS inquiry functions,
supported workstations, error messages, language-specific concerns, fonts, color
representations, escapes and GDPs. DEC GKS software users can review release
notes by typing HELP GKS RELEASE_NOTES on the DCL command line.

Revision/Update Information:

Operating System and Version:

Software Version:

digital equipment corporation
maynard, massachusetts

This revised document supersedes the VAX
GKS Reference Manual Volume 11 (Order No.
AI—HW44B—TE).

VMS Version 4.7 or higher. ULTRIX Version 3.0
or higher. VAXstation requirement: VAXstation
Windowing Software Versions 3.1 or higher, or
DECwindows Version 1.0.

DEC GKS Version 4.0

First printing March 1984
Revised, November 1984, May 1986, March 1987, April 1989

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1984, 1986, 1987, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ALL—IN-1 EduSystem
DEC IAS
DEC/CMS MASSBUS
DEC/MMS PDP
DECnet PDT
DECmate P/OS
DECsystem-10 Professional
DECSYSTEM-20 Q—bus
DECUS Rainbow
DECwriter RSTS
DIBOL RSX

RT
ULTRIX
UNIBUS
VAX
VAXcluster
VMS
VT
Work Processor

d ~9~ a
TM

ZK4630

Contents

Preface xi

Summary of Technical Changes xv

Chapter 12 Inquiry Functions

12.1 Using the Inquiry Functions 12-3
12.1.1 The Error Status Argument 12-5
12.1.2 The Value Type Argument 12-6

12.2 Function Descriptions 12-8
GKS DESCRIPTION TABLE INQUIRIES 12-9

INQUIRE LEVEL OF GKS 12-10
INQUIRE MAXIMUM NORMALIZATION TRANSFORMATION 12-13
INQUIRE WORKSTATION MAXIMUM NUMBERS 12-15
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES 12-17

WORKSTATION DESCRIPTION TABLE INQUIRIES 12-20
INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING

PRIMITIVES 12-21
INQUIRE COLOR FACILITIES 12-24
INQUIRE DEFAULT CHOICE DEVICE DATA 12-27
INQUIRE DEFAULT DEFERRAL STATE VALUES 12-35
INQUIRE DEFAULT LOCATOR DEVICE DATA 12-38
INQUIRE DEFAULT PICK DEVICE DATA 12-45
INQUIRE DEFAULT STRING DEVICE DATA 12-51
INQUIRE DEFAULT STROKE DEVICE DATA 12-58
INQUIRE DEFAULT VALUATOR DEVICE DATA 12-65
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES 12-72
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION

ATTRIBUTES 12-78
INQUIRE FILL AREA FACILITIES 12-84

iii

INQUIRE GENERALIZED DRAWING PRIMITIVE 12-88
INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES . . . 12-92
INQUIRE DISPLAY SPACE SIZE 12-96
INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE

TABLES 12-100
INQUIRE PATTERN FACILITIES 12-103
INQUIRE POLYLINE FACILITIES 12-106
INQUIRE POLYMARKER FACILITIES 12-1 11
INQUIRE PREDEFINED COLOR REPRESENTATION 12-116
INQUIRE PREDEFINED FILL REPRESENTATION 12-119
INQUIRE PREDEFINED PATTERN REPRESENTATION 12-123
INQUIRE PREDEFINED POLYLINE REPRESENTATION 12-127
INQUIRE PREDEFINED POLYMARKER REPRESENTATION 12-131
INQUIRE PREDEFINED TEXT REPRESENTATION 12-135
INQUIRE NUMBER OF SEGMENT PRIORITIES SUPPORTED 12-139
INQUIRE TEXT FACILITIES 12-142
INQUIRE WORKSTATION CATEGORY 12-147
INQUIRE WORKSTATION CLASSIFICATION 12-150

GKS STATE LIST INQUIRIES 12-153
INQUIRE SET OF ACTIVE WORKSTATIONS 12-154
INQUIRE CLIPPING 12-157
INQUIRE CURRENT NORMALIZATION TRANSFORMATION

NUMBER 12-160
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES 12-162
INQUIRE INPUT QUEUE OVERFLOW 12-169
INQUIRE MORE SIMULTANEOUS EVENTS 12-172
INQUIRE NAME OF OPEN SEGMENT 12-174
INQUIRE SET OF OPEN WORKSTATIONS 12-176
INQUIRE OPERATING STATE VALUE 12-179
INQUIRE PICK IDENTIFIER VALUE 12-181
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES 12-183
INQUIRE SET OF SEGMENT NAMES IN USE 12-189
INQUIRE NORMALIZATION TRANSFORMATION 12-192
INQUIRE LIST OF NORMALIZATION TRANSFORMATION

NUMBERS 12-195
WORKSTATION STATE LIST INQUIRIES 12-198

INQUIRE CHOICE DEVICE STATE 12-199
INQUIRE LIST OF COLOR INDEXES 12-208
INQUIRE COLOR REPRESENTATION 12-211
INQUIRE LIST OF FILL AREA INDEXES 12-215
INQUIRE FILL AREA REPRESENTATION 12-218
INQUIRE LOCATOR DEVICE STATE 12-222
INQUIRE LIST OF PATTERN INDEXES 12-230
INQUIRE PATTERN REPRESENTATION 12-233

iv

INQUIRE PICK DEVICE STATE 12-237
INQUIRE LIST OF POLYLINE INDICES 12-245
INQUIRE POLYLINE REPRESENTATION 12-248
INQUIRE LIST OF POLYMARKER INDICES 12-253
INQUIRE POLYMARKER REPRESENTATION 12-256
INQUIRE SET OF SEGMENT NAMES ON WORKSTATION 12-261
INQUIRE STRING DEVICE STATE 12-264
INQUIRE STROKE DEVICE STATE 12-271
INQUIRE TEXT EXTENT 12-281
INQUIRE LIST OF TEXT INDEXES 12-285
INQUIRE TEXT REPRESENTATION 12-288
INQUIRE VALUATOR DEVICE STATE 12-293
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES 12-300
INQUIRE WORKSTATION STATE 12-304
INQUIRE WORKSTATION CONNECTION AND TYPE 12-307
INQUIRE WORKSTATION TRANSFORMATION 12-310

SEGMENT STATE LIST INQUIRIES 12--314
INQUIRE SEGMENT ATTRIBUTES 12-315
INQUIRE SET OF ASSOCIATED WORKSTATIONS 12-319

PIXEL INQUIRIES 12-322
INQUIRE PIXEL 12-323
INQUIRE PIXEL ARRAY 12-326
INQUIRE PIXEL ARRAY DIMENSIONS 12-331

Appendix A DEC GKS Supported Workstations

A.1 Supported Workstation Types A-1

A.2 Default Workstation Types A-4

A.3 Output-Only Devices A-4

A.4 Using Bit Masks for Workstation Types A-5
A.4.1 An Alternative to Defining Bit Masks A-6

Appendix B DEC GKS Constants

v

Appendix C DEC GKS Attribute Values

C.1 Initial Polyline Attributes C-1

C.2 Initial Polymarker Attributes C-2

C.3 Initial Text Attributes C-3

C.4 Initial Fill Area Attributes C-4

C.5 Initial Segment Attributes C-4

C.6 Initial Normalization Transformation Settings C-5

C.7 DEC GKS Specific Line Types C-5

C.8 DEC GKS Specific MarkerTypes C-6

Appendix D DEC GKS Error Messages

D.1 DEC GKS Implementation-Specific Errors D-2

D.2 Errors Relating to the DEC GKS Operating State D-16

D.3 Errors Relating to the DEC GKS Workstations D-18

D.4 Errors Relating to the DEC GKS Transformations D-24

D.5 Errors Relating to the DEC GKS Output Attributes D-25

D.6 Errors Relating to the DEC GKS Output Functions D-33

D.7 Errors Relating to the DEC GKS Segment Functions D-35

D.8 Errors Relating to the DEC GKS Input Functions D-36

D.9 Errors Relating to the DEC GKS Metafile Functions D-40

D.10 Errors Relating to the DEC GKS Escape Functions D-41

D.11 Miscellaneous Errors D-42

D.12 DEC GKS System Errors D-42

vi

D.13 The FORTRAN Binding Errors D-43

Appendix E DEC GKS Metafile Structures (GKSM, CGM)

E.1 GKSM Metafiles E-1
E.1.1 Data Format Information E-2
E.1.2 GKSM Structure E-2

E.1.2.1 Metafile Header Structure E-3
E.1.2.2 Metafile Item Structure E-4
E.1.2.3 Item Header Structure E-5
E.1.2.4 Layout of Item Data Records E-5

E.1.3 GKSM Physical File Organization E-8

E.2 Computer Graphics Metafiles (CGM) E-9
E.2.1 CGM Structure E-11
E.2.2 Differences Between GKS and CGM E-13
E.2.3 Character Encoding E-14
E.2.4 Clear Text Encoding E-16
E.2.5 CGM Element Descriptions E-16

E.2.5.1 CGM Encoding Examples E-24
E.2.6 CGM Physical File Organization E-26

Appendix F Language-Specific Programming Information

F. i Passing Arguments by Descriptor F-1

F.2 Programming in BASIC F-3

F.3 Programming in VAX C F-3

F.4 Programming in VAX COBOL F-3

F.5 Programming in VAX Pascal F-7

Appendix G DEC GKS Device-Independent Fonts

G.1 Font File Formats G-1
DEC GKS DEVICE-INDEPENDENT FONTS G-5

vii

Appendix H DEC GKS Color Chart

Appendix I DEC GKS GDPs and Escapes
DATA RECORD FORMAT USED IN THIS APPENDIX I-2
GENERALIZED DRAWING PRIMITIVES (GDPS) I-4

UNFILLED GDPS I-8
FILLED GDPS I-25
CELL ARRAY GDPS I-41
TEXT GDPS I-43

ESCAPE FUNCTIONS I-45
CONTROL ESCAPE FUNCTIONS I-46
OUTPUT, ATTRIBUTE, AND TRANSFORMATION ESCAPE

FUNCTIONS I-59
DEC GKS DECWINDOWS ESCAPE FUNCTIONS I-70
DEC GKS STATE LIST INQUIRY ESCAPE FUNCTIONS I-83
WORKSTATION DESCRIPTION TABLE INQUIRY ESCAPE

FUNCTIONS I-96
UTILITY ESCAPE FUNCTIONS I-101

Appendix J DEC GKS Specific Input Values
LOGICAL INPUT DEVICE NUMBERS J-2

CHOICE DEVICES J-4
LOCATOR DEVICES J-7
PICK DEVICES J-8
STRING DEVICES J-9
STROKE DEVICES J-11
VALUATOR DEVICES J-12
INPUT DEVICES AND ECHO AREA TITLES J-13

PROMPT AND ECHO TYPES, AND DATA RECORDS J-15
CHOICE INPUT CLASS J-16
LOCATOR INPUT CLASS J-17

J-24
STRING INPUT CLASS J-25
STROKE INPUT CLASS J-26
VALUATOR INPUT CLASS J-30

KEYPAD FUNCTIONALITY J-32
CYCLING LOGICAL INPUT DEVICES J-33
NUMERIC KEYPAD (ZONING MECHANISM) J-34
NUMERIC KEYPAD (CHOICE) J-35
AUXILIARY KEYPAD (CHOICE) J-37
THE LOCK KEY J-38

viii

PICK INPUT CLASS

Index

Examples
12-1 Set and Realized Inquiry Value Types 12-7

12-2 Determining the Default Choice input Values 12-32

12-3 Determining the Default Locator Input Values 12-43

12-4 Determining the Default Pick Input Values 12-49

12-5 Determining the Default String Input Values 12-55

12-6 Determining the Default Stroke Input Values 12-63

12-7 Determining the Default Valuator Input Values 12-70

12-8 Determining the State of the Choice Logical Input Device 12-205

12-9 Determining the Current Locator State ~ 12-228

12-10 Determining the Values Associated with the Current Pick State 12-243

12-11 Determining the Initial String Logical Input Device Values 12-269

12-12 Determining the Initial Stroke Logical Input Device Values 12-278

12-13 Determining the Current Valuator State 12-298

12-14 Determining the Dimensions of a Pixel Array 12-334

E-1 CGM Metafile Creation E-24

F-1 Macro Subroutine Used to Build Array Descriptors F-4

F-2 A Sample COBOL Program Using the Subroutine BUILDESC F-6

G-1 Printing the ASCII Values of Font Characters G-3

Figures
A-1 Hexadecimal Bit Masks as Workstation Type Values A-6

E-1 GKSM Metafile Structure E-3

E-2 GKSM Metafile Header Structure E-3

E-3 GKSM Metafile Item Structure E-4

E-4 GKSM Metafile Item Header Structure E-5

E-5 CGM Components E-1 1

E-6 CGM Basic Data Encoding Format E-14

E-7 CGM Basic Encoding Format for Real Numbers E-15

G-1 DEC GKS Font Lines G-2

G-2 DEC GKS Default Font Number 1 G-5

G-3 DEC GKS Font Number —2 G-6

G-4 DEC GKS Font Number —3 G-7

G-5 DEC GKS Font Number —4 G-8

ix

G-6 DEC GKS Font Number —5 G-9

G-7 DEC GKS Font Number —6 G-10

G-8 DEC GKS Font Number —7 G-1 1

G-9 DEC GKS Font Number —8 G-12

G-10 DEC GKS Font Number —9 G-13

G-11 DEC GKS Font Number —10 G-14

G-12 DEC GKS Font Number —1 1 G-15

G-13 DEC GKS Font Number —12 G-16

G-14 DEC GKS Font Number —13 G-17

G-15 DEC GKS Font Number —14 G-18

G-16 DEC GKS Font Number —15 G-19

G-17 DEC GKS Font Number —16 G-20

G-18 DEC GKS Font Number —17 G-21

G-19 DEC GKS Font Number —18 G-22

G-20 DEC GKS Font Number —19 G-23

G-21 DEC GKS Font Number —20 G-24

G-22 DEC GKS Font Number —21 G-25

G-23 DEC GKS Font Number —22 G-26

G-24 DEC GKS Font Number —23 G-27

—1 Using Vector Origin Points I-6

I-2 Forming an Ellipse I-7

Tables
A-1 DEC GKS Supported Workstation Types A-1

B-1 DEC GKS Constant Names and Corresponding Language Binding
Constant Names B-1

B-2 DEC GKS Specific Constant Names B-9

E-1 GKSM Metafile Header Fields E-3

E-2 GKSM Metafile Item Header Fields E-5

E-3 GKSM Metafile Data Record Fields E-5

E-4 CGM Element Descriptions E-17

F-1 Type Definitions F-8

H-1 DEC GKS Color Chart H-2

x

Preface

Manual Objectives

This manual provides encyclopedic reference to the DEC Graphical Kernel
System (GKS) and provides examples illustrating DEC GKS function calls. DEC
GKS is a level 2c GKS implementation. For more information concerning GKS
implementation levels, refer to Chapter 1, Introduction to DEC GKS.

NOTE

Before reading this manual, you should review the DEC GKS release
notes by -typing the following:

$ HELP GKS RELEASE_NOTES RETURN

Intended Audience

This manual is intended for experienced application programmers who need to
reference information concerning the DEC GKS functions. Readers should be
familiar with one high-level language and the DIGITAL Command Language
(DCL). (For more information concerning DCL, refer to the VAX/VMS DCL
Dictionary.)

Refer to the DEC GKS Binding Reference Manuals for information specific to
the binding you use with DEC GKS. The available bindings for DEC GKS V4.0
are FORTRAN, C, and GKS$. These manuals are designed for the experienced
user of DEC GKS who needs to know the binding syntax and brief argument
descriptions.

xi

Although there are lengthy introductions at the beginning of each of the
chapters, this manual is not tutorial in nature. New users who need tutorial
information and moderately experienced users needing programming
suggestions should refer to the DEC GKS User Manual.

Document Structure

This manual is contained in two volumes. Volume I contains the following
information:

• Chapter 1, Introduction to DEC GKS, provides an introduction to the DEC
GKS product and to the format of this reference manual.

• Chapter 2, Compiling, Linking, and Running on VMS, provides information
about DEC GKS and the VMS operating system.

• Chapter 3, Compiling, Linking, and Running on ULTRIX, provides
information about DEC GKS and the ULTRIX operating system.

• Chapter 4, Control Functions, provides information concerning the
establishment of the DEC GKS and workstation environments.

• Chapter 5, Output Functions, provides information concerning the
generation of output primitives.

• Chapter 6, Output Attribute Functions, provides information concerning the
output attributes.

• Chapter 7, Transformation Functions, provides information concerning the
normalization and workstation transformations.

• Chapter 8, Input Functions, provides information concerning input.
• Chapter 9, Segment Functions, provides information concerning the storage

of output primitives in segments.
• Chapter 10, Metafile Functions, provides information concerning long-term

storage of graphical images.
• Chapter 11, Error-Handling Functions, provides information concerning

error-handling by the application program.

Volume II of this manual contains the following information:

• Chapter 12, Inquiry Functions, provides information concerning the
acquisition of DEC GKS and workstation status information.

• The appendixes, which include the following:
— Appendix A, DEC GKS Supported Workstations
— Appendix B, DEC GKS Constants
— Appendix C, DEC GKS Attribute Values

xii

— Appendix D, DEC GKS Error Messages
— Appendix E, DEC GKS Metafile Structures (GKSM, CGM)
— Appendix F, Language-Specific Programming Information
— Appendix G, DEC GKS Device-Independent Fonts
— Appendix H, DEC GKS Color Chart
— Appendix I, DEC GKS GDPs and Escapes
— Appendix J, DEC GKS Specific Input Values

Associated Documents

You may find the following documents useful when using DEC GKS:

• DEC GKS User Manual For programmers who need tutorial information or
guides to programming technique.

• DEC GKS FORTRAN Binding Reference Manual—For programmers who need
specific syntax and argument descriptions for the FORTRAN binding.

• DEC GKS GKS$ Binding Reference Manual—For programmers who need
specific syntax and argument descriptions for the GKS$ binding.

• DEC GKS C Binding Reference Manual—For programmers who need specific
syntax and argument descriptions for the C binding.

• DEC GKS Device Specifics Reference Manual—For programmers who need
information about specific devices.

• Building a DEC GKS Workstation Handler System—For programmers who
need to build DEC GKS workstation graphics handler.

• Building a DEC GKS Device Handler System—For programmers who need
to provide support for a device unsupported by the DEC GKS graphics
handlers.

• DEC GKS Installation Guide—For system managers who install DEC
GKS software, including the Run-Time installation, on VMS or ULTRIX
operating systems.

Conventions

Convention Meaning

RETURN

$ RUN GKSPROG

INTEGER X

X=5

option, . .

RETURN

[output-source, . . .]

deferral mode

The symbol RETURN represents a single
stroke of .the RETURN key on a terminal.

In interactive examples, the user's response
to a prompt is printed in red; system prompts
are printed in black.

A vertical ellipsis indicates that not all of
the text of a program or program output is
illustrated. Only relevant material is shown
in the example.

A horizontal ellipsis indicates that additional
arguments, options, or values can be entered.
A comma that precedes the ellipsis indicates
that successive items must be separated by
commas.

Square brackets, in function synopses and a
few other contexts, indicate that a syntactic
element is optional.

All names of the DEC GKS description table
and state list entries, and of the workstation
description table and state list entries, are
italicized.

xiv

Summary of Technical Changes

New and Changed Features

This manual is a revision of the DEC GKS Reference Manual.

• All device specific appendixes in V3.0, K through R, are now documented
in the DEC GKS Device Specifics Reference Manual.

• The sections of Appendix B, DEC GKS Constants, in the DEC GKS Reference
Manual, describing the following:
• An error handling state description
• The FORTRAN binding constant name GGFACP

• The sections of Appendix D, DEC GKS Error Messages, in the DEC GKS
Reference Manual, describing a new message.

• The sections of Appendix F, Language-Specific Programming Information,
in the DEC GKS Reference Manual, describing corrected type definitions in
the Programming in VAX Pascal section.

• The sections of Appendix I, DEC GKS GDPs and Escapes, in the DEC GKS
Reference Manual, describing the following:
• The new fill area set GDP

• New escape functions
• Corrections to the Set Writing Mode function

• The sections of Appendix J, DEC GKS Specific Input Values, in the DEC
GKS Reference Manual, describing Locator and Stroke Input classes.

xv

Chapter 12

Inquiry Functions

The DEC GKS inquiry functions allow you to obtain current and default values
for the operating state, output function attributes, deferral and regeneration
modes, transformations, segments, and device capabilities. DEC GKS writes
the values from the state lists and description tables to the inquiry function
arguments.

The following list describes the tables and lists that are sources of information
for many of the inquiry functions:

Table/List Description

GKS Description Table This table contains constant information about the
DEC GKS implementation you are using, such as the
level of GKS (with DEC GKS, Level 2c), the number
of available workstation types, the list of workstation
types, the maximum allowable open workstations,
and so forth.

If you are transporting your programs from one
implementation of GKS to another, you may need to
inquire about the implementation level of GKS on
a given system, so that your program does not call
unsupported functions.

Inquiry Functions 12-1

Table/List Description

Workstation Description Table This type of table contains constant information about
one particular workstation, such as the workstation
type, the workstation category, the device-specific
maximum coordinate values, the different bundled
output attribute values, and so forth. Each graphics
handler contains a workstation description table
describing that particular device.

If your DEC GKS application uses more than one
workstation at a time, or if you are unsure of the
capabilities of your workstation, you may need to
inquire about the values contained in the workstation
description table.

GKS State List This list contains entries that specify the current DEC
GKS values such as the set of open workstations
(if any), the current normalization transformation
number, the current character height, and so forth.

If you need to check the alterable DEC GKS values,
you may need to inquire about the values contained
in the DEC GKS state list.

Workstation State List For each workstation you open, DEC GKS allocates
space for a workstation state list. This list contains
entries that specify whether output is "on hold"
(deferred), whether or not the surface has to be
redrawn to fulfill an output request, whether the
workstation surface is 'empty" by GKS definition,
whether the picture on the surface represents all
of the requests for output made thus far by the
application program, and so forth.

If you need information concerning the current state
of a particular workstation, you may need to inquire
about the values contained in the workstation state
list.

Segment State List When you create a segment, DEC GKS creates a
segment state list. The segment state list contains
entries that specify the segment name, the set of
associated workstations, the detectability of the
segment, and so forth.

If you need information concerning a particular
segment, you may need to inquire about the values
contained in the segment state list.

NOTE

You cannot inquire from the VAXstation workstation description
table unless you are logged onto a MicroVAX running DEC GKS.

12-2 Inquiry Functions

The only other type of information obtained by the inquiry functions is
information concerning the color and dimensions of one or more pixels on the
workstation surface. To obtain this information, you can use the pixel inquiry
functions.

Calling the inquiry functions is simple. Consequently, only the INQUIRE
DEFAULT DEVICE DATA and the INQUIRE DEVICE STATE function
descriptions contain program examples. For complete examples that use calls to
these input inquiry functions, refer to Chapter 8, Input Functions.

To gain an understanding of knowing when to call certain DEC GKS inquiry
functions, refer to the DEC GKS User Manual. For more information concerning
the state lists and description tables, refer to Chapter 4, Control Functions.

12.1 Using the Inquiry Functions

The DEC GKS inquiry functions return information about the DEC GKS tables,
lists, and about the state of the pixels on a given device, by writing values to
arguments passed to the function. For instance, review the following syntax
example:

GKS$INQ_LEVEL (error status,
gks_level)

The two arguments to the function GKS$INQ _LEVEL are passed as write-only
parameters. If this function completes its task successfully, DEC GKS returns
the value 0 in the first write-only argument (error~tatus). If this function
encounters an error condition (see Section 12.1.1 for detailed information), DEC
GKS returns an error status code in the first argument. This function returns
the level of the DEC GKS implementation with which you are working in the
second write-only argument (gks~evel).

Inquiry Functions 12-3

Some of the inquiry functions have read-only arguments as well. For instance,
review the following syntax example:

GKS$INQ_LOCATOR_STATE (workstation_id,
device type,
value type,
error status,
operating_operating_mode,

echo flag,
transformation _number,
world~c_value,
world_y_value,
prompt_and_echo_type,
echo area,
data record,
record_buffer_length,
record size)

The first three arguments (workstation mod, device type, value type) are all
read only; DEC GKS needs to know the workstation identifier, the device
type, and the type of values to be returned to this function, in order to return
the proper values to the other arguments (see Section 12.1.2 for detailed
information concerning the argument value type).

The argument record buff er~ength is a modifiable argument unique to the
INQUIRE DEFAULT DEVICE DATA and INQUIRE DEVICE STATE functions.
On input, the argument must contain the size of the data record buffer you
declare. On output, the graphics handler writes the amount of the buffer filled
with data. If on output the argument record_size is larger than the argument
record_buffer~ize, you know that the graphics handler truncated the input
data record when writing to the buffer; data was lost.

The function GKS$INQ _LOCATOR_STATE illustrates the usefulness of the
inquiry functions when requesting input. If you wish to change one of the
default input values, you have to assign values to all of the input variables,
one by one. This can be tedious if you only want to change one or two of the
default variable values.

A practical way to initialize all of the necessary variables with default input
values is to pass the variables to GKS$INQ _LOCATOR_STATE. After
GKS$INQ _LOCATOR _STATE initializes all of the input variables, change
the values of the ones you wish to change, and then pass all the variables to
GKS$INIT_LOCATOR. For a better understanding of this process, review the
following code example.

12-4 Inquiry Functions

INTEGER WS_ID, DATA_RECORD(1), PROMPT_ECHO_TYPE,
* ERROR_INDICATOR, INPUT MODE, ECHO_FLAG, TRANSFRM_NUMBER,
* RECORD_BUFFER_LENGTH, RECORD_SIZE, INPUT_STATUS, DEVICE_NUM
REAL ECHO_AR.EA(4), WORLD_X, WORLD Y
DATA WS_ID / 1 /, DEVICE_NUM / 1 /

C Let the graphics handler l ow how large the data record buffer is...
RECORD_BUFFER_LENGTH = 4

C Initialize variables by passing them to the inquiry function.
CALL GKS$INQ_LOCATOR_STATE(WS_ID, DEVICE_NUM,
* GKS$K VALUE_REALIZED, ERROR_INDICATOR, INPUT_MODE,
* ECHO_FLAG, TRANSFRM_NUN~ER, WORLD_X, WORLD_Y,
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD,
* RECORD BUFFER_LENGTH, RECORD_SIZE)

C Change only one variable value.
PROMPT_ECHO_TYPE = 1

C Initialize the logical input device with the necessary variable
C values.

CALL GKS$INIT_LOCATOR(WS_ID, DEVICE_NUM, WORLD_X,
* WORLD_Y, TRANSFRM_NUMBER, PROMPT_ECHO_TYPE, ECHO_AREA,
* DATA_RECORD, RECORD_BUFFER_LENGTH)

C Request input from the device.
CALL GKS$REQUEST_LOCATOR(WS_ID, DEVICE_NUM, INPUT_STATUS,
* TRANSFRM_NUMBER, WORLD X, WORLD Y)

For more information concerning the workstation identifier, refer to Chapter 4,
Control Functions. For more information concerning the input device type or
general input concepts, refer to Chapter 8, Input Functions.

12.1.1 The Error Status Argument

DEC GKS inquiry functions never generate an error, but they can encounter
error conditions. For all inquiry functions, the first write-only argument within
the argument list is always the error status argument. The value passed to this
argument determines whether the values passed to the remaining write-only
arguments are valid.

Since the inquiry functions obtain values from the description tables and state
lists, and since the description tables and state lists are not accessible unless
you have called the proper DEC GKS control functions, the inquiry functions
may or may not be able to access the values you need. There are other
device-dependent situations that would cause a DEC GKS inquiry function to
encounter an error condition.

Inquiry Functions 1 Z-5

If all values are available, the inquiry function returns the value 0 in the error
status argument.

If a value is not presently available, the inquiry function returns a number,
corresponding to an appropriate DEC GKS error message, in the error status
argument. If the value passed to the error status argument is anything other
than the value 0, the values that the inquiry function passed to the remaining
arguments are invalid.

For more information concerning the DEC GKS error messages and their
numbers, refer to Appendix D, DEC GKS Error Messages. For more information
concerning DEC GKS error handling, refer to Chapter 11, Error-Handling
Functions.

12.1.2 The Value Type Argument

Several of the inquiry functions that take their values from the workstation
state list have a value type argument. This argument determines whether
DEC GKS returns the values that you previously specified in the application
program, or returns the values that the DEC GKS device handlers determine
closely approximates the values that you requested.

The possible value types are as follows.

Value Type Description

GKS$K_VALUE_SET If you specify this constant (or the value 0), the
inquiry function returns the requested values exactly
as specified in the application program. If you did
not assign any values in the application program, the
inquiry function returns the default values.

GKS$K_VALUE_REALIZED If you specify this constant (or the value 1), and if
you specified values in your application program
that a particular workstation cannot fully support,
the inquiry function returns the realized values that
closely approximate the values you specified in the
application program. If you did not assign any values
in the application program, the inquiry function
returns the default values.

For example, some devices support a limited number of pick aperture sizes (the
size of the tracking prompt used for picking segments). A set aperture size is
one set by the application program, and a realized size is used by the graphics
handler. Using the function GKS$INQWKK—STATE, you can inquire about
both types of values. Example 12-1 illustrates this process on a VAXstation.

12-6 Inquiry Functions

Example 12-1: Set and Realized Inquiry Value Types

C This program writes set and realized pick aperture sizes to the
C workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, INITIAL_STATUS, SEGMENT, PICK_ID,
* PROMPT_ECHO_TYPE, ERROR_STATUS, INPUT_MODE, ECHO_FLAG,
* DATA_LENGTH, RETURN_SIZE, INPUT_STATUS, DEVICE_NUM
REAL ECHO_AREA(4), DATA_RECORD_SET(1),
* DATA_RECORD_REALIZED
DATA WS_ID / 1 /, DEVICE_NUM / 1 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, 0)
CALL GKS$ACTIVATE_WS(WS_ID)

C Inquire default values so that you can initialize the device.
DATA_LENGTH = 4
CALL GKS$INQ_PICK_STATE(WS_ID, DEVICE_NUM,
* GKS$K_VALUE_SET, ERROR_STATUS, INPUT_MODE, ECHO_FLAG,
* INITIAL_STATUS, SEGMENT, PICK_ID, PROMPT_ECHO_TYPE,
* ECHO_AREA, DATA_RECORD_SET, DATA_LENGTH, RETURN_SIZE)

C Set the aperture size to be 0.1 in device coordinates.
DATA_RECORD_SET(1) = 0.001

C Initialize the device with the new aperture size.
CALL GKS$INIT_PICK(WS_ID, DEVICE_NUM, INITIAL_STATUS,
* SEGMENT, PICK_ID, PROMPT_ECHO_TYPE, ECHO_AREA,
* DATA_RECORD_SET, DATA_LENGTH, RETURN_SIZE)

C Obtain the set value...
DATA_LENGTH = 4 ! One longword for aperture size
CALL GKS$INQ_PICK_STATE(WS_ID, DEVICE_NUM,
* GKS$K_VALUE_SET, ERROR_STATUS, INPUT MODE, ECHO_FLAG,
* INITIAL_STATUS, SEGMENT, PICK_ID, PROMPT_ECHO_TYPE,
* ECHO_AREA, DATA_RECORD_SET, DATA_LENGTH, RETURN_SIZE)

C Obtain the realized value...
DATA_LENGTH = 4 ! One longword for aperture size.
CALL GKS$INQ_PICK_STATE(WS_ID, DEVICE_NUM,
* GKS$K VALUE_REALIZED, ERROR_STATUS, INPUT_MODE, ECHO_FLAG,
* INITIAL_STATUS, SEGMENT, PICK_ID, PROMPT_ECHO_TYPE,
* ECHO_AREA, DATA_RECORD_REALIZED, DATA_LENGTH, RETURN_SIZE)

WRITE(6,*) 'Set value:', DATA_RECORD_SET
WRITE(6,*) 'Realized value:', DATA_RECORD_REALIZED

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

Inquiry Functions 12-7

You see the following when you compile, link, and execute this program:

$ FORTRAN EXAMPLE_1
$ LINK EXAMPLE_1
$ RUN EXAMPLE_1
Set value: 1.0000000E-03
Realized value: 4.2635733E-03

RETURN
RETURN
RETURN

For more information concerning pick input, refer to Chapter 8, Input
Functions.

12.2 Function Descriptions

This section describes the DEC GKS inquiry functions in detail, by the type of
inquiry: DEC GKS description table, workstation description table, DEC GKS
state list, workstation state list, segment state list, and pixel inquiries.

12-8 Inquiry Functions

GKS Description Table Inquiries

GKS Description Table Inquiries
This section describes the DEC GKS description table inquiries. You use these
functions if you are not sure which implementation of DEC GKS you are
using.

Inquiry Functions 12-9

GKS Description Table Inquiries
INQUIRE IEVEI OF GKS

INQUIRE LEVEL OF GKS

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _LEVEL returns the DEC GKS implementation level.

The implementation level is available when DEC GKS is in any operating state
except GKS$K_GKCL. If the state is GKS$K_GKCL, the output argument is
undefined. The function sets the error status argument to the number of one of
the errors listed in the Error Messages section.

Syntax
GKS;INQ_LEVEL (error status, gk~levelJ

GQLVKS (error status, IevelJ

ginglevelgks (level, error_statusJ

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-10 Inquiry Functions

GKS Description Table Inquiries
INQUIRE LEVEL OF GKS

gks_level

data type: integer
access: write-only
mechanism: by reference

This argument is the level of the GKS implementation you are using (with DEC
GKS, level 2c). The argument can be any of the following values or constants:

Value Constant Description

-3 GKS$K_LEVEL—NiA Level Ma

-2 GKS$K_LEVEL _NiB Level Mb

-1 GKS$K_LEVEL_MC Level Mc

0 GKS$K_LEVEL _OA Level Oa

1 GKS$K_LEVEL _OB Level Ob

2 GKS$K_LEVEL _OC Level Oc

3 GKS$K_LEVEL _lA Level la

4 GKS$K_LEVEL _1B Level lb

5 GKS$K_LEVEL _1C Level lc

6 GKS$K_LEVEL ~A Level 2a

7 GKS$K_LEVEL _2B Level 2b

8 GKS$K_LEVEL ~C Level 2c

Inquiry Functions 12-11

GKS Description Table Inquiries
INQUIRE LEVEL OF GKS

Error Messages
If this inquiry function cannot return valid values, the number in the error

status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the error
state in routine

8 GKS$~RROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

12-12 Inquiry Functions

GKS Description Table Inquiries
INQUIRE MAXIMUM NORMALIZATION TRANSFORMATION

INQUIRE MAXIMUM NORMALIZATION TRANSFORMATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _1VIAX ~CFORM returns the maximum normalization
transformation number supported by the GKS implementation being used.
The maximum number for the DEC GKS software is 255. Remember that
normalization transformation number zero (0) is the unity transformation and
cannot be changed.

The maximum normalization transformation number is available when DEC
GKS is in any operating state except GKS$K_GKCL. If the state is GKS$K_
GKCL, the output argument is undefined. The function sets the error status
argument to the number of one of the errors listed in the Error Messages
section.

Syntax
GKS~MAX~(fORM (error status, max transformations)

GQMNTN (error status, max)

gingmaxntrannum (maxtran, error status)

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of

Inquiry Functions 12-13

GKS Description Table Inquiries
INQUIRE MAXIMUM NORMALIZATION TRANSFORMATION

the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

ma~transformafions

data type: integer
access: write-only
mechanism: by reference

This argument is the maximum normalization transformation number sup-
ported by the GKS implementation. You can associate window and viewport
boundaries to transformation numbers 1 through max transformations.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$-ERROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$_ERROR-NEG_20 GKS not in proper state: GKS in the error
state in routine * * * *

8 GKS$~RROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

12-14 Inquiry Functions

GKS Description Table Inquiries
INQUIRE WORKSTATION MAXIMUM NUMBERS

INQUIRE WORKSTATION MAXIMUM NUMBERS

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ .WS-1VIAX—NUM returns the maximum number of
open workstations, active workstations, and the maximum number of worksta-
tions that can be associated with a segment.

The maximum number of types of workstations is available when DEC GKS is
in any operating state except GKS$K_GKCL. If this condition is not met, the
output arguments are undefined, and the function sets the error status argument
to the number of one of the errors listed in the Error Messages section.

For more information concerning segments, refer to Chapter 9, Segment
Functions.

Syntax
G KS$ I N Q _WS_MAX _NUM (error status, max open_ workstations,

max_activ~ workstations,
max_w~with_segmentJ

GQWKM (error status, sim_open, sim_active, w~w_segJ

gingwsmaxnum (maxws, error status)

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function

Inquiry Functions 12-15

GKS Description Table Inquiries
INQUIRE WORKSTATION MAXIMUM NUMBERS

writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

ma~open workstations
mawactive_ workstations

data type: integer
access: write-only
mechanism: by reference

These arguments are the maximum number of open and active workstations
supported by the implementation of GKS.

ma~ws_witl~segment

data type: integer
access: write-only
mechanism: by reference

This argument is the maximum number of workstations that the GKS imple-
mentation can associate with a segment.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

—19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified in
routine ****

8 GKS$~RROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

12-16 Inquiry Functions

GKS Description Table Inquiries
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES

INQUIRE LIST OF AVAILABLE WORKSTATION TYPES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _WSTYPE _LIST returns a list of the supported work-
station types.

The list of supported workstations is available when DEC GKS is in any
operating state except GKS$K_GKCL. If the state is GKS$K_GKCL, the output
argument is undefined. The function sets the error status argument to the
number of one of the errors listed in the Error Messages section.

Syntax
GKS~INQ_WSTYPE_LIST (error status, num_workstation_types,

workstation_type_list, return_sizeJ

GQEWK (element, error~tatus, num_types, relementJ

gingavailwstypes (bufsize, start, wstypes, actual types, error_statusJ

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

Inquiry Functions 12-17

GKS Description Table Inquiries
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES

n um_ works to Lion_ types

data type: integer
access: write-only
mechanism: by reference

This argument is the number of different workstation types.

workstation_type_list

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the array that contains the integers representing the various
supported workstations. For a list of the DEC GKS supported workstation
types, refer to Appendix A, DEC GKS Supported Workstations.

return size

data type: integer
access: write-only
mechanism: by reference

This argument is the actual number of workstation types passed back to the
array. You can use this value to determine whether you defined an array large
enough to hold all of the returned values.

12-18 Inquiry Functions

GKS Description Table Inquiries
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19

-20 DECGKS$~RROR_NEG_20

-33 DECGKS$~RROR~IEG_33

8 GKS$~RROR_8

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Inquiry Functions 12-19

Workstation Description Table Inquiries

Workstation Description Table Inquiries
This section describes the workstation description table inquiries. (For more
information concerning the workstation description table, refer to Chapter 4,
Control Functions.) After you have determined on what type of workstation
you are working, you use these functions to determine the workstation's
capabilities and limits.

12-20 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES

INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ AVAIL _GDP returns the number of available gener-
alized drawing primitives (GDPs) and a list of the GDP identifiers for a given
workstation type. For more information concerning GDPs, refer to Chapter 5,
Output Functions.

The list of available GDPs is available when DEC GKS is in any operating state
except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN (for more information concerning supported GDPs, refer
to Appendix I, DEC GKS GDPs and Escapes)

• The specified workstation can generate the given GDP

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

Syntax
GKSSINQ~IVAIL_GDP (workstation type, error status, num_gdps,

gdp_list, return size)

GaEGDP (workstation type, element, error status, num_gdp, re/ementJ

gingavailgdp (workstation type, max_gdps, start, gdps, actual_gdps,
error status)

Inquiry Functions 12-21

Workstation Description Table Inquiries
INQUIRE LIST Of AVAILABLE GENERALIZED DRAWING PRIMITIVES

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_gdps

data type: integer
access: write-only
mechanism: by reference

This argument is the number of different GDP types.

gdp_list

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the array that contains the integers representing the various
supported GDPs for the specified workstation. For a list of the supported GDP
types, refer to Appendix I, DEC GKS GDPs and Escapes.

12-22 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES

return size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the actual number of GDPs passed back to the array. You
can check this number to see if GKS$INQ AVAIL _GDP returned fewer values
than spaces allocated in the array.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19

-20 DECGKS$~RROR~IEG_20

-33 DECGKS$_ERROR_NEG_33

8 GKS$_ERROR_8

22 GKS$~RROR_22

23 GKS$~RROR~3

39 GKS$_ERROR_39

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine * * * *

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Inquiry Functions 12-23

Workstation Description Table Inquiries
INQUIRE COLOR FACILITIES

INQUIRE COLOR FACILITIES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _COLOR_FAC returns the number of color indexes, the
number of available colors, and the color capabilities of a specified workstation.

The color facilities are available when DEC GKS is in any operating state except
GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT OUTPUT or GKS$K_
WSCAT_OUTIN

If these conditions are not met, the output arguments are undefined. The
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

Syntax
G KS$ I N Q _COLOR _FAC (workstation type, error status, num_colors,

color_or_mono, num_color_indexesJ

GQCF (workstation type, error status, ncolors, color flag, nindexesJ

gingcolorfacil (workstation type, bufsize, fac_size, fac, error_statusJ

12-24 Inquiry Functions

Workstation Description Tadle Inquiries
INQUIRE COLOR FACILITIES

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_co/ors

data type: integer
access: write-only
mechanism: by reference

This argument is the number of colors supported by the workstation. If the
function returns a value of 0 to this argument, a continuous range of colors is
available.

color_or_mono

data type: integer
access: write-only
mechanism: by reference

Inquiry Functions 12-25

Workstation Description Table Inquiries
INQUIRE COLOR FACILITIES

This argument is a flag specifying whether color is available on the specified
workstation. The argument can be any of the following values or constants:

Value Constant Description

0

1

GKS$K_NiONOCHROME

GKS$K_COLOR

Monochrome device

Color device

num_color_indexes

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of predefined color indexes available for the
specified workstation.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

8 GKS$~RROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

12-26 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

INQUIRE DEFAULT CHOICE DEVICE DATA

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _DEF_CHOICE _DATA returns the default values for
the choice logical input device on a specified workstation.

The default values for the choice input device are available when DEC GKS is
in any operating state except GKS$K_GKCL, and if the following conditions
exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT~NPUT or GKS$K_
WSCAT_OUTIN

• The input device exists on the specified workstation

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning input, refer to Chapter 8, Input Functions.

Syntax
GKS$INa_DEF_CHOICE_DATA (workstation type, device number,

error status, max_c ones,
num~rompt_echo_types,
prompt_echo_types,
echo area, datesrecord,
n um _ re turn a d~ p ro m p ts,
record_buffer_length, record size)

Inquiry Functions 12-27

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

G aD L (workstation type, dev_num, element, dim_dr, error status, num_choi,
num_types, relement, echo area, len_dr, dr)

gingdefchoice (workstation type, dev, buf_size, datessize, data, error status)

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

device number

data type: integer
access: read-only
mechanism: by reference

This argument is the device number that differentiates between logical in-
put devices of the same class, operating on the same workstation. For more
information, refer to Chapter 8, Input Functions.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-28 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

mawchoices

data type: integer
access: write-only
mechanism: by reference

This argument is the maximum number of supported choices.

num_promp~echo_types

data type: integer
access: write-only
mechanism: by reference

This argument is the number of choice prompt and echo types available on a
specified workstation.

promp~echo_types

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is an array that contains the available prompt and echo types on
the specified workstation.

echo area

data type: array (real)
access: write-only
mechanism: by reference

This argument is afour-element array containing the device coordinate values
that designate the input echo area on the workstation surface, in the order
XMIN, XMAX, YMIN, YMAX. For more information concerning the DEC GKS
coordinate systems, refer to Chapter 7, Transformation Functions.

data record

data type: address (record)
access: modifiable
mechanism: by reference

This argument is a pointer to the input data record.

Inquiry Functions 12-29

Workstation Description Table Inquiries
INaU1RE DEFAULT CHOICE DEVICE DATA

GKS$INQ_DEF CHOICE_DATA returns a different amount of information
depending on the value contained in the first component of the data record.
If you pass the value 0 as this argument and the value 4 as the RECORD_
BUFFER_LENGTH argument, then this function only returns the default
number of choices (it ignores the rest of the write-only arguments). This
functionality allows you to check to see if your declared string buffers are large
enough to hold all of the default strings.

Once you obtain the default number of choices, you must initialize the arrays
containing string sizes, string addresses, and strings, and then call GKS$INQ _
DEF_CHOICE _DATA a second time. In the second call, pass the number of
choices obtained in the first call to GKS$INQ _DEF_CHOICE _DATA, pass the
RECORD_BUFFER_LENGTH value that specifies the whole data record. Then
the function writes all of the default values to its write-only arguments.

To understand the process of calling GKS$INQ _DEF_CHOICE _DATA twice,
refer to the program example in this function description.

num_returned_ prompts

data type: integer
access: write-only
mechanism: by reference

This argument is the number of prompt and echo types actually returned to this
function. Compare this number with the actual number of available prompt
and echo types to see if you have defined an array large enough to hold all
available values.

record_buffer_I ength

data type: integer
access: modifiable
mechanism: by reference

On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument DATA_RECORD. On output, the graph-
ics handler writes the amount of the buffer, in bytes, filled by the written
data record. If the argument record_size is larger than RECORD_BUFFER_
LENGTH after the function call, then you know that the graphics handler
truncated the data record when writing it to the buffer; data was lost.

12-30 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

recordsize

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the total size, in bytes, of the data record.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$~RROR~TEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR~2

23 GKS$_ERROR_23

39 GKS$~RROR_39

140 GKS$~RROR_140

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Specified input device is not present on
the workstation in routine ****

Inquiry Functions 12-31

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

Program Exa m p I e
Example 12-2 illustrates the use of the function GKS$INQ _DEF_CHOICE _
DATA.

Example 12-2: Determining the Default Choice Input Values

C This program writes the return values of the function

C GKS$INQ_DEF_CHOICE_DATA to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBR,ARY:GKSDEFS.FOR'
INTEGER WS_ID, DATA_RECORD(3), NUM_CHOICES,
* LIST_PROMPT_TYPES(10), NUM_PROMPT ECHO, ERROR_STATUS,

* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH, RECORD_SIZE,

* STRING_SIZES(10), STRING_POINTERS(10), DEVICE_NUM,

* I, MAX_CHOICES

CHARACTER*80 STRINGS(10)

REAL ECHO_AREA(4)
DATA WS_ID / 1 /, DEVICE_NUM / 1 /

C First element in the data record is the number of choices
EQUIVALENCE(DATA_RECORD(1), NUM_CHOICES)

CALL GKS$OPEN_GKS('SYS$ERROR:')

C Initialize the first data record component to 0. This forces

C GKS$INQ_DEF_CHOICE_DATA to return only the number of default

C choices.
NUM_CHOICES = 0

C Tell the handler the size of the record buffer (do not include

C the array addresses in this call).
RECORD_BUFFER_LENGTH = 4

C Call the function to find the number of default choices .
CALL GKS$INQ_DEF_CHOICE_DATA(GKS$K_VT240, DEVICE_NUM,
* ERROR_STATUS, MAX_CHOICES, NUM_PROMPT_ECHO,
* '/.DESCR(LIST_PROMPT_TYPES), ECHO_AREA, DATA_RECORD,
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH,
* RECORD_SIZE)

C Initialize the string pointers...
DO 100 I = 1, NUM_CHOICES

STRING_POINTERS (I) _ '/.LOC (STRINGS (I))
STRING_SIZES(I) = 80

100 CONTINUE

(continued on next page)

12-32 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

Example 12-2 (Copt.): Determining the Default Choice Input Values

c

C
C

C

Initialize the rest of the data record...
DATA_RECORD (2) _ '/.LOC (STRING_SIZES)
DATA_RECORD (3) _ '/.LOC (STRING_POINTERS)

Initialize the modifiable argument (this time, you pass
array adresses)...
RECORD_BUFFER_LENGTH = 12

You can obtain this information as long as GKS is open.
CALL GKS$INQ_DEF_CHOICE_DATA(GKS$K_VT240, DEVICE_NUM,
* ERROR_STATUS, MAX_CHOICES, NUM_PROMPT_ECHO,
* '/.DESCR(LIST_PROMPT_TYPES), ECHO_AREA, DATA_RECORD,
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH,
* RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *)
WRITE(6, *)
WRITE(6, *)
WRITE(6, *)
WRITE(6, *)
WRITE(6, *)
WRITE(6, *)
WRITE(6, *)

the

'The error status: ', ERROR_STATUS
'The maximum number of choices: ', MAX_CHOICES
'The number of prompt/echo types: ', NUM_PROMPT_ECHO
'The list of prompt/echo types: ', LIST_PROMPT_TYPES
'The echo area: ', ECHO_AREA
'The choice data record: ', DATA_RECORD
'The prompt/echo list return size:',PROMPT_RETURN_SIZE
'The data record buffer size: ' ,

* RECORD BUFFER_LENGTH
WRITE(6, *) 'The data record size: ', RECORD_SIZE

C STRINGS holds the default choice strings...
WRITE(6,*) 'The default choice strings are as follows:'
DO 200 i = 1, NUM_CHOICES

WRITE(6,*) STRINGS(I)
200 CONTINUE

CALL GKS$CLOSE_GKS()
END

Inquiry Functions 12-33

Workstation Description Table Inquiries
INQUIRE DEFAULT CHOICE DEVICE DATA

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_2
$ LINK EXAMPLE_2
$ RUN EXAMPLE_2

RETURN
RETURN,
RETURN

The error status: 0
The maximum number of choices: 47
The number of prompt/echo types: 3
The list of prompt/echo types: 1 3 --i 0

0 0 0 0 0 0

The echo area: 533.0000 79.0000 0.0000000E+00 479.0000
The choice data record: 5 1076 1116
The prompt/echo list return size: 3
The data record buffer size: 12
The data record size: 0
The default choice strings are as follows:
CHOICEI
CHOICE2
CHOICE3
CHOICE4
CHOICE5

$

To review the functionality of GKS$INQ _DEF_CHOICE _DATA within a larger
program, refer to the choice input programs in Chapter 8, Input Functions.

12-34 Inquiry Functions

,Workstation Description Table Inquiries
INQUIRE DEFAULT DEFERRAL STATE VALUES

INQUIRE DEFAULT DEFERRAL STATE VALUES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _DEF_DEFER_STATE returns the default deferral and
implicit regeneration modes.

The default deferral and regeneration modes are available when DEC GKS is in
any operating state except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning deferral, implicit regeneration, or operating
states, refer to Chapter 4, Control Functions.

Syntax
GKS;INa_DEf_DEfER_STATE (workstation type, error status,

deferral~r►ode, regeneration_flagJ

GaDDS (workstation type, error status, def~r►ode, reg_modeJ

gingdefdeferst (workstation type, def, error~tatusJ

Inquiry Functions 12-35

Workstation Description Table Inquiries
INQUIRE DEFAULT DEfERRAI STATE VALUES

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

deferral mode

data type: integer
access: write-only
mechanism: by reference

This argument is the default deferral mode. The argument can be any of the
following values or constants:

Value Constant Description

0 GKS$K_ASAP Generate images as soon as possible.

1 GKS$K_BNIG Generate images before input is requested globally.

2 GKS$K_BNIL Generate images before input is requested locally.

3 GKS$K_ASTI Generate images some time. Exact time is not
guaranteed.

12-36 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT DEFERRAL STATE VALUES

regeneration flag

data type: integer
access: write-only
mechanism: by reference

This argument is the default implicit regeneration mode. The argument can be
any of the following values or constants.

Value Constant Description

0 GKS$K_IRG_SUPPRESSED Image regeneration is suppressed.

1 GKS$K~RG_ALLOWED Image regeneration is allowed.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the error
state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

22 GKS$_ERROR_22 Specified workstation type is invalid in
routine ****

23 GKS$_ERROR_23 Specified workstation type does not exist
in routine ****

39 GKS$_ERROR_39 Specified workstation is neither of
category OUTPUT nor of category OUTIN
in routine ****

Inquiry Functions 12-37

Workstation Description Table Inquiries
INaU1RE DEFAULT LOCATOR DEVICE DATA

INQUIRE DEFAULT LOCAT08 DEVICE DATA

Operating State: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _DEF_LOCATOR returns the default values for the
locator logical input device on a specified workstation.

The default values for the locator input device are available when DEC GKS is
in any operating state except GKS$K_GKCL, and if the following conditions
exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT~NPUT or GKS$K_
WSCAT_OUTIN

• The input device exists on the specified workstation

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning input, refer to Chapter 8, Input Functions.

syntax
G KS$ I N Q _D E F_LO CAT O R _DATA (workstation_type, device number,

error status, initial _ world~r,
initial _ world_ y,
num~vrompt_echo_types,
prompt_echo_types,
echo area, data record,
num ~e turned promp ts,
recorc~buf~er_length, record_sizeJ

12-38 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT LOCATOR DEVICE DATA

GQDCH (workstation type, dev_num, element, dim_dr, error status, px, py,
num_types, re/ement, echo area, len_dr, drJ

gingdef loc (workstation type, dev, buf_size, data size, data, error status)

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

devicesnumber

data type: integer
access: read-only
mechanism: by reference

This argument is the device number that differentiates between logical in-
put devices of the same class, operating on the same workstation. For more
information, refer to Chapter 8, Input Functions.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

Inquiry Functions 12-39

Workstation Description Table Inquiries
INQUIRE DEFAULT LOCATOR DEVICE DATA

initial_world_x
initial_ world_ y
data type: real
access: write-only
mechanism: by reference

These arguments comprise the initial starting position of -the locator prompt,
in world coordinates. For information concerning the DEC GKS coordinate
system, refer to Chapter 7, Transformation Functions.

num_promp~echo_types

data type: integer
access: write-only
mechanism: by reference

This argument is the number of locator prompt and echo types available on a
specified workstation.

promp~echo_types

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is an array that contains the available locator prompt and echo
types on the specified workstation.

echo area

data type: array (real)
access: write-only
mechanism: by reference

This argument is afour-element array containing the device coordinate values
that designate the input echo area on the workstation surface, in the order
XMIN, XMAX, YMIN, YMAX. For more information concerning the DEC GKS
coordinate systems, refer to Chapter 7, Transformation Functions.

12-40 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT LOCATOR DEVICE DATA

data record

data type: address (record)
access: write-only
mechanism: by reference

This argument is a pointer to the default locator input data record for the
specified device.

num_returned_ prom pts

data type: integer
access: write-only
mechanism: by reference

This argument is the number of prompt and echo types actually returned to this
function. Compare this number with the actual number of available prompt
and echo types to see if you have defined an array large enough to hold all
available values.

recorc~buffer_length

data type: integer
access: modifiable
mechanism: by reference

On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument DATA~ZECORD. On output, the graph-
ics handler writes the amount of the buffer, in bytes, filled by the written
data record. If the argument recorcLsize is larger than RECORD_BU~rER_
LENGTH after the function call, then you know that the graphics handler
truncated the data record when writing it to the buffer; data was lost.

recordsize

data type: integer
access: write-only
mechanism: by reference

This argument is the total size, in bytes, of the data record.

Inquiry Functions 12-41

Workstation Description Table Inquiries
INQUIRE DEFAULT LOCATOR DEVICE DATA

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19

-20 DECGKS$~RROR_NEG~O

-33 DECGKS$~RROR_NEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR~2

23 GKS$_ERROR~3

38 GKS$~RROR_38

140 GKS$_ERROR_140

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
INPUT nor of category OUTIN in
routine ****

Specified input device is not present on
the workstation in routine ****

Program Example
Example 12-3 illustrates the use of the function, GKS$INQ _DEF_LOCATOR_
DATA.

12-42 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT LOCATOR DEVICE DATA

Example 12-3: Determining the Default Locator Input Values

C This program writes the return values of the function
C GKS$INq_DEF_LOCATOR_DATA to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, DATA_RECORD(1), DEVICE_NUM,
* LIST_PROMPT_TYPES(7), NUM_PROMPT_ECHO, ERROR_STATUS,
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH, R,ECORD_SIZE
REAL ECHO_AREA(4), INIT_WORLD_X, INIT_WORLD_Y
DATA WS_ID / 1 /, DEVICE_NUM / 1 /

CALL GKS$OPEN_GKS('SYS$ERROR:')

C You need to initialize the modifiable argument. . .
RECORD_BUFFER_LENGTH = 4

C You can obtain this information as long as GKS is open.
CALL GKS$INQ_DEF_LOCATOR_DATA(GKS$K_VT240, DEVICE_NUM,
* ERROR_STATUS, INIT_WORLD_X, INIT_WORLD_Y, NUM_PROMPT_ECHO,
* '/.DESCR(LIST_PROMPT_TYPES), ECHO_AREA, DATA_RECORD,
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH, RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ' , ERROR_STATUS
WRITE(6, *) 'The initial X value: ' , INIT_WORLD_X
WRITE(6, *) 'The initial Y value: ' , INIT_WORLD_Y
WRITE(6, *) 'The number of prompt/echo types: ' , NUM_PROMPT_ECHO
WRITE(6,
WRITE(6,

*)
*)

'The list of prompt/echo types: ' ,
'The echo area: ' , ECHO_AREA

LIST_PROMPT_TYPES

WRITE(6,
WRITE(6,

*)
*)

'The locator data record: ' , DATA_RECORD
'The prompt/echo list return size: ' ,

* PROMPT_RETURN_SIZE
WRITE(6, *) 'The data record buffer size:
* RECORD_BUFFER_LENGTH
WRITE(6, *) 'The data record size: ' , RECORD_SIZE
CALL GKS$CLOSE_GKS()
END

Inquiry Functions 12-43

Workstation Description Table Inquiries
INaUIRE DEFAULT LOCATOR DEVICE DATA

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_3
$ LINK EXAMPLE_3
$ RUN EXAMPLE_3

RETURN
RETURN
RETURN

The error status: 0
The initial X value: 0.5000000
The initial Y value: 0.5000000
The number of prompt/echo types: 7
The list of prompt/echo types: 1 2 3 4

5 6 --1
The echo area: 0.0000000E+00 479.0000 0.0000000E+00 479.0000
The locator data record: 0
The prompt/echo list return size: ?
The data record buffer size: 0
The data record size: 0

$

To review the functionality of GKS$INQ _DEF_LOCATOR_DATA within
a larger program, refer to the locator input programs in Chapter 8, Input
Functions.

12-44 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT PICK DEVICE DATA

INQUIRE DEFAULT PICK DEVICE DATA

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _DEF_I'ICK_DATA returns the default values for the
pick logical input device on a specified workstation.

The default values for the pick input device are available when DEC GKS is in
any operating state except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT_INPUT or GKS$K_
WSCAT_OUTIN

• The input device exists on the specified workstation

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning input, refer to Chapter 8, Input Functions.

Syntax
G KS$1 N Q _D E F_P I C K _DATA (workstation_ type, device number,

error status, num~rompt_echo_types,
prompt_echo types, echo area,
data record, num_returned~rompts,
record_buffer_length, record size)

GQDPK (workstation type, dev_num, element, dim_dr, error status,
num_types, relement, echo area, len_dr, dry

gingdefpick (workstation type, dev, buf_size, data size, data, error status)

Inquiry Functions 12-45

Workstation Description Table Inquiries
INaUIRE DEFAULT PICK DEVICE DATA

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

device umber

data type: integer
access: read-only
mechanism: by reference

This argument is the device number that cliff erentzates between logical devices
of the same class, operating on the same workstation. For more information,
refer to Chapter 8, Input Functions.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

nurr~promp~echo_types

data type: integer
access: write-only
mechanism: by reference

This argument is the number of pick prompt and echo types available on a
specified workstation.

12-46 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT PICK DEVICE DATA

promp~echo_types

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is an array that contains the available pick prompt and echo
types on the specified workstation.

echo area

data type: array (real)
access: write-only
mechanism: by reference

This argument is afour-element array containing the device coordinate values
that designate the input echo area on the workstation surface, in the order
XMIN, XMAX, YMIN, YMAX. For more information concerning the DEC GKS
coordinate systems, refer to Chapter 7, Transformation Functions.

data record

data type: address (record)
access: write-only
mechanism: by reference

This argument is a pointer to the default pick input data record for the specified
device.

num_returnec~L prom pts

data type: integer
access: write-only
mechanism: by reference

This argument is the number of prompt and echo types actually returned to this
function. Compare this number with the actual number of available prompt
and echo types to see if you have defined an array large enough to hold all
available values.

Inquiry Functions 12-47

Workstation Description Table Inquiries
INQUIRE DEFAULT PICK DEVICE DATA

recorc~buffer_length

data type:
access:
mechanism:

integer
modifiable
by reference

On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument DATA_RECORD. On output, the graph-
ics handler writes the amount of the buffer, in bytes, filled by the written
data record. If the argument recorcLsize is larger than RECORD_BUrrER_
LENGTH after the function call, then you know that the graphics handler
truncated the data record when writing it to the buffer; data was lost.

recordsize

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the total size, in bytes, of the data record.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR~TEG_19

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$_ERROR_NEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR~2

12-48 Inquiry Functions

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Workstation Description Table Inquiries
INaUIRE DEFAULT PICK DEVICE DATA

Error
Number Completion Status Code Message

23 GKS$~RROR_23

38 GKS$~RROR_38

140 GKS$_ERROR_140

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
INPUT nor of category OUTIN in
routine ****

Specified input device is not present on
the workstation in routine ****

Program Example
Example 12-4 illustrates the use of the function GKS$INQ —DEF~'ICK—DATA.

Example 12-4: Determining the Default Pick Input Values

C This program writes the return values of the function
C GKS$INQ_DEF_PICK_DATA to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, DEVICE_NUM,
* PROMPT_ECHO_TYPE(5), NUM_PROMPT_ECHO,
* ERROR_STATUS, PROMPT_RETURN_SIZE,
* RECORD BUFFER_LENGTH, RECORD_SIZE
REAL ECHO AREA(4), DATA_RECORD(1)
DATA WS_ID / 1 /, DEVICE_NUM / 1 /

CALL GKS$OPEN_GKS('SYS$ERROR:')

C Initialize the modifiable argument.
RECORD_BUFFER_LENGTH = 4

C You can obtain this information as long as GKS is open.
CALL GKS$INQ_DEF_PICK DATA(GKS$K_VT240, DEVICE_NUM,
* ERROR_STATUS, NUM_PROMPT_ECHO,
* y.DESCR(PROMPT_ECHO_TYPE), ECHO AREA, DATA_RECORD,
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH,
* RECORD_SIZE)

(continued on next page)

Inquiry Functions 12-49

Workstation Description Table Inquiries
INQUIRE DEfAUIT PICK DEVICE DATA

Example 12-4 (Cont.~: Determining the Default Pick Input Values

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ', ERROR_STATUS
WRITE(6, *) 'The number of prompt/echo types: ',
* NUM_PROMPT_ECHO
WRITE(6, *) 'The prompt/echo types: ',
* PROMPT_ECHO_TYPE
WRITE(6, *) 'The echo area: ', ECHO_AREA
WRITE(6, *) 'The pick data record: ', DATA_RECORD
WRITE(6, *) 'The prompt/echo list return size: ',
* PROMPT_RETURN_SIZE
WRITE(6, *) 'The data record buffer size: '
* RECORD_BUFFER_LENGTH
WRITE(6, *) 'The data record size: ', RECORD_SIZE
CALL GKS$CLOSE_GKS()
END

When nyou compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_4
$ LINK EXAMPLE_4
$ RUN EXAMPLE_4
The error status: 0
The number of prompt/echo types: 0
The prompt/echo types: 1 2 3 0

0
The echo area: 0.0000000E+00 479.0000 0.0000000E+00 479.0000
The pick data record: 4.790000
The prompt/echo list return size: 3
The data record buffer size: 4
The data record size: 4
$

RETURN
RETURN
RETURN

To review the functionality of GKS$INQ _DEF_I'ICK_DATA within a larger
program, refer to the pick input programs in Chapter 8, Input Functions.

12-50 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

INQUIflE DEFAULT STRING DEVICE DATA

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _DEF~TRING _DATA returns the default values for
the string logical input device on a specified workstation.

The default values for the string input device are available when DEC GKS is in
any operating state except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT~NPUT or GKS$K_
WSCAT_OUTIN

• The input device exists on the specified workstation

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning input, refer to Chapter 8, Input Functions.

Syntax
GKS~INQ_DEF_STRING_DATA (workstation type, device umber,

error status, num~rompt_echo_types,
prompt_echo types, echo area,
data record, num_returned~vrompts,
recorcLbuffer_length, record_size~

GQDST (workstation type, dev~um, element, dim_dr, error status,
max_buf, num_types, re/ement, echo area, len_dr, drJ

gingdefststring (workstation type, dev, buf_size, data size, data,
error status)

Inquiry Functions 12-51

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

Arguments
workstatior~type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

device number

data type: integer
access: read-only
mechanism: by reference

This argument is the device number that differentiates between logical in-
put devices of the same class, operating on the same workstation. For more
information, refer to Chapter 8, Input Functions.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

buffer size

data type: integer
access: write-only
mechanism: by reference

This argument is the maximum allowable size of the buffer, in bytes, that
eventually determines the size of the input string.

12-52 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

num_promp~echo_types

data type: integer
access: write-only
mechanism: by reference

This argument is the number of string prompt and echo types available on a
specified workstation.

promp~echo_types

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is an array that contains the available string prompt and echo
types on the specified workstation.

echo~rea

data type: array (real)
access: write-only
mechanism: by reference

This argument is afour-element array containing the device coordinate values
that designate the input echo area on the workstation surface, in the order
XMIN, XMAX, YMIN, YMAX. For more information concerning the DEC GKS
coordinate systems, refer to Chapter 7, Transformation Functions.

data record

data type: address (record)
access: write-only
mechanism: by reference

This argument is a pointer to the default string input data record for the
specified device.

num_returneaLprompts

data type: integer
access: write-only
mechanism: by reference

This argument is the number of prompt and echo types actually returned to this
function. Compare this number with the actual number of available prompt

Inquiry Functions 12-53

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

and echo types to see if you had defined an array large enough to hold all
available values.

recorc~.buf~er_lengfh

data type:
access:
mechanism:

integer
modifiable
by reference

On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument DATA~ECORD. On output, the graph-
ics handler writes the amount of the buffer, in bytes, filled by the written
data record. If the argument record~ize is larger than RECORD_BUFFER_
LENGTH after the function call, then you know that the graphics handler
truncated the data record when writing it to the buffer; data was lost.

recordsize

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the total size, in bytes, of the data record.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19

-20 DECGKS$_ERROR_NEG~O

-33 DECGKS$_ERROR_NEG_33

12-54 Inquiry Functions

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

Error
Number Completion Status Code Message

8 GKS$~RROR_8

22 GKS$.~RROR_22

23 GKS$~RROR~3

38 GKS$~RROR_38

140 GKS$~RROR_140

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
INPUT nor of category OUTIN in
routine ****

Specified input device is not present on
the workstation in routine ****

Program Example
Example 12-5 illustrates the use of the function GKS$INQ _DEF_STRING _
DATA.

Example 12-5: Determining the Default String Input Values

C This program writes the return values of the function
C GKS$INQ_DEF_STRING_DATA to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, DATA_RECORD(2), DEVICE_NUM,
* LIST_PROMPT_TYPES(5), NUM_PROMPT_ECHO, ERROR_STATUS,
* PROMPT_RETURN_SIZE, RECORD BUFFER_LENGTH, RECORD_SIZE,
* BUFFER_LENGTH, CUR_POSITION
REAL ECHO_AREA(4)
DATA WS_ID / 1 /, DEVICE_NUM / 1 /

EQUIVALENCE(DATA_RECORD(1), BUFFER_LENGTH)
EQUIVALENCE(DATA_RECORD(2), CUR_POSITION)

CALL GKS$OPEN_GKS('SYS$ERROR:')

(continued on next page)

Inquiry Functions 12-55

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

Example 12-5 (font.): Determining the Default String Input Values

C Initialize the modifiable argument...
RECOR.D_BUFFER_LENGTH = 8

C You can obtain this information as long as GKS is open.
CALL GKS$INQ_DEF_STRING_DATA(GKS$K_VT240, DEVICE_NUM,
* ERROR_STATUS, BUFFER_LENGTH, NUM_PROMPT_ECHO,
* '/.DESCR(LIST_PROMPT_TYPES), ECHO_AREA, DATA_RECORD,
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH,
* RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ', ERROR_STATUS
WRITE(6, *) 'The string buffer size: ', BUFFER_LENGTH
WRITE(6, *) 'The number of prompt/echo types: ' ,
* NUM_PROMPT_ECHO
WRITE(6, *) 'The list of prompt/echo types: '
* LIST_PROMPT_TYPES
WRITE(6, *) 'The echo area: ', ECHO_AREA
WRITE(6, *) 'The string data record: ', DATA_RECORD
WRITE(6, *) 'The prompt/echo list return size:
* PROMPT_RETURN_SIZE
WRITE(6, *) 'The data record buffer size: '
* RECORD_BUFFER_LENGTH
WRITE(6, *) 'The data record size:
* RECORD_SIZE
CALL GKS$CLOSE_GKS()
END

12-56 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT STRING DEVICE DATA

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_5
$ LINK EXAMPLE_5
$ RUN EXAMPLE_5
The error status:

RETURN

0

RE1"URN
RETURN

The string buffer size: 20
The number of prompt/echo types: 3
The list of prompt/echo types: i 2 3 0

0
The echo area: 533.0000 799.0000 0.0000000E+00 479.0000
The string data record: 20 0
The prompt/echo list return size: i
The data record buffer size: 8
The data record size: 8

$

To review the functionality of GKS$INQ_DEF STRING_DATA within a larger
program, refer to the string input programs in Chapter 8, Input Functions.

Inquiry Functions 12-57

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

INQUIRE DEFAULT STROKE DEVICE DATA

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ_DEF_STROKE_DATA returns the default values for
the stroke logical input device on a specified workstation.

The default values for the stroke input device are available when DEC GKS is
in any operating state except GKS$K_GKCL, and if the following conditions
exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT_INPUT or GKS$K_
WSCAT_OUTIN

• The input device exists on the specified workstation

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning input, refer to Chapter 8, Input Functions.

Syntax
GKS$INQ_DEF_STROKE_DATA (workstation type, device number,

error status, bu er_size,
num~nrompt_echo_ types,
prompt_echo_types,
echo area, datesrecord,
num_returned~ prompts,
recorc~buffer_length, record_sizeJ

12-58 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

GaDSK (workstation type, dev_num, element, dim_dr, error status,
max~uf, num_types, relement, echo area, len_dr, drJ

gingdefstroke (workstation type, dev, buf_size, data size, data, error_statusJ

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

devicesnumber

data type: integer
access: read-only
mechanism: by reference

This argument is the device number that differentiates between logical in-
put devices of the same class, operating on the same workstation. For more
information, refer to Chapter 8, Input Functions.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

Inquiry Functions 12-59

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

buffer size

data type: integer
access: write-only
mechanism: by reference

This argument is the maximum allowable size of the buffer, in bytes, that
determines the maximum number of points accepted as part of the stroke. The
buffer holds one point per byte.

num_promp~echo_types

data type: integer
access: write-only
mechanism: by reference

This argument is the number of stroke prompt and echo types available on a
specified workstation.

promp~.echo_types

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is an array that contains the available stroke prompt and echo
types on the specified workstation.

echo~rea

data type: array (real)
access: write-only
mechanism: by reference

This argument is a four-element array containing the device coordinate values
that designate the input echo area on the workstation surface, in the order
XMIN, XMAX, YMIN, YMAX. For more information concerning the DEC GKS
coordinate systems, refer to Chapter 7, Transformation Functions.

12-60 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

data record

data type: address (record)
access: write-only
mechanism: by reference

This argument is a pointer to the default stroke input record for the specified
device.

num_returnea~prompts

data type: integer
access: write-only
mechanism: by reference

This argument is the number of prompt and echo types actually returned to this
function. Compare this number with the actual number of available prompt
and echo types to see if you had defined an array large enough to hold all
available values.

recorc~buffer_I ength

data type: integer
access: modifiable
mechanism: by reference

On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument DATA_RECORD. On output, the graph-
ics handler writes the amount of the buffer, in bytes, filled by the written
data record. If the argument record_size is larger than RECORD_BUFFER_
LENGTH after the function call, then you know that the graphics handler
truncated the data record when writing it to the buffer; data was lost.

record size

data type: integer
access: write-only
mechanism: by reference

This argument is the total size, in bytes, of the data record.

Inquiry Functions 12-61

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error Completion

-19 DECGKS$_ERROR~TEG_19

-20 DECGKS$~RROR~EG_20

-33 DECGKS$~RROR~TEG_33

8 GKS$~RROR_8

22 GKS$~RROR~2

23 GKS$~RROR~3

38 GKS$~RROR_38

140 GKS$~RROR_140

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
INPUT nor of category OUTIN in
routine ****

Specified input device is not present on
the workstation in routine ****

Program Example
Example 12-6 illustrates the use of the function GKS$INQ _DEF~TROKE _
DATA.

12-62 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

Example 12-6: Determining the Default Stroke Input Values

C This program writes the return values of the function
C GKS$INQ_DEF_STROKE_DATA to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, DATA_RECORD(13), DEVICE_NUM,
* LIST_PROMPT_TYPES(5), NUM_PROMPT_ECHO, ERROR_STATUS,
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH,
* RECORD_SIZE, BUFFER_LENGTH
REAL ECHO_AREA(4)
DATA WS_ID / 1 /, DEVICE_NUM / 1 /

EQUIVALENCE(DATA_RECORD(1), BUFFER_LENGTH)

CALL GKS$OPEN_GKS('SYS$ERROR:')

C Initialize the modifiable argument...
RECORD_BUFFER_LENGTH = 52

C You can obtain this information as long as GKS is open.
CALL GKS$INQ_DEF_STROKE_DATA(GKS$K_VT240, DEVICE_NUM,
* ERROR_STATUS, BUFFER_LENGTH, NUM_PROMPT_ECHO,
* y.DESCR(LIST_PROMPT_TYPES), ECHO_AREA, DATA_RECORD,
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH,
* RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ', ERROR_STATUS
WRITE(6, *) 'The stroke buffer size: ', BUFFER_LENGTH
WRITE(6, *) 'The number of prompt/echo types: ' ,
* NUM_PROMPT_ECHO
WRITE(6, *) 'The list of prompt/echo types: '
* LIST_PROMPT_TYPES
WRITE(6, *) 'The echo area: ', ECHO_AREA
WRITE(6, *) 'The stroke data record: ', DATA_RECORD
WRITE(6, *) 'The prompt/echo list return size:
* PROMPT_RETURN_SIZE
WRITE(6, *) 'The data record buffer size: '
* RECORD_BUFFER_LENGTH
WRITE(6, *) 'The data record size:
* RECORD_SIZE
CALL GKS$CLOSE_GKS()
END

Inquiry Functions 12-63

Workstation Description Table Inquiries
INQUIRE DEFAULT STROKE DEVICE DATA

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_6
$ LINK EXAMPLE_6
$ RUN EXAMPLE_6

RETURN
RETURN
RETURN

The error status: 0
The stroke buffer size: 80
The number of prompt/echo types: 2
The list of prompt/echo types: 1 4 0 0

0
The echo area: 0.0000000E+00 479.0000 0.0000000E+00 479.0000
The stroke data record: 80 0 -780059640 -780059640

0 0 0 0 0 0
0 0 0

The prompt/echo list return size: 2
The data record buffer size: 20
The data record size: 20

$

To review the functionality of GKS$INQ _DEF_STROKE _DATA within a larger
program, refer to the stroke input programs in Chapter 8, Input Functions.

12-64 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

INQUIRE DEFAULT VALUATOR DEVICE DATA

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _DEF_VALUATOR_DATA returns the default values
for the valuator logical input device on a specified workstation.

The default values for the valuator input device are available when DEC GKS
is in any operating state except GKS$K_GKCL, and if the following conditions
exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCA'T~NPUT or GKS$K_
WSCAT_OUTIN

• The input device exists on the specified workstation

if these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning input, refer to Chapter 8, Input Functions.

Syntax
GKS~INQ _DEF_VALUATOR _DATA (workstation type, device number,

error status, initial _value,
num~vrompt_echo_ types,
prompt_echo_types, echo area,
datesrecord, num~eturned~rompts,
record~buf~er_length, record size)

Inquiry Functions 12-65

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

GaDVI (workstation_workstation_type, dev_num, element, dim_dr,
error status, def_value, num_types, re/ement, echo area, low_val,
high_ val, len_dr, drJ

gingdefval (workstation type, dev, buf_size, datessize, data, error_statusJ

Arguments
workstatiort_type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

device number

data type: integer
access: read-only
mechanism: by reference

This argument is the device number that differentiates between logical in-
put devices of the same class, operating on the same workstation. For more
information, refer to Chapter 8, Input Functions.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-66 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

initial value

data type: real
access: write-only
mechanism: by reference

This argument is the default initial value.

num~romp~echo_types

data type: integer
access: write-only
mechanism: by reference

This argument is the number of valuator prompt and echo types available on a
specified workstation.

promp~echo_types

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is an array that contains the available valuator prompt and echo
types on the specified workstation.

echo~rea

data type: array (real)
access: write-only
mechanism: by reference

This argument is afour-element array containing the device coordinate values
that designate the input echo area on the workstation surface, in the order
XMIN, XMAX, YMIN, YMAX. For more information concerning the DEC GKS
coordinate systems, refer to Chapter 7, Transformation Functions.

data record

data type: address (record)
access: write-only
mechanism: by reference

This argument is a pointer to the default valuator input record for the specified
device.

Inquiry Functions 12-67

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

num_returnec~ prom pts

data type: integer
access: write-only
mechanism: by reference

This argument is the number of prompt and echo types actually returned to this
function. Compare this number with the actual number of available prompt
and echo types to see if you had defined an array large enough to hold all
available values.

recorc~buffer_length

data type: integer
access: modifiable
mechanism: by reference

On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument DATA_RECORD. On output, the graph-
ics handler writes the amount of the buffer, in bytes, filled by the written
data record. If the argument record_size is larger than RECORD_BUF~ER_
LENGTH after the function call, then you know that the graphics handler
truncated the data record when writing it to the buffer; data was lost.

recorc~Lsize

data type: integer
access: write-only
mechanism: by reference

This argument is the total size, in bytes, of the data record.

12-68 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

Error Messages
If this inquir-~ function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$~RROR_NEG_33

8 GKS$~RROR_8

22 GKS$~RROR_22

23 GKS$~RROR~3

38 GKS$~RROR_38

140 GKS$~RROR_140

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
INPUT nor of category OUTIN in
routine ****

Specified input device is not present on
the workstation in routine ****

Program Example
Example 12-7 illustrates the use of the function GKS$INQ —DEF VALUATOR_
DATA.

Inquiry Functions 12-69

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

Example 12-7: Determining the Default Valuator Input Values

C This program writes the return values of the function
C GKS$INQ_DEF_VALUATOR_DATA to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, DEVICE_NUM,

* LIST_PROMPT_TYPES(5), NUM_PROMPT_ECHO, ERROR_STATUS,
* PROMPT_RETURN_SIZE. RECORD_BUFFER_LENGTH, RECORD_SIZE

REAL ECHO_AREA(4), INIT VALUE, DATA_RECORD(2)
DATA WS_ID / 1 /, DEVICE_NUM / 1 /

CALL GKS=OPEN_GKS('SYSaERROR: ')

C Initialize the modifiable argument...
RECORD_BUFFER_LENGTH = 8

C You can obtain this information as long as GKS is open.
CALL GKS$INQ_DEF_VALUATOR_DATA(GKSsK_VTZ40, DEVICE_NUM,

* ERROR_STATUS, INIT_VALUE, NUM_PROMPT_ECHO,
* y.DESCR(LIST_PROMPT_TYPES), ECHO_AREA, DATA_RECORD,
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH, RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: '. ERROR_STATUS
WRITE(6, *) 'The initial value: ', INIT VALUE
WRITE(6, *) 'The number of prompt/echo types: ' ,

* NUM_PROMPT_ECHO
WRITE(6, *) 'The list of prompt/echo types: ' ,

* LIST_PROMPT_TYPES
WRITE(6, *) 'The echo area: ', ECHO_AREA
WRITE(6, *) 'The valuator data record: ', DATA_RECORD
WRITE(6, *) 'The prompt/echo list return size: ' ,

* PROMPT_RETURN_SIZE
WRITE(6, *) 'The data record buffer size:

* RECORD_BUFFER_LENGTH
WRITE(6, *) 'The data record size: ', RECORD_SIZE
CALL GKSsCLOSE_GKS()
END

12-70 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DEFAULT VALUATOR DEVICE DATA

when you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_?
$ LINK EXAMPLE_?
$ RUN EXAMPLE_?

RETURN
RETURN
RETURN

The error status: 0
The initial value: 0.5000000
The number of prompt/echo types: 3
The list of prompt/echo types: 1 2 3 0

0
The echo area: 533.0000 799.0000 0.0000000E+00 479.0000
The valuator data record: 0.0000000E+00 1.000000
The prompt/echo list return size: 3
The data record buffer size• 8
The data record size: 8

$

To review the functionality of GKS$INQ _DEF_VALUATOR_DATA within
a larger program, refer to the valuator input programs in Chapter 8, Input
Functions.

Inquiry Functions 12-71

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIfICAT10N OF SEGMENT ATTRIBUTES

INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _DYN_11/IOD_SEG ~TTB returns information con-
cerning the ability of the workstation to dynamically generate segment transfor-
mations, visibility changes, highlighting changes, priority changes, content, and
the effects of a segment deletion. If the workstation can dynamically change
the surface, DEC GKS generates the segment changes immediately. If the
workstation cannot dynamically change the surface, DEC GKS waits until the
next update of the surface to regenerate only the output primitives contained in
segments (implicit regeneration).

NOTE

If an implicit regeneration is required, all output primitives not
contained in a segment are lost.

The flags determining the ability to dynamically alter segment attributes are
available when DEC GKS is in any operating state except GKS$K_GKCL, and
if the following conditions exist:

• The specified workstation type exists and is valid
• The workstation is of category GKS$K_WSCAT OUTPUT or GKS$K_

WSCAT OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning segments, refer to Chapter 9, Segment
Functions.

12-72 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES

Syntax
G KS$ I N a _DYN _M 0 D_S E G ITT B (workstation_ type, error status,

trans formation _change,
visib I e_ to_ in visib l e,
invisible_to_visible, highlight change,
priority change, add primitives,
segment_deletionJ

GaDSGA (workstation type, error status, xform, vis_on_off, vis_off_on,
highlight, priority, add~vrim, de/eteJ

gingmodsegattr (workstation type, dyn, error status)

Arguments
workstatior~type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

Inquiry Functions 12-73

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION Of SEGMENT ATTRIBUTES

transformation change

data type: integer
access: write-only
mechanism: by reference

This argument indicates whether GKS can dynamically implement a segment
transformation change, or whether GKS must implicitly regenerate the segment
at the next surface update. The argument can be any of the following values or
constants:

Value Constant Description

0 GKS$K—IRG

1 GKS$K_IMM

Implicitly regenerated.

Dynamically implemented.

visib/e_to_invisib/e
invisib/e_to_visib/e

data type: integer
access: write-only
mechanism: by reference

These arguments indicate whether DEC GKS can dynamically implement a
visibility change, or whether DEC GKS must implicitly regenerate the segment
at the next surface update. (Some workstations may be able to make an
invisible segment visible, but may not be sophisticated enough to make a
visible segment invisible, forcing the workstation to redraw what is located
behind the now invisible segment.) The argument can be any of the following
values or constants:

Value Constant Description

0 GKS$K~RG

1 GKS$K~MM

Implicitly regenerated.

Dynamically implemented.

12-74 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION Of SEGMENT ATTRIBUTES

highligh~.change

data type: integer
access: write-only
mechanism: by reference

This argument indicates whether GKS can dynamically implement a highlight-
ing change, or whether GKS must implicitly regenerate the segment at the next
surface update. The argument can be any of the following values or constants:

Value Constant Description

0 GKS$K—IRG

1 GKS$K~MM

Implicitly regenerated.

Dynamically implemented.

priority change

data type: integer
access: write-only
mechanism: by reference

This argument indicates whether GKS can dynamically implement a priority
change, or whether GKS must implicitly regenerate the segment at the next
surface update. The argument can be any of the following values or constants:

Value Constant Description

0 GKS$K~RG

1 GKS$K~MM

Implicitly regenerated.

Dynamically implemented.

adc~Lprimitives

data type: integer
access: write-only
mechanism: by reference

This argument indicates whether GKS can dynamically add output primitives,
to an open segment, or whether GKS must implicitly regenerate the segment at

Inquiry Functions 12-75

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES

the next surface update. The argument can be any of the following values or
constants:

Value Constant Description

0 GKS$K~RG

1 GKS$K_IMM

Implicitly regenerated.

Dynamically implemented.

segmen~de/etion

data type: integer
access: write-only
mechanism: by reference

This argument indicates whether GKS can dynamically delete a segment, or
whether GKS must implicitly regenerate the remaining segments at the next
surface update. The argument can be any of the following values or constants:

Value Constant Description

0 GKS$K~RG

1 GKS$K-IMM

Implicitly regenerated.

Dynamically implemented.

Error Messages _
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$-ERROR_NEG-20 GKS not in proper state: GKS in the error
state in routine ****

8 GKS$-ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

12-76 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES

Error
Number Completion Status Code Message

22 GKS$~RROR_22

23 GKS$—ERROR-23

39 GKS$~RROR~9

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of
category OUTPUT nor of category OUTIN
in routine ****

Inquiry Functions 12-77

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES

INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

This function returns information concerning the ability of the workstation to
dynamically alter the output attribute bundle representations. If the workstation
can dynamically change the surface, DEC GKS generates the attribute changes
immediately. If the workstation cannot dynamically change the surface, DEC
GKS waits until the next update of the surface to regenerate only the output
primitives contained in segments (implicit regeneration).

NOTE

If an implicit regeneration is required, all output primitives not
contained in a segment are lost.

The flags determining the ability to dynamically alter output attributes are
available when DEC GKS is in any operating state except GKS$K_GKCL, and
if the following conditions exist:

• The specified workstation type exists and is valid
• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_

WSCAT OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning output attributes, refer to Chapter 6, Output
Attribute Functions. For more information concerning implicit regeneration,
dynamic alteration, and operating states, refer to Chapter 4, Control Functions.

12-78 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES

Syntax
G KS$ I N a _DYN _M 0 D_WS~TTB (workstation type, error status,

pol yline_representation,
pol ymarker_representation,
text_representation, fill _representation,
pattern representation,
col or~epresen to Lion,
workstation _trans formations J

GaDWKA (workstation type, error status, pl_rep, pm_rep, t_rep, fa~rep,
pat~ep, c~rep, w~xforms)

gingmodwsattr (workstation type, dyn, error_statusJ

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to- one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

Inquiry Functions 12-79

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION Of WORKSTATION ATTRIBUTES

pol yline_representa Lion

data type: integer
access: write-only
mechanism: by reference

This argument indicates whether GKS can dynamically implement a change in
the definition of a polyline representation index value. (For more information,
refer to GKS$SET_1'LINE—REP in Chapter 6, Output Attribute Functions.) The
argument can be any of the following values or constants:

Value Constant Description

0 GKS$K—IRG

1 GKS$K_IMM

Implicitly regenerated.

Dynamically implemented.

pol ymarker_represen to Lion

data type: integer
access: write-only
mechanism: by reference

This argument indicates whether GKS can dynamically implement a change
in the definition of a polymarker representation index value. (For more in-
formation, refer to GKS$SET~'MARK_REP in Chapter 6, Output Attribute
Functions.) The argument can be any of the following values or constants:

Value Constant Description

0 GKS$K_IRG

1 GKS$K_IMM

Implicitly regenerated.

Dynamically implemented.

textrepresentation

data type: integer
access: write-only
mechanism: by reference

This argument indicates whether GKS can dynamically implement a change
in the definition of a text representation index value. (For more information,
refer to GKS$SET_TEXT~EP in Chapter 6, Output Attribute Functions.) The
argument can be any of the following values or constants:

12-80 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES

Value Constant Description

0 GKS$K—IRG

1 GKS$K—IMM

Implicitly regenerated.

Dynamically implemented.

fill representation

data type: integer
access: write-only
mechanism: by reference

This argument indicates whether GKS can dynamically implement a change
in the definition of a fill representation index value. (For more information,
refer to GKS$SET~ILL—REP in Chapter 6, Output Attribute Functions.) The
argument can be any of the following values or constants:

Value Constant Description

0 GKS$K_IRG

1 GKS$K_IMM

Implicitly regenerated.

Dynamically implemented.

patter►~representation

data type: integer
access: write-only
mechanism: by reference

This argument indicates whether GKS can dynamically implement a change in
the definition of a pattern representation index value. (For more information,
refer to GKS$SET~'AT~EP in Chapter 6, Output Attribute Functions.) The
argument can be any of the following values or constants:

Value Constant Description

0 GKS$K~RG

1 GKS$K—IMM

Implicitly regenerated.

Dynamically implemented.

Inquiry Functions 12-81

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES

color_represen to tion

data type: integer
access: write-only
mechanism: by reference

This argument indicates whether GKS can dynamically implement a change
in the definition of a color representation index value. (For more information,
refer to GKS$SET_COLOR_REP in Chapter 6, Output Attribute Functions.)
The argument can be any of the following values or constants:

Value Constant Description

0 GKS$K~RG

1 GKS$K—IMM

Implicitly regenerated.

Dynamically implemented.

workstation transformations

data type: integer
access: write-only
mechanism: by reference

This argument indicates whether GKS can dynamically implement a change
in the workstation window or workstation viewport. (For more information,
refer to Chapter 7, Transformation Functions.) The argument can be any of the
following values or constants:

Value Constant Description

0 GKS$K_IRG

1 GKS$K—IMM

Implicitly regenerated.

Dynamically implemented.

12-82 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$~RROR_NEG_20

8 GKS$~RROR_8

22 GKS$_ERROR_22

23 GKS$~RROR~3

39 GKS$_ERROR_39

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine * * * *

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of
category OUTPUT nor of category OUTIN
in routine ****

Inquiry Functions 12-83

Workstation Description Table Inquiries
INQUIRE FILL AREA FACILITIES

INQUIRE FILL AREA FACILITIES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ SILL SAC returns the number of available interior
styles, the list of available interior styles, the number of hatching styles, the list
of available hatching styles, and the number of fill area indexes available for a
given workstation type.

The fill area facility information is available when DEC GKS is in any opFrating
state except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid
• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_

WSCAT_OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the fill area attributes, refer to Chapter 6,
Output Attribute Functions.

Syntax
G KS$ I N Q _FILL _FAC (workstation type, error status, num_interior_styles,

interior_sty/e_list, num_hatch_styles,
hatch_style_list, num_fill_indexes,
hatch_return_sizeJ

GaFAF (workstation type, selement, helement, error status, num_int,
r_selement, num_hatch, r_helement, num_index)

gingfillfacil (workstation type, bufsize, fac_size, fac, error status)

12-84 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE FILL AREA FACILITIES

Arguments
workstatior~type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_interior_sty/es

data type: integer
access: write-only
mechanism: by reference

This argument is the number of interior styles available to workstations of the
specified type.

interior_sty/e_list

data type: array (integer)
access: write-only
mechanism: by reference

This argument is afour-element array whose elements correspond to the four
interior fill area styles. If the graphics handler supports the style, it writes the
style's constant value to the array element. If the graphics handler does not

Inquiry Functions 12-85

Workstation Description Table Inquiries
INQUIRE FILL AREA FACILITIES

support the style, it writes a —1 to the array element. The possible fill area style
indexes are as follows.

Value Constant Description

0 GKS$K_INTSTYLE_HOLLOW Hollow

1 GKS$K_INTSTYLE_SOLID Solid

2 GKS$K~NTSTYLE_I'ATTERN Pattern

3 GKS$K~NTSTYLE~IATCH Hatched

num_hatch_sty/es

data type: integer
access: write-only
mechanism: by reference

This argument is the number of hatch styles available to workstations of the
specified type.

hatcl~sty/e_list

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the list of hatch styles available to workstations of the speci-
fied type.

num_fill_indexes

data type: integer
access: write-only
mechanism: by reference

This argument is the number of predefined fill index values available on the
workstations of the specified type.

12-86 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE flll AREA fACIIITIES

hatch_returrt,size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of hatch styles returned to the hatch style list. By
comparing this argument to the actual list, you can determine if you defined an
array large enough to hold all of the returned values.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR~IEG_19

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$_ERROR~EG_33

8 GKS$~RROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, wSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine * * * *

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Inquiry Functions 12-87

Workstation Description Table Inquiries
INQUIRE GENERALIZED DRAWING PRIMITIVE

INQUIRE GENERALIZED DRAWING PRIMITIVE

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _GDP returns the number of attribute sets, and the list
of those attribute sets that are associated with the specified generalized drawing
primitive (GDP) identifier for a given workstation type.

The GDP information is available when DEC GKS is in any operating state
except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid
• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_

WSCAT_OUTIN
• The workstation supports the GDP associated with the specified identil"ier

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning GKS$GDP, refer to Chapter 5, Output
Functions. For more information concerning supported GDPs, refer to Appendix
I, DEC GKS GDPs and Escapes.

Syntax
G KS$ I N Q _GDP (workstation type, gdp_id, error status,

num_attribute_sets, attribute list, return_sizeJ

G QG D P (workstation_id, gdp_id, error status, num_atts, list_attsJ

ginggdp (workstation type, functions, fac, error_statusJ

12-88 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE GENERALIZED DRAWING PRIMITIVE

Arguments
workstatior~type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

gd p_id

data type: integer
access: read-only
mechanism: by reference

This argument is the GDP identifier.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_attribute_sets

data type: integer
access: write-only
mechanism: by reference

This argument is the number of attribute sets applicable to the specified GDP
on the specified workstation type.

Inquiry Functions 12-89

Workstation Description Table Inquiries
INQUIRE GENERALIZED DRAWING PRIMITIVE

attribute list

data type:
access:
mechanism:

array (integer)
write-only
by descriptor

This argument is an array containing the list of attribute sets associated with
the specified GDP identifier. The argument can be any of the following values
or constants:

Value Constant Description

0 GKS$K_I'OLYLN~TTRI

1 GKS$K—I'OLYMR~TTRI

2 GKS$K_TEXT_ATTRI

3 GKS$K_FILLAR_ATTRI

GDP polyline attributes

GDP polymarker attributes

GDP text attributes

GDP fill area attributes

return size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of attributes returned to the attribute list. You can
use this argument to see if you specified an array that was large enough to hold
all of the returned GDPs.

12-90 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE GENERALIZED DRAWING PRIMITIVE

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$_ERROR_NEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$~RROR_23

39 GKS$_ERROR_39

41 GKS$~RROR_41

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Specified workstation type is not able to
generate the specified generalized drawing
primitive in routine ****

Inquiry Functions 12-91

Workstation Description Table Inquiries
INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES

INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _INPUT_DEV returns the number of logical input
devices in each class for a given workstation type.

The numbers of logical input devices in each class are available when DEC GKS
is in any operating state except GKS$K_GKCL, and if the following conditions
exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT_INPUT or GKS$K_
WSCAT_OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning input, refer to Chapter 8, Input Functions.

Syntax
GKS$INQ_INPUT_DEV (workstation type, error status,

num_locator_devices, num_stroke_devices,
num_ valuator devices, num_choice_devices,
num~vick_devices, num_string_devices)

GQLI (workstation type, error status, num_loc, num_stk, num_val,
num_ch, num~i, num_striJ

gingnumavailinput (workstation type, num, error_statusJ

12-92 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_locator_devices

data type: integer
access: write-only
mechanism: by reference

This argument is the number of locator logical input devices supported by the
specified workstation type.

num_stroke_devices

data type: integer
access: write-only
mechanism: by reference

This argument is the number of stroke logical input devices supported by the
specified workstation type.

Inquiry Functions 12-93

Workstation Description Table Inquiries
INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES

num_ valuator devices

data type: integer
access: write-only
mechanism: by reference

This argument is the number of valuator logical input devices supported by the
specified workstation type.

num_choice_devices

data type: integer
access: write-only
mechanism: by reference

This argument is the number of choice logical input devices supported by the
specified workstation type.

num_picl~devices

data type: integer
access: write-only
mechanism: by reference

This argument is the number of pick logical input devices supported by the
specified workstation type.

num_string_devices

data type: integer
access: write-only
mechanism: by reference

This argument is the number of string logical input devices supported by the
specified workstation type.

12-94 Inquiry Functions

Workstation Description Table Inquiries
INaUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$~RROR~TEG_20

8 GKS$~RROR_8

22 GKS$~RROR_22

23 GKS$~RROR_23

38 GKS$~RROR_38

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine * *

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
INPUT nor of category OUTIN in
routine ****

Inquiry Functions 12-95

-Workstation Description Table Inquiries
INQUIRE DISPLAY SPACE SIZE

INQUIRE DISPLAY SPACE SIZE

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ ~VIAX _DS_SIZE returns, for a specified workstation
type, a flag specifying whether the device coordinate units are in meters or in
some other form of measurement, the units for the workstation-specific device
coordinates, and the display surface size in raster units.

The maximum display surface size is available when DEC GKS is in any
operating state except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid

• The workstation is not of category GKS$K_WSCAT_NiO or GKS$K_
WSCAT~1/II (refer to Chapter 10, Metafile Functions), or of category
GKS$K_WSCAT_WISS (refer to Chapter 4, Control Functions)

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the use of this function, refer to GKS$SET_
WS_VIEWPORT in Chapter 7, Transformation Functions.

Syntax

GKS$INQ_MAX_DS_SIZE (workstation type, error status, meters,
device_coordinates~r, device coordinates_ y,
raster_units~r, raster units_ yJ

GQDSP (workstation type, error status, units, px, py, raster, ras_y)

gingdisplaysize (workstation type, dspsz, error_statusJ

12-96 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE DISPLAY SPACE SIZE

Arguments
workstatior~type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

meters

data type: integer
access: write-only
mechanism: by reference

This argument is the flag that specifies whether or not the device coordinate
units are measured in meters or in some device-determined unit of measure-
ment. The argument can be any of the following values or constants:

Value Constant Description

0 GKS$K_1VIETERS

1 GKS$K_OTHER_UNITS

Meters

Some other unit

Inquiry Functions 12-97

Workstation Description Table Inquiries
INQUIRE DISPLAY SPACE SIZE

device_coordinates~r
device coordinates_ y
data type:
access:
mechanism:

real
write-only
by reference

These arguments are the maximum X and Y values of the workstation surface,
in device coordinates.

raster_units~r
raster_units_y

data type:
access:
mechanism:

integer
write-only
by reference

These arguments are the workstation's raster units, or its pixel count. By
comparing a workstation's raster units with its maximum display coordinates,
you can determine the resolution of the workstation surf ace, and how the
device coordinates are mapped onto the pixels of the device.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$~RROR_22

12-98 Inquiry Functions

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Workstation Description Table Inquiries
INQUIRE DISPLAY SPACE SIZE

Error
Number Completion Status Code Message

23 GKS$_ERROR_23

31 GKS$_ERROR_31

33 GKS$~RROR_33

36 GKS$~RROR_36

38 GKS$~RROR_38

Specified workstation type does not exist
in routine * * * *

Specified workstation is of category MO in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Specified workstation is neither of category
INPUT nor of category OUTIN in
routine ****

Inquiry Functions 12-99

Workstation Description Table Inquiries
INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE TABLES

INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE TABLES

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$INQ ~VIAX _WS_STATE _TABLE returns, for a specified
workstation type, the maximum number of polyline bundles, polymarker
bundles, text bundles, fill area bundles, pattern indexes, and color indexes. The
maximum workstation state table size is available when DEC GKS is in any
operating state except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT_OUTPUT or of category
GKS$K_WSCAT_OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the use of this function, refer to Chapter 6,
Output Attribute Functions.

Syntax
G KS$ MAX _WS_STATE _TABLE (workstation type, error status,

max~v one, max~vmark, max text,
max_~ill_area, max~attern, max_colorJ

GaLWK (workstation type, error status, m~line, m~vmark, m_text, m_fill,
m~natt, m_color)

gingmaxwssttables (workstation type, tables, error status)

12-100 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE TABLES

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

ma~pline
ma~pmark
ma~text
ma~fill_area
mawpattern
ma~color

data type: integer
access: write-only
mechanism: by reference

These arguments are the maximum number of bundle indexes that the worksta-
tion state list can hold for each type of bundled index.

Inquiry Functions 12-101

Workstation Description Table Inquiries
INQUIRE MAXIMUM LENGTH Of WORKSTATION STATE TABLES

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

8 GKS$~RROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$~RROR_39

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is of category MO in
routine ****

12-102 Inquiry Functions

~J

Workstation Description Table Inquiries
INQUIRE PATTERN fACIIITIES

INQUIRE PATTERN FACILITIES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _I'AT_FAC returns the number of pattern indexes
available for a specified workstation type.

The number of available pattern indexes is available when DEC GKS is in any
operating state except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning pattern representation and the other fill area
attributes, refer to Chapter 6, Output Attribute Functions.

Syntax
GKS;INQ_PAT_fAC (workstation type, error status,

num~attern_indexes)

GaPAF (workstation type, error status, nindexesJ

gingpatfac (workstation type, bufsize, fa~size, fac, error_statusJ

Inquiry Functions 12-103

Workstation Description Table Inquiries
INQUIRE PATTERN fACIIITIES

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_pattern_indexes

data type: integer
access: write-only
mechanism: by reference

This argument is the number of predefined pattern indexes supported on the
specified workstation type.

12-104 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PATTERN fACIIITIES

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$~RROR_23

39 GKS$_ERROR_39

GKS not in proper state: GKS in the error
state in routine * * * *

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Inquiry Functions 12-105

Workstation Description Table Inquiries
INQUIRE POLYLINE fACIIITIES

INQUIRE POLYLINE FACILITIES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ 'LINE SAC returns the number of line types and line
widths, the representation for each type and width, and the number of polyline
indexes available for a specified workstation type.

The polyline facilities are available when DEC GKS is in any operating state
except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the polyline attributes, refer to Chapter 6,
Output Attribute Functions.

Syntax

G KS$ I N Q _PLI N E _FAC (workstation type, error status, num_line_types,
line types, num_line_widths, nominal_line_width,
line_width_min, line_width_max, num_indexes,
line_ type return _size)

GQPLF (workstation type, element, error status, num_types, relement,
num_widths, nom width, min width, max width, nindexesJ

ginglinefac (workstation type, bufsize, fac_size, fac, error_statusJ

12-106 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE POLYLINE FACILITIES

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_line_types

data type: integer
access: write-only
mechanism: by reference

This argument is the number of available line types on the specified workstation
type.

line types

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the array containing line types available on the specified
workstation type. The defined values are as follows.

("1
Inquiry Functions 12-107

Workstation Description Table Inquiries
INQUIRE POLYLINE FACILITIES

Value Constant Description

<= 0

1

2

3

4

>=5

GKS$K_LINETYPE _SOLID

GKS$K _LINETYPE _DASHED

GKS$K _LINETYPE _DOTTED

GKS$K _LINETYPE _DASHED_DOTTED

Reserved for implementation-
specific use

Solid line

Dashed line

Dotted line

Solid line

Reserved for future
standardization

num_line_widths

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of line widths available on the specified worksta-
tion type.

nominal_line_width

data type:
access:
mechanism:

real
write-only
by reference

This argument is the default line width specified in device coordinates.

line_width_min
line_width_max

data type:
access:
mechanism:

real
write-only
by reference

These arguments are the minimum and maximum line widths, specified in
device coordinates, that the workstation type can produce.

12-108 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE POLYLINE FACILITIES

num_indexes

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of predefined polyline bundle indexes supported
by the specified workstation type.

line_type_return_size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of line types returned to the line type list. By
comparing this argument to the actual list, you can determine if you defined an
array large enough to hold all of the returned values.

rror Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$_ERROR_NEG_33

8 GKS$~RROR_8

22 GKS$_ERROR_22

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Inquiry Functions 12-109

Workstation Description Table Inquiries
INQUIRE POLYLINE FACILITIES

Error
Number Completion Status Code Message

23 GKS$_ERROR~3 Specified workstation type does not exist
in routine

39 GKS$_ERROR_39 Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

12-110 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE POLYMARKER FACILITIES

INQUIRE POLYMAHKER FACILITIES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _I'MARK_FAC returns the number of marker types
and marker sizes, the representation for each type and size, and the number of
polymarker indexes available for a given workstation type.

The polymarker facilities are available when DEC GKS is in any operating state
except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the polymarker attributes, refer to Chapter 6,
Output Attribute Functions.

Syntax

GKS$INa_PMARK_FAC (workstation type, error status,
num_marker_types, marker types,
num_marker_sizes, nominal_marker_size,
marker_size_min, marker_size_max,
marker indexes, marker_type_return_sizeJ

G aPM F (workstation type, element, error status, num_types, relement,
num_sizes, nom size, min size, max size, nindexesJ

gingmarkerfacil (workstation type, bufsize, fa~size, fac, error_statusJ

Inquiry Functions 12-111

Workstation Description Table Inquiries
INQUIRE POLYMARKER FACILITIES

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_marker_types

data type: integer
access: write-only
mechanism: by reference

This argument is the number of marker types available on the specified work-
station type.

marker types

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is an array containing marker types supported by the specified
workstation type. The defined values are as follows.

12-112 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE POLYMARKER FACILITIES

Value Constant Description

<= 0

1

2

3

4

5

>=6

GKS$K_IVIARKERTYPE _DOT

GKS$ K ~ViARKERTYPE ~'LUS

GKS$K ~VIARKERTYPE ASTERISK

GKS$K _MARKERTYPE _CIRCLE

GKS$K_1VIARKERTYPE_DIAGONAL _CROSS

Reserved for implementation-
specific use

A dot (.)

A plus sign (+)

An asterisk (*)

A circle (o)

A cross (X)

Reserved for future
standardization

num_marker_sizes

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of marker sizes available on the specified work-
station type.

nominal_marker_size

data type:
access:
mechanism:

Floating
write-only
by reference

This argument is the default size in device coordinates.

marker_size_min
marker_size_max

data type:
access:
mechanism:

real
write-only
by reference

These arguments are the minimum and maximum marker sizes, in device
coordinates, that the specified workstation type can produce.

Inquiry Functions 12-113

Workstation Description Table Inquiries
INQUIRE POLYMARKER FACILITIES

num_marker_indexes

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of predefined marker indexes supported by the
workstation type.

marker_ type_re turn size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of marker types returned to the marker list. By
comparing this argument to the actual list, you can determine if you defined an
array large enough to hold all of the returned values.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$_ERROR_NEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR_22

12-114 Inquiry Functions

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Workstation Description Table Inquiries
INQUIRE POLYMARKER FACILITIES

Error
Number Completion Status Code Message

23 GKS$_ERROR_23 Specified workstation type does not exist
in routine

39 GKS$_ERROR_39 Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Inquiry Functions 12-115

Workstation Description Table Inquiries
INQUIRE PREDEFINED COLOR REPRESENTATION

INQUIRE PREDEFINED COLOR REPRESENTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ_I'REDEF_COLOR~EP returns the predefined red,
green, and blue intensities associated with a specific color index for a given
workstation type.

The predefined color representation f or a color index value is available when
DEC GKS is in any operating state except GKS$K_GKCL, and if the following
conditions exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN

• The color index is valid

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning color representation, refer to GKS$SET_
COLOR_REP in Chapter 6, Output Attribute Functions.

Syntax

GKS$INa_PREDEF_COLOR_REP (workstation type, color index,
error status, red intensity,
green intensity, blue_intensityJ

GaPCR (workstation type, cindex, error status, red_i, green_i, blue_iJ

gingpredcolourrep (workstation type, index, rep, error status)

12-116 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED COLOR REPRESENTATION

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

color index

data type: integer
access: read-only
mechanism: by reference

This argument is a predefined color index value that must be valid for the
specified workstation type.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

recceintensity
greert_intensity
b/ue_intensity

data type: real
access: write-only
mechanism: by reference

These arguments are the predefined red, green, and blue intensities that com-
prise the color associated with the specified color index value.

Inquiry Functions 12-117

Workstation Description Table Inquiries
INQUIRE PREDEFINED COLOR REPRESENTATION

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

93 GKS$_ERROR_93

95 GKS$_ERROR_95

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Specified color index is invalid in
routine ****

A representation for the specified color
index has not been predefined on this
workstation in routine ****

12-118 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED Flll REPRESENTATION

INQUIRE PREDEFINED FILL REPRESENTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ ~'REDEF_FILL _REP returns the interior style, style
index, and fill area color index associated with a specific fill area index for a
given workstation type.

The predefined representation for a fill index value is available when DEC GKS
is in any operating state except GKS$K_GKCL, and if the following conditions
exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT OUTPUT or GKS$K_
WSCAT_OUTIN

• The fill index value is valid

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning fill representation, refer to GKS$SET~ILL _
REP in Chapter 6, Output Attribute Functions.

Syntax
GKS~INQ_PREDEF_FILL_REP (workstation type, fill index, error status,

interior sty/e, sty/e_index, color~ndexJ

GQPfAR (workstation type, (index, error status, int_sty/e, sindex, cindexJ

gingpredfillrep (workstation type, index, rep, error_statusJ

Inquiry Functions 1 Z-119

Workstation Description Table Inquiries
INQUIRE PREDEFINED Flll REPRESENTATION

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

fill index

data type: integer
access: read-only
mechanism: by reference

This argument is a predefined fiill index value that must be valid for the speci-
fied workstation type.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-120 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED FILL REPRESENTATION

interior_sty/e

data type: integer
access: write-only
mechanism: by reference

This argument is the predefined interior style associated with the fill index
value. The defined values are as follows.

Value Constant Description

0 GKS$K~NTSTYLE_HOLLOW Hollow interior

1 GKS$K~NTSTYLE_SOLID Solid interior

2 GKS$K~NTSTYLE_I'ATTERN Pattern interior

3 GKS$K_INTSTYLE_HATCH Hatched interior

style index

data type: integer
access: write-only
mechanism: by reference

This argument is the style index associated with the specified fill index value.
For more information concerning the style index, refer to GKS$SET_FILL _
STYLE _INDEX in Chapter 6, Output Attribute Functions.

color index

data type: integer
access: write-only
mechanism: by reference

This argument is the color index associated with the specified fill index value.
For more information concerning the color index, refer to GKS$SET_COLOR_
REP in Chapter 6, Output Attribute Functions.

Inquiry Functions 12-121

Workstation Description Table Inquiries
INQUIRE PREDEFINED Flll REPRESENTATION

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-20 DECGKS$—ERROR_NEG~O

8 GKS$—ERROR_8

22 GKS$—ERROR_22

23 GKS$_ERROR_23

39 GKS$—ERROR_39

80 GKS$—ERROR_80

82 GKS$—ERROR_82

GKS not in proper state: GKS in the error
state in routine * * * *

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Fill area index is invalid in routine ****

A representation for the specified fill area
index has not been predefined on this
workstation in routine ****

12-122 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED PATTERN REPRESENTATION

INQUIRE PREDEFINED PATTERN REPRESENTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _I'REDEF~''AT~ZEP returns a description of a specific
pattern by pattern size, and the array of color indexes that comprises the
pattern.

The predefined representation for a pattern index value is available when
DEC GKS is in any operating state except GKS$K_GKCL, and if the following
conditions exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN

• The workstation supports pattern fill areas

• The specified pattern index is valid

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning patterns, refer to Chapter 6, Output Attribute
Functions.

Inquiry Functions 12-123

Workstation Description Table Inquiries
INQUIRE PREDEFINED PATTERN REPRESENTATION

Syntax
G KS$ I N a _P R E D E F_PAT_R E P (workstation_ type, pattern index,

error status, height, width, color indexes,
color_co umns_return_s~ze,
co or_rows_return_sizeJ

GaPPAR (workstation type, pindex, max~r_dim, max_y_dim, error status,
dimmer, dim_ y, carrayJ

gingpredpatrep (workstation type, index, rep, error_statusJ

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

pattern index

data type: integer
access: read-only
mechanism: by reference

This argument is a predefined pattern index value that must be valid for the
specified workstation type.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of

12-124 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED PATTERN REPRESENTATION

the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

height
width

data type: integer
access: write-only
mechanism: by reference

These arguments are the number of rows and columns contained in the color
index array used to create the pattern.

color indexes

data type: 2-D array (integer)
access: write-only
mechanism: by descriptor

This argument is the two-dimensional array of color indexes that designate how
DEC GKS colors the pattern.

co/or_co/umn~returr~size
color_rows_return_size

data type: integer
access: write-only
mechanism: by reference

These arguments are the dimensions of the color array to which GKS returned
index values. You can use these values to traverse only the elements of the
array that contain valid color index values.

Inquiry Functions 12-125

Workstation Description Table Inquiries
INQUIRE PREDEFINED PATTERN REPRESENTATION

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-20 DECGKS$_ERROR_NEG_20

-33 DECGKS$~RROR_NEG_33

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$_ERROR_23

39 GKS$_ERROR_39

85 GKS$_ERROR_85

89 GKS$_ERROR_89

90 GKS$_ERROR_90

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, wSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Specified pattern index is invalid in
routine ****

A representation for the specified pattern
index has not been predefined on this
workstation in routine ****

Interior style PATTERN is not supported
on this workstation in routine ****

12-126 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED POLYLINE REPRESENTATION

INQUIRE PREDEfINEU POLYLINE REPRESENTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _I'REDEF_I'LINE _REP returns the line type, color
index, and line width associated with a specific polyline index for a given
workstation type.

The predefined representation for a polyline index value is available when
DEC GKS is in any operating state except GKS$K_GKCL, and if the following
conditions exist:

• The specified workstation type exists and is valid
• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_

WSCAT_OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the polyline attributes, refer to Chapter 6,
Output Attribute Functions.

Syntax
GKS$INQ_PREDEF_PLINE_REP (workstation type, polyline index,

error status, line type, color index,
line_ wid th_scal e_ factor)

GQPPLR (workstation type, pindex, error status, (type, Iwddth, cindexJ

gingpredlinerep (workstation type, index, rep, error_statusJ

Inquiry Functions 12-127

Workstation Description Table Inquiries
INQUIRE PREDEFINED POLYLINE REPRESENTATION

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

polyline_index

data type: integer
access: read-only
mechanism: by reference

This argument is a predefined polyline index value that must be valid for the
specified workstation type.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-128 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED POLYLINE REPRESENTATION

line type

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the line type. The defined values are as follows.

Value Constant Description

<= 0

1

2

3

4

>=5

GKS$K _LINETYPE _SOLID

GKS$K _LINETYPE _DASHED

GKS$K _LINETYPE _DOTTED

GKS$K _LINETYPE _DASHED_DOTTED

Reserved for implementation-
specific use

Solid line

Dashed line

Dotted line

Solid line

Reserved for future
standardization

color index

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the color index associated with the given polyline index value.

line_width_scale_factor

data type:
access:
mechanism:

real
write-only
by reference

This argument is the line width scale factor. DEC GKS calculates line width by
multiplying the scale factor times the nominal width.

Inquiry Functions 12-129

Workstation Description Table Inquiries
INQUIRE PREDEFINED POLYLINE REPRESENTATION

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list.

Error
Number Completion Status Code Message

-20 DECGKS$~RROR~TEG~O

8 GKS$~RROR_8

22 GKS$_ERROR~2

23 GKS$_ERROR~3

39 GKS$_ERROR~9

b0 GKS$~RROR_60

62 GKS$_ERROR_62

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SLOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine «***

Polyline index is not valid in routine ****

A representation for the specified polyline
index has not been predefined on this
workstation in routine ****

12-130 Inquiry Functions

Workstation Description Table Inquiries
IHaUIRE PREDEFINED POLYMARKER REPRESENTATION

INQUIRE PREDEFINED POLYMARKER REPRESENTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ~REDEF~'1~~IARK~tEP returns the marker type, color
index, and marker size scale factor associated with a specific polymarker index
for a given workstation type.

The predefined representation of the polymarker index value is available when
DEC GKS is in any operating state except GKS$K_GKCL, and if the following
conditions exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K WSCA'~OUTPUT or GKS$K_
WSCA'~OUTIIV

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the polymarker attributes, refer to Chapter 6,
Output Attribute Functions.

Syntax
GKS~INa~REDEF~MARK~EP (workstation_type, polymarker~ndex,

errnr~tatus, marker type, color~ndex,
marker~ize_scal~ factor)

GQPPMR (workstation type, pindex, erra~tatus, mtype, msize, andex)

gingpredmarkeRep (workstation type, index, rep, error~tatusJ

Inquiry Functions 12-131

Workstation Description Table Inquiries
INQUIRE PREDEFINED POLYMARKER REPRESENTATION

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

polymarker_index

data type: integer
access: read-only
mechanism: by reference

This argument is a predefined polymarker index value that must be valid for
the specified workstation type.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-132 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED POIYMARKER REPRESENTATION

marker type

data type: integer
access: write-only
mechanism: by reference

This argument is the marker type associated with the specified polymarker
bundle index value. The defined values are as follows.

Value Constant Description

<= 0 Reserved for
implementation-specific
use

1 GKS$K_1ViARKERTYPE_DOT A dot (.)

2 GKS$K~VIARKERTYPE_I'LUS A plus sign (+)

3 GKS$K_1VIARKERTYPE~STERISK An asterisk (*)

4 GKS$K_NiARKERTYPE_CIRCLE A circle (o)

5 GKS$K~1/IARKERTYPE_DIAGONAL _CROSS Across (X)

> = 6 Reserved for future
standardization

color index

data type: integer
access: write-only
mechanism: by reference

This argument is the color index associated with the specified polymarker index
value.

marker_size_scale_fsctor

data type: real
access: write-only
mechanism: by reference

This argument is the marker size scale factor. DEC GKS calculates the marker
size by multiplying the scale factor times the nominal size.

Inquiry Functions 12-133

Workstation Description Table Inquiries
INaUIRE PREDEFINED POLYMARKER REPRESENTATION

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list.

Error
Number Completion Status Code Message

-20 DECGKS$_ERROR~EG_20

8 GKS$_ERROR_8

22 GKS$~RROR~2

23 GKS$~RROR~3

39 GKS$_ERROR_39

66 GKS$_ERROR_66

68 GKS$~RROR_68

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Polymarker index is invalid in routine ****

A representation for the specified poly-
marker index has not been predefined on
this workstation in routine ****

12-134 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED TEXT REPRESENTATION

INQUIRE PREDEFINED TEXT REPflESENTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _PREDEF TEXT_REP returns the text font and pre-
cision, character expansion factor, character spacing, and text color index
associated with a specific text index for a given workstation type.

The predefined representation for a text index value is available when DEC GKS
is in any operating state except GKS$K_GKCL, and if the following conditions
exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K_WSCA'~OUTPUT or GKS$K_
WSCA'~OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the text attributes, refer to Chapter 6, Output
Attribute Functions.

Syntax
GKS'~INQ_PREDEF_TEXT_REP (workstation type, text~ndex,

error—status, font~tumber, precision,
character~xpansion_ factor,
character pacing, color~ndex)

GaPTI(R (workstation type, tindex, error~tatus, font, precision, ex~factor)

gingpredtsxtrep (workstation type, index, rep, error_statusJ

inquiry Functions 12-135

Workstation Description Table Inquiries
INQUIRE PREDEFINED TEXT REPRESENTATION

Arguments
workstatior~type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

textindex

data type: integer
access: read-only
mechanism: by reference

This argument is a predefined text index value that must be valid for the
specified workstation type.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

fon~.number

data type: integer
access: write-only
mechanism: by reference

This argument is the hardware or software font number. For information
concerning the hardware fonts available on your workstation, refer to the
appropriate device-specific appendix in this manual. For more information
concerning the software fonts available, refer to the appropriate appendix in
this manual.

12-136 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE PREDEFINED TEXT REPRESENTATION

precision

data type: integer
access: write-only
mechanism: by reference

This argument is the text precision. The defined values are as follows:

Value Constant Description

0 GKS$K_TEXT~'RECISION_STRING String precision

1 GKS$K_TEXT~'RECISION_CHAR Character precision

2 GKS$K_TEXT_I'RECISION_STROKE Stroke precision

character_expansion~ factor

data type: real
access: write-only
mechanism: by reference

This argument is the character expansion factor. The character expansion factor
multiplied by the width to height ratio in the original font .design determines
the character width. The character expansion factor does not affect the height
of the characters.

character spacing

data type: real
access: write-only
mechanism: by reference

This argument is the character spacing. Positive values increase the space
between characters. Negative values decrease the space between characters.
The value 0 places the character bodies adjacent to one another.

color index

data type: integer
access: write-only
mechanism: by reference

This argument is the color index associated with the specified text index value.

Inquiry Functions 12-137

Workstation Description Table Inquiries
INaUIRE PREDEFINED TEXT REPRESENTATION

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error Completion

-20 DECGKS$~RROR_11TEG_20

8 GKS$_ERROR_8

22 GKS$~RROR~2

23 GKS$~RROR~3

39 GKS$_ERROR~9

72 GKS$~RROR_72

74 GKS$~RROR_74

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Text index is invalid in routine ****

A representation for the specified text
index has not been predefined on this
workstation in routine ****

12-138 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE NUMBER OF SEGMENT PRIORITIES SUPPORTED

INQUIRE NUMBER OF SEGMENT PRIORITIES SUPPORTED

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ AEG ~'RIORITY returns the number of supported
segment priorities for a specified workstation type.

The number of supported segment priorities is available when DEC GKS is in
any operating state except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation identifier exists and is valid

• The workstation is of category GKS$K WSCA~OUTPUT or GKS$K_
WSCA~OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning segments, refer to Chapter 9, S~egrnent
Functions.

Syntax
6KS;INQ_SEG~RIORITY (workstation type, error~tatus, num~urioritiesJ

GQSGP (workstation_type, error~tatus, num~priJ

gingnumaegpri (workstation type, numpri, enor~tatusJ

Inquiry Functions 12-139

Workstation Description Table Inquiries
INQUIRE NUMBER Of SEGMENT PRIORITIES SUPPORTED

Arguments
workstatior~type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_priorities

data type: integer
access: write-only
mechanism: by reference

This argument is the number of segment priorities supported on a specified
workstation type. If this function writes zero (0) to this argument, the device
supports an infinite number of priorities.

12-140 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE NUMBER OF SEGMENT PRIORITIES SUPPORTED

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-20 DECGKS$~RROR_NEG_20

8 GKS$_ERROR_8

22 GKS$_ERROR_22

23 GKS$~RROR~3

39 GKS$~RROR_39

GKS not in proper state: GKS in the error
state in routine * * *

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine * * * *

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Inquiry Functions 12-141

Workstation Description Table Inquiries
INQUIRE TEXT FACILITIES

INQUIRE TEXT FACILITIES

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _TEXT~AC returns the number and list of available
fonts, a list of precisions, the number of available character heights, the min-
imum and maximum character heights in device coordinates, the number of
available character expansion factors, the minimum and maximum character
expansion factors, and the number of text indexes available for a specified
workstation type.

The text fa " 'ties are available when DEC GKS is in any operating state except
GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid

• The workstation is of category GKS$K WSCA~OUTPUT or GKS$K_
WSCA'~OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning text attributes, refer to Chapter 6, Output
Attribute Functions.

Syntax
G KS~ I N Q TEXT_FAC (workstation type, error~tatus, num_fonts,

font—list, precision—list, num~ieights,
height min, height max, num—character~xp,
character_exp_m~n, c aracter exp_max,
num~ndexes, precision_return_size,
font~eturn_size~

12-142 Inquiry Functions

u

Workstation Description Table Inquiries
INQUIRE TEXT FACILITIES

GaTXf (workstation type, element, error~tatus, num_font, relement_f,
re/ement~, numJreight, minJ►eight, maxJ~eight, num~xp,
min—exp, max—exp, nindexes)

gingtextfacil (workstation type, bufsize, fac"size, fac, error~tatusJ

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation t~~pes, refer to the appropriate appendix in this
manual.

error~tatus

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

nurrLfonts

data type: integer
access: write-only
mechanism: by reference

This argument is the number of hardware and software fonts available on the
specifiied workstation type.

Inquiry Functions 12-143

Workstation Description Table Inquiries
INQUIRE TEXT FACILITIES

fon~list
precisior~l6st

data type: array (integer)
access: write-only
mechanism: by descriptor

These arguments are arrays containing the available hardware and software
font numbers, and the available precisions. The precision moist argument can
contain any of the following values or constants:

Value Constant Description

0 GKS$K_TEXT_I'RECISION_STRING Lowest precision

1 GKS$K_TEXT,I'RECISION_CHAR Moderate precision

2 GKS$K_TEXT._PRECISION_STROKE Highest precision

nurr~heights

data type: integer
access: write-only
mechanism: by reference

This argument is the number of character heights available for the specified
workstation type.

heightmin
heightmax

data type: real
access: write-only
mechanism: by reference

These arguments are the minimum and maximum character heights available
for the specified workstation type, in device coordinates. For more infor-
mation concerning the DEC GKS coordinate systems, refer to Chapter 7,
Transformation Functions.

12-144 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE TEXT FACILITIES

num_character_exp

data type: integer
access: write-only
mechanism: by reference

This argument is the number character expansion values available for the
specified workstation type. Character expansion values affect the character
width. For more information, refer to the text attributes section in Chapter 6,
Output Attribute Functions.

character_exp_min
character_exp_max

data type: real
access: write-only
mechanism: by reference

These arguments are the minumum and maximum character expansion values
available for the specified workstation types.

num_indexes

data type: integer
access: write-only
mechanism: by reference

This argument is the number of predefined index values associated with the
specified workstation type.

precisior~return_size
fion~returr~size

data type: integer
access: write-only
mechanism: by reference

These arguments are the number of the elements in the precision and font
arrays. You can use these values to make sure that you declared arrays large
enough to hold all of the font and precision types.

Inquiry Functions 12-145

Workstation Description Table Inquiries
INQUIRE TEXT FACILITIES

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-20 DECGKS$_ERROR_NEG~0

-33 DECGKS$~RROR~TEG_33

8 GKS$~RROR_8

22 GKS$_ERROR~2

23 GKS$~RROR~3

39 GKS$~RROR~9

GKS not in proper state: GKS in the error
state in routine ****

Array descriptor is not acceptable in
routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

12-146 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE WORKSTATION CATEGORY

INQUIRE WORKSTATION CATEGORY

Operating States: GKOP, WSOP, WSAC, SLOP

Description

The function GKS$INQ WS—CATEGORY returns the workstation category for
a specified workstation type.

The workstation category is available when DEC GKS is in any operating state
except GKS$K_GKCL, and if the specified workstation identifier exists and is
valid. If these conditions are not met, the output arguments are undefined, and
the function sets the error status argument to the number of one of the errors
listed in the Error Messages section.

For more information concerning workstation categories and operating states,
refer to Chapter 4, Control Functions.

Syntax
GKS~INa_WS_CATEGORY (workstation type, error~tatus,

workstation_cat~ory)

GaWKCA (workstation type, error~tatus, cate~oryJ

gingwacategory (workstation type, cat, error—status)

Arguments
worlrstation~.type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that sP'ecifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

Inquiry Functions 12-147

Workstation Description Table Inquiries
INQUIRE WORKSTATION CATEGORY

error status

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

workstatior~category

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the category of the specified workstation type. The defined
values are as follows:

Value Constant Description

0 GKS$K_WSCAT_OUTPUT

1 GKS$K_WSCAT~INPUT

2 GKS$K_WSCAT_OUTIN

3 GKS$K_WSCAT_WISS

4 GKS$K_WSCAT,MO

5 GKS$K_WSCAT~VII

Output category

Input category

Output/Input category

Workstation independent segment
storage

Metafile Output category

Metafile Input category

For more information concerning segments, refer to Chapter 9, Segment
Functions. For more information concerning metafiles, refer to Chapter 10,
Metafile Functions.

12-148 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE WORKSTATION CATEGORY

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the error
state in routine ****

8 GKS$~RROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

22 GKS$~RROR~2 Specified workstation type is invalid in
routine ****

23 GKS$_ERROR_23 Specified workstation type does not exist
in routine ****

Inquiry Functions 12-149

Workstation Description Table Inquiries
INaU1RE WORKSTATION CLASSIFICATION

INQUIRE WORKSTATION CLASSIFICATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ WS_CLASSIFICATION returns the ~ type of display
surface hardware for a specified workstation type.

The workstation classification is available when DEC GKS is in any operating
state except GKS$K_GKCL, and if the following conditions exist:

• The specified workstation type exists and is valid

• The workstation is not of category GKS$K WSCA~WISS, GKS$K_
WSCA~MO, or GKS$K WSCA'T~ViI

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning workstation categories and DEC GKS operat-
ing states, refer to Chapter 4, Control Functions.

Syntax
GKS;WS_CLASSIFICATION (workstation type, error~tatus, classification)

GQWKCL (workstation type, error~tatus, class)

gingwaclaaa (workstation type, class, error~tatusJ

12-150 Inquiry Functions

Workstation Description Table Inquiries
INQUIRE WORKSTATION CLASSIFICATION

Arguments
workstation type

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that specifies the workstation type. For a list
of the supported workstation types, refer to the appropriate appendix in this
manual.

errnr~status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

classification

data type: integer
access: write-only
mechanism: by reference

This argument is the classification of the device associated with the specified
workstation type. You can use the workstation classification to determine the
validity of other GKS return values. For instance, if you are working on a
device other than one which uses raster units to define pixel dimensions, the
function GKS$INQ ~VIAX ~S_SIZE will not return valid values to the raster
unit arguments.

Inquiry Functions 12-151

1111orkstation Description Table Inquiries
INQUIRE WORKSTATION CLASSIFICATION

The defined values are as follows:

Value Constant Description

0 GKS$K_WSCLASS_VECTOR

1 GKS$K_WSCLASS_RASTER

2 GKS$K_WSCLASS_OTHERD

Vector device

Raster device

Other device

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-20 DECGKS$_ERROR_NEG_20

8 GKS$~RROR_8

22 GKS$~RROR~2

23 GKS$_ERROR~3

31 GKS$_ERROR_31

33 GKS$~RROR_33

36 GKS$_ERROR_36

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Specified workstation type is invalid in
routine ****

Specified workstation type does not exist
in routine ****

Specified workstation is of category MO in
routine ****

Specified workstation is of category MI in
routine ****

Specified Workstation Independent
Segment Storage in routine ****

12-152 Inquiry Functions

GKS State List Inquiries

GKS State list Inquiries

This section describes the DEC GKS state list inquiries. (For more information
concerning the DEC GKS state list, refer to Chapter 4, Control Functions.) You
use these functions if you are not aware of the current DEC GKS operating
state, of the current normalization transformation number, of the current
individual output attribute values, of the current clipping indicator, or of the list !,
of currently open or active workstations. ~~~

Inquiry Functions 12-153

GKS State List Inquiries
INQUIRE SET OF ACTIVE WORKSTATIONS

INQUIRE SET OF ACTIVE WORKSTATIONS

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ ACTIVE WS returns the number and the list of active
workstations.

The List of active workstations is available when DEC GKS is in any operating
state except GKS$K_GKCL. If this condition is not met, the output arguments
are undefined, and the function sets the error status argument to the number of
one of the errors listed in the Error Messages section.

Syntax
GKS~INa~1CTIVE_WS (error status, num_workstations, workstation list,

return_sizeJ
GO.ACWK (member, error status, num_active, rmemberJ

gingactivews (max~ds, start, wsids, actual~ds, error_statusJ

Arguments
error_status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-154 Inquiry Functions

GKS State List Inquiries
INaUIRE SET Of ACTIVE WORKSTATIONS

num_workstations

data type: integer
access: write-only
mechanism: by reference

This argument is the number of workstations currently active.

workstation list

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the array containing the identifiers associated with the cur-
rently active workstations.

returr~size

data type: integer
access: write-only
mechanism: by reference

This argument is the number of workstation identifiers returned to the ac-
tive workstation list. By comparing this argument to the actual list, you can
determine if you defined an array large enough to hold all of the returned
values.

n
Inquiry Functions 12-155

GKS State list Inquiries
INQUIRE SET OF ACTIVE WORKSTATIONS

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$.~RROR~EG~O GKS not in proper state: GKS in the error
state in routine ****

8 GKS$~RROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

12-156 Inquiry Functions

GKS State List Inquiries
INQUIRE CLIPPING

INQUIRE CLIPPING

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _CLIP returns the current value of the world viewport
clipping flag.

The clipping indicator is available when DEC GKS is in any operating state
except GKS$K_GKCL. If this condition is not met, the output arguments are
undefined, and the function sets the error status argument to the number of one
of the errors listed in the Error Messages section.

For more information concerning clipping, refer to Chapter 7, Transformation
Functions.

Syntax
GKS;INQ_CLIP (error~tatus, clipping indicator, clipping_rectang/eJ

GaCLIP (error status, cflag, crecJ

gingciip (clipping, error_statusJ

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

Inquiry Functions 12-157

GKS State List Inquiries
INaUIRE CLIPPING

clipping indicator

data type: integer
access: write-only
mechanism: by reference

This argument is the current setting of the clipping flag. The defined values are
as follows:

Value Constant Description

0 GKS$K_NOCLIP Clipping is off.

1 GKS$K_CLIP Clipping in on.

clipping_rectang/e

data type: array (real)
access: write-only
mechanism: by reference

This argument is the four-element array that contains the dimensions of the
current clipping rectangle, in normalized device coordinates. DEC GKS stores
the minimum X value in the first element, the maximum X value in the second
element, the minimum Y value in the third element, and the maximum Y value
in the last element of the array.

12-158 Inquiry Functions

GKS State List Inquiries
INQUIRE CLIPPING

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$~RROR~IEG~O GKS not in proper state: GKS in the error
state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Inquiry Functions 12-159

GKS State list Inquiries
INQUIRE CURRENT NORMALIZATION TRANSFORMATION NUMBER

INQUIRE CURRENT NORMALIZATION TRANSFORMATION NUMBER

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ _CURRENT~CFORMNO returns the number of the
normalization transformation number currently in effect.

The current normalization transformation number is available when DEC GKS
is in any operating state except GKS$K_GKCL. If this condition is not met, the
output arguments are undefined, and the function sets the error status argument
to the number of one of the errors listed in the Error Messages section.

For more information concerning normalization transformations, refer to
Chapter 7, Transformation Functions.

Syntax
GKS~INa_CURRENT~(FORMNO (error status, transformation_numberJ

GaCNTN (error status, xformJ

gingcurntrannum (tran, error_statusJ

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-160 Inquiry Functions

GKS State list Inquiries
INQUIRE CURRENT NORMALIZATION TRANSFORMATION NUMBER

transformatior~number

data type: integer
access: write-only
mechanism: by reference

This argument is the number of the normalization transformation currently in
effect.

Error Messages

If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$~RROR~EG_20 GKS not in proper state: GKS in the error
state in routine

8 GKS$~RROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Inquiry Functions 12-161

GKS State List Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

Operating States: GKOP, WSOP, WSAC, SGOP

FDRTRAN Functions: GQLN, GQLWSC, GQPLCI, GQMK, GQMKSC,
GQPMCI, GQTXFP, GQCHXP, GQCHSP, GQTXCI, GQFAIS, GQFASI,
GQFACI, GQASF

C Functions: gingindivattr, ginglinetype, ginglinewidth, ginglinecolour,
gingmarkertype, gingmarkersize, gingmarkercolour, gingtextf ontprec,
gingcharexpan, gingcharspace, gingtextcolourind, ginq~illintstype,
gingtiillstyleind, ginq~illcolourind, gingasf

Description

The function GKS$INQ ~NDIV~TTB returns the current values for each of
the nongeometric output attributes.

The current individual output attributes are available when DEC GKS is in any
operating state except GKS$K_GKCL. If this condition is not met, the output
arguments are undefined, and the function sets the error status argument to the
number of one of the errors listed in the Error Messages section.

For more information concerning output attributes, refer to Chapter 6, Output
Attribute Functions.

Syntax
G KS~ I N a _I N D i V~TT B (error status, po/ yline_ type,

po/ yline_ width, pol yline_color_index,
po/ymarker_type, polymarker_size,
po/ ymarker_co/or_index, text font, text recision,
character_expansion_factor, character spacing,
text_color_index, interior style, style index,
fill_co/or~ndex, aspect_source_flagsJ

12-162 Inquiry Functions

GKS State List Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

polyline_type

data type: integer
access: write-only
mechanism: by reference

This argument is the current line type. The defined values are as follows:

Value Constant Description

<= 0 Reserved for implementation-specific
use

1 GKS$K_LINETYPE_SOLID Solid line

2 GKS$K _LINETYPE _DASHED Dashed line

3 GKS$K_LINETYPE_DOTTED Dotted line

4 GKS$K_LINETYPE_DASHED_ Solid line
DOTTED

> = 5 Reserved for future standardization

polyline_width

data type: real
access: write-only
mechanism: by reference

This argument is the current line width scale factor. DEC GKS calculates line
width by multiplying the scale factor times the nominal width.

Inquiry Functions 12-163

GKS State list Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

pol

yline_co/or_index

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the current polyline color index.

polymarker_type

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the current marker type. The defined values are as follows:

Value Constant Description

<= 0

1

2

3

4

5

>=6

GKS$K_1VIARKERTYPE _DOT

GKS$K_MARKERTYPE_FLUS

GKS$ K _1VIARKERTYPE _ASTERISK

GKS$K_MARKERTYPE _CIRCLE

GKS$K_IVIARKERTYPE _DIAGONAL _
CROSS

Reserved for implementation-
specific use

Adot(.)

A plus sign (+)

An asterisk (*)

A circle (o)

A cross (X)

Reserved for future
standardization

polymarker_size

data type:
access:
mechanism:

real
write-only
by reference

This argument is the current marker size scale factor. DEC GKS calculates the
marker size by multiplying the scale factor times the nominal size.

12-164 Inquiry Functions

GKS State List Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

pol ymarker_color_index

data type: integer
access: write-only
mechanism: by reference

This argument is the current polymarker color index.

tex~font
textprecision

data type: integer
access: write-only
mechanism: by reference

The first argument is the current hardware or software font number. For
information concerning the hardware fonts available on your workstation,
refer to the appropriate device-specific appendix in this manual. For more
information concerning the software fonts available, refer to the appropriate
appendix in this manual.

The second argument is the current text precision. The defined values are as
follows:

Value Constant Description

0 GKS$K_TEXT_I'RECISION_STRING String precision

1 GKS$K_TEXT_I'RECISION_CHAR Character precision

2 GKS$K_TEXT_PRECISION_STROKE Stroke precision

character_expansion~ factor

data type: real
access: write-only
mechanism: by reference

This argument is the current character expansion factor. The character expan-
sion factor multiplied by the width to height ratio in the original font design
determines the character width. The character expansion factor does not affect
the height of the characters.

Inquiry Functions 12-165

GKS State List Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

character spacing

data type:
access:
mechanism:

real
write-only
by reference

This argument is the current character spacing. Positive values increase the
space between characters. Negative values decrease the space between charac-
ters. The value 0 places the character bodies adjacent to one another.

tex~color_index

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the current text color index.

interior style

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the current fill area interior style. The defined values are as
follows:

Value Constant Description

0 GKS$K~NTSTYLE~IOLLOW

1 GKS$K_INTSTYLE—SOLID

2 GKS$K—INTSTYLE_1'ATTERN

3 GKS$K—INTSTYLE _HATCH

Hollow interior

Solid interior

Pattern interior

Hatched interior

style index

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the current style index. For more information concerning the
style index, refer to GKS$SET~ILL _STYLE _INDEX in Chapter 6, Output
Attribute Functions.

12-166 Inquiry Functions

GKS State List Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

fill_color_index

data type: integer
access: write-only
mechanism: by reference

This argument is the current fill area color index. For more information con-
cerning the color index, refex to GKS$SET_COLOR_REP in Chapter 6, Output
Attribute Functions.

aspec~.source_flags

data type: array (integer)
access: write-only
mechanism: by reference

This argument is a 13-element array containing the aspect source flag for
each of the nongeometric output attributes. The aspect source flag determines
whether DEC GKS uses the individual or bundled attribute value for each of
the nongeometric output attributes. (For detailed information concerning the
aspect source flags, refer to Chapter 6, Output Attribute Functions.)

The defined values are as follows:

Value Constant Description

0 GKS$K~SF_BUNDLED Use the bundled attribute values.

1 GKS$K—ASF_INDIVIDUAL Use the individual attribute values.

Inquiry Functions 12-167

GKS State list Inquiries
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR—NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$~RROR—NEG_20 GKS not in proper state: GKS in the error
state in routine ****

8 GKS$_ERROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

12-168 Inquiry Functions

GKS State list Inquiries
INQUIRE INPUT QUEUE OVERFLOW

INQUIRE INPUT QUEUE OVERFLOW

Operating States: WSOP, WSAC, SGOP

Description

If the input queue is overflowed and if information about the cause of the
overflow is available, the function GKS$INQ ~NPUT_QUEUE _OVERFLOW
returns a zero (0) to the error status argument and writes valid values to its
remaining arguments. Otherwise, this function returns an error to the error
status argument that explains why information is not available.

Syntax
GKSsINa_INPUT_QUEUE_OVERFLOW (error status, workstation_id,

input class, devic~numberJ

GQIQOV (error status, workstation_id, in_class, dev_numJ

ginginputoverflow (overflow, error_statusJ

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this ar-
gument, the input queue overflowed and all of the remaining output arguments
are valid. If the function writes any other number to this argument, the number
corresponds to one of the error messages listed in the Error Messages sec-
tion, and all of the remaining output arguments are invalid; the error message
explains why information about the overflow is not available.

Inquiry Functions 12-169

GKS State List Inquiries
INQUIRE INPUT QUEUE OVERfIOW

workstation~id

data type: integer
access: write-only
mechanism: by reference

This argument is the workstation identifier of the workstation whose input
device caused the queue to overflow.

inputclass

data type: integer
access: write-only
mechanism: by reference

This argument is the input class of the device that generated the event that
caused the input queue to overflow.

device number

data type: integer
access: write-only
mechanism: by reference

This argument is the number of the input device that generated the event that
caused the input queue to overflow.

12-170 Inquiry Functions

GKS State List Inquiries
INQUIRE INPUT QUEUE OVERFLOW

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

7 DECGKS$_ERROR_7

148 DECGKS$~RROR_NEG_
148

149 GKS$~RROR_149

GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Input queue has not overflowed since
GKS was opened or the last invocation of
INQUIRE INPUT QUEUE OVERFLOW in
routine * * * *

Input queue has overflowed, but asso-
ciated workstation has been closed in
routine ****

Inquiry Functions 12-171

GKS State list Inquiries
INQUIRE MORE SIMULTANEOUS EVENTS

INQUIRE MORE SIMULTANEOUS EVENTS

Operating States: WSOP, WSAC, SLOP

Description

The function GKS$INQ _MORE _SIMUL EVENTS checks to see if there are
more events on the event input queue that were entered by the user firing a
single trigger.

Syntax
GKSSINQ_MORE_SIMUL_EVENTS (error status, mor~event~flag)

GQSIM (error status, flag)

gingmoresvents (events, error_statusJ

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-172 Inquiry Functions

GKS State List Inquiries
INQUIRE MORE SIMULTANEOUS EVENTS

more_event~flag

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the flag that specifies whether there exists more simultane-
ously generated events on the event input queue. This argument can be either
of the following values.

Value Constant Description

0 GKS$K_NOMORE~VENTS

1 GKS$K~ViORE_EVENTS

There are no more simultaneously
generated events on the queue.

There are more simultaneously
generated events on the queue.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

7 DECGKS$~RROR_7 GKS not in proper state: GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine * * * *

Inquiry Functions 12-173

GKS State List Inquiries
INaU1RE NAME OF OPEN SEGMENT

INQUIRE NAME OF OPEN SEGMENT

Operating States: SGOP

Description

The function GKS$INQ NAME _OPEN _SEG returns the identification number
of a currently open segment.

The name of the open segment is available only when DEC GKS is in the op-
erating state GKS$K_SGOP. If this condition is not met, the output arguments
are undefined, and the function sets the error status argument to the number of
one of the errors listed in the Error Messages section.

For more information concerning segments, refer to Chapter 9, Segment
Functions.

Syntax
GKSSINn_NAME_OPEN_SEG (error status, segment~►ame)
GQOPSG (error status, segment~►ameJ
gingnameopenseg (segment~►ame error_statusJ

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-174 Inquiry Functions

GKS State List Inquiries
INQUIRE NAME OF OPEN SEGMENT

segmentname

data type: integer
access: write-only
mechanism: by reference

This argument is the integer identifier known as the segment name.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$~RROR~TEG_20 GKS not in proper state: GKS in the error
state in routine ****

4 GKS$_ERROR_4 GKS not in proper state: GKS shall be in
the state SGOP in routine ****

Inquiry Functions 12-175

GKS State List Inquiries
INQUIRE SET OF OPEN WORKSTATIONS

INQUIRE SET Of OPEN WORKSTATIONS

Operating States: GKOP, wSOP, wSAC, SGOP

Description

The function GKS$INQ_OPEN_WS returns the current set of identifiers
associated with open workstations.

The current list of open workstations is available when DEC GKS is in any
operating state except GKS$K_GKCL. If this condition is not met, the output
arguments are undefined, and the function sets the error status argument to the
number of one of the errors listed in the Error Messages section.

Syntax
GKSsINa_OPEN_WS (error status, num_open_workstations,

workstation list, return_sizeJ

GQOPWK (member, error status, num_active, rmemberJ

gingopenws (max ids, start, wsids, actual ids, error_statusJ

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-176 Inquiry Functions

GKS State list Inquiries
INQUIRE SET Of OPEN WORKSTATIONS

num_open_ workstations

data type: integer
access: write-only
mechanism: by reference

This argument is the number of workstations currently open.

workstatior~list

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the array containing the identifiers associated with the cur-
rently open workstations.

return size

data type: integer
access: write-only
mechanism: by reference

This argument is the number of workstation identifiers returned to the open
workstation list. By comparing this argument to the actual list, you can deter-
mine if you defined an array large enough to hold all of the returned values.

Inquiry Functions 12-177

GKS State List Inquiries
INQUIRE SET Of OPEN WORKSTATIONS

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR—NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$_ERROR_NEG~O GKS not in proper state: GKS in the error
state in routine ****

8 GKS$~RROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

12-178 Inquiry Functions

GKS State List Inquiries
INQUIRE OPERATING STATE VALUE

INQUIRE OPERATING STATE VALUE

Operating States: GKCL, GKOP, WSOP, WSAC, SGOP

Description
The function GKS$INQ _OPERATING —STATE returns the current GKS operat-
ing state.

The DEC GKS operating state is always available to this inquiry function.

Syntax
GKSSINQ_OPERATING_STATE (operatingstate)

GQOPS (op_stateJ

gingopst (staieJ

Inquiry Functions 12-179

GKS State list Inquiries
INQUIRE OPERATING STATE VALUE

Arguments
operating state

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the current GKS operating state. The defined values are as
follows:

Value Constant Description

0 GKS$K_GKCL

1 GKS$K_GKOP

2 GKS$K_WSOP

3 GKS$K_WSAC

4 GKS$K_SGOP

GKS is closed.

GKS is open.

At least one workstation is open.

At least one workstation is active.

A segment is being created.

Error Messages
This inquiry function never returns an error status.

12-180 Inquiry Functions

GKS State List Inquiries
INQUIRE PICK IDENTIFIER VALUE

INQUIRE PICK IDENTIFIER VALUE

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ ~'ICK_ID returns the current pick identifier.

The current pick identifier is available when DEC GKS is in any operating state
except GKS$K_GKCL. If this condition is not met, the output arguments are
undefined, and the function sets the error status argument to the number of one
of the errors listed in the Error Messages section.

For more information concerning pick identification, refer to Chapter 9, Segment
Functions.

Syntax
GKS~INQ_PICK_ID (error status, pick~denti6erJ

GaPKID (error status, pick~dJ

gingcurpickid (pickid, error status)

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

Inquiry Functions 12-181

GKS State List Inquiries
INQUIRE PICK IDENTIFIER VALUE

picl~identifier

data type: integer
access: write-only
mechanism: by reference

This argument is the current integer value that you use to identify a portion of
a segment.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the error
state in routine ****

8 GKS$~RROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

12-182 Inquiry Functions

GKS State list Inquiries
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$INQ ~'RIM_ATTB returns the current bundle index for
each output function and the current value for each of the geometric output
attributes.

The current bundle indexes and geometric attributes are available when DEC
GKS is in any operating state except GKS$K_GKCL. If this condition is not
met, the output arguments are undefined, and the function sets the error status
argument to the number of one of the errors listed in the Error Messages
section.

For more information concerning output attributes, refer to Chapter 6, Output
Attribute Functions.

Syntax
G KS~ I N a _P R I M ITT B (error status, list_bund/e~ndexes, text height,

character_up_ vector, character_ width,
text base_ vector, character path,
character alignment, pattern_ width,
pattern height, pattern~eference~ointsJ

gingprimattr (primatti, error status)

f"1
Inquiry Functions 12-183

GKS State List Inquiries
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

lis~bund/e_indexes

data type: array (integer)
access: write-only
mechanism: by reference

This argument is afour-element array containing the current bundle indexes.
The order of the bundle indexes is as follows:

1. Polyline index

2. Polymarker index

3. Text index

4. Fill area index

character height

data type: real
access: write-only
mechanism: by reference

This argument is the current character height specified by a world coordinate
value.

12-184 Inquiry Functions

GKS State List Inquiries
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

character_up_vector

data type: array (real)
access: write-only
mechanism: by reference

This argument is an array with two elements that contains the X and Y world
coordinates comprising the current character-up vector. The character-up
vector, in conjunction with the text string starting point, establishes an upward
direction for the characters in a text string. For more information, refer to
Chapter 6, Output Attribute Functions.

character width

data type: real
access: write-only
mechanism: by reference

This argument is the current character width in world coordinate units.

tex~base_vector

data type: array (real)
access: write-only
mechanism: by reference

This argument is an array with two elements containing the text base vectors.
Using the starting point and the base vectors you can calculate the line on
which the text extent rectangle is positioned.

character path

data type: integer
access: write-only
mechanism: by reference

This argument is the current character path. The character path determines in
which direction along the imaginary text line GKS writes the characters. The
defined values are as follows.

Inquiry Functions 12-185

GKS State List Inquiries
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

Value Constant Description

0 GKS$K_TEXT_I'ATH~IGHT

1 GKS$K_TEXT_I'ATH_LEFT

2 GKS$K_TEXT_I'ATH_UP

3 GKS$K_TEXT_I'ATH_DOWN

From left to right

From right to left

From the bottom to the top along the
character-up vector

From the top to the bottom along the
character-up vector

character alignment

data type:
access:
mechanism:

integer
write-only
by reference

This argument is atwo-element array containing the horizontal (in the first
element) and vertical values of the current character alignment (in the second
element). The character alignment designates how GKS positions the text extent
rectangle along the imaginary text line. The defined horizontal values are as
follows:

Value Constant Description

0 GKS$K_TEXT_HALIGN_NORMAL

1 GKS$K_TEXT_HALIGN_LEFT

2 GKS$K_TEXT_HALIGN_CENTER

3 GKS$K_TEXT_HALIGN_RIGHT

Default value

Left

Center

Right

12-186 Inquiry Functions

GKS State list Inquiries
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

The defined vertical values are as follows:

Value Constant Description

0 GKS$K_TEXT_VALIGN_NORMAL Default value

1 GKS$K_TEXT_VALIGN_TOP Top

2 GKS$K_TEXT_VALIGN_CAP Cap

3 GKS$K_TEXT_VALIGN_HALF Half

4 GKS$K_TEXT_VALIGN_BASE Base

5 GKS$K_TEXT_VALIGN_BOTTOM Bottom

For more information, refer to the figures in Chapter 6, Output Attribute
Functions.

patterr~width

data type: array (real)
access: write-only
mechanism: by reference

This argument is atwo-element array containing the pattern width vector. The
first element contains the X vector in world coordinates and the second element
contains the Y vector in world coordinates.

pattern,height

data type: array (real)
access: write-only
mechanism: by reference

This argument is atwo-element array containing the pattern height vector. The
first element contains the X vector in world coordinates and the second element
contains the Y vector in world coordinates.

Inquiry Functions 1 Z-187

GKS State List Inquiries
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

pa tterr~ re feren ce_ poin t

data type: array (real)
access: write-only
mechanism: by reference

This argument is atwo-element array that contains the world coordinate values
designating the pattern reference point. None of the DEC GKS supported
workstations support this feature, so the returned values will always be zero.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR~tEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$_ERROR~TEG_20 GKS not in proper state: GKS in the error
state in routine ****

8 GKS$~RROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

12-188 Inquiry Functions

GKS State list Inquiries
INQUIRE SET OF SEGMENT NAMES IN USE

INQUIRE SET OF SEGMENT NAMES IN USE

"Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _SEG NAMES returns the number and the list of all
existing segments.

The list of segment names is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP. If this condition is not met, the
output arguments are undefined, and the function sets the error status argument
to the number of one of the errors listed in the Error Messages section.

For more information concerning segments, refer to Chapter 9, Segment
Functions.

Syntax
GKSZINa_SEG_NAMES (error status, num_segments, list~egments,

return~ize)
GQSGUS (member, error status, num_open, rmember)

gingsegnames (max~egnames, start, segnames, actual_segnames,
error status)

Arguments
error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of

Inquiry Functions 12-189

GKS State List Inquiries
INaUIRE SET OF SEGMENT NAMES IN USE

the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_segments

data type: integer
access: write-only
mechanism: by reference

This argument is the number of currently existing segments.

lispsegments

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the array containing segment names that correspond to all of
the currently existing segments.

return size

data type: integer
access: write-only
mechanism: by reference

This argument is the number of segment names returned to the list of stored
segments. By comparing this argument to the actual list, you can determine if
you defined an array large enough to hold all of the returned values.

12-190 Inquiry Functions

GKS State List Inquiries
INQUIRE SET OF SEGMENT NAMES IN USE

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified in
routine * * * *

-20 DECGKS$_ERROR~IEG_20 GKS not in proper state: GKS in the error
state in routine ****

7 GKS$_ERROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Inquiry Functions 12-191

GKS State List Inquiries
INQUIRE NORMALIZATION TRANSFORMATION

INQUIRE NORMALIZATION TRANSFORMATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$INQ ~CFORM returns the boundaries of a world window
and world viewport, associated with a specified normalization transformation
number.

The world window and viewport values are available when DEC GKS is in
any operating state except GKS$K_GKCL, and if the given normalization
transformation number is valid. If these conditions are not met, the output
arguments are undefined, and the function sets the error status argument to the
number of one of the errors listed in the Error Messages section.

For more information concerning transformations, refer to Chapter 7,
Transformation Functions.

Syntax
G KS~ I N Q ~(FO R M (transformation_number, error status,

world_window_boundaries, world_viewport_boundaries)

GQNT (xform, error status, window, vportJ

gingntran (num, Iran, error_statusJ

Arguments
transformatior~number

data type: integer
access: read-only
mechanism: by reference

This argument is the specified normalization transformation.

12-192 Inquiry Functions

GKS State List Inquiries
INQUIRE NORMALIZATION TRANSFORMATION

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

world_ window boundaries
world_viewpor~boundaries

data type: array (real)
access: write-only
mechanism: by reference

These arguments are four-element arrays containing coordinate points in the
order XMIN, XMAX, YMIN, YMAX. These arguments are the boundaries of
the world window and world viewport, in world coordinates and normalized
device coordinates, respectively, associated with the specified normalization
transformation number.

Inquiry Functions 12-193

GKS State List Inquiries
INQUIRE NORMALIZATION TRANSFORMATION

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$~RROR_NEG_20

8 GKS$_ERROR_8

50 GKS$~RROR_50

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine * * * *

GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Transformation number is invalid in
routine ****

12-194 Inquiry Functions

GKS State List Inquiries
INQUIRE LIST OF NORMALIZATION TRANSFORMATION NUMBERS

INQUIRE LIST OF NORMALIZATION TRANSFORMATION NUMBERS

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$INQ_XFORM_LIST returns the list of all defined normal-
ization transformations in order of input viewport priority.

The list of normalization transformations is available when DEC GKS is in
any operating state except GKS$K_GKCL. If these conditions are not met, the
output arguments are undefined, and the function sets the error status argument
to the number of one of the errors listed in the Error Messages section.

For more information concerning transformations, refer to Chapter 7,
Transformation Functions.

Syntax
GKSSINQ~(FORM_LIST (error status, num_transformations,

list transformations, return_sizeJ
GQENTN (element, error~tatus, num~rforms, re/ementJ

gingntrannum (level, error_statusJ

Arguments
errar_status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

Inquiry Functions 12-195

GKS State list Inquiries
INaU1RE LIST OF NORMALIZATION TRANSFORMATION NUMBERS

num_transformations

data type: integer
access: write-only
mechanism: by reference

This argument is the number of currently defined normalization
transformations.

lis~.transformations

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the list of all of the currently defined normalization transfor-
mation numbers in order of input viewport priority.

returr~size

data type: integer
access: write-only
mechanism: by reference

This argument is the number of normalization transformation numbers returned
to the list. By comparing this argument to the number of returned transforma-
tions, you can determine if you defined an array large enough to hold ali of the
returned values.

12-196 Inquiry Functions

GKS State List Inquiries
INQUIRE LIST OF NORMALIZATION TRANSFORMATION NUMBERS

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the error
state in routine **+*

8 GKS$~RROR_8 GKS not in proper state; GKS shall be in
one of the states GKOP, WSOP, WSAC,
or SGOP in routine ****

Inquiry Functions 12-197

Workstation State List Inquiries

Workstation State List Inquiries

This section describes the workstation state list inquiries. (For more information
concerning the workstation state list, refer to Chapter 4, Control Functions.)
You use these functions if you need information about the state of a single
workstation, which is identified by a numeric workstation identifier, or if you
are not aware of the current workstation transformation, the locator device
state, the current segment priority, or the workstation update state.

12-198 Inquiry Functions

Workstation State list Inquiries
INQUIRE CHOICE DEVICE STATE

INQUIRE CHOICE DEVICE STATE

Operating States: WSOP, WSAC, SGOP

Description
The function GKS$INQ _CHOICE _STATE returns initialization values for the
choice logical input device, and the input operating mode.

The choice logical input device state is available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and if the following
conditions exist:

• The specified workstation identifier is valid and the associated workstation
open

• The workstation is of category GKS$K_WSCAT_INPUT or GKS$K_
WSCAT_OUTIN

• The device supports the choice logical input device

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning input, refer to Chapter 8, Input Functions.

Syntax

G KS$ I N Q _CHOICE _STATE (workstation_id, device number,
error status, operating mode, echo_dag,
initial_choice_status, initial_choice_number,
prompt_echo_type, echo area, data record,
record_buffer_length, record size)

Inquiry Functions 12-199

Workstation State list Inquiries
INQUIRE CHOICE DEVICE STATE

G QC H S (workstation_id, dev_num, dim_dr, error status, operating mode,
echo flag, in_status, in_choice, p-e_type, echo area, len_dr, drJ

gingchoicest (workstation_id, dev, bufsize, state size, state, error status)

Arguments
workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

device number

data type: integer
access: read-only
mechanism: by reference

This argument is the device number that differentiates between logical in-
put devices of the same class, operating on the same workstation. For more
information, refer to Chapter 8, Input Functions.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-200 Inquiry Functions

Workstation State List Inquiries
INQUIRE CHOICE DEVICE STATE

operating mode

data type: integer
access: write-only
mechanism: by reference

This argument is the current input operating mode for the specified logical input
device. The defined values are as follows.

Value Constant Description

0 GKS$K_INPUT_MODE_REQUEST Request input mode

1 GKS$K~NPUT_IVIODE_SAMPLE Sample input mode

2 GKS$K_INPUT_1VIODE_EVENT Event input mode

For more information concerning the input operating modes, refer to Chapter 8,
Input Functions.

echo_flag

data type: integer
access: write-only
mechanism: by reference

This argument is the echo flag specifying whether or not input is echoed on the
workstation surface. The defined values are as follows:

Value Constant Description

0 GKS$K~10ECH0 Do not echo input.

1 GKS$K~CHO Echo input.

initial_ choices to tus

data type: integer
access: write-only
mechanism: by reference

This argument determines if the user can return a measure value of "No
Choice." If No Choice can by returned, then the user can press RETURN as
soon as the menu appears, without returning the value corresponding with
the initial choice. This action returns the value 0 as the logical input device's

Inquiry Functions 12-201

Workstation State list Inquiries
INQUIRE CHOICE DEVICE STATE

measure. If the user cannot return No Choice, then pressing RETURN when
the menu appears returns the value of the highlighted initial choice.

The defined values are as follows:

Value Constant Description

1 GKS$K_STATUS_OK Return the initial number.

2 GKS$K_STATUS_NOCHOICE Return No Choice.

initial_choice_number

data type: integer
access: write-only
mechanism: by reference

This argument is the current choice measure that represents one of the current
choices, expressed as an integer.

promp~echo_type

data type: integer
access: write-only
mechanism: by reference

This argument is the current prompt and echo type value.

echo area

data type: array (real)
access: write-only
mechanism: by reference

This argument is a four-element array containing coordinates in the order
XMIN, XMAX, YMIN, YMAX. The points designate the input echo area on the
workstation surface. For more information concerning the DEC GKS coordinate
systems, refer to Chapter 7, Transformation Functions.

12-202 Inquiry Functions

Workstation State list Inquiries
INQUIRE CHOICE DEVICE STATE

data record

data type: address (record)
access: write-only
mechanism: by reference

GKS$INQ_CHOICE_STATE returns a different amount of information de-
pending on the value contained in the first component of the data record. If
you pass the address of an integer with the value 0 as this argument, and the
value 4 as the RECORD_BUr~'1rR_LENGTH argument, then this function only
returns the default number of choices. This functionality allows you to see if
your declared string buffers are large enough to hold all of the current strings.

Once you obtain the current number of choices, you must initialize the arrays
containing string sizes, string addresses, and strings, and then call GKS$INQ _
CHOICE _STATE a second time. In the second call, pass the number of choices
obtained in the first call to GKS$INQ _CHOICE _STATE, pass the RECORD_
BUFFER_LENGTH value that specifies the whole data record. Then the
function writes all of the current values to its write-only arguments.

To understand the process of calling GKS$INQ _CHOICE _STATE twice, refer
to the program example in this function description.

recorc~buffer_length

data type: integer
access: modifiable
mechanism: by reference

On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data~ecord. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record—size is larger than record_buff er~ength after
the function call, then you know that the graphics handler truncated the data
record when writing it to the buffer; data was lost.

record size

data type: integer
access: write-only
mechanism: by reference

This argument is the total size, in bytes, of the data record.

Inquiry Functions 12-203

Workstation State list Inquiries
INQUIRE CHOICE DEVICE STATE

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$~RROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$~RROR~S

38 GKS$~RROR_38

140 GKS$_ERROR_140

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine * * * *

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is neither of category
INPUT nor of category OUTIN in
routine ****

Specified input device is not present on
workstation in routine ****

Program Exa m p I e
Example 12-8 illustrates the use of the function GKS$INQ _CHOICE _STATE.

12-204 Inquiry Functions

Workstation State list Inquiries
INQUIRE CHOICE DEVICE STATE

Example 12-8: Determining the State of the Choice Logical Input
Device

C This program writes the return values of the function
C GKS$INQ_CHOICE_STATE to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, DATA_RECORD(3), NUM_CHOICES,
* PROMPT_ECHO_TYPE, ERROR_STATUS, DEVICE_NUM,
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH,
* RECORD_SIZE, STRING_SIZES(10),
* STRING_POINTERS(10), INIT_STATUS, INIT_CHOICE,
* I

CHARACTER*80 STRINGS(10)

REAL ECHO_AREA(4)
DATA WS_ID / 1 /, DEVICE_NUM / 1 /

C First element in the data record is the number of choices.
EQUIVALENCE(DATA_RECORD(1), NUM_CHOICES)

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)

C Specifying zero as this argument forces GKS$INQ_CHOICE_STATE to
C only return the current number of choices.

NUM_CHOICES = 0

C Tell the handler the size of the record buffer (do not include
C the array addresses in this call).

RECOR.D_BUFFER_LENGTH = 4

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ_CHOICE_STATE(WS_ID, DEVICE_NUM,
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INIT_STATUS,
* INIT_CHOICE, PROMPT_ECHO_TYPE, ECHO_AREA,
* DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE)

C Tell the handler where to write current addresses...
DATA_RECORD(2) _ '/.LOC(STRING_SIZES)
DATA_RECORD(3) _ '/.LOC(STRING_POINTERS)

C Initialize the string pointers...
DO 100 I = 1, NUM_CHOICES

STRING_POINTERS(I) _ '/.LOC(STRINGS(I))
STRING_SIZES(I) = 80

100 CONTINUE

(continued on next page)

Inquiry Functions 12-205

Workstation State list Inquiries
INQUIRE CHOICE DEVICE STATE

Example 12-8 (Copt.): Determining the State of the Choice Logical
Input Device

C Initialize the size of the data record...
RECORD_BUFFER_LENGTH = 12

C You can obtain this information as long as the specified

C workstation is open.
CALL GKS$INQ_CHOICE_STATE(WS_ID, DEVICE_NUM,
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INIT_STATUS,
* INIT_CHOICE, PROMPT_ECHO_TYPE, ECHO_AREA,
* DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ', ERROR_STATUS

WRITE(6, *) 'The input operating mode: ', INPUT_MODE

WRITE(6, *) 'The echo flag: ', ECHO_FLAG
WRITE(6, *) 'The initial choice status: ', INIT_STATUS

WRITE(6, *) 'The initial choice value: ', INIT_CHOICE

WRITE(6, *) 'The prompt and echo type: ' ,
* PROMPT_ECHO_TYPE
WRITE(6, *) 'The echo area: ', ECHO_AREA

WRITE(6, *) 'The data record: ', DATA_RECORD

WRITE(6, *) 'The maximum data length: ' ,

* RECORD_BUFFER_LENGTH
WRITE(6, *) 'Size of returned data record: ', RECORD_SIZE

C STRINGS holds the current choice strings...
WRITE(6,*) 'The current choice strings are as follows:'

DO 200 i = 1, NUM_CHOICES
WRITE(6,*) STRINGS(I)

200 CONTINUE

CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

12-206 Inquiry Functions

Workstation State List Inquiries
INaU1RE CHOICE DEVICE STATE

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_8
$ LINK EXAMPLE_8
$ RUN EXAMPLE_8
The error status: 0
The input operating mode: 0
The echo flag : 1
The initial choice status: 1
The initial choice value: 1
The prompt and echo type: 1

RETURN
RETURN
RETURN

The echo area: 533.0000 799.0000 0.0000000E+00 479.0000
The data record: 5 1036 1076
The maximum data length: 12
Size of returned data record: 12
The current choice strings are as follows:
CHOICEI
CHOICE2
CHOICE3
CHOICE4
CHOICES

$

Inquiry Functions 12-207

Workstation State List Inquiries
INQUIRE LIST Of COLOR INDEXES

INQUIRE LIST OF COLOR INDEXES

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _COLOR~NDEXES returns the number and the list of
defined color indexes.

The list of color indexes is available when DEC GKS is in any operating state
except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is not of category GKSK_WSCAT_MI, GKSK_WSCAT_
INPUT, or GKS$K_WSCAT_WIS~S

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning color indexes, refer to Chapter 6, Output
Attribute Functions.

Syntax
G KS$ I N Q _COLOR _INDEXES (workstation_id, error status, num_indexes,

list indexes, return size)

GaECI (workstation_id, element, error status, num_color, relementJ
gingcolourindices (workstation_id, max indices, start, indices, actual indices,

error status)

12-208 Inquiry Functions

Workstation State List Inquiries
INQUIRE LIST Of COLOR INDEXES

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_indexes

data type: integer
access: write-only
mechanism: by reference

This argument is the number of currently defined color indexes.

lispindexes

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the array that contains the currently defined color index
values.

Inquiry Functions 12-209

Workstation State list Inquiries
INQUIRE LIST OF COLOR INDEXES

return size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of indexes returned to the color index list. You
can use this argument to see if you specified an array that was large enough to
hold all of the returned values.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$—ERROR_25

33 GKS$~RROR_33

35 GKS$_ERROR_35

36 GKS$~RROR_36

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

12-210 Inquiry Functions

Workstation State list Inquiries
INQUIRE COLOR REPRESENTATION

INQUIRE COLOR REPRESENTATION

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _COLOR_REP returns the red, green, and blue intensi-
ties associated with a given color index, on a specified workstation.

The color representation is available when DEC GKS is in any operating state
except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions exist:

• The specified workstation identifier is valid and the associated workstation
open

• 'The workstation is not of category GKS$K_WSCAT~VII, GKS$K_WSCAT_
INPUT, or GKS$K_WSCAT_WISS

• The color index is valid and defined

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning color representation, refer to Chapter 6,
Output Attribute Functions.

Syntax
GKS~INa_COLOR_REP (workstation_id, color index, valuestype,

error status, red intensity, green~ntensity,
blue intensity)

GaCR (workstation_id, cindex, type, error status, rea! i, green_i, blu~iJ

gingcolourrep (workstation_id, index, type, rep, error_statusJ

Inquiry Functions 12-211

Workstation State List Inquiries
INQUIRE COLOR REPRESENTATION

Arguments
workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

co/or_index

data type: integer
access: read-only
mechanism: by reference

This argument is a color index value defined on the specified workstation.

va/ue_type

data type: integer
access: read-only
mechanism: by reference

This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 12.1.2 for more information concerning this
argument.) The defined values are as follows.

Value Constant Description

0

1

GKS$K_VALUE_SET Use the exact state list values.

GKS$K_VALUE~EALIZED Use the values approximated by the graphics
handler.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function

12-212 Inquiry Functions

`J

Workstation State List Inquiries
INQUIRE COLOR REPRESENTATION

writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

recceintensity
greer~intensity
b/ue_intensity

data type:
access:
mechanism:

real
write-only
by reference

These arguments are the red, green, and blue intensities associated with the
specified color index.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-17 DECGKS$~RROR_NEG_17

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$._ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$~RROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

Inquired device values not set or realized
in routine ****

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Inquiry Functions 12-213

Workstation State list Inquiries
INaU1RE COLOR REPRESENTATION

Error
Number Completion Status Code Message

35 GKS$—ERROR_35

36 GKS$—ERROR_36

93 GKS$~RROR_93

94 GKS$_ERROR_94

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Color index is invalid in routine ****

A representation for the specified color
index has not been defined on this
workstation in routine ****

12-214 Inquiry Functions

Workstation State List Inquiries
INQUIRE LIST OF flll AREA INDEXES

INQUIRE LIST Of FILL AREA INDEXES

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _FILL .INDEXES returns the number and list of defined
fill area index values.

The list of fill area indexes is available when DEC GKS is in any operating state
except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions exist:

• The specified workstation identifier is valid and the associated workstation
open

• The workstation is not of category GKSK_WSCAT_NiI, GKSK_WSCAT_
INPUT, or GKS$K_WSCAT_WISS

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the fill area indexes, refer to Chapter 6,
Output Attribute Functions.

Syntax
GKS~INQ_fILL_INDEXES (workstation~d, error status, num_indexes,

list~ndexes, return_sizeJ

GQEfAI (workstaiion_id, element, error status, num_fill, re/ement)

gingfillindices (workstation_id, max~ndices, start, indices, actual indices,
error status)

Inquiry Functions 12-215

Workstation State List Inquiries
INQUIRE LIST OF Flll AREA INDEXES

Arguments
workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_indexes

data type: integer
access: write-only
mechanism: by reference

This argument is the number of defined fill area index values for the specified
workstation.

lispindexes

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the array containing defined fill area index values.

12-216 Inquiry Functions

Workstation State List Inquiries
INQUIRE LIST Of Flll AREA INDEXES

return size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of indexes returned to the fill area index list. You
can use this argument to see if you specified an array that was large enough to
hold all of the returned values.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$~RROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine * * * *

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Inquiry Functions 12-217

Workstation State List Inquiries
INQUIRE FILL AREA REPRESENTATION

INQUIRE FILL AREA REPRESENTATION

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ SILL _REP returns the values associated with the
given fill area index, on the specified workstation.

The fill area representation is available when DEC GKS is in any operating state
except GKS$K_GKCL or GKS$GKOP, and if the following conditions exist:

• The specified workstation identifier is valid and the associated workstation
open

• The workstation is not of category GKSK_WSCAT_1ViI, GKSK_WSCAT_
INPUT, or GKS$K_WSCAT_WISS

• The fill area index is valid and defined

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the fill area representation, refer to Chapter 6,
Output Attribute Functions.

Syntax
G KS$ I N Q _F 111 _REP (workstation_id, fill _area index, value_ type,

error status, interior_sty/e, stye_index, color_indexJ

GaFAR (workstation_id, (index, type, error status, int_sty/e, sindex, cindexJ

gingfillrep (workstation_id, index, type, rep, error_statusJ

12-218 Inquiry Functions

Workstation State List Inquiries
INaU1RE Flll AREA REPRESENTATION

Arguments
workstatior~id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

fill_area_index

data type: integer
access: read-only
mechanism: by reference

This argument is the defined fill area index on the specified workstation.

va/ue_type

data type: integer
access: read-only
mechanism: by reference

This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the .values that the DEC GKS device handler is capable
of implementing. (See Section 12.1.2 for more information concerning this
argument.) The defined values are as follows.

Value Constant Description

0 GKS$K_VALUE_SET Use the exact state list values.

1 GKS$K_VALUE_REALIZED Use the values approximated by the
graphics handler.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function

Inquiry Functions 12-219

Workstation State list Inquiries
INQUIRE FILL AREA REPRESENTATION

writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

interior style

data type: integer
access: write-only
mechanism: by reference

This argument is the interior style associated with the specified fill area index.
The defined values are as follows:

Value Constant Description

0 GKS$K_INTSTYLE_HOLLOW Hollow

1 GKS$K_INTSTYLE_SOLID Solid

2 GKS$K_INTSTYLE_I'ATTERN Pattern

3 GKS$K_INTSTYLE_HATCH Hatched

style index

data type: integer
access: write-only
mechanism: by reference

This argument is the style index value associated with the specified fill area
index value.

color index

data type: integer
access: write-only
mechanism: by reference

This argument is the color index value associated with the specified fill area
index value.

12-220 Inquiry Functions

Workstation State List Inquiries
INQUIRE flll AREA REPRESENTATION

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19

-20 DECGKS$~RROR_NEG_20

7 GKS$~RROR_7

20 GKS$_ERROR_20

25 GKS$~RROR_25

33 GKS$~RROR_33

35 GKS$~RROR_35

36 GKS$_ERROR_36

80 GKS$_ERROR_80

81 GKS$~RROR_81

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Fill area index is invalid in routine ****

A representation for the specified fill
area index has not been defined on this
workstation in routine ****

Inquiry Functions 12-221

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

INQUIRE LOCATOR DEVICE STATE

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _LOCATOR_STATE returns the initialization values for
the specified locator logical input device, and the current input operating mode.

The locator logical input values are available when DEC GKS is in any op-
erating state except GKS$K_GKCL or GKS$K_GKOP, and if the following
conditions exist:

• The specified workstation identifier is valid and the associated workstation
open

• The workstation is of category GKS$K_WSCAT~NPUT or GKS$K_
WSCAT_OUTIN

• The locator logical input device is present on the specified workstation

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning input, refer to Chapter 8, Input Functions.

Syntax

G KS$ I N Q _LOCATOR _STATE (workstation_id, device number,
value type, error status, operating mode,
echo flag, transformation number,
world_location~r, world location_ y,
prompt_echo_type, echo area, data record,
record_buffer_length, record size)

12-222 Inquiry Functions

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

GQLCS (workstation_id, dev_num, type, dim_dr, error status,
operating mode, echo flag, in~rform, infix, inky, p_e_type,
echo area, len_dr, drJ

ginglocst (workstation_id, dev, type, bufsize, state size, state, error status)

Arguments
workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

device number

data type: integer
access: read-only
mechanism: by reference

This argument is the device number that differentiates between logical in-
put devices of the same class, operating on the same workstation. For more
information, refer to Chapter 8, Input Functions.

va/ue_type

data type: integer
access: read-only
mechanism: by reference

This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 12.1.2 for more information concerning this
argument.) The defined values are as follows.

Inquiry Functions 12-223

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

Value Constant Description

0 GKS$K_VALUE_SET Use the exact state list values.

1 GKS$K_VALUE_REALIZED Use the values approximated by the
graphics handler.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

operating mode

data type: integer
access: write-only
mechanism: by reference

This argument is the current input operating mode for the specified logical input
device. The defined values are as follows:

Value Constant Description

0 GKS$K_INPUT_IViODE_REQUEST Request input mode

1 GKS$K_INPUT_MODE_SAMPLE Sample input mode

2 GKS$K_INPUT_IVIODE_EVENT Event input mode

For more information concerning the input operating modes, refer to Chapter 8,
Input Functions.

12-224 Inquiry Functions

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

echo_f/ag

data type: integer
access: write-only
mechanism: by reference

This argument is the echo flag specifying whether input is echoed on the
workstation surface. The defined values are as follows.

Value Constant Description

0 GKS$K_NOECHO Do not echo input.

1 GKS$K—ECHO Echo input.

trans forma tior~number

data type: integer
access: write-only
mechanism: by reference

This argument is the normalization transformation used to translate the initial
input data point to device coordinates.

worlc~location_x
worlc~locatior~ y
data type: real
access: write-only
mechanism: by reference

These arguments designate the initial locator position, in world coordinates.

promp~echo_type

data type: integer
access: write-only
mechanism: by reference

This argument is the current prompt and echo type value.

Inquiry Functions 12-225

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

echo area

data type:
access:
mechanism:

array (real)
write-only
by reference

This argument is afour-element array containing echo area device coordi-
nate points in the following order XMIN, x1VIAX, YMIN, YMAX. For more
information concerning the DEC GKS coordinate systems, refer to Chapter 7,
Transformation Functions.

data record

data type:
access:
mechanism:

address (record)
write-only
by reference

This argument is a pointer to the current locator input data record for the
specified device.

recorc~Lb u f~er_I eng th

data type:
access:
mechanism:

integer
modifiable
by reference

On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data_.record. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record size is larger than record buff er._.length after
the function call, then you know that the graphics handler truncated the data
record when writing it to the buffer; data was lost.

recorc~.size

data type:
access:
mechanism:

This argument is

12-226 Inquiry Functions

integer
write-only
by reference

the total size, in bytes, of the data record.

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR~TEG_19

-20 DECGKS$~RROR_NEG~O

7 GKS$~RROR_7

20 GKS$~RROR~O

25 GKS$~RROR~5

38 GKS$~RROR~8

l40 GKS$_ERROR_140

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine * * * *

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is neither of category
INPUT nor of category OUTIN in
routine ****

Specified input device is not present on
workstation in routine ****

Program Example
Example 12-9 illustrates the use of the function GKS$INQ _LOCATOR _
STATE.

Inquiry Functions 12-227

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

Example 12-9: Determining the Current Locator State

C This program writes the return values of the function
C GKS$INQ_LOCATOR_STATE to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, DATA_RECORD(1), PROMPT_ECHO_TYPE,
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, TRANSFRM_NUMBER,
* RECORD_BUFFER_LENGTH, RECORD_SIZE, DEVICE_NUM
REAL ECHO_AREA(4), WORLD_X, WORLD Y
DATA WS_ID / 1 /, DEVICE_NUM / 1 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)

C Initialize the modifiable argument
RECORD_BUFFER_LENGTH = 4

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ_LOCATOR_STATE(WS_ID, DEVICE_NUM,
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT MODE,
* ECHO_FLAG, TRANSFRM_NUMBER, WORLD_X, WORLD_Y,
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD,
* RECORD_BUFFER_LENGTH, RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ' , ERROR_STATUS
WRITE(6, *) 'The input operating mode: ' , INPUT_MODE
WRITE(6, *) 'The echo flag: ' , ECHO_FLAG
WRITE(6, *) 'The transformation number: ' ,
* TRANSFRM_NUMBER
WRITE(6, *) 'The X world coordinate: ' , WORLD_X
WRITE(6, *) 'The Y world coordinate: ' , WORLD_Y
WRITE(6, *) 'The prompt and echo type: ' ,
* PROMPT_ECHO_TYPE
WRITE(6, *) 'The echo area: ' , ECHO_AREA
WRITE(6, *) 'The data record: ' , DATA_RECORD
WRITE(6, *) 'The record buffer length: ' ,
* RECORD_BUFFER_LENGTH
WRITE(6, *) 'The record size: ' , RECORD_SIZE

CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

12-228 Inquiry Functions

Workstation State List Inquiries
INQUIRE LOCATOR DEVICE STATE

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface.

$ FORTRAN EXAMPLE_9
$ LINK EXAbiPLE_9
$ RUN EXANiPLE_9
The error status: 0
The input operating mode: 0
The echo flag : 1
The transformation number: 0
The X world coordinate: 0.5000000
The Y world coordinate: 0.5000000
The prompt and echo type: 1
The echo area: 0.0000000E+00 479.0000
The data record: 0
The record buffer length: 0
The record size: 0

$

RETURN
RETURN
RETURN

0.0000000E+00 479.0000

Inquiry Functions 12-229

Workstation State List Inquiries
INQUIRE LIST Of PATTERN INDEXES

INQUIRE LIST OF PATTERN INDEXES

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ ~'AT~NDEXES returns the number and the list of
def if~ned pattern indexes on the specified workstation.

The list pattern indexes is available when DEC GKS is in any operating state
except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is not of category GKS$K_WSCAT~1/II, GKS$K_WSCAT_
INPUT, GKS$K_WSCAT_WISS

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning patterns, refer to Chapter 6, Output Attribute
Functions.

Syntax
G KS$1 N Q _PAT_I N D EXE S (workstation~d, error status, num~ndexes,

list indexes, return_sizeJ

GaPAR (workstation~d, pindex, type, max~r_dim, max_y_dim,
error status, x_dim, y_dim, carrayJ

gingpatrep (workstation~d, index, type, rep, error_statusJ

12-230 Inquiry Functions

Workstation State list Inquiries
INQUIRE LIST OF PATTERN INDEXES

Arguments
workstatiort,id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

nunindexes

data type: integer
access: write-only
mechanism: by _reference

This argument is the number of defiined pattern index values for the specified
workstation.

lispindexes

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the array containing defined pattern index values.

Inquiry Functions 12-231

Workstation State list Inquiries
INQUIRE LIST Of PATTERN INDEXES

return size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of indexes returned to the pattern index list. You
can use this argument to see if you specified an array that was large enough to
hold all of the returned values.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19

-20 DECGKS$~RROR~TEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$~RROR_25

33 GKS$~RROR_33

35 GKS$_ERROR_35

36 GKS$~RROR_36

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is of category
Ii~TPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

12-232 Inquiry Functions

Workstation State List Inquiries
INQUIRE PATTERN REPRESENTATION

INQUIRE PATTERN REPRESENTATION

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _I'AT_REP returns the values associated with a defined
pattern index on a specified workstation.

The pattern representation is available when DEC GKS is in any operating state
except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is not of category GKS$K_WSCAT~1/II, GKS$K_WSCAT_
INPUT, or GKS$K WSCAT_WISS

• The pattern index is valid and defined

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning patterns, refer to Chapter 6, Output Attribute
Functions.

Syntax
G KS~ I N a _PAT_R E P (workstation_id, pattern index, value_type,

error status, pattern width, pattern_height,
list_color_indexes, color_columns_return_size,
co or_rows_return_s►zeJ

GaEPAI (workstation_id, element, error status, num~vatt, relementJ
gingpatindices (workstation_id, max indices, start, indices, actual indices,

error_status)

Inquiry Functions 12-233

Workstation State list Inquiries
INQUIRE PATTERN REPRESENTATION

Arguments
workstation~id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

pattern index

data type: integer
access: read-only
mechanism: by reference

This argument is the defined pattern index on the specified workstation.

value type

data type: integer
access: read-only
mechanism: by reference

This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 12.1.2 for more information concerning this
argument.) The defined values are as follows.

Value Constant Description

0 GKS$K_VALUE_SET Use the exact state list values.

1 GKS$K_VALUE.~ZEALIZED Use the values approximated by the
graphics handler.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function

12-234 Inquiry Functions

V

Workstation State list Inquiries
INaU1RE PATTERN REPRESENTATION

writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

pattern width
patterr~height

data type: integer
access: write-only
mechanism: by reference

These arguments are the number of columns (width) and rows (height), within
the color index array, for use when you create the pattern.

lis~color_indexes

data type: 2-D array (integer)
access: write-only
mechanism: by descriptor

This argument is the two-dimensional array containing the list of color indexes
to use to create the pattern.

color_column~return~size
color_ro w~returrt—size

data type: integer
access: write-only
mechanism: by reference

These arguments are the dimensions of the elements in the color array to which
DES GKS returned index values. You can use these values to traverse only the
elements of the array that contain valid color index values.

Inquiry Functions 12-235

Workstation State list Inquiries
INQUIRE PATTERN REPRESENTATION

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-17 DECGKS$~RROR~TEG_17

-19 DECGKS$~RROR_NEG_19

-ZO DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$~RROR_33

35 GKS$~RROR_35

36 GKS$~RROR_36

85 GKS$_ERROR_85

88 GKS$~RROR_88

90 GKS$~RROR_90

Inquired device values not set or realized
in routine ****

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine * * * *

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Specified pattern index is invalid in
routine ****

A representation for the specified pattern
index has not been defined on this
workstation in routine ****

Interior style PATTERN is not supported
on this workstation in routine ****

12-236 Inquiry Functions

Workstation State List Inquiries
INQUIRE PICK DEVICE STATE

INQUIRE PICK DEVICE STATE

Operating states: WSOP, WSAC, SGOP

Description

The function GKS$INQ ~'ICK~TATE returns the initialization values for the
specified pick logical input device, and the current input operating mode.

The pick logical input initialization values are available when DEC GKS is
in any operating state except GKS$K_GKCL or GKS$K_GKOP, and if the
following conditions exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is of category GKS$K_WSCAT~NPUT or GKS$K_
WSCAT_OUTIN

• The pick logical input device is present on the specified workstation

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

NOTE

The DEC GKS FORTRAN binding does not return the data record
for this function. This restriction conforms with the GKS Standard.
Use the GKS$ function with FORTRAN if you want the data record
returned.

For more information concerning pick input, refer to Chapter 8, Input Functions.

Inquiry Functions 12-237

Workstation State List Inquiries
INQUIRE PICK DEVICE STATE

Syntax
G KS$ I N Q _PICK _STATE (workstation~d, device~►umber, va/u~type,

error status, operating node, echo flag,
initial wick_status, initial _segment,
initial~pick~d, prompt_echo_type, echo area,
datesrecord, record_buffer_length, recora~sizeJ

GaPKS (workstation~d, dev~um, type, dim_dr, error status,
operating node, echo flag, in_status, in_seg, in~pick~d,
p_e_type, echo area, len_dr, drJ

gingpickst (workstation~d, dev, type, bufsize, state size, state, error_statusJ

Arguments
workstation~id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

device number

data type: integer
access: read-only
mechanism: by reference

This argument is the device number that differentiates between logical in-
put devices of the same class, operating on the same workstation. For more
information, refer to Chapter 8, Input Functions.

value type

data type: integer
access: read-only
mechanism: by reference

This argument specifies the type of values you want this function to return.

12-238 Inquiry Functions

V

Workstation State List Inquiries
INaUIRE PICK DEVICE STATE

This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 12.1.2 for more information concerning this
argument.) The defined values are as follows:

Value Constant Description

0 GKS$K_VALUE_SET Use the exact state list values.

1 GKS$K_VALUE_REALIZED Use the values approximated by the
graphics handler.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

operating mode

data type: integer
access: write-only
mechanism: by reference

This argument is the current input operating mode for the specified logical input
device. The defined values are as follows:

Value Constant Description

0 GKS$K~NPUT~VIODE~tEQUEST Request input mode

1 GKS$K~NPUT_1VIODE_SAMPLE Sample input mode

2 GKS$K~NPUT~ViODE_EVENT Event input mode

For more information concerning the input operating modes, refer to Chapter 8,
Input Functions.

Inquiry Functions 12-239

Workstation State List Inquiries
INQUIRE PICK DEVICE STATE

echo_fifag

data type: integer
access: write-only
mechanism: by reference

This argument is the echo flag specifying whether input is echoed on the
workstation surface. The defined values are as follows.

Value Constant Description

0 GKS$K_NOECHO Do not echo input.

1 GKS$K_ECHO Echo input.

initial_picl►~status

data type: integer
access: write-only
mechanism: by reference

This argument determines whether the user can return a measure value of '~No
Pick." If the user can return No Pick, then the user can trigger the end of input
without returning the value corresponding to the initial segment. This action
returns the value 0 as the logical input device's measure. If the user cannot
return No Pick, then triggering the end of input as soon as the initial picked
segment is highlighted returns the identifier associated with that segment.

The defined values are as follows:

Value Constant Description

1 GKS$K—STATUS_OK Return the initial measure.

2 GKS$K~TATUS—NOPICK Return No Pick.

initial segment

data type: integer
access: write-only
mechanism: by reference

This argument is the name of the segment that is initially highlighted as soon
as you request the pick logical input device.

12-240 Inquiry Functions

Workstation State list Inquiries
INQUIRE PICK DEVICE STATE

initial_picl►~id

data type: integer
access: write-only
mechanism: by reference

This argument is the pick identifier that is associated with a portion of the
initially highlighted segment. For- more information concerning pick identifiers,
refer to Chapter 8, Input Functions, or Chapter 9, Segment Functions.

promp~echo_type

data type: integer
access: write-only
mechanism: by reference

This argument is the current prompt and echo type value.

echo area

data type: array (real)
access: write-only
mechanism: by reference

This argument contains coordinate values in the following order XMIN, XMAX,
YMIN, YMAX. For more information concerning the DEC GKS coordinate
systems, refer to Chapter 7, Transformation Functions.

data record

data type: address (record)
access: write-only
mechanism: by reference

This argument is a pointer to the current pick input data record for the specified
device.

recorc~buffer_length

data type: integer
access: modifiable
mechanism: by reference

On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data~ecord. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data

Inquiry Functions 12-241

Workstation State List Inquiries
II~aUIRE PICK DEVICE STATE

record. If the argument record__size is larger than record_buffer~ength after
the function call, then you know that the graphics handler truncated the data
record when writing it to the buffer; data was lost.

recordsize

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the total size, in bytes, of the data record.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-17 DECGKS$~RROR_NEG_17

-19 DECGKS$~RROR~TEG_19

-20 DECGKS$~RROR~TEG~O

7 GKS$~RROR_7

20 GKS$_ERROR~O

25 GKS$_ERROR~S

37 GKS$~RROR~37

140 GKS$_ERROR_140

Inquired device values not set or realized
in routine ****

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is not of category
OUTIN in routine ****

Specified input device is not present on
workstation in routine ****

12-242 Inquiry Functions

Workstation State list Inquiries
INQUIRE PICK DEVICE STATE

Program Example
Example 12-10 illustrates the use of the function GKS$INQ ~'ICK~TATE.

Example 12-10: Determining the Values Associated with the Current
Pick State

C This program writes the return values of the function
C GKS$INQ_PICK_STATE to the rorkstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, INITIAL_STATUS, SEGMENT,
* PICK_ID, PROMPT_ECHO_TYPE, ERROR_STATUS, DEVICE_NUM,
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH,
* RECORD_SIZE
REAL ECHO_AREA(4), DATA_RECORD(1)

DATA WS_ID / 1 /, DEVICE_NUM / 1 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240

C Initialize the modifiable argument...
RECORD_BUFFER_LENGTH = 4

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ_PICK_STATE(WS_ID, DEVICE_NUM,
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT_MODE,
* ECHO_FLAG, INITIAL_STATUS, SEGMENT, PICK_ID,
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD,
* RECORD_BUFFER_LENGTH, RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ', ERROR_STATUS
WRITE(6, *) 'The input operating mode: ', INPUT_MODE
WRITE(6, *) 'The echo flag: ', ECHO_FLAG
WRITE(6, *) 'The initial pick status: ', INITIAL_STATUS
WRITE(6, *) 'The picked segment identifier: ',
* SEGMENT
WRITE(6, *) 'The initial pick identifier: '
* PICK_ID
WRITE(6, *) 'The prompt and echo type: ',
* PROMPT ECHO_TYPE
WRITE(6, *) 'The echo area: ', ECHO_AREA
WRITE(6, *) 'The data record: ', DATA_RECORD

(continued on next page)

Inquiry Functions 12-243

Workstation State List Inquiries
INQUIRE PICK DEVICE STATE

Example 12-10 (Cont.~: Determining the Values Associated with the
Current Pick State

WRITE(6, *) 'The record buffer length: ',
* RECORD_BUFFER_LENGTH
WRITE(6, *) 'The record size: ', RECORD_SIZE

CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_10
$ LINK EXAMPLE_10
$ RUN EXAMPLE_10
The error status: 0
The input operating mode: 0
The echo flag : 1
The initial pick status: 2
The picked segment identifier: 1
The initial pick identifier: i
The prompt and echo type: i
The echo area: 0.0000000E+00 479.0000
The data record: 4.790000
The record buffer length: 4
The record size: 4

RETURN
RETURN
RETURN

12-244 Inquiry Functions

0.0000000E+00 479.0000

Workstation State List Inquiries
INaUIRE LIST Of POLYLINE INDICES

INQUIRE LIST OF POLYLINE INDICES

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ 'LINE INDEXES returns the number and list of
defined polyline indexes.

The list of polyline indexes is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is not of category GKSK_WSCAT_1VII, GKSK_WSCAT_
INPUT, or GKS$K_WSCAT_WISS

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning polyline indexes, refer to Chapter 6, Output
Attribute Functions.

Syntax
G KS$ I N Q _P 11 N E _INDEXES (workstation_id, error status, num_indexes,

list~ndexes, return size)

G QE Pll (workstation_id, element, error status, num_line, re/ementJ
ginglineindices (workstation_id, max~ndices, start, indices, actual indices,

error_statusJ

Inquiry Functions 12-245

Workstation State list Inquiries
INQUIRE LIST OF POLYLINE INDICES

Arguments
workstation~id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_indexes

data type: integer
access: write-only
mechanism: by reference

This argument is the number of defined polyline index values for the specified
workstation.

lispindexes

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the array containing defined polyline index values.

12-246 Inquiry Functions

Workstation State List Inquiries
INQUIRE LIST OF POLYLINE INDICES

return size

(~

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of indexes returned to the polyline index list. You
can use this argument to see if you specified an array that was large enough to
hold all of the returned values.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19

-20 DECGKS$~RROR_NEG~0

7 GKS$_ERROR_7

20 GKS$~RROR~0

25 GKS$~RROR~S

33 GKS$~RROR~3

35 GKS$~RROR_35

36 GKS$_ERROR_36

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Inquiry Functions 12-247

Workstation State List Inquiries
INQUIRE POLYLINE REPRESENTATION

INQUIRE POLYLINE REPRESENTATION

Operating States: WSOP, WSAC, SLOP

Description

The function GKS$INQ 'LINE _REP returns the values associated with the
given polyline index value.

The polyline index values are available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is not of category GKSK_WSCAT_1ViI, GKSK_WSCAT
INPUT, or GKS$K_WSCAT_WISS

• The polyline index is valid and defined

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the polyline attributes, refer to Chapter 6,
Output Attribute Functions.

Syntax
G KS$ I N Q _PLI N E _REP (workstation_id, pol yline_index, value type,

error status, line type, line_width_scale_factor,
color index)

GQPLR (workstation_id, pindex, type, error status, /_type, /_width, cindexJ

ginglinerep (workstation_id, index, type, rep, error status)

12-248 Inquiry Functions

Workstation State List Inquiries
INQUIRE POLYLINE REPRESENTATION

Arguments
workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

polyline_index

data type: integer
access: read-only
mechanism: by reference

This argument is the defined polyline index on the specified workstation.

va/ue_type

data type: integer
access: read-only
mechanism: by reference

This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 12.1.2 for more information concerning this
argument.) The defined values are as follows:

Value Constant Description

0 GKS$K_VALUE_SET Use the exact state list values.

1 GKS$K_VALUE_REALIZED Use the values approximated by the
graphics handler.

errar_status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function

Inquiry Functions 12-249

Workstation State list Inquiries
INQUIRE POLYLINE REPRESENTATION

writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

line type

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the line type associated with the specified polyline bundle
index. The defined values are as follows:

Value Constant Description

<= 0

1

2

3

4

>=5

-1

_2

-3

-4

-5

-6

_~

_g

GKS$K _LINETYPE _SOLID

GKS$K _LINETYPE _DASHED

GKS$K _LINETYPE _DOTTED

GKS$K _LINETYPE _DASHED_DOTTED

GKS$K _LINETYPE _DASH _DOT

GKS$K _LINETYPE _DASH _2_DOT

GKS$K_LINETYPE _LONG _DASH

GKS$K _LINETYPE _LONG _SHORT
DASH

GKS$K _LINETYPE _SPACED_DASH

GKS$K _LINETYPE _SPACED_DOT

GKS$K _LINETYPE _DOUBLE _DOT

GKS$K_LINETYPE _TRIPLE _DOT

Reserved for implementation-
specific use

Solid line

Dashed line

Dotted line

Solid line

Reserved for future
standardization

Dash, 2 dots

Dash, 3 dots

Long dash

Long, short dash

Spaced dash

Spaced dot

Double dots

Triple dots

12-250 Inquiry Functions

Workstation State list Inquiries
INQUIRE POLYLINE REPRESENTATION

line_widtf~scale_factor

data type:
access:
mechanism:

real
write-only
by reference

This argument is the line width scale factor associated with the specified
polyline bundle index. DEC GKS calculates line width by multiplying the scale
factor times the nominal width.

color index

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the color index associated with the given polyline index value.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-17 DECGKS$_ERROR_NEG_17

-19 DECGKS$~RROR~TEG_19

-20 DECGKS$~RROR~TEG~O

7 GKS$~RROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR~S

Inquired device values not set or realized
in routine ****

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states wSOP, wSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine * * * *

Inquiry Functions 12-251

Workstation State List Inquiries
INQUIRE POLYLINE REPRESENTATION

Error
Number Completion Status Code Message

33 GKS$~RROR_33

35 GKS$_ERROR_35

36 GKS$—ERROR_36

60 GKS$_ERROR_60

61 GKS$_ERROR_61

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Polyline index is invalid in routine ****

A representation for the specified polyline
index has not been defined on this
workstation in routine ****

12-252 Inquiry Functions

Workstation State List Inquiries
INQUIRE LIST Of POIYMARKER INDICES

INQUIRE LIST OF POLYMARKER INDICES

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ ~'MARK_INDEXES returns the number and list of
defined polymarker indexes.

The list of polymarker indexes is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is not of category GKS$K_WSCAT~ViI, GKS$K_WSCAT_
INPUT, or GKS$K_WSCAT_WISS

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning polymarker indexes, refer to Chapter 6,
Output Attribute Functions.

Syntax
GKS;INQ_PMARK_INDEXES (workstation_id, error status, num~ndexes,

list indexes, return size)

GQEPMI (workstation~d, element, error status, num~nark, relementJ

gingmarkerindices (wvrkstation_id, max~ndices, start, indices,
actual~ndices, error status)

Inquiry Functions 12-253

Workstation State list Inquiries
INQUIRE LIST OF POLYMARKER INDICES

Arguments
workstatior~id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

error status

data type: integer
access: .write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_indexes

data type: integer
access: write-only
mechanism: by reference

This argument is the number of defined polymarker index values for the
specified workstation.

lispindexes

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the array containing defined polymarker index values.

12-254 Inquiry Functions

Workstation State List Inquiries
INQUIRE LIST OF POLYMARKER INDICES

returr~size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of indexes returned to the polymarker index
list. You can use this argument to see if you specified an array that was large
enough to hold all of the returned values.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19

-20 DECGKS$~RROR_NEG_20

7 GKS$~RROR _7

20 GKS$~RROR_20

25 GKS$_ERROR_25

33 GKS$~RROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine * * * *

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine * * * *

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Inquiry Functions 12-255

Workstation State List Inquiries
INaUIRE POLYMARKER REPRESENTATION

INQUIRE POLYMARKER REPRESENTATION

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ ~'MARK_REP returns the values associated with the
given polymarker index value.

The polymarker index values are available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated workstation
open

• The workstation is not of category GKS$K_WSCAT_11/II, GKS$K_WSCAT_
INPUT, or GKS$K_WSCAT_WISS

• The polymarker index is valid and defined

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the polymarker attributes, refer to Chapter 6,
Output Attribute Functions.

Syntax
GKS~INQ_PMARK_REP (workstation_id, polymarker_index,

value type, error status, marker type,
marker_size_sca/e_factor, color_indexJ

GQPMR (workstation_id, pindex, type, error status, mtype, msize, cindexJ

gingmarkerrep (workstation_id, index, type, rep, error_statusJ

12-256 Inquiry Functions

Workstation State List Inquiries
INQUIRE POLYMARKER REPRESENTATION

Arguments
workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer val-ue that identifies an open workstation.

polymarker_index

data type: integer
access: read-only
mechanism: by reference

This argument is the defined polymarker index on the specified workstation.

value type

data type: integer
access: read-only
mechanism: by reference

This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 12.1.2 for more information concerning this
argument.) The defined values are as follows:

Value Constant Description

0 GKS$K_VALUE_SET Use the exact state list values.

1 GKS$K_VALUE_REALIZED Use the values approximated by the
graphics handler.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function

Inquiry Functions 12-257

Workstation State List Inquiries
INQUIRE POLYMARKER REPRESENTATION

writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

marker_fiype

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the marker type associated with the specified polymarker
bundle index value. The defined values are as follows:

Value Constant Description

<= 0

1

2

3

4

5

>=6

-1

_2

-3

-4

-5

-6

_~

_g

-9

GKS$K_NiARKERTYPE _DOT

GKS$ K _NiARKERTYPE _PLUS

GKS$K _IVIARKERTYPE ASTERISK

GKS$K_NiARKERTYPE _CIRCLE

GKS$K_NiARKERTYPE_DIAGONAL _
CROSS

GKS$K_1VIARKERTYPE _SOLID_CIRCLE

GKS$K_IVIARKERTYPE _TRIANGLE _UP

GKS$K_1VIARKERTYPE_SOLID_TRI_UP

GKS$K_1VIARKERTYPE _TRIANGLE _
DOWN

GKS$K _1VIARKERTYPE _SOLID_TRI _
DOWN

GKS$K _1VIARKERTYPE _SQUARE

GKS$K _IViARKERTYPE _SOLID_
SQUARE

GKS$K_1VIARKERTYPE _BOWTIE

GKS$K_IVIARKERTYPE _SOLID_BOWTIE

12-258 Inquiry Functions

Reserved for implementation-
specific use

A dot (.)

A plus sign (+)

An asterisk (*)

A circle (o)

A cross (X)

Reserved for future
standardization

Solid circle

Hollow, up triangle

Solid, up triangle

Hollow, down triangle

Solid, down triangle

Hollow square

Solid square

Hollow bowtie

Solid bowtie

Workstation State List Inquiries
INQUIRE POLYMARKER REPRESENTATION

Value Constant Description

-10 GKS$K _IVIARKERTYPE _HOURGLASS Hollow hour glass

-11 GKS$K_l1/IARKERTYPE _SOLID_ Solid hour glass
HGLASS

-12 GKS$K~ViARKERTYPE_DIAMOND Hollow diamond

-13 GKS$K_NiARKERTYPE _SOLID_ Solid diamond
DIAMOND

marker_size_scale_factor

data type: real
access: write-only
mechanism: by reference

This argument is the marker size scale factor associated with the polymarker
bundle index. DEC GKS calculates the marker size by multiplying the scale
factor times the nominal size.

color index

data type: integer
access: write-only
mechanism: by reference

This argument is the color index associated with the specified polymarker index
value.

Inquiry Functions 12-259

Workstation State List Inquiries
INQUIRE POLYMARKER REPRESENTATION

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-17 DECGKS$_ERROR_NEG_17

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$~RROR_25

33 GKS$_ERROR_33

35 GKS$~RROR_35

36 GKS$_ERROR_36

66 GKS$_ERROR_66

67 GKS$~RROR_67

Inquired device values not set or realized
in routine ****

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Polymarker index is invalid in routine ****

A representation for the specified poly-
marker index has not been defined on this
workstation in routine ****

12-260 Inquiry Functions

Workstation State List Inquiries
INQUIRE SET Of SEGMENT NAMES ON WORKSTATION

INQUIRE SET OF SEGMENT NAMES ON WORKSTATION

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _SEG ~AMES_ON _WS returns the number and list
of segment names stored on the given workstation.

The list segment names are available when DEC GKS is in any operating state
except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is not of category GKS$K_WSCAT_NiI or GKS$K_
WSCAT~NPUT

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning segments, refer to Chapter 9, Segment
Functions.

Syntax
GKS~INa _SEG _NAMES_ON _WS (workstation_id, error status,

num_segment_names,
list_segment_names, return_sizeJ

GaSGWK (workstation_id, member, error status, num_names, rmemberJ

gingsegnamesws (workstation_id, max_segnames, start, segnames,
actual _segnames, error status)

Inquiry Functions 12-261

Workstation State List Inquiries
INQUIRE SET Of SEGMENT NAMES ON WORKSTATION

Arguments
workstatior~id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_segmen~names

data type: integer
access: write-only
mechanism: by reference

This argument is the number of defined segment names for the specified
workstation.

lis~segmen~names

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the array containing defined segment names.

12-262 Inquiry Functions

Workstation State list Inquiries
INQUIRE SET OF SEGMENT NAMES ON WORKSTATION

return,size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of names returned to the segment list. You can
use this argument to see if you specified an array that was large enough to hold
all of the returned values.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$~RROR_NEG_20

7 GKS$~RROR_7

20 GKS$—ERROR~O

25 GKS$_ERROR_25

33 GKS$~RROR_33

35 GKS$_ERROR_35

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

Inquiry Functions 12-263

Workstation State List Inquiries
INQUIRE STRING DEVICE STATE

INQUIRE STRING DEVICE STATE

Operating States: WSOP, WSAC, SLOP

Description

The function GKS$INQ _STRING _STATE returns the initialization values for
the specified string logical input device, and the current input operating mode.

The string logical device .state is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is of category GKS$K_WSCAT_INPUT or GKS$K_
WSCAT_OUTIN

• The string logical input device is present on the specified workstation

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the string logical input device, refer to Chapter
8, Input Functions.

Syntax
G KS$ I N Q _STRING _STATE (workstation_id, device number, error status,

operating mode, echo flag, default string,
string_return_size, prompt_echo_type,
echo area, datlrecord, record_buffer_length,
record size)

12-264 Inquiry Functions

Workstation State List Inquiries
INQUIRE STRING DEVICE STATE

G aSTS (workstation_id, dev_num, dim_dr, error status, operating mode,
echo flag, num_chars, in_string, p_e_type, echo area, buf_size,
i_cur~vos, len_dr, drJ

gingstringst (workstation_id, dev, bufsize, state size, state, error status)

Arguments
workstatior~id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

device number

data type: integer
access: read-only
mechanism: by reference

This argument is the device number that differentiates between logical in-
put devices of the same class, operating on the same workstation. For more
information, refer to Chapter 8, Input Functions.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

Inquiry Functions 12-265

Workstation State List Inquiries
INQUIRE STRING DEVICE STATE

operating mode

data type: integer
access: write-only
mechanism: by reference

This argument is the current input operating mode for the specified logical input
device. The defined values are as follows.

Value Constant Description

0 GKS$K~NPUT~VIODE~EQUEST Request input mode

1 GKS$K_INPUT~VIODE_SAMPLE Sample input mode

2 GKS$K~NPUT~ViODE~VENT Event input mode

For more information concerning the input operating modes, refer to Chapter 8,
Input Functions.

echo flag

data type: integer
access: write-only
mechanism: by reference

This argument is the echo flag specifying whether input is echoed on the
workstation surface. The defined values are as follows:

Value Constant Description

0

1

GKS$K_NOECHO Do not echo input.

GKS$K~CHO Echo input.

defaultstring

data type: string
access: write-only
mechanism: by descriptor

This argument is the default input string value.

12-266 Inquiry Functions

Workstation State list Inquiries
INQUIRE STRING DEVICE STATE

strin~returrt_size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the return size, in bytes, of the default string value.

promp~echo_type

data type:
access:
mechanism:

This argument

echo area

data type:
access:
mechanism:

integer
write-only
by reference

is the current prompt and echo type value.

array (real)
write-only
by reference

This four-element array contains coordinate values in the order XMIN, XMAX,
YMIN, YMAX. This argument is an array containing the device coordinate
values that designate the input echo area on the workstation surface. For more
information concerning the DEC GKS coordinate systems, refer to Chapter 7,
Transformation Functions.

data record

data type:
access:
mechanism:

address (record)
write-only
by reference

This argument is a pointer to the current string input data record for the
specified device.

recorc~buffer_length

data type:
access:
mechanism:

integer
modifiable
by reference

On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data~ecord. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data

Inquiry Functions 12-267

Workstation State List Inquiries
INQUIRE STRING DEVICE STATE

record. If the argument recorcl—size is larger than record—buffer~ength after
the function call, then you know that the graphics handler truncated the data
record when writing it to the buffer; data was lost.

record size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the total size, in bytes, of the data record.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

38 GKS$_ERROR_38

140 GKS$_ERROR_140

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is neither of category
INPUT nor of category OUTIN in
routine ****

Specified input device is not present on
workstation in routine ****

12-268 Inquiry Functions

Workstation State list Inquiries
INQUIRE STRING DEVICE STATE

Program Example
Example 12-11 illustrates the use of the function GKS$INQ _STRING _STATE.

Example 12-11: Determining the Initial String Logical Input Device
Values

C This program writes the return values of the function
C GKS$INQ_STRING_STATE to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, DATA_RECORD(2), PROMPT_ECHO_TYPE,
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG,
* RECORD_BUFFER_LENGTH, RECORD_SIZE, INPUT_STATLTS,
* DEVICE_NUM, STRING_SIZE
REAL ECHO_AREA(4)
CHARACTER*80 INITIAL_STRING
DATA WS_ID / 1 /, DEVICE_NUM / 1 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(Ws_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)

C Initialize the modifiable argument...
RECORD_BUFFER_LENGTH = 8

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ_STRING_STATE(WS_ID, DEVICE_NUM,
* ERROR_STATUS, INPUT_MODE,
* ECHO_FLAG, '/.DESCR(INITIAL_STRING), STRING_SIZE,
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD,
* RECORD_BUFFER_LENGTH, RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ', ERROR_STATUS
WRITE(6, *) 'The input mode: ', INPUT_MODE
WRITE(6, *) 'The echo flag: ', ECHO_FLAG
WRITE(6, *) 'The initial string: ', INITIAL_STRING
WRITE(6, *) 'The initial string size: ', STRING_SIZE
WRITE(6, *) 'The prompt and echo type: ' ,
* PROMPT_ECHO_TYPE
WRITE(6, *) 'The echo area: ', ECHO_AREA
WRITE(6, *) 'The data record: ', DATA_RECORD

(continued on next page)

Inquiry Functions 12-269

Workstation State list Inquiries
INQUIRE STRING DEVICE STATE

Example 12-11 (Cont.~: Determining the Initial String Logical Input
Device Values

WRITE(6, *) 'The record buffer length: '
* RECORD_BUFFER_LENGTH
WRITE(6, *) 'The record size: ', RECORD_SIZE

CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_il
$ LINK EXAMPLE_11
$ RUN EXAMPLE_il

RETURN
RETURN
RETURN

The error status: 0
The input mode: 0
The echo flag 1
The initial string:

The initial string size: 0
The prompt and echo type: 1
The echo area: 533.0000 799.0000 0.0000000E+00 479.0000
The data record: 20 0
The record buffer length: 8
The record size: 8
$

12-270 Inquiry Functions

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

INQUIRE STROKE DEVICE STATE

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _STROKE _STATE returns the initialization values for
the specified stroke logical input device, and the current input operating mode.

The stroke logical device state is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated workstation
open

• The workstation is of category GKS$K_WSCAT~NPUT or GKS$K_
WSCAT_OUTIN

• The stroke logical input device is present on the specified workstation

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the stroke logical input device, refer to
Chapter 8, Input Functions.

Syntax
G KS$ I N Q _STR 0 KE _STATE (workstation_id, device number, value type,

num_elements, error status, operating mode,
echo flag, transformation number,
total points, world~r~voints,
world_y~oints, prompt_echo_type,
echo area, datlrecord, record_buffer_length,
record_sizeJ

Inquiry Functions 12-271

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

G QS KS (workstation_id, dev_num, type, max~ts, dim_dr,
operating mode, echo flag, xform, num~ts, px, py,
echo area, buf_size, len_dr, drJ

gingstrokest (workstation_id, dev, type, bufsize, state size,
error_status~

error status,
p_e_type,

state,

Arguments
workstation_id

data type:
access:
mechanism:

integer
read-only
by reference

This argument is the integer value that identifies an open workstation.

device number

data type:
access:
mechanism:

integer
read-only
by reference

This argument is the device number that differentiates between logical in-
put devices of the same class, operating on the same workstation. For more
information, refer to Chapter 8, Input Functions.

value type

data type:
access:
mechanism:

integer
read-only
by reference

This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they are
set, or it returns the values that the DEC GKS device handler is capable of

12-272 Inquiry Functions

Workstation State list Inquiries
INQUIRE STROKE DEVICE STATE

implementing. (See Section 12.1.2 for more information.) The defined values
are as follows:

Value Constant Description

0 GKS$K_VALUE~ET Use the exact state list values.

1 GKS$K_VALUE_REALIZED Use the values approximated by the
graphics handler.

num_elements

data type: integer
access: modifiable
mechanism: by reference

On input, this argument contains the number of elements in the declared array
buffer. On output, this argument contains the number of elements containing
returned stroke points.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

Inquiry Functions 12-273

Workstation State list Inquiries
INQUIRE STROKE DEVICE STATE

operating_mode

data type: integer
access: write-only
mechanism: by reference

This argument is the current input operating mode for the specified logical input
device. The defined values are as follows:

Value Constant Description

0 GKS$K—INPUT~VIODE~EQUEST Request input mode

1 GKS$K—INPUT_1ViODE~AMPLE Sample input mode

2 GKS$K ~NPUT~VIODE WENT Event input mode

For more information concerning the input operating modes, refer to Chapter 8,
Input Functions.

echo flag

data type: integer
access: write-only
mechanism: by reference

This argument is the echo flag specifying whether input is echoed on the
workstation surface. The defined values are as follows:

Value Constant Description

0 GKS$K_NOECHO Do not echo input.

1 GKS$K~CHO Echo input.

12-274 Inquiry Functions

Workstation State List Inquiries
INaUIRE STROKE DEVICE STATE

transformation number

data type: integer
access: write-only
mechanism: by reference

This argument is the normalization transformation number used to translate the
points in the initial stroke from world coordinates to device coordinates. For
more information concerning the DEC GKS coordinate systems, refer to Chapter
7, Transformation Functions.

totalpoints

data type: integer
access: write-only
mechanism: by reference

This argument is the total number of world coordinate points in the initial
stroke. If total points is more than num_elements, DEC GKS truncated the
stroke point list so that it fits into your declared buffer.

world points
worloLy_points

data type: array (real)
access: write-only
mechanism: by reference

These arguments are the world coordinate points that comprise the initial
stroke.

promp~echo_type

data type: integer
access: write-only
mechanism: by reference

This argument is the current prompt and echo type value.

Inquiry Functions 12-275

Workstation State List Inquiries
INaU1RE STROKE DEVICE STATE

echo area

data type:
access:
mechanism:

array (real)
write-only
by reference

This argument is afour-element array containing -echo area device coordinate
points in the order XMIN, XMAX, YMIN, YMAX. For more information con-
cerning the DEC GKS coordinate systems, refer to Chapter 7, Transformation
Functions.

data record

data type:
access:
mechanism:

address (record)
write-only
by reference

This argument is a pointer to the current stroke input data record for the
specified device.

recorc~buf~er_I ength

data type:
access:
mechanism:

integer
modifiable
by reference

On input, this argument should contain the size, in bytes, of the data record
buffer you passed as the argument data~ecord. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument recorcLsize is larger than record_buffer~ength after
the function call, then you know that the graphics handler truncated the data
record when writing it to the buffer; data was lost.

record size

data type:
access:
mechanism:

This argument is

integer
write-only
by reference

the total size, in bytes, of the data record.

12-276 Inquiry Functions

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-17 DECGKS$_ERROR_NEG_17

-19 DECGKS$~RROR_NEG_19

-20 DECGKS$~RROR~TEG~O

7 GKS$~RROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

38 GKS$~RROR_38

140 GKS$_ERROR_140

Inquired device values not set or realized
in routine ****

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is neither of category
INPUT nor of category OUTIN in
routine ****

Specified input device is not present on
workstation in routine ****

Program Example
Example 12-12 illustrates the use of the function GKS$INQ _STROKE _STATE.

Inquiry Functions 12-277

Workstation State list Inquiries
INQUIRE STROKE DEVICE STATE

Example 12-12: Determining the Initial Stroke Logical Input Device
Values

C This program writes the return values of the function
C GKS$INQ_STROKE_STATE to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, DATA_RECORD(13), BUFFER_SIZE,
* DIMENSION, PROMPT_ECHO_TYPE, ERROR_STATUS,
* TRANSFRM, NUM_POINTS, INPUT_MODE, ECHO_FLAG,
* INPUT_STATUS, DEVICE_NUM, RET_SIZE_X, RET_SIZE_Y,
* RECORD BUFFER_LENGTH, RECORD_SIZE, EDIT_POSITION,
* ATT_FLAG
REAL ECHO_AREA(4), STROKE_X(5),
* STROKE_Y(5), X_INT, Y_INT, TIME_INT
DATA WS_ID / 1 /, DEVICE_NUM / 1 /, DIMENSION / 5 /

C Clarifq the components of the data record...
EQUIVALENCE(DATA_RECORD(1), BUFFER_SIZE)
EQUIVALENCE(DATA_RECORD(2), EDIT_POSITION)
EQUIVALENCE(DATA_RECORD(3), X_INT)
EQUIVALENCE(DATA_RECORD(4), Y_INT)
EQUIVALENCE(DATA_RECORD(5), TIME_INT)
EQUIVALENCE(DATA_RECORD(6), ATT_FLAG)

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)

C Initialize the modifiable argument...
RECORD_BUFFER_LENGTH = 52

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ_STROKE_STATE(WS_ID, DEVICE_NUM,
* GKS$K_VALUE_REALIZED, DIMENSION, ERROR_STATUS,
* INPUT_MODE, ECHO_FLAG, TRANSFRM, NUM_POINTS, STROKE_X,
* STROKE_Y, PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD,
* RECORD_BUFFER_LENGTH, RECORD_SIZE)

(continued on next page)

12-278 Inquiry Functions

Workstation State list Inquiries
INQUIRE STROKE DEVICE STATE

Example 12-12 (Copt.): Determining the Initial Stroke Logical Input
Device Values

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ', ERROR_STATUS
WRITE(6, *) 'The input mode: ', INPUT_MODE
WRITE(6, *) 'The echo flag: ', ECHO_FLAG
WRITE(6, *) 'The transformation number: ', TRANSFRM
WRITE(6, *) 'The number of points: ', NUM_POINTS
WRITE(6, *) 'The X values of the initial'
WRITE(6, *) 'stroke: ', STROKE_X
WRITE(6, *) 'The Y values of the initial'
WRITE(6, *) 'stroke: ', STROKE_Y
WRITE(6, *) 'The prompt and echo type: ',
* PROMPT_ECHO_TYPE
WRITE(6, *) 'The echo area: ', ECHO_AREA
WRITE(6, *) 'The data record: ', DATA_RECORD
WRITE(6, *) 'The maximum data length: ',
* RECORD BUFFER_LENGTH
WRITE(6, *) 'The data return size:
* RECORD_SIZE

CALL GKS$CLOSE_WS(WS_ID)
CALL GKS~CLOSE_GKS()
END

Inquiry Functions 12-279

Workstation State List Inquiries
INQUIRE STROKE DEVICE STATE

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_12
$ LINK EXAMPLE_12 RETURN
$ RUN EXAMPLE_12

RETURN

RETURN
The error status: 0
The input mode: 0
The echo flag: 1
The transformation number: 0
The number of points: 0
The X values of the initial
stroke: 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
0.0000000E+00
The Y values of the initial
stroke: 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00
0.0000000E+00
The prompt and echo type: 1
The echo area: 0.0000000E+00 479.0000 0.0000000E+00 479.0000
The data record: 80 0 -780059640 -780059640 0

0 0 0 0 0 0
0 0

The maximum data length: 20
The data return size: 20

12-280 Inquiry Functions

Workstation State list Inquiries
INQUIRE TEXT EXTENT

INQUIRE TEXT EXTENT

Operating States: WSOP, WSAC, SGOP

Description

The text extent information is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN

• The string is valid

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning text attributes, refer to Chapter 6, Output
Attribute Functions.

Syntax
G KS~ I N Q _TEXT_EXTE NT (workstation~d, string~osition~r,

string~osition_y, string, error status,
concatenation~r, concatenation_ y,
extent~ectang/e~r, extent_rectang/e_ y)

GQTXX (workstation_id, px, py, cstring, error status, con~t~r, con~t_y,
ext~r, ext_ y)

gingtextextent (workstation~d, position, string, extent, error status)

Inquiry Functions 12-281

Workstation State list Inquiries
INaU1RE TEXT EXTENT

Arguments
workstatior~id

data type:
access:
mechanism:

This argument is

integer
read-only
by reference

the integer value that identifies an open workstation.

string_posifion~r
string_positior~y

data type:
access:
mechanism:

real
read-only
by reference

These arguments are the X and Y world coordinate points that designate the
starting point of the specified string.

string

data type:
access:
mechanism:

This argument is

error status

data type:
access:
mechanism:

string .
read-only
by descriptor

the output text string about which you need information.

integer
write-only
by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-282 Inquiry Functions

Workstation State list Inquiries
INQUIRE TEXT EXTENT

concatenatior~x
concatenations y
data type: real
access: write-only
mechanism: by reference

These arguments are the X and Y world coordinate points that you can use as a
starting point for a new output string or as a concatenation point at the end of
the specified string.

exten~rectang/e~r
exten~rectang/e_y

data type: array (real)
access: write-only
mechanism: by reference

These arguments are four-element arrays containing the four world coordinate
X and Y values comprising the text extent rectangle. Point order starts with
the lower left corner and moves in acounter-clockwise direction. DEC GKS
computes the text extent rectangle using the current values for the text font and
precision, the character expansion factor, the character-up vector, the character
spacing, text path, text alignment, and character width. The extent rectangle
encloses the character bodies of the specified string.

Inquiry Functions 12-283

Workstation State List Inquiries
INQUIRE TEXT EXTENT

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR~TEG_19

-20 DECGKS$_ERROR~VEG~O

7 GKS$~RROR_7

20 GKS$_ERROR~O

25 GKS$~RROR~S

33 GKS$~RROR_33

38 GKS$~RROR_ 39

101 GKS$_ERROR_101

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Invalid code in string in routine ****

12-284 Inquiry Functions

Workstation State List Inquiries
INQUIRE LIST Of TEXT INDEXES

INQUIRE LIST OF TEXT INDEXES

Operating States: WSOP, WSAC, SGOP

Description

The list of available text indexes is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is not of category GKSK_WSCAT_IVII, GKSK_WSCAT
INPUT, or GKS$K WSCA'~WISS

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning text indexes, refer to Chapter 6, Output
Attribute Functions.

Syntax
GKS~INa_TEXT_INDEXES (workstation~d, error status, num~ndexes,

list indexes, return_sizeJ

GaETXI (workstation~d, element, errnr~tatus, num_text, re/ement)

gingtextind (index, error~tatus)

Inquiry Functions 12-285

Workstation State List Inquiries
INQUIRE LIST OF TEXT INDEXES

Arguments
workstatior~id

data type:
access:
mechanism:

integer
read-only
by reference

This argument is the integer value that identifies an open workstation.

error_status

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

rum_indexes

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of text index values for the specified workstation.

list indexes

data type:
access:
mechanism:

This argument is

12-286 Inquiry Functions

array (integer)
write-only
by descriptor

the array containing defined text index values.

Workstation State List Inquiries
INaU1RE LIST OF TEXT INDEXES

returr~size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the number of indexes returned to the text index list. You can
use this argument to see if you specified an array that was large enough to hold
all of the returned values.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$~RROR_NEG~0

7 GKS$_ERROR_7

20 GKS$~RROR~0

25 GKS$~RROR~S

33 GKS$~RROR_33

35 GKS$~RROR_35

36 GKS$~RROR_36

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Inquiry Functions 12-287

Workstation State List Inquiries
INQUIRE TEXT REPRESENTATION

INQUIRE TEXT REPRESENTATION

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _TEXT~EP returns the values currently associated
with the specified text index value.

The current text representation values are available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and if the following
conditions exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is not of category GKS$K_WSCAT_11/II, GKS$K_WSCAT_
INPUT, or GKS$K_WSCAT_WISS

• The text index is valid and defined

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning text indexes, refer to Chapter 6, Output
Attribute Functions.

Syntax

G KS$1 N Q _TEXT_R E P (workstation_id, text index, value type,
error status, text font, text recision,
character_expansion_factor, character spacing,
color_indexJ

G QTXR (workstation_id, tnndex, type, error status, font, precision, ex_fac,
spacing, cindexJ

gingtextrep (workstation_id, index, type, rep, error status)

12-288 Inquiry Functions

Workstation State list Inquiries
INQUIRE TEXT REPRESENTATION

Arguments
workstation~id

data type:
access:
mechanism:

This argument is

textindex

data type:
access:
mechanism:

This argument is

value type

data type:
access:
mechanism:

integer
read-only
by reference

the integer value that identifies an open workstation.

integer
read-only
by reference

the defined text index on the specified workstation.

integer
read-only
by reference

This argument specifies the type of values you want this function to return.
This function either returns the exact workstation state list values as they
are set, or it returns the values that the DEC GKS device handler is capable
of implementing. (See Section 12.1.2 for more information concerning this
argument.) The defined values are as follows:

Value Constant Description

0 GKS$K_VALUE_SET

1 GKS$K_VALUE_REALIZED

Use the exact state list values.

Use the values approximated by the
graphics handler.

error status

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function

Inquiry Functions 12-289

Workstation State list Inquiries
INQUIRE TEXT REPRESENTATION

writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

tex~font
tex~.precision

data type: integer
access: write-only
mechanism: by reference

The first argument is the current hardware or software font number associated
with the specified text bundle index. For information concerning the hardware
fonts available on your workstation, refer to the appropriate device-specific
appendix in this manual. For more information concerning the software fonts
available, refer to the appropriate appendix in this manual.

The second argument is the current text precision associated with the specified
text bundle index. The defined values are as follows:

Value Constant Description

0 GKS$K_TEXT_PRECISION~TRING String precision

1 GKS$K_TEXT_I'RECISION_CHAR Character precision

2 GKS$K_TEXT_PRECISION_STROKE Stroke precision

chara cter_ expa nsior~ fa ctor

data type: real
access: write-only
mechanism: by reference

This argument is the current character expansion factor associated with the
specified text bundle index. The character expansion factor multiplied by the
width to height ratio in the original font design determines the character width.
The character expansion factor does not affect the height of the characters.

12-290 Inquiry Functions

Workstation State List Inquiries
INQUIRE TEXT REPRESENTATION

character spacing

data type:
access:
mechanism:

real
write-only
by reference

This argument is the current character spacing associated with the specified text
bundle index. Positive values increase the space between characters. Negative
values decrease the space between characters. The value 0 places the character
bodies adjacent to one another.

co/or~ndex

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the color index associated with the specified text index value.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-17 DECGKS$~RROR~TEG_17

-19 DECGKS$~RROR_NEG_19

-20 DECGKS$~RROR_NEG~O

7 GKS$_ERROR_7

20 GKS$~RROR~O

25 GKS$~RROR~S

Inquired device values not set or realized
in routine ****

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Inquiry Functions 12-291

Workstation State List Inquiries
INQUIRE TEXT REPRESENTATION

Error
Number Completion Status Code Message

33 GKS$~RROR_33

35 GKS$~RROR_35

36 GKS$—ERROR_36

72 GKS$~RROR_72

73 GKS$—ERROR_73

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Text index is invalid in routine ****

A representation for the specified text
index has not been defined on this
workstation in routine ****

12-292 Inquiry Functions

Workstation State list Inquiries
INQUIRE VALUATOR DEVICE STATE

INQUIRE VALUATOR DEVICE STATE

Operating States: WSOP, WSAC, SGOP

Description
The function GKS$INQ VALUATOR_STATE returns the initialization values
for the specified valuator logical input device, and the current input operating
mode.

The valuator device state is available when DEC GKS is in any operating state
except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is of category GKS$K WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN

• The valuator logical input device is present on the specified workstation

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning input, refer to Chapter 8, Input Functions.

Syntax
GKS~INa_VALUATOR_STATE (workstation_id, device number,

error status, operating mode, echo_dag,
default value, prompt_echo_type,
echo area, data~ecord,
record_buffer_length, recordsize)

GaVLS (workstation_id, dev_num, dim_dr, error status, operating mode,
echo flag, in_value, p_e_type, echo area, low_val, high_val,
len_dr, dr)

gingvalst (workstation_id, dev, bufsize, state size, state, error status)

Inquiry Functions 12-293

Workstation State List Inquiries
INQUIRE VALUATOR DEVICE STATE

Arguments
workstation~...id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

device number

data type: integer
access: read-only
mechanism: by reference

This argument is the device number that differentiates between logical in-
put devices of the same class, operating on the same workstation. For more
information, refer to Chapter 8, Input Functions.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

12-294 Inquiry Functions

Workstation State list Inquiries
INQUIRE VALUATOR DEVICE STATE

operating mode

data type: integer
access: write-only
mechanism: by reference

This argument is the current input operating mode for the specified logical input
device. The defined values are as follows:

Value Constant Description

0 GKS$K_INPUT—MODE—REQUEST Request input mode

1 GKS$K~NPUT_IViODE~AMPLE Sample input mode

2 GKS$K—INPUT_IVIODE~VENT Event input mode

For more information concerning the input operating modes, refer to Chapter 8,
Input Functions.

echo_flag

data type: integer
access: write-only
mechanism: by reference

This argument is the echo flag specifying whether input is echoed on the
workstation surface. The defined values are as follows:

Value Constant Description

0 GKS$K_NOECHO Do not echo input.

1 GKS$K~CHO Echo input.

defaultvalue

data type: real
access: write-only
mechanism: by reference

This argument is the default real value of the valuator input device.

Inquiry Functions 12-295

Workstation State List Inquiries
INQUIRE VALUATOR DEVICE STATE

prompt.._echo_type

data type: integer
access: write-only
mechanism: by reference

This argument is the current prompt and echo type value.

echo area

data type: array (real)
access: write-only
mechanism: by reference

This argument is afour-element array containing the echo area device co-
ordinate points in the order XMIN, XMAX, YMIN, YMAX. For more inf or-
mation concerning the DEC GKS coordinate systems, refer to Chapter 7,
Transformation Functions.

data record

data type: address (record)
access: write-only
mechanism: by reference

This argument is a pointer to the current valuator input data record for the
specified device.

record_buffer_length

data type: integer
access: modifiable
mechanism: by reference

On input, this argument should contain the size, in bytes, of ,the data record
buffer you passed as the argument data_record. On output, the graphics
handler writes the amount of the buffer, in bytes, filled by the written data
record. If the argument record—.size is larger than record—buffer~ength after
the function call, then you know that the graphics handler truncated the data
record when writing it to the buffer; data was lost.

12-296 Inquiry Functions

Workstation State list Inquiries
INQUIRE VALUATOR DEVICE STATE

record size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the total size, in bytes, of the data record.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$~RROR _20

25 GKS$_ERROR_25

38 GKS$~RROR_38

140 GKS$_ERROR_140

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is neither of category
INPUT nor of category OUTIN in
routine ****

Specified input device is not present on
workstation in routine ****

Program Example
Example 12-13 illustrates the use of the function GKS$INQ-VALUATOR_
STATE.

Inquiry Functions 12-297

Workstation State list Inquiries
INaUIRE VALUATOR DEVICE STATE

Example 12-13: Determining the Current Valuator State

C This program writes the return values of the function
C GKS$INQ_VALUATOR_STATE to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, PROMPT_ECHO_TYPE, ERROR_STATUS,
* INPUT_MODE, ECHO_FLAG, INPUT_STATUS, DEVICE_NUM,
* RECORD_BUFFER_LENGTH, RECORD_SIZE
REAL ECHO_AREA(4), DATA_RECORD(2), UPPER_LIMIT,
* LOWER_LIMIT, VALUE
DATA WS_ID / 1 /, DEVICE_NUM / 1 /

C The elements in the data record are the upper and lower limits.
EQUIVALENCE(DATA_RECORD(1), LOWER_LIMIT)
EQUIVALENCE(DATA_RECORD(2), UPPER_LIMIT)

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240

C Initialize the modifiable argument...
RECORD_BUFFER_LENGTH = 8

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ_VALUATOR_STATE(WS_ID, DEVICE_NUM,
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, VALUE,
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD,
* RECORD_BUFFER_LENGTH, RECORD_SIZE)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ', ERROR_STATUS
WRITE(6, *) 'The input operating mode: ', INPUT_MODE
WRITE(6, *) 'The echo flag: ', ECHO_FLAG
WRITE(6, *) 'The initial value: ', VALUE
WRITE(6, *) 'The prompt and echo type: ' ,
* PROMPT_ECHO_TYPE
WRITE(6, *) 'The echo area: ', ECHO_AREA
WRITE(6, *) 'The data record: ', DATA_RECORD
WRITE(6, *) 'The maximum data length: ' ,
* RECORD_BUFFER_LENGTH
WRITE(6, *) 'The return size: ', RECORD_SIZE

CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

12-298 Inquiry Functions

Workstation State list Inquiries
INQUIRE VALUATOR DEVICE STATE

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_13
$ LINK EXAMPLE_13
$ RUN EXAMPLE_13
The error status: 0
The input operating mode: 0
The echo flag : i
The initial value: 0.5000000
The prompt and echo type: 1
The echo area: 533.0000 799.0000
The data record: 0.0000000E+00 1.000000
The maximum data length: 8
The return size: 8

$

RETURN
RETURN
RETURN

0.0000000E+00 479.0000

Inquiry Functions 12-299

Workstation State List Inquiries
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES

INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ_WS_DEFER~ND_UPDATE returns the current
deferral state, implicit regeneration mode, workstation surface status, and
whether a new frame is necessary to update the screen.

The deferral and update information is available when DEC GKS is in any
operating state except GKS$K_GKCL or GKS$K_GKOP, and if the following
conditions exist:

• The specified workstation identifier is valid and the associated workstation
1 ~ is open

• The workstation is not of category GKS$K_WSCAT~VII, GKS$K_WSCAT_
INPUT, or GKS$K_WSCAT_WISS

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning surface update or operating states, refer to
Chapter 4, Control Functions.

Syntax
GKS~INQ_WS_DEFER~ND_UPDATE (workstation_id, error status,

deferral _mode, regeneration mode,
surface empty,
ne w_ frame necessary)

G QW K D U (workstation_id, error status, def_mode, reg_mode, surface,
new frame)

gingwsdeferupdatest (workstation_id, du, error status)

12-300 Inquiry Functions

Workstation State List Inquiries
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES

Arguments
workstation_id

data type:
access:
mechanism:

integer
read-only
by reference

This argument is the integer value that identifies an open workstation.

error status

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

deferral mode

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the current deferral mode associated with the specified work-
station. The defined values are as follows:

Value Constant Description

0 GKS$K~SAP

1 GKS$K_BNIG

2 GKS$K_BNIL

3 GKS$K_ASTI

Generate images as soon as possible.

Generate images before input is requested
globally.

Generate images before input is requested
locally.

Generate images some time. Exact time is
not guaranteed.

Inquiry Functions 12-301

Workstation State list Inquiries
INQUIRE WORKSTATION DEfERRAI AND UPDATE STATES

regeneration mode

data type: integer
access: write-only
mechanism: by reference

This argument is the current implicit regeneration mode associated with the
specified workstation. The defined values are as follows:

Value Constant Description

0 GKS$K_IRG—SUPPRESSED Image regeneration is suppressed.

1 GKS$K_IRG—ALLOWED Image regeneration is allowed.

surface empty

data type: integer
access: write-only
mechanism: by reference

This argument is the flag that specifies whether the workstation surface is empty
(refer to Chapter 4, Control Functions). The defined values are as follows:

Value Constant Description

0

1

GKS$K_EMPTY

GKS$K—NOTEMPTY

Surface is "empty."

Surface is "not empty."

new_frame_necessary

data type: integer
access: write-only
mechanism: by reference

12-302 Inquiry Functions

Workstation State List Inquiries
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES

This argument is the flag that specifies whether DEC GKS needs to clear the
surface before making the next update to the screen. The defined values are as
follows.

Value Constant Description

0 GKS$K_NEWFRAME_NOTNECESSARY Do not clear surface at next
update.

1 GKS$K_NEWFRAME_NECESSARY Clear the surface at next update.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$~RROR~TEG_20

7 GKS$~RROR_7

20 GKS$~RROR_20

25 GKS$—ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

36 GKS$_ERROR_36

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine * * * *

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Inquiry Functions 12-303

Workstation State List Inquiries
INQUIRE WORKSTATION STATE

INQUIflE WORKSTATION STATE

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _WS_STATE returns the state of the active or inactive
workstation.

The state of the workstation is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the following conditions
exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is not of category GKS$K_WSCAT_1VII or GKS$K_
WSCAT~NPUT

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning open workstations or operating states, refer to
Chapter 4, Control Functions.

Syntax
GKS~INQ_WS_STATE (workstation~d, error status, workstation_stateJ
GAWKS (workstation_id, error status, state)

gingwsst (workstation~d, state, error_statusJ

12-304 Inquiry Functions

Workstation State List Inquiries
INQUIRE WORKSTATION STATE

Arguments
workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

workstation state

data type: integer
access: write-only
mechanism: by reference

This argument specifies whether the currently open workstation is active. The
defined values are as follows:

Value Constant L)escription

0 GKS$K_WS—INACTIVE Workstation is not active.

1 GKS$K_WS_ACTIVE Workstation is active.

Inquiry Functions 12-305

Workstation State List Inquiries
INaU1RE WORKSTATION STATE

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$~RROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

33 GKS$_ERROR_33

35 GKS$_ERROR_35

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is of category
INPUT in routine ****

lJ
12-306 Inquiry Functions

Workstation State List Inquiries
INQUIRE WORKSTATION CONNECTION AND TYPE

INQUIRE WORKSTATION CONNECTION AND TYPE

Operating States: wSOP, wSAC, SGOP

Description
The function GKS$INQ _WS_TYPE returns the logical name associated with
the physical device connection running from the host computer to the worksta-
tion, and returns the type of workstation with which you are working.

The workstation connection and type are available when DEC GKS is in
any operating state except GKS$K_GKCL or GKS$K_GKOP, if the specified
workstation identifier is valid, and if the associated workstation is open.

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning workstation connections, workstation types,
and operating states, refer to Chapter 4, Control Functions.

Syntax

G KS~ I N Q _WS_TYPE (workstation_id, error status,
connection_logical_name, workstation type,
I ogical _return _size J

GQWKC (workstation_id, error status, con_id, ws_type)

gingwsconntype (workstation_id, bufsize, ct_size, ct, error status)

Inquiry Functions 12-307

Workstation State List Inquiries
INQUIRE WORKSTATION CONNECTION AND TYPE

Arguments
workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

connection_logical_name

data type: string
access: write-only
mechanism: by descriptor

This argument is the logical name associated with the physical device connec-
tion running from the host computer to the workstation.

workstation type

data type: integer
access: write-only
mechanism: by reference

This argument is the integer value that is associated with the open workstation.
For the list of all DEC GKS valid workstation types, refer to the appropriate
appendix in this manual.

12-308 Inquiry Functions

Workstation State List Inquiries
INQUIRE WORKSTATION CONNECTION AND TYPE

logical_return_size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the return size, in bytes, of the string specifying the connection
logical name.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

-68 DECGKS$_ERROR~TEG_68

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

Invalid descriptor

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine * **

Specified workstation is not open in
routine ****

Inquiry Functions 12-309

Workstation State List Inquiries
INQUIRE WORKSTATION TRANSFORMATION

INQUIRE WORKSTATION TRANSFORMATION

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _WS~CFORM returns the flag that determines whether
or not a workstation transformation is pending, the current workstation window
and viewport, and the pending workstation window and viewport.

The workstation transformation information is available when DEC GKS is
in any operating state except GKS$K_GKCL or GKS$K_GKOP, and if the
following conditions exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is not of category GKS$K_WSCAT_1VII or GKS$K_
WSCAT_WISS

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning workstation transformations, refer to Chapter
7, Transformation Functions.

Syntax
GKS~INQ_WS~(FORM (workstation~d, error status,

transformation pending, requestea~window,
current window, requested_viewport,
current_viewportJ

GQWKT (workstation_id, error status, state, r_win, Twin, r_view, ~viewJ

gingwstran (workstation~d, wstran, error status)

12--310 Inquiry Functions

Workstation State list Inquiries
INQUIRE WORKSTATION TRANSFORMATION

Arguments
workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

trans forma tion_ pending

data type: integer
access: write-only
mechanism: by reference

This argument is the flag that designates whether a workstation transformation
is pending. The defined values are as follows:

Value Constant Description

0 GKS$K—NOTPENDING A workstation transformation is not pending.

1 GKS$K—PENDING A workstation transformation is pending.

requested window
currentwindow

data type: array (real)
access: write-only
mechanism: by reference

These arguments are four-element arrays that contain the requested and current

Inquiry Functions 12-311

Workstation State List Inquiries
INQUIRE WORKSTATION TRANSFORMATION

workstation window dimensions, in normalized device coordinates. DEC GKS
stores the dimensions in the following order:

1. X minimum value

2. X maximum value

3. Y minimum value

4. Y maximum value

requested_viewport
curren~viewport

data type: array (real)
access: write-only
mechanism: by reference

These arguments are four-element arrays that contain the requested and cur-
rent workstation viewport dimensions, in device coordinates. GKS stores the
dimensions in the following order:

1. X minimum value

2. X maximum value

3. Y minimum value

4. Y maximum value

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$—ERROR_NEG_20 GKS not in proper state: GKS in the error
state in routine ****

7 GKS$_ERROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

12-312 Inquiry Functions

Workstation State List Inquiries
INQUIRE WORKSTATION TRANSFORMATION

Error
Number Completion Status Code Message

20 GKS$~RROR_20

25 GKS$~RROR~S

33 GKS$~RROR_33

36 GKS$_ERROR_36

Specified workstation identifier is invalid
in routine * ** *

Specified workstation is not open in
routine ****

Specified workstation is of category MI in
routine ****

Specified workstation is Workstation
Independent Segment Storage in
routine ****

Inquiry Functions 12-313

Segment State list Inquiries

Segment State List Inquiries

This section describes the segment state list inquiries. (For more information
concerning the segment state list, refer to Chapter 4, Control Functions, and
to Chapter 9, Segment Functions.) You use these functions ~if you need infor-
mation about the state of a single segment, which is identified by a numeric
segment name, or if you are not aware of the current list of segment attributes
or the set of workstations associated with a segment.

12-314 Inquiry Functions

Segment State list Inquiries
INQUIRE SEGMENT ATTRIBUTES

INQUIRE SEGMENT ATTRIBUTES

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _SEG _ATTB returns the segment transformation
matrix, visibility, highlighting, priority, and detectability.

The list of segment attributes is available when DEC GKS is in any operating
state except GKS$K_GKCL or GKS$K_GKOP, and if the segment exists and
its name is valid. If these conditions are not met, the output arguments are
undefined, and the function sets the error status argument to the number of one
of the errors listed in the Error Messages section.

For more information concerning segments, refer to Chapter 9, Segment
Functions.

Syntax
GKSsINa_SEG~ITT6 (segment name, error status,

transformation matrix, visibility,
highlighting, priority, detectabilityJ

GQSGA (segment name, error status, matrix, visible, highlight, priority, detect)

gingsegattr (segment~ame segattr, error_statusJ

Arguments
segmentname

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an existing segment.

Inquiry Functions 12-315

Segment State list Inquiries
INQUIRE SEGMENT ATTRIBUTES

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

tra n s fo rm a ti o n_ m a trix

data type: array (real)
access: write-only
mechanism: by reference

This argument is asix-element array containing the translation, scaling, and
rotation components of the segment transformation matrix. For more informa-
tion concerning the transformation matrix, refer to GKS$ACCUM~CFORM_
MATRIX, GKS$EVAL _XFORM_I1/IATRIX, and GKS$SET_SEG_XFORM in
Chapter 9, Segment Functions.

visibility

data type: integer
access: write-only
mechanism: by reference

This argument is the segment's visibility on the workstation surface. The
defined values are as follows:

Value Constant Description

0 GKS$K_INVISIBLE The segment is not visible on the surface.

1 GKS$K_VISIBLE The segment is visible on the surface.

12-316 Inquiry Functions

Segment State list Inquiries
INQUIRE SEGMENT ATTRIBUTES

highlighting

data type: integer
access: write-only
mechanism: by reference

This argument specifies whether GKS highlights the specified segment on the
workstation surface. The defined values are as follows:

Value Constant Description

0 GKS$K—NORMAL The segment is not highlighted on the
surface.

1 GKS$K—HIGHLIGHTED The segment is highlighted on the surface.

priority

data type: real
access: write-only
mechanism: by reference

This argument specifies the priority of the specified segment. DEC GKS checks
the priority of a segment when two segments overlap on the workstation
surface, for all hardware devices that support this feature. Segment priorities
range from 0.0 to 1.0, and each device supports a finite number of priorities (for
more information, refer to the device-specific appendix in this manual).

detectability

data type: integer
access: write-only
mechanism: by reference

This argument determines whether the specified segment is detectable during
pick input. The defined values are as follows:

Value Constant Description

0 GKS$K_UNDETECTABLE You cannot pick this segment.

1 GKS$K_DETECTABLE You can pick this segment.

Inquiry Functions 12-317

Segment State list Inquiries
INQUIRE SEGMENT ATTRIBUTES

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the error
state in routine ****

7 GKS$~RROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SLOP
in routine ****

120 GKS$~RROR_120 Specified segment name is invalid in
routine ****

122 GKS$_ERROR_122 Specified segment does not exist in
routine ****

12-318 Inquiry Functions

Segment State List Inquiries
INQUIRE SET OF ASSOCIATED WORKSTATIONS

INQUIRE SET OF ASSOCIATED WORKSTATIONS

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _SET_ASSOC_WS returns the number and list of
workstations associated with the specified segment.

The list of associated workstations is available when DEC GKS is in any oper-
ating state except GKS$K_GKCL or GKS$K_GKOP, and if the segment exists
and its name is valid. If these conditions are not met, the output arguments are
undefined, and the function sets the error status argument to the number of one
of the errors listed in the Error Messages section.

For more information concerning segments, refer to Chapter 9, Segment
Functions.

Syntax
GKSaINQ_SETJ~ISSOC_WS (segment~ame, error status,

num_workstations, list workstations,
return size)

GQASWK (segment name, member, error status, num_ws, rmemberJ

gingassocws (segment name assocws, error_statusJ

Arguments
segmentname

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an existing segment.

Inquiry Functions 12-319

Segment State list Inquiries
INaUIRE SET OF ASSOCIATED WORKSTATIONS

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

num_workstations

data type: integer
access: write-only
mechanism: by reference

This argument is the number of workstations associated with the specified
segment.

lispworkstations

data type: array (integer)
access: write-only
mechanism: by descriptor

This argument is the array containing the workstation identifiers corresponding
to all of the workstations associated with the specified segment.

return size

data type: integer
access: write-only
mechanism: by reference

This argument is the number of workstation identifiers returned to the work-
station list. You can use this argument to see if you specified an array that was
large enough to hold all of the returned values.

12-320 Inquiry Functions

Segment State List Inquiries
INQUIRE SET OF ASSOCIATED WORKSTATIONS

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the error
state in routine ****

7 GKS$~RROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

120 GKS$_ERROR_120 Specified segment name is invalid in
routine ****

122 GKS$_ERROR_122 Specified segment does not exist in
routine ****

Inquiry Functions 12-321

Pixel Inquiries

Pixel Inquiries

This section describes the pixel inquiries. Pixel inquiries return the color of an
individual pixel or the color of a rectangular region of pixels on the device that
supports this type of graphic output. These functions can be used to check a
rectangular cell array region currently displayed on the workstation surface.

12-322 Inquiry Functions

Pixel Inquiries
INQUIRE PIXEL

INQUIRE PIXEL

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ ~'IXEL returns the color of an individual pixel on the
display surface.

The color of a pixel is available when DEC GKS is in any operating state except
GKS$K_GKCL or GKS$K_GKOP, and if the following conditions exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
wSCAT OUTIN

• The workstation has the ability to return information about pixels

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the capabilities of a workstation type, refer to
the device-specific appendix in this manual.

Syntax
GKSSINQ_PIXEL (workstation_id, world~r, worl~y, error status,

color index)

GQPX (workstation_id, px, py, error status, cindexJ

gingpixel (workstation_id, ppoint, pix, error status)

Inquiry Functions 12-323

Pixel Inquiries
INQUIRE PIXEL

Arguments
workstation_id

data type:
access:
mechanism:

This argument

world~r
worlc~y

data type:
access:
mechanism:

integer
read-only
by reference

is the integer value that identifies an open workstation.

real
read-only
by reference

These arguments are the X and Y world coordinates of the pixel about which
you are inquiring.

error status

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

color index

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the color index corresponding to the color of the specified
device coordinate. If the device coordinate does not translate to a valid pixel on
the display surface, DEC GKS returns the value -1 to this argument to signal
an invalid coordinate.

12-324 Inquiry Functions

Pixel Inquiries
INQUIRE PIXEL

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$~RROR_NEG_19

-20 DECGKS$~RROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR~0

25 GKS$_ERROR_25

39 GKS$~RROR_39

40 GKS$_ERROR_40

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine ****

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

Specified workstation has no pixel store
readback capability in routine ****

inquiry Functions 12-325

Pixel Inquiries
INQUIRE PIXEL ARRAY

INQUIflE PIXEL ARRAY

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ ~'IXEL _ARRAY returns the color of pixels in a rectan-
gular region on the screen.

DEC GKS determines the starting point within the color index array, determines
the number of remaining elements, and then maps the remaining columns and
rows, one for one, onto a rectangular portion of pixels on the display screen.

Next, DEC GKS translates a row of pixels to color indexes, fills the first di-
mension of the remaining array elements with the translated index values,
and continues until all pixels are translated and the color index is full. (The first
udimension" of the array is either the row or the column, depending on whether
your programming language supports row-major or column-major arrays.)

The list of color indexes corresponding to a pixel array is available when DEC
GKS is in any operating state except GKS$K_GKCL or GKS$K_GKOP, and if
the following conditions exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is of category GKS$K_WSCAT OUTPUT or GKS$K_
WSCAT_OUTIN

• The workstation has the ability to return information about pixels

• The dimensions specified for the color array are valid

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning column-major arrays, row-major arrays, and
color index arrays, refer to GKS$CELL _ARRAY in Chapter 5, Output Functions.
For more information concerning the capabilities of your device, refer to the
device-specific appendix in this manual.

12-326 Inquiry Functions

Pixel Inquiries
INQUIRE PIXEL ARRAY

Syntax
G KS~ I N Q _PIXE L ~R RAY (workstation_id, column number, row number,

max columns, max rows, world~r,
world_y, error status, invalid_indexes_flag,
color_index_arrayJ

G aPXV (workstation_id, corner~r, corner_ y, dimmer, dim_ y, scol, scow, pools,
prows, error status, ~n_va s, carrayJ

gingpixelarraydim (workstation_id, rect, dim, error_statusJ

Arguments
workstatior~id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

co/umr~number
row number

data type: integer
access: read-only
mechanism: by reference r

These arguments are the numbers of the column and row that designate the
starting element in the color index array. DEC GKS begins placing color index
values at this array element.

mawcolumns
marrows

data type: integer
access: read-only
mechanism: by reference

These arguments specify the numbers of columns and rows of pixels about
which you inquire. The values must be less than or equal to the size of the

Inquiry Functions 12-327

Pixel Inquiries
INQUIRE PIXEL ARRAY

buffer, from column umber and row umber to the last element of color_
index~rray.

world_x
worlc~y

data type: real
access: read-only
mechanism: by reference

These arguments are the values specifying the upper left corner of the pixel
array to be translated to color index values. You pass these arguments as a
world coordinate value, and DEC GKS translates the point to device coor-
dinates according to the current normalization and workstation transforma-
tions. (For more information concerning transformations, refer to Chapter 7,
Transformation Functions.)

error status

data type: integer
access: write-only
mechanism: by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

in valic~ind exec_ flag

data type: integer
access: write-only
mechanism: by reference

This argument is the flag that specifies whether there exist any invalid color
index values. (GKS returns an invalid index value of -1 if a pixel is outside the

12-328 Inquiry Functions

Pixel Inquiries
INaU1RE PIXEL ARRAY

display surface, possibly due to a transformation). The defined values are as
follows.

Value Constant Description

0 GKS$K_INVALID~BSENT Color array contains no invalid
indexes.

1 GKS$K—INVALID_I'RESENT Color array contains invalid indexes.

color_inde~array

data type: 2-D array (integer)
access: write-only
mechanism: by descriptor

This argument is the two-dimensional color index array. If DEC GKS cannot
translate a pixel color to a color index value, DEC GKS fills the array element
with the value -1.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 DECGKS$_ERROR_NEG_19 Invalid error status parameter specified in
routine ****

-20 DECGKS$_ERROR.~VEG _20 GKS not in proper state: GKS in the error
state in routine * * * *

7 GKS$_ERROR_7 GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

20 GKS$_ERROR_20

25 GKS$_ERROR~S

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Inquiry Functions 12-329

Pixel Inquiries
INQUIRE PIXEI ARRAY

Error
Number Completion Status Code Message

39 GKS$_ERROR_39 Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

40 GKS$_ERROR_40 Specified workstation has no pixel store
readback capability in routine ****

91 GKS$~RROR_91 Dimensions of color array are invalid in
routine ****

12-330 Inquiry Functions

Pixel Inquiries
INQUIRE PIXEL ARRAY DIMENSIONS

INQUIRE PIXEL ARRAY DIMENSIONS

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$INQ _PIXEL _ARRAY_DIM returns the number of pixels in
the X and Y axis of a rectangular portion of the display surface.

The dimensions of a pixel array are available when DEC GKS is in any op-
erating state except GKS$K_GKCL or GKS$K_GKOP, and if the following
conditions exist:

• The specified workstation identifier is valid and the associated workstation
is open

• The workstation is of category GKS$K_WSCAT_OUTPUT or GKS$K_
WSCAT_OUTIN

If these conditions are not met, the output arguments are undefined, and the
function sets the error status argument to the number of one of the errors listed
in the Error Messages section.

For more information concerning the dimensions of your workstation surface,
refer to the device-specific appendix in this manual.

Syntax
GKS~INa_PIXEL~RRAY_DIM (workstation_id, starting~voint~r,

starting~oint_y, diagonal~voint~r,
diagonal_point_y, error status,
dimension_device~r, dimension device_ yJ

GaPXAD (workstation_id, px, py, dx, dy, error status, pa~cols, pa~rowsJ
gingpixelarray (workstation_id, rect, dim, error_statusJ

Inquiry Functions 12-331

Pixel Inquiries
INQUIRE PIXEL ARRAY DIMENSIONS

Arguments
workstatior~id

data type: integer
access: read-only
mechanism: by reference

This argument is the integer value that identifies an open workstation.

starting_point~x
starting_poin~y

data type: real
access: read-only
mechanism: by reference

These arguments are the X and Y values designating a corner of a rectangu-
lar area to be mapped onto the display surface. You pass these arguments
as world coordinate values, and DEC GKS translates the point to device
coordinates according to the current normalization and workstation trans-
formations. (For more information concerning transformations, refer to Chapter
7, Transformation Functions.)

diagonal_poin~x
diagonal_poin~y

data type: real
access: read-only
mechanism: by reference

These arguments are the X and Y values of the point diagonal to the starting
point that form the rectangle to be mapped onto the display surface. You pass
these arguments as world coordinate values, and DEC GKS translates the point
to device coordinates according to the current normalization and workstation
transformations. (For more information concerning transformations, refer to
Chapter 7, Transformation Functions.)

1 Z-332 Inquiry Functions

Pixel Inquiries
INQUIRE PIXEL ARRAY DIMENSIONS

error status

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the error indicator. If the function writes the value 0 to this
argument, all of the remaining output arguments are valid. If the function
writes any other number to this argument, the number corresponds to one of
the error messages listed in the Error Messages section, and all of the remaining
output arguments are invalid.

dimensior~device~r
dimension_device_y

data type:
access:
mechanism:

integer
write-only
by reference

These arguments are the dimensions of the pixel array.

Error Messages
If this inquiry function cannot return valid values, the number in the error
status argument corresponds to one of the numbers in the following list:

Error
Number Completion Status Code Message

-19 ~ DECGKS$_ERROR_NEG_19

-20 DECGKS$_ERROR_NEG_20

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

Invalid error status parameter specified in
routine ****

GKS not in proper state: GKS in the error
state in routine * * * *

GKS not in proper state; GKS shall be in
one of the states WSOP, WSAC or SGOP
in routine ****

Specified workstation identifier is invalid
in routine ****

Specified workstation is not open in
routine ****

Inquiry Functions 12-333

Pixel Inquiries
INQUIRE PIXEL ARRAY DIMENSIONS

Error
Number Completion Status Code Message

39 GKS$_ERROR_39 Specified workstation is neither of category
OUTPUT nor of category OUTIN in
routine ****

40 GKS$—ERROR_40 Specified workstation has no pixel store
readback capability in routine ****

91 GKS$_ERROR_91 Dimensions of color array are invalid in
routine ****

Program Example
Example 12-14 illustrates the use of the function GKS$INQ _PIXEL —ARRAY
DIM.

Example 12-14: Determining the Dimensions of a Pixel Array

C This program writes the return values of the functions
C GKS$INQ_PIXEL_ARRAY_DIM to the workstation surface.

IMPLICIT NONE
INCLUDE 'SYS$LIBR.ARY:GKSDEFS.FOR'
INTEGER WS_ID, ERROR_STATUS, BEGIN_COL, COLORS(2, 2),
* BEGIN_ROW, NUM_COLUMNS, NUM_ROWS, NUM_PIXEL_COLUMNS,
* NUM_PIXEL_ROWS
REAL DEVICE_X, DEVICE_Y, WORLD_START_X, WORLD_START_Y,
* WORLD_DIAG_X, WORLD_DIAG_Y
DATA WS_ID / 1 /,
* BEGIN_COL / 1 /, BEGIN_ROW / 1 /, NUM_COLUMNS / 2 /,_
* NUM_ROWS / 2 /, WORLD_START_X / 0.1 /,
* WORLD_START_Y / 0.2 /, WORLD_DIAG_X / 0.2 /,
* WORLD_DIAG_Y / 0.1 /
DATA COLORS / 2,3, 1,0 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240
CALL GKS$ACTIVATE_WS(WS_ID)

(continued on next page)

12-334 Inquiry Functions

Pixel Inquiries
INQUIRE PIXEL ARRAY DIMENSIONS

Examp{e 12-14 (Copt.): Determining the Dimensions of a Pixel Array

C Color a small section of the screen with cell array.
CALL GKS$CELL_ARRAY(WORLD_START_X, WORLD_START_Y,
* WORLD_DIAG_X, WORLD_DIAG_Y, BEGIN_COL, BEGIN_ROW,
* NUM_COLUMNS, NUM_ROWS, '/.DESCR(COLORS))

C You can obtain this information as long as the specified
C workstation is open.

CALL GKS$INQ_PIXEL ARR.AY_DIM(WS_ID, WORLD_START_X,
* WORLD_START_Y, WORLD_DIAG_X, WORLD_DIAG_Y, ERROR_STATUS,
* NUM_PIXEL_COLUMNS, NUM_PIXEL_ROWS)

C Write the returned values to the screen.
WRITE(6, *) 'The error status: ', ERROR_STATUS
WRITE(6, *) 'The number of columns of pixels: ' ,
* NUM_PIXEL_COLUMNS
WRITE(6, *) 'The number of rows of pixels:
* NUM_PIXEL_ROWS
CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

When you compile, link, and execute this program on a VT241 terminal, the
following values are written to the workstation surface:

$ FORTRAN EXAMPLE_14
$ LINK EXAMPLE_14
$ RUN EXAMPLE_14

RETURN
RETURN
RETURN

The error status: 0
The number of columns of pixels: 47
The number of rows of pixels: 48

Inquiry Functions 12-335

Appendix A

DEC GKS Supported Workstations

This appendix lists the devices that DEC GKS supports and the defined
workstation type of each device. You use the workstation type constants or
values in calls to the function GKS$OPEN_WS (refer to Chapter 4, Control
Functions). You can also compare the workstation type or value with the
values written to GKS$INQ _WS_TYPE or GKS$INQ _WSTYPE _LIST (refer to
Chapter 12, Inquiry Functions).

If you are using a language binding and you wish to determine the
corresponding workstation-type constants, refer to Appendix B, DEC GKS
Constants.

For detailed information concerning each of the devices, refer to the appropriate
device-specific appendix in this manual.

A.1 Supported Workstation Types

Table A-1 lists the workstation types defined by DEC GKS.

Table A-1: DEC GKS Supported Workstation Types

Value Constant Description

0 GKS$K_WSTYPE_DEFAULT

2 GKS$K_GKSM_OUTPUT

3 GKS$K_GKSM_INPUT

5 GKS$K_WSTYPE_WISS

7 GKS$K_CGM_OUTPUT

Default workstation type

GKSM output metafile

GKSM input metafile

Workstation independent segment storage

CGM output metafile

DEC GKS Supported Workstations A-1

Table A-1 (Cont.~: DEC GKS Supported Workstation Types

Value Constant Description

10 GKS$K_VL OUTPUT

11 GKS$K_VT125

12 GKS$K_VT125BW

13 GKS$K_VT240

14 GKS$K_VT240BW

15 GKS$K_LCPO1

15 GKS$K_LCG01

16 GKS$K_VT330

17 GKS$K_VT340

31 GKS$K_LA34

31 GKS$K_LA100

32 GKS$K_LA50

34 GKS$K_LA210

35 GKS$K_LA75

38 GKS$K_LN03_I'LUS

41 GKS$K_VSII

41 GKS$K_VSII_GPX

41 GKS$K_VS2000

42 GKS$K_VSI

51 GKS$K_LVP16A

51 GKS$K_HP7475

52 GKS$K_LVP16B

53 GKS$K_HP7550

54 GKS$K~IP7580

55 GKS$K_LG~viPS2000

DIGITAL VT125 black and white output
only

DIGITAL VT125 with color option

DIGITAL VT125 (black and white)

DIGITAL VT240 with color option

DIGITAL VT240 (black and white)

DIGITAL LCGO1 printer

DIGITAL LCGO1 printer

DIGITAL VT330 (black and white)

DIGITAL VT340 with color

DIGITAL LA34 with graphics option

DIGITAL LA100

DIGITAL LA50 with 2:1 aspect ratio

DIGITAL LA210

DIGITIAL LA75

DIGITIAL LN03 PLUS

DIGITAL VAXstation II (black and white)

DIGITAL VAXstation II/GPX (color), and
II/RC

DIGITAL VAXstation 2000

DIGITAL VAXstation I

DIGITAL LVP 16 color graphics plotter (with
8 1/2 by 11 paper size)

HP 74 751 pen plotter

DIGITAL LVP 16 color graphics plotter (with
11 by 17 paper size)

HP75502pen plotter

HP 75 803 pen plotter

MPS20004fi1m recorder

1 HP7475 is a registered trademark of Hewlett Packard.
2HP7550 is a registered trademark of Hewlett Packard.
3HP7580 is a registered trademark of Hewlett Packard.
4MPS2000 is a trademark of Lasergraphics.

A-2 DEC GKS Supported Workstations

Table A-1 (Coot.): DEC GKS Supported Workstation Types

("1

Value Constant Description

56 GKS$K~-IP7585

61 GKS$K_I'OSTSCRIPT

70 GKS$K_TEK4014_OUTPUT

72 GKS$K_TEK4014

80 GKS$K_TEK4107_OUTPUT

82 GKS$K_TEK4107

210 GKS$K_DECWINDOWS_
OUTPUT

211 GKS$K_DECWINDOWS

212 GKS$K_DECWINDOWS_
DRAWABLE

213 GKS$K_DECWINDOWS_
WIDGET

HP75855pen plotter

DIGITAL LPS40 and PostScript6graphics
handler

TEKTRONIX-4014~output only

TEKTRONIX-4014

TEKTRONIX-4107 output only

TEKTRONIX-4107

DECwindows—output only

DECwindows—input/output device

DECwindows—an application window,
output only

DECwindows—input/output within an
application widget

SHP7585 is a registered trademark of Hewlett Packard.
6 PostScript is a registered trademark of Adobe Systems, Inc.
TEKTRONIX is a registered trademark of TEKTRONIX, Inc.

NOTE

In some languages, GKS$K_CONID_DEFAULT may not be the
number 0. For more information, refer to your language's definition
file.

The DIGITAL LA34 and LA100 use the same DEC GKS graphics handler.
Thus, the workstation type value is the same for both workstations. The same
is true for the VSII, the VSII/GPX, the VSII/RC, the VS2000, the LVP16, and
the HP 74 75 .

Note that to specify a 2:1 aspect ratio on the LA50, SWl-5 must be left
open. See the LA50 Printer Programmer Reference Manual (order number
EK-OLA50-RM).

DEC GKS Supported Workstations A-3

A.2 Default Workstation Types

The default workstation type for the DEC GKS products running on the
VAX systems is the black and white VT240 workstation (14). The default
workstation type for the DEC GKS products running on the VAXstations is the
VSI workstation (41).

If you specify the value 0 or the constant GKS$K_WSTYPE_DEFAULT in a
call to a function that accepts a workstation type as an argument, DEC GKS
translates the logical name GKS$WSTYPE and uses the translation as the type.
In this manner, you can define GKS$WSTYPE to be a different workstation
type value each time you execute your program, and each time the program
accepts the newly defined workstation type. For more information, refer to
Chapter 1, Introduction to DEC GKS.

A.3 Output-Only Devices

When you use the workstation types designated output only, you can specify
the appropriate output-only workstation type and pass a file specification as the
second argument to GKS$OPEN_WS (connection identifier), as follows:

INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'

CALL GKS$OPEN_WS(1, 'FILE_NAME.DAT', GKS$K_VT_OUTPUT)

CALL GKS$ACTIVATE_WS(1)
C Generate output...

After the program executes, you can type or print the file at your workstation.
The default file type for the connection identifier is file~ame.LIS; otherwise,
DEC GKS uses the file extension that you provide. For information
concerning accessing allocated devices as workstations using GKS$CONID and
GKS$WSTYPE, refer to Chapter 1, Introduction to DEC GKS.

A-4 DEC GKS Supported Workstations

n

A.4 Using Bit Masks for Workstation Types

You can take advantage of device-dependent features of certain workstations by
specifying a hexadecimal bit mask representation as the workstation type. For
instance, by specifying different hexadecimal values as the workstation type,
you can tell some graphics handlers to use different sizes of paper.

Figure A-1 illustrates the format of a hexadecimal representation of the
workstation type. The bit mask in the first part of the workstation type value
tells the graphics handler which feature to manipulate. The second part of
the workstation type value specifies the hexadecimal representation of the
workstation type. For instance, the valued (whose decimal equivalent is the
number 13) tells DEC GKS that the workstation type is a color VT240.

DEC GKS Supported Workstations A-5

Figure A-1: Hexadecimal Bit Masks as Workstation ~'ype Values

$ DEFINE GKS$WSTYPE workstation type

workstation _type
longword value

0001 GOOD

Note:

Word 2= Word 1=

bit mask value workstation value type

$ DEFINE GKS$WSTYPE %x0001000D

D = %d 13, the workstation type constant for the VT241.

ZK-5137-86

For specific information concerning the supported bit masks for any given
device, refer to the appropriate device-specific appendix in this manual.

A.4.1 An Alternative to Defining Bit Masks

In some instances, you may wish to take advantage of device-dependent
features by using code within your programs instead of bit mask definitions at
the DIGITAL Command Line.

For use within programs, DEC GKS defines a series of constants. By performing
a bitwise OR operation on certain constants, you can control device-dependent
features such as paper size. To use these constants, you must include the
definition file for your programming language. (For more information about
definition files, refer to Chapter 1, Introduction to DEC GKS).

A-6 DEC GKS Supported Workstations

For example, if you wanted to use the LVP 16 with landscape orientation and a
paper size of A3, you can call GKS$OPEN_WS as follows:

INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'

CALL GKS$OPEN_WS(1, GKS$K_CONID_DEFAULT,
* GKS$K_LVP16A .OR. GKS$M_LANDSCAPE .OR. GKS$M_PAPERSIZE A3)

The DEC GKS constants used as bit masks begin with the prefix GKS$M.

For more information concerning bit mask constants and your particular
device, refer to the appropriate device-specific appendix in this manual. For a
complete list of the available bit mask constants, refer to Appendix B, DEC GKS
Constants.

DEC GKS Supported Workstations A-7

Appendix B

DEC GKS Constants

This appendix lists the defined DEC GKS constants, the language binding
constants, and a short description of each. Using constants in your DEC GKS
programs adds to the legibility of your program.

To use constants in your program, you must include a definitions file in your
code. For a list of the definition files for each of the DEC GKS supported
programming languages, refer to Chapter 1, Introduction to DEC GKS.

Table B-1 lists the DEC GKS constant names, which use the GKS$K interface,
and the corresponding binding constant names.

Table B-1: DEC GKS Constant Names and Corresponding Language Binding
Constant Names

DEC GKS Constant
Binding
Constant Value Description

Input Mode Types:

GKS$K~NPUT_NiODE~EQUEST GREQU 0 Request mode

GKS$K_INPUT_NiODE_SAMPLE GSAMPL 1 Sample mode

GKS$K_INPUT_NiODE_EVENT GEVENT 2 Event mode

Echo States:

GKS$K~1OECH0 GNECHO 0 Echo disabled

GKS$K~CHO GECHO 1 Echo enabled

Input Status Types:

GKS$K_STATUS~TONE GNONE 0 No input obtained

GKS$K_STATUS_OK GOK 1 Input obtained

DEC GKS Constants B-1

Table B-1 (Cont.~: DEC GKS Constant Names and Corresponding Language
Binding Constant Names

DEC GKS Constant
Binding
Constant Value Description

GKS$K_STATUS_NOCHOICE GNCHOI 2 Input is NOCHOICE

GKS$K_STATUS_NOPICK GNPICK 2 Input is NOPICK

GKS Status Types:

GKS$K_GKCL GGKCL 0 GKS closed

GKS$K_GKOP GGKOP 1 GKS open

GKS$K_WSOP GWSOP 2 At least one workstation open

GKS$K_WSAC GWSAC 3 At least one workstation active

GKS$K_SGOP GSGOP 4 At least one segment open

GKS Level Types:

GKS$K_LEVEL _NiA GLMA -3 level ma

GKS$K_LEVEL _IViB GLMB -2 level mb

GKS$K_LEVEL ~/IC GLMC -1 level me

GKS$K_LEVEL _OA GLOA 0 level Oa

GKS$K_LEVEL _OB GLOB 1 level Ob

GKS$K_LEVEL _OC GLOC 2 level Oc

GKS$K_LEVEL _lA GL1A 3 level la

GKS$K_LEVEL _1B GL1B 4 level lb

GKS$K_LEVEL _1C GL1C 5 level lc

GKS$K_LEVEL _2A GL2A 6 level 2a

GKS$K_LEVEL ~B GL2B 7 level 2b

GKS$K_LEVEL _2C GL2C 8 level 2c

Text Path Types:

GKS$K_TEXT_I'ATH_RIGHT GRIGHT 0 Right

GKS$K_TEXT_1'ATH_LEFT GLEFT 1 Left

GKS$K_TEXT~'ATH_UP GUP 2 Up

GKS$K_TEXT_I'ATH_DOWN GROWN 3 Down

Text Horizontal Alignment Types:

GKS$K_TEXT_HALIGN_NORMAL GAHNOR 0 Normal

GKS$K_TEXT_HALIGN_LEFT GALEFT 1 Left

B-2 DEC GKS Constants

Table B-1 (Copt.): DEC GKS Constant Names and Corresponding Language
Binding Constant Names

DEC GKS Constant
Binding
Constant Value Description

GKS$K_TEXT_HALIGN_CENTER GACENT 2 Center

GKS$K_TEXT_HALIGN_RIGHT GARITE 3 Right

Text Vertical Alignment Types:

GKS$K_TEXT_VALIGN~TORMAL GAVNOR 0 Normal

GKS$K_TEXT_VALIGN_TOP GATOP 1 Top

GKS$K_TEXT_VALIGN_CAP GACAP 2 Cap

GKS$K_TEXT_VALIGN~IALF GAHALF 3 Half

GKS$K_TEXT_VALIGN_BASE GABASE 4 Base

GKS$K_TEXT_VALIGN_BOTTOM GABOTT 5 Bottom

Standard Line Types:

GKS$K_LINETYPE_SOLID GLSOLI 1 Solid

GKS$K_LINETYPE_DASHED GLDASH 2 Dashed

GKS$K_LINETYPE_DOTTED GLDOT 3 Dotted

GKS$K_LINETYPE_DASHED_ GLDASD 4 Dash-Dotted
DOTTED

Standard Marker Types:

GKS$K_1VIARKERTYPE_DOT GPOINT 1 Dot (.)

GKS$K_IViARKERTYPE_FLUS GPLUS 2 Plus (+)

GKS$K_IViARKERTYPE~STERISK CAST 3 Asterisk (*)

GKS$K~1/IARKERTYPE_CIRCLE GOMARK 4 Circle (o)

GKS$K~/IARKERTYPE _DIAGONAL _ GXMARK 5 Diagonal Cross (X)
CROSS

Text Precision Types:

GKS$K_TEXT_I'RECISION_STRING GSTRP 0 String

GKS$K_TEXT_I'RECISION_CHAR GCHARP 1 Char

GKS$K_TEXT—I'RECISION_STROKE GSTRKP 2 Stroke

Fill Area Types:

GKS$K_INTSTYLE_HOLLOW GHOLLO 0 Hollow

GKS$K~NTSTYLE_SOLID GSOLID 1 Solid

GKS$K~NTSTYLE_I'ATTERN GPATTR 2 Pattern

DEC GKS Constants B-3

Table B-1 (Copt.): DEC GKS Constant Names and Corresponding Language
Binding Constant Names

DEC GKS Constant
Binding
Constant Value Description

GKS$K _INTSTYLE _HATCH

Attribute Source States:

GKS$K~ASF_BUNDLED

GKS$K~SF_INDIVIDUAL

Clear Screen States:

GKS$K _CLEAR _CONDITIONALLY

GKS$K_CLEAR~LWAYS

Error Handling States:

GKS$K_CLEAR_CONDITIONALLY

GKS$K_CLEAR~LWAYS

Clipping States:

GKS$K_NOCLIP

GKS$K_CLIP

workstation Types:

GKS$K_WSTYPE _DEFAULT

GKS$K_GKSM_OUTPUT

GKS$K_GKSM_INPUT

GKS$K_WSTYPE_WISS

GKS$K_CGM_OUTPUT

GKS$K_VT_OUTPUT

GKS$K_VT125

GKS$K_VT125BW

GKS$K_VT240

GKS$K_VT240BW

GKS$K_VT330

GKS$K_VT340

GKS$K_LCPO1

B-4 DEC GKS Constants

GHATCH 3

GBUNDL 0

GINDIV 1

GCONDI 0

GALWAY 1

GCONDI 0

GALWAY 1

GNCLIP 0

GCLIP 1

GWSDEF 0

GMOUTP 2

GMINPT 3

GWSWIS 5

GCGMO

GVTO

GV125C

7

10

11

GV125B 12

GV240C 13

GV240B 14

GV330 16

GV340 17

GLCP01 15

Hatched

Bundled

Individual

Clear conditionally

Clear always

Clear conditionally

Clear always

Clipping off

Clipping on

Default workstation type

GKS output metafile

GKS input metafile

GKS workstation independent
segment storage

CGM output metafile

DIGITAL VT 125 (output only)

DIGITAL VT125 with color
option

Black and white DIGITAL VT 125

DIGITAL VT240 with color
option

Black and white DIGITAL VT240

DIGITAL VT330 (black and
white)

DIGITAL VT340 (color)

DIGITAL LCGO1 printer

Table B-1 (Cont.): DEC GKS Constant Names and Corresponding Language
Binding Constant Names

DEC GKS Constant
Binding
Constant Value Description

GKS$K_LCGO1

GKS$K_LA34

GKS$K_LA100

GKS$K_LA50

GKS$K_LA75

GKS$K_LA210

GKS$K_LNO3_I'LUS

GKS$K_VSI

GKS$K_VSII

GKS$K_VSII_GPX

GKS$K_VS2000

GKS$K_VS3200

GKS$K_VS3500

GKS$K_LVP16A

GKS$K_LVP16B

GKS$K_HP7475

GKS$K_HP7550

GKS$K_HP7580

GKS$K_LG_1ViPS2000

GKS$K_HP7585

GKS$K_I'OSTSCRIPT

GKS$K_TEK4014_OUTPUT

GKS$K_TEK4014

GKS$K_TEK4107_OUTPUT

GKS$K_TEK4107

GKS$K_LJ250

GKS$K_LJ250_180DPI

GLCGOI 15 DIGITAL LCGO1 printer

GLA34 31 DIGITAL LA34 with graphics
option

GLA100 31 DIGITAL LA100

GLA50 32 DIGITAL LA50 with 2:1 aspect
ratio

GLA75

GLA210

GLN03P

GVSI

GVSII

GVSGPX

GV2000

GV3200

GV3500

GLVPA

35

34

38

42

41

41

41

41

41

51

DIGITAL

DIGITAL

DIGITAL

DIGITAL

DIGITAL

DIGITAL

DIGITAL

DIGITAL

DIGITAL

LA75

LA210

LN03 PLUS

VAXstation I

VAXstation II

VAXstation II/GPX

VAXstation 2000

VAXstation 3200

VAXstation 3500

DIGITAL LVP 16 color plotter
(8 1/2 by 11)

GLVPB 52 DIGITAL LVP16 color plotter
(llbyl7)

GHP 74 7 51 Hewlett Packard HP 74 75

GHP755 53 HP7550 pen plotter

GHP758 54 HP7580 pen plotter

GLGMPS 55 Lasergraphics film recorder

GH7585 56 HP7585 pen plotter

GPTSC 61 PostScript graphics handler

GTEKO 70 TEKTRONIX-4014 (output only)

GT4014 72 TEKTRONIX-4014

GT41O 80 TEKTRONIX-4107 (output only)

GT4107 82 TEKTRONIX-4107

GLJ250 91 DIGITAL LJ250 90 DPI

GLJ25X 92 DIGITAL LJ250 180 DPI

DEC GKS Constants B-5

Table B-1 (Copt.): DEC GKS Constant Names and Corresponding Language
Binding Constant Names

DEC GKS Constant
Binding
Constant Value Description

GKS$K_DECWINDOWS_OUTPUT

GKS$K_DECWINDOWS

GKS$K _DECWINDOWS_DRAWABLE

GKS$K_DECWINDOWS_NOTOOLKIT

GKS$K_CONID_DEFAULT

Workstation States:

GKS$K_WS_INACTIVE

GKS$K_WS~ICTIVE

Deferral State Types:

GKS$K~SAP

GKS$K_BNIG

GKS$K_BNIL

GKS$K_ASTI

Implicit Regeneration States:

GKS$K_IRG _SUPPRESSED

GKS$K_IRG_ALLOWED

Regeneration Flag States:

GKS$K_POSTPONE_FLAG

GKS$K _PERFORM _FLAG

New Frame Action States:

GKS$K_NEWFRAME_
NOTNECESSARY

GKS$K _NEWFRAME _NECESSARY

Action Pending States:

GKS$K_NOTPENDING

GKS$K_I'ENDING

Representation States:

GKS$K_VALUE_SET

GKS$K_VALUE _REALIZED

B-6 DEC GKS Constants

GDECWO 210 DECwindows output

GDECW 211 DECwindows

GDECWD 212 DECwindows drawable

GDECWN 219 DECwindows no toolkit

GCONID 0

GINACT 0

GACTIV 1

GASAP 0

GBNIG 1

GBNIL 2

GASTI 3

GSUPPD 0

GALLOW 1

GPOSTP 0

GPERFO 1

GNO 0

GYES 1

GNPEND 0

GPEND 1

GSET 0

GREALI 1

Default connection
identifier

Inactive

Active

As soon as possible

Before the next global interaction

Before the next local interaction

At some time

Implicit regeneration suppressed

Implicit regeneration allowed

Implicit regeneration postponed

Implicit regeneration performed

No new frame action on update

New frame action on update

Not pending

Pending

Type of returned value is set

Type of returned value is realized

Table B-1 (Cont.~: DEC GKS Constant Names and Corresponding Language
Binding Constant Names

DEC GKS Constant
Binding
Constant Value Description

Workstation Category Types:

GKS$K_WSCAT_OUTPUT GOUTPT 0 Output

GKS$K_WSCAT~NPUT GINPUT 1 Input

GKS$K_WSCAT_OUTIN GOUTIN 2 Out/In

GKS$K_WSCAT_WISS GWISS 3 Workstation independent segment
storage

GKS$K_WSCAT_1VI0 GMO 4 Metafile output

GKS$K_WSCAT_IVII GMI 5 Metafile input

Workstation Class Types:

GKS$K_WSCLASS_VECTOR GVECTR 0 Vector

GKS$K_WSCLASS_RASTER GRASTR 1 Raster

GKS$K_WSCLASS_OTHERD GOTHWK 2 Other device

Device Coordinate States:

GKS$K_NIETERS GMETRE 0 Meters

GKS$K_OTHER_UNITS GOTHU 1 Other units

Workstation Color States:

GKS$K_NiONOCHROME GMONOC 0 Monochrome

GKS$K_COLOR GCOLOR 1 Color

Pixel Validity States:

GKS$K_INVALID~BSENT GABSNT 0 Invalid values absent

GKS$K_INVALID_I'RESENT GPRSNT 1 Invalid values present

Display Surface States:

GKS$K~1OTEMPTY GNEMPT 0 Display surface not empty

GKS$K~MPTY GEMPTY 1 Display surface empty

World or NDC Coordinate State:

GKS$K_COORDINATES_WC GWC 0 WC coordinates

GKS$K_COORDINATES_NDC GNDC 1 NDC coordinates

Dynamic Modification States:

GKS$K_IRG GIRG 0 Implicit regeneration necessary

GKS$K_IMM GIMM 1 Immediate

DEC GKS Constants B-7

Table B-1 (Cont.~: DEC GKS Constant Names and Corresponding Language
Binding Constant Names

DEC GKS Constant
Binding
Constant Value Description

Input Priority States:

GKS$K _INPUT~'RIORITY~IIGHER

GKS$K _INPUT_I'RIORITY_LOWER

Attribute Control Function Types:

GKS$K_ACF_CURRENT

GKS$K_ACF_SPECIFIED

GKS$K_ACF_POLYLINE

GKS$K_ACF~ILL AREA

GDP Bundle Types:

GKS$K ~'OLYLN ~TTRI

GKS$K~'OLYMR_ATTRI

GKS$K_TEXT_ATTRI

GKS$K_FILLAR~TTRI

Segment Attribute States:

GKS$K_INVISIBLE

GKS$K_VISIBLE

GKS$K_UNDETECTABLE

GKS$K_DETECTABLE

GKS$K_NORMAL

GKS$K_HIGHLIGHTED

Input Class States:

GKS$K _INPUT_CLASS_NONE

GKS$K _INPUT_CLASS_LOCATOR

GKS$K_INPUT_CLASS_STROKE

GKS$K _INPUT_CLASS_VALUATOR

GKS$K _INPUT_CLASS_CHOICE

GKS$K ~NPUT_CLASS_l'ICK

GKS$K _INPUT_CLASS_STRING

GKS$K_INPUT_CLASS_VIEWPORT

B-8 DEC GKS Constants

GHIGHR 0

GLOWER 1

GCURNT 0

GSPEC 1

GPLINE 0

GFILLA 1

GPLATT 0

GPMATT 1

GTXATT 2

GFAATT 3

GINVIS 0

GVISI 1

GUNDET 0

GDETEC 1

GNORML 0

GHILIT 1

GNCLAS 0

GLOCAT 1

GSTROK 2

GVALUA 3

GCHOIC 4

GPICK 5

GSTRIN 6

GVIEW 7

Relative input priority higher

Relative input priority lower

Input data record current values

Input data record specified values

Data record polyline control flag

Data record fill area control flag

GDP polyline bundle

GDP polymarker bundle

GDP text bundle

GDP fill area bundle

Set to invisible

Set to visible

Set to undetectable

Set to detectable

Primitives are not highlighted

Primitives are highlighted

No input class

Locator input class

Stroke input class

Valuator input class

Choice input class

Pick input class

String input class

Viewport input class

Table B-1 (Copt.): DEC GKS Constant Names and Corresponding Language
Binding Constant Names

DEC GKS Constant
Binding
Constant Value Description

Similtaneously Generated
Events:

GKS$K_NOMORE_EVENTS

GKS$K~VIORE~VENTS

Line Cap Types:

GKS$K_LINE_CAP_BUTT

GKS$K _LINE _CAP_ROUND

GKS$K _LINE _CAP_SQUARE

Line Join Types:

GKS$K_LINE jOIN_MITRE

GKS$K_LINE JOIN_ROUND

GKS$K_LINE JOIN_BEVEL

Writing Modes:

GKS$K_WRT_1VIODE _COMPLEMENT

GKS$K _WRT~vIODE ERASE

GKS$K _WRT_1VIODE _OVERLAY

0

1

GLCBUT 2

GLCRND 3

GLCSQR 4

GLJMTR 2

GLJRND 3

GLJBVL 4

GWMCMT 2

GWMERS 3

GWMOVY 4

No more simultaneously
generated events

More simultaneously generated
events

Line cap type butted

Line cap type rounded

Line cap type square

Line join type mitre

Line join type round

Line join type bevel

Complement writing mode

Erase writing mode

Overlay writing mode

Table B-2 lists the DEC GKS specific constants.

Table B-2: DEC GKS Specific Constant Names

DEC GKS Constan#
Binding
Constant Value Description

Line Types:

GKS$K _LINETYPE _DASH _2_DOT

GKS$K _LINETYPE _DASH _3_DOT

GKS$K_LINETYPE _LONG _DASH

GKS$K_LINETYPE _LONG _SHORT_
DASH

GLDS2D

GLDS3D

GLLGDS

GLLSDS

-1 Line type dash-2-dots

-2 Line type dash-3-dots

-3 Line type long-dash

-4 Line type long-short-
dash

DEC GKS Constants B-9

Table B-2 ~Cont.): DEC GKS Specific Constant Names

DEC GKS Constant
Binding
Constant Value Description

GKS$K_LINETYPE_SPACED_DASH GLSPDS

GKS$K_LINETYPE_SPACED_DOT GLSPDT

GKS$K _LINETYPE _DOUBLE _DOT GLDBDT

GKS$K _LINETYPE _TRIPLE _DOT GLTPDT

Marker Types:

GKS$K~VIARKERTYPE_SOLID_CIRCLE GMSCIR

GKS$K _IVIARKERTYPE _TRIANGLE _UP GMTRU

GKS$K _NiARKERTYPE _SOLID_TRI _UP GMSTRU

GKS$K_MARKERTYPE _TRIANGLE _
DOWN

GKS$ K _IViARKERTYPE _SOLID_TRI _
DOWN

GKS$K _1VIARKERTYPE _SQUARE

GKS$K _NiARKERTYPE _SOLID_
SQUARE

GKS$K_NiARKERTYPE _BOWTIE

GMTRD

GMSTRD

GMSQ

GMSSQ

GMBT

GKS$K_IVIARKERTYPE_SOLID_BOWTIE GMSBT

GKS$K_NiARKERTYPE_HOURGLASS GMHG

GKS$K_1VIARKERTYPE_SOLID_ GMSHG
HGLASS

GKS$K_1VIARKERTYPE_DIAMOND GMDIA

GKS$K~VIARKERTYPE_SOLID_ GMSDIA
DIAMOND

GDPs:

GKS$K_GDP_DISJOINT_I'LINE GGDISP

GKS$K_GDP_CIRCLE_CTR_I'T GGCCP

GKS$K_GDP_CIRCLE_3PT GGC3P

B-10 DEC GKS Constants

-5

-6

_~

_g

-1

_2

-3

-4

-5

-6

_~

_g

-9

-10

-11

-12

-13

-100

-101

-102

Line type spaced-dash

Line type spaced-dot

Line type double dots

Line type triple dots

Marker type solid circle

Marker type hollow up
triangle

Marker type solid up
triangle

Marker type hollow
down triangle

Marker type solid down
triangle

Marker type hollow
square

Marker type solid square

Marker type hollow bow
tie

Marker type solid bow
tie

Marker type hollow hour
glass

Marker type solid hour
glass

Marker type hollow
diamond

Marker type solid
diamond

Disjoint polyline

Center and point on
circle

3 points on circle

Table B-2 (Cont.►: DEC GKS Specific Constant Names

DEC GKS Constant
Binding
Constant Value Description

GKS$K _GDP_CIRCLE _CTR _RAD

GKS$K _GDP_CIRCLE _2PT_RAD

GKS$K_GDP~RC_CTR_2PT

GKS$K_GDP_ARC_3PT

GKS$K_GDP_ARC_CTR_2VEC_RAD

GKS$K_GDP_ARC_2PT_RAD

GKS$K_GDP~RC_CTR_I'T~NG

GKS$K_GDl'_ELLIPSE _CTR _AXES

GKS$ K _GDP~LLIPSE ~'OCII ~'T

GKS$K_GDP~LIARC_CTR~XES_
2VEC

GKS$K _GDP~LIARC~'OCII APT

GGCCR

GGC2PR

GGAC2P

GGA3P

GGACVR

GGA2PR

GGACPA

GGECA

GGEFP

GGEACA

GGEAFP

GKS$K_GDP_RECT 2PT GGR2P

GKS$K_GDP_RESTRICTED_TEXT GGRT

GKS$K_GDP_FILL ~REA_SET GGFAS

GKS$K_GDP_FCIRCLE_CTR_I'T GGFCCP

GKS$K_GDP_FCIRCLE_3PT GGFC3P

GKS$K_GDP_FCIRCLE_CTR_RAD GGFCCR

GKS$K_GDP_FCIRCLE_2PT_RAD GGFCPR

GKS$K_GDP_FARC_CTR_2PT GGFACP

GKS$K_GDP_FARC_3PT GGFA3P

GKS$K_GDP_FARC_CTR_2VEC_RAD GGFACV

-103

-104

-106

-107

-108

-109

-110

-113

-114

-116

-125

-231

-332

-333

-334

-335

-336

-338

-339

-340

Center and radius of
circle

2 points and radius of
circle

Center and two points of
the arc

3 points of arc

Center and 2 vector
radius of arc

Two points and radius of
the arc

Center point and angle
for arc

Center and axes of
ellipse

Focii and point of ellipse

Center, 2 vectors of
elliptic arc

Focci, 2 points on elliptic
arc

Rectangle by 2 points

Restricted text

Fill area set

Fill circle using center,
point

Fill circle using 3 points

Fill circle using center
and radius

Fill circle using 2 points
and radius

Fill arc using center and
two points of the arc

Fill arc using 3 points

Fill arc using 2 vectors
and radius

DEC GKS Constants B-11

Table B-2 (Copt.): DEC GKS Specific Constant Names

DEC GKS Constant
Binding
Constant Value Description

GKS$K _GDP_FARC_2PT_RAD

GKS$K_GDP_FARC_CTR_I'T_ANG

GKS$K_GDP_FELLIPSE _CTR_AXES

GKS$K _GDP_FELLIPSE _FOCII _I'T

GKS$K_GDP~'ELIARC_CTR_AXES_
2VEC

GKS$K _GDP_FELIARC_FOCII _2PT

GKS$K_GDP_FRECT 2PT

GKS$K _GDP_IMAGE _ARRAY

Escapes:

GKS$K_ESC_SET_SPEED

GKS$K_ESC_I'RINT

GKS$K_ESC_BEEP

GKS$K _ESC_I'OP_WORKSTATION

GKS$K _ESC_I'USH _WORKSTATION

GKS$K_ESC_SET_ERR_HANDLING_
MODE

GKS$K _ESC_SET_VIEWPORT_EVENT

GKS$K _ESC_ASSOC_WSTYPE _CONID

GKS$K _ESC_SET_WRITING _MODE

GKS$K_ESC_SET LINE_CAP

GKS$K_ESC_SET_LINE JOIN

GKS$K _ESC_SET_EDGE _CTL

GKS$K _ESC_SET_EDGE _TYPE

B-12 DEC GKS Constants

GGFAPR -341

GGFACA -342

GGFECA -343

GGFEFP -345

GGFEACA -346

GGFEAF -348

GGFR2P -349

GGIA -400

GESP

GEP

GEB

GEPOPW

GEPSHW

GESEHM

GESVE

GEAWC

GESWM

GESLC

GESLJ

GESEC

GESET

-100

-101

-103

-106

-107

-108

-109

-110

-150

-151

-152

-153

-154

Fill arc using two points
and radius of the arc

Fill arc using center,
point, angle

Fill ellipse using center,
axes

Fill ellipse using focii,
point

Fill elliptic arc using
center, axes, 2 vectors

Fill elliptic arc using
focii, 2 points

Fill rectangle using 2
points

Packed cell array GDP

Set speed

Print

Beep

Pop workstation

Push workstation

Set Error Handling Mode

Set viewport event

Associate a conid with a
workstation

Set writing mode

Set line cap

Set line join

Set edge control flag in
GKS state list

Set edge type in GKS
state list

Table B-2 (Copt.): DEC GKS Specific Constant Names

DEC GKS Constant
Binding
Constant value Description

GKS$K~SC_SET~DGE _WIDTH

GKS$K _ESC_SET_EDGE _COLOR _
INDEX

GKS$K ~SC_SET_EDGE INDEX

GKS$K~SC_SET_EDGE _ASF

GKS$K_.ESC_BEGIN_TRANS_BLOCK

GKS$K~SC~ND_TRANS_BLOCK

GKS$K_ESC_SET SEG_HIGH_
METHOD

GKS$K ~SC_SET_HIGH _METHOD

GKS$K~SC_SET~DGE _REP

GKS$K~SC_SET_FONT~TAME

GKS$K~SC_SET_WINDOW_TITLE

GKS$K~SC_INQ_CURSOR

GKS$K _.,.ESC_INQ _WRITING _1ViODE

GKS$K_..ESC_INQ _LINE _CAP

GKS$K_ESC_INQ _LINE JOIN

GKS$K~SC_INQ _EDGE ~TTR

GKS$K_ESC.._INQ _SPEED

GKS$K _ESC_INQ _SEGMENT~XTENT

GKS$K ~SC_INQ _LIST~DGE _
INDEXES

GKS$K _ESC_INQ _WINDOW_IDS

GKS$K~SC_INQ_SEG~-iIGH_
METHOD

GKS$K _ESC_INQ _HIGH _METHOD

GKS$K~SC_INQ _LIST_ESC

GESEW

GESECI

GESEI

GESEA

GEBTB

GEETB

GESSHM

GESHM

GESER

GESFN

GESWT

GEIC

GEIWM

GEILC

GEILJ

GEIEA

GEIS

GEISE

GEILEI

GEIWID

GEISHM

GEIHM

GEILE

-155

-156

-157

-158

-160

-161

-162

-163

-200

-201

-202

-250

-251

-252

-253

-254

-300

-303

-302

-304

-305

-306

-350

Set edge width scale
factor in GKS state list

Set edge color index in
GKS state list

Set edge index in GKS
state list

Set aspect source flag
entries in GKS state list

Begin transformation
block

End transformation block

Set segment highlighting
method

Set highlighting method

Set edge representation

Set font name

Set window title

Inquire cursor

Inquire writing mode

Inquire line cap

Inquire line join

Inquire current edge
attributes

Inquire speed

Inquire segment extent

Inquire list of edge
indexes for workstation

Inquire window
identifiers

Inquire segment
highlighting

Inquire highlighting
method

Inquire list of escapes

DEC GKS Constants B-13

Table 6-2 (Cont.): DEC GKS Specific Constant Names

DEC GKS Constant
Binding
Constant Value Description

GKS$K ~SC_INQ _DEF_SPEED GEIDS

GKS$K_ESC_INQ_LINE_CAP_JOIN_ GEILCJ
FAC

GKS$K~SC_INQ _EDGE _FAC

GKS$K_ESC_INQ _l'REDEF_EDGE _REP

GKS$K_ESC_INQ .._MAX _EDGE _
BUNDLE

GKS$K _ESC_INQ _LIST~IIGH

GKS$K~SC_NiAP~TDC_OF_WC

GKS$K_ESC_1VIAP_DC_OF~DC

GKS$K_ESC_NiAP_WC_OF~1DC

GKS$K ~SC_MAP_NDC_OF_DC

GKS$K _ESC_INQ _GDP_EXTENT

Arc Types:

GKS$K~RC_TYPE_OPEN

GKS$K_ARC_TYPE_I'IE

GKS$K~RC_TYPE_CHORD

CGM Encoding Bit Masks:

GKS$M _CHARACTER _ENCODING

GKS$M _CLEAR_TEXT_ENCODING

ReGIS Bit Masks:

GKS$M_VT125_OUTPUT

GKS$M _VT 125BW_OUTPUT

GKS$M_VT240_OUTPUT

GKS$M _VT240BW_OUTPUT

GKS$M _VT330BW_OUTPUT

B-14 DEC GKS Constants

GEIEF

GEIPER

GEIMEB

GEILH

GEMNW

GEMDN

GEMWN

GEMND

GEIGEX

-351

-352

-354

-355

-356

-358

-400

-401

-402

-403

-404

GATOPN 1

GATPIE 2

GATCHRD 3

GMCHAR

GMCLTX

GMV 125

GMV12B

GMV240

GMV24B

GMV330

NA

NA

NA

NA

NA

NA

NA

Inquire default display
speed

Inquire cap join facility

Inquire edge facilities

Inquire predefined
edge representation for
workstation type and
edge index

Inquire maximum
number of edge bundle
entries

Inquire list highlighting

Map WC to NDC

Map NDC to DC

Map NDC to WC

Map DC to NDC

Inquire GDP extent

Arc type open

Arc type pie

Arc type chord

Character

Clear text

VT 125 color, output only

VT 125 black/white,
output only

VT240 color, output only

VT240 black/white,
output only

VT330 black/white,
output only

Table B-2 (Copt.): DEC GKS Specific Constant Names

DEC GKS Constant
Binding
Constant Value Description

GKS$M_VT340_OUTPUT

GKS$M_NOPOINTER

GKS$M _COLOR _1ViAP_RESET

Paper Size Bit Masks:

GKS$M ~'APERSIZE _A

GKS$M_I'APERSIZE_B

GKS$M ~'APERSIZE _C

GKS$M_I'APERSIZE_D

GKS$M ~'APERSIZE _E

GKS$M ~'APERSIZE _AO

GKS$M_I'APERSIZE_A1

GKS$M_I'APERSIZE_A2

GKS$M _I'APERSIZE _A2

GKS$M_I'APERSIZE_A3

GKS$M_I'APERSIZE_A4

GKS$M ~'APERSIZE _LG

Paper Orientation Bit Masks:

GKS$M_I'ORTRAIT

GKS$M_LANDSCAPE

Color Mapping Bit Masks:

GKS$M _COLOR _IVIAP_I'HYSICAL

GKS$M_COLOR_IVIAP VIRTUAL

Dots Per Inch (DPI):

GKS$M_DPI_72

GKS$M_DPI_90

GKS$M_DPI_144

GKS$M_DPI_180

GMV340

GMNPTR

GVTCMR

GSIZA

GSIZB

GSIZC

GSIZD

GSIZE

GSIZAO

GSIZAI

GSIZA2

GSIZA3

GSIZA4

GSIZAS

GSIZLG

GPRTRT

GLDSCP

GCMPHY

GCMVIR

GDI72

GDI90

GDI144

GDI180

NA VT340 color, output only

65536 VT330 or VT340 that
does not have a mouse

16777216 VT330 or VT340 that
saves the colormap

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

8.5 x 11 inches

11 x 17 inches

17 x 22 inches

22 x 34 inches

34 x 44 inches

84.1 x 118.9 centimeters

59.4 x 84.1 centimeters

42 x 59.4 centimeters

29.7 x 42 centimeters

21 x 29.7 centimeters

14.8 x 21 centimeters

8.5 x 14 inches (legal
size)

Portrait orientation

Landscape orientation

16777216 Use the physical color
indexes

0

16777216

0

2097152

50331648

Use the virtual color
indexes

72 dots per inch

90 dots per inch

144 dots per inch

180 dots per inch

DEC GKS Constants B-15

Table B-2 (Copt.): DEC GKS Specific Constant Names

DEC GKS Constant
Binding
Constant Value Description

Input on device handler:

GKS$K _CURSOR _1VIOVEMENT

GKS$K_CHARACTER

GKS$K _I'OINT_TRIGGER

GKS$K _TERMINATION _TRIGGER

GKS$K_DELETE~CEY

GKS$K_BREAK

GKS$K_CHOICE_NUMBER

GKS$K_CYCLE

GKS$K_NOCYCLE

GKS$K_STROKE _IViEASURE

GKS$K_TOGGLE_INSERT

GKS$K_RESTORE _INITIAL

GKS$K _BUFFER _BEGINNING

GKS$K_BUFFER_END

GKS$K _VALUATOR _VALUE

GKS$K_SIGNAL

GKS$K_LOG_ERROR

Highlighting methods:

GKS$K _HIGH _1VIETHOD_DEFAULT

GKS$K _HIGH _NiETHOD_COMP

GKS$K_HIGH _1VIETHOD_COLOR

GKS$K ~-iIGH _1ViETHOD_LINE

GKS$K_HIGH_1VIETHOD_FILL

GKS$K_HIGH _1VIETHOD_DUAL

1 Input key is a cursor
movement

2 Input key is a character

3 Input key is a point
trigger

4 Input key is a
termination trigger

5 Input key is delete

6 Input key is break

7 Input key is a choice
number

8 Input key is cycle

9 Input key is no cycle

10 Input key is a stroke
measure

11 Input key is insert toggle

12 Input key is to restore
initial string

13 Input key is move to
beginning

14 Input key is move to end

15 Input key is a valuator
measure

16 Input signal occured

17 Input error occured

GHMDEF 0

GHMCOM 1

GHMCOL 2

GHMLIN 3

GHMFIL 4

GHMDUA 5

Default highlighting

Color highlighting

Line highlighting

Fill area highlighting

Dual highlighting

B-16 DEC GKS Constants

Appendix C

DEC GKS Attribute Values

This appendix lists the initial values of all output attributes and normalization
transformation settings according to the following categories:

• Polyline attributes
• Polymarker attributes
• Text attributes

• Fill area attributes

• Segment attributes
• Normalization transformation settings

This appendix also lists the following DEC GKS specific attribute types:

• Line types
• Marker types

C.1 Initial Polyline Attributes

This section lists the initial values for the polyline attributes.

DEC GKS Attribute Values C-1

Attribute Initial Value Description

Polyline index

Line type

Line width

Color index

Line type ASF

Line width ASF

Color index ASF

1

GKS$K _LINETYPE _SOLID

1.0

1

GKS$K—ASF_INDIVIDUAL

GKS$K _ASF_INDIVIDUAL

GKS$K_ASF_INDIVIDUAL

Polyline bundle number 1

Solid line

Minimum width

Workstation dependent value

Use current line type

Use current line width

Use current line color index

C.2 Initial Polymarker Attributes

This section lists the initial values for the Polymarker attributes.

Attribute Initial Value Description

Polymarker index

Marker type

Marker size

Color index

Marker type ASF

Marker size ASF

Marker color index
ASF

1

GKS$K_IViARKERTYPE—ASTERISK

1.0

1

GKS$K~SF~NDIVIDUAL

GKS$K _ASF_INDIVIDUAL

GKS$K _ASF_INDIVIDUAL

Polymarker bundle number 1

Asterisk for marker

Nominal size

Workstation dependent value

Use current marker type

Use current marker size

Use current marker color index

C-2 DEC GKS Attribute Values

C.3 Initial Text Attributes

This section lists the initial values for the text attributes.

Attribute Initial Value Description

Text index 1 Text bundle number 1

Text font and 1 Hardware font 1, string
precision GKS$K_TEXT_I'RECISION_STRING precision

Character 1.0 Width-to-height ratio from font
expansion factor file

Character spacing 0.0 Adjacent character bodies

Color index 1 Workstation dependent value

Text font and GKS$K~SF_INDIVIDUAL Use current font and
precision ASF precision

Character GKS$K_ASF_INDIVIDUAL Use current width and height
expansion factor ratio
ASF

Character spacing GKS$K_ASF_INDIVIDUAL Use current character space
ASF

Text color index GKS$K_ASF_INDIVIDUAL Use current text color index
ASF

Character height 0.01 Capital letters at 0.01 world
coordinate units

Character up 0,1 Up vector parallel to y-axis in
vector world coordinate units

Text path GKS$K_TEXT_I'ATH_RIGHT Right angle clockwise from up
vector

Text alignment GKS$K_TEXT—HALIGN_NORMAL Natural alignment with respect
GKS$K_TEXT_VALIGN~tORMAL to text path

DEC GKS Attribute Values C-3

C.4 Initial Fill Area Attributes

This section lists the initial values for the fill area attributes.

Attribute Initial Value Description

Fill area index

Interior style

Style index

Color index

Interior style ASF

Style index ASF

Color index ASF

Pattern size

Pattern reference
point

1

GKS$K~NTSTYLE ~-IOLLOW

1

1

GKS$K~SF—INDIVIDUAL

GKS$K~SF_INDIVIDUAL

GKS$K._ASF_INDIVIDUAL

1.0,1.0

0.0,0.0

Fill area bundle number 1

Boundary of polygonal area

Workstation-dependent pattern or hatch
style

Workstation-dependent value

Use current interior style

Use current pattern or hatch style

Use current fill area color index

Unit square in world coordinates

Pattern starting point in world
coordinates

C.5 Initial Segment Attributes

This section lists the initial segment attributes.

Attribute Initial Value Description

Transformation
number

Visibility

Highlighting

Segment priority

Detectability

0

GKS$K_VISIBLE

GKS$K`NORMAL

0.0

GKS$K_
UNDETECTABLE

The identity transformation presents the segment as
stored in NDC space.

The segment is visible.

The segment is not highlighted.

The segment. has the lowest priority.

The segment is undetectable.

The default segment transformation is called the identity transformation. The
identity transformation uses a 2 x 3 matrix whose first row is composed of the
values 1.0, 0.0, 0.0, and whose second row is composed of the values 0.0, 1.0,
0.0.

C-4 DEC GKS Attribute Values

C.6 Initial Normalization Transformation Settings

The initial normalization transformation number is the value 0.

The initial viewport input priority is in sequential order from the value 0
through the value 255, with transformation number 0 the highest and 255 the
lowest.

The default normalization window and viewport limits are rectangular, begin
with a lower left corner point of (0.0, 0.0), and extend to the value 1.0 on both
the X and Y axes.

Initially, clipping is enabled (GKS$K_CLIP) at _the normalization viewport limit.

C.7 DEC GKS Specific Line Types

The following list presents the DEC GKS supported line types. To see which
types your device supports, refer to the appropriate device-specific appendix.

Value Constant Description

—1

_2

—3 GKS$K_LINETYPE_LONG_DASH

—4

—5

—6

_~

_g

GKS$ K _LINETYPE _DASH _DOT

GKS$K _LINETYPE _DASH _3_DOT

GKS$K_LINETYPE_LONG_SHORT_
DASH

GKS$K _LINETYPE _SPACED_DASH

GKS$K _LINETYPE _SPACED_DOT

GKS$K_LINETYPE _DOUBLE _DOT

GKS$K_LINETYPE _TRIPLE _DOT

Use a sequence of one dash
followed by two dots.

Use a sequence of one dash
followed by three dots.

Use a sequence of long
dashes.

Use a sequence of a long dash
followed by a short dash.

Use a sequence of dashes
double spaced.

Use a sequence of dots double
spaced.

Use a sequence of pairs of
dots.

Use a sequence of groups of
three dots.

DEC GKS Attribute Values C-5

C.8 DEC GKS Specific MarkerTypes

The following list presents the DEC GKS supported marker types. To see which
types your device supports, refer to the appropriate device-specific appendix.

Value Constant Description

-1 GKS$K_1VIARKERTYPE_SOLID_CIRCLE

-2 GKS$K_NiARKERTYPE _TRIANGLE _UP

-3 GKS$K~VIARKERTYPE_SOLID_TRI_UP

-4 GKS$K_I1/IARKERTYPE _TRIANGLE _DOWN

-5 GKS$K_1VIARKERTYPE_SOLID_TRI_
DOWN

-6 GKS$K_MARKERTYPE_SQUARE

-7 GKS$K_IViARKERTYPE_SOLID_SQUARE

-8 GKS$K_1ViARKERTYPE_BOWTIE

-9 GKS$K_1VIARKERTYPE _SOLID_BOWTIE

-10 GKS$K_IVIARKERTYPE_.I-iGLASS

-11 GKS$K_1VIARKERTYPE_SOLID_HGLASS

-12 GKS$K~ViARKERTYPE_DIAMOND

-13 GKS$K_1VIARKERTYPE_SOLID_DIAMOND

Use a filled circle.

Use a hollow triangle
pointing upward.

Use a filled triangle pointing
upward.

Use a hollow triangle
pointing downward.

Use a filled triangle pointing
downward.

Use a hollow square.

Use a filled square.

Use a hollow bow tie.

Use a filled bow tie.

Use a hollow
hourglass.

Use a filled hourglass.

Use a hollow diamond.

Use a filled diamond.

NOTE

For all solidly filled markers, DEC GKS uses the current marker color
index.

C-6 DEC GKS Attribute Values

l.J

Appendix D

DEC GKS Error Messages

This appendix lists each of the DEC GKS error messages, the DEC GKS error
numbers, and the VMS completion status codes.

The VMS completion status codes correspond to the longword condition value
returned by each DEC GKS function. You can compare the completion status
codes directly to the function return values. In this way, you do not have to
directly access the individual bits of the returned longword condition value to
determine the cause of the error. Consider the following example:

C Include the error symbol definitions file .
INCLUDE 'SYS$LIBRARY:GKSMSGS.FOR

C Check for success.
IF (GKS$_SUCCESS = GKS$OPEN_WS(WS_ID, CON_ID, WS_TYPE)) THEN

C Check for an invalid workstation identifier.
IF (GKS$_ERROR_20 = GKS$ACTIVATE_WS(WS_ID)) THEN

The DEC GKS completion success status code symbol defined in the DEC GKS
image library file is GKS$_SUCCESS. The remaining codes begin with the
prefix DECGKS$~RROR_NEG or GKS$~RROR, and end with the number
of the generated error.

Each of the condition status codes corresponds to the number of the appropriate
DEC GKS error message. The GKS$_SUCCESS code is of severity success; all
of the codes with positive numbers are of severity error; and, all negative errors
are implementation-specific messages of severity error or fatal error.

DEC GKS Error Messages D-1

If you choose, you can perform the normal VMS processing of the returned
longword condition value by using LIB$SIGNAL, $GETMSG, or $PUTMSG. For
detailed information concerning this type of processing, refer to the VAX/VMS
Run-Time Library Routines Reference Manual.

Some of the DEC GKS specific error messages substitute program information
in the message text. In this appendix, the portion of the text to be substituted is
shown as ****.

The following sections describe the DEC GKS error messages by category.

D.1 DEC GKS Implementation-Specific Errors

A11 of the DEC GKS specific errors are negative in number; their condition
status codes read DECGKS$~RROR_NEG cumber. These errors are either
errors or fatal errors as described.

-2 Requested color map could not be created as specified in routine ****

DECGKS$_ERROR~TEG~:

Error: Specified color map is too large.

User Action: Check to make sure that you specified the correct color
map size and type (either physical or virtual). Keep in mind the
limitations of your VAXstation when reserving color indexes.

-3 Invalid data in workstation description file in routine ****

D E C GK S$_E RR O R _11TE G ~:

Error: Workstation description file contains invalid data.

User Action: Make sure that the format of your description file is
valid for your particular workstation.

-4 Invalid bit mask in workstation type in routine ****

DECGKS$_ERROR _NEG _4:

Error: The high word of the workstation type value is invalid.

User Action: Check to make sure that you specified a bit mask
workstation type value that is valid for your workstation, and that you
are running your program on the expected type of workstation.

D-2 DEC GKS Error Messages

-5 Bad string address found writing choice data record in routine ****

DECGKS$_ERROR~ITEG_5:

Error: Illegal array of string pointers passed to the choice data record
in routine * * * *

User Action: Make sure that you properly initialized the arrays
containing string addresses and string lengths. Also, make sure that
you have declared a buffer to hold choice strings, and that your
string address array contains addresses of the elements in your choice
string array. For more information, refer to the program example for
GKS$INQ _DEF_CHOICE _DATA in Chapter 12, Inquiry Functions,
in the DEC GKS Reference Manual.

—6 Echo area is too narrow for data in routine ****

DECGKS$_ERROR ~1TEG _6:

Error: The specified input echo area minimum and maximum X values
are too close in proximity.

User Action: Make sure that you did not swap X and Y values, and
that your specified X values are of a greater distance from each other.

—7 Maximum number of representable choices exceeded in routine ****

DECGKS$_ERROR~TEG_7:

Error: The number of requested choices is too large for the worksta-
tion type.

User Action: You can use GKS$INQ _DEF_CHOICE _DATA to obtain
the maximum choices available for your workstations, and then break
your menu into two smaller menus.

—8 Echo area is too short for data in routine ****

DECGKS$_ERROR~ITEG_8:

Error: The specified input echo area minimum and maximum Y
values are too close in proximity.

User Action: Make sure that you did not swap X and Y values, and
that your specified Y values are of a greater distance from each other.

DEC GKS Error Messages D-3

-9 Binary format and integer number representation not supported in this
implementation of GKS in routine

DECGKS$_ERROR~ITEG_9:

Error: You opened a metafile of an incompatible type.

User Action: Check the metafile type.

-10 Invalid value specified for ASF in routine

DECGKS$_ERROR ~TEG _10:

Error: You specified an incorrect value within the aspect source flag
array

User Action: Check the array to make sure that it has 13 elements
and that its elements only contain the value GKS$K_ASF_BUNDLED
(0) or GKS$K_ASF—INDIVIDUAL (1).

-11 Invalid value specified for fill area interior style in routine

DECGKS$_ERROR_NEG_ll:

Error: You did not specify a proper integer value for an interior style
argument.

User Action: Make sure that you passed one of the values GKS$K_
INTSTYLE ~-IOLLOW (0), GKS$K ~NTSTYLE _SOLID (1),
GKS$K_INTSTYLE_I'ATTERN (2), or GKS$K~NTSTYLE_HATCH
(3)•

-12 Invalid value specified for horizontal component of text alignment in
routine

DECGKS$_ERROR~TEG_12:

Error: You did not specify a proper integer value for a horizontal text
alignment argument.

User Action: Make sure that you passed one of the values GKS$K_
TEXT~-IALIGN—NORMAL (0), GKS$K_TEXT_HALIGN_LEFT (1),
GKS$K_TEXT_HALIGN_CENTER (2), or GKS$K_TEXT_HALIGN_
RIGHT (3).

D--4 DEC GKS Error Messages

l~

-13 Invalid value specified for vertical component of text alignment in
routine * * * *

DECGKS$_ERROR~ITEG_13:

Error: You did not specify a proper integer value for a vertical text
alignment argument.

User Action: Make sure that you passed one of the values GKS$K_
TEXT_VALIGN~TORMAL (0), GKS$K_TEXT_VALIGN_TOP
(1), GKS$K_TEXT_VALIGN_CAP (2), GKS$K_TEXT_VALIGN_
HALF (3), GKS$K_TEXT_VALIGN_BASE (4), or GKS$K_TEXT_
VALIGN_BOTTOM (5).

-14 Invalid value specified for text precision in routine * * * *

DECGKS$~RROR.~ITEG _14:

Error: You did not specify a proper integer value for a text precision
argument.

User Action: Make sure that you passed one of the values GKS$K_
TEXT_I'RECISION_STRING (0), GKS$K_TEXT_I'RECISION_
CHAR (1), or GKS$K_TEXT~'RECISION_STROKE (2).

-15 Invalid value specified for text path in routine ****

DECGKS$_ERROR~IIEG _15:

Error: You did not specify a proper integer value for a text path
argument.

User Action: Make sure that you passed one of the values GKS$K_
TEXT_I'ATH~ZIGHT (0), GKS$K_TEXT~'ATH_LEFT (1), GKS$K_
TEXT~'ATH_UP (2), or GKS$K_TEXT~'ATH_DOWN (3).

-16 Echo switch is invalid in routine * * *

DECGKS$_ERROR~EG_16:

Error: You did not specify a proper integer value for an echo switch
in one of the arguments to the SET MODE input functions.

User Action: Make sure that you passed GKS$K~TOECHO (0)
or GKS$K~CHO (1). Also, if you used an inquiry function to
obtain the echo switch, check to see that the arguments to the inquiry
function are specified in the correct order.

DEC GKS Error Messages D-5

-17 Inquired device values not set or realized in routine ****

DECGKS$_ERROR_11TEG_17:

Error: You neglected to specify GKS$K_VALUE_SET or GKS$K_
VALUE_REALIZED when calling an inquiry function.

User Action: Check the value type argument to make sure that it is
either GKS$K_VALUE SET or GKS$K VALUE REALIZED.

-18 The following error occurred when GKS was interpreting an item * * * *

DECGKS$_ERROR~tEG _18:

Error: An error occurred while interpreting a metafile item.

User Action: DEC GKS follows this error message with another
message that signals the appropriate action.

-19 Invalid error status parameter specified in routine * * * *

DE CGKS$_ERROR ATE G _19:

Error: You passed an illegal error code to GKS$LOG _,_ERROR.

User Action: Make sure that the error code passed to GKS$LOG _
ERROR is one of the codes described in this appendix.

-20 GKS not in proper state: GKS in the ERROR state in routine ****

DE CGKS$_ERROR ~1TE G ~0:

Error: You attempted to execute a DEC GKS function other than an
error-handling or inquiry function.

User Action: Remove all calls to DEC GKS functions, other than
inquiry and error-handling function calls, from your error-handling
code.

-21 Function is not supported in this level of GKS in routine * * * *

DECGKS$ ERROR_NEG~1:

Error:

User Action: Remove the call to the unsupported function.

D-6 DEC GKS Error Messages

-22 Invalid segment transformation in routine ****

DECGKS$~RROR ~1TEG ~2:

Error: You specified an invalid transformation matrix.

User Action: Check your calls to GKS$EVAL ~CFORM~ViATRIX
and to GKS$ACCUM~CFORM~VIATRIX to make sure that you
passed valid transformation components. Also, make sure that you
specified a transformation matrix to GKS$SET~EG ~CFORM or to
GKS$INSERT~EG.

-23 Invalid value specified for clipping flag in routine * * * *

DECGKS$_ERROR_11TEG~3:

Error:

User Action: Make sure that you passed either the value GKS$K_
NOCLIP (0) or GKS$K_CLIP (1).

-24 Invalid value specified for viewport priority flag in routine * * *

DECGKS$_ERROR.~TEG_24:

Error:

User Action: Make sure that you passed either the value GKS$K_
INPUT~'RIORITY.~-iIGHER (0 } or GKS$K~NPUT~RIORITY_
LOWER (1).

-25 Invalid value specified for update workstation flag in routine ****

DECGKS$~RROR~ITEG _25:

Error:

User Action: Make sure that you passed either the value GKS$K_
POSTPONE SLAG (0) or GKS$K ~'ERFORM SLAG (1).

-26 Invalid value specified for deferral mode in routine ****

DECGKS$~RROR_11TEG~6:

Error:

User Action: Make sure that you passed one of the values GKS$K_
ASAP (0), GKS$K_BNIG (1), GKS$K_BNIL (2), or GKS$K_ASTI
(3).

DEC GKS Error Messages D-7

-2 7 Invalid value specified for regeneration mode in routine

DECGKS$_ERROR~EG~7:

Error:

User Action: Make sure that you passed either the value GKS$K_
IRG_SUPPRESSED (0) or GKS$K_IRG~LLOWED (1).

-28 Invalid value specified for expansion factor in routine ****

DECGKS$_ERROR~TEG~8:

Error:

User Action: Check to make sure that you specified a real number
value greater than the value 0.0. The value 1.0 causes no expansion.

-29 Invalid data record size for specified prompt and echo type in routine
***~

DE C GK S$_E RROR _NE G ~9:

Error:

User Action: Check to make sure that you specified a data record of
the correct size as determined by your chosen prompt and echo type.

-30 Cannot load workstation handler: error during image activation in
routine ****

DE CGKS$_ERROR ATE G ~0:

Error: DEC GKS could not activate your workstation handler's
shareable image.

User Action: Make sure that your workstation handler is a valid,
shareable image.

-31 Cannot load graphics handler: invalid DFT in routine ****

DECGKS$_ERROR_NEG~1:

Error: Your device function tables are incompatible.

User Action: You need to build your device function table again using
the appropriate macro. For more information, refer to Building a DEC
GKS Graphics Handler System.

D-8 DEC GKS Error Messages

-32 Font file for stroke precision text not found or unusable in routine ****

DECGKS$_ERROR~TEG~2:

Error: DEC GKS could not locate the specified stroke font.

User Action: Refer to the appropriate device-specific appendix in this
manual to determine if the specified font is supported on your device.
If you are not using a DEC GKS supported graphics handler, make
sure that your handler defines the proper logical names, and that the
logicals reference a valid file.

—33 Array descriptor is not acceptable in routine ****

DECGKS$_ERROR_NEG~3:

Error: An item in the array descriptor is either invalid or inconsistent.

User Action: Make sure that you have passed the array by descriptor
and that you fill the descriptor with valid values. If you have, and you
use an inquiry function to initialize the array variable, make sure that
all of the arguments are specified to the inquiry function in the correct
order. Also, if the array is passed to the CELL ARRAY function, make
sure that you have declared atwo-dimensional array.

—34 String length less than or equal to 0 in routine ****

DECGKS$_ERROR ~TEG _34:

Error: You specified an invalid character string.

User Action: Check the declaration, definition, or assignment
statements involving the character variable.

—35 Kernel has detected an unexpected error from a device handler in
routine ****

DECGKS$_ERROR_NEG~S:

Error: The device handler encountered an error.

User Action: DEC GKS follows this error message with another
message that signals the appropriate action.

DEC GKS Error Messages D-9

-36 Cannot load device handler: error during image activation in
routine ****

DECGKS$_ERROR_NEG~6:

Error: DEC GKS could not activate your device handler's shareable
image

User Action: Make sure that your device handler is a valid, shareable
image. This error message is specific to handlers that affect a device
(VAXstation) as opposed to a graphics language (PostScript).

-3 7 Error in device handler during event flag allocation in routine * * *

DECGKS$_ERROR _NEG _37:

Error: A graphics handler was unable to acquire all of its needed
event flags.

User Action: The application must release event flags for use by the
graphics handler.

-38 Error in device handler, cannot allocate device in routine ****

DECGKS$_ERROR.~TEG~8:

Error: You used your graphics handler with an invalid physical
device.

User Action: Make sure that you use the proper physical device or
that you specify the correct workstation type value to GKS$OPEN_
wS.

-39 Descriptor is not acceptable in routine ****

DECGKS$_ERROR_11TEG~9:

Error:

User Action: Make sure that you have passed the variable by
descriptor. If you have, and you use an inquiry function to initialize
the variable, make sure that all of the arguments are specified to the
inquiry function in the correct order.

-40 Illegal device pointer, in routine * * * *

DECGKS$_ERROR~TEG_40:

Error:

User Action: Check your handler code for null pointers or otherwise
invalid pointers.

D-10 DEC GKS Error Messages

-41 Driver handler WDT is invalid in routine

DECGKS$_ERROR~ITEG_41:

Error: You illegally defined a workstation description table entry.

User Action: Check your workstation description table definitions for
your graphics handler.

—42 Logical name for the list of workstation types, GKS$LIST_TYPES,
could not be translated in routine

DECGKS$_ERROR~ITEG_42:

Error: You improperly defined the logical name.

User Action: Make sure that the translation of GKS$LIST_TYPES is
as expected.

—43 VAX Workstation Software is not present, workstation type is invalid
in routine

DECGKS$_ERROR_11TEG_43:

Error:

User Action: Check to make sure either that you specify the correct
workstation type when opening anon-VAXstation workstation, or that
you passed a correct workstation type value to one of the workstation
description table or state list inquiry functions. If you are working on
a MicroVAX, make sure that you install the VAXstation Windowing
Software.

—44 Error trying to save or restore VT340 color map routine ****

DECGKS$_ERROR_11TEG_44:

Error: DEC GKS received an error from the VT340 in trying to
acquire or reset the color map. This could happen if the VMS device
characteristics (SET TERMINAL) do not match the actual terminal
characteristics.

User Action: Reset the terminal and check that the VMS device
characteristics match the terminal characteristics. In particular, note
that this function temporarily resets the device to NO ESCAPE
mode. You may need to reset the terminal to ESCAPE mode before
continuing.

DEC GKS Error Messages D-11

The following errors are fatal errors. Should one occur, submit a Software
Performance Report (SPR) indicating the error number, corresponding message,
and any relevant particulars. For more information concerning SPRs, refer to
the DEC GKS Installation Guide.

-90 Internal GKS error: Bad memory address freed in routine ****

DECGKS$_ERROR~TEG_90:

Fatal: DEC GKS memory data structures were corrupted.

User Action: Submit an SPR.

-91 Internal GKS error: Invalid function pointer parameter in error
handler in routine

DECGKS$_ERROR~IEG_91:

Fatal: A DEC GKS internal data structure was corrupted.

User Action: Submit an SPR.

-92 Internal GKS error: Insufficient virtual memory in routine ****

DECGKS$_ERROR_NEG_92:

Fatal: DEC GKS was unable to allocate enough virtual memory.

User Action: Check to make sure that the problem is not caused by
storing too much in segment storage or by defining a very large cell
array. If you cannot reduce storage by checking segments and cell
arrays, submit an SPR.

-93 Internal GKS error: Prompt and echo type not supported in
routine ****

DECGKS$_ERROR_NEG_93:

Fatal:

User Action: Submit an SPR.

-94 Internal GKS error: Corrupted segment memory in routine ****

DECGKS$_ERROR_NEG_94:

Fatal:

User Action: Submit an SPR.

D-12 DEC GKS Error Messages

-95 Internal GKS error: Negative size passed to allocate memory in
routine ****

DECGKS$_ERROR~ITEG_95:

Fatal: An invalid size was passed to the DEC GKS memory allocation
routines.

User Action: If you generate this error using auser-written graphics
handler, make sure that the value of the local storage area is a valid
value.

-96 Internal GKS error: Illegal number of points to device handler for
rectangular polygon in routine ****

DECGKS$_ERROR~ITEG_96:

Fatal:

User Action: Submit an SPR.

-97 Internal GKS error: Insufficient buffer size for translated logical name
in routine ****

D E C GK S$_E RR OR _11TE G _97:

Fatal:

User Action: Submit an SPR.

-98 Internal GKS error: Too many translations of logical name in
routine ****

D E C GK S$_E RR OR _11TE G _98:

Fatal: You may have recursively defined a logical name.

User Action: Check the currently defined logical names to see if all
are properly defined. If you cannot locate an error, submit an SPR.

-99 Internal GKS error: Unable to reduce number of points in fill area to
requested limit in routine

D E C GK S$_E RRO R ATE G _99:

Fatal:

User Action: Submit an SPR.

DEC GKS Error Messages D-13

-100 Internal GKS error: Device handler received unexpected input access
in routine ****

DECGKS$_ERROR ~TEG _100:

Fatal:

User Action: Submit an SPR.

The following messages are added for DEC GKS Version 3.0.

-155 Display speed is less than zero in routine

DECGKS$~RROR~TEG_155:

Error:

User Action: Pass a positive real value to GKS$K~SC_SET_SPEED.

-15 6 Loudness is outside range [0,1] in routine

DECGKS$_ERROR ~1TEG _156:

Error:

User Action: Pass a valid value to GKS$K~SC—BEEP.

-157 Duration is less than zero in routine ****

DECGKS$_ERROR ~1TEG _157:

Error:

User Action: Make sure that your duration value is greater than or
equal to zero.

-15 8 GDP primitive is not defined by the supplied data in routine

DECGKS$_ERROR~TEG_158:

Error: DEC GKS is unable to form the desired primitive.

User Action: Refer to the error message listing in the description
of the GDP that generated the error (Appendix I, DEC GKS GDPs
and Escapes). This listing gives specific information concerning the
primitive you attempted to draw.

D-14 DEC GKS Error Messages

-15 9 Arc type is invalid in routine

DECGKS$_ERROR~ITEG_159:

Error:

User Action: Refer to the error message listing in the description
of the GDP that generated the error (Appendix I, DEC GKS GDPs
and Escapes). This listing gives specific information concerning the
primitive you attempted to draw.

-160 Insufficient space in escape output data record arrays in routine ****

DECGKS$_ERROR ~TEG _160:

Error: You passed addresses of arrays that were too small to contain
the data to be written to them.

User Action: Pass addresses of larger array buffers in the last four
components of the escape data record.

-161 Specified bounding box is too small in routine ****

DECGKS$_ERROR~ITEG_161:

Error: You specified text attributes that were too large to fill the text
in the bounding box (the extent rectangle).

User Action: Use a larger bounding box, or reduce the text height or
the character expansion factor.

-300 Invalid value specified for highlighting in routine ****

DECGKS$_ERROR~ITEG X00:

Error:

User Action: Make sure that you specify either GKS$K_NORMAL
(0) or GKS$K_HIGHLIGHTED (1).

-3 O 1 Invalid value specified for visibility in routine

DECGKS$_ERROR ~TEG _301:

Error:

User Action: Make sure that you specify either GKS$K_INVISIBLE
(0) or GKS$K_VISIBLE (1).

DEC GKS Error Messages ©-15

-302 Invalid value specified for detectability in routine ****

DECGKS$_ERROR _NEG X02:

Error:

User Action: Make sure that you specify either GKS$K_
UNDETECTABLE (0) or GKS$K_DETECTABLE (1).

-303 Input device can not be activated due to conflict with another input
device that is currently active in routine

DECGKS$_ERROR_NEG~03:

Error:

User Action:

-304 Can not set input device echo on due to conflict with other input
devices active in the same echo area in routine

DE C GK S$_E RR OR ~1TE G X04:

Error:

User Action:

The following messages are added for DEC GKS Version 4.0.

-306 The definition of GKS$HPGL _THRESHOLD is invalid (contains
non-numeric values)*

DECGKS$_ERROR~TEG_306:

Error:

User Action: Check the definition of GKS$HPGL _THRESHOLD and
redefine to range 0 to 1023.

D.2 Errors Relating to the DEC GKS Operating State

This section lists the errors that result when you call a function that is not
permitted in the current operating state. For a list of the functions that you can
or cannot call in a given DEC GKS operating state, refer to Chapter 4, Control
Functions.

D-16 DEC GKS Error Messages

1 GKS not in proper state: GKS shall be in the state GKCL in
routine ****

GKS$_ERROR _l:

Error: You called a function unsupported in the current operating
state.

User Action: Call the appropriate DEC GKS control function to
change the current state. (You must call GKS$CLOSE_GKS before
the current DEC GKS state changes to GKS$K_GKCL.)

2 GKS not in proper state: GKS shall be in the state GKOP in
routine ****

GKS$_ERROR~:

Error: You called a function unsupported in the current operating
state.

User Action: Call the appropriate DEC GKS control function
to change the current state. (You must call either the function
GKS$OPEN_GKS or GKS$CLOSE_WS before the DEC GKS state
changes to GKS$K_GKOP.)

3 GKS not in proper state: GKS shall be in the state WSAC in
routine * * * *

GKS$_ERROR~:

Error: You called a function unsupported in the current state.

User Action: Call the appropriate DEC GKS control function
to change the current state. (You must call either the function
GKS$ACTIVATE_WS or GKS$CLOSE_SEG before the DEC GKS
state changes to GKS$K_WSAC.)

4 GKS not in proper state: GKS shall be in the state SLOP in
routine * * * *

GKS$_ERROR_4:

Error: You called a function unsupported in the current state.

User Action: Call the appropriate DEC GKS control function to
change the current state. (You must call the function GKS$CREATE _
SEG before the DEC GKS state changes to GKS$K_SGOP.)

DEC GKS Error Messages D-17

5 GKS not in proper state: GKS shall be either in the state WSAC or in
the state SGOP in routine

GKS$_ERROR_5:

Error: You called a function unsupported in the current state.

User Action: Call the appropriate DEC GKS control func-
tion to change the current state. (You must call the function
GKS$ACTIVATE_WS before the DEC GKS state changes to GKS$K_
WSAC.)

6 GKS not in proper state: GKS shall be in the state WSOP or in the
state WSAC in routine ****

GKS$_ERROR_6:

Error: You called a function unsupported in the current state.

User Action: Call the appropriate DEC GKS control function to
change the current state. (You must call the function GKS$OPEN_
WS before the DEC GKS state changes to GKS$K_WSOP.)

7 GKS not in proper state: GKS shall be in one of the states WSOP,
WSAC, or SGOP in routine ****

GKS$_ERROR_7:

Error: You called a function unsupported in the current state.

User Action: Call the appropriate DEC GKS control function to
change the current state. (You must call the function GKS$OPEN_
WS before the DEC GKS state changes to GKS$K_WSOP.)

8 GKS not in proper state: GKS shall be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine ****

GKS$_ERROR_8:

Error: You called a function unsupported in the current state.

User Action: Call the appropriate DEC GKS control function to
change the current state. (You must call the function GKS$OPEN _
WS before the DEC GKS state changes to GKS$K_WSOP.)

D.3 Errors Relating to the DEC GKS Workstations

This section lists the errors that result when you call a DEC GKS function with
invalid or undefined arguments pertaining to workstations.

D-18 DEC GKS Error Messages

20 Specified workstation identifier is invalid in routine ****

GKS$_ERROR~O:

Error:

User Action: Make sure that you have opened a workstation
associated with that identifier, that you are not trying to generate
output to an inactive workstation, that the arguments are presented
in the right order, and if you are using a variable to specify the
workstation identifier, that the variable is declared to be an integer.

21 Specified connection identifier is invalid in routine

GKS$_ERROR_Z1:

Error:

User Action: Make sure that the specified connection exists and is
allocated to your process (by typing SHOW DEVICES at the DCL
command line), that the workstation type supports the specified con-
nection identifier (especially in the case of output-only workstations
that write information to files, such as GKS$K_VT_OUTPUT), and
that the arguments are specified in the correct order.

22 Specified workstation type is invalid in routine ****

GKS$_ERROR~2:

Error:

User Action: Check to make sure that you passed either a DEC GKS
constant (GKS$K_WSTYPE_DEFAULT, GKS$K_VT241), or the
corresponding integer values.

23 Specified workstation type does not exist in routine ****

GKS$_ERROR~3:

Error: The implementation of GKS does not support a device handler
associated with the identifier you passed.

User Action: Pass an identifier associated with a supported device. If
you are using the constant GKS$K_WSTYPE_DEFAULT, you should
use GKS$INQ _WS_TYPE t0 check to see if DEC GKS supports the
currently defined workstation type.

DEC GKS Error Messages D-19

24 Specified workstation is open in routine ****

GKS$_ERROR~4:

Error: You tried to reopen a workstation.

User Action: Either remove the function call to GKS$OPEN_WS, or
replace the incorrect workstation-type argument.

25 Specified workstation is not open in routine ****

GKS$_ERROR~5:

Error: You tried to input or generate output on a closed workstation.

User Action: Call GKS$OPEN_WS and pass the appropriate
workstation identifier.

26 Specified workstation cannot be opened in routine ****

GKS$_ERROR _26:

Error:

User Action: Make sure that you specify valid workstation types, bit
masks, or logical name definitions (GKS$CONID and GKS$WSTYPE),
and make sure that the information corresponds to a supported,
functional physical device.

27 Workstation Independent Segment Storage is not open in routine ****

GKS$_ERROR~7:

Error: You tried to copy, associate, or insert a segment from WISS to
another workstation.

User Action: Make sure that you have opened WISS in a call to
GKS$OPEN_WS, passing GKS$K—WSTYPE—WISS as an argument.

28 Workstation Independent Segment Storage is already open in
routine

GKS$_ERROR~8:

Error:

User Action: Either remove the function call to GKS$OPEN_WS, or
replace the incorrect workstation-type argument.

D-20 DEC GKS Error Messages

29 Specified workstation is active in routine

GKS$_ERROR~9:

Error: You tried to activate a workstation twice.

User Action: Either remove the function call to GKS$ACTIVATE _WS,
or replace the incorrect workstation-type argument.

30 Specified workstation is not active in routine

GKS$_ERROR_30:

Error: You tried to generate output on an inactive workstation.

User Action: Call GKS$ACTIVATE _WS passing the appropriate
workstation.

31 Specified workstation is of category MO in routine

GKS$_ERROR~1:

Error: You attempted to perform an operation that is not permissible
on MO workstations.

User Action: Either remove the function call, change the state of the
MO workstation, or check to see if you passed the correct arguments
to GKS$OPEN_WS.

32 Specified workstation is not of category MO in routine ****

GKS$_ERROR~32:

Error:

User Action: Open and activate an MO workstation.

33 Specified workstation is of category MI in routine ****

GKS$_ERROR~3:

Error: You attempted to perform an operation that is not permissible
on MI workstations.

User Action: Either remove the function call, change the state of the
MI workstation, or check to see if you passed the correct arguments to
GKS$OPEN_WS.

DEC GKS Error Messages D-21

34 Specified workstation is not of category MI in routine ****

GKS$_ERROR~4:

Error: You tried to interpret a file that was not associated with an MI
workstation.

User Action: Open a workstation of category MI.

35 Specified workstation is of category INPUT in routine ****

GKS$_ERROR~S:

Error: You attempted to perform an operation that is not permissible
on workstations of category INPUT, such as generating output.

User Action: Either remove the function call, change the state of
the INPUT workstation, or check to see if you passed the correct
arguments to GKS$OPEN_WS.

36 Specified workstation is Workstation Independent Segment Storage in
routine ****

GKS$_ERROR~6:

Error: You attempted to perform an operation that is not permissible
on workstations of category WISS, such as requesting input.

User Action: Either remove the function workstation identifier or
check to see if you passed the correct arguments to GKS$OPEN_WS.

37 Specified workstation is not of category OUTIN in routine ****

GKS$_ERROR ~7:

Error: You attempted to perform an operation that is only permissible
on workstations of category OUTIN.

User Action: Either remove the function call, open and activate
an OUTIN workstation, or check to see if you passed the correct
arguments to GKS$OPEN_WS.

D-22 DEC GKS Error Messages

38 Specified workstation is neither of category INPUT nor of category
OUTIN in routine ****

GKS$_ERROR._.38:

Error: You attempted to perform an operation that is only permissible
on workstations of category INPUT and OUTIN, such as requesting
input.

User Action: Either remove the function call, change the state of
the INPUT workstation, or check to see if you passed the correct
arguments to GKS$OPEN_WS.

39 Specified workstation is neither of category OUTPUT nor Of category
OUTIN in routine ****

GKS$_ERROR~9:

Error: You attempted to perform an operation that is only permissible
on workstations of category OUTPUT or OUTIN, such as generating
output.

User Action: Either remove the function call, open and activate a
workstation of the correct category, or check to see if you passed the
correct arguments to GKS$OPEN _WS.

40 Specified workstation has no pixel store readback capability in
routine ****

GKS$_ERROR_40:

Error: You called one of the pixel inquiry functions for a device
incapable of returning such information.

User Action: Either remove the function call, or make sure that you
passed the correct workstation identifier.

41 Specified workstation type is not able to generate the specified
generalized drawing primitive in routine ****

GKS$_ERROR_41:

Error:

User Action: Either remove the function call to GKS$GDP, or make
sure that you passed the correct GDP identifier.

DEC GKS Error Messages D-23

42 Maximum number of simultaneously open workstations would be
exceeded in routine

GKS$_ERROR_42:

Error:

User Action: You must remove the function call to GKS$OPEN_WS.
You can use GKS$INQ _WS_IViAX _NUM to determine the maximum
number of open workstations that DEC GKS supports.

43 Maximum number of simultaneously active workstations would be
exceeded in routine ****

GKS$_ERROR_43:

Error:

User Action: You must remove the function call to GKS$ACTIVATE _
WS. You can use GKS$INQ _WS_11/IAX _NUM to determine the
maximum number of active workstations that DEC GKS supports.

D.4 Errors Relating to the DEC GKS Transformations

This section lists the errors that result when you call a DEC GKS transformation
function with invalid or undefined arguments.

50 Transformation number is invalid in routine ****

GKS$_ERROR_50:

Error:

User Action: Either make sure that the arguments are specified in the
correct order, that the transformation number is not negative, or that
the transformation number is an integer.

51 Rectangle definition is invalid in routine

GKS$_ERROR_51:

Error: Either the normalization window or viewport is invalid.

User Action: Either make sure that you have not reversed the order
of the X and Y argument values, that your coordinate values form a
valid rectangle, and that your coordinate values are real numbers.

D-24 DEC GKS Error Messages

52 Viewport is not within the Normalized Device Coordinate unit square
in routine ****

GKS$_ERROR_52:

Error: DEC GKS allows unclipped primitives to exceed the NDC unit
square ([0,1] x [0,1]), but does not allow you to define a normalization
viewport whose boundaries exceed this square.

User Action: Redefine the function normalization viewport.

53 Workstation window is not within the Normalized Device Coordinate
unit square in routine

GKS$_ERROR_53:

Error:

User Action: Redefine the function normalization viewport to be
within the NDC square ([0,1] x [0,1]).

54 Workstation viewport is not within the display space in routine ****

GKS$_ERROR_54:

Error:

User Action: Either make sure that you have not reversed the order
of the X and Y argument values, that your coordinate values form a
valid rectangle, and that your coordinate values are real numbers. You
can use the function GKS$INQ ~/IAX _DS_SIZE to determine the
maximum X and Y values of the device coordinate plane.

D.5 Errors Relating to the DEC GKS Output Attributes

This section lists the errors that result when you call the DEC GKS output
attribute functions with invalid or undefined arguments.

60 Polyline index is invalid in routine ****

GKS$_ERROR_60:

Error:

User Action: Make sure that the arguments are specified in the correct
order and that the index is an integer.

DEC GKS Error Messages D-25

61 A representation for the specified polyline index has not been defined
on this workstation in routine ****

GKS$_ERROR _61:

Error:

User Action: Use GKS$SET_I'LINE _REP to define a representation
for the index, or use another, defined index value.

62 A representation for the specified polyline index has not been
predefined on this workstation in routine ****

GKS$_ERROR _62:

Error:

User Action: Use GKS$SET~'LINE _REP to define a representation
for the index, or use another, predefined index value.

63 Specified linetype is equal to zero in routine ****

GKS$_ERROR_63:

Error:

User Action: Make sure that the order and the number of the
arguments is correct. If you used an inquiry function to obtain a
default line type, check the order of the arguments passed to the
inquiry function.

64 Specified linetype is not supported on this workstation in routine ****

GKS$_ERROR_64:

Error: You specified a line type value that is workstation dependent
but is not supported by the specified workstation.

User Action: Change the line type specification. You can use the
function GKS$INQ 'LINE SAC to obtain a list of supported line
types for a given workstation.

65 Linewidth scale factor is less than zero in routine ****

GKS$_ERROR_65:

Error:

User Action: Either change the scale factor, or check the order and
the number of the specified arguments.

D-26 DEC GKS Error Messages

66 polymarker index is invalid in routine

GKS$_ERROR_66:

Error:

User Action: Make sure that the arguments are specified in the correct
order and that the index is an integer.

67 A representation for the specified polymarker index has not been
defined on this workstation in routine

GKS$_ERROR_67:

Error:

User Action: Use GKS$SET_I'MARK_REP to define a representation
for a given index, or use another, defined index value.

68 A representation for the specified polymarker index has not been
predefined on this workstation in routine

GKS$_ERROR_68:

Error:

User Action: Use GKS$SET_I'MARK_REP to define a representation
for a given index, or use another, predefined index value.

69 Specified marker type is equal to zero in routine

GKS$_ERROR_69:

Error:

User Action: ~ Make sure that the order of the arguments is correct. If
you used an inquiry function to obtain a default marker type, check
the order of the arguments passed to the inquiry function.

70 Specified marker type is not supported on this workstation in
routine

GKS$_ERROR_70:

Error: You specified a marker type value that is workstation depen-
dent but is not supported by the specified workstation.

User Action: Change the marker type specification. You can use the
function GKS$INQ_I'MARK_FAC to obtain a list of supported line
types for a given workstation.

DEC GKS Error Messages D-27

71 Marker size scale factor is less than zero in routine

GKS$_ERROR_71:

Error:

User Action: Either change the scale factor, or check the order and
the number of the specified arguments.

72 Text index is invalid in routine

GKS$_ERROR _72:

Error:

User Action: Make sure that the arguments are specified in the correct
order and that the index is an integer.

73 A representation for the specified text index has not been defined on
this workstation in routine

GKS$_ERROR_73:

Error:

User Action: Use GKS$SET_TEXT_REP to define a representation for
the index value, or use another, defined index value.

74 A representation for the specified text index has not been predefined
on this workstation in routine

GKS$_ERROR_74:

Error:

User Action: Use GKS$SET_TEXT_REP to define a representation for
the index value, or use another, predefined index value.

75 Text font is equal to zero in routine

GKS$_ERROR_75:

Error:

User Action: Either change the font number, or check the order
and the number of the specified arguments. If you used an inquiry
function to obtain a default value, check the order and the number of
the arguments passed to the inquiry function.

D-28 DEC GKS Error Messages

76 Requested text font is not supported for the specified precision on this
workstation in routine

GKS$_ERROR _76:

Error:

User Action: Lower the precision or change the font number.

77 Character expansion factor is less than or equal to zero in routine ****

GKS$_ERROR_77:

Error:

User Action: Either change the expansion factor value or check the
order and the number of the arguments. If you used an inquiry
function to obtain a default value, check the order and the number of
the arguments passed to the inquiry function.

78 Character height is less than or equal to zero in routine

GKS$_ERROR_78:

Error:

User Action: Either change the height value, or check the order
and the number of the arguments. If you used an inquiry function
to obtain a default value, check the order and the number of the
arguments passed to the inquiry function.

79 Length of character up vector is zero in routine

GKS$_ERROR_79:

Error:

User Action: Change the character up vector, or check the order
and the number of the arguments. If you used an inquiry function
to obtain a default value, check the order and the number of the
arguments passed to the inquiry function.

80 Fill area index is invalid in routine

GKS$_ERROR_80:

Error:

User Action: Make sure that the arguments are specified in the correct
order and that the index is an integer.

DEC GKS Error Messages D-29

81 A representation for the specified fill area index has not been defined
on this workstation in routine

GKS$_ERROR_81:

Error:

User Action: Use GKS$SET_FILL—REP to define a representation for
the given index value, or pass another, defined index value.

82 A representation for the specified fill area index has not been
predefined on this workstation in routine ****

GKS$_ERROR_82:

Error:

User Action: Use GKS$SET_FILL _REP to define a representation for
the given index value, or pass another, predefined index value.

83 Specified fill area interior style is not supported on this workstation in
routine ****

GKS$_ERROR_83:

Error: You specified a fill area interior style value that is workstation-
dependent but is not supported by the specified workstation.

User Action: Change the interior style specification. You can use the
function GKS$INQ SILL _FAC to obtain a list of supported interior
styles for a given workstation.

84 Style (pattern or hatch) index is equal to zero in routine ****

GKS$_ERROR_84:

Error:

User Action: Either change the style index, or check the order and the
number of the specified arguments. If you used an inquiry function to
obtain a style index, check the order and the number of the arguments
passed to the inquiry function.

85 Specified pattern index is invalid in routine

GKS$_ERROR_85:

Error:

User Action: Make sure that the arguments are specified in the correct
order and that the index is an integer.

D-30 DEC GKS Error Messages

86 Specified hatch style is not supported on this workstation in
routine ****

GKS$_ERROR_86:

Error:

User Action: Either replace the hatch style index, or check the order
and the number of the arguments. The inquiry function GKS$INQ _
FILL _FAC returns the list of available hatch style indexes.

87 Pattern size value is not positive in routine ****

GKS$_ERROR_87:

Error:

User Action: Either alter the size of the pattern, or check the order
and the number of the arguments. If you used an inquiry function to
obtain the size of the pattern, check the order and the number of the
arguments passed to the inquiry function.

88 A representation for the specified pattern index has not been defined
on this workstation in routine

GKS$_ERROR_88:

Error:

User Action: Use GKS$SET_I'AT_REP to define a representation for
the pattern index, or pass another, defined index to the function.

89 A representation for the specified pattern index has not been
predefined on this workstation in routine

GKS$_ERROR_89:

Error:

User Action: Use GKS$SET_I'AT~EP to define a representation for
the pattern index, or pass another, predefined index to the function.

90 Interior style PATTERN is not supported on this workstation in
routine ****

GKS$_ERROR _90:

Error:

User Action: Specify another interior style to GKS$SET_FILL _INT
STYLE.

DEC GKS Error Messages D-31

91 Dimensions of color array are invalid in routine ****

GKS$_ERROR_91:

Error: One or more of the arguments passed to GKS$CELL _ARRAY
are invalid.

User Action: Make sure that the color array is atwo-dimensional
array. Also, make sure that you have not specified more rows and
columns in the cell array that exist from the offset point to the end
of the array. Also, make sure that the cell array contains integers
representing colors supported On that workstation.

92 Color index is less than zero in routine ****

GKS$_ERROR_92:

Error:

User Action: Either remove the index, or check the order and the
number of the arguments. If you used an inquiry function to obtain
the index value, check the order and the number of the arguments
passed to the inquiry function.

93 Color index is invalid in routine ****

GKS$_ERROR_93:

Error:

User Action: Make sure that the arguments are specified in the correct
order and that the index is an integer.

94 A representation for the specified color index has not been defined on
this workstation in routine

GKS$_ERROR_94:

Error:

User Action: Use GKS$SET_COLOR_REP to define a color rep-
resentation for the index value, or pass another, defined index
value.

D-32 DEC GKS Error Messages

95 A representation for the specified color index has not been predefined
on this workstation in routine ****

GKS$_ERROR_95:

Error:

User Action: Use GKS$SET_COLOR_REP to define a color rep-
resentation for the index value, or pass another, defined index
value.

96 Color index is outside range [0,1] in routine ****

GKS$_ERROR_96:

Error:

User Action: Specify either the value 0 or 1 for the color index value.

9 7 Pick identifier is invalid in routine

GKS$_ERROR_97:

Error:

User Action: Either remove the call to GKS$SET~'ICK_ID or make
sure that the pick identifier is an integer. If you obtained the pick
identifier from an inquiry function, check the order and the number of
the arguments passed to the inquiry function.

D.6 Errors Relating to the DEC GKS Output Functions

This section lists the errors that result when you call a DEC GKS output
function with invalid or undefined arguments.

100 Number of points is invalid in routine

GKS$_ERROR_100:

Error: The number of points specified does not match the number of
coordinate points passed.

User Action: Either alter the specified number of points, or alter
the number of coordinate values contained in the arrays passed as
arguments.

DEC GKS Error Messages D-33

101 Invalid code in string in routine ****

GKS$_ERROR_101:

Error: Your text string contained characters that cannot be printed.

User Action: Remove the characters.

102 Generalized Drawing Primitive identifier is invalid in routine ****

GKS$_ERROR_102:

Error:

User Action: Specify another identifier or check to see if the identifier
is an integer value.

103 .Content of Generalized Drawing Primitive data record is invalid in
routine ****

GKS$_ERROR_103:

Error:

User Action: Make sure that you passed a correct size as the data
record size.

104 At least one active workstation is not able to generate the specified
Generalized Drawing Primitive in routine ****

GKS$_ERROR_104:

Error:

User Action: Deactivate the workstations that do not generate the
GDPs, or redefine the GDP data record so that all of the workstations
can generate the primitive.

105 At least one active workstation is not able to generate the specified
GDP primitive under the current transformation and clipping rectangle
in routine ****

GKS$_ERROR_105:

Error:

User Action: Either redefine the current normalization transformation
(creating a different clipping rectangle), or supply different world
coordinate points so that the GDP falls within the current clipping
rectangle.

D-34 DEC GKS Error Messages

D.7 Errors Relating to the DEC GKS Segment Functions

This section lists the errors that result when you call a DEC GKS segment
function with invalid or undefined arguments.

120 Specified segment name is invalid in routine ****

GKS$_ERROR_120:

Error:

User Action: Either check the number and the order of the arguments
or make sure that the segment name is an integer value. If you
obtained the segment name from an inquiry function, check the order
and the number of the arguments passed to the inquiry function.

121 Specified segment name is already in use in routine ****

GKS$_ERROR_121:

Error:

User Action: Either remove the call to GKS$CREATE_SEG or check
to make sure that you specified the correct segment name.

122 Specified segment does not exist in routine ****

GKS$_ERROR_122:

Error:

User Action: Either check the order and the number of the arguments
or make sure that you specified an integer value as a segment name.
If you used an inquiry function to obtain the segment name, check the
order and the number of the arguments passed to the inquiry function.

123 Specified segment does not exist on specified workstation in
routine ****

GKS$_ERROR_123:

Error:

User Action: Either remove the function call, or if the segment exists
in WISS, associate the segment with the appropriate workstation.

DEC GKS Error Messages D-35

124 Specified segment does not exist On Workstation Independent Segment
Storage in routine ****

GKS$_ERROR_124: You attempted to copy, associate, or insert a
segment that is not stored in WISS.

Error:

User Action: Either remove the function call or check to see that you
specified the correct segment name.

125 Specified segment is open in routine

GKS$_ERROR_125:

Error:

User Action: Either remove the call to GKS$CREATE _SEG or specify
another segment name.

12 6 Segment priority is outside the range [0,1] in routine

GKS$_ERROR_126:

Error:

User Action: Change the specified segment priority. If you used an
inquiry function to obtain the segment priority value, check the order
and the number of the arguments passed to the inquiry function.

D.8 Errors Relating to the DEC GKS Input Functions

This section lists the errors that result when you call a DEC GKS input function
with invalid or undefined arguments.

140 Specified input device is not present on workstation in routine ****

GKS$_ERROR_140:

Error:

User Action: Make sure that you specified the function that applies to
the correct logical input device and the correct workstation identifier.

D-36 DEC GKS Error Messages

141 Input device is not in REQUEST mode in routine ****

GKS$_ERROR_141:

Error:

User Action: Use one of the GKS$SET_class_NiODE input functions
to set request mode before using this logical input device.

142 Input device is not in SAMPLE mode in routine ****

GKS$_ERROR_142:

Error:

User Action: Use one of the GKS$SET_class_NiODE input functions
to set to sample mode before using this logical input device.

143 EVENT and SAMPLE mode are not available at this level of GKS in
routine ****

GKS$_ERROR_143:

Error:

User Action: DEC GKS does not generate this error.

144 Specified prompt and echo type is not supported on this workstation
in routine

GKS$_ERROR _144:

Error:

User Action: Make sure that the order of the arguments is correct or
change the prompt and echo value. If you obtained the prompt and
echo type from an inquiry function, check the order and the number
of the arguments passed to the inquiry function.

145 Echo area is outside display space in routine

GKS$_ERROR_145:

Error:

User Action: Make sure that the specified coordinate points are real
values that specify a valid rectangle on the display surface. If you
used an inquiry function to obtain the echo area, check the order and
the number of the arguments passed to the inquiry function.

DEC GKS Error Messages D-37

146 Contents of input data record are invalid in routine ****

GKS$_ERROR_146:

Error:

User Action: Make sure that you specified the correct size of the data
record, that the elements of the data record are of the correct data
type, and that you have chosen the correct corresponding prompt
and echo type. If you used an inquiry function to obtain the data
record, check the order and number of the arguments passed to the
inquiry function. Also, make sure that you have not specified input
values that are not accepted by the particular device; you can check
the device's capabilities by calling one of the DEFAULT DATA inquiry
functions.

147 Input queue has overflowed in routine ****

GKS$_ERROR_147:

Error:

User Action: Check the input queue with greater frequency or flush
the input queue.

148 Input queue has not overflowed since GKS was opened or the last
invocation of INQUIRE INPUT QUEUE OVERFLOW in routine ****

GKS$_ERROR_148:

Error: You called GKS$INQ _INPUT_QUEUE _OVERFLOW when
the queue was not full, and had not been filled since the beginning of
your application.

User Action: Allow the user to continue to generate events, if your
application still requires input.

149 Input queue has overflowed, but associated workstation has been
closed in routine

GKS$_ERROR_149:

Error: You called GKS$INQ _INPUT_QUEUE _OVERFLOW when
the queue was full, but since the workstation is closed, information
about the overflow is not available.

User Action: You can set the devices to request mode (removing
their prompts from the workstation surface), and then you can either
process reports from the queue until empty or you can flush the queue
of all reports. 1~J

D-38 DEC GKS Error Messages

150 No input value of the correct class is in the current event report in
routine ****

GKS$_ERROR_150:

Error:

User Action: Make sure that you check the input class argument
passed to GKS$AWAIT~VENT before you try to call the appropriate
GKS$GET_class function.

151 Timeout is invalid in routine

GKS$_ERROR _151:

.Error:

User Action: Make sure that the timer argument in GKS$AWAIT_
EVENT is a real value between 0.0 and 356,400, specified in the
format described in the GKS$AWAIT_EVENT function description in
Chapter 8, Input Functions.

152 Initial value is invalid in routine ****

GKS$_ERROR_152:

Error:

User Action: Either check to make sure that you specified the correct
value, or check the capabilities of the device to see if you requested a
value unsupported by the device. If you obtained the value from an
inquiry function, check the order and number of arguments specified
to the inquiry function.

153 Number of points in the initial stroke is greater than the buffer size in
routine ****

GKS$_ERROR_153:

Error:

User Action: Either increase the size of the buffer or reduce the
number of points in the initial stroke.

154 Length of initial string is .greater than the buffer size in routine ****

GKS$_ERROR_154:

Error:

User Action: Either increase the size of the buffer or decrease the size
of the initial string.

DEC GKS Error Messages D-39

D.9 Errors Relating to the DEC GKS Metafile Functions

This section lists the errors that result when you call a DEC GKS metafile
function with invalid or undefined arguments.

160 Item type is not allowed for user items in routine ****

GKS$_ERROR_160:

Error: You used an item type less than 101 to write to a GKSM.

User Action: Use an item type greater than 101.

161 Item length is invalid in routine

GKS$_ERROR_161:

Error: The length of the data item was shorter than necessary for its
type.

User Action: Make sure that DEC GKS does not truncate your record
when reading the item from a GKSM.

162 No item is left in GKS Metafile input in routine ****

GKS$_ERROR_162:

Error: You tried to read past the end of the GKSM.

User Action: Do not attempt to read items past the item Of type 0.

163 Metafile item is invalid in routine

GKS$_ERROR_163:

Error: Your item data was incorrect.

User Action: Make sure that DEC GKS did not truncate the item
while reading from a GKSM and that you specified correct sizes and
types. Make sure- that you are not trying to interpret auser-defined
record type. User-defined records have item numbers greater than
100.

D-40 DEC GKS Error Messages

164 Item type is not a valid GKS item in routine

GKS$_ERROR_164:

Error: You tried to interpret an item of type less than 0 or greater
than 100.

User Action: Make sure that DEC GKS did not truncate the item
while reading from a GKSM and that you specified correct sizes and
types.

165 Content of item data record is invalid for the specified item type in
routine

GKS$_ERROR_165:

Error: There was unexpected or incorrect information in the data
record.

User Action: Make sure that you pass the correct storage area.

166 Maximum item data record length is invalid in routine

GKS$_ERROR_166:

Error:

User Action: Make sure that the data length is not negative.

16 7 User item cannot be interpreted in routine

GKS$_ERROR_167:

Error:

User Action: Do not pass user items to DEC GKS for interpretation.

168 Specified function is not supported in this level of GKS in routine ****

GKS$_ERROR_168:

Error:

User Action: DEC GKS does not generate this error.

D.10 Errors Relating to the DEC GKS Escape Functions

This section lists the errors that result when you call a DEC GKS escape
function with invalid or undefined arguments.

DEC GKS Error Messages D-41

180 Specified escape function is not supported in
routine ****

GKS$_ERROR _180:

Error:

User Action: Check the escape function identifier to make sure that it
is a valid integer representing an escape function, and make sure that
you specified the correct workstation identifier.

181 Specified escape function identifier is invalid in routine

GKS$_ERROR_181:

Error:

User Action: Make sure that the escape function identifier is a valid
integer value.

182 Contents of escape data record are invalid in routine ****

GKS$_ERROR_182:

Error:

User Action: Make sure that you specified the correct size of the
data record. Also, make sure that the elements of the data record are
declared to be the correct data type.

D.11 Miscellaneous Errors

This section lists the DEC GKS miscellaneous errors.

200 Specified error file is invalid in routine ****

GKS$_ERROR~00:

Error:

User Action: Make sure that your specified error handler exists and
that it includes the three required parameters in its definition.

D.12 DEC GKS System Errors

This section lists implementation-dependent errors.

D-42 DEC GKS Error Messages

302 Input/Output error has occurred while reading in routine ****

GKS$_ERROR~02:

Error: You specified an illegal metafile for a metafile input
workstation.

User Action: Make sure that you work with a valid GKSM metafile,
and that you correctly specify the connection identifier.

303 Input/Output error has occurred while writing in routine ****

GKS$_ERROR_303:

Error: You specified an illegal metafile for a metafile output
workstation.

User Action: Make sure that you work with a valid GKSM metafile,
and that you correctly specify the connection identifier.

308 Arithmetic error has occurred in routine ****

GKS$_ERROR X08:

Error: You either divided by zero or caused data overflow.

User Action: Check the arguments passed in the function call.

D.13 The FORTRAN Binding Errors

This section lists those error messages that are specific to the FORTRAN
binding functions.

2000 Enumeration type out of range the INTEGER passed as a GKS
enumerated type is not within the range of valid values in routine

GKS$_ERROR~000:

Error:

User Action: Make sure that you properly define the enumerated
values.

DEC GKS Error Messages D-43

2001 Output parameter size insufficient a FORTRAN array or string being
passed as an output parameter is too small to contain the returned
information in routine ****

GKS$_ERROR~001:

Error:

User Action: Redefine the size of the output string, or check the order
or number of arguments passed to the function.

2002 List or set element not available for a nonempty list or set, a value
less than zero or greater than the size of the list or set was passed as
the requested list or set element in an inquiry routine in routine ****

GKS$_ERROR~002:

Error:

User Action: Either check the declaration of the value passed, or
check the order and number of all arguments passed.

2003 Invalid data record the data record passed to a GKS routine cannot
be decoded, or there was a problem encountered when GKS was
creating a data record, making the result invalid in routine

GKS$_ERROR~003:

Error:

User Action: Make sure that you used the function GPREC to pack
and create the data record. Also, check the order and number of
arguments passed to the function. If you used an inquiry function
to obtain the data record value, check the order and number of
arguments passed to the inquiry function.

D-44 DEC GKS Error Messages

Appendix E

DEC GKS Metafile Structures
(GKSM, CGM)

This appendix provides a brief overview of the internal format of GKSM and
CGM metafiles. DEC GKS defines the workstations GKS$K_GKSM_OUTPUT
and GKS$K_CGM_OUTPUT to use when creating metafiles. DEC GKS
defines the workstation GKS$K_GKSM~NPUT to use when reading metafiles.
Remember that DEC GKS can create, but cannot interpret, CGM metafiles.

If you need to understand the GKSM metafile format in detail, refer to the
GKS ANSI standard document. If you need to understand the CGM metafile
encoding formats in detail, refer to the CGM standard ANSI X3.122-1986.
All references to the CGM standard in this appendix refer to this standard
document.

The following sections briefly describe GKSM and CGM metafiles.

E.1 GKSM Metafiles

The GKS standard defined the GKS metafile (GKSM) for the purpose of storing
and retrieving information about the generation of a picture. The metafile can
contain information about GKS output function calls from level 0 to level 2.

The design of the GKSM metafile structure defines a sequence of logical data
items. The data items include information in both a clear text encoding and
an unspecified binary format. The following sections describe the format and
coding of the GKSM logical data items.

DEC GKS Metafile Structures (GKSM, CGM E-1

E.1.1 Data Format Information

The proposed standard ISO 6093 will describe the representation of integer and
real number representations. This standard is not likely to be completed for
quite some time. There is a movement for ISO 6093 to support use of a comma
rather than a period in floating point numbers. DEC GKS does not support this
use of commas.

Integers are formatted in decimal ASCII characters in the output metafile.
Floating point numbers are formatted in the standard F- or E-Floating formats,
decimal ASCII characters, depending upon their value.

The GKSM metafile allows four possible ways to represent integers and floating
point numbers, as follows:

• Both integer and floating point numbers are specified by their character
representations.

• Integer numbers are specified by their character representations. Floating
point numbers are represented as scaled integers.

• Both integer and floating point numbers are specified by their internal
binary representations.

• Integer numbers are specified by their internal binary representations.
Floating point numbers are represented as scaled integers.

Remember that both integer and floating point numbers are specified by their
character representations.

GKSM metafiles also allow differing field length specifications for different
fields of the metafile. The input workstation recognizes all the different field
length specifications.

E.1.2 GKSM Structure

A GKSM metafile consists of a metafile header followed by metafile items. Each
metafile item consists of an item header followed by item data. Figure E-1
illustrates this structure.

E-2 DEC GKS Metafile Structures (GKSM, CGM)

Figure E-1: GKSM Metafile Structure

Metafile Header Metafile Item Metafile Item

ZK-5220-86

E.1.2.1 Metafile Header Structure
The metafile header contains 90 bytes. The bytes are divided into 13 fields as
follows. Figure E-2 illustrates this structure.

Figure E-2: GKSM Metafile Header Structure

GKSM D V H T L I R F RI ZERO ONE

ZK-5221-86

Table E-1 describes the fields within the metafile header.

Table E-1: GKSM Metafile Header Fields

Field Size Description

GKSM 4 bytes Containing string "GKSM".

N 40 bytes Containing name of author/installation. In DEC GKS,
author is the process name at the time of metafile creation
(16 bytes) and installation is "DEC GKS Version 2.0".

D 8 bytes Containing date (yy/mm/dd).

V 2 bytes Version number (01).

H 2 bytes Integer specifying how many bytes of the string "GKSM"
occupy the beginning of each record (04).

T 2 bytes Length of item type indicator field (03).

L 2 bytes Length of item data record length indicator field (08).

I 2 bytes Length of field for each integer in the item data record (08).

R 2 bytes Length of field for each real in the item data record (14).

DEC GKS Metafile Structures (GKSM, CGM) E-3

Table E-1 (Cont.): GKSM Metafile Header Fields

Field Size Description

F 2 bytes Flag indicating if numbers are formatted as characters (1) or
are stored in an internal binary format (2). DEC GKS value
is O1.

RI 2 bytes Flag indicating if real numbers are stored as real numbers
(01) or as scaled integers (02). DEC GKS value is O 1.

ZERO 11 bytes Scaling information. Not used.

ONE 11 bytes Scaling information. Not used.

E.1.2.2 Metafile Item Structure

There are several different types of metafile items. Each item consists of an
item header and an item data record. The item header format is the same for
all types of metafile items, but the item data record varies in length and format
for each type of metafile item. Figure E-3 illustrates the structure of a metafile
item.

Figure E-3: GKSM Metafile Item Structure

Item Header Item Data Record •

ZK-5222-86

E-4 DEC GKS Metafile Structures (GKSM, CGM)

E.1.2.3 Item Header Structure
Each item header contains 15 bytes, divided in three fields. Figure E-4 illus-
trates the item header structure.

Figure E-4: GKSM Metafile Item Header Structure

GKSM Item Number Item Data Length

ZK-5223-86

Table E-2 presents the item header fields.

Table E-2: GKSM Metafile Item Header Fields

Field Size Description

GKSM

Item Number

Item Data
Length

4 bytes

3 bytes

8 bytes

Contains the string "GKSM".

Contains an integer identifying the item.

Contains an integer specifying the length, in bytes,
of the item data record.

E.1.2.4 Layout of Item Data Records
Each item data type, identified by a unique item number (an integer), has a
specific format associated with it. Table E-3 lists the possible item numbers and
their associated formats.

Table E-3: GKSM Metafile Data Record Fields

Number Format

0

1

2

3

4

END ITEM—Last item of the metafile. No data record.

CLEAR WORKSTATION—For all active workstations. a) Integer, 0 =
CONDITIONALLY or 1 =ALWAYS.

REDRAW ALL SEGMENTS ON WORKSTATION—No data record.

UPDATE WORKSTATION—For all active workstations. a) Integer, 0 =
POSTPONE, 1 =PERFORM.

SET DEFERRAL STATE—a) Integer =deferral mode, 0 =ASAP, 1 = BNIG,
2 = BNIL, 3 = ASTI; b) Integer =regeneration mode, 0 =ALLOWED, 1 =
SUPPRESSED.

DEC GKS Metafile Structures GKSM, CGM► E-5

Table E-3 (Cont.): GKSM Metafile Data Record Fields

Number Format

5 MESSAGE—a) Integer =number of characters in string; b) string with
specified number of characters.

6 ESCAPE—For all active workstations. a) Integer =function id, b) Integer
= bytes of integer array d, c) Integer =bytes of real number array e, d)
integer argument array, e) real argument array.

11 POLYLINE—a) Integer = N, Number of polymarkers, b) N pairs of real
numbers. Each pair specifies the X and Y coordinates of a point as real
numbers.

12 POLYMARKER—a) Integer = N, Number of points of the fill area, b) N
pairs of real numbers. Each pair specifies the X and Y coordinates of a
point as real numbers.

13 TEXT—a) Two real numbers specifying the starting position of string, b)
Number N of characters in the string and c) N characters of the string.

14 FILL AREA—a) Integer = N, Number of points of the polyline, b) N pairs
of real numbers. Each pair specifies the X and Y coordinates of a point as
real numbers.

15 CELL ARRAY—a) Three pairs of X-Y coordinates points. First two points
are specified in the function call, the third one is another corner, b) Integer
= number of rows in array, c) Integer =number of columns in array, d)
Integer array of color indexes stored row by row.

16 GDP—a) Integer =GDP identifier, b) Integer N =Number of points, c)
Number of bytes of the integer array f, d) Number of bytes of the real
array g, e) Array containing coordinate points, f) Array containing integer
data, g) Array containing real data.

21 POLYLINE INDEX—a) Integer =polyline index.

22 LINETYPE—a) Integer =line type.

23 LINEWIDTH SCALE FACTOR—a) Real number =line width scale factor.

24 POLYLINE COLOR INDEX—a) Integer =polyline color index.

25 POLYMARKER INDEX—a) Integer =polymarker index.

26 MARKER TYPE—a) Integer =marker type.

27 MARKER SIZE SCALE FACTOR—a) Real number =marker size scale
factor.

28 POLYMARKER COLOR INDEX—a) Integer

29 TEXT INDEX—a) Integer =text index.

30 TEXT FONT AND PRECISION—a) Integer =
STRING, 1 =CHAR, 2 =STROKE.

E-6 DEC GKS Metafile Structures (GKSM, CGM)

= polymarker color index.

text font, b) Integer, 0 =

Table E-3 (Copt.): GKSM Metafile Data Record Fields

Number Format

31 CHARACTER EXPANSION FACTOR—a) Real number =character expan-
sion factor.

32 CHARACTER SPACING—a) Real number =character spacing.

33 TEXT COLOR INDEX—a) Integer =text color index.

34 CHARACTER VECTORS—a) Two real numbers specifying character
height vector, b) Two real numbers specifying character width vector.

35 TEXT PATH—a) Integer 0 =RIGHT, 1 =LEFT, 2 = UP, 3 =DOWN.

36 TEXT ALIGNMENT—a) Integer =Horizontal component, 0 =NORMAL,
1 =LEFT, 2 =CENTER, 3 =RIGHT, b) Integer =Vertical component, 0 =
NORMAL, 1 =TOP, 2 =CAP, 3 =HALF, 4 =BASE, 5=BOTTOM.

37 FILL AREA INDEX—a) Integer =fill area index.

38 FILL AREA INTERIOR STYLE—a) Integer, 0 =HOLLOW, 1 =SOLID, 2 =
PATTERN, 3 =HATCH.

39 FILL AREA STYLE INDEX—a) Integer =fill area style index.

40 FILL AREA COLOR INDEX—a) Integer =fill area color index.

41 PATTERN SIZE—a) Two real numbers specifying pattern width as X and
Y components, b) Two real numbers specifying pattern height as X and Y
components.

42 PATTERN REFERENCE POINT—a) Two real numbers specifying pattern
reference point.

43 ASPECT SOURCE FLAGS—a) 13 integers specifying aspect source flags.
0 =BUNDLED, 1 =INDIVIDUAL.

44 PICK IDENTIFIER—a) Integer =pick identifier.

51 POLYLINE REPRESENTATION—a) Integer =polyline index; b) Integer =
line type; c) Real =line width scale factor; d) polyline color index.

52 POLYMARKER REPRESENTATION—a) Integer =polymarker index; b)
Integer =marker type; c) Real =marker size scale factor; d) polymarker
color index.

53 TEXT REPRESENTATION—a) Integer =text index; b) Integer =text font;
c) Integer, text precision, 0 =STRING, 1 =CHAR, 2 =STROKE; d) Real =
character expansion factor; e) Real =character spacing; f) text color index.

54 FILL AREA REPRESENTATION—a) Integer =fill area index; b) Integer,
interior style, 0 =HOLLOW, 1 =SOLID, 2 =PATTERN, 3 =HATCH; c)
Integer =style index; d) Integer =fill area color index.

DEC GKS Metafile Structures ~GKSM, CGM) E-7

Table E-3 (Copt.): GKSM Metafile Qata Record Fields

Number Format

55 PATTERN REPRESENTATION—a) Integer =pattern index; b) Integer =
number of columns in color array; c) Integer =number of rows; d) Integer
array of the number of columns and rows specified containing color index
values.

56 COLOR REPRESENTATION—a) Integer =color index, b) Three real
numbers specifying red, green and blue intensities respectively.

61 CLIPPING RECTANGLE—a) Four real numbers specifying XMIN, XMAX,
YMIN, YMAX respectively.

71 WORKSTATION WINDOW—a) Four real numbers specifying XMIN,
XMAX, YMIN, YMAX respectively.

72 WORKSTATION VIEWPORT—a) Four real numbers specifying XMIN,
XMAX, YMIN, YMAX respectively.

81 CREATE SEGMENT—a) Integer =segment name.

82 CLOSE SEGMENT—No data record.

83 RENAME SEGMENT—a) Integer =old name; b) Integer =new name.

84 DELETE SEGMENT—a) Integer =segment name.

91 SET SEGMENT TRANSFORMATION—a) Integer =segment name; b) Six
real numbers specifying the transformation matrix values.

92 SET VISIBILITY—a) Integer =segment name; b) Integer, visibility, 0 =
VISIBLE, 1 =INVISIBLE.

93 SET HIGHLIGHTING—a) Integer =segment name; b) Integer, highlight-
ing, 0 =NORMAL, 1 =HIGHLIGHTED.

94 SET SEGMENT PRIORITY—a) Integer =segment name; b) Real =priority.

95 SET SEGMENT DETECTABILITY—a) Integer =segment name; b) Integer,
detestability, 0 =UNDETECTABLE, 1 =DETECTABLE.

100 User Item—User-defined number of bytes.

E.1.3 GKSM Physical File Organization

The GKSM metafile has varying length record format, with a limit on the
maximum record size of 4096 bytes. This file is of sequential organization.

Each metafile item occupies two or more RMS records; one for the item header
and one or more for the item data record. The metafile header occupies one
RMS record. The record item data record occupies at least one RMS record. If
the item data record has a length greater than 4096 bytes, then the data record
is split into two or more RMS records.

E-8 DEC GKS Metafile Structures GKSM, CGMj

E.2 Computer Graphics Metafiles ~CGM~

DEC GKS supports the Computer Graphics Metafile (CGM) format for use in
creating metafiles. To create a CGM metafile, open and activate a workstation
of type GKS$K_CGM_OUTPUT. (Remember that DEC GKS cannot interpret
CGM metafiles.)

The CGM standard defines a metafile as being the capture of static picture
definitions for many types of graphical applications, including DEC GKS
programs. Since the CGM standard provides functionality for many types of
graphics applications (not just GKS), certain GKS functionality may not be
supported by the CGM format and certain CGM capabilities cannot be used
by a GKS program. When you create a CGM metafile using DEC GKS, CGM
records only those features supported by the CGM format. See Section E.2.2
for detailed information concerning the relationship between DEC GKS and
CGM picture storage.

The CGM standard defines three encodings. Encodings are formats used to store
data within the metafile. The data types and values used to store information
within the CGM metafile varies depending on the encoding you use to create
the metafile. The following list presents the three CGM encodings:

• Character encoding a format whose physical file takes a minimal amount
of storage.

• Binary encoding a format easily stored and read by many types of
machine architectures and applications.

• Clear text encoding a format that can easily be read or edited by applica-
tion programmers who wish to use the metafile.

DEC GKS supports two of the three formats: the character and clear text
encodings. The following bit mask is valid for use with the GKS$K_CGM_
OUTPUT workstation:

°Xox000n0007

The value in the first part (OOOn) specifies the desired encoding. The value
in the second part is the hexadecimal value of the GKS$K_CGM_OUTPUT
workstation type (%d7).

DEC GKS Metafile Structures (GKSM, CGMy E-9

The possible values for n include the following:

n Encoding

2 Character encoding.

4 Clear text encoding.

If you choose, you can use bitmask constant values within your program to
specify an encoding, as follows:

CALL GKS$OPEN_WS(WS_ID, 'CGM_METAFILE.TXT',
* GKS$K_CGM_OUTPUT .OR. GKS$M_CHARACTER_ENCODING)

C or,

CALL GKS$OPEN WS(WS_ID, 'CGM_METAFILE.TXT',
* GKS$K_CGM_OUTPUT .OR. GKS$M_CLEAR_TEXT_ENCODING)

For more information concerning constants, refer to Appendix B, DEC GKS
Constants.

The following subsections describe the following topics:

• CGM structure

• Supported encodings
• Element descriptions
• Differences between CGM and DEC GKS graphical facilities
• CGM physical file organization

E-10 DEC GKS Metafile Structures (GKSM, CGM)

E.2.1 CGM Structure

The CGM standard defines three components within a metafile, as shown in
Figure E-5.

Figure E-5: CGM Components

Metafile Metafile Metafile
Descriptor Defaults Picture

.

.

ZK 5847 HC

The metafile descriptor component contains data relevant to the functional
capabilities required to interpret that metafile. For instance, this component can
contain data such as a metafile descriptive string or title, the version number of
the CGM standard used by the implemented CGM interpreter, the date of the
metafile creation, and so forth. (Remember that the format of this data depends
on the encoding you choose.)

The metafile defaults component contains data relevant to all of the picture
definitions contained in the metafile. For instance, this component can contain
data such as the virtual display coordinate (VDC) boundary (this corresponds
to the DEC GKS normalized device coordinate plane), attribute settings, and so
forth.

Each metafile picture component contains data relevant to pictures created by a
DEC GKS program. Since the DEC GKS standard does not define its graphical
output in terms of pictures, the CGM interpreter must use the display surface
empty and new frame necessary at update entries in the DEC GKS state list to
determine when a picture ends and when a new picture begins. (See Section
E.2.2 for more information concerning the differences in terminology between
DEC GKS and CGM.)

CGM files contain components called elements. Each element serves a distinct
purpose, and depending on its functionality, includes applicable data. CGM
specifies an element by providing the encoding-dependent opcode and argument
data. The opcode is a character or series of characters that specify the beginning
of a distinct element.

DEC GKS Metafile Structures (GKSM, CGM) E-11

The following list describes the types of elements in a CGM metafile:

Category Description

Delimiter Elements

Metafile Descriptor Elements

Picture Descriptor Elements

Control Elements

Graphical Primitive Elements

Attribute Elements

Escape Elements

External Elements

Separate components within the metafile.

Describe the functional content and unique
characteristics of the CGM metafile.

Define the limits of the virtual device coordinates
(VDCs) and the parameter modes for the attribute
elements.

Specify size and and precision of VDC coordinates,
and format descriptions of the CGM elements.

Describe the geometric objects in the picture.

Describe the various appearances of the graphical
elements.

Describe device- and system-specific
functionality.

Pass information not needed for the creation of a
picture (for instance, a message sent to the user of
the metafile).

Although CGM defines many data types that correspond to graphical data (for
instance, an index data type for bundle index specifications), there are a few
data types from which all others are derived. The following list presents the all
basic data types of information contained in a CGM metafile:

Data Type Description

Integer

Real

String

Point List

Integer values such as bundle indexes, integer data, and so forth.

Real values such as VDC distance values, red, green, and blue color
intensities, coordinate points, and so forth.

Character strings such as metafile description titles and string data.

Lists of points such as polyline points, polymarker points, and so
forth.

The characters used to specify an opcode and its data are encoding-specific. The
following subsections provide a brief overview of the two supported encodings.

E-12 DEC GKS Metafile Structures (GKSM, CGM)

E.2.2 Differences Between GKS and CGM

Since CGM is designed to format files for many types of graphical applications,
there is no unique relationship between CGM and GKS. If CGM does not
support a graphical facility of DEC GKS, the CGM metafile does not attempt
to simulate such a facility. If the CGM metafile structure supports a graphical
facility unsupported by DEC GKS, then a DEC GKS program will not generate
those unsupported CGM elements.

As mentioned, DEC GKS does not define its graphical output in terms of
pictures, as does CGM. Consequently, the CGM interpreter must determine
what constitutes a new CGM picture definition.

The following list presents the DEC GKS graphical facilities unsupported by
CGM:

• CGM does not support the changing of workstation transformations.
Workstation transformations cause the CGM interpreter to start a new
picture definition.

• A call to GKS$CLEAR_WS causes the CGM interpreter to start a new
picture definition.

• CGM has no elements that correspond to the DEC GKS GKS$SET_
primitive_REP functions.

• CGM does not support the DEC GKS segment functions.

The following list presents the CGM facilities that are unsupported by DEC
GKS:

• DEC GKS does not support the disjoint polyline or the polygon set as
primitives.

• DEC GKS does not support the CGM higher-level primitives (circle,
rectangle, ellipse) as primitives, but can store them as generalized drawing
primitives instead.

• DEC GKS does not support the extended text processing facilities of CGM
(such as named fonts, changing character sets, appended text, restricted
text).

• DEC GKS does not support the fill area edge, auxiliary color, and direct
color specification CGM facilities.

DEC GKS Metafile Structures (GKSM, CGM) E-13

E.2.3 Character Encoding

The CGM character encoding provides a character code for each of the element
opcodes, and provides storage-saving methods for storing argument data. This
is the most storage-efficient encoding.

The CGM character encoding specifies either one or two 7-bit ASCII char-
acters that correspond to each element opcode. For instance, for the BEGIN
METAFILE opcode, CGM places the two ASCII characters 3/0 and 2/0 into the
metafile. (Table E-4 lists the ASCII notations that correspond to each of the
element opcodes.)

To translate the opcode notation into an ASCII value that corresponds to a
character, multiply the first number by the value 16, and add the product to
the number after the slash character (/). So, the notation 3/0 corresponds to
ASCII value 48. For many 7-bit ASCII charts, the first number specifies the
chart column and the number following the slash indicates the chart row. So,
to find the ASCII character that corresponds to 3/0, look in column 3, row 0.

To encode data, the CGM character encoding uses a basic format. The basic
format applies to the following CGM data types:

• Enumerated types

• Color indexes

• Indexes other than color indexes

• Integers

• Real numbers

Figure E-6 presents the CGM character encoding basic format.

Figure E-6: CGM Basic Data Encoding Format

Bit
s

Bit

X 1 e s b b b b

X 1 e b b b b b

7K~5848-NC

First Byte

All Others

E-14 DEC GKS Metafile Structures ~GKSM, CGM)

l~.!

CGM encodes each type of data in one or more bytes. Each byte contains bits
that specify data values. In Figure E-6, bit X is the value 0. Bite (the sixth bit)
is the extension flag. This flag contains the value 1 in all bytes except the last
byte in the data specification. In the last byte, the flag contains the value 0.
Bits (the fifth bit of the first byte) is the sign bit (the value 0 for nonnegative
numbers; the value 1 for negative numbers). Bits labeled b specify the numeric
value in binary. The most significant bits are in the first byte and the least
significant bits are in the last byte.

CGM encodes each real number as an integer mantissa followed by an
exponent. The exponent is the power of 2 by which the integer mantissa is to
be multiplied. Figure E-7 illustrates how CGM uses the basic format to encode
real numbers.

Figure E-7: CGM Basic Encoding Format for Real Numbers

Bit
8

Bit
1

X 1 e s p b b b

X 1 e b b b b b

ZK-5849-HC

First Byte

All Others

Bit a is the extension bit and bit s is the sign bit. Bit p is the 'exponent follows"
bit, which is always the value 1. The last three bits in the first byte contain the
exponent; the remaining bits are the mantissa.

The DEC GKS CGM character encoding scheme uses the displacement mode to
encode point list data. Displacement mode specifies pairs of VDC values that
are the X and Y delta values relative to the last specified point.

CGM codes character strings as sequences of bytes starting with the desig-
nated OPEN CHARACTER STRING character and ending with the STRING
TERMINATOR character.

DEC GKS Metafile Structures ~GKSM, CGM) E-15

The CGM encoding scheme defines many ways to encode data. For com-
plete information concerning character encoding, refer to the CGM standard
documentation.

E.2.4 Clear Text Encoding

The CGM clear text encoding provides a character string for each of the element
opcodes, and numbers and delimiters to specify argument data. Using this type
of encoding, you can easily type or edit the metafile.

For example, this encoding represents the BEGIN METAFILE opcode as the
character string BEGMF. DEC GKS uses the semicolon (;) to separate element
opcodes. (Table E-4 lists the character strings that correspond to each of the
element opcodes.)

DEC GKS specifies integers as numbers, and separates the decimal portion of
real numbers using a period (.). If you edit a clear text encoded metafile, you
can insert comments delimited by percent signs (%). DEC GKS uses the single
quote character to delimit strings ('). The DEC GKS CGM clear text encoding
mechanism for point lists is as follows:

• DEC GKS encloses each pair of points in parentheses (()).

• DEC GKS separates each point specification, within a pair, using a comma
(~)•

• DEC GKS separates the parenthetical point groupings using spaces.

For more information concerning clear text encoding, refer to the CGM standard
documentation.

E.2.5 CGM Element Descriptions

Table E-4 lists the opcodes required for each of the CGM elements. In the
column labeled Opcode, the first opcode listed is the 7-bit ASCII notation of the
characters) used by the character encoding, and the second opcode listed is the
character string used by the clear text encoding.

E-16 DEC GKS Metafile Structures ~GKSM, CGM)

Table E-4: CGM Element Descriptions

Element
Name Opcode Argument Data Description

BEGIN METAFILE

END METAFILE

BEGIN PICTURE

BEGIN PICTURE
BODY

END PICTURE

METAFILE VERSION

METAFILE
DESCRIPTION

VDC TYPE

INTEGER PRECISION

REAL PRECISION

INDEX PRECISION

COLOR PRECISION

COLOR INDEX
PRECISION

MAX COLOR INDEX

COLOR VALUE
EXTENT

3/0 2/0
BEGMF

3/0 2/1
ENDMF

3/0 2/2
BEGPIC

3/0 2/3
BEGPICBODY

3/0 2/4
ENDPIC

3/1 2/0
MFVERSION

3/1 2/1
MFDESC

3/ 1 2/2
VDCTYPE

3/ 1 2/3
INTEGERPREC

3/1 2/4
REALPREC

3/1 2/5
INDEXPREC

3/1 2/6
COLRPREC

3/1 2/7
COLRINDEXPREC

3/1 2/8
MAXCOLRINDEX

3/1 2/9
COLRVALUEEXT

A string value specifying the metafile identifier.

No data required.

A string value that is the picture identifier.

No data required.

No data required.

An integer value corresponding to the version of
the CGM standard being used.

A string value that is a description of the metafile
contents.

An enumerated type specifying the virtual display
coordinate type, which corresponds to the DEC
GKS NDC plane (INTEGER, REAL).

A value (of an encoding-dependent data type) that
specifies the integer precision.

A value or values (of an encoding-dependent data
type) that specify the subfields of the real number
precision.

A value (of an encoding-dependent data type) that
specifies the precision of an index into a bundle
table.

A value (of an encoding-dependent data type) that
specifies the subfields of the precision of red, green,
and blue color intensity values.

A value (of an encoding-dependent data type) that
specifies the precision of an index into a color table.

A positive nonzero integer that is the maximum
color index value.

Two sets of red, green, and blue intensity real
values that are the minimum and maximum color
values.

DEC GKS Metafile Structures (GKSM, CGM E-17

Table E-4 (Cont.~: CGM Element Descriptions

Element
Name Opcode Argument Data Description

METAFILE ELEMENT
LIST

BEGIN DEFAULTS
REPLACEMENT

END DEFAULTS
REPLACEMENT

FONT LIST

CHARACTER SET LIST

CHARACTER
CODING
ANNOUNCER

SCALING MODE

COLOR SELECT
MODE

LINE WIDTH SPEC
MODE

MARKER SIZE
SPEC MODE

3/1 2/10
MFELEMLIST

3/1 2/11
BEGMFDEFAULTS

3/1 2/12
ENDMFDEFAULTS

3/1 2/13
FONTLIST

3/1 2/14
CHARSETLIST

3/1 2/15
CHARCODING

3/2 2/0
SCALEMODE

3/2 2/1
COLRMODE

3/2 2/2
LINEWIDTHMODE

3/2 2/3
MARKERSIZEMODE

A value (of an encoding-dependent data type)
containing a list of all application-specific elements
contained in this metafile.

Control, picture descriptor, and attribute element
list of the same format as described for the
corresponding elements.

No data required.

A list of strings that assigns a font index value,
beginning with the value 1, to each font in the list.

A list of information that specifies up to five of the
supported character sets (from ISO 2022). Each pair
consists of an enumerated value (such as
< 94-character>) followed by a short string

describing the Ntail end" of designating escape
sequences for that set (such as 4/1).

An enumerated type specifying the code extension
technique assumed by the metafile creator (BASIC
7-BIT, BASIC 8-BIT, EXTENDED 7-BIT, EXTENDED
8-BIT).

An enumerated type value and a real value. The
enumerated value specifies either ABSTRACT or
METRIC. If ABSTRACT, then the VDC space is
correctly displayed at any size. If METRIC, then
the real value is the workstation surface distance in
millimeters that corresponds to a single VDC point.

An enumerated type that specifies color selection
support (INDEXED, DIRECT); DIRECT specifies that
color selections are by red, green, and blue intensity
value.

An enumerated type specifying line width.
ABSOLUTE specifies a measurement in VDC
points; SCALED specifies a scale factor to be
applied to aworkstation-dependent nominal width.

An enumerated type specifying marker size.
ABSOLUTE specifies a measurement in VDC points;
SCALED specifies a scale factor to be applied to a
workstation-dependent nominal size.

E-18 DEC GKS Metafile Structures (GKSM, CGM)

Table E-4 (Cont.): CGM Element Descriptions

Element
Name Opcode Argument Data Description

EDGE WIDTH
SPEC MODE

VDC EXTENT

BACKGROUND
COLOR

VDC INTEGER PREC

VDC REAL PREC

AUXILIARY COLOR

TRANSPARENCY

CLIP RECTANGLE

CLIP INDICATOR

POLYLINE

DISJOINT POLYLINE

POLYMARKER

TEXT

3/2 2/4
EDGEWIDTHMODE

3/2 2/5
VDCEXT

3/2 2/6
BACKCOLR

3/3 2/0
VDCINTEGERPREC

3/3 2/1
VDCREALPREC

3/3 2/2
AUXCOLR

3/3 2/3
TRANSPARENCY

3/3 2/4
CLIPRECT

3/3 2/5
CLIP

2/0
INCRLINE

2/1
INCRDISJTLINE

2/2
INCRMARKER

2/3
TEXT

An enumerated type specifying edge width.
ABSOLUTE specifies a measurement in VDC points;
SCALED specifies a scale factor to be applied to a
workstation-dependent nominal width.

Two sets of points that define opposite corners of
a rectangular area of the VDC. This establishes the
positive and negative directions for the VDC plane.

A set of red, green and blue intensity values for the
background color.

A value (of an encoding-dependent data type)
containing the precision for integers used to
designate VDC points.

A value (of an encoding-dependent data type)
containing the precision for reals used to designate
VDC points.

An integer auxiliary color index used to color a
primitive in transparency mode.

An enumerated type that specifies whether the
transparency color is used to draw subsequent
primitives (OFF, ON).

Two VDC point values specifying the clipping
rectangle range.

An enumerated type specifying the clipping status
(OFF, ON).

A set of points, each consecutive point connected to
the last by a line.

A set of points, the first connected to the second,
the third connected to the fourth, and so forth,
leaving spaces in the line.

A set of points, a special character drawn at each
point.

A VDC starting point, an enumerated flag, and
a string. If the flag is NOT FINAL, then you
can specify elements to change the text attributes
between this element and the APPEND TEXT
element. If the flag is FINAL, then the string is the
entire string to be displayed.

DEC GKS Metafile Structures (GKSM, CGM~ E-19

Table E-4 (Cont.): CGM Element Descriptions

Element
Name Opcode Argument Data Description

RESTRICTED TEXT 2/4
RESTRTEXT

APPEND TEXT

POLYGON

POLYGON SET

CELL ARRAY

GDP

RECTANGLE

CIRCLE

CIRCLE ARC
3 POINT

CIRCLE ARC
3 POINT CLOSE

CIRCULAR ARC
CENTER

CIRCULAR ARC
CENTER CLOSE

2/5
APNDTEXT

Two VDC values that are the height and width
vectors, a VDC starting point, an enumerated flag
(as described in TEXT), and a string. The text must
be contained within the parallelogram created using
the starting point and height and width vectors.

An enumerated flag value (as described in TEXT)
and a string. The flag value determines whether
you can specify other elements between this
element and a subsequent APPEND element.

2/6 A series of VDC points specifying a polygon.
INCRPOLYGON

2/7
INCRPOLYGONSET

2/8
CELLARRAY

2/9
GDP

2/10
RECT

3/4 2/0
CIRCLE

3/4 2/ 1
ARC3PT

3/4 2/2
ARC3PTCLOSE

3/4 2/3
ARCCTR

3/4 2/4
ARCCTRCLOSE

A flagged point list, each list item containing a point
and an enumerated flag. Each point is connected to
the subsequent point or to the current closure point,
but not to both. The flag can be one of the edge
values INVISIBLE, VISIBLE, CLOSE INVISIBLE,
CLOSE VISIBLE.

Two diagonal VDC corner points, a third corner
point clockwise between the starting point and
diagonal points, atwo-dimensional list of either
color indexes or intensity values, local color
precision (format determined by the encoding).

An integer GDP identifier, a point list, and a data
record (used in an interpreter-dependent manner).

Two VDC points specifying the starting point and
the diagonal point of the rectangle.

A VDC center point and a VDC distance vector
used as the radius.

A starting point, an intermediate point, and an enc
point.

A starting point, an intermediate point, an end
point, and an enumerated close flag (PIE, CHORD

A center point, a distance X and Y vector for the
starting point, a distance X and Y vector for the er
point, and a VDC radius distance vector.

A center point, a distance X and Y vector for the
starting point, a distance X and Y vector for the
end point, a VDC radius distance vector, and an
enumerated close flag (PIE, CHORD).

E-20 DEC GKS Metafile Structures (GKSM, CGM)

Table E-4 (Cont.~: CGM Element Descriptions

Element
Name Opcode Argument Data Description

ELLIPSE

ELLIPTICAL ARC

ELLIPTICAL ARC
CLOSE

LINE BUNDLE
INDEX

LINE TYPE

LINE WIDTH

LINE COLOR

MARKER BUNDLE
INDEX

MARKER TYPE

MARKER SIZE

MARKER COLOR

TEXT BUNDLE
INDEX

TEXT FONT
INDEX

TEXT PRECISION

CHARACTER
EXPANSION FACTOR

CHARACTER
SPACING

3/4 2/5
ELLIPSE

3/4 2/6
ELLIPARC

3/4 2/7
ELLIPARCCLOSE

3/5 2/0
LINEINDEX

3/5 2/1
LINETYPE

3/5 2/2
LINEWIDTH

3/5 2/3
LINECOLR

3/5 2/4
MARKERINDEX

3/5 2/5
MARKERTYPE

3/5 2/6
MARKERSIZE

3/5 2/7
MARKERCOLR

3/5 3/0
TEXTINDEX

3/5 3/1
TEXTFONTINDEX

3/5 3/2
TEXTPREC

3/5 3/3
CHAREXPAN

3/5 3/4
CHARSPACE

A center point and an endpoint for each conjugate
diameter.

A center point, two endpoints on each conjugate
diameter, a distance X and Y vector for the starting
point, and a distance X and Y vector for the end
point.

A center point, two endpoints on each conjugate
diameter, a distance X and Y vector for the starting
point, a distance X and Y vector for the end point,
and an enumerated close flag
(PIE, CHORD).

Integer index value into the line bundle table.

Integer line type value.

Either a VDC absolute value or a real scale
specification.

Either an integer index value or a set of red, green,
and blue real values.

An integer index value into the polymarker bundle
table.

An integer value specifying a marker type.

Either a VDC absolute value or a real scale
specification.

Either an integer index value or a set of red, green,
and blue real values.

An integer value that is a pointer into the text
bundle table.

An integer index value associated with a previously
specified font.

An enumerated type (STRING, CHARACTER,
STROKE).

A nonnegative real number specifying the height-
to-width ratio.

A real value specifying character spacing.

DEC GKS Metafile Structures (GKSM, CGM► E-21

Table E-4 (Cont.~: CGM Element Descriptions

Element
Name Opcode Argument Data Description

TEXT COLOR 3/5 3/5 Either a color index integer or a set of red, green,
TEXTCOLR and blue intensity values.

CHARACTER HEIGHT 3/5 3/6 A VDC value specifying character height.
CHARHEIGHT

CHARACTER 3/5 3/7 A pair of X and Y directional vector values (VDC)
ORIENTATION CHARORI that define which way is up, and a pair of X and Y

directional vector value (VDC) that define the text
base.

3/5 3/8 An enumerated type value that determines the text
TEXTPATH path (RIGHT, LEFT, UP, DOWN).

3/5 3/9 An enumerated type specifying horizontal alignment
TEXTALIGN (NORMAL HORIZONTAL, LEFT, CENTRE, RIGHT,

CONTINUOUS HORIZONTAL), an enumerated
type specifying vertical alignment (NORMAL
VERTICAL, TOP, CAP, HALF, BASE, BOTTOM,
CONTINUOUS VERTICAL), two real values
specifying continuous horizontal and vertical
alignments, that align the string with a coordinate
outside its text extent.

TEXT PATH

TEXT ALIGNMENT

CHARACTER SET 3/5 3/10 An integer index value that chooses a previously
INDEX CHARSETINDEX specified character set.

ALTERNATE 3/5 3/ 11 An integer index value that chooses a previously
CHARACTER ALTCHARSETINDEX specified character set.
SET INDEX

FILL BUNDLE 3/6 2/0 An integer value that points into the fill area bundle
INDEX FILLINDEX table.

INTERIOR STYLE 3/6 2/1 An enumerated type that specifies interior fill area
INTSTYLE style (HOLLOW, SOLID, PATTERN, HATCH,

EMPTY).

FILL COLOR 3/6 2/2 Either an integer color index value or a set of red,
FILLCOLR green, and blue intensity values.

HATCH INDEX 3/6 2/3 An integer value that specifies a hatch style.
HATCHINDEX

PATTERN INDEX 3/6 2/4 An integer value that specifies a pattern type.
PATINDEX

EDGE BUNDLE 3/6 2/5 An integer value that points into the edge bundle
INDEX EDGEINDEX table.

EDGE TYPE 3/6 2/6
EDGETYPE

An integer value that specifies the edge type.

E-22 DEC GKS Metafile Structures (GKSM, CGM~

Table E-4 (Cont.): CGM Element Descriptions

Element
Name Opcode Argument Data Description

EDGE WIDTH 3/6 2/7 Either an absolute edge width specified in a VDC
EDGEWIDTH value, or an edge width scale factor.

EDGE COLOR 3/6 2/8 Either an integer color index value or a set of red,
EDGECOLR green, and blue intensity values.

EDGE VISIBILITY 3/6 2/9 An enumerated value specifying edge visibility
EDGEVIS (OFF, ON).

FILL REFERENCE 3/6 2/10 Areal value specifying the fill area reference point.
POINT FILLREFPT

PATTERN TABLE 3/6 2/11 An integer value specifying the placement of this
PATTABLE pattern in the pattern table, atwo-dimensional

list of either color indexes or intensity values, local
color precision (format determined by the encoding).

PATTERN SIZE 3/6 2/ 12 Two VDC values that specify the X and Y compo-
PATSIZE nents of the height distance vector, and two VDC

values that specify the X and Y components of the
width distance vector.

COLOR TABLE 3/6 3/0 An integer that specifies a pointer into the bundle
COLRTABLE table where the first color value is placed, and a list

of sets of red, green, and blue intensity values used
to fill the table.

ASPECT SOURCE 3/6 3/1 A list of pairs of enumerated ASF type values and
FLAGS ASF ASF values (INDIVIDUAL, BUNDLED).

ESCAPE 3/7 2/0 An integer function identifier, and a data record
ESCAPE (implementation-dependent use).

MESSAGE 3/9 2/1 An enumerated type specifying the action flag that
MESSAGE determines whether the application requires some

action by the user before resuming application
execution (NO ACTION, ACTION), and the text
string containing the message.

APPLICATION DATA 3/7 2/1 An integer identifier, and a data record, both to be
APPLDATA used in an application-dependent manner that does

not affect the picture being generated.

OPEN CHARACTER 1/11 5/8 A character that signifies the beginning of a
STRING character string. NOTE: this character is not an

opcode. It usually follows an opcode that requires
string data.

STRING TERMINATOR 1 / 11 5 / 12 A character that signifies the end of a character
' string. NOTE: this character is not an opcode. It

usually follows an opcode that requires string data.

DEC GKS Metafile Structures (GKSM, CGM) E-23

E.2.5.1 CGM Encoding Examples

Example E-1 presents a simple DEC GKS program.

Example E-1: CGM Metafile Creation

IMPLICIT NONE
INTEGER WS_ID, GKSK_VT240, GKSK_CONID_DEFAULT

REAL X_ARRAY(2), Y_ARRAY(2)
DATA X_ARRAY /0.0, 1.0/
DATA Y_ARRAY /0.5, 0.5/
DATA WS_ID / 1 /, GKS$K_VT240 / 13 /,
* GKS$K_CONID_DEFAULT / 0 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)

CALL GKS$ACTIVATE_wS(wS_ID)

CALL GKS$POLYLINE(2, X_ARRAY, Y_ARRAY)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following listing presents the clear text encoded CGM file produced by
Example E-1 (you need to define the logical GKS$WSTYPE to be %x00040007
to specify the clear text encoding).

BEGMF 'CGM_OUTPUT_FILE.CGM';
MFVERSION 1;
MFDESC 'DEC GKS output 11/19/86';
MFELEMLIST 'DRAWINGPLUS';
VDCTYPE REAL;
BEGMFDEFAULTS;
ALTCHARSETINDEX 2;
ENDMFDEFAULTS;
FONTLIST 'DEC GKS Stroke -1' 'DEC GKS Stroke -2' 'DEC GKS Stroke -3'
'DEC GKS Stroke -4' 'DEC
'DEC GKS Stroke -7' 'DEC

GKS Stroke -5' 'DEC GKS Stroke -6'
GKS Stroke -8' 'DEC GKS Stroke -9'

'DEC GKS Stroke -11' 'DEC GKS Stroke -12' 'DEC GKS Stroke -13'

'DEC GKS Stroke -14' 'DEC GKS Stroke -15' 'DEC GKS Stroke -16'

'DEC GKS Stroke -17' 'DEC GKS Stroke -18' 'DEC GKS Stroke -19'
'DEC GKS Stroke -20' 'DEC GKS Stroke -21' 'DEC GKS Stroke -22'
'DEC GKS Stroke -23';
CHARSETLIST STD94 'B';
CHARCODING BASIC8BIT;
INTEGERPREC -221646135 1870427260;

E-24 DEC GKS Metafile Structures ~GKSM, CGM)

REALPREC -99999.992188 99999.992188 7;
INDEXPREC -221646135 1870427260;
COLRPREC 31;
COLRINDEXPREC 31;
BEGPIC '10:54:34.93';
SCALEMODE ABSTRACT 0.000000;
COLRMODE INDEXED;
LINEWIDTHMODE SCALED;
MARKERSIZEMODE SCALED;
EDGEWIDTHMODE SCALED;
VDCEXT (0.000000,0.000000) (1.000000,1.000000);
BACKC OLR 0 0 0;
BEGPICBODY;
CLIPRECT (0.000000,0.000000) (1.000000,1.000000);
CHARHEIGHT 0.000000;
CHARORI 0.000000 0.000000 0.000000 0.000000;
PATSIZE 0.000000 0.000000 0.000000 0.000000;
FILLREFPT (0.000000,0.000000);
CLIPRECT (0.000000,0.000000) (1.000000,1.000000);
ASF LINETYPE INDIV LINEWIDTH INDIV LINECOLR INDIV MARKERTYPE
INDIV MARKERSIZE INDIV MARKERCOLR INDIV TEXTPREC
INDIV TEXTFONTINDEX INDIV CHAREXP INDIV CHARSPACE INDIV TEXTCOLR INDIV
INTSTYLE INDIV PATINDEX INDIV HATCHINDEX INDIV FILLCOLR IN DIV;
LINEINDEX 1;
LINETYPE 1;
LINEWIDTH 1.000000;
LINECOLR 1;
INCRLINE (0.000000,0.500000) (1.000000,0.000000);
TEXTINDEX 1;
CHARSETINDEX 1;
TEXTFONTINDEX 1;
TEXTPREC STRING;
CHAREXPAN 1.000000;
TEXTCOLR 1;
CHARHEIGHT 0.010000;
CHARORI 0.000000 0.010000 0.010000 0.000000;
MARKERINDEX 1;
MARKERTYPE 3;
MARKERSIZE 1.000000;
MARKERCOLR 1;
FILLINDEX 1;
FILLCOLR 1;
PATSIZE 0.000000 1.000000 1.000000 0.000000;
ENDPIC;
ENDMF;

The following listing presents the character-encoded CGM file produced by
Example E-1 (you need to define the logical GKS$wSTYPE to be %x0002000 7
to specify the character encoding). The question marks (?) in the data represent
the ASCII escape character.

DEC GKS Metafile Structures ~GKSM, CGM) E-25

0 ?\?XZ.CGM_CHAR?\1 Ai!?XDEC GKS output 11/19/86?\1*?XA?\1"A1+5;B1,1-

?XDEC GKS Stroke -1?\?XDEC GKS Stroke -2?\XDEC GKS Stroke -3?\
?XDEC GKS Stroke -4?\?XDEC GKS Stroke -5?\?XDEC GKS Stroke -6?\
?XDEC GKS Stroke -7?\?XDEC GKS Stroke -8?\?XDEC GKS Stroke -9?\
?XDEC GKS Stroke -il?\?XDEC GKS Stroke -12?\?XDEC GKS Stroke -13?\

?XDEC GKS Stroke -14?\?XDEC GKS Stroke -15?\?XDEC GKS Stroke -16?\

?XDEC GKS Stroke -17?\?XDEC GKS Stroke -18?\?XDEC GKS Stroke -19?\
?XDEC GKS Stroke -20?\?XDEC GKS Stroke -21?\?XDEC GKS Stroke -22?\

?XDEC GKS Stroke -23?\1.@?XB?\@?X<?\1/A1#a@1$`XXX@1'/.`_ldt`_1'`_0"
?X10:57:33.35?\2 @1tA2!@2"A2#A2$A2'/.1tA1tA1@1@2dt0#3$1tA1tA1@1
@561tA571tA1tA1tA1tA6,1tA1tA1tA1tA6*1tAltA3$1tA1tA1@1@61@`?GA`?GB`
?GC`?GD`?GE`?GG`?GF`?GH`?GI`?GJ`?GK`?GN`?GM`?GL`?G5 A5!A5"1@5#A 1tAhQ1
@1tA50A5:A51A52@531@55A56mczIEW571tAmczlEWmczIEW1tA5$A5'/.C5k1@5'A6 A6
"A6,1tA1@1@1tA0$0!

E.2.6 CGM Physical File Organization

The DEC GKS CGM metafile outputs 512 byte records. Using the clear text
encoding, the DEC GKS CGM metafile separates element opcodes with a
semicolon (;), a line-feed, and a carriage return character.

E-26 DEC GKS Metafile Structures (GKSM, CGM►

Appendix F

Language-Specific Programming
Information

This appendix contains information specific to the DEC GKS supported
languages. For a general overview of DEC GKS programming information
(such as call sequences, including definition files, and so forth), refer to Chapter
1, Introduction to DEC GKS.

NOTE

When you use languages that need to declare DEC GKS functions
as external functions, you should print the language definition file
to determine the function's parameter names. The various language
definition files are described in Chapter 1, Introduction to DEC GKS.

F.1 Passing Arguments by Descriptor

DEC GKS requires array descriptors of class A or NCA, which include a bounds
block for two-dimensional arrays. Array descriptors of class NCA must be
contiguous.

Using languages that do not provide methods of creating such array descriptors,
you can construct your own descriptor according to the specifications in the
Introduction to VMS System Routines. If you choose, you can use the BUILDESC
routine described in Section F.4 to build the required descriptor.

The following is a list of DEC GKS functions that require arguments passed by
array descriptor:

• GKS$CELL _ARRAY

• GKS$INQ ACTIVE _WS

• GKS$INQ _AVAIL _GDP

Language-Specific Programming Information F-1

• GKS$INQ_COLOR_INDEXES

• GKS$INQ _DEF_CHOICE _DATA

• GKS$INQ_DEF LOCATOR_DATA

• GKS$INQ_DEF_I'ICK_DATA

• GKS$INQ _DEF STRING _DATA

• GKS$INQ _DEF_STROKE _DATA

• GKS$INQ _DEF_VALUATOR_DATA

• GKS$INQ _FILL _FAC

• GKS$INQ _FILL _INDEXES

• GKS$INQ _GDP

• GKS$INQ _OPEN _WS

• GKS$INQ _I'AT_INDEXES

• GKS$INQ ~'AT_REP

• GKS$INQ _PIXEL _ARRAY

• GKS$INQ _I'LINE _FAC

• GKS$INQ_I'LINE_INDEXES

• GKS$INQ _I'MARK_FAC

• GKS$INQ _I'MARK_INDEXES

• GKS$INQ _I'REDEF~'AT_REP

• GKS$INQ _SEG _NAMES_ON _WS

• GKS$INQ _SET_ASSOC_WS

• GKS$INQ _TEXT_FAC

• GKS$INQ _TEXT_INDEXES

• GKS$INQ _WSTYPE _LIST

• GKS$INQ_XFORM_LIST

• GKS$REQUEST STROKE

• GKS$SET_I'AT_REP

F-2 Language-Specific Programming Information

F.2 Programming in BASIC

When you declare string variables to be passed to DEC GKS functions as
write-only or modifiable arguments, you must declare the variable to be the
length of the largest string that can be returned by the function. In addition,
you should use the string length returned by the DEC GKS function instead of
values obtained by the LEN built-in function to determine this size. For more
information, refer to BASIC on VAX/VMS Systems.

F.3 Programming in VAX C

In order to use the DEC GKS functions that require passing arguments by
descriptor, you must build an array descriptor. To build an array descriptor,
refer to the Introduction to VMS System Routines. For VAX C specific information
concerning descriptors, refer to the mixed-language programming chapter
in Guide to VAX C. As another option, you can use the BUILDESC routine
described in Section F.4. Section F.1 lists the DEC GKS functions that require
passing arguments by descriptor.

F.4 Programming in VAX COBOL

VAX COBOL variables passed to DEC GKS as integers, real numbers, or
character strings must be declared in Working Storage as, respectively,
COMPUTATIONAL, COMPUTATIONAL-1, or DISPLAY to obtain the cor-
rect internal representation. COMPUTATIONAL variables up to S9(9) are
represented internally as 32-bit words. COMP-1 variables are represented in
single-precision floating point format. DISPLAY character strings can be any
length desired.

Integer and real numeric arguments to DEC GKS functions are passed by
reference. Character or text strings are passed by descriptor.

The current VAX COBOL compiler does not produce class A array descriptors.
However, certain DEC GKS functions require these descriptors. See Section F.1
for a list of the DEC GKS functions that require arrays passed by descriptor.

The following MACRO subroutine, named BUILDESC, can serve as a temporary
tool to allow VAX COBOL programs that use the above functions to generate
Class A array descriptors. The subroutine is needed only for programs that call
any of the functions listed in Section F.1. Example F-1 shows how to build a
descriptor.

Language-Specific Programming Information F-3

Example F-1: Macro Subroutine Used to Build Array Descriptors

.TITLE BUILDESC Subroutine to build VMS array descriptor

.IDENT /O1/

.ENTRY BUILDESC,"M<R2>
$SSDEF Define SS$ symbols
$DSCDEF Define DSC$ symbols

Fill in first two longwords of descriptor

MOVL
MOVL
MOVW
MOVB
MOVB
MOVL

8 (AP) , RO
4 (AP) , R1
DSC$W_LENGTH(RO),DSC$W_LENGTH(R1)
DSC$B_DTYPE(RO),DSC$B_DTYPE(R1)
#DSCK_CLASS_A,DSCB_CLASS(R1)
DSC$A_POINTER(RO),DSC$A_POINTER(R1)

Fill in Block 1 - Prototype

CLRB DSC$B_SCALE(R1)
CLRB DSC$B_DIGITS(R1)
MOVB -
#«1@DSC$V_FL_COEFF>!<1@DSC$V_FL_BOUNDS» ,DSC$B_AFLAGS(R1)
SUBB3 #2,(AP),DSC$B_DIMCT(R1)
MOVL 12(AP),DSC$L_ARSIZE(R1)
MOVL
MOVL
CMPB
BEQL
MULL2
ADDL2
INCL

#1,R0
#4,R2
#1,DSC$B_DIMCT(R1)
10$
16(AP),DSC$L_ARSIZE(R1)
16(AP),RO
RO

Fill Blocks 2 and 3 (Multipliers, Bounds) for 2nd dim. (if present)

MOVL
MOVL
MOVL
ADDL2

16(AP),DSC$L_M2(R1)
#1,DSC$L_M2+12(R1)
16(AP),DSC$L_M2+16(R1)
#4,R2

Fill in Blocks 2 (Multipliers) and 3 (Bounds) for 1st dimension

10$: MULW2
SUBL3
MOVL
ADDL2
MOVL
MOVL
MOVZWL
RET
.END

DSC$W_LENGTH(R1),RO
RO,DSC$A_POINTER(R1),DSC$A_AO(R1)
12(AP),DSC$L_M1(R1)
R2,R1
#1,DSC$L_M1(R1)
12(AP),DSC$L_M1+4(R1)
#SS$_NORMAL,RO

F-4 Language-Specific Programming Information

The subroutine builds an array descriptor from the arguments it is passed.
For information on descriptor formats, refer to the VAX Procedure Calling
and Condition Handling Standard in the VAX/VMS Run-Time Library Routines
Reference Manual.

You can use MACRO to assemble the subroutine and then call it from the VAX
COBOL program. The following is a sample VAX COBOL calling sequence for
two-dimensional arrays (assuming BUILDESC as the subroutine name):

CALL "BUILDESC" USING
BY REFERENCE descriptor-buffer ,
BY DESCRIPTOR array(i,i),
BY VALUE number-of-rows,
BY VALUE number-of-columns.

For aone-dimensional array, the COBOL calling sequence is as follows:

CALL "BUILDESC" USING
BY REFERENCE descriptor-buffer ,
BY DESCRIPTOR arrap(1),
BY VALUE number-of-elements.

The descriptor buffer is an area of storage into which BUILDESC builds the
class A descriptor. This should be at least 44 bytes in length. The descriptor
buffer is filled with the information required to make it a class A descriptor.

The argument array(1, 1) should always be the first element of the array.

Example F-2 shows a COBOL program using the function GKS$CELL _
ARRAY.

Language-Specific Programming Information F-5

Example F-2: A Sample COBOL Program Using the Subroutine
BUtLDESC

IDENTIFICATION DIVISION.
PROGRAM-ID.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
DATA DIVISION.

C09.

VAX-11.
VAX-11.

WORKING-STORAGE SECTION.
01 valthree PIC S9(9) COMP VALUE 3.
01 valf our PIC S9 (9)
COMP VALUE 4.
01 valone
COMP VALUE 1.
01 valzero
COMP VALUE 0.
01 valpointi
01 valpoint5
O1 colidx.

05 diml OCCURS 3 TIMES.
/n 10 colic OCCURS 4 TIMES

PIC S9(9) COMP.
01 colidx_d.

05 desc OCCURS 11 TIMES PIC S9(9) COMP.

PROCEDURE DIVISION.
0000-COB9.

MOVE 1 TO
MOVE 0 TO
MOVE 1 TO
MOVE 2 TO
MOVE 0 TO
MOVE 1 TO
MOVE 2 TO
MOVE 1 TO
MOVE 1 TO
MOVE 2 TO
MOVE 1 TO
MOVE 0 TO

PIC S9(9)

PIC S9 (9)

USAGE IS COMP-1 VALUE 0.1.
USAGE IS COMP-1 VALUE 0.5.

colia(1,1).
colia(1,2).
colia(1,3).
colia(1,4).
colia(2,1).
colic (2 , 2) .
colia(2,3).
colia(2,4).
colic (3 ,1) .
colic (3 , 2) .
colic (3 , 3) .
colia(3,4).

CALL "GKS$OPEN_GKS" USING
BY DESCRIPTOR 'GKS.ERR'.

CALL "GKS$OPEN_WS" USING
BY REFERENCE valone,valzero,valzero.

CALL "GKS$ACTIVATE_WS" USING
BY REFERENCE valone.

(continued on next page)

F-6 Language-Specific Programming Information

Example F-2 (Copt.): A Sample COBOL Program Using the
Subroutine BUILDESC

CALL "BUILDESC" USING
BY REFERENCE colidx_d,
BY DESCRIPTOR colia(1,1),
BY VALUE valthree, valfour.

CALL "GKS$CELL_ARRAY" USING
BY REFERENCE valpointi,valpointi,valpoint5,valpoint5,
BY REFERENCE valone,valone,
BY REFERENCE valthree,valfour,
BY REFERENCE colidx_d.

CALL "GKS$DEACTIVATE_WS" USING
BY REFERENCE valone.

CALL "GKS$CLOSE_WS" USING
BY REFERENCE valone.

CALL GKS$CLOSE_GKS".
EXIT PROGRAM.
END PROGRAM C09.

To use the subroutine, type it in, assemble it, compile your VAX COBOL
program that calls the subroutine, and then link the VAX COBOL program with
the subroutine, as follows:

$ MACRO BUILDESC ~RETURN~
$ COBOL ARRAY (RETURN
$ LINK ARRAY, BUILDESC RETURN

DEC GKS calls can be written with or without a status return. When used, the
status code is defined as PIC S9(6) COMP, which yields a 32-bit integer internal
representation.

F.5 Programming in VAX Pascal

DEC GKS functions called from a VAX Pascal program must be declared as
external functions in the program. The variables passed to these functions
and the way they are to be passed must also be described, and the type of the
return specified. To gather these declarations, perform the following tasks:

1. Copy SYS$LIBRARY:GKSDEFS.PAS to your local directory.

2. Use the following command to compile the file:

$ PASCAL/ENVIRONMENT GKSDEFS.PAS RETURN

3. Place the following code before the PROGRAM or MODULE statement:

[INHERIT (' gksdef s')]

Language-Specific Programming Information F-7

Variables passed to DEC GKS by a VAX Pascal program must be declared as
types INTEGER, REAL, or an array of these types. Metafile items are declared
as packed arrays of characters because the length of a metafile item may exceed
the allowable length for a variable length string. Data records for the input
functions are declared as arrays of integers. Where a REAL data item is called
for in a data record, the type cast operator must be used to force the variable
to be placed properly. Addresses for data records may be generated using the
ADDRESS function and the type cast operator to override the type of integer.

Character strings are declared as VARYING OF CHAR. When you declare
string variables to be passed to DEC GKS functions as write-only or modifiable
arguments, you must declare the variable to be the length of the largest string
that can be returned by the function. In addition, you should use the string
length returned by the DEC GKS function instead of values obtained by the
LEN built-in function to determine this size. Strings should be padded with
spaces to their greatest length using the VAX PASCAL PAD function. For more
information, see the Programming in VAX PASCAL manual.

The following type definitions have changed in the GKSDEFS.PAS include file.

Table F-1: Type Definitions

Definition Data Type

Asf_Flag_Array

Coord_limit_Array

Up_Vector_Array

Two_real

Indices_Array

Twointeger

GKS$Asf_Flag_Array

GKS$Coord—limit_Array

GKS$Up_Vector~lrray

GKS$Two_real

GKS$Indices—Array

GKS$Twointeger

Array [1...13] of Integer

Array [1...4] of Real

Array [1...2] of Real

Array [1...2] of Real

Array [1...4] of Integer

Array [1...2] of Integer

Array [1...13] of Integer

Array [1...4] of Real

Array [1...2] of Real

Array [1...2] of Real

Array [1...4] of Integer

Array [1...2] of Integer

F-8 Language-Specific Programming Information

Appendix G

DEC GKS Device-Independent Fonts

This appendix provides additional information about the fonts which can be
accessed from the DEC GKS software in stroke-precision text.

One font is used as the standard DEC GKS font for stroke precision text.
Figure G-2 illustrates the DEC GKS multinational font. It is a monospaced
font; all characters are the same size. DEC GKS uses this as the default font.

Other fonts, known as the Hershey fonts, are also available. These character
fonts were digitized by Dr. A. V. Hershey of the Naval Surface Weapons
Laboratory, and have been supplied by the National Bureau of Standards.
The character information for these fonts has been organized into 22 fonts,
as shown in Figures G-3 through Figure G-24. The Hershey fonts are not
monospaced; each character box is a different size. The character box for each
character is not necessarily the same size as the character. In most cases, the
character box is larger than the character, although for some characters (for
example, those with descenders) the character may go outside of its box.

G.1 Font File Formats

The center line for all fonts lies exactly halfway between the left and right lines
of each character.

Similarly, the halfline lies exactly halfway between the base line and the cap
line.

DEC GKS Device-Independent Fonts G-1

Figure G-1 illustrate the font lines:

Figure G-1: DEC GKS Font Lines

TOP LINE

CAP LINE

BASE LINE

HALF LINE

BOTTOM LINE

ZK-1449-83

This restriction applies to the font file formats because the center line and the
halfline are calculated by DEC GKS and are not data items in the font file.
DIGITAL reserves the right to change font file formats in future releases.

This section presents the DEC GKS device-independent fonts. These figures
represent the ASCII characters 33 through 126, beginning in the upper left
corner and incrementing horizontally to the lower right corner. Not all
characters are present in all of the fonts. Fonts 1 and -1 specify the same font.

Example G-1 presents a program that you can execute if you want to see
the ASCII value next to the corresponding font character on the workstation
surface.

G-2 DEC GKS Device-Independent Fonts

Example G-1: Printing the ASCII Values of Font Characters

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, ASCVAL, FONT, COL, ROW, MAXROW, MAXCOL,
* DUMMY_INTEGER, WS_TYPE, ERROR_STATUS
REAL MAXX, MAXY, RATIO, HEIGHT, X1, Y1
CHARACTER*1 TXT
CHARACTER*4 FONTTYPE
CHARACTER*3 ASCSTR
CHARACTER*40 HEADER, DUMMY_STRING
DATA WS_ID /1/, HEIGHT /0.66/, MAXROW /19/,
* MAXCOL /5/

C Set up the DEC GKS and the workstation environment.
CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240
CALL GKS$ACTIVATE_WS(WS_ID)

C Inquire about workstation and set up transformations.
CALL GKS$INQ_WS_TYPE(WS_ID, ERROR_STATUS, DUMMY_STRING,
* WS_TYPE, DUMMY_INTEGER)

CALL GKS$INQ_MAX_DS_SIZE(WS_TYPE, ERROR_STATUS, DUMMY_INTEGER,
* MAXX, MAXY, DUMMY_INTEGER, DUMMY_INTEGER)

RATIO = MAXY / MAXX
CALL GKS$SET_WINDOW(1, 0.0, 15.0, 0.0, 23.0)
CALL GKS$SET_VIEWPORT(1, 0.0, 1.0, 0.0, RATIO)
CALL GKS$SELECT_XFORM(1)
CALL GKS$SET_WS_WINDOW(1, 0.0, 1.0, 0.0, RATIO)
CALL GKS$SET_WS_VIEWPORT(1, 0.0, MAXX, 0.0, MAXY)

C Get the font number.
WRITE(5, *) 'Enter Font Number (-1 to -23): '
READ(5, *) FONT
CALL GKS$CLEAR_WS(WS_ID, GKS$K_CLEAR_ALWAYS)

C Draw headings.
CALL GKS$SET_TEXT_HEIGHT(0.75 * HEIGHT)
CALL GKS$SET_TEXT_SPACING(-0.1)
CALL GKS$SET_TEXT_ALIGN(GKS$K_TEXT_HALIGN_CENTER,
* GKS$K_TEXT_VALIGN_HALF)
CALL GKS$SET_TEXT_FONTPREC(1, GKS$K_TEXT_PRECISION_STROKE
WRITE(FONTTYPE, 10) FONT

10 FORMAT(I4)
HEADER = 'ASCII VALUES FOR CHARACTERS OF FONT // FONTTYPE
CALL GKS$TEXT (7.5, 22.0, HEADER)

(continued on next page)

DEC GKS Device-Independent Fonts G-3

Example G-1 (Coot.): Printing the ASCII Values of Font Characters

C Draw ascii numbers.
CALL GKS$SET_TEXT_FONTPREC(1, GKS$K_TEXT_PRECISION_STROKE)

CALL GKS$SET_TEXT_HEIGHT(HEIGHT)
CALL GKS$SET_TEXT_SPACING(-0.4)
DO COL = 1, 5

X1 = COL * 3.0 - 2.5
DO ROW = 1, MARROW

Y1 = 20.0 - ROW
ASCVAL = (COL - 1) * MARROW + ROW + 31
WRITE(ASCSTR, 20) ASCVAL

20 FORMAT(I3)
CALL GKS$TEXT (X1, Y1, ASCSTR)

END DO
END DO

C Draw font characters.
CALL GKS$SET_TEXT_FONTPREC(FONT, GKS$K_TEXT_PRECISION_STROKE)

DO COL = 1, 5
X1 = COL * 3.0 - 1.25
DO ROW = 1, MARROW

Y1 = 20.0 - ROW
ASCVAL = (COL - 1) * MARROW + ROW + 31
TXT = CHAR(ASCVAL)
CALL GKS$TEXT (X1, Yi, TXT)

END DO
END DO

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

G-4 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-2: DEC GKS Default Font Number 1

0 @ P ~ ~'
1 1 A Q a q ~
" 2 B R b r ~
3 C S c s ~,
$ 4 D T d t ~'
5 E U e u Y

& 6 F V f v ~'
' ~ G W g w §
C 8 H X h x ~(
9 I Y i g

~ J z ~ z ~
+ K C k { «

< L \ 1 I ~
- = M ~ m } ~

~ N ~ n N c

/ ? 0 o c c

A ~' a
~ A N a
2 A ~ a
3 e ~ '`

/1 a
~ A 0 a
~ A ~ a
9 ~ ~ ~
. ~ ~ ~

~' E 0 e
1 ~ U e
o U e
» ~ U e

~ lJ i
f Y i

~ ~ c . ~
G ~ ~ ~I

Z K-1574-84

DEC GKS Device-Independent Fonts G-5

DEC GKS Device-Independent Fonts

Figure G-3: DEC GKS Font Number —2

!"#$°&'()*+,-./0123

456789:;•=-~?&ABCDEFG

HIJKLMNOPQRSTUVWXYZ(

/)I-`AB~~EZHOIK/~MN=O

f1P~T1"~X~~'xl T3

ZK-1575-84

G-6 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-4: DEC GKS Font Number —3

!"#~%&'()*+,-./023

456789:; <=>?~ABCDEFG

HIJKLMNOPQRSTUVWXYZCI

~.-~T~-`abcdefghi jklmno

pgrstuvwxyzx~•-~

Z K-1576-84

DEC GKS Device-Independent Fonts G-7

DEC GKS Device-Independent Fonts

Figure G-5: DEC GKS Font Number —4

!"#$~&'()*+,—./0123

456789:; <=>?~AB~~EZH

01 KnM N-O~ P~TT~X~~E6❑

~. ~T ~ ̀a(3y8E~r~~crc~µv~o

npQTv~pX'~ica0~x~'~

ZK-1577-84

G-8 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-6: DEC GKS Font Number —5

456789:; <_>~~~~c~~~~

.~~gx~mn~a~~ ce~~u~~w.~~~o

•L -~ T F- ̀ a,~co

l9^°1....~~Y3 x~ -.

ZK-1578-84

DEC GKS Device-Independent Fonts G-9

DEC GKS Device-Inde~ndent Fonts

Figure G-7: DEC GKS Font Number —6

!"#~~&'~)"+,—./0123

456789:;<=>?@ABCDEFG

HIJKLMNOPQRSTUVWXYZ[

']--~-`abcdefghijklmno

pgrstuvwxyz~~~^~

ZK-1579-84

G-10 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-8: DEC GKS Font Number —7

456789:; < _ >?@AB I'DEZH

OIKI~MN = OIIPETr~X~f2e8[

~rpvTvS~X'11~~ $~ ~ ~ ̂ '

ZK-1580-84

DEC GKS Device-Independent Fonts G-11

DEC GKS Device-Inde~ndent Fonts

Figure G-9: DEC GKS Font Number —8

456789: ; < _ >?@ABCDEFG

HIJKLMNOPQRST UVWXYZ[

'] ^ <-- `acbcdefghijklrrtrt,o

~grstz.cvw~yz ~ (~

ZK-1581-84

G-12 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-10: DEC GKS Font Number —9

!"#$~&'~)*+,—./0123

456789: ; < _ >?~ABCDEFG

HIJKLMNOPQRSTUVWXYZ[

]^~`abcdefghijklmno

pgrstuvwxyz~ ~ ~~

ZK-1582-84

DEC GKS Device-Independent Fonts G-13

DEC GKS Device-Independent Fonts

Figure G-11: DEC GKS Font Number —10

!"'#~~&'~)*+, —./0123

456789: ; < _ > ?~ABI'~EZH

OIKAMN~OIIPETT~X~f2E9[

`a~ydE~'~~9~~c~µv~o

~rpvTv~pX'~Gw~~I ~^'

ZK-1583-84

G-14 DEC GKS Device-Independent Fonts

DEC GKS Device-Inde~ndent Fonts

Figure G-12: DEC GKS Font Number —11

456789:; <_> ?~ABCDEFG

HIJKLMNOPQR S T UV WX YZ'

°^~ ̀ abcdefghijklrrtno

~grstuvwxya~ ~N

ZK-1584-84

DEC GKS Device-Independent Fonts G-15

DEC GKS Device-Independent Fonts

Figure G-13: DEC GKS Font Number —12

~"#~~&'()*+~—./0123

456789:; <_ >?@ABCDEFG

H IJ K LM NOPQRSTUVWXYZ'

°^~-`abcdef ghijklmno

pgrstuvwxyz(~)~

ZK-1585-84

G-16 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-14: DEC GKS Font Number —13

Z K-1586-84

DEC GKS Device-Independent Fonts G-17

DEC GKS Device-Inde~ndent Fonts

Figure G-15: DEC GKS Font Number —14

!"#~~&'()*+,—./0123

456789:;~o=s~?~ABBI'AEJK

3I~II~II{TIMHOIIPCTY~XI~~ILIILL~'b

bIb3IOSia6srRexcax~xnMHo

IIPC Ty(~XL~LILiIIL~~bIb3

ZK-1587-84

G-18 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-16: DEC GKS Font Number —15

!"#~~&'~)*+►—./0123

456789:;'=°?~ABCDEFG

HIdKLMNOPQRSTUVWXYZ[

] ̂ ~- ̀ abcdefghi jklmno

pgrstuv~vxyz~ ~ ~~

ZK-1588-84

DEC GKS Device-Independent Fonts G-19

DEC GKS Device-Independent Fonts

Figure G-17: DEC GKS Font Number —16

456789:; < _ > ?C~ABCDEFG

HIJKLMNOPQR S T UV T1'X YZ'

°^ ~- `abcde fghijk lmno

pgrstuv~,vxyz~•~

ZK-1589-84

G-20 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-18: DEC GKS Font Number —17

~i~~S~~R~Jt,fl~,flJRC~~11~II~i~

~,~[]^~`abcbcf9~jij~~Yntno

pgritunm~ha~~~~

Z K-1.590-84

DEC GKS Device-Independent Fonts G-21

DEC GKS Device-Independent Fonts

Figure G-19: DEC GKS Font Number —18

] ~ ~- `tt~rDPf~~ij~lmnu

{►grstuvwxy~~~~N

Z K-1591-84

G-22 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-20: DEC GKS Font Number —19

~X~~~~L~O~~L~~~~I~7tT~X

~c`~~]^E-- ̀ obc~~fg~ijklmno

~grsfiuvw~c~3 ~ ~ ~ ti

ZK-1592-84

DEC GKS Device-Independent Fonts G-23

DEC GKS Device-Independent Fonts

Figure G-21: DEC GKS Font Number —20

S~ fffifl ffif~lie9f~fiflfjtfj~z

,,,~~~IIi~~X~ : ~-s~a,.~,~~

O#~~a~~ha~E~~~~aU+

ZK-1593-84

G-24 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G-22: DEC GKS Font Number —21

•>>•oo#qb~-x~,~~~~iai~

ZK-1594-84

DEC GKS Device-Independent Fonts G-25

DEC GKS Device-Inde~ndent Fonts

Figure G-23: DEC GKS Font Number —22

-//n\-Try

~ +'a~rr

~~ '-~
ZK-1595-84

G-26 DEC GKS Device-Independent Fonts

DEC GKS Device-Independent Fonts

Figure G--24: DEC GKS Font Number --23

vv~aass~"""OC U ~ n ~ ~ E

— ti 'c ti -- ~ v —~ --~ 'r F— ~, ~ 1~ ~ ~I ~ H OC 00

-+t~x.-......~~.. f~
f~~~J

E~"n~~~~~~s~51x
ZK-1596-84

DEC GKS Device-Independent Fonts G-27

Appendix H

DEC GKS Color Chart

This appendix presents a chart of 64 colors and their corresponding red, green,
and blue intensity values. If you are working with a color VT125, a VT241,
or a VAXstation II/GPX, you can use this color chart as a guide when calling
the function GKS$SET_COLOR_REP. The colors presented are the 64 colors
supported by the VT125 and the VT241. For information concerning the
availability and use of colors on these workstations, refer to the appropriate
device-specific appendix in this manual.

You should use this color chart as a guide. You should not expect your monitor
to display the colors exactly as shown. Colors can vary from monitor to
monitor depending on the following factors:

• The current background color (affects lighter shades)
• The current brightness and contrast control settings
• The available room light

• The proximity of the primitive to other colors on the display

DEC GKS Color Chart H-1

Table H-1: VAX G KS Color Chart

Red Green Blue Red Green Blue

0.0000 0.0000 0.0000

0.0000 0.0000 0.5600

0.3300 0.3300 0.3300

0.2142 0.2142 0.6258

0.0000 0.0000 0.8400

0.2862 0.2862 0.8538

0.1400 0.1400 1.0000

0.6700 0.6700 0.6700

0.5679 0.5679 0.8521

1.0000 1.0000 1.0000

H-2 DEC GKS Color Chart

0.6133 0.4200 1.0000

0.5 700 0:1400 1.0000

0.5600 0.0000 0.8400

0.6646 0.2862 0.8538

0.5600 0.0000 0.5600

0.7119 0.4281 0.7119

1.0000 0.1400 1.0000

1.0000 0.4200 1.0000

0.9235 0.7765 0.9235

1.0000 0.7000 1.0000

~~~~~~ : 



Table 1-1-1 ~Cont.~: \/AX GKS Color Chart 

Red Green Blue Red Green Blue 

0.8400 0.0000 0.5600 

0.8538 0.2862 0.6646 

1.0000 0.1400 0.5 700 

1.0000 0.4200 0.6133 

0.5600 0.0000 0.0000 

0.6258 0.2142 0.2142 

0.8400 0.0000 0.0000 

0.8538 0.2862 0.2862 

1.0000 0.1400 0.1400 

0.8521 0.5679 0.5679 

1.0000 0.6133 0.4200 

1.0000 0.5 700 0.1400 

0.8400 0.5600 0.0000 

0.8538 0.6646 0.2862 

0.5600 0.5600 0.0000 

0.7119 0.7119 0.4281 

1.0000 1.0000 0.1400 

1.0000 1.0000 0.4200 

0.9235 0.9235 0.7765 

1.0000 1.0000 0.7000 

DEC GKS Color Chart H-3 



Table H-1 (Copt.): VAX GKS Color Chart 

Red Green Blue Red Green Blue 

0.5600 0.8400 0.0000 

0.6646 0.8538 0.2862 

0.5 700 1.0000 0.1400 

0.6133 1.0000 0.4200 

0.0000 0.5600 0.0000 

0.2142 0.6258 0.2142 

0.0000 0.8400 0.0000 

0.2862 0.8538 0.2862 

0.1400 1.0000 0.1400 

0.5679 0.8521 0.5679 

H-4 DEC GKS Color Chart 

0.4200 1.0000 0.6133 

0.1400 1.0000 0.5 700 

0.0000 0.8400 0.5600 

0.2862 0.8538 0.6646 

0.0000 0.5600 0.5600 

0.4281 0.7119 0.7119 

0.1400 1.0000 1.0000 

0.4200 1.0000 1.0000 

0.7765 0.9235 0.9235 

0.7000 1.0000 1.0000 



Table H-1 (Cont.~: VAX G KS Color Chart 

Red Green Blue Red Green Blue 

0.0000 0.5600 0.8400 

0.2862 0.6646 0.8538 

0.1400 0.5 700 1.0000 

0.4200 0.6133 1.0000 

DEC GKS Color Chart H-5 





Appendix 

DEC GKS GDPs and Escapes 

This appendix describes all of the DEC GKS supported generalized drawing 
primitives (GDPs) and escapes. Most of the GDPs and escapes are supported 
by all of the DEC GKS workstations. If all DEC GKS supported workstations do 
not support a particular GDP or escape, this appendix flags the corresponding 
description. 

All GDPs and escapes have negative values as identification numbers. (You 
pass the identification numbers to either GKS$GDP or GKS$ESCAPE.) DEC 
GKS defines GDP and escape constants in the definition file for your particular 
programming language. For more information concerning the definition files, 
refer to Chapter 1, Introduction to DEC GKS. 

For further information concerning the use of GDPs, refer to GKS$GDP in 
Chapter 5, Output Functions. For further information concerning the use of 
escapes, refer to GKS$ESCAPE in Chapter 4, Control Functions. The function 
descriptions for GKS$GDP and GKS$ESCAPE list the error messages that may 
be generated by using any GDP or escape. 

Some of the GDPs and escapes require additional information contained in 
a data record. All required data records must be passed to GKS$GDP and 
GKS$ESCAPE in the DEC GKS GDP/escape standard data record format. For 
all GDPs and escapes, you must pass the exact data record size as specified in 
the descriptions in this appendix. If you do not, the call to either GKS$GDP or 
GKS$ESCAPE generates an error message. For a complete description of the 
standard GDP/escape data record format, refer to Chapter 1, Introduction to 
DEC GKS. 

DEC GKS GDPs and Escapes I-1 



Data Record Format Used in This Appendix 

Data Record Format Used in This Appendix 

Since this appendix uses a short notation to describe the required contents 
of a GDP/escape data record, you may wish to read the description of the 
GDP/escape data record format in Chapter 1, Introduction to DEC GKS, before 
reading further. 

In this appendix, the descriptions of the first three components of the data 
record are the values actually contained in the data record. The descriptions 
of the last four components do not describe the contents of the last four 
components; they describe the contents of the arrays whose addresses occupy 
the last four components of the data record. 

Consider the following list of arguments: 

Argument Required Value 

number_of_points 3 

x_coordinates Three points on the circumference. 
y_coordinates 

gdp~d -10 

data~ecord (4 components) 
2 
0 
0 
(address of) int_value_1, int_value_2 

data_record_size 16 bytes 

The data record portion of this GKS$GDP description (data~ecord) specifies 
that the data record has four components. The first component is an integer 
value (2 ), specifying the number of valid elements in the integer array. 

The next two components of the data record contain zeros (0 ), specifying the 
number of valid elements in the real and string arrays whose addresses occupy 
the last three components of the data record. Since the arrays contain no valid 
elements, you do not have to include room for these array addresses in your 
data record. 

—2 DEC GKS GDPs and Escapes 



Data Record Format Used in This Appendix 

The fourth component specifies the address of an array; the array itself contains 
identifiers int_value_1 and int_value~. The GDP description in this appendix 
describes the purpose of these integers. GKS$GDP uses the address provided 
in the fourth component to locate the integer array. 

NOTE 

To place array addresses in the fourth, fifth, sixth, and seventh 
components of the data record, you need to use a technique specific 
to your programming language. For instance, using VAX FORTRAN, 
you can use the °~oLOC built-in function. For more information 
concerning addresses and pointers, refer to the documentation set for 
your programming language. For more information concerning the 
use of %LOC and data records, refer to the choice input examples in 
Chapter 8, Input Functions. 

DEC GKS GDPs and Escapes i-3 



Generalized Drawing Primitives IGDPs1 

Generalized Drawing Primitives (GDPs) 

The following sections describe the DEC GKS supported generalized drawing 
primitives (GDPs). The sections identify each GDP by the following: 

• The numeric identifier that you pass to GKS$GDP. 

• The title of the primitive (for instance, uCircle"). 

• The constant equivalent of the numeric identifier. 

• The list of supporting workstations. 

• The description of the primitive. 

• The list of the arguments passed to GKS$GDP and the contents of the 
data record, if applicable. The names of the arguments -are identical to the 
argument descriptions of GKS$GDP in Chapter 5, Output Functions. 

• The list of GDP-specific error messages, if applicable. 

If you specify points to GKS$GDP that cannot be used to uniquely define a 
primitive, you generate error number GKS$_ERROR_NEG_158. For more 
information concerning error GKS$~RROR_NEG_158, refer to the individual 
escape or GDP description in this appendix. 

Most of the DEC GKS GDPs are capable of generating error number GKS$_ 
ERROR_100 (Number of points is invalid in routine ****). If it is not clear how 
a GDP can generate this error message, the description of the individual GDP 
provides additional information. 

The following information applies to all DEC GKS GDPs: 

• DEC GKS applies normalization transformations to the world coordinates 
of a specified GDP, but draws the GDP on the NDC plane. This will some-
times cause unexpected results. For instance, if you include a rectangular 
GDP in a segment and then rotate the segment, DEC GKS alters the co-
ordinate points but still draws the sides of the rectangle parallel to the X 
and Y axes. Also, when specifying coordinate values for circles, the current 
normalization transformation affects only the size of the circle, and does not 
alter the shape. 

• All radius specifications constitute vector values. The only significance of 
the radius vector is its length in world coordinates. 

I-4 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives (GDPsI 

• You specify angles in radians. (To calculate radians, use the formula 360 
degrees = 2*pi radians.) Positive rotation is counterclockwise; negative 
rotation is clockwise. 

• Some GDPs require vector values in the X and Y coordinate arrays passed 
to GKS$GDP. When you specify a vector value, you pass two sets of world 
coordinate points. DEC GKS calculates the distance, the angle, or both 
values, using the two specified points. 
Using a GDP, you calculate all vectors from a single vector origin point. The 
vector origin paint is the first point in a vector specification; you specify the 
second point of the vector specification in the X and Y coordinate array that 
you pass to GKS$GDP. 
For instance, the GDP GKS$K_GDP_ARC_CTR_2VEC_RAD requires, in 
the X and Y coordinate array, the following values: 

• The center point of the circular arc 

• The vector origin point 

• The second point in a vector whose angle determines an endpoint of 
the arc 

• The second point in another vector whose angle determines another 
endpoint of the arc 

• The second point in a third vector that specifies the distance used for 
the circular arc's radius. 

DEC GKS calculates the vector values from the vector origin point to 
specified second points, and then applies those values to the center point of 
the circular arc. 
Two useful vector origin points would be the center point of the arc or the 
origin of the world coordinate plane (0.0, 0.0 ). Using the center point of 
the arc would allow you to specify vector values in direct relation to the 
coordinates used to form the arc; using the origin of the world coordinate 
plane can make it easier for you to calculate vector values without tying 
them to the actual coordinate values of the arc (for instance, the center of 
the arc may move due to altered normalization transformations, forcing you 
to keep altering your vector origin point according to the new position of 
the arc's center). Figure I-1 illustrates the use of two different vector origin 
points. 

DEC GKS GDPs and Escapes I-5 



Generalized Drawing Primitives (GDPs1 

Figure I-1: Using Vector Origin Points 

Angles 

• 

Radius 
Center, 

Vector Origin 

0,0 

0,0 

Vector Origin 

ZK-5929-HC 

—6 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives (GDPs1 

The following information applies to specific types of GDPs: 

• Arcs When forming arcs, the DEC GDPs begin at the first specified arc 
point and move towards the second point in a counterclockwise direction. 

• Ellipses You can form ellipses in two ways. First, you can provide 
GKS$GDP with the center point, and two axis vectors. DEC GKS calculates 
which vector specifies the greater distance, and uses both the distance and 
angle values to form the major axis. Then, DEC GKS calculates the distance 
specified by the second vector and uses the distance for the minor axis. 
To form ellipses a second way, you can provide GKS$GDP with the 
two focal points, and one point on the circumference of the ellipse. If you 
provide the focal points to GKS$GDP, DEC GKS uses the following formula 
to form the ellipse: 

I f ocal_1 point I + ( f ocal_2 point I = 2a 

The letter a equals the distance from the center point to the circumference 
along the major axis. Figure I-2 illustrates the formation of an ellipse. 

Figure I-2: Forming an Ellipse 

Center point, and 
major and minor axes. 

P 

Sum of distances from focal points 
to any point equals 2a. 

ZK-5788-HC 

The following sections describe the DEC GKS specific GDPs, by category. 

DEC GKS GDPs and Escapes I-7 



Generalized Drawing Primitives IGDPs1 
Unfilled GDPs 

Unfilled GDPs 

This section describes all unfilled GDPs. Unfilled GDPs use the current polyline 
attributes. You should make sure that the attributes are set to the requirements 
of your application before you generate these GDPs. 

—100 Disjoint Polyline 
Constant: GKS$K _GDP_DISJOINT_I'LINE 
Supporting workstations: All DEC GKS supported workstations. 

This GDP creates a series of line segments connecting the first and second 
specified points, the third and fourth specified points, and so forth. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points n points (Two for each requested line segment.) 

x_coordinates n x and y coordinate values. 
y_coordinates 

gdp~d -100 

data~ecord null 

data_record—size 0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

100 DECGKS$~RROR_100 Number of points is invalid in routine 
****. (Either n is not an even number or 
n < 2.) 

—8 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives IGDPs1 
Unfilled GDPs 

—101 Circle: Center and Point on Circumference 
Constant: GKS$K_GDP_CIRCLE_CTR~'T 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms a circle from the specified center point and a single point on 
the circle's circumference. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 2 

x_coordinates Center and circumference point. 
y_coordinates 

gdp~d -101 

data_record null 

data_record~ize 0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$~RROR_NEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
if the center point and the point on the 
circumference are the same point, DEC 
GKS cannot form a circle.) 

—102 Circle: 3 Points on Circumference 
Constant: GKS$K_GDP_CIRCLE~PT 
Supporting workstations: All DEC GKS supported workstations. 

This GDP draws the circle whose circumference includes the three specified 
points. 

DEC GKS GDPs and Escapes I-9 



Generalized Drawing Primitives IGDPs1 
Unfilled GDPs 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 3 

x_coordinates Three circumference points. 
y_coordinates 

gdp~d -102 

data_record null 

data~ecord~ize 0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR_NEG_158 GDP primitive is not defined by the 
supplied data. (For instance, if the three 
points form a straight line, DEC GKS 
cannot generate a corresponding circle.) 

—103 Circle: Center and Radius 
Constant: GKS$K_GDP_CIRCLE_CTR~tAD 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms a circle from the specified center point and radius vector value. 

GKS~GDP Arguments: 

Argument Required Value 

number of_points 

x_coordinates 
y_coordinates 

gdp~d 

—10 DEC GKS GDPs and Escapes 

3 

Center point, vector origin point, and radius vector point. 

-103 



Generalized Drawing Primitives IGDPs1 
Unfilled GDPs 

Argument Required Value 

data~ecord null 

data_record_size 0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$~RROR~TEG_158 GDP primitive is not defined by the 
supplied data. (For instance, if the radius 
vector specifies a distance of zero, then 
DEC GKS cannot generate a corresponding 
circle.) 

—104 Circle: 2 Points on Circumference, and Radius 
Constant: GKS$K_GDP_CIRCLE~PT—RAD 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms a circle from the specified circumference points and the radius 
vector point. The circle is drawn so that the circumference, clockwise from the 
first point to the second, is no greater than pi radians (half of the circle). 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 4 

x_coordinates Two points, vector origin point, and radius vector point. 
y_coordinates 

gdp~d -104 

data~ecord null 

data~ecord~ize 0 bytes 

DEC GKS GDPs and Escapes I-11 



Generalized Drawing Primitives (GDPs1 
Unfilled GDPs 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

—158 GKS$~RROR_NEG_158 GDP primitive is not defined by the 
supplied data **** (For instance, if the 
distance between points is more than 
twice the specified radius then DEC GKS 
cannot form the circle.) 

—106 Arc: Center and Z Points on Arc 
Constant: GKS$K_GDP~RC_CTR~PT 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms a circular arc using the center point, the second point as a 
starting point of the arc, and the third point as one of the following 
components: 

• The second point, located on the arc. 

• The second point of a ray (the first point is the center point), whose 
intersection with the circular path of the arc determines the second point of 
the arc. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 3 

x_coordinates Center point and the beginning and end points of the arc. 
y_coordinates 

gdp~d -106 

data~ecord (4 components) 
1 
0 
0 
(address of) arc_type 

data~ecord_size 16 bytes 

—12 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives IGDPsI 
Unfilled GDPs 

The integer array contains the single element arc_type, which can be any of the 
following values: 

Value Constant Description 

1 GKS$K_ARC_TYPE_OPEN 

2 GKS$K_ARC_TYPE_I'IE 

3 GKS$K_ARC_TYPE_CHORD 

Form an arcing line. 

Connect both ends of the arc to 
its center. 

Connect the beginning and end 
points of the arc. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR_NEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
the center point and one of the points on 
the circumference may be the same point.) 

-159 GKS$_ERROR_NEG_159 Arc_type is invalid in routine **** (For 
instance, if you specify a value other than 
1, 2, or 3.) 

—107 Arc: 3 Points on Circumference 
Constant: GKS$K_GDP~RC~PT 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the circular arc using a line beginning at the first point, running 
through the second point, and connecting to the third point. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 

x_coordinates 
y_coordinates 

3 

Three points on the circumference. 

DEC GKS GDPs and Escapes I-13 



Generalized Drawing Primitives IGDPs1 
Unfilled GDPs 

Argument Required Value 

gdp~d 

data_record 

data~ecord~ize 

-107 

(4 components) 
1 
0 
0 
(address of) ar~type 

16 bytes 

The integer array contains the single element ar~type, which can be any of the 
following values: 

Value Constant Description 

1 

2 

3 

GKS$K_ARC_TYPE_OPEN 

GKS$K_ARC_TYPE_I'IE 

GKS$K_ARC_TYPE _CHORD 

Form an arcing line. 

Connect both ends of the arc to 
its center. 

Connect the beginning and end 
points of the arc. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR~tEG_158 

-159 GKS$~RROR~IEG_159 

GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
the three points may form a straight line.) 

Arc_type is invalid in routine **** (For 
instance, if you specify a value other than 
1, 2, or 3.) 

—108 Set Error Handling Mode 
Operating states: GKOP, wSOP, WSAC, SLOP 
Constant: GKS$K~SC_SET~RR~-IANDLING-1VIODE 
Supporting workstations: The VAXstation workstations. 

1-14 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives (GDPs) 
Unfilled GDPs 

This escape allows you to suppress as much error checking as possible if set 
to GKS$ERROR_OFF. Otherwise GKS executes normally and logs errors as 
necessary, returning those errors specified by standard and internal errors. 

GKS~ESCAPE Arguments: 

Argument Required Value 

function_id 

in_data 

in _data~ize 

out buffer 

record_bu ff er_length 

record~ize 

-108 

(4 components) 
1 
0 
0 
error node (GKS$K~RROR_OFF) or 
(GKS$K_ERROR_ON) 

16 bytes 

null 

NA 

0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$~RROR_7 

20 GKS$_ERROR_20 

25 GKS$~RROR~S 

33 GKS$_ERROR_33 

36 GKS$~RROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine * * * * 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

DEC GKS GDPs and Escapes I-15 



Generalized Drawing Primitives IGDPs1 
Unfilled GDPs 

—109 Set Viewport Event 
Operating states: WSOP, WSAC, SGOP 
Constant: GKS$K~SC_SET_VIEWPORT~VENT 
Supporting workstations: The VAXstation workstations. 

This escape allows an application to receive events that the workstation 
viewport has changed in some way. These events are reported through the 
input event queue with the input class constant GKS$K_INPUT_CLASS_ 
VIEWPORT. There is no corresponding GET INPUT function or escape. The 
event simply indicates that something in the workstation viewport has changed. 

The application can use the appropriate workstation inquiry functions to 
determine what values have actually changed. This type of event is nor-
mally reported where the GKS workstation is implemented in a windowing 
environment. The user may change the workstation viewport through the 
window system. The DEC GKS VAXstation (UIS) workstation type and the 
DECwindows series of workstation types are windowing environments where 
this event can be reported. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -109 

in _data (4 components) 
2 
0 
0 
(address of) ws—id, on_off 

in _data—size 16 bytes 

out buffer null 

record—buffer~ength NA 

record_size 0 bytes 

The integer array contains the elements ws_id, the workstation identifier for 
which the value should be set, and on _off, used to turn on or off the reporting 
of the change in the workstation viewport. GKS$K_TRUE turns it on; GKS$K_ 
FALSE turns it off . 

—16 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives IGDPs1 
Unfilled GDPs 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$_ERROR_33 

36 GKS$_ERROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—110 Associated Workstation Type Connection ID 
Operating states: WSOP, WSAC, SGOP 
Constant: GKS$K~SC~ASSOC_WSTYPE_CONID 
Supporting workstations: The VAXstation workstations. 

This escape establishes a connection identifier for a specified workstation 
type. When an inquiry function references the workstation after this connection 
identifier is set, the workstation returns the workstation type and the connection 
identifier, treating them as a pair, where this pairing is possible and relevant. In 
addition, this escape may cancel an association rather than set one. 

The integer array contains the elements wstype (the workstation type for the 
association), and a set_flag. If set_flag is TRUE, the conid string will be 
associated with the workstation type. If the set_flag is FALSE, the association 
is cancelled. 

DEC GKS GDPs and Escapes I-17 



Generalized Drawing Primitives (GDPsI 
Unfilled GDPs 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -110 

in_data 

in _data~ize 

out buffer 

record buff er_length 

record_size 

(7 components) 
2 
0 
1 
(address of) ws_type, set 
0 
(address of) length conid 
(address of) conid 

16 bytes 

null 

NA 

0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

36 GKS$_ERROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—18 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives IGDPs) 
Unfilled GDPs 

—111 Ellipse: Center, and 2 Axis Vectors 
Constant: GKS$K_GDP~LLIPSE_CTR_AXES 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the ellipse using a center point, one vector to establish the 
distance and direction of the first axis, and a second vector to establish the 
distance of the second axis. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 4 

x_coordinates Center point, vector origin point, minor and major axis 
y_coordinates vectors. 

gdp~d -111 

data_record null 

data_record_size 0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR_NEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
one of the vectors may have a length of 
zero.) 

—113 Ellipse: Focal Points and Point on Circumference 
Constant: GKS$K _GDP_ELLIPSE _FOCII _PT 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the ellipse using the two focal points and a single point on the 
circumference. 

DEC GKS GDPs and Escapes I-19 



Generalized Drawing Primitives IGDPs1 
Unfilled GDPs 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 3 

x_coordinates Two focal points and the point on the circumference. 
y_coordinates 

gdp~d -113 

data~ecord null 

data_record_size 0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$~RROR~IEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
the point may be on the line segment 
between the focal points.) 

—114 Elliptic Arc: Center, 2 Axis Vectors, and 2 Vectors 

Constant: GKS$K_GDP~LIARC_CTR~ES_2VEC 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the elliptic arc using a center point, one axis vector (the largest 
of the two) to establish the distance and direction of the major axis, a second 
axis vector to establish the distance of the minor axis, and two vectors whose 
directions are used to determine the arc end points. The largest axis vector 
determines both the distance and the direction of the major axis of the elliptic 
arc. 

—20 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives (GDPs1 
Unfilled GDPs 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 

x_coordinates 
y_coordinates 

gdp~d 

data~ecord 

data~ecord_size 

6 

Center point, vector origin point, two directional axis vectors, 
and 2 end point vectors. 

-114 

(4 components) 
1 
0 
0 
(address of) arc_type 

16 bytes 

The integer array contains the single element arc—type, which can be any of the 
following values: 

Value Constant Description 

1 

2 

3 

GKS$K~RC_TYPE_OPEN 

GKS$K~RC_TYPE~'IE 

GKS$K~RC_TYPE_CHORD 

Form an arcing line. 

Connect both ends of the arc to 
its center. 

Connect the beginning and end 
points of the arc. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR_NEG_158 

-159 GKS$~RROR_NEG_159 

GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
due to the vector values, DEC GKS may 
attempt to form a straight line.) 

Arc_type is invalid in routine **** (For 
instance, if you specify a value other than 
1, 2, or 3.) 

DEC GKS GDPs and Escapes I-21 



Generalized Drawing Primitives (GDPs1 
U~illed GDPs 

—116 Elliptic Arc: Focal Points and 2 Points on Circumference 

Constant: GKS$K _GDP~LIARC~OCII _ZPT 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms an elliptic arc using two focal points, the beginning point of 
the elliptic arc, and the end point as one of the following components: 

• The end point, located on the arc. 

• The second point of a ray (the first point is the first specified focus point of 
the ellipse), whose intersection with the elliptic path of the arc determines 
the end point of the arc. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 4 

x_coordinates Two focal points and two points on the circumference. 
y_coordinates 

gdp~d -116 

data record (4 components) 
1 
0 
0 
(address of) ar~type 

data~ecord—size 16 bytes 

—22 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives (GDPs) 
Unfilled GDPs 

The integer array contains the single element ar~type, which can be any of the 
following values: 

Value Constant Description 

1 GKS$K_ARC_TYPE_OPEN 

2 GKS$K_ARC_TYPE_I'IE 

3 GKS$K_ARC_TYPE_CHORD 

Form an arcing line. 

Connect both ends of the arc to 
its center. 

Connect the beginning and end 
points of the arc. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR~TEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
due to the specified values, DEC GKS may 
attempt to form a straight line.) 

-159 GKS$_ERROR_NEG_159 Arc_type is invalid in routine **** (For 
instance, if you specify a value other than 
1, 2, or 3.) 

—125 Rectangle: Two Corners 
Constant: GKS$K_GDP~ZECT~PT 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the rectangle from the specified diagonal corner points. The 
sides of the rectangle are parallel to the X and Y axes. 

DEC GKS GDPs and Escapes I-23 



Generalized Drawing Primitives (GDPs1 
Unfilled GDPs 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 2 

x_coordinates Diagonal corner points. 
y_coordinates 

gdp~d -125 

data_record null 

data~ecord_size 0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR~IEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
if the specified points have the same 
X or Y value, DEC GKS cannot form a 
rectangle.) 

—24 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives IGDPs1 
filled GDPs 

Filled GDPs 

This section describes all filled GDPs. Filled GDPs use the current fill area 
attributes. You should make sure that the attributes are set to the requirements 
of your application before you generate these GDPs. 

—332 Fill Area Set 
Constant: GKS$K_GDP~ILL ~REA_SET 
Supporting workstations: All DEC GKS supported workstations. 

This GDP contains at least 3 points that together define at least one fill area. 

A Fill Area Set consists of one or more fill areas, each consisting of 3 or more 
points that may intersect. A Fill Area Set has both interior and edge attributes. 
Interior attributes are similar to regular fill areas, and edge attributes are similar 
to polylines. These attributes are set with various GKS escape functions. 

The filled regions of a fill area set are determined by the even-odd rule, which 
considers the entire fill area set as a single primitive. It is therefore possible to 
create donut-like objects, where the area surrounding the hole is filled. 

For more information about fill area and polyline attributes, see Appendix C, 
DEC GKS Attribute Values. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points > =3 

x_coordinates x and y points. 
y_coordinates 

gdp~d -332 

data_record (4 components) 
number of fill areas (> =1) 
0 
0 
(array of integers (number of points in each fill area)) 

data_record—size 16 bytes 

DEC GKS GDPs and Escapes 1-25 



Generalized Drawing Primitives (GDPs► 
Filled GDPs 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR~IEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
if the specified points have the same 
X or Y value, DEC GKS cannot form a 
rectangle.) 

—333 Filled Circle: Center and Point on Circumference 
Constant: GKS$K_GDP~CIRCLE_CTR~'T 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms a circle from the specified center point and a single point on 
the circle's circumference. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 2 

x_coordinates Center point and a point on the circumference. 
y_coordinates 

gdp~d -333 

data_record null 

data_record—size 0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR~IEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
if the center point and the point on the 
circumference are the same point, DEC 
GKS cannot form a circle.) 

—26 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives 1GDPs1 
filled GDPs 

—334 Filled Circle: 3 Points on Circumference 
Constant: GKS$K_GDP~CIRCLE_3PT 
Supporting workstations: All DEC GKS supported workstations. 

This GDP draws the circle whose circumference includes the three specified 
points. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 3 

x_coordinates Three circumference points. 
y_coordinates 

gdp~d -334 

data~ecord null 

data_record_size 0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$~RROR~IEG_158 GDP primitive is not defined by the 
supplied data. (For instance, if the three 
points form a straight line, DEC GKS 
cannot generate a corresponding circle.) 

—335 Filled Circle: Center and Radius 
Constant: GKS$K_GDP_FCIRCLE_CTR_RAD 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms a circle from the specified center point and radius vector value. 

DEC GKS GDPs and Escapes I-27 



Generalized Drawing Primitives IGDPs1 
Filled GDPs 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 3 

x_coordinates Center point, vector origin point, and radius vector point. 
y_coordinates 

gdp~d -335 

data_record null 

data_record_size 0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR_NEG_158 GDP primitive is not defined by the 
supplied data. (For instance, if the radius 
vector specifies a distance of zero, then 
DEC GKS cannot generate a corresponding 
circle.) 

—336 Filled Circle: 2 Points on Circumference, and Radius 
Constant: GKS$K_GDP~CIRCLE~PT~D 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms a circle from the specified circumference points and the radius 
vector point. The circle is drawn so that the circumference, clockwise from the 
first point to the second, is no greater than pi radians (half of the circle). 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 

x_coordinates 
y_coordinates 

—28 DEC GKS GDPs and Escapes 

4 

Two points, vector origin point, and the radius vector point. 



Generalized Drawing Primitives (GDPs► 
Filled GDPs 

Argument Required Value 

gdp~d -336 

data~ecord null 

data_record_..size 0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR~TEG_158 GDP primitive is not defined by the 
supplied data **** (For instance, if the 
distance between points is more than 
twice the specified radius then DEC GKS 
cannot form the circle.) 

—338 Filled Arc: Center and 2 Points on Arc 
Constant: GKS$K_GDP~ARC_CTR~PT 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms a filled circular arc using the center point, the second point 
as a starting point of the arc, and the third point as one of the following 
components: 

• The second point, located on the arc. 

• The second point of a ray (the center point), whose intersection with the 
circular path of the arc determines the second point of the arc. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 

x_coordinates 
y_coordinates 

gdp_id 

3 

Center point and beginning and end points of the arc. 

-338 

DEC GKS GDPs and Escapes I-29 



Generalized Drawing Primitives (GDPs1 
Filled GDPs 

Argument Required Value 

data~ecord 

data_record_size 

(4 components) 
1 
0 
0 
(address of) ar~type 

16 bytes 

The integer array contains the single element ar~type, which can be any of the 
following values: 

Value Constant Description 

2 GKS$K_ARC_TYPE~'IE 

3 GKS$K_ARC_TYPE_CHORD 

Connect both ends of the arc to 
its center. 

Connect the beginning and end 
points of the arc. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR_NEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
the center point and one of the points on 
the circumference may be the same point.) 

-159 GKS$_ERROR_NEG_159 Arc_type is invalid in routine **** (For 
instance, if you specify a value other than 
2or3.) 

—339 Filled Arc: 3 Points on Circumference 
Constant: GKS$K_GDP~ARC~PT 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the arc beginning at the first point, running through the second 
point, and connecting to the third point. 

—30 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives IGDPs► 
filled GDPs 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 

x _coordinates 
y_coordinates 

gdp~d 

data—record 

data_record_size 

3 

Three points on the circumference. 

-339 

(4 components) 
1 
0 
0 
(address of) ar~type 

16 bytes 

The integer array contains the single element arc—type, which can be any of the 
following values: 

Value Constant Description 

2 

3 

GKS$K_ARC_TYPE _I'IE 

GKS$K _ARC_TYPE _CHORD 

Connect both ends of the arc to 
its center. 

Fill the area formed by con-
necting the beginning and end 
points of the arc. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR_NEG_158 

-159 GKS$_ERROR_NEG_159 

GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
the three points may form a straight line.) 

Arc_type is invalid in routine **** (For 
instance, if you specify any value other 
than 2 or 3.) 

DEC GKS GDPs and Escapes I-31 



Generalized Drawing Primitives IGDPs1 
Filled GDPs 

—340 Filled Arc: Center, 2 Vectors, and a Radius 

Constant: GKS$K_GDP~ARC_CTR~VEC~ZAD 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the arc by using the two vectors to calculate directions from the 
center point. DEC GKS uses the vector directions to form rays that determine 
the starting and ending points of the arc. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 

x_coordinates 
y_coordinates 

gdp~d 

data~ecord 

data_record_size 

5 

Center, vector origin point, two vectors, and the radius 
vector point. 

-340 

(4 components) 
1 
0 
0 
(address of) arc_type 

16 bytes 

The integer array contains the single element ar~type, which can be any of the 
following values: 

Value Constant Description 

2 GKS$K_ARC_TYPE_I'IE 

3 GKS$K_ARC_TYPE_CHORD 

Connect both ends of the arc to 
its center. 

Fill the area formed by con-
necting the beginning and end 
points of the arc. 

—32 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives 1GDPs1 
filled GDPs 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-159 GKS$_ERROR_NEG_159 Arc_type is invalid in routine **** (For 
instance, if you specify any value other 
than 2 or 3.) 

—341 Filled Arc: 2 Points on Arc, and Radius 
Constant: GKS$K_GDP~ARC-2PT~D 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms an arc from the specified beginning and end points, and from 
the radius vector point. The arc is drawn so that the circumference, clockwise 
from the first point to the second, is no greater than pi radians (half of a circle). 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 4 

x_coordinates Two points, vector origin point, and radius vector point. 
y_coordinates 

gdp~d -341 

data~ecord (4 components) 
1 
0 
0 
(address of) ar~type 

data_record_size 16 bytes 

The integer array contains the single element ar~type, which can be any of the 
following values. 

DEC GKS GDPs and Escapes I-33 



Generalized Drawing Primitives IGDPs1 
Filled GDPs 

Value Constant Description 

1 GKS$K_ARC_TYPE_OPEN 

2 GKS$K_ARC_TYPE_I'IE 

3 GKS$K_ARC_TYPE_CHORD 

Form an arcing line. 

Connect both ends of the arc to 
its center. 

Connect the beginning and end 
points of the arc. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$~RROR~IEG_158 GDP primitive is not defined by the 
supplied data **** (For instance, if the 
distance between the points is more than 
twice the specified radius, then DEC GKS 
cannot form the arc. 

-159 GKS$_ERROR~TEG_159 Arc_type is invalid in routine **** (For 
instance, if you specify a value other than 
1, 2, or 3.) 

—342 Filled Arc: Center, Starting Point, and Angle 

Constant: GKS$K_GDP~ARC_CTR_l'T_ANG 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the filled, circular arc by using the distance between the center 
point and the arc starting point as a radius, and by using the angle value to 
determine the endpoint of the arc. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 

x_coordinates 
y_coordinates 

gdp~d 

1-34 DEC GKS GDPs and Escapes 

2 

Center and starting point. 

-342 



Generalized Drawing Primitives IGDPs► 
Filled GDPs 

Argument Required Value 

data_record (5 components) 
1 
1 
0 
(address of) arc_type 
(address of) angle—in radians 

data_record_size 20 bytes 

The integer array contains the single element arc_type, which can be any of the 
following values: 

Value Constant Description 

2 GKS$K~RC_TYPE_I'IE 

3 GKS$K_ARC_TYPE_CHORD 

Connect both ends of the arc to 
its center. 

Fill the area formed by con-
necting the beginning and end 
points of the arc. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning _ 

-159 GKS$_ERROR_NEG_159 Arc_type is invalid in routine **** (For 
instance, if you specify any value other 
than 2 or 3.) 

—343 Filled Ellipse: Center, and 2 Axis Vectors 
Constant: GKS$K_GDP_FELLIPSE_CTR_AXES 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the ellipse using a center point, one axis vector (the largest of 
the two) to establish the distance and direction of the major axis, and a second 
axis vector to establish the distance of the minor axis. 

DEC GKS GDPs and Escapes I-35 



Generalized Drawing Primitives (GDPs1 
Filled GDPs 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 4 

x_coordinates Center point, vector origin point, and minor and major axis 
y_coordinates vectors. 

gdp~d -343 

data_record null 

data_record_size 0 bytes 

Error Messages:: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR~TEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
one of the vectors may have a length of 
zero.) 

—345 Filled Ellipse: Focal Points and Point on Circumference 

Constant: GKS$K—GDP_FELLIPSE~OCII_I'T 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the ellipse using the two focal points and a single point on the 
circumference. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 

x_coordinates 
y_coordinates 

gdp~d 

3 

Two focal points and the point on the circumference. 

-345 

—36 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives IGDPs1 
Filled GDPs 

Argument Required Value . 

data—record null 

data_record_size 0 bytes 

Error 1Vlessages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$~RROR_NEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
the point may be on the line segment 
between the focal points.) 

—346 Filled Elliptic Arc: Center, 2 Axis Vectors, and 2 Vectors 
Constant: GKS$K_GDP~'ELIARC_CTR~XES~VEC 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the elliptic arc using a center point, one axis vector (the largest 
of the two) to establish the distance and direction of the major axis, a second 
axis vector to establish the distance of the minor axis, and two vectors whose 
directions are used to determine the arc end points. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 6 

x _coordinates The center point, vector origin point, two directional axis 
y_coordinates vectors, and 2 end point vectors. 

gdp~d -346 

data_record (4 components) 
1 
0 
0 
(address of) arc_type 

data_record_size 16 bytes 

DEC GKS GDPs and Escapes I-37 



Generalized Drawing Primitives IGDPs) 
filled GDPs 

The integer array contains the single element ar~type, which can be any of the 
following values: 

Value Constant Description 

2 GKS$K_ARC_TYPE_PIE 

3 GKS$K_ARC_TYPE_CHORD 

Connect both ends of the arc to 
its center. 

Fill the area formed by con-
necting the beginning and end 
points of the arc. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR_NEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
due to the vector values, DEC GKS may 
attempt to form a straight line.) 

-159 GKS$_ERROR_NEG_159 Arc_type is invalid in routine **** (For 
instance, if you specify any value other 
than 2 or 3.) 

—348 Filled Elliptic Arc: Focal Points and 2 Points on Circumference 

Constant: GKS$K_GDP—FELIARC—FOCII-2PT 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the elliptic arc using two focal points, the beginning point of 
the elliptic arc, and the end point as one of the following components: 

• The end point, located on the arc. 

• The second point of a ray (the first point is the first specified focus point of 
the ellipse), whose intersection with the elliptic path of the arc determines 
the end point of the arc. 

1-38 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives (GDPs► 
Filled GDPs 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 

x_coordinates 
y_coordinates 

gdp~d 

data_record 

data_record_size 

4 

Two focal points and two points on the circumference. 

-348 

(4 components) 
1 
0 
0 
(address of) arc_type 

16 bytes 

The integer array contains the single element ar~type, which can be any of the 
following values: 

Value Constant Description 

2 

3 

GKS$K_ARC_TYPE_I'IE 

GKS$K _ARC_TYPE _CHORD 

Connect both ends of the arc to 
its center. 

Fill the area formed by con-
necting the beginning and end 
points of the arc. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR_NEG_158 

-159 GKS$_ERROR_NEG_159 

GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
due to the specified values, DEC GKS may 
attempt to form a straight line.) 

Arc_type is invalid in routine **** (For 
instance, if you specify any value other 
than 2 or 3.) 

DEC GKS GDPs and Escapes I-39 



Generalized Drawing Primitives IGDPs1 
Filled GDPs 

—349 Filled Rectangle: Two Corners 
Constant: GKS$K_GDP—FRECT_2PT 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the rectangle from the specified diagonal corner points. The 
sides of the rectangle are parallel to the X and Y axes. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 2 

x_coordinates Diagonal corner points. 
y_coordinates 

gdp—id -349 

data—record null 

data—record—size 0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$—ERROR~IEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
if the specified points have the same 
X or Y value, DEC GKS cannot form a 
rectangle.) 

I-40 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives (GDPs1 
Cell Array GDPs 

Cell Array GDPs 

This section describes all cell array GDPs. You need to pass the following 
points to the cell array GDPs: 

• Starting point. 

• Diagonal point. 

• Point R, which is the third point in the parallelogram moving the starting 
point to the diagonal point along the X axis. To form a rectangular cell 
array, make sure that point R has the X value of the diagonal point and the 
Y value of the starting point. 

For more information concerning cell arrays, refer to Chapter 5, Output 
Functions. 

—400 Packed Cell Array 
Constant: GKS$K _GDP_IMAGE _ARRAY 
Supporting workstations: All DEC GKS supported workstations except for the 
PostScript workstations. 

This GDP forms a cell array from the starting point, diagonal point, point 
R, and the contents of a data record. The data record includes an array that 
contains color indexes specified in 1, ~, or 16 bits. By specifying the color 
indexes in increments less than a longword, the array uses less memory and 
DEC GKS can read the data quicker. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 3 

x_coordinates Starting point, diagonal point, and point R. 
y_coordinates 

gdp~d -400 

DEC GKS GDPs and Escapes I-41 



Generalized Drawing Primitives (GDPs1 
Cell Array GDPs 

Argument Required Value 

data~ecord (4 components) 
3 + n _longwords 
0 
0 
(address of) Rows, columns, bits_per_index, and color~ndexes 

data—record_size 16 bytes 

The following list describes the contents of the integer array: 

Component Description 

Rows This element is the number of rows in the cell array. 

Columns This element is the number of columns in the cell array. 

Bits_per_index This element is the number of bits used, within color_indexes, 
to store a single color index value. (DEC GKS uses the color 
index value to color the corresponding cell in the cell array.) 
This value may be 1, 8, or 16. 

Color_indexes These components are the contiguous bit increments that specify 
color indexes. These elements are n _longwords in size and 
contain the color indexes in row-major order. 

Color indexes should be specified in row major order. 

You can calculate the value n~ongwords using the following formula: 

INT( (Rows *Columns * Bits_per_index + 31 ~ / 32 ~ 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$_ERROR_NEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For instance, 
if the starting and diagonal points have 
the same X or Y value, DEC GKS cannot 
form a cell array rectangle.) 

I-42 DEC GKS GDPs and Escapes 



Generalized Drawing Primitives IGDPsI 
Text GDPs 

Text GDPs 

The following sections describe the text GDPs. Text GDPs use the text at-
tributes. For complete information concerning text, refer to Chapter 5, Output 
Functions. 

—231 Text: Restricted Text Extent Rectangle 
Constant: GKS$K_GDP_RESTRICTED_TEXT 
Supporting workstations: All DEC GKS supported workstations. 

This GDP forms the text string within the extent rectangle formed by the 
specified width and height vectors, and by the text starting point. (This GDP 
only uses the vectors to determine distance.) This GDP uses the current text 
height, character spacing, and character expansion factor only if the resulting 
text string fits within the specified extent rectangle. Otherwise, this GDP 
chooses the text attributes that form a string that fits within the text extent 
rectangle. Note that this GDP does not change any of the current text attributes. 

GKS$GDP Arguments: 

Argument Required Value 

number_of_points 4 

x_coordinates Starting point, vector origin point, width vector, and height 
y_coordinates vector. 

gdp~d -231 

data—record (7 components) 
0 
0 
1 
null address 
null address 
(address o~ string~ength 
(address o~ string address 

data record—size 28 bytes 

The string length array contains the single element string_length, which is the 
length of your text string. The string address array contains the single element 
string_address, which is the address of your text string. 

DEC GKS GDPs and Escapes I-43 



Generalized Drawing Primitives IGDPs) 
Text GDPs 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-158 GKS$~RROR_NEG_158 GDP primitive is not defined by the 
supplied data in routine **** (For in-
stance, if the distances of the height and 
width vectors do not form a valid extent 
rectangle.) 

I-44 DEC GKS GDPs and Escapes 



Escape Functions 

Escape Functions 

The following sections describe the DEC GKS supported escape functions. The 
sections identify each escape by the following: 

• The numeric identifier that you pass to GKS$ESCAPE. 
• The title of the escape (for instance, "Set Display Speed"). 
• The valid DEC GKS operating states during which you can use the escape. 
• The constant equivalent of the numeric identifier. 
• The list of supporting workstations. 
• The description of the escape. 

• The list of the arguments passed to GKS$ESCAPE and the contents of the 
input and output data records, if applicable. The names of the arguments 
are identical to the argument descriptions of GKS$ESCAPE in Chapter 4, 
Control Functions. 

• The list of escape-specific error messages, if applicable. 

Many of the escape data records require that you pass a workstation identifier. 
In all of the data record descriptions that follow, the identifier ws_id specifies 
the workstation identifier component of the record. 

Some of the escapes require that you pass a coordinate range as part of the 
input data record. In all of the data record descriptions that follow, the 
identifier coord_range is a set of four real numbers in the following order: 
( [XMIN,XMAX] x [YMIN,YMAX] ). For more information concerning this 
coordinate range notation, refer to Chapter 1, Introduction to DEC GKS. 

The following sections describe the DEC GKS specific escape functions, by 
category. 

DEC GKS GDPs and Escapes I-45 



Escape functions 
Control Escape Functions 

Control Escape Functions 

This section describes all of the escape functions that affect the workstation 
as do the DEC GKS control functions. For more information concerning the 
DEC GKS data structures and control functions, refer to Chapter 4, Control 
Functions. 

—100 Set Display Speed 
Operating states: WSOP, WSAC, SGOP 
Constant: GKS$K~SC_SET_SPEED 
Supporting workstations: The LVP16 and all HPGL protocol plotter 
workstations. 

This escape controls the speed of output generation. DEC GKS measures the 
speed in device coordinate vector/second measurements. 

The DEC GKS supported plotters have pen speeds that are within the range 
0.38 cm/second to 38.1 cm/second. The graphics handlers round your incre-
ment values to the nearest multiple of 0.38. You can specify the value 0.0 to 
obtain the default speed of 0.38 cm/second. If you are using one of the plotters 
to produce acetate slides, the recommended speed is 10 cm/second. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -100 

in_data (5 components) 
1 
1 
0 
(address of) ws_id 
(address of) display speed 

in _data_size 20 bytes 

out buffer null 

record_buffer_length NA 

record_size 0 

I-46 DEC GKS GDPs and Escapes 



Escape functions 
Control Escape functions 

The real array contains the single element display peed, which is expressed in 
device coordinate vectors/second. This value must be greater than, or equal to, 
zero. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-155 GKS$_ERROR_NEG_155 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$~RROR_25 

33 GKS$~RROR_33 

35 GKS$~RROR_35 

36 GKS$_ERROR_36 

Display speed is less than zero in 
routine **** 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SLOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is of category 
INPUT in routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—101 Generate Hardcopy of Workstation Surface 
Operating states: WSOP, WSAC, SGOP 
Constant: GKS$K_ESC_1'RINT 
Supporting workstations: The ReGIS devices and TEKTRONIX 4014 
workstations. All DEC GKS GKS$K_WSCAT_OUTIN workstations (terminals). 

This escape generates a hardcopy of the currently displayed picture on a printer 
attached to the workstation. 

DEC GKS GDPs and Escapes I-47 



Escape functions 
Control Escape Functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id -101 

in _data 

in _data_size 

out_buffer 

record—buff er_length 

record_size 

(4 components) 
1 
0 
0 
(address of) ws_id 

16 bytes 

null 

NA 

0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$~RROR_25 

33 GKS$_ERROR_33 

35 GKS$_ERROR_35 

36 GKS$~RROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is of category 
INPUT in routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

I-48 DEC GKS GDPs and Escapes 



Escape functions 
Control Escape Functions 

—103 Beep 
Operating states: WSOP, WSAC, SGOP 
Constant: GKS$K_ESC_BEEP 
Supporting workstations: The VAXstation, ReGIS, VT output-only, 
TEKTRONIX 4014, and TEKTRONIX 4107 workstations. 

This escape signals the application user by ringing a bell or by using some other 
sound generator. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -103 

in _data (5 components) 
1 
2 
0 
(address of) ws_id 
(address of) rel~oudness, sound_duration 

in _data_size 20 bytes 

out buffer null 

recorc~buffer_length NA 

record_size 0 bytes 

The real array contains the element rel _loudness, which is the relative loudness 
of the sound on a scale from 0.0 (silent) to 1.0 (loudest possible for the device); 
and, contains the element sound_duration, which is the number of seconds to 
maintain the sound; this value must be greater than or equal to 0. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

-156 GKS$_ERROR_NEG_156 Loudness is outside the range [0,1] in 
routine **** 

-157 GKS$_ERROR_NEG_157 Duration is less than zero in routine **** 

DEC GKS GDPs and Escapes I-49 



Escape functions 
Control Escape functions 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$~RROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

35 GKS$~RROR_35 

36 GKS$_ERROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is of category 
INPUT in routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—106 Pop Workstation 
Operating states: WSOP, WSAC, SLOP 
Constant: GKS$K_ESC_I'OP_WORKSTATION 
Supporting workstations: The VAXstation workstations. 

This escape places the display window containing the specified workstation in 
front of all other display windows. Remember that if you pop a workstation 
window, you pop all input windows associated with that workstation. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id 

in_data 

in _data_size 

—50 DEC GKS GDPs and Escapes 

-106 

(4 components) 
1 
0 
0 
(address of) ws_id 

16 bytes 



Escape functions 
Control Escape Functions 

Argument Required Value 

out buffer 

record_buffer_length 

record—size 

null 

NA 

0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

36 GKS$~RROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—107 Push Workstation 
Operating states: WSOP, WSAC, SGOP 
Constant: GKS$K~SC~'USH_WORKSTATION 
Supporting workstations: The VAXstation workstations. 

This escape places the display window containing the specified workstation 
behind of all other display windows. Remember that if you push a workstation 
window, you push all input windows associated with that workstation. 

DEC GKS GDPs and Escapes I-51 



Escape functions 
Control Escape functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

function—id 

in_data 

in _data~ize 

out_buffer 

record_buffer_length 

record—size 

-107 

(4 components) 
1 
0 
0 
(address of} ws_id 

16 bytes 

null 

NA 

0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message jMeaning 

7 GKS$~RROR_7 

20 GKS$_ERROR_20 

25 GKS$~RROR_25 

33 GKS$_ERROR_33 

36 GKS$_ERROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—108 Set Error Handling Mode 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K_ESC_SET_ERR_HANDLING_IViODE 
Supporting workstations: All workstations. 

—52 DEC GKS GDPs and Escapes 



Escape functions 
Control Escape Functions 

This escape allows you to suppress as much error checking as possible if set 
to GKS$ERROR _OFF. Otherwise GKS executes normally and logs errors as 
necessary, returning those errors specified by standard and internal errors. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id 

in _data 

in _data_size 

out buffer 

recorcLbuff er_length 

record_size 

-108 

(4 components) 
1 
0 
0 
error node (GKS$K_ERROR_OFF) or 
(GKS$K~RROR_ON) 

16 bytes 

null 

NA 

0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$~RROR_7 

20 GKS$~RROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

36 GKS$_ERROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

DEC GKS GDPs and Escapes I-53 



Escape functions 
Control Escape functions 

—109 Set Viewport Event 
Operating states: WSOP, WSAC, SGOP 
Constant: GKS$K—ESC_SET_VIEWPORT_EVENT 
Supporting workstations: The VAXstation workstations. 

This escape allows an application to receive events that the workstation 
viewport has changed in some way. These events are reported through the 
input event queue with the input class constant GKS$K_INPUT_CLASS_ 
VIEWPORT. There is no corresponding GET INPUT function or escape. The 
event simply indicates that something in the workstation viewport has changed. 

The application can use the appropriate workstation inquiry functions to 
determine what values have actually changed. This type of event is nor-
mally reported where the GKS workstation is implemented in a windowing 
environment. The user may change the workstation viewport through the 
window system. The DEC GKS VAXstation (UIS) workstation type and the 
DECwindows series of workstation types are windowing environments where 
this event can be reported. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -109 

in _data (4 components) 
2 
0 
0 
(address of) ws—id, on_off 

in _data~ize 16 bytes 

out_buffer null 

record—buffer length NA 

record—size 0 bytes 

—54 DEC GKS GDPs and Escapes 



Escape functions 
Control Escape Functions 

The integer array contains the elements ws_id, the workstation identifier for 
which the value should be set, and on _off, used to turn on or off the reporting 
of the change in the workstation viewport. GKS$K_TRUE turns it on; GKS$K_ 
FALSE turns it off . 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$—ERROR_? 

20 GKS$—ERROR-20 

25 GKS$—ERROR_25 

33 GKS$~RROR_33 

36 GKS$~RROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—110 Associated Workstation Type Connection I D 
Operating states: WSOP, WSAC, SGOP 
Constant: GKS$K_ESC_ASSOC_WSTYPE_CONID 
Supporting workstations: All workstations. 

This escape establishes a connection identifier for a specified workstation 
type. When an inquiry function references the workstation after this connection 
identifier is set, the workstation returns the workstation type and the connection 
identifier, treating them as a pair, where this pairing is possible and relevant. In 
addition, this escape may cancel an association rather than set one. 

DEC GKS GDPs and Escapes I-55 



Escape functions 
Control Escape Functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -110 

in _data 

in _data_size 

out_buffer 

record_buffer_length 

record_size 

(7 components) 
2 
0 
1 
(address of) ws_type, set 
0 
(address of) length conid 
(address of) conid 

16 bytes 

null 

NA 

0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

36 GKS$~RROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SLOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—56 DEC GKS GDPs and Escapes 



Escape functions 
Control Escape Functions 

—111 Software Clipping 
Operating states: WSOP, WSAC, SGOP 
Constant: GKS$K_ESC_SET_SOFT_CLIP 
Supporting workstations: All workstations. 

Because some hardware may not correctly clip very large primitives, you can 
force GKS to use software clipping, in some cases. GKS uses hardware clipping 
by default if the graphics device has this capability. 

The second integer parameter (flag) controls this behavior. If it is set to 
GKS$K_TRUE, software clipping is always used. If it is set to GKS$K_FALSE, 
software clipping is used only if hardware clipping is unavailable. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id -111 

in_data (4 components) 
2 
0 
0 
(address of) ws_id, flag 

in _data~ize 16 bytes 

out buffer null 

record_buffer_length NA 

record_size 0 bytes 

DEC GKS GDPs and Escapes I-57 



Escape functions 
Control Escape Functions 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$~RROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

36 GKS$_ERROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

i-58 DEC GKS GDPs and Escapes 



Escape functions 
Output, Attribute, and Transformation Escape Functions 

Output, Attribute, and Transformation Escape Functions 

This section describes all of the escape functions that affect the generation of 
specific output primitives. For more information concerning DEC GKS output 
and the corresponding output attributes, refer to Chapter 4, Control Functions, 
and to Chapter 6, Output Attribute Functions. 

Some of the escape functions described in this section refer to "entries." In 
all instances, these refer to DEC GKS state list entries. For more information 
concerning the DEC GKS state list, refer to Chapter 4, Control Functions. 

—150 Set Writing Mode 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K~SC_SET_WRITING_1VIODE 
Supporting workstations: The VAXstations, ReGIS, VT output-only, and 
LCGO1 workstations. 

This escape sets the current writing mode entry for all subsequently drawn 
primitives that use this facility. An example of a writing mode is complement 
mode, which reverses the foreground and background colors when text is 
generated. 

The initial writing mode is mode 1, which is workstation dependent. If a 
workstation cannot implement a specified writing mode, DEC GKS uses mode 
number 1. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -150 

in _data 

in _data~ize 

(4 components) 
1 
0 
0 
(address of) wr_mode 

16 bytes 

DEC GKS GDPs and Escapes I-59 



Escape functions 
Output, Attribute, and Transformation Escape Functions 

Argument Required Value 

out buffer null 

record_buffer~ength NA 

record_size 0 bytes 

The integer array contains the single element wr~node, which can be one of 
the following values: 

Mode Description 

<=1 Workstation dependent. 

2 Complement mode (GKS$K_WRT~VIODE_COMPLEMENT). 

3 Erase underlying characters (GKS$K_WRT~VIODE_ERASE). 

4 Overlay on underlying characters (GKS$K_WRT~VIODE_OVERLAY). 

=5 Reserved for future use. 

—151 Set Line Cap Style 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K_ESC_SET_LINE_CAP 
Supporting workstations: The PostScript workstations. 

This escape sets the current line cap style entry for all subsequently drawn 
polylines that use this facility. The line cap style determines the appearance of 
the polyline endpoints. 

The initial line cap style is style 1, which is workstation dependent. If a 
workstation cannot implement a specified style, DEC GKS uses style number 1. 

—60 DEC GKS GDPs and Escapes 



Escape functions 
Output, Attribute, and Transformation Escape Functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -151 

in _data (4 components) 
1 
0 
0 
(address of) cap~tyle 

in _data_size 16 bytes 

out buffer null 

record_buffer_length NA 

record~ize 0 bytes 

The integer array contains the single element cap~tyle, which can be one of 
the following values: 

Style Description 

<=1 Workstation dependent. 

2 Butt, squared at the endpoint (GKS$K_LINE_CAP_BUTT). 

3 Round, semicircular arc (GKS$K_LINE_CAP_ROUND). 

4 Square, projecting square cap (GKS$K_LINE_CAP_SQUARE). 

> =5 Reserved for future use. 

—152 Set Line Join Style 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K _ESC_SET_LINE JOIN 
Supporting workstations: The PostScript workstations. 

This escape sets the current 1 i n e join style entry for all subsequently drawn 
polylines that use this facility. The line join style determines the appearance of 
the polyline vertices. 

The initial line join style is style 1, which is workstation dependent. If a 
workstation cannot implement a specified style, DEC GKS uses style number 1. 

DEC GKS GDPs and Escapes I-61 



Escape functions 
Output, Attribute, and Transformation Escape functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

functioned -152 

in _data (4 components) 
1 
0 
0 
(address of) join~tyle 

in _data_size 16 bytes 

out buffer null 

record—buffer~ength NA 

record—size 0 bytes 

The integer array contains the single element j oin style, which can be one of 
the following values: 

Style Description 

<=1 Workstation dependent. 

2 Mitre, outer edges meet at a sharp point (GKS$K_LINE JOIN_MITRE). 

3 Round, circular arc at point (GKS$K_LINE_JOIN~OUND). 

4 Beveled, a short, third line connecting lines not joined at ninety degrees 
(GKS$K_LINE JOIN_BEVEL). 

> =5 Reserved for future use. 

—160 Begin Transformation Block 
Operating states: WSOP, WSAC 
Constant: GKS$K—ESC_BEGIN_TRANS_BLOCK 
Supporting workstations: All DEC GKS supported workstations. 

This escape applies the specified transformation to all subsequently drawn 
primitives not contained in segments. The transformation continues until you 
call the End Transformation Block escape function (see the escape description is 
this section) or until you open a segment. 

—62 DEC GKS GDPs and Escapes 



Escape functions 
Output, Attribute, and Transformation Escape Functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -160 

in_data 

in _data_size 

out_buffer 

recorcLbuffer_length 

record_.size 

(5 components) 
1 
6 
0 
(address of) ws_id 
(address of) xform 

20 bytes 

null 

NA 

0 bytes 

The real array contains the elements xform, which are the values for the 
segment transformation matrix. For more information, refer to the description 
of GKS$EVAL _XFORM_NiATRIX in Chapter 9, Segment Functions. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

6 GKS$_ERROR_6 

20 GKS$_ERROR_20 

33 GKS$~RROR_33 

36 GKS$_ERROR_36 

GKS not in proper state: GKS shall be 
either in the state WSOP or in the state 
WSAC in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

DEC GKS GDPs and Escapes 1-63 



Escape functions 
Output, Attribute, and Transformation Escape Functions 

—161 End Transformation Block 
Operating states: WSOP, WSAC 
Constant: GKS$K_ESC~ND_TRANS_BLOCK 
Supporting workstations: All DEC GKS supported workstations. 

This escape ends the transformation process initiated by the call to the Begin 
Transformation Block escape function (see the escape description in this 
section). 

GKS$ESCAPE Arguments: 

Argument Required Value 

function—id -161 

in _data (4 components) 
1 
0 
0 
(address of) ws_id 

in _data size 0 bytes 

out buffer null 

record_buffer—length NA 

record—size 0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

6 GKS$_ERROR_6 GKS not in proper state: GKS shall be 
either in the state WSOP or in the state 
WSAC in routine **** 

20 GKS$_ERROR_20 Specified workstation identifier is invalid 
in routine **** 

33 GKS$_ERROR_33 Specified workstation is of category MI in 
routine **** 

36 GKS$_ERROR_36 Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—64 DEC GKS GDPs and Escapes 



Escape functions 
Output, Attribute, and Transformation Escape Functions 

—170 Set Segment Highlighting Method 
Operating states: WSOP, WSAC, SGOP 
Constant: GKS$K~SC_SET_SEG ~-IIGH _1VIETHOD 
Supporting workstations: All DEC GKS supported workstations. 

This escape sets the segment highlighting method, but it does not change the 
highlighted state of a segment. Use the Set Segment Highlighting function to 
change the segment highlighted state. If the segment is currently highlighted 
when this escape is called, and the segment highlighting method or attributes 
are different, the segment is unhighlighted and then highlighted again with the 
new attributes. This function may also cause a regeneration of the workstation 
display, depending on the workstation regeneration mode. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id -170 

in _data (5 components) 
6 
2 
0 
(address of) segment name, highlighting method, highlight-
ing_color~ndex, highlighting_line_type, highlighting_ 
fill style, highlighting_filljndex 
(address of) highlighting_line_width, expand_extent_ 
factor 

in _data_size 20 bytes 

out buffer null 

record_buffer_length NA 

record—size 0 bytes 

DEC GKS GDPs and Escapes I-65 



Escape functions 
Output, Attribute, and Transformation Escape Functions 

The integer array contains the element segment game, which is the name 
of the segment for which the highlighting attributes are to be set. The high-
lighting—method element is also part of this integer array, and is one of the 
following constants: 

Constant Value Description 

GKS$K_HIGH_ 
METHOD_DEFAULT 

1 Use the workstation dependent default 
highlighting method. 

GKS$K_HIGH_ 2 Highlight the segment by drawing it in 
METHOD_COMP complement mode. 

GKS$K_HIGH_ 
METHOD_COLOR 

GKS$K_HIGH_ 
METHOD_LINE 

3 

4 

Highlight the segment by drawing it using the 
color index specified in the integer array. 

Highlight the segment by drawing an extent 
box around it, using the line attributes specified 
in the integer and float arrays. The extent box 
is normally drawn using complement mode. 
The extent will be expanded by expand_ 
extent _factor times the nominal line width. 

GKS$K_HIGH_ 5 Highlight the segment by drawing a comple-
METHOD_FILL ment mode fill area around it, using the fill 

area attributes specified in the integer array. 
The extent box will be expanded by expand_ 
extent_factor times the nominal line width. 

GKS$K_HIGH_ 6 Highlight the segment by drawing both a line 
METHOD_DUAL and fill area around it, using the attributes 

specified. The extent box will be expanded by 
expancLextent_factor times the nominal line 
width. 
If the highlighting method is not available 
on the workstation on which the segment is 
displayed, the default value of 1 is used. 

—66 DEC GKS GDPs and Escapes 



Escape functions 
Output, Attribute, and Transformation Escape Functions 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$~RROR_7 

120 GKS$_ERROR_120 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified segment name is invalid in 
routine **** 

—171 Set Highlighting Method 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K—ESC_SET~IIGH-1VIETHOD 
Supporting workstations: All DEC GKS supported workstations. 

This escape sets the primitive highlighting method t0 be used for pick high-
lighting. This information is meaningful only on an OUTIN workstation. All 
subsequent primitives until the next usage of this escape are highlighted in the 
manner specified. 

If you use pick prompt and echo type 1, the information applies to each 
primitive and is stored when they are created. If you use pick prompt and echo 
type 2, the information applies t0 the group Of primitives with the same pick 
identifier. The information is stored the first time a primitive with a different 
pick identifier than any other primitive in a particular segment is stored. If you 
use pick prompt and echo type, the information is stored when a segment is 
created and applies to all primitives within a particular segment. 

DEC GKS GDPs and Escapes I-67 



Escape functions 
Output, Attribute, and Transformation Escape Functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id -171 

in_data (5 components) 
5 
2 
0 
(address of) highlighting method, highlighting_color_ 
index, highlighting_line_type, highlighting—fill~tyle, 
highlighting_filljndex 
(address of) highlighting_line_width, expand_extent_ 
factor 

in _data_size 20 bytes 

out buffer null 

record_buffer~ength NA 

record_size 0 bytes 

The integer array contains the element highlighting—method, which is the 
method to use for highlighting all subsequently stored primitives, and is one of 
the following constants: 

Constant Value Description 

GKS$K_HIGH_ 
METHOD_DEFAULT 

GKS$K_HIGH_ 
METHOD_COMP 

GKS$K~IIGH_ 
METHOD_COLOR 

GKS$K_HIGH_ 
METHOD_LINE 

—68 DEC GKS GDPs and Escapes 

1 

2 

3 

4 

Use the workstation dependent default 
highlighting method. 

Highlight the primitive by drawing it in 
complement mode. 

Highlight the primitive by drawing it using the 
color index specified in the integer array. 

Highlight the primitive by drawing an extent 
box around it, using the line attributes specified 
in the integer and float arrays. The extent box 
is normally drawn using complement mode. 
The extent will be expanded by expand_ 
extent factor times the nominal line width. 



Escape functions 
Output, Attribute, and Transformation Escape functions 

Constant Value Description 

GKS$K_HIGH_ 
METHOD~ILL 

GKS$K_HIGH_ 
METHOD_DUAL 

5 Highlight the primitive by drawing a comple-
ment mode fill area around it, using the fill 
area attributes specified in the integer array. 
The extent box will be expanded by expand_ 
extent_factor times the nominal line width. 

6 Highlight the primitive by drawing both a line 
and fill area around it, using the attributes 
specified. The extent box will be expanded by 
expand—extent_factor times the nominal line 
width. 
If the highlighting method is not available 
on the workstation on which the primitive is 
displayed, the default value of 1 is used. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

8 GKS$~RROR_8 GKS not in proper state: GKS must be in 
one of the states GKOP, WSOP, WSAC, 
or SLOP in routine **** 

DEC GKS GDPs and Escapes I-69 



Escape functions 
DEC GKS DECwindows Escape Functions 

DEC GKS DECwindows Escape Functions 

This section describes all of the escape functions that affect the DECwindows 
device. For more information concerning DEC GKS and DECwindows, refer 
to Chapter 11, DECWindows Workstation Specifics, in the DEC GKS Device 
Specifics Reference Manual. 

—202 Set Window Title 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K_ESC_SET_WINDOW_TITLE 
Supporting workstations: All workstations. 

This escape changes the string displayed in the title bar. This change applies to 
workstation types 210 and 211. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id -202 

in_data (7 components) 
1 
0 
1 
(address of) ws_id 
0 
(address of) length of new title 
(address of) new title 

in_data_size 28 bytes 

out buffer null 

record—buffer~ength N/A 

record—size 0 bytes 

—70 DEC GKS GDPs and Escapes 



Escape functions 
DEC GKS DECwindows Escape Functions 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$_ERROR_33 

36 GKS$_ERROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—203 Set Reset String 

Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K—ESC_SET_RESET_STRING 
Supporting workstations: All workstations. 

This escape changes the string displayed in the reset button on the menu bar, 
and applies only to workstation types 210 and 211. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id -203 

in _data (7 components) 
1 
0 
1 
(address of) ws_id 
0 
(address of) length of new string 
(address of) new string for reset button 

DEC GKS GDPs and Escapes I-71 



Escape functions 
DEC GKS DECwindows Escape functions 

Argument Required Value 

in _data~ize 

out buffer 

record_buffer~ength 

record_size 

28 bytes 

null 

N/A 

0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$~RROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

36 GKS$_ERROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—204 Set Cancel String 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K~SC_SET_CANCEL _STRING 
Supporting workstations: All workstations. 

This escape sets the string used by the cancel buttons of input devices. It has 
no effect on input devices presently displayed, and applies only to workstation 
type 211. 

—72 DEC GKS GDPs and Escapes 



Escape functions 
DEC GKS DECwindows Escape Functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

functioned 

in _data 

in _data~ize 

out buffer 

record_buffer_length 

record_size 

-204 

(7 components) 
1 
0 
1 
(address of) ws_id 
0 
(address of) length of new string 
(address of) new string for cancel buttons 

28 bytes 

null 

N/A 

0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$~RROR_7 

20 GKS$~RROR_20 

25 GKS$~RROR_25 

33 GKS$_ERROR_33 

36 GKS$_ERROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

DEC GKS GDPs and Escapes I-73 



Escape functions 
DEC GKS DECwindows Escape functions 

—205 Set Enter String 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K_ESC_SET_ENTER_STRING 
Supporting workstations: All workstations. 

This escape sets the string used by the enter buttons of input devices. It has 
no effect on input devices presently displayed, and applies only to workstation 
type 211. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id -205 

in _data 

in_data_size 

out buffer 

record—buffer~ength 

record—size 

(7 components) 
1 
0 
1 
(address of) ws_id 
0 
(address of) length of new string 
(address of) new string for enter buttons 

28 bytes 

null 

N/A 

0 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

—74 DEC GKS GDPs and Escapes 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 



Escape functions 
DEC GKS DECwindows Escape Functions 

Error Completion 
Number Status Code Message/Meaning 

33 GKS$_ERROR_33 Specified workstation is of category MI in 
routine **** 

36 GKS$_ERROR_36 Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—206 Set Icon Bitmaps 
Operating states: WSOP, WSAC, SGOP 
Constant: GKS$K ~SC_SET_ICON _BITMAPS 
Supporting workstations: DECwindows Workstations 210 and 211. 

Icon Bitmaps are defined one integer per pixel. The integer values are used in 
a device-dependent manner to determine the icon appearance. Where possible, 
the integers will specify the GKS color indexes to be used for each pixel. The 
pixels are specified in row-major order, with pixel (0,0) being the upper left 
corner of the icon (left-to-right, then top-to-bottom). 

If the icon height and width are specified as 0, then the default icon bitmap 
will be used instead, and the Bitmap Definition string for that icon must not be 
specified. 

Some devices may not need more than one icon bitmap, in which case only the 
Small Icon should be specified. The Large Icon Height and Large Icon Width 
parameters should be set to 0. 

This escape is currently supported on DECWindows workstations only. For 
the DECWindows workstations, the normal bitmap sizes are 17x17 and 32x32. 

Pixels specified with color 0 appear in the icon background color. Pixels 
specified as non-zero appear in the icon foreground color. 

DEC GKS GDPs and Escapes I-75 



Escape functions 
DEC GKS DECwindows Escape functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

function ~d -206 

int _data (4 components) 
5 +Small _Icon _Width *Small _Icon ~-Ieight + 
Large_Icon _Width * Large_Icon _Height 
0 
0 
(address of) ws_id, 

Small _Icon _Width (in pixels), 

Small _Icon _Height (in pixels), 

Large_Icon _Width (in pixels), 

Large_Icon _Height (in pixels), 

Small _Icon _Data (Small _Icon _Width 
Small _Icon _Height integers), 

Large_Icon _Data (Large_Icon _Width 
Large_Icon _Height integers) 

in_data_size 16 bytes 

out_buffer null 

record_buffer_length NA 

record_size 0 

1-76 DEC GKS GDPs and Eseapes 



Escape functions 
DEC GKS DECwindows Escape Functions 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$~RROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

36 GKS$~RROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—304 Inquire Window Identifiers 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K ~SC_INQ _WINDOW~DS 
Supporting workstations: All workstations. 

This escape returns the display and window identifiers of the GKS output 
window. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -304 

in _data 

in _data_size 

(4 components) 
1 
0 
0 
(address of) ws_id 

16 bytes 

DEC GKS GDPs and Escapes I-77 



Escape functions 
DEC GKS DECwindows Escape functions 

Argument Required Value 

out buffer 

record—buffer~ength 

record_size 

(4 components) 
2 
0 
0 
(address of) X Display id, X Window ID 

16 bytes 

16 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$~RROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

36 GKS$_ERROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—310 Inquire Pasteboard Identifier 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K~SC—INQ—PASTEBOARD_ID 
Supporting workstations: DECwindows Workstations 210 and 211. 

—78 DEC GKS GDPs and Escapes 



Escape functions 
DEC GKS DECwindows Escape Functions 

This escape is for VMS only. 

This escape returns the widget identifier of the GKS pasteboard widget. The 
pasteboard is a dialog box that contains the GKS output window widget and 
all input widgets. You should not change the size of this widget. This escape 
applies only to workstation types 210 and 211. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id -310 

in_data 

in_data~ize 

out buffer 

record_buff er_length 

record_size 

(4 components) 
1 
0 
0 
(address of) ws_id 

16 bytes 

(4 components) 
1 
0 
0 
(address of) Pasteboard Widget id 

16 bytes 

16 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$_ERROR_33 

GKS not in proper state: GKS shall be in 
one of- the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

DEC GKS GDPs and Escapes I-79 



Escape functions 
DEC GKS DECwindows Escape Functions 

Error Completion 
Number Status Code Message/Meaning 

36 GKS$_ERROR_36 Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—311 Inquire Menu Bar Identifier 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K_ESC~NQ~VIENU_BAR_ID 
Supporting workstations: DECwindows Workstations 210 and 211. 

This escape is for VMS only. 

This escape returns the widget identifier of the menu bar widget, and it applies 
only to workstation types 210 and 211. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -311 

in _data (4 components) 
1 
0 
0 
(address of) ws_id 

in_data_size 16 bytes 

out_buffer (4 components) 
1 
0 
0 
(address of) Menu Bar Widget id 

record—buffer~ength 16 bytes 

record_size 16 bytes 

—80 DEC GKS GDPs and Escapes 



Escape functions 
DEC GKS DECwindows Escape Functions 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$—ERROR_20 

25 GKS$~RROR_25 

33 GKS$~RROR_33 

36 GKS$~RROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—312 Inquire Shell Identifier 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K ~SC_INQ _SHELL ~D 
Supporting workstations: DECwindows Workstations 210 and 211. 

This escape is for VMS only. 

This escape returns the widget identifier of the GKS application shell widget, 
and it applies only to workstation types 210 and 211. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id 

in _data 

in _data~ize 

-312 

(4 components) 
1 
0 
0 
(address of) ws_id 

16 bytes 

DEC GKS GDPs and Escapes I-81 



Escape functions 
DEC GKS DECwindows Escape functions 

Argument Required Value 

out buffer 

record_bu ff er_length 

record—size 

(4 components) 
1 
0 
0 
(address of) Shell Widget id 

16 bytes 

16 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$~RROR_7 

20 GKS$~RROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

36 GKS$~RROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—82 DEC GKS GDPs and Escapes 



Escape functions 
DEC GKS State List Inquiry Escape Functions 

DEC GKS State list Inquiry Escape Functions 

This section describes all of the escape functions that inquire about information 
in the DEC GKS state list. All of the inquiry functions in this section write an 
integer value called error_status to the output data record. If error~tatus is the 
value 0, then the rest of the output data record is valid. If error~tatus is not 
the value 0, then the rest of the output data record is invalid. 

For more information concerning the DEC GKS state list, refer to Chapter 4, 
Control Functions. For more information concerning the DEC GKS inquiry 
functions and the error~tatus argument, refer to Chapter 12, Inquiry Functions. 

—250 Inquire Current Graphics Cursor Type 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K_ESC—INQ_CURSOR 
Supporting workstations: All DEC GKS supported workstations. 

This escape writes the value of the graphics cursor type (see the Set Graphics 
Cursor escape description in this chapter) to its output data record. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -250 

in _data null 

in _data_size 0 bytes 

out buffer (4 components) 
2 
0 
0 
(address of) error_status,cursor_type 

record—buffer~ength 16 bytes 

record_size 16 bytes 

DEC GKS GDPs and Escapes I-83 



Escape functions 
DEC GKS State list Inquiry Escape functions 

—251 Inquire Current Writing Mode 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K~SC~NQ _WRITING ~VIODE 
Supporting workstations: All DEC GKS supported workstations. 

This escape writes the value of the current writing mode (see the Set Writing 
Mode escape description in this chapter) to its output data record. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id -251 

in _data null 

in _data_size 0 bytes 

out buffer (4 components) 
2 
0 
0 
(address of) error_status, writing_mode 

recorcLbuffer_length 16 bytes 

record_size 16 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

8 GKS$_ERROR_8 GKS not in proper state: GKS must be in 
one of the states GKOP, WSOP, WSAC, 
or SGOP in routine **** 

—252 Inquire Current Line Cap Style 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K ~SC_INQ _LINE _CAP 
Supporting workstations: All DEC GKS supported workstations. 

This escape writes the value of the current line cap style (see the Set Line Cap 
Style escape description in this chapter) to its output data record. 

—84 DEC GKS GDPs and Escapes 



Escape functions 
DEC GKS State list Inquiry Escape Functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -252 

in _data null 

in_data_size 0 bytes 

out buffer (4 components) 
2 
0 
0 
(address of) error_status, cap_style 

record_buffer_length 16 bytes 

record_size 16 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

8 GKS$~RROR_8 GKS not in proper state: GKS must be in 
one of the states GKOP, WSOP, WSAC, 
or SGOP in routine **** 

—253 Inquire Current Line Join Style 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K~SC_INQ_LINE JOIN 
Supporting workstations: All DEC GKS supported workstations. 

This escape writes the value of the current line join style (see the Set Line Join 
Style escape description in this chapter) to its output data record. 

DEC GKS GDPs and Escapes I-85 



Escape functions 
DEC 6KS State list Inquiry Escape Functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -253 

in_data null 

in _data_size 0 bytes 

out buffer (4 components) 
2 
0 
<0

(address of) error_status, join~tyle 

record_buffer_length 16 bytes 

record—size 16 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

8 GKS$~RROR_8 GKS not in proper state: GKS must be in 
one of the states GKOP, WSOP, WSAC, 
or SGOP in routine **** 

—300 Inquire Current Display Speed 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K—ESC—INQ —SPEED 
Supporting workstations: All DEC GKS supported workstations. 

This escape writes the current display speed to the output data record. (See the 
Set Display Speed escape in this chapter.) 

1-86 DEC GKS GDPs and Escapes 



Escape functions 
DEC GKS State list Inquiry Escape Functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id -300 

in_data (4 components) 
1 
0 
0 
(address of) ws_id 

in _data~ize 16 bytes 

out buffer (5 components) 
1 
1 
0 
(address of) error~tatus 
(address of) display speed 

record_buffer~ength 20 

record_size 20 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$_ERROR_33 

35 GKS$_ERROR_35 

36 GKS$~RROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is of category 
INPUT in routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

DEC GKS GDPs and Escapes I-87 



Escape functions 
DEC GKS State list Inquiry Escape Functions 

—303 Inquire Segment Extent 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K_ESC~NQ_SEGMENT~XTENT 
Supporting workstations: All DEC GKS supported workstations. 

This escape writes the coordinate range of the segment extent rectangle 
corresponding to the specified segment name. For more information concerning 
segment names, refer to Chapter 9, Segment Functions. 

GKS$ESCAPE Arguments: 

Argument Required Value 

functioned -303 

in _data (4 components) 
2 
0 
0 
(address of) ws_id, segment_id 

in_data_size 16 bytes 

out buffer (5 components) 
1 
4 
0 
(address of) error~tatus 
(address of) coord—range 

record—buffer length 20 

record—size 20 bytes 

The real array contains the elements coord_range, which are the four world 
coordinate values of the segment's extent rectangle, using the current transfor-
mation values. 

—88 DEC GKS GDPs and Escapes 



Escape functions 
DEC GKS State list Inquiry Escape Functions 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$_ERROR_33 

35 GKS$~RROR_35 

36 GKS$~RROR_36 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is of category 
INPUT in routine **** 

Specified workstation is Workstation 
Independent Segment Storage in 
routine **** 

—305 Inquire Segment Highlighting Method 
Operating states: WSOP, WSAC, SGOP 
Constant: GKS$K_INQ_SEG_HIGH—.METHOD 
Supporting workstations: All DEC GKS supported workstations. 

This escape writes the values of the segment highlighting method and attributes 
to its output data record. 

DEC GKS GDPs and Escapes I-89 



Escape functions 
DEC GKS State List Inquiry Escape Functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id 

in_data 

in _data~ize 

out buffer 

-305 

(4 components) 
1 
0 
0 
(address of) segment name 

16 bytes 

(5 components ) 
6 
2 
0 
(address of) error_status, highlighting method, highlight-
ing_color~ndex, highlighting~ine_type, highlighting_ 
fill style, highlighting ill _index 
(address of) highlighting_line_width, expand_extent_ 
factor 

record_buffer_length 20 

record_size 20 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

120 GKS$_ERROR_120 Specified segment name is invalid in 
routine **** 

—90 DEC GKS GDPs and Escapes 



Escape functions 
DEC GKS State list Inquiry Escape Functions 

—306 Inquire Highlighting Method 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K ~NQ _HIGH _1VIETHOD 
Supporting workstations: All DEC GKS supported workstations. 

This escape writes the values of the current primitive highlighting method and 
attributes to its output data record. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id -306 

in _data null 

in _data~ize 0 bytes 

out_buffer (5 components ) 
6 
2 
0 
(address of) error_status, highlighting method, highlight-
ing_color_index, highlighting_line_type, highlighting_ 
fill style, highlighting_filljndex 
(address of) highlighting_line_width, expand_extent_ 
factor 

record_buffer~ength 20 

record_size 20 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

8 GKS$_ERROR_8 GKS not in proper state: GKS must be in 
one of the states GKOP, WSOP, WSAC, 
or SGOP in routine **** 

DEC GKS GDPs and Escapes I-91 



Escape functions 
DEC GKS State List Inquiry Escape functions 

—358 Inquire List of Highlighting Method 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K _INQ _LIST—.HIGH 
Supporting workstations: All DEC GKS supported workstations. 

This escape returns the list of supported segment and primitive highlighting 
methods. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function —id -358 

in _data (4 components ) 
1 
0 
0 
(address of) ws_type 

in _data~ize 16 bytes 

out buffer (4 components ) 
3 +total _num _high methods 
0 
0 
(address of) error_status, total _.num high_methods, 
returned—high_methods, higlL.methods_list 

recorcLbuffer_length 16 

record—size 16 bytes 

The following list describes the integer array contents: 

Component Description 

error_status This element is the inquiry error status. 

total _num _high_ This element is the total number of highlighting methods 
methods supported by the workstation type. 

—92 DEC GKS GDPs and Escapes 



Escape functions 
DEC GKS State List Inquiry Escape Functions 

Component Description 

return _high_ This element is the number of highlighting methods written to 
methods the remaining elements of the output data record's integer array 

hig_methods~ist These elements are the highlighting methods. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

8 GKS$_ERROR_8 GKS not in proper state: GKS must be in 
one of the states GKOP, WSOP, WSAC, 
or SGOP in routine **** 

—404 Inquire Extent of a G D P 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K~SC_INQ_GDP~XTENT 
Supporting workstations: All DEC GKS supported workstations. 

This escape writes the coordinate range, representing the GDP extent rectangle, 
to its output data record. 

GKS$ESCAPE Arguments: 

Argument Required Value 

functioned 

in_data 

in _data~ize 

-404 

(4 components) 
7 
0 
0 
(address of) in_data 

16 bytes 

DEC GKS GDPs and Escapes I-93 



Escape functions 
DEC GKS State list Inquiry Escape Functions 

Argument Required Value 

out buffer 

record_buffer~ength 

record—size 

(5 components) 
1 
4 
0 
(address of) error~tatus 
(address of) coord—range 

20 bytes 

20 bytes 

The real array contains the elements coorci~range, which are the four world 
coordinate values of the segment's extent rectangle, using the current transfor-
mation values. 

The following list describes the integer array contents of in _data: 

Component Description 

ws_id 

num _points 

x_points 

y_points 

GDP~d 

d—r~ize 

d—r_address 

This element is the workstation identifier. 

This element is the number of points that define the GDP. 

This element is the address of the array containing the GDP X 
point values. 

This element is the address of the array containing the GDP Y 
point values. 

This element is the GDP identifier. 

This element is the size of the GDP data record in bytes. 

This element is the address of the GDP data record. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

—94 DEC GKS GDPs and Escapes 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 



Escape functions 
DEC GKS State list Inquiry Escape Functions 

Error Completion 
Number Status Code Message/Meaning 

25 GKS$~RROR_25 

33 GKS$~RROR_33 

35 GKS$~RROR_35 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is of category 
INPUT in routine **** 

DEC GKS GDPs and Escapes I-95 



Escape functions 
Workstation Description Table Inquiry Escape Functions 

Workstation Description Table Inquiry Escape Functions 

This section describes all of the escape functions that inquire about information 
in the workstation description table. All of the inquiry functions in this section 
write an integer value called error_status to the output data record. If error_ 
status is the value 0, then the rest of the output data record is valid. If error_ 
status is not the value 0, then the rest of the output data record is invalid. 

The escapes in this section require a workstation type (ws_type) instead of a 
workstation identifier (ws_id). For more information concerning the worksta-
tion type value, refer to Chapter 4, Control Functions. 

For more information concerning the workstation description table, refer to 
Chapter 4, Control Functions. For more information concerning the DEC GKS 
inquiry functions and the error_status argument, refer to Chapter 12, Inquiry 
Functions. 

—350 Inquire List of Available Escapes 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K~SC_INQ_LIST~SC 
Supporting workstations: All DEC GKS supported workstations. 

This escape returns the list of escapes supported by a specified workstation. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id 

in _data 

in _data~ize 

—96 DEC GKS GDPs and Escapes 

-350 

(4 components) 
1 
0 
0 
(address of) ws_type 

16 bytes 



Escape functions 
Workstation Description Table Inquiry Escape Functions 

Argument Required Value 

out buffer (4 components) 
3 + num _escapes 
0 
0 
(address of) error_status, total escapes, returned_escapes, 
escape_list 

record_buffer_length 16 bytes 

record_size 16 bytes 

The following list describes the integer array contents: 

Component Description 

error_status This element is the inquiry error status. 

total _escapes This element is the total number of escapes supported by the 
workstation type. 

returned_escapes This element is the number of escape identifiers written to the 
remaining elements of the output data record's integer array. 

escape_list These elements are the identifiers of the supported escapes. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

22 GKS$_ERROR_22 

23 GKS$_ERROR_23 

Specified workstation type is invalid in 
routine **** 

Specified workstation type does not exist 
in routine **** 

—351 Inquire Default Display Speed 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K—ESC_INQ _DEF_SPEED 
Supporting workstations: All DEC GKS supported workstations. 

DEC GKS GDPs and Escapes I-97 



Escape functions 
Workstation Description Table Inquiry Escape Functions 

This escape writes the default speed, for the specified workstation type, to 
its output data record. (See the Set Display Speed escape description in this 
chapter.) 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id -351 

in _data (4 components) 
1 
0 
0 
(address of) ws_type 

in _data~ize 16 bytes 

out buffer (5 components) 
1 
1 
0 
(address of) error_status 
(address of) def~peed 

record_buffer_length 20 bytes 

record_size 20 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

22 GKS$_ERROR_22 Specified workstation type is invalid in 
routine **** 

23 GKS$~RROR_23 Specified workstation type does not exist 
in routine **** 

39 GKS$~RROR_39 Specified workstation is neither of 
category OUTPUT nor of category OUTIN 
in routine **** 

1-98 DEC GKS GDPs and Escapes 



Escape functions 
Workstation Description Table Inquiry Escape Functions 

—352 Inquire Line Cap and Join Facilities 
Operating states; GKOP, WSOP, WSAC, SLOP 
Constant: GKS$K_ESC—INQ_LINE_CAP JOIN_FAC 
Supporting workstations: All DEC GKS supported workstations. 

This escape writes the line cap and line join facilities, for the specified worksta-
tion type, to the output data record. (See the Set Line Cap Style and Set Line 
Join Style escapes in this chapter. ) 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -352 

in _data (4 components) 
1 
0 
0 
(address of) ws_type 

in _data~ize 16 bytes 

out buffer (4 components) 
5 + ret_cap~tyles + ret_join~tyles 
0 
0 
(address of) error_status, cap_j oin _data 

record_buffer_length 16 

record size 16 bytes 

The following list describes the integer array contents of cap join data: 

Component Description 

num _cap_styles This element is the total number of line cap styles supported by 
the workstation type. 

ret_cap~tyles This element is the number of cap styles written to the elements 
cap~tyle_list. 

num_join_styles This element is the total number of line join styles supported by 
the workstation type. 

DEC GKS GDPs and Escapes I-99 



Escape functions 
Workstation Description Table Inquiry Escape Functions 

Component Description 

ret_join~tyles This element is the number of join styles written to the elements 
join~tyle~ist. 

cap_list These elements are the list of supported cap styles. 

join_list These elements are the list of supported join styles. 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

22 GKS$_ERROR_22 Specified workstation type is invalid in 
routine **** 

23 GKS$~RROR_23 Specified workstation type does not exist 
in routine **** 

39 GKS$~RROR_39 Specified workstation is neither of 
category OUTPUT nor of category OUTIN 
in routine **** 

1-100 DEC GKS GDPs and Escapes 



Escape functions 
Utility Escape Functions 

Utility Escape Functions 

This section describes all of the escape functions that provide you with utilities 
to assist you in programming. For instance, many of the utility functions 
translate the mapping of a point from one of the DEC GKS coordinate planes to 
another. (For more information concerning transformations, refer to Chapter 7, 
Transformation Functions.) 

—400 Evaluate NDC Mapping of a WC Point 

Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K~SC~vIAP~TDC_OF_WC 
Supporting workstations: All DEC GKS supported workstations. 

This escape accepts a world coordinate point and a normalization transforma-
tion number, and writes the corresponding normalized device coordinate (NDC) 
point value to the output data record. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function _id —400 

in _data (5 components) 
1 
2 
0 
(address of) norm~cform 
(address of) world—x_value, world_y_value 

in _data_size 20 bytes 

out_buffer (5 components) 
0 
2 
0 
null address 
(address of) NDC~c_value, NDC_y_value 

record_buffer~ength 20 bytes 

record size 20 bytes 

DEC GKS GDPs and Escapes I-101 



Escape functions 
Utility Escape functions 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

50 GKS$_ERROR_50 Transformation number is invalid in 
routine **** 

—401 Evaluate DC Mapping of an N DC Point 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K_ESC_IViAP_DC_OF~TDC 
Supporting workstations: All DEC GKS supported workstations. 

This escape accepts a normalized device coordinate (NDC) point, calculates 
the corresponding device coordinate point using the current workstation 
transformation, and writes the device coordinate value to the output data 
record. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -401 

in_data 

in _data_size 

(5 components) 
1 
2 
0 
(address of) ws_id 
(address of) NDC~c _value, NDC_y_value 

20 bytes 

out buffer (5 components) 
0 
2 
0 
null address 
(address of) DC~c_value, DC_y_value 

record_buffer_length 20 bytes 

record size 20 bytes 

—102 DEC GKS GDPs and Escapes 



Escape functions 
Utility Escape Functions 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$~RROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

35 GKS$~RROR_35 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is of category 
INPUT in routine **** 

—402 Evaluate WC Mapping of N DC Point 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K_ESC_1VIAP_WC_OF~TDC 
Supporting workstations: All DEC GKS supported workstations. 

This escape accepts a normalized device coordinate (NDC) point and a normal-
ization transformation number, calculates the corresponding world coordinate 
point, and writes the world coordinate value to the output data record. 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id -402 

in _data (5 components) 
1 
2 
0 
(address of) norm_xform 
(address of) NDC~c _value, NDC_y_value 

in _data_size 20 bytes 

DEC GKS GDPs and Escapes I-103 



Escape functions 
Utility Escape Functions 

Argument Required Value 

out buffer (5 components) 
0 
2 
0 
null address 
(address of) world—x_value, world_y_value 

record_buffer_length 20 bytes 

record_size 20 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

50 GKS$_ERROR_50 Transformation number is invalid in 
routine **** 

—403 Evaluate N DC Mapping of DC Point 
Operating states: GKOP, WSOP, WSAC, SGOP 
Constant: GKS$K~SC-1VIAP~TDC_OF_DC 
Supporting workstations: All DEC GKS supported workstations. 

This escape accepts a device coordinate point, calculates the corresponding 
normalized device coordinate (NDC) point using the current workstation 
transformation, and writes the device coordinate value to the output data 
record. 

1-104 DEC GKS GDPs and Escapes 



Escape functions 
Utility Escape Functions 

GKS$ESCAPE Arguments: 

Argument Required Value 

function_id 

in _data 

in _data~ize 

out buffer 

record—buffer~ength 

record—size 

-403 

(5 components) 
1 
2 
0 
(address of) ws_id 
(address of) DC~c _value, DC_y_value 

20 bytes 

(5 components) 
0 
2 
0 
null address 
(address of) NDC_x_value, NDC_y_value 

20 bytes 

20 bytes 

Error Messages: 

Error Completion 
Number Status Code Message/Meaning 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$~RROR_25 

33 GKS$~RROR_33 

35 GKS$~RROR_35 

GKS not in proper state: GKS shall be in 
one of the states WSOP, WSAC, or SGOP 
in routine **** 

Specified workstation identifier is invalid 
in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category MI in 
routine **** 

Specified workstation is of category 
INPUT in routine **** 

DEC GKS GDPs and Escapes I-105 





Appendix J 

DEC GKS Specific Input Values 

This appendix provides input information that is applicable to all of the DEC 
GKS GKS$K_WSCAT_OUTIN workstations. You should review this appendix 
before working with the DEC GKS input functions. If you need further 
workstation-specific input information, refer to the device-specific appendixes in 
this manual. 

This appendix describes the following input values that are available for all 
DEC GKS supported devices: 

• Input devices 

• Prompt and echo types 

• Data Records 

• Keypad functionality 

DEC GKS Specific Input Values J-1 



Logical Input Device Numbers 

Logical Input Device Numbers 

The following section specifies which DEC GKS supported workstations imple-
ment which logical input devices. Logical input device numbers determine the 
physical device (such as a keypad or a mouse) used to control the DEC GKS 
logical input devices. You pass the device numbers described in this section to 
the DEC GKS input functions, as follows: 

C Declare the device number... 
INTEGER DEVICE_NUM 

DATA DEVICE_NUM / 3 / 

C Request input from the device... 
CALL GKS$REQUEST_CHOICE( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* INPUT_CHOICE ) 

DEC GKS defines at least four logical input device numbers for each input class 
(some workstations support eight choice devices). If the workstation does not 
support the device number you specify, the workstation implements the device 
in the same manner as it implements device number 1. 

Several of the input devices use special sections of the keyboard available to 
users of specific workstations. If you use these devices, you should remember 
that you need to provide the user with the information necessary to operate 
them. For further information concerning input keypad functionality, refer to 
the Keypad Functionality section in this appendix. 

J-2 DEC GKS Specific Input Values 



logical Input Device Numbers 

To allow you to use several logical input devices of the same class during 
sample or event mode, DEC GKS defines different echo areas for devices of 
a single class. The appropriate chapters in the DEC GKS Device Speci ftcs 
Reference Manual. list the default echo area for the default logical input device 
of a given class. To determine the default echo area for other devices of the 
same class, call one of the GKS$INQ _DEF_class_DATA inquiry functions 
and pass to it the appropriate device number. For more information, refer to 
Chapter 12, Inquiry Functions. 

For complete information concerning logical input devices, physical input 
devices, and the DEC GKS input process, refer to Chapter 8, Input Functions. 

f 
DEC GKS Specific Input Values J-3 



logical Input Devices 
Choice Devices 

Choice Devices 

The following sections describe the choice logical input devices and specify 
which DEC GKS workstations support each device. 

VAXstations: Using one of the VAXstations, you can use the LOCK Key feature 
for any of the choice logical input devices. For more information, refer to the 
Keypad Functionality section in this appendix. 

Choice 1 
Supporting Workstations: All DEC GKS supported GKS$K_WSCAT_OUTIN 
workstations. 

For workstations that do not have a mouse or puck, this device requires that the 
user press the arrow keys to highlight various choices. To trigger this device, 
the user must press the RETURN key. To cause a break during request mode, 
the user must press CTRL/U. 

For workstations that do have a mouse or puck, this device requires that the 
user move the tracking device to highlight various choices. To trigger this 
device, the user must press the left button. To cause a break during request 
mode, the user must press middle button on the mouse and the top button on 
the puck. 

Choice 2 
Supporting Workstations: The VAXstation, VT 125, VT240, VT330, VT340, and 
TEKTRONIX 4107 1 workstations. 

This device activates both the arrow keys and the numeric keypad keys to 
highlight the various choices. (For more information concerning the numeric 
keypad, refer to the Keypad Functionality section in this appendix.) By pressing 
any of the arrow or numeric keys, the user immediately triggers the device and 
the measure corresponds to the number assigned to the pressed key. To break 
input during request mode, the user must press CTRL/U. 

J-4 DEC GKS Specific Input Values 



Logical Input Devices 
Choice Devices 

NOTE 

For all other DEC GKS workstations, the handlers accept this input 
device number, but they implement the device in the same manner 
as they implement choice device 1. 

Choice 3 
Supporting Workstations: The VAXstation, VT240, VT330, and VT340 
workstations. 

This device activates the top six keys of the auxiliary keypad and the keys F7 
to F20 to highlight choices 1 through 20. (For more information concerning the 
auxiliary keypad or the keys F7 through F20, refer to the Keypad Functionality 
section.) By pressing any of the arrow or numeric keys, the user immediately 
triggers the device and the measure corresponds to the number assigned to the 
pressed key. To break input during request mode, the user must press CTRL/U. 

NOTE 

For all other DEC GKS workstations, the handlers accept this input 
device number, but they implement the device in the same manner 
as they implement choice device 1. 

Choice 4 
Supporting Workstations: All DEC GKS supported GKS$K_WSCAT_OUTIN 
workstations. 

This device is implemented in the same manner as choice device number 1. 

VAXstations/VT330/VT340 (with mouse): This device can display only up to 
four choices and does not react to the tracking device of the mouse or puck. (If 
you use a mouse, you should initialize the device for three choices; if you use a 
puck, you should initialize it for four choices.) The user triggers the device by 
depressing a mouse or puck button. 

The measure is the choice number corresponding to the button pushed. The 
left button corresponds to choice 1; the middle button corresponds to choice 2; 
the right button corresponds to choice 3. If you use a puck, the bottom button 
corresponds to choice 4. 

DEC GKS Specific Input Values J-5 



Logical Input Devices 
Choice Devices 

Choice 5 
Supporting Workstations: All DEC GKS supported GKS$K_WSCAT_OUTIN 
workstations. 

This device is implemented in the same manner as choice device number 1. 

VAXstations/VT330/VT340 (with mouse): This device can display only up to 
four choices and does not react to the tracking device of the mouse or puck. (If 
you use a mouse, you should initialize the device for three choices; if you use a 
puck, you should initialize it for four choices.) The user triggers the device by 
releasing a mouse or puck button. 

The measure is the choice number corresponding to the button pushed. The 
left button corresponds to choice 1; the middle button corresponds to choice 2; 
the right button corresponds to choice 3. If you use a puck, the bottom button 
corresponds to choice 4. 

Choice 6, 7, and 8 
Supporting Workstations: All DEC GKS supported GKS$K_WSCAT_OUTIN 
workstations. 

These devices are implemented in the same manner as choice device number 1. 

J-6 DEC GKS Specific Input Values 



logical Input Devices 
locator Devices 

Locator Devices 

The following subsection describes the locator logical input devices and specifies 
which DEC GKS workstations support each device. 

VAXstations: Using one of the VAXstations, you can use the LOCK Key feature 
for any of the locator logical input devices. For more information, refer to the 
Keypad Functionality section in this appendix. 

Locator 1, 2, 3, and 4 
Supporting Workstations: All DEC GKS supported GKS$K_WSCAT_OUTIN 
workstations. 

For workstations that do not have a mouse or puck, these devices require that 
the user press the arrow keys to move the locator prompt. To trigger the device, 
the user must press the RETURN key. To cause a break during request mode, 
the user must press CTRL/U. 

For workstations that do have a mouse or puck, these devices require that 
the user move the tracking device to move the locator prompt. To trigger the 
device, the user must press the left button._ To cause a break during request 
mode, the user must press the middle button on the mouse and the top button 
on the puck. 

VT125/240/330/340 and TEKTRONIX-4107: Using these workstations, you 
can use the numeric keypad as a zoning mechanism using device numbers 
1 and 2. (For more information concerning the numeric keypad, refer to the 
Keypad Functionality section in this appendix.) 

DEC GKS Specific Input Values J-7 



Logical Input Devices 
Pick Devices 

Pick Devices 

The following subsection describes the pick logical input devices and specifies 
which DEC GKS workstations support each device. 

Pick 1, 2, 3, and 4 
Supporting Workstations: All DEC GKS supported GKS$K_WSCAT_OUTIN 
workstations. 

For workstations that do not have a mouse or puck, these devices require that 
the user press the arrow keys to move the pick aperture. The workstation 
marks the currently picked segments (or portions of segments) by outlining the 
extent rectangle of all or part of the segment. To trigger the device, the user 
must press the RETURN key. To cause a break during request mode, the user 
must press CTRL/U. 

For workstations that do have a mouse or puck, these devices require that the 
user move the tracking device to move the pick aperture. To trigger the device, 
the user must press the left button. To cause a break during request mode, the 
user must press the middle button on the mouse and the top button on the 
puck. 

VT125/240 and TEKTRONIX-4107: Using a VT240 or a VT125, you can 
use the numeric keypad as a zoning mechanism using device numbers 1 and 
2. (For more information concerning the numeric keypad, refer to the Keypad 
Functionality section in this appendix.) 

J-8 DEC GKS Specific Input Values 



logical Input Devices 
String Devices 

String Devices 

The following sections describe the string logical input devices and specify 
which DEC GKS workstations support each device. 

String 1 and 4 
Supporting Workstations: All DEC GKS supported GKS$K_WSCAT_OUTIN 
workstations. 

This device returns a DEC multinational text string to the calling program. The 
device requires the user to enter the text string using the keyboard. To trigger 
this device, the user must press the RETURN key. To cause a break during 
request mode, the user must press CTRL/U. 

To edit the string while entering input (on all workstations except the 
TEKTRONIX 4014), the user can use the following keys: 

• DELETE, to delete the last character of the input string. 

• CTRL/H, to move the cursor to the beginning of the string. 

• CTRL/E, to move the cursor to the end of the string. 

• CTRL/B, to recall only the initial string. 

• CTRL/A, to toggle insert and overstrike modes. 

• Left arrow, to move the cursor to the left. 

• Right arrow, to move the cursor to the right. 

String 2 
Supporting Workstations: The VAXstation workstations. 

This device returns an SMG Encoded Key value. DEC GKS ignores any prompt 
and echo type specified for this device. By pressing a key, you trigger the 
device; the measure of the device is the single character. For information 
concerning this type of text string, refer to the VAX/VMS Run-Time Library 
Routines Reference Manual. 

DEC GKS Specific Input Values J-9~ 



Logical Input Devices 
String Devices 

NOTE 

For all other DEC GKS supported devices, the handlers accept this 
device number, but they implement the device in the same manner 
as they implement string devices 1 and 4. 

String 3 

Supporting Workstations: The VT240, VT125, and TEKTRONIX 4107 
workstations. 

This device returns the ASCII value associated with the specified character. 
This device requires that the user press a single key on the keyboard. When the 
user presses a key, the device accepts the keystroke without a trigger. To cause 
a break during request mode, the user must press CTRL/U. DEC GKS ignores 
any prompt and echo type specified for this device. 

NOTE 

For all other DEC GKS supported devices, the handlers accept this 
device number, but they implement the device in the same manner 
as they implement string devices 1 and 4. 

J-10 DEC GKS Specific Input Values 



Logical Input Devices 
Stroke Devices 

Stroke Devices 

The following subsection describes the stroke logical input devices and specifies 
which DEC GKS workstations support each device. 

VAXstations: Using one of the VAXstations, you can use the LOCK Key feature 
for any of the stroke logical input devices. For more information, refer to the 
Keypad Functionality section in this appendix. 

Stroke 1, 2, 3, and 4 
Supporting workstations: All DEC GKS supported GKS$K_WSCAT_OUTIN 
workstations. 

For workstations that do not have a mouse or puck, these devices require that 
the user press the arrow keys to move the stroke prompt. To trigger the device, 
the user must press the RETURN key. To cause a break during request mode, 
the user must press CTRL/U. 

For workstations that do have a mouse or puck, these devices require that the 
user move the tracking device to move the stroke prompt. To trigger the device, 
the user must press the left button. To cause a break during request mode, the 
user must press the middle button on the mouse and the top button on the 
puck. 

VT125/240/330/340 and TEKTRONIX-4107: Using these workstations, 
you can use the numeric keypad as a zoning mechanism when using device 
numbers 1 and 2. (For more information concerning the numeric keypad, refer 
to the Keypad Functionality section in this appendix.) 

VT330/340: Using these workstations, you use the right mouse button to 
trigger a point in the stroke. 

DEC GKS Specific Input Values J-11 



Logical Input Devices 
Valuator Devices 

Valuator Devices 

The following subsection describes the valuator logical input devices and 
specifies which DEC GKS workstations support each device. 

VAXstations: Using one of the VAXstations, you can use the LOCK Key feature 
for any of the valuator logical input devices. For more information, refer to the 
Keypad Functionality section in this appendix. 

Valuator 1, 2, 3, and 4 
Supporting Workstations: All DEC GKS supported GKS$K_WSCAT_OUTIN 
workstations. 

For workstations that do not have a mouse or puck, these devices require that 
the user press the arrow keys to move the valuator prompt. To trigger the 
device, the user must press the RETURN key. To cause a break during request 
mode, the user must press CTRL/U. 

For workstations that do have a mouse or puck, these devices require that the 
user move the tracking device to move the valuator prompt. To trigger the 
device, the user must press the left button. To cause a break during request 
mode, the user must press the middle button on the mouse and the top button 
on the puck. 

J-12 DEC GKS Specific Input Values 



Logical Input Devices 
Input Devices and Echo Area Titles 

Input Devices and Echo Area Titles 

For all choice, string, and valuator devices, and for locator devices using prompt 
and echo type 6, you can specify a character string that the workstation places 
at the top of the echo area. In this manner, you can place an application-specific 
title at the tap of the echo area. 

To take advantage of this feature, allow for two extra longwords at the end of 
your input data record. For instance, if you use a string device with a prompt 
and echo type of 1, you normally declare the data record as follows: 

C String data record. 
INTEGER DATA_RECORD( 2 ) 

C Enter the buffer size and cursor position.. . 

DATA_RECORD( 1 ) = 30 
DATA_RECORD(2) = 0 

C Specify the size of the data record... 
RECORD_BUFFER_LENGTH = 8 

CALL GKS$INIT_STRING( WS_ID, DEVICE_NUM, ' 

* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

If you want to place a title at the top of the string echo area, you can declare 
the data record as follows: 

C String data record. 
INTEGER DATA_RECORD(4 ) 

C Enter the buffer size and cursor position.. . 

DATA_RECORD( 1 ) = 30 
DATA_RECORD(2) = 0 

C In the last two longwords, enter the address and length of 

C the string to be used as a title for the echo area... 

DATA_RECORD (3) _ '/.LOC ( 'Enter Your Name' ) 
DATA_RECORD(4) =LEN( 'Enter Your Name' ) 

C Specify the NEW size of the data record.. . 

RECORD_BUFFER_LENGTH = 16 

DEC GKS Specific Input Values J-13 



logical Input Devices 
Input Devices and Echo Area Titles 

CALL GKS$INIT_STRING( WS_ID, DEVICE_NUM, ' 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

VAXstations: If you do not pass the extra components of the data record, DEC 
GKS always places a banner at the top of the input window; in this case, you 
cannot eliminate the banner. If you want to create an input window that does 
not contain a banner, pass a title length of 0 to the first of the extra components 
of the input data record. For more information concerning the VAXstation 
window banners and borders, refer to the Programming Consideration section 
in Chapter 1, VAXstation Workstation Specifics, in the DEC GKS Device Specifics 
Reference Manual. 

J-14 DEC GKS Specific Input Values 



Prompt and Echo Types, and Data Records 

Prompt and Echo Types, and Data Records 

The following sections describe the DEC GKS supported prompt and echo types 
for each class of logical input device. After describing the available prompt and 
echo types, these sections describe the DEC GKS required input data records for 
each prompt and echo type. These data records are for GKS$ functions only. 
See the FORTRAN and C Bindings for information about FORTRAN and 
C data records. 

DEC GKS Specific Input Values J-15 



Prompt and Echo Types, and Data Records 
Choice Input Class 

Choice Input Class 

The choice class input devices support the following equivalent prompt and 
echo types: 

Echo 
Type 
Number Description 

—1 Highlight the current choice using a hollow rectangle. 

1 Display the list of choice strings within the echo area. 

3 Display the list of choice strings within the echo area. 

Choice Data Records 
The DEC GKS workstations require the following data records for the specified 
prompt and echo types. The introduction at the beginning of each subsection 
specifies the data record size requirements. The column marked Used specifies 
whether the handler uses (U) or ignores (I) the data record component. 

For more information about specifying a character string at the top of the 
workstation echo area, see Input Devices and Echo Area Titles. 

Choice Class: All Prompt and Echo Types 
If you specify either of these prompt and echo types, the workstations expect 
a data record of size 12. If you call GKS$INIT_CHOICE, the RECORD_ 
BUFFER_LENGTH argument must be the value 12. 

Position Data Type Used Description 

1 Integer U Number of choice strings. 

2 Integer U Address of array containing choice string 
lengths. 

3 Integer U Address of array containing addresses of choice 
string lengths. 

J-16 DEC GKS Specific Input Values 



Prompt and Echo Types, and Data Records 
locator Input Class 

locator Input Class 

The locator class input devices support the following prompt and echo types: 

Echo 
Type 
Number Description 

-12 Mark the current location using an ellipse centered at the initial point and 
the current location at the corner of the bounding rectangle. 

-11 Mark the current location with the world coordinate translation of the 
device coordinate position. 

-10 Mark the current location using a circle centered at the midpoint of the 
initial position and the current location. 

-9 Mark the current location using a circle centered at the initial position, 
with the current location on the circumference. 

-8 Mark the current location using an open type arc defined by the current 
location and two points supplied in the data record. 

-7 Mark the current location using a pie type arc defined by the current 
location and two points supplied in the data record. 

-6 Mark the current location using a chord type arc defined by the current 
location and two points supplied in the data record. 

-5 Mark the current location using a horizontal line drawn from the initial 
position to the current location. 

-4 Mark the current location using a vertical line drawn from the initial 
position to the current location. 

-3 Mark the current location using two lines connected to two fixed points 
supplied in the data record. 

-2 Mark the current location using a rectangle that is centered at the initial 
points and has a corner at the current location. 

-1 Mark the current location with a marker shaped like a box. 

1 Mark the current location with a tracking plus sign. 

2 Mark the current location by using a vertical and a horizontal line as a 
crosshair. 

3 Mark the current location using a tracking cross. 

DEC GKS Specific Input Values J-17 



Prompt and Echo Types, and Data Records 
Locator Input Class 

Echo 
Type 
Number Description 

4 

5 

6 

Mark the current location using a line connecting the current location to 
the initial location (rubber-band line). 

Mark the current location using a rectangle whose diagonal is the current 
location and the initial location (rubber-band box). 

Mark the current location by displaying a digital representation of the 
location. 

Locator Data Records 
The DEC GKS workstations require the following data records for the specified 
prompt and echo types. The introduction at the beginning of each subsection 
specifies the data record size requirements. The column marked Used specifies 
whether the handler uses (U) or ignores (I) the data record component. 

For more information about specifying a character string at the top of the 
workstation echo area for locator devices using prompt and echo type 6, see 
Input Devices and Echo Area Titles. 

Locator Class: Prompt and Echo Types —1 
If you specify this prompt and echo type, the workstations expect a data record 
of size 8 bytes. If you call GKS$INIT_LOCATOR, the RECORD_BUFFER_ 
LENGTH argument must be the value 8. 

Position Data Type Used Description 

1 Real U X dimension of the box in world 
coordinates. 

2 Real U Y dimension of the box in world 
coordinates. 

NOTE 

Since you express the X and Y dimensions of the box, the current 
normalization transformation affects the size and shape of this cursor. 
DEC GKS centers this box around the initial position. 

J-18 DEC GKS Specific Input Values 



Prompt and Echo Types, and Data Records 
Locator Input Class 

Locator Class: Prompt and Echo Types 1, 2, 3, 6, and —11 
If you specify any of these prompt and echo types, the workstations expect 
a null data record of size 0 bytes. If you call GKS$INIT_LOCATOR, the 
RECORD_BUFFER_LENGTH argument must be the value 0. 

Locator Class: Prompt and Echo Type 4, —12, —10, —9, —5, and —4 
If you specify this prompt and echo type, the workstations expect a data record 
of size 4 or 32 bytes, depending on the value of the attribute control flag. If 
you call GKS$INIT_LOCATOR, the RECORD_BUFFER_LENGTH argument 
must be the value 4 or 32. 

Position Data Type Used Description 

1 Integer U Attribute control flag. GKS$K—ACF_CURRENT 
(0) or GKS$K~CF_SPECIFIED (1). Use the 
currently set output attributes or specify new 
attributes in this data record. 

If component 1 is GKS$K_ACF_SPECIFIED, you must pass the following 
components: 

Position Data Type Used Description 

2 Integer I Line type aspect source flag. GKS$K_ASF_ 
BUNDLED (0) or GKS$K~SF—INDIVIDUAL 

3 Integer 

4 Integer 

5 

6 

Integer 

Integer 

I 

I 

I 

( 1). 

Line width scale factor aspect source flag. 
GKS$K~SF_BUNDLED (0) or GKS$K_ASF_ 
INDIVIDUAL (1). 

Polyline color index aspect source flag. 
GKS$K_ASF_BUNDLED (0) or GKS$K_ 
ASF_INDIVIDUAL (1). 

Polyline index. 

U Line type index. 

DEC GKS Specific Input Values J-19 



Prompt and Echo Types, and Data Records 
locator Input Class 

Position Data Type Used Description 

7 Real U Line width scale factor. 

5 Integer I Polyline color index. 

Locator Class: Prompt and Echo Type 5 and —2 

If you specify either of these prompt and echo types, the workstations expect a 
data record of size 8 or 36 bytes, depending on the value of the attribute control 
flag. If you call GKS$INIT_LOCATOR, the RECORD—BUFFER—LENGTH 
argument must be the value 8 or 36. 

Position Data Type Used Description 

1 Integer I Polyline/fill area control flag. GKS$K_ACF_ 
POLYLINE (0) or GKS$K~CF~ILL AREA 
(1). Use a polyline or a filled area to draw the 
rectangle whose diagonal connects the current 
and initial points. 

2 Integer U Attribute control flag. GKS$K—ACF_CURRENT 
(0) or GKS$K~CF_SPECIFIED (1). Use the 
currently set output attributes or specify new 
attributes in this data record. 

If component 1 is GKS$K_ACF—I'OLYLINE and component 2 is GKS$K—ACF 
SPECIFIED, then you must pass the following data record components: 

Position Data Type Used Description 

3 Integer I Line type aspect source flag. GKS$K~SF_ 
BUNDLED (0) or GKS$K_ASF~NDIVIDUAL 

4 

5 

(1 )• 

Integer I Line width scale factor aspect source flag. 
GKS$K_ASF_BUNDLED (0) or GKS$K_ASF_ 
INDIVIDUAL (1). 

Integer I Polyline color index aspect source flag. 
GKS$K_ASF_BUNDLED (0) or GKS$K_ 
ASF_INDIVIDUAL (1). 

J-20 DEC GKS Specific Input Values 



Prompt and Echo Types, and Data Records 
Locator Input Class 

Position Data Type Used Description 

6 Integer I Polyline index. 

7 Integer U Line type index. 

8 Real U Line width scale factor. 

9 Integer I Polyline color index. 

If component 1 is GKS$K_ACF_FILL _AREA and component 2 is GKS$K_ 
ACF SPECIFIED, then you must pass the following record components: 

Position Data Type Used Description 

3 Integer I Fill area interior style aspect source flag. 
GKS$K~SF_BUNDLED (0) or GKS$K_ 
ASF INDIVIDUAL (1). 

4 Integer I Fill area style index aspect source flag. 
GKS$K_ASF_BUNDLED (0) or GKS$K_ 
ASF INDIVIDUAL (1). 

5 Integer I Fill area color index aspect source flag. 
GKS$K_ASF_BUNDLED (0) or GKS$K_ 
ASF INDIVIDUAL (1). 

6 Integer I Fill area index. 

7 Integer I Fill area interior style. GKS$K_INTSTYLE_ 
HOLLOW (0 ), GKS$K_INTSTYLE_SOLID (1), 
GKS$K _INTSTYLE~'ATTERN (2 ), or GKS$K_ 
INTSTYLE _HATCH (3 ). 

8 Integer I Fill area style index. 

9 Integer I Fill area color index. 

Locator Class: Prompt and Echo Type —8, —7, —6, and —3 
If you specify any of these prompt and echo types, the workstations expect 
a data record of size 20 or 48 bytes, depending on the value of the attribute 
control flag. If you call GKS$INIT_LOCATOR, the RECORD_BUFFER_ 
LENGTH argument must be the value 20 or 48. 

DEC GKS Specific Input Values J-21 



Prompt and Echo Types, and Data Records 
locator Input Class 

Position Data Type Used Description 

1 Integer U Attribute control flag. GKS$K_ACF_ 
CURRENT(0) or GKS$K~CF_SPECIFIED. 
Use the currently set output attributes or specify 
new attributes in the data record. 

If component 1 is GKS$K_ACF_CURRENT then you must pass the following 
data record components: 

Position Data Type Used Description 

2 

3 

4 

5 

Real U X component of the first world coordinate point. 

Real U Y component of the first world coordinate point. 

Real U X component of the second world coordinate 
point. 

Real U Y component of the second world coordinate 
point. 

If component 1 is GKS$K_ACF_SPECIFIED, then you must pass the following 
record components: 

Position Data Type Used Description 

2 Integer I Line type aspect source flag. GKS$K—ASF_ 
BUNDLED (0) or GKS$K_ASF—INDIVIDUAL 
(1). 

3 Integer I Line width scale factor aspect source flag. 
GKS$K—ASF_BUNDLED (0) or GKS$K—ASF_ 
INDIVIDUAL (1). 

4 Integer I Polyline color aspect source flag. GKS$K—ASF_ 
BUNDLED (0) or GKS$K—ASF_INDIVIDUAL 
(1). 

5 Integer I Polyline bundle index. GKS$K—ASF_BUNDLED 
(0) or GKS$K_ASF—INDIVIDUAL (1). 

6 Integer U Line type index. 

7 Real U Line width scale factor. 

J-22 DEC GKS Specific Input Values 



Prompt and Echo Types, and Data Records 
locator Input Class 

Position Data Type Used Description 

8 Integer 

9 Real 

10 Real 

11 Real 

12 Real 

I 

U 

U 

U 

U 

Polyline color index. 

X component of the first world coordinate point. 

Y component of the first world coordinate point. 

X component of the second world coordinate 
point. 

Y component of the second world coordinate 
point. 

Additionally, the data record fields described as line_type_index and line_ 
width—scale_f'actor are now used by some workstations, primarily VAXstations 
running UIS. 

DEC GKS Specific Input Values J-23 



Prompt and Echo Types, and Data Records 
Pick Input Class 

Pick Input Class 

The pick logical input devices support the following prompt and echo types: 

Echo 
Type 
Number Description 

1 

2 

3 

Highlight the extent rectangle of the picked output primitive. 

Highlight the extent rectangle of all the output primitives that share the 
pick identifier of the picked primitive. 

Highlight the extent rectangle of the picked segment. 

Pick Data Records 
The DEC GKS workstations require the following data records for the specified 
prompt and echo types. The introduction at the beginning of each subsection 
specifies the data record size requirements. The column marked Used specifies 
whether the handler uses (U) or ignores (I) the data record component. 

Pick Class: All Prompt and Echo Types 
If you specify any of these prompt and echo types, the workstations expect a 
data record of size 4. If you call GKS$INIT_I'ICK, the RECORD_BUFFER_ 
LENGTH argument must be the value 4. 

Position Data Type Used Description 

1 Real U Size of the pick aperture (prompt) in device 
coordinates. 

J-24 DEC GKS Specific Input Values 



Prompt and Echo Types, and Data Records 
String Input Class 

String Input Class 

The string logical input devices support the following prompt and echo type: 

Echo 
Type 
Number Description 

1 Display the current string value in the echo area. 

String Data Records 
The DEC GKS workstations require the following data records for the specified 
prompt and echo types. The introduction at the beginning of each subsection 
specifies the data record size requirements. The column marked Used specifies 
whether the handler uses (U) or ignores (I) the data record component. 

For more information about specifying a character string at the top of the 
workstation echo area, see Input Devices and Echo Area Titles. 

String Class: Prompt and Echo Type 1 
If you specify this prompt and echo type, the workstations expect a data record 
of size 8 bytes, depending on the value of the attribute control flag. If you call 
GKS$INIT_STRING, the RECORD_BUFFER_LENGTH argument must be the 
value 8. 

Position Data Type Used Description 

1 

2 

Integer 

Integer 

U Input buffer size in number of characters. 

I Initial cursor position within the string. The initial 
position must follow the formula: 
1 <= initial _position <= length initial mitring 

DEC GKS Specific Input Values J-25 



Prompt and Echo Types, and Data Records 
Stroke Input Class 

Stroke Input Class 

The stroke class input devices support the following equivalent prompt and 
echo type values: 

Echo 
Type 
Number Description 

1 

3 

4 

Display a line joining successive points of the current stroke. 

Display a polymarker at each successive stroke point. 

Display a line joining successive points of the current stroke. 

Stroke Data Records 
The DEC GKS workstations require the following data records for the specified 
prompt and echo types. The introduction at the beginning of each subsection 
specifies the data record size requirements. The column marked Used specifies 
whether the handler uses (U) or ignores (I) the data record component. 

Stroke Class: Prompt and Echo Type 1 
If you specify this prompt and echo type, the workstations expect a data record 
of size 20 bytes. If you call GKS$INIT_STROKE, the RECORD_BUFFER_ 
LENGTH argument must be the value 20. 

Position Data Type Used Description 

1 

2 

3 

Integer 

Integer 

Real 

J-26 DEC GKS Specific Input Values 

U 

I 

U 

Input buffer size, in number of stroke points. 

Editing position expressed as a stroke point. 

X world coordinate change vector. 



Prompt and Echo Types, and Data Records 
Stroke Input Class 

Position Data Type Used Description 

4 

5 

Real U Y world coordinate change vector. 

Real I Time interval, in seconds. 

Stroke Class: Prompt and Echo Type 3 
If you specify this prompt and echo type, the workstations expect a data record 
of size 24 or 52 bytes, depending on the value of the attribute control flag. 
If you call GKS$INIL STROKE, the RECORD_BUFFER_LENGTH argument 
must be the value 24 or 52. 

Position Data Type Used Description 

1 

2 

3 

4 

5 

6 

Integer U Input buffer size, in number of stroke points. 

Integer I Editing position expressed as a stroke point. 

Real U X world coordinate change vector. 

Real U Y world coordinate change vector. 

Real I Time interval, in seconds. 

Integer U Attribute control flag. GKS$K~CF_CURRENT 
(0) or GKS$K_ACF_SPECIFIED (1). Use the 
currently set output attributes or specify new 
attributes in this data record. 

If component 6 is GKS$K_ACF SPECIFIED, you must pass the following 
components: 

Position Data Type Used Description 

7 Integer I Polymarker type aspect source flag. GKS$K_ 
ASF_BUNDLED (0) or GKS$K~SF_ 
INDIVIDUAL (1). 

8 Integer I Polymarker size factor aspect source flag. 
GKS$K—ASF_BUNDLED (0) or GKS$K—ASF_ 
INDIVIDUAL (1). 

DEC GKS Specific Input Values J-27 



Prompt and Echo Types, and Data Records 
Stroke Input Class 

Position Data Type Used Description 

9 Integer I Polymarker color aspect source flag. GKS$K_ 
ASF_BUNDLED (0) or GKS$K_ASF_ 
INDIVIDUAL (1). 

10 Integer I Polymarker bundle index. 

11 Integer U Polymarker type index. 

12 Real U Polymarker scale factor. 

13 Integer I Polymarker color index. 

Stroke Class: Prompt and Echo Type 4 
If you specify this prompt and echo type, the workstations expect a data record 
of size 24 or 5 2 bytes, depending on the value of the attribute control flag. 
If you call GKS$INIT_STROKE, the RECORD_BUFFER_LENGTH argument 
must be the value 24 or 52. 

Position Data Type Used Description 

1 

2 

3 

4 

5 

6 

Integer U Input buffer size, in number of stroke points. 

Integer I Editing position expressed as a stroke point. 

Real U X world coordinate change vector. 

Real U Y world coordinate change vector. 

Real I Time interval, in seconds. 

Integer U Attribute control flag. GKS$K_ACF_CURRENT 
(0) or GKS$K_ACF SPECIFIED (1). Use the 
currently set output attributes or specify new 
attributes in this data record. 

J-28 DEC GKS Specific Input Values 



Prompt and Echo Types, and Data Records 
Stroke Input Class 

If component 6 is GKS$K~ACF_SPECIFIED, you must pass the following 
components: 

Position Data Type Used Description 

7 Integer I Line type aspect source flag. GKS$K~SF_ 
BUNDLED (0) or GKS$K_ASF~NDIVIDUAL 
(1 )• 

8 Integer I Line width scale factor aspect source flag. 
GKS$K_ASF_BUNDLED (0) or GKS$K~SF_ 
INDIVIDUAL (1). 

9 Integer I Polyline color index aspect source flag. 
GKS$K~SF_BUNDLED (0) or GKS$K_ 
ASF INDIVIDUAL (1). 

10 Integer I Polyline index. 

11 Integer U Line type index. 

12 Real U Line width scale factor. 

13 Integer I Polyline color index. 

DEC GKS Specific Input Values J-29 



Prompt and Echo Types, and Data Records 
Valuator Input Class 

Valuator Input Class 

The valuator class input devices support the following prompt and echo types: 

Echo 
Type 
Number Description 

—3 Display the range of values in a circular dial (for use only with the 
VAXstations). 

—2 Display the range of values on a horizontal sliding scale (for use only with 
the VAXstations). 

—1 Display the range of values on a vertical sliding scale (for use only with 
the VAXstations). 

1 Display a graphical representation of the current value (such as a dial or a 
pointer). 

2 Display a graphical representation of the current value (such as a dial or a 
pointer). 

3 Display a digital representation of the current value. 

Valuator Data Records 
The DEC GKS workstations require the following data records for the specified 
prompt and echo types. The introduction at the beginning of each subsection 
specifies the data record size requirements. The column marked Used specifies 
whether the handler uses (U) or ignores (I) the data record component. 

For more information about specifying a character string at the top of the 
workstation echo area, see Input Devices and Echo Area Titles. 

J-30 DEC GKS Specific Input Values 



Prompt and Echo Types, and Data Records 
Valuator Input Class 

Valuator Class: Prompt and Echo Types —1, —2, and —3 
These prompt and echo types are only for use with the VAXstation 
workstations. 

If you specify any of these prompt and echo types, the workstations expect a 
data record of size 8 bytes. If you call GKS$INIT_VALUATOR, the RECORD_ 
BUFFER_LENGTH argument must be the value 8. 

Position Data Type Used Description 

1 

2 

Real U Low value of the numeric range. 

Real U High value of the numeric range. 

Valuator Class: Prompt and Echo Types 1, 2, and 3 
If you specify any of these prompt and echo types, the workstations expect a 
data record of size 8 bytes. If you call GKS$INIT_VALUATOR, the RECORD_ 
BUFFER_LENGTH argument must be the value 8. 

Position Data Type Used Description 

1 

2 

Real U Low value of the numeric range. 

Real U High value of the numeric range. 

DEC GKS Specific Input Values J-31 



Keypad Functionality 

Keypad Functionality 

DEC GKS allows the user to press keys other than the arrow keys to control the 
input prompt. This section describes how the user can use the various keypad 
tablets during input. If you use logical input devices that take advantage of 
these keypads, remember to provide the user with the information necessary to 
operate the device. 

J-32 DEC GKS Specific Input Values 



Keypad Functionality 
Cycling Logical Input Devices 

Cycling Logical Input Devices 

Supporting Devices: All logical input devices used on a single workstation. 

Supporting tiVorkstations: The VT125, VT240, VT330, VT340, TEKTRONIX 
4014, and the TEKTRONIX 4107 workstations. 

■■❑❑ 
❑❑o❑ 
❑❑❑❑ 
❑❑❑

The shaded key to the left is the PF1 key. This key cycles through the devices 
present on a single workstation, in aworkstation-determined order. The shaded 
key to the right is the PF2 key. This key ends the cycling process and activates 
the prompts of all logical input devices present on a workstation. (If you are 
using the TEKTRONIX 4107 terminal, these keys are labeled F5 and F6.) 

When you use more than one logical input device at a time, the workstations 
change the measures of all devices that use a physical device, by default. For 
instance, if you simultaneously use two devices that use the arrow keys to alter 
the prompt, the user moves both prompts when pressing the arrow keys. 

In order to provide the user with the ability to choose which device's measure 
to alter, the workstations allow the user to activate the prompts of each device 
individually, in aworkstation-specific cycle. In this way, the user can change 
the measure of only one device at a time. 

The only restriction placed on the cycling of logical input devices is that cycling 
only affects those devices whose prompts are enabled. If you use a device on a 
workstation whose prompt is disabled (by setting the value GKS$K~TOECHO 
in one of the GKS$SET_class_MODE functions), that device's prompt is always 
active. You cannot cycle past a device whose echo is disabled. 

DEC GKS Specific Input Values J-33 



Keypad Functionality 
Numeric Keypad (Zoning Mechanism) 

Numeric Keypad (Zoning Mechanism) 

Supporting Devices: Locator, pick, and stroke device numbers 1 and 2. 

Supporting Workstations: VT125, VT240, VT330, VT340, and the 
TEKTRONIx 4107 workstations. 

❑❑o❑ 
■■~❑ 
■■■❑ ■■■
The workstations move the cursor to the position on the rectangular input echo 
area that corresponds to the position of the pressed key within the rectangular 
set of shaded keys. For instance, if the user presses the shaded key in the upper 
left corner, the cursor moves to the upper left corner of the current echo area. 
If the user presses the shaded key in the exact center, the cursor moves to the 
center of the echo area. If the user presses the rightmost shaded key in the 
second shaded row of keys, the cursor moves to the middle of the right border 
of the rectangular echo area. 

J-34 DEC GKS Specific Input Values 



Keypad Functionality 
Numeric Keypad (Choice) 

Numeric Keypad IChoicel 

Supporting Devices: Choice device number 2. 

Supporting Workstations: The VAXstation, VT125, VT240, VT330, VT340, and 
TEKTRONIX 4107 workstations. 

Key Set 1 

❑❑ ❑ ❑ 

~~~❑ 
~~~❑ 
~~~

Key Set 2

~~~~ 
❑❑❑~ 
❑❑o~ 
~i~ 
Key Set 3 

❑ ❑ ❑ 

❑~❑ 

■~■ 
The workstations trigger the choice that corresponds to the number assigned to 
the shaded keys. The number assignments are as follows. 

DEC GKS Specific Input Values J-35 



Keypad Functionality 
Numeric Keypad (Choice) 

Key Set Numbering Assignments 

Key Set 1 

Key Set 2 

Key Set 3 

On most supporting workstations, the numbers on these shaded keys 
correspond to the choice numbers 1 through 9. Incrementing from left to 
right, the bottom row contains keys 1, 2, and 3; the middle row contains 
keys 4, 5, and 6; and, the top row contains keys 7, 8, and 9. 

Beginning with the shaded key in the lower left corner, the correspond-
ing choice numbers increment as you move clockwise around the key 
set. The shaded key in the lower left corner corresponds to choice 
number 10; the key in the upper left corner corresponds to choice num-
ber 11, the next key (moving clockwise) in the top row corresponds to 
choice number 12, and so forth. The middle key on the bottom row 
corresponds to choice number 18. 

These shaded keys are the arrow keys. The up arrow key corresponds 
to choice number 19; the down arrow key corresponds to choice number 
20; the left arrow key corresponds to choice number 21; and, the right 
arrow key corresponds to choice number 22. 

TEKTRONIX-4107: The keys F1 through F4 and the joydisk return 
valid choice numbers when using this device. 

VT125: The arrow keys are located in a row in the top right portion of 
the keyboard. 

J-36 DEC GKS Specific Input Values 

lWJ 



Keypad functionality 
Auxiliary Keypad (Choice) 

Auxiliary Keypad (Choice► 

Supporting Devices: Choice device number 3. 

Supporting Workstations: The VAXstation, VT240, VT330, and VT340 
workstations. 

■■■ 

■■■ 

❑❑❑ 

These keys operate in the same manner as the numeric keypad for choice input. 
The upper left shaded key is equivalent to choice prompt 1, the upper right 
to choice prompt 3, the lower left to choice prompt 4, and the lower right to 
choice prompt 6. 

In addition, the keys located at the top of the keyboard labeled F7 through F20 
correspond to the equivalent choice prompt. The workstation triggers the choice 
prompt of the number pressed by the user. You can use this keypad (choice 
device number 3 on the VT240} if you have up to twenty choices. If you have 
nine or less choices, you can use the numeric keypad, for choice device number 
2, on either the VT 125 or the VT240. 

DEC GKS Specific Input Values J-37 



Keypad Functionality 
The LOCK Key 

The LOCK Key 

Supporting Devices: Choice, locator, stroke, and valuator. 

Supporting Workstations: The VAXstation workstations. 

When you use several logical input devices at one time, the measure of a device 
can change if the user moves the mouse's tracking cursor across the device. If 
the device is in sample mode and if the application happens to sample from 
that device as the user moves the tracking cursor across the device's echo area, 
inappropriate values may be returned to the application program. 

DEC GKS allows the user to lock a logical input device so that its measure 
cannot be altered until the user unlocks the device. If a device is locked, the 
user can still trigger the device (if in request or event mode), but the measure 
cannot be altered by moving the tracking cursor across the device's echo area. 

To lock a device, depress the LOCK key (this activates the red LOCK light at 
the top of the keyboard), move the cursor into the device's echo area, and press 
any mouse button. Once the device is locked, press the LOCK key again (the 
LOCK light turns off) and continue to enter input values in other devices. The 
locked device always returns the same measure. 

To unlock the device, depress the LOCK key (activating the LOCK light), move 
the cursor into the locked device's echo area, and press any mouse button. 
Once the device is unlocked, press the LOCK key again (the LOCK light turns 
off), and you can now change the measure of the device. 

J-38 DEC GKS Specific Input Values 



Index 

n 

A 
Addresses 

GDP and escape data records, I-2 
Angles 

GDPs, I-4 
ANSI 

CGM standard, E-1 
GKSM standard, E-1 

Applications 
programming information, F-1 

Arcs 
direction of formation, I-7 

Arguments 
See also Inquiry functions 
inquiry error status, 12-5 
inquiry value type argument, 12-6 
passing by descriptor, F-1 

Arrays 
descriptors, F-1 

ASCII 
VT 125/240 string input, J-10 

Attributes 
color chart, H-1 
DEC GKS specific line types, C-5 
initial values, C-1 to C-4 
output 

list of errors, D-25 to D-33 
Auxiliary keypad 

choice input, J-37 

B 
Base line, G-2 

See also Fonts 
BASIC programming information, F-3 

Binding 
FORTRAN 

list of constants, B-1 to B-16 
Bit masks 

See also Workstations 
constants, A-6 
workstation types, A-5 

Bottom line, G-2 
See also Fonts 

Bundles 
See also Attributes 

C 
Calling sequences, F-3 
Cap line, G-2 

See also Fonts 
CGM 

ANSI standard, E-1 
CGM metafiles, E-9 
Characters 

fonts, G-1 
Choice 

data records required, J-16 
keypad functionality, J-35, J-37 
logical input device numbers, J-4 
prompt and echo types supported, J-16 

Circumference 
See also GDPs 
ellipses, I-7 

Clipping flag 
initial value, C-5 

COBOL programming information, F-3 to F-7 
Colors 

chart, H-1 to H-4 

Index-1 



Colors (cont'd.) 
reservation 

VSII/GPX, A-5 
Completion status codes, D-1 
Components 

GDP and escape data records, I-2 
Conditions 

error, D-1 to D-44 
Connection identifiers 

file specifications, A-4 
hardcopy workstation types, A-4 

Constants 
See also Workstations 
bit masks, A-6 
for supported workstations, A-1 to 
FORTRAN binding, B-1 
GDPs and escapes, I-1 
listing of, B-1 to B-16 

Coordinates 
See also Escapes 
escapes, I-45 
range translation, I-101 

C programming information, F-3 
Cycling 

logical input devices, J-33 

D 

Definition files 
declaring external functions, F-1 

Description tables 
GKS, 12-1 
workstation, 12-1 

Descriptors 
passing arguments, F-1 
problems passing, F-3 to F-7 

Device independent, 12-1 
fonts, G-1 

Device numbers 
DEC GKS logical input, J-2 

Devices 
See also Workstations 

A-7 constants, A-1 to A-7 
DEC GKS available logical input, J-2 
DEC GKS specific input values, J-1 to J-38 
hardcopy, A-4 
output-only workstation types, A-4 

Data records 
See also Escapes 
See also GDPs 
GDPs and escapes, I-2 to I-3 
input 

echo area titles, J-13 
required, J-15 to J-31 

internal metafile structure, E-5 
DEC GKS 

fonts, G-1 to G-27 
input values, J-1 

Declaring 
GKS functions 

externally, F-1 
DECwindows 

workstation type constant, A-3 
DECwindows drawable 

workstation type constant, A-3 
DECwindows output only 

workstation type constant, A-3 
Defaults 

GKS$K_WSTYPE_DEFAULT, A-1, A-4 

Index-2 

E 
Echo 

cycling with disabled input echoing, J-33 
Echo area 

titles, J-13 
Echo types 

DEC GKS suppported, J-15 to J-31 
Ellipses 

focus points, I-7 
formation, I-7 

Errors 
GDPs, I-4 
inquiry error status argument, 12-5 
messages, D-1 to D-44 

escape functions, D-41 to D-42 
FORTRAN binding, D-43 to D-44 
implementation-specific, D-2 to D-14 
input, D-36 to D-39 
metafiles, D-40 to D-41 
miscellaneous, D-42 
operating state, D-16 to D-18 
output, D-33 to D-34 
output attributes, D-25 to D-33 
segments, D-35 to D-36 
system, D-42 to D-43 
transformations, D-24 to D-25 
workstation, D-18 to D-24 

Escape functions 
errors 

list of, D-41 to D-42 



Escapes, I-45 to I-105 
control, I-46 to I-58 

GKS$K_ESC_ASSOC_WSTYPE _CONID, 
I-17, I-55 

GKS$K_ESC_BEEP, I-49 
GKS$K_ESC_POP_WORKSTATION, I-50 
GKS$K_ESC_PRINT, I-47 
GKS$K_ESC_PUSH_WORKSTATION, I-51 
GKS$K_ESC_SET_ERR_HANDLING_ 

MODE, I-14, I-52 
GKS$K_ESC_SET_SPEED, I-46 
GKS$K_ESC_SET_VIEWPORT_EVENT, 

I-16, I-54 
GKS$K_SET_ICON_BITMAPS, I-75 
GKS$K_SET_SOFT_CLIP, I-57 

coordinate ranges, I-45 
coordinate range translation, I-101 to I-105 
data records, I-2 to I-3 
DECwindows, I-70 to I-82 

GKS$K_ESC_INQ_MENU_BAR_ID, I-80 
GKS$K_ESC_INQ_PASTEBOARD_ID, I-78 
GKS$K_ESC_INQ_SHELL_ID, I-81 
GKS$K_ESC_INQ_WINDOW_IDS, I-77 
GKS$K_ESC_SET_CANCEL _STRING, I-72 
GKS$K_ESC_SET_ENTER_STRING, I-74 
GKS$K_ESC_SET_RESET_STRING, I-71 
GKS$K_ESC_SET_WINDOW_TITLE, I-70 

GKS state list inquiries, I-83 to I-95 
GKS$K_ESC_INQ_CURSOR, I-83 
GKS$K_ESC_INQ_LINE_CAP, I-84 
GKS$K_ESC_INQ_LINE_JOIN, I-85 
GKS$K_ESC_INQ_WRITING_MODE, I-84 

output related, I-59 to I-69 
GKS$K_ESC_BEGIN_TRANS_BLOCK, I-62 
GKS$K_ESC_END_TRANS_BLOCK, I-64 
GKS$K_ESC_SET_HIGH_METHOD, 1-67 
GKS$K_ESC_SET_LINE_CAP, I-60 
GKS$K_ESC_SET_LINE_JOIN, I-61 
GKS$K_ESC_SET_SEG_HIGH_METHOD, 

I-65 
GKS$K_ESC_SET_WRITING_MODE, I-59 

utility, I-101 to I-105 
GKS$K_ESC_MAP_DC_OF_NDC, I-102 
GKS$K_ESC_MAP_NDC_OF_DC, I-104 
GKS$K_ESC_MAP_NDC_OF_WC, I-101 
GKS$K_ESC_MAP_WC_OF_NDC, I-103 

WS description table inquiries, I-96 to I-100 
GKS$K_ESC_INQ_DEF_SPEED, I-97 
GKS$K_ESC_INQ_LINE_CAP_JOIN_FAC, 

I-99 
GKS$K_ESC_INQ_LIST_ESC, I-96 

Escapes ~cont'd.) 
WS state list inquiries 

GKS$K_ESC_INQ_GDP_EXTENT, I-93 
GKS$K_ESC_INQ_SEGMENT_EXTENT, 

I-88 
GKS$K_ESC_INQ_SPEED, I-86 
GKS$K_INQ_HIGH_METHOD, I-91 
GKS$K_INQ_LIST_HIGH, I-92 
GKS$K_INQ_SEG_HIGH_METHOD, I-89 

External functions 
declaring GKS functions, F-1 

F 
Fields 

metafile structure, E-2 
Files 

connection identifiers, A-4 
Fill areas 

See also Attributes 
initial attributes, C-4 

Focus points, I-7 
See also GDPs 

Fonts 
GKS multinational, G-1 
lines, G-2 
list of, G-2 to G-27 
monospaced, G-1 
software, G-1 
supported by DEC GKS, G-1 to G-27 

Format 
font file, G-1 
metafiles, E-1 

FORTRAN binding 
errors 

list of, D-43 to D-44 
list of constants, B-1 to B-16 

Functions 
arguments passed by descriptor, F-1 
declaring GKS functions, F-1 
inquiry, 12-1 

G 
GDPs, I-4 to I-44 

additional 
GKS$K_GDP_DISJOINT_PLINE, I-8 

angles, I-4 
arcs 

direction of formation, I-7 
GKS$K_GDP_ARC_3PT, I-13 

Index-3 



GDPs 
arcs ~cont'd.) 

GKS$K_GDP_ARC_CTR_2PT, I-12 
GKS$K_GDP_FARC_2PT_RAD, I-33 
GKS$K_GDP_FARC_3PT, I-30 
GKS$K_GDP_FARC_CTR_2PT, I-29 
GKS$K_GDP_FARC_CTR_2VEC_RAD, 

I-32 
GKS$K_GDP_FARC_CTR_PT_ANG, I-34 

cell arrays, I-41 to I-42 
GKS$K_GDP_IMAGE_ARRAY, I-41 

circles 
GKS$K_GDP_CIRCLE_2PT_RAD, I-11 
GKS$K_GDP_CIRCLE_3PT, I-9 
GKS$K_GDP_CIRCLE_CTR_PT, I-9 
GKS$K_GDP_CIRCLE_CTR_RAD, I-10 
GKS$K_GDP_FCIRCLE_2PT_RAD, I-28 
GKS$K_GDP_FCIRCLE_3PT, I-27 
GKS$K_GDP_FCIRCLE_CTR_PT, I-26 
GKS$K_GDP_FCIRCLE_CTR_RAD, I-27 

data records, I-2 to I-3 
ellipses 

formation, I-7 
GKS$K_GDP_ELLIPSE_CTR_AXES, I-19 
GKS$K_GDP_ELLIPSE_FOCII_PT, I-19 
GKS$K_GDP_FELLIPSE_CTR_AXES, I-35 
GKS$K_GDP_FELLIPSE_FOCII_PT, I-36 

elliptic arcs 
GKS$K_GDP_ELIARC_CTR_AXES_2VEC, 

I-20 
GKS$K_GDP_ELIARC_FOCII_2PT, I-22 
GKS$K_GDP_FELIARC_CTR_AXES_2VEC, 

I-37 
GKS$K_GDP_FELIARC_FOCII_2PT, I-38 

fill area sets 
GKS$K_GDP_FILL _AREA _SET, I-25 

filled, I-25 to I-40 
radians, I-4 
radius specifications, I-4 
rectangles 

GKS$K_GDP_FRECT_2PT, I-40 
GKS$K_GDP_RECT_2PT, I-23 

rotation, I-4 
text, I-43 to I-44 

GKS$K_GDP_RESTRICTED_TEXT, I-43 
transformations, I-4 
unfilled, I-8 to I-24 
vector origin point, I-5 
vectors, I-5 

Index-4 

GKS (cont'd.) 
functions 

declared as external, F-1 
multinational font, G-1 
operating state 

errors, D-16 to D-18 
GKS$CONID 

hardcopy workstation types, A-4 
GKS$INQ_ACTIVE_WS, 12-154 to 12-156 
GKS$INQ_AVAIL_GDP, 12-21 to 12-23 
GKS$INQ_CHOICE_STATE, 12-199 to 12-207 
GKS$INQ_CLIP, 12-157 to 12-159 
GKS$INQ_COLOR_FAC, 12-24 to 12-26 
GKS$INQ_COLOR_INDEXES, 12-208 to 12-210 
GKS$INQ_COLOR_REP, 12-211 to 12-214 
GKS$INQ_CURRENT_XFORMNO, 

12-160 to 12-161 
GKS$INQ_DEF_CHOICE_DATA, 12-27 to 12-34 
GKS$INQ_DEF_DEFER_STATE, 12-35 to 12-37 
GKS$INQ _DEF_LOCATOR _DATA, 

12-38 to 12-44 
GKS$INQ_DEF_PICK_DATA, 12-45 to 12-50 
GKS$INQ_DEF_STRING_DATA, 12-51 to 12-57 
GKS$INQ_DEF_STROKE_DATA, 12-58 to 12-64 
GKS$INQ_DEF_VALUATOR_DATA, 

12-65 to 12-71 
GKS$INQ_DYN_MOD_SEG_ATTB, 

12-72 to 12-77 
GKS$INQ _DYN _MOD_WS_ATTB, 

12-78 to 12-83 
GKS$INQ_FILL_FAC, 12-84 to 12-87 
GKS$INQ_FILL_INDEXES, 12-215 to 12-217 
GKS$INQ _FILL _REP, 12-218 to 12-221 
GKS$INQ_GDP, 12-88 to 12-91 
GKS$INQ_INDIV_ATTB, 12-162 to 12-168 
GKS$INQ_INPUT_DEV, 12-92 to 12-95 
GKS$INQ _INPUT_QUEUE _OVERFLOW, 

12-169 to 12-171 
GKS$INQ_LEVEL, 12-10 to 12-12 
GKS$INQ _LOCATOR _STATE, 

12-222 to 12-229 
GKS$INQ_MAX_DS_SIZE, 12-96 to 12-99 
GKS$INQ _MAX _WS_STATE _TABLE, 

12-100 to 12-102 
GKS$INQ _MAX _XFORM, 12-13 to 12-14 
GKS$INQ _MORE _SIMUL _EVENTS, 

12-172 to 12-173 
GKS$tNQ _NAME _OPEN _SEG, 

12-174 to 12-175 
GKS$INQ _OPEN _WS, 12-176 to 12-178 



n

GKS$INQ _OPERATING_STATE, 
12-179 to 12-180 

GKS$INQ_PAT_FAC, 12-103 to 12-105 
GKS$INQ_PAT_INDEXES, 12-230 to 12-232 
GKS$INQ_PAT_REP, 12-233 to 12-236 
GKS$INQ_PICK_ID, 12-181 to 12-182 
GKS$INQ_PICK_STATE, 12-237 to 12-244 
GKS$INQ_PIXEL, 12-323 to 12-325 
GKS$INQ_PIXEL_ARRAY, 12-326 to 12-330 
GKS$INQ _PIXEL _ARRAY_DIM, 

12-331 to 12-335 
GKS$INQ_PLINE_FAC, 12-106 to 12-1 10 
GKS$INQ_PLINE_INDEXES, 12-245 to 12-247 
GKS$INQ_PLINE_REP, 12-248 to 12-252 
GKS$INQ_PMARK_FAC, 12-111 to 12-115 
GKS$INQ_PMARK_INDEXES, 12-253 to 12-255 
GKS$INQ_PMARK_REP, 12-256 to 12-260 
GKS$INQ_PREDEF_COLOR_REP, 

12-1 16 to 12-1 18 
GKS$INQ _PREDEF_FILL _REP, 12-1 19 to 12-122 
GKS$INQ _PREDEF_PAT_REP, 12-123 to 12-126 
GKS$INQ _PREDEF_PLINE _REP, 

12-127 to 12-130 
GKS$INQ _PREDEF_PMARK_REP, 

12-131 to 12-134 
GKS$INQ _PREDEF_TEXT_REP, 

12-135 to 12-138 
GKS$INQ _PRIM _ATTB, 12-183 to 12-188 
GKS$INQ_SEG_ATTB, 12-315 to 12-318 
GKS$INQ_SEG_NAMES, 12-189 to 12-191 
GKS$INQ_SEG_NAMES_ON_WS, 

12-261 to 12-263 
GKS$INQ_SEG_PRIORITY, 12-139 to 12-141 
GKS$INQ_SET_ASSOC_WS, 12-319 to 12-321 
GKS$INQ_STRING_STATE, 12-264 to 12-270 
GKS$INQ_STROKE_STATE, 12-271 to 12-280 
GKS$INQ_TEXT_EXTENT, 12-281 to 12-284 
GKS$INQ_TEXT_FAC, 12-142 to 12-146 
GKS$INQ_TEXT_INDEXES, 12-285 to 12-287 
GKS$INQ_TEXT_REP, 12-288 to 12-292 
GKS$INQ _VALUATOR_STATE, 

12-293 to 12-299 
GKS$INQ _WSTYPE _LIST, 12-17 to 12-19, A-1 
GKS$INQ_WS_CATEGORY, 12-147 to 12-149 
GKS$INQ _WS_CLASSIFICATION, 

12-150 to 12-152 
GKS$INQ _WS_DEFER _AND_UPDATE, 

12-300 to 12-303 
GKS$INQ _WS_MAX _NUM, 12-15 to 12-16 
GKS$INQ_WS_STATE, 12-304 to 12-306 
GKS$INQ_WS_TYPE, 12-307 to 12-309, A-1 

GKS$INQ_WS_XFORM, 12-310 to 12-313 
GKS$INQ _XFORM, 12-192 to 12-194 
GKS$INQ_XFORM_LIST, 12-195 to 12-197 
GKS$OPEN_WS, A-1 
GKS$WSTYPE, A-4 
GKSM 

ANSI standard, E-1 
GKSM metafiles, E-1 

H 
Half line, G-2 

See also Fonts 
Handlers 

See also Devices 
See also Inquiry functions 
See also Workstations 
set and realized values, 12-6 

Hardcopy 
workstation types, A-4 

Hatches 
See also Attributes 

Header 
metafile structure, E-3 

Hershey fonts 
See Fonts 

HP7475 
workstation type constant, A-2 

HP7550 
workstation type constant, A-2 

HP7580 
workstation type constant, A-2 

HP7585 
workstation type constant, A-2 

i 

Implementation specific errors 
list of, D-2 to D-14 

Initial position 
string input cursor, J-25 

Input 
data records required, J-15 to J-31 
DEC GKS logical input device numbers, 

J-2 to J-14 
DEC GKS specific values, J-1 to J-38 
echo area titles, J-13 
errors 

list of, D-36 to D-39 
inquiry functions, 12-4 

Index-5 



Input (cont'd.) 
keypad functionality, J-32 to J-38 
keypad zoning mechanism, J-1 1 
LOCK key, J-38 
string input control characters, J-9 
zoning mechanism, J-34 

Input priority 
initial value, C-5 

Inquiry functions, 12-1 to 12-335 
GKS description table, 12-9 to 12-19 
GKS state list, 12-153 to 12-197 
introduction to, 12-1 to 12-8 
list of, 12-8 to 12-335 
pixels, 12-322 to 12-335 
segment state list, 12-314 to 12-321 
workstation description table, 

12-20 to 12-152 
workstation state list, 12-198 to 12-313 

Intensities 
color chart, H-1 

Internal structure 
of metafiles, E-1 

ISO standardization 6093 (GKSM metafiles), E-1 
Items 

metafile internal structure, E-1 

K 
Keypad functionality 

choice input, J-35, J-37 
cycling, J-33 
input, J-32 to J-38 
input zoning, J-34 

Keypad input functionality 
zoning mechanism, J-1 1 

Keys 
input keypad functionality, J-32 

L 
LA 100 

workstation type constant, A-2 
LA210 

workstation type constant, A-2 
LA34 

workstation type constant, A-2 
LA50 

aspect ratio, A-3 
workstation type constant, A-2 

Languages 
BASIC, F-3 

Index-6 

Languages (cont'd.) 
C, F-3 
COBOL, F-3 
declaring external functions, F-1 
Pascal, F-7 
programming information, F-1 to F-8 

Layout 
metafile structure, E-4 

LCG01 
workstation type constant, A-2 

Lengths 
metafile items, E-4 

Lines 
of fonts, G-2 

Line types 
DEC GKS specific, C-5 

Lists 
GKS state, 12-1 
segment state, 12-1 
workstation state, 12-1 

96LOC 
GDP and escape data records, I-3 

Locator 
data records required, J-17 
keypad zoning of cursor, J-34 
logical input device numbers, J-7 
prompt and echo types supported, J-17 

LOCK key 
input on VAXstations, J-38 

Logical input devices 
DEC GKS available numbers, J-2 to J-14 
keypad functionality, J-32 

LVP 16 
workstation type constants, A-2 

M 
Marker types 

DEC GKS specific, C-6 
Messages 

error, D-1 to D-44 
Metafiles 

CGM, E-9 to E-26 
CGM RMS format, E-26 
errors 

list of, D-40 to D-41 
GKSM, E-1 to E-8 
Internal structure, E-1 
RMS format, E-8 
workstation type constants, A-1 



r

MicroVAX 
workstation type constants, A-2 

Monospaced fonts, G-1 
MPS2000 workstation type constant, A-2 

N 
Normalization transformations 

See Transformations 
Numbers 

error, D-1 
Numeric Keypad 

choice input, J-35 

0 
Operating states 

errors 
list of, D-16 to D-18 

Output 
errors 

list of, D-33 to D-34 
Output attributes 

See Attributes 
Output-only workstations, A-4 

P 
Paper sizes, A-5 
Pascal programming information, F-7 
Passing by descriptor, F-3 

problems, F-1 
Pick 

data records required, J-24 
keypad zoning of cursor, J-34 
logical input device numbers, J-8 
prompt and echo types supported, J-24 

Polylines 
See also Attributes 
DEC GKS specific, C-5 
initial attributes, C-1 to C-2 

Polymarkers 
See also Attributes 
DEC GKS specific, C-6 
initial attributes, C-2 

PostScript workstation type constant, A-3 
Precision 

See also Fonts 
Precision text fonts, G-1 
Programming 

BASIC, F-3 

Programming (cont'd.) 
C, F-3 
language-specific information, F-1 
Pascal, F-7 

Programming COBOL, F-3 
Prompts 

See Echo area 

R 
Radians 

GDPs, I-4 
Radius 

GDPs, I-4 
Ranges 

escapes, I-45 
Realized values, 12-6 

See also Inquiry Functions 
Representations 

See also Attributes 
color chart, H-1 

RMS 
CGM metafile structure, E-26 
metafile structure, E-8 

Rotation 
GDPs, I-4 

S 
Segments 

errors 
list of, D-35 to D-36 

initial attributes, C-4 
Set values, 12-6 
Sizes 

paper, A-5 
SMG encoded key 

VAXstation string input, J-9 
Software fonts, G-1 
Standards 

metafile structure, E-1 
State lists 

GKS, 12-1 
segments, 12-1 
workstation, 12-1 

Status 
inquiry error status argument, 12-5 
values 

VMS, D-1 
String 

data records required, J-25 

Index-7 



String (cont'd.) 
prompt and echo types supported, J-25 

Strings 
control characters for input, J-9 
initial position of input cursor, J-25 
logical input device numbers, J-9 
toggling overstrike/insert input, J-9 

Stroke 
data records required, J-26 
keypad zoning mechanism, J-1 1 
keypad zoning of cursor, J-34 
logical input device numbers, J-1 1 
prompt and echo types supported, J-26 

Structure 
metafiles, E-1 

System errors 
list of, D-42 to D-43 

T 
Tables 

GKS description, 12-1 
workstation description, 12-1 

TEKTRONIX 4014 
workstation type constant, A-3 

TEKTRONIX 4107 
choice input device numbers, J-4 
cycling logical input devices, J-33 
workstation type constant, A-3 

Text 
fonts, G-1 
initial attributes, C-3 

Toggling 
logical input devices, J-33 
overstrike/insert string input, J-9 

Top line, G-2 
See also Fonts 

Transformations 
See also Escapes 
coordinate range translation, I-101 
errors 

list of, D-24 to D-25 
GDPs, I-4 
normalization 

initial attributes, C-5 
translating DC to NDC points, I-104 
translating NDC to DC points, I-102 
translating NDC to WC points, I-103 
translating WC to NDC points, I-101 
vector origin points, I-5 

Index-8 

Types 
hardcopy workstations, A-4 
inquiry value type argument, 12-6 
workstation, A-1 

V 
Valuator 

data records required, J-30 
logical input device numbers, J-12 
prompt and echo types supported, J-30 

Values 
DEC GKS specific line types, C-5 
DEC GKS specific marker types, C-6 
initial attribute, C-1 to C-5 
of constants, B-1 to B-16 

VAX Languages, F-1 
VAXstation 

choice input device numbers, J-4, J-5 
VAXstations 

color chart, H-1 
LOCK key, J-38 
SMG encoded input string, J-9 
string input device numbers, J-9 
workstation type constants, A-2 

Vector origin point, I-5 
See also GDPs 

Vector origin points 
transformations, I-5 

Vectors 
GDPs, I-5 

Viewports 
normalization 

initial value, C-5 
VT125 

choice input device numbers, J-4 
choice keypad functionality, J-35 
color chart, H-1 
keypad zoning during input, J-34 
keypad zoning mechanism, J-1 1 
string input device numbers, J-10 
workstation type constants, A-2 

VT240 
choice input device numbers, J-4, J-5 
choice keypad functionality, J-35, J-37 
color chart, H-1 
keypad zoning during input, J-34 
keypad zoning mechanism, J-1 1 
string input device numbers, J-10 
workstation type constants, A-2 



VT330 

workstation type constant, A-2 
VT340 

workstation type constant, A-2 

W 
Windows 

normalization 
initial value, C-5 

WISS 
workstation type constant, A-1 

Workstations 
DEC GKS specific input values, J-1 to J-38 
errors 

list of, D-18 to D-24 
hardcopy types, A-4 
output-only types, A-4 
supported devices, A-1 to A-7 
types 

as bit masks, A-5 
bit mask constants, A-6 

Z 
Zoning 

input cursor, J-34 

Index-9 





Reader's Comments DEC GKS Reference Manual 
Volume it 

AA—HW44C—TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: 

Accuracy (software works as manual says) 
Completeness (enough information) 
Clarity (easy to understand) 
Organization (structure of subject matter) 
Figures (useful) 
Examples (useful) 
Index (ability to find topic) 
Page layout (easy to find information) 

Excellent Good Fair Poor 

❑ ❑ 

❑ ❑ 

❑ ❑ 

❑ ❑ 

❑ ❑ 

❑ ❑ 

❑ ❑ ❑ 

❑ 

❑ ❑ ❑ 

❑ 

❑ 

❑ ❑ 

❑ 

❑ ❑ D ❑ 

❑ 

❑ 

❑ ❑ 

I would like to see more/less  

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version   of the software this manual describes. 

Name/Title   Dept.  

Company   Date  

Mailing Address  

Phone  



— Do Not Tear -Fold Here and Tape 

d a9ao a 
TM 

— -- Do Not Tear -Fold Here 

No Postage 
Necessary 
if Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

C
u
t 

A
lo

n
g

 D
o

tt
e

d
 L

in
e
 



Reader's Comments DEC GKS Reference Manual 
Volume II 

AA—HW44C—TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less  

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version   of the software this manual describes. 

Name/Title   Dept.  

Company   Date  

Mailing Address  

Phone  



~- — Do Not Tear -Fold Here and Tape 

d a9ao a 
TM 

— — Do Not Tear -Fold Here 

No Postage 
Necessary 
if Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

~~'11111~~1~~1111'~1111'I~II~II~I~II~IIII'lll~l " ilf 

C
u
t
 A
l
o
n
g
 D
ot
te
d 
L
i
n
e
 


